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Abstract

To identify abiotic requirements necessary to maintasvgr, survival, and
reproduction of species, researchers often use modadarichdor patterns between
species occurrences and environmental characteristesmgiled locations. Models are
used to test hypotheses about processes that are inipordaganisms, and used to make
species distributions and abundance predictions for mamagexpplication.

Several analytical methodologies were assessedddelmg associations
between fish species and habitat characteristics. kBroat presence/absence models
were created using different techniques: multiple regrestogistic regression, neural
networks, and classification trees. Results showatall methods could be successful
provided underlying assumptions were méhis analysis indicated classification trees
were a technique uniquely suited to the creation of largéets of interpretable models.

Classification tree methods and landscape-scale hahitables were used to
create and validate presence/absence models and raelatindance models for Michigan
stream fish. Ninety-three presence/absence modeésavenverage 72% correct and 46
relative abundance models were on average 76% correct t@bted against independent
data. Water temperature and catchment area were deterini be dominant constraints
on fish distributions.

Classification trees were applied to land-use alteratimhclimate change

scenarios to understand how fish communities of thekbyen River system (Michigan,

Xii



USA) would be structured through the year 2100. Models preldictie-water species
reduction due to water temperature warming, and walleyallgs$o increased urban
development. Warm-water species were expected todudbgtantial range increases.
Classification trees were used to explore how managgts manipulate predictor
variables to maximize probability of species presence.

Urban development has been shown to have strong vegapacts on fish
community quality. However, effort is needed into undeiditay why streams with
similar urban levels have fish communities of sigifily different quality. Univariate
tests and covariance structure analysis were used toigatestow natural and
anthropogenic features are related to variance of figic biegrity in urban streams.
Urbanized streams with more natural land-cover, monet gource discharges, better
water quality, and that are adjacent to non-urbanizednssreapported higher quality

fish communities.
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Chapter 1

Introduction

Understanding biotic and abiotic processes that determinesvaind why species
are able to exist is one of the fundamental aimgolbgy. It permeates all aspects of
ecology: academic ecologists examine mechanisms of spmEeistence and
competition, while fisheries managers manipulate stitenitat to optimize managed
species reproduction. Conservation biology, the brahebaogy dedicated to the
preservation of biotic diversity, is particularly fead on understanding the mechanisms
that regulate species distributions. Knowledge of theirements necessary for growth,
survival, and reproduction of species is required for wissewation planning.

In practical application, however, the biotic and abiogiquirements of a species
are incompletely known. Environmental complexity and sggetiteractions make it
difficult to learn the exact constraints on a popalat To identify abiotic requirements,
researchers often use statistical models to seargaftarns between species occurrences
or abundances and the environmental characteristiesrgfled locations. These models
serve two important purposes: (1) they are used to fotenatad test hypotheses about
the factors and processes that are important to orggrasihg2) they can used to make
predictions of species distributions and abundances éinusanagement decisions.

Creating fish distribution models from habitat variahilesg regression analysis

has a long history and strengths and weaknesses of theaapmre well understood by



researchers (Fausch et al. 1988). Neural network modeldamsdfication trees,
however, are fairly new methods to the ecologicatifiébtudies directly comparing these
newer techniques with more traditional approaches argvedlarare, but when reported,
have typically found that the new techniques are abf@edict more accurately than
simple linear modeling (Lek et al. 1996; Franklin 1998; Vayssiet al. 2000).

However, careful comparisons of performance of tlagggoaches for modeling fish
distributions at a large geographic extent, such as teatedf the state of Michigan,
have not been previously reported (but see Mastrorildt. ¢997; Olden and Jackson
2001,2002 for smaller scale analyses). Likewise, a direspaanson of neural net and
classification tree approaches for fishes has nen lpeeviously reported. In Chapter 2, |
compared the accuracy of Michigan brook trout distributimaels created with
regression, neural networks, and classification tree appes.

Fish habitat requirements have often been modeled usingrdocal-scale
environmental variables (Fausch et al. 1988). HabitathMaganeasured at this scale are
useful to managers because small scale habitat can beutaded (Fausch et al. 1988;
Vaughan and Ormerod 2003). However, fish species areyciefiuenced by processes
that operate on larger spatial scales and slower tehguadas than that those measured
at the local-scale (Richards et al. 1996; Leftwich e1@®97; Rathert 1999; Allan 2004).
For example, stream temperatures are critical toairghinfluenced by a combination of
local and landscape-scale processes (Wehrly et al. 20€i3;lW\ét al. 2006). Also, the
hydrologic flow regime of a stream is crucial to fisimanunities and is driven by factors
measured at a catchment scale (Poff et al. 1997). Whigg t$h distribution models

based partially on landscape-scale data have beenccfeatdichigan (Zorn 2003), a



new database containing extensive fish samples andl{tbraidreds of habitat variables
was recently developed (Brendan et al. 2006). A new relgioodeling effort, exploring
this new data source, is just beginning but promises to proemeansights into the
importance of landscape-scale habitat variables or{i&®ng et al. 2006; Wang et al.
2007). In Chapter 3, | used this data source to build 93 fisere&sbsence models and
46 relative abundance models and used the models to prslidistributions and

identify fish requirements.

Fish distribution models can have an important roleimservation planning and
management decisions. For example, models can be usatittpate future changes in
fish in order to give managers time to alter managemeatices and to identify areas
with a high risk of habitat degradation. Several studie® lexamined how future
temperature changes are likely to reduce cold-water igshlaition (Meisner 1990;
Eaton and Scheller 1996; Flebbe 1996; Jager et al. 1999; Stela@@d1) and increase
the abundance of warm-water fish such as bass (MeZanld Kilgour 1990; Magnuson
et al. 1990; King et al. 1999). Additionally, future land-use/c@¥Wfts could have a
large impact on fish community health as studies hamsistntly shown these to be
related (Scott et al. 1986; Weaver and Garman 1994; Hall #880; Wang et al. 2001;
Tabit and Johnson 2002; Snyder et al. 2003; Wang et al. 2003; Zirametral. 2003;
Miltner et al 2004; Barker et al. 2006; Riseng 2006). In chafptecreated fish
distribution predictions based on potential future chamgesth temperature and land-
use/cover and associated them with a GIS to show hewftanges will affect specific
streams. Such model applications have not been developbtichigan prior to this

study.



The quality of fish communities seems to be correlatiéd thve amount of
urbanized land in a stream’s watershed (Wang et al. 200dg \&fad Kanehl 2003; Wang
et al. 2003; Walsh 2004; Carter and Fend 2005; Fitzpatrick 20@%; Kennen et al.
2005; Limburg et al. 2005; Walters et al. 2005). In the UniteceStatwver 130,000
kilometers of streams and rivers have already beentaff by urbanization, and land-use
change projections predict that developed area is goimgtease by 80% in the next 25
years (Paul and Meyer 2001; Pijanowski et al. 2001; Alay.2004; Walsh et al. 2005).
As stopping the spread of urbanization altogether is potitcally feasible or
necessarily desirable goal, it is important to understamdtb aid the establishment or
maintenance of high quality fish communities despiteatneunt of urban disturbance.
While previous studies have concentrated on the rakdtip between urbanization and
fish integrity (Weaver and Garman 1994; Kemp and Spotila 1980it @and Johnson
2002; Walters et al. 2003; Morgan and Cushman 2005), | was undinld sbudies that
gave a quantitative analysis of the variance around thisomship. In Chapter 5, |
conducted a study to account for this variance and distusg®rtant management

implications for fish communities in urban streams.

The overall objectives of my dissertation are:

1) To evaluate the methodology for four different presixsence modeling techniques

using data from fish sampling and enduring landscape habitables for rivers across

the state of Michigan (Chapter 2).



2) To use the selected methodology to build distributionadmchdance models for all
common Michigan stream fish and to assess, describeiralaistand the model patterns

and relationships (Chapter 3).

3) To use the models to probe some key issues in fish caitynconservation; explore
potential future fish distributions in the Muskegon rivesteyn given changes in land-use

and temperature (Chapter 4).

4) To understand more fully the relationship between urbamizdtsh community
integrity, and the variation that occurs around thigiaiahip, and to use this
information to understand how urban streams can polssafitly fish communities

(Chapter 5).



References

Alig, R. J., J. D. Kline, and M. Lichtenstein. 2004. Urlzaion on the US landscape:
looking ahead in the 21st century. Landscape and Urban PlaSiat9-234.

Allan, J. D. 2004. Landscapes and riverscapes: The influddaeduse on stream
ecosystems. Annual Review of Ecology Evolution and Syates 35:257-284.

Barker, L. S., G. K. Felton, and E. Russek-Cohen. 2006o0Uskryland biological
stream survey data to determine effects of agricultipatian buffers on
measures of biological stream health. Environmental tdang and Asessment
117:1-109.

Brendan, T. O., R. D. Clark, A. R. Cooper, P. W. Se#iba. Wang, S. Aichele, E. G.
Bissell, and J. S. Stewart. 2006. A GIS framework fdlecing, managing, and
analyzing multiscale landscape variables across largensefyio river
conservation and management. Pages 49-PR4 M. Hughes, L. Wang, and P. W.
Seelbach, editors. Landscape Influences on Streamatiabid Biological
Assemblages. American Fisheries Society, SymposiumetBeBda, Maryland

Carter, J. L., and S. V. Fend. 2005. Setting limits: Theld@ment and use of factor-
ceiling distributions for an urban assessment using nma@debrates. Pages
179-191in L. R. Brown, R. H. Gray, R. M. Hughes, and M. R. Meaeéditors.
Effects of urbanization on stream ecosystems. Ameifitcsheries Society,
Symposium 47, Bethesda, Maryland.

Eaton, J. G., and R. M. Scheller. 1996. Effects of ¢imearming on fish thermal habitat
in streams of the United States. Limnology and Oceapbyr41.

Fausch, K. D., C. L. Hawkes, and M. G. Parsons. 1988. Klolai&t predict standing crop
of stream fish from habitat variables: 1950-1985. Generdirieal Report
PNW-GTR-213, United States Department of Agriculture, Fd3estices,

Pacific Northwest Research Station, Portland, OR.

Fitzpatrich, F. A., M. W. Diebel, A. H. Mitchell, . Arnold, M. A. Lutz, and K. D.
Richards. 2005. Effects of urbanization on the geomorpholwayitat,
hydrology, and fish index of biotic integrity of streamghe Chicago, lllinois,
and Wisconsin. Pages 87-1i6L. R. Brown, R. H. Gray, R. M. Hughes, and M.
R. Meador, editors. Effects of urbanization on streansystems. American
Fisheries Society, Symposium 47, Bethesda, Maryland.

Flebbe, P. A., L. D. Roghair, and J. L. Bruggink. 2006. Shakleling to project
southern Appalachian trout distribution in a warmer aten Transactions of the
American Fisheries Society 135:1371-1382.



Franklin, J. 1998. Predicting the distribution of shrub s southern California from
climate and terrain-derived variables. Journal of Veget&cience 9:733-748.

Hall, R. I., P. R. Leavitt, R. Quinlan, A. S. Dixit,chd. P. Smol. 1999. Effects of
agriculture, urbanization, and climate on water qualithénorthern Great
Plains. Limnology and oceanography 44:739-756.

Jager, H. I., W. Van Winkle, and B. D. Holcomb. 1999. Wduldrologic climate
changes in Sierra Nevada streams influence troutspemse? Transactions of the
American Fisheries Society 128:222-240.

Kemp, S. J., and J. R. Spotila. 1997. Effects of urbanizatdorown trout Salmo trutta,
other fish and macroinvertebrates in Valley Creek,&yaforge, Pennsylvania.
The American Midland Naturalist 138:55-68.

Kennen, J. G., M. Chang, and B. H. Tracy. 2005. Effectanafscape change on fish
asseblage structure in a rapidly growing metropolitea ar North Carolina,
USA. Pages 39-51 L. R. Brown, R. H. Gray, R. M. Hughes, and M. R. Maado
editors. Effects of urbanization on stream ecosysté&merican Fisheries
Society, Symposium 47, Bethesda, Maryland.

King, J. R., B. J. Shuter, and A. P. Zimmerman. 1999. Eoapiinks between thermal
habitat, fish growth, and climate change. Transacdtise American Fisheries
Society 128:656-665.

Leftwich, K. N., P. L. Angermeier, and C. A. Dolloff997. Factors influencing behavior
and transferability of habitat models for a benthicastrdish. Transactions of the
American Fisheries Society 126:725-734.

Lek, S., M. Delacoste, P. Baran, I. Dimopoulos, didaa and S. Aulagnier. 1996.
Application of neural networks to modelling nonlinear rielaships in ecology.
Ecological Modelling 90:39-52.

Limburg, K. E., K. M. Stainbrook, J. D. Erickson, and J.Gbwdy. 2005. Urbanization
consequences: Case studies in the Hudson River watePstges 23-3ih L. R.
Brown, R. H. Gray, R. M. Hughes, and M. R. Meador, eslitBffects of
urbanization on stream ecosystems. American Fish8oerty, Symposium 47,
Bethesda, Maryland.

Magnuson, J. J., J. D. Meisner, and D. K. Hill. 1990. Ratkchanges in the thermal
habitat of Great Lakes fish after global climate warmihgnsactions of the
American Fisheries Society 119:254-264.

Mastrorillo, S., S. Lek, F. Dauba, and A. Belaud. 1997. Theotiartificial neural
networks to predict the presence of small-bodied fishrivea. Freshwater
Biology 38:237-246.



McCauley, R. W., and D. M. Kilgour. 1990. Effect of amniperature on growth of
largemouth bass in North America. Transactions of thiecan Fisheries
Society 119:276-281.

Meisner, J. D. 1990. Potential loss of thermal habitabfook trout, due to climatic
warming, in two southern ontario streams. Transastairthe American Fisheries
Society 119:282-291.

Miltner, R. J., D. White, and C. Yoder. 2004. The biottegnity of streams in urban and
suburbanizing landscapes. Landscape and Urban Planning 69:87-100.

Morgan, R. P., and S. E. Cushman. 2005. Urbanization etiacttream fish
assemblages in Maryland, USA. Journal of the North AgaerBenthological
Society 24:643-655.

Olden, J. D., and D. A. Jackson. 2001. Fish-habitat rekstiips in lakes: gaining
predictive and explanatory insight by using artificial m¢wmetworks.
Transactions of the American Fisheries Society 130:878-897.

Olden, J. D., and D. A. Jackson. 2002. A comparison a$stal approaches for
modelling fish species distributions. Freshwater Biold@yl976-1995.

Paul, M. J., and J. L. Meyer. 2001. Streams in the udrascape. The Annual Review
of Ecology and Systematics 32:333-365.

Poff, N. L. 1997. Landscape filters and species traitgatds mechanistic understanding
and prediction in stream ecology. Journal of the Nartierican Benthological
Society 16:391-409.

Pijanowski, B. C., D. G. Brown, B. A. Shellito, aéd A. Manik. 2001. Using neural
networks and GIS to forecast land use changes: a Landf@naration Model.
Computers, Environment and Urban Systems 26:553-575.

Rathert, D., D. White, J. C. Sifneos, and R. M. Hugh®989. Environmental correlates
of species richness for native freshwater fish ingdne Journal of Biogeography
26:257-273

Richards, C., L. B. Johnson, and G. E. Host. 1996. Landscabe influence on stream
habitats and biota. Canadian Journal of Fisheries andtidga@ences 53:295-
311.

Riseng, C. M., M. J. Wiley, R. J. Stevenson, T. GnZand P. W. Seelbach. 2006.
Comparison of coarse versus fine scale sampling ostgtatimodeling of
landscape effects and assessment of fish assemblatipeshdiiskegon River,
Michigan. Pages 555-576 R. M. Hughes, L. Wang, and P. W. Seelbach, editors.



Influence of landscapes on stream habitats and biologisah@lages. American
Fisheries Society, Symposium 48, Bethesda, Maryland.

Scott, J. B., C. R. Stewart, and Q. J. Stober. 1986ctfeurban development on fish
population dynamics in Kelsey Creek, Washington. Transacodthe American
Fisheries Society 115:555-567.

Snyder, C. D., J. A. Young, R. Villella, and D. P. LemaR003. Influences of upland
and riparian land use patterns on stream biotic intedratiydscape Ecology
18:647-664.

Stefan, H. G., X. Fang, and J. G. Eaton. 2001. Simula&kdébitat changes in North
America lakes in response to projected climated warmiranshctions of the
American Fisheries Society 130:459-477.

Tabit, C. R., and G. M. Johnson. 2002. Influence of urbanizatiothe distribution of
fishes in a southeastern upper Piedmont drainage. Setghealaturalist 1:253-
268.

Vaughan, I. P., and S. J. Ormerod. 2003. Improving the qudldistribution models for
conservation by addressing shortcomings in the field caledi training data.
Conservation Biology 17:1601-1611.

Vayssieres, M., R. E. Plant, and B. H. Allen-Diaz. 200Rssification trees: an
alternative non-parametric approach for predicting gsedistributions. Journal
of Vegetation Science 11:679-694.

Walsh, C. J. 2004. Protection of in-stream biota frommrbgacts: minimise catchment
imperviousness or improve drainage density? Marine and FaéshResearch
55:317-326.

Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Ggiham, P. M. Groffman, and R. P.
Morgan. 2005. The urban stream syndrome: current knowledge esddich for
a cure. The Journal of the North American Benthold@oeiety 24:706-723.

Walters, D. M., D. S. Leigh, and A. B. Bearden. 2003.ddiation, sedimentation, and
the homogenization of fish assemblages in the Etowadr Biasin, USA.
Hydrobiologia 494:5-10.

Walters, D. M., M. C. Freeman, D. S. Leigh, B. &ediman, and C. M. Pringle. 2005.
Urbanization effects on fishes and habitat quality in atlSrn Piedmont river
basin. Pages 69-86 L. R. Brown, R. H. Gray, R. M. Hughes, and M. R. Meaado
editors. Effects of urbanization of stream ecosysténgerican Fisheries Society,
Symposium 47, Bethesda, Maryland.



Wang, L., J. Lyons, and P. Kanehl. 2001. Impacts of urbaoizan stream habitat and
fish across multiple spatial scales. Environmental &g@ment 2001:255-266.

Wang, L., J. Lyons, and P. Kanehl. 2003. Impacts of urbahdawer on trout streams in
Wisconsin and Minnesota. Transactions of the Americahdfies Society
132:825-839.

Wang, L., J. Lyons, P. W. Rasmussen, and P. W. Seelb@08. Watershed, reach, and
riparian influences on stream fish assemblages iNtnthern Lakes and Forest
Ecoregion, U.S.A. Canadian Journal of Fisheries and AgGaiences 60:491-
505.

Wang,L., T. Brenden, P. W. Seelbach, A. Cooper, DarAIR. Clark, Jr., and M. Wiley.
2007. Landscape based identification of human disturlgnackents and
references for Michigan streams. Environmental Monitoaing Assessment.
Online-First.

Weaver, L. A., and G. C. Garman. 1994. Urbanizationwéiershed and historical
changes in a stream fish assemblage. Transactidhe dimerican Fisheries
Society 123:162-172.

Wehrly, K. E., M. J. Wiley, and P. W. Seelbach. 2002s€ifying regional variation in
thermal regime based on stream fish community patt&rassactions of the
American Fisheries Society 132:18-37.

Wehrly, K. E., M. J. Wiley, and P. W. Seelbach. 2008uénce of landscape features on
summer water temperatures in Lower Michigan streaage$113-12ih R. M.
Hughes, L. Wang, and P. W. Seelbach, editors. Influentznd$écapes on stream
habitats and biological assemblages. American Fish8oeiety, Symposium 48,
Bethesda, Maryland.

Zimmerman, J. K. H., B. Vondracek, and J. Westra. 2003c@gural land use effects
on sediment loading and fish assemblages in two Minagkt8A) watersheds.
Environmental Management 32:93-105.

Zorn, T. G. 2003. Fishes of lower Michigan: distributmatterns, abundance models, and
causal relationships. Doctoral Dissertation. Universitiichigan, Ann Arbor.

10



Chapter 2

Modeling Brook Trout Presence and Absence from Lanmsbariables Using Four
Different Analytical Techniques

Abstract

As a part of the Great Lakes Regional Aquatic Gap ArBmoject, | evaluated
methodologies for modeling associations between fistispand habitat characteristics
at a landscape scale. To do this, | created brook $abwelinus fontinalis presence and
absence models based on four different techniques: mditipke regression, logistic
regression, neural networks, and classification tréée. models were tested in two
ways: by application to an independent validation databad cross-validation using the
training data, and by visual comparison of statewideiloigion maps with historically
recorded occurrences from the Michigan Fish Atlash@lgh differences in the
accuracy of our models were slight, the logistic regjoesmodel predicted with the least
error, followed by multiple regression, then classifion trees, then the neural networks.
These models will provide natural resource managers dondgntify habitats requiring

protection for the conservation of fish species.

Introduction
It is necessary to have knowledge of the habitats refjtorenaintain the growth,
survival, and reproduction of freshwater fish species andlgiiqus in order to have

wise conservation planning and decision making. In practpgaication, however,
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habitat requirements are often incompletely known. r8foee, biologists commonly use
data on a fish’s habitat selection, based on field obtsens of species occurrence or
densities (Rosenfeld 2003). Given data on habitat characteasd observed fish
distributions, correlative habitat associations candesl to predict the occurrence or
densities of fish in locations where samples have @ehleollected. These predictions
are useful for identifying habitat units important to targetcges but vulnerable to
alteration and degradation by humans, and lacking protestitgs. Such habitats

represent “gaps” in conservation strategy.

The goal of the U. S. Geological Survey, Gap Analysiggfam (GAP) is to
“keep common species common” by identifying those specieademjuately represented
in existing conservation areas (Scott et al. 1993). drpdst decade, gap analyses have
been performed in terrestrial systems across the &h8.in the mid-1990s an aquatic
gap pilot began in Missouri. In 2001 GAP funded the firgtoreal aquatic gap analysis
in the eight Great Lakes states: Minnesota, WiscofiBimgis, Indiana, Michigan, Ohio,
Pennsylvania, and New York. The goals of this projecie¢dhe Great Lakes Regional
Aquatic Gap Analysis, are 1) to evaluate biological dixeidf Great Lakes aquatic
habitats and identify gaps in the distribution and proteaticthese species and their
habitats, and 2) to use an integrated approach in which cammathods and protocols
are established and results are comparable acrossdhtel@kes landscape (Myers et al.

2002; Morrison et al. 2003).

A critical step in achieving the aquatic gap project godls medict patterns of
species occurrence from regional habitat data. Eadjeatic gap projects used several

different methods to model empirical associationBstif species presence and absence
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with habitat characteristics: 1) classification and esgion trees (CART) analysis (Sowa
1999), 2) multiple linear regression (Sowa and Rabeni 1995a368@09), 3) and genetic
algorithms (Alex Covert, USGS Ohio Water Science Cep@rsonal communication).

In this study, | build on the earlier aquatic gap projbgtassessing several methods
(multiple linear regression, logistic regression, atnetworks, and classification trees)
and comparing their predictive abilities.

Predicting fish distributions from habitat variableshgsiegression analysis has a
long history in ecological applications and is well untterd by researchers (Fausch et
al. 1988). Neural networks and classification trees, keweare fairly new methods to
the ecological field. This study uses these techniqueddas not go into detail in
describing how they work; this has been done well in giapers both for neural
networks (Rumelhart et al. 1986; Mastrorillo et al. 1997; Baalty Morris 1999; Lek
and Guegan 1999; Olden and Jackson 2001) and for classifitagsnBreiman et al.

1984; Bell 1999; De'ath and Fabricius 2000; De'ath 2002).

Studies directly comparing these newer techniques with trexteional
approaches are relatively rare, but where they exis typically found that the new
techniques are able to predict more accurately than simpé modeling (Lek et al
1006; Franklin 1998; Vayssieres et al. 2000). However, catefaparisons of
performance of these approaches for modeling fish distitmiait the large geographic
extent contemplated in the Great Lakes Aquatic Gap Rrogaxe not been previously
reported (but see Mastrorillo et al. 1997; Olden and Jackson 200X¢2G9Raller scale
analyses). Likewise, comparison of neural net argbkiflaation tree approaches for

fishes have not been previously reported.
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The main goal of this study was to evaluate the methggidtar four different
presence/absence modeling techniques (multiple regressysticoegression, neural
networks, classification trees) using data from figh@ang and enduring landscape
habitat variables for rivers across the state of M@hi This model comparison will aid
us in selecting the approach, or approaches, to be upeddace fish distribution maps
for the Great Lakes Regional Aquatic Gap Analysis. Risrdtudy, | analyzed the
streams of Michigan for the presence and absence ok brout Salvelinus fontinalis, a

popular sport fish whose basic habitat requirements at&km@in (Smith 1985).

M ethods

Developing the database

The Great Lakes Regional Aquatic Gap Analysis, in bollation with the
Michigan Department of Natural Resources (MDNR), héasbdished a high-resolution,
GIS-linked database with characteristics of Michigarvems. This database provided
the environmental variables that served as the indepepddictors for the models. The
database is referenced to a group of ArcGIS line cove(&gRI 2002), in which each
river is broken down to confluence-to-confluence reachekeach reach contains
information for a wide variety of landscape-scale emvinental variables, such as air
temperature, soil permeability, land-cover, and geol&gy(chele, USGS, personal
communication)(Table 2.1, Figure 2.1). The line coveragebased on the USGS

National Hydrography Dataset at the 1:100,000 scale (NHD 2007).

Many variables are measured at four different scales @RB@). Riparian

variables refer to the land 60 meters on each side sttbem reach of interest. Network
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variables refer to the 60-meter river buffer, plus ther@der river buffer of every stream
reach upstream from the reach of interest. Sub-wegéngariables refer to the catchment
lateral to the stream reach, and watershed variableslenthe reach’s catchment and the

catchment of all the reaches upstream.

| obtained spatially referenced fish assemblage sarfiplesthe Fisheries
Division of the MDNR and extracted data for brook trocturrences from this
“training” dataset. Fish were collected by tow-bargekpack and boat electrofishing,
rotenone, seines, trap nets, and fyke nets (Merna 1988iJe e amount of data
available from the MDNR was extensive, | limited oualgsis to samples collected in
1980-2002, and strived for even spatial coverage across tagfSgure 2.1A). To test
the models, | used an independent data set from the MicRigars Inventory (MRI)
project (Seelbach and Wiley 1997), where fish were deleprimarily by tow-barge and

backpack electrofishing and rotenone in 1980-2002 (Figure 2.1B).

Sampling points were associated to the stream reatlaesingle table in which
rows represented stream reaches and columns contaioed f@ the habitat variables
and a record of brook trout presence (E. Bissell, US&Ser Resource Division,

Lansing, Michigan, Personal Communication).

| deleted replicate samples so that every reach e@ssented by only one
observation. When different samples for the sagaehr disagreed on brook trout
presence, | kept the observation where the fish wasresfter eliminating replicates,
| had 901 observations for the MDNR data and 635 for the diéfd. Hereafter,
observations marked as “present” are called “presenchagaand observations marked

as “absent” are called “absence reaches”.

15



As with many presence and absence databases, the nurabsente reaches
was much greater than the number of presence reaahwesZ@03). To prevent the
models from weighting more towards absence predichian presence, | randomly
selected a subset of absence reaches equal to the mafrpbesence reaches. To do this,
| first divided the 682 absence reaches of the MDNR da&tahiinee groups by Shreve
link number. Next, | randomly selected 104 or 105 absencl@sdrom each size group
so that the total number of absence reaches (314) egbaleatal number of presence
reaches. These 628 MDNR observations were used asitieg@ata for formulating
the models. The absence segments that were nateskleere discarded, but | kept all

635 reaches of the MRI data to validate the models fatedlby the MDNR data.

Stratification by Shreve link number was necessarnsoire that the whole range
of stream sizes available were included in the modelithgd | merely used simple
random sampling to select the 314 absence reaches, thengpwould have been biased
towards smaller rivers due to the high ratio of snwalatge streams in the database. The

end result would have been models only applicable to stnadims.

Multiple Regression and Logistic Regression Modeling

For the multiple regression model, when necessary$fvamed each variable
with one of three transformations (logarithmic, squad, or arcsine) in order to meet
the assumption of a linear relationship between thepewient and dependent variable
(Zar 1999) (Table 2.1). Upon creation of the final mudtidggression model, partial
regression plots were created for each of the mogeddictors to test the assumption of

linearity. These plots show the effect of a predictothe response variable with the
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effect of all of the other predictors removed (Fara®@§5). For both the multiple
regression and logistic regression, each variable taadadized (mean 0, standard
deviation 1) to allow for easier comparison of the redatmportance of the regression
coefficients (Faraway 2005).

Using a stepwise selection technique similar to that of Z2003), | ran multiple
linear regression and logistic regression models in SR3Bfor Windows (SPSS 2003).
For both regression models, | manually entered a hafaite@ble into the equation. If the
variable was significant (p < 0.10), | left it in thguation and added another variable. If
the new variable was not significant£p0.10), | removed it from the model. If the new
variable was significant and caused the original varigbleecome insignificant, |
removed the original variable if its removal causedrtieelel’s adjusted Ro increase. |
repeated this procedure until every environmental variable ¢l dpven a chance to
enter the model. While SPSS can carry out this proceduoenatically, | performed it
manually in order to dictate the order that variablesredtihe model (Table 2.1). |
placed variables assumed to have a more direct effiefish presence and absence
higher in the list, and variables with indirect or unkmceffects lower in the list. This
procedure gives variables assumed to be more importashta fjreater chance of being
included in the model (Zorn 2003).

As the next step, | examined tBevalue (regression coefficient) and the 90%
confidence interval of thB-value for each variable included in the model. Ifffhelue
had a confidence interval large enough that | was notdamifin its predictive abilities, |
would remove the variable from the model. If | belieaedhriable to be important but it

was not included in the model, | would add this variable andlculate the model. If the
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variable was significant (p < 0.10) | allowed the vaeatol stay in the model. By adding
these steps to the end of the regression modeling proeelsked subjective decision

making based on our ecological knowledge of the fismtotherwise objective routine.

To check if the constant variance and independence ptisashof the error
terms of the multiple regression model held true, di@@ a diagnostic plot of the
residuals versus fitted values. Patterns in this pttitate assumption violations
(Faraway 2005). A Q-Q plot of the residuals was createtldok error normality; a

straight line in this plot indicates normality (Faen2005).

After creating the final regression models, | appliednioglel to the MRI test
data and also performed n-fold (leave-one-out) crossatainon the training data as a
secondary test of the model's performance. Reachbsawptedicted value 8.5 were

considered to have trout present; those with values wé.® considered as lacking trout.

Neural Network Modeling

In using a neural network, it is possible to includeathe available data in the
network and get a solution that effectively predicesdependent variable (Lek et al.
1996). However, many of our environmental variables are plpbat related to brook
trout presence, and including them in the model will in@easnputation times and
cloud our ability to understand the relationship betweerisheand more important
variables (Olden and Jackson 2002). Therefore, in orderiltbdomodel that can both
predict and provide some explanatory value, | needed to réldeidatial 46 habitat

variables into a more manageable number.
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Olden and Jackson (2002) have developed a randomization apfwoaoth
pruning variables and understanding how variables contribatedaral network. To
use this approach with our data, | first developed sevetabhnetworks in a feed-
forward, back propagation procedure using the training data arwbthputer software
program Neuralyst 1.4 (Rumelhart et al. 1986; Shih 1995; Boddivlands 1999). The
networks were constructed with three layers of 46 neyd® neurons, and 1 neuron,
respectively, and were trained for 1000 epochs (Shih 1995).ettyweach of these
networks had different random initial weights and so pavéal differently in how well
they predicted the test data.

From these networks, | selected the network that hagrdaest percentage of
correct predictions for the test data (our “optimizadtwork) and calculated the sum of
the input layer-hidden layer weights and the hidden laygublayer weights for each
input variable (Figure 2.3). Essentially, the contributbbeach variable to the network
depends on the magnitude and direction of the sum dof theghts. The greater this
sum (either negatively or positively), the more imp&et variable has on the final
solution produced by the network (Olden and Jackson 2002).

The sum of the weights alone does not fully infoisrofihow important a
variable is, because at this point | do not know ifdime is significantly different than
random. To determine significance, | randomly rearranigedtook trout presence and
absence values among the different observations, ancctnstructed a new neural
network with the same parameters and initial weidtds Wwere used in our optimized
network. This network was allowed to train for 1000 egpelnd then as earlier |

computed the sum of the input layer-hidden layer weighdstiae hidden layer-output
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layer weights for each habitat variable. Since tres@ed the presence/absence values
among the observations, if a variable is important tolbtamt the new network will not
produce a sum of weights that is of greater magnitudetbeasum of weights from the
original network.

However, there is a slight chance that by rearrantie values, | actually made a
variable more important to brook trout presence. Theeef created a new network
many times (in this case, 1000 times), each time randagatyanging the
presence/absence values, and each time calculatingrthefshe weights for each
variable. The statistical significance of each halwaiable was the proportion of the
values (including the original sum) that were more extréman the observed sum (Olden
and Jackson 2002). For example, if only 9 of the 1000 sunegeater than our
observed sum, then the probability of a type | errorstatistical significance of the
variable was (9+1)/1000= .01. When a variable had a low @yvhlaferred that it
played an important role in the formation of the neneawork. This significance test
was similar to the significance test of a regressmefficient: | was testing the null
hypothesis that a variable does not have an effeciatdogv probabilities the null
hypothesis was rejected and | concluded that the variableagte an effect.

After the 1000 iterations, seveariables had a significance level less than 0.1.
These variables were considered to be the most impaftéme original 46 habitat
variables and were used to construct a new neural netWidrk neural network was
created with the training data in a manner similar to ogimal network. | applied this
new network to the MRI test data to determine its pragicbilities and applied the

network to the training data through a n-fold cross-vabadabrocedure as a secondary
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test of the model's performance. Reaches with a gezthi@alue >0.5 or greater were

considered to have trout present; trout were presumedtadisealues < 0.5.

Classification Tree Modeling

| used CART 5.0 to train the training data in a classificatiee (Steinbery and
Colla 1997). Since the program selects the variablésdbalt in the best training of the
data, | did not have to enter variables individually or prear@bles as | did for the
regression and neural network techniques. CARduced a series of trees in which
different predictor variables were used as binary sphis CART created the trees, it
also tested the training data in a n-fold cross-validgirocedure. The tree that |
selected to use as our predictive model was the onesthdted in the highest agreement
between the predicted presence and absence classifiaatidhe known presence and
absence classification for the cross-validation.eA$ielecting the optimal tree, | ran the
MRI test data through the tree as a measure of the ima@ditlity. Unlike the other
modeling methods, the classification tree did not predicilue for each reach; rather,

the model directly classified a reach as either “prés® “absent.”

Model Application

The models were used to predict brook trout presence aedabfor all of the
stream reaches in Michigan. | used these prediction®#becstatewide distribution maps
in ArcMap 8.3 (ESRI 2002). The predictions were enteredargpreadsheet and then
joined to the stream layer by a number unique to each.rédwhbackground layers for

these maps came from the Michigan Geographic Data kilk&GDL 2007) and the
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stream layer was developed by the Great Lakes GAP Parjddhe MDNR, as
mentioned above.

After building the predictive maps, | visually compared ¢he#h the Michigan
Fish Atlas 2003, v.1.1,"2edition (MGDL 2007). The Michigan Fish Atlas is a point
shapefile that contains 2468 georeferenced brook trout sasgdlected from 1847 to
the present. As these samples came from locatibesevbrook trout are known to live, a

successful predictive map will have similar distributaaiterns to the Fish Atlas.

Results
Multiple Regression

Eight variables were included in the multiple regrassimdel (Adjusted R=
0.436,Table 2.2). Of these, the most influential was the thégpn air temperature
(W_JULY_MN, B=-0.184). Other important variables included stream size
(CHAN_LINK, B=-0.133), and the percentage of forest land-cover iw#tershed
(W_FOR,B = 0.091).

The model was applied to the MRI test data and predictedo8@Be presence
reaches correctly and 76% of the absence reachestgoffable 2.3). When the
training data were used in a cross-validation test, 81#tegbresence reaches were
predicted correctly and 80% of the absence reaches welietpcecorrectly.

Logistic Regression

Nine variables were included in the logistic regressimalel (Cox and Snell &

0.480,Table 2.4). Most of the same variables that were sggmifiin the multiple

regression were also significant in the logistic regiken. The most influential variable
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in both models was July mean air temperature (W_JULY, f#-1.3614). Stream size
(CHAN_LINK, B=-1.2475) and percentage of forest land-cover in the sledr
(W_FOR,[3=0.4737) were again important.

The logistic regression model was applied to the MR data and predicted 87%
of the presence reaches correctly and 75% of the abseaches correctly (Table 2.3).
In cross-validation tests, 80% of the presence reagsieee predicted correctly and 81%

of the absence reaches were predicted correctly.

Neural Network

| tested two different sizes of neural networks: arudidel, which used all 46
variables, and a pruned model, which used the seven mostamipeariables from the
full model. The full model predicted the MRI validatidata set well: 85.7% of the
presence reaches were predicted correctly and 71.8% alb$kace reaches were
predicted correctly (Table 2.3 he cross-validation of the full model predicted the
presence and absence reaches correctly 75.4% and 77.7% vekpect

By using the randomization procedure, | identified theesanost important
variables from this model (Table 2.5). These includedtihemean air temperature,
which had a negative relationship with brook trout presesmu the Darcy value of the
riparian zone, which had a positive relationship with brivout presence. Also
important were channel gradient, and wetland and opehlfiet-covers.

The simplified model, which contained these seven pi@dicwas also applied to
the MRI test data and the training data were cross-vatiddtable 2.3). The pruned

model predicted absence reaches better than the fulllmeiwork but presence reaches
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were predicted worse. For the MRI data, 81.3% of the pceseaches were predicted
correctly and 77.4% of the absence reaches were predatesttly (Table 2.3).The
cross-validation of the pruned model predicted the presamt@bsence reaches

correctly 68.8% and 84.4%, respectively.

Classification Tree

The CARTprogram produced several trees of differing sizes, anti¢heselected
as the final model was the one that best predictedrtiss-walidation data (Figure 2.4).
The first split in the tree was made by July meanesnperature (W_JULY_MN), and
similarly to the regression models, other importaniavdes included stream size
(CHAN_LINK), and percent of forest land-cover in thatershed (W_FOR). One
unique property of classification trees is that the modeluse the same variable more
than once; at the bottom of the tree the model use¥thJULY _MN variable again to
make another split.

| applied the MRI test data to the tree to validate theeh The tree predicted
84.3% of the presence reaches and 77.7% of the absencesreantectly. (Table 2.3).
Cross-validation of the training data predicted 75.2% optheence reaches and 78.3%

of the absence reaches correctly.

Predicted Distribution Maps and Model Comparisons
The Michigan Fish Atlas shows that brook trout hasohisally been found
throughout Michigan’s Upper Peninsula and northern Lower RdaiiSigure 2.5A).

While the populations are not as dense as in the nodbk rout is also found in
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southwest Michigan, as well. This species generally doebve in southeast Michigan,
although the Fish Atlas does record a few scattered gamsddahere.

The distribution maps produced from our four models were talxepeat this
general pattern (Figures 2.5B-2.5F). Each map predicted maka be widespread in
the Upper Peninsula, with an occasional stream markabsast. In the Lower
Peninsula, the models predicted brook trout throughoutdhé and along the west
coast, and generally predicted absence in southeastgdichiThe map created by the
logistic regression model appeared to be most accurate edmpared to the Fish Atlas;

all of the maps are examined more closely below.

Discussion

Ecological Significance

An advantage of performing this modeling exercise on bnank ts that habitat
requirements of this fish are well known, so it istigely easy to determine if our
models are consistent with ecological knowledge ofidie In general, | would expect
brook trout to prosper in small to medium size streaatis plenty of groundwater flow,
which provides cold water and a stable environment (Smith 1&85;et al. 2002).
Wehrly et al. (2003) reported that brook trout in Lower ingan are restricted to streams
with mean July water temperatures <°€l Since streams typically grow warmer as
they grow larger (Wehrly et al. 1997), | should expectrtd brook trout more
consistently in smaller, headwater streams ratherithiarger rivers (Smith 1985; Zorn
et al. 2002). In terms of land-cover, | expect thatastefavorable to brook trout would

have minimal thermal pollution. Therefore | expedctttstreams with riparian zones and
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catchments high in forests, and low in urban and agui@iltand-uses, would be more

likely to provide suitable habitat for the fish.

Regression Models

In the multiple regression model, six of the variallage value signs that are
consistent with our knowledge of brook trout ecologgl{[€ 2.2), and in the logistic
regression model, eight variables have consistent §igide 2.4). For example, the
lower the July mean air temperature (W_JULY_MN) andstheller the stream
(CHAN_LINK), the more likely that brook trout is predict present. If the stream has a
high slope in the catchment (W_SLOPE) and high soil pdbilityan the riparian zone
(RT_PERM), two variables that increase groundwater flomguld also expect a greater
chance of brook trout presence. All of these variadtesnore likely found in headwater
streams, so it is reasonable that the further anaayeidich is from the Great Lakes
(DOWNLENGTH), the more likely it is to contain brook tto

Prior to examining the regression coefficients, | wasure of how two of the
significant variables would affect brook trout presempecent of land-cover containing
wetlands and percent of land-cover containing open wdtee. models predicted that
wetlands and open water would negatively influence preseHtis.seems reasonable as
these land-covers could result in surface water warnwhg;h contributes to poor brook
trout habitat (Wehrly et al. 2003).

Hindering our interpretation of the significant regressianables is the problem
of multicollinearity. Due to existing correlations betwehe variables, | can only

interpret the effect of a predictor on the responsenitadso consider the effect of every
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other variable on the response at the same time (Bgr2005). Understandably, with
close to ten predictors in our models, this is a velficdit task. The result is that | can
really only generalize about an individual predictor;n say a predictor seems to have a
certain effect but cannot say the exact magnitude o&ffect. However,

multicollinearity does not affect the accuracy of predictions; it only affects the
explanatory value of the model.

The multiple regression and logistic regression mofitelse MRI test data well,
especially in regards to predicting presence, which both modeisctly predicted over
85% of the time (Table 2.3). The cross-validation aheaodel was also quite
successful, predicting the reaches correctly about 8a¥edfme. In order to determine
which model predicted better overall, | added the perwamect prediction for the MRI
test data and cross-validation to produce a value taleld “Performance” (Table 2.3).
Using this value, it appears that logistic regressionigiesdithe data slightly better than
the multiple regression (324.1 > 321.6).

The statewide mapped predictions seem generally reasdoableth models,
both predicting brook trout occurrences not only in thémbut also scattered in the
southern interlobate and glacial outwash regions cdtéve Michigan where in fact
isolated populations do occur (Figure 2.5B,C). However,atistic regression map
followed the Fish Atlas patterns more closely. kaEsh Atlas, brook trout is uniformly
distributed in the Upper Peninsula, except for a few digaghe Manistique, the Cedar,
and the Escanaba watersheds) in which there ares®hol€he map produced by logistic
regression properly models both the Manistique hole an@€é#dar-Escanaba hole. In

the Lower Peninsula, the Fish Atlas shows that bromkt tare not found in the streams of
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the Pigeon and Birch watersheds, which are locatectiaréa of land protruding into
southern Lake Huron (this area is called the “tip eftttumb” due to the generally
accepted idea that the Lower Peninsula looks like ampitt€he logistic regression
model accurately predicts absence in this area; thapheulegression largely predicts
absence but does predict presence in several streams.

In addition, the logistic regression model predicte@mrdof brook trout presence
in southeast Michigan that runs in a southwest-nosthgieection. Part of this band can
be seen in the Fish Atlas (Figure 2.5A). This banddiea glacial interlobate formation,
and has higher slopes, higher soil permeability, and fgspeindwater flow than the flat
lake plain geology of the rest of southeast Michigam{B®71). It is reasonable to

expect that the streams of this area have the propgathie support brook trout.

Multiple Regression Assumptions

In general, multiple regression works best when the respeariable is
continuous, not dichotomous or categorical (Zar 1999). Thigpie regression model
predicted quite well, but the question must be asked ibitagptable to use this model
with presence-absence data.

| checked the assumptions of the models with diagnpktts. The partial
regression plots demonstrated that transformatiotiseofariables helped improve the
linear relationship between the predictors and the regpdut did not achieve perfect
linearity, resulting in a model that has less fit thgperfect linear model. In addition,
diagnostics on the residuals showed that while the tarms met the assumption of

linearity, they violated the assumption of constaniavere and independence. As a
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result, probability based assessments of the model ptgdapation and goodness of fit
are in question. While this model was interesting astatlectual exercise, the result of
these problems is that | would not use a model of thisftyperitical management
decisions. Logistic regression, which was developed @hotdbmous responses and
which has much less stringent assumptions, is certdialpitesence/absence regression

model of choice.

Neural Network Models

Both the full neural network and the pruned neural network dioloa job in
predicting the test data and accurately cross-validdtmdraining data. The variables
identified as significant in the full model were, in gead, consistent with our ecological
knowledge of brook trout. Air temperature had a negasélagionship with brook trout
presence; the regression models predicted the samenstap (Table 2.5). In addition,
the Darcy variable and channel gradient had a positiggaeship with brook trout
presence, which is also similar to the regression modéis. effect of the land-cover
variables on brook trout was not clear. Both opei/fighd-cover and wetland land-
cover variables were significant in the model, but e#dhese variables were included
in two different scales that had opposite relationstugsdok trout. For example,
WT_OPEN had a positive relationship to presence, but W NORe a negative
relationship to presence (Table 2.5). As these twoblagare positively correlated (r =
0.66), | would expect them to have a similar effect, lbutamalysis showed that they did

not.
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Interestingly, the pruned network predicted the test datadrencross-validation
of the training data just as well as the full network fgr@nance value: 311.9 to 310.6),
demonstrating the validity of the randomization apprdacietwork pruning (Table
2.3). However, examination of the predictive maps prodibyethe models showed that
the full network map was more realistic than the prunédor map (Figure 2.5D,E).
The pruned network captures well the Manistique hole ande¢bar€Escanaba hole in
the Upper Peninsula and the glacial interlobate bancisdabtheast Lower Peninsula,
but it predicts presence in the thumb and draws an unexpstcaight line of predicted
presences running west to east across the Lower Penindtda.s@me investigation into
this line, it appeared that the line marks a change isttkeam reaches’ air temperature
values. A similar problem with the air temperaturaalge was seen in the classification
tree model and is discussed more in the next section.

The predictive abilities of the pruned network seemed reliabtil they were
applied to the whole state and viewed geographically. Fep#iticular study, | decided
it would be best to run the randomization procedure to detervariable significance,
but use the full model in making the predictions. Otlsdr fhay be able to be modeled

reasonably through the pruned network; each case shoaelthhated individually.

Classification Tree Model

The classification tree model included several variatiiaswere also in the
regression models (i.e. W_JULY_MN, CHAN_LINK, W_FORJhe tree splits the data
with these variables in a way that is consistent wiir ecological knowledge of brook

trout, and this model predicted the test data and crdsitran of the training data
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almost as well as the regression models. The perfar@nealue of this model (315.5) is
lower than the regression models and higher than tin@lneetwork models, but all of

these differences are actually quite small (Table 2.3).

The statewide predictive map is generally reasonablkhéoclassification tree
model; it follows the general pattern shown in the i\jan Fish Atlas and in the
regression models (Figure 2.5F). The model does not dgreagiture the Manistique
hole and the Cedar-Escanaba hole, as did the logsgfiession model. In addition,
several streams at the tip of the thumb are predmtesent, but the Fish Atlas does not
record brook trout being found in this area. This probfemost likely the result of the
importance placed on the July mean air temperaturablarithe tip of the thumb is far
enough north to have a lower air temperature than gtef¢he thumb, and lower air
temperatures cause the fish to be predicted present prblilem actually represents an
important problem with all of the models using air tempersa

Studies have shown that water temperature, not air ramype, is the most
important habitat variable for fish (Wehrly et al. 2008r22003). In this study, water
temperature data were not available, so | used air temape@tly. It is a curious
coincidence that the air temperature the classifinatiodel chose as a maximum cutoff
for brook trout is the same mean water temperaturé@2teported by Wehrly et al.
(2003) as the upper limit for Michigan brook trout. Watergeratures and air
temperatures are in fact not predictably related in Mich@#e to the spatially variable
contribution of ground water to stream channels (Wilegl.e1997; Baker et al. 2003;
Wehrly et al. 2003). However, in general, northern Mjahi has lower air temperatures

than southern Michigan, and due to Michigan’s glacial histaoythern Michigan tends
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to have higher soil permeability, greater groundwater fl@amd thus colder water
temperatures than southern Michigan (Bent 1971). This cl@ince results in all of the
models being able to capture the north-south distribggiadient when using air
temperature, even though the driving factor is water teryetaln the southern part of
the state, the models seem to struggle with presencetmesdisince the air temperature
and water temperature are not as closely related asitbery the northern half of
Michigan. As mentioned above, this problem becomes edlyeevident in the
predictive map of the pruned neural network.

In order to more thoroughly check this north-south distidouproblem, |
examined the residuals of the MRI data. | divided the d&bawo parts by presence and
absence and constructed linear regressions of the residula¢ésMRI test data on the
latitude of the observations (Figure 2.6). Regressionalifof the models showed that
presence reaches in the northern Lower Peninsula tdravéoower residuals than
presence stream reaches in the southern Lower Penirnguaindicates that the models
were able to more accurately predict presence reagclibes north than in the south.
Absence reaches followed the opposite pattern: resigutde southern Lower Peninsula
tend to be smaller than residuals in the northern L&eainsula, which indicates the
models can more accurately predict absences in theesautower Peninsula than the
north. In future studies, this problem will be addressemladsr temperature data are
obtained and built into the models. | expect thatribkision of water temperature will
remove this inconsistency in the models between thi# and the south, as the water

temperature value does not rely fully on latitude.
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Error in Databases

The fish samples used in this study were obtained byalawethods. Different
sampling methods have different catch efficiencies déipgron the fish species and
stream in question, and at some sampling points the thethyg not have been optimal
for sampling brook trout. Consequently brook trout mafobed at sites where |
marked them as absent. It is difficult to say thasfadoes not reside in a particular
location; it may be that | simply have not found thedowever, this issue may be of
greater consequence for a different fish; trout are ptibteto all the sampling methods
and so were probably collected with little error. ®atet al. (2000) and Cao et al. (2005)
found that electrofishing and seining yielded 97% comparalmlispecies captured from
Wyoming streams.

In addition, the data were collected over a period of 22syeOver this time,
sampling sites where fish were present may now be glzs®hvice-versa, due to normal
fish movement and changing habitat conditions. Land-cdatx and stream line
segment locations are likewise dated. Land-cover wssdon air photos taken in 1978.
However, | believe these data are generally represent#tconditions in the past 25
years, which is what | examined. In using data of thpg ty can avoid the naturally
occurring year-to-year variation.

Another less obvious source of error in our evaluatidghasunintended bias in
our training data itself. Since it represents a randonpkaof the larger database, it is
likely to under-represent the extremes of the largeribligton. The models are likely to
favor methods that are best at predicting sites neaavbrage (center of the distribution)

and be biased against methods that provide a betterliig¢ taits of the distribution
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relative to the center. This may be the reason Wwaclassification tree was able to

slightly out perform the neural network.

Model Comparison

In this study, all four models did well at predicting thstribution of brook trout
throughout the state of Michigan. When applied to test aatl when cross-validated
with the training data, the order for accuracy was dsvitst logistic regression, multiple
regression, classification tree, and neural netwaditie predictive map produced by the
logistic regression model also was the closest td/ibhigan Fish Atlas patterns.
However, the relative differences in the model preaingiwere quite small. Therefore, if
| was to select the model that | deemed to be mostlusiaduchoice might need to be
based on criteria other than this predictive success.

As discussed above, multiple linear regression is not fdeakedicting
dichotomous response variables (Zar 1999). Statistisahg#tions about the error terms
are never met with dichotomous data. However, lagisgression was developed for
modeling with presence/absence data and has much legestrassumptions than
multiple regression. Logistic regression is also diaiteiliar to most ecologists, is
widely used in the literature, and is included in mostsite#l packages.

Classification trees and neural networks, on the othet, e distribution-free,
nonlinear modeling procedures, and therefore especiallyestst to ecologists, who
often encounter messy data and non-linear responseseviegwhese methods are fairly
new and unfamiliar to many researchers, and while the/add is available, it will need

to be purchased separately from a standard statisticalgemaka may be expensive.
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Given that a researcher has software for both oéthexleling types on hand,
classification trees will probably be preferred due tar thesy setup and clear
explanatory value. It is very logical and easy toofwlkclassification trees and
understand how and why the trees make the classificd¢iosions. In contrast a neural
network can be quite confusing to the beginner and requaeg more steps and more
time to get any type of explanatory value. For thessans, | prefer classification trees

to neural networks in habitat analysis.
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Table 2.1. Environmental variables included in the modelsdée refers
to the order in which the variables were entered intogfeessions.
Variables transformed for the regression models ar&adar

Order Variable Name Unit Code Transformation

Air Temperature Variable
1 Watershed July Mean Air Temperature °C W_JULY_MN None

Channel Geometry/Position

2 Shreve Stream Order None CHAN_LINK Log
3 Lake Immediately Downstream Binary DLAKE Square Root
4 Distance Downstream to Great Lake Meters DOWNLENGTHbne

Flow/ Hydrologic Variables

5 Channel Slope % CHAN_GRAD Log

6 Channel Sinuosity None CHAN_SINU None

7 Riparian Mean Darcy Value None R_DARCY None

8 Riparian Mean Slope % R_SLOPE Square Root

9 Riparian Mean Soil Permeability Inches/hour R_PERM Sofdand

10 Riparian Trace Mean Darcy Value None RT_DARCY None

11 Riparian Trace Mean Slope % RT_SLOPE Square Root
12 Riparian Trace Mean Soil Permeability Inches/hour RRNE Square Root

13 Watershed Mean Darcy Value None W_DARCY None

14 Watershed Mean Slope % W_SLOPE Square Root
15 Watershed Mean Soil Permeability Inches/hour W_PERM uaregRoot

16 Watershed Trace Mean Darcy Value None WT_DARCY None

17 Watershed Trace Mean Slope % WT_SLOPE Square Root
18 Watershed Trace Mean Soil Permeability  None WT_PERM  qua® Root

19 Mean Precipitation in Watershed mm W_PRECIP None

Surficial Geology in Watershed Trace

20 Coarse Soil Texture in Watershed % COARSE None
21 Fine Soil Texture in Watershed % FINE None
22 Medium Soil Texture in Watershed % MEDIUM None

Percent Landuse

23 Riparian Urban % R_URB_P Log

24 Riparian Agriculture % R_AGR P ArcSine
25 Riparian Wetland % R WET_P ArcSine
26 Riparian Forest % R FOR P ArcSine
27 Riparian Open/ Fields % R_OPEN_P Log

28 Riparian Open Water % R _WAT_P Log

29 Riparian Trace Urban % RT_URB_P Log

30 Riparian Trace Agriculture % RT_AGR_P ArcSine
31 Riparian Trace Wetland % RT WET_P ArcSine
32 Riparian Trace Forest % RT _FOR_P ArcSine
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Table 2.1, continued.

33  Riparian Trace Open/ Fields % RT_OPEN_P Log

34  Riparian Trace Open Water % RT_WAT_P Log

35  Watershed Urban % W_URB_P Log

36  Watershed Agriculture % W_AGR_P ArcSine

37  Watershed Wetland % W_WET_P ArcSine

38  Watershed Forest % W_FOR P ArcSine
39  Watershed Open / Fields % W_OPEN_P Log

40  Watershed Open Water % W_WAT_P Log

41  Watershed Trace Urban % WT_URB P Log

42  Watershed Trace Agriculture % WT_AGR_P ArcSine
43  Watershed Trace Wetland % WT_WET_P ArcSine
44  Watershed Trace Forest % WT_FOR _P ArcSine
45  Watershed Trace Open/ Fields % WT_OPEN_P Log

46  Watershed Trace Open Water % WT_WAT_P Log
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Table 2.2. Variables significant in the multiple lineegression, the values (regression
coefficients), standard error of tBeand significance. Variables were entered into the mode
a stepwise procedure and were included in the final mot@mlnid significant (p < 0.10).

Variable B Standard Error Significance
(Intercept) 0.5

W_JULY_MEAN -0.184 0.023 <0.001
LINK -0.133 0.016 <0.001
W_FOR 0.091 0.022 <0.001
R_PERM 0.061 0.017 <0.001
WT_WET -0.058 0.018 0.001
R_DARCY 0.055 0.016 <0.001
RT_WAT -0.042 0.016 0.01
WT_OPEN 0.036 0.017 0.03
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Table 2.3.Percentage of correct predictions for the MRI test datbthe training data
upon cross-validation. “Performance” is the sum ofahweect predictions for a model
and gives a measure of the model's relative predictivéyalfMLR- multiple linear
regression; LR- logistic regression; CART - classifmatree; NN(46)- neural network
with 46 habitat variables; NN(7)- pruned neural network witrabitat variables).

MRI X-Validation Performance
Presence Absence Presence Absence
MLR 85.7 75.7 80.6 79.6 321.6
LR 87.1 75.9 79.9 81.2 324.1
CART 84.3 77.7 75.2 78.3 315.5
NN (46) 85.7 71.8 75.4 77.7 310.6
NN (7) 81.3 77.4 68.8 84.4 311.9
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Table 2.4. Variables significant in the logistic regi@sstheir3 values, standard error of
the3 values, and significance. Variables were entered igartodel in a stepwise
procedure and were included in the final model if found sicgmfi (p < 0.10).

Variable B Std. Error  Significance

(Intercept) -0.0726

W_JULY_MEAN -1.3614 0.186 <0.001
CHAN_LINK -1.2475 0.153 <0.001
W_FOR 0.4737 0.179 0.008
WT_WET -0.4224 0.14 0.002
R_PERM 0.4139 0.127 0.001
W_SLOPE 0.3823 0.153 0.013
R_DARCY 0.3615 0.133 0.007
DOWNLENGTH 0.3486 0.131 0.008
WT_OPEN 0.2317 0.133 0.082
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Table 2.5. Variables determined to be significant aftexueial network randomization
procedure, their relationship to brook trout presence, ssuc@ted p-values. These
variables were then used to construct a pruned neurabrietw

Variable Relationship P-value
WT_OPEN + 0.016
W_JULY_MN - 0.017
CHAN_GRAD + 0.021
RT_WET + 0.044
R_DARCY + 0.053
W_OPEN - 0.057
WT_WET - 0.087
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Figure 2.1. Michigan streams reaches containing habitat esiabkrlaid by A) MDNR
sampling points for brook trout presence and absenceiftgaiata) and B) MRI
sampling points for brook trout presence and absencen§ekita).
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Figure 2.2. Variables are measured on four scales foriedieidual stream reach: A)
Riparian, B) Network, C) Sub-watershed, D) Watershgele text for details.
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Figure 2.3. In order to prune the neural network, the glutime input layer-hidden layer
weights and the hidden layer-output layer weights sutatled for each input variable.
In this example, | calculate this sum for one variabla neural network with 3 hidden
neurons in the hidden layer.

Input Layer-Hidden Layer Weights:
a,b,andc

Hidden Layer-Output Layer Weights:
d,e,and f

Sum of weights for variable of interest:
atb+c+d+e+f

Input Layer Hidden Layer Output Layer
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Figure 2.4. Classification tree created by CAtRat had highest correct percentage of
predictions for the test data. An observation itésine at a time, starting with the top
of the tree and working down, following the splittingesiuntil it is classified as present
or absent.

W_JULY_MN
<20.93°C / \z 20.93°C
CHAN_LINK CHAN_GRAD

<65 / \z 65 < 0.004/ \z 0.004
W_FOR R_WET
<61.4% / \z 61.4% < 24.9%’/ \z 24.9%
WT_OPEN W_JULY_MN
< 15.7%/ %5-7% < 20.12‘:/ \z 20.12°C
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Figure 2.5. A) Brook trout samples in the Michigan Fislag\tand B-F) predicted brook
trout distributions in Michigan using B) multiple lineagression, C) logistic regression,
D) neural network with all variables, E) neural netwoithwgeven variables, F)
classification tree. A black stream indicates predigiesence, and a light gray stream
indicates predicted absence.
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Figure 2.6. Scatterplots of the absolute values of residloiathe MRI test data
regressed against the latitude of the sampling point fohiRresence samples in the
logistic regression model {R 0.27, F= 25.4, p-value <0.000); B) Absence samples in
the logistic regression model#R0.41 , F= 402.4, p-value <0.000 ); C) Presence
samples in the full neural network modef£m.04 , F= 3.1, p-value = 0.084);

D) Absence samples in the full neural network modé&t(®25 , F= 187.4, p-value
<0.000). Graphs for the other models are not shown; #lleomodels displayed the
same patterns demonstrated by the graphs shown here.
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Chapter 3
Classification tree models for predicting distributieafdviichigan stream fish from
landscape variables
Abstract
Traditionally, fish habitat requirements have been destifitmen correlations

between occurrence and site-scale environmental variall@sever, recent studies
have shown that studying landscape-scale processes irmmowvanderstanding of what
drives species assemblages and distribution patterrssatelandscape. In this study,
my goal was to learn more about the constraints @aligtribution of Michigan stream
fish using landscape-scale habitat variables. | usedfasisin trees and landscape-
scale habitat variables to create and validate presenaetab®sedels and relative
abundance models for Michigan stream fishes. | developede88me/absence models
that were on average 72% correct when compared to indepaetadanand | developed
46 relative abundance models that were on average 76%toohen compared to
independent data. The models were used to create stafgemlietive distribution and

abundance maps that can be used for a variety of eatiser and scientific purposes.

Introduction

Environmental complexity and species interactions makdéfituwlt to learn the

exact abiotic habitat constraints on a population. &ebkers often use statistical models
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for this by searching for patterns between species ocoa@senr abundances and the
environmental characteristics of sampled locations.s&neodels serve two important
purposes: they are used to formulate and test hypothesaisthb factors and processes
that are important to organisms, and they are sometisggsto make predictions of
species distributions and abundances for use in managanteobnservation decisions.

Traditionally, fish habitat requirements have been destifiteen site or local-
scale environmental variables (Fausch et al. 1988). Hahit@tbles measured at this
scale are useful to managers because small-scale ltanthe manipulated (Fausch et
al. 1988; Vaughan and Ormerod 2003). Local-scale variablesasumdver or substrate
are measured on short river reaches and affect foagjeréiabitat, spawning habitat, and
ultimately fish abundance. Three well known modelipgraaches, the U.S. Habitat
Suitability Index (HSI), the River Invertebrate Ptain and Classification System
(RIVPACS), and Australian Rivers Assessment Scheneehased on local-scale
environmental variables (Seelbach et al. 2002a). Themrabéems with modeling on a
site-scale level; it is expensive, or in some casesssible, to measure site attributes
everywhere within a study region (Seelbach et al. 200RBayond this practical concern,
an important ecological tenet states that “diffey@otcesses are likely to be important on
different scales”(Levin 1992); researchers may be coelglehaware of important
large-scale processes that impact fish if they onlysiieescale habitat data (Wiley et al.
1997; Fausch et al. 2002; Allan 2004).

In the past fifteen years, the advent of powerful ggagcanformation system
(GIS) tools has made it possible to study spatial vanatidish distributions and

abundance from a larger, landscape perspective and tpanate habitat attributes
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measured at larger spatial scales. GIS-based modeling uaesty of large-scale map-
based variables (e.g., geology and climate), which inflee@m aquatic system’s
hydrological and thermal characteristics (Wiley etlt8B7). Modeling at this scale often
uses land-use patterns as well, because they influencenemamd rates at which
sediment, pollutants, and water are delivered to themsygbchlosser 1991).

Fish species are clearly influenced by processes thadtepmr larger spatial
scales and slower temporal scale than those meadurerllacal-scale (Richards et al.
1996; Leftwich et al. 1997; Rathert 1999; Allan 2004). While dishresponding
mechanistically to what is happening in their immediateosindings, those local-scale
factors are directly caused by the larger landscapeexXaonple, while stream
temperature is measured at a specific location, itngralled by a combination of local
and landscape-scale processes (Wehrly et al. 2003; Weladly2006). Also, the
hydrologic flow regime of a stream is crucial to fisimanunities and is driven by factors
operating at a catchment scale (Poff et al. 1997).

Models based on landscape-scale processes are becomaganonon. Wiley
et al. (1997) produced trout population density models using antistape-scale
variables, while Zorn et al. (1998, 2003) used catchment adelaarflow yield as key
variables in predicting fish assemblages in Michigaarn£t al. (2003, 2004) also used
landscape-scale variables with multiple linear regoest predict fish assemblages.
Close associations have also been recognized betvgbessBemblages and hydrologic
variability, watershed size, gradient, and percent fa®eger (Poff and Allan 1995;

Maret et al. 1997).
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In addition to providing understanding into processesdhee the fish
distributions, there are many other reasons to devatmfels that study the relationship
of landscape-scale environmental variation and fish paposat Such models provide
insight to how aquatic ecological systems functiondigtgootential population sites, and
identify areas for population restoration (FauscH @088; Maret et al. 1997; Wiley et
al. 1997; Olden 2001; Olden and Jackson 2002). This is espeaaiptiytant for
Michigan stream fish communities. Michigan possesseagease array of streams
ranging from nationally renowned trout fisheries to ddeewarm- and cool-water
communities that support recreational angling for a wadégame species. In addition,
maintaining the diversity of non-game stream fishesignportant conservation goal.
Both fisheries managers and non-game biologists need rfumbderstanding of the
processes that regulate stream fish communities witkistate; however, broad scale
knowledge of Michigan stream communities has been hindeczdige although
historical fish data are plentiful, a relatively smadkcentage of stream reaches have been
sampled.

In this study, my goal was to learn more about lagdesfactors that influence
the distribution of Michigan stream fish. To do thisiskd landscape-scale habitat
variables and three sources of data on Michigan fishlisibns to create and validate
models that predicted presence/absence (PA) and relatindaice (RA) of Michigan
fishes.

Specific objectives were as follows:

1. To build classification tree fish models for Michigdaream fish.

2. To assess each model for validity using an independent datase
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3. To describe the general structure and behavior of the models
4. To understand patterns in model error and to understand modatibns.
5. To use the models to describe relationships betweendismanities and

landscape-scale habitat variables.

M ethods

Data Description- Habitat Variables

Data for predictor variables used in this study weraiobt through the
combined efforts of the Great Lakes Aquatic GAP Pro@tiGAP; GLSC 2007) and the
Classification and Impairment Assessment of Upper Maigvers (CIAUMR;
Brenden et al. 2006; UM 2007). These groups have established mesaiition, GIS-
linked database containing characteristics of Michigan’ssiv@ihe database was
referenced to a group of ArcGIS line coverages (ESRI 200®hich each river was
divided into inter-confluence reaches. Line coverages Wwased on the USGS National
Hydrography Dataset (NHD, 2007) at the 1:100,000 scale, but wertedpgdarovide
more accurate representation of Michigan rivers (Bremdel. 2006). There are 31,817
Michigan stream reaches (86,983 kilometers of stream [emgtladed in the database,
and the database contained information on wide variegndtcape-scale environmental
variables for each stream reach, including soil permggh@nd cover, stream position,
bedrock and surficial geology, modeled water temperatlingate data, modeled
exceedence flows, and modeled phosphorus (Brenden et al. 2006)

The database contained approximately 320 variables forseaem reach; |

chose to combine some and remove others to end up Wstho&23 variables that |
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hypothesized to have the most direct mechanistic retdtips to fish distributions (Table
3.1). Reducing the number of predictors was essentiatiiace collinearity between
model variables, improve model interpretability, and reduobalility of spurious
correlations. Not all correlated variables were resapyor example, it was important to
leave in the different types of land-use and land-casdhese variables are important for
managers as examples of landscape-scale variablesathia¢ enanipulated. Choosing
these variables was a key step in the modeling procestheaddcision was based on
past work on Michigan fish (Zorn 2003) as well as prelinjr@dassification trees in
which | included all possible variables. The variables tihetained and their importance
to fish are discussed in the next several paragraphs.

Water temperature has important effects on growth amivaliof fish and
affects dissolved oxygen levels (Smale and Rabeni 1995; Y\ethal. 2003; Bailey and
Alanara 2006; Rand et al. 2006; Wehrly et al. 2006). Sincerwanperature data were
not available for every stream reach, a temperatudehwas developed to make
predictions of mean July stream temperature (Li Wanghigan Department of Natural
Resources, personal communication). In addition tontabeperature, | also used mean
annual air temperature, which is a reasonable approximatiground water temperature

and thus water temperature during base-flow conditions.

Of the different types of land-use data available, | yszdent of forest,
wetlands, agriculture, and urban on two scales: a 60 rf8fieneters to each side of the
stream) riparian network stream buffer for the streaach of interest and all streams
upstream, and the total catchment are&Ylkafithe stream reach. The riparian area of a

stream is an important indicator of erosion confollution filtering capacity, shading,
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and woody debris potential, while land-use of the ecfitehment area of a stream has
important effects on water chemistry and stream hydsof@Vang et al. 1997; Synder et

al. 2003; Wang et al. 2003).

Surficial geology has impacts on water chemistry anddigdy (Bent 1971). |
obtained surficial geology data from 1:250,000 scale mapalculated the sum of the
coarse-textured geological areas (outwash, coarsegdelxend moraine and till,
lacustrine sand and gravel, dune sand) for the watershgeatio stream reach and divided
by the watershed area to produce the percent of coarseadgdiclogy in the watershed.
This was also done with fine-textured surficial geologye(textured till, fine-texture

end-moraine, and lacustrine clay and silt).

Several habitat variables were built from GIS-obtaiméarmation to serve as
surrogates for site-scale habitat features that arertargan shaping fish communities
(Table 3.1). Ninety percent exceedence flow yield (exeeeel flow/catchment area)
served as a replacement for velocity at baseflow ragidates the relative contribution of
groundwater, while specific stream power at 90% exceed@wgf0*90% ex. flow *
gradient / catchment area) can indicate a stream&rstb, with a high power stream
able to scour fine sediment from the channel bed. Taepeexceedence flow is a
measure of a stream’s peak flow that can limit regreiit and abundance of the
population, and specific stream power at 10% exceedencasflmwneasure of the
stream’s maximum erosive force and sediment transppdbility. All flow estimates

were standardized as “yields” by dividing values by catchraesd.

Phosphorus is an essential nutrient that can limit ptodiydn aquatic systems

(Vanni 1987; Vanni et al. 1997; Zorn et al. 2003). Since totalgitersis measurements
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were not available for every Michigan stream reaghnetlicted it using a multiple
regression equation based off of 1985-1992 Michigan Rivers Inve(hiiiti)
phosphorus measurements and the other variables in Talple(Bdtal Phosphorus) = -
6.996 + (% Agriculture in watershed* 1.497) + (In (Stream pav&0% exceedence
flow)* -0.222) + (10% exceedence flow yield* 59.977)], n = 172, p <.@@justed R=

0.54) (Seelbach and Wiley 1997).

There were several measured connectivity variables tkaetivantage of the
stream connection properties inherent to the NHD (Breetlah 2006). Variables built
from these analyses include distance from the stredhetreceiving Great Lake and
distance from the stream to upstream and downstreamdaklggonds. Streams reaches
disconnected from the Great Lakes by dams or watewalls noted. It is expected that
these variables will be important to lake fish spedias migrate into streams for parts of
their life cycle (e.g., Chinook salmon), or fish thaelin both lakes and rivers (e.g., most
centrarchids). Also, the variable LINKDCATCH was cezhto measure the distance
from the stream reach of interest to the closesindtream stream reach that has a 10%
greater catchment area than that of the stream oéstt@Osborne and Wiley 1992).

This distance might prove useful for explaining occuresraf large river fish in small

tributaries, or small stream fish in nearby larger sver

Data Description- Fish Data

| used three fish databases to create and validateatielsn The Michigan
Rivers Inventory (MRI) dataset contains quantitative fiamples obtained through

electroshocking and rotenone sampling. The samplessinlataset were obtained during
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the 1980s and 1990s and cover the geographic extent of Michigaig bate a bias
towards small to medium streams that can be wadedbéebeand Wiley 1997). |
compiled fish counts from the years 1980-2002 from the Fidle&ion System (FCS) of
the MDNR Fisheries Division. These records wereectdld with a wide variety of catch
techniques, including electroshocking, rotenone, and seinfdigen the poor catch
efficiency of seining methods, for sites that wereesginonly recorded the presence of
fish caught and did not consider missing fish as “absdralso used the Michigan Fish
Atlas, created by the University of Michigan’s MuseufhZoology (Bailey et al. 2000).
This database has occurrence records of Michigan fislg ¢paick to the mid-19th
century. However, for this study | only used data frofftecbons made during 1980-
2000, in order to match the time frame of the MRI and B&@&. These records were
also collected with a wide variety of catch technigaas provide good spatial coverage
of the state.

For all three datasets, | deleted replicate samplésas@ stream reach was
represented by only one sampling effort. When differemipgas for the same reach
disagreed on a species presence or abundance, | kepsémeation where the fish was
present or in higher abundance. This assumed thatréagrsreach has the potential to
hold the higher amount of fish, and the lower fish caus$ a result of disturbance

unrelated to the habitat factors.

Classification trees

Classification trees are created through a data paitigdechnique; a value of a

variable is used to split the data into two subsets teaaspure as possible for the
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response (Breiman et al. 1984, Bell 1999). Each subs&nsgiit repeatedly until all
data within the subset are classified into a singles;lor until a pre-determined stopping
point is reached. Each of these subsets is called a aod¢he final subsets (those
which are not split) are called terminal nodes. Sulasetsonnected through variables
and splitting rules in such a way as to create an invéree diagram, which can be used
graphically to display the model’'s decision rules (Figulg.3 o make a prediction, an
unclassified observation is dropped into the top of e &nd follows the splitting rules
until it reaches a terminal node. The predicted valuéhtdobservation is the value at its
terminal node. Bell (1999) gives a thorough and understandgblenation of

classification trees.

Classification tree is an empirical modeling techniqué ¢ha deal with strongly
non-linear, high order relationships, missing values, diftedata types (continuous,
ratings, categorical); it can predict as well or bettan traditional approaches and the
graphical output is easy to interpret (Breiman et al. 1984,1B89, Olden and Jackson
2002). For these reasons, the use of trees in ecdlsgickes has increased dramatically
in the past five years (De'ath and Fabricius 2000; Vagssit al. 2000; De'ath 2002;
Taverna et al. 2005; Holland et. 2005; Baker et al. 2006; Ste#n2©06; Usio et al.
2006).

In a previous study, | modeled brook trout with severdéght analytical
techniques and determined that a classification tree oh&the successful in modeling
with landscape-scale data (Steen et al. 2006, Chaptén &)is study, | decided to use
classification trees to develop the models for all cmm species of Michigan stream

fish.
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Presence/Absence modeling procedure

| created a species-specific PA classification tredehfor each of the 93 fish
species that had more than 30 occurrences in the trairtiageti@Table 3.2). | used the
MRI dataset as training data and the FCS dataset agjitdatm | selected the MRI set
as the training dataset because it had higher sampldaizasst of the non-game fishes
than did the FCS dataset. For 11 species, either thbarwf occurrences in the FCS
data was low (less than 3 occurrences) or the ideatidics of the fish were suspect. For
these species, | withheld 20% of the MRI data from trairongetve as a test dataset
(Table 3.3). | used the Fish Atlas data as a supplemeaitahy database; if the MRI
data did not contain at least thirty species occurrehegkled Fish Atlas data to the MRI
data for model training purposes.

The training data for a species, having been pruned downgtintbe procedures
above, were entered into CART 5.0 (Steinberg and Colla 198 program produced
a series of differently sized classification treses;h with different misclassification rate
for both the training data and an independent data setaffeaite a cross-validation of
the training data. Next, | selected the tree that mgetherror in both the training data
and cross-validation. If a tree was greater thanmiiter nodes but had a lower error
rate than a smaller tree, | selected the smallerdespite it having a higher error rate. |
felt that as trees started growing past 7 terminal nadesnterpretation of the tree grew
difficult and would start to contain more spurious vaeadplits. This decision
represents the desire to have trees that are acoyebsgsy to interpret. Certainly this is

not an objective decision and reflects my judgment anieanace.
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Using this tree as a starting point, | determined if dnéable splits in the tree
could possess ecological meaning. Splits that lackedgcalaneaning were those in
which the tree created a split at an unreasonable faluexample, the most common
spurious split was a percent land-use split of lessh@ercent. Since it was unlikely
that these values had any significance to the fishmbved these variables from the
analysis and recreated the tree in order to develotiex baodel. If there were no
spurious variable splits, | accepted the tree as théRA model.

The FCS test dataset was applied to the final model ta lgenchmark of the
model’'s accuracy by predicting the percentage of obsengpicedicted correctly. In
addition, | calculated the true skill statistic (TS&)the FCS data. TSS and its
predecessor, Cohen’s kappa, are relatively new ways tseungetine accuracy of
presence/absence models, and address the problem repdfiettlimg and Bell (1997)
of inflated accuracy ratings for rare species. TSSesence/absence assessment score
that accounts for errors and success as a resulid@dmaguessing, and ranges from -1 to
+1, where +1 indicate perfect prediction and values af {lihdicate a model that is
worse than random (Allouche 2006). However, the majofithe discussion of this
paper relies on the percentage accuracy rating rathef®8, as percent accuracy is
more intuitive than is TSS and creates results nmtegdsting and easier to understand.
In addition, the results indicated that TSS consitemderestimated the value of
models for which there was a large discrepancy betweeer of present and absent

observations.

Presence/Absence model error
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| identified sites from the FCS testing dataset thalt misclassified fish
predictions; in other words, sites where predicted pregabsence did not match the
observation. These types of errors are usually descontbedhe terms false positive
(predicted present when observed absent) and false re@atidicted absent when
observed present). For example, when a FCS sampinbas 10 false positive errors,
this means that 10 fish species were predicted to benpiagbe stream, but were not
found.

| examined the correlation matrix of the numbersatdd positive and false
negative errors made at a site and the habitat valoéisefetream reach where the
sampling site was located. This was done in order tordetewhether there are any
patterns between model error and the habitat variagles; patterns can indicate if
streams with particular habitat tend to have more srdesurate models. To prevent the
models that performed poorly from interfering with thessuits, |1 only looked at PA
models with a TSS greater than zero and at least @8%tacy (in both absence and

presence) when compared against the test dataset.

Relative Abundance model procedure

For the RA models, | selected MRI data obtained fromypass electroshocking
depletion samples and converted the fish counts toasiithtatch per hectare. The FCS
dataset and Fish Atlas dataset were not used in RA modeling.

| built the RA models on an individual species basisr each species with
greater than or equal to 30 occurrences in the MRI ddbtaidied fish density estimates

into three logarithmic-scale categories (low: 1-10; medilt100; high: > 100 fish per
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hectare). | also tried dividing density estimates irti@gories by equal interval and by
natural breaks. However, the models performed the samerse using these category
breaks, so | decided to use the logarithmic-scale ounglisity; each fish species had
the same abundance categories when using the logarghaie

To build the trees, | followed the same steps useckiPiimodels, except that |
used three density categories instead of presence/alusgageries. Since the only
density data available were from the MRI dataset | withR8P6 of the MRI sample for
model validation. Several fish had greater than 3(ksnbut too few fish in a
category to use a 20% hold-out sample for a testelatag., 2 observations in the low
category, 4 in medium, and 30 in high). In these casesed the 10-fold cross-validation
procedure given by Steinberg and Colla (1997) to assess the peofbemance. In the
cross-validation process, one tenth of the dataldslieck while the rest is used to create
the tree, and error estimates are made for the withh&dd d#is is repeated until all the
data has been withheld and tested, and the final testngeay is determined from the
combination of all of the mini-test samples.

If a relative abundance model had an accuracy ratimge than guessing when
compared to the test data or cross-validation (<33.3%ifpicategory), | created a two-
category classification tree for that species. these models, | dropped the middle
category so that the species was only predicted at arld high relative abundance. This
also involved dropping the training data that had been in itiélencategory (11-100 fish
per hectare) and making the assumption that in thevadd, no fish fall within this

range. This resulted in models that were simpler ane mamoved from reality than the
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3-category models, but I think this was necessary in ¢odawild RA models with good

accuracy levels for these species.

Model analysis and predictions

For both model sets, | counted the number of timels eacable occurred to
indicate the most important variables for all of tiséf Then | more closely examined
how the top five variables split in the trees to dutee if there were any overall patterns
caused by these variables. To prevent the models thatmed poorly from interfering
with these results, | only looked at PA models or 2gaty RA models that had at least
60% accuracy (in any category: absence, presence, ldwglgr when compared against
the test dataset. For the PA models, | also requieedhtidel to have a TSS greater than
zero in order to include the model in the analysis.

For every species, | applied the PA model to everastieach in Michigan. For
species with an abundance model, | applied the RA mo@dseiy stream that was
predicted as present, and combined the two models to produbetipres with three or
four categories: fish absence, low relative abundanedjum relative abundance (where
available), and high relative abundance. The preditigare joined to the updated

1:100,000 NHD in a GIS to produce statewide distribution mapsaich fish.

Results
Presence/Absence models
| developed PA models for 93 Michigan stream fish (Table 3spite the

addition of the Fish Atlas data, | did not have enough (k$a than 30 occurrences) to
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create PA models for 52 of the 145 fish species found ahnigian (Bailey and Smith
2002). However, while 18 of these fish are found in stre&sare primarily or
exclusively lake species and the samples did not incalds] The lake species are not
included in Table 3.2.

Each PA model has two measurements of percent acontesycompared to the
testing data: percent correct of predicted presences arehpeprrect of predicted
absences. The mean of these two scores gives usitaa@cmeasurement that is used
to compare individual species models (henceforth, thisanement is referred to as the
“average accuracy”).

For all 93 PA models combined, | predicted 72% of the testotestarvations
correctly. Forty-four percent of the PA models hadeerage accuracy of between 65%
and 75%, including fish species such as rock bass, nogit&rnsmalimouth bass, and
yellow perch (Table 3.3, Figure 3.2). Four models had predgthat were worse than
simply guessing (<50% average accuracy: creek chubsuclswiter drum, eastern
sand darter, blacknose shiner). However, 21% of the mbddlan average accuracy of
greater than 80% (e.g., greenside darter, redfin shingnvhme perch). Fish species
associated with big, slow rivers were modeled particpladll. Four redhorse species
(black, greater, golden, silver) had an average accuraategtbéan 88%, and two other
redhorse (river, shorthead) had average accuracies o&iid%7%. Channel catfish had
an average accuracy of 90%, and common carp had an avecagacg of 80%.
Although cold-water species were not modeled as accudalydhorses, these fish
models also did well; brook trout, slimy sculpin, mottédlpin, Chinook salmon, and

Coho salmon all had average accuracies of about 75%.
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| recorded the frequency of each habitat variable indlud®A models that had
an average accuracy greater than 60% and a TSS greateetio. The two variables
that appeared most often were water temperature arftheatt area, being in 45 and 44
of the 82 models, respectively (Table 3.4). Other frequenmityrring variables included
air temperature, predicted total phosphorus, and the 10%dexueeflow yield. All
land-use variables included in the models occurred with appadely the same
frequency, though land-use measured on the larger watesshledoccurred slightly
more frequently (on average, in 14 of the 82 models) thmhuae measured on the
riparian scale (on average, in 11 of the 82 models).

| examined the PA models to see if there were any pattssociated with the
variable splits of the five most frequently occurring &bkes. Patterns in the variable
splits would indicate if these important variables hawensistent effect on the fish. The
pattern was quite clear for water temperature; in 39eofilimodels containing water
temperature, an increase in water temperature resualfesth presence. Not surprisingly,
cold-water species were associated with 5 of the othaydels. Brook trout, brown
trout, rainbow trout, mottled sculpin, and slimy saulyere predicted absent when the
temperature was on average above °(9.9An increase in temperature resulted in fish
absence for pirate perch as well, but the split valugvétder temperature in this model
was quite high (23C), so this fish should not be grouped with the othersde\soof
cool-water species (e.g., muskellunge, brook sticklebaeksip minnow) did not have
consistent water temperature patterns.

An increase of catchment area resulted in a prediofipnesence in 39 of the 44

models containing catchment area, and an increase gftpdros resulted in a presence
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prediction for 18 of the 24 models containing phosphorus. r@hdts for air temperature
and 10% exceedence flow yield were ambiguous as neither peasenabsence
predictions were dominant when the variable value incdease

| looked at the correlation matrix between the nundberrors (absolute number,
not a percentage) made at a site in the testing dathamabitat variables for the stream.
For false negative errors, the highest correlatios rather small (10% exceedence flow
yield : r = 0.17). However, the number of false posigk®rs made at a site was
correlated with several habitat variables. The strorgestlation was between number
of false positive errors and water temperature (r = OiB@igating that as stream water
temperature increased, more species are predicted tstreams where they were not
observed. Similarly, catchment area (r = 0.35) and dgureu(RT_AGR : r = 0.43,
WT_AGR: r = 0.50) are also positively correlated with ttumber of false positive errors
at a site. On the other hand, percent of forest imiplagian zone (r = -0.58) and
watershed (r =-0.57) is negatively correlated to nurabélse positive errors,

indicating that as percent forest increases, fewerseare made in a stream.

Relative Abundance models

| created 46 RA models, 10 models with three abundamets )86 models
having two abundance levels. | did not have enough data te cnealels for 47 of the
species that | had created PA models for. Similared’h models, | predicted some
species very well (e.g., brook stickleback, pumpkinseedyvhatunable to model other
species much more accurately than simply guessing @rtpow darter, rosyface

shiner) (Tables 3.5 and 3.6, Figure 3.2). Overall, though,ctheacy of the RA models
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exceeded expectations, especially for that of the tategory models. The average
three-category model predicted low abundances corrétifo of the time, medium
abundances 58.5% of the time, and high abundances 79.4%tiofi¢h@ able 3.5). On
average, the two-level model predicted low abundances 86k 286 time and high
abundances 76.9% of the time (Table 3.6).

| recorded the number of times that each habitaabtrioccurred in the more
accurate RA models (all 3-level models, and > 60% accudoadyoth % low and % high
in the 2-level models) (Table 3.4). Catchment area heasbst important (41.9% of
models), followed by predicted total phosphorus (32.6%) arckptage of coarse
surficial geology in the watershed (27.9%). While watenderature and air temperature
were in about 50% and 30% of the presence/absence modglsyéhonly in 8 (18.6%)
and 9 (20.9%) of the 43 RA models, respectively. Intemgstitboth gradient and
downstream link have moved from the bottom of the pisabsence list to near the top
of the RA list (Table 3.4).

| looked for patterns in the relative abundance tbyemxamining the splits of the
most frequent variables. While the effect of catchraeeh and gradient were
ambiguous, a decrease of the downstream link variable (LIBKKDBCH) resulted in a
greater abundance in 9 of the 10 RA models it appeareddrgraincrease total
predicted phosphorus increased abundance in 12 of the 14 RAsmaggpeared in.
Also, an increase of the value of coarse surficialagyy resulted in a lower abundance in
10 of 12 RA models, and an increase of 90% exceedence fidavrgsulted in a lower

abundance for 11 of 11 RA models.
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Distribution maps

Using the predictions generated from the models, | crestieer
presence/absence or absence/abundance statewide dastribaps. | give an example
of a map that combines the presence/absence model amncerataundance model to
classify each Michigan stream as absent, low, or higbak bass (Table 3.3). In this
example, | can see that rock bass is predicted foumel in low densities throughout the
larger rivers of the Upper Peninsula and northern LoweriBula. The highest density
of rock bass is predicted to be in the south-centndigroof the Lower Peninsula,
throughout the upper portions of the Saginaw, Grand, Kalamand St. Joseph
watersheds. These predictions were tested against les#npe/absence independent
data and a 20% hold-out sample from the abundance trainingTadile 3.3).

All species maps are available upon request to the autlabtioe website
http://www-personal.umich.edu/~psteen/. Also availaldeir@eractive maps that run in
the free downloadable program ArcReader (www.esri.congader). This program
allows a user to query specific streams in the GIS taimlbbserved fish and predicted fish

information as well as the habitat variables used imtbdels.

Discussion
| created presence/absence models for 93 fish speciealtygound in Michigan
streams, and developed relative abundance models fortHésef 93 species. About 7 of
every 10 predictions were accurate for the PA modetgjta®of every 10 predictions
were accurate for the 3-category RA models, and aboiué@oy 10 predictions were

accurate for the 2-category RA models. This suggedtsatidscape scale factors alone

71



can be used to predict overall occurrence and abundanaesofish species in Michigan
Rivers when site-specific data are not available.

Optimally, | would be able to create models based on botistape-scale and
local-scale variables (Wiley et al. 1997). Habitat cbods at the site scale (e.qg.,
channel morphology, substrate and cover conditiong, &n have very strong effects on
localized fish abundance patterns in streams. Siacg landscape-scale variables
impact local-scale mechanisms, | indirectly model saspects of the local-scale
control. However, without direct measurement of leszdle variables | was unable to
capture all of the variation that occurs around thesalas. Also, since the fish were
measured with a single sample, it was impossible tactletev temporal variation could
change the species presence and abundance (Wiley.893). Additionally, research
has shown that biological variables such as competitie important to species
occurrence and abundance (Larson and Moore 1985; Fleakd@ioamsend 1994; Stoks
and McPeek 2003). For these reasons, | would not expelel mocuracies much higher
than obtained with this model set, and errors in thdigtiens were expected.

However, using local-scale variables to build modelstlikese in this study
would be impossible; obtaining small-scale data on a sedd&@e as the state of
Michigan would require prohibitive amounts of time and mo&yen that research in
landscape ecology has indicated that large-scale vesiatdy be as or more important to
fish than small-scale variables, and often correkabagly with the small-scale variables,
| feel using large-scale variables was justified and wad#st approach that could be
used to meet the goals of the study (Schlosser 1991; Wildy¥997; Fausch et al.

2002; Allan 2004).
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Presence/Absence model summary

With about 70% prediction accuracy against a test dathee®A models
performed very well, overall. Large river fish suchreghorses and channel catfish were
modeled very well, indicating that these species mdylbereliant on large-scale
processes to determine their distribution. Similarfgevater species were predicted
very well. Centrarchids were typically modeled withdemte accuracy (approximately
65-75%), indicating that landscape-scale habitat and chasticeewere important, but
there are other factors in determining their distrdouthat | was not able to detect with
these models. For example, it is likéiyat including temporal variation in fish
populations would increase model accuracy.

However, there certainly was variation in model accytsetween different
species, with some models barely better or worseghassing. There are a variety of
ways to explain why some fish were modeled poorly. déistification of fish during the
data collection phase could have played a role in poor Ilped®rmance, as some of the
less accurate models are built on fish species thalifficult to identify quickly in the
field. Three lamprey species were probably predicted pdoryto this reason (silver
lamprey, northern brook lamprey, American brook lampréihe stream habitat data
was perhaps not causally linked to the distribution of $gdexies that are found in rivers,
resulting in poor prediction of certain lake species (bfbeshwater drum). Some
species were found virtually everywhere, and so the meadels not able to distinguish
between presence and absence streams (white suckendsladace). Unfortunately,
many rare fish were predicted poorly as well (blacknbsees, creek chubsucker, eastern

sand darter); these are fish that were historicaltiesfpread but due to pollution and
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siltation now have a much narrower distribution (Trautrh881; Roberts et al. 2005).
The predictive models of these rare species wereunaiecas to where the fish currently
live but may perhaps indicate where the fish has thengiat to live.

Zorn (1998, 2003) used low-flow yield (as an index of wateptature) and
catchment area as primary ordination axes in sepgreltisters of fish assemblages, and
explained that these two variables can reliably be tesddtermine what fish may reside
in a particular stream section. Unsurprisingly, the tmost important variables in the PA
models were also water temperature and catchment ateaerbus other studies have
found water temperature to be key in the classificagfdish (Fausch et al. 1998;
Matthews and Robison 1988; Lyons 1992; Hinz and Wiley 1997; Zaah 2002;

Wehrly et al. 2003; Steen et al. 2006), and there is dtsagehistory of studies on how a
stream changes depending on its position in the catcHidantkes 1975; Vannote et al.
1980; Wiley et al. 1990; Smith and Kraft 2005).

Many of the GIS-based habitat variables served as sursoigatsite-scale
habitat. These variables require a conceptual leap fterbased to landscape-based
modeling and their importance in the models emphasizdmkages between the two
scales of data. Catchment area is one such variaildes measure of the amount of land
draining to the stream, and therefore is used as a converagrof indicating a stream’s
approximate discharge, width, depth, and gradient (Vannote 198@kse stream
characteristics are highly correlated with site-staleitat values, such as velocity,
channel substrate, and dissolved nutrients (Vannote 1980; ¥fikdy1990; Rahel and
Hubert 1991; Lyons 1996). Inthe models, more fish seenefermtreams with larger

catchment areas, indicating that larger streams wittgradient, high discharge, and
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warm summer water temperatures tended to favor theegteatmber of Michigan fish
species. Larger streams also have greater habitalexatypproviding space for a
variety of fish species with different habitat reqoients. The importance of catchment
area has also been seen in previous fish classificatid ordination work (Zorn et al.
2002).

Stream yield and specific power variables are GIS-desueagates for stream
discharge, stream velocity, substrate, erosive faé sediment transport capability. On
average, these variables were contained within about 188 ofiodels; so while they
are not integral to every model, they still have imatreffects. For example, the
models predicted correctly that black crappie, bowfintheyn pike, and black bullhead
will tend to be absent in streams with high stream ppindicating a preference for low
velocity, lentic conditions. Bluegill was found to ppeesent in streams with a low 10%
yield; the species avoids streams with high peak fla®sny sculpin tended to be absent
from streams with a low 90% yield, showing a tendencyfoundwater driven streams
with consistent flow rather than flashy, runoff drive@neams.

The connectivity variables (e.g., distance from Grestel_pond, or larger river)
were included in only in about 10% of the models; howaWese variables were very
important in the modeling of several species. In theoGoid Chinook salmon models,
the first split in the classification tree was tlagiable describing the distance from the
closest Great Lake. Both models indicate that eigpecies of salmon are very unlikely
to be found more than 122 kilometers from a Great LalemdRing this variable from
either model resulted in predictions that were onbghsly better than guessing;

therefore, this variable was integral for in succegsfedliction.
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The variable measuring the distance from the streameat&ake also indicated
whether a stream was disconnected from the Great ldaleeto a dam or waterfall.
While this aspect of the variable was unexpectedly notiitapbin the Coho and
Chinook models, it was important in the rainbow troutieloThe rainbow trout model
reported that it was unlikely, though not impossible, farkaw trout to be found in a
stream above a dam or waterfall. This result waisedpntogical given the life history of
the migrating steelhead. (I should note that no distinavas made between steelhead
and resident rainbow trout in the model development pihaséo uncertainty in the
sampling database.)

The distance from a pond or lake and distance fromga laver were also key
variables for several species. For example, largentmag$, smallmouth bass, and
yellow perch were more likely to be found within 20 km, 8 lamg 6 km of a pond or
lake respectively. The bowfin model predicted the sgedoide found within 150 meters
of the confluence of the stream of interest and a theg has a 10% greater catchment
area. This variable was also important for brown bath@1 km) and longnose sucker
(23 km). Once again, it was entirely logical that tredels have included these variables,
as these fish were good examples of species thatward fo lakes or slow-moving

backwaters but also live in stream environments.

Presence/Absence Error Analysis
In PA models, there are possible error types: falsetivegand false positive
error. In my PA models, false positive errors ogoore frequently than false negative

errors by a ratio of 8:1. False negative errors guieajly seen as more severe than false
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positive errors (McKenna et al 2006); a false negative enmore likely to be caused by
an error in the model rather than a fish that wassed in the sampling. In addition, false
negative errors have a severe impact on conservabonbased from models: if a rare
species is predicted to be absent from a set of sremwhich it actually exists, those
streams may not be given the level of protection ne&aleonserve the species.

When distribution models are used for conservatiorkwfatse positive errors
tend to be a “safe” error; if | do not know whethersh in a stream or not, it is safer to
assume the fish is present. A false positive emmesaot necessarily indicate a flaw in
the model; if a species was not observed in the fisdsampling effort may have been
insufficient, the fish may not have been identifiedrectly, or the fish has the potential
to live in the stream but simply is not there (McKeehal. 2006).

False positive errors may also have been caused by dliatitgpancies between
the training and testing data. Overall, | had a higher degreenfidence in the fish-
identification accuracy and catch efficiency of the MiRIning data than the FCS test
data. As a result, the FCS test data probably had arlpgbgortion of fish that were
improperly identified and a higher proportion of errors dufsh that were not caught
but should have been. When the test data were preédigtdhe models, the end result of
this discrepancy was a higher number of false presemo®s. In other words, the
model said the fish should have been there, and perhaps,ibut the FCS data was not
accurate enough to show this. Therefore the numbeaits# presences in the test data
may be inflated and underestimate the accuracy of thelsy@dpecially for hard to

identify species.
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To check this hypothesis, | compared the average falsenpeeseror rate for
game fish, which are easily identified (brook and browatfremallmouth bass,
largemouth bass, Chinook and Coho salmon, walleye, almwpérch) against the
average false presence error rate for cyprinids modeklisistudy (chubs, dace, and
minnow), which are typically harder to identify. Theseage false presence error for
gamefish was 19.2%, and the false presence error foypnmids was 27.2%. The
difference between the two is not as large as | hadiated (independent t-test: t=-
1.5, df= 26, p-value =.16), so it is likely that this hypotheaisnot fully explain the
abundance of false presence predictions. Howevemdssible that the discrepancy
between the datasets can account for some of tleefedsence errors that occur.

| noticed that several of the habitat predictor variablese correlated to the
number of false positive errors made at a stream redier temperature was most
strongly correlated to false positive errors; as teatpee increases, the models tend to
overestimate the number of species in the streanteSvarm-water streams have a
higher diversity of species, it is likely that sampliefforts missed species in these
streams, which would cause false positive errors in gtedtda. Another cause of these
errors may be the bias introduced into the models thrdwggtisproportionate amount of
cold-water stream samples compared to warm watemssaeples in the training data;
predictions made on cold-water are more accurate dwegeatre more similar to the data

used to make the models.

Relative Abundance model summary
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When using abundance categories in modeling, determining Wwhplace the
boundaries of the categories is a difficult problem andisresults in inaccurate
models when predicting observations that are not cleadycategory or another. Due to
this, | was only able to create 10 species models tlobtelsh data accuracies better than
simply guessing (every abundance catego8.3%). In order to develop RA models
for the other species, | decided to create models in vihe&emiddle category was
removed so that there was clear distinction betwieemigh and low categories.

Of the 44 RA models created, 10 had three categories ditfme abundance
(low, medium, high), while 36 had two categories of predieteundance (low, high).
Interestingly, not only did the two-category modeldgen well, but also they were
typically more accurate than the PA models when coeaper the test data. This implied
that there might be greater stream habitat differebeggeen low/high abundance
streams than there were between presence/absencesstiéar example, a stream may
be considered “present” with one fish in it, and anostreram with 1000 fish is also
considered “present”. The classification tree wilkdndifficulty in distinguishing
between the marginal stream with one fish and aabsent stream, resulting in
misclassified observations in the PA model. On therdthad, when the stream with one
fish is classified as “low”, and the stream with 1000 fsclassified as “high”, the
classification tree is able to separate them withtgresccuracy, since there are greater
habitat differences between these streams than betavemrginal stream and an

“absent” stream.

While most of the common species in Michigan were maltifelerelative

abundance; | should note that because of the low nuofispecies modeled for RA,
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these results do not apply to all Michigan fish. Watewerature was an unimportant
variable for most of the RA models; according to thaseel sets, it was more important
for determining presence/absence of a species than for detegymow many of the fish
are in the streamzom (2003) observethe same phenomenon with temperature when
developing landscape-based multiple regression models. e@racharse surficial
geology, and 90% exceedence flow are more importaneiRamodels than in the PA
models. An increase in these variables tended to resalflecrease of abundance of
several species (e.g., black bullhead, bluntnose minnoyenteuth bass, white sucker,
yellow perch) that prefer streams with low slope andemvariable flows. Given that
these flow characteristics were correlated with wigmperature, their importance may
explain the apparent unimportance of water temperatureer\Manhperature may not
have been included in the abundance classification bexsise the variation in the data
was already captured.

In the PA models, probability of presence increased witfeasing total
predicted phosphorus, and similarly, the RA models shawathundance increased with
increasing phosphorus. This is a logical result (thowgfiaguency in the models may
be somewhat surprising), as phosphorus can cause a botteffiectpincreasing
productivity in every trophic level (Vanni 1987; Vanni et al. 199¥hough not seen in
these models because Michigan streams tend to have I@phghas levels, high
phosphorus levels cause eutrophication and anoxic condihish would effectively
destroy a fish population. For this reason, this gempata¢rn in phosphorus cannot be

extrapolated beyond the phosphorus range in the data.
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Other general model limitations

Overall, these models do a fine job in prediction, betrtiodels have limitations
that should be recognized. Users of these models shewddare of these issues, and if
similar models are constructed in the future, reseasdteuld try to address these

problems in order to minimize model error.

Data quality is always an issue when dealing with lar¢g@séés. Brenden et al.
(2006) addressed specific limitations in the NHD and qualithe GIS-derived
environmental variables. In short, some of these vasabére obtained from low
resolution maps (e.qg., surficial geology, 1:250,000 scaleydhdot have the accuracy |
desire when operating on a NHD with a resolution of 1:100,008y models, coarse
surficial geology occurred relatively often (18.3% of PAdals, 27.9% of RA models),
and it is possible that the scaling issue increased madelstightly.

| used several habitat variables that were built from mscated then predicted
across the state in order to produce a value for ¢sedms reach (e.g., water temperature,
total phosphorus, flow variables). Since these modeitat error, it is logical to expect
that the error will trickle down to the fish models, Bsing model accuracy. This
problem is also known as “propagation of error”. As thedatat models are improved in
the future, | hypothesize that the fish predictions letome more accurate.

The fish data were of good quality overall, but the figmexsampled over a long
period of time, by different people and for different purgose it is impossible to
determine which samples were poorly counted or implemenithd.samplers may have
misidentified or failed to catch some fish, particuldhgse that are hard to identify, rare,

or small. Training a model on flawed data can confoundréeing process and produce
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a model that is inaccurate for the species, especidhg ipredictor variables are
correlated with the likelihood of failing to detect a spedn a survey. While this issue is
indeed a problem, to minimize this error | included as masgce sites as possible in
the training data for each species. By pooling absencel $iteve replicate information
on the probability of absence as indexed by the datafidfi@ould potentially be missed
at any particular site, it was my intention to incls@eeral sites with the same type of
habitat for which the fish would not be missed. Thixpss may not produce absolute
truth for every site, but the overall distributiorosld be correct. The errors in the
training data are reflected in the accuracy measurentbatsjodels are be perfect but
should be good enough for the use for which they are iatend

A major problem throughout this study has been thecdifff in developing
statewide abundance predictions. | tried several ndstfregression, regression trees,
classification trees with different category boundariaene of which performed to my
satisfaction. In the final product, | was only able todue accurate models by dropping
out data points so that a clear distinction could bderbetween high and low abundance
streams. While this procedure did produce models that weveade in determining high
and low abundance, dropping data is not to be taken lightdyvever, given the options
of having no relative abundance models at all, or havindetsavith some problems but
indeed providing predictions, | feel that the right decisi@s made as these models have

a place in a management or conservation context.
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Table 3.1. List of habitat and land-use stressor variaisied in the creation of the PA and RA models for Miahgfaeam fishes.
The descriptive statistics summarize the entire Michggegam population as per the GAP/CIAUMR database.

Variable Code Variable Description Unit Min Max Mean Std.D

Temperature

WATER_TEMP Water temperature, predicted July mean celsi 12.3 26.2 19.5 3.0

WT_MAAT Mean annual air temperature Celsius 3.7 9.8 7.3 1.7

Position in Catchment

CATCHAREA Area of the watershed Km 0.72 14103.5 721.0 1680.6

Connectivity

UP_POND Distance upstream to closest pond >=5 acres dmeter 0 57566.4 8948.0 10580.0

DOWN_POND Distance downstream to closest pond >=10 acres meters 0 195470.1 29732.2 35989.0
or Great Lake

LINKDCATCH Distance from downstream reach with 10% >= etars 0 58851.0 2871.0 7115.2
catchment area than target reach

DOWN_LENGTH Distance to Great Lake from downstream end meters 0 130093.1 31886.8 31417.6

of reach

Geology/Hydrologic

WT_FINE Fine-grain surficial geology - percentage of wstted % 0 1 0.11 0.22

WT_COARSE Coarse-grain surficial geology- percentageadérshed % 0 1 0.65 0.36

TEN_YIELD 10% exceedence flow yield cms/Rm 0.0075 0.0416 0.0186 0.0037

NINETY_YIELD 90% exceedence flow yield cms/km 0.0001 0.0264 0.0039 0.0031

GRADIENT Channel gradient unitless 0 0.0288 0.0026 0.0038

TEN_POWER High flow-based specific power cms7km 0 0.0073 0.0005 0.0008

NINETY_POWER Summer flow-based specific power cmé/km 0 0.0021 0.0001 0.0002

Land-use

WT_FOREST Forest Land cover - percentage of watershed % 0.02 0.95 0.41 0.24

WT_WETLAND Wetland land cover- percentage of watershed % 0 0.56 0.15 0.08

WT_AGR Agricultural land-use- percentage of watershed % 0 95 0. 0.28 0.25

WT_URBAN Urban land-use- percentage of watershed % 0 0.64 0.05 0.07

RT_FOREST Forest land cover- percentage of riparian nketwor % 0.02 0.90 0.28 0.16

RT_WETLAND Wetland land cover- percentage of riparian oekw % 0.01 0.94 0.37 0.17

Variable Code Variable Description Unit Min Max Mean Std.D

RT_URBAN Urban land-use- percentage of riparian network % 0 0.56 0.04 0.06

Water Quality

TOTAL_P_ PPM Total phosphorus, predicted ppm 0.01 0.25 0.05 0.04

* cms = cubic meters per second



Table 3.2. List of which Michigan fish species were meddbr presence/absence (PA)
and relative abundance (RA). Numbers in these colunfieistcethe number of species
occurrences in the training data (No asterisk- MRI dateer&&- MRI and MI Fish Atlas
Data). Species that did not have enough data to be modeledtdisted.

Family Scientific Name Common Name P/A RA
Amiidae Amia calva Bowfin 77*
Aphredoderidae Aphredoderus sayanus Pirate Perch 32 24
Atherinidae Labidesthes sicculus Brook Silverside 58*
Catostomidae Carpiodes cyprinus Quillback 72*
Catostomidae Catostomus catostomus Longnose Sucker 41
Catostomidae Catostomus commer sonii White Sucker 375 277
Catostomidae Erimyzon claviformis Creek Chubsucker 39
Catostomidae Erimyzon sucetta Lake Chubsucker 57*
Catostomidae Hypentelium nigricans Northern Hog Sucker 182 109
Catostomidae Minytrema melanops Spotted Sucker 67*
Catostomidae Moxostoma anisurum Silver Redhorse 31 34
Catostomidae Moxostoma carinatum River Redhorse 25*
Catostomidae Moxostoma duquesne Black Redhorse 36
Catostomidae Maoxostoma erythurum Golden Redhorse 111 82
Catostomidae Moxostoma macrolepidotum  Shorthead Redhorse 56 24
Catostomidae Moxostoma valenciennesi Greater Redhorse 35 38
Centrarchidae Ambloplites rupestris Rockbass 243 161
Centrarchidae Lepomis cyanellus Green Sunfish 200 128
Centrarchidae Lepomis gibbosus Pumpkinseed 197 124
Centrarchidae Lepomis gulosus Warmouth 97*
Centrarchidae Lepomis humilis Orangespotted Sunfish 61*
Centrarchidae Lepomis macrochirus Bluegill 284 99
Centrarchidae Lepomis peltastes Longear Sunfish 40
Centrarchidae Micropterus dolomieu Smallmouth Bass 157 89
Centrarchidae Micropterus salmoides Largemouth Bass 180 96
Centrarchidae Pomoxis annularis White Crappie 29*
Centrarchidae Pomoxis nigromacul atus Black Crappie 85 110
Cobitidae Misgurnus anguillicaudatus Oriental Weatherfish 29*

Cottidae Cottus bairdii Mottled Sculpin 83 172
Cottidae Cottus cognatus Slimy Sculpin 60 61
Cyprinidae Campostoma anomalum Central Stoneroller 87 72
Cyprinidae Clinostomus elongatus Redside Dace 45*
Cyprinidae Couesius plumbeus Lake Chub 43*
Cyprinidae Cyprinella spiloptera Spotfin Shiner 68 39
Cyprinidae Cyprinus carpio Common Carp 150 76
Cyprinidae Hybognathus hankinsoni Brassy Minnow 77*
Cyprinidae Luxilus chrysocephal us Striped Shiner 71*
Cyprinidae Luxilus cornutus Common Shiner 263 203
Cyprinidae Lythrurus umbratilis Redfin Shiner 71* 37
Cyprinidae Margariscus margarita Northern Pearl Dace 91
Cyprinidae Nocomis biguttatus Horneyhead Chub 142 92
Cyprinidae Nocomis micropogon River Chub 41
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Table 3.2, continued.

Family Scientific Name Common Name P/ARA
Sciaenidae Aplodinotus grunniens Freshwater Drum 50*
Salmonidae Oncorhynchus kisutch Coho Salmon 37*
Salmonidae Oncorhynchus mykiss Rainbow Trout 128 109
Salmonidae Oncorhynchustshawytscha ~ Chinook Salmon 45*
Salmonidae Salmo trutta Brown Trout 196 159
Salmonidae Salvelinusfontinalis Brook Trout 186 165
Umbridae Umbra limi Central Mudminnow 259 179
Number of Species 93 46
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Table 3.3. Sample size and % correct agreement betwegictpd presence/absence
values and observed values in the test dataset, folPg@aaidel. The list is sorted by
the average between % present and % absent (averagacgycurhe average accuracy
does not consider differences in N between % preseriaabsent.

Common Name N Present% Present N Absent % AbseAterage Accuracy
Black Redhorse 12 91.7 788 94.9 93.3
White Perch 27 100.0 781 81.3 90.7
Channel Catfish 54 81.5 760 98.0 89.8
Greenside Darter* 8 100.0 72 79.2 89.6
Greater Redhorse 13 84.6 801 93.3 89.0
Redfin Shiner 21 95.2 803 82.6 88.9
Golden Redhorse 47 83.0 780 94.0 88.5
Silver Redhorse 11 81.8 802 94.3 88.1
White Bass 19 94.7 793 79.3 87.0
Roseyface Shiner* 15 100.0 84 71.4 85.7
Lake Chub 3 100.0 803 70.0 85.0
Chinook Salmon 60 88.3 786 80.2 84.3
Spotfin Shiner 49 75.5 781 92.8 84.2
Mimic Shiner 17 88.2 786 78.2 83.2
Blackstripe Topminnow* 12 91.7 104 74.0 82.8
Walleye 149 71.8 698 93.0 82.4
Sea Lamprey 4 100.0 801 64.7 82.3
River Chub 24 70.8 800 93.0 81.9
Common Carp 156 84.6 723 76.1 80.4
Emerald Shiner 24 70.8 796 89.7 80.3
Tadpole Madtom 22 72.7 802 87.4 80.1
Sand Shiner 22 72.7 785 86.6 79.7
Black Crappie 85 72.9 751 86.0 79.5
Stonecat 81 66.7 758 92.1 79.4
Yellow Bullhead 97 78.4 745 78.9 78.6
Pirate Perch 26 76.9 780 79.7 78.3
Slimy Sculpin 28 85.7 775 70.3 78.0
Spotted Sucker 12 91.7 801 63.8 7.7
Brook Trout 504 75.6 586 79.7 7.7
Shorthead Redhorse 30 63.3 781 90.0 76.7
Mottled Sculpin* 15 80.0 51 72.5 76.3
White Crappie 12 75.0 789 76.4 75.7
Brook Silverside 7 85.7 787 65.6 75.7
Central Stoneroller 105 73.3 731 77.2 75.2
Muskellunge 53 84.9 739 64.4 74.7
Rockbass 302 73.8 663 75.4 74.6
Northern Pike 251 61.8 667 87.4 74.6
Coho Salmon 75 72.0 763 76.0 74.0
Longnose Sucker 7 85.7 802 62.2 74.0
River Redhorse 3 66.7 788 81.2 74.0
Fathead Minnow 37 83.8 777 63.4 73.6
Smallmouth Bass 185 61.6 721 85.0 73.3
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Table 3.3, continued.

Common Name N Presen®o Present N Absent % AbsenAverage Accuracy
Longnose Gar 11 63.6 800 83.0 73.3
Quillback 180 61.1 794 84.9 73.0
Chestnut Lamprey 5 60.0 802 85.8 72.9
Grass Pickerel 101 66.3 694 78.7 72.5
Northern Logperch 104 63.5 746 80.6 72.1
Longnose Dace 134 67.2 717 76.7 72.0
Brassy Minnow 5 80.0 801 63.5 71.8
Green Sunfish 357 77.0 592 66.4 71.7
Striped Shiner* 18 61.1 101.0 81.8 71.5
Yellow Perch 221 61.9 650 80.2 71.0
Northern Hog Sucker 99 68.7 699 73.2 70.9
Finescale Dace* 10 60.0 104 81.7 70.9
Largemouth Bass 275 61.1 630 80.5 70.8
Creek Chub 401 75.1 398 64.6 69.8
Bluntnose Minnow 235 70.6 685 68.9 69.8
Common Shiner 353 68.3 621 71.0 69.7
Brook Stickleback 117 75.2 718 63.9 69.6
Oriental Weatherfish* 8 75.0 103 64.1 69.6
Orangespotted Sunfish* 15 66.7 106 70.8 68.7
Rainbow Trout 363 67.8 783 68.3 68.0
Johnny Darter 271 72.7 519 63.2 67.9
Warmouth 22 72.7 776 63.1 67.9
Rainbow Darter 98 60.2 693 75.6 67.9
Black Bullhead 78 65.4 762 70.1 67.8
Pumpkinseed 116 66.4 676 69.1 67.7
Brown Trout 711 70.0 531 65.3 67.7
Hornyhead Chub 137 73.7 737 61.3 67.5
lowa Darter 10 70.0 800 62.3 66.1
Brown Bullhead 33 60.6 777 71.6 66.1
Redside Dace 5 60.0 803 71.9 65.9
Northern Redbelly Dace 46 69.6 763 61.9 65.7
Burbot 98 53.0 752 77.7 65.4
Lake Chubsucker 5 60.0 786 70.4 65.2
Central Mudminnow 481 69.0 514 61.1 65.1
Blackside Darter 259 60.2 669 69.7 65.0
Golden Shiner 18 61.1 775 68.1 64.6
Bluegill 284 60.2 641 68.6 64.4
White Sucker 761 66.8 379 60.7 63.7
Least Darter 5 60.0 785 64.1 62.0
Bowfin 24 62.5 782 61.5 62.0
Silver Lamprey* 10 60.0 90 63.3 61.7
Banded Killifish 14 71.4 105 51.4 61.4
Longear Sunfish 8 50.0 783 71.6 60.8
Northern Pearl Dace 16 62.5 795 52.6 57.5
Western Blacknose Dace 464 85.6 514 24.1 54.9
Northern Brook Lamprey 19 31.6 796 77.6 54.6
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Table 3.3, continued.

N % Average
Common Name Present % Present N AbsentAbsent Accuracy
American Brook
Lamprey 8 25.0 799 84.0 54.5
Creek Chubsucker 14 14.3 781 84.6 49.5
Freshwater Drum 33 36.4 781 62.5 49.5
Eastern Sand Darter 8 37.5 106 59.4 48.5
Blacknose Shiner 17 17.6 796 56.9 37.3

* Test data is a 20% holdout from the MRI training data
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Table 3.4. The number of times a habitat variable is indlirdéhe A) 82 Michigan
stream fish PA models with a presence and absence eggueater than 60%, B) and all
10 of the 3-category Michigan stream fish RA models aad&2-category Michigan
stream fish RA models with a low and high accuracy graaan 60%.

A)

Variable Code Number Percentage
WATER_TEMP 45 54.9
CATCHAREA 44 53.7
WT_MAAT 26 31.7
TOTAL_P_PPM 24 29.3
TEN_YIELD 22 26.8
WT_FOREST 17 20.7
WT_COARSE 15 18.3
UP_POND 15 18.3
TEN_POWER 15 18.3
NINETY_YIELD 14 17.1
RT_AGR 13 15.9
WT_WETLAND 13 15.9
WT_AGR 13 15.9
WT_URBAN 12 14.6
RT_FOREST 12 14.6
RT_WETLAND 11 13.4
NINETY_POWER 10 12.2
DOWN_POND 8 9.8
RT_URBAN 8 9.8
WT_FINE 7 8.5
GRADIENT 7 8.5
LINKDCATCH 6 7.3
DOWN_LENGTH 6 7.3
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B)
Variable Code Number Percentage
CATCHAREA 18 41.9
TOTAL_P__PPM 14 32.6
WT_COARSE 12 27.9
NINETY_YIELD 11 25.6
LINKDCATCH 10 23.3
GRADIENT 9 20.9
WT_MAAT 9 20.9
WATER_TEMP 8 18.6
RT_AGR 7 16.3
WT_WETLAND 7 16.3
RT_WETLAND 7 16.3
TEN_YIELD 6 14.0
NINETY_POWER 6 14.0
RT_FOREST 6 14.0
UP_POND 6 14.0
DOWN_POND 4 9.3
WT_FINE 4 9.3
TEN_POWER 4 9.3
RT_URBAN 4 9.3
WT_FOREST 3 7.0
DOWN_LENGTH 3 7.0
WT_AGR 2 4.7
WT_URBAN 1 2.3




Table 3.5. Sample size and % correct agreement betwediotpd RA category and
observed values in the test dataset, for each 3-catBgomgodel. The list is sorted by
the average between % low, % medium, and % high. \ém@age value does not
consider differences in N between the three categories

Average of Low,

N % N % N % Medium,
Common Name Low Low Medium Medium High High and High
Brook Stickleback 6 66.6 5 100.0 5 80.0 82.2
Northern Pike 21 85.7 20 60.0 5 100.0 81.9
Brown Bullhead* 19 79.0 11 63.6 4 100.0 80.9
Central Stoneroller 8 87.5 5 60.0 5 80.0 75.8
Longnose Dace 9 77.8 3 66.7 5 60.0 68.2
Black Crappie* 68 66.2 47 55.3 5 80 67.2
Greater Redhorse* 15 53.3 20 35.0 3 100.0 62.8
Tadpole Madtom* 9 66.7 19 52.6 26 68.8 62.7
Redfin Shiner* 12 75.0 21 33.3 4 75.0 61.1
Silver Redhorse* 20 60.0 12 58.3 2 50.0 56.1

*Species was tested using a cross-validation proceduer thdn 20% of the original data (Steinberg
and Colla 1997).
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Table 3.6. Sample size and % correct agreement betwediotpd RA category and
observed values in the test dataset, for each 2-catBgomgodel. The list is sorted by
the average between % low and % high. The average da&senot consider differences
in N between the two categories.

N % N % Average of
Common Name Low Low High High Low and High
Channel Catfish 4 100.0 3 100.0 100.0
Golden Shiner 6 100.0 2 100.0 100.0
Pirate Perch 2 100.0 4 100.0 100.0
Common Carp 10 80.0 9 100.0 90.0
Pumpkinseed 18 94.4 13 84.6 89.5
Rockbass 14 100.0 26 76.9 88.5
Stonecat 6 100.0 13 76.9 88.5
Shorthead Redhorse 4 75.0 3 100.0 87.5
Slimy Sculpin 8 87.5 7 85.7 86.6
Bluntnose Minnow 11 90.9 33 81.8 86.4
Yellow Bullhead 10 80.0 9 88.9 84.5
Black Bullhead 8 87.5 5 80.0 83.8
Grass Pickerel 5 100.0 3 66.7 83.3
Golden Redhorse 6 83.3 14 78.6 81.0
Blackside Darter 16 81.3 24 79.2 80.3
Spotfin Shiner 4 100.0 5 60.0 80.0
Northern Hog Sucker 11 90.9 16 68.8 79.8
Green Sunfish 14 78.6 18 77.8 78.2
Largemouth Bass 17 70.6 7 85.7 78.1
Western Blacknose Dace 19 89.5 17 64.7 77.1
Bluegill 15 73.3 10 80.0 76.7
Hornyhead Chub 9 66.7 14 85.7 76.2
White Sucker 32 75.0 37 75.7 75.4
Rainbow Trout 14 71.4 13 76.9 74.2
Brook Trout 17 64.7 24 83.3 74.0
Smallmouth Bass 12 75.0 10 70.0 72.5
Mottled Sculpin 24 75.0 19 68.4 71.7
Yellow Perch 12 66.7 4 75.0 70.8
Central Mudminnow 22 77.2 23 60.8 69.0
Logperch 10 80.0 7 57.1 68.6
Johnny Darter 21 71.4 32 65.6 68.5
Common Shiner 15 60.0 36 72.2 66.1
Brown Trout 19 63.2 21 66.7 64.9
Creek Chub 27 63.0 33 60.1 61.6
Rainbow Darter 13 53.8 11 63.3 58.6
Roseyface Shiner 5 60.0 8 50.0 55.0
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Figure 3.1. Classification tree of the brown bullheadn®¥del. Variable descriptions are
given in Table 3.1. An observation less than or equtié split value is sent to the node
to the left, otherwise, it goes to the right. Therti@al node indicates the final
classification of the observation. Terminal node 2 @&imtlicate how the classification
tree deals with uneven sample sizes between presed@baence. These nodes are
classified as “present” even though they have more fdbsbservations, because the
frequency of “present” observations is higher in greninal node than it was in the

mother node.
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Figure 3.2. The percentage of Michigan stream fish moldatddll within certain ranges
of the average accuracy level for A) the 93 PA models,B) the 46 RA models.
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Figure 3.3. A) A rockbass distribution map that combinedigtiens from the PA model
and RA model. B) Presence/absence data that was usatlittigenodel: Presence
73.8% correct, Absence 75.4% correct. C) Abundance data élsatsed to test this
model: Low 100% correct, High 76.9% correct. If PA model joted a fish to be absent
in a stream reach, the final prediction was “absesgardless of abundance model result.
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Figure 3.3, continued.
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Chapter 4

Predicting past and future changes in Muskegon River viigigi(®ichigan, USA) game
fish under land-use alteration and climate change scenario

Abstract

Future alterations in land-use and climate have the patémttause substantial
changes in the composition of stream fish communiti&tseam fish predictive
distribution models are an important tool to assesptbieability of these changes
causing species gain, loss, or extirpation. In this stidgsification tree models
predicting the probability of species presence were apfdithe Muskegon Watershed
(Michigan, USA). The models were applied to three potefutiare scenarios: 1) land-
use change only, 2) land-use change and@ i8crease in air temperature by 2100, and
3) land-use change and &G increase in air temperature by 2100. The analysisatetic
that the expected change in air and subsequent changg¢eintemperatures resulted in
the decline of cold-water fish in the Muskegon watershethéend of the Zicentury
while warm-water species were predicted to significainityease in range. Changes in
land-use are expected to cause large changes in a fegulaarfish species such as
walleye and Chinook salmon, but are not predicted to drev@vkrall changes in fish
composition. Through interpretation of the classifaratree models, managers can
develop plans about how stream environmental conditiomsid be altered to maximize

the probability of species residing in particular streaathes.
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Introduction

The extirpation of Arctic grayling from Michigan streartisg reduction of lake
trout in the Great Lakes, and loss of unique salmon subespim the western United
States have something in common: they are the refdulinoan disturbance in the
environment. Over-fishing, pollution, dams, habitat degradatind exotic species,
among many other stressors, reduce native fish habdadamage the integrity of an
ecosystem’s trophic structure. As a result of thef@@pogenic impacts, we have seen
fish community changes in the past and should expeat mdhe future.

It is important to be able to anticipate future impactdish communities.
Knowledge of the loss of the grayling may have persuadeddiens to place more
restrictions on 19 century logging practices, which contributed significatalyhe
species decline. Predicting likely future changes indhmunities can allow us to
anticipate economic hardship in businesses dependent orisperies, allow managers
time to alter practices such as stocking patterns, diatdh, and fishing seasons, allow
conservation groups to study and maintain areas with aislgbf habitat degradation,
and create more public awareness of the importance eflansgl-use management
practices. Models of fish community changes can hetpuastify the risk to fish
populations, indicate what environmental conditions ghbalchanged or maintained to
obtain maximum fish potential, and inform our decisiorkimg processes.

Human use of land has constantly changed from the pifersent era to the
present, and land-use shifts over the next century malbubtedly continue to have
effects on fauna of aquatic systems. It is antieipabat developed land in the US will

increase by 79% over the next 25 years (Alig et al. 2004) vidudes poorly for fish
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communities because of the strong negative relatiomgtipeen urban land, fish health,
and fish biotic integrityScott et al. 1986; Weaver and Garman 1994; Wang et al. 2001,
Tabit and Johnson 2002; Snyder et al. 2003; Wang et al. 2003a;\éiitak 2004). On
the other hand, this increase of urban land will be médyaomewhat by expected
reduction of agricultural land (Pijanowski et al. 2001); agture is predicted to have
negative effects on fish although these effects arasstrong as urban effects (Hall et

al. 1999; Talmage et al. 2002; Wang et al. 2003b; Zimmermanz2£G8; Barker et al.
2006). In addition; natural land-cover such as forests, wharkase hydrologic stability
and provide in-stream habitat, will likely continue to repl@ld agricultural fields (Roy

et al. 2006; Barker et al. 2006; Meador and Goldstein 2003).

It is anticipated that climate change will also henggor effects on the future of
fish communities. Global warming will increase watanperatures, altered precipitation
patterns and increased evaporation will result in chaingeater quantity, and water
guantity changes will affect water quality due to change®ntentration of the water’s
chemical constituents (Regier and Meisner 1990, Schlinder 2001).

Several studies have predicted that water temperaitneases due to climate
change will result in reductions of brook trout, brainaut, and other coldwater species.
Meisner (1990) predicted 40% trout reductions for southeraridnétreams, Flebbe
(1996) predicted trout reductions between 53 and 97% in theesaudppalachian
mountains, and Jager et al. (1999) predicted that climareehwould restrict brown and
rainbow trout from lower elevation to higher elevatiiarra Nevada streams. Eaton and
Scheller (1996), using models based solely on thermal hagiigaticted that global

warming of 4°C would reduce cold and cool-water fish across the UnitaidSby 50%.

104



Across the US, increased water temperatures due to elchahge are projected to
reduce the number of lakes able to hold cold and cool-Wiiakecommunities by 45%
and 30% respectively (Stefan et al. 2001).

On the other hand, higher water temperatures are pddatincrease growth of
largemouth bass (McCauley and Kilgour 1990) and smallmouth (kang et al. 1999).
For the Great Lakes proper, Magnuson et al. (1990) repinaethermal habitat will
increase for cold, cool, and warm water fish becauss ofdhe water is currently too
cold to support even cold-water species much of the yEaey predicted that the
growing season length and range of depths with suitableet@tures would increase for
all species.

In this study, | examined how game fish in the streaimiseoMuskegon River
watershed (Michigan, USA) are expected to change iatheentury with possible
changes in land-use and stream temperature. The modelssults were used to
indicate how stream environmental conditions should leeegltto maximize the
probability of species residing in particular streamheac

This modeling effort represents a part of the MuskegonrHeelogical
Modeling System (MREMS), a modeling framework capable ddipteg future and
past states of the Muskegon River System and evaludtely thanges in hydrology,
chemistry, and biology (Seelbach and Wiley 2005; Risemad) 006). Risk analyses
developed from MREMS are used to aid researchers andstagaholders in monitoring
and restoration activities.

Also, this study provides a justification for using clasatfion tree models

developed on present day habitat to predict future fishlaistbns. The models in this
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study were developed from a classification tree technique asita based on year 2001
habitat values. How do we know that models created esept day data can be applied
to future scenarios? In order to justify using these maddedsedict in the future, it is
necessary to provide a conceptual argument about howtteengan the data identified
by the classification tree algorithm can have real wadgning to the different fish

species.

M ethods
Study units

The Muskegon watershed, located in the western Lowengtda of Michigan,
incorporates over 6,000 square kilometers of land, whichngposed of a moderate mix
of urban, agriculture, forest, and wetland land-use (Q;N€®7). The Muskegon
River system, which is over 2,800 kilometers in lengthindranto Lake Michigan.
Water quality is good throughout the system, and stablesfiue to permeable geology
and high groundwater input provide for high quality cool and-odlter fisheries.

Five sections of the Muskegon system are particulambortant to sport fisheries
and were examined in greater detail throughout this study (FHgliye The main branch
of the Muskegon River from Muskegon Lake to Croton Danps@ximately 70
kilometers long, and supports population$arider vitreus walleye,Micropterus
dolomieu smallmouth bas$sox Lucius northern pikeOncorhynchus mykiss steelhead
(rainbow trout),Salmon trutta brown trout, anddncorhynchus tshawytscha Chinook

salmon (O’Neal, 1997, Hanchin, 2007). Hereatfter, mentidheofower Muskegon River
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refers to this river section, while the Muskegon Rexstem refers to all of the streams
in the Muskegon watershed.

Flowing into the lower Muskegon River near Croton Damige®Bw Creek, a
stretch of water only 18 kilometers long but known faremxely cold water and good
Salvelinus fontinalis brook trout and brown trout populations as well apfowviding
important spawning grounds for steelhead and Chinook. Cedak (G 38 kilometer
cold-water stream that flows into Muskegon Lake, providesléent habitat for brook
and brown trout and also supports Chinook. Upstream fnarto@ Dam, the cold/cool
water Middle Branch River (48 kilometers long) and ClaweRi(78 kilometers long)
have good brook and brown trout populations. PortiotkeoMiddle Branch River and
Clam River have been designated as blue-ribbon troainssréy the Michigan

Department of Natural Resources (Trout Unlimited 2008).

Model Development and Application

Changes in the fish community of the Muskegon River systere predicted
using classification tree fish distribution models thawe been developed for the entire
state of Michigan (Chapter 3). These models predictadsfiscies presence/absence on
inter-confluence stream reaches based on the 1:100,000&atipdrography Dataset
(Brendan et al. 2006; NHD 2007). Using statewide fish ardktzape-scale habitat data
(Table 4.1), ninety-three presence/absence classificaige models were built for the
most common Michigan river species. The models wergaogd to an independent data
set to obtain a measure of model accuracy. In this stundlythe models for 9 species of

common game fish are used: brook trout, brown trokind®k salmonOncorhynchus
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kisutch Coho salmoniMicropterus salmoides largemouth bass, northern pike, rainbow
trout, smallmouth bass, and walleye.

For each species, on every stream reach in the Naskeiver system, |
estimated the frequency of species occurrence (F@easimber of presence
observations classified into a terminal node of thestl@ation tree model compared to
all observations classified into this terminal noder &@ample, across Michigan, stream
reaches with a July mean water temperature greaterlih3°C contained brook trout in
9 of 276 (0.03) of the training observations and 29 of 205 (0.12pdé#hing
observations (combined together, 38 of 472 (0.07) of thesevabiseis contain brook
trout) (Appendix A). | made the assumption that thers sampled in the training and
testing data are representative of the streams in fiahitherefore, | predicted that in
the Muskegon system, stream reaches with a daily Jedynrwater temperature greater
than 19.3C contain brook trout at a frequency of 0.07. Usingrieasurement in our
analysis built in realism beyond “present” and “absbatause brook trout may
conceivably be found in warmer water temperatures. T@’\Alue represents one
terminal node in the classification tree; streamheaavith different combinations of
habitat values were classified into different termmades that had different frequencies
of occurrence.

For each game fish, | summarized the percent charmecafrence for the entire
Muskegon River system and for each study unit (Lower Muskegedar River,

Bigelow Creek, Middle Branch River, Clam River). To H®t | took the average of the
frequency of occurrence (FO) for the stream reachepaosing each unit, weighted by

stream length, and converted it to a percentage. Forpdxaiithe Cedar River was
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composed of three stream reaches with lengths of 10nd 1, 2kilometers and
frequencies of brown trout occurrence of 0.3, 0.5, andr@spectively, then the average
percent change of the occurrence per stream kiloneaténig 33 kilometer stream reach
would be (0.3*10)+(0.5*11)+(0.8*12)/ (10+11+12) = 0.55 or 55%. According #o thi
interpretation, sampling any random kilometer in this 3@rkéter stream reach would

result in a 55% chance of finding brown trout.

Backcasting and Forecasting

To apply the fish models to both the past and presemigebavere made in
several of the predictive habitat variables on which tbdets are based (Table 4.1).
Application of land transformation models (Pijanowskal. 2001) to the Muskegon
watershed produced estimates of urban, agriculture, faretyvetland land-use for each
decade from 1900-1970, for each decade from 2010 to 2040, and 2070 and 21@0 (Figur
4.2). This iteration of the land transformation modsienes “business-as-usual”
approaches to land development; current rates of lansfaramation will continue in the
future. Measured land-use data were available for thegptleraent era (approximately
1830) and 1978.

Since the land transformation model data and 1978 databaseel on aerial
photos but the 2001 data (upon which the models were creetee pased on satellite
images (MCGI 2007), | needed to transform 1978 land-use and &rsdarmation
model land-use into a data format compatible with 2001 coverggelo this, | used
simple linear regression equations for the years 2001liteatéépendent variable) and

1998 (aerial photos, independent variable) for each landatsgary (urban, agriculture,
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forest, and wetland) and applied them to the 1978 land-uskatkeasted land-use, and
the forecasted land-use.

Ninety and ten percent exceedence flows and stream patveh were predicted
from regressions based on urbanization, agriculture, afidisbgeology, were adjusted
for each year of the backcasted and forecasted lan(Buseden et al 2006). Also, total
phosphorus, which depended heavily on agriculture (Chaptea8)predicted for each
year of the backcasted and forecasted land-use.

The variable DOWN_LENGTH, which measured the distdra® stream reach
to Great Lake and also identified whether a dam interdugit connection, was updated
for the historical model years. For 1830, all dams wer®ved from the Muskegon
system. Other dams were replaced back into the DOWNGTH variable as time
progressed. Of these changes, of greatest note isittie@ of the Croton Dam in 1906,
which separates about two-thirds of the Muskegon stegatem from Lake Michigan.

| developed three potential scenarios for what could hajgpkabitat variables in
the future. The baseline scenario assumes no globalimgrfuture air and water
temperatures remain the same from the 2001 levels althoagblogy, land-use, and
phosphorus change as described above. The “slow temgechtamge” scenario uses
these changes but also adds the assumption that airgeompevarms 3C linearly from
2001 to 2100 (0.03C per year). The “fast temperature-change” scenasoraes that
air temperature warms°& linearly from 2001 to 2100 (0.0% per year). These values
are used because studies of air temperature change aredicrease of 3-5C by 2100
(Thomson et al. 2005). Given the difficulty of determghnhow climate change will alter

precipitation, | decided to concentrate on temperatusagdnand not implement water
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guantity changes except for those changes caused by lantieuagoa in the flow
regression models.

| expected that the stream water temperature will notwveer quickly as air
temperature for two reasons: First, water has a hggesific heat than the atmosphere
SO it takes more energy input per unit of mass to raigemperature. Secondly, a
portion of the water in a stream comes via groundwatgmyg. Because the temperature
of groundwater is approximately equal to the mean annuarapdrature, groundwater
temperature will increase over time, but the increasewill be less than the air
temperature increase rate given that groundwater is thetimeasurface and insulated
from changes in the atmosphere. Stefan and Preud’eqii®93) found that in the
surface run-off driven streams of northern and centndiges of the Mississippi River
basin, weekly water temperature increased by 0.86 tineesebkly air temperature.
However, they indicated that this value would be too higlyfoundwater systems.
Glacial processes deposited large amount of sand and graeed the Muskegon River
system now flows, so groundwater is a major sourceredus discharge for Muskegon
streams. Therefore, | made the assumption that weatgrerature will increase by 0.8
times the rate of air temperature increase (StefdriPaeud’homme 1993; Eaton and
Scheller 1996; Schindler 1997). This keeps the conversion natargio that which was
reported in the literature but adjusts it slightly foalspes in the water source.

Classification tree models and the altered land-usef¢cstream discharge and
power, and phosphorus variables were used to make hisfangchttions (pre-settlement
to 1978) for each game fish mentioned above. Classificaig@® models and the altered

variables appropriate to each future scenario were usedk®e future predictions for
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each game fish. From these predictions we determimepeiftent chance of occurrence
of each fish in the Muskegon River system and the fweysunits and examined how the
percent chance of occurrence changed over time.

Not all fish species examined in this chapter are natilidbigan and therefore
were not present in Michigan in the pre-settlement &mwn trout and rainbow trout
were introduced into Michigan in the late™@entury; therefore, predictions were not
made for these species during the pre-settlement eraodand Coho salmon were
introduced to the Great Lakes basin in 1967; therefore applicof these models to the
Muskegon watershed began at 1970. It is not known whethek tioad were
widespread throughout the Muskegon in the pre-settlemeniuerto competition with
the Arctic graying, which occupied similar habitat (Scott @nossman 1973). The
model’'s pre-settlement predictions of brook trout mayappthis species instead.
However, by 1900 Arctic grayling had disappeared throughout yachso predictions

from 1900 and later apply only to brook trout.

Results
Brook Trout
The brook trout model predicted that the majorityhaf streams during the pre-
settlement Muskegon River system were classifiedtertminal node 4 (frequency of
occurrence, FO 0.80) and 2 (FO 0.84) (Appendix A). Thereforst of the river system
had a high chance of brook trout (or Arctic grayling)spree during the pre-settlement
era. However, as agriculture and phosphorus increasmaptinthe turn of the century,

the model predicted that many of these streams lost sétheir brook trout potential
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(terminal node 5, FO 0.44). From 1900 to 2001, there was apprekmnaad5% chance
of finding brook trout in any random kilometer of stresmthe Muskegon River system
(Table 4.2A).

In the baseline future scenario, a reduction in phosighduwe to agriculture loss
resulted in reclassifying streams from terminal node 5@HA®G) to terminal nodes 1 (FO
0.51) and 4 (FO 0.80). Therefore, under future land-use chaegmottel predicted
brook trout populations increasing slightly across theskégon system (Figure 4.3).
However, under this scenario the model also predictedraateof percent chance of
occurrence by 19% in Bigelow Creek (Table 4.2A) due to fosshkiction and
subsequent stream reclassification from terminal nod®©2(B4) to 1 (FO 0.51).

A mean July water temperature value of over 19.4 °Qteskin classification of
streams into terminal node 6 (FO 0.07). Therefore, ih bbthe temperature-change
scenarios, the model predicted that brook trout pregaleras drastically cut through the
21% century (Figure 4.3). Eventually, whether the temperathamge was slow or fast,
the model predicted virtual eradication of brook trodthe exception to this was the
Cedar River, which was cold enough to withstand the watepérature increase in the

slow temperature-change scenario (at least through 2100 (F2A).

Brown Trout

The models predicted that past and future land-use changesaosk minor
fluctuations of brown trout population in the Muskegonexshed (Figure 4.3).
However, in the future climate warming scenarios, tbel@hpredicted an eventual shift

in stream classification to terminal node 4 (FO 0.16) 2uFO 0.36) because most

113



streams increased in temperature above 20.2 °C (AppendigyB2100, brown trout in
Bigelow Creek and the Cedar River were predicted to dedimdly under the high
temperature-change scenario as higher temperatures comhihetforestation resulted
in streams classified into terminal node 4 (FO 0.16) @4#®B). However, streams with
greater than 30% forest land-cover in the watershexhifial node 5, FO 0.36) have
some potential to hold brown trout despite the high wataperatures. Therefore,
brown trout across the Muskegon system were predictedakeroverall but maintain

populations in the lower Muskegon, Clam, and Middle BreRislers (Table 4.2B).

Rainbow Trout

The rainbow trout model had a high frequency of occurréarcgtreams with a
July mean water temperature less than 19.7 °C and wighdam blocking passage to a
Great Lake (terminal node 1, FO 0.69) (Appendix C). In 1900nthdels predicted that
78% of the Muskegon River system was classified into #tisgory. In 1906, the Croton
Dam was built on the main branch of the Muskegon Rivet,sabsequently the percent
chance of species occurrence in the Muskegon River sysésmeduced by about 40%
(Figure 4.3). The Middle Branch and Clam Rivers, whichaé@ve Croton dam, drop
50% and 30% respectively in their percent chance of presenceg this time (Table
4.2C).

Predictions made under the baseline future scenario iaditaat the percent
chance of rainbow trout occurrence in lower MuskegoriRilecreased in half due to
reductions in baseflow caused by increased urbanizatiorubsdguent stream

reclassification from terminal node 7 (FO 0.21) to 5 (F@®P(Table 4.2C). The
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increase of temperature in the warming scenarios egsuntreductions similar to brook
trout. Bigelow Creek maintained a 70% percent chanceesepce per kilometer until
2040 in the fast temperature-change scenario and until 207€ $totl temperature-
change scenario, due to its cold water (Table 4.2C)nbiRai trout started to decrease in
the Cedar by 2020, stabilized until 2070, and then declined ra@yy2100, under the
fast temperature-change scenario, rainbow trout wasally gone from the Muskegon
River system (Table 4.2C, Figure 4.3). In the slow teaipee-change scenario, the
species was able to maintain a presence below the Gtatoin 2100, but was on a

trajectory towards extirpation by 2130.

Chinook and Coho Salmon

Dam location was very important for both of these sgs¢he best Chinook
streams (terminal node 2, FO 0.39) (Appendix D) and besbt Gmeams (terminal node
1, FO 0.33) (Appendix E) were only found below Croton Daspstream from Croton
Dam, the Chinook model predicted a low chance of presarsteeams within a
kilometer upstream of lakes greater than .04 (B acres) (terminal 4, FO 0.14). Only
four river reaches upstream from the Croton Dam haveace of Coho presence, and
they have a low probability of occurrence (terminal n6dgeO 0.15).

In the baseline future scenario, Chinook was predictegéppear by 2100 in
both Cedar Creek and Bigelow Creek due to the decreaseest fand-cover in their
watersheds and subsequent switch from terminal node B.@9)to terminal node 1
(FO 0.0) (Table 4.2D). The lower Muskegon River maintaingdaa Chinook

population throughout the predicted years. Temperatunegehscenarios were not
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applied to this species because the classificationmoskel did not include a temperature
variable.

Future land-use changes are not expected to affect thee Gahincrease of
water temperature above 18.0 °C, however, reclassifiedss below Croton Dam from
terminal node 1 (0.33) to terminal node 2 (0.09) in the globamig scenarios.
Bigelow and Cedar Creeks are predicted to lose neaipptdhtial for Coho by 2100 due

to the future temperature increase (Table 4.2D).

Smallmouth and Largemouth Bass

While variables affected by land-use change (total phosphodigen percent
exceedence flow yield) were included in smallmouth baddargemouth bass models,
they did not change enough throughout the years of moditatum to change
occurrence results from pre-settlement levels. dfbee, from 1830-2100 under land-
use change only, the models did not predict that thelisivn of these two species in
the Muskegon River system would change (Figure 4.3). Durisgithé period, the
model predicted smallmouth bass to be found in warm, largesy such as the lower
Muskegon River and in pieces of the Clam River (AppendixLi@rgemouth bass was
predicted to be in these streams as well as in cabharm-water rivers (>18.9 °C)
within 20 km of ponds and lakes (Appendix G).

Under the climate warming scenarios, smallmouth bass able to move into
smaller streams that used to be too cold to support tiB3n2100, across the watershed,
the percent chance of smallmouth presence was pretlictectease by 8% under the

fast temperature-change scenario (Table 4.2E). Thenpettance of smallmouth
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presence in the Clam River was expected to increase by 12%0Bywhile the percent
chance of smallmouth presence in the colder streaBgelow Creek and Middle
Branch River just started to increase upon reaching 2100 (HQRES. If the models
were run through 2200, the predictions would show smallmasgh Wwidely prevalent
throughout the watershed.

By 2100, the model predicted an increase across theshatkein the percent
chance of largemouth bass occurrence by 12% for theHasge-temperature scenario
and 10% for the slow-change scenario (Figure 4.3F). Thelrpozticted an
approximately 25% increase in the probability of largempuéisence for Bigelow Creek
and Middle Branch, and a very small increase for CedeelC The probability of
largemouth presence in the Clam or the lower Muskegoer&did not increase with
temperature change in the future scenarios, since in 2064 streams already had a July
mean water temperature greater than 18.9 °C, the tempetiateshold identified by the

largemouth bass model (Appendix G).

Northern Pike

The northern pike model had a high frequency of occuerehthe species in
streams with a July mean water temperature grdsdar21.9 °C (terminal node 6, FO
0.74) (Appendix H). As the Muskegon is a largely cold and-e@ér system, from the
pre-settlement era through 2001 the only river reachegshigtinigh frequency of
occurrence were pieces of lower Muskegon River (Table 4.BHhe baseline future

scenario, it was predicted that northern pike distrdsutvould not change (Figure 4.3).
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Water temperature increases in the fast temperatarggerfuture scenarios,
though, caused the percent chance of northern pikerease by 22% across the entire
Muskegon system (Figure 4.3). Individual streams vary.aWwer Muskegon River
remained unchanged because its temperature was alreadythb@4.9 °C threshold
given by the classification model (Appendix H). BigelGweek remained unchanged
due to its very low water temperature, and Cedar Creekimergased by 15% percent
chance of presence in the fast temperature-changeriscerigne Clam River, however,
had July mean water temperatures very close to 21.h&tdnereases in water
temperature caused an increase of nearly 50% in pett@mtes of northern pike for both
climate-warming scenarios. The Middle Branch, whiak & water temperature between
the Clam and Cedar, increased by 30% in percent chanoetbém pike occurrence by

2070 in the fast-change temperature scenario.

Walleye

The walleye model has a frequency of occurrence of 0.8Feams with a
catchment area greater than 656 kilometers and wittHass8.5% of urbanization in the
watershed (terminal node 4) (Appendix I). From the ptdesnent era until 2030, the
main branch of the Muskegon River was the only streatntiet this criterion.
However, due to expected future urban expansion, urbaniZatidscover in the
watershed of the lower Muskegon River was predicted tyrdeter than 8.5% by 2040,
and the rest of the main branch Muskegon River, abogdalow Croton Dam, was
expected to be above 8.5% by 2070. This change reclashifigel $treams from

terminal node 4 (FO 0.57) to terminal node 5 (FO 0.26); thexefioe model predicted
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the prevalence of walleye was cut in half by 2070 (Table Eigure 4.3). Temperature-
change scenarios were not applied to this species bateusalleye classification tree

model did not include a temperature variable.

Discussion
Model Application

Across the Muskegon River system, the classificaties models predicted
substantial changes in the structure of the fish commbgi2100. Under land-use
change scenarios, models predicted the decline of wadleg Chinook salmon across the
system. Under future climate change scenarios, modelcprd decreases of Coho
salmon, brook, brown, and rainbow trout, and increaésmallmouth bass, largemouth
bass, and northern pike.

There was spatial variance on the overall effetteesystem; some streams
were predicted to change more, and others changed le® High temperature-change
scenario, Bigelow Creek lost virtually all brook, brovand rainbow trout, Chinook and
Coho Salmon, but gained largemouth bass and did not waemaygh to gain northern
pike. Cedar Creek was predicted to respond like Bigelow Cbegldue to higher initial
temperatures was able to gain northern pike. The Middiadh and Clam River lost
brook trout but were expected to maintain small popatof brown trout due to high
amounts of forest in their watersheds. Both of theees were expected to develop
substantial populations of northern pike, smallmouth,larggmouth bass. The lower
Muskegon River saw declines of walleye and Chinook due toasedeurbanization

throughout the watershed
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Changes in temperature were predicted to cause much ggleiftem fish
occurrence than changes in land-use. Typically, thent@tnperature variable was
brought into the classification tree models earlienodel formulation than land-use,
influencing a greater number of observations and ihdigats greater relative
importance. The dominant change in the Muskegon watkgas that the system was
predicted to switch from a system dominated by cold-wiatlerto a system dominated by
warm-water fish.

However, adjusting air and water temperature is aag/isbue and beyond the
power of fisheries managers. For these models to beedpplthe real world, such as
being used to prevent the predictions of this study frommptnue, managers need to
concentrate on the habitat variables that can beedlteAccording to these models,
increasing forest size, limiting urban areas, and decgagjricultural land can increase
the potential of fish to live in the Muskegon River systen addition, the phosphorus,
flow, and stream power variables in our models are pestlicom regression equations
based on land-use and can be controlled by urban and agecdelels (Brenden et al.
2006).

Changes in the habitat variables highlighted by our modet®tiguarantee the
species can live in the manipulated area, yet such chahgssst allow for increased
potential of species establishment. For example, raittmw is found in 26% of
streams that have a water temperature less thari@9afe above a dam, have a ninety
percent exceedence flow yield greater than 0.0043, and heategthan 19.5%
agriculture in the watershed (Appendix C, terminal nodeRBducing the agriculture in

the watershed to a level less than 19.5% would place g@sens in terminal node 3, for
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which the chance of rainbow trout presence is 49%. Alegrto the model, if
agriculture is reduced in the watersheds of these s$taamlikelihood of rainbow trout
presence will almost double.

Interpreting and applying the models in this manner worketfwer species as
well. In streams greater than 20@ , brown trout is only found in 6% of streams when
there is less than 30% forest in the watershed. Hawbr@wvn trout is found in 29% of
these warm streams when the amount of forest iw#ttershed is greater than 30%.
Increasing forest in the watershed to levels above 30%guadruple the percent chance
of finding brown trout in warm streams. Walleye is ofolynd in 26% in large streams
(catchment area > 650 square kilometers) with watershachigettion greater than 8.5%,
but across Michigan walleye is found in 57% of large steeaith less than 8.5%
urbanization. Keeping urbanization levels below 8.5%s3gsm®t$al for maintaining
walleye. Chinook salmon, Coho salmon, and rainbow tnautast more likely to be
found in streams directly connected to the Great Ldias in streams separated from the
Great Lakes by a dam. A continued emphasis on removing @apes;ially those that
are located near the Great Lakes, is important folagens who are interested in

maintaining and expanding salmon populations.

Classification tree justification

Classification trees are built through brute-force compalgorithms. For every
variable, the computer divides the data into two groups ampa@s the frequency of
the target classes in both groups. It does this fay@assible split in the variable,

splitting the data into two groups, one observationteh@ The final split that the
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computer chooses depends on the exact splitting rule ¢éhgicks, but in general the
split chosen is the one where the two groups haviewest amount of diversity possible
for the predicted classes. Clearly the computer carosstiy be using ecological
mechanisms to determine the shape of the tree; the procedurgly a pattern
processor and has no ability to understand what is reafipening in nature.

However, despite being a brainless process, this gigogroduces a tree that is
both ecological meaningful and accurate. The modet$ inghis study are able to
accurately predict the presence or absence of affiglsiream about 75% of the time
(Chapter 3). For most of the nodes in the trees (thcaghinly not all), the variable
chosen and the split made in that variable are cemsigtith our understanding of that
species’ physiological needs (e.g. temperature) or usw#ldadn the landscape (e.g.
distance from a lake).

Conceptually, the classification tree treats speasei§they were constrained to
live within certain variable ranges. Every split withiie tree marks either a lower or
upper bound of the range for a particular habitat variakually, only one end of the
range is recorded into the tree. For example, the &tabititability Index for brook trout
reports that the species is constrained to temperdiet@gen 0 and 24C (Raleigh
1982). Our brook trout model creates a cut value at°1®.4howing the upper endpoint
of the temperature range (Appendix A). However, becausédata for stream
temperatures never goes below aboutCl5he model does not show the lower range
boundary at all. For land-use data, a split createsgeraf habitat from that split value
to 100% or 0%. In fact, for any variable, the habitat rammgated from a single split

goes from the split value to either the minimum or mmaxn value of that variable in the
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dataset. The exception to this would be on the oacagi®n the model includes two or
more splits of a single variable, which would narréw habitat range to a portion of the
data. Since a classification tree model identifiea séries of habitat ranges, the pieces
of the tree are conceptually very similar to a quantéaversion of Hutchinson’s (1957)
n-dimensional niche- the habitat space in which a spec@&sde to maintain a
population. For example, a terminal node classifie¢pessént”, with three habitat
variable splits above it, represents a potential 3-dgwaal habitat space.

As the classification models used in this study givestimate of the niche, we
can conclude these models will accurately predict fistnidutions whether they predict
the occurrence of fish in the year 2001 or some yeideifuture, assuming that the niche
of the fish does not change in the future and thatweat changes in the predictor

variables will indeed match the variable changes giveharpossible future scenarios.

Abiotic Filters

The concept of the niche relates well to the abiiter framework (Tonn et al.
1990, Keddy 1992, Poff 1997), which explains that there areessHdrfilters, existing
on different scales, which must be passed in orderdpeaies to be present in any
particular place. This framework gives levels of impode to the dimensions of the
niche. The models used in this study quantitatively idgstime of the coarse filters; for
example, to pass the coarsest filter, brook troutiregjuvater less than 19:€. After
fulfilling this habitat requirement, the fish moves dowa tlassification tree to slightly
finer filters; the brook trout is more likely to beutad in low phosphorus streams with a

high amount of forest in the watershed. Meeting a specoarse scale “filter
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requirements” in an area does not guarantee that thesgan live there, but failure to
meet the requirements can give a convincing reason fothwehgpecies isot there.

The finest scale filters are those that these mattefsot specifically address,
such as microhabitat, species interactions, and foodimeations. For example,
Hanchin et al. (2007) reported a dramatic decline in walleyee Muskegon River due
to alewives feeding on walleye eggs and fry, but our modet®tibave the capability to
address this issue. However, these biotic interactiomsdded affect the model because
these variables have a part in controlling the traininggimee/absence data. Yet because
they are not included as predictors, the model attera@sdount for the variation left
unexplained using the variables that are included. Theref@enodels will inherently
contain error as they will be unable to fully expl#ie data since the variables we do

include are not fully correlated with the important aates we do not have.

Model Limitations

As with all models, there are limitations to thedicdons that must be
recognized. For example, in the two global warming futaeaarios, | only altered
mean annual air temperature and stream temperature velgwémate change is
expected to affect many of the model input variables, aac¢btal phosphorus and stream
exceedence flows, which rely on water quantity and watality (Regier and Meisner
1990). Itis expected that changes in water quality and duailiiaffect future fish
distributions, but these changes are difficult to mteaind apply in our models. Because
changes in water quantity and water quality due to cliclzd@ge are generally thought

to be negative on fish, these predictions may be bestsmenarios (Schindler 2001).
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All models in this study were built with present day pemature data. Typically
in these models, warm-water fish have a lower boungtimperature but not an upper
bound; for example, smallmouth bass is unlikely to bedanmwater less than 21°€
(Appendix F), but does not have an upper bound in the méa@D01, the maximum
July mean water temperature of Michigan streams is dragfC, which is below the
maximum temperature a smallmouth bass can tolerate (amately 32°C, Edwards et
al. 1983), and therefore due to how classification tre=buaiit it was impossible to have
an upper bound temperature. In the future predictions, mmath bass fish are
predicted to live in streams no matter how hot theytgetmodels lose realism when
applying them to water that due to global warming is out$idedange of the temperature
on which it was created. Having upper temperature boundswon-water species may
be more realistic for future scenarios in which stréamperatures could become quite
hot.

To determine the effect of temperature and warming tefeaross the Muskegon
watershed, analyses were based on stream length. vieigweadwater streams one
kilometer long and main stem river one kilometer loreyabviously much different in
overall stream size. Stream length was used insteadnofe informative measurement
such as stream area due to difficulties in obtaining stne@th. Stream length is easily
obtained with GIS. Potentially, due to this problem thedlmted occurrence of larger
stream fish such as walleye will be lower than tgaind the predicted occurrence of
headwater fish such as brook trout will be too largeomparison. Overall, this problem
was minor as the overall trends for a particular ggewiould not change despite the

measurement used.
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Conclusion

The predictions given in this study indicate thatNheskegon River system will
shift from cold-water fish communities to warm-watenumunities during the 21
century given temperature increases and business-asastialdvelopment. Future
predictions such as this are useful because they prostiealwarning and an incentive
for action. The fish models indicate that landscagadeshabitat and disturbance can
have both positive and negative effects on any paatiggecies; a clear task of managers
is to both restore and maintain stream and watershed thatutardingly to maximize

species potential and minimize species risk.
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Table 4.1. List of habitat and land-use stressor variaisled in the creation of the
presence/absence models for Michigan stream fishesdeRueiptive statistics

summarize the entire Michigan stream population.

Variable Code Variable Description Unit Min Max Mean
Temperature
WATER_TEMP Water temperature, predicted July mean =®lsi 12.3 26.2 19.5
WT_MAAT Mean annual air temperature Celsius 3.7 9.8 7.3
Position in Catchment
CATCHAREA Area of the watershed Km 0.72 14103.5 721
Connectivity
Distance upstream to closest pond >=5
UP_POND acres meters 0 57566.4 8948
Distance downstream to closest pond
DOWN_POND >=10 acres meters 0 195470.1 29732.2
or Great Lake
Distance from downstream reach with
LINKDCATCH 10% >= meters 0 58851 2871
catchment area than target reach
Distance to Great Lake from
DOWN_LENGTH downstream end meters 0 130093.1 31886.8
of reach
Geology/Hydrologic
Fine-grain surficial geology -
WT_FINE percentage of watershed % 0 1 0.11
Coarse-grain surficial geology-
WT_COARSE percentage of watershed % 0 1 0.65
cms/km
TEN_YIELD 10% exceedence flow yield 2 0.0075 0.0416 0.0186
cms/km
NINETY_YIELD  90% exceedence flow yield 2 0.0001 0.0264 0.0039
GRADIENT Channel gradient unitless 0 0.0288 0.0026
cms/km
TEN_POWER High flow-based specific power 2 0 0.0073 0.0005
cms/km
NINETY_POWER Summer flow-based specific power  ? 0 0.0021 0.0001
Land-use
Forest Land cover - percentage of
WT_FOREST watershed % 0.02 0.95 0.41
Wetland land cover- percentage of
WT_WETLAND  watershed % 0 0.56 0.15
Agricultural land-use- percentage of
WT_AGR watershed % 0 0.95 0.28
Urban land-use- percentage of
WT_URBAN watershed % 0 0.64 0.05
Water Quality
TOTAL_P__ PPM  Total phosphorus, predicted ppm 0.01 0.25 0.05
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Table 4.2. Percent chance of species occurrence fati@aym kilometer in the Muskegon system, the lower Mysieand other
study units. Species included are A) Brook trout, B) Branwat, C) Rainbow trout, D) Chinook salmon, E) Coh&nten, F)
Smallmouth bass, G) Largemouth bass, H) Northern piked]) Walleye. With the exception of Chinook and wadleiree scenarios
were run for each species: 1) baseline, 2) slow temperahange, and 3) fast temperature change. Chinook angevddenot have
temperature variables in the model and so were only peeldicr the baseline scenario.

A. Brook Trout

Muskegon System Lower Muskegon Bigelow Creek Cedar River m Blizer Middle Branch River

Scenario: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Year 1830 58 8 81 68 22 70

1900 34 8 81 48 22 60

1930 34 8 81 48 22 60

1960 36 8 81 48 22 60

1978 31 8 81 48 22 77

2001 40 8 81 50 16 41

2010 45 44 42 8 8 8 81 81 81 42 27 27 22 22 22 60 51 51

2040 47 40 30 8 8 8 81 81 81 45 37 45 18 14 18 60 35 25

2070 49 37 21 8 8 8 62 62 15 49 41 26 18 14 8 57 10 8

2100 50 27 9 8 8 8 62 29 8 49 41 8 16 8 8 54 8 8
B. Brown Trout

1900 44 29 62 64 24 21

1930 44 29 62 64 31 21

1960 44 29 62 64 32 21

1978 46 29 62 64 32 21

2001 47 29 66 62 37 21

2010 46 45 45 29 29 29 68 68 68 64 64 64 37 38 33 21 21 21
2040 46 45 46 29 29 29 68 68 68 64 56 55 37 33 30 21 21 21
2070 48 45 41 29 29 29 68 68 56 66 53 53 39 29 29 21 29 29
2100 49 43 33 29 29 29 68 68 19 66 53 12 48 29 29 21 29 29
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Table 4.2, continued.

C. Rainbow Trout

3

18
18

Muskegon System Lower Muskegon Bigelow Creek Cedar River m Blizer Middle Branch River

Scenario: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Year 1900 56 21 69 67 25 69

1930 24 21 69 67 11 18

1960 24 21 69 68 11 18

1978 24 21 69 68 11 18

2001 26 50 69 68 20 18

2010 23 23 23 9 9 9 69 69 69 67 67 56 11 11 11 18 18

2040 23 25 23 9 9 9 69 69 69 67 65 56 11 11 11 18 14

2070 23 20 16 9 9 9 69 69 35 67 55 55 11 10 9 18 11

2100 23 17 11 9 9 9 69 39 9 67 55 9 11 9 9 18 9

D. Chinook Salmon

Muskegon System Lower Muskegon Bigelow Cre€kdar River Clam River Middle Branch River

Year

1970
1978
2001
2010
2040
2070
2100

5

W s~ 01010 Ol

40
40
40
40
40
40
40

39
39
39
39
39
22
4

22
25
22
22
22
4
4

0
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Table 4.2, continued.

E. Coho Salmon

Muskegon System Lower Muskegon Bigelow Creek Cedar River m Blizer Middle Branch River
Scenario: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Year 1970 5 9 33 28 2 0
1978 5 9 33 28 2 0
2001 5 9 33 28 2 0
2010 5 5 5 9 9 9 33 33 26 28 28 28 2 2 2 1 1 1
2040 5 4 5 9 9 9 33 19 15 28 28 28 2 2 2 1 1 1
2070 5 4 3 9 9 9 33 12 9 28 16 9 2 2 2 2 2 2
2100 5 3 3 9 9 9 33 9 9 28 9 9 2 2 2 2 2 2
F. Smallmouth Bass
1830 18 81 8 8 47 8
1900 18 81 8 8 47 8
1930 18 81 8 8 47 8
1960 18 81 8 8 47 8
1978 18 81 8 8 47 8
2001 18 81 8 8 47 8
2010 18 18 19 81 81 81 8 8 8 8 8 8 47 47 58 8 8 8
2040 18 20 20 81 81 81 8 8 8 8 8 8 47 63 63 8 8 8
2070 18 20 23 81 81 81 8 8 8 8 8 9 47 63 64 8 8 11
2100 18 22 26 81 81 81 8 8 19 8 9 9 47 64 66 8 9 14




Table 4.2, continued.

G. Largemouth Bass

3

44
57
57
57

26
26
31

Muskegon System Lower Muskegon Bigelow Creek Cedar River m Blizer Middle Branch River
Scenario: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Year 1830 28 53 18 28 41 21
1900 29 55 18 28 42 24
1930 29 55 18 28 44 23
1960 29 55 18 28 44 23
1978 29 55 18 28 44 23
2001 28 53 18 28 41 23
2010 29 30 30 53 53 53 18 18 18 28 28 28 43 47 47 23 35
2040 29 33 35 53 53 53 18 18 18 28 28 28 42 46 46 23 49
2070 29 36 39 53 53 53 18 40 42 28 28 32 41 46 46 23 57
2100 28 38 40 53 53 53 18 42 43 28 30 32 41 46 46 23 57
=
x H. Northern Pike
1830 21 74 13 14 19 26
1900 22 74 13 14 22 27
1930 22 74 13 14 22 27
1960 22 74 13 14 22 27
1978 24 74 13 14 23 27
2001 22 74 13 14 25 26
2010 22 22 22 74 74 74 13 13 13 14 14 14 19 19 19 26 26
2040 22 23 25 74 74 74 13 13 13 14 14 16 19 19 37 26 26
2070 22 24 30 74 74 74 13 13 13 14 16 27 19 37 63 26 26
2100 22 28 42 74 74 74 13 13 13 14 16 27 19 60 69 26 26

63
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Table 4.2, continued.

I. Walleye

Muskegon System

Lower Muskegon Bigelow Creek

Cedar River Clam River

Middle Branch River

Year 1830
1900
1930
1960
1978
2001
2010
2040
2070
2100

8

A D~ N 00 00 O 00 0

57
57
57
57
57
57
57
35
26
26
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Figure 4.1. The streams and rivers of the Muskegon watgrslith highlighted streams
indicating the five stream study units in this analysis.
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Figure 4.2. Measured land-use/cover in the Muskegon watefsindxth A) 1830 (pre-
settlement) and B) 2001, and predicted land-use/cover 2L@).
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Figure 4.3. Predictions of the average chance of specesnoes as weighted by stream
length, for the entire Muskegon stream system. Remieddere are both A) cold-water
game fish, and B) warm-water game fish. Line markeleate predictions of the
species for the three future scenarios. Walleye andoGkisalmon models do not have a
temperature variable and so do not have temperature-change $cenarios.
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Chapter 5

Variation in the effect of urbanization on Michigan ané®dnsin stream fish:
How can good fish communities exist in urban areas?

Abstract

One of the primary goals in past investigations of udiegam analysis has been
to understand the strength of the negative relationshipeleetwrbanization and biotic
communities. However, little effort has been expendedunderstanding the variation
that occurs around this effect; why streams with sinuitaan levels have fish
communities of significantly different quality. In thesudy, | test the hypothesis that non-
urban habitat features control the variance in theéioelship between fish community
guality and urbanization. To do this, Michigan and Wiscortseam reaches were
classified into groups based on fish community quality @mount of urbanization in
their watershed and a series of univariate tests wef@ped to find how natural and
anthropogenic features are related to fish biotic intggtit addition, covariance
structure analysis was used to provide multivariate ingightthe complex relationships
that control the quality of the stream fish commuriRgsults indicated that urban
streams with a higher percentage of natural land-covei watershed, more point
source discharges, better water quality, and a close ptgxtimmon-urbanized streams

were more likely to hold higher quality fish communities.
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Introduction

Urban development damages the integrity of aquatic et&rsg by causing
changes in their hydrological, chemical, and thermgbgries and thereby reducing the
diversity and abundance of resident organisms. In theet)&itates, over 130,000
kilometers of streams and rivers have already beentaff by urbanization, and land-use
change projections predict that developed area will aserdy 80% in the next 25 years
(Paul and Meyer 2001; Alig et al. 2004; Walsh et al. 2005prder to ensure long-term
sustainability of stream ecosystems, it is criticaldcientists and managers to understand
how urbanization affects aquatic ecosystems and impkragonal management
programs as soon as possible.

In the past thirty years, there have been numeroustigegions into how
urbanization affects river ecosystems. As a rethdtphysical impacts of urbanization
on streams are well understood (Klein 1979, Lenat and Crdwf04; Arnold and
Gibbons 1996; Booth and Jackson 1997; Paul and Meyer 2001; Komf&bath 2005;
Walsh et al. 2005), and many studies have shown how phgseal changes have
consequences for a streams’ biota. Several authoesreperted a negative association
between urbanization and fish abundance, richness naberuof intolerant fish species
(Weaver and Garman 1994; Kemp and Spotila 1997; Tabit and Jo2@@2nWalters et
al. 2003; Morgan and Cushman 2005). Similar results havefberd for
macroinvertebrates; watershed urbanization is often negjatorrelated with
Ephemeroptera-Plecoptera-Trichoptera (EPT) abundancitaner, scraper, and EPT
species richness (Wang and Kanehl 2003). Also, urbanize®been identified as a

cause of homogenization; as disturbances create diffestadtive pressure, generalist
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fish species tend to find the new conditions more s@ttizn fish with more specific
habitat requirements, resulting in replacement of regiy distinct species with tolerant
fish (Walters et al. 2003; McKinney 2006; Olden 2006; Scott 2006).

One of the primary goals in past investigations has teedncument the strength
of the negative impacts of urbanization on biotic comitmes. A typical method used in
these studies was to select sampling locations to miaiwagzation in natural stream
attributes (e.g. temperature, land-use, geology) ancgiinmze variation in urbanization
(Wang et al. 2001; Wang et al. 2003a; Cuffney et al. 2005; Fitzpat al. 2005;
Meador et al. 2005; Tate et al. 2005). This enabled reseatchéetect how biotic
community quality changed as a function of urbanizationemeatiucing complicating
impacts of natural features on the analysis.

However, since studies have concentrated on identitiwagtrength of this
negative “urbanization effect”, little effort has bemxpended into understanding the
variation that occurs around this effect. For examplele the relationship between
urbanization and the integrity of the biotic communitg baen found to be strongly
negative, some streams contain biotic communitieppdi@nt high integrity while
others contain degraded biotic communities despite havingathe amount of
urbanization within their watershed. | believe that usideding this noise (residual
variation) is critical to intelligent ecosystem managatn As stopping the spread of
urbanization altogether is not a politically feasibtenecessarily desirable goal, it is
important to understand how to maximize the potential bfd@mmunities for a given
amount of urban disturbance. Understanding how gooddistmanities can sometimes

exist even in highly urbanized streams can inform managesnenconservation
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agencies about how to adjust their practices in growing wateas in ways that maintain
good quality fish communities.

In this chapter, | tested the how the variance énrdtationship between fish
community quality and urbanization is controlled by non-orhabitat features. To do
this, 1) I classified Michigan and Wisconsin streams graups based on fish
community quality and amount of urbanization in their wsited and performed a series
of univariate tests designed to explore the relationship leetwatural and anthropogenic
features, and fish biotic integrity and 2) used covariahteture analysis to provide
insight into the complex relationships that ultimatetyitrol the quality of stream fish

communities.

M ethods

Data Description

Two regional conservation projects, the Great Lakgsatic GAP Project
(GLGAP, GLSC 2006) and Classification and Impairment sssent of Upper
Midwestern Rivers (CIAUMR, UM 2006) provided habitat data fas study. Working
in concert, these groups have established a high-resol@iSAlinked database that
contains characteristics of Michigan and Wisconsin siverhe database was referenced
to a group of ArcGIS line coverages (ESRI 2007), in whicdheaer was divided into
confluence-to-confluence reaches. Line coverages weed basthe USGS National
Hydrography Dataset (NHD, 2006) at the 1:100,000 scale, but wertedfgdarovide

more accurate representation of the rivers (Brendah 2006). There are 31,817
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Michigan stream reaches (86,983 kilometers of stream [pagth36,614 Wisconsin
stream reaches (89,716 kilometers of stream length) incladéd database.

For each stream reach, GLGAP and CIAUMR provided dataariety of
habitat and landscape variables (Table 5.1), including peedduly mean water
temperature, predicted exceedence flows, percent ofecearficial geology in the
watershed (Chapter 3; Brenden et al. 2006), 1992 WI land-use/60NDR 2007), and
2001 MI land-use/cover (Brenden et al. 2006). Land-use/covem&asured as a
percentage of watershed area and riparian buffer areag@ds to each side of the
stream, for the reach of interest and all reachesegm)t Wang et al. (2007) and Jana
Stewart (USGS Water Resources Division, personal aomaation) provided human
disturbance variables representing population densityentignrichment, agricultural
pollution, and point source pollutants (Table 5.1). Heeealariables discussed in the
text will be followed with the Table 5.1 variable codgarentheses.

| compiled fish community sample data from the Wistomepartment of
Natural Resources, the Michigan Department of Naturabitess, and the Michigan
Rivers Inventory (Figure 5.1) (Chapter 3; Seelbach and VIB&y; John Lyons,
Wisconsin Department of Natural Resources, personal comoation). Fish data
selected for this study had been collected from 1980 to 2@D#are entire community
samples obtained through electroshocking or rotenongoahet

Each fish community sample was linked to the NHD andbdatand attributed
with the habitat data discussed above. For streamagdcat had numerous sampling
efforts over the years, | deleted the samples tlcaaHawer total fish count so that a

stream reach was represented by the one samplingtétdproduced the most fish. This
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action made the assumption that the stream reach é@gténtial to hold the higher
amount of fish, and lower fish counts were a resuttisturbance or natural variation
unrelated to the measured habitat factors.

| calculated a warm-water fish index of biotic integ(iBl) for fish community
samples using methods given by Lyons et al. (1992) for \Wsscsites and Michigan
Department of Environmental Quality’s Procedure 51 (Grant 2002lichigan sites.
These two procedures are comparable because they usemthéstametrics and scoring
scale to calculate IBI. IBI metrics used were: nunddeative species, number of darter
species, number of sucker species, number of intolspaaies, percent of tolerant
species, percent of omnivores, percent of carnivoresepeof insectivores, and percent
of lithophilic spawners. Each IBI metric was scorextirO to 10, with O indicating very
poor fish condition and 10 indicating excellent fish ctindi The metrics were added
together to create a score that ranged from 0 to 90.

| also calculated a coldwater IBI for those siteghwai predicted water temperature
(WATER_TEMP) less than 2ZC (Lyons et al. 1996). | excluded those sites with a
higher cold-water IBI than warm-water IBI from thisidy; these sites were considered
to be cold-water streams that cannot be compared to-water streams due to large

differences in fish communities (Lyons et al. 1992).

Classifying Observations and Univariate Analysis
| compared total IBI score against the percent of urbdoizat the stream’s
watershed (% URBAN) (Figure 5.2A). Similar comparisong/isconsin, Maryland,

and Washington have indicated that streams with watisiperviousness values less
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than 8-12% had fish communities ranging from a very bad quali¥gry good, but
above this threshold degradation of the biotic communaty Wapid and dramatic” (Scott
et al. 1986; Wang et al. 2001; Barker et al. 2006). | found tkehbld in this dataset
(9% urbanization in watershed) by identifying the largestedese of maximum total IBI
score as | increased total urbanization in the watersheghercentage-point at a time.
The 9% urban threshold was used to divide sampled fish caitiesuinto two groups:
streams minimally affected by urbanization and strearbstantially affected by
urbanization.

| used a cluster analysis to identify the fish comnyusatmples in order to have
groups of sites with different 1Bl scores but similatevahed urbanization (% URBAN).
| used SPSS v.15 (SPSS 2007) to perform a k-means clusteranébles “total fish IBI
score” and “% URBAN?” (Figure 5.2B). Only fish communityngales above the urban
threshold were clustered. To increase statistioadgp, the elements of the clusters were
manually adjusted after the clustering process in oodkave groups with equal sample
sizes. Throughout this study, | used cluster 1, 2, and3astexamples of minimally
urbanized (low) streams and compared clusters 4 and 5 aplegarhhighly urbanized
(high) streams.

To determine how habitat differed between clusters 4n@,3, | examined
variables listed in Table 5.1 using a Kruskal-Wallis nonpatamtest of means and a
post-hoc multiple comparison Nemnyi test (Zar 1999). il8ihy, | tested differences in
habitat variables between cluster 4 and 5 using the Mann-&yHitmonparametric test
of means. Different tests are used because the Manm&yhit is more appropriate for

comparisons of two groups than Kruskal-Wallis, but is woidacive for post-hoc
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comparisons with multiple groups. ANOVA methods could noade on this data due
to normality assumption violations; however, the Kruskal®/ and Mann-Whitney U
are nonparametric equivalents of ANOVA. Similar asafywere also performed to
understand how fish species differed between the clushensgh these results are not

discussed in the text (Appendices J, K).

Covariance Structure Analysis

While the univariate approaches above were useful forrdietieg how habitat
variation affect fish IBI given a certain range obamization, correlation between these
habitat variables can obscure actual habitat-IBI redatigp in a web of direct and
indirect effects (Zorn and Wiley 2004). Therefore, | usadariance structure analysis
(CSA) to take a multivariate approach in understandingthege variables relate to each
other.

CSA is a powerful tool for ecological studies (Fjeld &mynerud 1993; Wotton
1994a; Wotton 1994b; Sheldon and Meffe 1995; Issac and Hubert 2@@hgRat al.
2004; Zorn and Wiley 2004; Infante et al. 2006; Riseng et al. 20@6rlwet al. 2006).

In CSA, researchers use logic and prior knowledge tal lausleries of linear equations
that represent their hypothesis about how pieces afgpstiem are causally related.

This system of equations can be represented graphicallpaghaliagram and is tested
by determining if implied covariance relationships inpla¢h diagram are consistent with
the sample covariance matrix seen in the actual(@atéen 1989, Wooton 1994a,

Wooton 199b).
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As a dependent variable in the CSA representing the ingbacbanization, |
used a deviation calculated from the observed IBI s@rds regression equation based
on the four highlighted points (hand-picked) shown in Figu2€. The regression
equation represented the maximum expected 1Bl score givepaatigular level of
urbanization. For each community sample greater thaqual to 9% urban (the urban
threshold), | calculated the difference between thestBre of the sample and the
potential IBI score predicted by the regression equatidns Vialue (hereatfter, referred to
as “IBI deviation”) was the variation in the relatsedmp between urbanization and IBI for
each sample (e.g. sample IBI score= 50, maximum I&esc60, IBI deviation= 50 —60
= -10). Therefore, an IBI deviation close to zero represka small difference between
the potential and actual 1Bl score, and as IBI distaecaime more negative, there was a
larger difference between the potential and actualdBies
A path diagram was built with IBI deviation as the resmand the non-urban

habitat variables in Table 5.1 as predictors. Initialg éxogenous (independent)
variables were allowed to freely correlate becausefaliese variables were calculated
using the same GIS techniques (Brendan et al. 2006; Wand@260d). In addition,
land-use data was allowed to freely correlate becaardeland-use variable is a piece of
the entire watershed or riparian zone.

| used AMOS 7.0 (Arbuckle 2006) to test the system of equeatiemepresented
by the path diagram. This program calculated maximum lixethestimates of
covariances and regression weights that represent dind indirect effects. AMOS
estimated overall model fit with thé (chi-squared) statistic, where a p-value of less

than 0.05 indicated that the model did not fit the dafeeratively altered the original
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path diagram by removing habitat variables, insignificant effend insignificant
covariance until thg?p-value was greater than 0.05 and until the amount of varianc
explained in IBI deviation was as high as possible. Notalaigl not achieve this 0.05
benchmark until riparian buffer land-use variables wensaved from the model.

| assessed final model fit witf, Goodness of Fit Index (GFI), Tucker-Lewis
Index (TLI), and root mean square error of approximation$EM). Squared multiple
correlations were used to indicate the amount of neei@xplained in an endogenous
(dependent) variable by its predictors. Significance refctlieffects was assessed using
the 95% biased corrected confidence interval and t4oligtoin based on the degrees of

freedom of the model (Arbuckle 2006, Zorn and Wiley 2004).

Results

Classifying Observations

| determined the location of a threshold value in vated urbanization (%
URBAN) at which IBI scores consistently declined. Fro6% watershed urbanization,
the maximum IBI score of the fish community samples ®0, the highest score
possible. At 7-8% watershed urbanization, the maximumeg@®) began to decrease,
and at 9% watershed urbanization, the maximum score wd3sgibe 5.2A). This 10-
point drop represented the largest decrease in 1Bl ssonatershed urbanization was
incrementally increased. Therefore, 9% watershed urdigonmzwas used as the
threshold value to divide non-urban sites from urbanized.site

Through the urban threshold and cluster process, | dividekigdn and

Wisconsin fish community samples into 3 main groupss3it¢he first group (N= 1829,
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Total IBI score range= 0-90) had urbanization values bel@wutban threshold; they
were considered to be located at non-urbanized sites ardhatused for the remainder
of the study. The second group was composed of fish carryrsamples in clusters 1-
3, which range from 9 to 27% watershed urbanization amd @®o 75 in IBI score.
Samples in cluster 1 had the highest IBI (N=30, Totali&ire range = 45-75), samples
in cluster 3 have the lowest (N=30, Total IBI score ran@e- 25), and samples in cluster
2 are in between (N=30, Total IBI score range = 27 —45) (Fig2). The third group,
clusters 4 (N=19, Total IBI score range = 20-40) and 5 (N=1%] TBL score range = 5-
20), contains fish community samples greater than 27%rskad urbanization (Figure
5.2B). Cluster 6, which is composed of a single point,beiladdressed in the

discussion.

Univariate Analysis

Numerous mean habitat differences were detected betlesters. Cluster 1
(low urban, high IBI sites) had significantly more fstré&and-cover (WT_FOREST,
RT_FOREST) and less agricultural land-use (WT_AGR22, RT_AGR2®2) cluster 2
(low urban, medium IBI sites) and 3 (low urban, low #&ks) on both a watershed and
riparian scale (Table 5.2, Appendix L). Also, cluster d significantly more wetland
land-cover (RT_WETLANDG612) and open water land-cover (WT TR,
RT_WATER). Cluster 1 had significantly higher values difaur due to parking lots and
transportation (WT_URBAN14, RT_URBAN14), while cluster 2 haghkr amount of

urban due to residential areas (WT_URBAN12).
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In the comparison of cluster 4 (high urban, medium &ij 5 (high urban, low
IBI), | saw similar results: cluster 4 had significgnthore forest (WT_FOREST,
RT_FOREST), more wetlands (WT_WETLANDG611), and lesscadjtire (WT_AGR22)
(Table 5.3, Appendix M). Cluster 4 also had a higher base{®0_YIELD) and higher
amount of coarse surficial geology (WT_COARSE) thanctlidter 5.

I did not detect any significant differences in humatudignce variables
between cluster 4 and 5. Cluster 1 had consistentlgriorogen and phosphorus yields
than cluster 2 and 3 (Table 5.2). Some of these yields agsociated with agriculture
(TNY_LIVE, TPY_LIVE), but cluster 1 also had significantywer point source
nitrogen yields (TNY_POINT). Interestingly, even thowdister 1 had a lower
TNY_POINT, it had a significantly higher density of permet point discharge locations
(OUTFALL) than cluster 2 and 3. Significant differeadr other variables also
indicated that cluster 1 sites had an overall bettéemguality than cluster 2 and 3 sites
(lower in EPATOXIC, MANURE, and INSECT) (Table 5.2).

In summary, the sites with higher 1Bl scores tendedat@ Imore natural land-
cover and less agriculture in the watershed and upstiparan zones. In addition, sites
with higher IBI scores had less nutrient and pollutaotiis, although they had a greater

density of permitted point discharge locations in the vsass.

Covariance Structure Analysis
The system of structural equations as represented Ipathaliagram fit the data
well according to the statistics used to test modéFfiure 5.3)k*= 6.3, d.f.= 9, p-

value=.710 (want to fail), GFl = 0.99 , TLI = 1.0, RMSEA 8)0. Because the data fit
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the model, the model can be used to show how the hafitated the variation around
the relationship between urbanization and I1BI score.ia\ds significant at a p-value
less than 0.10 are discussed here and unless otherwiddmoialue in parentheses
represents a variable’s standardized total effect.

Overall, the CSA explained 39% of the variation in tViation (Figure 5.3).
The strongest negative effect on IBI deviation was theumt of row crop agriculture in
the watershed (Table 5.4) (WT_AGR22, -0.51). This variableeai® able to explain
20% of the variation in 1Bl deviation. Both total nitroggald from non-agriculture
sources (TNY_NONAG, -0.19) and density of road crossiRIBFJROSS, -0.17) are
anthropogenic disturbances, so it was logical to sdeltbse two variables were also
negatively related to IBI deviation. However, becalst@nal land-use is generally
thought to be good for fish communities, it was unexpettavwetlands dominated by
shrubs (WT_WETLAND®G610, -0.42) and open land (WT_OPEN, -0.B8)lzad a
negative relationship with IBI deviation. In Michigan antlsconsin, it is possible that
land classified as open-land is actually composed of oldwdinial fields, and much
land classified as shrubby wetland may be in a congtatet &f disturbance. For
example, riparian borders of disturbed streams and,laé&®red wetlands, and ditches
could potentially be classified as shrubby wetland.

Forests (WT_FOREST43, 0.22) and forested wetlands (WT_WETLANL2)
were related to higher (less negative) IBI deviations heckefore higher IBI scores. The
density of permitted outfall sites in the watershed (BRAIIL) had conflicting effects on

IBI deviation. OUTFALL had a negative indirect effect IBI deviation through non-
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agricultural total nitrogen yield (TNY_NONAG, -0.04), but hadasitive direct effect

(0.14). Overall, OUTFALL had a positive total effect @& teviation (0.10).

Discussion

The urban threshold has been an important concept imémagement of urban
fish communities. | found a threshold at a similaeldo other studies (Paul and Meyer
2001; Wang et al. 2001, Riseng et al. 2006), appearing at about 8étzation for
Michigan and Wisconsin streams, and used this thresholditeediur data into groups
for comparison purposes. For fish communities abovehteshold, | found that fish I1BI
score varies from zero to some maximum level thapgarently controlled tightly by the
amount of watershed urbanization (% URBAN). Viewed snaiterplot, the
relationship between urban and fish IBI creates a weldgpes! clump of data points
where the diagonal edge of this wedge forms a ceilingatidig the maximum potential
of the fish community (Figure 5.2A). This ceiling effestvery strong in our study and
in others; in 10 studies that visualized data in this mammy 4 sampled streams had a
good enough biotic integrity (fish or macroinvertebratg)lame the point high above the
ceiling (Weaver and Garman 1994; Wang et al. 2001; Wang and K20@3i Wang et
al. 2003a; Walsh 2004; Carter and Fend 2005; Fitzpatrick et al. Rédhan et al. 2005;
Limburg et al. 2005; Walters et al. 2005). In this study, ofitB&7 sampled sites, only
one was truly an outlier (cluster 6 in Figure 5.2B, assed further below).

The potential of the biotic community may be limited blyamization, but other
factors controlled the variation beneath this ceilifgr a given range of urbanization

within this wedge of data, some fish community sampleshiigh measures of biotic
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integrity, others had low, and this variation could notXydaned by overall

urbanization measurements. Understanding this variaimnportant for management
purposes as factors that control it may conceivably damwituman control. A series of
nonparametric univariate analyses and a covariancels&uwamalysis were used to
understand the residual variation in fish community gpalBased on these analyses and
from work done in other studies, | can provide four posdilybotheses about how the

variation in the urbanization effect is controlled.

How can good fish communities exist in urban areas?
1. In urban areas, high quality fish communities need gooel \gaality.

Urbanization increases the concentration of neadyyeshemical constituent in
the water of urban streams (Paul and Meyer 2001). Phaspaond nitrogen sources
include wastewater, fertilizer, and leaking septic and gevggstems. Metals such as
cadmium, lead, and mercury are routinely found in higiteatrations in the sediment of
urban streams (Paul and Meyer 2001). In our study, pollutashmeasured in a variety
of ways; including upstream agricultural pollution (ferglizlivestock waste, insecticide)
and pollution from the urbanized area itself (point sourdeient discharge, discharges
from EPA toxic release inventory sites).

As water and sediment pollution is spatially variablarban streams, a logical
hypothesis would be that good urban fish communitiescanadfin those streams that
have lower levels of contamination. Our results supjhistreasoning. Nitrogen and
phosphorus yields from fertilizer, livestock waste, anchppsources are significantly

higher in the poor fish communities of cluster 3 thathengood fish communities of
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cluster 1. For example, means of phosphorus and nitrgigiels due to livestock waste
were twice as high in cluster 3 as cluster 1, and mdastsogphorus yields due to point
source pollution were about three times high in clu3téyan cluster 1. EPA toxic
inventory sites had a mean density five times higher inerlsthan cluster 1. The CSA
analysis indicated that the proportion of agriculturéhe watershed and non-agriculture
nitrogen yield help to explain why some urban fish commesitiad a large gap between
their actual and potential IBI score.

Management actions that increase water quality by logiewutrient and metal
inputs will have positive effects on fish quality of unbgtreams. However, to see
improvements in an urban stream, change needs to be innadghout the stream’s
entire watershed. The upstream and downstream areiae@micably linked; my results
seem to indicate that agriculture is strongly relaepoor fish communities in urban

streams.

2. Inurban areas, point-source discharge locationsceease water flow and fish
quality.

Many studies report that urbanization and impervious sud@gse an increase of
water runoff, lower groundwater recharge, and subsequentdyr lstream base-flow
(Klein 1979, Paul and Meyer 2001, Wang et al 2001; Riseng et al..20@teased peak
flow is perhaps the most severe urban stream distugtanhbigh flows from storm events
can wash away in-stream habitat and scour the streai@bett €t al. 1986, Miltner et al.
2004). Roy et al. (2005) were able to link hydrologic disturbémckecreases in fish

quality: they found that increases in the magnitude amghénecy of storm events and in
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prolonged duration of low-flow conditions resulted in redlnember of sensitive fish
and increases in tolerant fish. However, some stidies suggested that point source
discharges in urban streams can offset or mitigate thegative hydrological effects by
providing constant water input (Horowitz et al. 1999; PaulMager 2001; Fitzpatrick et
al. 2005). Consistent point source discharge would be mesticatly similar to
groundwater inputs and would provide a stable environment focdismmunities.

Our results support this hypothesis; in the univariate aisahhe mean density of
permitted point discharge locations (OUTFALL) was signaifitly higher in fish
community samples with higher total IBI score. In@f®A, a higher OUTFALL has a
total positive effect on IBI deviation. Therefore, al@gdensity of outfall sites (and
more stable water flow) is related to more healthy ¢simmunities. The main concern
regarding point source contributions is the amount ahtll P that discharged water
carries, because as the CSA indicates, OUTFALL hageak indirect negative effect on

IBI deviation through non-agricultural nitrogen yield (TNY_N&G).

3. High quality urban fish communities need natural-land bseughout the watershed
to mitigate urban changes in hydrology and water quality.

Our results indicate that natural land-use is criticaustaining quality fish
communities in an urbanized stream. The streams déclighigh IBI) had
significantly higher forest land-cover than streamslos$ter 3 (low IBI), and streams of
cluster 4 (medium IBI) were significantly higher irdst and wetlands than streams of
cluster 5 (low IBI). Inthe CSA, both forests amdested wetlands were important

reducing the difference between observed IBI score andtzdtéi score.
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Agricultural impacts on fish IBI were quite clearly negat The univariate
analysis showed that poorer fish communities are atedowvith higher agriculture.

The agricultural variable in the CSA was the mosumifitial factor in decreasing Bl
deviation. However, on a per-unit area basis, agriculiasdess of an impact on fish
than urban (Wang et al. 2000, Wang et al. 2003a); so any lani tiot urbanized is
better for fish than urbanized land.

From a conservation context, it would be very usefldnow the most effective
scale of land-use management. Historically, the starsilsgdm management practice in
urban areas was to maintain or build intact riparianstazenes around urbanized streams
in order to mitigate urbanization effects (Steedman 198§,d¥lal 1997, Castelle 1994,
Wang et al. 2001, Miltner 2004). About one-third of streartorason projects in the
United States are focused on riparian buffers (Bernhaalt 2005). Studies have
hypothesized that riparian buffers moderate water rurabforb nutrients from run-off
and through-flow, minimize erosive effects, and providetieam habitat such as woody
debris and overhanging vegetation (Osborne and Kovacic Fa&3ards et al. 1996;
Lammert and Allan 1999; Miltner 2004; Barker et al. 2006).

However, | expect that land-use throughout the ertieas catchment is more
important to overall fish community quality in urban stmnsahan land-use within the
riparian buffer. Riparian buffers only have minimatigation effects on what is known
to be two major sources of urban disturbance: watertgwald water flow. For
example, studies have found that riparian buffers provwiednal benefits for streams
with highly altered sediment and hydrologic regimes ffateack et al. 2005; Roy et al.

2006). High peak flows caused by run-off coming from impervgugaces will not be
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moderated by riparian buffers, because in urban areastiee is discharged directly to
the stream (Fitzpatrick et al. 2005). Forested land-canemother permeable surfaces
across the watershed are more important for decreagergll surface run-off, and
vegetation across the watershed improves water qtiaditigh nutrient uptake. In our
CSA model, riparian variables were not significantlyoasated with 1Bl deviation. This
indicates that riparian buffer land-use was either re@sated with fish quality or that
the variance in fish quality was already accounted fahbywatershed land-use variables
and riparian buffer land-use had nothing further to coutib

It is my conclusion that while land-use in the ripatarffer may be important for
local habitat structure, overall watershed land-usebett@r determinant of the quality of
urban fish communities. Wang et al. (2003b) also readhea@dnclusion in a study
based on Minnesota, Michigan, and Wisconsin stream fishmaintain high quality fish
communities in urban environments, less emphasis shoydthted on riparian buffer
management and more on plans that build and maintain hianolecover across the
watershed. This may involve groups implementing fewer ratsbo work projects and

taking more action in political and planning processes.

4. High quality urban fish communities can be supportea tigse proximity to high
quality, non-urbanized streams (anecdotal evidence).

Outliers can have interesting properties, and it is tunfiate the ceiling effect of
urbanization on fish was so strong, as outliers werg rare. Only one fish community
sample with high biotic integrity was located on aatnevith high urbanization. This

sample, located on Lincoln Creek in northern Milwauladaster 6 in Figure 5.2B), had
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82% watershed urbanization (% URBAN), the highest amoiumtb@anization in the
study. However, with a total IBI score of 55, the fisflmmunity was extremely healthy
for such a highly urbanized site. Fourteen species weghtaere, including three
species of redhorse, largemouth bass, smallmouth lba&shass, northern pike,
hornyhead chub, and sand shiner.

It appears that an unusual set of circumstances alldveestream to have such a
high quality fish community. About 1.5 kilometers dowaatn from the sampled point
on Lincoln Creek was another sampled river that weg 6 urban and had high
amounts of agriculture, forests, and wetlands in itewgaed. As every fish found in
Lincoln Creek was also found in this downstream, ledsudied river, it is entirely
possible that the fish moved upstream to the LincolrekCsée from the less-disturbed
river. The effect of the downstream channel on upstrezannels has been referred to as
the downstream link; several studies have previouslyiftehaind used this effect to
predict and analyze fish communities (Osborne and VW92 ; Grenouillet et al. 2004;
Smith and Kraft 2006

It was clear from aerial photographs (Google Earth 20@)ttle sampled site on
Lincoln Creek could have appealing local habitat due to 20-madergrassy riparian
buffers and a small forested park where the samplingaligtook place. Given my
argument from the previous section, it is unlikely thatse riparian buffers are sufficient
to reduce negative hydrologic effects and allow the stteamaintain permanent
resident populations. However, it is possible that Lim€&reek has a transient good
quality fish population due to the higher quality river dotaesm. | hypothesize that

other small urbanized streams may also have the potentald good quality fish
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communities given appealing local habitat and close proximitgss disturbed “feeder-
streams”. A wise management action would be to maketlsatehese high quality

“feeder-streams” near urban areas are protected and unpledel

Numerous studies have found how and why urbanization hasvugemapacts on
the physical structure of a stream and on its bioteginty. To move toward mitigation,
| suggest that future studies look at other variables thataffiect the variation around
the negative urban effect. As the CSA in this study ovdg able to explain 39% of the
variation, it is certain there are other importastdas that | have not considered here.
Future investigations that measuring variables on locasc¢alg., in-stream habitat
structure, sedimentation, water quality) as well as stuti@ examine interactions
between fish and their food base may also prove usefldveloping practical and
feasible management tools that can help create otamagood fish communities in

urban streams.
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Table 5.1. List of variables that were used in this sttielyr codes referred to in the text,
their units, and the source of the data. All land-usabkes listed below with the prefix
“WT” have also been measured as a percent of theaipatiffer (entire upstream
corridor, 30 meters to each side of stream, prefix JRTitation numbers are as follows
1) Brenden et al. 2006, 2) MCGI 2007, 3)WDNR 2007, 4) Wang 208ar

Variable Description Variable Code Unit Citation
Variables used for classification of fish community samples

Predicted mean July water temperature WATER_TEMP Celsius 1
Total urban land-use % URBAN % of watershed 1,2,3
Variables used to find differences between clusters

Fine-grain surficial geology WT_FINE % of watershed 1
Coarse-grain surficial geology WT_COARSE % of watetsh 1

10% exceedence flow yield TEN_YIELD cmsfkm 1

90% exceedence flow yield NINETY_YIELD cms/km 1

Total urban, riparian buffer RT_URB % of riparian bufferl,2,3
Urban, commercial/industrial WT_URBAN11 % of watershed a2,
Urban, residential WT_URBAN12 % of watershed 1,2,3
Urban, transportation and parking lots WT_URBAN14 % dfenghed 1,2,3
Total agricultural land-use WT_AGR % of watershed 1,2,3
Agriculture, non-row crop WT_AGR21 % of watershed 1,2,3
Agriculture, row crop WT_AGR22 % of watershed 1,2,3
Open/non-forest WT_OPEN % of watershed 1,2,3
Forest land cover WT_FOREST % of watershed 1,2,3
Forest, deciduous, upland WT_FOREST41 % of watershed 1,2,3
Forest, coniferous, upland WT_FOREST42 % of watershed 1,2,3
Forest, mixed, upland WT_FOREST43 % of watershed 1,2,3
Open water WT_WATER % of watershed 1,2,3
Total wetland land cover WT_WETLAND % of watershed 1,2,3
Wetland, wooded, shrubland WT_WETLAND610 % of watershed 1,2,3
Wetland, wooded, lowland deciduous forest WT_WETLAND611 %atikvshed 1,2,3
Wetland, wooded, lowland coniferous forest WT_WETLANDG612 oftwatershed 1,2,3
Wetland, wooded, mixed lowland forest WT_WETLAND613 % of wstied 1,2,3
Wetland, non-wooded WT_WETLAND62 % of watershed 1,2,3
Total nitrogen atmospheric yield TNY_ATMOS kg/ktyr 4

Total nitrogen fertilizer yield TNY_FERT kg/Kityr 4

Total nitrogen livestock waste yield TNY_LIVE kg/Riyr 4

Total nitrogen non-agriculture yield TNY_NONAG kg/ktyr 4

Total nitrogen point source yield TNY_POINT kg/kiyr 4

Total nitrogen yield TNY_TOTAL kg/kiyr 4

Total phosphorus fertilizer yield TPY_FERT kg /iy 4
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Table 5.1, continued.

Variable Description Variable Code Unit Citation
Total phosphorus livestock waste yield TPY_LIVE kgfkym 4
Total phosphorus non-agriculture yield TPY_NONAG kgfkm 4
Total phosphorus point source yield TPY_POINT kfgm 4
Total phosphorus yield TPY_TOTAL kg/Kyr 4
Proportion of watershed treated with fertilizers FERT ofwatershed 4
Proportion of watershed treated with herbicides =~ HERB f Watershed 4
Proportion of watershed treated with insecticides INSECT % of watershed 4
Proportion of watershed treated with manure MANURE Yvatershed 4
Density of permitted outfalls in watershed OUTFALL #fkm 4
Density of active mines in watershed MINES #km 4
Population density (2000 census) in watershed POPDENS 2#km 4
Road crossing density in watershed RDCROSS #/km 4
Road density in watershed RDDENS kmfkm 4
Density of EPA Toxic Release Inventory sites EPATOXI #/knf watershed 4
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Table 5.2. Results from the Kruskal-Wallis nonparameést of means and the multiple comparison Nemnyofedtster 1, 2, and
3. Included in this table are the cluster means of thahlas,x? of Kruskal-Wallis test, associated degrees of freeduomi,
associated significance. Multiple comparison resukdrderpreted as follows: q (1-3) is the Studentizedeanstatistic for the
difference between cluster 1 and 3, and p (1-3) isgsbecated significance. Critical values for q areofiew's: b1, 3 = 2.902,
00.05.0, 3=3.313, @.01.0 3=4.200 (Zar 1999). Metrics significant@t<.10 are in bold. Only significant results are shoalihpther
results are recorded in Appendix L.

Habitat Variable Cluster 1 Cluster 2 Cluster 3 x* d.f. p qg(1-3) p(@A-3) q@-2 p@-2) q(2-3) p (2-3)
WT_URBAN12 3.93 5.77 4.76 533 2007 2.28 >0.1 3.12 <0.10 0.08 >0.1
WT_URBAN14 3.93 241 1.66 1195 20.00 4.55 <0.01 2.98 <0.10 1.56 >0.1
WT_AGR22 17.20 20.04 25.75 691 2003 3.66 <0.05 1.51 >0.1 2.15 >0.1
WT_FOREST 22.90 15.60 15.0 10.89 2000 4.11 <0.05 3.86 <0.05 0.03 >0.1
WT_FOREST41 18.10 13.06 13.19 9.31 2001 351 <0.05 3.85 <0.05 0.03 >0.1
WT_FOREST42 2.14 1.59 1.08 8.32 2002 3.92 <0.05 2.24 >0.1 1.68 >0.1
WT_FOREST43 2.66 1.89 1.33 11.73 2000 4.75 <0.01 2.49 >0.1 2.25 >0.1
WT_WATER 2.55 1.03 1.25 10.25 2 001 3.30 <0.10 4.18 <0.05 0.88 >0.1
RT_URBAN14 2.85 1.94 1.01 13.79 2000 4.96 <0.01 2.59 >0.1 2.37 >0.1
RT_AGR22 12.66 155 19.33 522 20.07 3.16 <0.10 1.97 >0.1 1.20 >0.1
RT_FOREST 19.70 16.80 15.20 563 2006 3.05 <0.10 2.64 >0.1 0.411 >0.1
RT_FOREST42 1.97 1.43 1.17 6.00 20.05 3.29 <0.10 2.13 >0.1 1.16 >0.1
RT_FOREST43 2.61 1.86 1.25 11.85 20.00 4.76 <0.01 2.77 >0.1 1.99 >0.1
RT_WATER 10.34 10.34 4.87 866 2001 216 >0.1 4.08 <0.05 1.91 >0.1
RT_WETLAND612 0.62 0.39 0.22 11.112 2000 4.41 <0.01 2.72 >0.1 1.69 >0.1
TNY_LIVE 94.00 210.65 208.25 1154 2000 291 <0.10 3.22 <0.10 0.03 >0.1
TNY_NONAG 86.44 78.01 97.70 691 2003 270 >0.1 0.79 >0.1 3.49 <0.05
TNY_POINT 176.31 326.21 414.76 6.32 2004 331 <0.10 6.64 <0.01 0.66 >0.1
TPY_FERT 33.13 32.13 26.72 533 2007 275 >0.1 0.06 >0.1 2.81 >0.1
TPY_LIVE 13.36 27.86 22.52 942 2001 340 <0.05 3.94 <0.05 0.55 >0.1
INSECT 2.18 4.40 3.77 11.16 2 0.00 3.86 <0.05 4.20 <0.05 0.35 >0.1
MANURE 1.87 4.38 4.68 1290 2 0.00 4.72 <0.01 3.85 <0.05 0.87 >0.1
OUTFALL 0.21 0.12 0.08 12.14 2 000 4.69 <0.01 3.40 <0.05 1.29 >0.1

EPATOXIC 0.04 0.18 0.20 10.99 2 0.00 4.24 <0.01 0.57 >0.1 3.66 <0.05




Table 5.3. Results from the Mann-Whitney U nonparame&tgtof means of clusters 4
and 5. Included in this table are the cluster means ofdfi@bles, U statistic, and
associated significance. Only results significantat0al0 are shown; all results are
recorded in Appendix M.

Habitat Variable Cluster 4  Cluster 5 Mann-Whitney Uistit  p-value
WT_COARSE 16.70 8.60 108.5 0.02
90_YIELD 0.0016 0.0012 118 0.07
WT_AGR22 2.46 5.99 122.5 0.08
WT_FOREST 21.11 14.89 120 0.08
WT_FOREST43 2.56 1.63 119.5 0.07
WT_WETLAND610 0.67 0.23 118.5 0.04
WT_WETLAND611 2.45 1.55 124 0.10
WT_WETLANDG612 0.06 0.01 121 0.04
WT_WETLAND613 0.01 0.00 130 0.07
RT_FOREST 25.37 18.32 121.5 0.09
RT_FOREST43 2.78 1.74 119.5 0.07
RT_WETLAND610 2.63 1.93 133.5 0.05
RT_WETLAND612 0.14 0.02 111 0.01
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Table 5.4. Standardized total effects of the stress@blas (left of table) on their
dependent variables (top of table) as computed by the T8A standardized effect of
WT_OPEN on IBI DEVIATION (-0.28) indicates that whenTWOPEN decreases by
one standard deviation, IBI DEVIATION decreases by 0.28str@hdeviations. Effect
significant at <0.05 effects are in bold; other effests significant at <0.10.

IBI
DEVIATION TNY_NONAG NINETY_YIELD

WT_OPEN -0.28

OUTFALL 0.10 0.19
WT_WETLANDG610 -0.42

WT_FOREST43 0.22

WT_AGR22 -0.48 -0.17
WT_WETLANDG612 0.12

RDCROSS -0.17

TNY_NONAG -0.19

NINETY_YIELD -0.18
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Figure 5.1. Locations of the sampled fish sites availibla the Wisconsin Department
of Natural Resources, the Michigan Department of NaReaburces, and the Michigan
Rivers Inventory. The open white circles represent ca@temnsites or species-targeted
samples that were not used in this study. The filleckldacles were those sites used in
this study; they are sites with warm-water fish comities that were sampled with either
electroshocking or rotenone.
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Figure 5.2. The relationship between Fish IBI Score atdRBAN for A) all fish
community sample sites in study, B) sites equal to oveabize urban threshold of 9%
URBAN after being clustered by Fish IBI Score and % URBANd C) sites equal to or
above the urban threshold of 9%, with a green regres®based off of the four red
points. The blue line represents an example of “IBl d®natthe difference in IBI score

between the regression line and sample point.
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Figure 5.3. Simplified path diagram of the CSA of thb Giemmunity sample sites equal
to or above the urban threshold (N= 128). Dark arrowsanel effects significant at p <
0.05, light arrows indicate significant effects at pl€0.and the nearby numbers in bold
are the corresponding standardized regression weigihmbBis in italics by the
endogenous variables indicate the amount of variandaiegd by the predictor
variables. Arrows representing covariance betweenhlasavere removed for

simplicity.

% Row-crop agriculture in watershed

- 17
.03

51
‘ 90% exceedenoe flow yield

% Mixed forest in watershed Density of permitted outfalls in watershed
19
.04

% Shrubland wetland in Watershed

IBI DeV|at|on

Total phosphorus non-agriculture yield

A2

% Coniferous wetland in watershed -17

Road density in watershed

% Open land-cover in watershed

169



References

Alig, R. J., J. D. Kline, and M. Lichtenstein. 2004. Urlzaion on the US landscape:
looking ahead in the 21st century. Landscape and Urban PlaSiat9-234.

Arbuckle, J. L. 2006. Amos 7.0 User's Guide. Amos Devesyr€orporation, Spring
House, Pennsylvania.

Arnold, C., and J. C. Gibbons. 1996. Impervious surface cggedaurnal of the
American Planning Association 62:243-258.

Barker, L. S., G. K. Felton, and E. Russek-Cohen. 2006o0Uskryland biological
stream survey data to determine effects of agricultipatian buffers on
measures of biological stream health. Environmental dddng and Assessment
117:1-109.

Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Rexdnder, K. Barnas, S. Brooks, J.
Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. G8aGloss, P. Goodwin, D.
Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. KohdrlS. Lake, R. Lave, J. L.
Meyer, T. K. O'Donnell, L. Pagano, B. Powell, and Ed@uth. 2005.
Synthesizing U.S. river restoration efforts. ScieB08:636-637.

Bollen, K.A. 1989. Structural equations with latent variabW&iley, New York, New
York.

Booth, D. B., and C. R. Jackson. 1997. Urbanization of agagsiems: Degradation
thresholds, stormwater detection, and the limits gration. Journal of the
American Water Resources Association 33:1077-1090.

Brendan, T. O., R. D. Clark, A. R. Cooper, P. W. Se#iba. Wang, S. Aichele, E. G.
Bissell, and J. S. Stewart. 2006. A GIS framework fdlecing, managing, and
analyzing multiscale landscape variables across largensefyio river
conservation and management. Pages 49-PR4 M. Hughes, L. Wang, and P. W.
Seelbach, editors. Landscape Influences on Streamatiabid Biological
Assemblages. American Fisheries Society, SymposiumetBeBda, Maryland.

Carter, J. L., and S. V. Fend. 2005. Setting limits: Theld@ment and use of factor-
ceiling distributions for an urban assessment using nmendebrates. Pages
179-191in L. R. Brown, R. H. Gray, R. M. Hughes, and M. R. Meaealitors.
Effects of urbanization on stream ecosystems. Amerigsheries Society,
Symposium 47, Bethesda, Maryland.

Cuffney, T., H. Zappia, E. M. Giddings, and J. F. Cak)5. Effects of urbanization on
benthic macroinvertebrate assemblages in contrasting amantal settings:
Boston, Massachusetts, Birmingham, Alabama; and Salt CakeUtah. Pages
361-408in L. R. Brown, R. H. Gray, R. M. Hughes, and M. R. Meaeditors.

170



Effects of urbanization on stream ecosystems. Amefigsheries Society,
Symposium 47, Betheda, Maryland.

ESRI. 2007. GIS and Mapping Software. Available: www.eam.€April 2007).

Fjeld, E., and S. Rognerud. 1993. Use of path analysis tetigae mercury
accumulation in brown trout (Salmo trutta) in Nogwand the influence of
environmental factors. Canadian Journal of FisherieAgoatic Sciences
50:1158-1167.

Fitzpatrick, F. A., M. W. Diebel, A. H. Mitchell, T..lArnold, M. A. Lutz, and K. D.
Richards. 2005. Effects of urbanization on the geomorpholwayitat,
hydrology, and fish index of biotic integrity of streamghe Chicago, lllinois,
and Wisconsin. Pages 87-16L. R. Brown, R. H. Gray, R. M. Hughes, and M.
R. Meador, editors. Effects of urbanization on streansystems. American
Fisheries Society, Symposium 47, Bethesda, Maryland.

GLSC (Great Lake Science Center). 2007. The Great LAsdpestic GAP Project.
Available: http://www.glsc.usgs.gov/GLGAP.html (DecemB8é07).

Google Earth. 2007. Available: http://earth.google.congcénber 2007)

Grant, J. 2002. Qualitative biological and habitat supreyocols for wadable streams
and rivers. Michigan Department of Environmental QuaBturface Water
Quality Division, Great Lakes and Enviornmental Assessi8eation Procedure
#51, Lansing.

Grenouillet, G., D. Pont, and C. Herisse. 2004. Witiasin fish assemblage structure:
the relative influence of habitat versus stream spptisition on local species
richness. Canadian Journal of Fisheries and Aquatin&se51: 93-102.

Horowitz, A. J., M. Meybeck, Z. Idlatkih, E. Biger. 199%ariations in trace element
geochemistry in the Seine River Basin based on floodgiposits and bed
sediments. Hydrological Processes 13:1329-1340.

Infante, D. M., M. J. Wiley, and P. W. Seelbach. 2006att®iships between land use
and stream ecosystems: A multistream assessmeottinesnwestern Michigan.
Pages 339-358 R. M. Hughes, L. Wang, and P. W. Seelbach, editorsidnfle
of landscapes on stream habitats and biological asserabkgerican Fisheries
Society, Symposium 48, Bethesda, Maryland.

Isaak, D. J., and W. A. Hubert. 2001. Production of stredméatayradients by montane

watersheds: hypothesis tests based on spatially exgaititanalyses. Canadian
Journal of Fisheries and Aquatic Sciences 58:1089-1103.

171



Klein, R. D. 1979. Urbanization and stream quality impairméfater Resources
Bulletin 15:948-963.

Kemp, S. J., and J. R. Spotila. 1997. Effects of urbanizatndsrown trout Salmo trutta,
other fish and macroinvertebrates in Valley Creek, &yaforge, Pennsylvania.
The American Midland Naturalist 138:55-68.

Kennen, J. G., M. Chang, and B. H. Tracy. 2005. Effectanafscape change on fish
asseblage structure in a rapidly growing metropolitea ar North Carolina,
USA. Pages 39-5i1 L. R. Brown, R. H. Gray, R. M. Hughes, and M. R. Maado
editors. Effects of urbanization on stream ecosyst&merican Fisheries
Society, Symposium 47, Bethesda, Maryland.

Konrad, C. P., and D. B. Booth. 2005. Hydrologic changeshan streams and their
ecological significance. Pages 157-1@L. R. Brown, R. H. Gray, R. M.
Hughes, and M. R. Meador, editors. Effects of urbanizatiosteam
ecosystems. American Fisheries Society, SymposiumetheBda, Maryland.

Lammert, M., and J. D. Allan. 1999. Assessing biotic intg@f streams: Effects of
scale in measuring the influence on land use/cover andahatsiticture on fish
and macroinvertebrates. Environmental Managerd@a57-270.

Lenat, D. R., and J. K. Crawford. 1994. Effects of larelafsvater quality and aquatic
biota of three North Carolina Piedmont streams. Hyadolia 294:185-199.

Limburg, K. E., K. M. Stainbrook, J. D. Erickson, and J.Gbwdy. 2005. Urbanization
consequences: Case studies in the Hudson River watePstgel 23-3ih L. R.
Brown, R. H. Gray, R. M. Hughes, and M. R. Meador, eslitBffects of
urbanization on stream ecosystems. American Fish8oerty, Symposium 47,
Bethesda, Maryland.

Lyons, J. 1992. Using the index of biotic integrity (IB))rheasure environmental quality
in warmwater streams of Wisconsin. United States Deyaant of Agriculture,
Forest Service, General Technical Report NC-149, St.Rauhesota.

Lyons, J., L. Wang, and T. Simonson. 1996. Developmenvaidhtion of an index of
biotic integrity for coldwater streams in WisconsiMorth American Journal of
Fisheries Management 16: 241-255.

May, C. W., R. R. Horner, J. R. Karr, B. W. Margda. B. Welch. 1997. Effects of
urbanization on small streams in the Puget Sounds Lowlemekgion. Watershed
Protection Techniques 2:485-494.

MCGI (Michigan Center for Geographic Information). 2007nd.@over 2001

geographic theme: land cover/use. Available: www.mcgestaus/mgdl/?rel=
thext&action=thmname&cid=2&cat=Land+Cover+2001 (December 2007)

172



McKinney, M. L. 2006. Urbanization as a major cause of biotimogenization.
Biological Conservation 127:247-260.

Meador, M. R., J. F. Coles, and H. Zappia. 2005. Fism#sage responses to urban
intensity gradients in contrasting metropolitan ar&sningham, Alabama, and
Boston, Massachusetts. Pages 409423 R. Brown, R. H. Gray, R. M.
Hughes, and M. R. Meador, editors. Effects of urbanizatiosteam
ecosystems. American Fisheries Society, SymposiumetheBda, Maryland.

Morgan, R. P., and S. E. Cushman. 2005. Urbanization etiacttream fish
assemblages in Maryland, USA. Journal of the North AgaerBenthological
Society 24:643-655.

Miltner, R. J., D. White, and C. Yoder. 2004. The biottegnity of streams in urban and
suburbanizing landscapes. Landscape and Urban Planning 69:87-100.

NHD (National Hydrography Dataset), 2007. Available: hitbd.usgs.gov/ (December
2007).

NOAA (National Oceanic and Atmospheric Agency), 2007. ImpawviSurface
Analysis Tools. Available: http://www.csc.noaa.gov/ongftisat.html. (December
2007).

Olden, J. D. 2006. Biotic homogenization: a new reseageimda for conservation
biogeography. Journal of Biogeography 33:2027-2039.

Osborne, L. L., and M. J. Wiley. 1992. Influence of trilbbytspatial position on the
structure of warmwater fish communities. Canadian JdwhFisheries and
Aquatic Science49:671-681.

Osborne, L. L., and D. A. Kovacic. 1993. Riparian vegethtdter strips in water-
guality restoration and stream management. Freshwaitrggi29:243-258.

Paul, M. J., and J. L. Meyer. 2001. Streams in the udrascape. The Annual Review
of Ecology and Systematics 32:333-365.

Richards, C., L. B. Johnson, and G. E. Host. 1996. Landscabe influence on stream
habitats and biota. Canadian Journal of Fisheries andtidga@ence$3:295-
311.

Riseng, C. M., M. J. Wiley, and R. J. Stevenson. 200dirédggical disturbance and
nutrient effects on benthic community structure in mide/sgsUS streams: a
covariance structure analysis. Journal of the Nortleean Benthological
Society 23:309-326.

173



Riseng, C. M., M. J. Wiley, R. J. Stevenson, T. GnZand P. W. Seelbach. 2006.
Comparison of coarse versus fine scale sampling ostgtatimodeling of
landscape effects and assessment of fish assemblatipeshdiiskegon River,
Michigan. Pages 555-576 R. M. Hughes, L. Wang, and P. W. Seelbach, editors.
Influence of landscapes on stream habitats and biologisah@lages. American
Fisheries Society, Symposium 48, Bethesda, Maryland.

Roy, A. H., M. C. Freeman, B. J. Freeman, S. J.§®enW. E. Ensign, and J. L. Meyer.
2005. Investigating hydrologic alteration as a mechanisisloassemblage
shifts in urbanizing streams. The Journal of the North Agaa Benthological
Society 24:656-678.

Roy, A. H., M. C. Freeman, B. J. Freeman, S. J.§&enJ. L. Meyer, and W. E. Ensign.
2006. Importance of riparian forests in urban catchmemtsngent on sediment
and hydrologic regimes. Environmental Management 37:523-539.

Schueler, T. R. 1994. The importance of imperviousness.rgtai® Protection
Techniques 1:100-111.

Scott, J. B., C. R. Stewart, and Q. J. Stober. 1986ctdfeurban development on fish
population dynamics in Kelsey Creek, Washington. Transactodthe American
Fisheries Society 115:555-567.

Scott, M. C. 2006. Winners and losers among stream fialretation to land use
legacies and urban development in the southeasterBiblSgical Conservation
127:310-309.

Seelbach, P. W., and M. J. Wiley. 1997. Overview of tlighlidan Rivers Inventory
(MRI) project. Fisheries Technical Report 97-3, Michigap&eément of Natural
Resources, Ann Arbor.

Sheldon, A. L., and G. K. Meffe. 1995. Path analysis #é&cbive properties and habitat
relationships of fish assemblages in coastal plagasts. Canadian Journal of
Fisheries and Aquatic Sciences 52:23-33.

Smith, T. A., and C. E. Kraft. 2005. Stream fish assagés in relation to landscape
position and local habitat variables. Transactionh®fAmerican Fisheries
Society 134:430-440.

SPSS, Inc. 2007. SPSS for Windows v15.0. SPSS, Inc, Chidlagos.

Steedman, R. J. 1988. Modification and assessment oflax af biotic integrity to

guantify stream quality in southern Ontario. Canadianniaf Fisheries and
Aquatic Sciences 45:492-501.

174



Tabit, C. R., and G. M. Johnson. 2002. Influence of urbanizatiothe distribution of
fishes in a southeastern upper Piedmont drainage. Setghealaturalist 1:253-
268.

Tate, C. M., T. Cuffney, G. McMahon, E. M. GiddingsFJColes, and H. Zappia. 2005.
Use of an urban intensity index to assess urban effestseaims in three
contrasting environmental settings. Pages 2914316 R. Brown, R. H. Gray, R.
M. Hughes, and M. R. Meador, editors. Effects of urbaiwmain stream
ecosystems. American Fisheries Society, SymposiumetheBda, Maryland.

Trautman, M. B. 1981. The fishes of Ohio. Ohio State UnitxePress, Columbus.

UM (University of Michigan). 2007. Ecological classificatiof rivers for environmental
assessment. Available: http://sitemaker.umich.edrbiassproject (December 2007).

Walsh, C. J. 2004. Protection of in-stream biota frommrbgacts: minimise catchment
imperviousness or improve drainage density? Marine and FaéshResearch
55:317-326.

Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Ggtham, P. M. Groffman, and R. P.
Morgan. 2005. The urban stream syndrome: current knowledge esddich for
a cure. The Journal of the North American Benthold@oeiety 24:706-723.

Walters, D. M., D. S. Leigh, and A. B. Bearden. 2003.ddiation, sedimentation, and
the homogenization of fish assemblages in the Etowadr Biasin, USA.
Hydrobiologia 494:5-10.

Walters, D. M., M. C. Freeman, D. S. Leigh, B. &edfman, and C. M. Pringle. 2005.
Urbanization effects on fishes and habitat quality in atlSrn Piedmont river
basin. Pages 69-86 L. R. Brown, R. H. Gray, R. M. Hughes, and M. R. Meaado
editors. Effects of urbanization of stream ecosysténgerican Fisheries Society,
Symposium 47, Bethesda, Maryland.

Wang, L., J. Lyons, and P. Kanehl. 2001. Impacts of urbaoizan stream habitat and
fish across multiple spatial scales. Environmental &g@ment 2001:255-266.

Wang, L., and P. Kanehl. 2003. Influences of watershed urliemznd instream
habitat on macroinvertebrates in cold water streaougndl of the American
Water Resources Association 39:1181-1196.

Wang, L., J. Lyons, and P. Kanehl. 2003a. Impacts of udvahdover on trout streams
in Wisconsin and Minnesota. Transactions of the Amerkaaheries Society 132:
825-839.

Wang, L., J. Lyons, P. W. Rasmussen, P. W. Seelba@imbn, M. J. Wiley, P. Kanehl,
E. Baker, S. Niemela, and P. M. Stewart. 2003b. Waterseadh, and riparian

175



influences on stream fish assemblages in the Nortbekes and Forest
Ecoregion, U.S.A. Canadian Journal of Fisheries and AgGaiences 60:491-
505.

Wang,L., T. Brenden, P. W. Seelbach, A. Cooper, DarAIR. Clark, Jr., and M. Wiley.
2007. Landscape based identification of human disturlgnackents and
references for Michigan streams. Environmental Monigpand Assessment.
Online-First (Not yet assigned volume or page numbers).

WDNR (Wisconsin Department of Natural Resources). 200@dt@ver dataset
(WISCLAND). Available: www.dnr.state.wi.us/maps/gis/aandcover.htmi
(December 2007).

Weaver, L. A., and G. C. Garman. 1994. Urbanizationwéiershed and historical
changes in a stream fish assemblage. Transactidhe dimerican Fisheries
Society 123:162-172.

Wehrly, K. E., M. J. Wiley, and P. W. Seelbach. 2008uénce of landscape
features on summer water temperatures in Lower Miahsgi@ams. Pages
113-127in R. M. Hughes, L. Wang, and P. W. Seelbach, editorslueinfe of
landscapes on stream habitats and biological assemblageerican Fisheries
Society, Symposium 48, Bethesda, Maryland.

Wootton, J. T. 1994a. Predicting direct and indirect effe&h integrated approach using
experiments and path analysis. Ecology 75:151-165.

Wootton, J. T. 1994b. The nature and consequences of ineifects in ecologial
communities. Annual Review in Ecology and Systema&tcd43-466.

Zar, J. H. 1999. Biostatistical Analysis, 4th editiorerRice Hall, Upper Saddle River,
New Jersey.

Zorn, T. G., and M. J. Wiley. 2004. Untangling relationshptween river habitat and

fish in Michigan's Lower Peninsula with covariance strieeanalysis. Michigan
Department of Natural Resources, Fisheries ReseambriR2073, Ann Arbor.

176



Chapter 6

Conclusions

Throughout this dissertation, | have shown how fisttrithution models, with
particular emphasis on those created through a ctzg®iin tree methodology, can be
used for two main purposes: formulating and testing hypotheses e factors,
disturbances, and processes that are important to orgam@iachmaking predictions of
species distributions and abundances for use in manageamaxts.

My first goal was to examine how different landscagedrs and disturbance
features relate to stream fish. In chapter 2, | fohatla variety of techniques could be
used to predict that brook trout have a preference Yomlater temperature, small
streams, high amounts of forest, and high groundwater fibx next step was to expand
this modeling procedure to numerous fish species using sfidason tree approach, an
useful technique that does not rely on the underlying datédisbn and produces
models easy to interpret and apply to new scenarioshdpter 3, | created distribution
models for all common Michigan stream fish. The rtssadicated that when using
variables measured on a landscape scale, it is possiptedict most stream species with
a high level of accuracy; although certain groups of fishewnore easily predicted than
others. Water temperature, which has directly contheldevel of dissolved oxygen, and

catchment area, which is highly correlated with the aimk flow of a river, were the two
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most influential variables that drove the species 8istion. Models that predicted the
fish most accurately were those controlled most tlrdxyy these two variables; fish
found in big, warm rivers such as redhorse species, cheatifish, and common carp
were predicted very well, as were fish found in smalld streams such as brook trout,
mottled sculpin, and slimy sculpin. The importancéhete variables has also been
supported by other studies (Hawkes 1975; Vannote et al. 1980; Faascha®8; Wiley
et al. 1990; Lyons 1992; Zorn et al. 2002; Wehrly et al. 2003).

The classification tree model gives a quantitativeljgten of the niche space of
the species; the habitat ranges in which the fishpe@ed to reside. For most species
the habitat space is first defined by water temperatureatictiment area. The other
variables included in the classification trees are e¥asrgf finer “filters”. Water
temperature and catchment area control whether tr@nsggstem has the potential to
hold the fish, while the other variables control theipalar spatial location where the
fish are found. For example, there is a low chat©fé4d) of largemouth bass being
located in streams with a daily July mean water teatpeg less than 18°@. Streams
that are above this threshold however, have a moddratee (62%) of holding
largemouth if the stream is also 20 km upstream from a pbmthis example, water
temperature is the first filter. Once a stream m#e$srequirement (in other words,
passes through this filter), the distance to a pond besonportant in determining
largemouth presence. In a cold stream (<28)9the distance to a pond does not matter,
as there is only a low chance of largemouth occurrerg@tdehis distance.

In chapter 4, | used the classification tree modelsdastow past and future

land-use change and climate change are expected to shgaenthdish communities in
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the Muskegon River stream system. For the future predgtladeveloped three
potential climate change and land-use change scenari@pplied them to the
predictive fish models to create the potential distrdyubf fish from 2010-2100. Given
a water temperature increase of approximatélg 4he models predicted virtual
eradication of the brook trout, rainbow trout, andr@bk salmon in the Muskegon
watershed, and a severe decline of brown trout. ThebdiSon of warm-water fish is
expected to spread, with the exception of walleye, wiviaé predicted to decline in the
Muskegon due to increases in urban development.

Chapter 5 examined how different landscape factors astlleam processes
affect urban stream fish communities. The incredsereams affected by urbanization is
an issue of top concern for aquatic ecologists becauaeety of urban impacts have
negative consequences on stream communities. Analyie variation around the
relationship between fish IBI and stream urbanizatiorshasvn that agricultural impacts
are a major factor in whether urban streams aretalslepport good fish communities.
Urban streams in watersheds that are primarily aguiibnd urban are much more
likely to have degraded fish communities than urban streathssufficient forest in the
watershed. Healthy fish communities in urban stredsesreeed good water quality and
stable flow. Discharges from point sources reduce vaaigity, but provide steady flow
that is mechanistically similar to ground water.

Throughout this dissertation, the models that indibate landscape factors and
disturbances affect the stream fish community alsobeaused strengthen new concepts
in stream fisheries management. For example, tHgsasain this dissertation are based

on the idea that fish species are influenced by proctssegperate on larger spatial
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scales and slower temporal scale than those meadutezllacal-scale (Chapters 2-5;
Richards et al. 1996; Leftwich et al. 1997; Rathert 1999; Allan 200Agrefore,
effective conservation management will need to be appliehe proper scale; evidence
from this dissertation has indicated that managers toepldn on a watershed level, not
on a riparian level. In chapter 3, land-use/cover wat@rshed scale was used in the
classification trees more often than land-use/cowdhe riparian scale (16.7 % of
presence/absence models vs. 13.4%). In chapter 5, rigaabnland-use/cover did not
explain any variation in the difference between ob=giand potential 1Bl in urban
streams that was not previously accounted for by the steerdand-use/cover.
Managing on a watershed scale is not a new idea (Waalg2f01, Wang et al. 2003;
Fitzpatrick et al. 2005) but the riparian management paradigminues to be very
popular (Bernhardt et al. 2005), probably due to the easer&ingamn a small-scale.
While management at a local or riparian-scale certaiafyproduce favorable changes in
fish communities, evidence from this dissertation sugdkatoperating on the

watershed scale will be more effective.

Models built on a landscape-scale are decision-makirlg &e to be used in a
variety of management and conservation applicatiorigher most basic use, these
models predict the amount and location of the rivehgdgtat suitable for common fish
species in Michigan. In situations where a managelitiasnformation and needs a
starting point or confirmation of an idea, these modedsrasulting maps provide
baseline data. Inventory information is a vital compotefisheries management and
species conservation, and the modeling described hego®davay to get this data on a

large geographic scale. Managers can also use the mo@édstheir fish sampling and
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stream assessment work. The models can be used toyigerightial high-quality
“reference” streams and low-quality “impaired” sitesheTnodels can also be used to
identify streams that have a good restoration poterfeiat. example, managers could
predict if adding forest land-cover in the stream’sesstied would have a positive effect
on the fish community, or if the buffer would havelditeffect because the stream has

low overall potential regardless of land-use management.

These models can be useful for the management of partgpecies. For some
fish, a manager can rule out the presence of a isbdon a single factor. | found that
trout species were unlikely to be found in streams witamuaily July water temperature
over a particular value (brook trout, 194 brown trout, 20.2C; rainbow trout, 19.9C).
This information combined with the ability to access wétenperature on a GIS would

be very useful to managers deciding whether to managgimahstreams for trout.

The models can be used identify streams that shouldrbgled for rare species
or species of concern. Besides looking at streamsevthe fish has been found in the
past, it is difficult to know where else the fish magide. However, due to
anthropogenic pollution and siltation impacts on strearas the past century, rare fish
are not found where the models predict them to be locet@dherefore models of rare
fish have high rates of false presence errors. Whéetedictions of rare fish were
inaccurate compared to the test data in this study, thedels still have practical
management use because they predict the habitat spaeethddéish have the potential

to reside.

To ensure long-term sustainability of aquatic resourcegipgating future

changes in fish communities is an essential taslowladge of what may happen if we
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fail to act can provide both the motivation to act amtidate what steps may be
necessary to prevent the predicted changes from occuinr@hapter 4, | applied three
“what-if” future scenarios to the classification treedels and saw that fish communities
in the Muskegon River system, and by extrapolation,isieecbmmunities throughout
Michigan, will be much different in 2100 than today. Whhe problem of climate
warming may be out of the hands of fisheries managassndt impossible to work for
changes in land-use development in order to prevent sbthe predicted future changes
from coming true. The classification tree models givel{ase thresholds that managers
will not want to cross. For example, a big river ¢baent areas greater than 657°km
with a watershed of less than 8.5% urban land-use mmagh high probability to

maintain walleye populations than a stream high in urdsadh (57% vs. 26%, Appendix
).

As mentioned above, the goals of this dissertatior® weexamine how models
can be useful in formulating and testing hypotheses abedacttors, disturbances, and
processes that are important to organisms, as well aslim@ practical fisheries
management tools. The models we have used do this #rerbailandscape level, using
correlation fish-habitat associations. Yet using thmsthods brings forth an inherent
weakness. The models in chapters 2-4 have the abiligctoately predict fish
distributions, but these models do not give any explamatidiological mechanisms.
The analysis Chapter 5 represents a new and useful veayoéptualizing the issue of
fish communities and urban streams, but the CSA asatydy explained 39% of the
variation in the difference between observed and piatdBi score so there remains

much to be explored. Throughout the entire dissertatido not consider the effect of
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competition, predator/prey relationships, or other speciesaictions, and am not able to
include the effect of localized habitat features. Thk & clear biological relationships
in the results is unfortunate. However, what théselitation does provide is a large
spatial scale, which relates better to temporally siayeelogical and hydrological
mechanisms. Studies integrating local-scale and lardesmaables and using
biological interactions as well as geological/hydrologmacesses will be difficult to
carry out, but represent a possible avenue for improvisgabik in the future.
Temperature change, land-use change, and urbanizaticraéties that aquatic
scientists are going to need to understand in order to getreddools needed to conserve
aquatic diversity. This dissertation shows that landssapke habitat variables partnered
with GIS, classification trees, and covariance stractunalysis can be used to sharpen
our knowledge of how these disturbances affect stregmafid provide practical tools to

aid in our management of aquatic systems.
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Appendix A. A) Classification tree model for brook trodeveloped by statewide fish
samples and 2001 habitat data. Habitat variable code exptanate given in Chapter
2, Table 1. B) Predictive maps of the brook trout modelpgdied to the years 1830,
2001, and 2100. Three maps were made for 2100: 1) land-use cmind®d slow
temperature change, and 3) fast temperature change.
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Appendix A,

continued.

BAUETW
1

EEETW
1

EERETE

3300 T

1
Brook Trout- 1830
Probability of presence, Model terminal node|
Lakes
—— 0.91, Terminal node 4
—— 0.81, Terminal node 2
0.53, Terminal node 1
—— 0.31, Terminal node 5
—— 0.28, Terminal node 3
—— 0.03, Terminal node 6

Percant of stresm length rapresented
by tarminal nods

Mods 1
0%

0 9 18 MILES

b

0 & 12 KILOMETERS
Palitical boyundares from ESRS base Eyers

Som LISEE1.100, Hatianal Hy Diatasel

BAISTW

ETAETW
1

A4ET T

A3 T

L
1

Brook Trout- 2001
Probability of presence, Model terminal node

Lakes
—— 0.91, Terminal node 4
—— 0.81, Terminal node 2

0.53, Terminal node 1
—— 0.31, Terminal node &
—— 0.28, Terminal node 3
—— 0.03, Terminal node 6

Percent of stream length representad
by tsrminal node

a 9 18 MILES

B

0 & 12 KILOMETERS
Polttical baundanes from ESRS hase Byers

fom LSGS 1100, sestional Dataset

188




Appendix A, continued.

8IS TW B5°3T0W
1 1

ETETW
1

A G T

3300 Ty

1
Brook Trout- 2100, no temp change
Probability of presence, Model terminal node
Lakes
—— 0.91, Terminal node 4
—— 0.81, Terminal node 2
0.53, Terminal node 1
—— 0.31, Terminal node 5
—— 0.28, Terminal node 3
—— 0.03, Terminal node 6

Percent of stream length represented |
by tarminal node

"‘I‘qul
=y

0 9 18 MILES

byt

0 & 12 KILOMETERS

Peltical boundsnes from ESRS base fayers
‘Siresm data om USEE 1,100,000 scake Maional Hydography Datasel

BAISTW B5ATTW
1 1

ETAETW
1

RENTE

A3 T

1
Brook Trout- 2100, slow temp change
Probability of presence, Model terminal node
Lakes
—— 0.91, Terminal node 4
—— 0.81, Terminal node 2
0.53, Terminal node 1
—— 0.31, Terminal node &
—— 0.28, Terminal node 3
—— 0.03, Terminal node 8

Percent of stream length represented
by tarminal node

Node 2
1%

Node 1_
g%\

Mode 8

a 9 18 MILES

B

0 & 12 KILOMETERS

Polttical baundanes from ESRI hase ayers
National Datnses]

SomUSGS1

189



Appendix A, continued.
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Appendix B. A) Classification tree model for brown trodeveloped by statewide fish
samples and 2001 habitat data. Habitat variable code exptanate given in Chapter
2, Table 1. B) Predictive maps of the brown trout model@plied to the years 1830,
2001, and 2100. Three maps were made for 2100: 1) land-use cmingd slow
temperature change, and 3) fast temperature change.
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Appendix B, continued.
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Appendix B, continued.
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Appendix B, continued.
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Appendix C. A) Classification tree model for rainbowut, developed by statewide fish
samples and 2001 habitat data. Habitat variable code exptanate given in Chapter
2, Table 1. B) Predictive maps of the rainbow trout madedpplied to the years 1830,
2001, and 2100. Three maps were made for 2100: 1) land-use cmingd slow
temperature change, and 3) fast temperature change.
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Appendix C,

continued.
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Appendix C,

A6

A3 T

continued.
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Appendix C,

RENTE

3300 T

continued.
B3 Iit‘"-';' a8 e?-}".‘.' E4 4?’0'W
Rainbow Trout- 2100, fast temp change
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Appendix D. A) Classification tree model for Chinooksan, developed by statewide
fish samples and 2001 habitat data. Habitat variable cqdanations are given in
Chapter 2, Table 1. B) Predictive maps of the Chinook salmadel as applied to the
years 1970, 2001, and 2100. Since the Chinook salmon model doesluxé
temperature, temperature change future models were nadfeathis species.
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Appendix D, continued.
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Appendix D, continued.
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Appendix E. A) Classification tree model for Coho satmeveloped by statewide fish
samples and 2001 habitat data. Habitat variable code exptanate given in Chapter
2, Table 1. B) Predictive maps of the Coho salmon modabplsed to the years 1970,
2001, and 2100. Three maps were made for 2100: 1) land-use cmingd slow
temperature change, and 3) fast temperature change.
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Appendix E, continued.
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Appendix E, continued.
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Appendix E,

continued.
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Appendix F. A) Classification tree model for smallmob#ss, developed by statewide
fish samples and 2001 habitat data. Habitat variable cqdanations are given in
Chapter 2, Table 1. B) Predictive maps of the smallmoasgis model as applied to the

years 1830, 2001, and 2100. 1830, 2001, and 2100 (no temp change) harethe sa
prediction.
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Appendix F, continued.
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Appendix F, continued.
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Appendix G. A) Classification tree model for largemoldlss, developed by statewide
fish samples and 2001 habitat data. Habitat variable cqdanations are given in
Chapter 2, Table 1. B) Predictive maps of the largemoutlehas applied to the years
1830, 2001, and 2100. Three maps were made for 2100: 1) land-use ahignge slow
temperature change, and 3) fast temperature change.
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Appendix G, continued.
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Appendix G,

continued.
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Appendix G, continued.
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by terminal node
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Appendix H. A) Classification tree model for north@ike, developed by statewide fish
samples and 2001 habitat data. Habitat variable code exptanate given in Chapter
2, Table 1. B) Predictive maps of the northern pike madelpplied to the years 1830,
2001, and 2100. Three maps were made for 2100: 1) land-use cmingd slow
temperature change, and 3) fast temperature change.
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Appendix H,

RENTE

A3 T

continued.
B3 I?C"‘N a5 !?-:".‘.' L 4?'O'W
Northern Pike- 1830
Probability of presence, Model terminal node -
Lakes :i)%') :
—— 0.79, Terminal node 6 —Z\

—— 0.58, Terminal node 4

0.53, Terminal node 2
—— 0.18, Terminal node 1
—— 0.08, Terminal node 3
—— 0.09, Terminal node &

Fearcent of stream length reprasented
by terminal node

18 MILES

0 & 12 KILOMETERS

Palttical boundanes fom ESAS hase Eyers
Styeam datn fom LUSGS 1,100,000 stk National Hydrography Datasc]

BAISTW B5ATTW
1

ETAETW
1

AT

3300 T

1
Northern Pike- 2001
Probability of presence, Model terminal node
Lakes
—— 0.79, Terminal node 6
—— 0.58, Terminal node 4
0.53, Terminal node 2
—— 0.18, Terminal node 1
—— 0.09, Terminal node 3
—— 0.09, Terminal node 5

Percent of stream length reprasented
by terminal node

0 9 18 MILES

]

0 6 12 KILOMETERS

Pelttical baundanes from ESAI base Byers
Strmam datn om LUSGS 1,100,000 staks Mational Hydrography Dateses|
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Appendix H,

continued.

BSTW B5°3TIW
1 1

E4ETW
1

RENTE

A3 T

1
Northern Pike- 2100, no temp change
Probability of presence, Model terminal node
Lakes
—— 0.79, Terminal node 6
—— 0.58, Terminal node 4
0.53, Terminal node 2
—— 0.18, Terminal node 1
—— 0.08, Terminal node 3
—— 0.09, Terminal node &

Fearcent of stream length reprasented
by terminal node

Mods B Node 1

Node 2

18 MILES

0 & 12 KILOMETERS

Palttical boundanes fom ESAS hase Eyers
Styeam datn fom LUSGS 1,100,000 stk National Hydrography Datasc]
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1 1

ETAETW
1

AT

3300 T

I
Northern Pike- 2100, slow temp change
Probability of presence, Model terminal node
Lakes
—— 0.79, Terminal node 6
—— 0.58, Terminal node 4
0.53, Terminal node 2
—— 0.18, Terminal node 1
—— 0.09, Terminal node 3
—— 0.09, Terminal node 5

Percent of stream length represented
by terminsl nade

3

%
Jh ﬁ\

-—

=

0 9 18 MILES

]

0 6 12 KILOMETERS

Pelttical baundanes from ESAI base Byers
Strmam datn om LUSGS 1,100,000 staks Mational Hydrography Dateses|
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Appendix H, continued.

AT

3300 T

B3 Iic".‘;‘ a8 E?C".‘.' E4 &?'O'W
1
Northern Pike- 2100, fast temp change
Probability of presence, Model terminal node -
Lakes —’ﬁ%\ "
—— 0.79, Terminal node 6 R Z\
—— 0.58, Terminal node 4 &=

0.53, Terminal node 2
—— 0.18, Terminal node 1
—— 0.09, Terminal node 3

—— 0.09, Terminal node 5

Percent of stream length represented

1%

Maoda &
47%

by tarminal nade
B
Nade 1 -

=

0 9 18 MILES

]

0 6 12 KILOMETERS
Pelttical baundanes from ESRI base Byers

Ko LISES 1100, Hational Hy Datasst
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Appendix I. A) Classification tree model for walleykeveloped by statewide fish
samples and 2001 habitat data. Habitat variable code exptanate given in Chapter
2, Table 1. B) Predictive maps of the walleye modepadied to the years 1830, 2001,

2040, and 2100. Since the walleye model does not include teomeet@mperature
change future models were not created for this species.

Mode 1
CATCHARE S == (568

Mode 7 Mode 4
TOTAL P PPM_==0040 WT_LIRBARN == 0.085

Terminal Terminal Terminal
Mode 1 - Mode 4 Mode 5
Class Cases % Mode 3 Clazs Cases % Class Cases %
Absent 247 oos CATCHARE & == 237 4 Ahsent B3 Se8 Absant 43 1000
PESETT'I o4 Present 48 432 | Present 0O on
M =24z B= 111 | M= 43
Terminal [ Terminai
Test Data Maode 2 Mode 3 Test Data Test Data
Mode Class Cases % Class Cases % Mode Mode
Class Cazes % Absent 71 987 | |Absent s1 oz7 Class Cazes % Class Cases %
Absent zen o974 Pregent 1 12| |Present 4 74 Absent & 454 | |Abzent 167
Present 7 26 T | M= gg Present 45 548 Present s 82.3
M =267 M= 53 M=g
Test Data Test Data
Combined Miode Mode Combined Combined
Mode Class Cases % Class Cazes % Node Mode
Class Cases % Absent @7 o4 | |Absent 26 723 Clazz Cazes % Clazs Cases %
Ahzent 507 984 Fresent 1 1.1 Present 10 277 Bbhsent 71 o433 Absent 14 737
Present 8 16 G R M= 36 Present 03  &57 | |Present 5 263
N=|515 M= a4 M= 1
I
Musieqds Lengih gt Combined Combined Muskegan Length qamy: | | MUskeaon Length dar):
1560.4 Mode Mode 2007 o
Fercent of watershed: Clazsz Cazez % Class Cases % Petoent sFiistarsred: Percant of watershed
560 Ahsent 162 ags Absent 77 845 104 0.0
Present z 1.2 Present 14 15.4 =
Mo=170 b= gq
I
tuskedon Length (km Musicegan Length fml:
a0e 7 a7 s
Perzant of watershed: Percant of watershed:
320 20,
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Appendix |, continued.

Percent of stream length representad
by terminal node

n Percent of stream length representsd
by terminal node
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Appendix |, continued.
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Appendix J. Contingency table counts and results forsfities of clusters 1,2, and 3. Tables A-D can be sepdrahis example
from the first line of the table: Blackside Darter (fréhe darter species metric) is being compared betwasterd 1 and 2+3. In
cluster 1, this fish was absent from 21 sampling locatmaspresent at 9 sampling locations and in cluster 3 atfetre were 57
absent locations and 3 present locations. The Fishercs psabability is 0.002, which is significant with theevel set at .03
(0.10/Number of species tested from the darter specieg)nefables E-H are based on fish species as a pageeaf the total catch
at a sampling site, but are interpreted in a similanmmaato A-D.

A

Darter Species Clusters Absent Present Absent Presexft x°sig. Fisher'ssig. Required sig.
Blackside Darter 1vs. 2+3 21 9 57 3 0.002 0.03
Johnny Darter 1vs. 2+3 11 19 38 22 4.71 0.030 0.03
Rainbow Darter 1vs. 2+3 12 18 59 1 37.44 0.000 0.03

B

Sucker Species Clusters Absent Present Absent Presefit x®sig. Fisher'ssig. Required sig.
Northern Hog Sucker 1vs. 3 21 9 26 4 1.57 0.117 0.05
White Sucker 1vs.3 6 24 5 25 0 1.000 0.05

C

Intolerant Species Clusters Absent Present Absent emres x° x°sig. Fisher'ssig. Required sig.
Mottled Sculpin lvs. 3 26 4 29 1 0.353 0.02
Rainbow Darter 1vs.3 12 18 30 0 22.94 0.000 0.02
Rock Bass 1vs.3 11 19 26 4 13.82  0.000 0.02
Smallmouth Bass 1vs. 3 22 8 25 5 0.39 0.531 0.02
(Northern Hog

Sucker) 1vs.3  see Suckers
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Appendix J, continued.

D
Native Species Clusters Absent Present Absent Rresen x? X’ sig. Fisher's sig.Required sig.
Black Bullhead lvs. 3 22 8 24 6 0.093 0.76 0.005
Black Crappie lvs. 3 23 7 27 3 0.093 0.76 0.005
Blacknose Dace 1vs.3 22 8 20 10 0.079 0.778 0.005
Blackside Darter 1vs.3 21 9 30 0 0.002 0.005
Bluegill lvs. 3 15 15 17 13 0.067 0.796 0.005
Bluntnose Minnow lvs. 3 18 12 25 5 2.955 0.086 0.005
Brook Stickleback 1vs.3 21 9 22 8 0 1 0.005
Central Mudminnow lvs. 3 12 18 18 12 1.667 0.197 0.005
Central Stoneroller 1vs.3 23 7 27 3 1.08 0.299 0.005
Common Shiner lvs. 3 14 16 20 10 1.697 0.193 0.005
Creek Chub lvs. 3 6 24 13 17 2.773 0.096 0.005
Fathead Minnow lvs. 3 26 4 17 13 5.253 0.022 0.005
Grass Pickerel 1vs.3 21 9 28 2 4.007 0.045 0.005
Green Sunfish lvs. 3 4 26 9 21 1.571 0.21 0.005
Horneyhead Chub 1vs.3 20 10 28 2 5.104 0.024 0.005
Johnny Darter 1vs.3 11 23 23 7 8.21 0.004 0.005
Largemouth Bass 1vs.3 10 20 19 11 4.271 0.039 0.005
Northern Pike lvs. 3 23 7 25 5 0.104 0.747 0.005
Pumpkinseed 1vs.3 7 23 19 11 8.21 0.004 0.005
Yellow Bullhead lvs. 3 19 11 25 5 2.1 0.144 0.005
(Rainbow Darter) 1vs.3 see Intolerant
(Rock Bass) 1vs.3 seeIntolerant
(Mottled Sculpin) 1vs.3 see Intolerant
(Smallmouth Bass) 1vs.3 see Intolerant

(Northern Hog Sucker) 1vs.3 see Suckers




Appendix J, continued.

E

% Carnivore Clusters Median 0% <Med. >Med. 0% <Med. >Medx’ x°sig. Fisher'ssig. Required sig.
% Black Crappie 1vs 2+3 1.2 23 4 3 54 2 4 0.175 0.014
% Channel Catfish 1vs 2+3 0.71 26 2 2 54 3 3 1.000 0.014
% Grass Pickerel 1vs 2+3 0.5 21 3 6 55 4 1 0.005 0.014
% Largemouth Bass 1vs 2+3 1.57 10 8 12 38 13 9 8.51 0.014 0.014
% Northern Pike 1vs 2+3 0.48 23 2 5 48 7 5 0.437 0.014
% Rockbass 1vs 2+3 2.9 11 9 10 48 6 6 16.05 0.000 0.014
% Smallmouth Bass 1vs 2+3 2.21 22 4 4 49 5 6 0.612 0.014
F

% Tolerant Clusters Median 0% <Med. >Med. 0% <Med. >Medy> x®sig. Fisher'ssig. Required sig.
% Blacknose Dace 1vs.3 8.89 41 11 8 20 3 7 0.368 0.011
% Bluntnose Minnow 1vs. 3 6.42 36 13 11 25 1 4 0.041 0.011

% Central Mudminnow lvs. 3 4.06 27 16 17 18 6 6 1.646 0.481 0.011
% Common Carp 1vs. 3 1.9 37 16 7 16 2 12 12.31 0.002 0.011
% Creek Chub lvs. 3 12 12 27 21 13 5 12 8.08 0.018 0.011
% Fathead Minnow lvs. 3 3.44 51 6 3 17 5 8 0.005 0.011

% Green Sunfish 1vs. 3 3.45 11 24 25 9 11 10 1.036 0.596 0.011
% White Sucker 1vs.3 7.28 11 26 23 5 11 14 0.767 0.011
% Yellow Bullhead 1vs. 3 1.85 43 10 7 25 1 4 0.2 0.011
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Appendix J, continued.

G

X Fisher's Required
% Insectivores Clusters Median 0% <Med. e¢M x? sig. sig. sig.
% Black Bullhead lvs. 3 1.43 24 3 3 0.829 0.007
% Blackside Darter 1vs.3 2.29 30 0 0 0.002 0.007
% Bluegill lvs. 3 4.19 17 8 5 1.444 0.486 0.007
% Brook Stickleback 1vs.3 3.03 22 2 6 0.255 0.007
% Central Mudminnow lvs. 3 3.87 18 6 6 2.046 0.360 0.007
% Common Shiner lvs. 3 3.94 20 8 2 7.666 0.022 0.007
% Green Sunfish lvs. 3 3.03 9 10 11 1.875 0.392 0.007
% Horneyhead Chub lvs. 3 3.36 28 2 0 0.018 0.007
% Johnny Darter 1vs.3 6.6 23 6 1 13.04 0.001 0.007
% Northern Hog Sucker lvs. 3 3.6 26 2 2 0.343 0.007
% Pumpkinseed 1vs.3 0.08 19 8 3 12.00 0.002 0.007
% Rainbow Darter 1vs.3 1.9 30 0 0 0.000 0.007
% Sand Shiner 1vs.3 10.5 27 1 1 1.000 0.007
% Yellow Bullhead lvs. 3 1.85 25 1 4 0.101 0.007
% Yellow Perch lvs. 3 0.74 28 2 0 0.112 0.007
H

X Fisher's Required
% Omnivores Clusters Median 0% <Med. >Medy’ sig. sig. sig.
% Common Carp 1+2vs. 3 1.9 16 2 12 12.31 0.002 0.020
% Fathead Minnow 1+2vs. 3 3.44 17 5 8 0.005 0.020
% Creek Chub 1+2vs. 3 12 13 5 12 8.08 0.018 0.020
% Bluntnose Minnow 1+2vs. 3 6.42 25 1 4 0.041 0.020
% White Sucker 1+2 vs. 3 7.28 5 11 14 0.767 0.020
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Appendix K. Contingency table counts and results fér $igecies of clusters 4 and 5. Table A can be read dsipexample from
the first line of the table: Black Bullhead (from theiva species metric) is being compared between cludtarsl 5. In cluster 4, this
fish was absent from 13 sampling locations and presénsampling locations and in cluster 5, there were 1dmatiscations and 5
present locations. Thevalue is 0.000 and associated probability is 1.000, which gnifisant with thea level set at .07

(0.1/Number of species tested from the “native specedsiat). Tables B and C are based on fish speciespgscentage of the total
catch at a sampling site, but are interpreted in daimmanner to A.

A

X Fisher's Required
Native Species ClusterAbsent Present Absent Present sig.  sig. Sig.
Black Bullhead 4vs. 5 13 6 14 5 0.00 1.000 0.07
Blacknose Dace 4vs.5 10 9 15 4 187 0.171 0.07
Bluegill 4vs. 5 12 7 14 5 0.12 0.727 0.07
Bluntnose Minnow 4vs.5 13 6 12 7 0.00 1.000 0.07
Brook Stickleback 4vs.5 14 5 11 8 0.47 0.494 0.07
Central Mudminnow 4vs.5 10 9 12 7 0.11 0.742 0.07
Central Stoneroller 4vs.5 13 6 18 1 2.80 0.094 0.07
Common Shiner 4vs.5 14 5 16 3 0.16 0.691 0.07
Creek Chub 4vs. 5 4 15 5 14 1.000 0.07
Fathead Minnow 4vs. 5 12 7 5 14 3.83 0.050 0.07
Greensunfish 4vs.5 4 15 5 14 1.000 0.07
Johnny Darter 4vs. 5 11 8 13 6 0.11 0.737 0.07
Largemouth Bass 4vs. 5 11 8 17 2 3.39 0.065 0.07
Pumpkinseed 4vs. 5 11 8 14 5 0.47 0.494 0.07

White Sucker 4vs. 5 4 15 5 14 1.000 0.07
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Appendix K, continued.

B

x>  Fisher's Required
% Omnivores Cluster Median 0% <Med. >Med. 0% <Med. >Med.X? sig. sig. sig.
% Common Carp 4vs. 5 0.9 12 3 4 16 2 1 0.349 0.33
% Fathead Minnow 4vs.5 4.76 12 5 2 5 5 9 7.34 0.026 0.033
% White Sucker 4vs. 5 13.4 4 10 5 5 4 10 0.125 0.33
C

x>  Fisher's Required
% Tolerant Cluster Median 0% <Med. >Med. 0% <Med. >Med.X? sig. sig. sig.
% Blacknose Dace 4vs.5 20.79 10 5 4 15 1 3 0.197 0.02
% Bluntnose Minnow 4vs.5 4.98 13 3 3 12 3 4 1 0.02
% Central Mudminnow 4 vs. 5 17.1 10 6 3 12 2 5 0.402 0.02
% Creek Chub 4vs.5 21.2 4 8 7 5 6 8 0.843 0.02
% Green Sunfish 4vs.5 3.48 4 9 6 5 5 9 0.424 0.02
% Fathead Minnow 4vs.5 see % Omnivores
% White Sucker 4vs.5 see % Omnivores
% Common Carp 4vs.5 see % Omnivores




Appendix L. Results from the Kruskal-Wallis nonparameaest of means and the multiple comparison Nemnybotfedtster 1,2,
and 3 for habitat variables. Included in this table arelirter means of the variablgd,of Kruskal-Wallis test, associated degrees
of freedom, and associated significance. Multiple corsparresults are interpreted as follows: q (1-3) isStuglentized range g
statistic for the difference between cluster 1 and 8,pafl-3) is the associated significance. Critical vafaes| are as follows: @,
w0, 3= 2.902, g05,0,3=3.313, @01, 3=4.200 (Zar 1999). Metrics significant@t<.10 are in bold.

Cluster Cluster Cluster

9¢¢

Habitat variables 1 2 3 x> df p qg((1-3) p(2-3) g (1-2) p (1-2) q (2-3) p (2-3)
WT_FINE 17.46 2053 038 158 2 0.46
WT_COARSE 43.74 55.96 0.39 424 2 0.12
10_YIELD 0.017 0.017 0016 051 2 0.77
90_YIELD 0.0017 0.0021 0.0018 2.86 2 0.24
WT_URBAN11 390 569 566 433 2 012
WT_URBAN12 393 577 476 533 2007 228 >0.1 3.12 <0.10 0.08 >0.1
WT_URBAN14 393 241 166 1195 2000 455 <001 2.98 <0.10 1.56 >0.1
WT_AGR 22.00 37.70 3893 175 2 0.42
WT_AGR21 15.84 17.63 1319 374 2 0.15
WT_AGR22 17.20 20.04 2575 691 2003 366 <005 1.51 >0.1 2.15 >0.1
WT_OPEN 13.38 16.99 1656 1.73 2 0.42
WT_FOREST 2290 1560 1550 10.89 2000 4.11  <0.05 3.86 <0.05 0.03 >0.1
WT_FOREST41 18.10 13.06 13.19 931 2001 351 <005 3.85 <0.05 0.03 >0.1
WT_FOREST42 214 159 108 832 2002 392 <005 2.24 >0.1 1.68 >0.1
WT_FOREST43 266 1.89 133 11.73 2000 475 <001 2.49 >0.1 2.25 >0.1
WT_WATER 255 1.03 125 1025 2001 3.30 <010 4.18 <0.05 0.88 >0.1
WT_WETLAND 2857 9580 9587 300 2 0.22
WT_WETLAND610 3.63 296 269 293 2 023
WT WETLAND611 510 355 4.03 393 2 0.14
WT WETLAND612 0.32 012 010 209 2 035
WT_WETLAND613 0.02 001 001 119 2 055



Appendix L, continued.

Cluster Cluster Cluster p- q(- p@- g2
Habitat variables 1 2 3 x> df p gq(1-3) 3) 2) 2) 3) p (2-3)
WT_WETLANDG62 3.9 3.12 3.02 209 2 0.35
RT_URBAN11 2.3 3.43 3.24 119 2 0.55
RT_URBAN12 2.23 3.37 2.45 129 2 0.52
RT_URBAN14 2.85 1.94 1.01 13.79 2 0 496 <0.01 259 >0.1 237 >0.1
RT_AGR 22 27.57 2733 239 2 0.3
RT_AGR21 9.43 12.02 8.05 137 2 0.51
RT_AGR22 12.66 15.55 19.33 522 2 0.07 3.16 <010 197 >01 1.2 >0.1
RT_OPEN 9.26 12.97 13.67 4.06 2 0.13
RT_FOREST 19.7 16.8 15.2 563 2 0.06 3.05 <010 264 >0.1 0411 >0.1
RT_FOREST41 15.14 13.44 1279 279 2 0.25
RT_FOREST42 1.97 1.43 1.17 6 2 005 329 <010 213 >0.1 1.16 >0.1
RT_FOREST43 2.61 1.86 1.25 1185 2 0 476 <0.00 277 >01 1.99 >0.1
RT_WATER 10.34 10.34 4.87 866 2 0.01 2.16 >0.1 4.08 <0.05 1.91 >0.1
RT_WETLAND 28.57 24.93 255 048 2 0.79
RT_WETLAND610 7.02 8.12 5.48 315 2 0.21
RT_WETLAND611 11.42 8.13 10.8 3.05 2 0.22
RT_WETLAND612  0.62 0.39 0.22 1111 2 0 441 <0.01 272 >01 1.69 >0.1
RT_WETLAND613 0.04 0.01 0.01 442 2 0.11
RT_WETLAND62 9.4 8.19 8.98 1.74 2 0.42
TNY_ATMOS 219.16 202.65 190.65 4.14 2 0.13
TNY_FERT 434.03 459.09 384.89 421 2 0.12
TNY_LIVE 94 210.65 208.25 1154 2 0 291 <010 3.22 <010 0.03 >0.1
TNY_NONAG 86.44 78.01 97.7 691 2 003 2.7 >0.1 079 >0.1 349 <0.05
TNY_POINT 176.31 326.21 41476 6.32 2 0.04 331 <010 6.64 <001 0.66 >0.1
TNY_TOTAL 1009.93 1276.59 1296.25 2.49 2 0.29
TPY_FERT 33.13 32.13 26.72 533 2 007 2.75 >0.1 0.06 >0.1 281 >0.1
TPY_LIVE 13.36 27.86 2252 942 2 0.01 34 <005 3.94 <005 0.55 >0.1
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Appendix L, continued.

Habitat Cluster Cluster Cluster

variables 1 2 3 NG p g(1-3) p@-3) g@-2) p@-2) qg2-3) p(2-3
TPY_NONAG 7.84 6.61 8.12 3.46 2 0.18

TPY_POINT 25.27 4.89 37.25 1.07 2 0.59

TPY_TOTAL 79.6 111.49 94.62 2.05 2 0.36

FERT 16.7 2257 19.95 3.08 2 0.22

HERB 1443 18.77 16.34 255 2 0.28

INSECT 2.18 4.4 377 1116 2 O 3.86 <0.05 4.2 <0.05 0.35 >0.1
MANURE 1.87 4.38 4.68 12.9 2 0 4.72 <0.01 3.85 <0.05 0.87 >0.1
OUTFALL 0.21 0.12 008 1214 2 O 4.69 <0.01 3.4 <0.05 1.29 >0.1
MINES 0 0.01 0.01 4.27 2 0.12

POPDENS 197.39 270.33 25257 4.63 2 0.1

RDCROSS 0.6 0.81 0.69 0.13 2 0.94

RDDENS 2.86 3.36 3.16 3.91 2 0.14

EPATOXIC 0.04 0.18 0.2 1099 2 O 4.24 <0.01 0.57 >0.1 3.66 <0.05




Appendix M. Results from the Mann-Whitney U nonparameé&st of means of clusters
4 and 5, for habitat variables. Included in this tablel@eluster means of the variables,
U statistic, and associated significance. Variablesifgignt ata <.10 are in bold.

Mann-

Whitney U
Habitat variable Cluster 4 Cluster Sstatistic p-value
WT_FINE 51.30 70.57 127 0.116
WT_COARSE 16.70 8.60 108.5 0.023
10_YIELD 0.019 0.020 147 0.328
90 _YIELD 0.0016 0.0012 118 0.068
WT_URBAN11 16.51 20.92 150 0.373
WT_URBAN12 15.41 17.11 152 0.405
WT_URBAN14 2.71 3.62 137 0.133
WT_AGR 4.63 9.79 138 0.193
WT_AGR21 2.20 3.81 145.5 0.279
WT_AGR22 2.46 5.99 122.5 0.082
WT_OPEN 23.61 22.80 179 0.965
WT_FOREST 21.11 14.89 120 0.08
WT_FOREST41 15.34 11.65 128 0.125
WT_FOREST42 3.23 1.58 129 0.121
WT_FOREST43 2.56 1.63 119.5 0.072
WT_WATER 0.53 0.44 139 0.199
WT_WETLAND 5.32 3.37 127.5 0.117
WT_WETLAND610 0.67 0.23 1185 0.044
WT_WETLAND611 2.45 1.55 124 0.096
WT_WETLAND612 0.06 0.01 121 0.04
WT_WETLAND613 0.01 0.00 130 0.066
WT_WETLANDG62 2.10 1.57 152 0.4
RT_URBAN11 10.71 15.50 136.5 0.199
RT_URBAN12 10.27 12.17 146.5 0.32
RT_URBAN14 4.01 2.52 142 0.184
RT_AGR 3.68 7.21 145.5 0.262
RT_AGR21 1.96 3.07 147 0.276
RT_AGR22 1.74 4.17 151 0.351
RT_OPEN 20.90 23.80 145 0.3
RT_FOREST 25.37 18.32 1215 0.085
RT_FOREST41 18.92 14.41 131 0.148
RT_FOREST42 3.71 2.12 133 0.152
RT_FOREST43 2.78 1.74 119.5 0.072
RT_WATER 1.79 0.80 129 0.122
RT_WETLAND 16.00 12.26 133.5 0.17
RT_WETLAND610 2.63 1.93 133.5 0.048
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