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DESIGN AND INTEGRATION OF A TRAILER HITCH FOR A HYDRAULIC HYBRID 

CHEVY EQUINOX 

1 ABSTRACT 

Rules for the Challenge X Competition, sponsored by General Motors and the United States 
Department of Energy, call for a trailer hitch with a towing capacity that meets the current 
baseline Chevy Equinox. The University of Michigan Challenge X Team’s vehicle requires 
redesign of the trailer hitch due to relocation of other vehicle subsystems. Specifically, the new 
design must improve packaging by providing structural support for the fluid lines and by 
avoiding interference with the oil cooler and emissions equipment. 

2 EXECUTIVE SUMMARY 

2.1 Design Problem 

The existing trailer hitch on the University of Michigan (U of M) Challenge X Team’s vehicle 
was modified to an extent that the hitch was insufficiently connected to the chassis of the 
vehicle, and thereby unable to tow a trailer. This caused the team to be disqualified from 
trailering events in past Challenge X Competitions. Additionally, being a hydraulic hybrid, the 
vehicle had a hydraulic line located near the trailer hitch that the team was supporting 
temporarily with flexible, screw-tight, steel clamps. However, this method was unacceptable for 
a final, competition-ready vehicle. Thus, the purpose of this project was to redesign, 
manufacture, and test a trailer hitch to support the required 3500 lb trailering load and also to 
provide adequate support for the hydraulic line. The end goal was to create a working model of 
the redesigned trailer hitch for the U of M Challenge X Team to use in the May 2008 Road Rally 
Competition, which included obtaining a waiver due to competition constraints on trailer hitch 
modifications. 

2.2 Specifications 

The most critical engineering specifications in the development of our design were: 

• Minimum trailering capacity of 3500 lbs 

• Target of 6 bolts required for attachment between trailer hitch and vehicle 

• Minimum clearance of 0.01 in. between trailer hitch and bumper  

• Minimum clearance of 0.01 in. between trailer hitch and oil cooler 

• Designed as an SAE Class II towing hitch 

2.3 Concept Generation and Selection 

We generated many concepts through multiple brainstorming sessions, organized these concepts 
into three sub-systems: middle bracket, end brackets/tubing, and hydraulic line attachments, and 
then created twelve different system variants from the best sub-system concepts, which were 
determined through sub-system Pugh charts. Based on a final system Pugh chart, we selected our 
alpha design, which featured a stock trailer hitch with unique hydraulic line clasping mechanisms 
that welded directly onto the trailer hitch. To address concerns for the structural integrity of the 
hitch, as well as ease of manufacturing and installation, we further developed the alpha design 
into our final design, which wraps around the cross-section of the trailer hitch instead of being 
welded directly to the hitch. 
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2.4 Final Design 

The final design is comprised of two main parts: a stock trailer hitch and two hydraulic line 
attachments, located in optimized locations along the main bar of the trailer hitch, as shown in 
Figures 1 and 2. A full view of the hydraulic line attachment is shown in Figure 3.  
 

                      
Figure 1: Final trailer hitch design 

integrated into the hydraulic 

hybrid vehicle 

Figure 2: Attachment 

supporting hydraulic line 

in vehicle 

Figure 3: Manufactured 

hydraulic line 

attachment 

2.5 Fabrication Plan and Cost Analysis 

The process for manufacturing each of the hydraulic line attachments involved cutting, drilling, 
bending, welding, and sandblasting steel components in the ME 450 Machine Shop, and then 
applying rubber coating via a dipping process. The cost of one hydraulic line attachment is 
$9.76, and the cost of our entire redesigned trailer hitch is $190.58. 

2.6 Test Results 

All testing was completed successfully, thereby validating that our final design sufficiently meets 
all engineering specifications set forth based on the needs of our sponsor.  These included 
corrosion testing and validating the hydraulic line attachment for supporting the weight of the 
hydraulic line. 

2.7 Critique and Conclusions 

The greatest strength of our design is that it has high potential for obtaining a competition 
waiver. The greatest weakness is that the rubber coating does not cover all areas of the metal 
hydraulic line attachments. To improve the project, we would have further investigated the 
potential for vehicle design changes and we would have streamlined the manufacturing process. 
 
In conclusion, our redesign was successful. The finished trailer hitch with hydraulic line 
attachments will be installed in the U of M Challenge X Team’s hydraulic hybrid for 
competition. 
 

3 INTRODUCTION 

In 2004, U of M was one of seventeen colleges and universities challenged by General Motors 
Corporation (GM) and the United States Department of Energy (DOE) to reengineer a Chevy 
Equinox, a crossover sports utility vehicle shown in Figure 4, as part of a competition entitled 
Challenge X:  Crossover to Sustainable Mobility.  As part of this competition, teams followed a 
hands-on engineering process based on GM’s Global Vehicle Design Process, which aimed to 
teach them real-world engineering skills and make them highly valuable to the automotive 
community [1].   
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Figure 4:  Hydraulic hybrid modified GM Chevy Equinox 

  
The goals of the competition are to minimize energy consumption, emissions, and greenhouse 
gases, while maintaining or exceeding the vehicle’s utility and performance specifications.  After 
teams spent one year modeling, simulating, and testing the vehicle’s powertrain and subsystems, 
GM donated a 2005 Chevy Equinox to each team.  Teams then used the next two years to 
integrate their advanced powertrain and vehicle subsystems into the donated vehicles.  In June of 
2007, the teams came together to undergo extensive judging and evaluation based on their 
vehicle’s energy use, emissions, utility, and performance.  While the U of M team was not a top 
competitor in these events, it was the only team to successfully modify the Chevy Equinox into a 
hydraulic hybrid vehicle.  Most teams used hybrid electric vehicle concepts. 
  
Four years after the initial competition began, Challenge X is still motivating teams of students 
to think futuristically.  The 2007-2008 academic year represents the fourth year of the 
competition.  This year, Challenge X teams have been instructed to focus not only on further 
implementing innovative technologies into their vehicles, but also on meeting customer needs for 
safety, security, and convenience.  In May of 2008, teams will once again bring their vehicles 
together in a Road Rally event to be thoroughly judged and evaluated. 

3.1 Problem Description 

To help achieve its goals for the upcoming road rally, the U of M Challenge X Team decided to 
sponsor our Mechanical Engineering senior design project.  Our team has been tasked with 
redesigning, manufacturing, and testing a trailer hitch for the Chevy Equinox.  Due to the 
extensive modifications the Challenge X Team has made to their vehicle, their original trailer 
hitch, shown attached to the vehicle in Figure 5, does not adequately support the hydraulic and 
oil cooler lines running underneath the vehicle. 
  

 
Figure 5:  Stock trailer hitch on GM Chevy Equinox 

Unsupported 
Hydraulic Line 

Stock Trailer Hitch 

Unsupported 
Oil Cooler Line 
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Prior to our team’s involvement with this project, the U of M Challenge X Team had modified 
their original trailer hitch to accommodate the location of a new oil cooler in the vehicle.  These 
modifications, shown in Figure 6, were severe enough that that they were unable to tow a trailer 
because the hitch was insufficiently connected to the chassis of the vehicle (as shown in Figure 
6).  This inability caused the team to be disqualified from some of the past judging and 
evaluation events.     
 

      
 

 
Figure 6:  Original modifications to stock trailer hitch. 

  
As our project progressed, vehicle design modifications made by the U of M Challenge X Team 
changed the mounting location of the oil cooler underneath the vehicle.  This modification, 
combined with the flexibility of the fluid lines, allowed a stock trailer hitch to be reattached to 
the vehicle.  A stock trailer hitch, however, still provided inadequate support for the fluid lines 
underneath the vehicle.  The U of M Challenge X Team’s temporary method for supporting the 
lines using flexible, screw-tight steel clamps is shown in Figure 7. 
  

 
Figure 7:  Temporary method of supporting fluid lines. 

  

Trailer Hitch 

Hydraulic Line 

Insufficient 
Mounting 

Old Trailer Hitch 

Hydraulic Line 

Old Support Clamp 

Modified End Bracket 

Middle Bracket  
Removed 

Main Bar Tubing 
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As indicated in Figure 8, the hydraulic line is located directly underneath the reinstalled stock 
trailer hitch, while the oil cooler line is located farther away. The oil cooler line is very secure, 
due to its rigid end attachments and short length (5.5 inches) between these attachments (see 
Figure 9). Therefore, the oil cooler line does not require support from the trailer hitch. 
  

 

Figure 8: Relative locations of trailer hitch and fluid lines 

  

 
Figure 9: Oil cooler line 

  
At the Road Rally in May of 2008, the U of M Challenge X Team will once again need to use a 
trailer hitch on their vehicle to meet certain towing requirements and specifications.  Another 
disqualification from this portion of the events is not acceptable.  Since the U of M Challenge X 
Team has only a few active members, meeting their goal of redesigning, testing, and 
manufacturing a new trailer hitch that adequately supports the hydraulic line would have been 
difficult without outside assistance.  Therefore, the overall outcome of our project was to 
redesign and manufacture a trailer hitch for the U of M Challenge X Team to use in the May 
2008 Road Rally competition. 
  

3.2 Customer Needs and Project Outcomes 

The broad project outcome of redesigning and manufacturing a trailer hitch was segmented into 
several components based on the needs expressed by our customer, the U of M Challenge X 
Team.  To determine these needs, our ME 450 team developed a series of questions related to the 
trailer hitch project.  These questions and notes from our first sponsor meeting are listed in 
Appendix A. Based on the answers from our sponsor, we determined the project requirements for 
our design. These project requirements, along with the reason for each requirement, are listed in 
Table 1. 

Stock trailer hitch 
installed in vehicle 

Hydraulic line 

Oil cooler 
line 

Oil cooler rigid end connections 
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Project Requirement Reasoning 

No interference with other components The redesigned trailer hitch cannot interfere with the 
specified positions of the oil cooler, exhaust system, or 
any other vehicle subsystems. 

Capable of sustaining load at stock trailering capacity To compete in Challenge X Competition events, the 
trailer hitch must be able to carry a 3500 lb load. 

Meets standard SAE trailer hitch sizing specifications Trailer hitch must comply with size specifications so 
that standard trailers can be towed using the new design. 

Able to structurally support hydraulic line The customer has specified a desire that the redesigned 
trailer hitch incorporate support for the hydraulic line.   

Lightweight The Challenge X Competition rules specify a maximum 
allowed vehicle weight. Also, weight reduction 
improves fuel economy and emissions.  

Working model manufactured and tested prior to Road 
Rally 

Customer needs to use trailer hitch for Road Rally 
competition in May 2008. 

Electrical wiring is operable Challenge X Competition requires electrical components 
of trailer hitch to be in working condition. 

Uses already-manufactured attachment points Customer desires use of current holes in vehicle 
structure used for previous trailer hitch attachment 
because drilling additional holes could decrease the 
structural stability of the vehicle. If more holes are 
drilled, additional reinforcement will be required. 

Easy to manufacture The trailer hitch must be manufactured by our team 
using the resources provided through ME 450. 

Easy to assemble and attach Customer may need to attach and remove trailer hitch 
multiple times during vehicle development. Therefore, 
customer needs to be able to assemble and attach the 
trailer hitch in a timely manner without requiring special 
tools or excessive force.  

Low cost Project has an ME 450 budget constraint of $400. 
Additional funding from the U of M Challenge X Team 
is possible, but must be justified. 

Meets GM’s rear crash specifications Challenge X vehicles are driven on surface roads, 
therefore they must be crashworthy. 

Minimal modification to bumper design Trailer hitch redesign is constrained by fixed bumper 
location. Small amount of material can be removed from 
underside of bumper, but Challenge X Competition 
awards points based on appearance and use of stock 
components. 

Aesthetically pleasing Challenge X Competition awards points based on 
appearance. 

Table 1:  Reasoning for selection of project requirements.  

  
In addition to the project requirements outlined in Table 1, our team investigated the need for 
and process of obtaining a competition waiver that would allow the U of M Challenge X Team to 
compete in the trailering competitions.  Since competition rules prohibit modification of any kind 
to the stock trailer hitch, our team had to show that our trailer hitch modifications did not hinder 
the original functionality of the stock trailer hitch in any way, or the U of M Challenge X Team 
would still be unable to participate in trailering events [15]. Further information on this waiver is 
provided in Section 16.8. 
 

4 SPECIFICATIONS 

Upon developing the project requirements stated in Section 3, we organized the requirements as 
customer needs in our Quality Function Deployment (QFD) matrix shown in Figure 10.  
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Trailer hitch weight

Designed as SAE Class II towing hitch

Clearance between oil cooler and trailer hitch

# of bolts required for attachment

Mass reduction during corrosion testing

Zero circuit malfunctions during testing

Working model tested and verified by April 10

Steps in manufacturing process

# of points attaching each line to trailer hitch

Procurement, material, and testing costs

Engineering Specification LSL

Engineering Specification Units

Engineering Specification Targets

Requirement Benchmarking

Engineering Specification USL

Clearance between bumper and trailer hitch

Material yield strength

Trailering capacity

Sustains live load

 
Figure 10: QFD matrix showing correlations between project requirements and engineering specifications

Notation:  
Blank = Not correlated  
1 = Slightly correlated  
3 = Somewhat correlated  
9 = Highly correlated 
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To determine the relative importance of these project requirements, we used a 1 through 10 
ranking system with 10 being most important and 1 being least important. As a group, our team 
read all of the project requirements and determined a rank value for each requirement based on 
our sponsor’s desires. Some requirements were given the same level of importance because they 
were of equal priority to our sponsor. 
  
Next, we translated these project requirements into engineering specifications by developing 
quantitative measures related to each requirement. By collaborative effort, our team read each of 
the project requirements and discussed how it could be measured, thereby generating a list of 
technical requirements. As a check, when we incorporated these engineering specifications in our 
QFD, we compared them with our project requirements to ensure that each project requirement 
was related to at least one of the engineering specifications we had developed.   
 
At one point in our design process, we had also included specifications for crash requirements, 
specifically the amount of allowable fuel spillage in a crash event, based on National Highway 
Transporation Safety Administration (NHTSA) standards (see Section 16.7). However, as shown 
in Figure 11, the fuel tank is located much farther forward in the vehicle than a standard fuel 
tank. Due to this distance and the location of the rear axle between the trailer hitch and the fuel 
tank, we determined that in a crash event, fuel spillage caused by the trailer hitch was not a 
concern in this application. Therefore, we eliminated these engineering specifications.  
 

 
Figure 11: Fuel tank location relative to trailer hitch 

 
Next, we determined the correlations between our customer needs and engineering 
specifications, represented numerically in the middle section of the QFD.  We then went through 
each combination of requirements and determined the magnitude of correlation between the two. 
Similarly, we determined the relative correlations between our engineering specifications as 
shown in the top section of the QFD. Based on this information, we used our QFD spreadsheet to 
calculate the relative weight and rank of each engineering specification, as outlined near the 
bottom of the QFD.  
 
To complete our QFD matrix, we also conducted benchmarking activities to investigate 
competitive products. Since the stock vehicle was a Chevy Equinox, we decided to use the trailer 
hitch on this vehicle as one of our benchmarks. According to the Chevrolet website, the Chevy 
Equinox is comparable to the Jeep Liberty and the Ford Escape. Therefore, we used the trailer 

Fuel Tank Trailer Hitch 
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hitches on these vehicles as additional benchmarks [10]. Based on our engineering specifications, 
we developed a list of benchmarking questions about the trailer hitches on these vehicles. Then, 
we contacted the trailer hitch engineer working on each of these vehicle platforms at their 
respective corporations to gather our benchmarking information. These questions and data are 
detailed in Appendix B and summarized in the QFD.  
 
One of the notable results of our benchmarking was that the hitch size of the Jeep Liberty was 
Class III, while both the Chevy Equinox and Ford Escape had Class II trailer hitches. This 
corresponds to the higher trailering capacity and weight of the Jeep Liberty. Therefore, we 
selected target values closer to the specifications of the Ford Escape. Additionally, a common 
feature among the benchmarked trailer hitches is that all three attached to the chassis in a similar 
six bolt fashion.  
 
Finally, as a result of the ranking system and requirement correlations in our QFD, we were able 
to determine the order of importance of our engineering specifications. This order is given by 
rank of most important to least important in Table 2 below.  As shown, specifications of equal 
importance received the same rank. 
 

1 Minimum trailering capacity of 3500 lbs 

2 Target of 6 bolts required for attachment between trailer hitch and vehicle 

3 Minimum clearance of 0.01 inches between bumper and trailer hitch 

4 Minimum clearance of 0.01 inches between trailer hitch and oil cooler 

5 Designed as an SAE Class II towing hitch 

6 Percent material weight lost during corrosion testing 

7 Maximum trailer hitch weight of 27 lbs 

7 Working model tested and verified by April 10 

9 Maximum of $400 for procurement, material, and testing costs  

10 Sustain live load of 15 lbs  

10 Maximum of 4 points attaching fluid line to trailer hitch 

12 Target material yield strength of 60 ksi 

13 Zero malfunctions during electrical component testing 

14 Maximum of ten steps in manufacturing process 
Table 2: Engineering specifications for trailer hitch design 

 

5 CONCEPT GENERATION 

To develop numerous unique concepts for our trailer hitch design, we brainstormed as a team 
and with others. We also used functional decomposition to separate our overall function into 
three sub-systems: middle bracket, end brackets/tubing, and hydraulic line attachments (see 
Figure 6).  In addition to these specific sub-systems, we originally generated ideas for 
modifications to the electrical box connection and safety chain attachments, but these changes 
were not explicitly related to our customer requirements and the ideas were not taken any further. 

5.1 Concept Generation Process 

The brainstorming session with the team involved coming up with and verbalizing ideas as they 
were conceived. We then took these ideas to our colleagues to develop ideas for the middle 
bracket, end brackets/tubing, hydraulic line attachment, and electrical box/line connection.  In 
both brainstorming sessions, we did not make restrictions based on material, feasibility, time, 
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cost, etc. The ideas generated by these brainstorming sessions are detailed in Section 5.3 and 
Appendix C. 

5.2 Functional Decomposition 

Based on our sponsor-defined problem and our literature review, the overall function required for 
our trailer hitch design was: To economically carry a 3500 pound load to allow the Chevy 
Equinox to safely tow a trailer, while maintaining crash worthiness, and compete in Challenge X 
competitions. We decomposed this overall function into five sub-functions as detailed below and 
shown in the function tree in Figure 12. 
  

 
Figure 12: Function tree showing the details of each sub-function identified for the trailer hitch 

 
The first sub-function was that the trailer hitch needs to carry a 3500 pound load during the 
Challenge X competition. While carrying this load, the trailer hitch had to provide enough 
support so it would not fail under loading and would withstand greater stresses than those that 
cause failure. If the trailer hitch did not meet this function, our design did not meet our customer 
needs. The second sub-function was to provide a method for the trailer to attach to the vehicle. 
This included providing an attachment between the trailer and trailer hitch, as well as an 
attachment between the trailer hitch and chassis. The third sub-function was that our trailer hitch 
had to support the hydraulic line running under the vehicle.  More specifically, the hitch needed 
to provide an attachment for the line while providing enough durability to withstand their weight.  
The fourth sub-function was that our trailer hitch had to meet safety requirements. This sub-
function consisted of providing a connection for electrical signals from the vehicle brake lights to 
the trailer brake lights and meeting all GM crash specifications, in order to allow the vehicle to 
act safely during a crash situation.  GM crash specifications included meeting Society of 
Automotive Engineers (SAE) standards, Insurance Institute for Highway Safety (IIHS), and 
National Highway Transportation Safety Association (NHTSA) requirements (see Sections 16.5 
and 16.7). The fifth sub-function was that the design had to be economical. This meant the 
design needed to provide a lightweight solution to our sponsor-defined task of supporting the 
hydraulic line, and also, the cost of our project was limited to $400.   

5.3 Initial Concepts 

This section details six of the design concepts developed during our brainstorming sessions and 
functional decomposition for the middle bracket, end brackets/tubing, and hydraulic line 
attachments. The rest of the ideas are shown in Appendix C. 

5.3.1 Middle Bracket Concepts 

The top two concepts for the middle bracket sub-system were to use the original middle bracket 
or a piece of square tube stock. Sketches of these two concepts are shown in Figure 13. 
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Figure 13: Original middle bracket (left) and square stock middle bracket (right) concepts  

  
The original middle bracket design was to use flat steel, bent to allow the bolt holes to reach the 
current body attachment points. The square stock bracket concept was to use hollow square stock 
cut to fit the length of the current bracket. The dimensions and wall thickness of the square stock 
would have been determined by Finite Element Analysis (FEA) analysis and would use the 
current body attachment holes using long bolts.  

5.3.2 End Brackets and Tubing Concepts 

The top two concepts generated for the end brackets and tubing design were the original and 
thumbs-up trailer hitch designs, which both featured a curved main bar. These two concepts are 
shown in Figure 14. Due to geometry constraints, the tubing design was determined by the 
design of the bracket. 
  

        
Figure 14: Original (left) and thumbs-up (right) end bracket concepts 

  
The original design for the end bracket used a stock trailer hitch purchased from GM. The 
thumbs-up design would have been welded around the end of the hollow circular tube of the 
original stock tube, as a concept for decreasing component weight.  We also came up with 
concepts that used a straight main bar; however, these concepts were more manufacturing 
intensive. Such additional concepts are shown in Appendix C.  

5.3.3 Hydraulic Line Attachment Concepts 

The top two concepts we generated for the hydraulic line attachments were the hinge and clasp 
designs shown in Figure 15. 

        
Figure 15: Hinge (left) and clasp (right) hydraulic line attachment concepts 
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The hinge concept used a hinge and catch mechanism to allow multiple uses.  The bar consisted 
of rubber reinforced-rods welded to the hinge and catch.  Rubber was chosen as an inexpensive 
method for protecting the hydraulic line from rubbing onto the metal of the hinge. 
 
The clasp concept was a large loop, welded to the trailer hitch on one end.  On the other end, 
there would have been a hinge that allowed the hydraulic line access into the loop.  The concept 
also featured optional cushion supports to prevent the hydraulic line from rubbing against the 
metal components. 
 

6 CONCEPT SELECTION 

After our concept generation phase, we focused on our ideas for each of the three sub-systems: 
middle bracket, end brackets/tubing, and hydraulic line attachments. Then, we used a go/no go 
screening process to assess the feasibility of each proposed concept. We eliminated ideas based 
on conditions such as geometric constraints, manufacturing difficulties, and design 
ineffectiveness. Then, using the concepts we deemed fit to continue in the selection process, we 
created a Pugh chart for each sub-system to determine the best component concepts. These three 
Pugh charts are shown in Appendix D.  
  
Finally, by combining these best component concepts, we created twelve different system 
variants and ranked the concepts in a final Pugh chart. Figure 16 shows this Pugh chart for the 
top five concepts, and is followed by a short discussion of the advantages and disadvantages of 
each concept. The selection matrix for the seven other concepts is given in Appendix D. 
   

Trailer Hitch System Variants Design #1 Design #5 Design #3 Design #7 Design #2 

Design Criteria 

Weight Orig. Bar 
Hinges 

Orig. Bracket 

Thumbs Up 
Hinges 

Orig. Bracket 

Orig. Bar 
Clasps 

Orig. Bracket 

Thumbs Up 
Clasps 

Orig. Bracket 

Orig. Bar 
Hinges 

Sq. Bracket 

No interference with other components 1.6 + + - 0 

Sustains 3500 lb load 1.6 + 0 + + 

Structurally support hydraulic lines 1.3 - - 0 - 

Lightweight 1.3 + + - 0 

Working model tested by April 15 1.1 + 0 + 0 

Corrosion resistant 0.8 + + 0 - 

Easy to manufacture 0.8 + + + + 

Easy to assemble and attach 0.6 0 0 0 - 

Meets GM's crash specifications 0.5 + 0 + 0 

Minimal modification to bumper 0.3 + + 0 0 

Low cost 0.2 + + 0 + 

Aesthetically pleasing 0.2 + + 0 

D 
A 
T 
U 
M 

0 

1 8.13 5.00 3.91 0 2.50 

0 0.63 3.75 3.28 10 4.84 Total Points 

-1 1.25 1.25 2.81 0 2.66 

    6.88 3.75 1.09 0 -0.16 

Rank   1 2 3 4 5 

Figure 16: System Pugh chart showing the top five concepts for overall trailer hitch design 
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As indicated by our system Pugh chart, our top concept was Design 1, which received 
significantly more positive points than all other concepts. This design used the main bar and the 
middle and end attachments from the original trailer hitch, with the addition of rubber-coated 
hinge attachments for hydraulic line support. This design was advantageous because the original 
trailer hitch had already been tested and verified by GM, making it more likely for the Challenge 
X Competition to approve a waiver request for a minimal modification to the original trailer 
hitch. Also, the design was easier to manufacture than any of the other designs, it utilized all of 
the original bolts, and it was the second most lightweight concept. However, the design was 
disadvantageous because we predicted the rubber-coated hinge attachments to be less structurally 
supportive of the hydraulic line than the clasp attachment. Also, welding the hinge to the main 
bar of the trailer hitch could decrease the structural integrity of the tubing. 
  
Our second-ranked concept was Design 5. This concept was similar to the top design, with the 
difference being the thumbs-up end attachment idea. This concept was advantageous because the 
end attachment would have a reduced amount of material, making the trailer hitch lighter in 
weight. However, this material reduction could compromise the hitch’s ability to sustain the 
3500 lb load and was not proven to be valid under GM’s crash specifications, which would have 
made it more difficult to obtain a waiver from the Challenge X Competition.  
  
The third best concept was Design 3. This design used the original main bar, end and middle 
attachments, and incorporated the padded, clasped fluid line supports. This design was 
advantageous because, again, it used the original, validated, trailer hitch and added on the 
attachments for hydraulic line support. However, it was disadvantageous because the clasped 
attachments would be welded around the tube of the trailer hitch, and this added thickness could 
cause an interference with the rear bumper. Furthermore, due to the complex geometry of the 
clasped attachments, these mechanisms would have been more difficult to cover in corrosion-
resistant coating. Also, these attachments would have added more weight than the rubber-coated 
hinges.  
  
The fourth-ranked concept was Design 7, which used the original middle bracket and main bar 
design, with thumbs-up end attachments and the clasped hydraulic line attachments. In our 
selection process, we chose this design as our datum. Although this design had the advantage of 
reduced weight in the end attachments, the addition of the clasped line attachments were 
anticipated to result in a net gain in weight. This design had the same disadvantages associated 
with the clasped attachment as stated for the third top concept, with the further disadvantage of 
not being GM-validated, due to the alteration of the end attachments.  
  
Finally, the fifth best concept we proposed was Design 2. This concept used the original main 
bar and end attachments, with the rubber-coated hinges for hydraulic line support and the square 
tube concept for the middle attachment. The middle attachment was the only difference between 
this design and the top concept. The advantage of this design was that it still would have been 
relatively easy to manufacture, since the middle attachment was just a piece of square tube stock, 
with holes, welded to the trailer hitch receiver. However, this difference would have required 
much more analysis and validation to prove it could support the 3500 lbs and meet GM crash 
specifications. Also, the square stock would have been less aesthetically pleasing than the 
original middle bracket attachment. 
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As indicated by this discussion, the concept rankings determined by our selection process made 
sense, based on our customer and engineering requirements. The top design, our alpha design, is 
described in further detail in the following section. 

6.1 Alpha Design 

Our team’s alpha design used the current trailer hitch attachments for the middle bracket and end 
brackets/tubing, along with newly designed hinges for the hydraulic line attachments.  Two 
overall views of the redesigned trailer hitch are shown as CAD models in Figure 17. 

       
Figure 17: View of alpha design CAD model from rear of vehicle (left) and front of vehicle (right) 

  
The hydraulic line attachments are indicated in Figure 17 above. All other components would be 
part of the stock trailer hitch manufactured by GM.  A larger view of the hydraulic line 
attachment is shown in Figure 18. The larger cylinder represents a cross-sectional piece of the 
trailer hitch and the smaller cylinder represents a cross-sectional piece of the hydraulic line. 
Determination of the exact number and locations of the fluid line support mechanisms would 
have required further engineering analysis and was not determined for the alpha design. 

 
  

Figure 18:  Hydraulic line support mechanism design 

  
The hydraulic line support mechanism consisted of four components, as highlighted in Figure 18 
above. The first component was a small, metal hinge welded directly to the trailer hitch, which 
would allow the support mechanism to pivot open and closed around the hydraulic lines. This 
metal hinge is shown in Figure 19. 
 

Hydraulic Line 
Attachments 

Component 2:  
Metal Curve 

Component 3:  
Draw Tight Catch 

Component 1:  
Hinge 

Component 4:   
L-shaped Bracket 
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Figure 19:  Metal hinge for fluid line support mechanism 

  
Component 2 was a bent metal curve that would have been welded to the metal hinge 
(component 1), wrapped around the hydraulic line, and bent into a flat section for a draw tight 
catch to be attached (component 3). The metal curve would also have been coated with rubber to 
prevent any sharp, exposed metal from damaging the hydraulic line, and also to prevent 
corrosion.  
  
A draw tight catch, similar to the one shown in Figure 20, would be used to secure the bent metal 
curve (component 2) to the trailer hitch. This catch would be made up of two parts. The larger 
part, as pointed out, would act as a handle and would be welded to the flat part of the bent metal 
curve. The smaller part, the hook, would be attached to an L-shaped plate (component 4), which 
would be welded directly to the trailer hitch.  
  

 
Figure 20:  Draw tight catch for fluid line support mechanism 

  
As shown in Figure 18, the L-shaped plate (component 4) would provide a connection between 
the draw tight catch and the tubing of the trailer hitch. This component would allow the draw 
tight catch to remain on a flat surface as necessary for an accurate connection. 

6.2 Prototype 

One of our main focuses in critically assessing our alpha design was to develop an alternative to 
welding the hydraulic line attachment directly to the trailer hitch. We wanted to eliminate this 
welding for three reasons: (i) we were concerned that welding onto the trailer hitch would 
decrease the structural integrity of the hitch, (ii) the paint coating on the stock trailer hitch would 
make it very difficult to weld the hydraulic line attachments onto the main bar of the hitch, and 
(iii) we wanted to create a design that would not require a Challenge X competition waiver. 
Therefore, our prototype design concept featured a stock GM trailer hitch with hydraulic line 

Hook 

Handle 
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attachments that wrapped around the circular cross section of the trailer hitch, instead of welding 
onto the hitch. 
  
Additionally, we eliminated the draw tight catch (Component 3 in Figure 18) to make the design 
simpler and easier to manufacture. One of our main concerns was that we would not be able to 
weld the draw tight catch onto the curved bar (Component 2 in Figure 18) or L-bracket 
(Component 4 in Figure 18) because the catch had a brass finish. Also, we would have been 
unable to connect these components with bolts due to the limited amount of material on the 
catch, which made it infeasible to drill a bolt hole.  
 
Figure 21 shows a three-dimensional CAD rendering of the prototype and also a picture of our 
fabricated prototype.  
 

          

Figure 21:  3-D rendering (left) and manufactured (right) prototype 

 
Our prototype used 0.25 inch thick steel for the curved bar and the flat bar and featured an L-
bracket that was bolted to the curved bar. This L-bracket was longer in length than the flat bar, as 
shown in Figure 21. Additionally, the C-shaped component, flat bar, and curved bar were 
covered with a rubber coating.  
  
We manufactured a prototype of our hydraulic line attachment mechanism to prove the most 
important elements of our final design. First, we validated the geometry of the hydraulic line 
attachment relative to the vehicle. By installing the prototype into the vehicle, we verified that 
each piece of the hydraulic line attachment fit into the vehicle without geometric or clearance 
issues, except the L-bracket, which was modified for the final design. We used the prototype to 
show that the design supports the hydraulic line, neither allowing the line to sag, nor pulling the 
line up farther that it was able to deflect.  Second, our prototype proved the motion of the 
mechanism. We were able to assemble the pieces together and swing the curved bar through the 
motion of the hinge. We were also able to physically verify that the motion of the hinge was not 
disrupted by the location of the hydraulic line when the prototype was installed in the vehicle. 
 

7 CONCEPT DESCRIPTION 

Our final design concept for the U of M Challenge X Team’s trailer hitch is shown in the 3D 
CAD model in Figure 22. It is composed of a stock trailer hitch purchased from GM and two 
hydraulic line attachments fabricated by our team.  

  

Component 1: 

C-shaped Component 

Component 5:  
Flat bar 

Component 4: 
L-bracket 

Component 2:  
 Hinge 

Component 3: 
Curved Bar 
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Figure 22: 3D CAD model of final design concept  

  
Each hydraulic line attachment consists of five components, as shown in Figure 23.  

 

Figure 23: CAD model of hydraulic line attachment 

 
The first component is a C-shaped component that wraps around the cross-section of the trailer 
hitch and connects to a flat bar to hold the entire mechanism in place. One end of this flat bar is 
connected to the pre-manufactured hinge, which allows a curved bar to swing around the 
hydraulic line for easy installation. The other end of this curved bar is connected to an L-bracket, 
which allows the curved bar to bolt back up to the flat bar, thereby securing the hydraulic line in 
place underneath the trailer hitch.  Figure 24 outlines this two stage operation for fastening a 
hydraulic line with the support mechanism, while the entire mechanism remains attached to the 
trailer hitch. 
  

                
Figure 24: Operation of final design concept 

  

Component 1:  C-shaped Component 

Component 5:  Flat bar 

Component 4:  L-bracket 

Component 2:  Hinge 

Component 3:  Curved Bar 
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Once installed, the hydraulic line support mechanism will remain fixed around the trailer hitch.  
Figure 25 conveys how the various components of the hydraulic line support mechanism fit 
together to form an entire mechanism that can be attached to the trailer hitch. 
 

 
Figure 25: Layout drawing showing the interaction between components in the final design concept 

  
Two bolts, one placed through the C-shaped component, flat bar, and hinge and one placed 
through the C-shaped component, flat bar, and L-bracket, will secure the support mechanism 
around the trailer hitch.  The bolt through the L-bracket will need to be removed and refastened 
each time a hydraulic line is to be placed in or removed from the mechanism.  Additionally, a 
bolt will be placed through the hinge and curved bar to keep these components fixed together. 
 

8 PARAMETER ANALYSIS 

This section describes the methods and engineering decisions used to develop the details of our 
final design.  

8.1 Determination of Hydraulic Line Attachment Design 

To determine the specific parameters for our design, we used the following approach. The first 
step was to find a pre-manufactured C-shaped component, (the pipe strap shown in Figure 26), 
that fit around the circular cross-section of the trailer hitch. Since this component already had 
bolt holes drilled into its flanges, we decided to keep this dimension for the distance between 
bolt hole centerlines. There were also other choices for a pre-manufactured pipe strap that had 
the same thickness as our chosen pipe strap, but were smaller in diameter and would not fit 
around the trailer hitch. Our search for additional choices was unfruitful.  
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Figure 26: C-shaped component 

  
We also found pre-manufactured stainless steel hinges, shown in Figure 27, to use in our design. 
The width of the pipe strap was 0.875 in, so we wanted to use the small hinge, whose 1 in width 
would be close to that of the pipe strap. We also wanted to drill bolt holes through the wings of 
the hinge, however, we were unable to do this because of the small hinge’s short length. 
Therefore, we had to use the larger hinge, which was 2 in wide.  
  

 

Figure 27: Small and large hinges considered for hydraulic line attachment  

 
For the L-bracket, we were able to purchase 0.125 in thick L-stock, which we then cut and 
drilled to our specifications. For the bolt hole, we left 0.75 in clearance between the hole 
centerline and the outer face of the 90º angle of the L-bracket, to allow for ease of bolt 
installation.  
 
The next component we analyzed was the curved bar. The shape of this bar was determined 
based on: (i) the minimum required distance between the trailer hitch and the hydraulic line, (ii) 
geometry constraints due to the hinge and L-bracket, and (iii) maximizing the radius of curvature 
to make the bar easier to bend in the manufacturing process. 
  
For our prototype design, we used 0.25 in thick steel. However, to reduce weight and cost, we 
investigated the feasibility of using steel that was half as thick. To perform our analysis, we 
modeled the curved bar in a FEA software, HyperMesh. We imported the curve shape as a .dxf 
file from our AutoCAD2008 model and, after creating top and bottom surfaces from the 
geometry of the model, we created a midsurface along the length of the curved bar. Next, we 
meshed our model along this midsurface, with refined circular meshes at the locations of the bolt 
heads, using a PSHELL property collector for steel (E=30x106 psi, NU=0.29) with a 0.125 in 
thickness. We also applied constraints (6 degrees of freedom) to the nodes at the bolt head 
locations.  
  

Hinge  
width 

Hinge  
width 

Hinge length 
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From our AutoCAD file, we were also able to import the cross-section of the hydraulic line 
relative to the curved bar. We used the outline of the hydraulic line to determine which elements 
of the curved bar would be in contact with the hydraulic line. Then, we applied a downward 
force of 15 lbs to these elements. This force was determined by calculating the downward 
force, F , due to the hydraulic lines and the hydraulic fluid and multiplying by a factor safety of 
about 3. The calculation for force, F, is shown in Eq. (1), where Wline is the mass per unit length 
of the hydraulic line, L is the length of the hydraulic line, ρ is the density of the hydraulic fluid in 
pounds per volume, g is the acceleration due to gravity, and V is the volume of hydraulic fluid 
contained in the length of hydraulic line.  
  

   lbsftftftslugsftftlbVgLWF line 4.5)/2.32)(0164.0)(/73.1()3()/48.1( 233 =+⋅=+= ρ  (1) 

  
After running the HyperMesh solver and obtaining deformation and stress results for our initial 
mesh, we split the mesh and ran the HyperMesh solver again to verify mesh independence. This 
resulted in less than 2.5% difference between the deformation in the coarse and fine meshes, 
showing sufficient convergence and increasing our confidence in the FEA results. The stress 
results for our fine mesh are shown in Figure 28 below. Further details are shown in Appendix E.  
  

 
Figure 28: HyperMesh stress results for curved bar with 0.125 inch thickness 

  
As indicated in Figure 28, the maximum stress of 2.0 ksi occurs underneath the bolt hole on the 
straight vertical section of the bar. Since this stress is much less than 50 ksi (the material yield 
strength of the steel we used), our analysis indicated that the 0.125 inch thick steel would not 
experience failure due to yield, thereby validating our design change for reducing material 
thickness in the curved bar.  
  
We also considered using aluminum in our design. However, we were initially planning to use a 
manufacturing process that included significant amounts of welding, specifically welds directly 
between our manufactured components and the steel trailer hitch. This welding would require the 
materials to be compatible. Also, commonly available aluminums have yield strengths much 
lower than 50 ksi and steel is lower in cost than aluminum. Therefore, we decided to use steel for 
our manufactured components.  
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The next component that we designed was the flat piece between the trailer hitch and the 
hydraulic line. The purpose of this component was to secure the entire mechanism onto the 
trailer hitch and to protect the hydraulic line from rubbing against the metal of the trailer hitch. 
Since the flat piece was not a major load-bearing component, we decided to use the same 0.125 
in thick steel that we used for the curved bar.  
 
To prevent wear due to corrosion, metal-to-metal contact, and direct metal contact with the 
hydraulic line, we tested two setups for applying a preventative material or coating to the C-
shaped component, the flat piece, and the curved bar. First, we considered using a thick, silicone 
material and affixing it to the metal components with epoxy. Upon testing, however, we found 
that the silicone easily peeled off of the epoxy layer, which was unacceptable. For our second 
setup, we tested a multi-purpose rubber coating that was applied to the components through 
dipping. This coating was easy to apply and adhered to the steel pieces very well. Therefore, we 
decided to use the rubber coating for our protective layer.  

8.2 Determination of Number and Location of Hydraulic Line Attachments 

After finalizing our hydraulic line attachment design, we used beam bending theory to determine 
the number of attachments required to support the hydraulic line. The equation for the stiffness 
of a beam is given by Eq. (2) below, where k is the stiffness of the beam, P is the load at the 
midspan of the beam, and δ is the deflection at the midspan of the beam [16]. 
  

δ

P
k =  (2) 

  
Then, the natural frequency of a beam was calculated by Eq. (3), where f is the natural frequency 
of the beam, in Hz, and m is the mass of the beam [16].  

       

m

k
f ⋅=

π2

1
 (3) 

  
We used this theory for a simple physical test to determine the stiffness of the hydraulic line, and 
then we calculated the resonant frequency of the hydraulic line for a given length between 
supports. This natural frequency was compared to the vehicle frequency criterion of 25 Hz. This 
criterion was determined based on discussion with a Noise and Vibration engineer from GM. 
(See Section 16.10 for further details).  
  
After determining the necessary spacing of the hydraulic line attachments, we optimized the 
locations of the hydraulic line attachments in terms of the trailer hitch.  To do this we used FEA 
to determine the areas of high stress concentration on the main bar of the hitch, so we could 
avoid these areas when placing our hydraulic line attachments. To do this, we imported the 
trailer hitch surfaces into HyperMesh, created midsurfaces, and then created PSHELL 
components with the material properties of steel and the thickness of the trailer hitch. We 
simulated welding by equivalencing the nodes of connected pieces. We constrained the trailer 
hitch with six degrees of freedom on the nodes that represent the area of the bolt heads, and we 
applied a force of 3500 lbs to the rearward hemisphere of the cotter pin holes, which transfers the 
load of the trailer to the trailer hitch. We used the HyperMesh solver to generate the stress results 
shown in Figure 29 and found that the areas of high stress were located in the middle bracket, not 
along the main bar.  
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Figure 29:  FEA stress results for entire stock trailer hitch (left) and main bar only (right) 

 
Therefore, the placement of the hydraulic line attachments along the bar was not significantly 
dependent on the stress contours in the bar.  Thus, the locations were mainly based on 
geometrical constraints due to the locations of other components in the vehicle. 

8.3 Results from Analyses Assignments 

In addition to the methods we used to develop our final design, our team also completed the 
following analyses to supplement our project. 

8.3.1 Material Selection 

For our first material selection, we analyzed materials for the six major load-bearing 
components. We determined that the best materials would maximize strength and stiffness while 
minimizing weight and material cost. Using the CES EduPack 2007 software, we determined 
that the best material to use was AISI 1030 carbon steel, which was the cheapest of the top five 
materials and had comparable corrosion resistance.  
 
For our second material selection, we analyzed materials for the coating applied to the hydraulic 
line attachments. The function of this coating was to maximize corrosion resistance while 
minimizing cost and weight. Using the CES EduPack 2007 software, we determined that the best 
material to use was butyl rubber. Of our top choices, the butyl rubber was most resistant to salt 
water corrosion and had comparable corrosion resistance for fresh water, weak acids, strong 
acids, weak alkalis, strong alkalis, organic solvents, and UV radiation. Additionally, butyl rubber 
is typically use in car tires, so it is likely that GM would have some familiarity with this material. 
Further details are provided in Appendix I.  

8.3.2 Manufacturing Process Selection 

Since hydraulic hybrid technology is a relatively new development, hydraulic hybrid vehicles 
would initially make up only a small percentage of vehicles produced by automotive companies. 
Therefore, our target production is 1000 hydraulic line attachments. Based on our analysis in the 
CES Manufacturing Process Selector, for the AISI 1030 carbon steel components we would use 
a sheet stamping manufacturing, with a combination of bending and stretching processes to form 
one unit. This process would allow for the unique shapes and holes in our components, 
especially those in the curved bar design. Our analysis indicated that the capital write-off time 
for this process would be 5 years.  
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We also analyzed the manufacturing process for the butyl rubber and determined that the best 
manufacturing process would be to use water-based painting application as a surface treatment 
process. For this process, the relative equipment cost is medium, tooling cost is low, and the time 
before handling is 500-5000 seconds. Additionally, this manufacturing process gives good 
weathering resistance, thereby satisfying our need for corrosion resistance. These analyses are 
explained further in Appendix I.  

8.3.3 Design for Assembly 

We used the Boothroyd-Dewhurst method to analyze the design efficiency of our prototype 
design and found the design efficiency to be 38.5%. Then, based on our test for minimum 
number of parts, we decided to weld the L-bracket and curved bar together, thereby eliminating 
the bolt between these two components, which, from an assembly standpoint, essentially 
combined these two parts into one integral component. We were also able to improve the 
assembly process by assembling the components in a different order. Starting the assembly 
process with the bolt between the hinge, flat bar, and C-shaped component allows the bolt holes 
of these components to be aligned, which reduces insertion time. Therefore, the design efficiency 
of our final design was increased to 51.9%.  Further details are given in Appendix I. 

8.3.4 Design for Environmental Sustainability 

We completed a Design for Environmental Sustainability analysis using SimaPro. We analyzed 
C55 I steel and EPDM rubber ETH U materials similar to those determined from our Material 
Selection analysis, carbon steel and butyl rubber, respectively. We found that the C55 I steel had 
a greater mass air emissions, raw material usage, and (solid) waste, while the EPDM rubber ETH 
U had greater water emissions. The C55 I steel has a greater impact on minerals, land use, 
acidification/eutrophication, ecotoxicity, climate change, and respiratory inorganics, while the 
EPDM rubber ETH U has a greater impact on ozone layer, radiation, respiratory organics, and 
carcinogens. Based on the normalized score in human health, eco-toxicity, and resource 
categories, resources was likely to be the most important category from the analysis of C55 I 
steel. For the EPDM rubber ETH U, human health had a slightly greater normalized score than 
resources, and the score for Ecosystem Quality was the lowest damage meta-category for both 
materials. Finally, the EcoIndicator 99 “point value” for C55 I was 23, while the “point value” 
for EPDM rubber ETH U was only about 4. This indicated that the C55 I steel would have a 
larger impact when considering the life cycle of the whole product. Therefore, based on our 
analysis, the steel in our design will have a greater environmental impact, both on its own and 
from a life cycle analysis standpoint, than the impact caused by the rubber. See Appendix I for 
further details.  

8.3.5 Design for Safety 

We used the DesignSafe program to assess the risks associated with our project. The greatest risk 
would be caused if there are sharp edges on the hydraulic line attachment. These edges could 
puncturing the hydraulic line and cause hydraulic fluid to leak. This would hinder vehicle 
operation, cause hazards to the user, and harm the environment. As a result of this analysis, we 
rounded all sharp edges on the components of our final, manufactured hydraulic line attachments 
to prevent these problems from occurring.  Further details are given in Appendix I. 
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9 FINAL DESIGN 

Our final design, shown in Figure 30, is comprised of two main parts: the stock GM trailer hitch 
and two hydraulic line attachments, placed in optimized locations on the main bar of the trailer 
hitch. Figure 31 shows one of these hydraulic line attachments manufactured by our team.  
  

 

Figure 30:  Photograph of final design 

  

 
Figure 31:  Manufactured hydraulic line attachment 

 
Table 3 below lists the major components in our design.  A full list of all components is given in 
the Bill of Materials shown in Appendix F.  
 

Part # Part Name 

1 Stock trailer hitch 
2 C-shaped component 
3 Hinge  
4 L-bracket 
5 Curved bar 
6 Flat bar 

Table 3:  Major parts list for final design 

  
The first major component in our final design is a stock trailer hitch for a Chevy Equinox, 
provided by GM.  This pre-manufactured part is available through GM Parts Direct (catalog 
number 19169825). 
  
The second component of the final design is the C-shaped component, shown as an engineering 
drawing in Figure 32. This component is a pre-manufactured pipe strap made of stainless steel. It 
is rubber-coated to avoid metal-on-metal contact between the trailer hitch and the pipe strap, 
thereby inhibiting abrasive wear. This coating also creates a snug fit between the components, 
which will prevent slip.  
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Figure 32:  Dimensioned, 2D views of the C-shaped component 

  
The third component of the final design is the flat bar, as shown as an engineering drawing in 
Figure 33. This component is made of A-36, hot-rolled steel and is also rubber-coated to prevent 
metal-on-metal contact with the trailer hitch. This rubber coating provides a protective layer 
between the metal of the flat bar and the hydraulic line, and also prevents corrosion of the flat 
bar. 

 
Figure 33:  Dimensioned, 2D views of the flat bar 

  
The fourth component of the final design is the pre-manufactured, stainless-steel hinge, shown as 
an engineering drawing in Figure 34. This component facilitates the motion of the mechanism to 
swing open and closed around the hydraulic line, thereby enabling hydraulic line readjustment.  
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Figure 34:  Dimensioned, 2D views of the hinge 

  
The fifth component of the final design is the curved bar, shown as an engineering drawing in 
Figure 35. This bar is designed as a custom curve to align with the hinge and L-bracket and to 
support the hydraulic line at its closest distance to the trailer hitch. It is made of the same A-36, 
hot-rolled steel as the flat bar and is also rubber coated to prevent the metal from rubbing 
through the surface of the hydraulic line and to inhibit corrosion of the curved bar.   

 
 

Figure 35:  Dimensioned, 2D views of the curved bar 

  
The sixth, and final, major component of the final design is the L-bracket, shown in Figure 36. 
This bracket is welded to the curved bar and serves as the bolted interface between the curved 
bar and the flat bar, which meet at a right angle.  
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Figure 36:  Dimensioned, 2D views of the L-bracket 

  
The end goal of this project was to create a working model that the U of M Challenge X Team 
could use in the May 2008 Road Rally, therefore, there are no deviations between the final 
design presented here and the final manufactured product.  The operation of this final design was 
discussed in detail in Section 7 and all validations for the design will be discussed in Section 11. 
 

10 FABRICATION PLAN 

We fabricated a prototype as an intermediate, proof-of-concept step in developing our final 
design. We also manufactured our final design.  One final hydraulic line attachment was used for 
validation testing and two others were incorporated into our working model. The sections below 
state the fabrication process for both the prototype and the final design, and also address critical 
tolerances in these plans.  

10.1 Prototype Fabrication 

Figure 37 shows a cross-sectional view of the prototype that our team fabricated in the ME 450 
machine shop facilities.  

 
Figure 37:  Dimensioned drawing of the hydraulic line attachment prototype 

 
The most difficult component to manufacture was the curved bar.  In order to accurately 
manufacture this component, our team used the following bending procedure. First, we created a 
template by printing our CAD drawing to scale, and then cut out the paper pattern. We glued this 
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pattern onto a 7 in × 5 in × 1 in piece of aluminum, and then used the band saw and circular 
sander to cut and smooth the metal into our desired curve. Once the aluminum template was 
completed, a blow-torch was used to heat the 24 in × 1 in × 0.25 in bar beyond its critical 
temperature. Since we used hot-rolled steel, we were able to form the bar around the template 
into the correct shape. Once the curved bar was cool, our team drilled 0.25 in diameter holes into 
the ends of the curved bar.  
 
The next step in the manufacturing process was to cut straight steel stock into two 6 in ×1 in × 
0.25 in bars using the band saw to create the flat bar components. Then, we used the drill press to 
drill 0.25 in diameter holes into these straight bars, as well as the stainless steel hinges and the L-
brackets.  
 
Finally, we covered the bolt holes of the C-shaped component, straight bar, and curved bar with 
Scotch tape and dipped the pieces in rubber coating. We applied three layers, allowed the coating 
to dry completely, and then removed the taped areas with a knife.  
 
For the fasteners in our prototype, we used a single one-inch, 0.25 in diameter bolt with 20 
threads per inch, along with a matching hex nut, to align and attach the corresponding bolt holes 
in the L-bracket, the flat bar, and the C-shaped component. For the other three bolted 
connections, we used 0.75 in long, 0.25 in diameter bolts with 20 threads per inch and matching 
hex nuts.  

10.2 Final Design Fabrication 

The fabrication process of the final design remained the same as the prototype, except for the 
following changes:  

• The thickness of curved bar and flat bar components was 0.125 in instead of 0.25 in. 
• The length on one side of the L-bracket was shortened with a bandsaw to be flush with 

the corresponding edge of the flat bar.  
• The L-bracket was connected to the curved bar via TIG welding instead of a bolt. 
• All bolts used were 0.25 inch diameter and 20 threads per bolt length of 0.75 inch, with 

matching hex nuts, which was possible due to the decreased thickness of the flat bar. 
 
The entire manufacturing process for our working model is summarized in Table 4 below.  

 

Component Machine Detailed Description 

C-Shaped None 1. Dip in rubber coating 

Bandsaw 1. Cut 6 inch piece of 0.125 in thick A-36, hot-rolled steel 
Flat Bar 

Drill press 2. Drill two 0.25 in diameter holes 5 in center-to-center 

Stainless Steel Hinge Drill Press 1. Drill two 0.25 in diameter holes 

Bandsaw 1. Cut aluminum template pattern of curved metal bar 

Bandsaw 2. Cut 12 in piece of 0.125 in thick A-36, hot-rolled steel 

Blow Torch 3. Form A-36, hot-rolled steel around metal template 
Curved Metal Bar 

Drill press 4. Drill two 0.25 in diameter holes in A-36, hot-rolled steel 

Drill press 1. Drill one 0.25 in diameter hole 

Bandsaw 2. Cut L-bracket L-Bracket 

Welding 3. Weld L-bracket to curved bar using TIG welding 
Table 4: Manufacturing plan for final design 
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10.3 Critical Components and Tolerances 

The critical tolerance in our prototype and final design is the 5.00 ± 0.1 in distance between bolt 
centerlines in the C-shaped component and the flat bar as shown in Figure 38. This tolerance is 
critical because if there is much variation, these bolt holes may not line up with the holes in the 
hinge and L-bracket. This would prevent the entire mechanism from being able to bolt closed. 
 
 

 
Figure 38: Critical alignment of bolt holes 

 
The other critical tolerances in our design are the radii in the curved bar. Due to the nature of the 
manufacturing process for bending steel stock into our curved bar, it is difficult to keep close 
tolerances in this component. This could also cause difficulties in making the bolt holes line up 
correctly.   The least critical tolerance in our design is the weld between the L-bracket and the 
curved bar. As long as these components are securely affixed together, the weld is sufficient.  
 

11 VALIDATION RESULTS 

To prove that our design meets all of our customer needs, we have taken each engineering 
specification from our QFD diagram (shown in Figure 10) and determined a validation approach. 
Table 5 outlines these approaches.  
 

Rank Engineering Specification Validation Method 

1 Trailering capacity GM-validated 

2 Number of bolts required for attachment Uses 6 bolts 

3 Clearance between bumper and trailer hitch Measure clearance after installation 

4 Clearance between oil cooler and trailer hitch Measure clearance after installation 

5 Designed as SAE Class II towing hitch GM-validated 

6 Mass reduction during corrosion testing Chemical testing 

7 Trailer hitch weight Measure weight 

7 Working model tested and verified by April 10 Completion for Design Expo 

9 Procurement, material, and testing costs Expenditure does not exceed $400 

10 Number of points attaching fluid line to trailer hitch Physical Testing/Vibrational Analysis 

10 Sustains live load FEA 

12 Material yield strength Material property check 

13 Zero circuit malfunctions during testing Electrical component test 

14 Steps in manufacturing process Fabrication Plan 

Table 5: Methods for validating engineering specifications 

5.00 ± 0.1 in 
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As indicated, several of the engineering specifications did not require validation testing because 
we assumed that the analysis had already been completed by GM.  By using the stock trailer 
hitch, we did not modify any of the structural components of the trailer hitch. Therefore, we 
assumed that the validations for trailer capacity, SAE Class II towing hitch, and yield strength 
criteria for the trailer hitch material were already successfully completed. Also, by using the 
stock trailer hitch, the six-bolt attachment between the trailer hitch and the vehicle was inherent 
in our design, and therefore, this specification did not need to be validated.  
 
The clearance requirements were validated when we installed our final working model into the U 
of M Challenge X Team’s vehicle. We did not find any interference between our working model 
and nearby vehicle components (see Figures 1 and 2).   
  
To determine the weight of the final trailer hitch, we used a standard scale to weigh the entire 
trailer hitch with the hydraulic line attachments affixed. The entire final design weighed 28.3 lbs. 
Though this value is slightly greater than our target weight of 27 lbs, this minimal weight 
increase was acceptable when compared to the overall weight of the vehicle.  
  
By building the April 10th deadline into our critical path, we completed all manufacturing and 
analysis of our working model in time for the Design Expo.  
  
Also, by keeping track of our expenses and considering cost in all of our decisions, we did not 
exceed our $400 budget. The total expenditure for our project was $196.33.  The main 
components of this cost were validation testing supplies and materials for manufacturing the 
hydraulic line attachments.  The stock trailer hitch was supplied through U of M Challenge X 
Team funding. 
  
The requirement for determining the number and spacing of hydraulic line attachments was 
determined through physical testing. We wanted the distance between attachments to be small 
for two reasons: (i) so the lines would not deflect and hit the trailer hitch, and (ii) so the lines 
were not able to reach their resonant frequency, which could cause Noise, Vibration, and 
Harshness (NVH) issues in the vehicle. However, for cost and weight considerations, we also 
wanted to minimize the number of attachments required.  We used the beam bending theory 
discussed in Section 8.2 for our physical testing. To determine the stiffness of the hydraulic line, 
we clamped a 3 ft. long piece of hydraulic line between two C-Clamps obtained from the ME 
450 Machine Shop, as shown in Figure 39.     
 

 
Figure 39: Pull test setup to measure deflection of hydraulic line 
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We started with a suspended length of 4 inches between the two C-Clamps. Then, we affixed a 
heavy duty zip-tie around the hydraulic line cross-section at the midpoint between the two 
clamped ends. Next, we hooked a force gauge onto the zip-tie and applied a lateral force of 15 
lbs to the hydraulic line and measured the displacement of the hydraulic line at its midpoint. 
Using these measured values of applied force and resulting deflection in the equations described 
in Section 8.2, we calculated the stiffness and resonant frequency of the hydraulic line for a 
length of 4 inches. We continued increasing the suspended length in increments of 2 inches and 
determined the stiffness and resonant frequency at each measurement.  Based on our discussion 
with engineers from GM, we needed to have a minimum resonant frequency of 25 Hz (See 
Section 16.10) and therefore, our test results indicated that the spacing between attachments 
needed to be less than 10 in (See Appendix G for full results). Also, as previously discussed, we 
created an FEA model of the entire stock trailer hitch and applied a 3500 lb trailering force. We 
found the stress in the middle bracket to be one magnitude greater than the stresses in the bar of 
the hitch. Therefore, the placements of the hydraulic line attachments along this bar were not 
significantly dependent on the stress contours in the bar. Thus, the locations were mainly based 
on geometrical constraints due to the locations of other components in the vehicle.  
 
To check that our attachments were able to support a live load, we used FEA to look at the 
curved bar with a pressure force applied to simulate the weight of the line. Details of this 
analysis were described in Section 8.1, and supplemental information is provided in Appendix E.  
Our analysis indicated that approximately 330 lb of downward force would be required to reach 
the yield strength of the curved bar material. Since the weight of the hydraulic line was an order 
of magnitude smaller than this maximum force, we concluded that our design would sustain this 
live load. 
  
One of our engineering specifications was for material yield strength to be less than or equal to 
60 ksi. This criterion was set for the component bearing the trailering load, namely the stock 
trailer hitch. Since the GM hitch material had a yield strength of 60 ksi, it met this criterion. The 
steel used for the hydraulic line attachments had a yield strength of only 50 ksi. While this value 
was lower than our engineering specification, since the attachments did not support the trailering 
load, the requirement was not critical for the hydraulic line attachments.  
  
To validate the electrical components of the trailer hitch, we purchased a 4-Wire Flat Tester, 
shown in Figure 40, which uses light-emitting diodes (LEDs) to show proper functioning of the 
taillight circuits. We plugged this device into the electrical box of the trailer hitch, turned on the 
power to the vehicle, and tested the turn signals and brake lights. This test proved that all 
electrical circuits functioned properly. 
 

 
Figure 40:  4-Wire Flat Tester 
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We validated the corrosion requirement of less than 30% mass reduction via chemical testing. 
We submerged one hydraulic line attachment into a solution of 95% water and 5% road salt for a 
duration of four days. The mass of the specimen prior to testing was 412.9 grams. After testing 
was completed and the specimen, shown in Figure 41, was allowed to dry completely, the final 
mass was measured to be 420.9 grams, showing a 2% increase in mass. This increase was 
attributed to the excess salt that clung to the specimen. Additionally, after testing, we observed 
two cracks in the rubber coating.  However, we attribute these cracks to the non-uniformity in the 
rubber coating and we believe a more uniform and consistent dipping process would eliminate 
the formation of such defects.  Therefore, our design was validated for the corrosion 
requirement.  
 

 
Figure 41:  Corrosion tested hydraulic line attachment 

  
Additionally, we conducted physical load testing to prove that the entire mechanism, specifically 
the C-shaped component, could withstand the loads induced by the hydraulic line. We simulated 
the trailer hitch with a steel tube of the same diameter and thickness. As shown in Figure 42, we 
clamped this tube on both ends and then attached our working model around the tube. We put a 
heavy duty zip-tie around the curved bar of our final design, and then used a force gauge to apply 
a 15 lb downward, vertical load. Next, we applied a 15 lb lateral load.  
 

      
Figure 42: Vertical (left) and lateral (right) test setups to validate hydraulic line attachment 

 
The criterion for this test was that the C-shaped component must not shear upon loading. Since 
we observed no deflection or failure upon testing, our design passed the inspection, validating 
our decision to use the pipe strap for our C-shaped component. 
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12 DISCUSSION 

The following discussion is a critique of our design, along with lessons that we’ve learned from 
our project and also possible future modifications.  

12.1 Strengths and Weaknesses 

We have identified the three greatest strengths of our design. First, the hydraulic line attachments 
do not harm the trailer hitch because they wrap around the trailer hitch and have the protective 
rubber coating to prevent metal-to-metal contact. This gives the design high potential for 
obtaining a waiver from the Challenge X authorities. Second, the design allows the hydraulic 
lines to be attached or removed easily, without requiring the hydraulic line attachment 
mechanism to be fully removed from the trailer hitch. This was desirable to the U of M 
Challenge X Team because they will install the final trailer hitch design before they have 
completed their adjustments to the vehicle for competition. Third, our design is low cost. The 
cost of one hydraulic line attachment is $9.76, and the cost of the entire trailer hitch is $190.58.  
  
We have also identified the three weakest aspects of our design. First, for the hydraulic line 
attachments, the rubber coating does not cover the entire mechanism. This allows the exposed 
steel to corrode more rapidly, and aesthetically, the abrupt end to the rubber coating is less 
desirable. Second, the design of the hydraulic line attachments has potential for lost bolts, 
especially during installation or hydraulic line adjustment. Third, by adding the hydraulic line 
attachments to the stock trailer hitch, we have increased the weight of the trailer hitch by 1.3 lbs. 
Although this is a small weight increase, it is still a negative impact of our design.  

12.2 Lessons Learned 

After completing our project, we have identified some of the lessons we learned by going 
through the entire development process. First, we found that our design problem changed as we 
moved further into the project, specifically, the changes in oil cooler location and the number of 
fluid lines that needed to be supported by our design. In effort to anticipate such changes, if we 
were to do the project again, we would spend more time on the problem-definition phase by 
asking more pointed questions up front to get a better idea of the problem and potential sponsor-
defined changes that would affect our product.  
  
Second, in hindsight, we would think more critically about what was needed from the end 
design. We developed our alpha design with the notion that welding the hydraulic line 
attachment to the trailer hitch would be a viable option. However, we later decided that this 
method of connection could decrease the structural integrity of the trailer hitch, which was 
undesirable and led to major changes between the alpha and final designs.  
  
Third, we manufactured the hydraulic line attachments in batches.  If we were to do the project 
again, we would determine our validation and optimization test methods earlier. This would 
allow us to determine the number of hydraulic line attachments we needed to make before we 
began fabrication in the ME Machine Shop.  Manufacturing all at once would ultimately make 
our process more efficient.  
  
As a final lesson learned, we would have improved our brainstorming session with our peers. In 
preparation for the session, we decomposed the trailer hitch design into specific focus areas, such 
as the middle bracket design, end bracket design, and attachment design. However, for a 
brainstorming session, this method of facilitation was too compartmentalized and hindered 
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creativity. In retrospect, it would have been more effective to give a more general description of 
the desired outcome of the design and then allow our peers to be imaginative.  

12.3 Possible Future Modifications 

Our final design could be improved by making the following changes to the design and 
fabrication of the hydraulic line attachments.  First, the design could be modified to have more 
than one point of contact between the hinge and adjacent components to prevent pivoting around 
the single bolt. This could be accomplished by using a custom hinge design with larger surface 
area or by using two smaller bolts. Also, the design would be more aesthetically pleasing if the 
length of the hinge was flush with the flat bar and curved bar, instead of extending out on both 
sides. Additionally, it would be important to tighten the tolerances, especially the critical 
tolerances on the curved bar and the flat bar (as discussed in Section 10.3) to ensure that the 
components fit together properly.  
 
The design could also be improved by combining the curved bar and L-bracket into one 
component, to minimize parts and manufacturing steps. Furthermore, the process for dipping the 
components into the rubber coating could be improved by coating all exposed metal and by 
developing a way to ensure that the coating is uniform. This could include a more sophisticated 
method for drying the components after dipping, such as a rotating drying rack to prevent drips 
from drying permanently into shape. It would also be important to develop a better method for 
ventilation during the dipping process, such as a fan or a fume hood near the dipping area. 
Another possible modification would be to use an alternate coating for the hydraulic line 
attachments, such as the electronic coating used on the stock trailer hitch, which is applied as a 
liquid by dipping the component in tanks and then baking it to finalize the coating.  In addition, 
using a thinner coating would allow all metal to be covered while meeting tolerances. 
 
A further improvement could be made by making the device compliant. This could include 
replacing the hinge with a compliant mechanism, such as an accordion-shaped design to reduce 
part complexity, or using a snap-fit design in place of the bolt at the L-bracket that secures the 
curved bar around the hydraulic line. 
 

13 RECOMMENDATIONS 

Our team recommends that our working model be implemented in the U of M Challenge X 
Team’s hydraulic hybrid Chevy Equinox to be used in the towing events in the Road Rally 
competition in May 2008. Our design can be used to tow trailering loads up to 3500 lbs, and is 
validated for the current hydraulic line installed in the vehicle. If a larger hydraulic line were to 
be used, we recommend additional validation testing, to be completed by applying vertical and 
horizontal forces on the hydraulic line attachments. Also, we recommend that the hydraulic line 
attachments be kept in the optimized locations on the trailer hitch to prevent any unsuspended 
length of hydraulic line from reaching resonant frequency, which could have a negative effect on 
the noise and vibration of the vehicle. 
 

14 CONCLUSION 

The University of Michigan Challenge X Team required a redesigned trailer hitch for their 
hydraulic hybrid Chevy Equinox to be able to tow a 3500 lb load, with the additional 
functionality of supporting the hydraulic line running underneath the vehicle. Our final design 
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needed to be manufactured as a working model, validated by testing, and approved by a 
Challenge X waiver, to be used in towing events in the May 2008 Road Rally competition. Our 
team developed and fabricated a design that featured a stock trailer hitch purchased from GM 
with two uniquely-designed hydraulic line attachments. Our design was validated by numerous 
physical and computational analyses and is ready for use in the Challenge X Competition.  At 
this point, we have submitted our design to Challenge X authorities and are awaiting feedback in 
regards to a competition waiver.  If this feedback is delayed beyond the end of the semester, we 
will allow our sponsor to take over responsibility for finalizing the waiver. 
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16 INFORMATION SOURCES AND REFERENCE LIST 

Throughout the course of the project, our team gathered information from the following sources.   

16.1 Hydraulic Hybrid Vehicles  

The term “hydraulic hybrid vehicle” refers to a vehicle with a modified powertrain system that 
uses hydraulic fluid and a high-pressure pump to capture and use energy that would normally be 
lost as wasted heat due to braking friction in a conventional vehicle. Currently, the most practical 
type of hydraulic hybrid system is the hydraulic regenerative braking system. In this system, 
when the brakes are applied to slow the vehicle, energy from the wheels engage the hydraulic 
pump, which pumps hydraulic fluid into a storage tank containing nitrogen. The added fluid 
pressurizes the nitrogen, thereby storing energy. This energy is then used to force the hydraulic 
fluid back into the pump, causing it to act as a motor to power the wheels. In doing so, this 
hybrid system provides a means for improving fuel economy and reducing exhaust emissions [3, 
4, 5]. 
  
The concept of the hydraulic hybrid vehicle is similar to that of a hybrid electric vehicle (HEV), 
in that both are powered by a gasoline or diesel internal combustion engine and also incorporate 
a system for storing energy. Hydraulic hybrids use hydraulic fluid and a pump, while electrical 
hybrids use electrical current and a generator. However, the applications for which these systems 
are better suited are different. Hybrid electric systems are best used in compact cars, while the 
hydraulic hybrid systems are more efficient for heavy-duty vehicles, such as SUVs, trucks, and, 
buses, which require more power and can more easily fit the large storage tanks. Also, the 
hydraulic hybrid system is more effective for stop-and-go traffic, which requires a lot of braking 
[5, 6]. In comparing the two systems, the hydraulic hybrid system is advantageous because it can 
store or disperse large amounts of energy in a short amount of time, while batteries cannot. 
Additionally, although the storage ability of today’s batteries degrades over time, the energy 
storage ability of the hydraulic hybrid system does not. However, an electrical battery system can 
store more total energy than a hydraulic system [4]. More detailed information regarding 
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hydraulic hybrid vehicle systems, such as design strategies and parallel versus series systems, is 
available but was beyond the scope of our trailer hitch design project.  

16.2 Background Information on Trailer Hitches  

In the most basic sense, a trailer hitch can be defined as, “a piece of steel that attaches to a 
vehicle frame to allow the vehicle to tow a trailer, use a bike rack, attach a cargo carrier, or use 
any other hitch mounted accessory” [7]. The Society of Automotive Engineers (SAE) has 
defined four classes of trailer hitches that are uniformly used as the industry standard within the 
United States based on the Gross Towed Weight Rating (GTWR), or the weight of the trailer and 
its cargo, and the trailer hitch receiver size. The receiver is the part of the trailer hitch into which 
the draw bar of the trailer or hitch accessory slides. The receiver size is the geometric dimensions 
of this rectangular opening. These classifications are listed in Table 6 [8].  
 

Class  GTWR  Receiver Dimensions  

I  < 2000 lbs  1¼” × 1¼”  

II  2000 lbs – 3499 lbs  1¼” × 1¼”  

III  3500 lbs – 4999 lbs  2” × 2”  

IV  5000 lbs – 9999 lbs  2” × 2”  

Table 6: Standard SAE trailer hitch classifications and associated receiver sizes  

 
Almost all trailers and trailer hitch accessories are attached to the trailer hitch by a draw bar. 
These draw bars come in standard sizes dependent on the class of the trailer hitch and fit directly 
into the hitch’s receiver. In some cases the draw bar, also known as a ball mount, has a round 
ball is attached to it. The connection between this ball and the object being towed serves as a ball 
and socket joint that allows for relative movement between the two objects [9]. This feature is 
particularly important when turning and towing over uneven road surfaces.  
 
Another feature commonly used with trailer hitches is a weight distribution system, depicted in 
Figure 43.  
 

 
Figure 43: Typical weight distribution system for trailer hitches  

 
A weight distribution system is mounted into a trailer hitch and uses spring bars under tension to 
distribute part of the trailer’s weight to the towing vehicle’s front axle [7]. This type of system 
can greatly reduce the swaying and jerking of the trailer, thereby increasing the comfort of 
passengers in the towing vehicle.  

16.3 Results of Patent Search  

The original patent for a trailer hitch (Patent Number 2544185) was for a towing device that 
attached to the undercarriage of a vehicle, was out of the way of the trunk, and could be hidden 
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away while not in use. As shown in Figure 44, the different cross sectional areas of this design 
are shown, with the top picture being the full view from the side. 
 

 
Figure 44: Trailer hitch patent number 2544185  

 

Another important patent contributed to trailer hitch technology was a bumper attached trailer 
hitch (Patent Number 2671674). This design allowed the trailer hitch to be removed or attached 
to the rear part of the chassis, where it was out of sight, but still supported loads. The device is 
simple, cheap, durable, and prevents people from causing damage to their vehicle by accidentally 
running into objects with the ball mount. This design can be seen in Figure 45. 
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Figure 45: Trailer hitch patent number 2671674  

16.5 SAE Standard for Trailer Hitches 

To further our literature review, we referenced the SAE Handbook [11]. According to this 
source, there are four different aspects of loading requirements that a trailer hitch must withstand 
without incurring failure, which is defined in a slightly different manner for each set of loading 
requirements.  
 
The first set of loading requirements is for the attachment of the trailer hitch coupling to the 
trailer’s structural attaching member. These details are shown in Table 7 below, specifically for a 
maximum trailer gross vehicle weight rating (GVWR) of 3500 lb. In this context, failure is 
defined as loss of attachment, distortion, or fracture that would affect the safe towing of trailers. 
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Mode of Force Application Minimum Static Test Load 

Longitudinal Tension and Compression 5250 lb 

Transverse Thrust 1750 lb 

Vertical Tension and Compression 1750 lb 

Table 7: Strength test load requirements for attachment of trailer hitch coupling to trailer’s structural 

attaching member 

 
The second set of loading requirements is for the trailer hitch coupling component. As shown in 
Table 8, this consists of multiple modes of force application. In this context, failure is defined as 
the occurrence of metal fracture of the coupling assembly. Distortion does not constitute a 
failure.   
 

Mode of Force Application Minimum Test Load 

Requirements 

Longitudinal Tension 10500 lb 

Longitudinal Compression 10500 lb 

Transverse Thrust 3000 lb 

Vertical Tension 4500 lb 

Vertical Compression 4500 lb 

Table 8: Strength test load requirements for trailer hitch coupling to withstand 

 
The third set of loading requirements tests the strength of the trailer hitch. The various force 
requirements for a weight carrying hitch, such as the Chevy Equinox trailer hitch, are detailed in 
Table 9. For these tests, failure is defined as loss of attachment between the trailer hitch and the 
vehicle. 
 

Weight Carrying Hitch Force 
Applied Load 

Force Direction Force (lb) 

Downward 2125 Concurrent downward vertical force and 
compressive longitudinal force Compressive 2125 

Tensile 2335 Concurrent tensile longitudinal force and 
and downward vertical force Downward 525 

Compressive 2335 Concurrent compressive longitudinal 
force and and downward vertical force Downward 525 

Transverse force Leftward 1200 

Transverse force Rightward 1200 

Table 9: Strength test load requirements for trailer hitch to withstand. 

 
Lastly, for the safety chain used in a trailer hitch system, the requirement is to maintain its 
strength during and after the application of a minimum breaking force.  For a Class II trailer 
classification, this load requirement is an applied tensile load of 3500 lb, to be maintained for a 
minimum of one minute.  
 
We had anticipated using this information for our FEA and physical analyses, however, by using 
a stock trailer hitch, these specifications were inherently validated by GM. 

16.6 Current Trailer Hitch Bolts 

We were informed by the trailer hitch engineer at GM that the bolts used on the current trailer 
hitch are M12, meaning that the bolts have a nominal diameter of 12 mm and a thread pitch of 
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1.5 mm (which is the default for bolts whose thread pitch is not explicitly stated). We also 
learned that the bolts are grade 10.9.  This information would be useful if any additional bolts 
needed to be purchased for the trailer hitch. 

16.7 GM Crash Specifications 

Based on further discussions with contacts at GM, we determined that there are two standards 
that relate to our trailer hitch project. The first, set forth by the NHTSA, is the Federal Motor 
Vehicle Safety Standard  (FMVSS) 571.301, which specifies requirements for the integrity of 
motor vehicle fuel systems [12]. The section that is applicable for trailer hitches is the 
requirements for a rear moving barrier crash. For our 2005 Equinox, the standard specifies that 
fuel spillage must not exceed: (i) 28 g from impact until motion of the vehicle has ceased, (ii) a 
total of 142 g. in the five-minute period following cessation of motion, and (iii) greater than 28 g 
during any one-minute interval for the subsequent 25 minutes. Originally, we included these fuel 
spillage requirements as a means to quantify crash specifications, however, due to the large 
relative distance between the trailer hitch and the fuel tank, we determined that fuel spillage was 
not an issue in our design.  
 
The second relevant standard was the Bumper Test Protocol, specified by the IIHS, which 
addresses bumper crash tests [13]. With respect to trailer hitches, the protocol indicates that a 
trailer hitch is to be removed and its fasteners reattached to the vehicle for testing. Since our 
design used the same bolts as the original design, we already complied with this standard. 

16.8 Challenge X Waiver Information 

To investigate the Challenge X Competition waiver requirements and process, our team has 
contacted Mike Wahlstrom (fjehlik@anl.gov), a representative from Challenge X, about 
obtaining a waiver to allow modifications to the trailer hitch.  He requested that our team send an 
image of our design, as well as information on the exact placements of the hydraulic line 
attachments. He will discuss our design with other committee members, and then let us know if 
our design requires a formal waiver submission. At this point, we have submitted a photographs 
of our manufactured design and are in the process of receiving feedback from Challenge X 
authorities. If this feedback is delayed beyond the end of the semester, we will allow our sponsor 
to take over responsibility for finalizing the waiver.  

16.9 Criterion for Corrosion Testing 

We referenced the American Society for Testing and Materials (ASTM) standard for 
“Laboratory Immersion Corrosion Testing of Metals” [14]. This standard gives detailed 
instructions on acceptable procedures for immersion corrosion tests including specimen 
preparation, apparatus, test conditions, methods of cleaning the specimens, evaluation of the 
results, and calculation and proper reporting of corrosion raters.  Based on the evaluation and 
calculation sections, along with consideration of our component geometries, we determined that 
a maximum of 30% mass reduction was an acceptable criterion for our application. 

16.10   Criterion for Frequency Testing 

We determined the criterion of 25 Hz for our hydraulic line frequency testing based on 
discussions with Aaron Sullivan, a Noise and Vibration engineer at GM, and Matt Galligan, the 
GM engineer who serves as the U of M Challenge X mentor. GM’s general rule of thumb for 
suspension frequency is about 12 to 13 Hz, and to ensure that the frequency of the unsupported 
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hydraulic line length was far enough away from resonant frequency, we were recommended to 
double this frequency for our test criterion. 
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APPENDIX A  QUESTIONS FOR DETERMINING PROJECT REQUIREMENTS 

A.1  The Challenge X Competition 

1. Will every Challenge X team be designing a trailer hitch? 
a. Not necessarily 

i. See Challenge X rulebook for towing competition rules 
2. Is the overall goal of the Challenge X program to create a mass-produced vehicle? 

a. No 
3. For the Challenge X competition, is there something specific being towed? 

a. How will the trailer hitch be tested? 
i. See Challenge X competition rulebook 

4. What is the general history of this U of M team? 
a. How has the team done at past competitions? 
b. What work has the team done on the vehicle to date? 
c. Team has not done very well in the past 
d. Disqualified from towing competition in year 2 
e. Lack of team participation 
f. Parts have broken in the past 

5. Why was this project given to an ME 450 team? 
a. Because they have worked with ME 450 in the past 
b. They need design help! 

6. Is the vehicle worked on only 8 months out of the year or do the teams work year-round? 
a. Year-round 

7. Typically, what are the backgrounds of the students involved in the Challenge X 
program?  

a. Typically graduate students 
b. Students who are interested in automotive, hydraulics, etc. 
c. Dearborn  - 5 master’s students 

i. 1 working on regeneration system 
ii. 1 working on emissions 

1. Note:  hardest part of emissions is meeting NOX requirements 
d. 6-12 active members 
e. Javier works on the Challenge X vehicle 10-15 hours per week 

8. What happens to the winners of the Challenge X competition? 
a. Are there prizes? 
b. What is the motivation students have for being on the team? 
c. See competition rules 
d. Winners get full-time and/or internship offers 
e. Motivation – get experience and make yourself more marketable 

 

A.2  Design Background 

1. Why are we designing the trailer hitch? 
a. We are really more modifying the trailer hitch 

i. Specifically because of the hydraulic lines and oil cooler that were added 
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b. We will want to find space/attachment for the hydraulic lines in the design 
c. Vehicle modifications have rendered the current trailer hitch inoperable 
d. ME 450 professors were given 7-8 possible projects 

i. Administration selected the trailer hitch – best “design and manufacture” 
option  

2. Can we take pictures of the vehicle? 
a. Yes 

3. What is the level of confidentiality? 
a. Don’t worry about it 
b. It’s okay for contacts to come to the garage to see the vehicle 
c. Javier will need to be present whenever we want to see the vehicle 

4. For benchmarking purposes, what are the competitive vehicles? 
a. Should we consider other commercial vehicles? 
b. Should we consider other teams’ designs? 
c. Compare to other automotive manufacturers with trailer hitches 
d. Try to find other teams vehicles and information on their websites 

i. You Tube – Tennessee Challenge X 
ii. It could be hard to get this information from other teams 

e. Other teams may not have modified the trailer hitch – they could have built 
around it 

i. Therefore, their towing capacity would be the Equinox standard 
5. What is the current towing capacity of the vehicle? 

a. Unknown 
b. We will need to calculate it – look up the formula 
c. Right now, it is technically zero because if we attempted to tow something, the 

trailer hitch would fall off 
d. Car information that may be helpful: 

i. one 55 cc motor – will hopefully be upgraded to 80 cc 
ii. 3700-3800 lbs stock weight 

iii. powertrain limits towing capacity 
 

A.3  Our Design Problems 

1. Are CAD documents for the current design available? 
a. Yes 
b. Javier will provide asap 

2. Why is the trailer hitch in the way? 
a. What systems are where? 
b. Why do we need to move it around? 
c. Two options: 

1. Keep tow hitch in place and move oil cooler forward 
2. Put oil cooler in and move trailer hitch forward 

d. Check the electrical components inside the trailer hitch 
1. It is unknown whether or not they even work 

3. What significance do the oil cooler, hydraulic lines, and exhaust system have on our 
design? 
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a. The hydraulic lines my need to attach to trailer hitch 
b. The oil cooler is in the way of the current trailer hitch position 
c. Exhaust system does not appear to be in the way 

4. Does a ball mount for the trailer hitch need to be designed? 
a. No 

5. Are you anticipating we will run into any major design problems? 
a. What are your priorities for the problems we need to address? 
b. No problems anticipated 
c. No set priorities 

6. What is the likelihood that other systems will be moved in the future that could impact 
the design of our trailer hitch? 

a. Nothing will be added to the current car 
b. If anything, pieces of the car may leave 

 

A.4  The Design Process 

1. What is the timeline for incorporating the trailer hitch? 
a. How soon is our final design needed? 
b. What is the date of the Challenge X competition?  
c. When is the Road Rally? 
d. Our April 10th deadline is before anything would be needed for the competition 

2. What units are you working in (metric or English)? 
a. Both – it depends on the part that you’re working on 
b. Be alert of this! 
c. Reference CAD drawings 

3. Are there materials and/or shop facilities available to help us fabricate? 
a. GM parts are available to us 
b. We will need to work on the car onsite 

4. What additional resources are available to our team? 
a. Suppliers – again GM parts available 
b. Sponsors – limited amount of money available – we can look for additional 

sponsors if we would like 
c. Money – our $400 dollars is pretty much all we get – if we really need more 

Javier will consider our proposal 
 

A.5  Design Outcomes 

1. Other than FEA, are there specific engineering analyses desired or required? 
a. Optimization software 

i. Weight reduction is important! 
b. Being able to compete (i.e., meeting competition rules is a priority) 
c. Crash analysis for 20-30 mph crashes 

2. Is our end goal a prototype or a working model? 
a. Working model 

3. In general, should our idea be patentable? 
a. Not necessary 
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4. Are we expected to test the working prototype or model? 
a. It would be good, yes 

 

A.6  Other Notes from the Meeting 

1. Trailer hitch is currently made out of mild steel 
a. Aluminum or a higher/thinner grade of steel would be nice 

2. Competition organizers like to see use of stock attachment points 
a. These mounting points were designed with crash safety in mind 

3. Major goal:  improve fuel economy and emissions while meeting stock specifications 
a. Biggest problem with emissions is weight of vehicle 

4. Another goal:  train the next generation of engineers 
5. Consider speed bumps – these will add lots of different forces to the trailer hitch 
6. Vehicle make:  LT with all-wheel drive 
7. GM contact:  Matt Gallagan 

a. U of M Challenge X mentor 
8. The highest temperature that the hydraulic fluid could reach would be 50˚C 
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APPENDIX B  TECHNICAL BENCHMARKING 

 

 Vehicle Chevy Equinox Jeep Liberty Ford Escape 

 Contact Info 
Robert Krouse 
586-492-9752 

John Shapas  
js104@chrysler.com 

313-493-2508 

Rich Pietron 
rpietron@ford.com 

313-805-7517 

1 
What company supplies the 
trailer hitch? 

Thule Magna Midway Products 

2 
What is the weight of the 
trailer hitch? 

26.5 lbs (12 kg) 35 lbs (16 kg) 26 lbs (12 kg) 

3 
What SAE Class is the 
trailer hitch? 

Class II Class III Class II 

4 
What is the trailer towing 
capacity? 

3500 lbs 5000 lbs 3500 lbs 

5 
How many bolts are used 
for attaching the trailer hitch 
to the vehicle? 

6 bolts (two on each 
end and two in the 

middle) 
6 bolts (3 on each side) 

6 bolts (2 M12 on 
each side connecting 

to inner rail and 2 
M10 connecting into 

side sill) 

6 
What type of material is the 
trailer hitch made of? 

Steel, 60 ksi 
ASTM A500 Grade B 50 

ksi 
High-strength, low-

alloy steel 

7 
Does the trailer hitch 
support other vehicle 
components? 

Wires Wires Wires 

 
If so, how many attachment 
points are there? 

One. Attachment point 
at electrical box. 

One. Attachment point at 
the electrical connector. 

One. Bracket for 
electrical components. 

8 
How many steps are there in 
the trailer hitch 
manufacturing process? 

Four. 
1. Fabrication of 
individual stampings 
and tubes. 
2. All components 
assembled in weld 
fixture. 

3. Welding. 
4. Send out for painting 
and coating. 

                  Three.  
1. Fabrication of 
individual stampings and 
tubes. 
2. All components 
assembled in weld fixture. 
3. MIG welding. 

Made of 8 stamped 
components. Also 

requires holes to be 
punched, and welding 

operations. 

9 
How much live load can the 
trailer hitch sustain? 

No information 
provided. 

No information provided. 
No information 

provided. 

10 
How many pounds of rear 
load impact can the hitch 
withstand? 

No information 
provided. 

No information provided. 
No information 

provided. 

Table B.1: Trailer hitch benchmarking information obtained from automotive companies
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APPENDIX C  DESCRIPTION OF ENGINEERING CHANGES SINCE DESIGN 

REVIEW 3 

 
 This appendix is a continuation of the concepts in Section 5.3. The sub-sections show additional 
concepts generated for the middle bracket, end brackets and tubing, and the hydraulic line 
attachments. 

C.1  Additional Middle Bracket Concepts 

                 
Figure C.1: Square piece with wings  (left) and bent-M bracket (right) 

 

C.2  Additional End Bracket and Tubing Concepts 

                           
Figure C.2: Bend the trailer hitch bar up (left) and snorkel bracket (right) 
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Figure C.3: Stoplight bracket (left) and L-bracket ends concept with straight main bar (right)  

 
Other Ideas: 

• Shorten the receiver and push everything back 

• Lengthen the brackets to set it down farther in the vehicle and have the hydraulic lines 
above the hitch 

C.3  Additional Fluid Line Attachment Concepts 

        
Figure C.4: C-Shape attachment (left) and C-Shape with lip attachment (right) 

 

           
Figure C.5: J-Shape attachment (left) and U-Shaped attachment (right) 

 

 
Figure C.6: W-Shaped Attachment 
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Figure C.7: Two-Line U-Shaped Attachment 

 

        
Figure C.8: Lock mechanism (left) and bar lock-secured (right)
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APPENDIX D  SUB-SYSTEM PUGH CHARTS 

To generate the trailer hitch concept variants we used in our entire system Pugh chart, we first 
used three sub-system Pugh charts to narrow down our ideas for the middle bracket/tubing, end 
brackets/tubing, and hydraulic/oil cooler line attachment designs. 

D.1  Middle Bracket Pugh Chart 

Figure D.1 below shows the Pugh chart for the middle bracket component design. As indicated, 
Designs 2 and 3 were the first and second ranked concepts. We used these two ideas for the 
middle bracket in generating our overall trailer hitch system variants.  
  

Middle Bracket Design Design #1 Design #2 Design #3 Design #4 

Design Criteria 

Weight Square with 
wings Original 

Square with 
long bolts M-shaped 

No interference with other components 1.6 - - 0 

Sustains 3500 lb load 1.6 + + - 

Lightweight 1.3 - - - 

Working model tested by April 15 1.1 - - - 

Uses prior attachment points 1.0 0 0 0 

Corrosion resistant 0.8 - - 0 

Easy to manufacture 0.8 - + - 

Easy to assemble and attach 0.6 - - - 

Meets GM's crash specifications 0.5 0 0 0 

Minimal modification to bumper 0.3 - - 0 

Low cost 0.2 - + - 

Aesthetically pleasing 0.2 - 

D 
A 
T 
U 
M 

- 0 

1 1.61 0 2.58 0 

0 1.45 10 1.45 4.35 Total Points 

-1 6.94 0 5.97 5.65 

    -5.32 0 -3.39 -5.65 

Rank   3 1 2 4 

Figure D.1: Sub-system Pugh chart for middle bracket component design. 
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D.2  End Bracket/Tubing Pugh Chart 

Figure D.2 shows the Pugh chart for the end bracket/tubing component design. For this sub-
system, we included the top three concepts, Designs 2, 3, and 5, in generating our system 
variants. 
  

End Bracket/Tubing Design Design #1 Design #2 Design #3 Design #4 Design #5 

Design Criteria 

Weight 
Forward, 
then Up 

Up, then 
Forward Thumbs Up Snorkel Original 

No interference with other components 1.6 - + 0 0 

Sustains 3500 lb load 1.6 - - 0 - 

Lightweight 1.3 0 0 0 0 

Working model tested by April 15 1.1 - - - - 

Uses prior attachement points 1.0 0 0 0 0 

Corrosion resistant 0.8 - - - - 

Easy to manufacture 0.8 0 0 - - 

Easy to assemble and attach 0.6 0 0 0 0 

Meets GM's crash specifications 0.5 0 0 0 0 

Minimal modification to bumper 0.3 - 0 0 0 

Low cost 0.2 + + - - 

Asthetically pleasing 0.2 0 0 0 0 

D 
A 
T 
U 
M 

1 0.16 1.77 0 0 0 

0 4.35 4.68 7.10 5.48 10 Total Points 

-1 5.48 3.55 2.90 3.71 0 

    -5.32 -1.77 -2.90 -3.71 0 

Rank   5 2 3 4 1 

Figure D.2: Sub-system Pugh chart for end bracket/tubing component design. 
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D.3  Hydraulic and Oil Cooler Line Attachment Pugh Chart 

Figure D.3 below shows the Pugh chart for the hydraulic line attachment design. As indicated, 
Designs 1 and 3 were the first and second ranked concepts, and we used these two ideas in our 
system variants generation.  
  

Hydraulic/Oil Cooler Line Attachment Design #1 Design #2 Design #3 Design #4 

Design Criteria 

Weight 
Coated Steel 

Hinges 
Mesh  

Screen 
Clasps with 

Padding 
Bolted U-rod 
with cotter pin 

No interference with other components 1.9 + + - 

Structurally support hydraulic lines 1.5 0 - 0 

Lightweight 1.5 + 0 - 

Working model tested by April 15 1.3 0 0 0 

Corrosion resistant 0.9 + - - 

Easy to manufacture 0.9 + 0 0 

Easy to assemble and attach 0.7 0 - 0 

Meets GM's crash specifications 0.6 0 0 0 

Minimal modification to bumper 0.4 + + 0 

Low cost 0.2 + 0 + 

Aesthetically pleasing 0.2 0 - 

D 
A 
T 
U 
M 

- 

1 5.74 2.22 0 0.2 

0 4.26 4.44 10 5.37 Total Points 

-1 0 3.33 0 4.44 

    5.74 -1.11 0.00 -4.26 

Rank   1 3 2 4 

Figure D.3: Sub-system Pugh chart for fluid line attachment design. 
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D.4  Continuation of System Pugh Chart 

Figure D.4 below shows selection matrix for the sixth- through twelfth-ranked concepts for the 
entire trailer hitch system.  
  

Trailer Hitch 
System Variants Design #9 Design #6 Design #4 Design #11 Design #8 Design #10 Design #12 

Design Criteria 

Weight 
Straight Bar 

Hinges 
Orig. 

Bracket 

Thumbs Up 
Hinges 

Sq. Bracket 

Orig. Bar 
Clasps 

Sq. Bracket 

Straight Bar 
Clasps 
Orig. 

Bracket 

Thumbs Up 
Clasps 

Sq. Bracket 

Straight Bar 
Hinges 

Sq. Bracket 

Straight Bar 
Clasps 

Sq. Bracket 
No interference with 
other components 1.6 + - - 0 - - - 
Sustains 3500 lb 
load 1.6 - + + - + - - 
Structurally support 
hydraulic lines 1.3 0 - 0 + 0 0 + 

Lightweight 1.3 0 0 - - - 0 - 
Working model 
tested by April 15 1.1 - - 0 - - - - 

Corrosion resistant 0.8 + - - 0 - - - 

Easy to manufacture 0.8 - + 0 - - - - 
Easy to assemble 
and attach 0.6 0 - - 0 - - - 
Meets GM's crash 
specifications 0.5 0 0 0 0 0 0 0 
Minimal modification 
to bumper 0.3 + 0 - - - 0 - 

Low cost 0.2 0 + 0 - 0 0 - 
Aesthetically 
pleasing 0.2 + 0 - 0 - 0 - 

1 2.81 2.50 1.6 1.25 1.56 0 1.25 

0 3.75 2.19 3.75 3.59 1.88 3.59 0.47 Total Points 

-1 3.44 5.31 4.69 5.16 6.56 6.41 8.28 

    -0.63 -2.81 -3.13 -3.91 -5.00 -6.41 -7.03 

Rank   6 7 8 9 10 11 12 

Figure D.4: Continuation of entire system Pugh charts 
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APPENDIX E  FINITE ELEMENT ANALYSIS 

To prove that we could decrease the thickness of our curved bar component from 0.25 inches to 
0.125 inches, we modeled the component in HyperMesh. We obtained the deformation results 
shown in Figures E.1 and E.2 for our coarse and fine meshes, respectively. We measured the 
deformation of the node located in the center of the bar, making sure to use the same node on 
each model. We found the deformation for the both the coarse and fine meshes to be 1.9 x 10-4 
inches (reported two significant figures). The percent difference between these two deformation 
results was less than 0.4%, proving mesh independence.  

 

 
Figure E.1: Deformation results for coarse mesh 

 

 
Figure E.2: Deformation results for fine mesh 

 

Node used to measure 

deformation 

Node used to measure 

deformation 
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Figures E.3 and E.4 show the stress results for our coarse and fine meshes. As shown, the 
maximum stress is just under 3 ksi and occurs below the bolt hole on the right. This stress is 
much lower than the material yield strength of 50 ksi.  

 

 
Figure E.3: Stress results for coarse mesh 

 

 
Figure E.4: Stress results for fine mesh 

 
As an additional note, since we have replaced the bolt hole shown on the right in Figure E.4 with 
welding, we plan to update this FEA analysis with the new constraint for our Final Design 
Review. 
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APPENDIX F  BILL OF MATERIALS 

Item Quantity Source Catalog Number Cost Contact 

Trailer Hitch 
Assembly 

1 
GM Parts 

Direct 
19169825 $171.06 www.gmpartsdirect.com 

Curved Bar 2 Alro 
1/8'' x 1'' x 8.7'' Rectangular A-

36 Hot Rolled Steel 
$0.33/each www.alro.com 

Flat Plate 2 Alro 
1/8'' x 1'' x 5.6875'' Rectangular 

A-36 Hot Rolled Steel 
$0.22/each www.alro.com 

L-Stock 2 Alro 
2'' x 2'' x 1/8'' Structural Angle 

A-36 Hot Rolled Steel 
$0.23/each www.alro.com 

2'' Narrow Stainless 
Steel Hinge 

2 
Ace 

Hardware 
5297734 $9.00/each www.acehardware.com 

2'' Two Hole Pipe 
Strap 

2 Lowe's 55234 $1.78/each www.lowes.com 

Plastic Dip 14.5oz 
Black 

1 
Ace 

Hardware 
13275 $7.94 www.acehardware.com 

3/4'' long and 1/4'' 
diameter Bolts 

6 
Carpenter 
Brothers 

N/A $0.11/each carpenterbrothers.doitbest.com 

1/4'' diameter Nuts 6 Lowe's 63301 $0.04/each www.lowes.com 
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APPENDIX G  RESULTS FROM FREQUENCY ANALYSIS 

Length of 
Beam

Length of 
Beam

Mass per 
unit length m 

Applied 
Force Deflection k f

(in) (ft) (slugs/in) (slugs) (lbs) (in) (lb/in) (Hz)

4 0.33 0.00383 0.01532 15 0 n/a n/a

6 0.50 0.00383 0.02298 15 0 n/a n/a

8 0.67 0.00383 0.03064 15 0 n/a n/a

10 0.83 0.00383 0.0383 15 0.015625 960.0 25.2

12 1.00 0.00383 0.04596 15 0.03125 480.0 16.3

14 1.17 0.00383 0.05362 15 0.0625 240.0 10.6

16 1.33 0.00383 0.06128 15 0.09375 160.0 8.1

18 1.50 0.00383 0.06894 15 0.15625 96.0 5.9

20 1.67 0.00383 0.0766 15 0.25 60.0 4.5

22 1.83 0.00383 0.08426 15 0.28125 53.3 4.0

24 2.00 0.00383 0.09192 15 0.4375 34.3 3.1

26 2.17 0.00383 0.09958 15 0.53125 28.2 2.7

28 2.33 0.00383 0.10724 15 0.78125 19.2 2.1

30 2.50 0.00383 0.1149 15 0.875 17.1 1.9

32 2.67 0.00383 0.12256 15 1.0625 14.1 1.7

34 2.83 0.00383 0.13022 15 1.25 12.0 1.5

36 3.00 0.00383 0.13788 15 1.3125 11.4 1.4

m

k
f

π2

1
=

Deflection

ceAppliedFor
k = ))(( LengthtLengthMassPerUnim =
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APPENDIX H  DESCRIPTION OF ENGINEERING CHANGES SINCE DESIGN 

REVIEW 3 

We did not have any engineering changes since the final design presented in Design Review 3. 
This was because we modified our alpha design concept shortly after Design Review 2 and then 
manufactured our prototype design with enough time to assess and make the engineering 
changes necessary to present our final design for the Design Review 3. The only design details 
added to our final design were the results of our validation analyses and the finalized spacing and 
location of the hydraulic line attachments on the trailer hitch. Since Design Review 3 focused on 
the hydraulic line attachment design only, these locations were not specified in Design Review 3, 
and do not warrant a change notice. 
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APPENDIX I  DESIGN ANALYSIS ASSIGNMENTS FROM LECTURE 

The following sections show the results of our Materials Selection, Manufacturing Process 
Selection, Design for Assembly, Design for Environmental Sustainability, and Design for Safety 
analyses. 

I.1  Material Selection Assignment 

The subsections below outline the material selection process undertaken to determine the most 
suitable material for the six major load-bearing components of our final design and for the 
coating to be used on the hydraulic line attachments. 

I.1.1  Material Selection for the Six Major Final Design Components 

All of the six major components in our final design have the basic function of supporting a load 
while maintaining component stiffness.  The stock trailer hitch from GM must be able to support 
a 3500 lb trailering load, while each of the five components comprising the hydraulic line 
support mechanisms must be able to support a live load from the hydraulic lines equal to 15 
pounds.  All six of these components must also support their given loads while undergoing 
minimal deflection.  Therefore, the overall function of the major components in our final design 
is to economically carry a load while remaining as stiff as possible. 
 
To meet this function, the objective of each of the six major components in the design is to 
maximize strength and stiffness while minimizing the weight and material cost.  Each component 
of the design must meet the strength requirements specified by the loads above.  Based on the 
geometry of the trailer hitch, the only dimension of the components that is not specified is the 
thickness of each part.  Other constraints on the component design include a minimal weight and 
minimal material cost. 
 
Using these specified objectives and constraints, two material indices were derived for the major 
components of our final design.  First, to maximize strength while minimizing material cost, the 
general equations for strength as defined by failure load, Ff, and material cost, C, shown in 
Equations I.1 and I.2 below, were combined to eliminate the single free variable, h, the thickness 
of the material.  In Equation I.1, C2 is a constant corresponding to the geometry of the 
mechanism, b is the width of the material, l is the length of the material, and σf is the flexural 
strength of the material.  In Equation I.2, ρ is the density of the material, Cm is cost per unit 
weight of the material, and b and l are as defined for Equation I.1. 
 

l

bhC
F

f

f
12

2

2 σ
=    mCbhlC ρ=    (I.1, I.2) 

 
Equation I.3, shown below, combines Equations I.1 and I.2 into a single equation for minimizing 
cost.  The material dependent component of this equation is separated as Equation I.4, shown 
below, and is the material index to be maximized in this case. 
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The second material index derived for the six major components of our final design involved 
maximizing the stiffness, S, of the material while minimizing its mass, m.  Equations I.5 and I.6 
below, were combined to eliminate the single free variable, h, the thickness of the material.  In 
Equation I.5, b is the width of the material, l is the length of the material, and ρ is the density of 
the material.  In Equation I.6, C1 is a constant corresponding to the geometry of the mechanism, 
E is Young’s Modulus, and b and l are as defined for Equation I.5. 
 

3

3

1

12l

EbhC
S =     ρbhlm =    (I.5, I.6) 

 
Equation I.7, shown below, combines Equations I.5 and I.6 into a single equation for minimizing 
cost.  The material dependent component of this equation is separated as Equation I.8, shown 
below, and is the material index to be maximized in this case. 
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Using the material indices shown in Equations I.4 and I.8 above, two graphs were created using 
the CES EduPack 2007 software.  These plots are shown in Figure I.1 below. 
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Figure I.1:  Plots showing material indices for the six major components of the final design 

 
The results from these plots, along with the hard, limit constraint of a minimum material yield 
strength of 50 ksi (as defined in Section 4 by our engineering specifications), led to the following 
top five choices for the material to be used for each of the six major components in our final 
design: 

• Carbon steel 
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• Low alloy steel 

• Nodular graphite cast iron 

• Pearlitic malleable cast iron 

• Wrought magnesium alloy 
 
Our team’s final choice for the material to be used for the six major components of our final 
design was carbon steel.  Specifically, AISI 1030 carbon steel will be used because it is the 
cheapest of the top materials and it is at least as corrosion resistant (another key customer need 
as discussed in Section 4) as the other top materials. 

I.1.2  Material Selection for Coating of the Hydraulic Line Attachments 

We conducted a similar analysis for the material that coats the hydraulic line attachments. The 
function of this coating is to minimize the amount of corrosion the hydraulic line support 
mechanisms undergo while attached to the trailer hitch.  Therefore, the objectives of the coating 
material are to maximize corrosion resistance while minimizing the cost and weight.  Since there 
will be a limited amount of coating regardless of the material selection, it is most important to 
maximize the durability of the coating while minimizing its cost (i.e., minimizing the weight of 
the coating is a secondary, more negotiable constraint when compared to maximizing durability 
and minimizing costs). 
 
There are no defined equations or variables within the CES EduPack 2007 software that refer to 
the durability of a material.  Instead, durability is ranked within the software on a scale from very 
good to very poor.  Since corrosion resistance and cost are of equal importance in this material 
selection, a plot showing a comparison between these characteristics was created as shown in 
Figure I.2.  Specifically, the durability was evaluated based on corrosion resistance to salt water 
because this is the compound most likely to corrode the hydraulic line support mechanisms under 
normal operating conditions. 
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Figure I.2:  Plot of durability against cost for the corrosion coating material selection 

 
As shown in Figure I.2 above, by limiting the price per unit weight of the material to less than 
$1.00 per pound and accepting only materials that were “very good” at resisting salt water 
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corrosion, several material choices were eliminated.  To further refine the material choice a hard, 
maximum limit of 0.033 pounds per cubic inch was placed on the density of the material to 
eliminate heavier materials.  The resulting top five material choices were: 

• Butyl rubber 

• Ethylene Propylene Diene Terpolymer 

• Ethylene Propylene Rubber 

• Polypropylene 

• Polypropylene Foam 
 
Our team’s final choice for the material to be used for the corrosion coating of the hydraulic line 
support mechanisms was butyl rubber.  Of the top five material choices it was the most resistant 
to salt water corrosion.  It also displayed at least average corrosion resistance against fresh water, 
weak acids, strong acids, weak alkalis, strong alkalis, organic solvents, and UV radiation.  
Secondly, butyl rubber’s typical use in car tires implies that GM will already be familiar with 
this material.  Therefore, mass production of the corrosion coating can be more easily achieved. 
 

I.2  Manufacturing Process Selection 

In today’s society there is a large demand for improving fuel economy in all vehicles on the road, 
leading to an increased interest in hybrid vehicles. Currently, the hydraulic hybrid system is not 
widely implemented. However, if hydraulic hybrid vehicles become a mass-produced product, 
our hydraulic line attachment design for the trailer hitch of the Chevy Equinox would be useful 
to society. Since these vehicles would initially make up only a small percentage of vehicles 
produced by automotive companies, our target production is 1000 hydraulic line attachments. 
 
As determined by our Material Selection (see Section I.2), we have chosen AISI 1030 carbon 
steel to manufacture the components of our final design and butyl rubber to coat the components 
and protect against corrosion. Using the CES manufacturing process selector for AISI 1030 
carbon steel, we determined that it would be best to use a sheet manufacturing process, 
specifically stamping, to manufacture our final design. This process is ideal for our mechanism 
because it is typically used to form complex shapes. There are four forms to the stamping 
process, deep drawing, blanking, bending, and stretching, which are shown in Figure I.3.  

 
Figure I.3: Four types of applications for the stamping manufacturing process 
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Out of the four applications to the stamping manufacturing process, we would use a combination 
of bending and stretching to form one unit. Stamping is commonly used with metals, particularly 
steel and shapes with holes, tabs, recesses, cavities, and raised sections are standard. Since the 
shape of the curved bar in our mechanism is unique and hard to replicate, having a die of our 
shape would be the most ideal. Table I.1 lists some of the physical attributes to the stamping 
process. 
 

Mass Range 2.205e-3 - 2.205 lb. 

Range of Section Thickness   0.01181 - 0.1969 in. 

Tolerance  3.937e-3 - 0.0315 in. 

Roughness     0.01969 - 0.4921 mil. 
Table I.1: Physical attributes of stamping process 

 
The stamping manufacturing process also is applicable to our final design because each of our 
mechanisms is currently 0.9 lb. and fits within the mass range as well as having a target 
production value of 1000 units. The relative cost index of our manufacturing process is 14.98-
32.95 per unit which is shown in Figure I.4. 

 
Figure I.4: Relative Cost Index for stamping manufacturing process of AISI 1030 

 
The CES manufacturing process selector provided the capital write off time of 5 years as well as 
the material cost of 4.309 USD/lb. Table I.2 shows the additional modeling costs for the 
stamping manufacturing process. 
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Capital Cost 9426 – 9.426e4 USD 

Material Utilization Fraction   0.7 – 0.8 

Production Rate (units)  200 – 2000 per hour 

Tool Life (units)     1e4 – 1e5 

Tooling Cost 1885 – 1.885e4 USD 
Table I.2: Modeling cost for the stamping manufacturing process 

 
Overall, the stamping process is the most ideal for our final design support mechanism in order 
to produce 1000 units. 
 
We discovered through the CES software that the best manufacturing process for butyl rubber for 
our application is a surface treatment process, specifically water-based painting, to cover the 
final design components in order to prevent corrosion. Figure I.5 shows the process of the water-
based painting. 

 
Figure I.5: Diagram of water-based painting process to be used for butyl rubber 

 
The relative equipment cost is medium, tooling cost is low, and the time before handling is 500-
5000 seconds. The water-based painting manufacturing process gives good weathering resistance 
which is important to our design because we want to prevent against corrosion. Table I.3 below 
contains physical characteristics of the water-based painting process. 
 

Processing Temperature 62.6 – 170.6 F 

Curved Surface Coverage Good 

Coating Thickness 0.3937 – 7.874 mil. 

Surface Hardness     5 – 10 HV 
Table I.3: Physical attributes of the water-based painting manufacturing process 

 
Overall, water-based painting is the best manufacturing process for our mechanisms on the 
Chevy Equinox trailer hitch to support the hydraulic lines. 
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I.3  Design for Assembly 

To reduce the number of parts in our design and to simplify the assembly of the remaining parts, 
we have completed a Design for Assembly (DFA) analysis using the Boothroyd-Dewhurst 
method. This method is based on the following assumptions for manual handling: (i) the parts are 
presented in bulk and randomly oriented, and (ii) parts are added one at a time. We have 
analyzed our prototype design as our original design, and then used these results in a re-design 
which was used in generating the final design for our hydraulic line attachment.  
 
First, we conducted our original DFA analysis for our prototype design. Figure I.6, shows the 
original DFA worksheet completed for this analysis. To calculate the design efficiency, η, we 
used Equation I.9, where Nm is the theoretical number of minimum parts and Tm is the actual 
assembly time in seconds. As shown, the design efficiency for our original design was 38.5%.  
 

m

m

T

N⋅
=

3
η  (I.9) 

 

 
Figure I.6: DFA worksheet for original (prototype) design 

 
Next, we used the results of our original design to develop an improved design and method for 
assembly. We completed a test for minimum number of parts, as shown in Figure I.7.  
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Figure I.7: Test for minimum number of parts based on prototype design 

 
Based on our test for minimum number of parts, we determined that the only parts we should 
consider combining were the L-bracket and the curved bar. We did not fabricate one integrated 
piece due to the difficulties in manufacturing that would arise from bending a single piece of flat 
stock into a right angle. Therefore, to increase assembly efficiency, we decided to weld the L-
bracket and curved bar together, thereby eliminating the bolt between these two components. 
From an assembly standpoint, this is essentially combining the two parts together. We were also 
able to improve the assembly process by assembling the components in a different order. By 
starting the assembly process with a bolt, it allows the bolt holes of the hinge, flat bar, and C-
shaped component to be aligned, which reduces insertion time. These changes are reflected in the 
DFA worksheet analyzing our re-design shown in Figure I.8.  
 

 
Figure I.8: DFA worksheet for re-design (final) 

 
As shown, the design efficiency for our redesign is 51.9%, which is a significant improvement 
from our original design efficiency of 38.5%. 

I.4  Design for Environmental Sustainability 

From our Materials Selection process, carbon steel and butyl rubber were our two selected 
materials. This Design for Environmental Sustainability focuses on the environmental impact of 
one hydraulic line attachment. For our steel analysis, we used a mass of 0.2138 kg, which 
considers the mass of both the curved bar and the flat bar. For our rubber analysis, we used a 
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mass of 0.0223 kg, which was calculated based on an estimate of the amount of rubber required 
for three coats applied to the curved bar, flat bar, and C-shaped components. In SimaPro, we 
chose C55 I steel as a material similar to carbon steel, and we chose EPDM rubber ETH U as a 
material similar to butyl rubber.  
 
Figure I.9 shows the total mass of air emissions, water emissions, use of raw materials, and 
(solid) waste. These results indicate that the C55 I steel has a greater mass air emissions, raw 
material usage, and (solid) waste, while the EPDM rubber ETH U has greater water emissions.  

 
Figure I.9: Total mass of air and water emissions, use of raw materials, and (solid) waste. 

 
 Figure I.10 shows each material’s impact on the environment within each of the EcoIndicator 99 
damage classifications. These results indicate that the C55 I steel has a greater impact on 
minerals, land use, acidification/eutrophication, ecotoxicity, climate change, and respiratory 
inorganics, while the EPDM rubber ETH U has a greater impact on ozone layer, radiation, 
respiratory organics, and carcinogens.  
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Figure I.10: Relative impacts in disaggregated damage categories 

 
Figure I.11 shows the relative importance of the damage meta-categories based on the 
EcoIndicator 99 point values. This analysis indicates that Resources is likely to be the most 
important category from the analysis of C55 I steel. For the EPDM rubber ETH U, Human 
Health has a slightly greater normalized score than Resources. The score for Ecosystem Quality 
is lowest for both materials.  

 
Figure I.11: Normalized score in human health, eco-toxicity, and resource categories 
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Figure I.12 shows the relative EcoIndicator 99 “point values,” indicating that the C55 I steel will 
have a bigger impact when the lifecycle of the whole product is considered.  

 
Figure I.12: Single score comparison in EcoIndicator 99 “points” 

 

Based on our SimaPro analysis, the C55 I steel has a greater environmental impact, both on its 
own and from a life cycle analysis standpoint.  

I.5  Design for Safety 

Failure Modes and Effects Analysis (FMEA) looks at failure modes from an analytical approach 
through a set procedure and classification system, and also assesses the consequences of these 
failures.  The purpose of FMEA is to determine where the greatest risk might arise and design 
around this issue so that a problem never occurs.  The basic steps to using the FMEA tools are: 

• Assign a label to each process or system component 

• List the function of each component 

• List potential failure modes 

• Describe effects of the failures 

• Determine failure severity 

• Determine probability of failure 

• Determine detection rate of failure 

• Assign RPN 

• Take action to reduce the highest risk 
Some examples of failure modes are corrosion, buckling, fatigue, leaking, etc. 
 
Risk assessment is targeted at reducing task-based risks to people. It analyzes the what, why, and 
how, as well as how much of safety risk exists for the users. The basic steps to performing a risk 
assessment are: 

• Identify hazards 

• Assess risk 

• Reduce risk 
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Identifying the hazards is very useful and should focus on what tasks the user will do and what 
hazards they may encounter.  Assessing the risks can be done different ways based on the system 
being evaluated.  Some common methods of evaluation are qualitatively, semi-quantitative, and 
quantitative.  Using a risk scoring method brings structure to a subjective analysis but requires 
comfort with sticking to the scoring method.  The overall goal is to reach an acceptable risk, i.e. 
risk that remains even after protective measures have been taken but that is accepted in a given 
context.  Acceptable risk is also the point at which to stop addressing a specific hazard so that the 
least amount is money is spent while still providing a safe atmosphere. Zero risk does not exist, 
so knowing when you’ve reached an acceptable risk is important.  Reducing risk can also be 
accomplished through a Hazard Control Hierarchy which is approached through: 

1. Eliminate by design 
2. Use guard systems 
3. Provide warnings systems 
4. Use training (instructions) 
5. Provide personal protective equipment (PPE) 

The hope is that by the end of the risk assessment, risk is reduced to acceptable risk and that 
there is a roadmap to continue risk reduction activities. 

Based on these ideas, an analysis of our project was done using the DesignSafe program.  The 
risk assessment of our project was built into this analysis.  As indicated by our results in Table 
I.4, protective measures can be taken to reduce our risks to an acceptable measure.  All of these 
measures provide an acceptable level or risk at a low cost.  Obviously, no measure can 
completely eliminate risk.  The major risk is potential sharp edges on the attachment puncturing 
the hydraulic line. This could cause hydraulic fluid to leak, thereby hindering vehicle operation, 
causing hazards to the user, and harming the environment. 
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Table I.4: Results of risk assessment completed in DesignSafe software 

 

 

 


