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CHAPTER 1

Introduction

1.1 Research Overview

Noise treating materials have been used very often in many structures to reduce the

noise level. The instances where these materials are used are but not limited to cars, air

plane fuselage very often these structures consist of layers of treating materials in between

the structural elements. Since the treatment materials do not have a significant role in

supporting the structure forces, usually the structural elements are joint directly with the

treating materials going in between. Therefore, a typical panel treated with noise reduction

materials can provide two paths for the sound energy to be transmitted from the generated

side to the other side. Hence the noise transmission via the mounts and through the layers

of the structure should be considered separately.

The common tool for analyzing a complex system is the traditional finite element. How-

ever finite element analysis is not always the right tool for analyzing structures. This is due

to the fact, that as the frequency of the vibration increases, finite element method needs

a refiner mesh which is computationally more expensive. Also, finite element analysis is

a deterministic method while the nature of noise is more appropriate for dealing with the

noise transmission in structures [1]. Statistical energy analysis that addresses the analyzing

the structural vibration in higher frequency better has been mostly developed by Lyon and

his colleagues [2]. In this method, a complex structure is divided into subsystems which

have similar modal densities. It is assumed that the vibrational energy of these subsys-

1



tems (similar to heat conduction) move from sub-systems with less modal densities to other

subsystems which have higher modal densities. The main variable in this method is the

total energy of a subsystem.The main difficulty with SEA is to find the couplings between

the systems. This coupling is set up by coupling loss factors which by themselves are not

very straightforward to be determined. Also, if the lumped systems are highly coupled

the method loses its accuracy and the lumped subsystems must be redefined [3]. It should

be remarked that SEA is rather a very specialized method and unlike the commercially

available FEA software does not have a broad number of users.

As an alternative to statistical energy method, “Energy Finite Element” method has

been developed to deal with the noise analysis problem; Bernhard’s work [4] is one of the

pioneers in this area. In energy finite element like the traditional finite element, the structure

is broken down to smaller elements. However, the main variable is now the time and space

averaged energy densities of the elements. To derive the energy finite element system of

quotations, first the governing differential equations of the energy terms one derives from

the primitive elements such as no beams and plates. In this process, the near field terms of

the incoming waves are ignored. After the waves are ignored the governing equation of the

energy densities are found. Finally a finite element formulation is developed to provide a

system of equations for the element level [5]. This system of the equations, relates the model

energy density vector of the element to the input model power vector and the vector of power

flows across the elements. Each element now should be connected to the adjacent elements

in such a way that the poser flow stays a continuous function. The averaged power flows of

adjacent nodes can be related by a power transmission or joint matrix. At the geometrical

or material discontinuities, the energy densities are not necessarily continuous. Validation,

formulation, and implementation of this method have been developed in the past years (for

example see [6, 7]), the modeling of a trim panel, is mainly concerned with the finding

joint matrices for the connections of the panel. The response of the complex structure is

obtained by the discretizing the structure into smaller well known elements. The vibrational

behavior of simple geometry structures like plates and beams are already well known for

instance Cho [8] has derived the formulations for beam and homogenous plates connections.

To model a trim panel, two different energy paths should be taken into account: energy

2



transmitted through the outer and inner layers via mounts and the direct path of energy

through the layers.

In this dissertation, the joint matrices for two different paths of noise energy are cal-

culated for the energy finite element. First, the vibration power transmission between two

plate elements via a beam or a spring is found; then a method for finding the equivalent

element to replace the layered structure between the inner and outer acoustic media is

proposed.

1.2 Literature Review

In this section, the existing literature for tools needed to find the power transmission

matrix between point connected structure as well as the analysis of layered structure in-

cluding porous layers, are reviewed. Point Connected Structures The problem of finding

the power transmission coefficient between two plates connected through a beam needs the

modeling of the plate elements and the beam.

1.2.1 Beam and Plate models

The vibration behavior of the beams have been studied thoroughly for example, Graff

[9], Redwood [10], Achenbach [11], Cramer [12] are among the classical books to consider

the beam vibration problem.

The simplest model of vibration of a beam is obtained when the beam is considered

slender and the shear deformation effect and rotary inertia effects are ignored. As it is often

mentioned in classical references, if these effects are added to a general beam model, a more

accurate model called Timoshenko beam is obtained. In fact, the most general problem of

vibration of a beam is considered by analyzing the vibration of a solid cylinder [9, 10] Such

a model can be reduced to an Euler-Beronoulli beam model (which is quite accurate for the

present purposes) when the beam is considered slender. Banerjee [13] has derived a more

complex dynamic stiffness matrix for a more general pre-twisted Timoshenko beam.

Plate vibrational behavior has also been studied vastly. The common, simple plate

model used is the Kirchhoff thin plate. The assumptions and limitations of the thin plate
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model can be found in classical plate books like Leissa [15] and Szilard [16]. As the first

approximation, only the out of plane or bending vibration of thin plates is considered.

The bending motion of a thin plate is governed by a 4th order partial differential equation

[12, 15, 16]. The general solution of this partial differential equation in the polar coordinate

system can be expressed in terms of the Hankel and or Bessel functions. By means of three

dimensional equation of motion, Morfey [17] showed that the in-plane vibration solution for

a thin plate also have a very similar form. The in-plane and out-plane displacements of an

elastic thin plate can both be expressed in terms of Hankel modal functions. In general,

in-plane and out-plane vibration fields of a plate are not decoupled; Ljunggren [18, 19]

has shown that a force applied on the origin of the plate that generates both in-plane and

out-plane motions. In his work, the displacements and forces are expressed as infinite series

which can model plate with any favorable accuracy.

Important quantities which can validate any plate model are different plate impedances

since impedance relates forces to the displacements. Different impedances can be calculated

for different loadings acting on a plate. A relatively complex in-plane moment impedances

has been derived by Dyer which for small arguments is in accordance with the expression

given by Crammer [12]. Ljunggren [18, 19] found two torsional impedance expressions for

systematical and antisymmetrical modes of a thin plane. Further impedance studies which

can verify a plate model can be found in works of Leung [20], Pinnington[21] , and Thomas

[23].

Langley and Shorter, derived a model for a thin plate [24]. This model which has been

used in this work, basically is a rigid disk inclusion inside can elastic thin plate infinite

region. They have related the wave amplitudes of outgoing waves to the displacement and

force vectors acting on the origin of the plate.

1.2.2 Porous Materials

A porous medium is modeled as a macroscopic homogeneous continuum which is con-

sisted of two phases in equilibrium: a solid phase and a fluid phase. The solid phase is a

porous matrix where the fluid phase fills the pores. The filling fluid can be quite light such

as air or heavy like water. The fluid phase may be modeled as a simple inviscid fluid or may
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be represented by a more mathematically complicated fluid constitutive law. Compared to

the fluid, the solid matrix may be often (specially in higher frequency range and smaller

flow resistance) assumed to be rigid [25, 26]. Modeling of porous media is drastically influ-

enced by Biot’s work [27]. In his model,it is concluded that a porous media can carry two

dilatational waves and one shearing waves. Also there is a mathematical analogy between

the thermoelasticity and poroelasticity [26, 29].

The development of poroelasticity was originally motivated from geophysics and studies

of soil. Poroelasticity has been successfully used to model material systems in different fields

of study such as seismic waves, rock and soil mechanics, sea-bed studies, biomechanics and

biomaterial, and noise insulating materials; (e.g. [26]). As an example, elastic porous

material theory has been employed to investigate bones. Although compared to the hard

component of the bone, the inside fluid has a very small bulk modulus,the dynamic load

effects of the fluid cannot be ignored. In other words, a slowly loaded drained bone does

not respond much differently from a bone with the fluid inside; however, this is not quite

true if the forces are dynamic [26].

A special type of porous material is the noise treatment foam material; in these materials,

the fluid phase is simply air. The constitutive law of an open cylindrical shape pores foam

material involves seven solid phase constants [28, 25, 30]: porosity; solid phase Poisson’s

ratio; structural shape factor; flow resistivity; solid phase structural dissipation factor;

solid phase Young’s modulus; the solid phase density. Deresiewicz and Skalak [41] argued

that there are three possible type of contacts for a porous surface; then they derived the

mathematical equations for the boundary conditions that describe the surface condition of

a porous layer. Gurevich and Schoenberg [42] demonstrated that Deresiewicz and Skalak

conditions can be recaptured by replacing the porous surface with a layer of an ideal fluid

whose permeability is proportional to the layer thickness as the thickness tends to zero.

Allard and Bolton [28, 30] used this model to express the displacement and force fields

of a porous layer in terms of wave amplitudes and these material constraints.
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1.2.3 Layered Structures

Very often an infinite layer can be a very suitable model for a structures. Such a layer is

like an plate; i.e. the dimension along one axis is very large comparing to the thickness and

the variation of the plate along the third axis can be ignored. In many occasions, a structure

consists of a stack of such layers. For each layer, once the displacement field of such layer

is known, the force field can be derived accordingly. The equations of waves propagating

in a layered structure can be determined after applying the boundary conditions at the

interfaces of the adjacent layers. To deal with this problem, it is possible to set up a large

number of equations (according to Brekhovskikh [31] about four times of the number of

layers) and determine the wave amplitudes. Then by substituting the wave amplitudes

back into the field equations, the displacement and forces can be calculated. This is the

approach used by Bolton [30] and some of Allard’s works [33]. However, another method

of dealing with a system of layered structures is using a matrix approach [31, 32]. The

advantage of using transfer matrices is that once the library of different layer matrices are

developed, finding the response of the structure is done much easier and by multiplying a

set of matrices instead of solving a large number of equations (at least 4 times the number

of layers).

To use the matrix method to reduce a layered structure matrix, Allard [33] have derived

a transfer matrix for solid layer; however, their matrix is incorrectly reported for e−iωt

convention instead of e+iωt. Network analogy of a solid layer to a electrical block diagram

has been introduced by Rudgers [34]. Cerevenka and Challande, and Folds and Loggins

[35, 36] have also developed a computational algorithm for the matrix method when the

layers are comprised of a combination of fluids and/or solids. Moore and Lyon [37] used the

impedance matrix method for analyzing geometrically symmetric panels with and without

soft cores, cited that the accuracy is limited when the thickness is (relative to frequency) is

large.

Driving a transfer matrix for a porous layer has been first done by Allard and his

colleagues [39, 40]. The boundary conditions applied on a layer are not simply enforced

by equating the displacement and force fields of two adjacent layer when one of the layers
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is porous [41, 42]; they defined different joint matrices to enforce the boundary conditions

[33, 28].

A foam layer with a complex model and too many material constants is not easy to

deal with. Empirically a foam layer can be replaced by an equivalent layer with a complex

companion to the wave speed and density [43, 47]. This model is different from a dissipative

fluid model that includes the viscous effects that add an imaginary part to the wave number.

Another attempt to replace a foam layer is made by [45]. They retained only one of the main

waves by defining an energy criterion and approximated the foam layer by an equivalent

un-bonded layer.

1.3 Dissertation Contribution

In this research, the problem of modeling of trim panels in EFEA is considered. The

most important part of the modeling is actually finding the vibrational power coefficients

for a trim panel. There are two possible vibration energy exchange paths: though the layers

and via the supporting mounts.

The vibrational power transmission via mounts is modeled as the power exchange be-

tween two infinite plates which are connected via a finite length beam. For the power

transmission directly through layers, a matrix method which already exist in the literature

is extended for the structures which consist of porous layers. By means of the matrix ap-

proach an optimization procedure to replace the layers of trim with new layers is proposed.

The following is a summary of the main contribution of this dissertation:

• A matrix method is developed to study the vibrational behavior of point connected

structures. In this method, the structural components are identified by means of

two matrices; one relating the displacements vector to the wave amplitude vector

and the other one relating the force/moment vector to the wave amplitude vector.

These matrices for a beam and a plate element are derived and coded. This approach

simplifies the previously reported complicated calculations of the power transmission

coefficients for the beams [8] drastically.
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• The problem of vibration exchange between two arbitrary plates which are con-

nected via a beam or spring is solved through a more sophisticated method than

the impedance method.

• A closed form formula that relates the main bending modes of two identical plates

connected via a beam (or spring) is found.

• For the used plate model (a rigid disk inclusion in an infinite annular elastic region)

closed form formulas for different plate impedances are found.

• A systematic approach for reducing a layered structure is proposed. In this new

approach, layer materials can be fluid, solid, or porous.

• Transfer matrices for common models of layers (fluid, solid, and porous) are derived.

Solid layer transfer matrix for the eiωt which is reported incorrectly [33] is re-derived.

Also, a correction is made to the transfer matrix for a transversely isotropic solid

layer by Brekhovskikh [31]. New transfer matrices “bonded bonded” and “unbonded

unbonded” for a porous layer are derived in order to make the calculations faster and

easier.

• A new layer reduction process is proposed to replace the core layers of a structure

which includes a foam layer. This approach can be used to replace a sandwich by

three elements in EFEA. It is shown that in general a layered structure cannot be

replaced by a single solid isotropic or fluid layer.

1.4 Dissertation Overview

In chapter 2, the dynamic wave matrices which relate the displacements and forces to

wave amplitudes are derived for beams and an infinite plates. By using these matrices,

the problem of vibration power exchange between a beam perpendicularly connected to an

infinite plate is solved and validated. The plate impedances are further compared with the

impedances from the existing models.

In chapter 3, the problem of vibrational power exchange between two parallel plates
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connected via a beam is solved and validated. A closed form formula is given for a special

case of identical plates. Also, the significance of the different wave types are discussed

through a numerical problem.

In chapter 4, First the wave equations for a porous media is considered. Then wave

equations for fluid and solid layers, as a special case of the porous layer, are found. The

boundary conditions for a porous surface is discussed and on the basis of these boundary

conditions, transfer matrices for fluid layers, unbonded and bonded solid layers, thin panels,

and porous layers are derived.

In chapter 5, a systematic way of expressing the transfer matrix of a sandwich structure

between two acoustic media is proposed and the transmission loss calculation is found in

terms of the matrices. Further, it is argued that in general a combined layered structure

cannot be replaced by a single isotropic layer. Then an optimization procedure for modeling

the core layers of a layered structure is proposed.
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CHAPTER 2

Modeling of Point Connected Systems

2.1 Introduction

Many structures are consist of components joined that require a very small region. These

small area connections may be modeled as joints or point connection. In the following,

these point connected structures are modeled and analyzed by combining the vibrational

properties of their simple components. The vibration power transmission for these point

connected structures can be found and used for EFEA.

The vibrational behavior of structures with simple geometries like plates and beams

has already been successfully analyzed. Wave equations for rods, beams, and plates are

readily available. Depending on the frequency range, to predict the response of these simple

geometry components, simple models may be exploited. When the frequency is not too high

the Euler-Bernoulli (EB) model for beams, and the Kirchhoff model for plates can accurately

predict the vibrational behavior of the simple components. The frequencies for which these

models are suitable, depend on the dimensions of the components; i.e. the wave lengths

need to be large enough. This is why when using the traditional finite element analysis

(FEA) for studying structures, finer meshes are required as the frequency increases. The

traditional FEA is not always the right tool for analyzing structural vibration in higher

frequencies since: a) a very fine mesh makes the FEA computationally expensive or even

impossible b) the nature of the noise is rather statistical than deterministic; a deterministic

computational method cannot provide a very accurate average analysis c) the results will
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be sensitive to the structure detail and small changes in the design can lead to results that

are unusable [1].

One well-known technique to predict the vibration response in higher frequency ranges

is Statistical Energy Analysis (SEA). This method relies on discretizing the structure into

groups of similar normal modes which are called subsystems. The energy of each subsystem

is the main variable that SEA deals with. Energy flows among the connected subsystems

under the assumption that energy travels from a subsystem with a higher average modal

energy to a system with a lower energy. This energy flow is very similar to the heat

transfer from a higher temperature region to a lower temperature region. In addition to

this assumption, SEA assumes that the dissipated energy is proportional to the model

energy; finally, as the name suggests, it is assumed that the energy has a statistical nature

[2].

The main difficulty with SEA is to find the coupling between the systems. The couplings

are established by coupling loss factors which cannot be determined in a very straightforward

way. Also, if the lumped systems are highly coupled the method loses its accuracy and the

lumped subsystems must be redefined [3]. From a practical point of view, SEA is rather

specialized and unlike the commercially available FEA software is not widely used.

One alternative to SEA is the Energy Finite Element Analysis (EFEA) that may be used

to analyze the vibration of the structures in the higher frequency range. EFEA main variable

is energy density. To drive the EFEA system of equations, first the governing differential

equations of the energy terms related to the far field waves are derived for the primitive

elements such as beams and plates, as well as the acoustic medium (all are considered lossy)

[5]. Then the governing equation of the space and time averaged energy densities, are found

for these regions. Finally, a finite element formulation can be developed provides a system

of equations for the element level. This system of equations, relates the nodal energy density

vector of the element to the input nodal power vector and the vector of power flows across

the element. The averaged power flow can be related to the nodal averaged energy densities

through a power transmission matrix or joint matrix. The averaged energy densities of the

adjacent nodes at the geometrical or material discontinuities are not continuous; however,

by applying the power (energy) conservation, the joint matrices that relate the adjacent
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nodal energy densities can be determined. At this point, the system of equations can be

assembled into a linear system and solved for the energy densities.

In this chapter, first the beam and plate wave matrices are obtained; the wave trans-

mission problem for a semi-infinite beam and an infinite plate connection is solved. Finally,

the joint matrix for a vertical beam connected to an infinite plate is found.

2.2 Wave matrices for a slender prismatic beam

The vibration of a beam can be accurately explained via an EB model if the frequency

is low enough. A beam can guide three wave types: longitudinal, torsional, and bending.

When the frequency is small enough, the first modes of beam vibrations can accurately

capture the beam vibration behavior. It is known that these wave types are decoupled when

the first modes are only retained [9]. Since two perpendicular planes can have independent

bending vibration, two bending waves propagate along the beam’s length.

To keep the analysis simple, assume that the shear center of the beam lies on its section

neutral axis. To find wave matrices, a Cartesian coordinate system may be chosen such that

the Z–axis lies on the central axis of the beam as shown in figure (2.1). Now the goal is to

relate the displacements and forces vectors to the wave amplitudes. It should be noted that

the displacements vector contains both the linear and the rotational displacements. Also,

the forces vector, includes the moments.

Figure 2.1: Coordinate system chosen for a beam
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The governing differential equations of out of plane (bending) first mode wave propaga-

tion are of fourth order [9, 12]:

∂4uj

∂z4
(z)− kBj

uj = 0, j = X,Y (2.1)

while the the longitudinal and torsional waves are governed by second order equations [9, 12]:

∂2uz

∂z2
− kLuz = 0 (2.2)

∂2θz

∂z2
− kTθz = 0 (2.3)

The displacement fields for the positive time harmonic convention (ei ω t) are:

uj(z) = AF,O

Bj
e
−i kBj

z +AF,I

Bj
e
i kBj

z +AN,O
Bj

e
−kBj

z +AN,I
Bj
e
kBj

z
, j = X,Y (2.4)

uz(z) = AO

L
e−i kLz +AI

L
ei kLz (2.5)

θz(z) = A
O

T
e−i kT z +AI

Te
i kT z (2.6)

where A represents the wave amplitude, the subscripts B,T ,L and superscripts F ,N ,O, and

I indicate bending, torsional, longitudinal, far-field, near field, out-going and in-coming

waves. The wave numbers are calculated as:

kBX
= 4

√
ω2

ρA
E Iyy

(2.7)

kBY
= 4

√
ω2

ρA
E Ixx

(2.8)

kL = ω

√
ρ

E
(2.9)

kT = ω

√
ρ(Ixx + Iyy)

µST

(2.10)

where ρ,E,µ are mass density, Young’s modulus, shearing modulus of the beam material

and A, Ijj and ST are the cross sectional area, area moment about axis j, and the torsional

rigidity coefficient of the beam.
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Rotations can be computed from the displacements as:

θj(z) = (−1)δjy
∂uj

∂z
, j = x, y (2.11)

where δmn is the Kronecker delta symbol. The displacement and the wave amplitude vectors

can be defined as:

{AB} = {AF,O

BX
, AF,I

BX
, AN,O

BX
, AN,I

BX
, AF,O

BY
, AF,I

BY
, AN,O

BY
, AN,I

BY
, AO

L
, AI

L
, AO

T
, AI

T
}T (2.12)

{UB} = {ux, uy, uz, θx, θy, θz}T (2.13)

The following matrix relation between the displacement and wave amplitude vectors can be

established:

{UB} = [QB]{AB} (2.14)

By means of (2.4) - (2.6) matrix [QB] is determined as:

[QB ](z)=



Q11 Q12 Q13 Q14 0 0 0 0 0 0 0 0

0 0 0 0 Q25 Q26 Q27 Q28 0 0 0 0

0 0 0 0 0 0 0 0 Q37 Q38 0 0

0 0 0 0 Q45 Q46 Q47 Q48 0 0 0 0

Q51 Q52 Q53 Q54 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Q6,11 Q6,12



(2.15)

The nonzero elements of the above matrix are computed as:

Q11 = e−i k
BX

z, Q12 = ei k
BX

z, Q13 = e− k
BX

z, Q13 = e k
BX

z

Q25 = e−i k
BY

z, Q26 = ei k
BY

z, Q27 = e−k
BY

z, Q28 = e k
BY

z

Q37 = e−i k
L

z, Q38 = ei k
L

z, Q6,11 = e−i k
T

z, Q6,12 = ei k
T

z

By means the simple beam theory which is in fact the first mode expansion of the exact

theory of elasticity, it is possible to relate the forces and moments to the waves amplitude
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vector. Define the forces vector as:

{FB} = {Fx, Fy, Fz,Mx,My,Mz}T (2.16)

The relationship between the vectors is:

{FB} = [SB]{AB} (2.17)

with:

[SB ](z)=



S11 S12 S13 S14 0 0 0 0 0 0 0 0

0 0 0 0 S25 S26 S27 S28 0 0 0 0

0 0 0 0 0 0 0 0 S37 S38 0 0

0 0 0 0 S45 S46 S47 S48 0 0 0 0

S51 S52 S53 S54 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 S6,11 S6,12



(2.18)

where the nonzero elements of the above matrix are found as:

S11 = i E Iyy kBX

3 e−i k
BX

z, S12 = −i E Iyy kBX

3 ei k
BX

z, S13 = −E Iyy kBX

3 e− k
BX

z,

S14 = E Iyy kBX

3 e k
BX

z, S27 = i E Ixx kBY

3 e−i k
BY

z, S28 = −i E Ixx kBY

3 ei k
BY

z,

S37 = i EA e−i k
L

z, S38 = −i EA ei k
l
z, S6,11 = −i µ e−i k

T
z, S6,12 = i µ ei k

T
z

S45 = −E Iyy k
2
BX

e−i k
BX

z, S12 = −i E Iyy e
i k

BX
z, S13 = E Iyy e

− k
BX

z, S14 = −E Iyy e
k

BX
z

The mathematical problem of wave propagation in a beam is well-posed; hence, once there

is sufficient number of proper boundary conditions (BC’s), the wave, displacement and force

fields can be uniquely determined.

The matrices corresponding to the semi-infinite beams can be recovered by eliminating

the columns of the matrices which are related to the incoming field waves (even numbered

columns); these matrices will be designated by an ∞ superscript from now on. With proper

re-ordering, the semi-infinite beam matrices are the same as those available in the literature
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[12, 9, 24]. Moreover by extracting the columns related to the incoming far-field waves (i.e.

second, sixth, tenth, and twelfth columns), the excitation matrices (labeled by superscript

“in”) can be obtained.

The time power flows of the wave types are needed for the final calculations. The far

field averaged power flows have the following general form [8]:

〈P l
j〉 = αl

j ω|Aj |2 , j = B,L, T, S (2.19)

where P l
j is the power flow associated with the wave type j (Bending, Longitudinal, or

Torsional) in the structure labeled l; |Aj | is the absolute value of the wave amplitude of

wave type j; 〈 . 〉 is the average of the quantity over time and the wave length; and αj for

different wave types found to be [14]:

αBeam
j =


E IBB k

3
B if j = B (Bending wave type)

1
2 EA kL if j = L (Longitudinal wave type)

1
2 µST kT if j = T (Torsional wave type)

(2.20)

2.3 Wave matrices for a thin plate

The goal of this section is to find matrices which relate displacement and force vectors

to the wave amplitude vector by using the proper modifications to the work of Langley and

Shorter [24]. It is assumed that the thin plate is comprised of two regions: a rigid small

disk (distinguished by its origin) and the rest of the plate (which is considered elastic and

follows the Kirchhoff’s model). A cylindrical coordinate system is attached to the center of

the rigid disk with the Z–axis perpendicular to the plate. A conjugate Cartesian coordinate

system may also be defined with same the Z–axis and X–axis on the mid plane defined by

z = 0 as shown in figure 2.2. The displacements and forces of the disk origin are related to

the wave amplitudes of the elastic region by enforcing the compatibility and equilibrium of

the regions.

It has been shown that the out of plane motion of a thin elastic plate is governed by
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Figure 2.2: Coordinate systems chosen for an infinite plate

[15]:

∇4uz − k4
Buz = 0 (2.21)

kB is the bending wave number of the thin plate. It is found from the dispersion relation

as [12, 24, 9, 15]:

kB =
√
ω 4

√
ρL

DB

(2.22)

where ρ, L,DB are mass density (per volume), thickness, and the flexural rigidity of the

plate, respectively. The flexural rigidity for a thin plate is computed as:

DB =
EL

3

12 (1− ν2)
(2.23)

where ν is the Poisson’s ratio of the thin plate’s material. In a cylindrical coordinate system

can be expressed as [15]:

uz(r, θ) =
∞∑

j=0

(
uF,O

Bj
+ uF,I

Bj
+ uN,O

Bj

)
(2.24)

with:

uF,O
Bj

=
(
AF,O

BCj
cos jθ +AF,O

BSj
sin jθ

)
H

(2)
j (kBr) (2.25a)

uN,O
Bj

=
(
AN,O

BCj
cos jθ +AN,O

BSj
sin jθ

)
H

(2)
j (−i kBr) (2.25b)

uX,I
Bj

=
(
AX,I

BCj
cos jθ +AF,I

BSj
sin jθ

)
H

(1)
j (kBr) (2.25c)
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H
(l)
j (.)is Hankel function of type l (l = 1, 2) and order j. With the convention ei ω t, type 1

is associated with incoming (or exciting) waves while type 2 represents outgoing solutions

[17]. The incoming near-field wave terms are neglected due to the radiation condition for

the infinite domain. Further more, it has been shown that two in-plane potentials φ and ψ

[17] governed by:

∇2φ− k2
Lφ = 0 (2.26)

∇2ψ − k2
Sψ = 0 (2.27)

can be used to find the the in-plane displacements as:

ur =
∂ψ(r, θ)
∂r

+
1
r

∂φ(r, θ)
∂θ

(2.28a)

uθ =
1
r

∂ψ(r, θ)
∂θ

− ∂φ(r, θ)
∂r

(2.28b)

kL is the same as the longitudinal wave number for the beam and the shearing wave number

is kS =
√

µ
ρ (µ is the Lamè’s constant). From equations (2.28a) and (2.28b) it is seen that

the in-plane displacements are of higher orders (the derivative of Hankel functions are taken)

comparing to the bending displacements; therefore, the near-field terms can be neglected.

The potentials have the same generic form as (2.24):

φ(r, θ) =
∞∑

j=0

(
φF,O

Lj
+ φF,I

Lj

)
, ψ(r, θ) =

∞∑
j=1

(
ψF,O

Tj
+ ψF,I

Tj

)

where the terms are:

φF,O
Lj

=
(
AF,O

LCj
cos jθ +AF,O

LSj
sin jθ

) H(2)
j (kLr)
kL

(2.29a)

φI,O
Lj

=
(
AF,I

LCj
cos jθ +AF,I

LSj
sin jθ

) H(1)
j (kLr)
kL

(2.29b)

ψF,O
Tj

=
(
AF,O

TCj
cos jθ +AF,O

TSj
sin jθ

) H(2)
j (kTr)
kT

(2.29c)

ψI,O
Tj

=
(
AF,I

TCj
cos jθ +AF,I

TSj
sin jθ

) H(1)
j (kTr)
kT

(2.29d)
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Following Langley and Shorter’s work [24], only up to the first modes will be retained and

the higher order modes will be truncated. The forces and moments acting on the annulus

interface of the elastic region is determined by integrating the proper components of the

shearing force flow and the moment rate along the peripheral cylindrical interface of the

regions.

In the complete plate model, the contact of the component and the plate is assumed

to be a rigid disk as shown in figure . The origin of this disk is considered as the point of

the connection i.e. where the external forces are exerted. The peripheral displacements of

the disk can be expressed in terms of the linear and rotational displacements of the disk

origin. Enforcing the compatibility and the equilibrium between the area of contact of the

disk and the elastic region, the displacement vector of the joint can be related to the wave

amplitudes of the elastic part of the plate. The plate joint force vector as (2.16) and the

general plate joint displacement are defined as:

{UP} = {ux, uy, uz, θx, θy, θz, 0, 0, 0, 0, 0}T , (2.30)

The incoming displacement and force vectors are defined similarly and designated by

superscript “in”. Also, define the wave amplitude vectors as:

{AP}={AF,O
B0
, AF,O

BC
, AF,O

BS
, AN,O

B0
, AN,O

BC
, AN,O

BS
, AF,O

LC
, AF,O

LS
, AF,O

T0
, AF,O

TC
, AF,O

LS
}T , (2.31)

{AP

in} = {Ain
B0
, Ain

BC
, Ain

BS
, Ain

LC
, Ain

LS
, Ain

T0
, Ain

TC
, Ain

LS
}T , (2.32)

Similar to what is done for the beams,the [Q] matrices that relate the displacement to the

wave amplitude vector are determined as:

{UP} = [QP ]
(11×11)

{AP}, {Uin

P } = [Q
in

P ]
(11×8)

{AP

in}
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The nonzero entries of the above matrices are found to be:

QP1,7
=QP2,8

=H0
(2)(akL)−H1

(2)(akL)
a

, QP1,11
=−QP2,10

=
H1

(2)(akS)
a

,QP3,1
=H0

(2)(akB),

QP3,4
=H0

(2)(−iakB), QP4,3
=−QP5,2

=
H1

(2)(akB)
a

, QP4,6
= −QP5,5

=
H1

(2)(−iakB)
a

,

QP6,9
=kS QP1,11

, QP7,7
=−QP8,8

=H0
(2)(akL)− 2H1

(2)(akL)
akL

, QP11,1
=−kBH1

(2)(akB),

QP7,11
=QP8,10

=−H0
(2)(akS)+

2H1
(2)(akS)
akS

, QP9,2
=QP10,3

=kBH0
(2)(akB)−2H1

(2)(akB)
a

,

QP9,5
=QP10,6

=−ikBH0
(2)(−iakB)− 2H1

(2)(−iakB)
a

, QP11,4
=ikBH1

(2)(−iakB)

and

QP1,4

in
= QP2,5

in
= H0

(1)(akL)− H1
(1)(akL)
a

, QP1,8

in
= −QP2,7

in
=
H1

(1)(akS)
a

,

QP3,1

in
=H0

(1)(akB), QP4,3

in
= −QP5,2

in
=
H1

(1)(akB)
a

, QP6,6

in
= kS QP1,8

in
,

QP7,4

in
=−QP8,5

in
=H0

(1)(akL)−2H1
(1)(akL)
akL

, QP7,8

in
= QP8,7

in
=−H0

(1)(akS)+
2H1

(1)(akS)
akS

,

QP9,2

in
=−QP10,3

in
=kBH0

(1)(akB)−2H1
(1)(akB)
a

, QP11,1

in
= −kBH1

(1)(akB)

The force vectors acting on the origin of the disk may be expressed in terms of the wave

amplitude vectors through [S] matrices:

{FP} = [SP ]
(6×11)

{AP}, {F in

P } = [S
in

P ]
(6×8)

{AP

in}

Define:

d0 = 2π aDB, d1 =
6d0

L2
,

g(κ, j, l) =
i

2
d0κ

2
[
2H1

(j)

(
(−i)laκ

)
− i

j
a κH0

(j)

(
(−i)laκ

)]

Most of the entries are zero; the nonzero elements of [S] are:

SP1,7
= SP2,8

= 2d1 kLH1
(2)(akL), SP1,11

= −SP2,10
= d1(1− ν)kSH1

(2)(akS),

SP3,1
= d0kB

3H1
(2)(akB), SP3,4

= id0kB
3H1

(2)(−i akB), SP4,3
= g(kB, 2, 0),

SP4,6
= g(kB, 2, 1), SP6,9

=
2d1(1− ν)
i d0 kS

2 g(kS, 2, 0)
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The elements of [SP

in
] that are not zero are:

SP1,4

in
= SP2,5

in
= kLH1

(1)(akL), SP1,8

in
= −SP2,7

in
= d1(1− ν)kSH1

(1)(akS),

SP3,1

in
= −i d0H0

(1)(akB), SP4,3

in
= −SP5,2

in
= g(kB, 1, 0), SP6,6

in
=

2d1(1− ν)
i d0 kS

2 g(kS, 1, 0)

The impedances for the plate model can readily be obtained from the above matrices.

Without the loss of generality, it can be assumed that [QP ] is invertible. This assumption

makes it possible to express the wave amplitude vector in terms of the displacement and

hence velocity vector. Therefore:

{FP} = [SP ]
(6×11)

{AP} = [SP ]
(6×11)

[QP ]
(11×11)

−1 {UP}

(i ω)

 [ZP ]
(6×6). . . . . . . . .

[ZP
∗]

(5×6)

 = [SP ]
(6×11)

[QP ]
(11×11)

−1 (2.33)

The last 5 rows of the displacement vector are filled with 0. Therefore the bottom matrix

adds no new information; while the top useful matrix gives the plate impedance matrix as:

Z1,1 = Z2,2 =
SP1,7

QP7,11
− SP1,11

QP7,7

i ω (QP1,7
QP7,11

−QP1,11
QP7,7

)
(2.34)

Z3,3 =
SP3,1

QP11,4
− SP3,4

QP11,1

i ω (QP3,1
QP11,4

−QP11,1
QP3,4

)
(2.35)

Z4,4 = Z5,5 =
SP4,3

QP9,5
− SP4,6

QP9,2

i ω (QP4,3
QP9,5

−QP4,6
QP9,2

)
(2.36)

Z6,6 =
SP6,9

i ω QP6,9

(2.37)

Since the disk is rigid and the plate is isotropic, the forces applied on the center of the

disk, solely induce the motions on the direction of the applied force. In other words, the

impedance matrix is diagonal with no horizontal direction preference. Mathematically, since

the nonzero entries of the [S] and [Q] matrices appear in the same places, the forces of one

direction do not excite any other direction displacements. Ljunggren [?] has shown that

generally this is not true and every loads can lead into both in-plane and out of plane
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displacements (except for the torsional moment that only generates a tangential in-plane

displacement).

As for the beam model, the time averaged power flows of each wave type has the form

of (2.19). Langley and Shorter [14] calculated the power flow for a diffusive field as:

αPlate
jl

=


4 ρLkj if l = 0

2 ρLkj if l = C,S
(2.38)

where j indicates the wave type (i.e. bending, longitudinal, or shearing).

2.4 A semi-infinite beam connection to an infinite plate

In this section, the power exchange between an infinite plate and a semi-finite slender

beam is considered. The straightforward method developed here, is different from the calcu-

lations suggested by Langley and Shorter [24] and is easily extendable to finite component

cases.

Consider a semi-infinite prismatic beam connected to an infinite thin plate as shown in

figure 2.3. For simplicity, the beam is perpendicular to the plate and the Z–axis (normal

to the plate) passes through the shear center of the beam. Otherwise, by means of rota-

tion matrices, the Z–axes of the beam and plate should be expressed in a global common

coordinate system.

Figure 2.3: Connection of a semi-infinite beam to an infinite plate

The beam displacement vector should be modified in size to comply with the plate dis-
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placement vector size. This is simply done by adding five zero rows to the beam displacement

vectors and the [Q] matrices as:

{UB

∗}
11×1

,

{
{UB}6×1............
{0}5×1

}
, {UB

in∗}11×1 ,

{
{UB

in}6×1.............
{ 0 }5×1

}
(2.39)

and

[QB

∗
]11×6 ,

[
[QB

∞]6×6............
[ 0 ]5×6

]
, [QB

in∗
]11×6 ,

[
[QB

∞ in]6×6...............
[ 0 ]5×6

]
(2.40)

In order to find the wave amplitudes and hence the power transmitted, the compatibility

of the displacements and the equilibrium of the forces can now be combined in a global

system. The kinematic of the joint ({UB

∗} = {UP}) gives:

[QB

∗
]{AB

∞} − [QP ] {AP} = [QP

in
]{AP

in} − [QB

in∗
]{AB

∞ in} (2.41)

The dynamic equilibrium ({FB} − {FP} = {0}) leads to:

[SB]{AB

∞}+ [SP ] {AP} = −[SP

in
]{AP

in} − [SB

in
]{AB

∞ in} (2.42)

The wave amplitudes are found after solving the following global system of equations:

[
[QB

∗
] −[QP ]

[SB ] [SP ]

]{AB

∞}
........
{AP}

 =

[
[QP

in
]

−[SP

in
]

]{
AP

in

}
−

[
[QB

in∗
]

[SB

in
]

]{
AB

∞ in

}
(2.43)

The above system of equations has multiple inputs and should be solved for each incoming

wave type of the plate and beam separately. For practical configurations, it may be assumed

that the left hand side matrix is not singular (therefore invertible). The columns of the right

hand side input matrices correspond to the incoming wave type sitting on the same number

row as the column number. Using this fact, it is possible to solve the system of equations

only once. Moreover, to calculate power transmission coefficients, the input wave amplitudes

are usually taken unity. Therefore, the input vectors can be replaced by identity matrices

with appropriate sizes. The system of equations are then solved to find the system response

to incoming waves from the beam and the incoming waves from the plate separately. In this
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way, the final answer will be in a matrix form. The columns of the solution matrix (for each

component) represent the induced wave amplitude by the unit incoming wave with the same

row number as the wave amplitude vector. Each row of the solution matrix corresponds to

the responses of one wave type. Therefore:

{AB

∞}
. . . . . .
{AP}

 =



 [QB

∗
] −[QP ]

[SB ] [SP ]

−1  [QP

in
]

−[SP

in
]

 for plate incoming waves

−

 [QB

∗
] −[QP ]

[SB ] [SP ]

−1  [QB

in∗
]

[SB

in
]

 for beam incoming waves

(2.44)

It should be noted that {AB

∞} and {AP} are now matrices rather than vectors. These

matrices contain the each wave amplitude response to the incoming waves row-wise and

wave amplitude vectors to a particular incoming wave column-wise.

The power transmission coefficient for one wave type is calculated by finding ratio the

power flow associated with that wave type to the power flow corresponding to the incom-

ing wave. Equation (2.19) should be used to calculate the power flows for different wave

types. For instance, an incoming longitudinal wave in beam is transmitted as a symmetrical

bending wave in the plate. Using the identity matrix input method, the power reflection

coefficient is the square of the absolute value of the beam longitudinal wave outgoing am-

plitude and the power transmission coefficient is the absolute value of the plate symmetric

bending wave amplitude times

∣∣∣∣∣ α
Plate

B0

αB
Beam

∣∣∣∣∣.
2.5 Validations

In this section, numerical examples are used to validate the matrices and the method.

First, the obtained impedance expressions are compared to the well-known reported impedances.

Second, the numerical example used by Langley and Shorter [24] is replicated to show the

consistency between the methods.
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2.5.1 Impedance verification

As equation (2.33) shows, impedances contain the information from both the [S] and [Q]

matrices. Therefore, matching the impedances from the current method to those available

in the literature, indicates those matrices are pertinent. For small argument values the

models are more or less identical. The relevant impedances from the work by Ljunggren

[18, 19] in the current notation are:

Z1,1 =
4µL3kB

2

3(1− ν)ω

(
H0

(2)(akB)− 2i
π
K0(akB)

)−1

(2.45)

Z3,3 =
16µL
ω

(
(1− ν) sin akL

akL

H0
(2)(akL) +

2 sin akS

akS

H0
(2)(akS)

)−1

(2.46)

Z6,6
sym

=
8µLa

ωkSH1
(2)(akS)

(2.47)

A relatively complex in-plane moment impedance for a thin plate has been reported by

Dyer [22]; the small argument approximation for this impedance is given as Cremer [12]:

Z4,4 =
16DB

ω

(
1− 4i

π
ln 0.9akS

)−1

(2.48)

The graphs in figures (2.4)-(2.13) show the in-plane force and bending moment impedances;

as can be seen there is good agreement with the current and existing expressions. However,

when it comes to the normal force impedance, the results are somewhat different; because

the small contact area can be considered either soft or rigid. For torsional impedance, it

is seen that the current analysis is identical to Ljunggren [18, 19] so called ”symmetrical

loading” results; but as he explains, the “antisymmetrical” solution should be added to it.

If both parts are taken into account, despite the agreement of the trends, the impedances

difference is about a factor of 2. For more information, the relevant references such as

Ljunggren [18, 19], Leung and Pinnington [20], Dyer [22], Cremer [12] and, Thomas [23]

can be consulted.
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Figure 2.4: Real part of vertical force (bending) impedance

Figure 2.5: Imaginary part of vertical force (bending) impedance
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Figure 2.6: Real part of in-plane force impedance

Figure 2.7: Imaginary part of in-plane force impedance

27



Figure 2.8: Real part of the bending moment impedance

Figure 2.9: Imaginary part of the bending moment impedance
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Figure 2.10: Real part of the twisting moment impedance

Figure 2.11: Imaginary part of the twisting moment impedance
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Figure 2.12: Real part of the twisting moment impedance for a symmetric mode

Figure 2.13: Imaginary part of the twisting moment impedance for a symmetric mode
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2.5.2 Plate and beam system examples

Here, the replication of the result example from Langley and Shorter [24] (originally

Lyon [46]) is considered as the numerical validation.

A large thin aluminum ( ρ = 2700kg/m3, E = 7.1GPa, ν = 0.3) plate with a thickness

of 3.175 mm is considered as the infinite plate. A strip from the same plate with a width

of 38.1 mm is connected perpendicularly to the center of the plate as shown in the figure

(2.14).

Figure 2.14: A semi-infinite rectangular beam and a plate example

The radius of the joint is actually a free parameter. Remembering that the beam has

a rectangular cross section, the joint size can be chosen either as the radius of the largest

circle that can be inscribed in the rectangle as shown in figure (2.15) or the radius of the

circle with the same area.

Figure 2.15: Inscribed circle can be chosen as the rigid joint disk

The nonzero power transmission coefficients are plotted in figures (2.16) to (2.19) over a

frequency range of 0.1-10 kHz. The X–axis beam excitation graph is the same as reported
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Langley and Shorter [24]. It is interesting to note that an incoming wave in the beam excites

at most only one mode of each wave types at most. An incoming plate symmetric bending

wave excites only a longitudinal wave in the beam and an incoming symmetric torsional

wave in the plate causes a purely torsional motion in the beam. The other incoming wave in

the plate, excites exactly one mode of the bending, longitudinal, and torsional wave types.

Another interesting property of the response is the reciprocity. This is another check for

the correctness of the method. The reflection and transmission coefficients of two specific

wave types (one in the beam and the other one in the plate) are the same. For instance, the

transmission coefficient of an incoming longitudinal wave in the beam is equal transmission

coefficient of an incoming symmetric bending wave in the plate.

The transmission and reflection coefficients obtained for these joint radii when the in-

coming waves are torsional, longitudinal, and the stiffer bending side of the beam waves

do not change much. Naturally, the contact area (or the energy passage) for the joint with

a larger radius (equivalent circle for this case) is larger and therefore, the transmission

coefficients are higher. However, for the flexible side of the beam the main transmission

coefficient (plate bending coefficient) and the reflection coefficient (the X–axis) are quite

sensitive to the choice of this parameter. The reason is that the order of plate impedance

changes with respect to the beam flexible side impedance and it is known from the 1 DOF

energy transmission theory (for instance Lyon[2]) the relative order of the impedances of

two point connected structures plays a very important role in the energy exchange between

the components. Figures (2.20)-(2.23) show the sensitivity of the power coefficients to the

chosen joint sizes.
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Figure 2.16: Beam longitudinal incoming wave power coefficients

Figure 2.17: Beam shearing incoming wave power coefficients
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Figure 2.18: Beam X direction bending wave power coefficients

Figure 2.19: Beam Y direction incoming bending wave power coefficients
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Figure 2.20: Sensitivity of the longitudinal power coefficients to the joint radius

Figure 2.21: Sensitivity of the X-bending power coefficients to the joint radius
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Figure 2.22: Sensitivity of the Y-bending power coefficients to the joint radius

Figure 2.23: Sensitivity of the shearing power coefficients to the joint radius
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CHAPTER 3

Vibration Power Transmission Coefficient between two

Parallel Plates via a Beam

3.1 Introduction

Many structures can be considered as a system of layers of different materials which are

secured in between an outer and an inner panel. To support the structural forces, these

panels must be connected to one another directly. Usually one panel is riveted or welded to

mounts which are themselves are fixed to the other panel. Vibrational power and energy,

hence the noise, can now be exchanged between such two panels via the connection and

independently from the layers in between the panels. A system of two parallel plates and

one beam can serve as a model for finding the power swapped between the panels. For

instance, in a typical aeroplane fuselage, the inside panel is supported on small mounts

which are themselves are fixed to the outer plate. The treatment material, and air gaps

(air plate like layers) are secured between theses panels. However, the powers transmitted

through the layers of such a sandwich are analyzed in the next chapter.

In this chapter, first the matrices developed in the previous chapter are assembled to-

gether in order to find the wave fields in the components of the structure, then the power

transmission coefficients are found. These power coefficients can be used in EFEA for an-

alyzing a more complex structure. Further, numerical examples are solved to show the

applicability of the method. The method is validated by comparing the calculations to a 1

degree of freedom spring connection; also the energy conservation is checked by finding the
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Figure 3.1: Connection of two parallel plates via a beam

sum of the power transmission coefficients.

3.2 Waves in a two connected plates system

Consider two infinite parallel thin plates that are connected to each other via a finite

length slender beam. Each tip of the beam is assumed to be fully connected to one point of

each plate as shown in the figure (3.1). To keep the problem solution form simple, without

the loss of generality, it may be assumed that the beam is perpendicular to both plates.

This assumption eliminates a few intermediate steps of rotating the coordinate systems.

Using the models developed in the previous chapter, it is seen that there exist 34 un-

known outgoing wave amplitudes in the structure. Each plate model includes 11 wave

amplitudes; the beam model also adds an extra set of 12 wave amplitudes. The excitation

of each plate can be done through any of 8 incoming different waves which is similar to

the problem of connection of an infinite plate and a semi-infinite beam. The plates can

be different in material and geometry, therefore, they are designated by 1 (bottom plate)

and 2 (top plate). The global coordinate system can arbitrary be placed on the origin of
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the bottom plate; there is no preference of the coordinate system and the final result is

invariant. Since the plates are thin, the plate matrices are independent of z; however, the

top plate coordinate system should be reflected about the top mid plane in order to match

with the global coordinate system.

The beam displacement vector is defined by equation (2.13) and the force and wave

amplitude vectors relation stay unchanged as equation (2.17). Since the beam length is

finite, unlike the semi-infinite beam case, all the 12 columns of beam matrices are retained.

The beam displacement vector is modified by means of equation (2.22) and the [Q] matrix

has to be altered (just like the case of a semi-infinite beam and infinite plate) accordingly

as:

[QB

∗∗
]11×12 ,

[
[QB]6×12............
[ 0 ]5×12

]
(3.1)

The compatibility enforcement at z = 0 results in:

[QB

∗∗
]{AB} − [QP1

] {AP1
} = [QP1

in
]{AP1

in} (3.2)

In the absence of extra joint forces, the equilibrium of the dynamic forces at z = 0 leads to:

[SB]{AB}+ [SP1
] {AP1

} = −[SP1

in
]{AP1

in} (3.3)

The continuity of the second joint displacement and the dynamic equilibrium of the acting

forces leads into similar equations. However, instead of reorienting the second plate co-

ordinate system to match the global system, the compatibility and equilibrium conditions

applied to the second joint can be modified accordingly as:

{UB

∗}
(z=LB)

= −{UP2
} (3.4)

{FB}(z=LB)
= {FP2

} (3.5)

Now (3.4) and (3.5) may be expressed in terms of the wave amplitude vectors. The set of

the new equations along with (3.2) and (3.3) can be assembled into a global linear system

where the unknown quantities are the wave amplitudes of the plates and the finite length
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beam. The global system of equations is obtained as:


−[QP1

] [0 ] [QB

∗∗
]z=0

[SP1
] [0 ] [SB ]z=0

[0 ] [QP2
] [QB

∗∗
]z=LB

[0 ] −[SP1
] [SB]z=LB



{AP1

}
.........
{AP2

}
.........
{AB}

 =

[
[QP1

in
]

−[SP1

in
]

]{
AP1

in

}
−

[
[QP2

in
]

−[SP2

in
]

]{
AP2

in

}
(3.6)

The above linear system gives the wave amplitudes in the plates and also the beam. Mathe-

matically, the above linear system can be singular; however, for a system with realistic and

appropriate physical parameters, the existence of the solution can be taken for granted.

In order to find the power transmitted form one plate to the other plate, only the

plates far-field wave amplitudes are needed. Hence, the near field terms as well as those

corresponding to the beam will be discarded. Like the problem of the connection of a

semi-infinite beam and an infinite plate system, the above linear system has two inputs:

the excitation from the top plate and the excitations from the bottom plate. To find the

responses of each excitation, the incoming wave amplitude vectors can be replaced by an

8 × 8 identity matrix. The solution matrix for each plate excitation, contain the induced

wave amplitude vectors from different incoming wave types column-wise; row-wise, it gives

the values of each wave type to different excitations.

Once the wave amplitudes are found; the power flows associated with each plate wave

type can be calculated by means of equation (2.19). The ratios of the power flows corre-

sponding to each wave type to an incoming wave type power flow, give the power transmis-

sion coefficients.

3.2.1 Validation for a special case

In this section a special case of the general problem is considered. The plates can

be totally different in material and the geometry; but when the plates are identical, the

symmetric bending mode transmission can be expressed by a relatively simple formula.

This formula is comparable to the power transmission coefficient obtained for the plates
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when they are connected via a spring.

3.2.2 Symmetric Mode transmission

As a special case, when the plates are identical in material and geometry, the calculations

are not too messy and a compact closed form solution for the structure response can be

obtained. For the sake of brevity, normal forces acting on the plates origins and the out of

plane displacements of the joints can be designated by F and u, respectively. The global

coordinate system can be fixed on the bottom plate origin and subscripts 1 and 2 refer to the

bottom (exciting side) plate and the top (receiving side) plate correspondingly. Keeping

the 0 bending mode only, the out of plane displacements of the plate origins for a unit

amplitude incoming wave can be written as:

u1 = QP3,1 A1 +QP3,4

in
An

1 +QP3,1

in
(3.7)

u2 = −QP3,1 A2 −QP3,4

in
An

2 (3.8)

where A1,An
1 ,A2,and An

2 are the bending wave amplitudes (the index corresponds to the

plate number and n designates the near field). Also:

QP11,1 A1 +QP11,4

in
An

1 + +QP11,1

in
= 0 (3.9)

QP11,1 A2 +QP11,4

in
An

2 = 0 (3.10)

Similarly, the normal forces acting on the plates joints are calculated as:

F1 = SP3,1 A1 + SP3,4

in
An

1 + SP3,1

in
(3.11)

F2 = −SP3,1 A2 − SP3,4

in
An

2 (3.12)

The minus signs are needed to convert the direction of the top plate Z–axis to the global

coordinate system.

Alternative to the exponential form, the beam longitudinal displacement field can be
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expressed (in terms of sine and cosine functions instead of the exponentials) as:

uz(z) = cos kLz A
B

1 + i sin kLz A
B

2 (3.13)

The axial force is now calculated as:

Fz(z) = −EA ∂uz

∂z
= (EA kL sin kLz)A

B

1 + (−i EA kL cos kLz)A
B

2 (3.14)

The connection of the beam and the plates dictates the equality of the beam axial dis-

placement and the plate out of plane displacement plate origin. Moreover, the longitudinal

forces on the tips of the beam balance the normal forces acting on the origins of the plates.

Therefore, the compatibility and equilibrium conditions on the joints give the following set

of equations:



QP3,1 A1 +QP3,4

in
An

1 +QP3,1

in − A
B

1 = 0

QP11,1 A1 +QP11,4

in
An

1 + +QP11,1

in
= 0

SP3,1 A1 + SP3,4

in
An

1 + SP3,1

in − i EA kL cos kLLB A
B

2 = 0

QP3,1 A2 +QP3,4

in
An

2 − cos kLLB A
B

1 − i sin kLLB A
B

2 = 0

SP3,1 A2 + SP3,4

in
An

2 − EA kL sin kLLB A
B

1 + i EA kL cos kLLB A
B

2 = 0

QP11,1 A2 +QP11,4

in
An

2 = 0

(3.15)

The reflected (A1) and transmitted (A2) wave amplitudes can be obtained from the above

equations. The transmitted wave amplitude is computed as:

A2 =
EAkLQP11,4

sin kLLB

P1 − P2

P3 + P4− (EAkL)2
(3.16)
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where P1 to P4 are:

P1 =
QP3,1

in
(SP3,1

QP11,4
−SP3,4

QP11,1
)−QP11,1

in
(SP3,1

QP3,4
−SP3,4

QP3,1
)

(QP3,1
QP11,4

−QP11,1
QP3,4

)2
(3.17)

P2 =
SP3,1

in

QP3,1
QP11,4

−QP11,1
QP3,4

(3.18)

P3 =
2EAkL

tan kLLB

SP3,1
QP11,4

−SP3,4
QP11,1

QP3,1
QP11,4

−QP11,1
QP3,4

(3.19)

P4 =

(
SP3,1

QP11,4
−SP3,4

QP11,1

QP3,1
QP11,4

−QP11,1
QP3,4

)2

(3.20)

Equation (3.16) can also be expressed in terms of the plate impedance (Z3,3
P ) as:

A2 =

EAkL

i ω sin kLLB

ZP ∗

Z3,3
P 2 +

2EAkL

i ω tan kLLB

Z3,3
P −

(
EAkL

ω

)2 (3.21)

where ZP ∗ is:

ZP ∗ =
QP11,4

QP3,1

in
Z3,3

P

QP3,1
QP11,4

−QP11,1
QP3,4

−
QP11,4

QP11,1

in
(SP3,1

QP3,4
−SP3,4

QP3,1
)

i ω (QP3,1
QP11,4

−QP11,1
QP3,4

)2

+
SP3,1

in
QP11,4

i ω (QP3,1
QP11,4

−QP11,1
QP3,4

)

(3.22)

As the beam longitudinal wave number approaches to 0, the above formula reduces to:

A2 =
ZP∗

Z
Spring

Z3,3
P

Z
Spring

+
(

Z3,3
P

2Z
Spring

)2 (3.23)

The plates are assumed to be identical, hence, the power transmission coefficient is

simply reduced to |A2|2.

To verify that the symmetric bending mode of the full matrix solution generates the

same results as the closed formula for this special case, the solutions of both methods are

compared for following numerical examples:

• Steel plates (Young’s modulus: 200 GPa, Poisson’s ratio: 0.32, density 7850 kg/m3)
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of 5 mm in thickness and a steel connecting beam of length 5 cm with a circular cross

section of radius 5 mm.

• Two 1 mm aluminum plates (Young’s modulus: 70 GPa, Poisson’s ratio: 0.35) and a

circular connecting aluminum beam of length 10 cm and of radius 1 cm.

As it is seen from the figures (3.2) and (3.3) the matrix solution is identical to the

calculations from the closed form formula. Also, it is notable that the stiffer the beam is,

the larger the transmission coefficient will be. This perfectly makes sense since it means

that the more rigidly connected plates exchange their vibrational energy easier. Also, it is

seen that the small argument expansion for the trigonometric functions are acceptable for

the practical structural configurations.

Figure 3.2: Verification of the matrix method for a special case (two steel plates connected
via an steel beam

Figure 3.3: Verification of the matrix method for a special case (two aluminum plates
connected via an aluminum beam)
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3.2.3 Plates connected via a spring

The power transmission between two point connected subsystems can be obtained by

means of their impedances. It is known that the power transmission coefficient for two

mechanical subsystems with mechanical impedances Z1 and Z2 can be calculated as (Lyon

[2]):

τsys =
4<(Z1Z2)
|Z1 + Z2|2

(3.24)

where < indicates the real part of a complex number.

A spring impedance is calculated from the Hooke’s law as:

ZSpring =
SSpring

i ω
= i ZS (3.25)

where SSpring is the spring stiffness which is a purely imaginary complex number.

To take advantage of this formula, it is possible to consider the spring and one of the

plates as one subsystem. The impedance of the plate and spring can be found by combining

two impedances which are connected in series. Hence:

ZSP =
ZPZSpring

ZP + ZSpring
=

i ZPZS

ZP + i ZS
(3.26)

where ZSP is the impedance of the combined plate and spring subsystem. ZP (which

according to the classical formula is a real number) is the plate normal force impedance.

Combining equations (3.24) and (3.26):

τsys =
4<(ZP2

i ZP1ZS

ZP1 + i ZS
)∣∣∣∣ZP2 +

i ZP1ZS

ZP1 + i ZS

∣∣∣∣2
=

4ZP1ZP2(
ZP1ZP2

ZS

)2

+ (ZP1 + ZP2)
2

(3.27)

If both plates have identical properties, the above formula will reduce to:

τsys =
1

1 +
(

ZP
2ZS

)2 (3.28)

The spring model also implies that if the spring is chosen very stiff relative to the plate,

45



the power transmission coefficients will be close to one. this is in accordance with the close

formula insight. However the pitfall of the spring model is that one can argue that the

energy path from one plate to another can be considered as a series of three subsystems:

plate, spring, plate. The average energy transmitted from a plate to the spring will be zero

sice the impedance of a plate is a real number and the spring impedance is purely imaginary;

therefore, (3.24) suggests that no power exchange can take place.

3.2.4 Comparison of the spring and beam model

In this section a very light beam and a spring model results are compared. These

formulas have similar forms; however, the existing model for the connection of the plates

through a light spring can not capture the effect of the finite length of the spring and is

indifferent to the distance of the plates which is in general not right.

A light beam can be considered as a spring. This can be shown by evaluating equa-

tions (3.13) and (3.14) at z=0. It is possible to eliminate the wave constants and find the

kinematic and constitutive laws for beam longitudinal vibration. Therefore:

uz(0) = u0 = A
B

1 (3.29a)

Fz(0) = F0 = −i EA A
B

2 (3.29b)

Substituting the wave constants found from equations (3.29) into equations (3.13) and

(3.14), the displacements and the forces can be related directly as:

uL = (cos kLLB ) u0 +
(
−sin kLLB

EA kL

)
F0 (3.30a)

FL = (EA kL sin kLLB )u0 + (cos kLLB ) F0 (3.30b)

A common assumption for a light spring model is that the forces acting on the tips of a light

spring are equal and opposite. Moreover, a linear spring, follows the Hooke’s law; therefore
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the analogous displacement and force equations for a light spring model are:

uL = u0 −
1

SSpring

F0 (3.31a)

FL = F0 (3.31b)

An inspection of the equations (3.30) and (3.31) reveals that as the density of a beam

approaches to 0, the beam wave number also tends to 0: kL = ω

√
ρ

µ
→ 0. This shows that

the beam model actually reduces into light a spring that has an equivalent stiffness of
EA
LSp

,

where LSp is the length of the spring. A close exam reveals that in the limit, as the density

of the beam approaches to 0, power transmission coefficient obtained from equation (3.16)

reduces to equation (3.28) only if the absolute values of the plate and spring impedances

are close. In other words, this shows that the complete model can capture more aspects of

the power transmission than the well known simple spring model.

3.2.5 Breaking down the model to two plates and two semi-infinite beams

Another way to estimate the power transmitted from one plate to another plate is by

decomposing the structure into two subsystems in a different way. This time, one plate and

a semi-infinite beam can be considered as a subsystem.

The power exchange expression of equation (3.24) can be used to find the energy trans-

mitted from the source plate to a semi-infinite beam as:

τ
Plate→Beam

=
4<(ZBeamZPlate

)
|ZBeam + Z

Plate
|2

(3.32)

The impedance of a semi-infinite beam at its tip can easily be computed as:

ZBeam =
FBeam(0)

i ω uzBeam(0)
=
−EA∂uz

∂z
(0)

uz(0)
=
EAkL

ω
= EA

√
µ

ρ
(3.33)

As it is seen the impedance of a semi-infinite beam at the tip is constant.

Now the structure can be considered as a combination of two parts, each containing a

plate and a semi-infinite beam. The plates are identical. Hence, from energy reciprocity,
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the power transmitted from the plate to the beam is equal to the power transmitted from

the beam to the plate. Therefore, the overall power transmission of the system is computed

by squaring the power transmission from one of the plates to the assumed semi-infinite

beam. Recalling that the classical plate impedance is a real constant, the overall power

transmission is obtained as:

τ
Plate1→Plate2

=
16Z2

Beam
Z2

Plate

(ZBeam + Z
Plate

)4

τ
Plate1→Plate2

=
1024D

Plate
L

Plate
E2

Beam
µBeamA

2
Beam

ρ
Plate

ρBeam(
8
√
D

Plate
L

Plate
ρ

Plate
+ EBeamA

√
µ

Beam
ρ

Beam

)4 (3.34)

Since both of the impedances are constant, the power transmission estimation from this

simple model is constant. Obviously the estimation is not accurate enough to model the

power exchange between two parallel plates.

3.2.6 Comparison of the methods by numerical examples

In this section, through two numerical examples, the power transmission coefficient

between two identical plates are obtained and compared for the different models. These

models are: power exchange by only considering the symmetrical bending mode of the plate

vibration (both the closed form formula and matrix method); modeling the connection as

a spring; and the impedance method. For each example, a specific value for the spring

stiffness (or the spring equivalent to the beam) is considered and the power coefficients are

computed afterwards. For the first numerical example, the spring constant is around 10

kN/m and for the second one, the spring constant is set around 100 kN/m. For each one,

the beam properties are varied in such a way that the equivalent spring impedance remains

unchanged. The power transmission coefficient resulting from different beam properties

are then compared to those resulting from the spring model and the simple model with

the constant power coefficient (two subsystems each including a semi-infinite beam and an

infinite plate). For both cases, the plates are assumed to be identical steel plates (with a

Young’s Modulus of 200 GPa, mass density of 7850 kg/m3, and a Poisson’s ratio of 0.32).

The plates thicknesses are both 1mm. Furthermore it is assumed that the plates are large
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enough to be modeled as infinite thin plates. Studied cases for each spring constant are:

• case 1: The light beam as a benchmark.

• case 2: Length and the Young’s modulus of the beam are increased by a factor of 5;

(therefore the equivalent stiffness remains the same).

• case 3: Length and the Young’s modulus of the beam are reduced by a factor of 5.

• case 4: The radius of the cross section and the length are increased by a factor of 5

and the Young’s modulus of the beam and is reduced by a factor of 5.

As the first example, a spring with a stiffness value around 10 kN/m is considered (the

mass density value is selected very small because a very light beam represents a spring).

An equivalent stiffness (which is calculated from
EA
LSp

) around this value can be obtained

by choosing the following properties: E = 12.73 MPa (Young’s Modulus), ν= 0.3 (the

Poisson’s ratio), radius of the cross section of the Beam: 5 mm, and the original length is

considered 10 cm. The following graphs shown in figure (3.4) the results obtained for this

example.

For the second example, the spring stiffness value will be 10 times larger than the first

example; i.e.: around 100 kN/m. To get an equivalent stiffness for the beam, the properties

are chosen as: E = 63.65 MPa (Young’s Modulus), ρ = 1e-6 kg/m3 (the mass density value

is selected very small because a very light beam represents a spring), ν= 0.3 (the Poisson’s

ratio), radius of the cross section of the Beam: 1 cm, and the original length is considered

20 cm. Figure (3.5) shows the results obtained for different cases of this example.

It is observed that in general the spring model predicts less energy exchange in lower

frequencies comparing to the more involved light beam model. This is due to the fact that

unlike the spring model, the power exchange happens through whole cross section of the

beam not through just one point. Also the spring results are not sensitive to the length

provided that the stiffness remains the same; this simplification is not in accordance with

the fact that a length is important in such structures. Another observation is that for

lower frequency range, the light beam model is not sensitive to property variations if the
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equivalent stiffness remains constant; however, a shorter flexible beam (case 4) deviates

from the benchmark faster and blocks more energy transmission in higher frequencies.

Figure 3.4: Verification of the matrix method for a special case (two steel plates connected
via an steel beam

Figure 3.5: Verification of the matrix method for a special case (two aluminum plates
connected via an aluminum beam)
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3.3 Vibrational Power Transmission found by beam model-

a case study

In this section, the previous semi-infinite beam and plate system is converted to a finite

length beam that connects two identical plates. The plates are thin (3.175 mm thickness)

and from aluminum ( ρ = 2700kg/m3, E = 7.1GPa, ν = 0.3). The beam is a strip of width

38.1 mm from the plates. The beam is attached perpendicularly to the parallel plates. The

beam length is chosen as 5cm.

In this numerical example, the beam properties along the lateral axes are different.

Therefore, it is possible to compare the effect of the beam along the X and Y axes.

An incoming wave can potentially lead into 8 transmission and 8 reflection coefficients.

For this example, the nonzero coefficients are plotted in figures (3.6) to (3.13) over a fre-

quency range of interest which is 0.1-10 kHz.

It is observed that an incoming plate symmetric bending wave only excites longitudinal

wave in the beam and an incoming symmetric torsional wave in the plate causes a purely

torsional motion in the beam. The other incoming wave in the plate, exactly excite one

mode of the bending, longitudinal, and torsional wave types. This is due to the fact that

the matrix is a first order expansion of independent modes.

Another interesting property of the response is the reciprocity which is another check for

the correctness of the method. The reflection and transmission coefficients of two specific

wave types (one in the beam and the other one in the plate) are the same. For instance, the

transmission coefficient of an incoming symmetric bending wave in one plate is the same as

the transmission coefficient of an incoming symmetric bending wave from the plate (since

an incoming symmetric bending wave in one plate only excites a symmetric bending wave

in the other plate). This is also true for a symmetric torsional wave. Like the semi-infinite

beam case, an incoming wave in one of the plates at most excites one mode of each wave

types in the other plate (i.e. at most exactly excite one mode of the bending, one mode of

the longitudinal wave, and one mode of the torsional wave). The reciprocity of the energy

paths is also retained.

The energy conservation can be maintained only if the sum of the power coefficients are
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equal to 1. For instance, the following criterion can be defined to determine the accuracy

accuracy = max
frequency

(|1−max
∑

τij |, |1−min
∑

τij |)

For this example, the sum of the coefficients for each in-coming wave is 1 with an accuracy

of 10−12.

For this problem, the symmetric bending mode is the main mechanism of vibration

power exchange between the plates. Like the previous case of similar plates, as the frequency

increases, the power transmission coefficient drops and more of the wave is reflected. On

the other extreme, the symmetric shearing mode is of least significance. Although some

finite length effect is observed; but since usually a frequency averaging is employed in

determining the final result, the resonance is not importance. A symmetric mode can only

excite symmetric mode of the same wave type in the plates.

Cosine bending mode is the next important mode in this problem; however, it is ignor-

able when the frequency is less than 5 kHz. A cosine bending (longitudinal) mode only

excite cosine bending and longitudinal modes and sine shearing modes of the plates. The

sine modes of bending (longitudinal) waves excite only the sine modes of the bending and

longitudinal waves and the cosine shearing waves. Shearing waves, however, can excite the

same mode of shearing waves and the opposite mode type of the other wave types.

In general, the bending wave types have more contribution in power exchange and the

shearing waves are of least importance.

Finally it is seen that a stiffer beam, reflects more in-plane waves and permits less power

exchange. This is the reason that a much smaller transmission coefficients are found along

the stiffer side of the beam.

52



Figure 3.6: Power transmission coefficients for a symmetric bending mode

Figure 3.7: Power transmission coefficients for a symmetric shearing mode)
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Figure 3.8: Power transmission coefficients for a cosine bending mode

Figure 3.9: Power transmission coefficients for a sine bending mode
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Figure 3.10: Power transmission coefficients for a cosine longitudinal mode

Figure 3.11: Power transmission coefficients for a sine longitudinal mode
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Figure 3.12: Power transmission coefficients for a cosine shearing mode

Figure 3.13: Power transmission coefficients for a sine shearing mode
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CHAPTER 4

Analysis of Layered Structures

4.1 Introduction

Many structures in daily life are made of layers of material. For instance, if an aircraft

fuselage is sectioned, the outer panel, noise treatment material, and inner panel which are

possibly separated with some air gaps can be recognized. Such structures are commonly

modeled as layers of materials with infinite width and finite depth. Below, a matrix method

is developed to analyze such structures. This analysis will be used in next chapter for

modeling a sandwich structure by element suitable for EFEA.

In this chapter, first the matrices for an infinite layer of porous material is derived form

the plain wave equations. Then, the matrices for a solid layer, a thin plate, and a layer of

plate like fluid are derived by considering special case of the complete porous material model.

Also, a more general case of a solid layer whose material is only isotropic transversely is

given. The boundary conditions are applied to find a library of matrices for different surface

conditions.

4.2 Porous medium wave equations

A porous medium is considered to be a continuum consisting of two phases in equilib-

rium: a solid phase and a fluid phase. The solid phase is a porous matrix where the fluid

phase fills the pores.

Porous materials are commonly assumed to be homogenous and isotropic due to the
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complexity of the model and the difficulties of obtaining the material constants. The filling

fluid can be quite light such as air or heavy like water. The fluid phase may be modeled

as a simple inviscid fluid or may be represented by a more mathematically complicated

fluid constitutive law. Since both fluid and solid phases are in dynamic equilibrium, the

deformation of a porous material makes the fluid in between the pores to diffuse.

Compared to the fluid, the solid matrix may be often assumed to be rigid [25] and [26];

poroelasticity on the other hand, takes into account deformability of the solid component.

Poroelasticity approaches the rigid matrix representation when the flow resistance of the

pores is very small and the frequency range is quite high [26]. Poroelasticity theory was

originally developed in response to the seminal work of Biot in 1950’s [27]. Biot accounted

for the inertia and viscous influences through interactions of the fluid by using a Lagrangian

model [28]. Assuming this model, he devised two types of wave equations that govern

the motion particle of the system of porous materials. He also concluded that there is a

mathematical analogy between the thermoelasticity and poroelasticity [26] and [29].

The development of poroelasticity was originally motivated from geophysics and studies

of soil. Poroelasticity has been successfully used to model material systems in different fields

of study such as seismic waves, rock and soil mechanics, sea-bed studies, biomechanics and

biomaterial, and noise insulating materials; e.g. [26]. As an example, elastic porous material

theory has been employed to investigate bones. Although compared to the hard component

of the bone, the inside fluid has a very small bulk modulus,the dynamic load effects of the

fluid cannot be ignored. In other words, a slowly loaded drained bone does not respond

much differently from a bone with the fluid inside; however, this is not quite true if the

forces are dynamic [26].

The general form of the governing equations of motion for a porous medium saturated

by a fluid has been derived by Biot [27] as:

σs
ij,j − b(u̇s

i − u̇f
i ) + F s

i = ρ11ü
s
i + ρ12ü

f
i (4.1)

σf
,i + b(u̇s

i − u̇f
i ) + F f

i = ρ12ü
s
i + ρ22ü

f
i (4.2)

In the above equations, σ’s represent the stresses, superscripts indicate the components (i.e.
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”f” for fluid and ”s” for solid), subscripts (i, j = x, y, z) identify the directions, ρ11, ρ12, and

ρ22 are densities that incorporate inertial interactions of the fluid and solid phases, b is a

damping constant which is a function of the permeability, fluid phase viscosity, and the

porosity, and F ’s are the body forces. The material constitutive laws are:

σs
ij = 2µ εsij + (λ es +Qp e

f ) δij (4.3)

σf = −φp p
f = Qp e

s +Rp e
f (4.4)

where λ and µ are Lamé’s coefficients for the solid phase; Qp and Rp are fluid phase related

material constants; δij is the Kronecker symbol; and e is the dilatation; i.e.:

e = εii = ui,i. (4.5)

The material constants for an open cylindrical pore porous material can be completely

determined in terms of the following seven solid phase constants and the properties of air

[30]: porosity φp; solid phase Poisson’s ratio νs; structural shape factor ε′; flow resistivity

σr; solid phase structural dissipation factor ηs; solid phase Young’s modulus Es; the solid

phase density ρs; the speed of sound in air c0; and the air density ρ0. The constants reported

by Bolton [30] in the current notation are:

ρ11 = ρs + φp ρ0 (ε′ − 1) (4.6)

ρ22 = φp ρ0 ε
′ (4.7)

ρ12 = −φp ρ0 (ε′ − 1) (4.8)

The liquid bulk modulus between the cylindrical pores (E2) is:

E2 =
E0

1 +
2 (γ0 − 1) J1

(
λc

√
−iNPr

)
λc

√
−iNPr J0

(
λc

√
−iNPr

) (4.9)

where E0 is the bulk modulus of air; γ0 is the specific heats ratio for air (= 1.4); Ji is the

Bessel function of order i; NPr is the Prandtl number (=0.713 at 20 C◦ ); i =
√
−1; and λc
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depends on the angular velocity ω; fluid density ρf ; structural factor of the pores ε′; flow

resistivity σr; and the porosity φp as:

λ2
c =

8ω ρf ε′

σr φp
(4.10)

Bulk modulus of air can be expressed in terms of the speed of sound in air and the air

density:

E0 = ρ0 c0 (4.11)

Finally, the constants used in the governing equation of motion are:

Qp = (1− φp)E2 (4.12)

Rp = φpE2 (4.13)

b = −
σr φ

2
p λc

√
−i J1(λc

√
−i)

4 J0(λc

√
−i)

(
1− 2 J1(λc

√
−i)

J0(λc

√
−i)

)−1

(4.14)

In the absence of the body forces, harmonic (eiωt) steady state volumetric strains equations

are governed by:

Qp∇2ef + ω2ρ∗12 e
f = −P ∇2es − ω2ρ∗11e

s (4.15)

Rp∇2ef + ω2ρ∗22 e
f = −Qp∇2es − ω2ρ∗12e

s (4.16)

where the new mass coefficients are defined by:

ρ∗ij = ρij +
b

iω
(−1)i+j (4.17)

and P = λ+ 2µ. Equations (4.15) and (4.16) can also be written as:

∇2ef =
(ρ∗12Qp − ρ∗22P )∇2es + ω2

(
ρ∗12

2 − ρ∗11ρ
∗
22

)
es

ρ∗22Qp − ρ∗12Rp
(4.18)

ef =

(
PRp −Q2

p

)
∇2es + ω2 (ρ∗11Rp − ρ∗12Qp) es

ω2 (ρ∗22Qp − ρ∗12Rp)
(4.19)

The solid phase dilatational wave equation may be consequently derived from (4.18) and
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(4.19) as:

∇4es + χ1∇2es + χ2 e
s = 0 (4.20)

where

χ1 =
ω2 (ρ∗11Rp − 2ρ∗12Qp + ρ∗22 P )

P Rp −Q2
p

(4.21)

χ2 =
ω4
(
ρ∗11 ρ

∗
22 − ρ∗12

2
)

P Rp −Q2
p

(4.22)

Two dilatational wave numbers can be found from the characteristic equation of the above

differential equation:

k 1
(2)

=

√
χ1

+

(−)

√
χ2

1 − 4χ2

2
(4.23)

The torsional wave number of solid may be found in a similar way:

kt =
ω
√
µ

√
ρ∗11 −

ρ∗12
2

ρ∗22
2 (4.24)

Once the free wave numbers are determined, the velocity potentials of the two dilatational

waves (Φi(x, z, t) = φi(z) ei(ω t−kx x), i = 1, 2) and the divergence free shearing velocity

(Ψ(x, z, t) = ψi(z) ei(ω t−kx x)) for a porous layer (with the coordinates shown in figure 4.1)

can be computed. To determine the trace wave number, kx, the general Snell’s law must be

applied to match the trace speeds. This means that for an incident wave number kinc and

an incident angle θinc:

kx = kinc sin θinc = ki sin θi , i = 1, 2, t. (4.25)

Since the wave numbers are all complex, Snell’s law must be enforced in the complex plane

to find the complex angles [32]. The displacements from these two dilatational waves and

the torsional waves are superimposed to evaluate the displacement components of the solid

phase:

u = ∇φ1 +∇φ2 +∇×ψ (4.26)
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Figure 4.1: Coordinate system chosen for a layer

For a layer structure, the variations along the Y–axis are neglected [31], define:

ψ(x, z, t) = (0, ψy(x, z, t), 0) , (0, φt(x, z, t), 0) (4.27)

Plane harmonic waves contain both of the incoming and outgoing components. Thus the

displacements and the stresses need to be expressed in terms of incoming and outgoing

waves of these three wave types. Therefore, the displacement and stress fields of a porous

layer can fully be stated in terms of 6 wave amplitudes. Define:

φj(x, z) = (Cj1 e
−i kjz z + Cj2 e

i kjz z) e−i kx x, j = 1, 2, t (4.28)

= (Aj1 cos kjzz +Aj2 i sin kjzz ) e−i kx x. (4.29)

The displacement vectors are found accordingly as:

u = (φ1,x + φ2,x − φt,z , uy , φ1,z + φ2,z + φt,x) (4.30)

Fluid displacement components can be determined from the equations of fluid and solid

volumetric strains along with the solid phase displacements; however, a smarter way to find

the fluid displacement components is by constructing them on the basis of the similarity

of the solid and fluid dilatation functions structures. After substituting equation (4.5) into

(4.26):

es = ∇2φ1 +∇2φ2 = −k2
1 φ1 − k2

2 φ2 (4.31)
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The fluid phase dilatational wave function is readily computed via equations (4.19) and

(4.31):

ef = −κ2
1 φ1 − κ2

2 φ2 (4.32)

where

κ2
i =

2ρ∗11Rp − 3ρ∗12Qp + ρ∗22 P

ρ∗22Qp − ρ∗12Rp
k2

i +
χ2

ω2
, i = 1, 2. (4.33)

The z–dependent components of the velocities and stresses are finally computed as:

vf
z =

(
iωb1k1z

k2
1

sin k1zz

)
A11 +

(
ωb1k1z

k2
1

cos k1zz

)
A12 +

(
iωb2k2z

k2
2

sin k2zz

)
A21

+
(
ωb2k2z

k2
2

cos k2zz

)
A22 +

(
−ωgkx

k2
t

cos ktzz

)
At1 +

(
−iωgkx

k2
t

sin ktzz

)
At2

(4.34)

vs
z =

(
iωk1z

k2
1

sin k1zz

)
A11 +

(
ωk1z

k2
1

cos k1zz

)
A12 +

(
iωk2z

k2
2

sin k2zz

)
A21+

+
(
ωk2z

k2
2

cos k2zz

)
A22 +

(
−ωkx

k2
t

cos ktzz

)
At1 +

(
−iωkx

k2
t

sin ktzz

)
At2

(4.35)

vs
x =

(
−ωkx

k2
1

cos k1zz

)
A11 +

(
−iωkx

k2
1

sin k1zz

)
A12 +

(
−ωkx

k2
2

cos k2zz

)
A21

+
(
−iωkx

k2
2

sin k2zz

)
A22 +

(
−iωktz

k2
t

sin ktzz

)
At1 +

(
−ωktz

k2
t

cos ktzz

)
At2

(4.36)

σf
zz = [(b1Rp +Qp) cos k1zz]A11 + [i(b1Rp +Qp) sin k1zz]A12

+ [(b2Rp +Qp) cos k2zz]A21 + [i(b2Rp +Qp) sin k2zz]A22

(4.37)

σs
zz =

[
(λ+ 2µ+ b1Qp +

2µk2
1z

k2
1

) cos k1zz

]
A11 +

[
i(λ+ 2µ+ b1Qp +

2µk2
1z

k2
1

) sin k1zz

]
A12+[

(λ+ 2µ+ b2Qp +
2µk2

2z

k2
2

) cos k2zz

]
A21 +

[
i(λ+ 2µ+ b2Qp +

2µk2
2z

k2
2

) sin k2zz

]
A22+(

−2iµkxktz

k2
t

sin ktzz

)
At1 +

(
−2µkxktz

k2
t

cos ktzz

)
At2

(4.38)

σs
xz =

(
−2iµkxk1z

k2
1

sin k1zz

)
A11 +

(
−2µkxk1z

k2
1

cos k1zz

)
A12 +

(
−2iµkxk2z

k2
2

sin k2zz

)
A21

+
(
−2µkxk2z

k2
2

cos k2zz

)
A22 +

(
µ(k2

x − k2
tz)

k2
t

cos ktzz

)
At1 +

(
iµ(k2

x − k2
tz)

k2
t

sin ktzz

)
At2

(4.39)
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The above equations can be used to find the matrix which relates the displacement and the

stress components to the waves amplitudes vector.

4.3 Isotropic Solid Layer Wave Equations

An isotropic solid layer may be considered as a special case of a homogenous porous

layer. Plane wave equations for such a layer can readily be obtained from porous layer

wave equations. This is due to the fact that a porous material possesses a more general

constitutive material law. As mentioned in section 4.2, three wave types propagate within a

porous layer. One of the waves is torsional and the other two are dilatational. A close look

at equations (4.21) and (4.23) shows that the longitudinal wave number for a solid medium

can be recovered by eliminating the fluid phase as:

kl = k1 =

√
χ1 +

√
χ2

1 − 0
2

=

√
ω2 (ρ∗22Rp − 0 + 0)

P Rp − 0
= ω

√
ρ

λ+ 2µ
(4.40)

This coincides with the commonly known longitudinal wave numbers in solids. In fact, the

first dilatational wave has a greater correspondence with the solid matrix of the porous

material. The shearing wave number can also be found from equation (4.24):

kt =
ω

µ

√
ρ∗11 − 0 = ω

√
ρ

µ
(4.41)

Again this is the very same result from the classical wave theory.

The equations for the velocities and the stresses of a solid layer can be recovered from

those of a porous layer in the same fashion by eliminating the fluid phase related terms and

relabeling the first dilatational with subscript “l” instead of “1”.

4.4 Wave Equations of a Plate Like Simple Fluid

A layer of an ideal isentropic non-moving isotropic fluid is often a good model for an

acoustic medium. After eliminating the solid phase, equation (4.2) is reduced to Euler’s

equation and equation (4.4) will be the constitutive law of a simple fluid. The pressure and
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normal velocity of a fluid layer can be computed from a velocity potential in the form of

equation (4.28). The following relations hold:

v(x, z, t) = − ∂

∂z
Φ(x, z, t) (4.42)

v(z) = A+kz sin(kzz)−A−ikz cos(kzz) (4.43)

p(x, y, z) = −iωρΦ(x, z, t) (4.44)

σ(z) = A+(−iωρ cos(kzz)) +A−(iωρ sin(kzz))) (4.45)

The speed of sound in the fluid, cl, is constant; therefore, the wave number is proportional

to frequency:

kl =
ω

cl

. (4.46)

4.5 Boundary Conditions

The velocity and stress fields in different layers have several unknown wave amplitudes.

The problem of finding the wave amplitudes or the determination of the propagation of

waves in layered structures is well-posed. Hence the boundary conditions (BC’s) are safely

exploited to match the waves inside the layers to one another by determining the wave

amplitudes uniquely. In general, the BC’s either enforce the kinematics to match (com-

patibility) or balance the forces (equilibrium). The following BC’s are recognized in the

analysis of a layered structure:

• Radiation condition: The incident and final transmitted semi-infinite media can bear

only one of the in-coming or out-going waves only. The reason is that the energy norm

corresponding to a hyperbolic equation solution tends to zero over time [48]. As a

result, one of the wave amplitudes must be set to zero.

• Ideal fluid layer contact: An ideal fluid cannot withstand shearing forces. Therefore, at

the interface of a fluid layer with another layer, three BC’s should be compelled: com-

patibility of the normal velocities (displacements), equilibrium of the normal stresses

(forces), and setting the shearing stresses (forces) to zero.
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• Un-bonded (U) solid layers contact: On the surfaces of two adjacent solid layers that

can slide with no friction, shearing forces are absent. Hence, four BC’s must be

satisfied: compatibility of the normal velocities, equilibrium of the normal stresses,

and vanishing of the shearing stresses on both surfaces of the contact.

• Bonded (B) solid layers contact: When two solid layers are joint by welding (or being

tightly adhered), four BC’s must be satisfied: compatibility of the normal veloci-

ties, compatibility of the tangential velocities, equilibrium of the normal stresses, and

finally equilibrium of the tangential stresses

• Porous layers surface conditions: There are a total of 6 independent components on the

surface of a porous layer. Four of these are the normal and tangential of solid phase

velocities and stresses; the other two are the normal velocity and stress (pressure)

corresponding to the fluid phase. Deresiewicz and Skalak [41] mathematically showed

that there are three possible type of contacts for a porous surface. If a porous surface

is attached to another porous surface in a way that the solid components are perfectly

stuck together; however, the pores of the surfaces will partially cover one another due

to porosity difference, a partially bonded contact will results. The other two cases

are: when a porous touches another surface so that there exists no flow across the

surface and when a porous surface is in contact with another porous surface or an ideal

fluid. The latter is considered open pores. In the open pores case, the pressure of the

fluid phase is not(necessarily) continuous. Gurevich and Schoenberg[42] demonstrated

that Deresiewicz and Skalak conditions can be recaptured by replacing the porous

surface with a layer of an ideal fluid whose permeability is proportional to the layer

thickness as the thickness tends to zero. This is why the unglued porous surface can

be categorized as U no matter if it is in touch with another porous layer, solid layer, or

fluid layer. In fact, by considering the flow of the fluid across the open pores interface,
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equivalent U surface stress σz and velocity vz can may be defined:

σf
zz = φp σzz (4.47a)

σs
zz = (1− φp)σzz (4.47b)

vz = φp v
f
z + (1− φp)vs

z (4.47c)

By considering the combined normal velocity and stress of the surface, the BC’s for

a U porous surface are: continuity of the equivalent normal stress and velocity, and

setting the tangential stress or stresses to zero (if the adjacent layer is a solid layer or

another porous layer).

On the other hand, for a closed pores (perfectly bonded) surface, the surface normal

stress is simply the sum of the fluid and solid phases stresses.

σzz = σs
zz + σf

zz (4.48a)

vz = vf
z (4.48b)

vz = vs
z (4.48c)

For a perfectly B porous surface five conditions should be imposed: the surface normal

stress of the surface should match the adjacent normal stress, both normal velocities

of the solid and fluid phases should be equal to the adjacent layer normal velocity (in

the case of a porous layer, again both phases should be considered); compatibility of

the tangential velocity of the solid phase and the next layer tangential velocity; and

finally, equilibrium of the shearing stresses.

Finally, when two porous layers are connected in such way that the solid phases are

bonded perfectly and the pores partially overlap, a partially B contact will result. the

BC’s will be: compatibility of the solid phases velocity components, equilibrium of

the solid phases shearing stresses, balance of the B surface normal stress, matching

the in-pores flows of the surfaces and equilibrium of the (inversely scaled with the

porosity) fluid phases stresses. Therefore, the following quantities should match at
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the interface of the porous surfaces:

φ (vf
z − vs

z), v
s
z, v

s
x,

1
φ
σf

zz, σ
f
zz + σs

zz, σ
s
xz (4.49)

It should be noted that in reality, such a contact is hard to achieve, since usually

the glue that bonds the layers will fill in between the pores and hence results in a

(perfectly) B surface contact.

4.6 Direct calculation of multi-layer structure transmission

The transmission of sound waves through a layered structure can be predicted by solving

the set of wave equations of the layer along with imposing the boundary conditions to match

the waves on the layers interfaces. The problem of solving the set of wave equations with

proper BC’s on the surfaces, as mentioned earlier, is mathematically well-posed. This means

that the number of the equations and the the number of unknowns are equal and under

normal conditions the unknowns can be determined uniquely. If the layers are all unbonded,

it is possible to use the Brekhovskikh [31] recursive normal impedance formula; however,

since this method is based on equating the normal components of the velocities and the

stresses, it can not be used when a combination of B and U layers is present.

There are two major methods of analyzing general layered structures; here, they may

be called the direct and the transfer function (TF) methods. In the direct method, which

is used by Bolton et al [30] and Brouard and Allard [38], the set of equations (in the case of

Brouard and Allard, layer matrices) are assembled into a large global system and the wave

amplitudes are determined by inverting the aggregated coefficient matrix. Bolton recognized

three different situations regarding matching the surfaces of the layers: a) interface between

an acoustic medium and a thin panel resulting in 3 equations, b) a free porous surface that

gives 4 equations, and c) a bonded thin plate and a porous layer leading to 6 equations. The

direct approach has been used successfully; however, when the number of layers increases, its

implementation is not very straightforward, specifically because the equations of vibration

of the panels are combined with the equations of the porous layer. Further, the application
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of this method is not very efficient for sandwich layers made of a larger number of layers,

since the final coefficient matrix can have a substantial order and the inversion (or pseudo-

inversion)of such a matrix can be cumbersome if not impossible due to singularities. In

extreme cases, such as eliminating a layer from a sandwich, i.e. equating the thickness to

zero, the matrix will not be full rank. Hence, the linear system has no solution and all of

the equations need to be rewritten. Bolton has analyzed three different configurations: BB

(a 12×12 linear system), UU (a 14×14 linear system), and BU (a 13×13 linear system).

4.7 Transmission through a Multi-layer Structure- Transfer

Matrix Method

A layered structure made of finite numbers of layers as well can be analyzed when each

layer is represented by a transfer function (transfer matrix). A TF relates the particle

velocity and stress components from one side of the layer to the other side. A TF is

alternatively called “matrix propagator” since “it allows propagation of the field” from one

point to another point [31]. From a system theory point of view, TF’s are like the building

blocks of a linear system that can be put together to create a single TF that represents the

whole layered structure.

The advantage of using TF’s is that it involves only multiplying a set of matrices rather

than solving a large set of global equations; moreover, the insertion or elimination of the

layers are simply done by taking the corresponding matrix out of the production of the

matrices. Another benefit of this method is that linear system theory knowledge may also

add to the understanding of the layered systems. An Equivalent network analogy of a solid

layer to an electrical block diagram has been depicted by Rudgers [34]. Cerevenka and

Challande [35] have also developed a computational algorithm for the matrix method when

the layers are comprised of a combination of fluids and or solids (only). Moore and Lyon

[37] used the impedance matrix method for analyzing geometrically symmetric panels with

and without soft cores, cited that the accuracy is limited when the thickness is (relative to

frequency) is large.

Allard and his colleagues ([28, 38, 39, 40]) developed and used the transfer matrix
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method to analyze a layered system. Block diagrams of equivalent electrical networks for

the layers may be found in their work as well. However, in their analysis, they introduced

intermediate joint matrices which depend on both layers being able to use unreduced ma-

trices.

In the following sections the matrices that represent fluid layers, thin plates (panels),

solid layers, and porous layers will be given. It should be also noted that the information

regarding the angle(s) of incidence must be conveyed to the next matrix; this information

along with Snell’s law, determine the wave number component in each layer.

4.8 Transfer Matrix Derivation

The typical procedure for extracting a layer matrix from the plane wave equations is

explained in this section. First of all, the velocity and stress vectors need to be expressed in

terms of the wave amplitudes. As shown in figure 4.1, coordinates system can be set up such

that the Z–axis is perpendicular to the layer surface; thus designating the thickness. Also,

the X–axis is coincident with the edge of the layer cross section; therefore, the variation of

variables along the Y–axis can be neglected. Once the displacement and stress fields are

determined, these relations are expressed in the following matrix form:

v

σ

 = [Γ ]
{
A

}
(4.50)

Without the loss of generality, it is possible to set the datum on the input surface (at z = 0);

hence: {
A

}
= [Γ0 ]−1

v0

σ0

 (4.51)

By combining (4.50) and (4.51):

[TF ] = [Γ ][Γ0 ]−1. (4.52)

Brekhovskikh and [31] have considered the exponential forms of the wave fields. They
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have further broken down [Γ] into product of two matrices, one containing the admissible

propagation direction (eigen-vectors) which do not depend on the coordinate along the layer

thickness ([∆] and a diagonal n exponential.

4.9 Fluid layer TF

The simplest plane wave field occurs in an ideal isentropic homogenous, steady state

fluid which is at rest. The matrix relation for a layer of a plate like fluid can easily be found

via equations (4.43)-(4.45):

 vz

σzz


z

=

 cos(kzz) −kz sin(kzz)
iωρ

−ωρ sin(kzz)
ikz

cos(kzz)


 vz

σzz


z=0

(4.53)

4.10 BB Solid layer TF

The equations of the longitudinal (dilatational) wave and the transverse (shearing) wave

were recovered from those of a porous layer in section 4.3. When the solid layer faces are

glued or welded to the neighbor layers, both the normal and tangential components of the

velocities and stresses need to be considered in enforcing the BC’s. The following matrix

relationship for a BB solid layer is obtained:



vz

vx

σzz

σxz


z

=



T S
11 T S

12 T S
13 T S

14

T S
21 T S

22 T S
14 T S

24

T S
31 T S

32 T S
11 T S

21

T S
32 T S

42 T S
12 T S

22





vz

vx

σzz

σxz


z=0

(4.54)

After expressing the wave number components in terms of the corresponding angles, the

entries of the above TF matrix will be:
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TS
11 = cos2θt cos klzz + 2 sin2θt cos ktzz (4.55a)

TS
12 = 2 i sin2θt cot θl sin klzz − i cos 2θt tan θt sin ktzz (4.55b)

TS
13 = − i klz sin2θt

ρω
sin klzz −

i kx tan θt

ρω
sin ktzz (4.55c)

TS
14 = − i kx

ρω
(sin klzz − sin ktzz) (4.55d)

TS
21 = i cos2θt tan θl sin klzz − i sin 2θt sin ktzz (4.55e)

TS
22 = 2 sin2θt cos klzz + cos 2θt cos ktzz (4.55f)

TS
24 = − i kx

ρω
sin klzz −

i ktz

ρω
sin ktzz (4.55g)

TS
31 =

i ρ ω

klz
cos 2θt sin klzz −

4i ρ ω
kt

sin2θt sin ktzz (4.55h)

TS
32 = −2 ρω

kt
sinθt cos2θt (sin klzz − sin ktzz) (4.55i)

TS
42 =

−4 ρω klz

k2
t

sin2 θt sin klzz −
i ρ ω

k2
tz

cos2 2θt sin ktzz (4.55j)

Folds and Loggins [36], Cerevenka and Challande [35], and Brekhovskikh [31] derived the

above matrices for the harmonic convention e−i ω t. Unfortunately, Allard et al [?] reported

this matrix for the positive harmonic time convention (ei ω t) incorrectly.

4.11 UU Solid Layer TF

A solid layer can be inserted between two layers by means of no glue or welding; the

adjacent layers may be simple inviscid fluid and or other frictionless solid or porous layers.

When both sides are unbonded and frictionless, the solid layer is called UU. The surfaces of

a UU layer cannot carry any shearing stress; thus, on these surfaces the input and output

vectors may be reduced to only two component vectors. The reduction of the TF of a UU

solid layer is possible by substituting for the unwanted tangential velocities of both sides.
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The final matrix will be 2×2 and is related to the BB solid layer TF entries as:

[T S
UU ] =


T S

11 −
T S

41T
S
12

T S
42

T S
13 −

T S
42T

S
12

T S
42

T S
31 −

T S
41T

S
32

TS
42

T S
11 −

T S
42T

S
32

T S
42

 (4.56)

A simple investigation shows that the denominator cannot be zero for the positive incident

angles less than π/2 (or tilt mode as is called by Cerevenka and Challande [35])

4.12 BB Thin plate (Panel) TF

A thin plate model also leads to a very simple transfer matrix. A panel is identical to

a thin solid layer. The TF of a solid layer is greatly simplified when the thickness is small.

In this context, small is relative, meaning that thickness is of an order smaller than the

longitudinal wave number. The longitudinal wave number is proportional to the frequency;

therefore, as the frequency increases, the thin plate model validity is reduced. As a matter

of fact, in the higher frequency ranges, the surface waves need to be accounted for. For the

current frequency range of interest (less than 10 kHz) and practical structural panels (less

than few centimeters), the thin plate accuracy is acceptable.

A panel TF may be derived in two ways: a) first order expanding of the solid layer TF

entries with regard to the thickness; b) considering the plate theories. In this section the

latter approach is selected. The plate is assumed to obey the Kirchhoff model. A complete

list of the assumptions made for such a model can be sought in a plate book (e.g. [16]

or [49] ). However, the main assumptions made are the following: a) the points along the

thickness sections have the same displacements; b) in-plane deformations of higher orders

than the thickness are negligible; c) in-plane forces, except for the shearing stresses on the

faces can be ignored. The coordinate system is again chosen as shown in figure 4.1. The mid

plane displacement is designated by (ηp, ζp, ξp). The geometry of the deformation relates

the displacements (hence the velocities) of the panel faces. Under the used kinematical
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hypothesis:

vz = vz0 = ξ̇p (4.57)

vx(z) = η̇p − z ˙ξp,x = η̇p − z (−i kx)ξ̇p

= η̇p + i z kx vz0 (4.58)

Equation 4.58 can be used to relate the in-plane velocities of the sides:

vxL = i kx Lvz0 + vx0 (4.59)

where L is the thickness of the panel.

The governing equations of motion can be found by writing the variational form of

energy. The in-plane vibration equation is obtained as:

DI ηp,xx + σxz − σxz0 = ρL η̈p (4.60)

ρ is the density of the panel; σxz and σxz0 are the shearing stresses acting on the input and

output faces of the panel respectively; and DI is the in-plane rigidity of the plate defined

as:

DI =
E L

1− ν2
(4.61)

E is the Young’s modulus of the panel; and ν is the Poisson’s ratio of the thin plate. The

bending vibration of the plate will be:

DB ∇4ξp + ρL ξ̈p = σzz − σzz0 +
L

2
(σxz + σxz0),x (4.62)

Equations (4.57), (4.59), (4.60), and (4.62) lead into the following TF for a BB panel:

[T Pa
BB ] =



1 0 0 0

i z kx 1 0 0

ZB − 1
4z

2 k2
x ZI

1
2 i z kx ZI 1 i z kx

1
2 i z kxZI ZI 0 1


(4.63)
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ZI and ZB are in-plane and bending impedances of the thin plate respectively. These

impedances depend on the thickness as:

ZB =
DB(z) k4

x − ρ z ω2

i ω
(4.64a)

ZI =
DI(z) k2

x − ρ z ω2

i ω
(4.64b)

Entries ikxz and 1
2 ikxzZI are of O(zf) and O(z2f2) respectively. Also, ZB − 1

4z
2 k2

x ZI =

CBB
1 (zf)3 +CBB

2 zf ; where C’s are constant and f is the frequency. Numerical values for a

thin steel plate shows that the matrices of a solid layer and a BB panel are practically the

same for frequencies under 10 kHz for small practical thicknesses.

4.13 UU Panel TF

A thin plate TF can be derived in two ways. The first method is to combine the

commonly known bending vibration of a thin plate with the kinematic hypothesis. The

second method is to set the shearing stresses acting on the faces of the panel to zero and

substituting for the in-plane velocities. Either method give the same result. This can be

considered a recheck for the BB panel TF.

A thin plate layer is equivalent to a layer representing a continuous spring (plate stiffness)

and dash pot (by introducing a loss factor to plate Young’s modulus) which connect the

faces of that layer. The transfer function schematically representing a thin plate, which is

shown in figure (4.2), will be derived below. It is assumed that normal velocities of both

sides of a vibrating panel are the same; moreover, the plate vibration equation is governed

by:

(DB k
4
x − ρLω2)(

v0
i ω

) = σ − σ0 (4.65)

Aggregating the above information, the transfer matrix is found as:

[TPa ] =

 1 0
DB k

4
x − ρLω2

i ω
1

 (4.66)
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Figure 4.2: TF block diagram for a thin plate

As it mentioned at the beginning of this section, it is possible to check the BB matrix

for a solid layer by equating the shear stresses of the input and output surfaces to zero.

In fact the thin BB matrix derived in the previous section is an approximation for a solid

layer when the thickness is small enough. In other words, if the entries of a solid layer

matrix is expanded for small arguments of the sine and cosine functions, the thin BB panel

results. One way to quantify the accuracy of the BB panel TF is to find the UU TF of the

combination of two panels of thicknesses L and δL and comparing it with UU TF resulting

from the Kirchhoff model explained in this section for the perturbed thickness L+δL. Such

an analysis shows that the difference in of the impedances is of O(zf).

4.14 Unreduced Porous Layer TF

The TF representing a porous layer TF can be extracted from the wave equations of the

section. This unreduced 6×6 matrix that relates the velocities and stresses of the solid and

fluid phases of the surfaces of a porous layer can be determined from the wave equations.

Allard et al first derived a 4×4 matrix neglecting the shearing wave [?] and then introduced

the 6×6 TF in their notation [28] and [?]. By means of the wave equations in a porous layer,

the matrix relating the wave amplitudes to the normal/tangential stresses and velocities in

the current notation can be found. Define:

{
vf
z , vs

z, v
s
x, σ

f
zz, σs

zz, σ
s
xz

}T

= [Γ ]6×6

{
A+

1 , A
−
1 , A

+
2 , A

−
2 , A

+
3 , A

−
3

}T

, (4.67)
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Using the equations of section 4.2, the entries are:

Γ11 =
iωb1k1z

k2
1

sin k1zz, Γ12 =
ωb1k1z

k2
1

cos k1zz, Γ13 =
iωb2k2z

k2
2

sin k2zz

Γ14 =
ωb2k2z

k2
2

cos k2zz, Γ15 =
−ωgkx

k2
t

cos ktzz,Γ16 =
−iωgkx

k2
t

sin ktzz

Γ21 =
iωk1z

k2
1

sin k1zz, Γ22 =
ωk1z

k2
1

cos k1zz, Γ23 =
iωk2z

k2
2

sin k2zz

Γ24 =
ωk2z

k2
2

cos k2zz, Γ25 =
−ωkx

k2
t

cos ktzz,Γ26 =
−iωkx

k2
t

sin ktzz

Γ31 =
−ωkx

k2
1

cos k1zz, Γ32 =
−iωkx

k2
1

sin k1zz , Γ33 =
−ωkx

k2
2

cos k2zz

Γ34 =
−iωkx

k2
2

sin k2zz, Γ35 =
−iωktz

k2
t

sin ktzz, Γ36 =
−ωktz

k2
t

cos ktzz

Γ41 = (b1Rp +Qp) cos k1zz,Γ42 = i(b1Rp +Qp) sin k1zz,

Γ43 = (b2Rp +Qp) cos k2zz,Γ44 = i(b2Rp +Qp) sin k2zz,Γ45 = Γ46 = 0

Γ51 = (λ+ 2µ+ b1Qp +
2µk2

1z

k2
1

) cos k1zz,Γ52 = i(λ+ 2µ+ b1Qp +
2µk2

1z

k2
1

) sin k1zz

Γ53 = (λ+ 2µ+ b2Qp +
2µk2

2z

k2
2

) cos k2zz,Γ54 = i(λ+ 2µ+ b2Qp +
2µk2

2z

k2
2

) sin k2zz,

Γ55 =
−2iµkxktz

k2
t

sin ktzz,Γ56 =
−2µkxktz

k2
t

cos ktzz,

Γ61 =
−2iµkxk1z

k2
1

sin k1zzΓ62 =
−2µkxk1z

k2
1

cos k1zz, Γ63 =
−2iµkxk2z

k2
2

sin k2zz

Γ64 =
−2µkxk2z

k2
2

cos k2zz,Γ65 =
µ(k2

x − k2
tz)

k2
t

cos ktzz,Γ66 =
iµ(k2

x − k2
tz)

k2
t

sin ktzz

The transfer matrix will be found by means of equation (4.52). [TP6 ] is a 6 × 6 matrix

which relates the normal/tangential stresses and velocities of surfaces of the layer as:

v

σ


z

=
{
vf
z , vs

z, v
s
x, σ

f
zz, σs

zz, σ
s
xz

}T

z

= [T P6 ]
{
vf
z , vs

z, v
s
x, σ

f
zz, σs

zz, σ
s
xz

}T

0

(4.68)

4.15 Partially bonded porous layers TF

Transfer matrix for a porous layer combined of two partially bonded porous layer has

also a structure similar to an unreduced porous layer. In fact, such a combined layer is a

new porous material and its TF is again a 6 × 6 matrix. At the interface of two partially
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bonded porous layers, the pores are not completely covered; however, the solid phases are

assumed to be bonded perfectly. Therefore, the fluid can flow in between the pores from

the input surface of the first layer to the output surface of the second layer. This is the

reason that such an ideal structure still needs to be considered a porous layer and its TF

cannot be reduced yet. In reality, this is not a good model for a layered structure including

two glued porous layers, since the gluing material will eventually fill in the pores at the

interface of the sub-layers.

In order to apply the BC’s for this model, the output vector of the first layer as well as

the input vector of the second layer should under linear transformation. The reason is that

for such an interface, a linear combination of the stresses and velocities should be equated

on the interface as indicated by conditions of (4.49).

A simple linear transformation designated by [Υl] can do this job, l = 1, 2. [Υl] entries

are the same as those of the 6× 6 identity matrix but for the followings:

Υl
1,1 = φ

l
, Υl

1,2 = −Υl
1,1, Υl

4,1 =
1
φ

l

, Υl
5,1 = 1 (4.69)

Therefore:

{
φ

l
(vf

z − vs
z), v

s
z, v

s
x,

1
φi
σf

zz, σs
zz + σf

zz, σs
xz

}T

= [Υi]

v

σ


l

, l = 1, 2 (4.70)

Hence: v

σ


z

= [T P6
2 ][Υ][T P6

1 ]

v

σ


0

(4.71)

where

[Υ] = [Υ2]−1[Υ1] (4.72)

The entries of [Υ] which are different from those of the identity matrix are:

Υ1,1 =
φ2

φ1
, Υ1,2 = 1−Υ1,1, Υ4,4 =

1
Υ1,1

, Υ5,4 = 1−Υ4,4 (4.73)
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4.16 UU porous layer TF

A porous layer with unglued faces can be represented by a reduced order TF. On the

surfaces of such a layer, shearing stresses will diminish. A UU layer is either in contact with

two acoustic media and/or with other layers that can bear no shearing stress (e.g. unglued

frictionless layers). Hence, as the block diagram in figure (4.3) suggests, the TF can be

reduced from order 6 × 6 to 2 × 2. Once the UU TF is determined, the UU porous layer

can be treated as a fluid layer.

Although it is possible to find the reduced 2×2 UU TF from the original 6×6 matrix,

it is better to find an intermediate matrix [TPU ] in which the tangential velocities and the

shearing stresses are eliminated. By introducing this matrix, the final TF can be written

more elegantly. Define a porosity vector as:

φT = {φp, 1− φp} (4.74)

Equations (4.47) can be expressed in the vector form as:

σ =
{
σf , σs

}T

= φTσ (4.75)

φT

{
vf , vs

}T

= v (4.76)

Elements of this matrix can be determined in terms of [TP6 ], as:

[TPU ] =



T P6
11 − T P6

13 T
P6
61

T P6
63

T P6
12 − T P6

13 T
P6
62

T P6
63

T P6
14 − T P6

13 T
P6
64

T P6
63

T P6
15 − T P6

13 T
P6
65

T P6
63

T P6
21 − T P6

23 T
P6
61

T P6
63

T P6
22 − T P6

23 T
P6
62

T P6
63

T P6
24 − T P6

23 T
P6
64

T P6
63

T P6
25 − T P6

23 T
P6
65

T P6
63

T P6
41 − T P6

43 T
P6
61

T P6
63

T P6
42 − T P6

43 T
P6
62

T P6
63

T P6
44 − T P6

43 T
P6
64

T P6
63

T P6
45 − T P6

43 T
P6
65

T P6
63

T P6
51 − T P6

53 T
P6
61

T P6
63

T P6
52 − T P6

53 T
P6
62

T P6
63

T P6
54 − T P6

53 T
P6
64

T P6
63

T P6
55 − T P6

53 T
P6
65

T P6
63



(4.77)
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Figure 4.3: A UU porous layer TF block diagram

The above matrix can be partitioned as below:

[TP
UU ] =

T1 T2

T3 T4

 (4.78)

where Ti’s (i = 1, 2, 3, 4) are all 2× 2 matrices; therefore:

v

σ

 =

T1 T2

T3 T4


v0

σ0

 (4.79)

Note that v and σ are now vectors and include both normal and tangential components.

The above matrix equation can be written in vector form as:

v = T1v0 + T2σ0 (4.80)

σ = T3v0 + T4σ0 (4.81)

It can be shown that [T3 ] cannot be singular; thus:

T3
−1φσ = v0 + T3

−1 T4φσ0 (4.82)

The total normal stress can be computed after applying the velocity boundary condition
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as:

σ =
v0

φTT3
−1φ

+
φTT3

−1T4φ

φTT3
−1φ

σ0 (4.83)

Also, equation (4.76) can be used to eliminate the input velocity vector; after multiplying

both sides of (4.75) by φT , the total normal velocity and stress on the output side can be

related to the input side as:

v − φTT1T3
−1φσ = φT (T2 − T1T3

−1T4)φσ0 (4.84)

The transfer function [T P
UU ] for UU porous layer finally will be:

[T P
UU ] =


φTT1T3

−1φ

φTT3
−1φ

φTT1T3
−1φφTT3

−1T4φ

φTT3
−1φ

1
φTT3

−1φ

φTT1T3
−1φ

φTT3
−1φ

 (4.85)

It should be noted that the inverse of the above 2 × 2 matrices can easily be computed in

closed form. Moreover, if before the tangential components are eliminated velocities and

the stresses of the phases are combined, the very same matrix will result.

4.17 TF of a BB porous layer

Fluid cannot flow across the faces of a BB porous layer. To enforce the boundary

conditions, equivalent normal velocity and stress can be calculated in accordance with

equation (4.48) to reduce the 6×6 TF of a porous layer for a BB configuration. Similar to

the open pores porosity vector, a closed pore vector may be defines as:

φc = {1, 1}T (4.86)

The unreduced TF of a porous layer (4.68) can be partitioned as:

T P6
1 ,

T P6
11 T P6

12

T P6
21 T P6

22

 ,TP6
2 ,

T P6
13

T P6
23

 , T P6
3 ,

T P6
14 T P6

15

T P6
24 T P6

25

 ,TP6
4 ,

T P6
16

T P6
26
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TP6
5 ,

T P6
31

T P6
32

 ,TP6
7 ,

T P6
34

T P6
35

 , T P6
9 ,

T P6
41 T P6

42

T P6
51 T P6

52

 , TP6
10 ,

T P6
43

T P6
53



T P6
11 ,

T P6
44 T P6

45

T P6
54 T P6

55

 , TP6
13 ,

T P6
61

T P6
62

 ,TP6
15 ,

T P6
64

T P6
65


Expansion of the first row of the matrix equation (4.68) in terms of the sub-matrices, leads

to the following vector equation:

vz = φc vz = T P6
1 (φc vz0) + T P6

2 vx0 + T P6
3 σzz0 + T P6

4 σxz0 (4.87)

Therefore:

σzz0 = TP6
3

−1 [
φc vz − TP6

1 (φc vz0)− T P6
2 vx0 − T P6

4 σxz0

]
(4.88)

vz =
φc

TTP6
3

−1
TP6

1 φc

φT
c T

P6
3

−1
φc

vz0 +
φT

c T
P6
3

−1
T P6

2

φT
c T

P6
3

−1
φc

vx0

+
1

φT
c T

P6
3

−1
φc

σzz0 +
φT

c T
P6
3

−1
T P6

4

φT
c T

P6
3

−1
φc

σxz0

(4.89)

And the third row expansion:

σzz = TP6
9 (φc vz0) + T P6

10 vx0 + TP6
11 σzz0 + T P6

12 σxz0 (4.90)

Equations (4.88) and (4.90) can be used to relate the equivalent normal stress of the output

side to the input side as:

σzz =

[
φT

c T
P6
9 φc − φT

c T
P6
11 T

P6
3

−1
TP6

1 φc +
φT

c T
P6
11 T

P6
3

−1
φcφc

TTP6
3

−1
TP6

1 φc

φc
TTP6

3
−1
φc

]
vz0

+

[
φT

c T
P6
10 − φT

c T
P6
11 T

P6
3

−1
T P6

2 +
φT

c T
P6
3

−1
T P6

2
−1

φc
TTP6

3
−1
φc

]
vx0 +

φT
c T

P6
11 T

P6
3

−1
φc

φc
TTP6

3
−1
φc

σzz0

+

[
φT

c T
P6
12 − φT

c T
P6
11 T

P6
3

−1
T P6

4 +
φT

c T
P6
11 T

P6
3

−1
φcφ

T
c T

P6
3

−1
T P6

4

φc
TTP6

3
−1
φc

]
σxz0

(4.91)
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Similarly, the shearing components of the output surface velocity and the stress can be

expressed in terms of the input surface quantities as:

vx =

[
T P6T

5 φc − T P6
7

T
TP6

3
−1
TP6

1 φc +
T P6

7
T
TP6

3
−1
φcφc

TTP6
3

−1
TP6

1 φc

φc
TTP6

3
−1
φc

]
vz0

+

[
TP6

33 − T P6
7

T
TP6

3
−1
T P6

2 +
T P6

7
T
TP6

3
−1
φcφc

TTP6
3

−1
T P6

2
T

φc
TTP6

3
−1
φc

]
vx0

+
T P6

7
T
TP6

3
−1
φc

φc
TTP6

3
−1
φc

σzz0 +

[
TP6

36 − T 7
TTP6

3
−1
T P6

4 +
T 7

TTP6
3

−1
φcφ

T
c T

P6
3

−1
T P6

4

φc
TTP6

3
−1
φc

]
σxz0

(4.92)

τxz =

[
T P6

13
Tφc − T 15

TTP6
3

−1
TP6

1 φc +
T P6

15
T
TP6

3
−1
φcφc

TTP6
3

−1
TP6

1 φc

φc
TTP6

3
−1
φc

]
vz0+[

TP6
63 − T P6

15
T
TP6

3
−1
TP6

2 +
T P6

15
T
TP6

3
−1
φcφc

TTP6
3

−1
T P6

2
T

φc
TTP6

3
−1
φc

]
vx0+

T 15
TTP6

3
−1
φc

φc
TTP6

3
−1
φc

σzz0 +

[
TP6

66 − T P6
15

T
TP6

3
−1
T P6

4 +
T 15

TTP6
3

−1
φcφ

T
c T

P6
3

−1
T P6

4

φc
TTP6

3
−1
φc

]
σxz0

(4.93)

4.18 Closure

The transfer matrix for a plate like fluid layer, and for a thin plate, a solid layer, and a

porous layer with bonded bonded and unbonded unboded face have been derive so far. In

next chapter, it will be shown how to use this library of functions to deal with the modeling

of a sandwich layer.

TF of a transversely solid layer has been derived by Brekhovskikh and Godin [31].

Unfortunately two entries of their matrix is incorrect. A correction of the matrix using their

notation is given in the appendix. An anisotropic layer is not the topic of this research, the

TF for such a layer with the current time convention which is different from the convention

used by Brekhovskikh and Godin can easily be derived.
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CHAPTER 5

Reduction and Homogenization of Layered Structures

5.1 Introduction

The response of complex structures are usually found by means of the traditional finite

element method. However, as it was argued earlier, the application of the FEA is limited

in the higher frequencies. As mentioned before, the EFEA can more efficiently capture the

dynamic behavior of the structures and acoustic media computationally with less sensitivity

to the details of the structure in the higher frequency range.

Like FEA, EFEA requires the structure to be discretesized. Meshing the individual

layers of a sandwich structure by 3-D elements, is computationally very expensive and

probably impossible (for FEA) and inaccurate for EFEA. The often used two dimensional

shell elements, however are not accurate enough to account for the displacement and stress

fields across the elements. This motivates the attempt to find an equivalent layer to reduce

the computational hassle.

In this chapter, first the matrices for individual layers derived in the previous section are

augmented into a 2 by 2 system transfer matrix between two acoustic media. An equivalent

approximate layer with a virtual material properties will then be found to be used for the

EFEA method.
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5.2 Systematic reduction of a layered system

In the previous chapter, the TF for individual layers of common materials has been

found. These matrices can be multiplied in the appropriate order to find the overall 2×2

matrix of the sandwich structure located between two acoustic media. To the best knowledge

of the author’s, the systematic treatment of a combination of layers has not been done when

the layers include a porous material.

The procedure is as follows: After the structure sub-layers matrices are found, the

system needs is separated into appropriate sub-systems. Second the equivalent BB TF’s of

these subsystems is found. Third these matrices are reduced to 2×2 matrices. Finally, the

equivalent system TF is computed from the intermediate reduced matrices.

To determine the appropriate subsystems of a layered structure, as suggested in the first

step, the set of layers which are bonded together with the first layer being UB and the last

layer being BU, are bundled together as one subsystem. Suppose that there are p of these

subsystems, each containing qp bonded layers, in the layered structure.

Following the second step, consider bundle l of these subsystems. This batch contains q

(for simplicity q is chosen instead of ql)BB layers. When the compatibility and equilibrium

conditions are applied, the 4×4 BB matrix for this subsystem is obtained as:

vl,2

σl,2

 = [Tl,1 ]

vl

σl


input

(5.1)

......vl,q

σl,q

 = [Tl,q−1 ]

vl,q−1

σl,q−1

 (5.2)

vl,q

σl,q


output

= [Tl,q ]

vl,q

σl,q

 (5.3)
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Combining the above relations leads to:

vl

σl


output

= [Tl,q ] [Tl,q−1 ] . . . [Tl,1 ]

vl

σl


input

(5.4)

Therefore:

[TlBB ] = [Tl,q ] [Tl,q−1 ] . . . [Tl,1 ] (5.5)

This means that the equivalent BB matrix for a subsystem is computed by left multi-

plying the consequent layer matrices, starting from the first layer.

Information regarding the absence of the shearing stresses on the input and output faces

of this bundle can be employed to reduce the order of the BB matrix, as suggested in the

third step. The last row of the subsystem equivalent BB matrix can be expanded as:

0 = Tl (4,1) vz(l,input)
+ Tl (4,2) vx(l,input)

+ Tl (4,3) σzz(l,input)
+ Tl (4,4) × 0 (5.6)

If Tl (4,2) = 0, the normal velocity and stress on the input surface will be proportional and

this is not necessarily compatible with the previous layer since each layer depends on the

previous layers. Consequently, this system is not mathematically solvable. For well-posed

problems, it is reasonable to assume that Tl(4, 2) 6= 0; therefore:

vx(l,input)
= −

Tl (4,1)

Tl (4,2)
vz(l,input)

−
Tl (4,3)

Tl (4,2)
σzz(l,input)

(5.7)

Hence:

 vz

σzz


l,out

=


Tl (1,1) −

Tl (1,2) Tl (4,1)

Tl (4,2)
Tl (1,3) −

Tl (1,2) Tl (4,3)

Tl (4,2)

Tl (3,1) −
Tl (3,2) Tl (4,1)

Tl (4,2)
Tl (3,3) −

Tl (3,2) Tl (4,3)

Tl (4,2)


 vz

σzz


l,in

(5.8)

At this point, the system is reduced to q 2×2 sub-matrices. Following the same logic of

the second step, the final equivalent system matrix is obtained by left multiplication of the

86



consequent sub-layers matrices, starting from the first reduced subsystem, as:

[Tsys ] = [TUU
p ] [TUU

p−1 ] . . . [TUU
1 ] (5.9)

where the right hand matrices are computed by means of the equation (5.8) for each sub-

system.

5.3 Transmission loss calculation

A layered material structure that separates two half spaces of acoustic media can be

reduced to an overall matrix [Tsys] of the order 2×2. Considering equation (4.28), it is usual

to assume that the incident velocity potential has a unit amplitude; i.e. C+ = 1; denote the

reflection by Rref ; i.e.: Rref , C−. Due to the radiation condition, there is no incoming

wave from the transmitted side: C− = 0; Ttr , C+. The following simple relationship can

be exploited to find R and T :

 Ttr

Rref

 =


 i kz

−i ω ρ


tr

e−i kz L

............

[Tsys]

 i kz

i ω ρ


inc


−1

[Tsys]

 i kz

−i ω ρ


inc

(5.10)

In above equation, L is the total thickness of the structure. Subscripts “tr”, “ref” “inc” and

“tr” indicate transmitted, reflected, incident and transmitted sides respectively. Obviously

the inverse of the 2× 2 matrix can readily be determined in closed form.

The transmitted velocity pressure wave amplitude is a function of angle of incident.

For a diffusive (random) acoustic media, it is customary to average the quantities over the

solid angles by means of Paris law [50].When a probability distribution (weight function

in averaging integral), P(θ) for the incident waves is assumed, the transmission loss is

computed as:

τ =

∫ θlim

0 |T (θ)|2 P(θ) sin 2θ dθ∫ θlim

0 P(θ) sin 2θ dθ
(5.11)

TL = 10 log10

1
τ

= −10 log10 τ (5.12)

As an example Kang et al [51] used a Gaussian distribution to calculate the transmission

87



loss. If the directional distribution of the waves in is considered to be uniform, the averaging

weight function in the integrand is simply 1.

5.4 A numerical example

To verify that the method proposed here is consistent with the available results in the

literature, the transmission loss calculations for a UU panel consisting of an aluminum (a

density of 2700 kg/m3, a Young’s modulus of 70 GPa, a Poisson’s ratio of 0.33) of 1.27 mm

thickness on the incident side, a 2.7 cm thick foam layer (solid phase density: 30 kg/m3,solid

phase Young’s modulus: 0.8 MPa, damping loss factor: 0.265, solid phase Poisson’s: 0.4;

flow resistivity: 25000 MKSRayls/m; structural factor: 7.8; and porosity: 0.90) and an

inner aluminum thin panel of thickness 0.762 mm is considered. This trim panel has been

modeled by Bolton et al [30]. The transmission loss calculations are carried out by both of

the direct method and the matrix method. As it is seen in figure 5.1 the results obtained

by both methods are identical to the results reported by Bolton et al [30].

Figure 5.1: Verification of the matrix method for the UU panel reported by [30]
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5.5 A comment on surface waves

The current work is not concerned with the surface waves since the individual layer

responses are of no interest; however, the analysis can be used to study the surface waves

as well. Surface waves are of great importance when guided and point sources are studied.

Such studies have vast applications mainly in electro-acoustic devices, nondestructive testing

and crack detection and seismic wave studies [31]. Mathematically, the TF for a system is

a complex function of the individual layer material properties (e.g. density, wave speeds)

and frequency. Therefore, such a function is discontinuous. The dispersion relation of the

surface waves are determined by finding the poles and the discontinuities of TF. In fact by

setting the determinant of the matrix for a layer, the admissible wave numbers for surface

waves can be found. Usually the surface waves decay fast and are dispersive (however

Gulyaev-Bluestien surface wave are nondispersive [31]). Some of the common surface waves

are: Rayleigh waves (free solid layer surface), Stoneley waves (surface of a solid layer and a

fluid layer), leaky waves (interface of two solid layers).

5.6 Homogenization and equivalent material

Finding an equivalent or effective layer replace to a sandwich structure enables one to

break the complex structure into simpler elements and find the response by means of the

traditional or energy finite elements.

5.6.1 Replacing the foam layer by an equivalent fluid

In the constitutive law of a porous layer material, one of the properties is flow resistivity.

For common man made foam materials, this property is one of the most important param-

eters which characterizes the material. Flow resistivity is an indication of how air flows in

between the pores of the porous material. To measure flow resistivity, a steady state flow

of fluid (for the treatment materials air) is passed through a sample of the porous material.

and the ratio of the pressure difference for the unit thickness is calculated as flow resistivity

[47]. It has been shown empirically that in the commonly used foam material treatments,
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flow resistivities and the surface impedances are related through some power laws Delany

[43], Fellah [53], Tomilson [52]. Like any other empirical model, the validity of the model

for different ranges of frequency is not clear. In such a model a fibreous foam layer can be

replaced by an equivalent fluid layer. This equivalent fluid is characterized by adding an

imaginary function that indicates a complex deviation of the density and wave speed from

the values of air Cox [47]. It worths to note that the added complex parts differ from those

of a dissipative model of fluids. The wave number of the equivalent fluid for foam has the

following form (Delany [43] and Cox [47]):

k =
ω

c0

(
1 + a1

(
f

σ

)n1

− ia2

(
f

σ

)n2
)

(5.13)

where a1,a2,n1,n2 are empirical constants and f and σ are frequency and the flow resis-

tivity respectively. While the wave number of a dissipative fluid in the absence of thermal

conductivity is obtained from:

kI =
ω

c

1√
1 + iω(ζ+4/3η)

ρc2
T

(5.14)

where η and ζ are the first (shear) and second (volume) viscosities; c and cT are the speed

of sound for adiabatic and isothermal propagations respectively as derived by Brekhovskikh

[?].

Replacing the foam layer by an equivalent fluid has been previously employed to model a

treated panel. In particular, Lee and Kim [45] have adapted a similar approach to determine

an equivalent fluid that defines the equivalent element properties for their FE analysis. They

retained only one of the existing waves of the porous layer which dominates the other two

waves. They chose the dominating wave according to some energy criteria. With the current

approach, this equivalent layer can be adapted without going through their cumbersome

calculations.
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5.6.2 Equivalent layer for a layered structure

In this section, a very simple approach is considered in order to replace the layer structure

with a simpler equivalent model.

As an example, the transfer matrix for a structure consisting of a thin plate (with

impedance Z1), a fluid layer (thickness z, wave number kf and density ρ) and a second thin

plate (with impedance Z2) is found by multiplying the transfer matrices of the layers as:


cos kfz +

ikf sin kfzZ2

ω ρ

ikf sin kfz

ω ρ

i(Z1 + Z2)cos kfz +
iρω

kf

(
1 +

Z1Z2k
2
f

ρ2ω2

)
sin kfz cos kfz +

ikf sin kfzZ1

ω ρ


As can be seen the diagonal entries are not necessarily equal. This means that in general a

combined panel cannot be replaced by one layer.

As a special case Brekhovskikh and Godin [31] have shown that a system of layers with

periodicity can be replaced by an anisotropic transversely isotropic layer. Such a material

has invariant properties along the planes parallel to the half space. The constitutive law of

the material involves 5 different constants. Unfortunately, their matrix has some incorrect

entries. The correct matrix is given in the appendix in their notation.

They analytically derived an “effective” layer for a periodic system of isotropic layer.

The effective layer is now transversely isotropic with 5 Lamè’s constants. These constants

are computed as average of some functions of individual layers Lamè’s constants [31].

As a good candidate to replace a layered structure, a transversely isotropic layer can

be considered to replace a layered structure; however, further calculations show that even

for such a layer, reducing the TF for this extended material model will produce the same

entries on the diagonal entries. The calculations are omitted for the sake of brevity. Hence,

mathematically, it is impossible to replace a layered structure even by a single layer of a

transversely isotropic material.

If a set of equivalent material properties are found that minimizes the error of the

entries of the equivalent layer TF and the reduced system to an admissible value, there

is no guarantee that these properties (such as ρ = ρ(θ, f), E = E(θ, f),η = η(θ, f)) after
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averaging over the incident angle, give the same transmission loss as the reduced system for a

particular frequency. Therefore, to find equivalent properties, one can solve an optimization

problem which minimizes the difference between the transmission losses resulting from the

chosen model and the layered structure. It should be noted that the existence of the solution

of the optimization problem is not known a priori. Most likely there is not a unique answer

to such problems and the models need to be studied case by case.

To find equivalent properties, here an optimization problem is proposed to be solved for

each frequency. The following steps are necessary:

• Find the TF for the layered system for a particular frequency.

• Consider an appropriate equivalent model. For instance, two thin panels with a plate

like fluid in between.

• Determine the properties. For example, for a thin plate/fluid/thin plate equivalent

system, a typical set of parameters for the panels are: Young’s modulus, damping loss

factor, thickness, and density; the fluid properties will be the complex numbers speed

of sound and the density.

• Fix some of the parameters accordingly. For instance, if the equivalent system is a

single thin panel, the thickness and the Young’s modulus can be fixed so that the

equivalent captures the original structure behavior. For a thin plate/fluid/thin plate

system, the plates properties can remain unchanged as the original outer and inner

panels.

• Find a set of properties which minimize the transmission losses difference error. In

other words, the cost function of the optimization problem is the absolute value of the

difference in the transmission loss of the equivalent system and the original system.

Commercially available programs like Matlab can handle the optimization problem.

• If a set of the properties is not found for a very complex structure, repeat the process

by changing the unknown set of parameters.
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5.6.3 A numerical example

(Rayl is the derived SI unit for acoustic impedance [54]); As mentioned, the optimization

problem needs to be solved for each case separately. Acoustic and plate elements already

are available in EFEA. To deal with the porous layer, an equivalent fluid or plate model

needs to be found. In this section the following structure which is also considered by Bolton

is reconsidered:

A trim panel consisting of an outer aluminum (a density of 2791.5 kg/m3, a Young’s

modulus of 72.4 GPa, a Poisson’s ratio of 0.33) of 0.02”, a 2.7 cm foam layer (solid phase

density: 30 kg/m3,solid phase Young’s modulus: 0.8 MPa, damping loss factor: 0.265,

solid phase Poisson’s: 0.4; flow resistivity: 25000 MKSRayls/m structural factor: 7.8; and

porosity: 0.90) and an inner aluminum thin panel of thickness 0.03 in.

It is possible to find the transmission loss of the structure by left multiplying the transfer

matrix of the inner thin plate to the UU porous layer transfer matrix of the layer and finally

by the out thin plate transfer matrix. In fact a replication of the Bolton’s results and the

matrix method shows that the methods calculate the identical results.

As discussed earlier, a single panel model is not proper for finding the equivalent element

to be used by EFEA. Replacing the foam by the empirical equivalent fluid layer model is

simply done by replacing UU porous layer matrix by a fluid plate like with the wave speed

and density modified according to the empirical equivalent wave speed and density [52]

from:

ρ∗ = ρ0 +

√
− 0.364

(ρ0f/φ)2
− i

0.1144
ρ0f/φ

(5.15)

c∗ =

√
101320
ρ∗

29.64i+X∗

21.17i+X∗ (5.16)

X∗ =

√
2.82

(
φ

ρ0f

)2

+ 24.9i
φ

ρ0f
(5.17)

Finding the transmission loss for the panel by replacing the middle layer by a plate

like fluid layer in the matrix method is now very easy. Figure (5.2)shows that in fact by

replacing the foam layer by such equivalent layer,

93



Figure 5.2: Equivalent fluid layer replacement for a UU panel

For this particular problem the equivalent layer properties to be found are considered

the real and imaginary parts of the wave speed and the imaginary part of the filling layer

density. The transfer matrix is now obtained by left multiplying the outer panel matrix, the

equivalent layer (with 3 unknown properties) matrix and the inner panel matrix. The cost

function of the optimization problem is defined as the difference between the transmission

loss from the model of the layered system and the transmission loss calculated for this new

system. For each frequency, the properties of the equivalent layer is found. The optimization

results show that the difference between the transmission loss calculated from the porous

layer model and the equivalent layer can be minimized to less than 1.2 dB if the add density

is kept in [-200,-2] and the real part of the wave speed is kept in [65,300] and the imaginary

part is kept within [1,50].

In other words, the foam is replaced by an air like gap. The optimization process adds

damping properties to air and readjusts the wave speed and density so the final transmission

loss of the new layer will be within an acceptable range of the treated layer.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

The modeling of a trim panel in EFEA is divided into two parts: finding the vibrational

power transmission coefficient for the connection between the outer and inner panel and

the transmission loss through the layers directly.

To account for the power exchange through the connections or mounts, first the waves

propagating in simple structural elements are represented by two dynamic matrices: one

relating the wave amplitude vector to the displacements and one relating the forces to the

wave amplitudes. A matrix method is proposed to solve for the outgoing wave fields. Using

the wave solution, the corresponding vibrational power terms are found accordingly. The

problem of a beam connected perpendicularly to an infinite plate is analyzed. Furthermore,

the power exchange between two plates connected through a beam is find by setting up a

system of equations. A closed formula for the power exchange is derived for the case when

the plate have identical properties. Numerical examples showed that the new model is more

sophisticated than the simple impedance method and at higher frequencies, the higher order

modes and other wave types then bending (longitudinal and shearing waves) may also be

important. The power transmission coefficients summed up to unity with a high order

accuracy which indicates that the energy conservation in the system is maintained.

To calculate the transmission loss of the direct path through layers, layers are presented

as matrices and a procedure for finding the transfer matrix for the layered structure is

95



proposed. It is concluded that a single isotropic layer cannot replace a system of layers with

accuracy. An optimization procedure is proposed to replace the structure with a suitable

model. For a numerical example, it is shown that a foam layer can be replaced by a viscous

fluid plate (air like) layer if proper modifications to air properties are applied through the

optimization process.

6.2 Future work

The following problems can be further investigated:

• The wave matrices for an anisotropic plate can be found. Finding such matrices are

necessary to find the energy exchange of point connected anisotropic (like composite)

plates.

• The rigid inclusion in the plate can be replaced with a flexible disk. This may have

some influence on the power coefficients.

• The problem of a beam connected perpendicularly to another beam which is reinforc-

ing a plate is another extension of the point connected structures.

• Derivation of the transfer matrices for different layers in cylindrical coordinate system

can be useful in modeling layered curved panels.

• The transfer matrices for anisotropic layer can be derived and studied in order to

find an equivalent layer replacing a layered structure. Such layers probably are good

candidates for replacing a layered structure.

• It is worth to attempt to find an equivalent layer transfer matrix for a reinforced

beam. Although the existence of such equivalent layer is not guaranteed.
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Appendix

The following is the correct [L] matrix for the transfer matrix of a transversely isotropic

solid layer in Brekhovskikh’s notation (see Brekhovskikh [31] page 153).

[L] =



iξ iξ −iα2 iα2

v
(1)
3 −v(1)

3 v
(3)
3 v

(3)
3

L3,1 L3,1 L3,3 −L3,3

µ′′ξ(iv(1)
3 − α1) −µ′′ξ(iv(1)

3 − α1) µ′′(iξv(3)
3 + α2

1) µ′′(iξv(3)
3 + α2

1)


where

L3,1 = i(λ′ + 2µ′)α1v
(1)
3 − ξ2λ′

L3,3 = i(λ′ + 2µ′)α2v
(3)
3 + ξα2λ

′

The incorrect L3,3 in [31] is:

L3,3 = i(λ′ + 2µ′)α2v
(3)
3 − ξ2λ′
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