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CHAPTER I

Introduction

Uncertainty is ubiquitous because our knowledge is always limited. The effect

of uncertainty can often be small enough to be ignored, while sometimes it is too

risky not to take it into account. Especially when engineering products are de-

signed or pushed to their limits for maximum performance, uncertainty in engi-

neering design causes a variety of failures and malfunctions if it is not dealt with

properly. Therefore, engineers always make decisions under various forms of uncer-

tainty. Since many products today are large, complex systems, their design requires

multidisciplinary analyses involving significant interactions that may include uncer-

tain quantities due to uncertainty propagation between disciplines. Thus, we need to

estimate the propagated uncertainty to study how the design will perform. Estima-

tion of the propagated uncertainty is a numerically challenging task if the analysis

function is nonlinear. Thus, solving the design problem with All-In-One (AIO) meth-

ods, where the system is treated as a fully integrated single problem, may not be

practical or reliable for many problems. Moreover, the inclusion of uncertain quan-

tities in these interactions can strongly couple subsystems to each other [8]. Thus,

use of decomposition strategies in Multi-disciplinary Design Optimization (MDO) of

such systems, where the system is broken down into several manageable subsystems
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that are solved with traditional approaches, may be the only available solution ap-

proach. Decomposition strategies are classified as non-hierarchical or hierarchical,

as shown in Figure 1.1. Strategies for non-hierarchical partitions, such as Collabora-

tive Optimization (CO), Concurrent SubSpace Optimization (CSSO), and Bi-Level

Integrated System Synthesis (BLISS), often use two levels: sub-problems typically

representing different aspects (or disciplinary analyses) are optimized concurrently,

while a system-level problem coordinates the interactions between the sub-problems

[5, 11, 20, 37, 85, 86, 125]. On the other hand, hierarchical partitions contain multi-

ple levels of subsystems (typically representing physical components). Figure 1.1 (b)

shows an example of a hierarchically decomposed system in which each block repre-

sents an element constituting its parent (or the element at the upper level). Thus,

elements in hierarchical decomposition are coupled only between a parent and its

children while the interactions among elements with the same parents, the so-called

siblings, are not linked directly to each other but are coordinated by their parent.

This dissertation focuses on an MDO method for hierarchically decomposed systems

under uncertainty.

System

Subsystem

Subsystem

Subsystem

System

Subsytem Subsytem

Component Component Component Component

...

...

(a) Non-hierarchical decomposition (b) Hierarchical decomposition

Figure 1.1: System decomposition approaches
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1.1 Analytical Target Cascading and Probabilistic Analytical Target Cas-
cading

Analytical Target Cascading (ATC) is an optimization method for multilevel

hierarchical systems. A parent and its children are coupled by linking variables that

contain design targets tij and analysis responses rij. In a coordination strategy, a

parent element cascades targets to its children (the elements at the lower level) while

a child element tries to provide responses as close to these targets as possible. A

typical ATC subproblem is shown in Figure 1.2. In the figure, subscript i and j

are level and element indices, respectively. By updating the targets and response

iteratively, ATC can obtain the solution with sufficient consistency.

Parent

tij rij

ATC Subproblem (Pij)

local variables:  xij
local objective:   fij

local constraints: gij, hij
analysis function: aij

Child

t(i+1)k r(i+1)k

Child...

Level i

Level i+1

Level i-1

Pi(j-1) Pi(j+1)

ti(j-1)

ri(j-1) ti(j+1)

ri(j+1)

... ...

Children Children... ...

Figure 1.2: Example of ATC subproblem

Mathematically, the ATC process starts with an AIO problem formulation, prior
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to any decomposition, expressed as:

min
x̄11,...,x̄NM

N∑
i=1

∑
j∈Ei

fij(x̄ij)

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

where x̄ij = [xij, r(i+1)k], ∀k ∈ Cij,

rij = aij(x̄ij), ∀j ∈ Ei, i = 1, ..., N,

(1.1)

where N and M are the number of levels and elements, respectively. In Eq.(1.1), fij,

gij and hij are the separated objective, inequality and equality constraints of element

j at level i, respectively; Cij is the set of children of element j at level i, and Ei is the

set of elements at level i. The quantities rij are termed “response” of element j at

level i resulting from the decision x̄ij. Since the values from other elements in level

i+ 1 are needed to evaluate fij, gij, hij and rij, the copies of r(i+1)k, represented as

the “targets”, t(i+1)k, are created to separate the elements. Consistency constraints

are applied to make targets and responses consistent, namely,

cij = tij − rij = 0. (1.2)

The resulting modified AIO is expressed as:

min
x̄11,...,x̄NM

N∑
i=1

∑
j∈Ei

fij(x̄ij)

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

cij = tij − rij = 0,

where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

rij = aij(x̄ij), ∀j ∈ Ei, i = 1, ..., N.

(1.3)

Allowing inconsistencies among elements or relaxing the consistency constraints, cij,

enables a decomposition strategy. Specifically, the overall system can be consistent

at convergence by minimizing the deviation between elements throughout the ATC
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iterations. By monotonicity analysis [112], the consistency constraints are always

active. Previous ATC formulations utilized three types of relaxations that were

added to the objective: Quadratic Penalty (QP) [80, 105, 106], Ordinary Lagrangian

(OL) [88] and Augmented Lagrangian (AL) relaxations [126]. Letting π(tij − rij)

be a general constraint relaxation function and partitioning the problems, a typical

ATC subproblem Pij for element j at level i is formulated as:

min
x̄ij

fij(x̄ij) + π(cij) +
∑
k∈Cij

π(c(i+1)k)

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

cij = tij − rij, c(i+1)k = t(i+1)k − r(i+1)k

rij = aij(x̄ij), ∀j ∈ Ei, i = 1, ..., N.

(1.4)

While ATC has been successfully applied to several optimal design problems, only

a few publications are available that solve hierarchical system design optimization

problems under uncertainty due to the difficulty in incorporating uncertainty into

linking variables. Using random variables to represent uncertainty, the so-called

Probabilistic Analytical Target Cascading (PATC) has been formulated from the

deterministic ATC by Kokkolaras et al.[84], and generalized with general probabilistic

characteristics by Liu et al.[100]. The generalized PATC formulation for subproblem

Pij is expressed as:

Given Tij,R(i+1)k,

min
X̄ij

E[fij(X̄ij)] + π(Tij −Rij) + π(T(i+1)k −R(i+1)k)

subject to Pr[gij(X̄ij) ≤ 0] ≥ αij
where Rij = aij(X̄ij), X̄ij = [Xij,T(i+1)k],

∀k ∈ Cij, ∀j ∈ Ei, i = 1, ..., N,

(1.5)
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where Xij, Tij and Rij are assumed to be the vectors of normal random variables

and π is a general relaxation function. Since matching two random variables is not

practically doable in most cases, system consistency of PATC is defined by the choice

of random variable representation. In the previously published PATC formulations,

the first few moments are used as targets and responses. Even with the first few

moments, however, computing the solution is very expensive if response functions in

child elements are nonlinear due to computational difficulty in estimating propagated

uncertainty. Thus, this dissertation investigates a solution approach to improve the

computational efficiency for PATC with sufficient accuracy.

1.2 Motivation

In probabilistic formulations, uncertainty is defined using random variables, as-

suming that their Probability Density Functions (PDFs) can be inferred. In other

words, design variables, parameters or both can be random variables resulting in ob-

jective, constraint and analysis function values that are also random variables whose

distributions need to be estimated to solve the problem. Estimating the propagated

uncertainty, however, can be a very challenging and computationally expensive task

for nonlinear functions. Even with a simple univariate function, the output of a non-

linear function is typically distributed differently from the distribution of the input,

as illustrated in Figure 1.3 (a). For a linear function, obtaining the analytical expres-

sion of the output distribution can still be very demanding if the function contains

multiple random variables. Suppose that X and Y are independent and have con-

tinuous distributions with densities fX and fY respectively and Z = X + Y . Then

the PDF of Z, fZ can be obtained from the convolution of fX and fY , expressed as
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follows:

fZ(z) = (fX ∗ fY )(z) =

∫
fX(x)fY (z − x)dx (1.6)

Thus, obtaining the exact value of Eq.(1.6) can still be challenging for arbitrary

distributions. Since the convolution of independent normal distributions is normally

distributed, however, the uncertainty propagation for a linear system with normally

distributed inputs can be obtained efficiently, as presented in Figure 1.3 (b).

Linear 
Functions

Nonlinear 
Functions

(a) Nonlinear functions (b) Linear functions

Figure 1.3: Uncertainty propagation through nonlinear and linear functions

In order to overcome the general difficulty in uncertainty propagation, Chan et

al. [28] proposed the use of Sequential Linear Programming (SLP) to solve reliability

based design optimization problems for a single system, with the goal of achieving an

appropriate balance between accuracy, efficiency and convergence behavior. Thus,

assuming that random design variables or parameters are normally distributed (or

can be approximated to be normal distributions), the algorithm takes advantage of

the simplicity and ease of uncertainty propagation for a linear system by linearizing

and solving a problem successively.

The benefit of sequential linearization can be more significant for decomposed

systems. As pointed out in Liu et al. [100], the choice of probabilistic characteristic

is an important issue in MDO under uncertainty because it is not practical to match

two distributions exactly. Thus, in the previous literature, the first few moments are

used to maintain consistency in coupling variables, where coupling variables mean
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Nonlinear 
Functions

Nonlinear 
Functions

Nonlinear 
Functions

Estimator Estimator

Linear 
Functions

Linear 
Functions

Linear 
Functions

(a) Nonlinear functions in multilevel structures (b) Linear functions in multilevel structures

Figure 1.4: Benefit of sequential linearization in decomposition strategies

linking variables that are analysis outputs from one system and required to compute

other systems. In order to obtain the first few moments, however, additional estima-

tors between subsystems need to be used for coupling variables because the PDFs

of linking variables are unknown, as illustrated in Figure 1.4 (a). The estimators

typically require a considerable amount of computational cost, depending on the ac-

curacy of estimation. On the other hand, once the system is approximated linearly

and the random variables are normally distributed, the coupling variables also have

normal distributions. In other words, no estimators are needed, as shown in Figure

1.4 (b).

1.3 Hybrid Electric Fuel Cell Vehicle Design

In order to understand the need for efficient coordination strategies for PATC,

Figure 1.5 represents a Hybrid Electric Fuel Cell Vehicle (HEFCV) as an example

of a hierarchically decomposed system. Similar to other types of vehicles, a HEFCV

is a complex system consisting of a large number of subsystems represented by the
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Vehicle

Powertrain

Fuel CellBattery Hydrogen 
Strorage MotorsGears

Electronics Chassis

Fuel Cell
Stacks CompressorReactant 

Control

... ...

......

... ...

Figure 1.5: Representation of a hybrid electric fuel cell vehicle as a hierarchically decom-
posed system

blocks in the hierarchy. Because a large number of subsystems are involved, the

HEFCV is likely to have considerable uncertainty sources in the engineering design

problem. For example, manufacturing processes of subsystems can cause randomness

in dimensions, such as cell thickness in fuel cells and battery cells. Because cells in

fuel cell stacks and battery modules are stacked in series and pressed, the thickness

of each cell can be varied depending on how uniformly the pressure is distributed

over the stacks and modules. On the other hand, the cell thickness can be varied by

in-use environmental parameters because the electrochemical reactions in the cells

change in temperature, humidity and pressure. Moreover, since the rate of reactions

is not uniform across the stacks and modules, the properties in the cells are not

homogenous, which also causes randomness in cell thickness. In addition to ran-

dom cell thicknesses, many other manufacturing processes and in-use environmental

parameters are uncertain in engineering design problems, for which it is equally in-

appropriate and incorrect to use single deterministic values to represent the variable

behavior.
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Uncertainty does not only come from the inside of engineering problems (en-

dogenous uncertainty) but also from the outside of engineering problems (exoge-

nous uncertainty), such as the inconsistency of customer preferences and volatility

of material and fuel costs. Exogenous uncertainty from customers is critical for new

technologies because less information is available about how the market will react

to the new technologies and more resources and costs are involved to introduce the

new technologies. Therefore, in order to estimate the adaptability or feasibility of

an alternative energy system such as fuel cells, we need to rely on market forces to

shape our energy future rather than attempting to dictate what fuels are to be used,

according to American Petroleum Institute President Red Cavaney, as quoted in the

Senate Environment & Public Works Committee in November 2005 [71]. In other

words, it is necessary to include an enterprise decision model connecting customer

preferences and marketing decisions to engineering design problems [104].

1.4 Dissertation Objectives

In order to solve a hierarchical system design optimization problem under un-

certainty, such as the HEFCV design problem, efficient approaches to coordinate

PATC are required. Therefore, the objective of this dissertation is to contribute to

the development of the approaches by exploiting sequential linearization. In this

dissertation, we only consider uncertainty in design variables, leaving uncertainty

in parameters outside our scope, because the proposed coordination strategies focus

on uncertain linking variables that are added due to decomposition. The proposed

coordination strategies and their proofs, however, are valid for both random design

variables and parameters with minor notational modifications on subproblem for-
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mulations. These uncertainties in terms of random variables are incorporated into

the PATC framework and their effects on the interactions among subsystems are

investigated. In order to achieve the goals, several areas will be focused on:

1. Mathematical formulations of hierarchical decompositions for sequential lin-

earization. This dissertation introduces L∞ norms for relaxation in order to

make ATC and PATC linear and differentiable.

2. Analytical methodologies for coordinating subsystems. Using SLP algorithms

and the Hierarchical Overlapping Coordination (HOC) strategy in [106], method-

ologies are developed to obtain an optimal solution for ATC and PATC formu-

lations.

3. Efficient methodologies for reducing computations. Taking advantage of the

properties of weakly-coupled elements, methodologies are devised to reduce the

number of function evaluations.

4. System-level formulation for application in Hybrid Electric Fuel Cell Vehicle

(HEFCV). Hierarchical design problems under uncertainty are formulated and

utilized for HEFCV. This also addresses solving problems where multiple un-

certainties exist in different subsystems.

1.5 Dissertation Overview

The remainder of this dissertation is organized as follows. Literature is reviewed

in Chapter 2 in three categories: uncertainty propagation of random variables, design

optimization under uncertainty and MDO under uncertainty. Chapter 3 discusses

the SLP coordination strategy for ATC, including mathematical formulations and
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convergence proofs. A suspension strategy is also introduced to reduce computations

further. The SLP coordination strategy is extended to PATC in Chapter 4. The

suspension strategy is applied again for the probabilistic formulation. Both Chapter

3 and Chapter 4 include analytical examples to show the efficiency and accuracy

of the proposed methodologies. Chapter 5 demonstrates a comprehensive HEFCV

design problem under uncertainty that includes fuel cell system, battery, vehicle and

enterprise decision models. Chapter 6 concludes the dissertation and provides some

ideas for future research.



CHAPTER II

Theoretical Background

2.1 Introduction

In this chapter, previous research on uncertainty in Multi-disciplinary Design Op-

timization (MDO) is reviewed, beginning with the representation and propagation of

uncertainty and extending to the coordination of subproblems with uncertain vari-

ables. The first step to understanding how uncertainty affects design optimization

is to represent uncertainty with mathematical models. Various uncertainty models

exist in the literature for different application fields, which require different methods

to estimate their propagation: e.g., interval models [107], convex models [15], fuzzy

sets [144], and random variables [46, 113]. Here we focus on random variable models

because they are a popular and effective way to define uncertainty in design opti-

mization under uncertainty. The chapter starts with a review of random variables

and how to estimate their propagation through objective and constraint functions

in Section 2.2. Problem formulations for a single system are discussed in Section

2.3. After reviewing Analytical Target Cascading (ATC) formulations, Section 2.4

focuses on MDO methods under uncertainty, especially for Probabilistic Analytical

Target Cascading (PATC).

13
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2.2 Random Variables

Mathematically a random variable, X , is a measurable function from a probabil-

ity space into a measurable space of possible values of the variable [46]. Therefore,

the value of the random variable will vary as the experiment is repeated. A random

variable requires an infinite number of measurements to infer its probability distri-

bution. In practice, a sufficiently large number of measurements is assumed to be

enough to infer the true probability distribution accurately.

If X can take an infinite number of possible values, X is called a continuous

random variable, while a discrete random variable can take only a finite number of

possible values. A Probability Density Function (PDF) is a common way to represent

continuous random variables. A PDF, denoted as fX , represents the frequency or

probability of a random variable X being located within an interval D, and satisfies

the conditions

fX(t) ≥ 0 ∀t ∈ D (2.1)∫ ∞
−∞

fX(t)dt = 1. (2.2)

The probability of a continuous X being within the range [a, b] can be calculated by

integrating its PDF over the domain [a, b], as shown in Eq.(2.3).

∫ b

a

fX(t)dt = Pr[a ≤ X ≤ b] (2.3)

On the other hand, for discrete random variables, a Probability Mass Function

(PMF) of X, pX(xi), is defined as the function that indicates the probability that X
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is equal to xi, and satisfies the following properties:

pX(xi) ≥ 0 ∀xi ∈ D∑
i

pX(xi) = 1. (2.4)

In addition to the PDF, a Cumulative Distribution Function (CDF) describes the

probability that a continuous random variable X takes on a value less than or equal

to x and is expressed as

FX(x) = Pr[X ≤ x] =

∫ x

−∞
fX(t)dt. (2.5)

Similarly, a Cumulative Mass Function (CMF) for a discrete random variable is

defined as follows.

FX(x) = Pr[X ≤ x] =
∑
i:xi≤x

pX(xi). (2.6)

This dissertation considers continuous random variables only and leaves the rest of

the models open for further investigation.

Due to the difficulty of realizing a distribution from PDF or CDF information,

some parameters are used to characterize the distribution. The most common pa-

rameters are listed as follows.

• Expected value, E[X] : the expected value (or mathematical expectation) of a

random variable is the sum of the probability of each possible outcome multi-

plied by its value. For continuous X,

E[X] = µX =

∫ ∞
−∞

tfX(t)dt. (2.7)

• Variance, Var[X] : the variance of a random variable is a measure of its statisti-

cal dispersion, indicating how its possible values are spread around the expected
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value.

Var[X] = E[(X − µX)2] (2.8)

• Percentile, xp : the ‘p’th percentile is a value on a scale of one hundred that

indicates the p percent of a distribution, which satisfies Eq.(2.9). For example,

5th percentile x5 indicates that 5 % of the possible value of X are smaller than

x5. The 50th percentile is called the median.

FX(xp) = p% (2.9)

• Central moment, E[X − E[X]k] : the ‘k’th central moment in mathematics,

evolved from the concept of a moment in physics, is defined as the quantity

satisfying Eq.(2.10).

E[X − E[X]k] =

∫ ∞
−∞

(t− µX)kfX(t)dt (2.10)

Functions of Random Variables

If design variables or parameters are random variables with known distributions,

the resulting values of objective, constraint and analysis functions are random vari-

ables whose distributions are unknown in general. For example, let Eq.(2.11) be a

function of random variables X = {X1, ..., Xn}.

Y = g(X) (2.11)

If g(X) is simply linear, the mean of Y , µY , is simply the sum of µXi . If g(X) is

simply linear and Xis are independent, the variance of Y is the sum of Var[Xi]s. The

PDF of the output Y , however, is defined as in Eq.(2.12).

Pr[y ≤ Y ≤ y + dy] =

∫
y≤Y≤y+dy

· · ·
∫
fY (x)dx (2.12)
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Even if g(X) is a univariate function, an analytical solution of Eq.(2.12) is difficult

to obtain in general because the number of segments satisfying y ≤ Y ≤ y + dy

can be more than one, unless g(X) is monotonic (as illustrated in Figure 2.1), and

it is difficult to obtain x = g−1(y) from y = g(x), even if g(x) is an analytical

function. Since most engineering problems contain a number of nonlinear or multidi-

mensional functions or even simulation-based functions, the direct calculation for an

analytical solution is not plausible. Therefore, a number of numerical methods for

calculating uncertainty propagation have been developed in various fields for different

purposes. These methods can be classified into five categories: sampling techniques,

local expansion, most probable point, functional expansion, and numerical integra-

tion methods [91]. We review these methods in more detail below.

y = g(x)

y

y + dy

x1 x1 + dx1 x2 + dx2x2

x

y

Figure 2.1: Direct Calculation (modified from [26])

2.2.1 Sampling Techniques

Due to its simplicity, several sampling approaches based on Monte Carlo Simula-

tion (MCS) have been developed and widely used in engineering problems to estimate

the output PDF of a model due to its simplicity [66]. MCS is able to obtain accurate

fX with a sufficiently large number of samples.
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With more samples, MCS can capture the characteristics of a system function

more accurately. Mathematically, the accuracy of Monte Carlo simulation has been

calculated by Shooman [121], as in Eq.(2.13),

ε% =

√
1− pTf
N · pTf

· 200%, (2.13)

where pTf is the true probability of failure and N is the number of samples. From

Eq.(2.13) the error ε is a function of both the number of simulations and the actual

probability. However, the actual probability is usually unknown and MCS is utilized

to approximate it. Thus, when MCS is applied to achieve an accurate estimation of

the probability of failure, computational time becomes a significant challenge. For

example, in a design problem with n random variables, n million random numbers

are necessary if MCS is to successfully estimate the probability of failure [66].

Based on the above, MCS may not be a practical approach for design optimiza-

tion problems that require a significant number of iterations. Several modification

of MCS have been proposed to reduce the number of samples without sacrificing

the simplicity and accuracy of MCS, including Quasi-Monte Carlo methods [130],

Hammersly sampling techniques [42, 43], β-sphere importance sampling [68], strati-

fied sampling [66] and adaptive sampling [75, 133, 134]. By sampling around regions

of importance, these methods improve numerical efficiency, but the computational

challenge remains high, particularly when the individual simulation cost is high.

2.2.2 Local Expansion Methods

The local expansion methods approximate g(X) through first or second order

Taylor series expansions or perturbation methods. The First Order Second Moment

(FOSM) (sometimes called mean value method [137]) is the most popular method
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in this category, approximating the nonlinear function at the design point µX as

expressed in Eq.(2.14).

ĝFOSM ≈ g(µX) +
n∑
i=1

∂g

∂xi

∣∣∣∣
µXi

· (x− µXi) (2.14)

Let Xi be independent normally random variables (Xi ∼ N(µXi , σ
2
Xi

), ∀i = 1, ..., n).

If g(X) is approximated linearly by Eq.(2.14), the output distribution of the approx-

imated function is still a normal distribution with parameters as shown in Eq.(2.15).

ĝFOSM(X) ∼ N(µg, σ
2
g) where


µg = g(µX)

σ2
g =

n∑
i=1

(
∂g

∂xi

)2

σ2
Xi

(2.15)
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Figure 2.3: Limit State Function

given threshold Pfi . The new problem is summarized in Equation (2.16).

minimize E[f(x, p)]

with respect to x = {xd, xr}
subject to P [gi(x, p) ≥ 0] ≤ pfi

gj(xd, pd) ≤ 0

(2.16)

The probabilistic constraints in Equation (2.16) can be evaluated analytically by

Equation ( 2.17) where f(x1, ..., xn) is the joint PDF of the random design variables.

P [gi(x, p) ≥ 0] =

∫
...

∫
f(x1...xn)dx1...dxn ≤ pfi (2.17)

However, there are some difficulties in evaluating a probabilistic constraint. The

joint PDF function is usually unavailable in practice. This is mostly due to the fact

that most of the design variables for the engineering problems are correlated with

each other. By varying one variable, the random characteristics of the other variables

Figure 2.2: Example of limit state function

Let the constraint boundary g(X) = 0 be the ‘limit state’ as shown in Fig. 2.2.

In general, nonlinear limit state functions are approximated as linear or quadratic

functions, and the probability of violating the limit states is approximated as the
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probability of violating the approximated functions. The probability of violating

the approximated functions can be calculated easily using the error function (erf) as

shown in Eq.(2.16).

Pr[gj(X) > 0] = 1−
∫ 0

−∞

1√
2πσgj

e
−

(t−µgj)
2

2σ2
gj dt

= 1− 1

2

[
1 + erf

(
−µgj
σgj
√

2

)]
(2.16)

= 1− Φ

(−µgj
σgj

)
, (2.17)

where Φ is the CDF of a standard normal distribution (N(0, 1)). Letting U be a

standard normal vector (Ui ∼ N(0, 1), ∀i = 1, ..., n), we have U = (X−µX)
σX

. The term

inside Φ in Eq.(2.17) is defined as the reliability index β that can be interpreted as

the shortest distance from the design point to the approximated limit state in the U

space [70] as illustrated in Fig. 2.3.

g(µX)

ĝ(µX)

ĝ = 0

g = 0

β

µX

Figure 2.3: Approximated reliability index β by first order second moment

For non-normally distributed random variables, Rosenblatt [118] proposed a method

to transfer their distributions into equivalent normal distributions with equivalent

means and standard deviations (N(µe, σe)). Then, the probability of violating a

linear constraint can be written as Φ(−βe). The Rosenblatt transformation is not

applicable unless joint CDFs or conditional CDFs are given. Because complete in-
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formation is not available in many industrial applications, Choi et al. [33] recently

developed a new transformation technique using Nataf transformation to approxi-

mate joint CDFs or conditional CDFs. Note that these transformation methods can

be used for other categories of uncertainty propagation.

Due to its simplicity, this approach is also referred to as fast reliability integration

in the literature [69]. Since the approximation is made at the design point, success

with this approach can be highly unpredictable depending on how the linear function

is approximated. Wu [135] proposed an Advanced Mean Value method (AMV) to

consider high order terms of Taylor series expansion and improve the accuracy of

FOSM in the tail regions.

2.2.3 Most Probable Point Methods

Similar to the local expansion methods, methods in this category also approximate

g(X) through a first or second order Taylor series expansion. The difference is,

however, that the approximation is made at the Most Probable Point (MPP) not at

the mean. MPP is defined as a point that lies on the limit state having the shortest

distance to the design point, which is interpreted to mean that the failure probability

along the limit state is higher than at any other point. Thus, compared to the local

expansion methods, the methods in this category require the solution of an additional

optimization subproblem to find the MPP. Eq.(2.18) shows a formulation for this

optimization subproblem, which is called the reliability index approach (RIA):

min
u

uTu

s.t. G(u) = 0

where u =
x− µX

σX

and G(u) = g(x). (2.18)
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The feasibility of a probabilistic constraint is determined by comparing the reliability

index β =
√

uTu with a target reliability index βt = −Φ−1(pf j). A probabilistic

constraint is feasible if β > βt.

The probability of violating the limit state function can also be reformulated as

in Eq.(2.19), representing the approach proposed in [32], namely the Performance

Measure Approach (PMA):

Pr[g(x) ≥ 0] = Φ(−β) ≤ pf = Φ(−βt)

⇒ Fg(0) = Pr[g(x) ≥ 0] ≤ Φ(−βt)

⇒ GPf = F−1
g (Φ(−βt)) ≥ 0 (2.19)

where Gp is called the performance measure for PMA. This measure is further used

as an index for the original reliability constraint in order to maintain the feasibility of

the probabilistic constraint. Calculating this performance measure requires solving

the optimization problem Eq.(2.20),

min
u

G(u)

s.t. ‖u‖ = βt. (2.20)

RIA is a commonly used and well-developed approach. However, since the con-

vergence of reliability analysis using PMA is inherently more robust and efficient

than RIA, PMA is usually preferred [4, 19, 34, 140, 141].

In order to apply the MPP methods to optimization problems with probabilistic

constraints, two coupled optimization loops need to be solved. A nested MPP loop

needs to be solved for every iteration of the outer optimization loop. In order to

reduce computational costs related to the nested optimization, a lot of effort has
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been made to develop efficient methods for the MPP loop, such as the advanced

mean value method [136], hybrid mean value method [142], sequential optimization

and reliability analysis [50], and the design potential method [127]. Also optimality

conditions of the MPP subproblem are integrated in the outer problem as equality

constraints, which turns double loop problems into “single loop” ones [31, 95].

Once the MPP is obtained, the approximation is made at the MPP after convert-

ing the design variables into a U space representation: the First Order Reliability

Method (FORM) creates a linear approximation, as expressed in Eq. (2.21), while

the Second Order Reliability Method (SORM) includes the curvature of the nonlinear

limit state function, as expressed in Eq.(2.22).

ĝFORM ≈ g(xMPP) +∇gT (xMPP) · (X− xMPP), (2.21)

ĝSORM ≈ g(xMPP) +∇gT (xMPP) · (X− xMPP)

+
1

2
(X− xMPP)T · ∇2g(xMPP) · (X− xMPP). (2.22)

FORM can estimate the probability of failure efficiently but the results may

not be accurate enough to be used for design problems [36] with highly nonlinear

limit state functions. In order to overcome this limitation, several methods have

been proposed to modify the FORM formulation, including a combination of safety

factors and failure probability [25], and an alternative reliability index with curvature

information [41, 129].

On the other hand, SORM can improve the accuracy of probability estimation

by considering the Hessian of the constraint g(X) at the MPP. Since the Hessian is

required, SORM increases the cost of computation significantly relative to FORM.

Historical development of SORM can be found in [21, 22, 55]. Discussions about
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applicable ranges of FORM and SORM are presented in [146]. An alternative SORM

is proposed by Zhao et al. [147, 148]. FORM/SORM is applicable for general non-

normal random variables using transformations discussed in Section 2.2.2.

2.2.4 Numerical Integration Methods

In addition to sampling and expansion techniques, uncertainty propagation in

system optimization output can be obtained by numerical integration methods. In

these methods, statistical moments are calculated by moment-matching equations

and used to approximate the PDF from empirical distribution systems, such as the

Pearson family. The numerical integration methods rely on the principle that the

first few moments of a random variable will adequately describe the complete PDF

of the variable. While the PDF contains all the information on a random variable,

occasionally, an engineering application does not require all this information but only

excerpts that sufficiently characterize the distribution. In practice, this means that

computing some moments of the distribution will be sufficient.

Let fX be the joint PDF of the n dimensional vector of random variables X. If

n = 1, the kth center moment of g(X) can be approximated by the m-node Gaussian

type integration rule for statistical moments, expressed as

E
[
gk
]

=

∫ ∞
−∞

{
g(x)

}k
fX(x)dx ≈

m∑
i=1

wi
[
g(µX + αiσX)

]k
, (2.23)

where αi, wi are the location parameters and weights at the ith quadrature point.

By letting g(X) = X−µX , the solutions of αi, wi can be obtained using the moment-

matching equation, expressed as

kth moment : Mk =

∫ ∞
−∞

(x− µX)kfX(x)dx =
m∑
i=1

wi(αiσX)k

for k = 0, ..., 2m− 1, (2.24)
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where Mk should be given from the input distribution. Even though solving 2m

equations of Eq.(2.24) is not a simple task, they can be directly derived from the

Gauss-Hermite, Gauss-Legendre, and Gauss-Laguerre quadrature formulas, if X is

the normal, uniform and exponential distribution, respectively.

If g(X) is a n dimensional function, Eq.(2.23) can be expanded as

E
[
gk
]

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

{
g(x1, · · · , xn)

}k
fX(x1, · · · , xn)dx (2.25)

≈
m∑
i1=1

wi1
[
g(µX1 + αi1σX1 , · · ·µXn)

]k · · · m∑
in=1

win
[
g(µX1 , · · · , µXn + αinσXn)

]k
,

where αij and wij can be provided by solving Eq.(2.24) for Xj. Because the number

of function evaluations is mn, similar to a full factorial design in the DOE point of

view, this method is named as the Full Factorial Moment Method (FFMM) [92, 93]

or the Full Factorial Numerical Integration (FFNI) [91]

The computational cost of FFMM or FFNI is exponential in the number of vari-

ables. In order to calculate the kth moment of g(X) with fewer samples, a Univariate

Dimension Reduction (UDR) method was developed recently [117, 138], where the

multi-dimensional moment integral of Eq.(2.25) is computed by multiple reduced-

dimensional integrals based on additive decomposition of the performance function

as follows:

E
[
gk
] ≈ E

[
ĝk
]

= E

{ n∑
i=1

gi(xi)− (n− 1)g(µX)

}k


=

∫ ∞
−∞

{
n∑
i=1

gi(xi)− (n− 1)g(µX)

}k

fXi(xi)dxi, (2.26)

where gi(xi) = g(µX1 , ..., xi, ...µXn).

Using a bionomial formula, evaluation of Eq.(2.26) can be performed algebraically

by recursively executing one-dimensional integration. The number of function evalu-
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ations required is less than mn+ 1, increasing linearly with the number of variables.

Youn et al. [143] recently developed the Eigenvector Dimension Reduction (EDR)

method using 2n + 1 or 4n + 1 axial-DOE so that m is maintained at values 2 or

4 for large-scale problems. Also, the accuracy of probability estimation at the tail

distribution can be improved by applying UDR methods at MPP [89].

Once the four statistical moments are obtained, the complete PDF of Y = g(X),

fY , can be evaluated from the empirical distribution systems. The Pearson family

of distributions, one of the most common moment-matching methods, is described

by [114] as

df̂Y
dx

= − a+ x

c0 + c1x+ c2x2
f̂Y . (2.27)

The moment-matching method for the Pearson family states that f̂Y can represent

the real PDF of the output, fY , if all the coefficients a, c0 , c1 , c2 are found so that

the first four moments of the system output match the first four moments of the

Pearson distribution.

Numerical integration methods are robust against the non-normality of inputs

based on the comparative study in [91]. Also, UDR and EDR methods can be

efficient, especially when interactions between variables are weak.

2.3 Design Optimization under Uncertainty

Deterministic design optimization problems can be considered as the task to find

the optimal design variable values x∗ that minimize the objective function f while at

the same time satisfying inequality constraints g and equality constraints h, where

variables x vary within lower bounds xl and upper bounds xu [112], as expressed in
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Eq.(2.28).

minimize f(x; p)

with respect to x

subject to g(x; p) ≤ 0, h(x; p) = 0

xl ≤ x ≤ xu.

(2.28)

Here p is a vector of parameters that are not controllable by the designer. Solving

Eq.(2.28) often leads to a solution on the boundary of the design space [112], thus

leaving little room for uncertainty. Therefore, the deterministic optimal solution will

tend to violate constraints and result in unexpected deviation from the intended

performance in the presence of variations in the environment, such as temperature

or humidity, applied external forces and manufacturing process outputs.

Robust design methods have been developed in order to improve the robustness

and reliability of design solutions in the presence of uncertainty. When a formulation

as in Eq. (2.28) is used, an optimizer finds the solution where the objective function

f is minimal. Let the design variables and parameters be independent normal ran-

dom variables, denoted by X ∼ N(µX,σX) and P ∼ N(µP,σP), respectively. If

µ is set to the optimal solution from Eq. (2.28), then the objective and constraint

functions are random variables whose mean values equal to the values obtained from

Eq. (2.28). The variances of the objective and constraints depend on the charac-

teristics of the design problem. Conceptually, the designer finds out the tradeoff

between minimizing the mean and the variance of the objective function without

violating constraints under uncertainty. Mathematically this can be expressed as a
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bi-objective optimization problem expressed as follows.

min
X

[µf , σf ]

subject to µg + kσ2
g ≤ 0

xl ≤ µX ± kσ2
X ≤ xu. (2.29)

Here k indicates a user-defined constant that depends on the design purpose. The

variances of objective and constraints can be calculated based on first order Taylor

series expansion, expressed as

σ2
f =

n∑
i=1

(
∂f

∂xi

)2

σ2
Xi

+
m∑
i=1

(
∂f

∂pi

)2

σ2
Pi

σ2
g =

n∑
i=1

(
∂g

∂xi

)2

σ2
Xi

+
m∑
i=1

(
∂g

∂pi

)2

σ2
Pi

(2.30)

where n and m are the numbers of design variables and parameters, respectively.

Since this approach is based on first order Taylor series, the variations in ∆xi and

∆pi are assumed to be small.

Emch and Parkinson [52] provide a worst-case tolerance within which the design

never fails. The worst-case concept assumes that uncertainty sources are independent

and the largest variation for each source of uncertainty occurs at the worst-case design

point. This approach is a conservative way to provide a solution for robust design.

Using statistical analysis, several formulations have been suggested [14, 29, 48, 90,

145], and also applied to multidisciplinary systems [30, 63, 74]. Generalization of

the robust design formulation with expectations, variances or their combination in

objective function and constraints, has also been made by [39]. Most formulations

for robust design require the low-order moments (means and variances) of objective

and constraint functions that can be obtained efficiently by local expansion methods

and numerical integration methods.
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On the other hand, Reliability Based Design Optimization (RBDO) focuses on

the probability of constraint violation or the probability of failure, usually denoted

as pf . In RBDO, any constraint that contains random variables is transformed from

a deterministic to a probabilistic form. Eq. (2.31) shows a probabilistic formulation,

min E[f(x,p,X,P)]

with respect to x,X

subject to Pr[gi(x,p,X,P) ≥ 0] ≤ pf i,

gj(x,p) ≤ 0,

(2.31)

where x and p are deterministic design variables and parameters, respectively, while

X and P are probabilistic design variables and parameters, respectively. Inequality

constraints are also separated into deterministic and probabilistic constraints. Con-

straints that contain no random variables remain in their deterministic form, while

constraints involving random variables are reformulated into probabilistic equations.

A probabilistic constraint states that the probability of violating the constraint is

below a given threshold pf i. Since pf in Eq.(2.31) is typically significantly small, the

accuracy at the tail distribution is more important than the low-order moment. Thus,

the MPP methods can be efficient in general but the FFNI approach or functional

expansion methods can be more useful for highly nonlinear problems.

2.4 Analytical Target Cascading and Analytical Target Cascading under
Uncertainty

Analytical Target Cascading (ATC) is an optimization method for multilevel

hierarchical systems typically partitioned into physical subsystems or objects (see

Figure 2.4) [80]. Each block in the hierarchical structure is referred to as an element

and is an optimization sub-problem. An element can be coupled with only one parent
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element but with multiple children elements. The interactions among elements with

the same parents, the so-called siblings, are not linked directly to each other but are

coordinated by their parent. The linking variables between a parent and children

are design targets tij and analysis responses rij. Targets are set by parents and

propagated to their children; the children solve a minimum deviation optimization

problem to obtain responses that are as close to the targets as possible. Thus, targets

and responses are updated and coordinated iteratively to achieve consistent values

within all elements where they appear. ATC has been successfully applied to a

variety of optimal design problems [35, 78, 79, 80, 81, 83, 101, 104].

Mathematically, the ATC process starts with an AIO problem formulation, prior

to any decomposition, expressed as:

min
x̄11,...,x̄NM

N∑
i=1

∑
j∈Ei

fij(x̄ij)

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

where x̄ij = [xij, r(i+1)k], ∀k ∈ Cij,

rij = aij(x̄ij), ∀j ∈ Ei, i = 1, ..., N.

(2.32)

In Eq.(2.32), fij, gij and hij are the separated objective, inequality and equality

constraints of element j at level i, respectively; Cij is the set of children of element

j=1

j=2 j=3

j=4 j=5 j=6

Element index j

Le
ve

l in
de

x 
i i=1

i=2

i=3

Figure 2.4: Example of index notation for a hierarchically partitioned design problem
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j at level i, and Ei is the set of elements at level i. The quantities rij are termed

“response” of element j at level i resulting from the decision x̄ij. Due to the functional

dependency of fij, gij, hij and rij on r(i+1)k, each element is not separable. In

other words, an element j at level i cannot be evaluated separately because the

values from other elements in level i+ 1 are needed to evaluate the functions in the

element. In order to separate the elements, the copies of r(i+1)k, represented as the

“targets”, t(i+1)k, are created. Consistency constraints are applied to make targets

and responses consistent, namely,

cij = tij − rij = 0. (2.33)

The resulting modified AIO is expressed as:

min
x̄11,...,x̄NM

N∑
i=1

∑
j∈Ei

fij(x̄ij)

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

cij = tij − rij = 0,

where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

rij = aij(x̄ij), ∀j ∈ Ei, i = 1, ..., N.

(2.34)

Allowing inconsistencies among elements or relaxing the consistency constraints, cij,

enables a decomposition strategy. Specifically, the overall system can be consistent

at convergence by minimizing the deviation between elements throughout the ATC

iterations. By monotonicity analysis [112], the consistency constraints are always

active. Previous ATC formulations utilized three types of relaxations that were

added to the objective: Quadratic Penalty (QP) [80, 105, 106], Ordinary Lagrangian

(OL) [88] and Augmented Lagrangian (AL) relaxations [126]. Letting π(tij − rij)

be a general constraint relaxation function and partitioning the problems, a typical
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ATC subproblem Pij for element j at level i is formulated as:

min
x̄ij

fij(x̄ij) + π(cij) +
∑
k∈Cij

π(c(i+1)k)

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

cij = tij − rij, c(i+1)k = t(i+1)k − r(i+1)k

rij = aij(x̄ij), ∀j ∈ Ei, i = 1, ..., N.

(2.35)

Since ATC enforces the consistency of values shared between elements by us-

ing relaxation functions, the proper choice of relaxation functions and associated

weights is critical for solution convergence. For quadratic penalty functions, large

weights are required to obtain accurate and consistent solutions [18]. Similar to other

decomposition strategies, ATC typically is more expensive than AIO (if the latter

could be used to obtain a solution) due to the coordination overhead. Michalek et

al. [105] developed an iterative method for updating weights, which finds minimal

weights to achieve a given level of inconsistency, especially important for problems

with unattainable system targets. Still, the inner loop coordination, where the de-

composed ATC problems are solved iteratively, is computationally expensive. To

address this, Tosserams et al. [126] introduced an Augmented Lagrangian relaxation

function and an alternating direction solution method, resulting in significant reduc-

tion of computational cost. Recently, a Diagonal Quadratic Approximation (DQA)

method and a Truncated DQA (TDQA) method were applied to the augmented

Lagragian relaxation function [94]. In DQA and TDQA, subproblems are fully sep-

arated and require the value of linking variables at the previous inner/outer loop

iteration. Thus, the DQA methods can solve subproblems in parallel.

In addition to relaxation functions, coordination strategies are also critical for
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Level 1

Level 2

Level 3

Level 4

Level 1

Level 2

Level 3

Level 4
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Level 3

Level 4

a) Nested b) Alternating Direction (AD) c) Block Coordinate Descent (BCD) 

Figure 2.5: ATC coordination strategy

global and local convergence. To date, three coordination strategies have been used

for global convergence proofs, namely, the Hierarchical Overlapping Coordination

(HOC) strategy, the Alternating Direction (AD) strategy and the Block Coordinate

Descent (BCD) strategy. The original convergence proof for ATC is based on HOC

where subproblems are solved in a bi-level fashion [106]. Figure 2.5 (a) shows the

bottom-up solution in HOC. On the other hand, AD solves odd levels and even

levels separately so that subproblems in these levels can be calculated in parallel, as

illustrated in Figure 2.5 (b) [126]. Also, Figure 2.5 (c) demonstrates BCD where each

subproblem is solved sequentially and iteratively [94]. Note that the OL relaxation,

DQA and TDQA methods do not require a coordination strategy because values

for the linking variables in these methods are obtained from the previous iteration.

According to [94], AL-AD and TDQA perform better than the other methods in

general.

Compared to deterministic MDO, little research has been conducted to discuss

and resolve the issue of uncertainty involved within the MDO context. Sues et al.

[124] utilized stochastic optimization along with a response surface approach to re-
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solve this uncertainty embedded within a multidisciplinary system. Batill et al. [13]

indicated the challenges to be faced for uncertainty analysis within a multidisciplinary

optimization problem. Gu et al. [63] proposed worst-case propagated uncertainty

analysis and robust optimization. In [49], two approaches, namely, System Uncer-

tainty Analysis (SUA) and Concurrent SubSystem Uncertainty Analysis (CSSUA),

are proposed to improve the efficiency of uncertainty propagation within one coupled

multidisciplinary problem.

• SUA: Based on information about the linking variables between disciplines,

system level analysis is required to compute the impact of linking variables on

each discipline. By using Taylor series expansion to the first order with respect

to the mean value of linking and all input variables, the variation of subsystem

outputs can be calculated from Eq. (2.36):

∆zi =
n∑
j=1

j 6=i

∂Fzi

∂yj
∆yj +

∂Fzi

∂xs
∆xs +

∂Fzi

∂xi
∆xi + ∆εzi. (2.36)

Here xi and xs are vectors of input and linking variables, respectively. This cal-

culation decouples linking variables between disciplines that help to parallelize

the computation.

• CSSUA: In order to avoid computationally expensive system-level analysis in

SUA, the mean value of each linking variable is computed in parallel by creating

a sub-optimization problem, as presented in Figure 2.6.

This sub-optimization problem removes the necessity of system analysis. The varia-

tion of linking variables and subsystem outputs are found by the same approach as

SUA. The links are decoupled to improve the efficiency of the computation.
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Fig. 2 Suboptimization for uncertainty analysis in the CSSUA.

B. CSSUA method
In the SUA method, for the evaluation of the mean value of a

system output, one analysis at the system level is required. To avoid
any system-levelanalysiswhen it is very expensive,we develop the
CSSUA method.The basic idea of the CSSUA method is to facilitate
the parallelizationof the varianceevaluationfor system outputs that
are contributed by different subsystems. This is accomplished by
making use of optimization technique to !nd the means of system
outputwhere only subsystemanalysesare involved.Once the means
of the system output are obtained,we use the same procedure as we
developed for the SUA method to evaluate the variances of system
output. The procedure is as follows.

1. Finding Mean Values of Linking Variable
Mean values of the linking variable are found by the subopti-

mization as shown in Fig. 2. Here, the compatibilityof the system is
achieved by an optimizer that sets the target values of the mean val-
ues of linking variables and minimizes the deviations between the
targets and those that are actuallygenerated through the subsystems
analyses. The idea can be generated as the following unconstrained
optimization model.

Given mean values of input variables ¹xs and ¹xi , i D 1, n, !nd
target mean values of linking variable ¹¤

yi , i D 1, n, and minimize

d D min
nX

i D 1

¡
¹yi ¡ ¹¤

yi

¢2

The unknown variables are ¹¤
yi in the suboptimization, and ¹yi

are the mean values of linking variables evaluated in subsystems.
Here ¹yi are evaluated by Eq. (4).

2. Evaluating the Mean Value of System Output
The mean value of a system output is evaluated by substituting

the mean of linking variable¹yi in Eq. (5) with the suboptimization
result.

3. Evaluating Variance of System Output
Following the same procedure from Eqs. (6–11) as shown in the

SUA method, we obtain the system output variance in the same
expression as Eq. (11).

In the CSSUA, all analyses are implemented within subsystems,
and they can be parallelized easily. From the preceding procedure,
note that if the suboptimizationgenerates the same mean values of
linking variables as those obtained by the simultaneousevaluations
of linking variables in the SUA method, the result of uncertainty
analysis of the SUA and the CSSUA are identical.

C. Ef!ciency of SUA and CSSUA
As will be demonstrated in the example problems, our proposed

techniques are much more ef!cient than the conventional Monte
Carlo simulations. To choose between the SUA and the CSSUA
methods, we need to consider the number of all-in-onesystem-level
analyses and the number of subsystem-levelanalyses, as well as the
time needed for each of these analyses, for each different problem.
To provide good guidelines for choosing the most appropriate tech-
nique, we derive analytically the numbers of system and subsystem
analysesneededfor the SUA and the CSSUA methods, respectively,
as functions of the number of input linking variables, the number

of subsystem output, the number of sharing variables, the num-
ber of subsystem input variables, and the number of output linking
variables.

For each uncertaintyanalysis, theSUA methodneedsone system-
level analysis, whereas the CSSUA does not require any system-
level analysis.On the other hand, the CSSUA method requiresmore
subsystem-levelanalyses(subsystemanalyses) than the SUA due to
the suboptimization involved in uncertaintyanalysis.When it is as-
sumed that the derivativesneeded for uncertainty analysis [Eqs. (7)
and (10)] are evaluated numerically, the number of subsystem anal-
yses for each different method is derived as follows.

The number of subsystem analyses for SUA is

NSUA D
nX

i D 1

[Ny output.i/ C Nz.i/] £ [1 C Nxs C Nx .i/ C Ny input.i/]

(12)

where Ny output.i/ is the number of output linking variable yi (as
the output of subsystem i ), Nz.i/ is the number of system output
of subsystem i , Nxs is the number of sharing input variables, Nx .i/
is the number of input variables for subsystem i , Ny input.i/ is the
number of input linking variables yi (as the input for subsystem i ),
and n is the number of disciplines.

The item in the !rst square brackets is the number of the output
of a subsystem, and the item in the second square brackets is the
number of the output of a subsystem plus one. The total number of
subsystem analyses is the summation of the number of subsystem
analyses of each subsystem.

The number of subsystem analyses for the CSSUA is

NCSSUA D Nfun call

nX

i D 1

Ny output.i/ C
nX

i D 1

[Ny output.i/ C Nz.i/]

£ [1 C Nxs C Nx .i/ C Ny input.i/] (13)

where Nfun call is the number of function evaluations for subopti-
mization.

The !rst part on the right-hand side in Eq. (13) is the number of
subsystem analyses for suboptimization and the second part is the
number of subsystemanalyses for the varianceevaluationsafter the
suboptimization.

By subtracting Eq. (12) from Eq. (13), we have

NCSSUA D nNfun call C NSUA (14)

The differenceof numbers of subsystemanalysesof the SUA and
the CSSUA becomes the sum of the number of functionevaluations
(in suboptimization)multipliedby thenumberof subsystems,that is,
nNfun call . If we can estimate the computationaleffort for one all-in-
one system analysis as the equivalent number of that for subsystem
analyses, then we may prefer the SUA to CSSUA in the case that
the equivalent number of subsystem analyses for the SUA is less
than nNfun call ; otherwise we would choose the CSSUA.

Note that in the case where parallelization (distributed analysis)
is considered for subsystem analysis under the CSSUA, the total
amount of time needed (consideringthe parallelizationscheme) will
be a better measure than the total number of subsystem analyses
when choosing which method to use.

The proposed methods are developed for MDO implementation
considering the features of an MDO framework. They are, in gen-
eral, more ef!cient than the conventional Monte Carlo simulation
(MCS) approach. To evaluate the means and the standard devia-
tions of system outputs and linking variables, the MCS will need
hundreds of simulations to obtain accurate estimations, and these
simulations need to be conductedat the all-in-onesystem level. For
closed-loopsystems, this means for each MCS, multiple subsystem
analyses from each disciplinewill be needed to reach convergence.
The multiplication will often result in much larger number of sub-
system analysesfor MCS than for the SUA and CSSUA methods. In
the case that the derivatives needed for uncertainty analysis can be
derived analytically instead of numerically, the advantagesof using
our proposed methods will be even more superior than using MCS.

Figure 2.6: Sub-optimization for uncertainty analysis in the CSSUA (adapted from[49])

Collaborative reliability analysis is proposed by Du and Chen to improve the

efficiency of reliability analysis for MDO under uncertainty [51]. In this analysis, a

single loop procedure, combining the traditional MPP procedure with collaborative

disciplinary analyses, is used to automatically satisfy the interdisciplinary consistency

in reliability analysis.

Most of the research associated with MDO under uncertainty is focused on how

to qualitatively define the problem of uncertainty within MDO instead of providing a

generic solution. Yet little attention had been given to hierarchical system design. In

order to provide an approach for hierarchical system optimization under uncertainty,

deterministic ATC has been extended to probabilistic formulations, the so-called

Probabilistic Analytical Target Cascading (PATC), by Kokkolaras et al. [84] using

mean values to represent random linking variables. Liu et al. [100] generalized

the formulation with general probabilistic characteristics. The generalized PATC
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formulation for subproblem Pij with a quadratic penalty function is expressed as:

Given Tij,R(i+1)k,

min
X̄ij

E[fij(X̄ij)] + ||wij ◦ (Tij −Rij)||22

+
∑
k∈Cij
||w(i+1)k ◦ (T(i+1)k −R(i+1)k)||22

subject to Pr[gij(X̄ij) ≤ 0] ≥ αij
where Rij = aij(X̄ij), X̄ij = [Xij,T(i+1)k],

∀k ∈ Cij, ∀j ∈ Ei, i = 1, ..., N,

(2.37)

where Cij is the set of the children of element j at level i and Ei is the set of elements

at level i. In Eq.(2.37), the ◦ operation indicates the component-wise multiplication

of two vectors such that {a1, ..., ak}T ◦ {b1, ..., bk}T = {a1b1, ..., akbk}T .

Note that Xij, Tij and Rij in Eq.(2.37) are random variables. As pointed out

in [100], the choice of random variable representation is an important issue in MDO

under uncertainty since it determines consistency through random linking variables.

If response functions in children elements are nonlinear, the output distributions

of responses can be non-normal, which might be considerably difficult to infer and

match. Thus, in the previously published PATC formulations, the first few moments

are used as targets and responses. Even with the first few moments, however, com-

puting the solution is very expensive. Also, the consistency of PATC based on the

first few moments matched has yet to be proven.



CHAPTER III

Sequential Linear Programming Coordination Strategy for
Analytical Target Cascading

3.1 Introduction

In this chapter, we employ Sequential Linear Programming (SLP) as an alter-

native coordination strategy to solve ATC problems: the elements in the hierarchy

are linearized and the linearized ATC is solved successively. The inspiration for the

particular algorithm comes from recent SLP-filter implementations on Reliability

Based Design Optimization (RBDO) problems [27, 28]. The SLP algorithm utilizes

a filtering and trust region strategy to prove global convergence of RBDO problems

for a single system. In addition to the SLP algorithm, a suspension strategy, similar

to that in [8], is applied to avoid analyses of elements that do not need substantial

redesign, for example, when a child element has a weaker coupling to its parent than

those of the other children.

The chapter is organized as follows. In Section 3.2, SLP coordination strategy

for ATC, or SLP-based ATC for short, is developed by formulating a Linear ATC

(LATC) subproblem and modifying the notations used in the SLP-filter algorithm.

Section 3.3 proposes the suspension strategy for SLP-based ATC and explains the

algorithm flow. Illustrative test examples are presented in Section 3.4, followed by

37
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conclusions in Section 3.5.

3.2 SLP-based Analytical Target Cascading

In SLP-based ATC, a nonlinear ATC problem is linearly approximated and solved

using the “standard” ATC strategy to obtain the optimal solution of the LATC sub-

problem. By solving LATC subproblems successively, the algorithm converges to a

solution of the original nonlinear problem with the aid of a filter algorithm and trust

region method [57]. To maintain linearity, the LATC formulation requires different

relaxation functions than those used in other ATC formulations [106, 126]. Decom-

position and relaxation errors lead to a modification of the SLP-filter algorithms

developed by Fletcher et al. [57]. The details of LATC formulation are explained

in Section 3.2.1, and the convergence proof of ATC with L∞ norms is presented in

Section 3.2.2, while Section 3.2.3 discusses the notational modification of the SLP

algorithm and flowcharts. Finally, Section 3.2.4 provides the convergence argument

of SLP-based ATC.

3.2.1 LATC Subproblem Formulation

We consider the modified AIO system design problem, expressed in Eq.(3.1) from

Section 2.4.

min
x̄11,...,x̄NM

N∑
i=1

∑
j∈Ei

fij(x̄ij)

subject to gij(x̄ij) ≤ 0,hij(x̄ij) = 0,

cij = tij − rij = 0,

where x̄ij = [xij, t(i+1)k],

rij = aij(x̄ij) ∀k ∈ Cij,∀j ∈ Ei, i = 1, ..., N.

(3.1)
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The derivation of Eq.(3.1) from the original nonlinear problem in Eq.(2.32) is dis-

cussed in Section 2.4. In Eq.(3.1), fij, gij and hij are the separated objective,

inequality and equality constraints of element j at level i, respectively. Even though

the convergence proof of the SLP algorithm in [57] is presented with only inequality

constraints, the filter algorithm can be extended for problems with equality con-

straints using a constraint violation function similar to that defined in [60]. Note

that the solution from Eq.(3.1) solves the original nonlinear problem Eq.(2.32).

For the SLP convergence argument presented in Section 3.2.4, a linear approxi-

mation is applied before decomposition. Note that applying the decomposition first

will result in the same final LATC formulation. The LP problem of the modified

AIO depends on the value of x̄lij (∀j ∈ Ei, i = 1, ..., N) at an SLP iteration l and

trust region radius ρl (ρl > 0), and is given by:

min
d̄l11,...,d̄

l
NM

N∑
i=1

∑
j∈Ei
∇fTij (x̄lij)d̄lij

subject to ∇gTij(x̄
l
ij)d̄

l
ij + gij(x̄

l
ij) ≤ 0,

∇hTij(x̄
l
ij)d̄

l
ij + hij(x̄

l
ij) = 0,

tlij + dltij − rij(x̄
l
ij)−∇rTij(x̄

l
ij)d

l
ij = 0,

||d̄lij||∞ ≤ ρl,

where d̄lij = [dlxij ,d
l
t(i+1)k

], ∀k ∈ Cij
rij = aij(xij), ∀j ∈ Ei, i = 1, ..., N.

(3.2)

In Eq.(3.2), the L∞ norm is used to define the trust region because its implementation

requires only simple bounds to the LAIO problem.

For decomposition, inconsistency among elements is allowed and the consistency

constraints cij are relaxed. Because the relaxation functions in previous ATC litera-

ture, such as QP, OL, and AL, are nonlinear, a weighted L∞ norm is applied in this
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formulation to maintain the linearity of the elements:

||wij ◦ (tij − rij)||∞ ≤ εij ⇒ max |wij ◦ (tij − rij)| ≤ εij (3.3)

where the ◦ operation indicates the component-wise multiplication of two vectors

such that {a1, ..., ak}T ◦{b1, ..., bk}T = {a1b1, ..., akbk}T . The outcome of wij◦(tij−rij)

is a 1 × mij vector, where mij is the number of components in tij or rij. The

right-hand-side equation is reformulated into a minimization problem with 2mij con-

straints:

min εij

subject to −εij ≤ wij ◦ (tij − rij) ≤ εij, (3.4)

where εij is a 1×mij vector of εij. By combining Eq.(4.5) with Eq.(3.2) as a relaxation

term, the relaxed LAIO problem is given by:

min
N∑
i=1

∑
j∈Ei
∇fij(x̄lij)d̄lij +

N∑
i=1

∑
j∈Ei

εlij

find d̄l11, ..., d̄
l
NM , ε

l
22, ..., ε

l
NM

subject to ∇gTij(x̄
l
ij)d̄

l
ij + gij(x̄

l
ij) ≤ 0,

∇hTij(x̄
l
ij)d̄

l
ij + hij(x̄

l
ij) = 0,

−εlij ≤ (wij ◦ (tij + dtij − rij −∇rTijd̄ij))
l ≤ εlij,

||d̄lij||∞ ≤ ρl,

where d̄lij = [dlxij ,d
l
t(i+1)k

], ∀k ∈ Cij
∀j ∈ Ei, i = 1, ..., N,

(3.5)

Note that, unlike the other relaxation functions, most of the consistency constraints

will remain inactive unless εij becomes zero. Therefore, we cannot use monotonicity

analysis [112] to incorporate the consistency constraints into the objective function.
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As mentioned already, the convergence property of ATC has been proven based

on the quadratic penalty function [106], the Ordinary Lagrangian relaxation [77]

and the Augmented Lagrangian relaxation [94]. In the proofs, constraint sets are

separable while the objective function is not, and the separable constraint sets is a

crucial part of the proofs. On the other hand, the constraints in the formulation

with L∞ norms are separable instead of the objective function. Therefore, a new

convergence proof for the use of L∞ norms is provided in Section 3.2.2.

By decomposing the problem into separable elements, the LATC subproblem LPij

of element j at level i is formulated as

min ∇fTij (x̄ij)d̄ij + εij +
∑
k∈Cij

ε(i+1)k

find d̄ij, εij, ε(i+1)1, ..., ε(i+1)nij

subject to ∇gTij(x̄ij)d̄ij + gij(x̄ij) ≤ 0,

∇hTij(x̄ij)d̄ij + hij(x̄ij) = 0,

−εij ≤ (tij + dtij − rij −∇rTijd̄ij) ≤ εij,

−ε(i+1)k ≤ {w ◦ (t + dt − r−∇rT d̄)}(i+1)k ≤ ε(i+1)k,

||d̄ij||∞ ≤ ρ,

where d̄ij = [dxij ,dt(i+1)k
], ∀k ∈ Cij,

(3.6)

where iteration index l is dropped for convenience. Information flows to and from a

subproblem LPij are presented in Figure 3.1.

With a proper selection of weights in ATC, deviation errors become zero at con-

vergence [106]. An important observation in Eq.(3.6) is that the global and local

convergence properties depend on the size of trust regions and the scaling of design

variables. In other words, the size of the d̄ij may be limited by the linking variables

if the scaling of the design variables is not appropriate, which may cause the SLP
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Subproblem LPij

local variables dij

local deviations εij, ε(i+1)k

local objective fij
local constraints gij,hij

dtij

dt(i+1)k

drij

dr(i+1)k

Optimization inputs Optimization outputs

from parent: to parent:

from children: to children:

targets

targets

responses

responses

∀k ∈ Cij

Figure 3.1: Information flow for ATC subproblem LPij of Eq.(3.6) (modified from [126])

algorithm to converge more slowly than an AIO formulation.

3.2.2 Convergence of ATC with L∞ Norms

In order to prove the convergence of ATC with L∞ norms, we follow the conver-

gence arguments in [106] with respect to the Hierarchical Overlapping Coordination

(HOC) strategy. To make the proof general, it will be proven for nonlinear problems

instead of just linear ones.

Similarly to [106], consider a forest F that covers all nodes and edges from level

i = p to r ≥ p + 1 as illustrated in Figure 3.2. Then, let q be a number between p

and r and decompose the forest F in to two subforests U and L, so that U and L

contain all nodes and edges from level p to q and q + 1 to r, respectively. With this

decomposition, we consider a multilevel problem in a bi-level structure. Assuming

that the elements at level p are independent of each other, the elements in the forests
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Subforest
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i=r

Figure 3.2: General forest in the problem hierarchy covering all nodes and edges from level
i = p to r (adapted from [106])

can be combined into a single problem and expressed as follows:

Subforest U : min
q∑

i=p−1

∑
j∈Ei

fij(x̄ij) +
q∑

i=p−1

∑
j∈Ei

∑
k∈Cij

ε(i+1)k

find x̄ij, εpk, ε(i+1)k

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

−εpk ≤ {w ◦ (t− r)}pk ≤ εpk,

−ε(i+1)k ≤ {w ◦ (t− r)}(i+1)k ≤ ε(i+1)k,

where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

∀j ∈ Ei, i = p, ...q;

(3.7)

Subforest L : min
r∑
i=q

∑
j∈Ei

fij(x̄ij) +
r∑
i=q

∑
j∈Ei

∑
k∈Cij

ε(i+1)k

find x̄ij, ε(q+1)k, ε(i+1)k

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

−ε(q+1)k ≤ {w ◦ (t− r)}(q+1)k ≤ ε(q+1)k,

−ε(i+1)k ≤ {w ◦ (t− r)}(i+1)k ≤ ε(i+1)k,

where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

∀j ∈ Ei, i = q + 1, ...r.

(3.8)
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Forest F : min
r∑

i=p−1

∑
j∈Ei

fij(x̄ij) +
r∑

i=p−1

∑
j∈Ei

∑
k∈Cij

ε(i+1)k

find x̄ij, εpk, ε(i+1)k

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

−εpk ≤ {w ◦ (t− r)}pk ≤ εpk,

−ε(i+1)k ≤ {w ◦ (t− r)}(i+1)k ≤ ε(i+1)k,

where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

∀j ∈ Ei, i = p, ...r;

(3.9)

In Eq.(3.7), (3.8) and (3.9), the consistency constraints can be rewritten in the

negative null form: wU ◦ (tU − rU)− εU , wU ◦ (rU − tU)− εU
wL ◦ (tL − rL)− εL, wL ◦ (rL − tL)− εL

 ≤ 0 . (3.10)

where tU , rU and εU are the vectors of targets, responses and consistency errors in

the upper forest, respectively, while tL, rL and εL are the vectors of targets, responses

and consistency errors in the lower forest, respectively. Comparing Eq.(3.10) with

consistency constraints in Eq.(3.9), one can easily find the consistency constraints

between level q and q + 1 are included twice in Eq.(3.10). The values for ε(q+1)k,

however, can be different depending on which subforests the values are obtained

from. Therefore, let εU(q+1)k and εL(q+1)k be the consistency errors at level q + 1

obtained from the upper and lower subforests, respectively. By adding copies of

consistency constraints at level q + 1 with εU(q+1)k and εL(q+1)k, we can reformulate
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Eq.(3.7), (3.8) and (3.9), and express them as follows:

Subforest U : min
q∑
i=p

∑
j∈Ei

fij(x̄ij) +
q∑
i=p

∑
j∈Ei
εij +

∑
j∈Eq+1

εU(q+1)k

find x̄ij, εij, {εU(q+1)j|j ∈ Eq+1}

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,
 (w ◦ (t− r)− ε)ij ≤ 0

(w ◦ (r− t)− ε)ij ≤ 0

∣∣∣∣∣ j ∈ Ei,
i = p, ..., q


 (w ◦ (t− r)− εU)(q+1)j ≤ 0

(w ◦ (r− t)− εU)(q+1)j ≤ 0

∣∣∣∣∣j ∈ Eq+1


where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

∀j ∈ Ei, i = p, ..., q;

(3.11)

Subforest L : min
r∑

i=q+1

∑
j∈Ei

fij(x̄ij) +
r+1∑
i=q+2

∑
j∈Ei
εij +

∑
j∈Eq+1

εL(q+1)j

find x̄ij, εij, {εL(q+1)j|j ∈ Eq+1}

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,
 (w ◦ (t− r)− ε)(i+1)k ≤ 0

(w ◦ (r− t)− ε)(i+1)k ≤ 0

∣∣∣∣∣ k ∈ Cij, j ∈ Ei,
i = q + 1, ..., r


 (w ◦ (t− r)− εU)(q+1)j ≤ 0

(w ◦ (r− t)− εU)(q+1)j ≤ 0

∣∣∣∣∣j ∈ Eq+1


where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

∀j ∈ Ei, i = q + 1, ..., r.

(3.12)
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Forest F : min
r∑
i=p

(∑
j∈Ei

fij(x̄ij)

)
+

r+1∑
i=p,i 6=q+1

(∑
j∈Ei
εij

)
+
∑

j∈Eq+1

(εU(q+1)j + εL(q+1)j)

find x̄ij, {εij|j ∈ Ei, i = p, ..., r, i 6= q + 1},

{εU(q+1)j|j ∈ Eq+1}, {εL(q+1)j|j ∈ Eq+1}

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,
 (w ◦ (t− r)− ε)ij ≤ 0

(w ◦ (r− t)− ε)ij ≤ 0

∣∣∣∣∣ j ∈ Ei, i = p, ..., r + 1,

i 6= q + 1





(w ◦ (t− r)− εU)(q+1)j ≤ 0

(w ◦ (r− t)− εU)(q+1)j ≤ 0

(w ◦ (t− r)− εL)(q+1)j ≤ 0

(w ◦ (r− t)− εL)(q+1)j ≤ 0


∣∣∣∣∣j ∈ Eq+1


where x̄ij = [xij, t(i+1)k], ∀k ∈ Cij,

∀j ∈ Ei, i = p, ..., r;

(3.13)

In Eq.(3.11), (3.12) and (3.13), gij, hij and the first sets of the consistency con-

straints are separable functions according to the lemma in Section IV in [106]. There-

fore, we define the augmented inequality constraints of the upper and lower subforest,

gU and gL, and the remaining consistency constraints of the upper and lower sub-

forest, c̄U and c̄L, as follows:

gU :=




gij

(w ◦ (t− r)− ε)ij ≤ 0

(w ◦ (r− t)− ε)ij ≤ 0


∣∣∣∣∣ j ∈ Ei,
i = p, ..., q


(3.14)
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gL :=




gij

(w ◦ (t− r)− ε)(i+1)k ≤ 0

(w ◦ (r− t)− ε)(i+1)k ≤ 0


∣∣∣∣∣ k ∈ Cij, j ∈ Ei,
i = q + 1, ..., r


(3.15)

c̄U :=


 (w ◦ (t− r)− εU)(q+1)j ≤ 0

(w ◦ (r− t)− εU)(q+1)j ≤ 0

∣∣∣∣∣j ∈ Eq+1

 (3.16)

c̄L :=


 (w ◦ (t− r)− εL)(q+1)j ≤ 0

(w ◦ (r− t)− εL)(q+1)j ≤ 0

∣∣∣∣∣j ∈ Eq+1

 (3.17)

Further, hU and hL can be defined as follows:

hU = {hij|j ∈ Ei, i = p, ..., q}

hL = {hij|j ∈ Ei, i = q + 1, ..., r}.
(3.18)

Then the equation for the forest F in Eq.(3.9) can be rewritten in the following

simplified form:

minx f̃(x)

subject to g(x̄) =

 gU

gL

 ≤ 0, h(x̄) =

 hU

hL

 = 0,

c̄(x) =

 c̄U

c̄L

 ≤ 0

(3.19)

where x̄ ∈ Rn includes all variables in Eq.(3.9) except for εU(q+1)j and εL(q+1)j while

x ∈ Rn+nε
is the vector of all variables in Eq.(3.9) including εU(q+1)j and εL(q+1)j.

Let xU ∈ RnU+nε
U be the vector of all variables in the upper subforest problem and

xL ∈ RnL+nε
L be the vector of all variables in the upper subforest problem, where

n = nU + nL and nε = nε
U + nε

L. Then we can rearrange the variables in Eq.(3.13) in
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the following way:

xU =

 x̄U

εU

 , xL =

 x̄L

εL

 , x =

 xU

xL

 (3.20)

where xU and xL consist of variables at level p to q and q + 1 to r, respectively.

In Eq.(3.20), εU and εU are the vectors of εU(q+1)j and εL(q+1)j, respectively, where

j ∈ Eq+1, while the rest of ε are included in x̄U and x̄L, respectively. Additionally,

we define a vector x̄ and ε̄, expressed as

x̄ =

 x̄U

x̄L

 , ε̄ =

 ε̄U

ε̄L

 . (3.21)

Define HU to be the submatrix of the identity matrix In consisting of its first nU

rows, and HL to be the submatrix of In consisting of its last nL rows. Then we can

define the following relation:

In =

 HU

HL

 , HU x̄ = x̄U , HLx̄ = x̄L. (3.22)

In the HOC strategy, elements in two adjoint sets of levels are solved iteratively.

Therefore, the corresponding elements can be defined as two subforests U and L

that form a forest F . By letting the solutions obtained from the upper and lower

subforests be dU and dL, the iterative process of HOC can be described in terms of

HU and HL, expressed as:

Subforest U : min
x

f̃(x)

subject to g(x̄) ≤ 0, h(x̄) = 0, c̄(x) ≤ 0, HLx̄ = dL,

(3.23)

where dL is fixed and feasible values of the variables in the lower subforests except

for εU(q+1)j where j ∈ Eq+1, and

Subforest L: min
x

f̃(x)

subject to g(x̄) ≤ 0, h(x̄) = 0, c̄(x) ≤ 0, HU x̄ = dU ,

(3.24)
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where dU is fixed and feasible values of the variables in the upper subforests except

for εU(q+1)j where j ∈ Eq+1. As stated earlier, dU (dL, respectively) is updated during

the iterative ATC process by solving Eq.(3.23) (Eq. (3.24), repectively).

We are now ready to complete the convergence proof for ATC with L∞ norms.

According to the Karush-Kuhn-Tucker (KKT) condition, a regular point x∗ is a

solution to Eq.(3.19) if and only if there exist a nonnegative vector µg and µc and

a vector λ such that

−∇f̃(x∗) = µTg∇gA(x̄∗) + λT∇h(x̄∗) + µTc̄∇c̄A(x∗) (3.25)

where ∇gA and ∇c̄A are the submatrix of ∇g and ∇c̄ consisting of the active in-

equality constraints at x∗. If a feasible solution to Eq.(3.19), x∗, exists, by solving

Eq.(3.23) and (3.24) iteratively, xU and xL converge to x∗ [106]. That is, x∗ is a

solution of both Eq.(3.23) and (3.24). Therefore, there exist vectors zg ≥ 0, zc̄ ≥ 0,

zh and u, and vectors wg ≥ 0, wc̄ ≥ 0, wh and v, such that the following two

equations simultaneously hold:

−∇f̃(x∗) = zTg∇gA(x̄∗) + zTh∇h(x̄∗) + zTc̄∇c̄A(x∗) + uT∇(HU x̄∗)

−∇f̃(x∗) = wT
g∇gA(x̄∗) +wT

g∇h(x̄∗) +wT
c̄∇c̄A(x∗) + vT∇(HLx̄∗)

(3.26)

Therefore, the convergence proof of ATC with L∞ norms only requires to prove

that a solution to both Eq.(3.23) and (3.24) also solves Eq.(3.19).

Lemma 3.2.1. If x∗ is a solution to both Eq.(3.25) and (3.26), then µc̄ = zc̄ = wc̄.

Proof: Since c̄U and c̄L are the sets of consistency constraints for linking variables

between the elements at level q and q+1, they are identical except for the superscripts

of ε if we arrange them in the same order. Therefore, the sets of active constraints
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at x∗ are also identical except for the superscripts of ε. Then if we consider the rows

in Eq.(3.25) and (3.26) that correspond to ε̄, they can be rewritten as

−∇ε̄f̃(x∗) = µTc∇ε̄cA(x∗)

= zTc̄∇ε̄c̄A(x∗)

= wT
c̄∇ε̄c̄A(x∗)

(3.27)

because ∇ε̄g(x̄) = 0, ∇ε̄h(x̄) = 0, ∇ε̄(HU x̄) = 0 and ∇ε̄(HLx̄) = 0. Thus, µc̄ =

zc̄ = wc̄. /

Theorem 3.2.2. If x∗ is a solution of both Eq.(3.23) and (3.24), then it also solves

Eq.(3.19).

Proof: Let x∗ be a solution to both Eq.(3.23) and (3.24). Then, there exist vectors

zg =


z1

g

...

z
pAg
g

 ≥ 0 zh =


z1

h

...

zphh

 u =


u1

...

unU

 (3.28)

where pAg and ph are the number of active inequality and equality constraints at x∗,

respectively. Similarly,

wg =


w1

g

...

w
pAg
g

 ≥ 0 wh =


w1

h

...

wphh

 v =


v1

...

vnL .

 (3.29)

Also, by Lemma 3.2.1, we can define zc̄ = wc̄ ≥ 0. Let integer pA,Ug (pA,Lg , re-

spectively) be the number of active inequality constraints involving variables x̄U

(x̄L, respectively) only. Similarly, let integer pUh (pLh , respectively) be the number

of equality constraints involving variables x̄U (x̄L, respectively) only. By the sep-

arability of g and h defined in [106], pAg = pA,Ug + pA,Lg and ph = pUh + pLh . Define
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nonnegative vectors µg and µc̄, and a vector λ as follows:

µg =



w1
g

...

w
pA,Ug
g

z
pA,U+1
g

g

...

z
pAg
g


, µc = zc = wc, λ =



w1
h

...

w
pUh
h

z
pU+1
h

h

...

wphh


(3.30)

We claim that these µg, µc̄ and λ satisfy Eq.(3.25), which implies that x∗ is a

solution to Eq.(3.9). To verify the claim, define the matrices AUg , ALg , AUh and ALh ,

as follows:

∇x̄gA(x̄∗) = (AUg , A
L
g ), ∇x̄h(x̄∗) = (AUh , A

L
h) (3.31)

where AUg and AUh are the first nU columns of the matrices ∇x̄gA(x̄∗) and ∇x̄h(x̄∗),

respectively.

Eq.(3.25) can be divided into two equations involving x̄ and ū, expressed as:

−∇x̄f̃(x∗) = µTg∇x̄gA(x̄∗) + λT∇x̄h(x̄∗) + µTc̄∇x̄c̄A(x∗) (3.32)

−∇ε̄f̃(x∗) = µTg∇ε̄gA(x̄∗) + λT∇ε̄h(x̄∗) + µTc̄∇ε̄c̄A(x∗). (3.33)

Since Eq.(3.33) is satisfied by Lemma 3.2.1, we only need to prove that Eq.(3.32) is

satisfied. Thus, considering Eq.(3.26) that involves x̄, it can be rewritten as

−∇x̄f̃
T (x∗) =

 AUg
T

ALg
T

 zg +

 AUh
T

ALh
T

 zh + (∇x̄c̄A)Tzc̄ +HT
Uu (3.34)

=

 AUg
T

ALg
T

wg +

 AUh
T

ALh
T

wh + (∇x̄c̄A)Twc̄ +HT
Lv (3.35)
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Because (HT
U , H

T
L ) = In and zc̄ = wc̄, one gets AUg

T

ALg
T

 (zg −wg) +

 AUh
T

ALh
T

 (zh −wh)

= HT
Lv −HT

Uu =

 −u
v


(3.36)

Therefore,

u = −AUg T (zg −wg)− AUh T (zh −wh) (3.37)

v = ALg
T

(zg −wg) + ALh
T

(zh −wh) (3.38)

Hence, by applying Eq.(3.39) to Eq.(3.34), the following equation can be obtained.

−∇x̄f̃
T (x∗) =

 AUg
T

ALg
T

 zg +

 AUh
T

ALh
T

 zh + (∇x̄c̄A)Tzc̄ +HT
Uu

= (HT
U , H

T
L )

 AUg
T

ALg
T

 zg + (HT
U , H

T
L )

 AUh
T

ALh
T

 zh

+(∇x̄c̄A)Tµc̄ −HT
U [AUg

T
(zg −wg) + AUh

T
(zh −wh)]

= HT
LA

L
g
T
zg +HT

LA
L
h
T
zh +HT

UA
U
g
T
wg +HT

UA
U
h
T
wh

+(∇x̄c̄A)Tµc̄

= (HT
U , H

T
L )

 AUg
T
wg

ALg
T
zg

+ (HT
U , H

T
L )

 AUh
T
wh

ALh
T
zh


+(∇x̄c̄A)Tµc̄

=

 AUg
T
wg

ALg
T
zg

+

 AUh
T
wh

ALh
T
zh

+ (∇x̄c̄A)Tµc̄

(3.39)

Due to the separable structure of gA and h, the Jacobians have the following block
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structure:

∇x̄gA(x∗) = (AUg , A
L
g ) =

 ÂUg 0

0 ÂLg


∇x̄h(x∗) = (AUh , A

L
h) =

 ÂUh 0

0 ÂLh


This implies further the block structure

AUg =

 ÂUg

0

 , ALg =

 0

ÂLg


AUh =

 ÂUh

0

 , ALh =

 0

ÂLh


Using this block structure and the definition of µg and λ in Eq.(3.30), one checks

easily that AUg
T
wg

ALg
T
zg

 =

 AUg
T

ALg
T

µg,

 AUh
T
wh

ALh
T
zh

 =

 AUh
T

ALh
T

λ (3.40)

Combining Eq.(3.40) with Eq.(3.39), one gets

−∇x̄f̃
T (x∗) =

 AUg
T

ALg
T

µg +

 AUh
T

ALh
T

λ+ (∇x̄cA)Tλc

= (∇x̄gA(x̄∗))Tµg + (∇x̄h(x̄∗))Tλ+ (∇x̄c̄A(x∗))Tµc̄

which shows that x∗ is indeed a solution of Eq.(3.32). By Eq.(3.32) and (3.33), if x∗

is a solution of both Eq.(3.23) and (3.24), then it also solves Eq.(3.19). /

Since p and r are arbitrary numbers, letting p = 0 and r = N makes forest F

become the hierarchy of the relaxed design target problems and the argument by

Michelena et al. [106] still holds for ATC with L∞ norms, claiming that it is possible

to find weights w(i+1)k such that ε(i+1)k converges to zero. Therefore, the solution to

ATC formulation with L∞ norm solves the original problem.



54

3.2.3 Notational Modifications of SLP-filter Algorithm

In the SLP-filter algorithm presented by Fletcher et al.[57], every LP solution is

evaluated for the system objective and constraints in order to check that the solution

is acceptable to the current filter and the linear approximation is proper. Since the

system objective and constraints are separated into elements, an equivalent system

objective fe is required, and defined by:

fe(x̄11, ..., x̄NM) =
N∑
i=1

∑
j∈Ei

fij(x̄ij). (3.41)

The equivalent predicted and actual reductions in fe(x̄11, ..., x̄NM) are denoted as

∆le and ∆fe, respectively, and they are calculated as

∆le = ∇fTe (x̄11, ..., x̄NM){d̄x̄11 , ..., d̄x̄NM}

=
N∑
i=1

∑
j∈Ei
∇fTij d̄ij

(3.42)

∆fe = fe(x̄11, ..., x̄NM)− fe(x̄11 + d̄11, ..., x̄NM + d̄NM)

=
N∑
i=1

∑
j∈Ei

fij(x̄ij)−
N∑
i=1

∑
j∈Ei

fij(x̄ij + d̄ij)
(3.43)

The terms in Eq.(3.42) and Eq.(3.43), including ∇fTij , fij(x̄ij) and fij(x̄ij + d̄ij), are

easily and independently obtained from the decomposed elements. Note that the

deviation errors in Eq.(3.6) are not included in either the predicted or the actual

reduction calculation. Instead, they are treated as additional equality constraints,

and constraint violation functions η are expressed similarly to those in [59, 60],

η(x̄11, ..., x̄NM) =
∣∣∣∣∣∣g+

ij(x̄ij)
∣∣∣∣∣∣

1
+
∣∣∣∣∣∣{hij(x̄ij), cij = tij − rij(x̄ij))

}∣∣∣∣∣∣
1
. (3.44)

The term η replaces h in the publications cited above to avoid notational confusion;

g+
ij is a vector of constraint violation functions, g+ = max(0, g). The decomposed

constraints, g+
ij(x̄ij), hij(x̄ij) and rij(x̄ij), can be obtained independently. Based on
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the values in Eq.(3.41) to (3.44), acceptability to the current filter F is determined

similarly to [57].

η ≤ βLηiF or fe ≤ (fe)iF − γLηiF , ∀iF ∈ F . (3.45)

A trial point {η, fe}, acceptable to F , is regarded as an f-type iteration (improving

fe with a possible increase in η), an η-type iteration (reducing h with a possible

increase in fe), or an unacceptable point.

f-type iteration : ∆f le ≥ σL∆lle and ∆lle ≥ δL(ηl)2 (3.46)

η-type iteration : ∆lle < δL(ηl)2 (3.47)

not acceptable : otherwise. (3.48)

In Eq.(3.45), (3.46) and (3.47), 1 ∼ βL > σL > γL ∼ 0 and δL ∼ 0 are constants

defined by users.

Note that the top level target in Eq.(3.6) may not be attainable in the early iter-

ations due to small trust regions. For problems with unattainable targets, relaxation

in the LATC formulation will result in arbitrarily small inconsistency deviations, if

weights are chosen appropriately [105]. Additionally, filters ensure that η converges

to zero as SLP iterations continue. Thus, the system inconsistency is enforced to

converge to zero twice through LATC and SLP-filter algorithms, and the solution

from Eq.(3.6) converges to the solution obtained from the LAIO problem, Eq.(3.2).

With the notational modification, the SLP-filter algorithm can be applied to

solve Eq.(3.1), illustrated in Figure 3.3. In Step 1, a LATC problem, expressed

in Eq.(3.6), is created and solved. If no compatible solution is found, it means

that the current design point is located far from the feasible region compared to

the current trust region. Therefore, a feasibility restoration phase is required to
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Intialization

Enter feasibility 
restoration phase

Update
design
point

Converged?

Evaluate
elements Acceptable?

Update
design
pointStep 1

incompatible
solution

Optimum

Step 2

Step 3

try to solve LATC(x(l)
ij , ρ(l))

if
ρ
(l+1)

= 2ρ
(l)

ρ(l+1)

= ρ(l)/2

Y

N

Y

N

||d̄(l)
ij || = ρ

(l)

d̄
(l)
ij

Step 4

Figure 3.3: Flowcharts of SLP-based ATC

move the current design point close to the feasible region. During the feasibility

restoration phase, the constraint violation is minimized by sacrificing the objective

function value significantly. If a compatible solution is found, the algorithm checks

if the solution satisfies convergence criteria in Step 2. If the convergence criteria are

satisfied, the point is declared as an optimal point and the algorithm terminates.

On the other hand, if the point is not optimal, the functions in the elements are

evaluated separately. Then the point is checked if it is acceptable as the next design

point based on Eq.(3.46), (3.47) and (3.48). If the point is acceptable, the point

becomes this next design point and a new linear approximation is made around the

next design point. Otherwise, the trust region is reduced by half.

3.2.4 Convergence Argument of SLP-based ATC

Since the solution to Eq.(3.6) is also a solution to Eq.(3.2) by the convergence

proof of ATC with a L∞ norm provided in the previous section, and the solution to
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Eq.(3.1) equals the solution to Eq.(2.32), the equivalence of solutions from Eq.(3.1)

and Eq.(3.2) needs to be proven in order to prove the convergence of linearized ATC

with L∞ norms, as illustrated in Figure 3.4. The argument is based on the conver-

gence proof of SLP-filter and SQP-filter algorithms in [57] and [60], respectively.

Lineazied 
ATC Solution

Linearized
AIO Solution

Original 
AIO solution ⇔

x
∗

AIO x
∗

LATCx
∗

LAIO

⇔
Section. 3.2.2Section. 3.2.4

Figure 3.4: Convergence argument of SLP-based ATC

The proofs for the SLP-filter and SQP filter algorithms assumes the following

standard assumptions.

1. All points x that are sampled by the algorithm lie in a nonempty closed and

bounded set X.

2. The problem functions f(x), h(x) and g(x) are twice continuously differentiable

on an open set containing X.

3. There exists a constant ML > 0 such that |1
2
sT (∇2f)s| ≤ML, ||1

2
sT (∇2gi)s||∞ ≤

ML and ||1
2
sT (∇2hj)s||∞ ≤ML for all x ∈ X and all vectors s (||s||∞ = 1).

One of the major differences between the two convergence proofs is the existence

of equality constraints. Under the standard assumptions, the SLP-filter algorithm

was proven to converge to a Karush-Kuhn-Tucker (KKT) point or an accumulation

point that satisfies a Fritz-John condition for problems without equality constraints

[57]. On the other hand, the SQP-filter algorithm converges to an accumulation

point that satisfies KKT necessary conditions under a Mangasarian-Fromowitz Con-

straint Qualification (MFCQ), an extended form of the Fritz-John condition in the
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presence of equality and inequality constraints [60]. Since the consistency constraints

in Eq.(3.1) are equality constraints, we claim that the algorithm can be readily ex-

tended to problems with equality constraints under MFCQ. To verify the claim, we

need to prove first that the modified AIO problem in Eq.(3.1) with consistency con-

straints holds under MFCQ if the original AIO problem in Eq.(2.32) holds under

MFCQ.

Lemma 3.2.3. Eq.(3.1) also satisfies MFCQ if and only if Eq.(2.32) satisfies MFCQ.

Proof. A feasible point x◦ of problem P satisfies MFCQ if and only if both (i) the

vectors ∇h◦i , are linearly independent and (ii) there exists a vector s that satisfies

sT∇h◦ = 0, and sT∇gA
◦ < 0 where gA denotes active inequality constraints at x◦.

The structured AIO problem in Eq.(2.32) is rewritten here for convenience as:

min
x̄11,...,x̄NM

N∑
i=1

∑
j∈Ei

fij(x̄ij)

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0,

where x̄ij = [xij, r(i+1)k], ∀k ∈ Cij,

rij = aij(x̄ij), ∀j ∈ Ei, i = 1, ..., N.

If Eq.(2.32) satisfies MFCQ at a feasible point x◦, then ∇hij and ∇(aij − rij) are

linearly independent and there exists a vector s = {sx11 , ..., sxNM
, sr22 , ..., srNM

} that

satisfies

sT∇hij = sTxij∇xijhij + sTr(i+1)k
∇r(i+1)k

hij = 0

sT∇(aij − rij) = sTxij∇xijaij + sTr(i+1)k
∇r(i+1)k

aij − sTrij = 0

sT∇gij = sTxij∇xijgij + sTr(i+1)k
∇r(i+1)k

gij < 0

∀k ∈ Cij, ∀j ∈ Ei, i = 1, ..., N.

(3.49)

In Eq.(3.1), response copies of rij and consistency constraints cij are introduced.
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Let x̄ = {x11, ...,xNM , r22, ..., rNM , t22, ..., tNM}. Due to the consistency constraints,

a feasible point x̄◦ satisfies r◦ij = t◦ij,∀j ∈ Ei, i = 2, ..., N .

In order to prove the lemma, first we need to prove part (i) above, namely,

the gradients of all equality constraints in Eq.(3.1) are linearly independent if the

vectors ∇h◦i , are linearly independent. Since ∇hij and ∇(aij − rij) in Eq.(2.32) are

linearly independent, ∇hij and ∇(aij−rij) in Eq.(3.1) are also linearly independent.

In addition, since ∇cij in Eq.(3.1) consists of 1 for tij and -1 for rij, the rows in

∇cij are linearly independent of each other. Also, because cij must include the rijs

that are not included in hij, ∇cij and ∇hij are linearly independent of each other.

Similarly, since (aij − rij) contains variables with two different level indices, namely

rij and t(i+1)k, then ∇(aij − rij) are linearly independent of ∇cij (̄tij, r̄ij). Thus, the

gradients of all equality constraints in Eq.(3.1) are linearly independent if ∇hij and

∇(aij − rij) in Eq.(2.32) are linearly independent. The “only if” part can be proven

easily in a similar way.

Now we need to prove part (ii) above, namely, there exists a vector s̄ that satisfies

s̄T∇h◦ = 0, s̄T∇(a◦− r◦) = 0, s̄T∇c◦ = 0 and s̄T∇gA
◦ < 0 where gA denotes active

inequality constraints at x◦.

Let s̄ = {s̄x11 , ..., s̄xNM
, s̄r22 , ..., s̄rNM

, s̄t22 , ..., s̄tNM
}

= {sx11 , ..., sxNM
, st22 , ..., stNM

, st22 , ..., stNM
}. Then s̄T∇c◦ = 0 is satisfied. Also,

from Eq.(3.49)

sT∇hij = sTxij∇xijhij + sTt(i+1)k
∇t(i+1)k

hij = 0

sT∇(aij − rij) = sTxij∇xijaij + sTt(i+1)k
∇t(i+1)k

aij − sTrij = 0

sT∇gij = sTxij∇xijgij + sTt(i+1)k
∇t(i+1)k

gij < 0

∀k ∈ Cij, ∀j ∈ Ei, i = 1, ..., N.

(3.50)
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because ∇r(i+1)k
h(i+1)k, ∇r(i+1)k

a(i+1)k and ∇r(i+1)k
g(i+1)k in Eq.(3.49) are equivalent

to ∇t(i+1)k
h(i+1)k, ∇r(i+1)k

a(i+1)k and ∇r(i+1)k
g(i+1)k in Eq.(3.50), respectively.

For the “only if” part, if MFCQ is satisfied for Eq.(3.1), s̄r = s̄t from the con-

sistency constraints. Then sT∇h◦ = 0, sT∇(a◦ − r◦) = 0 and sT∇gA
◦ < 0 can be

proven easily in a similar way. /

Since MFCQ holds with the consistency constraints, we can apply the convergence

proof in [60]. If the standard assumptions are satisfied and the original problem is

compatible within a round-off error, the SLP filter algorithm (A) finds a KKT point

or (B) has an infinite subsequence of consecutive f-type or η-type iterations [57]. Now

we will show that if (B) occurs, the algorithm converges to a feasible point and, if

MFCQ holds, the set of directions s in Eq.(3.51) is empty:

{s| sT∇fe < 0, sT∇gA < 0, sT∇h = 0, sT∇c̄ = 0}, (3.51)

where gA is the active inequality constraints.

The trust region radius ρl decreases and ultimately ρl → 0. When the trust

region is reduced, a trial point will be found that is acceptable, and either an f-type

iteration or an η-type iteration will occur. For the resulting ρl, if ρl ≤ (1− σL)εL/ML, then ∆f le > σL∆lle,

if (ρl)2 ≤ βLτ l/mML, then η(xl + dl) ≤ βLτ l,

(3.52)

where 0 < εL ≤ min{−(∇f le)T sl,−(∇glA)T sl}, τ l = min
i∈F

ηi, m is the number of

all constraints, and ML is the upper bound for |1
2
dT (∇2fe)d|, ||12dT (∇2g)d||∞,

||1
2
dT (∇2h)d||∞ and ||1

2
dT (∇2c)d||∞. Also, sl is the unit vector of the projection of

d to the space spanning the equality constraints.
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Let the sequence of xl of (B) converge to x∞. From the assumption that the

objective function fe is bounded, the filter envelop test in Eq.(3.45) ensures
∑
ηl+1

is bounded and ηl → 0, so x∞ is feasible [57]. The main sequence contains an infinite

number of f-type or η-type iterations. Then we assume that MFCQ is satisfied and

consider the proposition (to be contradicted) that x∞ is not a KKT point. Then, it is

always possible to find a solution of Eq.(3.2) with a trust region satisfying Eq.(3.53)

from [57, 60].

ηl

εL
≤ ρ ≤ min {(1− σL)εL

ML
,
εL

ML
,
c̄l

āl
,

σLεL

γLmML
,

√
βLτ l

mML
} (3.53)

where 0 ≤ c̄l ≤ −max{gl
Ã
} and āl ≥ max{(∇gl

Ã
)T s}. gÃ denotes the vector of

inactive inequality constraints. For sufficiently large l, it is not possible for any value

of ηl ≤ εLρ to satisfy Eq.(3.47) since ∆lle decreases monotonically as ρ decreases.

Thus, for sufficiently large l, f-type iterations are always generated. Then both left-

and right-sides of Eq.(3.53) remain constant because ηl and τ l are not updated.

Therefore, for sufficiently large l, ∆fe does not converge to zero. This contradicts

the fact that fe is bounded. Thus by contradiction, for a sufficiently large l, the

algorithm has an accumulation point that is feasible and is either a KKT point or

fails to satisfy MFCQ.

If the original nonlinear problem of Eq.(2.32) is assumed to be well bounded and

have a solution, the sequence of solutions of Eq.(3.2) should converge to the solution

of Eq. (2.32) if targets and responses are bounded. That is, if the decomposed

systems are coupled through variables that are well bounded, the solution of Eq.(3.2)

converges to the point that satisfies the necessary conditions for solving Eq.(2.32).
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3.3 Suspension Strategy for SLP-based ATC

Even though LATC and LAIO converge to a very similar solution with small

relaxation errors, LATC may require more computations to obtain a converged solu-

tion than LAIO due to coordination costs. During the LATC solution, however, the

objectives and constraints are not evaluated. Indeed, in this dissertation, we focus

on the reduction in the number of function evaluations during the SLP-based ATC

algorithm, rather than improvement in LATC performance, such as the convergence

rate or deviation errors in the ATC strategy. To this end, we take advantage of

decomposed design tasks.

Linking variables represent couplings between elements. Elements that are weakly

coupled will likely be less sensitive to linking variables than to local variables. There-

fore, changes in the target for an element that are sufficiently small will not have

significant impact on the system objective. In this case, the change in the target

can be neglected during a given iteration and the element in the branch can be “sus-

pended” from redesign (or evaluation) [8, 53, 76]. For example, let us assume that

the step size of t22 in Figure 3.5 is considerably smaller than that of t23 at iteration

l. Then the elements in the corresponding branch, including O22, O34 and O35, can

O11

O22 O23

O34 O35 O36

O11

O22 O23

O34 O35 O36

a) unsuspended ATC hierarchy b) suspended ATC hierarchy 

Figure 3.5: Examples of the unsuspended and suspended ATC hierarchies
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be suspended from evaluation for f l+1
ij , gl+1

ij and hl+1
ij and the values at iteration l

are used instead while the actual functions in the unsuspended element (e.g. O11,

O23 and O36 in Figure 3.5) are evaluated to obtain ∆fe and η.

The SLP-based ATC with suspension strategy, shown in Figure 3.6, requires sev-

eral minor steps in Step 2 of SLP-based ATC without suspension strategy. The steps

in the suspension strategy (solid boxes) are described in more detail below.

Intialization

Enter feasibility 
restoration phase

Update
design
point

Converged?

Apply suspension criteria

try to solve
with suspension

Valid suspension?

Evaluate
unsuspended

elements
Acceptable?

Update
design
pointStep A

incompatible
solution

reconnect
suspended
elements

Optimum Step B

Step C

Step D

try to solve LATC(x(l)
ij , ρ(l))

LATC(x(l)
ij , ρ(l))

if
ρ
(l+1)

= 2ρ
(l)

ρ(l+1)

= ρ(l)/2

Y

N

Y

Y

N

N

||d̄(l)
ij || = ρ

(l)

d̄
(l)
ij

Figure 3.6: Flowcharts of SLP-based ATC with suspension strategy

Step A: Attempt to solve LATC(x̄lij, ρ
l)

Eq.(3.6) is solved using a “standard” ATC strategy to obtain d̄lij. If any elements

in the system are incompatible, a feasibility restoration phase is evoked in order
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to find a point that is both acceptable and compatible. Once the LATC strategy

converges to a solution that is compatible, the step sizes are compared in order to

determine active and suspended elements in the next step.

Step B: Apply suspension criteria

This step selects the set of elements that can be suspended based on the step

size of the solution’s targets from the previous step. With the solution of element

j at level i, the step sizes for targets dlt(i+1)k
are compared. If a target to a child m

satisfies

||dlt(i+1)m
|| < ζt

∑
k∈Cij

||dlt(i+1)k
||

NCij
, (3.54)

then the elements in the corresponding branch are selected for suspension. The pa-

rameter ζt << 1 is chosen based on the designer’s experience and NCij is the number

of children of element j at level i. The suspension idea is similar to that in [8], and so

the Modified Global Sensitivity Equations (MGSEs) may provide an estimation for

the impact of the target changes that is accurate enough to reduce iteration between

steps B and C. In this dissertation, however, simple comparison on step sizes is used

because MGSEs may require additional function evaluations. The predicted reduc-

tion without suspension ∆le needs to be obtained from the solution for validation at

Step C.

Step C: Suspension validation

In this step, LATC is solved again after suspending the elements selected in the

previous step to estimate the effect of suspended elements. The suspension can

be readily implemented by setting the responses of the suspended elements to zero
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(dlt(i+1)m
= 0). Once the solution is obtained, the predicted reduction in fe with

suspended elements ∆lsus
e is calculated. If ∆lsus

e ≥ ζf∆le, the suspension is assumed

to be valid. The parameter ζf < 1 is also chosen based on the designers experience.

Otherwise, the suspension is declared to be inadequate and some of the suspended

elements must be reactivated if more than two elements are selected for suspension.

After reactivation, LATC is solved again until suspension is valid or all elements are

active. Because the validation criteria are satisfied once all elements are reactivated,

the loop in this step terminates finitely.

Step D: Evaluation

Only active elements are evaluated because the step sizes of suspended elements

are all set to zero in the previous step. For the suspended elements, the values from

iteration k can be used.

The suspension criteria presented here, including the validation step, can be made

conservative by setting ζt → 0, ζf → 1. The numerical examples presented in Section

3.4 show that the number of function evaluations saved by the suspension strategy

depends highly on the values of ζt and ζf . Also the convergence of the coordina-

tion strategy is not guaranteed with the implementation of the suspension strategy

because the suspension strategy is heuristic. However, the method remains attrac-

tive in design problems because even if convergence is not attained, the intermediate

solutions are feasible and usually represent an improvement in the objective func-

tion. Defining parameters ranges that guarantee both convergence and reduction in

function evaluations is a subject for further research.
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3.4 Numerical Results

This section provides two test examples to illustrate the proposed algorithm. Both

examples have three elements: one at the top level and two at the bottom level. One

child element is more weakly coupled to the top level element than the other since

the proposed suspension strategy is expected to be more effective on problems whose

elements have significantly different coupling strengths.

In the examples, ATC problems are formulated from AIO problems and solved

with the SLP-filter algorithm. Results from calculations with and without the sus-

pension strategy are compared to each other, and also to results from the original

AIO problems solved by SLP-filter and SQP algorithms.

3.4.1 Example 1: Modified Hock and Schittkowski Problem 34

Problem 34 in the classical test collection by Hock and Schittkowski [72] is mod-

ified so that the problem can be decomposed into three elements. The original AIO

problem is

min
x1,...,x6

f = −x1x4

subject to g1 ≡ exp(x1)− x2x5 ≤ 0,

g2 ≡ exp(x2)− x3 ≤ 0,

g3 ≡ log(5x2
4)− x5 ≤ 0,

g4 ≡ x2
5 − 10x6 ≤ 0,

(3.55)

where the lower and upper bounds of x are {0, 0, 0, 0.01, 0, 0} and {100, 100, 10, 100, 100, 5}.

The unique optimal solution is x∗ = {2.79, 2.30, 10.00, 15.35, 7.07, 5.00} with all con-

straints active.
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O11

f, g1, g3

x1, x4, tx2 , tx5

O22

g2, {x3, rx2}
O23

g4, {x6, rx5}

Figure 3.7: Modified Hock and Schittkowski Problem 34

Eq.(4.13) is decomposed into one top-level element (O11) with two children (O22

and O23), as illustrated in Figure 3.7. The linking variables that couple O11 with O22

and O23 are x2 and x5, respectively. Then O11 minimizes the sum of system objective

f and deviation errors ε22 and ε23 with respect to x̄11 = {x1, x4, tx2 , tx5 , ε22, ε23},

subject to g1 and g3. O22 minimizes ε22 with respect to x̄22 = {x3, rx2 , ε22}, subject

to g2, while O23 minimizes ε23 with respect to x̄23 = {x6, rx5 , ε23}, subject to g4.

Parameters for the suspension strategy are set to ζt = 0.2 and ζf = 0.8, and the

initial trust region is set to 20.

Table 4.1 summarizes the final solutions and the number of function evaluations

for each element obtained from the five algorithms: LATC denotes the results ob-

tained from the SLP-based ATC strategy without suspension strategy, LATC-SS

denotes the SLP-based ATC strategy with suspension strategy, ATC denotes the

“standard” ATC strategy with a quadratic penalty function, AIO-SLP denotes the

SLP-filter algorithm solving the AIO problem and AIO-SQP denotes the SQP al-

gorithm solving the AIO problem. All algorithms converge to the same solution.

The L∞ norms of consistency errors for LATC, LATC-SS and ATC are 3.55× 10−15,

1.78× 10−15 and 4.57× 10−10, respectively.

Note that element O11 requires three functions to be calculated (f , g1, g3), while
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Table 3.1: Optimal solutions and number of redesigns for Example 1

x∗ f∗
number of redesigns
O11 O22 O23 total

LATC {2.79, 2.30, 10.00, 15.35, 7.07, 5.00} -42.83 56† 36† 36† 128†

LATC-SS {2.79, 2.30, 10.00, 15.35, 7.07, 5.00} -42.83 56† 36† 17† 109†

ATC {2.79, 2.30, 10.00, 15.35, 7.07, 5.00} -42.83 777† 164† 154† 1095†

AIO-SLP {2.79, 2.30, 10.00, 15.35, 7.07, 5.00} -42.83 98‡

AIO-SQP {2.79, 2.30, 10.00, 15.35, 7.07, 5.00} -42.83 112‡
† Element O11 contains one objective and two constraints while element O22 and O23

include one constraint function.
‡ AIO problem contains one objective and four constraints.

O22 and O23 require one function (g2 and g4). If we define the computation cost

of LATC to be (3 × 56 + 36 + 36) and use it as a baseline, then the normalized

computational costs of LATC-SS, ATC, AIO-SLP and AIO-SQP are 0.92, 11.0, 2.04

and 2.33, respectively. Here we assume that the computational cost of function

evaluation is larger than that of the coordination overhead. Also, the weights on

L∞ norms and quadratic penalty functions are initialized to 1 at every SLP iteration

and doubled at every ATC iteration. Thus, if the weighting update method is used,

the accuracy and local convergence of LATC, LATC-SS and ATC could be improved

[105]. The method should be more effective on ATC because no function evaluations

are made during the inner coordination of LATC and LATC-SS.

The problem is monotonic for all design variables, and so SLP algorithms have

fast convergence. In addition to the effect of monotonicity, decomposition reduces

significantly the number of computations by eliminating unnecessary gradient calcu-

lations. The suspension strategy also reduces computations by reducing the number

of redesigns for O23. Figure 3.8 shows the history of target values for O22 and O23.

The step sizes of x5 are sufficiently smaller than those of x2 at iterations 2, 3, 5, 7

and 9, and so O23 is suspended at these iterations and the previous values of g4 and
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Figure 3.8: History of targets to element O22 and element O23

∇g4 are used instead.

3.4.2 Example 2: Allison’s Structural Optimization Problem

O23: top beam

d1

d2

d3

F2

F3

F3

F2
dr,1

dr,2

O11: middle beam
d2, dr,2

g1,2, g2,2, g3,2

O22: bottom beam

g1,1, g2,1, g3,1g4
g1,3, g3,3

d1, dr,1
d3

F2 F3f2
f3

(a) Physical structure of Example 3 (b) Hierarchical problem structure of Example 3

F1 = 1000N

Figure 3.9: Three-bar two-rod structural design problem (modified from [126])

The second example, illustrated in Figure 3.9 is a structural optimization problem

based on the analytical mass allocation problem of Allison et al. [7] and Tosserams

et al. [126] with some modifications. In the hierarchy, the element at the second level
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(the middle bar) is relocated to the top level and the other two are located at the

bottom level. The coupling strength between the second and third rod is strengthed.

The original AIO problem is

min
d1,d2,d3,dr1,dr2

3∑
i=1

mi +
2∑
j=1

mr,j

subject to g1,i ≡ σb,i − σ̄ ≤ 0 i = 1, 2, 3

g2,j ≡ σa,j − σ̄ ≤ 0 j = 1, 2

g3,i ≡ (Fi − Fi+1)− F̄t,i ≤ 0 i = 1, 2, 3

g4 = f1 − f̄1 ≤ 0

h1,j ≡ fj − fj+1 − fr,j = 0 j = 1, 2

where mi = π
4
d2
iLρ, σb,i = 32L(Fi−Fi+1)

πd3i
,

fi = 64L3(Fi−Fi+1)

3πEid4i
, i = 1, 2, 3;

mr,j = π
4
d2
r,jLρ, σa,j =

4Fj+1

πd2r,j
,

fr,j =
4Fj+1L

πEr,jd2r,j
j = 1, 2

(3.56)

where mi is the mass of beam i, mr,j is the mass of rod j, σb,i is the bending stress

in beam i, σa,j is the axial stress in rod j, fi is the vertical deflection of beam i

and fr,j is the elongation of rod j. Constraint limits for stress (σ̄), transmitted

force (F̄t) and vertical deflection of beam 1 (f1) are set to 127 · 106N/m2, 400N and

27mm, respectively. The equality constraints can be solved explicitly to obtain F2

and F3. The length of beams and rods L and the density of the material ρ are

fixed to be 1m and 2700kg/m3, respectively. Similar to [126], 1000N is vertically

applied at the end of beam 1 (F1 = 1000N). In order to apply different coupling

strengths, the Young’s moduli of the beams and rods are set differently, such as E1 =

E2 = Er,1 = 70GPa, E3 = 700GPa, Er,2 = 7GPa. Therefore, the coupling strength

between beams 2 and 3 becomes significantly stronger than that between beam 1 and
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Table 3.2: Optimal solutions and the number of redesigns for Example 2

x∗ f∗
number of redesigns
O11 O22 O23 total

LATC {34.62, 34.84, 25.22, 40.11, 37.52} 12.78 445† 329† 271† 1045†

LATC-SS {34.62, 34.84, 25.22, 40.11, 37.52} 12.78 486† 127† 288† 901†

ATC {34.62, 34.84, 25.22, 40.11, 37.52} 12.78 895† 336† 506† 1737†

AIO-SLP {34.62, 34.84, 25.22, 40.11, 37.52} 12.78 547‡

AIO-SQP {34.62, 34.84, 25.22, 40.11, 37.52} 12.78 418‡
† Elements O11, O22 and O23 contain five, six and three functions, respectively.
‡ AIO problem contains one objective and eleven constraints.

2. The lower and upper bounds of x are set to {0.001, 0.001, 0.001, 0.0001, 0.0001}

and {0.06, 0.06, 0.06, 0.006, 0.006}.

The local variables at the top-level element O11 are the dimensions of beam 2 and

rod 2 (x11 = {d2, dr,2}) while those at the two bottom-level elements, O22 and O23,

are the dimensions of beam 1 and rod 1, and beam 3, respectively (x22 = {d1, dr,1}

and x23 = {d3}). Element O11 is coupled with O22 and O23 through corresponding

axial forces and deflections that are {F2, f2} and {F3, f3}, respectively. Then O11

minimizes the sum of f11 = m2 + mr,2 and deviation errors ε22 and ε23, subject to

g1,2, g2,2, g3,2 and h1,2. O22 minimizes the sum of f22 = m1 +mr,1 and ε22, subject to

g1,1, g2,1, g3,1, g4 and h1,1, while O23 minimizes the sum of f23 = m3 and ε23, subject

to g1,3 and g3,3. Since SLP-based algorithms are more effective when problems are

well-scaled, the diameters of beams and rods are multiplied by 1000 and 10000,

respectively. The scaled initial point is x0
s = {30, 30, 25, 30, 30}. Parameters for the

suspension strategy are set to ζt = 0.2 and ζf = 0.8, and the initial trust region is

set to 0.4.

Table 4.3 summarizes the final solutions and the number of function evaluations

for each element obtained from the five algorithms. The results show that the pro-
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posed algorithms converge to the same solution obtained from the other algorithms

solving the AIO problem. The L∞ norms of consistency errors of LATC, LATC-SS

and ATC are 6.21 × 10−4, 1.65 × 10−4 and 2.98 × 10−3, respectively. Unlike the

previous example, the initial point and initial size of trust regions affect significantly

the convergence of the SLP-based algorithms. The three elements include different

numbers of functions to be evaluated, and the normalized computational cost of

LATC-SS, ATC, AIO-SLP and AIO-SQP are 0.81, 1.60, 1.31 and 1.00, respectively.

0 10 20 30 40 50 60
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63

F 2

 LATC
 LATC−SS

0 10 20 30 40 50 60
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24

26

28

F 3

iteration

Figure 3.10: History of targets to element O22 and element O23

Without linearity and monotonicity, SLP-based algorithms show no advantages

over a sequential quadratic programming algorithm. On the other hand, applying the

suspension strategy halves the number of redesigns in O22 even though the number

of redesigns in the other elements increases slightly. Figure 3.10 shows the history of

target values for O22 and O23. Since O22 reaches the optimum within 10 iterations,

this element is evaluated only a few times during the remaining iterations until O23
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converges to the optimum.

Tradeoffs between computational cost reductions in O22 and increases in O11 and

O23 are observed by varying ζt and ζf . Since the selection of ζt and ζf is based on

user experience, a more rigorous measure that is less sensitive to problem types needs

to be developed.

3.5 Concluding Remarks

SLP-filter algorithms were introduced into an ATC formulation to reduce com-

putational costs for some problem classes. In the proposed algorithm, the linearized

subproblems have significantly lower levels of complexity and can be solved easily.

Solving the linearized ATC requires no system analysis function evaluation during

the inner loop coordination, and so the associated cost is relatively small, especially

for problems with expensive analyses. Also, the analyses in the decomposed elements

can be executed concurrently. Also, the L∞ norm is employed to maintain linearity

of the consistency constraints. Since some of cij cannot be active unless strict con-

sistency is satisfied, deviation errors εij remain in the objective functions. Even if

cij may cause computational inefficiency due to degeneracy when wij and tij − rij

are small, numerical results show that the effect is not substantial during the inner

loop coordination with sufficiently large wij.

Some notation used in previous SLP-filter algorithm formulations was modified

here so that definitions are equivalent to those in [57]. For convergence of the pro-

posed SLP-based ATC, both convergence proofs of SLP-filter algorithms (Eq.(2.32)

and Eq.(3.2)) and ATC (Eq.(3.2) and Eq.(3.6)) need to hold. For the first part

of the proof, the convergence proof of SLP-filter algorithm in [57] was extended to
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problems with equality constraints and holds for the decomposed problems. Also,

the second step of the proof (ATC convergence with L∞ norms) was proven based

on HOC strategy. The examples in Section 3.4 show that the proposed SLP-based

ATC converges to the solution accurately.

Decomposition enables suspension strategy to be used in order to reduce the

number of function evaluation taking advantage of the properties of weakly-couple

elements. Even though the suspension criteria do not guarantee either reduced com-

putational cost or global convergence, numerical experiments presented in Section 3.4

show 10 to 20% reduction in computational cost with the proper selection of param-

eters based on normalized computational costs depending on the balance of coupling

strengths. Results must be compared further with other ATC relaxation methods

that have shown better numerical efficiency and convergence, such as AL-AD [126]

or TDQA [94].

The suspension strategy can be applied to other decomposition methods, such

as collaborative optimization. Suspended elements are recognized as objects that do

not need significant design changes in a hierarchical decomposition. Suspended ele-

ments in a non-hierarchical decomposition could be aspects or disciplines insensitive

to system design changes. Promising results from the examples give a limited demon-

stration of the SLP-filter algorithms advantages. They warrant further investigation

of the method applied to more complex design problems, including probabilistic op-

timization problems, the original inspiration for development of this method.



CHAPTER IV

SLP Coordination for Probabilistic ATC

4.1 Introduction

In this chapter, we employ SLP as an alternative coordination strategy to solve

PATC problems. In the proposed algorithm, probabilistic constraints are approxi-

mated by equivalent deterministic linear constraints so that the uncertainty prop-

agation in the linearized subproblem is obtained easily. The linking variables are

represented only with means and standard deviations, and the consistency of ran-

dom variables does not require significant computation in estimating and matching

distributions. Further a subsystem suspension strategy, developed specially for an

SLP-based ATC, is also applied to reduce computational cost by suspending the

analyses of subsystems that do not need considerable redesign, based on the size of

trust regions and the step size of target values. The effectiveness of the proposed SLP

coordination strategy for PATC, or SLP-based PATC for short, is demonstrated by

comparing results for several examples to those obtained from previously proposed

solution strategies.

Summary of Assumptions

The convergence proof of SLP coordination strategy for deterministic ATC in

75
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Chapter 3 requires the assumptions used for the SLP or ATC convergence proofs

in [57, 106]. In addition to the assumptions for the deterministic formulation, the

following assumptions are made for the PATC algorithm convergence.

• Exact or approximate normality of random variables: In this dissertation, un-

certainty is represented by random variables whose distributions are normal or

can be approximated to be normal.

• Independence of random variables from each other: Random design variables

and random linking variables are assumed to be independent.

• Time independent (stationary) random variables: The probabilistic character-

istics of random variables do not vary in time.

• Irreducibility: Randomness of design variables is inherent so that it cannot be

eliminated by improving observation methods.

The chapter is organized as follows. In Section 4.2, a Probabilistic Linearized ATC

(PLATC) subproblem is formulated and the method of updating standard deviations

of linking variables is discussed. Section 4.3 explains briefly the suspension strategy

for SLP-based PATC. Illustrative test examples are presented in Section 4.4, followed

by conclusions in Section 4.5.

4.2 SLP-based Probabilistic Analytical Target Cascading

In SLP-based PATC, a PLATC subproblem is created from a nonlinear PATC

problem and is solved using the “standard” ATC strategy. By solving PLATC succes-

sively, the algorithm converges to a solution of the original nonlinear PATC problem.
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Similar to [28], probabilistic constraints are approximated with equivalent determin-

istic constraints by either FORM or SORM. In FORM/SORM [22, 73] standard

deviations must be known. Therefore, the means of linking variables in this chapter

are treated as optimization variables, while their standard deviations are estimated

at every iteration. A PLATC formulation is derived in Section 4.2.1 while Section

4.2.2 includes a review on how the standard deviations were handled in the previous

PATC literature and a discussion on the updating method for linking variables.

4.2.1 PLATC Subproblem Formulation

In Chan et al. [28], an LP subproblem is constructed from PAIO using either

FORM or SORM. In the dissertation, FORM and SORM are judiciously applied to

constraints based on the following criteria:

for a constraint g′m ≡ Pr[gm(X) > 0]− pf,m ≤ 0,

if g′m < −δ or Em = Φ(−βm)

∣∣∣∣∣
∣∣∣∣∣∏
p

(1 + βmκp)
−1/2 − 1

∣∣∣∣∣
∣∣∣∣∣ ≤ Ea, (4.1)

then FORM is applied,

if g′m ≥ −δ and Em = Φ(−βm)

∣∣∣∣∣
∣∣∣∣∣∏
p

(1 + βmκp)
−1/2 − 1

∣∣∣∣∣
∣∣∣∣∣ > Ea, (4.2)

then SORM is applied,

where δ is a small positive number that allows a buffer to gm and Φ is the standard

normal cumulative distribution function. In these criteria, Em indicates an error

between probability of failure estimated by FORM and SORM, and Ea is the toler-

ance of the error. Also, βm and κp denote the reliability index and the pth principal

curvature of gm at MPP. The principal curvatures κ of gm are calculated as the
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eigenvalues of the matrix A, expressed as:

A =
BTDB

||∇gm(xM)|| (4.3)

where xM is the MPP of gm, D is the Hessian of the gm at xM, and B is a matrix

orthogonal to B0, expressed as:

B0 =

 I(n−1)×(n−1) 0

∂gm
∂x1

∂gm
∂x2

· · · ∂gm
∂xn

 . (4.4)

In Eq.(4.2), the first criterion indicates the activity of the constraint, so called δ-

activity, while the second criterion takes into account the curvature of gm. Since

δ-activity is easy to check, the curvature criterion is applied only if the constraint is

δ-active.

In Chapter 3, an SLP coordination algorithm applied to ATC problems was dis-

cussed. Similar to the deterministic LATC, weighted L∞ norms are used as the mea-

sure of inconsistency in order to maintain the linearity of subproblem formulations

instead of quadratic penalty function terms. Therefore, the maximum deviations of

consistency constraints, εij, are combined with the objective function, expressed as:

min ||wij ◦ (µTij − µRij)||22

⇒

 min εij

subject to −εij ≤ wij ◦ (µTij
− µRij

) ≤ εij,
(4.5)

where εij is a column vector whose components are equal to εij. Applying con-

straints approximated by FORM/SORM and infinity norms, the equivalent PLATC
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subproblem at iteration l with trust region radius ρl > 0 can be expressed as:

min ∇f lij(µlx̄ij)T d̄lij + εij +
∑
k∈Cij

ε(i+1)k

with respect to d̄lij, εij, ε(i+1)1, ..., ε(i+1)nij

subject to ∇glij,m(x̄lMij,m
)T d̄lij + glij,m(x̄lMij,m

) ≤ 0 if gij,m satisfies Eq.(4.1),

∇glij,m(x̄lSij,m)T d̄lij + glij,m(x̄lSij,m) ≤ 0 if gij,m satisfies Eq.(4.2),

−εij ≤ wij ◦ (µTij
+ dµTij

− µRij
− dµRij

) ≤ εij,

−ε(i+1)k ≤ {w ◦ (µT + µdT
− µR − µdR

)}(i+1)k ≤ ε(i+1)k,

||d̄lij||∞ ≤ ρl,

where x̄lMij,m
= µlx̄ij + σlx̄ijβt,m

∇glij,m
||∇glij,m||

,

x̄lSij,m = µlx̄ij + σlx̄ijβ
l
S,m

∇glij,m
||∇glij,m||

µlRij
= alij(µ

l
x̄ij

) +∇alij(µ
l
x̄ij

)T d̄lij

d̄lij = [dlµXij
,dlµT(i+1)k

], ∀k ∈ Cij, ∀j ∈ Ei, i = 1, ..., N,

(4.6)

where βt,m is the target reliability index for gij,m while βlS,m is obtained by solving

Φ(−βlS,m)
∏
p

(1 + βlS,mκ
l
p)
−1/2 − (1− αm) = 0. (4.7)

Chan et al. [28] showed that the convergence proof of the SLP-filter algorithm can be

extended for problems with probabilistic constraints. Similarly, we can replicate the

convergence arguments for LATC presented in the previous chapter, which shows

that the convergence proof of the SLP-filter algorithm can be extended to ATC

formulations with consistency constraints under MFCQ [102].

4.2.2 Standard Deviation of Linking Variables

The linking variables can include shared design variables, coupling variables or

both: coupling variables are analysis outputs from one element that are inputs to
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its parent while shared design variables are design variables that are inputs to mul-

tiple elements. For shared variables, their standard deviations are also constant

parameters in PATC because they are given in the original PAIO problem. The dis-

tributions of the coupling variables, however, are dependent on the design variables

of elements and likely to be non-normal. As pointed out in the previous PATC pub-

lications, matching the whole distribution is impractical because the computational

cost of coordination increases substantially with the dimension of linking variables.

In order to address the issue, Kokkolaras et al. [84] matched the mean values of re-

sponses for consistency while their PDFs were estimated from its children elements

using an technique base on Advanced Mean Value (AMV) method [136]. On the

other hand, Liu et al. [100] had the first two moments matched. Based on their

generalized formulations, higher moments can be included for higher accuracy even

though matching higher order moments increases the dimension of linking variables.

In order to solve PATC with respect to the standard deviations of random variables,

Monte Carlo Simulation (MCS) with 100,000 samples was applied, which made the

algorithm computationally expensive.

In this dissertation, a scheme similar to [84] is used for standard deviations. Since

PLATC consists of linear functions, the resulting distributions of linking variables

are normal, if the distributions of design variables are assumed to be normal. Thus,

terms of order higher than means and standard deviations are not needed to define

the distributions. Moreover, as mentioned earlier, standard deviations are estimated

and updated at every SLP iteration because FORM/SORM are used.

The algorithm flow is shown in Figure 4.1. In Step 1, PLATC is created from

the original PATC in Eq.(4.6). In Step 2, the generated PLATC is solved by a
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Figure 4.1: SLP-based PATC algorithm flow

“standard” ATC strategy. Note that during the inner coordination, no function

evaluation is needed. Once a solution is obtained, the convergence condition is

checked. If the solution is not optimal, the elements are evaluated to obtain the

objectives and constraints. Since the system is decomposed, the evaluation can be

executed separately and concurrently. In Step 3, the algorithm determines if the

solution is acceptable for the next design point based on the evaluated objectives

and constraints. Here, the same criteria used in the previous chapter are applied,
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expressed as:

if ηl ≤ βLηi or f le ≤ (fe)i − γLηi, ∀i ∈ F (4.8)

if ∆f le ≥ σL∆lle and ∆lle ≥ δL(ηl)2, then f-type iteration; (4.9)

else, if ∆lle < δL(ηl)2, then η-type iteration; (4.10)

else unacceptable;

else unacceptable;

where ηl(µl
X̄11

, ...,µl
X̄NM

) = ||g′l(µl
X̄

)+||1 + ||µlT + dlµT
− µlR − dlµR

||1,

∆lle =
N∑
i=1

∑
j∈Ei
∇f lijT d̄lij,

∆f le =
N∑
i=1

∑
j∈Ei

f lij(µ
l
X̄ij

)−
N∑
i=1

∑
j∈Ei

f lij(µ
l
X̄ij

+ d̄lij),

(4.11)

and 1 ∼ βL > σL > γL ∼ 0, δL ∼ 0 are positive parameters, defined in SLP-filter

algorithms [57], and F denotes the current filter. The definition and details of a filter

algorithm are well reviewed in [58]. Eq.(4.8) determines if the current solution is an

acceptable one to the filter (meaning the solution is an improved design over current

filter entries). If the solution is acceptable to the filter and satisfies Eq.(4.9), it is

called an f-type iteration (improving fe with a possible increase in η). If the solution is

acceptable to the filter and satisfies Eq.(4.10), it is called an η-type iteration (reducing

η with a possible increase in fe). Otherwise, the solution is rejected, the trust region

radius is reduced by half and PLATC is solved again. If the solution is accepted as

either an f-type or an η-type iteration, the solution is used as the incumbent point

at the next iteration (Step 4). If the solution is an η-type iteration, the solution is

added to the filter and the entries that are dominated by the solution are eliminated

from the filter. Then the standard deviations of responses are updated. To estimate

the standard deviations, any method can be used, including a linear approximation,
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an AMV-based technique and MCS. Linear approximation is closest to the spirit

of this chapter and less expensive, while the other methods provide more accurate

estimation. For more details and convergence proofs, see [28, 57].

4.3 Suspension Strategy for SLP-based PATC

In Chapter 3, a suspension strategy for SLP-based ATC was introduced in order to

reduce the number of function evaluations by suspending elements from redesign (or

evaluation), if changes in the targets for an element are sufficiently small [8, 53, 76].

For the suspension strategy, Step 2 in Figure 4.1 needs to be modified with several

inner steps, shown in Figure 4.2. Once PLATC is generated, Eq.(4.6) is solved using

a standard ATC strategy to obtain d̄lij in Step 2.A. If the solution is not optimal, Step

2.B selects the set of elements that can be suspended based on suspension criteria

defined by users. In this chapter, we simply compare the step sizes of targets dlµT
.

If a target to a child m satisfies

||dlµT(i+1)m
|| < ζt

∑
k∈Cij

||dlµT(i+1)k
||

NCij
, (4.12)

then the elements in the corresponding branch are selected for suspension. The

parameter ζt << 1 is chosen based on the designers experience and NCij is the

number of children of element j at level i. In Step 2.C, PLATC is solved again with

only the unsuspended elements by setting the responses of the suspended elements

to zero. With the solution, the predicted reduction in fe with suspension ∆lsus
e is

obtained. If ∆lsus
e ≥ ζf∆le, the suspension is assumed to be valid. The parameter

ζf < 1 is also chosen based on the designer’s experience. Otherwise, the suspension

is declared to be inadequate and some of the suspended elements must be reactivated

if more than two elements are selected for suspension. After reactivation, PLATC
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Figure 4.2: SLP-based PATC algorithm flow with suspension strategy

is solved again until suspension is valid or all elements are active. In Step 2.D, the

functions in the unsuspended elements are evaluated. For suspended elements, the

values at the previous iteration are used.

4.4 Numerical Results

This section provides three test examples to illustrate the proposed algorithm.

All examples have three elements: one at the top level and two at the bottom level.

One child element is more weakly coupled to the top level element than the other

since the proposed suspension strategy is more effective on problems whose elements

have significantly different coupling strengths.

The examples are solved by SLP-based PATC with and without suspension strat-

egy, denoted as PLATC and PLATC-SS, respectively. The results are compared

to those obtained from PATC with AMV-based techniques and PAIO with MCS
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, denoted as PATC-AMV and PAIO-MCS. Quadratic penalty functions are used

forPATC-AMV as relaxation functions. The weights on L∞ norms and quadratic

penalty functions are initialized to 1 at every SLP iteration and doubled at every

ATC iteration. Thus, if the weighting update method is used, the accuracy and local

convergence of PLATC, PLATC-SS and PATC-AMV could be improved from those

obtained in this section[105]. The method should be more effective on PATC-AMV

than the others because no function evaluations are made during the inner coordina-

tion of PLATC and PLATC-SS. The number of samples for MCS is 100,000, and the

target probability of failure ptf is 0.13% for all probabilistic constraints. All random

design variables are assumed to be normal with constant standard deviations.

4.4.1 Example 1: Modified Hock and Schittkowski problem 34 [72]

The first example is the modified Hock and Schittkowski problem 34, presented

in the previous chapter. The PAIO problem is

min f = −x1x4

with respect to x = {x1, µX2 , µX3 , x4, µX5 , µX6}T

subject to Pr[gi > 0] ≤ ptf , i = 1, ...4

where g1 ≡ exp(x1)−X2X5 ≤ 0, g2 ≡ exp(X2)−X3 ≤ 0,

g3 ≡ log(5x2
4)−X5 ≤ 0, g4 ≡ X2

5 − 10X6 ≤ 0,

{0, 0.6, 0.6, 0.01, 0.6, 0.6} ≤ xT ≤ {100, 99.4, 9.4, 100, 99.4, 4.4}

(4.13)

where σX2 = σX3 = σX5 = σX6 = 0.2. The structure of the decomposed sys-

tem is provided in the previous chapter, as illustrated in Figure 3.7. The initial

point is set to the feasible point that is closest to the deterministic optimal point,

{2.79, 2.30, 10.00, 15.35, 7.07, 5.00}. Parameters for the suspension strategy are set

to ζt = 0.1 and ζf = 0.8; the initial trust region is set to 20.
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Table 4.1: Optimal solutions and number of redesigns for Example 1
x∗

f∗e{x1, µX2 , µX3 , x4, µX5 , µX6}
PLATC {1.80, 1.64, 9.40, 6.24, 5.87, 4.40} -11.22

PLATC-SS {1.80, 1.64, 9.40, 6.24, 5.87, 4.40} -11.22
PATC-AMV {1.80, 1.64, 9.40, 6.25, 5.87, 4.40} -11.25
PAIO-MCS {1.75, 1.64, 9.40, 6.24, 5.87, 4.40} -10.92

number of redesigns consistency
O11 O22 O23 total error

PLATC 561 478 368 1407 0.36× 10−12

PLATC-SS 561 418 204 1183 0.67× 10−12

PATC-AMV 8653 910 1299 10862 2.20× 10−4

PAIO-MCS 4879× 100, 000 0

Table 4.1 summarizes the results obtained from PLATC, PLATC-SS, PLATC-

AMV, PAIO-MCS. All algorithms find the solution with all constraints active because

the problem is monotonic for all design variables even in the probabilistic formulation

and SLP algorithms are very effective [112]. Due to the simplicity of reliability

analysis in the SLP-based algorithms, the numbers of redesigns for PLATC, PLATC-

SS are significantly smaller than the others. The FORM/SORM approximation is

sufficient based on the reliability analysis results shown in Table 4.2. The small

difference in x1 from that of PAIO-MCS results from the error in g1. As noted, strong

monotonicity helps convergence of the SLP algorithms. Moreover, the suspension

strategy reduces the number of function evaluations of the lower level elements.

Table 4.2: Reliability analysis results for Example 1 (1,000,000 samples for MCS)
constraint activity (A: active) MCS pf (%)
g1 g2 g3 g4 g1 g2 g3 g4

PLATC A A A A 0.14 0.14 0.13 0.13
PLATC-SS A A A A 0.14 0.14 0.13 0.13
PATC-AMV A A A A 0.14 0.13 0.14 0.13
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4.4.2 Example 2: Geometric Programming Problem

The second example is a geometric programing problem, formulated in a prob-

abilistic form in [100]. The deterministic formulations are provided and solved in

previous ATC literature [80, 126]. The PAIO problem can be expressed as:

O11

f, g1, g2

{x4, x5, x7}

O23

g5, g6

{x12, x13, x14}

O22

g3, g4

{X8, x9, x10}

X3, X11 X6, X11

Figure 4.3: Geometric programming problem

min E[f ] = µ2
X1

+ µ2
X2

with respect to x = {x4, x5, x7, µX8 , x9, x10, µX11 , x12, x13, x14}T

subject to Pr[gi > 0] ≤ ptf , i = 1, ..., 6

where g1 ≡ (X−2
3 + x2

4)x−2
5 − 1, g2 ≡ (x2

5 +X−2
6 )x−2

7 − 1,

g3 ≡ (X2
8 + x2

9)X−2
11 − 1, g4 ≡ (X−2

8 + x2
10)X−2

11 − 1,

g5 ≡ (X2
11 + x−2

12 )x−2
13 − 1, g6 ≡ (X2

11 + x2
12)x−2

14 − 1,

X1 = (X2
3 + x−2

4 + x2
5)1/2, X2 = (x2

5 +X2
6 + x2

7)1/2,

X3 = (X2
8 + x−2

9 + x−2
10 +X11

2)1/2,

X6 = (X2
11 + x2

12 + x2
13 + x2

14)1/2,

(4.14)

where σX8 = σX11 = 0.1. The structure of the decomposed problem is provided in

[100], as illustrated in Figure 4.3. The initial point is set to the deterministic optimal

point, x∗ = {0.76, 0.87, 0.94, 0.97, 0.87, 0.80, 1.30, 0.84, 1.76, 1.55}. Parameters for

the suspension strategy are set to ζt = 0.1 and ζf = 0.8; the initial trust region is

set to 0.01.
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Table 4.3: Optimal solutions and number of redesigns for Example 2

x∗
f∗e

number of redesigns{
x4, x5, x7, µX8 , x9,

x10, µX11 , x12, x13, x14

}
O11 O22 O23 total

PLATC
{

0.74, 0.85, 0.89, 1.04, 0.80,
0.86, 1.70, 0.85, 2.32, 2.17

}
24.64 900 774 545 2219

PLATC-SS
{

0.74, 0.85, 0.89, 1.04, 0.80,
0.86, 1.70, 0.85, 2.32, 2.17

}
24.64 900 774 501 2175

PATC-AMV
{

0.76, 0.85, 0.89, 1.04, 0.65,
0.68, 1.61, 0.84, 2.24, 2.08

}
24.99 44187 57597 17760 119544

PAIO-MCS
{

0.76, 0.85, 0.89, 1.12, 0.63,
0.94, 1.67, 0.89, 2.28, 2.18

}
25.22 5101×100,000

consistency error {σX3 , σX6}
PLATC 1.85× 10−11 {0.080, 0.046}

PLATC-SS 5.31× 10−11 {0.080, 0.046}
PATC-AMV 1.95× 10−3 {0.066, 0.045}
PAIO-MCS 0 {0.073, 0.046}

Table 4.3 summarizes the results obtained from the four algorithms. All solu-

tions are nearly identical with all constraints active. Sequential linearization reduces

the computational cost in reliability analysis considerably without sacrificing much

accuracy. Because the coupling strength of the problem is well-balanced between

the parent and two children, PLATC-SS is not as effective as in the other examples.

The differences in the solutions result mainly from the errors in estimating σX3 and

reliability analysis of g3 and g4, as shown in Table 4.4. Note that the constraints

are located in the child element, linked through X3 and the estimated σX3 by MCS

at the PLATC-SS solution is 0.075. Thus, accurate estimation of σX3 may provide

more accurate results even though it may increase the computational cost.

4.4.3 Example 3: Allison’s Structural Optimization Problem

This structural optimization problem was presented by Allison et al. [7]. Similar

to the previous chapter, the element at the second level (the middle bar) is located
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Table 4.4: Reliability analysis results for Example 2 (1,000,000 samples for MCS)
constraint activity (A: active)

g1 g2 g3 g4 g5 g6

PLATC A A A A A A
PLATC-SS A A A A A A
PATC-AMV A A A A A A

MCS pf (%)
g1 g2 g3 g4 g5 g6

PLATC 0.09 0.05 0.14 0.17 0.13 0.13
PLATC-SS 0.09 0.05 0.14 0.17 0.13 0.13
PATC-AMV 0.08 0.05 0.15 0.16 0.13 0.13

to the top level and the other two are located at the bottom level, shown in Figure

3.9. The coupling strength between the second and third rod is strengthed. The

original PAIO problem is

min
3∑
i=1

π
4
µ2
Di
lρ+

2∑
j=1

π
4
µ2
Dr,j

lρ

with respect to x = {µD1 , µD2 , µD3 , µDr1 , µDr2}T

subject to Pr[g1,i ≡ σb,i − σ̄ > 0] ≤ ptf i = 1, 2, 3

Pr[g2,j ≡ σa,j − σ̄ > 0] ≤ ptf j = 1, 2

Pr[g3,i ≡ (Fi − Fi+1)− F̄t,i > 0] ≤ ptf i = 1, 2, 3

Pr[g4 = f1 − f̄1 > 0] ≤ ptf

h1,j ≡ fj − fj+1 − fr,j = 0 j = 1, 2

where σb,i = 32l(Fi−Fi+1)

πd3i
, fi = 64l3(Fi−Fi+1)

3πEid4i
, i = 1, 2, 3;

σa,j =
4Fj+1

πd2r,j
, fr,j =

4Fj+1l

πEr,jd2r,j
j = 1, 2,

(4.15)

where constraint limits for stress (σ̄), transmitted force (F̄t) and vertical deflection

of beam 1 (f1) are set to 127(106)N/m2, 400N and 27mm, respectively. The length of

beams and rods l and the density of the material ρ are fixed to be 1m and 2700kg/m3,

respectively; 1000N is vertically applied at the end of beam 1 (F1 = 1000N). In order

to apply different coupling strengths, the Young’s moduli of the beams and rods are
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set differently: E1 = E2 = Er,1 = 70GPa, E3 = 700GPa, Er,2 = 7GPa. Therefore,

the coupling strength between beams 2 and 3 becomes significantly stronger than

that between beams 1 and 2. Since SLP-based algorithms are more effective when

problems are well-scaled, the diameters of beams and rods are multiplied by 1000 and

10000, respectively. The scaled lower and upper bounds and the standard deviations

for all design variables are set to 2.5, 58.5 and 0.5. The scaled initial point is the

deterministic optimal point, {34.6, 34.9, 29.4, 46, 28}. Parameters for the suspension

strategy are set to ζt = 0.2 and ζf = 0.8; the initial trust region is set to 0.01.

Table 4.5: Optimal solutions and number of redesigns for Example 3

x∗ (scaled) f∗e
number of redesigns

O11 O22 O23 total
PLATC {35.44, 36.69, 31.69, 27.67, 20.00} 7.67 2262 2156 1016 5434

PLATC-SS {35.44, 36.69, 31.69, 27.67, 20.00} 7.67 2089 1597 929 4615
PATC-AMV {35.92, 35.60, 32.48, 27.44, 20.77} 7.69 28126 45732 4850 78708
PAIO-MCS {35.39, 35.03, 32.30, 27.95, 19.98} 7.50 1493× 100, 000

consistency error {σF2 , σF3 , σf2 , σf3}
PLATC 1.31× 10−7 {14.22, 12.87, 0.56, 0.22}

PLATC-SS 1.54× 10−7 {14.22, 12.87, 0.56, 0.22}
PATC-AMV 1.55× 10−3 {14.36, 13.13, 0.59, 0.22}
PAIO-MCS 0 {14.63, 13.50, 0.60, 0.21}

Table 4.5 summarizes the results obtained from the four algorithms while Table

4.6 provides the reliability analysis results compared by MCS with 1,000,000 sam-

ples. All algorithms converge to nearly identical solutions with similar constraint

activities. Based on the results, it can be concluded that FORM/SORM can provide

sufficiently accurate approximation for MDO under uncertainty and the SLP-based

PATC algorithm has an advantage over PATC with AMV-based techniques and PAIO

with MCS due to the simplicity of uncertainty propagation. Because the coupling

strength between O11 and O22 is sufficiently weaker than the other, the suspension
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strategy reduces the number of function evaluations without sacrificing accuracy.

Table 4.6: Reliability analysis results for Example 3 (1,000,000 samples for MCS)
constraint activity (A: active, I: inactive)
g1,i g2,j g3,i g4

(i = 1, 2, 3) (j = 1, 2) (i = 1, 2, 3)
PLATC {I,I,A} {A, I} {I, I, A} A

PLATC-SS {I,I,A} {A, I} {I, I, A} A
PATC-AMV {I,I,A} {A, I} {I, I, A} I

MCS pf (%)
g1,i g2,j g3,i g4

(i = 1, 2, 3) (j = 1, 2) (i = 1, 2, 3)
PLATC {0, 0, 0.06} {0.15, 0} {0, 0, 0.00} 0.00

PLATC-SS {0, 0, 0.06} {0.15, 0} {0, 0, 0.00} 0.00
PATC-AMV {0, 0, 0.04} {0.10, 0} {0.00, 0, 0.08} 0

4.5 Concluding Remarks

The SLP coordination strategy for ATC developed earlier for deterministic formu-

lations was shown to be effective also for PATC. The SLP-based PATC formulation is

fundamentally the same as the deterministic formulation except for the constraints.

Probabilistic constraints in the original PAIO problem are translated into equivalent

deterministic linear constraints using FORM/SORM. Thus, the entire treatment of

the problems in SLP-based ATC can be applied to SLP-based PATC analogously.

Sequential linearization can be effective for probabilistic formulations because the

uncertainty propagation of normal distributions can be obtained easily. The linearity

can be more helpful for probabilistic MDO because random linking variables can

be represented with only means and standard deviations. In nonlinear PATC, the

computational cost of estimating and matching the distributions of linking variables

is a critical issue in past PATC work because the distributions are typically non-

normal. On the other hand, SLP-based PATC, containing only linear functions in



92

its equivalent LATC subproblems (Eq. (4.6)), requires only means and standard

deviations to represent the random variables that can be efficiently estimated and

matched. For estimation of standard deviations, linear approximation was used in

this chapter even though other methods, including AMV-based techniques and MCS,

can be applied when more accurate estimation is needed. Because FORM/SORM

require standard deviations to be known, the linking variables include only means

while the standard deviations for coupling variables are updated at the current design

point for every iteration.

The examples in Section 4.4 show that the proposed SLP-based PATC converges

to the solution with significantly fewer redesigns than PATC-AMV and PAIO-MCS.

Based on the results, the solution accuracy depends more on the accuracy in the

estimation of linking variables than that in FORM/SORM approximation. Thus,

more accurate estimation methods, such as AMV-based techniques, might improve

the accuracy. The “standard” ATC strategy used involved quadratic penalty func-

tions. For fair comparison, SLP-based PATC must be compared to PATC with

other penalty functions that have shown much better numerical efficiency and con-

vergence, such as augmented Lagrangian functions [126]. The suspension strategy

reduces the number of redesigns considerably for problems with unbalanced coupling

strengths. Since the current criteria are sensitive to problem formulation, however,

further investigation of robust suspension criteria is required for better convergence

and computational efficiency.



CHAPTER V

Optimal Design of Hybrid Electric Fuel Cell Vehicles under
Uncertainty

5.1 Introduction

Automotive use of fuel cells has received increased attention as a viable alter-

native energy source for automobiles due to clean and efficient power generation.

In recent decades, many manufacturers and energy departments of many countries

have supported research and development of fuel cells. In the automotive industry, a

number of prototype fuel cell vehicles have been built since Daimler Benz launched

the first prototype fuel cell vehicle, NECAR 1, in 1994. Toyota’s FCHV, Nissan’s

X-Trail FCV, Honda’s FCX, GM’s HydroGen 3 car, Ford’s Focus FCV-hybrid and

Hyundai’s Tuscon are prototype vehicles, recently developed using fuel cell technolo-

gies. Among various fuel cell technologies, Polymer Electrolyte Membrane (PEM)

fuel cells are currently considered the most suitable for vehicular applications because

of their mobility and high power density [87]. Nevertheless, several issues still exist

that must be addressed in order to assess and improve viability of fuel cell vehicles,

e.g., whether to use high or low pressure fuel cells, or whether to consider hybrid

propulsion configurations (i.e., include additional power sources in the powertrain).

Several fuel cell vehicle concepts and fuel cell system designs have been proposed and

93
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studied in terms of safety, robust operation, fuel economy, and vehicle performance

[62, 64, 65, 82].

In our previous work, a model-based vehicle design methodology was presented

using a quasi-static fuel cell model, which can be used to design both a vehicle and a

fuel cell system [67]. Even though the model achieved sufficient fidelity and efficiency

for design studies, the lack of cost, weight and packaging consideration resulted in a

relatively large fuel cell system for market acceptance. Also, the problem was solved

by an AIO method where the vehicle and fuel cell systems were considered as an

integrated system. As explained earlier, however, the AIO method may not be ap-

plicable if problems are complex or the cost of analysis functions at each optimization

iteration are computationally expensive. In order to demonstrate the effectiveness

of the proposed coordination strategies on complex problems, in this chapter we de-

velop a comprehensive hybrid electric fuel cell vehicle (HEFCV) design model that

takes into account profit, cost and market demand issues. Also, a 1-D Li-ion battery

model, developed in [47, 61], is included to optimize a battery pack as well. Figure

5.1 illustrates the hierarchical decomposition of the HEFCV design problem. Blocks

represent subsystems in the problem while the variables between them denote the

linking variables. Finally, some design variables are chosen as random variables to

investigate the effect of uncertainties in engineering design and customer behavior

on the overall enterprise decisions.

The chapter is organized as follows. Section 5.2 explains models for the subsys-

tems comprising the HEFCV system, namely, models for enterprise decisions, pow-

ertrain, fuel cell and battery. In Section 5.3, the results obtained from the proposed

coordination strategies are provided, followed by conclusions in Section 5.4.
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Figure 5.1: Hybrid electric fuel cell vehicles design problem with enterprise decision model

5.2 Hybrid Electric Fuel Cell Vehicle Design Model

5.2.1 Fuel Cell System Model

In order to analyze the behavior of fuel cell vehicles, models must be developed

for subsystems, such as fuel cell, battery, and motor. The critical aspect of fuel

cell system modeling is the Membrane-Electrode Assembly (MEA) model, which

describes mathematically the entire physical environment of the electrochemical re-

actions; the transport phenomena of gases (hydrogen, oxygen, vapor, etc.), water,

protons, and current; and the relationships among fuel cell voltage, current, tempera-

ture, material (electrode, catalyst and membrane) properties, and transport parame-

ters. MEA modeling has been accomplished by analyzing physical effects of reactant

gases [17, 119], performing experiments on actual stacks [123], or integrating the

physical and experimental models [9]. Many publications on MEA models have con-
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centrated on analyzing the water transport as well as the gas diffusion [12, 16, 23].

Heat transfer and thermodynamics were included to predict the temperature and

humidity profiles in both transient and steady-state conditions [10, 132]. Computa-

tional fluid dynamics have been used extensively to analyze air and water transport

behavior of fuel cell systems [131]. Unlike the relatively wide availability of MEA

models, only a few publications are available on fuel cell system modeling. Pukrush-

pan et al. [116] applied reactant flow dynamics in order to estimate the net power

output as a function of reactant partial pressures and the power losses in flow devices.

Using MEA and fuel cell system models, optimization studies have been conducted

to minimize the weighted sum of the inverse of functional performance and product

cost [139] and to maximize power density by adjusting proper operating conditions

[103]. The design objectives in all of the aforementioned papers do not reflect the

requirements of the “supersystems” in which the designed fuel cell is used. In our

previous study, a quasi-static fuel cell model was developed to take into account of

the requirements of the “supersystem” [67].

5.2.1.1 Quasi-static Fuel Cell System Model

The quasi-static fuel cell system model is based on the transient fuel cell model

developed by Pukrushpan et al. [116]. This model generates a static performance

map that represents the maximum power for a certain range of fuel consumption

with given control constraints. The power output from a fuel cell system P fc
net can be

determined as the difference between the power generated from a fuel cell stack P fc
st

and the power consumed by auxiliary components P fc
con, expressed as follows:

P fc
net = P fc

st − P fc
con = nfcI fc

stv
fc
cl − P fc

con, (5.1)
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where nfc, I fc
st and vfc

cl are the number of cells, the stack current and cell voltage of a

fuel cell system. If the composition and structure of the cells are determined, then

the cell voltage is a function of stack current density and reactant flow properties,

including partial pressures, humidity, and temperature. The properties are governed

by reactant suppliers consisting of four flow subsystems (shown in Figure 5.2): (i)

hydrogen supply subsystem, (ii) air supply subsystem, (iii) cooling subsystem, and

(iv) humidifying subsystem.This dissertation focuses on high pressure fuel cell sys-

tems with a compressor because most of the vehicular application prototypes are

developed using high pressure fuel cells due to their higher power density.35
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Figure 3.3: Reactant supply subsystems

In this study, we assume that the properties of the inlet reactant flow except for the

partial pressures can be perfectly controlled to make the problem simple. Additionally, the

pressure of the anode, pan is also assumed to be instantly regulated as a function of pca.

With those assumptions, the voltage output, expressed in equation 3.20, can be reduced to

a function of current density and the oxygen partial pressure as

vfc = vfc(pO2,ca, i) (3.21)

where pO2,ca is the partial pressure of oxygen. Since the oxygen partial pressure, in turn,

is controlled by the output pressure of the compressor, the performance of the fuel cell is

governed by the compressor input, which is determined as a function of the stack current

by a feedforward control (Figure 3.4). Thus, the designed power output of the fuel cell can

be obtained by applying a proper feed-forward control on vcm [25].

Since there are many sources of disturbance due to the transient irregularity of flows

and environmental variation, a feedback controller is typically used to operate the fuel cell

more consistently. Because this study, however, is interest in the optimization based on the

Figure 5.2: Reactant supply subsystems (modified from [116])

We assume that the properties of the inlet reactant flow, except for the partial

pressures, can be controlled perfectly without transient irregularity. Additionally,

the pressure at the anode is also assumed to be regulated instantly as a function of

cathode pressure. Ambient air is assumed to be constant. The assumed properties

are given in Table 5.1. Under these assumptions, the cell voltage can be reduced to
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Table 5.1: Thermodynamical parameters used in the model

Parameter Value
Ambient Temperature Tamb (Kelvin) 298
Stack Temperature Tst (Kelvin) 353
Ambient pressure pamb (bar) 1
Ambient Relative Humidity 0.5
Relative Humidity of Cathode Inlet Flow 0.8
Anode Relative Humidity 1

a function of current density and oxygen partial pressure pO2,ca, expressed as follows:

vfc
cl = vfc

cl(pO2,ca, I
fc
st) = Efc − vact − vohm − vconc, (5.2)

where Efc is the fuel cell open circuit voltage, and vact, vohm, and vconc are over-

voltages due to the activation loss, ohmic loss, and concentration loss, respectively

(details can be found in [116]). The overvoltage due to the fuel crossover and internal

currents is neglected because the loss is relatively small in PEM fuel cells. Since the

oxygen partial pressure is controlled by the output pressure of the compressor, the

performance of the fuel cell is governed by the compressor input, which is determined

as a function of the stack current by feed-forward control. Thus, the designed power

output of the fuel cell can be obtained by applying a proper feed-forward control on

the compressor command voltage [116]. In this dissertation, the feed-forward con-

troller is designed to meet the target values of oxygen excess ratio λ(I fc
st). Thus, the

stack power can be simplified as a function of stack current and oxygen excess ratio.

Given ambient air properties, the air pressure and mass flow rate of the compres-

sor outlet can be calculated from the mass conservation principle and thermodynamic

and psychrometric gas properties under a quasi-static assumption. Figure 5.3 illus-

trates reactant flows under steady-state conditions. As the stack current I fc
st is drawn

from the fuel cell, the rates of hydrogen and oxygen consumed in the reaction can
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Figure 5.3: Diagram of reactant flows in a PEM fuel cell

be calculated as

WH2,rea = MH2

nfcI fc
st

2F
(5.3)

WO2,rea = MO2

nfcI fc
st

4F
, (5.4)

where WH2,rea and WO2,rea, MH2 and MO2 , and F are the rates of reacted hydrogen

and oxygen, the molar masses of hydrogen and oxygen, and the Faraday constant

(= 96485 C/mol), respectively. At steady state, since the oxygen is directly supplied

from the ambient and the transient manifold filling effect is ignored, the rate of oxygen

supplied to the cathode equals the rate of oxygen from the ambient. Therefore, the

total mass flow rate of the inlet air Win can be represented by stack current and
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oxygen excess ratio, expressed as follows:

Win = WO2,in +WN2 +Wvap,in

WO2,in = λ ·WO2,rea

WN2 =
(1−wO2

)MN2

wO2
·MO2

WO2,in

Wvap,in = Mvap

Mair

pvap,amb

pair,amb
(WO2,in +WN2),

(5.5)

where WO2,in, WN2 , and Wvap,in are the inlet mass flow rates of oxygen, nitrogen, and

vapor to the cathode side, MN2 , Mvap, and Mair are the molar masses of nitrogen,

vapor, and dry air, wO2 is the oxygen mass fraction in dry air (= 0.21), and pvap,amb

and pair,amb are the partial pressures of vapor and dry air at the ambient, respectively.

The flow rates of the other flows can be obtained similarly.

Once the mass flow rate of each reactant gas is obtained, the pressure of each

component can be calculated readily by balancing them. Taking into account the

pressure drops in flow channels, the required pressure raise of the compressor pcp can

be determined by the inlet air flow rate as follows:

pcp = pcp(Win, αch) = pcp(I fc
st , λ, αch). (5.6)

where αch is the geometric scaling factor of reactant channels in length.

In order to control the properties of reactant gases, auxiliary components consume

significant amounts of energy. Since the compressor consumes more than 80% of all

auxiliary energy in high pressure PEM fuel cells, other energy losses are commonly

neglected when calculating system net power loss. Assuming a constant mechanical

static motor efficiency of 0.9, the compressor power consumption P fc
con is expressed

as follows:

P fc
con = CpWin

Tamb

0.9ηcp

[(
pcp

pamb

) γ−1
γ

− 1

]
, (5.7)
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where Cp and γ are specific heat capacity (1004J/(kg ·K)) and ratio of specific heats

(1.4) of air, respectively, Win is the mass flow rate of the system inlet flow, ηcp is the

compressor efficiency, and pcp and pamb are the pressures of the compressor outlet

flow and the ambient, respectively. The compressor is assumed to be static, driven

by a static motor. Thus, a static compressor map is used to determine the efficiency

corresponding to the required pressure ratio and the mass flow rate of air.

The performance of various compressors needs to be investigated. Because of

lack of data, the compressor in this dissertation is scaled geometrically from the

Allied Signal compressor given in [38]. Using the similarity principle, the map of

a geometrically scaled compressor can be found readily since there is no difference

between the flow characteristics of the original and the scaled compressor at a given

point in the map. The efficiency ηcp and power P fc
con is predicted to vary with pump

size, given by

ηcp = ηcp(W̄in,
pcp

pamb

) = ηcp(α−2
cp Win,

pcp

pamb

) and P fc
con = α2

cpP̄
fc
con (5.8)

where W̄in and Win are the inlet mass flow rate of the unscaled (original) and a newly

scaled compressor, respectively, while P̄ fc
con and P fc

con are the power consumption of

the unscaled (original) and a newly scaled compressor, respectively. Also, αcp is the

geometric scaling factor in length. The pressure ratio is invariant.

Using the above relations, the power consumed by the compressor motor and the

net power output from the fuel cell system can be expressed as a function of stack

current and oxygen excess ratio.
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5.2.1.2 Representation of Fuel Cell Systems

As shown in Figure 5.1, the linking variables between the fuel cell and power-

train are the weight Wfc, specific cost SCfc, number of cells nfc and performance

maps of the fuel cell. The number of cells is a shared variable while the others are

coupling variables. The weight and specific cost are necessary in evaluating vehicle

performance indices in the powertrain model and a vehicle cost in the enterprise

model, respectively. According to [24], a fuel cell stack, including membranes, elec-

trodes, gas diffusion layers, bipolar plates and seals, costs and weighs $360/m2 and

3.9kg/m2, respectively. Since the fuel cells developed in 2005 are too expensive and

heavy for current vehicles, in this dissertation the stack cost and weight are assumed

to $130/m2 and 1.9kg/m2, respectively. Also assuming that the baseline cost for the

auxiliary components is $2000 and the cost of the auxiliaries increases linearly to the

compressor volume, we can define the fuel cell system cost Cfc as follows:

Cfc = (130Afcnfc) + 2000α3
cp, (5.9)

where Afc(= 0.0769m2) is the active area of fuel cell. Similarly, the fuel cell system

weight can be expressed as follows:

Wfc = (1.9Afcnfc) + 15α3
cp + 20αch + 10. (5.10)

Current costs for a fuel cell stack and a fuel cell system are $67/kW and $108/kW

while the DOE 2005 targets are $65/kW and $125/kW, respectively, which means

the DOE 2005 targets are met [24]. To be competitive in the automotive market,

however, a fuel cell stack should cost less than $50/kW in mass production [40].

Therefore, assuming the ratio between the costs of a fuel cell stack and a fuel cell



103

system remains similar, we can consider the market acceptability as follows:

SCfc = Cfc/(rated power) ≤ $80/kW. (5.11)
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Figure 5.4: Typical fuel cell system performance maps

In order to reduce computational costs due to linking variables, a simple yet

accurate representation of performance maps needs to be defined. Figure 5.4 (a)

shows a typical relation between the load current and net power output for fuel cell

systems. As shown in the figure, the net power output can be approximated as

follows:

P fc
net = afcI fc

st

2
+ bfcI fc

st, (5.12)

where afc and bfc are the coefficients of the quadratic approximation. Since P fc
net =

vfc
netI

fc
st , v

fc
net = afcI fc

st + bfc. As shown in Figure 5.4 (b), the net voltage has a peak

at low current. Let the current with the peak voltage be I fc
min. Then, the linear

approximation of the net voltage is valid for the range between I fc
min and the maximum

current I fc
max. Thus, assuming that the designed fuel cell system is operated only for



104

the range between I fc
min and I fc

max, or setting the lower limit of the net power to

P fc
min = afcI fc

min
2

+ bfcI fc
min, the fuel cell map can be represented as follows:

P fc
net = afcI fc

st
2

+ bfcI fc
st,

P fc
min ≤ P fc

net ≤ P fc
max = afcI fc

max
2

+ bfcI fc
max.

(5.13)

Furthermore, by assuming I fc
min = 0.05I fc

max, the performance map can be represented

by three variables, namely afc, bfc and I fc
max. Then, the fuel cell subproblem in deter-

ministic ATC formulation can be expressed as follows:

Given tfc = {tnfc , tWfc , tSCfc , tafc , tbfc , tIfcmax
}

min π(tfc − rfc)

with respect to xfc = {nfc, αcp, αch}

subject to gfc = SCfc − $80/kW ≤ 0,

{50, 0.8, 0.6} ≤ xfc ≤ {1000, 1.5, 2}

where rfc = afc(xfc).

(5.14)

The compressor and channel scaling factors are assumed to be normally dis-

tributed with σαcp = σαch
= 0.02. On the other hand, the number of cells is con-

sidered deterministic and large enough to be relaxed. To the best of our knowledge,

it has yet to be proven how to match a map with uncertainty. Thus, we assume

that the linking variables related to the map representation are deterministic and

the remaining, tWfc , tSCfc , are random. Moreover, the local constraint is treated as a

probabilistic constraint with pf = 0.13%.

5.2.2 Battery Model

In a hybrid powertrain, a secondary power source (such as a rechargeable battery)

stores energy from a primary power source (such as an internal combustion engine

or a fuel cell) and provides the stored energy under conditions where the primary
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power source operates inefficiently. Among various secondary power sources, lithium-

ion batteries have gained significant attention due to its high energy density, high

open circuit voltage, no memory effect, and a slow loss of charge when not in use.

5.2.2.1 One Dimensional Li-ion Battery Cell Model

A Li-ion battery cell consists of the layers of a negative electrode, a positive elec-

trode and a separator sandwiched by current collectors from both ends, as shown in

Figure 5.5. The electrodes are made of two different insertion compounds that de-

termine cell properties including an open circuit voltage and load resistances. In the

cell, lithium ions travel between the two electrodes based on the following insertion

reaction:

Li1−xθn + Lixθp 
 Liθn + θp, (5.15)

where θn and θp represent the negative and positive insertion materials, respectively.

More detailed explanation on Li-ion battery cells and the insertion reaction can be

found in [120].
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Figure 5.5: Li-ion cell sandwich consisting of composite negative and positive electrode and
separator (adapted from [61])

The rate of the insertion reaction is affected by not only cell properties (such as
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diffusion coefficients of lithium-ions) but also cell geometries (such as cell thicknesses

or active areas). With given cell properties, a wider active area is desirable because

it typically results in a lower resistance and higher energy content. Thus, a flat-

wound configuration shown in Figure 5.6 is commonly used for batteries in hybrid

vehicles [109]. Moreover, because a typical Li-ion cell can generate less than 4.8V,

a number of cells need to be connected in series to produce sufficiently high voltage

for automotive applications. In this dissertation, a battery pack consists of four

battery modules containing twelve Li-ion cells per module. In other words, 48 cells

are connected in series for a battery pack.
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Figure 5.6: Flat-wound lithium-ion battery cell

For design purposes, a 1-D full cell model of Li and Li-ion battery has been

developed in [47, 61], assuming the cell is uniform in the directions parallel to the
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current collectors. The model can simulate the behavior of a given Li-ion battery cell

for a prescribed load cycle. Since most output quantities are normalized by a unit

area, including current density (A/m2), the total rate of heat generation (W/m2) and

the rate of irreversible heat generation (W/m2), the resulting output can be easily

scaled by multiplying the active area. The cell temperature can vary with time

if temperature-dependent material properties are provided. Due to lack of data,

however, we assume that the temperature of the system is uniform and constant at

25◦C. Also we take the cell thicknesses hbt and cell area Abt as the design variables

for the battery, assuming the other properties and geometries, such as insertion

materials, porosities and number of windings, are fixed. In order to reduce the

problem size, the thicknesses of negative and positive electrodes are identical while

the ratio of a separator thickness to an electrode thickness is fixed to 0.25, which can

be expressed as follows:

hn = hp = 4hs = hbt (5.16)

5.2.2.2 Lumped-parameter Battery Model

Because the model requires a relatively high computational cost for powertrain

simulation, a lumped-parameter battery model needs to be developed by charactering

battery cells, as described in the PNGV battery test manual [1]. In the lumped-

parameter battery model, the estimated voltage vbt
net can be expressed as follows:

vbt
net = Ebt −R0I

bt
l −RpI

bt
p , (5.17)

where Ebt is an open circuit voltage and R0 and Rp are cell internal ohmic and

polarization resistances, respectively. Also, Ibt
l is a cell load current while Ibt

p is a

current through the polarization resistance, derived from the following differential
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equation:

dIbt
p

dt
=

(Ibt
l − Ibt

p )

τp

, (5.18)

where τp is a polarization time constant. Because the open circuit voltage does

not depend on cell geometries but cell materials, the open circuit voltage for the

Lix|graphite + Liy CoO2 cell can be easily obtained from the 1-D battery cell model,

expressed as follows:

Ebt = 4.03x4 − 11.96x3 + 11.99x2 − 3.53x+ 4.02, (5.19)

where x = % SOC/100. On the other hand, the resistances depend on cell geometries,

such as cell thicknesses. Thus, in order to measure the resistances and develop

a lumped-parameter battery model, the 1-D battery cell model is simulated for a

load cycle, corresponding to the hybrid pulse power characterization (HPPC) tests

described in [1].

The HPPC tests are performed for the SOC range of 55-85% because the range

is wide enough for batteries to run a cycle and the internal resistances can be ap-

proximated accurately by a second order polynomial function over the range. Then,

the HPPC test results are used to estimate the resistances and the polarization time

constant. Note that two different internal resistances need to be estimated, namely

charging and discharging resistances. Since Rp and τp are less sensitive to SOC than

the charging and discharging resistances, Rp and τp are set to constants. Figure 5.7

shows an example of an HPPC test result and a fitted model.

Figure 5.8 presents the estimated discharging and charging resistances and their

quadratic approximations. As shown in the figure, the quadratic approximations

agree with the estimated resistances sufficiently. Note that the resistances show con-
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Figure 5.7: Voltage data for HPPC test showing agreement between measured voltages and
lumped-parameter battery model

siderably similar slopes to each other over the SOC range. Thus, in order to reduce

the number of linking variables, the resistance functions are modeled as follows:

Discharging : Rdis = (abtx2 + bbtx+ cbt) · Abtnbt

Charging : Rchr = (abtx2 + bbtx+ cbt − dbt) · Abtnbt

(5.20)

where abt, bbt and cbt are the average of the coefficients of the quadratic approxima-

tions and dbt is the mean value of the differences of the resistances. Note that they

are the functions of hbt. The active area, Abt, and the number of cells, (nbt=48),

are multiplied so that the Rdis and Rchr represent the discharging and charging re-

sistances for a pack, respectively.

For powertrain simulation, the weight Wbt and the columbic capacity Cpbt of

batteries need to be estimated. Since the library in the 1-D model provides densities

of materials, the mass of battery cells can be obtained easily. The packaging mass

is also taken into account by assuming the mass is linear to the pack length with
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Figure 5.8: Discharging and charging resistances of a Li-ion battery showing agreement
between estimated resistances and quadratic approximations

a residual mass. The columbic capacity in Ah is estimated based on how many Li-

ions are included because a Li-ion corresponds to an electron in insertion reaction.

Then, the battery subproblem in a deterministic ATC formulation can be expressed

as follows:

Given tbt = {tWbt , tCpbt , tabt , tbbt , tcbt , tdbt},

min π(tbt − rbt)

with respect to xbt = {hbt, Abt}

subject to {0.5× 10−4, 0.5Abt
0 } ≤ xbt ≤ {2× 10−4, 3Abt

0 }

where rbt = abt(xbt), Abt
0 = 0.528.

(5.21)

Both local variables are assumed to have normal distribution with σhbt = 0.02×

10−4, σAbt = 0.02Abt
0 . Also, the weight and capacity are considered random while

the linking variables related with resistance maps are deterministic.



111

5.2.3 Powertrain Model

A hybrid powertain requires a power-management strategy to determine optimal

power split. A poorly designed power-management strategy may result in worse fuel

economy than that of conventional vehicles. Therefore, several strategies have been

developed using a rule-based control [56, 67], dynamic programming (DP) [98, 96],

stochastic dynamic programming (SDP) [97] and equivalent consumption minimiza-

tion strategy (ECMS) [64, 111]. One of the major issues in strategy development

is lack of causality. In other words, most strategies require a priori knowledge on a

driving cycle and a nested optimization process for finding optimal control parame-

ters for the cycle. The lack of causality may result in a serious robustness problem

because the optimized control parameters for one driving cycle may not split the

power properly for other driving cycles. Since ECMS provides robust power man-

agement compared to other strategies according to [115], we employ the strategy for

our hybrid powertrain simulation.

Since design variables are fixed during nested optimization for control parameter

estimation, the power required by the motors is also fixed if we assume that hybrid

power sources, namely fuel cells and batteries, can provide sufficient power ideally. In

other words, we can decouple the electrical part (including fuel cells, batteries and a

power-management controller) from the mechanical part (including the parts between

wheels to motors) as illustrated in Figure 5.9. The decoupling can be computationally

effective because the nested optimization process simulates only the electrical part

with the required power obtained from the mechanical part. Satisfaction of the

assumption of providing sufficient power by the electrical part is assured by a design
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constraint as follows:

gpt
power = max{P pt

req(t)− P pt
avl(t)} ≤ 0. (5.22)
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Figure 5.9: Decoupling of a hybrid powertrain into mechanical and electrical parts

Similarly, the motors need to provide sufficient torque and speed for the vehicle

to follow the driving cycle, which can be expressed as:

gpt
torque = max{τmax(wmt(t))− τmt(t), τmt(t)− τmin(wmt(t))} ≤ 0,

gpt
speed = max{wmax − wmt(t)} ≤ 0,

(5.23)

where τmax and τmin are the maximum and minimum torques while wmax is the

maximum angular velocity. For acceleration performance, the 0-60 mph time, t0−60,

is measured and should be less than 8 sec:

gpt
0−60 = t0−60 − 8 ≤ 0. (5.24)

5.2.3.1 Mechanical Part

This dissertation focuses on designing a light truck whose curb weight is about

2500kg. Models for the mechanical parts are developed by J.T. Allison [6], including
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a detailed motor model. The vehicle includes two motors: one for each wheel on

the rear axis. By the motor model, a motor map is generated as a function of

motor geometries, namely a rotor radius, the number of turns per stator coil and a

rotor resistance. In this dissertation, the rotor radius, rm is assumed to be the only

designable geometry. Details on the motor model can be found in [6].

Since motors can cover wider speed and torque ranges more efficiently than con-

ventional IC engines, the conventional gearbox is removed and the motors are con-

nected to the wheels through a belt and pulley system. Thus, the final drive ratio

is determined by the pulley speed ratio, pr. With a given rotor radius and pulley

speed ratio, the mechanical part model estimates the required power, P pt
req(rm, pr).

The weights of the fuel cell, the battery and the motors are also taken into account.

5.2.3.2 Electrical Part

The electrical part consists of three major models: a fuel cell, a battery and a

powerbus. The powerbus splits the power demand from the mechanical part into

the power demands to the fuel cell and the battery and combines the power supplied

from the two power sources to drive the motors. In order to determine the power

split during a cycle, a power management strategy needs to be defined. As men-

tioned already, ECMS is used in this dissertation due to its robustness and ease of

implementation. In ECMS, the instantaneous energy consumption Jt is defined as

the weighted sum of the fuel energy consumed in the fuel cell, ĖH2 , and the equivalent

electric energy consumed in the battery, Ėe− , expressed as follows:

Jt = ĖH2(P
fc(t)) + sĖe−(P bt(t)), (5.25)
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where P fc and P bt are the powers generated in the fuel cell and battery, respec-

tively. The weighting factor s needs to be defined by a nested optimization because

the two energy conservations are not directly comparable. In Eq.(5.25), the energy

consumptions can be expressed as:

ĖH2 = HLHVṁH2(P
fc(t))

Ėe− =

{
αdisP

bt(t)/ηbt (discharging)

αchrη
btP bt(t) (charging)

,
(5.26)

where HLHV is the low heating value of hydrogen, ṁH2 is the rate of hydrogen con-

sumption and ηbt is the efficiency of the battery. The αdis and αchr can be different

because the charging and discharging efficiencies are not identical. For computational

efficiency, however, αs are set to 1 because fuel economy estimations with the same

α are sufficiently close to those with two different αs [108]. In ECMS, therefore, the

following instantaneous optimization problem is solved at each time t:

min
Pbt

Jt(P
bt, P fc)

subject to P pt
req = P bt + P fc,

P bt
min(t) ≤ P bt(t) ≤ P bt

max(t),

P fc
min ≤ P fc(t) ≤ P fc

max,

SOCmin ≤ SOC(t) ≤ SOCmax,

(5.27)

where P bt
min and P fc

max are the minimum and maximum powers available from the

battery, respectively. In Eq.(5.27), the state of charge (SOC) is bounded by the

maximum and minimum SOCs that are set to be 0.55 and 0.85, respectively, because

the battery model is valid only for the range.

The performance of ECMS depends highly on the weighting factor that varies by

the driving conditions and vehicle designs. Thus, for every design change, a nested
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optimization needs to be executed in order to find the optimal s, minimizing the

overall fuel consumption subject to the SOC sustainability constraint, expressed as:

min
s

∫ tf
0
ṁH2dt

subject to gpt
SOC = |SOC(tf )− SOC(0)| − 0.001 ≤ 0.

(5.28)

In order to estimate the hydrogen consumption in Eq.(5.26) and (5.28), the fuel

cell module uses a simple map generated from the quasi-steady fuel cell model of

Section 5.2.1. Since most of the transient phenomena in fuel cells are faster than the

vehicle dynamics, the fuel cell dynamics are approximated by a first order system,

whose time constant is about 2 seconds. Thus, the fuel cell module can produce

the same power as demanded almost immediately. The maximum and minimum

demands are limited to the maximum and minimum powers defined in Eq.(5.13).

The cost of the powertain, Cpt, needs to be estimated for enterprise decisions that

can be expressed as follows:

Cpt = Cfc + Cbt + Cmt − Cic, (5.29)

where Cfc,Cbt and Cmt are the cost of the fuel cell, the battery and the motor while

Cic is the cost of a target IC engine whose max power is 200kW. Since the specific

cost of IC engines is not readily available, we employ the same assumption as in

[110], i.e., (ICE specific cost) = 19$/kW. Thus, Cic = $ 3800. Also, Cfc is estimated

as follows:

Cfc = SCfcP fc
max (5.30)

For the battery and motor cost, cost models, presented in [99], are used, expressed
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as follows:

Cbt = max{MCC,MCCmin} ·W bt +BAUX,

Cmt = 368.7 + (127.7ln[Pmt
max]) + 2.95Pmt

max

where MCC = MCC∗ − EDTBC/3−EDTB∗C/3
KBM

· ln[EDTBC/3],

(5.31)

where:

MCC = the estimated OEM cost of manufacturing a battery module

(OEM selling price) per kg ($/kg),

MCCmin = the minimum allowable manufacturing cost, as a bound on the

MCC function (0 $/kg),

BAUX = the cost of the battery auxiliaries: tray, straps, bus bar, termi-

nal interconnects, electrical harness, and thermal management

system (100$),

MCC∗ = the reference OEM manufacturing cost (selling price) per kg, for

batteries of the reference specific energy (50 $/kW),

EDTBC/3 = the specific energy of the new battery (Wh/kg),

EDTB∗C/3 = the reference specific energy of the new battery (200 Wh/kg),

and KBM = coefficient (15). Since the battery model is developed for NiMH bat-

teries, the reference OEM manufacturing cost and the reference specific energy are

modified for Li-ion batteries while the minimum allowable manufacturing cost is set

to 0$/kg due to lack of data. Then, the powertrain subproblem in a deterministic
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ATC formulation can be expressed as follows:

Given tpt = {tfept , tCpt}, rfc, rbt,

min π({tpt − rpt, tfc − rfc, tbt − rbt})

with respect to xpt = {rm, pr}, tfc, tbt

subject to gpt
power ≤ 0, gpt

torque ≤ 0, gpt
speed ≤ 0, gpt

SOC ≤ 0

gpt
0−60 = t0−60 − 8 ≤ 0, {0.1, 1} ≤ xpt ≤ {0.2, 3},

where rpt = apt(xpt, tfc, tbt).

(5.32)

The rotor radius is deterministic while the pulley ratio is normally distributed

with σpr = 0.002. In this subproblem, the local constraints are assumed determin-

istic. Due to the nested optimization and ECMS, gpt
SOC is not violated unless the

power sources are too small for the vehicle. For fuel economy estimation, Simplified

Federal Urban Driving Schedule (SFUDS) is used.

5.2.4 Enterprise Model

The objective of enterprise decision is to maximize the profit subject to marketing

constraints. Here we consider a simple gross profit πent, calculated as the total

revenue minus the cost of obtaining the revenue. Revenue is basically price, P ent,

times quantity, qent, considering the sales of the designed vehicle is the only economic

activity. Also, we consider only the manufacturing cost of the vehicle, ignoring the

operational expenses such as marketing and sales expenditures. This section provides

a brief explanation of the profit model while detailed explanation is presented in [35].

5.2.4.1 Price and Demand

Based on standard assumptions in the microeconomic literature, a negative linear

relationship between price and quantity demanded of conventional light class trucks
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Table 5.2: Historical product price and demand data points and demand values adjusted
for expected new product penetration

Year Price Quantity (thousand) Adjusted quantity (thousand)
2001 $23,632 9278.3 927.83
2002 ($24,585)98 8721.4 872.14

can be drawn from the two pairs of price and annual sales data in 2001 and 2002,

shown in Table 5.2 [2, 99]. We assume that the enterprise has decided to allocate 10%

of its existing capacity for the production of the new product. Moreover, following

the argument in [35], the demand is assumed to be shifted by the fuel cost saving

Sent, and the resulting demand curve can be expressed as follows:

qent = θ − ∆qent

∆P ent
P ent +

∆qent

∆Sent
Sent. (5.33)

Solving with respect to price we have

P ent =
θ

∆qent/∆P ent
− ∆P ent

∆qent
qent +

λSent

λP ent

Sent, (5.34)

where λSent = ∆qent/∆Sent and λP ent = ∆qent/∆P ent. λSent can be interpreted as

the fuel cost saving elasticity of demand, meaning the responsiveness of the quantity

demanded of a good to a change in the expected fuel cost saving. Due to lack of

knowledge on the new technology, the ratio λSent is unknown in this dissertation.

In order to determine the demand curve, it is needed to realize consumer behavior

toward the new technology through consumer preference constraints.

A consumer’s aversion toward the new technology can be modeled by a net utility

threshold V ent [3]. As in [35], for market acceptability, the difference between fuel

saving from a hybrid fuel cell vehicle and change in price should be greater than the

threshold, expressed as follows:

Sent − (P ent − P̄ ent
01|02) ≥ V ent, (5.35)
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Table 5.3: Lifecycle Mileage of a light truck [54]
Age Miles Age Miles Age Miles Age Miles Age Miles

1 28,951 7 17,035 13 10,146 19 6,111 25 3,720
2 26,479 8 15,613 14 9,317 20 5,622 26 3,427
3 24,226 9 14,314 15 8,558 21 5,173 27 3,159
4 22,173 10 13,128 16 7,864 22 4,762 28 2,913
5 20,301 11 12,043 17 7,227 23 4,384 29 2,686
6 18,593 12 11,052 18 6,645 24 4,038 30 2,477

where ¯P ent
01|02 is the average of 2001 and 2002 market prices of the current conven-

tional light truck design, which is set to $ 24,108.5. Because the value of V ent cannot

be verified, we will treat it as a parameter in the optimization. Its value is, however,

determined after the following discussion on the fuel cost saving.

In order to estimate the fuel cost saving, miles traveled, the rate of fuel con-

sumption and fuel price need to be known. A lifecycle mileage of a light tucks is

presented by Environmental Protection Agency [54] (see Table 5.3) and the rate of

fuel consumption is the inverse of fuel economy obtained from the powertrain model

assuming that the initial fuel economy is maintained for the period. On the other

hand, the fuel price is uncertain because it fluctuates across time. In [35], the fuel

price is assumed to follow the mean-reverting process, expressed as follows:

∆Ddsl = αent
dsl (Ddsl − D̄dsl)∆t+ σdsl∆z,

∆z = ηent
√

∆t, ηent ∼ N(0, 1),

(5.36)

where α is the speed of reversion, D̄dsl is the normal level of Ddsl and σdsl is the

volatility of diesel fuel price, estimated from historical monthly diesel fuel prices

from March 1994 to October 2007 [44]. The mean-reverting process can be used for

predicting the diesel fuel price for an ICE vehicle. On the other hand, at present

there is no such commodity market for hydrogen, and data for hydrogen prices are

not rich enough for the mean-reverting process to be applied. The given information,
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however, indicates the current hydrogen prices are ranging from $4.40/kg to $5.00/kg

[122]. Also, the Department of Energy (DOE) has set the 2005 target for the end-user

cost of hydrogen to $2.00/kg - $3.00/kg [45]. Therefore, this dissertation assumes

that the hydrogen price is $3/kg currently and increases at a static inflation rate,

rent, that is assumed to be 3%. The model for hydrogen prices, therefore, is not

suitable for a long-term prediction. Instead, we can assume that both price models

are valid in a short-run, such as 2 years.

For diesel price, we can generate a random walk for the period based on Eq.(5.36).

Discounting back with the static inflation rate, rent, the diesel fuel expense can be

calculated in:

Cdsl =

∫ 2yr

0

DdslMte
−rentt

fedsl

dt, (5.37)

where Mt denotes miles traveled while fedsl is the fuel economy of a conventional light

truck whose average value is reported to be 22.3 mpg in [128]. In order to consider

multiple future scenarios, the process is repeated 100,000 times and the mean of the

fuel expenses is used for the rest of model. On the other hand, because hydrogen

price increases at rent, the hydrogen fuel expense can be expressed as:

CH2 =
3(28961 + 26479)

fept . (5.38)

From Eq.(5.37) and (5.38), fuel cost saving is expressed as follows:

Sent =

∫ 2yr

0

DdslMte
−rentt

fedsl

dt− 3(28961 + 26479)

fept . (5.39)

Back to consumer preference, the constraint in [35] cannot be applied directly

here because the fuel cost saving in the paper was calculated for 20 years not 2 years.

Instead, we assume similar constraints taking account of the consumer preference.
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First, assume that consumers want their return of an investment after 2 years to

be larger than the half of the cost of the investment. Additionally, for a long-

term prediction, eight times the fuel cost saving should be larger than the price

difference by V ent =$ 10,000, similar to the costumer preference constraint in [35].

Both constraints can be expressed mathematically as follows:

gent
1 = (P ent − P̄ ent

01|02)− 2Sent ≤ 0,

gent
2 = (P ent − P̄ ent

01|02)− 8Sent − 10000 ≤ 0.

(5.40)

Modeling of a sophisticated costumer preference is possible but beyond the scope of

this demonstration.

5.2.4.2 Manufacturing Cost

The manufacturing cost includes the production cost Cent
p and the powertrain

cost Cpt. Since Cpt can be estimated from the powertrain model, the production

cost needs to be defined. Due to lack of data, the regression model in [35] is scaled

down by the ratio between the prices of light and medium trucks, expressed as follows:

Cent
P = 3.05× 104 − 44.5qent + 0.0443 ∗ qent2

(5.41)

Then, assuming that the enterprise has allocated the maximum monthly capac-

ity to 1200, the enterprise subproblem in a deterministic ATC formulation can be

expressed as follows:

Given rpt

min π({−πent, tpt − rpt})

with respect to xent = {λent
S

λent
P
, qent}, tpt

subject to gent
1 ≤ 0 gent

2 ≤ 0 gent
3 = qent − 1200 ≤ 0,

{0.1, 60} ≤ xent ≤ {0.9, 1200}.

(5.42)
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The lack of understanding of market behavior is taken into account as uncertain-

ties in local variables with σλent
S /λent

P
= 0.02, σqent = 30. Also, the local constraints

are treated as probabilistic constraints with pf = 0.13%.

5.3 Results and Discussion

To facilitate numerical computation, the design variables are scaled to 1. For

example, the number of cells is divided by 500 and the cell thickness is multiplied by

1000. The scaled initial point is the deterministic optimal point, {xent,xpt,xfc,xbt} =

{0.873, 0.980, 2.41, 1.43, 0.980, 1.23, 1.51, 1.99, 1.84}. Parameters for the suspension

strategy are set to ζt = 0.2 and ζf = 0.8; the initial trust region is set to 0.01. The

problem is solved by SLP-based PATC with and without the suspension strategy.

During PATC with the suspension strategy, we find that the coupling between the

enterprise and powertrain is significantly stronger those that between the powertrain

and the other two subsystems. Therefore, the coupling between the enterprise and

powertain is also assumed suspendable, as shown in Figure 5.10. Criteria for the

modified suspension strategy for the powertrain model are expressed as follows:

if ||dlµR22
|| < ζt(

||dlµR22
||

3
+
∑
k∈C22

||dlµT3k
||

3
), O11 is suspended;

if ||dlµT33
|| < ζt(

||dlµR22
||

3
+
∑
k∈C22

||dlµT3k
||

3
), O33 is suspended;

if ||dlµT34
|| < ζt(

||dlµR22
||

3
+
∑
k∈C22

||dlµT3k
||

3
), O34 is suspended.

(5.43)

Table 5.4 summarizes the results obtained from the three methods: the SLP-based

PATC without suspension strategy (denoted as PLATC), the SLP-based PATC with

the suspension strategy based on Eq.(4.12) (denoted as PLATC-SS1) and the SLP-

based PATC with the modified suspension strategy based on Eq. (5.43) (denoted as
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Enterprise

Powertrain

Fuel Cell Battery

Enterprise

Powertrain

Fuel Cell Battery

(a) Suspension strategy (b) Modified suspension strategy

Unsuspendable
Suspendable

Figure 5.10: Modified suspension strategy taking into account of the coupling between
enterprise and powertrain models

Table 5.4: Optimal solutions and number of redesigns for the HEFCV design problem
x∗ (scaled)

PLATC {0.16, 1.07, 2.15, 1.89, 0.96, 1.23, 1.37, 1.94, 1.84}
PLATC-SS1 {0.16, 1.07, 2.15, 1.89, 0.96, 1.23, 1.37, 1.94, 1.84}
PLATC-SS2 {0.16, 1.07, 2.15, 1.89, 0.96, 1.23, 1.37, 1.94, 1.84}

f∗e
consistency number of redesigns

error O11 O22 O33 O34

PLATC $68,600 2.61× 10−4 571 1529 350 274
PLATC-SS1 $68,600 2.98× 10−4 571 1529 350 241
PLATC-SS2 $68,600 3.03× 10−4 571 1529 219 163

PLATC-SS2). All algorithms result in an exactly identical solution at the optimum.

Moreover, gent
1 , gpt

0−60 and gfc are active and λent
S /λent

P and hbt are bounded by the

upper and lower bounds, respectively.

The AIO approach takes about 200 seconds per design point on a PC with a

3.4GHz CPU and 1GB RAM. Since Monte Carlo Simulation (MCS) with 100,000

samples would take about 230 per design point, MCS was not performed to solve the

problem but to validate the accuracy of the solution. The proposed methods are,

however, efficient enough to find a solution under uncertainty with FORM/SORM

approximation. Note that the modified suspension strategy is more effective than

the original suspension strategy. Because the fuel economy is considerably sensitive

to the motor radius compared to the targets to the fuel cell and battery, the cou-
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Table 5.5: Reliability analysis results (MCS with 20,000 samples)
Constraint gent

1 gent
2 gent

3 gpt
0−60 gfc

PLATC Active Inactive Inactive Active Active
MCS pf (%) 0.65 0 0 0.12 0.13

Linking variables µfept µCpt µWfc µSCfc µWbt µCpbt

PLATC 48.6 mpg $8600 134kg 74.9$/kg 95.2kg 223Ah
MCS 46.8 mpg $9590 135kg 75.6$/kg 95.8kg 225Ah

Linking variables σfept σCpt σWfc σSCfc σWbt σCpbt

PLATC 1.53 59.5 2.74 1.71 0.938 3.42
MCS 1.37 66.4 2.76 1.72 0.939 3.43

pling between the enterprise and powertrain requires a large number of iterations to

determine a proper fuel economy. Even thought the modification of the suspension

criteria performs better for the problem, it has yet to be investigated how to apply

the modified criteria to more complex hierarchies.

Table 5.5 provides the reliability analysis results compared to MCS with 20,000

samples. The relatively fewer MCS samples are used due to the expensive simula-

tions. While constraint activities predicted by PLATC are accurate, MCS shows that

gent
1 is severely violated. The violation seems to result from inaccurate estimations in

the means rather than in the standard deviations of the linking variables. Addition-

ally, because the estimations for the linking variables between the level 2 and level 3

are relatively accurate, it can be concluded that the estimation errors are aggregated

and make the estimation between the level 1 and level 2 inaccurate. Therefore, in

order to improve the accuracy of the solution, more sophisticated methods, such as

AMV-based methods and numerical integration methods, can be considered when

the number of levels is large.

Table 5.6 provides the resulting vehicle specifications, compared with the results

from [67]. The results are not directly comparable because the two vehicles are signif-
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Table 5.6: Summary of results compared with the results from [67]
This study Results from [67]

Profit (π) $6.86× 107 N/A
Demand 6.43× 105 N/A

Price $28,900 N/A
Fuel Cost Saving for the First 2 Years $2390 N/A

Gasoline Equivalent Fuel Economy 48.6 mpgE (SFUDS) 24.8 mpgE (UDDS)
0-60mph 8sec 20sec

Vehicle Mass 3220kg >4270kg
Fuel Cell Max Power 113kW ∼ 160kW
Battery Max Power 82.2kW ∼ 50kW

Powertrain Cost $8,600 N/A
Fuel Cell Cost $8,500 N/A

Motor Cost $1,860 N/A
Battery Cost $2,050 N/A

icantly different, but a comparison is still useful because the two studies used similar

underlying engineering models. The expected profit π is not significant compared to

the demand. Since its approximated standard deviation at the solution is $3.07×107,

there is some chance of negative profit. The low profit may result from the low fuel

cost saving and hight hydrogen price. Since the hydrogen price is expected to have

low volatility, the fuel cost saving would be larger and the demand and profit might

be improved if a hydrogen price model for the long-run is provided.
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Figure 5.11: Fuel cell system performance map
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Figure 5.12: Battery resistance map

Because the vehicle in this dissertation is significantly lighter than that in [67], the

difference in fuel economy and 0-60mph time is notable with the similar powertrain

size. Note that the size of the fuel cell here (113kW) is comparable to that of the

battery (82kW) while a considerably larger fuel cell (∼160kW) and a smaller battery

(∼50kW) were obtained in [67]. The difference may result from the specific power

density of the battery. Since [67] employed a NiMH battery whose specific power

density ranges from 250 to 1000 W/kg, a bigger fuel cell whose specific power density

is about 500 W/kg was desirable. The specific power density of Li-ion battery here,

however, can be 1800W/kg or higher, which makes a bigger battery more favorable.

Figure 5.11 and 5.12 shows the performance maps of the fuel cell and the in-

ternal resistance map of the battery, respectively. Even though the approximated

net voltage output from the fuel cell for 25A to 150A is not as accurate as that for

the other net current, the net power approximation shows good agreement with the
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Figure 5.13: Simulation of a hybrid electric fuel cell vehicle

actual output because the excess in the net voltage results in below 1kW (or 5%)

power loss. Because the range of discrepancy is frequently visited as shown in Fig-

ure 5.13, however, improved fuel economy could be obtained from a more accurate

approximation even though the improvement would be less than 5%. Compared to

the fuel cell maps, Figure 5.12 validates the agreement between the approximation

and the actual performance maps for the range of approximation or operation at the

solution.

Figure 5.13 (a) presents the power demand from the motor (blue), the power from

the fuel cell (red) and the battery (black) during SFUDS. The power demand during

the schedule is not aggressive compared to the maximum power available from the

fuel cell or the battery. Moreover, Figure 5.13 (b) shows the SOC history during

the cycle. As shown in both figures, ECMS splits the power demands properly so

that the final SOC is maintained close to the initial SOC. As shown in both figures,

ECMS splits the power demands properly so that the final SOC is maintained close

to the initial SOC and satisfies the SOC constraint (0.699 ≤ SOC(tf ) ≤ 0.701). Note
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that the maximum deviation from the initial SOC is only 0.4%. This small deviation

could results from the length of the short duty cycle and the large battery size. Since

the duty cycle (SFUDS) is relatively short (< 370 seconds), the power-management

strategy tends to use the fuel cell more actively.

5.4 Concluding Remarks

A comprehensive HEFCV design model was developed in this chapter, including

enterprise decisions, powertrain, fuel cell and battery models. An optimization prob-

lem was formulated considering uncertainties in engineering design and marketing

decisions. Especially, costumer preference and demand were assumed to be random

variables because costumers behavior on HEFCV has not yet been reported. Since

the linking variables between the powertrain model and its children contain perfor-

mance maps, the maps were approximated in order to reduce the number of linking

variables.

The problem was solved by the coordination strategies proposed in this disserta-

tion. All proposed strategies resulted in an identical solution and the approximation

of the performance maps agreed with the actual maps at the solution with less than

5% error. Since the enterprise and powertrain models are coupled more strongly than

the other couplings, the suspension strategy was modified so that the targets were

also compared with the responses. Even though the modified suspension strategy

reduced computations significantly, more rigorous investigation is needed for the ap-

plicability of the modified suspension strategy to more complex systems. Moreover,

in order to validate the accuracy and efficiency, the solution needs to be compared

with results from other methods using different uncertainty propagation.
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Though the proposed strategies solved the problem efficiently, the design seems

less profitable because of the low fuel cost saving. Moreover, the battery cost may

be considerably lower than available costs in the market. For a more comprehensive

and reasonable understanding of the overall design tradeoffs, more accurate models

must be provided.



CHAPTER VI

Conclusions

6.1 Dissertation Summary

The particular objective of this dissertation was to resolve computational diffi-

culties in uncertainty propagation for MDO under uncertainty by using sequential

linearization. To this end, an SLP algorithm was developed as a coordination strat-

egy for ATC and PATC, along with convergence proofs. To illustrate the effectiveness

of the proposed strategies, a number of illustrative examples were provided.

Among various uncertainty models, this dissertation focused on continuous ran-

dom variables because they are most commonly used in engineering problems. In

Chapter 2, several techniques to estimate propagated uncertainty were explained, in-

cluding sampling techniques, local expansion methods, most probable point (MPP)

methods and numerical integration methods. In terms of numerical efficiency and

accuracy, MPP methods and numerical integration methods were considered more

suitable for optimization than the other methods. In addition, MPP methods, such

as FORM and SORM, were chosen to be applied for approximations in this disser-

tation. Furthermore, Chapter 2 reviewed formulation and solution approaches for

design optimization and MDO under uncertainty. As the dissertation concentrated

on a hierarchical decomposition strategy, the formulations of ATC and PATC and

130
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uncertainty propagation in PATC were reviewed extensively. Previous work reviewed

in Chapter 2 suggested the need for research to reduce the computational burden in

estimation of propagated uncertainty for PATC.

Because sequential linearization could reduce problem complexity and be ad-

vantageous in uncertainty propagation, linearized ATC and PATC hierarchies were

formulated to be used with the proposed SLP coordination strategy in Chapters 3

and 4, respectively. Unlike the other ATC formulations, the linearized ATC and

PATC utilized L∞ norms for relaxation in order to maintain linearity. Solution

approaches and convergence proofs for a SLP coordination strategy for ATC and

PATC were also presented. For the convergence proofs, this dissertation considered

the following six formulations, illustrated in Figure 6.1: AIO, PAIO, ATC, PATC

and SLP subproblems for AIO and ATC. The formulations in the upper row (PATC,

ATC, SLP-ATC) are the ATC formulation of those in the lower row (PAIO, AIO,

SLP-AIO) while the formulations in the second column (AIO, ATC) can be obtained

by applying FORM/SORM approximation to the constraints of those in the first

column (PAIO, PATC). Therefore, the solutions from AIO, ATC, PAIO and PATC

Probabilistic Analytical 
Target Cascading

(PATC)

Probabilistic All-In-One
(PAIO)

Equivalent Analytical 
Target Cascading

(ATC)

Equivalent All-In-One
(AIO)

SLP subproblems for
ATC

(SLP-ATC)

SLP subproblems for
AIO

(SLP-AIO)

ATC decom
position

FORM/SORM sequential linearization

§3.2.4

§3.2.2

Figure 6.1: Convergence proof overview
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are equivalent to each other by the ATC convergence proof [106] and optimality con-

ditions for RBDO problems [26]. Also, SLP convergence proof was derived for the

problems with only inequality constraints [57]. Thus, in order to complete the con-

vergence proof of the proposed coordination strategy, Section 3.2.2 showed that the

convergence proof of ATC still holds for linearized ATC with the L∞ norms based

on HOC strategy. Moreover, since decomposition introduces equality constraints

for system consistency, the previous SLP convergence proof was extended for prob-

lems with inequality and equality constraints based on the Mangasarian-Fromowitz

constraint qualication in Section 3.2.4.

In order to further reduce the computational cost, a suspension strategy was

applied by suspending coordination between weakly coupled elements. The effec-

tiveness of the proposed strategies was demonstrated in several illustrative examples.

Reduction in computations by the suspension strategy was varied when using varying

parameters for suspension criteria and coupling strengths between elements. How-

ever, the suspension strategy may invalidate algorithmic convergence, so it might be

used with caution until this convergence behavior is investigated more thoroughly.

A comprehensive design model for a Hybrid Electric Fuel Cell Vehicle (HEFCV)

that took into account uncertainties in both engineering design and marketing deci-

sions was developed in Chapter 5. The design problem, including enterprise, pow-

ertrain, fuel cell and battery models, was solved by the proposed strategies. Since

linking variables between powertrain and fuel cell/battery contained performance

maps, the maps were approximated by linear or quadratic functions and the coeffi-

cients of the approximated functions were used as linking variables to represent the

maps. Additionally, because the coupling between enterprise and powertrain models
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was stronger than the others, the suspension strategy was modified so that the step

sizes of both targets and responses could be compared in the suspension criteria.

Even though the solutions from the proposed strategies agreed to each other, the ac-

curacy and computational efficiency of the proposed strategies has yet to be proven

fully through comparison with results from other methods.

6.2 Contributions

The main contributions of this dissertation are summarized as follows:

• Development of an SLP algorithm to coordinate ATC and PATC problem by

applying L∞ norms for relaxation.

• Convergence proofs of the proposed coordination strategies for the use of L∞

norms and the inclusion of equality constraints.

• Application of a suspension strategy and development of suspension criteria for

the SLP coordination strategy for ATC and PATC.

• Demonstration of the proposed strategies to a comprehensive design model

for HEFCV taking into account uncertainties in both engineering design and

marketing decisions.

6.3 Future Work

The following research issues require future investigation:

• Extension of the proposed strategies to other MDO formulations un-

der uncertainty. The SLP coordination and suspension strategies can be

applied to other decomposition methods, such as collaborative optimization
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and BLISS under uncertainty. Since many design problems can be decomposed

by aspects not objects, this would expand the range of the applications of the

proposed strategies.

• Improved suspension strategy. The suspension strategy requires iterations

between suspension and validation. Also, reduction in computation by the

strategy is considerably sensitive to problem formulations and suspension pa-

rameters that require several tunings. Therefore, improved suspension criteria

based on coupling strength may reduce computations more effectively. Addi-

tionally, promising results achieved by including the step sizes of targets shown

in Chapter 5 warrant further investigation of the modified suspension strategy.

• Usage of other uncertainty propagation methods for LP approxi-

mation. Because the local expansion methods were used for the mean and

variance estimation of coupling variables, the estimations were inaccurate if

response functions were highly nonlinear functions, and this resulted in inac-

curate solutions, especially for the HEFCV design problem. Therefore, using

more accurate methods for highly nonlinear functions judiciously could improve

the accuracy and efficiency of the proposed coordination strategies.

• System consistency with random linking variables. The equivalence of

random variables in this dissertation was determined by the equality in mean

and variance, which resulted in inaccuracy of solutions. A more appropriate

approximation of random variables could provide more accurate solutions with

little increase in computational cost.
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