
An Enhanced Simulation Capability for
Studying the Braking, Steering, and Ride

of Commercial Vehicles.

MVMA Project #6163

Demonstration/Seminar Materials
October, 1 986

Michael Sayers
Yoram Guy

Charles MacAdam
Patricia Dill

Paul Fancher

UMTRI The University of Michigan
Transportation Research Institute

Tuhnicol Rapad Docuuntat i i Pogo

* 1. Rapart No. 2. Cove-t Accassion No.

UMTRI-86-52
4. Tit la rd Subtitla

AN ENHANCED SIMULATION CAPABILITY FOR STUDYING
THE BRAKING, STEERING, AND RIDE OF COMMERCIAL
VEHICLES

' LUs)M Sa gheAe'J. Guy, C . MacAdam,
P. D i l l Y s P . f
9. Pwfoming Orgorixation NII. ord Address

The U n i v e r s i t y o f M ich igan
Trans o r t a t i o n Research I n s t i t u t e
2901 i a x t e r Road
Ann Arbo r , M I 48109

3. Recipimt's Catoloq No.

&%%e r 1986
6. Parforming orgonixation CO&

8. Pnfoming Orgonirotion R.port NO.

UMTRI-86-52
10. WorL Unit No. (TRAIS)

11. Contract or Grant No.

MVMA P r o j . #6163
13. Type of Rmport ond Pmriod Corwred

12. %soring Agmcy N m a md Address

Mo to r V e h i c l e Manu fac tu re rs A s s o c i a t i o n
300 New Center Bu i 1 d i n g
D e t r o i t , M I 48202

F i n a l
7/85 - 6/86

14. Sponsoring Agmncy Code

15. Suwl.rmntay Notes

1'6. Abstract

T h i s r e p o r t i s a d i s c u s s i o n o f r e c e n t changes and a d d i t i o n s made t o
v e h i c l e s i m u l a t i o n programs t o enhance t h e i r per formance. I t i n c l u d e s a
c o l l e c t i o n of t h r e e independent s e c t i o n s w r i t t e n t o document (1) t h e
imp lemen ta t i on o f a p rep rocesso r f o r t h e f o l l o w i n g UMTRI s i m u l a t i o n
programs: Phase 4, Yaw/Roll , S t a t i c R o l l , Simp1 i f i e d B r a k i n g , and L i n e a r
Yaw, (2) t h e d e f i n i t i o n o f o u t p u t f i l e s and t h e development o f a p l o t t i n g
c a p a b i l i t y f o r t h e o u t p u t s o f s i m u l a t i o n s , and (3) t h e s e l e c t i o n o f
fo rmats f o r s u b r o u t i n e s t h a t may be used t o i n c l u d e a d a p t i v e f e a t u r e s i n
t h e s i m u l a t i o n .

17. K q Words ERD f i 1 es, p rep rocesso r ,
system v e h i c l e component f i l e s ,
Phase 4,' a d a p t i v e s i m u l a t i o n
c o n t r o l s

18. Dir t r ib t ion Stotmmmt

UNLIMITED

19. Smcuriv CImssii. (of this

NONE

I). kcurity Classif. (of this p w)

NONE

21. No. of Pqws

128

22. Price

PREFACE

This document was distributed to the members of the Technical Advisory Panel on
Braking and Handling of the Motor Truck Division of the Motor Vehicle Manufacturers
Association @lVMA) at a Demonstration and Seminar held on June 25, 1986. Per
agreement with the Panel, this material constitutes the final reporting effort on MVMA
Project Number 6163 entitled "An Enhanced Simulation Capability for Studying the
Braking, Steering, and Ride of Commercial Vehicles."

The main body of this document consists of three independent sections. The
following persons from the Engineering Research Division of The University of Michigan
Transportation Research Institute took primary responsibility for the work as indicated
below:

Yoram Guy and Patricia Dill - Handling of Input Data for Computer Simulations
Michael Sayers - Filing and Presenting Results from Simulation Runs
Charles MacAdam - Interfacing Adaptive Control Features

The above persons were the authors of three independent sections documenting their work.

TABLE OF CONTENTS

Section Page

I . INTRODUCTORY REMARKS .. 1
Paul Fancher

I1 . PREPROCESSOR SYSTEM ... 5
Patricia Dill and Yoram Guy

I11 . ERD FILES .. 40
Michael Sayers

IV . INTERFACING ADAPTIVE CONTROL FEATURJZS IN PHASE 4 MODEL 108
Charles MacAdam

INTRODUCTORY REMARKS

During this project, the following activities have been completed: (a) the implementation
of a preprocessor for the following UMTRI simulation programs: Phase 4, YawJRoll,
Static Roll, Simplified Braking, and Linear Yaw, (b) the definition of output files and the
development of a plotting capability for the outputs of simulations, and (c) the selection of
formats for subroutines that may be used to include adaptive features in the simulation.
The overall project scope is illustrated in Figure 1. It displays how the interaction of the
various segments mentioned above creates an enhanced simulation capability for the
studying of braking, steering, and ride of commercial vehicles.

THE PREPROCESSOR SYSTEM

The preprocessor consists of a structured set of files and a system for translating the
contents of these files into data sets and execution-control commands. These data sets and
execution commands are used by the programs, specified by the users, in simulating the
steering and braking performance of vehicles. The system for operating the simulations
contains an INTERFACE PROGRAM (Figure 2) which uses the information contained in a
SIMULATION FILE to construct an INPUT FILE (data set) that will be used to make a
simulation run. The dashed lines in Figure 2 indicate the "data flow" involved in making a
simulation run and obtaining OUTPUT FILES.

Given a system of this type, the process of making a simulation run becomes user
friendly. A computerized system assembles an input file for the desired simulation
program, rather than requiring the user to become proficient in assembling input files in
program-specific format.

The power of the preprocessor system comes from having sets of files that describe
vehicle components and maneuvers that are of interest. The SIMULATION FILE contains
directions as to which components and maneuvers are to be used in a simulation run. The
user of the system builds a SIMULATION FILE by figuratively "pointing to" the files that
describe the vehicle and maneuver that is to be simulated. The "points to" property is
illustrated by the solid interconnecting lines shown in Figure 2. Since the description of the
vehicle involves pointing to several components and vehicle properties, a VEHICLE
FILE-INDEX is built to describe pertinent vehicles, thereby allowing the SIMULATION
FILE to only have to point to the desired VEHICLE FILE-INDEX.

The SIMULATION FILE also points to options that control the type of computer model
to be used and the output format for that model (Figure 2). The INTERFACE PROGRAM
has been arranged to communicate with several of our models in order to consolidate the
models and improve the compatibility between models.

The preprocessor system is operational and has been tested. Sizeable sets of
suspension, spring, and tire files (corresponding to components that we have measured
previously) have been assembled. Examples of the other types of files employed in
describing vehicles have been created and VEHICLE FILE-INDEXs for common types of
vehicles have been built.

c: = po in ts t o ...

= d a t a f low

INTERFACE PROGRAM

INPUT FILE Dm---, A '

Figure 2 . Preprocessor System

3

SIMULATION PROGRAM

I 1

THE SYSTEM FOR HANDLING THE OUTPUT

The work on improving the handling of the output data from the Phase 4 and YawBoll
simulations has resulted in the development of special output files and a means for
graphically displaying the contents of these files.

The Phase 4 and Yaw/Roll models have recently been extended to produce files
containing time histories of simulation variables. After a simulation run, these files,
referred to as "ERD files," contain numerical data in the same form as a multi-channel tape
recorder, and an extensive amount of labeling information.

A program called "ERDP" is now available to pIot results from any ERD-type output
file. Given ERD files of simulation time histories, the ERDP program can display the
results in a variety of formats.

PROVISIONS FOR ADAPTIVE CONTROLS

Instead of developing one subroutine for all types of controls, it was found to be more
convenient and reasonable to develop three subroutines--one that controls the steer angles
of any of the wheels, a second that applies "vertical" forces at any suspension reference
point on either side of the vehicle, and a third that modulates brake chamber pressures.
Simple control algorithms have been chosen to demonstrate how these features might be
used.

NATURE OF THE CONTENTS

This report is a collection of three independent sections written to document various
components of the MVMA project to develop an enhanced simulation capability for
studying the braking, steering, and ride of commercial vehicles. Since each section
addresses a different topic within the project, the individual sections are not related to each
other directly.

Preprocessor System

1.0 INTRODUCTION AND GENERAL INFORMATION

1.1 INTRODUCTION

The UMTRT Simulation Interface is a system that allows different computer
simulations to be run on the same vehicle. Each simulation requires an input file that
describes the vehicle being simulated and data about the desired path of the vehicle. This
information is required in different forms by each of the simulations. The interface
program accepts input which designates the components of the vehicle to be simulated.
Regardless of the simulation model to be used, the interface extracts data from the same
vehicle component files and uses the same type of calculations to construct each simulation
input file. Thus, each simulation is essentially acting upon the same vehicle, producing
results that can be compared directly. The simulations that are currently available on the
UMTRI Simulation Interface are the Phase 4 Model, Yaw Roll Model, Simplified Braking
Model, Static Roll Model, and the Linear Yaw Plane models.

1.2 ENGINEERING UNITS AND COMPUTER REQUIREMENTS

Throughout the Simulation Interface, the English system of units is used. With
the exceptions listed in the vehicle component files, all input data are given in units of
pounds, inches, degrees, and seconds. Masses and weights are in units of pounds with a
gravitational constant of 386 in/sec/sec assumed. (For specific information see the general
notes about vehicle component files in Section 3.3.')

The simulations accessed by the interface can be used on any large scale computer
system. (Please see the appropriate simulation's user's manual for specifics on computer
requirements.) The Simulation Interface as a whole was designed to take advantage of
certain system specific properties of the Michigan Terminal System. It has not yet been
tested on any other type of computer system.

This system was designed to facilitate the study of the influence of weights and
dimensions on vehicle stability and control in the RTAC Canadian Truck study.
Information about this system may be obtained by contacting the Engineering Research
Division at the Transportation Research Institute, University of Michigan, 2901 Baxter
Road, Ann Arbor, Michigan, 48 109.

2.0 USE OF THE SIMULATION INTERFACE

2.1 GETTING STARTED - RUNSIM

All of the files and programs needed to run the simulation interface are stored on
the computer account ST6T on the MTS computer system. In order to run this system, the
user must create a SIMULATION file as specified in section 3.3, which indicates to the
system which vehicle is to be simulated, and which simulation is to be performed.

If the simulation interface is to be run from a computer account other than ST6T,
the following commands must be included in that account's sigfile:

$set macros=on
$>set var maclib(l)="st6t:runsim.mac"

in that order. Also, that account must have read access for all of the files in the account
ST6T.

2.1.1 Input

The entire simulation interface can be run by using the macro RUNSIM. This
macro allows all the programs and file operations to be accomplished with the user issuing
only one command.

$RUNSIM Simulation - file

2.1.2 Output

The main output from the simulation interface is stored in two files, a print file and
an ERD file. These files are named according to the naming conventions discussed in
Section 3.3. The print file contains output from the simulation itself, plus a page of output
from the Post Processing program, which makes a short analysis of the simulation output
(as discussed in section 4.4). This print file is automatically sent to the printer and
delivered to UMTRI. The ERD file contains a binary representation of the simulation run
in a specialized format that is discussed in Mike Sayers' memos "ERD Files : Format and
Layout" and "ERD File Outputs from the Vehicle Simulations."

2.1.3 Possible Problems and Solutions

- Program not found or access not allowed - When this type of error is
encountered, you must immediately abort the macro by hitting the control and the
E keys at the same time, a couple of times, until the # sign appears. If access
was not allowed, then sign on to the account where the file is stored and permit it
to your account. If the program was not found, then sign on to the account
ST6T and *RESTORE that file. (See the MTS manual on Public Files for
information about *RESTORE.)

- Component file not found - When this type of error occurs you have two
choices. Either enter the correct file name at the ? prompt after the error, or
Control E out of the macro. Once out of the macro you can check vour
simulation file for file name misspellings, or if the fde has been dhstroyed, you
can *RESTORE it.

- Access not allowed to component file - To correct this problem, control E out of
the macro, sign on to the account where that file is stored, and permit it to your
account.

- Program fails - When a program within the macro fails, you must control E out
of the macro immediately, and check your component files for valid data. You
may use the debug file from the interface program to check your data. ($3.2.7)

- Program exceeds local time limit - If there is a local time limit specified in the
sigfile, you may want to increase it. If the time limit is sufficient for the run of
the program, then you may be stuck in a loop in the simulation program. In that
case it is best to look at the print file to see what has happened in the simulation.
Note : If the time limit is exceeded, the print file will not be printed automatically;
you must copy it to the printer yourself.

- Run out of money in your account - When this error occurs, simply type
RETURN to continue when prompted, to finish the interface run. If you are on
a master account DO NOT sign off until you put more money in the account
using the ACC Manager.

2.2 USE OF EACH PROGRAM SEPARATELY

Within the Simulation Interface System, there are three types of programs: the
Interface program, the Simulations, and the Post Processor. These programs can be run
individually, without using the RUNSIM macro. The sections below describe how to run
each of these programs, the input required, and the output files produced.

2.2,l Interface Program

The Interface Program be run by issuing the command:

$Run VS.OB J SCARDS=simulation - file SPRINT=*dummy * t=5

This command will run the interface program with simulation file as its input.
SPRINT=*dummy * prevents the numerous program messages from being printed on the
screen, and t=5 is the CPU time limit on the program.

Input : This program takes as input a simulation-file that is described in detail in
section 3.3. It is submitted on the logical I/O unit SCARDS, and indicates which vehicle is
going to be simulated, and which simulation input file to prepare.

Outi>u_t : There are three major output files created by this program, destination,
debugout, disp.out. The destination file contains the simulation input file that the program
creates. The debug. out file contains a listing of steps the program goes through, variable
assignments, and component files read. The disp.out file is a list of read and calculated
vehicle parameters, and a record of component file assignments.

Problems and Solutions : Most problems that can arise in this program have to do
with the component files used. If a component file is not found by the program, or if
acCess to that file is not allowed, then follow the steps outlined in Section 2.1.3. If the
problem is a destination file that is not correct, then an inspection of the debug.out and the
disp.out files is in order. The disp.out file is used as a debugging and engineering tool,
and displays the static properties of the vehicle in both the empty and loaded conditions.

The debug.out file is a useful debugging device because it records the last steps taken by
the program before aborting, if the program fails. This information can provide some clue
as to where the program went wrong.

2.2.2 Simulation Programs

There are four computer simulations that are supported by the UMTRI Simulation
Interface System:

Phase 4 Model
Yaw Roll Model
Simplified Braking Model
Static Roll Model
Linear Yaw Plane Models

Detailed information about each of these models may be obtained by referring to the
appropriate user's manual. A general description of each model may be found in Section
3.4.

Input : Each of these models takes as input the output file from the interface
program, destination. The correct simulation input file is created by indicating which
simulation is to be performed in the simulation file. Each input file is created according to
the format described in the appropriate user's manual.

Outpui : Each of these models creates as output two main files, the print file and
the ERD file. The print file contains an echo of the output to the simulation, as well as a
record of the simulation. This file is a text file and may be copied to the printer. The ERD
file is a binary record of the simulation and cannot be viewed on the screen or copied ot the
printer. It is used as input to the post processor program, and for plotting purposes. See
Mike Sayers' memo "Plot : A Plotting Subroutine for Engineering Applications" for more
information about plotting simulation data.

How to Run Each Simulation : Each of the simulations has one input file,
destination, and at least two output files, printfile and ERD file. Note: The ERRfile has
not yet been implemented in the Static Roll Model. There &-e some output units that are not
necessary for our purposes; these units are assigned to *dummy*. The scientific
subroutines packages naweispack and naas:nal are used by three of the simulations and
must be added to the run command. The run commands are listed below.

> Phase 4 Model

$Run ST6T:Ph4.RTAC.O+naas:eispack+naas:nal2=ERD - file 5=destination
6=printfTle t=60

>Yaw Roll Model

$Run ST6T:Ya~.RTAC,O+naas:eispack+naas:nal2=ERD - file 5=destination
6 = p ~ d i l e t=60

>Simplified Braking Model

$Run ST6T:Brake.RTAC.O+naas:eispack+naas:nal2=ERD - file 5=destination
6=printfile t=5

>Static Roll Model

>Linear Yaw Plane Models (X represents the number of units. Tractor and trailer equals 2)

2.2.3 Post Processor Program

The Post Processor program analyzes the ERD file created by a simulation
program. This analysis may consist of a combination orup to eight different vehicle
performance measures. These measures include: Al-static rollover threshold, A2-yaw
stability, A3-high-speed offtracking, B-response to rapid steering reversals, C1-low-speed
offtracking, C2-tight turn jackknife conditions, D-braking in a turn, E-braking efficiency.
For a more detailed description of these measures, refer to Section 5.4.

Input : The Post Processor,takes as input two files, the ERD file and the file
RUNFILE. The ERD file is the output from a computer simulation run attached to the
logical UO unit 2. T ~ ~ R U N F I L E is a file created by the user to indicate to the Post
Processor program which performance measures are to be calculated. This file must be
named RUNFILE, and appear in the account from which the program is being run. It is a
text f i e that contains the letter codes of each measure desired, separated by commas. For
example, the line Al,A2 would instruct the program to calculate the static rollover
threshold and the yaw stability of the vehicle. Note: Entering the letter A alone, specifies
that measures Al, A2, and A3 are to be calculated, and similarly, C=Cl+C2. This
program can be executed by issuing the command :

$Run ST6T:Post.obj scards=ERD - file t=30

Output : The output from this program appears in the file measures.out. This is a
text file that contains the results of the performance measure analysis that was calculated.
When the Simulation Interface System is run using the macro RUNSIM, this file is
attached to the print file and copied to the printer. When the programs are run separately,
this file, measures.out, must be copied to the printer manually. This is accomplished by
issuing the command : $copy measures.out *print*.

2.2.4 RTAC Database

The RTAC database is a file that stores the results of all the vehicle performance
measures calculated by the Post Processor program. The database is arranged according to
the vehicle configurations and variations outlined in the simulation matrix. Each vehicle
record contains information that describes the vehicle, and the results of all the vehicle
performance measures calculated for that vehicle. The information is stored in binary
records. When a new performance measure is calculated by the Post Processor program,
the Post Processor creates a file named measure.temp with this new information in it. This

information is incorporated into the RTAC database by running the Database Updating
program. This program can be run by issuing the command:

The Database Updating program adds the new performance measures to the
appropriate vehicle record in the database file, RTAC.Data.

Examination of the RTAC Database is accomplished using the Microsoft Excel
program on an Apple Macintosh computer. Since the database file is in the form of binary
records, it needs to be translated to a text format before it can be examined. To do this, run
the program:

Once the database is converted to text, it has to be converted to "Excel" format, in
order to allow it to be read by the program Excel. To do this, edit the file RTAC.Data, and
replace every occurrence of @I with a tab. The Database is now ready to be downloaded to
an Apple Macintosh and examined using Excel.

3.0 COMPONENTS OF SIMULATION INTERFACE

In this section, each part of the simulation interface system will be briefly
described. In particular, how each segment works, how each is set up, and what each
segment's purpose is in the system will be discussed.

3.1 RUNSIM MACRO

The macro Runsim can be used to run the entire Simulation Interface System. A
macro is a special set of W S system programs that act as an interface between the user and
MTS. It is essentially a file of MTS commands and command extensions that can be run.
A macro is quite similar to a source file, but is much more powerful due to the command
extensions allowed. More information on the use and structure of macros is available in
the Computing Center's manual on "Command Extensions and Macros."

In Section 2.2, the use of each component in the Simulation Interface was
discussed The purpose of the Runsim macro is to link these programs together by
allowing communication among the fdes through text files, and it also automatically
processes the output files as specified by the user in the simulation file. Thus, the sequence
of steps necessary to generate simulation output are automated, and reduced to one
command.

3.2 INTERFACE PROGRAM

The Interface program was designed to create input data files for the vehicle
simulation programs included in the system (Phase 4, Yaw Roll, Static Roll, Simplified
Braking, and the Linear Yaw Plane models). It creates the input file according to the type
of simulation indicated and the vehicle selected in the Simulation file, which is the input file
to the Interface program. The program extracts data about the vehicle from the vehicle
component files specified in the description of the vehicle in the Index file. All of the
component files are stored in the Vehicle Component Library on the MTS computer account
ST6T. These files are available to any account that is authorized to use the UMTRI
Simulation Interface System.

3.3 VEHICLE COMPONENT FILES

GENERAL NOTES ON PARAMETER-FILE SYNTAX,
STRUCTURE, AND CONVENTIONS :

1. KEYWORDS (syntax literals) are shown and must be input in UPPER CASE.

2. The following characters [] {) / 1 () are used below merely for syntax specification,
and are rn part of the actual parameter-file syntax :
a. [Brackets] enclose optional input (not mandatory to enter).
b. {Braces) enclose notes or comments, which are not part of file structure.
c. /Slashes/ are used to indicate mutually exclusive input alternatives:

(i) Between I KEYWORDS - to separate between alternate literals of one
mandatory input keyword on the line.

(ii) / Leading & trailing I on line(s) - to delimit alternate line formats.

3. Actual order of lines is insignificant, except for the following:
a. First 4 lines (a title line and 3 comment lines) are merely echoed, and otherwise

ignored (except for b.).
b. The title line of the Vehicle-Index file is stored as the Run-Title.
c. A few specific line-order restrictions are indicated where applicable.

4. Parsed column range is 1 - 80, and file lines may be indented as desired.

5. All entries of each line are input sequentially in free format, adjacent entries being
separated by any number and sequence of blanks andlor commas (" 2, ,1 " will cause
the second entry to be read as 1 !).

6. Internal notes or comments in actual parameter file (in addition to 3.a.):
a. To be echoed: May appear on any line in the file, to the right of the rightmost entry

on the line.
b. Not echoed : Any additional lines below the specified last input line.

7. A full trailer is considered as two units (a dolly and a semitrailer).

8. All x (length) dimensions are with reference to each unit's front articulation point (front
axle CL for unit #I), positive rearwards.

9. Hitch-File defines 5th-wheel/turntable/pintle-hooMs between current Unit# and
Unit#+l (HITCH line for last unit is ignored, if entered).

10. Specific issues for the Vehicle-Index file :
a. VEHICLE line must be fifth, and TRKTR sixth. A single STRSTM line and a

single FSUSP line must precede the first RSUSP line in the file.
b. Any RSUSP, HITCH & LOAD lines refer to the last preceding "tare" line

(TRKTR/SEMI/DOLLY).
c. Any SLFSTR, SPRING, TIRE, WHLBRK & ALOCK lines refer to the last

preceding FSUSP or RSUSP line.
d. Any RHS line modifies the indicated parameter (on the vehicle right handside only)

for the last preceding FSUSP or RSUSP.
e. Any RHS and/or DEFAULT keywords must precede the component keyword

(SPRING, TIRE, etc.) of the line.
f. A DEFAULT directive will cause the assignment of the data from that line also to all

other occurrences of the same type (RSUSP, SPRING, etc.), which were not
explicitly specified by separate lines.

g. Any RHS line with a DEFAULT directive will work as described above, but on the
vehicle right-handside only (RHS & DEFAULT positions on the line may be
swapped, provided that rule d. is observed).

h. All MTS file-names specified in the Vehicle-Index-File must feature their CCID:
prefix, regardless of the CCID used for the simulation.

11. Physical Units ; Unless otherwise specified in the prototype component files, English
Engineering Units are assumed, as below:

Vehicle and component dimensions
Component translational deflection
Yaw, Roll, Angular deflection
Trajectory path (X-Y)
Velocity
Time
Weight, Load, Force
Torque, Moment
Moment of Inertia
Translational stiffness
Angular stiffness
Pressure

inches
inches
degrees
feet
ftlsec
seconds
lbs.
in - Ibs.
in lbs sec2
Ibc/in-
in Ibs.)/deg (.-

PSI

ROTOTYPE S I M U T I O N FILE}

Title
(3 comment lines (text or blank))
VEHICLE, Vehicle-Index-File
PROGRAM, NS I LY I SR 1 YR I P4 1 SB, = 1 - 1 Program-Input-File
FIEASURE, [[A1 I [[A1,1 [A2,1 [A3,111 [B,1 [[Cl/ [[C1,1 [C2,111 P ,1 PI1 {Note
1.1
[STRAPL, PATH I ANGLE 1 LRANGLE, Steer-Applic-File] {this +/or next line}
[BRKAPL, [BHYST,] [BPROP,] [ALOCK,] Brake-Application-File]
VELTIM, Velocity, Simulation-Time
[I ROAD, PLANAR, Long-Slope, Side-Slope 1
I ROAD, USER, Road-File /I {either ROAD line - for P4 only}
[CPUTIME, CPU-Time-Limit] {default is set to 200 sec)
[DROLL, Roll-Increment] {for programs SR, YR only}
[PRINT, [DISP,] [VELO,] [ACCE,] [TIREX,] [BRAKES,] [TIREY ,I.. .

{ on one line } ...[UNSPRGM,] [BTEMP,] = 1 - I Print-File, Time-incr]
[ERDFILE, [DISP,] [VELO,] [ACCE,] [TIREX,] [BRAKES,] [TIREY,] ...

{ on one line } ... WSPRGM,] [BTEMP,] = 1 - / ERD-Plot-File, Time-incr]
END

{ 1. See RTAC Simulation Plan, section 2.0, for explanation of performance measures.
"A" stands for "Al"+"A2"+"A3", and similarly, "C"="Cl"+"C2".

2. All MTS file-names specified in the Simulation-File feature their CCID: prefix,
regardless of the CCID used for the simulation.

3. An equal sign (=) entered instead of a full MTS file-name on either a PRINT, or
ERDFILE line causes the relevant output to be written to an automatically-created
permanent file, whose name is formed by the respective prefix 'PR.', or 'ER.',
followed by characters # 4 thru 12 of the simulation-file name. An equal sign on a
PROGRAM line will cause the assignment of the specified program code ('YR1,P4',
etc.) as the prefix in the name of the Program-Input-File, followed by characters #4
through 12 of the simulation-file name. For example, a simulation file
ST6T:SI.TRSEMI.W with the lines

PROGRAM,YR,=
ERDFILE, =

will create a permanent YawRoll input-file YR.TRSEMI.W, and later will direct
the ERD-format simulation output data to a permanent file ER.TRSEMT.WT of the
active CCID, from which the run was invoked.

4. A minus sign (-) entered instead of a full MTS file-name on either a PROGRAM,
PRINT, or ERDFILE line causes the relevant output to be written to a temporary file
(a leading -), whose name is formed by the same prefix as defined in 3, followed by
characters # 4 thru 8 of the simulation-file name. For example, a simulation file
ST6T:SI.TRSEMI.P4 with a line PROGRAM, P4, - will direct the Phase 4 input
data to a temporary file -P4.TRSEM .

5. On PRINT line, optional output selection directives are effective only when running
Phase 4 (ignored by other programs), and the absence of all optional output
directives will invoke full output for all eight variable groups. }

JPROTOTYPE VEHIC1,E-INDEX FILE)

Title
(3 comment lines (text or blank)}
VEHICLE, Num-Of-Units
TRKTR, Tare-File

{ < 8 1
{predefined as Unit# 1 }

STRSTM, Steering-System-File
FSUSP, Front-Suspension-File

[SLFSTR, Selfsteer-File]
[RHS,] DEFAULT,] SPRING, LINEAR / TABLE / ENVLP, Spring-File]
[[RHS,] [DEFAULT,] TIRE, LINEAR / TABLE / MODEL, Tire-File]
[[RHS,] [DEFAULT,] WHLBRK, LINEAR 1 TABLE / MODEL, Whlbrake-
File]
[[RHS ,I [DEFAULT,] ALOCK, An tilock-File]

[DEFAULT,] RSUSP, Rear-Susp #, Suspension-File
[SLFSTR, Selfsteer-File] {identical properties assigned on tandems}
[WAR,] [RHS,] DEFAULT,] SPRING, LINEAR / TABLE I ENVLP,
Spring-File]
[[REAR,] W S ,] DEFAULT,] TIRE, LINEAR / TABLE / MODEL, Tire-
File]
[[REAR,] W S ,] [DEFAULT,] WHLBRK, LINEAR I TABLE / MODEL,
W hlbrake-File]
[[REAR,] W S ,] [DEFAULT,] ALOCK, Antilock-File]

[HITCH, Hitch-File]
[LOAD, Load-File]

[SEMI, Unit#, Tare-File {up to 3 SEMI lines allowed}
{---> here need list only those suspension, spring, tire, brake and antilock files
which are different than any indicated "DEFAULT'S. See note}
[SLFSTR, Selfsteer-File] {RSUSP line must precede, if more than 1
RSUSPI

W C H , fiAtch-~ile]
[LOAD, Load-File]]

DOLLY, Unit#, Tare-File {up to 3 DOLLY lines allowed)
{---> here need list only those suspension, spring, tire, brake and antilock files
which are different than any indicated "DEFAULT'S. See note}
[SLFSTR, Selfsteer-File] {RSUSP line must precede, if more than 1
RSUSP)

[HITCH, Hitch-File]
[LOAD, Load-File]]

END

{Note : Must enter a null component file, when DEFAULT is in effect but a component
has to be omitted (such as no brakes on an axle, while DEFAULT WHLBRK is
specified elsewhere in the index file)}

Title
(3 comment lines (text or blank)}
SPRING
LINEAR, Rate]
[FRICT, Coulomb-Friction]
[TABLE, Table-Lines
Force, Deflection] {Table-Lines}
ENVLP, One-Way-Lines
JOUNCE, Jounce-Beta
Force, Deflection {One-Way-Lines}
REBOUND. Rebound-Beta
Force, ~eflection] {One-Way-Lines }
END

{ Note: For a walking-beam tandem-suspension spring, the force values are entered
"per wheel", not "per side" ! ! }

{PROTOTYPE SUSPENSION FIJIE;l)

Title
(3 comment lines (text or blank))
I FSUSP 1
/ RSUSP, Susp-Key I
INERT, Unsprung-Mass, Ixx { per axle !)
&ONGL, Axle-Sep, Static-Load-Dist, Dynamic-Load-Trans] {for Susp-Key>O}
VERT, Axle-CG-Height, Roll-Center-Height
TRACK, Track, Duals-Sep, Spring-Spread
ROLL, Aux-Roll-Stiffness, Rollsteer-Coef
[VISC, Lhs-Damping-Coef, Rhs-Damping-Coefl
[REAR, INERT, Unsprung-Mass, Ixx] { per axle !)
[REAR, VERT, Axle-CG-Height, Roll-Center-Height]
[REAR, TRACK, Track, Duals-Sep, Spring-Spread]
E A R , ROLL, Aux-Roll-Stiffness, Rollsteer-Coefl
E A R , VISC, Lhs-Damping-Coef, Rhs-Damping-Coefl
END

{ Note: Susp-Keys: 0 - Single ; 1 - Four Spring Tandem ; 2 - Walking Beam Tandem.
REAR directive valid only for Susp-Key > 0, and redundant for identical
leading and trailing axle data.)

Title
(3 comment lines (text or blank)}
HITCH, Hitch-Type { 1 - 5th Wheel, 2 - Inverted 5 th wheel,

3 - Compensating 5th wheel, 4 - Turntable, 5 - 'A' dolly, 6 - 'B' dolly}
[HROLL, Roll-Center-Height] {above 5th wheel plane - for type 3 only}
[SEPAR, Sep-Moment, Sep-Angle] {used by static roll model only}
[KINEM, Hitch-GLA, Hitch-KLA] {used by CW yaw roll model, for type 6
only 1
[LINEAR, Y aw-S tiffness, Roll-S tiffness] {only for special YR runs, or type 6)
[LASH, Yaw-Lash-Angle, Roll-Lash-Angle] {from here down - for type 6 only}
[VISC, Yaw-Damping, Roll-Damping]]
FABLE { not yet implemented ! ! }
[YAW, Y aw-S tiff-Lines
Z-Moment, Z- Angle] {Y aw-Stiff-Lines}
W L L , Roll-S tiff-Lines
X-Moment, X-Angle]] {Roll-S tiff-Lines)
END

{PROTOTYPE TARE FILE;)

Title
(3 comment lines (text or blank))
I DOLLY, Sprung-Mass /
I TRKTR, Sprung-Mass

TFRAME, Torsional-Stiffness, Torsional-Friction, Torsion-Axis-Height /
/ SEMI, Sprung-Mass

KINGPIN, KP-Setting 1
[BEDXYZ, Bed-Length, Bed-Width, Bed-Floor-Height] {for truck & semi only)
RSUSP, Num-Of-Rear-Susps
Suspension-Num, Wheelbase-to {Num-Of-Rear-Susps lines ; Note 1)

CGXYZ, Sprung-CG-Dist, Sprung-CG-Offset, Sprung-CG-Height
INERT, Sprung-Ixx, Sprung-Iyy, Sprung-Izz
HITCH, X-Location, Y-Location, Z-Location {Notes 1, 2)
END

{Notes:
1. "Wheelbase-to", and HITCH "x-Location" are, respectively, the longitudinal

distances of the suspension's C.L. and the rear hitch C.L.measured from front
axle on tractorsltsucks, from front articulation point on dollies and
semitrailers.

2. HITCH locations refer to 5th-wheel/turntable/pintle-hooMs on given Unit#
(HITCH line for last unit is redundant - ignored if entered).}

{PROTOTYPE WHEEll BRAKE FIJiE)

Title
(3 comment lines (text or blank)}
WHLBRK, Time-Lag, Rise-Time
ENEAR, Torque-Coefl
[TABLE, Table 1-Length

Pressure, Torque] {Tablel-Length lines}
MODEL

Chamber-Area, Drum-Diamtr, Wedge-AngleIArm-Length, Pushout-Pressure
Bfo, Cv, Ct, Cf {brake factor coefficients in eq. 1.2.3, p.321, Ph IV
manual}
BTEMP, Table2-Length
Init-Temp, TempCoef {Tablez-Length lines}
Drum-Rub-Area, Drum-Thickness, Drum-Convect-Coef
Drum-Temp, Ambient-Temp
Lining-Area, Lining-Thickness, Lining-Convect-Coef, Lining-Temp] l

.t *]
[BHYST, Hy {if Hy = 0. then next line redundant (ignored if entered)}

[Hy2, Resbrk, Resid, Hyl]]
[BPROP, Ipro [,Spring0 {for Ipro = 2 only}] {see pp.56,35 1, Ph IV manual}
TREADLE, Table3-Length
press-~readle, ~ re s s -0G (Table3-Length lines}
VALVE, Table4-Length '

V-Ipro, K] (Table4-Length lines - see p. 348, Ph IV manual}
END

Title
(3 comment lines (text or blank))
/ PAYLOAD, Payload-Weight I
1 SSPLOAD, Num-Of-SuspLoads

Susp#, Susp-Load 1 {Num-Of-SuspLoads lines}
PENSITY, Freight-Density] { in units of ~3 - see note 1)
[INERT, Ixx, Iyy, Izz] {notes 2 ,3 }
[CGXYZ, CG-Dist, CG-Lateral-Offset, CG-Height] {notes 3 thru 6 }
END

{Notes:

1. DENSITY may be used in order to have the Payload CG height calculated based on
the Freight-Density, and the cargo bed floor area and height.

2. INERT line is optional - if absent, then the Payload moments of inertia will be
calculated based on a rectangular box of uniform density, the given or calculated
Payload mass, the given or calculated Payload CG height, and the cargo-bed
dimensions.

3. CGXYZ & INERT are net payload parameters.
4. CG-Dist is measured along x-axis, positive aft of front articulation point (front axle

for Unit #1, king pin for a semi, pintle hook for a dolly).
5. CG-Height is with reference to ground, and ignored if a DENSITY line is entered.
6. If SSPLOAD is specified, then CG-Dist is normally ignored, but some best-

estimate value must always figure on the line (may be used by program, if
suspension loads are insufficient to solve for payloads and hitchloads-such as in
B-trains, for next-to-last semi's).

7. LOAD files listed in a given Vehicle-Index file must all be of the same type (either
all PAYLOAD or all SSPLOAD),

8. When PAYLOADS are specified, LOAD files are not mandatory for units with zero
payload, but when SSPLOADs are specified, LOAD files are mandatory for all
units.)

Title
(3 comment lines (text or blank)}
TIRE, Radius, Iyy
STIFEYZ, Lateral-Stiffness, Vertical-Stiffness
CAMBER, Camber-Stiffness, Overturning-Stiffness
[ALIGN, Aligning-Torque-Stiffness] {not required by Model)
[CLONGL, Longitudinal-S tiffness] {not required by Model or Table}
[CALFA, Cornering-S tiffness] {not required by Model or Table}
PEAKMU, Peak-Cornering-Friction-Coefficient] {required by YR only}
{ 1
[TABLE { Sequence of lines within TABLE part is fixed ! !)

CALFA, Num-Vert-Loads, Num-Velocities
Vert-Load 1 [, Vert-Load21 [, Vert-Load31
Velocity 1 [, Velocity21 [, Velocity31
{ -- 4 - -

one [---I block for each Calfa load-velocity combination}
Load#, Velocity#, Length 1
Alfa, Mu-Y {Length 1 lines; increasing, positive Alfa !

...
ROLLOFF, M-Slip-Points [, N-Alfa-Points

1

{M-Slip-Points = 0 indicates no roll-off}
Long-Slip 1 [, Long-Slip21 .. . [, Long-SlipM]
Alfal [, Alfa2].,.[, AlfaN]
Rolly 1 1 [, Rolly 121.. . [, Rolly lM]
{ . - NxMmatrix}
~ o l i ~ ~ 1 [, ~ 0 1 1 ~ ~ 2 1 . . . [, RollyNMl]

CLONGL, Num-Vert-Loads, Num-Velocities
Vert-Load1 [, Vert-Load21 [, Vert-Load31
Velocity 1 [, Velocity21 [, Velocity31
{ - - - - - - - - - - - - - - - - -- - - - -- -- - - - - - - -- - - - - - - - - - - - - - - - - -

one [---I block for each Clong load-velocity combination}
Load#, Velocity#, Length2
Slip, Mu-X (Length2 lines; increasing, positive Slip !

...
ROLLOFF, M-Slip-Points [, N-Alfa-Points

1

{M-Slip-Points = 0 indicates no roll-off}
Long-Slip 1 [, Long-Slip21 .. . [, Long-SlipM]
Alfa 1 [, Alfa21.. . [, AlfaN]
Rollx 1 1 [, Rollx 121.. . [, Rollx 1 MI
{ ' - NxMmatrix}
~ o l i x N 1 [, ~ 0 1 1 ~ ~ 2 1 . . . [, RollxNM]]

{
MODEL

CALFA, calf% D C ~ F Z , D C ~ V , D ~ C ~ F Z ~
PEAKMU, Peak-Mu, DMupDFz, DMupDV
SLIDEMU, Slide-Mu, DMuSDFz, DMuS/DV
PKSLI', Peak-Slip, DSp/DFz, DSp/DV
TRAIL, Pneumtc-Trail, DXp/DFz, DXpDV
LATRL, Lateral-Stiff, DCyDFz, DCyDV
NOMINAL, Fzo, Vo]

{

[ALIGN
[P4, Align-Coeffl, Align-Coeff2, Align-Coeff3, Align-Coeff41
[YR, M Vert - Loads+ 1, N Alfas+ 1
0.0, ~ i f a l , ... AlfaN {Row #1 of (M+l) x (N+l) matrix; 0.0 c Alfal < AlfaN ! }
Vert-Load 1, Align-Torque 1 1, Align-Torque 12, .. . Align-Torque 1 N
{ : : - (M+l)x(N+l)matrix
1
Vert-LoadM, Align-TorqueM1, Align-TorqueM2, ... Align-TorqueMN]]

END

{PROTOTYPE SETiF-STEER Fm}

Title
(3 comment lines (text or blank)}
SLFSTR
ARMXY, Mechanical-Trail, Lateral-Kingpin-Offset
FRICT, Coulomb-Friction { torqueiaxle}
LINEAR, Aligning-Stiffness, Steer-Damping] {Phase ZV input)
[TABLE, Primary-Aligning-Stiffness, Table-Length {YawIRoll input}
Steer-Angle, Aligning-Torque] {Table-Length Lines}

[FORCED, { not finalized yet ! }I
END

{ Note: All stiffness and damping values are angular (torque-based), per axle. }

{PROTOTYPE STEERING SYSTEM FILF,)

Title
(3 comment lines (text or blank)}
STRSTM
KINEM, Steering-Ratio, Mechanical-Trail, Lateral-Offset
STIFF, Steering-Stiffness, Tie-Rod-Stiffness, Wrap-Up-Stiffness
END

Title
(3 comment lines (text or blank)}
ALOCK
{A parameter list according to specifications in pp. 257-267, Phase 4 manual,
beginning with OPTION1 (p. 257) and terminating with TSMPLE (p. 266))

{PROTOTYPE STEER-APPLICATION FILF,}

Title
(3 comment lines (text or blank)}
I ANGLE, Table 1-Length
Time, Steer-Angle 1 {Table 1-Length lines}
/ LRANGLE, Table2-Length
,Time, Left-Wheel-Angle, Right-Wheel-Angle 1 {TableZLength lines}
I PATH, Table3-Length
X-Path, Y-Path (Table3-Length lines}
DRIVER, Driver-Lag, Preview-Interval
[SWITCH, Closed-Loop-TimeOut, Ramp-Steer-Rate] / {see note}

END

{ Note:
SWITCH line may figure only immediately after a DRIVER line. If no SWITCH line
is present, a continuous closed-loop operation is assumed.
Ramp-Steer-Rate is required in deglsec, and is interpreted as an average front-wheel
steer-rate if no steering system (ratio) is specified, or as a steering-wheel turning rate
if a steering system (ratio) is specified. A negative Ramp-Steer-Rate implies steering
to the left direction from the last steer angle where the driver model has left off.}

{PROTOTYPE BRAKE-APPLICATION FILE}

Title
(3 comment lines (text or blank)}
BRKAPL, Table-Leng th
Time, Pressure {Table-Length lines}
END

Example of Actual Suspension-File:

Hendrickson Walking Beam (44K, 60" axle spacing) Make and Model :
Hendrickson RTE.440
Overall tire width : 96."
Filename = STGT:Su.HknWkBm44
RSUSP, 2
INERT, 2500., 5100. (weight, roll moment of inertia)
LONGL, 60., 50., 0. (", 50150 stat., 0 dync. transfer)
VERT, 20., 33. (Hcg, Hrc)
TRACK, 72., 13., 38.
ROLL, 30000., .22 (auxiliary K-roll, roll-steer coeff.)
REAR, ROLL, 85000., -23 (as above, trailing axle)
END

Example of an Actual Vehicle Index File:

RTAC 8 axle Doubles (49t GCW), conf. 2.1, var. 1.00
* Conventional walking-beam tandem-axle tractor.
* Two 27' tandem-axle semi's. 72" single-axle B-dolly.
FileName = ST6T:ln.2.1 C1.00
VEHICLE, 4

TRKTR, STGT:Tr.3ax190wb
STRSTM, ST6T:StmlH12k.Pwr
LOAD, ST6T:SL.Tr4.511m5
FSUSP, STGT:Su.lH12kFrnt
SPRING, ENVLP, ST6T:Sp. 1Href.Ft-t
WHLBRK, LINEAR, ST6T:Br.StrAxle
RSUSP, 1, STGT:Su.HknWkBm44
SPRING, ENVLP, STGT:Sp,HknRte440
HITCH, ST6T:Hia5thWheel

SEMI, 2, ST6T:SeV27FtTndm
LOAD, STGT:SL,Sel2t
HITCH, ST6T:Hi.BdollyRef

DOLLY, 3, ST6T:Do.ConvrtlAx
LOAD, ST6T:SL.Dogt
RSUSP, 1, STGT:Su.Rc21 Bsngl
SLFSTR, ST6T:Ss.CESCHI
HITCH, ST6T:HiV5thWheel

SEMI, 4, STGT:Se.27FtTndm
LOAD, STGT:SL.Sel2t
DEFAULT, RSUSP, 1, ST6T:Su. Rc21 B48in
DEFAULT, SPRING, ENVLP, ST6T:Sp.MTC.Reyco
DEFAULT, TIRE, TABLE, ST6T:Ti.XZAll R225
DEFAULT, WHLBRK, LINEAR, ST6T:Br.DualsAxle
END

Example of an Actual Simulation-File:

FileName = ST6T:Si.2.1 C1.OOO
RTAC 8 axle C-double (49t GCW), conf. 2.1, var. 1.00
Peak Ay = 0.1 5 G @ 100.0 kmlh & Ay Sine T = 3.0 s.
Yaw/Roll simulation - Rapid Path change
VEHICLE, ST6T:ln.2.1 C1 .OO
PROGRAM, P4, -
MEASURE, B
STRAPL, PATH, ST6T:Ap.Pat h3.0S
VELTIM, 91 .I 34, 8 (1 00 kmlh, 8 sec.)
PRINT, -, 0.1
ERDFILE, =, 0.1
END

Example of an Actual Tractor Tare File:

FileName = ST6T:TrS3axl 9Owb Last Update: 211 0186
Tare file for a baseline RTAC tandem-axle tractor.
Type : Long Conventional; Wheelbase : 190".
Note : Inertial and torsional parameters are estimated.
TRKTR, 1 1800 (Ibs: total tare weight = 18000 lbs)
TFRAME, 1000000., 5000., 38. (Kt, Cf, Ht)
RSUSP, 1
1,190
CGXYZ, 5 5 , O., 44.
INERT, 26000, 1 70000, 1 70000 (in-lbs-secz)
HITCH, 175., O., 44.
END

Examples of Actual Load-Files:

FileName = ST6T:SL.Se 1 2t
This is a load file for an RTAC tandem-axle semitrailer.
This version specifies suspension ground load
and payload density.
SSPLOAD, 1
1, 26455 (1 2.0 t)
DENSITY, 34.0 (Ibslft3)
END

Filename = ST6T:PL.27F16t, Configuration 2.1, Variations 5.1 0, 5.1 1
Payload (16t) file for a 27' semitrailer
This file specifies inertias and c.g. locations
PAYLOAD, 35275 (1 6t)
INERT, 10421 5, 824242, 878449
CGXYZ, 137.9, 0, 82.7
END

Exam~le of an Actual Semi Tare File:

FileName=ST6T:Sea27FtTndm Last Update:11/22/85
Tare file for a short RTAC tandem-axle semi.
Type : 27' Van; Suspension CL to rear end : 54".
Kingpin setting : 24".
SEMI, 5500 (estimated)
KINGPIN, 24
BEDXYZ, 324, 102, 54
RSUSP, 1
1,246
CGXYZ, 165, 0, 69
INERT, 3781 3, 268334, 268334 (in-lbs-sec2)
HITCH, 300, 0, 34.5
END

3.3.1 File Naming Conventions

Naming Conventions for RTAC Simulations
Input and Output Files on MTS

All MTS permanent files generated by or for RTAC simulation runs should include
in their names basic information (within the unfortunate 12 character constraint) indicating
the type of file and its general contents. This is done by making each file name to consist
of two distinct, concatenated parts: A Prefix (first 2 characters followed by a period)
identifying the file type, and a Body (characters #4 up to #12) specifying its contents. As
there is a discrete number of valid file types, there will be the same discrete number of
corresponding valid prefixes which should always be used.

The following Prefixes have been defined so far:

File Tygn
Simulation-File
Vehicle-Index
Steer- or Brake-

Application
Tare-Files :

Tractor or Truck
Semi
Dolly

Load-Files :
Suspension-Load
Payload
Hitch

Steering-System
Suspension
Spring
Wheel-Brake
Tire
Anti-Lock
Self-steer
ERD output
Printout

Prefix (characters 1-31
Si.
In.

Tr.
Se.
Do.

SL.
PL.
Hi.
St.
Su.
SP.
Br.
Ti.
AL.
SS.
ER,
Pr.

3.4.1 Phase 4

The Phase 4 program is a braking and directional response time-domain
mathematical simulation of a truckitractor, a semitrailer, and up to two full trailers. The
vehicles are represented by differential equations derived from Newtonian mechanics that
are solved for successive time increments by digital integration.The program is written in a
generalized fashion to allow simulation of a large number of vehicle configurations.

3.4.2 Yaw Roll

The Constant Velocity YawIRoll Model simulates the turning and rolling behavior
of motor vehicles in constant speed maneuvers. The model's particular features are tailored
to simulation of trucks and tractor-trailer, accommodating up to four vehicle units. The
simulation is particularly versatile in representation of multiple-axle configurations and
different types of hitching mechanisms between the vehicle units. It generates time-based
output indicating motions of each vehicle and the controlling forces internal to the vehicles.

3.4.3 Static Roll

The Static Roll Model is useful for calculating the rollover threshold of articulated
vehicles during steady turning maneuvers. The roll response in a steady turn is computed
by repeatedly solving, for small increments of roll angle, a set of equations which describe
the static equilibrium of the vehicle in the roll plane.

3.4.4 Simplified Braking

The Simplified Braking Model determines the braking performance of an
articulated vehicle assuming that it is making a constant deceleration stop. The simulation
will accommodate a vehicle composed of a truckitrailer, a semitrailer, and up to two full
trailers. The response to the applied braking forces is described in terms of the longitudinal
deceleration and the vertical loads carried by each axle.

3.5 POST PROCESSING PROGRAMS

The Post Processor program is the final step in calculating results in the
Simulation Interface. It takes as input the ERD file created by the run of the computer
simulation, and condenses the data into a few d u e s that indicate the important features of
the simulation. The program calculates the measures that are indicated in the file runfile, as

,

described in Section 2.2.3.

The RTAC Database is a database containing the results of all the simulation runs
made, as specified in the simulation matrix. The Database Updating program adds the new
vehicle performance measures calculated by the Post Processor program to the RTAC
Database. This database can later be transferred to a spreadsheet package to examine the
results of the vehicle simulations.

4.0 INTERACTION OF INTERFACE COMPONENTS

This section discusses how the various components of the simulation interface
interact to produce the final results of a simulation.

4.1 RUNSIM MACRO

The macro Runsirn is essentially a manager of the programs in the simulation
interface. It channels the information flow between programs, and directs the flow of the
interface.

Runsim is executed by issuing the command Runsim, and supplying the
simulation file to be used. Runsim first creates (or empties if they already exist) all the files
that will be used by the programs in the Simulation Interface. It also issues some
commands to suppress the output to the screen, so the user is not bombarded by messages
that are not necessary.

It then runs the interface program, ST6T:vs.obj, with the simulation file supplied
in the Runsim command. The output files from this program are saved in either permanent
or temporary files, and named as indicated in the simulation file. Runsim then checks to
make sure that the interface program ran correctly, by checking the file inputok. If the
program did not run successfully, then Runsim writes a message to this effect on the
printfile and immediately exits the macro (skipping the simulation and post processor). It
also saves the debug file as a permanent file (according to the naming convention) for later
inspection.

The next step in the Simulation Interface is the running of the specified simulation.
Runsim branches to the simulation specified in the Simulation file and issues the
appropriate command to run that simulation. In this run command, Runsim assigns the
output from the interface program as input to the simulation program. It also channels the
output from the simulation to the appropriately named printfile and ERDfile.

The final program in the Simulation Interface, the Post Processor, is then run. It
takes as input the ERDfile output from the simulation run. The output from this program is
stored in the file measures.out, and is appended to the beginning of the printfile by
Runsim.

Finally, Runsim performs some cleanup operations. It copies the printfile to the
printer, and destroys or empties the files that contain data that are no longer needed. The
last task that Runsim performs is the issuing of the commands to re-assign the output to the
screen.

4.2 INTERFACE PROGRAM

The Interface program takes as input the Simulation file, which indicates the
simulation to be run, the vehicle to be examined, and the vehicle performance measures to
be calculated, in addition to other parameters related to the running of the simulation. The
output from this program is contained in four files, Destination, Disp.out, Debug.out, and
Runfile. All of these files were discussed earlier in section 2.2.1, except for Runfile.
Runfile, an input file for the Post Processor, contains one line which indicates the vehicle
performance measures that are to be calculated in the Post Processor program.

4.3 SIMULATION PROGRAMS

The simulation programs (Phase 4, YawIRoU, Simplified Braking, Static Roll,
and the Linear Yaw Plane models) interact with the rest of the Simulation Interface in a very
simple way. The interaction occurs through three files, Destination file, Printfile, and
ERDfile. Everything the simulation needs as input is contained in the file Destination. The
Printfile is not used by the rest of the Simulation Interface, but is used as a means of
communicating the results of this process with the user. The ERDfile is used by the Post
Processor program to compute the measures that are indicated in the file Runfile (created by
the interface program).

4.4 POST PROCESSOR PROGRAM

The Post Processor program takes as input the ERDfile created by the vehicle
simulation run. The ERDfile contains a binary record of the output of the simulation run.
The Runfile created by the Interface program is also an input file to the Post Processor, it
indicates which measures are to be calculated for the simulation run being examined. The
output from this program appears in two files, Measures.out and Measure.temp.
Measures.out is a text file displaying the results of the vehicle performance measures,
Measure.temp is a binary record of these same results, used as input to the Database
Updating program.

4.5 DATABASE UPDATING PROGRAM

The Database Updating program takes as input the fde Measure.temp, created by
the Post Processor program. This program uses the information in this file to update the
vehicle performance measures stored in the RTAC Database file. This program is run after
each vehicle simulation is completed, maintaining the RTAC Database as a completely up to
date record of the results of every simulation run completed in the simulation matrix.

ERD Files

SUMMARY

The Engineering Research Division (ERD) file format can be used for disk or tape files
whenever data are organized by channel number and sample number. The file is divided
into two sections. The header section includes the information that would normally be
included in a log sheet summarizing the data, and can be expanded to include additional
information required for specific applications. The data section is similar in concept to a
multitrack tape recording. The data can be stored in binary form for maximum efficiency
for data processing, or in text form for transferring files between different computers,
When the files are stored on reel-to-reel tape, a disk-based directory can be used to improve
access to the data.

This manual defines the ERD file layout, and describes some of the software that is
available for dealing with ERD files. Utility programs are available on MTS for
manipulating the files and plotting the data they contain. In addition, there is a "toolbox"
library that can be used to access and change the information in an ERD file when writing
new software.

1. INTRODUCTION

The Engineering Research Division (ERD) at The University of Michigan Transportation
Research Institute 0 has developed a standard file format to simplify the processing
of data from varied sources, such as experiments, simulations, and data processing
programs. These are presently called ERD files. The file contains two independent
sections, the header and data, as illustrated in Figure 1. Depending on the design of the
computer operating system, the two sections may reside in the same file or in two separate
files. On the mainframe computer at The University of Michigan, both sections are always
included in the same file. On the IBM PC, it is usually more convenient to have two
separate files having the same base name but with different extensions,

The data section is organized in a form similar to a multitrack tape recorder, with one or
more separate channels that are all sampled at identical intervals. The data are stored in
binary form when efficiency is important, such as when the ERD files are processed on a
single computer system. Alternatively, the data can be stored in text form, to facilitate
transporting the files between different computers.

The header section of the file contains the information needed to read the data. This
design allows a data processing program to first read the header information that maps out
the file, and then read the data. Thus, a program that can deal with one ERD file can
probably deal with any ERD file, even though the other files have different numbers of
channels and perhaps different amounts of information included in the headers.

The data are stored in columns and rows as shown in Figure 1. The columns
correspond to separate channels, and the rows correspond to samples taken of all of the
channels at a particular instant.

When ERD files are stored on tape, it has proven convenient to have a directory of the
files on disk, so that the tape can be positioned more rapidly. It also allows one to modify
the header of an ERD file using a normal text editor. For example, to change the units of a
channel from feet to meters, the scale factor and the name of the units in the header can be
changed while leaving the data portion of the file intact.

2. THE LAYOUT OF AN ERD FILE

This section defines the structure of the ERD file. Examples involving the reading and
writing of ERD files are provided later in section 5.

ERD File Structure
b " - - - - - - - - - - - - " " -

E DOUBLE / 27-FT TRAILERS. . .
-1 , 540, . . .

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , o . o , . o . o , ...

Header
The beginning of the file
describes the data,
specifying: size, layout,
names of channels, scale
factors, and additional
information

Numerical Data
The second part of the
file contains
numerical data, in a
layout similar to a
multi-channel tape
recorder. Normally, the
data are stored as binary
numbers for maximum
efficiency.

2.1 The Header

The header part of an ERD file consists of a series of conventional text lines, that are
"human readable" using conventional text editors.1

Table 1 summarizes the required lines in the header of an ERD file. The first line
identifies the file as an ERD file and the next seven lines contain values for parameters in a
particular order. Additional lines can optionally be included that contain information
specific to various applications.

The header contains names and numerical values of parameters. Each name has a
preassigned length, in terms of the number of characters it contains. For example, the unit
names are defined as containing 8 characters. Usually, the name will be shorter than the
space allowed. When several names are on the same line, the names should be padded
with blanks as needed so that following names begin at the correct column positions. For
example, consider a case where the ERD file contains three channels of data, and the units
of the variables of the different channels are meters, millimeters, and degrees. Line 8,
which gives the names of the units for each channels, might be:

(For clarity in this discussion, the line of text has been enclosed in single quote marks, and
spaces have been shown as periods. In the actual file, the quote marks would be omitted
and the period would be replaced with spaces.) The last item can also be padded (and
usually will be when the files are created automa'tically), but this is not absolutely
necessary,

All integer and floating-point numbers mus t be separated with commas. When writing,
the numbers should be written in a reasonably compact form, so that programs reading the
data will not miss any of the numbers due to too many spaces in the line. Decimal points
are optional for floating point numbers such as Step on line 3, but integer numbers (such as
all of the other numbers on line 3) should never have decimal points because they could
cause read errors with some Fortran programs.

In addition to the required eight lines shown in Table 1, any number of additional lines
can be added to the header so long as the value of Nxlines in line 3 is correct. The
additional lines are included because it is sometimes necessary to add specific types of
information to the ERD files in some applications which are not relevant for other
applications. The optional lines are included as the means for the ERD file format to grow
and evolve politely. The information in the optional records is always identified by. an
eight-character keyword that begins the line. If the computer program reading the file has a

1 On most computers text files are stored using the ASCII representation of text characters.
On IBM mainframe computers, text files are stored using the EBCDIC convention.
Conversion between ASCII and EBCDIC is usually accomplished transparently whenever
fifes are transferred between computers. (When conversion is not automatic, utility
programs are always available to make the conversion.) On microcomputers, the header of
an ERD file will always be an ASCII file. On some mainframes, it will be an EBCDIC file.
Throughout the remainder of this manual ASCIIIEBCDIC files are referred to simply as
"text. "

Table 1. Summary of Records in an ERD File Header

Line No. Descn'ptwn
1 ERDFILl'Vl.00 - identifies file as having ERD format
2 Title (80 characters, left-justified and padded with blanks)
3 Nc hannels, Nsamples , NxLines, NRecs, Nb ytesRec, Key NumType, Step,

KeyOption - use commas to separate numbers
Nchannels = Number of data channels
Nsamples = Number of samples. (If unknown, use -1.) The total number

of numbers in the data portion of the file is: Nchannels x Nsamples.
Nxiines = Number of additional lines after line #8.
Nrecs = Number of records of data. (If unknown, use -1.)
NbytesRec = Number of byteslrecord in binary data or number of

sampleslrecord for text data for binary data, should be chosen such that
each record begins with channel 1: that is,
NbytesRec = K x Nchannels x BytePerNum, where K is an integer
and BytePerNum is the number of bytesldata value (2 for integer, 4 for
floating-point, etc.). For text data, the number of numbers per line is
NbytesRec x Nchannels .

KeyNumType = Indicates how the data are stored.
O=2-byte integer (binary),
1 =4-byte floating point (binary),

2=proposed for 8-byte floating point (binary),
3=proposed for 8-byte complex (binary),
4=proposed for 16-byte complex (binary),

5=Fomatted floating-point (text) The foxmat is (Nchannels)E13.6 unless
a FORMAT optional keyword is used to speclfy a different format..

Step = sample interval (time step,frequency step,count)
Keyoption = optional key used in some data processing applications.

4 Gains (scale factors) for each channel, separated by commas. Use 1.0 (for
each channel) if data values are already scaled correctly.

5 Offsets for each channel, separated by commas. Use 0.0 (for each channel)
if data values are already scaled correctly.

6 Short names for all channels. (8 characterstname, left-justified)
7 Long names for all channels. (32 characterstname, left-justified)
8 Unit names for all channels. (8 characters/narne, left-justified)

(9 to 8+ Optional records. Each record should begin with a 8-character keyword
NxLines) (GENNAME, TESTID, etc.) These records will contain

information that can be used by application programs that recognize
the keywords. The number of optional records here must be
specified in line 3 as NxLines.

9+NxLines First data record.
8+NxLines Last data record.
+NbinRecs

use for that information, then it will recognize the keyword. If not, the rest of the line is
not processed and no harm is done.

An example of an optional line is:

(As in the earlier example, periods are shown instead of the spaces that would be used in
the actual file.) This Line identifies the units of the independent variable implicit in the
structure of the ERD file. (That is, the numbers in the data portion of the f i e are sampled at
constant intervals of an implicit independent variable, measured in units of 'sec' .) In this
case, the eight-character keyword is 'XUNITS ' This keyword is associated with a
name of the units used, sec. This piece of information might be of no use for a program
that reduces the time histories to a single summary index, and such a program would just
skip over this line when it does not recognize the keyword 'XUNITS '. On the other
hand, when the file is read by the ERD plotter described in section 4, this information is
used to help label the x axis when time histories are selected.

So far, all of the key words that have been used fall into eight categories of
information. They include four data types: 8-character names, 32-character names, 80-
character names, and numbers. There can be one piece of information that applies to the
entire file (four of the categories), or one piece per channel (these are the other four
categories.) Table 2 lists some of the keywords that have been used to date.

2.2 The Data

The data part of the ERD file contains nothing but numbers, organized into columns and
rows. The sequence of storage is:

where NCHAN is the number of channels and NSAMP is the number of samples. The
total number of data points is thus NCHAN x NSAMP. All of the numbers in the data
portion are stored in the same format, and there can be no "missing values."

Reading and writing binary data is very efficient, because the computer does not need
to perform any conversions or transformations as the data values are moved between the
file and the computer memory. When a binary format is used, the data portion of an ERD
file is a direct copy of a portion of the computer memory, corresponding to a 2-dimensional
array having dimensions corresponding to the number of channels and the number of
samples. As indicated in table 1, two forms of binary data are presently supported on MTS
(The University of Michigan computer system): integer*2 and real*4. Integer*2 data are
typically obtained by data acquisition systems. Each integer value is a sampled reading
obtained from a digitizer during a test. For most engineering applications, data are stored
(in the computer memory) in real*4 format, also known as single-precision floating point.
The real*4 format is commonly used for any processed data, or for data generated by the
computer. The maximum efficiency for data processing is usually obtained when the
real*4 format is used.

Table 2. Summary of Keywords Recognized by the Toolbox

Keyword No. of Variable
Name Description Values T'.e

AXLETRAK

AXLEWT

FSTAXLES

FORMAT

GENNAME

HISTORY

HITCHKEY

NAXLES

PROFINST

ROLLCNTR

ROLLHT

RIGIBODY

SPEEDMPH

SPRUNGWT

STEERIN

TESTID

TRUCKSIM

WHOBLAME

Dimensions for each axle, in inches. n number

Weights of each axle assembly, in pounds. n number

The number of the first axle on the units in a
multiple vehicle combination. n number

Fortran FORMAT statement to be used to read
data in ERD file when KEYNUM = 5.
(ex: (4F10.4))

Generic names for variables, used for
labelling Y axis when several variables
are plotted on the same axis (ex: Position) Nchan ch&32

Additional information about the history
of the ERD file. This keyword can be used
repeatedly to add information if the data
is modified by post-processing 1 char*80

Codes that give the hitch types for a vehicle
simulation n number

Total number of axles in a vehicle. 1 number

Name of profilometer instrument used to
measure data 1 char*32

Heights of roll centers above ground, in inches. n number

Vertical distances between the roll centers of
each axle and the c.g. of the corresponding
sprung mass. The units are inches. n number

Name of rigid body associated with each
variable (e.g., Axle 2, Tractor, ...) Nc han chaP32

Speed associated with data, in mile/hr. 1 number

Weights of sprung masses, in pounds. n number

Name of steering input to vehicle
(e.g., trap steer) . 1 chaP32

Number used to identify a test. 1 number

Name of the simulation model. 1 cha+32

Person to contact with questions about the data. 1

Table 2. Summary of Keywords Recognized by the Toolbox - continued

Keyword
Name

No. of Variable
Values T P ~

XLABEL Name of independent variable in ERD file
(e.g., time) . 1 char*32

XSTART Starting value of independent variable. At
each sample i, the X value is:
X = (i-1) * STEP + XSTART 1 number

XUNITS Units of independent variable (e.g., sec). 1 ch&8

Binary data are not readable by humans. When viewed with a text editor, binary data
will be unintelligible. It is always necessary to have a program read the binary data into
an array in memory, and then display the data by printing or plotting.

Different computers use different methods to represent numbers in binary form.
Different software packages on the same computer may use incompatible representations
for storing floating point numbers. However, all computers can read numbers when they
are written out in text form. For purposes of transportability, the data portion of an ERD
file can also be written in text form. Because there are many ways of writing the text, the
header should include the optional FORMAT statement specifying how the text is written.

The text format is necessary for transporting data in ERD files between different
computers. It is also convenient when numbers are typed in manually, or when numbers
are to be edited using a text editor; however, there are penalties for using text
representations of numbers. First and foremost, the computer must work hard to translate
the text numbers into binary form. On MTS, the cost of reading a large file is ten times
greater for number; in text form rather than binary. On smaller computers such as the
IBM PC, it will take about 10 times longer to read a file. A second penalty is that text files
take up much more space than binary files. To obtain the full precision of floating-point
numbers in Fortran programs requires 4 bytes / number in binary, and 13 bytes / number as
text. On microcomputers with floppy disk drives, disk space can be a serious limitation.
Binary files can be three times longer than text files.

3. TAPES

When ERD files are large or numerous, they can be kept on 9-track reel-to-reel tapes. The
ERD file structure was designed originally for tape files. When used at The University of
Michigan computer system (MTS), the storage of ERD files on tape is very efficient in
terms of space and cost,

3.1 Initialization

Tape Initialization for Use at MTS

For tapes that will be used on MTS, the following initialization parameters are
recommended:

Type: 9-track tapes
Density: 6250 BPI
Labelled: Yes
Blocking: Format U (unblocked), Size (max) = 32766

The data format used in the ERD files should be binary (integer or real, as appropriate).

Tape Initialization for Transporting Data Between Computer Installations

When tapes will be sent to, or received from, other institutes, a person from the other
installation should be consulted about the initialization settings. The following settings are
suggested:

Type: 9-track tapes
Density: 1600 BPI
Labelled: No
Parity: Odd
Blocking: Format FB (fixed block size)
Text: EBCDIC

The data format should be text, typically using FORMAT = (nG13.6) where n is a function
of the number of channels. The record size must be large enough to hold the longest line
from the header, which will be either 80 characters or [8 + 32 x nchan], whichever is
larger. The block size should be the largest integer multiple of the record size less than
32767. (Most of the tape length is actually used in the marks separating the blocks. Thus
minimizing the number of blocks allows more files to be stored on the tape.) Usually the
data section of the file should use a format so that each record holds 2 or 3 scans (samples
of all channels) on each line. (The number of scans / line is specified by parameters in the
header.)

3.2 Disk Directory

A disk directory is a disk file that contains all of the header information for some (or all) of
the ERD fdes on a tape.

Applications

From the experience so far, the disk directories have proven to be almost essential for
automated processing, and so convenient for interactive processing that they might almost
be viewed as essential when dealing with ERD files on tape. There are several reasons that
a directory should be created and updated as files are added to a tape.

First, it can be used to update the header information for the tape files. In case some of
the labels typed in by a test operator are misspelled, for example, the correct spellings from
the directory file would be used in making plots. As another example, the number of
samples might not be known when the tape is generated. When the number is discovered,
the directory file can be conveniently updated. Often, as the data processing in a project
continues, the directories are edited for the purposes of changing units, adding offsets, or
standardizing names.

The second reason is that it offers a standard method for automating the processing of
selected data on tape. A number of programs exist that use a disk directory to determine
which files on a tape are to be processed in a given run, It is very simple to create several
directories for the same tape, each containing references to specific subsets of the total
number of files on the tape. When the processing program is run, only those files listed in
the directory are processed.

A third reason for using a disk-based directory is for improved speed when accessing
the tape files. This takes an added importance when processing data interactively, such as
when plotting data from ERD files. When the name of a file on tape is specified, the
computer normally searches forward for that name to the end of the tape, then rewinds the

tape, and then continues the search from the beginning of the tape to the original position.
If the specified file is the next one on tape, this is quite rapid But if the specified file is the
previous one, then the whole tape must be searched. When a disk directory is used, the
tape is always positioned directly to the file of interest. And in the case of the ERD plotter,
the common error of naming a file that doesn't exist is immediately detected and can be
corrected.

The format of the disk directory is quite simple, and is shown in Table 3. The header
from each tape file is echoed exactly, line-by-line. Each header is written in a sector of
lines within the disk file. All sectors are allotted a constant number of lines, which should
be greater than needed for any of the files. The first line in a sector gives the number of the
file on the tape and the name of the files on the tape. The next (8+Nxlines) lines echo the
header portion of the tape file, It is this information that can be updated as needed. The
organization of the directory file is specified by the first three lines in the files, which give
the name of the tape, the number of sectors, and the number of lines in each sector. The
first line of the file should begin with the (exact) characters, "LONGDIR," so that data
processing programs can recognize the file as having this format.

A utility program exists that will create a disk directory that references only selected
files on the 9-track tape. It is described in Section 6.

Table 3. Summary of Records in Disk Directory

Sector Line (s) Description

1 "LONGDIR" followed by tape name. (Note: Quotes should not be
entered in the directory file. The tape name can be copied from line 2
of a *labelsniff file, and should include the phrase "Val=".)

2 NS = no. of sectors in directory (integer)
3 NL = no. of lines in each sector (integer)

1 4 Number of file on tape and name of file on tape (lX, 14, lX, A20).
(ex: 8 MINN.23.50 ... this is the 8th file on the tape, and it is
named MINN.23.50)

5 ERDFTLEVl .OO
6 to
3 + NL Rest of header for some tape file. (ex: line 6 => Title for 8th tape

file ...)

2 4 + NL Number of another fde on tape and its name
5 + NL ERDmLEV1.00 (Start of header info for next tape file)
3 + 2 NL Last line available for header info

NS 4 + (N S - l) * N L
Number and name for last tape file

3 + NL NS
last line of directory file

4. THE ERD PLOTTER

The ERD Plotter is a program on MTS (The University of Michigan computer system)
that is used to plot data contained in ERD files. The program is designed to simplify
plotting by handling many of the formatting, scaling, labeling, and file-handling details that
would otherwise be performed manually or with quick-and-dirty programs written for
some task at hand. The plotter is written in Fortran 77 and can be transported to other
computer systems. However, some of the code must be modified to replace primitive
graphics routines used on MTS (position the pen, draw a line, etc.) with equivalents for the
other computer system. This section contains many details specific to the program as it
runs in the MTS environment.

The ERD Plotter, called ERDP, can handle:

Line plots

Scatter plots

Cross plots

Time histories

Multiple data sets (on the same axes)

Log~linear axes

Grids

Several axes layouts

Numerous scaling options, ranging from manual to several fully automatic scaling
methods.

Figures 2 through 4 show plots made with ERDP. The plotter has the additional features:

"User-friendly" when used interactively

Convenient access to files on disk and tape, including random-access to MTS tape
files

Filtering of signals (low-pass, high-pass, band-pass)

Offsetting of signals to separate repeat runs

Automatic labelling of data sets and axes when several data sets are plotted on the
same axes.

Automated processing to provide one or more predefined plots for each ERD file

When several data sets are plotted on the same axes, the different data sets can come from
the same file or different files, which can be on any mixture of tapes and MTS disk files.

Since the ERD files contain all of the relevant information about the data (names of
channels, units, and other categorized information such as test ID number and speed), very

Colo-min
Col o-max

APL (mixed speeds) - m/km

IRI (1/4 cur index)

This plot shows summary data in a scatter plot The ERD fde contained all of
the summary values, with each "channel" in the file corresponding to a
different instmmenc and each "sample" corresponding to a different test site.

-bs-Mich. DOT; V = 34
-Mich. DOT; V = 51
-Ohio; V = 50
TIR Sensor; V = 50

Wavenumber - cycle/m

Test ID 20.

Figure 3

This plot shows data from 5 ERD files plotted on log axes. The scaling and
range of the x axis were set manually, while the range of the y axis was
determined automatically and the scaling was set at 1-decadeiinch. The
plotter offset the lines so that the individual plots could be distinguished more
easily. The plotter chose the "long name" for the vertical axis because all
channels had the same name. It combined several names to label the symbols,
so that each symbol would have a unique name. (The labels used there were
"instrument name" and "test speed.") The plotter chose the test ID to label
the entire figure, because all of the ERD files had the same ID in common
(and nothing else).

time - sec

RTAC 8 axle C-train Doubles (49t/ l08k GCW), conf. 2.1,
var. 1.00.

F i g u r e 4

This simple plot shows one variable from a simulation model as a function of
time. The scaling was automatic and the axes were placed out of the plotting
area. The horizontal and vertical axes were labelled with "long names"
associated with the selected channels.

little information is needed to look at plots. All that's needed for most applications is the
name of the file with the data, and an idea of what should be plotted against what.

The data to be plotted MUST be in a file that follows the ERD format.

4.1 Running the Plotter

The plotter and the supporting libraries live in the MTS account SVN1. Depending on
whether the intent is to look at plots on the screen or to obtain high-quality hard copies
(CalComp), the procedure used to run the program is modified slightly. The two
procedures are illustrated below by example. In these and other examples of MTS dialogs,
the statements that you would type at the keyboard to run the program are shown in this type
face; characters and messages from MTS are shown in this type face, and
comments are shown normally.

Procedure to Obtain CalComp Hard-Copies Only

(This can be done with any type of terminal--Graphic capabilities are not used.)

File "MYFILE.PW has been created.

MYF1LE.P is the name of the file that will store the plot data until the
CalComp has actually made the hard copies. There is nothing special about
the name of this file-use anything you want.

#sou svnl :.erdp.hc
#$DEBUG svnl:pl.erdp.o+svnl:sc.lib+svnl:pl.lib.o*plotsys

+Ready

This source file loads and runs ERDP and the associated libraries under the
control of the DEBUG system. (Debug allows you to rerun a program
while keeping default settings from the previous run. It's also ok to replace
the word DEBUG with RUN in the above line if the source file is not used
to run the program.)

DEBUG is more expensive than RUN, so if many plots are being made, it
is better to use RUN. The prompt character '+' indicates that the debug
mode is in effect.

+set 9=myfile.p
+Done

As plots are generated, they will be stored in the file attached to unit 9.
+run

ERD Plotter, by Mike Sayers, 2-25-86

How many tapes will you use? (0,1,2, def-0)

Run the ERDP program. See section 4.2 for the next actions. Each plot is
put into the file MYF1LE.P as it is generated. Then when all of the plots
have been made, the session will conclude with ...

+User program r e t u r n .

+Ready

tmts
#r *ccqueue par=rnyf i le .p d e l i v e r y = t r i

Leave DEBUG mode, then run the MTS program *ccqueue to generate the
hard-copies from your file

#Execut ion b e g i n s

2 p l o t s ; p l o t t i n g r e q u i r e s 105 s e c . and 22 i n . ; $.I8
Pen was up 38% of t h e time.
OK?

ok
"STQ4:MYFILE.P " HAS BEEN PERMITTED "R PKEY=*CCQUEUEn.

PLOT a s s i g n e d r e c e i p t #712165, T R I

**Leave t h e PLOT f i l e INTACT th rough t h e n e x t PLOT c o l l e c t i o n t i m e .
#Execut ion t e r m i n a t e d

Because "delivery=tri," was specified, the hard-copy will be picked up in
the regular UMTRI-computer center run, and should be available at the
Xerox desk (at UMTRT) in a day or so.

Dialog to View Plots at a Terminal

(This will require that you use a Tektronix emulator, such as VersaTerm for the Mac.)

This tells MTS that you are on a graphics terminal, If you are not using
Versaterm, then enter the line: %term=T4014

#create rnyfi1e.p
F i l e "MYFILE.PW h a s been c r e a t e d .

This is optional, and is used only if you want CalComp hard copies of some
of the plots you will be viewing. MYF1LE.P is the name of the file that will
store the plot data until the CalComp has actually made the hard copies.
There is nothing special about the name of this file, so use anything you
want.

This source file loads and runs ERDP and the associated libraries under the
control of the DEBUG system. Debug is not needed unless you sometimes
make mistakes or want to make plots in one session using different formats.
It's also ok to replace the word DEBUG with RUN in the above line and
type it directly (instead of using the source file).

DEBUG is more expensive than RUN, so if many plots are being made, it
is better to use RUN. The prompt "+" indicates that the debug mode is in
effect.

+run
ERD P l o t t e r , by Mike S a y e r s , 2-25-86
How many t a p e s w i l l you u s e ? { 0 , 1 , 2 , def=O}

Run the ERDP program. See the Instructions for Use (below) for the next
actions. Each plot will be shown on the screen as it is completed. If you
happen to be "stacking" plots, to conserve Calcomp paper in the hard-copy,
remember that each "stack" is considered by MTS to be a single graphic
image. Nothing will appear on the screen until the stack is completed. For
example, if the stacking results in five plots being stacked on top of each
other, nothing will appear on the screen until the fifth one is completed.

u picture is shown on screen M

Blow-up, Redraw, P l o t , o r Con t inue?

MTS takes control whenever graphics are shown on the screen. Answer P
(or plot) to add this image to the plot file. If you didn't specify a file
(9= ...), then MTS will give an error message (no harm done, though) and
ask for the name of the file. If this happens, enter myfi1e.p (or whatever
name you used). Enter C (or continue) to resume with the ERDP program.

4.2 Instructions for Use

After you have gotten to the point of typing RUN, you are using the ERD Plotter (ERDP),
together with the MTS debug mode. If you quit the plotter, and are still in the debug
mode, and you can restart by typing RUN. Most default values left from the previous run
will still be valid.

When running the plotter, there are usually three levels of control. First, the program is
told whether or not tapes are being used. If tapes are being used, then their names are
entered, along with the names of the disk directories associated with each tape. This
information is required only once in a debug session, At the second level of control, the
plotting format is given. All plots made in one run will follow the same rules regarding
scaling, size, and so forth. The various options in the setup basically customize the plotter
for the task at hand. After the plot format has been specified, you are in the third level of
control, involving the selection of data to be plotted. Further entries are usually limited to
the names of the files containing data and the channels of interest in each file.

The second and third levels of control can be automated by the use of plotting
templates, so that only the names of the ERD files are needed. Complete automation is
allowed if the ERD files are on a tape: all files listed in the the directory can be processed
with one command

Conventions for User Input

When running the ERDP program, there is a certain convention for controlling the
program.

All entries are of the question/answer type. ERDP will always ask a question, and
provide a default answer that can be accepted by hitting the return key. (One
exception: there is no default for the first ERD file name.)

When file names are requested, ERDP will always check to see if the file exists and
repeat the question if the file could not be found.

Entering Ctrl-C for a file name has the same effect as cancelling that option. For
example, when ERDP asks for a template file name, entering Ctrl-C will indicate
that no template file will be used.

When numbers are requested, spaces are ignored and decimal points are not needed
if the number does not have a fractional part.

When several numbers are to be entered on the same line, then entering only one
number and then hitting the return key' is the same as entering that number followed
by zeros for the following numbers. (If the following numbers are not intended to
be zero, then several numbers should be entered, separated by commas.) (Just
hitting Return has the effect of accepting all of the default numerical values.)

When numbers are entered, default values of some entries can be accepted by using
commas to hold the place. For example, if two numbers are requested, the
response ",3" will cause the default value of the first number to be retained, while
replacing the second number with the value 3.

Specibing Tapes and Directories

The following instructions are separated into three sections, covering the three levels of
control. In these and other examples of MTS dialogs, the statements that you would type at
the keyboard to run the program are shown in this type face; characters and messages
from MTS are shown i n t h i s type face, andcomments are shown normally. When
a blank line is entered, by just hitting the Return key, this action is shown (as G< Return),),
to indicate that the computer paused until an entry was made.

ERDP is presently set up to handle ERD files from up to two tapes, in addition to ERD
ffles stored on disk. It is recommended that a disk directory be generated for each tape, to
speed up the time needed to find the file on tape. Also, there is better error checking when
a disk directory is used. (Instructions for making a disk directory file are included in the
ERD File documentation.) If tapes are not being used, then this first step is completed by

entering 0 when asked for the number of tapes. The following example shows how the
program would be used with a single tape mounted.

#mount c8116j 9tp 't* vol=prof9 'prof9'

#c8ll6j 9tp *t* vol=prof9 'prof9'

#*T* (C8116J) : Mounted on T904

This is the minimum effort needed to mount a labelled tape. The rack
number is the number at the top of the receipt for the tape (a computer card),
and in this case it is C8116J. It is to be mounted on a 9-track drive (gtp),
the pseudo-device name is *T*, the volume name is 'profl', and the tape ID
is also 'prof9'. Other pseudo-device names can be used instead of *T*,
such as *TI*, *ERD*, or whatever.

#sou svnl :.erdp
#$debug svnl:pl.erdp.otsvnl:sc.lib.otsvnl:pl.lib.ot*IGt*PLOTSYS

Note that this command included *ig*, meaning that all plots will be shown
on the screen. Therefore, the terminal must be capable of supporting
Tektronix graphics. An output file (9= ...) was not specified in this
example.

trun

ERD Plotter, by Mike Sayers, 2-25-86

How many tapes will you use? {0,1,2 def=O} 1

If we had answered 0 or just hit Return (for the default), there would be no
more questions related to tapes.

Pseudo-device name for Drive #1 {def=*T* } ((Return))

The tape is in fact named *T*, indicated as the default, so only a Return was
needed.

Disk file with Tape header lines {def=NO DIRECTORY) stq3:pulse2.disk

This file had been created earlier. If a disk directory file does not exist for
this tape, then just a Return would be used. The volume name for the tape
is in the disk directory file. If a disk directory is not used, then ERDP will
ask for the volume name of the tape.

For automated processing, enter name of
template file: idef=*NO TEMPLATE*) ((Return))

If this option were to be used, all setup information and channel names
would be obtained from the template.

Do you want every channel in every file listed in STQ3:PULSE2.DISK

to be plotted automatically? {y or n, def=n) <(Return))

This option is only available when one tape is mounted and a disk directory
file is available. In this example, the default (no) is selected. If this option
were to be selected, then every file listed in the directory would be
processed. If no template were in effect, then every channel would be
plotted from every file.

Specifying the Plotting Format

Once the tape information is provided, ERDP determines how the data in the ERD files
will be plotted. There are two ways to provide this information. One is to give the name of
an existing setup file. The other is to enter *source* or CTRL-C as the file name, which
will cause ERDP to get the information it needs through questions and answers. As
features are added to ERDP, the exact sequence of the questions asked in this stage may
change. When the setup has been specified, the answers are stored in a file for future use.
The default file name is a temporary file, so if the setting will be used again a permanent file
name should be entered at that point.

The following is a continuation of the example ERDP session initiated above.

Name of setup file (with plotting format info) : (def=*SOURCE*)

((Return))
Set size of plot with Window size, Tick interval, or Plot parameters.

Specify Window, Ticks, or Plot {w, t, or p: def=w) aReturn,)

Accept the default, to control the plot scaling by specifying the size of the
plotting area. If T had been selected, then we would specify scale factors in

' follow-up questions. If P had been selected, then we would enter the nine
RANGE array values and the five KEY array values that are used in the
PLOT subroutine. This is how scaling options can be specified that are not
offered below. (For example, if you want to have auto-scaling on one axis
and fixed scaling on the other, it must be done by specifying the RANGE
array elements as described in the PLOT documentation.)

Size of plotting window in inches: (XI Y: def-5.5, 3.5)5.,3.

Log/Linear Scaling? O=Lin X, Lin Y, l=Lin XI Log Y,
2=Log X, Lin Y, 3=Log X, Log Y.

Your choice? {O - 3, def=O} aReturn),

Axis Style? l=simple axes. 2-axestplain box

3=axes+box with tick 4-axestgrid

-l=axes through origin -4=axes through origintgrid

O=no axes

Your choice : [def-l} (<Return),

Scaling options:l = auto-scaling #1 (best looking)

2 = auto-scaling # 2 (maximum magnification)

3 = a u t o - s c a l i n g #3 (always i n c l u d e 0 i n y a x i s)
4 = manual s c a l i n g #1 (s p e c i f y now f o r a l l p l o t s)
5 = manual s c a l i n g #2 (s p e c i f y l a t e r f o r each p l o t)

Your c h o i c e : (d e f = l } <(Return)#

Do you want t o be a b l e t o zoom? { y o r n, de f=n} return)^

When channel 0 is used for the x axis, ERDP will ask for the range to be
plotted if the zoom option was indicated. ERDP will not ask for a plotting
range for cross plots involving any choice other than channel 0 for the
source of x values, even if zooming is requested here.

S c a t t e r p l o t s o r l i n e p l o t s ? (s o r 1, d e f - l } <<Return)#

F i l t e r s i g n a l s ? 1 = High-Pass 2 = Lo-Pass 3 = Band-Pass
0 = none 4 = Decide l a t e r

Your c h o i c e : {def-0 } <<Return,#

The option to filter the signals is not available when scatter plots are
selected.

P l o t m u l t i p l e o r s i n g l e d a t a s e t s ? I m o r s , d e f = s } m

Space m u l t i p l e p l o t s v e r t i c a l l y ' by c o n s t a n t o f f s e t : {def=O .) <<Return,,

The option to offset the signals is not available when scatter plots are
selected or when single data sets are selected. If log scaling had been
selected for the y axis, then a ratio would be requested here instead of an
offset.

I n d i v i d u a l d a t a sets can be i d e n t i f i e d a u t o m a t i c a l l y based on t h e c r i t e r i a :
1 - R i g i d body name
2 - Ins t rument name

3 - Speed
4 - T e s t I D number
5 - F i l e t i t l e (t r u n c a t e d t o 32 c h a r a c t e r s)
6 - Channel name (s h o r t)
7 - F i l e name
8 - Manual e n t r y (o n l y i f a l l e l s e f a i l s)

0 - No l a b e l l i n g

You can s e l e c t any combination, o r 0 (No l a b e l l i n g) .
The c r i t e r i a have p r i o r i t y based on t h e o r d e r
t h a t t h e y a r e e n t e r e d . Which? {def = 1, 2, 3, 4 , 5 , 6 , 7 , 8, 1
2,314,518

When multiple data sets are plotted on the same axis, ERDP can usually
identify the individual data sets and come up with an appropriate plot title.
The ERD files can contain a number of labels. ERDP looks for a type of
label that is unique for each data set, to identify the individual data sets. To
label the entire plot, it looks for a type of label that all of the data sets have
in common. Generally, some choices will be preferable to others for
reasons outside of the scope of ERDP, so this input allows the user to set
priorities and indicate to the ERDP program which choices are preferred.
ERDP will not even consider using a label unless it is allowed here. When
several choices are valid, such as 2,3,4,5, and 8 in this example, the one
listed first (2 in this case) will be used. If the first choice is not valid, the
the second choice will be used if it is valid. If none of the choices are valid
by themselves, then combinations are tried. If the combinations don't
work, and if manual entry (number 8 above) is allowed, then you will be
prompted for the needed label.

The labels are all taken from the ERD file. The rigid-body name, the
instrument name, the test ID, and the test speed are all optional keywords in
the ERD file, while the other names are guaranteed to be available. If any of
the files containing data do not use some of these keywords, then the
associated labels will not be used by ERDP even if they were selected first
in this setup.

In this example, individual data sets will be identified only by instrument
name (item 2) if possible. If some of the data sets have the same instrument
name, then speed (3) will be tried. Labels related to the rigid-body names,
the channel names, and the file names will never be used.

These labelling options are not offered when sihgle data sets are selected.

As ERD files are used in more applications, we can expect that the number
of keywords and labelling options will grow. Therefore, the number of
options in the current ERDP program may not match the example here. The
same logic should apply.

***DONE! ! Save s e t t i n g s i n f i l e : {def=-SETUP) set.demo

In this demo, we saved the settings to the file "set.demo." The next time the
plotter is run, we can enter this file name to avoid the preceding questions.

Specifying the Data to Plot

After the tape names (if any) are entered and the plotting format is determined, you
make plots by specifying an ERD file and the channel(s) of interest. The input required
here depends partly on the files themselves, and partly on the plotting format that is in
effect. As a minimum, you must specify the name of the ERD file containing each data set
that will be used to create plots. Additional information may also be needed.

ERDP always generates an additional channel (identified as 0) based on the specified
step parameter from the ERD file. If the file contains time histories, then channel 0 contains
the assumed time corresponding to each sample. If the file contains PSDs, then channel 0
contains assumed frequencies. Channel 0 may not always be relevant, but it is always
created. If there is only one channel, the only choice for plotting is channel 1 vs. channel
0, and ERDP will go ahead and use those channels without bothering you to confirm the
obvious. More commonly, the file will contain more than one data channel, and you must
indicate which two channels are used for the x and y axes. The most common choice for
the x axis will be channel 0, and even when it is not, the same channel will often be used
for the x axis in repeated plots. Therefore, ERDP asks for the Y channel first, so that the X
channel does not have to be reentered every time.

P lease spec i fy t h e ERD f i l e conta in ing t h e da t a .
Drives: 0 => Disk on STQ4, 1 => Tape PROF9
CTRL-C => no more da t a , N=next f i l e on t ape

File Name f o r Data Set #1: {def=l:l:I-01-0561 N

ERDP assigns a drive number to each tape that was described when the
program was started. Number 0 is always the disk drive for the MTS
account that you signed on foi the current session. This example session
was done from the account STQ4, and this is indicated in the above
message. Number 1 is the tape that was mounted earlier. If a second tape
had been mounted, then the above message would show that 2 => tape2.
ERDP always shows the name of the file that will be used as a default if a
drive number is not explicitly given for the next file. When entering file
names, the drive can always be specified by adding a prefix of two
characters to the file name: the drive number and the colon character. In the
above dialog, the name of the first file on drive #1 is known from the
directory. Files can be specified in many ways, as summarized below:

DISK FILES - consider an MTS disk file called er. 1. If it is on the current sign-
on account (STQ4 in this example), it can be called 0:erd. 1 or STQ4:erd. 1.
If the previous file read by ERDP was from disk, then the drive number is
not necessary and the name er. 1 can be used. However, if the previous file
was on tape, then that tape would be searched for the file er.1, probably
without success. Files on disk that are under different accounts must
always include the account name as a prefix. For example, ST6U:er. 1 is a
different file than 0:er. 1 in this case. (Note that only files that are properly
permitted from other accounts can be accessed.)

TAPE FILES - Only files that are on a tape that was "installed" when ERDP was
started can be used. If the default drive is the one containing the tape of
interest, then the name of the file can be used by itself. Otherwise, the drive
number must be included so that the correct drive will be searched. A file
on tape can be identified either by its name (e.g., 1-0 1-0 5 6) or by a number
(e.g., the 1 lth file on the tape). If the number is known, it can be entered
as *n* (e.g., *1 I*), where the two stars are needed to indicate that we are
talking about a file number, and not the name of a file which is a number

(e.g., the entry 11 would cause ERDP to search for a file named "1 1").
One other option exists, which is to get the next file on the tape. This is
done by entering n or N as the name of a tape file. If the entry has more
than one character, this will not work. For example, the entry l:n would
cause ERDP to get the file on drive #1 immediately following the file that
was most recently accessed on that tape, while the entry 1:next would cause
ERDP to search the tape on drive 1 for a file named "next."

If there is a disk directory for the tape, the directory is searched for the file
name. If it is found in the directory, there may be a pause as the actual tape
is rewound or fast-forwarded to the proper position. If the name was not
found in the directory, ERDP quickly gives a diagnostic message and asks
again. It is much safer to use a disk directory, because if an invalid name is
entered, the problem is quickly detected and no errors will occur. If an
invalid tape name is entered and there is no disk directory, then the entire
tape will be searched (taking several minutes sometimes), and possibly a file
will be read anyway. When there is a disk directory, the "n" (next) name
will get the next file listed in the directory, which in some cases will not be
the next file on the actual tape.

In this example, the next file on tape was indicated.

10/16/85 12:55:12 A-DOLLY PULSE L 90DEG RUN= 5

This file contains 390 points.

If ERDP successfully opens the file, it prints the title and the number of data
points so that you have some check that the file you named is in fact the one
that you are interested in.

There are 14 channels. Enter "? " to see names, CTRL-C to cancel

Enter Y, X channels {def = 1 - V , 0 - T I M E I: 7

If the ERD file contains only a few channels, ERDP will show their names.
Otherwise, you have to enter a ? to get a list of the names. Usually, you
know the names and won't need this list every time. In this example, a ?
was entered to get the following list.

File contains these data channels:

1 V {VELOCITY - MPH
2 STEER {STEERING WHEEL ANGLE - DEG
3 AYCAB {CAB LATERAL ACCEL - G'S
4 YAWCA {YAW RATE OF CAB - DEG/S
5 AAl {ANGLE BETWEEN CAB AND SEMI - DEG
6 AA2 {ANGLE BETWEEN DOLLY + PUP - DEG
7 AA3 {ANGLE BETWEEN SEMI + DOLLY - DEG
8 YAWPU {PUP TRAILER YAW RATE - DEG/S
9 AYPUP {PUP TRAILER LATERAL ACCEL - G'S

10 ROLAN {PUP TRAILER ROLL ANGLE - DEG
11 FXA {Longitudinal Hitch Force - lbs

12 FYA { L a t e r a l Hitch Force - l b s
13 FZA { V e r t i c a l Hitch Force - l b s
1 4 MZA {Hitch Yaw Moment - in - lbs

Enter Y, X channels {def = 1 - V , 0 - T I M E } : aal

Channels can be identified by either name or number. A comma is used to
separate the name/number of the channel used for the y axis from the
namelnumber of the channel used for the x axis. The names used to identlfy
the channels are either the short names taken from the ERD file or else
channel numbers. (The short names are the ones shown immediately after
the number when ERP prints a summary.) In this example, it is the 5th
channel that is called "AA1." If only one channel is listed, as in this
example, then the x channel is set as 0. We could have also entered aal ,
time or 5, or 5,O or aal , 0 or 5, time for the same effect. ERDP removes any
leading spaces, including leading spaces following the comma, and is not
sensitive to upper/lower case.

P lease s p e c i f y t h e ERD f i l e conta in ing t h e d a t a .

Drives: 0 => Disk on STQ4, 1 => Tape PROF9

CTRL-C => no more da t a , N-next f i l e on t ape

F i l e Name f o r Data Se t #2: {def=l:l :I-01-057) aa2
* * * That name i s not i n t h e d i s k d i r e c t o r y .
F i l e name f o r da t a s e t # 2 : (def-1:I-01-057) return,)

Oops! Jumped the gun and entered a channel name instead of a file name,
resulting in the error message. No problem. The file previously selected is
now the default, which was accepted by hitting Return on the second try.

10/16/85 12:55:12 A-DOLLY PULSE L 90DEG RUN= 5

This f i l e conta ins 390 p o i n t s .
There a r e 1 4 channels . Enter "?" t o s e e names, CTRL-C t o cance l
Enter Y, X channels {def = 2 - STEER , 0 - TIME 1 : aa2

P lease s p e c i f y t h e ERD f i l e conta in ing t h e d a t a .

Drives: 0 => Disk on STQ4, 1 => Tape PROF9

CTRL-C => no more da t a , N=next f i l e on t ape

F i l e Name f o r Data Se t #3: (def=l:I-01-0571 \

We only wanted to plot two channels in this example, so CTRL-C was
entered to indicate that ERDP should get on with it. The name EndofFile
will have the same effect, and can be used when ERDP is run in batch
mode.

cc picture is shown on screen >>

Blow-up, Redraw, P l o t , o r Continue? C

P l e a s e s p e c i f y t h e ERD f i l e c o n t a i n i n g t h e . d a t a .

Dr ives : 0 => Disk on STQ4, 1 => Tape PROF9

CTRL-C => no more d a t a , N=next f i l e on t a p e

F i l e Name f o r Data S e t #1: {def=l : I -01-057) \

+User program r e t u r n .

+Ready

A CTRL-C was entered, Since no files have been opened for this plot,
ERDP takes this to mean that we are through, and returns control to
DEBUG. We could start again, possibly to use a different plot format.

Instead, we quit the DEBUG system and returned to MTS.

4.3 Files Used by the Plotter

ERD Files

The plotter will'only read data from ERD files. ERDP will read the data in three forms:
binary integer*2, binary real*4 (single-precision floating point), .and formatted text. ERDP
has some error checking to detect inconsistencies between the data as stored and how it is
supposed to be stored. If there are fewer records in the file than indicated in the header, the
program will go ahead and proceed normally, But if the number of bytes in a binary record
does not match the number that should be there, it will refuse to process the file and will
print an error message. If there is not enough memory to read an entire file, ERDP will
print a message indicating how much of the file was read.

It makes use of all of the standard header information (gains, offsets, labels) and some
of the additional label information. It presently recognizes the additional keywords of
GENNAME, XLABEL, XUNITS, SPEEDMPH, RIGIBODY, and TESTID. Other
optional lines in the ERD header are ignored.

Setup Files

The plotting format can be stored in a setup file, as described earlier in subsection 4.2.
Because the setup file has no structure to speak of, this is really the only simple way to
generate a setup file for ERDP. The easiest way to make a setup file is to run ERDP,
entering "source* or ctrl-C for the setup file. When all of the information has been
collected, the plotter will ask for a file name. Enter a name for the new file. When the
plotter asks the next question, quit the program by using the break key (Enter on a Mac).
Repeat this process as many times as needed to create the desired setup files.

The first line in the file gives the version of ERDP used to create it, so that the current
version of ERDP can recognize old setup files which are no longer valid. Setup files are so
easy to create that there will probably never be any conversion utilities written.

Tape Directory Files

The layout of the directory files is described in section 3.2. Plans are underway to
begin using a second type of directory file, and therefore the first line of a directory file
must indicate which type it is. The first eight characters of the first line must either be
LONGDIR or SHORTDIR, or else ERDP will not open the file. (The type LONGDIR
includes header information for each file, while the type SHORTDIR includes only the file
names and the positions of those files on tape.) In addition, the first line must also include
the string "Volume=", which ERDP uses to find the volume name of the tape.

Template Files

Templates can be used to automate plotting. The template is used to by-pass the normal
control dealing with setup files and channel names. Instead, the template customizes the
plotter so that only file names are needed. When processing a tape, the entire tape can be
processed automatically using a template.

The template file structure is shown in Table 4. The plotter reads the channel names
from the template file as if they were types from the keyboard. Therefore, leading spaces
and upperflower case type are ignored. When only a single channel is listed, the assumed x
channel is channel 0.

Template files can be concatenated when running ERDP. This means that when the
plotter asks for a file name, you can enter something like

and the plotter will produce plots for all of the templates from the three files. After reading
the last line in a template file, ERDP tries to read the next line. If it does not encounter an
end-of-file, then it checks to see if the line is the first line of a new template file. If it is, it
adds the new plot structures to those that have already been read.

If an ERD file does not contain the channel names listed in a template, that channel pair
is skipped and processing continues with other channels in the same plot. Therefore, a
single template can be used for many types of ERD files. For example, a template that
plots every axle trajectory for a doubles combination would also work without error for a
tractor-semitrailer combination. If none of the channels listed for a plot structure are found
in the ERD file, then the plot is skipped and processing continues.

Programming Details -Subroutines Used in ERDP

The ERDP program uses a number of special subroutines, contained in several
libraries, which were all named in the example run commands shown earlier in section 4.2.
The plotting subroutines and the "user-friendly" input routines are contained in the library
svnl:pl.lib.o, which is documented elsewhere. The routines specific to the plotter (and
contained in the file svn1:pl.erdp.o) are described below. Most of the routines in the
toolbox, described in section 5.2, were written after the plotter and are not used. The few
exceptions are also listed below.

Table 4. Layout o f P l o t Template Fi les .

Line

Plot Template for ERDP, Feb 1986 - this line identifies file to ERDP
NPLOTS - Number of Plot structures in this file

Setup.File(1) - Name of file with setup data for the first plot
ND(1) - Number of data sets used in the first plot

chy(1 , I) , chx(1,l) - Names of y, x channels for first data set of first
plot

chy(2,1), chx(2,l) - Names of y, x channels for second data set of
fmt plot

4 + ND(1) chy(ND(1),1), chx(ND(1),1) - Names of y, x channels for last data
set of fmt plot

5 + ND(1) Setup.File(2) - Name of file with setup data for the second plot
6 + ND(1) ND(2) - Number of data sets used in the second plot
7 + ND(1) chy(l,2), chx(l,2) - Name of channel for first data set of second plot

e

chy(NPLOTS,ND(NPLOTS)), chx(NPLOTS,ND(NPLOTS)) -
Name of y, x channels for last data set of last plot

DERIV - Takes the derivative of a signal.

GETERD - Get the name of a valid ERD file, which may be on disk or tape, and open
the file.

HILOF - Filters a signal using a moving average.

LRSLOP - Finds the slope of a signal using a least-squares-fit linear regression.

OPNSET - Get the name of a valid ERDP setup file and open it.

OPNTMP - Get the name of a valid ERDP template file and open it.

POSNTF - positions a tape and a corresponding disk directory to the beginning of
the next ERD file.

RDERD - Reads selected channels from an ERD file.

RDDIR - Get the names of tapes and ERD disk directories, open the directory files,
read the names of the ERD files from the directories, and close the
directory files.

RDSET - Read the plotting format from an ERDP setup file and close the file.

RDTMP - Read a template file (or series thereof) and close it..

READHD - Read d l of the header information from an ERD file.

UNIQUE - Count the number of unique labels in a character array.

WHICHC - Find which channel was selected from an ERD file.

5. READING AND WRITING ERD FILES

ERD files are designed to be easily read and written by simple programs written in
languages like Fortran, Basic, and Pascal. In addition, there is a toolbox of subroutines
that can be used at UMTRI to conveniently access the information in ERD files from
programs written in Fortran 77.

Examples in Fortran

The following examples illustrate how ERD files can be read and written when the toolbox
described in subsection 5.2 is not available.

The ERD Header

Use Fortran readJwrite statements with regular FORMAT statements to create the lines
of text that make up the header, treating the tape (or file) as a Fortran logical unit. For
example, the following line of code writes line #4 with gains for each channel:

WRITE (2, '(32(E13.6,","))') (GAIN (11, I = l 1 NCHAN)

Note that a comma is inserted between numbers to allow for reading the numerical data
using a program that does not use the same FORMAT.

Names of the channels and other labels are also read and written using conventional
Fortran READ and WRITE statements. For example, the following code could be used to
read the short, long, and unit names (lines 6,7, and 8 in the header) from a file attached to
unit #1:

CHARACTER"32 LONGNM (2 0)

CHARACTERk8 UNITS (20) , SHORTN (20)
a

*

READ (1, ' (20A8) ') (SHORTN (J), J=1, NCHAN)

READ (1, ' (20A32) ') (LONGNM (J), Jol, NCHAN)

READ (1, '(20A8)') (UNITNM (J), J=lr NCHAN)

Binary Data

To read and write binary data at UMTRI, it is necessary to use the MTS subroutines
READ and WRITE. For an example case of 20 channels, 2000 sample/channel, and
records sized to contain 100 time steps (scans), the code might be:

REAL XDATA(2ol2000O)

INTEGER"2 NBYTRC
INTEGER NCHAN /20/, NSCAN /loo/, N S M P /2000/

DO 10 ISTART = 1, NSAMP, NSCAN
NBYTRC = 4 * NCHAN * NSCAN

10 CALL WRITE (XDATA (1, ISTART), NBYTRC, 16384, LNUM, 2)

When using the READ and WRITE subroutines, the value 16384 sets the appropriate
"modifier bits" needed to prevent MTS from deleting blanks from the ends of lines.

6 . UTILITY PROGRAMS

There are several stand-alone programs on the SVNl account that are useful for
manipulating ERD files. All of the programs make use of subroutines that are in libraries
also stored on the SVNl account. To run any one of these programs, a run command must
be used that includes the names of all files containing subroutines that are used by the
program. To make this a little easier, each utility program can be invoked using a source
file with the command:

$SOU filename

If any additional information is needed (e.g., a file name) the programs will ask for it.

All of the source files begin with a period, so that they can be listed easily using the
MTS $filestatus command:

$f svnl:.?

.COPYERD .DIR . ERDP .ERDSUM .FP . FUNCP . SPLIT

.COPYERD - Copy selected ERD files from one tape to another and update headers.

As input, this program has a tape and a disk directory for that tape with copies of the
headers of the ERD files. As output, it uses a second tape. The output ERD files have the
data from the source tape and the header information from the disk directory. When the
information in the header of an ERD fde needs to be edited, the changes can be made in the
copy on disk, and then this program can be run to create an updated copy on tape.

.DIR - Creates a disk directory for a tape with ERD files.

As input, this program requires a tape containing ERD files and also a disk file with a list of
the files to put into the directory. (The input disk file is intended to be the output of the
MTS program "Labelsniff.) The output is a directory, as defined in Table 3.

To create the directory file,

1 Run *Labelsniff for the tape with the ERD files, routing the output into a file. Unit
O=tape, sprint=output file.

2 Edit the *Lgbelsniff file, deleting the lines corresponding to any files that should not
be included in the directory. Do not delete the first 5 lines of the file, and do not
change any of the lines in the first 6 column positions.

3 Run the utility program by typing: sou svnl:.dir

.ERDSUM - Prints a summary of the ERD files referenced in a disk directory.

.SPLIT - Splits ERD file into smaller files; converts data format from binary to text.

As input, this program has one ERD file. As output, it has one or more ERD files with the
same number of channels and the same basic information in the headers. The copies will
have the data stored either in binary form or as text, as requested by the user. The output
files will be contiguous.

ERD FILE OUTPUTS FROM THE VEHICLE SIMULATIONS
The Phase 4 and yawlroll models have recently been extended to produce ERD files

containing the time histories of the simulation variables. An ERD file includes numerical
data in the same form as a multi-channel tape recorder, and also includes a great deal of
labelling information. This document describes the labels that are used, including new
labels defined specifically for these models. It also includes some example listings from
the Phase 4 model and the yawlroll model.

The minimal ERD file contains three labels for each channel: a short name eight
characters long, a longer name containing up to 32 characters, and a name for the units that
is eight characters long. The ERD files from the simulations include an extra two labels for
each channel that are identified by the keywords GENNAME and RIGIBODY. In
addition, several keywords are used that may help describe the run in general. In the case
of the Phase 4 model, there will be from 58 to 510 data channels (where each channel
corresponds to a simulation variable). The actual number depends on the number of
sprung masses and axles in the simulated vehicle. For the yawlroll model, there will
usually be from 20 - 200 channels. When dealing with so many channels, standard naming
conventions are helpful. Most of the time, the short names will be of primary interest,
because they will be used to select channels in post-processing programs.

Compatibility Between the Phase 4 and YawlRoll Models

The Phase 4 and yawlroll models use different internal schemes to describe the vehicle
being simulated. Also, there are certain vehicle configurations that can be simulated with
one model, but not the other. For example, the Phase 4 model can simulate triples
combinations, while the yawlroll model can only handle doubles. As another example, the
yawlroll model can handle arbitrary axle layouts, while the Phase 4 program is limited a
maximum of two axles on a trailer.

Naming and labelling conventions are generally based on the yawlroll conventions.
Axles are identified by ascending number, starting with the front axle of the tractor (axle 1)
and ending with the trailing axle of the rearmost trailer. Dollies are treated as sprung
masses. Therefore, a doubles combination will have four sprung masses (tractor, 1st
'semitrailer, dolly, 2nd semitrailer). A triples combination will have six sprung masses
(tractor, 1st semitrailer, 1st dolly, 2nd semitrailer, 2"d dolly, 3d semitrailer).

Rigid-Body Names

The variables in the ERD file can be associated with the various rigid bodies that
comprise the vehicle model. In the ERD files, each channel is given a label that identifies
its associated rigid body. The rigid-body names are an extension to the ERD file format,
and are stored in an optional line that begins with the letters RIGIBODY. There are five
classes of names, each with a different naming convention.

I . Sprung Masses: Variables associated directly with a sprung mass (e.g., roll angle,
lateral acceleration) will have the RIGIBODY name for that sprung mass. At most, a
simulation can have six sprung masses, and hence six RIGIBODY names. At the least, it
will have one sprung mass. The names used are:

Sprung mass #1 (only one sprung mass). Sprung Mass
.......... (combination vehicle) Tmctor

.............. Sprung mass #2 (2 sprung masses) Sem'trailer
... (4 or more sprung masses) .]st Semitrailer

Sprung mass #3 (4 sprung masses) Dolly
(6 sprung masses) 1st Dolly

.................................... Sprung mass #4 2nd Semitrailer

Sprung mass #5 2nd Dolly

.................................... Sprung mass #6 3d Semitrailer

(This naming method does not recognize the B-train configuration which can be
simulated with the yawlroll model.)

2. Axles: Variables that describe the state of an axle (X position, Y position, roll) have
a RIGIBODY name for that axle, which is simply Axle #n. (Axle # 1 , Axle #2, ... Axle
#13)

3. Half-Axles: Most of the variables in the ERD file are associated with one side of an
axle. These variables have RIGIBODY names of either Left side, Axle #n or
Right side, Axle #n.

4. Hitches: Articulation angles and hitch forces are associated with a hitch. The names
used are Hitch 1-2, Hitch 2-3, Hitch 3-4, Hitch 4-5, and Hitch 5-6. For the first hitch,
there are two variations:

fm t hitch (only one hitch). ..Hitch
.......... (more than one hitch) Hitch 1-2

5. Input: Steer and braking input variables have the IUGIBODY name: Input.

General Names

Each channel in an ERD file can be given a general name, to aid in labelling plots of
several channels. Each name is up to 32 characters in length, and is stored on a line in the
ERD file that begins with the keyword GENNAME. The general name for a simulation
variable is the name that would be used when reference to the associated rigid body is
omitted. Examples are Lateral Acckration, Slip Angle, and Y Position. Below is a list of
all General Names currently used in the Phase 4 and yawlroll simulations.

Length Spring Deflection X Position Y Position
Z Position

Linear Velocity X Velocity Y Velocity Z Velocity

Linear Lateral Acceleration Longitudinal Acceleration

Acceleration

Angle

Angular
Velocity

Angular
Acceleration

Force

Moment

Pressure

Dimensionless

Articulm'on Angle Pitch Angle Roll Angle
Slip Angle Steer Angle Yaw Angle

Pitch Rate Roll Rate Yaw Rate
Spin Velocity

Spin Acceleration

Brake Force Load
Spring Force

Side Force

Aligning Moment Roll Moment Brake Torque
Yaw Moment

Brake Pressure

Adhesion Utilization Longitudinul Slip

Units

The names of the units are limited to eight characters. The spellings used in the ERD
files are the same as used below

Lengthft
Exceptions: leaf-spring deflection is in, curvature is 1 lft

Velocity .. frlsec

Acceleration .. g 's

Angle.. .. &g

Angular Rate .. deglsec
Exception: spin rate of wheels is radlsec

... Angular Acceleration rads**2
(Only used for wheel spin)

Force, Load .. klbs

.. Moment, Torque ft-lbs

.. Pressure.. #psi

dimensionless ... --
(i.e., long. slip, adhesion utilization)

Long Names

Each channel in the ERD file is also given a unique name that can be up to 32 characters
long. The long names are usually obtained by combining the General Name (GENNAME)
and the rigid-body name (RIGIBODY) for each channel, e.g., X Position, 1 st Semitrailer;
X Position, Axle 3; Articulation Angle, Hitch 1-2. The convention used for the long names
is not critical for most applications, since channels are typically identified using the short
names. For the half-axles, the side in the RIGIBODY name is always abbreviated as L or
R, e.g., Brake Force, L Side, Axle 10. When necessary, the word "Axle" is abbreviated
as "Ax" to stay within the 32 character length limitation. Also, the GENNAME will be
abbreviated as necessary; e.g., Longitudinal Slip, R Side, Ax 12, Long. Accel., 2nd
Semitrailer. The two input variable names are Input Steer Angle and Brake Treadle
Pressure.

Short Names

Each channel in the ERD file is given a unique name that is limited to eight characters in
length. The short names are basically abbreviated versions of the long names. As with the
long names, the naming convention is determined by which of the five RIGIBODY
categories that the variable falls within. Unless the name of a variable is very short (such
as yaw or roll), the symbol for a variable is used instead of its name.

1. Sprung Masses: Variables associated directly with a sprung mass will have a short
name that ends with two characters, #n (n is the sprung mass number), such as X cg #3 or
Ay cg #I. This leaves six characters for the general variable portion of the name.

2. Axles: Names of variables that describe the state of an axle will always end with the
number of the axle, without the # symbol. When the number has one digit, it is always
preceded by a blank space. When it has two digits, there will be a preceeding blank if it
will fit within the allowable eight character length. Therefore, a maximum of six characters
are left to describe the variable itself. The names for the position variables (X, Y, 2, and
Phi) will include either the word Axle or the shortened code Ax (e.g., X Axle 3, Phi Ax 2 ,
Phi Ax1 1, Z Axlel3).

3. HalfAxles: These names always begin with either an L or an R, followed by a
blank, to indicate the side of the axle. They also requires up to two characters at the end of
the name for the axle number, leaving a maximum of four characters to identify the
variable. When the number has one digit, it is always preceded by a blank space. When it
has two digits, there will be a preceding blank if it will fit within the allowable eight
character length (e.g., L Fz 2, R Fz 2, R Alph 5 , R Alphll.).

4. Hitches: These names will always end with three characters that indicate which
sprung masses are connected by the hitch, e.g., Art 1-2. If there is room, there will also be
a blank preceding the numbers.

5. Inputs: There are just two input variables, named Steer in and Brake in.

Additional Keywords

In addition to RlGlBODY and G ENNAME, described earlier, the following optional
keywords are included in the ERD files generated by the simulation programs.

AXLETRAKn,t,,t,, ... t, n is the number of axle track values that will follow, and is
equal to the number of axles. tl - t, are the track dimensions
for each axle, in inches.

AXLEWT n,w,,w,, ... w, n is the number of axle weight values that will follow, and is
equal to the number of axles. wl - w, are the weights of
each axle assembly, in pounds.

FSTAXLES n, il,iz,.. .in n is the number of integers that will follow, and is also equal
to the number of trailers. i, is the number of the first axle on
the second unit; i2 is the number of the first axle on the third
unit, and so on. These data provide the only way to identify
the specific sprung mass that is associated with a particular
axle. For example, a doubles combination vehicle might
have a line that reads

FSTAXLES 3 , 3 , 5 , 6

This indicates: that there are 4 sprung masses (3 trailers plus
the lead vehicle unit); that axles 1 and 2 are on the lead unit;
that axles 3 and 4 are on the fmt semitrailer; that axle 5 is on
the dolly; and that axles numbered 6 or higher are on the
second semitrailer. Dollies are counted as trailers for this
keyword, even when the ERD file is generated by the Phase
4 model.

HISTORY message message is a string of text, up to 80 characters in length, that
tells what model generated the run. It also gives the time and
date of the run.

HITCHKEYn,i,,i,, ... in n is the number of integers that will follow, and is also equal
to the number of hitches. il -in are codes, each with a value
between 1 and 6 that gives the hitch type for the associated
hitch. (1=5th wheel, 2=Inverted 5th w h e e 1,
3=Compensating 5b wheel, 4=Turntable, 5=A-dolly, 6=B-

Dolly

NAXLES n, n is the total number of axles in the vehicle being simulated.

R O L L C N T R ~ , ~ , , ~ , , ... 15, n is the number of height values that will follow, and is
equal to the number of axles. hl - h, are the heights of the
roll centers above the ground, in inches.

ROLLHT n, h,, h,, ... h, n is the number of height values that will follow, and is
equal to the number of axles. hl - h, are the vertical
distances between the roll centers of each axle and the c.g. of

the corresponding sprung mass. The units are inches. A
positive value means the c.g. of the sprung mass is above
the roll center for that axle. When the sprung mass is a
dolly, a value of 0.0 is written if the ERD file is generated by
the Phase 4 program.

SPEEDMPHv, v is the starting speed for the run, with units of milh.

SPRUNGWTn,w,,w,, ... w, n is thenumber of weights that will follow, and is equal to
the number of sprung masses. wl - w, are the weights of
each sprung mass, in pounds. When the ERD file is
generated by the Phase 4 program, weights of 0.0 are used
for any dollies.

TRUCKS IMname name is the name of the simulation model, e.g,,
Phase 4 12-85, YawlRoll12-85

XLABEL t ime The independent variable is named "time."

XUNITS sec The name for the units of time is "sec."

Channel Names from the YawIRoll Model

The following list indicates the spelling used for the short names, long names, and unit
names for most of the channels. The channel numbers are for a specific vehicle
configuration (this was a five-axle doubles combination) and will not be the same for other
configurations. (The list was obtained with the ERDP plotting program. The short name is
given first, followed by the long name and units in the curly brackets.)

Input
1 S t e e r i n {Input s t e e r angle - deg

Hitch Variables
2 Fhl 1-2
3 A r t 1-2
4 Mx 1-2
5 Mz 1-2
6 Fy 1-2
7 Fhl 2-3
8 A r t 2-3
9 Mx 2-3

10 Mz 2-3
11 Fy 2-3
1 2 Fhl 3-4
13 A r t 3-4
1 4 Mx 3-4
15 Mz 3-4
1 6 Fy 3-4

{Load, Hitch 1-2 - klbs
{Ar t i cu l a t i on Angle, Hitch 1-2 - deg
{Rol l Moment, Hitch 1-2 - i t - l b s
{Yaw Moment, Hitch 1-2 - f t - l b s
{Side Force, Hitch 1-2 - klbs
{Load, Hitch 2-3 - klbs
{Ar t i cu l a t i on Angle, Hitch 2-3 - deg
{Rol l Moment, Hitch 2-3 - f t - l b s
{Yaw Moment, Hitch 2-3 - f t - l b s
{Side Force, Hitch 2-3 - klbs
{Load, Hitch 3-4 - klbs
{Ar t i cu l a t i on Angle, Hitch 3-4 - deg
{Rol l Moment, Hitch 3-4 - f t - l b s
{Yaw Moment, Hitch 3-4 - f t - l b s
{Side Force, Hitch 3-4 - klbs

Sprung
17
18
1 9
2 0
2 1
2 2
23
2 4
25
2 6
2 7
28
2 9

Mass Variables
X cg #1 { X Pos i t ion , cg, Tractor - f t
Y cg #1 { Y Pos i t ion , cg, Tractor - f t
z cg #1
Rol l #1
Yaw #1
P i t c h #1
v cg #1
p of #1
r of #1
q of #1
Ay cg #1
S l i p #1
Rho cg# l

{ Z Pos i t i on , cg, Tractor - f t
{Rol l angle, Tractor - deg
{Yaw angle, Tractor - deg
{P i t ch angle, Tractor - deg
{ Y ve loc i t y , cg, Tractor - f t / s e c
{Rol l r a t e , Tractor - deg/sec
{Yaw r a t e , Tractor - deg/sec
{P i t ch r a t e , Tractor - deg/sec
{Lat . a c c e l . , Tractor - g ' s
{ S l i p Angle, Tractor - deg
{Curvature, Tractor - l / f t

30 X cg #2 { X Pos i t ion , cg, 1 s t Semi- t ra i l e r - f t
a

Axle Variables
6 1 ph i Ax 1 {Rol l , Axle 1 - deg
62 Z Axle 1 {Bounce, Axle 1 - f t
63 B-str 1 {Axle S t ee r angle, Axle 1 - deg
6 4 X Axle 1 { X Pos i t ion , Axle 1 - f t
65 Y Axle 1 { Y Pos i t ion , Axle 1 - f t

Half-Axle Variables
6 6 L a lph 1 { S l i p angle, L s i d e , Axle 1 - deg }
67 L Fz 1 {Load, L s i d e , Axle 1 - klbs 1
68 L Fy 1 {Side fo rce , L s i d e , Axle 1 - klbs 1
6 9 L Mz 1 {Aligning moment, L s i d e , Axle 1 - f t - l b s }
70 L F s 1 {Spring force , L s i d e , Axle 1 - klbs 1
7 1 R a lph 1 { S l i p angle, R s i de , Axle 1 - deg 1
7 2 R Fz 1 {Load, R s i d e , Axle 1 - klbs 1
73 R Fy 1 {Side fo rce , R s i d e , Axle 1 - klbs 1
7 4 R Mz 1 {Aligning moment, R s i de , Axle 1 - f t - l b s 1
75 R Fs 1 {Spring force , R s i d e , Axle 1 - klbs }
7 6 ph i Ax 2 {Rol l , Axle 2 - deg 1
77 Z Axle 2 {Bounce, Axle 2 - f t 1

Channel Names from the Phase 4 Model

The following list indicates the spelling used for the short names, long names, and unit
names for most of the channels. The channel numbers are for a specific vehicle
configuration (this was a 13-axle triples combination) and will not be the same for other

configurations. (The list was obtained with the ERDP plotting program. The short name is
given first, followed by the long name and units in the curly brackets.)

Input
1 S t e e r i n {Input S t ee r Angle - deg
2 Brake i n {Brake Treadle Pressure - p s i

Hitch Variables
3 A r t 1-2 {Ar t i cu l a t i on Angle, Hitch 1-2 - deg ' 1
4 A r t 2-3 {Ar t i cu l a t i on Angle, Hitch 2-3 - deg 1
5 A r t 3-4 {Ar t i cu l a t i on Angle, Hitch 3-4 - deg 1
6 A r t 4-5 {Ar t i cu l a t i on Angle, Hitch 4-5 - deg 1
7 A r t 5-6 {Ar t i cu l a t i on Angle, Hitch 5-6 - deg 1

Sprung Mass Variables
8 X cg #1 { X Pos i t ion , cg, Tractor - f t
9 Y cg #1 { Y Pos i t ion , cg, Tractor - f t

10 Z cg #1 { Z Pos i t ion , cg, Tractor - f t
11 Rol l #1 {Rol l Angle, Tractor - deg
1 2 Yaw #1 {Yaw Angle, Tractor - deg
13 P i t c h #1 {P i t ch Angle, Tractor - deg
1 4 u cg #1 { X Veloci ty , cg, Tractor - f t / s e c
15 v cg #1 { Y Velocity, cg, Tractor - f t / s e c
1 6 w cg #1 { Z Velocity, cg, Tractor - f t / s e c
1 7 p of #1 {Roll Rate, Tractor - deg/sec
18 r of #1 {Yaw Rate, Tractor - deg/sec
1 9 q of #1 {P i t ch Rate, Tractor - deg/sec
20 Ax cg #1 {Long. Accel . , Tractor - g ' s
2 1 Ay cg #1 {Lat . Accel . , Tractor - g ' s
2 2 S l i p #1 { S l i p Angle, Tractor - deg
23 Rho cg# l {Curvature, Tractor - l / f t

Axle Variables (single-digit axle numbers)
2 4 Z Axle 1 {Bounce, Axle 1 - f t 1
25 Phi Ax 1 {Rol l , Axle 1 - deg 1
2 6 X Axle 1 { X Pos i t ion , Axle 1 - f t 1
2 7 Y Axle 1 { Y Pos i t ion , Axle 1 - f t 1
28 Xro l l 1 {Auxi l iary Rol l Moment, Axle 1 - f t - l b s 1

Half-Axle Variables (single-digit axle numbers)
2 9 L Fz 1 {Load, L s i d e , Axle 1 - klbs 1
30 L Fx 1 {Brake Force, L s i de , Axle 1 - klbs 1
31 L Fy 1 {Side Force, L s i d e , Axle 1 - klbs 1
32 L Ux 1 {Long. Adhesion U t . , L , Ax 1 - -- 1
33 L U y 1 {La t . Adhesion U t . , L s i de , Ax 1 - -- 1
34 L Alph 1 { S l i p Angle, L s i de , Axle 1 - deg 1
35 L Mz 1 {Aligning Moment, L s i d e , Axle 1 - f t - l b s 1

36 L B / P 1
37 L B/T 1
38 L Sx 1
39 L W 1
40 L Wdot 1
4 1 L d e l 1
4 2 L Fs 1
43 L S t r 1
4 4 R Fz 1
45 R Fx 1
4 6 R Fy 1
4 7 R Ux 1
48 R Uy 1
4 9 R Alph 1
50 R Mz 1
51 R B / P 1
52 R B / T 1
53 R Sx 1
54 R W l
55 R Wdot 1
56 R d e l 1
57 R Fs 1
58 R S t r 1

{Brake Pressure , L s i d e , Axle 1 - p s i 1
{Brake Torque, L s i d e , Axle 1 - f t - l b s 1
{Longi tudinal S l i p , L s i d e , Ax 1 - -- 1
{Spin Veloci ty , L s i d e , Axle 1 - r ad / sec }
{Spin Accelera t ion, L s i d e , Ax 1 - rad/s**2 }
{Spring ~ e f l e c t i o n , L s i d e , Ax 1 - i n 1
{Spring Force, L s i d e , Axle 1 - klbs }
{S tee r Angle, L s i de , Axle 1 - deg 1
{Load, R s i d e , Axle 1 - klbs 1
{Brake Force, R s i d e , Axle 1 - klbs 1
{Side Force, R s i d e , Axle 1 - klbs 1
{Long. Adhesion U t . , R , Ax 1 - -- }
{La t . Adhesion U t . , R s i d e , Ax 1 - -- 1
{ S l i p Angle, R s i d e , Axle 1 - deg }
{Aligning Moment, R s i d e , Axle 1 - f t - l b s }
{Brake Pressure , R s i de , Axle 1 - p s i 1
{Brake Torque, R s i d e , Axle 1 - f t - l b s 1
{Longitudina'l S l i p , R s i d e , Ax 1 - -- 1
{Spin Veloci ty , R s i de , Axle 1 - r ad / sec 1
{Spin Accelera t ion, R s i d e , Ax 1 - rad/s**2 }
{Spring Def lec t ion , R s i d e , Ax 1 - i n 1
{Spring Force, R s i d e , Axle 1 - klbs }
{S tee r Angle, R s i d e , Axle 1 - deg 1

59 Z Axle 2 {Bounce, Axle 2 - f t
a

369 S l i p #6 { S l i p Angle, 3d Semi - t r a i l e r - deg 1
370 Rho cg#6 {Curvature, 3d Semi - t r a i l e r - l / f t 1

Axle Variables (double-digit axle numbers)
371 Z Axle10 {Bounce, Axle 10 - f t 1
372 Phi Ax10 {Rol l , Axle 10 - deg 1
373 X Axle10 { X Pos i t i on , Axle 10 - f t 1
374 Y Axle10 { Y Pos i t i on , Axle 10 - it 1
375 Xro l l 10 {Auxi l iary Rol l Moment, Axle 10 - f t - l b s 1

Half-Axle Variables (double-digit axle numbers)
376 L Fz 10 {Load, L s i d e , Axle 10 - klbs 1
377 L Fx 10 {Brake Force, L s i d e , Axle 10 - klbs 1
378 L Fy 10 {Side Force, L s i d e , Axle 10 - klbs 1
379 L Ux 10 {Long. Adhesion U t ., L , Ax10 - -- 1
380 L Uy 10 {Lat . Adhesion U t . , L s i d e , Ax 10 - -- 1
381 L AlphlO { S l i p Angle, L s i d e , Axle 10 - deg 1
382 L Mz 10 {Aligning Moment, L s i d e , Axle 10 - f t - l b s }
383 L B / P 1 0 {Brake Pressure , L s i de , Axle 10 - p s i . 1
384 L B/T 1 0 {Brake Torque, L s i d e , Axle 1 0 - f t - l b s 1
385 L Sx 1 0 {Longi tudinal S l i p , L s i d e , Ax 10 - -- 1
386 L W 10 {Spin Veloci ty , L s i d e , Axle 1 0 - rad / sec }
387 L WdotlO {Spin Accelera t ion, L s i d e , Ax 1 0 - rad / sk*2}

L d e l 10
L F s 10
R Fz 10
R Fx 10
R Fy 10
R Ux 10
R Uy 10
R AlphlO
R Mz 10
R B / P 10
R B / T 10
R Sx 10
R W 1 0
R WdotlO
R d e l 1 0
R F s 10

Z Axle11
Phi Ax11

R d e l 13
R F s 13

{Spring Def lect ion, L s i d e , Ax 10 - i n 1
{Spring Force, L s i de , Axle 1 0 - klbs 1
{Load, R s i d e , Axle 1 0 - klbs 1
{Brake Force, R s i d e , Axle 1 0 - klbs 1
{Side Force, R s i de , Axle 10 - klbs 1
{Long. Adhesion U t . , R , Ax10 - -- I
{Lat . Adhesion U t . , R s i d e , Ax 1 0 - -- 1
{ S l i p Angle, R s i d e , Axle 10 - deg I
{Aligning Moment, R s i de , Axle 1 0 - f t - l b s)
{Brake Pressure , R s i de , Axle 1 0 - p s i 1
{Brake Torque, R s i d e , Axle 1 0 - f t - l b s 1
{Longitudinal S l i p , R s i de , Ax 1 0 - -- 1
{Spin Velocity, R s i de , Axle 1 0 - rad / sec }
{Spin Accelera t ion, R s i d e , Ax 1 0 - rad/s**2)
{Spring Def lect ion, R s i de , Ax 1 0 - i n 1
{Spring Force, R s i d e , Axle 1 0 - k lbs 1

{Bounce, Axle 11 - f t
{Roll , Axle 11 - deg

{Spring Def lect ion, R s i d e , Ax 13 - i n I
{Spring Force, R s i de , Axle 13 - klbs 1

PLOT: A PLOTTING PACKAGE FOR ENGINEERING
APPLICATIONS

PLOT is the name of a one-size-fits-all subroutine aimed at engineering applications
involving line and scatter plots using linear and log plotting scales. It generates plots using
the primitive graphics routines in the *Plotsys library at MTS. Using the PLTEND library,
the plots can be viewed immediately on Tektronix terminals (or Macs running the
Versaterm program) and they can also be plotted using an x-y plotter. This document
describes how to set the parameters passed to the PLOT subroutine to control the various
scaling and formatting options that are available. It also describes the library of plotting
subroutines that are used by PLOT.

OVERVIEW

The plotting package is designed to generate engineering plots in "final form" for use in
reports and papers, as painlessly as possible. The package consists of specialized
subroutines, which are in turn called by a single subroutine named PLOT. The idea is that
you provide the data, and PLOT does the rest. The PLOT subroutine is called from a
Fortran program, performing all of the plotting-related computations for data provided to it.
It uses some of the subroutines in the *Plotsys library, and in addition, a number of
additional library subroutines to add capabilities beyond those available in *Plotsys.

There are also two stand-alone programs that act as front-ends for PLOT, to allow
interactive use of the subroutine:

FP is for plotting data contained in text files (FP stands for File Plotter). FP was
written by Sayers in 1982f, and can be used for text files having arbitrary layout.
With this program, you type in the scaling options, labels for the axes, and the
format used in the text file. It helps to know a little about how the PLOT subroutine
works when using FP. An example FP run is included in this documentation.

ERDP will plot data from ERD files. ERDP is the second generation of the FP
program, and is much easier to use because all of the labels used for plotting are
contained in the ERD file. It was written by Sayers in 1985, and has its own
documentation.

The PLOT package produces line plots, scatter plots, and line plots with symbols to
identify the lines. The axes are rectangular and can be log or linear. Up to 30 data sets can
be plotted together, and eleven of those can be individually identified. Although full
control of the plotting parameters is allowed, the package has thorough auto-scaling
features that will usually produce the best looking plot possible. (The main reason for
using the manual scaling is to produce plots that match the scaling of other specific plots.)
Several priorities are available for the auto-scaling logic. Usually, it tries to show the data
with the greatest detail possible while making nice looking axes. Two other options are to
always include zero as a reference, or to show absolutely the maximum detail possible.

A plot can be considered to contain a few basic elements:

X axis, including tick marks and label

Y axis, including tick marks and label

Axis mode (several choices)

Title line(s)

Data

Symbol key

At the very minimum, it is necessary to provide data, a title, the axis mode, and if axes
are shown, labels for each axis. With the additional specification of size and labels for
multiple data sets, everything needed for most applications is taken care of.

At the maximum, the scaling of the axes can be specified completely to obtain ugly
plots. For even greater aesthetic atrocities, the axislgridlprinting subroutines in the
packages can be used directly.

THE PLOT SUBROUTINE

Data Structure and Specification

The data to be plotted are described by these parameters.

NDSETS Number of data sets to be plotted, (1 - 30)

NPTS(i) Number of x-y data pairs in ith data set. (i=1 ... NDSETS)
The total number of points is thus:

XYDATA(ij) XYDATA is a two-dimensional array that contains all of the
x and y values that get plotted. XYDATA(1j) = x value
for jth point, XYDATA(2,j) = y value for jth point. In
sequence,.it contains all of the x-y pairs for the first data set,
then all the pairs for the second data set, etc.

Summary of Plotting Options

The options are specified by parameters contained in three arrays: the RANGE array
which contains 9 scaling-related parameters, the KEY array, which contains 5 mode-related
parameters, and the NSYMB array, which tells how points from each data set will be
represented. The KEY and NSYMB parameters are fairly simple, and are described below.
The RANGE parameters interact, and are described in the next section, according to the
various modes available using the PLOT package.

KEY array

(1) LOG-LIN key. (O=lin-lin, l=log y, 2=log x, 3=log-log)

(2) Axis Mode Key. (O=no axes; +l=axes intersecting at lower-left comer of plotting
area; -1,-2,-3=axes going through origin; +2=axes with ticks at left and bottom,
plain lines at top and right; +3=plot area surrounded by box with tick marks,
+4=axes 'at left and bottom, full grid; -4=axes through origin, full grid)

(3) Location of Symbol Key. (O=no key is shown; l=lower-left comer of area;
2=upper-left, 3=upper-right, 4=lower right, 5=above plot area; 6=right side of plot
area; other value (< 0, > 6)=where it will fit best.

(4) Stacking option on Calcomp paper. (O=dontt stack, anything else=stack plots)

(5) Key used for semiautomatic scaling. Only applies when XMAX=XMIN or
YMAX=YMIN. O=no hassle. +=User is told max, min values and must enter
replacements. -=User is told max, min values for information only.)

NSYMB array

There is one element for each data set used. NSYMB(i) refers to the ith data set. The
data points can be shown in four different ways:

NSYMB(i) = 0 Line Plot: x-y points in ith data set are connected with
straight lines. No symbols are used to identify
individual points.

NSYMB(i) < -10000 Thick Line Plot: x-y points in ith data set are connected
with thick straight lines, with no symbols shown for
individual points. This is done by making four repeated
plots, spaced slightly so that the lines will slightly
overlap using the normal pen size.

NSYMB(i) > 0 Line Plot with Identifer: x-y points in ith data set are
connected with straight lines. An identifying symbol
(square, triangle, etc.) is used to identify every
NsYMB(i)th point.

NSYMB(i) < 0 Scatterplot: every N S Y M B (~) ~ ~ point in the ith data set
is shown by a symbol. The symbols are not connected
by lines.

RANGE array (size and scaling parameters)

(1) XMAX Max value covered by X axis. (Engineering units)
(2) XMIN Min value covered by X axis. (Engineering units)
(3) YMAX Max value covered by Y axis. (Engineering units)

(4) YMIN Min value covered by Y axis. (Engineering units)
(5) XLEN Length used to size X axis. (inches)
(6) YLEN Length used to size Y axis. (inches)
(7) XTICK Interval between major tick marks, (Engineering units)
(8) YTICK Interval between major tick marks. (Engineering units)
(9) HT Height of letters for labels. (inches)

The PLOT subroutine will swap XMAX and XMIN if needed, so the order of these
two arguments is not important. The same is true for the arguments YMAX and YMIN. If
IXLENI c 0.2, the program substitutes a value of 5.0 inches. If jYLENl < 0.2, the program
substitutes a value of 3.0 inches. (Thus, if the plot size is not specified, a default of 5" x
3" is used.) If either XLEN or YLEN is less than 1.0 inches, but greater than 0.2 inches, a
value of 1.0 inches is substituted. Thus, the minimum axis length that can be generated is
1.0 inches. If HT = 0, the program substitutes a value of 0.15 inches.

Size and Scaling Options

There are lots of ways the PLOT program can scale and size plots. The following
descriptions tell how to use XMAX, XMIN, XLEN, and XTICK to control the x axis and
plot width. Equivalent settings to control the Y axis and the plot height use the
corresponding parameters YMAX, YMIN, YLEN, and YTICK.

Completely Manual Scaling of Linear Axis.

XMAX upper plot limit (not necessarily a numbered tick mark)

XMIN lower plot limit (not necessarily a numbered tick mark)

IXLENl width of plot area if XTICK > 0 (length of axis), or distance between
major (numbered) tick marks if XTICK c 0.

IXTICKl interval between major tick marks. If this number has only one non-zero
digit, then minor tick marks are inserted also. The sign of XTICK
determines whether the axis is sized by length (XTICK > 0) or by a fixed
scale factor (XTICK < 0).

Independent Automatic Scaling of Linear Axis.

In this mode, the PLOT subroutine will control everything about the axis except size.
If the axis length is specified, an interval between tick marks will be found iteratively to get
the best detail possible. If the scale factor is specified, then the size of the axis will be
adjusted to show the entire range of the data. Auto-scaling is enabled by setting XMAX
equal to XMIN. Depending on the value chosen for XMAX and XMIN, one of three
different scaling methods will be used. Be sure that the same non-zero value is not used
for both x and y axes (that is, XMAX # YMAX), or else the auto-scaling will be linked,
rather than independent for each axis.

XMAX = XMIN = 0 or XMIN = XMAX # YMAX

= 0 the axis will begin and end at a major tick mark. For example, if
the data cover 33.2 - 36.3, the axis will probably go from 33.0
to 37.0.

> 0 the axis will begin and end at the exact min and max values.
This shows the data with maximum detail, at the expense of the
overall plot appearance. In the above example, the axis would
go from 33.2 to 36.3.

c 0 the axis will include 0.0. In the above example, the axis would
go from 0 to 35 or 40 (depending on the size of the axis).

IXLENl width of plot area if XTICK 2 0 (length of axis), or distance between
major (numbered) tick marks if XTICK c 0.

IXTICKl distance between major tick marks (same as for manual scaling) if XTICK
< 0. Not used if XTICK 2 0.

Independent Semiautomatic Scaling of Linear Axis.

In this mode, the PLOT subroutine will select an interval between major tick marks,
based on provided values of XMAX and XMTN. The upper and lower limits of the axis
will be rounded to the next major (numbered) tick mark that includes the specified XMJN
and XMAX values.

XMAX Maximum data value of interest

XMIN Minimum data value of interest

XTICK = 0

WEN1 Width of plot area (axis length)

Linked Automatic Scaling of Both Linear Axes.

In this mode, an identical scale factor is selected for both axes. This is convenient in
plotting x-y trajectories without distortion. Usually the proportion of the plot is not known
ahead of time, and some cropping will be performed in either the height or the width of the
plot.

l m N l maximum allowable width1 of plot area

lIf XMAX and YMAX are > 0, then IXLENl and IYLENl are treated as dimensions of a
rectangle (i.e., 8 x 10) that the plot must fit within. PLOT will swap IXLENl and IYLENJ if
better scaling can be obtained.

/=I maximum allowable height1 of plot area

XTICK,YTICK both must be greater than 0

Completely Manual Scaling of Log Axis.

XMAX upper plot limit (not necessarily a numbered tick mark)

XMIN lower plot limit (not necessarily a numbered tick mark)

length of log axis if XTICK 2 0. Length of one decade if XTICK
< 0.

XTICK value not used. Controls interpretation of XLEN.

Automatic Scaling of Log Axis.

There are three modes for automatically scaling a log axis. Auto-scaling is enabled by
setting XMAX equal to X m . Depending on the value chosen for XMAX and XMIN,
one of three different scaling methods will be used.

XMAX = XMIN

= 0 the axis will be scaled to capture the entire range of data. For
example, if the data cover the range of 7.6 x 10-2 to 1.4 x 102,
the axis would typically go from 5 x 10-2 to 2 x 102.

> 0 the axis will be scaled to include the maximum values in the
data, but will cover a range equal to XMAX. For the data in the
above example and a XMAX value of 1000, the axis would go
from 0.2 to 2 x 102.

< 0 the axis will be scaled to include the minimum values in the data,
but will cover a range equal to IXMAXI. For the data in the
above example and a XMAX value of - 1000, the axis would go
from 5 x 10-2 to 50.

IXLENl length of log axis if XTICK 2 0. Length of one decade if XTICK < 0.

XTICK value not used, but sign (positive/negative) controls the interpretation of
XLEN.

Text

The plotting subroutines draw text for labelling the axes and the data sets. Table 1
summarizes the ways that the display of text is determined.

Table 1. Use of text by the PLOT subroutine.

Size The size of all characters printed in the plots can be specified as HT. The
value selected for HT is taken into account by all of the auto-scaling
routines.

Positioning The.positioning of the title, the axes labels, and the axes numbers is done
by the PLOT subroutine.

Subscripts, Subscripts and superscripts are entered using the A character to move
Superscripts characters up and the - character to move them down. x2 + y2 = r2

would be specified as: xA2- + yA2- = rA2-.

Axis Numbers Numbering of an axis can be omitted by specifying a negative XLEN.

Numerical Formatting of numbers on linear and log scales is set by the PLOT
Fomt~tr subroutine. Numbers are shown conventionally for .O1 5 1x1 < 10000.

Outside of that range, they are shown in scientific notation.

Long Titles If the title provided to PLOT is too long to fit under the plot area, it will be
wrapped.

Data Labels When multiple data sets are plotted together, those plots using symbols
can be identified in a Symbol Key, using labels provided to the PLOT
subroutine.

Label Lengths Lengths of the labels are determined by the program calling PLOT. The
lengths are determined by the size of the character variables or strings
used.

Justification All labels passed as arguments should be left-justified and padded with
blanks if necessary. Trailing blanks are ignored by PLOT. Axis labels
and the title are centered; the data set labels are left-justified.

Identifying Data Sets: the Symbol Key

A symbol key is shown within the plot space to identify symbols used in plotting, and
thus to identify separate data sets. The key is used only when at least one data set uses an
identifying symbol (NSYMB(i) + 0) and when KEY(3) + 0. If a symbol key is shown, its
location is determined automatically unless KEY(3)=1,2,3,4,5, or 6. Names for the data
sets must be provided in the array DESC, which should be declared as a character array.
All character elements in an array must have the same length. Because the names of the
data sets will probably not all have the same number of characters, some of the labels will
be shorter than the array elements containing them. They should be padded with blanks to
avoid the possibility of plotting "garbage characters" that can result from undefined
variables in Fortran.

The Subroutine Call...

CALL PLOT (XYDATA, NPTS, NDSETS, NSYMB, XL, YL, TITLE, DESC, RANGE,
KEY)

The Plot subroutine has only input arguments, and it does not change any of their
values when it is called.

XYDATA real*4 array with x-y values to be plotted. The PLOT subroutine assumes
,that the variables are stored as x l ,y l , x2,y2, x3, ... (Thus it is
usually convenient to dimension the array as 2 x ntot, where ntot 2
the total number of points in all of the data sets.)

NPTS integer"4 array with number of x-y points in each data set. (dimension to at
least NDSETS)

NDSETS integer"4 number of data sets.

NSYMB integeP4 array with spacing information for symbols.

XL string X axis label.

YL string Y axis label.

TITLE string plot title.

DESC string array with labels for each data set.

RANGE real*4 array containing 9 scaling parameters.

KEY integer*4 array containing 5 mode-related parameters.

Example Fortran Program that uses PLOT

The following example program is written in Fortran 77 and generates a plot using two
data sets. The plot is shown in Figure 1. For the first data set, a symbol is shown for
every 10th point and all points are connected by a solid line (NSYMB(1) = 10); for the
second data set, a symbol is shown for every 2nd point, and no lines are shown connecting
points (NSYMB(2) = -2). The first data set is stored in the XYDATA array in elements

Wavenumber - l / f t

<
m

Example use of the PLOT subroutine

Q Baselength = 3
I " . , , I . I . 1 .

4

Figure 1

1,l.. .2,100, and the second data set is stored in elements 1,101.. .2,200. The values
selected for the R and K arrays result in complete auto-scaling and simple linear axes. Note
that the label for the X axis includes a superscript.

CHARACTER*40 XL / 'Wavenumber - l/ftl/
CHARACTER*40 YL / 'AmplitudeA2- of something1/
CHARACTER*80 TITLE / 'Example use of the PLOT subroutine1/
CHARACTERk32 DESC(2) /'Baselength = 2','Baselength = 3'/
INTEGER NPTS(2) / 100, 1001 , NSYMB(2) / 10, -2 /
INTEGER K (5) /0,1,-1,0,0/
REAL XYDATA(2,200)
REAL R(9) /0., O., O., 0. ,5., 3.5, O., 0. , . l 5 /

*
DO 10 I = 1, 100

X 1 = -1. + I / 40.
X2 = -0.7 + I / 30.
XYDATA (1, I) = X1
XYDATA(2, I) = XI * SIN(X1 * 6.28 / 2.)
XYDATA(1, I + 100) = X2
XYDATA(2, I + 100) = X2 * SIN(X2 * 6.28 / 3.)

10 CONTINUE
*

CALL PLOT(XYDATA, NPTS, 2 , NSYMB, XL, YL, TITLE, DESC, R, K)
END

THE FP PROGRAM (File Plotter)

Description

The FP program reads numerical data from a text file and passes the values to the PLOT
subroutine, which generates the graphics. The name of the file and the format used to store
the data within the file are requested when the program runs, so that it is fairly flexible and
can deal with a wide variety of file and format combinations, When specifying the file
name, any legal MTS name can be used, including line number ranges within files or
concatenation of multiple files. The FP program will read until reaching the end-of-file , or
until reaching a line in the text file that causes a read error. If a new file is not specified for
the next data set, reading will continue where the previous data set ended within the same
file. Thus, a file can be subdivided by inserting a line of non-numerical characters that will
cause reading to stop for one data set, and resume at the next line for the start of the next
data set. This method is shown in the example below. To read only a portion of a file, it is
necessary to specify the range of line numbers when entering the file name; otherwise, the
entire file will be read.

The format statement should tell how the program will read a pair of x and y values
from the file, and is the part of a Fortran format statement lying between the parentheses.
(The parentheses must also be included.) For example, the format

would tell the FP program to skip 10 spaces and read the x value, then read the y value
starting at position 50.

If the format statement includes a specifier for only one variable, then FP will only read
y values, and will calculate the x values based on the min and max values specified for the
x axis. For example, the format (G13.6) would be interpreted by FP to mean that only the
y values are to be read.

It is not necessary that the x value precede the y value if they both appear on the same
line in the text file (the tab feature in Fortran can be used if the x variable appears on the line
after the y variable, e.g., (T40,F10.2,T20,F10.2)). Nor is it necessary that the x and y
values be stored on the same lines. However, the file is always read from top to bottom,
and the format statement has no provisions for rewinding. The format statement can be
used to skip lines, in case a file has many points and not all are to be plotted.

Example Session

An example session follows that illustrates use of the FP program. In this example
dialog, the statements that you would type at the keyboard to run the program are shown in this
typeface; c h a r a c t e r s and messages from MTS a r e shown i n t h i s type face, and
comments are shown noqnally. In many cases, a default value is accepted by pressing the
Return key. These responses are indicated as <<Return>).

3.,220.

6.,140.
11.,190.

CCCCCCCCCCCCCCCCCCCCC

4.,90.

9.,100.

lO.,EO.
15.,4.

The two files containing data are called fp. 1 and fp.2 in this example. They
are listed to show the numbers that will be plotted. Note that line 4 in the
file fp.2 will cause a read error, so that only the first 3 lines will be read as
data.

#create dem0.p
F i l e "DEM0.P" has been c rea t ed .

A file is created to store the plotting commands generated by the *plotsys
subroutines. The file can be processed to obtain a hard-copy using the
*ccqueue program, or viewed later using the "plotsee program.

fp.0 is the program being run. P1ot.o contains the PLOT subroutine and
other supporting subroutines. *IG is used so that the graphics will be
shown immediately on the screen. *Plotsys contains the software that
executes many of the drawing commands.

#Execution begins
Do you want e x t r a i n s t r u c t i o n s ? { y o r n, def=N) <<Return>>

To save space in this listing, extra instructions are not requested. It is a
good idea to answer yes if you have not used FP before.

How many d a t a s e t s ? { I - 20, 0 ==> q u i t , def- 11 3
Scal ing da t a : {def- 0.0 , 0.0 , 0.0 t 0.0 I 5.00,
3.00, 0 .~OOOE+OO, o .~OOOE+OO, 0.150) <<Return>>

The default values indicate max and min values of 0, which will force auto-
scaling. The default plot size is 5" x 3", and the default height of text
characters is 0.15".

Specify a l l 5 Option keys {def= 0, 1, -1, 0, 0 1 3,4,-1,

The default setting would give a linear plot [KEY(l) = 01, simple axes with
no grid [KEY(2) =' 11, automatic location of the labels for the data sets
[KEY(3) = -11, normal auto-scaling, and no stacking [KEY(4) = 0 =
KEY(5)I. Instead, log-log scaling is specified [KEY(l) = 31, a full grid is
to be drawn [KEY(2) = 41, and labels are to be automatically located.
Unless all of the defaults are accepted, then all parameter values must be
entered. (The last two values are both zero so entry of 0,O at the end of the
line was not needed.)

Enter one s k i p value (N) f o r each da t a s e t .
{Def= 0, 0, 0, 1 -20000,1,1,

The default of 0,0,0, means that each data set would be represented by a
line plot, with no identifying symbols. Instead, the first data set will be
shown as a thick line plot (N c -10000). The second and third data sets will
be shown with line plots, with an identifying symbol at each point.

Enter T i t l e f o r X a x i s {def-time - sec
Frequency - Hz
Enter T i t l e f o r Y a x i s {def=amplitude

<<Return>>
Enter T i t l e f o r P l o t {def below:

Demo plot made with the FP program
Label f o r Data Set # 1 {def=Data Set #I 1 Boundary
F i l e Name: {def=*SOURCE* 1 fp.1
X-Y FORMAT: {def= (2F10.2) } <<Return>>

Label f o r Data Set # 2 {def=Data Set #2 1 <<Return>>

F i l e Name: { d e f = f p . l
X-Y FORMAT: {def=(2F10 .2)

Label f o r Data S e t # 3 {def=Data S e t #3 1 experimental data
F i l e Name: {def - fp .2 } (<Return>>
X-Y FORMAT: {def=(2F10 .2) } <<Return>>

The first data set is read from the file fp.1, while the second and third sets
are read from file fp.2. All three are read using the default format of
(2F10.2). Labels are specified for the first and third sets, while the default
of "Data Set # 2 was accepted for the second. On a graphics terminal, such
as a Mac running Versaterm, the plot shown in Figure 2 is drawn on the
screen. The session continues.. .

Blow-up, Redraw, P l o t o r Cont inue? p
9 was r e f e r e n c e d , b u t u n i t i s n o t s e t .

E n t e r a new f i l e / d e v i c e name, "CANCEL", o r "HELP".

?demo.p

To obtain a Calcomp hard-copy of the plot, it is necessary to store the pen
instructions in a file attached to unit 9. This is indicated by the answer P.
Since unit 9 was not specified at run time, MTS prompts for a file name,
and we answer with the name of the file created earlien

PDS: PLOT DESCRIPTION GENERATION BEGINS.

Blow-up, Redraw, P l o t o r Cont inue? C

Continue by returning from the plot interface back to the FP program.

How many d a t a s e t s ? 1 1 - 20, 0 ==> q u i t , d e f = 31 0

Quit the FP entering 0.

#Execut ion t e r m i n a t e d

Boundary
-Data Set #2
-experimental data

Frequency - Hz

Demo plot made with the FP program

Figure 2

Plotter Support Subroutines

The subroutines in this library were all written in Fortran 77. All real*4 arguments will
either have units of inches, corresponding to the size of something plotted on paper, or else
engineering units, corresponding to whatever is being plotted. The subroutines are all listed
in table 2 and described below. In the descriptions, the symbols +, t, and t, are used to
indicate that subroutine arguments are input only, output only, or updated by the
subroutine. The file names for the source and object code on MTS are given in italics
(later). Each subprogram is a subroutine, unless it is specifically identified as a function.
Arguments with type "string" are character variables. The length of a string argument is
inherited from the calling program

AUTOLG @MAX, DMIN, MAX, MIN) slo

Choose (optionally) max and min values for a log axis.

+ DMAX real*4 maximum value of data (engineering units).
+ DMIN real*4 minimum value of data (engineering units).
t, MAX,
t, MIN real*4 max, min values to be used on the axis (engineering units).

If XMIN # XMAX, then do not do anything. If XMIN =
XMAX then:
= 0 + set max, min to include entire range of data.
> 0 + set max to include DMAX. Set rnin so that the ratio
maximin is the original XMAX.
< 0 + set min to include DMIN. Set max so that the ratio
max/min is the original IXMAXI.

AUTOLN @MAX, DMIN, MAX, MIN, TICK, AXLEN, HT) slo

Choose tick interval (and optionally max and min values) for a linear axis.

+ DMAX real" maximum value of data (engineering units).
+ DMIN real" minimum value of data (engineering units).
MAX,
HMIN real*4 max, rnin values to be used on the axis (engineering units).

If XMIN = XMAX then subroutine will select new values.
If XMIN = XMAX < 0 then axis will include 0.

t TICK real*4 interval between major tick marks (engineering units).
+ AXLEN real*4 length of the axis (inches).
+ H T real*4 height of labels and numbers (inches).

Table 2. Plotting Subroutines.

AUTOLG (Xl, X2, XMAX, XMIN) - select max and min values for a log axis.

AUTOLN @MAX, D m , XMAX, XMIN, TICK, XLEN, HT) - select max, min, and
tick interval for a linear axis.

AUTOTK (AXLEN, MAX, MIN, TICK, HT) - calculate tick interval for a linear axis.

Function DLENST (HI', STRING) - length of a string of text when it is drawn.

DRWSTR (X, Y, HT, STRING, ANGLE) - draw a string of text,

ENGR (X, Y, XO, YO, DX, DY, XMIN, XMAX, LOGLIN) -transform from paper
coordinates to engineering units.

LABEL (X, STRING, L) - convert number to string to label tick mark on axis.

LINAX (X, Y, AXLEN, HT, ANGLE, MIN, MAX, TICK, NTICK, TITLE) - draw
linear axis.

LZNGRD (X, Y, AXLEN1, AXLEN2, ANGLE, MIN, MAX, TICK) - draw 112 linear
grid.

LOGAX (X, Y, AXLEN, HT, ANGLE, MIN, MAX, TITLE) - draw log axis.

LOGGRD (X, Y, AXLEN1, AXLEN2, ANGLE, MIN, MAX) - draw 112 log grid.

MAXMIN (XYDATA, XMAX, XMIN, YMAX, YMIN, N, IG) - search for m a . and
mi. values in data.

PAPER (X, Y, XO, YO, DX, DY, XMIN, XMAX, LOGLIN) -transform from
engineering units to paper coordinates.

SCLDWN (X, XNORM, XDOWN) - round a number down to next multiple of 1, 2, or
5 .

SCLUP (X, XNORM, XUP) - round a number up to next multiple of 1,2, or 5.

TIKDRW (X, Y, COSA, SINA, SIZE) - draw a tick mark.

TIKRND (MIN, MAX, TICK) - round off rnin and max values based on tick interval.

TIKSET (MIN, MAX, TICK, TMIN, TMAX) - calculate first and last tick marks for a
linear axis.

XlEQX2 (XI, X2) - don't let X1 = X2.

AUTOTK (AXLEN, MAX, MIN, TICK, HT) slo

Choose tick interval for a linear axis.

+ AXLEN real*4 length of the axis (inches).
t, MAX real*4 maximum value to be used on the axis (engineering units).
wMIN real*4 minimum value to be used on the axis (engineering units).
t TICK real*4 interval between major tick marks (engineering units).
+ H T real*4 height of labels and numbers (inches).

function DLENST (HT, STRING) slo

Calculate the length of a string of text when drawn with the DRWSTR subroutine.

c DLENST real*4 length of text when drawn (inches).
+ H T real*4 height of letters (inches)
+ STRING string text to be written.

DRWSTR (X, Y, HT, STRING, ANGLE) slo

Draw a string of text. Subscripts and superscripts are supported through the characters:
'-' = "move up" and ' A ' = "move down."

+ X real*4 X coordinate where the text starts (inches).
+ Y real*4 Y coordinatewhere the text starts (inches).
+HT real*4 height of letters (inches)
+ STRING string text to be written.
+ ANGLE real*4 orientation angle of the text (degrees). OO=horizontal (left-to-

right), 90°=vertical (bottom-to-top), 180°=horizontal,
upside-down. ..

ENGR (X, Y, XO, YO, DX, DY, XMIN, XMAX, LOGLIN) slo

transform coordinates from paper (inches) to engineering units.

w X , Y real*4 coordinates that get transformed.
+ XO, YO real*4 paper coordinates of lower-left comer of viewport (inches).
+ DX, DY real*4 scale factors.
+ XMIN,
-+ YMIN real*4 engineering coordinates of lower-left corner of viewpoot

(engineering units).
+ LOGLIN integer O=linear x, linear y; l=linear x, log y; 2=log x, linear y;

3=log x, log y

LABEL (X, STRING, L) slo

Write a number into a string for use as a label on an axis. Fixed format is used for .1 I
x < 100,000. Scientific notation is used for numbers outside that range (the '-' character is
included to get a superscript from the DRWSTR subroutine).

-+ X real*4 number to be converted.
t STRING string string containing text version of number.
c L integer number of significant characters in STRING.

LINAX (X, Y, AXLEN, HT, ANGLE, MIN, MAX, TICK, NTICK, TITLE, NCHAR)sIo

Draw a linear axis.

-+ Y
=+ AXLEN

-+ ANGLE

=+ MIN
+ M A X
+ TICK
+ mCK

-+ TITLE string

dual-purpose variable: 1x1 is the absolute X coordinate of the
axis start (inches). If X > 0, then the title is centered on the
axis. If X < 0, AND if MAX > 0 and MIN c 0, then the
label is centered on one side of zero.
IYI is the absolute Y coordinate of the axis start (inches).
dual-purpose variable: IAXLENl is the length of the axis
(inches). If AXLEN > 0, the major tick marks are labeled
with corresponding numbers. If AXLEN < 0, the numbers
are omitted.
dual-purpose variable: lHTl = height of letters and numbers
used to write labels (inches). If HT > 0, labels go on
counter-clockwise side of axis; if HT < 0 they go on the
clockwise side.
orientation angle of the axis (degrees). OO=horizontal (left-
to-right), 90°=vertical (bottom-to-top), 180°=horizontal,
upside-down. ..
starting value for axis (engineering units).
ending value for axis (engineering units)
interval between major tick marks (engineering units).
number of small tick marks between major ticks. For
example, if TICK = 1.0 and NTICK = 5, minor tick marks
would be drawn at 0.2 intervals.
label for the axis.

The ingredients in a complete axis are: a line; major tick marks that are optionally
labeled with numbers; minor tick marks that are unlabeled; and a title. The axis can be
oriented in any direction, the numbering can be on either side of the axis or omitted, and the
title can be centered using one of two criteria. The axis does not necessarily begin or end
on a tick mark-the ticks are located such that a tick would be located at zero. For
example, if the axis covers 33.4 to 39.3, and the tick interval is specified as 2.0, then major
tick marks would be drawn and optionally labelled at 34,36, and 38.

LINGRD (X, Y, AXLEN1, AXLEN2, ANGLE, MIN, MAX, TICK) sio

Draw 1/2 of a grid to correspond with a linear axis drawn using LINAX.

+ AXLEN2 real*4
+ ANGLE real*4

+ M I N real*4
+ MAX real*4
+ TICK real*4

X coordinate of the start of the grid axis (inches).
Y coordinate of the start of the grid axis (inches).
length of the grid axis (inches). (This should also be the
length of the reference axis)
length of the second axis (inches).
orientation angle of the reference axis (degrees).
OO=horizontal (left-to-right), 90°=vertical (bottom-to-top),
1 80°=horizontal, upside-down.. .
starting value for reference axis (engineering units)
ending value for reference axis (engineering units)
interval between grid lines (engineering units).

The grid lines are perpendicular to the reference linear axis, have the same length as the
second axis, and are centered on an axis that parallels the reference axis. The grid lines are
drawn at the same locations as the major tick marks. The grid axis should be located
exactly in the center of the plotting area, and should have the same length as the reference
axis.

LOGAX (X, Y, AXLEN, HT, ANGLE, MIN, MAX, TITLE) slo

Draw a log axis.

-+ x
-+ Y
+ AXLEN

+ ANGLE

real*4
real*4
string

1x1 is the absolute X coordinate of the axis start (inches).
IYI is the absolute Y coordinate of the axis start (inches).
dual-purpose variable: IAXLENl is the length of the axis
(inches). If AXLEN > 0, the major tick marks are labelled
with the corresponding numbers. If AXLEN < 0, the
numbers are omitted.
dual-purpose variable: lHTl = height of letters and numbers
used to write labels (inches). If HT > 0, labels go on
counter-clockwise side of axis; if HT < 0 they go on the
clockwise side.
orientation angle of the axis (degrees). OO=horizontal (left-
to-right), 90°=vertical (bottom-to-top), 180°=horizontal,
upside-down. ..
starting value for axis (engineering units).
ending value for axis (engineering units)
label for the axis.

The ingredients in a complete axis are: a line with major tick marks that are optionally
labeled with numbers, minor tick marks that are unlabeled, and a title. Through various

options, the axis can be oriented in any direction, and the numbering can be on either side
of the axis or omitted. The axis does not necessarily begin or end on a tick mark.

LOGGRD (X, Y, AXLEN 1, AXLEN2, ANGLE, MIN, MAX), slo

Draw 112 of a grid to correspond with a log axis drawn using LOGAX.

+ X real*4 4x1 is the x coordinate start of the grid axis (inches).
+ Y real*4 IYI is the y coordinate start of the grid axis (inches).
4 AXLEN1 real*4 IAXLENll is the length of the grid axis (inches). (This

should be the same as the length of the reference axis.)
+ AXLEN2 real*4 length of the second axis (inches).
+ ANGLE real*4 orientation angle of the reference axis (degrees).

OO=horizontal (left-to-right), 90°=vertical (bottom-to-top),
1 80°=horizontal, upside-down.. .

+MIN real*4 starting value for reference axis (engineering units)
-+ MAX real*4 ending value for reference axis (engineering units)

The grid lines are perpendicular to the reference log axis, have the same length as the
second axis, and are centered on an axis that parallels the reference axis. The grid lines are
drawn at the same locations as the major tick marks. The grid axis should be located
exactly in the center of the plotting area, and should have the same length as the reference
axis.

MAXMIN (XYDATA, XMAX, XMIN, YMAX, YMIN, N, IG) slo

Search data for max and rnin values. This may use input routines to get max and min
values interactively from user.

+ XYDATA real*4 array with pairs of x and y values. The subroutine assumes
that the variables are stored as XI, yl, x2, y2, x3, ... (The
array is probably dimensioned XYDATA(2,N).)

w XMAX,
w XMIN real*4 dual meaning. If initially XMAX ;t XMIN, then the

subroutine will constrain the search for YMAX and YMIN to
those points where XMIN I x I XMAX. Otherwise,
MAXMIN changes XMAX and XMIN to the maximum and
minimum X values found, subject to the constraints of the
search.

++ =,
w YMAX real*4 dual meaning-similar to XMAX and XMIN. If YMAX #

YMIN, then the subroutine will constrain the search for
XMAX and XMIN. Otherwise, MAXMIN changes YMIN
to the minimum Y value found, subject to the constraints of
the search.

+ N integer*4 number of pairs of data points searched in XYDATA.
+ IG integer*4 key that indicates the degree of user intervention. If IG = 0,

the subroutine simply returns the max and min values that
were requested. If IG < 0, the subroutine prints the max and
min values that were found to unit 6. If IG > 0, the
subroutine prints the max and min values that were found,
and then requires the user to enter replacement values (units
5 and 6 are used).

MAXMIN has three modes for searching. If the inputs XMAX = XMIN and YMAX
= YMIN, it will search the data for the absolute rnax and min values for both x and y. If
XMAX = XMIN but YMAX # YMIN, it will selectively search for max and min x values
for only those points whose y values are within the range defined by the limits YMIN and
YMAX. Finally, if YMAX = YMIN but XMAX # XMIN, it will selectively search for
max and min y values for only those points whose x values are within the range defined by
the limits XMIN and XMAX. The subroutine also has three modes for updating the max
and min values, which involve optional interactive scaling.

PAPER (X, Y, XO, YO, DX, DY, XMIN, XMAX, LOGLIN) slo

transform coordinates from paper (inches). to engineering units.

0 X,Y real*4 coordinates that get transformed.
+ XO, YO real*4 paper coordinates of lower-left comer of viewport (inches).
+ DX, DY real*4 scale factors.
+ XMIN,
+ YMIN real*4 engineering coordinates of lower-left comer of viewport

(engineering units).
+ LOGLIN integer O=linear x, linear y; l=linear x, log y; 2=log x, linear y;

3=log x, log y

SCLDWN (X, XNORM, XDOWN) slo

Round off the mantissa of a variable down to the next multiple of 1,2, or 5.

+ X real*4 number to be re-scaled (not changed by subroutine). This
number must be 2 0.

t XNORM real*4 normalized input, re-scaled to lie between 1 and 10. For
example, if X = 33.7, XNORM = 3.37.

t XDOWN real*4 rounded output, In the example where X = 33.7, D O W N
would be 20.

SCLUP (X, XNORM, XUP) slo

Round off the mantissa of a variable up to the next multiple of 1,2, or 5.

+ X real*4 number to be re-scaled (not changed by subroutine). This
number must be 2 0.

t XNORM real*4 normalized input, re-scaled to lie between 1 and 10. For
example, if X = 33.7, XNORM = 3.37.

t XUP real*4 rounded output. In the example where X = 33.7, XUP
would be 50.

TIKDRW (X, Y, COSA, SINA, SIZE) slo

Draw a tick mark.

+ X real*4 x coordinate of the center of the tick mark (inches).
+ Y real*4 y coordinate of the center of the tick mark (inches).
-+ COSA real*4 cos(0), where 0 = 0 for vertical tick and 0=90° for

horizontal tick.
-+ SINA real" sin(0), where 0 = 0 for vertical tick and 0=90° for horizontal

tick.
+ SIZE real*4 1/2 the length of the tick line (inches).

'FIKRND (MIN, MAX, TICK) slo

Round off max and min values using tick interval as basis of the roundoff.

o M I N real*4 lower limit of axis (engineering units).
o MAX real*4 upper limit of axis (engineering units).
+ TICK real*4 tick interval (engineering units).

TIKSET (MIN, MAX, TICK, TMIN, TMAX) slo

Calculate the first and last major tick marks for a linear axis.

+ M I N real*4 lower limit of axis (engineering units).
+ MAX real*4 upper limit of axis (engineering units).
+ TICK real*4 interval between tick marks.
t TMIN real*4 minimum value for tick mark within range specified by

XMIN and XMAX (engineering units).
t TMAX real*4 maximum value for tick mark within range specified by

XMIN and XMAX (engineering units).

XlEQX2 (XI, X2) slo

Don't let X1 = X2. If they are equal, subroutine modifies both so that plot axis will
have a non-zero range.

Interfacing Adaptive Control
Features in the Phase 4 Model

Interfacing Adaptive Control Features in the Phase 4 Model

The material in this section describes how to modify the existing Phase 4 program

for adding adaptive control features to the model. Three examples are used to illustrate the

"programming mechanics" needed to implement: a) an active suspension feature , b)

steering of semitrailer wheels, and c) brake pressure modulation responding to a tractor-

semitrailer "jackknife" condition during braking.

The usual method for adding specific features, not already present in the Phase 4

program, is to add the desired code in a subroutine, and then call that subroutine from an

appropriate location within the existing Phase 4 program. The trick, of course, is to know

from where in the Phase 4 program to call the user-written subroutine and which Phase 4

variables to use or m o d e within the user subroutine. Since the Phase 4 program was

originally intended to represent what seemed at the time a good variety of common vehicle

configurations (present in the fleet in the mid-to-late 19701s), no provision for modification

or extension to other types of vehicle configurations was designed into the original code.

Consequently, changes or additions to the code to study some of the more unusual vehicle

configurations increasingly present in the fleet today usually requires some familiarity with

the program structure and variables in order to implement additional or new features. Short

of producing an extensive document detailing the purpose of each program variable and an

accompanying flow chart to assist anyone interested in performing arbitrary changes to the

model (a major project in itself), the material presented here is intended to be introductory

. and tutorial in scope. The examples selected for this purpose cover three basic adaptive

control areas seen as likely of interest to most users, namely - modification of suspension

forces, steering of wheels other than the conventional front axle wheels, and brake pressure

modulation based upon some vehicle response condition.

The following figure illustrates how each of the example subroutines, identified as

Subroutine CNTRL1, CNTRL2, AND CNTRL3, interface with the existing Phase 4 code.

Each of these user-written subroutines are called from the Phase 4 subroutine FCT1.

Subroutine FCTl in the Phase 4 code is called within the integration loop to evaluate the

right-hand side of the differential equations defining the model. Consequently, any

calculations related to suspension or tire forces, for example, need to be evaluated

ultimately within this subroutine. A recommended method for minimizing the amount of

direct alteration of existing Phase 4 code when new features need to be added, is to simply

Interfacing the Adaptive Control Examples to Phase 4

place a call to a user-written subroutine from the FCTl subroutine, and perform the new or

additional calculations within the external user subroutine.

The following three examples show, fitst, how each of the three subroutines are

called from the Phase 4 subroutine FCTl (new code shown as bold-faced type in the

Phase 4 listings). The additional code (bold-faced) which calls each new control

subroutine is located within that part of the FCTl subroutine associated with the particular

control feature. For example, subroutine CNTRLl (active suspension example) is called

from a location in subroutine FCTl following the standard suspension force calculations.

Following these listings which show the required modifications to the Phase 4 code

in subroutine FCT1, figures and accompanying code are then presented for each of the

control examples. The figures illustrate the basic control concept being implemented; the

accompanying listings show the FORTRAN code defining each example control subroutine

called by the Phase 4 program. Example time-history results for each control concept are

also shown following each subroutine listing using the post-processor plotter described in

the previous section.

Example of C a l l t o Subrout ine CNTRLl from existing
Phase 4 code.

Phase 4 Code - Subroutine FCTl

C
C 2 VELOCITY OF SPRUNG MASS
C

SMSD * W * A(IVEHflr3) + W * A(IVEH12,3) + WW * A(IVEH,
1 3,3)

IF (IVEH .GT. 1) GO TO 140
IF (MVEH .EQ. 1) GO TO 140
IF (JSUS .EQ. 1) GO TO 140
SMS I SMS + YS * (PHI2C - PHIBAR(1,l))
W = W - (FRZ(1,2,KAX) - HFRAME) * PBAR(2,l) + FRZ(1,2,

1 KAX) * PBAR(1,l)
WW = WW + YS * (PBAR(2,l) - PBAR(1,l) 1

140 CONTINUE
C
C CALL SUSPENSION ROUTINE
e

CALL TANDIN(IVEH, JSUS, KAX, LSIDE, SMS, SMSD, SIGN)
C
C CALL FOR SPRING FORCES
C

CALL LINE (IVEH, JSUS, KaX, LSIDE, SF, Kf Cf CF, X)
150 CONTINUE
160 CONTINUE

C
C ACTIVE SUSPENSION EXAMPLE / ROLL STABILIZATION
C
C VEHICLE UNIT LOOP
C

DO 165 IVEE=l,MVEH
C
C SUSPENSION LOOP
C

DO 164 JSUS=1,2
C
C
C SKIP BRONT OF SEMI
C

m31
IF(~H.EQ.~.AND.JSUS.EQ.I) GO TO 164

C
C TANDEM AXLES
C

IF (KEY (IVEH, JSUS) . GT . 0) JKK=2
C
C T W T O R FRONT AXLE
e

IF(IVEX.EQ.l.AND.JSUS.EQ.1) JKK=1

C
C AXLE LOOP
C

DO 163 XAX=l,JXK
C
C SIDE-TO-SIDE LOOP
C

DO 162 LSIDE=1,2
C
C CALL ACTIVE SUSPENSION SUBROUTINE FOR EACP WIIEEL LOCATION:
C

CALL CNTU1(fVEE1,JSUS,KAXfLSIDEfSFIX)
162 CONTINDE
163 CONTINUE
164 CONTINUE
165 CONTIN(JE

C
C
C
C KINEMATIC RELATIONSHIPS BETWEEN THE STATE VARIABLES
C

DO 180 J = 1, MVEH
DO 170 I = 1, 3
IV = (J - 1) * 28 + I
DERY (IV) = 0.
DO 170 IXX = 1, 3

C
C THESE RELATE VELOCITIES IN INERTIAL X, Y , Z TO Uf VI W
C

DERY (IV) = UBAR (J, IXX) * A (J, IXX, I) + DERY (IV)
170 CONTINUE

C
C THESE RELATE RATES OF CXANGE OF PHI,THETA,PSI TO PIQIR
C

DERY((J - 1)*28 + 6) a PBAR(Jf3) + PBAR(Jf2) * SIN(PHIBAR(Jf1))
DERY((J - 1)*28 + 4) = PBAR(J,l) + PBAR(Jf3) * TAN(PHIBAR(Jf2))

1 + PBAR(J,2) * PHIBAR(J,l) * PHIBAR(J,2)
DERY((J - 1) "28 + 5) = PBAR(Jr2) - PBAR(Jf3) * SIN(PHIBAR(JI 1))

180 CONTINUE
C
C NOW WE COMPUTE THE POSITIONS AND VELOCITY OF THE ENDS OF THE DOLLY
C FOR USE IN DOLLY FORCE CALCULAION. A IS AT PINTLE HOOK, B IS AT
C TURNTABLE.
C

IF (MWH .LT. 3) GO TO 240
DO 230 IVEH = 3, MVEH

WW = 0.
w = 1.
TONGLE (IVEH) = 0 .
IVM = IVEH - 1

Phase 4 Code - Subroutine FCTl cont inued

Examples of Cal ls t o Subroutines CNTRL2 & CNTRL3 from
existing Phase 4 code.

Phase 4 Code - Subroutine FCTl

C
DO 290 IVEH = I, MVEH

C
C FSUM AND TSUM ARE FOR EQUATIONS OF MOTION. FX,FY,TZ ARE FOR
C CONSTRAINT FORCE CALCULATIONS

. C
FX (IVEH) = GVWM (IVEH) *G*DZDXI (IVEH)
FY (IVEH) = GVWM (IVEH) *G*DZDYI (IVEH)
TZ(1VEH) = 0.
DO 250 JV = 1, 3
FSUM(1VEHpJV) = 0.
TSUM (IVEH, JV) 0.

250 CONTIMJE
DO 290 JSUS = I, 2

C
C NO FRONT TIRES ON THE SEMI-TRAILER
C

IF (IVEH .EQ. 2 .AND. JSUS .EQ. 1) GO TO 290
JKK-1
IF (KEY(IVEH,JSUS) .GT. 0) JKX = 2
IF (IVEH .EQ. 1 .AND. JSUS .EQ. 1) JKK 1
DO 280 KAX = 1, JXX
DO 270 LSIDE = 1, 2

C
C ROLL STEER CALCULATION
C

IF (JSUS .EQ. 2) DELT(IVEH,JSUS,KAX,LSIDE) = 0.
IF (INDPKY (IVEH, JSUS, KAX) .EQ. 1) GO TO 255

DELT (IVEH, JSUS KAX, LS IDE) = DELT (IVEH, JSUS , KAX, LS IDE) +
1 RST (IVEH, JSUS KAX) * (PHIBAR (IVEH, 1) - THETAX (IVEH, JSUS
2 KAX)
GO TO 258

255 DELT(IVEHtJSUS,KAX,l)=DELT(IVEH,JSUS,KAX,l)+RST(IVEH,JSUS,W)
l*ZAXLE (IVEHt JSUSt KAX)
DELT(IVEH, JSUSIKAXI2)=DELT(IVEHI JSUSIKAX12) +RST (IVEHt JSUSIKAX)
1 *THETAX (IVEH, JSUS KAX)

C
C TUILER STEER OPTION EXAMPLE -- 1 9 8 5 / 6 MVMA PROJECT
C
258 CONTINUE

CALL CNTRLZ (IVER , JSUS , KAX, LSIDE)
c

CALL BRAKE2 (IVEHt JSUS , KAX, LSIDE, XXS, XI
C
C BRAKE RELEASE DUE TO HIGX SPEED JACKIWfsE EXAMPLE
C 1 9 8 5 / 6 MVKA PROJECT
c
C CAI& CNTRL3(IVEB, JSUS,KAX,LSIDE)
C

DO 260 IXY = 1, 2
C

C CALCULATE ALL TIRE FORCES
C
2 60 CALL TIRE(IVEHr JSUSr KAXr LSIDEr IXYf T, DTf SRSr XXSf

1 I DERY, TALIGN, X)
FXI(IVEHrJSUSrKAXfLSIDE) FXW(IVEH,JSUSfKAX,LSIDE) * COS(

1 DELT(IVEH,JSUSrKAXrLSIDE)) - FYW(1VEHfJSUSrKAXfLSIDE) *
2 SIN(DELT(IVEHp JSUSr KAXr LSIDE)

FYI(IVEHrJSUSrKAXrLSIDE) FXW(IVEHrJSUSfKAXfLS1DE) * SIN(
1 DELT (IVEHr JSUSr KAXr LSIDE)) + FYW (IVEHI JSUS KAXf LSIDE) *
2 COS (DELT (IVEHr JSUS KAXr LSIDE))

C
C FXfFYr AND TZ ARE USED HERE TO SUM THE FORCES FOR USE IN
C CONSTRAINT CALCULATIONS
C

XROAD BAR(lr1)
IF (IROAD .EQ. 0) GO TO 268
DZDXl- DZDXO
DZDYlm DZDYO
CPSI(IVEH1 = COS(PHIBAR(IVEHr3))
SPSI(1VEH) = SIN(PHIBAR(IVEHr3))
IF (IROAD .GE. 0) GO TO 267

Phase 4 Code - Subroutine FCTl continued

Active Suspension Example

Under steady turning conditions:
L

f = m U r Gain

"centrifugal force" @ axle Gain Factor

f is the active suspension force component

SF is the conventional spring force

EXAMPLE ADAPTIVE CONTROL SUBROUTINE - Active Suspension Example
/ Roll S tab i l i za t ion

1985/6 MVMA PROJECT

SUBROUTINE CNTRL1 (ITI IS, IA, ILRf SFF I TI

ARGUMENT LIST:

I77 IS VEHICLE MASS UNIT (1 TO 4)
IS IS UNIT SUSPENSION (1 OR 2)
IA IS SUSPENSION AXLE NUMBER (1 OR 2)
ILR IS LEFT OR RIGHT SIDE (1 OR 2)
SFF IS RETURNED SUSPENSION FORCE MODIFIED BY ACTIVE FORCE
T IS TIME

REAL NS

COMMON BLOCKS FROM MAIN PHASE 4 PROGFLAM TO PASS VARIABLES/PARAMETERS:

COMMON /FCTOUT/ XBAR(4,3) I PHIBAR(4t3) I UBAR(4t3) r PBm(413)
COMMON /TURN/ NOTURN(2,2) TURNX(5O) TURNY(5O) I DELT(4t2t2t2)
COMMON /STATIC/ NS (41212)t FT(4) I SF(41212r2)

DIMENSION GAIN

INITIALIZE GAIN FACTORS C PARAMETERS
DATA GAIN / 32*0.0/
DATA GRAV /32.2/
DATA TLAST / 32'-0.1/

ONLY ENTER ONCE PER TIME STEP

TLAST

SET GAIN FACTORS AT ACTIVE SUSPENSION LOCATIONS ON LEFT SIDE
(WOULD NORMALLY BE READ FROM A FILE)

RIGHT SIDE GAINS EQUAL TO LEFT & SIGN CHANGED

DO 40 Ial 4
DO 30 J=lI2
DO 20 K=1,2
GAIN(1, JIKI2) a -GAIN(I, JIK, 1)

2 0 CONTINUE
30 CONTINUE
40 CONTINUE

CALCULATE & ADD ACTIVE SUSPENSION FORCE COMPONENT TO PRESENT
SPRING FORCE SF.

\

1 0 0 SFF (IVt IS, IA, ILR) SF (IVt 1st IA, ILR) + G A I N (N I IS, IA, ILR) *
1 WAR(IV, 1) *PBAR(IVt 3) /GRAV*NS (IV, IS, IA)

RETURN SUM OF CURRENT SUSPENSION FORCE & ACTIVE FORCE COMPONENT AS SFF:

RETURN
END

- Gain = 0
rn
a -
w G4tn = - 1 -

I G b i \ r \ = - 2
L
a -

6 - u 0 -
L
u

I
8 -
E
Q)
v,

a- -
m
s
a - -
2

N ..
I

I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t ime - sec

5 - A X L E TRACTOR-SEMI: 60 mph; Steady Turning Example -

Semitrailer Rear Wheel Steering Example

(low speed steering condition shown)

a r = Gain *

Gain = (V - c) / c

V is vehicle speed
c is a normalizing constant (e.g. 40 mph)

EXAMPLE ADAPTIVE CONTROL SUBROUTINE - Semitrailer Rear-Wheel Steering Zxample
1985/6 MVMA PROJECT

SUBROUTINE CNTRLZ (IVEH, JSUS , KAX, LS IDE)

ARGUMENT LIST:

IVEH IS VEHICLE MASS UNIT (1 TO 4)
JSUS IS UNIT SUSPENSION (1 .OR 2)
KAX IS SUSPENSION AXLE NUMBER (1 OR 2)
LSIDE IS LEFT OR RIGHT SIDE (1 OR 2)

COMMON BLOCKS FROM MAIN PHASE 4 PROGRAM TO PASS VARIABLES/PARAMETERS:

COMMON /FCTOUT/ XBAR(4,3), PHI BAR(^,?), UBAR(4t3) , PBAR(4,3)
COMMON /TURN/ NOTURN(2,2), TURNX(50), T W (S O) , DELT(4,2,2t2)

INITIALIZE NORMALIZING FACTOR
DATA WOO / 58.0 /

SELECT ONLY SEMITRAILER UNIT

(IVEH RETURN

SELECT REAR SUSPENSLON ONLY

IF (JSUS-NE . 2) RETURN

SET GAIN AS FUNCTION OF SPEED:

(FOR A RIGHT TURN, POSITIVE GAIN VALUES STEER THE SEMI WHEELS TO THE RIGHT)
UBAR (2,l) IS THE FORWARD SPEED OF THE SEMITRAILER (FT/SEC) .
WOO IS A NORMALIZING PARAMETER SELECTED TO PRODUCE CONVENTIONAL (NON)
STEERING AT 58 FT/SEC (40 M P H) , A GAIN VALUE OF -1 AT LOW (ZERO) SPEED TO
OFFSET LOW SPEED OFF-TRACKING TENDANCIES, AND A
POSITIVE GAIN AT SPEEDS ABOVE 40 MPH TO OFFSET HIGH SPEED OFF-TRACKING
T"rnANC1ES.

GAIN = (WAR(2,l) - WOO) / WOO

STEER SEMITRAILER WHEELS IN PROPORTION TO ARTICULATION ANGLE
& ADD TO CURRENT (ORDINARILY ZERO) VALUE :

DELT(IVEH,JSUS,W,LSIDE) GAIN * (PHIBAR(1,3) - PXIBAR(2,3))
1 + DELT (IVEH, JSUS I KAX, LSIDE)

RETURN MODIFIED SEMITRAILER STEER ANGLE r DELT

RETURN
END

Y Position, cg, Semi-trailer - f t

0
T

a
4
LC

I
c
0
'3 a'"
8 -
V]
0
a.

x a
(U

I

2

5-AXLE TRACTOR-SEMI; L o w Speed Steady Turn ing , E x a m p l e
(+ tract ion)

- TRACTOR c.9.
-SEMI GAIN310 e

.,

--

Anti-Jackknife Control Example

(high speed braking)

For speeds greater than 40 mph

and

R greater than 0.2 radians:

EXAMPLE ADAPTIVE CONTROL SUBROUTINE - A n t i - J a c k k n i f e Con t ro l (Re l ease o f
Brake Pres sure f o r Large A r t i c u l a t i u o n Angles a t High Speed)

1985/6 MVMA PROJECT

SUBROUTINE CNTRL3 (IVEB, JSUS, KAX, LSIDE)

ARGUMENT LIST:

IVEB IS VEHICLE MASS UNIT (1 TO 4)
JSUS IS UNIT SUSPENSION (1 OR 2)
KAX IS SUSPENSION AXLE NUMBER (1 OR 2)
LSIDE IS LEFT OR RIGHT SIDE (1 OR 2)

COMMON BLOCKS FROM MAIN PHASE 4 PROGRAM TO PASS VARIABLES/PARAMETERS: L

COMMON /FCTOUT/ XBAR(4,3), PHIBAR(4,3), UBAR(4t3)t PBAR(df3)
COMMON /BOUT/ p (4,2,2,2), PO (4,2,2,2) , TLST (4,2,2,2) 1 T(4~212t2) t

1 P TRD

RELEASE BRAKE PRESSURE FOR ARTICULATION ANGLES GREATER THAN
0.2 RADIANS AT SPEEDS OVER 40 MPH.

SPEED CHECK:
DO NOTHING FOR SPEEDS LESS THAN 58.6 FT/SEC (40 MPH).

IF (UBAR(2,l) .LE. 58.6) RETURN

ARTICULATION ANGLE CHECK:
DO NOTHING FOR ARTICULATION ANGLES LESS THAN 0.2 RADIANS.

IF (ABS (PHIBAR(1, 3) - PHIBAR(2,3)) .LE. 0.2) RETURN

OTHERWISE, SET BRAKE PRESSURE, PI AND TREADLE PRESSURE, PTRD, TO ZERO:

P(IVEH,JSUS,KAX,LSIDE) = 0.0
PO (IVEH, JSUS, KAX, LSIDE) 3 0 a O
BTRD = 0.0

RETURN MODIFIED (ZERO) BRAKE LINE & TREADLE PRESSURE IN 'BOUT' COMMON BLOCK.

RETURN
END

-Semi-trailer

5-AXLE TRACTOR--SEMI: 60 mph: Braking-in-a-Turn
Example (+jackknife control)

time - gec

5-AXLE TRACTOR-SEMI; 60 mph; Braking-in-a-Turn
Example (+jackknife control)

