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As part of the Genetic Epidemiology Network of Arteriopathy study, hypertensive non-Hispanic White sibships were
screened using 471 single nucleotide polymorphisms (SNPs) to identify genes influencing coronary artery calcification
(CAC) measured by computed tomography. Individuals with detectable CAC and CAC quantity Z70th age- and sex-
specific percentile were classified as having a high CAC burden and compared to individuals with CAC quantity o70th
percentile. Two sibs from each sibship were randomly chosen and divided into two data sets, each with 360 unrelated
individuals. Within each data set, we applied two machine learning algorithms, Random Forests and RuleFit, to identify the
best predictors of having high CAC burden among 17 risk factors and 471 SNPs. Using five-fold cross-validation, both
methods had �70% sensitivity and �60% specificity. Prediction accuracies were significantly different from random
predictions (P-valueo0.001) based on 1,000 permutation tests. Predictability of using 287 tagSNPs was as good as using
all 471 SNPs. For Random Forests, among the top 50 predictors, the same eight tagSNPs and 15 risk factors were found in
both data sets while eight tagSNPs and 12 risk factors were found in both data sets for RuleFit. Replicable effects of two
tagSNPs (in genes GPR35 and NOS3) and 12 risk factors (age, body mass index, sex, serum glucose, high-density lipoprotein
cholesterol, systolic blood pressure, cholesterol, homocysteine, triglycerides, fibrinogen, Lp(a) and low-density lipoprotein
particle size) were identified by both methods. This study illustrates how machine learning methods can be used in sibships
to identify important, replicable predictors of subclinical coronary atherosclerosis. Genet. Epidemiol. 32:350–360, 2008.
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INTRODUCTION

Coronary artery disease (CAD) is the leading
cause of death in the United States, accounting for
more than 650,000 deaths per year [Rosamond et al.,
2007]. Atherosclerosis is the major cause of CAD and
coronary artery calcification (CAC) is a measure of
subclinical coronary atherosclerotic calcified plaque
burden that can be detected and quantified non-
invasively by computed tomography [Peyser et al.,
2002; Wexler et al., 1996]. CAC quantity predicts
future CAD events in asymptomatic [Arad et al.,
2000; Budoff et al., 2007] and symptomatic adults
[Keelan et al., 2001].

Many environmental and genetic factors are
involved in the atherosclerotic process. Older age,
male sex as well as many traditional CAD risk
factors have been associated with CAC quantity

[Wexler et al., 1996; Wilson et al., 1998]. Several
recent studies identified novel CAD risk factors
including C-reactive protein levels, Lp(a), plasma
fibrinogen, plasma homocysteine and low-density
lipoprotein particle size associated with CAC quan-
tity in various study groups [Bielak et al., 2000;
Cassidy et al., 2004; Kuller et al., 1999; Kullo et al.,
2004, 2006; Wang et al., 2002].

In a study of the heritability of CAC quantity, age,
sex, measures of body size, blood pressure, diabetes,
hypertension and smoking explained �40% of the
variability in CAC quantity and more than 40% of
the unexplained interindividual variation was attri-
butable to genetic factors [Peyser et al., 2002]. Several
studies showed statistically significant or suggestive
associations of candidate genes, such as the apolipo-
protein E (ApoE) gene, and the soluble epoxide hydrolase
(sEH) gene, with variation in CAC quantity [Fornage
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et al., 2004; Kardia et al., 1999]. Many of the genes
involved in CAC susceptibility, however, remain
unidentified [Lange et al., 2002].

Traditional statistical regression modeling requires
specification of the exact relationship between
predictor variables and outcome including any
interactions between predictor variables. When
modeling with many predictor variables and their
interactions, it is unrealistic to test all possible
regression models. Alternatives to traditional statis-
tical modeling include ensemble learning methods
which construct a set of prediction models in a
training data set and then test these models on new
observations in a second data set (i.e., the testing
data set). This approach captures the inherent
etiologic heterogeneity and interactions underlying
the complex architecture of the outcome of interest
without the need for a prior model specification.
Random Forests [Breiman, 2001] and RuleFit [Fried-
man and Popescu, 2005] are ensemble learning
methods with similar advantages of good predict-
ability, insensitivity to outliers, limited effort of
model tuning and insensitivity to uninformative
predictors.

We used Random Forests and RuleFit in two
replicate data sets of non-Hispanic White indivi-
duals using 17 traditional and novel CAD risk
factors and 471 single nucleotide polymorphisms
(SNPs) in 114 candidate genes, as well as 287
tagSNPs in these candidate genes, to predict high
CAC burden. The predictability of each method was
evaluated using five-fold cross-validation; both
predictability as well as predictor variables were
compared between methods.

METHODS

STUDY GROUP

The study was approved by the Institutional
Review Boards of all participating institutions. Each
participant gave written informed consent.

Participants were enrolled in the Genetic Epide-
miology Network of Arteriopathy (GENOA) study, a
multicenter community-based study of hypertensive
sibships, whose main goal is to identify genes
influencing blood pressure levels and development
of target organ damage due to hypertension
[O’Meara et al., 2004; Turner et al., 2006]. Only
GENOA participants from the Rochester field center
were considered for the present analyses because
only these participants had CAC measured. In the
first phase of the GENOA study (June 1996 to
October 2000), the Mayo Clinic diagnostic index and
medical record linkage system of the Rochester
Epidemiology Project were used to identify all
non-Hispanic White residents of Olmsted County,
MN diagnosed with essential hypertension by 60
years of age. Eligible probands were contacted and

questioned about their siblings. If they had siblings
living in the area, the siblings were contacted and
asked if they had been diagnosed with hypertension.
If at least one sibling of the proband reported a
previous diagnosis of hypertension before age 60, all
available siblings were invited to participate.

Between December 2000 and February 2004, 1,241
of the original GENOA participants in the Rochester
field center returned to undergo risk factor and
target organ damage measurement. Individuals with
a history of coronary revascularization and women
who were pregnant or lactating were excluded from
measurement of CAC quantity with electron beam
computed tomography. Participants with a history of
myocardial infarction, stroke or a coronary angio-
gram that indicated a blockage (n 5 75) were
excluded from the current analyses. Participants
(n 5 2) with outlier values (74 standard deviations
from the mean for quantitative risk factors) and low
rate of SNP genotyping calls were also excluded. The
final study group included 935 individuals in 400
sibships with both genotypic and phenotypic data.
The sibship size ranged from 2 to 11 siblings and
there were 80 singletons.

We took advantage of the sibship-based study
design and created two data sets, each with 360
unrelated individuals, to test for replication of risk
factor and SNP associations in study groups with
similar genetic and environmental backgrounds. We
randomly sampled one sib from each sibship with at
least two sibs without replacement to create the first
data set (referred to here as data set 1). From the
remaining participants, we randomly sampled a
second sib from each sibship with at least two sibs to
establish the second data set (referred to here as data
set 2). The same number of singletons (total n 5 80)
was randomly assigned to each data set. Therefore,
the subjects within each data set were independent
from each other.

MEASUREMENT OF RISK FACTORS

Standard enzymatic methods were used to mea-
sure total cholesterol, high-density lipoprotein cho-
lesterol (HDL-C) and triglycerides after overnight
fasting [Kottke et al., 1991]. Plasma glucose was
measured by the glucose oxidase method. Low-
density lipoprotein cholesterol was calculated using
the Friedwald equation [Executive, 1993]. Body
mass index (BMI) was calculated (weight/height2;
kg/m2). Systolic blood pressure (SBP) and diastolic
blood pressure levels were measured in the right arm
with a random-zero sphygmomanometer (Hawksley
and Sons, West Sussex, UK). Three measures at least
2 min apart were taken and the average of the second
and third measurements was analyzed. Fibrinogen
was measured by the Clauss (clotting time-based)
method [Clauss, 1957] and C-reactive protein by a
highly sensitive immunoturbidimetric assay [Keevil
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et al., 1998]. Low-density lipoprotein particle size
was measured by polyacrylamide gel electrophoresis
[Hoefner et al., 2001]. Plasma homocysteine was
measured using a liquid chromatography electro-
spray tandem mass spectrometry method as pre-
viously described [Magera et al., 1999]. Lp(a) was
measured in serum by an immunoturbidimetric
assay using the SPQTM Test System (Diasorin,
Stillwater, MN) [Levine et al., 1992].

MEASUREMENT OF CAC

CAC was measured using an Imatron C-150
electron beam computed tomography scanner
(Imatron Inc., San Francisco, CA) using a standard
protocol [Bielak et al., 2001]. CAC was defined as a
hyperattenuating focus in a coronary artery that was
at least four adjacent pixels in size (i.e., 1.04 mm2),
with a radiograph attenuation coefficient (Computed
tomography number) above 130 Hounsfield Units
throughout the focus. An experienced radiologist
inspected the technical quality and scoring accuracy
of each tomogram and interpreted their findings.
Quantity of CAC was defined as the CAC score
described by Agatston et al. [1990]. Individuals with
detectable CAC and CAC scores Z70th percentile
for their age and sex based on CAC scores from a
community-based sample of asymptomatic adults
unselected for risk factors were classified as having a
high CAC burden and compared to individuals with
CAC o70th percentile [Lange et al., 2002]. The 70th
percentile identifies those considered to be in the
highest risk group for a future event.

SNP GENOTYPING

Genes were selected to represent biological path-
ways or positional candidate genes from systems
known to be associated with hypertension and CAD,
including ion transport, inflammation, vascular wall
biology, the renin-angiotensin system and lipid meta-
bolism. SNP genotyping was obtained using a
combination of two genotyping platforms: mass
spectrometer-based detection system implemented on
a Sequenom MassARRAY System and the fluorogenic
TaqMan assay implemented on an ABI Prism 7900
Sequence Detection System. Primer and probe se-
quences are available from the authors upon request.

MISSING DATA IMPUTATION

The average genotype missing rate was 4.5% in
data set 1 and 4.2% in data set 2. Because the current
version of RuleFit requires complete data, we
imputed missing genotypes from neighboring mar-
kers using an extension of the expectation-maximi-
zation (EM) algorithm [Chiano and Clayton, 1998]
implemented in HelixTrees (Golden Helix Inc.,
Bozeman, MT). The 20 highest linkage disequili-
brium (LD) SNPs were selected within a window of

30 SNPs centered about the SNP of interest. Missing
genotypes were computed through the 20-SNP
haplotypes with EM convergence tolerance of 0.001
and maximum EM iteration number of 50. In a
simulation study, this method achieved imputation
accuracy above 95% with missing rates ranging from
1 to 10% [Sun and Kardia, 2008]. The same complete
data set was analyzed with Random Forests and
RuleFit methods.

RANDOM FORESTS

There are three unique characteristics in how the
trees are grown with the Random Forests algorithm:
(1) the method randomly selects, with replacement,
n samples to form a training data set; (2) a small
subset of all predictor variables (here a subset of the
471 SNPs and 17 risk factors) are randomly selected
for each tree and (3) then each tree is grown,
independently of the other trees, to the largest extent
possible to classify the outcome status (here CAC
score o or Z70th percentile) [Breiman, 2001]. Next,
the algorithm makes predictions for each observa-
tion in the testing data set using only the predictor
variables and a classification is determined for every
tree in the forest. Finally, the algorithm rates the
importance of each variable in predicting the out-
come based on the most votes over all the trees in the
forest. The Random Forests method is robust with
respect to unimportant predictor variables (such as
genetic factors without any predictive power), and
overfitting, and it provides estimates of what
variables are important in the classification [Brei-
man, 2001]. In this study, we applied the original
Random Forests implementation [Breiman, 2001]
that uses the classification and regression tree to
grow the individual trees and uses bootstrapping to
randomize the sample. To rank the importance of the
predictors, we used the Gini index which measures
the average decrease in node impurities from
splitting on the variable [Breiman, 2001].

RULEFIT

RuleFit has the same advantages of the Random
Forests algorithm but adds more interpretability to the
model [Friedman and Popescu, 2005]. Each rule’s
influence on the predictive model and the relative
importance of each independent variable can be
assessed by the algorithm. RuleFit provides: (1) an
accurate prediction model for the outcome; (2) a set of
simple rules which could reflect gene-gene, gene-risk
factor and risk factor-risk factor interactions and (3) a
variable selection method by ranking the relative
importance of all independent variables considered.

STATISTICAL METHODS

In this study, we used data sets 1 and 2; each
included 360 independent subjects with 17 risk
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factors and 471 SNPs, and two machine learning
methods to predict CAC burden. Descriptive statis-
tics for risk factors, CAC and SNPs were generated
using the statistical software R. Based on results
from diagnostic plots and Kolmogorov-Smirnov
tests for normality, triglyceride and Lp(a) levels
were transformed using the natural logarithm in
order to reduce skewness. Student’s t-test and w2-test
were used to confirm that risk factor distributions
and prevalence of high CAC burden in the two data
sets were not statistically significantly different (P-
value of 0.05 on two-sided tests). Population genetic
parameters for all SNPs were calculated, including
minor allele frequencies (MAFs), genotype frequen-
cies and either a w2 test or the Fisher exact test for
departures from expectations under Hardy-Wein-
berg equilibrium (HWE).

We used the tagSNP selection method [Carlson
et al., 2004] to remove highly redundant SNP
predictors. There were 287 tagSNPs which had no
pair-wise LD R240.5 and had MAF40.05. Thus, we
could remove unnecessary SNPs and retain the most
informative SNPs for analysis as well as improve
computation speed which is a critical issue for
higher dimensional genome-wide association data.

To evaluate the overall performance of the model
predictive ability, we did not use the default point
estimate, 50% voting rate as the threshold, to classify
the binary outcome. Instead, we evaluated the
sensitivity and specificity at all possible voting rate
thresholds using the vector of all votes from the
ensemble, and then plotted the receiver operating
characteristic (ROC) curve based on these values.

For both the Random Forests and RuleFit analyses,
each data set was partitioned into five exhaustive,
mutually exclusive, cross-validation subsets of 72
individuals each by random sampling. In five-fold
cross-validations, four of the five subsets were
combined and used as the training data set for the
purpose of ‘‘learning’’. The remaining subset was
used for testing. Five times the ROC curve was
calculated based on the vectors of sensitivity and
specificity based on the votes from each method. The
values of area under the curve (AUC) of the ROC
curves of five cross-validation subsets were aver-
aged to compare the predictability and stability of
the models. Within each of data sets 1 and 2, the

entire model building procedure was repeated in
each of the five-fold cross-validation steps.

All statistical analyses were performed with R
statistics environment version 2.3.0 from R Project
(http://www.r-project.org/). R libraries of Random
Forests (randomForest 4.5.-15) and RuleFit (rulefit)
[Friedman and Popescu, 2005] were utilized to
predict CAC burden using risk factors and SNPs as
predictors. The modeling parameters used for
Random Forests (function ‘‘randomForest’’) were
importance 5 TRUE, ntree 5 2,000 and mtry 5 30.
The parameters used for RuleFit (function ‘‘rulefit’’)
were rfmode 5 ‘‘class’’, max.rules 5 10,000 (10,000
rules) and tree.size 5 4 (four levels of tree depth).
Other parameters used in the functions of ‘‘random-
Forest’’ and ‘‘rulefit’’ were same as the default
settings if not specified above. The parameters of
both methods were chosen by optimizing the
prediction performance.

PERMUTATION TESTS

The null distribution of AUCs was generated for a
total of 1,000 permutations for each machine learn-
ing method separately. For each permutation test,
the prediction model was built (as described above)
and the predictive ability was estimated by the AUC
of the ROC curve using a data set with randomly
shuffled high CAC burden status. Then, the
observed AUC of the ROC curve was compared
to the null AUC distribution to calculate empirical
P-values reported here.

RESULTS

EVALUATION OF MODEL PREDICTABILITY OF
RANDOM FORESTS AND RULEFIT USING ROC
CURVE

The descriptive statistics of all 17 risk factors and
the outcome were summarized in supplemental
Table I. Only HDL-C and triglyceride were signifi-
cantly different between the two data sets. The
MAFs, genotype frequencies and HWE P-values of
471 tested SNPs in both data sets were summarized
in supplemental Table II.

The AUC results of Random Forests and RuleFit
considering all 17 risk factors and all 471 SNPs are

TABLE I. The impact of tagSNP selection on model predictability

Data set 1 Data set 2

Method SNPs used AUC mean AUC STD AUC mean AUC STD

Random Forests All 471 SNPs 0.734 0.044 0.747 0.048
287 tagSNPs 0.760 0.016 0.744 0.064

RuleFit All 471 SNPs 0.678 0.065 0.692 0.060
287 tagSNPs 0.703 0.047 0.692 0.054

SNP, single nucleotide polymorphism; AUC, area under the curve.
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summarized in Table I. Using the 287 tagSNPs (pair-
wise LD R2o0.5) instead of all 471 SNPs led to a
slightly increased AUC (i.e., the predictive ability
improved) in data set 1 for both methods but not in
data set 2 (Table I).

Considering all 17 risk factors and just the 287
tagSNPs, the ROC curves and AUC results of the
two methods are summarized in Figure 1 and
Table II with results from five-fold cross-validation.
Using Random Forests, the mean (STD) AUC of the
five ROC curves was 0.760 (0.016) for data set 1 and
0.744 (0.064) for data set 2. Using RuleFit, the mean
(STD) AUC was 0.703 (0.047) and 0.692 (0.054) for
data sets 1 and 2, respectively. The largest mean
AUCs among the 1,000 permutation tests were 0.559
and 0.543 for Random Forests, and 0.632 and 0.640
for RuleFit for data sets 1 and 2, respectively. The
observed AUCs of ROC curves from both Random
Forests and RuleFit were statistically significantly
different from the permuted values with empirical
P-value less than 0.001, for each data set.

In Table II, the sensitivity and specificity for each
cross-validation subset, data set and analysis meth-
od are presented. For Random Forests, the average
sensitivities were 76.7 and 77.6%, and the average
specificities were 65.0 and 64.2% for data sets 1 and
2, respectively. For RuleFit, the average sensitivities
were 73.7 and 73.7% and the average specificities
were 63.8 and 58.8% for data sets 1 and 2,
respectively.

VARIABLE SELECTION

We compared the 50 top-ranked variables from
Random Forests and RuleFit models and identified
31 (62%) common variables from both methods in
data set 1 and 32 (64%) in data set 2. Additionally, 23
(46%) common variables were identified by Random
Forests in both data sets and 20 (40%) by the RuleFit

method. There were 14 (28%) common variables
identified by both methods that showed replication
in both data sets 1 and 2. These variables were age,
BMI, sex, serum glucose, HDL-C, SBP, cholesterol,
homocysteine, triglyceride, fibrinogen, Lp(a) and
low-density lipoprotein cholesterol particle size and
two SNPs including GPR35_rs3749172 and
NOS3_rs1800780 (the ranks are summarized in
Table III). The mean, standard deviation and t-test
P-value of the risk factors (w2 P-value for sex) are
summarized in Table IV. The mean levels of HDL-C
and triglyceride were significantly different in the
two data sets (Table IV). Besides GPR35_rs3749172
and NOS3_rs1800780, six other tagSNPs were found
to be top-ranked in three out of four tested models.
The allele frequencies, genotype frequencies and the
HWE P-values of the eight SNPs are summarized in
Table V. MAFs of the SNPs did not differ between
data sets.

CAC ASSOCIATIONS OF IDENTIFIED PREDIC-
TORS AND THE INTER-RISK FACTOR CORRE-
LATION (KGRAPH)

Pair-wise correlations and interactions among
replicable predictors and their associations with
CAC burden are presented in Figure 2 using KGraph
[Kelly et al., 2007]. The figure simultaneously
displays both significant univariate associations
and pair-wise interaction associations with CAC
burden, as well as the underlying correlation
structure among the predictor variables (SNPs and
risk factors). Although these variables have replic-
able effects in prediction, most of their univariate
associations (regions 4 and 5) and pair-wise interac-
tions (region 6: risk factor-risk factor interaction;
region 7: SNP-risk factor interaction; region 8: SNP-
SNP interaction) are not significant in replicate.
Seven univariate associations, age, BMI, SBP,

TABLE II. Summary of predictability of Random Forests and RuleFit with five-fold cross-validation using 17 risk
factors and 287 tagSNPs

Random Forests RuleFit

Data set 1 Data set 2 Data set 1 Data set 2

AUC
Sensitivity

(%)
Specificity

(%) AUC
Sensitivity

(%)
Specificity

(%) AUC
Sensitivity

(%)
Specificity

(%) AUC
Sensitivity

(%)
Specificity

(%)

Subset 1 0.746 80.8 60.0 0.843 89.1 61.5 0.690 71.2 60.0 0.746 73.9 61.5
Subset 2 0.746 70.7 71.0 0.675 71.2 60.0 0.681 73.2 61.3 0.614 71.2 50.0
Subset 3 0.778 79.6 61.1 0.718 74.5 61.9 0.667 70.4 61.1 0.696 76.5 61.9
Subset 4 0.752 75.0 61.5 0.718 71.9 69.2 0.692 68.8 65.4 0.739 78.1 61.5
Subset 5 0.777 77.5 71.4 0.766 81.3 68.2 0.786 85.0 71.4 0.665 68.8 59.1
Mean 0.760 76.7 65.0 0.744 77.6 64.2 0.703 73.7 63.8 0.692 73.7 58.8
STD 0.016 4.0 5.7 0.064 7.6 4.2 0.047 6.5 4.7 0.054 3.8 5.1

SNP, single nucleotide polymorphism; AUC, area under the curve.
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HDL-C, homocysteine, serum glucose and sex, are
significant in both data sets (Po0.05). Furthermore,
three risk factor-risk factor interactions, cholesterol
and homocysteine, Lp(a) and serum glucose,
triglyceride and serum glucose, are significantly
associated with CAC burden in both data sets.

DISCUSSION

Due to the complicated cellular and molecular
processes involved in complex diseases, the con-
tributing genetic factors may function in an
interdependent network fashion instead of indepen-
dently. Therefore, traditional methods that study one
factor at a time could be highly biased and
misleading. Random Forests and RuleFit both
provide the functionality to evaluate the relative
importance of the predictors. In the current study,
both methods were robust and were reasonably
consistent (over 60% variables were highly ranked in
both data sets) for variable selection.

Although methods such as Random Forests have
been shown to be robust to insignificant variables
[Breiman, 2001], with the scale of current genome-

wide association studies involving hundreds of
thousands of SNPs and future studies involving
millions of genotypes, the signal-to-noise ratio has to
be considered to achieve better performance. Several
knowledge-based approaches can greatly reduce the
dimensionality for specific biomedical questions. For
example, SNPs from candidate genes that are
associated with a certain disease or a disease-related
trait can be analyzed separately. In addition, a
spectrum of SNPs can be analyzed based on the
disease-related pathways and networks. These
approaches, however, are limited by a priori under-
standing of the disease process and can hardly be
used to discover novel SNPs and/or genes. Alter-
natively, by ranking the single SNP association test
results, researchers are able to prescreen the SNPs
using a priori criteria (e.g., the 1% most strongly
associated with the outcome of interest) for further
pattern recognition analyses. This approach is biased
toward univariate effects and ignores the possibi-
lities of epistasis and/or gene-environment interac-
tions. As an advantage, tree-based ensemble
learning methods such as those applied here include
the main effects as well as the interaction effects in

Fig. 1. ROC curve of Random Forests and Rulefit with five-fold cross-validation. (A) Random Forests on dataset 1. (B) Random Forests

on dataset 2. (C) RuleFit on dataset 1. (D) RuleFit on dataset 2. 17 clinical predictors and 287 tagSNPs were used to predict the presence

of higher CAC burden in two datasets with 360 unrelated individuals in each. Each ROC curve represents one subset result of the five-
fold cross-validation procedure. [Color figure can be viewed in the online issue which is available at www.interscience.wiley.com]
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each of the individual trees. Assuming the feature
selection results from each method define a part of
the true classification boundary in some hyper-
space, combining the results from several methods
will provide much higher confidence in finding the

truly important predictors. Therefore, combining
multiple methods is crucial to accurately identify
the disease-related SNPs and risk factors.

The Random Forests method is known to be
insensitive to uninformative predictors [Breiman,
2001]. Removing the redundant information as much
as possible, however, benefits the predictability of
the machine learning process as well as the
computation speed. Although both algorithms run
very fast for hundreds of SNPs, the computation of
hundreds of thousands [Gunderson et al., 2006;
Matsuzaki et al., 2004] of SNPs from whole genome
association studies might be a deterrent for applying
such machine learning methods. Utilizing the
tagSNP selection strategy eliminates redundant
SNPs and accelerates the modeling process while
maintaining the accuracy of predictability.

In this study, we used a five-fold external cross-
validation procedure to assess the predictive ability
of Random Forests and RuleFit. Because of the
re-sampling procedure applied in the ensemble
learning methods, such as Random Forests, it may
not be necessary to use external sample to cross-
validate the prediction model [Breiman, 2001]. This
recommendation is based, however, on the observa-
tion that the ensemble learning methods, such as
Random Forests, do not overfit and are robust with
respect to unimportant predictors. Recent studies
have demonstrated that the external cross-validation
step is necessary to accurately evaluate the predictive
ability using the Random Forests algorithm [Konig
et al., 2007; Sun et al., 2007]. In addition, using the
cross-validation procedure is important to fairly

TABLE IV. Descriptive statistics of the identified risk factor predictors with replicable effects and the hypertension
status and the outcome in the two data sets

Data set 1 (n 5 360) Data set 2 (n 5 360)

Variables Mean STD Mean STD t-Test P-valuea

Age (years) 59.12 10.06 59.20 9.80 0.914
BMI (kg/m2) 30.87 5.83 30.38 6.35 0.283
SBP (mmHg) 131.08 17.04 131.57 16.54 0.695
HDL-C (mg/dL) 50.73 14.03 53.06 15.39 0.034
Cholesterol (mg/dL) 199.63 34.30 198.44 31.11 0.626
Fibrinogen (mg/dL) 316.33 76.38 318.73 81.13 0.684
log_Lp(a) 2.69 1.24 2.63 1.18 0.523
log_triglyceride 4.98 0.54 4.87 0.51 0.005
Homocysteine (md/dL) 9.98 2.77 9.82 2.51 0.427
LDL-C particle size (Å) 269.93 5.13 270.36 4.84 0.247
Serum glucose (mg/dL) 105.29 23.35 104.43 24.60 0.630

n % n % w2 P-value
Male gender 153 42.5 147 40.8 0.701
Hypertension 269 74.7 266 73.9 0.865
High CAC burdenb 251 69.7 245 68.1 0.687

BMI, body mass index; SBP, systolic bleed pressure; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; CAC, coronary artery calcification.
aThe t-test was used to assess whether the variables’ means of the two data sets are significantly different from each other.
bHigh CAC burden is defined as having detectable CAC and being Zsex- and age-specific 70th percentile for CAC score.

TABLE III. Predictors with replicable effects and their
importance ranks in data sets 1 and 2 from Random
Forests and RuleFit

Rank in Random
Forests Rank in RuleFit

Predictor
Data
set 1

Data
set 2

Data
set 1

Data
set 2

Age 1 1 1 1
Serum glucose 2 2 3 3
BMI 3 4 2 2
HDL-C 4 3 14 4
Fibrinogen 8 8 5 7
Homocysteine 7 5 13 5
log(Lp(a)) 11 9 8 12
Systolic blood pressure 5 6 7 25
log(triglyceride) 6 7 15 20
Cholesterol 10 11 28 14
Sex 12 16 20 16
LDL-C particle size 13 14 9 41
NOS3_rs1800780 16 47 31 34
GPR35_rs3749172 19 41 38 45

The rank is based on the total of 304 variables including 287
tagSNPs and 17 risk factors. BMI, body mass index; HDL-C, high-
density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; SNP, single nucleotide polymorphism.
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compare the predictive ability across multiple
machine learning methods, especially when one of
the methods does include the re-sampling process.

We found evidence for an association of SNPs in
two genes (NOS3 and GPR35) with higher CAC
burden. The NOS3 gene has been associated with

atherosclerosis [Hingorani et al., 1999; Kuhlencordt
et al., 2001; Wang et al., 1996]. The NOS3 gene
encodes endothelial nitric oxide synthase which
synthesizes nitric oxide (NO) in endothelial cells
from L-arginine. NO is an important endogenous
anti-atherogenic molecule, and the NOS3 gene

Fig. 2. Summary of CAC burden associations and correlations (KGraph) of all risk factors and SNPs with replicable effects. AC,
coronary artery calcification; SNP, single nucleotide polymorphism.

TABLE V. Descriptive statistics of the important SNPs with replicable effects in the two data sets

Data set 1 Data set 2

SNP name Major/Minor allele MAF Nii Nij Njj HWE P-value MAF Nii Nij Njj HWE P-value

NOS3_rs1800780 A/G 0.494 85 194 81 0.143 0.486 88 194 78 0.136
GPR35_rs3749172a A/C 0.403 125 180 55 0.511 0.403 134 162 64 0.223
FGB_rs1800788 C/T 0.193 234 113 13 1.000 0.201 231 113 16 0.631
GPC6_rs1886928 A/G 0.415 123 175 62 1.000 0.433 113 182 65 0.585
SELP_rs6131a G/A 0.189 236 112 12 0.872 0.172 251 94 15 0.136
rs7944706 G/A 0.426 125 163 72 0.168 0.449 110 177 73 0.914
NOS3_rs891511 G/A 0.325 164 158 38 1.000 0.315 171 151 38 0.538
COL19A1_rs1736 G/A 0.363 148 163 49 0.733 0.385 140 163 57 0.369

aNon-synonymous SNP. SNP, single nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium.
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may influence bioavailability of NO and thereby
predispose to atherosclerotic vascular disease.
NOS3_rs1800780 is located on the intronic region
between the 12th and the 13th exons of NOS3 gene.
There is no known non-synonymous SNP in the
flanking region of this SNP with strong LD. Genetic
variation in NOS3 (Glu298Asp; rs1799983) has been
associated with reduced blood pressure fall after
exercise training [Rankinen et al., 2000], lower basal
coronary blood flow and reduced coronary vasodila-
tion to adenosine [Naber et al., 2001] and reduced
flow-mediated dilatation of the brachial artery
[Savvidou et al., 2001]. However, NOS3_rs1799983
was not a significant predictor of high CAC burden
using either statistical method in the current study.

GPR35_rs3749172 is a non-synonymous SNP that
causes the serine (A allele) to arginine (G allele)
conversion on the amino acid position of 294 of
G-protein-coupled receptor 35 (GPR35). Although
the function of GPR35 and its role in CAC burden is
not clear, it was suggested to be a receptor for the
kynurenine pathway intermediate kynurenic acid
[Wang et al., 2006]. The intermediates of the
kynurenine pathway are present at micromolar
concentrations in blood and are regulated by
inflammatory stimuli. Using sequence alignment
and membrane protein topology analysis, we found
that the non-synonymous GPR35_rs3749172 encodes
a Ser (Ser294) to Arg change which may alter the
protein function. GPR35_rs3749172 is located on the
cytosolic c-terminal, which is the phosphorylation
domain of the GPR proteins [Okumura et al., 2004].
The Ser294 is conserved by comparing human,
mouse and rat GPR35 protein sequences. As the
c-terminal phosphorylation sites are critical to the
function of the G-protein receptors and there are
only four conserved sites for phosphorylation on the
c-terminal of human GPR35, the Ser294Arg poly-
morphism may be functionally related to the
modification of the GPR35 signal transduction
pathway. The role of GPR35 in the biology of CAC
burden is still unclear and needs to be further
investigated.

The original implementation of Random Forests
[Breiman, 2001] used a bootstrapping procedure
which introduced bias in variable selection [Strobl
et al., 2007]. The bootstrapping procedure artificially
favors quantitative variables and categorical vari-
ables with more categories (i.e., the more categories
the variable has, the more likely it is to be selected).
However, ‘‘re-sampling with replacement’’ (i.e.,
down-sampling) reduces the bias. In the task of
SNP selection, such a bias is not an issue due to the
identical three-class data type of SNPs. However,
variable selection tasks comparing phenotypic and
other genotypic variables need to consider the
potential bias introduced by different re-sampling
procedures and importance measurements [Strobl
et al., 2007].

It is known that the non-random missing data
patterns can alter the results of machine learning.
Concern regarding non-random missing data is
elevated when the missing data rate is non-trivial.
Necessary procedures of controlling the data quality
and removing predictors with non-random missing
patterns can help to identify the true predictors and
improve the predictive ability of the models.

This study demonstrates how two machine learn-
ing algorithms can be applied to identify SNP and
risk factor associations that are replicable both
between data sets using the same method and
between methods using the same data set. The use
of multiple methods and data sets provides in-
creased confidence in the accuracy of the predictors.
Two novel SNP associations for CAC burden were
identified in the present study. The approaches
implemented here provide alternatives to methods
that rely on pre-specified models.
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