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ABSTRACT 

OPTICAL AND MAGNETIC MANIPULATION OF HYBRID 
MICRO AND NANOPARTICLE SENSORS 

by 

Rodney Ray Agayan 

Chair: Raoul Kopelman 
 
 

Microparticles and nanoparticles have been used in a wide variety of applications ranging 

from biomedical to optical and electronic technologies.  The microscopic and mesoscopic 

size scale of single particles makes them ideal tools for probing the local environments of 

biological cells, sensing the viscous properties of fluids and surfaces on the microscale, 

and interacting with photonic and magnetic fields.  But the effectiveness of these particle 

systems is limited by the ability to manipulate and control them in predictable ways. 

 

In this work, two methods of microparticle and nanoparticle manipulation are 

investigated, namely optical tweezers (OT) and magnetic rotation.  OT provide a 

mechanically non-invasive means of grasping microparticles and nanoparticles, utilizing 

focused laser light.  Moreover, particles driven by magnetic rotation in viscous media 

exhibit nonlinear dynamical motion and are a subclass of systems known as nonuniform 

oscillators.  Both the individual and combined synergistic use of these control schemes is 
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studied, in particular, on hybrid particles systems comprised of several materials, 

including both dielectric microspheres and metallic or magnetic colloids. 

 

Classical electromagnetic theory was developed to describe the wavelength dependence 

of OT forces acting on a trapped, resonantly absorptive particle.  Enhancements in the 

trapping strength could be obtained via near-resonance tuning of the laser wavelength.  

Experimental observation of this phenomenon on our hybrid particles was inhibited by 

increased destabilizing forces at the micron scale and the emergence of heating effects at 

high laser intensities often used in OT.  

 

Using reduced laser intensities in conjunction with magnetic rotation, hybrid particles 

could be two-dimensionally trapped and rolled at a substrate surface.  Changes in the 

nonlinear dynamical motion of the particles were measured to distinguish particle 

roughness and surface friction. 

 

The response of rigid dimers of hybrid particles to optical and magnetic manipulation 

was studied.  Observed changes in the dynamical motion with increased optical 

perturbation strength, using both numerical modeling and experiment, were investigated 

in terms of scattering forces, magnetization and heat generation from absorptive 

interactions. 
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Finally, the escape into the third-dimension of a magnetic dimer of hybrid particles 

undergoing nonuniform rotation was studied experimentally and compared to both theory 

and numerical simulation. 
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CHAPTER 1 

INTRODUCTION 

At its inception, the work described in this thesis was originally motivated by the 

desire to optically manipulate nanosensors for cellular measurements.  The difficulties of 

stably trapping and controlling nanoscale, dielectric sensors and the reality of heat 

generation with metallic nanosensors complicated our use of optical tweezers for intra-

cellular sensing.  Combined optical and magnetic manipulation schemes, however, 

offered extra-cellular control for both micro- and nanoscale probes.  For completeness, 

the original motivations are described as well as the rationale that encouraged the 

evolution of later experiments. 

The direction of research in the Kopelman Group, as well as in many general fields of 

biotechnology, has been towards the creation of micro- and nanoscale probes for a variety 

of intra- and extra-cellular applications.  The development of PEBBLE (Photonic 

Explorers By Biologically Localized Embedding) technology [1, 2] has provided a 

platform for sub-cellular, biochemical analyte imaging inside living cells as well as 

photodynamic therapy of brain cancers.  But with the development of nanoscale sensors 

comes the natural desire to control and manipulate them non-invasively on an individual 

basis.  Optical and magnetic manipulation schemes have been proposed as possible 

means of providing this single-particle control.  Hybrid particle systems comprised of 

different materials of both micron and nanometer size can afford further utility as long as 

the salient features of the system as a whole supersede the potential incompatibility of the 

distinct materials themselves.  This thesis serves to describe many features of such optical 

and magnetic manipulation of hybrid particle sensors. 
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1.1   PEBBLE Sensors 

In the last several decades, biosensing technology in the Kopelman Group has 

experienced a gradual trend towards smaller and smaller probe sizes (see Figure 1.1).  

The miniaturization of microelectrodes and fiber optic sensors has improved detection 

limits and response times [3-5]; however, simultaneous insertion of multiple sensors of 

these kinds can cause considerable physical perturbation to the cell.  Fluorescent 

indicator dyes have been developed which are capable of sensing numerous biologically 

significant analytes (i.e., sodium, potassium, calcium, chloride, H+), as well as gases (i.e., 

oxygen, carbon dioxide, and nitric oxide).  Although their small size makes them 

physically non-invasive, these dye molecules may affect a cell chemically, or even poison 

it. In addition, components in the cell such as proteins may interfere, affecting the dye’s 

response, or the dye molecules may be sequestered into cell organelles or membranes. 

In order to combine the physical non-invasiveness, speed, and reduced detection limit 

of dye molecules with the chemical non-invasiveness, sensitivity and selectivity of fiber 

probes, our group has developed fluorescent nanosphere sensors known as PEBBLEs.  

These PEBBLEs are porous polymer or glass spheres containing, among other 

components, fluorescent indicator dyes.  Their small size, roughly 20-200 nm in 

diameter, reduces the physical perturbation to the cell.  The pores in the biocompatible 

matrix are large enough to allow the appropriate analytes to diffuse in, but small enough 

to prevent proteins from entering the PEBBLE, as well as preventing dye molecules from 

escaping and being sequestered in the cell. 

Our group has utilized several delivery schemes to place PEBBLEs inside cells, 

nevertheless each method has it drawbacks.  Administering probes via pico-injection is 

physically invasive, and specifying location within the cell is mechanically difficult.  

Delivery of PEBBLEs using the gene gun method is less invasive, but controlled 

positioning of probes is practically unfeasible.  Non-invasive liposomal delivery is also 

non-specific, dispensing most probes to the cytoplasm, and its efficacy can depend on 

cell type.  All three methods suffer from the inability to controllably position the probes 

to specific regions of interest in the cell, for example near organelles, next to ion 

channels, or within the nucleus. 
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To measure the underlying mechanism of ion concentrations in cellular functions or 

monitor analyte transport properties across cell membranes using PEBBLEs, ideally, one 

would like the capability of maneuvering a single nanoscale probe to precise locations 

within and around the cell.  One must be able to manipulate the probe firmly enough 

without disturbing either the cell’s activity or the probe’s functionality.  Manipulation 

methods using optical radiation or magnetic fields offer potential solutions. 

1.2   Optical and Magnetic Manipulation 

1.2.1 Optical Tweezers 

Optical tweezers are a mechanically non-invasive means of grasping microparticles 

and nanoparticles using focused laser light [6-9].  They have been used to manipulate 

organelles and sub-cellular structures within the cytosol of plant cells [10-12], 

amoeba [13], and mitotic cells [14].  PEBBLEs have also been trapped with optical 

tweezers to measure the local pH in water and near a glass interface [15].  Because 

watery, biological samples tend to be optically similar to PEBBLE matrices (index of 

refraction n ~ 1.33-1.5), intra-cellular optical tweezing of the probes sometimes results in 

the movement of cellular components as well.  To control a PEBBLE, one must develop 

a means of specifically manipulating only the probe while maintaining the cell 

environment as relatively optically transparent to the trapping light.  

Gold colloids of 40 nm diameter are known to undergo increased trapping strengths 

compared to polystyrene spheres of similar size due to the increased optical volume, or 

polarizability [16].  It has also been suggested in the literature [8] that absorptive particles 

with resonantly large polarizabilities should experience enhanced optical tweezing forces.  

In Chapter 2, we develop theory that predicts the occurrence of these enhancements with 

proper tuning of the laser wavelength near resonance [17, 18].  Such a property is 

especially attractive for trapping metallic colloids in which plasmon resonances can be 

excited to generate enhanced radiation forces [19].  Furthermore, particles that exhibit 

strong surface-enhanced Raman scattering (SERS) signals can experience optically 

induced aggregation, or “optical binding,” using optical tweezers [20]. 
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1.2.2 Magnetic Rotation 

Magnetic manipulation has also been used to control magnetic particles of micron or 

nanometer size for a variety of biological applications [21-24].  Magnetic tweezers, 

analogous to optical tweezers, require high magnetic field gradients to apply translational 

forces on magnetic particles for intra-cellular studies [25-27].  Such gradients can be 

generated within the vicinity (~microns) of arrangements of magnetic pole structures 

using permanent magnets or electromagnets with iron cores.  Stably trapping 

ferromagnetic particles in three-dimensions is difficult due to the magnetic analog of the 

Optical Earnshaw theorem [9].  Alternatively, using uniform magnetic fields or at 

distances far from magnetic pole structures, magnetic particles no longer experience 

strong translational forces, but they can still be oriented rotationally to align with the 

external field.  The latter magnetic rotation schemes have been employed extensively in 

the Kopelman Group for a variety of applications [28-33] including improvement of 

signal-to-background measurements in microscopy imaging [34] and bacteria 

detection [35].  In this thesis, only orientational magnetic tweezing of this type was 

considered. 

1.2.3 Dynamical Motion 

Particles that are either optically trapped or magnetically rotated in viscous media can 

undergo measurable changes in their dynamical motion which enable their use as sensors 

of the local environment.  For example, the low frequency components of the 

translational Brownian fluctuations of a particle in an optical trap are damped in 

comparison to those for free-diffusion [36].  This effect can be quantified by observing 

microscopic position fluctuations of the particle in the frequency domain.  The 

characteristic frequency which signals the transition from damped low-frequency 

components to unaffected high-frequency components depends on both the trap stiffness 

and the viscosity of the surrounding fluid.  By measuring this characteristic frequency as 

a function of laser intensity, we observed a decrease in the fluid viscosity due to 

increased temperatures resulting from light absorption of our hybrid particles (Chapter 3). 

Magnetic particles driven by magnetic rotation in viscous media exhibit nonlinear 

dynamical motion and are a subclass of systems known as nonuniform oscillators [37].  
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At low frequencies, the particles orient to align with the rotating magnetic field resulting 

in synchronous rotation.  At frequencies higher than can be supported by viscous drag, 

the particles can exhibit asynchronous, nonlinear, oscillatory motion.  The equations that 

govern such motion can also describe a driven, overdamped pendulum in viscous media, 

the synchronization of flashing fireflies, as well as the dynamics of Josephson 

junctions [37]. 

Changes in the nonlinear dynamical motion of the particles near a surface were 

measured to distinguish particle roughness and surface friction (Chapter 4).  With 

combined optical illumination and magnetic rotation, further modification of the 

nonlinear dynamics was observed using both numerical modeling and experiment.  The 

results were investigated in terms of trapping forces, magnetization and heat generation 

from absorptive interactions (Chapter 4-6).  At high frequencies, magnetic particles can 

also escape the expected plane of rotation.  Observations of this three-dimensional 

oscillatory motion of extended magnetic particles was compared to theory previously 

developed by Caroli and Pincus [38]. 

1.3   Hybrid Particle Systems 

The entities that are manipulated and described here have been termed “hybrid 

particles.”  The definition of a hybrid particle assumed throughout this thesis is any 

heterogeneous particle system that can be tailored to the demands of the experiment.  

Numerous core-shell architectures have been developed which utilize the optical 

properties of a metallic or semiconductor core combined with a specified shell to modify 

functionalization and dispersion properties for such applications as drug delivery, 

catalysis, and colloidal assembly, to name just a few [39-41].  The individual materials 

often serve different functions while the combination can provide multiplexing 

capabilities or enhanced performance.  For example, efficient energy flow devices have 

been developed using composites formed by blending inorganic quantum dots and 

organic conjugated polymers [42].  The photophysical properties of the semiconductors 

combined with the processing capabilities of the polymer leads to improved fabrication 

materials.  The probe constituents considered here tend to include polymeric or glass 

matrices, fluorophores, and magnetic or metal colloids, either micro- or nanoscale. 
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PEBBLEs themselves can be considered hybrid moieties which may contain other 

components in addition to fluorescent dyes.  Ionophores and enzymes can be added to 

change the selectivity for certain analytes using tandem-sensing schemes.  Multiple dyes 

can be placed in a single PEBBLE to enable simultaneous sensing of different chemical 

species, or provide a means of ratiometric self-calibration.  Also, antibodies may be 

attached to the outside of the PEBBLE to allow targeted positioning. 

Another specific type of hybrid particle involves nanoparticles consisting of dielectric 

cores coated by metallic shells (core-shells) that exhibit strong surface plasmon 

resonances [43-45].  Plasmon resonances are collective oscillations of the conduction 

electrons of noble metals such as gold, silver, and platinum.  The shells may be complete 

coatings or comprised of many individual nanoparticles.  A prominent feature of these 

hybrid plasmonic core-shell systems is that the wavelength of the resonance can be tuned 

by the shape and size of the nanoparticles as well as the relative thickness of the outer 

shell compared to the core [46-50].  Such a property complements the enhanced optical 

tweezing effects previously mentioned. 

A third class of hybrid particles considered in this thesis is characterized as dielectric 

cores half-coated with metallic shells.  The anisotropy of these particles, either 

optical [28-33, 46, 51-54], magnetic [28-33, 46, 54], or electric [51] depending on the 

shell material, makes them exemplary devices for signaling rotational fluctuations, 

inducing preferential orientation in external fields, or enabling directed self-assembly in 

collections of particles.  Rigid dimers or doublets of individual hybrid particles, either 

core-shell or half-coated, can also provide this anisotropy. 

1.4   Challenges 

The manipulation of hybrid particles with potentially conflicting material properties 

poses serious challenges.  For example, the move towards smaller PEBBLEs has been 

prompted by their distinct advantages: minimal physical invasiveness, higher spatial 

resolution, faster response speed, and lower absolute detection limit.  One disadvantage 

for smaller PEBBLEs, however, is the increased difficulty of controlling them with 

optical tweezers.  Maximal trapping force scales with particle volume for particles small 

compared with the laser wavelength.  Thus, a method for maximizing the trapping force 
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at small probe sizes is desirable.  A selective enhancement of trapping strength would 

also provide a degree of specificity in optical tweezing, i.e., enable one to trap only probe 

particles in a crowded environment, such as the inside of a cell. 

By incorporating metallic colloids or other particles that experience enhanced 

trapping forces into our PEBBLEs, only the probe becomes preferentially trappable 

compared to cellular constituents, and optical tweezing specificity can be obtained.  A 

potential drawback to this solution, however, is the notion that these metallic colloids can 

generate significant heat due to absorption at the high laser intensities typically required 

for single-beam gradient optical tweezing.  This property has even been considered as a 

means for photo-thermal therapeutic medicine [55].  The temperature increase at the 

focus of a trapping beam in water ranges from 10-30° K/W depending on the laser 

wavelength and trapped object (cells, liposomes, polystyrene or silica microspheres) [56-

60]  and up to 44° K/W in glycerol [61].  In the presence of highly absorbing metallic 

structures, heating is significantly increased by a factor of 5-20 [62-64], again depending 

on the wavelength, solution, metal material, and number of colloids in the focus.  Seol et 

al. calculated the rise in the surface temperature of a 50 nm gold colloid to be 

266° K/W [64]. 

In an effort to reduce complications due to heat generation of metallic colloids, we 

sought to trap micron sized silica cores with colloidal gold shells with low particle 

loading and minimized colloid aggregation (Chapter 3).  The larger transparent silica 

cores were easily trappable, while the absorptive metallic colloids in their reduced 

number might still provide an enhancement.  Although heating was still apparent, these 

hybrid particle systems proved useful for later experiments, especially when magnetic 

material was incorporated into the surrounding shell. 

Dielectric-metal core-shell magnetic hybrid particles pose their own challenges.  

Translational radiation forces due to optical tweezers at typical laser intensities (106 –

 107 W/cm2) are much larger than translational magnetic forces when the magnetic pole 

structure is far from the sample or the magnetic field gradient is weak.  In contrast, 

magnetic rotational torques tend to be much larger than analogous optical torques, 

although at these laser intensities, orientational alignment of absorptive particles may not 

be negligible and magnetic colloid loading may need to be adjusted.  Magnetic colloid 
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loading also influences the stability of the optical trap.  Incorporation of metallic or 

magnetic colloids also increases hybrid particle density, thus encouraging sedimentation 

in fluidic samples.  Glycerol-water mixtures or other solutions may be needed to perform 

experiments away from surfaces.  Furthermore, strong optical tweezing forces are 

confined to particles that lie within the optical trap.  Uniform magnetic fields affect all 

ferromagnetic particles within the field region while the particles themselves can affect 

the dynamics of other particles in close proximity.  Although this problem is easily 

circumvented by use of low particle concentrations, it does restrict the minimum 

allowable spatial distance between magnetic probe measurements.  Tailoring both the 

components of the particle system and the applied manipulation schemes is possible and 

likely necessary to facilitate the use of hybrid particle systems as valuable sensing tools. 

This thesis is ordered almost chronologically, in part because ideas and concepts that 

were developed and learned in the early projects provided knowledge to help us devise 

and accomplish new experiments.  More specific details of the chapters are as follows: 

Chapter 2 is the publication found in Ref. [18], parts of which were also published in 

an SPIE paper found in Ref. [17].  This chapter introduces much of the literary 

background for optical tweezers and provides a classical electromagnetic theoretical 

treatment for describing the gradient and scattering forces on Rayleigh particles in a 

paraxially focused laser beam as a function of the laser wavelength.  The original 

publication included enhancements of up to 50 times; however, minor portions of the 

numerical analysis were in error.  The corrected sections are provided in this thesis.  The 

corrected enhancements of trapping stiffness are smaller, but an additional section was 

added showing that larger enhancements could be achieved with materials having 

narrower absorption linewidths. 

Chapter 3 was published as an SPIE paper found in Ref. [65].  This chapter 

introduces the experimental realization of optical tweezing and explores the attempt at 

observing enhanced optical tweezing stiffness for a variety of hybrid particles, each 

comprised of several materials.  One class of particles was made of dielectric 

microspheres embedded with fluorescent dye. Another consists of dielectric-metal, core-

shell microparticles.  The fluorescent dye-loaded samples did not exhibit the hoped for 

strong resonance enhancement, a result assumed to be due to the low dye-loading 
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efficiency.  The core-shell microspheres did show increased trap stiffness, but it was 

determined that this observation was due to increased heat absorption caused by the 

metallic colloidal shell covering these microspheres.  Dielectric cores half-coated with 

metal could not be measured as they could not be stably trapped with single-beam 

gradient optical tweezers. 

Chapter 4 looks at the experimental manipulation of hybrid microspheres comprised 

of polystyrene cores with shells of magnetic colloids.  These particles could not be 

trapped three dimensionally with single beam gradient optical tweezers, but they could be 

confined radially on top of a glass surface.  The addition of a rotating magnetic field 

enabled these microspheres to roll while slipping along the surface.  Two magnetic 

microsphere types with different roughness, as well as two different glass surfaces, one 

untreated and one PEGylated, were tested.  Indications of nonlinear rolling motion that 

resembled the motion of nonuniform oscillators appeared.  This chapter will be submitted 

for publication in the Journal of Applied Physics. 

Chapter 5 is an in-depth numerical study of the combined optical and magnetic 

rotational manipulation of an absorptive/scattering particle.  The equations that govern 

the motion of a standard nonuniform oscillator are derived and the effect of the strength 

of the added optical perturbation is studied.  The interplay between optical and magnetic 

torques is investigated using numerical analysis techniques to reveal the nonlinear 

motional dynamics that result.  The relevance of these results to experimental 

considerations is also addressed.  This chapter will be submitted for publication in 

Physical Review E. 

Chapter 6 is an account of the experimental methods used to observe nonuniformly 

rotating particles and to consistently analyze the data recorded, i.e. without human bias.  

These techniques were used in two publications, Refs. [54, 66].  The addition of an 

optical perturbation is also looked at.  Results revealed that the observed increase in 

rotation rate was most likely due to heat absorption caused by the magnetic colloids of 

the microsphere systems.  This chapter will be submitted for publication in the Journal of 

Magnetism and Magnetic Materials. 

Chapter 7 is an experimental and numerical corroboration of the Caroli and Pincus 

theory on the three-dimensional response of a magnetic grain in a rotating magnetic 
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field [38].  The qualitative features of the dynamic motion are found to be consistent in 

all methods of analysis.  Two regimes of motion were observed: one was rotation 

restricted to a plane; the other was rotation such that the particle’s easy axis traced out the 

surface of a cone in 3-dimensional space.  This chapter will be submitted for publication 

in Physical Review E. 
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CHAPTER 2 

OPTICAL TRAPPING NEAR RESONANCE 
ABSORPTION 

Since Ashkin and colleagues’ original work on optical trapping [67], the effect of 

radiation forces on atoms and dielectric particles has been exploited greatly.  Although 

different theoretical models can be used to calculate optical forces for different 

configurations and particle-size regimes, the forces acting on matter, from angstrom-size 

atoms to micron-sized plastic or silica beads, originate from the same physical 

phenomenon, namely momentum exchange between radiation and matter. 

The simplest optical trap is the single-beam gradient trap, or “optical tweezers.”  

Originally proposed as an atom trap [68], optical tweezers have been used extensively in 

biology, chemistry and colloid physics [7, 69, 70].  Experiments have also revealed 

limitations of optical tweezers.  The absorption of watery biological samples in the 

ultraviolet, visible and far-infrared range requires that optical tweezers operate at near-

infrared wavelengths to minimize damage.  A disadvantage of optical tweezers in 

comparison, for example, to magnetic manipulation is that in a crowded environment, 

such as inside a cell, force is exerted indiscriminately.  Another limitation is the 

maximum force available with optical tweezers while avoiding damage to the specimen 

and to conventional optics.  Optical tweezers operating under 1 W of average laser power 

can exert forces of up to about 100 pN – enough to stall mechano-enzymes and stretch 

DNA [7].  Stronger forces typically are needed to move irreversibly organelles such as 

chloroplasts or nuclei within cells.  Somewhat larger forces can be reached with 

alternative trap geometries [6] or high-index particles.  Maximal force scales with particle 

volume (~d3, d = particle diameter) for particles small compared with the laser 

wavelength and becomes independent of particle radius in the ray-optics regime.  Smaller 
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particles have a faster dynamic response and are therefore often advantageous for use as 

dynamic probes [15, 36].  Thus a method for maximizing trapping force at a given 

particle size is desirable.  A selective enhancement of trapping strength would also 

provide a degree of specificity in optical tweezing, i.e. enable one to trap probe particles 

preferentially in a crowded environment.  In this paper, we consider optical trapping of an 

absorptive particle near its resonant absorption frequency, but not directly on-resonance.  

The particle’s complex refractive index is increasing strongly, and trapping forces as well 

as absorption are expected to be enhanced. 

To calculate rigorously the force acting on a neutral particle, one needs to solve the 

Maxwell equations for the electromagnetic fields with boundary conditions appropriate 

for the given system.  If the particle diameter d is much larger than the radiation 

wavelength (d >> λ), one can operate in the limit of geometrical optics in which the 

electromagnetic fields behave locally as plane waves.  In this limit, diffraction can be 

neglected and momentum exchange is calculated from refraction and reflection of plane 

waves.  For very small particle sizes (d << λ), in the Rayleigh regime, the instantaneous 

electric field extending across the particle diameter can be approximated as uniform.  The 

particle is then treated as a simple, induced dipole oscillating in a harmonic electric field.  

Momentum exchanges that yield forces on the particle are calculated as interactions 

between the field and the dipole. 

Radiation forces can be described similarly in both the geometrical optics and 

Rayleigh regimes.  In both limits, the total force on the particle can be resolved into two 

components: the dissipative scattering force pointing in the direction of the incident 

light [67, 71, 72] and the conservative gradient force, along the intensity gradient [6, 68, 

72, 73].  To obtain a stable trap with a single focused laser beam, the gradient force must 

exceed the scattering force to generate a potential well that is at least as deep as the 

particle’s thermal energy due to Brownian motion. 

Trap stability depends on the geometry of the applied field and on properties of the 

trapped particle and the surrounding medium.  The forces generally depend on particle 

size and the relative index of refraction n = np/nm where np and nm are the indices of the 

particle and medium, respectively [6].  In the geometrical optics regime, maximal trap 

strength is particle size-independent, but increases with n over some intermediate range 
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until, at larger values of n, the scattering force exceeds the gradient force.  The scattering 

force on a non-absorbing Rayleigh particle of diameter d is proportional to its scattering 

cross section, thus the scattering force scales with the square of the polarizability 

(volume) [74, 75], or as d6.  The gradient force scales linearly with polarizability 

(volume), i.e. it has a d3-dependence [8, 75, 76].  Svoboda and Block [16] demonstrated 

the refractive index dependence by showing that the trapping force for gold Rayleigh 

particles is ~7 times that of latex particles - a ratio equal to the ratio of their respective 

polarizabilities.  Since the dependences on polarizability for the scattering and gradient 

forces are quadratic and linear, respectively, stable single-beam trapping only occurs for 

particles smaller than some maximum threshold size.  Thus in the Rayleigh regime, trap 

strength will also be maximal for particular values of n and d. 

It has been suggested in the literature [8] that absorptive particles with resonantly 

large polarizabilities should experience enhanced laser tweezing forces.  To date, optical 

tweezers commonly have been used at frequencies far from any resonances in the trapped 

particles, whereas the excitation frequency dependence of optical forces on atoms has 

been studied in great depth.  The dispersive nature of the gradient force of a single 

focused laser beam on sodium atoms was demonstrated experimentally through 

measurement of the on-axis atomic-beam intensity as a function of laser frequency [77].  

Near resonance, the scattering force is dominant thus increasing the on-axis atomic 

intensity.  More than 15 GHz away from resonance, only the gradient force is significant.  

A quantum mechanical derivation of the radiation pressure on a stationary, two-level 

atom also reveals this frequency dependence of the trapping forces [74, 78].  The gradient 

force can be associated with the potential created by the ‘light shift’ (Stark shift) [79] of 

the atomic levels when the laser frequency is detuned away from resonance.  For 

detuning below resonance, the light shift is negative and an optical potential well is 

formed at the focus.  Ideally, for positions very close to the focus (<< Rayleigh range) the 

scattering force is minimized and the gradient force provides a conservative restoring 

force proportional to the atom's distance from the focus.  Detuning above resonance 

creates a positive light shift, forcing atoms to be ejected from the beam focus.  Tuning 

exactly on resonance maximizes absorption thus maximizing the scattering force while 

minimizing the gradient force. 
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In a dielectric particle or macromolecule, numerous transitions can contribute to the 

absorption profile and resonant transitions are usually broadened.  Nevertheless, we 

expect a small particle, i.e. a collection of interacting dipoles, to behave qualitatively 

similarly when the excitation frequency is varied.  At present, however, there is no 

rigorous theory that specifies the frequency dependence of radiation-induced forces in the 

Rayleigh regime in terms of macroscopic parameters such as the refractive index or 

dielectric susceptibility of the particle and its environment. 

We proposed [17, 18] an approximate classical method for estimating the scattering 

and gradient forces on a neutral particle in terms of macroscopic parameters.  We 

considered a Rayleigh particle in an electromagnetic field and modeled the induced 

dipole as a classical oscillator.  We then obtained the frequency dependences of the 

scattering force, gradient force and trap strength.  Note: MKS units are used throughout. 

2.1   Radiation Forces in a Focused Paraxial Gaussian Beam 

To obtain expressions for the trapping forces on a particle, we first determine the 

appropriate equations for a single atomic dipole and then use the Clausius-Mosotti 

Equation [74] in the limit of a dilute gas to connect to macroscopic quantities.  Consider a 

linear dipole p = ε0αE where E is the applied field, α = α′ + iα′′ is the complex, first 

order, frequency-dependent polarizability (a scalar for an isotropic material), and ε0 is the 

vacuum electric permittivity.  The radiation-induced forces acting on this dipole have 

been derived from the non-relativistic Lorentz force.  With index notation, the time 

averaged forces are [9, 80]: 
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where ˆ x j  are the Cartesian-coordinate unit vectors and Fg and Fs are the gradient force 

and scattering force, respectively.  The Ek variables are the components of the electric 

field amplitude. 

For Rayleigh scattering, one naively might take α to be a simple real polarizability 

(proportional to the volume of the particle) so that α′′ = 0 which would make the 
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scattering force zero.  However closer inspection of scattering by a non-absorbing 

sphere [80-82] shows that even in this case α effectively contains an imaginary part 

α′′ ≠ 0 which is proportional to the volume squared.  This is due to the radiation reaction 

on the oscillating dipole, causing a phase shift between the dipole p and the applied field 

E.  This energy loss makes the scattering force sF  nonzero even in the absence of 

absorption.  In the series expansion of α for particles that are small with the wavelength, 

this volume-squared term is the lowest-order imaginary term.  When a resonance is 

approached there will be a lower-order imaginary term that is proportional to volume. 

To model the spatial distribution of the electric field in an optical trap, we assume a 

paraxial Gaussian beam focused by a lens [83].  This approximation breaks down for 

focusing with large numerical aperture (NA), which is often required for optical tweezers.  

The parameter s = λm/2πw0 can provide a measure of the accuracy of the approximation.  

Here λm is the wavelength of the light in a surrounding medium of index nm and w0 is the 

beam radius in the focus (the 1/e2 radius of the intensity).  Barton and Alexander [84] 

state that the paraxial approximation, a description to zeroth-order in s, will contain 

average errors in the electric field of ~9.47% for s = 0.20 and ~15.3% for s = 0.30.  For a 

medium with index nm = 1.52, these values of s correspond to NA’s of 0.56 (convergence 

half angle θ = 22°) and 0.78 (θ = 31°), respectively.  Thus future calculations for the 

radiation forces will have corresponding uncertainties depending on the NA chosen. 

The field at a distance z from the beam focus and a radial position r from the beam 

axis (in cylindrical coordinates) is in the Gaussian approximation (see Figure 2.1): 
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Figure 2.1 Focus geometry as discussed in text. 

Here z0 = πw0
2/λm and km = 2π/λm, where w0 is again the beam radius in the focus and λm 

is the wavelength of the light propagating in a surrounding medium of index nm.  The 

convergence half angle is given by θ = tan−1 λm /πw0( ) .  The value of w0 will depend on the 

wavelength of the incident light, the beam radius wi entering the lens, the lens focal 

length f, and the refractive index of the surrounding material in which the focus is located 

(w0 = fλm/πwi).  Performing the appropriate coordinate conversions to Eq. (2.3) and 

inserting the result into Eqs. (2.1) and (2.2), we obtain the following components for the 

gradient force: 
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and for the scattering force: 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−

−′′=⋅
)()()(

)(
)(

ˆ
zw

r
zwz

w
zz
zzrk

zw
w

ms 2

2

2
0

2
0

22
0

2

2
0

22

2

2
02

0
0 2exp

2
1EFz α

π
ε , (2.9)

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−′′=⋅

)(
2exp

)()(
ˆ

2

2

2

2
02

0
0

zw
r

zR
rk

zw
w mEFr s α

π
ε . (2.10) 



 

 18

Equivalent expressions have been previously derived [75].  For a position sufficiently 

close to the beam axis ( 2/wr < ), the gradient force is directed toward the trap focus 

provided that α′  is positive.  The strengths of the gradient and scattering forces are 

proportional to the real and imaginary components of the polarizability, respectively.  For 

a stable trap, the gradient force must exceed the scattering force over a large enough 

region of space such that a potential well is formed deep enough to trap the particle.  

Thus the ratio between the real and imaginary parts of the polarizability can provide a 

measure of the trap depth. 

2.2   Models of Response 

For a dipole with a single resonant absorption frequency, the classical electron 

oscillator (CEO) model [74] provides a simple analytical solution for the complex 

polarizability.  In the CEO model of absorption, an induced dipole with natural 

oscillation frequency ω0 is driven by an ac electric field.  Derived from the Lorentz force 

equation, assuming the dipole approximation [85], the equation of motion for the dipole 

with mass m and moment p = qx is 
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We have assumed a harmonic restoring force, and a damping force has been included to 

account for the radiation of power.  The rate constant γ includes both radiative and non-

radiative decay, as well as decay due to dephasing collisions [86].  Remembering that 

p = ε0αE, the frequency domain solution of the polarizability is then 
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Using this result in Eqs. (2.7)-(2.10), one obtains the gradient and scattering forces on a 

single dipole as functions of position in space and laser frequency. 

If the resonance frequency ω0 is much larger than the damping parameter γ (weak 

damping), then α′′ will be significant only for ω ≈ ω0.  The polarizability can then be 

written as 
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The imaginary part α′′ has a Lorentzian lineshape, while the real part α′  is positive for 

ω < ω0, thus red-detuned frequencies are required for attractive gradient forces near the 

trap focus.  A collection of oscillators with a homogeneously broadened transition will 

also have an imaginary response with a Lorentzian lineshape.  If the oscillators in a 

collection have slightly different resonant frequencies randomly distributed about some 

central value, the overall imaginary response is broadened inhomogeneously and can 

have a Gaussian lineshape.  In either case, if the system’s response obeys causality and is 

linear in the electric field, the real and imaginary components of the polarizability are 

connected through the Kramers-Kronig (KK) relations [87, 88]. 

The dispersive behavior of the radiation-induced forces can be extended to 

macroscopic media.  The simplest case of a macroscopic system is a dilute gas of non-

interacting, neutral atoms.  The total trapping force for such a sample is acquired by 

multiplying Eq. (2.13) by the factor NV where N is the number density of dipoles and V is 

the total trapped volume of the sample, and inserting the appropriate component into 

Eqs. (2.7)-(2.10).  In such a system, the electric field E induces a polarization density 

defined by P = Np = ε0χE, where χ = (χp - χm)/(1 + χm) is the relative susceptibility of the 

sample with respect to the surrounding medium.  The polarizability (a microscopic 

parameter) and susceptibility (a macroscopic parameter) are thus related by the simple 

relation χ = Nα. 

In many cases, the trapped particle is a more complex system such as a crystalline or 

amorphous solid with multiple resonant frequencies and interacting dipoles affected by 

local fields.  In this situation, the relation between polarizability and susceptibility is 

more complicated than a proportionality constant.  The Clausius-Mossotti equation can 

be employed [74], which for a dielectric particle in some medium takes the form: 
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where εp,m = 1 + χp,m are the complex dielectric constants of the particle and medium, 

respectively.  Using Eq. (2.14) in Eqs. (2.7)-(2.10), the scattering and gradient forces on a 

particle are attained in terms of the macroscopic properties of the particle and its 

surrounding medium.  The real and imaginary parts of the refractive index 21
,, mpmpn ε= of 

the particle (medium) can be linked using suitable KK relations [89].  If we assume a 
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Beer’s Law dependence for the on-axis intensity, ( ) ( )azIzkIzrI −=′′−== exp2exp),0( 00  

and cnkikk /ω=′′+′=  is the complex wave vector, the imaginary part of the index 

n = n′ + in′′ is related to the absorption coefficient a by a = 2n′′ω/c.  If the absorption 

spectrum of a Rayleigh particle can be acquired experimentally over a large enough 

frequency range, the associated scattering and gradient forces on the particle can be 

determined. 

If the dielectric constant of the particle is close to that of the medium (εp/εm ~ 1), we 

obtain from Eq. (2.14) the relation for a dilute gas in air or vacuum, χ = Nα.  The 

imaginary component of the relative susceptibility χ′′  is much less than unity, thus we 

obtain a simple connection between the macroscopic absorption and microscopic 

polarizability: 

 cNa /ωα ′′= . (2.15) 

We expect the radiation forces to have the same qualitative behavior in this case as for a 

denser dielectric.  Thus, we consider the spectrum of a single absorption peak of a 

dielectric crystal and model its associated polarizability using the CEO, Lorentzian and 

Gaussian descriptions along with the KK relations. We then calculate scattering and 

gradient forces on the dielectric particle and compare trapping strengths.  An 

experimental realization of a relatively dilute system might be a dielectric particle 

densely loaded with fluorescent dye [dye density = 0.7 × 1025 m-3 for 2.0 μm diameter 

FluoSphere beads (Molecular Probes, 4849 Pitchford Avenue, Eugene, OR)]. 

2.3   Numerical Analysis 

We consider the scattering and gradient forces on a dielectric particle with a single 

resonant frequency in the visible region of the spectrum immersed in a medium with a 

purely real refractive index nm = 1.52 (typical value for oil immersion lenses).  Numerical 

apertures corresponding to certain convergence angles are calculated assuming this 

refractive index.  As an example for a material we consider pink ruby.  The trapped 

particle is assumed spherical with a radius of 10 nm and dipole density of 2.7 × 1025 m-3 

(density of Cr3+ in ruby).  The simplest case of a dilute gas sample is calculated by 

determining the forces on a single dipole and multiplying by NV.  Using the CEO picture 
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for polarizability [Eq. (2.13)], the absorption as given by Eq. (2.15) is fit to one of the 

peaks of ruby [90].  This curve is labeled the “CEO fit” in Figure 2.2.  By using the 

results from this fit, we determine parameters for comparable Lorentzian and Gaussian 

α′′ , assuming the same peak amplitude, central frequency and half-width-half-maximum 

as the CEO α′′: α′′max = 1.77 × 1015 m3, ω0 = 4.67 × 1015 rad/s, HWHM = 

0.274 × 1015 rad/s. Although these values correspond to an absorption peak of pink ruby 

(Cr2O3:Al2O3), the quantities are arbitrary and are included simply to illustrate the 

concept of resonant trapping.  The functional forms of the α′′(ω) fits and appropriate 

parameters are summarized in Table 2.1.  Resulting absorption curves corresponding to 

the Lorentzian and Gaussian models are also shown in Figure 2.2. 

 
Figure 2.2 Absorption spectrum of dilute sample with particle number density = 2.7 × 1025 m-3 and 
sample radius = 10 nm; amax = 745 m-1 at ω0 = 4.67 × 1015 rad/s; HWHM = 0.274 × 1015 rad/s.  Datapoints 
from a single-absorption peak of ruby31 are fit with the CEO model of α′′.  Lorentzian and Gaussian forms 
of α′′ with the same amplitude and width are determined, and their corresponding absorption spectra are 
plotted. 
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Table 2.1 Functional form of fitting curves and fit parameters for imaginary polarizability. 

2.3.1 Kramers-Kronig Consistent Response 

To obtain the real components of the polarizability, we use the KK relations. 

Keefe [91] shows that the CEO line shape is consistent with formal restrictions owing to 

causality and with requirements for the KK transform to hold between the real and 

imaginary parts of the polarizability.  The Lorentzian and Gaussian forms are not 

consistent.  These forms, however, can be modified in more than one way to meet the 

necessary requirements.  For the Lorentzian case, we derived the KK consistent form to 

be 
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where AL is a constant.  For a narrow peak (γ << ω0) and at positive frequencies, this 

approximates the usual Lorentzian 
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The exact KK transform for α′′ in Eq. (2.16) is 
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A similar procedure can be followed in the Gaussian case.  We derived the KK consistent 

form 
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where AG is a constant.  This is approximately 
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for a narrow peak at positive frequencies.  The KK transform for Eq. (2.19) is 
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where Dawson’s integral [92] is given by 
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Keefe [91] gives different but likewise consistent forms.  Using Eqs. (2.7)-(2.10), (2.17), 

(2.18), (2.20) and (2.21), the radiation forces were evaluated for each model.  The range 

of convergence angles θ over which a trap exists depends on the relative strengths of the 

scattering and gradient forces.  At smaller θ, the scattering force may exceed the gradient 

force everywhere, and the effective potential may have no points of stable equilibrium.  If 

θ is large, a trap usually exists, at least far enough away from resonance; however, the 

Gaussian beam approximation breaks down. 

2.3.2 Enhancements in Trap Stiffness 

The trap stiffness κ can be defined as the effective spring constant of the expression 

for the total force acting on the particle at the minimum of the optical potential well.  We 

calculate this stiffness by specifying θ, taking the derivative of the total force, 
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and evaluating at the coordinates of the effective potential minimum.  There is no 

summation over repeated indices in Eq. (2.23).  Owing to cylindrical symmetry, the trap 

always occurs at r = 0.  We determine the z-location of the trap by finding the roots of the 

total force.  Roots corresponding to potential extrema with negative trap stiffness and z-

locations upstream of the focus are discarded. 

Even without a frequency-dependent polarizability, we expect the trap strength to 

increase with increasing laser frequency because the potential width scales with 

wavelength.  The harmonic approximation to the Gaussian intensity profile at the focus is 
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E2 ∝ exp(-2r2/w0
2) ≈ 1-2r2/w0

2 from which the radial trap stiffness is calculated as 

κ ∝ 1/w0
2 ∝ 1/λ2.  Thus, trivially we expect the trap stiffness to scale as an inverse square 

power of wavelength, if we keep the field strength E0 constant for different wavelengths.  

Thus, to see only the effect of the frequency-dependent polarizability on trapping force 

enhancement we have plotted the scaled stiffness λ2κ for the CEO, Lorentzian, and 

Gaussian models, each as a function of λ in  Figure 2.3, Figure 2.4, and Figure 2.5, 

respectively. 

Figure 2.3 shows the scaled stiffness calculated with the CEO curve fit for the 

absorption for different convergence angles.  At smaller θ, trapping can only occur for 

wavelengths far from resonance (λ0 = 0.403 μm) since the scattering force tends to 

dominate the gradient force.  At these angles, even if the absolute trap stiffness were 

higher near resonance than far-off resonance, the enhancement would be primarily due to 

the decrease in wavelength.  As θ is increased, the gradient of the beam focus increases 

and trapping can occur closer to resonance.  Comparison of the two graphs in Figure 2.3 

indicate that for a given θ ≤ 45° and λ, the radial trap strength κr is up to 1 order of 

magnitude larger than the axial trap strength κz.  Also, for a given θ, the wavelengths 

corresponding to the maximum radial and axial trap stiffness have similar values, always 

remaining above resonance as indicated in Figure 2.6.  The wavelength for maximum 

radial stiffness is shifted towards slightly lower wavelengths, compared with that for the 

axial stiffness.  For all three cases, trapping in the radial direction is slightly easier than in 

the axial direction for a given wavelength, since a slightly smaller θ is required for 

maximum stiffness.  On resonance, absorption is greatest, and the scattering force is at its 

maximum, therefore there is no trapping.  The overall result is that trapping is only 

enhanced for wavelengths red-detuned from resonance. 

Figure 2.4 and Figure 2.6(b) describe trap characteristics assuming the Lorentzian 

form of α′′ and Figure 2.5 and Figure 2.6(c) describe the same for the Gaussian form of 

α′′.  The results for the Lorentzian system are similar to those for the CEO model, since 

the resonant frequency is much larger than the resonance width (ω0/γ = 17).  For a 

convergence angle of θ = 50°, calculations reveal that the scaled axial trap stiffness 

increases by a factor of 1.1 while the radial stiffness increases by a factor of 1.2
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Figure 2.3 Plots of scaled trap stiffness for CEO absorption fit.  The stiffness κ is multiplied by λ2 to 
correct for the trivial (non-resonant) wavelength dependence.  Radial (bottom) trap stiffness κr is generally 
larger than the axial (top) stiffness κz for a given convergence angle.  At θ = 50° (NA = 1.16), the axial and 
radial stiffnesses increase by a factor of 1.1 and 1.2, respectively, compared to far off-resonant frequencies. 
For angles < 20° (NA < 0.52) no trapping occurs within the wavelength range shown. 
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Figure 2.4 Plots of scaled trap stiffness for Lorentzian absorption fit. The stiffness κ is multiplied by λ2 
to correct for the trivial (non-resonant) wavelength dependence.  These results are similar to those for the 
CEO fit since the resonant frequency is much larger than the resonance width (ω0/γ = 17). At θ = 50° 
(NA = 1.16) the axial stiffness increases by a factor of 1.1 compared to far off-resonant frequencies 
whereas the radial stiffness increases by a factor of 1.2.
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Figure 2.5 Plots of scaled trap stiffness for Gaussian absorption fit. The stiffness κ is multiplied by λ2 to 
correct for the trivial (non-resonant) wavelength dependence.  The overall stiffness values are similar to 
those for previous fits at far off-resonant frequencies.  The total wavelength range over which a trap exists, 
however, is larger.  Trapping enhancement is also possible for smaller θ.  This results from the lack of long 
tails in the absorption spectrum that are present in the CEO and Lorentzian fits.  At θ = 50° (NA = 1.16) the 
stiffness increases as one approaches resonance by a factor of 4.1 in the axial direction and 4.2 in the radial 
direction compared to far off-resonant frequencies.  Convergence angle does not appear to strongly affect 
the rate of increase in trap stiffness; it only determines how close to resonance a trap can exist and the 
absolute value of the stiffness. 
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Figure 2.6 Plots of wavelengths corresponding to maximum trap stiffness for varying θ. For the (a) CEO, 
(b) Lorentzian, and (c) Gaussian models of absorption.  Vertical arrows along the x-axis indicate where 
typical NA’s (i.e. 0.5, 0.8, 1.1) occur.  Generally, radial trap stiffness is larger than axial, requiring a 
slightly smaller convergence angle for maximum stiffness at a given wavelength.  For θ much smaller than 
20° (NA = 0.52) no trap exists for the CEO and Lorentzian models.



 

 29

compared to off-resonant values.  For the Gaussian system, the stiffness curves have 

similar off-resonant values but have a larger wavelength range over which a trap exists.  

This arises from the lack of long tails in the absorption spectrum, which are present in the 

Lorentzian and CEO functional forms (See Figure 2.2).  Calculations for the Gaussian 

case show that for θ = 50°, the axial and radial trap stiffnesses increase from far off-

resonant frequencies by a factor of 4.1 and 4.2, respectively.  It is physically reasonable 

that trapping strength depends greatly on the nature of the sample, in particular, on the 

absorption profile at slightly off-resonant wavelengths.  Inhomogeneously broadened 

materials that have sharp absorption peaks may have off-resonant trapping strengths that 

are larger than homogeneously broadened materials with similar absorption peak widths.  

Materials in which spectral lines are broadened by a mixture of these two mechanisms, 

i.e. those with Voigt profiles, will have intermediary off-resonant trapping strengths.  In 

any case, approaching a resonance from the red-detuned side can enhance trap stiffness.  

The more pronounced enhancement effect due to the lack of long tails in the Gaussian 

profile vs. the Lorentzian and CEO profiles suggests there are increased enhancements 

for narrower spectral linewidths.  To investigate this dependence on linewidth, we 

repeated our analysis of trap stiffness vs. frequency for absorption profiles with 1/4 and 

1/10 the width, respectively, of our original ruby absorption spectrum.  These narrower 

profiles correspond to a HWHM of 6.85 × 1013 rad/s and 2.74 × 1013 rad/s, respectively.  

A summary of the results is shown in Table 2.2 for a convergence angle of θ = 50°. 

As the linewidth narrows, the CEO profile approaches the Lorentzian shape; 

consequently, the trapping stiffness ratios for these two models agree.  The enhancements 

increase by a factor approximately 3/4 the ratio of the original linewidth to the narrowed 

linewidth.  For the Gaussian case, the enhancement grows in comparison to that for the 

CEO and Lorentzian cases.  In particular, the enhancements increase by a factor 

approximately equal to the ratio of the original linewidth to the narrowed linewidth.  In 

all cases, the increase in trapping stiffness is slightly larger in the radial direction than in 

the axial direction. 

The increased absorption near resonance can cause increased heating at the focus of 

the trapping beam.  It can be shown that for non-resonant trapping the temperature rise is 

due mostly to the solvent, and not the trapped particle [61].  The calculation in reference
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  Linewidth 

Fit Type  Normal width ¼ width 1/10 width 

Axial 1.1 3.3 7.8 
CEO 

Radial 1.2 3.7 8.8 

Axial 1.1 3.3 7.8 
Lorentzian 

Radial 1.2 3.7 8.8 

Axial 4.1 16 39 
Gaussian 

Radial 4.2 16 41 

 
Table 2.2 Ratios of maximum trap stiffness near resonance to stiffness off-resonance for a convergence 
angle of  θ = 50°. 

[61] assumes among other approximations a weakly absorbing particle.  This assumption 

will break down when the frequency is tuned exactly on resonance.  In the cases studied 

here, the detuning from resonance is sufficient enough, and the density of dye is 

approximated as low, so that the heating effects can be estimated with the formalisms of 

reference [61].  A volume of water (thermal conductivity: 0.60 W/(m K)) with closest 

boundary 10 μm away illuminated by a 1064 nm, 100 mW focused beam will experience 

an equilibrium temperature rise of roughly 0.98° K.  A 500 nm diameter ruby particle 

(thermal conductivity: 40 W/(m K) [93], absorption as in CEO model of Figure 2.2) 

trapped in the same volume of water by the same beam will experience a temperature-rise 

correction of -0.18° K.  Looking at Figure 2.6(a) at 600 nm, a wavelength close to that for 

maximum trap strength, and accounting for the dispersion of water [94], the temperature 

increase is estimated as 0.022° K for the water alone.  The presence of a ruby particle at 

this wavelength introduces a correction of -1.1 × 10-4 °K.  Thus, heating at an excitation 

wavelength corresponding to maximum trap strength can be lower than far-off resonance 

depending on the characteristics of the surrounding medium. 

2.4   Conclusions 

We have used classical electromagnetic theory to derive the spatial and frequency 

dependences of the scattering and gradient forces on a single dipole present in a focused 
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paraxial Gaussian light beam.   The distribution of these radiation forces depends on both 

the intensity profile of the incident beam and the microscopic properties of the induced 

dipole as manifested by its polarizability.  We have shown that for this classical dipole, 

the dispersive nature of the real part of the polarizability and the resonant profile of the 

imaginary part with respect to laser frequency produces an optical potential well whose 

trapping stiffness can be tuned.  Directly on resonance, the gradient force becomes 

negligible compared to the scattering force and a state of stable equilibrium does not exist 

for the dipole.  Approaching resonance from the red-detuned side, the gradient force can 

peak while the scattering force still has a small fraction of its value at resonance.  This 

provides an enhanced trap with stiffness about 1-4 times (depending on the functional 

form of the absorption spectrum) larger than the stiffness at far-off resonance frequencies 

in the cases we looked at.  In general, the effect is stronger when the dipole’s imaginary 

polarizability component is sharp, i.e. Gaussian rather than Lorentzian.  In such cases, the 

scattering force rapidly drops off within a width ~3γ (frequency) of the resonance 

whereas the gradient force reaches its maximum value at an off-resonant frequency. The 

enhancement in trapping stiffness also grows with decreasing linewidths for all profile 

types. 

In a system of interacting dipoles, for which we have not performed a detailed 

analysis, the radiation forces on the sample can be related to macroscopic properties such 

as the index of refraction or electric susceptibility.  Several models and their validity as a 

function of particle size have been discussed in the literature [80].  In any case, as in the 

case of a single dipole, linear response theory imposes a relation between the gradient 

and scattering forces if the incident field is not so strong as to induce nonlinear 

interactions.  At frequencies about γ below a sharp resonance, the absorption should also 

be small enough such that the gradient force exceeds the scattering force, leading to 

resonant enhancement of the effective trap stiffness.  It is expected that red-detuned 

optical tweezing near sharp resonance lines in absorptive solids or liquids will then also 

afford enhanced trapping opportunities [19, 95, 96]. 
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CHAPTER 3 

OPTICAL MANIPULATION OF MICRO AND 
NANOPARTICLE SYSTEMS 

In this work, optical tweezers are used to manipulate metal-silica hybrid particles 

with prospects of measuring light-matter interactions.  A surge of advances in recent 

years [97-100] has made optical tweezers a promising technique for motion control of 

mesoscopic systems in physics, chemistry, and biology.  Much of the progress has 

focused on modification of the laser beam configuration to enable multiple trap positions 

via time-sharing [101], beamsplitting [102], using diffractive optical elements [103], or 

using spatial light modulators [104].  Other schemes utilize beams with spin or angular 

momentum, such as circularly polarized light and Laguerre-Gaussian beams, or rotated 

asymmetric beam patterns to generate torque on the trapped particle [98-100].  Much less 

work has been done concerning modification of the trapped particle itself, nonetheless 

some developments worth mentioning include schemes for trapping metals [100], the 

optical tweezing of non-spherical particles [105], the optical fabrication and tweezing of 

a light-driven turbine [106], optical tweezing of particles with resonance absorption 

peaks [18],  and the optical tweezing of core-shell colloidal systems [107]. 

There is growing interest in the use of hybrid nanosystems such as core-shell 

colloidal systems outside the field of optical tweezing.  Single-nanoparticle surface-

enhanced Raman scattering (SERS) has been observed using heterogeneous systems 

comprised of compound dielectric-metal [108] and dielectric-semiconductor 

materials [109].  The effects of localized surface plasmon resonances which enable such 

enhanced optical properties have been studied for optically trapped metal 

nanoparticles [19, 110, 111], however little has been done on optically trapped hybrid 

systems.  Another application of hybrid nanoparticles is in sub-cellular magnetic 
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resonance imaging [112] and chemical imaging with biosensing probes [1].  In particular, 

fiber-based silica-gold-fluorophore systems have been used as selective nitric-oxide 

sensors [1, 3-5].  Also, nanosystems consisting of dielectric particles half-coated with 

metal have been fabricated to allow sensing with increased signal-to-background ratios 

and for microrheological studies [28, 31].  Nanoparticle versions of these biosensors 

combined with optical tweezing can provide a non-invasive means of intracellular 

investigation. 

In this chapter, the optical tweezing of several types of hybrid particles are 

investigated.  Dielectric microspheres containing fluorophores are examined in an 

attempt to experimentally observe near-resonance optical tweezing effects.  The behavior 

of dielectric-metal core-shell and core-half-shell nanoparticles in optical traps are also 

studied.  Although the resonance theory developed in the previous chapter applies to 

particles in the Rayleigh regime, extension of the notion of enhanced resonance trapping 

to particles with diameters on the order of or much larger than the trapping wavelength is 

intuitively satisfying.  Macroscopic properties like the electric susceptibility are 

analogous to the microscopic polarizability, and can be related through the Clausius-

Mossotti equation [74].  In addition, the real and imaginary parts of the refractive index 

of a dielectric particle can be linked with suitable KK relations [87, 88, 91]: 
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where ikn +  is the complex, frequency dependent index of refraction.  Furthermore, 

microsphere coatings comprised of colloidal particles can exhibit plasmon resonances 

that can provide enhanced trapping.  At frequencies slightly red-detuned from resonance, 

the real refractive index peaks while the imaginary refractive index (absorption) is 

reduced compared to on-resonance.  We expect for a macroscopic particle that the 

incident laser light is refracted more strongly, thus the particle feels a stronger gradient 

force towards the focus.  Since the absorption is reduced, the particle also feels less of a 

scattering force than at resonance.  Both of these factors suggest that the trapping will be 

enhanced at near-resonant frequencies even for macroscopic particles. 
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To investigate the trapping of our hybrid particles, we observed their position 

fluctuation dynamics while held in our optical tweezers.  By comparing trap stiffness 

among a variety of particle types, we gained information on the light-particle interaction 

strengths.  In particular, we found that many of our core-shell particles were ejected from 

the trap.  The few particles that could be three-dimensionally confined did not experience 

significant differences in trapping dynamics compared to blank particles.  In addition, 

these particles showed an apparent increased trap stiffness resulting from reduced 

viscosity of the surrounding medium.  It was speculated that this reduction was due to 

heat generation by the absorptive metallic colloids of the hybrid particles.  Further image 

analysis provided qualitative effects of asphericity and optical anisotropy due to half-

shells on laser trapping stability. 

3.1   Theory 

The most appropriate theoretical description of neutral particle trapping using single-

beam gradient optical tweezers depends on the particle size relative to the wavelength of 

the trapping beam.  For particle diameters much smaller than the wavelength (d << λ), 

the particle, described in the Rayleigh regime, is treated as a simple, induced dipole 

oscillating in a harmonic electric field [9, 18].  In this regime, trapping forces can be 

resolved into two components [74]: a scattering component, in the direction of the 

incident light, and a gradient component, along the intensity gradient.  Stable trapping for 

a single-beam gradient trap occurs when the gradient force exceeds the scattering force to 

generate a potential well deeper than the particle’s thermal energy due to Brownian 

motion.  It is believed that the scattering force on a non-absorbing Rayleigh particle is 

proportional to its scattering cross section, so the scattering force scales with the square 

of the polarizability (volume) [72, 75], or as d6.  The gradient force scales linearly with 

polarizability (volume) [8, 75], thus having a d3 dependence.  These quadratic and linear 

dependences on polarizability for the scattering and gradient forces, respectively, suggest 

that stable three-dimensional single-beam trapping occurs only for particles smaller than 

some maximum threshold size.  Svoboda and Block [16] use this polarizability 

dependence to explain increased trapping forces for gold Rayleigh particles over latex 

particles of similar size surrounded by water. 
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For particles with diameters much larger than the trapping wavelength (d >> λ),  

conventional theory assumes the geometrical optics regime in which trapping forces can 

be attributed to momentum exchange due to the refraction and reflection of plane 

waves [6, 100].  In this size regime, dielectric particles are readily trapped in three 

dimensions whereas metallic particles are difficult to trap three-dimensionally because 

scattering, reflection, and absorption are increased. 

To quantify trap strength, one can analyze the particle’s position behavior as the 

particle falls in the trap [113, 114], while the trap is moved relative to the surrounding 

medium [56, 113, 115, 116], or as the particle experiences dynamic position fluctuations 

due to Brownian motion in a stationary trap [16, 36, 56, 117, 118].  The last method, 

which we utilize in the current work, assumes a particle surrounded by a medium of 

dynamic viscosity η  trapped in a harmonic potential well subject to a microscopic 

random thermal force.  The small Reynolds numbers of practical systems indicate that 

viscous forces dominate over inertial forces [36], thus the particle’s motion can be 

described by the reduced Langevin equation: 

 )(tFxxtrans =+ κγ & , (3.3)

where x  and x&  are the particle position and velocity, respectively, transγ is the 

hydrodynamic drag coefficient equal to dπη3 for a sphere, and κ  is the trap stiffness or 

harmonic force spring constant.  Fourier domain solutions of this system are well known 

and deviations often present in experiment have been studied in great detail [36, 117, 

119, 120].  One finds that, in the frequency domain, the power spectral density (PSD) of 

the position fluctuations follows a Lorentzian profile: 

 
22

2

0)(
ff

fSfS
c

c

+
=  (3.4)

with low-frequency PSD amplitude 2
0 4 κγ TkS Btrans= and corner frequency 

transcf πγκ 2= , where Bk   is Boltzmann’s constant and T is absolute temperature.  Note, 

for a given solvent, the corner frequency is proportional to the trap stiffness.  If the 

particle is isotropic and trapped stably in three dimensions, the gradient force dominates 

the scattering force and is given by [9]: 
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where 0ε is the vacuum electric permittivity, χ is the particle susceptibility (or 

polarizability for Rayleigh particles) and E2 is proportional to the laser beam power.  

Equating this to a harmonic restoring force xκ− , we see that if the gradient force 

dependence on laser power is linear, the corner frequency will also be proportional to 

laser power. 

If a trapped particle remains close to the minimum of the potential well created by the 

laser beam, a harmonic potential is expected.  The positions visited by the particle will 

then be Boltzmann-distributed as given below: 
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Our core-shell hybrid nanosystems consisted of both nanoscale Rayleigh particles and 

larger microscale particles.  Rigorous electromagnetic theory has not been found in the 

literature to describe such systems; however, some effects are expected.  For a 1 μm 

silica particle with a shell layer containing 40 nm metallic colloids, the total polarizability 

of the system is increased compared to pure silica.  In addition, a shell of metallic 

colloids reflects less than a pure metallic coating or film, which could also increase 

trapping strength.  The addition of metallic nanoparticles to a macroscopic 1 μm silica 

particle can be treated as a small perturbation in the scattering and absorption cross 

section of a pure silica particle; thus, position fluctuations for the hybrid particle system 

should be qualitatively similar to those for a pure dielectric particle.  For our half-shell 

hybrid nanoparticles, the shell thickness was maintained below the skin depth; therefore, 

reflection was minimized.  The optical anisotropy of a half-shell particle caused more 

drastic changes in trapping behavior. 

3.2   Hybrid Particle Preparation and Characterization 

To investigate the effects of metal composition on hybrid-particle optical trapping, 

various particle configurations were fabricated and characterized.  Single particles from 

each sample were then optically trapped, and their motion dynamics recorded.  The data 

was then analyzed to gain qualitative and quantitative information about the trap’s 
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properties.  The near-infrared microspheres were also compared to microspheres with an 

absorption peak in the yellow region of the spectrum. 

Dye-loaded dielectric microspheres were first studied in an effort to observe a near-

resonant enhancement due to the embedded fluorophores.  The remainders of our sample 

particle-systems were comprised of a spherical dielectric core surrounded by an outer 

layer or shell of metal.  The core consisted of commercially available silica microspheres 

while the outer shell is incorporated either by attaching gold or silver colloids, or via 

vapor deposition. 

3.2.1 Fluorescent Probes 

Both dye-loaded polystyrene beads and blank commercial polystyrene microspheres 

(Molecular Probes, FluoSpheres® carboxylate-modified microspheres) were optically 

trapped for comparison.  The dye-loaded microspheres were 1.0 µm diameter and 

contained either near-infrared fluorophores designed to be excited at 715 nm and emit at 

755 nm or yellow microspheres excited at 505 nm that emitted at 515 nm (see Figure 3.1). 

 
Figure 3.1 Excitation and emission spectra of NIR Fluospheres (Molecular Probes). 

3.2.2 Aminated Silica Cores 

A total of 212 mg of 0.97 μm diameter dry silica microspheres (Bangs Labs, Fishers, 

Indiana) were suspended in 40 mL of ethanol (99.5%, A.C.S. reagent grade, absolute, 
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200 proof) in a 100 mL round bottom flask.  In order to provide amine groups to the 

surface of the silica, 1 mL of 3-aminopropyltriethoxysilane (99%, Aldrich, St. Louis, 

Montana) was added to the suspension.  Amine functionalization of the silica particles is 

known to facilitate synthesis of silica-noble metal core-shell microspheres [121].  The 

reaction was allowed to run for 2 hours and 15 minutes in the sealed 100 mL round 

bottom flask with constant magnetic stirring to provide even distribution of the amine 

functionalization to the silica particles.  The particles were filtered using a 0.8 μm ATTP 

Isopore™ Membrane filter (Millipore, Billerica, Massachusetts).  They were re-

suspended in ethanol to wash off any unreacted material and then filtered again.  The 

particles were suspended in 10 mL of MilliQ de-ionized water for use. 

3.2.3 Silica-Gold Core-Shell Microspheres 

1 mL of a 5 nm diameter gold colloid (Ted Pella, Inc., Redding, California) 

suspension was added to a 20 mL scintillation vial.  Because the colloid is certified to 

have been washed of all reactants during synthesis, citrate must be added to enable 

attachment of the colloids to the amine groups on the silica microspheres [121].  A 1 mL 

aliquot of 34 mM sodium citrate solution (99%, A.C.S. reagent grade, Alfa Aesar, Ward 

Hill, Massachusetts) was added in order that the citrate ion would ligate the 5 nm gold 

colloid.  After mixing, 1 mL of the amine functionalized silica microspheres was added to 

the scintillation vial.  The mixture color changed from light red to deep red.  The 

suspension was sonicated to re-suspend dark red particles that may have settled out of 

solution.  After sonication, the suspension was centrifuged at 5000 rpm for 10 minutes.  

All of the particles at the bottom of the centrifuge tube, post-sonication, were deep-red in 

color while the solution was clear suggesting little unattached gold colloid had 

suspended.  The clear solution was removed using a Pasteur pipette, and the particles 

were re-suspended in 10 mL of ethanol.  Centrifugation and re-suspension in ethanol was 

repeated once more.  The particles were filtered with the 0.8 μm ATTP Isopore™ filter 

until dry and re-suspended in 10 mL of de-ionized water for use. 

For silica-gold core-shell particles containing larger gold colloids, a similar 

fabrication procedure was performed with the initial volumes being 0.100 mL of the 

amine functionalized silica combined with 1.00 mL of the 34 mM sodium citrate 
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solution.  A 10 mL aliquot of 40.3 nm diameter gold colloids (Ted Pella) was added, and 

the suspension was placed in an ultrasonic bath for 90 minutes.  Upon removal from the 

bath, dark red particles quickly began to settle. 

3.2.4 Silica-Silver Core-Shell Microspheres 

Silver colloids of <5 nm diameter were synthesized according to the method 

described in the literature [122].  A 100 mL round bottom flask was cleaned with 

Alconox (White Plains, New York), rinsed, and dried thoroughly.  After drying, 47.5 mL 

of MilliQ de-ionized water was added.  The de-ionized water was de-oxygenated by 

bubbling with nitrogen gas for 30 minutes.  Subsequent reactions all took place under 

vigorous stirring (1200 rpm). 

After de-oxygenation, a 0.500 mL aliquot of 30 mM sodium citrate was added to the 

water and allowed to mix for several seconds.  Next, 1.00 mL of 5 mM silver nitrate 

solution (EM Science, Gibbstown, New Jersey) was added to the mixture and allowed to 

mix for several seconds.  After 0.500 mL of 50 mM sodium borohydride solution (99%, 

Aldrich) was added, the solution immediately turned a pale yellow color.  The solution 

was then stirred for 30 seconds more before adding 0.500 mg/mL of 

poly(vinyl)pyrrolidone (Mw = 55,000 g/mol, Aldrich).  The suspension turned dark 

yellow in color and was stirred an additional 30 minutes. 

A 1 mL aliquot of the <5 nm silver colloid suspension was added to a scintillation 

vial, along with 1 mL of de-ionized water.  The 34 mM sodium citrate was not needed (as 

in the preparation of silica-gold samples) because the citrate ion was still present from the 

colloid synthesis.  1 mL of the amine functionalized silica microspheres was added to the 

colloid suspension, immediately making the solution cloudy.  Over time, all of the silica-

silver core-shell particles came out of suspension and collected on the bottom of the 

scintillation vial.  This mixture was filtered using the 0.8 μm ATTP Isopore™ filter.  The 

particles were washed with several ethanol rinses, and dry particles were re-suspended in 

10 mL of de-ionized water for experiments. 

Again, silica-silver core-shell particles containing larger silver colloids were also 

fabricated with a similar procedure.  Starting volumes were 0.100 mL of the amine 

functionalized silica and 1.00 mL of the 34 mM sodium citrate solution.  10 mL of 
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40 ± 5 nm silver colloids (Ted Pella) were added, and the suspension was sonicated.  

After sonication, yellow particles started to settle. 

3.2.5 Silica-Metal Core-Half-Shell Microspheres 

MOONs (MOdulated Optical Nanoprobes) can be fabricated by coating one 

hemisphere of nanoparticles with an opaque metal as illustrated in Figure 3.2.  Our 

procedure utilizes commercially available silica nano- and microspheres (Bang’s Labs) in 

combination with a gold sputter chamber. 

Silica particles with a diameter of 1.0 μm and 2.0 μm were separately suspended in 

water and deposited onto a glass microscope slide with a micropipette. The solutions 

dried on the microscope slide leaving near single layers of microspheres. The slide was 

then inserted into a Vacuum Desk-II Cold Sputter-Etch Unit (Denton Vacuum, Inc., 

Cherry Hill, NJ) and gold was sputtered onto the slide for 40 and 80 seconds, 

respectively.  Sputtering was performed under vacuum, which allowed the gold to travel 

in a linear fashion, coating only the top hemisphere of the particles.  This creates a 

material anisotropy, the top hemisphere of the spheres being metallic and the bottom 

 
Figure 3.2 Fabrication process of gold coated polystyrene spheres. 
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hemispheres being silica.  The coated particles on the microscope slide have a long shelf 

life and can be removed from the microscope slide long after they have been coated.  We 

removed the gold coated particles by using an artist’s paintbrush.  To suspend the coated 

particles, we sonicated the brush in water for a short amount of time. 

3.2.6 Characterization Methods 

For our MOONs, in order to find the thickness of gold that corresponds to a specific 

duration of sputter coating, we used an optical microscope (Olympus IMT-II) interfaced 

via LabVIEW with a spectrometer (Acton Research Corp., Acton, MA) to measure 

transmission of bright field light through the gold coated slide.  Attenuation caused by the 

presence of the gold was then determined by dividing the intensity of light transmitted 

through the coated slide by the intensity of light transmitted through an uncoated region 

of the same slide.  From this attenuation and given that the skin depth of gold is 17 nm at 

a wavelength of 589 nm [123], we calculated that the gold layer was approximately 

6.7 ± 0.5 nm for a 40 s coating (dashed line) and 12 ± 1 nm for 80 s (solid line).  The 

error corresponds to the standard deviation estimated by measuring at different points on 

the gold coated slide.  It is worthwhile to note that rough surfaces are not coated as easily 

as smooth surfaces. So, the actual gold layer thickness on the silica microspheres was 

most likely smaller than our calculated value. 

Hybrid nanoparticles in solution were dried and characterized using scanning and 

transmission electron microscopy (SEM, TEM).  Examples of silica-silver core-shell 

particles are shown in Figure 3.3.  So as to not obscure the presence of the gold half-shell,  

 
Figure 3.3 TEM (a, b) and SEM (c, inset) images of 1 micron silica-40 nm silver core-shell particles. 

c
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MOONs were not coated with an additional metal, as is typical prior to SEM imaging.  

Enough contrast remained to distinguish the boundary of the gold coating against the 

silica matrix. 

3.3   Experimental Procedure 

To investigate the resonance-enhanced trapping effect on dye-loaded microspheres, 

experiments were conducted in collaboration with Christoph F. Schmidt and Erwin 

Peterman, both currently at the Vrije Universiteit in the Netherlands.  A schematic of the 

instrumental setup is shown in Figure 3.4.  This system is similar to the setup used to 

investigate metal-coated hybrid particles.  A Ti:sapphire (Coherent, Mira 900 diode 

pumped or Spectra Physics, Tsunami, pumped by a Millenia XsJs) laser system was used 

to trap our samples.  The trapping beam, tunable from 730-900 nm, was focused by a 

100X (NA = 1.3) oil immersion objective and recollected with a condenser.  The back 

focal plane of the condenser was imaged onto a quadrant photodiode for position 

detection measurements [124].  To measure the trap stiffness, the power spectral density 

of these position fluctuations was acquired and fit to a Lorentzian profile.  The corner 

frequency of this curve can be related to the trap stiffness through a proportionality 

constant [125].  At each trapping wavelength, it was ensured that the corner frequency 

dependence on power was linear.  This provided a means of calibration for differences in 

beam power at different trapping wavelengths.  The laser was set to emit continuous-

wave near infrared (NIR) radiation.  Fluorescent microspheres were trapped at various 

wavelengths while our core-shell samples were trapped at 760 nm, accomplished by 

reducing the bandwidth of the laser enough to inhibit pulsed radiation.  The trapping 

beam then passed through an adjustable neutral density filter wheel to control power.  

The beam diameter was expanded to just overfill the back aperture of the trapping optics.  

Beam steering mirrors directed the laser light through a dichroic mirror into either a 

home-built train of optics or a commercial inverted optical microscope (IX71, Olympus).  

The home-built system was qualitatively similar to our partially commercialized one, thus 

we describe only the specifics of our partially commercial system.  Custom-assembled 

detection and illumination optics were attached to the microscope above the stage using 

mechanical rails.  Upon entering the microscope, the beam was deflected by a hot mirror.
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Figure 3.4 Experimental schematic of optical tweezers setup.  The apparatus is a conventional system 
with both reflection and transmission illumination capabilities. 

The hot mirror reflected NIR, was partially reflective for ultraviolet light, but transmitted 

visible.  The NIR beam was then focused by a 100X (NA = 1.3) oil immersion objective 

(UPlanFl, Olympus), thus forming the optical trap near the sample plane.  Light forward-

scattered by the trapped object interfered with the incident laser light and was then 

recollected by a condenser comprised of another oil immersion objective (PlanApo 

60X, NA = 1.4, Olympus).  The back focal plane of the condenser was imaged onto a 

quadrant photodiode (Pacific Silicon Sensor, Inc., Westlake Village, CA) for position 

detection measurements [92].  Difference voltage signals for the x- and y-axes and sum 

voltages from the quadrant diode were amplified and fed into a digitizing oscilloscope 

(TDS 420, Tektronix) which was interfaced to a computer via LabVIEW.  To aid in 

alignment, light impinging upon the quadrant diode was also split using a non-polarizing 

beamsplitter and viewed using a ccd camera (Watec).  Samples were placed on the 
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translation stage in a chamber consisting of two #0 cover slips separated by double stick 

tape (~100 μm thick) and sealed with grease to reduce evaporation and convection 

currents.  When measuring fluorescent probes, our sample chambers contained only 

either dye-loaded microspheres or blank ones.  For our core-shell experiments, two 

separate regions were formed for a given pair of cover slips, one containing blank silica 

particles, the other containing hybridized forms of the silica particles (either core-shell or 

half-shell).  Two methods of illumination were possible: (1)for fluorescent probes, 

transmission from above using an LED of visible wavelength (usually green, max. 

intensity = 525 nm) and (2) fore dielectric-metal core-shell samples, reflection from 

below using a mercury arc lamp.  The sample plane could be imaged in either mode using 

another ccd camera  (Photometrics, CoolSNAP ES) placed on the trinocular tube above 

the eyepiece of the microscope.  Reflection mode was especially helpful by providing 

more contrast compared to regular bright-field transmission to distinguish metallic coated 

particles from blank particles near the sample plane. 

Samples were trapped in water approximately 10 μm above the bottom cover slip and 

their position fluctuations in time were recorded.  Each particle was held for several 

seconds to ensure stable laser tweezing before the time trace was started.  To make 

certain we were operating in the linear regime, 5-10 particles were trapped at 

approximately 8-10 different laser beam powers.  Half-shell particles could not be stably 

trapped using our single-beam gradient optical tweezers; nevertheless, position 

trajectories were imaged and recorded. 

3.4   Data Analysis 

The following data analysis procedure was performed at a series of laser powers for 

each particle type.  Quadrant diode voltage fluctuation time traces were acquired in three 

channels: two difference voltage traces for the radial dimensions (x and y), and one sum 

voltage trace for all diodes.  For each radial dimension, a histogram of the voltages was 

recorded to ensure a Boltzmann distribution.  Note, a Boltzmann distribution is expected 

for position; however, if the particle is close to the trap center, the relationship between 

position and voltage can be assumed linear [97].  Curves that exhibited behavior that 

deviated from a Boltzmann distribution were discarded. 



 

 45

The x- and y-dimension curves were both normalized by dividing by the sum voltage 

trace.  For each radial dimension, the power spectral density (PSD) estimate was 

calculated using the “periodogram [92]” function of MATLAB.  The periodogram 

calculates the modulus-squared of a fast Fourier transform of the finite, digital voltage 

time series.  The resulting PSDs were averaged, and the final mean PSD was binned 

logarithmically in frequency, a noise reduction technique otherwise known as 

“blocking” [119, 120].  Using least squares curve-fitting, a Lorentzian profile was fit to 

each PSD curve according to Eq. (3.4).  To avoid effects due to low frequency errors 

from beam pointing fluctuations and high frequency errors from detector response [119, 

120] or aliasing [126], only points with abscissa between 101 Hz and about half the 

Nyquist frequency [92] (one fourth the sampling frequency of our detection) were used in 

the fit.    Fit parameters were the corner frequency, in Hz, and the PSD amplitude S0, in 

units V2/Hz.  S0 can be converted to nm2/Hz after calibrating volts to nanometers, either 

by inducing a known spatial displacement of the particle and measuring the voltage, by 

estimating the rms displacement from the voltage histograms, or by assuming the Stokes’ 

force is in equilibrium with the optical restoring force [118].  The corner frequency is 

related to trap stiffness by proportionality constant assuming the solvent viscosity is 

constant. 

Because half-coated particles could not be stably trapped, only image video 

recordings were acquired, analyzed qualitatively and compared to phenomena in previous 

literature. 

3.5   Results 

Figure 3.5 shows typical voltage fluctuation time trace curves.  The particular data 

shown represents an optically trapped 1 μm silica-5 nm gold core-shell particle, although 

the position fluctuation time traces for fluorescent particles are qualitatively similar.  

Figure 3.6 indicates a histogram of the voltage time traces from Figure 3.5.  Since the 

positions visited by the particle are Gaussian distributed in accordance with Eq. (3.6), the 

assumption that the voltage-position relationship is linear for trapped particles is justified.  

There appears to be a slight shift of the trap center as well as a small amount of 

asymmetry.  This is probably caused by minor misalignment and detector crosstalk  
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Figure 3.5 Typical voltage fluctuation time traces.  Channels 1, 2 and 3 are the x-difference, y-difference 
and sum voltages, respectively. 

 
Figure 3.6 Histograms of visited voltages.  For particles close to the trap focus, the voltage, which is proportional to 
position, is Boltzmann distributed. 
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between radial directions.  After normalization, the PSDs are calculated for each 

dimension.  The original PSD, the blocked PSD, and the Lorentzian fit are plotted on the 

same graph in Figure 3.7.  All PSDs and fits for this particle type are plotted in Figure 

3.8.  This procedure was done for each particle, both fluorescent and core-shell ones, at a 

series of laser powers ranging from 1-150 mW entering the trapping objective. 

3.5.1 Fluorescent Probes 

The trap stiffnesses in the x- and y-directions for both the fluorescent and blank 

polystyrene microspheres are summarized in Figure 3.9 and Figure 3.10.  The data is not 

conclusive in that it is not clear if a trapping enhancement has occurred.  This has been 

attributed to several factors.  First, the width of the absorption peak of the fluorescent 

microspheres is too broad to see an enhancement at a well-defined wavelength (see 

Figure 3.1).  Second, the dye concentration itself may be too low in the microspheres, 

thus providing less actual effective material to trap.  A better sample for trapping may be 

a particle with a narrower absorption peak width and higher concentration of excitable 

molecules.  Potentially appealing samples also include gold or silver colloids and 

polyphenyl crystals.  Although highly reflective, gold and silver have relatively large 

polarizabilities [16] compared to polystyrene, even in the NIR, and they exhibit sharp 

plasmon resonances that may contribute to increased tweezing strengths [19, 95, 96, 127].  

The resonances typically occur in the blue-green region of the spectrum, thus trapping at 

these wavelengths is feasible for a “proof-of-principle” experiment rather than an actual 

biochemical experiment.  Polyphenyl crystals may also have comparatively sharp spectral 

features with center wavelengths more compatible with our available laser sources. 

3.5.2 Silica-Metal Core-Shell Hybrid Particles 

Our silica-metal core-shell hybrid particles were optically manipulated with the same 

procedure.  The presence of metallic colloids introduces the possibility for nonlinear 

effects at high powers.  To better determine if the laser powers used in our experiments 

were low enough to remain in the linear regime, we looked at the dependence of corner 

frequency on power for each particle type.  Results are shown in Figure 3.11.  For each 
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Figure 3.7 Individual x- and y- dimension PSDs for a 1 μm silica-5 nm gold core-shell particle (thin 
line).  A Lorentzian profile (thick line) is fit to the logarithmically binned data (red dots). 

 
Figure 3.8 PSD as a function of laser beam power.   Low frequency noise from beam point fluctuations 
is evident.
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Figure 3.9  Trap stiffness calculations comparing near-infrared microspheres (715/755 nm ex/em) with 
blank microspheres. 

 
Figure 3.10 Trap stiffness calculations comparing near infrared microspheres (715/755 nm ex/em) with 
yellow microspheres (505/515 nm ex/em). 

individual plot of Figure 3.11, we see two regions: a low power regime with a lower 

fc/power (slope) and a high power regime with higher fc/power (steeper slope).  This can 

be explained by considering decreased solvent viscosity due to increased heat absorption 

at high laser powers.  Since, however, this effect is not markedly increased when 

comparing blank particles to metal-containing particles, several conclusions can be made.  

One possibility is that the metal colloids are too small to provide much more than a small 

perturbation.  In this case, heat absorption is mostly due to the solvent and the silica.  In 
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Figure 3.11 (a-f) Corner frequency dependence on laser beam power.  In all plots two regimes are evident: 
a low power region with lower fc/power and a high power region with higher fc/power.  The larger slope is 
attributed to increased solvent viscosity with increased heat absorption.  No significant difference is 
apparent between blank particles and coated particles, nor between particles with 5 nm shells and particles 
with 40 nm shells. 

addition, the metal shell does not hinder the optical trap to any measurable degree.  This 

is clear from Table 3.1 in which the corner frequency per power is tabulated at high and 

low power for each particle type.  There is no appreciable difference in trap stiffness 

between blank silica, aminated silica, and silica with 5 nm colloid shells.  A slight drop in 

trap stiffness occurs for 40 nm colloid shells – this may be signaling the onset of limited 

trapping stability due to the increased scattering and reflection from the metal colloids 
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 fc/Power 

 X-dimension Y-dimension 

Particle Low Power High Power Low Power High Power 
Silica 3.83±0.09 6.17±0.39 4.44±0.08 6.54±0.35 
Silica-amine 3.25±0.15 5.83±0.27 3.66±0.12 5.26±0.20 
Silica-am-5nm gold 3.54±0.12 6.41±0.42 4.52±0.14 6.52±0.37 
Silica-am-5nm silver 3.08±0.09 5.48±0.19 2.71±.08 6.39±0.20 
Silica-am-40nm gold 3.74±0.11 4.18±0.47 3.95±0.09 4.90±0.37 
Silica-am-40nm silver 3.60±0.16 5.54±0.59 4.39±0.14 4.87±0.51 

 
Table 3.1 Summary of corner frequency per power measurements for silica-gold core-shell microspheres. 

observed by others [128].  If the colloid presence has a small effect, trapping of hybrid 

particle probes will have the same behavior as simpler homogeneous particles - a 

desirable outcome when sensing is most significant.  This suggests, however, that no 

enhancement has occurred due to increased polarizability. Another possibility is that few 

colloids actually remained on the silica cores.  Particle uniformity is a nontrivial issue in 

the fabrication of nanoparticle systems.  The distribution of colloid coverage on silica 

cores is likely to be large in our samples.  Thus, trapping events between different 

particles may not be comparable.  This is also true of our half-shell particles.  Coating 

thickness can vary drastically from particle to particle within a single sample. 

3.5.3 Silica-Gold Core-Half-Shells 

For our silica-gold core-half-shell particles, or MOONs, no three-dimensionally 

stable trapping was observed.  Most particles that diffused below the trap were quickly 

confined radially but were then forced upwards by the axial scattering force.  In several 

extraordinary, yet repeatable cases a MOON would remain in the lower cone of the laser 

beam below the focus.  The particle would undergo fast rotations about the optical axis 

while continuously being bumped by random fluctuations in all directions.  If the trap 

location were slowly moved relative to the surrounding medium, the particle would 

continue its clockwise circular trajectory about the beam focus, verifying that it was truly 

loosely confined to the lower cone of the laser beam.  Similar rotational behavior has 

been described using Laguerre-Gaussian beams [126]. 
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3.6   Conclusions 

We have optically manipulated several hybrid particle systems including fluorophore-

embedded dielectric microspheres and microspheres comprised of silica-gold and silica-

silver.  Our analysis of trap stiffness measurements reveals several possibilities.  The 

trapping of core-shell hybrid systems fabricated using spatially separated colloids for 

shells is possible.  Redistribution of the colloids such that the shell covers approximately 

half of the core induces a strong asymmetry in the particle that strongly hinders 

conventional, stable, three-dimensional optical trapping, but it may offer schemes for yet 

unstudied rotational phenomena. 

Several improvements must be made before conclusive data can be acquired.  

Trapping force-constant analysis techniques must take into account all sources of error 

present in practical measurements, including unintentional filtering due to detection 

equipment, aliasing (distortion that arises from sampling at to low a frequency) from 

digital recording equipment, and viscosity changes due to surface proximity and heat 

absorption.  Another aspect of concern is the design of a fabrication method that can 

provide more uniform distributions of the same hybrid particle.  Our MOON fabrication 

scheme requires the creation of a monolayer of core particles such that there are few 

defects.  Defects in the monolayer result in a low throughput percentage of properly 

coated microspheres as well as increased debris comprised of the coating material alone 

without cores.  Solutions to these problems include the development of a wide-area low-

defect monolayer fabrication [129] and precise, repeatable, half-coat manufacture using 

molecular beam epitaxy [35]. 
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CHAPTER 4 

SLIPPING RESISTANCE OF A MAGNETIC 
MICROSPHERE ROLLING AT A GLASS-WATER 

INTERFACE 

The study of micro- and nanotribology has been gaining great interest in modern 

technology.  In particular, knowledge of such effects as friction, adhesion, and lubrication 

at submerged surfaces on the micro- and nanoscale is crucial in the development of many 

cell sorting and cell separation devices based on micro electro mechanical systems 

(MEMS) and microfluidic chips [130, 131].  In addition, such knowledge can help us 

better understand and potentially mimic the mechanisms of locomotion of some cellular 

biological systems [132]. 

Surfaces can greatly affect the hydrodynamic motion of nano- and microscale objects.  

Optically torqued nanorods have been shown to undergo transitions from motor to 

rocking behavior due to interactions with a nearby surface [133].  Wax microdisks 

optically trapped at an opposing wall can exhibit switchback oscillations representative of 

a Hopf bifurcation [134].  The physical properties of surfaces themselves can also be 

engineered to provide specific adhesive and frictional qualities through nano-

patterning [135, 136].  In numerous biological systems of interest, the dynamics of 

locomotion depend on surface-cell interactions.  For example, the rolling velocities of 

white blood cells are mediated by density and binding affinity, among numerous other 

properties of certain selectin-coated surfaces [137, 138].  The oscillatory angular motion 

of magnetotactic bacteria in rotating magnetic fields can also be affected by the rotational 

drag near a surface [139, 140]. 

In this study, we report on a simple method for comparing the frictional properties of 

submerged surfaces on the micron scale.  By observing changes in the motion of a 
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magnetic microsphere slipping while rotating on a planar surface, we have differentiated 

between untreated glass substrates and substrates with polymeric coatings.  In addition, 

the effects of particle surface roughness were investigated. 

The motion of magnetic microparticles rotationally slipping near a glass surface was 

studied both for particles freely rolling along the surface as well as particles spatially 

confined by optical tweezers.  Without the optical trap, particles rolled while slipping 

along the surface at different velocities depending on the rotation frequency of an 

external magnetic field.  For low frequencies, the velocity of locomotion while slipping 

increased with the rotation rate.  Beyond a certain threshold, the rolling velocity of the 

microsphere would decrease.  This sharp change in motional behavior was often 

accompanied by a slight change in the overall direction of rolling.  With the laser on, the 

particles were trapped but, while slipping, they roll towards one side of the potential well 

created by the light intensity.  Increasing the magnetic rotation rate further tended to shift 

the particle even farther from the trap center until a threshold was reached after which the 

particle did not usually escape, but rather, remained confined while continually slipping 

against the glass surface, but residing closer to the trap center.  Similar changes in 

angular direction of motion were observed at high rotation rates.  Similar motion was 

repeatable rotating in the opposite direction. 

Drastic changes in the rotational motion of micro-objects are characteristic of the 

behavior of overdamped driven nonlinear oscillators [37, 54, 133, 141, 142].  Such 

systems exhibit two classes of motional behavior: (1) linear phase-locked rotation at low 

external driving frequencies and (2) nonlinear phase-slipping rotation at high external 

driving frequencies.  In the rolling-while-slipping systems described here, such nonlinear 

behavior at least partially contributes to the motion we’ve observed.  Additional effects 

due to surface-microsphere interactions are proposed and investigated. 

4.1   Experimental Details 

4.1.1 Sample Preparation 

To explore the frequency dependence of the drag coefficient near a surface, single 

polystyrene microspheres coated with magnetic particles (Spherotech, Inc., Libertyville, 
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IL) of nominally 9 ± 1 μm diameter were studied using bright field microscopy in 

reflection mode.  Two types of microspheres were used: carboxylated and amine-

functionalized.  The difference in surface roughness can be seen in Figure 4.1.  A 1:100 

dilution of particle stock solution (1% w/v) in de-ionized water was prepared.  To aid in 

preventing particles from sticking to the glass surface as well as to each other, this 

solution was further mixed with 10% aqueous sodium dodecyl sulfate (SDS) in a 

1:10 10% SDS:particle ratio.  The final particle mixture was then magnetized for several 

minutes by a 1400 Oe field to saturation.  After vortexing the solution at 3000 rpm for 15 

seconds to separate aggregates, about 40 μL of the solution was inserted between two 

glass cover slips separated approximately 100 μm with double-stick tape and sealed with 

vacuum grease to prevent convection.  Because the ratio between the sample chamber 

thickness and the microsphere radius was sufficiently large [143], hydrodynamic effects 

due to the top glass surface were neglected. 

Glass cover slips (Erie Scientific Co, Portsmouth, NH) of thickness #0 were used 

for the sample cell either directly from the package untreated or coated with polyethylene 

glycol (PEG) to inhibit sticking to the glass caused by non-specific binding of the 

 
Figure 4.1 Scanning electron microscope images of (a), (c) amine-functionalized magnetic microspheres 
and (b), (d) carboxylated magnetic microspheres.  Images (a) and (b) show the distribution of particle size 
was about  7-11 μm for both microsphere types.  Amine-functionalized microspheres appeared to have less 
magnetic material and a decreased surface roughness compared to the carboxylated ones. 
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magnetic particles.  The following pegylation procedure was adapted from the 

literature [144].  Cover slips were first cleaned with 10:90, 50:50, and then 90:10 

mixtures of methanol and methylene chloride, consecutively, for 15 minutes each in an 

ultrasonic bath.  The cover slips were then thoroughly rinsed with Nanopure water.  After 

rinsing, the cover slips were immersed in a 30:70 mixture of 30% H2O2/H2SO4 for 

30 min.  This was followed by another rinsing and drying, after which the cover slips 

were then silanized by immersing in a solution of 1% 3-glycidoxypropyl 

trimethoxysilane in dried toluene for 24 hours.  This was followed by an acetone wash.  

In order to hydrolyze the epoxide, the cover slips were placed in a 100 mM NaCl 

solution, at a pH ~4 for 3 hours, and then washed again with Nanopure water.  Oxidative 

cleavage of the diols was accomplished by oxidizing them with a 5 mM NaIO4 solution 

for 8 hours, followed by another Nanopure water rinse and drying.  Pegylation was 

accomplished by placing the cover slips in 17 mM PEG-amine (2000 MW) in CHCl3 for 

15 min. The excess solution was removed and the cover slips were placed in an oven at 

74o C for 40 hours.  The pegylated cover slips were then vigorously washed with 

Nanopure water and dried with nitrogen. 

Verification of the presence of the PEG coating was accomplished by measuring the 

contact angle of a droplet of de-ionized water placed on a cover slip of each batch using 

the static sessile drop technique.  Presence of the PEG layer reduced wetting of the glass 

surface, thus exhibiting a contact angle of 59 ± 3° compared to untreated cover slips 

which displayed a contact angle of 31 ± 4° (see Figure 4.2).  This increase in contact 

angle for PEGylated glass agrees with measurements conducted by others in the 

literature [138]. 

4.1.2 Optical and Magnetic Manipulation 

Particles were observed on an inverted microscope (Olympus IX-71) utilized for both 

bright field imaging and optical tweezing.  To induce rolling, particles were 

simultaneously rotated about a single axis (x-axis) using an external rotating magnet 

located above the sample plane.  Rotation rates ranged from 0-5.5 Hz.  The amplitude of 

the magnetic field strength at the sample plane was 5-10 Oe.  Light from a xenon arc 
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Figure 4.2 Static sessile drop technique for distinguishing (a) uncoated glass from (b) PEGylated glass 
cover slips.  The increased contact angle on PEGylated slides (59 ± 3°) compared to untreated slides 
(31 ± 4°) was due to reduced wetting of the glass surface. 

lamp in the visible range of the electromagnetic spectrum was coupled into a 100X 

(NA = 1.3) oil immersion (oil refractive index n = 1.513) objective and used to illuminate 

the sample.  The visible light reflecting off particles in the field of view was recollected 

by the objective and delivered to a ccd camera (Roper Scientific, Photometrics 

CoolSNAP ES, 1392x1040, ~30 frames/s) for image analysis.  Because the particle 

systems contained magnetic material which was much more reflective than the 

surrounding medium, signals were significantly brighter than background scattering from 

the aqueous solution itself.  To observe particles rotationally slipping in place, 780 nm 

laser light from a Ti:sapphire laser in continuous wave mode was focused by the same 

objective using a dichroic beam splitter to create optical tweezers capable of trapping the 

particle near the bottom glass surface of the sample cell.  Just before the ccd camera, the 

laser light was optically filtered to prevent saturation over bright field signals reflecting 

from the sample. 

Laser illumination intensity entering the objective ranged from 1-5 mW/cm2 by 

changing the laser power using a variable neutral density filter.  Higher intensities 

induced stronger scattering forces that would lift particles upward off the glass surface in 

the z-direction.  The optimum intensity was just below this threshold.   At this level, the 

radial trapping forces were strong enough to keep the particle confined to a localized 

region of the xy-plane but the axial scattering force could not overcome the force due to 
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gravitational sedimentation, thus maintaining the particle close to the glass surface.  In 

addition, due to aberrations arising from oil-glass and glass-water index of refraction 

mismatches, optical tweezing gradient forces were typically most efficient only about 8-

10 μm above the bottom glass cover slip (based on previous measurements with uncoated 

polystyrene microspheres). 

The z-position of the glass surface was determined by locating the focus at which the 

smallest diameter reflected laser spot was observed with the ccd camera.  The height of 

the center of each particle above the glass surface was then estimated using the focus 

knob of the microscope calibrated to be approximately 1 μm between markings.  Particle 

centers were typically 5-10 μm above the glass, thus the particle surface was typically 

within a particle radius from the glass surface.  With the laser trap off, systems in which 

the surfaces of the microsphere and glass were separated by a distance greater than 5 μm 

did not roll while being rotated and this data were thus discarded. 

4.1.3 Image Analysis 

Bright field images of particles collected with the ccd camera were analyzed using the 

Metamorph Imaging Analysis (Molecular Devices, Sunnyvale, CA) software package.  

From these images, the actual particle diameter was measured after the inter-pixel 

distance was calibrated using a USAF resolution target plate.  In addition, particle 

location in the xy-plane was tracked as a function of time. 

The image in Figure 4.3(a) is a snapshot of one measurement focused below the 

equator of the particle.  Small magnetic colloids can be seen on a circular region of the 

particle surface.  Colloids outside of this ring are out of focus and thus cannot be seen.  In 

Figure 4.3(b), the microscope was set to focus on the equator of the particle, thus the 

microsphere edge can be seen reflecting and scattering the xenon lamp illumination 

forming a bright circular ring.  Faint concentric rings of larger diameter indicate light 

interference near the particle edge.  This focus was approximately 8 μm from the glass 

surface, thus the particle, measured to be 9.0 ± 0.2 μm in diameter, was within a radius 

from the glass surface, but not necessarily in direct contact.  The location 
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Figure 4.3 Aminated magnetic microspheres viewed under reflection mode microscopy.  (a) Focused 
below the equator of the microsphere, magnetic colloids can be seen on the surface around a ring of focus. 
(b)  Microsphere rotated by an external magnetic field rolling away from the center of an optical trap 
indicated by the blue circle.  (c) Overlay of averaged images of the same optically trapped microsphere 
rolling due to either clockwise or counter-clockwise magnetic rotation. 

of the laser trap is indicated by the blue circle with diameter corresponding to twice the 

size of the actual beamwaist at the focus.  The magnetic field was rotated such that the 

particle rolled towards one end of the potential well created by the trap.  The particle 

continued to rotationally slip but translationally fluctuated about a central position as 

determined by tracking the x- and y-coordinates of the center of the ring. 

In order to observe if the motion is symmetric with respect to the rotation direction, 

the results of two measurements – one for each rotation – were overlaid onto one image.  

The image in Figure 4.3(c) depicts such an overlay.  All snapshots were averaged for 

each rotation direction to obtain two blurred rings symmetrically displaced from the trap 

location.  The axis joining the centers of the two rings is not perfectly aligned to the 

coordinate system of the ccd camera.  This deviation shown in Figure 4.3(c) of about 

10 degrees was due to a slight misalignment of the external magnet and was accounted 

for in our coordinate-tracking algorithm. 

To quantify the rolling and slipping behavior of the microspheres, digital movies 

were recorded of the particle motion while magnetically rotated either with or without the 

optical trap present.  Particle location in the xy-plane was measured using the “threshold 

image” centroid-tracking method in Metamorph.  This tracking scheme isolates bright 

images by applying an intensity threshold to each frame before calculating the center of 

mass of the bright object.  The threshold was manually set such that the recognized object 
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region did not extend far beyond the bright ring, thus minimizing background, and the 

central region within each ring was partially recognized as part of the object.  The search 

region was approximately 3-4 pixels larger than the object region in both height and 

width.  The percentage match between frames was set to between 50-75%.  This 

percentage match can fall below this threshold if the brightness of the object changes, 

such as when the particle rolls across an unevenly illuminated field of view.  In such 

cases, the threshold was readjusted to match the prior criteria.  This position tracking 

scheme is known to provide an accuracy of about 10 nm, depending on the noise 

level [145].  After tracking, coordinates were adjusted to account for the angular 

deviation previously discussed. 

4.2   Theoretical Considerations 

It is well known that in the low-Reynolds number regime the drag force F and torque 

T on a sphere of radius R infinitely far from a surface rotating with angular velocity θ&  

and translating with velocity v in a fluid of dynamic viscosity η are given by 

 vF transsphere γ−=  (4.1)

and 

 θT &
rotsphere γ−= , (4.2)

where Rtrans πηγ 6=  and 38 Rrot πηγ =  are the translational and rotational friction 

coefficients of a sphere, respectively.  The dot-notation corresponds to differentiation 

with respect to t.  As one approaches a surface, and assuming a no-slip boundary 

condition of the fluid at the surface, the friction coefficients increase.  For small sphere-

center-to-plane distances h, the friction coefficients should be multiplied by the 

corrections factors ctrans and crot, respectively [146]: 
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Note, for Eq. (4.3), the translation direction is parallel to the plane.  As the gap width 

Rh −  approaches zero, lubrication theory [146] must be considered and the corrections 

are no longer valid.  In such situations, the asperities on the sphere contact the wall and it 

becomes likely that the no-slip boundary condition of the fluid no longer holds [146, 

147].  At these surface proximities and low Reynolds numbers, shear-induced lift forces 

are negligible [136].  Nevertheless, contact between the particle and the surface may 

consist of rolling-while-slipping, or “skipping,” behavior mediated by the surface 

roughness of either side, further complicating the situation. 

There have been several theoretical descriptions of the rolling and slipping motion of 

rough low-Reynolds number spheres in a viscous fluid down an inclined plane under the 

influence of gravity [148, 149].  These treatments, however, do not deal with the motion 

of rotationally driven spheres, such as magnetically rotated microspheres.  For such 

systems, nonlinear behavior arises when the external driving fields rotate at frequencies 

faster than can be supported by the rotational drag.  For a magnetic microsphere aligning 

with an external rotating magnetic field, this nonlinear behavior emerges from an 

equation of motion involving a balance of torques given as 

 )sin( θθγθ −Ω=+ tmBI rot
&&&  (4.5)

where I is the moment of inertia of the particle, m is the magnetic moment of the 

microsphere, Ω is the rotation frequency of the external magnetic field of strength B and 

θ is again the phase angle of the microsphere with respect to the lab frame.  Eq. (4.5) can 

be written in dimensionless form by substituting rotc mB γ/=Ω , tcΩ=τ , and θφ −Ω= t .  

Furthermore, operation in the low Reynolds number regime [150] allows the inertial term 

to be neglected to obtain 

 )sin(φ
τ
φ

−
Ω
Ω

=
Cd

d , (4.6)

which is known as the nonuniform oscillator equation [37, 54, 133, 141, 142].  

Nonuniform oscillators described by Eq. (4.6) are characterized by the following solution 

for the average rotation rate: 
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The critical external frequency ΩC is the frequency at which the oscillator abruptly 

transitions from being in-phase with the rotations of the driving field to being in a state in 

which the phase angle continually slips with respect to that of the external field. 

At frequencies well below ΩC, an increase in the driving frequency would be 

accompanied by an increase in the microsphere rotation rate and thus a proportionate 

increase in the drag.  At a surface, this effective drag torque is the rotational viscous drag 

given by Eq. (4.2) and Eq. (4.4) combined with frictional drag due to the surface.  This 

additional friction may be caused by interactions between the particle and surface such as 

electrostatic and van der Waals forces, as well as roughness of both the microsphere and 

surface.  If the microsphere is rolling or skipping, the increased rotation rate results in 

higher rolling velocity.  At driving frequencies above ΩC, the average rotation rate 

decreases because the microsphere cannot keep up.  The microsphere continually slips 

with respect to the external field and, at a surface, even lower rolling velocities result.  

When a magnetic microsphere is optically trapped at a surface, similar behavior is 

expected.  At low external rotation frequencies, the proportionately increasing drag 

torque from the surface displaces the microsphere further from the trap.  At lower 

frequencies, the average rotation rate decreases along with the effective surface drag and 

the microsphere finds a balance closer to the trap center.  For displacements less than the 

particle radius, we expect a Hookian (linear) dependence of the restoring force on the 

displacement.  Thus, position profiles with frequency have the same qualitative form as 

the effective surface drag as a function of frequency. 

4.3   Preliminary Results 

To establish appropriate ranges for experimental parameters such as laser power and 

rotation rate, aminated microspheres on uncoated cover slips were first tested.  Other 

parameters such as alignment angle of the rotation axis were also maintained throughout 

the remainder of the experiments.  The preliminary results shown here illustrate the 

method of analysis, and procedures were representative of all experiments conducted. 
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4.3.1 Free-Rolling Microspheres 

With the laser off, microspheres rolled along an almost-linear trajectory on an uncoated 

glass surface while rotated by an external magnetic field, either clockwise or 

counterclockwise.  Figure 4.4(a) shows the linear displacement along the y-axis of a 

9.0 ± 0.2 μm aminated magnetic microsphere from its original position as a function of 

time for several magnetic rotation frequencies.  The displacement is measured along the 

y-axis, a direction approximately perpendicular to the axis of rotation determined as 

follows.  Along the axis of rotation, the microsphere typically remained less than 0.5 μm 

from its original position at t = 0.  Occasionally, at higher frequencies (~3 Hz), instead of 

rolling along the same direction as at lower frequencies, the trajectory would have a 

significant component along the rotation axis, sometimes deviating up to 15° deg from 

the low frequency trajectories in these preliminary results.  The y-axis is thus determined 

as the direction that the microsphere rolled at the lowest measurable non-zero rotation 

rate.  The rolling velocities, determined from the fitted slopes shown in Figure 4.4(a), 

increased with frequency until a threshold was reached.  A summary of these slopes is 

provided in Figure 4.4(b).  At higher rotational frequencies the rolling velocity decreased 

along the y-axis and was sometimes associated with slightly increased velocities along 

the x-axis. 

For a 9 μm diameter particle at a rotation rate of 0.5 Hz, rolling without slipping 

requires a translational velocity of about 14 μm/s.  Our particle rolled at 1 μm/s, thus even 

at rotation rates below the threshold for reduced rolling velocity, microsphere-slipping 

was occurring.  At or near the surface, even in the presence of SDS, the particles 

experienced some drag component that was frequency-dependent.  This does not 

necessarily imply that the viscosity was non-Newtonian, just that the rolling resistance 

consisted of the standard Stokes drag [Eqs. (4.1)-(4.4)] as well as a frequency-dependent 

friction induced by surface interactions. 
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Figure 4.4 (a) Linear displacement perpendicular to the axis of rotation of a 9.0 ± 0.2 μm aminated 
magnetic microsphere from its original position as a function of time for several magnetic rotation 
frequencies, both clockwise (+) and counterclockwise (-).  (b) Rolling velocity magnitude increases with 
rotation frequency until a threshold is reached near 2 Hz.  Above this threshold, the rolling velocity 
magnitude decreases.
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4.3.2 Optically Trapped Microspheres 

Similar experiments were conducted for microspheres trapped by optical tweezers.  

Instead of rolling across the surface, the microspheres were spatially confined by the 

optical potential well.  In such cases, the microsphere was displaced from the trap center 

to a position at which the trap restoring force counteracted the surface drag force that 

would have, otherwise, induced rolling. 

Overlaid, averaged image stacks for the same 9.0 ± 0.2 μm magnetic microsphere 

manipulated at different rotational frequencies and laser powers are shown in Figure 4.5.  

For higher laser powers, the trap stiffness was larger causing the particle to be pulled 

closer to the center of the trap.  This is visually indicated by the increased area of the 

region of overlap between rings.  At a given laser power, as the rotation frequency was 

increased, the microsphere moved farther from the trap center.  A threshold was reached, 

i.e. at 3.0 Hz, at which point, increased slipping (reduced rolling friction) at the glass 

surface caused the particle to reside closer to the trap center.  This can be visualized by 

the decreasing area of overlap with increasing rotational frequency until the threshold at 

which point the area of overlap has slightly increased.  This behavior was repeatable and 

reversible by adjusting the magnetic rotation frequency. 

To quantify these results, the x- and y- coordinates of the microsphere image were 

tracked.  As in the case of free-rolling, microspheres trapped and rotated at larger 

magnetic frequencies would experience forces along the rotation axis.  Deviations from 

the axis perpendicular to the rotation axis were as high as 7° in preliminary results.  The 

direction of the y-axis was again determined by the direction of displacement for the 

lowest measurable non-zero rotation rate.  At zero-frequency, microspheres can settle 

into preferential orientations due to protrusions in the surface of the particle.  Because of 

stiction, the particle position may not coincide with the center of the trap. 

Histograms of the center coordinate of the trapped microsphere adjusted to the 

appropriate coordinate system were calculated using MATLAB (The Mathworks, Inc) 

analysis functions.  These histograms are shown in Figure 4.6 for a laser power of 5 mW.  

The graphs in the top row are for one rotation direction, the bottom row for the opposite 

direction.  The trap is located at the origin (x = 0, y = 0).  The graphs in Figure 4.6 along 

with the images of Figure 4.5 verify that the rotational drag due to the microsphere
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slipping at the surface induced an overall positional shift in the y-direction while the 

average displacement in the x-direction remained closer to the trap center. 

Using MATLAB’s nonlinear least-squares fitting routine nlinfit, each histogram was 

well-fitted to a Gaussian profile of the form: 

 
)

)(
exp()( 2

3

2
2

1 a
ax

axN i
i

−
−= (4.8)

where ai are the fit parameters and xi is either the x- or y-displacement.  The Gaussian 

form indicates the microsphere experienced a normal (Boltzmann) distribution of 

positions even though the particle was displaced by the magnetically-induced rolling 

friction of the surface.  The width of this distribution tended to be slightly larger than that 

resulting from damped Brownian motion of the particle trapped in the optical harmonic 

potential well at the surface without magnetic rotation.  The maximum displacement in 

these preliminary results was less than 4 μm – a distance smaller than the particle radius.  

We expect the restoring force of the optical trap to obey Hookian dynamics, in other 

words, behave linearly with displacement.  Furthermore, the dependence of the central 

position of the microsphere on rotational frequency proportionately reflects the 

dependence of the total effective drag torque on the microsphere due to the combined 

surface frictional torque and the torque of the surrounding fluid. 

A plot of the center y-displacement from the trap for different magnetic rotational 

frequencies and laser powers is shown in Figure 4.7.  The errorbar for each point, 

corresponding to the estimated standard deviation for the fitted position coefficient a2 in 

Eq. (4.8), is smaller than the diameter of each marker with the maximum standard 

deviation over all measured displacements being 0.018 μm.  For a given laser power, at 

low magnetic rotation frequencies, the microsphere resided close to the trap center.  As 

the magnetic rotation rate was increased, the microsphere’s average position shifted away 

from the trap center.  At these farther distances, the increased rotational drag due to the 

presence of the surface balanced the increased restoring force of the optical trap.  At 

frequencies near 2-2.5 Hz and above, the surface drag reached a threshold at which point 

the microsphere, while still slipping, was stably pulled closer to the trap.  Video images 

revealed the microsphere remained in focus at its equator to within 0.5 μm (the minimum 

change in the z-focus that produced a noticeable change in observed focus).  This 
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Figure 4.7 Displacement from trap center for a rolling-while-slipping aminated magnetic microsphere 
optically trapped at a surface by varying laser powers and magnetically rotated at varying frequencies.  
Dotted lines indicate x-displacement while solid lines indicate y-displacement.  Positive y-displacements 
occurred for clockwise rotation of the external magnet while negative y-displacements occurred for 
counter-clockwise rotations.  In all cases, the microsphere displacement magnitude increases with rotation 
frequency until a threshold is reached.  Above the threshold, increased slipping causes the microsphere to 
be pulled closer to the trap center. 

suggests contact with the surface continued, at least intermittently, but the effective 

rotational frictional drag coefficient at the surface was frequency dependent, being 

reduced at higher frequencies. 

These preliminary results provided the appropriate range of laser powers and 

rotational rates needed to observe the effect of interactions between the glass surface and 

a rotating magnetic microsphere.  Such interactions are determined by the physical 

properties of both the substrate and the particle.  We investigated both of these aspects by 

comparing the motion dynamics for the following modifications: (1) blank glass cover 

slips vs. cover slips coated with PEG and (2) rough carboxylic magnetic microspheres vs. 

smoother amine-functionalized magnetic microspheres.  In addition, we increased the 

resolution of rotation frequencies in an effort to more closely observe the dynamics near 

the threshold for reduced friction. 
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4.4   Results and Discussion 

4.4.1 PEGylation vs. Non-PEGylation 

Amine-functionalized magnetic microspheres were rolled along glass cover slips, both 

with and without a thin coating of PEG, at various rotation rates.  Microspheres from the 

same batch were also rotated while held in an optical trap with an incident laser power of 

3 mW/cm2.  The results of these two experiments are summarized in Figure 4.8(a) and (b), 

respectively, in which the measurements for clockwise and counter-clockwise rotation 

have been averaged.  To account for microsphere size, velocities for free-rolling particles 

were normalized by the circumference at the equator and displacements for trapped 

particles were normalized by the radius of the particle. 

Without the optical trap, rolling speed was larger along the y-axis for microspheres on 

blank cover slips than for those on PEG-coated ones for frequencies larger than 1 Hz.  

For blank slides, the dependence on frequency indicates a sharp discontinuity at 2.5 Hz.  

For frequencies below this, the rolling speed increases proportionately with magnetic 

rotation rate while for larger frequencies the rolling speed decreases with rotation rate.  

This behavior is similar to the dynamics described by Eq. (4.7) of nonlinear oscillators far 

from an interface.  The critical frequency ΩC of such an oscillator is equal to rotmB γ/  

where m is the magnetic moment of the particle, B is the strength of the external magnetic 

field and γrot is the rotational drag of the surrounding medium.  Below this critical 

frequency, the particle is phase-locked, rotating synchronously with the external rotating 

magnetic field.  The dashed line in Figure 4.8(a) shows the similarity in rotational 

response of the amine-functionalized microsphere on an untreated glass cover slip to that 

of a nonlinear oscillator.  A reduction factor was introduced on the right side of Eq. (4.7) 

to account for the presence of the surface.  The equation was then linear least squares fit 

to the data to acquire a critical frequency 48.2=ΩC  Hz and a reduction factor of 0.060.  

This reduction factor quantifies the continual slipping of the microsphere even below the 

apparent critical frequency.  The rolling speed was only a small fraction of the external 

rotation rate in the low-frequency regime.  A linear fit of the first three points of the 

corresponding data gives a slope of normalized rolling speed/rotation rate = 

0.058 ± 0.018 and a non-zero intercept at 0=Ω .  We expect both the non-zero
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Figure 4.8 (a) Normalized speed of amine-functionalized magnetic microspheres rolled along glass cover 
slips, both with and without a thin coating of PEG, at various rotation rates.  Data points show averages 
over both rotation directions.  Normalization is performed by dividing the rolling velocity by the 
circumference of the microsphere; therefore, normalized speeds less than one indicate rolling with slipping 
(skipping).  The dashed line indicates the average rotation rate in Hz of a standard nonlinear oscillator 
multiplied by a reduction factor to account for friction due to the surface.  (b) Normalized distance of the 
same magnetic microspheres optically trapped by a laser beam with 3 mW/cm2 of incident laser power on 
both uncoated and pegylated glass cover slips.  Normalization is performed by dividing the trapped 
displacement by the particle radius.  Data points show averages over each rotation direction.
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intercept and a slope slightly less than our nonlinear oscillator reduction factor since the 

microsphere must transition from rolling without slipping to skipping.  Our results 

indicate that this difference in slope is negligibly small in our system which suggests the 

transition from rolling without slip to skipping occurs at very low rotation frequencies. 

The critical frequency of these amine-functionalized magnetic microspheres away 

from the surface could not be determined easily since the microspheres appeared to rotate 

phase-locked even at frequencies as high as ~10 Hz (the mechanical limit of our magnetic 

rotation system).  For our microspheres at the surface, this critical rate drops to 2.48 Hz, 

indicating the additional drag due to the presence of the surface.  In addition, for standard 

nonlinear oscillators, Eq. (4.7) predicts a much steeper decrease in rotation rate just above 

the critical frequency.  The more shallow decrease of our data suggests the frequency-

dependence of the interaction with the surface is more complicated than pure Stokes drag. 

For PEG-coated slides, the rolling speed was always less than that for blank slides.  

This is expected since the interaction between the microspheres and blank cover slips was 

increased, as evidenced by general increased non-specific binding with the surface.  The 

PEG coating inhibits this binding effect and, as a result, the microspheres cannot gain as 

much traction with the surface.  Consider the following model of individual magnetic 

colloids interacting with the surface as the microsphere rotates.  For low rotation 

frequencies, there is some likelihood of interaction – adhesion or binding – with the 

surface.  During some of these colloid-surface interaction events, the microsphere rolls 

forward.  An increase in rotation rate corresponds to an increased number of interactions 

resulting in a proportionately increased microsphere rolling speed.  Beyond a certain 

frequency threshold, the duration of interaction between a colloid and the surface is 

decreased, reducing the likelihood that torque-generating events can occur.  Asperities on 

the microsphere may experience more total contact with the surface, but less actual 

events that induce rolling.  Thus the particle slips more often and experiences reduced 

rolling speeds. 

The rolling speed decreased with increasing rotation rate on PEG-coated slides, 

although a slight discontinuity appears near 2 Hz.  This discontinuity, as well as the 

frequency threshold for blank slides, is consistent in the results for the experiments 

conducted with microspheres trapped by optical tweezers, as shown in Figure 4.8(b).  
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With the optical trap present, the same two-regime behavior occurs. At low frequencies, 

the displacement from the trap center increased with rotation rate while at higher 

frequencies beyond a certain threshold, the microsphere was pulled closer to the trap 

center.  In this case, the position information corresponds to actual frictional forces that 

acted on the microsphere in opposition to forces due to the optical trap.  The evident 

disparity at low frequencies between optically trapped microspheres on PEG-coated 

slides (decreasing speed) and those on uncoated slides (increasing speed) can be 

explained as follows.  When optical tweezers were applied to the microspheres, the laser 

power was set such that the axial scattering force on the particle was reduced to prevent 

lifting of the microsphere off the surface.  Even at these reduced powers, the gradient 

force is strong enough to radially trap the particle.  The axial gradient force can also pull 

the particle downwards applying a small load to maintain slipping-contact between the 

glass surface and colloids of the microsphere, thus inducing the microsphere to roll away 

from the trap.  In the absence of the optical trap, no such load exists and the microsphere 

can shift upwards away from the surface enough to cause increased slipping, thus pulling 

the microsphere closer to the trap. 

One should notice at low frequencies, the trend for optically trapped microspheres as 

well as microspheres free-rolling on blank glass indicates a linear increase.  Extrapolation 

of this data to zero frequency yields a positive non-zero rolling speed or displacement.  

Such results indicate that the microsphere transitions from rolling without slipping, which 

would yield a linear trend of unity slope, to rolling with slipping. 

Another noticeable feature of the data represented in Figure 4.8 is the non-zero rolling 

speeds and trapped positions along the x-axis.  Although small in comparison to 

corresponding values along the y-axis, these measurements indicate that the trajectories 

were not purely perpendicular to the rotation axis, but also had components along the 

rotation axis.  The angle of deviation of these trajectories from the y-axis averaged over 

both rotation directions is shown in Figure 4.9.  It has been shown that differences in the 

angle of rolling trajectories can result from motion of nanoscale objects with 

geometrically distributed facets rolling on commensurate surfaces [151].  In our system, 

however, the microspheres had randomly distributed magnetic colloids and the glass 

surfaces were also expected to have a random distribution of potentially adhesive contact 
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Figure 4.9 Deviation angle for amine-functionalized magnetic microspheres (a) free-rolling and (b) 
optically trapped on either PEG-coated or uncoated glass cover slips.  Data points represent the average of 
the magnitudes over both rotation directions.  The increase in angle with rotation frequency suggests the 
magnetic moment of the microsphere escapes into the third dimension along the rotation axis of the 
external magnetic field. 

points.  The observed increased deviation angle at higher rotation rates suggests the 

magnetic moment of the microsphere, instead of aligning with the magnetic field by 

rotating end over end, no longer remained in the plane perpendicular to the rotation axis.  

This escape into the third dimension has been described in other magnetically driven 

systems [38, 139] and is explored in more detail in Chapter 7. 

4.4.2 Particle Roughness 

Two distinct types of magnetic microspheres were rotated on glass cover slips, again 

with and without pegylation at varying external rotation rates.  As shown in the scanning 
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electron microscope (SEM) images in Figure 4.1, carboxylated microspheres appeared to 

have more magnetic material and an increased surface roughness in comparison to amine-

functionalized ones.  In addition, the carboxylated microspheres tended to irreversibly 

bind to the uncoated cover slips if the rotation rate was below 1.5 Hz.  The effect of 

microsphere roughness on hydrodynamic motion perpendicular to a plane 

(sedimentation) has been studied in great detail [152, 153].  In these experiments, we 

sought to compare the effects of microsphere roughness for motion parallel to a surface.  

Results for the carboxylated microspheres free-rolling and confined by an optical trap are 

shown in Figure 4.10(a) and (b), respectively.  These results will be compared to the 

measurements on amine-functionalized microspheres shown in Figure 4.8 where 

appropriate. 

In all cases of free-rolling microspheres studied here, the rolling velocities on blank 

cover slips were generally faster than those of the same microsphere type on PEGylated 

cover slips at the same rotation rate.  The increased traction on blank slides enabled the 

microspheres to experience increased torques and thus roll faster along the surface.  For 

the rougher carboxylated microspheres, the ratio of normalized rolling speed to rotation 

rate given by the slope of the linear fit indicated in Figure 4.10(a) was 0.051 ± 0.006 for 

the blank cover slip.  This value is similar to that calculated for the aminated 

microspheres on blank cover slips; thus, in the low frequency regime, the slipping friction 

is approximately the same as for untreated slides.  For the PEG-coated cover slips, 

however, the rougher carboxylic particles introduced slightly more friction, giving a 

positive slope of 0.049 ±  0.008 as opposed to negative slope of the smoother amine-

functionalized microspheres which rolled slower with increasing rotation rate. 

This last difference mentioned suggests another behavioral distinction in the rolling 

motion of the rougher carboxylic microspheres vs. smoother amine-functionalized ones.  

The sharp threshold between increasing and decreasing rolling speed, typically signaling 

the transition from phase-locked rotation to phase-slipping, occurred at significantly 

higher rotation rates for rougher carboxylic microspheres than for the smoother amine-

functionalized ones.  With nonlinear oscillators in the bulk fluid, increased drag shifts the 

threshold frequency ΩC to lower frequencies.  Alternatively, at a surface, an increase in 

the surface drag shifts the threshold for rolling speed to higher frequencies since this drag 
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Figure 4.10 (a) Normalized speed of carboxylated magnetic microspheres rolled along glass cover slips, 
both with and without a thin coating of PEG, at various rotation rates.  Data points are averages of each 
rotation direction.  (b) Normalized distance from the trap center of the same magnetic microspheres 
optically trapped by a laser beam with 1 mW/cm2 of incident laser power on both uncoated and PEGylated 
glass cover slips. 
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provides the traction necessary to induce rolling.  We see for blank cover slips, the 

carboxylated microspheres reached the threshold near 4 Hz while on blank cover slips the 

rolling speed continued to increase over all frequencies measured despite the increase in 

angular deviation suggested by the increased speed along the x-direction. 

For optically trapped, carboxyl magnetic microspheres, the results were not as 

conclusive.  Figure 4.10(b) indicates the average distance from the trap center for varying 

rotation rates.  The data appears to fluctuate significantly, revealing no clear sign of a 

threshold or suggestive trend.  Several factors attributed to this contrast in results.  First, 

since the carboxylated microspheres had characteristically more magnetic material than 

the aminated ones, scattering forces were increased.  A lower laser intensity of 1 mW/cm2 

was necessary to prevent the scattering force from lifting the microspheres off the glass 

surface.  This weaker laser power also reduced the gradient force that is necessary to trap 

the microspheres.  It is possible the carboxylated microspheres experienced a reduced 

load and thus were more likely to fluctuate in the z-direction, causing less contact with 

the surface and overall less effective surface drag.  Second, large asperities on the surface 

of the carboxylated microspheres caused the microsphere to shift position while rotating 

in the optical trap, thus causing the large in error in several measurement indicated in 

Figure 4.10(b).  This may have been a combination of skewed orientation on the glass 

surface as well as optically induced rotation due to the magnetic colloids.  It is 

conceivable that such fluctuations could cause errors in the normalized distance from the 

trap center up to 0.05.  Last, the carboxylated microspheres had a tendency to bind to 

blank cover slips much more readily than the aminated ones, especially at very low 

frequencies.  Consequently, measurements below 1.75 Hz could not be acquired before 

the microspheres irreversibly bound to the surface. 

Angular deviations for both free-rolling and optically trapped carboxylic 

microspheres are shown in Figure 4.11.  Results for each rotation direction were 

averaged.  The deviation is not as strong as for the amine-functionalized magnetic 

microspheres.  This suggests that the interactions between the surface and the rougher, 

more adhesive carboxylic microspheres were suppressing tendencies for the magnetic 

moment to rotate out of plane.  In addition, the data appears noisier which we suspect is a 

consequence of the numerous asperities found on the microsphere surface. 
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Figure 4.11 Angle deviation for carboxylated magnetic microspheres (a) free-rolling and (b) optically 
trapped on PEG-coated and uncoated glass cover slips.  The increase in angle with rotation frequency is not 
as strong as for smoother amine-functionalized microspheres.  This suggests escape of the magnetic 
moment into the third dimension is partially suppressed by surface-microsphere interactions. 

For both amine-functionalized and carboxylated magnetic microspheres rotating 

while optically trapped, we’ve neglected effects due to changes in temperature resulting 

from the absorption of laser light.  Absorption by the surrounding aqueous solution is 

negligible at such low laser intensities [61] as temperatures are expected to increase less 

than 0.05° K and the index of refraction of water is only weakly dependent on the 

temperature [154].  Absorption by the magnetic colloids followed by heat transfer to the 

surrounding fluid, however, can reduce the fluid viscosity.  This effect may contribute to 

scattered data for optically trapped carboxylic magnetic microspheres.  For the aminated 

microspheres, measurements in each rotation directions gave similar results, thus we 

neglected the possibility of heat accumulation during the experiment. 
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4.5   Conclusions and Future Work 

We’ve developed an experimental technique for studying the motional behavior of 

rotationally driven magnetic microspheres rolling while slipping on a glass planar 

surface.  Our results justify the notion that both the surface roughness and hydrodynamic 

interactions of different microspheres and planar surfaces can be distinguished.  In 

particular, microspheres and surfaces with increased drag characteristics experience 

increased rolling speed and trapped displacement at low rotational frequencies.  At higher 

frequencies, increased slipping can occur and behavior characteristic of nonlinearly 

oscillating, driven magnetic microspheres can be observed, including escape of the 

magnetic moment into the third dimension causing off-angle surface rolling. 

A more detailed theoretical study is required to predict the hydrodynamic motion of 

rotationally driven microspheres on rough surfaces.  Studies have previously been 

conducted on the rotational and translational behavior of rough non-colloidal spheres 

pulled by gravity down inclined planes [148, 149].  It is unclear, however, whether 

similar theoretical treatments involving the balance of drag forces and torques can be 

easily applied to these rotationally-driven rough microspheres rolling and slipping on flat 

planes. 

If one could measure the magnetic moment of a single particle, this would help 

distinguish whether variations in magnetic content from microsphere to microsphere 

versus the effective drag are contributing more to shifts in the threshold frequency for 

different surfaces.  Also, precise measurement of the height of the microsphere with 

respect to the glass surface in real time, for example by using total internal reflection 

microscopy techniques [152, 155], could elucidate the phenomenon of rolling while 

slipping by verifying when microsphere-surface contact is occurring. 
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CHAPTER 5 

SIMULTANEOUS OPTICAL AND MAGNETIC 
TORQUE MANIPULATION OF NONUNIFORMLY 

ROTATING MAGNETIC PARTICLES 

A wide range of varied and interesting phenomena can be described by a single class 

of nonlinear dynamics systems known as nonuniform oscillators [37].  Perhaps the most 

familiar of these applications to physicists is the problem of a rotating pendulum in a 

viscous fluid driven by a constant torque.  The same equations that characterize this 

pendulum have also be used to describe the synchronization of oscillating neurons, the 

dynamics of superconducting Josephson junctions, and more recently, the behavior of 

submerged micro- and nanoscale particles driven by rotating fields [33, 54, 66, 133, 139-

142], despite the vast difference in time scales for all of these systems. 

The nonuniform nature of the motion of these overdamped microscale rotationally 

oscillating systems is typically manifested by the emergence of two distinct behavioral 

regimes: linear motion at low driving frequencies, and nonlinear motion at high driving 

frequencies.  In particular, the nonlinear regime arises from applied frequencies that are 

faster than can be supported by the viscous drag in the system.  In such cases, the micro-

object exhibits slipping motion as it rotates.  As a result, the average rotation rate in this 

nonlinear regime becomes slower than the rotation rate in the linear regime where the 

micro-object rotates synchronously with the applied field without slipping. 

Numerous methods of manipulation of microscale objects have been developed.  

Most nonuniform oscillators have been systems actuated by rotating magnetic fields [33, 

54, 66, 139-141] since the magnetic moment is expected to align with the external 

magnetic field.  Nonuniformly oscillating systems that utilize an optical torque have also 

been realized through the use of such tools as optical tweezers [133, 142].  Optical 
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torques can be generated in a variety of ways.  The dipole moment of a microparticle will 

tend to align with the polarization of an incident laser beam.  This results from the 

transfer of angular momentum between the particle and the spin angular momentum of 

the light beam.  Thus mechanical rotation of the linear polarization direction or alignment 

with elliptically or circularly polarized light can induce rotation of anisotropic or 

birefringent micro-objects about the axis of the laser light [156, 157].  Shaped laser 

beams with specified orbital angular momentum have also been used to rotate absorptive 

microparticles [126, 158, 159] in the same plane.  In addition, systems that use the 

scattering and absorptive properties of the microparticle can also induce rotation about 

the beam axis [53, 106, 160] or about an axis perpendicular to the beam axis [161].  

Combinations of magnetic and optical manipulation schemes have also been explored in 

great detail [162-165]. 

In this work, we consider the combined manipulation of a micro-object using both 

magnetic and optical fields.  The micro-object is modeled as an optically anisotropic 

microsphere or rigid dimer of such microspheres that exhibits strong scattering or 

absorption and is larger than the light beam focus.  The light beam is assumed to be 

spatially fixed with no orbital angular momentum and with an arbitrary polarization while 

the magnetic field rotates at a fixed frequency about an axis perpendicular to the beam 

axis.  The optically significant cross sectional area of the microsphere varies with rotation 

angle, thus the applied optical torque varies correspondingly.  Similar applications of the 

projection of the cross sectional area has been used to rotate other microscale objects [53, 

166].  Depending on the alignment between the beam and the microparticle, the applied 

optical torque can act cooperatively with or in opposition to the magnetic torque.  We 

focus on the case of optical torque magnitudes that are much smaller than magnetic 

torque magnitudes, thus the optical contribution is modeled as a small perturbation.  The 

generality of our analysis, however, makes the study applicable to systems that utilize 

alignment of the particle polarizability with the beam polarization to provide optical 

torque, especially with larger optical torque magnitudes.  In addition, the forces do not 

have to be optical in nature, but can be any force whose dynamics obey the model 

equations. 
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Figure 5.1 Schematic representation of a rotationally driven magnetic particle.  The rotation axis is along 
the x̂ direction.  B is the external magnetic field vector and m is the magnetic moment of the particle.  The 
phase lag of the moment behind the field is given by θ−Ωt . 

To investigate the effects of combined magnetic torque and optical torque as a 

perturbation, we first provide the salient features of the standard nonlinear oscillator.  

Techniques used to describe the system in the absence of optical torque are then applied 

to the combination of manipulation schemes.  Several geometries are modeled and 

compared, and the results are investigated in terms of the prospect of experimental 

realization. 

5.1   The Standard Nonuniform Oscillator 

Let us assume for simplicity that rotation of our object only occurs in a 2-dimensional 

plane.  A more general treatment of the system describing out-of-plane rotation is given 

in Chapter 7.  For convenience with descriptions of our experimental setup, we choose 

the plane of rotation to be the zy ˆˆ −  plane of the fixed lab reference frame as shown in 

the diagram in Figure 5.1.
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The parameters of relevance are the following: 

B = Magnetic field vector 
m = Magnetic moment of the particle; this coincides with the geometric 

orientation of the particle 
Ωt = phase angle of B with respect to the lab frame 
θ = phase angle of m with respect to the lab frame 
φ = phase lag of m behind B 

 

The equation of motion describing this system in terms of the generalized coordinate 

θ indicates a sum of torques: 

 )sin( θθγθ −Ω=+ tmBI rot
&&& . (5.1)

where I is the moment of inertia of the particle, γrot is the rotational friction coefficient 

and dot notation refers to differentiation with respect to time t.  The first term on the left 

is an inertial term, the second is torque due to drag from the surrounding viscous media, 

and the term on the right of the equality sign is the magnetic torque on the particle 

obtained from the cross product of the magnetic moment and magnetic field 

vectors: BmΝ ×=mag .  A dimensionless form of this equation is obtained using the 

following substitutions: 

 

rot
c

mB
γ

=Ω , tcΩ=τ , θφ −Ω= t . (5.2)

The dimensionless equation of motion is 
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c , (5.3)

where CN ΩΩ=Ω / is the external rotation rate normalized by the critical frequency.  The 

inertial term can be neglected in systems with low Reynolds number [150] (in our system 
710Re −≈ ) to give what is known as the nonuniform oscillator equation [37]: 

 
)sin(φ

τ
φ

−Ω= Nd
d . (5.4)

The steady-state solution for Eq. (5.4) gives )(sin 1
NΩ= −φ and requires 1≤ΩN . In this 

regime, after an initial transient, the phase between B and m remains locked, both vectors 

rotating synchronously with angular velocity Ω. 
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For 1≥ΩN , Cēbers and Ozols [139, 140] provide the following solution for the 

phase: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −Ω
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

−+
Ω

=
2

)(11tan111arctan2 0

22
ττφ N

NNN

 (5.5)

where τ0 is an arbitrary time instant.  Note, Eq. (5.5) indicates that φ is a multi-valued 

function, the solutions of which are separated by 2π.  If this phase is restricted to values 

between –π and π, then φ represents the angular difference between the direction of the 

magnetic field B and that of the magnetic moment m at any dimensionless time τ.  In our 

treatment here, φ represents the total accumulated phase lag between m and B, the 

magnitude of which can exceed π if the magnetic field laps the magnetic moment while it 

rotates.  In this case, the appropriate solution for φ at a time τ is determined by the 

number of laps that have occurred. 

To gain a clearer picture of the dynamics of motion for 1≥ΩN , one can integrate 

Eq. (5.4) to solve for the period T, defined here as the time for φ to complete a full 

revolution: 
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This requires that the particle slips.  If the particle were to rotate uniformly in phase with 

the magnetic field (at Ω), then T would be undefined since φ never reaches one full 

revolution (not even half a revolution, since beyond π the particle would slip).  The 

angular velocity of the magnetic moment, averaged over long times, or equivalently over 

one period T, can then be expressed as: 

 222
c

if

if

T
T

tt
Ω−Ω−Ω=

−Ω
=

−
−

=
πθθ

θ& . (5.7)

Thus, for 1≥ΩN , as the magnetic field rotates at angular velocity Ω, the particle cannot 

keep up and undergoes back and forth slipping rotation.  The phase lag between the two 

accumulates and the magnetic moment takes longer to complete a full cycle.  The 

solutions for the average rotation rate of the particle are summarized as follows: 
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5.2   Models of Optical Torque 

The addition of an external optical radiation force was modeled in several ways.  In 

all cases, it is assumed that the particle containing magnetic material is too large and 

reflective/absorptive to be trapped via conventional single beam gradient forces from 

optical tweezers despite the high numerical aperture often used in experiment.  As a 

result, the force on the particle is purely the scattering force applied, inducing rotation 

just as water provides torque for a water wheel. 

In practice, the particle may undergo translation either due to the force of the laser 

beam and/or Brownian motion.  One can follow the translational motion of the system 

using particle tracking methods.  Nevertheless, in the models described here, the force 

can be assumed weak enough that translation of the particle is negligible.  In addition, for 

simplicity, we assume the force profile is uniform in the z-direction and the force points 

only in the +z-direction.  In experiment, the particle actually lies in the vicinity of the 

focus of a laser beam.  If, however, the particle does not move too far out of the focal 

plane, the direction of the force will point predominantly in the +z-direction.  A vector 

diagram for the additional force is indicated in Figure 5.2.  

The following parameters have been introduced into the system: 

F = total optical force applied to the rotating particle 
r = optical moment; this is not necessarily the dipole moment of the system, but 

rather a vector associated with a physical geometrical orientation of the 
particle 

β = phase angle of F with respect to the lab frame; this is always π/2 in this 
treatment 

δ = phase angle between r and m; since both r and m are fixed to a specific 
orientation of the particle, this angle must be constant; in this treatment it is 
assumed to be zero 

 

Several geometries of the particle or rotating object were modeled.  A description is 

provided for each.  In all cases, the magnetic field is assumed to be rotating with angular 

velocity Ω. 
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Figure 5.2 Coordinate system for a rotationally driven magnetic particle perturbed by an optical force per 
area F at a fixed angle β with respect to the lab frame.  The optical moment of the particle r is a vector 
associated with a specific geometrical orientation of the particle.  It deviates from the magnetic moment by 
an angle δ. 

5.2.1 Optical Force Applied at Center of Anisotropic Particle 

This model assumes the force profile f(x,y) is constant in the x- and y-directions over 

a region centered on the particle.  The optical anisotropy of the rotating object causes the 

optical force to induce rotation.  In the case indicated on the left in Figure 5.3, the metal 

half-coating provides optical anisotropy. Once the particle rotates beyond π/2, the optical 

force, since it’s centered, will then induce rotation in the opposite direction.  If the torque 

amplitude generated by the optical force is much less than the induced magnetic torque, 

we still expect the particle to rotate full cycles, just not at a uniform angular velocity. If 

the optical torque exceeds that due to magnetic torque, we would expect the particle to be 

forced into an orientation with the metal coating downstream of the laser beam.  In 

practice, forces this large will translate the particle out of the focus center.  Such 

translation is not modeled here. 

The particle is modeled as an anisotropic cross sectional area (see Figure 5.3, right) 

with optical moment r attached to the particle.  One might recognize r as the moment arm 

for calculating the optical torque FrN ×=opt .  In actuality, an integration of the force 

profile over the cross sectional area is necessary to calculate the total torque.  For our 
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Figure 5.3 Schematic representation of an optically anisotropic magnetic particle acted upon by a 
rotating magnetic field and an optical force with constant profile f(x,y) centered on the particle.  A half-
coated magnetic microsphere (left) is modeled as an anisotropic cross sectional area (right) with optical 
moment r. 

purposes here, let r=r  be proportional to the cross sectional area over which the 

optical force is applied and rF still has standard units of torque. Since our force is in the 

z-direction, and using the angles shown in Figure 5.2, we can calculate the torque as 

 ))(sin( θδβ +−= rFNopt . (5.9)

If we assume the magnetization direction coincides with the easy axis of the particle – an 

axis often defined by the orientation of the particle, we can set 0=δ .  Since F points in 

the z-direction, 2/πβ = and Eq. (5.9) reduces to 

 )2/sin( θπ −= rFNopt . (5.10)

Note, for 2/32/ πθπ << , the metal coating is oriented on the –x side and the optical 

force torques the particle in the opposite direction, as we expect. 

5.2.2 Optical Force Applied Off-Center of Anisotropic Particle 

If we shift the force profile such that it is no longer directed at the center of the 

particle but rather slightly off the z-axis (see Figure 5.4), most of the optically generated 

force applies a torque to the particle all in the same direction.  Using the cross sectional 

model, we see that for 2/πθ > the torque on the metallic portion is minimized.  The
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Figure 5.4 Schematic representation of an optically anisotropic magnetic particle acted upon by a 
rotating magnetic field and an optical force with constant profile f(x,y) off-center from the particle.  A half-
coated magnetic microsphere (left) is modeled as an anisotropic cross sectional area (right) with optical 
moment r. 

uncoated portion of the particle moves into the force profile region, but since this 

material is typically a dielectric with much lower absorption than the metal, the torque 

generated is neglected.  Thus, only when 2/3πθ >  or the metallic portion resides at +x 

quadrants is a torque generated.  In other words, if πθδβπ )1()( +<+−< nn  where n is 

even, the torque is the familiar ))(sin( θδβ +−rF .  If, instead, we have 

πθδβπ )1()( +<+−< nn  where n is odd, the torque on the system is zero.  Assuming 

again that 2/πβ =  and 0=δ , this can be summarized by the following expression: 

 
2

)2/sin()2/sin( θπθπ −+−
= rFNopt (5.11)

For the actual case of a half-coated spherical particle of finite thickness, a torque could be 

generated even at 2/πθ >  since a portion of the coating exists in the +x region.  In 

practice, this would be remedied by using relatively narrow force profile sufficiently off-

center.
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Figure 5.5 Schematic representation of a symmetric magnetic particle acted upon by a rotating magnetic 
field and an optical force with constant profile f(x,y) off-center from the particle.  A rigid dimer of half-
coated magnetic microspheres (left) is modeled as an anisotropic cross sectional area (right) with optical 
moment r along the axis joining the two spheres. 

5.2.3 Optical Force Applied Off-Center of a Symmetric Particle 

In this model, the rotating object is optically symmetric about the rotation axis, but 

the force profile, although still constant over its region of extent, is centered such that 

only a portion of the object experiences the optical force, thus inducing a torque about the 

axis of magnetic rotation.  An example of such a symmetric particle, shown in the 

illustration in Figure 5.5, is a rigid dimer consisting of two half-coated magnetic spheres.  

Optical rotation symmetry is required, thus any symmetric dimer will suffice, including 

two uncoated, magnetic spheres.  The same conditions on the amplitude of the force 

apply.  When the particle rotates such that 2/πθ > , one portion of the dimer exits the 

region of the force profile while the other enters the region.  As a result, the torque 

applied to the dimer is always in the same direction.  Using the cross sectional area model 

again, the torque in this case is 

 )2/sin( θπ −= rFNopt . (5.12)

Again, for the physical case of a dimer, when θ = π/2, the force profile can still apply a 

torque.  The zero approximation is valid if the edge of the force profile is at or beyond 

one particle radius from the magnetic rotation axis. 
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In all three models described, the torque, when present, has a sinusoidal form.  We 

can add this term to the magnetic torque to give a new equation of motion: 

 
optNtmBI +−Ω=+ )sin( θθγθ &&& , (5.13)

where Nopt is given by either  Eq. (5.10), Eq. (5.11) or Eq. (5.12), depending on the model 

used.  Performing the same substitutions as Eq. (5.2), we can achieve the dimensionless 

form: 
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where 
mB
rF

=α  is the ratio of the amplitudes of the optical torque to the magnetic torque 

and the normalized frequency we know as CN ΩΩ=Ω / .  Again, neglecting the inertial 

term, we obtain our modified nonuniform oscillator equation for a constant optical force 

pointed in the z-direction: 

 
))(2/sin()sin( φτπαφ

τ
φ

−Ω−−−Ω= NNd
d . (5.15)

Note again, the final term in Eq. (5.15) must be appropriately adjusted for the model of 

optical torque being used. 

The period T is no longer easily acquired by integration.  A reliable numerical 

solution of φ can be acquired using a fourth order Runge-Kutta routine [92], from which 

we can also determine θ and its normalized derivative τθ dd / .  Eq. (5.14) itself can be 

reduced to two first order differential equations and also solved using Runge-Kutta.  In 

this study, the low Reynolds number approximation holds; thus, we only numerically 

solve Eq. (5.15). 

In summary, we’ve described the theoretical equations for three models of non-

uniformly rotating magnetic particles influenced by an optical force which applies an 

additional torque.  For all models, the external magnetic field drives the rotation in the 

counter-clockwise direction.  In the first model, the optical torque that adds to the 

magnetic torque is applied when the particle is oriented with an absorptive or reflective 

portion on one side of the rotation center (+x side in this treatment).  A torque that 

opposes the magnetic torque is applied when the particle is oriented with the scattering 

material on the opposite side. In the second model, an additive torque is again applied for 
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orientations towards the +x side, but zero torque is applied for orientations on the other 

side.  In the third model, the rotating object is optically symmetric and thus the optical 

force applies an additive torque for all orientations.  The models go in increasing order of 

additive torque, thus in nonuniformly rotating regimes, we expect the first model to slip 

more often than the second which slips more often than the third one. 

5.3   Numerical Analysis 

Written in MATLAB, a 4th order Runge-Kutta algorithm was used to numerically 

solve Eq. (5.4) and the appropriate versions of Eq. (5.15) for each optical torque model.  

To test that the models were programmed properly, analysis using α = 0 was conducted 

to ensure the results are what we expect for the uniform oscillator and the standard 

nonuniform oscillator equations with no optical beam present.  In particular, we look at 

θ-angular trajectories, φ-phase space trajectories, the effect of bifurcations on the initial 

transient response, and the significance of saddle-node bifurcations.  Throughout the 

analysis 2/πβ =  and 0=δ . 

5.3.1 Uniform Oscillator 

For comparison, we first illustrate typical results for a uniform oscillator using the 

parameters 5.0=ΩN , 0=α  with the initial condition that at 0=τ , 0=φ  (thus also 

0=θ ).  For convenience, we define the initial angles 0)0( φτφ ≡= and 0)0( θτθ ≡= .  

The plot in Figure 5.6 indicates the angular trajectory of the particle in polar coordinates 

as a function of τ.  The polar angle of a point on the blue line corresponds to the angle of 

the moment m of the particle.  To facilitate visibility of the trajectory after several 

rotations or if slipping occurs, the radius of any point on the line equals τ at that point.  

Thus, as we see for uniform oscillation, the curve starts at the origin at τ = 0 and spirals 

outward uniformly in a counterclockwise motion. 

The rotational dynamics for both θ and φ can be depicted individually.  The graphs in 

Figure 5.7 all show one curve (solid or dashed line) and one line fit (dotted line) 

indicating that all three models give the same standard uniform oscillator result since 

0=α  in all cases.  From the upper left graph (plot of θ vs.τ) we see that θ steadily 
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Figure 5.6 Polar trajectory of angle vs. dimensionless time τ  (radial) for a uniformly rotating particle 

)0( =α .  5.0=ΩN , 00 =φ  and 00 =θ . 

increases with a linear slope.  The slope is approximately 5.0=ΩN .  The slope can also 

be seen in the lower left graph (plot of τθ dd /  vs.τ) which indicates the instantaneous 

angular velocity as a function of τ.  Initially, the magnetic moment m and the magnetic 

field B are aligned along the y-axis.  As B begins to rotate, the magnetic torque increases, 

thus τθ dd /  takes some time to reach its final value at 5.0=ΩN .  Note the dotted line 

indicates the line fit of the data not including the early transients.  Graphs on the right 

indicate the behavior of the angle φ and the angular velocity τφ dd /  plotted in radians 

and radians/(normalized seconds).  Recall that φ is the phase lag of the moment m behind 

B.  As we might expect, the phase φ starts at zero and ramps up but settles near 0.52 rads 

(or ~30° expected from )(sin 1
NΩ= −φ  when 0/ =τφ dd ).  Correspondingly, the angular 

velocity τφ dd / starts near the normalized rate of magnetic rotation 5.0=ΩN  and 

decreases until the particle becomes phase-locked at which point τφ dd /  is 

approximately zero.
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The term “uniform” comes from the notion that the particle is rotating at a uniform 

angular velocity at all angles.  This should be clear by looking at the long time regimes of 

both θ and φ graphs in Figure 5.7. 

Effect of Initial Conditions – Bifurcations 

The graphs from Figure 5.7 do not show purely uniform oscillation.  At early times, 

the transient behavior of both τθ dd / and τφ dd / are not constant.  The initial condition 

00 =φ  determines the starting phase angle between the magnetic field B and moment 

vector m.  Changing this initial condition does not change the rotational dynamics at long 

times; in particular, by 12=τ , the angular velocity remains approximately equal to the 

average magnetic rotational velocity 5.0=ΩN .  This can also be seen in the plots of 

Figure 5.8 which are similar to those from Figure 5.7, but with varying initial conditions.  

We see from the upper right graph that when the initial phase angle 51.20 ≤φ  rad, the 

phase approaches 6/)(sin 1 π=Ω−
N  rad indicating that the particle never slips but rather 

phase locks immediately.  When 77.30 ≥φ  rad the particle is initially oriented with a 

phase so far from that of the B-field that the particle slips once but then phase locks at 

6/13)(sin2 1 ππφ =Ω+= −
N  rad.  A finer range of φ0 values (see Figure 5.9) gives us a 

slightly more precise value for the threshold between one slip and no slipping.  The upper 

right graph of Figure 5.9 reveals the threshold lies somewhere in the range 

2.600 rad ≤≤ thφ 2.665 rad.  We can analytically determine the threshold phase φth by 

assuming it is the phase at which 0/ =τφ dd .  This gives values of π/6 and 5π/6. 

At this point, it is helpful to use the formalism of Strogatz [37].  The points at which 

0/ =τφ dd  are fixed points in the flow around a circle.  The phase space of this flow, 

shown in Figure 5.10, can aid in illustrating the significance of the initial conditions.  The 

point at 6/πφ = (closed circle) is stable since for angles slightly smaller or larger, the 

flow ( τφ dd / ) returns the phase to π/6.  For 6/5πφ =  (open circle), flow is away from 

this angle, thus it is an unstable fixed point.  This is also illustrated in the upper right 

graphs of Figure 5.8 and Figure 5.9.  When φ0 is close to π/6, the phase returns to that 

value.  For φ0 larger than 5π/6, the phase moves away from φ0 and stabilizes at 2π + π/6. 
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Figure 5.10  φ-Phase space for the motion of a uniform oscillator ( 5.0=ΩN , 0=α ).  Circles indicate 
fixed points in the motion of φ.  The filled circle is stable while the unfilled circle is unstable. 

 

Figure 5.11 φ-trajectory at the critical frequency )0.1( =Ω N  for different initial conditions ( 0=α ). 
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Note that in Figure 5.10, all φ angles are plotted, but in any one trajectory, the φ angles 

actually visited will be some range that is a subset of -π →π depend on the initial 

conditions. 

Saddle-Node Bifurcations 

If we increase the magnetic rotation rate to 0.1=ΩN , the two fixed points of Figure 

5.10 will collide to form a saddle-node bifurcation at 2/πφ = .  Trajectories with initial 

phase angles slightly lower will be attracted back to 2/πφ = while those with initial 

phase angles slightly higher move towards 2/52/2 πππφ =+=  (see Figure 5.11).  In 

terms of particle rotation, this means that when rotating at the critical frequency, the 

moment vector m can lag the B-field vector by, at most π/2.  Practically speaking, this 

phase is extremely sensitive since any slight increase, even a fluctuation induced by 

Brownian motion, will cause the particle to slip to 2/5πφ = , which is yet another 

saddle-node bifurcation. 

5.3.2 Nonuniform Oscillator 

To illustrate a typical case in the regime of nonuniform oscillation, we set the 

parameters 5.1=ΩN , 0=α and initial conditions 00 =φ  and 00 =θ .  The angular 

displacement trajectory is shown in Figure 5.12.  It is clear from the figure that the 

particle experiences phase-slipping represented by the zigzags in the trajectory.  At these 

instances when the angular velocity is negative, the magnetic field vector B leads the 

particle moment m so far ahead that the particle experiences a torque from the opposite 

direction.  Soon after, the B-field again surpasses the particle moment and the phase lag φ 

continues to accumulate. 

We can plot the individual angles with respect to dimensionless time, as we did 

before, for comparison.  These graphs appear in Figure 5.13.  The upper left graph shows 

that θ increases with time in an oscillatory fashion.  This oscillation is due to slipping 

incidents when θ decreases for brief moments.  The y-axis is plotted in units of “cycles” 

and “cycles/normalized time” to illustrate that there are about three slipping incidents per 

cycle, which agrees with Figure 5.12.  The average angular velocity can be calculated by 
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Figure 5.12 Polar trajectory of angle vs. dimensionless time τ for a nonuniformly rotating particle )0( =α .  

5.1=ΩN , 00 =φ  and 00 =θ . 

fitting the data to a line (dotted line in graph).  The slope of this line is indicated in the 

corresponding angular velocity plot in the lower left graph.  In this plot, slipping events 

occur when 0/ <τθ dd .  From Eqs. (5.2) and (5.7), we know the normalized angular 

velocity is  

 
1/ 2

22

−Ω−Ω=
Ω

Ω−Ω−Ω
= NN

C

cdd τθ . (5.16)

Using Eq. (5.16), for 5.1=ΩN , we expect the normalized angular velocity to be 

0.3820 rad = 0.06079 cycles.  Our simulated result gives 0609.0/ =τθ dd  rad.  The 

discrepancy is due to integration over a finite number of cycles.  Similar analysis can be 

done for φ.  We can establish a relation between the normalized angular velocity and the 

angular phase velocity using Eqs. (5.2) and (5.16) to get 

 1// 2 −Ω=−Ω= NN dddd τθτφ . (5.17)

We expect τφ dd / = 1.118 rad = 0.1779 cycles and our simulation gives 0.1778 cycles. 
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If we look at the phase space of φ in Figure 5.14, we see that the oscillation is, in fact, 

nonuniform.  Flow around the circle oscillates in strength but never changes direction 

( 0/ >τφ dd ).  We also notice there are now no fixed points (bifurcations).  Instead there 

are minima at ππφ n22/ += , where n is any integer.  It should also be noted that since 

there are no bifurcations, all positive values of φ will eventually be visited. 

If we change the parameters such that the minima are very close to 0=φ , for 

example by setting 01.1=ΩN , the minima become what are known as bottlenecks [37].  

In these cases, the minima have such low angular velocity that the particle spends most of 

its time at these phase points due to “saddle-node ghosts,” and the particle experiences 

jumps in φ (slipping incidents) at brief isolated times.  Angular and phase displacement 

and velocity graphs are shown in Figure 5.15.  Notice the average angular 

velocity τθ dd /  is slightly slower than that for the case at the critical frequency.  In 

addition, the average angular phase velocity τφ dd / is non-zero, but very small due to 

the presence of bottlenecks. 

5.4   An Interpretation of the Optical Perturbation 

In the case of optical torque magnitudes much weaker than the magnetic torque 

)1( <<α , we can treat the addition as an optical perturbation.  The phase space formalism 

can provide a means of understanding the effect of the optical force on the angular phase 

lag of the magnetic moment behind the external rotating magnetic field. 

Figure 5.10 and Figure 5.14 show the phase space for a uniform oscillator and 

nonuniform oscillator, respectively – both in the absence of optical torque.  In both cases, 

the landscape of τφ dd /  is sinusoidally periodic in φ with period 2π and constant in time.  

Thus, a fixed point at a specific phase will remain so throughout the flow, and the system 

is represented by a true vector field on the circle.  The effect of the perturbative optical 

torque is to modify both the amplitude and the phase of this sine dependence by making 

them both time dependent. 

We can delineate this time dependence for the optical force applied at the center of an 

anisotropic particle.  Eq. (5.15) is the appropriate equation of motion for this model of 
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Figure 5.14 φ-Phase space for a nonuniform oscillator )0( =α .  5.1=ΩN , 00 =φ  and 00 =θ . 

optical torque.  Applying several trigonometric identities, the equation can be rearranged 

to give 

 [ ] φταφτα
τ
φ cos)cos(sin)sin(1 NNN Ω−Ω+−Ω=

∂
∂ . (5.18)

Let us define the following time-dependent function: 

 [ ] [ ]222 )cos()sin(1)( τατατχ NN Ω+Ω+= . (5.19)

It follows that Eq. (5.18) can be written as 

 [ ]φτψφτψτχ
τ
φ cos)(sinsin)(cos)( +−Ω=

∂
∂

N  (5.20)

where  

 

)(
)sin(1)(cos

)(
)cos()(sin

τχ
τατψ

τχ
τατψ

N

N

Ω+
=

Ω
=

. (5.21)

Simplifying Eq. (5.20) to look like our original equation of motion, we get 

 ( ))(sin)( τψφτχ
τ
φ +−Ω=

∂
∂

N . (5.22)
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As mentioned, the effect of the optical perturbation is to introduce a time-dependent 

amplitude and phase to the landscape of the φ-phase space trajectory.  The system can no 

longer be considered a vector field on the circle.  As the φ-phase space trajectory 

changes, so do the phase locations of fixed points.  If the particle is at a stable phase at 

some instant τ, the fixed point will likely shift as time progresses.  Although the analysis 

performed here was for the first model of optical torque, all three models introduce a 

time-dependence to the φ-phase space trajectory. 

5.5   Comparison of Models 

The previous section examined the standard uniform and nonuniform oscillators and 

introduced various graphical tools for illustrating the dynamic motion.  This provides a 

basis to compare with results obtained when the optical torque was added using three 

different models.  For simplicity, we’ve assumed a relatively weak-amplitude optical 

torque (α is small) which corresponds to actual experimental parameters used in practice. 

5.5.1 Synchronous Rotation (Phase-Locking) 

The simplest case of synchronous rotation is the otherwise uniform oscillator with an 

added optical torque weak enough that the particle never slips.  This would occur if 

0/ <τφ dd at some φ for all τ.  This ensures there is always a stable fixed point 

somewhere, even if it were to change with τ.  Parameters for one such case are 

69.0=ΩN  and 3.0=α  with the initial conditions 00 =φ  and 00 =θ .  The theta 

trajectory and angle plots for this case are given in Figure 5.16 and Figure 5.17, 

respectively.  This case is qualitatively similar to a case with the same parameters except 

5.0=ΩN .  Thus, results here can be compared to the uniform oscillator in Figure 5.6 and 

Figure 5.7. 

The θ-trajectories in Figure 5.16 show that the particle never experiences slipping.  

Zooming on the origin, we also notice that when the moment m points towards the 

negative y-direction of the coordinate system, the three models can be best distinguished.  

In particular, curves closer to the origin represent models with more optical torque, thus  
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Figure 5.16 (a) Polar trajectory of angle vs. dimensionless time τ for a non-uniformly rotating particle 
with slow magnetic rotation in a non-slipping regime using 4 different models of optical torque.  

69.0=Ω N , 3.0=α , 00 =φ  and 00 =θ . (b) Zoom into origin. 

causing θ-rotation to be quicker, at least over those regions.  This agrees with the 

descriptions given for each optical torque model. 

Although the particle never slips, the rotation is not strictly “phase-locked” since the 

phase φ actually oscillates very weakly about an average value.  Despite the oscillation, 

the average angular velocity 11.069.0/ ==Ω≈ Ndd τθ  cycles/norm. time.  We can 

analyze the oscillatory motion easier by zooming into the bottom right graph of Figure 

5.17.  This is shown in Figure 5.18. 

The light blue curve represents our standard uniform oscillator with no optical torque 

which starts at an initial phase far from the most stable.  After some time the angular 

velocity decays to zero.  The three models with optical torque show a slower initial phase 

increase due to the presence of the additional torque which slows the increase in the 

phase lag between B and m.  At around τ = 3, the three models diverge. 

The red curve represents results for the particle which experienced a different torque 

direction depending on which side the phase was at that moment.  The curvature of the 

red curve at each negative τφ dd /  minima is sharper than that for positive τφ dd / and the 

time extent is shorter.  We expect this since negative τφ dd / corresponds to times when 

m approaches B due to the increase in optical torque as θ approaches 2nπ – as the torque 
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Figure 5.18 Expanded version of the bottom right graph of Figure 5.17. 

increases, θ moves faster to a phase where the optical torque is more increased causing 

the phase φ to decrease more rapidly.  Once 2nπ is passed, the optical torque lessens, and 

the phase φ increases at a slower rate and for a longer time.  The smoother maxima 

correspond to times when the moment points along the negative y-axis. 

The dark blue and green curves both indicate a kink near τ = 3 when the models 

diverge.  This corresponds to the presence of an absolute value function in the model 

description for τφ dd / .  After that point, the green curve, which represents zero-optical 

torque for m pointing towards negative y-directions, shows the same behavior as our 

uniform oscillator with no optical torque at initial times.  At about τ = 7.9, the green 

curve experiences another kink, signifying the onset of the optical torque when 

2/3πθ = .  At this point, the angular phase velocity behaves similarly to that described 

for the red curve at negative τφ dd / . 

The dark blue curve represents the particle which experiences a torque in the same 

direction for all orientations of the m vector, thus we see double the frequency of 

periodicity in the function compared to that for the red and green curves.  We can also 

look at the φ-phase space and try to understand the exhibited behavior (see Figure 5.19).  

The light blue curve represents a uniform oscillator that initially flows to a stable phase at 
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Figure 5.19 φ-Phase space for a nonuniformly rotating particle with slow magnetic rotation in a non-
slipping regime using 4 different models of optical torque.  69.0=Ω N , 3.0=α , 00 =φ  and 00 =θ . 

)(sin 1
NΩ− = 0.761 rad = 0.121 cycles.  All three optical torque models follow the dark 

blue curve until φ = ~0.56 rad = 0.089 cycles at which point the three models diverge.  

All three curves fall into closed loops indicating that the phase oscillates but is bounded.  

In the order red → green → dark blue, the accumulated counter-clockwise optical torque 

over one rotation increases.  Thus, in the same order, the total phase-extent over which 

the particle’s moment accumulates lag behind the B-field decreases.  For this reason, 

following the same order, the diameters of the phase space loops along the φ-axis 

decreases – the phase oscillation is smaller if the optical torque is always present for any 

particle orientation. 

We can also see the non-continuously differentiable nature of the green and dark blue 

curves, which again comes about from the presence of absolute value functions to 

describe these models.  The flat region of the green curve corresponds to moments when 

the particle is oriented such that no optical torque is applied, thus it follows the uniform 

oscillator trajectory. 
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5.5.2 Asynchronous Rotation (Phase-Slipping) 

The other regime in which the particle is always slipping occurs when the magnetic 

rotation is fast enough to overcome both drag and the optical torque.  Parameters for one 

such case are 5.1=ΩN , 49.0=α and 00 =φ .  Since the graphs become significantly 

different for each model, they will be plotted individually when necessary.  The polar 

angle trajectories shown in Figure 5.20 quickly reveal the slipping dynamics for each 

model in which the phase φ accumulates lag in all cases (no bifurcations exist).  The light 

blue curve is the familiar nonuniform oscillator we’ve already discussed previously.  The 

red curve illustrates a particle that repeatedly slips at about the same θ  for every cycle of 

the magnetic field rotation.  The magnetic field B rotates fast enough that the particle can 

never complete a full rotation before the next slipping event, thus 0/ =τθ dd although θ 

oscillates about a stable angle.  This angle appears in the 2nd quadrant of the coordinates 

system since this is the onset of optical torque that opposes the magnetic torque.  This 

angle can also be controlled by changing the direction of the optical force vector. 

The green trajectory represents the particle that experiences zero optical torque for m 

pointing towards negative x-directions.  We see that slipping events appear to have 

similar patterns as the standard nonuniform oscillator, but primarily in quadrants 2 and 3, 

as we would expect.  Again, we can change where slipping occurs on the circle by 

changing the direction of the optical force vector.   

The dark blue trajectory shows overall fewer slipping events,.  Most of the slipping 

appears to occur at angles close to the z-axis.  This is explained by recalling the sine 

dependence of the optical torque.  For angular positions of the magnetic moment near the 

y-axis, the optical torque is maximized, thus less slipping occurs.  When the magnetic 

moment vector lies along the z-axis, the projection of the cross sectional area 

perpendicular to the optical torque direction is minimized, enabling more slipping events 

to occur. 

This behavior is also supported by the angular displacement and angular velocity vs. τ 

graphs in Figure 5.21 through Figure 5.23.  Potentially interesting is that the angular 

velocity plot for the 3rd optical torque model (dark blue) seem to show that the slipping 

events are not perfectly periodic.  Such quasi-periodic behavior is known to occur in 
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Figure 5.25 Zoom of low-magnitude angular phase velocities of Figure 5.24.  Saddle-node ghosts grow 
increasingly more complex as the total accumulated optically torque increases for nonuniform oscillators 
with fast magnetic rotation.. 

systems where the applied forces have two incommensurate fundamental 

frequencies [167]. 

In the phase space plots of Figure 5.24, we see that the total extent of φ angles visited 

decreases with increasing accumulated optical torque over one rotation.  We can zoom in 

on the low angular velocity saddle-node ghosts shown in Figure 5.25 to see that the 

trajectories become extremely jagged and complex.  This seems to be the transition 

behavior just before the bounded phase space loops we saw with the non-slipping 

optically torqued system (Figure 5.19). 

5.5.3 Optically Induced Phase-Locking 

The final case considered is one in which the magnetic rotation is fast enough to 

induce nonuniform rotation in the absence of the optical torque.  The optical torque, 

however, when present, may be strong enough to enable the particle to approach the 

phase of the magnetic field for most of the time.  The qualitative details of the dynamics 

are similar for any initial phase condition φ0, but the precise details such as the times or 

angles at which slipping events occur will likely be very sensitive to the initial 

conditions.  The usual plots of polar angle trajectory, angular displacement, angular 
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velocity, phase displacement, phase velocity and phase space are provided in Figure 5.26 

through Figure 5.30. 

The same general ideas already discussed can be used again for analysis.  For models 

where the optical torque is present, the tendency for slipping is slightly stronger when the 

particle is pointing towards negative y-directions.  In all four models, the particle slips, 

thus the phase accumulates beyond one cycle.  The fourth model illustrates several 

bottlenecks since only a few slipping events occur over the times analyzed. Unlike the 

bottlenecks without the optical torque, the phase in between slipping events undergoes 

small amplitude, high frequency oscillations.  The particle appears to briefly fall into a 

semi-stable phase space loop, but φ continues to accumulate slowly (see Figure 5.30) 

until eventually the particle slips with respect to the magnetic field and the oscillations 

begin again on the next cycle.  A slight increase in the strength of the optical torque 

would probably be enough to enable the particle (at least in the third optical torque 

model) to follow the phase of the B-field, without slipping for many cycles.  The periods 

of motion where no slipping occurs, however, are still characterized as bottlenecks with 

small amplitude oscillations that may be gradually gaining phase until the next slipping 

event. 

5.5.4 Dependence on Optical Strength 

We’ve described the theoretical equations for three models of nonuniformly rotating 

magnetic particles influenced by a light beam which applies an additional optical torque. 

Our numerical analysis helped us illustrate the motion dynamics of each model for 

comparison.  We now address the connection between this theoretical treatment and 

experiment.  The 4 models are studied (1 without optical torque, 3 with), this time 

looking at the dependence of the average angular velocity τθ dd / of the magnetic 

moment vector m over numerous cycles as a function of both the normalized magnetic 

rotation rate ΩN and the ratio of optical torque strength to magnetic torque strength α. 

In all cases there was some early-time nonuniform transient behavior that depended 

on the initial phase conditions φ0 and θ0.  Since the average angular velocity was 

calculated by fitting θ vs. τ curves to a straight line and using the slope over a range of 
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Figure 5.30 (a) φ-Phase space for a nonuniformly rotating particle with fast magnetic rotation and medium 
optical torque.  2.1=ΩN , 3.0=α , 00 =φ  and 00 =θ .  (b) Zoom of low-magnitude angular phase 
velocities of (a). 

τ ~ 30× the time required for the transient behavior to decay, the initial behavior can be 

neglected (typically, the transient behavior occurs within τ = 3 while the linear fits were 

performed over τ = 0 → 100). 

Standard Nonuniform Oscillator 

We first consider the case of a standard nonuniform oscillator.  Since there is no optical 

torque, 0=α .  We use the following parameter ranges: 20 <Ω< N , 20 << α , 00=φ  

and 00=θ .  A 3D-surface plot is shown in Figure 5.31 where the surface height and color 

correspond to the average angular velocity τθ dd / .  The normalized magnetic rotation 

rate ΩN is along the x-axis while the relative optical torque strength α is along the y-axis.  

The surface is represented by a 100 × 100 matrix of τθ dd /  values.  Each value was 

calculated by using our 4th order Runge-Kutta algorithm to project the solution of the 1st 

order differential equation given in Eq. (5.15) from the initial conditions.  2000 points are 

used to calculate θ over the span of 1000 <<τ  ( 05.0=Δτ ).  Every 5th point is recorded 

and a line is fit to these recorded points.  The slope of this line gives us τθ dd / . 

As we expect, the surface is constant along the y-axis since no optical torque is 

present.  All solutions match the curve at 0=α , which agrees with the standard 

nonuniform oscillator plot solution given by Eq. (5.8).  The contour plot shown at 
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Figure 5.31 Average angular velocity surface for a standard nonuniform oscillator )0( =α . 

0=z also indicates the constant surface as a function of α.  For magnetic rotation 

rates less than unity, the average angular velocity matches the magnetic rotation rate. In 

such cases, the particle moment m is phase locked to the magnetic field vector B.  For 

larger magnetic rotation rates, the particle experiences slipping, thus the average angular 

rotation rate τθ dd / drops below that of the magnetic field vector. 

Optical Force Applied at Center of Anisotropic Particle  

For this model, the optical torque adds to the magnetic torque when the particle 

moment m points toward positive y-directions.  When the particle moment m points 

toward negative y-directions, the optical torque opposes the magnetic torque.  The surface 

plot for the average angular velocity is shown in Figure 5.32. 

We see that for 0=α , we get the same familiar curve.  If 1<ΩN , as α is increased, the 

average angular velocity seems to stay constant at the magnetic rotation rate.  The 

contour plot reveals, however, that further increase in α causes a dramatic drop in the 

average angular velocity down to near zero values.  The reason for this can easily be seen
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Figure 5.32 Average angular velocity surface for a nonuniform oscillator with optical force centered on an 
anisotropic particle. 

by plotting the polar trajectory of angle vs. dimensionless time at one of these points of 

near-zero angular velocity.  For the parameters 5.0=ΩN , 75.0=α , 00=φ , shown in 

Figure 5.33(a) we see that when the optical torque opposes the magnetic rotation, the 

torque is strong enough to induce slipping  The magnetic rotation is slow enough that 

moment m returns to about the same angle by the time the magnetic field vector returns 

to pass it again.  This causes the particle to oscillate back and forth, never completing a 

full rotation cycle.  As a result, the average angular velocity is zero. A similar result 

occurs when 1>ΩN .  In this case, the magnetic rotation is faster so the onset of slipping 

occurs sooner once the optical torque is in opposition.  The deviation from the z-axis is 

smaller so the optical torque that pushes the magnetic moment back is slightly weaker.  

As a result, the angular amplitude of oscillation is not as large.  The polar trajectory of 

this case is shown in Figure 5.33(b). 
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Figure 5.33 Polar trajectory of angle vs. dimensionless time for a nonuniform oscillator with optical force 
centered on an anisotropic particle.  For both graphs, 5.0=Ω N , 00 =φ  and 00 =θ . (a)  75.0=α   
(b) 5.1=α . 

These results give us some notion of experimental difficulties.  Practically speaking, 

if the particle moves directly into the laser focus such that both sides of the particle (or 

both particles of a dimer) are illuminated simultaneously, an increase in optical torque 

may not only prevent the particle from completing rotations, but also narrow the range of 

oscillations due to slipping as well as change the central angle.  Similar effects may also 

occur if the gradient of the optical beam tends to align the particle. 

Optical Force Applied Off-Center of Anisotropic Particle 

In this case the optical torque is zero when the phase φτπ −Ω− N2/  between the 

optical force vector and the particle moment vector is in the range 

πφτππ )1(2/ +<−Ω−< nn N where n is any odd number.  When n is even, the optical 

torque varies sinusoidally with the phase.  The average angular velocity surface plot is 

shown in Figure 5.34. 

For magnetic rotation rates lower than the critical frequency without optical torque, 

the particle can always match the external magnetic rotation rate.  For magnetic rotation 

rates higher than the critical frequency ( 1>ΩN ), an increase in the strength of the optical 

torque enables the particle to match a slightly higher maximum external magnetic 

rotation rate, thus shifting the actual “critical” threshold to slightly higher values. The  
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Figure 5.34 Average angular velocity surface for nonuniform oscillator with optical force applied off-
center of an anisotropic magnetic particle. 

new threshold can not be as high as the magnetic rotation rate because for half of the 

particle’s rotation cycle, the particle does not experience the optical torque. During these 

periods, the phase lag of m behind B can accumulate and slipping events may occur. 

The 1>ΩN  regime shows some other interesting features (see Figure 5.35 and Figure 

5.36).  We see a series of folds that appear once α gets as large as 0.5.  The folds grow as 

α is increased.  These folds appear to be real solutions, not artifacts of the programming 

code, since a decrease in the spacing between both individual NΩ values and/or α values, 

as well as a decrease in the step size τΔ , gave similar results.  We can view the folds by 

a series of vertical slices plotted on the same graph as shown in Figure 5.36 

First, there are a series of plateaus for 22.11 <Ω< N .  These plateaus indicate the 

extension of the critical frequency from the sub-unity normalized magnetic rotation rate 
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Figure 5.35 Average angular velocity surface for nonuniform oscillator with optical force applied off-
center of an anisotropic magnetic particle (Same as Figure 5.34 but from a different viewpoint). 

regime.  For 1>ΩN and weak optical torque strengths ( 2.0<α ), it appears the rotation 

rate increases almost linearly with α.  A number of intermediary plateaus also appear for 

slightly higher NΩ .  These correspond to the folds that appeared in the surface plot of 

Figure 5.35.  It’s not immediately clear what determines the length of these plateaus in α 

nor when to expect a plateau.  Physically, it seems related to the fact that the optical 

torque is modulated by a sine function.  Thus, no matter what the strength of the torque, it 

always approaches zero at two locations (for m having an angle 2/πθ = and 2/3πθ = ).  

If a bifurcation exists near one of these phase points, an increase in the optical torque 

strength won’t significantly change the dynamics since the optical torque at those phase 

points is still minimized. The lengths of the plateaus may not be easily predictable since 
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Figure 5.36 Vertical slices of the 3D surface plot of Figure 5.35. 

the time between slipping events can be greatly affected by the presence of saddle-node 

ghosts and bifurcations. 

Optical Force Applied Off-Center of a Symmetric Particle 

In the final model, the optical torque is applied to a symmetric particle.  The 

magnitude of the optical torque varies sinusoidally with the phase between the particle 

moment and the optical force vector.  The average angular velocity surface plot is shown 

in Figure 5.37. 

We see again the extension of the critical frequency well beyond that for the standard 

nonuniform oscillator.  This time, since the optical torque is present and in the same 

direction, it always adds to the magnetic torque.  At a specific NΩ , the maximum average 

rotation rate is always NΩ or less – the particle can never rotate faster than the magnetic 

field.  Even if the optical torque is strong enough to cause the particle moment m to 

surpass the B field vector, the particle must always wait for the B field to catch up at 

2/πθ = and 2/3πθ = . 

Plotting vertical slices on a separate graph (see Figure 5.38), we can again see an 

approximately linear increase in τθ dd /  for small α (0 – 0.2).  The rate of increase in  
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Figure 5.37 Average angular velocity surface for a nonuniform oscillator with optical force applied off-
center of a symmetric magnetic particle. 

τθ dd /  with α is greater than we saw for the previous model.  Comparing this rate 

to experimentally acquired results may help determine the means of rotation in optically 

manipulated magnetic rotating systems.  Again, we see folds in the surface at NΩ larger 

than the new critical threshold. 

5.6   Experimental Considerations 

Our numerical analysis showed that the normalized nonuniform rotation rate 

τθ dd /  can be approximated as linearly increasing with the ratio of the applied optical 

torque to the magnetic torque, α, at least for very small ratios (α < 0.2).  Let us define the 

slope of this linear trend as:
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Figure 5.38 Vertical slices of the 3D surface plot of Figure 5.37. 

 
)(

//
rF

dtddd
mS Δ

Δ
=

Δ
Δ

=
γθ

α
τθ

. (5.23)

Each of the four models described, (1) no optical torque, (2) opposing torques on each 

side, (3) torque on one side, (4) same-direction torques on both sides - gives a different 

slope mS.  To determine if the slopes provided by our simulations are experimentally 

feasible, we must relate the parameters to measurable quantities.  We can relate the 

optical torque strength to the applied laser power through [16, 20]: 

 
A
P

c
nrI

c
nrrF ext

m
ext

m σσ == (5.24)

where nm is the refractive index of the surrounding medium and I is the laser intensity at 

the sample plane equivalent to the power P per area A.  Because our hybrid particles 

consist of highly scattering and absorptive material, we’ve assumed the dissipative 

component of the radiation force, or scattering force, is responsible for the induced 

rotation.  This dissipative force depends on the extinction cross section of the sample, 

which can be estimated based on the relative size of the particle with respect to the laser 

wavelength.  Nanoparticles, for example, are expected to have much less absorption, thus 

the extinction is dominated by the scattering cross-section.  Rigorous Mie scattering 
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theory must be used to calculate the cross-sections for particles approximately the same 

size as the laser wavelength.  Much larger microspheres with full metal coatings could be 

treated in the geometrical optics regime using reflection and transmission coefficients.  

For hybrid particles consisting of both microscale dielectric spheres and nanoscale 

absorptive colloids, however, both absorption and scattering contribute and the best 

method of calculating the cross-section is unclear.  There are several methods for 

estimating these cross sections.  Svedberg and Käll [20] suggest that for large absorptive 

spherical particles, the extinction cross section can be approximated by a sum of 

absorption and scattering cross sections, defined as the following: 

 { }0Im ασ mabs k= , (5.25)

 2
0

4

6
α

π
σ m

sca
k

= . (5.26)

where α0 is the polarizability (not to be confused with our torque ratio α) and  

λπ /2 mm nk = is the wavenumber of the light in the surrounding medium [16, 20].  The 

polarizability may also need to be adjusted for large particles [20].  In the Rayleigh 

regime, it is typically given as: 

 )2/()1(4 223
0 +−= nnrπα  (5.27)

where n is the complex, wavelength-dependent, relative refractive index 

mediumsphere nnn /= .  For hybrid particles comprised of aluminum-half-coated polystyrene, 

the refractive index of the sphere is standard.  One might use an effective index of 

refraction that provides equivalent scattering properties.  Literature on the subject 

typically deals with heterogeneous particles with sizes approximately equal to the 

illumination wavelength and inclusions that are more absorptive than the outer material 

of the particle [168]. 

Let us consider the optical properties of three cases: 215 nm aluminum nanopowders 

embedded in Teflon (nteflon = 1.3, similar to nwater = 1.33) [169], bulk aluminum [170, 

171], and a material with a complex index of refraction equal to the average of that for 

bulk aluminum and 1 μm polystyrene microspheres [172].  The absorption cross section 

of 215 nm aluminum nanopowders with thin outer aluminum oxide layers embedded in 

Teflon [169] was about 0.02 μm2 at λ = 1.053 μm.  Since much of the extinction 
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 Optical Property 

Sample 

λ 

(nm) 
n2 

α0 

(×10-3μm3) 

αcorr 

(×10-3μm3) 

Force 

(pN) 

Torque 

(μm⋅ pN) 

Al [170] 775 -67.0+45.1i 0.858+0.0386i 
0.107+ 

0.0048i 
1.60 2.00 

Al [171] 800 -45.7+28.1i 0.111+0.00716i 
0.118+ 

0.0092i 
2.06 2.57 

Polystyrene [172

] 
775 2.49+0.00158i 

0.00556+ 

0.000022i 

0.00557+ 

0.000025i 
0.0058 0.0072 

Ave. Al [170] & 

PS [172] 
775 -14.1+18.1i 0.115+0.0273i 

0.122+ 

0.032i 
6.98 8.73 

 
Table 5.1 Optical properties of several hybrid particle constituents and the associated optical force and 
torque on a particle immersed in a 90% w/w glycerol-water mixture due to a 5 mW laser beam focused to a 
beamwaist of 0.5 μm.  The polarizability α0 is calculated for a 40 μm diameter colloidal sphere while the 
force and torque are calculated using the corrected polarizability α for a hexagonal close-packed layer of 
such colloids over the cross-sectional area of the beam.  The colloids were either bulk aluminum, 
polystyrene, or a material with a complex index of refraction equal to the average of bulk aluminum and 
polystyrene. 

dependence of these particles in the visible and near infrared is due to absorption [169], 

we can estimate the force applied to a layer of such particles in the beam focus using 

Eqs. (5.24) and (5.25) to get 12.1 pN.  The corresponding torque was calculated assuming 

that all of the force of the beam is applied at a distance half the radius from the center of 

the particle.  As a result, we get an expected torque range of up to 15 μm⋅pN. 

Other estimations of the force and torque can be carried out for particles with a non- 

negligible scattering cross section.  A table summarizing some of the optical properties 

and associated optical force and torque at near infrared wavelengths, which are typically 

used in optical tweezers) is shown in Table 5.1.  To perform the calculations for bulk 

aluminum, Eqs. (5.24) through (5.27) were used.  We modeled a hybrid particle or a 

partially coated microsphere as a 5.0 μm diameter polystyrene sphere coated by a shell of 

colloids of 40 nm diameter in a 90% w/w glycerol-water mixture.  The refractive index of 

this medium is taken as the weighted average of its constituents: 

33.11.047.19.01.09.0
2

⋅+⋅=+= OHglym nnn =1.46.  Eq. (5.27) is valid only when the skin 
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depth of the scattering material is much larger than the particle size [16].  Svedberg and 

Käll [20] suggest a correction introduced by Meier and Wokaun [173] given as: 

 

π
α

π
α

αα
4

21
4

3
3
2

0
001 kik a

corr −−
= . (5.28)

We assume the k in Eq. (5.28) is the same wavenumber in the medium km and a is the 

particle radius.  The second term of the denominator accounts for dipole damping by 

radiative losses in large particles resulting in a decreased magnitude in enhancement that 

can occur with smaller particles.  The third term comes from dynamic depolarization of 

the radiation across the finite particle surface which causes a red shift in the plasmon 

resonance for larger particles.  This correction is valid up to particles sizes in which 

quadrupole resonance effects become important. 

To estimate the force, we assumed a power of 5 mW at the sample plane focused to a 

beamwaist of 0.5 μm.  Since the beamwaist was smaller than the diameter of the 

polystyrene matrix, only colloids on the surface within the cross sectional area of the 

beam contributed.  We modeled the coating as a single hexagonal close-packed layer of 

colloids, thus about 90% of the surface area of the beam is occluded by a colloidal 

particle.  The approximate magnitudes of the calculated forces shown in Table 5.1 are 

reasonable.  They are about an order of magnitude smaller than our result for aluminum 

nanopowders, but still in the same ballpark. 

From preliminary experimental results, it is known that the rotation rate of a 5.0 μm 

diameter sphere in a 90% w/w glycerol-water mixture driven by an external magnet of 

~10 Oed at 1.57 rad/s is about 0.23 rad/s in the absence of an optical torque.  For 0=α , 

Eq. (5.7) can be rearranged to give: 

 )2( θθ && −Ω=ΩC . (5.29)

This gives a critical frequency of 0.82 rad/s thus, 28.0/ =τθ dd rad and 9.1=ΩN .  

From the graphs shown in Figure 5.39, this value of ΩN corresponds to a slope ms of 

about 0.35 and 0.75 for the third and fourth models of optical torque, respectively. 

The last piece of information needed is the rotational drag coefficient γrot.  For a 

90% w/w glycerol-water mixture at 20°C, the kinematic viscosity ν = 186 cS [174] and 

mixture density ρ = 1.24 gm/cm3.  For a sphere, the well-known Stokes drag, 
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Figure 5.39 Vertical slices of the 3D surface plot for (a) model 3 and (b) model 4 for optical torque at 
values of ΩN ranging from ~1.5 – 2.5. 

 νρπγ 38 arot = , (5.30)

gives 90.3 μm⋅pN⋅s.  Returning to Eq. (5.23) with our typical experimental values, we can 

expect application of the optical torque to result in a faster rotation rate of 0.29 rad/s and 

0.36 rad/s for model 3 and model 4, respectively.  These are increases of 26% and 57% 

over our original rotation rate of 0.23 rad/s, a feasible experimental measurement. 

Numerous uncertainties could arise in estimating experimental parameters such as the 

true index of refraction of the particle, the actual relationship of scattering force to the 

extinction cross section, and the approximate viscosity of the glycerol mixture.  All of 

these factors may contribute to error between our simulated results and actual 

experimental measurements. 

Approximated Effect of Translational Drag and Rotational Drag 

We estimate the effect of the force on our particle in inducing both translational and 

rotational motion in the absence of the magnetic torque.  Since the beamwaist is smaller 

than a single particle diameter, we consider the force and torque on a single sphere.  

Calculations will provide a maximum estimate.  For a sphere of radius r = 2.5 μm 

immersed in a 90% w/w glycerol-water mixture at 20°C with kinematic viscosity 

ν = 186 cS and mixture density ρ = 1.24 gm/cm3, the translational and rotational drag 

coefficients are given by the following: 

 νρπγ atrans 6= , (5.31)
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 νρπγ 38 arot = . (5.32)

Neglecting inertia and in the absence of magnetic torque, the optical force and torque are 

in equilibrium with drag and we get: 

 

trans

Fx
γ

=&  (5.33)

and  
 

rot

rF
γ

θ =& , (5.34)

where x& and θ&  are the translational velocity and angular velocity, respectively.  The force 

F previously calculated was up to 12.1 pN (for aluminum nanopowders).  For such a 

force, the translational and angular velocity of a sphere can be calculated as 

x& = 1.12 μm/s and θ&  = 0.168 rad/s.  For 9.1=ΩN , the average time for one full rotation 

due to magnetic torque is 27 s.  During this amount of time, in the absence of the 

magnetic torque, we would expect the particle to translate up to 30 μm and/or rotate up to 

0.72 rotations.  This translation and rotation are relatively large, suggesting the optical 

force, even at a magnitude ratio of 2.0=α , can provide a noticeable perturbation.  Such 

a large translation, however, sets a practical limit to the force we can apply while 

maintaining the particle close to the laser focus. 

Approximated Effect of Translational and Rotational Brownian Motion 

Again, we use the time for one full rotation ( θπ &/2=t ) to measure the effect of 

Brownian motion on the rotational and translational motion of our particles.  Utilizing 

Einstein’s diffusion, we estimate the root-mean-square displacement xrms and angular 

displacement θrms by the following: 

 

θνρπθγ && a
TkTktDx B

trans

B
transrms 3

22 ===  (5.35)

 

θνρπθγ
θ && 34

22
a

TkTktD B

rot

B
rotrms === . (5.36)

Using the same parameters as given previously, we get 057.0=rmsx  μm and 

20.0=rmsθ  rad (3.1 × 10-3 rotations) in the time for one full rotation (27.0 s).  Thus, the 
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expected diffusion in position and orientation if no external optical or magnetic fields 

were present are much smaller than the effect due to the optical force/torque alone, as 

well as the combined optical and magnetic forces and torques. 

5.7   Conclusions 

The effect of simultaneous optical and magnetic manipulation of a rotating magnetic 

particle has been investigated for the case of a microsphere system larger in diameter than 

the laser focus.  The optical torque provides a perturbation to the standard nonuniform 

oscillator that acts to introduce a time-dependent amplitude and phase into the phase 

space trajectory of the induced lag.  Other effects include potential control of the 

frequency of slipping events in the nonlinear regime as well as the possibility of laser-

induced “phase-following.” 

The combined manipulation scheme allows for the study of frictional properties 

inherent in the system.  For example, the presence of a significant fluid viscosity enables 

observation of the transition from the linear regime to the nonlinear regime at easily 

manageable frequencies in practice.  Systems in which the surrounding fluid is air do not 

show these transitions [175].  In addition, optical torques that oppose the applied 

magnetic torque may model systems with frictional components that vary in time, for 

example, the rotation of anisotropic microparticles near frictional surfaces.  Even at 

optical torques near 20% the strength of magnetic torques, differences in the dynamic 

motion due to the combined manipulation scheme are expected to be measurable and 

distinguishable from effects due to Brownian motion or purely optical or purely magnetic 

torques alone. 
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CHAPTER 6 

EXPERIMENTAL OBSERVATION OF OPTICALLY AND 
MAGNETICALLY MANIPULATED HYBRID 

MICROSPHERES 

Simulations of the motion of nonuniform oscillators manipulated by optical and 

magnetic fields offer rich dynamics and valuable insight into the interplay between two 

distinctly different types of torques.  In practice, however, such ideal systems rarely exist 

and there are often many aspects that can complicate observation of the desired effect.  

For example, the magnetic particles were modeled as perfect spheres; however, our 

hybrid particle systems typically have an outer shell of magnetic material that can alter 

the rotational drag by reducing sphericity as well as providing increased roughness.  The 

particles were also modeled as perfectly absorbing cross-sectional areas that experience 

an optical torque that is sinusoidally dependent on the rotation angle.  Actual particles 

tend to absorb and scatter at all angles and are likely subject to a more complex torque-

angle dependence.  Somewhat less crucial is the particle to particle uniformity.  Even 

batches of commercially-made magnetic microspheres can have large variations in their 

magnetophoretic mobility [176].  These variations require the use of ensemble averaging 

to determine properties representative of the particle distribution.  Otherwise, 

experiments performed on individual microspheres must involve adequate calibration 

methods to enable comparison of results from experiment to experiment. 

More complications can arise from the finite size of the sample solution.  Inter-

particle interactions, even at far distances, can drastically affect the motional behavior of 

magnetic microspheres, thus requiring the use of very dilute concentrations to prevent 

particles from aggregating.  This procedure can reduce the availability of samples that 

have an inherently low yield in the fabrication process or require two separate particles to 
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be bound together, such as experiments on dimers or trimers of microspheres [177] or 

measurements involving particle binding [54, 66].  The use of high numerical aperture 

objectives with very short working distances can restrict the observation of samples to be 

in close proximity to the bottom glass interface where the viscosity (Eq. 4.3) and 

frictional or adhesive interactions may be increased.  Although exchanging the 

surrounding media with more viscous fluids can slow down potentially detrimental 

effects like sedimentation, flotation or translation due to magnetic gradients, such 

measures also reduce the time scale of the motional dynamics of interest.  Motional drift 

due to Brownian diffusion, although not crucial over relatively short time scales, can 

limit the maximum duration of an experiment and render instrumentation automation 

unfeasible, especially if the particle diffuses out of the field of view before adequate data 

has been recorded. 

Even if one can establish adequate experimental conditions using only magnetic 

manipulation, the introduction of laser illumination hosts its own difficulties.  The laser 

beam intensity does not typically have a uniform cross-section, as modeled in our 

simulations, but, rather, a Gaussian or similar profile.  Other forms of optical torque such 

as that due to gradient force alignment may be present in non-negligible amounts.  

Furthermore, optical absorption of magnetic particles can reduce the magnetization of 

materials with low Curie temperatures or change the fluid viscosity if significant heating 

occurs. 

In the previous chapter, numerical simulations suggested a linear increase in the 

average asynchronous rotation rate with low applied laser power due to an increase in the 

scattering force.  Experimentally, a linear increase was also observed with laser power, 

but further studies revealed that the scattering force was not primarily responsible for the 

the observation.  Heating of the solution to induce changes in the fluid viscosity and 

magnetic moments was another possible contribution.  In this chapter, I describe my 

experimental methods to observe these effects of optical manipulation of magnetically 

rotated microsphere dimers.  I address many of the issues mentioned above, paying 

particular attention to the consequences arising from the absorptive nature of our hybrid 

microsphere systems. 
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6.1   Experimental Procedures 

The experimental procedures used here for combined optical and magnetic 

manipulation of hybrid microparticles were very similar to those already described in 

great detail in Chapter 4.  Only key differences are explained here. 

In this study, only nominally 4.8 and 9 μm diameter carboxylated magnetic 

polystyrene microspheres were used.  The random distribution of magnetic colloids on 

the spherical surface often caused unpredictable intensity fluctuations, often at 

unexpected rotation frequencies different from both the external magnetic field rotation 

and the low frequency nonuniform oscillation.  For this reason and to establish more 

material anisotropy, some batches of single particles were half-coated with aluminum, 

and only dimers of microspheres, half-coated (HC) or uncoated (UC), or single HC-

microspheres with significant protrusions were analyzed.  A similar half-coating 

procedure as described in Chapter 3 was performed using a custom-built vacuum 

deposition system.  Approximately 50 nm coatings were applied These HC-microspheres 

were then magnetized in a 1.4 kG field. 

1:100 aqueous dilutions of stock solutions or similar concentrations of HC-

microspheres were further diluted in 1:10 aqueous sodium dodecyl sulfate (SDS) and 

glycerol.  The final concentration of SDS was less than 1% of the total volume of the 

solution including the glycerol, thus its density was approximated to be the same as water 

in later calculations.  The final concentration of glycerol was chosen so that the 

microspheres would be close to neutrally buoyant to minimize sedimentation or flotation.  

The solution must also be viscous enough that the critical frequency could be observed 

with the magnetic field strengths available.  In addition, the glycerol provided a closer 

match to the index of refraction of polystyrene, thus reducing the gradient force and 

preventing optical tweezing effects. 

To determine the glycerol/water mixture that would approximately match the density 

of our microspheres, we neglected the magnetic material, assuming its total volume is 

much smaller than that of the polystyrene.  A simple approximation assuming no 

interaction between solvent molecules is to use the nominal density values of glycerol 

(ρG) and water (ρW) weighted by their percentage: 
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 WGPS xx ρρρ )1( −+=  (6.1)

where x is the volume fraction of glycerol/solution and ρPS is the density of the 

polystyrene.  For ρPS = 1.05 g/cm3, ρG = 1.263 g/cm3, ρW = 0.9982 g/cm3 all at 20°C, we get 

x = 19.6% glycerol/solution v/v.  Estimating the particle and SDS solutions to have the 

same density as water, this is equivalent to 23.2% mass fraction glycerol/solution.  This 

percentage only provided an estimate of the best solution concentration since the 

presence of a magnetic gradient introduced an additional force.  Furthermore, the 

distribution of colloidal loading per microsphere was wide enough that many 

microspheres would sink, others would float, while others remained near the center of the 

sample chamber, all in the same glycerol solution.  For our system, we found that a 76% 

mass fraction glycerol/solution was adequate for the 4.8 μm microspheres and between 

40-50% mass fraction glycerol/solution for the 9 μm microspheres.  Only microspheres 

that did not stick to the glass surface or translate significantly due to rolling along the 

glass interface without laser illumination were measured. 

To form dimers, both UC- and HC- microsphere glycerol solutions were placed in a 

magnetic separator for about 15 minutes to allow the microspheres to coalesce in a weak 

magnetic field.  The solutions were then vortexed at 2000 rpm for 15 sec.  As for our 

rolling microsphere samples, the solution was then inserted into a sample chamber 

consisted of two blank, untreated, cover slips.  About 15%-25% of the particles observed 

under the microscope were initially dimers, the remaining majority were single 

microspheres and occasional aggregates of 3 or more. 

Laser powers in the range of 0-15 mW were coupled to our 100X oil immersion 

objective, however, measurements using more than 5 mW typically resulted in significant 

translation of the microsphere, mostly upwards in the z-direction along the beam axis.  In 

such cases, the microspheres were allowed to sediment to the original height above the 

bottom glass interface before the next measurement was performed.  Magnetic field 

strengths at the sample plane ranged from 5-10 Oe. 

Similar image analysis techniques were used as for our rolling experiments (Chapter 

4).  Instead of tracking the position of our microspheres, we used the Metamorph imaging 

software package to record intensity fluctuations as a function of time.  Acquired movie 

files were intensity thresholded such that only reflection signals coming from the 
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microspheres were used to calculate the average intensity of each frame, thus minimizing 

errors due to background signals.  On some occasions, when the overall intensity changed 

significantly due to translation in the z-direction, the %-area of the thresholded region 

compared to the full frame area was used to represent the oscillating signal. 

6.2   Data Analysis 

For each magnetic particle explored, a series of intensity fluctuation or %-threshold 

time-traces were acquired.  Examples of such raw data are shown in Figure 6.1.  Curves 

(a), (c), (e), (g), and (i) were acquired with no laser illumination present.  Curves (b), (d), 

(f), (h), and (j) were acquired with laser illumination present in with powers of 4.38 mW, 

45.8 mW, 8.05 mW, 10.0 mW, and 12.0 mW, respectively.  Upon first glance, the data  

 
Figure 6.1 Examples of intensity fluctuation time-traces for a rotating magnetic microsphere.  Curves (a), 
(c), (e), (g), and (i) were acquired with no laser illumination present.  Curves (b), (d), (f), (h), and (j) were 
acquired with laser illumination present with powers of 4.38 mW, 5.8 mW, 8.05 mW, 10.0 mW, and 
12.0 mW, respectively.
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don’t seem to be significantly different curve to curve.  But closer inspection reveals 

several key differences: 

When no laser is applied, the curve tends to show a low frequency oscillation 

(~30 sec period) superimposed on a high frequency oscillation (~4 sec), e.g. see (a) and 

(g).  These are the particle rotation period and external magnetic rotation period, 

respectively. Curves like (c), (e), and (i) show similar characteristics but are less 

recognizable. 

When the laser is applied, the data curves typically show an initial gradual sloping 

mean, indicating the particle is drifting away from the imaging plane and moving out of 

focus., e.g. see (b), (d), (h).  Because the particle center is not fixed, the laser beam also 

imparts a translational force causing the particle to gradually move away from the trap 

center. 

Evidence indicating that the particle  rotation is affected by the beam is shown by the 

fact that many of the data curves with the laser on show high frequency oscillations in 

phase with the external rotation rate for about the first 40 sec, after which the particle 

experiences slipping, e.g. (d) and (f). 

Curves (a) and (g) are very similar despite (g) occurring after several applied laser 

treatments. This suggests that the laser powers used in this experiment did not alter the 

particles significantly.  Data curves representing no laser illumination that are 

qualitatively different suggest that the intensity-time series crucially depends on 

reproducibility of the starting position of the dimer in the laser focus as well as similarity 

of the translational trajectory. 

Each recorded intensity time trace was analyzed using Fourier transform filtration 

techniques implemented in MATLAB to obtain the average rotation rate.  The raw data 

was first re-interpolated so that data points were evenly spaced in time.  After this, a 

series of procedures are conducted on the dataset either in the time domain or the 

frequency domain.  An example of time domain data for an asynchronously rotating 

particle and the corresponding frequency domain transform are shown for each step in 

Figure 6.2 and Figure 6.3, respectively.  The data represents a particle rotated at an 

external frequency of 0.25 Hz.  The interpolated data was then cropped to remove 

unnecessary signals.  If a dataset contained gradual sloping overall intensity values due to
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Figure 6.2 Example of original time-domain data and smoothed version. 

 
Figure 6.3 PSD’s corresponding to data in Figure 6.2.
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translation in the z-direction during the time of acquisition, the data was fit to a 

polynomial of up to 2nd order.  The polynomial was then subtracted from the data to 

flatten it and shifted by the average intensity so that it hovered around y = 0.  This 

minimized the DC value in the Fourier transform.  A window function is then applied to 

the ends of the data to prevent aliasing that can occur due to Fourier transforming sharp 

edges.  A 4-term Blackman-Harris window was used for most of the data in this work; 

however, many other standard windowing functions were adequate. 

Each discrete time series was Fourier transformed and the one-sided power spectral 

density (PSD) calculated [92].  The corresponding PSDs are shown in Figure 6.3.  The 

PSD was normalized using Parseval’s Theorem [92] such that integration over all 

frequencies (0 and positive) of the PSD was equal to the mean square amplitude of the 

time series integrated over the entire measurement time for one dataset. Thus, the PSD at 

frequency f was an estimate of the probability that the original time series contained 

frequency components between f and f + Δf.  Peaks at the average rotation rate of the 

particle, as well as one at the rotation rate of the external magnetic field, were expected.  

The PSD clearly reveals a peak at 0.25 Hz, indicating the external magnetic rotation rate.  

The large peak at 0.035 Hz indicates the average rotation rate, a frequency which 

corresponds to the time between the longer repetitive features in Figure 6.2.  Smaller 

peaks also appear which can be attributed to mixing between the average rotation rate and 

the external rotation frequency.  This external magnetic rotation rate was filtered by 

applying a modified rectangular function with Gaussian edges in the frequency domain, 

again to prevent aliasing.  This essentially multiplied any frequency component occurring 

within the filter band by zero.  The new filtered PSD is shown in the bottom graph of 

Figure 6.3.  Dimers of microspheres were expected to have signals at the second 

harmonic of the external rotation rate, thus the PSD in which the second harmonic of the 

external rotation rate was also filtered is also plotted.  This particular sample was a single 

microsphere with an aluminum coating, thus a second harmonic signal, if any, is very 

weak and the PSDs almost overlap exactly.  Finally, a smoothed version of the original 

time series can be generated by inverse-transforming our filtered data back to the time 

domain.  From this smoothed data, the average rotation frequency can be calculated 
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consistently for each measurement.  The corresponding smoothed time series are shown 

at the bottom of Figure 6.2 

The filtered PSD can also be inverse transformed to calculate the autocorrelation of 

the smoothed data, as stated by the Wiener-Khinchin theorem [92].  The autocorrelation 

of each of the three time domain curves at the bottom of Figure 6.2 is shown in Figure 

6.4.  All three give a peak at ~27.5 sec, which corresponds to the average rotation rate of 

the particle.  When this analysis procedure is conducted on a data for a particle that is 

synchronously rotating with the magnetic field, no secondary peaks occur in the 

smoothed autocorrelation since the fast magnetic rotation frequencies are filtered.  

Examples of such autocorrelations are shown in Figure 6.5. 

The laser powers applied to the particle represented in Figure 6.1 appeared to be high 

enough to induce only synchronous rotation.  Lower laser power can maintain the particle 

rotation in the nonlinear regime, but at a faster average rotation rate.  Figure 6.6  shows 

the intensity fluctuation time traces at lower powers.  The data were acquired after 

waiting approximately 1 second after shuttering the laser on to remove any initial slope 

due to translation that might have occurred.  The filtered versions of the data are also 

shown in Figure 6.7.  The first four curves (a-d) reveal the slower nonlinear rotation time 

of the particle gradually decreasing.  The effect of the laser was to aid the particle in 

overcoming the drag that would normally cause it to slip in the absence of the laser beam.  

We can verify this with the filtered autocorrelation curves shown in Figure 6.8.  The peak 

at the shortest delay time seems to decrease with increasing laser power.  At higher 

powers (e-g) the particle translates away from the focus faster than enough particle 

rotation oscillations can be recorded. 

It should be noted that with true experimental data, neither the time domain signals nor 

the frequency domain power spectra alone are sufficient to adequately determine the 

correct average rotation rate of the particle.  Although these analysis procedures provide a 

means of consistently measuring rotation frequencies with few opportunities open to 

human bias, information from both domains should be compared with recorded image 

movies when possible.  This ensures the measurements acquired agree with what is 

observed under the microscope.  This method of analysis of nonuniformly rotating  
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Figure 6.4 Autocorrelation of the unfiltered and filtered time-domain data appearing in Figure 6.2.  The 
curves represent typical autocorrelations for an asynchronously rotating particle. 

 
Figure 6.5 Autocorrelation of the unfiltered and filtered data for a synchronously rotating particle.
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Figure 6.6 Intensity fluctuation time-traces for a rotating magnetic microsphere.  Curves (a) – (h) were 
acquired with laser illumination with powers of 0 mW, 0.715 mW, 1.43 mW, 4.36 mW, 5.97 mW, 8.02 mW, 
10.0 mW, and 12.0 mW,respectively. 

 
Figure 6.7 Smoothed versions of the data curves in Figure 6.6.  Raw data was filtered to reduce 
frequency components at the external magnetic rotation rate and its second harmonic.
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Figure 6.8 Autocorrelations of filtered data shown in Figure 6.7. 

magnetic microspheres has already been applied to several applications including particle 

detection, bacteria detection and bacterial growth [54, 66]. 

6.3   Results 

6.3.1 Magnetic Rotation 

Before applying optical illumination to our particles, samples were first manipulated 

using only magnetic rotation.  This enabled calculation of the critical frequency and 

allowed observation of sedimentation or flotation behavior.  Slight deviations in the 

average rotation rate for a standard nonuniform oscillator described by (Eq. 5.8) were 

observed for microsphere dimers that were in close proximity to a glass interface.  

Analysis of these results is provided here.  In addition, many dimers appeared to rotate 

with some precession at asynchronous rotation rates.  This behavior is suggestive of 3-D 

rotational motion which is covered in more detail in Chapter 7. 

Figure 6.9 and Figure 6.10 show the average rotation rate vs. external magnetic rotation 

rate for two different but nominally equivalent uncoated dimers, both in a 50% mass 

fraction glycerol/water solution with a magnetic field strength of 5 Oe.  The data are 
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Figure 6.9 Average rotation rate for a 9 μm diameter microspheres nonuniformly rotating about 17 μm 
from a glass interface. 

 
Figure 6.10 Average rotation rate for a 9 μm diameter microspheres nonuniformly rotating about 25 μm 
from a glass interface.
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linear least-squares fit to our standard one-parameter nonuniform oscillator solution.  In 

both cases, it appears this standard single-parameter (ΩC) equation does not adequately 

describe our experimental results.  In both cases, the presence of the glass interface 

increased the local viscosity of the fluid.  This was verified by observing the height of the 

microsphere above the glass surface.  By focusing on the dimer equator when the 

microsphere was oriented such that the dimer axis was parallel to the sample plane, a 

consistent measuring geometry was established.  The equator of the dimer in Figure 6.9 

was about 17 μm from the surface while the dimer in Figure 6.10 was about 25 μm from 

the surface.  In the first case, when the dimer was vertically oriented, the smallest sphere-

center-to-plane distance was 13.5 μm while the largest was 21.5 μm.  Assuming the 

motion for a single microsphere was translational, based on Eq 4.3), the correction factors 

to the translational drag coeffiecient range from 1.1 – 1.2.  The corrections are even 

smaller for the second case.  Nevertheless, the data indicate there was some effect on the 

drag coefficient that slightly changes the motional behavior for asynchronous rotation. 

For simplicity, we assume that this effect on drag increases linearly with rotation rate.  

We can define a frequency-dependent adjustment to the rotational friction coefficient γrot: 

 rotadj ba γγ ][)( +Ω=Ω . (6.2)

Such a correction accounts for additional frequency-dependent drag due to the 

presence of the surface.  If we further assume the correction is necessary only when the 

dimer is rotating asynchronously, we can find a relationship between the two parameters 

a and b since, at the critical rotation rate, the friction coefficient is the same: 

 

rotC
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The quantity in brackets must equal unity, thus we reduce the number of unknown 

parameters to get, 

 [ ] rotCadj a γγ )(1)( Ω−Ω+=Ω , (6.4)

and the solution to our nonuniform equation for asynchronous rotation including a 

frequency dependent viscosity will look as follows: 
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where adjC ,Ω  now represents the adjusted critical frequency.  If we experimentally 

measure a specific nonuniform average rotation rate θ& , Eq. (6.5) can be rearranged to 

solve for the adjusted critical frequency adjC ,Ω  in terms of the unadjusted frequency 

)2( θθ && −Ω=ΩC : 

 
1

1
, ±Ω

+Ω
Ω=Ω

C
CadjC a

a . (6.6)

The critical frequency must be positive, thus only the solution with the plus sign in 

Eq. (6.6) is physically valid.  Using Eq. (6.5), we acquire a better fit to our data (see 

Figure 6.9 and Figure 6.10), but with an extra parameter.  Using the frequency-dependent 

drag coefficient model, the fit parameters a (Figure 6.9: 0.033 s, Figure 6.10: 0.071 s) and 

adjC ,Ω  (Figure 6.9: 8.20 rad/s, Figure 6.10: 6.95 rad/s) were acquired.  We can attribute 

the uncertainty in the adjusted frequency to the difference in drag coefficients between 

the top sphere and bottom sphere of a vertically-oriented dimer due to the slight height 

difference.  The drag correction factors calculated from Eq. (6.3) translate to errors in the 

adjusted critical frequency to give values of 8.20 ± 0.66 rad/s and 6.95 ± 0.20  rad/s for 

each dimer, respectively.  This error is larger than the width of the appropriate peak in the 

frequency power spectrum.  Thus, the difference in adjusted critical frequency between 

the two dimers is attributed to differences in magnetic moment since the microspheres 

were approximately the same size. 

Dimers of HC-9 μm diameter magnetic microspheres gave similar results to the UC-

microspheres.  A lower glycerol/water mixture (40% mass fraction) and higher magnetic 

field strength (8 Oe) were needed to achieve similar critical frequencies, suggesting that 

these microspheres had lower initial magnetic moments.  Parameters for the fit of a 

typical HC-dimer using the frequency dependent drag model were ΩC = 7.95 rad/s and 

a = 0.032 s.  The equator of the particle appeared to be in focus at about 7-8 μm above 

the glass surface when the dimer axis was oriented horizontal to the sample plane.  This 

distance is smaller than the diameter of a single microsphere which suggests the dimer 

rotation was not purely end over end, but rather consisted of some precession.  This 3-

dimensional rotation is covered in more detail in Chapter 7. 
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The smaller 4.8 μm microspheres remained in the bulk of the fluid, even during 

measurements with optical illumination.  Standard two-regime nonuniform oscillator 

behavior was observed for these smaller microspheres. 

6.3.2 Magnetic Rotation and Laser Illumination 

Frequency-Dependent Drag 

To investigate the effect of laser illumination on nonuniformly rotating dimers of 

magnetic microspheres, the average rotation rate was measured twice at numerous 

incrementing external rotation rates - once with no laser present and the second time with 

1.3 mW entering the microscope objective.  The experiment was conducted on both UC-

dimers and HC-dimers.  Typical results are shown in Figure 6.11 and Figure 6.12. 

For the UC-dimer experiment, the fit parameters were as follows: Laser off: a = 0.093 s, 

adjC ,Ω = 6.28; Laser on: a = 0.077 s, adjC ,Ω = 6.47.  In this experiment, the dimer was 

always at least about 20 μm from the glass surface.  Nevertheless, the frequency-

dependent drag assumption fits the data well.  As shown in Figure 6.11 and consistently 

in other samples, the presence of the laser tended to increase adjC ,Ω a small but significant 

amount.  The parameter a tends to decrease with increasing laser power, typically on the 

order of 0.1 s or less.  It should be noted that for a given external rotation rate, the ratio of 

adjusted critical frequencies for two different laser powers will be: 

 
1
1

22

11

1

2

,1

,2

+Ω
+Ω

⋅
Ω
Ω

=
Ω
Ω

C

C

C

C

adjC

adjC

a
a . (6.7)

The multiplication factor containing the a parameters tends to be largest for external 

rotation rates close to the critical frequency.  Using Eq. (6.7), the ratio of adjusted critical 

frequencies was off of the ratio of unadjusted frequencies by a factor of less than 7% for 

all of our data.  For this reason, when comparing critical frequencies for different laser 

powers, we utilize the ratio of unadjusted critical frequency rates and expect this error of 

7% or less. 

For the HC-dimers, an increase in the critical frequency is again seen, as shown in 

 Figure 6.12.  Fit parameters were as follows: Laser off: a = 0.028 s, ΩC = 7.81; Laser on: 
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Figure 6.11 Average rotation rate for a dimer of uncoated 9 μm diameter microspheres nonuniformly 
rotating with and without laser illumination.  The surrounding medium was 50% mass fraction 
glycerol/water and the laser power incident on the microscope objective was 1.3 mW.  The dimer was 
always at least about 20 μm from the glass surface. 

 
Figure 6.12 Average rotation rate for a dimer of aluminum half-coated 9 μm diameter microspheres 
nonuniformly rotating with and without laser illumination.  The surrounding medium was 40% mass 
fraction glycerol/water and the laser power incident on the microscope objective was 1.3 mW.  The dimer 
equator, defined in the text, was measured to be 7 μm from the glass surface.
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a = 0.018 s, ΩC = 8.59).  The anomalous data point near 16 rad/s indicate measurements 

in which the dimer briefly bound to the glass surface.  The measured average rotation rate 

at this point is equal to the external rotation rate indicating that intensity fluctuations were 

due to oscillations of the dimer tethered to the surface.  These points were not included in 

calculating the fit parameters. 

The presence of the laser beam increased the average rotation rate θ&  for all external 

rotation rates beyond the critical frequency, both for UC-dimers and HC-dimers.  The 

maximum achievable rate without slipping adjC ,Ω  was also slightly increased by the 

presence of the laser in both cases.  It was shown in Chapter 5 that such an effect can 

occur due to an increase in the optically-induced scattering force.  Another possible cause 

for the increased average rotation rates is a decrease in viscosity resulting from increased 

temperatures due to absorption of light. 

Increase in Average Rotation Rate With Laser Power 

The first four curves of Figure 6.8 show that the average rotation rate of the 4.8 μm 

HC-particle represented in Figure 6.6 increases with increasing applied laser power.  We 

repeated this experiment and averaged the results to obtain the graph shown in Figure 

6.13.  The results reveal a linear dependence of the average rotation rate on laser power.  

Our simulations in Chapter 5 suggested that such an increase could be the result of an 

increased scattering force pushing on one side of the rotator to help it overcome drag, and 

thus slip less often.  To test this, similar experiments were conducted on dimers of larger 

9 μm magnetic microspheres.  Using the reflection from a cover slip, the 1/e2 diameter of 

the beam at focus was measured to be about 1.2 μm., thus we expect that it was possible 

to illuminate only one microsphere at a time at its center.  If the microspheres of the 

dimer were half-coated with a thick enough aluminum film, we expected that particle to 

reflect more than an uncoated particle.  Thus, slightly increased rotation rates were 

expected due to the addition of the optical force compared to that for a dimer of uncoated 

spheres.  In addition, if we change the rotation direction of the dimers while maintaining 

the location of application of the laser focus, we expected the average rotation rate to 

slow down since the optical torque associated with the scattering force would be
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Figure 6.13 Average rotation rate vs. laser power for a magnetic 4.8 μm HC-particle rotated by a driving 
frequency of 0.25 Hz in a 76% mass fraction glycerol/water mixture. 

opposing the magnetic torque.  Results of these experiments are shown for UC-dimers in 

Figure 6.14 and for HC-dimers in Figure 6.15. 

The results for larger dimers also suggest a general increasing trend, but the linear fit 

is not as good as in previous experiments with smaller particles.  Numerous factors could 

cause the increased rotation rate with applied laser power.  The optical scattering force 

provides a torque on the dimer, but the dependence is not linear.  This was suggested by 

certain models in our simulations in Chapter 5 for larger laser powers such that the 

optical torque magnitude approached the magnetic torque magnitude.  The increase in 

rotation rate could be due to a decrease in viscosity of the surrounding fluid caused by a 

temperature rise either from light absorption of the fluid itself or light absorption of the 

magnetic colloids which then transfer heat to the fluid.  An increase in magnetic moment 

of the dimer would cause an increase in average rotation rate.  This, however, is unlikely 

since the magnetic material is typically saturated and will only decrease with time or if 

perturbed.  It is also possible that several of these effects were occurring simultaneously.  

We will look at each possibility and address the arguments for and against each one. 
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Figure 6.14 Average rotation rate vs. laser power for a dimer of 9 μm UC-magnetic microspheres rotated 
by a driving frequency of 1.25 Hz in a 50% mass fraction glycerol/water mixture. 

 
Figure 6.15 Average rotation rate vs. laser power for a dimer of 9 μm HC-magnetic microspheres rotated 
by a driving frequency of 2.75 Hz in a 40% mass fraction glycerol/water mixture.
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Scattering Force 

Without the presence of the external magnet, we observed that dimers of magnetic 

microspheres in solution could be rotated by the scattering force of the incident laser 

illumination.  This rotation was slow and accompanied by significant translation.  To 

determine the effectiveness of the scattering force in generating an optical torque on a 

rotating dimer of magnetic microspheres, we first considered the effect of the scattering 

force on translation of the rotating dimer in the z-direction.  With the laser shuttered off, 

the external magnet was distanced enough that the rotating dimer tended to sediment very 

gradually at several microns per minute.  When laser illumination was applied, the 

rotating dimer floated, indicating that a scattering force was present.  We can neglect the 

possibility of a gradient force since it would maintain the dimer at a certain height rather 

than enable floatation.  Such a force could induce orientational alignment of the optical 

polarization of the dimer and potentially impede its rotation if present; however, a 

reduction in rotation rate was rarely observed. 

To quantify the flotation and relate the motion to optical parameters, we investigated 

the interaction between the particle and the laser focus in slightly more detail.  The 

approximate distance of the dimer from the glass surface was measured as a function of 

the energy supplied to the particle.  The energy supplied was calculated by multiplying 

the laser power applied by the total time the dimer spent in the beam.  This total time was 

measured using image analysis techniques (see Figure 6.16) by integrating the percentage 

of overlap between the thresholded dimer image and a circular region representing the 

laser trap over the entire acquisition.  The trap region was set to approximately twice the 

diameter of the measured laser focus to include proximity effects of the trap.  For 

example, the image on the left of Figure 6.16 is 100% filled while on the right, about 

30% filled. 

Performing the integration of this percentage threshold for each measurement, we can 

calculate the approximate time the particle directly interacts with the beam, and thus the 

energy imparted to the dimer over the course of one measurement.  Figure 6.17 indicates 

the integrated intensity and %-threshold versus time for one such measurement.  We can 

see that while the dimer was in the beam the %-threshold was 100%.  The integrated 

intensity appeared to decay as the dimer translated upwards in the z-direction.  Once the
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Figure 6.16 Snapshots from Metamorph Imaging Software of a dimer of magnetic microspheres rotated 
by a magnetic field.  By integrating the percentage of overlap between the thresholded dimer image 
(orange) and a circular region (green) representing the laser focus over the entire acquisition, the interaction 
between laser and dimer can be tracked.  The focus region was set to approximately twice the diameter of 
the actual measured laser focus to include proximity effects of the trap.  The image on the left is 100% 
filled while on the right about 30% filled. 

 
Figure 6.17 Integrated intensity and %-threshold vs. time for an UC-dimer of magnetic microspheres 
analyzed in Figure 6.16.  The integrated intensity was the intensity of the dimer image summed over the 
entire frame.  The %-threshold was the percentage of overlap between the thresholded dimer image and a 
circular region representing the location of the laser focus.  While the particle was in the focus (100%-
threshold) the intensity was dropping due to translation in the z-direction and the rotation rate was 
1.75 rad/s.  Once the dimer left the focus (~30 s), the intensity remained relatively flat while the rotation 
rate dropped to 1.66 rad/s. 
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Figure 6.18 Height traveled by a rotating UC-dimer of magnetic microspheres due to a laser scattering 
force. 

dimer was far enough from the vicinity of the focus the %-threshold dropped and the 

integrated intensity remained relatively flat.  Thus a height increase was directly a result 

of the scattering force of the laser impinging on the dimer. 

The results of UC-dimer height traveled vs. energy supplied are shown in Figure 6.18.  

There is a general increasing trend in height with energy supplied.  Deviations from the 

trend are attributed to the fact that, on many occasions, the percentage of overlap between 

the thresholded image and the focus region could have been 100% even though the laser 

focus was impinging on one of the microspheres at a grazing angle.  Any scattering force 

generated would push the microsphere at angles other than along the z-axis.  

Nevertheless, Figure 6.18 suggests a scattering force did exist; however, translational 

effects were more apparent than rotational effects. 

For our system, the kinematic viscosity of a 50% glycerol/water w/v mixture at 20°C 

is 5.26 cS [174], the density is 1.13 g/cm3, and the shape factor of a dimer is 11.22 [178].  

Using Eq. (5.2) to calculate the rotational drag coefficient, the applied magnetic torque 

ranged from ≈Ω rotCγ  200-700 pN⋅μm.  Our previous calculations in Chapter 5 using 
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similar laser powers gave an estimate of about 15 pN⋅μm of optical torque.  Thus, 

although flotation is induced, the torque due to the light scattering force may not be 

enough to significantly affect the motion due to the rotating magnet. 

The HC-dimers were in a slightly lower %-mass fraction glycerol/water mixture and 

tended to sink to the bottom glass surface (but did not roll significantly along the surface 

with magnetic rotation).  Over laser powers ranging from 0.7-3 mW, these dimers did not 

experience a scattering force strong enough to overcome sedimentation, yet they still 

underwent an increase in average rotation rate at 1.3 mW, evidenced by Figure 6.12.  This 

strongly suggests that the increase in rotation rate was due to something other than the 

scattering force of the applied laser. 

This image analysis method using the %-threshold shows us that the dimer’s 

rotational behavior directly depends on the light-dimer interaction as opposed to 

absorption by the surrounding solution.  If we look again at the graph in Figure 6.17 more 

closely, we see that at early times (0-30 sec), the dimer is completely in the beam (100% 

threshold) and the rotation rate is 1.75 rad/s.  After the dimer translates away from the 

laser spot (50% threshold) both translationally and axially (35-63 sec), the rotation rate 

slows to 1.66 rad/s.  This behavior was also seen with the HC-dimers as shown in Figure 

6.19 where in the focus, the average rotation rate was 2.34  rad/s but away from the 

focus, the average rotation rated dropped to 1.76  rad/s.  
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Figure 6.19 Integrated intensity and %-threshold vs. time for a HC-dimer of magnetic microspheres.  
While the dimer was in the focus (0-10 s) the average rotation rate was 2.34 rad/s.  After the dimer 
translated laterally away from the vicinity of the focus (10-30 s), the average rotation rate dropped to 
1.76 rad/s.
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Because the rotation rate strongly depends on whether or not the dimer is in the beam, 

all rotation rates were measured only when directly in the beam or shortly after drifting 

away (usually <10 s after the % threshold drops to an average of 50%).  This dependence 

also suggests that immediate effects due to the interaction between light and the dimer 

were observed more than effects due to the interaction between light and the surrounding 

fluid.  If we ignore the possibility of a rotation rate increase due to a scattering force, the 

quick drop in rotation rate observed suggests there was an insignificant amount of heat 

accumulated in the fluid over the remainder of the illumination period in comparison to 

the heat generated while in the laser focus.  This indicates either the glycerol-water 

mixture had a high thermal diffusivity or only a very small region of fluid immediately 

surrounding the dimer microspheres was heated. 

We also notice that the effectiveness of the laser while the dimer is in the focus is 

more easily discernible for the half-coated particles.  Upon leaving the focus, the rotation 

rate appeared to respond quickly, reducing within 5 seconds of the %-threshold dropping.  

This suggests a number of behavioral differences compared to the uncoated dimers 

including faster heat diffusion in the fluid and/or less heat transfer to the fluid.  Both of 

these might be expected since the solution has a slightly lower concentration of glycerol 

and thus a higher heat capacity and higher thermal diffusivity.  In addition, the half-

coated dimers measured in these experiments experience little flotation or sedimentation 

during each illumination (<1 μm in almost every measurement) as evidenced by the 

relatively flat intensity fluctuation time traces as well as measurements of the z-distance 

from the bottom cover slip which remained at a constant 7 μm above the surface, as 

discussed previously.  It appeared that the laser illumination induced lateral translation on 

the dimer until the dimer shifted far enough from the laser focus where it could sediment 

back to the glass surface. 

Another indication that the scattering force was not applying a measurable torque is 

that the rotation rate never slowed, qualitatively nor quantitatively, when the position of 

the laser focus was changed.  Applying the beam on either side of the dimer for a given 

rotation direction always caused an increase in rotation rate, even when the scattering 

torque direction should have opposed the motion due to magnetic torque.  Keeping the 



 

 161

focus location fixed and changing the direction of the magnetic rotation also produced the 

same increase in average rotation rate. 

Viscosity Decrease Due to Temperature Rise 

A decrease in viscosity can explain the increased rotation rate while the magnetic 

particle was illuminated.  If this were the case, the decrease may be due to increased 

temperature caused by absorption of either the particle or the solution, or both.  Previous 

results indicating the slowing rotational rate after the dimer translated away from the 

beam suggest that heat absorption by the solution itself is much less than heat transferred 

by the particles to the solution.  If the magnetic colloids transfer heat only to a thin layer 

of fluid surrounding the dimer, the heat may be able to diffuse quickly to the remaining 

solution within the 2-3 minutes between measurement acquisitions, thus causing the 

rotation rate to return to a lower value.  If, instead, heat diffusion is rather slow in the 

glycerol/water mixture and/or a thick layer around the particle is affected, we expect the 

dimer to maintain a higher rotation rate even after the laser is turned off. 

Direct heating of the solution via the fluid absorption is negligible.  Recall that the 

most noticeable changes in average rotation rate were seen when the dimer entered the 

beam.  In addition, the increase in temperature at the focus of near infrared (1064 nm) 

laser light used to trap dielectric particles was measured to be about 40 K/W for a 100% 

glycerol solution [61].  For our system, the maximum energy supplied in one illumination 

was with a 2.45 mW beam for 26.4 sec.  This roughly corresponds to a temperature 

increase of 2.6 K, not considering the reduction in intensity due to optical losses, reduced 

effects in water-glycerol mixtures, or differences in absorption at 780 nm vs. 1064 nm. 

On the other hand, absorption of laser light by the magnetic colloids on the 

polystyrene core, followed by heat transfer to the immediately surrounding solution is 

probable.  The increased rotation rate would reflect a change in temperature of the local 

fluid surrounding the particle.  Let us assume that all of the light energy Qlight supplied to 

the dimer is absorbed and transferred to the surrounding solution as heat, raising its 

temperature ΔT by the following: 

 TmCQlight Δ= , (6.8)
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where m is the mass of the heated fluid and C is the specific heat capacity of the fluid.  

The temperature dependence of the kinematic viscosity of glycerol was shown by 

Shankar et al [174] to be: 

 )exp()( 2TcTbaT νννν ++= , (6.9)

A fit of Shankar’s experimental data for a 50%  mass fraction glycerol/water mixture 

gives 000248.0,0466.0,49.2 =−== CBA .  For a 40%  mass fraction glycerol/water 

mixture the values are 000236.0,0428.097.1 =−== CBA .  An increase in the 

temperature 12 TTT −=Δ  results in a decrease in viscosity as follows: 
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which can then be expressed using Eq. (6.8) in terms of the supplied energy as 
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Note that from Eq. (6.11), one can get the ratio of viscosities only if the temperature 

immediately before illumination is known. 

The ratio of viscosities can also be expressed in terms of the corresponding critical 

frequencies: 
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Eqs. (6.9) through (6.11) can also be used to determine the fluid temperature during each 

measurement. 

We conducted experiments on our dimers in which we measured the average rotation 

rate for numerous laser illuminations.  We alternated between no illumination and 

illumination with some recorded, non-zero laser power, waiting several minutes between 

each acquisition.  We also performed the %-threshold analysis to determine the time each 

dimer spent in the laser focus, and ultimately the energy supplied to the dimer for each 

illumination.  Assuming that all of this energy was transferred to the fluid as heat, we 

used (6.11) with the temperature during the first measurement, fitted parameters for 

Shankar’s viscosity data, and calculated supplied energies.  We obtained the ratio of 

critical frequencies which allowed us to calculate the expected rotation rate to within a 
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Figure 6.20 Average rotation rate vs. supplied energy for a dimer of 9 μm UC-magnetic microspheres 
rotated by a driving frequency of 1.25 Hz in a 50% mass fraction glycerol/water mixture.  This is the same 
dimer represented by Figure 6.14. 

 
Figure 6.21 Average rotation rate vs. supplied energy for a dimer of 9 μm HC-magnetic microspheres 
rotated by a driving frequency of 2.75 Hz in a 40% mass fraction glycerol/water mixture.  This is the same 
dimer represented by Figure 6.15.
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single fit parameter.  This was fit to our actual experimental data.  Results are shown in 

Figure 6.20 for a UC-dimer and in Figure 6.21 for a HC dimer.  We used an initial 

temperature of 20°C for the UC-dimer and 25°C for the HC-dimer, as was measured 

during the experiment.  We also estimated the specific heat capacity of our glycerol/water 

mixture using a weighted binary distribution: 

 waterglycx CxxCC )1( −+= , (6.13)

where x is the mass fraction of glycerol, =glycC  2.38 J/g⋅K and =waterC 4.18 J/g⋅K.  We 

get =%50C 3.28  J/g⋅K and =%40C 3.46  J/g⋅K. 

Our model assuming the fluid absorbs all the heat indicates an increase with supplied 

energy that is slightly higher order than the linear dependence we expected for the 

scattering force.  In both cases, the fit is not great, but the HC-dimer appears to be 

slightly better.  This was expected based on our individual measurements for each dimer.  

In both cases, when laser illumination was present, the dimer rotation rate always 

increased relative to the immediately previous measured rate with the laser off.  With the 

UC-dimers, there were often cases when the next measurement with the laser off resulted 

in an average rotation rate faster than the rate at the start of the experiment.  This suggests 

the system had changed in some way during the interaction with the laser.  If changes in 

dimer rotation rate were solely due to an optically induced scattering torque (neglecting 

distance from the glass surface) we would expect the system to return to its state prior to 

application of the laser since it is assumed little heat was generated.  Instead, since the 

rotation rate did not return to its original frequency at the start of the experiment, we can 

conclude that heat was generated and the dimer did not have enough time to cool.  

Because of this, the temperature at the start of the next illumination was slightly higher 

than at the start of the experiment, thus resulting in rotation rates higher than our fitted 

trend in Figure 6.2.  Our HC-dimers seemed to return to approximately the same rotation 

rate after each illumination ended; the normalized average rotation rate adjC ,/ Ωθ& ranged 

from 0.125 to 0.134.  This is in contrast to the range for UC-dimers which was 0.152 to 

0.277. 

The fit in Figure 6.21 can provide an estimation of the mass of fluid required for the 

temperature rise to cause the observed rotation rates, assuming all supplied energy were 
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absorbed as heat.  The calculated mass corresponds to a heated spherical volume of water 

surrounding a 9 μm sphere that extends to a radius 520 μm from the center of the sphere.  

Equivalently, this is about 100 μm × 2 mm × 2 mm (100 μm was the thickness of our 

fluidic sample cell).  If we assume only 10% of the supplied energy we originally 

calculated actually gets absorbed by the sample/solution (the 90% goes to microscope 

optical loss and scattering, reflection or transmission, reduction in magnetic moment), the 

heated volume goes down to 100 μm × 0.75 mm × 0.75 mm or a spherical radius of 

240 μm from the center of the sphere.  Such a volume, although smaller than the solution 

volume typically used, seems large if one expects heat diffusion to be slow through the 

glycerol mixture.  Using the dimensional considerations [61], we estimate the time scale 

for equilibrium across this distance d to be kCd V /2 where k is the thermal conductivity.  

Assuming a binary distribution for the thermal conductivity k of our fluid 

(kwater = 0.60 W/m⋅K and kglyc = 0.28 W/m⋅K), we expect equilibration in less than 1 sec 

whereas the larger volume is about 2 sec.  In addition, if one were able to observe other 

rotating particles far from the laser focus increasing in average rotation rate, this would 

verify the validity of such a large heated solution volume. 

The constancy of the measured average rotation rate when the laser was off indicates 

that the HC-dimers had adequate time to cool to ambient temperature compared to the 

UC-dimers.  In addition, since the rotation rate did not drop further, the magnetic 

moments of the particles were not being reduced.  This differs from the UC-dimers in 

which rotation rates measured after illumination periods were often lower than at the start 

of the experiment.  For the magnetic colloids coated by aluminum, since the coating is 

much thicker than the skin depth for 780 nm light, the magnetic colloids were partially 

protected from the illumination thus absorbing less light.  Less absorption would suggest 

less heat was generated and transferred to the solution by the magnetic colloids.  Our 

measured rotation rates were indicative of temperature increases of 1-16°C for UC-

dimers and 4-18°C for HC-dimers.  The discrepancy, however, is not absolute since 

many other factors could be involved including absorption of the fluid and changes in the 

magnetic moment for UC-dimers.  As we calculated previously, temperature increases 

due to direct absorption by the solution are only several degrees.  The small amount of 

light absorbed within the skin depth of the aluminum may be enough to raise the surface 



 

 166

temperature significantly.  If the aluminum transfers the generated heat to the solution, 

keeping the magnetic colloids safe, we don’t expect a reduction in magnetic moment. 

Heating of the surrounding fluid is the most viable cause of the increase in the 

average rotation rate of our dimers.  A reduction in magnetic moment requires little 

energy as we’ll see in the next section, and the laser powers used here were significantly 

lower than those used for optical tweezers, thus the direct absorption by the solution 

should have also been much weaker.  Scattering forces and torques, although present due 

to non-zero absorption, do not cause significant rotation at such low laser powers.  In 

addition, application of the optical illumination at opposite locations of the hybrid 

particle always induced an increase in rotation rate, despite the direction (clockwise or 

counter-clockwise) of magnetic rotation.  Although heat generation via absorption by the 

metallic portions of our particles is likely, the heat must be diffusing to the remainder of 

the solution quickly since cooling back of the solution was observed.  Thus, our particles 

were acting as truly localized viscosity sensors. 

Changes in Magnetic Moments 

It is unlikely that any increase in the average rotation rate θ&  was due to an increase in 

magnetic moment since the microspheres reached their saturation magnetization by being 

placed in a strong magnet.  Any observed reduction in rotation rate between ‘laser off’ 

states could not be attributed to a cooling effect if we assumed the initial ‘laser off’ state 

was in equilibrium with the ambient surrounding temperature and the system did not 

change otherwise.  Instead, it must be attributed to a reduction in the magnetic moment of 

the particles.  Such events occurred with our UC-dimers and here we estimate the 

percentage of supplied energy lost to this mechanism. 

Using Eq. (6.7), we can calculate the reduction in magnetic moment given by the 

ratio of critical frequencies between ‘laser off’ states before and after illumination, 

assuming enough time was allowed to let the system equilibrate (several minutes).  The 

ratio of the magnetic moment after illumination to before was 0.759.  The saturation 

magnetization of CrO2 follows Bloch’s law at low temperatures (~T3/2) and the 3-D 

Heisenberg model [179] (~(TC-T)β near the critical temperature TC = 386.5 K (for 

epitaxial films).  At room temperature, we estimate the change in magnetization using 
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digitized data on CrO2 powders [180] which take into account native Cr2O3 layers on the 

CrO2 grains.  The corresponding change in temperature is from T = 293°K to T = 360°K. 

 

For this change in temperature, we can estimate the energy supplied to the particle to 

reduce the magnetization.  We estimate the temperature rise as follows [181]: 

 
VC

QRT
V

)1( %−
=Δ , (6.14)

where R% is the reflectivity of a CrO2 film, CV here is the volumetric heat capacity of 

CrO2, and V is the heated volume.  Use of Eq. (6.14) assumes electron diffusion is 

sufficient to transport much of the heat generated by light absorption to the lattice.  The 

reflectivity of CrO2 films [182-184] is about 25%.  The film is estimated to be 500 nm 

thick from the SEM shown in Figure 6.22 around a previously measured 9 μm diameter 

polystyrene core.  Since the illumination focal spot with a radius beamwaist of 0.579 μm 

is much smaller than the particle diameter, we model the surface of the magnetic colloids 

as a continuous film and assume the heat is distributed over the entire volume of the film.  

Otherwise, only a small region of colloids would be affected and we would not observe a 

decrease in rotation rate due to reduced magnetization. 

 
Figure 6.22 SEM of 9 μm magnetic microspheres used for both UC-dimers and HC-dimers.  HC-dimers 
were further coated with approximately 50 nm of aluminum before dimers were formed.
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The thermal properties of CrO2 are difficult to obtain since ferromagnetic properties 

can become significant, and the best theoretical description for ferromagnetic behavior 

near the critical temperature is often controversial for each material.  In addition, the 

properties for nanoparticles may differ from those for the bulk material and may be 

dependent on nanoparticle size [185, 186].  The specific heat of the CrO2 colloids on our 

microspheres is comprised of a lattice contribution and a magnetic contribution.  We 

estimate the lattice contribution by the Debye formulation for specific heat: 
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where kB is Boltzmann’s constant, θD = 593 K is the Debye temperature [187] and N is 

the number of atoms per volume.  This gives a volumetric heat capacity of 

C = 3.59 J/cm3⋅K at 20°C.  Note, below the Curie temperature for CrO2 (386.5 K for 

epitaxial films), the magnetic contribution to the specific heat can be significant, 

potentially doubling the heat capacity, but only for applied fields considerably larger than 

ours. 

Using the above analysis, to within a factor of two, the energy contributed to reducing 

the magnetization was Q = 0.159 μJ.  The energy supplied to the particle calculated by 

multiplying the laser power by the duration of interaction was 48.1 mJ.  We see that a 

very small percentage of the supplied energy is sufficient to reduce the magnetization.  

Most of the energy goes to heating the solution, transmission of the sample, 

reflection/scattering of the sample.  Approximately 75% of the energy entering the 

microscope was lost to optical loss in the mirrors and lenses.  Heating of the solution was 

discussed previously.  Optical loss due to scattering and transmission of a single dimer 

with magnetic colloids has not been characterized.  For an uncoated particle (polystyrene 

only), the microsphere acts as a lens for the laser light, thus a higher intensity was 

observed to be transmitted than without the polystyrene sphere present.  The fact that the 

magnetic dimers maintained some magnetization and continued to rotate despite the low 

energy required to reduce the magnetization is still unexplained.  It is likely that the 

presence of the surrounding fluid helped to dissipate the heat away before irreversible 

damage was done. 
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6.4   Conclusions 

We’ve shown that hybrid microsphere systems consisting of magnetic materials can 

be manipulated both magnetically and optically at the same time.  With purely magnetic 

rotation, the microsphere behaves as a nonuniform oscillator.  When the optical 

perturbation is combined with magnetic rotation, the dynamical motion indicated 

modifications of the behavior of the standard nonuniform oscillator.  A consistent method 

of analyzing the motional behavior has been developed using Fourier domain filtering 

techniques.  Our analysis reveals that application of laser illumination to the magnetically 

rotating microspheres resulted in increased rotation rates which were most likely due to 

heat generation induced by light-absorption of the hybrid particles.  Effects due to 

increased scattering forces or a reduction in magnetic moment, although possible, were 

dominated by the consequences of the increase in temperature.  Half-coatings of 

aluminum applied the to hybrid particle systems also appeared to protect the moment of 

the magnetic colloids present. 
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CHAPTER 7 

NONLINEAR THREE-DIMENSIONAL MOTION 
OF A RIGID DIMER OF MAGNETIC 
MICROSPHERES IN A ROTATING 

MAGNETIC FIELD 

In recent years, the dynamics of nonuniform oscillators have been observed in 

numerous microscale and nanoscale systems [33, 133, 139-142, 188-190].  The motion 

has even been exploited to detect microparticles [54] and bacteria [66] as well as observe 

bacterial growth [to be published].  In most of these systems the oscillator is assumed to 

be confined to rotate in a single plane.  For example, Bonin et al. [133, 142] observed that 

optically torqued nanorods would tend to vertically align along the propagation axis of a 

narrowly focused laser beam unless confined by the surface.  If the particle is not 

confined, however, 3-dimensional (3-D) nonuniform rotation can ensue. 

Indications that objects driven by external rotating fields can rotate nonuniformly in 

3-D have existed.  Erglis [139] et al. simulated magnetotactic bacteria which were 

proposed to rotate and eventually escape out of the plane of the rotating field.  The 

rolling-while-slipping hybrid particles in Chapter 4 showed motion along a surface in 

directions that deviated from the expected rolling perpendicular to the external magnetic 

rotation axis.  In addition, the optically manipulated dimers consisting of hybrid magnetic 

microspheres showed signs of precession that made them difficult to illuminate 

consistently while in the focused laser beam. 

Dimers were observed to tilt away from end-over-end rotation at high frequencies, 

thus causing the laser beam to never impinge on the particle evenly with every cycle.  It 

is expected that at these high rotation rates, the dimer can no longer keep up, but instead 

of pure slipping, the dimer reorients itself to reduce the effective rotational torque about 
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the axis of rotation.  At even higher frequencies, the dimer appears to rotate in such a way 

that a bowtie-like image forms and precession occurs. The dimer rotates about an axis 

with a fast rotation that matches the external magnetic rotation rate. This axis, however, 

is not parallel to the external magnetic rotation axis (as it is for uniform end-over-end 

rotation).  Instead, this axis appears to precess about the parallel, causing an overall 

envelope over intensity fluctuations similar to what we would expect from a single half-

coated nonuniform oscillator asynchronously rotating in a plane. 

Similar behavior was described theoretically for an isolated magnetic particle in 

liquid in the late 1960’s by Caroli and Pincus [38].  To our knowledge, there has not yet 

been experimental verification of this phenomenon using a rigid dimer of magnetic 

microspheres.  In this work, we describe our own experimental observations of a dimer of 

magnetic microspheres undergoing 3-D nonuniform motion due to an external magnetic 

field rotating about a single axis.  We compare our results to the theory set forth by Caroli 

and Pincus.  We also propose that differences between the steady state solutions provided 

in the theory paper and our experimental results are partially due to the orientation-

dependent drag coefficient of our dimer microspheres.  This is supported by numerical 

analysis of the simplified equations of motion given by the theory. 

7.1   Theory 

In this section, we review the results of the theoretical treatment given by Caroli and 

Pincus [38] for the response of a uniaxial, single-domain magnetic particle suspended in a 

liquid to an external magnetic field B in the case of zero static field.  We try to maintain 

as much of the original notation as possible, except when relating to variables 

corresponding to those defined in previous chapters. 

The treatment begins with the magnetic energy density given as: 

 Bmnm ⋅−⋅−= 2)(KU  (7.1)

where we define K as the anisotropy constant > 0 multiplied by the volume of the 

particle, n is the unit vector along the easy axis of the particle, and m is the magnetization 

or magnetic moment with nearly fixed magnitude m.  The B field rotates in the yz-plane 

with rotation frequency Ω while Ω points in the x-direction.  For low frequencies 
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considered here, the equation of motion for the magnetization derived from Eq. (7.1) 

reduces to: 

 ])(2[ nnmBBm ⋅+== Keff λλ (7.2)

where λ is determined from the magnitude of the magnetization.  The mechanical 

equation of motion describes a balance of torques: 

 .)(2 nmnmθθ ×⋅−=+ KI &&& γ  (7.3)

where I is the moment of inertia, and γ is the 3-D drag tensor, and θ& and θ&&&  are the 

angular velocity and angular acceleration of our particle.  The first term on the left is the 

inertial term, the second the viscous torque and the term on the right is the torque due to 

the magnetic field B.  Using the precession equation for the easy axis of the particle:  

 nθn ×= && , (7.4)

we can obtain the equation of motion for the easy axis as 

 nnmnmnnθn ××⋅−−=×− ))((2)( KI &&&&& γ . (7.5)

In the limit of low Reynold’s number [150], the inertial term can be neglected.  If we 

consider only steady state solutions that rotate with the magnetic field ( Ω=θ& ), Eq. (7.5) 

reduces to 

 02 =×⋅+× )])((Ω[ nmnmn Kγ . (7.6)

The trivial solution to Eqs. (7.2) and (7.6) was discussed briefly by Caroli and 

Pincus [38].  This solution consists of a particle in which the easy axis points along Ω 

while the magnetization, aligned along the hard axis, always points along the direction of 

the magnetic field.  Such dimers have been prepared in practice by magnetizing them in a 

large field while they’re still part of a monolayer on a glass substrate.  The motions we 

observed of these types of dimers differ greatly from the dynamics described here, thus 

they will not be considered in any more detail. 

Eq. (7.6) reveals that the term in brackets can be expressed as a scalar times n.  If we 

insert m from Eq. (7.2) into the last parentheses of Eq. (7.6) and cancel appropriate terms, 

we get: 

 nnBnm μλγ =×⋅+ )(Ω K2 (7.7)

where μ is a constant.  Taking the scalar product of Eq. (7.7) with B, we obtain: 
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 0=⋅ Bnμ . (7.8)

The constant μ can be found to equal n⋅Ωγ .  Thus if μ = 0, then the easy axis of the 

particle remains perpendicular to the axis of rotation of the magnetic field tracing out the 

yz-plane as it rotates.  If instead, n⋅B = 0, the easy axis remains perpendicular to the 

magnetic field.  If the easy axis points along the rotation axis of B (x-axis), then we 

recover the trivial solution previously discussed.  Otherwise, n points somewhere 

between the x-axis and the yz-plane.  In this case, as n rotates, it traces out the surface of 

a cone. 

7.1.1 Planar Solution 

For the planar solution n⊥Ω .  If we take the cross product of Eq. (7.2) with B and 

compare to (7.7), we get the following: 

 Ωγ=× Bm . (7.9)

This is equivalent to the synchronously rotating standard nonuniform oscillator equation 

we previously derived in Chapter 5 for frequencies smaller than the critical frequency 

( γ/mBC =Ω≤Ω ).  Note, in this treatment we prescribed that the particle rotation rate 

was equal to the magnetic rotation rate.  Thus, planar asynchronous rotation will not be 

acquired from these equations.  Planar solutions were shown to exponentially relax to 

their steady states. 

7.1.2 Conical Solution 

For the non-trivial conical solution, nB ⊥  and the scalar product of Eq. (7.2) with n 

results in the solution that 2λK = 1.  In this case, n rotates about the x-axis in a plane 

perpendicular to B.  The sign of μ determines if n points towards the +x or –x direction.  

The cone half-angle ψ that n makes with the x-axis is given by: 

 

( ) 22

2
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)/(1
)/(1tan

AN

A

BB
BB

+−Ω
−

=ψ (7.10)

where BA = 2Km is defined as the anisotropy field and ΩN is our normalized frequency 

ratio Ω/ΩC.  Neither the numerator nor the denominator can be negative, which defines 

several conditions for the steady state solutions.  The external magnetic field cannot 
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exceed this anisotropy field or the particle will change magnetization.  We did not 

observe any changes in magnetization due to the weak magnetic field strengths used for 

rotation in our experiments (<10 Oe).  From the denominator, we see that 

2)/(1 AN BB−>Ω .  This suggests there are frequencies at which both planar and 

conical solutions exist.  In practice, both conical and planar motions were observed at 

certain frequencies close to ΩC depending on from what side the frequency value was 

approached. 

Caroli and Pincus [38] also studied the stability of the conical solutions with respect 

to small disturbances.  They showed that the solutions for n and m both oscillate about 

their initial positions with a characteristic frequency given by: 

 2

1 ⎟
⎠
⎞

⎜
⎝
⎛

Ω
Ω

−Ω=Ω C
p . (7.11)

Recall from Chapter 5 that for asynchronously rotating magnetic particles, the average 

rotation rate was observed to be 22
CΩ−Ω−Ω=θ& .  Thus, we see that oscillations in 

the conical solutions of motion could be observed as light fluctuations with frequency 

θ&−Ω=Ω p . 

Eq. (7.5) was re-written in terms of two first-order differential equations assuming 

B << BA.  Using our non-dimensional time τ = ΩCt, these equations can written as 

 

t
N nd

d φ
τ
φ sin

−Ω=  (7.12)

 
φ
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tN n
d
dn

−Ω= . (7.13)

Where nt is the projection of n in the yz-plane and φ is the phase lag between B and nt.  

Note that if nt = 1, we recover the planar solution for our original nonuniform oscillator. 

7.2   Orientation-Dependent Friction Coefficient 

The theory introduced by Caroli and Pincus [38] reviewed in the previous section was 

for an isotropic sphere with a symmetric rotational drag coefficient along all three axes 

given as Vrot κηγ = where κ is the shape factor = 6, η is the dynamic viscosity of the 
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Figure 7.1 Rotational drag coefficient ellipsoid for a dimer.  When the easy axis of the dimer (indicated 
by the arrow joining the two spheres) points along the x-direction, the drag coefficient is γx.  When the easy 
axis lies in the yz-plane, the drag coefficient is γt.  For a cone half-angle of ψ, the drag coefficient equals 
the length at which the arrow intersects the ellipsoid whose major and minor axes are 2γt and 2γx, 
respectively. 

surrounding fluid and V is the volume of the sphere.  For a dimer of magnetic 

microspheres, the easy axis n is along the axis that connects the centers of each sphere.  

Dimers of spheres are only symmetric along two axis, thus the rotational drag coefficient 

about an axis perpendicular to the easy axis (let us call this γt) is different than the drag 

coefficient γx around the other two axes.  For axes in between these two extremes, we 

define the drag coefficient ellipsoid shown in Figure 7.1. 

We see that when the easy axis lies in the yz-plane, end-over-end rotation occurs and 

the drag coefficient is γt.  For solutions where the easy axis points out of the yz-plane, the 

drag coefficient lies between γx  and γt.  The precise value can be acquired from the 

following equation for this ellipse: 

 
2
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2
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1
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It is known that the shape factor for rotation about an axis perpendicular to the easy 

axis is 11.22 [178].  The shape factor for rotation about the easy axis can be determined 

by using the ratio of corresponding diffusion coefficients [191]: 
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When the dimer is rotated at frequencies exceeding the critical frequency, the particle 

cannot keep up with the magnetic field due to the rotational drag.  If the dimer escapes 

into the third dimension, ψ increases and the dimer’s rotational drag coefficient reduces 

in order to keep up with the field.  As a result, the tilted dimer will have a new critical 

frequency depending on its steady state ψ value.  This new critical frequency can be 

derived from Eq. (7.14) to get: 

 
ψψ

ψγ
γψ 222

,, sincos
)(

)( +Ω=Ω=Ω GtC
t

tCC  (7.16)

where ΩC,t = mB/γt.  Similarly, the cone half-angle formula must be adjusted: 
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Last, Eqs. (7.12) and (7.13) must be adjusted to account for the anisotropic drag: 
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where Eq. (7.16) is used for the cone half-angle dependent critical frequency. 

7.3   Simulated Trajectories 

Eqs. (7.18) and (7.19) were solved using a Runge-Kutta 4th order algorithm and 

trajectories were animated in 3-D space to aid in understanding the motional dynamics.  

If the initial conditions were chosen to coincide with steady state solutions of the 

equations, the motion of the dimer depicted periodic rotation about the x-axis with a 

constant half-angle ψ.  Figure 7.2(a) shows a planar solution for 5.0=ΩN , nt = 1  while 

(b) shows a conical solution for 5.1=ΩN , nt = 2/3.  In all cases, an isotropic drag 

coefficient is assumed unless otherwise mentioned.  The trajectory of the tip of the n 

vector (blue) shows horizontal circles at different heights corresponding to 21 tz nn −= .  

The magnetic field vector is indicated as a green arrow.  Also, the shading of the spheres 
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Figure 7.2 Simulated trajectories of a dimer undergoing 3-D rotation assuming an isotropic drag 
coefficient.  (a) planar solution ΩN = 0.5, nt = 1  (b) conical solution ΩN = 1.5, nt = 2/3. 

corresponds to the height along the x-axis (this coordinate system was chosen to coincide 

with experiments described in previous chapters. 

The trajectories strongly depend on the initial conditions chosen.  Figure 7.3(a) shows 

the case of 5.0=ΩN , nt = 0.8 where n starts outside the yz-plane and slowly decays back 

to the planar solution because ΩN < 1.  Figure 7.3(b) shows a similar conical solution as 

previously but with 5.1=ΩN , nt = 1/1.4.  The slight change in the initial condition 

resulted in persistent oscillations in the trajectory. 

We can examine the trajectories using the same initial conditions, but using our 

anisotropic drag coefficient equations.  These results appear in Figure 7.4 and Figure 7.5  

In Figure 7.4(a), 5.0=ΩN , nt = 0.8 and the same planar solution results since the drag  

 
Figure 7.3 Simulated trajectories of a dimer undergoing 3-D rotation assuming an isotropic drag 
coefficient.  (a) planar solution ΩN = 0.5  (b) conical solution ΩN = 1.5. 
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Figure 7.4 Simulated trajectories of a dimer undergoing 3-D rotation assuming an isotropic drag 
coefficient.  (a) planar solution ΩN = 0.5, nt = 1  (b) conical solution ΩN = 1.5, nt = 0.8838. 

coefficient doesn’t change.  Figure 7.4(b) shows the conical solution including 

anisotropic drag.  The diameter of the trajectory is wider since the dimer can flatten out a 

little more with its reduced drag compared to the isotropic drag solution.  In Figure 

7.5(a), the reduced drag out of the plane can support slightly higher rotation rates, thus 

dimer can relax into the plane slightly (almost imperceptibly) more quickly.  In Figure 

7.5(b) the slight change in initial conditions from the steady state solution causes 

considerable precession and nutation of the dimer.  One should note, however, that 

Eqs. (7.8) and (7.9) including anisotropic drag are not rigorous for solutions other than 

steady state ones in which nt does not change.  Small perturbations from steady state may 

show gradual oscillations in the trajectories whereas larger perturbations could change  

 
Figure 7.5 Simulated trajectories of a dimer undergoing 3-D rotation assuming an anisotropic drag 
coefficient.  (a) planar solution ΩN = 0.5, nt = 0.8  (b) conical solution ΩN = 1.5, nt = 2/3.
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the trajectories drastically and no longer be physically relevant. 

7.4   Comparison to Experiment 

In our experiments on nonuniformly rotating dimers of magnetic microspheres, we 

observed particles exhibiting planar end-over-end rotation at frequencies below ΩC.  In 

such cases, the dimer axis remained in the yz-plane perpendicular to the axis of rotation 

of the magnetic field.  When the frequency was increased just beyond ΩC, the dimer was 

seen to rotate with a slight angle outside of the plane.  After increasing the magnetic 

rotation rate further, the dimers exhibited precession-like motion rotating about an axis 

which itself was very slowly rotating about the magnetic rotation axis.  Even with some 

single half-coated particles, the nature of the rotation often appears to exhibit precession-

like motion rather than purely planar rotation. 

Performing the usual data analysis on these systems entails the use of Fourier 

transform techniques to observe the periodic fluctuations in the frequency domain.  

Standard procedure for analyzing nonuniform rotation data is to locate the external 

driving frequency and disregard any peaks at higher values.  Any fluctuations that are 

faster than the magnetic rotation rate are likely due to inconsistencies in the half-coating 

or scattering/reflection from magnetic colloids distributed from each other at distances 

less than half the circumference of the particle (for example, if 4 colloids are distributed 

around the equator of the particle, we expect to see harmonics indicating fluctuations at 

4x the rotation rate frequency).  If no discernible peaks can be found at frequencies lower 

than the driving frequency, the system is likely rotating synchronously.  When low 

frequency peaks appear, they can either be true asynchronous rotation fluctuations, or low 

frequency drift due to the particle translating out of the focus. 

We typically get results that agree with those predicted by our standard nonuniform 

equation.  For example, Figure 7.6 shows the power spectrum for a half coated particle 

rotating at Ω = 0.25 Hz.  The average rotation rate was measured to be 035.0=θ& Hz.  

According to Eq. (7.11), we should expect to see light fluctuations due to oscillations at 

the characteristic frequency θ&−Ω =0.215 Hz.  If we look to the left of the external 

magnetic rotation rate, we see two smaller peaks which correspond to this characteristic
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Figure 7.6 PSD’s of a nonuniformly rotating dimer of magnetic microspheres driven by a magnetic field 
at Ω = 0.25 Hz.  Mixing between the average rotation rate and its second harmonic appear as peaks just the 
left of the peak of the external driving frequency.  These peaks are due to the characteristic frequency of 
oscillations in the steady state solutions of the 3-dimensional rotation. 

frequency.  The second of the two is due to the subtraction of the second harmonic of the 

average rotation rate which also has a sizable peak in the graph of Figure 7.6. 

7.5   Conclusions 

The motional dynamics of a 3-D nonuniformly rotating dimer of magnetic 

microspheres has been analyzed theoretically, experimentally and numerically.  All 

methods seem to agree in the qualitative description of the steady state motion.  Two 

distinct regimes exist.  One is a planar rotation at in which the dimer appears to be 

confined to rotate in a plane perpendicular to the axis of rotation.  These planar solutions 

include both synchronous and asynchronous rotation with the magnetic field.  The other 

regime occurs at higher rotation frequencies in which the magnetic dimer can no longer 

keep up with the magnetic field due to rotational drag.  In this case, if the dimer 

experiences the slightest perturbation to adjust its angle out of the plane, it will escape the 



 

 181

plane and undergo 3-D rotation.  The concept of slipping in 3-D rotation is intuitively 

similar to that for restricted planar motion – when the dimer cannot keep up with the 

magnetic field, it assumes the quickest route to re-align with the field, which would be 

out of the plane of rotation. 

The knowledge and understanding of nonlinear dynamics systems like these 3-D 

rotators can also be of practical use.  For example, for particles with strong frictional 

anisotropy, the dynamics may be distinctly different.  If one can detect motional 

differences due to anisotropic drag on microscale rotating objects, the recognition of such 

motion could enhance already existing techniques of pathogen detection using 

nonuniform oscillators.  For example, in addition to detecting the presence of bacteria, 

one could use motional information to help identify the strain based on shape or 

orientation. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE DIRECTIONS 

8.1   Conclusions 

Hybrid particle systems can serve as valuable sensors controlled by magnetic and 

optical manipulation schemes as long as one can establish a balance between the most 

beneficial properties of each constituent material.  For example, near-resonance trapping 

of our hybrid particles showed weak enhancements, if any, and considerable heat 

generation.  Instead of augmenting optical tweezing forces, the high particle-number-

density shells of our core-shell and half-shell systems served to destabilize the trap [128] 

by increasing forces due to scattering and reflection.  Wavelength-tunable trapping and 

assembly of much smaller particle sizes [19, 95, 96] and molecules [127], however, have 

shown evidence that resonance-based manipulation can, in fact, occur. 

Optical and magnetic manipulation is a natural choice for controlling the behavior of 

dielectric and magnetic hybrid microspheres.  But, as we saw with the optical 

illumination of dimers of magnetic microspheres, an increased magnetic content makes it 

easier to probe high-viscosity media by shifting the nonlinear region to more accessible 

frequencies.  At the same time, increased magnetic content renders the system more 

likely to absorb optical illumination and cause potentially destructive heating.  Once 

again, a balance must be achieved between the material distribution of hybrid particles 

and the manipulation schemes being used. 

The interplay between magnetic and optical manipulation can reveal opportunities for 

cooperative control.  Numerical simulations suggest an optical scattering force can 

increase the average rotation rate of nonlinearly rotating hybrid microspheres, as long as 

absorption and heat generation do not obscure the effect.  As was calculated in Chapter 5, 

magnetic field strengths achievable in practice offer a superior means of rotating 
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appropriate micro-objects compared to optical torques typically found with optical 

tweezers.  But optical tweezers can provide a non-invasive method of translating or 

translationally confining individual microparticles, as was done to study the frictional 

properties of particles rolling while slipping along surfaces.  By reducing the laser 

intensity, we can control absorption and mitigate its effects of heat generation and 

scattering force to gain a potentially powerful sensor.  It is this synergistic balance 

between the particle materials and the manipulation schemes that provides opportunities 

for innovative research. 

8.2   Future Directions 

The work described in this thesis is far from an exhaustive account of even the most 

popular non-invasive manipulation methods and particle sensor architectures used in 

present day science.  Advances in optical and magnetic tweezers design continue to 

evolve as do developments in sensor probe design for nanobiotechnology.  Incorporation 

of these improvements into the research described here is just one possible future 

direction.  The microscopic size scale is ideal for the creation of cellular biomimetic 

devices and probes for extra-cellular studies while nano- and mesoscopic-sized probes 

can explore systems of smaller dimensions such as intra-cellular mechanisms, protein 

mechanics or virus morphology.  The scaling of our systems to the nanometer size regime 

is yet another prospective direction worth investigating. 

Numerous alternatives exist for the optical and magnetic manipulation of micro- and 

nanoscale particles.  Optical tweezing geometries other than the single beam gradient 

TEM00 mode trap could be used to three-dimensionally hold metallic and hybrid 

particles.  Two counter-propagating beams can trap absorptive particles by squeezing the 

particle axially using the scattering force from each side while radially trapping the 

particle using the gradient force of both beams.  Another option is to use spatial beam 

shaping to trap absorptive particles, such as TEM01 donut mode beams.  Such shaped 

helical mode beams can also transfer angular orbital momentum to particles [192] 

causing them to rotate due to applied optical torque.  Instead of having a single trap, 

holographic arrays of optical tweezers can be constructed using spatial light modulators 

to create computer-generated light distributions [193, 194].  By trapping magnetic 
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particles in such arrays, the dynamic motion of nonlinearly rotating particles interacting 

with each other can be studied.  Such systems may exhibit chaotic behavior or serve as 

models that mimic coupled-oscillating neurons.  Also, the use of electromagnets or 

electrically controlled magnetic pole structures could enable significantly increased 

magnetic field strengths that can be shut off or pulsed without affecting instrumentation 

alignment.  Increased magnetic torque as well as the introduction of optical torque may 

allow microrheology measurements in highly viscous or complex fluids.  Merging these 

manipulation alternatives [163-165] further enhances the flexibility of mechanically 

controlling hybrid particles. 

Our hybrid particles are mechanical sensors that measure properties such as viscosity, 

friction, and temperature in viscous fluids.  The devices, developed in the Kopelman 

Group, can naturally be extended to incorporate other sensing capabilities.  Hybrid 

particles containing gold or silver colloids can show evidence of surface enhanced Raman 

scattering.  Other hybrid particle architectures may provide easier plasmon tunability 

such as metal-dielectric core-shell particles [48, 107, 195].  Combining plasmonic hybrid 

particles [46-49] with optical tweezing [128, 196, 197] may provide developments 

toward new single-molecule spectral analysis techniques.  With the aid of optical 

tweezers, ultrafast characterization [198] and control [199] of nanoparticles could also 

yield new directions in research.  Ultrafast spectroscopy of single trapped nanoparticles 

or nanoparticle systems may offer a means of studying single-particle and single-

molecule femtochemistry.  Ultrafast optical tweezing of magnetic colloids and hybrid 

particles could also be used to measure demagnetization caused by laser-induced optical 

breakdown [200]. 

There are also many biological directions to which our hybrid particle systems and 

manipulation schemes can be applied.  The three-dimensional nonlinear rotation of 

hybrid particles likely depends on the shape anisotropy of the rotating particle.  Sensing 

changes in the nonlinear dynamical motion may allow shape or orientation differentiation 

of detected pathogens [66].  The rolling behavior of neutrophils along blood vessel 

walls [132, 137, 138] can be mimicked with our magnetic particle surface rolling 

experiments.  Further studies on adhesion and binding properties of the rolling objects 
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could be relevant in the fabrication of cell sorting and cell separation microfluidic [138, 

201] and optofluidic [202] devices. 

Finally, unexpected behaviors often emerge at the nanoscale.  It is unclear whether 

the motional behavior of our rotating hybrid particles is preserved at nanometer 

dimensions.  Small nanoparticles will absorb less light and thus generate less total heat 

when optically perturbed.  By scaling down our hybrid particles in size, not only can the 

spectral properties change, but the maximum achievable magnetic and optical torque 

magnitudes are also reduced.  Thermal fluctuations due to Brownian rotation can become 

significant thus affecting the nonlinear dynamical motion of the particles [203].  Such 

small nanosensors can serve as models of sub-cellular structures, be used to probe intra-

cellular environments themselves, as well as provide a platform for detecting even 

smaller biological entities such as proteins and viruses. 
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APPENDIX A 

 

NANOPARTICLES FOR TWO-PHOTON 
PHOTODYNAMIC THERAPY IN LIVING CELLS 



 

 188



 

 189



 

 190



 

 191



 

 192



 

 193



 

 194



 

 195

BIBLIOGRAPHY 



 

 196

 
 
[1] S.M. Buck, H. Xu, M. Brasuel, M.A. Philbert, and R. Kopelman, "Nanoscale 

probes encapsulated by biologically localized embedding (PEBBLEs) for ion 
sensing and imaging in live cells," Talanta 63(1), 41-59 (2004). 

 
[2] H. Xu, S.M. Buck, R. Kopelman, M.A. Philbert, M. Brasuel, B.D. Ross, and A. 

Rehemtulla, "Photoexcitation-based nano-explorers: Chemical analysis inside live 
cells and photodynamic therapy," Israel J. Chem. 44(1-3), 317-337 (2004). 

 
[3] S.L.R. Barker, R. Kopelman, T.E. Meyer, and M.A. Cusanovich, "Fiber-optic 

nitric oxide-selective biosensors and nanosensors," Anal. Chem. 70(5), 971-976 
(1998). 

 
[4] S.L.R. Barker and R. Kopelman, "Development and cellular applications of fiber 

optic nitric oxide sensors based on a gold-adsorbed fluorophore," Anal. Chem. 
70(23), 4902-4906 (1998). 

 
[5] S.L.R. Barker, H.A. Clark, S.F. Swallen, R. Kopelman, A.W. Tsang, and J.A. 

Swanson, "Ratiometric and fluorescence lifetime-based biosensors incorporating 
cytochrome c' and the detection of extra- and intracellular macrophage nitric 
oxide," Anal. Chem. 71(9), 1767-1772 (1999). 

 
[6] A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in 

the ray optics regime," Biophys. J. 61(2), 569-582 (1992). 
 
[7] A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," 

P. Natl. Acad. Sci. U.S.A. 94(10), 4853-4860 (1997). 
 
[8] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, "Observation of a single-

beam gradient force optical trap for dielectric particles," Opt. Lett. 11(5), 288-290 
(1986). 

 
[9] A. Ashkin and J.P. Gordon, "Stability of radiation-pressure particle traps - an 

optical Earnshaw theorem," Opt. Lett. 8(10), 511-513 (1983). 
 
[10] A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of 

single cells using infrared laser beams," Nature 330, 769-771 (1987). 
 
[11] A. Ashkin and J.M. Dziedzic, "Internal cell manipulation using infrared laser 

traps," P. Natl. Acad. Sci. U.S.A. 86, 7914-7918 (1989). 
 
[12] K.O. Greulich, G. Pilarczyk, A. Hoffmann, G. Meyer Zu Hörste, B. Schäfer, V. 

Uhl, and S. Monajembashi, "Micromanipulation by laser microbeam and optical 
tweezers: From plant cells to single molecules," J. Microsc. 198(Pt 3), 182-187 
(2000). 



 

 197

 
[13] A. Ashkin, K. Schütze, J.M. Dziedzic, U. Euteneuer, and M. Schliwa, "Force 

generation of organelle transport measured in vivo by an infrared laser trap," 
Nature 348(6299), 346-348 (1990). 

 
[14] H. Liang, W.H. Wright, S. Cheng, W. He, and M.W. Berns, "Micromanipulation 

of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in 
combination with laser-induced optical force (optical tweezers)," Exp. Cell Res. 
204(1), 110-120 (1993). 

 
[15] K. Sasaki, Z.Y. Shi, R. Kopelman, and H. Masuhara, "Three-dimensional pH 

microprobing with an optically-manipulated fluorescent particle," Chem. Lett.(2), 
141-142 (1996). 

 
[16] K. Svoboda and S.M. Block, "Optical trapping of metallic Rayleigh particles," 

Opt. Lett. 19(13), 930-932 (1994). 
 
[17] R.R. Agayan, C. Schmidt, F. Gittes, and R. Kopelman. "Laser tweezing near 

resonance absorption," in Photon Migration, Optical Coherence Tomography, 
and Microscopy. 2001: SPIE. 

 
[18] R.R. Agayan, F. Gittes, R. Kopelman, and C.F. Schmidt, "Optical trapping near 

resonance absorption," Appl. Optics 41(12), 2318-2327 (2002). 
 
[19] J.R. Arias-González and M. Nieto-Vesperinas, "Optical forces on small particles: 

attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. 
Am. A 20(7), 1201-1209 (2003). 

 
[20] F. Svedberg and M. Käll, "On the importance of optical forces in surface-

enhanced Raman scattering (SERS)," Faraday Discuss. 132, 35-44 (2006). 
 
[21] F.H.C. Crick and A.F.W. Hughes, "The physical properties of cytoplasm : A 

study by means of the magnetic particle method Part I. Experimental," Exp. Cell. 
Res. 1(1), 37-80 (1950). 

 
[22] F. Ziemann, J. Radler, and E. Sackmann, "Local measurements of viscoelastic 

moduli of entangled actin networks using an oscillating magnetic bead micro-
rheometer," Biophys. J. 66(6), 2210-2216 (1994). 

 
[23] F. Amblard, B. Yurke, A. Pargellis, and S. Leibler, "A magnetic manipulator for 

studying local rheology and micromechanical properties of biological systems," 
Rev. Sci. Instrum. 67(3), 818-827 (1996). 

 
[24] T.R. Strick, J.F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, "The 

elasticity of a single supercoiled DNA molecule," Science 271, 1835-1837 (1996). 
 



 

 198

[25] A. Bausch, W. Moller, and E. Sackmann, "Measurement of local viscoelasticity 
and forces in living cells by magnetic tweezers," Biophys. J. 76(1), 573-579 
(1999). 

 
[26] A. de Vries, B. Krenn, R. van Driel, and J. Kanger, "Micro magnetic tweezers for 

nanomanipulation inside live cells," Biophys. J. 88(3), 2137-2144 (2005). 
 
[27] M. Tanase, N. Biais, and M. Sheetz, "Magnetic tweezers in cell biology," 

Methods Cell. Biol. 83, 473-493 (2007). 
 
[28] C.J. Behrend, J.N. Anker, and R. Kopelman, "Brownian modulated optical 

nanoprobes," Appl. Phys. Lett. 84(1), 154-156 (2004). 
 
[29] J. Anker, C. Behrend, and R. Kopelman, "Aspherical magnetically modulated 

optical nanoprobes (MagMOONs)," J. Appl. Phys. 93(10), 6698-6700 (2003). 
 
[30] J. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. 

Phys. Lett. 82(7), 1102-1104 (2003). 
 
[31] C.J. Behrend, J.N. Anker, B.H. McNaughton, M. Brasuel, M.A. Philbert, and R. 

Kopelman, "Metal-capped Brownian and magnetically modulated optical 
nanoprobes (MOONs): Micromechanics in chemical and biological 
microenvironments," J. Phys. Chem. B 108(29), 10408-10414 (2004). 

 
[32] C.J. Behrend, J.N. Anker, B.H. McNaughton, and R. Kopelman, "Microrheology 

with modulated optical nanoprobes (MOONs)," J. Magn. Magn. Mater. 293(1), 
663-670 (2005). 

 
[33] B.H. McNaughton, K.A. Kehbein, J.N. Anker, and R. Kopelman, "Sudden 

breakdown in linear response of a rotationally driven magnetic microparticle and 
application to physical and chemical microsensing," J. Phys. Chem. B 110(38), 
18958-18964 (2006). 

 
[34] J.N. Anker, Modulated Optical Nanoprobes (MOONs) in the Nanokitchen, in 

Applied Physics. 2005, University of Michigan: Ann Arbor. 
 
[35] B.H. McNaughton, Magnetic micro and nano nonlinear oscillators with 

applications to the dynamic detection of a single bacterium and to physical and 
chemical sensing, in Applied Physics. 2007, University of Michigan: Ann Arbor. 

 
[36] F. Gittes and C.F. Schmidt, "Thermal noise limitations on micromechanical 

experiments," Eur. Biophys. J. Biophy. 27(1), 75-81 (1998). 
 
[37] S.H. Strogatz, Nonlinear Dynamics and Chaos. 1994: Addison-Wesley Reading, 

MA. 
 



 

 199

[38] C. Caroli and P. Pincus, "Response of an isolated magnetic grain suspended in a 
liquid to a rotating field," Z. Phys. B Con. Mat. 9(4), 311-319 (1969). 

 
[39] F. Caruso, "Nanoengineering of particle surfaces," Adv. Mater. 13(1), 11-22 

(2001). 
 
[40] E. Katz and I. Willner, "Integrated nanoparticle-biomolecule hybrid systems: 

Synthesis, properties, and applications," Angew. Chem. Int. Edit. 43(45), 6042-
6108 (2004). 

 
[41] A. Burns, H. Ow, and U. Wiesner, "Fluorescent core-shell silica nanoparticles: 

towards 'Lab on a Particle' architectures for nanobiotechnology," Chem. Soc. Rev. 
35(11), 1028-1042 (2006). 

 
[42] D.M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, "Directing energy 

flow through quantum dots: Towards nanoscale sensing," Anal. Bioanal. Chem. 
384(3), 564-571 (2006). 

 
[43] P. Jain, X. Huang, I. El-Sayed, and M. El-Sayed, "Review of some interesting 

surface plasmon resonance-enhanced properties of noble metal nanoparticles and 
their applications to biosystems," Plasmonics 2(3), 107-118 (2007). 

 
[44] S. Link and M.A. El-Sayed, "Spectral properties and relaxation dynamics of 

surface plasmon electronic oscillations in gold and silver nanodots and nanorods," 
J. Phys. Chem. B 103(40), 8410-8426 (1999). 

 
[45] W.A. Murray and W.L. Barnes, "Plasmonic materials," Adv. Mater. 19(22), 3771-

3782 (2007). 
 
[46] S.D. Hudson and G. Chumanov, "Synthesis and characterization of plasmonic 

asymmetric hybrid nanoparticles," Chem. Mater. 19(17), 4222-4227 (2007). 
 
[47] W. Shi, Y. Sahoo, M.T. Swihart, and P.N. Prasad, "Gold nanoshells on 

polystyrene cores for control of surface plasmon resonance," Langmuir 21(4), 
1610-1617 (2005). 

 
[48] H. Wang, D.W. Brandl, F. Le, P. Nordlander, and N.J. Halas, "Nanorice: A hybrid 

plasmonic nanostructure," Nano Lett. 6(4), 827-832 (2006). 
 
[49] E. Prodan, C. Radloff, N.J. Halas, and P. Nordlander, "A hybridization model for 

the plasmon response of complex nanostructures," Science 302(5644), 419-422 
(2003). 

 
[50] K.E. Peceros, X. Xu, S.R. Bulcock, and M.B. Cortie, "Dipole-dipole plasmon 

interactions in gold-on-polystyrene composites," J. Phys. Chem. B 109(46), 
21516-21520 (2005). 



 

 200

 
[51] J. Crowley, N. Sheridon, and L. Romano, "Dipole moments of gyricon balls," J. 

Electrostat. 55(3-4), 247-259 (2002). 
 
[52] J. Choi, Y. Zhao, D. Zhang, S. Chien, and Y.H. Lo, "Patterned fluorescent 

particles as nanoprobes for the investigation of molecular interactions," Nano 
Lett. 3(8), 995-1000 (2003). 

 
[53] F.S. Merkt, A. Erbe, and P. Leiderer, "Capped colloids as light-mills in optical 

traps," New J. Phys. 8(9), 216 (2006). 
 
[54] B.H. McNaughton, R.R. Agayan, J.X. Wang, and R. Kopelman, "Physiochemical 

microparticle sensors based on nonlinear magnetic oscillations," Sens. Actuators 
B 121(1), 330-340 (2007). 

 
[55] D. Pissuwan, S. Valenzuela, and M. Cortie, "Therapeutic possibilities of 

plasmonically heated gold nanoparticles," Trends Biotechnol. 24(2), 62-67 
(2006). 

 
[56] L.P. Ghislain, N.A. Switz, and W.W. Webb, "Measurement of small forces using 

an optical trap," Rev. Sci. Instrum. 65(9), 2762-2768 (1994). 
 
[57] Y. Liu, D.K. Cheng, G.J. Sonek, M.W. Berns, C.F. Chapman, and B.J. Tromberg, 

"Evidence for localized cell heating induced by infrared optical tweezers," 
Biophys. J. 68(5), 2137-2144 (1995). 

 
[58] A. Schönle and S.W. Hell, "Heating by absorption in the focus of an objective 

lens," Opt. Lett. 23, 325-327 (1998). 
 
[59] S.P. Gross, "Application of optical traps in vivo," Method. Enzymol. 361, 162-174 

(2003). 
 
[60] H. Mao, J.R. Arias-González, S.B. Smith, I. Tinoco Jr., and C. Bustamante, 

"Temperature control methods in a laser tweezers system," Biophys. J. 89(2), 
1308-1316 (2005). 

 
[61] E. Peterman, F. Gittes, and C. Schmidt, "Laser-induced heating in optical traps," 

Biophys. J. 84(2), 1308-1316 (2003). 
 
[62] R. Zondervan, F. Kulzer, H. van der Meer, J. Disselhorst, and M. Orrit, "Laser-

driven microsecond temperature cycles analyzed by fluorescence polarization 
microscopy," Biophys. J. 90(8), 2958-2969 (2006). 

 
[63] A. Govorov and H. Richardson, "Generating heat with metal nanoparticles," Nano 

Today 2(1), 30-38 (2007). 
 



 

 201

[64] Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: Enhanced optical 
trapping and sensitivity coupled with significant heating," Opt. Lett. 31(16), 2429-
2431 (2006). 

 
[65] R.R. Agayan, T. Horvath, B.H. McNaughton, J. Anker, and R. Kopelman. 

"Optical manipulation of metal-silica hybrid nanoparticles," in Optical Trapping 
and Optical Micromanipulation. 2004: SPIE. 

 
[66] B.H. McNaughton, R.R. Agayan, R. Clarke, R. Smith, and R. Kopelman, "Single 

bacterial cell detection with nonlinear rotational frequency shifts of driven 
magnetic microspheres," Appl. Phys. Lett. 91(22) (2007). 

 
[67] A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. 

Rev. Lett. 24(4), 156-159 (1970). 
 
[68] A. Ashkin, "Trapping of atoms by resonance radiation pressure," Phys. Rev. Lett. 

40(12), 729-732 (1978). 
 
[69] M.P. Sheetz, Laser Tweezers in Cell Biology. Methods in Cell Biology. Vol. 55. 

1998, New York: Academic Press. 
 
[70] K. Svoboda and S.M. Block, "Biological applications of optical forces," Annu. 

Rev. Bioph. Biom. 23, 247-285 (1994). 
 
[71] A. Ashkin, "Atomic-beam deflection by resonance-radiation pressure," Phys. Rev. 

Lett. 25(19), 1321-1324 (1970). 
 
[72] J.P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 

8(1), 14-21 (1973). 
 
[73] J.P. Gordon and A. Ashkin, "Motion of atoms in a radiation trap," Phys. Rev. A 

21(5), 1606-1617 (1980). 
 
[74] J.D. Jackson, Classical Electrodynamics. 1999, John Wiley & Sons, Inc.: New 

York. p. 309, 456-459. 
 
[75] Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the 

Rayleigh scattering regime," Opt. Commun. 124(5-6), 529-541 (1996). 
 
[76] A. Ashkin, J.M. Dziedzic, and P.W. Smith, "Continuous-wave self-focusing and 

self-trapping of light in artificial Kerr media," Opt. Lett. 7(6), 276-278 (1982). 
 
[77] J.E. Bjorkholm, R.R. Freeman, A. Ashkin, and D.B. Pearson, "Observation of 

focusing of neutral atoms by dipole forces of resonance-radiation pressure," Phys. 
Rev. Lett. 41(20), 1361-1364 (1978). 

 



 

 202

[78] S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental-observation of 
optically trapped atoms," Phys. Rev. Lett. 57(3), 314-317 (1986). 

 
[79] P. Meystre and M. Sargent III., Elements of Quantum Optics. 1999, New York: 

Springer. 
 
[80] P.C. Chaumet and M. Nieto-Vesperinas, "Time-averaged total force on a dipolar 

sphere in an electromagnetic field," Opt. Lett. 25(15), 1065-1067 (2000). 
 
[81] B.T. Draine, "The discrete-dipole approximation and its application to interstellar 

graphite grains," Astrophys. J. 333(2), 848-872 (1988). 
 
[82] H.C. van de Hulst, Light Scattering by Small Particles. 1957, New York: John 

Wiley & Sons, Inc. 
 
[83] A. Yariv, Quantum Electronics. 1989, New York: John Wiley & Sons, Inc. 
 
[84] J.P. Barton and D.R. Alexander, "5th-order corrected electromagnetic-field 

components for a fundamental Gaussian-beam," J. Appl. Phys. 66(7), 2800-2802 
(1989). 

 
[85] P.W. Milonni and J.H. Eberly, Lasers. 1988, New York: John Wiley & Sons, Inc. 
 
[86] A.E. Siegman, Lasers. 1986, Sausalito: University Science Books. 
 
[87] L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, in 

Electrodynamics of Continuous Media. 1960, Pergamon Press: New York. p. 280-
281. 

 
[88] N.W. Ashcroft and N.D. Mermin, Solid State Physics. 1976, New York: Saunders 

College Publishing. 
 
[89] R. Loudon, The Quantum Theory of Light. 1973, New York: Oxford University 

Press. 
 
[90] D.C. Cronemeyer, "Optical absorption characteristics of pink ruby," J. Opt. Soc. 

Am. 56(12), 1703-1706 (1966). 
 
[91] C.D. Keefe, "Curvefitting imaginary components of optical properties: 

Restrictions on the lineshape due to causality," J. Mol. Spectrosc. 205(2), 261-268 
(2001). 

 
[92] W.H. Press, S.A. Teulosky, W.T. Vetterling, and B.P. Flannery, Numerical 

Recipes in C. 2nd ed. 1992, Cambridge: Cambridge University Press. 
 



 

 203

[93] Goodfellow. Ruby.  2001  [cited 2001 September 3]; Available from: 
http://www.goodfellow.com/static/E/AJ60.HTML. 

 
[94] G.M. Hale and M.R. Querry, "Optical constants of water in the 200 nm to 200 µm 

wavelength region," Appl. Optics 12, 555-563 (1973). 
 
[95] K.C. Toussaint, M. Liu, M. Pelton, J. Pesic, M.J. Guffey, P. Guyot-Sionnest, and 

N.F. Scherer, "Plasmon resonance-based optical trapping of single and multiple 
Au nanoparticles," Opt. Express 15(19), 12017-12029 (2007). 

 
[96] A.S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, "Tunable 

optical sorting and manipulation of nanoparticles via plasmon excitation," Opt. 
Lett. 31(13), 2054-2056 (2006). 

 
[97] U. Bockelmann, "Single-molecule manipulation of nucleic acids," Curr. Opin. 

Struc. Biol. 14(3), 368-373 (2004). 
 
[98] D.G. Grier, "A revolution in optical manipulation," Nature 424(6950), 810-816 

(2003). 
 
[99] J.E. Molloy, K. Dholakia, and M.J. Padgett, "Preface: Optical tweezers in a new 

light," J. Mod. Optic 50(10), 1501-1507 (2003). 
 
[100] J.E. Molloy and M.J. Padgett, "Lights, action: Optical tweezers," Contemp. Phys. 

43(4), 241-258 (2002). 
 
[101] K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern-

formation and flow-control of fine particles by laser-scanning 
micromanipulation," Opt. Lett. 16(19), 1463-1465 (1991). 

 
[102] H.M. Warrick, R.M. Simmons, J.T. Finer, T.Q.P. Uyeda, S. Chu, and J.A. 

Spudich, "In vitro methods for measuring force and velocity of the actin-myosin 
interaction using purified proteins," Methods Cell. Biol. 39, 1-21 (1993). 

 
[103] E.R. Dufresne and D.G. Grier, "Optical tweezer arrays and optical substrates 

created with diffractive optics," Rev. Sci. Instrum. 69(5), 1974-1977 (1998). 
 
[104] J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, "Multi-functional optical 

tweezers using computer-generated holograms," Opt. Commun. 185(1-3), 77-82 
(2000). 

 
[105] A. Ashkin and J.M. Dziedzic, "Observation of light-scattering from nonspherical 

particles using optical levitation," Appl. Optics 19(5), 660-668 (1980). 
 
[106] P. Galajda and P. Ormos, "Complex micromachines produced and driven by 

light," Appl. Phys. Lett. 78(2), 249-251 (2001). 

http://www.goodfellow.com/static/E/AJ60.HTML


 

 204

 
[107] P. Viravathana and D.W.M. Marr, "Optical trapping of titania/silica core-shell 

colloidal particles," J. Colloid Interf. Sci. 221(2), 301-307 (2000). 
 
[108] W.E. Doering and S.M. Nie, "Spectroscopic tags using dye-embedded 

nanoparticies and surface-enhanced Raman scattering," Anal. Chem. 75(22), 
6171-6176 (2003). 

 
[109] X.H. Gao and S.M. Nie, "Quantum dot-encoded mesoporous beads with high 

brightness and uniformity: Rapid readout using flow cytometry," Anal. Chem. 
76(8), 2406-2410 (2004). 

 
[110] H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed 

Gaussian beam," Opt. Lett. 23(3), 216-218 (1998). 
 
[111] J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. 

Hanstorp, "Optical spectroscopy of single trapped metal nanoparticles in 
solution," Nano Lett. 4(1), 115-118 (2004). 

 
[112] F. Yan, H. Xu, J. Anker, R. Kopelman, B. Ross, A. Rehemtulla, and R. Reddy, 

"Synthesis and characterization of silica-embedded iron oxide nanoparticles for 
magnetic resonance imaging," J. Nanosci. Nanotechnol. 4(1-2), 72-76 (2004). 

 
[113] R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements 

of force and displacement using an optical trap," Biophys. J. 70(4), 1813-1822 
(1996). 

 
[114] W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, "Three-dimensional force 

calibration of optical tweezers," J. Mod. Optic 47(14-15), 2921-2931 (2000). 
 
[115] H. Felgner, O. Muller, and M. Schliwa, "Calibration of light forces in optical 

tweezers," Appl. Optics 34(6), 977-982 (1995). 
 
[116] N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, "Measurements of trapping 

efficiency and stiffness in optical tweezers," Opt. Commun. 214(1-6), 15-24 
(2002). 

 
[117] K. Berg-Sørensen and H. Flyvbjerg, "Power spectrum analysis for optical 

tweezers," Rev. Sci. Instrum. 75(3), 594-612 (2004). 
 
[118] A. Buosciolo, G. Pesce, and A. Sasso, "New calibration method for position 

detector for simultaneous measurements of force constants and local viscosity in 
optical tweezers," Opt. Commun. 230(4-6), 357-368 (2004). 

 



 

 205

[119] K. Berg-Sørensen, L. Oddershede, E.L. Florin, and H. Flyvbjerg, "Unintended 
filtering in a typical photodiode detection system for optical tweezers," J. Appl. 
Phys. 93(6), 3167-3176 (2003). 

 
[120] I.M. Tolic-Nørrelykke, K. Berg-Sørensen, and H. Flyvbjerg, "MatLab program 

for precision calibration of optical tweezers," Comput. Phys. Commun. 159(3), 
225-240 (2004). 

 
[121] F. Osterloh, H. Hiramatsu, R. Porter, and T. Guo, "Alkanethiol-induced structural 

rearrangements in silica-gold core-shell-type nanoparticle clusters: An 
opportunity for chemical sensor engineering," Langmuir 20(13), 5553-5558 
(2004). 

 
[122] Y.A. Sun and Y.N. Xia, "Triangular nanoplates of silver: Synthesis, 

characterization, and use as sacrificial templates for generating triangular 
nanorings of gold," Adv. Mater. 15(9), 695-699 (2003). 

 
[123] M. Born and E. Wolf, Principles of Optics. 6th ed. 1980, New York, NY: 

Cambridge University Press. 
 
[124] F. Gittes and C.F. Schmidt, "Interference model for back-focal-plane 

displacement detection in optical tweezers," Opt. Lett. 23(1), 7-9 (1998). 
 
[125] F. Gittes and C.F. Schmidt, "Signals and noise in micromechanical 

measurements," Methods Cell. Biol. 55, 129-156 (1998). 
 
[126] A.T. O'Neil and M.J. Padgett, "Three-dimensional optical confinement of micron-

sized metal particles and the decoupling of the spin and orbital angular 
momentum within an optical spanner," Opt. Commun. 185(1-3), 139-143 (2000). 

 
[127] H. Li, D. Zhou, H. Browne, and D. Klenerman, "Evidence for resonance optical 

trapping of individual fluorophore-labeled antibodies using single molecule 
fluorescence spectroscopy," J. Am. Chem. Soc. 128(17), 5711-5717 (2006). 

 
[128] P. Jordan, J. Cooper, G. McNay, F.T. Docherty, W.E. Smith, G. Sinclair, and M.J. 

Padgett, "Three-dimensional optical trapping of partially silvered silica 
microparticles," Opt. Lett. 29, 2488-2490 (2004). 

 
[129] Y. Xia, B. Gates, Y. Yin, and Y. Lu, "Monodispersed colloidal spheres: Old 

materials with new applications," Adv. Mater. 12(10), 693-713 (2000). 
 
[130] B. Bhushan, J. Israelachvili, and U. Landman, "Nanotribology: Friction, wear and 

lubrication at the atomic scale," Nature 374(6523), 607-616 (1995). 
 
[131] S. Kim, D. Asay, and M. Dugger, "Nanotribology and MEMS," Nano Today 2(5), 

22-29 (2007). 



 

 206

 
[132] I. Gebeshuber, "Biotribology inspires new technologies," Nano Today 2(5), 30-37 

(2007). 
 
[133] K.D. Bonin, B. Kourmanov, and T.G. Walker, "Light torque nanocontrol, 

nanomotors and nanorockers," Opt. Express 10(19), 984-989 (2002). 
 
[134] Z. Cheng, T. Mason, and P.M. Chaikin, "Periodic oscillation of a colloidal disk 

near a wall in an optical trap," Phys. Rev. E 68(5), 051404 (2003). 
 
[135] Z. Burton and B. Bhushan, "Hydrophobicity, adhesion, and friction properties of 

nanopatterned polymers and scale dependence for micro- and 
nanoelectromechanical systems," Nano Lett. 5(8), 1607-1613 (2005). 

 
[136] R. Duffadar and J. Davis, "Interaction of micrometer-scale particles with 

nanotextured surfaces in shear flow," J. Colloid Interf. Sci. 308(1), 20-29 (2007). 
 
[137] D.A. Hammer and S.M. Apte, "Simulation of cell rolling and adhesion on 

surfaces in shear flow: General results and analysis of selectin-mediated 
neutrophil adhesion," Biophys. J. 63(1), 35-57 (1992). 

 
[138] S. Hong, D. Lee, H. Zhang, J.Q. Zhang, J.N. Resvick, A. Khademhosseini, M.R. 

King, R. Langer, and J.M. Karp, "Covalent immobilization of P-selectin enhances 
cell rolling," Langmuir 23(24), 12261-12268 (2007). 

 
[139] K. Erglis, Q. Wen, V. Ose, A. Zeltins, A. Sharipo, P.A. Janmey, and A. Cēbers, 

"Dynamics of magnetotactic bacteria in a rotating magnetic field," Biophys. J. 
93(4), 1402-1412 (2007). 

 
[140] A. Cēbers and M. Ozols, "Dynamics of an active magnetic particle in a rotating 

magnetic field," Phys. Rev. E 73(2) (2006). 
 
[141] G. Helgesen, P. Pieranski, and A.T. Skjeltorp, "Nonlinear phenomena in systems 

of magnetic holes," Phys. Rev. Lett 64, 1425-1428 (1990). 
 
[142] W.A. Shelton, K.D. Bonin, and T.G. Walker, "Nonlinear motion of optically 

torqued nanorods," Phys. Rev. E 71(3), 036204 (2005). 
 
[143] B. Lin, J. Yu, and S. Rice, "Direct measurements of constrained Brownian motion 

of an isolated sphere between two walls," Phys. Rev. E 62(3), 3909 (2000). 
 
[144] R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, T. 

Fruhwirth, and S. Howorka, "Glass surfaces grafted with high-density 
poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays," 
Langmuir 22(1), 277-285 (2006). 

 



 

 207

[145] B.C. Carter, G.T. Shubeita, and S.P. Gross, "Tracking single particles: A user-
friendly quantitative evaluation," Physical Biology 2(1), 60-72 (2005). 

 
[146] A.J. Goldman, R.G. Cox, and H. Brenner, "Slow viscous motion of a sphere 

parallel to a plane wall--I Motion through a quiescent fluid," Chem. Eng. Sci. 
22(4), 637-651 (1967). 

 
[147] A. Davis, M. Kezirian, and H. Brenner, "On the Stokes-Einstein model of surface 

diffusion along solid surfaces: Slip boundary conditions," J. Colloid Interf. Sci. 
165(1), 129-140 (1994). 

 
[148] K.P. Galvin, Y. Zhao, and R.H. Davis, "Time-averaged hydrodynamic roughness 

of a noncolloidal sphere in low Reynolds number motion down an inclined 
plane," Phys. Fluids 13(11), 3108-3119 (2001). 

 
[149] J.R. Smart, S. Beimfohr, and D.T. Leighton Jr., "Measurement of the translational 

and rotational velocities of a noncolloidal sphere rolling down a smooth inclined 
plane at low Reynolds number," Phys. Fluids A 5(1), 13-24 (1993). 

 
[150] E.M. Purcell, "Life at low Reynolds number," Am. J. Phys. 45(1), 3-11 (1977). 
 
[151] M.R. Falvo, J. Steele, R.M. Taylor, and R. Superfine, "Gearlike rolling motion 

mediated by commensurate contact: Carbon nanotubes on HOPG," Phys. Rev. B 
62(16), R10665 (2000). 

 
[152] J. Walz and L. Suresh, "Study of the sedimentation of a single particle toward a 

flat plate," J. Chem. Phys. 103(24), 10714-10725 (1995). 
 
[153] J. Smart and D. Leighton, "Measurement of the hydrodynamic surface roughness 

of noncolloidal spheres," Phys. Fluids A 1(1), 52-60 (1989). 
 
[154] A.B. Djurisic and B.V. Stanic, "Modeling the temperature dependence of the 

index of refraction of liquid water in the visible and the near-ultraviolet ranges by 
a genetic algorithm," Appl. Optics 38, 11-17 (1999). 

 
[155] M.A. Brown and E.J. Staples, "Measurement of absolute particle-surface 

separation using total internal reflection microscopy and radiation pressure 
forces," Langmuir 6(7), 1260-1265 (1990). 

 
[156] M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, and H. Rubinsztein-Dunlop, 

"Optical alignment and spinning of laser-trapped microscopic particles," Nature 
394(6691), 348-350 (1998). 

 
[157] A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical 

application and measurement of torque on microparticles of isotropic 
nonabsorbing material," Phys. Rev. A 68(3), 033802 (2003). 



 

 208

 
[158] A.T. O'Neil and M.J. Padgett, "Rotational control within optical tweezers by use 

of a rotating aperture," Opt. Lett. 27, 743-745 (2002). 
 
[159] L. Paterson, M.P. Macdonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, 

"Controlled rotation of optically trapped microscopic particles," Science 
292(5518), 912-914 (2001). 

 
[160] Z. Luo, Y. Sun, and K. An, "An optical spin micromotor," Appl. Phys. Lett. 

76(13), 1779-1781 (2000). 
 
[161] Y. Song, S. Chang, and J. Jo, "Optically induced rotation of combined Mie 

particles within an evanescent field of a Gaussian beam," Jpn. J. Appl. Phys. 38, 
L380-L383 (1999). 

 
[162] M. Capitanio, D. Normanno, and F.S. Pavone, "High-precision measurements of 

light-induced torque on absorbing microspheres," Opt. Lett. 29(19), 2231-2233 
(2004). 

 
[163] L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. 

Dunlap, L. Finzi, and F.S. Pavone, "Three-dimensional magneto-optic trap for 
micro-object manipulation," Opt. Lett. 26(17), 1359-1361 (2001). 

 
[164] G. Romano, L. Sacconi, M. Capitanio, and F.S. Pavone, "Force and torque 

measurements using magnetic micro beads for single molecule biophysics," Opt. 
Commun. 215(4-6), 323-331 (2003). 

 
[165] D. Normanno, M. Capitanio, and F. Pavone, "Spin absorption, windmill, and 

magneto-optic effects in optical angular momentum transfer," Phys. Rev. A 70(5) 
(2004). 

 
[166] J.R. Robbins, D.A. Tierney, and H. Schmitzer, "Optically driven bacterial screw 

of Archimedes," Appl. Phys. Lett. 88(2) (2006). 
 
[167] M. Gitterman, "Order and chaos: Are they contradictory or complementary ?," 

Eur. J. Phys. 23, 119-122 (2002). 
 
[168] G. Videen and P. Chylek, "Scattering by a composite sphere with an absorbing 

inclusion and effective medium approximations," Opt. Commun. 158(1-6), 1-6 
(1998). 

 
[169] Y. Yang, S. Wang, Z. Sun, and D.D. Dlott, "Near-infrared and visible absorption 

spectroscopy of nano-energetic materials containing aluminum and boron," 
Propell. Explos. Pyrot. 30(3), 171-177 (2005). 

 



 

 209

[170] CRC Handbook of Chemistry and Physics, ed. D.R. Lide. 1997, New York: CRC 
Press. 

 
[171] M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr., and 

C.A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, 
Ag, Ti, and W in the infrared and far infrared," Appl. Optics 22(7), 1099-1119 
(1983). 

 
[172] X. Ma, J.Q. Lu, R.S. Brock, K.M. Jacobs, P. Yang, and X.H. Hu, "Determination 

of complex refractive index of polystyrene microspheres from 370 to 1610 nm," 
Phys. Med. Biol. 48, 4165-4172 (2003). 

 
[173] M. Meier and A. Wokaun, "Enhanced fields on large metal particles: Dynamic 

depolarization," Opt. Lett. 8, 581-583 (1983). 
 
[174] P.N. Shankar and M. Kumar, "Experimental determination of the kinematic 

viscosity of glycerol-water mixtures," Proc. R. Soc. London, Ser. A 444, 573-581 
(1994). 

 
[175] R. Omori, K. Shima, and A. Suzuki, "Rotation of optically trapped particles in 

air," Jpn. J. Appl. Phys. 38(7 A) (1999). 
 
[176] U.O. Hafeli, R. Ciocan, and J.P. Dailey, "Characterization of magnetic particles 

and microspheres and their magnetophoretic mobility using a digital microscopy 
method," Eur. Cells Mater. 3(Suppl. 2), 24-27 (2002). 

 
[177] L. Hong, S.M. Anthony, and S. Granick, "Rotation in suspension of a rod-shaped 

colloid," Langmuir 22(17), 7128-7131 (2006). 
 
[178] T.G.M. van de Ven, Colloidal Hydrodynamics. 1989, New York: Academic Press 

Limited. 
 
[179] F.Y. Yang, C.L. Chien, X.W. Li, G. Xiao, and A. Gupta, "Critical behavior of 

epitaxial half-metallic ferromagnetic CrO2 films," Phys. Rev. B 63(9), 092403 
(2001). 

 
[180] H. Liu, R.K. Zheng, Y. Wang, H.L. Bai, and X.X. Zhang, "Transport and 

magnetotransport properties of cold-pressed CrO2 powder," Phys. Status Solidi A 
202, 144-150 (2005). 

 
[181] G. Tas and H. Maris, "Electron diffusion in metals studied by picosecond 

ultrasonics," Phys. Rev. B 49(21), 15046 (1994). 
 
[182] L.L. Chase, "Optical properties of CrO2 and MoO2 from 0.1 to 6 eV," Phys. Rev. 

B 10(6), 2226 (1974). 
 



 

 210

[183] H. Brändle, D. Weller, S.S.P. Parkin, J.C. Scott, P. Fumagalli, W. Reim, R.J. 
Gambino, R. Ruf, and G. Gäntherodt, "Magneto-optical properties of CrO2," 
Phys. Rev. B 46(21), 13889 (1992). 

 
[184] E.J. Singley, C.P. Weber, D.N. Basov, A. Barry, and J.M.D. Coey, "Charge 

dynamics in the half-metallic ferromagnet CrO2," Phys. Rev. B 60(6), 4126 
(1999). 

 
[185] C.R. Wang, D.S. Yang, Y.Y. Chen, and J.C. Ho. "Magnetic and spin-glass-like 

behavior of CrO2 nanoparticles," in AIP Conference Proceedings. 2006: AIP. 
 
[186] Zhang, Xiaoyu, Chen, Yajie, Lu, Liya, Li, and Zhenya, "A potential oxide for 

magnetic refrigeration application: CrO2 particles," J. Phys. Condens. Matter 
18(44), L559-L566 (2006). 

 
[187] J.M.D. Coey and M. Venkatesan. "Half-metallic ferromagnetism: Example of 

CrO2 (invited)," in Journal of Applied Physics. 2002: AIP. 
 
[188] K. Keshoju, H. Xing, and L. Sun, "Magnetic field driven nanowire rotation in 

suspension," Appl. Phys. Lett. 91(12) (2007). 
 
[189] S. Biswal and A. Gast, "Rotational dynamics of semiflexible paramagnetic 

particle chains," Phys. Rev. E 69(4), 041406 (2004). 
 
[190] G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J.C. Bradley, and 

K.G. Kornev, "Carbon nanotubes loaded with magnetic particles," Nano Lett. 
5(5), 879-884 (2005). 

 
[191] B. Carrasco and J.G. de la Torre, "Improved hydrodynamic interaction in 

macromolecular bead models," J. Chem. Phys. 111(10), 4817-4826 (1999). 
 
[192] H. He, M.E.J. Friese, N.R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct 

observation of transfer of angular momentum to absorptive particles from a laser 
beam with a phase singularity," Phys. Rev. Lett. 75(5), 826-829 (1995). 

 
[193] D. Grier and Y. Roichman, "Holographic optical trapping," Appl. Optics 45(5), 

880-887 (2006). 
 
[194] S. Chapin, V. Germain, and E. Dufresne, "Automated trapping, assembly, and 

sorting with holographic optical tweezers," Opt. Express 14(26), 13095-13100 
(2006). 

 
[195] H. Hah, J. Um, S. Han, and S. Koo, "New synthetic route for preparing rattle-type 

silica particles with metal cores," Chem. Commun., 1012-1013 (2004). 
 



 

 211

[196] C. Xie and Li, "Raman spectra and optical trapping of highly refractive and 
nontransparent particles," Appl. Phys. Lett. 81, 951-953 (2002). 

 
[197] F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for 

surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 
6(12), 2639-2641 (2006). 

 
[198] J.W. Chan, H. Winhold, S.M. Lane, and T. Huser, "Optical trapping and coherent 

anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," 
IEEE J. Sel. Top. Quantum Electron. 11(4), 858-863 (2005). 

 
[199] Y. Jiang, Y. Matsumoto, Y. Hosokawa, H. Masuhara, and I. Oh, "Trapping and 

manipulation of a single micro-object in solution with femtosecond laser-induced 
mechanical force," Appl. Phys. Lett. 90(6) (2007). 

 
[200] J. Ye, L. Balogh, and T. Norris, "Enhancement of laser-induced optical 

breakdown using metal/dendrimer nanocomposites," Appl. Phys. Lett. 80(10), 
1713-1715 (2002). 

 
[201] H. Andersson and A. van den Berg, "Microfluidic devices for cellomics: A 

review," Sens. Actuators B 92(3), 315-325 (2003). 
 
[202] A.H.J. Yang and D. Erickson, "Stability analysis of optofluidic transport on solid-

core waveguiding structures," Nanotechnology 19(4), 45704-45714 (2008). 
 
[203] E. Bouzarth, A. Brooks, R. Camassa, H. Jing, T. Leiterman, R. McLaughlin, R. 

Superfine, J. Toledo, and L. Vicci, "Epicyclic orbits in a viscous fluid about a 
precessing rod: Theory and experiments at the micro- and macro-scales," Phys. 
Rev. E 76(1) (2007). 

 
 
 


	CHAPTER 1 
	1.2.1 Optical Tweezers
	1.2.2 Magnetic Rotation
	1.2.3 Dynamical Motion


	CHAPTER 2 
	2.3.1 Kramers-Kronig Consistent Response
	2.3.2 Enhancements in Trap Stiffness


	CHAPTER 3 
	3.2.1 Fluorescent Probes
	3.2.2 Aminated Silica Cores
	3.2.3 Silica-Gold Core-Shell Microspheres
	3.2.4 Silica-Silver Core-Shell Microspheres
	3.2.5 Silica-Metal Core-Half-Shell Microspheres
	3.2.6 Characterization Methods
	3.5.1 Fluorescent Probes
	3.5.2 Silica-Metal Core-Shell Hybrid Particles
	3.5.3 Silica-Gold Core-Half-Shells


	CHAPTER 4 
	4.1.1 Sample Preparation
	4.1.2 Optical and Magnetic Manipulation
	4.1.3 Image Analysis
	4.3.1 Free-Rolling Microspheres
	4.3.2 Optically Trapped Microspheres
	4.4.1 PEGylation vs. Non-PEGylation
	4.4.2 Particle Roughness


	CHAPTER 5 
	5.2.1 Optical Force Applied at Center of Anisotropic Particle
	5.2.2 Optical Force Applied Off-Center of Anisotropic Particle
	5.2.3 Optical Force Applied Off-Center of a Symmetric Particle
	5.3.1 Uniform Oscillator
	Effect of Initial Conditions – Bifurcations
	Saddle-Node Bifurcations

	5.3.2 Nonuniform Oscillator
	5.5.1 Synchronous Rotation (Phase-Locking)
	5.5.2 Asynchronous Rotation (Phase-Slipping)
	5.5.3 Optically Induced Phase-Locking
	5.5.4 Dependence on Optical Strength
	Standard Nonuniform Oscillator
	Optical Force Applied at Center of Anisotropic Particle 
	Optical Force Applied Off-Center of Anisotropic Particle
	Optical Force Applied Off-Center of a Symmetric Particle
	Approximated Effect of Translational Drag and Rotational Drag
	Approximated Effect of Translational and Rotational Brownian Motion



	CHAPTER 6 
	6.3.1 Magnetic Rotation
	6.3.2 Magnetic Rotation and Laser Illumination
	Frequency-Dependent Drag
	Increase in Average Rotation Rate With Laser Power
	Scattering Force
	Viscosity Decrease Due to Temperature Rise
	Changes in Magnetic Moments



	CHAPTER 7 
	7.1.1 Planar Solution
	7.1.2 Conical Solution


	CHAPTER 8 

