
STATISTICS IN MEDICINE
Statist. Med. 2008; 27:2756–2783
Published online 18 September 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sim.3044

Accounting for error due to misclassification of exposures in
case–control studies of gene–environment interaction

Li Zhang1, Bhramar Mukherjee2,∗,†, Malay Ghosh3, Stephen Gruber4

and Victor Moreno5,6

1Department of Quantitative Health Sciences, The Cleveland Clinic Foundation, Cleveland, OH-44195, U.S.A.
2Department of Biostatistics, University of Michigan, Ann Arbor, MI-48109, U.S.A.

3Department of Statistics, University of Florida, Gainesville, FL-32611, U.S.A.
4Department of Internal Medicine, Epidemiology and Human Genetics, University of Michigan, Ann Arbor,

MI-48109, U.S.A.
5Department of Internal Medicine and Epidemiology, University of Michigan, Ann Arbor, MI-48109, U.S.A.

6IDIBELL, Catalan Institute of Oncology, L’Hospitalet Barcelona, Spain

SUMMARY

We consider analysis of data from an unmatched case–control study design with a binary genetic factor
and a binary environmental exposure when both genetic and environmental exposures could be potentially
misclassified. We devise an estimation strategy that corrects for misclassification errors and also exploits
the gene–environment independence assumption. The proposed corrected point estimates and confidence
intervals for misclassified data reduce back to standard analytical forms as the misclassification error
rates go to zero. We illustrate the methods by simulating unmatched case–control data sets under varying
levels of disease–exposure association and with different degrees of misclassification. A real data set on a
case–control study of colorectal cancer where a validation subsample is available for assessing genotyping
error is used to illustrate our methods. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Measurement error in exposure assessment is one of the major sources of bias in epidemiological
studies. When ignored, even small errors in exposure assessment can result in biased point and
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interval estimates of the parameters and invalidate P-values of hypotheses tests. Widespread
existence of exposure measurement and misclassification errors in epidemiological research may
explain much of the inconsistent and inconclusive results currently reported in the literature.
Various statistical techniques have been developed to correct for exposure measurement errors in
epidemiological studies with accompanying validation substudies [1–3].

Bashir and Duffy [4] provided a general review of epidemiological methods for dealing specifi-
cally with measurement error and misclassification. Gustafson [5] presented a unified approach to
characterize the consequences of ignoring mismeasurement on resulting indicators of exposure–
disease association and demonstrated the use of Bayesian methods to adjust for mismeasurement.
Rice and Holmans [6] obtained analytical formulae for correcting risks due to a single genetic
factor in terms of the genotyping error probabilities for analyzing unmatched case–control studies.
Later, Rice [7] proposed a full-likelihood approach to obtain estimates and confidence intervals for
the parameters of interest in the presence of misclassification of a binary exposure in a matched
case–control study. However, many of the above discussions on the effects of misclassification
of exposure in genetic epidemiological studies have focused on the impact on the relative risk
and/or sample size in studies of just a single factor. In contrast, less attention has been given to the
effect of misclassification on the assessment of interactions between two or more factors. There is
a significant volume of literature for handling missingness and measurement error in unmatched
and matched case–control studies [8–13]. However, our focus remains on the particular context of
studies of gene–environment interaction.

One of the major goals in many recent epidemiological studies has been to investigate the effect
of genes on a disease, in combination with environmental exposures. In case–control studies of
gene–environment association with disease, when genetic and environmental exposures can be
assumed to be independent in the underlying population, one may exploit the independence in
order to derive more efficient estimation techniques than the traditional logistic regression analysis
[14–16]. Garcia-Closas et al. [17] showed that, under a set of conditions often satisfied in studies of
gene–environment interactions, both differential and non-differential misclassifications of a binary
environmental factor attenuate the multiplicative interaction effect towards the null value. Garcia-
Closas et al. [18] proposed a simple approach to assess the impact of misclassification on bias
in the estimation of multiplicative or additive interactions and on sample size requirements. They
pointed out that, under misclassification of exposures, increased sample size is needed to attain
the same power to detect the attenuated interaction. The focus of Garcia-Closas et al. [18] was
primarily on study design issues under misclassification, and the authors did not propose corrected
estimates of the parameters of interest, or inferential adjustments, if in fact misclassification is
present in the data.

Recently, Cheng [19] proposed an innovative conditional likelihood-based approach to adjust
for bias caused by genotyping errors in case-only studies by using the information from an
internal validation study, obtained by genotyping a randomly sampled set of individuals twice.
One of the major criticisms of a case-only study is the possible bias in the estimates when
gene–environment independence assumption is violated. Conditioning on covariates which may
introduce non-independence between genetic (G) and environmental (E) factors is viewed as a
potential remedy to prevent against such biases. Cheng [19, 20] used conditional independence of
G and E instead of marginal independence under a case-only design, introducing adjustments for
the interaction odds ratio estimate in the presence of genotyping error [19]. However, no corrected
estimates of main effects of G and E could be obtained by using case-only data. Moreover, a
possible misclassification of E is not considered in [19]. While the case-only design considered
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in Cheng [19] requires rare disease assumption, in the current paper, we consider the situation
when the disease is not rare but knowledge regarding the marginal prevalence of the disease is
available.

In this paper, we describe a relatively simple approach to adjust the estimation of the parameters
of interest in case–control studies of G–E interaction in the presence of misclassification in both
G and E . The proposed method exploits the G–E independence assumption and obtains corrected
parameter estimates for all parameters of interest, and not just the interaction odds ratio. We
consider an unmatched case–control setup, adapt and extend the work of Rice and Holmans [6]
to the situation when one has a binary G and a binary E , both of which are potentially subject to
misclassification, with the additional constraint that the joint distribution of G and E satisfies the
assumption of independence.

For a single biallelic locus, genetic exposure has inherently three instead of two levels, and in
some cases it may be worthwhile to use the full scale of data, especially when there is uncertainty
about the genetic susceptibility model [19]. Our proposed approach can be easily extended to the
corresponding 2× 6 table where one would consider genotype data recorded as 0, 1 or 2 depending
on the number of copies of the variant allele. We have indicated an outline of this extension in
Appendix A.3. However, as the basic theory and numerical findings remain fairly similar in the
current paper, we focus mainly on the 2× 4 table. The 2× 4 table is also used to represent a
dominant or a recessive genetic susceptibility model which is fairly common in practice. Botto and
Khury [21] present many reasons to consider the 2× 4 table as a pivotal quantity in the analysis
of G–E interactions.

In Section 2, we start with the standard formulation in terms of odds ratios of a 2× 4 table.
We then describe maximum likelihood (ML) estimation under the G–E independence assumption
and obtain maximum likelihood estimations (MLEs) under this additional restriction. We first
make a rare disease assumption, in which case we can obtain a closed-form expression for the
MLEs and their asymptotic variances. We point out that the estimate of the G–E interaction
parameter obtained by this approach, as expected, is exactly identical to the estimate obtained
by the popular case-only approach [14]. By using data on both cases and controls, in addition
to an efficient estimate of the interaction odds ratio, we obtain estimates of the main effects due
to G and E as in the constrained ML approach of [15] for a log-linear model. With knowledge
of the marginal prevalence of the disease in the population (P(D = 1)), we can relax the rare
disease assumption. In the latter situation, we can also obtain the constrained MLEs. Although the
corresponding score equations do not have explicit closed-form solutions, numerical evaluation is
extremely straightforward.

After this preliminary formulation with a perfectly measured data set, we delve into the issue
of adjusting the estimates in the presence of misclassification. We first consider the situation
with fixed values of sensitivity and specificity parameters of the measurement process. In the
presence of misclassification, based on the sensitivity and specificity of the measuring instruments
for genetic and environmental factors, we adjust the MLEs for bias due to misclassification.
Corrected test statistics and confidence intervals are formulated as in any standard likelihood-
based inference using the asymptotic distribution of the MLE, once the adjustments are made. In
fact, as misclassification error rates go to zero, the estimates reduce to the standard MLEs for a
perfectly recorded data set, had there been one. We also provide comparisons for the proposed
methods in terms of coverage probabilities and power. Corrections for the interaction odds ratio
under a case-only design follow directly and are discussed in Section 2.3. In Section 2.4, we briefly
describe how to estimate the sensitivity and specificity parameters, which are typically unknown,
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based on a validation substudy. We review several options to obtain the estimates of the error rates
based on a validation study, using both frequentist and Bayesian recipes [22]. Simulation studies
in Section 3 show that our corrected inference substantially reduces bias when compared with the
unadjusted inference based on misclassified cell counts. Section 4 contains the analysis of a real
case–control study on colorectal cancer where data on a ‘gold standard’ measurement are available
from a validation substudy. Finally, Section 5 contains a concluding discussion, whereas proofs
and detailed calculations are relegated to the Appendix.

2. THE 2× 4 TABLE

We consider unmatched case–control studies with a binary genetic factor G and a binary envi-
ronmental exposure E , which take values 1 for susceptible (exposed in the case of E) and 0 for
non-susceptible (unexposed in the case of E) subjects. Let D denote the disease status, where D = 1
denotes affected, and D = 0 denotes unaffected individuals. Using the same notation as in [18],
the odds ratio OReg measures the association between disease and the environmental and genetic
factors. Relative to subjects not exposed to the environmental or genetic factor (E = 0 and G = 0
are treated as the baseline categories), we define the following odds ratios: OR10 denotes the odds
ratio for non-susceptible subjects exposed to the environmental factor; OR01 denotes the odds ratio
for susceptible subjects not exposed to the environmental factor; and OR11 denotes the odds ratio
for susceptible subjects exposed to the environmental factor. Therefore, � =OR11/(OR10 OR01)

is the multiplicative interaction parameter.

2.1. MLE under G–E independence assumption

Table I presents a general format of the data that we are considering. In the absence of misclassi-
fication, we can assume that the cell frequencies in the control and case populations, follow inde-
pendent multinomial distributions namely r0 ∼ Mn(n0,p0) and r1 ∼ Mn(n1,p1), where n0 and n1
are fixed, and r0 = (r01, r02, r03, r04), r1 = (r11, r12, r13, r14), p0 = (p01, p02, p03, p04 = 1− p01 −
p02 − p03) and p1 = (p11, p12, p13, p14 = 1 − p11 − p12 − p13). By the definition of the odds
ratios, we have OR10 = p01 p12/(p02 p11), OR01 = p01 p13/(p03 p11), OR11 = p01 p14/(p04 p11) and
�= p02 p03 p11 p14/(p01 p04 p12 p13). Thus, we obtain the case probabilities parameterized in terms
of the relevant odds ratios and the control probabilities as p11 = p01/p, p12 = p02/p · OR10,
p13 = p03/p ·OR01 and p14 = p04/p ·OR10 ·OR01 ·�, where p= p01 + p02 ·OR10 + p03 ·OR01 +
p04 · OR10 · OR01 · �. The corresponding multinomial likelihood is given by

L1 = L(OR10,OR01,�, p01, p02, p03|r0, r1) =
1∏

d=0

4∏
j=1

p
rd j
d j (1)

Note that the parameterization in terms of p01, p02 and p03 imposes no other restrictions except
that they lead to valid probability distributions (all positive and summation less than 1). Similarly,
the odds ratios are required to be positive. We can easily maximize the likelihood (1) and obtain
the MLEs of the parameters of interest and their estimated asymptotic variance (̂AVAR) as in
Table II under the column of unconstrained model. The MLEs of the cell probabilities are simply
given by p̂d j = rd j/nd , d = 0, 1, j = 1, . . . , 4.

Let us now describe how the estimation changes with the additional constraint of G–E indepen-
dence in the source population. We first investigate the estimates under a rare disease assumption,
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Table I. Data for an unmatched case–control study with a binary
genetic factor and a binary environmental exposure.

G = 0 G = 1

E = 0 E = 1 E = 0 E = 1 Total

j 1 2 3 4

D = 0 r01 r02 r03 r04 n0
D = 1 r11 r12 r13 r14 n1

Table II. The MLEs of the odds ratios and their estimated asymptotic variances in terms
of observed counts rd j for both the traditional unconstrained model and the model under

G–E independence and rare disease in the absence of misclassification.

Parameters Unconstrained model G–E independence and rare disease

log(OR10) MLE log(r01r12) − log(r02r11) log(r12(r01 + r03)) − log(r11(r02 + r04))

̂AVAR 1
r01

+ 1
r02

+ 1
r11

+ 1
r12

1
r01+r03

+ 1
r02+r04

+ 1
r11

+ 1
r12

log(OR01) MLE log(r01r13) − log(r03r11) log(r13(r01 + r02)) − log(r11(r03 + r04))

̂AVAR 1
r01

+ 1
r03

+ 1
r11

+ 1
r13

1
r01+r02

+ 1
r03+r04

+ 1
r11

+ 1
r13

log(�) MLE log(r02r03r11r14) − log(r01r04r12r13) log(r11r14) − log(r12r13)

̂AVAR
∑1

d=0
∑4

j=1 (1/rd j )
∑4

j=1 (1/r1 j )

which is routinely made in epidemiological studies. The assumption of G–E independence in the
source population, P(G, E) = P(G)P(E), in conjunction with the rare disease assumption, im-
plies that G–E independence holds in the control population, i.e. P(G, E |D = 0) = P(G|D = 0)P
(E |D = 0). This adds an additional restriction on p01, p02 and p03, namely

p01(1 − p01 − p02 − p03) = p02 p03 (2)

With this additional restriction, maximizing the likelihood (1) will not provide the same estimates
as in the traditional unconstrained model. The MLEs and their ̂AVAR in this restricted parameter
space are presented in Table II under the column G–E independence and rare disease. The
constrained ML equations and their solutions which lead to this column in Table II are presented
in Appendix A.1. Note that the asymptotic variance under the unconstrained model is always
larger than that under the constrained model. Gain in efficiency in the MLEs obtained from the
retrospective likelihood when constraints on the exposure distribution (such as G–E independence
or Hardy–Weinberg equilibrium) are exploited has been noted in several recent papers [16, 23, 24].

If the disease prevalence P(D = 1) = � in the source population is known, we can relax the rare
disease assumption by expressing the G–E independence as the following:

P(G = g)P(E = e)= P(G = g, E = e)

= P(G = g, E = e|D = 0)P(D = 0) + P(G = g, E = e|D= 1)P(D= 1) (3)
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where g, e= 0, 1. Therefore, instead of the restriction as in (2), we have the following restriction
on p01, p02 and p03:

f = (1 − �)p04 + �OR10 OR01 �p04/p

−[(1 − �)(p02 + p04) + �(OR10 p02 + OR10 OR01 �p04)/p]
× [(1 − �)(p03 + p04) + �(OR01 p03 + OR10 OR01 �p04)/p] = 0 (4)

The details of obtaining (4) are deferred to Appendix A.2. With this additional restriction, max-
imizing the likelihood in (1) will not provide the same estimates as under the rare disease as-
sumption. In fact, the solutions to the ML equations cannot be written in closed form. How-
ever, we can obtain the restricted MLEs by the usual Newton–Raphson algorithm and obtain
the estimated asymptotic variance–covariance matrix by the inverse of the observed informa-
tion matrix. The observed information matrix is constructed by taking the second derivative
of the log-likelihood with respect to the parameters and evaluating them at the MLEs of the
parameters.

Because of the skewness in the sampling distribution of the estimated odds ratios, statistical
inference for the odds ratio parameters (denoted by a generic symbol �) uses an alternative but
equivalent measure: its natural logarithm, log(�̂). By simple use of the delta method, the large-
sample distribution of log(�̂) is approximately normal, i.e. log(�̂) ∼N(log(�),AVAR(log �̂)), where
�̂ is the MLE of �, and the estimated asymptotic variance of log(�̂) is obtained from the observed
Fisher information. Standard z-tests and confidence intervals for the log-scale parameters are
constructed on the basis of the above asymptotic normality.

Remark 1
It is well known that, in a multinomial setup, the expected cell counts, namely Epd [rd ], are simply
equal to ndpd , where Epd [rd ] represents the row vector of expected cell counts corresponding
to D = d, d = 0, 1, and pd denotes the true probability vector. Then, the vector of estimated
expected cell frequencies, denoted by r̃d , is given by r̃d = Epd [rd ]|pd = p̂d = nd p̂d , (i.e. the expected
frequencies evaluated at the MLEs of the model parameters). For example, for the usual multinomial
model, without any restrictions on the exposure space, the vector of estimated expected cell
frequencies matches exactly with the observed frequencies, that is r̃d = rd (as p̂d = rd/nd ), where
rd is the vector of observed frequencies.

Under G–E independence and rare disease assumptions (denoted by the superscript I R below,
to distinguish from the other models), from Appendix A.1, we note that the MLEs for p are

p̂IR01 = (r01 + r03)(r01 + r02)

n20
, p̂IR02 = (r01 + r02)(r02 + r04)

n20

p̂IR03 = (r01 + r03)(r03 + r04)

n20
, p̂IR04 = (r02 + r04)(r03 + r04)

n20

p̂IR1 j = r1 j
n1

, j = 1, 2, 3, 4

(5)

and thus the estimated expected frequencies are obtained simply by r̃IRd = nd p̂IRd .
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Remark 2
One can obtain the estimates of the marginal odds ratios for G and E by using the estimates of
OR10, OR01 and the interaction effect �, as well as the cell probabilities in the control population,
p0. Define the genetic and environmental marginal odds ratios ORG and ORE as the following:

ORE = P(D = 1|E = 1)P(D= 0|E = 0)

P(D = 0|E = 1)P(D= 1|E = 0)

ORG = P(D = 1|G = 1)P(D= 0|G = 0)

P(D = 0|G = 1)P(D= 1|G = 0)

Thus, one is able to estimate ORG and ORE by using the following identities:

ORE =
{
p01 + p03
p02 + p04

}{
p02 OR10 + p04 OR10 OR01 �

p01 + p03 OR01

}
ORG =

{
p01 + p02
p03 + p04

}{
p03 OR01 + p04 OR10 OR01 �

p01 + p02 OR10

}
Under the G–E independence and rare disease assumptions, we have p01 p04 = p02 p03. Further-
more, P(E |D = 0) ≈ P(E) and P(G|D = 0) ≈ P(G); thus, one can estimate ORG and ORE by
using

ORE = (1 − P(G = 1))OR10 + P(G = 1)OR10 OR01 �

(1 − P(G = 1)) + P(G = 1)OR01

ORG = (1 − P(E = 1))OR01 + P(E = 1)OR10 OR01 �

(1 − P(E = 1)) + P(E = 1)OR10

2.2. MLE in the presence of misclassification

In this section, we introduce the effects of misclassification into the estimation framework. Our
model for misclassified data is based on the assumption that some perfectly classified ‘true’
case–control data exist, where the true underlying cell probabilities follow the same model
as pd discussed above. Following the ‘star’ notation of [6], we let the superscript asterisk
denote the true parameters for the true data model as well as the perfectly measured expo-
sure variables. Let spdG (sedG) and spdE (sedE ) denote specificity (sensitivity) of G and E
with disease status d , respectively, where sensitivity= P(observed exposed | truly exposed) and
specificity= P(observed unexposed | truly unexposed); hence, sedG = P(G = 1|G∗ = 1, D = d),
sedE = P(E = 1|E∗ = 1, D = d), spdG = P(G = 0|G∗ = 0, D = d) and spdE = P(G = 0|G∗ = 0,
D = d). Applying a classical error structure, all subjects are assumed to have the same probability
of the observed exposure, conditional on their case/control status and true exposure. We then have
the following two results.

Result 1
Assuming that given the disease status d( = 0, 1) and the true exposure status of G and E the
observed exposure statuses of G and E are independent, then(

pd1 pd2

pd3 pd4

)
=Ad

(
p∗
d1 p∗

d2

p∗
d3 p∗

d4

)
Bd (6)
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where

Ad =
(

spdG 1 − sedG

1 − spdG sedG

)
and Bd =

(
spdE 1 − spdE

1 − sedE sedE

)
Proof

P(G, E |D = d)

=
1∑

g=0

1∑
e=0

P(G, E |D = d,G∗ = g, E∗ = e)P(G∗ = g, E∗ = e|D = d)

=
1∑

g=0

1∑
e=0

P(G|D = d,G∗ = g, E∗ = e)P(E |D= d,G∗ = g, E∗ = e)P(G∗ = g, E∗ = e|D= d)

=
1∑

g=0

1∑
e=0

P(G|D = d,G∗ = g)P(E |D = d, E∗ = e)P(G∗ = g, E∗ = e|D = d)

pd j as defined in Table I denotes the cell probabilities of the j th ( j = 1, . . . , 4) (G, E) configu-
ration given the disease status d = 0, 1. Note that the second equality is not a result of the G–E
independence assumption, but, given the disease status d(= 0, 1) and the true exposure statuses of
G and E , the observed exposure statuses of G and E are independent. Result 1 holds for all three
models discussed in the previous section. Therefore, if the observed data come from a common
multinomial distribution with cell probabilities pd j , then we can write down the likelihood (1) in
terms of the true, ‘starred’ parameters. We simply write the pd j ’s in terms of a linear function of
the true parameters p∗

d j as defined by Result 1 and maximize the following multinomial likelihood
in terms of the underlying true or starred parameters

L2 = L(OR∗
10,OR

∗
01,�

∗, p∗
01, p

∗
02, p

∗
03|r0, r1) =

1∏
d=0

4∏
j=1

{pd j (p∗
d)}rd j (7)

where pd j (p∗
d) denotes the linear transformation defined in (6); essentially we are replacing the pd j

in the original likelihood by a function of the underlying true parameters as described in Result 1.
Thus, by maximizing the likelihood (7), which now includes the effect of misclassification through
the linear transformation on the parameters with the correction matrices Ad and Bd , we can now
obtain the MLEs of the starred parameters, denoted by p̂∗

d .
As indicated in Remark 1, the vector of estimated expected cell counts under the multinomial

model is given by r̃d = nd p̂d . Thus, for the estimation with the starred parameters, the vector of
estimated expected cell counts under the true data model is r∗

d = nd p̂∗
d . Note that by the invariance

property of the MLE, Result 1 holds when the parameters p0 and p1 are replaced with the MLEs
for the perfectly classified data model and the misclassified data model. Thus, by inverting Result
1 as in (6), replacing the parameters with the MLEs, we have(

p̂∗
d1 p̂∗

d2

p̂∗
d3 p̂∗

d4

)
=A−1

d

(
p̂d1 p̂d2

p̂d3 p̂d4

)
B−1
d = 1

nd
A−1
d

(
r̃d1 r̃d2

r̃d3 r̃d4

)
B−1
d
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Table III. The MLEs of the true odds ratios in terms of estimated starred expected counts r∗
d j for

the traditional unconstrained model (Model 1) and r∗
d j

IR for the model under G–E independence
and rare disease assumptions (Model 2) in the presence of misclassification.

Parameters Model 1 Model 2

log(OR∗
10) log(r∗

01r
∗
12) − log(r∗

02r
∗
11) log(r∗IR

01 r∗IR
12 ) − log(r∗IR

02 r∗IR
11 )

log(OR∗
01) log(r∗

01r
∗
13) − log(r∗

03r
∗
11) log(r∗IR

01 r∗IR
13 ) − log(r∗IR

03 r∗IR
11 )

log(�∗) log(r∗
02r

∗
03r

∗
11r

∗
14) − log(r∗

01r
∗
04r

∗
12r

∗
13) log(r∗IR

11 r∗IR
14 ) − log(r∗IR

12 r∗IR
13 )

This immediately leads to the following relationship between estimated expected cell counts for the
true data and the misclassified data. �

Result 2 (
r∗
d1 r∗

d2

r∗
d3 r∗

d4

)
=A−1

d

(
r̃d1 r̃d2

r̃d3 r̃d4

)
B−1
d (8)

In fact, the result is true for the vector of expected cell counts involving the unknown parameters,
not only the sample estimates, as is obvious from the above discussion.

Thus, for the traditional multinomial model and the model under the G–E independence and
rare disease assumptions, the MLEs of the true starred parameters of interest have a closed-form
expression in terms of the estimated starred expected cell counts r∗

d , which are shown in Table III.
To obtain r∗

d , we simply obtain the MLEs p̂∗
d under different models and multiply by nd . Note that

the MLEs p̂∗
d are also easily obtained by using the transformation in Result 1 and the ML estimation

of pd as discussed in Section 2.1 under different model assumptions. The MLEs p̂∗
d turn out to be

different functions of the observed cell counts rd , sensitivity and specificity parameters, the form
of the function depending on the model assumptions. Therefore, r∗

d under different assumptions
or constraints on the parameters might be different (we use the superscript I R to denote under
G–E independence and rare disease assumptions to distinguish it from other models) as the MLEs
p̂∗
d (and p̂d ) are different across models with different assumptions. (We refer to the discussion

comparing the usual multinomial model, and the model with rare disease and G–E independence
in Section 2.1). This simply means that we can apply the corrected counts instead of the observed
counts rd to the estimates obtained in Table II, which will lead to the exactly same estimates as
described in Table III. We emphasize that these estimators in Table III are strictly valid as MLEs
only when they lie within the constrained parameter space. When the positivity constraints on
the OR∗

eg’s or the probability constraints on the p∗
d ’s are violated (e.g. when very small values of

sensitivity or specificity are used, corresponding to huge misclassification rates), the constrained
MLEs would be on the boundary of the parameter space. We should then maximize the likelihood
(7) directly with respect to the true parameters subject to the constraints, instead of transforming
the observed MLE. However, as such estimates are indicative of extreme misclassification, or too
small a sample, we might as well treat these estimates with some caution.

Construction of the confidence intervals follows in exactly the same way as for the perfectly
classified data, with the standard error estimates obtained from the inverse of the information
matrix of L2 evaluated at the MLEs.
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We can also observe the behavior of the estimators from Table III as the misclassification error
rates go to 0 by Taylor series expansions of these estimators. Define the errors as �pdG = 1− spdG ,

�edG = 1 − sedG , �pdE = 1 − spdE and �edE = 1 − sedE . Expanding the log-scale estimators �̂∗ and

�̂∗IR of the interaction parameter around �pdG = �edG = �pdE = �edE = 0, we see that

log(�̂∗)

= log

(
r∗
02r

∗
03r

∗
11r

∗
14

r∗
01r

∗
04r

∗
12r

∗
13

)

= log

(
r02r03r11r14
r01r04r12r13

)
+ (r01r04 − r02r03)(r03r04�e0G + r02r04�e0E + r01r02�

p
0G + r01r03�

p
0E )

r01r02r03r04

+ (r11r14 − r12r13)(r13r14�e1G + r12r14�e1E + r11r12�
p
1G + r11r13�

p
1E )

r11r12r13r14
+ higher order terms

log(�̂∗IR) = log

(
r∗IR
11 r∗IR

14

r∗IR
12 r∗IR

13

)

= log

(
r11r14
r12r13

)
+ (r11r14 − r12r13)(r13r14�e1G + r12r14�e1E + r11r12�

p
1G + r11r13�

p
1E )

r11r12r13r14

+ higher order terms (9)

Up to a first-order approximation, the estimator reduces to the normal, perfect-data estimate of
the interaction odds ratio described in Table II as the error rates go to 0. The first-order terms
suggest that using a good approximation to errors may give better estimates than those by simply
ignoring misclassification, i.e. setting the errors equal to 0. The expressions also suggest that the
misclassification probably affects the unconstrained estimate of � more as there is contribution
from two such first-order error terms.

2.3. Case-only method with possible misclassification

The case-only method [14] is a popular method to estimate the multiplicative G–E interaction
parameter �, where, under the rare disease and G–E independence assumptions, the odds ratio of
G for exposed versus unexposed subjects among the cases only provides an efficient estimate of
�. The data used are as shown in the second row of Table I, ignoring the control data in the first
row.

In the absence of misclassification, data from the case population form a multinomial distribution,
r1 ∼ Mn(n1,p1), where n1 is fixed. The interaction parameter (denoted here as �CO) is obtained as
the odds ratio between G and E among the case population, i.e. �CO = p11 p14/(p12 p13). Together
with

∑4
j=1 p1 j = 1, we have the following restrictions for p1:

p13 = p11(1 − p11 − p12)

p11 + p12�
CO

and p14 = p12�
CO(1 − p11 − p12)

p11 + p12�
CO
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The corresponding likelihood for the case-only method is thus LCO = L(�CO, p11, p12|r1) =∏4
j=1 p

r1 j
1 j , and the MLE of the interaction parameter �CO is �̂CO = r11r14/(r12r13) with vari-

ance {�̂CO}−2(
∑4

j=1 1/r1 j ).
Both Results 1 and 2 hold for d = 1 as well; therefore, estimating the true parameters in the

presence of misclassification is straightforward by writing the likelihood in terms of the true
parameters L∗

CO = L(�∗CO, p∗
11, p

∗
12|r1) =∏4

j=1 {p1 j (p∗
1)}r1 j . Note that p̂1 j = r1 j/n1; hence, the

MLE of the ‘true’ parameter �∗CO in terms of r∗CO
1 is �̂

∗CO = r∗CO
11 r∗CO

14 /(r∗CO
12 r∗CO

13 ), and r∗CO
1 j

can be obtained following Result 2, with r̃1 j = n1 p̂1 j = r1 j . The variance estimators can again be
estimated from the inverse of the information matrix of L∗

CO evaluated at the MLEs or by the
technique as stated in Appendix A.1.

Remark 3
Note that the MLE of the interaction parameter and its variance obtained by the case-only method
are exactly the same as those obtained in Section 2.1, where we also assume G–E independence
and rare disease assumptions, but use both case and control data. This is true whether in the absence
of misclassification or in the presence of misclassification (unadjusted or adjusted). This establishes
yet another proof of the fact that, under G–E independence and rare disease assumptions, the MLE
of the interaction odds ratio is exactly equal to the odds ratio of E on G for cases alone.

Remark 3 shows that our model with the G–E independence and rare disease assumptions can
also obtain a highly efficient estimate of the interaction parameter � as in the case-only method.
Moreover, our model is also able to estimate the main effects of genetic and environmental factors,
which the case-only method cannot estimate (Umbach and Weinberg [15] established this for a
more general log-linear model). As Clayton and McKeigue [25] pointed out, studies of gene–
environment association with disease need to go beyond the mere estimation of the statistical
interaction parameter �, and our study can estimate auxiliary parameters like the joint effects of
interest without compromising on the efficiency of the estimate of the interaction parameter. An
outline of extending our method to a 2× 6 table, when genotype data are recorded into three levels,
is presented in Appendix A.3.

2.4. Validation studies when misclassification rates are unknown

Instead of knowing the various misclassification rates perfectly, we shall briefly describe a com-
monly used strategy to estimate the misclassification rates from a validation substudy. In case the
validation studies are independent of each other and of the main study, the full joint likelihood
including the validation study is given by

LFull = L2 × Lvalid (10)

where L2 =∏1
d=0

∏4
j=1 {pd j (p∗

d)}rd j as in (9). In our simulation studies we work with this setup.
For illustration purposes, assume that there is no misclassification in G. We shall now assume that
each of the four misclassification rates (s= (sp0E , sp1E , se0E , se1E )) of E has been estimated from
a binomial validation study of 100 subjects, so that, for example, sp0E is known only through a
correctly classified sample of size (n0p) drawn from a Bin(100, sp0E ) distribution. Let n1p, n0e, n1e
denote the sizes of correctly classified samples drawn from the corresponding binomial distributions
when estimating sp1E , se0E , se1E , respectively. Then the likelihood from the validation study
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is given by

Lvalid(s|n0p, n1p, n0e, n1e) = (sp0E )n0p (1 − sp0E )100−n0p (sp1E )n1p (1 − sp1E )100−n1p

× (se0E )n0e(1−se0E )100−n0e(se1E )n1e(1−se1E )100−n1e (11)

If we need to introduce misclassification in G, there will be four more such binomial probability
contributions. The analyses of the previous section assumed known fixed misclassification rates
s; thus the likelihood had contribution only from L2. Now we consider estimating s from the
validation study by the following two ways:

(i) A crude plug-in method: Estimate s from Lvalid only and plug in the estimates in L2 . Then
maximize L2 exactly as in Section 2.2. This naive method ignores uncertainty in the obtained
estimates of sensitivity and specificity parameters, and will lead to smaller coverage probabilities
for the confidence intervals for the odds ratio parameters than the designated confidence levels.

(ii) Joint estimation of all unknown parameters: Obtain the estimates of OR∗
eg (e, g= 0, 1), p∗

0 j
( j = 1, 2, 3) and s simultaneously based on the full joint likelihood as in (10). There are several
options to achieve this: (a) maximize the full likelihood (10) with respect to OR∗

eg (e, g= 0, 1), p∗
0 j

( j = 1, 2, 3) and s to obtain the MLEs; (b) take a full Bayesian approach by introducing priors on
all parameters and use the Markov chain Monte Carlo to conduct posterior inference; (c) use the
marginal likelihood approach where one integrates out s with respect to Uniform(0, 1) priors on
each error rate parameter; and (d) maximize the integrated likelihood in terms of OR∗

eg (e, g= 0, 1)
and p∗

0 j ( j = 1, 2, 3). Note that Lvalid involves only s; hence, the MLEs of OR∗
eg (e, g= 0, 1) and

p∗
0 j ( j = 1, 2, 3) have the same formulations as when s is known (under the corresponding model

assumptions), which are the functions of r0, r1 and s, denoted as ÔR
∗
eg(s) and p̂∗

0 j (s). Therefore,
one can first estimate s based on the following profile likelihood:

L p(ÔR
∗
eg(s), p̂

∗
0 j (s), s|r0, r1, n0p, n1p, n0e, n1e)

= L2(ÔR
∗
eg(s), p̂

∗
0 j (s)|r0, r1)Lvalid(s|n0p, n1p, n0e, n1e) (12)

The profile likelihood is maximized by the usual Newton–Raphson method to obtain the MLEs
of s. One can then plug in the estimates of s into ÔR

∗
eg(s) and p̂∗

0 j (s) to obtain the estimates of
OR∗

eg (e, g= 0, 1) and p∗
0 j ( j = 1, 2, 3). We present the results of the crude plug-in method and the

last profile likelihood approach, although each of the four methods offers satisfactory solution when
parameters do not lie on the boundaries. Since the crude plug-in method is easiest to implement
and provides results fairly comparable to those obtained using methods based on maximizing
the joint likelihood, we advocate using this method, knowing that the actual confidence intervals
accounting for uncertainties in the estimation of sensitivity/specificity parameters are marginally
wider than the ones obtained in most cases.

Remark 4
Rice and Holmans [6], Cheng [19] and Lai et al. [26] all considered validation data generated using
the repeated measurement sampling method, which genotypes repeatedly a fraction of the sampled
subjects with the same error-prone genotyping instrument to obtain estimates of misclassification
probabilities. The assumption typically made in much of the literature is that genotyping errors
are the same for cases and controls and are independent of one another. In our formulation, the
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first assumption is relaxed as error probabilities are allowed to depend on the disease status d ,
although estimation of multiple error probabilities could naturally be problematic with limited
validation data. Our method is fairly general to accommodate other types of validation designs
where infallible data may be available from a ‘gold standard’ genotyping method, as discussed in
[27] and as presented in our real-data example.

3. SIMULATION STUDIES

In this section, we present numerical evidence in the form of simulation studies to illustrate the
advantage of our proposed methods. Generally, we assume that the genetic variant of interest is a
biallelic locus with the wild- and variant-type alleles and consider a dominant model for the effect
of the gene variant. We also assume a binary environmental exposure and consider a commonly
prevalent exposure. We follow a similar simulation design as mentioned in [28].

We first generate the parental genotype data for each individual. To accomplish this for each
family F , we simulate a family-specific allele frequency parameter �F = exp(�F )/{1+ exp(�F )},
where �F is generated from a normal distribution with mean � and variance �2. We select � in
such a way that the marginal probability of the genotype variant of interest (assuming a dominant
model) is fixed at a given prevalence value in the generated population. We consider two situations
with P(G = 1) fixed at 0.2 and 0.05, to represent a common and a rare gene, respectively. Given
the allele frequency parameter �F , we generate the genotype data for the parents, assuming Hardy–
Weinberg equilibrium and that the parents are independent. Given the genotypes of the parents,
we generate the genotype for one offspring based on a standard Mendelian mode of inheritance.
We independently generate the environmental exposure for this offspring based on the marginal
probability of exposure (E = 1) for the underlying population. Given the information on genetic
and environmental factors, we generate the disease outcome for each individual, independent of
others, using the logistic regression model for disease risk

log

{
P(D = 1|G, E)

P(D = 0|G, E)

}
= �0 + �E ∗ E + �G ∗ G + �GEG × E (13)

We choose the main effect parameters �E = log(OR10) = log(2) and �G = log(OR01) = log(2) and
consider a multiplicative interaction between G and E , fixing �GE = log(�) = log(2). We select
the value of �0 so that the marginal probability of the disease in the population P(D = 1) ≈ 0.01.
Following this scheme, we first generate data for a large number of individuals, which we treat
as the underlying population, and then randomly select 1000 cases and 1000 controls from this
population.

We then retain the disease, genotype and environmental exposure information and discard
the rest of the data. Following the definitions of sensitivity and specificity, we randomly mis-
classify the genotype and environmental exposure information, independent of one another, but
keep the disease information unchanged. We set the specificity of the instruments at 1 and consider
the following settings: (1) se0G = se1G = 0.95 and se0E = se1E = 0.9 (2) se0G = se1G = 0.9 and
se0E = se1E = 0.8.

For each scenario, we simulate 500 data sets and analyze the data by implementing the adjusted
formulation, but first assuming the true sensitivity and specificity of the genetic and environmental
factors to be known. We compare the results both in the absence and in the presence of misclas-
sification (unadjusted and adjusted). We apply our method under all three models as discussed in
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Table IV. Results for 500 simulated unmatched case–control data sets (750/750), where specificity for both
genetic and environmental factors= 1.0, se0G = se1G = 0.95 and se0E = se1E = 0.9.

OR10 OR01 � Power
Constraints Misclassification 2.0000 2.0000 2.0000 H0 : �= 1

None No MLE 2.0238 2.0344 1.9897 0.7660
s.e. 0.2753 0.3874 0.4853
MSE 0.0770 0.1708 0.2587

Coverage 0.9448 0.9518 0.9500
Yes and unadjusted MLE 1.8788 2.2731 1.7084 0.5840

s.e. 0.2462 0.3992 0.4085
MSE 0.0752 0.2462 0.2562

Coverage 0.9160 0.8800 0.8620
Yes and adjusted MLE 2.0125 2.0246 2.0430 0.6460

s.e. 0.3168 0.4485 0.6004
MSE 0.0997 0.2127 0.3771

Coverage 0.9340 0.9620 0.9540
G–E independence No MLE 1.9916 1.9980 1.9848 0.9714
and rare disease s.e. 0.2589 0.3385 0.3359

MSE 0.0656 0.1178 0.1128
Coverage 0.9763 0.9472 0.9499

Yes and unadjusted MLE 1.8787 2.2755 1.6640 0.8997
s.e. 0.2355 0.3550 0.2614
MSE 0.0675 0.2056 0.1803

Coverage 0.9208 0.8786 0.7573
Yes and adjusted MLE 2.0109 2.0194 1.9866 0.8892

s.e. 0.3032 0.3991 0.4270
MSE 0.0882 0.1678 0.1806

Coverage 0.9604 0.9472 0.9420
G–E independence No MLE 2.0020 2.0005 1.9900 0.9728
and P(D= 1) known s.e. 0.2604 0.3388 0.3402

MSE 0.0649 0.1150 0.1175
Coverage 0.9736 0.9446 0.9604

Yes and unadjusted MLE 1.8713 2.2567 1.6957 0.9129
s.e. 0.2345 0.3521 0.2699
MSE 0.0690 0.1936 0.1643

Coverage 0.9103 0.8918 0.7968
Yes and adjusted MLE 1.9998 1.9951 2.0371 0.9103

s.e. 0.3016 0.3950 0.4432
MSE 0.0872 0.1641 0.1954

Coverage 0.9604 0.9446 0.9472

P(D= 1) ≈ 0.01, P(E = 1)≈ 0.5 and P(G = 1)≈ 0.2. s.e. refers to the average standard error of the odds
ratio estimates. Mean-squared error (MSE) is estimated based on the average squared deviations of the 500
estimates from their true value.

Section 2.1. Tables IV–VI summarize the results of analyzing unmatched case–control data with
different sample sizes (1000/1000 and 750/750) for different choices of misclassification error
rates with P(E = 1) = 0.5 and P(G = 1) = 0.2.

To summarize, in the presence of misclassification, the estimates without adjustment show
high bias and have significantly large mean-squared errors (MSEs), but the standard errors are not
necessarily larger when compared with the estimates in the absence of misclassification. We observe
that the estimates of � without adjustment are biased towards the null. The adjusted estimates that
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Table V. Results of unmatched case–control data (1000/1000), where specificity for both genetic and
environmental factors= 1.0, se0G = se1G = 0.95 and se0E = se1E = 0.9.

OR10 OR01 � Power
Constraints Misclassification 2.0000 2.0000 2.0000 H0 : �= 1

None No MLE 2.0059 2.0295 1.9755 0.8580
s.e. 0.2361 0.3345 0.4168
MSE 0.0499 0.1162 0.1779

Coverage 0.9520 0.9580 0.9380
Yes and unadjusted MLE 1.8855 2.2858 1.6823 0.6800

s.e. 0.2139 0.3473 0.3482
MSE 0.0570 0.2076 0.2251

Coverage 0.9140 0.8660 0.8200
Yes and adjusted MLE 2.0205 2.0383 2.0001 0.7380

s.e. 0.2753 0.3901 0.5082
MSE 0.0736 0.1654 0.2722

Coverage 0.9620 0.9500 0.9540
G–E independence No MLE 1.9953 2.0070 1.9329 0.9906
and rare disease s.e. 0.2244 0.2937 0.2823

MSE 0.0480 0.0959 0.0923
Coverage 0.9519 0.9412 0.9225

Yes and unadjusted MLE 1.8797 2.2712 1.6308 0.9492
s.e. 0.2038 0.3067 0.2215
MSE 0.0551 0.1578 0.1841

Coverage 0.9144 0.8663 0.6364
Yes and adjusted MLE 2.0141 2.0212 1.9295 0.9492

s.e. 0.2628 0.3454 0.3573
MSE 0.0685 0.1069 0.1307

Coverage 0.9519 0.9759 0.9519
G–E independence No MLE 1.9863 1.9876 1.9728 0.9938
and P(D= 1) known s.e. 0.2234 0.2908 0.2913

MSE 0.0477 0.0944 0.0943
Coverage 0.9520 0.9547 0.9360

Yes and unadjusted MLE 1.8724 2.2527 1.6613 0.9599
s.e. 0.2030 0.3042 0.2287
MSE 0.0566 0.1467 0.1657

Coverage 0.9064 0.8797 0.6898
Yes and adjusted MLE 2.0041 1.9995 1.9765 0.9600

s.e. 0.2616 0.3423 0.3705
MSE 0.0677 0.1062 0.1365

Coverage 0.9493 0.9707 0.9600

P(D= 1) ≈ 0.01, P(E = 1)≈ 0.5 and P(G = 1)≈ 0.2. s.e. refers to the average standard error of the odds
ratio estimates. Mean-squared error (MSE) is estimated based on the average squared deviations of the 500
estimates from their true value.

are obtained through our proposed formulation are quite close to the true parameters, except with
relatively large standard errors.

In the absence of misclassification, the models under the independence assumption provide much
more precise estimates, i.e. smaller standard errors and MSEs, which is now a well-established
observation in the literature [15, 16]. Significant gain in efficiency continues to be maintained by
the constrained MLEs when both estimates are corrected for misclassification error. A point worth
noting is that, under the independence model, the coverage probability of the confidence interval
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Table VI. Results of unmatched case–control data (750/750), where specificity for both genetic and
environmental factors= 1.0, se0G = se1G = 0.9 and se0E = se1E = 0.8.

OR10 OR01 � Power
Constraints Misclassification 2.0000 2.0000 2.0000 H0 : �= 1

None No MLE 2.0209 2.0392 1.9681 0.7820
s.e. 0.2750 0.3892 0.4798
MSE 0.0693 0.1534 0.2149

Coverage 0.9600 0.9580 0.9540
Yes and unadjusted MLE 1.7746 2.4391 1.5212 0.3620

s.e. 0.2278 0.4042 0.3660
MSE 0.0981 0.3551 0.3599

Coverage 0.8500 0.8000 0.7740
Yes and adjusted MLE 2.0117 2.0508 2.0532 0.4620

s.e. 0.3669 0.5317 0.7268
MSE 0.1210 0.2746 0.5381

Coverage 0.9500 0.9620 0.9520
G–E independence No MLE 2.0112 2.0211 1.9488 0.9714
and rare disease s.e. 0.2617 0.3424 0.3296

MSE 0.0656 0.1178 0.1128
Coverage 0.9642 0.9427 0.9283

Yes and unadjusted MLE 1.7949 2.4612 1.4584 0.6738
s.e. 0.2203 0.3631 0.2203
MSE 0.0891 0.3460 0.3486

Coverage 0.8423 0.7312 0.4516
Yes and adjusted MLE 2.0456 2.0927 1.9369 0.6738

s.e. 0.3581 0.4797 0.5194
MSE 0.1253 0.2646 0.3227

Coverage 0.9534 0.9462 0.8961
G–E independence No MLE 2.0020 2.0005 1.9900 0.9728
and P(D= 1) known s.e. 0.2604 0.3388 0.3402

MSE 0.0649 0.1150 0.1175
Coverage 0.9606 0.9391 0.9391

Yes and unadjusted MLE 1.7890 2.4454 1.4830 0.7025
s.e. 0.2195 0.3608 0.2275
MSE 0.0912 0.3303 0.3265

Coverage 0.8387 0.7384 0.4946
Yes and adjusted MLE 2.0328 2.0646 1.9934 0.6738

s.e. 0.3560 0.4748 0.5418
MSE 0.1232 0.2564 0.3492

Coverage 0.9498 0.9427 0.9068

P(D= 1) ≈ 0.01, P(E = 1) ≈ 0.5 and P(G = 1)≈ 0.2. s.e. refers to the average standard error of the odds
ratio estimates. Mean-squared error (MSE) is estimated based on the average squared deviations of the 500
estimates from their true value.

for the interaction parameter is greatly affected if one fails to account for the misclassification
error. As we expected, a larger sample size improves the power of testing the interaction effect as
well as the precision of the parameter estimates.

To evaluate the performance of the proposed method for a different allele frequency of the genetic
marker, we carried out two sets of simulation in Table VII which share an identical simulation
scenarios, except one with a more common gene P(G = 1) = 0.20 and the other with a relatively
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Table VII. Results of unmatched case–control data (750/750), where specificity for environmental
factor= 1.0, sp0G = sp1G = 0.95, se0G = se1G = 0.95 and se0E = se1E = 0.9.

P(G = 1) Constraints Misclassification OR10 = 2 OR01 = 2 � = 2 Power of H0 : �= 1

0.2 None No MLE 1.9954 1.9739 2.0180 0.8300
s.e. 0.2709 0.3756 0.4915
MSE 0.0659 0.1255 0.1890

Coverage 0.9800 0.9700 0.9800
Yes MLE 1.8743 2.0449 1.6533 0.5300

and unadjusted s.e. 0.2517 0.3473 0.3806
MSE 0.0722 0.1285 0.2521

Coverage 0.9200 0.9800 0.8300
Yes MLE 2.0046 1.9993 2.0680 0.5600

and adjusted s.e. 0.3249 0.4838 0.6635
MSE 0.0945 0.2519 0.4006

Coverage 0.9700 0.9800 0.97
G–E No MLE 2.0122 1.9991 1.9278 0.9600

independence s.e. 0.2615 0.3381 0.3255
and rare disease MSE 0.0679 0.1069 0.0969

Coverage 0.9500 0.9600 0.9200
Yes MLE 1.8820 2.0519 1.6028 0.8400

and unadjusted s.e. 0.2396 0.3114 0.2495
MSE 0.0672 0.1076 0.2172

Coverage 0.9300 0.9600 0.6900
Yes MLE 2.0141 2.0028 1.9779 0.8000

and adjusted s.e. 0.3102 0.4280 0.4534
MSE 0.0893 0.2098 0.1979

Coverage 0.9600 0.9600 0.9700
0.05 None No MLE 1.9829 2.1877 2.0686 0.3434

s.e. 0.2224 0.7305 0.8959
MSE 0.0518 0.6757 0.8075

Coverage 0.9495 0.9596 0.9697
Yes MLE 1.8432 1.7344 1.5358 0.2000

and unadjusted s.e. 0.2078 0.4168 0.5091
MSE 0.0719 0.2582 0.5218

Coverage 0.8400 0.8900 0.8100
Yes MLE 2.0139 2.5259 2.1739 0.1674

and adjusted s.e. 0.2647 1.5286 1.7194
MSE 0.0802 1.9632 1.8531

Coverage 0.9551 0.9655 0.9605
G–E No MLE 1.9845 2.1302 1.9563 0.7200

independence s.e. 0.2202 0.5959 0.5097
and rare disease MSE 0.0517 0.4531 0.3223

Coverage 0.9400 0.9600 0.9300
Yes MLE 1.8438 1.7194 1.4724 0.4600

and unadjusted s.e. 0.2033 0.3607 0.3047
MSE 0.0710 0.2117 0.4003

Coverage 0.8500 0.8400 0.6100
Yes MLE 2.0078 2.3675 2.0274 0.3959

and adjusted s.e. 0.2579 1.0526 0.8768
MSE 0.0771 1.2476 0.6625

Coverage 0.9490 0.9694 0.8980

P(D= 1) ≈ 0.01, P(E = 1) ≈ 0.5, but with different values of P(G = 1). s.e. refers to the average standard error
of the odds ratio estimates. Mean-squared error (MSE) is estimated based on the average squared deviations
of the 500 estimates from their true value.
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rare mutation P(G = 1)= 0.05. We observe that for the rare gene situation both the corrected and
uncorrected estimates have larger standard errors and MSEs for OR01 and �, although the corrected
estimates perform better than the uncorrected ones. The power for testing the interaction effect
is significantly less for the rare genetic mutation. However, the models under the independence
assumption always provide much more precise estimates, i.e. smaller standard errors and MSEs,
as well as significantly larger power.

We also present a set of simulation results assuming the misclassification error rates to be
unknown and estimated using a hypothetical validation study independent of the main study.

Table VIII. Results of unmatched case–control data (1000/1000), with no misclassification in G, and
sp0E = 0.9, sp1E = 0.98, se0E = 0.85 and se1E = 0.8.

OR10 OR01 � Power
Constraints Misclassification error rates 2.0000 2.0000 2.0000 H0 : �= 1

None True MLE 2.0167 2.0330 2.0323 0.6300
s.e. 0.3220 0.4372 0.6031
MSE 0.0955 0.1803 0.3160

Coverage 0.9580 0.9548 0.9536
Wrong guess MLE 3.1183 1.2462 3.9070 0.7137

s.e. 0.6395 0.5184 2.5693
MSE 1.6278 0.8167 9.5234

Coverage 0.4581 0.9759 0.9604
Estimated only by MLE 2.1278 1.9778 2.2087 0.6283
validation data s.e. 0.3631 0.4528 0.7244

MSE 0.8178 0.2555 0.7040
Coverage 0.6681 0.9358 0.9202

Estimated by using MLE 2.1529 1.9386 2.4922 0.6283
the joint likelihood s.e. 0.3783 0.4587 0.7834

MSE 0.8755 0.2685 0.8855
Coverage 0.6881 0.9513 0.9646

G–E independence True MLE 2.0174 2.0182 1.9958 0.8894
and rare disease s.e. 0.3088 0.3812 0.4324

MSE 0.0920 0.1400 0.1555
Coverage 0.9735 0.9690 0.9602

Wrong guess MLE 3.1209 1.2409 3.8632 0.8496
s.e. 0.6279 0.5027 2.4319
MSE 1.6327 0.8208 8.7744

Coverage 0.4204 0.9646 0.9867
Estimated only by MLE 2.0908 1.9964 2.0859 0.8898
validation data s.e. 0.3351 0.3866 0.5028

MSE 0.5377 0.2079 0.3764
Coverage 0.8660 0.9324 0.9365

Estimated by using MLE 2.1169 1.9552 2.1586 0.8689
the joint likelihood s.e. 0.3490 0.3921 0.5477

MSE 0.5757 0.2226 0.5064
Coverage 0.8783 0.9562 0.9530

P(D= 1) ≈ 0.01, P(E = 1) ≈ 0.5 and P(G = 1) ≈ 0.2. The second column refers to different methods of
estimating the misclassification error rates. The randomly guessed values of the error rates were sp0E = 0.95,
sp1E = 0.95, se0E = 0.9 and se1E = 0.7. s.e. refers to the average standard error of the odds ratio estimates.
Mean-squared error (MSE) is estimated based on the average squared deviations of the 500 estimates from
their true value.
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We assume no misclassification in one of the factors, say G, and sp0E = 0.9, sp1E = 0.98,
se0E = 0.85 and se1E = 0.8. We simulate 1000 data sets and analyze the data by implementing the
adjusted formulation and comparing the results by:

(1) plugging in the true known error rates, i.e. sp0E = 0.9, sp1E = 0.98, se0E = 0.85 and
se1E = 0.8;

(2) plugging in a set of randomly guessed error rates, e.g. sp0E = 0.95, sp1E = 0.95, se0E = 0.9
and se1E = 0.7;

(3) plugging in the error rates estimated by the validation data only as discussed in (i) of
Section 2.4;

(4) estimating all the parameters based on the full joint likelihood as in option (ii) (d) in
Section 2.4.

Table VIII summarizes the results under the unconstrained model and rare disease and G–E
independence assumption. We note that when the misclassification error rates are estimated sepa-
rately from the validation study, the coverage probabilities of the confidence intervals are slightly
smaller than the nominal confidence level. This is because we ignore the uncertainty in the esti-
mation of the error rates, but for all practical inferential purposes the plug-in method may be quite
acceptable due to its ease of implementation. The point estimates will suffer greatly if one uses
wrong guesses for the error probabilities. As noticed in much of the measurement error literature,
the bias in the estimates is corrected, but the standard error typically increases due to the correction,
and often there is no significant gain in terms of the power of the testing procedure.

4. REAL DATA ANALYSIS

To illustrate the use of these methods in a real setting, we analyze data from a case–control study
of colorectal cancer [29]. The aims of the study were to assess the effects of genes, diet and
the interaction between both on the risk of colorectal cancer. All cases diagnosed of colorectal
cancer in a university hospital in Barcelona during 1996–1998 were included. For each case, a
frequency-matched control was selected among the patients of the same hospital (for study details,
see [30]). All subjects were interviewed to assess risk factors, including diet, and they provided a
blood sample for genetic analysis. For the purpose of this example, we have selected the study of
SULT1A1 (phenol sulfotransferase), a gene highly expressed in the colon that metabolizes drugs,
hormones, some nutrients and other xenobiotics. We were interested in the possibility that the risk
associated with this gene, if any, could be related to diet. Hence, we explored the interactions
with nutrients estimated from a food frequency questionnaire and found that zinc intake could be
a potential modifier. Since this was unexpected, and further analysis and studies were needed to
confirm this interaction, it is a good example to illustrate the methods. Initially, a polymorphism in
SULT1A1 was genotyped by very precise and well-tested methods in 293 cases and 272 controls
[30]. Later, an extended sample (377 cases and 326 controls) was genotyped for a large selection
of polymorphisms in metabolism genes, which included SULT1A1. This latter analysis used a
microarray genotyping method that had been validated and was known to have good although not
perfect, accuracy [29]. We considered the first genotype results as gold standard and used them
to calibrate the odds ratios for the analysis of interaction between SULT1A1 (G) and zinc intake
(E). Zinc intake was dichotomized by individuals taking less or more than the median value of
the zinc intake, this median being determined from the sample data. From a scientific point of
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Table IX. Results of analysis of the real data.

Constraints Misclassification OR10 OR01 �

None Unadjusted MLE 0.4763 0.7334 1.8929
s.e. 0.1004 0.1616 0.5975
CI (0.3151, 0.7200) (0.4762, 1.1297) (1.0196, 3.5142)

Adjusted MLE 0.4726 0.7592 1.9406
s.e. 0.1018 0.1749 0.6432
CI (0.3099, 0.7208) (0.4833, 1.1926) (1.0135, 3.7159)

IR Unadjusted MLE 0.6011 0.9746 1.1180
s.e. 0.1103 0.1780 0.2417
CI (0.4195, 0.8613) (0.6814, 1.3941) (0.7318, 1.7078)

Adjusted MLE 0.5987 1.0177 1.1265
s.e. 0.1124 0.1960 0.2603
CI (0.4144, 0.8649) (0.6977, 1.4844) (0.7163, 1.7717)

s.e. refers to the standard error of the odds ratio estimates. Confidence intervals for the odds ratios are calculated
by exponentiating the CI based on the asymptotic normality of the MLEs of log OR.

Table X. Results of analysis of the real data with 10 per cent artificial
misclassification, introduced at random.

Constraints Misclassification OR10 OR01 �

None Unadjusted MLE 0.5202 0.8708 1.7651
s.e. 0.1189 0.2120 0.6102
CI (0.3324, 0.8141) (0.5404, 1.4031) (0.8964, 3.4759)

Adjusted MLE 0.4922 0.8040 2.0084
s.e. 0.1255 0.2459 0.8694
CI (0.2986, 0.8113) (0.4415, 1.4641) (0.8597, 4.6918)

IR Unadjusted MLE 0.5689 0.9781 1.4236
s.e. 0.1156 0.1990 0.3414
CI (0.3820, 0.8474) (0.6564, 1.4573) (0.8897, 2.2779)

Adjusted MLE 0.5542 0.9369 1.5118
s.e. 0.1185 0.2349 0.4250
CI (0.3644, 0.8428) (0.5732, 1.5315) (0.8714, 2.6231)

The point estimates of specificities and sensitivities are sp0G = 0.9, se0G = 0.857, sp1G = 0.933, se1G = 0.923.
Confidence intervals for the odds ratios are calculated by exponentiating the CI based on the asymptotic normality
of the MLEs of log OR.

view, it is reasonable to assume that SULT1A1 mutation status and zinc intake are independent, and
colorectal cancer is a rare disease in the study population with an estimated crude annual incidence
rate of 46 cases per 100 000 people and a lifetime cumulative risk of 5 per cent in Spain.

In many common situations, the ‘gold standard’ exposure measurements, namely the true G∗
and E∗, may be available only for a subset V of the original sample S, and we have complete data
D,G,G∗, E∗, for that sub-sample and reduced data D,G, E on the remaining sample S − V. In
that case, the joint likelihood is of a that of different form that of joint likelihood given in (10)
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Figure 1. Results of analysis of colorectal cancer study: OR10, OR01 and � represent the main effect of
zinc intake, the main effect of SULT1A1 and their interaction, respectively. Confidence intervals for the
odds ratios are calculated by exponentiating the CI based on the asymptotic normality of the MLEs of
logOR. The top figure is based on real data, whereas the bottom figure is based on real data, with

additional 10 per cent misclassification of genotypes introduced at random.

and is given by

L full = ∏
i∈V

P(Gi ,G
∗
i , Ei , E

∗
i |Di ) × ∏

i∈S−V
P(Gi , Ei |Di ) (14)

The second term involving reduced data is expressed exactly in the same way as we factorize L2
in Result 1, summing over the latent true measurements G∗ and E∗. The first term with complete
data is factorized similarly, simply omitting the sum over the latent values of G∗ and E∗, which is
not needed for complete data as we have perfect true measurements for this subsample. We then
maximize the joint likelihood in terms of all model parameters and error rates.

In our real data example, we have G∗ available for a subsample and ignore the possible misclassi-
fication of E in the absence of any validation data on E . The crude estimates of agreement between

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:2756–2783
DOI: 10.1002/sim



ACCOUNTING FOR ERROR DUE TO MISCLASSIFICATION OF EXPOSURES 2777

G and G∗ obtained only from the validation data are sp0G = 0.981, sp1G = 0.975, se0G = 0.991
and se1G = 0.959. The results from the plug-in method are presented in Table AI. One can notice
the dramatic change in the width of the confidence interval for the interaction parameter, when
independence assumption is exploited. The inference results from the IR assumption indicate that
the effect of zinc intake is protective, whereas carrier status for SULT1A1 as well as the interaction
parameter are not statistically significant. Note that, using the unconstrained ML method, the in-
teraction odds ratio is detected to be marginally significant (CI (1.02, 3.51)), which is most likely
to be a false positive from an epidemiological perspective. There are certain numerical differences
between the estimates adjusted for misclassification and unadjusted estimates in the real data, but
the inference is the same. To explore further the role of misclassification, we randomly selected
10 per cent of the observations where G and G∗ agreed and changed the value of G to create
artificial misclassification. The results are presented in Tables IX and X. The difference in the
inference shows that under misclassification, the odds ratio estimates are indeed biased towards
the null, and our simple method corrects for such attenuation effects. Figure 1 presents the OR
estimates and the confidence intervals for the two misclassification scenarios.

5. CONCLUSION

We describe a relatively simple analytical formulation to account for misclassification of exposures
in studies of gene–environment interaction based on sensitivity and specificity of the measurement
instrument for genetic and environmental factors in unmatched case–control studies. As illustrated
in our simulations, even with relatively small degrees of error (i.e. sensitivity or specificity quite
close to 1), the estimates of the parameters of interest could have relatively large biases. Our
corrected estimates minimize the biases and are found to be closer to the true parameters, with
better MSE properties than their unadjusted counterparts.

This paper presents a clear insight into how ML estimation under a constrained exposure space
leads to efficiency advantages, even in the absence of a perfectly measured data set. The 2× 4
table is a pivotal and routinely used tool in studies of gene–environment interaction [21], and we
present a comprehensive treatment of this case with closed-form expressions for the estimates and
the standard errors where available. The proposed method can be easily extended to genotype
data which inherently have three levels, that is, when we have a 2× 6 table instead of a 2× 4
table (Appendix A.3). According to the results of the simulation, one gains significant efficiency
under the G–E independence assumption and after adjusting for misclassification errors. However,
cautions regarding the validity of the independence assumption should be exercised while using
the proposed methods [16, 31]. Extending the methods under the conditional independence of G
and E as in [19], but not just restricted to a case-only design as in [19], could be one avenue to
dealing with violation of the independence assumption.

To conclude, we would like to mention that it is often hard to obtain a precise estimate of
the interaction odds ratio due to sparsity of observations in some rare genotype–exposure con-
figurations, and the use of G–E independence assumption and adjusting for misclassification
errors give us a better chance to detect G–E interaction. Studying the synergism of gene and
the environment in the etiology of rare and complex diseases is an important problem in modern
genetic epidemiology, and efficient estimation strategies are much needed. This paper introduces
certain simple and practically useful ideas in the context of this problem, which account for po-
tential genotyping and exposure misclassification errors. The simplicity of the method makes it
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a viable screening tool for gene–environment interactions in large-scale genomewide association
studies.

APPENDIX

Note: All parameters are defined the same as in the text, except those defined separately here. Let
P(G = 1) = qG and P(E = 1) = qE .
A.1. The constrained ML equations under G–E independence and rare disease assumptions are

obtained by differentiating the logarithm of the likelihood (1) with respect to the corresponding
parameters:

p2(p04r01 − p01r04) + pp01 p04(r11 − OR10 OR01 �r14) = p01 p04(1 − OR10 OR01 �)q

p2(p04r02 − p02r04) + pp02 p04 OR10(r12 − OR01 �r14) = p02 p04(OR10 − OR10 OR01 �)q

p2(p04r03 − p03r04) + pp03 p04 OR01(r13 − OR10 �r14) = p03 p04(OR01 − OR10 OR01 �)q

r12 + r14
OR10

− (p02 + p04 OR01 �)n1
p

= 0 (A1)

r13 + r14
OR01

− (p03 + p04 OR10 �)n1
p

= 0 (A2)

r14
�

− p04 OR10 OR01 n1
p

= 0 (A3)

where q = p01r11 + p02 OR10 r12 + p03 OR01 r13 + p04 OR10 OR01 �r14. Recall p04 = 1 − p01 −
p02 − p03 and p= p01 + p02 OR10 + p03 OR01 + p04 OR10 OR01 �. The solutions to the above
equations are subjected to the restriction of p01 p04 = p02 p03. In the following, we show how to
obtain those restricted MLEs:

(1) Plugging (A1)–(A3), we

p̂ = p̂01 + ÔR10( p̂02 + p̂04 ÔR01 �̂) + ÔR01( p̂03 + p̂04 ÔR10 �̂) − p̂04 ÔR10 ÔR01 �̂

= p̂01 + r12 + r14
n1

p̂ + r13 + r14
n1

p̂ − r14
n1

p̂

= p̂01 + n1 − r11
n1

p̂

Thus,

r11
n1

p̂= p̂01 and p̂11 = p̂01
p̂

= r11
n1

Also, by (A1)–(A3), we can obtain p̂1 j = r1 j/n1, j = 2, 3, 4.
(2) Thus, we can write the profile likelihood as

L p(p0, p̂1) =
4∏
j=1

p0 j
r0 j

4∏
j=1

p̂
r1 j
1 j ∝

4∏
j=1

p0 j
r0 j
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By the G–E independence and rare disease assumptions, we have

p01 = (p01 + p02)(p01 + p03)

p02 = (p01 + p02)(p02 + p04)

p03 = (p01 + p03)(p03 + p04)

(A4)

Hence, writing L p(p0, p̂1) ∝ (p01+p02)r01+r02(p01+p03)r01+r03(p02+p04)r02+r04(p03+p04)r03+r04 ,
we have

̂pIR01 + pIR02 = r01 + r02
n0

̂pIR01 + pIR03 = r01 + r03
n0

̂pIR02 + pIR04 = r02 + r04
n0

̂pIR03 + pIR04 = r03 + r04
n0

Plugging into (A4), we have (5).
The estimated asymptotic variance–covariance matrix can be obtained by the inverse of the

observed information matrix. The observed information matrix is constructed by taking the second
derivative of the log-likelihood with respect to the parameters and evaluating them at the MLEs
of the parameters, which are the solutions to the above equations.

Here we state how we use the delta method along with the properties of a multinomial distribution
and a binomial distribution to obtain the estimated asymptotic variance of the odds ratios.

First we consider OR10, whose MLE is

̂ORIR
10 = r12

r11
· r01 + r03
r02 + r04

= p̂12
p̂11

· p̂01 + p̂03
p̂02 + p̂04

where p̂d j = rd j/nd (d = 0, 1 and j = 1, 2, 3, 4). Let � = p̂01 + p̂03; we artificially build a dis-
tribution PA which includes independent distributions Pm and Pb to satisfy this particular odds
ratio estimate, PA = Pm Pb ∝ pr1111 pr1212 (1 − p11 − p12)r13+r14�r01+r03(1 − �)r02+r04 . Note that, for
the multinomial distribution Pm ∝ pr1111 pr1212 (1 − p11 − p12)r13+r14 ,(

p̂12

p̂11

)
∼AN

((
p12

p11

)
,�

)
with �= 1

n1

(
p12(1 − p12) −p11 p12

−p11 p12 p11(1 − p11)

)
Let g(x, y)= log(x) − log(y), then

�g(x, y)
�x

= 1

x
and

�g(x, y)
�y

= −1

y

Thus, by the delta method,

log

(
p̂12
p̂11

)
∼AN

(
log

(
p12
p11

)
,

(
1

p12
, − 1

p11

)
�

(
1

p12
, − 1

p11

)T
)
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Hence, the estimated asymptotic variance of log( p̂12/ p̂11) is

̂AVAR

(
log

(
p̂12
p̂11

))
= 1

n1

(
1

p̂11
+ 1

p̂12

)
= 1

r11
+ 1

r12

Similarly, for the binomial distribution Pb ∝ �r01+r03(1 − �)r02+r04,

�̂

1 − �̂
∼AN

(
�

1 − �
,
1

n0

(
1

�2(1 − �)2

))
Let g(x)= log(x) − log(1 − x), then

dg(x)

dx
= 1

x
+ 1

1 − x
= 1

x(1 − x)

Thus, by the delta method,

log

(
�̂

1 − �̂

)
∼AN

(
log

(
�

1 − �

)
,
1

n0

(
1

�
+ 1

1 − �

))
Hence, the estimated asymptotic variance of log(�̂/1 − �̂) is

̂AVAR

(
log

(
�̂

1 − �̂

))
= 1

n0

(
1

�̂
+ 1

1 − �̂

)
= 1

r01 + r03
+ 1

r02 + r04

Since log(ÔR
IR
10) = log( p̂12) − log( p̂11) + log(�̂) − log(1 − �̂),

̂AVAR(log(ÔR
IR
10)) = ̂AVAR

(
log

(
p̂12
p̂11

))
+ ̂AVAR

(
log

(
�̂

1 − �̂

))

= 1

r11
+ 1

r12
+ 1

r01 + r03
+ 1

r02 + r04

Calculation of the estimated asymptotic variances of ÔR
IR
01 and �̂IR is based on the same ideas.

A.2. Obtain restriction (4). Following (3), we have

(1 − qG)(1 − qE ) = (1 − �)p01 + �p01/p (A5)

(1 − qG)qE = (1 − �)p02 + OR10 �p02/p (A6)

qG(1 − qE ) = (1 − �)p03 + OR01 �p03/p (A7)

qGqE = (1 − �)p04 + �OR10 OR01 �p04/p (A8)

Note that using (A6)–(A8) we obtain the following two equations:

qE = (1 − �)p02 + OR10 �p02/p + (1 − �)p04 + �OR10 OR01 �p04/p

qG = (1 − �)p03 + OR01 �p03/p + (1 − �)p04 + �OR10 OR01 �p04/p
(A9)

Thus, using (A8) and (A9) we have (4).
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Table AI. Data for an unmatched case–control study with a three-level genetic
factor and a binary environmental exposure.

G = 0 G = 1 G = 2

E = 0 E = 1 E = 0 E = 1 E = 0 E = 1 Total

j 1 2 3 4 5 6

D = 0 r01 r02 r03 r04 r05 r06 n0
D = 1 r11 r12 r13 r14 r15 r16 n1

A.3. Extension to 2× 6 tables. Here we briefly describe how to extend our approach to the
case of a 2× 6 table when the genotype data are recorded as three levels, i.e. 0, 1 and 2, de-
pending on the number of copies of the high-risk allele at a biallelic locus. The data can be
represented as in Table AI. In this case, in addition to the parameters OR10, OR01 and � in-
troduced in Section 2, we introduce one more odds ratio parameter related to the main effect
of G = 2, namely OR02 = p01 p15/(p11 p05) and one more multiplicative interaction parameter
	 =OR12/(OR10 OR02) = p02 p05 p11 p16/(p01 p06 p12 p15) (where OR12 = p01 p16/(p11 p06)). The
case probabilities can be parameterized in terms of the five control probabilities p0 j , j = 1, . . . , 5,
and OR10, OR01, OR02, � and 	 in a manner exactly similar to that in Section 2.1. We can write the
likelihood, as L(OR10,OR01,OR02, �, 	, p01, p02, p03, p04, p05|r0, r1) =∏1

d=0
∏6

j=1 p
rd j
d j . With-

out any model assumptions, we can obtain the MLEs of the parameters of interest by simply max-
imizing the above likelihood with the constraints being

∑6
j=1 p0 j = 1 and p0 j>0 ( j = 1, . . . , 6).

Under G–E independence and rare disease assumption, we would have additional constraints on
p0 j ( j = 1, . . . , 6) given by p01/p02 = p03/p04 = p05/p06. The restricted MLEs can be obtained
with closed-form expressions that resemble expressions in Table II.

In the presence of misclassification, now we can have all possible misclassifications of geno-
types (0 labeled as 1 or 2, 1 labeled as 0 or 2, 2 labeled as 0 or 1). Accordingly, define

d(g, g∗) = P(G = g|G∗ = g∗, D = d), g, g∗ = 0, 1, 2. Note that 
d(0, g∗) = 1 − 
d(1, g∗) −

d(2, g∗). Hence, as in Result 1, we can again write the pd j ’s in terms of a linear function
of the true parameters p∗

d j (denoted by pd j (p∗
d)) as defined by the following equation:

⎛⎜⎝
pd1 pd2

pd3 pd4

pd5 pd6

⎞⎟⎠=
⎛⎜⎝


d(0, 0) 
d(0, 1) 
d(0, 2)


d(1, 0) 
d(1, 1) 
d(1, 2)


d(2, 0) 
d(2, 1) 
d(2, 2)

⎞⎟⎠
⎛⎜⎝

p∗
d1 p∗

d2

p∗
d3 p∗

d4

p∗
d5 p∗

d6

⎞⎟⎠( spdE 1−spdE

1−sedE sedE

)
(A10)

The multinomial likelihood in terms of the underlying true parameters is

L(OR∗
10,OR

∗
01,OR

∗
02, �

∗, 	∗, p∗
01, p

∗
02, p

∗
03, p

∗
04, p

∗
05|r0, r1) =

1∏
d=0

6∏
j=1

pd j (p∗
d)

rd j

Now, we can obtain the MLEs of the true parameters by maximizing the above likelihood as done
in Section 2.2. For estimating the six error probabilities in each disease subgroup with limited
validation data, it may be sensible to assume some structures for the error rates in order to reduce
the number of parameters. To this end, one may assume the errors to be the same among cases and
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controls and consider an allele-based error model [32] or a symmetric allele dropout error model
[33] depending upon the specific genetic application.
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