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CHAPTER 1

Introduction

“The employment of machinery forms an item of great impartaim the general mass
of national industry. 'Tis an artificial force brought in aifl the natural force of man;
and, to all the purposes of labour, is an increase of handscegssion of strength,
unencumbered too by the expense of maintaining the labéddexander Hamilton, to

the US House of Representatives December 5, 1791.

1.1 Why Study Bipedal Locomotion?

The field of legged locomotion is the branch of robotics tlwaukes on the study of machines
that move from place to place using legs rather than wheelass€al motivation for studying
legged locomotion is that wheels require a continuous épkggsurface such as a road, whereas
legged machines only require intermittent support suctieapag stoned.More recent sources of
motivation are the potential applications of legged rolooentertainment, recreation, rehabilitation,
prosthesis development, human rescue, and health carep@baps the strongest motivation for
studying bipedal robots (in particular) is the potential émtomated labor in environments that
are much better suited for people than for traditional stetry or wheeled machines. Compared
with industrial pick-and-place manipulators, humanoitdats could operate with relative ease in
multi-level homes or offices, construction sites, or resem@ronments.

Unfortunately, at the current time, no legged robots—Ilenalbipedal robots—have been mass

Cited in [18].
2Raibert cites this motivation in his influential book [114].



produced for purposes other than entertainment, advegtisir education. The tasks of walking
and running, which are elegant and simple for humans, afieudifand unnatural for most legged
machines, so much so that dynamic legged locomotion is &tigifiactor in what could be the next
frontier of automation: the adaptation of machines to huerarironments.

A glimpse through the history of automation shows a techgiol shift from machines that
assisted men in the Industrial Revolution, to machines @ghatmerely supervised by men in the
age of Industrial Automation. Starting in the mid 17th ceptahe use of highly specialized me-
chanical tools helped to increase the productivity of hurtador when the task to be performed
was especially simplé. Through the 19th and mid 20th centuries, the appearance dfian&ed
factories, interchangeable parts, assembly lines, anageisain organizational techniques showed
manual labor adapting to better suit the environment of feighhme mechanized productiénin
the late 20th century, the technology of robotics and autiencantrol brought about a period of
Industrial Automation, characterized by automated factimes of self-operating, self-regulating
machines that are supervised and maintained by humans.

The success of automation in manufacturing suggests anptiential venue for mechanized
efficiency: the automation of services. In the present dayjce makes up about 80% of the United
States GDP, but robotic automation has only a minimal impact in sendadented industries. Ac-
tivities in auto repair, carpentry, construction, exptmra, forestry, health care, hospitality, human
rescue, shipping, and surveying represent a new domainpditafion of robotic labor. Tasks in
these fields are difficult to automate not only because of itggrrequirements (successful robots
would require high-level decision making skills and rel@bperation in an unpredictable environ-
ment) but also because of fundamental physical challerdggrous operation must be done by
mobile machines in areas not easily reachable by wheels)seTtobots able to perform the fun-
damentally dynamic tasks of high speed walking, running, dynamic balancing would be better
suited to execute high-level tasks such as navigating iowdor transporting goods or people in a
hostile environment.

Two hundred years from the onset of the Industrial Revofytionovations in mobile robotics

continue to occur. To name a few, a robot called the M2 “Mighitiyuse” has been used to clean

3The spinning jenny and mill works are examples of machinesabsisted workers without replacing them [18].
4See Taylor’s “Principles of Scientific Management” [138].
®U.S. Department of Commerce Statistics [35]



up nuclear waste at White Sands Missle range in the US [12@dngpany called Yobotics [3] is

conducting research on a powered orthodic brace for thoelawer leg injuries; the Japanese
robot MARIE could provide robot-assisted health care foagimg population [1]; and researchers
in METI's Humanoid Robotics Project (HRP) [68] are develapihumanoid robots fit for oper-

ating a backhoe and forklift—machines that can operateratteechines. The American military

is funding research on a bipedal robot called BEAR for useaitldfield injury rescue scenarios
[13]. Specializing in robotics and simulation, a companijeceBoston Dynamics [2] continues

DARPA-supported research on hexapods such as RHex [12Ri&#1[125] and quadrupeds such
as BigDog [113] and LittleDog [116]. Exoskeletons such ase®1[86] and HAL [85] can be used

to enhance certain aspects of human locomotion, rather#pdacing them.

The idea of a robotic workforce has international appeath wsearch groups working toward
similar goals worldwide. An explicit goal of Honda’s humash@roject [65] is to “develop tech-
nologies so that the humanoid robot can function not only agehine, but blend in our social
environment and interact with people, and play more impontales in our society”. The Japanese
Robot Association (JARA) also envisions the creation oftatiz society [79] with robots assisting
people in everything from livestock farming to nuclear pawe

If these distant frontiers of automation are to be explotedn machines must work not only
in factories, but alongside people in their homes helpinth way-to-day activities. With such a
diversity of applications it's unlikely that a single “onis fits all” solution will be appropriate for
every robot and for every application. Much more likely, atbtmuum of methods of locomotion are
needed. What is clear is that the current state-of-theeahniques are not yet sufficient for future
needs. Before our robotic workforce is to be built, advarsresneeded in both the hardware design

of legged machines and in the control algorithms that pesigble, coordinated movements.

1.2 Bottom-up Techniques of Control

Legged locomotion crosses traditional borders separattiagemic fields of study, leading to a
rich diversity of methods and motivations of research. B@neple, a better understanding of the
relationships between human and robotic walking wouldatliyebenefit those in kinesiology and

rehabilitation. An understanding of tliiest principlesof human and robot morphology would aid



those in mechanics, mechatronics, and machine designrakhens of gait planning and stabiliza-
tion would interest those in computer science, applied erattics, machine learning, dynamical
systems, and control theory.

As part of this diversity, the primary purpose of this thesit develop nonlinear control theory
that is appropriate to stabilize highly dynamic walking andning behaviors in underactuated pla-
nar bipedal robots. In order to focus on this task, other yoaspects of locomotion—underlying
biological principles, issues of mechanical and eledtedfeciency, and design principles for legged
machines—will be set aside. Results in this thesis are pravathematically and illustrated using
numerical simulation. The language of control theory wdlised throughout this thesis, in which
terms such as “stability”, “proof”, and “analysis” have sjjie mathematical interpretations.

Although potentially disconcerting at first, focusing ontheamatical aspects of walking (rather
than relying heavily on experimentation) is an acceptedriggie of study with a number of benefits
that often go unspoken. Instead of starting anew with eaatroleot prototype, mathematical theory
builds solidly on itself, largely independent of the robatwhich it is applied. Once a theorem is
proven to be true, it remains true for all time. In additidme tonclusions of mathematical analysis
are generalizeable and falsifiable—both characterisfisslal research.

As hardware technologies for building legged robots becewee more sophisticated, the math-
ematical control techniques for coordinating and staibdjzheir gaits must grow as well. While
hardware aspects of legged locomotion tend to get the mtsitiain, it is arguably the hidden
technology of control that will enable practical uses ofatsbfor day-to-day activitie$. Without
the bottom-up techniques of theorem and proof, sophisticenbot prototypes are doomed to re-
main pieces of animatronic sculpture, pacing slowly orstagd pleasantly waving for their human

creators, unable to help them with any meaningful or pragtédsk.

1.3 Context and Motivation

This thesis is intended to be read in the context of the madkieat framework of hybrid zero
dynamics (HZD), a methodology spanning everything from eting and control to optimization

and experimentation on walking and running in bipedal rebatbrief summary of key publications

The idea of control as a “hidden technology” is due to Kestrom [11].



in hybrid zero dynamics is given here, with a more thoroughexse of relevant literature to be
presented in Chapter 2.

Four papers form the backbone of the method of hybrid zeramycs. Early work on constraint-
based walking was given by Grizzle, Abba, and Plestan in, [68ihg the method of Poincaré as
an essential tool in the tractable stability analysis ofaradtuated planar bipedal walking. The
HZD theory of walking was officially coined by Westervelt,iGale, and Koditschek in [153] where
virtual constraints and hybrid invariance led to an eledawtdimensional test for evaluating the
stability of a planar bipedal walking gait. Walking expeénts on the French robot RABBIT were
presented by Westervelt, Buche, and Grizzle in [149] in WHRRABBIT exhibited outstanding sta-
bility and robustness properties when walking under an Hi&Bed controller. The final milestone
relevant to this thesis is the HZD theory of running presgriig Chevallereau, Westervelt, and
Grizzle in [31] where stable running is predicted for robsitailar to RABBIT.

The research topic of this thesis is motivated by the teatsdlok place in September 2004 to ex-
perimentally validate the HZD control of running presente{B1]. A writeup of these experiments
is available in the book chapter [101] by Morris, et al. Altlgh experimental implementations of
HZzD walking controllers worked essentially “right out ofetibox,” experimental implementations
of HZD running controllers did not. In a number of experineRIABBIT was able to achieve five
or six consecutive running steps, but no more than six wereaserved. The writeup of the exper-
iments in [101] points to unmodeled boom dynamics, a wallsmidace with inconsistent stiffness,
and the limited joint space of the robot as unforseen reas@stable running did not occur in the
two weeks allotted for experiments. Perhaps more signifitteam all of these, though, is the simple
fact that the performance requirements for running usiggcitnstraint-based controllers of [31]
were simply too near to the physical limitations of what RABEBs capable of achieving. This con-
clusion is something of a double-edged sword. Is RABBIT jpatde of running, or are the demands
of the controllers presented in [31] unreasonably high?héeiexplanation is satisfying, but both
contain some element of truth. As a participant in the rugmixperiments, it is the opinion of this
author that in all likelihood RABBIT is capable of stable nimg under the constraint-based con-
trollers of Chevallereau, Westervelt, and Grizzle. Howgitas also the opinion of this author that
if (or when) stable running is achieved on RABBIT the robuabsity to model perturbations and

external disturbances observed in planar walking will roplkesent in running. The relatively large



vertical deviations of the center of mass and high velczitypically seen in running in animals are
difficult to achieve for robots such as RABBIT. Without sinto store energy or favorable natural
dynamics, energy losses at toe strikes and actuator eftsted doing negative work will hinder

the robot’s ability to run stably and gracefully.

Figure 1.1: A picture of the AMASC actuator and a diagram ®pibtential use in a biped. Pictured
at left is the AMASC actuator [76], designed by Jonathan Hair€arnegie Mellon University. The
purpose of the AMASC is to mechanically store significant enms of energy and to introduce
compliance into an otherwise rigid mechanism. At right islaesnatic diagram showing how such
an actuator might be included into the design of a biped. &/bidsed on similar principles, the

compliance mechanism of MABEL is significantly more comptlean shown here.

In response to the experiments in Grenoble, a collaboraffeet was begun between researchers
at the University of Michigan and Carnegie Mellon UniveysitVith their expertise in robotics, con-
tributors from Carnegie Mellon University would improvearpRABBIT’s design, building a new
planar bipedal robot that was more well-suited for the highynamic task of running. With hard-
ware aspects of the projects in good hands, contributora ffee University of Michigan would
continue to research new methods in gait and controllegddsr bipedal running. The biped MA-
BEL, designed by Jonathan Hurst at Carnegie Mellon, featseees compliant actuators, in which
a motor is separated from the joint it actuates by a largesspring. See Figure 1.1 for a graphical

illustration.



1.4 Organization of Dissertation

In light of experiments on RABBIT and in preparation for theanrobot MABEL, this thesis
develops extensive new design tools that address the peime limiting aspects of previous HZD
controllers. To this end, the remainder of this dissenmtforganized into ten chapters and one
appendix.

To provide the appropriate background from which to viewdhierent work, Chapter 2 gives an
overview of relevant literature in legged locomotion, Highting philosophies and tools of research
used by three major schools of thought. Setting the stagihémrem and proof, Chapter 3 estab-
lishes the technical background relevant to the method bofitigero dynamics. The formalism of
systems with impulse effects, the definition of a solutiam] aigorous descriptions of stability are
summarized with original sources cited. Following eartierivations in [153] and [31], Chapter 4
derives models of walking and running M-link rigid planar bipeds with one degree of underactu-
ation. These models will be used extensively through Ch&otehere a model with compliance is
developed.

Original work of this thesis begins in Chapter 5 where resalte reported for the Septem-
ber 2004 constraint-based running experiments conductedeoFrench biped RABBIT housed in
Grenoble, Francé.The conclusion of this chapter sets the tone for the remaioidae document:
performance limiting aspects of both RABBIT’s hardware dinel control methodology of HZD
running need to be addressed before stable human-likenginvill be observed under constraint-
based control. Of particular interest are the transitindamding controllers used in the reported
running experiment. More formal versions of these corgrsllare seen in Chapter 6, Chapter 7,
Chapter 8, and ultimately provide a rigorous controllertfar capstone example in Chapter 9.

Original work continues with connections between passiugachic walking and HZD con-
trollers being explored in Chapter®6This chapter also analyzes the general case of walking on a
slope, gives the closed-form inverse of the decoupling imatrwalking, and investigates a type of

dynamic singularity that results from conservation préiperof angular momentum.

"The contents of this Chapter 5 are taken, with minimal maaliiim, from the book chapter [101] entitled “Achieving
Bipedal Running with RABBIT: Six Steps toward Infinity” by Blorris, E.R. Westervelt, C. Chevallereau, G. Buche,
and J. W. Grizzle. Co-authored material used by permission.

8The contents of Chapter 6 are taken, with minimal modificativom the journal article [154] entitled “Analysis
Results and Tools for the Control of Planar Bipedal Gaitagisiybrid Zero Dynamics” by E. R. Westervelt, B. Morris,
and K. D. Farrell. Co-authored material used by permission.



In conjunction with deriving smooth stabilizing contrabe Chapter 7 presents two new sets
of hypotheses under which reduced dimensional Poincags man be used for low dimensional
stability tests. The method of hybrid zero dynamics, asgumiesl in [153] for the control of planar
walking, assumed that any actuator dynamics were sufflgiéat that they could be neglected in
the controller design process. Finite-time controllersenesed to stabilize the associated transverse
dynamics, resulting in a non-Lipshitz closed-loop systdgmder the controller of Chapter 7, the
stabilized transverse dynamics are not only Lipschitzioowus, but arbitrarily smooth. Accompa-
nying stability tests are presented under two sets of hygsatht one dependent on the existence of
a special set of coordinates, the other coordinate-free.

Chapter 8 presents a new, constructive method for achigkimgroperty of impact invariance
on which the controllers of Chapter 7 depend. A set of sufiicienditions and a detailed procedure
are provided for the construction of a suitable set of outpattions that lead to the creation of an
impact invariant manifold. In previous work on the HZD of niimg, nonconstructive methods were
used to achieve impact invariance. In a scheme based oiitizanmlynomials, the new method
of achieving impact invariance significantly reduces thepotational burden otherwise faced by a
control designer searching for invariant manifolds.

Chapter 9 contains a capstone example of walking in a bipduseries compliance, tying to-
gether virtually every result developed in previous chegptéhe need for springs as motivated by
Chapter 5, the transition polynomials of Chapter 6, theil#alests of Chapter 7, and the param-
eterization of Chapter 8. Conclusions and final remarks @engn Chapter 10, with Appendix A
containing relevant proofs of the theorems and corollgpiesented in Chapter 3, Chapter 7, and

Chapter 8.



CHAPTER 2

Survey of Related Literature

To compare and contrast existing literature with the cdstenthis thesis, a few of the more
dominant trends in bipedal locomotion will now be examin€his survey is not intended to be ex-
haustive, but rather to provide a representative crosgsestiowing both the breadth and the depth
of ongoing projects in bipedal locomotion, emphasizing metation between robot morphologies
and control tools. For more complete histories of leggednoation, see [142, 114, 89, 119, 14,
148, 73].

Three classes of research in bipedal locomotion will beflgrreviewed: analytical approaches
to locomotion, the ZMP (zero moment point) criterion, andgize dynamic walkers. Boundaries
between these groups are often blurred, but they nevesthedpresent a few of the dominant ap-
proaches driving research in robotic locomotion. The firsug, the camp of formal stability the-
ory, focuses on the use of rigorous mathematical methodieiprocedures of gait design, controller
derivation, and stability proof. Analytically proving thstability of dynamic walking and running
motions can be relatively difficult, stemming from the mulhiase, hybrid nature of the problem
and the mathematical precision involved in the formulatidmelevant theorems and proofs. For
this reason many researchers choose to study static orspasisiwalking using the ZMP criterion,
forming a second major trend in bipedal locomotion reseaktére trajectory tracking controllers
are coupled with online gait modification schemes to ach@pasi-static walking gaits that keep
the robot upright, but often at the cost of producing a slawuching motion. A third group of
researchers follows in the footsteps of Tad McGeer, studsabots that require no actuation other

than gravity to walk stably down a slope. With no active cohtwhatsoever, passive dynamic



walkers produce elegant, human-like gaits with maximatieificy, but with minimal versatility of
locomotion behavior.

The following sections examine these three methodologiegreater detail, highlighting re-
search philosophies, common tools, and explaining a felwefibtable experimental successes of
each group. Because the work of this thesis is so closelydi#te context of hybrid zero dynamics

and provable stability, more emphasis will be placed oneseirig this area than the other two.

2.1 Formal Stability Analysis

The body of work on formal stability analysis of bipedal latation is characterized primarily
by an emphasis on mathematical rigor and by the use of a comet@i mathematical tools includ-
ing the modeling formalism of systems with impulse effectd the method of Poincaré sections.

Systems with impulse effects are a commonly used modelingdlism [12], consisting of a
continuous portion modeled by the flow of a differential égpraand a discrete portion modeled
by a state reset map. In the context of legged locomotioadgtstate walking or running gaits are
modeled as periodic orbits occurring in systems with impefects. For the rigorous definition of
a solution in the presence of nonsmooth impacts, see [21jtitmus phase dynamics are typically
modeled in the canonical form presented in [102] and [134h vigid collisions often treated using
the impact map of [74]. See [73] for a literature review addieg systems with impulse effects and
other common frameworks of modeling bipedal walking.

Essential to the formal stability analysis of legged loctiorois the method of Poincaré sec-
tions, as it is nearly the only way to establish the propeftyrovable stability of a walking or run-
ning motion. Parker and Chua have authored an introductfgrance to the method of Poincaré
in the context of chaotic systems [106], and Hiskens pravalgeneral development of hybrid tra-
jectory sensitivities for systems with impulse effects][7Bumerical studies using the method of
Poincaré are common and too numerous to list. In contaastlysison the Poincaré map is much
more limited. Koditschek and Buehler examine an idealizedieh of Raibert's hopper [88], sim-
plifying analysis by examining the regulation of energy.ingsthe method of Poincaré sections,
Espiau and Goswami study the stability of the two-link walke[45] and together with Thuilot,

identify chaos in [57]. A three-link planar biped with onegdee of underactuation is analyzed
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by Grizzle, Abba, and Plestan in [60] and extended to planadais with N links by Westervelt,
Grizzle, and Koditschek in [153].

To accompany hybrid modeling formalisms and the method ofdaoé sections, several control
tools are used to simplify the subsequent analysis. Sonteeahbre commonly used methods are
partial feedback linearization [131], sliding mode andtértime controllers [143, 16], continuous
phase zero dynamics (or abstractions thereof) [23, 77, 22, 47], virtual constraints [29, 25],
passivity-based control and energy shaping [136, 5, 1@4harnical optimization [99, 151], immer-
sion and invariance [10], controlled symmetries [133], fR@an reductions [8], port Hamiltonians
[42, 64], and linear matrix inequalities [128].

Because the work of this thesis is so closely tied to previessits in hybrid zero dynamics,
an extended review of HZD-specific results is now providedthe notable work of [60] by Griz-
zle, Abba, and Plestan a three-link planar biped with oneadegf underactuation was analyzed
in detail. Using techniques of zero dynamics in conjunctigth a finite-time controller [16], a
1D restricted Poincaré map was derived to check the dialofiwalking over flat ground. The
biped model, written as a system with impulse effects, wagldped using standard continuous-
phase dynamics [102] and HurmzlU's rigid body impacpriat]. Ideas of this work are extended
further in [153], where Westervelt, Grizzle, and Koditsklievelop the notion of hybrid zero dy-
namics(HZD): a powerful analytical tool resulting in a restriciéower dimensionasystermand not
just a restrictedPoincate map Techniques of optimization of HZD’s were published by Veegtlt
and Grizzle in [151], where SQP optimization was used to shadrtual constraint parameters that
resulted in stable gaits. Conditions such as joint linotasi, gait stability, and boundary conditions
were represented as constraints of optimization. One ofrtA@r benefits of using hybrid zero
dynamics is that optimization can be performed directly lom parameters of the controller to si-
multaneously determine a periodic walking or running motimd a controller that achieves it. In
this sense, the optimizer searches directly over paraipetieclosed-loop systems to find one that
exhibits a desired behavior and is approximately optim#hwaéspect to some criterion.

Initial work in hybrid zero dynamics has been extended to ahmioroader domain of robot
models. The method was extended to encompass walking irtsrelith rotating feet in [34] and
impulsive feet in [33], both by Choi and Grizzle. Itis shovinat the dimension reduction techniques

of hybrid zero dynamics are also valid in systems havingdatlation, specifically walkers with
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actuated ankles. The hybrid zero dynamics theory of runwiengpresented in [31] by Chevallereau,
Westervelt, and Grizzle, in which an HZD of running was camsted by generating a deadbeat
parameter update scheme that regulated the robot so thatitiwand in a desired configuration.

Finite time controllers were used in the stance phase tarerbkat the stability analysis performed

on the hybrid zero dynamics would extend to the full modelbdth theory and practice, running

was found to be more difficult than walking. Running was atited on RABBIT in 2004 using

a variant of hybrid zero dynamics control. Although numerconsecutive steps were observed,
a stable gait was not achieved; see the experimental resplbsted in [101]. Recently, principles

of hybrid zero dynamics have been used in conjunction wigspa dynamic gaits and Routhian

reductions to achieve quasi-3D walking by Ames and Greg§Jin [

The utility of mathematically rigorous methods is not ligdtto just theorem and proof. Demon-
strations of provably stable walking controllers have bekserved on RABBIT and ERNIE. De-
signed and constructed by the French group ROBEA, the plabat RABBIT was designed with
point feet (and without ankles) to encourage advances itraldheory. At rest RABBIT stands 1.5
m tall, has two symmetric legs with knees and hips actuateeldwtric motors through harmonic
gear reducers. The most popular method of controlling sucat would ordinarily be to use the
ZMP, which relies on ankle torque to effect changes in theidigion of ground reaction forces on
the stance foot. Without ankles, this technique cannot Ipdeap Sill, RABBIT has walked suc-
cessfully under controllers that are fundamentally déferfrom control of the ZMP. Stable walking
at 1.0 m/s was achieved in March 2003 using hybrid zero dycsemd virtual constraints [149, 29].
Other robots designed and built without ankles are BIRT aRIEE constructed at the Ohio State
University. BIRT [126, 19] is a freestanding three-leggethat with the outer two legs coordi-
nated by feedback control. ERNIE has a similar mass disiobwas BIRT but with only two legs.
Like RABBIT it is attached to a boom. Both BIRT and ERNIE wersijned without ankles to

encourage innovation in control.
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2.2 The Zero Moment Point Criterion

The ZMP criterion is an intuitive argument that was propasetie late 1960's by Vukobratovic
etal. [148, 146]. It states that as long as the zero moment'pafia robot remains strictly within the
interior of the support polygon formed by the robot’s foadf), then the robot cannot fall by tipping
over the edges of its foot (feet). When the robot does notitgcontact of the robot with the ground
can be idealized as a rigid connection to the global frame,vamnious tracking techniques can be
applied to provide joint coordination [115, 4, 58]. See thaigersary paper [146] by Vukobratovit
and Borovac for an overview of the method.

Owing to its simplicity and potential for application in dOF freestanding robots, the ZMP
has inspired several variants. A related notion is the FRb{Rotation Index) by Goswami [54],
and the CoP (center of pressure) explored by Sardain an@Besisin [124]. Such connections are
sometimes highly contested as in the confrontational wbfk4y]. Experimental results of Erbatur
et al. [44] examine the validity of the ZMP by taking data fraomman walking. A frequency domain
representation of the ZMP has also been developed [24].

One benefit of using the ZMP is that it provides a simple, ptalli oriented metric to evaluate
how close a robot is to tipping over. Researchers more istislein human-robot interaction, the
design of anthropomorphic hardware, or online gait symshean conduct experiments without
having to acquire an expertise in nonlinear control thearyvall. But, a distinct drawback of the
ZMP is that many trials are often required before success,sancesses on one robot are often
only weakly transferrable to another. Furthermore, from standpoint of formal control theory,
satisfaction of the ZMP criterion is neither necessary ndfigent for stability as described in
Chapter 3 of this thesis. Analysis and experiment on RABBIS0] have proven non-necessity,
and a computational example in Choi’s thesis [32] provesuffitiency in the absence of a higher-
level supervising controller.

Formal theory aside, ZMP-based control has been succlyssiggd in a number of robots
worldwide. One of the most well-known biped robots is ASIMé@gnda’s signature humanoid.

To date, ASIMO has made public appearances opening the NenStock exchange danced for

The zero moment point is a point on the walking surface abditlwthe net moment of the forces on the robot is
zero, including inertial forces due to acceleration.
2“Adding the Android Touch” The New York Times, February 1502.
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US daytime televisiohy and visited children worldwide ASIMO itself is the result of two decades
of research by Honda into humanoid robotics. Work began thighEQ in 1986, continued through
E1-E6, P1-P3, and finally to ASIMO in 2000; see [72]. As renearkn [71], the world’s first
self-regulating biped was Honda’s P2. In the P2 biped a sigmt ZMP-based scheme was im-
plemented where three types of controllers interacted hgeae posture stabilization [67]: ground
reaction force control, model ZMP control, and foot landipagsition control. Controllers were
developed by idealizing the robot as an inverted penduludhuaing trajectory tracking on the in-
dividually actuated joints. Improvements made from thed’hé P3 are discussed in [66]. System
specificationd for ASIMO are available in [121] with high level footstep plaing algorithms avail-
able at [98]. In December 2004, ASIMO achieved running at 3k0.8 m/s) with a 50 ms flight
phase using a controller based on posture control. A year, lat December 2005, ASIMO ran at
6 km/h (1.6 m/s) with a flight phase of 80 ms. Stable walking lbeen achieved at 2.7 km/h (0.75
m/s) [72].

Originally sponsored by Honda, and later by Japan’'s METIn{stry of Economy, Trade and
Industry) and NEDO, the Humanoid Robotics Project (HRP)Yhastated goal of “investigating the
applications of a humanoid robot for the maintenance tatk&lastrial plants and security services
of home and office” [68]. The project has produced a numbeipEds including HRP-1, HRP-1S
[161], HRP-2L [81, 83], HRP-2A, HRP-2P [84], and HRP-2, whtrdware descriptions and control
software architecture described in [68]. Detailed desioms of HRP-1S are available in [161]
including the experimental success of walking at 0.25 més ameven ground. Experiments relating
to HRP-2 stepping over obstacles are in [145] and simulatadrcomplex collision avoidance are
in [162]. In early 2004, running was announced for HRP-2LR][8sing a controller based on a
technique of resolved momentum.

Sony’s QRIO is an example of a bipedal entertainment rokadtutilizes ZMP control for walk-
ing [51]. At 58 cm tall, QRIO features 38 flexible joints and regsure sensors on each of its
feet. In addition to using the ZMP for walking and balanceymagoscillator CPG control has been

successfully applied on QRIO [43].

3The Ellen DeGeneres show, February 10, 2006

4See http://world.honda.com/ASIMO/event/

°For the level of sophistication to which Honda’s humanoiblatoproject has grown, relatively few details have been
officially published of the control algorithms governingliWiag and running.
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In addition to these popular humanoid walkers of the privsgetor, the biped JOHNNIE at
TUM is an example of an academic biped using the ZMP as itsggimmethod of control. For an
overview of the hardware design and controller objectivielobnnie see [52, 107]. For experimen-

tal demonstrations of walking at speeds up to 0.67 m/s, gge [9

2.3 Passive Dynamics and Minimal Actuation

Strongly influenced by the pioneering work of McGeer [96, Bbjhe 1990’s, researchers that
study passive dynamic walking build or simulate robots thalk on gentle slopes without active
feedback control or energy input aside from gravity. In dation studies, candidate walking gaits
are found using numerical optimization or root finding tagaes, with stability determined numer-
ically by estimating the eigenvalues of the Jacobian lizesion of the Poincaré map. Typically,
this is a testing-only procedure whereby walking motioresdgemed either stable or unstable—the
stability test is not a procedure for generating stable omati

A thorough analysis of passive bipedal walking is given byi&aet al. in [50], where simulation
shows stable period-one gaits doubling to period-two giitkse presence of increased slopes, with
continued period doubling until the onset of chaos. Higlhé&nd Moskowitz study a similar model
in [75], examining the role of impacts in achieving stabletios. In a separate effort, Goswami
et al. also demonstrate period doubling to bifurcation weitkensive analysis and simulation of a
two-link walker with prismatic knees [57]. Experimentalcsesses include that of Collins, Wisse,
and Ruina where a 3D fully passive walker was able to walklgtdown a slope of 3.1 degrees
[39].

Extensions have been made to add minimal actuation to tkeligan of passive dynamic walk-
ing, allowing walking on flat ground. A biped similar to the 3@lker of [39] was later constructed
by Collins [37] and featured minimal actuation in the formaafinding and releasing toe-off spring.
The biped was able to walk stably on flat ground at a rate of /lwith an energetic cost of
transport similar to that of a human. In a similar effort, ¥éshas produced a number of minimally
actuated bipeds, many with small pneumatically poweregbsaaots called McKibben muscles [144].
A 3D biped with yaw and roll compensation was simulated in/[1&ably walking at 0.5 m/s on

flat ground. A key conclusion of passive planar walking isegivn [156] by the simple rule “You
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will never fall forward if you put your swing leg fast enougifront of your stance leg. In order to
prevent falling backward the next step, the swing leg shoulzk too far in front.” The concept was
tested on a planarized walker called Mike, showing this &napntrol law to dramatically enlarge
the basin of attraction over that of a passive walker. Seg][th$ Wisse and [38] by Collins, Ruina,
Tedrake, and Wisse for additional examples of walkers ttigteiminimalist control and actuation
for walking on flat ground.

Passive dynamics can also be used as a point of departunertioerfinvestigations. Elements
of passive dynamics are tied with learning control in Tedi®l8D biped Toddler [139, 140]. In a
similar marriage of fields, Kuo et al. examine the energatickipedal walking in relation to the
metabolic cost of human walking [91, 93]. A recent articlekayo highlights the tradeoffs between

performance and versatility in legged locomotion [92].

2.4 Marc Raibert

No review of locomaotion literature would be complete withmentioning Raibert’s fundamen-
tal contributions. First at the CMU Leg Lab and then at the NMldg Lab, Marc Raibert was a
pioneer in the use of natural dynamics in the design and @ootrlegged machines. Raibert de-
signed machines with light legs, prismatic knees, and aritajof body mass concentrated at the
hips. His controllers focused on the regulation of phys$jcaiotivated, intuitive quantities such
as hopping height, touchdown angle, and body angle. Withghilosophy of design and control,
Raibert successfully demonstrated running on his 2D and@ipér prototypes. The top recorded
speed of the 3D hopper was an impressive 2.2 m/s. His widtdy di986 book [114] is a corner-
stone of legged locomotion.

When robots have favorable natural dynamics and an appteprmorphology, use of Raibert's
controllers (or a variant thereof) could be applied to aghistable running. However, in the case
that a robot’s natural dynamics or its morphology are shgtiifferent (either by the use of electric
motors for actuation or the introduction of massive legs,ifistance) Raibert’s controllers are no
longer sufficient to provide stability. In many ways they @avwo obviousextensions to bipeds
with more general mass distributions or link morphologiBgspite what is claimed in [110], the

problem of running was not “mostly solved” by Raibert. Whileir usefulness is remarkable,
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Raibert's methods have their limitations, as do all appneado bipedal locomotion. As a whole,

the field of legged locomotion is relatively new, largely opalways ripe for new results.
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CHAPTER 3

Technical Background

The development of provably stable controllers requiredigiency in a basic set of mathemat-
ical tools. In preparation for the analysis of later chagtétis chapter reviews technical material in
five areas: the formalism of systems with impulse effectspdee orbits within such systems, the

definition of the Poincaré return map, principles of hytnihriance, and notions of relative degree.

3.1 Systems with Impulse Effects

Systems with impulse effects will be used to model the inhigydnybrid nature of walking and
running in legged machines. Systems with impulse effecte laacontinuous phase, described by
the flow of a differential equation, and a discrete phasegried by an instantaneous state reset
event. See [12] for a more detailed description. To defiag aontrol system with impulse effects,

consider a nonlinear affine control system

&= f(x) +g(x)u, (3.1)

where the state manifold is an open connected subsetlBf', the control input: takes values in
U C IR™, andf and the columns of areC'! vector fields ont'. An impact (or switching) surface,
S, is a codimension on€! submanifold withS = {z € X | H(z) = 0, Ho(z) > 0} where
Hy: X — Ris continuousH : X — RisC', S # 0, andvVz € S, 2 () # 0. Animpact (or
reset) map is & functionA : S xV — X,V C IR, p > 0 whereSN A(S x V) = 0, that is,

where the image of the impact map is disjoint from its doma&nC! control system with impulse
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effectshas the form

i = fla)+glau ¢S
DI (3.2)
xt = A(x™,v) x~ €8,
wherev € V is a control input for the impact map, and andx™ are the left and right limits of the

solution of the system. A system with inputs into the vecteldfbut not into the impact map,

T = f(z)+glx)u 2= ¢S
xt = Ax7) x~ €8,

can be written as a special case of (3.2) with= (). Replacing the control system (3.1) with an

autonomous System
i = f(x) (3.3)

and taking) = () leads to aC'' autonomous system with impulse effects

_ i o= flz) a7 ¢S
O (3.4)
xt = Ax7) 2” €S8.
For compactness of notation, an autonomous system withlgamifects (3.4) will be denoted as
a4-tuple,s = (X, S, A, f), while a control system with impulse effects (3.2) will bendeed as a
7-tuple,X = (X, S, VU, A, f,g).

Denote the solution of a system with impulse effects (3.21304) as (¢, to, zo), for t > tg
andzg € X. The solution is specified by the flow of the differential e (3.1) or (3.3) until
its state intersects the hypersurfagat some time;. At ¢;, application of the impact model
results in a discontinuity in the state trajectory. The istpaodel provides the new initial condition
from which the differential equation evolves until the nerpact withS. In order to avoid the state
having to take on two values at the impact time, the impacihterge roughly speaking, described
in terms of the state just prior to impaet = lim, ~;, (7,0, z¢) and the state just after impact
T =lim,\, ¢(7, o, ¥o). From this description, a formal definition of a solution istten down
by piecing together appropriately initialized solutiorfs(®.1) or (3.3); see [160, 60, 103, 27]. A
choice must be made whether a solution is a left- or a rightieoous function of time at each

impact event; here, solutions are assumed to be right conim

1The solution will sometimes be denotedt, z:9) where it is implicitly assumed thag = 0.
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3.2 Periodic Orbits

Cyclic behaviors such as walking and running are repredeaseperiodic orbits of systems
with impulse effects. A solutiorp(t, ¢, z) of is periodicif there exists a finitd" > 0 such that
o(t + T, tg,x0) = @(t,to,z0) for all t € [ty,00). A setO C X is aperiodic orbitif O =
{o(t,to,z0) | t > to} for some periodic solution (¢, ty, x¢). While a system with impulse effects
can certainly have periodic solutions that do not involvgdat events, they are not of interest here
because they could be studied more simply as solutions &f ¢8.(3.1). If a periodic solution has
an impact event, then the corresponding periodic @i not closed; see [60, 100]. Lé denote
the set closure af. A periodic orbitQ is transversatlto S if its closure intersects in exactly one
point, and forz* = O N S, LyH(z*) = 2L (2*) f(2*) # 0 (in words, at the intersectiod) is not
tangent taS).

Notions of stability in the sense of Lyapunov, asymptotabgity, and exponential stability of
orbits follow the standard definitions; see [87, p. 302], [B03]. For convenience, these definitions
are reviewed here. Given a noiim || on X, define the distance between a poinand a set to
be distz,C) = inf,cc ||z — yl||. A periodic orbitO is stable in the sense of Lyapunov (i.silfor
everye > 0 there exist9 > 0 such that such that,t > 0,

dist(p(t, x¢), O0) <e,
whenever didtr, O) < §. A periodic orbit isasymptotically stablé it is stable i.s.L and
tli)ngo dist(¢(t, x0), 0) =0,
whenever distzg, O) < 6. A periodic orbit isexponentially stablé there existsd > 0, N > 0,

andy > 0 such that/ ¢ > 0,
dist(p(t, z0), 0) < Ne " dist(xg, O),

whenever digtz, O) < 6.

3.3 Poinca€ Return Map

The method of Poincaré sections and return maps is widedg ts determine the existence

and stability of periodic orbits in a broad range of systemdels, such as time-invariant and
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periodically-time-varying ordinary differential equaitis [106, 62], hybrid systems consisting of
several time-invariant ordinary differential equatiomskéd by event-based switching mechanisms
and re-initialization rules [60, 103, 120], differentidgabraic equations [69], and relay systems
with hysteresis [53], to name just a few. While the analytitetails can vary significantly from one
class of models to another, on a conceptual level, the mathBdincaré is consistent and straight-
forward: sample the solution of a system according to antdvased or time-based rule, and then
evaluate the stability properties of equilibrium pointis¢ecalled fixed points) of the sampled sys-
tem, which is called the Poincaré return map. To define antev@sed sampling rule, a Poincaré
sectionS is chosen, and the value of the Poincaré return map is dedimsdbsequent intersections
of the system solution with the Poincaré section; see Eigut and Figure 3.2. Fixed points of the
Poincaré map correspchitb periodic orbitsof the underlying system.

The advantage of the method of Poincaré is that it reduaesttidy of periodic orbits to the
study of equilibrium points, with the latter being a moreeamdively studied problem. The analyt-
ical challenge when applying the method of Poincaré liesaigulating the return map, which, for
a typical system, is impossible to do in closed form becalusgjuires the solution of a differential
equation. Certainly, numerical schemes can be used to dertipireturn map, find its fixed points,
and estimate eigenvalues for determining exponentiallisgakHowever, the numerical computa-
tions are usually time intensive, and performing them tteedy as part of a system design process
can be cumbersome. A more important drawback is that the meceheomputations are not insight-
ful, in the sense that it is often difficdlto establish a direct relationship between the parameters
that a designer can vary in a system and the existence olitst@bbperties of a fixed point of the
Poincaré map.

In the study of periodic orbits in systems with impulse effed is natural to select the impact
surface as the Poincaré section. To define the return mag(tler) denote the maximal solution

of (3.3) with initial conditionz at timet, = 0. Thetime-to-impacfunction,7; : X — IRU {o0o},

2Fixed points ofP* = P o --- o P k-times also correspond to periodic orbits. The associatatysis problems for
k > 1 are essentially the same as fo= 1 and are not discussed further.

30f course, “difficult” does not mean “impossible”. There baveen success with numerical implementations of
Poincaré methods in the passive-robot community in tefifiading parameter values—masses, inertias, link lengths—
for a given robot that yield asymptotically stable periodibits [54, 141, 90, 39].
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Figure 3.1: Geometric interpretation of a Poincaré retnap for an ODE (non-hybrid) system. The
return map is an event-based sampling of the solution neariadic orbit. The Poincaré section,

S, can be any codimension oG¢" hypersurface that is transversal to the periodic orbit.

o(t, Az7))

Figure 3.2: Geometric interpretation of a Poincaré remap for a system with impulse effects. The
Poincaré section is selected as the switching surfacé, periodic orbit exists whe®(z~) = =~
Due to right-continuity of the solutiong;~ is not an element of the orbit. With left-continuous

solutions,A(z~) would not be an element of the orbit.
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is defined by

inf{t > 0|¢(t,x9) € S} if It suchthawp(t,zp) € S
Tr(zo) =
00 otherwise.

The Poincaré return map, : S — S, is then given as the partial map
P(x) = ¢(Ty o Az), A(x)). (3.5)
For convenience, define the partial mapping
o1, () = ¢(T1(x), )
so that the Poincaré return map can be written as
P(z) = ¢1, o A(x).

For aC'!' system with impulse effects? is differentiable at:*, so long as the orbit is transversal to
the impact surface. Indeed, the differentiability@f is proven in [106, App. D] at each point of
S={r e8| Ti(x) <ocoandL;H(P(z)) # 0}. From this, the differentiability of\ and f prove
that P is differentiable onS. Hence, exponential stability of orbits can be checked bgdrizing
P atz* and computing eigenvalues. The following theorem, difiéreersions of which appear in
[106, 60, 103, 100], relates the stability of fixed points lod return map (3.5) to the stability of

periodic orbits in systems with impulse effects.

Theorem 3.1 (Method of Poincaré Sections for Systems with Impulse &g If the C' au-
tonomous system with impulse effefts= (X, S, A, f) has a periodic orbitO that is transversal

to S, then the following are equivalent:
i) x* is an exponentially stable (resp., asymp. stable, or stadle.) fixed point of?;

i) O is an exponentially stable (resp., asymp. stable, or stable.) periodic orbit.

3.4 Hybrid Invariance and Restriction Dynamics

The notion of continuous phase zero dynamics, forward iamamanifolds, and functional

equivalents thereof are relatively common in the locommoliterature [23, 77, 22, 123, 47]. A
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novel contribution of the work of Westervelt, Grizzle, anddftschek in [153] is the coupling of
this idea with the concept dfmpact invarianceto form the principle othybrid invariance Types
of invariance (for autonomous systems with impulse efjestsl controlled invariance (for control
systems with impulse effects) will now be reviewed.

For an autonomous system with impulse effects= (X, S, A, f), a submanifoldZ C X is
forward invariantif for each pointz in Z, f(x) € T, Z. A submanifoldZ is impact invariantin
an autonomous system with impulse effeEts= (X, S, A, f) or in a control system with impulse
effects¥ = (X,S,0,U, A, f,g), if for each pointz in SN Z, A(x) € Z. A submanifoldZ is
hybrid invariantif it is both forward invariant and impact invariant. In a ¢mi system with impulse
effects¥ = (X, S,V,U, A, f, g), a submanifoldZ is controlled forward invariantf there exists a
C! mappingu : X — U such that for each pointin Z, f(x) + g(z)u(x) € T, Z. A submanifold
Z is controlled impact invariantf there exists aC' mappingv : S — V such that for each point
inSNZ, A(z,v(z)) € Z. A submanifoldZ is controlled hybrid invariantf it is both controlled
forward invariant and controlled impact invariant.

If a C' embedded submanifolg is hybrid invariant in an autonomous system with impulse

effectsY andS N Z is C'* with dimension one less than that &f then

2 = flz(2) 2~ ¢€8SNZ2
Yz (3.6)
zF = Algrz(z7) z7eSNZ

is called ahybrid restriction dynamicsf the autonomous system, wheref|z andA|snz are the
restrictions off andA to Z andS N Z, respectively. If, in addition, the systemhas a periodic
orbit O C Z, thenQ is a periodic orbit of the hybrid restriction dynamics. Tlystem (3.6) will
sometimes be denoted 8%z = (2,5 N Z, Alsnz, f|z) . Hybrid invariance ofZ implies that the

Poincaré return map has the property that
PSNnZ)cSnZ. (3.7)

On the basis of (3.7), theestricted Poincaé mapp: SNZ — SN Z, is defined agp = P|z, or

equivalently,

p(z) = ¢|z(T1|z 0 Alsnz(2), Alsnz(2)) = ¢11|z 0 Alsnz(2). (3.8)
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3.5 Notions of Relative Degree

The differential geometric concept of relative degree [l be important for the derivation
of a manifoldZ having appropriate invariance properties. Associate goubwvith a given system

with impulse effects

&t = f(x)+gx)u 2= ¢S
Yig ot = A(xT,v) x~ €S (3.9)
y = h(x)

whereh : X — IR?. Recall thatu takes values i/ C IR™. A system with impulse effects
is squareif the number of inputs equals the number of outputs. For @leviing definition, let
h; : X — IRwith 1 < ¢ < q refer to the individual scalar entries of the vector-valfigaiction £,

and letg; : X — IR" refer to the columns qf.

Definition 3.2. (Modified from [78]) The outpuf of a square systen(B.9) has relative degree
{ri,...,rn} atapointz® € X if ngLfchi(x) =0foralll <j <m,forall & <r; —1, for

all 1 < ¢ < m, and for allz in a neighborhood o’ containingz®. Define the decoupling matrix as

Ly L ha() oo Ly, L ()
Ly L ho(x) ... Ly, L'P 'ho(x)
Loy Ly hin(x) oo Loy L™y ()

If the decoupling matrix is invertible, then the outputis said to have vector relative degree
{r1,...,mm} at the pointz°. If in addition all valuesr; are equal to a single value, then the
outputh is said to have uniform vector relative degreat the pointz° and the decoupling matrix

is equal toL, L~ ' h(z).

Unless otherwise stated it is assumed in the following arapthat the relative degree is the
same for each output component. The developed results camtbeded to systems with gen-
eral vector relative degree, or to systems for which a vedative degree is achievable by dy-
namic feedback; see [78]. If desired, the Lie derivativesduim the above definition can be ex-
panded to a more familiar notation using the relationstips(z) = (&h(z)) f(z), Lih(z) =

Ox
(%th(ac)) f(x), LgLsh(x) = (a%th(m)) g(x), etc.
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Notation Introduced in Chapter 3

Symbol Meaning Defined

x state of a system with impulse effects Section 3.1
X state manifold of a system with impulse effects Section 3.1
U vector of control inputs to the continuous flow Section 3.1
u set of valid control inputs to the continuous flow Section 3.1
f drift vector field of a system with impulse effects Section 3.1
g control vector fields of a control system with impulse effeciSection 3.1
S switching surface of a system with impulse effects Section 3.1
H, Hy functions used in the definition of a switching surface Section 3.1
A impact map of a system with impulse effects Section 3.1
v vector input to the impact map Section 3.1
1% set of valid control inputs to the impact map Section 3.1
by a control system with impulse effects Section 3.1
by an autonomous system with impulse effects Section 3.1
tr time until the next impact event Section 3.1
T~ state of a system with impulse effects “just prior to impagt"Section 3.1
x T state of a system with impulse effects “just after impact” | Section 3.1
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Symbol Meaning Defined

»(t,to, o) | the solution of a system with impulse effects Section 3.2

(@] a periodic orbit of a system with impulse effects Section 3.2

O set closure of a periodic orhi? Section 3.2

dist(zo,C) | distance between a point € X and aset C X Section 3.2
solution of the autonomous systeim= f(x)

B(t, o) Section 3.3
initialized atty, = 0 with initial statexo

Tr the time to impact function (a partial mapping) Section 3.3
function returning the system state at the next impact

o1, Section 3.3
(a partial mapping)

P the Poincaré return map (a partial mapping) Section 3.3

Z A manifold potentially having invariance properties Section 3.4

flz the drift vector restricted to the domain Bf Section 3.4

Alsnz the impact map restricted to the domainzHf Section 3.4

B the autonomous system with impulse effeEtsestricted to

Y|z Section 3.4
the domain of2

p the Poincaré map restricted #(a partial mapping) Section 3.4

y = h(x) output vector of a system with impulse effects Section 3.5

hi(x) reference to the'™® entry of h(x) Section 3.5

g;(x) reference to thg'" column ofg(x) Section 3.5

L¢h(x) Lie derivative ofh(z) w.r.t. the drift vector field Section 3.5

L3h(z) Lie derivative ofL s h(z) w.r.t. the drift vector field Section 3.5

LyLyh(xz) | Lie derivative ofL;h(x) w.r.t. the control vector fields Section 3.5
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CHAPTER 4

Models of Walking and Running in Planar Bipeds with Rigid Lin ks

Following earlier derivations in [153] and [31], this chaptderives models of walking and
running in N-link rigid planar bipeds with one degree of underactuatidfurther assumptions
are made as to the biped’s morphology, the type and locafiactaators, the ground model, and
definitions of what it means to walk and run. The biped RABBpic{ured in Figure 5.1(a)), is
one real-world example of the models of this chapter. Housedrenoble France, RABBIT has
been used to experimentally verify the hybrid zero dynarfrmmework for the systematic design,
analysis, and optimization of provably stable walking coltérs [60, 153]. Although the class
of models considered here have pivot feet, understandieg ih a relevant first step in achieving
anthropomorphic walking motions in robots with non-trhvi@et and actuated ankles [33, 34, 41].
Similarly, the models of this chapter are a necessary psecuo controller development for the
compliant model of Chapter 9.

Guided by a set of detailed modeling hypotheses, the faligwgiections derive the differential
equations of stance and flight and the algebraic maps offifemding, and double support. Coor-
dinate relabeling, although counterintuitive at first, giifies the stability analysis of later chapters.
The chapter concludes by assembling the stance and flighépliato control systems with impulse

effects—open-loop plant models of walking and running fgidrplanar bipeds.
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4.1 Model Hypotheses

The bipeds under consideration consist\dfinks connected in a planar tree structure to form
two identical legs with knees, but without fégtvith the legs connected at a common point called the
hips. Other limbs such as a torso or arms can be connecteg Toafiguration at or above the hips.
All links have mass, are rigid, and are connected by revgdutés. The careful choice of a measure-
ment convention will simplify subsequent analysis—thaf@nglesg, = (¢1,¢2,...,qn-1), are
to be measured relative to other links and a single globdkang, is to be measured against a fixed
global frame. The position of the center of mass will be refieed by the vectQi., = (Tem, Yem)-

Actuation is provided by ideal motors (that is, ideal torqoeirces) connected to the relative
joint angles either directly or through rigid, losslessnmissions. The body coordinates are
actuated but the global angjer and the position of the COM are unactuated. Hence, fa¥dmk
biped there aré N — 1) torque inputs. The vector of generalized coordinates- (g1, ¢n, Pem)
will be used to represent the full configuration of the roboflight. In stance, the location of
the center of mass is given as a functign, = Y. (g1, gn), meaning that the stance phase will
have two fewer degrees of freedom. The vector of generalibeddinates;; = (qi, gn) Will be
used to represent the full configuration of the robot in sar8ee Figure 4.1 for examples of robot
morphology and coordinate conventions.

The robot is said to be in thiéght phasewhen neither leg is in contact with the ground, and in
the stance phasghen one leg is in stationary contact with the ground and therswings freely
under the influence of gravity and the actuators. If bothdeeion the ground, the robot isdiouble
support During stance, the leg contacting the ground is calledstaece legand the other is called
theswing leg The transition from stance to flight is calléakeoff or liftoff and the transition from
flight to stance is callethnding In this context, steady-statenningis defined as a sequence of
alternating stance and flight phases that is symmetric wghect to the left and right legs stride-to-
stride? Steady-statevalkingis a sequence of alternating phases of stance and doublersitipgt

is symmetric with respect to the left and right legs stridestride.

Although the models described here do not have feet per sh, leg terminates in a single pivot point that will
informally be called a foot.

2The chosen definition of running is fundamental to subsegmalel and controller development. Other authors
have defined running based on the motion of the center of nmdke ceaction force profile on the stance leg, for example
see [97].
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(z1,91) = (0,0)

Figure 4.1: A simplifying coordinate convention. All but ®mf the generalized coordinates of
stance are measured as the relative angles between two lnkstly one coordinate is measured

globally.

4.2 Phases of Motion

4.2.1 Flight Dynamics

In the flight phase, the robot h&d” + 2) DOF with generalized coordinates = (qy, gn, Pem)-

The equations of motion for flight can be written as

Di(qr)Gs + Ct(qt, G¢)gr + Gt (qr) = Bru, (4.1)

where Dy is the inertia matrix, the matri’s contains Coriolis and centrifugal terms, a64 is
a vector of conservative forces. Let the configuration sp@gcef the robot in flight be a simply
connected open subset&f¥ 2 corresponding to physically reasonable configuratione@fobot.

Introducing the state vector
z = (qr,dr) € Xp = Qp x RN*T?
the flight model is easily expressed as
ir = fr(ze) + ge(@e)u,

with f; and columns o beingC'! vector fields on¥;.

4.2.2 Stance Dynamics

In the stance phase the stance leg end is fixed, and therbfotecation of the center of mass

is given as a functiop.,, = Yem(gn, gn). As a result, the robot in stance phase ha®OF with
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generalized coordinateg = (g1, qn ). Similar to the flight phase, the equations of motion can be

written as

Ds(Qs)q's + Cs(q57 QS)QS + GS(QS) = Bsu- (42)

Note that (4.2) can be obtained by subjecting (4.1) to thesttaimt that one leg end is in con-
tact with the ground. Let the configuration spa@gbe a simply-connected, open subsetit’

corresponding to physically reasonable configurations@fobot. Introducing the state vector
Ls = (QSa(js) € Xy = Qs x RY

the stance model is written as

is = fs(xs) + gs(zs)u,

with f, and the columns af beingC' vector fields on¥,.

4.2.3 Landing Map

During running the transition from the flight phase to thensephase is calle@nding and
is modeled as an inelastic collision between the robot aadytbund. During this instantaneous
event impulsive reaction forces from the ground bring thieaigy of the tip of the advancing leg
to zero without causing it to rebound or slip. In addition tls# moment of landing, the robot's
configuration remains unchanged, but joint velocities geanstantaneously [74]. The post-impact
joint velocities are given by a function [31, Eq. (21)] that is based on thelrlgpdy collision
results of [74].

Let Y r2(gr) be the function that gives the in-flight location @fs, y2). At landing, impulsive
reaction force® f at the end of the swing leg induce impulsive torquest each of the joints by a

relationship found using the method of virtual work

5t — (M) / Sf.
dqr

A momentum balance illustrates the effect of the impact amt @ngular velocities

2+ L
Dx(gr)gs _Df(Qf)Qf = 0T.

*The termse; = (g; ,¢; ) andz = (g7, ¢;") refer to the system state just before and just after the tanevent.
The termse; = (g5, 45 ) andz; = (q;, ¢;") refer to the system state just before and just after the thkeent. The
addition of the superscript™ (such asz;*) indicates reference to the valaesteady-state.e., on the periodic orbit.
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By definition of the impact event, the end of the swing leg maestat rest after the impact, and

therefore

.. O0Tpa(qr) -+
(T2, 92) = el (0,0).

Together these can be written as a single matrix equation

/ 2+ .
Dy(qr) —Lp2la) ds Di(ar)qg
0Y pa(qr) a
PLpalye) 0 S5f 0

When the required matrix inverse exists, solving for thetyoopact angular velocities is straight-

forward: .
q-
Df((]f) CAICD) T
a4 0 .
4 = [ 10 ] i Di(qr)dy -
Y pa(gr) 0 0

gt

Recall that the generalized coordinates of flight= (g1, gn, pem ) are a superset of the generalized
coordinates of staneg = (q1,, gn). As aresult, the angular velocities at the beginning of thece
phasej;” can be found by simply choosing the appropriate elemenf§+oas found above.

With this in mind, the overall flight-to-stance transitiorapcan be put into the form

This transition operator is applied when the end of the acimanleg touches the ground, that is,
wheny, = 0 (see Figure 4.1). Define the functiof;_.,) : Xt — IR by H;_ (z¢) = y2, SO that

Hs_¢ (z¢) = 0 characterizes the transition hypersurface surfage) within A;.

4.2.4 Liftoff Map

During running the transition from stance to flight is calléff and is modeled as an instanta-
neous event on which joint angles and angular velocitiesiathanged. Recall that when the robot
is in the stance phase,, = Tem(gs)- In this case, the pre-transition velocity of the center abm
(Lo Uon) IS €asily found as

y - _Tcm s .s .
(xcmaycm) aq (q )q

S

By hypothesis, all positions and velocities of the robot@stinuous across the liftoff event, mak-

ing the post-liftoff values of the generalized coordinaded velocities trivial to find. The transition
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model for takeoff will be written as

m?_ = A(s—»f) (ms )

The transition from stance to flight occurs when the vertieattion force on the stance leg goes
to zero. This force is a function of the generalized coorgisaf stance, their angular velocities,
and (potentially) the torque vectar In the case that the vertical toe force is dependent on thha¢o
vector, a feedback law for the stance phase must be knowmnebafivansition hypersurface can be
defined for the liftoff event.

Let Hs_p)(zs) : X — IR represent the (perhaps closed-loop) expression for thigalecom-
ponent of the stance leg reaction force as a function of teeststate vector so thBf, ) (zs) = 0
characterizes the transition hypersurface surégger) within X;. If the vertical component of the
reaction force is dependent on the control law, then thesitian surfaceS,_.;) must also be de-

pendent on the control law.

4.2.5 Double Support Phase

During walking, the robot progresses from stance, to dosbfgport, to stance, etc. without
going through an intermediate flight phase. Although no fligiase is present, the impact map
for the double support phase of walking can be written as gposition of the liftoff and landing
events,

As(ws) = A(f—>s) © A(s—»f) (‘TS)

This transition operator is applied when the end of the sv&ggtouches the ground, that is,
whenys = 0. Define the functiorfl; : X; — IR by Hy(xs) = y2 so thatH(zs) = 0 characterizes
the transition hypersurface surfaSgwithin X;. An occasionally useful property of the impact map

of the double support phase is that

@ = Aulg)
G = Ag(gs)ds

whereA,, andA,, are implicitly defined.
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(z1,91) = (0,0)

Figure 4.2: An illustration of leg swapping. The model at lisfpictured at the end of a stance
phase. The greyed leg is the stance leg of the recently ctedpbtance phase. The model at right
is in the same configuration, but the roles of the legs have b&apped. The greyed leg is now the

stance leg of the upcoming stance phase.

4.2.6 Coordinate Relabeling

As a result of previous assumptions on symmetry, the bipdidhewe quantitatively the same
behavior whether the “left” leg is acting as the stance lether“right” leg is acting as the stance
leg. At the moment of impact, the roles of the legs are swapihedold stance leg becomes the new
swing leg and vice versa. To mathematically account forchange in roles, a coordinate relabeling
operator is used. Such a construction allows normal, igffttrsymmetric walking or running to
be analyzed as a period-one gait, rather than a period-twto §ae Figure 4.2 for a graphical
illustration of the leg swapping operator. Rather than antfor the coordinate relabeling operation
explicitly (which would lead to cumbersome notation and &ttl insight) we will assume that
coordinate relabeling has been implicitly carried out imderivation of the landing event of running

and the double support phase of walking.
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4.3 Open-Loop Models of Walking and Running

Having derived the stance and flight phases, the open-loatehud walking is written as a

system with impulse effects

‘%:s = fs(xs) + gs(ws)u Ts Q Ss
Vg : (4.3)

xsT = Ag(xsT) xs~ € S

or, in an alternative notation as
%o = (%800, RN A, f,94)

The open-loof model of running is written as a discrete event system withdharts (terminology

taken from [63])

. tr = fr(vr) +gr(@e)u xp & Si—g)
£
rf = Agg(ey) Ty € S(ios)
(4.4)
5 Ty = fs(xs) +gs(ws)u w5 & S(s—>f)
w? = A(S_ﬁ)(xs_) T, € S(S_>f)

or, in an alternative notation as
Y= (Xf7 S(f—>s)7 (2)7 R(N_1)7 A(f—»s)a ffa gf)

Y = (XS>S(S—>f)7@>IR(N_1)’A(S_’f)’fs’gs) ’

Walking and running motions are modeled as periodic orlitsining in the state manifolds of
(4.3) or (4.4). Having rigorously derived models of walkiaigd running, attention is turned toward
the derivation of stabilizing model based controllers. Bg tefinitions presented in Chapter 3,
asymptotic stability is interpreted as the property of @etloop walker or runner to asymptotically
reject arbitrarily small disturbances and converge oveetto a periodic gait. Note that stability
is not to be confused with robustness, which is the abilityeject large disturbances. Although
robustness implies stability, stability does not implyustness. Furthermore, neither stability nor
robustness in the given sense should be confused with tipegyocof “not falling down”, which is

a more general concept addressed by Yang, et al. in [159].

“Recall that the definition of the liftoff surfac®_.r) may require a priori knowledge of control law. We prefer this
slight abuse of notation in favor of a more involved modeidgion that would provide little additional insight.
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The derivations of this chapter have produced open-loogiagbnd running models for a class
of rigid planar bipeds with one degree of underactuatiore fblowing chapters present additional
results for bipeds in this class. Chapter 5 contains expariah results from the control of model
based running in RABBIT, and Chapter 6 analytically exptarelationships between HZD control
and passive walkers. And, chapters 7 and 8 derive consdled stability tests that are applicable

either to the models of this chapter, or to the model of coamplivalking in Chapter 9.

36



Notation Introduced in Chapter 4

Symbol Meaning Defined

N number of (rigid) links in a planar biped Section 4.1
o vector of actuated body coordinates Section 4.1
qN the unactuated absolute coordinate Section 4.1
Pem location of the center of mass Section 4.1
qr generalized coordinates of flight Section 4.1
s generalized coordinates of stance Section 4.1
Dy inertia matrix of flight Section 4.2.1
Ck matrix of centrifugal and Coriolis terms of flight Section 4.2.1
Gt conservative forces of flight Section 4.2.1
Or configuration space of the flight phase Section 4.2.1
T state of the robot in flight Section 4.2.1
X state manifold for the flight phase Section 4.2.1
fe drift vector of the robot in flight Section 4.2.1
gt control vectors of the robot in flight Section 4.2.1
Dy inertia matrix of stance Section 4.2.2
Cs matrix of centrifugal and Coriolis terms of stance Section 4.2.2
Gs conservative forces of stance Section 4.2.2
Os configuration space of the stance phase Section 4.2.2
Ts state of the robot in stance Section 4.2.2
Xy state manifold for the stance phase Section 4.2.2
fs drift vector of the robot in stance Section 4.2.2
Js control vectors of the robot in stance Section 4.2.2
Yem function returning the position of the center of mass Section 4.2.2
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Symbol Meaning Defined

Ty state of the robot in flight, just before landing Section 4.2.3

x; state of the robot in flight, just after takeoff Section 4.2.3
state of the robot in stance, just before liftoff

Ty Section 4.2.3
(or just before double support)
state of the robot in stance, just after landing

xT Section 4.2.3
(or just after double support)

Y ro flight phase function returning the location of the swingtfocSection 4.2.3

S(i—s) transition surface of landing Section 4.2.3

Ar—g) landing map of flight Section 4.2.3

S(s—1) transition surface of liftoff Section 4.2.4

A liftoff map of stance Section 4.2.4

Ss transition surface of double support Section 4.2.5

Ag impact map of the double support phase Section 4.2.5
open-loop model of the stance phase of flight (or the open-

s Section 4.3
loop model of walking, depending on context)

pIT open-loop model of the flight phase of running Section 4.3
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CHAPTER 5

Running Experiments with RABBIT: Six Steps toward Infinity *

In March 2003, the French robot RABBIT achieved robust wajkunder a provably stable
hybrid zero dynamics controller [149]. Walking controfidor RABBIT acted by enforcingirtual
constraints which are holonomic constraints used to coordinate linkeneents throughout a gait.
The stability properties of such walking motions were amaty on the basis of thieybrid zero
dynamics of walkingwith the conclusions of theory supported by experimergsalits.

In September 2004, similar experiments were conducted|idata the hybrid zero dynamics
theory of running presented in [31]. In a number of experitheRABBIT achieved five or six
running steps before tracking errors exceeded softwaredmiut stable running (that is, an exper-
iment resulting in a potentially unbounded number of steyes$ never observed. One experiment
where RABBIT took six steps is examined in detail. The obsémyait was remarkably human-like,
having long stride lengths (approx. 50 cm or 36% of body lehdtight phases of significant dura-
tion (approx. 100 ms or 25% of step duration), an uprightyrestand an average forward rate of 0.6
m/s. A video is available at [59]. Details of the online catigr and the offline gait optimizer are
discussed along with hardware modifications leading upgcstmple experiment in which RAB-
BIT took six consecutive running steps. An additional dsstan about some unmodeled dynamic

and geometric effects that contributed to implementatifficdlties is given.

*The contents of this chapter are taken, with minimal modifica from the book chapter [101] entitled “Achieving
Bipedal Running with RABBIT: Six Steps toward Infinity” by Bdorris, E.R. Westervelt, C. Chevallereau, G. Buche,
and J. W. Grizzle. Co-authored material used by permission.
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(i) (ii) (iii)

(a) RABBIT (b) Phases of running and coordinate conventions.
Figure 5.1: Phases of running and coordinate conventiorssichfigure of RABBIT is shown (i) at
the end of the stance phase with the stance leg in bold; (iingdlight with the previous stance leg
in bold; and (iii) at the beginning of the stance phase jurdanding and coordinate swap, with
the stance leg of the upcoming stance phase in bold. To aldtigr; the coordinate conventions
have been spread out over the stance and flight phases. Amglpssitive in theounterclockwise

direction.

The remainder of this chapter is a self-contained desoripif the theoretical development and
hardware modifications leading up to one example of an exygst in which RABBIT took six con-
secutive running steps. To facilitate implementation,dbetroller hypotheses of [31] are slightly
relaxed, leading to controllers that are easier to design those proposed in [31] but which still
lend the closed-loop system to a reduced dimensionalityilésyatest. Philosophy and motivation
of the modified control law are given in Section 5.1.1 with &aded development of the hybrid
controller in Sections 5.1.3 to 5.1.7. The resulting clelm model of RABBIT and its stability
properties are discussed in Sections 5.1.8 and 5.1.9. Beh®) Section 5.2 outlines a method for
the design of stable gaits using constrained nonlineamiguition and includes a numerical exam-
ple. Section 5.3 presents results from the first experinh@nfdementation of running on RABBIT
and a discussion outlining a number of possible reasons tahjesrunning was not observed. Con-
clusions are drawn in Section 5.4. Supplemental materialappearing in [101] is provided in

Section 5.5.
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5.1 Controller Derivation

5.1.1 Summary and Philosophy

The overall philosophy of HZD control is to use the freedomaikable in feedback design
to achieve a parameterized family of closed-loop systemsselstability analysis is analytically
tractable. This allows the use of humerical optimizatiosé¢arch among the family of closed-loop
systems to find those that yield a desired behavior, suctabesunning at a pre-determined speed
with upper bounds on peak actuator power and the coefficfestatic friction between the leg end
and the ground.

Parameterization is achieved through the use of virtuasttaimts in both the stance and flight
phases. Perfect enforcement of virtual constraints egullow dimensional surfaces that are in-
variant under the differential equations of the closeglooodel and are also invariant under the
transition maps. To achieve the invariance at landing, dlokst action is incorporated in the flight
phase controller that steers the robot to land in a pre-uted configuration, while respecting
conservation of angular momentum about the robot’s cetfiterass. This hybrid controller creates
a 1DOF HZzD that allows the stability of a running motion to bealgzed in closed form on the

basis of a one-dimensional Poincaré map.

5.1.2 Parameterized Control with Impact Updated Parametes

In the first running experiment attempted on RABBIT, thereswat sufficient tim&to imple-
ment completely the controller of [31]. The controller thats implemented used virtual constraints
in both the stance and flight phases, but the deadbeat aétioa ftight phase controller was not im-
plemented to regulate the final configuration of the robobathdown. Instead, to account for the
changing configuration of the robot at touchdown, the ttarsicontroller of [152] was adoptéd

Key points of the related analysis are highlighted in Secid..9.

1A total of two weeks were available to perform the experiraent

2The transition controller of this chapter takes into ac¢dha joint angles of the robot at touchdown but not the joint
angular velocities. As a result a true HZD of running is n&ated, and the resulting analysis of Section 5.1.9 (based on
[60]) is modified accordingly.
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5.1.3 Parameterized Virtual Constraints

For notational convenience, the stance phase and fligheplirasal constraints will be parame-
terized separately by, anda;, respectively. These parameter sets, which lie in the peterspaces
As = IR™ and Ay = IR™, can be updated at takeoff and landing events but are otbeeinstant.

With this notation, the virtual constraints for stance aightlare, respectively,

Yy =dqgp — hd,s(es(QS)a as) (513.)

y = qp — hat(0r(qr, ar), ag). (5.1b)

5.1.4 Stance Phase Control

The controller for the stance phase acts by updating thermessas and by enforcing the
virtual constraints (5.1a). As a result of enforcing theéual constraints, in stance phase, the robot
behaves as an unactuated 1 DOF system whose properties taretdeby choosing different con-
straint parameters. Apart from different boundary coodgion the virtual constraints, this control
is identical to the walking controllers developed in [1589]. The stance phase parameter vector,

as, can be expressed as

as = (as,05 Gs,1,-- -5 Gsme—1, Qs mg, O 01), (5.2)

wherems > 3, as; € R fori € {0,1,...,ms — 1,ms}, andé;,0F € IR. Note thatns =
4(ms + 1) + 2. The termd); andf;" are the values of the functidh(gs) evaluated at the end and
the beginning of the stance phase. In [153, 149]is expressed in terms of Bézier polynomials.
Here, a slightly different class of polynomiéls used that satisfy the following:
has(0F,as) = ago d;‘(gshdﬁ(ﬂs_, as) = Qgme—1
(5.3)
d-has(0F,as) = asy has(0s,as) = asm,.

The stance phase virtual constraints are imposed on therdgsay using a contral, : X, x A, —

IR* that drives (5.1a) to zeria finite time The specific assumptions are as in [60, 153].

3Terms that are constant during the continuous phases obmatind potentially updated at phase transitions, will be
consideregarameters
4Any class of smooth functions satisfying these propertigstie used to define virtual constraints.
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5.1.5 Flight Phase Control

The development of the flight phase controller is similarhat tof the stance phase controller.
The key difference is the choice éfin (5.1b) to be a function of the position of the center of mass

The flight phase parameter vectay, is defined as

_ + -+
af = (af,Oy Af 15y Qf me—15 Qf my :Ecmf’ xcm,f’ Tf)> (54)

wherem; > 3, ar; € R*fori € {0,1,...,my — 1,m}, anda . i@t . T € IR. Note that

cm,f? ““em,f

ng = 4(ms + 1) + 3. The termsz ¢, 7 ., andT; are, respectively, the horizontal position of
the center of mass at the beginning of the flight phase, thedrdal velocity of the center of mass
at the beginning of the flight phase, and the estintatiedation of the flight phase. The flight phase

virtual constraints (5.1b) are given by

+
1 [ Tem — X ¢
Hf(qfvaf) = T (4.7%) ; (55)
f xcm,f
andhg ¢, which, as in the stance phase, is a smooth, vector-valuedidn that satisfies
hae(0,a¢) = agg digfhd,f(lyaf) = Qfm—1
(5.6)
ar-has(0,ar) = ap, hat(1,at) = agm,.

For a given stride, let; denote the elapsed time within the flight phase. By conservaff linear
momentum,i/,  is constant during flight, which implies that = (zem — 2, ¢)/d0, - AS @
result,f; = t¢/Tt is a valid substitute for (5.5), and for this reason, the wiflght phase virtual
constraints are said to iene scaled Flight phase virtual constraints are enforced using argatm
state feedback controlles; : X; x A; — IR* that drives (5.1b) to zero exponentially quickly.
Note that finite time convergence is not used in the flight phasfinite time controller is used
in the stance phase to render the stance phase constrdadestinite time attractive so that the
analysis of running will be similar to that of walking [60]oFfurther discussion of this point, refer

to Section 5.1.9.

SCalculation of7} requires the height of the center of mass at Iandng‘,,f, to be knowna priori, which is only
possible if the virtual constraints are exactly enforcadulghout the flight phase.
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5.1.6 Transition Control: Landing

In the event that landing occurs with the state of the robbdsatisfying the virtual constraints,
the control parameters of the subsequent stance phgsare updated to ensure that the config-
uration of the robot satisfieg, — hq (05, as) = 0.5 The parameter updates are governed by the

S

differentiable functionu_) : Ss_s) — As, such that fous = w_g) (7; ),

aso = qu
as,1 = a*71
° 9;_ = 95((];_)
(5.7)
i} 0; = 6;F
Asms—1 = Ogme—1
as,ms = a;ms‘
In the aboveg is calculated using\ s (z; ), and the term8_ andag; € R ic{l,..., ms—

1, mg} are constant parameters chosen during design.
If the stance phase finite time controller can satisfy théuslrconstraints (5.1a) before the
liftoff event occurs, and the parameter updates obey (&) the stance phase will terminate with

qp — has(05, as) = 0, or equivalently, withy~ = ¢~*.

5.1.7 Transition Control: Takeoff

At takeoff, the parameters of the flight phase virtual caists, af, are updated so that the
duration of the planned motion of the robot is equal to thereded flight time. Parameter up-

dates are governed by a continuously differentiable foncti_.¢) : Sis—.ry — Ay, such that for

af = W(s—f) (xs )'

®0ur velocity estimates were rather noisy, so we did not wpdat. Updatingas,o andas,: would allow that just
after landing, the full state satisfied the virtual consiisi
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afo = a%k,o
agy = a%k,l
a = af
fme—1 = fome—1
*
Afmy = f,ms

Temg = T:vcm(qS_)
) OV ) —\ o
Tt = g ()4 (5.8)

Tt

. ¥ - +
y:_m,f + \/(ycmvf)2 o 2g(ycr:;,f B ycm,f)

g

g

where, g is the magnitude of the acceleration of gravity Qngif is the height of the center of

mass at the end of the flight phase, on the limit cycle. Thestwj;\ € R*ic{0,1,...,ms —

1,ms} are parameters chosen during design. Initiation of theofflevent is a control decision,

designated to occur whefi(¢q) = 65 . In the closed-loop model the switching hypersurface is

Ss—f) = { (w5, a5) € X X Ag | Higp) (5, a5) = 0} whereH ) (x5, as) = 0s(gs) — 05 .

5.1.8 Resulting Closed-Loop Model of Running

To form the closed-loop model of running, the state spacéhefdpen-loop model, (4.4), is

enlarged to include the parameters of the flight and stanesgsh Define the augmented state

spaces
Xte
Xse
with elements given by
Tfe
Tse

XfXAf

XSXAS

(qf> q.f> af)

(qS7QS7aS)'

The closed-loop dynamics can then be written as

]Ffe(xfe)

fse(wse)

fe(@e) + ge(we)u(zr, ar)
Onex1
fs(s) + gs(ws)u(zs, as)

Ongx1
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The zero vectors reflect that the virtual constraint pararsedo not change during the continuous

phases of running. The closed-loop impact maps includedrenpeter update laws,

_ A(f—»s)(xf_)
A(f—»s)e(xf_e) -
i w(f—»s)(wf_) ]

_ A(s—»f)(xs_)
A(s—»f)e(ws_e)

L w(s—»f)(ms_) ]

The closed-loop hybrid model is then

_ ite = [fie(Tte) Tio & S(t—s),

Yte o (5.9a)
ac;; = A(f_)s)e(l'fe) Teo € S(f_,s)e

_ Tse = fse(xse) Tse ¢ S(s—»f)e

S - (5.9b)
:U;; = A(s—»f)e(xse) T € S(S_)f)e,

which may be written as

ife = (Xfea S(f—>s)e>z(f—>s)e> ffe)

ESe = (Xsea S(S—»f)ea Z(s—>f)e7 fse) .
5.1.9 Existence and Stability of Periodic Orbits

The first step to evaluate the stability of a running gait gdiine method of Poincaré is to
construct a system with impulse effects (that is, a singkrchybrid model) that has the same

Poincaré map as (5.9). Following [31, Eq. (62)], define

)]

A (O
T = A7) €S,

wherez = Zse, f = foer A = A(rog), © 175 © Ds—p),, aNdS = Si_y),. In words, this

system consists of the differential equation of the cldseg- stance phase model of (5.9) and a

generalized impact map that includes the transition map from stance to flight, thghfliphase

dynamics, and the impact map from flight to stance. The gémedaimpact map is the result of

event-based sampling of the solution of (5.9) at takeofhesze
Because the virtual constraints in the stance phase arecedfasing a continuous finite time

controller [17], the reduction technique of [60, Thm. 2] jpécable. Because the parameter updates
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in the stance phase can be computed in terms of the state oblibe at takeoff, the analysis of
periodic orbits can be reduced to the computation of a omedsional restricted Poincaré map,

havingS_.r), as a Poincaré section.

5.2 Design of Running Motions with Optimization

5.2.1 Optimization Parameters

To design a running motion, a numerical routine is used tockethe parameter spacek
and A; for a set of parameters that results in a desirable gaitqgieriorbit of (5.9)). Common
requirements on the gait are achieved by incorporatingt@ings into the numerical search. Such
constraints address actuator limits, allowable joint spaad unilateral ground contact forces. For
the experiments reported here, the gait was designed usiogtanization approach that combined
the ideas of [30] and [153]; the optimization was performadally on the parameters of the virtual
constraints in order tgsimultaneouslydetermine a periodic running motion and a controller that
achieves it. This is in contrast with the approach of [31] mehartual constraints are designed by
regression against optimal, pre-computed, periodicdtajes.

Virtual constraints are assumed to be satisfied on the permtit, which has two conse-
guences: first, the integration of the closed-loop systemadycs can be performed using the
stance and flight phase zero dynamics (see [31] for detadsylting in short computation times;
and second, the virtual constraint parametergnda¢, are not independent. Once the independent
parameters have been identified, standard numerical @gatiioin routines can be used to search for

desirable gaits. The implementation of such a proceduratiged in the following subsections.

5.2.2 Boundary Conditions of the Virtual Constraints

The transition maps of takeoff and landing can be used tatifgeredundancies between the
virtual constraint parameter vectarsandas. Given the state corresponding to the end of the limit
cycle stance phase, * = (¢ *, 45 ), the state at the beginning of the subsequent flight phase can

be computed as{™ = (¢;*, ¢;) = A (z5™). For bothz;* andz;™ to satisfy the virtual
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constraints of their respective phases, the followingtieala must hold,

W1 = s /05 afy = qyf
(5.10)

Aims = Qys af, = g4y If,

which are derived by applying (5.3), (5.5), (5.6), and (38}5.1). These are the boundary condi-
tions associated with the liftoff event of the periodic orbihe state of the robot at the beginning
of the stance phase/™* = (¢;*, ¢1*), can be related to the state at the end of the previous flight
phase,z; " = (¢; *,¢; *), by the landing mapz™* = A_q (z; "), to yield the following addi-
tional design constraints,

_ ot -
Gso = qb,s* Of 1 = qb,f* '
(5.11)

agy = qus*/eer>k a}k,mf = qb_f*

The update law presented here enforces fewer boundarytmmsdihan the update law of [31].
The extra boundary conditions associated with takeoff &eady satisfied by (5.10), but those
of landing are not met by (5.11); they are more difficult tassitdue to conservation of angular
momentum in the flight phase. The main theoretical resulhigf¢hapter is that invariance of the
flight and stance phase constraint surfaces over the lamdieigt is not a necessary condition for
achieving provably stable running. As noted earlier, relgthis condition makes running motions

significantly easier to design.

5.2.3 Optimization Algorithm Details

Trial gaits for the running experiments were generatedgutiie constrained nonlinear opti-
mization routinef m ncon of MATLAB’s Optimization Toolbox. Three quantities are wived in
optimization:J, a scalar cost function to be minimized on the periodic b, a vector of equality
constraints, and N E(Q), a vector of inequality constraints. The following is a dgstton of the op-
timization procedure that was implemented. The indeperaimhdependent terrhsf optimization
are given in Table 5.1. Note that when the optimizer terngimatith the constraints satisfied*
will be a point located on a closed-loop periodic orbit and Wirtual constraints will be given by

(5.2) and (5.4).

"“Terms” is used to describe those variables used in optiivizathese are different from the “parameters” of the
virtual constraints.
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Algorithm

1.

2.

10.

. Calculates; , af ; by (5.10);a5 ,,,. 1, a5 ,,,, DY (5.11); andel: ¢, & 0>

Selectr; " = (¢; *,4; ), the state corresponding to the end of the flight phase.

Using the flight-to-stance transition functiafy;_), calculatez* = (¢*, ¢ "), the state

corresponding to the beginning of the subsequent stancepha

S

Calculated* by (5.7) anduf , a; , by (5.11).

. Selectag,, ..., a5, , andfg " to complete the stance phase parameter vegtor

» Ysmg

. Using parameters, and the initial condition:]*, integrate the equations of motion of stance

and apply the stance-to-flight transition operatby, ), to obtainz;™ = (¢, ¢;™).

andT} by (5.8).

cm,f? ““em,f?

. Selectsf o, ..., af,, _, to complete the flight phase parameter veator

. Using parameters;, and initial conditiomc;r*, integrate the equations of motion of flight to

obtainz; .

. Evaluate] EQ, andI N EQ.

Iterate Steps 1 to 9 untilis (approximately) minimized, each entry B is zero, and each

entry of INEQ is less than zero.

5.2.4 An Example Running Motion

A sample running gait designed by the above algorithm is nmsgnted. A stick diagram of

this motion is given in Figure 5.2(a). The stability anadysutlined in Section 5.1.9 was applied to

the resulting running motion. Figure 5.2(b) gives the fettd Poincaré map, which indicates that

the motion is locally exponentially stable. The gait wasgiesd to minimize the integral of torque

squared per distance traveled, with the following constsai

Equality constraints, EQ

e error associated with finding a fixed point, — ;||
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Terms of Optimization

Independent Dependent
" € RY 0% € R
* * c R4 * * c R4
as,Z’ ce ’a’s,mS as,O' as,l
07 € IR rI* € RY
* * 4 * * 4
Aoy Of g € R afgr G5q € R

* * 4
af,mf—l’ af,mf € R

—+x
xcm,f’

it LT € R

cm,f?

xy € R

Table 5.1: Independent and dependent terms used in optionizal he choice of the independent
terms is non-unique and depends on the specific optimizgiiocedure. The parameters below
correspond to the algorithm in Section 5.2.3, which is omaightforward method to ensure the

boundary conditions of the virtual constraints are met.

e deviation from the desired running rate
e required frictional forces at the leg ends are zero justiegiakeoff and just after landing (to
prevent slipping at these transitions)
Inequality constraints, INEQ
e magnitude of the required torque at each joint less than 180 N

e knee angles to lie if0°, —70°) and hip angles to lie i11130°, 250°) (see Figure 5.1(b) for

measurement conventions)
e minimum height of the swing foot during stance greater tham7
e required coefficient of friction of the stance phase lesa tha
¢ flight time greater than or equal to 25% of total gait duration

¢ landing foot impacts the ground at an angle of approach tessiH° from vertical

joint angular velocities less than 5 rad/s
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Figure 5.2: Stick diagram and Poincaré map for the examphming motion (rate 0.58 m/s).
Poincaré map constructed by evaluatiig= (o, 1)?/2 at the end of successive stance phases,
whereo_; is the angular momentum about the stance leg end just befmié | The fixed point,

¢* = 303, is located at the intersection pfand the identity mag; = (;+1, and corresponds to
an equilibrium running rate of 0.58 m/s. The slope of the frap* is dp/d¢ ~ 0.67, indicating

exponential stability.
5.3 Experiment

5.3.1 Hardware Modifications to RABBIT

Prior to the experiment reported here, only walking experita had been performed with RAB-
BIT. To prepare for the task of running, four hardware modiitans were made.

The first modification was the inclusion of prosthetic shobkabers in the shanks. It was
speculated that with shock absorbers the landing wouldeckass wear and tear on the harmonic
drive gear reducers that form RABBIT'’s hip and knee jointsheTinclusion of shock absorbers
added approximately 5 cm to each shank.

The second modification was the installation of force saasitesistors into RABBIT’s point
feet. These devices allowed for more accurate measureméne couchdown time than did the
previously installed mechanical contact switches. Sihesé sensors suffer from significant drift,
their signals were numerically differentiated to make easie detection of impact events.

The last two modifications were the bolting of aluminum usuel stock along each thigh and
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the widening of the hips. Both of these changes were madelpopnevent flexing of the legs in
the frontal plane. Significant flexing was withessed durimg first several experimental trials of
running. This problem was more pronounced in running thawaiking because of the greater
impact forces associated with landing. On several occasiABBIT “tripped itself” during a
stance phase of running when the swing leg passed by theed&n(the legs knocked against each
other). This came about because RABBIT was designed to lsvegs close together to better

approximate a planar biped.

5.3.2 Result: Six Running Steps

After completing hardware modifications and successfpyroducing previous walking exper-
iments, running experiments were conducted. A number aérxqental trials resulted in RABBIT
taking several human-liRerunning steps. One such trial, which was an implementatfothe
example running motion of Section 5.2.4, will be discusseith

For this experiment, motion was initiated by an experimemnteo pushed the robot forward,
into the basin of attraction of a walking controller that uced walking with an average forward
walking rate of 0.8 m/s. RABBIT then achieved stable walkifajowed by a transition to running
in a single step, followed by six running steps. After thdlsistep, the experiment was terminated
by the control software when the tracking error limit of CaBlians was exceeded for the stance knee
angle. Examination of collected data suggests that trgaiiror resulted from actuator saturation.
Data also show the swing leg extremely close to the grountieatrtoment the experiment was
terminated, suggesting the swing leg may have, in factclkttiie ground contributing additional
tracking error.

A plot of estimated® foot height is given in Figure 5.3. Average stride durationthe steps was
431 ms. Flight times, observed as those portions of FigiBevbere neither leg is at zero height,
lasted an average of 107 ms (25% of the stride). Videos ofbtherament and many additional data

plots are available at [59].

8A human-like gait is considered to be characterized by aighpposture, a torso leaning slightly forward, and a
long step length.

°See [149] for a description of the PD controllers used to mefthe virtual constraints.

When RABBIT is in flight, there is no accurate way to deterntifigheight. A sensor was mounted to record boom
pitch angle, but due to flexing of the boom, these data werimate. During the stance phase this lack of sensing is not
a problem because the end of the stance leg is always at Zgid.he
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Figure 5.3: Estimated height of RABBIT's point feet duritngtreported running experiment. RAB-

BIT’s left foot is indicated in bold. Flight phases occur whaeither foot is at zero height.

Several problematic issues related to RABBIT’s hardwack rdit appear until running was
attempted. (For a discussion of general implementatiomes®f walking including unmodeled
effects of the boom, gear reducers, and an uneven walkirfgceusee [149].) Future running
experiments—whether on RABBIT or another, similar meckiari-should take into account the

following issues.

Boom dynamics

The perturbing effects of the boom were found to be much migreéfieant during flight phases
than during stance phases. When RABBIT is modeled as a ptgstam, an analysis of the three-
dimensional mechanics shows that the contribution of thmrbto the center of mass dynamics is
significant. Specificallygs is no longer, in general, a cyclic variable during flight. Hawer, if boom
masses are appropriately distributed, the parabolic matfche center of mass, as modeled in a
planar system, is recovered. Unfortunately, this specedswistribution was impossible because

RABBIT does not have a counterweight system.

Walking surface

The walking surface was also a source of problems. Thisae#faonsisting of rubber over el-
evated plywood supported on the edges by a wood frame—wgisalty built to provide a uniform,
level surface. Although the surface appears uniform, waglléxperiments demonstrated otherwise.

It was found that the surface has “fast” and “slow” areasesponding to varying floor stiffness
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and coefficient of friction.

Limited joint space

For safety, RABBIT’s joints have hard stops that limit iténjospace, which, for example, pre-
vent the shank from contacting the thigh. Although the amd joint space was sufficient for
walking, it became a significantly limiting factor in the égs of running gaits. These hard stops
prevented the swing leg from being folded close to the higclvis a natural and desirable motion

that minimizes the leg’s rotational inertia.

5.4 Conclusion

A novel approach to the control of running in planar bipedd &g first experimental imple-
mentation on RABBIT have been presented. The control lawlsiti, consisting of continuous
actions in the stance and flight phases and discrete actidhe artansitions between these phases.
In the stance and flight phases, the controller coordinatesslative motions of the robot’s links by
imposing virtual constraints at the actuated joints. Attifamsition from stance to flight, the con-
troller adjusts the virtual constraints for the flight phasea function of estimated flight duration
to ensure that the former swing leg is advanced properlyki® tg its role as the next stance leg.
At the transition from flight to stance, the controller uggathe virtual constraints of the stance
phase to account for the orientation of the robot at landiay. the nominal periodic running mo-
tion, the parameters of the virtual constraints are detezthby numerical optimization in order to
meet actuator power limits, friction bounds, joint limittc. For running experiments, RABBIT’s
mechanical and electrical systems were modified: shockrabsowere added to the shanks; the
ground contact sensors were improved; the stiffnessegsfitethe frontal plane were increased,;
and the hips were widened.

The main theoretical result of this chapter was the devetoyinof a running controller that
is based on the HZD methodology, but easier to design andemmgit while still resulting in a
reduced dimensionality stability test. The main experitakresult of this chapter was the physical
realization of six consecutive running steps with a humla-gait and identification of hardware

difficulties of running with RABBIT that were not present iralking.
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Takeoff Time | Landing Time | Flight Phase Duration
19.5465 s 19.6470 s 0.1005 s
19.9545 s 20.0835 s 0.1290 s
20.4255 s 20.5215 s 0.0960 s
20.8695 s 20.9715 s 0.1020 s
21.3045 s 21.3945 s 0.0900 s
21.6990 s 21.8205 s 0.1215 s

Table 5.2: Flight phase durations for the six running st@pset = 0 s corresponds to the initiation

of the experiment.
5.5 Supplemental Material

To support the conclusions of this chapter, several additidata plots are provided here that
did not appear in [101]. Figure 5.4 shows the value of a ndeedlgait parameter as a function of
time. Values from 0 to 1 indicate the completed fraction & fanned stance phase, and values
from 1 to 2 indicate the completed fraction of the plannechflighase. Power was automatically
cut after the sixth step due to high joint tracking error. I€sponding takeoff times, landing times,
and flight phase durations are given in Table 5.2. Plots afatot saturation are shown in Figure
5.5 where the provided torque and the commanded torque degethown in fractions of motor
capacity. Flattened peaks atand —1 indicate the controller commanded more torque than the
motors could output. Data suggests that torque saturatiangithe flight phase caused a buildup
of tracking error across the six running steps. The trachlots of Figure 5.6 show how closely the
local PD joint controllers enforced the virtual constraiat each joint, indicating that actual joint
trajectories were ordinarily very close to their desiretlga. The experiment was terminated by

the accumulation of tracking error in the right knee joinshswn in Figure 5.7.
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Figure 5.4. Normalized gait parameter showing the exigaicsix running steps. Values from 0
to 1 indicate the completed fraction of the planned stanes@hand values from 1 to 2 indicate the

completed fraction of the planned flight phase.

56



actuation of inner (left) hip joint
3 ‘

fraction of max torque

18.5 19 195 20 20.5 21 21.5 22
time (s)

tracking of outer (right) hip join

fraction of max torque

18.5 19 19.5 20 20.5 21 215 22
time (s)

actuation of inner (left) knee joint
2 T T T T

fraction of max torque

18.5 19 19.5 20 20.5 21 215 22
time (s)

actuation of outer (right) knee joint

fraction of max torque

18.5 19 19.5 20 20.5 21 215 22
time (s)

Figure 5.5: Actuator saturation during running. The preddctuation is shown as a solid line.
The actuation requested by the controller is shown by adigldiashed line. Flat peaksiaand—1

indicate the controller required more torque than the nsotould safely provide.
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Figure 5.6: Joint tracking performance during running. dheerved trajectory is shown as a solid

line, the reference trajectory, by a lighter, dashed line.
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Figure 5.7: Joint tracking error during running. An accuatiain of error in the outer knee triggered

safety conditions that automatically terminated the expent.
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Notation Introduced in Chapter 5

Symbol Meaning Defined

As parameter space of the virtual constraints of stance Section 5.1.3
A parameter space of the virtual constraints of flight Section 5.1.3
ha,s, 0s functions defining the virtual constraints of stance Section 5.1.3
ha,s, Of functions defining the virtual constraints of flight Section 5.1.3
W(f—s) parameter updates at landing Section 5.1.6
W(s—t) parameter updates at liftoff Section 5.1.7
KNse state manifold of the closed-loop stance phase Section 5.1.8
Xeo state manifold of the closed-loop flight phase Section 5.1.8
Tse state of the robot in closed-loop stance Section 5.1.8
Tfe state of the robot in closed-loop flight Section 5.1.8
fee vector field of the closed-loop stance phase Section 5.1.8
fee vector field of the closed-loop flight phase Section 5.1.8
Aty closed-loop liftoff map Section 5.1.8
Z<fﬂ)e closed-loop landing map Section 5.1.8
Yo model of the closed-loop stance phase Section 5.1.8
Yte model of the closed-loop flight phase Section 5.1.8
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CHAPTER 6

Sample-Based HZD Control for Robustness and Slope Invariace of

Planar Passive Bipedal Gaits

To explore potential connections between passive dynaraikens and hybrid zero dynamics
controllers, this chapter presents new analysis resutisaois for the HZD framework. These in-
clude (i) analysis of the effects of walking on a slope, (iiab/sis of dynamic singularities resulting
from enforcing virtual constraints, and (iii) an alternatimethod for designing virtual constraints.
Extensions are motivated by a desire to make the gaits ofveasslkers robust to disturbances.
As noted in Chapter 2, passive bipedal walkers have thdyatolivalk stably down a slope without
the use of actuation [96] and typically suffer from sengiito initial conditions and to external
disturbances. The new results and tools facilitate thegdesi controllers to make such passive
gaits robust.

The first result, analysis of walking on a slope, is an extansif [153, 149] in which compo-
nents of the closed-loop system dynamics are examinedéaonligte the overall effects of changing
ground slope. Results make indirect use of observatiorengiv[133] regarding the fact that planar
rotations of the robot are a group symmetry of the robot’stmnenergy but not of its potential
energy.

The second result sheds light onto the condition of decogptatrix invertibility. For an HZD

controller to be valid, the decoupling matrix associatethwerforming input-output linearization of

*The contents of this chapter are taken, with minimal modifice from the journal article [154] entitled “Analysis
Results and Tools for the Control of Planar Bipedal Gaitagisiybrid Zero Dynamics” by E. R. Westervelt, B. Morris,
and K. D. Farrell. Co-authored material used by permission.
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the robot’'s dynamics must be invertible [78, Chp. 5]. Thesetbloop system is said to encounter a
dynamic singularityat points where the decoupling matrix is noninvertible.sldgfinition is used to
parallel the notion of a kinematic singulafityDynamic singularities, like kinematic singularities,
represent configurations of the robot at which there is aatémhu in the number of DOFs. But,
unlike kinematic singularities—which arise from the meukan’s kinematics and involve only its
kinematic parameters—dynamic singularities involve Hatlematic and inertial parameters. One
type of dynamic singularity related to bipedal walking itwes the decoupling matrix used in HZD
feedback controllers. Other types of dynamic singulaxitiéll not be considered. It is shown that
decoupling matrix singularities can be computed with atiredly simple, closed form expression.
Interpretations of dynamic singularities are given as aeglanalysis of the effects of approaching a
singularity.

The third result, an alternative method for designing akonstraints, expands the set of refer-
ence gaits controllable within the HZD framework, sepa@atiait design and controller design into
two distinct steps. In previous work, the virtual consttaiwere chosen using numerical optimiza-
tion over a pre-chosen, finitely parameterized family ofstmaints. This technique is acceptable
when the objective of controller design is to find a gait widntain stability and energetic proper-
ties. However, when the goal is to exactly achieve a givet) gaiisting techniques can do no better
than to project the motion onto the closest member of thenpatierized family of constraints. The
alternative method, termeshmple-based HZD contiolloes not use a pre-chosen family of virtual
constraints. In essence, a given (period-one) gait is saiplobtain full state information at cho-
sen instants of time. Certain normalized quantities arepetied from this full state information
and are used to define the virtual constraints of an HZD clbetroThe sampled gait can be ob-
tained from, for example, a gait induced by a potentiallynown control strategy, or a gait whose
corresponding control strategy is not equivalent to impggiolonomic constraints. An example
of the latter is the work of [30] where joint motions were dgsd to be polynomial functions of
time rather than of state. By using this approach, it is usuallypossible ta@xplicitly represent the
motions as following holonomic constraints [28].

With regard to passive gaits, sample-based HZD controlleadhe design of controllers that

!For other definitions of dynamic singularities relating pasecraft manipulators, see [105, 158].
2What this section provides is a computationally tractatplicit representation of the holonomic constraints that
correspond to such motions.
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can (i) render a stable, passive gait robust and (ii) sysieally modify a given gait’s characteris-
tics. The sample-based HZD controller method combinesridnaple stability properties and large
basins of attraction of HZD controllers with the energy éfitcy of passive or nearly passive gaits.
The theory differs from the work of [133], [9], and [137] inahfull actuation is not assumed and
a means to systematically modify the gait is given. The thadso differs from the work of [56] in
that a given passive gait is enforced (with arbitrary accyrarather than inducing a gait that does
not correspond to one that is passive.

The theoretical results of the chapter are illustrated via éxamples. Although the developed
theory applies taVv-link planar bipeds with point feet, for presentation simipy all examples use
the two-link walker depicted in Figure 6.1. The dynamicstod biped during the single support
phase is that of the Acrobot [132].

The content of the remainder of the chapter is as follows.ti@e6.1 presents the model for
walking on sloped ground. Section 6.2 reviews the concdpistoal constraints and HZD control
in the context of walking on a sloped surface. Section 6.8gjitie analysis of dynamic singularities
followed by an example. Section 6.4 develops sample-bastlconstraints and augmentation
functions, and includes an application to the design ofrodiets for torque specified gaits. Sec-
tion 6.5 contains three examples that apply the tools ofi@eét4 to the design of controllers that

make passive gaits robust. Conclusions are drawn in Se@iton

6.1 Model of Walking on Sloped Ground

6.1.1 A System with Impulse Effects

The biped is assumed to be comprised\ofigid links connected by revolute joints such that
() there are no closed kinematic chains; (ii) there are tworaetric legs and, possibly, a torso; and
(i) the leg ends contact the ground at a single point. Thetds said to be in single support (or in
the swing phase) when exactly one leg is in contact with tbergt. The leg contacting the ground

is called the stance leg and the other is called the swinglteg.assumed that all of the biped’s

3In the HZD framework, the biped is assumed to have point @ntith the ground and is therefore underactuated.
With this assumption, the effective underactuation thégtexvetween the biped and the ground—because of unilateral
constraints due to finite foot size—is made explicit. If adalpn question is, in fact, fully actuated, the HZD framework
still applies. First an HZD controller is designed, and themouter-loop control is designed that makes use of the ankle
torque [34].
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(¥5.p3)

\

Figure 6.1: Diagram of a two-link planar biped walking dowslape. The dynamics during the

single support phase is that of the Acrobot [132].

internal degrees of freedom (DOFs) are actuated, but thatagree of freedom associated with the
robot’'s absolute orientation is unactuated (i.e., no tercgn be supplied between the robot and the
ground). The swing phase model is therefore underactuated.

The generalized coordinates of the biped @re (¢4, q.,) € Q, whereQ is an appropriate sub-
set of RV, ¢, is the column vector of the relative, actuated coordinaes,q, is the unactuated
coordinate. It is assumed that the unactuated coordinateasured relative to the walking surface.

The swing phase equation of motion of the biped is
D(q)i + Flal(q.¢) = Bu, (6.1)

with B = [T 0] and wheré « is the ground slope; for example, see Figure 6.1. Let the sfahe

biped ber = (q,¢) € TQ. Then, (6.1) can be written as
i = flol(z) + g(x)u. (6.2)

The walking gait is assumed to be symmetric with respectadwo legs so that, in particular, the
same swing phase model can be used irrespective of which thg stance leg.

Swing phases are separated by phases of double supportingevhen both feet are in contact
with the ground. This transition is modeled as an instargasgerigid body collision [74] that occurs

whenz € S = {z € TQ | pj(z) = 0}, wherepy is the vertical height of the swing leg end. The

“Throughout this chapter, dependence on the ground slopengter is emphasized by the use of square brackets.
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transition model, which includes a permutation of the comtes to account for the swapping of

the legs’ roles, is algebraic and can be written as

T = Az7), (6.3)

where the superscript+” (resp. “—") refers to the value at the beginning (resp. end) of a step.
The overall model is expressed as a single-charted systdnmimpulse effects:
i = flo)(2) +gl@)u, =~ ¢S
3 (6.4)
T =Az7), r” €8S.
Walking gaits will be analyzed as periodic orbits of (6.4jthnstability of a walking gait referring to

stability of the corresponding periodic orbit. For formafiaitions of solutions, orbits, and stability

relating to (6.4), see [60].

6.1.2 Example Model: A Two-Link Walker

For presentation simplicity, the results of this chaptelt b illustrated on a two-link biped
walker—a biped with the fewest number of links to which thsutes apply. The biped is depicted
in Figure 6.1, and its parameters are given in Table 6.1. &hmag of the equations of motion for

the walker are as follows. The (symmetric) mass inertia iméatr

Di(qp)=010-1)>m+J (6.5a)
Dia(q1) = mi(l — 1) cos(q) — (I —1)*m — J (6.5b)
Dos(q1) = —2m (1 — ) cos(q1) + (2(12 +1*) — 21.1) m+2.J. (6.5¢)

The vector of Coriolis, centrifugal, and gravity terms is

Fila](q,q) = —mIsin(q)(l = lc)d3 + mgosin(qr — g2 — a)(I — L) (6.6a)
Fy[a)(q,q) = —mIsin(q1)(l = I)(¢1 — g2)d1 +misin(q1)(l — lc)d1go

+mgo((le — ) sin(q1 — g2 — @) — sin(gz2 + @) (lc +1)). (6.6b)

Leg scuffing that necessarily occurs during the swing phatieedwo-link walker is ignored.
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Parameter Units | Value

Leg length m 1.0
Leg COM location/. m 0.8
Leg massm kg 0.3

Leg inertia about leg COMJ | kgm? | 0.03

Acceleration due to gravity | m/s® 9.81

Table 6.1: Parameters of the two-link model. (Parameté&entérom [48, Tab. 4.1].)

6.2 HZD Framework for the Control of Walking on Sloped Ground

6.2.1 Defining Virtual Constraints

Virtual constraints are holonomic constraints that areasgal on the robot’'s configuration by
feedback. These constraints are parameterized by a soaletioh of the robot’'s configuration,
and, when enforced by feedback, effectively reduce theedkdsop DOFs of the robot. When
virtual constraints satisfying certain invariance prajesrare exactly enforced, the HZD of walking
results.

To formally define virtual constraints, consider the follog output on (6.2),

0(q): Q— Ry CR (6.7a)
s(0) : Ry — [0,1] (6.7b)
hg(s) :[0,1] — RN-1 (6.7¢)

y =h(q) =qa —hqoso0(q) (6.7d)

wheref(q) is a function that is monotonic over a step and has a compaageRy, s(f) is a
bijection with respect tdzy and normalize® to the unit interval, and,(s) is a twice continuously
differentiable function that gives the actuated coordisadf the robot. For notational simplicity,

definehy(6) = hy o s(#) so that (6.7d) can be written
Y =qa—haob(q). (6.8)
Let#™ andd~ denote, respectively, the valuesidfy) at the beginning and the end of a step. Then,
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a valid choice fors, is s(0) = (6 — 61)/(0~ — 67) with
0 =cq, (6.9)

wherec = (c1, ¢3), c1 € RV~tandey € R with ¢ nonzero. This choice will be assumed for the
remainder of the chapter. Virtual constraints are said tedtisfied or enforced when= 0. The

constraint surface is defined as the subset6f) where the virtual constraints are satisfied,
Z={2e€TQ|h(x)=0,Lsh(x) = 0}. (6.10)

Note that it can be easily verified thagh(xz) = 0 for all z € T'Q.

When viewed within the context of the hybrid model (6.4), tdual constraints are required
to have two types of invariance: forward invariance (or sardus phase invariance) and impact in-
variance (or invariance across the impact event). Contisyiase invariance refers to the property
that once a solution of (6.4) is within the constraint sugfaibe solution remains in the constraint
surface until the end of the single support phase. This typevariance is achieved by the appro-
priate design of a feedback controller. The virtual corstsaare invariant across the impact event if
lying within the constraint surface before impact guarastat the solution will lie within the con-
straint surface after impact. This type of invariance is @pprty of virtual constraints themselves

and is independent of the feedback controller.

6.2.2 A Feedback yielding Continuous Phase Invariance

Assume a constraint of the form (6.7), which may or may notfygeict invariant. The controller
given in this subsection will render it continuous phaserant. The controller’s development

begins by taking the first two derivatives of the constraint,

. Oha(0) ;
da = —5p 0, (6.11a)
-
j = T(H)(j—aggge) 62, (6.11b)
- Oha(0)
() = [H— 5 c}, (6.12)

H = (6.13)

[ Inv—nxv=1) Owv—1)x1 } '
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With (6.1), (6.11b) can be expressed as

ij = L3h[a)(q,4) + LgLsh(q)u. (6.14)
where
,
Ihlo)(a,4) = ~X @D @Flolia.a) ~ o i (6.15)
LyLh(q) = Y(6)D~}(q)B. (6.16)

The termLyL;h(q) is known as the decoupling matrix from the inputto the outputy. See
Section 6.3 for explicit calculation and interpretationtbé decoupling matrix’s singularities as

well as an example. With the application of the input-oulmeéarizing pre-feedback
u= (LyLsh(q))™* (v — L3h[a)(q.4)) | (6.17)
the error dynamics (6.14) becomgs= v. Thus, choosing to be a PD controller,
v=—-K,y— K3y (6.18)

with poles sufficiently fast [100], the virtual constrair{&8) will be asymptotically enforced and

continuous phase invariant.

Remark 6.1. The control law, (6.17) and (6.18), requires measuremeraf) and computation
of LyL¢h(q) and Lfch[a](q,q'). While D(q), F[a](g, ), and B can be readily obtained from the
system dynamics, the functiohg(d), dhy(0)/00, and 9*h4(0)/06* depend upon the choice of

virtual constraints.

6.2.3 The HZD of Walking

The HZD of walking is a subdynamic of the full hybrid walkingoafel (6.4) that corresponds
to the dynamics that are “left over” once the virtual constsahave been imposed. Like the full
hybrid model, the HZD of walking is also a single-chartedtegswith impulse effects, but of lower
dimension. The HZD resulting from virtual constraints lwhea (6.7) are developed next.

The angular momentum about the stance leg end contact piimthe ground is
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whered,, is the last row ofD. In a neighborhood of any point where the decoupling magix i
invertible, (y,v,0,0) is a valid change of coordinatesn 7'Q. Furthermore, the inverse of the

coordinate change is given by

q=24(0,v) (6.20a)
Gg=24(0,0,y,7), (6.20b)
where
-1 B
H ha(0) +y
,(0,y) = (6.21a)
c 0
-1
_ T(0) Y
4(0,0,y,9) = : (6.21b)
dn(‘]) g
q:q)q(@,y)

Assuming that the decoupling matrix is invertible, the zéynamics manifold can be written as

q=24(0,0), ¢ =P4(0,0,0,0),
2={(q,d) €TQ . (6.22)
el0t,07],0 eR

With the output given by (6.7), and a few additional techhassumptions (see [153, Thm. 1]), the

swing phase zero dynamics—the maximum dynamics that areaiiste withy = 0—are

. 1
6 = 60" (6.23a)
0 = My go Tem[](0,0), (6.23b)
where
1(0,y) = (c®4(0,1,y,0)) " (6.24)

and wherel; is the total mass of the bipeg; is the magnitude of the acceleration of gravity, and
zem|a] (0, y) is the horizontal position of the center of mass measurel igpect to the stance leg
end [29, Eg. (15)]. It can be shown that if the virtual constiaare impact invariant, then at an
impact,

ot = Ogero 0, (6.25)

®Note that a valid change of coordinates@ris (6, y), regardless of decoupling matrix invertibility. This fastused
in Theorem 6.7.
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whered, .., IS a constant readily computed using the definitioa f6.3), (6.20), and (6.21). Taking

z = (0, 0) as a state vector, the single-charted HZD is,

2= frerol](2), 27 €SNZ
Ysero - (6.26)
2T = Apero(27), 27 €SN Z.

The HZD is said to bevell-definedf the virtual constraints are both forward and impact imvar
ant. Forward invariance means that solutions of the HZD @ solutions of the full system (6.4),
which, in the context of this chapter, is equivalent to theadgpling matrix,L, L ¢h(q), being in-
vertible along solutions of the HZD. If an HZD is well-defingdend will be a monotonic quantity,
either increasing or decreasing along the continuousgr@tof a walking gait [153, Prop. 1]. For

the remainder of the chapter it will be assumed that< 6, or equivalently, thaé is monotoni-

cally increasing along the continuous phase of the orbit.

6.2.4 Gait Stability

A primary benefit of the HZD approach to the control of bipedalking is the simple stability
metric that it affords: the stability of a walking gait (pedic orbit of (6.4)) can be verified by
checking two inequality constraints. Assume that the HZDv@al-defined and that the virtual

constraints are perfectly enforced. Sime) is monotonic over a step, the coordinate change
(==0> (6.27)

allows (6.23) to be integrated and rewritten as

C(0) = ¢ — Vierola](0) (6.28a)
o(6) = signum(c™) /2 ((0) (6.28b)
where
0
Vyerolal (0) = — / 1(9,0) M go zem[a] (9, 0)d (6.29)
o0+

[153, Thm. 3]. With the impact mag, is related ta_* by
(" = Grerol (6.30)
The step-to-step evolution gf —the restricted Poincaré map—is therefore given by
¢k +1) = 0roC ™ (K) = Vierola] (07) (6.31)
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The fixed point of this map is

- Vaero[a](07)
e 6.32
C 1 - 6361‘0 ( )
as long as
—x o Vaero |

> 52—” (6.33)

whereV, 0% = maxgp+ <g<p- Viero(6). The fixed point is exponentially stable if
620 < 1. (6.34)

Hence, a stable gait will exist in the full model (6.4) if th&HB is well-defined, if (6.33) and (6.34)
hold, and if the virtual constraints are enforced by a swfitly fast controller (6.18).
6.2.5 Effects of Varying Ground Slope

The effects of varying the ground slope on the existencetabls) gaits are now presented. The

presentation begins with two propositions summarizingsshimportant facts.

Proposition 6.2. Under the assumption that the unactuated coordinate is aredgselative to the

walking surface, the following functions and surfaces adependent of ground slope;
i) the transition modelA(z),
i) the restricted switching surface N Z,
iii) the restricted impact coefficient,..., and
iv) the decoupling matrixyL rh(q).

Proof. Proof of part (i) is trivial by inspection of [153, Eqns. 6 afid Condition (ii) holds since&
is independent af,, which is trivial by inspection, and because the output)(®.thdependent of.

Condition (iii) holds by (i) and becaugseand (6.20) are independent @f Part (iv) is trivial. [

Proposition 6.3. Under the assumption that the unactuated coordinate is miedgelative to the
walking surface, if the HZD is well-defined for a given growhopec, then it will be well-defined

for an arbitrary «.
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Proof. Invariance of the virtual constraints with respect to intpanda holds by Proposition 6.2
parts (i) and (ii). Invariance of the decoupling matrix wilspect tax holds by Proposition 6.2 part

(iv). 0

By Proposition 6.3, the minimum ground slope required fabkt walking can be determined

by finding the smallest such that

‘/zero [O‘](e_) 1- 6361‘0
e T (6.35)

Zero zero

Note that the loss of stability amounts to the fixed point mgvoutside the restricted Poincaré
map’s domain of definition and not a change in the map’s e@esv Calculation of the maximum
ground slope is more tedious and involves consideratiohefitound reaction forces and actuator
limits. The next proposition gives an interesting obseovategarding the loss of stability due to

ground slope decrease.

Proposition 6.4. The effects of ground slope on (6.35) are due to the chandeeinelative hori-

zontal distance between the COM and the contact point oviema s

Proof. Consider (6.29). Since the functiadi{f, 0) is independent of the absolute coordinate it is

also independent of the ground slope, leavigg[a](f,0) as the only term dependenton [

This result makes indirect use of observations given in [18&mely, the results hold in part
due to the fact that planar rotations of the robot are a grgopreetry of the robot’s kinetic energy

but not of its potential energy.

6.3 Analysis of a Dynamic Singularity

By definition, a manipulator encounters a kinematic singiylaat a configuration where its
manipulator Jacobian is rank deficient. At a kinematic diagty, end effector motion in one or
more directions cannot be achieved—not because of inediadiderations or actuator limits—but
because of the geometry of the manipulator itself. Dynanmgusarities, which are less common
and defined in a variety of ways, are states of a robot thangpessible to attain for causes related

to the robot’s dynamics, and not the robot’s kinematics élon
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As an example of a dynamic singularity, consider an idedlimgure skater, viewed from above,
that is rotating in place. Assume that the skater is massbesspt for point mass hands, and that
the point of rotation is frictionless. For any nonzero rateaiation the skater will be unable to
bring both of their hands to the axis of rotation, due to cora@n of angular momentum. Having
both hands on the axis of rotation—resulting in the skaiagstia being zero—is a type of dynamic
singularity. For other notions of dynamic singularitiese $105, 158].

The remainder of this section develops mathematical andipilyexplanations for one type of
dynamic singularity that is encountered in the control qfeoial walking. The dynamic singular-
ity occurs when the effective moment of inertia about thestdeg end is zero. The condition is
characterized by rank deficiency of the decoupling matrixpse inverse is required in the compu-
tation of the feedback controller (6.17). A numerical ex#&mg given in which the two-link walker

encounters such a dynamic singularity.

6.3.1 Singularity in the Decoupling Matrix

Independent of slope, implementation of the HZD contro{&d.7) requires inversion of the
decoupling matrix (6.16), which is not necessarily full kasver the entire state space. At points
where the decoupling matrix is rank deficient, the closeghlgystem is said to encounter a dynamic
singularity. At a point of singularity, the controller (&)lis no longer valid and so the zero dynamics
(6.23) and all associated analysis are meaningless. Tti®salevelops a means of identifying
dynamic singularities so that they may be avoided in coletralesign. Physical interpretation of a
dynamic singularity is also developed as it applies to bapeadhlking.

The development begins by noting that the decoupling mé#ik6) is a continuous function
of the configurationy. As a result, as long as the decoupling matrix is invertitibe@ the periodic
orbit, it will be invertible on the constraint surfacg and also in some open region containing the
constraint surfade see [108, Section V.B]. In this case, keeping the solutibthe closed-loop
system sufficiently close to the constraint surface willeaghat dynamic singularities are avoided.

However, ensuring that the solution remains close to thstcaint surface requires careful initial-

®The decoupling matrix is invertible along the orbit if, andyif, it is invertible for allg = ®,(#,0) for € [97,07].
This same set of configurations appears in the descripti@ermf dynamics manifold (6.22). So, invertibility along the
orbit implies invertibility along the entire zero dynamiognifold. By continuity arguments, the decoupling matsx i
invertible in some open region @fQ containing the zero dynamics manifof
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ization of the system’s state and, possibly, the use of laogérol gains. Although singularities are

avoided with this approach, no insight is provided intoitleeigin.

6.3.2 A Closed Form Inverse

Finding the region of invertibility of the decoupling matiis a nontrivial task in general. For
the class of output functions given by (6.7), however, bbthdecoupling matrix’s inverse and its
region of invertibility can be computed in closed form. Taessults are developed next.

Application of the partial linearizing feedback,

u = D(q)v + Flal(q,9), (6.36)

where
D(q) = D11(q) — D12(q) D33 (q) D21 (q) (6.373)
Fla)(g,4) = Fi[a)(q,d) — Di2(q)Da3 () F2[o) (g, ), (6.37b)

to the swing phase equations of motion (6.1) results in

a O(n—1)x1 Iin—1yx(N=1
_ W=1)x i (6.38)
Giu — D5, (q)F2[e](q,q) — D55 (q)Da1(q)
f g

The decoupling matrix relating the inputand outputy, (6.16), can then be expressed as

Oha(0 Tv-1)xv-1)
LgLih(q) = In-1)x(v-1) — ;9( ) c : (6.39)

—D3;' (q) D21 (q)

Proposition 6.5 (Decoupling matrix inverse in closed formJhe decoupling matrix (6.39) is in-

vertible everywhere that(q) # 0, with S(q) given by

Lin—1)x(n-1) M

S(g)=1-c¢ 50 (6.40)
— D3 (q)D21(q)
The inverse of the decoupling matrix, when defined, is
B _, Ohg(f In—1)x(v-1)
LgL#h(q)™" = Tinv_1yx(n—1) + S(q) 1% c (6.41)

~Da;'(a)D21(q)

74



Proof. The proof follows from direct application of the Sherman4kison formula’ In this case,

the matrices involved are

6hd(9(q)) I(N—1)><(N—1)

—D2_21(Q)D21(Q)
O

Although Proposition 6.5 gives a simplified means of findiygamic singularities—by find-
ing zeros ofS(q)—it does not provide physical insight into the origin of thegslarities. Such

interpretations are developed next.

6.3.3 Interpretations

Development of physical interpretations of dynamic siagties involves analysis of the coor-

dinates of the zero dynamics, (6.19) and (6.9). First, (Gd8xpanded to obtain

0 = D21(q)da + D22(q)Gu, (6.43)

and (6.9) is manipulated to yield
Gu = c3'0 — c5 ' cr1da. (6.44)

Use of (6.8), (6.11a), (6.43), and (6.44), results in

o = Dy (0,y) <8Bg£9) 0+ y> + Dy (6, y) <c2—19' —clte <8Bg£9) 0+ y>> ,  (6.45)
=1(6,y)0 + 1,(0,y)y (6.46)

where
1,(0,y) = Da1(6,y) — ¢; ' Daa (6, y)cr (6.47a)
I1(0,y) = ca "' Daa(0,4)S(6,y) (6.47b)
=Irp(0,y) + 1an(0,y) (6.47¢)

and

Irp(0,y) = ¢; ' Das(0,y) (6.48a)
La5(0,y) = (D21(0,y) — ¢35 e1Dan(,y)) ahgée) (6.48b)

"The Sherman-Morrison formulatates that the matrifd,, <, — PQ), P € R™*™, Q € R™*" is invertible if, and
only if, (Inxm — QP) is invertible, in which casél, ., — PQ) " = Lixn + P(Lmxm — QP) Q.

75



Here, the termg and/rp are named theirtual inertia and therigid body inertia The rigid body
inertia is the mass inertia of the robot (assumjpds constant) about the ground contact point, and,
hence/rp (6, y)é is the rigid body angular momentum about this same point.t@itmas 4 (0, y)é
andl, (0, y)y arearticulated body angular momeritacontributions to the angular momentum about
the ground contact point due to internal motions of the rdlatiations ofg,). Note that while
I4p(0, )0 participates in the zero dynamids,(6, y)y does not sincg = 0 on the zero dynamics
manifold by definition.

In the context of (6.46), dynamic singularities have phgkinterpretations as given in the fol-

lowing theorem.
Theorem 6.6. The following are equivalent:
() The decoupling matrixL,L rh(q), is singular.
(i) S(q) =0.
(i) The virtual inertia I(9,y) is zero.
(iv) Irp(0,y) + Iap(0,y) =0

Proof. (i)« (ii) Since the rank properties and singularities of the decogptiatrixL, L sh(q), are
not altered by pre-feedback (6.36), singularitiesLgf. ;1(q) are the same as thosebﬁth(q).

The invertibility condition ofZ; L zh(q) is given by Proposition 6.5.

(i) < (iii) Using (6.47b), since the scalas is nonzero by hypothesis and the scalag(q) is

nonzero by positive definiteness bf(q), I(6,y) = 0 if, and only if, S(q) = 0.

(i) < (iv) The result follows from (6.47c) and (6.48). O

Regarding the physical interpretation of conditiow), the planned motion (constraint) will
result in a dynamic singularity if, and only if, the motioro(tstraint) is such that the rigid body
inertia Irp is equal and opposite in sign to the inertial term associafigiu the articulated body

angular momentumi 4 g.

8Note that the inertial term associated with the articuldtedy angular momentuni,s 3, does not correspond to the
usual notion of the articulated body inertia, as definedef@mple, by [46].
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6.3.4 Approaching a Dynamic Singularity

Although the HZD controller is not well-defined at a dynamiiegsilarity, when approaching

such a point the closed loop system will exhibit the follogvimehaviors:

Theorem 6.7. Suppose that within the state space of the zero dynamic3) @.&re exists a unique
valued, € [#*,6~] whose associated configuratian = ®,(6,,0) corresponds to a singularity
of the decoupling matrix, i.e§(¢s) = 0. If a solution of the zero dynamics approacttgswith

nonzero angular momentum, i.bmy -9, o () # 0 with o(6) as in (6.28b), then
() the time from step start to singularity is finite,
(ii) the magnitudes of, 4, 63, etc. grow without bound, and
(i) the angular velocity, acceleration, etc. of at leastenjoint grow without bound.

Proof. (i) The time to singularity from initialization is (see [153, E@1])

(% 1(0,0)
TS_/Q+ 00) de, (6.49)

wherel(0,y) ando(0) are given by (6.24) and (6.28b) is finite since the integrand is a bounded

function on the bounded intervi™, 6;].

(i) Using (6.23a)¢ can be parameterized WByi.e., ford € [0, 0,),

0(0) = o(). (6.50)

Observe thaf (¢, y) ando (@) are continuous functions, thatf,,0) = 0 by Theorem 6.6, and that
limg -9, 0(6) # 0 by assumption. As a resulfimg -, () = oo. Proof of unboundedness 6f

93), etc. can be formalized by contradiction agaihsinbounded in finite time.

(i) Becausd is a linear combination of the joint angles (see (6.9)), thava implies that a8 and
6 grow without bound, so must the magnitudes of angular velaaid acceleration of at least one

joint. O

It is worth emphasizing that Theorem 6.7 (iii) shows thatrreeaingularity, angular velocities

¢ can become unbounded while angular momentum about thectqrimnt, o, remains finite. In
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addition to the predictions of Theorem 6.7, an obvious biglassociated with approaching a dy-
namic singularity is that the HZD controller (6.17) will tigally command extremely large torques,

which will quickly result in actuator saturation—yet anethmotivation for avoiding singularities.

6.3.5 Example 1: A Singularity for the Two-Link Walker

For the two-link walking model of Section 6.1.2 with paraerstgiven in Table 6.1, assume that
the robot is walking on level ground, i.ex,= 0, and choose; = 0 andc, = 1. Condition (iv) of

Theorem 6.6 states that at a singularityz = — 15, or in this case,

=2 (ml(l —1.)cos(q1) — (I =11+ 12)m — J)
= (mi(l —lc)cos(q1) — (I — 1) m — J) %. (6.51)

Recall that when the state is in the constraint surfaee0, which impliesq; = hy(6). Therefore,
the singularity condition (6.51) implies that a singubaitill occur when the state is in the constraint

surface if, and only if,

Ohg  ml(l —1.)cos(q1) — (P=1ll+12)m—J
00 ml(l —1.)cos(qr) — (I —1)2m —J

(6.52)

Suppose that the singularity occurs for sofne 6, whereh,;(65) = 0, i.e., when the legs are

together. Then, the condition for singularity is that wiyea (0, 6,) = gs,

q= 0 = g(0). (6.53)

Note thato = d,,(¢s)s(8) = 0 for all € R. As aresult, at the instant of singularity orfly= 0 is
compatible with (6.23). And so, the only motion compatiblgwvihe constraint is one in which the
robot is atrest el = 4,.

A motion was designed such that condition (6.52) is satisdteti= 6, = 0 andq; = hy =
0. Figure 6.2 gives plots of the joint angles, joint velodti@nd joint torque for a simulation in
which § # 0. Note that the control effort becomes unbounded as the Isirityuis approached, at

approximatelyl.19 seconds, resulting in unbounded joint velocities as ptediby Theorem 6.7.
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Figure 6.2: lllustrations of the effect of a decoupling magingularity. The singularity occurs at

approximatelyl.19 seconds. Curves correspondingjtcandg. are solid and dashed, respectively.
6.4 Development of Additional Tools for the HZD Framework

In a typical HZD controller design procedure, the outputction h,4(6) is selected by numerical
optimization from a pre-chosen, finitely parameterizedikamf constraints. The first and second
derivatives required by the controlléth;(0)/00 andd?h,(6) /06, are found by differentiating the
output function itself. Using the typical design methodnirollers cannot be designed around a
given, arbitrary gait since it is unlikely that the assoethholonomic constraints will lie within the

family chosen for optimization.

6.4.1 Sample-Based Virtual Constraints

The following method can be used to design an HZD controlleurad an arbitrary, period-one
gait. Defineq(t) as the time evolution of the coordinatgen the limit cycle. Similarly, definé (),

q(t), O(t), O(t), B(t) as the time evolution af, G, 0, 6, andd, on the limit cycle. By monotonicity,

6 = O(t) has a well-defined inverse= ©~1(9).

Proposition 6.8. Assume an output of the form (6.7). Given a period-one perioibit of (6.4),
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the associated controller functiors (), dhy(0)/00, andd?h4(0)/06? are

hd(e) = Qa(t)|t:@71(9) (6.54a)
Z?Ed - qa(t)
—(0) = = 6.54b
o0 " O(t) li—e-1(n) (6:540)
0ha [ alt)  @a(t)O)
a9 ) = (@2(;5) ©3(1) >t:®1(9). (6:54c)

Proof. On the periodic orbity = 0 by assumption. Successive differentiation of (6.8) andi1(6.

show that on the periodic orbit,

0= ga(t) — ha(0(t)) (6.55a)
0= qa(t) — w 0(t) (6.55b)
. 0?hg(0(t)) Oha(0(t)) =
0= Ga(t) — % ()2 — % (). (6.55c)
Evaluate (6.55) at= ®~!(#) and manipulate to complete the derivation. O

Because the controller (6.17) and (6.18) is being used ntipéditly defined virtual constraints
(6.54) will be continuous phase invariant. It can be shova $kich virtual constraints are automati-
cally invariant over the impact event. Thus, the outputsipoed by Proposition 6.8 result in a valid
HZD, and so the analysis of Sections 6.2.4 and 6.2.5 holds.

When given full state information about the periodic ortiie above proposition shows how to
compute the output function and its derivatives in closedthfoBy Remark 6.1, knowledge of the
model and the terms of Proposition 6.8 are enough informataccompute the feedback law{z)
of (6.17). Note that in practice it may be impossible to sdtret = ®~1(#) in closed form. Cubic
spline interpolation can be used to circumvent this problasmwell as improve the efficiency of

computing the control law(x).

Proposition 6.9. The termhy(6) and its derivatives can be reproduced with arbitrary acayrdy
sampling full state information of the periodic orbit andaying cubic spline interpolation between

sample points.
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Proof. First, sample the full state information associated with periodic orbit:q(¢), q(t), §(t),
O(t), O(t), O(t). Calculate the quantities of Proposition 6.8 for each umigalue ofd. Cu-
bic spline interpolation between sample points will resalestimates o, (0), Ohq(0)/06, and
0%hg4(0)/00% each having an accuracy 6f(|74|), wherer is the distance to the nearest sample

point [40, Ch. 5]. O

Thus, given an existing limit cycle the associated HZD calter termshy(0), dhy(6)/06, and
0?hq(0)/06% can be approximated arbitrarily accurately using sampket virtual constraints,
without a closed-form representation/gf(f). For computational efficiency, the sampled functions
ha(8), Ohq(0)/06, andd?hy(0)/06* may be pre-computed and stored in a lookup table. By the
contrapositive of (iii) of Theorem 6.7, these sample-bagedal constraints cannot lead to a dy-
namic singularity on the periodic orbit—if a dynamic singty were encountered, at least one
joint velocity ¢; would be unbounded.

Note that the method of Proposition 6.9 is not equivalentttindj 74(6) to a set of splines
and then differentiating the splines to obtaih,(6)/06 and 9%hy(6)/06%. Differentiation tech-
niques would leavé; () with an accuracy ofo(|74|), dhy(#)/00 an accuracy ofd(|73|), and
0%hg4(0)/00% an accuracy of)(|72|) [40, Ch. 5]. Another alternative method of obtainihg()
would be to regress joint trajectories against a singlerpmtyial of & and differentiate the fit. In
practice the authors have observed that polynomial degiighsenough to obtain sufficiently accu-

rate fits to joint motion result in poor fits to the motion’s datives.

6.4.2 Augmentation Functions

A constraint augmentation function is a finitely parametedi function, such as a polynomial,
that gives a means to systematically modify a set of samaéedbvirtual constraints. As in previous
work, the parameters of the augmentation function can beerhwia optimization. Augmentation
functions can be used to make passive gaits zero slope eaabivill be demonstrated in Sec-
tion 6.5.4, or to modify any other kinematic or dynamic pnapeof the induced motion, while
retaining, as much as possible, the robot's original ursetlidynamic behavior.

Consider the decomposition ff;, into

ha(s) = hao(s) + has(s), (6.56)
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wheres € [0,1], hqp is a nominal desired motion, arig; s is an augmentation function. The
functionhg s will be finitely parameterized and used to change the prigseof the nominal motion
associated with; 5. So that the analysis of Section 6.2 can be applied, theimay; s is required
to be such that the virtual constraifyj is impact invariant.

Let the augmentation function’s parameters be denoted. byhen, augmenting the nominal
motion with b, 5, will result in the functionV,.., and the constant,.., being parameterized hy.
The parameters can therefore be used to tune the restricted Poincaré nzj) @ select its fixed
point, the fixed point’s stability properties, and the loweund of the map. The use of augmentation

functions is illustrated in Example 5 in Section 6.5.4.

6.4.3 Example 2: Sampling a Torque Specified Gait

This example illustrates how the technique of sample-basadtraints can be used to design
controller§ for gaits found by direct optimization of the steady-staiggtie profile. In the first
part of the example a periodic orbit is found from which vaitewonstraints are calculated in the
second part of the example. With this approach, the joinionetare not slaved to finitely param-
eterized functions, but rather to the motions they natyi@dhieve on the limit cycle with a finitely
parameterized torque profile.

Consider again the two-link walking model of Section 6.1ithyarameters given in Table 6.1
and assume that the robot is walking on level ground,d.e=, 0. The pre-chosen family of steady-

state torque profiles is chosen to be

u(t) = Acos <<2%> (t—t")+ qb) , (6.57)
whereA, T, and¢ are to be chosen and is the time of the most recent initialization of the swing
phase. To fully describe the gait, the initial conditiesnand values for the parameteds 7', and¢
must be found such the corresponding trajectory is a peridit of the hybrid model, (6.4). Using
numerical optimization valid parameters were found todbe 0.445, T' = 0.728, ¢ = —1.22, with
initial conditionzy = (—0.356, —0.178, 0.135, 0.756).

To design a controller for the torque parameterized gastptriodic orbit is densely sampled to

obtain the output function and its derivatives (see FiguBd.@A plot of S(q) verifies, as expected,

The resulting HZD controller will not necessarily stab#lithe gait, although in the authors’ experience this is lgual
the case. The test for stability is discussed in Sectior6.2.
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Figure 6.3: Verification that the decoupling matrix is nangsilar along the periodic orbit. Non-
singularity is indicated by the functiofi(¢) being bounded away from zero, and the sample-based

virtual constraints relations given in Propositions 6.8 &rp.

that the decoupling matrix is not singular on the periodigitofagain, see Figure 6.3). Figure 6.4
gives the response of the closed-loop system to a pertarbatiinitial condition. As the robot

approaches steady-state, commanded torque convergesdedigned sinusoidal profile (6.57).

6.5 Applications to the Control of Passive Bipedal Gaits

This section applies the tools developed in Sections 6rdBa4.2 to the robust enforcement of
passive bipedal gaits in three illustrative examples. Bxfoesenting the examples, a brief overview

of passive bipedal walking is given.

6.5.1 Control of Passive Walking

A passive bipedal walker is a two-legged mechanism thatles abwalk stably down a slope
without active feedback control or energy input aside fraaviy. Since McGeer first simulated
and built such a mechanism in the 1980's [96], passive bipeaikers have had continued interest,

primarily as a point of departure for building energetigafficient, actuated biped robots [38]. Such
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Figure 6.4: Torque evolution for a torque specified gaitiatided off the orbit. Simulation is of
twenty (20) steps on level ground for the torque specified @faExample 2. The initial error is
dzg = (0.025, 0.0125, 3, 0). Note that the torque requirements converge rapidly to tbady-

state sinusoidal profile.

walkers, however, have two fundamentally limiting featur€he first is that the basins of attraction
associated with their orbits are small—meaning passivedaipwalkers are easily toppled. The
second is a lack of variety of available walking motions; @'géeatures can only be changed by
robot redesign or by ground slope change.

Actuation can remedy both of these shortcomings. Ideabsiont® under active feedback con-
trol can be used to increase robustness and to change adfaitacteristics, such as the minimum
slope on which the biped is able to wafk.Since the energetic cost of passive dynamic walking
is, in fact, nonzero—work must be done to lift the mechanisnthe top of the slope—the loss
of stable passive gaits does not preclude the use of ererjfétiency as a metric in achieving a
given objective, such as walking at a certain rate, walkindlat ground, or walking with increased
robustness.

Although the basin of attraction of the biped with the sammsed HZD controller may be
larger, the closed-loop system will, in general, not be blpaf achieving a variety of different

gaits. To address this shortcoming, a constraint augmenttainction can be used.

The addition of non-ideal actuation often results in theslokall stable, passive gaits. This is because the usual
means of actuating a biped is with actuators that are cdbdcwith the biped’s joints. In such a configuration, the
actuator's dynamics are coupled with the biped’s. An examyiere this does not occur is Collins’s powered 3D biped
[38], which is powered by impulsive foot action.

HAlthough there do theoretically exist stable gaits for pasbipeds at arbitrarily small slopes, the basins of ativas
can be impractically small [49].
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The recent work of [133] gives a means to change the groumpe slapabilities of passive walk-
ers by the introduction dfull actuation in conjunction with a potential energy shapingtialer.
The results given here are conceptually similar but are enctimtext of the hybrid zero dynamics
(HZD) framework, which is for the control of walking imnderactuatedglanar bipeds, specifically
those not having actuated ankles.

The remainder of the section is organized into three examphethe first, a sample-based HZD
controller is designed that increases the robustness asaveagait and is such that control effort
is used only to increase the basin of attractiarere controller effort is required at steady-state
When using non-ideal actuators, zero control effort is eddul in the sense that actuators perform
no mechanical worlon the system. With electrical motors, for example, eleatrenergy will be
consumed to prevent the motor’s frictional and inertiatés from doing work on the system. The
second example demonstrates the robustness of the saagad-HZD control approach to external
force perturbations and parameter variations. The tHirgtilates how various features of an existing

gait can be modified using sampled-based HZD control withugmeentation function.

6.5.2 Example 3: Enlarging the Basin of Attraction of a Stabé, Passive Gait of a
Two-link Biped

The basin of attraction for the two-link passive biped digacdn Figure 6.1 with parameters
given in Table 6.1 walking on a ground slope of 0.02 rad (1.&4§)ds given in Figure 6.5. The
maximum coefficient of static friction at the stance leg endgsumed to be 0.6.

The steady-state passive gait, with the biped walking o®2 fad slope, was enforced using a
sample-based HZD controller withp = 200 and Kp = 25. The basin of attraction of the biped
in closed loop with this controller is given in Figure 6.5. tRdugh the basin of attraction of the
controlled walker is significantly larger than that of thespise walker, the basin of attraction of
the controlled walker is missing a small region that is pnégethe passive basin corresponding to
extreme combinations of velocity and configuration.

As an illustration, the closed-loop system was simulatedHfioty steps with an initial condition
o = Tonom + 020, Wherexg ,om IS the state of the biped at the start of step on the periothit oir

the passive gait andlzy = (0.2, 0.1, —1, 0). Figure 6.6 gives the evolution of the applied torque
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Figure 6.5: Basins of attraction: passive walker vs. HZDititeed walker. Two-dimensional slices
of the initial condition basin of attraction for walking or0z02 rad slope. The basin for the passive
walker is dark gray, the basin for the controlled walker wiflp = 200 and Kp = 25 is light gray,
and the basin for the controlled walker with a magnitudeuertimit of 3 Nm and a coefficient of
static friction at the stance leg end of 0.6 is medium graye®slices of the basins of attraction are

similarly proportioned. Herég, = 0. The initial conditions for Examples 3 and 5 are indicated.

u. Note that the peak control effort is relatively small andtttihe control effort goes to zero as the

state approaches the passive orbit.

An interesting observation is that, for this example, iasex controller gains (the proportional
and derivative control gaink p and K p) result in a smaller basin of attraction. This effect is more
pronounced for increases i p, as can be seen in Figure 6.7. An increase in the control gains
results in larger transient control signals, and, poténti@rger ground reaction force magnitudes.
The former may result in actuator saturation, and the laitey result in the coefficient of static

friction being exceeded.

6.5.3 Example 4: Demonstration of Robustness to External Foe Perturbations and

Mass and Inertia Variations

As a test of robustness, the controlled two-link biped ofiagke 3 was simulated with hori-

zontal, aperiodic forces acting on its hip and swing leg emdl mismatch between the model and
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Figure 6.6: Torque evolution of walking on a slope for thistgps. Simulation is done assuming
a ground slope oft = 0.02 rad using a sample-based HZD controller. Torque evolutiger &rst
step is left and the torque evolution over all steps is riglte that the applied torque approaches

zero as the state converges to the limit cycle. The peakéasyi.6 Nm.

controller in leg massyn, and leg inertia,J. Between4.6 and 4.75 seconds, a horizonal force
of 15 Nm acted at the hips opposite to the direction of forward psgion, and betweeahl and

6.3 seconds a horizontal force 6125 Nm acted at the swing leg end in the same direction as the
first. The controller’s values for the leg mass and leg inextire set to 80% and 120%, respectively,
of the parameters given in Table 6.1. Figure 6.8 gives plbtkeojoint angles, joint velocities, and
joint torque. Note that because of the parameter mismalehstieady-state control effort is no

longer zero. Also note the rather modest control effort meglto reject these force perturbations.

6.5.4 Example 5: Changing the Minimum Slope Capability of a Mbtion

For the two-link biped of Example 3, the minimum ground slopguired for stable walking was
found numerically (using (6.35)) to b&0171 rad (0.980 deg). With numerical optimization, the
augmentation function depicted in Figure 6.9 was found $hahthe resulting closed-loop system
was capable of walking uphill on a slope-6.01 rad (—0.523 deg). As an illustration, the closed-
loop system was simulated on zero slope, ne= 0, for an initial conditionzy = z¢ nom + 020,
wherez nom iS the state of the biped at the start of step on the periodiit of the passive gait on
the nominal slopey = 0.02 rad, andyzy = (0.025, 0.0125, 3, 0). Figure 6.10 gives the evolution

of the applied torque. Note that peak control effort is relatively small.
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Figure 6.7: Basins of attraction for walking on a slope wiiffedent controller gains. Two-
dimensional slices of the initial condition basin of attraa slices for walking on a 0.02 rad slope
for three different sets of controller gains. The basin Ffar passive walker is dark gray. The basin
with Kp = 200 and Kp = 25 is outlined in with a dashed line, the basin withr = 700 and
Kp = 25is light gray, and the basin withp = 500 and Kp = 75 is medium gray. A maximum

torque limit of 3 Nm and a coefficient of static friction at teance leg end of 0.6 were assumed.

Heredgo = 0.
6.6 Conclusions

This chapter presented new analysis and control tools &camtrol of planar bipedal walking
using hybrid zero dynamics (HZD) based control. HZD condicis by imposing virtual constraints
on the biped’s configuration as a function of forward progi@s. The benefits of the HZD ap-
proach include explicit (analytical) calculation of theluted gait’s stability properties and robust
performance.

The new analysis results include analysis of the effectsalkiwg on a slope and analysis of
dynamic (decoupling matrix) singularities. The former weed in the design of controllers that
render passive gaits zero slope capable. The latter poudgghts into the nature of constraints
that require infinite control effort to enforce, yet imposetions that are otherwise kinematically

feasible (i.e., the mechanism does not encounter a kinemsiatjularity).
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Figure 6.8: Effects of external perturbations. Curvesasponding ta;; and g, are solid and

dashed, respectively.
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Figure 6.9: Augmeted motion as a function of normalized Bndvprogression. Passive motion
(bold line) and augmented passive motion (normal weighd las a function of normalized forward

progression. Enforcement of the augmented motion resubisciosed-loop system that is capable

of walking on a ground slope of zero.
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Figure 6.10: A zero slope capable motion. Torque evolutmmaf simulation of thirty (30) steps
on zero slope using a sample-based HZD controller. Torqakiten over first step is left and the

torque evolution over all steps is right. The peak torque@shNam.

The new control tools provide an alternative method for alfim virtual constraints via sam-
pling and interpolation. The technique was used to enlangebaisin of attraction of the gait of
a passive dynamic walker. Unlike other approaches to thestodnforcement of passive bipedal
gaits, the control acts without the need for full actuatiam—actuation is assumed between the
robot and the ground. The new control tools were also use@smd controllers for torque spec-
ified gaits. Constraint augmentation functions were intazdl, defined as finitely parameterized
functions added to the nominal, sample-based constrdiatsenable the kinematic and dynamic

properties of the gait to be modified.
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Notation Introduced in Chapter 6

Symbol Meaning Defined
L ley m, J,
parameters of the two-link model Table 6.1
go
@ ground slope Figure 6.1
S switching surface; Poincaré section Section 6.1.1
by full dynamics walking model Section 6.1.1
U control input Section 6.1.1
x = (q,q) | state vector of the full dynamics Section 6.1.1
functional dependence en emphasized with square
[a] Section 6.1.1
brackets
Ga vector of actuated coordinates Section 6.1.1
Qu unactuated coordinate (scalar) Section 6.1.1
D(q) inertial matrix of the full dynamics Section 6.1.2
Coriolis, centrifugal, gravitational terms of the full
Flal(g,q) Section 6.1.2
dynamics
ha(s). . . |
B desired joint angles of the actuated joints Section 6.2.1
ha(0)
scalar function that is a surrogate for time; monotonic @agr
0(q) Section 6.2.1
step
0",0” values off at the beginning and ending of a gait Section 6.2.1
y = h(q) output defining virtual constraints Section 6.2.1
s(0) normalization function fop Section 6.2.1
Z zero dynamics manifold; constraint surface Section 6.2.1
K,, Kq PD controller gains Section 6.2.2
L,Lsh(q) | decoupling matrix from input to outputy Section 6.2.2
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Symbol Meaning Defined
Yzero HZD model of walking Section 6.2.3
o angular momentum about pivot foot Section 6.2.3
z = (0,0) | state vector of the restricted (zero) dynamics Section 6.2.3
LsLjsh(q) | decoupling matrix from inpub to outputy Section 6.3.2
S(q) function used to determine invertibility of decoupling mat| Section 6.3.2
1(0,v) closed-loop virtual inertia Section 6.3.3
I,(0,y) virtual inertia of transverse dynamics Section 6.3.3
Irp(0,y) rigid body inertia Section 6.3.3
inertia associated with the articulated body angular
Ta(0,y) Section 6.3.3
momentum
0s value off corresponding to a singularity Section 6.3.4
Ts time from step start to singularity Section 6.3.4
a augmentation function parameter vector Section 6.4.2
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CHAPTER 7

A Restricted Poincaré Map for Determining Exponentially Stable

Periodic Orbits in the Presence of Smooth Transverse Dynaros

When the method of Poincaré sections is applied in prdgtimablems, it is very common
to see the Jacobian linearization of the Poincaré map awtahnumerically and the exponential
stability of a fixed point (i.e., a periodic orbit) deducedtbe basis of the eigenvalues. Although
straightforward in principle, this process can become aaatpnally unwieldy when the dimension
of the system under study is large or when stability needetevaluated repeatedly as part of an
iterative procedure to design a feedback controller. lIreptd simplify its application to nonlinear
systems with impulse effects, this chapter develops retidoeensionality stability tests based on
the method of Poincaré sections, emphasizing the rolesglay (hybrid) invariance attractivity,
andtimescale separatiorSimple properties are identified that govern the stabilftgeriodic orbits
that lie within hybrid zero dynamics manifolds—when thengzerse dynamics of a given system is
rendered exponentially stable with a sufficiently fast @gence rate, the stability of the periodic
orbit can be evaluated on the basis of the zero dynamics.alone

The work presented in this chapter is primarily an extensiotme work on restricted Poincaré
maps by Grizzle, Abba, and Plestan in [60] in which a set ofollypses required that an invariant
manifold be rendered finite timattractive through a feedback that was continuous but rpstdkiitz
continuous. Hybrid invariance was introduced by Westérelizzle, and Koditschek in [153], but
the requirement of a finite time converging transverse dyosmemained. The results presented

here relax this requirement to exponential convergencestifficiently rapid” rate, enabling the

1See [17] for an introduction to finite time controllers.
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use of smooth feedback controllers and the stability asabyfsperiodic orbits inC'! systems with
impulse effects.

If the task of weakening controller hypotheses seems mumdammsider this: as observed in
the running experiments on RABBIT in Chapter 5, the presafictrong hypotheses on controller
properties can complicate the procedure of controllergiesiThe property of “configuration de-
terminism” at landing, required by the HZD running conteodl of [31] could not be met in the
time alloted for experiments. A failure to meet this coratitinecessitated the use of transition
controllers—a much simpler way of arriving at a similar gliibtest. The stability theorems of this
chapter are designed to have weaker hypotheses so thatrtheprapatible with a broader range
of potentially stabilizing controllers. The strongest btfpesis of this chapter, a reliance on impact
invariance, can be achieved by the methods of Chapter 8.

The remainder of this chapter is organized as follows: 8edtil presents a reduced dimension-
ality stability test for periodic orbits in systems with imipe effects. Use of the theorem requires
the existence of special coordinates, a hybrid invariamifola, and a restricted Poincaré map. A
similar result is derived in Section 7.2 where these hym®beare weakened to eliminate the re-
quirement of the existence of a particular set of coordmatEhe benefits of these stability tests
are demonstrated in a case study in Section 7.4. Both setgoftteses are verified, and both re-
duced dimensional tests are used to evaluate the stabgayi@dic orbit corresponding to RABBIT

walking on flat ground.

7.1 Coordinate Dependent Hypotheses and Stability Test

The first set of hypotheses is coordinate dependent andinzettaa family of systems with

impulse effects that depends on a real parametel, where for each fixed value ef

, & = [z) 27 ¢S
PN (7.1)
zt = A(x”) z7 €S8
is aC'! system with impulse effects. Following the convention lelsshed in Chapter 3, the solution
of the autonomous systein= f¢(z) is written asy®(¢, o), the time-to-impact function i#'¢, and

the Poincaré map i® : S — S. In addition, assume that this family of systems has a periodi

orbit, coordinate transform, and invariant manifold megthe following hypotheses:
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Hypotheses 7.1:

i) There exist global coordinates= (z,7) for ¥ C IR", such that: € IR*, andn € IR"*,

1 < k < n, in which f¢ has the form

= = fl:k(za 77)
Fi@) = F(zm = | ;
1)
i) the setZ = {(z,n) € X |n = 0} issuch thatSN Z is a(k—1)-dimensional C''-embedded

submanifold satisfying the property that
ASNZ)C Z; (7.2)

iii) the autonomous system® has a periodic orbi© that is contained irg, and hence the

orbit is independent of,
iv) z* = ONSN Zisasingleton;
V) Ly H(z") # 0;and
Vi) fiiin(m) = Ae)n with lime g e4(©) = 0.

The above conditions can be interpreted as follows: Hymathéd7.1-i and H7.1-vi imply that
the setZ is invariant under the continuous part of the modek: f¢(x), so that ifzg € Z then for
all t in its maximal domain of existences (¢, zy) € Z. Hypothesis H7.1-ii implies tha remains
invariant across the impact event. Together, H7.1-i and#i&how that the restriction of€ to
the manifoldZ is a well-defined system with impulse effects, which will lled therestriction

dynamics

] i = Jlas) ~¢Snz
Xz (7.3)
2t = Alz(z7) 27 €SNZ.

Hybrid invariance ofZ further implies that
P{(SNZ)csSnZz (7.4)

From H7.1-iii, O is a periodic orbit of the restriction dynamics that is pdrame by H7.1-iv. The

restriction of /¢ to Z removes any dependence orThis fact can be used to show that = ¢¢|z,

T7.z = Tf|z, andP¢| z are also independent efand hence,
= Tf(AY)) (7.5)
= Trz(Az(z")), (7.6)
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is independent of. On the basis of (7.4), thestricted Poincaé mapp: SN Z — SN Z, can be

defined ap = P¢|z, or equivalently,

p(z) = pz(T1z 0o Az(2), Az(2)), (7.7)

and is independent af From H7.1-iv, it follows that:* is a fixed point of P¢ and p, and from
H7.1-v, the orbit is transversal t8, and hence also t6 N Z. Hypothesis H7.1-vi says that the
dynamics transversal t& is “strongly” exponentially contracting with the rate of s@rgence
becoming arbitrarily fast asdecreases to zero. When the solution of (7.1) is not on thegier
orbit, n(t) # 0. In many situations, such as bipedal walking, the impact meqgases the norm gf

at each impact; see Figure 7.5. Hypothesis H7.1-vi providesrol over the speed with whief(t)
converges to zero during the continuous phase, so that,aoeyele consisting of an impact event
followed by continuous flow, the solution may converge todhat. Based on these hypotheses, a

reduced dimensional stability test is given by the follogvtheorem:

Theorem 7.2(Coordinate Dependent Reduced Dimensional Stability Test)Under Hypotheses

H7.1, there existg > 0 such that fol) < ¢ < €, the following are equivalent:
i. z* is an exponentially stable fixed point af
ii. z*is an exponentially stable fixed point Bf.

In other words, fore > 0 sufficiently small, an exponentially stable periodic orfiitthe re-
striction dynamics is also an exponentially stable pedatbit of the full order model. The proof
is based on evaluatin® P<(x*), the linearization of the Poincaré map about the fixed pana
set of local coordinates. This is a commonly employed teplmieven for systems with impulse
effects [55, 141, 90, 39]. The usual approach to finding tbereialues oD P¢(z*) is to smoothly
extend the domain aP* from S to X and then to evaluate the linearization of the resulting n
Jacobian linearization. It must subsequently be shownahatof the eigenvalues of this matrix is
always equal to unity and the remaining- 1 eigenvalues are those DfP(z*) : T,+S — T,+S;
see [106, 70]. Here, local coordinates 8mwill be used so thaD P¢(x*) is computed directly as
an(n — 1) x (n — 1) matrix. This method will give an expression foxP¢(z*) that brings out its

structure due to Hypotheses H7.1.
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7.2 Coordinate-Free Hypotheses and Stability Test

A stability test similar to the one above can be achieved uadeuch weaker set of hypotheses.

In this case assume there exists a system

_ & = fx) 2 ¢S
> (7.8)
v = Ax7) z7 €S8,

for which there are set® ¢ X andZ C A" such that
Hypotheses 7.3:
i) Zis hybrid invariant;
i) SN ZisaC! embedded submanifold and has dimension one lessZhand

iii) O is a periodic orbit that is transversal foand is contained it£.

The listin H7.3 is a weaker set of hypotheses than H7.1. GiondH7.3-i is implied by H7.1-i,
H7.1-ii, and H7.1-vi. Condition H7.3-ii is implied by H7.i,-and H7.3-iii is implied by H7.1-iii.
The benefit of these weaker hypotheses is that they are ¢éasiezet in practice. The drawback is

that the following theorem and its proof are somewhat mostratt.

Theorem 7.4 (Structure of the Linearized Return Map). Consider aC' autonomous system
with impulse effects = (X, S, A, f) and assume there exists@ embedded:-dimensional
submanifoldZ such that H7.3 are satisfied. Then, there exist local chanfiesordinates

I''U— RF!'xR"* and¥:V — R* x R" %, aboutz* = O NS and A(z*), respectively,
such that when the Poinoamap of the systemis represented in the new coordinates, its Jacobian

about the fixed point™ is

Dp(z*) ‘ *

DP(*,1*) = : (7.9)

0 | Sur, (27088 ")
wheré P = ToPol'!, pis the restricted map of7.7), Spr, (Z5,7°) = Da(Ta0dr, 00~ 1) (%, 77),
and Sa (2%, 5*) = Do(Ws 0 A o D-1)(2*, 1), for (z*,5%) = (I1(z*),Ta(a*)) = D(z*) and
(%,7%) = W o A(z*) = (U1 0 A(z*), Uy 0 A(z*)).

%For a differentiable functiory(z1,z2, ..., z,), the notationD;g(y1,yz, ..., yp) refers todg/dz; evaluated at
(z1, 2, ..., xp) = (Y1,Y2, ..., Yp). The argument; may be avectorDg(yi, ..., yp) is (0g/dz1, . .., 0g/dz,) evaluated
at(z1,..., ) = (Y1, .ms ).

Ty (z) andTz(z) refer to the first: — 1 and lastn — k coordinates of (), andW, (z) and W, (z) refer to the first
k and lastn — k coordinates ofl/(z), respectively.
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The above theorem identifies two features present in thariimed Poincaré map when it is
evaluated at a fixed point lying in a hybrid invariant mardtol he first is the upper triangular struc-
ture, which is immediate from the hybrid invariance®f see (7.4). The second, more interesting
result is that the bottom right block is the productfgfrl andSa, which are the sensitivities of the
transverse dynamics with respect to the continuous flow mpéct map, respectively. If either of
the sensitivitie§¢TI or S can be made sufficiently small, then the spectral radiugBfwill be
determined solely by the restricted Poincaré map. Caxoll6 below is based on the observation
that continuous flow sensitivityiz,TI, can be made arbitrarily small through sufficiently rapid-co
vergence of the transverse dynamics. Chapter 8 will addfgssy showing that this term can be
made arbitrarily small by controlling the behavior of thegact map.

To develop a second reduced dimensional stability tesin@sshere exists a family of systems,

_ & = f(x) ¢S
e . (7.10)
zt = Ax7) z7 €S,

for which there exist set® C X andZ C X satisfying H7.3 and also satisfying the following

Hypotheses 7.5:

i) the submanifoldZ and fixed pointz* are independent af
ii) f€restricted taZ is independent of; and
iii) there exists a functior : (0,00) — [0, 00) such thalime\ o K (¢) = 0, and¥ € > 0, 3
§ > 0 such that

¥ 2o € Bs(A(z")), dist(ér(xo), 2) < K(c) dist(zo, Z).

The fact that H7.5-i and H7.5-ii are implied by H7.1-i, H{iland H7.1-iii is obvious. Less
obvious is the connection between H7.5-iii and H7.1-vi. btyyesis H7.5-iii can be interpreted as
a Lipschitz bound describing the relationship between thtadce to the manifol& just after an
impact and the distance to the manifdtdjust before the next impact. This hypothesis is claiming
that the flow of the system is attracted to the maniiBldn a way that is uniform with respect to
the initial distance, but not necessarily uniformly witlspect to time. Also notice that H7.5-iii is a

statement about pre- and post-impact boundary conditionsreas H7.1-vi is a statement about an

“Throughout this chapter, the notatidh () refers to an open ball of radiusabout the point:.
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entire transverse dynamics. The following corollary shivee these weaker hypotheses are used

to achieve virtually the same stability test as developebhieorem 7.2.

Corollary 7.6 (Coordinate Independent Reduced Dimensional Stability Té$. Consider a fam-
ily of C' autonomous systems with impulse effeEts= (X, S, A, f¢), with the vector field of
each member depending on a real parameter 0. Assume that for each value of (0, ), Hy-

potheses H7.3 and H7.5 are met. Then the restriction dyrslifie: = (2,5 N Z, Alsnz, f€|z)

is independent of. In addition, there existg > 0 such that for0 < ¢ < ¢, the following are

equivalent:
i) z* is an exponentially stable fixed pointgfand
i) z* is an exponentially stable fixed point Bf.

The proof of the corollary is given in the appendix and sholat H7.5-iii is sufficient for
achievinglim\ g Ser = 0.1n other words, for > 0 sufficiently small, an exponentially stable
I
periodic orbit of the restriction dynamics‘|z = (Z,8N Z,Alsnz, f¢|z) is an exponentially

stable periodic orbit of the full modeél® = (X, S, A, f°).

7.3 Feedback Design to Meet Stability Hypotheses

The next result shows how to construct a closed-loop systesting the hypotheses of Corol-

lary 7.6. Given a control system with impulse effects,

T = f(x)+gl@x)u == ¢S
g (7.112)
A A(m‘_) €S,

assume there exists an output functioauch that the following are satisfied:

Hypotheses 7.7:

i) h(z) has uniform vector relative degrée
i) there exists a point such that(z) = 0, Lsh(x) =0,... ,L’Ji‘lh(m) =0;and

i) the distributionspan{g;(x),--- , gm(x)} is involutive.
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Corollary 7.8 (Feedback Design for Reduced Dimension Stability Testing)Given a control
system with impulse effecls= (X, S,0,U, A, f, g) and a smooth output : X — IR™ satisfying
Hypotheses H7.7 the following hold:

i) thesetZ = {x € X | h(z) = 0,Lsh(z) = 0,--- ,L’}‘lh(x) = 0} is a smooth embedded

submanifold ofYt,

i) for any e > 0 and scalar constant&, . .., K;_; chosen so that® + Kj,_;s" 1 + ... + K

IS Hurwitz, the feedback
wlo) = (L @) Lhh) + S Kb ). (2
applied toX rendersZ forward invariant in the family of closed-loop systems
2= (X, 8, A, f)
for f¢(x) = f(x) + g(z)u(x); and

iii) the family of system&€ and the manifoldZ satisfy conditions H7.5.

The most significant contribution of the corollary is theeiqretation that for a broad class of
feedbacks (7.12), Hypotheses H7.7 imply the satisfactiddypotheses H7.5. Corollaries 7.6 and
7.8 provide precise guidelines for designing a closed-®giem where the stability of a periodic
orbit can be determined on the basis of a restriction dynamithis result is similar to that of

Theorem 7.2, but is stated without reference to a specifiofsmiordinates.

7.4 Case Study: RABBIT Walking on Flat Ground

The following example shows in detail how the theorems of #gction can be used to design
controllers to induce stable walking on flat ground in a 5 D@fetlal model resembling the biped
RABBIT. Both the coordinate dependent hypotheses of Thear@ and the coordinate independent
hypotheses of Theorem 7.4 and its corollaries will be vetifienis comparison will help to highlight

the differences between the two proposed methods of rediicezhsionality stability testing.
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7.4.1 Open-Loop Model

A model of RABBIT with coordinateg = (q1,...,q5) € Q as shown in Figure 7.1 is briefly

summarized. Following [29], the method of Lagrange leadbécstandard mechanical model

D(q)§ + C(q,4)¢ + G(¢) = Bu, with B = ! . (7.13)
0
The impact (i.e., switching) surfaceds= {(q,q) € X | y2(q) = 0, x2(q) > 0}, the set of points
where the swing leg height is zero and in front of the stange M/hen the swing leg contacts
the ground an inelastic collision gives rise to a jump in teuwity coordinates An impact map

A : § — X can be computed as in [74, 60, 29]. Defining= (g, ¢), the mechanical model is

expressed in state variable form as a controlled systemimithlse effects:

t= f(x)+gl@u 2~ ¢S
Y (7.14)
xt = A(z7) x~ €8,
where the vector of control torquesise IR*.

In [153, Section V-VII], it is shown how to design output fuimns y = h(x) using Bézier
polynomials and (nonconstructive) numerical optimizatio meet many of the assumptions made
so far, as they relate to RABBIT: invertibility of the decdmg matrix L, L ¢h, impact invariance
A(SN Z) C Z, the existence of a periodic orbit lying withii that is transversal t§ N Z. These
conditions can often be met while simultaneously meetimgmoperformance objectives involving
walking speed, actuator power, and the contact forces alethends. Since RABBIT has five
degrees of freedom in the stance phase and four indepentteatas, the restricted Poincaré map
is scalar valued, and hence the Jacobian linearizatioreatttricted Poincaré map is a scalar. What

remains is to design a feedback controller so that the ieguitosed-loop system meets conditions

on reduced dimensionality stability testing.

7.4.2 Feedback Design

The feedback designs developed in [153] are based on vatuestraints, which are holonomic

constraints on the robot’s configuration that are asymgthyi imposed through feedback control.

5So that the same mechanical model can be used independehiaif keg is the stance leg, the coordinates must
also be relabeled, giving rise to a jump in the configuratianables as well; see[60, 153, 29]. The impact map satisfies
A(S)NS = 0.
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Figure 7.1: Coordinate system for RABBIT. The world framassumed to be attached to the base
of the stance foot. There are four actuators, two at the kaetsgo at the hips. The contact point
with the ground is unactuated, and angles are positive igdhaterclockwise direction. RABBIT
was developed as part of the French National Project, ROBIBA,is housed at LAG (Grenoble)
[118].

Their function is to coordinate the evolution of the varidings throughout a step. Since RABBIT
has four independent actuators (two at the hips and two ankrtbes), four virtual constraints can
be imposed. Following [153], sinag; is naturally monotonic as the robot advances from left to

right in a step, the four virtual constraints are written as

y = h(q) = qv — ha(gs), (7.15)

whereq, = (q1,...,q4) is the vector of actuated (body) coordinates, apf;) gives the desired
configuration of the actuated joints as the robot advancesstep. Hereh, is chosen as in the
example in [153, Sect. VII]. Because = h(q) depends only on the configuration variables, its

relative degree is at least two. Differentiating the outpuite gives
i = L3h(q.q4) + LgLsh(q)u. (7.16)

Suppose for the moment that the decoupling matgx 4 is invertible, which would imply that the
output (7.15) has uniform vector relative degree two. THaroos ofg are involutive as in [78, p.
222]. If the constraintg,; are physically meaningful, then there will exist at least @oint where

they are satisfied, thus meeting all conditions of Hypoth¢$e.7.
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As described in Corollary 7.8, choose scalars and K» such that
s>+ Kps+Kp=0 (7.17)
has distinct roots with negative real parts, andlet 0. Then the feedback law
u(w) = —(LyLyh(x))™* (Lﬁch(x) - %KDth(x) - E%Kph(ﬁt)) (7.18)
applied toz = f(z) + g(z)u results in

y= —EKDZ) - 6—2KPZ/- (7.19)

7.4.3 Closed-Loop Analysis
Having met the coordinate-free hypotheses of H7.7, Canolle8 states that the set
Z={reX|h(z)=0, Lyh(x) =0}

is a smooth two-dimensional submanifoldAfand is invariant under the closed-loop dynamics

f(@) = f(z) + g(z)u (z).

We now turn our attention to Corollary 7.6; assume tBats impact invariant, thaS N Z has
codimension one £, and that there exists a periodic orbit withihthat is transversal t§ (all
common constraints used in choosing the output functidtb]y.. With H7.5 satisfied by Corollary
7.8 and H7.3 satisfied by assumption, Corollary 7.6 showsftnasufficiently smalle > 0, the
periodic orbit is stable in the zero dynamics if and only ikistable in the full dynamics.

When testing stability based on Theorem 7.2, our first olsjeatill be to put f€ in the proper
coordinates so that Hypotheses H7.1 can be checked. Notestause.(q) = g, — hq(gs),

U(q) = " (7.20)
a5
is a global diffeomorphism o®. It follows that
_ 21 _ _ 5 _
2 | ds(q)q (7.21)
M:4 h(q)
| s || S (q)d |
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is a global diffeomorphism o’ = T'Q, whereds is the last row of the inertia matrio, and
o = ds(q)q is the angular momentum of the biped about the end of theetagend [29]. In these

coordinates [78, pp. 224],

_ fr2(z,m)
f(z,m) = ; (7.22)
A(e)n
where
0 Iyxa
Ale) = ; (7.23)

P Lixa TER Iy
thus meeting H7.1-i. As mentioned earlier, conditions Hif.H7.1-iii, H7.1-iv, and H7.1-v (in-
cluding impact invariance and the existence of a periodit dying within Z) are ensured by
the correct selection of an output function. To verify theafihypotheses we will show that

lime o e(©) = 0. Note that

1
A(e) = TI(e) = AgIT 1 (e), (7.24)
€
where
0 Iya
Ay = (7.25)
—kplyxs —kplixa
and
EI4><4 0
I(e) = . (7.26)
0 Iixa

Since (7.17) is a Hurwitz polynomial,
. 14
limee?° =0
e\.0

and hence

lim e?(€) = 0,

e\.0
thus fulfilling H7.1-vi. Applying Theorem 7.2, far > 0 sufficiently small the feedback law (7.18)
exponentially stabilizes in the full order model a periodibit that is exponentially stable in the

restriction dynamics.
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7.4.4 Numerical Simulation

In the previous subsection, two reduced dimensionalitlilitatests were applied to the prob-
lem of walking of walking on flat ground, with similar results the case where critical properties
can be verified (invertibility of the decoupling matrix,L s/, impact invarianceA(S N Z) C Z,
and the existence of a periodic orbit lying withihithat is transversal t§ N Z), a periodic orbit that
is exponentially stable in the hybrid zero dynamics will kp@nentially stable in the full system.
Claims of stability will now be investigated numerically.

For the choice of virtual constraints shown in Figure 7.2, bstricted Poincaré map will have
a fixed point ato— = —40.8, corresponding to an average walking rate of exactly 2.0 m/s
stick figure animation of the corresponding walking motisshown in Figure 7.3. The eigenvalue
associated with the restricted return map found numeyicl0.58. Stability of the orbit within
the zero dynamics is illustrated in Figure 7.4. The eigareslof the full return magp P¢, were
computed at the fixed point for various valueseof> 0. Table 7.1 shows that the eigenvalue
associated with the restricted Poincaré map (shown in)islthdeed constant for varying values
of e. This table indicates that far < 0.17, the periodic motion is exponentially stable in the full
order model, but for = 0.20, it is unstable. Figure 7.5 shows that decreasioguses|n(t)|2 to
converge to zero more quickly. Discontinuitiesrift) occur at each impact event, with the impact
tending to increasén(t)|| rather than decrease it. From the proof of Theorem 7.2 ibvies that
log(det(DP<)) should be affine irl/e. This is confirmed in Figure 7.6, lending credibility to the

numerical computations.

7.5 Discussion

This chapter has shown in two separate theorems that undeainceonditions a periodic orbit
is stable in a system with impulse effects if and only if théibrs stable within a hybrid zero
dynamics that is a subdynamic of the full model. The two thaw differ in the sets of hypotheses
they require. The first stability test, given in Theorem #&juires conditions that can only be
verified in a particular set of coordinates. The second lgtalést, given in Theorem 7.4 and
Corollary 7.6, requires hypotheses that can be verifiedowitplacing the system in any special set

of coordinates, which typically makes their rigorous vegfion much easier.
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Figure 7.2: A graphical representation of the virtual coaists.
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Figure 7.3: A stick figure animation of the walking motion dse the example.
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Figure 7.4: System response within the hybrid zero dynameusifold. The initial condition (noted
with an asterisk) lies within the hybrid zero dynamics maldif Convergence to the orbit is rapid,
with an estimated eigenvalue 0f58. Stability of an orbit within the zero dynamics manifold is

independent of the value ef

€e=0.12 €=0.17 €=10.20
0.58 —0.62
0.48 0.58 0.58
—0.124+44x107%2¢  —0.19+0.147 —0.12+0.274
—0.12-44x10"%2¢  —0.19-0.147 —0.12—-0.274
—0.114+54x107%2¢  —017+0.167 —0.15+0.254
—0.11-54x10"%2¢  —017-0.167 —0.15—0.254
2.5 x 10? 0.14 0.21
92x107% -1.8x 107245 —82x1072  —42x1072
92x107% +1.8x 10724 80x 1073 7.6 x 1073

Table 7.1: Eigenvalues @ P¢ for three values of, ranked by magnitude. The eigenvalueldy is

shown in bold.
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Figure 7.5: Error profiles for three values ©f The restricted system correspondsjtes 0. As ¢
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even though it is exponentially stable in the restrictedasiyits and the “transversal part” of the

closed-loop ODE is decoupled, linear, and exponentia#iilst
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Figure 7.6: The graph dbg(det(DP¢)) versusl/e. The correlation should be affine when the
controller (7.18) is used. The circles locate the numdsicgtimated values dbg(det(DP¢)) for

five different values o&. The solid line is an affine fit.
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Both of these theorems improve upon the previous work byirdathe requirement of finite
time attractivity (previously used in theorems on restdcPoincaré stability testing) with a more
general requirement for sufficiently fast exponentialaatirity. This relaxation of requirements
allows a wider class of feedback control laws to be consilrethe task of stabilizing locomotion
in bipedal robots. The utility of the two new theorems wadlighted in a case study. A periodic
orbit whose design was carried out on the basis of a two-diinaal restriction dynamics (i.e., the
hybrid zero dynamics of walking) could be systematicallydered exponentially stable in the full
order model by using a smooth state variable feedback, akcprd by both the coordinate-based

stability test of Theorem 7.2 and the coordinate-free btalbest of Theorem 7.4 and its corollaries.
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Notation Introduced in Chapter 7

Symbol Meaning Defined
a strictly positive scalar parameter used for tuning the oét

€ Section 7.1
convergence to a hybrid invariant manifafl

B a family of systems with impulse effects, where for a fixed

3¢ Section 7.1
value ofe, each member is@’ system with impulse effects

o°(t, z0) solution of the autonomous systeim= f¢(z) Section 7.1

T5 (z) the e-dependant time-to-impact function far Section 7.1

Pe(x) the e-dependant Poincaré return map ot Section 7.1

¥z the restriction of2¢ to a hybrid invariant manifold Section 7.1
the Jacobian linearization dP¢ as evaluated at the fixed

DP¢(z™) Section 7.1
pointx*

T:+S the tangent space & at the pointz™ Section 7.1

n coordinates of the transverse dynamics Section 7.1

z coordinates of the zero dynamics Section 7.1

R the Jacobian linearization of a Poincaré map for an |au-

DP(z",n")
tonomous system with impulse effects, written in special{c&ection 7.2
ordinates

r,v coordinate transforms proposed by Theorem 7.4 Section 7.2
sensitivity of the transverse dynamics to the continuows flo

Sor, Section 7.2
of an autonomous system with impulse effects
sensitivity of the transverse dynamics to the impact map of

Sa Section 7.2

an autonomous system with impulse effects
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CHAPTER 8

Parameter Updates for Achieving Impact Invariance

In the context of systems with impulse effects, hybrid ifeace occurs when a manifold is
invariant under both the continuous (ODE) portion and theerdite (impact) map of the model.
Chapter 7 has shown that the property of hybrid invariancesognificantly reduce the computa-
tional burden associated with testing the stability of aquic orbit in a system with impulse effects.
In the special case of models based on RABBIT, designingithytivariant manifolds is quite easy
because of special structures that arise when the virtuadtints have uniform vector relative
degree two, and previously published works in hybrid zeroaayics only address these types of
outputs. In the case of robots with series springs, relematguts do not necessarily have uniform
vector relative degree two, and achieving hybrid invareiscmuch more difficult.

Forward invariance in ODE models is a rich, well-studiedjscb In particular the methods
developed by Byrnes and Isidori in the areaefo dynamicsan be used to design forward invariant
manifolds, not necessarily resulting from outputs havingiarm vector relative degree two. A less
well-studied and hence more challenging problem is how tdeze impact invariance in more
general classes of output functions than those previousigidered. To address the problem, this
chapter introduces the tool phrameterized extensiona type of dynamic extension for systems
with impulse effects. With the introduction of parametedzoutputs, a discrete feedback element
becomes available—the parameter update law. When usedrpyrap discrete feedback controller
can provide impact invariance, with a separately desigoetirtuous feedback controller providing
forward invariance.

A valid concern when using parameter update schemes is thatj@ for introducing unstable
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modes into the system. Albeit discrete, unstable parandgteamics could destabilize an otherwise
stable system control system. For this reason, the progodaid extensions ardeadbeator put
differently, memoryless in the parameters. Deadbeat petemextensions introduce no additional
dynamics, discrete or continuous, stable or unstable.

The remainder of this chapter gives two solutions for aghggimpact invariance of manifolds
resulting from outputs having arbitrary uniform vectoratéle degree. Under the assumption that
an appropriate parameter update function can be foundjoBe82 presents a deadbeat hybrid
extension for achieving impact invariance. Because dioivaf this function is often difficult, the
result of Section 8.3 provides an alternative solution fdri@ving impact invariance, one in which
the original output function is modified so that the paramegdate scheme is known in closed
form. The closed-loop properties of both parameter updzierses are explored in Chapter 9 in a

case study examining walking in a planar robot with comglean

8.1 Definition and Properties of Parameter Extensions

LetY = (X,S,0,U,A, f,g) be a control system with impulse effettnd letA be an open
subset oflR?, ¢ > 1. Then, the system
(@,¢) = (f(@)+g(x)u,0) (z7,a7)¢SxA
Ye: (8.1)
(@F,a™) = (A(z7),v) (7, a7)eSxA

is called aparameterized extensiaf X and can be denoted in alternative notation as
Ye = (Xe> Se, .A,Z/{, Aea fes ge)

(with elements of the 7-tuplele defined in the obvious way). When a parameter update law is

chosen to be independent of the parameter itself, that js,S — A, the resultant system
Ee - (Xea 897 @,Z/{, A(97 fe7 ge)

with Ag(7e) = (A(x), A, (7)) andze = (, ), is called aropen-loop deadbeat hybrid extension

A closed-loop deadbeat hybrid extensisran autonomous system denoted

i‘e = (Xe,Se, Ae> fe)

"Note thatV = §, indicating an absence of control authority over the impaap.

112



wherefe(re) = fo(ze) + go(we)u(xe) for some state feedback law: X, — U.

8.2 Nonconstructive Parameter Extensions for Hybrid Invaiance

One critical aspect of applying Theorems 7.2 or 7.4 in thdedrof bipedal locomotion is the
selection of an output(z) that leads to a hybrid invariant manifold. Appropriatelyoking an out-
put so that its zeroing manifold is impact invariant is a mordl task, in general. In previous work,
[153, Section V, Thm. 4] identified a class of holonofieniform vector relative degree two outputs
for which it is straightforward to meet the impact invariarmondition. The reasoning employed in
[153] relied heavily on the fact that both the impact ma@and L (» were linear in the generalized
velocity coordinate. This linearity property breaks doviready forLfch (equivalently, for outputs
with uniform vector relative degree, which are relevantia tontext of compliant actuation). With-
out linearity of both the boundary conditions of the virt@alnstraints and the impact map itself,
giving verifiable conditions for impact invariance can bmeohard. The following remark gives a
restatement of the condition of impact invariance that iseramenable to the development of a

parameter update law leading to impact invariance.
Remark 8.1. When a system with impulse effects

i = flx)+gl@u 2= ¢S
> (8.2)

= Ax7) x~ €8,

has an output(z) with uniform vector relative degrefe, with
Z={z e X |h(x)=0,Lyh(x)=0,--, L} "h(z) = 0},
then the following are equivalent:
a) A(SNZ2)cz

b) Vo € A(SN Z)andV0 <i <k — 1, L}h(z) = 0.

If the output function.(z) is dependent on a vector of realse A C IR? and the seS N Z

is independent of, then conditionb) above can be restated as a condition on controlled impact

The output functiorh depended only on the configuration variables of the robeizé¢he terminology “holonomic”.
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invariance:
Vz € A(SN Z) 3o € Asuch thatlsh(z,a) =0 VO <i<k—1. (8.3)

The following theorem illustrates the use of a parameteatgthw to achieve the controlled in-
variance described above. Under the given conditions,xtia dimensionality associated with the
parameters does not significantly complicate the Poincztteén map. The theorem is labeled as

“nonconstructive” because no closed form parameter ugstdieme is given.

Theorem 8.2(Invariance by Nonconstructive Deadbeat Hybrid Extension) Consider aC'! sys-

tem with impulse effects

i = f) gl ¢S
DI (8.4)
xt = A(z7) x= €S
with ann-dimensional state manifold and m-dimensional inputs. Let.4 be an open subset of

IRY, for someg > 1, and leth : X x A — IR™ be an output function. Suppose furthermore that

Hypotheses 8.3:

i) Va € A, the outputy = h(z, ) has uniform vector relative degrée

i) there exists a non-empty' submanifoldZ such thatvoe: € A,
Zo={zeX|h(x,a) =0,--- ,Ll}_lh(x,a) =0}

is diffeomorphic taZ;
iii) SN Z, isindependent ok and equalsS N Z;
iv) SN ZisC! and has dimension one less thanand

v) there exits aC'! functionA, : S — A such thatvz € SN Z, the valuest = A(x),

a = A,(z) result in

h(§,a) = 0

Lgh(§,a) = 0

Ly 'h(g,a) = 0.
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Then for any > 0 the closed-loop deadbeat hybrid extension,

; (@,d) = (f(x)+g@)u(r,a),0) (z7,a7)gSxA
S (8.5)
(xt,at) = (A(z7),Ax(z7)) (z7,a7)eSx A
with feedback:(x, o) modified from(7.12)
u(z, ) = — (LgL’}‘lh(ﬂc,a))_l ( LEh(z,a) + Y12 = KiLph(z, a) > : (8.6)

has a hybrid zero dynamicsg| z,. Moreover,
a) the hybrid zero dynamics manifold (8.5)is Ze = Upea(Za, @),
b) ZeN(SxA)=(SNZ)x A and
c) the Poincaé mapPy|z, : (SN 2Z) x A — (SN Z) x Afor the restriction dynamics is
PE|z,(2, @) = (po(2), Au(2)), (8.7)
wherepe : SN Z — SN Z is independent of.

Remark 8.4. Suppose that = (X, S,0,U, A, f, g) has a periodic orbitD. Define the parameter
vectora* = A, (x*) forz* = ONS. Thenthe seb, = O x o* is a periodic orbit of the open-loop

deadbeat hybrid extensidn,. The orbitO, will be called the trivial lift of O into ..

Given an appropriate parameter update function the above theorem shows how to construct
a deadbeat hybrid extension to produce a hybrid invariamtifold. The restricted Poincaré map
P¢|z.(z, «) has the additional property that its spectral radius isrdetesd solely by the properties

of p(z,a). Using Theorem 8.2, observe that

Ope(z)  Ope(z) Ope(z)
aPee‘Ze(Z7a) _ 0z Oa _ 0z 0 8.8)
(2, ) OAL(2)  OA(2) (2 g '
0z Oa 0z
and notice that
max |eig 9 Felzo(z0) = max |eig Ope(z) . (8.9)
(%, ) 0z

Stability implications of (8.8) and (8.9) will be investigal in the next section.
A major drawback of Theorem 8.2 is that the control designestniirst find a satisfactory

A, before the theorem can be applied. Hypothesis H8.3-v givdsaa statement of the required
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properties ofA,, but provides no insight into its selection. The followingposition, stated without
proof, describes conditions under which a satisfactyryis known to exist. As the result depends
on the Implicit Function Theorem, the proposition assenly existence of the parameter update

function and does not provide its closed-form expression.

Proposition 8.5. If there exists a periodic orbi and a vectoix = «* on which the outpuk(z, «)

is identically zero, and the Jacobian

h(§, )

Lh(&,
9 shi&e) (8.10)

BN

4 a=a"

has full row rank, then by the Implicit Function Theorem thekists a parameter update function

A, : S — Asuchthatvz € SN Z, the valueg = A(x), @ = A, (z) resultin

h(&a) = 0

Lih(&,a) = 0

L& a) = 0.

A different method for achieving hybrid invariant manifel@és presented in the following sec-
tion. The result involves the use of deadbeat hybrid extessibut outputs are chosen in such a

way that leads to a closed-form expression of the requireginpater update law.

8.3 Constructive Parameter Extensions for Hybrid Invariance

Theorem 8.6(Impact Invariance by Construction). Consider a smooth control system with im-
pulse effeckY = (X,S,0,U, A, f,g), withi C IR™. Assume there exists a periodic or6ltthat

is transversal taS and that in addition

Hypotheses 8.7:

0nce again note that = (), indicating an absence of control authority over the impaap.
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i) there exists a smooth output : X — IR™ such thath vanishes on the orbit and has
uniform vector relative degrek in an open neighborhood of the orbit;
i) the distributionspan{g(z),- - , gm(z)} is involutive; and
i) there exists a”> real-valued functionr(z) such that
iii-a) 7(x) is strictly monotonically increasirfgon O;
iii-b) Ly7(x) = = LyL*r(x) = 0; and
iii-c) for z* = O NS, 7(x*) = 1andr(A(z*)) = 0.
Then, starting from the original systel and output functiony = h(z), one can construct an

open-loop deadbeat hybrid extension
Ee - (Xea 897 @,U, A(97 fe7 ge)

and a new output function = he(xe) such that all of the conditions of Corollary 7.8 are satisfied

for ¥ andh.. Moreover, the manifol, defined as
Zeo = {1e € Xe | ho(we) = 0, Ly ho(we) = 0, -+, LY ho(we) = 0},
is impact invariant w.r.t3, and containsJ,, the trivial lift of O into >.

The parameter update lafx, : S — A that provides impact invariance is unique only on
the domain ofS N Z. On the remainder of the parameter update function can be arbitrarily
defined, provided thaf\, remains continuously differentiable ghn Z. Consider a parameter
update function constructed as in the proof of Theorem @&6istdependepion a scalan. Assume

that the parameter update laky has the following properties:

Hypotheses 8.8:
i) Forany(z—,a™) € Se,
he(zt,a™) =0

Ly he(zt,a™) =0
(8.11)

L the(at, at) = 0
where(zt,at) = (A(z7), A)(z7)) for A = 0,

“In this context, a functior () is strictly monotonically increasing i ;7 () > 0 for every pointz in O.
°Dependence of the parameter update lavhavill be emphasized using the notatiaxy) ().
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i) for any fixedz.™ = (z7,a7) € S, the value ofA)(z~) is continuous iM\; and

iii) for any fixedze™ = (v7,a7) € Se N 2, the value ofA) (x7) is independent ok.

Stated without proof, the following theorem shows an elégamplification that is possible

when the parameter update law satisfies Hypotheses H8.8.

Proposition 8.9. Consider thes and A dependant closed-loop deadbeat hybrid extension that is

created as follows:

1. Begin with a control system with impulse effécts- (X', S,0,U, A, f,g) .

2. Apply Theorem 8.6 with a parameter update function satigfHypotheses H8.8 to create an

open-loop deadbeat hybrid extension
22 = (Xea 897 @,Z/{, Aéa fe7ge> .

3. Apply Corollary 7.8 to the open-loop deadbeat hybrid esien to produce a closed-loop
deadbeat hybrid extension

et = (X, Se B2 F5)

An autonomous system constructed in this way has a P@neturn map that, when written in the

coordinates of Theorem 7.4 and evaluated at a fixed poirthaile a Jacobian linearization of

Dpe(z*) | 0 *

DPAN (2", 16") = 0 o * :

i 0 0 S(;Tle(zieiﬁe*)Sge(Ze*ﬂk*) ]

with ze* = (2*, *). As shown in the proof of Corollary 7.6,
l{% S;Tle(%*’ﬁe*) = 07
and by Hypotheses H8.8,
li A e* e* - 0.
)\1—>In0 SAe(z 5 7] ) 0
The return mapDé’A for the closed-loop deadbeat hybrid extension of Promsi@i.9 has a

domain ofS x .A. The Jacobian linearization of this map is square with(.A) + dim(S) columns
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and rows. To test the stability of this return map (withoutizihg any of its special properties)
would require checking the eigenvalues ofdam(.A) + dim(S)) x (dim(A) + dim(S)) matrix.
In contrast, if a feedback controller were designed diyefdl the original control system with
impulse effects considered in Proposition 8.9, the remyldutonomous system would not have
an accompanying parameter spa¢eand thus the Poincaré return map would have a domain of
S. To test the stability properties of this return map woulduiee checking the eigenvalues of a
dim(S) x dim(S) matrix.

What then is the benefit of parameter augmentation? Pramo$it9 shows that the Jacobian
linearization of P>, when evaluated at the fixed point and written in special dinates, has a
structure such that

max [DPSA (26", 1e*)| = max |eig(Dpe(2")),

for e and \ constant and sufficiently close to zero. The stability of résteirn mapDPé’A(ze*, Ne™)
is determined by the eigenvalues of thm(S N 2Z)) x (dim(S N Z)) Jacobian linearization
of Dpe(z*), showing that parameter augmentation does not complibateeduced dimensional

stability tests of Chapter 7.

8.4 Discussion

Motivated by the problem of creating exponentially stat#eqdic orbits in bipedal robots with
underactuation and actuator dynamics, Chapter 7 extehédd/brid zero dynamics (HZD) frame-
work of [153] to nonlinear systems with impulse effects whéne outputs have vector relative
degree greater than two. Describing the required conditarsimultaneous invariance under the
continuous dynamics and the impact map was straightforward

The more challenging aspect of the extension is address#dsirthapter—how to meet the
impact invariance condition when the relative degree istgrethan two. The result on impact
invariance in [153] could not be extended in a direct way. #et@mbedding of the original system
into a system with event-based parameter updates wasdhemefroduced. The additional dynamic
elements in the larger system can be tailored to meet thedaoyiconditions associated with impact
invariance. This result was formalized in Theorem 8.2, Whjave a nonconstructive solution for

the impact map yielding impact invariance. The proposednio extension is deadbeat in that the
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additional states are updated only at impacts, and theiraéves depend only on the states of the
original system, not the previous values of the parameters.

Based strongly on spline-like transition functions, thestouctive outputs proposed in Theorem
8.6 allow the use of a constructive parameter update lawlehds to impact invariance. Although
both improve upon previously published results, the coictitre solution of Theorem 8.6 is a far
more powerful solution than its nonconstructive counterpéheorem 8.2.

Overall this chapter demonstrates the important fact timpact invariance can be achieved
under mild conditions by a deadbeat parameter update tinatiirces no additional dynamics to the
original system with impulse effects. The proposed paramgidates are fully compatible with the
stability tests derived in Chapter 7. Both parameter upsieltemes of this chapter are illustrated in

Chapter 9, which is a case study of walking in a biped withesecompliant actuation.
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Notation Introduced in Chapter 8

Symbol Meaning Defined
a parameterized system with impulse effects, or an opgm-loo

Ye Section 8.1
deadbeat hybrid extension (depending on context)
the parameter space of a parameterized system with impulse

A Section 8.1
effects
the parameter update function of an open- or closed-loop

A, Section 8.1
deadbeat hybrid extension

B the closed-loop deadbeat hybrid extension of a system with

Ye Section 8.1
impulse effects

B ane-dependent family of closed-loop deadbeat hybrid exten-

P Section 8.1
sions

Ze a hybrid invariant manifold foEe or ¢ Section 8.2

P the e-dependent Poincaré return mapdeff Section 8.2

7(x) a function that is strictly monotonic on a periodic orbit Section 8.3

A (x) a \-dependent parameter update function Section 8.3
a scalar determining the convergence properties of the| im-

A Section 8.3
pact map w.r.t. an impact invariant manifold

B ane and\ dependant closed-loop deadbeat hybrid extensiGection 8.3

DP? the Jacobian linearization of the Poincaré return mapiof | Section 8.3
the e-dependant sensitivity of the transverse dynamics ta the

o _ Section 8.3
e continuous flow o

the A-dependant sensitivity of the transverse dynamics td the

SA. Section 8.3

impact map of2g?
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CHAPTER 9

Case Study: A Biped with Compliance Walking on Flat Ground

As an illustration of the stability tests of Chapter 7 and plagameter augmentation schemes
of Chapter 8, this chapter provides an extended simulatiadysof a five-link planar biped with
compliance walking on rigid flat ground. The model is similaithe anthropomorphic biped pic-
tured in Figure 9.1. Parameter values for the model arallist&able 9.1. This study illustrates the
utility of the new theory, which provides provable staliliin a model that was beyond the domain
of application of previously published results on HZD coliérs.

The remainder of this chapter is organized as follows: el motivates the use of series
springs in walking robots and remarks on the additional elegjrof freedom that they introduce.
Section 9.2 derives a model of walking in a biped with comp@that is based on the model of a
(rigid) biped without compliance. Key properties of the ratsdare given in Section 9.3. Having
derived an appropriate model and established its propeffteeorem 8.2 is used to achieve impact
invariance for a class of outputs that has uniform vectatiad degree four. The required parameter
update function is derived by hand (with the lengthy derratomitted). Theorem 8.6 is used
to achieve impact invariance with a slightly different clasf vector relative degree four output
functions with a parameter update function that is easilyvdd. To compare the application of
these theorems to the stabilization of walking gaits, bothused to stabilize the same steady-state

walking gait having an average forward rate of 0.8 m/s.
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Figure 9.1: A class of compliant models. Left: A represemeaexample, intentionally anthropo-

morphic, of the class aN-link biped robot models considered. Right: A schematic oftational

joint with series compliant actuation.

Parameter Units Value
Length of each Link m 0.5
Mass of the Torso kg 27.5
Mass of each Femur and Tibja kg 0.5
CoM Inertia of the Torso kg-m? | 0.5729
CoM Inertia of each Tibia | kg-m? | 0.0104
CoM Inertia of each Femur | kg-m? | 0.0391
Reflected Inertia of Rotors | kg - m? | 0.03584
Transmission Ratio (unitless)| 8:1
Spring Constant N/m 550

Table 9.1: Parameters of the five-link model with compliasttiation. All links have uniform mass

distribution except the torso, whose COM is 0.15 m from thejint.
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9.1 Benefits and Drawbacks of Compliance

In legged robots, the physical introduction of tuned spingo an otherwise rigid mechanism
can significantly improve energy efficiency. The energe&oddits are twofold: within the strides
of walking and running, springs can store and release sortteeanergy that would otherwise be
lost as actuators do negative work [7]; and at foot touchdevents, springs isolate reflected motor
inertias from the energy dissipating effects of rigid citihs. These and other uses of flexible
elements have been demonstratedrming robots such as RHex [122], Scout [109], Sprawlita
[26], Raibert’s 2D and 3D hoppers [114], and the notably iffit ARL Monopod Il [6]. And
while the benefits of energy storage are most evident in ngpim practice many robots must quite
literally walk before they can run. In these cases compéamuist be taken into account in the
design and control avalking gaits, either explicitly by modeling or implicitly by traag nonrigid
effects as disturbances to a fully rigid model.

Obtaining the energetic benefits of compliance is not witlamst: delivering torque through
compliant elements poses several challenges for contsagjileThere is an obvious increase in the
degrees of freedom of the robot model, and hence, the defreeleractuation. This is a widely
recognized issue in robotics; see [129, 130, 10] and redesetherein. An additional challenge
particular to legged robots arises from the impulsive ¢ff@ccurring when the swing leg impacts
the ground. When torque at a joint is generated by a motor avetihin in series with a spring (as in
this chapter) the spring isolates the motor and drivetnaimfthe effects of an impact. Post-impact
values of rotor position and velocity match their pre-impadues, and similar boundary conditions
arise for joint torque. Seemingly benign, these additiguuast-impact boundary conditions alter the
structure of the impact map and can significantly complicataroller design.

The method of hybrid zero dynamics, as presented in [153h#ocontrol of planar walking, as-
sumed that any actuator dynamics were sufficiently fastlitegtcould be neglected in the controller
design process. The novel element of Chapters 7 and 8 is tiesssn of the hybrid zero dynamics
framework to address unique aspects of stabilizing walkiagions using actuators with nontrivial
series compliance. Treating actuator dynamics in this ésmank will lead to reduced dimensional-
ity stability tests for closed-loop walking gaits despite increased degrees of underactuation that

accompany compliant actuation.
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See Figure 9.1 for a description of the class of robots censdlin this chapter, along with
a schematic diagram of a flexible actuator. One example opittered compliant mechanism
is the MIT Series Elastic Actuator, which uses stiff sprimgsl an inner-loop feedback controller
to achieve reliable force control [112, 111]. Another, thRIASC (Actuator with Mechanically
Adjustable Series Compliance) designed by Hurst [76], istsisf a drive motor connected in series
with a pair of large, variable stiffness springs. Unlike ME Series Elastic Actuator, the AMASC
is designed to mechanically store significant amounts ofggnéihat would otherwise be wasted

when the actuator does negative work.

9.2 A Biped with Uniform Series Compliant Actuation

Recall that the model of walking for a class of rigid robotssvaerived in Chapter 4. To dis-
tinguish this previously derived rigid model from a complianodel (to be derived shortly) the
additional subscript “r” will be appended to each term of tigéd walking model of Chapter 4, and
a subscript “c” will be appended to each term of the complimalking model. The stance phase

dynamics of the rigid walker are now written as

Ds,r (qS,T)(jS,T + Cs,?" (QS,m q.s,r)q.s,r + Gs,r(‘]s,r) = Bs,ru (9-1)

where the configuration vectqs, = (gn, ¢n ), Wheregy, is the vector of actuated body coordinates
and gy is the unactuated global coordinate. This stance modelrisboeed with a rigid impact

model and is written as a system with impulse effects

is,r - fs,r(xs,r) + gs,r(xs,r)u x;r g Ss,r
Ysr (9.2)

w;fr = Agr(rg,) To, € Ssr

Alternatively, this system with impulse effects can be teritcompactly as
Es,r = (Xs,m SS,T7 ®> JR(N_I) s As,m fs,m gs,r) . (93)

To investigate the effects of introducing springs at eadinaded joint, a second simulation
model is constructed that is identical to the rigid one abexeept for the presence of series springs

separating each independent actuator from its associaiteid jn this case the compliant robot’s
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stance phase dynamics can be written as

Dy 1 (gs,r)ds,r + Csr(Gs s Gsr)dsir + Gsr(@sr) = BsrK(gm — qv)

JGm + K (qm — qv) = u.
where the configuration vectqt . = (¢s», ¢m) = (¢v, 9N, ¢m) Wheregy, is the vector of indirectly
actuated body coordinategy is the unactuated global coordinate, apgdis the vector correspond-
ing to the angular coordinates of the motor shafts that wimdl @nwind the series springs. The

stance phase model of a robot with compliance can be writtematively as

Ds,c(‘]s,c)(js,c + Cs,a(‘]s,m q.s,c)q.s,c + Gs,o(‘]s,c) = Bs,cu (9-4)

where the inertia matriX); ., Coriolis termsC ., and potential force&/s . are related to their rigid

counterparts by

Ds.ce(¢s.c) =

. Cs,r(Qs,ra Ljs,r) 0
Cs,c(‘]s,c» QS,C) —
0 0

Gs,r(Qs,r) - BS,TK(Qm - Qb)

K(Qm - Qb)

The impact map for the motor coordinatgs andg,,, is trivial to derive. Series springs, whose

GS,C(QS,C) -

relative tension or compression is unchanged by the immulsirques, isolate the actuation sub-
system by exerting constant nonimpulsive force during thpact event. Neglecting coordinate

relabeling, the impact map of the actuation subsystem iplgithe identity map
(s ) = (Grs m)-
The model of walking in a compliant robot can now be written as

Tge = fs,c(l's,c) + gs,c(ms7c)u Ty, ¢ Ss.c
e (9.5)
. = Aselrs,) Tg. € Sy

Alternatively, this system can be written more compactly as

Soe = (X Soerh RV, As fo o) (9.6)
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Remark 9.1. In the derivation of dimension reducing controllers of Cteap 7 and 8, we only
required that the impact map be some continuously diffeabla function of the pre-impact state. In
the case of walking in a biped with springs, the isolatioe@t of series compliance are beneficial
from a standpoint of energy efficiency, but by no means nagets achieve dimension reduction.
Similarly, partial linearity of the velocity impact map, played heavily in [153], is a property that

has not been used in the derivation of HZD the controllersludjiiers 7 and 8.

9.3 Model Properties

The following propositions highlight properties of theidgnodel (9.3) and the compliant model
(9.6) that are useful for comparing the processes of degigsiiabilizing controllers for walking
motions in each of the models. For the following propossgitet the unactuated coordinatg be
relabeled a9, and recall that quantity is the angular momentum of the robot about the ground

contact point.

Proposition 9.2. The stance phase models of the rigid and compliant robote iz following

properties:
a) the inertia matriced; , and D; . of (9.1)and (9.4) are independent df;

b) the stance phase model for the rigid robot is feedbackvedgnt to

. ov

o = —%(Q)

6 = — 7 1R
dnn(ap) o)

q'b = w,

whereV is the potential energy of the robot modé|,; are the individual elements @)

dvalgn)  dvn-i(an)] .
dvn(p) 7 dy(gw)

R(qy) = —

and
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¢) the stance phase model for the compliant robot is feedegalkvalent to

ov

o = —%(Q)

& = w

The proof and the required feedback are given in [61] and asedbon [135, 117].

By Proposition 9.2, the compliant model is a dynamic extamsif the rigid model, and hence
by [78], the problem of designing controllers to zero ousghdving a uniform vector relative degree
is, from a theoretical perspective, no more difficult for toenpliant model than for the rigid model.
In particular, parts (a) and (b) of Proposition 9.2 show thah output functioni(q) for the rigid
model 3 , satisfies H7.7-i, H7.7-ii, and H7.7-iii of Corollary 7.8,eth the same output function
when used with the compliant mode| .. will also satisfy H7.7-i, H7.7-ii, and H7.7-iii of Corollgr

7.8. Creating a forward invariant manifold is straightfard in each case.

Proposition 9.3. Include the same smooth output functipe: ~(q) in the rigid model, . and the

compliant modek; .. Then the following hold,

a) h has uniform vector relative degree two for the continuoudipo of the rigid stance model
(9.2) if, and only if, it has uniform vector relative degree four fhe continuous portion of

the compliant stance modg.5);
b) the decoupling matrices depend onlyseand they are equal, thatis,, Ly, h = LgsycLz}s_ch;
. _ Ohq(0) .
c) forh(q) = q» — ha(0), det(LyLsh)(q) = 1 — R(qn) =5~

d) if the output functiom(¢q) = ¢, — hq(#) has uniform vector relative degree two for the
continuous portion of the rigid stance model, then the zgwmachics manifold for the rigid

model is
_ 0Ohy(0)

q = ha(0), b = 50 9} (9.7)

and in the coordinate§y, o), the continuous phase of the restriction dynanligs|z, , is

Zs,r = {(q; Q) € Xs,r

0V
g o= — (9.8)
90 qp=hq(0)
B o A 8hd(9)>_1
= T E <1 HORSS , (9.9)
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where,dy, n(0) = dn N |g,—n,(0) AN R(0) = Rly 1,0

e) the zero dynamics manifold of the rigid stance phase muitidde diffeomorphic to the zero

dynamics manifold of the compliant stance phase model; and

f) when well-defined, the restriction dynamics of rigid saphase model will be diffeomorphic

to a well-defined restriction dynamics of the compliant seaphase model.

All parts of the above follow directly from Proposition 9.2thvthe exception of part ¢) whose
derivation requires the Sherman-Morrison-Woodbury fdenjli5].
9.4 An Application of Theorem 8.2 on Nonconstructive Extenens

The following procedure will be used to derive dimensionuedg HZD controllers for the

model of walking in a compliant robot:
1. Begin with the model of walking in a robot with compliance

See = (Xoer Soer b RO, A, fon e

2. Selectan output functidin: X, . x A — IR and a parameter update functidn : S . — A
satisfying Hypotheses H8.3.

3. Form the open-loop and closed-loop deadbeat hybrid sixtes of Theorem 8.2.

Motivated by Proposition 9.3 and [153], the output is saddas

0— 0,
y=h(q,a) =qp — hg (9 2 ,a> (9.10)
f— Y

wherehy : IR x A — IR*is a4 x 1 vector of Bézier polynomials of degree seveiThe terms

¢; andd; are constants, equal to the valuegait the beginning and end, respectively, of a steady

state gait. For any choié®f a = (o, a1, o, a3) € A = IR**4, the set of outputs (9.10) is relative

1Seventh degree Bézier polynomials have eight indeperuiaeimeters. This can be shown to be the minimum
number of free parameters needed to design the parametiedpdl and guarantee th&t N Z. ,, is independent of.

“Note that although the Bézier polynomials/efig, /) each have 8 coefficients, only the first four components are
treated by the parameter update function. The last four reosdin constant—after the computation of a periodic orbit—
so thatS. N Z. ,, is independent ofs.
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degree two with respect to the biped model without actuayordhics, and so by Proposition 9.3
(a) is relative degree four with respect to the biped mod#ét wompliant actuation.

With h4(0, ) selected as a Bézier polynomial, it can be shownthat A, Vze € Ae(Se N Ze),

hze,a) = Ag(ze)ag + Bo(ze)
Lih(ze,a) = Ai(ze)or + Bi(ze, o)
(9.11)
Lih(ze,a) = As(xe)az + Ba(we, ag, a1)
L‘;’Ch(ace, a) = Asz(ze)as + Ba(ze, a0, a1, 00)

with A;’s invertible. This property guarantees that there existBrgact update lavh, satisfying
Hypothesis H8.3-v of Theorem 8.2. Hypotheses H8.3-iii al&i3-lv are satisfied by noting that
for a five-link biped without impact updated parameters du@or dynamicsS N Z is smooth
and has dimension one less th&{153], and that the same derivation applies as long asZ,,

is independent ofv. (Such independence has been established earlier byyspgdihat the last
four coefficients of each Bézier polynomial are unaffedigdhe update law.) Hypothesis H8.3-i
and H8.3-ii have already been established by PropositidnThus, the conditions of Theorem 8.2
are met. To apply the theorem, form an open-loop deadbeatdhgktension of the model with

compliant actuation as

Te = fo(Te) + ge(Te)u 7o & Se
Ye: (912)

33: = Ae(me_) Te € Se,

with an output of

0—0;
y:he(xe) ZQb_hd <9f_97,7a> )

where (forA, as implicitly defined above}e = (75, ), Xo = Xs e X A, Se = Ssc X A,

| fs,c(xs,c) ]
fe(xe) = 5
. O -
| gs,c(xs,c) ]
ge(we) = )
L O -
_ ASC s_c
Ae(%e_) = 7 “ ’ )
L AU(xs_,c)



In the context of this extended model, differentiating thgpoit four times yields
yW = L7 he(we) + Loy LY he(ze)u,

where the domain of invertibility of the decoupling matri&geLj”cehe(:ne) is computable using

Proposition 9.3 parts (b) and (c). The zero dynamics mah#dskociated with this output is

he(ze) =0, L he(xe) =0,
Zo =R Te € Xg ,

L} he(ze) =0, L} he(ze) =0

and is diffeomorphic to the zero dynamics manifold (9.7)e Téedback

—1
u(we) = — (Lo L he(we) ( Lk ho(we) + Y0 A KLY, he(ze) ) . (913

modified from (7.12) will rendelZ, invariant and exponentially attractive in the continuohsge

of the closed-loop system. Note that this feedback is defirséuy a constant > 0 that is tuned
so thatZ, can be made exponentially attractive with arbitrarily feshvergence. Applying the
feedback (9.13) to the open-loop deadbeat hybrid exterf8idR) results in a closed-loop deadbeat

hybrid extension
Te = fé(me) Te & Se

xd = Ae(zy) x5 € S,

(9.14)

denoted alternatively as

Yo = (XeaSe>Ae>fé) :

e

To apply the stability test of Corollary 7.6 to the closedpodeadbeat hybrid extension of
(9.14), all that remains is to find a periodic orbit and a cansparameter vector for which the
output function (9.10) is zeroed at every point of the orbliis can be done quite efficiently on the
basis of the HZD using an optimization technique developdd%1] for finding periodic orbits in
the HZD subject to constraints on stability, torque, en@ffjgiency, ground friction, etc. Using this
method, a gait was designed using MATLAB'a1 ncon function to achieve a forward progression
rate of 0.8 m/s and to minimize an approximation of motorteleal energy consumed per distance
traveled.

Figure 9.2 gives a stick animation of the sample gait. Vahfesbelow each frame show that

# is monotonically increasing within a stride. The perceataglue indicates the amount of total
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6=2.77 6=2.86 6=2.92 6=2.99
0% 4% 13% 28%
6=3.09 6=3.19 6=3.33 6=3.45
55% 7% 93% 100%

Figure 9.2: Stick figure of walking in a biped with compliareted.8 m/s. Values of are monoton-

ically increasing.

step time elapsed, which has a nonlinear relationship &itRotor angles for the sample motion
are shown in Figure 9.3. As required by the impact model,esbf rotor position and velocity are
constant across the impact event, up to joint relabelinguréi 9.4 illustrates one interpretation of
Corollary 7.8, namely that while the feedback law of (9.13]) vender Z, forward invariant and
continuous phase exponentially attractive for any value sf0, only for e sufficiently small does

it render the manifold exponentially attractive in a hyts&hse. The reason is that for state values
outside the zero dynamics manifold, application of the iohpaap will tend to push the state further
away—an effect that can be overcome by sufficiently fast emence in the continuous phase. This
conclusion is reinforced in Figure 9.5, where the spectdius of the Poincaré return map of the
closed-loop system is plotted along with the eigenvaludefreturn map associated with the HZD.

Figure 9.6 then shows that the trajectories of the HZD caye/éw a periodic orbit.

9.5 An Application of Theorem 8.6 on Constructive Extensios

A numerical example is provided here to illustrate the aggpion Theorem 8.6 to the task of
stabilizing the same walking gait that was considered irldesection, the gait pictured in Figure
9.2. The procedure of Proposition 8.9 gives an explicit $steps for constructing a closed-loop

deadbeat hybrid extension having a Poincaré return mayfavibrable stability properties, allowing
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Figure 9.3: Values of the motor angles along two cycles of the periodic orbit. Stance knee and
hip rotors are plotted with a solid line, swing knee and hifpr® with a dashed line. Moments of
impact are noted with a circle. Consistent with the impactieborotor positions and velocities are

continuous across the impact.
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Figure 9.4: Behavior of the transverse dynamics for twoeslofe. Under the feedback (7.12), for
the choice of gaind(y, = 1, K1 = 4, Ks = 6, K3 = 4, the zero dynamics manifold is attractive
for e = 0.070 but not fore = 0.075. Plotted on the vertical axis is the euclidian normmnef=
(he(e); L he(xe): L}ehe(me); Lj’;ehe(me)). The horizontal axis is time. The observed behavior is
consistent with Corollary 7.8, where the zero dynamics fo&thiZ, is made exponentially attractive
for sufficiently smalle with the feedback (7.12). Initial conditions for the two {d@re the same

and indicated by an asterisk.
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Figure 9.5: The dependence of closed-loop eigenvalueseoparametee. As e approaches zero,
one eigenvalue remains constant, equal to the eigenvaltieedfybrid zero dynamic8p(z)/0z,

while all other eigenvalues go to zero. The eigenvalue @satwith the 1 DOF HZD i9.567.
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10— : : : : : : :
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Figure 9.6: System response from a perturbation in initieddition. The initial condition (noted

with an asterisk) lies within the hybrid zero dynamics but oo the periodic orbit. The state

converges exponentially quickly back to the periodic orbit

the stability test of Theorem 7.4 to be carried out on an ahit is a trivial lift® of the original. For
completeness, the steps are copied here with notation e for the task of stabilizing walking

in a compliant robot.
1. Begin with the open-loop mod&l . = (X, Ss.c, @, RV "V Aq e, fser Gs,c) -

2. Apply Theorem 8.6 with a parameter update function satigfHypotheses H8.8 to create an

open-loop deadbeat hybrid extension
Z‘é = (‘Xev 867 @72/{, Aéa fe>ge) .

3. Apply Corollary 7.8 to the open-loop deadbeat hybrid esien to produce a closed-loop
deadbeat hybrid extension
2‘2)\ = (Xea 867 Aév fé) .
To prepare for the application of Theorem 8.6, choose theubut

Y= h(qvﬁ) =d4b — hd(97ﬁ)7

whereh, is, as in the previous sectiondax 1 vector of seventh degree Bézier polynomials. With
the polynomial coefficients*, the initial conditionzy € X. and gait progression function

0 — 0,
T(z) = 0, =0,

3See Remark 8.4 for a definition of the trivial lift of an orbit.
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satisfy the properties that
i) xzq lies in a periodic orbitD of the system

5 jjs,c = fs,c(l's,c) + gs,c(l's,c)u(l's,c) l';c ¢ Ss,c
s,c -

)

A— AS,C(ZL';C) ZL';C € Ss,m

s,C
where

u(ee) = — (Lo LA hween 8) (L5 Ao )

ii) the outputsy = ¢, — hq(7(z), 3*) vanish on the orbitO and have uniform vector relative

degree four in an open neighborhood®fand
i) the function(x) is strictly monotonic on the orbit.

Thus, the orbit and output function satisfy Hypotheses H8aply Theorem 8.6 with a parameter
update function satisfying Hypotheses H8.8 to create an-tg@p deadbeat hybrid extension with

an output

A Te = fe($e)+ge($e)u Te ¢Se
DA (9.15)

rd = Ad(we) g € Se
denoted alternatively as

52 = (X 8o, 0.U, B2, fer ge

whereze = (2sc, ), Xo = Xs e X A, Se = S X A,

[ aclree) |
fe(we) = 5
- O -
| gs,c(xs,c) ]
ge(we) = s
L O .
_ ASC s_c
M) = |
| A ()

and where the parameter spa¢@nd a new output function = he(x) are as defined in the proof

of Theorem 8.6. As noted in the statement of Theorem 8.6e8y£9.15) satisfies Hypotheses H7.7
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Figure 9.7: Effects of the controller parameterand A on the transverse sensitivity matrices. As
A is held fixed anck decreases to zero, the eigenvalues of the matrix produsteays to zero.

Similarly, ase is held fixed and\ approaches zero, the eigenvalues converge to zero.

of Corollary 7.8. Using Corollary 7.8, form the autonomoystem

sor | T = S(re)  wg &S 016
xy = Alre”) x5 €Se
where
fe'(we) = fe(we) + go(ze)u(we) (9.17)
by applying the feedback

UE((L'e) = — (LgeL‘];.e_lhe(xe)> < L?ehe(xe) + zf:_(jl %Ki[/?ehe(we) > )

with Ko =1, K1 = 4, K9 = 6, K3 = 4, to the open-loop deadbeat hybrid extension (9.16).

Figure 9.7 compares eigenvalues of the transverse setysitigitrix
S;TI ,e(z_e*v 77_9*)5276(%*, Ne”)
of the closed-loop deadbeat hybrid extension at variousegabfe and A. As eithere or A is held
constant and the other approaches zero, the eigenvalues tohsverse sensitivity matrix converge
to zero? Oncemax leig(Sg,, o(Ze", 76")SA (26", me*))| < 1, the stability of the periodic orbit is

determined solely by the partial map of (8.7), whose eigenvalues are unaffected by eitrar).

For this example, the eigenvalues of the transverse satysitiatrix are known in closed-form as

“Theory predicts that as long as= 0, stability of the transverse dynamics can be obtained aluewefe > 0. Our
simulations indicated that the region of attraction of tbatooller becomes vanishingly small wheis large.
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Figure 9.8: The restricted return map. The fixed point is located at the point where= pe (o),
at approximatelylo| = 45 kg n?/s. The slope at the fixed point is approximately 0.55, intifica
that the discrete time system 1 = pe(0%) is locally exponentially stable. The dashed line is the

identity map.

S e(z’e*,ﬁe*)Sg (2™, me") = AeAt/¢ for t* equaling the period of the orbit and the constant
17 K

matrix ~ _
O4x4 Tyxa 0454 O4x4
0454 O4x4 Iyxa 0454
A= . (9.18)
0454 O4x4 O4x4 Iyxs
—1-Tyxs —4-Tyss —6-Iyy —4-I4xy

The one nonzero eigenvalue unaffected by either A\ can be found as slope @f at the fixed
point; see Figure 9.8.

For parameter choices ef= 0.07 and A = 1, the magnitudes of the eigenvalues of the trans-
verse sensitivity matrix are well below zero, the eigengalassociated with parameter updates
are identically zero (see (8.7)), and the eigenvalue of Hrégd mapp. is approximately equal to
0.55—indicating that the trivial liftO, is a stable periodic orbit in the closed-loop deadbeat kybri
extensions$™. A visualization of convergence is given in Figure 9.9. Thestimportant feature
of this plot is that the parameters (i.e.coordinates) are indeed constant within a stride, andestrid
to-stride they converge to zero. In the figure, the initialdition is marked with an asterisk and the

solution progresses from stride-to-stride in the diractibthe arrow.
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Figure 9.9: Projections of a solution converging back tobkeodic orbit. Plots correspond to
parameter values ef= 0.07 and\ = 1. The initial condition is marked with an asterisk. Within a
given stride, values at are constant and converge from step to step to 0. The initial condition

is marked as an asterisk in the different projections. Thatisa progresses stride-to-stride in the

direction of the arrows.
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9.6 Discussion

In an application of the results of previous chapters, thigter carried out an extended simula-
tion study on the use of smooth continuous phase contr@liéiShapter 7) and discrete parameter
update schemes (of Chapter 8) to design an exponentiabilizitag controller for a periodic walk-
ing gait in a robot with series compliant actuation. Secfighpresented a set of steps demonstrating
the use of Theorem 8.2 in the derivation of a nonconstrudeadbeat hybrid extension for achiev-
ing impact invariance, and Section 9.5 presented a secdnaf séeps demonstrating the use of
Theorem 8.6 in the constructive assembly of a deadbeatdghtension, also for the purpose of
meeting impact invariance conditions. In order to cargfatbmpare the uses of the theorems, the
same gait was stabilized using both constructive and n@tieartive techniques.

Because the constructive technique of achieving impaeriamce involves modification of the
output function provided by the control designer, the aalfers of Section 9.4 and Section 9.5 result
in different zero dynamics manifolds and different hybrat@ dynamics. In the chosen example,
the controller of Section 9.4 results in a 1 DOF hybrid zeroaiyics with a Poincaré map having
an eigenvalue of 0.567 while the controller of Section 9dults in a 1 DOF hybrid zero dynamics
with a Poincaré map having an eigenvalue of 0.55. Simil@ifferent values ot are required to
stabilize the transverse dynamics, even when the nomiméihcmus phase gain matrix (9.18) is the
same for both controllers. For the controller of Section @.4alue ofe = 0.075 is insufficient to
stabilize the transverse dynamics (in a hybrid sense). maast, for the controller of Section 9.5,
the nominal values ok = 1 ande = 1 result in a stable transverse dynamics. In order to provide
more robustness to external disturbances, the consteumtintroller of Figure 9.9 is chosen to have
e = 0.07.

In the general case, any modification of the output functieiteer by Theorem 8.6 or otherwise,
will result in changes in the stability properties of the hglzero dynamics. It has been observed
that for planar walkers with a 1 DOF hybrid zero dynamics, ¢bafiguration at impact is by far
the most dominant property affecting the eigenvalue of #slting Poincaré map. This means
that while changing the parameter update scheme used ®vadhipact invariance may have some
effect on the stability properties of the hybrid zero dynesnas long as the configuration at impact

remains the same, the effect will be minimal.

140



While this chapter has demonstrated the use of the theoryeviqus chapters in the design
of stabilizing controllers for robots with compliant actiaa, no investigation (either theoretical or
computational) was made into the relative control efforstaibilization as compared to that of a
robot without springs. It's known that in each case, dedngeathe convergence parametgequiv-
alently, increasing the control gains to reject errors evere aggressively) will result in transverse
dynamics that are stable in the hybrid sense. In all likelddhe introduction of springs could ne-
cessitate the need for higher gains (lower valueg @ stabilize the resulting transverse dynamics.
This could be seen as an acceptable tradeoff if the intramuof springs allowed significantly more
efficient steady-state gaits to be found.

What is still unclear is the role that parameter augmematimuld play in reducing the magni-
tude of the continuous phase control gains required to geostability. As noted in Section 9.5, for
the proposed parameter update scheme, when0 the value ofe can be arbitrarily large (equiva-
lently, controller gains can be arbitrarily small) and thesed-loop system will still have transverse
dynamics that are exponentially stable in the hybrid seisé¢his case, the role of the controller
gains could be similar to that proposed by Morris, Westénagid Farrell in [154], where control
of the transverse dynamics is domaly to increase the size of the basin of attraction and not to pro-
vide stability. Ultimately, the wisdom of including spriagn a biped robot will be demonstrated or
refuted in experiment, where electrical noise, signalyjejaantization, saturation, modeling error,

and parameter mismatch will be the true test of a contrsligbilizing properties.
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CHAPTER 10

Concluding Remarks

10.1 Summary of New Contributions

In light of experiments on RABBIT and in preparation for theanrobot MABEL, this thesis
has developed extensive new design tools that addressrioepance limiting aspects of previous
HZD controllers. Such limitations included the requiremeh“configuration determinism” at the
landing event of running [31], the dependence of previowsiced-dimensionality stability tests
on finite-time converging transverse dynamics [60, 1534, e potentially restrictive gait design
procedure of [151] that prevented HZD control from beinglegapto gaits designed using other
procedures—existing HZD techniques could do no better tihv@noject the motion onto the closest
member of a parameterized family of constraints. The useaoiition function$, and a general
trend toward the relaxation of previous controller hypstwe are features of this thesis that tie
together the original contributions of Chapters 5 through 9

As noted in Chapter 5, the property of “configuration detaiem” at landing required by the
HZD running controllers of [31] could not be met in the timéo#dd for experiments. The proposed
solution was to use transition-on-landing controllerspajiven in Chapter 5, to bring about stability
under a similar dimension-reducing control scheme.

A key application of the new tools of Chapter 6 is the desigldD controllers that render a
passive bipedal gait robust to disturbances, without teefifull actuation, and while still requiring

zero control effort at steady-state. The new tools can atsaded to design controllers for gaits

1The transition functions of previous chapters are simidahbse proposed by Westervelt et al in [152].
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having an arbitrary steady-state torque profile. Otherli®esdi this chapter include the analysis of
walking on a slope and the analysis of dynamic (decouplintrir)asingularities. Five examples

are given showing how these new results support each otldeexdand the framework of hybrid

zero dynamics.

Chapter 7 presents two new sets of hypotheses for autonosysteams with impulse effects,
both of which lead to reduced dimensionality stability $efsir periodic orbits lying in invariant
manifolds with smooth transverse dynamics. The first setypbtheses describes a special set of
coordinates for which the linearization of the return map hapecial upper triangular structure.
With sufficiently rapid convergence of the transverse dyisamall eigenvalues of the linearized
return map are shown to converge to zero except those of thridrgero dynamics. The existence
of a special set of coordinates simplifies the represemtatithe transverse dynamics and allows for
a more direct computation of the linearization of the Pai@idaap. The second set of hypotheses is
a coordinate-free description of conditions that lead eéogame upper triangular form. In practice,
these coordinate-free hypotheses are easier to verifyttfe@incoordinate-specific counterparts.

The design of output functions that lead to invariance unlerimpact map is the topic of
Chapter 8, where the novel use of parameter extensionssallensatisfaction of impact invariance
hypotheses. The proposed parameter extensions are deddbveducing no additional dynamic
modes to the system, either discrete or continuous, stahiestable. Two new theorems are given
that rigorously describe the use of deadbeat hybrid exdaesh achieving impact invariance. The
method of the first theorem is nonconstructive and can bedliffio carry out in practice. Involving
the use of spline-like transition functions, the methodraf second theorem is constructive and
should be significantly more straightforward to implement.

A capstone example showing a biped with uniform compliamiaon walking on flat ground
ties together many of the new contributions of this thedi® need for springs as motivated by
Chapter 5, the transition polynomials of Chapter 6, theiltyatests of Chapter 7, and the parameter

augmentation of Chapter 8.

143



10.2 Perspectives on Future Work

Following the experimental and theoretical investigagioeported in this thesis, two directions
of future research are readily apparent: the opportunitydsting model-based controllers on the
newly completed biped MABEL, and an opportunity to addressblematic issues of computa-
tional complexity currently associated with gait desigmimbolic controller derivation, and numeric
controller deployment.

Construction of the mechanical portion of the five-link @aripedal robot MABEL was re-
cently completed by Jonathan Hurst of Carnegie Mellon Usitag under the supervision of Matt
Mason and Al Rizzi. With final wiring yet to be performed, argfgcant amount of work will soon
be put into developing and testing safety systems, calityy@ensors and actuators, and performing
system identification experiments. Only after these stepscampleted can meaningful model-
based controllers be tested. Remaining hardware issudse Yet addressed include determining
the working limits of motor and software performance; dexivmodel-based observers to estimate
link velocities from encoder data; modeling and attengaboom dynamics; and tuning the series
springs to enhance dynamic performance. To successfullyeasl these issues will require both
mechanical insight and the support of computer simulations

In the near future, problems of numerical conditioning anthputational complexity could
create a bottleneck in the process of SQP optimization thatiirently used to design candidate
walking and running gaits for stabilization by HZD contes. This effect will become most pro-
nounced when the nonuniform actuation of MABEL's joints agerously addressed in a theoretical
framework. The decoupling matrix associated with imposimal constraints on MABEL could
easily be an order of magnitude more complex than the eguivalecoupling matrix for RAB-
BIT. Already, the decoupling matrix for the compliant modélChapter 9 in its standard form of
LgLi’;h(m) is far too complex to be computed in MATLAB’s symbolic toolbdntermediate terms
of this matrix, when output to a text file, can fill 10 to 100 miegs of disk space. Numerical
bottlenecks such as these must be addressed, whether inthtoeship of more efficient software
for symbolic derivation, or in a complexity-conscious matation of the theoretical foundations of

hybrid zero dynamics.
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As a theoretical framework, the paradigm of hybrid zero dyita offers unparalleled versa-
tility, mathematical rigor, and breadth of potential useitihis thesis containing the theoretical
extensions necessary for encompassing walking in bipettiscempliance, attention can be turned
toward the more physically motivated issues of experintamtaon hardware and the development
of efficient software. Research in these extensions willr@ogasy, but when completed could pay
large dividends in the form of providing a clear path from dlegivation of model-based controllers

to their computationally efficient, low complexity, reatte implementation on the hardware of the

newly constructed biped MABEL.
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APPENDIX A

Proofs

A.1 Proof of Theorem 3.1:

Method of Poincaré Sections for Systems with Impulse Effects

The equivalences for stability in the sense of Lyapunov ayin@totic stability are proven in
[60, 103]. The equivalence for exponential stability isy@o here. For &'! autonomous system
with impulse effects having an orbit that is transversalhi® impact surface, the functidfy o A
is continuous in a neighborhood of [60, App. B]. By the assumption th& N A(S) = 0, the
post-impact time-to-next-impact function is strictly gog on all of S, that isT; o A(z) > 0 for all
x € S. By continuous differentiability of it follows that there exists an open b#} (z*), r > 0,
and strictly positive scalars, andT™ such that for every, € B,(2*)NS,0 < T\, < TroA(xy) <
T* < o0, andvz € A(B,(z*)), a solution to the autonomous systeém= f(z) exists on0, 7*].

To show that ii) implies i) assume thél is an exponentially stable periodic orbit. If neces-
sary, shrinkd > 0 such thatNe=7"*§ < r so that the return map will be well defined for all
zo € Bs(z*) N S. Letay 1 = P(xy), k > 0. Then by induction|zy, — 2*|| < Ne ¥ ||zg — z*]).

To show that i) implies ii) assume that is an exponentially stable fixed point &f. Expo-
nential stability ofz* implies stability i.s.L. ofz*, and the Method of Poincaré Sections for the
case of stability i.s.L [60] further implies th& is stable i.s.L. Hence, there exigts> 0 such that
dist(zg, ©) < § implies distp(t,z0),0) < r, t > 0. Let K = {x € X | dist(z,0) < r}.
Since KC is compact andf and A are differentiable, there exists a constdnt< oo such that

If(z) — f(@)| < L||z — z|, for all z,z € K. And, ||A(x) — A(z)|| < L|z — z||, for all
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x, T € KNS. LetL = Lel™" . Then, using standard bounds for the Lipschitz dependehce o
the solution of the autonomous systém= f(x) w.r.t. its initial condition [87, pp. 79], it follows

that forz € Bs(z*) N S,

sup  dist(¢(t,A(z)), 0) < sup |[|¢(t, Az)) — o(t, A(z"))|| < Lz — 2™
0<t<TroA(x) 0<t<T*

From this inequality, it follows easily that whert is an exponentially stable fixed point &f, the

corresponding orbi© is exponentially stable.

A.2 Proof of Theorem 7.2

(Coordinate Dependent Reduced Dimensional Stability Te¥t

In the coordinates: = (z,7), H7.1-iv implies thatz* = (z*,0). Sinceff, ,.,(0) = 0, H7.1-
v is equivalent to%—fj(z*,o)flzk(z*,o) # 0, which, writing z = (21,--- ,2), IS equivalent to

Zle %(z*, 0)f:(2*,0) # 0. If necessary, the components:zotan always be re-ordered so that

oH , , -, .,
) (Z >O)f1(z 70) #Oa (Al)
<1
this will allow (z9., 1), wherezy.,, = (29, - , 21), to be used as coordinates 8r Indeed, (A.1)

implies thatg—g(z*, 0) # 0, and hence by the Implicit Function Theorem, there existstimaously

differentiable scalar functiofi on an open neighborhood of such that
(21, z2:k>77) cESe&n= F(z2zk>77)'
It follows that
(21,20.6,m) €E SN Z S 2z = '(294,0) andn = 0.

Letting A be the representation of in local coordinates of§ gives

A(Z2:k7 77) = A(P(z2:k7 77)7 22:k s 77)
Defining the projectionr by
ﬂ-(zh 22:k> 77) = (’Z2:k7 77)7 (AZ)

then allowsP* to be expressed in local coordinates.;., ) onS by

Pe(z2:k777) =Tmo (bg (T[E o A(z2:k777)7A(Z2:k777)> .
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Similarly, the restricted Poincaré map in local coordésat., onS N Z is given by
[) (Z2:k) = T2 0 ﬁe OI(z2:k) )

where

7T2(Z2:k777) = 22:k> andZ (Z2zk) - (Z2zk7 0)

The remainder of the proof is broken down into three lemmaistogether prove Theorem

7.2. The first involves th&rajectory sensitivity matrixf & = f¢(x), which is defined by
E(t, w0) = D2 (t, x0)

for ¢ in the maximal domain of existence ©f(t, z). Partition®*(t, z:o) compatible with(z1, zo.x, 1),
viz )

q)il(t’ 330) (Di2(tv $0) <I>53(t7 $0)

¢E(t’$0): @51(75,3:0) (1)52(t7$0) <I>§3(t7;p0)

_(1)51(157330) D5 (t,z0)  P55(2, 70)

Lemma A.1. For all zy € Z, the entries of the sensitivity matriX (¢, z) satisfy:
i) B, (t,x0) = By (t, x0) = O;
i) @9 (t, z0), P4 (¢, x0), Pi(t, x0), and D5, (t, zp) are independent af, and
iii) ®55(t, 20) = AL,
Proof. The trajectory sensitivity matrix can be calculated asofef [106]:

& fe() o Zo
= with i.c.
P Df(x)® I
Hypothesis H7.1-i implies that far € {1,2,3}, D; ff..(21, 22.k,n) is independent of and that

le]§+1:n(zlaz2:k7n) =0, D2f]§+1;n(21722:k777) = 07 andD3f]§+1;n(21722:k777) = A(G) By the

'For a differentiable functiory(z1,z2, ..., z,), the notationDig(y1,yz, ..., yp) refers todg/dz; evaluated at
(x1,z2,...,xp) = (Yy1,Y2,...,Yp). The argument; can be a vectorDg(yi, ..., yp) iS (8g/0x1,...,0g/0x,) eval-
uated af(z1, ..., xp) = (Y1, ..., Yp)-
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Peano-Baker formula, the trajectory sensitivity matritis$iees
O(t,w9) = I + fo “(11,x0) dT1+
fO n KE Tl,fL'O)KE(TQ,IL'O) dTQdT1+

fo K(71,20) K (72, 20) K (73, 20) dT3dT2dT1 +

where, sincery € Z, and Z is invariant under the solution af = f(x),
K(t,20) = Df(2)| sz (t,00)-
Evaluating the expansion term-by-term then verifies thetem O

Lemma A.2. Let (21, 25.,.,m") = z* represent the fixed point and = 7% o A(2%,,,7*) be the

fundamental period of the periodic orld?. Then,
DP<(25,,1") = C(FT + Q)R. (A3)

When partitioned compatibly witfx, 2.5, ), these matrices have the indicated structure

07 0]
C= Dﬂ-(zikv z;:k»n*) = (A.4a)
00 I
Fq
F =Di¢ (t", A5, 17) = | Fo (A.4b)
0
T = DT} (A(z54, ")) = [ T, T, T ] (A.4c)
Qu Q2 I3
Q= AZpn)) = | Qu Qu Q% (A.4d)
0 0 eA(e)t*

2For a related decomposition, using a slightly differemstinre, see [36].
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Ri1 Riz
R:DA(z;k,n*): R21 Rao |- (A.de)

0 Rae

Proof. Equation (A.3) follows from the chain rule, using

(25, 250m") = ¢6(T1€OA(2’§:1~C7 )A(22k7 "))

= ¢Z(TLZ o A(’Z;;]w 77*)7 A(Z;:]w 77*))7
t* = TfoA(z’Zk:k,n*)
= TI,Z © A(Z;;k>77*)7
(", Al ) = Daot (£, A7) -
The structure ofC is immediate from the definition of in (A.2). From [106, App. D],FF =
fe(z},25,,m"), leading toF; = 0 becausey* = 0. Also from [106, App. D], T is differentiable

due to the transversality condition H7.1-v with

T
DIF(A(") = ~(Lp ) (G06)) 8 A

The structure of) is given by Lemma A.1, and the form &f follows from H7.1-ii, namely, (7.2).

]
Lemma A.3. At the fixed point:*, the linearization of the Poincérmap is
R My M,
DP(zy,1") = , (A.5)
0 Ms,
and the linearization of the restricted Poinéamap is
Dp(z5.,) = My, (A.6)
where
My = (FoT1+ Q21)Ri1 + (F2T2 + Qa2)Ra,
My, = (FoT1+ Qa1)Ri2 + (F2T2 + Qa2)Rao A7)

+(F2T§ + Q93)Raa,

MQEZ = 6A(E)t*R32.
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Proof. Multiplying out (A.3) using the structure in (A.4) proves .. The second part follows

because the Poincaré map lea$es Z invariant. In local coordinates, direct calculation yield

DPA(ZSI@) = DWZ(Z;:k777*) DPE(Z;:IWH*) DI(ZSIC)
My My, I

- [ o]
0 M 0

= M.

O

The completion of the proof of Theorem 7.2 is as follows: Siwggpthatz* is an exponentially
stable fixed point ofp. Then by (A.6), the eigenvalues @ff;; have magnitude less than one.
By H7.1-vi and (A.7),lim~ o M5, = lim e R3y = 0, and therefore, because eigenvalues
depend continuously on the entries of the matrix, theret®gis- 0 such that fol) < ¢ < €, the
eigenvalues of/5, all have magnitude less than one, and hentés an exponentially stable fixed

point of P¢. The other direction of the proof is trivial.

A.3 Proof of Theorem 7.4

(Structure of the Linearized Return Map)

The (local) coordinate transforin represents elements of the submanif§lc Z in preferred
coordinates so that i) for any poinf z € SN Z N U, I'y(z) = 0, and ii) for any pointz €
SNU, TYTy(z),0) € SN ZNU. Similarly, the coordinate transformi represents elements
of Z in preferred coordinates: i) for any € Z NV, ¥y(x) = 0, and ii) for any pointz € V,
U1 (¥ (z),0) € ZN V. The coordinate transfornisand ¥ must exist by virtue of the fact that
S N Z and Z are embedded submanifolds. Conditions H7.3-ii and thestensality portion of
H7.3-iii are sufficient conditions under which the returnpig differentiable at the point*. Let

Pi(z,n) =Ty 0 PoT " (z,n) andPy(z,1) = I'y o P o T~1(z,7) so that the Jacobian of the return

3Facts i) and ii) are properties easily derived from the dediniof preferred coordinate#n [20, p. 76].
4By definition, the domairl/ of I is a subset o5 and thus(U N S) = U. To emphasize this fact, we prefer to
designate the domain éfas(U N S).
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map can be written as
DB(a,m) D1Pi(z,n) DyPi(z,n) 7
D1Py(z,m) DaPa(z,n)

which, when evaluated &t*,n*) = I'(z*), reduces to (7.9). By H7.3-iii, the fixed point lies
within Z, and as a consequence of property iy'ofy* = I'y(z*) = 0. By the definition ofP, above
andp in (7.7), P1(z,0) = p(z), implying thatD; P, (z*,7*) = Dp(z*) and proving the form of
the upper left block of (7.9). The hypothesis on hybrid iteace, H7.3-i, is a sufficient condition
for (7.4) and (by property i) of’) implies that]f’g(z,o) = 0 at all points(z,0) of its domain.
Differentiation with respect to the coordinates give@lﬁg(z*,n*) = 0, which is the lower left

block of (7.9). Applying the chain ruteto the alternative form of the return map gives
DyPy(z*,1*) = Dy(Tyo0 ér, 0 Ao T (2%, %)
= Dy (T20¢r, 0¥ o (ToAol ™)) (2% n%)
= Di(T0¢7, 001 (2%, 77*) Do(¥10A o' 71) (2%, 1*)
+ Da(Ta0¢7, 00~ 1) (%, 77°) Da(Wo 0 Ao T (2%, 7%).
Forward invariance of implies thatD; (T2 o ¢, o ¥~1)(2*,77*) = 0, leading to the expression
Dy Py(2*, %) = Ser, (2", 7)Sa(2*,n*), which completes the derivation of the form (7.9).

Lemma A.4. Suppose that for some> 0, F' : B,(0) — IR"™ satisfies

i) 9L < oo suchthatvz € B,(0), ||F(x)| < L|jz||; and

i) Fis continuously differentiable at every pointi) (0).

Then,||0F(0)/0x||; < L where|| - ||; is the induced norm.

Proof. By ii) and Taylor's theorem['(z) = F'(0) + (0F(0)/0z)x + R(x) where

limg o | R(2)||/[|z]| = 0. By ), F(0) = 0 and|[(0F(0)0x) x + R(z)|| = [|[F(«)| < L]=[. By

compactness of closed unit ballsiki*, there existg such that|(0F(0) /0x) z|| = ||(OF(0)/0x)||,

and||z|| = 1. Lettingx = oz, for any value ob > 0, || (OF(0)/0x) (6z/||0z]|)

+ (R(z)/||oz||) || = |[(OF(0)/0z) Z + (R(6z)/||0z|)|| < L. It follows that

limg\ o [[(9F(0)/0x) z + (R(6x)/|[6x|)|| = [|(OF (0)/0z)||; and hencel(OF (0)/dz)||; < L. O
°For any differentiable functiongy : R™ x R"™ — RY F» : R™ x R"™ — IR’, F(x1,22)

(F1(z1, z2), Fa(z1,22)), andG : R* x IR® — IRP, application of the chain rule shows thB: (G o F')(z1,x2)
DG - Do Fy + DG - Do Fs.
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Remark A.5. Any parameterized functioR“ : B, (0) — IR", r(e) > 0 that satisfies
i) for eache > 0, F¢(0) = 0;

i) for eache > 0, there existsi(e) > 0 such thatF(x) is continuously differentiable on

B(;(E) (0), and
i) [|F<(2)]| < L(e)||z]l with lim o L(€) = 0,

must (by Lemma A.4) have the property thate o || %= (0)||, = 0.

A.4  Proof of Corollary 7.8

(Coordinate Independent Reduced Dimensional Stability Tst)

The first claim of the corollary is trivial to prove: the systé&e restricted to the hybrid invariant
manifold Z is independent of. By H7.5-i and H7.5-ii, the manifoldZ is independent o and
so is the vector fielg | z. For the second claim of the corollary, the Method of Poiacaections
is used to establish a relationship between the eigenvalug® Jacobian of a Poincaré map and
the stability of the underlying orbit. Because they are fawéd by coordinate transforms, the
eigenvalues oD P<(z*) are equal to the eigenvalues BP(z*,7*). As shown in Theorem 7.4,

the matrixDPE(z*, n*) is block upper triangular for all values efand therefore

eig(DP(z")) = eig(Dp(z")) Ueig(Sg,, (27,77)Sa(z",n7))-

Assume thatim\ o S;TI(Z*,ﬁ*) = 0 (a fact to be proven below). In this case, tosufficiently
small, the maximum eigenvalue &fP¢(z*) is equal to the maximum eigenvalue Dp(z*), and
by the Method of Poincaré Sections, the oMits exponentially stable in the full systeRrf if and
only if the same orbit is exponentially stable in the resédcsystent z.

To show thatlim\ S(;TI (z*,7*) = 0, invoke the convergence property of H7.5-iii in the
application of Taylor’s theorem in Lemma A.4. To start, ntitat the functionl is differentiable
and therefore locally Lipschitz continuous. That is, thexests L > 0 such that for allk: in an

open neighborhood df N S containing the point*,
. . . 1
dist(z, Z) = infycz |z —yll > infyez 7-[[T'(x) —T(y)ll A8
= infyez 7-[(T1(2), Pa(x)) — (T1(y), 0)]-
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The last line in the above is obtained using property i) ofgreferred coordinates given ky(as
used in the proof of Theorem 7.4). By property illafve € UNS, T~y (2),0) e UNSN Z.
Stated differentlyyz €¢ UNS, 3y € UNSN Z such thatl' (z) = I'; (y). Applying this to the last

line of (A.8) shows that
dist(z, 2) > 7-[|(T'1(2), T2(2)) — (P1(2),0)]| = £ [T2()]- (A-9)
Next, by the triangle inequality, for any, in an open neighborhood &f containingA (z*),
dist(zo, Z) < ||xo — ¥ (¥ (20),0)]-
Writing zo as the identityrg = U1 (U (), Ua(z0)) gives

dist(zg, Z) < [[UTH(Wy(x0), a(o)) — U (W1 (z0),0)]]
(A.10)

< Ly-1|[(Wi(xo), Ya(z0)) — (Wi(w0), 0)[| = Ly—1[[a(zo)l,
for some finiteLy -1 > 0 (as¥ ! is also locally Lipschitz).

Recall the following factsA (z*) lies within the open sét’; for everye > 0, ¢75 (A(z*)) = z*
lies within the open s’ N S; and for every > 0, A(z*) lies within the open seBs(A(z*)) for
0 from H7.5-iii. The functionA is continuous, as i for each value ot > 0. Thus, for every
e > 0 there exists: > 0 such thatB,(A(z*)) C V, ¢7i(B.(A(z*))) € (UNS), andp < 6.
Together, (A.9), (A.10), and H7.5-iii imply thatzg € B, (A(z*))

77 IT2 0 g7 (o) || < dist(¢75(0), Z) < K (e) dist(zo, Z) < K (€) Ly -1 || Y2 (o).

Setting(z, 1) = ¥(z¢) leads to|T'y o ¢75 o U=1(z,7)|| < LrLyg-1K(€)|)7]|. The periodic orbitO

is contained inZ and thus for alk > 0, n* = (I'y o ¢75 o U~1)(z*,77*) = 0. Thus, the function
(Ty o ¢75 o W—1)(z*,7*) meets the criteria of Lemma A.4 and Remark A.5, which implgtth
limen o D2 (T2 0 7 o U—1)(2*,7*) = 0, or, equivalentlylim o S;TI (z*,7*) = 0, which was to

be shown.

A.5 Proof of Corollary 7.8

(Feedback Design for Reduced Dimension Stability Testing)

Forward invariance and the submanifold propertyZdbllow from applying the general results

of [78, Ch.5] to the drift and control vector fields Bf Condition H7.5-i of Corollary 7.6 is trivially
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satisfied because does not participate in the definition &. Similarly, the feedback (7.12) is
independent of on the manifoldZ and therefore the closed-loop flof{x) + g(z)u(z) when
restricted taZ is independent of.

Under the feedback (7.12), the manifatdis exponentially attractive with-dependant conver-
gence parametersand~y satisfying vV 0 < t < T () dist(¢*(t, x0), Z) < c(e)e 7 tdist(zg, Z)
andlim o c(e)e~"(®) = 0. For a givene > 0, chooses > 0 such thatr, (o) exists for allzg in
the closedball Bs(A(z*)). On this compact set, the differentiable functibf(z) achieves a mini-
mum value. If necessary, further restricio that this minimum value is strictly greater than one half
of the periodt* of the orbitOQ. Then for the choseaand corresponding, eachz, in the openball
Bs(A(x¥)) satisfies digipr, (20), Z) < c(e)e~ 1T @)dist(xg, Z) < c(e)e V2t dist(zg, Z).
Define K (¢) = c(e)e‘V(E)%t*. Then for each value of > 0 there exists) > 0 such that for all
zo € Bs(A(x)), dist(¢rs(z0), Z) < K(e)dist(zg, Z), with lim\ o K (¢) = 0. Thus Hypothesis

H7.5-iii of Corollary 7.6 is satisfied, completing the praaffCorollary 7.8.

A.6 Proof of Theorem 8.2

(Invariance by Nonconstructive Deadbeat Hybrid Extensiorn

Hypotheses H8.3-i and H8.3-ii imply two things: thé € A the continuous part of (8.4)
has a well-defined, zero dynamics manifold,,, and that the continuous portion of (8.5) has a
well-defined zero dynamics manifold, denoted temporanlyzb Again using H8.3-ii, it follows
that Z = Uaea(Z4, @), and hence the set = Z, is a zero dynamics manifold of the continuous

portion of (8.5). Next, note that by Hypothesis H8.3-iii,

Ze N (S X A) = (UOCEA(ZOH O‘)) N (UaEA(Sa a))
= UacA (S N Zaa a)
= Uaea (S nZz, Oé)

= (SNZ2)xA,

5As specified earlier, the initialization time fex(¢, zo) is always assumed to g = 0.
"This does not imply that there exists a valuexdbr which Z,, is a hybrid zero dynamics manifold of (8.4). No such
value fora need exist.
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establishing part b) of the theorem. This and HypothesiS#Bimply that Z, N (S x A) isaC>™
submanifold oft’ x A4, and has dimension one less thgn By Hypothesis H8.3-vZ, N (S x A)
is invariant under the impact map of (8.5). It follows that5(8has an HZD with zero dynamics

manifold Z,, proving part a) of the theorem. The corresponding regirialynamics of (8.5) is

5. GO = (a0 (") ¢ (SN Z) x A
T Gtah) = (Blsz ) Allsnz() (iaT) € (SN 2) x A

from which the form of the Poincaré map is immediate, thus/img part c).

A.7 Proof of Theorem 8.6

(Impact Invariance by Construction)
This section constructs the open-loop deadbeat hybrichsixte
29)\ - (Xe7 867 ®7u7 Aé? f67 ge)

and output functiorye = he(ze) used in the proof of Theorem 8.6. A proof of the theorem is then
given. To begin the construction gf = he(ze), choose any functio : IR x R™ — IR™
satisfying the propertiés

i) foranyb = (bg,...,bk—1),bo,...,bp—1 € R™

akfl
’ 9sk—1

B(S,b)|s:0 = bo, %B(S,b”s:o == bl, e B(S,b)|s:0 == bk—l;

i) foranyb = (bg,...,bx—1),bo,...,bp—1 € R™

B(s,b)|s=1 = 0, ZB(s,b)|s=1 = 0,..., 22 B(s,b)]s=1 = 0;

o
i) Vs € IR, B(s,0) =0;
iv) Vb € IR™*, the functionB(s, b) is C¥*!in s; and

V) Vs € IR, each of the function®(s, b), & B(s,b), ... , g—;B(s, b) is continuous irb.

8That is, B is a vector-valued**! spline.
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Continuing, define a functios : X x IR — IR ass(z,sp) = 27(x) + so, and note that by
monotonicity ofr(x) (Hypothesis H8.7-iiis(z, so) will be strictly monotonically increasing (that
is, Lys(z,s0) = 2L¢(x)7 > 0 on O) for any choice ofsg. Define the parameter vector =
(b,50) € IR™+1 for b € IR™* ands, € IR, and designate an extended state vectar.as (z, ).

With this notation, the constructed output function is teritas

h(z) + B(s(x, so),b) fors(z,sp) <1
he(re) = (A.11)

h(z) otherwise.

Motivated by the parameter vector of the constructed oy#dtl), letA = IR™ 1, In general,
there are uncountably many parameter update functionsahbét be constructed to satisfy Theorem

8.6. One family of such updates is indexed by a scalariR with
MaT) = (Bp(x7), -, bi_a(z7),s0(a7))
wheresy(z7) = —27(z%), b)(z~) = Ah(z~) — h(zT), and

bMz7) = (2Lyr(zT)) ™" (—L?h(m*) +ALR(z7) = RY (2, bo(27), . .. ,bn_l(x_)))
(A.12)
forz= € S, 2" = A(z™), andl < n < k — 1. The termRY (z*, by, . . . , bo_1) will be defined
shortly, following Remark A.6. Lettingte = X x A, Se = S x A, AX.(ze) = (A(z),v*(2)),
Te = (z,0), fe(re) = (f(x),0), andge(ze) = (g9(x),0) leads to the final construction of the
open-loop deadbeat hybrid extensith, = (Xe, Se, 0,U, A, fe, ge)-

Remark A.6. For the composition3(s(z, o), b), Faa di Bruno’s formula [80] for then!” partial

derivative generaliz€sto a formula for then'” Lie derivative

n

LyB(s(a,s0),b) = 3 ——r P00, ) H(LS@ ’S°)>Z, (A.13)

i1 a5 i J |
7 lgel gl 0s Pl 7!

wherej = j; + - - - + j, and the summation is over the gt of all n-tuples of nonnegative integer

values(j, ..., jn) satisfyingj; + 2j2 + - - - + nj, = n.

For use in (A.12), Ieﬂzg)(m,a) represent the summation of (A.13) over the indexﬁ@f =
In \ {(n,0,...,0}, sothat withaw = (b, s9) andze = (x, @),

0" B(s(x,s0),b)
osn

This generalization is only possible because the functisrscalar-valued.

L} he(ze) = Lth(z) + R (2, 0) + (Lys(x,50))". (A.14)
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By property i) of B, whenz andsg are such that(x, sg) = 0, the value ofRﬁLl)(a:, «) is dependent
only onz and the parametets, ..., b, 1, and the notatioﬂl%l)(x, by, ...,bn—1) becomes appro-
priate. For use in the proof of Lemma A.7, @5? (z, ) represent the summation of (A.13) over

the index set7,\? = 7, \ {(0,...,0,1)}, so that witha: = (b, 59) andze = (z, @),

0B(s(x,sp),b)

L} he(e) = Lth(x) + R (x,0) + o

s(, s0)- (A.15)

Lemma A.7. The outputhe(ze) Of (A.11) has uniform vector relative degrdefor all z, in an

open neighborhood of th@,, which is the trivial lift of © into Y.
Proof. Forallze € X;,0<n<k-—1

Lih(z) + L}B(s(x, s0),b) for s(z,s0) <1
L'} he(ze) = (A.16)
Lih(z) otherwise
By H8.7-i, the claim of the Lemma is trivial for alt, € X, for which s(x, sp) > 1. Using the
term Rf) (z,«) developed after Remark A.6, expand the first line of (A.16pltain that for all

Te = (z, ) € Xo such thats(z, sp) < 1,for0 <n <k —1,

0B(s(x,sp),b)

L} he(ze) = Lth(z) + R (2, 0) + o

1s(, s0), (A.17)

which is (A.15). Each additive term 6t (z,) containsL}s(:n, s0) forsomed < i < n—1. From
its definition, the functiors(x, so) satisfies the property thet: € X, Vsyp € IRand0 <n < k—1,
LgL%s(z,80) = 2Ly LY7(x). And, by H8.7-iii, Ly L7 (z) = 0 for 0 < n < k — 2. With omitted
chain-rule calculations left to the reader, this furtheplies that for allze = (z, ) = (z,b,59) €
Xe such thats(x, sp) < 1,0 <n < k — 2, it holds thatLgRgf) (x,b,s0) = 0. Accordingly, for all
Te = (z,) € Xe such thats(z, so) < 1,for0 <n <k —2, Ly L} he(xe) = 0, which is part of

the definition uniform vector relative degree (3.2). In thse ofn = k£ — 1, (A.17) simplifies to

- - 8B(8(33‘,80),b) -
Lo L5 he(e) = LyLi ™ 'h(z) + Ly (TL’; Ls(x, s0)

giving the decoupling matrix as

0B(s(x,sg),b)

LgeLl;e_lhe(iUe) = Lng;_lh(if) + D5

Lng}_ls(:E, 50).
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Applying the Sherman-Morrison-Woodbury formula [15], tecoupling matrix is invertible at

each pointte = (x,b, sg) € Xe Where the continuous scalar function

—1 9B(s(z,s0),b)

o (A.18)

1+ Lng}_ls(w, 50) (Lng}_lh(x)>

is nonzero. Along®,, the trivial lift of O, the parameteb takes a value of € IR™* and thus
by property iii) of B, for all (x,b,s9) € Oe, 0B(s(x,s0),b)/0s = 0. As a result, the function
in (A.18) has a constant value @fon the orbitO.. Because (A.18) is continuous and nonzero
on O, it must be nonzero in an open neighborhoodQf Equivalently, the decoupling matrix
LgeL’Jiglhe(a:e) is invertible in an open neighborhood ©f,, which fulfills the invertibility portion

of the definition of uniform vector relative degree (3.2). O

The proof of Theorem 8.6 is as follows: By Lemma A.7, the patarized extensiony)
and output functiorh, together fulfill H7.7-i of Corollary 7.8. Hypothesis H8.%f Theorem 8.6
implies that H7.7-ii of Corollary 7.8 is true—indeed evemimt on the trivial lift O, meets this
condition. Hypothesis H8.7-ii of Theorem 8.6 implies tHat bpen-loop deadbeat hybrid extension

meets H7.7-iii. The manifol&, is impact invariant if and only for alte™ = (z7,a7) € Se N Ze,
he(xt,a™) =0, Ly he(xt,a®) =0,..., Li  he(a™,0™) =0
with z+ = A(z~) anda® = v*(z~). The above Lie derivatives can be expanded as in (A.14);

V- e Swithzt = A(z7)and0 <n <k —1,

O"B(s(xzT,s0),b)
osm

?ehe(afr, a) = L}‘h(afr) + RL})(@*, a) + (Les(x™, s0))", (A.19)

for anya € A. By the construction of, Lys(x,so) = 2L¢7(x) (independent of the value of).
After the update o, = —27(x), the value ofs(z™, s¢) is necessarily zero. Using property i) of
B, then = 0 case of (A.19) is simplified tde(z*,,s0) = h(z™) + by, and forl < n < k — 1,
L% he(x,b,50) = Lith(z™) 4+ bp (2L (2))" + R 2+, by, . .., by_1). The parameter updates
of (A.12) are derived by setting?ehe(:ﬁ, b, s0) = /\L}‘h(ac_) and solving forb,,. In this way,
impact invariance o, is achieved by construction. Lastly, Hypothesis H8.7-i prmperty iii) of

B imply that the orbitO, is in Z,, which is the final claim of the theorem.
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