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SUMMARY

Interaction effects have been consistently found important in explaining the variation in outcomes in many
scientific research fields. Yet, in practice, variable selection including interactions is complicated due to the
limited sample size, conflicting philosophies regarding model interpretability, and accompanying amplified
multiple-testing problems. The lack of statistically sound algorithms for automatic variable selection
with interactions has discouraged activities in exploring important interaction effects. In this article, we
investigated issues of selecting interactions from three aspects: (1) What is the model space to be searched?
(2) How is the hypothesis-testing performed? (3) How to address the multiple-testing issue? We propose
loss functions and corresponding decision rules that control FDR in a Bayesian context. Properties of
the decision rules are discussed and their performance in terms of power and FDR is compared through
simulations. Methods are illustrated on data from a colorectal cancer study assessing the chemotherapy
treatments and data from a diffuse large-B-cell lymphoma study assessing the prognostic effect of gene
expressions. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the fields of biomedical science, genetics, and epidemiology, complex joint effects among
predictors have been consistently found important in explaining variations in outcomes, e.g. the
interaction between drugs and bio-markers, between demographic status and risk factors, and
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between genetic variants and environmental factors [1–6]. Identifying interactions is therefore
critical in the use of statistical modeling to study complex traits or diseases.

In practice, variable selection including interactions is complicated due to the limited sample size,
conflicting philosophies regarding model interpretability, and accompanying amplified multiple-
testing problems. In this article, we investigate issues of statistical modeling raised from selecting
interactions in the multiple regression setting from three aspects: (1) What is the model space to
be searched? (2) How is the hypothesis-testing performed? (3) How to address the multiple-testing
issue? We limit our discussion to finding two-way interactions, although higher-level interactions
or polynomial terms can be tackled in the same fashion.

Different approaches for variable selection in multiple regressions, when the candidate variables
include derived interaction terms (product terms), can be categorized into three classes regarding
aspects (1) and (2). The first class of approaches (we name it NC for non-constrained) treats
interactions and main effects interchangeably. In this class, no distinction is made between the
main effects and the related interactions during the variable selection procedure. NC is commonly
implemented in many automatic selection algorithms (e.g. forward, backward, stepwise selection)
in practice. The entire model space is searched under this class of methods. However, the intrinsic
hypothesis-testing of important regressors suffers from the lack of interpretability of selected
models [7–10]. The interactions are interpreted as deviations from additive effects; therefore,
testing an additive effect (main effect) of a predictor given its deviation (interaction) in the model
is not interpretable.

The second class of approaches excludes interactions whenever their corresponding main effects
are not selected. We name it LH here as the inclusion of higher-order terms is constrained by the
presence or absence of lower-order terms. Some simple two-stage variable selection methods belong
to this class. These methods start with selecting significant main effects, followed by selecting
interactions between those selected main effects. A more sophisticated Bayesian hierarchical model,
proposed by Chipman [11] imposing the ‘strong heredity rule’ (in their terms), also belongs to
this class. The LH methods honor the convention for model interpretability that both interactions
and corresponding main effects must be in the model. However, the LH method explores only a
portion of the model space, which depends on the results of selecting the main effects.

The final class of approaches automatically forces main effects into the model if the interactions
are selected, proposed by Chen [12]. We name it HL here as lower-order terms are imposed by
higher-order terms. A sketch of model specification and implementation follows shortly in the
next section. From a hypothesis-testing point of view, the HL method includes or excludes a main
effect through testing the joint importance of that main effect and all interactions involving that
main effect. This approach maintains model interpretability and searches the entire model space.

Despite the divergence among the three classes of variable selection approaches discussed
above, all suffer from a multiple hypothesis-testing issue. The problem is amplified if all two-
way interactions are explored. Solutions to the multiple-testing issue involve selecting a threshold
significance level for a variable to be included in the model in an attempt to control the model
Type I error rate. Traditional approaches have aimed at controlling the familywise error rate
(FWER), such as Bonferroni and related methods. A more liberal criterion involves the false
discovery rate (FDR), proposed by Benjamini and Hochberg [13]. The FDR controls the expected
proportion of errors among the rejected hypotheses and generally leads to greater power for
detecting alternative hypotheses.

Recently, Ghosh et al. [14] established the connection between the FDR and the variable
selection problem in the multiple regression setting. It was shown that the FDR is a by-product of a
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hierarchical Bayesian model and the procedures that select variables based on controlling the FDR
will have risk optimality properties. Through their work, a new motivation for FDR-controlled
procedures for variable selection with interactions is provided.

Extending the work of Ghosh et al. [14], we propose automatic variable selection approaches
by controlling the posterior expected FDR, a quantity introduced by Genovese et al. [15]. Loss
functions and corresponding decision rules are proposed with respect to three different approaches
(NC, LH, and HL) for handling models with interactions. While related loss functions based on
the posterior expected FDR can be found in Müller et al. [16], we extend their work to address
the issue of variable selection in a multiple regression setting and with interactions. Properties of
the decision rules are discussed and their performance in terms of power and FDR is compared
through simulations. Additionally, we provide recommendations on choosing the decision rules in
different contexts.

In Section 2, we formalize the loss function framework and derive the FDR-controlling decision
rules. The performance of the proposed selection rules is studied through simulations in Section 3.
In Sections 4 and 5 we illustrate the proposed decision rules on two real data sets. A short discussion
is given in Section 6.

2. LOSS FUNCTIONS AND DECISION RULES

We first define appropriate loss functions for each of the approaches (NC, LH, and HL). Suppose
that we have a set of covariates including main effects and the corresponding two-way interactions.
It is straightforward to extend our method to any higher-order relationships. For the i th covariate,
let di ≡di (y)∈{0,1} denote the decision (given data y, select the i th covariate when di =1 and
exclude otherwise) and �i ∈{0,1} be the truth (unobserved indicator of whether the i th covariate is
a true predictor). Let s1 denote the set of all main effects and s2 the set of all two-way interactions.
For the three approaches for treating the relationship among the regressors, a generic constrained
additive loss function can be defined (a more specific definition follows shortly). Let LNC indicate
the loss function for the first approach which imposes no constraint, LLH for the second approach
which selects lower-order terms first and imposes a constraint on higher-order terms, and LHL for
the third approach which selects higher-order terms first and imposes a constraint on lower-order
terms. We have

LNC = ∑
i∈(s1,s2)

L(�i ,di ) (1)

LLH = ∑
i∈s1

L(�i ,di )+
∑
i∈s2

L(�i ,d
∗
i ) (2)

where

d∗
i =

{
di if all of its lower-order terms are selected

0 otherwise

LHL = ∑
i∈s1

L(�i ,d
∗
i )+ ∑

i∈s2
L(�i ,di )

(3)
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where

d∗
i =

{
di if none of its higher-order terms are selected

1 otherwise

Remark 1
The constraint on d∗

i in (2) corresponds to the strong heredity principle in Chipman [11]. One can
relax the constraint to d∗

i =di when at least one of the main effects is selected, and d∗
i =0 when

none is selected. This modification corresponds to the weak heredity principle from Chipman [11].

2.1. Decision rule for LNC

In general, there are two types of errors in the variable selection problem: selecting a variable
that in truth is not a predictor (false discovery) and not selecting a variable that in truth is a
predictor (false negative). These two errors can be quantified by two complementary Bayesian
losses: posterior expected proportion of discoveries that are false discoveries (FDR) and posterior
expected proportion of negatives that are false negatives (FNR). Let �i = P(�i =1|y) be the marginal
posterior probability for the i th regressor, D=∑

di , and m the total number of regressors in
consideration. Since di is a function of y, FDR and FNR can be denoted as follows:

FDR=

⎧⎪⎨
⎪⎩
E�|y

( ∑
di (1−�i )

D

∣∣∣∣ y
)

=
∑

di (1−�i )

D
if D>0

0 if D=0

and

FNR=

⎧⎪⎨
⎪⎩
E�|y

( ∑
(1−di )�i
m−D

∣∣∣∣ y
)

=
∑

(1−di )�i
m−D

if D<m

0 if D=m

One form of Bayesian loss for the NC approach can be defined two dimensionally using the
two complementary losses FDR and FNR (E(LNC|y)={FDR,FNR}). Controlling one dimension
and minimizing the other is a straightforward approach for minimizing a two-dimensional loss
[17]. Determining whether to control FDR or FNR depends on the objective of the analysis. For
example, if the objective is to restrain the selection of variables that in truth are not in the model,
one would like to control the FDR at a certain level while minimizing the FNR. For simplicity,
here and afterwards we discuss minimization of FNR subject to controlling FDR at a significance
level �. Minimizing FDR subject to FNR�� can be easily derived in a similar manner. The choice
of �, which is different from a significance level for the conventional familywise error rate, is
discussed in more detail in the simulation studies.

To minimize E(LNC|y), one can find a set of thresholds {t} such that a decision di ≡ I (�i>t),
i=1, . . . ,m, results in FDR��. Since FNR is minimized by min{t}, the optimal threshold

t∗NC≡min{t :FDR��}
minimizes E(LNC|y). The proof follows directly from Müller et al. [16]. Note that the optimal rule
has the same form as in Müller et al. However, in their work only main effects were considered
individually in calculating sample size for gene expression experiments. Variable selection with
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interactions in a multiple regression setting was not addressed. Note that Devlin et al. [3] proposed
a model selection procedure for finding epistatic loci in genetic association studies using the FDR.
Within the framework assumed in the decision rule here, their procedure satisfies this optimality
property.

Remark 2
By the law of iterated expectations, control of the FDR equals control of the FDR if we average
with respect to the distribution of the data. Since one can simulate the entire posterior distribution
of the FDR, that would provide information on the actual FDR. We estimated the actual mean of
FDR in the simulation studies.

2.2. Decision rule for LLH

As the loss function LLH defined in (2) is additive, we define the losses FDR and FNR within the
set of main effects (s1) and interactions (s2) separately using a subscript to distinguish them. To
minimize the posterior expected loss (E(LLH|y)) given a pre-specified control level �L for main
effects and �H for interactions, we have

min{E(LLH|y)} =min{E(LLH|y)s1,E(LLH|y)s2}
=min{FNRs1,FNRs2 |FDRs1��L,FDRs2��H} (4)

We can minimize E(LLH|y) sequentially using the additive nature of the loss function. As the
decision in s2 is controlled by the decision of lower-order terms in s1, we start by minimizing the
posterior expected loss in s1 (E(LLH|y)s1 ), followed by minimizing the posterior expected loss in
s2 (E(LLH|y)s2 ). After a decision is made for terms in s1, a subset (denoted as s′

2) of the higher-
order terms in s2 are excluded from consideration due to the constraint. Hence, those terms are
not involved in making the decision to minimize the posterior expected loss in s2. A decision will
be made for the remaining terms in the complement of s′

2 (denoted as s′
2). In total, two decisions

(one for terms in s1 and the other for terms in s′
2) are required. Algorithm 1 illustrates the steps

to construct the two decision rules.

Algorithm 1
Decision rules for LLH

1. Find an optimal threshold t∗LH1
, such that the decision di = I (�i>t∗LH1

), i ∈s1, minimizes
E(LLH|y)s1 . We have

t∗LH1
=min{t :FDRs1��L}

and

FDRs1 =

⎧⎪⎨
⎪⎩

∑
i∈s1 di (1−�i )∑

i∈s1 di
if

∑
i∈s1 di>0

0 if
∑

i∈s1 di =0

2. Within s2, identify a subset s′
2 whose corresponding lower-order terms are NOT selected in

step 1. Set di =0, i ∈s′
2.
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3. Find an optimal threshold t∗LH2
, such that the decision di = I (�i>t∗LH2

), i ∈s′
2, minimizes

E(LLH|y)s2 . We have

t∗LH2
=min{t :FDRs′2

��H}

and

FDRs′2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈s′2 di (1−�i )∑

i∈s′2 di
if

∑
i∈s′2 di>0

0 if
∑

i∈s′2 di =0

This sequential decision rule can be easily implemented in a Bayesian variable selection algorithm.
The selected variables will ensure a ‘well-formulated’ model in the sense of Peixoto [9].
Theorem 1
The posterior expected total FDR (FDRT ) under the loss function LLH is controlled at max (�L,�H).

Proof
By definition,

FDRT =

⎧⎪⎨
⎪⎩

∑
i∈s1 di (1−�i )+∑

i∈s′2 di (1−�i )

DT
DT>0

0 DT =0

=

⎧⎪⎪⎨
⎪⎪⎩

Ds1FDRs1 +Ds′2
FDRs′2

Ds1 +Ds′2
DT>0

0 DT =0

where DT =∑
i∈s1 di +

∑
i∈s′2 di , Ds1 =∑

i∈s1 di , and Ds′2
=∑

i∈s′2 di . The FDRT is a weighted

average of FDRs1 and FDRs′2
. Since FDRs1��L and FDRs′2

��H, we have FDRT�
max(�L,�H). �

2.3. Decision rule for LHL

Similar to the rule for LLH, we can minimize the posterior expected loss (E(LHL|y)) sequentially
in reversed order. Since the mandatory inclusion of terms in s1 is controlled by the decisions of their
higher-order terms in s2, we start with minimizing the posterior expected loss in s2 (E(LHL|y)s2 )
followed by minimizing the posterior expected loss in s1 (E(LHL|y)s1 ). After a decision is made
in s2, a subset (denoted as s′

1) of the lower-order terms in s1 are forced to be included in the model
due to the constraint. Hence, those terms are not involved in the decision to minimize E(LHL|y)s1 .
A decision is required for the terms in the complement of s′

1 (denoted by s′
1). A similar procedure

to define the decision rules in this case is provided in Algorithm 2.
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Algorithm 2
Decision rules for LHL

1. Find an optimal threshold t∗HL1, such that the decision di = I (�i>t∗HL1), i ∈s2, minimizes
E(LHL|y)s2 . We have

t∗HL1 =min{t :FDRs2��H}
and

FDRs2 =

⎧⎪⎨
⎪⎩

∑
i∈s2 di (1−�i )∑

i∈s2 di
if

∑
i∈s2 di>0

0 if
∑

i∈s2 di =0

2. Within s1, identify a subset s′
1 whose corresponding higher-order terms are selected in step 1.

Set di =1, i ∈s′
1. Thus, we have FDRs′1 =∑

i∈s′1(1−�i )/
∑

i I (i ∈s′
1).

3. Find an optimal threshold t∗HL2, such that the decision di = I (�i>t∗HL2), i ∈s′
1, minimizes

E(LHL|y)s1 . We have

t∗LH2
=min{t :FDRs′1

��L}

and

FDRs′1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈s′1 di (1−�i )∑

i∈s′1 di
if

∑
i∈s′1 di>0

0 if
∑

i∈s′1 di =0

Algorithm 2 guarantees that the selected variables constitute a ‘well-formulated’ model; however
compared with Algorithm 1, Algorithm 2 increases the chance of detecting the true interactions
due to a non-restrained searching space.

Lemma 1
The posterior expected total FDR (FDRT ) under the loss function LHL is controlled at max(�L,�H).

Proof

FDRT =

⎧⎪⎨
⎪⎩

∑
i∈s′1(1−�i )+∑

i∈s′1 di (1−�i )+∑
i∈s2 di (1−�i )

DT
DT>0

0 DT =0

=

⎧⎪⎪⎨
⎪⎪⎩

Ds′1FDRs′1 +Ds′1
FDRs′1

+Ds2FDRs2

Ds′1 +Ds′1
+Ds2

DT>0

0 DT =0
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where Ds′1 =∑
i I (i ∈s′

1), Ds′1
=∑

i∈s′1 di , Ds2 =∑
i∈s2 di , and Ds′1 +Ds′1

+Ds2 =DT . We have

FDRs′1
��L and FDRs2��H. All the elements in s′

1 are the main effects whose interactions are

selected. Under the constraint that main effects must be selected if interactions are selected, the
marginal posterior probability of a main effect is always equal to or greater than that of its interac-
tions. Thus, FDRs′1 is also controlled at �H. Since FDRT is a weighted average of FDRs′1 , FDRs′1

,

and FDRs2 , we conclude that FDRT�max(�L,�H). �

Remark 3
When different control levels �L for s1 and �H for s2 are desired in LNC, similar sequential decision
rules can be derived to minimize the posterior expected loss function E(LNC|y). The steps are
similar to Algorithm 1 or 2 except that the order makes no difference and there is no constraint
on either main effects or interactions. This provides flexibility of controlling FDR under LNC.

Remark 4
The proposed decision rule for the NC approach is a single-step-testing procedure. The decision
rules for LH and HL approaches are two-step procedures. Regressors are divided into two blocks:
main effects and interaction terms. The threshold t∗ for decision di = I (�i>t∗) within each block
is an optimal threshold. Even though a step-wise procedure di = I (�i>ti ) could be entertained, it
is non-trivial to identify an optimal threshold in this context.

2.4. Applications to the linear regression model

The three proposed loss-function-based selection rules can be easily incorporated into a general
Bayesian hierarchical regression model. A stochastic search variable selection (SSVS) algorithm by
George et al. [18] will be employed here with a slight modification. For a simple linear regression
with normal errors,

Y = X�+� (5)

a mixture normal prior is specified for each coefficient �i ,

�i |�i ∼(1−�i )N(0,�2)+�iN(0,c2�2)

The binary latent variables �i are incorporated in the model. If �i =1, the i th regressor is a true
predictor. According to George et al. [18], when �i =0, �i is closely centered at zero with a small
variance �2. When �i =1, �i is allowed to have large positive or negative effects using a large
value of c. c can be interpreted as the prior odds that i th regressor should be excluded when �i is
very close to zero. Here we followed the recommendation of choosing c and � given in George
et al. [18].

We assume an Inverse Gamma prior for the residual variance �2, a Bernoulli prior for pi =
Pr(�i =1), and a Beta hyperprior for pi :

�2∼ IG(�/2,��/2), �i ∼Bern(pi ) and pi ∼Beta(a,b) (6)

where a=(mean−2×mode×mean)/(mean−mode), b=(1−2×mode)×(1−mean)/(mean−
mode).

The shape of the Beta distribution shall be skewed toward small values, suggesting that a priori
the number of true predictors is just a small fraction of number of all the regressors. The mean
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for the Beta distribution is the average prior probability to be a true predictor and the distance
between mean and mode represents uncertainties about the number of the true predictors.

The Bernoulli prior for �i in (6) indicates that no constraint is forced among related predictors.
This is the prior specification for the loss function LNC. Two different degenerate Bernoulli
distributions were used for �i according to the two loss functions LLH and LHL.

For the prior based on LLH:

For i ∈ s1 �i ∼Bern(pi )

For i ∈ s2

{
�i ∼Bern(pi ) if all of its lower-order terms are selected

�i ∼Bern(0) o.w.

(7)

For the prior based on LHL:

For i ∈ s1

{
�i ∼Bern(pi ) if none of its higher-order terms are selected

�i ∼Bern(1) o.w.

For i ∈ s2 �i ∼Bern(pi )

(8)

The marginal posterior distribution of �i is our primary interest for variable selection. This posterior
is estimated by the Gibbs sampling method through iteratively updating the parameters from their
full conditional distributions.

3. SIMULATION

Monte Carlo simulations were employed to assess the performance of the three proposed decision
rules concerning the total FDR and the power of detecting true regressors. The sensitivity of the
prior distribution, sample size, and different control values (�L,�H) were also studied.

We considered variable selection on p=55 (10 main effects and 45 two-way interactions) with
three different sample sizes n=15,30, and 100. The true model was Y =0.3+x1+x2+1.5x3+
1.5x4+x1x2+x1x4+�. For simplicity, the main effects {xi }, i=1, . . . ,10, were independent and
identically distributed N(0,1). The variance of � was set to 1. We set c=50, �=0.02, and the (mode,
mean) for the Beta hyperprior at (0.05,0.06). For each sample size, 100 simulated replications
were performed.

For each of the three loss functions (LNC, LLH, and LHL), various control values (�L,�H)
were used to identify the true predictors. Under each set of (�L,�H), the total FDR (proportion of
falsely discovered predictors among discovered predictors) and power (proportion of discovered
true predictors among the true predictors) were calculated at each simulation and averaged across
100 replications. Table I summarizes the results of the simulations.

Overall, the total FDR is well controlled at significance levels (�L,�H) under all three decision
rules (Table I). When n<p, the LHL criterion has higher power than the other two criteria. The
difference in power among the three criteria decreases when the sample size increases. The three
loss functions achieved the same power for detecting true predictors when n=100, showing that
the impact of the prior decreases as the sample size increases in the Bayesian framework.

To examine the sensitivity to the prior, we repeated our algorithm for several choices of c
(10,50, and 100) and � (0.02 and 0.05). The simulation results changed very little for values of c
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Table I. Simulation results with mode=0.05, mean=0.06, and Var(�)=1.

(�L, �H)

(0.05, 0.05) (0.05, 0.2) (0.05, 0.8) (0.2, 0.05) (0.2, 0.2) (0.2, 0.8)

n NC LH HL NC LH HL NC LH HL NC LH HL NC LH HL NC LH HL

15 FDR 0.04 0 0.02 0.06 0 0.03 0.61 0 0.53 0.04 0 0.07 0.06 0 0.08 0.60 0 0.53
Power 0.03 0.02 0.11 0.03 0.02 0.12 0.11 0.02 0.62 0.04 0.05 0.24 0.05 0.05 0.24 0.13 0.05 0.62

30 FDR 0.01 0 0.01 0.05 0 0.01 0.58 0.13 0.65 0.02 0.01 0.04 0.06 0.01 0.03 0.53 0.14 0.65
Power 0.20 0.24 0.74 0.25 0.26 0.81 0.41 0.31 0.99 0.34 0.33 0.79 0.38 0.36 0.85 0.54 0.43 0.99

100 FDR 0 0 0 0 0 0 0.57 0.57 0.68 0.14 0.14 0 0.14 0.14 0 0.60 0.60 0.68
Power 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Total number of regressors p=55.
The total FDR and power are averaged over 100 simulations.

Table II. Simulation results with mode=0.1, mean=0.15, and Var(�)=1.

(�L, �H)

(0.05, 0.05) (0.05, 0.2) (0.05, 0.55) (0.2, 0.05) (0.2, 0.2) (0.2, 0.55)

n NC LH HL NC LH HL NC LH HL NC LH HL NC LH HL NC LH HL

15 FDR 0.11 0 0.10 0.27 0 0.12 0.68 0 0.45 0.11 0.02 0.30 0.27 0.02 0.31 0.65 0.03 0.46
Power 0.11 0.06 0.30 0.12 0.06 0.31 0.18 0.06 0.53 0.15 0.10 0.48 0.16 0.10 0.48 0.22 0.11 0.58

30 FDR 0.01 0 0.01 0.03 0.01 0.03 0.34 0.12 0.30 0.04 0.06 0.06 0.06 0.06 0.04 0.30 0.15 0.30
Power 0.36 0.53 0.80 0.41 0.58 0.86 0.53 0.65 0.95 0.52 0.62 0.83 0.58 0.67 0.89 0.69 0.76 0.96

100 FDR 0 0 0 0.01 0 0 0.27 0.25 0.27 0.14 0.14 0 0.15 0.14 0 0.35 0.33 0.27
Power 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

and � in this range (table not shown). As the setting of mean for the Beta hyperprior represents
a prior belief of average probability of being a true predictor, we changed the setting of (mode,
mean) from (0.05,0.06) to (0.1,0.15) and re-ran our algorithm. In the new setting, the basic
shape of the Beta distribution was not changed, except that the new prior assumed a priori more
true predictors among the 55 regressors. The power and FDR were unchanged when n=100.
However, as expected we observed an increase in power and FDR when n<p (Table II). This result
indicates that when the sample size is smaller than the number of regressors, the prior is highly
informative and the posterior expected losses are affected consequently. We increased the noise in
the simulation by increasing Var(�) to 5. In this scenario, the power decreased significantly under
the LNC and LLH criteria (Table III).

In general, to achieve greater power when n<p, we suggest using the LHL loss function and
small (mode, mean) for the Beta prior. If the a priori specified number of true predictors (mean× p)
is larger than the sample size (n), it will result in a large number of false positives and such a
model is rarely of interest to statisticians or scientists.

Note that changing significance levels (�L,�H) does not necessarily change the total FDR,
because the decision space is discrete in nature. Furthermore, increasing (�L,�H) does not neces-
sarily increase total FDR. If higher (�L,�H) results in selecting more regressors which are the
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Table III. Simulation results with mode=0.05, mean=0.06, and Var(�)=5.

(�L, �H)

(0.05, 0.05) (0.05, 0.2) (0.05, 0.8) (0.2, 0.05) (0.2, 0.2) (0.2, 0.8)

n NC LH HL NC LH HL NC LH HL NC LH HL NC LH HL NC LH HL

15 FDR 0.04 0 0.02 0.05 0 0.02 0.50 0 0.38 0.04 0 0.06 0.05 0 0.06 0.50 0 0.38
Power 0.01 0.01 0.04 0.01 0.01 0.04 0.05 0.01 0.32 0.01 0.01 0.08 0.01 0.01 0.08 0.06 0.01 0.32

30 FDR 0 0 0 0.02 0 0.01 0.57 0 0.41 0 0.01 0.01 0.02 0.01 0.02 0.56 0.01 0.41
Power 0.03 0.01 0.12 0.04 0.01 0.14 0.14 0.01 0.59 0.04 0.05 0.24 0.05 0.05 0.25 0.15 0.05 0.60

100 FDR 0 0 0 0.01 0 0.01 0.45 0.29 0.65 0.01 0.04 0.04 0.02 0.04 0.01 0.43 0.29 0.65
Power 0.58 0.62 0.81 0.62 0.65 0.9 0.77 0.77 1 0.68 0.69 0.83 0.71 0.72 0.91 0.86 0.84 1

true predictors, the total FDR will decrease due to the unchanged numerator (number of falsely
discovered regressors) and increased denominator (number of discovered regressors). For instance,
in Table I under the HL approach when n=30, the total FDR=0.03 at (�L=0.2,�H=0.2) is lower
than the total FDR=0.04 at (�L=0.2,�H=0.05). However, this phenomenon apparently does not
happen often. In general, the total FDR increases when (�L,�H) increase (see Tables I–III).

The significance levels (�L,�H) are arbitrary when there is a sufficient number of samples.
While high significance levels result in more falsely selected regressors, it would not necessarily
cause a worse prediction to the outcome but may lead to a less parsimonious model. When the
sample size is limited (n<p), the posterior expected loss will be highly influenced by priors. To
increase power, (�L,�H) can be set according to the prior specifications. For example, if we assume
that on average the probability to be a true predictor is 0.06 (as the mean chosen for the Beta
prior in Tables I and III), a choice of �H=0.8 results in an average posterior probability of at
least 0.2 among the selected interactions. An average ratio of posterior to prior probability (or the
alternative to null hypothesis ratio) for the selected interactions is about threefold, a rule-of-thumb
that has been commonly implemented in identifying differential gene expressions in microarray
analyses. If we assume that the prior probability to be a true predictor is 0.15 (as in Table II), a
3-fold posterior to prior probability ratio results in a choice of �H=0.55. A similar idea can be
applied to choose �L.

4. COLORECTAL CANCER STUDY

We now apply our proposed decision rules to a phase III clinical trial for the treatment of advanced
colorectal cancer initiated by Mayo Clinic in 1997. A total of 1705 patients were enrolled, of which
513 were genotyped for 23 biomarkers. The biomarkers were selected based on previous reports
of interaction with the chemotherapies used in the clinical trial. Two experimental treatments
5-fluorouracil+oxaliplatin and oxaliplatin+ irinotecan were compared with the standard treatment
of 5-fluorouracil+ irinotecan. Hereafter, we refer to them as arm F, G, and A, respectively. At the
end of the study, the experimental treatment F was approved by the Food and Drug Administration
for the treatment of patients with advanced colorectal cancer [19, 20].

A secondary goal of this clinical trial was to determine the role of these biomarkers in
predicting the progression-free survival. We are, therefore, interested in exploring all of the two-way
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Figure 1. Marginal posterior probabilities in colorectal cancer study. The X -axis is the regressor; the
Y -axis is the marginal posterior probability. The first 25 regressors are main effects and the rest are

two-way interactions. t∗ is the optimal threshold when �L=0.001 and �H=0.3.

interactions of the biomarkers and assessing their interactions with different treatment regimens.
We dichotomized each of the 23 biomarkers into two categories: mutant and wild type. The total
number of main effects is 25 (23 biomarkers plus variables AGE and SEX). Therefore, the number
of two-way interactions is 300, which exceeds the sample size under stratified modeling (115 in
arm A, 292 in arm F, and 106 in arm G).

The outcome variable in this case is a censored continuous variable; we therefore used the
data-augmentation approach [21, 22] to replace the outcome variable Y with a latent complete
variable Z in the regression model (5). For each individual j , we have

log(y j )

{= z j if c j =1

<z j if c j =0

where c j , j =1, . . . ,n, is the censoring indicator. By assuming normal errors for the regression
of log-transformed survival times, we achieved computational efficiency as the full conditional
distribution of Z is simply a truncated normal distribution. We could alternatively replace the
log-normal model with Weibull, exponential, or Gamma models, which are widely used parametric
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Table IV. Est.(Sd.) of coefficients for the selected predictors.

Arm A (n=115) Arm F (n=292) Arm G (n=106)

Variables LNC LHL LNC LHL LNC LHL

Intercept 5.22(0.04) 4.94(0.09) 5.62(0.06) 5.6(0.18) — 5.27(0.07)
Age 0.12(0.09)
abcb1 2677 −0.33(0.26)
abcb1 3435 −0.08(0.17)
abcc1 34215 0.66(0.2) −0.5(0.28)
abcc2 24 0.16(0.19)
abcc2 c1515y −0.39(0.35)
abcc2 v417i 0.81(0.23)
cyp3a4 0.41(0.33)
dpyd 9a 0.28(0.2) 0.19(0.19)
gstp1 I105v −0.48(0.13)
gstp 114 −0.38(0.38)
tyms 1494del −0.55(0.14)
ABCG2Q141K 0.1(0.22)
Age∗ABCG2Q141K −0.61(0.22) −0.73(0.21)
abcb1 2677∗abcb1 3435 0.75(0.28)
abcb1 3435∗abcc2 v417i −0.13(0.11) −0.98(0.24)
abcc1 34215∗abcc2 24 0.33(0.12) 0.8(0.3)
abcc1 34215∗dpyd 9a −0.51(0.26) −1.12(0.35)
gstp1 I105v∗ tyms 1494del 0.03(0.11) 0.66(0.2)

The cell is empty if the variable is not selected.

models for censored survival data. The adaptive rejection sampling algorithm [23] can be utilized
for Bayesian inference in this case.

For this data set, we choose c=10, �=0.05, and (mode,mean)=(0.2,0.25) for a Beta prior with
20 000 iterations of Gibbs sampling. The marginal posterior probabilities for the three modeling
approaches (NC, LH, and HL), which were estimated by averaging the event of �i =1 (i=
1, . . . ,325) across the entire Markov chain Monte Carlo (MCMC) iterations, are shown in Figure 1.

As shown in Figure 1, the loss function LLH resulted in the lowest marginal posterior probabili-
ties. Because of the constraints, all the interaction terms have almost zero probability. Additionally,
no important main effects were found under LLH or LNC even when the �L was set at 0.6. Under
the loss functions LNC and LHL, several interactions show relatively high probabilities. Exploring
all possible two-way interactions under these two loss functions led to the discovery of a complex
model which may predict the outcome with greater power. As 300 interaction terms were explored
in this case, the marginal posterior probabilities for the main effects are almost equal to one
under LHL, because the importance of a variable in the HL approach is determined by the joint
importance of its own main effect and all the interaction terms involving that main effect. Also
note that the interactions that have high posterior probability in arm A are different from those in
arm F (Figure 1), which indicates the existence of treatment–biomarker interactions. This finding
is not unexpected, as different biomarkers were selected to be specific to individual treatments.

We set (�L, �H) at (0.001, 0.3) for all the loss functions (no main effects were selected under
LNC and LLH even if we raised �L to 0.6). In order to estimate the magnitude of the effect of
the selected terms, we ran another MCMC which included only the selected terms. The estimated
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posterior mean and standard error are shown in Table IV. The selected variables using LNC are a
subset of those selected under LHL. Several interactions were identified as significant. For example,
under treatment A, older patients with mutant marker ABCG2Q141K tend to have a shorter
progression-free survival time using either criteria. External validation of the findings is worth
investigating.

We also ran the variable selection procedure using the main effects only model, and no main effect
was found significant or to have high marginal posterior probabilities in the multiple regression
setting. This result highlights the importance of using the proposed variable selection approaches
to explore complex models to improve the understanding of the association of the biomarkers with
outcomes of interest.

5. LYMPHOMA STUDY

Our next example is based on gene expression data for patients with diffuse large-B-cell lymphoma
(DLBCL). Studies have demonstrated that gene-expression signatures may be useful to predict
the prognosis in patients with DLBCL [24–26]. Lossos et al. [27] used the quantitative reverse-
transcriptase polymerase chain reaction (RT-PCR) to measure the expression of genes from 66
independent DLBCL patients. They studied 36 genes which had been reported to predict survival
from past microarray studies. A model to predict the overall survival in DLBCL was proposed
using a combination of weighted expressions of six genes (LMO2, BCL6, FN1, CCND2, SCYA3,
and BCL2). They concluded that ‘measurement of the expression of six genes is sufficient to
predict overall survival in diffuse large-B-cell lymphoma.’

We attempted to validate their conclusion by exploring the possible existence of interactions in a
multiple regression model. We re-analyzed the lymphoma data with a reduced and a full model. The
reduced model was a multiple regression model with all of the 36 genes and only six interactions
(p53∗BCL2, p53∗CR2, PRDM1∗IRF4, BCL6∗CCND2, BCL6∗IRF4, BCL6∗SCYA3/CCL3).
These six interactions were reported directly or indirectly correlated in different contexts [28–31].
The full model was a multiple regression model with 36 genes and all the two-way interactions.

We began by log transforming and normalizing raw RT-PCR data using the software provided
by Eisen Lab at 〈http://rana.lbl.gov/EisenSoftware.htm〉. A heatmap with the gene names after
two-way hierarchical clustering is shown in Plate 1. Since there was no censoring in this data set,
to reduce computational complexity we assumed that the survival followed a normal distribution
after log-transformation.

In the reduced model, the number of regressors was p=36+6=42, which was smaller than
the sample size n=66. We set c≡50 and �≡0.02. Two sets of the mode and mean of the Beta
hyperprior were used: (0.2,0.5) and (0.5,0.5). The marginal posterior probabilities of {�i } were
plotted in Figure 2(a) and (b). The marginal posterior probabilities were higher when the prior
mean and mode were larger. However, none of the six interactions had posterior probability greater
than 0.2 in this data set.

On the basis of an assumption that some interactions may exist but are not yet reported, we
proceeded to search all possible interactions using the full model which includes all two-way
interactions. In this case the total number of regressors was p=666 (36 main effects plus 630
two-way interactions), which was much larger than the sample size n=66. The loss function LHL
criterion and its corresponding SSVS probability model were used, since a better performance
of LHL criterion when n<p was demonstrated in the simulation study (Section 3). However, we
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Plate 1. Heatmap of RT-PCR data for diffuse large-B-cell lymphoma patients.
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Figure 2. Marginal posterior probabilities in diffuse large-B-cell lymphoma data. The first 36
regressors are the main effects, and the rest are the interactions: (a) Reduced model, mode=0.2,
mean=0.3; (b) reduced model, mode=0.5, mean=0.5; (c) full model, mode=0.02, mean=0.05;

and (d) full model, mode=0.05, mean=0.1.

should expect that the power of detecting interactions will be limited given that the sample size was
only one-tenth of the number of regressors. We set c≡50 and �≡0.02 with the mode and mean of
the Beta hyperprior at (0.02,0.05) and (0.05,0.1). The marginal posterior probabilities of {�i } are
plotted in Figure 2(c) and (d). No regressors were selected using controlling values �L=0.2 and
�H=0.2. According to the 3-fold rule-of-thumb, none of the interaction terms reached posterior
to prior probability ratio of 3. Therefore, we concluded that no significant two-way interactions
were given in the current study group.

The sample size n=66 was too small to explore higher-order interactions for all the 36 genes.
Therefore, we examined only the six genes and all their two-way and three-way interactions, and
no significant interactions were found (see the plots in Figure 3).
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Figure 3. Marginal posterior probabilities in diffuse large-B-cell lymphoma data with
higher-order interactions. The first six regressors are the main effects, the next 15 are
the two-way interactions, and the rest are the three-way interactions: (a) Beta hyperprior:

mean=0.5, mode=0.5 and (b) uniform hyperprior: U(0,1).

When Lossos et al. [27] performed a multiple Cox regression analysis, none of the six selected
genes independently predicted overall survival at a statistically significant level. Our results agree
with that of Lossos et al. The top six genes based on the marginal posterior probabilities from
our reduced model were LMO2, BCL6, SLAM, CD38, SCYA3, and p53. Three of them (LMO2,
BCL6, SCYA3) overlapped with the top six genes from Lossos et al.

6. CONCLUSION

The lack of statistically sound decision rules for automatic variable selection with interactions has
discouraged activities in exploring important interaction effects in practice. We have proposed a
general loss function framework for approaching the problem in the multiple regression setting. In
particular, we have constructed loss functions that formally model the relationships between main
effects and interactions while controlling the FDR. The automatic algorithm is straightforward and
easily implemented using MCMC.

Different loss functions are recommended for different contexts (data and objectives). At the
design stage, we cannot afford to consider a large number of interactions. Focusing on a limited
number of possible interactions generates greater statistical power to test variables of primary
interest. The loss function LLH, which restrains higher-order terms, seems appropriate in this
situation. However, most model-building procedures are carried out on observational studies, which
aim to search for statistically significant associations and generate hypotheses for future studies.
In these cases, exploring interactions in the full model space using the loss function LNC or LHL
is desirable. However, we do not encourage using the loss function LNC, unless enough data are
available to support the existence of a special design point which, in this case, is the zero coefficient
of main effect with non-zero coefficient for interaction.

Based on our simulation studies, the loss function LHL (a belief that when the interactions
are selected their corresponding main effects have to be forced into the model) resulted in the
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highest power to detect true predictors in all settings. This result was particularly obvious when
the sample size is smaller than the number of regressors. In the real data analysis of the colorectal
cancer study, no significant main effect was found under the additive model. Nevertheless, several
interactions were found significant under the full model (main effects plus two-way interactions).

As pointed out by one referee, there are several ways to utilize the posterior distribution outputs
which we obtained from the MCMC sampling. One approach would be to use the posterior
distribution of total FDR and FNR at a given level of (�L,�H).

An alternative method is to use the upper quantile of posterior distribution of FDR. Given any
vector of decision d , one can find whether the upper quantile of the posterior total FDR is less than
the significance level. Thus, among those decisions that satisfy the significance level, the decision
with the smallest posterior total FNR is optimal. However, the search will be intensive since there
are many possible outcomes of d .

The optimal decision rule that we have found in this paper is a single-step procedure. However,
given the marginal posterior probabilities from the MCMC output, one could also apply step-up
and step-down procedures to the marginal posterior probabilities. Such a topic is beyond the scope
of this paper.

As a consequence of Bayesian inference, the proposed loss functions require specifications
of priors. The posterior expected loss was less sensitive to the prior when the sample size was
relatively large compared with the number of regressors. When regressors are abundant, a Beta
hyperprior with small mean (mean <n/p) and mode is appropriate. Since the mean is a prior
belief of probability of being a true predictor, assuming the number of true predictors larger than
the sample size (mean >n/p) might not make sense in the context of statistical inference.
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