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CHAPTER 1 
 

Introduction 
 
 
 

1.1 Motivation   

Efficient and accurate modeling of electromagnetic interaction between a buried object 

and layered rough surfaces finds a wide variety of applications ranging from detection of 

landmines and remote sensing of soil moisture content to retrieval of snow depth. Considerable 

research efforts have been focused on analyzing multiple scattering between objects and rough 

interfaces. Many analytical and numerical approaches have been developed to tackle various 

subsets of the problem. For rough surface scattering, analytical methods, such as the small 

perturbation method (SPM) [1, 2] or Kirchoff approximations (KA) [3] have been employed to 

solve the problem. The applicability of analytical methods is typically limited by their domains of 

validity for roughness of each layer interface [4]. On the other hand, numerical techniques, such 

as the Method of Moments (MoM) [5-9] and finite-difference time domain (FDTD) [10-12] offer 

the advantage of the capability of modeling electromagnetic scattering from rough surfaces with 

arbitrary roughness. However, they also present several drawbacks and modeling challenges. In 

MoM, the size of the impedance matrix is determined by the size of objects, the sample points per 

wavelength, and the number of scatterers. The computational cost becomes prohibitively high 

when the problem scenario involves multiple rough surfaces and a cluster of objects.  

In MoM, the edge diffraction effect [13] caused by a truncated stack of layered rough 

surfaces also poses a problem since the tapered illumination source [14], if used, only remedies 
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the edge diffraction effect due to the top rough surface, leaving that of subsurface rough surfaces 

untreated. In FDTD which is an attractive candidate for modeling inhomogeneous media, full-

space discretization is required. FDTD also involves the delicate task of specifying absorbing 

boundary conditions to terminate the computational domain. Very fine grid spatial discretization 

is needed to resolve small-wavelength geometrical features. For low frequency radar applications, 

modeling even only slightly rough natural soil rough surfaces may result in very long solution 

times.  Finally, for rough surface problem using FDTD, the cell-to-cell phase variation between 

corresponding points in different unit cells that arises from a plane-wave illumination source at 

oblique incidence renders time-domain implementation very challenging [15].  

The intent of this dissertation is to develop an efficient and accurate solution to 

electromagnetic scattering from layered rough surfaces, which is not limited by the drawbacks of 

MoM and FDTD. This dissertation in the forward modeling development consists of three 

components: 1) the theoretical formulation of an efficient and coherent scattering solution for 

layered rough surfaces and a thorough feasibility evaluation and sensitivity study for remote 

sensing of subsurface soil moisture, 2) the study of the backscattering enhancement effect due to 

surface plasmon resonance from layered rough surfaces, and 3) the development of a novel 

scattering analysis for incorporating a buried object or a cluster of objects in layered rough 

surfaces. Following the development of a forward model, the last part of the dissertation focuses 

on inverse scattering from layered rough surfaces where the goal is to estimate the complex 

dielectric constants and layer depth of multilayer rough surfaces. 

1.2 Applications and Previous Work  

Forward electromagnetic modeling of scattering from buried objects in layered rough 

surfaces finds applications in optical probing of layer depth, remote sensing of subsurface soil 

moisture, detection of landmines, through-wall imaging, among many others. In the area of 

inverse modeling, we focus our attention on the application in the retrieval of the subsurface soil 
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dielectric properties. In what follows, several applications of this thesis work are discussed in 

detail.  

1.2.1 Remote Sensing of Subsurface Soil Moisture  

Remote sensing of soil moisture is one of the major applications of radar technology 

where the objective is to map the distributions of soil moisture using radar backscattering 

coefficients. For observations of surface soil moisture fields, the use of L-band radars and 

radiometers has been long established as an effective means ([16-20]), and has led to community-

wide support for the proposed Hydrosphere State (HYDROS) satellite soil moisture mission at L-

band [20, 21], followed by the National Research Council’s recommendation for the Soil 

Moisture Active/Passive (SMAP) mission. Complementary to surface soil moisture, the soil 

moisture profile to depths of tens of centimeters to meters (within the root-zone) is a key 

controlling variable of the hydrologic partitioning over terrestrial surfaces. The soil moisture 

depth gradients can undergo significant variations and are determined by the difference of surface 

hydrologic fluxes and deep moisture variations related to drainage and transpiration by deep-

rooted grasses and trees. This gradient undergoes frequent reversals in response to wetting and 

drying periods, and hence its measurement, if possible, could enable proper characterization of 

the hydrologic fluxes involved. 

With recent technology developments for radar systems at the VHF (e.g., 137 MHz) and 

UHF (e.g., 435 MHz) bands, the potential of probing deep soil moisture content has been 

enhanced due to the larger penetration depth afforded at these lower frequencies. Mission concept 

studies such as the Microwave Observatory of Subcanopy and Subsurface (MOSS) [22] and 

studies using actual airborne systems such as the NASA/JPL AIRSAR [23] have shown the 

technological and analytical feasibility of obtaining reliable radar data and subsurface soil 

moisture products at low frequencies. At VHF band, electromagnetic waves can penetrate well 

into the ground surface and scatter from subsurface interfaces. Both backscattering coefficients 
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and co-polarized phase differences at low frequencies capture the effect of deep soil moisture 

well below the ground surface without detrimental attenuation [24]. 

Depth-dependent soil moisture gives rise to dielectric profiles which strongly depend on 

soil type, temperature profile, surface evaporation and moisture content. The real part of the 

dielectric constant at VHF ranges from 3 for dry soil to about 30 for wet soil. Therefore, 

backscattering coefficients at this frequency band could vary significantly depending on the 

ground moisture regime. Along with a non-uniform soil moisture function in depth, soil consists 

of different subsurface layers, which are typically rough. For example, there could exist sand, 

clay, and rock layers. These distinct layers could be of very different soil types and must be 

modeled as individual rough layers [25]. Fig. 1.1 shows an example of the cross section of 

layered soil media. Distinct layers are apparent from the picture taken at the Walnut Gulch 

Experimental Watershed (WGEW) in Arizona during a dry period.    

 
Fig. 1.1: An example of layered soil profile in WGEW, showing the rough interfaces and visible moisture variations within 

each layer   
 

Consequently, the presence of both inhomogeneous dielectric profiles as well as irregular soil 

layers necessitates the need for a model of layered soil media which accounts for both dielectric 

profiles and multilayer rough surfaces in the development of scattering models at low frequencies.  
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  In [26], an analytical solution based on SPM to scattering from a slightly rough surface 

with inhomogeneous dielectric profiles is developed where the top ground surface is assumed to 

be slightly rough. There are also a few studies on the scattering of electromagnetic waves from 

multilayer homogeneous rough surfaces. Analytical solutions based on SPM to electromagnetic 

scattering from a rough surface covered by a homogeneous layer and also two-interface rough 

surfaces have been proposed and formulated recently in [27-29] and [1, 30, 31], respectively, and 

they are valid for surfaces with small roughness (kh << 1) and small slope approximation (klc ~ 1), 

where k is the free space wavenumber, h is the root-mean-squared height, and lc is the correlation 

length. Numerical solution based on Method of Moments (MoM) also has been employed to 

solve the scattering problem for layered rough surfaces [7, 32]. MoM based on Steepest Descent 

Fast Multi-pole Method (SDFMM) is also investigated in [32]. Forward-backward method with 

spectral acceleration for scattering from layered rough surfaces is introduced in [7]. 

1.2.2 Backscattering Enhancement of Surface Plasmon Resonance from Layered 
Rough Surfaces  

 
Backscattering enhancement is a phenomenon in rough surface scattering which 

manifests itself as a well-defined peak in the backscattering direction [33]. In a small roughness 

regime, backscattering enhancement is induced by the excitation of surface plasmon waves along 

a certain path followed by their retracing the same path in the reverse direction. Both theoretical 

[34, 35] and experimental [36] research efforts have been previously made to study 

backscattering enhancement effect of rough surfaces due to surface plasmon resonance.  

Backscattering enhancement of surface plasmon waves is important in various applications, 

including surface plasmon localization in rough-metal surfaces and ocean acoustic applications 

[33]. It is also an emerging area of interest in biological applications and has provided a new 

means to detect and image biological interfaces of thickness well below the diffraction limit [37].  

 Backscattering enhancement due to rough surface scattering can arise from two distinct 

mechanisms: multiple (double) scattering effect and surface plasmon resonance. When the rms 
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height is close to a wavelength and the slope is also close to unity, waves scattered from the 

surface may interfere constructively in the backscattering direction, producing an enhanced peak. 

This type of backscattering enhancement is caused by the phenomenon of multiple (double) 

scattering [38] where constructive interference takes place between the direct scattered fields and 

their time-reversed reciprocal pairs within the valleys of rough surfaces. The formation of 

enhanced backscattering from very rough surfaces does not require the existence of surface 

plasmon modes [39]. This type of backscattering enhancement tends to result in broad angular 

width. The second type of backscattering enhancement is due to surface plasmon resonance. It 

occurs when the rms height is much smaller than a wavelength and the medium can support 

surface waves. When surface plasmon waves are excited and they traverse along the surface in 

opposite directions, they may constructively interfere with each other, producing an enhanced 

backscattered peak. The angular width of an enhanced peak due to surface plasmon resonance is 

typically narrow. 

   Surface plasmon resonance is a charge-density oscillation associated with surface 

plasmon waves at the interface which decay evanescently into both media and propagate along 

the interface. In a planar interface geometry, these surface plasmon waves stay bound to the 

surface. When the surface geometry becomes irregular, such as a periodic or rough surface, these 

surface plasmon waves become localized at protrusions and crevices of rough surface and they 

can couple into propagating modes and significantly enhance the scattered energy [40, 41]. For a 

planar interface between two media, backscattering enhancement can only be observed in TM 

(vertical) polarization because only the TM boundary conditions allow the surface plasmon waves 

to exist for nonmagnetic media. When the field is TE polarized, surface plasmon waves cannot be 

supported because the boundary condition cannot be satisfied if the TE wave decays 

exponentially on both sides of the interface. In fiber optic communications, the TM-only nature of 

the surface plasmon modes has been exploited to provide polarization selectivity [42].  However, 

when the scattering medium consists of a slab on a substrate, this guiding structure can support 
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surface waves for both TE and TM polarizations. Depending on the layer thickness and the 

dielectric constant of slab, this waveguide can excite multiple surface plasmon waves, giving rise 

to backscattered enhanced peaks for both polarizations. 

Previous work which discussed enhanced backscattering due to surface plasmon modes 

from a single metallic rough surface can be found in [34, 35]. In analyzing backscattering 

enhancement due to surface plasmon resonance, only coherent methods that can handle at least up 

to the 2nd order of scattering are useful. In [30], a theoretical development based on the higher-

order SPM for backscattering enhancement from multilayer rough surfaces was presented. 

Numerical techniques such as extended boundary condition method (EBCM) also known as 

reduced Rayleigh method have been extensively employed to analyze backscattering 

enhancement. In [43], EBCM was employed in a numerical study of light scattered from a one-

dimensional, randomly rough surface on a metal. It was also applied to analyze the case of a 

dielectric film with a randomly rough surface deposited on a planar metal surface in [44]. 

Similarly, the scenario of a rough metal surface coated with a planar dielectric film was studied 

using reduced Rayleigh method in [45]. In [45], the two-layer problem results in a pair of coupled 

matrix equations which need to be solved simultaneously. Computational cost increases 

exponentially as the number of layers increases. Finally, in [46, 47], the scattering and 

transmission of light from a film with two corrugated surfaces was solved using EBCM where  

the simulation in [46] was only carried out for a set of two deterministic periodic surface profiles. 

In [47], only normal incidence was investigated.   

1.2.3 Landmine Detection 

This area of research has attained prominence for the past decades and found applications 

in the detection of landmine and unexploded ordnance (UXO). Fig. 1.2 shows the human search 

for unexploded ordnance using ground penetrating radar (GPR). 
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Fig. 1.2: Detection and localization of unexploded ordnance (UXO) using ground penetrating radar (GPR) 

Anti-personnel mines are typically buried at shallow/moderate depth. Low frequency radars with 

an improved signal depth penetration can potentially sense buried objects embedded in layered 

media. Therefore, it is especially important to account for the presence of subsurface rough 

interface for the low frequency radar application. The backscattered signal from the mine could 

be small compared with the primary backscattered signal due to rough surface scattering at the 

soil-air interface. The presence of a subsurface rough interface will further clutter the 

backscattered target response. When the solution is developed to analyze scattering from a buried 

object in layered rough surfaces, multiple scattering due to the interactions between an object and 

layered rough surfaces needs to be accounted for. Various methods have been developed to solve 

the scattering problem for a buried object underneath a rough surface.  

   Commonly, the solution to scattering from an object beneath a rough surface is based on 

MoM (e.g. [48-53]). In MoM, the rough interface of finite length is modeled in the simulation and 

a tapered incident field is used to avoid surface edge scattering effects. Due to the presence of 

both object and distributed source (the rough surface) scatterers, scattering coefficient depends on 

the rough surface area illuminated by the incident tapered wave. Rough surface effects become 

more likely to dominate object scattering effects when a large surface area is illuminated. 

Therefore, the concept of difference field cross sections is often applied to reduce the dependency 
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on the tapered incident field (illumination area) [53]. Essentially, scattered fields are computed 

both for the combined object/rough surface problem and the rough-surface-only problem, and 

subtracted to yield “object minus no-object” fields. Tests have confirmed that difference field 

cross sections do not depend on the illumination area. To avoid the use of difference field cross 

sections, an infinitely extended incident waves needs to be applied in the simulation without 

causing edge diffractions. This can be accomplished through the use of periodic boundary 

condition which minimizes the effect of edge diffraction.  

      Another difficulty associated with MoM is to choose the proper value of the tapering 

parameter. This problem with edge diffractions is often complicated and amplified by an object 

located in a stack of truncated rough layers.   Therefore, for numerical simulation, the length of 

each rough surface is often chosen to be very long in an attempt to eliminate edge diffractions 

using tapered incident wave. This in turn increases both computational time and memory 

requirements. The large size of the matrix in MoM often demands the use of computationally 

efficient methods for solving layered rough surface scattering problems.  

1.2.4    Retrieval of Subsurface Soil Moisture in Layered Media 

Tremendous research effort has been made to retrieve bare surface soil moisture from 

remote sensing data. Semi-empirical polarimetric backscattering models for bare soil surfaces 

have been developed and inverted directly to estimate both the volumetric soil moisture content 

and the rms surface height from multiple polarized radar observations [16, 17, 54]. A numerical 

inversion of the Integral Equation Method (IEM) model using a look-up table of IEM simulation 

results has been applied to retrieve soil moisture over bare soil surfaces from active microwave 

data in [55]. Furthermore, a Bayesian approach to the retrieval of soil moisture content using a 

priori information on soil moisture content and surface roughness has been devised in [56]. On 

the other hand, many attempts in inverting the dielectric profile of a layered soil medium also 

have been made. Using ground penetrating radar near-field data, mono-static pulse radar has been 

used to estimate permittivity profiles in a multilayer medium where the conductivity profile is 
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assumed to be known in [57] and [58]. In those works, the radar operates at the normal-incidence 

mode and therefore any laterally scattered energy due to surface roughness is negligible.  

Due to the nature of nonlinearity and non-uniqueness underlying the problem of 

subsurface inversion, the development of a reliable and accurate inversion algorithm for 

subsurface soil moisture becomes an extremely challenging task especially when the subsurface 

roughness statistics are the parameters to invert. Currently, an inversion method for the retrieval 

of subsurface soil moisture including both dielectric constants and roughness information using 

multi-frequency polarimetric backscattering radar data is still lacking. To probe subsurface soil 

moisture, there is more readily useful information contained in time-domain data (a broadband 

pulse) than magnitude and phase measurements at a single or just a few discrete frequencies. 

Each delay echo in the time history represents a reflection from an interface and the time 

difference between echoes is directly correlated with layer thickness. However, one of the major 

challenges underlying the acquisition of time-domain data at low frequencies is that it is very 

difficult to design and implement wideband radar systems at low frequencies. Step-frequency 

radar systems are an alternative solution to wideband low frequency radar systems. Step-

frequency radar offers the advantage of both frequency-domain data collection and the realization 

of time-domain data. In addition, compared to impulse radar systems, step-frequency radar 

technology also has an improved signal-to-noise ratio, stable signal sources, and the availability 

of total source power at each measurement frequency [59]. Although the full realization of step-

frequency radar system in [59] is not feasible from space, but from air, the systems such as 

GeoSAR [60-62] covering from 270 MHz to 430 MHz or LORA/CARABAS can be deployed to 

perform UHF/VHF multi-frequency measurements.   

1.3    Thesis Objectives and Contribution  

I developed a coherent technique for analyzing scattering from layered rough surfaces 

and embedded objects in two dimensions. The formulation of the approach is outlined in the 
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following. The core of the proposed method for modeling electromagnetic scattering from layered 

rough surfaces lies in the use of the scattering matrix method (SMM). Layered rough surfaces 

consist of a stack of rough interfaces. The solution to scattering from each rough interface is 

sought independently based on the extended boundary condition method (EBCM) [9, 63-65], 

where the scattered fields of each rough interface are expressed as a summation of plane waves 

and then cast in terms of reflection and transmission matrices. To account for multiple scattering 

between multiple rough boundaries, SMM is employed to recursively cascade reflection and 

transmission matrices of each rough interface and obtain the composite reflection matrix from the 

overall scattering medium. This coherent scattering approach can be used to compute both 

backscattering coefficients and co-polarized phase difference, which are useful measured 

parameters for the inversion of dielectric properties and roughness statistics of layered rough 

surfaces.  

One of the strengths of this method is its capability of incorporating a buried object in 

layered rough surfaces. The derivation of the transition matrix (T-matrix) for a circular dielectric 

cylinder can be found in [9]. A T-matrix relates the incident field to the scattered field of an 

object, both of which are expanded in terms of cylindrical harmonics in two dimensions. To 

perform mode matching between layered rough surfaces and a buried object, the cylindrical-to-

spatial harmonics (plane wave) transformation is applied to the T-matrix of a buried object.  This 

harmonic transformation is derived through the use of the recurrence formula and Fourier integral 

representation for Hankel functions and the expressions for the transformation matrices can be 

found in [66-70]. When the T-matrix of a buried circular cylinder is transformed into the 

reflection and transmission matrices, these matrices can then be cascaded with those of layered 

rough surfaces to account for electromagnetic interaction between a buried cylinder and layered 

rough interfaces. 

Following the development of a forward model, I then set out to develop a multi-

frequency inversion algorithm where dielectric properties and roughness statistics of ground 
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surface are estimated using higher frequency information (L band) and subsurface probing 

capabilities are achieved using low frequency radar measurements (VHF and UHF). The main 

feature of the proposed inversion method is that it accounts for the existence of a rough 

subsurface layer in the development of the inversion algorithm by characterizing subsurface 

roughness as a statistical unknown to be estimated. The proposed inversion algorithm performs an 

inverse Cosine transform of radar measurements over the VHF- and UHF- frequency bands to 

obtain synthetic time-domain data and subsequently parameterizes individual delay echoes in 

time as a result of successive reflections upon different rough interfaces. These parameters are 

then used to invert subsurface geophysical parameters. The proposed inversion algorithm in this 

thesis is designed to complement a step-frequency radar system at the VHF- and UHF- bands.  

No previous work exists regarding scattering from multilayer rough surfaces separated by 

arbitrary inhomogeneous dielectric profiles. Similarly, a coherent technique, which efficiently 

solves scattering from arbitrary N-interface rough surfaces with multiple scattering effect fully 

accounted for, has not previously been formulated. A unifying theory which systematically 

handles wave interactions between buried objects and rough surfaces is also lacking. In this 

dissertation, a hybrid analytical/numerical technique for analyzing scattering from layered rough 

surfaces based on EBCM/SMM is proposed. This rigorous technique coherently accounts for all 

multiple orders of scattering and multiple bounces due to wave interactions between rough 

interfaces. In addition, it does not suffer from any disadvantageous aspects of MoM and FDTD, 

including the rapid growth of matrix size with increasing number of scatterers (MoM), the effect 

of edge diffraction (MoM), very fine grid spatial discretization to resolve small-wavelength 

geometrical features (FDTD), difficulty in the implementation of an obliquely-incident plane 

wave source (FDTD), and the specification of absorbing boundary conditions (FDTD). The 

capability of the proposed forward modeling technique is also enhanced by demonstrating its 

ability to incorporate buried objects in layered media. The usefulness of the technique is further 

corroborated by employing the method to perform a sensitivity analysis for remote sensing of 
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subsurface soil moisture, study backscattering enhancement effect from layered rough surfaces, 

and carry out numerical experiments for the landmine detection problem and volume scattering 

from discrete random media. It is important to point out the theoretical nature of this thesis work. 

Cross-validation with experimental data is subject of future work, where well-controlled 

experiments can be performed. 

1.4    Dissertation Overview 

 This dissertation is composed of seven chapters. Chapter 2 defines the forward modeling 

problems and reviews the statistical properties and generation methodologies of random rough 

surfaces and discrete random media. The last section of Chapter 2 discusses SMM which serves 

as the basis for further advanced modeling, and outlines the scattering matrix solution to 

scattering from layered rough surfaces. Chapter 3 reviews EBCM, derives the scattering matrices 

of a rough surface, and formulates the scattering analysis for layered rough surfaces with 

stratified dielectric profiles. In Chapter 3, extensive analytical and numerical validations are 

presented and a benchmarking study of MoM and EBCM/SMM is performed. A thorough 

feasibility evaluation and sensitivity study are then conducted for remote sensing of subsurface 

soil moisture. In Chapter 4, the proposed hybrid method based on EBCM/SMM is applied to 

analyze multiple scattering processes by investigating the backscattering enhancement 

phenomenon for layered rough surfaces. The chapter examines backscattering enhancement due 

to surface plasmon resonance from two-interface rough surfaces and derives the wavenumbers for 

surface plasmon waves supported by a two-layer medium. Exhaustive numerical experiments are 

performed to study the backscattering enhancement effects for different sub-wavelength features, 

such as, subsurface roughness and layer thickness. Qualitative conclusions regarding mode 

conversion efficiencies of TE and TM surface waves are drawn. Chapter 5 enhances the proposed 

forward modeling solver by allowing a buried object or a cluster of objects to be incorporated in 

layered rough surfaces. Analytical validations and numerical examples are provided and 
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discussed in Chapter 5. Particular attention is given to the investigation of the relative importance 

and sensitivity of various physical parameters of buried objects and layered rough surfaces to the 

overall backscattered response. In Chapter 5, the proposed technique is also generalized to 

analyze scattering from a cluster of cylinders (2D discrete random media) in layered rough 

surfaces.  In Chapter 6, a multi-frequency polarimetric inversion algorithm for the retrieval of 

subsurface properties of layered soil media using VHF/UHF and L-band radar measurements is 

presented. In the proposed inversion method, synthetic time-domain data are constructed using 

multi-frequency measurements and the dielectric properties and roughness statistics are estimated 

using the pulse shape optimization for time delay echoes from dual-polarized VHF/UHF band 

radar measurements. At the end of this dissertation, Chapter 7 makes the concluding remarks and 

motivates future work.  
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CHAPTER 2 
 

Problem Description and Background Theory  
 
 
 

In this chapter, we define the forward scattering problems whose scattering solution will 

be sought in the following chapters. In section 2.1, three forward modeling problems are 

examined: scattering from layered rough surfaces with stratified dielectric profiles, scattering 

from a buried cylinder in layered rough surfaces, and finally scattering from discrete random 

media in layered rough surfaces. Following the description of forward modeling problems, the 

statistics and Monte Carlo generation of rough surfaces and discrete random media are discussed 

in section 2.2. Fundamental statistical properties associated with rough surfaces and discrete 

random media are reviewed. In section 2.3.1, the derivation of the scattering matrix method 

(SMM) is given. Upon obtaining the scattering matrix solution, the expressions for solving the 

forward scattering problems are provided in section 2.3.2.  

2.1 Problem Definition   
 
2.1.1 Multilayer Rough Surfaces 

We consider scattering coefficients for a two-rough-interface geometry with arbitrary 

dielectric profiles modeled as fine stratifications. The top rough surface, f1, separates free space 

from the medium of dielectric profile ε1(z) and μ1 = μ0. This medium fills a layer separated from 

another inhomogeneous stratified medium (ε2(z), μ2 = μ0) by another rough surface f2. The 

geometry of the problem is illustrated in Fig. 2.1. The dielectric profiles arise due to spatially 

varying volumetric moisture content denoted by )(zmv  also shown in Fig. 2.1. The 
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inhomogeneous medium described by ε1(z) has mean layer thickness of d. The wave vector of the 

incident field lies in the x-z plane. The polarization is said to be TM or vertical when the 

magnetic field is directed along the y axis and TE or horizontal when the electric field is directed 

along the y axis. The technique developed in this dissertation can also handle the problem of 

general 2D geometry where there is any number of rough surfaces and profiles involved, or where 

every single interface is rough. The dielectric profiles between each two rough surfaces are 

modeled as finely stratified media (Fig. 2.1). 

 
Fig. 2.1: Geometry of scattering from arbitrary profiles separated by multilayer rough surfaces 

 
2.1.2 Buried Cylinder in Layered Rough Surfaces  

We next consider bistatic scattering coefficients from two-interface rough surfaces 

bounding a dielectric cylinder of dielectric constant εc. The top rough surface, f1, separates free 

space from a homogenous medium (ε1, μ1 = μ0). This homogeneous medium fills a layer 

surrounding a homogeneous dielectric cylinder separated from the lower half space (ε2, μ2 = μ0) 

by another rough surface f2.  The geometry of the problem is illustrated in Fig. 2.2.  The axis of 

the cylinder is parallel to the y axis. The cylinder has radius a and is buried at a distance d1 below 

the top rough interface and at a distance d2 above the bottom rough interface. The cylindrical 
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structure is assumed to be infinite along the y axis so the problem is a two-dimensional one. The 

wave vector of the incident field lies in the x-z plane. The polarization is said to be TM (with 

respect to the axis of the cylinder) or vertical when the electric field is directed along the y axis 

and TE or horizontal when the magnetic field is directed along the y axis. The technique 

developed in this dissertation can also handle the problem of general geometry where the cylinder 

could be situated anywhere in the layered structure, for example, a cylinder beneath both of the 

two rough interfaces.  

 
Fig. 2.2: Scattering from multilayer rough surfaces bounding a dielectric cylinder 

 
2.1.3 Discrete Random Media  

The last scattering problem considered in this thesis is the discrete random media 

problem with two-interface rough surfaces bounding a random distribution of dielectric cylinder 

of dielectric constant εc. The top rough surface, f1, separates free space from a discrete random 

medium. This discrete random medium is a layer of background (host) material (ε1) filled with a 

random discrete distribution of homogeneous dielectric cylinder (εc) separated from the lower 

half space (ε2) by another rough surface f2.  The geometry of the problem is illustrated in Fig. 2.3.  

The axis of each cylinder of 2D discrete random media is parallel to the y axis and each cylinder 
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is of radius a. The cylindrical structure is assumed to be infinite along the y axis so the problem 

reduces to a two-dimensional one. The wave vector of the incident field lies in the x-z plane. The 

polarization is said to be TM (with respect to the axis of the cylinder) or vertical when the electric 

field is directed along the y axis and TE or horizontal when the magnetic field is directed along 

the y axis.  

 
Fig. 2.3: Geometry of scattering from discrete random media in multilayer rough surfaces 

 
 

2.2 Statistics of Random Media 
 
2.2.1 Random Rough Surface 
 

This section discusses the statistical properties of rough surfaces. Since this thesis deals 

with one dimensional (1D) rough surfaces, the statistics for 1D rough surface are outlined here. 

The following discussion is based on [9]. 1D random rough surface is represented by z=f(x), 

where f(x) is a real valued random rough height function of x with a zero mean.  

                                                    
0

( ) ( ) 0
L

xf x dx f x=< >=∫                                                      (2.1)                                

where L is the length of the random rough surface profile. The Fourier transform of the rough 

surface height function, f(x), is  
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The mean of the rough surface height function in spectral domain is also zero. The process f(x) is 

called Gaussian if f(x1), f(x2), …, f(xn) are jointly Gaussian for any n. The Gaussian process is 

described and characterized by its correlation function 

                                              2
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with the assumption of stationarity where the rough surface height function is shift-invariant. The 

quantity h is called the root mean squared height (RMS) which is related to the standard deviation 

of the Gaussian samples of the rough surface height function. The Fourier transform of (2.3) is 

given by    
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Since the left hand side of (2.3) depends only on x1-x2 and f(x) is real,  
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where 1( )xW k is known as the spectral density. The Fourier transform of h2C(x) is the spectral 

density ( )xW k  
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This thesis primarily considers the Gaussian correlation function for rough surfaces with  
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Its corresponding spectral density can be shown to be  
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x
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where h is rms height, l is correlation length, and kx is surface wavenumber. Another interesting 

statistical parameter associated with rough surfaces is the rms slope defined as  
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 We then consider the surface profile f(x). Let f(x) be a periodic function of L, i.e., f(x)=f(x+L). 

Hence, f(x) can be represented using Fourier series.  
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 where bn can be shown to be Gaussian random variables for Gaussian rough surfaces. From (2.3) 

and (2.10), 
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By comparing (2.3), (2.6), and (2.11) 
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Since bn and bm are independent, *
n m nm nb b Bδ< >= . 
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Then, we sample kx at Kn and let 
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This gives  

                                                    22 ( ) | |n n nB LW K bπ= =< >                                                  (2.15) 

When f(x) is real, Fourier series coefficients satisfy  

                                                                 *
n nb b−=                                                                      (2.16) 

The orthogonality principle gives  

                                                            * 0n nb b−< >=                                                                   (2.17) 
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Combining (2.16) and (2.17) results in 

                                                             0n nb b< >=                                                                    (2.18) 

We then represent bn as the sum of its real and imaginary parts. 

                                                        Re{ } Im{ }n n nb b i b= +                                                      (2.19) 

From (2.18),  

                                                    2 2(Re{ }) (Im{ })n nb b< >=< >                                              (2.20) 

                                                      Re{ } Im{ } 0n nb b< >< >=                                                   (2.21) 

Therefore, Re{bn} and Im{bn} are independent Gaussian random variables with zero mean and 

variance equal to half of that of <|bn|2>. Therefore, a Gaussian rough surface can be represented 

by a Fourier series with Gaussian distributed coefficients satisfying (2.15)-(2.21). 

 We further employ a discrete Fourier transform (DFT) version of (2.10). Let there be N 

points in both space and spectral domains, then the unit distance is 
Lx
N

Δ = . Define  

                         ( ) ,m m mf x f x m x= Δ     for  1,...,0,1,...,
2 2
N Nm = − +                         (2.22) 

Then,  

                                                           
22

1
2

1
N

nmi
N

m n
Nn

f b e
L

π

=− +

= ∑                                                    (2.23) 

 The DFT results in  

                                                          
22

1
2

N
nmi

N
n m

Nm

Lb f e
N

π
−

=− +

= ∑                                                  (2.24) 

 (2.23) and (2.24) can be computed using fast Fourier transform (FFT). Both fm and bn are 

periodic with period N.  

                                                                    n N nb b+ =                                                                 (2.25) 
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                                                                   m N mf f+ =                                                                (2.26) 

From (2.25) and (2.16), we know 

                                                                  *

2 2 2
N N Nb b b

− −
= =                                                        (2.27) 

(2.27) yields both 
2
Nb

+
 and 0b are real. Therefore, any periodic discrete function has DFT 

coefficients satisfying (2.25)-(2.27). Then, these symmetry properties are exploited to generate a 

Gaussian rough surface. The Matlab methodology for Gaussian rough surface generation is given 

below.  

1. With a given seed, N Gaussian distributed random numbers with zeros mean and unit variance 

are generated using Matlab function randn. These N numbers are independent and they are not 

required to be grouped or arranged in any order. Let the numbers be labeled as r1, r2, r3, … , rN. 

2. Then two real Gaussian numbers 
2
Nb

+
 and 0b  are computed as follows: 

                                                           0 2 (0)b W rαπ=                                                             (2.28) 

                                                       
2

2 ( )N
Nb W r
L β
ππ

+
=                                                         (2.29) 

where α β≠  and , {1, 2,..., }.Nα β ∈  

3. (N/2-1) Gaussian numbers are then calculated using 

                                                     12 (| |) ( )
2n Nb W K r irσ ξπ ⎡ ⎤= +⎢ ⎥⎣ ⎦

                                     (2.30) 

for 1,..., 2, 1
2
Nn = − + − −  where ,σ ξ are distinct indices selected from set 

{ } { }{ }1,2,..., ,S N α β= . 

4. Using *
n nb b−= , bn for 1, 2,..., 1

2
Nn = −  can be easily calculated. 

5. Finally, using the inverse DFT relation in   (2.31) with X(n) = bn, 
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22

1
2

1( ) ( )

N
nmi

N

Nn

x m X n e
N

π

=− +

= ∑                                                       (2.31) 

( ), {1,2,..., 1}x m m N∈ − is obtained. Extending x(m) periodically, the rough surface profile can 

be generated as follows: 

                                                        ( )m
Nf x m
L

=                                                                      (2.32) 

for 1,...,
2 2
N Nm = − + .  

 
                                                       a)                                                                                                         b) 
                 Fig. 2.4: Two realizations of Gaussian rough surfaces with different correlation lengths: a) L=40λ, h=0.03λ, lc=0.5λ, 

b) L=40λ, h=0.03λ, lc=1λ 
 
 

2.2.2 Discrete Random Media 

Scattering from discrete random media depends on the positions of particles. A discrete 

random medium consists of discrete particles packed together which occupy some fractional 

volume f. This section consists of sub-sections from Chapters 8 and 9 in [9]. The probability 

density function (pdf) of particle positions ( )irρ  is uniformly distributed. However, due to the 

finite size of particles, the joint probability density of two particle positions cannot be 

independent. Let ( , )i jr rρ be the joint probability density function of two particles centered at 

ir and jr  and ( , ) 0i jr rρ =  for | |i jr r−  less than the minimum separation which is the 

diameter of a particle if the two particles are spheres of the same radius. The joint probability 
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density function of two particles describes the pair distribution function. Let N be the number of 

particles. The particles are centered at 1 2, ,..., Nr r r and placed in a volume V. Then,  

                                                                   
1( )ir
V

ρ =                                                               (2.33) 

is the single particle pdf.  

                                                  2

( , )( , )
1

i j
i j

g r r Nr r
V N

ρ =
−

                                                  (2.34) 

is the joint pdf of two particles and g is the pair distribution function. In the limit of finite N, 

2

( , )( , ) ~ i j
i j

g r rr r
V

ρ . When the fractional area is not appreciable (i.e. less than 0.2), the hole-

correction (HC) approximation can be applied to the pair distribution function where ( ) 0g r =  

for r b<  and ( ) 1g r =  for r b≥ , where b is the diameter of the sphere. The HC approximation 

accounts for the fact that the particles do not interpenetrate each other. Neither the independent 

position approximation nor the HC approximation is accurate for appreciable fractional volume of 

scatterers. If we consider the opposite limit where the fractional volume of scatterers is unity and 

the entire volume V is occupied by scatterers, the pair distribution function, ( )g r , will be zero for 

r mb≠  where m is any nonzero integer. It consists of a train of delta functions at the positions of 

r equal to integer multiples of b. When 0 1f< < , the pair distribution function is of a form 

between the HC approximation and delta function trains. It is also worth noting that when the 

separation distance between particles approaches infinity, the particle positions become 

independent of each other and hence lim ( ) 1
r

g r
→∞

=  for f not equal to maximum concentration. 

For 0 1f< < , the Percus-Yevick approximation [9] is often employed to obtain the analytical 

expression for pair distribution function. Let b be the diameter of the particle, with b = 2a, where 

a is the radius of the particle. Let f be the fractional area occupied by the particles. The value of f 

is related to N and b through the following expression: 
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2

4
b Nf π

=                                                                  (2.35) 

Equations (2.36) – (2.44) provide the expressions for the 2D pair distribution function with a 

random distribution of cylinders. Under the Percus-Yevick approximation, 

                                                          ( ) 1 1c x for x= >                                                 (2.36) 

For 1x ≤ , direct correlation c(x) assumes the following form, 

                                           2 2( ) (0) 1 4 4 ( )
2
xc x c f s f xω⎡ ⎤⎛ ⎞= − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                                    (2.37) 

where 

                                         1 2
2

2( ) cos 1x x x xω
π

−⎡ ⎤= − −
⎣ ⎦

                                                     (2.38) 

                                         
2 2

2 2 3

3 8(1 2 ) (25 9 ) (7 3 )( )
8 1 3
f p p pf p pfs f

f pf pf
⎡ ⎤− + − − −

= ⎢ ⎥+ + −⎣ ⎦
              (2.39) 

                                           
2 3

3

1 3(0)
(1 )

f pf pfc
f

+ + −
= −

−
                                                         (2.40) 

                                               
7 4 3
3

p
π

= −                                                                               (2.41) 

Assuming isotropic correlation functions, 

                                         0
0

1( ) ( ) ( )
2

C p drc r J pr
π

∞

= ∫                                                              (2.42) 

                                         2
0

( )( )
1 4 ( )

C pH p
n C pπ

=
−

                                                                  (2.43) 

                                          ( ) 1 ( )i p rg r d pe H p
∞

⋅

−∞

= + ∫                                                               (2.44) 

To the first order Born or distorted Born approximation, the bistatic scattering intensity is 

proportional to the structure factor which is related to the Fourier transform of the pair 
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distribution function. The study of pair distribution functions is an important subject in discrete 

random media problems. The next paragraph describes a Monte Carlo procedure for shuffling the 

positions of 2D random cylinders in a square area.  

In what follows, a step-by-step procedure for Metropolis shuffling algorithm [9] is 

provided. We first need to define the statistical properties which characterize the discrete random 

media. Let there be N particles. For simplicity, let 

                                                                2
1N N=                                                                       (2.45)  

where 1N  is an integer. The particles are placed in a unit square of [0,1] x [0,1]. If no is the 

number of cylinders per unit area, then 

                                                                on N=                                                                        (2.46) 

Let b be the diameter of the cylinder with b = 2a, where a is the radius of the cylinder. Let f be 

the fractional area occupied by the cylinders. Thus, the diameter b is given by 

                                                             
4 fb

Nπ
=                                                                      (2.47) 

Inside the square, the cylinders are first placed periodically in both x and z directions with 

spacing given by  

                                                                   
1

1s
N

=                                                                     (2.48) 

For example, the first row of N1 particles have coordinates 

                                  1
3 5 1, , , , , ,..., ,

2 2 2 2 2 2 2 2
s s s s s s sN s⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                                   (2.49) 

 To generate the 0th realization, we employ a shuffling method described as follows. Npass 

passes are performed. For each pass, each cylinder is moved once even though the move may not 

be accepted. The move is dictated by Δ where 

                                                                        stc bΔ =                                                               (2.50) 
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and stc is an adjustable constant for the displacement. For a cylinder j with coordinates ( , )j jx z , 

we generate new coordinates ' '( , )j jx z  from two random numbers r1 and r2 which are uniformly 

distributed between -1 and 1. In Matlab, the function rand can be used to generate r1 and r2.  

'
1j jx x r= + Δ                                                             (2.51) 

'
2j jz z r= + Δ                                                             (2.52) 

 
Next, we check whether the new coordinates, ' '( , )j jx z , are acceptable by ensuring they do not 

overlap with other particles. Note that the periodic boundary conditions are applied. Thus each 

particle has images in other squares. To check for overlap with particle l, (l=1,2,…,N and l j≠ ), 

we calculate  

            '
x l jr x x= −                                                                 (2.53) 

If 0.5xr > , then the image of lx  is closer to '
jx . Thus we do the following  

                                                   If   0.5xr > , replace xr by xr -1 
                                                   If   0.5xr ≤ , replace xr by xr +1 
 
Do the same fo '

y l jr z z= − with the appropriate replacements. Then, the distance between 

cylinders j and l given by (2.54) is computed. 

             2 2
d x zr r r= +                                                            (2.54) 

If dr b≥  for all l j≠ , then the move is accepted for cylinder j. 

Replace jx  by '
jx  

Replace jz by '
jz  

 
If dr b<  for any l j≠ , then the move is rejected and the original coordinates ( , )j jx z are kept. 

If dr b> for all l j≠ , we take ' '( , )j jx z  and temporarily call it the new coordinates ' '( , )j jx z . 

Before we finally accept the new ' '( , )j jx z , we need to make sure the cylinder j is within the unit 
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square. If it is out of the unit square, it has become an image and we need to translate it back into 

the unit square. Thus, for the new jx  

If 0jx < , replace jx by 1jx +  

If 1jx > , replace jx  by 1jx −  
 
Do the same for jz  with the appropriate replacements. Then we accept ( , )j jx z  as the new 

position for cylinder j. 

 The process is applied to all the cylinders j=1,2,3,…,N. When the process is finished, one 

pass is completed. A new realization is generated after Npass passes to make sure that the particles 

are sufficiently randomized. To get the 0th realization from the initial periodic configuration, it is 

better to do several times of Npass passes. From the 0th realization, we generate new realizations 

for a total Nr realizations with each one created after Npass passes. For each accepted new position 

for a cylinder, we count it as an accepted move. Let Nacc be the total number of accepted moves 

after Nr realizations. Then the acceptance rate is given by 

acc

pass r

Naccept rate
NN N

=                                                   (2.55) 

If the displacement Δ is too small, then all the moves will be accepted and the realizations will be 

dependent on each other. On the other hand, if the displacement Δ is too large, then all the moves 

will be rejected. A good acceptance rate is between 30% and 70% by choosing an appropriate Δ 

through cst. It is important to point out that Metropolis algorithm typically gives reasonable 

acceptance rate ranging from 40% to 75% when the volume fraction f is less than 0.4. For f > 0.4, 

overlapping rate is typically very high and acceptance rate is normally above 0.8. When discrete 

random media are rectangular whose length and depth are unequal (i.e., d=1λ and L=40 λ), good 

acceptance rates are only obtained when f < 0.2. Therefore, In Chapter 6 of this dissertation, only 

scattering from sparse random media will be investigated. For packing algorithms for a dense 

random media, the algorithm in [71] can be implemented.  Fig. 2.5 shows the realizations of 
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discrete random media whose computational domain is 40λ (L) by 1λ (d) for f = 0.1 and 0.2. The 

cylinder radius is set to be 0.1λ, which results in 127 cylinders for f = 0.1 and 254 cylinders for f 

= 0.2. The calculated acceptance rates for f = 0.1 in Fig 2.5 (a) and f = 0.2 in Fig. 2.5 (b) are 0.48 

and 0.23.  
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Fig. 2.5: Two realizations of discrete random media of L=40λ by d=1 using Metropolis algorithm with (a) f = 0.1 and (b) f =0.2 

 
To obtain the pair distribution function from the realizations of discrete random media, 

we first generate the different realizations of discrete random media using Metropolis shuffling 

algorithm [9] and then compute the pair distribution function. Let the separation of the cylinders 

be counted in intervals of rΔ . For the nth interval, the center separations of the particles are 

between ( 1)snr b n r= + − Δ  and unr b n r= + Δ . Since a pair of cylinders are considered in 

uncorrelated positions when their separation is greater than 5b (i.e., g(r)+1 when r > 5b), and they 

cannot interpenetrate, the interval rΔ  is determined by   

                                                                  
4br
M

Δ =                                                                    (2.56) 
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where M is the total number of intervals and determines the resolution of the Monte Carlo pair 

distribution function. For each realization we count the N(N-1) pairs of separation. In the counting 

process, for the jth particle, j = 1,2,3,…, N, we calculate its  separation with the lth particle (l = 

1,2,3,…, N and l j≠ ). Let x l jr x x= − and z l jr z z= − . Then, if 0.5xr < , replace xr  with 

1xr −  and if  0.5xr < − , replace xr  with 1xr + . Do the same for zr , with the appropriate 

replacements. Then we compute the separation dr  where 2 2( )d x zr r r= +  and find out the 

interval where dr  falls. That will increase by one the counting of separation for that interval.  

  Let Cn be the number of counts of pair separations that fall in the nth interval. Then, 

( 1)
nC

N N −
 is the probability of finding a particle at the nth interval of separation. Thus, using the 

definition of the pair distribution function and the conditional probability 

                                                   ( | 0)
( 1)

n

nth

C d r p r
N N

=
− ∫                                                       (2.57) 

where ( | 0)p r  is the conditional probability of finding a particle at r  given a particle at the 

origin. Since  

                                                       
( )( | 0) g rp r
A

=                                                                    (2.58) 

We have  

                                              2 2( ) ( )2 ( )
( 1)

un

sn

r nn
un snr

C g r g rdr r r r
N N A A

π π= = −
− ∫                      (2.59) 

where nr  is a weighted position in the nth interval. For example, 2 2( ) / 2n un snr r r= + . Thus,  

                                                  2 2( )
( 1) ( )

n
n

o un sn

Cg r
n N r rπ

< >
=

− −
                                                (2.60) 

where angular bracket refers to average over realizations. 

 



 31

2.3 Scattering Matrix Method 

2.3.1 Description and Derivation 

Scattering matrix method (SMM) is a well-established and efficient technique for 

analyzing the scattering response to layered media such as layered cylindrical or spherical 

geometries, waveguide junctions, and frequency selective surfaces. In [72-74], it has been applied 

to characterize cascaded microstrip step discontinuities and symmetric stubs. In this thesis, 

scattering matrix technique serves as the core of the formulation for solving scattering from 

multilayer rough surfaces and embedded objects. This approach is especially well suited for 

sensitivity analysis because it is possible to evaluate the effect of a change in one layer without 

repeating the entire computation [75]. Many other techniques [7, 76, 77] for analyzing layered 

structures solve the problem in entirety without employing cascading matrices which describe 

individual layers. Practical limitations associated with these approaches are increasing 

computational complexity with an increasing number of layers; a complete new analysis is 

required whenever a change is made in any layer. This section discusses scattering matrix 

formulation for plane wave propagation through layered media. SMM has been advantageously 

employed for handling wave propagation across interfaces and/or any discontinuities, with both 

propagating and evanescent modes included and sequential scattering features taken into account 

by cascading process. In general, the scattered field due to any scattering objects, such as planar 

interface, rough surface, waveguide junction, etc. can be expressed using plane wave solution 

which consists of spatial harmonics up to infinite orders. Through the truncation of a plane wave 

solution to a finite order, the scattered solution can then be cast into reflection and transmission 

matrices. The generalized scattering matrix, Si, of the composite scattering system i, consisting of 

four submatrices of reflection and transmission, is given by  

                                                                   
[ ]
[ ]

i i

i

i i

R T
S

T R

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥=
⎢ ⎥⎡ ⎤⎣ ⎦⎣ ⎦

                                                 (2.61) 
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where the tilde sign represents its reciprocal counterpart. The reflection and transmission sub-

matrices describe the reflected and transmitted coefficients from the scattering system for a set of 

input vectors. Consider, for example, a rectangular waveguide with TEp0 excitation with unit 

amplitude from the left to a junction. If the amplitude of the nth mode of the reflected wave to the 

left is An, the (n, p) entry of the reflection matrix, Rn,p is An. Similarly, if the amplitude of the mth 

mode of the wave transmitted to the right is Bm, Tm,p is Bm. Consider another example for 

scattering from a rough surface. When the amplitude of incident wave is unity, Ri,j and Ti,j 

represent reflection and transmission coefficients into the angle θi due to a plane wave incident 

from the angle θj. The general form of reflection and transmission matrices can be written as 

follows: 

          

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnnn

n

n

RRR

RRR
RRR

R

21

22221

11211

][           (2.62)               
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⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡

=

nnnn

n

n

TTT

TTT
TTT

T

21

22221

11211

][          (2.63) 

        
For a rough surface or a buried cylinder, the elements of the generalized scattering matrix are 

obtained by solving the electromagnetic problem using extended boundary condition method or 

T-matrix method. The next paragraph details the derivation of generalized scattering matrix 

technique for cascading two sets of scattering matrices to form a composite scattering matrix. 

This can be generalized to handle a cascade of N systems through recursion. The derivation given 

in this chapter is performed through direct substitution between inputs and outputs. An alternate 

derivation of generalized scattering matrix using signal flow graph can be found in [75]. Suppose 

an incident wave is impinging upon two scattering systems separated by a distance, L, with their 

scattering behaviors characterized by S1 and S2. Fig. 2.6 shows input and output parameters for 

two cascaded systems on which the following derivation is based. The following matrix relations 

(2.64) and (2.65) based on the scenario in Fig. 2.6 hold.  
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Fig. 2.6: Cascading two systems with scattering matrices S1 and S2 

 

                                            
[ ]
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[ ]
[ ]

[ ]
[ ]

1 1

1 1

A A

B B

R TR I
R IT R

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
                                                     (2.64) 
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[ ]

[ ]
[ ]
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[ ]
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C C

D D

R TR I
R IT R

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
                                                    (2.65) 

 
To account for wave propagation over a distance L, each mode is multiplied by phase shifting 

elements, exp(γL) where γ=ikx.  
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B B
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φ
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                                                      (2.66) 
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                                                         (2.67) 

 
Multiplying (2.64) and (2.65) out together with (2.66) gives the following equations.  
 
                          [ ] 1 1 1 1[ ][ ] [ ][ ] [ ][ ] [ ][ ][ ]A A B A CR R I T I R I T Rφ= + = +                                       (2.68) 

                          [ ] 1 1 1 1[ ][ ] [ ][ ] [ ][ ] [ ][ ][ ]B A B A CR T I R I T I R Rφ= + = +                                       (2.69) 

                          [ ] 2 2 2 2[ ][ ] [ ][ ] [ ][ ][ ] [ ][ ]C C D B DR R I T I R R T Iφ= + = +                                    (2.70) 

                          [ ] 2 2 2 2[ ][ ] [ ][ ] [ ][ ][ ] [ ][ ]D C D B DR T I R I T R R Iφ= + = +                                    (2.71) 
 
Equations (2.69) and (2.70) are solved together to obtain the expressions for [RB] and [RC]. 
 
                          [ ] 1

1 2 1 1 2( [ ][ ][ ][ ]) ([ ][ ] [ ][ ][ ][ ])B A DR I R R T I R T Iφ φ φ−= − +                           (2.72) 

                          [ ] 1
22 1 2 1( [ ][ ][ ][ ]) ([ ][ ][ ][ ] [ ][ ])C A DR I R R R T I T Iφ φ φ−= − +                         (2.73) 
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where I is an identity matrix. Substituting (2.72) into (2.68) leads to the following matrix 

expressions. 

 

                       
[ ] { }
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[ ] [ ][ ]( [ ][ ][ ][ ]) [ ][ ][ ] [ ]
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D
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−

−
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+ + −
                                     (2.75) 

 
Therefore, the generalized composite scattering matrix of two cascaded systems is given by 
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 (2.78)  

This completes the derivation of SMM. The matrix inversion in (2.78) accounts for the multiple 

scattering and multiple bounces of modes between individual systems. Scattering matrices are 

truncated to a finite size where the number of modes used in the modal solution to scattered field 

is selected to ensure solution convergence. The next section provides the scattering matrix 

solutions to layered rough surfaces and buried cylinder problems. 

2.3.2 Overview of Scattering Matrix Solution for Layered Rough Surfaces  

This section outlines the main contribution of this thesis which is the application of SMM 

for solving scattering from layered rough surface with or without buried objects. First, the 

generalized scattering matrix expression for scattering from layered rough surfaces with an 

arbitrary dielectric profile depicted in Fig. 2.1 is provided. The composite scattering coefficients 
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from cascading scattering matrices of two rough interfaces and of dielectric profiles can be 

computed recursively as shown below:  

( ) ]][[]][][~][[][]][][~[][][
1111 ,1

1
,1,1,1 ftopdktopdftopdktopdffcomposite TRRIRTRR +−+++ −+= φφφφ           (2.79)             

( ) ]][[]][][][[][]][][~[][][ 1,1
1

,11,1,111 pbottomdjbottomdpbottomdjbottomdppk TRRIRTRR +−+++ −+= φφφφ          (2.80)     

( ) ]][[]][][~][[][]][][~[][][
2222 ,2

1
2,2,22,2 ftopdptopdftopdptopdffj TRRIRTRR +−+++ −+= φφφφ                   (2.81) 

                    
where [I] is the identity matrix, the subscripts f1 and f2  denote the rough surface profile f1(x) and  

f2(x), and the subscripts p1 and p2 denote the inhomogeneous stratified dielectric profiles 

)(1 zε and )(2 zε  respectively. ][ kR and ][ jR  are the intermediate reflection matrices which 

couple the bottom stratified dielectric medium )(2 zε  to )(1 zε , taking into account the presence 

of f2. The matrices ][ ,2
+

topdφ  ( ][ ,2
+

bottomdφ ) and ][ ,1
+

topdφ ( ][ ,1
+

bottomdφ ) are the phase shifting matrices 

of the top (bottom) dielectric thin layers in the inhomogeneous dielectric profiles described 

by )(2 zε  and )(1 zε , respectively, whose layer thicknesses are also set to be Δd2 and Δd1. 

Similarly, the scattering matrix solution to scattering from a buried cylinder in layered rough 

surfaces can be expressed as follows. 

                 ( ) ]][[]][][~][[][]][][~[][][
1111111

1
1 fdkdfdkdffcomposite TRRIRTRR +−+++ −+= φφφφ                (2.82) 

 

                     ( ) ]][[]][][][[][]][][[][][
22222

1
2 scdfdscdfdscsck TRRIRTRR +−+++ −+= φφφφ                (2.83) 

 
where [I] is the identity matrix, the subscripts f1, f2, and k denote the rough surface profile f1(x), 

f2(x) and the intermediate reflection matrix which couples the bottom rough interface to the buried 

cylinder, and ][ +
jdφ  is  
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dj is the layer thickness (i.e. d1 = the layer thickness between the mean value of the top rough 

interface and the center of the cylinder, d2 = the layer thickness between the center of the cylinder 

and the mean value of the bottom rough interface) and mφ  is the mth Floquet mode scattering 

angle. For the discrete random media problem, the scattering matrix solution is obtained by 

replacing [Rsc] with [RDRM] and the matrix expression is given by 

          ( )2 2 2 2 2

1

2[ ] [ ] [ ][ ][ ] [ ] [ ][ ][ ][ ] [ ][ ]DRMk DRM sc d f d d f d scR R T R I R R Tφ φ φ φ
−+ + + += + −                  (2.85) 

The details of derivation of the above matrix for a rough surface or a buried cylinder will appear 

in chapters to follow.  
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CHAPTER 3 
 

Scattering from Layered Rough Surfaces and its Application in Remote 
Sensing of Subsurface Soil Moisture 

 
 
 

Following the review of the scattering matrix method (SMM), we derive the reflection 

and transmission matrices of a rough surface through the application of the extended boundary 

condition method (EBCM) in this Chapter. In EBCM, the matrix filling process is facilitated 

using Fast Fourier Transform (FFT). Upon constructing these reflection/transmission matrices of 

individual rough surfaces, the solution to scattering from layered rough surfaces is sought by 

recursively cascading these matrices based on SMM. Scattering coefficients are obtained by 

computing incoherent powers from the resulting Floquet modes of the overall system. 

Subsequently, a thorough validation assessment for the proposed method (EBCM/SMM) is made 

and bi-static scattering coefficients are validated against existing analytical and numerical 

solutions. A benchmarking study of EBCM/SMM and MoM for computational efficiency is also 

conducted. In numerical simulations, field-collected soil moisture data are used to investigate the 

penetration capability at different frequencies and to address the potential of low frequency radar 

systems in estimating deep soil moisture. In particular, soil moisture profiles during dry ground, 

wet ground, and wet subsurface layer conditions are examined. The results show that both 

backscattering coefficients and co-polarized phase difference at low frequencies are sensitive to 

subsurface roughness and deep soil moisture. Also, much larger depth sensitivity can be achieved 

using co-polarized phase difference than scattering coefficients. 
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3.1 Extended Boundary Condition Method (EBCM) and Scattering 
Matrices of a Rough Surface 

 
The formulation of scattering from a single rough surface based on EBCM is discussed in 

[9, 64, 65]. The interactions between different layers of rough surfaces can be incorporated using 

SMM [64]. In this dissertation, the review on the formulation of 2D scattering from a rough 

surface for TE waves (h – pol) is provided. The solution for TM waves can be obtained using the 

concept of duality. In view of the duality theorem, all of the expressions for TE polarization case 

are modified to obtain the solution for TM polarization in a sense that electric fields and current 

densities are replaced by magnetic ones and μ0,1 are replaced by ε0,1. Note that this is a 

mathematical substitution and does not require that the physical media be replaced. EBCM 

assumes periodic boundary conditions as depicted in Fig. 3.1.  

 

Fig. 3.1: The concept of periodic boundary condition in scattering from a rough surface 
 

The length or period of rough surfaces is denoted by L. In this coordinate system, the 

surface height profiles are functions of x only and satisfy: 

                                                     )()( nLxfxf += ,  Ν∈∀n  
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where Ν  is the set of natural numbers. Suppose a plane wave with an arbitrary propagation 

direction ik  in the xz plane is incident upon the multilayer interfaces and its electric field is given 

by 

iy
rki

oi EyeEeE i ˆˆ == ⋅  

where zkxkk zixii ˆˆ −= . Based on extinction theorem and using the scalar Green’s function in 

regions 0 and 1, we have the total electric fields, yE0 , yE1  in regions 0 and 1 as follows. 

Region 0: 
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Region 1: 
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where  )',( rrg jL  is the periodic Green’s function and 
 

                            ∑
∞

−∞=

−−=
n

jnznx
jnz

jL zzikxxik
kL

irrg |)'|exp())'(exp(1
2

)',(                      (3.3)  

                                      
L

nkk xinx
π2

+=                                                                                      (3.4) 

                                     22
nxjjnz kkk −=                                                                                  (3.5) 

                                                        
Equation (3.3) can be interpreted as the field generated by a periodic array of line currents of 

progressive phases. The array produces a discrete spectrum of plane waves propagating along 

directions described by zkxkK jnznx ˆˆ += . The discrete spatial harmonics are called Floquet 

modes. When jnzk  is real, the corresponding Floquet mode is propagating. When jnzk  is purely 

imaginary, the corresponding Floquet mode is non-propagating.  The number of propagating 

waves is finite and depends on the period-over-wavelength ratio ( jL λ/ ) and the incidence angle. 
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The nth mode is propagating if it belongs to set S defined by 

                                   
⎭
⎬
⎫−

⎩
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⎧ <<+

−
= )(

2
)(

2
; xijxij kkLnkkLnS

ππ
                                           (3.6)           

Substituting the periodic Green’s function (3.3) into (3.1) and (3.2), the following equations are 

obtained where '' || zzzz −=−  when )(1 xfz >  and )(|| '' zzzz −−=−  when )(1 xfz < for all 

x.  

Region 0: 
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        ,))(exp()(0 01∑
∞

−∞=

−+=
n

onznxniy zkxkiarE  min,1fz <                                                        (3.8) 

Region 1:  
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n

nznxny zkxkibrE  max,1fz >                                                                      (3.9) 

        ),)(exp(0 111∑
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n
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                                                                                                                                                    (3.11) 
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                                                                                                                                                    (3.12) 
where )'(' xf is the spatial derivative of )'(xf . In addition, the surface fields are expanded in 

terms of their Fourier series with unknown coefficients as follows: 

                                     ∑
∞

−∞=

=
m

mxmy xikxfxE )exp())(,( 11 α                                                  (3.13) 

         ∑
∞

−∞=

=∇⋅+
m

mxmy xikxfxEnxf )exp())(,(ˆ)('1 111
2

1 β                                                   (3.14) 

 

The incident wave can also be decomposed into its Floquet modes by recalling that 

iy
rki

oi EyeEeE i ˆˆ == ⋅  and assuming || iyE = 1 (the magnitude of iyE  = 1). Then, using (3.8),  
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⎩
⎨
⎧

=
≠∀

=
0,1
0,0

01 n
n

a n                                                                        (3.15) 

Substituting (3.11), (3.12), (3.13), and (3.14) into (3.7) through (3.10) and imposing boundary 

conditions at z = f1(x) result in the following matrix equations. 

                               ∑
∞

−∞=

++ =+
m
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e
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e

nm aUU 01
),2(),1( βα                                                  (3.16) 

                               ∑
∞

−∞=

−− =+
m

mnmmnm QQ 0),1(),2( βα                                                               (3.17) 

 
where nmQ  and nmU  can be regarded as elements of operators/matrices representing interactions 

between half spaces. By truncating the infinite summations of (3.16) and (3.17), they can be cast 

into a system of matrix equations as follows: 
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where 
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'[2 ( ) ] ( ')
1

0

1 ( ) 'nz

L xi m n ik f xLI e e dx
L

π − −− = ∫  

and jY  is the intrinsic admittance in the region j. Hence, α  and β  can be obtained by inverting 

the matrix. We also note that +
oI  and −

1I  are the discrete Fourier transform of 1 ( ')jnzik f xe . It may 

be tempting to compute the matrix elements by directly applying Fast Fourier Transform (FFT) to 

the integrand. However, this simplistic approach cannot accurately determine the values of these 

Fourier-type integrals due to the oscillatory nature of the integrand.   We employ a fast FFT-

based integral evaluation approach formulated in [44]. The filling of matrix elements involves the 

computation of the following Fourier-type integrals: 

                                                          ∫=
L

xfsikL
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s dxee
L
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)'()(
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')(1 π
                                          (3.19) 
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 In principle, these integrals can be computed numerically for each s but the direct computation of 

these integrals in the matrix filling process is extremely time-consuming when there are several 

thousands or more integrals to be evaluated for each value of k. In addition, for very large values 

of k(s), the term ( ) ( ')ik s f xe in the integrand oscillates rapidly, which may lead to a loss of accuracy 

unless a very fine integration step is used. The following FFT-based algorithm is applied to speed 

up the matrix filling process. Consider (3.19) and rewrite it as follows: 

                                                       sss JI += 0,δ                                                                  (3.20)             

where  

                                                     ∫ −=
L

xikfL
xsi

s dxee
L

J
0

)'(
'2

')1(1 π
                                              (3.21)    

Then, we compute sJ by expanding )'( xikfe in powers of )'( xkf using Taylor series and integrating 

the resulting series term by term. 
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where lx l x= Δ  with 
'

Lx
l

Δ =  and 'l is the number of FFT point. To fully exploit the 

computational efficiency of FFT operation, the length of a rough surface is set to be of powers of 

two. The test of convergence shows 'l =213 or higher gives solution convergence. Values of snA  

do not depend on k and they need to be calculated only once for each surface profile. The number 

N of powers of f(x) that must be kept in the Taylor series expansion (3.22) depends on the 

roughness of rough surface profile. In [44], it is indicated that for h = 0.05λ, 10 terms (N=10) 

ensures solution accuracy. For h=0.1λ, 18 terms are used for obtaining convergent results.  
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As soon as α and β of (3.18) are retrieved, the upward-propagating and downward-

propagating field amplitudes can be found, which will be used later for the cascade of scattering 

matrices. They are found from 
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where b  is the reflected wave and A is the transmitted wave. 
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For TM polarization, duality can be applied, where mm γα → , mm ηβ → , )()( jh
nm

je
nm UU →  and 

the expressions for )( jh
nmU  can be obtained from those of )( je

nmU by replacing jj ZY →  where 

jZ  is the inverse of jY .  

In general, for any arbitrary rough surface profile, fj(x), the generalized scattering matrix 

based on extended boundary condition method can be efficiently computed using the following 

relationship. 
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Equation (3.25) is derived upon substituting (3.24) into (3.18) after isolating α

β

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 in (3.24) and 

relating the incident waves to the reflected and transmitted waves. Since ][
jfR  and ][

jfT  are not 

reciprocal for a rough surface (i.e., jifijf jj
RR ,, ≠  and jifijf jj

TT ,, ≠ ), we then define ]~[
jfR  and  
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]~[
jfT  as reflection and transmission matrices filled with jif j

R ,  and  jif j
T , , respectively. Here, the 

subscript fj denotes the jth rough surface profile. More specifically, for the present problem, f1 

denotes the top rough interface and f2 denotes the bottom rough interface. The matrix inversion in 

(3.25) is performed by partitioning.  Reflection and transmission matrices can be individually 

computed by invoking block-wise inversion based on the following inversion formula:  

                    
1 1 1 1 1

1 1 1 1 1 1 1 1

( ) ( )
( ) ( )
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         (3.26)       

The expressions for reflection/transmission matrices are given as follows:       
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where [ ]
11(1 , ) (2 , ) (1, ) (2, )e e

K U U Q Q
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. We note that in total two matrix inversion 

operations and fifteen matrix multiplication operations are performed to obtain all 

reflection/transmission matrices of a rough surface. Through the block-wise matrix 

decomposition, the matrix structure of individual reflection/transmission matrices can be better 

understood. In addition, compared to (3.25), the computational complexity reduces from O((2P)2) 

+ O((2P)3) to O(15P2)  + O(2(P)3) where P = the total number of Floquet modes = 2N+1. The first 

term accounts for matrix multiplication and the second term is for matrix inversion. Since matrix 
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inversion still constitutes a more significant factor contributing to the CPU runtime, it is 

advantageous to perform block-wise matrix inversion. 

3.2  Scattering Matrices of a Stratified Soil Profile  

Any inhomogeneous dielectric profile can be accurately modeled as a stack of many 

piecewise homogeneous dielectric thin layers provided the thickness of each layer is very small 

compared to the wavelength [64].  Therefore, a dielectric profile is first discretized into a stack of 

homogeneous dielectric thin layers. The reflection and transmission matrices are then obtained 

for each planar dielectric interface. Finally, the overall reflection and transmission matrices of an 

inhomogeneous dielectric profile are computed by applying the generalized scattering matrix 

technique where each reflection and transmission matrix of individual dielectric interfaces are 

recursively cascaded from the bottom dielectric interface to the top interface. The reflection and 

transmission matrices of a planar dielectric interface obey Fresnel’s law and their expressions are 

given by: 
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Upon obtaining the individual reflection and transmission matrices of each dielectric interface, 

the generalized reflection and transmission matrices of a stratified dielectric profile, denoted by 

][ 1, +iiR  and ][ 1, +iiT , can be derived by tracing the propagation of each Floquet mode from the 

region i to the region i+1 where the index i goes from 0 (the top layer of a stratified dielectric 

profile) to N-1 (the bottom layer of a stratified dielectric profile) as shown in Fig. 3.2.  
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Fig. 3.2: The detail of an inhomogeneous dielectric profile between each two rough interfaces 
 

The difference between ][  and ][ is that ][ is the matrix notation for a single interface 

only whereas ][  is the matrix notation for a dielectric profile from the bottom layer of the 

profile to the designated layer. The subscript i,i+1 denotes the interface between the layer i and 

the layer i+1. ][ 1, +iiR  and ][ 1, +iiT are computed as follows: 
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where Δd is the thickness of each thin dielectric layer which is set to be uniform for all dielectric 

layers within the profile and mi,φ  is the mth Floquet mode scattering angle in the ith layer.  

Essentially, ][ 1, +iiR  and ][ 1, +iiT  relate the amplitudes of reflected and transmitted Floquet modes 

to the amplitudes of incident ones at z = -di, accounting for the effects of reflections, 

transmissions, and multiple bounces of Floquet modes at all the interfaces located below the ith 

layer. By recursively cascading each reflection and transmission matrix of individual dielectric 

interface from the bottom dielectric interfaces all the way to the top interface, the overall 

reflection and transmission matrices of an inhomogeneous dielectric profile, denoted by ][ pR and 

][ pT , are acquired. To couple the scattering matrices of a stratified dielectric profile to those of 

rough surfaces, the reflection and transmission matrices in a reciprocal direction, denoted by 

]~[ pR and ]~[ pT ,  must also be obtained. These matrices can be computed using (3.35) and (3.36) 

after swapping the index i and the index i+1 in the subscript (i.e., ][ ,1 iiR +  and ][ ,1 iiT + ). 

3.3 Computation of the Scattering Coefficients and Co-polarized 
Phase Difference 

 
Once the composite matrix computed using (2.79)-(2.81) is obtained, the column vector 

of reflected waves ][b  from the system due to the column vector of an incident wave, ][A , is 

given by          

                                                      ]][[][ ARb composite=                                                               (3.38)                         
  
The relationship between bi-static scattering cross section and upward-propagating reflected field 

is given by: 
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where L is the length of the rough surface, iθ  is the angle of incidence, and sθ is the scattering 

angle. The derivation for (3.39) can be found in [44]. In addition, the phase statistics of layered 

rough surface scattering can also be collected using the present method. The co-polarized 

coherent phase difference, vvhhc φφφ −= , which has been shown to exhibit a strong dependence 

on both the target parameters (roughness and moisture content) and the radar parameters 

(incidence angle and frequency) [78] can be computed as: 

                                           )
Re
Im(tan *

*
1

><
><

=−= −

vvhh

vvhh
vvhhc bb

bbφφφ                                                (3.40) 

where hhb  is the reflected waves from the overall system in HH polarization and vvb  is those in 

VV polarization. The coherent phase difference is the phase difference between HH and VV 

polarizations at which the pdf of co-polarized phase difference attains its maximum.  

3.4 Comparison of Results, Validation, and Computational Efficiency 

3.4.1 Validation with an Analytical Solution 

For the purpose of validation, numerical simulations of the limiting case of two-interface 

rough surface scattering shown in Fig. 3.3 are first performed here for rough surfaces whose 

analytical small perturbation method (SPM) solutions exist ( 3.0, 21 <khkh  and 3, 21 <klkl ). The 

dielectric constants of each layer ( 1ε  and 2ε ), the surface statistics ( 2211 ,,, klkhklkh ) and the 

layer thickness ( d ) are given in Table 3.1.  
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Fig. 3.3: Geometry of scattering from two-rough-interface surfaces used for validation with SPM and MoM 

 

Table 3.1 
The simulation parameters for scattering from two-interface rough surfaces for the purpose of validation with 

SPM 

1ε  2ε  1kh  1kl  2kh  2kl  d  iθ  L 

4 7 0.15 1.5 0.05 1.5 3λ  o45  25λ  
 

These choices of surface parameters ensure that their analytical SPM solutions are valid. The 

number of Floquet modes used in the simulation is 101.  The rough surfaces are generated using 

Gaussian spectra. 

    To validate the simulated results, the existing analytical SPM solution to multilayer rough 

surface scattering as described in [1] is used. In [1], the 1st order SPM solution to scattering from 

a two-rough-interface geometry is provided for two statistically independent rough surfaces:  
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where )(1 ⊥kW  and )(2 ⊥kW are the spectral densities of the top and bottom rough boundaries 

respectively and h
1α , h

1α , v
2α , and v

2α correspond to the 1st order coefficients from the small 
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perturbation method. They are determined by imposing boundary conditions on both top and 

bottom rough interfaces simultaneously. This will translate to an 8 by 8 matrix inversion as 

formulated in [1]. The solution presented in this paper for bi-static scattering coefficient using the 

Monte Carlo simulation with 300 independent samples is validated against analytical SPM 

solution in Figs. 3.4-3.5. The coherent components are present in the plots as evidenced by the 

pronounced peak at 45o which is the specular direction (absent in 1st order SPM). In general, 

numerical results are in excellent agreement with analytical SPM solutions for cases where SPM 

approximation is valid. When the rms height of the bottom interface is 2.02 =kh  in Fig. 3.5, 

there is a discrepancy between the numerical result and the SPM solution mostly in VV 

polarization over the range of scattering angles from 20o to 80o. Since the analytical SPM solution 

developed in [1] is only based on the first order term of perturbation series, this suggests the 

higher-order surface scattering effects due to layered rough surfaces are more important in VV 

polarization than in HH polarization. The solution presented here can accurately capture the 

effects of all orders of multiple scattering due to rough surfaces and multiple bounces between 

layers for surfaces which are not required to satisfy the small slope or small roughness 

approximation.  

-80 -60 -40 -20 0 20 40 60 80
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Scattering Angle, Degree

B
is

ta
tic

 S
ca

tte
rin

g 
C

oe
ff.

, d
B

hh(EBCM):d=3 λ
hh( SPM ):d=3 λ
hh(EBCM):d=0.5 λ
hh( SPM ):d=0.5 λ

-80 -60 -40 -20 0 20 40 60 80
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Scattering Angle, Degree

B
is

ta
tic

 S
ca

tte
rin

g 
C

oe
ff.

, d
B

vv(EBCM):d=3 λ
vv( SPM ):d=3 λ
vv(EBCM):d=0.5 λ
vv( SPM ):d=0.5 λ

 
Fig. 3.4: Bi-static scattering coefficients for the scattering from two-rough-interface surfaces (Table 3.1) for different values of 
layer thickness 
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Fig. 3.5: Bi-static scattering coefficients for the scattering from two-rough-interface surfaces (Table 3.1) for different values of 
the rms heights of bottom interface 
 
 

The next validation of this method is to verify the scattering matrix technique by 

examining bi-static scattering coefficient from a 4-point piece-wise homogeneous profile 

underneath a rough surface. The problem geometry is depicted in Fig. 3.6.  

 
Fig. 3.6: Geometry of scattering from a 4-point piece-wise homogenous profile underneath a rough surface  

 

The analytical SPM solution for this scenario is based on [1].  
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where )(1 ⊥kW  is the spectral density of the top ground rough boundary and h

profileα  and 

v
profileα correspond to the 1st order coefficients from the small perturbation method. The 

simulation parameters are given in Table 3.2.  

Table 3.2 
The simulation parameters for scattering from a 4-point piece-wise homogeneous profile underneath a rough 

surface for the purpose of validation with SPM 

1ε  2ε  3ε  4ε  1hko  1lko  1d  2d  3d  iθ  L 

2 5 8 10 0.1 1.0 0.5λ  1 λ  0.5 λ  o35  30λ  

 

In Fig. 3.7 and Fig. 3.8, two scenarios of scattering from a 4-point piece-wise homogeneous 

profile where the rms height of the ground interface and the incidence angle are varied are 

examined. In both figures, numerical results are in excellent agreement with analytical SPM 

solutions for cases where SPM is valid. On the border of the SPM’s validity domain, kh =0.3, the 

results produced by EBCM are slightly smaller than those of SPM. 
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Fig. 3.7: Bi-static scattering coefficients for the scattering from a 4-point piecewise homogenous profile (Table 3.2) for 
different values of the rms heights of the roughness of the ground interface 
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Fig. 3.8: Bi-static scattering coefficients for the scattering from a 4-point piecewise homogenous profile (Table 3.2) for 
different values of the incidence angle  
 
3.4.2 Validation with Method of Moments (MoM) 

The simulation results are further validated against those based on MoM. The 

formulation for two-interface layered rough surfaces based on MoM with pulse basis functions 

and delta testing functions is described in [7]. Starting from an integral equation approach, the 

solutions for the scattered fields in any region can be obtained by imposing boundary conditions 

on both interfaces and applying pulse basis functions and point matching. Appendix A 

summarizes the MoM solution to scattering from layered rough surfaces based on [7]. To reduce 

the edge diffraction effects due to a truncated sample of rough surface, a tapered windowing 

function is applied to the field illuminating the surface. The windowing function falls off 

smoothly to a negligible level at the ends of the truncated surface. The edges are hence not 

directly illuminated and the edge diffraction of a truncated surface sample is greatly suppressed 

[79-81]. This technique is known as the tapered illumination source.  

    For layered rough surface scattering, the tapered illumination becomes less useful in 

suppressing edge diffractions, as the effect of edge diffraction from subsurface interface is left 

completely untreated. Therefore, the length of surface sample for the numerical simulation of 

layered rough surface scattering has to be set to be a large number, i.e., L=50λ in an attempt to 

further reduce the edge diffraction effect. In EBCM/SMM, the use of periodic boundary condition 
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minimizes the edge diffraction effect and it suffices to set the length of surface sample to be 

L=30λ which translates to a major computational advantage over MoM. Also, the tapered 

illumination source in MoM does not exactly represent the actual incident field and leads to a loss 

of angular resolution. As the incidence angle moves toward the grazing angle, the length of a 

truncated rough surface must be increased to realistically model the incident field. This gives a 

practical upper limit on the modeled incidence angle of about 80o in [79].  These issues must be 

kept in mind in the following validation results. 

    In Fig. 3.9, the simulation results of bi-static scattering coefficients based on EBCM and 

MoM for different roughness regimes are examined.  The simulation parameters are given in 

Table 3.3.  

Table 3.3 
The simulation parameters for scattering from two- rough-interface surfaces for the purpose of validation with 

MoM 

1ε  2ε  1l  2l  d  iθ  L λ  
3+i0.1 5 0.5 λ  0.5 λ  2 λ  o35  30λ  1 m 
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Fig. 3.9: Bi-static scattering coefficients for the scattering from two-rough-interface rough surfaces in HH polarization based 
on SPM, MoM and EBCM (Table 3.3): a small-moderate roughness regime (the right) and a moderate roughness regime (kh 
=1) 
 
In Fig. 3.9, the plot on the left shows the bi-static scattering coefficient based on SPM, EBCM, 

and MoM for small-to-moderate roughness regime in HH polarization for non-grazing angles. For 

h1=h2=0.03λ (kh1=kh2=0.19) where SPM is valid, we observe the SPM, EBCM, and MoM curves 

of bi-static scattering coefficient are in excellent agreement. For h1=h2=0.07λ (kh1=kh2=0.44) 
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where the roughness parameters drift out of the validity domain of SPM, the SPM curve shows 

discrepancy from those of EBCM and MoM which are consistent with each other. On the right 

plot in Fig. 3.9, the results of bi-static scattering coefficient based on EBCM and MoM are shown 

for moderate roughness regime up to (kh1=kh2=1) in HH polarization. Both the EBCM and MoM 

curves are in very good agreement for both h1=h2=0.1λ and h1=h2=0.16λ. This shows that EBCM 

can easily handle a moderately rough surface. As roughness increases, EBCM may experience the 

problem of ill-conditioning and needs to be regularized [82]. However, for a natural surface of the 

rms heights of up to 5 cm, EBCM is capable of modeling electromagnetic scattering up to L band 

without any need for regularization. It is also important to point out that the magnitudes of 

specular returns based on EBCM are greater than those calculated using MoM. The application of 

tapered incident waves in MoM results in a loss of resolution and the specular peak is likely to get 

smeared out. It is also evident from Fig. 3.9 that the bi-static scattering behaviors toward the 

grazing angle based on MoM are inaccurate with a tapered illumination source.  

3.4.3 Computational Efficiency 

To compare EBCM with MoM, we note that EBCM introduces the concept of testing 

surfaces in order to simplify integral equations [64]. In EBCM, the integral equations are imposed 

not on the surface of the scatterer, but some other testing surfaces away from the actual surface of 

scatterer. The testing surfaces in EBCM are chosen such that the fields are expandable in Floquet 

modes in the case of periodic rough surfaces. In MoM, the basis functions used to represent the 

surface fields sit exactly on the surface of the scatterer. In general, EBCM results in much simpler 

equations with fewer unknown coefficients to be determined than those of MoM. On the other 

hand, EBCM suffers from the problem of ill-conditioning when the surface corrugation is too 

deep whereas MoM does not. In addition, the computational time for the evaluation of each 

matrix element using EBCM with the FFT-based matrix filling algorithm is still larger than that 

of MoM with pulse basis functions and point matching since, in MoM, the computation of each 

matrix element is just a functional evaluation of Hankel functions.  
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    Compared to the single surface case, both memory requirement and computational time 

for MoM are significantly increased for a layered rough surface problem. Without applying any 

acceleration algorithms, the MoM has the memory requirement of )( 2KO  and computational 

complexity of )( 3KO , respectively, where the total number of unknowns is K=2MN, N is the 

total number of sample points per interface (i.e., L = 50λ and N = 500 with 10 unknowns per 

wavelength) and M is the number of rough interfaces. The number of unknowns in EBCM is 

determined by the number of Floquet modes used to represent the induced current densities on the 

ground rough surface and is denoted by P (i.e. L = 30λ and P = 70 with at least 2 Floquet modes 

per wavelength). As mentioned before, EBCM has many fewer unknowns to be determined than 

those of MoM (i.e. P << N). By applying SMM, the number of unknowns for scattering from 

layered rough surfaces remains the same as that of a single rough surface case. The effect of 

multiple scattering and bounces due to layered rough surfaces is taken into account using the 

generalized scattering matrix technique where each additional surface requires invoking an 

additional matrix inversion. Therefore, without the use of any efficient acceleration algorithms, 

the extended boundary condition method with scattering matrix technique requires 2((2 ) )O P  

memory and 3( (2 ) )O M P  operations to solve, where P is the total number of Floquet modes, 

which is typically smaller than K for a single surface and does not increase with number of 

surfaces.  

Much research effort has been devoted to facilitate the MoM solution to rough surface 

scattering. Acceleration algorithms such as Steepest Descent Fast Multipole Method [32] and 

Forward-Backward Method with Spectral Acceleration [6, 7] have been applied to expedite both 

matrix filling and matrix inversion processes of MoM for rough surface scattering. The algorithm 

in [7] is reported to improve both the MoM’s memory requirement and computational complexity 

to )(KO . In this dissertation, the following benchmarking study is conducted to make an 

assessment of MoM and EBCM/SMM for their computational efficiencies. To compare the 
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computational runtime between MoM and the proposed method based on EBCM/SMM, we 

performed a numerical study using MoM and EBCM/SMM for an example two-rough-interface 

scenario. The surface length of 50λ is considered and the angle of incidence is 35o. The two-

rough-interface geometry with simulation parameters is given in Fig. 3.10.  
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Fig. 3.10: The example two-interface scattering medium considered for the benchmarking study of MoM and EBCM/SMM   

Both media are lossless so the power conservation law can be employed to verify the accuracy of 

the proposed method. The power conservation law is given as follows: 
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 where )(sin 1
,

i

nx
nis k

k−=θ denotes the scattering angles in the ith region, bn0 and An2 are upward-

propagating (reflected) amplitude in the 0th region (an air half space) and down-propagating 

(transmitted) amplitude in the 2nd region (subsurface layer), oa is the incident Floquet mode, and r 

and t are the reflectivity and transmissivity, respectively. Even if waves undergo multiple bounces 

and multiple scattering processes in a two-interface medium, the total reflected and transmitted 

energy should still sum to one. The validation of power conservation relation is critical in 
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ensuring the accuracy of solutions. Fig. 3.11 displays the behavior of the computed sum of the 

reflected and transmitted energy as a function of the number of Floquet modes from the two-

interface medium for different number of terms for both polarizations. According to the power 

conservation law, the total energy should be summed to one from lossless scattering systems.  
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Fig. 3.11: Total energy computed from the two-interface medium 

Fig. 3.11 shows that, in all cases, the power conservation law is satisfied within 5% for both 

polarizations. When the total number of Floquet modes used is below 150, it appears that total 

energy deviates more rapidly from the unity reference line. In addition, when there are 

excessively many evanescent Floquet modes considered in simulation, the large matrix size 

renders the matrix structure more susceptible to ill-conditioning, leading to a potential breakdown 

of the unity energy requirement.  

Next, the bistatic scattering coefficients using MoM and EBCM/SMM are compared. In 

the MoM scheme, direct inversion and an iterative fast algorithm based on quasi-minimal residual 

(QMR) method [83] are examined for their computational runtime. The use of QMR method 

reduces the memory requirement to O(K) and the computational requirement O(K2) with 

smoother convergence behaviors than other iterative methods, such as, BiConjugate Gradient 

(BiCG) method. The tolerance for QMR method is specified to be 1x10-7 and the maximum 

number of iterations is set to be 50. It is determined that the maximum number of iterations for 

QMR method has to be set above 40 for reasonable solution accuracy. 
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In the ECBM scheme, the matrix filling process is accelerated through FFT operation and 

direct matrix inversion is employed. The number of FFT points is set to be 213 to ensure the 

accuracy of integral evaluation and different numbers of terms for the Taylor series expansion are 

examined. Fig. 3.12 shows both HH- and VV-polarized bistatic scattering coefficients using 

MoM with both direct inversion scheme and QMR method and EBCM/SMM with a fast FFT-

based matrix filling algorithm with 5 and 10 terms collected in the Taylor series expansion.  We 

observe that the MoM results with direct inversion and QMR method are almost identical and the 

EBCM results using 5 and 10 terms in its Taylor series expansion also converge. However, the 

bistatic scattering coefficients based on MoM and EBCM are not in good agreement for a single 

realization of the two-interface medium as expected. The discrepancy stems from various sources 

including the use of tapered Gaussian illumination source in MoM whereas an incident plane 

wave is used in EBCM, the truncated surface boundary in MoM and the application of periodic 

boundary condition in EBCM, the use of different basis functions to represent induced currents. 

Nonetheless, the scattering coefficients based on MoM and EBCM roughly trace out similar 

curves and they statistically converge to the same ensemble averages as evidenced by Fig. 3.9.  
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(a)                                                                                                  (b) 

Fig. 3.12: Bi-static scattering coefficients for the example two-interface scattering medium (Fig. 3.9) using MoM with direct 
inversion and quasi-minimal residue method and EBCM/SMM with a fast FFT-based matrix filling algorithm with 5 and 10 
terms collected in the Taylor series expansion: (a) HH polarization (b) VV polarization 
 

Fig. 3.13 shows total CPU times required to solve the two-interface scattering problem 

using MoM and EBCM/SMM for both polarizations against sample points (MoM) and total 
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number of Floquet modes (EBCM) when the numerical simulation is run on a PC with 3.4 GHz 

intel Pentium processor and 2047 MB RAM. All of these results satisfy power conservation law 

within 1%. Since MoM and EBCM are different in their formulations with different types of basis 

functions, it is very difficult to define a fair speed benchmark for these two methods. In the 

benchmarking study, the comparison between MoM and EBCM for speed is made for different 

values of sample points (MoM) and Floquet modes (EBCM) in an attempt to assess their CPU 

time requirements for solving an identical scattering medium. The direct inversion in MoM is the 

most time consuming case and its CPU time grows as about the third power with increasing 

sample points. The QMR method significantly expedites the matrix inversion. In EBCM/SMM, 

the number of terms summed in the Taylor series expansion in the matrix filling process evidently 

constitutes the major factor contributing to CPU time. Clearly, EBCM/SMM is much faster than 

the MoM scheme with direct matrix inversion. Even though it is unclear if EBCM/SMM is a 

better alternative to the MoM with fast iterative algorithms, these results show that it offers a very 

efficient and competitive solution to forward modeling in scattering from layered rough surfaces. 

When EBCM/SMM is applied in 3D regime, the computational advantage due to the use of the 

recursion and cascade of this method will be even more significant than 2D case.   
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(a)                                                                                                  (b) 

Fig. 3.13: CPU runtime of (a) MoM with direct inversion and quasi-minimal residue method and (b) EBCM/SMM with a fast 
FFT-based matrix filling algorithm for computing both HH- and VV- polarized scattering responses to the two-interface 
medium (Fig. 3.9) 
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3.5 Numerical Results 

  A sensitivity study of backscattering coefficients in HH and VV polarizations and co-

polarized phase difference for a two-rough-interface problem (Fig. 3.3) is first performed. The 

simulation parameters are given in Table 3.4 where mv,j, Sj, and Cj are the soil moisture content, 

the mass fraction of sand and of clay in region j, respectively.  

Table 3.4 
The simulation parameters for scattering from two-rough-interface surfaces for purpose of sensitivity study 

1,vm  1S  1C  2,vm  2S  2C  1h  1l  2h  2l  d  

5 % 0.66 0.10 20% 0.36 0.40 3 cm 50 cm 3 cm 50 cm 30 cm 

 

 A semi-empirical model which describes the dielectric behaviors of soils as a function of 

volumetric moisture content in the range from 0.3 to 1.3 GHz was developed by Peplinski, et al. 

in [84, 85]. This model provides expressions for the real and imaginary parts of the relative 

dielectric constant of a soil medium in terms of the soil’s textural composition (sand, silt, and clay 

fractions), the bulk density and the volumetric moisture content of the soil, and the dielectric 

constant of water at the specified frequency and physical temperature. Using the Peplinski model, 

these three soil parameters, mv,j, Sj, and Cj, will translate to unique complex dielectric constants at 

137 MHz and 435 MHz which are the frequencies of interest in this study, as proposed in 

conceptual soil moisture missions [22].  

          Fig. 3.14 and Fig. 3.15 show backscattering coefficients for different soil moisture of 

subsurface layer at 137 MHz and 435 MHz, respectively.  
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                                                                                                                  c)                                                                                                        
Fig. 3.14: Scattering parameters for different values of subsurface moisture contents at 137 MHz for a two-rough-interface 
problem (Table 3.4): a) backscattering coefficient in HH polarization (upper right figure) b) backscattering coefficient in VV 
polarization (upper left figure) c) co-polarized phase difference as a function of incidence angle (lower middle figure) 
 

         
a) b) 
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                                                                                                                  c)                                                                                                        
Fig. 3.15: Scattering parameters for different values of subsurface moisture contents at 435 MHz for a two-rough-interface 
problem (Table 3.4): a) backscattering coefficient in HH polarization (upper right figure) b) backscattering coefficient in VV 
polarization (upper left figure) c) co-polarized phase difference as a function of incidence angle (lower middle figure) 

 
 

Clearly, backscattering coefficients at 137 MHz are more sensitive to changes in subsurface 

moisture than those at 435 MHz. They also increase as the subsurface moisture increases. At 137 

MHz, backscattering coefficients in HH and VV polarizations experience an increase of about 3-4 

dB over the incidence angle range from 10o and 50o when the subsurface moisture increases from 

10% to 30%. Co-polarized phase difference exhibits more sensitivity to the subsurface moisture 

when the incidence angle becomes larger. It is worth noting that co-polarized phase difference is 

zero at normal incidence because there is no distinction between HH and VV polarizations at 

normal incidence. At 435 MHz, it is evident from Fig. 3.14 that backscattering coefficients and 

co-polarized phase difference shows less sensitivity to subsurface moisture content than those at 

137 MHz.   

          Next, the sensitivity to subsurface roughness at 137 MHz and 435 MHz is examined in 

Fig. 3.16 and Fig. 3.17 where the rms height of the bottom interface is varied from 1 cm to 5 cm.  
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                                                                                                                  c)                                                                                                        
Fig. 3.16: Scattering parameters for different values of subsurface rms height at 137 MHz for a two-rough-interface problem 
(Table 3.4): a) backscattering coefficient in HH polarization (upper right figure) b) backscattering coefficient in VV 
polarization (upper left figure) c) co-polarized phase difference as a function of incidence angle (lower middle figure)  
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                                                                                                                  c)                                                                                                        
Fig. 3.17: Scattering parameters for different values of subsurface rms height at 435 MHz for a two-rough-interface problem 
(Table 3.4): a) backscattering coefficient in HH polarization (upper right figure) b) backscattering coefficient in VV 
polarization (upper left figure) c) co-polarized phase difference as a function of incidence angle (lower middle figure)  
 
 
At 137 MHz, backscattering coefficients in both HH and VV polarizations show only slight 

sensitivity to subsurface roughness (about 1.5 dB). The maximum deviation in co-polarized phase 

difference is about 3 degrees when the incidence angle is above 40o which may not be very useful 

when there is some phase calibration errors involved. At 435 MHz, however, backscattering 

coefficient seems to show much sensitivity to subsurface roughness for the incidence angles 

greater than 40o. Under a close examination of Fig. 3.17, however, the scale of backscattering 

coefficients for which the incidence angle is above 40o is typically around or below the noise 

floor of most practical systems. Thus, backscattering coefficients at 435 MHz do not provide a 

reliable measure to detect subsurface roughness.  At h2 = 5 cm, co-polarized phase difference 

shows mild fluctuations around 0o when the incidence angle is above 45o.  When the subsurface 

interface is moderately rough and the incidence angle approaches the grazing angle, the effect of 

multiple scattering in subsurface layer may become so strong at this frequency that it results in a 

significant difference between HH and VV polarizations as suggested by strong sensitivity of co-

polarized phase difference to subsurface roughness. We note that even though the subsurface 

layer is 30 cm below the ground surface, P-band radars can still penetrate and show sensitivity to 

subsurface layer features.  
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          Finally, the effect of moisture profile variation in depth on backscattering coefficients and 

co-polarized phase difference is also studied.  The dielectric profiles are assumed to be linear and 

they differ in the slopes of the linear variations. The specifications of dielectric profiles are given 

in Table 3.5 where mv,i and mv,f are the soil moisture contents of the top and bottom discrete thin 

layer in the top layer.  

Table 3.5 
The simulation parameters for scattering from two-rough-interface surfaces separated by the dielectric profiles 

profile mv,i mv,f variation 
1 3% 5% Linear 
2 3% 10% Linear 
3 3% 15% Linear 

 
The dielectric profile is located in the top layer, typically a sand layer. Fig. 3.18 and Fig. 3.19 

show scattering properties for different dielectric profiles at 137 MHz and 435 MHz.  
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                                                                                                                  c)                                                                                                        
Fig. 3.18: Scattering parameters for different linear dielectric profiles in the sand layer at 137 MHz for a two-rough-interface 
problem (Table 3.4 and Table 3.5): a) backscattering coefficient in HH polarization (upper right figure) b) backscattering 
coefficient in VV polarization (upper left figure) c) co-polarized phase difference as a function of incidence angle (lower middle 
figure) 
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                                                                                                                  c)                                                                                                        
Fig. 3.19: Scattering parameters for different linear dielectric profiles in the sand layer at 435 MHz for a two-rough-interface 
problem (Table 3.4 and Table 3.5): a) backscattering coefficient in HH polarization (upper right figure) b) backscattering 
coefficient in VV polarization (upper left figure) c) co-polarized phase difference as a function of incidence angle (lower middle 
figure) 
 



 68

In Fig. 3.18, backscattering coefficients at 137 MHz show a difference of about 2-3 dB between 

profile 1 and profile 3. As the gradients of the moisture variation become steeper, backscattering 

coefficients are more insensitive to moisture profiles. It has been suggested [26] that the reason 

behind the insensitivity of backscattering coefficients to inhomogeneous moisture profiles is due 

to the tapered impedance matching nature of profile. The natural soil moisture variation is 

typically gradual, resulting in slowly tapered impedance matching and hence a much less 

reflective mechanism. At 435 MHz (Fig. 3.19), backscattering coefficients show even less 

sensitivity to moisture profiles due to weaker penetration capability at this frequency. On the 

other hand, co-polarized phase difference at 137 MHz exhibits very strong sensitivity to moisture 

profiles.  At 435 MHz, however, co-polarized phase difference is only sensitive to moisture 

profiles when the incidence angle is near the grazing angle but that is where the backscattered 

signal levels are extremely small and not reliably measurable.   

          Next, numerical simulations are carried out for scattering from multilayer rough surfaces 

with dielectric profiles during three distinct conditions of dry surface, wet surface, and 

hypothetical wet sub-layer. To obtain the backscattering coefficients and co-polarized phase 

difference due to realistic soil moisture profiles, the in-situ data collected in September 2003 by 

the USDA Southwest Watershed Research Center in Tucson, Arizona are used. The 

measurements were conducted at the Walnut Gulch Experimental Watershed (WGEW) in 

southern Arizona in support of the Microwave Observatory of Subcanopy and Subsurface (MOSS) 

project tower radar deployment. WGEW, which surrounds the town of Tombstone, is in the 

transition zone between the Sonoran and Chihuahuan Deserts. The climate is classified as semi-

arid, with mean annual temperature at Tombstone of 17.7oC and mean annual precipitation of 350 

mm. The precipitation regime is dominated by the North American Monsoon with slightly more 

than 60% of the annual total falling during July, August, September and about one third falling 

during the six months October through March, mostly as rainfall. A shrub test site, Lucky Hills, 

was selected on sub-watersheds within the WGEW to evaluate and test the MOSS soil moisture 
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radar technology. The soils in Lucky Hills are predominately sandy and gravelly loams (66% 

sand, 24% silt, and 10% clay). The subsurface rough layer is located about 30 cm below the 

ground. The layer beneath this subsurface interface mostly contains clay which is heavier than 

sandy soil and easily saturated (36% sand, 24% silt, and 40% clay).   

    The soil moisture profile for both the dry and wet ground conditions measured on August, 

25 and September, 25, 2005 during a MOSS field experiment are provided in Fig. 3.20.  

 
Fig. 3.20: The soil moisture profiles for the dry, wet surface conditions, and a wet subsurface layer 

 
 

In addition, in order to study the sensitivity of scattering coefficients and co-polarized phase 

difference to subsurface anomalies at various frequencies, a synthetic soil profile with a fairly 

saturated subsurface layer is investigated and is labeled as ‘wet sub-layer’ in Fig. 3.20. The 

dielectric constant profiles are computed at the MOSS tower radar’s operating frequencies of 137 

MHz (VHF band), 435 MHz (P band), and 1 GHz (L band) using the Peplinski model. Note that 

137 MHz is outside the range for which the Peplinski et al., relations are derived. In the absence 

of other models, the same one was used to compute the complex dielectric constants at 137 MHz. 

However, to partially account for the modeling error where at low frequencies the model tend to 

overestimate the soil loss, an additional factor of 0.5 is multiplied with the imaginary part of 

complex dielectric constant at 137 MHz. This factor is arbitrary yet is deemed to be a reasonable 

scaling given the approximation factor of 2 in the frequencies. 
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    As shown in Fig. 3.20, the rough surface profiles, f1(x) and f2(x), are located at z = 0 cm 

and z = - 30 cm. The simulation parameters given in Table 3.6 are used where (h1, l1), (h2, l2), are 

the roughness statistics (both the root-mean-squared height and correlation length) for the top and 

subsurface interfaces. 

Table 3.6 
The simulation parameters for scattering from two-rough-interface surfaces separated by the actual field-

derived dielectric profiles 

1S  1C  2S  2C  1h (cm) 1l (cm) 2h (cm) 2l  (cm) d(cm) N 

0.66 0.10 0.36 0.40 3 50 3 50 30 200 
 

In addition, the inhomogeneous dielectric profiles ε1(z) and ε2(z) are each discretized into stacks 

of 50 piecewise homogeneous thin layers, resulting in Δd1 = 0.6 cm (d1 = 30 cm) and Δd2  = 3.4 

cm (d1 = 170 cm), respectively. The backscattering coefficients and co-polarized coherent phase 

difference due to this actual field-derived medium are investigated and the sensitivity of 

scattering coefficients to different ground conditions at 137 MHz (VHF band), 435 MHz (P band), 

and 1 GHz (L band) is studied.   

          The simulation plots are given in Fig. 3.21 – Fig. 3.23. The backscattering coefficients for 

the dry and wet grounds at 435 MHz (Fig. 3.22) and 1 GHz (Fig. 3.23) show more sensitivity than 

those at 137 MHz (Fig. 3.21) as expected because the difference in moisture variation between 

the dry and wet grounds occurs only 2-3 cm in depth on the surface.  
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                                                                                                                  c)                                                                                                        
Fig. 3.21: Scattering parameters for different dielectric profiles shown in Fig. 3.20 at 137 MHz (Table 3.6): a) backscattering 
coefficient in HH polarization (upper right figure) b) backscattering coefficient in VV polarization (upper left figure) c) co-
polarized phase difference as a function of incidence angle (lower middle figure)  
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                                                                                                                  c)                                                                                                        
Fig. 3.22: Scattering parameters for different dielectric profiles shown in Fig. 3.20 at 435 MHz (Table 3.6): a) backscattering 
coefficient in HH polarization (upper right figure) b) backscattering coefficient in VV polarization (upper left figure) c) co-
polarized phase difference as a function of incidence angle (lower middle figure) 
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                                                                                                                  c)                                                                                                        
Fig. 3.23: Scattering parameters for different dielectric profiles shown in Fig. 3.20 at 1 GHz (Table 3.6): a) backscattering 
coefficient in HH polarization (upper right figure) b) backscattering coefficient in VV polarization (upper left figure) c) co-
polarized phase difference as a function of incidence angle (lower middle figure) 
 

At 137 MHz, backscattering coefficients may not be able to provide a highly sensitive measure to 

detect the shallow spatial changes in moisture variation (5% in this case) since the perturbation in 

total backscattering coefficient is very small. However, co-polarized phase difference is quite 

sensitive to even this small spatial change in surface moisture. It also shows much sensitivity to 

the dry and wet ground conditions at 435 MHz and 1 GHz in the case of this shallow moisture 

variation.  

          In assessing the penetration capabilities of radar systems at 137 MHz, 435 MHz, and 1 

GHz, we study and compare the scattering parameters for dry ground against those for wet sub-

layer at these three frequencies of interest. Because the relatively large amount of loss present in 
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the top layer can potentially mask the subsurface effects and significantly overshadow the effect 

of subsurface moisture variation, the usefulness of low frequency radar system is especially 

addressed here.  The subsurface layer is typically mildly wet and does not give rise to a strong 

reflective mechanism. The tapered impedance matching nature of profile in the sand layer further 

prevents scattered fields due to subsurface wet layer from exiting the medium. The detection of 

subsurface moisture content is therefore quite challenging. In Fig. 3.22 and Fig. 3.23, 

backscattering coefficients and co-polarized phase difference at 435 MHz and 1 GHz are 

essentially indistinguishable between the dry ground and wet subsurface layer.  At 137 MHz, 

although backscattering coefficients for the wet subsurface layer do not exhibit a large change 

from those for the dry ground, the sensitivity is larger than at the two higher frequencies. On the 

other hand, the information of co-polarized phase difference can detect even the slight variation 

in subsurface moisture content. Co-polarized phase difference shows a difference of about 5o-8o 

over the incidence angle from 50o to 70o between the dry ground and this slightly wet subsurface 

layer compared to practically no change for the higher frequencies. In practice, when the 

dielectric contrast between the ground and subsurface layer is typically larger than that used in 

this conservative simulation scenario, the dynamic range of variations in co-polarized phase 

difference will be much wider. This indicates that considerably larger sensitivity and penetration 

depth can be achieved using co-polarized phase difference, even for as small as a 5% moisture 

content change, than scattering coefficients. Low frequency polarimetric radars hence carry great 

promise in retrieving the subsurface moisture contents. Additionally, if the surface is covered by 

treed vegetation, it can be shown that coherent (double-bounce) reflections dominate the 

backscattering cross sections. This mechanism will be quite sensitive to the subsurface moisture 

content with a much larger dynamic range of variations for the cross sections. 
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3.6 Chapter Conclusion 

A solution to scattering from multilayer rough interfaces separated by arbitrary dielectric 

profiles using EBCM/SMM is presented. The reflection and transmission matrices of rough 

interfaces are constructed using EBCM, which requires the assumption of periodic boundary 

conditions where the finite-length rough surface is extended periodically with period L. The 

reflection and transmission matrices of inhomogeneous dielectric profiles are constructed by first 

modeling the inhomogeneous dielectric profile as a stack of piecewise homogeneous dielectric 

thin layers and then recursively cascading reflection and transmission matrices of individual 

dielectric interfaces from the bottom dielectric interface to the top interface. Finally, the 

interactions between profiles and rough surfaces are accounted for by applying the generalized 

scattering matrix technique. In numerical simulations, the bi-static scattering coefficients are 

validated by comparing the simulation results with the existing analytical SPM and numerical 

MoM solutions to scattering from two-rough-interface structures and SPM solution to scattering 

from a 4-point piecewise dielectric profile. The comparison results are in excellent agreement.  

          Next, moisture profiles corresponding to the dry ground, wet ground, and wet subsurface 

layer conditions, based on the in-situ data collected by the USDA Southwest Watershed Research 

Center in Tucson, Arizona, are used to generate new results and study the sensitivities of 

measurements to various parameters. Numerical simulation results show that at low frequencies 

backscattering coefficients in both polarizations can still be altered due to subsurface moisture 

even if the ground surface is lossy and the deep soil moisture does not constitute a strongly 

reflective medium.  In general, co-polarized coherent phase difference exhibits a strong 

dependence on the changes in subsurface soil moisture and provides a better measure in 

penetrating into deep soil layers than scattering coefficients. Therefore, co-polarized phase 

difference carries tremendous promise in inverting soil moisture content.  
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          The proposed method in this paper can also be generalized to analyze three-dimensional 

scattering from two-dimensional multilayer rough surfaces. There already exists a 3D version of 

extended boundary condition method to scattering from a 2D periodic rough surface [86]. In 

addition, 3D scattering matrix approach is also widely utilized to handle layered geometries, 

which involves proper mode conversions between TE and TM polarizations. However, the 3D 

implementation of the method proposed in this thesis is by no means a trivial task, as the problem 

will be vectorial in nature and polarization conversions between TE and TM will take place. 

Future works on this topic include the implementation of this method to analyzing the three-

dimensional scattering from multilayer rough surfaces in inhomogeneous stratified media and 

comparison with field radar data. These data exist from the Arizon experiments but since they do 

not have absolute calibration, they are not applicable yet.   
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CHAPTER 4 
 

Backscattering Enhancement from Layered Rough Surfaces and 
Surface Plasmon Resonance 

 
 

Based on the development of the EBCM/SMM technique for solving scattering from 

layered rough surfaces in Chapter 3, in this chapter we analyze backscattering enhancement due 

to surface plasmon resonance from two-rough-interface structures. Backscattering enhancement 

due to surface plasmon resonance is a manifestation of multiple scattering processes. This chapter 

explores the capability of this method in modeling coherent multiple scattering phenomena. 

Surface plasmon resonance is a charge-density oscillation associated with surface plasmon waves 

at the interface, which decay evanescently into both media and propagate along the interface. In a 

planar interface geometry, these surface plasmon waves stay bound to the surface. When the 

surface geometry becomes irregular, such as a periodic or rough surface, these surface plasmon 

waves become localized at protrusions and crevices of the rough surface, leading to the excitation 

of surface plasmon waves. When surface plasmon waves are excited and they traverse along the 

surface in opposite directions, they may constructively interfere with each other, coupling into 

propagating modes and producing an enhanced backscattered peak. 

The proposed technique is an ideal candidate for solving backscattering enhancement 

from layered rough surfaces since it fully accounts for all multiple orders of scattering and 

multiple bounces due to wave interactions between rough interfaces. It is important to point out 

that this approach is especially well suited for sensitivity analysis because it is capable of 

evaluating the effect of a change in one layer without repeating the entire computation. Other 
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techniques [44-47] for analyzing layered structures solve the problem in entirety without 

employing cascading matrices for individual layers which typically require much more 

computational time than the proposed technique. Finally, although the issue of ill conditioning 

may arise from EBCM when the surface corrugation is too deep, it nevertheless poses as a trivial 

problem because backscattering enhancement due to surface plasmon resonance takes place in a 

small roughness regime. 

4.1 The Wavenumbers of Surface Plasmon Waves for a Dielectric Coated Metal  

    The mechanisms of backscattering enhancement due to the excitations of surface 

plasmon waves from a single rough surface are discussed in [87]. Here, the derivation for the 

wavenumbers of surface plasmon waves for two layers is presented. An electromagnetic wave 

incident upon a rough surface from angle θi results in surface plasmon waves propagating in 

opposite directions. The inward coupling of the incident wave by means of the roughness into 

surface plasmon waves may be expressed by the pair of grating equations in which the waves 

correspond to the 1st diffracted orders: 

  
                       1sin kkk iosp +=+ θ                   2sin kkk iosp −=− θ                                           (4.1)  
                                  
 
where k1 and k2 are wavenumbers available in the surface-roughness spectrum. The quantity +/-ksp 

denotes the wavenumber of the forward (+) or backward (-) surface wave.   The surface plasmon 

waves, once excited, may now couple to a propagating wave escaping from the surface at angle θs. 

This outward coupling of the surface plasmon waves into propagating scattered waves may be 

similarly described by the grating equations:  

 
                     3sin kkk spso −+=θ                 4sin kkk spso +−=θ                                      (4.2) 
                                 
           

where k3 and k4 are again among the wavenumbers contained in the roughness spectrum. In the 

backscattering direction with θs =-θi, equations (4.1) and (4.2) are identical and require that k1=-k4 
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and k2=-k3. Physically, as described in [43], backward scattering can be understood as the 

propagating part of backward leaky surface plasmon modes excited by an incident wave 

impinging on a rough surface. Similarly, forward scattering is due to the forward-propagating 

leaky surface plasmon modes. The enhancement in the backscattering direction is induced by a 

series of scattering processes where the wavenumbers of incident waves and scattered waves 

coincide with each other. In essence, both forward and backward plasmon waves with the same 

wave-numbers but with opposite signs constructively interfere with each other, giving rise to 

backscattering enhancement. Equations (4.1) and (4.2) then describe the pair of time-reversed 

scattering processes that give rise to the predicted backscattering effect.  The following section 

describes the formulation leading to the computation of the wavenumbers of surface plasmon 

waves for a dielectric-coated metal. 

 We consider TM electromagnetic waves for a dielectric-coated metal in the following 

two-layer geometry in Fig. 4. 1.  

 
Fig. 4.1: The two-layer geometry for the computation of the wavenumbers of surface plasmon waves for a dielectric-coated 
metal. 

The time-harmonic expression for TM waves is given as follows:  

                          ( , , ) ( , )j i t
y yH z x t H z x e ω−=                                                                            (4.3) 
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where ( , )j

yH z x  indicates surface waves, which are evanescent along z and traversing along x and 

the subscript j denotes the region. In region 0, 

                           
2 2

000 ( , ) xx z x k k zik x z ik x
yH z x Ae e Ae eα − −−= =                                                               (4.4) 

In region 1, 

                            
1 1

2 2 2 2
1 1

1
1 2

1 2

( , ) x xz z

x xx x

ik x ik xz z
y

k k z k k zik x ik x

H z x B e e B e e

B e e B e e

α α−

− − −

= +

= +
                                                                  (4.5) 

In region 2, 

                           
2 2

222 ( , ) xx xz k k zik x ik xz
yH z x Ce e Ce eα −= =                                                                (4.6) 

By imposing the boundary condition at z = d/2 and z = -d/2,  

                          0 1( 2 , ) ( 2, )y yH z d x H z d x= = =                                                                           (4.7) 

                          0 1

12 2

1( , ) ( , )y d y dz z
H z x H z x

z zε= =

∂ ∂
=

∂ ∂
                                                                      (4.8)   

                         1 2( 2 , ) ( 2, )y yH z d x H z d x= − = = −                                                                  (4.9) 

                         1 2

1 22 2

1 1( , ) ( , )y d y dz z
H z x H z x

z zε ε= =

∂ ∂
=

∂ ∂
                                                                  (4.10) 

 
This then translates into a system of four equations and four unknowns which can be cast into a 

matrix equation and solved simultaneously.  
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                        (4.11)              

 
The following dispersion relation for surface plasmon waves is obtained after the matrix equation 

is solved.  
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   1 1
1 2 1 1 2 1

1 2 1 1 2 1

1 1 1 1 1 1( )( ) ( )( ) 0z zd d
oz z z z oz z z ze eα αα α α α α α α α

ε ε ε ε ε ε
−− + − + − − − − − =                            (4.12)                              

It is worth noting that if ε2 and ε1 are equal, the dispersion relation can be simplified to 

1
1

1( ) 0oz zα α
ε

− − = , leading to the known expression of the surface plasmon mode for a planar 

interface 

                                       { }m d
sp o

m d

k k ε ε
ε ε

=
+

                                                                               (4.13) 

By the same token, the dispersion relation can be derived for TE surface waves and its expression 

is given as: 

       1 1
1 2 1 1 2 1( )( ) ( )( ) 0z zd d

oz z z z oz z z ze eα αα α α α α α α α−− + − + − − − − − =                                    (4.14) 

The dispersion relations in (4.12) and (4.14) can be solved graphically to determine the 

wavenumbers of surface plasmon modes. Using the simulation parameters ε1=3 and ε2=-18+i0.55 

and enforcing the positivity constraint on αjz, the wavenumbers, qsp =ksp /ko, are plotted against the 

layer thickness for both TE and TM polarizations in Fig. 4.2 (a) and (b).  

 
(a) 
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(b) 

Fig. 4.2: The wavenumbers of surface plasmon waves as function of d for (a) TM and (b) TE polarizations 
 

From d=0.05λ to d=0.25λ, only one valid solution q1 exists for TM surface plasmon modes 

because the dielectric slab is too thin to support multiple guided modes. When the layer thickness 

exceeds d=0.30λ, the second guided surface mode q2 comes into existence. The presence of 

multiple guided surface plasmon waves leads to the appearance of satellite peaks. A discussion 

regarding satellite peaks can be found in [44] where the solution to scattering from a free standing 

metal is derived based on the small perturbation method (SPM) up to the forth order and satellite 

peaks can be seen from the results based on SPM. The idea behind satellite peaks is that a 

bounded layered structure supports two or more guided waves and therefore satellite peaks are 

also generated in addition to the enhanced backscattering peak. For TE polarization, there only 

exists a single solution from d=0.15λ to 0.50λ. Below d=0.15λ, TE surface waves do not exist on 

this structure. When the layer thickness exceeds d=0.50λ, the second TE guided mode q2 is 

induced. 

The presence of two surface plasmon waves can give rise to two satellite peaks at the 

angles, sθ
± . The locations of satellite peaks given the wavenumbers of two guided waves, q1 and 

q2, can be found from [44]:  

                           1
2 1sin ( sin( ) [ ])s i q qθ θ± −= − ± −                                                                  (4.15) 



 82

Substituting q1 and q2 from our graphical solution in Fig. 4.2 into (4.15) gives the locations of 

satellite peaks, sθ
± . Table 4.1 (a) lists the values of sθ

±  in TM polarization for different values of 

layer thickness from d=0.30λ to d=0.50λ when the incidence angle is 5o. Table 4.1 (b) gives the 

locations of satellite peaks for d =0.60λ for both TM and TE polarizations.   

 
Table 4.1 

(a) The locations of satellite peaks at θi = 5o for different values of d in TM polarization 
 
 

 
 
 
 
 
 
 
 
 
 

 
(b) The locations of satellite peaks at θi = 5o for d = 0.6λ for TM and TE polarizations 

 
 
 
 
 
 
 

 

4.2 Criteria for Backscattering Enhancement  

4.2.1 Backscattering Propagating Floquet Mode 

To capture backscattering enhancement using the EBCM/SMM approach, one of the 

Floquet modes must be propagating in the backscattering direction for the scenario of a single 

rough interface. For a two-interface problem, e.g., that of a metallic rough surface coated with a 

dielectric layer, one of the Floquet modes traveling inside the top layer must propagate exactly in 

the same direction as the transmitting direction of the coherent wave which corresponds to the 

backscattering direction in the top layer where backscattering enhancement takes place. Its 

transmitted angle obeys the Snell’s Law of Transmission. From (3.5), it follows that this 

requirement is met if                            

                        0)(2 22 =−−−+ xjzjjxj kkkXkX                                                               (4.16)  

( )d λ  1q  2q  sθ
+  sθ

−  
0.30 1.8647 1.0000 51.04o -72.15o 
0.35 1.8785 1.0208 50.40o -70.88o 
0.40 1.8862 1.0840 45.65o -62.79o 
0.45 1.8905 1.1777 38.73o -53.13o 
0.50 1.8930 1.2729 32.20o -45.01o 

Pol. 1q  2q  sθ
+  sθ

−  
TM 1.8954 1.4178 18.58o -29.54o 
TE 1.5993 1.1585 20.71o -31.87o 
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where
L

nX π2
= , jjxjjjzj kkkk θθ sin,cos ==  and j is the subscript denoting the region of a 

dielectric medium which lies above the metallic rough surface. The angle
jθ  is the angle in region 

j at which the transmitted wave in the dielectric medium impinges upon the metallic medium. 

From (4.16),   

                       
2

)(4)2(22
2

xjzjjxjxj kkkkk

L
nX

−−−−−
==

π                                                 (4.17)                      

Based on the computed value of X, since n is an integer which ranges from –N to N (where 2N+1 

is the total number of Floquet modes in simulation), we can then determine a set of L’s 

corresponding to different n’s which satisfies the condition of backscattering propagating Floquet 

mode. The value of L should also be set to be much greater than the correlation length of rough 

surface (i.e. L > 40lc).  

4.2.2 The Minimum Number of Floquet Modes for Surface Plasmon Resonance 

Both modes, q1 and q2, must be captured in the discrete spectrum of plane waves 

employed in EBCM. The next paragraph describes the method for choosing the number of 

Floquet modes used in simulation in order to capture two guided surface waves. In the context of 

EBCM, the discrete spectrum of Floquet modes must account for the presence of surface plasmon 

wave ksp which travels along the rough surface in the x direction. Using (3.4), the minimum 

number of Floquet modes required to capture surface plasmon waves can be computed and is 

given by  

                       
πππ 2

)(
)

2
)(

,
2

)(
min(min

LkkLkkLkk
N xispxispxisp −

=
−+

=                                          (4.18)                    

 
To properly determine L and N, the number of Floquet modes is first arbitrarily selected 

(preferably a large number). Then, L is computed based on (4.17). Subsequently, the condition 

from equation (4.18) is used to verify if the total number of Floquet modes, 2N+1, is greater than 

2Nmin+1. If this condition fails, the total number of Floquet modes is increased. The value of Nmin 
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is chosen based on the wavenumber of surface plasmon waves for a planar dielectric-coated metal. 

In the case of multilayer rough surfaces, the actual position of surface plasmon resonance is 

slightly shifted due to the presence of small roughness. In general, if N is chosen to be large with 

at least 4 Floquet modes per wavelength (i.e., L = 30λ and P = 70 where 2*P+1 is the total 

number of Floquet modes), the condition in (4.18) is easily satisfied.  

4.3 Comparison with MoM Results 

Numerical simulations of scattering from two-interface rough surfaces are performed for 

validation and comparison. The dielectric constant of the lossless dielectric layer is 31 =ε . The 

metallic half space with a rough interface has a dielectric constant 55.05.182 i+−=ε  (i.e., the 

dielectric constant of silver at λ  = 633 nm).  The angle of incidence is 10o. The simulation 

parameters given in Table 4.2 are used. The number of realizations of the surface profiles used for 

computing scattering coefficients is 500.  

 
Table 4.2 

The simulation parameters for backscattering enhancement from two-interface rough surface  
 
 
 
 
The largest wavenumber of surface plasmon wave which has been determined in Table 4.1 is ksp 

= 1.8930 ko. Using (4.18), the minimum number of Floquet modes, 2Nmin+1, is 100. The number 

of Floquet modes used in the simulation is 121. The choice of 121 Floquet modes ensures surface 

plasmon waves are accounted for as well as enough propagating and evanescent waves are being 

considered in the numerical simulation.  First, for the validation purpose, the simulation results of 

backscattering enhancement based on EBCM/SMM and MoM [7] for different values of 

incidence angles are examined. The simulation results are given in Fig. 4.3.  

ε1 ε2 kh1 kl1 kh2 kl2         kl2         d L 

3 -18+i0.55 0.05 1.0 0.05 1.0 1.0 0.1λ 28.6843λ 
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Fig. 4.3: Bistatic scattering based on EBCM and MoM from dielectric coated silver with rough interfaces for incidence angles 
of 10o for the purpose of validation 
 
    In MoM, the solutions for scattered fields in any region are obtained by imposing 

boundary conditions on both interfaces and applying pulse basis functions and point matching. To 

reduce the edge diffraction effect due to a truncated sample of rough surface, a tapered 

windowing function is applied to the field illuminating the surface. In an attempt to further reduce 

the edge diffraction effect from the subsurface interface, the length of surface sample for the 

numerical simulation based on MoM is set equal to L=40λ. In addition, both the uses of coarse 

and dense grids [9] are examined with a grid of 10 and 15 points per free-space wavelength 

respectively to discretize the surface. They correspond to 400 and 600 sample points for a surface 

length of 40λ, respectively. In both MoM and EBCM, matrices are inverted using a direct matrix 

inversion technique. To give an idea of the computational speed of EBCM/SMM and MoM, the 

completion of the Matlab numerical simulation for a single realization of two-interface rough 

surface scattering for both polarizations based on EBCM/SMM takes around 75 seconds whereas 

that based on MoM takes around 86 seconds and 267 seconds for coarse and dense grids, 

respectively, on a PC with Pentium-4 2-GHz processor and 1.5 GB RAM.  

    In Fig. 4.3, the HH-polarized bistatic scattering coefficients based on EBCM/SMM are in 

good agreement with those based on MoM for an incidence angle of 10o. For the VV-polarized 
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bistatic scattering coefficients using a coarse grid (i.e., 400 sample points for a surface length of 

40λ), although backscattered enhanced peaks are present in the simulation plots based on both 

EBCM/SMM and MoM, the magnitudes of backscattered enhanced peaks for an incidence angle 

of 10o simulated using MoM are slightly greater than those simulated using EBCM/SMM. 

However, when a dense grid is employed with 600 sample points for a surface length of 40λ, then 

there is good agreement between the bistatic backscattering coefficients based on EBCM/SMM 

and MoM. The explanation for this observation is that the application of a coarse grid in MoM is 

not suitable for analyzing backscattering enhancement when a dielectric medium is very dense. 

The dielectric constant of silver, ε2= -18+i0.55 requires  a dense discretization due to rapid spatial 

variation of surface fields in a lossy dielectric medium with high permittivity.  

A denser grid translates into much higher computational cost, making MoM an 

undesirable numerical technique for analyzing backscattering enhancement. The diffraction of 

surface plasmon waves at truncated surface edges employed in MoM may also lead to undesirable 

effects because surface plasmon waves can propagate over a large distance on a weakly rough 

surface. On the other hand, the choice of basis functions employed in EBCM/SMM makes it less 

susceptible to the problem of high spatial variation of surface fields and hence more 

computationally efficient. The periodic boundary condition used in EBCM/SMM also reduces the 

diffraction of surface plasmon waves at the rough surface edge.   

4.4 Numerical Results 

In this section, backscattering enhancement due to surface plasmon resonance is analyzed 

using the proposed technique. The simulation parameters in Table 4.2 with an angle of incidence 

equal to 5o are employed in this numerical study. To investigate the scattering patterns of 

backscattering enhancement due to the subsurface characteristics and to clarify the sensitivity of 

enhanced backscattered peak to various physical parameters, several parameters are varied while 

others are kept fixed. In order to examine clearly any defining features of bistatic scattering 



 87

response, the total number of realizations over which the average is computed is 2500. The 

simulation plots are given in Fig. 4.4 – 4.9. To highlight and emphasize the differences in the 

magnitudes of enhanced backscattered peaks for various cases, a linear scale is employed and 

coherent specular returns are removed in the following plots. In Fig. 4.4, the TM or VV polarized 

backscattering coefficients from the dielectric-coated silver for scattering with and without 

enhanced peaks are plotted. We observe that the enhanced backscattered peak vanishes as the 

angle of incidence moves toward the grazing angle. This observation is consistent with the 

characteristics of backscattering enhancement observed in [43, 44].  
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Fig. 4.4:(a) Bistatic scattering from dielectric-coated silver with rough interfaces for different angles of incidence 
(b) and the backscattering coefficients for scattering with and without enhancement  
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Fig. 4.5: Bistatic scattering from dielectric coated silver with rough interfaces for different roughness parameters of the 
bottom metallic rough surface for (a) VV polarization and (b) HH polarization. In (a), the enhancement increases with surface 
roughness in the roughness regime examined in this paper. In addition, the width of an enhanced peak gets widened as surface 
roughness increases. In (b), backscattering enhancement is not observed for HH polarization. 
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Fig. 4.6: (a) Bistatic scattering from dielectric coated silver with rough interfaces for different layer thicknesses from d=0.05λ 
to d=0.25λ for VV polarization (TM).  In (b), bistatic scattering from dielectric coated silver with rough interfaces for different 
layer thicknesses from d=0.30λ to d=0.50λ for VV polarization (TM). The appearance of satellite peaks are evident for d=0.45λ 
and d=0.50λ as indicated by the peak-like features.   
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Fig. 4.7: (a) Bistatic scattering from dielectric coated silver with rough interfaces for different layer thicknesses from d=0.05λ 
to d=0.25λ for HH polarization (TE).  In (b), bistatic scattering from dielectric coated silver with rough interfaces for different 
layer thicknesses from d=0.30λ to d=0.50λ for HH polarization (TE).   
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In Fig. 4.5, the curves of VV- and HH-polarized bistatic scattering coefficients are plotted 

for different root-mean-squared heights of the bottom metallic rough surface. Since all scattered 

waves reflect from the metallic half space and the dielectric layer is lossless, a slight increase in 

the root-mean-squared height of the bottom metallic interface will result in a significant increase 

in the bistatic scattering coefficients as evidenced by Fig. 4.5.  In HH polarization (Fig. 4.5 (b)), 

backscattering enhancement is not present, indicating lack of TE surface waves for d =0.1λ, whih 

leads to absence of backscattering enhancement regardless of surface roughness. In VV 

polarization (Fig. 4.5 (a)), we observe that no backscattering enhancement occurs in the case of a 

flat metal. Surface roughness is a critical mechanism for the strength of backscattering 

enhancement. When the surface geometry is irregular, surface plasmon modes are converted back 

into volume electromagnetic waves, which propagate away from the surface through the 

mechanism of surface roughness. Surface plasmon waves are slow waves since they propagate 

along the interface while staying tightly bound to the surface. When the interface is rough, 

surface plasmon waves no longer stay tightly bound to the interface and begin coupling into 

propagating waves. The slow-wave nature of surface plasmon propagation effectively enhances 

surface scattering and therefore the effect of backscattering enhancement becomes more 

pronounced as surface roughness increases. Moreover, the angular width of the enhanced 

backscattered peak increases as the bottom metallic interface becomes rougher and the 

enhancement-to-background ratio remains roughly constant (~1.4). In [43], it is explained that 

this broadening is a direct consequence of the multiple scattering effect and the broadening of 

surface plasmon resonance which is either due to an increase in ohmic losses in the metal or to an 

increase in wave dissipation (also known as radiative damping) induced by higher coupling to 

other surface plasmon modes and to propagating modes when roughness increases. In other words, 

the broadening is attributed to an increased efficiency with which the roughness of rough surfaces 

scatters surface plasmon modes into propagating waves and into other surface plasmon modes. 
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    In Figs. 4.6 and 4.7, the curves of VV- and HH-polarized bistatic scattering coefficients 

parametrized with different layer thicknesses from d = 0.05λo to d = 0.50λo are shown. For both 

polarizations, the enhancement initially increases with layer thickness from d=0.05λo to d=0.10λo 

but then decreases from d=0.10λo to d=0.25λo. We note that VV-polarized surface waves give rise 

to backscattering enhancement for all d’s whereas HH-polarized surface waves only lead to 

backscattering enhancement for d = 0.2λo and 0.4λo in the range studied. This suggests VV- (TM) 

and HH-polarized (TE) surface waves have different mode conversion efficiencies with TM 

surface waves coupling into propagating waves more efficiently than TE surface waves. Fig. 4.6 

(b) also indicates the locations of satellite peaks for d= 0.45λo and d=0.50λo. From Table 4.1 (a), 

the locations of satellite peaks are given as follows: 38.73o
sθ
+ = and 53.13o

sθ
− = −  for d= 0.45λo, 

32.20o
sθ
+ =  and 45.01o

sθ
− = −  for d=0.50λo. In Fig. 4.6 (b), clear peak-like features can be 

observed at 37.6o and -52o for d=0.45λo, which agree very well with the theoretical predictions in 

Table 4.1 (a).  These features are manifestations of satellite peaks. For d=0.50λo, small hump-like 

features present at -45o and 32.7o also coincide with the theoretical locations of satellite peaks. 

For 0.30λo <d<0.40λo, the theoretical locations of satellite peaks are relatively near the grazing 

angles. The contribution due to single or multiple scattering processes is more prominent around 

the backscattering direction with the use of Gaussian surface spectrum. Therefore, with a 

significantly diminished effect of multiple scattering processes when the scattering angle is far 

away from the backscattering direction, no satellite peaks are observed for 0.30λo <d<0.40λo in 

VV polarization.  

To clearly demonstrate the appearance of satellite peaks, bistatic scattering coefficients of 

both VV and HH polarizations are plotted for d=0.60λo in Fig. 4.8. At -5o, pronounced enhanced 

backscattered peak is present for TM polarization whereas only a small backscattering 

enhancement effect is observed for TE polarization.  Two satellite peaks are clearly evident at 

+21.5o and -32.7o for TM polarization. They are in good agreement with the theoretical locations 
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indicated in Table 4.1 (b) which are o18.6sθ
+ = and o-29.5sθ

− = . For TE polarization, we are unable 

to uniquely identify the location of satellite peaks.  This again reflects the fact that TM surface 

waves are more susceptible to multiple scattering processes which induce the appearance of 

satellite peaks than TE surface waves through surface roughness.  Gaussian surface roughness 

spectrum typically results in satellite peaks with extremely narrow-width peaks (~1-2o) and small 

peak to background ratios because it does not couple surface plasmon waves into propagating 

waves as effectively as other power spectra such as West and O’Donnell spectrum [88, 89].  
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Fig. 4.8: Bistatic scattering from dielectric coated silver with rough interfaces for different layer thicknesses for d=0.6λ for VV 
polarization (TM) and HH polarization (TE)  
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Fig. 4.9: Backscattering coefficient is plotted against layer thickness from d=0.05λ to d=0.60λ for both HH and VV 
polarizations. The periodic fluctuation is due to the interference effect of layered media and the period is λ1/2 where λ1 is the 
medium wavelength in the dielectric region.  
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In Fig. 4.9, both VV- and HH-polarized backscattering coefficients are plotted against layer 

thickness from d=0.05λo to d=1.00λo and clearly exhibits periodic oscillations with a period of 

λ1/2 where λ1 is half of the medium wavelength in the dielectric region. More specifically, it 

exhibits minima for thickness obeying  

                         1

1

(2 2) ( 1)
24 Re{ }

md mλλ
ε
+

= = +                                                                           (4.19) 

 
and maxima for thickness obeying 

                         1

1

(2 1) 1( )
2 24 Re{ }

md mλλ
ε
+

= = +                                                                    (4.20) 

 
where m = 0, 1, 2, 3, … The periodic behavior is due to the constructive interference effect of 

layered media. For VV polarization from d=0.05λo to d=0.25λo, the amplitude fluctuation of the 

backscattering coefficient is the greatest (~9 dB). This large amplitude variation is attributed to 

the surface plasmon resonance effect. For HH polarization, however, the amplitude fluctuation 

for a very thin slab case with d varying from 0.05λo to 0.25λo is considerably smaller than that of 

VV polarization. This is due to a lack of HH-polarized surface plasom waves when d < 0.15λo. 

When d > 0.25λo, it is observed that backscattering coefficients of VV polarization tend to be 

larger than that of HH polarization. This reconfirms the fact that the effect of surface plasmon 

resonance is more prominent in VV polarization than in HH polarization. These features are 

useful for designing enhanced coupling efficiency from layered media. Fig. 4.9 also shows that 

backscattering enhancement is very sensitive to layer thickness even if it is below the half 

wavelength diffraction limit. Surface plasmon waves are capable of capturing very fine features 

of a target because evanescent waves contain information regarding sub-wavelength 

characteristics. Hence, backscattering enhancement holds promise in the retrieval of sub-

wavelength layer thickness and hence super-resolution. Finally, it is also worth noting that 2D 

formulation does not account for cross-polarized fields, which would allow enhancement to be 

observable in both HV and VH polarizations. 
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4.5 Chapter Conclusion  

An accurate solution to backscattering enhancement from multilayer rough interfaces 

based on EBCM/SMM is presented, which includes all orders of scattering. The multilayer rough 

surface interactions are accounted for by applying the generalized scattering matrix technique. 

The criteria for backscattering enhancement based on this method are also discussed. First, the 

consideration of backscattering propagating Floquet modes must be factored in the selection of L, 

the surface period. Second, the total number of Floquet modes must be chosen to be greater than 

the minimum total number of Floquet modes derived based on surface plasmon resonance 

criterion. In numerical simulation, the scattering from a dielectric coated silver rough surface is 

considered. It is observed that the enhanced backscattered peak disappears as the incidence angle 

moves towards the grazing angle. In addition, backscattering enhancement requires the rough 

surface geometry for coupling surface plasmon waves into radiated energy. Numerical results are 

validated against those based on MoM and it is observed that MoM gives poorer results for VV 

than for HH due to the use of a single coarse grid. Numerical analysis of backscattering 

enhancement due to surface plasmon resonance based on MoM may call for high computational 

cost due to the need for a dense grid.   

In numerical simulations with EBCM/SMM, it is demonstrated that the angular width of 

the enhanced backscattered peak increases as the metallic interface becomes rougher. 

Furthermore, TM surface waves couple into propagating waves through the mechanism of 

roughness more efficiently than TE surface waves. The appearance of satellite peaks can be 

demonstrated when multiple guided surface waves are supported by the structure for TM 

polarization. The amplitude of enhanced backscattered peaks shows a great deal of sensitivity to 

layer thickness and it can be very useful in the retrieval of the thickness of a very thin layer well 

below the diffraction limit. Finally, the proposed numerical method accounts for all orders of 

scattering and provides rigorous solutions for backscattering enhancement and satellite peaks.  
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This proposed approach can easily be generalized to handle N-layer structures and is especially 

well suited for sensitivity analysis since it is capable of evaluating the effect of a change in one 

layer without repeating the entire computation. 
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CHAPTER 5 
 

Scattering from Buried Objects in Layered Rough Surfaces and Mode 
Matching Technique 

 
 
 

Using the formulation of EBCM/SMM in Chapter 3, we propose a technique which 

incorporates a buried object in layered rough surfaces by employing the T-matrix method. A T-

matrix relates the incident field to the scattered field of an object, both of which are expanded in 

terms of cylindrical harmonics in two dimensions. To perform mode matching between layered 

rough surfaces and a buried object, the cylindrical-to-spatial harmonics (plane wave) 

transformation is applied to the T-matrix of a buried object.  This harmonic transformation is 

derived through the use of the recurrence formula and Fourier integral representation for Hankel 

functions. When the T-matrix of a buried circular cylinder is transformed into the 

reflection/transmission matrices, these matrices can then be cascaded with those of layered rough 

surfaces to account for the electromagnetic interaction between a buried cylinder and multiple 

rough interfaces. In this chapter, the derivation of mode matching technique for a buried cylinder 

and an interface is first presented. Then, the validation of this proposed hybrid method is 

conducted by comparing the numerical results to the analytical ones. Subsequently, numerical 

studies for scattering from a buried cylinder in layered rough surfaces are performed for 

sensitivity analysis. Then, this proposed method is generalized to handle scattering from a cluster 

of cylinders embedded in layered rough surfaces through the application of the recursive T-matrix 

method. This topic of research is important in radar community which deals with volume 

scattering from sea ice, snow, and root-zone soil moisture. At the end of this chapter, validation 
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studies and numerical results for scattering from discrete random media in layered rough surfaces 

are presented and discussed. 

5.1 Mode Matching Technique and its Formulation 
 

Following the development of the plane wave solution for scattering from layered rough 

surfaces through matrix cascading processes presented in Chapter 2 and 3, the next goal is to 

devise a method capable of incorporating a buried object into a rough layer.  The scattered field 

of a buried cylinder is first cast in terms of plane waves and then the scattering matrix technique 

is employed to account for wave interactions between rough surfaces and the buried cylinder. 

This section discusses how to compute the plane wave solution to scattering by a cylinder. The 

formulation of the scattering from a periodic array of cylinders is first discussed briefly [66, 67, 

69] and then the approximation with an infinite separation distance between cylinders is 

incorporated into the formulation in order to remove coupling between periodic cylinders. The 

technique for solving the scattering from a periodic array of cylinders is based on the T-matrix 

and Lattice sum approach.  

 
Fig. 5.1: The geometry of a periodic array of cylinders 

 
The geometry of a periodic array of cylinders is illustrated in Fig. 5.1. The cylinders are situated 

in a background medium with dielectric constant aε . They are infinitely long along the y-
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direction and parallel to each other. For the cylinder problem, the polarization of an incident wave 

is defined as follows: a TM wave with Ey as the transverse component and a TE wave with Hy as 

the transverse component.  In the following formulation, the transverse field component is 

expressed in terms of the wave function, ψ . In vector representation, the incident plane wave is 

expressed in cylindrical coordinate system (ρo, φo) centered at the origin of coordinate O.  

                                                         ,0( , )i T
J ox y pψ = Φ ⋅                                                             (5.1) 

                                                    ,0 [ ( ) ]oim
J m a oJ k e ϕρΦ =                                                  (5.2) 

                                                   [ ]oimm
op i e α=  ( 0, 1, 2,...)m = ± ±                                     (5.3) 

,0JΦ and op  are row vectors. The superscript T denotes the transpose of a matrix. Ko is the 

wavenumber of the background medium in which the array of cylinders is placed. The scattered 

field can be represented in terms of the local cylindrical coordinates (ρl, φl) with the center of l-th 

scatterer as the origin of coordinates:  

                                                    ,( , )s T s
H l l

l

x y qψ
∞

=−∞

= Φ ⋅∑                                                           (5.4) 

                                                     (1)
, [ ( ) ]lim

H l m a lH k e φρΦ =                                                         (5.5) 

                                                        2 2( )l x lL yρ = − + , cos l
l

x lLφ
ρ
−

=                                (5.6) 

where s
lq is the unknown amplitude vector of the wave scattered by the l-th circular cylinder. 

Applying Floquet theorem to the scattered field results in  

                                                  ,( , ) xoik lLs T s
H l o

l
x y e qψ

∞

=−∞

= Φ ⋅∑                                                     (5.7) 

where cosxa a ok k α= and oα is the angle of incidence with respect to the x axis and oα is the 

compliment of iθ as shown in Fig. 3.1. The Floquet theorem reduces the problem to deriving the 

unknown amplitude, s
oq . 
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To calculate s
oq , the total field outside the cylinder is decomposed into the incident and 

scattered fields:  

                                              , ,( , ) xoik lLT s T s
J l o H l o

l
x y p e qψ

∞

=−∞

= Φ ⋅ + Φ ⋅∑                                        (5.8) 

After applying the addition theorem to the Hankel function, (1) ( ) lim
m o lH k e φρ , the basis vector 

, ( 0)H l lΦ ≠  is transformed to ,0JΦ . After some rearrangement of (5.8), the following expression 

can be obtained:  

                                            , ,( , ) ( )T s s T s
J l o o H l ox y p L q qψ = Φ ⋅ + ⋅ +Φ ⋅                                         (5.9) 

where  

                                                      [ ]mnL L= ,  ( , )mn n m a xaL S k L k L−=                                     (5.10) 

                               (1)

1
( , ) ( )[ ( 1) ]xa xailk L ilk Ln m

n m a xa n m a
l

S k L k L H k lL e e
∞

−−
− −

=

= + −∑                        (5.11) 

( , )n m o xoS k L k L−  is called the lattice sum matrix of order (n-m). The above equation indicates that 

at the center of the array, the amplitude s
oq of the scattered field is equal to the amplitude of 

scattered field when a plane wave with an equivalent amplitude vector s
o op L q+ ⋅  is incident 

upon this cylinder. Through the application of T-matrix, s
oq  and op  can be related as follows:  

                                                                s
o oq T p= ⋅                                                                  (5.12) 

                                                                 1( )T I T L T−= − ⋅ ⋅                                                    (5.13) 

where T denotes the T-matrix of a single cylinder. Substituting s
oq  into (5.9) solves the scattering 

problem for a periodic array of cylinders.  If we let the separation distance between cylinders 

approach infinity in the lattice-sum matrix which corresponds to the coupling between periodic 

cylinders, ][L  will become a zero matrix and  
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                                                               T T=                                                                        (5.14) 

To perform mode matching between rough surfaces and cylinders, the scattered waves from 

cylindrical objects are decomposed into reflected and transmitted components. Expression (5.9) is 

cast in terms of spatial harmonics or Floquet modes in the periodic structure. By using the 

recursive relations for Hankel functions and an integral representation of the zeroth-order Hankel 

function, the scattered waves in the regions z > a and z < -a where a is the cylinder radius can be 

defined in terms of reflected and transmitted waves, which are expressed in terms of Floquet 

modes. The results are given as follows: 

                                                         0 ( , )r
l l lr e x z+Ψ =                                                                (5.15) 

                                                         0 ( , )T
l l lf e x z−Ψ =                                                               (5.16) 

where  

                                                           0 0
T

l lr u T p= ⋅ ⋅                                                                 (5.17) 

                                                          0 0 0
T

l l lf v T pδ= + ⋅ ⋅                                                         (5.18) 

                                               
2( )

sin

limm

l
a l

i eu
k L

α

α
−

= , 
2( )

sin

limm

l
a l

i ev
k L

α

α

−−
=                                    (5.19) 

                                                         ( )( , ) xl zli k x k z
le x z e ±± =                                                           (5.20) 

                                        
2cosxl a o
lk k
L
πα= + , 2 2

zl a xlk k k= −                                             (5.21) 

                                                cos xl
l

a

k
k

α = , Im{sin } 0lα ≥                                                     (5.22) 

The quantity, 0lδ , describes the contribution of the incident wave in the transmitted wave region. 

In addition, 0lr and 0lf  expresses the reflection and transmission coefficients for the l-th spatial 

harmonic from the incident wave of the zeroth (l=0) spatial harmonic. The separation distance, L, 

determines the scattering directions of Floquet modes from a periodic array of cylinders. The 
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value of L is chosen to be the same as the period of the rough surface for proper mode matching 

between rough surfaces and cylinders.  

5.2 Scattering Matrices of a Buried Cylinder  
 
    Reflection and transmission matrices of a periodic array of cylinders have been derived in 

[67, 69]. When the separation distance between cylinders is large and the interaction between 

cylinders becomes negligible, the scattering pattern of a periodic array of cylinders essentially 

resembles that of a single cylinder. We take advantage of this fact to effectively embed a cylinder 

in the layered rough surface geometry. The motivation for this approach mainly lies in the fast 

and efficient mode matching between a buried cylinder and rough surfaces. One of the key 

requirements in the application of scattering matrix technique is that scattering angles at which 

scattered waves propagate away from rough surfaces must be consistent with those from a buried 

cylinder. The conventional construction of the reflection and transmission matrices of a single 

cylinder requires the acquisition of the scattering patterns of a cylinder from all scattering angles. 

This can be accomplished by sweeping over all the scattering angles one angle at a time, which 

could be an extremely time-consuming process. By starting from a periodic array of cylinders and 

allowing the period to approach a large quantity, not only the construction of reflection and 

transmission matrices of a single cylinder becomes a fast and efficient one-step process without 

sweeping over all scattering angles, but also the solution of scattered field is expressed in terms of 

an infinite sum of Floquet modes spaced a distance of 
L

nπ2
 apart. Therefore, the requirement of 

mode matching between rough surfaces and a buried cylinder is automatically satisfied when the 

period of rough surfaces is set equal to that of the cylinders.   

    For a plane wave incident at angle iθ with respect to the z axis, the direction of the mth 

Floquet mode is defined by the scattering angle mφ such that  

                                                    im L
m θλφ sinsin +=                                                             (5.23) 
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where L is the spacing between cylinders and λ  is the wavelength. In section 5.1, the scattered 

field of a periodic array of cylinders can be then transformed back into Floquet modes in the (x,z) 

coordinate system with an infinite sum of space harmonics with 
L

lkk xilx
π2

+=  

( ,...2,1,0 ±±=l ). This calculation results in the column vectors with reflection and transmission 

elements nlr ,  and nlt , , which relate the amplitude of the reflected and transmitted lth Floquet 

mode to that of the incident nth Floquet mode. These column vectors are arranged in a matrix to 

describe the reflection and transmission under the incidence of a sequence of Floquet modes with 

L
nkk xinx
π2

+=  ( ,...2,1,0 ±±=n ). The reflection matrix ][ cR  and the transmission matrix ][ cT  

of a periodic array of cylinders are given in (5.24)-(5.30) 
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n
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a m
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= =                                               (5.24) 
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a m

iV v e
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φ
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                                                        [ ] [ ] ( )ninm

mnP p i e φ= =                                                        (5.26) 
 

                             }
)()()()(

)()()()(
{][ )'1()1('
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rkHrkJnrkHrkJn
rkJrkJnrkJrkJn
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amcmcamcma

amcmaamcmcTE

−
−

=                    (5.27) 

                             }
)()()()(

)()()()(
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rkHrkJnrkHrkJn
rkJrkJnrkJrkJn
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amcmaamcmc

amcmcamcmaTM

−
−

=                   (5.28) 

 
                                                          ]][][[][ PTURsc =                                                            (5.29) 
                                                          ]][][[][][ PTVITsc +=                                                    (5.30) 
 
where iθ and mφ are the incidence and Floquet mode angles, L is the spatial period of the 

cylinders, cn and an are the indices of refraction of the homogenous cylinders and the 

surrounding material, ck , ak , and r  are the wavenumbers of the cylinders and of the 
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surrounding homogeneous material and the radius of the cylinder, respectively.  The meaning of 

each matrix provided above is given in Table 5.1.  

Table 5.1 
Description of key matrices 

][U  and ][V  matrices which transform the mth order cylindrical wave into the upgoing and 
downgoing plane waves of the lth Floquet mode, respectively. 

][P  a matrix which transforms the downgoing nth Floquet mode into the mth order 
cylindrical wave 

][T  the T-matrix of the isolated single cylinder located at the origin 
][I  an identity matrix 

 
Note that the period L is still present in equations (5.29) and (5.30) and it determines the number 

of Floquet modes considered in the scattering process. Since in reality scattering by a cylinder 

involves a continuous angular spectrum of plane waves, equations (5.29) and (5.30) are only valid 

when the period is large (i.e., L > 40λ) in order to ensure sufficiently many Floquet modes are 

included in numerical simulations. Finally, it is important to note that the resulting reflection and 

transmission matrices of a single cylinder, ][ scR  and ][ scT  are reciprocal (i.e., jiscijsc RR ,, =  and 

jiscijsc TT ,, = ) where the subscript sc denotes a single cylinder. 

5.3 Comparison of Results and Validation for Scattering from a 
Buried Cylinder below a Flat/Periodic Surface 

 
The validation of the solution is performed by verifying the limiting case of the scattering 

from a cylinder beneath a rough surface as discussed in [90]. In [90], an analytical solution for a 

buried cylinder beneath a slightly rough surface is derived. The solution is obtained by employing 

the spectral, plane-wave representation of the fields and adding the successive reflections from 

the rough half-space boundary and the scattered fields from the cylinder. All of the multiple 

bounces are accounted for in the solution. First-order reflection and transmission coefficients 

from SPM are used for the rough surface scattering. The first test case considered in this paper is 

a buried cylinder beneath a flat surface. The second test case is a buried cylinder beneath a 
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sinusoidal surface with a surface profile described by )
4.0

2cos(0064.0)( xxf π
=  used in [90].  The 

simulation parameters used together with a flat or sinusoidal surface are given in Table 5.2.  

Table 5.2 
The simulation parameters for scattering from a cylinder beneath a flat/periodic surface  

1ε  cε  1d  a  
iθ  L 

4+i0.01 2.25 1.3λ 0.16λ o45  40λ 
 
In Fig. 5.2 and Fig. 5.3, the simulated results are compared against the SPM solution. They show 

very good agreement. In vv polarization, there is a small discrepancy in the forward direction 

between the simulated result and the SPM solution [90].  
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Fig. 5.2: Bistatic scattering coefficient for the scattering from a cylinder beneath a flat surface: the comparison of the proposed 
solution to that in the SPM solution in [90]  
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Fig. 5.3: Bistatic scattering coefficient for the scattering from a cylinder beneath a sinusoidal surface described by 
f(x)=0.0064cos(2π/0.4x) : the comparison of the proposed solution to the SPM solution in [90] 
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5.4 Numerical Results for Scattering from a Buried Cylinder in 
Layered Rough Surfaces 

 
First, scattering from a buried cylinder beneath a single rough surface is simulated. The 

simulation parameters used in [90] are given in Table 5.3.  

Table 5.3 
The simulation parameters for scattering from a cylinder beneath a rough surface  

1ε  cε  fh  fl  1d  a  
iθ  L 

4+i0.01 2.25 0.01λ 0.2λ 1.3λ 0.16λ o60  40λ 
 

The number of Floquet modes used is 161. This set of simulation parameters will result in 80 

propagating modes in region 0 and 126 propagating modes in region 1, ensuring enough 

interactions between the buried cylinder and the rough surface are taken into consideration. The 

incoherent bistatic scattering coefficient is obtained using the Monte Carlo simulation with 300 

independent samples. The simulated results of bistatic scattering coefficients parameterized by 

different correlation lengths are provided in Fig. 5.4. The distinctions between the scattering 

pattern of a buried cylinder beneath a rough surface and that beneath a flat surface are 

pronounced. The correlation length of a rough surface modifies the angular shape of a scattering 

pattern instead of significantly increasing the scattering coefficient.  
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Fig. 5.4: Bistatic scattering coefficient for scattering from a cylinder beneath a rough surface for different values of correlation 
length 
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The numerical simulation of scattering from a cylinder buried in layered rough surfaces is then 

performed. The geometry is given in Fig. 5.5. The simulation parameters given in Table 5.4 are 

used.  

 
Fig. 5.5: Scattering from multilayer rough surfaces bounding a dielectric cylinder 

 
 

Table 5.4 
 The simulation parameters for scattering from a cylinder buried in layered rough surfaces 

1ε  2ε    cε  a  fkh  fkl  bkh  bkl  d1 d2 iθ  L N 
4+i0.01 7 2.25 0.16 λ  0.2 1.0 0.1 1.0 0.7 λ  0.5λ o45  40λ  300 
 

The number of Floquet modes used in the simulation is 161. The choice of 161 Floquet modes 

ensures enough propagating and evanescent waves are considered in the numerical simulation. In 

addition, the code is written in Matlab and the simulations are performed on a PC with Pentium-4 

2-GHz processor and 1 GB RAM. It takes approximately thirty seconds for each realization.  

             First, to examine the effect that the cylinder has on the scattering pattern relative to the 

rough surface scattering, the bistatic scattering coefficients parameterized by various radii of a 

buried cylinder are provided in Fig. 5.6.  
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Fig. 5.6: Bistatic scattering coefficient for scattering from a cylinder beneath a rough surface for different values of the 
cylinder radius  
 
When the radius of a cylinder shrinks to zero, only the effect of rough surface scattering is present 

in the total scattering pattern. It is observed in Fig. 5.6 that, in this example, the bistatic scattering 

coefficients in HH polarization shows greater sensitivity to the change in the size of a buried 

cylinder.  

             To investigate the scattering patterns due to the subsurface characteristics in the problem 

of a cylinder buried in layered rough surfaces and to clarify the sensitivity of bistatic scattering 

coefficient, several parameters are varied while others are kept fixed.  The simulations results are 

given in Fig. 5.7 – Fig. 5.10. 

 

-80 -60 -40 -20 0 20 40 60 80
-30

-25

-20

-15

-10

-5

Scattering Angle, degree

B
is

ta
tic

 S
ca

tte
rin

g 
C

oe
ffi

ci
en

t, 
dB

hh:k*hg=0.1
hh:k*hg=0.2
hh:k*hg=0.3

  
-80 -60 -40 -20 0 20 40 60 80

-30

-25

-20

-15

-10

-5

Scattering Angle, degree

B
is

ta
tic

 S
ca

tte
rin

g 
C

oe
ffi

ci
en

t, 
dB

vv:k*hg=0.1

vv:k*hg=0.2

vv:k*hg=0.3

 
Fig. 5.7: Bistatic scattering coefficient for scattering from a buried cylinder buried in layered rough surfaces for different 
values of the subsurface root-mean-squared height, khg 
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Fig. 5.8: Bistatic scattering coefficient for scattering from a buried cylinder buried in layered rough surface for different 
values of the correlation length of the top rough interface, klcf 
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Fig. 5.9: Bistatic scattering coefficient for scattering from a buried cylinder buried in layered rough surfaces for different 
values of the correlation length of the bottom rough interface, klcg 
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Fig. 5.10: Bistatic scattering coefficient for scattering from a buried cylinder buried in layered rough surfaces for different 
values of the layer thickness between the center of the cylinder and the mean value of the bottom rough interface, d2  
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From Fig. 5.7 and Fig. 5.9, we observe that bistatic scattering coefficients in HH polarization are 

not very sensitive to either the root-mean-squared height or the correlation length of the bottom 

rough interface in a small roughness regime. In Fig. 5.8, the correlation length of the top rough 

interface modifies the angular dependence of bistatic scattering coefficients significantly. 

Therefore, in this example, it may suffice to model the bottom interface as a flat or slightly rough 

interface for HH polarization. The bistatic scattering coefficients in VV polarization, however, 

show more sensitivity to the root-mean-squared height of the bottom rough interface. A more 

significant change in the bistatic scattering coefficient in VV polarization is anticipated in 

moderate and large roughness regimes. Fig. 5.10 indicates that the bistatic scattering coefficients 

in both polarizations are strongly dependent on how far the cylindrical object is away from the 

bottom interface, d2. The scattering behaviors are significantly altered when d2 is changed.  

5.5 Introduction to Volume Scattering in Layered Rough Surfaces  

Building on the mode matching formulation for a buried cylinder and rough surfaces, we 

extend the T-matrix technique to analyze scattering from a cluster of cylinders embedded in 

layered rough surfaces. This area of research finds applications in volume scattering from sea ice 

or snow for depth retrieval of layered snow-covered ice, remote sensing of the root zone in 

vegetation canopies, forests or cultivated fields, and remore sensing of subsurface ground 

properties. These natural targets in remote sensing can usually be modeled as random media 

embedded in multi-layer rough surfaces where the characteristic parameters of these targets 

include the dielectric properties, scatterer size, shape, orientation, layer thickness, and roughness 

of the interface boundaries. The application of standard full-wave approaches, such as MoM and 

FDTD for analyzing scattering from discrete random media in layered rough surfaces can easily 

result in prohibitively large data structures and is typically very time-consuming. The objective of 

this section is to employ the hybrid technique based on EBCM/SMM, where the aggregate T-

matrix of discrete random media is computed using the recursive T-matrix (RTM) technique, and 



 110

the mode matching technique is then used to coherently account for multiple scattering between 

the discrete structures and rough surfaces.  

In studying wave propagation through random media in layered rough surfaces, the 

vector radiative transfer (VRT) equation has been previously applied to account for the effects of 

multiple scattering, absorption, and transmission in [9, 91]. The VRT theory is an incoherent 

approach based on the principle of energy conservation which tracks the propagation of 

electromagnetic intensity through scattering media. Therefore, any coherent effects, such as 

interference, are neglected. Various analytical approaches for analyzing the discrete random 

medium problem based on a number of restrictive assumptions have also been developed. The 

treatment of multiple scattering from isotropic point scatterers in a tenuous medium was first 

given by Foldy [92], also known as the effective field approximation. For dense media, a higher-

order method known as the quasi-crystalline approximation (QCA) was developed [9]. Together 

with the knowledge of pair distribution function, QCA has been widely employed to compute the 

effective propagation constants. On the contrary, the recursive T-matrix method has been 

considered one of the most computationally efficient and numerically accurate approaches for 

handling multiple scattering from a dense distribution of random scatterers [64, 93]. In this 

section, we generalized our approach for analyzing scattering from a cluster of scatterers 

embedded in layered rough surfaces through the application of the recursive T-matrix algorithm. 

5.6 Aggregate T-Matrix for Discrete Random Media  

The idea of using the T-matrix of a single scatterer for obtaining its 

reflection/transmission matrices to analyze a buried target in layered rough surfaces can be 

further extended to the concept of an aggregate T-matrix for a cluster of scatterers, which can be 

computed using recursive T-matrix algorithms. The recursive T-matrix methods have been 

extensively used for calculating the scattered field from multiple dielectric cylinders. T matrix 

approach represents fields using harmonic expansion and the recursion formula aggregates the 
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effects of multiple scattering from a collection of cylinders. Equations (5.31) – (5.32) constitute 

the recursive relations for K scatterers: 
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where 1, 2,...,n K= , 1, 2,...,i n= , ( )i nT  is the T-matrix for the ith object in the presence of n 

scatterers, β  andα are the translational matrices used to translate T-matrices between different 

reference coordinate systems. Their expressions are given as follows: 
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Subsequently, an aggregate T matrix for n scatterers can be defined such that 
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The recursion begins from the T-matrices, (1)iT , of the individual scatterers. Then, the β  andα  

of finite orders are computed to translate the T-matrices. These translational matrices and T-

matrices are truncated with finite values P and M such that residual error is below acceptable 

levels. The value of P represents the number of harmonics used to expand the fields at the 

scattering origin (i.e., x = z = 0) and M represents the number of harmonics used to expand the 

fields in the objects’ local coordinate systems (i.e., the locations of individual scatterers). In other 

words, P is the total number of harmonics used in the translation formula and M is the total 

number of harmonics approximating the field around each scatterer. Therefore, the number of 

harmonics P and M depend on the distances of scatterers from the scattering origin and the size of 
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scatterers. The value of P increases with increasing separation distances of the scatterers from the 

scattering origin and the value of M increases with the size of scatterers.  The choice of scattering 

origin is typically made to minimize P. The computational domain of discrete random media is 

set up to be L (extending from x= –L/2 to x = L/2) * d (extending from z = –d/2 and z = d/2) 

where d is the discrete random media’s layer thickness and L is the horizontal length of the 

random media. The quantity L is a simulation parameter which is selected to be as large as 

possible. (i.e.,L > 40λ). In addition, the same L is used for rough surfaces and discrete random 

media to ensure proper mode matching between these two distributed scatterers. The natural 

choice for the scattering origin is the origin of the coordinate system (x = z = 0).   

Although Equations (5.31)-(5.35) provide a rigorous solution to scattering from multiple 

scatterers, they may give rise to convergence problems in the addition formulas of recursive T-

matrix algorithm for large M when the scattering origin and the object centers are very close, as 

reported in [93]. Therefore, in [93], the modified recursive T-matrix algorithm was proposed to 

overcome the convergence problem at the expense of a slight increase in computational cost.  The 

modified recursive T-matrix algorithm is reformulated by enforcing 0 0i i Iβ β = and avoiding the 

use of , , ,p q p o o qα β α= which is the cause of the convergence problem. Then, the recursive T-

matrix relation can be rewritten as follows: 
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Both conventional and modified recursive T-matrix algorithms have been tested for solution 

accuracy and convergence in this dissertation. Although the scattering origin is set to be at the 
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origin and the random scatterers are occasionally situated very close to the scattering solution, 

both formulations still yield convergent solutions. It is also noted that not all valid scattering 

origins for a given problem give rise to the convergence problem. For a given collection of 

scatterers, there exists scattering origins where the conventional T-matrix recursions work 

adequately. Therefore, for the following numerical studies, the conventional recursive T-matrix 

method is employed.  

Upon obtaining the aggregate T matrix for a dense medium, which consists of many 

densely packed cylinders, the aggregate T matrix is transformed into the corresponding 

reflection/transmission matrices using [5.24]-[5.30]. Hence, by applying the SMM, the solution to 

scattering from a discrete random medium can be sought. A caveat worth pointing out is that a 

discrete random medium is not reciprocal. The expressions for the reciprocal 

reflection/transmission matrices of a discrete random medium are given by   

                                                     [ ] [ ][ ][ ]R V T Q=                                                                    (5.39) 

                                                     [ ] [ ] [ ][ ][ ]T I U T Q= +                                                           (5.40)                                
                                                     [ ] [ ] ( )ninm

mnQ q i e φ−= =                                                          (5.41) 
 
It is also important to point out that the total number of spatial harmonics or plane waves, N, used 

in approximating the scattered field need not be the same as the number P. In the following 

simulation results, L = 40λ and P = 101 which is found to provide sufficient number of harmonics 

in the translation formula. To account for propagating and evanescent modes in simulation, N is 

set to be 201.    

5.7 Comparison of Results and Validation for Scattering from a Half 
Space of Discrete Random Scatterers 

 
To validate the proposed method for the discrete random medium problem, the case of 

scattering from a half space of discrete random media whose analytical solution [71] exists is 

verified. Using the simulation parameters given in Table 5.5, the simulation results of 

backscattering coefficients based on the proposed method are in agreement with the analytical 
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ones based on SPF for various values of εa and fv where εa is the dielectric constant of scatterers in 

random medium and fv is the fractional volume of scatterers as demonstrated in Figs. 5.11 and 

5.12. Therefore, the technique for analyzing electromagnetic interaction between an interface and 

a collection of scatterers through the use of recursive T-matrix algorithm and scattering matrix 

technique is fully validated. The numerical results based on the proposed method are Monte Carlo 

solutions denoted by MC. The analytical expressions for backscattering coefficients based on the 

strong fluctuation theory (SFT) are given by the following expressions: 
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Table 5.5 

The simulation parameters for scattering from a half space of discrete random media  

1ε  aε  vf  a  
aε  d  P M L 

2+i0.3 7+i0.5 0.1 0.07 3.6+i0.5 1λ 50 5 20 λ 
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Fig. 5.11: Backscattering coefficients for scattering from a half space of discrete random scatterers for different values of εa 
based on SFT and MC (Table 5.5)  
 

 
Fig. 5.12: Backscattering coefficients for scattering from a half space of discrete random scatterers for different values of fs 
based on SFT and MC (Table 5.5)  
 

5.8 Numerical Results for Scattering from Discrete Random Media in 
Layered Rough Surfaces 

 
Next, numerical Monte-Carlo simulations are carried out for scattering from a slab of 

discrete random media with rough surfaces shown in Fig. 5.13.  
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Fig. 5.13: Geometry of scattering from discrete random media in multilayer rough surfaces 

 
The simulation parameters are given in Table 5.6. The random positions of discrete cylinders are 

determined using Metropolis shuffling algorithm [9]. We consider wave propagation in a layer of 

discrete random medium with and without rough surfaces above a dielectric layer. The thickness 

of this layer is 1λ. The horizontal length is 40λ. The total number of Floquet modes is set to be 

201. This results in 80 propagating modes and 121 evanescent modes. The radii of all randomly 

distributed cylinders are 0.1λ. Since the cylinder size is a small fraction of a wavelength, the total 

number of harmonics used to expand the scattered field around a single scatterer is 7 and the total 

number of harmonics used in the translation formula is 101. Table 5.6 summarizes the dielectric 

and size properties of the discrete random medium and relevant simulation parameters.  

Table 5.6 
The simulation parameters for scattering from a layer of discrete random medium above a dielectric layer 

1ε  2ε  vf  a  
aε  d  θi P M N L 

2 5 0.1 0.1λ 3.6+i0.5 1λ 45o 101 7 201 40 λ 
 

The primary objective is to study the effects of surface and volume scattering in layered 

discrete random media. The roughness statistics for top and subsurface interfaces are 

characterized by the rms heights (h1, h2) and correlation lengths (lc1, lc2). The correlation lengths 

for both top and subsurface interfaces are 0.5λ. It is also important to point out that the 
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polarization is defined with respect to the axis of the cylinder. Therefore, HH-polarized scattered 

waves actually experience VV-polarized reflection upon a dielectric interface and vice versa.  

The first numerical study examines the effects of the rms heights of both top and 

subsurface interfaces and the dielectric constant of surrounding background media on scattering 

coefficients while the rest of simulation parameters stay fixed. Fig. 5.14 shows the bistatic 

scattering coefficients for a layer of discrete random media with a flat and rough top interface for 

different values of ε1. In Fig. 5.14 a), we observe the presence of two nulls for HH-polarized 

scattering coefficients for a flat slab and the locations of these nulls depend on ε1. These nulls 

correspond to the Brewster’s angles θB where θB=55o and 63o for ε1 = 2 and 4, respectively. In 

addition, when ε1 = 4, there is very small scattering due to very small dielectric contrast between 

the scatterers and the background medium. When the layer of discrete random medium is covered 

by a top rough surface, the nulls disappear due to rough surface scattering and the HH-polarized 

scattering coefficients increase in Fig. 5.14 (a).  For VV-polarized scattering coefficients, the 

effect of rough surface scattering also results in greater scattering coefficients than a flat slab case 

in Fig. 5.14 (b).  Fig. 5.15 shows the bistatic scattering coefficients for a layer of discrete random 

media with a flat and rough subsurface interface for different values of ε1. In Fig. 5.15, the low 

dielectric contrast across the subsurface interface reduces the subsurface roughness effect on 

overall scattered intensity for ε1 = 4. For ε1 = 2, the effect of subsurface roughness is almost 

negligible in VV polarization compared to HH polarization, indicating a more significant effect of 

scatter darkening due to a higher extinction rate for VV polarization. In addition, we note that 

VV-polarized scattering coefficient is in general larger than HH-polarized scattering coefficient 

because there is greater transmission of horizontally polarized waves at the bottom boundary.  
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(a)                                                                                                     (b)           

Fig. 5.14: HH- (a) and VV- polarized (b) bistatic incoherent scattering coefficients for scattering from a layer of discrete 
random medium of different dielectric constants above a dielectric half space for different top surface roughness conditions  
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(a)                                                                                                     (b)           

Fig. 5.15: HH- (a) and VV- polarized (b) bistatic incoherent scattering coefficients for scattering from a layer of discrete 
random medium of different dielectric constants above a dielectric half space for different subsurface surface roughness 
conditions  
 
Next, a numerical study is performed to investigate the effects of layer thickness on HH-polarized 

scattering coefficients in presence of top surface or subsurface roughness. The layer depth is 

comparable to a wavelength, resulting in oscillatory behaviors in the scattering coefficient due to 

constructive interference. Scattering coefficient is a strong function of layer depth. As the depth 

of the fractional volume increases, extinction increases as evidenced by an increase in the 

scattering coefficient. When the top surface becomes rough, it leads to a further increase in the 

scattered intensity. On the other hand, with subsurface roughness, the magnitude of increase in 
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the scattering coefficient depends on the location of the subsurface interface. The larger the layer 

thickness, the more darkened the scatter due to subsurface roughness.    
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(a)                                                                                                     (b)           

Fig. 5.16: HH-polarized bistatic incoherent scattering coefficients for scattering from a layer of discrete random medium of 
different thicknesses above a dielectric half space for different (a) top surface and (b) subsurface roughness conditions  
 
Figs. 5.17 and 5.18 show HH- and VV- polarized bistatic scattering coefficients for different 

values of the top surface (Fig. 5.17) and subsurface rms height (Fig. 5.18) and different volume 

fractions. We observe that when f increases from 0.1 to 0.2, HH-polarized scattering coefficient 

increases by 2-3 dB whereas VV-polarized scattering coefficient does not experience much of an 

increase.  For 0.1< f <0.2, the discrete random medium is considered slightly dense. The HH-

polarized scattering coefficient clearly increases as f increases, indicating the mechanism of 

independent scattering still somewhat dominates. However, the little change in VV-polarized 

backscattering coefficient as the volume fraction increases from 0.1 to 0.2 suggests that for VV 

polarization the the effect of multiple scattering as a result of the packing of scatterers may not 

increase or even reduce the overall scattering strength. Above a certain volume fraction, 

scattering begins to diminish with increasing volume fractions. This behavior is consistent with 

the numerical results based on strong fluctuation theory [94]. In presence of top surface 

roughness, scattering coefficients increase by several dBs for both polarizations. However, when 

the subsurface interface is rough, the volume scattering strength strongly depends on the 

polarization state. For 0.1 < f  < 0.2, the effects of subsurface and volume scattering 
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constructively sum together in HH polarization. For VV polarization, subsurface scattering 

enhances the effect of scatter darkening, resulting in a decrease in the bistatic scattering 

coefficient.  
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(a)                                                                                                     (b)           

Fig. 5.17: HH- polarized (b) bistatic incoherent scattering coefficients for scattering from a layer of discrete random medium 
of different volume fractions above a dielectric half space for different top surface roughness conditions  
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(a)                                                                                                     (b)           

Fig. 5.18: HH- (a) and VV- polarized (b) bistatic incoherent scattering coefficients for scattering from a layer of discrete 
random medium of different volume fractions above a dielectric half space for different subsurface surface roughness 
conditions  
 
Figs. 5.19 and 5.20 show bistatic scattering coefficients for HH and VV polarizations for different 

values of the top surface (Fig. 5.19) and subsurface (Fig. 5.20) rms height and different cylinder 

sizes. The cylinder size is a significant factor contributing to the magnitude of volume scattering 

for HH polarization. When the cylinder radius decreases from 0.1λ to 0.05λ, the overall 
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magnitude of the HH-polarized scattered intensity significantly decreases. On the other hand, 

although the magnitude of the VV-polarized scattered intensity does not experience as much a 

drastic drop as the HH-polarized scattered intensity for smaller cylinder size, its bistatic angular 

distribution is altered. We note for VV polarization, there is a peak of the bistatic scattering 

coefficient in the backscattering direction. This is a common characteristic of the cylinder 

scattering pattern. In addition, the sharpness of backscattering peak evidently depends on the 

cylinder radius. The other peak of the bistatic scattering coefficient occurs in the specular 

direction, demonstrating scattered waves tend to add coherently in the specular direction for a flat 

slab case.  For HH polarization (VV on surface), the Brewster’s angle effect prevents the 

formation of backscattering peaks and thus no backscattering peaks are observed. We also 

observe that surface roughness tends to broaden the angular widths of the backscattering and 

specular peaks.  
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(a)                                                                                                     (b)           

Fig. 5.19: HH- (a) and VV- polarized (b) bistatic incoherent scattering coefficients for scattering from a layer of discrete 
random medium of different cylinder sizes above a dielectric half space for different top surface roughness conditions  
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Fig. 5.20: HH- (a) and VV- polarized (b) bistatic incoherent scattering coefficients for scattering from a layer of discrete 
random medium of different cylinder sizes above a dielectric half space for different subsurface surface roughness conditions  
 
Finally, the sensitivity analysis for different values of subsurface dielectric constant is conducted. 

This study also focuses on the effect of subsurface roughness on scattering coefficient for 

different subsurface dielectric constant with or without subsurface roughness as shown in Fig. 

5.21. In the backscattering direction, there is almost zero change to the HH-polarized scattering 

coefficient. On the other hand, VV-polarized scattering coefficient shows more sensitivity to 

subsurface dielectric constant. There is an increase of 3-4 dB in the VV-polarized backscattering 

coefficient for a flat slab case. The difference in the magnitude of sensitivity for different 

polarizations is due to greater transmission of horizontally polarized waves at the subsurface 

interface. When the bottom interface is rough, the increase in the VV-polarized bistatic scattering 

coefficient becomes more pronounced. Therefore, for VV polarization, subsurface roughness is a 

critical factor in enhancing the sensitivity.   
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Fig. 5.21: HH- (a) and VV- polarized (b) bistatic incoherent scattering coefficients for scattering from a layer of discrete 
random medium of different cylinder sizes above a dielectric half space for different subsurface surface roughness conditions 

 
5.9 Chapter Conclusion    

A solution to scattering from a cylinder buried in layered rough interfaces based on 

EBCM/SMM is presented. The reflection and transmission matrices of a rough interface as well 

as an isolated single cylinder are constructed using EBCM and recursive T-matrix algorithm, 

respectively, which require the assumption of periodic boundary conditions where the finite-

length rough surface and the cylindrical object are extended periodically with period L. The 

coupling between cylinders in an arrangement of a periodic array is removed by incorporating a 

large separation distance between cylinders into the lattice-sum matrix of the recursive T-matrix 

formulation. Finally, the cylinder/rough surface interactions are accounted for by applying the 

generalized scattering matrix technique. In numerical simulations, the bistatic scattering 

coefficients are validated by comparing the simulation results with the existing solutions which 

are the limiting cases including scattering from two-interface rough surfaces without any buried 

object and from a buried cylinder beneath a single rough surface. The results are in good 

agreement. Numerical simulation results show that the use of HH polarization is more suitable for 

the detection of buried objects whereas VV polarization provides more sensitivity to roughness. 
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Also, the location of the bottom interface relative to the cylinder plays a crucial role in the bistatic 

scattering coefficient and can significantly alter the scattering response.  

Subsequently, the proposed technique is employed to solve scattering from discrete 

random media embedded in layered rough surfaces. Through plane-wave decomposition and 

matrix cascading technique, the electromagnetic interactions between multiple scatterers, 

including rough surfaces and discrete random media is analyzed. Plane wave solution to the 

scattered fields due to individual distributed scatterers, such as a rough surface or a collection of 

random 2D particles, are then cast into reflection and transmission matrices in order to facilitate 

the application of scattering matrix approach. Various numerical results for scattering from a flat 

and rough layer of discrete random media above a dielectric half space are presented and 

discussed.  
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CHAPTER 6 
 

A Multi-Frequency Inversion Technique for the Retrieval of the 
Subsurface Soil Properties Using VHF/UHF Radar Measurements 

 
 
 

The characterization of subsurface structure and dielectric properties of soil media using 

microwave remote sensing technology holds promise in identifying soil stratigraphy, measuring 

soil moisture content, and assessing soil salinity. Using an existing forward model for scattering 

from layered rough surfaces based on the 1st order small perturbation method (SPM), a multi-

frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using 

VHF/UHF band radar measurements is discussed in this chapter. The SPM forward solver is used 

as a proxy to reduce computational overhead inherent in any full-wave numerical method, such as 

those discussed in the preceding chapters. 

When backscattering coefficients at an oblique incidence at multiple frequencies over 

VHF, UHF, and L bands are measured, the inversion scheme proposed in this chapter carries out 

the retrieval of the dielectric properties and roughness statistics of each distinct soil layer in a 

layer-stripping fashion. The dielectric constant of the top surface is first determined using an L-

band inversion algorithm and then the top surface is mathematically stripped away. For the 

retrieval of subsurface properties, the dielectric constants as well as roughness statistics are 

estimated using an equivalent time-domain inversion technique with the minimization of a cost 

function defined in terms of the pulse shape of time delay echoes due to dual-polarized 

VHF/UHF band radar measurements. The core of this work lies in the use of virtual time-domain 

data realized using multi-frequency measurements. The proposed inversion scheme performs an 
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inverse Cosine transform of radar measurements over the VHF/UHF bands to obtain synthetic 

time-domain data and subsequently exploits the information of the ensuing individual delay 

echoes representing successive reflections upon different rough surfaces. 

Time-domain data have very attractive features, which can facilitate the inversion of 

material properties and roughness statistics of rough layers.  They consist of a series of time 

echoes delayed at different times with each time-delayed echo representing a reflection upon a 

rough interface. The pulse shape of a time delayed echo is highly correlated with the dielectric 

contrast across an interface, rms height, and correlation length of the rough interface [47, 95, 96].  

The time difference between delay echoes is linearly related to the layer thickness. The main 

objective of this research, formulated in order to set itself apart from previous inversion methods, 

is to account for subsurface roughness in the development of the inversion algorithm by 

characterizing it as a statistical unknown and then to simultaneously estimate the subsurface 

dielectric and roughness properties through pulse shape optimization. In this Chapter, numerical 

studies are first performed to investigate the accuracy of the proposed inversion technique in the 

absence of measurement, model, and calibration errors. Then, extensive error analysis is carried 

out to examine the performance of the proposed inversion method in the presence of errors. The 

robustness of this method against errors in the estimates of top surface parameters is also 

evaluated. We note that this Chapter presents a theoretical development of the inversion 

algorithm, with field demonstrations pending the future availability of radar data.  

6.1 Multi-Frequency Polarimetric Radar Measurements at VHF/UHF 
and L Bands 

 
The radar system on which the development of the following inversion algorithm is based 

envisions three frequency bands: VHF/UHF bands spanning the frequency range from 100MHz 

to 500 MHz and L band (i.e., 1.2 GHz).  The L-band radar system is assumed to perform a single 

or a few measurements in the 1.2-1.4 GHz range, which are employed to invert the ground-

surface dielectric properties. The multi-frequency radar system envisioned also covers both VHF 
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and UHF bands to perform low frequency radar measurements from 100 MHz to 500 MHz with 

15 uniform sample points for the retrieval of subsurface soil moisture. Fig. 6.1 depicts the idea of 

a multi-frequency radar system probing a layered soil medium. Radar data are acquired in HH 

and VV polarizations and with an incidence angle at center swath of 35o. This choice of an 

incidence angle is selected to be not near the grazing angle because low incidence angles 

maximize the soil contribution with respect to the contribution of vegetation as suggested in [56] 

and the inversion results are less affected by errors due to noise at low incidence angles than at 

high incidence angles. On the other hand, the distinction between HH and VV polarizations is 

more pronounced at high incidence angles than at low incidence angles. Therefore, the 

polarimetric nature of radar data can be more fully exploited and more independent information 

can be extracted at higher incidence angles. Consequently, an incidence angle of 35o is deemed to 

be a reasonable choice from the polarimetric perspective.  

 
Fig. 6.1: Multi-frequency measurements to probe layered rough surfaces   
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 Currently, a ground-based tower-mounted radar system has been developed to 

demonstrate the UHF and VHF SAR instrument proposed in Microwave Observatory of 

Subcanopy and Subsurface (MOSS) mission project [22]. The tower-mounted radar was designed 

to operate at 137 MHz (VHF), 435 MHz (UHF) and 1.2 GHz (L). This system is a pulsed 

polarmetric radar and uses a single log-periodic antenna (LPA) on both transmit and receive 

(T/R). A fast T/R switch is used to change the operating mode of the antenna between pulses. The 

LPA is a dual-polarized wide-band antenna covering the frequency range of 80-1200 MHz, with 

return loss of no worse than 10 dB across the band. The antenna beamwidth is several tens of 

degrees in all principal planes, requiring a beam-forming scheme to allow proper correspondence 

of the data to scattering target locations. The beam-forming method employed consists of 

synthesizing a large effective aperture by moving the antenna mounted on the tower vertically 

such that the focused beam resolution cell is about 10 m on the ground. The size of the synthetic 

aperture and sample spacing are scaled with wavelength. The antenna boresight is adjustable. The 

look angle of the focused beam can be controlled during post processing and is typically varied in 

the 25o-65o range. The transmitted signal is switched to allow dual (T/R) operation of the antenna 

and the transmitted signal has a finite bandwidth determined by the nominal pulse width and the 

switch transient characteristics. In this case, the effective bandwidth is in the range of 20-50 MHz.  

  In order to implement the proposed multi-frequency radar from 100 MHz to 500 MHz 

based on the design specifications of the tower-mounted radar system, the proposed radar system 

can employ both a log periodic antenna and a frequency swept source to scan over the required 

frequency band at a large number of frequencies and collect the data required to test the 

algorithms. Alternatively, the radar system can operate at three distinct frequencies at 137 MHz, 

300MHz, and 435MHz with the bandwidths ranging from 50MHz to 100 MHz. This frequency 

coverage should provide an adequate number of frequency measurements for algorithm testing.  
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6.2 Forward Scattering Model and Construction of Synthetic Time-
Domain Data from Multi-Frequency Measurements 

 
A forward model for scattering from two-rough-interface surfaces based on the small 

perturbation method (SPM) has been developed in [1] where nine input parameters including five 

material parameters (Re{ε1}, Im{ε1}, Re{ε2}, Im{ε2}, d) and four parameters describing 

roughness statistics (h1,lc1,h2,lc2) in the problem scenario are mapped into backscattering 

coefficients, σhh,fi  and σvv,fi, at the frequency fi.            

                 2 2 2 2
1 1 2 24 cos (| | ( ) | | ( ))

s i s ih h
hh o sk W k k W k kσ π θ α α⊥ ⊥ ⊥ ⊥= − + −                         (6.1) 

                 2 2 2 2
1 1 2 24 cos (| | ( ) | | ( ))

s i s iv v
vv o sk W k k W k kσ π θ α α⊥ ⊥ ⊥ ⊥= − + −                         (6.2) 

 
where )(1 ⊥kW  and )(2 ⊥kW are the spectral densities of the top and bottom rough boundaries, 

respectively, and h
1α , h

1α , v
2α , and v

2α correspond to the 1st order coefficients from the small 

perturbation method. They are determined by imposing boundary conditions on both top and 

bottom rough interfaces simultaneously. This translates to an 8 by 8 matrix inversion. 

At low frequencies from 100 MHz to 500 MHz, SPM is valid at the surface roughness 

scale for the most natural surfaces and gives appropriate scattering results. Using this analytical 

forward model based on SPM, virtual time-domain data can be constructed by taking the inverse 

Fourier transform of the band-limited frequency measurements. Given σhh,f1, σhh,f2,…, σhh,fn, σvv,f1, 

σvv,f2,…, σvv,fn, the virtual time-domain data can be synthesized through the use of the Discrete 

Cosine Transform given as follows:  

                               ( ) ( ) cos(2 )
pp i

N

pp i i
i

t w f f tσ σ π=∑                                                                (6.3) 

 
where pp is the polarization, i.e., hh or vv, and wi’s are the Hamming weights used to reduce the 

side-lobe level due to band-limited measurements. The reason behind obtaining synthetic time-

domain information is that inversion of layer thickness is then greatly facilitated and performed 

using the information of the time difference between the 1st and 2nd time delay echoes. Although 
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it is advantageous to consider the ratios of HH and VV backscattering coefficients to reduce the 

calibration errors and roughness effect for a single rough surface case, it is unclear if simple ratios 

between HH and VV scattering coefficients will effectively work for layered rough surfaces. 

Therefore, in this study, HH and VV backscattering coefficients are considered separately.   

6.3 Recovery of Top Ground Parameters 
 

The retrieval of soil moisture content and surface roughness from L-band radar 

observations of bare soil surfaces can be quantitatively performed using many existing techniques, 

such as those in [16, 54, 56]. L-band radar data yield useful information regarding soil moisture 

content and surface roughness of bare soil surfaces (the top few centimeters of soil-surface layer). 

At L band, the sensing or sampling depth, defined as the depth over which the sensor has 

retrieved a return signal yielding information or the thickness of the soil layer that gives the most 

significant contribution due to scattering, is in general in the range of 0.2 – 0.25λ for a slightly 

wet surface. At f = 1.2 GHz, the sensing depth is ~5-7cm, indicating that the soil moisture that L-

band microwave sensor observes is only a weighted average of soil moisture content over 5-7 cm.  

Despite the fact that waves may still penetrate deep into the soil for a dry surface at L-band (i.e., 

10 cm – 15 cm), L-band radar data typically are not influenced by the presence of a subsurface 

layer located around 30 cm or more away from the ground surface.  

A frequency-domain inversion technique for the retrieval of top surface parameters using 

L band radar measurements is presented in this section.  The input measurements are radar 

backscattering cross-sections at center frequencies of 1.24 GHz with a bandwidth of 80 MHz. The 

inversion parameters are ε1
’, h1 and lc1. The premises on which this analysis rests are that at L 

band, waves can only penetrate several centimeters into the ground, the application of the forward 

model for scattering from a homogenous half space with a rough surface is valid provided the 

depth of subsurface layer is greater than from the sensing depth of L band, and the top layer is 

lossy. In most scenarios, the subsurface layer of interest is located 30cm-1m away from the 
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ground and the attenuation of top surface is characterized by ε1
’’= 0.3~0.5 for dry soil and ε1

’’= 

0.8~1.1 for wet soil [84, 85]. Here, an assessment of the impacts of attenuation and layer depth of 

top layer on inversion results is made.   

The inversion algorithm for top surface parameters is described as follows. 

Backscattering coefficients from 1.20 GHz to 1.28 GHz with five uniform samples over the 

bandwidth are measured. These backscattering coefficients are represented by 5X1 column 

vectors, and the elements denoted by hhσ  and vvσ  for HH and VV polarizations. The cost 

function is then defined as:  

                                                 
|| ||

|| ||

hh hh

vv vvstimulated measured

hh

vv measured

C

σ σ
σ σ

σ
σ

⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦=
⎡ ⎤
⎢ ⎥
⎣ ⎦

                                             (6.4) 

Here, hh

vv stimulated

σ
σ
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is computed using the forward model for scattering from a homogeneous half 

space with a rough surface. The vector hh

vv measured

σ
σ
⎡ ⎤
⎢ ⎥
⎣ ⎦

is computed based on the two-layer SPM model. 

The unknown parameters are ε1
’, ε1

’’, h1, and lc1. The backscattering coefficients do not show 

much sensitivity to ε1
’’, making this parameter very challenging to invert using L band radar data. 

Therefore, the parameters designed to be inverted are ε1
’, h1, and lc1. A constrained Nelder-Mead 

simplex algorithm is used to seek a solution with the constrained ranges of ε1
’ from 2 to 20, h1 

from 0.2 cm to 2.7 cm and lc1 from 6 cm to 25 cm, all well within reasonable and naturally 

occurring bounds. The simulation parameters are given as follows: Re{ε1}=6, ε2= 15*(1+j1/10), 

h1=1cm, lc1=10cm, h2=2.5cm, lc2=20cm. Inversions are performed for different values of Im{ε1} 

and d. The quality of inversion results depends on the depth of subsurface interface. To analyze 

how the layer thickness and attenuation of top layer affect the inversion based on the SPM 

forward model, the relative error between the actual and inverted results is examined.  Relative 
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error (RE) indicates the quality of an inverted result relative to the size of the actual result and is 

given by 

                                                                     
XRE

X
Δ

=                                                                (6.5) 

 
where ΔX = inverted value – actual value and X = actual value. When log10(RE) is used, log10(RE) 

= -1, -2, and -3 means 10% , 1%,  and 0.1% error. Therefore, if 10% error is considered to 

represent a good inversion result, then points which lie below log10(RE) = -1 are those where 

inversion results are perceived to agree with actual results. In the following analysis, synthetic 

data sets are generated directly using the SPM forward model and thus any error is a result of 

modeling and inversion errors. The log10(RE) in ε1
’, h1, lc1 are plotted in Fig. 6.2 against depth for 

different values of ε1
’’. 

 
                                                     a)                                                                                           b) 

 
                                                                                                   c) 
Fig. 6.2: Relative errors between the inverted and the actual values of a) ε1

’, b) h1, and c) lc1 against layer depth for different 
values of ε1

’’  
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We anticipate that as layer thickness, d, increases and/or the attenuation of the top layer, 

proportional to ε1
’’, increases, the effect of subsurface layer vanishes. The inverted value of lc1 

gets more accurate as evidenced by a decrease in relative errors as the values of layer thickness 

and/or ε1
’’ increase as shown in Fig. 6.2 (c). When we examine the behaviors of relative error in 

ε1
’ and h1 in Fig. 6.2 (a) and (b) for different values of layer thickness and ε1

’’, we observe that 

although the relative errors are all kept under -1.5 dB which shows that the inverted and actual 

values are in good agreement, the observation where the relative error grows as ε1
’’ increases 

when layer thickness exceeds a certain threshold (i.e., ~0.3-0.6 m) calls for further investigation.  

This observation can be understood through the examination of cost functions. The cost functions 

against ε1
’ and h1 for two different sets of d and ε1

’ are plotted in Fig. 6.3. The global minima for 

both cost functions all fall at the point of ε1
’ = 6 and h1 = 0.01 m. We observe that for ε1

’’ = 0.3, 

the cost function is smooth and there is only one minimum over the domain of interest. However, 

for ε1
’’ = 1.0, the cost function becomes extremely nonlinear and there are multiple local minima 

over the domain of interest. These local minima are very closely clustered around the location of 

global minimum and the solution given by the Nelder Mead simplex algorithm may get stuck in a 

local minimum under these circumstances. This problem can be solved by resorting to a global 

optimization technique, but at a much greater computational expense. Despite the potential local 

minima problem, Nelder Mead optimization technique yields relative errors between the inverted 

and actual values in ε1
’, h1, lc1 less than 1% for a wide range of scenarios.   
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a) 
 

 
                                                                                              b) 

Fig. 6.3: Cost function against ε1
’ and h1 for different values of (a) ε1

’’= 0.3 and (b) ε1
’’= 1.0 

 
For the retrieval of subsurface dielectric properties using VHF/UHF radar measurements, 

the inverted value of Re{ε1} from L-band radar measurements can be fed into the inversion 

algorithm as a-priori information. The soil dielectric model by Peplinski et al.. in [84, 85] 

suggests that the real part of the ground soil dielectric, Re{ε1}, at L-band is very similar to that at 

UHF/VHF bands. The picture is much more complicated for the value of Im{ε1}. The value Im{ε1} 

at L-band is significantly different from that at VHF/UHF band and generally exhibits great 
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frequency variation. Therefore, Im{ε1} must be modeled as an independent unknown or 

unknowns for the retrieval of subsurface soil moisture content from VHF- and UHF-band radar 

data. Nevertheless, the use of L-band radar measurements yield information regarding Re{ε1}, h1, 

and lc1, leaving the remaining retrieved parameters as Im{ε1}, Re{ε2}, h2, lc2, and d. One may 

also use a frequency higher than L-band for the retrieval of top surface parameters. 

6.4 Dielectric Soil Model at VHF/UHF Bands 
 

Before the discussion of the subsurface inversion algorithm, the soil dielectric properties 

at VHF/UHF bands need to be characterized. The frequency dependence also needs to be 

accounted for, and the model be carefully parameterized with the number of independent 

unknowns properly specified for the development of the inversion method. The dielectric model 

for soils over the frequency range from 300 MHz to 1300 MHz has been developed in [84, 85]. 

The model relates the complex dielectric constant of a soil medium to the soil textural 

composition (sand, silt, and clay fractions), the bulk density and volumetric moisture content of 

the soil at a specified microwave frequency and physical temperature. In [84], it is shown that the 

real part of soil dielectric constant only exhibits very slight dependence on frequency from 300 

MHz to 1.3 GHz.  In Fig. 6.4, the real and imaginary parts of the relative soil dielectric constant 

are plotted against soil moisture content for f =100MHz, 200MHz, 300 MHz, 400 MHz, and 500 

MHz based on this model. For the example in Fig. 6.4, the mass fraction of sand is 0.3, the mass 

fraction of clay is 0.2, and the ambient temperature is 17.7C.   
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                                               (a)                                                                                         (b) 
Fig. 6.4: The (a) real and (b) imaginary parts of the relative soil dielectric constant are plotted against soil moisture content for 
different values of frequency  

 
Evidently, over the frequency range from 100 MHz to 500 MHz, the real part of dielectric 

constant of a soil medium is frequency-independent. The real part of soil dielectric constant 

provides a good indicator of soil moisture content as demonstrated by their strong relationship.  

The imaginary part of the soil dielectric constant strongly depends on frequency and the soil 

dielectric model in [84, 85] clearly overestimates the imaginary part of the soil dielectric constant 

at lower frequencies (i.e., f=100 MHz and 200 MHz).  

At microwave frequencies, there are in general two types of losses contributing to the 

value of dielectric constant: dielectric loss and conduction loss. The imaginary part of soil 

dielectric constant has a strong frequency variation from 300 MHz to 500 MHz and the frequency 

dependence becomes less pronounced as the operating frequency increases. In the absence of 

other studies for the lower frequencies, we extend this result down to 100 MHz and, for the sake 

of the retrieval of soil parameters, use the parameterization of dielectric model for soils as given 

below. 

                          ''Re{ } Im{ } Re{ } ( )cfj j
f

ε ε ε ε ε α= + = + +                                     (6.6) 
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where Re{ }ε is the real part of dielectric constant of soil, ''ε  is the dielectric loss, α  is the 

conduction loss, cf  is the center frequency of the system and f is the operating frequency. 

6.5 Sensitivity Analysis of Backscattering Coefficients for Different 
Subsurface Geophysical Parameters  

 
A sensitivity analysis of backscattering coefficients for different values of various 

subsurface geophysical parameters is performed in order to make an assessment of the potential 

of inverting these parameters. Fig. 6.5 (a) shows the backscattering coefficients in both frequency 

domain and time domain for different values of Re{ε2} in a particular scenario. It is evident that 

the frequency response of backscattering coefficients from 100 MHz to 500 MHz is a strong 

function of the dielectric property of subsurface layer. Figure 6.5 (b) shows the inverse Cosine 

transform of the frequency response using (6.3). In Fig. 6.4 (b), the second time delay echo due to 

the reflection upon the second interface is present at t~9.5 nsec and the pulse shapes of first and 

second time delay echoes show strong dependence on the dielectric property of the subsurface 

layer. Similar studies to test the sensitivity of backscattering coefficients against Im{ε2}, α, h2, 

and lc2 are made and graphically demonstrated in Figs. 6.6-6.9, respectively. Several observations 

are worth mentioning. It is evident from Figs. 6.6 (a) and (b) that backscattering coefficients at 

low frequencies in both frequency and time domains do not show much sensitivity to the loss in 

the subsurface layer, making an accurate estimation of Im{ε2} extremely difficult, if not 

impossible, using radar measurements of HH and VV backscattering coefficients. For this reason, 

the imaginary part of the subsurface soil dielectric constant is approximated as 

Im{ε2}=1/10*Re{ε2}. This approximation is also employed in [56]. In Fig. 6.7, it is seen that 

backscattering coefficients show only slight sensitivity to the conduction loss of the ground layer 

and it is hence speculated that the retrieval of α in (6.6) will be more unreliable than that of other 

parameters and may be significantly influenced by noise. In Fig. 6.8 and Fig. 6.9, backscattering 

coefficients exhibit great sensitivity to subsurface roughness condition, including both h2, and lc2 
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and therefore, a reliable inversion algorithm should yield accurate estimates of subsurface 

roughness statistics.        

 
                                                    a)                                                                                           b) 
Fig. 6.5: Sensitivity analysis of backscattering coefficients for different values of Re{ε2} (a) in frequency domain and (b) in time 
domain for a two-rough-interface problem based on SPM: the incidence angle = 35o, ε1=6+i(0.5+0.03*fc/f), d= 60 cm, h1=1cm, 
lc1=10cm, h2=2.5cm, lc2=20cm, and fmin=100 MHz, fmax = 500 MHz with 15-point uniform sampling  
 

   
                                                    a)                                                                                           b) 
Fig. 6.6: Sensitivity analysis of backscattering coefficients for different values of Im{ε2} (a) in frequency domain and (b) in time 
domain for a two-rough-interface problem based on SPM: all other simulation parameters are the same as those in Fig. 6.5  
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                                                    a)                                                                                           b) 
Fig. 6.7: Sensitivity analysis of backscattering coefficients for different values of α (a) in frequency domain and (b) in time 
domain for a two-rough-interface problem based on SPM: all other simulation parameters are the same as those in Fig. 6.5 
 

 
                                                    a)                                                                                           b) 
Fig. 6.8: Sensitivity analysis of backscattering coefficients for different values of h2 (a) in frequency domain and (b) in time 
domain for a two-rough-interface problem based on SPM: all other simulation parameters are the same as those in Fig. 6.5  
 

  
                                                    a)                                                                                           b) 
Fig. 6.9: Sensitivity analysis of backscattering coefficients for different values of lc2 (a) in frequency domain and (b) in time 
domain for a two-rough-interface problem based on SPM: all other simulation parameters are the same as those in Fig. 6.5  
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6.6 Retrieval Algorithm for Subsurface Geophysical Parameters  
 

We first obtain measurements of the radar system at frequencies from 100 MHz to 500 

MHz, denoted by i

i

VV
f

HH
f

σ

σ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, where 
i

VV
fσ  and 

i

HH
fσ are the measured backscattering coefficients at 

VV and HH polarization, respectively. The top rough soil layer is characterized by a frequency-

dependent complex soil dielectric constant given by (6.6). The roughness statistics of the top 

rough interface are described by the rms height, h1, and the correlation length, lc,1. In this 

dissertation, it is assumed that both top and subsurface interfaces have a Gaussian soil surface 

correlation function. In addition, as mentioned before, backscattering coefficients show very little 

sensitivity to the imaginary part of the subsurface soil dielectric constant. Hence, the imaginary 

part of the subsurface soil dielectric constant is approximated as one-tenth of its corresponding 

real part (i.e., Im{ε2}=1/10*Re{ε2}) [56]. The subsurface soil layer is characterized by a 

frequency-independent soil dielectric constant given by 

                          2 2 2 2 2
1Re{ } Im{ } Re{ } Re{ }

10
j jε ε ε ε ε= + = +                                        (6.7) 

 
The roughness statistics of the subsurface rough interface are described by the rms height, h2, and 

the correlation length, lc,2. 

Upon constructing synthetic time-domain data from sampled frequency measurements 

from 100 MHz to 500 MHz, the first step of retrieval algorithm for layer thickness is to extract 

the time difference between the peaks of time delay echoes to estimate the layer thickness.  Then, 

after the real part of the ground soil dielectric constant is estimated from the inversion of ground 

surface parameters using the technique presented in section 6.5, the layer thickness of top layer 

can be computed using the relationship between the layer thickness and time separation between 

the 1st and the 2nd time delay echoes as given by  

                                             
' 2
12 sin ( )

o

i

t cd
ε θ

=
−

                                                               (6.8) 
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where to is the time difference between the time delay echoes. Using synthetic time-domain data, 

the 1st and 2nd time delay echoes are first time-gated with a pulse width equal to two times the 

reciprocal of system bandwidth. The 1st time delay echo excludes any effects of multiple 

scattering and multiple bounces between top and bottom rough interfaces whereas the 2nd time 

delay echo represents the reflection upon the second rough interface. Both pulses yield 

information regarding subsurface geophysical parameters. The pulse shapes of both 1st and 2nd 

time delay echoes are then properly parameterized using a set of unknown coefficients, C  for hh-

polarized data and D  for vv-polarized data with a set of known basis functions. In this work, the 

basis functions employed are dirac delta functions because the extraction of unknown coefficients 

is thus made straightforward and efficient. In other words, the unknown coefficients, C and D , 

are basically the sampled points of the hh-polarized and vv-polarized 1st and 2nd time delay 

echoes, respectively. Issues concerning robustness to noise, data uncertainties, and run time for 

the optimization of cost function may demand a more sophisticated parameterization schemes 

which could require fewer unknown coefficients, such as spline basis functions.    

Physical constraints on subsurface parameters can be imposed to facilitate the solution 

search for the inversion algorithm. The variability ranges of subsurface geophysical parameters 

for natural deep soil media, especially the subsurface roughness statistics, have not been fully 

investigated. Nevertheless, based on the ranges of geophysical parameters for bare soil surface in 

[56] for the purpose of inversion, the range of input roughness parameters and permittivities are 

given by Table 6.1. The range of dielectric constants at VHF/UHF bands corresponds to 

volumetric moisture contents from 3% to 35%. An additional physical constraint which can be 

imposed on the values of Re{ε2} is based on the Fresnel law of reflection, where the reflection 

coefficients are negative if waves traveling in a less dense medium impinge upon  a denser 

medium (i.e., Re{ε1} < Re{ε2}) and positive when the converse is true (i.e., Re{ε1} > Re{ε2}) as 

graphically shown in Fig. 6.10. 
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Table 6.1  
Ranges of subsurface geophysical parameters where case #1 corresponds to a negative peak value of the second 

time delay echo and case #2 corresponds to a positive peak value of the second time delay echo 
 
 
 
 
 
 

 
 
 
 

 
Fig. 6.10: Demonstration of a negative peak value of the second delay echo when Re{ε1} < Re{ε2} and a positive peak value of 
the second delay echo when Re{ε1} > Re{ε2} for a two-rough-interface problem based on SPM: all other simulation parameters 
are the same as those in Fig. 6.5  
 

With the unknown coefficients for both polarizations extracted, the inversion of 

subsurface parameters can then proceed. The cost function is defined as follows. 

                                                       
2

2

|| ||

|| ||

simulated measured

measured

C C
D D

C
D

⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦=
⎡ ⎤
⎢ ⎥
⎣ ⎦

                                              (6.9) 

At this step of the inversion, Re{ε1}, h1, and lc1 have already been inverted and the value of layer 

thickness d has been retrieved using the measured value of time difference between the 1st and 2nd 

delay echoes. The remaining parameters to be retrieved are Im{ε1}, α ,Re{ε2}, h2, lc2, bearing in 

mind that we have taken Im{ε2}= 1/10 Re{ε2}. The simulated coefficients 
simulated

C
D
⎡ ⎤
⎢ ⎥
⎣ ⎦

  are 

computed with Re{ε1}, h1, lc1, and d as a-priori information. This reduction in the number of 

unknowns significantly facilitates the inversion for subsurface geophysical parameters through 

Parameter Lower Bound Upper Bound 

2Re{ }ε  for case #1 1Re{ }ε  20 

2Re{ }ε  for case #2 3 1Re{ }ε  
h2 0.2cm 2.7cm 
lc2 6cm 25cm 

1Im{ }ε  0 2 
α  0 0.2 
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the initial stripping of top surface layer using L-band or higher frequency radar measurements. In 

the following section, an assessment of error propagation due to the estimation of top surface 

parameters is made to analyze how the deviation from the actual values of top surface parameters 

influences the retrieval of subsurface parameters. After the cost function has been properly 

defined, a nonlinear inversion method based on a constrained Nelder-Mead nonlinear simplex 

algorithm is employed to retrieve the medium parameters. Although Nelder-Mead nonlinear 

simplex algorithm is a local optimization method, it is relatively robust, numerically less 

complicated, and it usually finds an accurate solution in a relatively efficient manner (e.g., the 

inversion of five unknowns, Im{ε1}, α ,Re{ε2}, h2, and lc2, takes less than 1 min on a PC with 

Pentium-4 2-GHz processor and 1 GB RAM). Fig. 6.11 shows a flowchart for retrieving 

subsurface soil moisture and roughness statistics using radar measurements at L, UHF, and VHF 

bands.  

 
Fig. 6.11: Flowchart for retrieving subsurface geophysical parameters using radar measurements at L, UHF, and VHF bands  
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6.7 Numerical Simulations 
 

6.7.1 Inversion Results 
 

A preliminary numerical study of the proposed inversion algorithm in the absence of 

noise is carried out for the scenario of 2-interface rough surfaces.  The actual simulation 

parameters (the ‘truth’) are given as follows: Re{ε1}=6, Im{ε1}=0.5, α=0.03, ε2= 

Re{ε2}+j1/10*Re{ε2}, h1=1cm, lc1=10cm, h2=2.5cm, lc2=20cm, d=60cm. In the first study, we 

assume that the top surface parameters, including Re{ε1}, h1, and lc1, have been perfectly inverted 

using a single or a few L-band radar measurements. Upon obtaining the values of Re{ε1}, h1, and 

lc1, the retrieval of subsurface geophysical parameters then proceeds. To study the robustness of 

the inversion algorithm, inversion is performed for different values of several subsurface 

geophysical parameters: Re{ε2}, h2, and lc2. The primary objective of this study is to evaluate the 

accuracy of the proposed subsurface inversion method. First, the inverted results for different 

values of Re{ε2} while having the other parameters fixed are given in Table 6.2. Fig. 6.12 shows 

the actual value of Re{ε2} versus the inverted value of Re{ε2}. It is evident from Fig. 6.12 that 

there is good agreement between the values of Re{ε2,actual} and Re{ε2,inverted} for all values of 

Re{ε2}. The simplex inversion algorithm is capable of successfully seeking a global solution 

where all of the inverted subsurface geophysical parameters except for αinverted are consistent with 

the actual values. From the sensitivity analysis, it is evident that backscattering coefficients do not 

show much dependency to α and hence the retrieved value of α is inaccurate. In addition, to study 

one particular case of error propagation from the estimate of h1, 10% error is applied to the 

estimated value of h1 and used to retrieve subsurface geophysical parameters. The reason behind 

choosing h1 for the study of error propagation is that uncertainty in the retrieved value of h1 is 

usually larger than that of Re{ε1}.  The inverted values of Re{ε2} are plotted and compared 

against the actual value of  Re{ε2} for h1 = 1 cm and h1 = 0.9 cm. In this numerical example, it is 
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observed that the proposed inversion algorithm yields very accurate inversion results even with a 

10 % estimation error in the a-priori value of h1.  

Table 6.2 
 The tabulated inversion results of subsurface geophysical parameters for different values of the real part of the 

subsurface soil dielectric constants  
Re{ε2,actual} Im{ε1,inverted} αinverted Re{ε2,inverted} h2,inverted (cm) lc2,inverted(cm) d,inverted(cm) 

20 0.52 0.0068 19.76 2.52 19.56 60.07 
17 0.52 0.0049 16.85 2.53 19.40 60.07 
15 0.53 0.0000 14.98 2.54 19.20 60.06 
13 0.51 0.0158 13.00 2.52 19.59 60.06 
10 0.52 0.0096 10.07 2.57 18.94 60.14 
9 0.56 0.0142 9.32 2.67 17.45 60.14 
7 0.58 0.0571 7.23 2.53 18.22 60.33 
6 0.60 0.0051 6.09 2.40 18.76 64.04 
5 0.52 0.0017 5.00 2.51 19.48 60.02 
3 0.50 0.0071 3.05 2.47 19.99 60.25 

 

 
Fig. 6.12: Actual values of Re{ε2} versus inverted values of Re{ε2} for the ideal case, h1,estimated=1cm, and h1,estimated =0.9cm 

 
    Next, inversion is performed for different values of h2 and the inverted results for 

different values of h2 are given in Table 6.3 while having the other parameters fixed. Fig. 6.13 

shows the actual value of h2 versus inverted value of h2. It is clearly shown that there is good 

agreement between the values of h2,actual and h2,inverted. When 10% error is applied to the estimated 

value of h1 and fed into the inversion algorithm to retrieve subsurface geophysical parameters, the 

curve of h2,inverted versus h2,actual in Fig. 6.13 experiences a downward shift away from the curve of 
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ideal case, demonstrating that a moderate error in the roughness of top interface propagates into 

h2,inverted and amplifies the magnitude of error in h2,inverted over the whole range of h2. 

 
Table 6.3  

 The tabulated inversion results of subsurface geophysical parameters for different values of the rms height of 
the subsurface interface 

 
 

 
Fig. 6.13: Actual values of h2 versus inverted values of h2 for the ideal case, h1,estimated=1cm, and h1,estimated =0.9cm 

  
    Finally, inversion is performed for different values of lc2 and the inverted results for 

different values of lc2 are given in Table 6.4 while having the other parameters fixed. Fig. 6.14 

shows the actual value of lc2 versus the inverted value of lc2. In general, there is good agreement 

between the values of lc2,actual and lc2,inverted over the entire range of lc2 under consideration. When 

h2,actual(cm) Im{ε1,inverted} αinverted Re{ε2,inverted} h2,inverted (cm) lc2,inverted(cm) d,inverted(cm) 
0.7 0.57 0.0014 16.35 0.75 17.31 60.22 
0.9 0.58 0.0005 16.44 0.95 17.53 60.18 
1.1 0.48 0.1034 16.02  1.10 21.21 60.18 
1.3 0.52 0.0311 15.50 1.32 19.60 60.18 
1.5 0.45 0.1298 15.87   1.48 22.01 60.14 
1.7 0.53 0.0003 15.09 1.74 19.05 60.14 
1.9 0.53 0.0039 15.06 1.94 19.18 60.14 
2.1 0.51 0.0199 15.06 2.12 19.62 60.14 
2.3 0.52 0.0021 14.98 2.33 19.25 60.06 
2.5 0.53 0.0000 14.98 2.54 19.20 60.14 
2.7 0.50 0.0060 15.01 2.70 20.01 60.06 
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10% error is applied to the estimated value of h1 and used to retrieve subsurface geophysical 

parameters, the curve of lc2,inverted versus lc2,actual slightly drifts away from the curve of ideal case 

especially for the scenarios of low correlation length (i.e., lc2 < 15 cm), suggesting that with a 

moderate error in the estimated value of the rms height of top interface, inversion of correlation 

length for the bottom layer gets progressively more challenging as the slope (i.e., 2

2

h
lc

) of 

subsurface rough surface gets larger. 

Table 6.4  
The tabulated inversion results of subsurface geophysical parameters for different values of the correlation 

length of the subsurface interface 

 
 

 
Fig. 6.14: Actual values of lc2 versus inverted values of lc2 for the ideal case, h1,estimated=1cm, and h1,estimated =0.9cm 

 
 

Icactual(cm) Im{ε1,inverted} αinverted Re{ε2,inverted} h2,inverted(cm) lc2,inverted(cm) d,inverted(cm) 
0.07 0.50 0.0682 15.75 2.19 8.16 60.14 
0.11 0.53 0.0014 15.19 2.91 9.22 60.06 
0.15 0.46 0.0762 15.12 2.39 16.34 60.06 
0.17 0.48 0.0556 15.07 2.46 17.67 60.06 
0.20 0.53 0.0000 14.98 2.54 19.20 60.06 
0.23 0.56 0.0585 17.20 2.54 22.89 60.14 
0.27 0.51 0.0234 15.00 2.51 26.81 60.14 
0.31 0.52 0.0023 14.98 2.49 30.43 60.18 
0.33 0.51 0.0217 14.99 2.50 32.77 60.22 



 148

6.7.2 Error Propagation from the Estimation of Top Surface Parameters  
 
    Thorough numerical studies of error propagation are made to investigate the sensitivity of 

inverted subsurface geophysical parameters to the estimated errors in top surface parameters 

using L-band radar measurements. In Fig. 6.15, six subsurface geophysical parameters are 

inverted for different values of top surface parameters. The assessment of error propagation is 

scenario-dependent. As a result, a detailed quantitative discussion that includes all scenarios is 

not possible. However, useful conclusions can be drawn from the analysis of error propagation to 

understand how sensitivity of inversion is impacted by estimation inaccuracy in the values of 

Re{ε1}, h1, and lc1.  

    Fig. 6.14 shows inverted values of subsurface geophysical parameters as a result of 

erroneous top surface parameters used as a-priori information with the green lines indicating the 

actual values. It is observed that the proposed inversion scheme is fairly robust to error 

propagation from the estimated values of surface roughness statistics, h1 and lc1. Layer thickness 

can be accurately computed regardless of any estimation errors in h1 and lc1 in Fig. 6.15 (b) and 

(c). The retrieval of the imaginary part of top soil dielectric constant and subsurface soil dielectric 

constant is relatively unaffected by the estimation error from h1 and lc1. As expected, the 

inversion quality of subsurface roughness statistics gets significantly undermined by slight 

estimation inaccuracy in top surface roughness statistics. Fortunately, the primary parameter of 

interest is subsurface soil dielectric constant. The retrieval of subsurface soil dielectric constant 

exhibits only slight sensitivity to the a-priori values of h1 and lc1. On the other hand, the retrieval 

of subsurface soil dielectric constant significantly depends on the estimated value of Re{ε1} as 

demonstrated by Fig. 6.15 (a). Figure 6.15 (a) shows that the error in Re{ε1} linearly affects the 

error in Re{ε2}. It can be attributed to the fact that the resulting retrieved values of d and Im{ε1} 

are strongly correlated to the a-priori value of Re{ε1}.  In addition, error in d also significantly 

impacts the retrieved values of subsurface parameters. The promising observation is that a 10% 

error in Re{ε1} (i.e., varying from Re{ε1}=5.4 to Re{ε1}=6.6) results in a roughly 15% error in 
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Re{ε2,inverted} (i.e., varying from Re{ε2}=13 to Re{ε2}=17).  Therefore, the error amplification 

factor due to uncertainties in Re{ε2} does not pose as a detrimental threat to inversion.  

   
                                         a)                                                                                     b) 

 
 c) 

Fig. 6.15: Numerical studies of uncertainties and error propagation into the inverted values of subsurface geophysical 
parameters from the estimates of a) Re{ε1}, b) h1 , and c) lc1  

 
6.7.3 Analysis of Measurement, Model, and Calibration Errors 
 

The impact of measurement, model, and calibration errors on the accuracy of subsurface 

soil dielectric constant using UHF and VHF band radar measurements is assessed in this 

subsection. Measurement, model, and calibration errors propagate through the inversion 

algorithm and impact the retrieved parameter accuracy. In this chapter, similar to the error 

analysis performed in [56], measurement, model, and calibration errors are lumped together and 

represented as a total error denoted by C in dB. Radar measurements are obtained by adding a 

zero-mean Gaussian random process with standard deviation of 0.2, 0.5, 1.0 dB to backscattering 
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coefficients predicted by SPM. These correspond to errors of 4.7%, 12.2%, and 25.8%, 

respectively.  

                                    ( ) ( ) ( )measured actualdB dB C dBσ σ= +                                             (6.10) 
 
where C captures the error sources from measurement, model, and calibration.  

    The histograms of output inverted subsurface parameters, Re{ε2}, h2, lc2, and d are 

generated using Monte Carlo simulation with 1000 realizations and the results are provided for 

different C’s with standard deviations of 0.2, 0.5, and 1 dB in Figs. 6.16-6.18. First, an increase in 

the standard deviation of C evidently raises the variance of output subsurface parameters. In 

addition, the use of a constrained inversion algorithm in the presence of random errors can result 

in exceptionally high incidence of inverted values capped at upper limits as evidenced by the 

appearance of spikes at h2 = 2.7 cm of the probability density function of h2 in Figs. 6.16-6.18. 

This indicates that the addition of random errors alters the cost function in such a way that 

absolute minima tend to be formed at the boundary points of the domain of interest. The actual 

value of h2 is set to be 2.5 cm which is fairly close to its upper bound, h2,upper= 2.7 cm and 

consequently the inversion from measurements corrupted by errors is strongly biased toward the 

upper bound for h2. For low error cases, the probability density function of lc2 resembles a 

Gaussian distribution. When the error becomes larger, the inverted lc2 value frequently gets stuck 

at the upper limit of 25 cm.  For Re{ε2}, the shape of probability density function changes 

drastically as the function of total error. For low error cases, the maximum of the probability 

density function centers around the mean, which is close to the actual value of {ε2}. However, as 

the total errors get larger, multiple maxima show up in the probability density function of {ε2} 

(Fig. 6.18). Although the mean still corresponds to the actual value, the appearance of multiple 

peaks suggests that multiple local minima are formed around the actual value as a result of 

increasing total errors. Finally, the probability density function of the inverted values of layer 

thickness is discretely distributed due to the discrete nature of the peak detection process. In 
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general, the retrieval of layer thickness is very robust to errors as evidenced by low standard 

deviations associated with the histograms for layer thickness in Figs. 6.16-6.18.  Quantitatively, 

for std[C] = 1.0 dB (~25% measurement error), subsurface soil dielectric constant has a mean of 

14.3 and a standard deviation of 2.5. This translates into about a 17.5% error off the measured 

mean. Subsurface rms height has a mean of 2.28 cm and a standard deviation of 0.39 cm with 

about a 17% error off the measured mean. Figures 6.16-6.18 demonstrate that the mean values of 

the inverted geophysical parameters are in fair agreement with the actual values for total errors of 

0.2, 0.5, and 1.0 dB. Significant improvements are also anticipated when the retrieval process of 

layer thickness is made more robust to measurement errors. Any estimation inaccuracy in 

recovering layer thickness worsens the estimation results of Re{ε2}, h2, and lc2 since the retrieval 

of layer thickness proceeds before the inversion of subsurface geophysical parameters. 
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Fig. 6.16:  Total error analysis and the histograms of inverted parameters for different total errors when error = 0.2 dB  
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Fig. 6.17:  Total error analysis and the histograms of inverted parameters for different total errors when error = 0.5 dB 
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 Fig. 6.18:  Total error analysis and the histograms of inverted parameters for different total errors when error = 1.0 dB 
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In addition, error analysis is performed to investigate the sensitivity of inverted geophysical 

parameters to a change in the actual value of subsurface rms height, h2. In the following analysis, 

the value of h2 is set to be 1.5 cm while the rest of parameters stay intact. The histograms of 

output inverted subsurface parameters, Re{ε2}, h2, lc2, and d are also generated using Monte 

Carlo simulations with 1000 realizations and the results are provided for different Cs’ with 

standard deviations of 0.2, 0.5, and 1 dB in Figs. 6.19-6.21.  Figures 6.19-6.21 all show that the 

mean values of the inverted geophysical parameters are in good agreement with the actual values. 

In addition, the proposed inversion method is capable of detecting changes in subsurface 

roughness statistics even in the presence of large errors. The standard deviations associated with 

the inverted h2 are much less than the previous case when h2 is 2.5 cm (closer to the upper limit 

set at 2.7 cm). When the actual subsurface roughness is away from the upper limit, the inversion 

results are less prone to getting trapped at local minima on the domain boundary of the cost 

function. This demonstrates the scenario-dependent performance quality of the proposed 

nonlinear inversion method. The choice of variability ranges and the values of actual geophysical 

parameters usually have implications for the outcome of inversion using this local optimization 

technique.  
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Fig. 6.19:  Total error analysis and the histograms of inverted parameters for different total errors (h2 =1.5 cm) when error = 

0.2 dB 
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Fig. 6.20:  Total error analysis and the histograms of inverted parameters for different total errors (h2 = 1.5 cm) when error = 

0.5 dB 
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Fig. 6.21:  Total error analysis and the histograms of inverted parameters for different total errors (h2 = 1.5 cm) when error = 

1.0 dB 
 
6.8 Chapter Conclusion 
 

A multi-frequency inversion algorithm for the retrieval of subsurface soil moisture 

content is presented. The near-surface parameters are estimated using L-band or higher radar 

measurements and the subsurface probing capability is achieved through the use of low frequency 

radar measurements at VHF and UHF. In the proposed algorithm, the dielectric constant of the 

top surface is first determined using L band radar measurements using a frequency-domain 

inversion technique. Subsequently, the top surface is mathematically stripped away. For the 

retrieval of subsurface properties, the dielectric constants as well as roughness statistics are 

estimated using a time-domain inversion technique together with a parameter optimization for the 

pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies are 

performed to investigate the accuracy of the proposed inversion technique in both the absence and 

presence of measurement, model, and calibration errors, and to investigate the robustness of this 

method against errors in the estimates of top surface parameters. Numerical studies show that 
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subsurface parameters except for the conduction loss of top layer, α, can all be successfully 

retrieved in the presence of slight estimation inaccuracy in top surface parameters. Measurement, 

model, and calibration errors do not significantly affect the reliability of the retrieved subsurface 

geophysical parameters and the proposed inversion method is robust to errors and uncertainties. 

Error analysis also demonstrates the capability of the proposed algorithm for detecting changes in 

subsurface roughness statistics even in the presence of large errors.  
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CHAPTER 7 
 

Conclusion and Future Work 
 
 
 

7.1 Conclusion 

The primary objective of this thesis was to develop an accurate and efficient technique 

for two-dimensional scattering from layered rough surfaces with or without buried objects based 

on the extended boundary condition method (EBCM) and the scattering matrix method (SMM). 

Plane wave expansion/scattering matrix method has established itself as an efficient means of 

rigorously solving the scattered field and power distribution of periodic structures, for modeling 

reflection/transmission of stratified planar media, and periodic arrays of cylinders compared to 

other widely used (numerical) techniques such as FDTD, MoM, and FEM. The primary 

underlying contributions of this dissertation are to optimize EBCM for rough surface scattering 

through the application of fast FFT-based matrix filling algorithm, and to employ SMM to 

coherently solve the scattered field from a stack of multiple rough surfaces, in the possible 

presence of buried objects.  

The proposed method has been tested and validated against both analytical and numerical 

solutions and then applied to study low frequency radar scattering from a field-derived soil 

moisture profile in order to evaluate the potential of retrieving subsurface soil moisture.  

Given the capability of this technique for modeling coherent multiple scattering 

phenomena, we utilized this technique to study backscattering enhancement and satellite peaks 

due to surface plasmon resonance from multilayer rough surfaces. For weakly layered rough 

surfaces, this technique shows that multiple surface plasmon waves are excited, giving rise to 
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multiple scattering of waves for both HH and VV polarizations. The appearance of backscattering 

enhancement is a result of scattered waves adding up in phase in the backscattering direction after 

undergoing multiple orders of scattering. Multiple guided surface waves also constructively 

interfere with each other and contribute to additional enhanced peaks in other scattering 

directions than the backscattering direction. These peaks are called satellite peaks.  In this 

dissertation, a thorough sensitivity study of backscattering enhancement to the subsurface 

properties of layered media was conducted with numerous qualitative conclusions drawn based 

on the numerical results. The theoretical locations of satellite peaks were predicted and the 

locations of the demonstrated satellite peaks were in good agreement with the theory.         

Following the formulation of EBCM/SMM for solving scattering from layered rough 

surfaces, the proposed method is generalized to incorporate a buried cylinder or a cluster of 

cylinders in layered rough surfaces. The scattering problem is reformulated through the 

characterization of cylinders and rough interfaces by their reflection and transmission responses. 

The reflection/transmission matrices of buried objects and rough interfaces are recursively 

cascaded using SMM to account for wave interactions between these scatterers. The capability of 

the proposed technique is further demonstrated by providing a solution to scattering from discrete 

random media in layered rough surfaces.  

The last part of this dissertation focuses on the development of a multi-frequency 

inversion algorithm for the retrieval of subsurface soil moisture using VHF/UHF- and L-band 

radar measurements with a proposal of an envisioned platform and radar system. A pulse echo 

profile contains temporal information showing the process of wave propagation and scattering 

through layered media, and is useful in identifying contributions from different rough layers. 

Backscattering coefficients at multiple frequencies are synthetically generated using the analytical 

forward solver based on SPM. Top surface parameters are first recovered using L-band radar 

measurements because with a relatively low penetration depth at L band compared to VHF/UHF 

bands, the subsurface properties are not reflected in backscattering coefficients. Subsequently, the 
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pulse echo profile is computed through the use of inverse Cosine transform using VHF/UHF band 

radar measurements. Each echo is parameterized and then these parameters are used to invert 

both the subsurface dielectric constant and subsurface roughness statistics. The performance of 

the proposed inversion algorithm is demonstrated by error propagation and error analysis. 

Numerical studies show good performance of the proposed method. Error analysis demonstrates 

the robustness of the proposed method to added noise by showing the average values of inversion 

results converge to the actual values. In addition, inversion results exhibit little sensitivity to the 

inversion results of top-layer roughness statistics.  

7.2 Future Work 

7.2.1 Numerical Solution to Three Dimensional Scattering from Layered Rough 
Surfaces 

 
This dissertation focuses on 2D scattering from layered rough surfaces. The next natural 

step in continuation of this research is the development and implementation of a numerical 

solution to 3D scattering from layered rough surfaces using the proposed method based on 

EBCM/SMM. EBCM has been applied to scattering from 2D periodic surfaces and the matrix 

filling process can be expedited using 2D FFT. With proper TM and TE mode conversion 

accounted for, 3D SMM can be implemented to incorporate the effect of layer thickness. 

Iterative/accelerated matrix inversion algorithms can further be employed to reduce the 

computational runtime. After the development of a 3D numerical forward model for scattering 

from layered rough surfaces, an extensive sensitivity analysis for remote sensing of subsurface 

soil moisture can be carried out to study both co-polarized and cross-polarized scattering 

coefficients and co-polarized phase difference in response to the variation in subsurface dielectric 

constant and roughness statistics.  In addition, backscattering Enhancement due to surface 

plasmon resonance from 2D layered rough surfaces also remains as an unexplored research topic 

due to its computational complexity associated with 3D numerical modeling. The MoM solution 

to 3D scattering from layered rough surfaces in [32]  is not a good candidate for analyzing 
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backscattering enhancement and demonstrating satellite peaks due to the application of tapered 

illumination source which tends to smear out the scattering response. Therefore, EBCM/SMM 

constitutes as an ideal method for studying backscattering enhancement of surface plasmon waves 

from 2D weakly rough surfaces.  

7.2.2 Multi-frequency Inversion Algorithm for the Retrieval of Subsurface Soil  
Moisture With non-Uniform Frequency Sampling 

 
 The last part of this dissertation considers a multi-frequency inversion algorithm for the 

retrieval of subsurface soil moisture using uniform frequency samples over VHF/UHF bands. 

However, depending on the available measurement system, the VHF/UHF frequency range may 

not be uniformly sampled. Due to some practicality and feasibility constraints in spaceborne radar 

applications, the frequency content typically is well under-sampled and the sample locations are 

non-uniformly spaced. This may impact the analysis, and the reconstruction of time signal using 

non-uniform frequency samples poses as a nontrivial problem. Reference [97] presents an 

algorithm for reconstructing time signal from non-uniform frequency samples. Future 

investigation needs to be conducted to study the effect of non-uniform frequency sampling on the 

reconstruction quality of pulse echo profile and the inversion results. A feasibility assessment will 

be made to determine the minimum number and the locations of frequency samples required for 

desirable inversion results.  

7.2.3 Validation with Experimental Results 
 

The focus of dissertation is the theoretical development of scattering analysis for layered 

rough surfaces. Cross-validation with experimental data is the next step in this area of research. A 

prototype VHF/UHF tower radar for subsurface sensing has been deployed to collect 

backscattering radar measurements at 137MHz and 437 MHz in [22]. Radar calibration is being 

performed in order to process the collected radar data and the current challenge is to understand 

and possibly quantify measurement errors as well as calibration accuracies.  
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APPENDIX A 
 
 

Scattering from Layered Rough Surfaces based on Method of Moments 
(MoM) 

 
This appendix summarizes an MoM formulation for 3 stratified homogenous regions, separated 

by 2 rough surfaces with point matching and pulse basis functions based on [7]. Starting from an 

integral equation approach, the solutions for the scattered fields in any regions can then be 

obtained by imposing boundary conditions on both interfaces and applying pulse basis functions 

and point matching to the induced currents.  
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Equations (1)-(4) can be cast in a matrix. 
 

                                                                      VIZ =                                                                    (7) 
 



 163

where  
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Four unknown vectors to be sought, 1U , 1ψ , 2U , and 2ψ are induced electric and magnetic 

currents on the surfaces f1(x) and f2(x). After the induced currents, 1U  and 1ψ , have been 

computed, the scattered field in region 0 can be determined using Hyugen’s principle. Compared 

to the single surface case, both memory requirement and computational time are significantly 

increased for layered rough surfaces problem. Thus, an efficient algorithm to facilitate the 

solution is necessary. In [7], forward and backward method with spectral acceleration for 

scattering from layered rough surfaces is presented, which reduces the memory requirement and 

computational complexity from )( 2KO and )( 3KO to )(KO and )(KO , respectively, where the 

total number of unknowns is K=2(M-1)N, N is the total number of sample points per interface and 

M is the number of layers.  
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