
Michigan Stream Fish: Distribution Models, Future Predictions, and Urban Impacts 
 
 
 

by 
 
 
 

Paul J. Steen 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Natural Resources and Environment) 

in The University of Michigan 
2008 

 
 
 
 
 
 

Doctoral Committee: 
 
 Professor Michael J. Wiley, chair 
 Professor George W. Kling II 
 Adjunct Professor Paul W. Seelbach 
 Jeffrey Standford Schaeffer, US Geological Survey 
   



  

 
 
 
 
 
 
 
 
 
 
 
 
 

 Paul J.  Steen  

2008 
    



 ii  

To Kellie 
 

Your daily support 
and your continual sacrifices 
allowed me to reach this goal. 

 
 

And to Dad and Mom 
 

Our walks through the woods  
taught me to love God’s creation 

although I didn’t realize it at the time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii  

Acknowledgements 
 
 

Many people contributed to this project, and this dissertation would not have been 

written without their assistance. My heart-felt thanks go to the members of my 

committee: Thank you Mike Wiley, Paul Seelbach, George Kling, and Jeff Schaeffer. 

Your help and ideas were essential in turning my scattered thoughts into cohesive 

arguments and interesting science.  Thank you, especially, Mike: your constant guidance 

was invaluable for my time spent in graduate school.  

The great people at the US Geological Survey, Great Lakes Science Center 

provided funding and an office to me for many years.  Thank you, Dora Reader, for 

making all of it possible.  Thank you, Jeff Schaeffer, Jaci Savino, and Leon Carl for 

providing me with such generous funding.  To everyone else involved in the GAP 

project: Thank you, Jana Stewart, Jim McKenna, John Lyons, Scott Nelson, Steve 

Aichele, Ed Bissell, Limei Zhang, and Allain Rasolofoson.  Your work in building 

habitat databases and GIS data is the backbone of this dissertation.   

The scientists of the Michigan Department of Natural Resources, Fisheries 

Division were a constant resource, a sounding board, and the source of much of my data.  

Thank you, Troy Zorn, Paul Seelbach, Li Wang, and Kevin Wehrly.  A great thank you 

goes to Arthur Cooper: You were ever faithful in answering my numerous email 

questions about the GIS data.   



 iv 

Finally, I wish to thank my family.  My Dad, Mom, Father-in-law, Mother-in-law, 

and siblings and their spouses were all a source of encouragement and inspiration.  Of 

course, the greatest thanks of all go to my wife, Kellie.  Thank you, Kellie!  This belongs 

to you as much as it does to me.  Your encouragement helped me get something done 

every day, even on the days when I felt like I couldn’t do it.  Thank you for believing in 

me. 

Chapter 2 has been previously published. This article is Contribution 1309 of the 

USGS Great Lakes Science Center: 

Steen, P. J., D. R. Passino-Reader, and M. J. Wiley. 2006. Modeling brook trout 
presence and absence from landscape variables using four different analytical 
techniques. Pages 513-531 in R. M. Hughes, L. Wang, and P. W. Seelbach, editors. 
Influence of landscapes on stream habitats and biological assemblages. American 
Fisheries Society, Symposium 48, Bethesda, Maryland. 

 

Chapter 3 has been accepted for publication by the Transactions of the American  

Fisheries Society and is currently in press. This article is Contribution 1448 of the USGS 

Great Lakes Science Center. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 



 v 

Table of Contents 
 
 

Dedication .......................................................................................................................ii 
 
Acknowledgements ....................................................................................................... iii 
 
List of Tables..................................................................................................................vi 
 
List of Figures ..............................................................................................................viii 
 
List of Appendices...........................................................................................................x 
 
Abstract .........................................................................................................................xii 
 
Chapter 
  
 1. Introduction .......................................................................................................1 
 
 2. Modeling brook trout presence and absence from landscape variables using 
  four different analytical techniques. .................................................................11 
 
 3. Classification tree models for predicting distributions of Michigan stream  
  fish from landscape variables...........................................................................52 
 
 4. Predicting past and future change in Muskegon River watershed (Michigan, 

USA) game fish under land-use alteration and climate change scenarios .......102 
 
 5. Variation in the effect of urbanization on Michigan and Wisconsin stream     

fish: How can good fish communities exist in urban areas? ...........................141 
 
 6. Conclusions ...................................................................................................177 
 
Appendices..................................................................................................................186 

 
 
 
 
 
 
 



 vi 

List of Tables 
 

Table 2.1.  Environmental variables included in the models. .........................................36 
 
Table 2.2.  Variables significant in the multiple linear regression, their β values   
 (regression coefficients), standard error of the β, and significance. .......................38  
 
Table 2.3.  Percentage of correct predictions for the MRI test data and the training data  
 upon cross-validation. ..........................................................................................39 
 
Table 2.4.  Variables significant in the logistic regression, their β values, standard error of 
 the β values, and significance. .............................................................................40  
 
 Table 2.5.  Variables determined to be significant after a neural network randomization    
          procedure, their relationship to brook trout presence, and associated p-value. ......41   
 
Table 3.1.  List of habitat and land-use stressor variables used in the creation of the PA  

and RA models for Michigan stream fishes. .........................................................83   
 
Table 3.2.  List of which Michigan fish species were modeled for presence/absence (PA)  

and relative abundance (RA). ...............................................................................84    
 
Table 3.3.  Sample size and % correct agreement between predicted presence/absence 

values and observed values in the test dataset, for each PA model. .......................86   
 
Table 3.4.  The number of times a habitat variable is included in the A) 82 Michigan 

stream fish PA models with a presence and absence accuracy greater than 60%, B) 
and all 10 of the 3-category Michigan stream fish RA models and the 33 2-category  
Michigan stream fish RA models with a low and high accuracy grater than 60%...89   

 
Table 3.5.  Sample size and % correct agreement between predicted RA category and 

observed values in the test dataset, for each 3-category RA model. ......................90 
 
Table 3.6.  Sample size and % correct agreement between predicted RA category and 

observed values in the test dataset, for each 2-category RA model. ......................91   
 
Table 4.1.  List of habitat and land-use stressor variables used in the creation of the 

presence/absence models for Michigan stream fishes. .....................................127 



 vii  

Table 4.2.  Percent chance of species occurrence for any stream kilometer in the 
Muskegon system, the lower Muskegon, and other study units............................128 

 
Table 5.1.  List of variables that were used in this study, their codes referred to in the text, 

their units, and the source of the data. ................................................................162 
 
Table 5.2.  Results from the Kruskal-Wallis nonparametric test of means and the multiple 

comparison Nemnyi test of cluster 1, 2, and 3. ...................................................164  
 
Table 5.3. Results from the Mann-Whitney U nonparametric test of means of clusters 4 

and 5. ................................................................................................................  165  
 
Table 5.4.  Standardized total effects of the stressor variables (left of table) on their   
 dependent variables (top of table) as computed by the CSA. ..............................166  
 
 
 
 
 
 
 
 
 
 
 
 



 viii  

List of Figures 
 
Figure 2.1. Michigan streams reaches containing habitat variables overlaid by A) 
 MDNR sampling points for brook trout presence and absence (training data) and B)    
          MRI sampling points for brook trout presence and absence (testing data).  ..........42 
 
Figure 2.2. Variables are measured on four scales for each individual stream reach:  
 A) Riparian, B) Network , C) Subwatershed, D) Watershed. ................................43 
 
Figure 2.3.  In order to prune the neural network, the sum of the input layer-hidden  
 layer weights and the hidden layer-output layer weights is calculated for each  
 input variable. ......................................................................................................44     
 
Figure 2.4.  Classification tree created by CART that had highest correct percentage of  
 predictions for the test data. .................................................................................45     
 
Figure 2.5.  A) Brook trout samples in the Michigan Fish Atlas, and B-F) predicted brook 
 trout distributions in Michigan using B) multiple linear regression, C) logistic   
 regression, D) neural network with all variables, E) neural network with seven   
 variables, F) classification tree. ............................................................................46 
 
Figure 2.6.  Scatterplots of the absolute values of residuals for the MRI test data 

regressed against the latitude of the sampling point.  .........................................47 
 
Figure 3.1. Classification tree of the brown bullhead PA model. ...................................92   
 
Figure 3.2.  The percentage of Michigan stream fish models that fall within certain ranges 

of average accuracy level for A) the 93 PA models, and B) the 46 RA models. ....93 
 
Figure 3.3.  A) A rockbass distribution map that combines predictions from the PA model 

and RA model.  ....................................................................................................94   
 
Figure 4.1.  The streams and rivers of the Muskegon watershed, with highlighted streams 

indicating the five stream study units in this analysis.  ........................................133 
 
Figure 4.2.  Measured land-use/cover in the Muskegon watershed, for both A) 1830 (pre-

settlement) and B) 2001, and predicted land-use/cover for C) 2100.  ..................134 
 
Figure 4.3.  Predictions of the average change of species presence, as weighted by stream 

length, for the entire Muskegon stream system.  .................................................135 
 



 ix 

Figure 5.1.  Locations of the sampled fish sites available from the Wisconsin Department  
of Natural Resources, the Michigan Department of Natural Resources, and the 
Michigan Rivers Inventory.  ...............................................................................167   

 
Figure 5.2.  The relationship between Fish IBI Score and % URBAN for A) all fish 

community sample sites in study, B) sites equal to or above the urban threshold of 
9% URBAN after being clustered by Fish IBI Score and % URBAN, and C) sites 
equal to or above the urban threshold of 9%, with a green regression line based off 
of the four red points. .........................................................................................168 

 
Figure 5.3.  Simplified path diagram of the CSA of the fish community sample sites equal 

to or above the urban threshold (N= 128).  .........................................................169   
 
 
 
 
 
 
 
 
 
 
 
 



 x 

List of Appendices 
 

Appendix A.  A) Classification tree model for brook trout, developed by statewide fish 
samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the brook trout model as applied to the 
years 1830, 2001, and 2100.  ..............................................................................187 

 
Appendix B.  A) Classification tree model for brown trout, developed by statewide fish 

samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the brook trout model as applied to the 
years 1830, 2001, and 2100.  ..............................................................................191 

 
Appendix C.  A) Classification tree model for rainbow trout, developed by statewide fish 

samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the brook trout model as applied to the 
years 1830, 2001, and 2100.  ..............................................................................195 

 
Appendix D.  A) Classification tree model for Chinook salmon, developed by statewide 

fish samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the Chinook salmon model as applied to 
the years 1970, 2001, and 2100.  ........................................................................199 

 
Appendix E.  A) Classification tree model for Coho salmon, developed by statewide fish 

samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the Chinook salmon model as applied to 
the years 1970, 2001, and 2100.  ........................................................................202 

 
Appendix F.  A) Classification tree model for smallmouth bass, developed by statewide 

fish samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the smallmouth bass model as applied to 
the years 1830, 2001, and 2100.  ........................................................................206 

 
Appendix G.  A) Classification tree model for largemouth bass, developed by statewide 

fish samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the smallmouth bass model as applied to 
the years 1830, 2001, and 2100.  ........................................................................209 

 
Appendix H.  A) Classification tree model for northern pike, developed by statewide fish 

samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the smallmouth bass model as applied to 
the years 1830, 2001, and 2100.  ........................................................................213 



 xi 

 
Appendix I.  A) Classification tree model for walleye, developed by statewide fish 

samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the walleye model as applied to the years 
1830, 2001, 2040, and 2100.  .............................................................................217 

 
Appendix J.  Contingency table counts and results for fish species of clusters 1,2,  

and 3. .................................................................................................................220 
 
Appendix K.  Contingency table counts and results for fish species of clusters 4  

and 5. .................................................................................................................224 
 
Appendix L.  Results from the Kruskal-Wallis nonparametric test of means and the 

multiple comparison Nemnyi test of cluster 1,2, and 3 for habitat variables.  ......226 
 
Appendix M. Results from the Mann-Whitney U nonparametric test of means of clusters 

4 and 5, for habitat variables.  ............................................................................229 
 

 
 
 



 xii  

Abstract 
 
 

 To identify abiotic requirements necessary to maintain growth, survival, and 

reproduction of species, researchers often use models to search for patterns between 

species occurrences and environmental characteristics of sampled locations.  Models are 

used to test hypotheses about processes that are important to organisms, and used to make 

species distributions and abundance predictions for management application. 

 Several analytical methodologies were assessed for modeling associations 

between fish species and habitat characteristics.  Brook trout presence/absence models 

were created using different techniques: multiple regression, logistic regression, neural 

networks, and classification trees.  Results showed that all methods could be successful 

provided underlying assumptions were met.  This analysis indicated classification trees 

were a technique uniquely suited to the creation of large numbers of interpretable models.   

 Classification tree methods and landscape-scale habitat variables were used to 

create and validate presence/absence models and relative abundance models for Michigan 

stream fish.  Ninety-three presence/absence models were on average 72% correct and 46 

relative abundance models were on average 76% correct when tested against independent 

data.  Water temperature and catchment area were determined to be dominant constraints 

on fish distributions. 

Classification trees were applied to land-use alteration and climate change 

scenarios to understand how fish communities of the Muskegon River system (Michigan, 



 xiii  

USA) would be structured through the year 2100.  Models predicted cold-water species 

reduction due to water temperature warming, and walleye loss due to increased urban 

development.  Warm-water species were expected to have substantial range increases. 

Classification trees were used to explore how managers might manipulate predictor 

variables to maximize probability of species presence.  

Urban development has been shown to have strong negative impacts on fish 

community quality.  However, effort is needed into understanding why streams with 

similar urban levels have fish communities of significantly different quality.  Univariate 

tests and covariance structure analysis were used to investigate how natural and 

anthropogenic features are related to variance of fish biotic integrity in urban streams.  

Urbanized streams with more natural land-cover, more point source discharges, better 

water quality, and that are adjacent to non-urbanized streams supported higher quality 

fish communities. 



 1 

 
Chapter 1 

 
Introduction 

 
 

Understanding biotic and abiotic processes that determine where and why species 

are able to exist is one of the fundamental aims of ecology.  It permeates all aspects of 

ecology: academic ecologists examine mechanisms of species coexistence and 

competition, while fisheries managers manipulate stream habitat to optimize managed 

species reproduction.  Conservation biology, the branch of ecology dedicated to the 

preservation of biotic diversity, is particularly focused on understanding the mechanisms 

that regulate species distributions.  Knowledge of the requirements necessary for growth, 

survival, and reproduction of species is required for wise conservation planning.   

In practical application, however, the biotic and abiotic requirements of a species 

are incompletely known. Environmental complexity and species interactions make it 

difficult to learn the exact constraints on a population.  To identify abiotic requirements, 

researchers often use statistical models to search for patterns between species occurrences 

or abundances and the environmental characteristics of sampled locations.  These models 

serve two important purposes: (1) they are used to formulate and test hypotheses about 

the factors and processes that are important to organisms, and (2) they can used to make 

predictions of species distributions and abundances for use in management decisions.  

Creating fish distribution models from habitat variables using regression analysis 

has a long history and strengths and weaknesses of this approach are well understood by 
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researchers (Fausch et al. 1988).  Neural network models and classification trees, 

however, are fairly new methods to the ecological field.  Studies directly comparing these 

newer techniques with more traditional approaches are relatively rare, but when reported, 

have typically found that the new techniques are able to predict more accurately than 

simple linear modeling (Lek et al. 1996; Franklin 1998; Vayssieres et al. 2000).  

However, careful comparisons of performance of these approaches for modeling fish 

distributions at a large geographic extent, such as the extent of the state of Michigan, 

have not been previously reported (but see Mastrorillo et al. 1997; Olden and Jackson 

2001,2002 for smaller scale analyses).  Likewise, a direct comparison of neural net and 

classification tree approaches for fishes has not been previously reported.  In Chapter 2, I 

compared the accuracy of Michigan brook trout distribution models created with 

regression, neural networks, and classification tree approaches. 

Fish habitat requirements have often been modeled using site or local-scale 

environmental variables (Fausch et al. 1988).  Habitat variables measured at this scale are 

useful to managers because small scale habitat can be manipulated (Fausch et al. 1988; 

Vaughan and Ormerod 2003).  However, fish species are clearly influenced by processes 

that operate on larger spatial scales and slower temporal scales than that those measured 

at the local-scale (Richards et al. 1996; Leftwich et al. 1997; Rathert 1999; Allan 2004). 

For example, stream temperatures are critical to fish and influenced by a combination of 

local and landscape-scale processes (Wehrly et al. 2003; Wehrly et al. 2006).  Also, the 

hydrologic flow regime of a stream is crucial to fish communities and is driven by factors 

measured at a catchment scale (Poff et al. 1997).  While other fish distribution models 

based partially on landscape-scale data have been created for Michigan (Zorn 2003), a 
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new database containing extensive fish samples and literally hundreds of habitat variables 

was recently developed (Brendan et al. 2006). A new regional modeling effort, exploring 

this new data source, is just beginning but promises to provide new insights into the 

importance of landscape-scale habitat variables on fish (Riseng et al. 2006; Wang et al. 

2007).  In Chapter 3, I used this data source to build 93 fish presence/absence models and 

46 relative abundance models and used the models to predict fish distributions and 

identify fish requirements. 

Fish distribution models can have an important role in conservation planning and 

management decisions. For example, models can be used to anticipate future changes in 

fish in order to give managers time to alter management practices and to identify areas 

with a high risk of habitat degradation. Several studies have examined how future 

temperature changes are likely to reduce cold-water fish distribution (Meisner 1990; 

Eaton and Scheller 1996; Flebbe 1996; Jager et al. 1999; Stefan et al. 2001) and increase 

the abundance of warm-water fish such as bass (McCauley and Kilgour 1990; Magnuson 

et al. 1990; King et al. 1999). Additionally, future land-use/cover shifts could have a 

large impact on fish community health as studies have consistently shown these to be 

related (Scott et al. 1986; Weaver and Garman 1994; Hall et al. 1999; Wang et al. 2001; 

Tabit and Johnson 2002; Snyder et al. 2003; Wang et al. 2003; Zimmerman et al. 2003; 

Miltner et al 2004; Barker et al. 2006; Riseng 2006).  In chapter 4, I created fish 

distribution predictions based on potential future changes in both temperature and land-

use/cover and associated them with a GIS to show how the changes will affect specific 

streams.  Such model applications have not been developed for Michigan prior to this 

study.  
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The quality of fish communities seems to be correlated with the amount of 

urbanized land in a stream’s watershed (Wang et al. 2001; Wang and Kanehl 2003; Wang 

et al. 2003; Walsh 2004; Carter and Fend 2005; Fitzpatrick et al. 2005; Kennen et al. 

2005; Limburg et al. 2005; Walters et al. 2005).  In the United States, over 130,000 

kilometers of streams and rivers have already been affected by urbanization, and land-use 

change projections predict that developed area is going to increase by 80% in the next 25 

years (Paul and Meyer 2001; Pijanowski et al. 2001; Alig et al. 2004; Walsh et al. 2005).  

As stopping the spread of urbanization altogether is not a politically feasible or 

necessarily desirable goal, it is important to understand how to aid the establishment or 

maintenance of high quality fish communities despite the amount of urban disturbance.  

While previous studies have concentrated on the relationship between urbanization and 

fish integrity (Weaver and Garman 1994; Kemp and Spotila 1997; Tabit and Johnson 

2002; Walters et al. 2003; Morgan and Cushman 2005), I was unable to find studies that 

gave a quantitative analysis of the variance around this relationship.  In Chapter 5, I 

conducted a study to account for this variance and discussed important management 

implications for fish communities in urban streams. 

 

The overall objectives of my dissertation are: 

  

1) To evaluate the methodology for four different presence/absence modeling techniques 

using data from fish sampling and enduring landscape habitat variables for rivers across 

the state of Michigan (Chapter 2). 
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2) To use the selected methodology to build distribution and abundance models for all 

common Michigan stream fish and to assess, describe, and understand the model patterns 

and relationships (Chapter 3). 

 

3) To use the models to probe some key issues in fish community conservation; explore 

potential future fish distributions in the Muskegon river system given changes in land-use 

and temperature (Chapter 4). 

 

4) To understand more fully the relationship between urbanization, fish community 

integrity, and the variation that occurs around this relationship, and to use this 

information to understand how urban streams can possess healthy fish communities 

(Chapter 5). 
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Chapter 2 
 

Modeling Brook Trout Presence and Absence from Landscape Variables Using Four 
Different Analytical Techniques 

 

Abstract 

As a part of the Great Lakes Regional Aquatic Gap Analysis Project, I evaluated 

methodologies for modeling associations between fish species and habitat characteristics 

at a landscape scale.  To do this, I created brook trout Salvelinus fontinalis presence and 

absence models based on four different techniques: multiple linear regression, logistic 

regression, neural networks, and classification trees.  The models were tested in two 

ways: by application to an independent validation database and cross-validation using the 

training data, and by visual comparison of statewide distribution maps with historically 

recorded occurrences from the Michigan Fish Atlas.  Although differences in the 

accuracy of our models were slight, the logistic regression model predicted with the least 

error, followed by multiple regression, then classification trees, then the neural networks.  

These models will provide natural resource managers a way to identify habitats requiring 

protection for the conservation of fish species. 

 
Introduction 

 
It is necessary to have knowledge of the habitats required to maintain the growth, 

survival, and reproduction of freshwater fish species and populations in order to have 

wise conservation planning and decision making.  In practical application, however, 
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habitat requirements are often incompletely known.  Therefore, biologists commonly use 

data on a fish’s habitat selection, based on field observations of species occurrence or 

densities (Rosenfeld 2003).  Given data on habitat characteristics and observed fish 

distributions, correlative habitat associations can be used to predict the occurrence or 

densities of fish in locations where samples have not been collected.  These predictions 

are useful for identifying habitat units important to target species but vulnerable to 

alteration and degradation by humans, and lacking protective status.  Such habitats 

represent “gaps” in conservation strategy. 

The goal of the U. S. Geological Survey, Gap Analysis Program (GAP) is to 

“keep common species common” by identifying those species not adequately represented 

in existing conservation areas (Scott et al. 1993).  In the past decade, gap analyses have 

been performed in terrestrial systems across the U.S., and in the mid-1990s an aquatic 

gap pilot began in Missouri.  In 2001 GAP funded the first regional aquatic gap analysis 

in the eight Great Lakes states: Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio, 

Pennsylvania, and New York.  The goals of this project, called the Great Lakes Regional 

Aquatic Gap Analysis, are 1) to evaluate biological diversity of Great Lakes aquatic 

habitats and identify gaps in the distribution and protection of these species and their 

habitats, and 2) to use an integrated approach in which common methods and protocols 

are established and results are comparable across the Great Lakes landscape (Myers et al. 

2002; Morrison et al. 2003).   

A critical step in achieving the aquatic gap project goals is to predict patterns of 

species occurrence from regional habitat data.  Earlier aquatic gap projects used several 

different methods to model empirical associations of fish species presence and absence 
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with habitat characteristics: 1) classification and regression trees (CART) analysis (Sowa 

1999), 2) multiple linear regression (Sowa and Rabeni 1995; Sowa 1999), 3) and genetic 

algorithms (Alex Covert, USGS Ohio Water Science Center, personal communication).  

In this study, I build on the earlier aquatic gap projects by assessing several methods 

(multiple linear regression, logistic regression, neural networks, and classification trees) 

and comparing their predictive abilities. 

Predicting fish distributions from habitat variables using regression analysis has a 

long history in ecological applications and is well understood by researchers (Fausch et 

al. 1988).  Neural networks and classification trees, however, are fairly new methods to 

the ecological field.  This study uses these techniques but does not go into detail in 

describing how they work; this has been done well in other papers both for neural 

networks (Rumelhart et al. 1986; Mastrorillo et al. 1997; Boddy and Morris 1999; Lek 

and Guegan 1999; Olden and Jackson 2001) and for classification trees (Breiman et al. 

1984; Bell 1999; De'ath and Fabricius 2000; De'ath 2002).  

Studies directly comparing these newer techniques with more traditional 

approaches are relatively rare, but where they exist have typically found that the new 

techniques are able to predict more accurately than simple linear modeling (Lek et al 

1006; Franklin 1998; Vayssieres et al. 2000).  However, careful comparisons of 

performance of these approaches for modeling fish distributions at the large geographic 

extent contemplated in the Great Lakes Aquatic Gap Program have not been previously 

reported (but see Mastrorillo et al. 1997; Olden and Jackson 2001,2002 for smaller scale 

analyses).  Likewise, comparison of neural net and classification tree approaches for 

fishes have not been previously reported.  
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The main goal of this study was to evaluate the methodology for four different 

presence/absence modeling techniques (multiple regression, logistic regression, neural 

networks, classification trees) using data from fish sampling and enduring landscape 

habitat variables for rivers across the state of Michigan.  This model comparison will aid 

us in selecting the approach, or approaches, to be used to produce fish distribution maps 

for the Great Lakes Regional Aquatic Gap Analysis.  For this study, I analyzed the 

streams of Michigan for the presence and absence of brook trout Salvelinus fontinalis, a 

popular sport fish whose basic habitat requirements are well known (Smith 1985).   

 

Methods 

Developing the database  

The Great Lakes Regional Aquatic Gap Analysis, in collaboration with the 

Michigan Department of Natural Resources (MDNR), has established a high-resolution, 

GIS-linked database with characteristics of Michigan’s rivers.  This database provided 

the environmental variables that served as the independent predictors for the models.  The 

database is referenced to a group of ArcGIS line coverages (ESRI 2002), in which each 

river is broken down to confluence-to-confluence reaches, and each reach contains 

information for a wide variety of landscape-scale environmental variables, such as air 

temperature, soil permeability, land-cover, and geology (S. Aichele, USGS, personal 

communication)(Table 2.1, Figure 2.1).  The line coverages are based on the USGS 

National Hydrography Dataset at the 1:100,000 scale (NHD 2007). 

Many variables are measured at four different scales (Figure 2.2).  Riparian 

variables refer to the land 60 meters on each side of the stream reach of interest.  Network 
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variables refer to the 60-meter river buffer, plus the 60-meter river buffer of every stream 

reach upstream from the reach of interest.  Sub-watershed variables refer to the catchment 

lateral to the stream reach, and watershed variables include the reach’s catchment and the 

catchment of all the reaches upstream. 

I obtained spatially referenced fish assemblage samples from the Fisheries 

Division of the MDNR and extracted data for brook trout occurrences from this 

“training” dataset.  Fish were collected by tow-barge, backpack and boat electrofishing, 

rotenone, seines, trap nets, and fyke nets (Merna 1988).  While the amount of data 

available from the MDNR was extensive, I limited our analysis to samples collected in 

1980-2002, and strived for even spatial coverage across the state (Figure 2.1A).  To test 

the models, I used an independent data set from the Michigan Rivers Inventory (MRI) 

project (Seelbach and Wiley 1997), where fish were collected primarily by tow-barge and 

backpack electrofishing and rotenone in 1980-2002 (Figure 2.1B).  

Sampling points were associated to the stream reaches in a single table in which 

rows represented stream reaches and columns contained values for the habitat variables 

and a record of brook trout presence (E. Bissell, USGS, Water Resource Division, 

Lansing, Michigan, Personal Communication).   

I deleted replicate samples so that every reach was represented by only one 

observation.  When different samples for the same reach disagreed on brook trout 

presence, I kept the observation where the fish was present.  After eliminating replicates, 

I had 901 observations for the MDNR data and 635 for the MRI data.  Hereafter, 

observations marked as “present” are called “presence reaches” and observations marked 

as “absent” are called “absence reaches”. 



 16 

As with many presence and absence databases, the number of absence reaches 

was much greater than the number of presence reaches (Zorn 2003).  To prevent the 

models from weighting more towards absence prediction than presence, I randomly 

selected a subset of absence reaches equal to the number of presence reaches.  To do this, 

I first divided the 682 absence reaches of the MDNR data into three groups by Shreve 

link number.  Next, I randomly selected 104 or 105 absence reaches from each size group 

so that the total number of absence reaches (314) equaled the total number of presence 

reaches.  These 628 MDNR observations were used as the training data for formulating 

the models.  The absence segments that were not selected were discarded, but I kept all 

635 reaches of the MRI data to validate the models formulated by the MDNR data. 

Stratification by Shreve link number was necessary to ensure that the whole range 

of stream sizes available were included in the modeling.  Had I merely used simple 

random sampling to select the 314 absence reaches, the sampling would have been biased 

towards smaller rivers due to the high ratio of small to large streams in the database.  The 

end result would have been models only applicable to small streams.   

 

Multiple Regression and Logistic Regression Modeling 

For the multiple regression model, when necessary I transformed each variable 

with one of three transformations (logarithmic, square root, or arcsine) in order to meet 

the assumption of a linear relationship between the independent and dependent variable 

(Zar 1999) (Table 2.1).  Upon creation of the final multiple regression model, partial 

regression plots were created for each of the model’s predictors to test the assumption of 

linearity.  These plots show the effect of a predictor on the response variable with the 
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effect of all of the other predictors removed (Faraway 2005).  For both the multiple 

regression and logistic regression, each variable was standardized (mean 0, standard 

deviation 1) to allow for easier comparison of the relative importance of the regression 

coefficients (Faraway 2005). 

Using a stepwise selection technique similar to that of Zorn (2003), I ran multiple 

linear regression and logistic regression models in SPSS 12.0 for Windows (SPSS 2003).  

For both regression models, I manually entered a habitat variable into the equation.  If the 

variable was significant (p < 0.10), I left it in the equation and added another variable.  If 

the new variable was not significant (p ≥  0.10), I removed it from the model.  If the new 

variable was significant and caused the original variable to become insignificant, I 

removed the original variable if its removal caused the model’s adjusted R2 to increase.  I 

repeated this procedure until every environmental variable had been given a chance to 

enter the model.  While SPSS can carry out this procedure automatically, I performed it 

manually in order to dictate the order that variables entered the model (Table 2.1).  I 

placed variables assumed to have a more direct effect on fish presence and absence 

higher in the list, and variables with indirect or unknown effects lower in the list.  This 

procedure gives variables assumed to be more important to fish a greater chance of being 

included in the model (Zorn 2003).    

As the next step, I examined the β-value (regression coefficient) and the 90% 

confidence interval of the β-value for each variable included in the model.  If the β-value 

had a confidence interval large enough that I was not confident in its predictive abilities, I 

would remove the variable from the model.  If I believed a variable to be important but it 

was not included in the model, I would add this variable and recalculate the model.  If the 
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variable was significant (p < 0.10) I allowed the variable to stay in the model.  By adding 

these steps to the end of the regression modeling process, I added subjective decision 

making based on our ecological knowledge of the fish to an otherwise objective routine. 

To check if the constant variance and independence assumptions of the error 

terms of the multiple regression model held true, I created a diagnostic plot of the 

residuals versus fitted values.  Patterns in this plot indicate assumption violations 

(Faraway 2005).  A Q-Q plot of the residuals was created to check error normality; a 

straight line in this plot indicates normality (Faraway 2005). 

After creating the final regression models, I applied the model to the MRI test 

data and also performed n-fold (leave-one-out) cross validation on the training data as a 

secondary test of the model’s performance.  Reaches with a predicted value > 0.5 were 

considered to have trout present; those with values < 0.5 were considered as lacking trout.   

 

Neural Network Modeling 

In using a neural network, it is possible to include all of the available data in the 

network and get a solution that effectively predicts the dependent variable (Lek et al. 

1996).  However, many of our environmental variables are probably not related to brook 

trout presence, and including them in the model will increase computation times and 

cloud our ability to understand the relationship between the fish and more important 

variables (Olden and Jackson 2002).  Therefore, in order to build a model that can both 

predict and provide some explanatory value, I needed to reduce the initial 46 habitat 

variables into a more manageable number. 
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Olden and Jackson (2002) have developed a randomization approach for both 

pruning variables and understanding how variables contribute to a neural network.  To 

use this approach with our data, I first developed several neural networks in a feed-

forward, back propagation procedure using the training data and the computer software 

program Neuralyst 1.4 (Rumelhart et al. 1986; Shih 1995; Boddy and Morris 1999).  The 

networks were constructed with three layers of 46 neurons, 46 neurons, and 1 neuron, 

respectively, and were trained for 1000 epochs (Shih 1995).  However, each of these 

networks had different random initial weights and so performed differently in how well 

they predicted the test data. 

From these networks, I selected the network that had the greatest percentage of 

correct predictions for the test data (our “optimized” network) and calculated the sum of 

the input layer-hidden layer weights and the hidden layer-output layer weights for each 

input variable (Figure 2.3).  Essentially, the contribution of each variable to the network 

depends on the magnitude and direction of the sum of these weights.  The greater this 

sum (either negatively or positively), the more impact that variable has on the final 

solution produced by the network (Olden and Jackson 2002).  

The sum of the weights alone does not fully inform us of how important a 

variable is, because at this point I do not know if the sum is significantly different than 

random.  To determine significance, I randomly rearranged the brook trout presence and 

absence values among the different observations, and then constructed a new neural 

network with the same parameters and initial weights that were used in our optimized 

network.  This network was allowed to train for 1000 epochs, and then as earlier I 

computed the sum of the input layer-hidden layer weights and the hidden layer-output 
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layer weights for each habitat variable.  Since I rearranged the presence/absence values 

among the observations, if a variable is important to brook trout the new network will not 

produce a sum of weights that is of greater magnitude than the sum of weights from the 

original network.   

However, there is a slight chance that by rearranging the values, I actually made a 

variable more important to brook trout presence.  Therefore, I created a new network 

many times (in this case, 1000 times), each time randomly rearranging the 

presence/absence values, and each time calculating the sum of the weights for each 

variable.  The statistical significance of each habitat variable was the proportion of the 

values (including the original sum) that were more extreme than the observed sum (Olden 

and Jackson 2002).  For example, if only 9 of the 1000 sums are greater than our 

observed sum, then the probability of a type I error and statistical significance of the 

variable was (9+1)/1000= .01.  When a variable had a low p-value, I inferred that it 

played an important role in the formation of the neural network.  This significance test 

was similar to the significance test of a regression coefficient: I was testing the null 

hypothesis that a variable does not have an effect, and at low probabilities the null 

hypothesis was rejected and I concluded that the variable did have an effect.   

After the 1000 iterations, seven variables had a significance level less than 0.1.  

These variables were considered to be the most important of the original 46 habitat 

variables and were used to construct a new neural network.  This neural network was 

created with the training data in a manner similar to our original network. I applied this 

new network to the MRI test data to determine its predictive abilities and applied the 

network to the training data through a n-fold cross-validation procedure as a secondary 
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test of the model’s performance.  Reaches with a predicted value > 0.5 or greater were 

considered to have trout present; trout were presumed absent at values < 0.5.   

 

Classification Tree Modeling 

I used CART 5.0 to train the training data in a classification tree (Steinbery and 

Colla 1997).  Since the program selects the variables that result in the best training of the 

data, I did not have to enter variables individually or prune variables as I did for the 

regression and neural network techniques.  CART produced a series of trees in which 

different predictor variables were used as binary splits.  As CART created the trees, it 

also tested the training data in a n-fold cross-validation procedure.  The tree that I 

selected to use as our predictive model was the one that resulted in the highest agreement 

between the predicted presence and absence classification and the known presence and 

absence classification for the cross-validation.  After selecting the optimal tree, I ran the 

MRI test data through the tree as a measure of the model’s validity.  Unlike the other 

modeling methods, the classification tree did not predict a value for each reach; rather, 

the model directly classified a reach as either “present” or “absent.” 

 

Model Application 

The models were used to predict brook trout presence and absence for all of the 

stream reaches in Michigan. I used these predictions to create statewide distribution maps 

in ArcMap 8.3 (ESRI 2002).  The predictions were entered into a spreadsheet and then 

joined to the stream layer by a number unique to each reach.  The background layers for 

these maps came from the Michigan Geographic Data Library (MGDL 2007) and the 
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stream layer was developed by the Great Lakes GAP Project and the MDNR, as 

mentioned above.   

After building the predictive maps, I visually compared these with the Michigan 

Fish Atlas 2003, v.1.1, 2nd edition (MGDL 2007).  The Michigan Fish Atlas is a point 

shapefile that contains 2468 georeferenced brook trout samples collected from 1847 to 

the present.  As these samples came from locations where brook trout are known to live, a 

successful predictive map will have similar distribution patterns to the Fish Atlas. 

 

Results 

Multiple Regression 

Eight variables were included in the multiple regression model (Adjusted R2 = 

0.436, Table 2.2).  Of these, the most influential was the July mean air temperature 

(W_JULY_MN, β = -0.184).  Other important variables included stream size 

(CHAN_LINK, β = -0.133), and the percentage of forest land-cover in the watershed 

(W_FOR, β = 0.091).   

The model was applied to the MRI test data and predicted 86% of the presence 

reaches correctly and 76% of the absence reaches correctly (Table 2.3).  When the 

training data were used in a cross-validation test, 81% of the presence reaches were 

predicted correctly and 80% of the absence reaches were predicted correctly.   

Logistic Regression 

Nine variables were included in the logistic regression model (Cox and Snell R2 = 

0.480, Table 2.4).  Most of the same variables that were significant in the multiple 

regression were also significant in the logistic regression.  The most influential variable 
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in both models was July mean air temperature (W_JULY_MN, β = -1.3614).  Stream size 

(CHAN_LINK, β = -1.2475) and percentage of forest land-cover in the watershed 

(W_FOR, β = 0.4737) were again important.   

The logistic regression model was applied to the MRI test data and predicted 87% 

of the presence reaches correctly and 75% of the absence reaches correctly (Table 2.3).  

In cross-validation tests, 80% of the presence reaches were predicted correctly and 81% 

of the absence reaches were predicted correctly.   

 

Neural Network 

I tested two different sizes of neural networks: a full model, which used all 46 

variables, and a pruned model, which used the seven most important variables from the 

full model.  The full model predicted the MRI validation data set well:  85.7% of the 

presence reaches were predicted correctly and 71.8% of the absence reaches were 

predicted correctly (Table 2.3).  The cross-validation of the full model predicted the 

presence and absence reaches correctly 75.4% and 77.7%, respectively.   

By using the randomization procedure, I identified the seven most important 

variables from this model (Table 2.5).  These included the July mean air temperature, 

which had a negative relationship with brook trout presence, and the Darcy value of the 

riparian zone, which had a positive relationship with brook trout presence.  Also 

important were channel gradient, and wetland and open/field land-covers. 

The simplified model, which contained these seven predictors, was also applied to 

the MRI test data and the training data were cross-validated (Table 2.3).  The pruned 

model predicted absence reaches better than the full neural network but presence reaches 
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were predicted worse.  For the MRI data, 81.3% of the presence reaches were predicted 

correctly and 77.4% of the absence reaches were predicted correctly (Table 2.3).  The 

cross-validation of the pruned model predicted the presence and absence reaches 

correctly 68.8% and 84.4%, respectively.   

 

Classification Tree 

The CART program produced several trees of differing sizes, and the tree selected 

as the final model was the one that best predicted the cross-validation data (Figure 2.4).  

The first split in the tree was made by July mean air temperature (W_JULY_MN), and 

similarly to the regression models, other important variables included stream size 

(CHAN_LINK), and percent of forest land-cover in the watershed (W_FOR).  One 

unique property of classification trees is that the model can use the same variable more 

than once; at the bottom of the tree the model uses the W_JULY_MN variable again to 

make another split. 

I applied the MRI test data to the tree to validate the model.  The tree predicted 

84.3% of the presence reaches and 77.7% of the absence reaches correctly. (Table 2.3).  

Cross-validation of the training data predicted 75.2% of the presence reaches and 78.3% 

of the absence reaches correctly. 

 

Predicted Distribution Maps and Model Comparisons  

The Michigan Fish Atlas shows that brook trout has historically been found 

throughout Michigan’s Upper Peninsula and northern Lower Peninsula (Figure 2.5A).  

While the populations are not as dense as in the north, brook trout is also found in 
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southwest Michigan, as well.  This species generally does not live in southeast Michigan, 

although the Fish Atlas does record a few scattered populations there.     

The distribution maps produced from our four models were able to repeat this 

general pattern (Figures 2.5B-2.5F).  Each map predicted brook trout to be widespread in 

the Upper Peninsula, with an occasional stream marked as absent.  In the Lower 

Peninsula, the models predicted brook trout throughout the north and along the west 

coast, and generally predicted absence in southeast Michigan.  The map created by the 

logistic regression model appeared to be most accurate when compared to the Fish Atlas; 

all of the maps are examined more closely below. 

 

Discussion 

Ecological Significance 

An advantage of performing this modeling exercise on brook trout is that habitat 

requirements of this fish are well known, so it is relatively easy to determine if our 

models are consistent with ecological knowledge of the fish.  In general, I would expect 

brook trout to prosper in small to medium size streams with plenty of groundwater flow, 

which provides cold water and a stable environment (Smith 1985; Zorn et al. 2002).  

Wehrly et al. (2003) reported that brook trout in Lower Michigan are restricted to streams 

with mean July water temperatures < 21 °C.  Since streams typically grow warmer as 

they grow larger (Wehrly et al. 1997), I should expect to find brook trout more 

consistently in smaller, headwater streams rather than in larger rivers (Smith 1985; Zorn 

et al. 2002).  In terms of land-cover, I expect that streams favorable to brook trout would 

have minimal thermal pollution.  Therefore I expect that streams with riparian zones and 
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catchments high in forests, and low in urban and agricultural land-uses, would be more 

likely to provide suitable habitat for the fish. 

 

Regression Models 

In the multiple regression model, six of the variables have β value signs that are 

consistent with our knowledge of brook trout ecology (Table 2.2), and in the logistic 

regression model, eight variables have consistent signs (Table 2.4).  For example, the 

lower the July mean air temperature (W_JULY_MN) and the smaller the stream 

(CHAN_LINK), the more likely that brook trout is predicted present.  If the stream has a 

high slope in the catchment (W_SLOPE) and high soil permeability in the riparian zone 

(RT_PERM), two variables that increase groundwater flow, I would also expect a greater 

chance of brook trout presence.  All of these variables are more likely found in headwater 

streams, so it is reasonable that the further away the reach is from the Great Lakes 

(DOWNLENGTH), the more likely it is to contain brook trout.  

Prior to examining the regression coefficients, I was unsure of how two of the 

significant variables would affect brook trout presence: percent of land-cover containing 

wetlands and percent of land-cover containing open water.  The models predicted that 

wetlands and open water would negatively influence presence.  This seems reasonable as 

these land-covers could result in surface water warming, which contributes to poor brook 

trout habitat (Wehrly et al. 2003). 

Hindering our interpretation of the significant regression variables is the problem 

of multicollinearity.  Due to existing correlations between the variables, I can only 

interpret the effect of a predictor on the response when I also consider the effect of every 
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other variable on the response at the same time (Faraway 2005).  Understandably, with 

close to ten predictors in our models, this is a very difficult task.  The result is that I can 

really only generalize about an individual predictor; I can say a predictor seems to have a 

certain effect but cannot say the exact magnitude of that effect.  However, 

multicollinearity does not affect the accuracy of our predictions; it only affects the 

explanatory value of the model.   

The multiple regression and logistic regression models fit the MRI test data well, 

especially in regards to predicting presence, which both models correctly predicted over 

85% of the time (Table 2.3).  The cross-validation of each model was also quite 

successful, predicting the reaches correctly about 80% of the time.  In order to determine 

which model predicted better overall, I added the percent correct prediction for the MRI 

test data and cross-validation to produce a value that I called “Performance” (Table 2.3).  

Using this value, it appears that logistic regression predicted the data slightly better than 

the multiple regression (324.1 > 321.6).   

The statewide mapped predictions seem generally reasonable for both models, 

both predicting brook trout occurrences not only in the north but also scattered in the 

southern interlobate and glacial outwash regions of Western Michigan where in fact 

isolated populations do occur (Figure 2.5B,C).  However, the logistic regression map 

followed the Fish Atlas patterns more closely.  In the Fish Atlas, brook trout is uniformly 

distributed in the Upper Peninsula, except for a few areas (i.e. the Manistique, the Cedar, 

and the Escanaba watersheds) in which there are “holes”.   The map produced by logistic 

regression properly models both the Manistique hole and the Cedar-Escanaba hole.  In 

the Lower Peninsula, the Fish Atlas shows that brook trout are not found in the streams of 
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the Pigeon and Birch watersheds, which are located in the area of land protruding into 

southern Lake Huron (this area is called the “tip of the thumb” due to the generally 

accepted idea that the Lower Peninsula looks like a mitten).  The logistic regression 

model accurately predicts absence in this area; the multiple regression largely predicts 

absence but does predict presence in several streams. 

In addition, the logistic regression model predicted a band of brook trout presence 

in southeast Michigan that runs in a southwest-northeast direction.  Part of this band can 

be seen in the Fish Atlas (Figure 2.5A).  This band lies on a glacial interlobate formation, 

and has higher slopes, higher soil permeability, and faster groundwater flow than the flat 

lake plain geology of the rest of southeast Michigan (Bent 1971).  It is reasonable to 

expect that the streams of this area have the proper habitat to support brook trout.   

 

Multiple Regression Assumptions 

In general, multiple regression works best when the response variable is 

continuous, not dichotomous or categorical (Zar 1999).  The multiple regression model 

predicted quite well, but the question must be asked if it is acceptable to use this model 

with presence-absence data.   

I checked the assumptions of the models with diagnostic plots.  The partial 

regression plots demonstrated that transformations of the variables helped improve the 

linear relationship between the predictors and the response, but did not achieve perfect 

linearity, resulting in a model that has less fit than a perfect linear model.  In addition, 

diagnostics on the residuals showed that while the error terms met the assumption of 

linearity, they violated the assumption of constant variance and independence.  As a 
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result, probability based assessments of the model parameterization and goodness of fit 

are in question.  While this model was interesting as an intellectual exercise, the result of 

these problems is that I would not use a model of this type for critical management 

decisions.  Logistic regression, which was developed for dichotomous responses and 

which has much less stringent assumptions, is certainly the presence/absence regression 

model of choice. 

 

Neural Network Models 

Both the full neural network and the pruned neural network did a good job in 

predicting the test data and accurately cross-validating the training data.  The variables 

identified as significant in the full model were, in general, consistent with our ecological 

knowledge of brook trout.  Air temperature had a negative relationship with brook trout 

presence; the regression models predicted the same relationship (Table 2.5).  In addition, 

the Darcy variable and channel gradient had a positive relationship with brook trout 

presence, which is also similar to the regression models.  The effect of the land-cover 

variables on brook trout was not clear.  Both open/field land-cover and wetland land-

cover variables were significant in the model, but each of these variables were included 

in two different scales that had opposite relationships to brook trout.  For example, 

WT_OPEN had a positive relationship to presence, but W_OPEN had a negative 

relationship to presence (Table 2.5).  As these two variables are positively correlated (r = 

0.66), I would expect them to have a similar effect, but our analysis showed that they did 

not. 
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Interestingly, the pruned network predicted the test data and the cross-validation 

of the training data just as well as the full network (performance value: 311.9 to 310.6), 

demonstrating the validity of the randomization approach for network pruning (Table 

2.3).  However, examination of the predictive maps produced by the models showed that 

the full network map was more realistic than the pruned network map (Figure 2.5D,E).  

The pruned network captures well the Manistique hole and the Cedar-Escanaba hole in 

the Upper Peninsula and the glacial interlobate band in the southeast Lower Peninsula, 

but it predicts presence in the thumb and draws an unexpected straight line of predicted 

presences running west to east across the Lower Peninsula.  After some investigation into 

this line, it appeared that the line marks a change in the stream reaches’ air temperature 

values.  A similar problem with the air temperature variable was seen in the classification 

tree model and is discussed more in the next section. 

The predictive abilities of the pruned network seemed reliable until they were 

applied to the whole state and viewed geographically.  For this particular study, I decided 

it would be best to run the randomization procedure to determine variable significance, 

but use the full model in making the predictions.  Other fish may be able to be modeled 

reasonably through the pruned network; each case should be evaluated individually. 

 

Classification Tree Model 

The classification tree model included several variables that were also in the 

regression models (i.e. W_JULY_MN, CHAN_LINK, W_FOR).  The tree splits the data 

with these variables in a way that is consistent with our ecological knowledge of brook 

trout, and this model predicted the test data and cross-validation of the training data 
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almost as well as the regression models.  The performance value of this model (315.5) is 

lower than the regression models and higher than the neural network models, but all of 

these differences are actually quite small (Table 2.3). 

The statewide predictive map is generally reasonable for the classification tree 

model; it follows the general pattern shown in the Michigan Fish Atlas and in the 

regression models (Figure 2.5F).  The model does not correctly capture the Manistique 

hole and the Cedar-Escanaba hole, as did the logistic regression model.  In addition, 

several streams at the tip of the thumb are predicted present, but the Fish Atlas does not 

record brook trout being found in this area.  This problem is most likely the result of the 

importance placed on the July mean air temperature variable; the tip of the thumb is far 

enough north to have a lower air temperature than the rest of the thumb, and lower air 

temperatures cause the fish to be predicted present.  This problem actually represents an 

important problem with all of the models using air temperature. 

Studies have shown that water temperature, not air temperature, is the most 

important habitat variable for fish (Wehrly et al. 2003; Zorn 2003).  In this study, water 

temperature data were not available, so I used air temperature only.  It is a curious 

coincidence that the air temperature the classification model chose as a maximum cutoff 

for brook trout is the same mean water temperature (21 °C) reported by Wehrly et al. 

(2003) as the upper limit for Michigan brook trout.  Water temperatures and air 

temperatures are in fact not predictably related in Michigan due to the spatially variable 

contribution of ground water to stream channels (Wiley et al. 1997; Baker et al. 2003; 

Wehrly et al. 2003).  However, in general, northern Michigan has lower air temperatures 

than southern Michigan, and due to Michigan’s glacial history, northern Michigan tends 
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to have higher soil permeability, greater groundwater flows, and thus colder water 

temperatures than southern Michigan (Bent 1971).  This coincidence results in all of the 

models being able to capture the north-south distribution gradient when using air 

temperature, even though the driving factor is water temperature.  In the southern part of 

the state, the models seem to struggle with presence predictions since the air temperature 

and water temperature are not as closely related as they are in the northern half of 

Michigan.  As mentioned above, this problem becomes especially evident in the 

predictive map of the pruned neural network.   

In order to more thoroughly check this north-south distribution problem, I 

examined the residuals of the MRI data.  I divided the data into two parts by presence and 

absence and constructed linear regressions of the residuals of the MRI test data on the 

latitude of the observations (Figure 2.6).  Regressions for all of the models showed that 

presence reaches in the northern Lower Peninsula tend to have lower residuals than 

presence stream reaches in the southern Lower Peninsula.  This indicates that the models 

were able to more accurately predict presence reaches in the north than in the south.  

Absence reaches followed the opposite pattern: residuals in the southern Lower Peninsula 

tend to be smaller than residuals in the northern Lower Peninsula, which indicates the 

models can more accurately predict absences in the southern Lower Peninsula than the 

north.  In future studies, this problem will be addressed as water temperature data are 

obtained and built into the models.  I expect that the inclusion of water temperature will 

remove this inconsistency in the models between the north and the south, as the water 

temperature value does not rely fully on latitude. 
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Error in Databases 

The fish samples used in this study were obtained by several methods.  Different 

sampling methods have different catch efficiencies depending on the fish species and 

stream in question, and at some sampling points the method may not have been optimal 

for sampling brook trout.  Consequently brook trout may be found at sites where I 

marked them as absent.  It is difficult to say that a fish does not reside in a particular 

location; it may be that I simply have not found them.  However, this issue may be of 

greater consequence for a different fish; trout are susceptible to all the sampling methods 

and so were probably collected with little error.  Patton et al. (2000) and Cao et al. (2005) 

found that electrofishing and seining yielded 97% comparability in species captured from 

Wyoming streams. 

In addition, the data were collected over a period of 22 years.  Over this time, 

sampling sites where fish were present may now be absent, and vice-versa, due to normal 

fish movement and changing habitat conditions.  Land-cover data and stream line 

segment locations are likewise dated.  Land-cover was based on air photos taken in 1978.  

However, I believe these data are generally representative of conditions in the past 25 

years, which is what I examined.  In using data of this type, I can avoid the naturally 

occurring year-to-year variation. 

Another less obvious source of error in our evaluation is the unintended bias in 

our training data itself.  Since it represents a random sample of the larger database, it is 

likely to under-represent the extremes of the larger distribution.  The models are likely to 

favor methods that are best at predicting sites near the average (center of the distribution) 

and be biased against methods that provide a better fit to the tails of the distribution 
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relative to the center.  This may be the reason why the classification tree was able to 

slightly out perform the neural network. 

 

Model Comparison 

In this study, all four models did well at predicting the distribution of brook trout 

throughout the state of Michigan.  When applied to test data and when cross-validated 

with the training data, the order for accuracy was as follows: logistic regression, multiple 

regression, classification tree, and neural network.  The predictive map produced by the 

logistic regression model also was the closest to the Michigan Fish Atlas patterns.  

However, the relative differences in the model predictions were quite small.  Therefore, if 

I was to select the model that I deemed to be most useful, the choice might need to be 

based on criteria other than this predictive success. 

As discussed above, multiple linear regression is not ideal for predicting 

dichotomous response variables (Zar 1999).  Statistical assumptions about the error terms 

are never met with dichotomous data.  However, logistic regression was developed for 

modeling with presence/absence data and has much less stringent assumptions than 

multiple regression.  Logistic regression is also quite familiar to most ecologists, is 

widely used in the literature, and is included in most statistical packages. 

Classification trees and neural networks, on the other hand, are distribution-free, 

nonlinear modeling procedures, and therefore especially of interest to ecologists, who 

often encounter messy data and non-linear responses.  However, these methods are fairly 

new and unfamiliar to many researchers, and while the software is available, it will need 

to be purchased separately from a standard statistical package and may be expensive.  
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Given that a researcher has software for both of these modeling types on hand, 

classification trees will probably be preferred due to their easy setup and clear 

explanatory value.  It is very logical and easy to follow classification trees and 

understand how and why the trees make the classification decisions.  In contrast a neural 

network can be quite confusing to the beginner and requires many more steps and more 

time to get any type of explanatory value.  For these reasons, I prefer classification trees 

to neural networks in habitat analysis. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36 

Table 2.1.  Environmental variables included in the models.  “Order” refers 
to the order in which the variables were entered into the regressions.  
Variables transformed for the regression models are marked. 
 
Order Variable Name Unit Code Transformation 
     
 Air Temperature Variable    
1 Watershed July Mean Air Temperature °C W_JULY_MN None 
     
 Channel Geometry/Position    
2 Shreve Stream Order None CHAN_LINK Log 
3 Lake Immediately Downstream Binary DLAKE Square Root 
4 Distance Downstream to Great Lake Meters DOWNLENGTH None 
     
 Flow / Hydrologic Variables    
5 Channel Slope % CHAN_GRAD Log 
6 Channel Sinuosity None CHAN_SINU None 
7 Riparian Mean Darcy Value None R_DARCY None 
8 Riparian Mean Slope % R_SLOPE Square Root 
9 Riparian Mean Soil Permeability Inches/hour R_PERM Square Root 
10 Riparian Trace Mean Darcy Value None RT_DARCY None 
11 Riparian Trace Mean Slope % RT_SLOPE Square Root 
12 Riparian Trace Mean Soil Permeability Inches/hour RT_PERM Square Root 
13 Watershed Mean Darcy Value None W_DARCY None 
14 Watershed Mean Slope % W_SLOPE Square Root 
15 Watershed Mean Soil Permeability Inches/hour W_PERM Square Root 
16 Watershed Trace Mean Darcy Value None WT_DARCY None 
17 Watershed Trace Mean Slope % WT_SLOPE Square Root 
18 Watershed Trace Mean Soil Permeability None WT_PERM Square Root 
19 Mean Precipitation in Watershed  mm W_PRECIP None 
     
 Surficial Geology in Watershed Trace    
20 Coarse Soil Texture in Watershed  % COARSE None 
21 Fine Soil Texture in Watershed  % FINE None 
22 Medium Soil Texture in Watershed  % MEDIUM None 
     
 Percent Landuse    
23 Riparian Urban % R_URB_P Log 
24 Riparian Agriculture % R_AGR_P ArcSine 
25 Riparian Wetland % R_WET_P ArcSine 
26 Riparian Forest % R_FOR_P ArcSine 
27 Riparian Open/ Fields % R_OPEN_P Log 
28 Riparian Open Water % R_WAT_P Log 
29 Riparian Trace Urban % RT_URB_P Log 
30 Riparian Trace Agriculture % RT_AGR_P ArcSine 
31 Riparian Trace Wetland % RT_WET_P ArcSine 
32 Riparian Trace Forest % RT_FOR_P ArcSine 
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Table 2.1, continued. 

33 Riparian Trace Open/ Fields % RT_OPEN_P Log 
34 Riparian Trace  Open Water % RT_WAT_P Log 
35 Watershed Urban % W_URB_P Log 
36 Watershed Agriculture % W_AGR_P ArcSine 
37 Watershed Wetland % W_WET_P ArcSine 
38 Watershed Forest % W_FOR_P ArcSine 
39 Watershed Open / Fields % W_OPEN_P Log 
40 Watershed Open Water % W_WAT_P Log 
41 Watershed Trace Urban % WT_URB_P Log 
42 Watershed Trace Agriculture % WT_AGR_P ArcSine 
43 Watershed Trace Wetland % WT_WET_P ArcSine 
44 Watershed Trace Forest % WT_FOR_P ArcSine 
45 Watershed Trace Open/ Fields % WT_OPEN_P Log 
46 Watershed Trace Open Water % WT_WAT_P Log 
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Table 2.2.  Variables significant in the multiple linear regression, their β values (regression 
coefficients), standard error of the β, and significance.  Variables were entered into the model in 
a stepwise procedure and were included in the final model if found significant (p < 0.10). 
 
Variable β Standard Error Significance 
(Intercept) 0.5   
W_JULY_MEAN -0.184 0.023 <0.001 
LINK -0.133 0.016 <0.001 
W_FOR 0.091 0.022 <0.001 
R_PERM 0.061 0.017 <0.001 
WT_WET -0.058 0.018 0.001 
R_DARCY 0.055 0.016 <0.001 
RT_WAT -0.042 0.016 0.01 
WT_OPEN 0.036 0.017 0.03 
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Table 2.3.  Percentage of correct predictions for the MRI test data and the training data 
upon cross-validation.  “Performance” is the sum of the correct predictions for a model 
and gives a measure of the model’s relative predictive ability. (MLR- multiple linear 
regression; LR- logistic regression; CART - classification tree; NN(46)- neural network 
with 46 habitat variables; NN(7)- pruned neural network with 7 habitat variables). 
 

  MRI X-Validation Performance 
 Presence Absence Presence Absence  
MLR 85.7 75.7 80.6 79.6 321.6 
LR 87.1 75.9 79.9 81.2 324.1 
CART 84.3 77.7 75.2 78.3 315.5 
NN (46) 85.7 71.8 75.4 77.7 310.6 
NN (7) 81.3 77.4 68.8 84.4 311.9  
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Table 2.4.  Variables significant in the logistic regression, their β values, standard error of 
the β values, and significance. Variables were entered into the model in a stepwise 
procedure and were included in the final model if found significant (p < 0.10). 
 

Variable β Std. Error Significance 
(Intercept) -0.0726   
W_JULY_MEAN -1.3614 0.186 <0.001 
CHAN_LINK -1.2475 0.153 <0.001 
W_FOR 0.4737 0.179 0.008 
WT_WET -0.4224 0.14 0.002 
R_PERM 0.4139 0.127 0.001 
W_SLOPE 0.3823 0.153 0.013 
R_DARCY 0.3615 0.133 0.007 
DOWNLENGTH 0.3486 0.131 0.008 
WT_OPEN 0.2317 0.133 0.082 
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Table 2.5.  Variables determined to be significant after a neural network randomization 
procedure, their relationship to brook trout presence, and associated p-values.  These 
variables were then used to construct a pruned neural network. 
 
Variable Relationship P-value 
WT_OPEN + 0.016 
W_JULY_MN - 0.017 
CHAN_GRAD + 0.021 
RT_WET + 0.044 
R_DARCY + 0.053 
W_OPEN - 0.057 
WT_WET - 0.087 
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Figure 2.1. Michigan streams reaches containing habitat variables overlaid by A) MDNR 
sampling points for brook trout presence and absence (training data) and B) MRI 
sampling points for brook trout presence and absence (testing data). 
A) 

 
B) 
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Figure 2.2. Variables are measured on four scales for each individual stream reach: A) 
Riparian, B) Network, C) Sub-watershed, D) Watershed.  See text for details. 
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Figure 2.3.  In order to prune the neural network, the sum of the input layer-hidden layer 
weights and the hidden layer-output layer weights is calculated for each input variable.  
In this example, I calculate this sum for one variable in a neural network with 3 hidden 
neurons in the hidden layer. 
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Figure 2.4.  Classification tree created by CART that had highest correct percentage of 
predictions for the test data. An observation is tested one at a time, starting with the top 
of the tree and working down, following the splitting rules until it is classified as present 
or absent. 
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Figure 2.5.  A) Brook trout samples in the Michigan Fish Atlas, and B-F) predicted brook 
trout distributions in Michigan using B) multiple linear regression, C) logistic regression, 
D) neural network with all variables, E) neural network with seven variables, F) 
classification tree.  A black stream indicates predicted presence, and a light gray stream 
indicates predicted absence. 
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Figure 2.6.  Scatterplots of the absolute values of residuals for the MRI test data 
regressed against the latitude of the sampling point for the A) Presence samples in the 
logistic regression model (R2= 0.27, F= 25.4,  p-value <0.000);  B) Absence samples in 
the logistic regression model (R2= 0.41 , F= 402.4,  p-value <0.000 );  C) Presence 
samples in the full neural network model (R2= 0.04 , F=  3.1,  p-value = 0.084);             
D) Absence samples in the full neural network model (R2= 0.25 , F=  187.4 ,  p-value 
<0.000).  Graphs for the other models are not shown; all of the models displayed the 
same patterns demonstrated by the graphs shown here. 
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Chapter 3 
 

Classification tree models for predicting distributions of Michigan stream fish from 
landscape variables 

 

Abstract 
 

Traditionally, fish habitat requirements have been described from correlations 

between occurrence and site-scale environmental variables.  However, recent studies 

have shown that studying landscape-scale processes improves our understanding of what 

drives species assemblages and distribution patterns across the landscape.  In this study, 

my goal was to learn more about the constraints on the distribution of Michigan stream 

fish using landscape-scale habitat variables.  I used classification trees and landscape-

scale habitat variables to create and validate presence/absence models and relative 

abundance models for Michigan stream fishes. I developed 93 presence/absence models 

that were on average 72% correct when compared to independent data, and I developed 

46 relative abundance models that were on average 76% correct when compared to 

independent data.  The models were used to create statewide predictive distribution and 

abundance maps that can be used for a variety of conservation and scientific purposes. 

 

Introduction 

Environmental complexity and species interactions make it difficult to learn the 

exact abiotic habitat constraints on a population.  Researchers often use statistical models 
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for this by searching for patterns between species occurrences or abundances and the 

environmental characteristics of sampled locations.  These models serve two important 

purposes: they are used to formulate and test hypotheses about the factors and processes 

that are important to organisms, and they are sometimes used to make predictions of 

species distributions and abundances for use in management and conservation decisions.   

Traditionally, fish habitat requirements have been described from site or local-

scale environmental variables (Fausch et al. 1988).  Habitat variables measured at this 

scale are useful to managers because small-scale habitat can be manipulated (Fausch et 

al. 1988; Vaughan and Ormerod 2003).  Local-scale variables such as cover or substrate 

are measured on short river reaches and affect food, refuge habitat, spawning habitat, and 

ultimately fish abundance. Three well known modeling approaches, the U.S. Habitat 

Suitability Index (HSI), the River Invertebrate Prediction and Classification System 

(RIVPACS), and Australian Rivers Assessment Scheme, are based on local-scale 

environmental variables (Seelbach et al. 2002a).  There are problems with modeling on a 

site-scale level; it is expensive, or in some cases impossible, to measure site attributes 

everywhere within a study region (Seelbach et al. 2002a).  Beyond this practical concern, 

an important ecological tenet states that “different processes are likely to be important on 

different scales”(Levin 1992); researchers may be completely unaware of important 

large-scale processes that impact fish if they only use site-scale habitat data (Wiley et al. 

1997; Fausch et al. 2002; Allan 2004).   

In the past fifteen years, the advent of powerful geographic information system 

(GIS) tools has made it possible to study spatial variation in fish distributions and 

abundance from a larger, landscape perspective and to incorporate habitat attributes 
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measured at larger spatial scales.  GIS-based modeling uses a variety of large-scale map-

based variables (e.g., geology and climate), which influence an aquatic system’s 

hydrological and thermal characteristics (Wiley et al. 1997).  Modeling at this scale often 

uses land-use patterns as well, because they influence amounts and rates at which 

sediment, pollutants, and water are delivered to the system (Schlosser 1991).   

Fish species are clearly influenced by processes that operate on larger spatial 

scales and slower temporal scale than those measured at the local-scale (Richards et al. 

1996; Leftwich et al. 1997; Rathert 1999; Allan 2004).  While fish are responding 

mechanistically to what is happening in their immediate surroundings, those local-scale 

factors are directly caused by the larger landscape.  For example, while stream 

temperature is measured at a specific location, it is controlled by a combination of local 

and landscape-scale processes (Wehrly et al. 2003; Wehrly et al. 2006).  Also, the 

hydrologic flow regime of a stream is crucial to fish communities and is driven by factors 

operating at a catchment scale (Poff et al. 1997).   

Models based on landscape-scale processes are becoming more common. Wiley 

et al. (1997) produced trout population density models using only landscape-scale 

variables, while Zorn et al. (1998, 2003) used catchment area and low-flow yield as key 

variables in predicting fish assemblages in Michigan.  Zorn et al. (2003, 2004) also used 

landscape-scale variables with multiple linear regression to predict fish assemblages.  

Close associations have also been recognized between fish assemblages and hydrologic 

variability, watershed size, gradient, and percent forest cover (Poff and Allan 1995; 

Maret et al. 1997).   
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 In addition to providing understanding into processes that drive the fish 

distributions, there are many other reasons to develop models that study the relationship 

of landscape-scale environmental variation and fish populations.  Such models provide 

insight to how aquatic ecological systems function, predict potential population sites, and 

identify areas for population restoration (Fausch et al 1988; Maret et al. 1997; Wiley et 

al. 1997; Olden 2001; Olden and Jackson 2002).  This is especially important for 

Michigan stream fish communities. Michigan possesses a diverse array of streams 

ranging from nationally renowned trout fisheries to diverse warm- and cool-water 

communities that support recreational angling for a variety of game species.  In addition, 

maintaining the diversity of non-game stream fishes is an important conservation goal.  

Both fisheries managers and non-game biologists need further understanding of the 

processes that regulate stream fish communities within the state; however, broad scale 

knowledge of Michigan stream communities has been hindered because although 

historical fish data are plentiful, a relatively small percentage of stream reaches have been 

sampled.  

 In this study, my goal was to learn more about large-scale factors that influence 

the distribution of Michigan stream fish.  To do this, I used landscape-scale habitat 

variables and three sources of data on Michigan fish distributions to create and validate 

models that predicted presence/absence (PA) and relative abundance (RA) of Michigan 

fishes. 

 Specific objectives were as follows: 

1. To build classification tree fish models for Michigan stream fish. 

2. To assess each model for validity using an independent dataset. 
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3. To describe the general structure and behavior of the models. 

4. To understand patterns in model error and to understand model limitations. 

5. To use the models to describe relationships between fish communities and 

landscape-scale habitat variables. 

  

Methods 

Data Description- Habitat Variables 

 Data for predictor variables used in this study were obtained through the 

combined efforts of the Great Lakes Aquatic GAP Project (GLGAP; GLSC 2007) and the 

Classification and Impairment Assessment of Upper Midwest Rivers (CIAUMR; 

Brenden et al. 2006; UM 2007). These groups have established a high-resolution, GIS-

linked database containing characteristics of Michigan’s rivers.  The database was 

referenced to a group of ArcGIS line coverages (ESRI 2002), in which each river was 

divided into inter-confluence reaches.  Line coverages were based on the USGS National 

Hydrography Dataset (NHD, 2007) at the 1:100,000 scale, but were updated to provide 

more accurate representation of Michigan rivers (Brenden et al. 2006).   There are 31,817 

Michigan stream reaches (86,983 kilometers of stream length) included in the database, 

and the database contained information on wide variety of landscape-scale environmental 

variables for each stream reach, including soil permeability, land cover, stream position, 

bedrock and surficial geology, modeled water temperature, climate data, modeled 

exceedence flows, and modeled phosphorus (Brenden et al. 2006).  

 The database contained approximately 320 variables for each stream reach; I 

chose to combine some and remove others to end up with a list of 23 variables that I 
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hypothesized to have the most direct mechanistic relationships to fish distributions (Table 

3.1).  Reducing the number of predictors was essential to reduce collinearity between 

model variables, improve model interpretability, and reduce probability of spurious 

correlations.  Not all correlated variables were removed; for example, it was important to 

leave in the different types of land-use and land-cover as these variables are important for 

managers as examples of landscape-scale variables that can be manipulated.  Choosing 

these variables was a key step in the modeling process, and the decision was based on 

past work on Michigan fish (Zorn 2003) as well as preliminary classification trees in 

which I included all possible variables. The variables that I retained and their importance 

to fish are discussed in the next several paragraphs. 

Water temperature has important effects on growth and survival of fish and 

affects dissolved oxygen levels (Smale and Rabeni 1995; Wehrly et al. 2003; Bailey and 

Alanara 2006; Rand et al. 2006; Wehrly et al. 2006).  Since water temperature data were 

not available for every stream reach, a temperature model was developed to make 

predictions of mean July stream temperature (Li Wang, Michigan Department of Natural 

Resources, personal communication).  In addition to water temperature, I also used mean 

annual air temperature, which is a reasonable approximation of ground water temperature 

and thus water temperature during base-flow conditions.   

Of the different types of land-use data available, I used percent of forest, 

wetlands, agriculture, and urban on two scales: a 60 meter (30 meters to each side of the 

stream) riparian network stream buffer for the stream reach of interest and all streams 

upstream, and the total catchment area (km2) of the stream reach.   The riparian area of a 

stream is an important indicator of erosion control, pollution filtering capacity, shading, 
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and woody debris potential, while land-use of the entire catchment area of a stream has 

important effects on water chemistry and stream hydrology (Wang et al. 1997; Synder et 

al. 2003; Wang et al. 2003).   

Surficial geology has impacts on water chemistry and hydrology (Bent 1971).  I 

obtained surficial geology data from 1:250,000 scale maps.  I calculated the sum of the 

coarse-textured geological areas (outwash, coarse textured end moraine and till, 

lacustrine sand and gravel, dune sand) for the watershed of each stream reach and divided 

by the watershed area to produce the percent of coarse surficial geology in the watershed.  

This was also done with fine-textured surficial geology (fine textured till, fine-texture 

end-moraine, and lacustrine clay and silt).  

Several habitat variables were built from GIS-obtained information to serve as 

surrogates for site-scale habitat features that are important in shaping fish communities 

(Table 3.1). Ninety percent exceedence flow yield (exceedence flow/catchment area) 

served as a replacement for velocity at baseflow and indicates the relative contribution of 

groundwater, while specific stream power at 90% exceedence flow (10*90% ex. flow * 

gradient / catchment area) can indicate a stream’s substrate, with a high power stream 

able to scour fine sediment from the channel bed.  Ten percent exceedence flow is a 

measure of a stream’s peak flow that can limit recruitment and abundance of the 

population, and specific stream power at 10% exceedence flow is a measure of the 

stream’s maximum erosive force and sediment transport capability. All flow estimates 

were standardized as “yields” by dividing values by catchment area. 

Phosphorus is an essential nutrient that can limit productivity in aquatic systems 

(Vanni 1987; Vanni et al. 1997; Zorn et al. 2003). Since total phosphorus measurements 
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were not available for every Michigan stream reach, I predicted it using a multiple 

regression equation based off of 1985-1992 Michigan Rivers Inventory (MRI) 

phosphorus measurements and the other variables in Table 3.1 [ln(Total Phosphorus) = -

6.996 + (% Agriculture in watershed* 1.497) + (ln (Stream power at 90% exceedence 

flow)* -0.222) + (10% exceedence flow yield* 59.977)], n = 172, p <.001, adjusted R2 = 

0.54) (Seelbach and Wiley 1997). 

There were several measured connectivity variables that take advantage of the 

stream connection properties inherent to the NHD (Brenden et al. 2006). Variables built 

from these analyses include distance from the stream to the receiving Great Lake and 

distance from the stream to upstream and downstream lakes and ponds.  Streams reaches 

disconnected from the Great Lakes by dams or waterfalls were noted.   It is expected that 

these variables will be important to lake fish species that migrate into streams for parts of 

their life cycle (e.g., Chinook salmon), or fish that live in both lakes and rivers (e.g., most 

centrarchids). Also, the variable LINKDCATCH was created to measure the distance 

from the stream reach of interest to the closest downstream stream reach that has a 10% 

greater catchment area than that of the stream of interest (Osborne and Wiley 1992).   

This distance might prove useful for explaining occurrences of large river fish in small 

tributaries, or small stream fish in nearby larger rivers. 

 

Data Description- Fish Data 

 I used three fish databases to create and validate the models.  The Michigan 

Rivers Inventory (MRI) dataset contains quantitative fish samples obtained through 

electroshocking and rotenone sampling. The samples in this dataset were obtained during 
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the 1980s and 1990s and cover the geographic extent of Michigan, but do have a bias 

towards small to medium streams that can be waded (Seelbach and Wiley 1997).  I 

compiled fish counts from the years 1980-2002 from the Fish Collection System (FCS) of 

the MDNR Fisheries Division.  These records were collected with a wide variety of catch 

techniques, including electroshocking, rotenone, and seining.   Given the poor catch 

efficiency of seining methods, for sites that were seined I only recorded the presence of 

fish caught and did not consider missing fish as “absent”.  I also used the Michigan Fish 

Atlas, created by the University of Michigan’s Museum of Zoology (Bailey et al. 2000).  

This database has occurrence records of Michigan fish going back to the mid-19th 

century.  However, for this study I only used data from collections made during 1980-

2000, in order to match the time frame of the MRI and FCS data.  These records were 

also collected with a wide variety of catch techniques and provide good spatial coverage 

of the state. 

For all three datasets, I deleted replicate samples so that a stream reach was 

represented by only one sampling effort. When different samples for the same reach 

disagreed on a species presence or abundance, I kept the observation where the fish was 

present or in higher abundance.  This assumed that the stream reach has the potential to 

hold the higher amount of fish, and the lower fish count was a result of disturbance 

unrelated to the habitat factors.   

  

Classification trees 

Classification trees are created through a data partitioning technique; a value of a 

variable is used to split the data into two subsets that are as pure as possible for the 
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response (Breiman et al. 1984, Bell 1999).  Each subset is then split repeatedly until all 

data within the subset are classified into a single class, or until a pre-determined stopping 

point is reached.  Each of these subsets is called a node, and the final subsets (those 

which are not split) are called terminal nodes.  Subsets are connected through variables 

and splitting rules in such a way as to create an inverted tree diagram, which can be used 

graphically to display the model’s decision rules (Figure 3.1). To make a prediction, an 

unclassified observation is dropped into the top of the tree and follows the splitting rules 

until it reaches a terminal node.  The predicted value for the observation is the value at its 

terminal node.  Bell (1999) gives a thorough and understandable explanation of 

classification trees. 

Classification tree is an empirical modeling technique that can deal with strongly 

non-linear, high order relationships, missing values, different data types (continuous, 

ratings, categorical); it can predict as well or better than traditional approaches and the 

graphical output is easy to interpret (Breiman et al. 1984, Bell 1999, Olden and Jackson 

2002).  For these reasons, the use of trees in ecological studies has increased dramatically 

in the past five years (De'ath and Fabricius 2000; Vayssieres et al. 2000; De'ath 2002; 

Taverna et al. 2005; Holland et. 2005; Baker et al. 2006; Steen et al. 2006; Usio et al. 

2006). 

In a previous study, I modeled brook trout with several different analytical 

techniques and determined that a classification tree method was successful in modeling 

with landscape-scale data (Steen et al. 2006, Chapter 2).  In this study, I decided to use 

classification trees to develop the models for all common species of Michigan stream 

fish.   
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Presence/Absence modeling procedure  

I created a species-specific PA classification tree model for each of the 93 fish 

species that had more than 30 occurrences in the training dataset (Table 3.2).  I used the 

MRI dataset as training data and the FCS dataset as testing data.  I selected the MRI set 

as the training dataset because it had higher sample sizes for most of the non-game fishes 

than did the FCS dataset.  For 11 species, either the number of occurrences in the FCS 

data was low (less than 3 occurrences) or the identifications of the fish were suspect.  For 

these species, I withheld 20% of the MRI data from training to serve as a test dataset 

(Table 3.3). I used the Fish Atlas data as a supplemental training database; if the MRI 

data did not contain at least thirty species occurrences, I added Fish Atlas data to the MRI 

data for model training purposes. 

 The training data for a species, having been pruned down through the procedures 

above, were entered into CART 5.0 (Steinberg and Colla 1997).  This program produced 

a series of differently sized classification trees, each with different misclassification rate 

for both the training data and an independent data set created from a cross-validation of 

the training data.  Next, I selected the tree that minimized error in both the training data 

and cross-validation.  If a tree was greater than 7 terminal nodes but had a lower error 

rate than a smaller tree, I selected the smaller tree despite it having a higher error rate.  I 

felt that as trees started growing past 7 terminal nodes, the interpretation of the tree grew 

difficult and would start to contain more spurious variable splits.  This decision 

represents the desire to have trees that are accurate, yet easy to interpret.  Certainly this is 

not an objective decision and reflects my judgment and preference.   
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Using this tree as a starting point, I determined if the variable splits in the tree 

could possess ecological meaning.  Splits that lacked ecological meaning were those in 

which the tree created a split at an unreasonable value; for example, the most common 

spurious split was a percent land-use split of less than 1 percent.  Since it was unlikely 

that these values had any significance to the fish, I removed these variables from the 

analysis and recreated the tree in order to develop a better model.  If there were no 

spurious variable splits, I accepted the tree as the final PA model.  

 The FCS test dataset was applied to the final model to get a benchmark of the 

model’s accuracy by predicting the percentage of observations predicted correctly.  In 

addition, I calculated the true skill statistic (TSS) for the FCS data.   TSS and its 

predecessor, Cohen’s kappa, are relatively new ways to measure the accuracy of 

presence/absence models, and address the problem reported by Fielding and Bell (1997) 

of inflated accuracy ratings for rare species.  TSS is a presence/absence assessment score 

that accounts for errors and success as a result of random guessing, and ranges from -1 to 

+1, where +1 indicate perfect prediction and values of -1 to 0 indicate a model that is 

worse than random (Allouche 2006).  However, the majority of the discussion of this 

paper relies on the percentage accuracy rating rather than TSS, as percent accuracy is 

more intuitive than is TSS and creates results more interesting and easier to understand.  

In addition, the results indicated that TSS consistently underestimated the value of 

models for which there was a large discrepancy between number of present and absent 

observations. 

 

Presence/Absence model error 
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 I identified sites from the FCS testing dataset that had misclassified fish 

predictions; in other words, sites where predicted presence/absence did not match the 

observation. These types of errors are usually described with the terms false positive 

(predicted present when observed absent) and false negative (predicted absent when 

observed present).  For example, when a FCS sampling site has 10 false positive errors, 

this means that 10 fish species were predicted to be present in the stream, but were not 

found.  

 I examined the correlation matrix of the numbers of false positive and false 

negative errors made at a site and the habitat values for the stream reach where the 

sampling site was located.  This was done in order to determine whether there are any 

patterns between model error and the habitat variables; such patterns can indicate if 

streams with particular habitat tend to have more or less accurate models.  To prevent the 

models that performed poorly from interfering with these results, I only looked at PA 

models with a TSS greater than zero and at least 60% accuracy (in both absence and 

presence) when compared against the test dataset.   

            

Relative Abundance model procedure 

For the RA models, I selected MRI data obtained from two-pass electroshocking 

depletion samples and converted the fish counts to estimated catch per hectare.  The FCS 

dataset and Fish Atlas dataset were not used in RA modeling. 

 I built the RA models on an individual species basis.  For each species with 

greater than or equal to 30 occurrences in the MRI data, I divided fish density estimates 

into three logarithmic-scale categories (low: 1-10; medium: 11-100; high: > 100 fish per 
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hectare).  I also tried dividing density estimates into categories by equal interval and by 

natural breaks.  However, the models performed the same or worse using these category 

breaks, so I decided to use the logarithmic-scale out of simplicity; each fish species had 

the same abundance categories when using the logarithmic scale. 

 To build the trees, I followed the same steps used in the PA models, except that I 

used three density categories instead of presence/absence categories. Since the only 

density data available were from the MRI dataset I withheld 20% of the MRI sample for 

model validation.   Several fish had greater than 30 samples, but too few fish in a 

category to use a 20% hold-out sample for a test dataset (e.g., 2 observations in the low 

category, 4 in medium, and 30 in high). In these cases, I used the 10-fold cross-validation 

procedure given by Steinberg and Colla (1997) to assess the model performance.  In the 

cross-validation process, one tenth of the data is held back while the rest is used to create 

the tree, and error estimates are made for the withheld data.  This is repeated until all the 

data has been withheld and tested, and the final testing accuracy is determined from the 

combination of all of the mini-test samples. 

   If a relative abundance model had an accuracy rating worse than guessing when 

compared to the test data or cross-validation (<33.3% for any category), I created a two-

category classification tree for that species.  For these models, I dropped the middle 

category so that the species was only predicted at a low and high relative abundance. This 

also involved dropping the training data that had been in the middle category (11-100 fish 

per hectare) and making the assumption that in the real world, no fish fall within this 

range.  This resulted in models that were simpler and more removed from reality than the 
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3-category models, but I think this was necessary in order to build RA models with good 

accuracy levels for these species. 

 

Model analysis and predictions   

 For both model sets, I counted the number of times each variable occurred to 

indicate the most important variables for all of the fish.  Then I more closely examined 

how the top five variables split in the trees to determine if there were any overall patterns 

caused by these variables.  To prevent the models that performed poorly from interfering 

with these results, I only looked at PA models or 2-category RA models that had at least 

60% accuracy (in any category: absence, presence, low, or high), when compared against 

the test dataset.  For the PA models, I also required the model to have a TSS greater than 

zero in order to include the model in the analysis. 

  For every species, I applied the PA model to every stream reach in Michigan.  For 

species with an abundance model, I applied the RA model to every stream that was 

predicted as present, and combined the two models to produce predictions with three or 

four categories: fish absence, low relative abundance, medium relative abundance (where 

available), and high relative abundance.  The predictions were joined to the updated 

1:100,000 NHD in a GIS to produce statewide distribution maps for each fish. 

 

Results 

Presence/Absence models 

I developed PA models for 93 Michigan stream fish (Table 3.2).  Despite the 

addition of the Fish Atlas data, I did not have enough data (less than 30 occurrences) to 
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create PA models for 52 of the 145 fish species found in Michigan (Bailey and Smith 

2002).  However, while 18 of these fish are found in streams, 34 are primarily or 

exclusively lake species and the samples did not include lakes. The lake species are not 

included in Table 3.2.   

 Each PA model has two measurements of percent accuracy when compared to the 

testing data: percent correct of predicted presences and percent correct of predicted 

absences.  The mean of these two scores gives us an accuracy measurement that is used 

to compare individual species models (henceforth, this measurement is referred to as the 

“average accuracy”). 

For all 93 PA models combined, I predicted 72% of the test data observations 

correctly. Forty-four percent of the PA models had an average accuracy of between 65% 

and 75%, including fish species such as rock bass, northern pike, smallmouth bass, and 

yellow perch (Table 3.3, Figure 3.2).   Four models had predictions that were worse than 

simply guessing (<50% average accuracy: creek chubsucker, freshwater drum, eastern 

sand darter, blacknose shiner).  However, 21% of the models had an average accuracy of 

greater than 80% (e.g., greenside darter, redfin shiner, and white perch).  Fish species 

associated with big, slow rivers were modeled particularly well.  Four redhorse species 

(black, greater, golden, silver) had an average accuracy greater than 88%, and two other 

redhorse (river, shorthead) had average accuracies of 74% and 77%.  Channel catfish had 

an average accuracy of 90%, and common carp had an average accuracy of 80%.  

Although cold-water species were not modeled as accurately as redhorses, these fish 

models also did well; brook trout, slimy sculpin, mottled sculpin, Chinook salmon, and 

Coho salmon all had average accuracies of about 75%. 
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 I recorded the frequency of each habitat variable included in PA models that had 

an average accuracy greater than 60% and a TSS greater than zero.  The two variables 

that appeared most often were water temperature and catchment area, being in 45 and 44 

of the 82 models, respectively (Table 3.4). Other frequently occurring variables included 

air temperature, predicted total phosphorus, and the 10% exceedence flow yield.  All 

land-use variables included in the models occurred with approximately the same 

frequency, though land-use measured on the larger watershed scale occurred slightly 

more frequently (on average, in 14 of the 82 models) than land-use measured on the 

riparian scale (on average, in 11 of the 82 models). 

I examined the PA models to see if there were any patterns associated with the 

variable splits of the five most frequently occurring variables. Patterns in the variable 

splits would indicate if these important variables have a consistent effect on the fish. The 

pattern was quite clear for water temperature; in 39 of the 45 models containing water 

temperature, an increase in water temperature resulted in fish presence.  Not surprisingly, 

cold-water species were associated with 5 of the other 6 models.  Brook trout, brown 

trout, rainbow trout, mottled sculpin, and slimy sculpin were predicted absent when the 

temperature was on average above 19.9°C.  An increase in temperature resulted in fish 

absence for pirate perch as well, but the split value for water temperature in this model 

was quite high (23°C), so this fish should not be grouped with the others.  Models of 

cool-water species (e.g., muskellunge, brook stickleback, brassy minnow) did not have 

consistent water temperature patterns. 

An increase of catchment area resulted in a prediction of presence in 39 of the 44 

models containing catchment area, and an increase of phosphorus resulted in a presence 
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prediction for 18 of the 24 models containing phosphorus.  The results for air temperature 

and 10% exceedence flow yield were ambiguous as neither presence nor absence 

predictions were dominant when the variable value increased. 

 I looked at the correlation matrix between the number of errors (absolute number, 

not a percentage) made at a site in the testing data and the habitat variables for the stream.  

For false negative errors, the highest correlation was rather small (10% exceedence flow 

yield : r = 0.17).  However, the number of false positive errors made at a site was 

correlated with several habitat variables.  The strongest correlation was between number 

of false positive errors and water temperature (r = 0.66), indicating that as stream water 

temperature increased, more species are predicted to be in streams where they were not 

observed. Similarly, catchment area (r = 0.35) and agriculture (RT_AGR : r = 0.43, 

WT_AGR: r = 0.50) are also positively correlated with the number of false positive errors 

at a site. On the other hand, percent of forest in the riparian zone (r = -0.58) and 

watershed (r  = -0.57) is negatively correlated to number of false positive errors, 

indicating that as percent forest increases, fewer errors are made in a stream.   

 

Relative Abundance models 

 I created 46 RA models, 10 models with three abundance levels, 36 models 

having two abundance levels.  I did not have enough data to create models for 47 of the 

species that I had created PA models for.  Similar to the PA models, I predicted some 

species very well (e.g., brook stickleback, pumpkinseed),but was unable to model other 

species much more accurately than simply guessing (e.g., rainbow darter, rosyface 

shiner) (Tables 3.5 and 3.6, Figure 3.2).  Overall, though, the accuracy of the RA models 
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exceeded expectations, especially for that of the two-category models.  The average 

three-category model predicted low abundances correctly 71.8% of the time, medium 

abundances 58.5% of the time, and high abundances 79.4% of the time (Table 3.5).  On 

average, the two-level model predicted low abundances 80.2% of the time and high 

abundances 76.9% of the time (Table 3.6).  

 I recorded the number of times that each habitat variable occurred in the more 

accurate RA models (all 3-level models, and > 60% accuracy for both % low and % high 

in the 2-level models) (Table 3.4).  Catchment area was the most important (41.9% of 

models), followed by predicted total phosphorus (32.6%) and percentage of coarse 

surficial geology in the watershed (27.9%).  While water temperature and air temperature 

were in about 50% and 30% of the presence/absence models, they are only in 8 (18.6%) 

and 9 (20.9%) of the 43 RA models, respectively.  Interestingly, both gradient and 

downstream link have moved from the bottom of the presence/absence list to near the top 

of the RA list (Table 3.4). 

 I looked for patterns in the relative abundance trees by examining the splits of the 

most frequent variables.  While the effect of catchment area and gradient were 

ambiguous, a decrease of the downstream link variable (LINKDCATCH) resulted in a 

greater abundance in 9 of the 10 RA models it appeared in, and an increase total 

predicted phosphorus increased abundance in 12 of the 14 RA models it appeared in.  

Also, an increase of the value of coarse surficial geology resulted in a lower abundance in 

10 of 12 RA models, and an increase of 90% exceedence flow yield resulted in a lower 

abundance for 11 of 11 RA models.  
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Distribution maps 

 Using the predictions generated from the models, I created either 

presence/absence or absence/abundance statewide distribution maps.  I give an example 

of a map that combines the presence/absence model and relative abundance model to 

classify each Michigan stream as absent, low, or high in rock bass (Table 3.3). In this 

example, I can see that rock bass is predicted to be found in low densities throughout the 

larger rivers of the Upper Peninsula and northern Lower Peninsula.  The highest density 

of rock bass is predicted to be in the south-central portion of the Lower Peninsula, 

throughout the upper portions of the Saginaw, Grand, Kalamazoo, and St. Joseph 

watersheds.  These predictions were tested against both presence/absence independent 

data and a 20% hold-out sample from the abundance training data (Table 3.3). 

All species maps are available upon request to the author or at the website 

http://www-personal.umich.edu/~psteen/.  Also available are interactive maps that run in 

the free downloadable program ArcReader (www.esri.com/arcreader).  This program 

allows a user to query specific streams in the GIS to obtain observed fish and predicted fish 

information as well as the habitat variables used in the models.  

 

Discussion 

 I created presence/absence models for 93 fish species typically found in Michigan 

streams, and developed relative abundance models for 46 of these 93 species.  About 7 of 

every 10 predictions were accurate for the PA models, about 6 of every 10 predictions 

were accurate for the 3-category RA models, and about 8 of every 10 predictions were 

accurate for the 2-category RA models.  This suggests that landscape scale factors alone 
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can be used to predict overall occurrence and abundance of most fish species in Michigan 

Rivers when site-specific data are not available. 

Optimally, I would be able to create models based on both landscape-scale and 

local-scale variables (Wiley et al. 1997).  Habitat conditions at the site scale (e.g., 

channel morphology, substrate and cover conditions, etc.) can have very strong effects on 

localized fish abundance patterns in streams.  Since many landscape-scale variables 

impact local-scale mechanisms, I indirectly model some aspects of the local-scale 

control.  However, without direct measurement of local-scale variables I was unable to 

capture all of the variation that occurs around these variables.  Also, since the fish were 

measured with a single sample, it was impossible to detect how temporal variation could 

change the species presence and abundance (Wiley et al. 1997). Additionally, research 

has shown that biological variables such as competition are important to species 

occurrence and abundance (Larson and Moore 1985; Flecker and Townsend 1994; Stoks 

and McPeek 2003).   For these reasons, I would not expect model accuracies much higher 

than obtained with this model set, and errors in the predictions were expected.   

However, using local-scale variables to build models like those in this study 

would be impossible; obtaining small-scale data on a scale as large as the state of 

Michigan would require prohibitive amounts of time and money. Given that research in 

landscape ecology has indicated that large-scale variables may be as or more important to 

fish than small-scale variables, and often correlate strongly with the small-scale variables, 

I feel using large-scale variables was justified and was the best approach that could be 

used to meet the goals of the study (Schlosser 1991; Wiley et al. 1997; Fausch et al. 

2002; Allan 2004).   
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Presence/Absence model summary 

 With about 70% prediction accuracy against a test dataset, the PA models 

performed very well, overall.  Large river fish such as redhorses and channel catfish were 

modeled very well, indicating that these species may be fully reliant on large-scale 

processes to determine their distribution.  Similarly, cold-water species were predicted 

very well.  Centrarchids were typically modeled with moderate accuracy (approximately 

65-75%), indicating that landscape-scale habitat and characteristics were important, but 

there are other factors in determining their distribution that I was not able to detect with 

these models.  For example, it is likely that including temporal variation in fish 

populations would increase model accuracy. 

However, there certainly was variation in model accuracy between different 

species, with some models barely better or worse than guessing.  There are a variety of 

ways to explain why some fish were modeled poorly.  Misidentification of fish during the 

data collection phase could have played a role in poor model performance, as some of the 

less accurate models are built on fish species that are difficult to identify quickly in the 

field.  Three lamprey species were probably predicted poorly due to this reason (silver 

lamprey, northern brook lamprey, American brook lamprey).  The stream habitat data 

was perhaps not causally linked to the distribution of lake species that are found in rivers, 

resulting in poor prediction of certain lake species (burbot, freshwater drum).  Some 

species were found virtually everywhere, and so the models were not able to distinguish 

between presence and absence streams (white sucker, blacknose dace).  Unfortunately, 

many rare fish were predicted poorly as well (blacknose shiner, creek chubsucker, eastern 

sand darter); these are fish that were historically widespread but due to pollution and 
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siltation now have a much narrower distribution (Trautman 1981; Roberts et al. 2005).  

The predictive models of these rare species were inaccurate as to where the fish currently 

live but may perhaps indicate where the fish has the potential to live. 

Zorn (1998, 2003) used low-flow yield (as an index of water temperature) and 

catchment area as primary ordination axes in separating clusters of fish assemblages, and 

explained that these two variables can reliably be used to determine what fish may reside 

in a particular stream section.  Unsurprisingly, the two most important variables in the PA 

models were also water temperature and catchment area.  Numerous other studies have 

found water temperature to be key in the classification of fish (Fausch et al. 1998; 

Matthews and Robison 1988; Lyons 1992; Hinz and Wiley 1997; Zorn et al. 2002; 

Wehrly et al. 2003; Steen et al. 2006), and there is also a long history of studies on how a 

stream changes depending on its position in the catchment (Hawkes 1975; Vannote et al. 

1980; Wiley et al. 1990; Smith and Kraft 2005). 

Many of the GIS-based habitat variables served as surrogates for site-scale 

habitat.  These variables require a conceptual leap from site-based to landscape-based 

modeling and their importance in the models emphasizes the linkages between the two 

scales of data.  Catchment area is one such variable; it is a measure of the amount of land 

draining to the stream, and therefore is used as a convenient way of indicating a stream’s 

approximate discharge, width, depth, and gradient (Vannote 1980).  These stream 

characteristics are highly correlated with site-scale habitat values, such as velocity, 

channel substrate, and dissolved nutrients (Vannote 1980; Wiley et al. 1990; Rahel and 

Hubert 1991; Lyons 1996).  In the models, more fish seem to prefer streams with larger 

catchment areas, indicating that larger streams with low gradient, high discharge, and 
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warm summer water temperatures tended to favor the greatest number of Michigan fish 

species.  Larger streams also have greater habitat complexity, providing space for a 

variety of fish species with different habitat requirements.  The importance of catchment 

area has also been seen in previous fish classification and ordination work (Zorn et al. 

2002). 

Stream yield and specific power variables are GIS-derived surrogates for stream 

discharge, stream velocity, substrate, erosive force, and sediment transport capability. On 

average, these variables were contained within about 18% of the models; so while they 

are not integral to every model, they still have important effects.  For example, the 

models predicted correctly that black crappie, bowfin, northern pike, and black bullhead 

will tend to be absent in streams with high stream power, indicating a preference for low 

velocity, lentic conditions.  Bluegill was found to be present in streams with a low 10% 

yield; the species avoids streams with high peak flows.  Slimy sculpin tended to be absent 

from streams with a low 90% yield, showing a tendency for groundwater driven streams 

with consistent flow rather than flashy, runoff driven streams.   

 The connectivity variables (e.g., distance from Great Lake, pond, or larger river) 

were included in only in about 10% of the models; however, these variables were very 

important in the modeling of several species. In the Coho and Chinook salmon models, 

the first split in the classification tree was the variable describing the distance from the 

closest Great Lake.  Both models indicate that either species of salmon are very unlikely 

to be found more than 122 kilometers from a Great Lake.  Removing this variable from 

either model resulted in predictions that were only slightly better than guessing; 

therefore, this variable was integral for in successful prediction.   
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The variable measuring the distance from the stream to Great Lake also indicated 

whether a stream was disconnected from the Great Lakes due to a dam or waterfall.  

While this aspect of the variable was unexpectedly not important in the Coho and 

Chinook models, it was important in the rainbow trout model. The rainbow trout model 

reported that it was unlikely, though not impossible, for rainbow trout to be found in a 

stream above a dam or waterfall.  This result was entirely logical given the life history of 

the migrating steelhead. (I should note that no distinction was made between steelhead 

and resident rainbow trout in the model development phase due to uncertainty in the 

sampling database.)   

 The distance from a pond or lake and distance from a large river were also key 

variables for several species.  For example, largemouth bass, smallmouth bass, and 

yellow perch were more likely to be found within 20 km, 8 km, and 6 km of a pond or 

lake respectively.  The bowfin model predicted the species to be found within 150 meters 

of the confluence of the stream of interest and a river that has a 10% greater catchment 

area.  This variable was also important for brown bullhead (21 km) and longnose sucker 

(23 km). Once again, it was entirely logical that the models have included these variables, 

as these fish were good examples of species that are found in lakes or slow-moving 

backwaters but also live in stream environments.  

 

Presence/Absence Error Analysis 

In PA models, there are possible error types: false negative and false positive 

error.  In my PA models, false positive errors occur more frequently than false negative 

errors by a ratio of 8:1.  False negative errors are typically seen as more severe than false 
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positive errors (McKenna et al 2006); a false negative error is more likely to be caused by 

an error in the model rather than a fish that was missed in the sampling.  In addition, false 

negative errors have a severe impact on conservation work based from models: if a rare 

species is predicted to be absent from a set of streams in which it actually exists, those 

streams may not be given the level of protection needed to conserve the species.   

 When distribution models are used for conservation work, false positive errors 

tend to be a “safe” error; if I do not know whether a fish in a stream or not, it is safer to 

assume the fish is present.  A false positive error does not necessarily indicate a flaw in 

the model; if a species was not observed in the field, the sampling effort may have been 

insufficient, the fish may not have been identified correctly, or the fish has the potential 

to live in the stream but simply is not there (McKenna et al. 2006). 

False positive errors may also have been caused by quality discrepancies between 

the training and testing data. Overall, I had a higher degree of confidence in the fish-

identification accuracy and catch efficiency of the MRI training data than the FCS test 

data.  As a result, the FCS test data probably had a higher proportion of fish that were 

improperly identified and a higher proportion of errors due to fish that were not caught 

but should have been.  When the test data were predicted by the models, the end result of 

this discrepancy was a higher number of false presences errors.  In other words, the 

model said the fish should have been there, and perhaps it was, but the FCS data was not 

accurate enough to show this.  Therefore the number of false presences in the test data 

may be inflated and underestimate the accuracy of the models, especially for hard to 

identify species.  
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To check this hypothesis, I compared the average false presence error rate for 

game fish, which are easily identified (brook and brown trout, smallmouth bass, 

largemouth bass, Chinook and Coho salmon, walleye, and yellow perch) against the 

average false presence error rate for cyprinids modeled in this study (chubs, dace, and 

minnow), which are typically harder to identify.  The average false presence error for 

gamefish was 19.2%, and the false presence error for the cyprinids was 27.2%.  The 

difference between the two is not as large as I had anticipated (independent t-test:  t= -

1.5, df= 26, p-value =.16), so it is likely that this hypothesis cannot fully explain the 

abundance of false presence predictions.  However, it is possible that the discrepancy 

between the datasets can account for some of the false presence errors that occur. 

I noticed that several of the habitat predictor variables were correlated to the 

number of false positive errors made at a stream reach.  Water temperature was most 

strongly correlated to false positive errors; as temperature increases, the models tend to 

overestimate the number of species in the stream.  Since warm-water streams have a 

higher diversity of species, it is likely that sampling efforts missed species in these 

streams, which would cause false positive errors in the test data. Another cause of these 

errors may be the bias introduced into the models through the disproportionate amount of 

cold-water stream samples compared to warm water stream samples in the training data; 

predictions made on cold-water are more accurate since they are more similar to the data 

used to make the models.   

   

Relative Abundance model summary 
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 When using abundance categories in modeling, determining where to place the 

boundaries of the categories is a difficult problem and usually results in inaccurate 

models when predicting observations that are not clearly one category or another.  Due to 

this, I was only able to create 10 species models that had test data accuracies better than 

simply guessing (every abundance category ≥ 33.3%).  In order to develop RA models 

for the other species, I decided to create models in which the middle category was 

removed so that there was clear distinction between the high and low categories. 

Of the 44 RA models created, 10 had three categories of predicted abundance 

(low, medium, high), while 36 had two categories of predicted abundance (low, high).  

Interestingly, not only did the two-category models perform well, but also they were 

typically more accurate than the PA models when compared to the test data. This implied 

that there might be greater stream habitat differences between low/high abundance 

streams than there were between presence/absence streams.  For example, a stream may 

be considered “present” with one fish in it, and another stream with 1000 fish is also 

considered “present”.  The classification tree will have difficulty in distinguishing 

between the marginal stream with one fish and a true absent stream, resulting in 

misclassified observations in the PA model. On the other hand, when the stream with one 

fish is classified as “low”, and the stream with 1000 fish is classified as “high”, the 

classification tree is able to separate them with greater accuracy, since there are greater 

habitat differences between these streams than between a marginal stream and an 

“absent” stream. 

While most of the common species in Michigan were modeled for relative 

abundance; I should note that because of the low number of species modeled for RA, 
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these results do not apply to all Michigan fish.  Water temperature was an unimportant 

variable for most of the RA models; according to these model sets, it was more important 

for determining presence/absence of a species than for determining how many of the fish 

are in the stream.  Zorn (2003) observed the same phenomenon with temperature when 

developing landscape-based multiple regression models.  Gradient, coarse surficial 

geology, and 90% exceedence flow are more important in the RA models than in the PA 

models.  An increase in these variables tended to result in a decrease of abundance of 

several species (e.g., black bullhead, bluntnose minnow, largemouth bass, white sucker, 

yellow perch) that prefer streams with low slope and more variable flows.  Given that 

these flow characteristics were correlated with water temperature, their importance may 

explain the apparent unimportance of water temperature. Water temperature may not 

have been included in the abundance classification trees because the variation in the data 

was already captured. 

In the PA models, probability of presence increased with increasing total 

predicted phosphorus, and similarly, the RA models show that abundance increased with 

increasing phosphorus.  This is a logical result (though its frequency in the models may 

be somewhat surprising), as phosphorus can cause a bottom-up effect, increasing 

productivity in every trophic level (Vanni 1987; Vanni et al. 1997).  Though not seen in 

these models because Michigan streams tend to have low phosphorus levels, high 

phosphorus levels cause eutrophication and anoxic conditions, which would effectively 

destroy a fish population. For this reason, this general pattern in phosphorus cannot be 

extrapolated beyond the phosphorus range in the data. 
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Other general model limitations 

Overall, these models do a fine job in prediction, but the models have limitations 

that should be recognized.  Users of these models should be aware of these issues, and if 

similar models are constructed in the future, researchers should try to address these 

problems in order to minimize model error. 

 Data quality is always an issue when dealing with large datasets.  Brenden et al. 

(2006) addressed specific limitations in the NHD and quality of the GIS-derived 

environmental variables.  In short, some of these variables were obtained from low 

resolution maps (e.g., surficial geology, 1:250,000 scale) and will not have the accuracy I 

desire when operating on a NHD with a resolution of 1:100,000. In my models, coarse 

surficial geology occurred relatively often (18.3% of PA models, 27.9% of RA models), 

and it is possible that the scaling issue increased model error slightly. 

I used several habitat variables that were built from models and then predicted 

across the state in order to produce a value for each stream reach (e.g., water temperature, 

total phosphorus, flow variables).  Since these models contain error, it is logical to expect 

that the error will trickle down to the fish models, decreasing model accuracy.  This 

problem is also known as “propagation of error”. As these habitat models are improved in 

the future, I hypothesize that the fish predictions will become more accurate. 

The fish data were of good quality overall, but the fish were sampled over a long 

period of time, by different people and for different purposes, so it is impossible to 

determine which samples were poorly counted or implemented.  The samplers may have 

misidentified or failed to catch some fish, particularly those that are hard to identify, rare, 

or small.  Training a model on flawed data can confound the training process and produce 
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a model that is inaccurate for the species, especially if the predictor variables are 

correlated with the likelihood of failing to detect a species in a survey.  While this issue is 

indeed a problem, to minimize this error I included as many absence sites as possible in 

the training data for each species.  By pooling absence sites I have replicate information 

on the probability of absence as indexed by the data.  If a fish could potentially be missed 

at any particular site, it was my intention to include several sites with the same type of 

habitat for which the fish would not be missed.  This process may not produce absolute 

truth for every site, but the overall distribution should be correct.  The errors in the 

training data are reflected in the accuracy measurements; the models are be perfect but 

should be good enough for the use for which they are intended. 

 A major problem throughout this study has been the difficulty in developing 

statewide abundance predictions.  I tried several methods (regression, regression trees, 

classification trees with different category boundaries), none of which performed to my 

satisfaction. In the final product, I was only able to produce accurate models by dropping 

out data points so that a clear distinction could be made between high and low abundance 

streams.  While this procedure did produce models that were accurate in determining high 

and low abundance, dropping data is not to be taken lightly.  However, given the options 

of having no relative abundance models at all, or having models with some problems but 

indeed providing predictions, I feel that the right decision was made as these models have 

a place in a management or conservation context.  



 

Table 3.1.  List of habitat and land-use stressor variables used in the creation of the PA and RA models for Michigan stream fishes.  
The descriptive statistics summarize the entire Michigan stream population as per the GAP/CIAUMR database. 
 

Variable Code Variable Description Unit   Min Max Mean Std.D 
Temperature        
WATER_TEMP Water temperature, predicted July mean Celsius  12.3 26.2 19.5 3.0 
WT_MAAT Mean annual air temperature Celsius  3.7 9.8 7.3 1.7 
Position in Catchment       
CATCHAREA Area of the watershed km2  0.72 14103.5 721.0 1680.6 
Connectivity        
UP_POND Distance upstream to closest pond >=5 acres meters  0 57566.4 8948.0 10580.0 
DOWN_POND Distance downstream to closest pond >=10 acres  meters  0 195470.1 29732.2 35989.0 
 or Great Lake       
LINKDCATCH Distance from downstream reach with 10% >= meters  0 58851.0 2871.0 7115.2 
 catchment area than target reach       
DOWN_LENGTH Distance to Great Lake from downstream end meters  0 130093.1 31886.8 31417.6 
   of reach       
Geology/Hydrologic        
WT_FINE Fine-grain surficial geology - percentage of watershed  %  0 1 0.11 0.22 
WT_COARSE Coarse-grain surficial geology- percentage of watershed %  0 1 0.65 0.36 
TEN_YIELD 10% exceedence flow yield  cms/km2*  0.0075 0.0416 0.0186 0.0037 
NINETY_YIELD 90% exceedence flow yield  cms/km2  0.0001 0.0264 0.0039 0.0031 
GRADIENT Channel gradient unitless  0 0.0288 0.0026 0.0038 
TEN_POWER High flow-based specific power  cms/km2  0 0.0073 0.0005 0.0008 
NINETY_POWER Summer flow-based specific power  cms/km2  0 0.0021 0.0001 0.0002 
Land-use        
WT_FOREST Forest Land cover - percentage of watershed %  0.02 0.95 0.41 0.24 
WT_WETLAND Wetland land cover- percentage of watershed %  0 0.56 0.15 0.08 
WT_AGR Agricultural land-use- percentage of watershed %  0 0.95 0.28 0.25 
WT_URBAN Urban land-use- percentage of watershed %  0 0.64 0.05 0.07 
RT_FOREST Forest land cover- percentage of riparian network %  0.02 0.90 0.28 0.16 
RT_WETLAND Wetland land cover- percentage of riparian network %  0.01 0.94 0.37 0.17 
Variable Code Variable Description Unit   Min Max Mean Std.D 
RT_URBAN Urban land-use- percentage of riparian network %  0 0.56 0.04 0.06 
Water Quality        
TOTAL_P__PPM Total phosphorus, predicted ppm   0.01 0.25 0.05 0.04 

       * cms = cubic meters per second 
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Table 3.2.  List of which Michigan fish species were modeled for presence/absence (PA) 
and relative abundance (RA). Numbers in these columns refer to the number of species 
occurrences in the training data (No asterisk- MRI data, Asterisk- MRI and MI Fish Atlas 
Data). Species that did not have enough data to be modeled are not listed.  
 
Family Scientific Name Common Name P/A RA 
Amiidae Amia calva Bowfin 77*  
Aphredoderidae Aphredoderus sayanus Pirate Perch 32 24 
Atherinidae Labidesthes sicculus Brook Silverside 58*  
Catostomidae Carpiodes cyprinus Quillback 72*  
Catostomidae Catostomus catostomus Longnose Sucker 41  
Catostomidae Catostomus commersonii White Sucker 375 277 
Catostomidae Erimyzon claviformis Creek Chubsucker 39  
Catostomidae Erimyzon sucetta Lake Chubsucker 57*  
Catostomidae Hypentelium nigricans Northern Hog Sucker 182 109 
Catostomidae Minytrema melanops Spotted Sucker 67*  
Catostomidae Moxostoma anisurum Silver Redhorse 31 34 
Catostomidae Moxostoma carinatum River Redhorse 25*  
Catostomidae Moxostoma duquesnei Black Redhorse 36  
Catostomidae Moxostoma erythurum Golden Redhorse 111 82 
Catostomidae Moxostoma macrolepidotum Shorthead Redhorse 56 24 
Catostomidae Moxostoma valenciennesi Greater Redhorse 35 38 
Centrarchidae Ambloplites rupestris Rockbass 243 161 
Centrarchidae Lepomis cyanellus Green Sunfish 200 128 
Centrarchidae Lepomis gibbosus Pumpkinseed 197 124 
Centrarchidae Lepomis gulosus Warmouth 97*  
Centrarchidae Lepomis humilis Orangespotted Sunfish 61*  
Centrarchidae Lepomis macrochirus Bluegill 284 99 
Centrarchidae Lepomis peltastes Longear Sunfish 40  
Centrarchidae Micropterus dolomieu Smallmouth Bass 157 89 
Centrarchidae Micropterus salmoides Largemouth Bass 180 96 
Centrarchidae Pomoxis annularis White Crappie 29*  
Centrarchidae Pomoxis nigromaculatus Black Crappie 85 110 
Cobitidae Misgurnus anguillicaudatus Oriental Weatherfish 29*  
Cottidae Cottus bairdii Mottled Sculpin 83 172 
Cottidae Cottus cognatus Slimy Sculpin  60 61 
Cyprinidae Campostoma anomalum Central Stoneroller 87 72 
Cyprinidae Clinostomus elongatus Redside Dace 45*  
Cyprinidae Couesius plumbeus Lake Chub 43*  

Cyprinidae Cyprinella spiloptera Spotfin Shiner 68 39 

Cyprinidae Cyprinus carpio Common Carp 150 76 

Cyprinidae Hybognathus hankinsoni Brassy Minnow 77*  
Cyprinidae Luxilus chrysocephalus Striped Shiner 71*  
Cyprinidae Luxilus cornutus Common Shiner 263 203 
Cyprinidae Lythrurus umbratilis Redfin Shiner 71* 37 
Cyprinidae Margariscus margarita Northern Pearl Dace 91  
Cyprinidae Nocomis biguttatus Horneyhead Chub 142 92 
Cyprinidae Nocomis micropogon River Chub 41  
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Table 3.2, continued. 
 
Family Scientific Name Common Name P/A RA 
Sciaenidae Aplodinotus grunniens Freshwater Drum 50*  
Salmonidae Oncorhynchus kisutch Coho Salmon 37*  
Salmonidae Oncorhynchus mykiss Rainbow Trout 128 109 
Salmonidae Oncorhynchus tshawytscha Chinook Salmon 45*  
Salmonidae Salmo trutta Brown Trout 196 159 
Salmonidae Salvelinus fontinalis Brook Trout 186 165 
Umbridae Umbra limi Central Mudminnow 259 179 
    Number of Species 93 46 
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Table 3.3.  Sample size and % correct agreement between predicted presence/absence 
values and observed values in the test dataset, for each PA model.  The list is sorted by 
the average between % present and % absent (average accuracy).  The average accuracy 
does not consider differences in N between % present and % absent.   
 

Common Name N Present % Present N Absent % Absent Average Accuracy 
Black Redhorse 12 91.7 788 94.9 93.3 
White Perch 27 100.0 781 81.3 90.7 
Channel Catfish 54 81.5 760 98.0 89.8 
Greenside Darter* 8 100.0 72 79.2 89.6 
Greater Redhorse 13 84.6 801 93.3 89.0 
Redfin Shiner 21 95.2 803 82.6 88.9 
Golden Redhorse 47 83.0 780 94.0 88.5 
Silver Redhorse 11 81.8 802 94.3 88.1 
White Bass 19 94.7 793 79.3 87.0 
Roseyface Shiner* 15 100.0 84 71.4 85.7 
Lake Chub 3 100.0 803 70.0 85.0 
Chinook Salmon 60 88.3 786 80.2 84.3 
Spotfin Shiner 49 75.5 781 92.8 84.2 
Mimic Shiner 17 88.2 786 78.2 83.2 
Blackstripe Topminnow* 12 91.7 104 74.0 82.8 
Walleye 149 71.8 698 93.0 82.4 
Sea Lamprey 4 100.0 801 64.7 82.3 
River Chub 24 70.8 800 93.0 81.9 
Common Carp 156 84.6 723 76.1 80.4 
Emerald Shiner 24 70.8 796 89.7 80.3 
Tadpole Madtom 22 72.7 802 87.4 80.1 
Sand Shiner 22 72.7 785 86.6 79.7 
Black Crappie 85 72.9 751 86.0 79.5 
Stonecat 81 66.7 758 92.1 79.4 
Yellow Bullhead 97 78.4 745 78.9 78.6 
Pirate Perch 26 76.9 780 79.7 78.3 
Slimy Sculpin  28 85.7 775 70.3 78.0 
Spotted Sucker 12 91.7 801 63.8 77.7 
Brook Trout 504 75.6 586 79.7 77.7 
Shorthead Redhorse 30 63.3 781 90.0 76.7 
Mottled Sculpin* 15 80.0 51 72.5 76.3 
White Crappie 12 75.0 789 76.4 75.7 
Brook Silverside 7 85.7 787 65.6 75.7 
Central Stoneroller 105 73.3 731 77.2 75.2 
Muskellunge 53 84.9 739 64.4 74.7 
Rockbass 302 73.8 663 75.4 74.6 
Northern Pike 251 61.8 667 87.4 74.6 
Coho Salmon 75 72.0 763 76.0 74.0 
Longnose Sucker 7 85.7 802 62.2 74.0 
River Redhorse 3 66.7 788 81.2 74.0 
Fathead Minnow 37 83.8 777 63.4 73.6 
Smallmouth Bass 185 61.6 721 85.0 73.3 
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Table 3.3, continued. 
 
Common Name N Present % Present N Absent % Absent Average Accuracy 
Longnose Gar 11 63.6 800 83.0 73.3 
Quillback 180 61.1 794 84.9 73.0 
Chestnut Lamprey 5 60.0 802 85.8 72.9 
Grass Pickerel 101 66.3 694 78.7 72.5 
Northern Logperch 104 63.5 746 80.6 72.1 
Longnose Dace 134 67.2 717 76.7 72.0 
Brassy Minnow 5 80.0 801 63.5 71.8 
Green Sunfish 357 77.0 592 66.4 71.7 
Striped Shiner* 18 61.1 101.0 81.8 71.5 
Yellow Perch 221 61.9 650 80.2 71.0 
Northern Hog Sucker 99 68.7 699 73.2 70.9 
Finescale Dace* 10 60.0 104 81.7 70.9 
Largemouth Bass 275 61.1 630 80.5 70.8 
Creek Chub 401 75.1 398 64.6 69.8 
Bluntnose Minnow 235 70.6 685 68.9 69.8 
Common Shiner 353 68.3 621 71.0 69.7 
Brook Stickleback 117 75.2 718 63.9 69.6 
Oriental Weatherfish* 8 75.0 103 64.1 69.6 
Orangespotted Sunfish* 15 66.7 106 70.8 68.7 
Rainbow Trout 363 67.8 783 68.3 68.0 
Johnny Darter  271 72.7 519 63.2 67.9 
Warmouth 22 72.7 776 63.1 67.9 
Rainbow Darter 98 60.2 693 75.6 67.9 
Black Bullhead 78 65.4 762 70.1 67.8 
Pumpkinseed 116 66.4 676 69.1 67.7 
Brown Trout 711 70.0 531 65.3 67.7 
Hornyhead Chub 137 73.7 737 61.3 67.5 
Iowa Darter 10 70.0 800 62.3 66.1 
Brown Bullhead 33 60.6 777 71.6 66.1 
Redside Dace 5 60.0 803 71.9 65.9 
Northern Redbelly Dace 46 69.6 763 61.9 65.7 
Burbot 98 53.0 752 77.7 65.4 
Lake Chubsucker 5 60.0 786 70.4 65.2 
Central Mudminnow 481 69.0 514 61.1 65.1 
Blackside Darter 259 60.2 669 69.7 65.0 
Golden Shiner 18 61.1 775 68.1 64.6 
Bluegill 284 60.2 641 68.6 64.4 
White Sucker 761 66.8 379 60.7 63.7 
Least Darter 5 60.0 785 64.1 62.0 
Bowfin 24 62.5 782 61.5 62.0 
Silver Lamprey* 10 60.0 90 63.3 61.7 
Banded Killifish 14 71.4 105 51.4 61.4 
Longear Sunfish 8 50.0 783 71.6 60.8 
Northern Pearl Dace 16 62.5 795 52.6 57.5 
Western Blacknose Dace 464 85.6 514 24.1 54.9 
Northern Brook Lamprey 19 31.6 796 77.6 54.6 
 



 88 

Table 3.3, continued. 
 

Common Name 
N 

Present % Present N Absent 
% 

Absent 
Average 
Accuracy 

American Brook 
Lamprey 8 25.0 799 84.0 54.5 
Creek Chubsucker 14 14.3 781 84.6 49.5 
Freshwater Drum 33 36.4 781 62.5 49.5 
Eastern Sand Darter 8 37.5 106 59.4 48.5 
Blacknose Shiner 17 17.6 796 56.9 37.3 
      

* Test data is a 20% holdout from the MRI training data 
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Table 3.4.  The number of times a habitat variable is included in the A) 82 Michigan 
stream fish PA models with a presence and absence accuracy greater than 60%, B) and all 
10 of the 3-category Michigan stream fish RA models and the 33 2-category Michigan 
stream fish RA models with a low and high accuracy greater than 60%. 
 
A)    B)   
Variable Code Number Percentage  Variable Code Number Percentage 

WATER_TEMP 45 54.9  CATCHAREA 18 41.9 
CATCHAREA 44 53.7  TOTAL_P__PPM 14 32.6 
WT_MAAT 26 31.7  WT_COARSE 12 27.9 
TOTAL_P_PPM 24 29.3  NINETY_YIELD 11 25.6 
TEN_YIELD 22 26.8  LINKDCATCH 10 23.3 
WT_FOREST 17 20.7  GRADIENT 9 20.9 
WT_COARSE 15 18.3  WT_MAAT 9 20.9 
UP_POND 15 18.3  WATER_TEMP 8 18.6 
TEN_POWER 15 18.3  RT_AGR 7 16.3 
NINETY_YIELD 14 17.1  WT_WETLAND 7 16.3 
RT_AGR 13 15.9  RT_WETLAND 7 16.3 
WT_WETLAND 13 15.9  TEN_YIELD 6 14.0 
WT_AGR 13 15.9  NINETY_POWER 6 14.0 
WT_URBAN 12 14.6  RT_FOREST 6 14.0 
RT_FOREST 12 14.6  UP_POND 6 14.0 
RT_WETLAND 11 13.4  DOWN_POND 4 9.3 
NINETY_POWER 10 12.2  WT_FINE 4 9.3 
DOWN_POND 8 9.8  TEN_POWER 4 9.3 
RT_URBAN 8 9.8  RT_URBAN 4 9.3 
WT_FINE 7 8.5  WT_FOREST 3 7.0 
GRADIENT 7 8.5  DOWN_LENGTH 3 7.0 
LINKDCATCH 6 7.3  WT_AGR 2 4.7 
DOWN_LENGTH 6 7.3  WT_URBAN 1 2.3 
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Table 3.5.  Sample size and % correct agreement between predicted RA category and 
observed values in the test dataset, for each 3-category RA model.  The list is sorted by 
the average between % low, % medium, and % high.  The average value does not 
consider differences in N between the three categories. 
 

Common Name 
N 

Low 
% 

Low 
N 

Medium 
% 

Medium 
N 

High 
% 

High 

Average of Low, 
Medium,  
and High 

Brook Stickleback 6 66.6 5 100.0 5 80.0 82.2 
Northern Pike 21 85.7 20 60.0 5 100.0 81.9 
Brown Bullhead* 19 79.0 11 63.6 4 100.0 80.9 
Central Stoneroller 8 87.5 5 60.0 5 80.0 75.8 
Longnose Dace 9 77.8 3 66.7 5 60.0 68.2 
Black Crappie* 68 66.2 47 55.3 5 80 67.2 
Greater Redhorse* 15 53.3 20 35.0 3 100.0 62.8 
Tadpole Madtom* 9 66.7 19 52.6 26 68.8 62.7 
Redfin Shiner* 12 75.0 21 33.3 4 75.0 61.1 
Silver Redhorse* 20 60.0 12 58.3 2 50.0 56.1 
*Species was tested using a cross-validation procedure rather than 20% of the original data (Steinberg 
and Colla 1997). 
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Table 3.6.  Sample size and % correct agreement between predicted RA category and 
observed values in the test dataset, for each 2-category RA model.  The list is sorted by 
the average between % low and % high.  The average value does not consider differences 
in N between the two categories. 
 

Common Name 
N 

Low 
% 

Low 
N 

High 
% 

High 
Average of 

Low and High 
Channel Catfish 4 100.0 3 100.0 100.0 
Golden Shiner 6 100.0 2 100.0 100.0 
Pirate Perch 2 100.0 4 100.0 100.0 
Common Carp 10 80.0 9 100.0 90.0 
Pumpkinseed 18 94.4 13 84.6 89.5 
Rockbass 14 100.0 26 76.9 88.5 
Stonecat 6 100.0 13 76.9 88.5 
Shorthead Redhorse 4 75.0 3 100.0 87.5 
Slimy Sculpin 8 87.5 7 85.7 86.6 
Bluntnose Minnow 11 90.9 33 81.8 86.4 
Yellow Bullhead 10 80.0 9 88.9 84.5 
Black Bullhead 8 87.5 5 80.0 83.8 
Grass Pickerel 5 100.0 3 66.7 83.3 
Golden Redhorse 6 83.3 14 78.6 81.0 
Blackside Darter 16 81.3 24 79.2 80.3 
Spotfin Shiner 4 100.0 5 60.0 80.0 
Northern Hog Sucker 11 90.9 16 68.8 79.8 
Green Sunfish 14 78.6 18 77.8 78.2 
Largemouth Bass 17 70.6 7 85.7 78.1 
Western Blacknose Dace 19 89.5 17 64.7 77.1 
Bluegill 15 73.3 10 80.0 76.7 
Hornyhead Chub 9 66.7 14 85.7 76.2 
White Sucker 32 75.0 37 75.7 75.4 
Rainbow Trout 14 71.4 13 76.9 74.2 
Brook Trout 17 64.7 24 83.3 74.0 
Smallmouth Bass 12 75.0 10 70.0 72.5 
Mottled Sculpin 24 75.0 19 68.4 71.7 
Yellow Perch 12 66.7 4 75.0 70.8 
Central Mudminnow 22 77.2 23 60.8 69.0 
Logperch 10 80.0 7 57.1 68.6 
Johnny Darter  21 71.4 32 65.6 68.5 
Common Shiner 15 60.0 36 72.2 66.1 
Brown Trout 19 63.2 21 66.7 64.9 
Creek Chub 27 63.0 33 60.1 61.6 
Rainbow Darter 13 53.8 11 63.3 58.6 
Roseyface Shiner 5 60.0 8 50.0 55.0 
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Figure 3.1. Classification tree of the brown bullhead PA model.  Variable descriptions are 
given in Table 3.1. An observation less than or equal to the split value is sent to the node 
to the left, otherwise, it goes to the right. The terminal node indicates the final 
classification of the observation. Terminal node 2 and 6 indicate how the classification 
tree deals with uneven sample sizes between presence and absence.  These nodes are 
classified as “present” even though they have more “absent” observations, because the 
frequency of “present” observations is higher in the terminal node than it was in the 
mother node. 
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Figure 3.2.  The percentage of Michigan stream fish models that fall within certain ranges 
of the average accuracy level for A) the 93 PA models, and B) the 46 RA models. 
 
  A)        B) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

40 50 60 70 80 90

Average Accuracy

0

5

10

15

20

25

P
er

ce
n

ta
g

e 
o

f 
P

A
 M

o
d

el
s

60 70 80 90 100

Average Accuracy

0

2

4

6

8

10

12

P
er

ce
n

ta
g

e 
o

f 
R

A
 M

o
d

el
s



 94 

A 

Figure 3.3.  A) A rockbass distribution map that combines predictions from the PA model 
and RA model. B) Presence/absence data that was used to test this model: Presence 
73.8% correct, Absence 75.4% correct. C) Abundance data that was used to test this 
model: Low 100% correct, High 76.9% correct.  If PA model predicted a fish to be absent 
in a stream reach, the final prediction was “absent” regardless of abundance model result. 
 

 
 
 
 
 

A 
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Figure 3.3, continued. 

 

 
 

B 

C 
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Chapter 4 

 
Predicting past and future changes in Muskegon River watershed (Michigan, USA) game 

fish under land-use alteration and climate change scenarios  
 

 
Abstract 

 
Future alterations in land-use and climate have the potential to cause substantial 

changes in the composition of stream fish communities.  Stream fish predictive 

distribution models are an important tool to assess the probability of these changes 

causing species gain, loss, or extirpation.  In this study, classification tree models 

predicting the probability of species presence were applied to the Muskegon Watershed 

(Michigan, USA).  The models were applied to three potential future scenarios: 1) land-

use change only, 2) land-use change and a 3 °C increase in air temperature by 2100, and 

3) land-use change and a 5 °C increase in air temperature by 2100. The analysis indicated 

that the expected change in air and subsequent change in water temperatures resulted in 

the decline of cold-water fish in the Muskegon watershed by the end of the 21st century 

while warm-water species were predicted to significantly increase in range. Changes in 

land-use are expected to cause large changes in a few particular fish species such as 

walleye and Chinook salmon, but are not predicted to drive the overall changes in fish 

composition.  Through interpretation of the classification tree models, managers can 

develop plans about how stream environmental conditions should be altered to maximize 

the probability of species residing in particular stream reaches.  
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Introduction 

 
 The extirpation of Arctic grayling from Michigan streams, the reduction of lake 

trout in the Great Lakes, and loss of unique salmon sub-species in the western United 

States have something in common: they are the result of human disturbance in the 

environment.  Over-fishing, pollution, dams, habitat degradation, and exotic species, 

among many other stressors, reduce native fish habitat and damage the integrity of an 

ecosystem’s trophic structure.  As a result of these anthropogenic impacts, we have seen 

fish community changes in the past and should expect more in the future. 

 It is important to be able to anticipate future impacts on fish communities.  

Knowledge of the loss of the grayling may have persuaded lawmakers to place more 

restrictions on 19th century logging practices, which contributed significantly to the 

species decline.  Predicting likely future changes in fish communities can allow us to 

anticipate economic hardship in businesses dependent on sport fisheries, allow managers 

time to alter practices such as stocking patterns, catch limits, and fishing seasons, allow 

conservation groups to study and maintain areas with a high risk of habitat degradation, 

and create more public awareness of the importance of wise land-use management 

practices.  Models of fish community changes can help us quantify the risk to fish 

populations, indicate what environmental conditions should be changed or maintained to 

obtain maximum fish potential, and inform our decision making processes. 

Human use of land has constantly changed from the pre-settlement era to the 

present, and land-use shifts over the next century will undoubtedly continue to have 

effects on fauna of aquatic systems.  It is anticipated that developed land in the US will 

increase by 79% over the next 25 years (Alig et al. 2004), which bodes poorly for fish 
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communities because of the strong negative relationship between urban land, fish health, 

and fish biotic integrity (Scott et al. 1986; Weaver and Garman 1994; Wang et al. 2001; 

Tabit and Johnson 2002; Snyder et al. 2003; Wang et al. 2003a; Miltner et al. 2004).  On 

the other hand, this increase of urban land will be mitigated somewhat by expected 

reduction of agricultural land (Pijanowski et al. 2001); agriculture is predicted to have 

negative effects on fish although these effects are not as strong as urban effects (Hall et 

al. 1999; Talmage et al. 2002; Wang et al. 2003b; Zimmerman et al. 2003; Barker et al. 

2006).  In addition; natural land-cover such as forests, which increase hydrologic stability 

and provide in-stream habitat, will likely continue to replace old agricultural fields (Roy 

et al. 2006; Barker et al. 2006; Meador and Goldstein 2003). 

 It is anticipated that climate change will also have major effects on the future of 

fish communities.  Global warming will increase water temperatures, altered precipitation 

patterns and increased evaporation will result in changes in water quantity, and water 

quantity changes will affect water quality due to changes in concentration of the water’s 

chemical constituents (Regier and Meisner 1990, Schlinder 2001).   

 Several studies have predicted that water temperature increases due to climate 

change will result in reductions of brook trout, brown trout, and other coldwater species.  

Meisner (1990) predicted 40% trout reductions for southern Ontario streams, Flebbe 

(1996) predicted trout reductions between 53 and 97% in the southern Appalachian 

mountains, and Jager et al. (1999) predicted that climate change would restrict brown and 

rainbow trout from lower elevation to higher elevation Sierra Nevada streams.  Eaton and 

Scheller (1996), using models based solely on thermal habitat, predicted that global 

warming of 4 °C would reduce cold and cool-water fish across the United States by 50%.  
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Across the US, increased water temperatures due to climate change are projected to 

reduce the number of lakes able to hold cold and cool-water fish communities by 45% 

and 30% respectively (Stefan et al. 2001). 

 On the other hand, higher water temperatures are predicted to increase growth of 

largemouth bass (McCauley and Kilgour 1990) and smallmouth bass (King et al. 1999). 

For the Great Lakes proper, Magnuson et al. (1990) reported that thermal habitat will 

increase for cold, cool, and warm water fish because most of the water is currently too 

cold to support even cold-water species much of the year.  They predicted that the 

growing season length and range of depths with suitable temperatures would increase for 

all species.  

In this study, I examined how game fish in the streams of the Muskegon River 

watershed (Michigan, USA) are expected to change in the 21st century with possible 

changes in land-use and stream temperature.  The models and results were used to 

indicate how stream environmental conditions should be altered to maximize the 

probability of species residing in particular stream reaches.  

This modeling effort represents a part of the Muskegon River Ecological 

Modeling System (MREMS), a modeling framework capable of predicting future and 

past states of the Muskegon River System and evaluating likely changes in hydrology, 

chemistry, and biology (Seelbach and Wiley 2005; Riseng et al. 2006).  Risk analyses 

developed from MREMS are used to aid researchers and local stakeholders in monitoring 

and restoration activities.   

Also, this study provides a justification for using classification tree models 

developed on present day habitat to predict future fish distributions. The models in this 
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study were developed from a classification tree technique using data based on year 2001 

habitat values.  How do we know that models created on present day data can be applied 

to future scenarios?  In order to justify using these models to predict in the future, it is 

necessary to provide a conceptual argument about how the patterns in the data identified 

by the classification tree algorithm can have real world meaning to the different fish 

species. 

 

Methods 

Study units 

 The Muskegon watershed, located in the western Lower Peninsula of Michigan, 

incorporates over 6,000 square kilometers of land, which is composed of a moderate mix 

of urban, agriculture, forest, and wetland land-use (O’Neal, 1997).  The Muskegon  

River system, which is over 2,800 kilometers in length, drains into Lake Michigan.  

Water quality is good throughout the system, and stable flows due to permeable geology 

and high groundwater input provide for high quality cool and cold-water fisheries.   

 Five sections of the Muskegon system are particularly important to sport fisheries 

and were examined in greater detail throughout this study (Figure 4.1).  The main branch 

of the Muskegon River from Muskegon Lake to Croton Dam is approximately 70 

kilometers long, and supports populations of Sander vitreus walleye, Micropterus 

dolomieu smallmouth bass, Esox Lucius northern pike, Oncorhynchus mykiss steelhead 

(rainbow trout), Salmon trutta brown trout, and Oncorhynchus tshawytscha Chinook 

salmon (O’Neal, 1997, Hanchin, 2007).  Hereafter, mention of the lower Muskegon River 
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refers to this river section, while the Muskegon River system refers to all of the streams 

in the Muskegon watershed. 

 Flowing into the lower Muskegon River near Croton Dam is Bigelow Creek, a 

stretch of water only 18 kilometers long but known for extremely cold water and good 

Salvelinus fontinalis brook trout and brown trout populations as well as for providing 

important spawning grounds for steelhead and Chinook.  Cedar Creek, a 38 kilometer 

cold-water stream that flows into Muskegon Lake, provides excellent habitat for brook 

and brown trout and also supports Chinook.  Upstream from Croton Dam, the cold/cool 

water Middle Branch River (48 kilometers long) and Clam River  (78 kilometers long) 

have good brook and brown trout populations.  Portions of the Middle Branch River and 

Clam River have been designated as blue-ribbon trout streams by the Michigan 

Department of Natural Resources (Trout Unlimited 2008).  

 

Model Development and Application 

 Changes in the fish community of the Muskegon River system were predicted 

using classification tree fish distribution models that have been developed for the entire 

state of Michigan (Chapter 3).  These models predicted fish species presence/absence on 

inter-confluence stream reaches based on the 1:100,000 National Hydrography Dataset 

(Brendan et al. 2006; NHD 2007).  Using statewide fish and landscape-scale habitat data 

(Table 4.1), ninety-three presence/absence classification tree models were built for the 

most common Michigan river species. The models were compared to an independent data 

set to obtain a measure of model accuracy.  In this study, only the models for 9 species of 

common game fish are used: brook trout, brown trout, Chinook salmon, Oncorhynchus 
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kisutch Coho salmon, Micropterus salmoides largemouth bass, northern pike, rainbow 

trout, smallmouth bass, and walleye. 

 For each species, on every stream reach in the Muskegon River system, I 

estimated the frequency of species occurrence  (FO) as the number of presence 

observations classified into a terminal node of the classification tree model compared to 

all observations classified into this terminal node.  For example, across Michigan, stream 

reaches with a July mean water temperature greater than 19.3 °C contained brook trout in 

9 of 276 (0.03) of the training observations and 29 of 205 (0.12) of the testing 

observations (combined together, 38 of 472 (0.07) of these observations contain brook 

trout) (Appendix A).  I made the assumption that the rivers sampled in the training and 

testing data are representative of the streams in Michigan; therefore, I predicted that in 

the Muskegon system, stream reaches with a daily July mean water temperature greater 

than 19.3 °C contain brook trout at a frequency of 0.07.  Using this measurement in our 

analysis built in realism beyond “present” and “absent” because brook trout may 

conceivably be found in warmer water temperatures.  This 0.07 value represents one 

terminal node in the classification tree; stream reaches with different combinations of 

habitat values were classified into different terminal nodes that had different frequencies 

of occurrence. 

For each game fish, I summarized the percent chance of occurrence for the entire 

Muskegon River system and for each study unit (Lower Muskegon, Cedar River, 

Bigelow Creek, Middle Branch River, Clam River).  To do this, I took the average of the 

frequency of occurrence (FO) for the stream reaches composing each unit, weighted by 

stream length, and converted it to a percentage.  For example, if the Cedar River was 
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composed of three stream reaches with lengths of 10, 11, and 12 kilometers and 

frequencies of brown trout occurrence of 0.3, 0.5, and 0.8, respectively, then the average 

percent change of the occurrence per stream kilometer for this 33 kilometer stream reach 

would be (0.3*10)+(0.5*11)+(0.8*12)/ (10+11+12) = 0.55 or 55%.  According to this 

interpretation, sampling any random kilometer in this 33-kilometer stream reach would 

result in a 55% chance of finding brown trout. 

 

Backcasting and Forecasting 

 To apply the fish models to both the past and present, changes were made in 

several of the predictive habitat variables on which the models are based (Table 4.1).  

Application of land transformation models (Pijanowski et al. 2001) to the Muskegon 

watershed produced estimates of urban, agriculture, forest, and wetland land-use for each 

decade from 1900-1970, for each decade from 2010 to 2040, and 2070 and 2100 (Figure 

4.2).  This iteration of the land transformation model assumes “business-as-usual” 

approaches to land development; current rates of land transformation will continue in the 

future.  Measured land-use data were available for the pre-settlement era (approximately 

1830) and 1978.   

Since the land transformation model data and 1978 data were based on aerial 

photos but the 2001 data (upon which the models were created) were based on satellite 

images (MCGI 2007), I needed to transform 1978 land-use and land transformation 

model land-use into a data format compatible with 2001 coverage.  To do this, I used 

simple linear regression equations for the years 2001 (satellite, dependent variable) and 

1998 (aerial photos, independent variable) for each land-use category (urban, agriculture, 
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forest, and wetland) and applied them to the 1978 land-use, the backcasted land-use, and 

the forecasted land-use. 

 Ninety and ten percent exceedence flows and stream power, which were predicted 

from regressions based on urbanization, agriculture, and surficial geology, were adjusted 

for each year of the backcasted and forecasted land-use (Brenden et al 2006).  Also, total 

phosphorus, which depended heavily on agriculture (Chapter 3), was predicted for each 

year of the backcasted and forecasted land-use. 

 The variable DOWN_LENGTH, which measured the distance from stream reach 

to Great Lake and also identified whether a dam interrupted that connection, was updated 

for the historical model years.  For 1830, all dams were removed from the Muskegon 

system.  Other dams were replaced back into the DOWN_LENGTH variable as time 

progressed.  Of these changes, of greatest note is the building of the Croton Dam in 1906, 

which separates about two-thirds of the Muskegon stream system from Lake Michigan. 

I developed three potential scenarios for what could happen to habitat variables in 

the future.  The baseline scenario assumes no global warming; future air and water 

temperatures remain the same from the 2001 levels although hydrology, land-use, and 

phosphorus change as described above.  The “slow temperature-change” scenario uses 

these changes but also adds the assumption that air temperature warms 3 °C linearly from 

2001 to 2100 (0.03 °C per year).  The “fast temperature-change” scenario assumes that 

air temperature warms 5 °C linearly from 2001 to 2100 (0.05 °C per year).  These values 

are used because studies of air temperature change predict an increase of 3-5 °C by 2100 

(Thomson et al. 2005).  Given the difficulty of determining how climate change will alter 

precipitation, I decided to concentrate on temperature change and not implement water 
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quantity changes except for those changes caused by land-use alteration in the flow 

regression models.   

I expected that the stream water temperature will not warm as quickly as air 

temperature for two reasons: First, water has a higher specific heat than the atmosphere 

so it takes more energy input per unit of mass to raise its temperature.  Secondly, a 

portion of the water in a stream comes via groundwater routing.  Because the temperature 

of groundwater is approximately equal to the mean annual air temperature, groundwater 

temperature will increase over time, but the increase rate will be less than the air 

temperature increase rate given that groundwater is beneath the surface and insulated 

from changes in the atmosphere.  Stefan and Preud’homme (1993) found that in the 

surface run-off driven streams of northern and central portions of the Mississippi River 

basin, weekly water temperature increased by 0.86 times the weekly air temperature.  

However, they indicated that this value would be too high for groundwater systems.  

Glacial processes deposited large amount of sand and gravel where the Muskegon River 

system now flows, so groundwater is a major source of stream discharge for Muskegon 

streams. Therefore, I made the assumption that water temperature will increase by 0.8 

times the rate of air temperature increase (Stefan and Preud'homme 1993; Eaton and 

Scheller 1996; Schindler 1997).  This keeps the conversion rate similar to that which was 

reported in the literature but adjusts it slightly for changes in the water source. 

 Classification tree models and the altered land-use/cover, stream discharge and 

power, and phosphorus variables were used to make historical predictions (pre-settlement 

to 1978) for each game fish mentioned above.  Classification tree models and the altered 

variables appropriate to each future scenario were used to make future predictions for 
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each game fish.  From these predictions we determined the percent chance of occurrence 

of each fish in the Muskegon River system and the five study units and examined how the 

percent chance of occurrence changed over time. 

Not all fish species examined in this chapter are native to Michigan and therefore 

were not present in Michigan in the pre-settlement era.  Brown trout and rainbow trout 

were introduced into Michigan in the late 19th century; therefore, predictions were not 

made for these species during the pre-settlement era.  Chinook and Coho salmon were 

introduced to the Great Lakes basin in 1967; therefore application of these models to the 

Muskegon watershed began at 1970.  It is not known whether brook trout were 

widespread throughout the Muskegon in the pre-settlement era due to competition with 

the Arctic graying, which occupied similar habitat (Scott and Crossman 1973).  The 

model’s pre-settlement predictions of brook trout may apply to this species instead.  

However, by 1900 Arctic grayling had disappeared throughout Michigan so predictions 

from 1900 and later apply only to brook trout.  

 

Results 

Brook Trout 

The brook trout model predicted that the majority of the streams during the pre-

settlement Muskegon River system were classified into terminal node 4 (frequency of 

occurrence, FO 0.80) and 2 (FO 0.84) (Appendix A). Therefore most of the river system 

had a high chance of brook trout (or Arctic grayling) presence during the pre-settlement 

era.  However, as agriculture and phosphorus increased through the turn of the century, 

the model predicted that many of these streams lost some of their brook trout potential 
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(terminal node 5, FO 0.44).  From 1900 to 2001, there was approximately a 35% chance 

of finding brook trout in any random kilometer of stream in the Muskegon River system 

(Table 4.2A).   

 In the baseline future scenario, a reduction in phosphorus due to agriculture loss 

resulted in reclassifying streams from terminal node 5 (FO 0.15) to terminal nodes 1 (FO 

0.51) and 4 (FO 0.80).  Therefore, under future land-use change, the model predicted 

brook trout populations increasing slightly across the Muskegon system (Figure 4.3).  

However, under this scenario the model also predicted a decrease of percent chance of 

occurrence by 19% in Bigelow Creek (Table 4.2A) due to forest reduction and 

subsequent stream reclassification from terminal node 2 (FO 0.84) to 1 (FO 0.51). 

 A mean July water temperature value of over 19.4 °C resulted in classification of 

streams into terminal node 6 (FO 0.07).  Therefore, in both of the temperature-change 

scenarios, the model predicted that brook trout prevalence was drastically cut through the 

21st century (Figure 4.3).  Eventually, whether the temperature change was slow or fast, 

the model predicted virtual eradication of brook trout .  The exception to this was the 

Cedar River, which was cold enough to withstand the water temperature increase in the 

slow temperature-change scenario (at least through 2100) (Table 4.2A). 

 

Brown Trout  

The models predicted that past and future land-use changes only cause minor 

fluctuations of brown trout population in the Muskegon watershed (Figure 4.3).  

However, in the future climate warming scenarios, the model predicted an eventual shift 

in stream classification to terminal node 4 (FO 0.16) and 5 (FO 0.36) because most 
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streams increased in temperature above 20.2 °C (Appendix B).  By 2100, brown trout in 

Bigelow Creek and the Cedar River were predicted to decline rapidly under the high 

temperature-change scenario as higher temperatures combined with deforestation resulted 

in streams classified into terminal node 4 (FO 0.16) (Table 4.2B).  However, streams with 

greater than 30% forest land-cover in the watershed (terminal node 5, FO 0.36) have 

some potential to hold brown trout despite the high water temperatures.  Therefore, 

brown trout across the Muskegon system were predicted decrease overall but maintain 

populations in the lower Muskegon, Clam, and Middle Branch Rivers (Table 4.2B).  

 

Rainbow Trout  

The rainbow trout model had a high frequency of occurrence for streams with a 

July mean water temperature less than 19.7 °C and without a dam blocking passage to a 

Great Lake (terminal node 1, FO 0.69) (Appendix C).  In 1900, the models predicted that 

78% of the Muskegon River system was classified into this category.  In 1906, the Croton 

Dam was built on the main branch of the Muskegon River, and subsequently the percent 

chance of species occurrence in the Muskegon River system was reduced by about 40% 

(Figure 4.3).  The Middle Branch and Clam Rivers, which are above Croton dam, drop 

50% and 30% respectively in their percent chance of presence during this time (Table 

4.2C).  

 Predictions made under the baseline future scenario indicated that the percent 

chance of rainbow trout occurrence in lower Muskegon River decreased in half due to 

reductions in baseflow caused by increased urbanization and subsequent stream 

reclassification from terminal node 7 (FO 0.21) to 5 (FO 0.09) (Table 4.2C).  The 
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increase of temperature in the warming scenarios resulted in reductions similar to brook 

trout.  Bigelow Creek maintained a 70% percent chance of presence per kilometer until 

2040 in the fast temperature-change scenario and until 2070 in the slow temperature-

change scenario, due to its cold water (Table 4.2C).  Rainbow trout started to decrease in 

the Cedar by 2020, stabilized until 2070, and then declined rapidly.  By 2100, under the 

fast temperature-change scenario, rainbow trout was virtually gone from the Muskegon 

River system (Table 4.2C, Figure 4.3).  In the slow temperature-change scenario, the 

species was able to maintain a presence below the Croton dam in 2100, but was on a 

trajectory towards extirpation by 2130. 

 

Chinook and Coho Salmon  

Dam location was very important for both of these species: the best Chinook 

streams (terminal node 2, FO 0.39) (Appendix D) and best Coho streams (terminal node 

1, FO 0.33) (Appendix E) were only found below Croton Dam.  Upstream from Croton 

Dam, the Chinook model predicted a low chance of presence in streams within a 

kilometer upstream of lakes greater than .04 km2 (10 acres) (terminal 4, FO 0.14).  Only 

four river reaches upstream from the Croton Dam have a chance of Coho presence, and 

they have a low probability of occurrence (terminal node 5, FO 0.15). 

 In the baseline future scenario, Chinook was predicted to disappear by 2100 in 

both Cedar Creek and Bigelow Creek due to the decrease of forest land-cover in their 

watersheds and subsequent switch from terminal node 2 (FO 0.39) to terminal node 1 

(FO 0.0) (Table 4.2D).  The lower Muskegon River maintained a good Chinook 

population throughout the predicted years.  Temperature-change scenarios were not 
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applied to this species because the classification tree model did not include a temperature 

variable.  

 Future land-use changes are not expected to affect the Coho.  An increase of 

water temperature above 18.0 °C, however, reclassified streams below Croton Dam from 

terminal node 1 (0.33) to terminal node 2 (0.09) in the global warming scenarios.  

Bigelow and Cedar Creeks are predicted to lose nearly all potential for Coho by 2100 due 

to the future temperature increase (Table 4.2D). 

 

Smallmouth and Largemouth Bass 

 While variables affected by land-use change (total phosphorus and ten percent 

exceedence flow yield) were included in smallmouth bass and largemouth bass models, 

they did not change enough throughout the years of model application to change 

occurrence results from pre-settlement levels.   Therefore, from 1830-2100 under land-

use change only, the models did not predict that the distribution of these two species in 

the Muskegon River system would change (Figure 4.3).  During this time period, the 

model predicted smallmouth bass to be found in warm, large rivers, such as the lower 

Muskegon River and in pieces of the Clam River (Appendix F).  Largemouth bass was 

predicted to be in these streams as well as in cool and warm-water rivers (>18.9 °C) 

within 20 km of ponds and lakes (Appendix G).  

 Under the climate warming scenarios, smallmouth bass were able to move into 

smaller streams that used to be too cold to support them.  By 2100, across the watershed, 

the percent chance of smallmouth presence was predicted to increase by 8% under the 

fast temperature-change scenario (Table 4.2E).  The percent chance of smallmouth 
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presence in the Clam River was expected to increase by 19% by 2100, while the percent 

chance of smallmouth presence in the colder streams of Bigelow Creek and Middle 

Branch River just started to increase upon reaching 2100 (Figure 4.3E). If the models 

were run through 2200, the predictions would show smallmouth bass widely prevalent 

throughout the watershed. 

 By 2100, the model predicted an increase across the watershed in the percent 

chance of largemouth bass occurrence by 12% for the fast change-temperature scenario 

and 10% for the slow-change scenario (Figure 4.3F).  The model predicted an 

approximately 25% increase in the probability of largemouth presence for Bigelow Creek 

and Middle Branch, and a very small increase for Cedar Creek.  The probability of 

largemouth presence in the Clam or the lower Muskegon Rivers did not increase with 

temperature change in the future scenarios, since in 2001 these streams already had a July 

mean water temperature greater than 18.9 °C, the temperature threshold identified by the 

largemouth bass model (Appendix G).   

  

Northern Pike 

 The northern pike model had a high frequency of occurrence of the species in 

streams with a July mean water temperature greater than 21.9 °C (terminal node 6, FO 

0.74) (Appendix H).  As the Muskegon is a largely cold and cool-water system, from the 

pre-settlement era through 2001 the only river reaches with this high frequency of 

occurrence were pieces of lower Muskegon River (Table 4.2H).  In the baseline future 

scenario, it was predicted that northern pike distribution would not change (Figure 4.3).  
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 Water temperature increases in the fast temperature-change future scenarios, 

though, caused the percent chance of northern pike to increase by 22% across the entire 

Muskegon system (Figure 4.3).  Individual streams vary: the lower Muskegon River 

remained unchanged because its temperature was already above the 21.9 °C threshold 

given by the classification model (Appendix H).  Bigelow Creek remained unchanged 

due to its very low water temperature, and Cedar Creek only increased by 15% percent 

chance of presence in the fast temperature-change scenario.   The Clam River, however, 

had July mean water temperatures very close to 21.9 °C, and increases in water 

temperature caused an increase of nearly 50% in percent chance of northern pike for both 

climate-warming scenarios.  The Middle Branch, which has a water temperature between 

the Clam and Cedar, increased by 30% in percent chance of northern pike occurrence by 

2070 in the fast-change temperature scenario. 

 

Walleye 

 The walleye model has a frequency of occurrence of 0.57 in streams with a 

catchment area greater than 656 kilometers and with less than 8.5% of urbanization in the 

watershed (terminal node 4) (Appendix I).  From the pre-settlement era until 2030, the 

main branch of the Muskegon River was the only stream that met this criterion.  

However, due to expected future urban expansion, urbanization land-cover in the 

watershed of the lower Muskegon River was predicted to be greater than 8.5% by 2040, 

and the rest of the main branch Muskegon River, above and below Croton Dam, was 

expected to be above 8.5% by 2070.  This change reclassified these streams from 

terminal node 4 (FO 0.57) to terminal node 5 (FO 0.26); therefore, the model predicted 
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the prevalence of walleye was cut in half by 2070 (Table 4.2I, Figure 4.3).  Temperature-

change scenarios were not applied to this species because the walleye classification tree 

model did not include a temperature variable.  

 

Discussion 

Model Application 

 Across the Muskegon River system, the classification tree models predicted 

substantial changes in the structure of the fish community by 2100. Under land-use 

change scenarios, models predicted the decline of walleye and Chinook salmon across the 

system.  Under future climate change scenarios, models predicted decreases of Coho 

salmon, brook, brown, and rainbow trout, and increases of smallmouth bass, largemouth 

bass, and northern pike.   

 There was spatial variance on the overall effects of the system; some streams 

were predicted to change more, and others changed less.  In the high temperature-change 

scenario, Bigelow Creek lost virtually all brook, brown, and rainbow trout, Chinook and 

Coho Salmon, but gained largemouth bass and did not warm up enough to gain northern 

pike.  Cedar Creek was predicted to respond like Bigelow Creek, but due to higher initial 

temperatures was able to gain northern pike. The Middle Branch and Clam River lost 

brook trout but were expected to maintain small populations of brown trout due to high 

amounts of forest in their watersheds.  Both of these rivers were expected to develop 

substantial populations of northern pike, smallmouth, and largemouth bass.  The lower 

Muskegon River saw declines of walleye and Chinook due to increased urbanization 

throughout the watershed 
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 Changes in temperature were predicted to cause much greater shifts in fish 

occurrence than changes in land-use.  Typically, the water temperature variable was 

brought into the classification tree models earlier in model formulation than land-use, 

influencing a greater number of observations and indicating its greater relative 

importance.  The dominant change in the Muskegon watershed was that the system was 

predicted to switch from a system dominated by cold-water fish to a system dominated by 

warm-water fish. 

 However, adjusting air and water temperature is a global issue and beyond the 

power of fisheries managers.  For these models to be applied in the real world, such as 

being used to prevent the predictions of this study from coming true, managers need to 

concentrate on the habitat variables that can be altered.  According to these models, 

increasing forest size, limiting urban areas, and decreasing agricultural land can increase 

the potential of fish to live in the Muskegon River system.  In addition, the phosphorus, 

flow, and stream power variables in our models are predicted from regression equations 

based on land-use and can be controlled by urban and agriculture levels (Brenden et al. 

2006).  

 Changes in the habitat variables highlighted by our models do not guarantee the 

species can live in the manipulated area, yet such changes at least allow for increased 

potential of species establishment.  For example, rainbow trout is found in 26% of 

streams that have a water temperature less than 19.7 °C, are above a dam, have a ninety 

percent exceedence flow yield greater than 0.0043, and have greater than 19.5% 

agriculture in the watershed (Appendix C, terminal node 4).  Reducing the agriculture in 

the watershed to a level less than 19.5% would place those streams in terminal node 3, for 
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which the chance of rainbow trout presence is 49%.  According to the model, if 

agriculture is reduced in the watersheds of these streams, the likelihood of rainbow trout 

presence will almost double. 

 Interpreting and applying the models in this manner works for other species as 

well.  In streams greater than 20.2 °C , brown trout is only found in 6% of streams when 

there is less than 30% forest in the watershed.  However, brown trout is found in 29% of 

these warm streams when the amount of forest in the watershed is greater than 30%.  

Increasing forest in the watershed to levels above 30% can quadruple the percent chance 

of finding brown trout in warm streams. Walleye is only found in 26% in large streams 

(catchment area > 650 square kilometers) with watershed urbanization greater than 8.5%, 

but across Michigan walleye is found in 57% of large streams with less than 8.5% 

urbanization.  Keeping urbanization levels below 8.5% is essential for maintaining 

walleye. Chinook salmon, Coho salmon, and rainbow trout are far more likely to be 

found in streams directly connected to the Great Lakes than in streams separated from the 

Great Lakes by a dam.  A continued emphasis on removing dams, especially those that 

are located near the Great Lakes, is important for managers who are interested in 

maintaining and expanding salmon populations. 

 

Classification tree justification 

 Classification trees are built through brute-force computer algorithms.  For every 

variable, the computer divides the data into two groups and compares the frequency of 

the target classes in both groups.  It does this for every possible split in the variable, 

splitting the data into two groups, one observation at a time.  The final split that the 
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computer chooses depends on the exact splitting rule the user picks, but in general the 

split chosen is the one where the two groups have the lowest amount of diversity possible 

for the predicted classes.  Clearly the computer cannot possibly be using ecological 

mechanisms to determine the shape of the tree; the procedure is simply a pattern 

processor and has no ability to understand what is really happening in nature. 

 However, despite being a brainless process, this algorithm produces a tree that is 

both ecological meaningful and accurate.  The models used in this study are able to 

accurately predict the presence or absence of a fish in a stream about 75% of the time 

(Chapter 3).  For most of the nodes in the trees (though certainly not all), the variable 

chosen and the split made in that variable are consistent with our understanding of that 

species’ physiological needs (e.g. temperature) or usual location in the landscape (e.g. 

distance from a lake).   

 Conceptually, the classification tree treats species as if they were constrained to 

live within certain variable ranges.  Every split within the tree marks either a lower or 

upper bound of the range for a particular habitat variable.  Usually, only one end of the 

range is recorded into the tree. For example, the Habitat Suitability Index for brook trout 

reports that the species is constrained to temperatures between 0 and 24 °C (Raleigh 

1982).  Our brook trout model creates a cut value at 19.4 °C, showing the upper endpoint 

of the temperature range (Appendix A).  However, because our data for stream 

temperatures never goes below about 15°C, the model does not show the lower range 

boundary at all.  For land-use data, a split creates a range of habitat from that split value 

to 100% or 0%.  In fact, for any variable, the habitat range created from a single split 

goes from the split value to either the minimum or maximum value of that variable in the 
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dataset.  The exception to this would be on the occasion when the model includes two or 

more splits of a single variable, which would narrow the habitat range to a portion of the 

data.  Since a classification tree model identifies of a series of habitat ranges, the pieces 

of the tree are conceptually very similar to a quantitative version of Hutchinson’s (1957) 

n-dimensional niche- the habitat space in which a species is able to maintain a 

population. For example, a terminal node classified as “present”, with three habitat 

variable splits above it, represents a potential 3-dimensional habitat space.   

As the classification models used in this study give an estimate of the niche, we 

can conclude these models will accurately predict fish distributions whether they predict 

the occurrence of fish in the year 2001 or some year in the future, assuming that the niche 

of the fish does not change in the future and that real-world changes in the predictor 

variables will indeed match the variable changes given in the possible future scenarios. 

 

Abiotic Filters 

 The concept of the niche relates well to the abiotic filter framework (Tonn et al. 

1990, Keddy 1992, Poff 1997), which explains that there are a series of filters, existing 

on different scales, which must be passed in order for a species to be present in any 

particular place.  This framework gives levels of importance to the dimensions of the 

niche.  The models used in this study quantitatively identify some of the coarse filters; for 

example, to pass the coarsest filter, brook trout requires water less than 19.4 °C. After 

fulfilling this habitat requirement, the fish moves down the classification tree to slightly 

finer filters; the brook trout is more likely to be found in low phosphorus streams with a 

high amount of forest in the watershed.  Meeting a species’ coarse scale “filter 
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requirements” in an area does not guarantee that the species can live there, but failure to 

meet the requirements can give a convincing reason for why the species is not there.  

 The finest scale filters are those that these models do not specifically address, 

such as microhabitat, species interactions, and food web limitations. For example, 

Hanchin et al. (2007) reported a dramatic decline in walleye in the Muskegon River due 

to alewives feeding on walleye eggs and fry, but our models do not have the capability to 

address this issue. However, these biotic interactions do indeed affect the model because 

these variables have a part in controlling the training presence/absence data.  Yet because 

they are not included as predictors, the model attempts to account for the variation left 

unexplained using the variables that are included. Therefore, the models will inherently 

contain error as they will be unable to fully explain the data since the variables we do 

include are not fully correlated with the important variables we do not have.   

 

Model Limitations 

 As with all models, there are limitations to the predictions that must be 

recognized.  For example, in the two global warming future scenarios, I only altered 

mean annual air temperature and stream temperature. However, climate change is 

expected to affect many of the model input variables, such as total phosphorus and stream 

exceedence flows, which rely on water quantity and water quality (Regier and Meisner 

1990).  It is expected that changes in water quality and quantity will affect future fish 

distributions, but these changes are difficult to predict and apply in our models.  Because 

changes in water quantity and water quality due to climate change are generally thought 

to be negative on fish, these predictions may be best-case scenarios (Schindler 2001). 
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 All models in this study were built with present day temperature data.  Typically 

in these models, warm-water fish have a lower bound on temperature but not an upper 

bound; for example, smallmouth bass is unlikely to be found in water less than 21.3 °C 

(Appendix F), but does not have an upper bound in the model.  In 2001, the maximum 

July mean water temperature of Michigan streams is around 25 °C, which is below the 

maximum temperature a smallmouth bass can tolerate (approximately 32 °C, Edwards et 

al. 1983), and therefore due to how classification trees are built it was impossible to have 

an upper bound temperature.  In the future predictions, smallmouth bass fish are 

predicted to live in streams no matter how hot they get; the models lose realism when 

applying them to water that due to global warming is outside the range of the temperature 

on which it was created.   Having upper temperature bounds on warm-water species may 

be more realistic for future scenarios in which stream temperatures could become quite 

hot. 

 To determine the effect of temperature and warming effects across the Muskegon 

watershed, analyses were based on stream length.  However, headwater streams one 

kilometer long and main stem river one kilometer long are obviously much different in 

overall stream size.  Stream length was used instead of a more informative measurement 

such as stream area due to difficulties in obtaining stream width.  Stream length is easily 

obtained with GIS.  Potentially, due to this problem the predicted occurrence of larger 

stream fish such as walleye will be lower than reality and the predicted occurrence of 

headwater fish such as brook trout will be too large in comparison.  Overall, this problem 

was minor as the overall trends for a particular species would not change despite the 

measurement used. 
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Conclusion 

 The predictions given in this study indicate that the Muskegon River system will 

shift from cold-water fish communities to warm-water communities during the 21st 

century given temperature increases and business-as-usual land development.  Future 

predictions such as this are useful because they provide both a warning and an incentive 

for action.  The fish models indicate that landscape-scale habitat and disturbance can 

have both positive and negative effects on any particular species; a clear task of managers 

is to both restore and maintain stream and watershed habitat accordingly to maximize 

species potential and minimize species risk. 
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Table 4.1.  List of habitat and land-use stressor variables used in the creation of the 
presence/absence models for Michigan stream fishes.  The descriptive statistics 
summarize the entire Michigan stream population. 
 

Variable Code Variable Description Unit   Min Max Mean 
       
Temperature       
WATER_TEMP Water temperature, predicted July mean Celsius  12.3 26.2 19.5 
WT_MAAT Mean annual air temperature Celsius  3.7 9.8 7.3 
Position in Catchment      
CATCHAREA Area of the watershed km2  0.72 14103.5 721 
Connectivity       

UP_POND 
Distance upstream to closest pond >=5 
acres meters  0 57566.4 8948 

DOWN_POND 
Distance downstream to closest pond 
>=10 acres  meters  0 195470.1 29732.2 

   or Great Lake     

LINKDCATCH 
Distance from downstream reach with 
10% >= meters  0 58851 2871 

   catchment area than target reach    

DOWN_LENGTH 
Distance to Great Lake from 
downstream end meters  0 130093.1 31886.8 

   of reach      
Geology/Hydrologic      

WT_FINE 
Fine-grain surficial geology - 
percentage of watershed  %  0 1 0.11 

WT_COARSE 
Coarse-grain surficial geology- 
percentage of watershed %  0 1 0.65 

TEN_YIELD 10% exceedence flow yield  
cms/km
2  0.0075 0.0416 0.0186 

NINETY_YIELD 90% exceedence flow yield  
cms/km
2  0.0001 0.0264 0.0039 

GRADIENT Channel gradient unitless  0 0.0288 0.0026 

TEN_POWER High flow-based specific power  
cms/km
2  0 0.0073 0.0005 

NINETY_POWER Summer flow-based specific power  
cms/km
2  0 0.0021 0.0001 

Land-use       

WT_FOREST 
Forest Land cover - percentage of 
watershed %  0.02 0.95 0.41 

WT_WETLAND 
Wetland land cover- percentage of 
watershed %  0 0.56 0.15 

WT_AGR 
Agricultural land-use- percentage of 
watershed %  0 0.95 0.28 

WT_URBAN 
Urban land-use- percentage of 
watershed %  0 0.64 0.05 

Water Quality      
TOTAL_P__PPM Total phosphorus, predicted ppm   0.01 0.25 0.05 
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Table 4.2.  Percent chance of species occurrence for any stream kilometer in the Muskegon system, the lower Muskegon, and other 
study units. Species included are A) Brook trout, B) Brown trout, C) Rainbow trout, D) Chinook salmon, E) Coho Salmon, F) 
Smallmouth bass, G) Largemouth bass, H) Northern pike, and I) Walleye. With the exception of Chinook and walleye, three scenarios 
were run for each species: 1) baseline, 2) slow temperature change, and 3) fast temperature change.  Chinook and walleye do not have 
temperature variables in the model and so were only predicted for the baseline scenario. 
 
        A.  Brook Trout 

  Muskegon System Lower Muskegon Bigelow Creek Cedar River Clam River Middle Branch River 
Scenario: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
Year   1830 58   8   81   68   22   70   

1900 34   8   81   48   22   60   
1930 34   8   81   48   22   60   
1960 36   8   81   48   22   60   
1978 31   8   81   48   22   77   
2001 40   8   81   50   16   41   
2010 45 44 42 8 8 8 81 81 81 42 27 27 22 22 22 60 51 51 
2040 47 40 30 8 8 8 81 81 81 45 37 45 18 14 18 60 35 25 
2070 49 37 21 8 8 8 62 62 15 49 41 26 18 14 8 57 10 8 
2100 50 27 9 8 8 8 62 29 8 49 41 8 16 8 8 54 8 8 

  
        B. Brown Trout 

1900 44   29   62   64   24   21   
1930 44   29   62   64   31   21   
1960 44   29   62   64   32   21   
1978 46   29   62   64   32   21   
2001 47   29   66   62   37   21   
2010 46 45 45 29 29 29 68 68 68 64 64 64 37 38 33 21 21 21 
2040 46 45 46 29 29 29 68 68 68 64 56 55 37 33 30 21 21 21 
2070 48 45 41 29 29 29 68 68 56 66 53 53 39 29 29 21 29 29 
2100 49 43 33 29 29 29 68 68 19 66 53 12 48 29 29 21 29 29 

                   

128 



 129 

        Table 4.2, continued. 
 
        C. Rainbow Trout 

  Muskegon System Lower Muskegon Bigelow Creek Cedar River Clam River Middle Branch River 
Scenario: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
Year 1900 56   21   69   67   25   69   

1930 24   21   69   67   11   18   
1960 24   21   69   68   11   18   
1978 24   21   69   68   11   18   
2001 26   50   69   68   20   18   
2010 23 23 23 9 9 9 69 69 69 67 67 56 11 11 11 18 18 18 
2040 23 25 23 9 9 9 69 69 69 67 65 56 11 11 11 18 14 18 
2070 23 20 16 9 9 9 69 69 35 67 55 55 11 10 9 18 11 9 
2100 23 17 11 9 9 9 69 39 9 67 55 9 11 9 9 18 9 9 

 
 
                          D. Chinook Salmon 

  Muskegon System Lower Muskegon Bigelow Creek Cedar River Clam River Middle Branch River 
Year   1970 5 40 39 22 0 1 

1978 5 40 39 25 0 1 
2001 6 40 39 22 0 0 
2010 5 40 39 22 0 1 
2040 5 40 39 22 0 1 
2070 4 40 22 4 0 1 
2100 3 40 4 4 0 1 
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Table 4.2, continued. 
 
         E. Coho Salmon 

  Muskegon System Lower Muskegon Bigelow Creek Cedar River Clam River Middle Branch River 
Scenario: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
Year   1970 5   9   33   28   2   0   

1978 5   9   33   28   2   0   
2001 5   9   33   28   2   0   
2010 5 5 5 9 9 9 33 33 26 28 28 28 2 2 2 1 1 1 
2040 5 4 5 9 9 9 33 19 15 28 28 28 2 2 2 1 1 1 
2070 5 4 3 9 9 9 33 12 9 28 16 9 2 2 2 2 2 2 
2100 5 3 3 9 9 9 33 9 9 28 9 9 2 2 2 2 2 2 

 
        F. Smallmouth Bass 

          1830 18     81     8     8     47     8     
1900 18   81   8   8   47   8   
1930 18   81   8   8   47   8   
1960 18   81   8   8   47   8   
1978 18   81   8   8   47   8   
2001 18   81   8   8   47   8   
2010 18 18 19 81 81 81 8 8 8 8 8 8 47 47 58 8 8 8 
2040 18 20 20 81 81 81 8 8 8 8 8 8 47 63 63 8 8 8 
2070 18 20 23 81 81 81 8 8 8 8 8 9 47 63 64 8 8 11 
2100 18 22 26 81 81 81 8 8 19 8 9 9 47 64 66 8 9 14 
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        Table 4.2, continued. 
 
       G. Largemouth Bass 

  Muskegon System Lower Muskegon Bigelow Creek Cedar River Clam River Middle Branch River 
Scenario: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
Year 1830 28   53   18   28   41   21   

1900 29   55   18   28   42   24   
1930 29   55   18   28   44   23   
1960 29   55   18   28   44   23   
1978 29   55   18   28   44   23   
2001 28   53   18   28   41   23   
2010 29 30 30 53 53 53 18 18 18 28 28 28 43 47 47 23 35 44 
2040 29 33 35 53 53 53 18 18 18 28 28 28 42 46 46 23 49 57 
2070 29 36 39 53 53 53 18 40 42 28 28 32 41 46 46 23 57 57 
2100 28 38 40 53 53 53 18 42 43 28 30 32 41 46 46 23 57 57 

 
         H. Northern Pike 

1830 21     74     13     14     19     26     
1900 22   74   13   14   22   27   
1930 22   74   13   14   22   27   
1960 22   74   13   14   22   27   
1978 24   74   13   14   23   27   
2001 22   74   13   14   25   26   
2010 22 22 22 74 74 74 13 13 13 14 14 14 19 19 19 26 26 26 
2040 22 23 25 74 74 74 13 13 13 14 14 16 19 19 37 26 26 26 
2070 22 24 30 74 74 74 13 13 13 14 16 27 19 37 63 26 26 31 
2100 22 28 42 74 74 74 13 13 13 14 16 27 19 60 69 26 26 63 
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                   Table 4.2, continued. 
 
                     I. Walleye 

  Muskegon System Lower Muskegon Bigelow Creek Cedar River Clam River Middle Branch River 
Year 1830 8 57 2 2 6 3 

1900 8 57 2 1 11 5 
1930 8 57 2 1 11 5 
1960 8 57 2 1 7 5 
1978 8 57 2 1 7 5 
2001 8 57 2 2 6 6 
2010 8 57 2 1 7 6 
2040 7 35 2 1 5 6 
2070 4 26 2 2 5 5 
2100 4 26 2 2 5 5 
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Figure 4.1.  The streams and rivers of the Muskegon watershed, with highlighted streams 
indicating the five stream study units in this analysis. 
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Figure 4.2. Measured land-use/cover in the Muskegon watershed, for both A) 1830 (pre-
settlement) and B) 2001, and predicted land-use/cover for C) 2100. 
 
A 

 
B 
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Figure 4.3.  Predictions of the average chance of species presence, as weighted by stream 
length, for the entire Muskegon stream system.  Represented here are both A) cold-water 
game fish, and B) warm-water game fish.  Line markers indicate predictions of the 
species for the three future scenarios.  Walleye and Chinook salmon models do not have a 
temperature variable and so do not have temperature-change future scenarios. 
 
 

 
 
 
 

 

A 

B 
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Chapter 5 
 

Variation in the effect of urbanization on Michigan and Wisconsin stream fish:              
How can good fish communities exist in urban areas? 

 
 

Abstract 

One of the primary goals in past investigations of urban stream analysis has been 

to understand the strength of the negative relationship between urbanization and biotic 

communities.  However, little effort has been expended into understanding the variation 

that occurs around this effect; why streams with similar urban levels have fish 

communities of significantly different quality. In this study, I test the hypothesis that non-

urban habitat features control the variance in the relationship between fish community 

quality and urbanization.  To do this, Michigan and Wisconsin stream reaches were 

classified into groups based on fish community quality and amount of urbanization in 

their watershed and a series of univariate tests were performed to find how natural and 

anthropogenic features are related to fish biotic integrity.  In addition, covariance 

structure analysis was used to provide multivariate insight into the complex relationships 

that control the quality of the stream fish community. Results indicated that urban 

streams with a higher percentage of natural land-cover in the watershed, more point 

source discharges, better water quality, and a close proximity to non-urbanized streams 

were more likely to hold higher quality fish communities. 
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Introduction 

 Urban development damages the integrity of aquatic ecosystems by causing 

changes in their hydrological, chemical, and thermal properties and thereby reducing the 

diversity and abundance of resident organisms.  In the United States, over 130,000 

kilometers of streams and rivers have already been affected by urbanization, and land-use 

change projections predict that developed area will increase by 80% in the next 25 years 

(Paul and Meyer 2001; Alig et al. 2004; Walsh et al. 2005).  In order to ensure long-term 

sustainability of stream ecosystems, it is critical for scientists and managers to understand 

how urbanization affects aquatic ecosystems and implement rational management 

programs as soon as possible. 

In the past thirty years, there have been numerous investigations into how 

urbanization affects river ecosystems.  As a result, the physical impacts of urbanization 

on streams are well understood (Klein 1979, Lenat and Crawford 1994; Arnold and 

Gibbons 1996; Booth and Jackson 1997; Paul and Meyer 2001; Konrad and Booth 2005; 

Walsh et al. 2005), and many studies have shown how these physical changes have 

consequences for a streams’ biota.  Several authors have reported a negative association 

between urbanization and fish abundance, richness, or number of intolerant fish species 

(Weaver and Garman 1994; Kemp and Spotila 1997; Tabit and Johnson 2002; Walters et 

al. 2003; Morgan and Cushman 2005).  Similar results have been found for 

macroinvertebrates; watershed urbanization is often negatively correlated with 

Ephemeroptera-Plecoptera-Trichoptera (EPT) abundance and filterer, scraper, and EPT 

species richness (Wang and Kanehl 2003).  Also, urbanization has been identified as a 

cause of homogenization; as disturbances create different selective pressure, generalist 
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fish species tend to find the new conditions more suitable than fish with more specific 

habitat requirements, resulting in replacement of regionally distinct species with tolerant 

fish (Walters et al. 2003; McKinney 2006; Olden 2006; Scott 2006). 

One of the primary goals in past investigations has been to document the strength 

of the negative impacts of urbanization on biotic communities.  A typical method used in 

these studies was to select sampling locations to minimize variation in natural stream 

attributes (e.g. temperature, land-use, geology) and to maximize variation in urbanization 

(Wang et al. 2001; Wang et al. 2003a; Cuffney et al. 2005; Fitzpatrick et al. 2005; 

Meador et al. 2005; Tate et al. 2005).  This enabled researchers to detect how biotic 

community quality changed as a function of urbanization while reducing complicating 

impacts of natural features on the analysis.   

However, since studies have concentrated on identifying the strength of this 

negative “urbanization effect”, little effort has been expended into understanding the 

variation that occurs around this effect.  For example, while the relationship between 

urbanization and the integrity of the biotic community has been found to be strongly 

negative, some streams contain biotic communities of apparent high integrity while 

others contain degraded biotic communities despite having the same amount of 

urbanization within their watershed.  I believe that understanding this noise (residual 

variation) is critical to intelligent ecosystem management.  As stopping the spread of 

urbanization altogether is not a politically feasible or necessarily desirable goal, it is 

important to understand how to maximize the potential of fish communities for a given 

amount of urban disturbance. Understanding how good fish communities can sometimes 

exist even in highly urbanized streams can inform management and conservation 
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agencies about how to adjust their practices in growing urban areas in ways that maintain 

good quality fish communities.   

 In this chapter, I tested the how the variance in the relationship between fish 

community quality and urbanization is controlled by non-urban habitat features.  To do 

this, 1) I classified Michigan and Wisconsin streams into groups based on fish 

community quality and amount of urbanization in their watershed and performed a series 

of univariate tests designed to explore the relationship between natural and anthropogenic 

features, and fish biotic integrity and 2) used covariance structure analysis to provide 

insight into the complex relationships that ultimately control the quality of stream fish 

communities. 

 

Methods 

Data Description 

 Two regional conservation projects, the Great Lakes Aquatic GAP Project 

(GLGAP, GLSC 2006) and Classification and Impairment Assessment of Upper 

Midwestern Rivers (CIAUMR, UM 2006) provided habitat data for this study.  Working 

in concert, these groups have established a high-resolution, GIS-linked database that 

contains characteristics of Michigan and Wisconsin rivers.  The database was referenced 

to a group of ArcGIS line coverages (ESRI 2007), in which each river was divided into 

confluence-to-confluence reaches.  Line coverages were based on the USGS National 

Hydrography Dataset (NHD, 2006) at the 1:100,000 scale, but were updated to provide 

more accurate representation of the rivers (Brenden et al. 2006).  There are 31,817 
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Michigan stream reaches (86,983 kilometers of stream length) and 36,614 Wisconsin 

stream reaches (89,716 kilometers of stream length) included in the database.   

 For each stream reach, GLGAP and CIAUMR provided data on a variety of 

habitat and landscape variables (Table 5.1), including predicted July mean water 

temperature, predicted exceedence flows, percent of coarse surficial geology in the 

watershed (Chapter 3; Brenden et al. 2006), 1992 WI land-use/cover (WNDR 2007), and 

2001 MI land-use/cover (Brenden et al. 2006).  Land-use/cover was measured as a 

percentage of watershed area and riparian buffer area (30 meters to each side of the 

stream, for the reach of interest and all reaches upstream).  Wang et al. (2007) and Jana 

Stewart (USGS Water Resources Division, personal communication) provided human 

disturbance variables representing population density, nutrient enrichment, agricultural 

pollution, and point source pollutants (Table 5.1).  Hereafter, variables discussed in the 

text will be followed with the Table 5.1 variable code in parentheses. 

 I compiled fish community sample data from the Wisconsin Department of 

Natural Resources, the Michigan Department of Natural Resources, and the Michigan 

Rivers Inventory (Figure 5.1) (Chapter 3; Seelbach and Wiley 1997; John Lyons, 

Wisconsin Department of Natural Resources, personal communication).  Fish data 

selected for this study had been collected from 1980 to 2004 and were entire community 

samples obtained through electroshocking or rotenone methods. 

 Each fish community sample was linked to the NHD and database and attributed 

with the habitat data discussed above.  For stream reaches that had numerous sampling 

efforts over the years, I deleted the samples that had a lower total fish count so that a 

stream reach was represented by the one sampling effort that produced the most fish. This 
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action made the assumption that the stream reach had the potential to hold the higher 

amount of fish, and lower fish counts were a result of disturbance or natural variation 

unrelated to the measured habitat factors.   

 I calculated a warm-water fish index of biotic integrity (IBI) for fish community 

samples using methods given by Lyons et al. (1992) for Wisconsin sites and Michigan 

Department of Environmental Quality’s Procedure 51 (Grant 2002) for Michigan sites. 

These two procedures are comparable because they use the same fish metrics and scoring 

scale to calculate IBI.  IBI metrics used were: number of native species, number of darter 

species, number of sucker species, number of intolerant species, percent of tolerant 

species, percent of omnivores, percent of carnivores, percent of insectivores, and percent 

of lithophilic spawners.  Each IBI metric was scored from 0 to 10, with 0 indicating very 

poor fish condition and 10 indicating excellent fish condition.  The metrics were added 

together to create a score that ranged from 0 to 90. 

 I also calculated a coldwater IBI for those sites with a predicted water temperature 

(WATER_TEMP) less than 22 °C (Lyons et al. 1996).  I excluded those sites with a 

higher cold-water IBI than warm-water IBI from this study; these sites were considered 

to be cold-water streams that cannot be compared to warm-water streams due to large 

differences in fish communities (Lyons et al. 1992). 

  

Classifying Observations and Univariate Analysis 

 I compared total IBI score against the percent of urbanization in the stream’s 

watershed (% URBAN) (Figure 5.2A).  Similar comparisons in Wisconsin, Maryland, 

and Washington have indicated that streams with watershed imperviousness values less 
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than 8-12% had fish communities ranging from a very bad quality to very good, but 

above this threshold degradation of the biotic community was “rapid and dramatic” (Scott 

et al. 1986; Wang et al. 2001; Barker et al. 2006).  I found the threshold in this dataset 

(9% urbanization in watershed) by identifying the largest decrease of maximum total IBI 

score as I increased total urbanization in the watershed one percentage-point at a time.  

The 9% urban threshold was used to divide sampled fish communities into two groups: 

streams minimally affected by urbanization and streams substantially affected by 

urbanization. 

 I used a cluster analysis to identify the fish community samples in order to have 

groups of sites with different IBI scores but similar watershed urbanization (% URBAN).  

I used SPSS v.15 (SPSS 2007) to perform a k-means cluster with variables “total fish IBI 

score” and “% URBAN” (Figure 5.2B). Only fish community samples above the urban 

threshold were clustered.   To increase statistical power, the elements of the clusters were 

manually adjusted after the clustering process in order to have groups with equal sample 

sizes.  Throughout this study, I used cluster 1, 2, and 3 sites as examples of minimally 

urbanized (low) streams and compared clusters 4 and 5 as examples of highly urbanized 

(high) streams.  

 To determine how habitat differed between clusters 1, 2, and 3, I examined 

variables listed in Table 5.1 using a Kruskal-Wallis nonparametric test of means and a 

post-hoc multiple comparison Nemnyi test (Zar 1999).  Similarly, I tested differences in 

habitat variables between cluster 4 and 5 using the Mann-Whitney U nonparametric test  

of means.  Different tests are used because the Mann-Whitney U is more appropriate for 

comparisons of two groups than Kruskal-Wallis, but is not conducive for post-hoc 
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comparisons with multiple groups.  ANOVA methods could not be used on this data due 

to normality assumption violations; however, the Kruskal-Wallis and Mann-Whitney U 

are nonparametric equivalents of ANOVA.  Similar analyses were also performed to 

understand how fish species differed between the clusters, though these results are not 

discussed in the text (Appendices J, K). 

   

Covariance Structure Analysis 

 While the univariate approaches above were useful for determining how habitat 

variation affect fish IBI given a certain range of urbanization, correlation between these 

habitat variables can obscure actual habitat-IBI relationship in a web of direct and 

indirect effects (Zorn and Wiley 2004).  Therefore, I used covariance structure analysis 

(CSA) to take a multivariate approach in understanding how these variables relate to each 

other.  

 CSA is a powerful tool for ecological studies (Fjeld and Rognerud 1993; Wotton 

1994a; Wotton 1994b; Sheldon and Meffe 1995; Issac and Hubert 2001; Riseng et al. 

2004; Zorn and Wiley 2004; Infante et al. 2006; Riseng et al. 2006; Wehrly et al. 2006).  

In CSA, researchers use logic and prior knowledge to build a series of linear equations 

that represent their hypothesis about how pieces of their system are causally related.   

This system of equations can be represented graphically by a path diagram and is tested 

by determining if implied covariance relationships in the path diagram are consistent with 

the sample covariance matrix seen in the actual data (Bollen 1989, Wooton 1994a, 

Wooton 199b).   
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As a dependent variable in the CSA representing the impact of urbanization, I 

used a deviation calculated from the observed IBI scores and a regression equation based 

on the four highlighted points (hand-picked) shown in Figure 5.2C.  The regression 

equation represented the maximum expected IBI score given any particular level of 

urbanization.  For each community sample greater than or equal to 9% urban  (the urban 

threshold), I calculated the difference between the IBI score of the sample and the 

potential IBI score predicted by the regression equation.  This value (hereafter, referred to 

as “IBI deviation”) was the variation in the relationship between urbanization and IBI for 

each sample (e.g. sample IBI score= 50, maximum IBI score= 60, IBI deviation= 50 –60 

= -10). Therefore, an IBI deviation close to zero represented a small difference between 

the potential and actual IBI score, and as IBI distance became more negative, there was a 

larger difference between the potential and actual IBI score. 

A path diagram was built with IBI deviation as the response and the non-urban 

habitat variables in Table 5.1 as predictors.  Initially, the exogenous (independent) 

variables were allowed to freely correlate because all of these variables were calculated 

using the same GIS techniques (Brendan et al. 2006; Wang et al. 2007).  In addition, 

land-use data was allowed to freely correlate because each land-use variable is a piece of 

the entire watershed or riparian zone. 

 I used AMOS 7.0 (Arbuckle 2006) to test the system of equations as represented 

by the path diagram.  This program calculated maximum likelihood estimates of 

covariances and regression weights that represent direct and indirect effects.  AMOS 

estimated overall model fit with the χ2  (chi-squared) statistic, where a p-value of less 

than 0.05 indicated that the model did not fit the data.  I iteratively altered the original 
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path diagram by removing habitat variables, insignificant effects, and insignificant 

covariance until the χ2 p-value was greater than 0.05 and until the amount of variance 

explained in IBI deviation was as high as possible.  Notably, I did not achieve this 0.05 

benchmark until riparian buffer land-use variables were removed from the model. 

I assessed final model fit with χ2, Goodness of Fit Index (GFI), Tucker-Lewis 

Index (TLI), and root mean square error of approximation (RMSEA).   Squared multiple 

correlations were used to indicate the amount of variance explained in an endogenous 

(dependent) variable by its predictors.  Significance of direct effects was assessed using 

the 95% biased corrected confidence interval and t-distribution based on the degrees of 

freedom of the model (Arbuckle 2006, Zorn and Wiley 2004).   

 

Results 

Classifying Observations 

 I determined the location of a threshold value in watershed urbanization (% 

URBAN) at which IBI scores consistently declined.  From 0-6% watershed urbanization, 

the maximum IBI score of the fish community samples was 90, the highest score 

possible.  At 7-8% watershed urbanization, the maximum score (85) began to decrease, 

and at 9% watershed urbanization, the maximum score was 75 (Figure 5.2A).  This 10-

point drop represented the largest decrease in IBI score as watershed urbanization was 

incrementally increased.  Therefore, 9% watershed urbanization was used as the 

threshold value to divide non-urban sites from urbanized sites. 

 Through the urban threshold and cluster process, I divided Michigan and 

Wisconsin fish community samples into 3 main groups. Sites in the first group (N= 1829, 
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Total IBI score range= 0-90) had urbanization values below the urban threshold; they 

were considered to be located at non-urbanized sites and were not used for the remainder 

of the study.  The second group was composed of fish community samples in clusters 1-

3, which range from 9 to 27% watershed urbanization and from 0 to 75 in IBI score.  

Samples in cluster 1 had the highest IBI (N=30, Total IBI score range = 45–75), samples 

in cluster 3 have the lowest (N=30, Total IBI score range = 0– 25), and samples in cluster 

2 are in between (N=30, Total IBI score range = 27 –45) (Figure 5.2B).  The third group, 

clusters 4 (N=19, Total IBI score range = 20-40) and 5 (N=19, Total IBI score range = 5-

20), contains fish community samples greater than 27% watershed urbanization (Figure 

5.2B).  Cluster 6, which is composed of a single point, will be addressed in the 

discussion. 

 

Univariate Analysis 

 Numerous mean habitat differences were detected between clusters.  Cluster 1 

(low urban, high IBI sites) had significantly more forest land-cover (WT_FOREST, 

RT_FOREST) and less agricultural land-use (WT_AGR22, RT_AGR22) than cluster 2 

(low urban, medium IBI sites) and 3 (low urban, low IBI sites) on both a watershed and 

riparian scale (Table 5.2, Appendix L).  Also, cluster 1 had significantly more wetland 

land-cover (RT_WETLAND612) and open water land-cover (WT_WATER, 

RT_WATER).  Cluster 1 had significantly higher values of urban due to parking lots and 

transportation (WT_URBAN14, RT_URBAN14), while cluster 2 had higher amount of 

urban due to residential areas (WT_URBAN12).  
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 In the comparison of cluster 4 (high urban, medium IBI) and 5 (high urban, low 

IBI), I saw similar results: cluster 4 had significantly more forest (WT_FOREST, 

RT_FOREST), more wetlands (WT_WETLAND611), and less agriculture (WT_AGR22) 

(Table 5.3, Appendix M).  Cluster 4 also had a higher base-flow (90_YIELD) and higher 

amount of coarse surficial geology (WT_COARSE) than did cluster 5.  

 I did not detect any significant differences in human disturbance variables 

between cluster 4 and 5.  Cluster 1 had consistently lower nitrogen and phosphorus yields 

than cluster 2 and 3 (Table 5.2).  Some of these yields were associated with agriculture 

(TNY_LIVE, TPY_LIVE), but cluster 1 also had significantly lower point source 

nitrogen yields (TNY_POINT).  Interestingly, even though cluster 1 had a lower 

TNY_POINT, it had a significantly higher density of permitted point discharge locations 

(OUTFALL) than cluster 2 and 3.  Significant differences in other variables also 

indicated that cluster 1 sites had an overall better water quality than cluster 2 and 3 sites 

(lower in EPATOXIC, MANURE, and INSECT) (Table 5.2).   

In summary, the sites with higher IBI scores tended to have more natural land-

cover and less agriculture in the watershed and upstream riparian zones. In addition, sites 

with higher IBI scores had less nutrient and pollutant inputs, although they had a greater 

density of permitted point discharge locations in the watershed.  

 

Covariance Structure Analysis 

 The system of structural equations as represented by the path diagram fit the data 

well according to the statistics used to test model fit (Figure 5.3)(χ2= 6.3, d.f.= 9, p-

value=.710 (want to fail), GFI = 0.99 , TLI = 1.0, RMSEA = 0.0).  Because the data fit 
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the model, the model can be used to show how the habitat affected the variation around 

the relationship between urbanization and IBI score.  Variables significant at a p-value 

less than 0.10 are discussed here and unless otherwise noted the value in parentheses 

represents a variable’s standardized total effect.   

 Overall, the CSA explained 39% of the variation in IBI deviation (Figure 5.3).  

The strongest negative effect on IBI deviation was the amount of row crop agriculture in 

the watershed (Table 5.4) (WT_AGR22, -0.51).  This variable alone is able to explain 

20% of the variation in IBI deviation.  Both total nitrogen yield from non-agriculture 

sources (TNY_NONAG, -0.19) and density of road crossings (RDCROSS, -0.17) are 

anthropogenic disturbances, so it was logical to see that these two variables were also 

negatively related to IBI deviation.  However, because natural land-use is generally 

thought to be good for fish communities, it was unexpected that wetlands dominated by 

shrubs (WT_WETLAND610, -0.42) and open land (WT_OPEN, -0.28) also had a 

negative relationship with IBI deviation. In Michigan and Wisconsin, it is possible that 

land classified as open-land is actually composed of old agricultural fields, and much 

land classified as shrubby wetland may be in a constant state of disturbance.  For 

example, riparian borders of disturbed streams and lakes, restored wetlands, and ditches 

could potentially be classified as shrubby wetland. 

 Forests (WT_FOREST43, 0.22) and forested wetlands (WT_WETLAND, 0.12) 

were related to higher (less negative) IBI deviations and therefore higher IBI scores.  The 

density of permitted outfall sites in the watershed (OUTFALL) had conflicting effects on 

IBI deviation.  OUTFALL had a negative indirect effect on IBI deviation through non-
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agricultural total nitrogen yield (TNY_NONAG, -0.04), but had a positive direct effect 

(0.14).  Overall, OUTFALL had a positive total effect on IBI deviation (0.10). 

 

Discussion 

 The urban threshold has been an important concept in the management of urban 

fish communities.  I found a threshold at a similar level to other studies (Paul and Meyer 

2001; Wang et al. 2001, Riseng et al. 2006), appearing at about 9% urbanization for 

Michigan and Wisconsin streams, and used this threshold to divide our data into groups 

for comparison purposes.  For fish communities above this threshold, I found that fish IBI 

score varies from zero to some maximum level that is apparently controlled tightly by the 

amount of watershed urbanization (% URBAN).  Viewed on a scatterplot, the 

relationship between urban and fish IBI creates a wedge-shaped clump of data points 

where the diagonal edge of this wedge forms a ceiling indicating the maximum potential 

of the fish community (Figure 5.2A).  This ceiling effect is very strong in our study and 

in others; in 10 studies that visualized data in this manner, only 4 sampled streams had a 

good enough biotic integrity (fish or macroinvertebrate) to place the point high above the 

ceiling (Weaver and Garman 1994; Wang et al. 2001; Wang and Kanehl 2003; Wang et 

al. 2003a; Walsh 2004; Carter and Fend 2005; Fitzpatrick et al. 2005; Kennan et al. 2005; 

Limburg et al. 2005; Walters et al. 2005).  In this study, of the 1,857 sampled sites, only 

one was truly an outlier (cluster 6 in Figure 5.2B, discussed further below).   

 The potential of the biotic community may be limited by urbanization, but other 

factors controlled the variation beneath this ceiling.  For a given range of urbanization 

within this wedge of data, some fish community samples had high measures of biotic 
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integrity, others had low, and this variation could not be explained by overall 

urbanization measurements.  Understanding this variation is important for management 

purposes as factors that control it may conceivably be within human control.  A series of 

nonparametric univariate analyses and a covariance structure analysis were used to 

understand the residual variation in fish community quality.  Based on these analyses and 

from work done in other studies, I can provide four possible hypotheses about how the 

variation in the urbanization effect is controlled.   

  

How can good fish communities exist in urban areas? 

1.  In urban areas, high quality fish communities need good water quality. 

 Urbanization increases the concentration of nearly every chemical constituent in 

the water of urban streams (Paul and Meyer 2001).  Phosphorus and nitrogen sources 

include wastewater, fertilizer, and leaking septic and sewage systems. Metals such as 

cadmium, lead, and mercury are routinely found in high concentrations in the sediment of 

urban streams (Paul and Meyer 2001).  In our study, pollution was measured in a variety 

of ways; including upstream agricultural pollution (fertilizer, livestock waste, insecticide) 

and pollution from the urbanized area itself (point source nutrient discharge, discharges 

from EPA toxic release inventory sites). 

 As water and sediment pollution is spatially variable in urban streams, a logical 

hypothesis would be that good urban fish communities are found in those streams that 

have lower levels of contamination. Our results support this reasoning.  Nitrogen and 

phosphorus yields from fertilizer, livestock waste, and point sources are significantly 

higher in the poor fish communities of cluster 3 than in the good fish communities of 
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cluster 1.  For example, means of phosphorus and nitrogen yields due to livestock waste 

were twice as high in cluster 3 as cluster 1, and means of phosphorus yields due to point 

source pollution were about three times high in cluster 3 than cluster 1. EPA toxic 

inventory sites had a mean density five times higher in cluster 3 than cluster 1.  The CSA 

analysis indicated that the proportion of agriculture in the watershed and non-agriculture 

nitrogen yield help to explain why some urban fish communities had a large gap between 

their actual and potential IBI score. 

 Management actions that increase water quality by lowering nutrient and metal 

inputs will have positive effects on fish quality of urban streams.  However, to see 

improvements in an urban stream, change needs to be made throughout the stream’s 

entire watershed.  The upstream and downstream areas are inextricably linked; my results 

seem to indicate that agriculture is strongly related to poor fish communities in urban 

streams.  

 

2.    In urban areas, point-source discharge locations can increase water flow and fish 

quality. 

 Many studies report that urbanization and impervious surface cause an increase of 

water runoff, lower groundwater recharge, and subsequently lower stream base-flow 

(Klein 1979, Paul and Meyer 2001, Wang et al 2001; Riseng et al. 2004).  Increased peak 

flow is perhaps the most severe urban stream disturbance as high flows from storm events 

can wash away in-stream habitat and scour the streambed (Scott et al. 1986, Miltner et al. 

2004).  Roy et al. (2005) were able to link hydrologic disturbance to decreases in fish 

quality: they found that increases in the magnitude and frequency of storm events and in 
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prolonged duration of low-flow conditions resulted in reduced number of sensitive fish 

and increases in tolerant fish.  However, some studies have suggested that point source 

discharges in urban streams can offset or mitigate these negative hydrological effects by 

providing constant water input (Horowitz et al. 1999; Paul and Meyer 2001; Fitzpatrick et 

al. 2005).  Consistent point source discharge would be mechanistically similar to 

groundwater inputs and would provide a stable environment for fish communities.   

 Our results support this hypothesis; in the univariate analysis, the mean density of 

permitted point discharge locations (OUTFALL) was significantly higher in fish 

community samples with higher total IBI score.  In the CSA, a higher OUTFALL has a 

total positive effect on IBI deviation.  Therefore, a higher density of outfall sites (and 

more stable water flow) is related to more healthy fish communities.  The main concern 

regarding point source contributions is the amount of N and P that discharged water 

carries, because as the CSA indicates, OUTFALL has an weak indirect negative effect on 

IBI deviation through non-agricultural nitrogen yield (TNY_NONAG). 

 

3.  High quality urban fish communities need natural-land use throughout the watershed 

to mitigate urban changes in hydrology and water quality. 

 Our results indicate that natural land-use is critical to sustaining quality fish 

communities in an urbanized stream.  The streams of cluster 1 (high IBI) had 

significantly higher forest land-cover than streams of cluster 3 (low IBI), and streams of 

cluster 4 (medium IBI) were significantly higher in forest and wetlands than streams of 

cluster 5 (low IBI).  In the CSA, both forests and forested wetlands were important 

reducing the difference between observed IBI score and potential IBI score. 
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 Agricultural impacts on fish IBI were quite clearly negative.  The univariate 

analysis showed that poorer fish communities are associated with higher agriculture.   

The agricultural variable in the CSA was the most influential factor in decreasing IBI 

deviation.  However, on a per-unit area basis, agriculture has less of an impact on fish 

than urban (Wang et al. 2000, Wang et al. 2003a); so any land that is not urbanized is 

better for fish than urbanized land.   

 From a conservation context, it would be very useful to know the most effective 

scale of land-use management.  Historically, the standard stream management practice in 

urban areas was to maintain or build intact riparian forest zones around urbanized streams 

in order to mitigate urbanization effects (Steedman 1988, May et al 1997, Castelle 1994, 

Wang et al. 2001, Miltner 2004).  About one-third of stream restoration projects in the 

United States are focused on riparian buffers (Bernhardt et al. 2005).  Studies have 

hypothesized that riparian buffers moderate water run-off, absorb nutrients from run-off 

and through-flow, minimize erosive effects, and provide in-stream habitat such as woody 

debris and overhanging vegetation (Osborne and Kovacic 1993; Richards et al. 1996; 

Lammert and Allan 1999; Miltner 2004; Barker et al. 2006).   

 However, I expect that land-use throughout the entire stream catchment is more 

important to overall fish community quality in urban streams than land-use within the 

riparian buffer.  Riparian buffers only have minimal mitigation effects on what is known 

to be two major sources of urban disturbance: water quality and water flow.  For 

example, studies have found that riparian buffers provided minimal benefits for streams 

with highly altered sediment and hydrologic regimes (Fitzpatrick et al. 2005; Roy et al. 

2006).  High peak flows caused by run-off coming from impervious surfaces will not be 
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moderated by riparian buffers, because in urban areas the water is discharged directly to 

the stream (Fitzpatrick et al. 2005).  Forested land-cover and other permeable surfaces 

across the watershed are more important for decreasing overall surface run-off, and 

vegetation across the watershed improves water quality though nutrient uptake. In our 

CSA model, riparian variables were not significantly associated with IBI deviation. This 

indicates that riparian buffer land-use was either not associated with fish quality or that 

the variance in fish quality was already accounted for by the watershed land-use variables 

and riparian buffer land-use had nothing further to contribute. 

 It is my conclusion that while land-use in the riparian buffer may be important for 

local habitat structure, overall watershed land-use is a better determinant of the quality of 

urban fish communities.  Wang et al. (2003b) also reached this conclusion in a study 

based on Minnesota, Michigan, and Wisconsin stream fish.  To maintain high quality fish 

communities in urban environments, less emphasis should be placed on riparian buffer 

management and more on plans that build and maintain natural land-cover across the 

watershed.  This may involve groups implementing fewer restoration work projects and 

taking more action in political and planning processes. 

 

4.  High quality urban fish communities can be supported by a close proximity to high 

quality, non-urbanized streams (anecdotal evidence).   

 Outliers can have interesting properties, and it is unfortunate the ceiling effect of 

urbanization on fish was so strong, as outliers were very rare.  Only one fish community 

sample with high biotic integrity was located on a stream with high urbanization.  This 

sample, located on Lincoln Creek in northern Milwaukee (cluster 6 in Figure 5.2B), had 
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82% watershed urbanization (% URBAN), the highest amount of urbanization in the 

study.  However, with a total IBI score of 55, the fish community was extremely healthy 

for such a highly urbanized site.  Fourteen species were caught here, including three 

species of redhorse, largemouth bass, smallmouth bass, rock bass, northern pike, 

hornyhead chub, and sand shiner. 

 It appears that an unusual set of circumstances allowed the stream to have such a 

high quality fish community.  About 1.5 kilometers downstream from the sampled point 

on Lincoln Creek was another sampled river that was only 7% urban and had high 

amounts of agriculture, forests, and wetlands in its watershed.  As every fish found in 

Lincoln Creek was also found in this downstream, less-disturbed river, it is entirely 

possible that the fish moved upstream to the Lincoln Creek site from the less-disturbed 

river.  The effect of the downstream channel on upstream channels has been referred to as 

the downstream link; several studies have previously identified and used this effect to 

predict and analyze fish communities (Osborne and Wiley 1992; Grenouillet et al. 2004; 

Smith and Kraft 2005).    

 It was clear from aerial photographs (Google Earth 2007) that the sampled site on 

Lincoln Creek could have appealing local habitat due to 20-meter wide grassy riparian 

buffers and a small forested park where the sampling actually took place.  Given my 

argument from the previous section, it is unlikely that these riparian buffers are sufficient 

to reduce negative hydrologic effects and allow the stream to maintain permanent 

resident populations.  However, it is possible that Lincoln Creek has a transient good 

quality fish population due to the higher quality river downstream.  I hypothesize that 

other small urbanized streams may also have the potential to hold good quality fish 
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communities given appealing local habitat and close proximity to less disturbed “feeder-

streams”. A wise management action would be to make sure that these high quality 

“feeder-streams” near urban areas are protected and undeveloped.  

 

 Numerous studies have found how and why urbanization has negative impacts on 

the physical structure of a stream and on its biotic integrity.  To move toward mitigation, 

I suggest that future studies look at other variables that may affect the variation around 

the negative urban effect.  As the CSA in this study was only able to explain 39% of the 

variation, it is certain there are other important factors that I have not considered here.  

Future investigations that measuring variables on local scales (e.g., in-stream habitat 

structure, sedimentation, water quality) as well as studies that examine interactions 

between fish and their food base may also prove useful in developing practical and 

feasible management tools that can help create or maintain good fish communities in 

urban streams. 
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Table 5.1.  List of variables that were used in this study, their codes referred to in the text, 
their units, and the source of the data.  All land-use variables listed below with the prefix 
“WT” have also been measured as a percent of the riparian buffer (entire upstream 
corridor, 30 meters to each side of stream, prefix “RT”). Citation numbers are as follows 
1) Brenden et al. 2006, 2) MCGI 2007, 3)WDNR 2007, 4) Wang et al. 2007 
 

Variable Description Variable Code Unit Citation 
    
Variables used for classification of fish community samples    
Predicted mean July water temperature WATER_TEMP Celsius 1 
Total urban land-use  % URBAN % of watershed 1,2,3 
    
Variables used to find differences between clusters   
Fine-grain surficial geology  WT_FINE % of watershed 1 
Coarse-grain surficial geology WT_COARSE % of watershed 1 
10% exceedence flow yield  TEN_YIELD cms/km2  1 
90% exceedence flow yield NINETY_YIELD cms/km2 1 
Total urban, riparian buffer RT_URB % of riparian buffer 1,2,3  
Urban, commercial/industrial WT_URBAN11 % of watershed 1,2,3  
Urban, residential WT_URBAN12 % of watershed 1,2,3 
Urban, transportation and parking lots WT_URBAN14 % of watershed 1,2,3  
Total agricultural land-use WT_AGR % of watershed 1,2,3  
Agriculture, non-row crop WT_AGR21 % of watershed 1,2,3 
Agriculture, row crop WT_AGR22 % of watershed 1,2,3  
Open/non-forest WT_OPEN % of watershed 1,2,3  
Forest land cover  WT_FOREST % of watershed 1,2,3 
Forest, deciduous, upland WT_FOREST41 % of watershed 1,2,3  
Forest, coniferous, upland WT_FOREST42 % of watershed 1,2,3  
Forest, mixed, upland WT_FOREST43 % of watershed 1,2,3  
Open water  WT_WATER % of watershed 1,2,3 
Total wetland land cover WT_WETLAND % of watershed 1,2,3  
Wetland, wooded, shrubland WT_WETLAND610 % of watershed 1,2,3  
Wetland, wooded, lowland deciduous forest WT_WETLAND611 % of watershed 1,2,3  
Wetland, wooded, lowland coniferous forest WT_WETLAND612 % of watershed 1,2,3  
Wetland, wooded, mixed lowland forest WT_WETLAND613 % of watershed 1,2,3  
Wetland, non-wooded WT_WETLAND62 % of watershed 1,2,3  
Total nitrogen atmospheric yield TNY_ATMOS kg/km2/yr 4 
Total nitrogen fertilizer yield TNY_FERT kg/km2/yr 4 
Total nitrogen livestock waste yield TNY_LIVE kg/km2/yr 4 
Total nitrogen non-agriculture yield TNY_NONAG kg/km2/yr 4 
Total nitrogen point source yield TNY_POINT kg/km2/yr 4 
Total nitrogen yield TNY_TOTAL kg/km2/yr 4 
Total phosphorus fertilizer yield TPY_FERT kg/km2/yr 4   
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Table 5.1, continued. 
 
Variable Description Variable Code Unit Citation 
Total phosphorus livestock waste yield TPY_LIVE kg/km2/yr 4 
Total phosphorus non-agriculture yield TPY_NONAG kg/km2/yr 4 
Total phosphorus point source yield TPY_POINT kg/km2/yr 4 
Total phosphorus yield TPY_TOTAL kg/km2/yr 4 
Proportion of watershed treated with fertilizers FERT % of watershed 4 
Proportion of watershed treated with herbicides HERB % of watershed 4 
Proportion of watershed treated with insecticides INSECT % of watershed 4 
Proportion of watershed treated with manure MANURE % of watershed 4 
Density of permitted outfalls in watershed OUTFALL #/km2  4 
Density of active mines in watershed MINES #/km2  4 
Population density (2000 census) in watershed POPDENS #/km2 4 
Road crossing density in watershed  RDCROSS #/km2 4 
Road density in watershed  RDDENS km/km2 4 
Density of EPA Toxic Release Inventory sites  EPATOXIC #/km2 watershed 4 
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Table 5.2.  Results from the Kruskal-Wallis nonparametric test of means and the multiple comparison Nemnyi test of cluster 1, 2, and 
3.  Included in this table are the cluster means of the variables, χ2 of Kruskal-Wallis test, associated degrees of freedom, and 
associated significance. Multiple comparison results are interpreted as follows: q (1-3) is the Studentized range q statistic for the 
difference between cluster 1 and 3, and p (1-3) is the associated significance.  Critical values for q are as follows: q0.1, ∞, 3 = 2.902, 
q0.05, ∞, 3 =3.313, q0.01, ∞, 3 =4.200 (Zar 1999). Metrics significant at α <.10 are in bold. Only significant results are shown, all other 
results are recorded in Appendix L. 

Habitat Variable Cluster 1 Cluster 2 Cluster 3 χ2 d.f. p q (1-3) p (1-3) q (1-2) p (1-2) q (2-3) p (2-3) 
WT_URBAN12 3.93 5.77 4.76 5.33 2 0.07 2.28 >0.1 3.12 <0.10 0.08 >0.1 
WT_URBAN14 3.93 2.41 1.66 11.95 2 0.00 4.55 <0.01 2.98 <0.10 1.56 >0.1 
WT_AGR22 17.20 20.04 25.75 6.91 2 0.03 3.66 <0.05 1.51 >0.1 2.15 >0.1 
WT_FOREST 22.90 15.60 15.0 10.89 2 0.00 4.11 <0.05 3.86 <0.05 0.03 >0.1 
WT_FOREST41 18.10 13.06 13.19 9.31 2 0.01 3.51 <0.05 3.85 <0.05 0.03 >0.1 
WT_FOREST42 2.14 1.59 1.08 8.32 2 0.02 3.92 <0.05 2.24 >0.1 1.68 >0.1 
WT_FOREST43 2.66 1.89 1.33 11.73 2 0.00 4.75 <0.01 2.49 >0.1 2.25 >0.1 
WT_WATER 2.55 1.03 1.25 10.25 2 0.01 3.30 <0.10 4.18 <0.05 0.88 >0.1 
RT_URBAN14 2.85 1.94 1.01 13.79 2 0.00 4.96 <0.01 2.59 >0.1 2.37 >0.1 
RT_AGR22 12.66 155 19.33 5.22 2 0.07 3.16 <0.10 1.97 >0.1 1.20 >0.1 
RT_FOREST 19.70 16.80 15.20 5.63 2 0.06 3.05 <0.10 2.64 >0.1 0.411 >0.1 
RT_FOREST42 1.97 1.43 1.17 6.00 2 0.05 3.29 <0.10 2.13 >0.1 1.16 >0.1 
RT_FOREST43 2.61 1.86 1.25 11.85 2 0.00 4.76 <0.01 2.77 >0.1 1.99 >0.1 
RT_WATER 10.34 10.34 4.87 8.66 2 0.01 2.16 >0.1 4.08 <0.05 1.91 >0.1 
RT_WETLAND612 0.62 0.39 0.22 11.11 2 0.00 4.41 <0.01 2.72 >0.1 1.69 >0.1 
TNY_LIVE 94.00 210.65 208.25 11.54 2 0.00 2.91 <0.10 3.22 <0.10 0.03 >0.1 
TNY_NONAG 86.44 78.01 97.70 6.91 2 0.03 2.70 >0.1 0.79 >0.1 3.49 <0.05 
TNY_POINT 176.31 326.21 414.76 6.32 2 0.04 3.31 <0.10 6.64 <0.01 0.66 >0.1 
TPY_FERT 33.13 32.13 26.72 5.33 2 0.07 2.75 >0.1 0.06 >0.1 2.81 >0.1 
TPY_LIVE 13.36 27.86 22.52 9.42 2 0.01 3.40 <0.05 3.94 <0.05 0.55 >0.1 
INSECT 2.18 4.40 3.77 11.16 2 0.00 3.86 <0.05 4.20 <0.05 0.35 >0.1 
MANURE 1.87 4.38 4.68 12.90 2 0.00 4.72 <0.01 3.85 <0.05 0.87 >0.1 
OUTFALL 0.21 0.12 0.08 12.14 2 0.00 4.69 <0.01 3.40 <0.05 1.29 >0.1 
EPATOXIC 0.04 0.18 0.20 10.99 2 0.00 4.24 <0.01 0.57 >0.1 3.66 <0.05 
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Table 5.3. Results from the Mann-Whitney U nonparametric test of means of clusters 4 
and 5.  Included in this table are the cluster means of the variables, U statistic, and 
associated significance. Only results significant at a = 0.10 are shown; all results are 
recorded in Appendix M. 
 
Habitat Variable Cluster 4 Cluster 5 Mann-Whitney U statistic p-value 
WT_COARSE 16.70 8.60 108.5 0.02 
90_YIELD 0.0016 0.0012 118 0.07 
WT_AGR22 2.46 5.99 122.5 0.08 
WT_FOREST 21.11 14.89 120 0.08 
WT_FOREST43 2.56 1.63 119.5 0.07 
WT_WETLAND610 0.67 0.23 118.5 0.04 
WT_WETLAND611 2.45 1.55 124 0.10 
WT_WETLAND612 0.06 0.01 121 0.04 
WT_WETLAND613 0.01 0.00 130 0.07 
RT_FOREST 25.37 18.32 121.5 0.09 
RT_FOREST43 2.78 1.74 119.5 0.07 
RT_WETLAND610 2.63 1.93 133.5 0.05 
RT_WETLAND612 0.14 0.02 111 0.01 
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Table 5.4.  Standardized total effects of the stressor variables (left of table) on their 
dependent variables (top of table) as computed by the CSA.  The standardized effect of 
WT_OPEN on IBI DEVIATION (-0.28) indicates that when WT_OPEN decreases by 
one standard deviation, IBI DEVIATION decreases by 0.28 standard deviations.  Effect 
significant at <0.05 effects are in bold; other effects are significant at <0.10. 
 
 

  
IBI 

DEVIATION TNY_NONAG NINETY_YIELD 
WT_OPEN -0.28   
OUTFALL 0.10 0.19  
WT_WETLAND610 -0.42   
WT_FOREST43 0.22   
WT_AGR22 -0.48  -0.17 
WT_WETLAND612 0.12   
RDCROSS -0.17   
TNY_NONAG -0.19   
NINETY_YIELD -0.18   
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Figure 5.1.  Locations of the sampled fish sites available from the Wisconsin Department 
of Natural Resources, the Michigan Department of Natural Resources, and the Michigan 
Rivers Inventory.  The open white circles represent cold-water sites or species-targeted 
samples that were not used in this study.  The filled black circles were those sites used in 
this study; they are sites with warm-water fish communities that were sampled with either 
electroshocking or rotenone. 
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Figure 5.2.  The relationship between Fish IBI Score and % URBAN for A) all fish 
community sample sites in study, B) sites equal to or above the urban threshold of 9% 
URBAN after being clustered by Fish IBI Score and % URBAN, and C) sites equal to or 
above the urban threshold of 9%, with a green regression line based off of the four red 
points. The blue line represents an example of “IBI deviation”, the difference in IBI score 
between the regression line and sample point. 
 

 

 
 

y= 127.2-23.7x R2= 0.99 

Example “IBI 
deviation” 

C 



 169 

Figure 5.3.  Simplified path diagram of the CSA of the fish community sample sites equal 
to or above the urban threshold (N= 128).  Dark arrows indicate effects significant at p < 
0.05, light arrows indicate significant effects at p <0.10, and the nearby numbers in bold 
are the corresponding standardized regression weight.  Numbers in italics by the 
endogenous variables indicate the amount of variance explained by the predictor 
variables. Arrows representing covariance between variables were removed for 
simplicity. 
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Chapter 6 
 

Conclusions 
 

 

Throughout this dissertation, I have shown how fish distribution models, with 

particular emphasis on those created through a classification tree methodology, can be 

used for two main purposes: formulating and testing hypotheses about the factors, 

disturbances, and processes that are important to organisms, and making predictions of 

species distributions and abundances for use in management contexts.   

 My first goal was to examine how different landscape factors and disturbance 

features relate to stream fish.  In chapter 2, I found that a variety of techniques could be 

used to predict that brook trout have a preference for low water temperature, small 

streams, high amounts of forest, and high groundwater flow. The next step was to expand 

this modeling procedure to numerous fish species using a classification tree approach, an 

useful technique that does not rely on the underlying data distribution and produces 

models easy to interpret and apply to new scenarios.  In chapter 3, I created distribution 

models for all common Michigan stream fish.  The results indicated that when using 

variables measured on a landscape scale, it is possible to predict most stream species with 

a high level of accuracy; although certain groups of fish were more easily predicted than 

others.  Water temperature, which has directly controls the level of dissolved oxygen, and 

catchment area, which is highly correlated with the size and flow of a river, were the two 
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most influential variables that drove the species distribution.  Models that predicted the 

fish most accurately were those controlled most directly by these two variables; fish 

found in big, warm rivers such as redhorse species, channel catfish, and common carp 

were predicted very well, as were fish found in small, cold streams such as brook trout, 

mottled sculpin, and slimy sculpin.  The importance of these variables has also been 

supported by other studies (Hawkes 1975; Vannote et al. 1980; Fausch et al. 1998; Wiley 

et al. 1990; Lyons 1992; Zorn et al. 2002; Wehrly et al. 2003).  

The classification tree model gives a quantitative prediction of the niche space of 

the species; the habitat ranges in which the fish is expected to reside.  For most species 

the habitat space is first defined by water temperature and catchment area.  The other 

variables included in the classification trees are examples of finer “filters”.  Water 

temperature and catchment area control whether the stream system has the potential to 

hold the fish, while the other variables control the particular spatial location where the 

fish are found.  For example, there is a low chance (10%) of largemouth bass being 

located in streams with a daily July mean water temperature less than 18.9 °C.  Streams 

that are above this threshold however, have a moderate chance (62%) of holding 

largemouth if the stream is also 20 km upstream from a pond.  In this example, water 

temperature is the first filter.  Once a stream meets this requirement (in other words, 

passes through this filter), the distance to a pond becomes important in determining 

largemouth presence.  In a cold stream (<18.9 °C), the distance to a pond does not matter, 

as there is only a low chance of largemouth occurrence despite this distance. 

In chapter 4, I used the classification tree models to show how past and future 

land-use change and climate change are expected to shape the game fish communities in 
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the Muskegon River stream system.  For the future predictions, I developed three 

potential climate change and land-use change scenarios and applied them to the 

predictive fish models to create the potential distribution of fish from 2010-2100.  Given 

a water temperature increase of approximately 4 °C, the models predicted virtual 

eradication of the brook trout, rainbow trout, and Chinook salmon in the Muskegon 

watershed, and a severe decline of brown trout. The distribution of warm-water fish is 

expected to spread, with the exception of walleye, which was predicted to decline in the 

Muskegon due to increases in urban development.    

 Chapter 5 examined how different landscape factors and in-stream processes 

affect urban stream fish communities.  The increase of streams affected by urbanization is 

an issue of top concern for aquatic ecologists because a variety of urban impacts have 

negative consequences on stream communities.  Analysis of the variation around the 

relationship between fish IBI and stream urbanization has shown that agricultural impacts 

are a major factor in whether urban streams are able to support good fish communities.  

Urban streams in watersheds that are primarily agriculture and urban are much more 

likely to have degraded fish communities than urban streams with sufficient forest in the 

watershed.  Healthy fish communities in urban streams also need good water quality and 

stable flow.  Discharges from point sources reduce water quality, but provide steady flow 

that is mechanistically similar to ground water.   

Throughout this dissertation, the models that indicate how landscape factors and 

disturbances affect the stream fish community also can be used strengthen new concepts 

in stream fisheries management.  For example, the analyses in this dissertation are based 

on the idea that fish species are influenced by processes that operate on larger spatial 
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scales and slower temporal scale than those measured at the local-scale (Chapters 2-5; 

Richards et al. 1996; Leftwich et al. 1997; Rathert 1999; Allan 2004).  Therefore, 

effective conservation management will need to be applied at the proper scale; evidence 

from this dissertation has indicated that managers need to plan on a watershed level, not 

on a riparian level.  In chapter 3, land-use/cover on a watershed scale was used in the 

classification trees more often than land-use/cover on the riparian scale (16.7 % of 

presence/absence models vs. 13.4%).  In chapter 5, riparian scale land-use/cover did not 

explain any variation in the difference between observed and potential IBI in urban 

streams that was not previously accounted for by the watershed land-use/cover.  

Managing on a watershed scale is not a new idea (Wang et al. 2001, Wang et al. 2003; 

Fitzpatrick et al. 2005) but the riparian management paradigm continues to be very 

popular (Bernhardt et al. 2005), probably due to the ease of working on a small-scale.  

While management at a local or riparian-scale certainly can produce favorable changes in 

fish communities, evidence from this dissertation suggests that operating on the 

watershed scale will be more effective.                                               

Models built on a landscape-scale are decision-making tools able to be used in a 

variety of management and conservation applications.  At their most basic use, these 

models predict the amount and location of the riverine habitat suitable for common fish 

species in Michigan.  In situations where a manager has little information and needs a 

starting point or confirmation of an idea, these models and resulting maps provide 

baseline data.  Inventory information is a vital component to fisheries management and 

species conservation, and the modeling described here is a good way to get this data on a 

large geographic scale.  Managers can also use the models to aid their fish sampling and 
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stream assessment work.  The models can be used to identify potential high-quality 

“reference” streams and low-quality “impaired” sites.  The models can also be used to 

identify streams that have a good restoration potential.  For example, managers could 

predict if adding forest land-cover in the stream’s watershed would have a positive effect 

on the fish community, or if the buffer would have little effect because the stream has 

low overall potential regardless of land-use management.   

These models can be useful for the management of particular species.  For some 

fish, a manager can rule out the presence of a fish based on a single factor.  I found that 

trout species were unlikely to be found in streams with mean daily July water temperature 

over a particular value (brook trout, 19.4°C; brown trout, 20.2°C; rainbow trout, 19.6°C). 

This information combined with the ability to access water temperature on a GIS would 

be very useful to managers deciding whether to manage marginal streams for trout.   

The models can be used identify streams that should be sampled for rare species 

or species of concern.  Besides looking at streams where the fish has been found in the 

past, it is difficult to know where else the fish may reside.  However, due to 

anthropogenic pollution and siltation impacts on streams over the past century, rare fish 

are not found where the models predict them to be located and therefore models of rare 

fish have high rates of false presence errors.  While the predictions of rare fish were 

inaccurate compared to the test data in this study, these models still have practical 

management use because they predict the habitat space where the fish have the potential 

to reside.  

To ensure long-term sustainability of aquatic resources, anticipating future 

changes in fish communities is an essential task.  Knowledge of what may happen if we 
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fail to act can provide both the motivation to act and indicate what steps may be 

necessary to prevent the predicted changes from occurring.  In Chapter 4, I applied three 

“what-if” future scenarios to the classification tree models and saw that fish communities 

in the Muskegon River system, and by extrapolation, the fish communities throughout 

Michigan, will be much different in 2100 than today. While the problem of climate 

warming may be out of the hands of fisheries managers, it is not impossible to work for 

changes in land-use development in order to prevent some of the predicted future changes 

from coming true. The classification tree models give land-use thresholds that managers 

will not want to cross.  For example, a big river (catchment areas greater than 657 km2) 

with a watershed of less than 8.5% urban land-use has a much high probability to 

maintain walleye populations than a stream high in urban land (57% vs. 26%, Appendix 

I). 

As mentioned above, the goals of this dissertation were to examine how models 

can be useful in formulating and testing hypotheses about the factors, disturbances, and 

processes that are important to organisms, as well as providing practical fisheries 

management tools.  The models we have used do this are built on a landscape level, using 

correlation fish-habitat associations.  Yet using these methods brings forth an inherent 

weakness.  The models in chapters 2-4 have the ability to accurately predict fish 

distributions, but these models do not give any explanation of biological mechanisms. 

The analysis Chapter 5 represents a new and useful way of conceptualizing the issue of 

fish communities and urban streams, but the CSA analysis only explained 39% of the 

variation in the difference between observed and potential IBI score so there remains 

much to be explored.  Throughout the entire dissertation, I do not consider the effect of 



 183 

competition, predator/prey relationships, or other species interactions, and am not able to 

include the effect of localized habitat features.  The lack of clear biological relationships 

in the results is unfortunate.  However, what this dissertation does provide is a large 

spatial scale, which relates better to temporally slower geological and hydrological 

mechanisms.  Studies integrating local-scale and large-scale variables and using 

biological interactions as well as geological/hydrological processes will be difficult to 

carry out, but represent a possible avenue for improving this work in the future. 

 Temperature change, land-use change, and urbanization are realities that aquatic 

scientists are going to need to understand in order to develop the tools needed to conserve 

aquatic diversity.  This dissertation shows that landscape-scale habitat variables partnered 

with GIS, classification trees, and covariance structure analysis can be used to sharpen 

our knowledge of how these disturbances affect stream fish and provide practical tools to 

aid in our management of aquatic systems. 
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Appendix A.  A) Classification tree model for brook trout, developed by statewide fish 
samples and 2001 habitat data.  Habitat variable code explanations are given in Chapter 
2, Table 1. B) Predictive maps of the brook trout model as applied to the years 1830, 
2001, and 2100.  Three maps were made for 2100: 1) land-use change only, 2) slow 
temperature change, and 3) fast temperature change. 
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Appendix A, continued. 
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Appendix A, continued.  
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Appendix A, continued. 
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Appendix B.  A) Classification tree model for brown trout, developed by statewide fish 
samples and 2001 habitat data.  Habitat variable code explanations are given in Chapter 
2, Table 1. B) Predictive maps of the brown trout model as applied to the years 1830, 
2001, and 2100.  Three maps were made for 2100: 1) land-use change only, 2) slow 
temperature change, and 3) fast temperature change. 
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Appendix B, continued. 
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Appendix B, continued.  
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Appendix B, continued.  
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Appendix C.  A) Classification tree model for rainbow trout, developed by statewide fish 
samples and 2001 habitat data.  Habitat variable code explanations are given in Chapter 
2, Table 1. B) Predictive maps of the rainbow trout model as applied to the years 1830, 
2001, and 2100.  Three maps were made for 2100: 1) land-use change only, 2) slow 
temperature change, and 3) fast temperature change. 
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Appendix C, continued. 
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Appendix C, continued. 
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Appendix C, continued. 
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Appendix D.  A) Classification tree model for Chinook salmon, developed by statewide 
fish samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the Chinook salmon model as applied to the 
years 1970, 2001, and 2100.  Since the Chinook salmon model does not include 
temperature, temperature change future models were not created for this species. 
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Appendix D, continued. 
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Appendix D, continued. 
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Appendix E.  A) Classification tree model for Coho salmon, developed by statewide fish 
samples and 2001 habitat data.  Habitat variable code explanations are given in Chapter 
2, Table 1. B) Predictive maps of the Coho salmon model as applied to the years 1970, 
2001, and 2100.  Three maps were made for 2100: 1) land-use change only, 2) slow 
temperature change, and 3) fast temperature change. 
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Appendix E, continued. 
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Appendix E, continued. 
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Appendix E, continued. 
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Appendix F.  A) Classification tree model for smallmouth bass, developed by statewide 
fish samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the smallmouth bass model as applied to the 
years 1830, 2001, and 2100.  1830, 2001, and 2100 (no temp change) have the same 
prediction. 
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Appendix F, continued. 
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Appendix F, continued. 
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Appendix G.  A) Classification tree model for largemouth bass, developed by statewide 
fish samples and 2001 habitat data.  Habitat variable code explanations are given in 
Chapter 2, Table 1. B) Predictive maps of the largemouth model as applied to the years 
1830, 2001, and 2100.  Three maps were made for 2100: 1) land-use change only, 2) slow 
temperature change, and 3) fast temperature change. 
 

 
 
 
 



 210 

Appendix G, continued. 

 

 
 
 



 211 

Appendix G, continued. 
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Appendix G, continued. 
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Appendix H.  A) Classification tree model for northern pike, developed by statewide fish 
samples and 2001 habitat data.  Habitat variable code explanations are given in Chapter 
2, Table 1. B) Predictive maps of the northern pike model as applied to the years 1830, 
2001, and 2100.  Three maps were made for 2100: 1) land-use change only, 2) slow 
temperature change, and 3) fast temperature change. 
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Appendix H, continued. 
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Appendix H, continued. 
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Appendix H, continued. 
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Appendix I.  A) Classification tree model for walleye, developed by statewide fish 
samples and 2001 habitat data.  Habitat variable code explanations are given in Chapter 
2, Table 1. B) Predictive maps of the walleye model as applied to the years 1830, 2001, 
2040, and 2100.  Since the walleye model does not include temperature, temperature 
change future models were not created for this species. 
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Appendix I, continued. 
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Appendix I, continued. 
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Appendix J.  Contingency table counts and results for fish species of clusters 1,2, and 3. Tables A-D can be read as per this example 
from the first line of the table: Blackside Darter (from the darter species metric) is being compared between clusters 1 and 2+3. In 
cluster 1, this fish was absent from 21 sampling locations and present at 9 sampling locations and in cluster 2 and 3, there were 57 
absent locations and 3 present locations. The Fisher’s exact probability is 0.002, which is significant with the α level set at .03 
(0.10/Number of species tested from the darter species metric).  Tables E-H are based on fish species as a percentage of the total catch 
at a sampling site, but are interpreted in a similar manner to A-D.   
 

A          
Darter Species Clusters Absent Present Absent Present χ2 χ2 sig. Fisher's sig. Required sig. 
Blackside Darter 1 vs. 2+3 21 9 57 3    0.002 0.03 
Johnny Darter 1 vs. 2+3 11 19 38 22 4.71 0.030  0.03 
Rainbow Darter 1 vs. 2+3 12 18 59 1 37.44 0.000  0.03 
          
B          
Sucker Species  Clusters Absent Present Absent Present χ2 χ2 sig. Fisher's sig. Required sig. 
Northern Hog Sucker 1 vs. 3 21 9 26 4 1.57 0.117  0.05 
White Sucker 1 vs. 3 6 24 5 25 0 1.000  0.05 
          
C          
Intolerant Species  Clusters Absent Present Absent Present χ2 χ2 sig. Fisher's sig. Required sig. 
Mottled Sculpin 1 vs. 3 26 4 29 1   0.353 0.02 
Rainbow Darter 1 vs. 3 12 18 30 0 22.94 0.000  0.02 
Rock Bass 1 vs. 3 11 19 26 4 13.82 0.000  0.02 
Smallmouth Bass 1 vs. 3 22 8 25 5 0.39 0.531  0.02 
(Northern Hog 
Sucker) 1 vs. 3 see Suckers       
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           Appendix J, continued. 
     D       

Native Species  Clusters Absent Present Absent Present χ2 χ2 sig. Fisher's sig. Required sig. 
Black Bullhead 1 vs. 3 22 8 24 6 0.093 0.76   0.005 
Black Crappie 1 vs. 3 23 7 27 3 0.093 0.76  0.005 
Blacknose Dace 1 vs. 3 22 8 20 10 0.079 0.778  0.005 
Blackside Darter 1 vs. 3 21 9 30 0   0.002 0.005 
Bluegill 1 vs. 3 15 15 17 13 0.067 0.796  0.005 
Bluntnose Minnow 1 vs. 3 18 12 25 5 2.955 0.086  0.005 
Brook Stickleback 1 vs. 3 21 9 22 8 0 1  0.005 
Central Mudminnow 1 vs. 3 12 18 18 12 1.667 0.197  0.005 
Central Stoneroller 1 vs. 3 23 7 27 3 1.08 0.299  0.005 
Common Shiner 1 vs. 3 14 16 20 10 1.697 0.193  0.005 
Creek Chub 1 vs. 3 6 24 13 17 2.773 0.096  0.005 
Fathead Minnow 1 vs. 3 26 4 17 13 5.253 0.022  0.005 
Grass Pickerel 1 vs. 3 21 9 28 2 4.007 0.045  0.005 
Green Sunfish 1 vs. 3 4 26 9 21 1.571 0.21  0.005 
Horneyhead Chub 1 vs. 3 20 10 28 2 5.104 0.024  0.005 
Johnny Darter 1 vs. 3 11 23 23 7 8.21 0.004  0.005 
Largemouth Bass 1 vs. 3 10 20 19 11 4.271 0.039  0.005 
Northern Pike 1 vs. 3 23 7 25 5 0.104 0.747  0.005 
Pumpkinseed 1 vs. 3 7 23 19 11 8.21 0.004  0.005 
Yellow Bullhead 1 vs. 3 19 11 25 5 2.1 0.144  0.005 
(Rainbow Darter) 1 vs. 3 see Intolerant       
(Rock Bass) 1 vs. 3 see Intolerant       
(Mottled Sculpin) 1 vs. 3 see Intolerant       
(Smallmouth Bass) 1 vs. 3 see Intolerant       
(Northern Hog Sucker) 1 vs. 3 see Suckers               
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         Appendix J, continued. 
 
E             
% Carnivore  Clusters Median 0% <Med. >Med. 0% <Med. >Med. χ2  χ2 sig. Fisher's sig. Required sig. 
% Black Crappie 1 vs 2+3 1.2 23 4 3 54 2 4    0.175 0.014 
% Channel Catfish 1 vs 2+3 0.71 26 2 2 54 3 3   1.000 0.014 
% Grass Pickerel 1 vs 2+3 0.5 21 3 6 55 4 1   0.005 0.014 
% Largemouth Bass 1 vs 2+3 1.57 10 8 12 38 13 9 8.51 0.014  0.014 
% Northern Pike 1 vs 2+3 0.48 23 2 5 48 7 5   0.437 0.014 
% Rockbass 1 vs 2+3 2.9 11 9 10 48 6 6 16.05 0.000  0.014 
% Smallmouth Bass 1 vs 2+3 2.21 22 4 4 49 5 6   0.612 0.014 
             
F             
% Tolerant  Clusters Median 0% <Med. >Med. 0% <Med. >Med. χ2  χ2 sig. Fisher's sig. Required sig. 
% Blacknose Dace 1 vs. 3 8.89 41 11 8 20 3 7    0.368 0.011 
% Bluntnose Minnow 1 vs. 3 6.42 36 13 11 25 1 4   0.041 0.011 
% Central Mudminnow 1 vs. 3 4.06 27 16 17 18 6 6 1.646 0.481  0.011 
% Common Carp 1 vs. 3 1.9 37 16 7 16 2 12 12.31 0.002  0.011 
% Creek Chub 1 vs. 3 12 12 27 21 13 5 12 8.08 0.018  0.011 
% Fathead Minnow 1 vs. 3 3.44 51 6 3 17 5 8   0.005 0.011 
% Green Sunfish 1 vs. 3 3.45 11 24 25 9 11 10 1.036 0.596  0.011 
% White Sucker 1 vs. 3 7.28 11 26 23 5 11 14   0.767 0.011 
% Yellow Bullhead 1 vs. 3 1.85 43 10 7 25 1 4   0.2 0.011 
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Appendix J, continued. 
 

G             

% Insectivores  Clusters Median 0% <Med. >Med. 0% <Med. >Med. χ2  
χ2 

sig. 
Fisher's 

sig. 
Required 

sig. 
% Black Bullhead 1 vs. 3 1.43 22 4 4 24 3 3    0.829 0.007 
% Blackside Darter 1 vs. 3 2.29 21 4 5 30 0 0   0.002 0.007 
% Bluegill 1 vs. 3 4.19 15 6 9 17 8 5 1.444 0.486  0.007 
% Brook Stickleback 1 vs. 3 3.03 21 6 3 22 2 6   0.255 0.007 
% Central Mudminnow 1 vs. 3 3.87 12 9 9 18 6 6 2.046 0.360  0.007 
% Common Shiner 1 vs. 3 3.94 14 5 11 20 8 2 7.666 0.022  0.007 
% Green Sunfish 1 vs. 3 3.03 4 13 13 9 10 11 1.875 0.392  0.007 
% Horneyhead Chub 1 vs. 3 3.36 20 4 6 28 2 0   0.018 0.007 
% Johnny Darter 1 vs. 3 6.6 11 7 12 23 6 1 13.04 0.001  0.007 
% Northern Hog Sucker 1 vs. 3 3.6 21 4 5 26 2 2   0.343 0.007 
% Pumpkinseed 1 vs. 3 0.08 7 9 14 19 8 3 12.00 0.002  0.007 
% Rainbow Darter 1 vs. 3 1.9 12 9 9 30 0 0   0.000 0.007 
% Sand Shiner 1 vs. 3 10.5 26 2 2 27 1 1   1.000 0.007 
% Yellow Bullhead 1 vs. 3 1.85 19 7 4 25 1 4   0.101 0.007 
% Yellow Perch 1 vs. 3 0.74 25 1 4 28 2 0   0.112 0.007 
             
H             

% Omnivores  Clusters Median 0% <Med. >Med. 0% <Med. >Med. χ2  
χ2 

sig. 
Fisher's 

sig. 
Required 

sig. 
% Common Carp 1+2 vs. 3 1.9 37 16 7 16 2 12 12.31 0.002  0.020 
% Fathead Minnow 1+2 vs. 3 3.44 51 6 3 17 5 8   0.005 0.020 
% Creek Chub 1+2 vs. 3 12 12 27 21 13 5 12 8.08 0.018  0.020 
% Bluntnose Minnow 1+2 vs. 3 6.42 36 13 11 25 1 4   0.041 0.020 
% White Sucker 1+2 vs. 3 7.28 11 26 23 5 11 14   0.767 0.020 
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Appendix K.  Contingency table counts and results for fish species of clusters 4 and 5. Table A can be read as per this example from 
the first line of the table: Black Bullhead (from the native species metric) is being compared between clusters 4 and 5. In cluster 4, this 
fish was absent from 13 sampling locations and present at 6 sampling locations and in cluster 5, there were 14 absent locations and 5 
present locations. The χ2  value is 0.000 and associated probability is 1.000, which is insignificant with the α level set at .07 
(0.1/Number of species tested from the “native species metric”).  Tables B and C are based on fish species as a percentage of the total 
catch at a sampling site, but are interpreted in a similar manner to A. 
 

A        

Native Species Cluster  Absent Present Absent Present χ2 
χ2 
sig. 

Fisher's 
sig. 

Required 
sig.  

Black Bullhead 4 vs. 5 13 6 14 5 0.00 1.000  0.07  
Blacknose Dace 4 vs. 5 10 9 15 4 1.87 0.171  0.07  
Bluegill  4 vs. 5 12 7 14 5 0.12 0.727  0.07  
Bluntnose Minnow 4 vs. 5 13 6 12 7 0.00 1.000  0.07  
Brook Stickleback 4 vs. 5 14 5 11 8 0.47 0.494  0.07  
Central Mudminnow 4 vs. 5 10 9 12 7 0.11 0.742  0.07  
Central Stoneroller 4 vs. 5 13 6 18 1 2.80 0.094  0.07  
Common Shiner 4 vs. 5 14 5 16 3 0.16 0.691  0.07  
Creek Chub 4 vs. 5 4 15 5 14   1.000 0.07  
Fathead Minnow 4 vs. 5 12 7 5 14 3.83 0.050  0.07  
Greensunfish 4 vs. 5 4 15 5 14   1.000 0.07  
Johnny Darter 4 vs. 5 11 8 13 6 0.11 0.737  0.07  
Largemouth Bass 4 vs. 5 11 8 17 2 3.39 0.065  0.07  
Pumpkinseed 4 vs. 5 11 8 14 5 0.47 0.494  0.07  
White Sucker 4 vs. 5 4 15 5 14   1.000 0.07  
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           Appendix K, continued. 
 

B        

% Omnivores Cluster  Median 0% <Med. >Med. 0% <Med. >Med. χ2 
χ2 

sig. 
Fisher's 

sig. 
Required 

sig. 
% Common Carp 4 vs. 5 0.9 12 3 4 16 2 1    0.349 0.33 
% Fathead Minnow 4 vs. 5 4.76 12 5 2 5 5 9 7.34 0.026  0.033 
% White Sucker 4 vs. 5 13.4 4 10 5 5 4 10   0.125 0.33 
             
C        

% Tolerant Cluster  Median 0% <Med. >Med. 0% <Med. >Med. χ2 
χ2 

sig. 
Fisher's 

sig. 
Required 

sig. 
% Blacknose Dace 4 vs. 5 20.79 10 5 4 15 1 3     0.197 0.02 
% Bluntnose Minnow 4 vs. 5 4.98 13 3 3 12 3 4   1 0.02 
% Central Mudminnow 4 vs. 5 17.1 10 6 3 12 2 5   0.402 0.02 
% Creek Chub 4 vs. 5 21.2 4 8 7 5 6 8   0.843 0.02 
% Green Sunfish 4 vs. 5 3.48 4 9 6 5 5 9   0.424 0.02 
% Fathead Minnow 4 vs. 5 see % Omnivores           
% White Sucker 4 vs. 5 see % Omnivores           
% Common Carp 4 vs. 5 see % Omnivores           
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Appendix L.  Results from the Kruskal-Wallis nonparametric test of means and the multiple comparison Nemnyi test of cluster 1,2, 
and 3 for habitat variables.  Included in this table are the cluster means of the variables, χ2 of Kruskal-Wallis test, associated degrees 
of freedom, and associated significance. Multiple comparison results are interpreted as follows: q (1-3) is the Studentized range q 
statistic for the difference between cluster 1 and 3, and p (1-3) is the associated significance.  Critical values for q are as follows: q0.1, 

∞, 3 = 2.902, q0.05, ∞, 3 =3.313, q0.01, ∞, 3 =4.200 (Zar 1999). Metrics significant at α <.10 are in bold. 
 

Habitat variables 
Cluster 

1 
Cluster 

2 
Cluster 

3 χ2 d.f. p q (1-3) p (1-3) q (1-2) p (1-2) q (2-3) p (2-3) 

WT_FINE 17.46 20.53 0.38 1.58 2 0.46       

WT_COARSE 43.74 55.96 0.39 4.24 2 0.12       

10_YIELD 0.017 0.017 0.016 0.51 2 0.77       

90_YIELD 0.0017 0.0021 0.0018 2.86 2 0.24       

WT_URBAN11 3.90 5.69 5.66 4.33 2 0.12       

WT_URBAN12 3.93 5.77 4.76 5.33 2 0.07 2.28 >0.1 3.12 <0.10 0.08 >0.1 
 
WT_URBAN14 3.93 2.41 1.66 11.95 2 0.00 4.55 <0.01 2.98 <0.10 1.56 >0.1 
WT_AGR 22.00 37.70 38.93 1.75 2 0.42       

WT_AGR21 15.84 17.63 13.19 3.74 2 0.15       

WT_AGR22 17.20 20.04 25.75 6.91 2 0.03 3.66 <0.05 1.51 >0.1 2.15 >0.1 

WT_OPEN 13.38 16.99 16.56 1.73 2 0.42       

WT_FOREST 22.90 15.60 15.50 10.89 2 0.00 4.11 <0.05 3.86 <0.05 0.03 >0.1 

WT_FOREST41 18.10 13.06 13.19 9.31 2 0.01 3.51 <0.05 3.85 <0.05 0.03 >0.1 

WT_FOREST42 2.14 1.59 1.08 8.32 2 0.02 3.92 <0.05 2.24 >0.1 1.68 >0.1 

WT_FOREST43 2.66 1.89 1.33 11.73 2 0.00 4.75 <0.01 2.49 >0.1 2.25 >0.1 

WT_WATER 2.55 1.03 1.25 10.25 2 0.01 3.30 <0.10 4.18 <0.05 0.88 >0.1 

WT_WETLAND 28.57 9.80 9.87 3.00 2 0.22       

WT_WETLAND610 3.63 2.96 2.69 2.93 2 0.23       

WT_WETLAND611 5.10 3.55 4.03 3.93 2 0.14       

WT_WETLAND612 0.32 0.12 0.10 2.09 2 0.35       

WT_WETLAND613 0.02 0.01 0.01 1.19 2 0.55       
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                     Appendix L, continued. 

Habitat variables 
Cluster 

1 
Cluster 

2 
Cluster 

3 χ2 d.f. p q (1-3) 
p (1-
3) 

q (1-
2) 

p (1-
2) 

q (2-
3) p (2-3) 

 
WT_WETLAND62 3.9 3.12 3.02 2.09 2 0.35       
RT_URBAN11 2.3 3.43 3.24 1.19 2 0.55       
RT_URBAN12 2.23 3.37 2.45 1.29 2 0.52       
RT_URBAN14 2.85 1.94 1.01 13.79 2 0 4.96 <0.01 2.59 >0.1 2.37 >0.1 
RT_AGR 22 27.57 27.33 2.39 2 0.3       
RT_AGR21 9.43 12.02 8.05 1.37 2 0.51       
RT_AGR22 12.66 15.55 19.33 5.22 2 0.07 3.16 <0.10 1.97 >0.1 1.2 >0.1 
RT_OPEN 9.26 12.97 13.67 4.06 2 0.13       
RT_FOREST 19.7 16.8 15.2 5.63 2 0.06 3.05 <0.10 2.64 >0.1 0.411 >0.1 
RT_FOREST41 15.14 13.44 12.79 2.79 2 0.25       
 
RT_FOREST42 1.97 1.43 1.17 6 2 0.05 3.29 <0.10 2.13 >0.1 1.16 >0.1 
RT_FOREST43 2.61 1.86 1.25 11.85 2 0 4.76 <0.01 2.77 >0.1 1.99 >0.1 
RT_WATER 10.34 10.34 4.87 8.66 2 0.01 2.16 >0.1 4.08 <0.05 1.91 >0.1 
RT_WETLAND 28.57 24.93 25.5 0.48 2 0.79       
RT_WETLAND610 7.02 8.12 5.48 3.15 2 0.21       
RT_WETLAND611 11.42 8.13 10.8 3.05 2 0.22       
RT_WETLAND612 0.62 0.39 0.22 11.11 2 0 4.41 <0.01 2.72 >0.1 1.69 >0.1 
RT_WETLAND613 0.04 0.01 0.01 4.42 2 0.11       
RT_WETLAND62 9.4 8.19 8.98 1.74 2 0.42       
TNY_ATMOS 219.16 202.65 190.65 4.14 2 0.13       
TNY_FERT 434.03 459.09 384.89 4.21 2 0.12       
TNY_LIVE 94 210.65 208.25 11.54 2 0 2.91 <0.10 3.22 <0.10 0.03 >0.1 
TNY_NONAG 86.44 78.01 97.7 6.91 2 0.03 2.7 >0.1 0.79 >0.1 3.49 <0.05 
TNY_POINT 176.31 326.21 414.76 6.32 2 0.04 3.31 <0.10 6.64 <0.01 0.66 >0.1 
TNY_TOTAL 1009.93 1276.59 1296.25 2.49 2 0.29       
TPY_FERT 33.13 32.13 26.72 5.33 2 0.07 2.75 >0.1 0.06 >0.1 2.81 >0.1 
TPY_LIVE 13.36 27.86 22.52 9.42 2 0.01 3.4 <0.05 3.94 <0.05 0.55 >0.1 
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Appendix L, continued. 
 

Habitat 
variables 

Cluster 
1 

Cluster 
2 

Cluster 
3 χ2 d.f. p q (1-3) p (1-3) q (1-2) p (1-2) q (2-3) p (2-3) 

TPY_NONAG 7.84 6.61 8.12 3.46 2 0.18       
TPY_POINT 25.27 4.89 37.25 1.07 2 0.59       
TPY_TOTAL 79.6 111.49 94.62 2.05 2 0.36       
FERT 16.7 22.57 19.95 3.08 2 0.22       
HERB 14.43 18.77 16.34 2.55 2 0.28       
INSECT 2.18 4.4 3.77 11.16 2 0 3.86 <0.05 4.2 <0.05 0.35 >0.1 
MANURE 1.87 4.38 4.68 12.9 2 0 4.72 <0.01 3.85 <0.05 0.87 >0.1 
OUTFALL 0.21 0.12 0.08 12.14 2 0 4.69 <0.01 3.4 <0.05 1.29 >0.1 
MINES 0 0.01 0.01 4.27 2 0.12       
POPDENS 197.39 270.33 252.57 4.63 2 0.1       
RDCROSS 0.6 0.81 0.69 0.13 2 0.94       
 
RDDENS 2.86 3.36 3.16 3.91 2 0.14       
EPATOXIC 0.04 0.18 0.2 10.99 2 0 4.24 <0.01 0.57 >0.1 3.66 <0.05 
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Appendix M. Results from the Mann-Whitney U nonparametric test of means of clusters 
4 and 5, for habitat variables.  Included in this table are the cluster means of the variables, 
U statistic, and associated significance. Variables significant at α <.10 are in bold. 
 

Habitat variable Cluster 4 Cluster 5 

Mann-
Whitney U 
statistic p-value 

WT_FINE 51.30 70.57 127 0.116 

WT_COARSE 16.70 8.60 108.5 0.023 

10_YIELD 0.019 0.020 147 0.328 

90_YIELD 0.0016 0.0012 118 0.068 

WT_URBAN11 16.51 20.92 150 0.373 

WT_URBAN12 15.41 17.11 152 0.405 

WT_URBAN14 2.71 3.62 137 0.133 

WT_AGR 4.63 9.79 138 0.193 

WT_AGR21 2.20 3.81 145.5 0.279 

WT_AGR22 2.46 5.99 122.5 0.082 

WT_OPEN 23.61 22.80 179 0.965 

WT_FOREST 21.11 14.89 120 0.08 

WT_FOREST41 15.34 11.65 128 0.125 

WT_FOREST42 3.23 1.58 129 0.121 

WT_FOREST43 2.56 1.63 119.5 0.072 

WT_WATER 0.53 0.44 139 0.199 

WT_WETLAND 5.32 3.37 127.5 0.117 

WT_WETLAND610 0.67 0.23 118.5 0.044 

WT_WETLAND611 2.45 1.55 124 0.096 

WT_WETLAND612 0.06 0.01 121 0.04 

WT_WETLAND613 0.01 0.00 130 0.066 

WT_WETLAND62 2.10 1.57 152 0.4 

RT_URBAN11 10.71 15.50 136.5 0.199 

RT_URBAN12 10.27 12.17 146.5 0.32 

RT_URBAN14 4.01 2.52 142 0.184 

RT_AGR 3.68 7.21 145.5 0.262 

RT_AGR21 1.96 3.07 147 0.276 

RT_AGR22 1.74 4.17 151 0.351 

RT_OPEN 20.90 23.80 145 0.3 

RT_FOREST 25.37 18.32 121.5 0.085 

RT_FOREST41 18.92 14.41 131 0.148 

RT_FOREST42 3.71 2.12 133 0.152 

RT_FOREST43 2.78 1.74 119.5 0.072 

RT_WATER 1.79 0.80 129 0.122 

RT_WETLAND 16.00 12.26 133.5 0.17 

RT_WETLAND610 2.63 1.93 133.5 0.048 
 

 


