
 

 

 

 

 

 

 
Energy Finite Element Analysis Developments for High Frequency  

Vibration Analysis of Composite Structures 
 
 
 

by 
 
 
 

Xiaoyan Yan 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Naval Architecture and Marine Engineering) 

in The University of Michigan 
2008 

 
 
 
 
 
 

Doctoral Committee: 
 
Professor Nickolas Vlahopoulos, Co-Chair 
Assistant Research Scientist Aimin Wang, Co-Chair 
Professor Michael M. Bernitsas 
Professor Anthony M. Waas 
Associate Research Scientist Matthew P. Castanier 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 
Reserved Rights All

YanXiaoyan  2008 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 

To my parents 
Baolin Yan and Ruijuan Cao 

without whose sacrifices none of this would be possible. 



iii 

ACKNOWLEDGMENTS 

This dissertation is the result of three and half years of work whereby I have been 

accompanied, supported and encouraged by many people. It is a pleasant aspect that I 

have now the opportunity to express my gratitude to all of them. 

First and foremost, I would like to express my deep and sincere gratitude to my 

advisor, Professor Nickolas Vlahopoulos, for his support, patience and encourgment 

throughout my research and study at the University of Michigan. His expertise and 

technical knowledge is essential to the completion of this dissertation and has taught me 

innumerable lessons and insights in research.  

I would like to sincerely thank Dr. Aimin Wang for giving me consistent guidance 

and advices to my research and for being the co-chair of my committee. He always finds 

time to oversee my research and to share his knowledge and expertise with me despite of 

his busy schedule. This work wouldn’t have been possible without the encourgment and 

support from him. 

I would like to thank Professor Anthony M. Waas for being a member of my 

committee and for monitoring my work and providing me with valuable comments on my 

research. I leared a lot of knowledge on composite materials from him.  

I appreciate the advice of my other dissertation committee members, Professor 

Michael M. Bernitsas and Dr. Matthew Castanier. Thank them for giving valuable 

comments on my dissertation. 

I would like to acknowledge a numer of my friends and colleagues, without whom 

this experience would have been incomplete. First, special thanks to my friends at the 

University of Michigan, who have made my life and study here an unforgettable 



iv 

experience. Some of them are: James Bretl, Jim Chang,  Jinting Guo, Sina 

Hassanaliaragh, Elisha Garcia, Zheyu Hong, Jonghun Lee, Yaning Li, Zhen Li, Sai 

Mohan Majhi, Javid Moraveji, Ellie Nick, Varun Raghunathan, Oscar Tascon, Hui Tang, 

Zhigang Tian, Wei Wu, Handa Xi, Yanhui Xie. Thanks also due to my colleagues and 

friends in Houston:, Steven Barras, Nicole Liu, Yang Mu, Xinguo Ning, Jiulong Sun, Jim 

Wang, Jin Wang, Xiaoning Wang and Lixin Xu. I would also like to thank my best 

friends, Rong Wu, Ying Jin and Bei Lu, for their continuous encouragement and 

accompany through the three and half years and for giving me a great time studying in 

Michigan.  

I would like to thank my closest friend Kamaldev Raghavan, who gave me 

consistent support and encourgment throughout my Ph.D. study.  

This research was supported by the Automotive Research Center, a U.S. Army 

RDECOM center of excellence for modeling and simulation of ground vehicles led by 

the University of Michigan. 

 I would also like to thank and the department of Naval Architecture and Marine 

Engineering, University of Michigan and the Barbour Scholarship for their fellowships 

and support during my graduate study.  

 

 

  



v 

TABLE OF CONTENTS 

DEDICATION................................................................................................................... ii 

ACKNOWLEDGMENTS ............................................................................................... iii 

LIST OF FIGURES ....................................................................................................... viii 

ABSTRACT ........................................................................................................................x 

CHAPTER 1 INTRODUCTION ..................................................................................... 1 

1.1 RESEARCH OVERVIEW ................................................................................ 1 

1.2 LITERATURE REVIEW ................................................................................. 4 

1.2.1 Finite Element Analysis and composite materials ................. 4 
1.2.2 Statistical Energy Analysis .................................................... 8 
1.2.3 Energy Finite Element Analysis .......................................... 11 
1.2.4 Power transmission through joints ....................................... 15 

1.3 DISSERTATION CONTRIBUTION............................................................. 20 

1.4 DISSERTATION OVERVIEW ...................................................................... 22 

CHAPTER 2 BACKGROUND OF ENERGY FINITE ELEMENT 
ANALYSIS ...................................................................................................................... 25 

2.1 INTRODUCTION............................................................................................ 25 

2.2 EFEA DEVELOPMENTS FOR A SINGLE ISOTROPIC PLATE ........... 25 

2.3 EFEA DEVELOPMENTS FOR ISOTROPIC PLATE JUNCTIONS ....... 29 

2.4 EXAMPLE OF PREVIOUS EFEA APPLICATIONS ................................ 31 

CHAPTER 3 EFEA DEVELOPMENTS IN SINGLE COMPOSITE 
LAMINATE PLATE ...................................................................................................... 33 

3.1 INTRODUCTION............................................................................................ 33 

3.2 SYNTHESIS OF STIFFNESS MATRIX FOR COMPOSITE 
LAMINATE PLATES ............................................................................... 35 

3.2.1 Stress-strain relation for generally orthotropic lamina ........ 35 
3.2.2 Synthesis of stiffness matrix for composite laminate 

plates ....................................................................................... 37 



vi 

3.3 GOVERNING EQUATIONS FOR THE VIBRATION OF 
COMPOSITE LAMINATE PLATES ..................................................... 39 

3.4 EFEA DEVELOPMENT FOR THE FLEXURAL WAVES IN 
COMPOSITE LAMINATE PLATES ..................................................... 43 

3.4.1 Wave solution of displacement and the dispersion 
relation for flexural waves ...................................................... 43 

3.4.2 Derivation of time- and space- averaged energy density 
and intensities.......................................................................... 45 

3.4.3 Derivation of EFEA differential equation and its 
variational statement ............................................................... 47 

3.5 EFEA DEVELOPMENT FOR THE IN-PLANE WAVES IN 
COMPOSITE LAMINATE PLATES ..................................................... 51 

3.5.1 Displacement solution the dispersion relationship for 
in-plane waves ........................................................................ 51 

3.5.2 Derivation of time- and space- averaged energy density 
and intensities.......................................................................... 53 

3.5.3 Derivation of EFEA differential equations for in-plane 
motions .................................................................................... 55 

3.6 NUMERICAL EXAMPLES AND VALIDATION ....................................... 56 
3.6.1 Two-layer cross-ply laminate plate ...................................... 57 
3.6.2 Two-layer general laminate plate ......................................... 63 

3.7 AN ALTERNATIVE METHOD TO DERIVE THE EFEA 
DIFFERENTIAL EQUATION FOR COMPOSITE LAMINATE 
PLATES ...................................................................................................... 68 

3.7.1Group velocity for composite laminate plates ...................... 68 
3.7.2 Equivalent homogenized isotropic material for 

composite laminate plates ....................................................... 70 
3.7.3 Validation of alternative approach ....................................... 71 

CHAPTER 4 POWER TRANMISSION THROUGH COUPLED 
ORTHOTROPIC PLATES............................................................................................ 73 

4.1 INTRODUCTION............................................................................................ 73 

4.2 DERIVATION OF POWER TRANSMISSION COEFFICIENTS 
FOR ORTHOTROPIC PLATE JUNCTION ......................................... 75 

4.2.1 Governing equations ............................................................ 75 
4.2.2 Derivation of in-plane wavenumbers for orthotropic 

plates ....................................................................................... 77 
4.2.3 Derivation of dynamic stiffness matrix ................................ 79 
4.2.4 Assembly of the complete equations and the calculation 

of transmission coefficients .................................................... 84 
4.3 DERIVATION OF JOINT MATRIX ............................................................ 86 

4.3.1 Power flow relationship of two systems through a 
lossless joint ............................................................................ 86 



vii 

4.3.2 Joint matrix for two coupled plates ...................................... 89 
4.4 ASSEMBLY OF GLOBAL MATRIX FOR COUPLED 

ORTHOTROPIC PLATES....................................................................... 90 

4.5 NUMERICAL EXAMPLES AND VALIDATION ....................................... 91 

CHAPTER 5 POWER TRANMISSION THROUGH COUPLED 
COMPOSITE LAMINATE PLATES ........................................................................ 100 

5.1 INTRODUCTION.......................................................................................... 100 

5.2 DERIVATION OF POWER TRANSMISSION COEFFICIENTS .......... 101 
5.2.1 Governing equations .......................................................... 101 
5.2.2 Derivation of in-plane wavenumbers for composite 

laminate plates ...................................................................... 102 
5.2.3 Derivation of dynamic stiffness matrix .............................. 103 
5.2.4 Assembly of the complete equations and the calculation 

of transmission coefficients .................................................. 107 
5.3 DERIVATION OF JOINT MATRIX .......................................................... 108 

5.4 ASSEMBLY OF GLOBAL EFEA EQUATIONS FOR COUPLED 
COMPOSITE LAMINATE PLATES ................................................... 108 

5.5 NUMERICAL EXAMPLES AND VALIDATION ..................................... 109 

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK .......................................................................................................... 116 

6.1 CONCLUSIONS ............................................................................................ 116 

6.2 RECOMMENDATIONS FOR FUTURE WORK ...................................... 118 

APPENDIX .................................................................................................................... 120 

REFERENCES .............................................................................................................. 125 

 

  



viii 

LIST OF FIGURES 

Figure 2.1 EFEA results for the flexural energy in a vehicle due to track excitation ....... 31 

Figure 2.2 Conventional FEA and EFEA model for an Army vehicle ............................. 32 

Figure 3.1 Construction of composite laminate plate ....................................................... 35 

Figure 3.2 Two coordinates of a generally orthotropic lamina ......................................... 36 

Figure 3.3 Geometry of multilayered laminate ................................................................. 38 

Figure 3.4 Exact and approximate frequencies for the angle-ply laminate plate .............. 42 

Figure 3.5 Input power comparison between FEA and analytic solutions ....................... 50 

Figure 3.6 Configuration of two-layer cross-ply laminate plate ....................................... 57 

Figure 3.7 Conventional FEA model (left) and EFEA model (right) ............................... 58 

Figure 3.8 Distribution of energy density along the mid-span of the cross-ply laminate 

plate computed by the dense FEA and EFEA models at 1000Hz-5000Hz 1/3 octave bands

........................................................................................................................................... 62 

Figure 3.9 Configuration of composite laminate plate ..................................................... 63 

Figure 3.10 Distribution of energy density along the mid-span of the general laminate 

plate computed by the dense FEA and EFEA models at 1000Hz-5000Hz 1/3 octave bands

........................................................................................................................................... 67 

Figure 3.11 Wavenumber as a function of wave heading in the wavenumber plane ....... 68 

Figure 3.12 Energy density distribution comparison between composite laminate plate 

and its equivalent isotropic plate ....................................................................................... 72 

Figure 4.1 Schematic of plate junction ............................................................................. 74 



ix 

Figure 4.2 Coordinate system, displacements, forces and moments for plate j ................ 76 

Figure 4.3 Schematic plot of energy flow between two subsystems for a single wave .... 86 

Figure 4.4 Four different orientations for two orthotropic plate L-junctions ................... 92 

Figure 4.5 The transmission loss for the four cases of orthotropic L-junction ................. 93 

Figure 4.6 The models of orthotropic L-junction in conventional FEA and EFEA ......... 94 

Figure 4.7 Energy density in two orthotropic plates (t=0.01m) ........................................ 96 

Figure 4.8 Energy density in two orthotropic plates (t=0.001m) ...................................... 99 

Figure 5.1 The orientation of the first composite laminate plate .................................... 110 

Figure 5.2 The orientation of the second composite laminate plate ............................... 110 

Figure 5.3 The models of orthotropic L-junction in conventional FEA and EFEA ....... 111 

Figure 5.4 Comparison of energy density between EFEA and conventional FEA (case 1)

......................................................................................................................................... 112 

Figure 5.5 Comparison of energy density between EFEA and conventional FEA (case 2)

......................................................................................................................................... 113 

Figure 5.6 Comparison of velocity difference between two plates (case 1) ................... 114 

Figure 5.7 Comparison of velocity difference between two plates (case 2) ................... 114 

 

 

 

 

 



x 

ABSTRACT 

 
Energy finite element analysis (EFEA) has been proven to be an effective and 

reliable tool for high frequency vibration analysis. It uses the averaged energy density as 

the primary variable to form the governing differential equations and provides a practical 

approach to evaluate the structural response at high frequencies, which is hard to reach 

with conventional finite element analysis because of the computational cost. In the past, 

EFEA has been applied successfully to different structures, such as beams, rods, plates, 

curved panels etc. Until recently, however, not much work has been done in the field of 

composite structures.  

Research for developing a new EFEA formulation for modeling composite 

laminate plates is presented in this dissertation. The EFEA governing differential 

equation, with the time- and space- averaged energy density as the primary variable, is 

developed for general composite laminate plates. The power transmission characteristics 

at plate junctions of non-isotropic materials, including orthotropic plates and composite 

laminate plates are studied in order to obtain the power transmission coefficients at the 

junction. These coefficients are utilized to compute the joint matrix that is needed to 

assemble the global system of EFEA equations. The global system of EFEA equations 

can be solved numerically and the energy density distribution within the entire system 

can then be obtained. The results from the EFEA formulation have been validated 

through comparison with results from very dense FEA models.  
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Chapter 1  

INTRODUCTION 

1.1 Research Overview 

Composite materials are formed by combining two or more materials that have 

quite different properties. The different materials work together to give the composite 

unique properties. The greatest advantage of composite materials is strength and stiffness 

combined with lightness. Because of these advantages, composite laminate plate and 

shell structures are being increasingly used as primary structural components in 

applications where weight saving is of critical concern, such as automotive, aerospace 

and naval architecture industries.  

One of the applications of composite materials is that they can be used for the 

construction of army vehicles to make them lightweight. However, at the same time, the 

use of composite materials makes the vehicles structures more vulnerable to dynamic and 

shock loads. Due to the short duration of shock events, the high frequency content of the 

loads is responsible for the transfer of power from the location of the excitation to the 

location where sensitive electronic equipment is mounted. To improve the performance 

of composite materials under impact and utilize them to their full advantage, it is crucial 

to have a good understanding of their response under impact loads. 
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The frequency spectrum where simulation methods can be utilized for vibration 

analysis can be divided into three regions: low, mid and high frequency. The low 

frequency region is defined as the frequency range where all components are short 

compared to the wavelength. Finite Element Analysis (FEA) simulations are used for 

computing the response of structures at low frequency. In the mid-frequency range, the 

system is comprised of both long and short members. The method of combining SEA or 

EFEA with conventional finite element analysis was used to simulate the vibration 

response at mid frequencies. 

The high frequency range is defined as the frequency range where all component 

member of a system are long compared to the wavelength.  At high frequency, 

conventional FEA methods require a very large number of elements in order to capture 

the high frequency characteristic of the structures, which results in very high 

computational costs. Statistical Energy Analysis (SEA) and Energy Finite Element 

Analysis (EFEA) are the two developments for high frequency vibration analysis. 

In SEA, the system is partitioned into coupled “subsystems” of similar modes and 

the stored and exchanged energies in each “subsystem” are analyzed through a set of 

linear equations. The primary variable in SEA is the lumped averaged energy in each 

subsystem. A subsystem can be seen as a part or physical element of the structure that is 

analyzed. To be modeled as a subsystem, the part or element should be able to vibrate 

quite independently from other elements and a reverberant sound field should exist with 

the subsystem. If different wave types exist in the element, then each of the 

corresponding sound field is modeled as one subsystem. In general, a subsystem is a 
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group of similar energy storage modes. In SEA, the “statistical” operation is represented 

by the frequency, spatial and ensemble average over a group of modes.  

EFEA is a recently developed finite element approach for high frequency 

vibration and acoustic analysis. In EFEA, the energy density is defined as the primary 

variable. The governing differential equation is developed in terms of energy density and 

numerical solution is employed using finite element approach. It can capture the vibration 

property of the structure by using a significantly smaller number of elements compared to 

conventional FEA methods.  The EFEA has been utilized in modeling automotives, 

marine structures and aircrafts etc.  It has been validated through comparison to results 

from very dense FEA models and test data.  

Compared to SEA, the advantages of EFEA are that it can provide the detail 

energy distribution within the subsystems and it can also take into consideration of the 

local damping effects within the subsystems. Furthermore, it is possible to use the 

existing models in conventional FEA in the EFEA method.  

Until recently, most of the research on EFEA is related to isotropic materials, 

where the material properties are the same at all the directions.  Some work had been 

done in orthotropic plates where the properties are different in two perpendicular 

directions. Until recently, not much work has been done in the field of composite plates. 

In order to extend the EFEA developments for composite materials, it is necessary to 

derive the more general EFEA differential equations for composite materials. 

In this dissertation, the EFEA differential equation for composite laminate plates 

is developed. The derivation follows the same procedure as the development of EFEA in 

isotropic materials. First, the equations of motion for composite laminate plate are 
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obtained. The relationship between the time- and space-averaged energy density and 

energy intensities are found in order to establish the EFEA governing differential 

equations for general composite laminate plates. A variational form is employed to solve 

the EFEA differential equation. The energy density distribution of the composite laminate 

plates obtained from EFEA formulation is compared and validated with very dense FEA 

models of the plates. Then, for the coupled composite laminate plates, the power 

transmission coefficient at the junction is derived by utilizing the wave propagating 

method. The dynamic stiffness matrix for each plate is derived and the equations of 

motion of the junction are obtained by applying the appropriate equilibrium and 

compatibility conditions. The power transmission coefficients are calculated by solving 

the equations of motion at the junction. At last, the joint matrix at the junction is 

calculated and the global system of EFEA equation is established. The primary variable 

of the equation – energy density can then be calculated. 

1.2 Literature Review 

1.2.1 Finite Element Analysis and composite materials  

In the past, conventional finite element analysis has been employed to evaluate 

the response of the structural system to the dynamic loads. The FEA formulation can be 

used to analyze arbitrary complex structures. It considers the continuous structures as a 

number of elements that connected to each other by the compatibility and equilibrium 

conditions. However, because of the necessity of obtaining the element size much smaller 

(typically 1/6) than the wavelength, FEA requires small meshes to describe the rapidly 

changing modes of the structures(Kim, Kang et al. 1994). Thus, FEA is mainly limited to 

analyzing the vibration at relatively low frequencies.  
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However, a number of researches have been done on the application of finite 

element analysis to the high frequency response of composite structures subject to 

impact/shock loads.  

A transient dynamic finite element model was developed to analyze the response 

of a laminated composite plate subject to a foreign object impact in order to examine the 

susceptibility to impact of fiber-reinforced laminated composites that have been widely 

used in aerospace structures (Wu and Chang 1989). Instead of using two-dimensional 

plate theories, they studied the stress and strain distributions through the laminate 

thickness during the impact. A correlation was found between the strain energy density 

distributions and the resultant impact damage from the results. 

A super finite element method was employed to predict the transient response of 

laminated composite plates and cylindrical shells subject to impact loads (Vaziri, Quan et 

al. 1996). The results were compared with experimental date and theoretical solutions. 

The super element technique was proved to be a simple and efficient method to predict 

the response of laminated composite plates and shells under impact loading although its 

limited applicability due to the linear elastic material behavior assumption. 

The response of a fiber-reinforced composite laminate plate subject to central 

impact was investigated (Oguibe and Webb 1999). The failure mode was approximated 

by the model combining spring, gap and dashpot elements that account for the energy 

dissipated during the damage process. The numerical results were compared with the 

experimental data and good agreements were observed. It was concluded that the 

coupling between the dynamic response and stiffness degradation due to damage must be 

considered in order to predict correctly the damage due to impact. This dynamic finite 
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element model, together with the failure algorithm, can be used as a good numerical tool 

to predict the response of composite structures under impact loads. 

A new weighted homogenization method was introduced for the design analysis 

of composite laminate structures for light weight armored vehicles (Rostam-Abadi, Chen 

et al. 2000). The method is modified from the standard homogenization method by 

applying the weighted material constants of the laminae in order to reflect the nature of 

beding. Numerical examples were presented using finite element analysis and the method 

was validated with classical lamination theory and first-order shear deformation theory.    

The response of a laminated composite cylindrical shell was calculated by the 

classical Fourier series and the finite element method (Krishnamurthy, Mahajan et al. 

2003). The analytical method provides information to help select appropriate mesh and 

time step sizes for finite element method. A spectral finite element model was developed 

to study the effect of wave scattering and power flow in composite beams with general 

ply stacking sequence (Mahapatra and Gopalakrishnan 2004).  

The composite laminate and shell structures subject to low velocity impact were 

studied by Her and Liang (Her and Liang 2004) using ANSYS/LSDYNA finite element 

software. The impact force was modeled by the modified Hertz contact law. The effects 

of various parameters were examined in the parametric study. 

The damage of a range of sandwich panels under impact loads was examine using 

experimental investigation and numerical simulation (Meo, Vignjevic et al. 2005). The 

numerical simulation was performed using transient dynamic finite element analysis code. 

The load distribution in the damaged sandwich structure and the failure mechanism under 

the impact load were examined. 
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The dynamic analysis of shell structures, with emphasis on application to steel 

and steel-concrete composite blast resistant door was analyzed by Koh (Koh, Ang et al. 

2003). An explicit integration method was adopted considering the short duration and 

impulsive nature of the blast loading. Composite shell was handled by appropriate 

integration rule across the thickness. Both material and geometric nonlinearities were 

considered in the formulation.  

The transient response of composite sandwich plates under initial stresses was 

investigated using a new finite element formulation (Nayakl, Shenoi et al. 2006). The 

new finite element formulation is based on a nine node assumed strain plate bending 

element with nine degrees of freedom per node that developed from a refined high order 

shear deformation theory.  

A formulation of asymmetric laminated composite beam element that has super 

convergence properties was presented (Chakraborty, Mahapatra et al. 2002). The 

formulation is capable of capturing all the propagating wave modes at high frequencies 

and can be utilized to solve the free vibration and wave propagation problems in 

laminated composite beam structures. Qiu (Qiu, Deshpande et al. 2003) used the finite 

element method to analyze the response of clamped sandwich beams subject to shock 

loading and compared the results with analytical predictions.  

Iannucci and Ankersen (Iannucci and Ankersen 2006) proposed an 

unconventional energy based composite damage model that has been implemented into 

the finite element codes for shell elements. In the model, the evolution of damage in each 

mode (tensile, compressive and shear) was controlled via a set of damage-strain 
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equations to allow the total energy dissipated for each damage mode to be controlled 

during impact event. 

1.2.2 Statistical Energy Analysis 

Statistical Energy Analysis (SEA) is developed based on the idea that at very high 

frequencies the vibration problem is analogous to a thermal problem in which the 

vibration energy density and damping are analogous to temperature and heat sinking 

respectively. SEA has the advantage of reducing the order of governing differential 

equations in vibratory analysis. In SEA, a large structure is reduced into smaller 

subsystems which are coupled together through a set of linear equations. SEA is very 

good in the study of sound and vibration transmission through complex structures at high 

frequencies. However, it is not reliable at low frequencies due to the statistical 

uncertainties that occur when there are few resonant modes in each of the subsystems. 

The advantage of SEA is that it enables us to describe the subsystems more 

simply by only a few physical parameters, such as the damping coefficients, modal 

density, etc. (Lyon 1975). The disadvantage of SEA is that it gives statistical answers, 

which are subject to some uncertainty.  In this case, many of the systems may not have 

enough modes in certain frequency bands to allow predictions with a high degree of 

certainty.  

The earliest work in the development of SEA were done in 1960s by Lyon and 

Smith ((Lyon and Maidanik 1962; Smith 1962). In Lyon’s work (Lyon and Maidanik 

1962), the interaction of a single mode of one system with many modes of another was 

analyzed and an experimental study of a beam with a sound field was done. It also 
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showed the basic SEA parameters for the response prediction: modal density, damping 

and coupling loss factor.  

SEA has been applied to different types of systems. Following its initial 

developments, the systems of plate and beam interaction and two plates connected 

together were discussed (Lyon and Eichler 1964). The radiation of sound by reinforced 

plates (Maidanik 1962) and the radiation of sound by cylinders (Manning and Maidanik 

1964) were evaluated. SEA is also applied to other structures such as periodically 

stiffened damped plate structures (Langley, Smith et al. 1997) that are widely used in 

aerospace and marine vehicles.  

Modal density is one of the important parameters in SEA. The development of 

SEA motivated the effort in the evaluation of modal densities. The modal densities of 

cylinders (Heckl 1962; Szecheny 1971) and curved panels (Wilkinson 1968) were 

evaluated.  The modal density of composite honeycomb sandwich panels is evaluated 

(Renji, Nair et al. 1996). In the study, the expression for the modal density of honeycomb 

sandwich panels with orthotropic face sheets was derived with the consideration of shear 

flexibility of the core. The expression was verified by experiments and good agreement 

was observed. 

The modal density for the bending of anisotropic structural components was 

studies by considering the case of periodic boundary conditions initially  and then 

extending to general boundary conditions (Langley 1996). The equation was validated 

with empirical results.  

Another important parameter of SEA is the coupling loss factor. It can be 

computed using analytical (wave approach) or numerical methods (finite element 
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method). In the wave approach, the vibration of subsystems are represented by the 

superposition of travelling waves, and coupling loss factor is evaluated by considering 

the reflection and transmission at the junction (Fahy 1994).  

The coupling loss factor for two coupled beams system was analyzed using two 

methods: wave-transmission method and natural frequency-shift method (Crandali and 

Lotz 1971) and the results from two methods are proved same for a particular system. 

Langley (Langley 1989; Langley 1990) derived the expressions for the coupling loss 

factor in terms of the frequency and space averaged Green functions on the assumption 

that the coupling between the subsystems is conservative and weak coupling between the 

subsystems.  

Conventional finite element models were employed to determine the coupling loss 

factors instead of analytical solutions when the connection between members presents a 

complexity that cannot be accounted by analytical solutions. It is the only computational 

option for calculating the power transfer characteristics for complex joints and 

discontinuous joints. Simmons (Simmons 1991) calculated the SEA coupling loss factors 

for L- and H- shape plate junctions using finite element methods at discrete frequencies 

from 10 and 2000 Hz. The vibrational energy of the plates was calculated using FEA 

instead of the traditional analytical solutions of an infinite junction between semi-infinite 

plates. The space- and frequency- averaged solutions from FEA were found to be reliable 

for calculating energy variables, although its calculation of displacement at individual 

positions frequencies is not meaningful at high frequencies. Such averaged energies of 

the plates can be used to derive the coupling loss factor of the junction that can be applied 

to SEA of structures with the same type of junction. In another study (Fredo 1997), FEA 
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was combined with a SEA-like approach to obtain the power flow coefficients within a 

system. The advantages of this approach include its ability of dealing with complicated 

subsystem topologies, complicated joints, narrow bands frequencies and non-resonant 

transmission mechanisms. 

1.2.3 Energy Finite Element Analysis 

Energy finite element analysis is an emerging new method for simulating high 

frequency vibration response. It uses time- and space- averaged energy density as the 

primary variable in the governing differential equations.  

A power flow finite element analysis is presented by Nefske and Sung (Nefske 

and Sung 1989). In their research, the new method was developed as an alterative to SEA 

for high frequency vibration analysis. The formulation was based on power flow of a 

differential control volume considering the conservation of energy. The partial 

differential equation of the heat conduction type was derived and the finite element 

approach was employed to solve the differential equation. The power flow finite element 

model was formed by modifying a standard commercial structural finite element code. It 

was shown that the same FEA model for predicting the vibration at low frequencies could 

be modified to form the power flow finite element model for solving the vibration 

problems at high frequencies for the same structural system. 

Wohlever (Wohlever 1988; Wohlever and Bernhard 1992) investigated future the 

thermal analogy to model mechanical power in structural acoustic systems. Energy 

density equations were derived from the classical displacement solutions for 

harmonically excited, hysteretically damped rods and beams. For the lightly damped rod, 

the relationship between the local power and the local gradient of energy density can be 
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found. For the beam, however, this relationship can only be found if locally space 

averaged values of power and energy density were utilized. This relationship, along with 

the energy balance on a differential control volume, led to the development of a second 

order equation that models the distribution of energy density in the structure. They also 

investigated the coupling of energy for rods and beams. Two existing techniques – the 

wave transmission approach and the receptance method were discussed and a new 

alternative method in which the upper and lower bounds of power and energy density can 

be predicted was also introduced.  

Bouthier and Bernhard (Bouthier 1992; Bouthier and Bernhard 1992; Bouthier 

and Bernhard 1995) derived the equations of space- and time- averaged energy density 

and intensity in the far field and developed a set of equations that govern the space- and 

time- averaged energy density of plates (Bouthier and Bernhard 1992; Bouthier and 

Bernhard 1995), membranes (Bouthier and Bernhard 1995) and acoustic spaces. The 

equations were solved numerically and the results were validated with analytical 

solutions. The numerical implementation of the energy governing equations allows for 

some uneven distribution of the damping in the plate and this is one of the advantages of 

EFEA over SEA.  

Cho (Cho 1993; Cho and Bernhard 1998) formulated the EFEA system equations 

and calculated EFEA power transfer coefficients for coupled structures. The derivation of 

the partial differential equations that govern the propagation of energy in simple 

structural elements such as rods, beams, plates and acoustic cavities was first performed 

and then the derivation of coupling relationships that describes the transfer of energy for 
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various joints was achieved. The EFEA system equation was formed to solve for the 

energy densities. 

Bitsie and Bernhard (Bitsie and Bernhard 1996) presented the structural-acoustic 

coupling relationship for energy flow analysis. The coupling relationship based on the 

principle of conservation of energy flow and the energy superposition principle was 

formulated. The joint coupling relationship as a function of radiation efficiency and 

material characteristic impedances was then developed and implemented into the energy 

finite element formulation or energy boundary element formulation. Some examples of 

structural-acoustic coupling were performed and the results were compared with the 

experimental tests. 

In another paper by Bernhard and Huff (Bernhard and Huff 1999), the derivation 

of energy flow analysis techniques were summarized and the cases when discontinuity in 

either geometric properties or material properties occurs were discussed. The case study 

was shown to show the utility of the method as a design technique. 

In another research (Vlahopoulos, Garza-Rios et al. 1999), the EFEA formulation 

was applied to marine structures and the first extensive theoretical comparison between 

SEA and EFEA was presented for complex structures. An algorithm that identifies the 

locations of joints in the EFEA model was developed and the comparison between SEA 

solution and EFEA results for a fishing boat was obtained. Both methods were used to 

analyze a fishing boat and good agreement was observed. Also, the EFEA simulation 

capabilities for identifying spatially dependent design changes that reduce vibration were 

demonstrated. In the study, the advantages of EFEA over SEA were also summarized: it 

can eliminate the uncertainties in defining subsystems and their connections because the 



 14

model generation is based on actual geometry; the results can be displayed over the entire 

system and spatial variation can be assigned to the design variables when studying 

alternative configurations for performance improvements.  

Recently, a Hybrid Finite Element Analysis (hybrid FEA) is also developed to 

analyze the mid-frequency vibration of structures. Langley and Bremner (Langley and 

Bremner 1999) presented a hybrid approach based on coupling FEA and SEA methods. 

The methodology was to use FEA to compute the low frequency global modes of a 

system and SEA to compute the high frequency local modes of the subsystem. Both low 

and high frequency global modal degrees of freedom were coupled to each other. The 

method was validated using an example of two co-linear rod elements.  

Vlahopoulos and Zhao (Vlahopoulos and Zhao 1999; Zhao and Vlahopoulos 2000; 

Vlahopoulos and Zhao 2001; Zhao and Vlahopoulos 2004) did the theoretical derivation 

of a hybrid finite element method that combines conventional FEA with EFEA to achieve 

a numerical solution to the vibration at mid-frequencies. In the mid-frequency range, a 

system has some members that contain several wavelengths (long members) and some 

members with just a few wavelengths (short members) within their lengths. Long 

members are modeled by EFEA and short members are modeled by FEA. In the study, 

the interface conditions at the joints between sections modeled by the EFEA and FEA 

methods were also derived. The validation was obtained for different configuration of 

beams.  

Since its advent, EFEA has been applied in rods and beams (Wohlever 1988; 

Wohlever and Bernhard 1992; Cho and Bernhard 1998), isotropic plates (Bouthier and 

Bernhard 1992; Bouthier and Bernhard 1995; Vlahopoulos, Garza-Rios et al. 1999), 
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membranes (Bouthier and Bernhard 1995), and  structure with heavy fluid loading 

(Zhang, Wang et al. 2003; Zhang, Vlahopoulos et al. 2005; Zhang, Wang et al. 2005). In 

the EFEA application, the energy equation of the propagation of both flexural waves 

(Bouthier and Bernhard 1992; Bouthier and Bernhard 1995) and in-plane waves (Park, 

Hong et al. 2001) are derived. 

Until recently, most of the application of EFEA is related to isotropic materials, 

where the material property is identical at all the directions.  However, as the needs 

increasing for using different types of materials in the construction of structures, 

researchers have realized the demand of applying EFEA to other types of materials.  

The power flow model was developed for the analysis of flexural waves in 

orthotropic plates at high frequency (Park, Hong et al. 2003). The energy equation was 

derived in terms of the time- and space- averaged far-field energy density. The model 

was validated by comparing the numerical results with classical modal solutions for 

single orthotropic plate vibrating at different frequencies and with different damping loss 

factors.  

1.2.4 Power transmission through joints 

In order to apply the EFEA or SEA to complex structures, it is necessary to obtain 

the power transmission characteristics at structural joints. In the conventional finite 

element formulation, the primary variable is continuous between elements at the joints. 

This continuity is utilized to assemble to global system matrix. In EFEA or SEA, 

however, the continuity only occurs if the geometry and the material properties do not 

change. The primary variable - energy density is discontinuous at positions where 

different member are connected or at locations of discontinuities with a single member. 
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In order to form the global system of equation at the joints, a special approach based on 

the continuity of power flow across the joint is developed. This continuity is expressed in 

terms of power transfer coefficients (in EFEA) or coupling loss factor (in SEA). Usually, 

the power transfer coefficients or coupling loss factor is determined using either 

analytical or numerical methods. 

The numerical method is based on the concept of employing conventional finite 

element models to calculate the energy in structural members and then utilizing the 

energy ratio between members to calculate the coupling loss factors used in SEA 

(Simmons 1991; Steel and Craik 1994; DeLanghe, Sas et al. 1997; Fredo 1997; 

Vlahopoulos, Zhao et al. 1999). The finite element method has the flexibility of modeling 

complex connections which cannot be accounted by analytical solutions. The coupling 

loss factors were computed through finite element calculations for assemblies of fully 

connected plates (Simmons 1991; Fredo 1997) and beam junctions (DeLanghe, Sas et al. 

1997). The resonant characteristics of coupled systems were also analyzed (Steel and 

Craik 1994). The power transfer characteristics for spot-welded connections were 

computed using conventional finite element method (Vlahopoulos, Zhao et al. 1999) in 

order to apply the EFEA approach to automotive structures. 

The wave transmission approach is used extensively in the vibro-acoustic field to 

estimate the power transmission and reflection coefficients of a joint. The transmission 

coefficients and coupling loss factors were obtained for two L-junction beams (Sablik 

1982). The power transmission from the incident flexural wave was analyzed and it was 

found that the flexural-torsional transmission can be more efficient than flexural-flexural 
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transmission for this case. The expression derived in this paper can be used to analyze the 

beam network in statistical energy analysis. 

Sound transmission for thin plate junctions and mode coupling was studied by 

Craven and Gibbs (Craven and Gibbs 1981; Gibbs and Craven 1981). In the research, 

both bending and in-plane vibrations for the T-junction of thin plates were presented and 

results were validated.  

Whole and Beckmann (Wohle, Beckmann et al. 1981; Wohle, Beckmann et al. 

1981) studied the coupling loss factors for rectangular structural slab junctions with 

application to the flanking walls in buildings. The method was derived bending, 

longitudinal and transverse incident waves.  

Horner and White (Horner and White 1990) used the expressions of flexural and 

longitudinal waves and related the time averaged power to travelling wave amplitudes. 

The continuity and equilibrium at the joint was utilized to yield the solution for power 

transmission coefficients. The closed-form solutions of the multiple power transmission 

within finite sections of structures were also derived. 

Cho (Cho and Bernhard 1998) described the wave transmission and reflection at a 

joint by the semi-infinite rod joint model with an incident wave from each rod 

simultaneously impinges on the joint from each direction. The energy flow boundary 

condition was applied for all wave components of energy flow and the power carried by 

each wave type in each of the rod was calculated.   

Langley (Langley 1989; Langley 1990) derived the SEA equations for multi-

coupled systems with random excitation. The expressions of the coupling loss factors are 

obtained in terms of the frequency and space averaged Green functions for the coupled 
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system. Another approach using wave approach was used to derive the wave transmission 

coefficients (Langley and Heron 1990) for N- plate/beam assembly. The generic 

plate/beam junctions were considered that consists of an arbitrary number of plates which 

are either coupled through a beam or directly coupled along a line. The equations of 

motion of the junction were formulated by deriving the wave dynamic stiffness matrix for 

each plate and then applying the appropriate equilibrium and compatibility conditions at 

the junction. This approach minimized the amount of algebraic manipulations that is 

required for an arbitrary number of plate assembly.  

In another study of Langley (Langley 1994), the coupling loss factor for the 

junction at which an arbitrary number of curved panels are connected were derived using 

the similar procedure. In this paper, the method of deriving the wave dynamic stiffness 

matrix for the calculation of coupling loss factors was extended to the case of non-

isotropic components such as a curved panel by providing a definition of a diffuse wave 

field that is appropriate to non-isotropic components. 

The in-plane power flow analysis for coupled thin finite plates were analyzed 

(Park, Hong et al. 2001). The longitudinal and in-plane shear energy equations were 

derived for two plates connected at a certain angle. The computation was performed by 

using single Fourier series approximation and the equations were established from the 

equilibrium of energy flow and the continuity of energy flow between the plates. 

The power transmission between non-isotropic materials was also investigated 

(Langley 1994; Bosmans, Mees et al. 1996; Bosmans and Nightinghale 1999; Bosmans, 

Vermeir et al. 2002). The analytical solution of structure-borne sound transmission 

between thin orthotropic plates was obtained (Bosmans, Mees et al. 1996). Two models 
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were presented for predicting the power transmission characteristics of two orthotropic 

plates connected by a rigid junction. One was based on the solution for the wave 

propagation in semi-infinite plates. Another model was based on modal summation 

solution for finite-size plates. Numerical results were obtained for the bending wave 

transmission between an L-junction of two orthotropic plates using both methods and 

compared with the results from equivalent isotropic junction. 

The theory presented above was modified in order to calculate the coupling loss 

factor of an orthotropic stiffening rib at the joint (Bosmans and Nightinghale 1999). The 

stiffening rib is modeled as an orthotropic plate strip of eccentric beam using concepts of 

plate strip theory and plate/beam joint modeling (Langley and Heron 1990). Two typical 

features of wave propagation in orthotropic plates were proposed: the structural intensity 

is not parallel to the direction of wave propagation; the vibrational energy is not 

distributed uniformly over all directions in a reverberant field. These two features require 

new derivation of the coupling loss factors for orthotropic and anisotropic materials.  

The derivation of coupling loss factor for coupled anisotropic plates was also 

presented recently (Bosmans, Vermeir et al. 2002). The angle dependence of the 

wavenumber was taken into consideration during the derivation. It was shown that the 

general expression for the coupling loss factor applicable to anisotropic components that 

was first derived by Langley (Langley 1994) for junction of curved panels is identical to 

the derivation by Bosmans (Bosmans, Mees et al. 1996). In Langley’s expression, the 

coupling loss factor was written in terms of the wave transmission coefficient, the group 

velocity and the phase velocity on the source plate. In Bosmans’s expression, however, 

the coupling loss factor can be directly calculated from the transmission coefficient 



 20

without requiring the calculation of group velocity. These two expressions were shown to 

be identical and one can be derived from another. 

1.3 Dissertation Contribution 

In this dissertation, the developments of energy finite element analysis to 

composite laminate plates are presented in order to simulate the high frequency response 

of composite laminate plates subject to impact loading. The EFEA differential equation, 

in which the energy density is the primary variable, is developed for the general 

composite laminate plates. After that, the power transmission coefficients are derived for 

coupled orthotropic plates and coupled composite laminate plates. The joint matrix is 

then derived to obtain the global system EFEA equation. The system equation can be 

solved to yield the energy distribution in the different components within the entire 

composite structure. 

The equations of motion for composite laminate plates are different from the 

equations of motion governing the vibration of isotropic plates. The equations have more 

terms and they also involve the coupling between the bending and in-plane motions. A 

convergence study, however, shows that at high frequencies, the coupling between 

bending and in-plane terms becomes insignificant and can be neglected in our research.  

In order to obtain the EFEA differential equation in composite laminate plates, the 

far field wave solution was first obtained. The time- and space-averaged energy density 

and energy intensities can be expressed in terms of the wave solution of displacement and 

the relationship between the energy density and energy intensities is obtained. This 

relationship, together with the relationship of dissipated power with energy density, and 

the power balance at the steady-state, can be utilized to get the EFEA differential 



 21

equation, in which energy density is the primary variable. The differential equation can 

be solved numerically using a finite element approach. The EFEA differential equation 

for composite laminate plate is derived for the bending and in-plane motions respectively.  

In the research, an alternative approach for obtaining the EFEA differential 

equations in composite laminate plates is also presented. The group velocity for non-

isotropic materials is found to be angle-dependent and the heading of group velocity is 

different from the heading of wave propagation in these materials. The averaged group 

velocity for composite laminate plate is obtained by integrating the value over all the 

angles of wave propagation. An equivalent homogenized isotropic material can then be 

found for the composite laminate plate, on the condition that the group velocity remains 

the same for two cases. An alternate EFEA differential equation for the composite 

laminate plate can then be formed by using the EFEA differential equation for equivalent 

isotropic plate.  

The power transmission mechanism for orthotropic plate junctions and general 

composite laminate plate junctions is studies in order to analyze the power transmitted 

from the excitation location to the other components within the composite structure. The 

approach that has been adopted in this research is to consider the vibrations of the 

structure in terms of elastic waves propagating through the structure and are partially 

reflected and partially transmitted at the junctions. The derivation of power transmission 

coefficients is achieved by deriving a “wave dynamic stiffness matrix” for each plate first 

and then applying the appropriate equilibrium and compatibility conditions at the 

junction. The joint matrix is derived from the power transmission coefficients at the 
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junction and the global matrix of coupled orthotropic/composite laminate plates is 

assembled.  

Some examples are presented as validation for the derivation. First, the energy 

density distribution of two types of single composite laminate plates was calculated and 

the results are compared with the results from very dense FEA models. Second, the 

power transmission of four types of L-junction of two identical orthotropic plates is 

calculated using the EFEA formulation. The first plate is given excitation at several 

randomly selected locations and the energy density level in the two plates is calculated 

using both EFEA and very dense FEA models. At last, the power transmission of an L-

junction of two general composite laminate plates is examined. In the two cases, the 

second plate is connected to the different edge of the first plate. Again, the energy density 

level in the two plates is computed and compared with FEA model. In all the case studies, 

good agreements between EFEA results and the results from very dense FEA model are 

observed. 

1.4 Dissertation Overview  

In Chapter 2, the background information of EFEA is introduced and the 

formulation associated with the flexural energy of isotropic plates is overviewed.  First, 

the EFEA derivation for single isotropic is presented. Then, the information of EFEA 

development at isotropic plate junctions is provided. This chapter gives the basic concept 

of EFEA formulation and the procedure of formulation development of EFEA. 

In Chapter 3, the EFEA development in single composite laminate plate is 

presented. First, the stress-strain relation for generally orthotropic lamina is expressed 

and the synthesized stiffness matrix of composite laminate plate is obtained from the 
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properties of each lamina. Second, the governing equations for the vibration of composite 

laminate plate are given and a convergence study is presented to show that the coupling 

between bending and in-plane terms in the equations of motion can be neglected for high 

frequency analysis. Third, the time- and space- averaged energy density and energy 

intensities are derived and the relationship between the energy density and energy 

intensities and the EFEA differential equation is obtained using this relationship and the 

power balance at a steady state over a differential control volume of the plate. Then, the 

differential equation is solved numerically using a finite element approach and two 

numerical examples are presented. In both examples, the energy density distribution in 

the mid-span of the plate is calculated from 1000 Hz to 5000 Hz. The results obtained 

from EFEA are compared with the results from very dense FEA model in both examples 

and good agreement is observed. Finally, an alternative approach to derive the EFEA 

differential equation in composite laminate plate is presented. The approach is based on 

finding the averaged group velocity of the composite laminate plate and finding the 

equivalent homogenized isotropic plate to represent the composite plate while forming 

the EFEA different equation. Some validation is also given for this approach. 

In Chapter 4, the power transmission characteristics of coupled orthotropic plates 

are studied. The approach is to consider the elastic waves propagating in the excited plate 

and are partially reflected and partially transmitted to other plates through the junction. 

The power transmission coefficients can be calculated by deriving the wave dynamic 

stiffness matrix for each plate and utilizing the appropriate equilibrium and compatibility 

conditions at the joint. First, the in-plane wavenumbers for orthotropic plate is derived 

and the wave dynamic stiffness matrix is obtained. The complete equations are assembled 
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and the power transmission coefficients are calculated. Second, the joint matrix is 

expressed in terms of the power transmission coefficients. Then, the global matrix for 

coupled orthotropic plate is formed using the joint matrix to connect the elements at 

structural or material discontinuities. Finally, the formulation is validated through a set of 

numerical examples in which four cases of an L-junction of two orthotropic plates are 

considered. The energy density level in two plates is calculated using both EFEA and 

FEA model and the results are compared. 

In Chapter 5, the power transmission through coupled composite laminate plates 

is studied following the same procedure as Chapter 4. The numerical example is given for 

two general composite laminate plates connected at a rectangular angle. Again, good 

agreement is shown between the EFEA results and results from very dense FEA model. 

Finally, conclusions and recommendations for future work are presented in 

Chapter 6.  
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Chapter 2  

BACKGROUND OF ENERGY FINITE ELEMENT ANALYSIS 

2.1 Introduction 

In order to present the current Energy Finite Element Analysis (EFEA) 

development of composite structures, some background information will be given about 

the EFEA method in this chapter. EFEA has been applied successfully to a variety of 

member such as rods and beams (Wohlever 1988; Wohlever and Bernhard 1992; Cho and 

Bernhard 1998), isotropic plates (Bouthier and Bernhard 1992; Bouthier and Bernhard 

1995; Vlahopoulos, Garza-Rios et al. 1999), membranes (Bouthier and Bernhard 1995) 

etc. To given a general idea of its methodology and derivation procedure, the EFEA 

formulation associated with the flexural energy in isotropic plates is overviewed in this 

chapter. The EFEA development for single isotropic plates is presented first, and then the 

EFEA formulations at plate junctions are introduced.  

2.2 EFEA Developments for a Single Isotropic Plate 

The EFEA development in a single isotropic plate consists of the following steps: 

1. Find the governing differential equation of the vibration of the plate. 

2. Find the wave solution of the displacement to the governing differential equation 

and the dispersion relationship. 
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3. Express energy density and energy intensities in terms of the wave solution of the 

displacement. 

4. Find the relationship between the time- and space- averaged energy density and 

energy intensities. 

5. Establish the EFEA differential equation for the plate using the power balance 

over a differential control volume of the plate and the relationship between energy 

density and energy intensities, as long as the relationship between the dissipated 

power and the energy density. 

6. Solve the system of EFEA differential equations numerically.  

The EFEA governing differential equation associated with the flexural wave is 

developed by considering the wave solution to the governing differential equation of the 

plate bending. The equation of motion for a thin, transversely vibrating isotropic plate 

excited by a point force at ሺݔ଴,  :଴ሻ can be expressed as (Bouthier and Bernhard 1992)ݕ

ሺ1ܦ ൅ ݓସ׏ሻߟ݅ ൅ ݄ߩ பమ௪
ப௧మ ൌ ݔሺߜܨ െ ݕ଴ሻሺݔ െ   ଴ሻ݁௜ఠ௧     (2.1)ݕ

where ܦ ൌ ଷ/ሾ12ሺ1݄ܧ െ  is the structural damping loss ߟ  ,ଶሻሿ is the rigidity of the plateߥ

factor,  ߩ is the mass density, ݄ is the thickness of the plate, ሺݔ଴,  ଴ሻis the location whereݕ

the excitation force is added. 

The general form of the far-field solution can be expressed as the following where 

the bending displacement within the plate is considered as a linear superposition of waves 

associated with two orthogonal directions x and y (Bouthier and Bernhard 1992; Bouthier 

and Bernhard 1995).                         

,ݔ௙௙ሺݓ ,ݕ ሻݐ ൌ ൛ି݁ܣ௜ሺ௞ೣ௫ା௞೤௬ሻ ൅ ௜ሺ௞ೣ௫ି௞೤௬ሻ݁ܤ ൅ ௜ሺ௞ೣ௫ି௞೤௬ሻି݁ܥ ൅  ௜ሺ௞ೣ௫ା௞೤௬ሻൟ݁௜ఠ௧  (2.2)݁ܦ
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where ܣ, ,ܤ ,ܥ  are the constants associated with the amplitudes of propagating wave in ܦ

the positive and negative ݔ and ݕ directions respectively, ݇௫  and ݇௬ are complex wave 

numbers associated with the damped frequency of oscillation in the x and y directions 

(Bouthier and Bernhard 1992).  

݇௫ ൌ ݇௫௟ሺ1 െ ݅ ఎ
ସ
ሻ , ݇௬ ൌ ݇௬௟ሺ1 െ ݅ ఎ

ସ
ሻ and ݇௫௟ ൌ ݇௬௟ ൌ ටఘ௛

஽
߱ଶర

    (2.3) 

The energy density is the primary variable in formulating the governing 

differential equation and the energy density averaged over a period can be expressed in 

terms of the far-field displacement solution (Bouthier and Bernhard 1992) as:  
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where ߥ is the Poisson ratio, ݄ is the thickness of the plate, ۄ ۃ indicates time averaging 

over a period,  כۄ ۃ indicates the complex conjugate. 

The two energy intensity components averaged over a period can also be 

expressed in terms of the far-field displacement solution as: 
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The far-field displacement solution can be substituted into the above expressions 

for energy density and intensities. The time- and space- averaged energy density and 

intensities ۄ݁ۃ, ,ۄ௫ܫۃ ۄ௬ܫۃ  can be obtained by integrating the expressions over one 

wavelength.  After some algebraic manipulations, the expressions for the space- averaged 
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over a wave length and time- averaged over a period energy density and energy intensity 

are derived: 

ۄ݁ۃ ൌ ஽
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 By observing the similarities between equations (2.7) and (2.8), a relationship 

between the energy density and the intensity can be derived (Bouthier and Bernhard 

1992): 

ۄԦܫۃ ൌ െ ௖೒
మ

ఎఠ
 (2.9)          ۄ݁ۃ׏

where  ܿ௚ ൌ 2ට஽ఠమ

ఘ௛
ర   is the group speed,  ߟ  is the hysteresis damping factor, ߱  is the 

radian frequency.  

The time and space averaged dissipated power ۃΠௗ௜௦௦ۄ  is associated to the 

corresponding energy density and the relationship between them can be expressed as 

(Cremer, Heckl et al. 1973) : 

ۄΠௗ௜௦௦ۃ ൌ  (2.10)          ۄ݁ۃ߱ߟ

The power balance at steady-state gives: 

ۄΠ௜௡ۃ ൌ ۄΠௗ௜௦௦ۃ ൅  (2.11)           ۄԦܫۃ׏

where ۃΠ௜௡ۄ is the input power.  

Thus, the EFEA differential equation for a plate can be derived by considering a 

power balance at the steady state over a differential control volume of the plate and the 

relationship between the dissipated power and energy density (Bouthier and Bernhard 

1992): 
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െ ௖೒
మ

ఎఠ
ۄ݁ۃଶ׏ ൅ ۄ݁ۃ߱ߟ ൌ  (2.12)          ۄΠ௜௡ۃ

And a finite element formulation (Cho 1993) can be employed to solve equation 

(2.12) numerically. The weak variational form of equation (2.12) for each element can be 

expressed as (Vlahopoulos, Garza-Rios et al. 1999): 
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ܵ݀ۄ݁ۃ׎ െ ׬  ׎

ௌ೐
ܵ݀ ۄΠ௜௡ۃ ൌ 0     (2.13) 

where ׎ is an arbitrary function,  ܥ௘ is the boundary of the element, ܵ௘ is the surface of 

the element,  ො݊ is the unit vector normal to the element boundary. 

The system of linear equations can be obtained by using the shape functions 

within each element and representing all variables as a linear superposition of the shape 

functions and the nodal values (Vlahopoulos, Garza-Rios et al. 1999): 

ሾܭ௘ሿሼ݁௘ሽ ൌ ሼܨ௘ሽ ൅ ሼܳ௘ሽ          (2.14) 

where  ሼ݁௘ሽ  is the vector of nodal values for the time- and space- averaged energy 

density, ሾܭ௘ሿ  is the system matrix for each element, ሼܨ௘ሽ is the excitation vector which 

represents the energy input at each node, ሼܳ௘ሽ is the power flow across the element 

boundary. 

2.3 EFEA Developments for Isotropic Plate Junctions 

In the conventional finite element formulations, the primary variable 

(displacement, stress or strain) is continuous between elements and the global system 

matrix is assembled based on this continuity. In EFEA, however, at positions where 

different members are connected, or at positions the material properties change, the 

primary variable (energy density) is discontinuous. The assembly of the global system 

matrix is based on the continuity of power flow ሼܳ௘ሽ across the joint.  The power flow 
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can be expressed in terms of energy density at two adjacent element and joint matrix 

(Vlahopoulos, Garza-Rios et al. 1999). 

ە
ۖ
۔
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ۓ ܳ௡
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ܳ௡ାଵ
௜

ܳ௠
௝

ܳ௠ାଵ
௝ ۙ
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ۘ

ۖ
ۗ

ൌ ሾܥܬሿ௝
௜

ە
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۔

ۖ
ۓ ݁௡

௜

݁௡ାଵ
௜

݁௠
௝

݁௠ାଵ
௝ ۙ

ۖ
ۘ

ۖ
ۗ

                    (2.15) 

where ݊ and ݊ ൅ 1 represents the two nodes of the ݅ element at the joint, ݉ and ݉ ൅ 1 

represents the two nodes of the ݆ element at the joint, the joint matrices ሾܥܬሿ௝
௜   define the 

power transfer across elements at the joints and are derived from the power transfer 

coefficients: 

ሾܬሿ ൌ ሺሾܫሿ െ ሾ߬ሿሻሺሾܫሿ ൅ ሾ߬ሿሻିଵ ׬ ߶௜
 

஻ ߶௝݀(2.16)      ܤ 

where ߶௜ , ߶௝ are Lagrangian basis functions,  ܤ is the boundary area between elements 

݅ and ݆ at the joint,  ሾ߬ሿ  is the matrix of power transmission coefficient, which are 

evaluated from analytical solutions of semi-infinite members (Langley and Heron 1990).  

The final assembled system of EFEA equations can be expressed as 

(Vlahopoulos, Garza-Rios et al. 1999):  

൬൤
ሾܭ௘ሿ௜  

 ሾܭ௘ሿ௝
൨ ൅ ሾܥܬሿ௝

௜ ൰ ቊ
൛݁௜ൟ
൛݁௝ൟ

ቋ ൌ ൜
ሼܨ௘ሽ௜
ሼܨ௘ሽ௝

ൠ      (2.17) 

where ሾܭ௘ሿ௜  and ሾܭ௘ሿ௝ are the element matrix for the ݅ and ݆ element,  ൛݁௜ൟ and ൛݁௝ൟ are 

the vectors containing all the nodal degrees of freedom for elements ݅ and ݆. 

The global system of equations can be solved to obtain the energy density 

distribution within the entire system. 
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Chapter 3  

EFEA DEVELOPMENTS IN SINGLE COMPOSITE LAMINATE PLATE 

3.1 Introduction 

In this chapter, the EFEA formulation for general composite laminate plates is 

derived. First, some background of composite laminate plates is introduced and the 

synthesis of the stiffness matrix is presented. Second, the EFEA differential equation in 

composite laminate plates is derived. Third, some numerical examples are given and the 

results from EFEA are compared with very dense FEA model. Finally, an alternative 

approach for forming the EFEA differential equation is given.  

Composite laminate plates are formed from two or more laminae bonded together 

to act as an integral structural element. The property of the laminate plate is determined 

by the different property and orientation of each lamina. Different theories have been 

used to analyze composite laminate plates, such as 2-D and 3-D theories (Agarwal and 

Broutman 1990). In the 2-D theory, the laminate plate is simplified as an equivalent 

single-layer plate, so this theory is also called Equivalent Single-Layer (ESL) Laminate 

Theory. The common approaches used in the 2-D theory include the Classical Laminate 

Plate Theory (CLPT) and shear deformation laminate theory. In our work, the Classical 
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Laminate Plate Theory is employed to develop the EFEA formulations in composite 

laminate plates.  

The Classical Laminated Plate Theory is an extension of the classical plate theory 

to composite laminates. In the CLPT, it is assumed that the Kirchhoff hypothesis holds 

(Reddy 1997): 

(1) Straight lines perpendicular to the mid-surface before deformation remain 

straight after deformation. 

(2) The transverse normals do not experience elongation. 

(3) The transverse normals rotate such that they remain perpendicular to the mid-

surface after deformation. 

In addition, perfect bonding between layers is assumed (Agarwal and Broutman 

1990): 

(1) The bonding itself is infinitesimally small; there is no flaw or gap between 

layers. 

(2) The bonding is non-shear-deformable, which means that no lamina can slip 

relative to another. 

(3) The strength of bonding is as strong as it needs to be; the laminate acts as a 

single lamina with special integrated properties. 

Classical laminate theory applies to the plate over which forces and moments are 

assumed constant, and in which the shear strains through thickness are ignored.  This 

assumption is not accurate enough for thick composite plates. In that case, the shear 

deformation theory or the layer by layer theory, which account for the transverse shear 
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deformation and the shear discontinuity through the plate thickness, can be used and 

some of the restrictions of the classical laminate theory can be relaxed.  

3.2 Synthesis of Stiffness Matrix for Composite Laminate Plates 

3.2.1 Stress-strain relation for generally orthotropic lamina 

A single layer of a laminated composite material is generally referred to as a ply 

or lamina. A composite laminate plate is constructed by stacking several unidirectional 

laminae in a specified sequence of orientation as shown in Figure 3.1. Properties of the 

laminate can be predicted by knowing the properties of its constituent laminae. The 

principal material directions of each lamina make a different angle with a common set of 

reference axis. Each lamina is orthotropic and obeys the stress-strain relations referred to 

its principle material axes. Thus, in order to get the properties of the laminate, it is 

necessary to refer the stress-strain relationship in the lamina to a common reference 

coordinate system. A lamina referred to arbitrary axes is called a generally orthotropic 

lamina (Agarwal and Broutman 1990). 

 

Figure 3.1 Construction of composite laminate plate 
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ܳଶଶ ൌ ா೅
ଵିఔಽ೅ఔ೅ಽ

          (3.5) 

ܳଵଶ ൌ ఔಽ೅ா೅
ଵିఔಽ೅ఔ೅ಽ

ൌ ఔ೅ಽாಽ
ଵିఔಽ೅ఔ೅ಽ

  

ܳ଺଺ ൌ         ௅்ܩ

where ܧ௅  and ்ܧ  are the elastic moduli in the longitudinal and transverse directions 

respectively, ܩ௅் is the shear modulus, ߥ௅்  and ்ߥ௅  are the major and minor Poisson 

ratios. 

The similar stress-strain relation for an orthotropic lamina referred to arbitrary 

axes can be expressed as: 

൝
௫ߪ
௬ߪ
߬௫௬

ൡ  ൌ ൦
ܳଵଵ ܳଵଶ ܳଵ଺

ܳଵଶ ܳଶଶ ܳଶ଺

ܳଵ଺ ܳଶ଺ ܳ଺଺

൪ ቐ

௫ߝ
௬ߝ

ଵ
ଶ

௫௬ߛ

ቑ ൌ ሾTሿିଵ ൥
ܳଵଵ ܳଵଶ 0
ܳଵଶ ܳଶଶ 0

0 0 2ܳ଺଺

൩ ሾTሿ ቐ

௫ߝ
௬ߝ

ଵ
ଶ

௫௬ߛ

ቑ  (3.6) 

Thus, the relationship between ൣܳ൧ and ሾܳሿ matrix can be expressed as (Agarwal 

and Broutman 1990): 

ܳଵଵ ൌ ܳଵଵ cosସ ߠ ൅ ܳଶଶ sinସ ߠ ൅ 2ሺܳଵଶ ൅ 2ܳ଺଺ሻ sinଶ ߠ cosଶ   ߠ

ܳଶଶ ൌ ܳଵଵ sinସ ߠ ൅ ܳଶଶ cosସ ߠ ൅ 2ሺܳଵଶ ൅ 2ܳ଺଺ሻ sinଶ ߠ cosଶ   ߠ

ܳଵଶ ൌ ሺܳଵଵ ൅ ܳଶଶ െ 4ܳ଺଺ሻ sinଶ ߠ cosଶ ߠ ൅ ܳଵଶሺcosସ ߠ ൅ sinସ   ሻߠ

ܳ଺଺ ൌ ሺܳଵଵ ൅ ܳଶଶ െ 2ܳଵଶ െ 2ܳ଺଺ሻ sinଶ ߠ cosଶ ߠ ൅ ܳ଺଺ሺcosସ ߠ ൅ sinସ  ሻߠ

ܳଵ଺ ൌ ሺܳଵଵ െ ܳଵଶ െ 2ܳ଺଺ሻ cosଷ θ sin ߠ െ ሺܳଶଶ െ ܳଵଶ െ 2ܳ଺଺ሻ cos θ sinଷ    ߠ

ܳଶ଺ ൌ ሺܳଵଵ െ ܳଵଶ െ 2ܳ଺଺ሻ cos θ sinଷ ߠ െ ሺܳଶଶ െ ܳଵଶ െ 2ܳ଺଺ሻ cosଷ θ sin  (3.7)  ߠ

3.2.2 Synthesis of stiffness matrix for composite laminate plates 

The synthesis of the stiffness matrix for composite laminate plate is achieved by 

considering the equivalent system of forces and moments acting on the laminate cross 
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section. The equivalent system of forces and moments are obtained by integrating the 

corresponding stress and the stress times the moment arm through the laminate thickness 

݄.  

 

Figure 3.3 Geometry of multilayered laminate 

The synthesized stiffness matrices can be obtained as (Agarwal and Broutman 

1990): 

௜௝ܣ ൌ ∑ ቀܳ௜௝ቁ
௞

ሺ݄௞ െ ݄௞ିଵ
௡
௞ୀଵ ሻ  

௜௝ܤ ൌ ଵ
ଶ

∑ ቀܳ௜௝ቁ
௞

ሺ݄௞
ଶ െ ݄௞ିଵ

ଶ௡
௞ୀଵ ሻ        (3.8) 

௜௝ܦ ൌ ଵ
ଷ

∑ ቀܳ௜௝ቁ
௞

ሺ݄௞
ଷ െ ݄௞ିଵ

ଷ௡
௞ୀଵ ሻ  

The three matricesሾܣሿ, ሾܤሿ and ሾܦሿ are called the extensional stiffness matrix, 

coupling stiffness matrix and bending stiffness matrix. The forces and moments can be 

expressed as (Agarwal and Broutman 1990; Reddy 1997):  

ቄܰ
ቅܯ ൌ ቂܣ ܤ

ܤ ቃܦ ቄߝ଴

݇
ቅ          (3.9) 
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where ߝ଴ ൌ ቐ
௫ߝ

଴

௬ߝ
଴

௫௬ߛ
଴

ቑ  are the mid plane strains, ݇ ൌ ቐ
݇௫
݇௬
݇௫௬

ቑ  are the plate curvatures, 

ܰ ൌ ቐ
௫ܰ

௬ܰ

௫ܰ௬

ቑ  are the resultant forces and ܯ ൌ ቐ
௫ܯ
௬ܯ
௫௬ܯ

ቑ  are the resultant moments. 

The extensional stiffness matrixሾܣሿ relates the resultant forces to the mid-plane 

strains, and the bending stiffness matrix ሾܦሿ relates the resultant moments to the plate 

curvatures. The coupling matrix ሾܤሿ implies the coupling between bending and extension 

of the plate, which means, the normal and shear forces acting at the mid-plane of the plate 

result in not only the in-plane deformations, but also twisting and bending motions.  

3.3 Governing Equations for the Vibration of Composite Laminate Plates 

If the thickness of the laminate is very small compared to the dimension of the 

plate, the classical laminated theory can be used to simplify the composite laminate plate 

as a single-layer anisotropic plate. The material properties, orientation, thickness of each 

plate can be taken into consideration in the stiffness matrices of the plate.  The equations 

of motion of the composite laminate plate are coupled and thus very difficult to solve for 

the general solution of the displacements. However, at the high frequency, the following 

convergence study shows that the coupling can be neglected. 

In the following convergence study, we take the angle-ply plates as an example. 

The equations of motion for free vibration of angle-ply plates with in-plane inertia 

neglected can be expressed as (Whitney and Ashton 1987): 

ଵଵܣ
డమ௨
డ௫మ ൅ ଺଺ܣ

డమ௨
డ௬మ ൅ ሺܣଵଶ ൅ ଺଺ሻܣ డమ௩

డ௫డ௬
െ ଵ଺ܤ3

డయ௪
డ௫మడ௬

െ ଶ଺ܤ
డయ௪
డ௬య ൌ 0    

ሺܣଵଶ ൅ ଺଺ሻܣ డమ௨
డ௫డ௬

൅ ଺଺ܣ
డమ௩
డ௫మ ൅ ଶଶܣ

డమ௩
డ௬మ െ ଵ଺ܤ

డయ௪
డ௫య െ ଶ଺ܤ3

డయ௪
డ௫డ௬మ ൌ 0  
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ଵଵܦ
డర௪
డ௫ర ൅ 2ሺܦଵଶ ൅ ଺଺ሻܦ2 డర௪

డ௫మడ௬మ ൅ ଶଶܦ
డర௪
డ௬ర െ ଵ଺ܤ ቀ3 డయ௨

డ௫మడ௬
൅ డయ௩

డ௫యቁ  

                 െܤଶ଺ ቀడయ௨
డ௬య ൅ 3 డయ௩

డ௫డ௬మቁ െ ݓଶ߱ߩ ൌ 0      (3.10) 

The frequency equation for the vibration of angle-ply laminate plate can be 

expressed as the following (Whitney and Ashton 1987): 

߱௠௡
ଶ ൌ గర

ఘோర௕ర ቄܦଵଵ݉ସ ൅ 2ሺܦଵଶ ൅ ଺଺ሻ݉ଶ݊ଶܴଶܦ2 ൅ ଶଶ݊ସܴସܦ െ ଵ
௃య

ሾ݉ሺܤଵ଺݉ଶ ൅

ଵܬଶ଺݊ଶܴଶሻܤ3                            ൅ ܴ݊ሺ3ܤଵ଺݉ଶ ൅  ଶሿቅ     (3.11)ܬଶ଺݊ଶܴଶሻܤ

where: 

ଵܬ ൌ ሺܣଵଵ݉ଶ ൅ ଵ଺݉ଶܤ଺଺݊ଶܴଶሻሺܣ ൅ ଶ଺݊ଶܴଶሻܤ3

െ ݊ଶܴଶሺܣଵଶ ൅ ଵ଺݉ଶܤ଺଺ሻሺ3ܣ ൅  ଶ଺݊ଶܴଶሻܤ

ଶܬ ൌ ሺܣ଺଺݉ଶ ൅ ଵ଺݉ଶܤଶଶ݊ଶܴଶሻሺ3ܣ ൅ ଶ଺݊ଶܴଶሻܤ

െ ݊ଶܴଶሺܣଵଶ ൅ ଵ଺݉ଶܤ଺଺ሻሺܣ ൅  ଶ଺݊ଶܴଶሻܤ3

ଷܬ ൌ ሺܣଵଵ݉ଶ ൅ ଺଺݉ଶܣ଺଺݊ଶܴଶሻሺܣ ൅ ଶଶ݊ଶܴଶሻܣ െ ሺܣଵଶ ൅  ଺଺ሻ݉ଶ݊ଶܴଶܣ

ܴ ൌ ܽ ܾ⁄  is the ratio of the length and the width of the plate, 

 .௜௝ are the bending and coupling stiffness of the plateܤ ௜௝ andܦ

When the effect of coupling is neglected, equation (10) becomes (Whitney and 

Ashton 1987): 

߱௠௡
ଶ ൌ గర

ఘோర௕ర ሾܦଵଵ݉ସ ൅ 2ሺܦଵଶ ൅ ଺଺ሻ݉ଶ݊ଶܴଶܦ2 ൅  ଶଶ݊ସܴସሿ    (3.12)ܦ

 A two-layer, square angle-ply plate is used to implement the convergence study. 

The properties of the laminate plate are as follows: 

௅ܧ ൌ ,ܽ݌ܩ25 ௅ܧ ்ܧ ൌ ௅்ܩ ;40 ⁄⁄்ܧ ൌ 0.6, ௅்ߥ ൌ 0.25    (3.13) 
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The exact frequency and the frequency with the coupling effect neglected are 

calculated and plotted with respect to the increase of mode number for three different 

angles of angle-ply laminate plates. The results are show in Figure 3.4. 

 

 

(a) -30/30 angle-ply 

 

(b) -45/45 angle-ply 
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(c) -60/60 angle-ply 

Figure 3.4 Exact and approximate frequencies for the angle-ply laminate plate 

 

From Figure 3.4, we can see that with the increasing of mode number, the 

difference of the frequency between the exact (with coupling) and approximate (coupling 

neglected) solution becomes insignificant. The similar tendency is also found for the 

other types of laminate plates. Thus, the coupling terms are neglected at high frequency 

for the following derivations of EFEA formulations.   

After dropping the non-linear and coupling terms, the general equation governing 

the out-of-plane and in-plane vibration of a composite laminated plate can be expressed 

as the following (Reddy 1997; Reddy 2004): 

ଵଵܦ
డర௪
డ௫ర ൅ ଵ଺ܦ4

డర௪
డ௫యడ௬

൅ 2ሺܦଵଶ ൅ ଺଺ሻܦ2 డర௪
డ௫మడ௬మ ൅ ଶ଺ܦ4

డర௪
డ௫డ௬య ൅ ଶଶܦ

డర௪
డ௬ర ൅ ݉ డమ௪

డ௧మ   

            ൌ ݔሺߜܨ െ ݕ଴ሻሺݔ െ  ଴ሻ݁௜ఠ௧        (3.14)ݕ

ଵଵܣ
డమ௨
డ௫మ ൅ ଵ଺ܣ2

డమ௨
డ௫డ௬

൅ ଺଺ܣ
డమ௨
డ௬మ ൅ ଵ଺ܣ

డమ௩
డ௫మ ൅ ሺܣଵଶ ൅ ଺଺ሻܣ డమ௩

డ௫డ௬
൅ ଶ଺ܣ

డమ௩
డ௬మ ൌ ߩ డమ௨

డ௧మ    (3.15) 
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ଵ଺ܣ
డమ௨
డ௫మ ൅ ሺܣଵଶ ൅ ଺଺ሻܣ డమ௨

డ௫డ௬
൅ ଶ଺ܣ

డమ௨
డ௬మ ൅ ଺଺ܣ

డమ௩
డ௫మ ൅ ଶ଺ܣ2

డమ௩
డ௫డ௬

൅ ଶଶܣ
డమ௩
డ௬మ ൌ ߩ డమ௩

డ௧మ   (3.16) 

 

where ܦ௜௝ are the bending stiffness,   ܣ௜௝ are the extensional stiffness, they can both be 

obtained from the properties of each ply in the laminate, ݓ is the transverse displacement 

of the plate, ݑ,  components of in-plane displacement in the middle plane ݕ and ݔ are the ݒ

of the plate. 

3.4 EFEA Development for the Flexural Waves in Composite Laminate Plates 

3.4.1 Wave solution of displacement and the dispersion relation for flexural waves 

The general form of the far-field solution of the equation of motion can be 

obtained by considering the plane wave motion (Langley 1996): 

,ݔ௙௙ሺݓ ,ݕ ሻݐ ൌ  ௜ሺ௞ೣ௫ା௞೤௬ሻ݁௜ఠ௧          (3.17)ି݁ܣ

where ܣ is the constant associated with the amplitude of propagating wave, ݇௫ and ݇௬ are 

complex wave numbers associated with the damped frequency of oscillation in the x and 

y directions.  

݇௫ ൌ ݇௫௟ሺ1 െ ݅ ఎ
ସ
ሻ , ݇௬ ൌ ݇௬௟ሺ1 െ ݅ ఎ

ସ
ሻ       (3.18) 

where ݇௫௟ and ݇௬௟ are the real parts of wave numbers ݇௫ and ݇௬. 

Substituting the far-field solution to the equation of motion, we can get the 

dispersion relation as follows (Langley 1996): 

ଵଵ݇௫௟ܦ
ସ ൅ ଵ଺݇௫௟ܦ4

ଷ ݇௬௟ ൅ 2ሺܦଵଶ ൅ ଺଺ሻ݇௫௟ܦ2
ଶ ݇௬௟

ଶ ൅ ଵ଺݇௫௟݇௬௟ܦ4
ଷ ൅ ଶଶ݇௬௟ܦ

ସ ൌ ݉߱ଶ  (3.19) 

Let ݇ be the total wave number in the plate, ݇௫௟ and ݇௬௟  can be expressed as the ݔ 

and ݕ components of ݇ as: 



 44

݇௫௟ ൌ ݇cos θ  

݇௬௟ ൌ ݇sin θ            (3.20) 

where ߠ is the angle of wave propagation. 

Substituting the above relationship into the dispersion relationship (3.19) yields 

the expression of total wave number ݇ in terms of the wave propagation angle ߠ. 

݇ ൌ ሾ ௠ఠమ

஽భభ ୡ୭ୱర ఏାସ஽భల ୡ୭ୱయ ఏ ୱ୧୬ ఏାଶሺ஽భమାଶ஽లలሻ ୡ୭ୱమ ఏ ୱ୧୬మ ఏାସ஽భల ୡ୭ୱ ఏ ୱ୧୬య ఏା஽మమ ୱ୧୬ర ఏ
ሿଵ

ସൗ   (3.21) 

Because of the anisotropy of the composite laminate plate, the wave numbers in 

the composite laminate plate depend on the direction of the wave propagation.  In the 

EFEA, the diffuse wave fields are assumed to exist in the plate. Thus, we need to take the 

average of wave numbers by integrating it from 0 to 2ߨ. 

Integrate them over ߠ, and we can obtain the averaged wave numbers. 

݇௫௟
כ ൌ ଵ

ଶగ ׬ ݇ cos ଶగߠ݀ߠ
଴   

݇௬௟
כ ൌ ଵ

ଶగ ׬ ݇ sin ଶగߠ݀ߠ
଴          (3.22) 

At small damping, averaged complex wave numbers ݇௫
and ݇௬ כ

כ  can be expressed 

approximated by the averaged wave numbers as (Bouthier and Bernhard 1992; Park, 

Hong et al. 2003):  

݇௫
כ ൌ  ݇௫௟

כ ሺ1 െ ݅ ఎ
ସ
ሻ   

݇௬
כ ൌ  ݇௬௟

כ ሺ1 െ ݅ ఎ
ସ
ሻ           (3.23) 
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3.4.2 Derivation of time- and space- averaged energy density and intensities 

Energy density is the amount of energy stored in a given system or region of 

space per unit volume. Energy intensity is known as the amount of energy transported 

past a given area of the medium per unit of time. 

The total energy density is the sum of the kinetic and potential energy densities. 

The time-averaged total energy density of the laminated plate can be expressed in terms 

of the displacement as (Jones 1999): 

ۄ݁ۃ ൌ ଵ
ସ

ܴ݁ ൜ܦଵଵ
డమ௪
డ௫మ ቀడమ௪

డ௫మ ቁ
כ

൅ ଵଶܦ2
డమ௪
డ௫మ ቀడమ௪

డ௬మ ቁ
כ

൅ ଶଶܦ
డమ௪
డ௬మ ቀడమ௪

డ௬మ ቁ
כ

൅ ଺଺ܦ4
డమ௪

డ௫డ௬
ቀ డమ௪

డ௫డ௬
ቁ

כ
൅

ଵ଺ܦ4
డమ௪
డ௫మ ቀ డమ௪

డ௫డ௬
ቁ

כ
൅ ଶ଺ܦ4

డమ௪
డ௬మ ቀ డమ௪

డ௫డ௬
ቁ

כ
൅ ݉ డ௪

డ௧
ቀడ௪

డ௧
ቁ

כ
ቅ      (3.24) 

The ݔ and ݕ components of the time-averaged intensity of a laminated plate can 

be expressed by the forces and moments of the plate (Park, Hong et al. 2003): 

ۄ௫ܫۃ ൌ ଵ
ଶ

ܴ݁ ൜െܳ௫௭ ቀడ௪
డ௧

ቁ
כ

൅ ௫ܯ ቀ డమ௪
డ௫డ௧

ቁ
כ

൅ ௫௬ܯ ቀ డమ௪
డ௬డ௧

ቁ
כ
ൠ     (3.25) 

ۄ௬ܫۃ ൌ ଵ
ଶ

ܴ݁ ൜െܳ௬௭ ቀడ௪
డ௧

ቁ
כ

൅ ௬ܯ ቀ డమ௪
డ௬డ௧

ቁ
כ

൅ ௬௫ܯ ቀ డమ௪
డ௫డ௧

ቁ
כ
ൠ     (3.26) 

For the laminate plate, the bending moments, twisting moments and the shear 

forces can be expressed in terms of the displacement as the following (Whitney and 

Ashton 1987): 

௫ܯ ൌ െ ቀܦଵଵ
డమ௪
డ௫మ ൅ ଵଶܦ

డమ௪
డ௬మ ൅ ଵ଺ܦ2

డమ௪
డ௫డ௬

ቁ  

௬ܯ ൌ െ ቀܦଵଶ
డమ௪
డ௫మ ൅ ଶଶܦ

డమ௪
డ௬మ ൅ ଶ଺ܦ2

డమ௪
డ௫డ௬

ቁ  

௫௬ܯ ൌ ௫௬ܯ ൌ െ ቀܦଵ଺
డమ௪
డ௫మ ൅ ଶ଺ܦ

డమ௪
డ௬మ ൅ ଺଺ܦ2

డమ௪
డ௫డ௬

ቁ     (3.27) 

ܳ௫௭ ൌ െ ቀܦଵଵ
డయ௪
డ௫య ൅ ሺܦଵଶ ൅ ଺଺ሻܦ2 డయ௪

డ௫డ௬మ ൅ ଵ଺ܦ3
డయ௪

డ௫మడ௬
൅ ଶ଺ܦ

డయ௪
డ௬య ቁ  
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ܳ௬௭ ൌ െ ቀܦଶଶ
డయ௪
డ௬య ൅ ሺܦଵଶ ൅ ଺଺ሻܦ2 డయ௪

డ௫మడ௬
൅ ଶ଺ܦ3

డయ௪
డ௫డ௬మ ൅ ଵ଺ܦ

డయ௪
డ௫య ቁ    (3.28) 

Substituting the far-field displacement solution into the expressions and taking the 

spatial average of the time-averaged energy density and intensities yield the time- and 

space- averaged energy density and energy intensities (Fahy 1982): 

ۄ݁ۃ ൌ
௞ೣ೗

כ ௞೤೗
כ

గమ ׬ ׬ గݕ݀ݔ݀ۄ݁ۃ ௞ೣ೗
⁄כ

଴
గ ௞೤೗

⁄כ
଴         (3.29) 

ۄ௫ܫۃ ൌ
௞ೣ೗

כ ௞೤೗
כ

గమ ׬ ׬ గݕ݀ݔ݀ۄ௫ܫۃ ௞ೣ೗
⁄כ

଴
గ ௞೤೗

⁄כ
଴          (3.30) 

ۄ௬ܫۃ ൌ
௞ೣ೗

כ ௞೤೗
כ

గమ ׬ ׬ గݕ݀ݔ݀ۄ௬ܫۃ ௞ೣ೗
⁄כ

଴
గ ௞೤೗

⁄כ
଴         (3.31) 

The time-averaged energy density and intensities are taken averaged over a half 

wavelength for the above expressions. When the damping is small, all of the second order 

and higher terms of the damping loss factor are neglected. After some manipulations, the 

simplified expressions for the time- and space- averaged energy density and intensities 

can be found as the following (see Appendix): 

ۄ݁ۃ ൌ ଵ
ସ

ଵଵ݇௫௟ܦൣ
כ ସ ൅ 2ሺܦଵଶ ൅ ଺଺ሻ݇௫௟ܦ2

כ ଶ݇௬௟
כ ଶ ൅ ଶଶ݇௬௟ܦ

כ ସ ൅ ݉߱ଶ൧ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| ൅

ଶ݁ି ା|ܥ|                ൅   ଶ݁ାାሻ|ܦ|

൅൫ܦଵ଺݇௫௟
כ ଷ݇௬௟

כ ൅ ଶ଺݇௫௟ܦ
כ ݇௬௟

כ ଷ൯ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ| ൅  ଶ݁ାାሻ|ܦ|

      ൌ ଵۄ݁ۃ ൅  ଶ           (3.32)ۄ݁ۃ

ۄ௫ܫۃ ൌ ଵଵ݇௫௟ܦൣ߱
כ ଷ ൅ ሺܦଵଶ ൅ ଺଺ሻ݇௫௟ܦ2

כ ݇௬௟
כ ଶ൧ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ| െ  ଶ݁ାାሻ|ܦ|

                ൅߱ൣ3ܦଵ଺݇௫௟
כ ଶ݇௬௟

כ ൅ ଶ଺݇௬௟ܦ
כ ଷ൧ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ| െ  ଶ݁ାାሻ|ܦ|

        ൌ ଵۄ௫ܫۃ ൅  ଶ          (3.33)ۄ௫ܫۃ

ۄ௬ܫۃ ൌ ଶଶ݇௬௟ܦൣ߱
כ ଷ ൅ ሺܦଵଶ ൅ ଺଺ሻ݇௫௟ܦ2

כ ଶ݇௬௟
כ ൧ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ| െ  ଶ݁ାାሻ|ܦ|

                ൅߱ൣ3ܦଶ଺݇௫௟
כ ݇௬௟

כ ଶ ൅ ଵ଺݇௫௟ܦ
כ ଷ൧ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ| െ  ଶ݁ାାሻ|ܦ|
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        ൌ ଵۄ௬ܫۃ ൅  ଶ          (3.34)ۄ௬ܫۃ

where ݁േേ  represents ݁݌ݔ ቄേ ఎ
ଶ

݇௫௟
כ ݔ േ ఎ

ଶ
݇௬௟

כ ,ۄ݁ۃ ,ቅݕ  represent the time- and ۄ௬ܫۃ and ۄ௫ܫۃ

space-averaged energy density and energy intensities.  

 

3.4.3 Derivation of EFEA differential equation and its variational statement 

By observing the expressions of time- and space- averaged energy density and 

intensities, we can find that the two parts of the ݔ and ݕ components of the time- and 

space-averaged intensities are proportional to the first derivatives of two parts of the 

time- and space-averaged energy density with respect to ݔ and ݕ: 

ଵۄ௫ܫۃ ൌ ଵߙ
డۃ௘ۄభ

డ௫
, ଵۄ௬ܫۃ  ൌ ଵߚ

డۃ௘ۄభ
డ௬

        (3.35) 

ଶۄ௫ܫۃ ൌ ଶߙ
డۃ௘ۄమ

డ௫
, ଶۄ௬ܫۃ  ൌ ଶߚ

డۃ௘ۄమ
డ௬

        (3.36) 

where ߙଵ, ,ଵߚ ,ଶߙ ଶߚ  are the four coefficients that can be expressed in terms of the 

stiffness, frequency and wave numbers: 

ଵߙ ൌ
ି଼ఠቂ஽భభ௞ೣ೗

כ మାሺ஽భమାଶ஽లలሻ௞೤೗
כ మቃ

ఎ൤஽భభ௞ೣ೗
כ రାଶሺ஽భమାଶ஽లలሻ௞ೣ೗

כ మ௞೤೗
כ మ

ା஽మమ௞೤೗
כ రା௠ఠమ൨

  

ଵߚ ൌ
ି଼ఠቂ஽మమ௞೤೗

כ మାሺ஽భమାଶ஽లలሻ௞ೣ೗
כ మቃ

ఎ൤஽భభ௞ೣ೗
כ రାଶሺ஽భమାଶ஽లలሻ௞ೣ೗

כ మ௞೤೗
כ మ

ା஽మమ௞೤೗
כ రା௠ఠమ൨

  

ଶߙ ൌ
ି଼ఠቀଷ஽భల௞ೣ೗

כ మ௞೤೗
כ ା஽మల௞೤೗

כ యቁ

ఎ௞ೣ೗
כ ቀ஽భల௞ೣ೗

כ య௞೤೗
כ ା஽మల௞ೣ೗

כ ௞೤೗
כ యቁ

  

ଶߚ ൌ
ି଼ఠቀଷ஽మల௞ೣ೗

כ ௞೤೗
כ మା஽భల௞ೣ೗

כ యቁ

ఎ௞೤೗
כ ቀ஽భల௞ೣ೗

כ య௞೤೗
כ ା஽మల௞ೣ೗

כ ௞೤೗
כ యቁ

    

Considering the isotropic plate case, the bending stiffness can be expressed as: 

ଵଵܦ ൌ ଶଶܦ ൌ ா௧య

ଵଶሺଵିఔమሻ
ൌ ,ܦ ଵଶܦ  ൌ ாఔ௧య

ଵଶሺଵିఔమሻ
, ଺଺ܦ ൌ ா௧య

ଶସሺଵାఔሻ
, ଵ଺ܦ ൌ ଶ଺ܦ ൌ 0   (3.37) 
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where ܧ is the Young’s modulus and ݐ is the thickness of the plate.  

Thus, for isotropic plate, the four coefficients can be simplified as:  

ଵߙ ൌ ଵߚ ൌ െ ஼೒
మ

ఎఠ
ଶߙ  , ൌ ଶߚ ൌ 0 

where ܥ௚ ൌ 2 ቀఠమ஽
௠

ቁ
ଵ

ସൗ
 is the group speed of the isotropic plate.  

Therefore, for the isotropic plate, the following relationship can be obtained: 

ۄԦܫۃ ൌ െ ஼೒
మ

ఎఠ
 (3.38)          ۄ݁ۃ׏

Equation (3.38) is the relationship between the time- and space- energy density 

and intensities of isotropic plates; it appears same as equation (2.9). It is obtained as a 

special case in our derivation and it appeared same as in (Bouthier and Bernhard 1992). 

Considering a power balance at a steady state over a differential control volume 

of the plate, the power balance equation can be written as (Bouthier and Bernhard 1992; 

Bouthier and Bernhard 1995): 

ۄΠ௜௡ۃ ൌ ۄΠௗ௜௦௦ۃ ൅  (3.39)         ۄԦܫۃ׏

 where the dissipated power and energy density can be expressed in the following 

relationship (Cremer, Heckl et al. 1973): 

ۄΠௗ௜௦௦ۃ ൌ  (3.40)         ۄ݁ۃ߱ߟ

Using the relationship between the dissipated power and energy density and the 

relationship between energy density and energy intensity, the EFEA differential equation 

with energy density as the primary variable can be obtained for the bending wave motion 

of composite laminate plates: 

ቀߙଵ
డమ

డ௫మ ൅ ଵߚ
డమ

డ௬మቁ ଵۄ݁ۃ ൅ ቀߙଶ
డమ

డ௫మ ൅ ଶߚ
డమ

డ௬మቁ ଶۄ݁ۃ ൅ ଵۄ݁ۃ൫߱ߟ ൅   ଶ൯ۄ݁ۃ

      ൌ ଵۄΠ௜௡ۃ ൅  ଶ          (3.41)ۄΠ௜௡ۃ
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In the EFEA differential equation, we made the assumption that the input power 

splits into two parts. The subscript 1 corresponds to the stiffness 

coefficients ,ଵଵܦ  ,ଶଶܦ ,ଵଶܦ ଺଺ܦ , which correspond to the orthotropic plate, and the 

subscripts 2 corresponds to the stiffness ܦଵ଺and ܦଶ଺. 

In order to prove the above assumption of input power, we did the following 

validation. A NASTRAN model is used to obtain the results in FEA model and a Fourier 

expansion method is employed to obtain the results from EFEA formulation.  

The analytic solution is obtained from the double Fourier series solution (Park, 

Hong et al. 2003) to the out-of-plane equation of motion of a finite composite laminate 

plate (3.14). It can be expresses as: 

,ݔሺݓ ,ݕ ሻݐ ൌ ∑ ∑ ௠ܹ௡
ஶ
௡ୀ଴

ஶ
௠ୀ଴ sin ቀ௠గ௫

௅ೣ
ቁ cos ൬௡గ௬

௅೤
൰ ݁௜ఠ௧     (3.42) 

where ௠ܹ௡  is the coefficient of ሺ݉, ݊ሻ  mode of the displacement, ܮ௫, ௬ܮ  are the 

dimension of the finite composite laminate plate. ௠ܹ௡ can be solved by substituting 

equation (3.42) into equation (3.14). 

௠ܹ௡ ൌ
ర

ಽೣಽ೤
ி ୱ୧୬ቀ೘ഏೣబ

ಽೣ
ቁ ୡ୭ୱ൬೙ഏ೤బ

ಽ೤
൰

஽భభቀ೘ഏ
ಽೣ

ቁ
ర

ାସ஽భలቀ೘ഏ
ಽೣ

ቁ
య

൬೙ഏ
ಽ೤

൰ାଶሺ஽భమାଶ஽లలሻቀ೘ഏ
ಽೣ

ቁ
మ

൬೙ഏ
ಽ೤

൰
మ

ାସ஽మలቀ೘ഏ
ಽೣ

ቁ൬೙ഏ
ಽ೤

൰
య

ା஽మమ൬೙ഏ
ಽ೤

൰
ర

ି௠ఠమ
  (3.43) 

The input power can be expressed in terms of the force and the velocity as 

(Cremer, Heckl et al. 1973): 

Π௜௡ ൌ ଵ
ଶ

Re ቄ൫݁ܨ௜ఠ௧൯ ൈ ቀడ௪ሺ௫బ,௬బ,௧
డ௧

ቁ
כ
ቅ         (3.44) 

From equation (3.44), the input power for the composite laminate plate and the 

corresponding orthotropic plate is calculated and the results are compared with the ones 

obtained from very dense FEA model. Figure 3.5 presents the comparison of the input 

power computed by the FEA model and the input power derived from the EFEA 
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formulation for the same laminate plate. Very good agreement is observed between the 

two sets of results.   

 

Figure 3.5 Input power comparison between FEA and analytic solutions 

To develop a variational statement of the energy density differential equation 

(3.41), we get the linear equation:  

௜ܲ
ଵ ൅ ଵۄ௝݁ۃ∑ ௜௝ܭ

ଵ ൅ ଵۄ௝݁ۃ∑ ௜௝ܯ
ଵ െ ௜ܨ

ଵ ൌ 0        (3.45) 

௜ܲ
ଶ ൅ ଶۄ௝݁ۃ∑ ௜௝ܭ

ଶ ൅ ଶۄ௝݁ۃ∑ ௜௝ܯ
ଶ െ ௜ܨ

ଶ ൌ 0       (3.46) 

The terms are:  

௜ܲ
ଵ,ଶ ൌ ׬ Φ୧

 
୻ ሺߙଵ,ଶ

డۃ௘ۄభ,మ
డ௫

ଓറ ൅ ଵ,ଶߚ
డۃ௘ۄభ,మ

డ௬
ଔറሻ · ሬ݊റ݀Γ  

௜௝ܭ
ଵ,ଶ ൌ െ ׬ ሺߙଵ,ଶ

డ஍౟
డ௫

డ஍ౠ

డ௫
൅ ଵ,ଶߚ

డ஍౟
డ௬

డ஍ౠ

డ௬
ሻ 

஽   ܦ݀

௜௝ܯ
ଵ,ଶ ൌ ׬ ൫Φ୧Φ୨൯߱ߟ

 
஽   ܦ݀

௜ܨ
ଵ,ଶ ൌ ׬ Φ୧
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A linear matrix equation can be developed as: 

ሾܭଵ,ଶ ൅ ଵ,ଶۄ݁ۃଵ,ଶሿܯ ൅ ܲଵ,ଶ െ ଵ,ଶܨ ൌ 0       (3.47) 

The subscript 1 corresponds to the stiffness coefficients ܦଵଵ, ,ଶଶܦ ,ଵଶܦ  ଺଺, whichܦ

correspond to the orthotropic plate, and the subscripts 2 corresponds to the stiffness 

 ଶ଺. After getting the matrix formulation of the EFEA differential equation, weܦ ଵ଺andܦ

are able to solve the differential equation numerically. 

3.5 EFEA Development for the In-plane Waves in Composite Laminate Plates 

3.5.1 Displacement solution the dispersion relationship for in-plane waves 

The equations governing the in-plane vibration of the composite laminate plate 

have been expressed in equations (3.15) and (3.16). Since the two displacement 

components ݑ and ݒ are coupled with each other in the equations, it is difficult to obtain 

the general displacement solution of the equations. However, the solution can be obtained 

by using a displacement vector (Park, Hong et al. 2001): 

Ԧ݀ሺݔ, ,ݕ ሻݐ ൌ ,ݔሺ߮׏ ,ݕ ሻݐ ൅ ׏ ൈ ߰ሺݔ, ,ݕ  ሻ       (3.48)ݐ

where ߮ሺݔ, ,ݕ ሻݐ  is a scalar quantity that represents the displacement potential which 

corresponding to the dilational motion of the plate, ߰ሺݔ, ,ݕ  ሻ is the a vector quantity thatݐ

represents the displacement potential which corresponds to the rotational motion of the 

plate.  

Substituting equation (3.48) into the plate’s in-plane equations of motion, we can 

obtain the solution of the two displacement potentials and thus get the expression of ݑ 

and ݒ from equation (3.48).  

߮ሺݔ, ,ݕ  :ሻ can be expressed as (Park, Hong et al. 2001)ݐ
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 ߮ሺݔ, ,ݕ ሻݐ ൌ ൛ܣ௟݁ି௜ሺ௞೗ೣ௫ା௞೗೤௬ሻ ൅ ௟݁௜ሺ௞೗ೣ௫ି௞೗೤௬ሻܤ ൅ ௟݁ି௜ሺ௞೗ೣ௫ି௞೗೤௬ሻܥ ൅     ௟݁௜ሺ௞೗ೣ௫ା௞೗೤௬ሻൟ݁௜ఠ௧ܦ 

           (3.49) 

where ݇௟௫, ݇௟௬ are the ݔ and ݕ components of the complex longitudinal wavenumber ݇௟. 

The longitudinal wave component ݑ௟ and ݒ௟ of the in-plane displacements ݑ and ݒ 

can be written as: 

,ݔ௟ሺݑ ,ݕ ሻݐ ൌ డఝ
డ௫

ൌ cos ௟ߠ ൛ି݁ܣ௜ሺ௞೗ೣ௫ା௞೗೤௬ሻ െ ௜ሺ௞೗ೣ௫ି௞೗೤௬ሻ݁ܤ ൅ ௜ሺ௞೗ೣ௫ି௞೗೤௬ሻି݁ܥ െ

 ௜ሺ௞೗ೣ௫ା௞೗೤௬ሻሽ݁௜ఠ௧       (3.50)݁ܦ                                  

,ݔ௟ሺݒ ,ݕ ሻݐ ൌ డఝ
డ௬

ൌ sin ௟ߠ ൛ି݁ܣ௜ሺ௞೗ೣ௫ା௞೗೤௬ሻ ൅ ௜ሺ௞೗ೣ௫ି௞೗೤௬ሻ݁ܤ െ ௜ሺ௞೗ೣ௫ି௞೗೤௬ሻି݁ܥ െ

 ௜ሺ௞೗ೣ௫ା௞೗೤௬ሻሽ݁௜ఠ௧       (3.51)݁ܦ                                  

where ܣ ൌ െ݅݇௟ܣ௟, ܤ ൌ െ݅݇௟ܤ௟, ܥ ൌ െ݅݇௟ܥ௟, ܦ ൌ െ݅݇௟ܦ௟, cos ௟ߠ ൌ ݇௟௫ ݇௟⁄  and sin ௟ߠ ൌ

݇௟௬ ݇௟⁄ . 

߰ሺݔ, ,ݕ  :ሻ can be expressed as (Park, Hong et al. 2001)ݐ

߰ሺݔ, ,ݕ ሻݐ ൌ

൛ܣ௦݁ି௜ሺ௞ೞೣ௫ା௞ೞ೤௬ሻ ൅ ௦݁௜ሺ௞ೞೣ௫ି௞ೞ೤௬ሻܤ ൅ ௦݁ି௜ሺ௞ೞೣ௫ି௞ೞ೤௬ሻܥ ൅  ௦݁௜ሺ௞ೞೣ௫ା௞ೞ೤௬ሻൟ݁௜ఠ௧   (3.52)ܦ 

where ݇௦௫, ݇௦௬ are the ݔ and ݕ components of the complex in-plane shear wavenumber 

݇௦. 

Thus, the in-plane shear wave components ݑ௦  and ݒ௦  of the in-plane 

displacements shear ݑ and ݒ can be written as: 

,ݔ௦ሺݑ ,ݕ ሻݐ ൌ െ డట
డ௬

ൌ sin ௦ߠ ൛െି݁ܣ௜ሺ௞ೞೣ௫ା௞ೞ೤௬ሻ െ ௜ሺ௞ೞೣ௫ି௞ೞ೤௬ሻ݁ܤ ൅ ௜ሺ௞ೞೣ௫ି௞ೞ೤௬ሻି݁ܥ ൅

 ௜ሺ௞ೞೣ௫ା௞ೞ೤௬ሻሽ݁௜ఠ௧       (3.53)݁ܦ                                  

,ݔ௦ሺݒ ,ݕ ሻݐ ൌ డట
డ௫

ൌ cos ௦ߠ ൛ି݁ܣ௜ሺ௞ೞೣ௫ା௞ೞ೤௬ሻ െ ௜ሺ௞ೞೣ௫ି௞ೞ೤௬ሻ݁ܤ ൅ ௜ሺ௞ೞೣ௫ି௞ೞ೤௬ሻି݁ܥ െ

 ௜ሺ௞ೞೣ௫ା௞ೞ೤௬ሻሽ݁௜ఠ௧       (3.54)݁ܦ                                  
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where ܣ ൌ െ݅݇௦ܣ௦, ܤ ൌ െ݅݇௦ܤ௦, ܥ ൌ െ݅݇௦ܥ௦, ܦ ൌ െ݅݇௦ܦ௦, cos ௦ߠ ൌ ݇௦௫ ݇௦⁄  and 

sin ௦ߠ ൌ ݇௦௬ ݇௦⁄ . 

 

3.5.2 Derivation of time- and space- averaged energy density and intensities  

The time-averaged total energy density of the in-plane vibration of thin composite 

laminate plates can be written as:  

ۄ݁ۃ ൌ ଵ
ସ

ܴ݁ ൜ቂܣଵଵ
డ௨
డ௫

൅ ଵଶܣ
డ௩
డ௬

൅ ଵ଺ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁቃ ቀడ௨
డ௫

ቁ
כ

൅ ቂܣଵଶ
డ௨
డ௫

൅ ଶଶܣ
డ௩
డ௬

൅ ଶ଺ܣ ቀడ௨
డ௬

൅

డ௩
డ௫ቁቃ ቀడ௩

డ௬
ቁ

כ
൅ ቂܣଵ଺

డ௨
డ௫

൅ ଶ଺ܣ
డ௩
డ௬

൅ ଺଺ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁቃ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁ ൅ ݄ߩ ቂቀడ௨
డ௧

ቁ ቀడ௨
డ௧

ቁ
כ

൅

ቀడ௩
డ௧

ቁ ቀడ௩
డ௧

ቁ
כ
ቃ

כ
ቅ           (3.55) 

The ݔ  and ݕ  components of the time-averaged in-plane vibration energy 

intensities of the composite laminate plate can be expressed as: 

ۄ௫ܫۃ ൌ െ ଵ
ଶ

ܴ݁ ቄቂܣଵଵ
డ௨
డ௫

൅ ଵଶܣ
డ௩
డ௬

൅ ଵ଺ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁቃ ቀడ௨
డ௧

ቁ
כ

൅ ቂܣଵ଺
డ௨
డ௫

൅ ଶ଺ܣ
డ௩
డ௬

൅

଺଺ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁቃ ቀడ௩
డ௧

ቁ
כ
ቅ           (3.56) 

ۄ௬ܫۃ ൌ െ ଵ
ଶ

ܴ݁ ቄቂܣଵଶ
డ௨
డ௫

൅ ଶଶܣ
డ௩
డ௬

൅ ଶ଺ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁቃ ቀడ௩
డ௧

ቁ
כ

൅ ቂܣଵ଺
డ௨
డ௫

൅ ଶ଺ܣ
డ௩
డ௬

൅

଺଺ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁቃ ቀడ௨
డ௧

ቁ
כ
ቅ           (3.57) 

Substituting equations (3.50) and (3.51) into equations (3.55)-(3.57), and taking 

the spatial average of the time-averaged energy density and intensities over a half 

wavelength yield the time- and space- averaged energy density and energy intensities for 

the longitudinal motion of the plate. 
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௟ۄ݁ۃ ൌ ଵ
ସ

൛ൣሺܣଵଵ ൅ ଶଶܣ െ ଵଶሻ݇௫௟ܣ2
ଶ ݇௬௟

ଶ ൅ ଺଺൫݇௫௟ܣ
ଶ െ ݇௬௟

ଶ ൯ ൅ ଶ݁ିି|ܣ|ଶ݇ଶ൧ሺ݄߱ߩ ൅

ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ|  ൅ ଶ݁ାାሻ|ܦ| ൅ ൣ2ሺܣଶ଺ െ ଵ଺ሻ݇௫௟݇௬௟൫݇௫௟ܣ
ଶ െ ݇௬௟

ଶ ൯൧ሺ|ܣ|ଶ݁ିି െ

ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ|  ൅  ଶ݁ାାሻൟ        (3.58)|ܦ|

௟ۄ௫ܫۃ ൌ ఠ
ଶ

ൣ݇௫௟൫ܣଵଵ݇௫௟
ଶ ൅ ଵଶ݇௬௟ܣ

ଶ ൯ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ|  െ ଶ݁ାାሻ|ܦ| ൅

ଵ଺݇௫௟ܣ2
ଶ ݇௬௟ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ|  െ  ଶ݁ାାሻ൧     (3.59)|ܦ|

௟ۄ௬ܫۃ ൌ ఠ
ଶ

ൣ݇௬௟൫ܣଵଶ݇௫௟
ଶ ൅ ଶଶ݇௬௟ܣ

ଶ ൯ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ|  െ ଶ݁ାାሻ|ܦ| ൅

ଶ଺݇௫௟݇௬௟ܣ2
ଶ ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ|  െ  ଶ݁ାାሻ൧     (3.60)|ܦ|

Similarly, the time- and space- averaged energy density and energy intensities for 

the in-plane shear waves can be derived by substituting equations (3.53) and (3.54) into 

equations (3.55)-(3.57): 

௦ۄ݁ۃ ൌ ଵ
ସ

൛ൣሺܣଵଵ ൅ ଶଶܣ െ ଵଶܣ2 െ ଺଺ሻ݇௫௟ܣ2
ଶ ݇௬௟

ଶ ൅ ଺଺൫݇௫௟ܣ
ସ ൅ ݇௬௟

ସ ൯ ൅ ଶ݁ିି|ܣ|ଶ݇ଶ൧ሺ݄߱ߩ ൅

ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ|  ൅ ଶ݁ାାሻ|ܦ| ൅ ൣ2ሺܣଵ଺ െ ଶ଺ሻ݇௫௟݇௬௟൫݇௬௟ܣ
ଶ െ ݇௫௟

ଶ ൯൧ሺ|ܣ|ଶ݁ିି െ

ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ|  ൅  ଶ݁ାାሻൟ        (3.61)|ܦ|

௦ۄ௫ܫۃ ൌ െ ఠ
ଶ

൛ൣሺെܣଵଵ ൅ ଵଶܣ ൅ ଺଺ሻ݇௫௟݇௬௟ܣ
ଶ െ ଺଺݇௫௟ܣ

ଷ ൧ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ|  െ

ଶ݁ାାሻ|ܦ| ൅ ൣሺ2ܣଵ଺ െ ଶ଺ሻ݇௫௟ܣ
ଶ ݇௬௟ െ ଵ଺݇௬௟ܣ

ଷ ൧ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ|  െ

 ଶ݁ାାሻൟ           (3.62)|ܦ|

௦ۄ௬ܫۃ ൌ െ ఠ
ଶ

൛ൣሺܣଵଶ െ ଶଶܣ ൅ ଺଺ሻ݇௫௟ܣ
ଶ ݇௬௟ െ ଺଺݇௬௟ܣ

ଷ ൧ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ|  െ

ଶ݁ାାሻ|ܦ| ൅ ൣሺ2ܣଶ଺ െ ଵ଺ሻ݇௫௟݇௬௟ܣ
ଶ െ ଶ଺݇௫௟ܣ

ଷ ൧ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ|  െ

 ଶ݁ାାሻൟ            (3.63)|ܦ|

where ݁േേ represents ݁݌ݔ ቄേ ఎ
ଶ

݇௫௟
כ ݔ േ ఎ

ଶ
݇௬௟

כ ,ۄ݁ۃ ,ቅݕ  represent the time- and ۄ௬ܫۃ and ۄ௫ܫۃ

space-averaged energy density and energy intensities. 
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3.5.3 Derivation of EFEA differential equations for in-plane motions 

Similar to section 3.4.3, we can find that for both longitudinal and in-plane shear 

wave motions, the two parts of the ݔ and ݕ components of the time- and space-averaged 

intensities are proportional to the first derivatives of two parts of the time- and space-

averaged energy density with respect to ݔ and ݕ. The relationship similar to equations 

(3.35) and (3.36) can be found for the longitudinal and in-plane shear wave motions 

respectively. 

For the longitudinal wave motion: 

௟ଵۄ௫ܫۃ ൌ ௟ଵߙ
డۃ௘ۄ೗భ

డ௫
, ௟ଵۄ௬ܫۃ  ൌ ௟ଵߚ

డۃ௘ۄ೗భ
డ௬

        (3.64) 

௟ଶۄ௫ܫۃ ൌ ௟ଶߙ
డۃ௘ۄ೗మ

డ௫
, ௟ଶۄ௬ܫۃ  ൌ ௟ଶߚ

డۃ௘ۄ೗మ
డ௬

        (3.65) 

where ߙ௟ଵ, ,௟ଵߚ ,௟ଶߙ ௟ଶߚ  are the four coefficients that can be expressed in terms of the 

stiffness, frequency and wave numbers: 

௟ଵߙ ൌ
ିସఠቀ஺భభ௞ೣ೗

మ ା஺భమ௞೤೗
మ ቁ

ఎቂሺ஺భభା஺మమିଶ஺భమሻ௞ೣ೗
మ ௞೤೗

మ ା஺లలቀ௞ೣ೗
మ ି௞೤೗

మ ቁାఘ௛ఠమ௞మቃ
  

௟ଵߚ ൌ
ିସఠቀ஺భమ௞ೣ೗

మ ା஺మమ௞೤೗
మ ቁ

ఎቂሺ஺భభା஺మమିଶ஺భమሻ௞ೣ೗
మ ௞೤೗

మ ା஺లలቀ௞ೣ೗
మ ି௞೤೗

మ ቁାఘ௛ఠమ௞మቃ
  

௟ଶߙ ൌ ି଼ఠ஺భల௞ೣ೗
 ௞೤೗

ఎቂଶሺ஺మలି஺భలሻ௞ೣ೗௞೤೗ቀ௞ೣ೗
మ ି௞೤೗

మ ቁቃ
  

௟ଶߚ ൌ
ି଼ఠ஺మల௞ೣ೗௞೤೗

 

ఎቂଶሺ஺మలି஺భలሻ௞ೣ೗௞೤೗ቀ௞ೣ೗
మ ି௞೤೗

మ ቁቃ
   

For the in-plane shear wave motion: 

௦ଵۄ௫ܫۃ ൌ ௦ଵߙ
డۃ௘ۄೞభ

డ௫
, ௦ଵۄ௬ܫۃ  ൌ ௦ଵߚ

డۃ௘ۄೞభ
డ௬

       (3.66) 

௦ଶۄ௫ܫۃ ൌ ௦ଶߙ
డۃ௘ۄೞమ

డ௫
, ௦ଶۄ௬ܫۃ  ൌ ௦ଶߚ

డۃ௘ۄೞమ
డ௬

       (3.67) 

where ߙ௦ଵ, ,௦ଵߚ ,௦ଶߙ  :௦ଶ  can be expressed as followsߚ
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௦ଵߙ ൌ
ସఠቂሺି஺భభା஺భమା஺లలሻ௞೤೗

మ ି஺లల௞ೣ೗
మ ቃ

ఎቂሺ஺భభା஺మమିଶ஺భమିଶ஺లలሻ௞ೣ೗
మ ௞೤೗

మ ା஺లలቀ௞ೣ೗
ర ା௞೤೗

ర ቁାఘ௛ఠమ௞మቃ
  

௦ଵߚ ൌ
ସఠቂሺ஺భమି஺మమା஺లలሻ௞ೣ೗

మ ି஺లల௞೤೗
మ ቃ

ఎቂሺ஺భభା஺మమିଶ஺భమିଶ஺లలሻ௞ೣ೗
మ ௞೤೗

మ ା஺లలቀ௞ೣ೗
ర ା௞೤೗

ర ቁାఘ௛ఠమ௞మቃ
  

௦ଶߙ ൌ
ଶఠቂሺଶ஺భలି஺మలሻ௞ೣ೗

మ ି஺భల௞೤೗
మ ቃ

ఎ௞ೣ೗
మ ሺ஺భలି஺మలሻቀ௞೤೗

మ ି௞ೣ೗
మ ቁ

  

௦ଶߚ ൌ
ଶఠቂሺଶ஺మలି஺భలሻ௞೤೗

మ ି஺మల௞ೣ೗
మ ቃ

ఎ௞೤೗
మ ሺ஺భలି஺మలሻቀ௞೤೗

మ ି௞ೣ೗
మ ቁ

   

Using the relationship between the dissipated power and energy density and the 

relationship between energy density and energy intensity, the EFEA differential equation 

with energy density as the primary variable can be obtained for the in-plane wave motion 

of composite laminate plates. 

For longitudinal wave motion: 

ቀߙ௟ଵ
డమ

డ௫మ ൅ ௟ଵߚ
డమ

డ௬మቁ ௟ଵۄ݁ۃ ൅ ቀߙ௟ଶ
డమ

డ௫మ ൅ ௟ଶߚ
డమ

డ௬మቁ ௟ଶۄ݁ۃ ൅ ௟ଵۄ݁ۃ൫߱ߟ ൅   ௟ଶ൯ۄ݁ۃ

      ൌ ௟ଵۄΠ௜௡ۃ ൅  ௟ଶ         (3.68)ۄΠ௜௡ۃ

For in-plane shear wave motion: 

ቀߙ௦ଵ
డమ

డ௫మ ൅ ௦ଵߚ
డమ

డ௬మቁ ௦ଵۄ݁ۃ ൅ ቀߙ௦ଶ
డమ

డ௫మ ൅ ௦ଶߚ
డమ

డ௬మቁ ௦ଶۄ݁ۃ ൅ ௦ଵۄ݁ۃ൫߱ߟ ൅   ௦ଶ൯ۄ݁ۃ

    ൌ ௦ଵۄΠ௜௡ۃ ൅  ௦ଶ          (3.69)ۄΠ௜௡ۃ

3.6 Numerical Examples and Validation 

In order to demonstrate the validity of the new EFEA formulation in composite 

laminate plates, the results from very dense FEA models are used to compare the results 

from the EFEA model of two types of laminate plates. In both examples, the bending 

motion of the plate is studied. 
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3.6.1 Two-layer cross-ply laminate plate 

In this example, the vibration of a two-layer cross-ply composite laminate plate 

with several excitations on the plate is analyzed using FEA and EFEA models 

respectively at several different frequencies. The plate is a 1m×1m square cross-ply 

(0/90) plate with two layers of equal thickness.  Layers with the following engineering 

constants are used: 

௅ܧ ൌ ,ܽ݌ܩ25 ௅ܧ ൌ ,்ܧ40 ௅்ܩ ൌ ,்ܧ0.6 ௅்ߥ ൌ 0.25     (3.70) 

 

Figure 3.6 Configuration of two-layer cross-ply laminate plate  

The thickness of each layer is 0.0025m. The bending stiffness matrix can be 

obtained from the properties, thickness and orientation of the two layers and they are 

expressed in the ܦ matrix.  

ܦ ൌ ൥
134.0 1.63 0
1.63 134.0 0

0 0 3.91
൩ ܽ݌ܩ · ݉ଷ        (3.71) 

Figure 3.7 presents the laminate plate models in FEA and EFEA respectively. To 

capture the response of the plate at high frequencies, the conventional FEA model has 

10,000 elements. The EFEA model has only 100 elements.  
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Figure 3.7 Conventional FEA model (left) and EFEA model (right) 

The distribution of energy density along the mid-span of the plate is evaluated by 

the FEA and the EFEA for 1/3 octave bands of the frequencies from 1000Hz to 5000Hz. 

In the FEA model, the plate is excited at several randomly selected locations and the 

velocity at each node can be computed. First, the input power at each excitation location 

is computed and it becomes the input power in the EFEA matrix. The energy density 

distribution within the plate can be calculated and the results are averaged over the 1/3 

octave bands for each central frequency in order to compare the results with EFEA model. 

The comparisons of the energy density distribution at several frequencies are presented in 

Figure 3.8 and differences smaller than 0.5dB are observed. 
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Figure 3.8 Distribution of energy density along the mid-span of the cross-ply 

laminate plate computed by the dense FEA and EFEA models at 1000Hz-5000Hz 1/3 

octave bands  
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3.6.2 Two-layer general laminate plate 

In this part, the example of a more general composite laminate plate is calculated 

in conventional EFA and EFEA models. The plate is a 1m×1m square laminated plate 

with two layers of equal thickness. The two layers are at 0 and 45 degree orientation. 

Layers with the following engineering constants are used: 

௅ܧ ൌ ,ܽ݌ܩ20 ்ܧ ൌ ,ܽ݌ܩ 2 ௅்ܩ ൌ ,ܽ݌ܩ0.7 ௅்ߥ ൌ 0.35     (3.72) 

The configuration of the laminate is illustrated in the following Figure 3.9.  

 

Figure 3.9 Configuration of composite laminate plate 

              The thickness of each layer is 0.0025m. The bending stiffness matrix can be 

calculated as: 

ܦ ൌ ൥
140.0 30.9 23.7
30.9 45.0 23.7
23.7 23.7 30.8

൩ ܽ݌ܩ ڄ ݉ଷ       (3.73) 

The comparisons of the energy density distribution at mid-span of the plate at 

several frequencies are presented in Figure 3.10.  Similar to the example of cross-ply 

laminate plate, very good agreement can be observed from the comparison between 

EFEA and FEA results. EFEA captures the energy distribution level in the plate well 

while using a significantly smaller number of elements.      
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Figure 3.10 Distribution of energy density along the mid-span of the general 

laminate plate computed by the dense FEA and EFEA models at 1000Hz-5000Hz 1/3 

octave bands   
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3.7 An Alternative Method to Derive the EFEA Differential Equation for Composite 

Laminate Plates 

3.7.1Group velocity for composite laminate plates 

From the classical laminate theory, composite laminate plate can be considered as 

an anisotropic plate. The wavenumber has angle dependence in anisotropic media 

(Bosmans, Mees et al. 1996; Bosmans, Vermeir et al. 2002).  The energy distribution and 

the direction of energy flow in anisotropic media are affected by the angle dependence of 

the wavenumber. Poynting vector is used in describing the energy flow in anisotropic 

media (Auld 1990). This vector, which is parallel to the heading of the group velocity, is 

orientated normal to the curve obtained by plotting the wavenumber as a function of the 

wave heading. Thus, the heading of group velocity is different to the heading of wave 

propagation, except for some values. Figure 3.11 gives an illustration of this phenomenon.  

 

Figure 3.11 Wavenumber as a function of wave heading in the wavenumber plane 
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The ݔ component of group velocity is expressed as ܿ௚௫, the component along the 

heading of wave propagation ߠ is expressed as ܿ௚ఏ. The angle between ܿ௚ఏ and ܿ௚ is the 

heading of group velocity ߠ௘.  

The following relations exist for the wave propagation: 

ܿሺߠ௜ሻ ൌ ఠ
௞ሺఏ೔ሻ

           (3.74) 

ܿ௚ఏሺߠ௜ሻ ൌ డఠ
డ௞ሺఏ೔ሻ

          (3.75) 

Now let’s derive the group velocity for bending waves in composite laminate 

plates. For composite laminate plate, the bending wavenumber is expressed in equation 

(3.21) (Bosmans, Vermeir et al. 2002).  

ܿ௚஻ఏሺߠ௜ሻ ൌ డఠ
డ௞ಳሺఏ೔ሻ

ൌ ଶఠ
௞ಳ

         (3.76) 

The normal vector of the wavenumber curve can be expressed as: 

tan ௘ߠ ൌ డ௞ಳೣ డఏ೔⁄
ିడ௞ಳ೤ డఏ೔⁄ ൌ డሾ௞ಳሺఏ೔ሻ ୡ୭ୱ ఏ೔ሿ డఏ೔⁄

ିడሾ௞ಳሺఏ೔ሻ ୱ୧୬ ఏ೔ሿ డఏ೔⁄ ൌ
ങೖಳ
ങഇ೔

ୡ୭ୱ ఏ೔ି௞ಳ ୱ୧୬ ఏ೔

ିങೖಳ
ങഇ೔

ୱ୧୬ ఏ೔ି௞ಳ ୡ୭ୱ ఏ೔
    (3.77) 

where డ௞ಳ
డఏ೔

 can be obtained from equation (3.21). 

From Figure 3.11, the following relationship between ܿ௚஻ఏ  and ܿ௚஻  can be 

obtained: 

ܿ௚஻ ൌ ௖೒ಳഇ

ୡ୭ୱሺఏ೔ିఏ೐ሻ          (3.78) 

The group velocity corresponding to the bending wave ܿ௚஻ can be calculated from 

equation (3.78). The group velocity of the in-plane waves can also be calculated 

following the similar procedure. 
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3.7.2 Equivalent homogenized isotropic material for composite laminate plates 

From Chapter 2, we know that the EFEA differential equation for isotropic 

material can be expressed as (Bouthier and Bernhard 1992): 

െ ௖೒
మ

ఎఠ
ۄ݁ۃଶ׏ ൅ ۄ݁ۃ߱ߟ ൌ  (3.79)           ۄΠ௜௡ۃ

 ܿ௚ ൌ 2ට஽ఠమ

ఘ௛
ర             (3.80) 

The property of the material is taken into consideration in the group velocity ܿ௚ of 

the material. For the composite laminate plate, it is also possible to come up with a 

similar EFEA differential equation by using the averaged group velocity ܿ௚
 As described .כ

previously, the group velocity for composite laminate plate is a function of wave 

propagation angle ߠ. The averaged group velocity ܿ௚
כ  removed the dependency to ߠ by 

taking the average of  ܿ௚ from 0 to 2ߨ. 

 ܿ௚
כ ൌ ׬  ܿ௚݀ߠଶగ

଴            (3.81) 

Using the averaged group velocity, we can express the EFEA differential equation 

for composite laminate plate as: 

െ ௖೒
మכ

ఎఠ
ۄ݁ۃଶ׏ ൅ ۄ݁ۃ߱ߟ ൌ  (3.82)            ۄΠ௜௡ۃ

At element level, the EFEA differential equation can be expressed as: 

ሾܭ௘ሿሼ݁௘ሽ ൌ ሼܨ௘ሽ ൅ ሼܳ௘ሽ          (3.83) 

where  ሼ݁௘ሽ is the vector of nodal values for the time and space averaged energy density,            

ሾܭ௘ሿ  is the system matrix for each element, ሼܨ௘ሽ is the excitation vector, it represents the 

energy input at each node, ሼܳ௘ሽ is the power flow across the element boundary. 
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From the averaged group velocity ܿ௚
 for composite laminate plate, we can find its כ

equivalent isotropic material property using equation (3.80).  

௘௤ܦ ൌ  ௖೒
כ రఘ௛

ଵ଺ఠమ            (3.84) 

3.7.3 Validation of alternative approach 

The two-layer general composite laminate plate used in 3.6.2 is used to implement 

the validation. In the calculation, the energy density distribution of plate is calculated 

using EFEA differential equation derived for both the composite laminate plate and the 

equivalent isotropic plate. The results for the frequency 1000 Hz and 5000 Hz are plotted 

in Figure 3.12. In both plots, good correlation is observed between these two methods. 
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(b)  f =5000 Hz 

Figure 3.12 Energy density distribution comparison between composite laminate 

plate and its equivalent isotropic plate 
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Chapter 4  

POWER TRANMISSION THROUGH COUPLED ORTHOTROPIC PLATES 

 4.1 Introduction 

In order to analyze the power transmitted from the excitation location to the other 

components within the structure at high frequency, it is necessary to calculate the 

vibrational energy transmission at the plate junctions. The power transmission 

coefficients can be utilized to form the joint matrix at the structural junctions, where the 

energy density value is discontinuous. It is then possible to assemble the global system of 

matrix of EFEA differential equation and solve for the energy density throughout the 

entire system. 

Approaches to calculate the power transmission coefficients include the methods 

for semi-infinite plates and finite-sized plates, but both methods are based on the proper 

formulation of the continuity and equilibrium conditions at the junction. In the past, this 

problem has been solved for thin (Langley and Heron 1990) and thick plates (Mccollum 

and Cuschieri 1990), for plate junction with beams (Langley and Heron 1990), junctions 

with elastic interlayer (Wohle, Beckmann et al. 1981; Mees and Vermeir 1993), junction 

of curved panels (Langley 1994).  
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Figure 4.1 gives a schematic plot of a junction that consists of an arbitrary number 

of coupled plates. There are three types of waves involved in the plate junction problem: 

bending, longitudinal and shear waves.  

This chapter is organized as follows. First, the equations of motion that govern the 

wave propagation in orthotropic plates are presented. The solutions for the equations are 

introduced, including the derivation of in-plane wavenumbers for orthotropic plates. 

Second, the wave dynamic stiffness matrix is derived, the global equation is assembled 

and the power transmission coefficients are solved. Third, the joint matrix is formed in 

terms of the power transmission coefficients and the global matrix of EFEA differential 

equation is form to solve for the energy density distribution within the structure. Finally, 

numerical examples are presented using the L-junction of two orthotropic plates with 

different orientations and the results obtained from EFEA formulation are compared with 

the results from very dense FEA model. 

4.2 Derivation of Power Transmission Coefficients for Orthotropic Plate Junction 

4.2.1 Governing equations 

The deformation of each plate is defined with respect to the local coordinate 

system, which has the x-axis along the connection edge, as shown in Figure 4.2. The 

equations of motion that govern the deflections of the ݆ th plate can be written in the form 

(Whitney and Ashton 1987) : 

ଵଵ௝ܦ
డర௪
డ௫ర ൅ 2൫ܦଵଶ௝ ൅ ଺଺௝൯ܦ2 డర௪

డ௫మడ௬మ ൅ ଶଶ௝ܦ
డర௪
డ௬ర ൅ ௝ߩ

డమ௪
డ௧మ ൌ 0    (4.1) 

ଵଵ௝ܣ
డమ௨
డ௫మ ൅ ଺଺௝ܣ

డమ௨
డ௬మ ൅ ൫ܣଵଶ௝ ൅ ଺଺௝൯ܣ డమ௩

డ௫డ௬
െ ௝ߩ

డమ௨
డ௧మ ൌ 0     (4.2) 
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଺଺௝ܣ
డమ௩
డ௫మ ൅ ଶଶ௝ܣ

డమ௩
డ௬మ ൅ ൫ܣଵଶ௝ ൅ ଺଺௝൯ܣ డమ௨

డ௫డ௬
െ ௝ߩ

డమ௩
డ௧మ ൌ 0     (4.3) 

where ܦଵଵ௝, ܣଵଵ௝ etc. are the coefficients of bending and extensional stiffness matrices of 

݆ th plate.  

 

Figure 4.2 Coordinate system, displacements, forces and moments for plate j 

The relationship between the displacements and the traction that act at the 

connected edge of the plate can be expressed as follows (Ashton and Whitney 1970).   

௝ܯ ൌ ଶଶ௝ܦ
డమ௪
డ௬మ ൅ ଵଶ௝ܦ

డమ௪
డ௫మ          (4.4) 

௝ܵ ൌ െ ቂ൫ܦଵଶ௝ ൅ ଺଺௝൯ܦ2 డయ௪
డ௫మడ௬

൅ ଶଶ௝ܦ
డయ௪
డ௬య ቃ         (4.5) 

௝ܰ ൌ ଵଶ௝ܣ
డ௨
డ௫

൅ ଶଶ௝ܣ
డ௩
డ௬

         (4.6) 

௝ܶ ൌ ଺଺௝ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁ          (4.7) 

The tractions that act on the common edge of the plates are evaluated at ݕ ൌ 0. 

The forces and moments per unit length that are applied to the junction by the 

semi-infinite plates can be expressed as (Langley and Heron 1990): 

ܳ ൌ ∑ ௝ܴܨ௝
ே
௝ୀଵ           (4.8) 
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where ܨ ൌ ൫ ௝ܶ  ௝ܰ   ௝ܵ ௝൯்ܯ  
 represents the tractions on the connected edge of plate ݆, and 

the transformation matrix ௝ܴ is given by (Langley and Heron 1990): 

௝ܴ ൌ ൦

1 0
0 cos ௝׎

0 0
െ sin ௝׎ 0

0 sin ௝׎
0 0

  cos ௝׎   0
  0   1

൪        (4.9) 

where ׎௝ is the angle of the local coordinate in plate ݆  with respect to the global 

coordinate system. 

The compatibility conditions between the common junction displacement ܽ, and 

the edge displacement of plate ݆ ௝ܾ, require that 

௝ܾ ൌ ௝ܴ
்ܽ           (4.10) 

where ܽ ൌ ሺߠ  ݓ  ݒ  ݑሻ் , ௝ܾ ൌ ൫ݑ௘௝  ݒ௘௝  ݓ௘௝  ߠ௘௝൯்
, and ݑ, ,ݒ ݓ  are the displacements 

of the junction in x, y, z directions respectively, ߠ is the rotation of the junction with 

respect to the x axis, ݑ௘௝, ,௘௝ݒ ,௘௝ݓ ௘௝ߠ  are the corresponding displacements and 

moments for plate ݆. 

4.2.2 Derivation of in-plane wavenumbers for orthotropic plates 

The in-plane equations of motion for orthotropic plates can be expressed in 

equation (4.2) and (4.3). In the case of isotropic materials, these two equations predict 

two modes of propagation – longitudinal and shear modes. However, in the case of 

orthotropic material, because of the anisotropy, the modes are not pure longitudinal and 

pure shear except when they are propagating along directions of material symmetry. In 

general, these two modes are referred as quasi-longitudinal and quasi-shear modes 

(Prosser 1991).  
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The dispersion relationship for the orthotropic case is much more complicated 

than the isotropic case. Because of the anisotropy, the velocity of the mode is dependent 

on the direction of wave propagation. The dispersion relationship will again be obtained 

by assuming a plane wave form of the displacement and substituting into the equations of 

motion. The in-plane displacements are given by (Prosser 1991): 

ݑ ൌ ݐሾ݅ሺ߱݌ݔ௫݁ߙ଴ܣ െ ݇ cos ݔ߮ െ ݇ sin  ሻሿ       (4.11)ݕ߮

ݒ ൌ ݐሾ݅ሺ߱݌ݔ௬݁ߙ଴ܣ െ ݇ cos ݔ߮ െ ݇ sin  ሻሿ        (4.12)ݕ߮

where ܣ଴ߙ௫ andܣ଴ߙ௬ are the amplitudes of the two in-plane motions, ݇ is the in-plane 

wavenumber, ߮ is the angle of wave propagation.  

Substituting these displacements into the equations of motion yields the following 

relationship: 

ቈ
ଵଵ݇ଶܣ cosଶ ߮ ൅ ଺଺݇ଶܣ sinଶ ߮ െ ଶ݄߱ߩ ሺܣଵଶ ൅ ଺଺ሻ݇ଶܣ cos ߮ sin ߮

ሺܣଵଶ ൅ ଺଺ሻ݇ଶܣ cos ߮ sin ߮ ଺଺݇ଶܣ cosଶ ߮ ൅ ଶଶ݇ଶܣ sinଶ ߮ െ ଶ቉݄߱ߩ ቂ
௫ߙ
௬ߙ

ቃ ൌ 0 

           (4.13) 

The non-trivial solution for this equation will be obtained only when the 

determinant of the matrix is equal to zero. Setting the determinant equal to zero will yield 

a quadratic equation of ݇ଶ. The two solutions of wavenumber correspond to the quasi-

longitudinal and quasi-shear modes respectively. Generally, the quasi-longitudinal mode 

is faster and thus corresponds to the smaller root. 

For the wave propagation along the ݔ   axis or the 0  degree direction of the 

laminate, we have cos ߮ ൌ 1, sin ߮ ൌ 0. Thus, equation (4.13) becomes: 

൤ܣଵଵ݇ଶ െ ଶ݄߱ߩ 0
0 ଺଺݇ଶܣ െ ଶ൨݄߱ߩ ቄ

௫ߙ
௬ߙ

ቅ ൌ 0      (4.14) 

The non-trivial solution requires: 
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ݐ݁݀   ฬܣଵଵ െ ଶ݄ܿߩ 0
0 ଺଺ܣ െ ଶฬ݄ܿߩ ൌ 0      (4.15) 

where ܿ ൌ ߱ ݇⁄  is the phase velocity. 

The two solutions can be solved: 

ܿଵ ൌ ට஺భభ
ఘ௛

            (4.16) 

ܿଶ ൌ ට஺లల
ఘ௛

           (4.17) 

In this case, ቄ
௫ߙ
௬ߙ

ቅ ൌ ቄ1
0ቅ or ቄ0

1ቅ, which correspond to a pure longitudinal wave 

mode or a pure shear wave mode. 

4.2.3 Derivation of dynamic stiffness matrix 

The wave dynamic stiffness matrix is derived by considering a plane wave 

propagating through one of the semi-infinite plates towards the plate junctions and being 

partly reflected to the plate and partly transmitted to other plates.  

Assume the incident wave have a form of exp ሺെ݅݇ݔ ൅ ݕߤ݅ ൅  ሻ, the Snell’sݐ߱݅

law requires that the response in all the plates must have the same ݔ dependency 

exp ሺെ݅݇ݔ ൅  dependency will be determined from the plate equation of ݕ ሻ,   theݐ߱݅

motion.  

Assume the out-of-plane displacement of plate ݆ has the form of exp ሺെ݅݇ݔ ൅

ݕ஻ߤ݅ ൅  :஻ can be expressed asߤ ,ሻݐ߱݅

஻ߤ
ଶ ൌ ݇ଶ േ ݇஻

ଶ            (4.18) 

where ݇஻ ൌ ቂ ௠ఠమ

஽భభ ୡ୭ୱర ఝାଶሺ஽భమାଶ஽లలሻ ୡ୭ୱమ ఝ ୱ୧୬మ ఝା஽మమ ୱ୧୬ర ఝ
ቃ

ଵ
ସൗ
 is the bending wavenumber, it 

depends on the direction of wave propagation ߮. 
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If ݇ ൐ ݇஻ , equation (4.18) will have four real roots, in this case, only the two 

negative roots are physically significant because the response must decay as ݕ ՜ ∞. In 

the case that ݇ ൏ ݇஻, equation (4.18) will have two real roots and two imaginary roots. In 

this case, only the negative real root and the negative imaginary root should be selected, 

because the response must either decay as ݕ ՜ ∞ or propagate away from the junction 

(Langley and Heron 1990). After selecting the right ݕ component of wavenumber ߤ஻, the 

out-of-plane response of the plate can be written in the form: 

ݓ ൌ ∑ ݔ஻௡exp ሺെ݅݇ߙ ൅ ஻௡ߤ
ଶ
௡ୀଵ ݕ ൅  ሻ       (4.19)ݐ߱݅

where ߤ஻ଵ  and ߤ஻ଶ  are the two valid roots from equation (4.18), ߙ஻ଵ and ߙ஻ଶ  are the 

complex amplitudes associated with two roots.  

The rotation can be expressed as: 

௝ߠ ൌ డ௪
డ௬

                            (4.20) 

From equation (4.19) and (4.20), the displacement and rotation at the edge of the 

plate ݆ can be evaluated at ݕ ൌ 0, they can be expressed in terms ofߤ஻ଵ,  ஻ଶߙ ஻ଵandߙ ஻ଶߤ

(Langley and Heron 1990): 

൜
௘௝ݓ
௘௝ߠ

ൠ ൌ ൤ 1 1
஻ଵߤ ஻ଶߤ

൨ ቄ
஻ଵߙ
஻ଶߙ

ቅ exp ሺെ݅݇ݔ ൅  ሻ      (4.21)ݐ߱݅

From equations (4.4) and (4.5) and equation (4.19), the edge tractions ܯ௝  and 

௝ܵ  can be expressed in terms of ߙ஻ଵand ߙ஻ଶ as: 

൜ ௝ܵ
௝ܯ

ൠ ൌ ቈ݇ଶሺܦଵଶ ൅ ஻ଵߤ଺଺ሻܦ4 െ ஻ଵߤଶଶܦ
ଷ ݇ଶሺܦଵଶ ൅ ஻ଶߤ଺଺ሻܦ4 െ ஻ଶߤଶଶܦ

ଷ

஻ଵߤଶଶܦ
ଶ െ ݇ଶܦଵଶ ஻ଶߤଶଶܦ

ଶ െ ݇ଶܦଵଶ
቉ ቄ

஻ଵߙ
஻ଶߙ

ቅ ൈ

                 exp ሺെ݅݇ݔ ൅  ሻ         (4.22)ݐ߱݅

From equation (4.21), we can express ߙ஻ଵ and ߙ஻ଶ in terms of ݓ௘௝ and ߠ௘௝ as: 
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ቄ
஻ଵߙ
஻ଶߙ

ቅ ൌ ൤ 1 1
஻ଵߤ ஻ଶߤ

൨
ିଵ

൜
௘௝ݓ
௘௝ߠ

ൠ exp ሺ݅݇ݔ െ  ሻ       (4.23)ݐ߱݅

Eliminate ߙ஻ଵand ߙ஻ଶ from equation (4.22) using equation (4.23), we can get the 

following relationship between the edge displacements ݓ௘௝, ߠ௘௝and the edge tractions ௝ܵ 

andܯ௝: 

൜ ௝ܵ
௝ܯ

ൠ ൌ ଵ
ఓಳభିఓಳమ

ൈ 

ቈ ஻ଵߤ஻ଶሺߤ஻ଵߤଶଶܦ
ଶ െ ஻ଶߤ

ଶ ሻ ݇ଶሺܦଵଶ ൅ ஻ଶሻߤ஻ଵെߤ଺଺ሻሺܦ4 ൅ ஻ଶߤଶଶሺܦ
ଷ െ ஻ଵߤ

ଷ ሻ
஻ଵሻߤ஻ଶെߤ஻ଶሺߤ஻ଵߤଶଶܦ ൅ ݇ଶܦଵଶሺߤ஻ଶെߤ஻ଵሻ ஻ଵߤଶଶሺܦ

ଶ െ ஻ଶߤ
ଶ ሻ ቉ ൜

௘௝ݓ
௘௝ߠ

ൠ 

              (4.24) 

Similar procedure can be used to determine the in-plane behavior of the plate. In 

order to simplify the derivation calculation, we assume the in-plane motions in the 

following expressions instead of equations (4.11) and (4.12) (Bosmans, Mees et al. 

1996): 

ݑ ൌ ݐሺ݅߱݌ݔ଴݁ܣ െ ݔ݇݅ ൅  ሻ        (4.25)ݕߤ

ݒ ൌ ݐሺ݅߱݌ݔ଴݁ܣܸ െ ݔ݇݅ ൅  ሻ         (4.26)ݕߤ

where ܸ is the ratio between the amplitudes of the two displacements.  

Substituting equations (4.25) and (4.26) into the in-plane equations of motion 

(4.2) and (4.3), we can get the following expression: 

൤ܣଵଵ݇ଶ െ ଶߤ଺଺ܣ െ ଶ݄߱ߩ ݅ሺܣଵଶ ൅ ߤ଺଺ሻ݇ܣ
݅ሺܣଵଶ ൅ ߤ଺଺ሻ݇ܣ ଺଺݇ଶܣ െ ଶߤଶଶܣ െ ଶ൨݄߱ߩ ቄ1

ܸቅ ൌ ቄ0
0ቅ    (4.27) 

Take the determinant equal to zero yield a polynomial equation of ߤ . Among the 

four roots of ߤ only the real and negative or imaginary and negative roots are selected. 

They are the corresponding ݕ components of longitudinal and shear wavesnumbers 

respectively. Associated with each root is a mode shape which governs the relationship 
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between the two in-plane displacements. The two mode shapes can be obtained as  ൜ 1
ଵܸ

ൠ 

and ൜ 1
ଶܸ

ൠ. 

Thus, the in-plane response can be written in the form: 

ቄݑ
ቅݒ ൌ ൜ߙ௅ ൬ 1

ଵܸ
൰ eఓಽ௬ ൅ ௌߙ ൬ 1

ଶܸ
൰ eఓೄ௬ൠ exp ሺെ݅݇ݔ ൅  ሻ    (4.28)ݐ߱݅

where ߙ௅ and ߙௌ are the complex amplitudes of the associated complementary functions. 

Thus, the edge displacements ݑ௘௝ and ݒ௘௝ can be also expressed in terms of ߙ௅ and ߙௌ as: 

ቄ
௘௝ݑ
௘௝ݒ

ቅ ൌ ൤ 1 1
ଵܸ ଶܸ

൨ ቄ
௅ߙ
ௌߙ

ቅ exp ሺെ݅݇ݔ ൅  ሻ       (4.29)ݐ߱݅

Similarly, we can express the edge tractions ௝ܶ and ௝ܰ in terms of ߙ௅ and ߙௌ as: 

൜ ௝ܶ

௝ܰ
ൠ ൌ ൤ ௅ߤ଺଺ሺܣ െ ݅݇ ଵܸሻ ௌߤ଺଺ሺܣ െ ݅݇ ଶܸሻ

െ݅݇ܣଵଶ ൅ ௅ߤ ଵܸܣଶଶ െ݅݇ܣଵଶ ൅ ௌߤ ଶܸܣଶଶ
൨ ቄ

௅ߙ
ௌߙ

ቅ     (4.30) 

Eliminate ߙ௅ and ߙௌ from equation (4.30) using equation (4.29), we can get the 

following relationship between the edge displacements ௘௝ݑ ௘௝ݒ , and the edge 

tractions ௝ܶ  and ௝ܰ : 

൜ ௝ܶ

௝ܰ
ൠ ൌ ଵ

௏భି௏మ
൤ܣ଺଺ሺߤௌ ଵܸ െ ௅ߤ ଶܸሻ ௅ߤ଺଺ሺܣ െ ௌሻߤ ൅ ଺଺ሺܣ݇݅ ଶܸ െ ଵܸሻ

ଵܸ ଶܸܣଶଶሺߤ௦ െ ௅ሻߤ ଶଶሺܣ ଶܸߤ௦ െ ଵܸߤ௅ሻ ൨ ቄ
௘௝ݑ
௘௝ݒ

ቅ   (4.31) 

Equations (4.24) and (4.31) can be combined to produce a relationship between 

the complete set of edge displacements ௝ܾ and tractions ܨ௝ of the form: 

௝ܨ ൌ ௝ܭ ௝ܾ           (4.32) 

where ௝ܾ ൌ ൫ݑ௘௝  ݒ௘௝  ݓ௘௝  ߠ௘௝൯்
 and ܨ௝ ൌ ൫ ௝ܶ  ௝ܰ   ௝ܵ ௝൯்ܯ  

 

௝ܭ ൌ ൦

ଵଵܭ ଵଶܭ
ଶଵܭ ଶଶܭ

ଵଷܭ ଵସܭ
ଶଷܭ ଶସܭ

ଷଵܭ ଷଶܭ
ସଵܭ ସଶܭ

ଷଷܭ ଷସܭ
ସଷܭ ସସܭ

൪                                        (4.33) 
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where the entries of matrix ܭ௝ have been derived and can be found from equation (4.24) 

and (4.31). 

ଵଵܭ ൌ ଵ
௏భି௏మ

ሾܣ଺଺ሺߤௌ ଵܸ െ ௅ߤ ଶܸሻሿ  

ଵଶܭ ൌ ଵ
௏భି௏మ

ሾܣ଺଺ሺߤ௅ െ ௌሻߤ ൅ ଺଺ሺܣ݇݅ ଶܸ െ ଵܸሻሿ  

ଶଵܭ ൌ ଵ
௏భି௏మ

ሾ ଵܸ ଶܸܣଶଶሺߤ௦ െ   ௅ሻሿߤ

ଶଶܭ ൌ ଵ
௏భି௏మ

ሾܣଶଶሺ ଶܸߤ௦ െ ଵܸߤ௅ሻሿ  

ଷଷܭ ൌ ଵ
ఓಳభିఓಳమ

1ܤߤ2൫ܤߤ1ܤߤ22ܦൣ
2 െ 2ܤߤ

2 ൯൧  

ଷସܭ ൌ ଵ
ఓಳభିఓಳమ

ൣ݇2ሺ12ܦ ൅ 2൯ܤߤ1െܤߤ66ሻ൫ܦ4 ൅ 2ܤߤ22൫ܦ
3 െ 1ܤߤ

3 ൯൧  

ସଷܭ ൌ ଵ
ఓಳభିఓಳమ

1൯ܤߤ2െܤߤ2൫ܤߤ1ܤߤ22ܦൣ ൅   1൯൧ܤߤ2െܤߤ12൫ܦ2݇

ସସܭ ൌ ଵ
ఓಳభିఓಳమ

1ܤߤ22൫ܦൣ
2 െ 2ܤߤ

2 ൯൧  

ଵଷܭ ൌ ଵସܭ ൌ ଶଷܭ ൌ ଶସܭ ൌ ଷଵܭ ൌ ଷଶܭ ൌ ସଵܭ ൌ ସଶܭ ൌ 0  

This matrix ܭ௝ is called the dynamic stiffness matrix of the semi-infinite plate ݆. 

If the incident wave is carried by plate  ݆ , then equation (4.32) needs to be 

modified as (Langley and Heron 1990): 

௝ܨ ൌ ௝ܭ ௝ܾ െ ௝݂          (4.34) 

௝݂ ൌ ௝ܭ ௝ܾ
ᇱ െ ௝ܨ

ᇱ           (4.35) 

where ௝ܾ
ᇱ and ܨ௝

ᇱ are the edge displacements and tractions caused by the incident wave.  

The ௝ܾ
ᇱ  vectors can be expressed as the followings for the incident wave as 

bending wave, longitudinal wave and shear wave respectively (Langley and Heron 1990). 

For bending incident wave: 
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௝ܾ
ᇱ ൌ ቐ

0
0
ߙ

ߤߙ
ቑ           (4.36) 

where ߤ ൌ ݅݇஻ ݊݅ݏ ߮, ݇ ൌ ݇஻ ݏ݋ܿ ߮. 

For longitudinal incident wave: 

 ௝ܾ
ᇱ ൌ ቐ

ߙ
ߙ ଵܸ

0
0

ቑ                  (4.37) 

For shear incident wave: 

௝ܾ
ᇱ ൌ ቐ

ߙ
ߙ ଶܸ

0
0

ቑ          (4.38) 

The ܨ௝
ᇱ vector can be expressed as product of the dynamic stiffness caused by the 

incident wave ܭ௜௡ and ௝ܾ
ᇱ.  ܭ௜௡ is calculated by using the same coefficient in the matrix 

but with the opposite sign of ߤ, which corresponds to the incident wave instead of the 

reflected wave. 

4.2.4 Assembly of the complete equations and the calculation of transmission coefficients 

Equation (4.8) gives the forces and moments per unit length that are acted on the 

junction by all the ܰ semi-infinite plates. With equation (4.32) and equation (4.10), we 

can get the following equation (Langley and Heron 1990): 

൛∑ ௝ܴܭ௃ ௝ܴ
்ே

௝ୀଵ ൟܽ ൌ ܴ௠ ௠݂         (4.39) 

where ݉ is the plate that carries the incident wave.  

Equation (4.39) can be solved to get the displacement ܽ at the junction; it is also 

the common displacements of at the plate edge of all the semi-infinite plates.  Equation 

(4.10) can be used to obtain the displacement of each plate. Equations (4.21) and (4.29) 
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can then be used to calculate the corresponding wave amplitudes of bending, shear and 

longitudinal waves.  

The power associated with each wave can be calculated using the corresponding 

wave amplitudes. The power transmission coefficients associated with each of the 

generated waves can then be calculated as the ratio of the transmitted power to the total 

incident power on the junction. The transmission coefficients for the junction can be 

written in the form ߬௣௥
௜௝ ሺ߱, ߮ሻ, where ݅, ,݌ ߱ and ߮ represent the incident plate, wave type, 

frequency and the heading of the incident wave, ݆ and ݎ represent the carrier plate and 

wave type of the generated wave. ߬௣௥
௜௝ ሺ߱, ߮ሻ is also often referred as ݎ௣௥

௜௝ሺ߱, ߮ሻ as the 

reflection coefficients for ݅ ൌ ݆.  

From the law of conservation of energy, we can prove that the transmission and 

reflection coefficient sum equal to unity, since the total power that is incident on the 

junction must equal the total power which is carried away by the generated waves. 

∑ ∑ ߬௣௥
௜௝ ሺ߱, ߮ሻ ൌ 1௝௥           (4.40) 

During the derivation of power transmission coefficients, the bending and in-

plane wavenumbers are dependent on the angle of incident wave. Thus, the above 

expression of transmission coefficients is also the function of the incident angle ߮. The 

averaged coefficient values are selected for the analysis. The averaged power 

transmission coefficient ߬௣௥
௜௝ ሺ߱ሻ can be obtained by integration as: 

߬௣௥
௜௝ ሺ߱ሻ ൌ ଵ

ଶ ׬ ߬௣௥
௜௝ ሺ߱, ߮ሻ sin ߮݀߶గ

଴         (4.41) 
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4.3 Derivation of Joint Matrix 

4.3.1 Power flow relationship of two systems through a lossless joint 

In this section the, some background of forming the joint matrix between two 

systems are introduced first. The joint matrix is derived by considering the energy flow 

between two structures (Bitsie and Bernhard 1996). The conservation of energy flow 

requires the net outward energy flow for a single wave across the boundary of one system 

must be equal and opposite to the energy flow across the boundary of the other system. 

The conservation of energy flow relationship can be expressed as: 

׬  റܫ
ௌୀௌభାௌమ

· ሬ݊റ݀ݏ ൌ ׬ റଵܫ
 

ௌభ
· ሬ݊റ݀ ଵܵ ൅ ׬ റଶܫ

 
ௌమ

· ሬ݊റ݀ܵଶ ൌ 0      (4.42) 

where subscripts 1 and 2 denote the individual subsystems 1 and 2.  

Figure 4.3 gives a schematic plot of energy flow between two subsystems through 

a lossless joint for a single wave. The surface normal ሬ݊റ defines the positive direction of 

power flow out of the lossless joint. 

 

Figure 4.3 Schematic plot of energy flow between two subsystems for a single wave 

The expression of energy flow across the lossless joint are (Bitsie and Bernhard 

1996): 
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׬ റଵܫ
 

ௌభ
· ሬ݊റ݀ ଵܵ ൌ ׬ റ௜௡௖ଵܫ

 
ௌభ

· ሬ݊റ݀ ଵܵ ൅ ׬ റ௦௖௔௧ଵܫ
 

ௌభ
· ሬ݊റ݀ ଵܵ      (4.43) 

׬ റଶܫ
 

ௌమ
· ሬ݊റ݀ܵଶ ൌ ׬ റ௜௡௖ଶܫ

 
ௌమ

· ሬ݊റ݀ܵଶ ൅ ׬ റ௦௖௔௧ଶܫ
 

ௌమ
· ሬ݊റ݀ܵଶ       (4.44) 

where ܫറ௜௡௖ଵ and ܫറ௜௡௖ଶ are incident energy flows in subsystems 1 and 2, ܫറ௦௖௔௧ଵ and ܫറ௦௖௔௧ଶ 

are the scattered energy flows from the discontinuity in each subsystem. The energy flow 

is denoted as positive when it flows out of the system.  

The scattered energy flows can be expressed in terms of the incidents waves, 

power transmission and power reflection coefficients: 

׬ ሺ|ܫ௦௖௔௧ଵ|ሻ 
ௌభ

݀ ଵܵ ൌ െ ׬  ௜௡௖ଵ|ሻܫ|ଵଵሺݎ
ௌభ

݀ ଵܵ െ ׬ ߬ଵଶሺ|ܫ௜௡௖ଶ|ሻ 
ௌమ

݀ܵଶ     (4.45) 

׬ ሺ|ܫ௦௖௔௧ଶ|ሻ 
ௌమ

݀ܵଶ ൌ െ ׬ ߬ଶଵሺ|ܫ௜௡௖ଵ|ሻ 
ௌభ

݀ ଵܵ െ ׬  ௜௡௖ଶ|ሻܫ|ଶଶሺݎ
ௌమ

݀ܵଶ     (4.46) 

where ݎ௜௝ and ߬௜௝ are the reflection and transmission coefficients in subsystem ݅ due to the 

incident wave in subsystem ݆.  

After substituting equations (4.45) and (4.46) into equations (4.43) and (4.44), we 

find the following relationship between the energy flow and the incident energy 

intensities: 

൝
׬ റଵܫ

 
ௌభ

· ሬ݊റ݀ ଵܵ

׬ റଶܫ
 

ௌమ
· ሬ݊റ݀ܵଶ

ൡ ൌ ൤1 െ ଵଵݎ െ߬ଵଶ
െ߬ଶଵ 1 െ ଶଶݎ

൨ ൝
׬  |௜௡௖ଵܫ|

ௌభ
݀ ଵܵ

׬  |௜௡௖ଶܫ|
ௌమ

݀ܵଶ
ൡ ൌ ሾܲሿ ൝

׬  |௜௡௖ଵܫ|
ௌభ

݀ ଵܵ

׬  |௜௡௖ଶܫ|
ௌమ

݀ܵଶ
ൡ  (4.47) 

The energy superposition relationship for energy field requires: 

݁ଵ ൌ ݁௜௡௖ଵ ൅ ݁௦௖௔௧ଵ          (4.48) 

݁ଶ ൌ ݁௜௡௖ଶ ൅ ݁௦௖௔௧ଶ          (4.49) 

Integrate equations (4.48) and (4.49) and using the relationship ܿ݁ ൌ  we can ,|ܫ|

get the following expressions: 

׬ ܿଵ݁ଵ
 

ௌభ
݀ ଵܵ ൌ െ ׬  |௜௡௖ଵܫ|

ௌభ
݀ ଵܵ ൅ ׬  |௦௖௔௧ଵܫ|

ௌభ
݀ ଵܵ      (4.50) 
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׬ ܿଶ݁ଶ
 

ௌమ
݀ ଵܵ ൌ െ ׬  |௜௡௖ଶܫ|

ௌమ
݀ܵଶ ൅ ׬  |௦௖௔௧ଶܫ|

ௌమ
݀ܵଶ      (4.51) 

Substituting equations (4.45) and (4.46) into equations (4.50) and (4.51) yields the 

following expressions (Bitsie and Bernhard 1996): 

൝
׬ ܿଵ݁ଵ

 
ௌభ

݀ ଵܵ

׬ ܿଶ݁ଶ
 

ௌమ
݀ ଵܵ

ൡ ൌ െ ൤1 ൅ ଵଵݎ ߬ଵଶ
߬ଶଵ 1 ൅ ଶଶݎ

൨ ൝
׬  |௜௡௖ଵܫ|

ௌభ
݀ ଵܵ

׬  |௜௡௖ଶܫ|
ௌమ

݀ܵଶ
ൡ ൌ ሾܧሿ ൝

׬  |௜௡௖ଵܫ|
ௌభ

݀ ଵܵ

׬  |௜௡௖ଶܫ|
ௌమ

݀ܵଶ
ൡ  (4.52) 

Combining equations (4.47) and (4.52) yield the relationship between energy 

density to the intensities: 

൝
׬ റଵܫ

 
ௌభ

· ሬ݊റ݀ ଵܵ

׬ റଶܫ
 

ௌమ
· ሬ݊റ݀ܵଶ

ൡ ൌ ሾܬሿ ൝
׬ ܿଵ݁ଵ

 
ௌభ

݀ ଵܵ

׬ ܿଶ݁ଶ
 

ௌమ
݀ ଵܵ

ൡ ൌ ሾܲሿሾܧሿିଵ ൝
׬ ܿଵ݁ଵ

 
ௌభ

݀ ଵܵ

׬ ܿଶ݁ଶ
 

ௌమ
݀ ଵܵ

ൡ    (4.53) 

where ሾܬሿ is the joint matrix.  

For the two subsystems connected, the joint matrix can be expressed as: 

ሾܬሿ ൌ ሾܲሿሾܧሿିଵ ൌ െ ൤1 െ ଵଵݎ െ߬ଵଶ
െ߬ଶଵ 1 െ ଶଶݎ

൨ ൤1 ൅ ଵଵݎ ߬ଵଶ
߬ଶଵ 1 ൅ ଶଶݎ

൨
ିଵ

  

                         ൌ
൤
ሺଵି௥భభሻሺଵା௥మమሻାఛభమఛమభ ିଶఛభమ

ିଶఛమభ ሺଵା௥భభሻሺଵି௥మమሻାఛభమఛమభ
൨

ሺଵା௥భభሻሺଵା௥మమሻିఛభమఛమభ
    (4.54) 

Conservation of energy requires: 

ଵଵݎ ൅ ߬ଶଵ ൌ 1          (4.55) 

ଶଶݎ ൅ ߬ଵଶ ൌ 1           (4.56) 

 Thus the joint matrix for two subsystems can be simplified as (Bitsie and 

Bernhard 1996): 

ሾܬሿ ൌ
ቂ

ఛమభ ିఛభమ
ିఛమభ ఛభమ

ቃ

ଶିఛభమିఛమభ
                      (4.57) 
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4.3.2 Joint matrix for two coupled plates 

The derivation of joint matrix for coupled plates has the similar formula as 

described in equation (4.54). First, the transmission coefficients matrix between two 

plates can be expressed as in a matrix ሾܶሿ as: 

ሾܶሿ଺ൈ଺ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

ଵଵ,ଵଵݎ ଵଶ,ଵଵݎ
ଵଵ,ଵଶݎ ଵଶ,ଵଶݎ

ଵଷ,ଵଵݎ ߬ଶଵ,ଵଵ
ଵଷ,ଵଶݎ ߬ଶଵ,ଵଶ

߬ଶଶ,ଵଵ ߬ଶଷ,ଵଵ
߬ଶଶ,ଵଶ ߬ଶଷ,ଵଶ

ଵଵ,ଵଷݎ ଵଶ,ଵଷݎ
߬ଵଵ,ଶଵ ߬ଵଶ,ଶଵ

ଵଷ,ଵଷݎ ߬ଶଵ,ଵଷ
߬ଵଷ,ଶଵ ଶଵ,ଶଵݎ

߬ଶଶ,ଵଷ ߬ଶଷ,ଵଷ
ଶଶ,ଶଵݎ ଶଷ,ଶଵݎ

߬ଵଵ,ଶଶ ߬ଵଶ,ଶଶ
߬ଵଵ,ଶଷ ߬ଵଶ,ଶଷ

߬ଵଷ,ଶଶ ଶଵ,ଶଶݎ
߬ଵଷ,ଶଷ ଶଵ,ଶଷݎ

ଶଶ,ଶଶݎ ଶଷ,ଶଶݎ
ଶଶ,ଶଷݎ ଶଷ,ଶଷݎ ے

ۑ
ۑ
ۑ
ۑ
ې

     (4.58) 

where ݎ௜௝,௜௟ represents the ݈ (=1, 2, 3, where 1 indicates the bending wave, 2 indicates the 

in-plane longitudinal wave, and 3 indicates the in-plane shear wave) wave type power 

reflection coefficient in plate ݅(=1,2) due to the incident ݆ wave type in plate ݅ , ߬௜௝,௞௟ 

represents the ݈ wave type power transmission coefficient in plate ݇ due to the incident ݆ 

wave type in plate ݅. 

Let ሾܫሿ଺ൈ଺ be the unit matrix, and 

ሾܲሿ଺ൈ଺ ൌ ሾܫሿ଺ൈ଺ െ ሾܶሿ଺ൈ଺         (4.59) 

ሾܧሿ଺ൈ଺ ൌ ሾܫሿ଺ൈ଺ ൅ ሾܶሿ଺ൈ଺         (4.60) 

Similar to equation (4.54), the matrix ሾܥሿ଺ൈ଺ can be expressed as: 

ሾܥሿ଺ൈ଺ ൌ ሾܲሿ଺ൈ଺ · ሾܧሿ଺ൈ଺
ିଵ          (4.61) 

Then the joint matrix ሾܬሿ  can be calculated by: 

ሾܬሿଵଶൈଵଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ሿଶൈଶܮଵଵሾܥۍ ሿଶൈଶܮଵଶሾܥ
ሿଶൈଶܮଶଵሾܥ ሿଶൈଶܮଶଶሾܥ

ሿଶൈଶܮଵଷሾܥ ሿଶൈଶܮଵସሾܥ
ሿଶൈଶܮଶଷሾܥ ሿଶൈଶܮଶସሾܥ

ሿଶൈଶܮଵହሾܥ ሿଶൈଶܮଵ଺ሾܥ
ሿଶൈଶܮଶହሾܥ ሿଶൈଶܮଶ଺ሾܥ

ሿଶൈଶܮଷଵሾܥ ሿଶൈଶܮଷଶሾܥ
ሿଶൈଶܮସଵሾܥ ሿଶൈଶܮସଶሾܥ

ሿଶൈଶܮଷଷሾܥ ሿଶൈଶܮଷସሾܥ
ሿଶൈଶܮସଷሾܥ ሿଶൈଶܮସସሾܥ

ሿଶൈଶܮଷହሾܥ ሿଶൈଶܮଷ଺ሾܥ
ሿଶൈଶܮସହሾܥ ሿଶൈଶܮସ଺ሾܥ

ሿଶൈଶܮହଵሾܥ ሿଶൈଶܮହଶሾܥ
ሿଶൈଶܮ଺ଵሾܥ ሿଶൈଶܮ଺ଶሾܥ

ሿଶൈଶܮହଷሾܥ ሿଶൈଶܮହସሾܥ
ሿଶൈଶܮ଺ଷሾܥ ሿଶൈଶܮ଺ସሾܥ

ሿଶൈଶܮହହሾܥ ሿଶൈଶܮହ଺ሾܥ
ሿଶൈଶܮ଺ହሾܥ ےሿଶൈଶܮ଺଺ሾܥ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

  

           (4.62) 
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where ሾܮሿଶൈଶ is calculated by the integral along the joint line in the form same as that for 

a consistent mass matrix.  

4.4 Assembly of Global Matrix for Coupled Orthotropic Plates 

From Chapter 2, the matrix expression of EFEA differential equation at the 

element level can be expressed as: 

ሾܭ௘ሿሼ݁௘ሽ ൌ ሼܨ௘ሽ ൅ ሼܳ௘ሽ          (4.63) 

where  ሼ݁௘ሽ is the vector of nodal values for the time and space averaged energy density,            

ሾܭ௘ሿ  is the system matrix for each element, ሼܨ௘ሽ is the excitation vector, it represents the 

energy input at each node, ሼܳ௘ሽ is the power flow across the element boundary. 

The power flow can be expressed in terms of energy density and power 

transmission coefficients.  

ە
ۖ
۔

ۖ
ۓ ܳ௡

௜

ܳ௡ାଵ
௜

ܳ௠
௝

ܳ௠ାଵ
௝ ۙ

ۖ
ۘ

ۖ
ۗ

ൌ ሾܥܬሿ௝
௜

ە
ۖ
۔

ۖ
ۓ ݁௡

௜

݁௡ାଵ
௜

݁௠
௝

݁௠ାଵ
௝ ۙ

ۖ
ۘ

ۖ
ۗ

            (4.64) 

where ݊ and ݊ ൅ 1 represents the two nodes of the ݅ element at the joint, ݉ and ݉ ൅ 1 

represents the two nodes of the ݆ element at the joint, the joint matrices ሾܥܬሿ௝
௜   define the 

power transfer across elements at the joints and is expressed in equation (4.62). 

The final assembled system of EFEA equations can be expressed as:  

൬൤
ሾܭ௘ሿ௜  

 ሾܭ௘ሿ௝
൨ ൅ ሾܥܬሿ௝

௜ ൰ ቊ
൛݁௜ൟ
൛݁௝ൟ

ቋ ൌ ൜
ሼܨ௘ሽ௜
ሼܨ௘ሽ௝

ൠ      (4.65) 

where ሾܭ௘ሿ௜  and ሾܭ௘ሿ௝ are the element matrix for the ݅ and ݆ element,  ൛݁௜ൟ and ൛݁௝ൟ are 

the vectors containing all the nodal degrees of freedom for elements ݅ and ݆. 
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4.5 Numerical Examples and Validation 

In this section, numerical calculation will be presented for the case of L-junction 

of two identical orthotropic plates connected with different orientations. The EFEA 

results are validated by comparing with results obtained from conventional FEA models.  

The dimensions and the material properties of the orthotropic plates can be 

expressed as: 

݄ ൌ 0.01݉, ௫ܮ ൌ 1݉, ௬ܮ ൌ 1݉  

௅ܧ ൌ ,ܽ݌ܩ40.0 ்ܧ ൌ ,ܽ݌ܩ20.0 ௅்ܩ ൌ ,ܽ݌ܩ11.54 ௅்ߥ ൌ 0.3     (4.66) 

ߩ ൌ 2500݇݃ ݉ଷ⁄ , ௗߟ ൌ 0.01   

Four cases of the L-junction are considered in the calculation based on the 

different orientations of the two orthotropic plates. Figure 4.4 gives the explanation of the 

four different cases of the L-junction. The arrows on each plate indicate the stiffest 

principal material direction. In cases 1 and 4, the two plates have identical orientations 

while in cases 2 and 3; the two plates have different orientations. 

 

Figure 4.4 Four different orientations for two orthotropic plate L-junctions 

The calculation in conventional FEA is implemented using NASTRAN finite 

element program. Plate 1 is given excitation at three randomly selected positions and the 
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velocities of both plates are calculated from dynamic analysis. The bending wave energy 

density of two plates can then be calculated and compared with the energy density 

calculated using EFEA formulation. 

First, the transmission loss for bending wave is calculated using the procedure 

stated in section 4.2. Transmission loss is calculated as (Bosmans, Mees et al. 1996): 

ܴଵଶ ൌ െ10log ሺ߬ଵଶሻ          (4.67) 

where ߬ଵଶ is the averaged bending transmission coefficient from plate 1 to plate 2, it is 

obtained by integrating the power transmission coefficient ߬ଵଶሺߠሻ over all the angles of 

incidence ߠ. 

The transmission loss for the four different orientations of L-junction has been 

calculated and plotted in Figure 4.5. From the plot we can see that the transmission loss 

for the similar orientation (case 1 and case 4) is smaller than the transmission loss of the 

dissimilar orientation (case 2 and case 3).  It can also be observed from the plot that the 

transmission loss of the four cases lie within a range of 1 dB, which means that the model 

for the semi-infinite plate is not very sensitive to the Young’s modulus of the plates.  
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Figure 4.5 The transmission loss for the four cases of orthotropic L-junction 

The energy density of plate 1 and plate 2 is calculated using conventional FEA 

model and the EFEA formulation. The models in the conventional FEA and EFEA 

formulation are shown in Figure 4.6 (a) and (b) respectively. The model in conventional 

FEA has 12,800 elements. The model in EFEA has only 32 elements. 
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Figure 4.6 The models of orthotropic L-junction in conventional FEA and EFEA 

The energy density in two plates with properties described in equation (4.66) is 

calculated using conventional FEA and EFEA formulation respectively for the four 

different orientation cases and the results are shown in the following figures. First, in the 

conventional FEA model, the first plate is excited at three randomly selected locations 

and the input power at the three locations is computed using dynamic analysis. The 

computed input power at these locations serve as the excitations applied in the EFEA 

model. The velocity at each node in the FEA model is computed from NASTRAN 

program and the energy density can be calculated from the following equation:  

݁ ൌ ଵ
ଶ

 ଶ             (4.68)|ݒ|ߩ

To compare the values of energy density with the results of EFEA model, the 

above value from equation (4.68) is averaged over the 1/3 octave band for the desired 

central frequencies.  

The energy density value obtained from both conventional FEA and EFEA 

models are averaged over the entire plate in order to get the space-averaged energy 

density values. The energy density values of the two plates obtained from conventional 

FEA and EFEA models respectively are calculated for the four orientation of L-junction 

and are shown in Figure 4.7.  
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(a) Case 1 

 

(b) Case2 
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(c) Case 3 

 

(d) Case 4 

Figure 4.7 Energy density in two orthotropic plates (t=0.01m) 
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From Figure 4.7, we can see that for the similar orientation (case 1 and 4), the 

EFEA model matches well with the results from FEA. For the cases of dissimilar 

orientation (case 2 and 3), however, the EFEA model overestimates the bending wave 

transmission from plate 1 to plate 2. This phenomenon can be explained by the fact that 

the two models (EFEA model and FEA model) consider different coupling between 

eigenmodes (Bosmans, Mees et al. 1996). The FEA model predicts the actual coupling 

between the eigenmodes of the two plates; however, the EFEA model assumes that every 

mode of the first plate is evenly coupled to every mode of the second plate. This 

assumption is valid for the cases of similar orientation, because the eigenmodes have the 

same shape in two plates. For the cases of dissimilar orientation, the eigenmodes have 

different shapes in two plates; the assumption made by EFEA is no long valid.  

To validate this explanation, we increase the modal density of the plates by 

reducing the thickness from 0.01m to 0.001m and increasing the frequency range to 5000 

Hz. The results are shown in Figure 4.8. 
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(a) Case 1 

 

(b) Case 2 

 

(c) Case 3 
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(d) Case 4 

Figure 4.8 Energy density in two orthotropic plates (t=0.001m) 

In Figure 4.8, much better agreements between FEA and EFEA models can be 

observed for all the four cases. Especially for the cases of dissimilar orientation (case 2 

and 3), with the increasing frequency, the difference between FEA and EFEA results of 

energy density level of the two plates dropped from 3 dB to 0 dB. The reason for this 

better agreement is that with the increased modal density of the plates, the coupling 

between the modes also increased, especially for the differently orientated plates. 
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Chapter 5  

POWER TRANMISSION THROUGH COUPLED COMPOSITE LAMINATE 

PLATES 

 5.1 Introduction 

Composite laminate plates are increasingly used to construct structures or 

structural components because of their high specific mechanical properties and light 

weight.  In order to evaluate the power flow within such structures at high frequency, the 

power transmission characteristic of the junctions where two or more composite laminate 

plates are connected together needs to be studied.  

In Chapter 4, the power transmission coefficient and joint matrix for coupled 

orthotropic plates was derived. In this chapter, the power transmission mechanism at the 

junctions of general composite laminate plates is studied following the similar approach 

as discussed in Chapter 4. First, the governing equations for the bending and in-plane 

vibrations of composite laminate plate are presented. The solutions to the governing 

equations are derived, with emphasis on derivation of in-plane wavenumbers. Second, the 

expression of wave dynamic stiffness matrix is derived. Then, the complete equations at 

the junction, with contribution from each semi-infinite plate is formed and solved. The 

displacement in each plate can be found and the power transmission coefficients can be 



 101

calculated. Third, the joint matrix is formed and the global system of EFEA matrix is 

assembled. Finally, numerical examples are given and comparison between EFEA 

formulation and very dense FEA model is presented. 

5.2 Derivation of Power Transmission Coefficients 

5.2.1 Governing equations 

Compared to the equations of motion for orthotropic plate, the equations of 

motion for the composite laminate plate have additional terms ܦଵ଺, ܦଶ଺, ܣଵ଺, ܣଶ଺. These 

terms gives the coupling between bending and torsion(Whitney and Ashton 1987).  

ଵଵ௝ܦ
డర௪
డ௫ర ൅ ଵ଺௝ܦ4

డర௪
డ௫యడ௬

൅ 2൫ܦଵଶ௝ ൅ ଺଺௝൯ܦ2 డర௪
డ௫మడ௬మ ൅ ଶ଺௝ܦ4

డర௪
డ௫డ௬య ൅ ଶଶ௝ܦ

డర௪
డ௬ర ൅ ௝ߩ

డమ௪
డ௧మ ൌ 0  

 (5.1)  

ଵଵ௝ܣ
డమ௨
డ௫మ ൅ ଵ଺௝ܣ2

డమ௨
డ௫డ௬

൅ ଺଺௝ܣ
డమ௨
డ௬మ ൅ ଵ଺௝ܣ

డమ௩
డ௫మ ൅ ൫ܣଵଶ௝ ൅ ଺଺௝൯ܣ డమ௩

డ௫డ௬
൅ ଶ଺௝ܣ

డమ௩
డ௬మ െ ௝ߩ

డమ௨
డ௧మ ൌ 0  

           (5.2) 

଺଺௝ܣ
డమ௩
డ௫మ ൅ ଶ଺௝ܣ2

డమ௩
డ௫డ௬

൅ ଶଶ௝ܣ
డమ௩
డ௬మ ൅ ଵ଺௝ܣ

డమ௨
డ௫మ ൅ ൫ܣଵଶ௝ ൅ ଺଺௝൯ܣ డమ௨

డ௫డ௬
൅ ଶ଺௝ܣ

డమ௨
డ௬మ െ ௝ߩ

డమ௩
డ௧మ ൌ 0  

                                                                                     (5.3) 

where ܦଵଵ௝ etc. are the coefficients of bending stiffness matrices of ݆ th plate, ܣଵଵ௝ etc. 

are the coefficients of extensional stiffness matrices of ݆ th plate. 

The relationship between the displacements and the traction that act at the 

connected edge of the plate can be expressed as follows (Whitney and Ashton 1987). The 

tractions that act on the common edge of the plates are evaluated at ݕ ൌ 0.  

௝ܯ ൌ ଶଶ௝ܦ
డమ௪
డ௬మ ൅ ଵଶ௝ܦ

డమ௪
డ௫మ ൅ ଶ଺ܦ2

డమ௪
డ௫డ௬

       (5.4) 

௝ܵ ൌ െ ቂܦଵ଺௝
డయ௪
డ௫య ൅ ൫ܦଵଶ௝ ൅ ଺଺௝൯ܦ2 డయ௪

డ௫మడ௬
൅3ܦଶ଺௝

డయ௪
డ௫డ௬మ ൅ ଶଶ௝ܦ

డయ௪
డ௬య ቃ     (5.5)  
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௝ܰ ൌ ଵଶ௝ܣ
డ௨
డ௫

൅ ଶ଺௝ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁ ൅ ଶଶ௝ܣ
డ௩
డ௬

       (5.6) 

௝ܶ ൌ ଵ଺௝ܣ
డ௨
డ௫

൅ ଺଺௝ܣ ቀడ௨
డ௬

൅ డ௩
డ௫

ቁ ൅ ଶ଺௝ܣ
డ௩
డ௬

       (5.7) 

The forces and moments per unit length at the junction can be expressed as the 

summation of the product of transformation matrix and the tractions at each plate 

(Langley and Heron 1990). It can be expressed as: 

ܳ ൌ ∑ ௝ܴܨ௝
ே
௝ୀଵ           (5.8) 

where ܨ ൌ ൫ ௝ܶ  ௝ܰ   ௝ܵ ௝൯்ܯ  
 represents the tractions that act at the connected edge of plate 

݆, and the transformation matrix ௝ܴ is given by: 

௝ܴ ൌ ൦

1 0
0 cos ௝׎

0 0
െ sin ௝׎ 0

0 sin ௝׎
0 0

  cos ௝׎   0
  0   1

൪        (5.9) 

where ׎௝ is the angle of the local coordinate in plate ݆  with respect to the global 

coordinate system. 

Similar to Chapter 4, the compatibility conditions between the junction 

displacement ܽ, and the edge displacement of plate ݆ ௝ܾ, require that 

௝ܾ ൌ ௝ܴ
்ܽ           (5.10) 

where ܽ ൌ ሺߠ  ݓ  ݒ  ݑሻ், ௝ܾ ൌ ൫ݑ௘௝  ݒ௘௝  ݓ௘௝  ߠ௘௝൯்
 

5.2.2 Derivation of in-plane wavenumbers for composite laminate plates 

Because of the anisotropy of composite laminate plate, the velocity of the mode is 

dependent on the direction of wave propagation (Bosmans, Mees et al. 1996; Bosmans, 

Vermeir et al. 2002). The dispersion relationship will again be obtained by assuming a 

plane wave form of the displacement and substituting into the equations of motion. Same 
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as the orthotropic case, the in-plane displacements for composite laminate plates are 

given by (Prosser 1991): 

ݑ ൌ ݐሾ݅ሺ߱݌ݔ௫݁ߙ଴ܣ െ ݇ cos ݔ߮ െ ݇ sin  ሻሿ       (5.11)ݕ߮

ݒ ൌ ݐሾ݅ሺ߱݌ݔ௬݁ߙ଴ܣ െ ݇ cos ݔ߮ െ ݇ sin  ሻሿ        (5.12)ݕ߮

where ܣ଴ߙ௫ and ܣ଴ߙ௬ are the amplitudes of the two in-plane motions, ߮ is the direction 

of the wave propagation.  

Substituting these displacements into the equations of motion yields: 

ቈ
ଵଵܣ ݈௫

ଶ ൅2ܣଵ଺݈௫݈௬ ൅ ଺଺ܣ ݈௬
ଶ െ݄ܿߩଶ ଵ଺݈௫ܣ

ଶ ൅ ሺܣଵଶ ൅ ଺଺ሻܣ ݈௫ ݈௬ ൅ܣଶ଺݈௬
ଶ

ଵ଺݈௫ܣ
ଶ ൅ ሺܣଵଶ ൅ ଺଺ሻܣ ݈௫ ݈௬ ൅ܣଶ଺݈௬

ଶ ଺଺ܣ ݈௫
ଶ ൅2ܣଶ଺݈௫݈௬ ൅ ଶଶܣ ݈௬

ଶ െ݄ܿߩଶ቉ ቂ
௫ߙ
௬ߙ

ቃ ൌ 0 

           (5.13) 

where ݈௫ ൌ cos ߮, ݈௬ ൌ sin ߮.  

Setting the determinant equal to zero will yield a quadratic equation of ܿଶ. The 

two solutions of group velocity correspond to the quasi-longitudinal and quasi-shear 

modes. Generally, the quasi-longitudinal mode is faster and thus corresponds to the 

smaller root. 

5.2.3 Derivation of dynamic stiffness matrix 

Assume the out-of-plane displacement of plate ݆ has the form of exp ሺെ݅݇ݔ ൅

ݕ஻ߤ݅ ൅  :஻ can be expressed asߤ ,ሻݐ߱݅

஻ߤ
ଶ ൌ ݇ଶ േ ݇஻

ଶ            (5.14) 

where ݇஻ ൌ ቂ ௠ఠమ

஽భభ ୡ୭ୱర ఝାସ஽భల ୱ୧୬ ఝ ୡ୭ୱయ ఝାଶሺ஽భమାଶ஽లలሻ ୡ୭ୱమ ఝ ୱ୧୬మ ఝାସ஽మల ୡ୭ୱ ఝ ୱ୧୬య ఝା஽మమ ୱ୧୬ర ఝ
ቃ

ଵ
ସൗ

 is 

the bending wavenumber (Langley 1996), it depends on the direction of wave 

propagation ߮. 



 104

The selection of ߤ஻ follows the same rule as stated in Chapter 4. In the two cases 

of ݇ ൐ ݇஻ and ݇ ൏ ݇஻, equation (5.14) will have four real roots /two real roots and two 

imaginary roots. In both cases, only the negative roots are physical significant because 

the response must decay as ݕ ՜ ∞ or propagate away from the junction (Langley and 

Heron 1990). After selecting the appropriate roots, the out-of-plane response of the plate 

can be written in the form: 

ݓ ൌ ∑ ݔ஻௡exp ሺെ݅݇ߙ ൅ ஻௡ߤ
ଶ
௡ୀଵ ݕ ൅  ሻ       (5.15)ݐ߱݅

where ߤ஻ଵ  and ߤ஻ଶ  are the two valid roots from equation (5.14), ߙ஻ଵ and ߙ஻ଶ  are the 

complex amplitudes.  

From equation (5.15), the displacement and rotation at the edge of the plate ݆ can 

be expressed in terms of ߙ஻ଵand ߙ஻ଶ: 

൜
௘௝ݓ
௘௝ߠ

ൠ ൌ ൤ 1 1
஻ଵߤ ஻ଶߤ

൨ ቄ
஻ଵߙ
஻ଶߙ

ቅ exp ሺെ݅݇ݔ ൅  ሻ      (5.16)ݐ߱݅

From equations (5.4) and (5.5), the edge tractions ܯ௝ and ௝ܵ  can be expressed in 

terms of ߙ஻ଵand ߙ஻ଶ as: 

൜ ௝ܵ
௝ܯ

ൠ ൌ ሾܯଵሿ ቄ
஻ଵߙ
஻ଶߙ

ቅ          (5.17) 

where 

ଵሺ1,1ሻܯ ൌ െ݅݇ଷܦଵ଺ ൅ ݇ଶሺܦଵଶ ൅ ஻ଵߤ଺଺ሻܦ4 ൅ ஻ଵߤଶ଺ܦ3݅݇
ଶ െ ஻ଵߤଶଶܦ

ଷ   

ଵሺ1,2ሻܯ ൌ െ݅݇ଷܦଵ଺ ൅ ݇ଶሺܦଵଶ ൅ ஻ଶߤ଺଺ሻܦ4 ൅ ஻ଶߤଶ଺ܦ3݅݇
ଶ െ ஻ଶߤଶଶܦ

ଷ   

ଵሺ2,1ሻܯ ൌ ஻ଵߤଶଶܦ
ଶ െ ݇ଶܦଵଶ െ   ஻ଵߤଶ଺ܦ2݅݇

ଵሺ2,2ሻܯ ൌ ஻ଶߤଶଶܦ
ଶ െ ݇ଶܦଵଶ െ   ஻ଶߤଶ଺ܦ2݅݇
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Eliminate ߙ஻ଵand ߙ஻ଶ from equation (5.17) using equation (5.16), we can get the 

following relationship between the edge displacementsݓ௘௝, ߠ௘௝and the edge tractions ௝ܵ 

and ܯ௝: 

൜ ௝ܵ
௝ܯ

ൠ ൌ ሾ ଵܰሿ ൜
௘௝ݓ
௘௝ߠ

ൠ          (5.18) 

where 

ଵܰሺ1,1ሻ ൌ ଵ
ఓಳభିఓಳమ

ሾ݅݇ଷܦଵ଺ሺߤ஻ଶെߤ஻ଵሻ ൅ ஻ଵሻߤ஻ଶെߤ஻ଶሺߤ஻ଵߤଶ଺ܦ3݅݇ ൅ ஻ଵߤ஻ଶሺߤ஻ଵߤଶଶܦ
ଶ െ ஻ଶߤ

ଶ ሻሿ   

ଵܰሺ1,2ሻ ൌ ଵ
ఓಳభିఓಳమ

ሾ݇ଶሺܦଵଶ ൅ ஻ଶሻߤ஻ଵെߤ଺଺ሻሺܦ4 ൅ ஻ଵߤଶ଺ሺܦ3݅݇
ଶ െ ஻ଶߤ

ଶ ሻ ൅ ஻ଶߤଶଶሺܦ
ଷ െ ஻ଵߤ

ଷ ሻሿ    

ଵܰሺ2,1ሻ ൌ ଵ
ఓಳభିఓಳమ

ሾܦଶଶߤ஻ଵߤ஻ଶሺߤ஻ଶെߤ஻ଵሻ ൅ ݇ଶܦଵଶሺߤ஻ଶെߤ஻ଵሻሿ   

ଵܰሺ2,2ሻ ൌ ଵ
ఓಳభିఓಳమ

ሾܦଶଶሺߤ஻ଵ
ଶ െ ஻ଶߤ

ଶ ሻ ൅    ஻ଵሻሿߤ஻ଶെߤଶ଺ሺܦ2݅݇

Similar procedure can be used to determine the in-plane behavior of the plate. 

Assuming the in-plane motions are in the following expressions: 

ݑ ൌ ݐሺ݅߱݌ݔ଴݁ܣ െ ݔ݇݅ ൅  ሻ        (5.19)ݕߤ

ݒ ൌ ݐሺ݅߱݌ݔ଴݁ܣܸ െ ݔ݇݅ ൅  ሻ        (5.20)ݕߤ

where ܸ is the ratio between the amplitudes of the two displacements.  

Substituting equation (5.19) and (5.20) into the in-plane equations of motion, we 

can get the following expression: 

൤ܣଵଵ݇ଶ െ ߤଵ଺݇ܣ2݅ െ ଶߤ଺଺ܣ െ ଶ݄߱ߩ ଵ଺݇ଶܣ െ ݅ሺܣଵଶ ൅ ߤ଺଺ሻ݇ܣ െ ଶߤଶ଺ܣ

ଵ଺݇ଶܣ െ ݅ሺܣଵଶ ൅ ߤ଺଺ሻ݇ܣ െ ଶߤଶ଺ܣ ଺଺݇ଶܣ െ ߤଶ଺݇ܣ2݅ െ ଶߤଶଶܣ െ ଶ൨݄߱ߩ ቄ1
ܸቅ ൌ ቄ0

0ቅ  (5.21)  

Take the determinant equal to zero yield a polynomial equation of ߤ . Again, 

among the four roots of ߤ only the real and negative or imaginary and negative roots are 

selected. They are the corresponding ݕ components of longitudinal and shear 

wavesnumbers respectively. Associated with each root is a mode shape which governs 
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the relationship between the two in-plane displacements. The two mode shapes can also 

be obtained as  ൜ 1
ଵܸ

ൠ and ൜ 1
ଶܸ

ൠ. 

Thus, the in-plane response can be written in the form: 

ቄݑ
ቅݒ ൌ ൜ߙ௅ ൬ 1

ଵܸ
൰ eµL୷ ൅ ௌߙ ൬ 1

ଶܸ
൰ eµS୷ൠ exp ሺെ݅݇ݔ ൅  ሻ    (5.22)ݐ߱݅

where ߙ௅ and ߙௌ are the complex amplitudes of the associated complementary functions. 

Thus, the edge displacements ݑ௘௝ and ݒ௘௝ can be also expressed in terms of ߙ௅ and ߙௌ as: 

ቄ
௘௝ݑ
௘௝ݒ

ቅ ൌ ൤ 1 1
ଵܸ ଶܸ

൨ ቄ
௅ߙ
ௌߙ

ቅ exp ሺെ݅݇ݔ ൅  ሻ       (5.23)ݐ߱݅

Similarly, we can express the edge tractions ௝ܶ and ௝ܰ in terms of ߙ௅ and ߙௌ as: 

൜ ௝ܶ

௝ܰ
ൠ ൌ ሾܯଶሿ ቄ

௅ߙ
ௌߙ

ቅ          (5.24) 

where  

ଶሺ1,1ሻܯ ൌ ௅ߤ଺଺ሺܣ െ ݅݇ ଵܸሻ െ ଵ଺ܣ݇݅ ൅ ଵܸߤ௅ܣଶ଺  

ଶሺ1,2ሻܯ ൌ ௌߤ଺଺ሺܣ െ ݅݇ ଶܸሻ െ ଵ଺ܣ݇݅ ൅ ଶܸߤௌܣଶ଺  

ଶሺ2,1ሻܯ ൌ െ݅݇ܣଵଶ ൅ ௅ߤ ଵܸܣଶଶ ൅ ଶ଺ܣ௅ߤ െ ݅݇ ଶܸܣଶ଺ 

ଶሺ2,2ሻܯ ൌ െ݅݇ܣଵଶ ൅ ௌߤ ଶܸܣଶଶ ൅ ଶ଺ܣௌߤ െ ݅݇ ଶܸܣଶ଺ 

 Eliminate ߙ௅ and ߙௌ from equation (5.24) using equation (5.23), we can get the 

following relationship between the edge displacements ௘௝ݑ ௘௝ݒ , and the edge 

tractions ௝ܶ  and ௝ܰ: 

൜ ௝ܶ

௝ܰ
ൠ ൌ ሾ ଶܰሿ ቄ

௘௝ݑ
௘௝ݒ

ቅ          (5.25) 

where  

ଶܰሺ1,1ሻ ൌ ଵ
௏భି௏మ

ሾܣ଺଺ሺߤௌ ଵܸ െ ௅ߤ ଶܸሻ ൅ ଵ଺ሺܣ݇݅ ଶܸ െ ଵܸሻ ൅ ଶ଺ܣ ଵܸ ଶܸሺߤௌ െ   ௅ሻሿߤ
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ଶܰሺ1,2ሻ ൌ ଵ
௏భି௏మ

ሾܣ଺଺ሺߤ௅ െ ௌሻߤ ൅ ଺଺ሺܣ݇݅ ଶܸ െ ଵܸሻ ൅ ௅ߤଶ଺ሺܣ ଵܸ െ ௌߤ ଶܸሻሿ  

ଶܰሺ2,1ሻ ൌ ଵ
௏భି௏మ

ሾ ଵܸ ଶܸܣଶଶሺߤ௦ െ ௅ሻߤ ൅ ௌߤଶ଺ሺܣ ଵܸ െ ௅ߤ ଶܸሻሿ  

ଶܰሺ2,2ሻ ൌ ଵ
௏భି௏మ

ሾܣଶଶሺ ଶܸߤ௦ െ ଵܸߤ௅ሻ ൅ ௅ߤଶ଺ሺܣ െ ௌሻߤ ൅ ݅݇ሺ ଶܸ െ ଵܸሻሿ  

Equations (5.18) and (5.25) can be combined to produce a relationship between 

the complete set of edge displacements ௝ܾ and tractions ܨ௝ of the form: 

௝ܨ ൌ ௝ܭ ௝ܾ           (5.26) 

where 

 ௝ܾ ൌ ൫ݑ௘௝  ݒ௘௝  ݓ௘௝  ߠ௘௝൯்
, 

௝ܨ  ൌ ൫ ௝ܶ  ௝ܰ   ௝ܵ ௝൯்ܯ  
, 

The entries of dynamic stiffness matrix ܭ௝ have been derived and can be found 

from equation (5.18) and (5.25) as: 

௝ܭ ൌ

ۏ
ێ
ێ
ۍ ଶܰሺ1,1ሻ ଶܰሺ1,2ሻ

ଶܰሺ2,1ሻ ଶܰሺ2,2ሻ
0 0
0 0

0 0
0 0

ଵܰሺ1,1ሻ ଵܰሺ1,2ሻ
ଵܰሺ2,1ሻ ଵܰሺ2,2ሻے

ۑ
ۑ
ې
      (5.27) 

5.2.4 Assembly of the complete equations and the calculation of transmission coefficients 

The assembly of the complete equations and the calculation of transmission 

coefficients of the composite laminate plate follows the same procedure as described in 

Chapter 4. The averaged power transmission coefficient ߬௣௥
௜௝ ሺ߱ሻ  can be obtained by 

integrating the angle of incidence from 0 to ߨ. 

߬௣௥
௜௝ ሺ߱ሻ ൌ ଵ

ଶ ׬ ߬௣௥
௜௝ ሺ߱, ߶ሻ sin ߶݀߶గ

଴         (5.28) 
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5.3 Derivation of Joint Matrix 

The derivation of joint matrix for composite laminate plates will also follow the 

same procedure as in Chapter 4. The joint matrix expression for the coupled composite 

laminate plates appears same as equation (4.62), but the entries of the joint matrix is 

calculated using the power transmission coefficients derived in this Chapter. 

5.4 Assembly of Global EFEA Equations for Coupled Composite Laminate Plates 

The matrix expression of EFEA differential equation for single composite 

laminate plate at the element level is obtained in Chapter 3 and it can be expressed as: 

ሾܭଵ,ଶሿۄ݁ۃଵ,ଶ ൌ ሼܨ௘ሽଵ,ଶ ൅ ሼܳ௘ሽଵ,ଶ          (5.29) 

where subscript 1 corresponds to the stiffness coefficients ,ଵଵܦ  ,ଶଶܦ ,ଵଶܦ ଺଺ܦ , which 

correspond to the orthotropic plate, and the subscripts 2 corresponds to the stiffness 

 .ଶ଺ܦ ଵ଺andܦ

Using the alternative approach for developing the EFEA differential equation for 

composite laminate plate by finding the equivalent isotropic material, the EFEA 

differential equation at element level can be expressed as: 

ሾܭ௘ሿሼ݁௘ሽ ൌ ሼܨ௘ሽ ൅ ሼܳ௘ሽ          (5.30) 

The power flow can be expressed in terms of energy density and power 

transmission coefficients.  

ە
ۖ
۔

ۖ
ۓ ܳ௡

௜

ܳ௡ାଵ
௜

ܳ௠
௝

ܳ௠ାଵ
௝ ۙ

ۖ
ۘ

ۖ
ۗ

ൌ ሾܥܬሿ௝
௜

ە
ۖ
۔

ۖ
ۓ ݁௡

௜

݁௡ାଵ
௜

݁௠
௝

݁௠ାଵ
௝ ۙ

ۖ
ۘ

ۖ
ۗ

            (5.31) 
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where ݊ and ݊ ൅ 1 represents the two nodes of the ݅ element at the joint, ݉ and ݉ ൅ 1 

represents the two nodes of the ݆ element at the joint, the joint matrices ሾܥܬሿ௝
௜   define the 

power transfer across elements at the joints. 

The final assembled system of EFEA equations can be expressed as:  

൬൤
ሾܭ௘ሿ௜  

 ሾܭ௘ሿ௝
൨ ൅ ሾܥܬሿ௝

௜ ൰ ቊ
൛݁௜ൟ
൛݁௝ൟ

ቋ ൌ ൜
ሼܨ௘ሽ௜
ሼܨ௘ሽ௝

ൠ      (5.32) 

where ሾܭ௘ሿ௜  and ሾܭ௘ሿ௝ are the element matrix for the ݅ and ݆ element,  ൛݁௜ൟ and ൛݁௝ൟ are 

the vectors containing all the nodal degrees of freedom for elements ݅ and ݆. 

5.5 Numerical Examples and Validation 

In this section, an L-junction of two composite laminate plates is modeled using 

EFEA and conventional FEA and the results of energy distribution in two plates from 

both methods are compared.  

The properties of the fiber composites that are used to compose the laminate 

plates are: 

Carbon/Epoxy: 

௅ܧ ൌ ,ܽ݌ܩ138 ்ܧ ൌ ,ܽ݌ܩ8.96 ௅்ܩ ൌ ,ܽ݌ܩ7.10 ଵଶߥ ൌ 0.30, ߩ ൌ 1600݇݃/݉ଷ  (5.33) 

E-glass/Epoxy: 

௅ܧ ൌ ,ܽ݌ܩ39 ்ܧ ൌ ,ܽ݌ܩ8.6 ௅்ܩ ൌ ,ܽ݌ܩ3.8 ଵଶߥ ൌ 0.28, ߩ ൌ 2100݇݃/݉ଷ   (5.34) 

The first composite laminate plate is composed of three layers of carbon/epoxy 

fiber composites. The thickness of each layer is 1mm. The orientation of the composite is 

shown in Figure 5.1. 
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Figure 5.1 The orientation of the first composite laminate plate 

The extensional and bending stiffness matrices of the first plate can be obtained 

from the orientation and properties of each ply and can be expressed as: 

ଵܣ ൌ ൥
30.9 5.09 8.09
5.09 4.92 3.15
8.09 3.15 6.41

൩ ൈ 10଻ܰ/݉       (5.35) 

ଵܦ ൌ ൥
196 52.4 87.6
52.4 44.3 34.1
87.6 34.1 62.3

൩ ܰ · ݉        (5.36) 

The second composite laminate plate is composed of two layers of e-glass/epoxy 

fiber composites. The orientation of the composite is shown in Figure 5.2.  

 

Figure 5.2 The orientation of the second composite laminate plate 

The extensional and bending stiffness matrices of the first plate can be obtained 

from the orientation and properties of each ply and can be expressed as: 

ଶܣ ൌ ൥
28.4 5.99 3.87
5.99 12.9 3.87
3.87 3.87 7.34

൩ ൈ 10଺ܰ/݉       (5.37) 
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derived for composite laminate plates is used in the calculation. For the conventional 

finite element analysis, the velocity at each node within the plate is obtained through 

dynamic analysis. First, the input power can be computed from FEA model at the 

excitation locations and the computed input power serve as the excitation applied in the 

EFEA model at the corresponding locations. Then, the energy density level of the plate is 

computed from the velocity value and then averaged over the entire plate (spatial 

average) and over the 1/3 octave band (frequency average). The averaged energy density 

level obtained from FEA model is then compared with the energy density computed from 

EFEA formulation. The comparison is shown in Figure 5.4 – 5.5. 

 

Figure 5.4 Comparison of energy density between EFEA and conventional FEA 

(case 1) 
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Figure 5.5 Comparison of energy density between EFEA and conventional FEA 

(case 2) 

The velocity difference between these two plates is also calculated using two 

models. The velocity difference is defined as (Bosmans, Mees et al. 1996): 

௩௣ܮ ൌ 10log ሺݒଵ
ଶ ଶݒ

ଶሻ⁄          (5.39) 

The velocity difference between the two plates is computed using two methods 

and is shown in Figure 5.6 and 5.7.  

0 1000 2000 3000 4000 5000
-35

-30

-25

-20

-15

-10

-5

0

5

Frequency (Hz)

E
ne

rg
y 

D
en

si
ty

 (d
B

)

 

 
E1 (FEA)
E1 (EFEA)
E2 (FEA)
E2 (EFEA)



 114

 

Figure 5.6 Comparison of velocity difference between two plates (case 1) 

 

Figure 5.7 Comparison of velocity difference between two plates (case 2) 
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two models is within 1.5 dB. For the two different cases when the second plate is 

connected to the different edges of the first plate, the energy density level and velocity 

difference level have about 3 dB difference. This phenomenon is expected because of the 

anisotropy of the composite laminate plate.   
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Chapter 6  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 Conclusions 

EFEA has been proven to be an effective and reliable tool for high frequency 

vibration analysis. It uses the averaged energy variable as the primary variable to form 

the governing differential equations and provides a practical approach to evaluate the 

structural response at high frequencies, which is hard to reach with conventional finite 

element analysis because of the computational cost. In the past, EFEA has been applied 

successfully to different structures, such as beams, rods, plates, curved panels etc. Until 

recently, however, not much work has been done in the field of composite structures.  

The new developments of EFEA formulations in composite laminate plates are 

presented in this dissertation.  The EFEA governing differential, with the time- and 

space- averaged energy density as the primary variable, is developed for general 

composite laminate plates. The power transmission characteristics at plate junctions of 

non-isotropic materials, including orthotropic plates and composite laminate plates are 

studied in order to assemble to global system of EFEA equations for complex structures.  

The major work of this dissertation is: 
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1. The EFEA differential equation for single composite laminate plate is derived. The 

equations of motions that govern the vibration of composite laminate plate are 

presented. Convergence study is proceeded to prove the fact that the coupling terms 

between bending and in-plane motions become insignificant in high frequency range. 

The out-of-plane and in-plane equations of motions are thus considered uncoupled in 

our derivation. The wave solutions for the out-of-plane and in-plane displacements 

and the corresponding dispersion relationships are obtained. The expressions of 

energy density and energy intensities are derived and the relationship between the 

time- and space- averaged energy density and intensities is found, this relation, 

together with the power balance in a differential control volume of the plate, are 

utilized to form the EFEA differential equation with the energy density as the primary 

variable. The EFEA differential equation is derived for both bending and in-plane 

wave motion of the plate. Some numerical examples are presented where the EFEA 

model is validated by comparing with very dense FEA model. Finally, an alternative 

approach of forming the EFEA differential equation for composite laminate plates is 

introduced by using its equivalent isotropic plate and some validation is presented. 

2. The power transmission for coupled orthotropic plates is studied. In the model, an 

arbitrary number of orthotropic plates are connected at a common edge. The power 

transmission coefficients are derived using the wave propagation approach. It 

assumes the wave propagates in the semi-infinite plate and is partially reflected and 

partially transmitted to other plates through the junction. The wave dynamic stiffness 

matrix is derived for each semi-infinite plate and the appropriate equilibrium and 

compatibility conditions at the junction are utilized to form the complete equation at 
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the junction.  This equation is solved to obtain the displacements in each plate and the 

wave amplitudes of each type of waves that has been reflected or transmitted. The 

power transmission coefficients can then be computed. The power transmission 

coefficients are dependent on the angle of incident wave, thus, the final coefficients 

are averaged over all the angles of incidence. The joint matrix is then derived and the 

global system of EFEA equations are formed for coupled orthotropic plates. Finally, 

some numerical examples are studied to validate the derivation. 

3. The power transmission for coupled composite laminate plates is also studied. The 

derivation of power transmission coefficients is also based on the same procedure 

assuming the propagation of elastic waves in semi-infinite composite laminate plates. 

Numerical example of two general composite laminate plates connected at junction is 

studied and the EFEA formulation is validate through comparing the results with the 

results from very dense FEA model.  

6.2 Recommendations for Future Work 

This dissertation summarized the work regarding to the application of energy 

finite element analysis to composite laminate plates. There are several possible 

developments for future work: 

1. In the development of energy finite element formulations in composite laminate 

plates, classical laminate theory is used. This theory, however, is not accurate enough 

for thick composite plates, in which the shear resultants cannot be neglected. Thus, 

some other theories, such as shear deformation theory and layer by layer theory can 

be used for thick composite plates by accounting for the transverse shear deformation 

and the shear discontinuity through the plate thickness.   
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2. The main part of the derivation that has been done in this dissertation is written in 

MATLAB program. A FORTRAN program is needed in order to make this part of 

EFEA formulation work effectively with the main EFEA program. This will enable 

us to model the complex structures using finite element pre-processor and solve for 

the energy density distribution using the EFEA program effectively. 

3. There are other forms of composite structures that are also widely used in the 

industries.  The application of EFEA formulation to these types of structures, such as 

composite sandwich plate, thick composite plates, composite beams, composite 

panels etc. is very necessary and important. 

4. Stiffeners are often used at junctions in the construction of composite structures.  The 

EFEA formulation can be extended to account for the presence of stiffeners at the 

junction between composite panels.  

5. The high frequency vibration analysis of composite structures under heavy fluid 

loading. Previously, this analysis has been done in thin isotropic plates and the 

extension of this research to the field of composite plates is meaningful for the NVH 

analysis of composite marine structures. 

6. The development of hybrid finite element formulation for composite structures. The 

hybrid finite element method provides an approach for evaluating the vibration in the 

mid-frequency range. This development will give valuable significance to assess the 

response of composite structures at mid-frequencies. 
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APPENDIX 

Derivation of Time- and Space- averaged Energy Density and Intensities for 

Composite Laminate Plates 

A.1 Derivation of Time- and Space- averaged Energy Density 

In equation (3.24), the time-averaged energy density for composite laminate 

plates can be expressed as: 

ۄ݁ۃ ൌ ଵ
ସ

ܴ݁ ൜ܦଵଵ௖
డమ௪
డ௫మ ቀడమ௪

డ௫మ ቁ
כ

൅ ଵଶ௖ܦ2
డమ௪
డ௫మ ቀడమ௪

డ௬మ ቁ
כ

൅ ଶଶ௖ܦ
డమ௪
డ௬మ ቀడమ௪

డ௬మ ቁ
כ

൅ ଺଺௖ܦ4
డమ௪

డ௫డ௬
ቀ డమ௪

డ௫డ௬
ቁ

כ
൅

ଵ଺௖ܦ4
డమ௪
డ௫మ ቀ డమ௪

డ௫డ௬
ቁ

כ
൅ ଶ଺௖ܦ4

డమ௪
డ௬మ ቀ డమ௪

డ௫డ௬
ቁ

כ
൅ ݉ డ௪

డ௧
ቀడ௪

డ௧
ቁ

כ
ቅ       (A.1) 

The far-field displacement solution for the bending vibration of the plate can be 

expressed as: 

,ݔ௙௙ሺݓ ,ݕ ሻݐ ൌ ൛ି݁ܣ௜ሺ௞ೣ௫ା௞೤௬ሻ ൅ ௜ሺ௞ೣ௫ି௞೤௬ሻ݁ܤ ൅ ௜ሺ௞ೣ௫ି௞೤௬ሻି݁ܥ ൅  ௜ሺ௞ೣ௫ା௞೤௬ሻൟ݁௜ఠ௧  (A.2)݁ܦ

Substituting (A.2) into (A.1), we get the following expression: 

ۄ݁ۃ ൌ ଵ
ସ

ܴ݁ሼሺܦଵଵ௖|݇௫|ସ ൅ ଵଶ௖݇௫ܦ2
ଶ൫݇௬

ଶ൯כ ൅ ଶଶ௖ห݇௬หସܦ ൅ ݉߱ଶሻ ൈ |ሾܣሿିି ൅ ሾܤሿା ି ൅ ሾܥሿି ା ൅

ሾܦሿାା|ଶ ൅ ଺଺௖|݇௫|ଶห݇௬หଶܦ4 ൈ |ሾܣሿିି െ ሾܤሿା ି െ ሾܥሿି ା ൅ ሾܦሿାା|ଶ ൅ ሺ4ܦଵ଺௖݇௫
ଶ݇௫

כ ݇௬
כ ൅

ଶ଺௖݇௬ܦ4
ଶ݇௫

כ ݇௬
כ ሻ ൈ ሺሾܣሿିି ൅ ሾܤሿା ି ൅ ሾܥሿି ା ൅ ሾܦሿାାሻሺሾܣሿିି െ ሾܤሿା ି െ ሾܥሿି ା ൅ ሾܦሿାାሻכሽ   

           (A.3) 

where ሾ ሿേ േ means ሾ ሿ ൈ exp ሺേ݅݇௫ݔ േ ݅݇௬ݕሻ. 
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In equation (A.3), the term |ሾܣሿିି ൅ ሾܤሿା ି ൅ ሾܥሿି ା ൅ ሾܦሿାା|ଶ can be expanded as: 

|ሾܣሿିି ൅ ሾܤሿା ି ൅ ሾܥሿି ା ൅ ሾܦሿାା|ଶ ൌ |ሾܣሿି ି|ଶ ൅ |ሾܤሿା ି|ଶ ൅ |ሾܥሿି ା|ଶ ൅ |ሾܦሿା ା|ଶ ൅

ሾܣሿି ିሺሾܤሿା ିሻכ ൅ ሾܤሿା ିሺሾܣሿି ିሻכ ൅ ሾܣሿି ିሺሾܥሿି ାሻכ ൅ ሾܥሿି ାሺሾܣሿି ିሻכ ൅ ሾܣሿି ିሺሾܦሿା ାሻכ ൅

ሾܦሿାାሺሾܣሿି ିሻכ ൅ ሾܤሿା ିሺሾܥሿି ାሻכ ൅ ሾܥሿି ାሺሾܤሿା ିሻכ ൅ ሾܤሿା ିሺሾܦሿା ାሻכ ൅ ሾܦሿା ାሺሾܤሿା ିሻכ ൅

ሾܥሿି ାሺሾܦሿା ାሻכ ൅ ሾܦሿା ାሺሾܥሿି ାሻכ          (A.4) 

In order to get the space-averaged energy density, we need to average the energy 

density value over a half wavelength as: 

ۄ݁ۃ ൌ
௞ೣ೗

 ௞೤೗
 

గమ ׬ ׬ గݕ݀ݔ݀ۄ݁ۃ ௞ೣ೗
 ⁄

଴
గ ௞೤೗

 ⁄
଴         (A.5) 

The integral for the first term in equation (A.4) becomes: 

׬ ׬ |ሾܣሿെ െ|2݀ݕ݀ݔగ ௞ೣ೗
 ⁄

଴
గ ௞೤೗

 ⁄
଴ ൌ ׬ ׬ ଶ݁ିቀആ|ܣ|

మቁ௞ೣ೗௫ିቀആ
మቁ௞೤೗௬݀ݕ݀ݔగ ௞ೣ೗

 ⁄
଴

గ ௞೤೗
 ⁄

଴     (A.6) 

If the damping is very small (ߟ ا 1), the exponential function in (A.6) can be 

assumed to be constant on the interval (Park, Hong et al. 2003): 

׬ ׬ ଶ݁ିቀആ|ܣ|
మቁ௞ೣ೗௫ିቀആ

మቁ௞೤೗௬݀ݕ݀ݔగ ௞ೣ೗
 ⁄

଴
గ ௞೤೗

 ⁄
଴ ൎ ି ଶ݁ି|ܣ| ׬ ׬ ݕ݀ݔ݀ ൌ గమ

௞ೣ೗
 ௞೤೗

 
గ ௞ೣ೗

 ⁄
଴

గ ௞೤೗
 ⁄

଴     ି ଶ݁ି|ܣ|

           (A.7) 

The other similar terms |ሾܤሿା ି|ଶ, |ሾܥሿି ା|ଶ, |ሾܦሿା ା|ଶ  can also be integrated 

similarly and get similar results as in (A.7). 

The integral for the other terms such as ሾܣሿି ିሺሾܤሿା ିሻכ can be obtained as: 

׬ ׬ ሾܣሿି ିሺሾܤሿା ିሻݕ݀ݔ݀כగ ௞ೣ೗
 ⁄

଴
గ ௞೤೗

 ⁄
଴ ൌ כܤܣ ׬ ݁ିቀആ

మቁ௞೤೗௬ ׬ ݁ିቀആ
మቁ௞ೣ೗௫݀ݕ݀ݔగ ௞ೣ೗

 ⁄
଴

గ ௞೤೗
 ⁄

଴ ൌ 0  

            (A.8) 

Thus, the time- and space- averaged energy density can be expressed as: 

ۄ݁ۃ ൌ

ଵ
ସ

ܴ݁ሼቀܦଵଵ௖|݇௫|ସ ൅ ଵଶ௖݇௫ܦ2
ଶ൫݇௬

ଶ൯כ ൅ ଶଶ௖ห݇௬หସܦ ൅ ଺଺௖|݇௫|ଶห݇௬หଶܦ4 ൅ ݉߱ଶቁ ሺ|ܣ|ଶ݁ିି ൅
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ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ| ൅ ଶ݁ାାሻ|ܦ| ൅ ൫4ܦଵ଺௖݇௫
ଶ݇௫

௬݇כ
כ ൅ ଶ଺௖݇௬ܦ4

ଶ݇௫
௬݇כ

כ ൯ሺ|ܣ|ଶ݁ିି െ

ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ| ൅  ଶ݁ାାሻሽ        (A.9)|ܦ|

Substituting  ݇௫
 ൌ  ݇௫௟

 ቀ1 െ ݅ ఎ
ସ
ቁ , ݇௬

 ൌ  ݇௬௟
 ቀ1 െ ݅ ఎ

ସ
ቁ  and ܦଵଵ௖ ൌ ଵଵሺ1ܦ ൅

,ሻߟ݅ ଶଶ௖ܦ ൌ ଶଶሺ1ܦ ൅  ሻ etc. into equation (A.9), and neglecting all the second and higherߟ݅

order terms of the damping loss factor, the terms can be simplified as: 

ܴ݁ ቀܦଵଵ௖|݇௫|ସ ൅ ଵଶ௖݇௫ܦ2
ଶ൫݇௬

ଶ൯כ ൅ ଶଶ௖ห݇௬หସܦ ൅ ଺଺௖|݇௫|ଶห݇௬หଶܦ4 ൅ ݉߱ଶቁ ൌ

ଵଵ݇௫௟ܦ
ସ ሺ1 ൅ ఎమ

ଵ଺
ሻଶ ൅ ଵଶ݇௫௟ܦ2

ଶ ݇௬௟
ଶ ቂሺ1 െ ఎమ

ଵ଺
ሻଶ ൅ ఎమ

ସ
ቃ ൅ ଶଶ݇௬௟ܦ

ସ ሺ1 ൅ ఎమ

ଵ଺
ሻଶ ൅ ଺଺݇௫௟ܦ4

ଶ ݇௬௟
ଶ ሺ1 ൅

ఎమ

ଵ଺
ሻଶ ൅ ݉߱ଶ ൎ ଵଵ݇௫௟ܦ

ସ ൅ 2ሺܦଵଶ ൅ ଺଺ሻ݇௫௟ܦ2
ଶ ݇௬௟

ଶ ൅ ଶଶ݇௬௟ܦ
ସ ൅ ݉߱ଶ    (A.10) 

ܴ݁൫4ܦଵ଺௖݇௫
ଶ݇௫

௬݇כ
כ ൅ ଶ଺௖݇௬ܦ4

ଶ݇௫
௬݇כ

כ ൯ ൌ 4൫ܦଵ଺݇௫௟
ଷ ݇௬௟ ൅ ଶ଺݇௬௟ܦ

ଷ ݇௫௟൯ ቂሺ1 െ ఎమ

ଵ଺
ሻଶ ൅ ఎమ

ସ
ቃ ൎ

4൫ܦଵ଺݇௫௟
ଷ ݇௬௟ ൅ ଶ଺݇௫௟݇௬௟ܦ

ଷ ൯         (A.11) 

Thus, the time- and space- averaged energy density can be expressed as: 

ۄ݁ۃ ൌ
1
4 ൫ܦଵଵ݇௫௟

ସ ൅ 2ሺܦଵଶ ൅ ଺଺ሻ݇௫௟ܦ2
ଶ ݇௬௟

ଶ ൅ ଶଶ݇௬௟ܦ
ସ ൅ ݉߱ଶ൯ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ|

൅ ଶ݁ି ା|ܥ| ൅ ଶ݁ାାሻ|ܦ|

൅ ൫ܦଵ଺݇௫௟
ଷ ݇௬௟ ൅ ଶ଺݇௫௟݇௬௟ܦ

ଷ ൯ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ| ൅   ଶ݁ାାሻ|ܦ|

           (A.12) 

  where ݁േേ represents ݁݌ݔ ቄേ ఎ
ଶ

݇௫௟
כ ݔ േ ఎ

ଶ
݇௬௟

כ  .ቅݕ

 

A.2 Derivation of Time- and Space- averaged Energy Intensities 

 The ݔ and ݕ components of the time-averaged intensity of a laminated plate can 

be expressed as: 
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ۄ௫ܫۃ ൌ ଵ
ଶ

ܴ݁ ൜െܳ௫௭ ቀడ௪
డ௧

ቁ
כ

൅ ௫ܯ ቀ డమ௪
డ௫డ௧

ቁ
כ

൅ ௫௬ܯ ቀ డమ௪
డ௬డ௧

ቁ
כ
ൠ     (A.13) 

ۄ௬ܫۃ ൌ ଵ
ଶ

ܴ݁ ൜െܳ௬௭ ቀడ௪
డ௧

ቁ
כ

൅ ௬ܯ ቀ డమ௪
డ௬డ௧

ቁ
כ

൅ ௬௫ܯ ቀ డమ௪
డ௫డ௧

ቁ
כ
ൠ     (A.14) 

Substituting the forces and moments into equation (A.13) yields the expression 

for the x component of the energy intensity as: 

ۄ௫ܫۃ ൌ ଵ
ଶ

ܴ݁ ൜ቂܦଵଵ௖
డయ௪
డ௫య ൅ ሺܦଵଶ௖ ൅ ଺଺௖ሻܦ2 డయ௪

డ௫డ௬మ ൅ ଵ଺௖ܦ3
డయ௪

డ௫మడ௬
൅ ଶ଺௖ܦ

డయ௪
డ௬య ቃ ቀడ௪

డ௧
ቁ

כ
െ

ቀܦଵଵ௖
డమ௪
డ௫మ ൅ ଵଶ௖ܦ

డమ௪
డ௬మ ൅ ଵ଺௖ܦ2

డమ௪
డ௫డ௬

ቁ ቀ డమ௪
డ௫డ௧

ቁ
כ

െ

ቀܦଵ଺௖
డమ௪
డ௫మ ൅ ଶ଺௖ܦ

డమ௪
డ௬మ ൅ ଺଺௖ܦ2

డమ௪
డ௫డ௬

ቁ ቀ డమ௪
డ௬డ௧

ቁ
כ
ቅ       (A.15) 

Substituting the far-field solution into equation (A.15), and taking the space 

average of the energy intensity by integrating it over a half wavelength, we get the time- 

and space- averaged energy intensity as: 

ۄ௫ܫۃ ൌ

ఠ
ଶ

ܴ݁൛ൣܦଵଵ௖ሺ݇௫
ଷ ൅ ݇௫

ଶ݇௫
ሻכ ൅ ሺܦଵଶ௖ ൅ ଺଺௖ሻ݇௫݇௬ܦ2

ଶ ൅ ଵଶ௖݇௬ܦ
ଶ݇௫

כ ൅

଺଺௖݇௫݇௬݇௬ܦ2
כ ൧ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ| െ ଶ݁ାାሻ|ܦ| ൅ ൫3ܦଵ଺௖݇௫

ଶ݇௬ ൅ ଶ଺௖݇௬ܦ
ଷ ൅

ଵ଺௖݇௫݇௫ܦ2
௬݇כ ൅ ଵ଺௖݇௫ܦ

ଶ݇௬
כ ൅ ଶ଺௖݇௬ܦ

ଶ݇௬
כ ൯ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ| െ   ଶ݁ାାሻൟ|ܦ|

            (A.16) 

Again, substituting  ݇௫
 ൌ  ݇௫௟

 ቀ1 െ ݅ ఎ
ସ
ቁ , ݇௬

 ൌ  ݇௬௟
 ቀ1 െ ݅ ఎ

ସ
ቁ  and ܦଵଵ௖ ൌ

ଵଵሺ1ܦ ൅ ,ሻߟ݅ ଶଶ௖ܦ ൌ ଶଶሺ1ܦ ൅  ሻ etc. into equation (A.16), and neglecting all the secondߟ݅

and higher order terms of the damping loss factor, the terms can be simplified as: 

ଵଵ௖ሺ݇௫ܦൣܴ݁
ଷ ൅ ݇௫

ଶ݇௫
ሻכ ൅ ሺܦଵଶ௖ ൅ ଺଺௖ሻ݇௫݇௬ܦ2

ଶ ൅ ଵଶ௖݇௬ܦ
ଶ݇௫

כ ൅ ଺଺௖݇௫݇௬݇௬ܦ2
כ ൧ ൎ ଵଵ݇௫௟ܦ2

ଷ ൅

2ሺܦଵଶ ൅ ଺଺ሻ݇௫௟݇௬௟ܦ2
ଶ           (A.17) 
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ܴ݁൫3ܦଵ଺௖݇௫
ଶ݇௬ ൅ ଶ଺௖݇௬ܦ

ଷ ൅ ଵ଺௖݇௫݇௫ܦ2
௬݇כ ൅ ଵ଺௖݇௫ܦ

ଶ݇௬
כ ൅ ଶ଺௖݇௬ܦ

ଶ݇௬
כ ൯ ൎ ଵ଺݇௫௟ܦ6

ଶ ݇௬௟ ൅

ଶ଺݇௬௟ܦ2
ଷ             (A.18) 

Thus, the x component of the time- and space- averaged energy intensity can be 

expressed as: 

ۄ௫ܫۃ ൌ ଵଵ݇௫௟ܦൣ߱
ଷ ൅ ሺܦଵଶ ൅ ଺଺ሻ݇௫௟݇௬௟ܦ2

ଶ ൧ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ| െ  ଶ݁ାାሻ|ܦ|

                ൅߱ൣ3ܦଵ଺݇௫௟
ଶ ݇௬௟ ൅ ଶ଺݇௬௟ܦ

ଷ ൧ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ| െ   ଶ݁ାାሻ|ܦ|

            (A.19) 

Similarly, the y component of the time- and space- averaged energy intensity can 

be expressed as: 

ۄ௬ܫۃ ൌ ଶଶ݇௬௟ܦൣ߱
ଷ ൅ ሺܦଵଶ ൅ ଺଺ሻ݇௫௟ܦ2

ଶ ݇௬௟൧ሺ|ܣ|ଶ݁ିି ൅ ି ଶ݁ା|ܤ| െ ଶ݁ି ା|ܥ| െ  ଶ݁ାାሻ|ܦ|

                ൅߱ൣ3ܦଶ଺݇௫௟݇௬௟
ଶ ൅ ଵ଺݇௫௟ܦ

ଷ ൧ሺ|ܣ|ଶ݁ିି െ ି ଶ݁ା|ܤ| ൅ ଶ݁ି ା|ܥ| െ   ଶ݁ାାሻ|ܦ|

           (A.20) 
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