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CHAPTER I

INTRODUCTION

The interest in the acoustic properties of heterostructures is driven by the

pursue of a fundamental understanding of the physical properties of nanostructures,

as well as applications in semiconductor devices, where energy transport plays a

key role [8]. In particular, in a periodic superlattice, the artificial translational

symmetry results in the folding of the bulk acoustic dispersion relation into a smaller

Brillouin-zone defined by the superlattice periodicity. This folding of the acoustic

branches gives rise to additional optical-phonon-like modes of the superlattice with

non-zero frequencies at the center of the Brillouin zone, which can therefore couple

to light [9]. The folding of the acoustic branches in periodic media was predicted

more than fifty years ago [10]. Periodic superlattices have been extensively studied

using spontaneous Raman scattering techniques during the early 1980s [9, 11]. Later,

following the development of the mode-locked laser, ultrashort light pulses were

exploited extensively to study coherent acoustic phonons in the time domain, leading

to the well established technique of picosecond ultrasonics [12, 13]. Time resolved

spectroscopy has advantages over frequency-domain spectroscopy; in contrast to

spontaneous Raman scattering, pump-probe experiments involve the creation of

a coherent excitation. This allows for the study of propagation effects, which are

important in the understanding of the physics of nanostructures, and also due to the

prospect of using coherent phonons for imaging [14]. The coherence of the excitation

also opens the possibility of using acoustic phonons as a mean to manipulate
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other physical processes. For example, it has been proposed that coherent acoustic

phonons can be used to induce the decay of the longitudinal optic phonon in InP [15].

Recently, coherent control of acoustic phonons in bulk materials has been observed

using ultrafast X-ray diffraction [16], a technique that is directly sensitive to the

atomic arrangement of the crystal.

It is of particular interest to understand the propagation of folded acoustic

phonons in superlattices. Moreover, the prospect of using short-wavelength

folded phonons for imaging requires understanding the generation process of such

high-frequency vibrations. In the case of bulk crystals, there is a well established

model of the ultrafast generation of acoustic vibrations developed by Thomsen and

coworkers [12]. However, a model that describes the generation of high-frequency

folded phonons in heterostructures is still needed. The propagation and generation

of folded phonons has been studied optically using conveniently designed samples

such as in Ref. [17] where the pump and the probe are absorbed in different regions,

or with superconducting bolometers to detect the propagating acoustic phonons

after they escape from a superlattice [18]. In addition, independent advancements

in laser and synchrotron technology have recently provided us with short X-ray

pulses with durations between 100 fs and 100 ps. Since X rays couple strongly to

core electrons in the lattice ions, X-ray diffraction is an ideal tool to study lattice

dynamics in the time domain, and has been used to probe ultrafast processes in bulk

materials [19, 20, 21, 22, 23].

This thesis presents time-resolved studies of folded acoustic phonons in

superlattices that intend to provide information on the ultrafast generation

and detection processes. The work presented here is based on two pump-probe

experiments on semiconductor superlattices. The two experiments are conceptually

similar: a strong laser pulse excites acoustic phonons and a delayed probe measures

some property of the sample as a function of time. The first experiment uses optical
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pulses to measure the reflectivity of the sample, while in the second experiment,

a short burst of X rays is used to probe the sample through X-ray diffraction.

Because of the coupling of X rays with tightly bound electrons, X-ray diffraction is

directly sensitive to the atomic arrangement of the ions in the crystal and renders

this technique ideal to study lattice dynamics in condensed matter. Although both

experiments are conceptually similar, the field of ultrafast X-ray diffraction is still

in a very early stage of development and the experimental challenges abound. We

complement the experimental observations with a continuum model of the acoustic

vibrations that provides insight on the generation and detection mechanisms of

folded acoustic phonons.

This thesis is organized as follows. Chapter II is an introduction to the relevant

solid-state physics concepts. I begin with the derivation of the vibrational modes of

a linear atomic chain with nearest-neighbors interactions followed by the continuum

approximation for long wavelength phonons. Next, I show the folding of the acoustic

branches due to the acoustic modulation in a periodic, infinite, one-dimensional

superlattice.

Chapter III deals with the mechanism for the generation of the acoustic phonons

in a finite superlattice. The strain is assumed to be generated thermo-elastically

following the model in Ref. [12]. After excitation, the propagation is governed by a

piece-wise constant wave equation for the atomic displacement. I develop a solution

of this wave equation in terms of the acoustic normal modes of vibration of the finite

structure. The coherent vibration modifies the refractive index in time and, hence,

the optical reflectivity of the sample. Using the normal mode expansion, I derive

a semi-analytical expression for the spectrum of the change in reflectivity induced

by the coherent acoustic phonon. With the aid of the eigenmode expansion of the

solution, I show at the end of this chapter, that some of the eigenmodes that are

excited by the laser pulse have the peculiar behavior of avoiding the surfaces of
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the superlattice. This behavior is shown to be general to any wave in a periodic

perturbation.

The technological challenges to produce short pulses of light are discussed in

Chapter IV. The first part introduces the basic laser concepts required for the

generation of femtosecond laser pulses, and a quick overview of chirped-pulse

amplification followed by the nonlinear process of optical parametric amplification.

At the end of this section I review briefly the equipment available in our laboratory

for low temperature experiments. The time-resolved X-ray diffraction studies in

this thesis require a high-brightness source of X-ray radiation only accessible in

synchrotron laboratories. In the second part of Chapter IV, I describe the generation

of hard X rays from relativistic charged particles and I show typical parameters for

the Advanced Photon Source (APS) where the X-ray experiments were performed.

The chapter ends with a description of the particular beamline of the APS dedicated

to time-resolved studies.

In Chapter V, I present the results of the optical pump-probe experiments on

folded acoustic phonons in GaAs/AlAs superlattices. I begin with a discussion of a

two-superlattice scheme to study propagating folded phonons. Vibrations of up to

1 THz can be detected after traversing 1 µm of GaAs at 80 K. The experimental

observations are compared with the predicted spectrum from the continuum model

developed in Chapter III, which helps to identify the features due to the detection

and the generation processes. Also in this chapter, I show evidence of the observation

of surface avoiding waves that are confined to the superlattice. This evidence is

supported by a numerical solution of the wave equation.

Chapter VI begins with an introduction to the X-ray concepts of Bragg’s law

and the dynamical theory of diffraction by perfect and strained crystals. Next, I

show a proposed scheme to measure the wavevector content of the coherent acoustic

phonons that reach the substrate using X-ray diffraction, and the challenges posed
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by the short lifetime of these high-frequency modes. Finally, I present experimental

results that indicate that folded acoustic phonons emitted from a superlattice into

a bulk substrate can be observed using time resolved X-ray diffraction. Conclusions

and comments are given in Chapter VII.
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CHAPTER II

CRYSTAL VIBRATIONS

In this Chapter I present an introduction to the basic solid state physics concepts

treated in this thesis. I begin with a simple one-dimensional model of the vibrations

of a solid. Next I show the folding of the acoustic dispersion relation due to an

artificial periodicity. Finally I mention briefly the quantum-mechanical description

of the crystal vibrations.

2.1 Normal modes and lattice vibrations

One of the simplest models of a solid consists of a one-dimensional linear chain of

atoms where the interaction is only between nearest neighbors, and the potential

energy is given by the harmonic potential

V (x, x′) = −K
2

(x− x′)2. (2.1)

This interaction is the first non-zero term in the power series expansion of the total

interaction energy between two atoms. Higher order, anharmonic terms are often

negligible, although they may become significant when the amplitude of the motion

is large. The constant K is the curvature of the potential energy at the equilibrium

position.

We consider the case where each unit cell contains two kinds of atoms, with

masses M1 and M2, attached to springs of constant K, as shown in Fig. 2.1.

The period of the crystal is d and we assume for simplicity that the masses are
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d

M2

K
M1

.  .  .

u1 u2

n

Figure 2.1: A one dimensional model of a crystal.

constrained to move in the direction of the chain (longitudinal vibrations). The

equations of motion for the displacement of the two atoms in the nth unit cell are

M1ü
n
1 = −K[(un2 − un1 )− (un1 − un−1

2 )] (2.2)

M2ü
n
2 = −K[(un+1

1 − un2 )− (un2 − un1 )] (2.3)

where unj is the displacement from equilibrium of atom j = 1, 2 in the n-th unit cell.

Rearranging the terms, this set of equations reduces to

M1ü
n
1 = −K[2un1 − un2 − un−1

2 ] (2.4)

M2ü
n
2 = −K[2un2 − un+1

1 − un1 ].

To find the eigenmodes we assume a Bloch solution of the form u1,2 =

Q1,2(q) exp[i(Ωt − qd)], where q and Ω are the wavevector and frequency of

the corresponding eigenmode. Here, Q1,2(q) is, respectively, the displacement of

atom 1 and 2 within the unit cell for the eigenmode of wavevector q. Expressing Eq.

(2.4) in matrix form we obtain

−Ω2

 Q1

Q2

 =

 2K
M1

− K
M1

(1 + eiqd)

− K
M2

(1 + e−iqd) 2K
M2


 Q1

Q2

 . (2.5)

The non-trivial solution of Eq. (2.5) is obtained by requiring the determinant of

the eigenvalue matrix to vanish,

M1M2Ω4 − 2K(M1 +M2)Ω2 + 4K2 sin(qd/2) = 0. (2.6)
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The solutions are:

Ω2
±(q) = K

M1 +M2

M1M2

±K

[(
M1 +M2

M1M2

)2

− 4

M1M2

sin2

(
qd

2

)]1/2

. (2.7)

This is the dispersion relation of the waves in the one-dimensional crystal. The two

solutions represent two different branches of the vibrational modes of the chain. A

plot of Eq. (2.7) is shown in Fig. 2.2 (a). The upper curve is the Ω+ solution and

is called the optical branch because in an ionic material, modes close to q = 0 can

couple to infrared radiation through the induced oscillating electric dipole [11]. The

lower curve is the Ω− solution and, since the dispersion relation is linear around

q ≈ 0, it is called the acoustic branch. Assuming M2 > M1, the frequencies at

q = ±π/d are given by Ω1 = (2K/M1)1/2 and Ω2 = (2K/M2)1/2. Modes with

frequencies between Ω1 and Ω2 have a purely imaginary wavevector and therefore do

not propagate.

−3π −2π −π 0 π 2π
q d

Ω

3π

(a)

−π -π/2 0 π/2 π
q d

Ω1

Ω2

(b)

Figure 2.2: Dispersion relation for the linear chain. (a) extended-zone scheme; (b) reduced-zone
scheme in which all wavevectors are translated to −π/d < q < π/d, i.e. the first Brillouin zone of
the one-dimensional crystal.

A consequence of the translational symmetry of the crystal is that the function

Ω(q) is periodic in q with period 2π/d. This means that all the information of the

vibrational modes of the lattice is contained in −π/d < q < π/d, as illustrated in

Fig. 2.2 (b). This is the one-dimensional, first Brillouin zone of the linear chain; any
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wavevector outside is equivalent to a wavevector inside by a translation of 2π/d. Fig.

2.2 (a) is an extended-scheme representation of the dispersion relation, while Fig.

2.2 (b) is called the reduced-zone scheme. We note that in a finite crystal with N

unit cells, the allowed wavevectors are quantized by requiring additional boundary

conditions at the ends of the finite chain. There are a total of N normal modes in

each branch in the first Brillouin zone.

 

Ω

0 π/2 π 3π/2 2π
q d

ΔΩ

Figure 2.3: The dispersion relation in the extended-zone scheme showing the opening of the gap at
the Brillouin zone edge, q = π/d. The dotted line represents the situation when M1 = M2.

Consider the limit when M1 = M2. In this case, since the crystal contains only

one type of atom, the size of the unit cell is equal to the nearest-neighbor distance,

a, which is half of the size of the unit cell for M1 6= M2. Similarly, the first Brillouin

zone is twice the size of the Brillouin zone for M1 6= M2, since a = d/2. In this case,

the dispersion relation reduces to a single acoustic branch given by

Ω(q) = 2

√
K

M

∣∣∣sin(qa
2

)∣∣∣ , (2.8)

where M1 = M2 = M is the mass of the atom.

Figure 2.3 illustrates what happens with the dispersion relation (dotted line)

when M1 6= M2: (i) the size of the unit cell doubles to d = 2a, and the edge of the
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first Brillouin zone moves from 2π/d to π/d (indicated by the vertical dashed line);

(ii) a gap opens at q = π/d that splits the acoustic branch from the optical branch;

(iii) the optical branch can be folded back inside the range q < π/d as we showed in

Fig. 2.2 (b).

2.2 Continuum approximation

When considering excitations of wavelengths much longer than the interatomic

spacing, i.e., in the limit q � π/a, the crystal can be regarded as a continuous

medium with known density, ρ. In such a medium, the long wavelength limit of the

atomic displacement at position r is described by a continuous vector field u(r). We

define the strain tensor in terms of u as

ηij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.9)

where ui is the i-th Cartesian component of the displacement field. If the interatomic

forces are harmonic, the stress (force) is linear with the strain, ηij, i.e.,

σij =
∑
k l

Cijkl ηkl, (2.10)

which is the continuum equivalent of Hooke’s law that yields the linear forces in Eq.

(2.2). The coefficients Cijkl define a 4th rank tensor called the stiffness tensor, which

plays the role of the spring constant in the discussion above. In the most general

case the tensor Cijkl has only 21 independent non-zero components. In a highly

symmetric case, such as a cubic crystal, the number of non-zero elements reduces to

only three independent parameters.

The equation that governs the evolution of the atomic displacement given the

stress σkl is [24],

ρ
∂2ui
∂t2

=
∂σij
∂xj

+
∂σik
∂xk

+
∂σil
∂xl

. (2.11)
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Using Eq. (2.10), and assuming a crystal with cubic symmetry, we obtain

ρ
∂2ui
∂t2

= C11
∂2ui
∂x2

i

+ C44

(
∂2ui
∂x2

j

+
∂2ui
∂x2

k

)
+ (C12 + C44)

(
∂2uj
∂xi∂xj

+
∂2uk
∂xi∂xk

)
, (2.12)

where we have used the contracted notation for the three non-zero elements of the

stiffness tensor C11 = Cxxxx, C12 = Cxxyy and C44 = Cyzyz [25]. Next we will consider

the solution of Eq. (2.12) in a periodic structure.

2.3 Folded acoustic phonons

Here we show how the acoustic phonon branch is modified by artificially introducing

an additional (longer) periodicity in the system. This leads to the term “folded

acoustic phonons” because the acoustic branch is folded into a smaller first Brillouin

zone determined by the artificial period.

.  .  .

ρ1 ρ2

C2C1

d1

1 2

d2

Figure 2.4: A superlattice made of a periodic stack of two materials with alternating acoustic
properties.

Consider an infinite, periodic array of two materials with alternating density, ρ1

and ρ2, stacked along the ẑ direction, as shown in Fig. 2.4. The relevant component

of the stiffness tensor is given by C = C11 which we labeled C1 and C2 for layers

1 and 2 respectively. We are interested in longitudinal waves propagating in the

ẑ direction, perpendicular to the interfaces. In this geometry, the right hand side

of Eq. (2.12) contains only the first term. Moreover, since the material properties

are constant in each layer, the motion is described by the piece-wise constant wave
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equation,

ρj
∂2uj
∂t2

= Cj
∂2uj
∂z2

, (2.13)

where the index j = 1, 2 refers to the quantities in layer 1 or 2 respectively. Equation

(2.13) is a homogeneous wave equation with constant coefficients. This means

that, for a given angular frequency ω, the waves in each layer are combinations

of plane waves with wavevectors ±q1,2 = ±ω/v1,2, where v1,2 =
√
C1,2/ρ1,2 is the

corresponding speed of sound. The solutions are matched at the boundaries by

requiring the continuity of the stress and the displacement [11],

C1
∂u1

∂z

∣∣∣∣
zi

= C2
∂u2

∂z

∣∣∣∣
zi

, (2.14)

and

u1(zi) = u2(zi). (2.15)

Using these two equations together with Bloch’s theorem to relates the waves in

adjacent unit cells, we find the following dispersion relation

cos(qD) = cos

(
Ωd1

v1

)
cos

(
Ωd2

v2

)
− 1

2

(
ρ2v2

ρ1v1

+
ρ1v1

ρ2v2

)
sin

(
Ωd1

v1

)
sin

(
Ωd2

v2

)
(2.16)

which can be rearranged as

cos(qD) = cos

[
Ω

(
d1

v1

+
d2

v2

)]
− ε2

2
sin

(
Ωd1

v1

)
sin

(
Ωd2

v2

)
. (2.17)

with

ε =
|ρ1v1 − ρ2v2|
(ρ1v1ρ2v2)1/2

. (2.18)

This expression has the same form as the dispersion relation for electrons in a

periodic potential in the Kronig-Penney model [25]. A plot of Eq. (2.17) is shown

in Fig. 2.5 for a typical superlattice. The red curve is the dispersion relation of

the acoustic wave in an effective bulk material given by the average of the two
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Figure 2.5: Dispersion relation for the acoustic waves showing the folding of the acoustic branches
in a superlattice.

components of the superlattice unit cell. This modulation of the acoustic properties

gives rise to: (i) a folding of the acoustic branch into the first Brillouin zone of the

superlattice, between −π/D and π/D and, (ii) the creation of frequency gaps at the

center and the edge of the Brillouin zone, as indicated by the blue curve. In the same

way as in the Kronig-Penney model for electrons, two degenerate modes exist in the

unperturbed dispersion relation at wavevectors multiples of ±π/D. The coupling

between these modes due to the acoustic modulation removes the degeneracy by

opening frequency gaps. This originates from the second term in Eq. (2.17) that

contains the modulation parameter ε. Exactly at the zone-center or the zone-edge,

the two eigenmodes are standing waves and can be labeled by their symmetry, one

being odd (A1) and the other one being even (B2) with respect to inversion about the

middle of each layer. From these two modes, the A1 mode is Raman active (lowest

frequency mode in Fig. 2.5), while the one with even symmetry is forbidden [11].
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2.4 Quantized vibrational modes

At the microscopic level, the motion of the atoms in the linear chain considered in

Section 2.1 is described by quantum mechanics. The quantization of the vibrational

modes of the solid is analogous to the quantization of the electromagnetic field that

gives rise to the concept of a photon [26]. In the vibrational case, the motion of the

interacting atoms is decoupled by transforming to the normal mode basis, as we did

in Section 2.1. From their definition, the normal modes of vibration are independent

harmonic oscillators with a well defined frequency and wavevector. When quantum

mechanics is taken into account, the energy of each of these harmonic oscillators is

quantized in units of h̄Ω, where h̄ is Plank’s constant. The quantum of energy in a

normal mode of vibrations is called a phonon. In a crystal with two atoms per unit

cell, one speaks of optical phonons and acoustic phonons, corresponding to phonon

modes in the optical or the acoustic branch respectively. Also, the phonon can have

a combination of transverse (T) and longitudinal (L) polarization with respect to

the propagation direction. In a superlattice, the folding of the acoustic branch leads

to the term “folded acoustic phonons” for acoustic modes in the higher branches.

These are the analog of the optical modes for the artificial structure.

In the following Chapters the term “coherent phonon” is used to refer to the

coherent acoustic vibrations generated by the ultrafast laser pulse. In a single

harmonic oscillator, a coherent mode, |α〉, is a superposition of quantum states with

different occupation number, such that the evolution of the coordinate expectation

value, 〈α|x̂|α〉, corresponds to the trajectory of the classical harmonic oscillator, x(t).

A coherent phonon in the acoustic branch is the quantum-mechanical description of

the macroscopic strain discussed above.
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CHAPTER III

ULTRAFAST GENERATION OF FOLDED

PHONONS IN SUPERLATTICES

In this chapter I introduce a phenomenological model used in the interpretation

of the experimental results. First I present a method to solve the wave equation for

the acoustic strain based on the expansion in the eigenmode basis. Then I derive a

semi-analytical expression for the spectrum of the reflectivity. Finally, I introduce

the surface-avoiding eigenmodes.

3.1 Continuum elastic model

The continuum model of the generation of acoustic waves in layered media is based

on that of Thomsen et al. [12]. We use a different approach to solve the wave

equation in which the solution is expanded in eigenfunctions that correspond to

the acoustic eigenmodes [27]. The advantage of this approach is that it gives a

description in terms of the frequency components that is more natural for the

interpretation of spectroscopic data.

In a layered structure with density ρ(z) and elastic stiffness C(z), the equation

of motion for the amplitude of the longitudinal acoustic displacement, u(z, t),

propagating in the z direction is [12]

ρ(z)
∂2u(z, t)

∂t2
=
∂σ(z, t)

∂z
, (3.1)

where the only non-zero component of the stress tensor is σzz = σ = C(z)η(z, t).

15



Here, η(z, t) = ηzz(z, t) = ∂u(z, t)/∂z is the relevant component of the strain

tensor. Following the treatment in [13], we assume that the absorption of a

laser pulse induces a sudden temperature rise, ∆T , along with a thermal stress

σT = −3Bβ∆T (z, t) [12], which drives the acoustic strain. This contribution gives

the driven wave equation,

ρ(z)
∂2u(z, t)

∂t2
=

∂

∂z

(
C(z)

∂u(z, t)

∂z

)
+
∂σT (z, t)

∂z
. (3.2)

The temperature rise can be expressed in terms of the electric field of the laser

pulse [13]

∆T =
α(z)n(z)J

CP

∣∣∣∣E(z, t)

E0

∣∣∣∣2 (3.3)

where CP is the specific heat, α(z) and n(z) are the position-dependent absorption

coefficient and index of refraction, respectively, and J is the total pulse energy. Here,

E(z, t) is the electric field at time t and position z from the surface and E0 is the

electric field at the surface. We define a function K(z) such that the stress induced

by the laser can be written as

σT = K(z)

∣∣∣∣E(z, t)

E0

∣∣∣∣2 . (3.4)

This induced stress is proportional to the intensity of the laser pulse modulated by

the function K(z) that takes into account the absorption in the superlattice.

3.1.1 Eigenmodes

In an infinite superlattice, the solutions of Eq. (3.2) are given by Bloch waves of

the form uqe
iqz where q is the wavevector in the reduced Brillouin zone scheme.

However, in a finite structure the Bloch waves are not solutions of the equation

since the system is not translation-invariant. In this case, Eq (3.2) can be solved by
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expanding the solution in terms of eigenfunctions. The general solution is

u(z, t) =
∑
n

rn(t)Un(z) (3.5)

where n is the mode label and rn(t) are the coefficients of the expansion. The

functions Un(z) represent the spatial profile of the eigenmodes and are the solution

of the time independent eigenvalue equation

−Ω2
nρ(z)Un(z) =

∂

∂z

(
C(z)

∂Un(z)

∂z

)
. (3.6)

where Ωn is the frequency of the mode. Assuming that all the quantities are constant

within each layer and that they only differ between adjacent layers, this equation

can be solved using a transfer matrix method to match the boundary conditions

(continuity of u and σ) at each interface [28]. The equation for a single layer can be

written as

−Ω2
nρjUn(z) = Cj

d2Un(z)

dz2
(3.7)

where ρj and Cj are the density and the elastic stiffness of the material in layer j.

The solution of (3.7) is given by the linear combination Aj exp(iqjz) +Bj exp(−iqjz)

with the wavevector defined by qnj = Ωn/vj, where vj = (Cj/ρj)
1/2 is the speed of

sound in layer j. The variable z is a local coordinate that runs within layer j, i.

e. 0 < z < aj, where aj is the thickness of layer j. Figure 3.1 shows a diagram

describing all these quantities.

The coefficients Aj and Bj can be related to the ones corresponding to adjacent

layers by a transfer matrix such that Aj+1

Bj+1

 = M

 Aj

Bj

 , (3.8)

17



. . . . . . 

z0 dj

Aj

Bj

dj+1

Aj+1

Bj+1
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Figure 3.1: Diagram of the one dimensional superlattice. The quantities Ajand Bj are the
coefficients of the plane waves in each layer, dj and aj are the coordinate and the thickness of layer
j, respectively.

with the matrix M given by

M =

 (1 + Z−1)eiqjaj (1− Z−1)e−iqjaj

(1− Z−1)eiqjaj (1 + Z−1)e−iqjaj

 , (3.9)

where Z = vj+1ρj+1/vjρj is the acoustic impedance of the j + 1→ j interface.

We assume that the boundary can be represented by a free surface, that is

σ = Cηn = 0 at z = 0 and z = L. The first boundary gives for the coefficients of the

first layer, A1 = B1. With this additional condition, the displacement profile of an

eigenmode in each layer can be written in the alternative form

U j
n(z) = 2Ajn cos(qjnz + φjn). (3.10)

Here the amplitudes Ajn and phases φjn are determined from the transfer matrix

equation (3.8). After some algebra, the matrix equation relating the amplitudes

of the counter-propagating plane waves, Eq (3.8), can be replaced by an algebraic
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equation relating the amplitudes and phases in Eq. (3.10),

Aj+1 = Aj
[
cos2(qjaj + φj) + Z sin2(qjaj + φj)

]1/2
φj+1 = arctan(Z tan(qjaj + φj)). (3.11)
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Figure 3.2: Some representative eigenmodes of the finite superlattice. (a) first three modes showing
du/dz = 0 at the boundaries. (b) a mode near zone center which exhibits a richer behavior, and
(c) an expanded view of the same mode (dashed curve) showing that waves near zone center have
nearly the same periodicity as the superlattice (represented by the solid square wave).

The discrete eigenfrequencies are obtained from the additional condition

∂Un(L, t)/∂z = 0. This second boundary condition yields a recursive relation

involving all phases φj for the different layers. In terms of the phase of the last layer

(j = N), using Eq. (3.10) for Un(z),

sin

(
Ωn

vN
aN + φN(Ωn)

)
= 0. (3.12)
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Note that φN depends on the phases of all the previous layers through Eq. (3.11).

This condition can be solved numerically, and from Eq. (3.10) and Eq. (3.11), the

functions Un(z) can be determined.

A few representative eigenmodes are shown in Fig. 3.2 for a finite structure

with 50 periods of 1.49 nm-thick GaAs, 4.22 nm-thick AlAs layers. In (a), the first

three eigenmodes are shown. For low frequency waves, the superlattice behaves as

an effective bulk medium with the average speed of sound v, obtained from the

relation D/v = dGaAs/vGaAs + dAlAs/vAlAs [11], where D = dGaAs + dAlAs is the period

of the superlattice. Near the Brillouin zone center and zone edge, the effect of the

periodicity modifies drastically the shape of the mode profile. Figure 3.2 (b) shows

an eigenmode near the first zone center acoustic gap. The mode has nearly the

same periodicity as the superlattice, as shown in Fig. 3.2 (c). As we will see later,

modes with wavelengths comparable to the period of the superlattice have unusual

properties in that they avoid the boundaries of the periodic structure.

In the following section, we calculate how the different modes are excited by a

short laser pulse.

3.1.2 Generation mechanism

We extend the treatment in Ref. [29] for the generation mechanism. Here we obtain

an analytical expression in the limit of short pulses. The time dependent amplitudes

satisfy the driven harmonic oscillator equation [29]

d2rn(t)

dt2
+ Ω2

nrn(t) = Gn(t), (3.13)

where

Gn(t) =

∫
∂σT (z, t)

∂z
Un(z)dz = −

∫
∂Un(z)

∂z
σT (z, t)dz, (3.14)

after integration by parts. Written in this form, the function Gn(t), which drives the

equation for the time dependent amplitude rn(t) (Eq. (3.13)), is given by an overlap
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integral between the laser-generated stress σT (z, t) and the time-independent strain

associated with the eigenmode n, i. e. ηn(z) = ∂Un(z)/∂z. The excitation of mode

n depends on the temporal behavior of the source term σT (z, t), as well as its spatial

profile.

Consider a gaussian laser pulse E(z, t) ∼ exp(−t2/2τ 2)E(z) where E(z) is

the spatial profile of the electric field. Under this assumption, the source term

σT (or equivalently ∆T ) can be separated into its spatial and temporal part

∆T (z, t) = g(z)h(t). Using the definition of the function K(z) we can write

g(z) =
−3Bβ

C
α(z)n(z)J

∣∣∣∣E(z)

E0

∣∣∣∣2 = K(z)

∣∣∣∣E(z)

E0

∣∣∣∣2 (3.15)

for the spatial dependence and

h(t) =
1

2

[
1 + erf

(
t

τ

)]
. (3.16)

for the temporal part. Since the laser pulse is much shorter than the phonon period,

we take τ → 0 and the function h(t) simplifies to a Heaviside step function. In this

limit, the excitation is turned on suddenly at t = 0 and remains on indefinitely

because we assumed that there is no thermal diffusion. We therefore assume that

Gn is time independent.

We now discuss the dependence of Gn on the shape of the electric field of the

laser pulse. Using the definition of g(z), Eq. (3.14) becomes

Gn =

∫
g(z)

∂Un(z)

∂z
dz

or

Gn =

∫
K(z)

∣∣∣∣E(z)

E0

∣∣∣∣2 ∂Un(z)

∂z
dz. (3.17)

Equation (3.17) is an overlap integral between the strain associated with mode n

and the intensity of the laser pulse |E(z)|2, weighted by the function K(z). Recall

that the function K(z) is a square wave that accounts for the different absorption
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Figure 3.3: The function g(z) that enters Eq. (3.17). The shape of g(z) determines which modes of
the superlattice are excited by the laser pulse.

of the laser in the layers of the superlattice. It is a periodic function of z with the

periodicity of the superlattice. Consequently, the modes that contribute the most to

this integral are those with the same periodicity as the superlattice. In the frequency

domain, the solution of Eq. (3.13) is given by

r̃n(ω) =
Gn

Ω2
n − ω2

' Gn

2Ωn

δ(ω − Ωn) (3.18)

which can be approximated by

r̃n(ω) ' r̃n(Ωn) =
Gn

2Ωn

(3.19)

At this point it is necessary to assume a particular shape for E(z). Consider a

laser pulse incident from z = −∞ with the electric field given by E(z) = E0 exp(ikz).

If we take absorption into account by allowing an imaginary part to the wavevector

k, the intensity of the laser decays into the superlattice and the integral in Eq. (3.17)

becomes

Gn =

∫
e−αzK(z)

∂Un(z)

∂z
dz. (3.20)

where α/2 = Im{k} is the absorption coefficient of the light in the superlattice at

the given laser wavelength. The integrand of Eq. (3.20) is shown in Fig. 3.3. It
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consists of a square wave with the periodicity of the structure, which reflects the fact

that the laser pulse is absorbed differently in different layers, modulated by a slowly

decaying exponential due to the depletion of the laser. The absorption length of the

laser in the superlattice, ξ = α−1, determines the spatial extension of the generated

strain and as we will see in the optical results, the spatial extension of the detection

region. From these considerations, we can adjust the exponential decay to obtain

the best estimate for α.

Figure 3.4 shows Gn = Ωnrn(Ωn), plotted against the mode frequency Ωn/2π,

calculated for a superlattice with 200 periods (solid line, top panel). The dashed line

is a plot of the function fn which corresponds to the sensitivity in the detection as

will be discussed below. We also show the dispersion relation for an infinite structure

(bottom panel) calculated using the model for infinite structures introduced in the

previous chapter [10]. The laser absorption length was fixed at α−1 = 300 nm. A

few points are worth noticing: (i), the minigaps are clearly visible at ∼ 0.5 THz for

the first zone-edge and at ∼ 1 THz for the first zone-center; (ii) the intensity of Gn

is somewhat constant outside of the minigaps, meaning that rn(Ωn) has an overall

decay of the form 1/Ωn; and (iii) the zone-center acoustic gap has a strong peak on

the higher side of the gap which corresponds to the Raman active mode at the zone

center.

The layer thicknesses of this particular structure are very small. It is unlikely that

the different constituents behave as the corresponding bulk materials. In particular,

the amount of absorption in each layer is unknown. For this reason, in what follows,

we adjust KGaAs/KAlAs to get the best match with the experimental spectrum.

3.1.3 Detection mechanism

As the acoustic strain propagates inside the sample, it modifies the dielectric function

due to the acousto-optic effect. The perturbation produces a time dependent index
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Figure 3.4: (top panel) The dashed curve is a plot of Gn as a function of the mode frequency
Ωn/2π for an infinite superlattice for a laser absorption length of 300 nm and a ratio
KGaAs/KAlAs = 1.2. The dashed line is the coefficient fn defined in the detection. (bottom panel)
dispersion relation for an infinite structure with the same layer thicknesses.

of refraction that affects the complex reflection coefficient, r. The effect of the

acoustic phonon in the reflection coefficient ∆r can be probed by measuring the

differential reflectivity of the sample ∆R/R = 2Re{∆r/r}. We calculate next the

change in the reflectivity due to the presence of the strain wave. We will derive an

analytical expression for the reflectivity spectrum in terms of the quantities defined

above such as Gn and the eigenfrequencies, Ωn.

Consider a probe pulse with spatial profile E(z) ∼ exp(ikpz) that is sufficiently

short to be regarded as a delta function of time. The strain modulates the dielectric

function ∆ε(z, t) causing a change in the reflectivity [12],

∆R ∝
∫ ∞

0

η(z, t)P (z) exp(2ikpz)dz. (3.21)

where P (z) is the photoelastic coefficient. The sensitivity function f(z) =
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Figure 3.5: (solid line) The sensitivity function for a typical superlattice at a wavelength of
λ = 530 nm with an absorption coefficient of 300 nm. (dashed line) eigenmode with the same
wavelength as the sensitivity function.

P (z) exp(2ikz) determines the coupling between the strain η(z, t) and the probe

pulse. Fig. 3.5 shows a plot of f(z) for the same structure as in Fig 3.4 and a probe

with λ = 530 nm assuming an absorption length of 300 nm. The function f(z)

is the product of a periodic function, P (z), modulated by a complex exponential

e2ikpz that represents the probe reflecting from a distance z from the surface. For a

given laser wavelength, f(z) phase-matches with certain eigenmodes, giving a strong

contribution to ∆R/R. This situation is illustrated by the dashed curve in Fig. 3.5.

A final note about Eq. (3.21) is worth mentioning. Expressing the change in the

reflection coefficient, r = ρeiφ, as ∆r = (ρ + δρ)ei(φ+δφ), where δρ and δφ are the

(real-valued) change in the modulus and the phase due to the phonon, the expression

for ∆r/r becomes

∆r

r
=
δρ

ρ
+ iδφ, (3.22)

and, since ∆R/R = 2δρ/ρ, Eq. (3.21) only refers to the change in the modulus

of the reflection coefficient. In order to measure the imaginary part of ∆r/r, an

interferometric scheme that is sensitive to the change in the phase δφ is needed, such

as in Ref. [30].
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Using expression (3.5) for the expansion of u(z, t) (or, equivalently, η(z, t)) in the

eigenmodes basis, the change in reflectivity from Eq. (3.21) can be recast into the

simpler form

∆R(t) =
∑
n

fnrn(t) (3.23)

where rn(t) was defined above and

fn =

∫ ∞
0

ηn(z)f(z)dz, (3.24)

where f(z) is the sensitivity function. In the frequency domain this expression takes

the simple form [29]

∆R̃(ω) ' ∆R̃(Ωn) =
fnGn

2Ωn

(3.25)

In order to gain some insight, we consider the simplified situation of a semi-

infinite superlattice. Equations (3.20) and (3.24) have the same overlap form.

Both integrands contain a periodic (square wave) function modulated by a slowly

varying envelope. In the first case, the envelope is a decaying exponential due

to the absorption of the laser pulse while, for the sensitivity function f(z), the

slowly varying envelope is an exponentially decaying sinusoidal. In a semi-infinite

superlattice the eigenmode Un(z) can be expressed in terms of Bloch-waves, by a

suitable combination of uqe
iqz and u−qe

−iqz that satisfies the boundary condition,

where uq(z) is a periodic function of z. In addition, we can decompose the square

wave P (z) in Eq. (3.21) using its Fourier series P (z) =
∑

m Sme
iKmz where

Km = 2πm/D are the reciprocal lattice vectors of the one-dimensional structure

with period D. In terms of these Bloch waves, the integral (3.24) is

fq =

∫ +∞

0

+∞∑
m=−∞

Sme
iKmze2ikpz

[
A+u+qe

iqz + A−u−qe
−iqz] (3.26)

where the eigenmode label n in Eq. (3.24) has been replaced by the (continuous)

wavevector in the reduced-zone scheme, q. The factor e2ikpz in this expression
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originates from the electric field of the probe in Eq. (3.24). Alternatively, by making

kp = iα/2 we obtain the corresponding result for (3.20). After some algebra, we

obtain

fq =
+∞∑

m=−∞

Sm

∫ +∞

0

[
ei(2k+Km+q)zA+u+q + ei(2k+Km−q)zA−u−q

]
. (3.27)

Equation (3.27) has strong components at q = ±(2k + Km) which reflect the

wavevector conservation for the semi-infinite structure. This conservation rule has

been observed nearly twenty years ago in Raman scattering experiments [9]. The

strongest contribution to Eq. (3.27) comes from modes near the zone-center with

reduced wavevector in the first Brillouin zone given by q = 2kp.

In the finite case, instead of Bloch-like solutions we need to use the eigenmodes

obtained in the previous section. We rewrite Eq. (3.24) as a sum over the layer

index j. Using Eq. (3.10), which gives the displacement for mode n in each layer, in

terms of the amplitudes Aj and phases φj,

f(Ωn) =
∑
j

∫ dj+1

dj

Pje
2ikzAjq

(j)
n sin[q(j)

n (z − dj) + φ(j)
n ]dz. (3.28)

where dj is the coordinate of the (j − 1) → j interface. After a simple integration

the sum becomes

fn =
∑
j

Pjq
(j)
n Aj
2

[ei(φj−q
(j)
n )dj−1

2k + qjn

(
ei(2k+q

(j)
n )dj − ei(2k+q

(j)
n )dj−1

)
(3.29)

−e
−i(φj−q

(j)
n )dj−1

2k − qjn

(
ei(2k−q

(j)
n )dj − ei(2k−q

(j)
n )dj−1

) ]
. (3.30)

Notice the denominators with 2k ± qjn. This is again related to the conservation of

the wavevector that gives rise to the Raman doublet at q = ±(2k + Km). As we

anticipated in Fig. 3.5, the phase-matching between f(z) and the eigenmodes Un(z)

gives rise to the strongest contribution to ∆R. In fact, as we can see from Fig. 3.4,

the coefficients fn exhibit a series of peaks that correspond to those modes of the
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finite structure that satisfy q = ±2kp.
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3.2 Surface-Avoiding Modes

In this section we introduce the surface-avoiding eigenmodes. First we show that the

finite size calculations predict modes near the zone-center and the zone-edge that

have small amplitudes near the boundaries of the superlattice. Finally we solve the

eigenmode equation near the zone-center for a semi-infinite superlattice where the

surface-avoidance is exposed more clearly.

GaAs
(substrate)

Figure 3.6: Calculated displacement for the LA eigenmodes in the superlattice. SAM is the
surface-avoiding mode nearest to q = 0, FP are the folded phonons at q = qBS which apart from a
weak modulation in the amplitude are plane waves, and GM is a gap mode that is reflected away
from the superlattice.

The displacement pattern for the eigenmodes u(z) for a given finite structure

is obtained by the method described in the previous section. A few representative

eigenvectors for the acoustic modes of a structure composed of 75 periods of

dGaAs = 59 Å and dAlAs = 23.5 Å are shown in Fig. 3.6. Three main features stand

out in this figure. First, two modes at wavevector qBS = 2kp, which correspond to the
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usual folded phonons (FP) observed in Raman measurements in the back-scattering

geometry [31]. The modes at qBS are sufficiently far away from the gaps that the

modulation of the acoustic properties in the superlattice can be neglected. In other

words, the dispersion relation is approximately linear at this wavevector. For this

reason, these modes are well approximated by plane waves in an effective bulk

material [11]. Second, a gap mode (GM) which is a substrate mode that decays

into the superlattice. This mode is only observable when the probe is incident

from the substrate side or when the superlattice is short enough to allow the probe

incident from the left to reach the substrate. In our case, the overlap integral (Eq

(3.24)) of this eigenmode with the probe is negligible and therefore not observable.

Finally, a mode near q = 0 whose amplitude, as expected, diminishes towards the

superlattice-vacuum and superlattice-substrate interfaces.

It is instructive to solve the eigenmodes for a semi-infinite superlattice. We

start by solving Eq. (3.2) on an infinite periodic structure. The modulation of the

acoustic properties originates mainly in the modulation of the density ρ(z). Since

the elastic stiffness components CGaAs and CAlAs of the constituents are very similar,

we can use an average coefficient C(z) = C̃ = (dGaAsCGaAs + dAlAsCAlAs)/D, where D

is the period of the structure. In a periodic structure, Bloch theorem dictates that

the solutions can be written in the form u = Uq,s(z)ei(qz−Ωt). In this case Eq. (3.2)

becomes [32]

∂2Uq,s
∂z2

+ 2iq
U∂q,s
∂z

+

[
ρ(z)Ω2

s

C̃11

− q2

]
Uq,s = 0 (3.31)

where the functions Uq,s are periodic. Near the zone center, where q << π/D, we can

approximate Uq,s ≈ U
(0)
s + qDU

(1)
s and Ωs(q) ≈ Ωs(0). Assuming the normalization∫

ρU∗0,sU0,rdz = δs,r, we can get the functions U (1) using perturbation theory,

U (0)
s = U0,s, (3.32)
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and

U (1)
s =

2iC̃11

D

∑
r

∫
U∗0,r(∂U0,s/∂z)dz

Ω2
0,s − Ω2

0,r

U0,r. (3.33)

Since the presence of a surface breaks the translational symmetry, we expect this

solution to be modified by the boundary condition. In what follows we assume

that the solution satisfies a general condition u + β∂u/∂z = 0 at the surface. It

is instructive to discuss first the physical situations represented by this expression.

Consider a single interface between two materials at z = 0. We write the solution

of the scattering problem as u ∼ eikz + re−ikz, which holds in the half-plane z > 0.

Assuming the boundary condition u+ β∂u/∂z = 0 at z = 0, we find

β =
i

q

1 + r

1− r
= i

[
1 +R + 2Re(r)

q(1−R)

]
where R = |r|2 is the acoustic reflectivity of the interface and q is the phonon

wavevector inside the material. Furthermore, we can relate β with the wavevector

of the acoustic wave outside, β = i/qout. This expression shows clearly that the

boundary condition covers all the situations from free (β →∞) to clamped (β = 0)

displacement when Im(β) = 0, which correspond to non-propagating waves in

the half plane z < 0. In addition, also the scattering problem corresponding to

Re(β) = 0 when the wave is incident from the right side. Next, we find solutions for

the surface-avoiding waves of a semi-infinite superlattice.

The air-superlattice boundary has the effect of mixing the two Bloch waves at

+q and −q, with solutions given by u = A+U+qe
iqz +A−U−qe

−iqz. To lowest order in

ql, the solution is

u(z) ≈ −iU (z)
[
U (0)(0) + βU̇ (0)(0)

]
sin qz+ (3.34)

qD

 U (0)(z)
[
i β
D
U (0)(0) + U (1)(0) + βU̇ (1)(0)

]
−U (1)(z)

[
U (0)(0) + βU̇ (0)(0)

]
 cos qz.

where U (0) and U (1) are the perturbative solutions found above. This expression
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describes a surface-avoiding mode. It involves the product of rapidly (U (0), U (1)) and

slowly (sin qz, cos qz) varying functions giving rise to beats which originate in the

interference between waves with wavevectors +q and −q. Comparing the amplitudes

at the surface z = 0 and z = π/2q we see that u(0)/u(π/2q) ∝ qD � 1 which

clearly states the surface-avoiding character of the solution. As we approach q = 0

the avoidance of the surface increases. The solution at exactly q = 0 shows the

surface avoidance more evidently. As discussed earlier, one of the two solutions for

q = 0 is u = U (0), now the linearly independent solution of Eq. (3.31) is given by

u = U (1) + iz/DU (0) which is physically unacceptable in a semi-infinite structure.

One might be tempted to ascribe the surface avoidance to the fact that the modes

at q = 0 are standing waves. However, in a finite structure, all the eigenmodes are

standing waves, but only those with frequencies near the gap avoid the surface.
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CHAPTER IV

EXPERIMENTAL TECHNIQUES

Time resolved spectroscopy is a widely used technique in condensed matter

physics, which consists of the study of the time evolution of a system after it is

perturbed out of equilibrium. The availability of ultra-short laser pulses of the

order of a few femtoseconds (10−15 s) played a key role in the development of

time-resolved techniques. A common time-resolved method in solid state physics

is optical pump-probe. Here, short optical pulses from a laser are used to excite

the sample and the excited state is monitored by measuring some parameter as,

for example, the reflectivity of a delayed probe pulse. The probing part of these

experiments is analogous to high speed strobe photography: a very fast stroboscopic

light illuminates the object and in this way, very fast events are “frozen” in time in

each successive frame. For this reason, the probe pulses must be shorter than the

fastest event to be recorded.

In this Chapter, I present some of the techniques available for the study

of excitations in solids. In the first section, I introduce the experiments in

which ultrafast laser pulses are used to excite and detect acoustic excitations in

semiconductor heterostructures. First, I review the equipment and laser systems

available in our laboratory, followed by a description of the experimental geometry.

In the second part, I describe the synchrotron-based X-ray diffraction experiments

where the crystal lattice is probed by a short burst of X rays. I first describe briefly

the generation of synchrotron radiation from relativistic charged particles and then I

33



present the technical aspects of the experiments.

4.1 Optical experiments

All the optical experiments presented in this thesis were performed with pulsed lasers

based on titanium-doped sapphire (ti:sapphire). In the pump-probe measurements,

we used pulses from an oscillator or amplified pulses from a regenerative amplifier

(Coherent Rega). The infra-red amplified pulses can be used directly or can be

converted to the visible part of the spectrum by using an Optical Parametric

Amplifier (OPA). I will describe each piece of equipment in detail in the following

subsections.

4.1.1 Ti:Sapphire oscillator

We used a passively mode-locked Kerr-lens Ti:Sapphire oscillator shown schematically

in Fig. 4.1. The laser consists of a Ti:Sapphire crystal, the active medium, embedded

in a Fabry-Pérot cavity that supports many electromagnetic modes. Population

inversion is achieved by pumping the crystal with a continuous wave (c.w.) laser at

532 nm, which is near the peak of the absorption of Ti:Sapphire. The broadband

emission from the Ti:Sapphire, of the order of 130 THz centered at 375 THz (800 nm),

excites many (∼ 105) electromagnetic modes inside the cavity, which oscillate with

random relative phases. However, if all the phases are fixed, the superposition of all

the modes gives destructive interference except when all the modes are in phase.

This leads to a train of short pulses that repeats every τ = ∆ν−1 = 2L/c, the round

trip inside the cavity, here L is the cavity length and c is the speed of light. The

repetition frequency of the laser is also equal to the separation between longitudinal

modes in the laser cavity, ∆ν [33]. A laser with a cavity L = 1.5 m has a repetition

rate of 100 MHz.

There are different ways to achieve phase-locking of the modes in the cavity.
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The most common approach is the Kerr-lens mode-locking (KLM). Self-focusing

induced by the non-linear Kerr effect in the Ti:Sapphire crystal makes the pulsed

(high-intensity) regime have smaller beam waists than the c.w. regime. In this

way, by placing a slit in the laser cavity that cuts the lower intensity parts of the

gaussian beam, pulsed operation is favored over continuous-wave. This alone does

not guarantee mode-locking. It is also necessary to compensate properly the group

velocity dispersion of the different modes inside the cavity. A pair of prisms inside

the cavity is the most common solution to obtain a total zero group dispersion [1].

The Ti:Sapphire oscillator outputs ∼ 120 fs pulses with an energy of 5 nJ at a rate

of 76 MHz. The wavelength can be tuned between 740 and 1070 nm by adjusting a

birefringent plate inside the laser cavity. When seeding the amplifier, the wavelength

is fixed at 800 nm which is at the peak of the emission from the Ti:Sapphire crystal

and the optimum wavelength for amplification. The pulse duration output of the

Rega amplifier is strongly dependent on the characteristics of the seed pulses. It is

necessary to maximize the bandwidth by adjusting the compensating prisms inside

the oscillator. A minimum bandwidth of 10 nm is required for optimum operation of

the Rega.

4.1.2 Regenerative amplifier

Pulses from the oscillator are amplified using the Chirped Pulse Amplification (CPA)

scheme [34]. The high peak intensity of the pulses from the oscillator can result in

crystal damage in the amplifier. Thus, the oscillator pulses have to be stretched by a

factor of 104 before entering the amplification stage. A pair of gratings arranged for

positive dispersion provides the necessary dispersion to achieve ∼ 40 ps pulses [35].

Following the stretcher, the pulses are sent into the amplifier cavity where, after

many round trips, will emerge amplified by a factor of a thousand.

A diagram of the regenerative amplifier showing the main elements is presented
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Figure 4.1: Diagram of a Kerr-lens mode-locked Ti:Sapphire oscillator. L is the pump focusing
lens, M1 −M2: curved mirrors, M4: high-reflector, B.R.F.: birefringent plate, P1 − P2 intra-cavity
prisms. From [1].

in Fig. 4.2. The seed pulses from the Mira oscillator go through a Faraday isolator

which exploits the Faraday rotation of the polarization inside an optically active

material to rotate the polarization of the back-reflected beam which are blocked by

the polarizing cube, CP. The input beam from the oscillator is focused by two curved

mirrors on the cavity dumper. From the 76 MHz pulse train, individual pulses are

injected into the amplifier cavity, ensuring that only one pulse from the seed beam

circulates inside the cavity. The cavity dumper consists of a TeO2 acousto-optic

modulator (AOM) located at the beam waist of the two curved mirrors, oriented

at the Brewster angle with respect to the input beam to minimize reflection losses.

The AOM can rapidly switch the laser pulses in and out of the cavity by diffracting

the light due to the acousto-optic or photoelastic effect [2]. A high frequency

acoustic wave is emitted by an RF source into the TeO2 crystal which modulates the

refractive index of the material causing the light to be diffracted at a specific angle.

The AOM is driven by two short RF pulses which generate the traveling acoustic

waves inside the TeO2 crystal for the injection and the ejection of the laser pulses To
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Figure 4.2: Schematic diagram of the regenerative amplifier (From [2]).

maximize the energy extraction from the population inversion in the Ti:Sapphire, the

spontaneous emission from the crystal is reduced by a second AOM, the Q-switch,

which introduces losses in the cavity until a seed pulse is injected.

The pulses are ejected by the cavity dumper after 20 − 30 round trips. At the

output we get an average power of 1.5 W, with pulses centered at 800 nm with an

energy of ∼ 6 µJ per pulse.

Finally, the output pulses are recompressed to a duration of 50 fs with a grating

compressor [34] (Fig. 4.3). By tuning the separation between the gratings, a

positively chirped pulse with longer (redder) wavelengths in the front edge of the

pulse, λ1, and shorter (bluer) wavelengths in the trailing edge, λ2, is compressed

after passing through the double grating compressor.
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Figure 4.3: Grating compressor for the amplifier. Longer wavelengths λ1 travel a longer path than
shorter wavelengths λ2, thus compressing the chirped pulse. Adapted from [3]
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4.1.3 Optical Parametric Amplifier

Infrared pulses from the amplifier are converted into visible pulses by the nonlinear

process of Optical Parametric Amplification (OPA) [36]. Photons from an intense

beam at a wavelength λ1 are converted parametrically into photons of a different

wavelength, λ2, by overlapping with a seed beam into a material with a strong second

order nonlinearity (χ(2)). This parametric down-conversion process is depicted in

Fig. 4.4 (b) and (c). In practice, the ∼ 4 µJ pulses from the 250 kHz Rega amplifier

are doubled to 400 nm on a BBO crystal, this beam is mixed with the white light

continuum generated by the infrared pulses focused on a sapphire disc. The white

light and the pump beams are overlapped in the second BBO crystal, where the

parametric down-conversion process converts pump photons into certain components

of the white beam. The wavelength at the output is that of the component of

the white light that phase-matches with the 400 nm pump. The phase matching

conditions can be expressed in the form

ωpump = ωsignal + ωidler (4.1)

kpump = ksignal + kidler. (4.2)

These conditions determine which wavelengths of the white light continuum the

pump photons are converted into. Tunability in the wavelength is achieved by

rotating the non-linear crystal, the range covers most of the visible spectrum,

480− 700 nm. From the phase matching equations we can obtain an equation that

relates the wavelengths of the three outputs,

n1

λpump

=
n2

λsignal

+
n3

λidler

. (4.3)

Here, n1, n2 and n3 are the indices of refraction for the pump, signal and idler

beams, respectively. This states that the phase matching wavelength that satisfies

Eq. (4.3) can be tuned by changing the angle between the optical axis of the BBO
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and the propagating direction [37].

White light (seed)

Signal + idler

pump

pump

idler

signal

(b)

(a) 800 nm 400 nm

400 - 700 nm
sapphire

pump

seed

idler

signal

(c) BBO

Figure 4.4: Optical Parametric Amplification process. (a) Photons from the 800 nm are frequency
doubled to 400 nm and then converted into visible light by mixing with the white light spectrum.
(b) Diagram of the resulting frequencies.

Figure 4.5 shows a diagram of the double pass OPA system. The infrared pulses

from the amplifier are split at the first beam splitter. The weak arm generates a

white light continuum by focusing 25 % of the infrared light onto a sapphire disc.

The optical process of self phase modulation is responsible for the generation of the

extra frequencies in the sapphire; an intense laser pulse propagating in a medium

experiences third order non-linear effects, (χ3), that cause an intensity dependent

refractive index in the material given by n[I(t)] = n0 + n2I(t), where I(t) is the

intensity envelope of the pulse. This time-varying refractive index gives a time

dependent phase of the optical pulse, φ(t) = ω0t − k0n(t)L, where ω0 and k0 are

the center frequency and wavevector of the pulse and L is the propagation distance

in the sapphire. In the frequency domain, the time-varying phase translates into

an instantaneous time-dependent frequency ω(t). As a consequence, the frequency

spectrum of the laser pulse broadens as it travels through the material resulting in a

(highly-chirped) broad white-light continuum. Part of this broad spectrum is used
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as the seed in the parametric amplification.

Signal

Pump

Idler

X1

X2

L1 L2

25 %

75 %

2nd pass

1st pass

White light

sapphire

DM DM

Figure 4.5: Schematic of the Coherent OPA system used in our experiments. 800 nm pulses are
doubled on a BBO (X2) and overlapped with white-light on a second BBO (X1) where the visible
pulses are generated by down-conversion. Two passes are required to obtain ∼ 100 nJ of energy in
the output pulse. L1-L2: lenses, DM: dichroic mirror.

The remaining 75 % of the Rega beam is frequency-doubled on a Type I BBO

crystal and both beams are focused and overlapped on the second BBO crystal

(X1). The time delay between the pump and the white-light arm is controlled by

two manual delay-stages. To obtain ∼ 100 nJ of energy, the pulses are overlapped

twice on the X1 crystal. Since the white light is highly chirped, after tuning the

phase matching angle of the X1 crystal the timing has to be slightly readjusted to

recover the same output power. The output of the system in the signal is in the

range 480− 700 nm and the idler is 940− 2400 nm.

In order to compensate for dispersion in the BBO crystals and the lenses inside

the OPA, the resulting pulses have to be recompressed to achieve a minimum pulse

duration of ∼ 70 fs at visible wavelengths. Figure 4.6 shows the arrangement of
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prisms to impart negative chirp to the laser pulses (from [4]). Since most materials

at visible wavelengths have positive group velocity dispersion, i.e. D = −λ
c
d2n
dλ2 > 0,

a negative chirp compensates for the dispersion introduced in the OPA. The prism

arrangement can be folded by placing a mirror, M −M ′. A thorough description of

the prism compressor can be found in [35]. When compensating small amounts of

dispersion, the double prism compressor is the preferred approach over the grating

compressor discussed earlier. The pair of gratings can compensate the extremely

chirped pulses used in chirped pulse amplification, but usually have losses that are

larger than that of prisms and are more expensive.

Figure 4.6: Prism compressor for the visible OPA. This arrangement gives negative chirp to the
pulses. In practice the setup is folded by placing a mirror M −M ′ and slightly tilting the
returning beam in the vertical plane. From [4].
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4.1.4 Pump-Probe setup

The pump-probe setup is shown in Fig. 4.7. Any of the laser sources described above

can be used in this setup. The steering optics consist of metallic mirrors that provide

a broadband of wavelengths of operation from the visible to the near-infrared. The

beam is split into, typically, 90% and 10% for the pump and the probe respectively.

The pump beam is chopped at a frequency of 2 kHz with a mechanical chopper.

The chopper controller outputs the operating frequency as a sine-wave signal that is

later used as the reference in the lock-in detection. The probe reflects from a retro

reflector mounted on a mechanical delay stage that allows precise control of the time

delay between the pump and the probe pulses. Typical time delays of up to 2 ns can

be achieved with this stage. The minimum step size of 1 µm corresponds to a time

delay of 6.66 fs which is much smaller than the pulse duration of any of our lasers.

We used lenses of f = 15 cm and f = 10 cm to focus the pump and the probe,

respectively, onto the sample surface. This gives a probe waist at the focus that is

smaller than that of the pump, ensuring that the excitation generated by the pump is

homogeneous in the region sampled by the probe. The typical spot diameter for the

probe at a wavelength of 800 nm is ∼ 30 µm with an initial beam 3 mm in diameter.

Typical laser power at the sample was ∼ 2 mW for the pump beam which, with

a beam diameter of 50 µm, corresponds to a fluence F = P/(r × A) ≈ 1 mJ/cm2,

where P is the average optical power, r is the repetition rate and A is the area of

the illuminated spot. The optical reference is taken by splitting the probe before the

sample. The reflected light was collected with a lens of focal length f = 200 mm

and focused onto the detector. In order to reduce the scattered light from the pump

reaching the detector, the polarization of the pump was set orthogonal to that of the

probe. In this way, a polarizer before the detector blocks the unwanted scattered

light from the pump.

We used a balanced photodetector (New Focus, Nirvana 2007). It consists of
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a pair of photodiodes with individual amplifiers and sophisticated auto-balance

electronics. In balanced mode, the output is proportional to the difference between

the optical power in the signal diode and the optical power in the reference diode.

The auto-balanced feature automatically adjusts the gain in the reference amplifier

to keep the DC output (below certain cut-off frequency) at zero voltage. The cutoff

frequency is selected by a dial on the detector box. In this operation mode, the

optimum condition is to use a reference beam of twice the power in the signal and

the auto-balance circuit will adjust the gain correctly. However, the bandwidth

of the detector is 125 kHz, near the repetition rate of the Rega amplifier. This

means that the detector can “see” individual pulses from the laser, rendering the

auto-balance unusable at this repetition rate. But since the signal of interest from

the chopper is at much lower frequency, 2 kHz, we can safely low-pass the output

of the Nirvana with a 10 kHz cut-off filter and manually balance the output with a

linear-graded neutral density filter. The low-pass filtered signal is used as the input

channel of a lock-in amplifier (Stanford Research Systems, SRS-830) and the chopper

signal at 2 kHz is used as the reference of the lock-in. The lock-in amplifier detects

in the signal channel any signature at the frequency of the reference. Its output is

essentially the DC component of the product of the two inputs [38]. The SRS-830

has a minimum sensitivity of 2 nV with nominal noise of 6 nV/
√

Hz. We used a

time constant of 30 ms in all the experiments, which translates into a band around

the frequency of the reference of ∼ 33 Hz.

From the cryogenic equipment available in the group, we used two helium optical

cryostats. For the early experiments we used an Oxford Research helium-reservoir

cryostat that has a liquid helium reservoir, a liquid nitrogen reservoir and a vacuum

outer shield. The later experiments were performed with a helium-flow cryostat

(Janis Research, STVP-400). Although a flow cryostat cannot reach temperatures

below ∼ 10 K, it is more stable and, since it does not have a nitrogen reservoir it is
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Figure 4.7: Schematic of the setup for the optical pump-probe experiments. The laser beam is split
into 90% and 10% for the pump and the probe respectively. The pump is chopped 2 kHz and the
probe goes through a translational stage which controls the time delay. Both beams are then
focused on the sample and the probe is collected and focused on a balanced photodetector.

much more straight-forward to work with. The disadvantage is that the cryostat has

to be connected to the Helium dewar during the experiment which could result in

vibrations introduced from the helium flow into the cryostat.

4.1.5 Etching procedures

Some of the samples studied in this work are semiconductor superlattices of gallium

arsenide (GaAs) and aluminium arsenide (AlAs), grown by molecular beam epitaxy

(MBE) on GaAs substrates. One of the experiments described in Chapter V required

that we remove the substrate completely. There are well known methods and

chemical agents to selectively remove the GaAs substrate. The procedure requires

to first polish mechanically the 0.5 mm-thick substrate to a thickness of less than

∼ 10 µm. We used a transparent unoriented sapphire disc of 1” diameter to hold the

sample during the polishing and etching. The sample is attached to the disc with
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a wax that does not react with the etching solution. We used a mixture of 500 ml

of Hydrogen Peroxide (H2O2) and 6 ml of Ammonium Hydroxide (NH4OH). The

solution is placed in a plastic container and a small pump circulates the fluid over

the sample. To minimize evaporation of the toxic vapors from the mixture we cooled

the solution to ≤ 10 ◦C.
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4.2 Ultrafast X-ray diffraction techniques

In contrast to the laser technology presented above, the generation of ultrashort

X-ray pulses is still under development. There are currently two approaches

to generate short X-ray pulses. One makes use of very intense laser pulses to

create a plasma where high energy electrons undergo bremsstrahlung and produce

characteristic X-ray radiation [39]. In this case, the X-ray pulse duration is

comparable to that of the laser source but is emitted isotropically and requires

collection and focusing optics [40, 41]. On the other hand, radiation produced

in a third generation synchrotron is orders of magnitude brighter and collimated;

however, the pulse duration is limited by the electron bunch in the storage ring [42],

typically of the order of a hundred ps.

In this section I discuss the concepts and equipment relevant to ultrafast X-ray

diffraction experiments using synchrotron-based X rays. I begin with a derivation

of the radiation produced by an undulator and later I review the equipment for the

time-resolved X-ray diffraction experiments.

4.2.1 Synchrotron radiation from an undulator

There are different approaches to generate synchrotron radiation from relativistic

electrons [43]. A bending magnet is the simplest example where electrons are

bent into a circular orbit by a strong magnetic field, causing them to radiate.

The spectrum of the bending magnet radiation is very broad and the radiation

is not collimated. Alternatively the electrons can be sent through an undulator,

which consists of a series of alternating magnets of opposite polarity. Such

configuration produces an alternating force on the charge making the particles orbit

quasi-sinusoidal trajectories. This approach has the advantage of producing a highly

collimated, bright beam of X rays with a very narrow energy distribution.

Consider a charged particle with speed v = cβ, where c is the speed of light, as it
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Figure 4.8: A charged particle traveling through an alternating series of magnets emits a sharp
collimated beam of monochromatic radiation in the forward direction, from [5].

passes through an undulator with period λu. The magnetic field strength is B and

there are a total of N periods. Since the charge is moving at relativistic speed, the

undulator appears contracted in the reference frame of the electrons. The undulator

period seen by the electrons is

λ′u =
λu
γ
.

As the electrons wiggle through the magnets, they emit radiation of wavelength λ′u.

In the laboratory reference frame, this radiation is Doppler-shifted and appears with

a wavelength

λ = λ′uγ(1− β cos θ) = λu(1− β cos θ).

Since β ∼ 1, the radiation is confined to a narrow cone near the forward direction

(θ ≈ 0). The factor between parenthesis is very small and we can take cos θ ' 1−θ2/2
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to get the emission wavelength

λ =
λu
2γ2

(
1 + βγ2θ2

)
' λu

2γ2

(
1 + γ2θ2

)
. (4.4)

This is called the simplified undulator equation. A more elaborate treatment

accounting for the transverse motion of the electrons gives an additional term that

depends on the magnetic field, B [42],

λ ' λu
2γ2

(
1 +

1

2
K2 + γ2θ2

)
, (4.5)

where K = eBλu/2πmc, and e and m are the charge and the mass of the electron.

By adjusting the magnetic field strength we have some tunability of the energy of the

emitted X rays. In practice, this is done by changing the gap between the magnets

in the undulator.

In addition to the X rays radiated in the forward direction, there is a continuum

of radiation coming from the motion in each individual period like in a bending

magnet. This background contribution is not confined to θ ≈ 0 and can be blocked

by appropriately placed slits along the beamline. It is also important to note that,

since the motion is not exactly sinusoidal, and because of the symmetry of the orbit,

all the odd harmonics of the wavelength in Eq. (4.5) are present. This is called

the “white” beam in the synchrotron terminology and is usually filtered to a single

harmonic before being used for diffraction.

4.2.2 Synchrotron source

The X-ray experiments in this thesis were done at the Advanced Photon Source

(APS), a 3rd generation synchrotron X-ray source that is part of the Argonne

National Laboratory (ANL) located outside Chicago, IL. An aerial view of the

experimental facility is shown in Fig. 4.9. Electrons are produced by a cathode

heated to 1100 ◦C and accelerated to 450 MeV by alternating electric fields in a

49



Figure 4.9: Aerial view of the Advanced Photon Source.

linear accelerator. Subsequently, the race-track shaped booster synchrotron increases

the energy of the electron beam to ∼ 7 GeV (see diagram in Fig. 4.10). The

beam is steered and collimated by a series of bending and focusing magnets. The

electrons are then injected into the 1104-meters-circumference storage ring where

the beam is carefully collimated and optimized for the production of synchrotron

radiation. A relevant parameter to measure the quality of the electron beam

is the emittance, which is the product of the transverse size of the beam and

its divergence. In 3rd generation synchrotrons this is very low, on the order of

2− 10 nm rad in the horizontal direction and 0.068 nm rad in the vertical direction.

Another important parameter is the brilliance, defined as the photon flux emitted

per solid angle, per unit transverse area and per bandwidth. It is expressed

in photons/smradmm2 (0.1% δλ/λ) and for typical undulators is in the range

1019 − 1021 photons/smradmm2 (0.1% δλ/λ).

The radio-frequency (RF) potential in the storage ring accelerates the electrons

as they lose energy in the circular orbit due to synchrotron radiation. The potential
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Figure 4.10: Diagram of the APS synchrotron. Electrons are accelerated to 7 GeV and stored in
the storage ring where they are sent through insertion devices (IDs) to generate synchrotron
radiation.

consists of a series of minima (buckets) where the electrons form bunches of charge

that circulate around the ring. A total of 1296 buckets can be accommodated in a

full circumference. Depending on the operation mode, different number of buckets

are filled. For example, in the 1296-mode each bucket is filled with electrons, while

in 24-bunch mode only one every 54 contains electrons. If N is the number of

filled buckets in the circumference, the X-ray repetition rate is N times the ring

fundamental frequency P0 = 272 kHz. Most of our experiments run in the 24-bunch

mode, in which the repetition rate is 6.528 MHz and the time between bunches is

152 ns. The reference RF from the storage ring, 1296 × 272 kHz = 352 MHz, is
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obtained from the accelerating RF and is equal to the total number of buckets.

Figure 4.11: Floor plan of the sector-7 insertion device at the APS.

A layout of Sector 7, the MHATT-CAT/XOR beamline is shown in Fig. 4.11.

The beamline consists of several experimental hutches, labeled A, B, C and D where

different types of experiments and/or diagnostics take place. The undulator is located

before the A hutch, near the electron storage ring. A diamond monochromator is

located in the A hutch. Different X-ray experiments take place in hutches B, C and

D. The time resolved experiments were performed in hutches C and D. The X-ray

beam is transported between the hutches under vacuum to avoid attenuation due to

scattering and absorption in air.

The white beam produced by the undulator is not suitable for diffraction

experiments. It contains a broad continuum background of off-axis radiation,

and odd harmonics of the fundamental frequency in the forward direction. In a

diffraction experiment one usually wants highly monochromatic radiation. In order

to obtain monochromatic, highly directional X rays, the beam is collimated with

a set of slits and spectrally filtered with a double crystal monochromator in the

non-dispersive setting [44]. An aperture of ∼ 500 µm×500 µm is enough to block the
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off-axis radiation. After the slits, the harmonics are eliminated by a diamond-crystal

monochromator, shown schematically in Fig. 4.12. The Bragg reflection from a

single diamond crystal disperses the polychromatic beam into different angles. At

the second crystal, only one wavelength satisfies the Bragg condition for the same

angle of incidence. By slightly tilting the second crystal, the Bragg condition is

mainly satisfied by the fundamental wavelength and the harmonics are suppressed.

The final energy spread depends on the Darwin width (the angular width of the

reflected X-ray radiation) of the crystals used in the monochromator; for 14.3 keV

photons the energy spread of a diamond monochromator is ∼ 0.8 eV. The number

of photons in the monochromatized beam is of the order of 106 photons per pulse.

Diamond crystal

θΒ θΒ

Figure 4.12: Double diamond-crystal monochromator in the parallel setting. The energy resolution
depends on the Darwin width of the crystals, in this case ∆E/E ≈ 5.6× 10−5.

4.2.3 Laser and timing electronics

In the time resolved X-ray diffraction experiments, the generation of acoustic strain

is done with optical laser pulses, as described in the previous section. In contrast

to the optical experiments where the pump and the probe were obtained from the

same laser, the X rays and the laser pulses are generated from different sources.

This presents an additional experimental challenge because the sources are not

synchronized and therefore exhibit intrinsic time-jitter. This can be overcome by

using a feedback-loop to fix the laser repetition rate to the synchrotron RF reference.

As shown in Fig. 4.13, a Ti:Sapphire oscillator produces low energy pulses of
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Figure 4.13: Schematics of the setup for time resolved experiments at Sector-7. Pulses from a
Ti:Sapphire are amplified to 1 mJ per pulse and used to excite the sample. The repetition
frequency of the oscillator is controlled by the PZT transducer that drives the end mirror of the
cavity. The feedback loop locks this repetition rate to the X-ray reference.

∼ 50 fs duration at 88 MHz that are amplified with a regenerative amplifier to an

energy of ∼ 1 mJ per pulse at a rate ∼ 1 kHz. The end mirror of the oscillator

cavity is mounted on a piezo-electric transducer (PZT). Moving the mirror with the

transducer changes the total length of the cavity and therefore the round trip of the

pulses inside the cavity. In this way, the laser can be locked to the X-ray repetition

frequency by properly manipulating the PZT. The oscillator is locked to the 4th

sub-harmonic of the ring reference fref in the following way. The signal from the

laser is measured with a fast rise-time photodiode and filtered at its 4th harmonic

near 352 MHz. This is then mixed with the X-ray reference signal at fref . If fl is

the frequency of the measured signal, the output of the mixer gives two components

at fl ± fref . A low-pass filter after the mixer yields a signal at the frequency offset,

∆f = fl − fref , which is used as the input of the feedback loop of the driving circuit

of the PZT. The feedback circuit minimizes the error signal by adjusting the PZT
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element, with the net effect of locking the repetition rate to fref . The time delay

between the X-ray bunches and the laser pulses can be controlled by adding a phase

to the reference signal with a digital phase shifter. The minimum resolution of the

phase shifter is 19 ps, smaller than the X-ray pulse duration and the maximum

phase shift yields a time delay of 4.75 ns. Delays longer than this value can be

attained with a commercial digital delay generator (Stanford Research, SRS-535).

We performed the data acquisition by gating the X-ray pulses synchronized with the

laser as shown in Fig 4.14.

1 2 3 22 23 24 1 2

(a)

(b)

(c)

laser on laser off

laser on late laser off late

laser pulse

∆t

(d)

Figure 4.14: Diagram of the logic gates used to record the time-resolved diffraction from individual
bunches. (a) the 24-bunch mode of the synchrotron. (b) the laser arrives at a given instant with
respect to the synchrotron bunches. (c) the “laser on” gate records the intensity at a given time
delay, ∆t, after the laser arrives. For normalization, the “laser on late” records X-ray photons from
the same bunch one revolution later without the laser. (d) “laser off” records the diffraction from
the next bunch which corresponds to a delay of ∆t+ 152 ns.

The sample is mounted on a six circle Huber diffractometer that allows precise
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control of the sample orientation and the detector position. A photograph of the

apparatus can be seen in Fig. 4.15.

Figure 4.15: Photograph of the apparatus for X-ray diffraction.

4.2.4 Detectors and X-ray optics

An ionization chamber is a device used to measure ionizing radiation, in particular X

rays. It consists of a gas enclosed by two conducting electrodes at different potentials.

When X-ray photons travel through the gas (in our case, air) the high energy

photons ionize the molecules in the air, producing free charges that are accelerated

towards the conducting plates. The accelerated charges manifest themselves as an

ionization current which is proportional to the X-ray flux. Due to the its slow time

response, the ionization chamber is only sensitive to the integrated X-ray flux and

cannot distinguish individual X-ray pulses, however, these chambers do not require

complicated electronics and are easy to set up making them idea for monitoring

the overall X-ray flux. For the time resolved experiments, we used an avalanche

photodiode (APD) with a rise-time of 5 − 10 ns. This detector is analogous to a
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photomultiplier, except that the photocurrent is generated and amplified in a reverse

biased semiconductor.

K-B mirrors

IC2 IC1

APD1

Upstream 

Slits 1

Detector Slits 1

Detector Slits 2IC3

APD2

Sample filters

filters

Figure 4.16: Schematic view of the beamline showing the different X-ray diagnostic and focusing
elements.

We used a pair of Kirkpatrick-Baez (K-B) mirrors to focus the beam on the

sample. The K-B mirrors consist of Rhodium-coated Si crystals oriented at grazing

incidence which reflect the X-ray beam by total internal reflection. Focusing is

achieved by slightly bending of the crystals. The position of the mirrors can be

controlled for fine alignment and both mirrors are enclosed in a helium gas chamber

to avoid oxidizing the surfaces.

A highly collimated beam is desirable for diffraction experiments. Usually one

wants a beam with a very narrow distribution of incident wavevectors. This is a

limiting factor in the angular resolution. For this reason, focusing of the X-ray

beam is done only in the horizontal direction, perpendicular to the scattering plane.

This increases the X-ray intensity at the sample without compromising the angular

resolution.

A diagram of the different elements along the beamline inside the C hutch is
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shown in Fig. 4.16. The first slit collimates the beam to 600 µm × 600 µm. The

avalanche photodiode (APD1) monitors the intensity of individual bunches, while

the first ionization chamber (IC1) reads the average flux. One of the K-B mirrors is

used to focus the beam in the horizontal plane. A second ionization chamber, IC2,

is used to read the transmitted X-ray flux after the K-B setup. On the detector

arm we have two slits that are aligned with the straight X-ray beam and are set to

the beam FWHM. The second slits are set to twice the size of the first, typically

240 µm × 550 µm. An ionization chamber (IC3) also records the average flux

reaching the detector (APD2).
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CHAPTER V

FEMTOSECOND LASER STUDIES OF

ACOUSTIC WAVES FROM SUPERLATTICES

In this chapter the results from the ultrafast optical experiments on semiconductor

superlattices are discussed. The first section deals with the study of propagating

acoustic waves using a two-superlattice approach. The second section shows results

on a single structure in which we find evidence of the existence of surface-avoiding

waves.

5.1 Double-superlattice scheme for the study of

acoustic phonons

The study of laser-excited acoustic waves using short laser pulses has led to the

development of a technique termed picosecond ultrasonics in which the absorption

of a laser pulse by a metallic layer induces a sudden temperature rise that generates

a traveling acoustic strain wave [12, 13]. The wavelength of the acoustic wave is

determined by the absorption length in the metallic layer [12]. Alternatively, high

frequency ultrasound can be generated by light pulses using periodic structures such

as superlattices [45, 46, 47, 48, 49, 27, 17]. The zone-folding of the acoustic branches

into the mini-Brillouin zone creates optical modes of the superlattice with non-zero

frequency at the Brillouin zone center that can couple to light [9]. Propagating folded

acoustic phonons have been studied using two-color pump-probe experiments [17],

where the pump and probe are absorbed in different regions inside the sample, or by
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generating folded phonons with a superlattice and detecting with a superconducting

bolometer [18].

Here, I present a scheme to study the propagation of folded acoustic phonons

that uses superlattices as a means to couple light pulses to high frequency acoustic

vibrations. The superlattices act as acoustic transducers and are spatially separated,

allowing for the study of the propagation of such high frequency acoustic waves. The

use of a second superlattice as a transducer, as opposed to a filter, as in Ref. [18],

allows us to measure the frequency spectrum of the propagating acoustic wave, and

potentially the attenuation of different frequency components.

5.1.1 Front-side excitation

We studied two samples grown by molecular beam epitaxy on a (001) GaAs substrate

that consist of a thick GaAs layer of 1.2 µm or 0.6 µm between two identical

superlattices of 25 periods of 12 Å-thick GaAs/34 Å-thick AlAs. In what follows, we

refer to these samples as A and B, respectively. The substrate has been removed

by chemical etching. The samples were characterized by spontaneous Raman

measurements. Spectra obtained with the 514.5 nm line of an Argon-ion laser in

the backscattering geometry show a doublet near ∼ 1 THz that corresponds to the

first zone-center folded acoustic modes [11], as shown in Fig. 5.1. The frequencies

obtained from these experiments match the calculated ones using the continuum

elastic model for the infinite structure introduced in Chapter II.

In Fig. 5.2 we show differential reflectivity results from a standard pump-probe

experiment on sample B in the geometry where the pump and probe overlapped

on the front side. These experiments were performed at T = 40 K with ∼ 80 nJ

laser pulses from an optical parametric amplifier (OPA) centered at the wavelength

λ = 530 nm. The time-resolved data in Fig. 5.2 (a) reveals an oscillation of 13 ps

together with complex structures at the beginning and at the end of the trace, as well
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Figure 5.1: Spontaneous Raman spectrum of sample A in the back-scattering geometry taken with
the 514.5 nm line of an argon laser.

as a double structure at 180 ps. Complex electronic, as well as thermal, relaxation

processes give rise to the slowly-varying contribution to ∆R/R with a time scale of

hundreds of ps. The structure at the beginning and at the end of the trace are the

acoustic pulse generated by the laser and the acoustic echo, after it reflects from the

back surface and arrives at the front superlattice. This wave-packet consists of a

sound pulse with a broadband spectrum centered at ν0 = v/ξ in the lowest acoustic

branch, where ξ is the absorption length of the laser in the superlattice [13]. Note

that the scan is symmetric around t = 180 ps, which is the time it takes for the

sound wave to reach the back surface. The broad double peak appearing at ∼ 150 ps

is due to residual laser light exciting the second superlattice, thus generating strain

from the back surface that reaches the front in half of the acoustic round trip.

Fig. 5.2 (b) shows the low frequency part of the Fourier transform of the data in

Fig. 5.2 (a). The spectrum reveals a peak at ν = 75 GHz, which is due to stimulated

Brillouin scattering from the traveling acoustic wave [12], a structure at lower

frequencies, and an overall modulation of the spectrum with spacing ∆ν = 3 GHz.

This latter frequency corresponds to the inverse of the acoustic round-trip time

∼ 300 ps indicating that the modulation of the spectrum has to do with the
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Figure 5.2: (a) Pump-probe differential reflectivity for the sample with a 0.6 µm bulk layer. The
scan is symmetric around t = 180 ps. The complex structure is due to acoustic strain traveling
through the bulk layer and reflecting from the back surface. (b) FFT of the scan in (a) showing
the low frequency stimulated Brillouin at ∼ 75 GHz and fringes due to the acoustic echo.

interference of the contributions from the acoustic wave, and its delayed echo.

5.1.2 Back-side excitation

Here we present the results on the generation and remote detection of folded acoustic

phonons. The geometry of the experiment is shown in Fig. 5.3. The absorption of

the pump pulse in one of the superlattices launches a wave packet of high-frequency

folded phonons that propagates towards the second superlattice where it is detected

by a delayed probe pulse. This particular design makes it possible to generate and

detect folded phonons in spatially-separated regions. The second superlattice is

accessed by chemical etching of the GaAs substrate, as described in Chapter IV.

In Fig. 5.4 we show time-resolved differential reflectivity for the two samples

at 77 K. In this experiment we used ∼ 80 nJ pulses centered at a wavelength

λ = 530 nm. The pump and probe beams were focused on the sample with lenses of

focal lengths f = 15 cm and f = 10 cm, respectively.

Figure 5.4 (a) presents a time-trace for the configuration in which the pump

and the probe strike on the same superlattice (in this case on sample A). The data

exhibit a high frequency oscillation superimposed on top of a large, lower frequency
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Figure 5.3: Schematic diagram of the double superlattice structure and the geometry of the
pump-probe experiments. The samples consist of a thick GaAs layer of 1.2 µm or 0.6 µm between
two identical superlattices.

vibration that is the stimulated Brillouin scattering already mentioned. Results for

the situation in which the pump and the probe impinge on opposite sides are shown

in Fig. 5.4 (b). For samples A and B we observe, respectively, an oscillating transient

in the reflectivity arriving after time delays of ∼ 125 ps and ∼ 250 ps. These values

agree well with the time-of-flight of acoustic waves traveling across the sample. We

note that the high frequency folded phonons also reach the second superlattice, as

can be seen in Fig. 5.5, which is an expanded view of the region near the arrival of

the acoustic signal in Fig. 5.4 (b). The amplitude of the oscillation due to the folded

phonons is nearly the same in the data of Fig. 5.4 (a) and Fig. 5.4 (b), indicating

that the excitation propagates without a measurable attenuation through the GaAs

layer. In addition, the folded phonon signal is delayed from the Brillouin oscillation,

as can be seen in Fig. 5.5. The low-frequency oscillation arrives at ∼ 250 ps while

the folded phonons only appear after ∼ 275 ps. This delay of ∆τ ≈ 25 ps arises

from the fact that the two excitations are generated at different depths in the

sample. If the folded phonons are created near the middle of the superlattice, at

zfp = LSL/2 = 70 nm, the time it takes for them to be detected at the same depth

on the opposite side is τfp = 279 ps. The Brillouin oscillation, but not the folded
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Figure 5.4: Time-domain data for samples A and B. Pump pulses generate sound waves on the
front superlattice, that are later detected on the front (a) and the backside (b) of the sample. Trace
(a) and the inset of (b), obtained on sample A, show folded-phonon oscillations superimposed on
the larger, low-frequency oscillations associated with stimulated Brillouin scattering.

phonons, can be detected by the probe if the light reaches the bulk layer. Therefore,

the lower-frequency oscillation generated in the bulk layer would be detected after

the transit time through the bulk, i.e. τB = 1.2 µm/vGaAs = 256 ps. Under these

considerations, the folded phonons and the low frequency modes are delayed by

∆τ = 23 ps, which is close to the delay we observe in Fig. 5.5. Furthermore, we

will see below that the delay between the two signals can also be recognized in the

Fourier transform as an overall modulation of the spectrum.

Curve (a) in Fig. 5.6 shows the Fourier transform of the trace presented in Fig.

5.5. There are four main features present, namely: The Brillouin scattering peak at

70 GHz (not shown in the figure) and a triplet due to zone-center folded phonons

near 1 THz. Two modes of the triplet correspond to the back-scattering wavevector

(BS) while the remaining one (FS) originates from the zone-center mode, which is

Raman active [11]. As we saw in Chapter III, the frequency of the BS modes, as

well as the Brillouin peak, is determined by the wavelength of the probe pulse. This

dependence can be understood from the argument given in Chapter III as follows.

Recall that the change in reflectivity, Eq. (3.24), is an overlap of the strain eigenmode
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Figure 5.5: Folded phonon reflectivity signal from sample A detected on the back superlattice.
Note that the high-frequency wave appears delayed from the Brillouin oscillations.

with the probe electric field. In the semi-infinite case, Eq. (3.27), the reflectivity has

non-zero contributions from those components of η that satisfy the phase matching

condition q = ±2kp. This means that, regardless of the generation mechanism, the

probe selects only those modes that satisfy wavevector conservation. Furthermore,

the propagating strain pulse moves at the speed of sound and, therefore, the

corresponding frequency for the phase matched low frequency oscillations in Fig.

5.4 is νBR = kp/πv where v is the speed of sound of the superlattice. For the same

reasons, the folded phonon doublet at ∼ 1 THz is composed of modes which, in the

extended zone scheme, have wavevectors q = 2π/D±2kp, where D is the superlattice

period.

We now compare the experimental data with the results of the model introduced

in Chapter III. The use of a continuum model for structures with such small periods

is somewhat arguable since the bulk properties of each constituent are not well

defined and, hence, the local index of refraction or, equivalently, the absorbed energy

in each layer is not known. With this in mind, we adjusted the ratio KGaAs/KAlAs in

Eq. (3.17) to reproduce the relative intensities of the observed modes. We emphasize

that, regardless of the generation mechanism, the waves are detected by stimulated

65



light scattering through the photoelastic mechanism, as stated in Eq. (3.24).

Calculated spectra are shown in Figs. 5.6 (b) and (c), together with the

experimental result (a). The best fit was obtained for KGaAs/KAlAs = 1.2. For

reference, we have included the dispersion relation for the infinite superlattice (lower

panel). In the spectrum corresponding to a single semi-infinite superlattice, Fig.

5.6 (c), the flat features with zero intensity at 0.5 THz and 1 THz correspond to

the acoustic minigaps whereas the doublet at ∼ 1 THz corresponds to the folded

phonons typically observed in back-scattering Raman spectra [9].

Figure 5.6 (b) shows the calculated spectrum for the finite superlattice in the

case where the probe is incident on the second superlattice. The calculations exhibit

a complex structure with an overall modulation of the intensity, which is also visible

on the lower side of the measured spectrum in (a). The frequency spacing of the

comb-like structure is ∆ν ∼ 40 GHz. This value corresponds to the inverse of the

transit time of the acoustic pulse through the superlattice. This periodic modulation

manifests itself in the time domain traces as a time delayed signal. We note that

as we anticipated earlier, the delay between the folded phonons and the Brillouin

signal in Fig. 5.5 is consistent with our interpretation of the frequency comb in the

spectrum.

The folded phonons in Fig. 5.6 (b) also show a fine structure which arises from

the finite size of the superlattice. In the experimental data, this fine structure is

particularly evident in the higher frequency BS-peak. In addition, the peak at the

zone center (FS) is also visible. This feature appears stronger in the experiment than

what is expected from the calculations. We tentatively attribute this discrepancy to

the interface contribution to ∆r [27], which is not taken into account in Eq. (3.24).

To understand the origin of the surface contribution we need to reconsider the

argument that leads to Eq. (3.21) in Chapter III. The dielectric constant at a given
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Figure 5.6: (a) Fourier transform of the time trace for sample A. We observe three peaks that
correspond to the backscattering (BS) and forward scattering (FS) modes accessible in Raman
experiments; (b) calculated spectrum for the double superlattice structure, where the probe is
incident on the second superlattice and (c) calculated spectrum for a semi-infinite structure
showing the BS doublet. The lower panel shows the dispersion relation for an infinite superlattice.

depth, z, in the perturbed material is given by [50]

ε′(z) = ε[z − u(z, t)] + ∆ε(z, t), (5.1)

where ∆ε(z, t) = P (z)η(z, t) is the change in the dielectric constant induced by the

acoustic strain, η = ∂u(z, t)/∂z, and ε[z − u(z, t)] is the unperturbed quantity at

the displaced position z − u(z, t). The second term in this equation is the so called

“bulk”, or photoelastic contribution, and has an associated change in reflectivity

given by Eq. (3.21). Moreover, the motion of the interfaces gives rise to an
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additional contribution from the first term in Eq. (5.1). Normally in a bulk material,

where there is only one interface, this additional contribution gives a change in the

reflection coefficient proportional to the surface displacement, ∆r = −2ik0δz(t),

which is purely imaginary and, from the arguments given in Chapter III, it does not

affect the reflectivity and can be omitted in most treatments. In a multilayer, on

the other hand, interference between the reflected and transmitted light from each

interface leads to a complex contribution to the reflectance [29],

∆r

r
∝

N∑
j=1

E2
j (zj)(εj − εj+1)u(zj), (5.2)

where u(z) is the atomic displacement, εj is the dielectric constant in layer j, and

E(z) is the electric field of the probe. Clearly, since ∆R = 2Re{∆r}, the interference

of the light scattered from the moving interfaces has an effect in the reflectivity, ∆R.

Equation (5.2) adds a contribution to ∆r from acoustic modes that do not

necessarily phase match with the optical probe in the sense of Eq. (3.21). The

stronger modes, that is, the modes with bigger displacements, u(z), contribute more

to this term. Moreover, a consequence of Eq. (3.17) is that modes at the zone-center

of the Brillouin zone are excited more strongly, and therefore, the contribution to

∆R from Eq. (5.2) is dominated by modes at q ≈ 0. This explains the unexpected

intensity of the FS peak in Fig. 5.6.

5.2 Long-lifetime acoustic mode

In the previous section we measured the spectrum of the propagating waves by

detecting the acoustic excitations reaching the second superlattice. We show in this

section that not all the acoustic modes generated by the laser pulse leak out of

the superlattice. We conducted experiments on a single superlattice of 75 periods

of dGaAs = 59 Å and dAlAs = 23.5 Å grown by MBE on a (001) oriented GaAs

substrate. A 70 nm layer of AlAs was deposited between the superlattice and the
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substrate to stop the chemical etching process. This sample has longer period than

the one studied in the previous section, corresponding to a first folded minigap at a

frequency of ∼ 0.6 THz. Clearly, the acoustic spectrum of a longer period structure

is less sensitive to interface roughness and inter-diffusion. In addition, the longer

period enhances the excitation of the folded phonons for the same optical-pulse

intensity [see (Eq. 3.19), which states that the amplitude of the eigenmode decays

inversely proportional to its frequency].

5.2.1 Above-gap excitation
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Figure 5.7: (a) Differential reflectivity data at 300 K. The slowly varying background due to the
electronic response has been subtracted. The central wavelength of the laser pulses is
λL = 546 nm. (b) Same data showing oscillations due to folded phonons.

Figure 5.7 (a) shows the differential optical reflectivity as a function of the probe

delay. In this case, the central wavelength of the laser was tuned to resonate with

the superlattice at λL = 546 nm, tentatively ascribed to the Γ−X transition. The

signal shows a slowly varying electronic background on the order of ∆R/R ∼ 10−3,

which was subtracted numerically in Fig. 5.7 (a). The phonon-induced part of the

differential reflectivity is dominated by the usual Brillouin oscillation, in this case at

∼ 70 GHz, together with higher frequency folded-phonon oscillations, as it can be

seen in Fig. 5.7 (b).
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Figure 5.8: Fourier transform of time-domain data as in Fig. 5.7 for the intervals: 10-125 ps (a),
250 - 350 ps (b) and 350 - 500 ps (c). The bottom panel shows the acoustic dispersion relation
calculated with Rytov’s model. SAM is the surface avoiding mode, FP are the folded phonons at
qBS and B is the peak due to stimulated Brillouin scattering.

Figure 5.8 (a) shows the Fourier Transform (FT) of the time trace of Fig. 5.7,

which exhibits similar features as the data from the double superlattice in Fig. 5.6.

Four features are clear in the FT, a strong peak at lower frequency and a folded

phonon triplet near 0.6 THz. The dominant peak in Fig. 5.8 (a) corresponds to the

stimulated Brillouin scattering component also observed in the previous section, and

is indicative of a wave traveling at the speed of sound in the material. As before, in

the lower panel of Fig. 5.8 we show the calculated acoustic dispersion relation for

this superlattice.
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The triplet at 0.6 THz consists of the two folded phonons at the back-scattering

wavevector, qBS, and a peak in between, labeled SAM (Surface Avoiding Mode),

that we assign to the forward-scattering component from the near-zone-center mode.

The lower panel in Fig. 5.8 shows the acoustic dispersion calculated with Rytov’s

model [10] for the parameters of the structure. The period of the superlattice

was slightly modified in the calculation to match the first folded doublet to the

experimental data. The important point from Fig. 5.8 is that the SAM remains

detectable even after ∼ 500 ps, much longer than the other three oscillations. Since

the probe can only detect folded phonons in the superlattice, this clearly shows

that the q ≈ 0 mode stays inside the superlattice while the other ones leak into

the substrate. Considering that the transit time of the acoustic wave through the

superlattice is 130 ps, even after 250 ps there are no BS peaks in the signal (b).

The Brillouin mode is still visible in trace (b), possibly because the probe could

reflect from the low frequency wave in the substrate. Since there is no folding of the

acoustic branch in the substrate, the folded phonons are not visible. We attribute

this unusual long lifetime of the observed SAM peak to surface-avoidance.

Figure 5.9 shows a numerical solution of the wave equation, Eq. (3.2), by

the method of finite differences in time-domain (FDTD). This approach is more

convenient for calculating the strain evolution than the eigenmode expansion shown

in Chapter III. However, if we want to calculate the spectrum of the reflectivity,

Eq. (3.29) is clearly a better way. For the purpose of illustration, we start with

an initial condition given by a gaussian strain pulse modulated by a square wave,

η(t = 0) = K(z)× exp[−(z− z0)2/σ2], (curve (a) in the top panel). This ensures that

the initial strain starts in the superlattice and, because of the factor K(z), it has the

periodicity of the superlattice. The initial strain splits into two counter-propagating

waves as seen in (b) at t = 500 steps. The left-going wave is inverted upon reflection

at the free surface (c) and eventually also leaves the superlattice (d). At longer
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times, in (e), the wave-packet is a superposition of modes near the zone-center,

which have wavelengths that match the superlattice period. At even later times, (f),

the remaining wave is composed of mostly the surface-avoiding mode closest to the

zone-center.

superlattice subs.

Figure 5.9: Snapshots of the strain, starting with an initial gaussian wave modulated by the
function K(z). The initial strain propagates from the superlattice into the substrate (a), (b) and
(c). The superlattice acts as a cavity that keeps the surface-avoiding modes near q = 0 inside the
superlattice, (d), (e) and (f).

In Chapter III we saw that the eigenmodes of a superlattice near q = 0 avoid

the boundaries of the superlattice. Figure 3.6 (a) shows a few eigenmodes of this

superlattice near the zone center as indicated schematically in Fig. 3.6 (b). This

calculation was done with a substrate of 600 nm of GaAs. In 3.6 (c) we show the

function Gn introduced in Chapter III near the first folded mini-gap, represented

schematically in (b). This function determines the relative amplitudes of the

eigenmodes after being excited by the laser pulse. As we can see in (c), modes that

are surface avoiding such as 1 and 3 couple stronger with the excitation pulse than

mode 2′ which is essentially a substrate mode that goes in the superlattice. This
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Figure 5.10: (a) A few eigenmodes near the first acoustic bad-gap at the zone center of the
Brillouin zone (b). The function Gn defined in Chapter III determines the strength of the coupling
of each mode with the laser pulse (c).

follows from Eq. (3.17) since modes with higher amplitude in the superlattice have

a bigger overlap with the pump intensity and give a stronger contribution to the

spectrum, Gn(ω). Note that mode 2′ is the propagating counterpart of a substrate

mode, as the GM in Fig. 3.6.

The number of substrate modes that occur between two surface-avoiding

eigenmodes depends on the substrate thickness, since the total number of

eigenmodes increases with the thickness. However, the surface-avoiding ones are

superlattice modes, hence the number of peaks in the curve (c) depends on the

number of periods in the superlattice, N . In a free-standing structure, the number

of points in (c) is equal to N which is also the number of modes in each acoustic

branch.

We can estimate an upper bound for the lifetime of the q ≈ 0 mode based on

the time of flight for the acoustic wave to cross the superlattice. If R is the acoustic
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reflectivity of the superlattice-substrate interface and vg ≈ 230 m/s is the group

velocity at q = π/L, where L is the thickness of the superlattice, the decay rate can

be estimated as γ−1 = vg(1−R)/L = 5 ns, which is consistent with our results. This

value assumes that the only decay of the signal is due to the phonon leaving the

superlattice. Other mechanisms such as anharmonicity can contribute to the phonon

decay and shorten the measured lifetime.
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Figure 5.11: Differential reflectivity with laser pulses with λ = 800 nm. (a) Long delay scan
showing folded phonons up to 800 ps after initial excitation. (b) Expanded view of the same scan
showing the monochromatic signal.

5.2.2 Below-gap excitation

As a final comment on the reflectivity measurements, we show in Fig. 5.11 results

obtained with laser pulses centered at λ = 800 nm. In contrast with the previous

data, this trace shows a much simpler behavior of a decaying oscillatory signal

with a single frequency, as seen clearly in Fig. 5.11 (b). Since the laser energy

is below the superlattice band-gap, neither the excitation nor the detection are

mediated by real carriers; instead the acoustic folded phonons are generated through

Impulsive Stimulated Raman scattering (ISRS) which, due to phase matching, leads

to the excitation of only the q = 0 mode [27]. This explains the missing Brillouin

oscillation in the time trace. The surface contribution to the differential reflectivity,
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Eq. (5.2), is responsible for the detection, and since the only excited mode is the

q = 0 surface-avoiding wave, the spectrum, Fig. 5.12, contains only one peak at

the expected frequency. Note the logarithmic scale in this figure indicating that the

trace from this acoustic mode is extremely long-lived. The lifetime of the q = 0

acoustic mode obtained from this trace is τ = 500 ps.
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Figure 5.12: Fourier transform of the data in Fig. 5.11. The spectrum contains only one peak at
the frequency of the zone-center mode.

75



CHAPTER VI

X-RAY STUDIES OF ACOUSTIC WAVES

FROM SUPERLATTICES

We saw in Chapter III that the frequencies of the folded phonon doublet observed

in an optical pump-probe experiment depend on the wavelength of the probe (see

Eq. (3.21)). This shows one disadvantage of the all-optical pump-probe scheme: The

excitation and the detection processes are coupled in the data, making it difficult

to extract detailed information about the acoustic excitation. In addition, both the

detection and the generation are mediated by electronic transitions, which determine

the optical properties, and hence the data contains mixed information about the

acoustic phonons and the electronic response. Our two-superlattice approach [32]

provides information on the propagation of acoustic phonons by separating the

detection from the generation, but it does not solve the problem of the electronic

response. Alternative probes can provide complementary information. Stanton et.

al. [18] used superconducting bolometers to estimate the bandwidth of the generated

acoustic wave. Frequency selectivity is obtained in this approach with an additional

superlattice filter in the detection.

In this Chapter, we present laser-pump X-ray probe experiments that aim to

provide information on the spectrum of the folded acoustic phonons generated from

semiconductor superlattices. Unlike optical excitation in solids, X-ray diffraction by

acoustic modes is not mediated by valence intra- or inter-band electronic transitions.

The X rays are scattered primarily by localized and tightly bound electrons in
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the lattice ions. This gives X-ray diffraction great sensitivity to atomic motion

and makes ultrafast X-ray scattering a great tool to study lattice dynamics. We

first introduce the laws of X-ray diffraction by a periodic lattice, in particular the

dynamical theory of diffraction. Next, we discuss the results of the time-resolved

experiments.

6.1 Kinematic X-ray diffraction and Bragg’s law

Since the wavelength of the X rays, λ, is of the order of the inter-atomic spacing in

a solid, the three dimensional crystal can be regarded as an infinite set of parallel

planes of atoms separated by a distance d that scatter the incident radiation (Fig.

6.1). The well known criteria for constructive interference of the scattered radiation,

λ = 2d sin θ, (6.1)

gives the angle θ at which the X rays are diffracted. This equation can be

derived by requiring that the two reflected beams travel a distance equal to a

wavelength. Referring to Fig 6.1, this means that, for constructive interference,

AB + BC − AD = nλ, where n is an integer. By simple inspection from the figure,

we have AB = d/ sin θ, BC = d/ sin θ and AC = 2d/ tan θ, while AD = AC cos θ. In

terms of the angle θ the condition for constructive interference is

λ = AB +BC − AD =
2d

sin θ
− 2d

tan θ
cos θ =

2d

sin θ

(
1− cos2 θ

)
, (6.2)

which is the same as Eq. (6.1)

Bragg’s law tells us in which directions the scattered radiation is diffracted, but it

gives no information on the intensities of the reflection. For this, a theory that takes

into account the microscopic arrangement of the scatterers in the solid is necessary.

Consider a monochromatic wave polarized along x̂ with complex electric field

E = E0 x̂ exp[i(ω0t − k0 · r)] that is incident on an large crystal. The crystal is
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Figure 6.1: Incident radiation reflected by two parallel atomic planes separated by a distance d.
Bragg’s law dictates at which angle the constructive interference between the scattered waves
occurs.

represented by an array of atoms at positions {rj}. Each unit cell in the Bravais

lattice can contain more than one atom [25]. As the wave propagates, it is scattered

by the electrons in the crystal. The amplitude of the scattered electric field at a

distance R, large compared with the interatomic distance, is a superposition of

partial waves scattered by each atom [51, 52]

Es =
e2

mc2R
E0e

iω0t
∑
j

∑
n

fne
−i[(k0−ks) · (rj+rn)] (6.3)

where k0 and ks are the incident and scattered wavevectors, rj is the position of unit

cell j, rn and fn are the position and the atomic form factor of atom n in the j-th

unit cell, and e2/mc2 is the classical electron radius. After some rearrangement, Eq.

(6.3) becomes

Es =
e2

mc2R
E0e

iω0t
∑
n

fne
−i[(k0−ks) · rn] ×

∑
j

e−i[(k0−ks) · rj ]. (6.4)

The averaged scattered intensity is proportional to the modulus squared of this
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expression,

I =
c

8π
EsE

∗
s =

(
e2

mc2R

)2

|E0|2
∑
nm

fne
−i[(k0−ks) · (rn+rm)]

×
∑
jl

e−i[(k0−ks) · (rj+rl)], (6.5)

which involves a double sum over the lattice sites. As the crystal contains ∼ 1023

unit cells, the double sum that comes from the second factor of Eq. (6.4) is basically

zero except near

k0 − ks = G, (6.6)

where G is a wavevector of the reciprocal lattice of the crystal. When Eq (6.6) is

satisfied, the intensity in Eq. (6.5) is proportional to N2, where N is the number

of unit cells in the scattering volume. The vectors {G} form a Bravais reciprocal

lattice and satisfy

eiG · rj = 1 (6.7)

for all the vectors {rj} in the real space lattice. Equation (6.6) is an alternative way

to express Bragg’s law which determines the direction ks of the scattered radiation

for a given incident wavevector k0 and a given set of atomic planes, represented by

the vector G. The equivalence between Eq. (6.14) and Eq. (6.6) can be shown as

follows. Multiply Eq. (6.6) by G to obtain

k0 ·G− ks ·G = G2. (6.8)

The dot-product can be expressed in terms of the angle between the diffracting plane

and the incident vector k0. From the diagram in Fig. 6.2 we have k0 ·G = k0G sin θB

and Eq. (6.8) becomes,

2k0G sin θB = G2,

which reduces to Eq. (6.1), since k0 = 2π/λ, and d = 2π/G = 2π/|G|.

The first sum in Eq. (6.4) can be identified as the structure factor of the Bragg
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Figure 6.2: Diagram of the vectors in Eq. (6.8).

reflection with wavevector G,

FG =
∑
n

fne
iG · rn , (6.9)

where the sum runs over all the vectors in the basis, i.e., all the atoms in the unit

cell. The structure factor has information on how the different elements within the

unit cell scatter the incident radiation. The total reflected intensity is proportional

to |FG|2, which can be zero in certain cases, depending on the composition and the

arrangement of the different elements in the unit cell.

Figure 6.3: Structure of diamond, from [6]. The side of the cube is a.

The zinc-blende structure of the materials studied in this thesis is the two-
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element equivalent of the diamond structure shown in Fig 6.3. This structure can be

represented by a face-centered cubic (fcc) lattice with a cube of side a. In order to

account for all the atoms inside the cube, we add the vectors of the basis

r1 = 0, (6.10)

r2 =
a

4
(1 1 1), (6.11)

From Eq. (6.9), the structure factor FG, given by a sum over all the vectors in the

basis is

Fhkl = f(1 + e−iπ(h+k+l)/2)

Table 6.1 shows the first few Bragg peaks for diamond. We have included the angle

of the diffracted beam for X-ray photons with energy 10.3 keV, and assuming a

lattice constant a = 5.8687 Å [7]. Note that for the zinc-blende structure with

h k l Structure factor 2θ [deg] Q [Å
−1

] d[Å]
1 1 1 1 20.4637 1.8544 3.3883
2 0 0 0 23.6721 2.1413 2.9343
2 2 0 2 33.7245 3.0282 2.0749
3 1 1 1 39.7707 3.5509 1.7695
2 2 2 0 41.6193 3.7088 1.6941
4 0 0 2 48.4378 4.2825 1.4672
3 3 1 1 53.1067 4.6668 1.3464
4 2 0 0 54.5993 4.7880 1.3123
4 2 2 2 60.3204 5.2450 1.1979
3 3 3 1 64.4027 5.5631 1.1294

Table 6.1: Allowed Bragg peaks of the diamond structure. The lattice constant of the cubic unit
cell is a = 5.8687 Å and the X-ray photon energy is 10.37 keV.

two kinds of atoms, A and B, the geometrical arrangement is the same as for

diamond, however, the atomic form factors fA and fB are different and therefore

the interference between scattered waves from A and B does not cancel completely,

allowing some of the peaks in Table. 6.1.
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6.1.1 Perturbation from the perfect crystal

So far, our treatment of X-ray diffraction assumes that the ions rest unperturbed

at the lattice sites. However, at finite temperature, the ions undergo thermal

motion around their equilibrium positions. These perturbations reduce the

intensity of the reflected beam by the well known Debye-Waller factor e−2M ,

where M = 8π2〈u2
G〉(sin θ)/λ2 for a crystal with one atom per unit cell [51]. Here,

〈u2
G〉 = 〈(u ·G)2〉 is the mean square displacement of the ions around the equilibrium

positions projected onto the lattice vector. The excitation of the crystal by an

ultrafast laser pulse leaves the ions in the lattice oscillating about their equilibrium

positions. The coherent motion of the ions modulates the scattering atomic planes

in Eq. (6.14) and, therefore, affects the time-resolved X-ray diffraction pattern.

Consider a single mode with wavevector q and polarization ε̂q,j. For simplicity,

we assume a cubic crystal with one atom per unit cell for which the structure factor

is given by f . The lattice perturbation modifies the diffracted X-ray intensity, Eq.

(6.5). The expression for the intensity of the perturbed diffracted beam is [51],

I1 =
1

2

(
e2

mc2R

)2

|E0|2f 2e−2M
∑
g j

Ggj

∑
nm

[
e−i[(k0−ks+q) · (rn+rm)]

+e−i[(k0−ks−q) · (rn+rm)]
]
, (6.12)

with

Gg j =
1

2
[(k0 − ks) · ε̂q j]2〈a2

q j〉. (6.13)

Here, 〈a2
q j〉 is the mean square amplitude of the phonon mode. The scattered

intensity, Eq. (6.12), is negligible except near

k0 − ks = G + q. (6.14)

This is the same as Eq. (6.6) with the additional term q from the vibrational mode.

This relation can be thought of as the phase matching condition for the incident and
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diffracted radiation in the presence of a phonon with wavevector q.

k0

ks

G

(a)

k0

ks

q

G

(b)

Figure 6.4: Diagram of the vectors in Eqs. (6.6) and (6.14). The dots represent point in the
reciprocal lattice. (a) The usual Bragg condition for an unperturbed crystal. (b) Diffraction from a
crystal under the presence of a perturbation with wavevector q.

The intensity of the diffracted beam perturbed by the phonon, Eq. (6.12), leads

to the modified Bragg’s condition given by Eq. (6.14). In addition, the superlattice

one-dimensional reciprocal space contains lattice vectors that also contribute to the

scattering through Eq. (6.14). Those wavevectors are given by multiples of 2π/D,

where D is the superlattice period. The two situations are shown schematically

in Fig. 6.4. The dots represent the crystal reciprocal space; (a) is a graphical

representation of Eq. (6.6): incident radiation with wavevector k0 is scattered into

ks by a reciprocal lattice vector G. In (b) the incident beam is scattered into

ks with the help of a phonon of wavevector q. The periodic modulation of the

structure factor in the superlattice can also give rise to the situation shown in (b).

In this sense, the periodic structure can be thought of as a static grating, and the

wavevector q is provided by the superlattice reciprocal space.

6.2 Dynamical diffraction

The kinematic theory of X-ray diffraction ignores multiple scattering, and assumes

that the incident X-ray beam is not depleted as it propagates. In other words, the

scattering is well described by the first Born approximation, where the solution is
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obtained by assuming the scattered field to be negligible compared with the incident

field. However, in a strongly scattering situation where multiple scattering can take

place, such as very close to a Bragg reflection or in a big crystal, the diffraction

of the scattered field as well as the extinction of the incident beam cannot be

neglected. For example, part of the diffracted beam can be scattered back into the

incident beam. The dynamical theory of diffraction takes into account multiple

scattering. The incident and diffracted beams are coherently coupled and the energy

is shared by the two waves. The theory is analogous to the theory of electrons in

periodic potentials that gives rise to the band structure in solids [25]. The crystal is

represented by a periodic electron density, which yields a periodic dielectric function,

and the solutions for the fields are obtained by Fourier analysis. The general problem

of solving Maxwell’s equations in a perfect crystal is treated in great detail in the

paper By Batterman and Cole [53]. In what follows, we introduce the equations

of the dynamical theory of diffraction by strained crystals. For simplicity we will

consider the situation where the crystal properties vary only in one dimension.

6.2.1 The Takagi-Taupin equation

Takagi [54], and independently, Taupin [55], derived an approximate equation for

the diffraction of X rays by strained materials. The equations are valid near the

Bragg condition and when the strain is small and varies slowly (i.e. |q| � |G|) so

that the eikonal approximation can be justified. The Takagi-Taupin equations in a

centro-symmetric crystal are

iλ
π
β0 · ∇D0(r) = ψ0D0(r) + ψHDH(r), (6.15)

iλ
π
βH · ∇DH(r) = ψ0DH(r) + ψHD0(r)− αHDH(r), (6.16)

where λ is the X-ray wavelength in vacuum, D0,H are the electric displacement of the

incident and the diffracted fields in the crystal, β0,H are the wavevectors inside the
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material, and αH = −2(θ − θB) sin 2θB is the offset from the Bragg condition. The

quantities ψ0,H , are the Fourier components of the periodic electric susceptibility

of the crystal which are proportional to the structure factor. Note that inversion

symmetry imposes the condition ψH̄ = ψH , which we have used in Eq. (6.15).

When the material properties vary only in one dimension such as in a multilayer,

the Takagi-Taupin equations can be approximated by a one-dimensional differential

equation. Since the index of refraction for X-ray radiation is ' 1, D ≈ E and the

quantity

X =

∣∣∣∣ DH(r)√
bD0(r)

∣∣∣∣2 (6.17)

is a good approximation to the X-ray reflectivity I/I0. Here, b is the ratio of the

direction cosines of the incident and diffracted beam with respect to the surface

normal. With these considerations, the Takagi-Taupin equation in one dimension for

the Bragg geometry becomes [56]

i
dX

dζ
= (1 + ik)X2 − 2(y + ig)X + (1 + ik). (6.18)

The parameters are defined as follows: b = γ0/γH , γ0,H = direction cosines of the

incident and diffracted beam with respect to the inward normal. ζ = π|ψ′H |λ
√
γ0γHz,

z = depth, ψ0,H = −(e2/mc2)(λ2/π)(F0,H/V ), F0,H = ψ′0,H + iψ′′0,H structure factor of

the incident and diffracted wave, V volume of the unit cell, g = (1 + b)ψ′′0/2|ψ′H |
√
b,

k = ψ′′H/ψ
′
H , and y = [(1 + b)ψ′0 − bαH ]/2|ψ′H |

√
b.

The strain, η, is included in αH ,

αH = 2(θ − θB) sin 2θB − (c1η1 + c2η2), (6.19)

where

c1 = 2 sin(2θB)[cos2 φ tan θB − sinφ cosφ]

c2 = 2 sin(2θB)[sin2 φ tan θB − sinφ cosφ],
(6.20)

and we have separated the contributions to the strain into the strain parallel, η1,
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and perpendicular, η2, to the surface normal.

Wie et. al. derived an analytical solution to this equation for non-uniform

films [57],

X(ζ) =
sX0 + i(B + CX0) tan[s(ζ − ζ0)]

sX0 − i(B + CX0) tan[s(ζ − ζ0)]
, (6.21)

where B = −(1 + ik), C = y+ ig, s = (C2−B2)1/2 and the reflectivity of the sample

is given by X(0). The solution, X(0), can be found if we know the reflectivity of the

substrate X0 = X(ζ0), which is calculated by inserting X = X(ζ0) in Eq. (6.21) and

gives

X0 = − B

C −
√
C2 −B2

. (6.22)

The solution, X0 can be expressed in terms of the diffraction angle by defining the

parameter

s =
b∆θ sin 2θ + 1

2
ΓF0(1− b)

|P ||b|1/2Γ
√
FHFH̄

(6.23)

where ∆θ = θ − θB, and P is defined by the polarization, which for σ polarized

photons, P = 1. The X-ray reflectivity for the symmetric Bragg reflection can be

written in terms of s as

I

I0

=

∣∣∣∣EHE0

∣∣∣∣2 = |b|
[
s±
√
s2 − 1

]2 FH
FH̄

(6.24)

The two solutions correspond to the α and β branches of the dispersion curves [53].

Eq. (6.24) gives the diffraction curve of the infinite crystal in terms of the angle θ for

a symmetric Bragg reflection. A plot of Eq. (6.24) is shown in Fig 6.5 (blue curve).

The peak is asymmetric because the β branch suffers stronger absorption than the

α branch, which correspond to the two solutions in Eq. (6.24). Also, the width of

the peak is related to the Darwin width of the (hkl) reflection and is a measure of

the magnitude of the Fourier component of the electron density at the wavevector

G = (hkl).

In Fig. 6.5 we show the calculated reflectivity of the H = (004) symmetric Bragg
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Figure 6.5: X-ray reflectivity of the H = (004) Bragg reflection from a 1.5 µm thick Al0.3Ga0.7As
film on a GaAs substrate. The photon energy is 10 keV.

reflection, i.e. b = −1, for a 1.5 µm thick Al0.3Ga0.7As film on a GaAs substrate. The

photon energy is 10 keV and the lattice constant of the substrate is a0 = 5.6534 Å.

The blue curve is the solution for the substrate, X0.

The finite size of the film produces oscillations in the reflectivity, as seen on

the lower side of the AlGaAs peak. Note also that, since the lattice constant of

the Al0.3Ga0.7As film is slightly different than the substrate, it can be resolved as a

splitting of the diffracted peaks.

6.2.2 X-ray diffraction by a multilayer

The calculations presented above can be easily extended to the case of an arbitrary

multilayer. Starting from Eq. (6.21) for each layer in the superlattice, the total

reflectivity can be constructed in an iterative manner. Using the same notation as

before, Eq. (6.21) is modified to

Xj = X(ζj) =
sjXj−1 + i(Bj + CjXj−1) tan[sj(ζj − ζj−1)]

sjXj−1 − i(Bj + CjXj−1) tan[sj(ζj − ζj−1)]
. (6.25)
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where the parameters refer to the values in each layer and ζj is the z-coordinate of

layer j.

Most of the X-ray data in this thesis were taken at a symmetric reflection, that

is, the incoming and reflected wave form the same angle with the sample normal.

This is equivalent to saying that the surface normal of the crystal is parallel to the

reciprocal vector G. A radial scan of the wavevector q along the direction of G is

achieved by varying simultaneously the sample, θ, and the detector, 2θ, angle with

respect to the incident direction as shown in Fig. 6.6. The situation in the diagram

in the inset gives a diffraction peak characteristic of the superlattice, as was discussed

earlier in Fig. 6.4. Figure 6.6 shows the scattering geometry for a symmetric Bragg

reflection on a superlattice. The vector diagram in the inset represents the Bragg

condition, Eq. (6.14), when the superlattice wavevector q = 2π/D satisfies the phase

matching condition.
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Figure 6.6: Schematic representation of the symmetric Bragg reflection from the superlattice. The
inset shows the condition for which the sidebands occur.

The diffraction peaks are labeled by the Miller indices (hkl) of the corresponding

diffracting planes. As we mentioned earlier in this Chapter, the structure factor,

Fhkl, determines the strength of the (hkl) diffraction peak and it depends on the
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geometrical arrangement and the type of elements in the unit cell of the Bravais

lattice of the crystal. In Fig. 6.7 we show reflectivity results for the (004) Bragg

reflection (top trace) for a superlattice of nominally 75 periods of dGaAs = 59 Å and

dAlAs = 23.5 Å on top of a GaAs substrate oriented along (001). The X-ray energy

was 8 keV. The splitting of the (004) reflection, seen at the center of the curve, is

due to the difference in the lattice parameter between the GaAs substrate and the

average of the AlAs/GaAs layers. The effective alloy has a slightly larger lattice

constant and shows the corresponding (004) Bragg reflection at a lower angle. The

sidebands (+1) and (−1) originate from the superlattice periodicity, q = 2π/D,

as explained in Fig. 6.6. In addition, note that there are additional oscillations

in the scan, more noticeable between the main peak and the (+1) sideband. The

dynamical diffraction extended for superlattice diffraction can be used to identify

the origin of these smaller features in the radial scan. Similar features can be seen

in the (002) Bragg reflection, as shown in Fig. 6.8. Here we can see a higher order

sideband corresponding to (±2). Reflections from (002) planes are forbidden for the

diamond structure. The reason why we see the (002) is that the atomic scattering

factor of gallium, fGa, and the corresponding one for arsenic, fAs, are very different

and thus, the scattered radiation does not completely cancel, resulting in a partially

allowed diffraction peak. The oscillation between the main Bragg peak and the

superlattice sidebands originate from the scattering of a ∼ 70 nm AlGaAs layer

deposited between the superlattice and the substrate that acts as an etch stop

during the chemical etching process to remove the substrate. These features are well

reproduced by the calculations, and the stop layer thickness is close to the nominal

value. The fast overall modulation of the curve is due to interference between the

radiation from the substrate and that from the superlattice.

From these curves we can extract the period D of the superlattice. From Eq.

(6.1), the angle shift ∆θ corresponding to a small change in the reciprocal lattice
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Figure 6.7: Measured (upper) and calculated (lower) rocking curve near the (004) Bragg reflection.

wavevector q is

2k0 cos θB∆θ = q

where θB is the Bragg angle of the unperturbed reflection with wavevector G

and q = 2π/D � G is the wavevector of the superlattice. Using ∆θ = 0.6◦ and

λ = 1.5498 Å we obtain for the superlattice period D = 8.84 Å, consistent with the

value obtained from the optical experiments and the parameters used in the lower

curves of Figs. 6.7 and 6.8.

We will next focus on the lattice dynamics studied by time-resolved X-ray

diffraction.
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Figure 6.8: Measured (upper) and calculated (lower) rocking curve near the (002) Bragg reflection.

6.3 Time-resolved X-ray experiments

Motivated by the two-superlattice experiments of Chapter V, we devise a scheme

to measure the spectrum of folded acoustic phonons excited by an ultrafast laser.

A diagram is shown in Fig. 6.9; a short laser pulse excites high frequency folded

acoustic phonons in the superlattice, which subsequently leak into the GaAs

substrate. The X rays can be made to diffract from either the front surface or the

opposite side of the substrate. The X rays probe directly the strain of the acoustic

phonons in the substrate.

In the simplest picture, the folded acoustic phonon can be regarded as a moving

time-varying grating with spacing equal to the superlattice period, D. Such a grating

produces an X-ray diffraction pattern that varies in time and modulates the static

rocking curve (Fig. 6.8). In the hypothetical case that we had very short X-ray

pulses, we would see the intensity of the superlattice sidebands oscillating up and

down in time with the frequency of the phonon [58]. However, our 100 ps-long X-ray

pulses give us an average over many acoustic cycles, washing out any time-dependent

effect in the rocking curve. In spite of this limitation, we can learn about the
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Figure 6.9: Sample and geometry for the X-ray experiment.

propagation of the folded phonons into the substrate and measure the magnitude

of the different wavevector components, which is directly related to the frequency

spectrum of the laser-excited wave. This is analogous to doing a frequency-domain

spectroscopy experiment with the advantage that we can “watch” the coherent

excitation as it moves out of the superlattice.

6.3.1 GaAs/AlAs superlattices

The static diffraction pattern for this superlattice was discussed in the previous

section (see Figs. 6.7 and 6.8). Now we introduce the results of time-resolved

diffraction from this superlattice. The geometry of the experiment is shown in Fig.

6.9. An ultrafast ∼ 50 fs laser pulse is absorbed in the superlattice. Following

excitation, a 100 ps burst of s-polarized X rays with an energy of 8 keV diffracts

from either the superlattice side or the opposite substrate surface. The laser central

wavelength was fixed at 800 nm with an energy per pulse of ∼ 0.3 mJ polarized

in the plane of incidence (p-polarized). We focused the laser beam to maintain an

optical fluence of 2 mJ/cm2. The laser is incident on the sample at a rate of 5 kHz

at nearly Brewster’s angle to minimize reflection.

Figure 6.10 shows time-resolved scans at an angle θ = 29.389◦ on the lower
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slope of the GaAs peak (see Fig. 6.7 for reference). In (a) the X rays diffract from

the superlattice side and in (b) they diffract from the substrate surface. In these

plots, the vertical axis shows the diffracted intensity from the X-ray bunch at a

given time after the laser arrives, Ion, normalized by the intensity of the same X-ray

bunch one revolution around the synchrotron ring before the laser hits the sample,

Ioff . The laser excites carriers in the superlattice which subsequently relax to the

bottom of the conduction band leaving behind phonons in the form of heat. This

sudden heating of the lattice gradually diffuses until the superlattice reaches thermal

equilibrium with the substrate [59]. This temperature diffusion of the deposited heat

is the process behind the slowly decaying signal in Fig. 6.10 (a). On top of this,

as we discussed in Chapters III and V, the absorption of the laser pulse generates

strain in the superlattice that propagates into the substrate. The strain comprises

excitations of different folded acoustic branches, in particular, on the lower side of

the lowest branch. The peak right after t = 0, superimposed on top of the slow

temperature decay, is the acoustic wave excited by the laser in the superlattice.

Because our X-ray pulses are ∼ 100 ps long, we can only resolve time events slower

than the pulse duration. This peak is what we called the “Brillouin” component

of the signal in previous chapters. After ∼ 40 ns the acoustic wave reaches the

superlattice again after reflecting from the substrate surface. Since the strain flips

sign upon reflection from a free surface, the echo at 40 ns appears with the opposite

sign, i.e., there is a decrease in the relative intensity. When the probe reflects from

the substrate side we obtain the trace shown in Fig. 6.10 (b). This trace shows

the strain pulse generated form the superlattice arriving at the opposite surface of

the substrate after 20 ns. Note that, consistent with the argument given above, the

strain appears as an increase in the recorded signal.

The diffraction data taken on the substrate surface at the wavevector q = 2π/D,

(not shown) where the folded phonons are expected, shows no signature of folded
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Figure 6.10: Diffraction signal from the propagating strain.

phonons, indicating that they decay too fast and do not reach the opposite surface.

Anharmonic decay can be important for phonon modes of such high frequencies.

The Debye temperature of GaAs at 300 K is ΘD = 360 K, which means that a

significant fraction of the phonon modes are populated at room temperature leading

to a high rate of decay. We will come back to the question of anharmonic decay

when we discuss the results at lower temperatures in the following sub-section. The

advantage of reducing the temperature is twofold: the lattice temperature is lowered,

reducing the anharmonic decay, but also laser damage is avoided by cooling down.

An issue that arises when cooling down is that the band-gap of the GaAs/AlAs

superlattice at 10 K is above the laser photon energy, impeding the excitation of the

superlattice with 800 nm pulses. Other materials that have a lower band gap at low

temperature have to be used for the superlattice compounds. This is the scope of

the next section.

6.3.2 GaxIn1−xAs/AlxIn1−xAs superlattices

The sample studied in this section is a 60-period Ga0.47In0.53As/Al0.48In0.52As

superlattice grown on an InP substrate. The layer thicknesses are dGaInAs = 12 nm

and dAlInAs = 4.4 nm. The InP substrate and the Ga0.47In0.53As/Al0.48In0.52As alloys
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crystallize in the zinc-blende structure, as most III-V compounds. In order to avoid

hard X-ray fluorescence from the elements in the sample, the X-ray photon energy

was restricted to energies below the Ga K absorption edge at 10.37 keV.

A static rocking curve for this superlattice is shown in Fig. 6.11. The curves

resemble the results for the GaAs/AlAs superlattice discussed above, exhibiting

a superlattice pattern, indicated by the zeroth order, labeled (0), and the (−1)

and (+1) sidebands, superimposed with the substrate reflection, InP. The reason

for the observation of the substrate peak is the rather long absorption length of

the X rays, ∼ 6 µm, compared to the length of the structure. Note also that the

splitting between the InP and the 0-order peak of the superlattice is larger than

in the GaAs/AlAs case (Fig. 6.7), indicative of a greater mismatch between the

lattice parameters of the Ga0.47In0.53As/Al0.48In0.52As superlattice and the InP

substrate. As we will show later, this can be used to our advantage to resolve the

high-wavevector phonons in the substrate.
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Figure 6.11: Rocking curve of the InP superlattice near the (004) symmetric Bragg reflection.
Sidebands labeled (0), (±1), (±2) correspond to the superlattice, and the peak labeled InP is the
(004) substrate reflection.

The time-resolved experiments on this sample were performed in the same
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geometry as for the GaAs sample: The laser excites acoustic waves in the

superlattice, and the X rays diffract from the back surface (Fig. 6.9). The data

presented in the following discussion were taken at T = 10 K using a commercial

displex system customized for optical/X-rays experiments.

Figure 6.12 shows the arrival of the acoustic pulse at the surface opposite to

the superlattice (the equivalent of Fig. 6.10 (b) for the sample on InP substrate).

In this figure we present three consecutive acoustic pulses, that correspond to

the first arrival at the InP surface and the second and third echoes. These are

shown superimposed on a common time axis in order to compare the shape of the

wave-packet as the excitation bounces back and forth in the sample. We observe up

to a total of four echoes reaching the substrate surface, after traversing the 300 µm

InP substrate seven times.
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Figure 6.12: Time scans at θ = 24.1964◦, below the (0) peak of the GaInAs/AlInAs superlattice.
The curve show the first arrival of the acoustic pulse at the substrate surface and the first and
second echoes. The inset shows the amplitude of the different acoustic pulses as a function of
arrival time. The solid line is an exponential fit.

The inset of Fig. 6.12 shows the amplitude of the successive acoustic pulses as a
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function of the arrival time superimposed on a fit to e−t/τ . The decay of τ = 115 ns

is much faster than we expected. The relaxation rate for long wavelength acoustic

phonons in a crystal with cubic symmetry scales with temperature as [60]

γ ∝ T 3ω2, (6.26)

provided that the temperature is well below the Debye temperature, so that the

only significant contribution from the anharmonic potential is the cubic term

∼ u3 [60]. To understand this point, consider the superlattice as an effective bulk

material; the absorption of the laser generates a sound wave peaked at the frequency

ν = v/ξ = 18 GHz, where ξ = 1/250 nm is the absorption length of the laser in

the superlattice and v = 4580 m/s is the speed of sound [12]. Using τ = 115 ns,

and assuming that the scaling (6.26) still holds at the folded phonon frequencies,

we obtain for the 0.25 THz folded phonons a decay τFP = 740 ps or, equivalently, a

mean free path lFP = 3.3 µm. This decay time is long enough for the folded phonons

to leak out of the superlattice and reach the substrate, but not long enough for these

modes to propagate across the ∼ 300 µm-thick InP substrate.

Folded phonons have wavelengths equal to multiples of the period of the

superlattice. This means that the small contribution to the X-ray diffraction from

folded acoustic modes should appear superimposed on the large static superlattice

sidebands, obscuring any time-dependent effects. However, the acoustic wave that

leaks into the substrate has a different wavevector due to the difference in the speeds

of sound. Furthermore, the diffraction angle shifts in the substrate are referenced

relative to the InP peak instead of the (0) superlattice peak, as shown in Fig.

6.11. The folded phonon contribution in the substrate is expected at an angle

θInP(004) ± ∆θ, where θInP(004) is the angle for the (004) reflection from the InP

and ∆θ is approximately the shift from (0) to the (−1) sideband (neglecting the

small mismatch in the speed of sound). This is indicated in Fig. 6.11 by a horizontal
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arrow. The splitting of the InP and the (0) peak gives us a clear way to discern

the effect of the high frequency acoustic phonon leaking into the substrate from the

static superlattice sidebands.

Material vs [m/s] ρ [g/cm3] Thickness
Al0.48In0.52As 4703 4.758 12 nm
Ga0.47In0.53As 4253 5.55 4.4 nm

InP 4580 4.81 375 µm

Table 6.2: The constituents of the AlInAs/GaInAs superlattice grown on InP. The material
parameters are from [7]. The thicknesses are nominal values.
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Figure 6.13: Time resolved diffraction curve near θInP −∆θ.

Figure 6.13 shows a time-resolved rocking curve on the lower side of the (−1)

sideband, around θInP − ∆θ where the folded phonon signature is expected. The

color bar is a measure of the diffracted intensity induced by the laser relative to

the unperturbed signal, ION/IOFF. At t = 0.1 ns, the laser pulse is absorbed in the

superlattice. The absorption length for light of 800 nm wavelength is ∼ 250 nm

for a Ga0.47In0.53As alloy [61], so that most of the laser energy is absorbed in the

1 µm-thick superlattice. On the other hand, the InP substrate is not perturbed until
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the energy has had enough time to propagate into the substrate. We assume that

instantaneous laser heating produces a thermal expansion that shifts the superlattice

curve towards lower angles, indicating an increase in the lattice constant. The

prominent feature at θ ' 24.08◦ on the right side of Fig. 6.13 is due to the shift of

the (−1) sideband from the thermal expansion of the superlattice.

At a delay of ∆t = 200 ps after the laser absorption, a much weaker signal

appears at θ ' 24.04◦ which is the angle of the high-wavevector phonon-modes

that originate from the folded phonons leaking into the substrate. Note that this

time delay corresponds roughly to the transit time of an acoustic pulse through the

superlattice ∆t = L/vSL = 225 ps, with L the length and vSL the speed of sound of

the superlattice.

Figure 6.14: Time scans at different angles near the (−1) rocking curve, (a) θ = 24.084◦ below the
(−1) sideband and, (b) θ = 24.03◦ at the folded phonon angle.

Figure 6.14 shows time scans for two fixed angles. The top curve (a) is at an

angle θ = 24.084◦, very close to the (−1) sideband, and the lower curve (b) at

θ = θInP − ∆ = 24.03◦. Again, there is a time-delay of ∼ 200 ps between the

onset of the two signals that corresponds to the transit time of the acoustic wave
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through the 980 nm-thick superlattice. Note the different decay time in these two

curves; trace (a) decays over tens of nanoseconds, while (b) decays in 0.9 ns. We

attribute the main contribution to the signal in (a) to the thermal expansion of the

superlattice upon absorption of the laser pulse. This explains the long relaxation

time, since the thermalization back to equilibrium is a very slow process that takes

tens of nanoseconds [59]. On top of the thermal component in (a), we observe a

sharp feature at early times, t < 0.4 ns, due to the coherent strain generated in the

superlattice. This strain wave only shifts the (−1) sideband while it remains in the

superlattice. The time duration of the sharp peak in (a) is given by a convolution

of our experimental resolution (the X-ray pulse duration) with the travel time of the

acoustic wave through the superlattice, of the order of ∼ 220 ps.

In contrast with the slow thermal diffusion of tens of nanoseconds seen in Fig.

6.14 (a), the high-frequency phonons, traveling at the speed of sound, cross the

6 µm X-ray absorption length in the InP in only 1.3 ns. This explains the decay of

the signal in (b). According to this interpretation, it takes ∼ 225 ps for the folded

phonons to reach the substrate and this is the reason why the onset seen in (b) is

delayed from the onset in (a). In addition, the decay of (b) is consistent with an

acoustic wave traveling at the speed of sound in the substrate.

Figure 6.15 shows angle-resolved scans taken from Fig 6.13, for three different

time delays ∆t = 0, 75, 225, and 263 ps. We assume that the laser pulse arrives

at ∆t = 0 ps, where we observe a shift of the (−1) sideband towards lower angles,

giving a prominent increase in the Ion/Ioff signal at θ = 24.08◦. At ∆t = 75 ps, this

peak reaches its maximum value Ion/Ioff = 2. At a delay of 225 ps the main peak has

decreased and the curve exhibits the onset of a small peak at θ = 24.04◦ and a dip at

θ = 24.02◦ and θ = 24.06◦, which become very clear at ∆t = 263 ps. These features,

which are delayed from the laser arrival by ∼ 220 ps, appear at the expected angle

for the folded phonons propagating in the substrate.
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Figure 6.15: Four different time slices of the data in Fig. 6.13: ∆t = 0 ps, 75 ps, 225 ps, and
263 ps. The peak that appears after ∼ 220 ps at θ = 24.04◦.

Figure 6.16 shows the laser-induced effect on the rocking curve (red traces,

top panel) at a time-delay of ∆t = 220 ps, taken from Fig. 6.13. For easier

comparison with the dispersion relation, we have converted the diffraction angles to

the corresponding wavevector transfer, q, measured from the InP Bragg peak. The

blue curve in the top panel is the static rocking curve, showing the InP, (0), (±1),

and (−2) superlattice peaks. Note that the wavevector transfer q is measured with

respect to the InP Bragg peak. The lower panel shows the dispersion relation of the

acoustic phonons in the superlattice (blue) in the extended zone scheme. We have

shifted the origin of the x-axis to align with the (0) superlattice peak and we have

adjusted the period D to match the wavevectors q = ±2π/D with the superlattice

peaks in the blue trace. The red curve in the lower panel is the dispersion relation

of the acoustic waves in the InP substrate, ν = vInPq. The folded phonons from

the superlattice leak into the substrate and acquire the wavevectors indicated by

the circles in the lower panel. The peaks observed in the Ion/Ioff signal, indicated

with vertical arrows in the top panel, align with the expected wavevectors in the

substrate.
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Figure 6.16: Top panel: Ion/Ioff signal near the (−1) and the (+1) sideband at ∆t = 220 ps after
time-zero (red traces). The blue curve is the static diffraction pattern showing the InP, (0), (±1),
and (−2) peaks. Bottom panel: calculated acoustic dispersion in the superlattice (blue curve)
aligned with the (0) peak, and dispersion relation of the acoustic waves in the InP substrate (red
curve). The dots indicate the position of the high-wavevector phonons from the superlattice in the
substrate.

We have performed dynamical diffraction calculations taking into account the

time-dependent strain, η(z, t). These calculations combine the simulations of the

acoustic wave equation introduced at the end of Chapter V, with the dynamical

diffraction theory presented earlier in this Chapter. The simulations require to

calculate first the strain, η(z, t), which enters in Eq. (6.19), and then iterate Eq.

(6.25) to obtain the time-dependence of the diffraction pattern. As in Fig. 5.9, the

initial folded phonon from the superlattice is assumed to have a gaussian profile

modulated by the function K(z) that gives rise to the high frequency components.

Although this, again, might not seem very physical, the conclusions drawn from
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these simulations do not depend on the specific shape of the initial strain as long

as it is modulated by the function K(z). Using a smooth envelope like a gaussian

avoids numerical instabilities that occur when using finite-differences to approximate

functions that have sharp edges or discontinuous derivatives [62]. The superlattice

structure consists of 60 periods of In0.53Ga0.47As and In0.52Al0.48As with thicknesses

d1 = 12 nm and d2 = 4.4 nm respectively, on a (001)-oriented InP substrate

represented by a 2000 nm-thick layer on top of another semi-infinite InP layer.
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Figure 6.17: (a) Calculated diffraction curve near the (004) reflection for the GaInAs/AlInAs
superlattice on an InP substrate; (b) same curve low-pass filtered to match the widths of the peaks
to the experiment.

The static diffraction pattern for this structure is shown in Fig. 6.17 (a). The

peaks shown correspond to the Bragg reflections from the InP, the (0) and the (−1)

diffraction orders of the superlattice, as observed in the experimental data in Fig.

6.11. The lattice parameter mismatch between the substrate and the superlattice

was adjusted to match the angle splitting between the InP peak and the (0) order

obtained from the experiment. As expected, the simulation predicts a high-frequency

modulation of the diffraction pattern due to the finite size of the superlattice, as

discussed in section 6.2.2. We cannot resolve such fine structure in our experiment,

however, the experimental resolution is much finer than the widths of the features in

Fig. 6.11, suggesting that the peaks are broadened significantly from the calculated
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values. The origin of this broadening is likely to be due to strain from the way

the sample was mounted. For easier comparison with the measured curves, we

low-pass filter the calculated results to eliminate the high-frequency modulation.

The resulting trace is shown in Fig. 6.17 (b).

The main question we want to answer with this simulation is whether the

observed features originate from the shift of the superlattice sideband (induced by

the low frequency strain in the superlattice), or from the propagation of the folded

phonons into the substrate. To answer this question, we calculated the diffraction

curves under two different conditions: First, with the initial strain containing the

factor K(z) that gives the folded phonons and, second, with the initial condition

given by the gaussian envelope without the factor K(z). The latter gives only the

slowly-varying part of the time evolution. Figure 6.18 summarizes the results. The

curves are calculated near the (−1) sideband and with delays of up to 700 ps, which

are long enough for the traveling waves to leave the superlattice. In Fig. 6.18 (a),

we show the time resolved pattern for the gaussian envelope without the factor

K(z) in a broad region of angles that contains the InP, (0) and (−1) peaks. These

peaks shift in time as the strain propagates into the substrate. Since a positive

strain means an expansion of the crystal, the (0) peak shifts to higher angles near

∆t = 150 ps, when the positive part of the strain leaves the superlattice. Similarly,

a shoulder in the lower side of the InP peak appears as the tensile component

of the strain reaches the substrate. The unperturbed solution of the substrate,

X0, is not affected by the propagating strain, and is superimposed on top of the

shifted InP peak from the 2000 nm layer. This gives the apparent broadening of

the substrate peak in (a), instead of the expected shift to lower angles induced

by the tensile strain. Figure 6.18 (b) is an expanded view of the same calculation

near the (−1) sideband showing the shift of the sideband due to the acoustic strain

in the superlattice. Note that the (−1) peak follows the shift of the (0) sideband
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shown in (a). Figure 6.18 (c) is the same as (b) except that the initial strain is

composed of the gaussian envelope and folded phonons with period D (calculated

including the factor K(z)). Since the envelope of the strain is the same as in (b),

the time-evolution of the (−1) sideband resembles that of Fig. 6.18 (b), however,

its intensity is modulated in time by the high frequency of the folded phonons, as

shown in more detail in Fig. 6.18 (d). This oscillation of the sideband from folded

phonons should in principle be observable using sub-picosecond laser-based X-ray

pulses, or with a streak camera [63]. However, our current pulse duration of 100 ps

at the APS is a limitation for this goal.

Figure 6.19 shows the region near the high wavevector phonons at θInP −∆θ in

the InP substrate. The strong feature on the high angle side is the (−1) sideband of

the superlattice, as in Fig. 6.13. The delayed onset of the high-frequency phonons

after ∼ 200 ps is evident at θ ≈ 25.68◦ in (a). For comparison, we shown in Fig 6.19

(b) the same region for the acoustic strain without the folded phonon function K(z).

Clearly in this case, the strain cannot produce a feature at θInP −∆θ because it has

no Fourier components at the corresponding wavevector for this angle. This confirms

that the features observed at θInP −∆θ are due to folded phonons with wavevector

q = 2π/D in the substrate.
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Figure 6.18: Calculated time-resolved diffraction pattern for the InGaAs/InAlAs superlattice. (a)
Calculation using a gaussian-shaped initial strain (logarithmic scale). The (−1), InP and (0) peaks
can be seen shifting with time; (b) view of the same results near the (−1) sideband; (c) the (−1)
sideband evolution when the strain is modulated by the function K(z) representing folded
phonons; (d) calculations with finer time resolution of the same region that show the oscillation of
the sideband induced by the folded phonons.
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Figure 6.19: Time resolved diffraction below the (−1) sideband. (a) Calculation including the
folded phonons from the superlattice, and (b) the same calculation for the gaussian shaped strain
pulse.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, I presented time-resolved studies of folded acoustic phonons

generated from semiconductor superlattices. The first of the two experiments

performed uses ultrashort laser pulses to study the generation mechanism and the

propagation of folded phonons in the time domain. In this part of the work, I

developed a novel scheme to study folded phonons that uses two superlattices as

emitter and receiver that are separated by up to 1.2 µm of GaAs. By separating

the generation region from the detection region, the contributions to the differential

reflectivity from the acoustic excitation can be isolated from electronic and thermal

effects. This approach also has the benefit of being frequency-sensitive, and allows

one to estimate the bandwidth of the excitations reaching the receiver. Results

show that modes that escape the superlattice propagate at the speed of sound and

travel without attenuation through 1.2 µm of GaAs at 80 K. In contrast, modes

with frequencies near the acoustic gaps exhibit an unusually long lifetime. These

modes have the peculiar behavior of avoiding the surfaces of the periodic structure,

as confirmed by calculations of the eigenmodes of a finite superlattice. These

observations are also supported by a fully numerical solution of the time-dependent

wave equation, which shows that at long times what remains in the superlattice is

only the mode at the Brillouin zone center.

Because of the long wavelength of light, optical probes can only couple to

excitations near the zone-center of the crystalline Brillouin zone. On the other hand,
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the wavelength of X-ray radiation is of the order of the nearest neighbor distances in

solids, and can in principle couple with excitations of any wavevector in the crystal.

In the second part of this thesis, I showed time-resolved X-ray diffraction experiments

to study the folded phonons from the superlattice after they have reached the

substrate. The phonon dispersion relation in the substrate is that of a bulk

compound and does not exhibit acoustic branch folding. Therefore, the propagation

of the high-frequency folded phonons into the substrate leads to high-wavevector

excitations that can be studied by X-ray diffraction. Experimental results show

evidence of such high-wavevector acoustic phonons leaving the superlattice at the

speed of sound. Using the strain calculations from the continuum model developed

in the first part of this work, and using the theory of dynamical diffraction of X

rays, it is possible to simulate the time dependence of the diffraction pattern which

corroborates the experimental results.

With this experiment, I demonstrated for the first time that the technique

of ultrafast X-ray diffraction is sensitive to excitations of high-wavevector in the

substrate produced by the zone-folding of the acoustic branches. The sensitivity to

excitations away from the Brillouin zone-center is unattainable with most scattering

techniques and holds promise for studies of ultrafast processes in solids that are

inaccessible with optical probes. Improvements in the time resolution will allow

simultaneous frequency and wavevector measurements to better understand the

lattice dynamics. In particular, this results hold promise for time-resolved studies of

solids by monitoring the diffuse X-ray scattering throughout the full Brillouin zone.
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APPENDIX A

FDTD METHOD FOR THE WAVE EQUATION

Here we derive a set of discrete equations for the numerical solution of Eq. (3.2)

by the method of finite difference in time domain (FDTD) [62]. The homogeneous

wave equation is

ρ(x)
∂2u(x, t)

∂t2
=

∂

∂x

[
∂u(x, t)

∂x

]
, (A.1)

where u(x, t) is the atomic displacement varying in one spatial dimension and in

time, and ρ(x) and C(x) are the position dependent density and elastic stiffness

constant, respectively. We define a uniform mesh of points, xj = {x1, . . . , xJ}, and

tk = {t1, . . . , tK}, that span the integration domain where we want to obtain the

solution. The derivatives at an arbitrary point (xj, tk), can be approximated by the

finite differences,

∂u(xj, tk)

∂x
=
u(xj + ∆x, tk)− u(xj, tk)

∆x
(A.2)

and

∂u(xj, tk)

∂t
=
u(xj, tk + ∆t)− u(xj, tk)

∆t
, (A.3)

with similar expressions for the spatial derivatives of the other quantities. If we write

uj,k = u(xj, tk) = u(j∆x, k∆t), ρj = ρ(xj), Cj = C(xj) and define the parameter

v = ∆x/∆t, using the approximations for the derivatives, Eq. (A.1) becomes

ρjv
2 [uj,k+1 − 2uj,k + uj,k−1] = (Cj+1 − Cj) (uj+1,k − uj,k) +

Cj [uj+1,k − 2uj,k + uj−1,k] ,

(A.4)
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which yields,

uj,k+1 =

[
Cj+1 + Cj
ρjv2

− 2

]
uj,k +

Cj+1

ρjv2
uj+1,k +

Cj
ρjv2

uj−1,k − uj,k−1. (A.5)

This equation gives the solution at time tk+1 if we know the solution at times tk and

tk−1. By iterating Eq. (A.5) one can construct the solution for all times if the first

two values u(xj, t0) and u(xj, t1), are known.

The initial conditions are handled by setting the initial strain and its time

derivative,

η(x, t0) =
∂u(x, t0)

∂x
= η0(x) (A.6)

and

∂η(x, t0)

∂t
=
∂2u(x, t0)

∂x∂t
= 0, (A.7)

which are known functions of position.

Note that the solution, Eq. (A.5), is valid only inside the integration domain

(x1, . . . , xJ−1). The condition at the x = 0 boundary is given by the free surface

equation

∂u(x0, t)

∂x
= 0. (A.8)

This condition can be represented numerically by extending the integration region

to points beyond the domain, u(x0, tk), such that

u0,k = u1,k, (A.9)

which satisfies Eq. (A.8).

In order to represent a semi-infinite substrate we have to force the wave to leave

the integration domain by forcing the solution at x = L to be a traveling wave in the

+x direction. That is, in terms of the quantities defined above,

uJ,l = uJ−1,l−1. (A.10)

111



BIBLIOGRAPHY

[1] A. Ducasse, C. Rullière, and B. Couillaud. Methods for the generation of
ultrashort laser pulses: Mode-locking. In C. Rullière, editor, Femtosecond Laser
Pulses: Principles and Experiments, chapter 3, pages 53–81. Springer-Verlag,
1998.

[2] T. B. Norris. Femtosecond pulse amplification at 250 khz with a ti:sapphire
regenerative amplifier and application to continuum generation. Optics Lett.,
17:1009, 1992.

[3] http://en.wikipedia.org/.

[4] R. L. Fork, O. E. Martinez, and J. P. Gordon. Negative dispersion using pairs
of prisms. Optics Lett., 9:150, 1984.

[5] www.lightsources.org.

[6] image taken from http://en.wikipedia.org/wiki/Diamond cubic.

[7] from http://www.ioffe.ru/SVA/NSM/Semicond/.

[8] D. G. Cahill, W. K. Ford, K E. Goodson, G. D. Mahan, A. Majumdar, H. J.
Maris, R. Merlin, and S. R. Phillpot. Nanoscale thermal transport. J. Appl.
Phys., 93:793, 2003.

[9] C. Colvard, R. Merlin, M. V. Klein, and A. C. Gossard. Observation of folded
acoustic phonons in a semiconductor superlattice. Phys. Rev. Lett., 45:298,
1980.

[10] S. M. Rytov. Acoustical properties of a thinly layered medium. Sov. Phys.
Acoust, 2:68, 1956.

[11] B. Jusserand and M. Cardona. Raman spectroscopy of vibrations in
superlattices. In M. Cardona and G. Güntherodt, editors, Light Scattering in
Solids V, page 49. Springer, Berlin, 1989.

[12] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc. Surface generation and
detection of phonons by picosecond light pulses. Phys. Rev. B, 34:4129, 1986.

112



[13] H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles. Time-resolved study of
vibrations of si/ge multilayers. Phys. Rev. B, 38:6066, 1988.

[14] B. C. Daly, N. C. R. Holme, T. Buma, C. Branciard, and T. B. Norris. Imaging
nanostructures with coherent phonon pulses. Appl. Phys. Lett., 84:5180, 2004.

[15] J. Chen, J. B. Khurgin, and R. Merlin. Stimulated-emission-induced
enhancement of the decay rate of longitudinal optical phonons in iiiv
semiconductors. Appl. Phys. Lett., 80:2901, 2002.

[16] O. Synnergren, T. N. Hansen, S. Canton, H. Enquist, P. Sondhauss, A.
Srivastava, and J. Larsson. Coherent phonon control. Appl. Phys. Lett.,
90:171929, 2007.

[17] K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama. Observation of
coherent folded acoustic phonons propagating in a gaas/alas superlattice by
two-color pump-probe spectroscopy. Phys. Rev. B, 60:8262, 1999.

[18] N. M. Stanton, R. N. Kini, A. J. Kent, M. Henini, and D. Lehmann. Terahertz
phonon optics in gaasalas superlattice structures. Phys. Rev. B, 68:113302,
2003.

[19] D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. Dufresne, M.
Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. M. Murnane, J. Larsson, Th.
Missalla, and J. S. Wark. Probing impulsive strain propagation with x-ray
pulses. Phys. Rev. Lett., 86:3072, 2001.

[20] A. H. Chin, R. W. Schoenlein, T. E. Glover, P. Balling, W. P. Leemans, and
C. V. Shank. Ultrafast structural dynamics in insb probed by time-resolved
x-ray diffraction. Phys. Rev. Lett., 83(2):336, Jul 1999.

[21] Christoph Rose-Petruck, Ralph Jimenez, Ting Guo, Andrea Cavalleri, Craig
W. Siders, Ferenc Rksi, Jeff A. Squier Barry C. Walker, Kent R. Wilson, and
Christopher P. J. Barty. Picosecond milliangstrom lattice dynamics measured
by ultrafast x-ray diffraction. Nature, 398:310, 1999.

[22] A. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann,
Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W.
Lee, J. S. Wark, and R. W. Falcone. Time-resolved x-ray diffraction from
coherent phonons during a laser-induced phase transition. Phys. Rev. Lett.,
84(1):111–114, Jan 2000.

[23] H. Enquist, H. Navirian, T. N. Hansen, A. M. Lindenberg, P. Sondhauss,
O. Synnergren, J. S. Wark, and J. Larsson. Large acoustic transients induced
by nonthermal melting of insb. Phys. Rev. Lett., 98:225502, 2007.

[24] Charles Kittel. Introduction to Solid State Physics. Wiley, 1995.

[25] M. P. Marder. Condensed Matter Physics. Wiley, 2000.

113



[26] L. D. Landau and E. M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory,
volume 3. Elsevier, 2007.

[27] R. Merlin. Generating coherent thz phonons with light pulses. Solid State
Commun., 102:207, 1997.

[28] A. Yariv and P. Yeh. Optical Waves in Crystals. Wiley, 1984.

[29] Nen-Wen Pu. Ultrafast excitation and detection of acoustic phonon modes in
superlattices. Phys. Rev. B, 72:115428, 2005.

[30] D. H. Hurley and O. B. Wright. Detection of ultrafast phenomena by use of a
modified sagnac interferometer. Opt. Lett., 24:1305, 2002.

[31] C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fischer, H. Morkoc,
and A. C. Gossard. Folded acoustic and quantized optic phonons in (gaal)as
superlattices. Phys. Rev. Lett., 31:2080, 1985.

[32] M. Trigo, T. A. Eckhause, M. Reason, and R. S. Goldmanand R. Merlin.
Observation of surface-avoiding waves: A new class of extended states in
periodic media. Phys. Rev. Lett., 97:124301, 2006.

[33] C. Rullière, T. Amand, and X. Marie. Spectroscopic methods for analysis of
sample dynamics. In C. Rullière, editor, Femtosecond Laser Pulses: Principles
and Experiments, chapter 8, pages 203–258. Springer-Verlag, 1998.

[34] D. Strickland and G. Mourou. Compression of amplified chirped optical pulses.
Opt. Commun., 56:219, 1985.

[35] G. Garrett. Femtosecond Pulsed Laser Excitation of Coherent and Squeezed
Phonon Fields in Perovskites and Semimetals. PhD thesis, University of
Michigan, 2001.

[36] M. K. Reed, M. K. Steiner-Shepard, and D. K. Negus. Widely tunable
femtosecond optical parametric amplifier at 250 khz with a ti:sapphire
regenerative amplifier. Optics Lett., 19:1855, 1994.

[37] F. Salin. How to manipulate and change the characteristics of laser pulses.
In C. Rullière, editor, Femtosecond Laser Pulses: Principles and Experiments,
chapter 6, pages 159–176. Springer-Verlag, 1998.

[38] J. K. Wahlstrand. Impulsive generation of coherent hybrid modes by light pulses.
PhD thesis, University of Michigan, 2005.

[39] D. A. Reis and A. M. Lindenberg. Ultrafast x-ray scattering in solids. In M.
Cardona and R. merlin, editors, Light Scattering in Solids IX, chapter 8, pages
371–422. Springer-Verlag, 2007.

114



[40] K. Sokolowski-Tinten and D. von der Linde. Ultrafast phase transitions and
lattice dynamics probed using laser-produced x-ray pulses. J. Phys. Condens.
Matter, 16:R1517, 2004.

[41] A. Rousse, C. Rischel, and J. Gauthier. Femtosecond x-ray crystallography.
Rev. Mod. Phys., 73:1731, 2001.

[42] D. Attwood. Soft X-Rays and Extreme Ultraviolet Radiation: Principles and
Applications. Cambridge University Press, 1999.

[43] Center for X-ray Optics and Advanced Light Source, X-ray Data Booklet.
available online at http://xdb.lbl.gov/.

[44] A. Authier. Dynamical Theory of X-Ray Diffraction. Oxford, 2001.
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phonons in semiconductor superlattices. Appl. Phys. Lett., 72:2844, 1998.
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