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Abstract: The results from reiterated docking experiments may be used to evaluate an empirical vibrational en-

tropy of binding in ligand–protein complexes. We have tested several methods for evaluating the vibrational contri-

bution to binding of 22 nucleotide analogues to the enzyme APS reductase. These include two cluster size methods

that measure the probability of finding a particular conformation, a method that estimates the extent of the local

energetic well by looking at the scatter of conformations within clustered results, and an RMSD-based method that

uses the overall scatter and clustering of all conformations. We have also directly characterized the local energy

landscape by randomly sampling around docked conformations. The simple cluster size method shows the best per-

formance, improving the identification of correct conformations in multiple docking experiments.

q 2008 Wiley Periodicals, Inc. J Comput Chem 29: 1753–1761, 2008
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Introduction

The AutoDock3 and AutoDock4 empirical free energy force

fields have been calibrated against a set of several hundred

ligand–protein complexes of known structure and binding con-

stants.1,2 In our experience, this force field has been effective

for the prediction of binding constants with tight-binding com-

plexes, but we have noticed two significant problems.

First, we often find an incorrect conformation with slightly

more favorable energy than the experimentally observed confor-

mation. However, these incorrect conformations are found with

very low frequency when multiple docking experiments are per-

formed: incorrect, low-energy conformations will be found in

�1% of docking experiments, and the correct conformation will

be found in 25–100% of the experiments. Thus, in these cases, a

simple procedure that chooses the conformation of best energy

from a set of multiple docking experiments will yield an incor-

rect conformation.

Second, the current force field poorly predicts the free energy

of binding of weakly interacting molecules. An example from

APS reductase (adenosine 50-phosphosulfate reductase), the sub-

ject of this report, highlights the problem. Experimentally, 50-
AMP binds tightly but 30-AMP, which has a similar number of

atoms and functional groups, binds weakly. However, in Auto-

Dock both are predicted to bind tightly with similar binding con-

stants. However, by looking at the frequency that a given confor-

mation is found in reiterated docking experiments, a difference

may be seen, as shown in Figure 1. When these compounds are

docked multiple times, AutoDock finds a consistent conformation

for 50-AMP in many docking experiments, whereas 30-AMP

adopts many different conformations and the low-energy confor-

mations of 30-AMP are only found in a small fraction of docking

experiments.

We have observed this many times in other systems: if a given

molecule shows a consistent conformation in many docking simu-

lations, we have far more confidence in the result. Our current hy-

pothesis is that the frequency of finding a given conformation is

providing information on the energy landscape of binding, and

that a high frequency is a measure of favorable entropy in the

binding process. Recent work has shown that the energetic contri-

bution of this vibrational entropy will be high. A recent study by

Chang et al.4 has estimated that the configurational entropy of
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binding of amprenavir to HIV-1 protease is 26.4 kcal/mol, of

which 1.8 kcal/mol is due to the loss of conformational entropy

when the molecule moves from freely flexible in solution to its

constrained position in the active site, and the bulk of the penalty

is due to loss of vibrational entropy in the restrictive binding site.

Ideally, we would like to quantify the binding energy of the

entire range of conformations available to the ligand and protein,

and use this explicitly to evaluate the vibrational entropy. How-

ever, these types of calculations, such as the Mining Minima

calculation employed by Chang et al., are too computationally

expensive for typical docking studies. Instead, several laborato-

ries are exploring methods for using information from the dock-

ing simulation or from inexpensive approximations of the range

of conformations to evaluate this entropic component.

Many of these methods perform multiple docking experi-

ments, cluster the resulting conformations by similarity, and

then use a measure of the cluster size to estimate the vibrational

entropy. The assumption is that the docking protocol provides

information on the characteristics of the local energy landscape,

and that large clusters of conformations are indicative of favor-

able entropic characteristics of this landscape. In previous

experiments using AutoDock, we have used a cluster size mea-

sure to discriminate binders from nonbinders in an artificial

active site.5 Bottegoni et al.6 have explored several clustering

methods combined with a number of popular docking methods

to identify significantly populated clusters, showing that they

tend to be associated with the observed binding mode. Ruvinsky

and Kozintsev7 have used the size of clusters in AutoDock to

approximate a vibrational entropy, and, in a later work,8 to esti-

mate a probability distribution function of conformations from

multiple docking experiments. Xiang et al.9 have used RMSD

values between different conformations from a genetic algorithm

search to approximate this entropic contribution in protein loop

prediction.

Figure 1. Clusters analysis of docking for 50-AMP and 30-AMP. The graphs on the left use Sammon

mapping3 to preserve the approximate separation in conformational space between clusters. Each circle

represents a cluster of conformations within 2 Å RMSD of each other, and the size of the circle is pro-

portional to the number of conformations in the cluster. The expected bound conformation is shown

with a diamond. The images on the right show all of the docked conformations. 50-AMP binds tightly,

and many of the docked conformations cluster into one large group at the expected conformation. 30-
AMP, however, binds weakly and shows a wide scattering of small clusters.
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In this report, we evaluate these methods for their ability to

predict correctly the expected bound conformations of nucleotide

analogues in APS reductase (Carroll, K. S. Manuscript in prepa-

ration).10,11 All of these methods seek to characterize the local

energy landscape and use this information to estimate an

entropic contribution to the binding free energy. The methods

perform a sparse sampling of the landscape by reiterated dock-

ing or random sampling, making the implicit assumption that the

sampled points will represent the features of the entire local

landscape. We have found that APS reductase is an excellent

test for these methods because experimental binding constants

are available for a series of compounds of similar size and

chemical composition but with a wide range of binding con-

stants. This provides a more critical test set than the typical

databases used in most studies, which typically include a diverse

collection of ligand–protein complexes, but all are specific,

tight-binding complexes.

Methods

Motivation

In the most general case, we seek to evaluate the vibrational

contribution to the free energy of binding through use of a con-

figurational integral7:

DG ¼ T ln
rlrp
rpl

c0Na

8p2ð2pÞntor VB

� �
(1)

where the configurational integral VB is

VB ¼
Z
C
exp �ðUplðr;XÞ � EplÞ=RT

� �
dr dX (2)

In these equations, the r terms account for any symmetry in

the molecules, with values of 1 for asymmetric molecules, c0 5
1 mol/L, Na is Avogadro’s constant, ntor is the number of tor-

sional degrees of freedom in the ligand, Upl(r,X) is the energy

of each complex conformation, G is the region of integration

(typically a small space that includes conformations with similar

binding modes), and Epl is the minimum energy of the com-

plexes within the region G. The vectors r and X define the three

translational and the 3 1 ntor rotational motions of each com-

plex. As noted in the Ruvinsky presentation, these calculations

are appropriate for relative protein–ligand motions.

In this manuscript, we test several simple approximations to

this integral, based on conformations obtained in reiterated

AutoDock docking experiments and by directly sampling the

local energy landscape. Our goal is to provide an efficient em-

pirical method for estimating this entropic contribution. We seek

to improve the estimation of binding constants by rescoring trial

docked conformations, combining this estimated vibrational en-

tropy, which is derived from reiterated docking experiments,

with predicted enthalpic and desolvation contributions used dur-

ing the docking simulation of each conformation.

In all of these methods, we begin with a set of conformations

obtained from docking simulation or from random sampling, and

we assume that these sparse samples may be used to character-

ize the entire local energy landscape. It is important to keep in

mind that the evolutionary search method used in AutoDock,

which combines a genetic algorithm with a local search,1 is not

designed to be a uniform (Monte Carlo) sampling process, but

instead to be successful at finding extreme (minimum) values of

the energy function. Thus, it is not directly giving the informa-

tion needed to estimate the configurational integral, but may be

used to infer properties of the energy landscape and vibrational

entropies. Note also that: (1) the method is heuristic and stochas-

tic, and thus does not guarantee convergence, and so the search

must be repeated multiple, statistically independent times; and

(2) it generates a history of the search process as a byproduct.

Both of these properties provide opportunities and limitations

for use in estimation of entropic contributions, and help to moti-

vate our random sampling experiments, described later.

Method of Ruvinsky and Kozintsev

Ruvinsky and Kozintsev have reported a method for using the

results from multiple docking experiments to evaluate a vibra-

tional entropy.7 We will refer to this as the ‘‘RK’’ method. They

begin by clustering the docked conformations, and then they

evaluate the entropy based on the conformational space spanned

within the cluster. They choose the lowest energy conformation

in each cluster as the representative position, and assume that

the members of the cluster provide a representative snapshot of

the motions available to representative position. For each cluster

i, they estimate this configurational integral VB(ri,Xi) by evaluat-

ing the maximum and minimum values in each of the dimen-

sions of r and X, and then calculating the product of these maxi-

mum-to-minimum intervals:

VBðri;XiÞ ffi VRKðri;XiÞ ¼
Y3
j¼1

maxðrjiÞ �minðrjiÞ
� �

3
Y3þNtor

k¼1

maxðXk
i Þ �minðXk

i Þ
� � ð3Þ

Rather than explicitly incorporating a dependence on inter-

sample distances, as in the Colony method or the weighted

RMSD method described later, the RK method is evaluated

within 1 or 2 Å clusters.

This method has one potential conceptual limitation: in cases

where the number of conformations is small, the value of VB

may be more an indication of the sample size than the extent of

the favorable conformational space. We performed a random

value test (see Fig. 2) to determine the possible influence of the

small number of conformations in a typical cluster on the value

of this volume. It was performed by picking random values for

the max and min values of each conformational variable within

a constant volume of conformational space. For the experiment,

random values were chosen within uniform bounds of 21.29 to

1.29 (Å or rad) for 12 conformational variables (3 translation,

3 rotation, and 6 torsion). During analysis of our docked confor-

mations, a value of roughly DGRK 5 12 kcal/mol was found for

the largest clusters, and so the value of 1.29 was chosen to pro-

vide a value of 12 kcal/mol for random distributions with many

1755Empirical Entropic Contributions in Computational Docking

Journal of Computational Chemistry DOI 10.1002/jcc



points that maximally fill the entire available conformational

volume.

Colony Method

The ‘‘Colony’’ method9 uses a RMSD-dependent term to evalu-

ate a conformational free energy. The method was developed for

use in protein loop prediction. The authors generated a set of

2000 random backbone conformations, added sidechains using a

rotamer approach, performed an energy minimization, and then

retained the 1000 lowest energy conformations for use in the

free energy estimation. Here, we modify the approach for use

with ligand–protein complexes, using 100 conformations from

reiterated AutoDock simulations. The energy is based on the

RMSD from each conformation to all other conformations

obtained in the simulation:

DGi ¼ �RT ln
X
j

expð�DEj=RT � d3ij=6LÞ
" #

þ C (4)

where DE values are the predicted energies of each conforma-

tion j, dij is the RMSD between the two conformations, L is

number of amino acids in the peptide loops used in the original

study and 6L Å3 is an empirical factor defining the approximate

volume of conformational space represented by each loop con-

formation, and C is a constant term that defines the magnitude

of the entire conformational space. For use in rescoring multiple

conformations of a single ligand, the constant term may be

neglected. For this work, we used a value L 5 2 because these

compounds have a similar number of torsional degrees of free-

dom as a dipeptide linker.

Cluster Size Method

We have tested two methods of using the cluster size as an esti-

mate of the configurational integral. In these methods, we

hypothesize that the probability of finding a conformation in a

given cluster is capturing information on the local energy land-

scape. As mentioned earlier, this hypothesis relies on the proper-

ties of Lamarkian genetic algorithm used in AutoDock for

searching of conformations, which is a stochastic and heuristic

method designed to find extreme minimum values of the com-

plex energy landscape. Our hypothesis is that the docking

method is more successful for wide energetic wells, and thus the

success of finding a given conformation is proportional to the

vibrational entropy.

The first is a probability based on a simple conformation-cen-

tered RMSD, which we will refer to as the ‘‘RMSD’’ method.

For each conformation i, RMSD values di,j is calculated over all

conformations j not equal to i, and the fraction less than a given

threshold dmax is evaluated. In this work, we used a threshold of

dmax 5 2 Å RMSD.

PRMSD
i ¼ Ndj6¼i�dmax

N
(5)

where the numerator is the number of conformations with

RMSD less than the threshold and N is the total number of con-

formations. The second is a probability based on a distance-

weighted RMSD, which we will refer to as the ‘‘wRMSD’’

method:

PwRMSD
i ¼

P
j6¼i

expð�d2i;j=2r
2Þ

N
(6)

where the constant r 5 2 Å. If we assume that the favorable

region of conformational space is proportional to these probabil-

ities, then the vibrational contribution to the free energy may be

estimated as

DGi ¼ �WRMSDRT lnðPRMSD
i Þ (7)

where WRMSD is an empirically determined weight.

Random Sampling Method

We also estimated a value of the configurational integral based

on a random sampling of the local energy landscape around

each docked conformation. As noted by one reviewer, this

method has much in common with the MINTA12 and Mining

Minima13 methods. One hundred thousand conformations were

generated with small random displacements from the docked

conformation. Translational displacements were chosen from a

random distribution with bounds 20.5 to 0.5 Å, rotational dis-

Figure 2. Analysis of RK vibrational entropy results. Each point

represents one cluster of docked conformations, with X for clusters

within 2 Å RMSD of the expected conformation, and a dot for con-

formations docked incorrectly. Results for all 22 compounds docked

to APS reductase are included. The lines show the upper and lower

values obtained for a random sample of points distributed within a

small constant volume. The random samples account for much of

the range seen in the RK analysis of the docking results.
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placements were generated by picking a random axis and rotat-

ing by a random angular displacement with bounds 20.5 to

0.5 rad, and torsional displacements were generated with a ran-

dom angular displacement with bounds of 20.5 to 0.5 rad.

The configurational integral was calculated as

~VBðri;XiÞ ¼

P
j

exp ðDE rj;Xj

� �� DE ri;Xið ÞÞ=RT� �
N

(8)

where the DE values are predicted energies from AutoDock and

the summation is performed over the N 5 100,000 samples j
around the conformation of minimum energy i. The vibrational

contribution to the free energy is then calculated as in eq. (1).

Binding Constants for Ligands with APS Reductase

Binding constants are available for 22 nucleotide analogues

bound to APS reductase (Table 1). Values of Ki were deter-

mined under single turnover conditions from the dependence of

the observed rate constant (kobs) at a given inhibitor concentra-

tion under conditions of subsaturating APS, such that Ki is equal

to the Kd.
10,14 Kinetic data were nonlinear-least squares fit to a

model of competitive inhibition. Each Kd reflects the average of

at least two independent experiments, and the standard deviation

was less than 10% of the value of the mean. The synthesis, char-

acterization, and biochemical analysis of the analogues used in

this computational study will be reported elsewhere (Carroll, K.

S. Manuscript in preparation).

Docking with AutoDock4

Docked conformations and predicted free energies of association

were obtained for 22 nucleotide analogues using AutoDock4

(http://autodock.scripps.edu). Coordinates for APS reductase

were obtained from the study by Stout and coworkers prior to

release—they are identical with subunit B in entry 2goy at the

Protein Data Bank.11 Coordinates for the enzyme were processed

in AutoDockTools by adding all hydrogen atoms, assigning

charges with the Gasteiger method,2,15 and merging nonpolar

hydrogen atoms. Coordinates for the nucleotides were con-

structed in InsightII starting with the conformation of the APS

nucleotide bound at subunit B in the crystallographic structure.

Charges were assigned in ADT and nonpolar hydrogen atoms

merged. Docking experiments were then performed in Auto-

Dock4 using the default docking parameters, with 2,500,000

energy evaluations for each docking experiment and finding 100

separate docked conformations for each nucleotide.

A test of the role of sugar conformation in the nucleotide was

performed using 50-ADP conformations from entries 1e19, 1m7g,

1o0h, and 1rdq from the Protein Data Bank (http://www.pdb.org),

which were judged to have different sugar conformations based

on the distance between C50 and N9, and the torsion angle

through atoms C50��C40��C10��N9. These ADP coordinates were

prepared and docked similarly to the other nucleotides.

Because crystallographic results are only available for the

ligand APS, RMSD values were calculated based on the distance

between the nucleotide atoms and the modeled nucleotide, which

was created to overlap the analogous atoms in the crystallo-

graphic conformation of APS. Thus, the RMSD values in this

paper refer to the similarity of the binding modes to the

observed mode of APS.

Calibration of Empirical Terms

Linear regressions and statistical analysis were performed using

the free software R (http://www.r-project.org), forcing the

regression to include the origin in all cases.

Results

Role of Sugar Conformation

The APS nucleotide conformation found in the crystallographic

structure has an unusual sugar conformation, which orients the

Table 1. Results of Docking.

DGobs

Best energy Largest cluster*

ntorN DGAD4 RMSD N DGAD4 RMSD

50AMP 28.07 2 28.73 4.04 61 27.96 0.81 6

7deazaAMP 27.51 1 28.36 3.46 77 28.14 0.81 6

50ADP 27.29 3 210.07 3.03 41 29.98 0.78 8

30deoxyAMP 27.21 3 28.29 3.13 81 28.29 0.81 5

50PMP 26.30 1 28.37 3.33 60 27.73 0.90 6

NmethylAMP 25.97 45 28.24 0.82 6

8aminoAMP 24.95 50 28.29 1.63 6

2aminoAMP 24.76 2 29.28 3.99 20 28.19 0.96 6

30phosphoAMP 24.76 4 29.07 3.21 7

2methoxyAMP 24.57 2 28.51 3.56 17 28.13 1.31 6

bmethAPS 24.22 57 29.34 0.81 8

20deoxyAMP 24.13 1 28.75 4.10 31 27.24 1.10 5

adenosine 23.93 5 25.58 3.64 27 24.44 0.69 5

dimethylAMP 23.90 13 28.15 3.03 6

50IMP 23.44 2 28.60 3.12 23 27.26 1.48 7

30deoxyadenosine 23.17 1 25.48 4.74 99 25.27 0.61 4

50phosphoribose 22.73 2 26.93 3.62 7 26.06 1.93 5

30AMP 22.27 8 29.25 3.87 6

20deoxyadenosine 22.00 4 25.90 4.78 13 24.90 3.17 4

ribose 21.77 2 23.65 9.99 56 24.29 1.73 4

adenine 21.76 21 24.13 2.81 23 23.81 1.49 0

50IDP 21.54 1 29.90 3.90 13 29.00 0.90 9

DGobs, the experimental free energy of binding; N, the number of

docked conformations in the cluster of best energy; DGAD4, the pre-

dicted free energy of binding from AutoDock; RMSD, the root mean

square difference in coordinates between docked conformation and anal-

ogous atoms in the crystallographic structure; ntor, the number of tor-

sional degrees of freedom in the molecule; and N, DGAD4, and RMSD

are provided for the cluster of best energy and the largest cluster.

Full names of the compounds, in the order presented here, are: 50-adeno-
sine monophosphate, 7-deaza-50-adenosine monophosphate, 50-adenosine
diphosphate, 30-deoxy-50-adenosine monophosphate, 50-purine monophos-

phate, N6-methyl-50-adenosine monophosphate, 8-amino-50-adenosine
monophosphate, 2-amino-50-adenosine monophosphate, 30-phospho-
50-adenosine monophosphate, 20-methoxy-50-adenosine monophosphate,

b-methylene adenosine 50-phosphosulfate, 20-deoxy-50-adenosine mono-

phosphate, adenosine, N6,N6-dimethyl-50-adenosine monophosphate, 50-
inosine monophosphate, 30-deoxyadenosine, 50-phosphoribose, 30-adeno-
sine monophosphate, ribose, adenine, 50-inosine diphosphate.

*Blank entries are cases where the best energy is the largest cluster.
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adenine base and phosphate-sulfur group unusually close to one

another. To test the importance of this conformation, we per-

formed docking experiments with four different conformations

of 50-ADP. All four of these conformations did not yield docked

conformations within 2 Å RMSD of the observed nucleotide

conformation. So for the entire work, we used exclusively the

sugar conformation found in the APS reductase structure.

Docking of Nucleotides to APS Reductase

For each of the 22 nucleotides, we performed 100 docking

experiments, and clustered the resulting conformations using a

2 Å threshold. The results, shown in Table 1, are typical of

results of AutoDock docking experiments. In 3/22 compounds,

the conformation with best energy was in the proper position,

but in the remaining 19, they were greater than 2 Å RMSD dif-

ferent than the crystallographic position. If, however, we look at

the best conformation in the largest cluster, 18/22 conformations

are within 2 Å of the expected location.

These types of results, which are commonly obtained for

AutoDock experiments, are the motivation for this work. Tight

binding ligands, such as 50-AMP (Fig. 1a), show excellent clus-

tering and weakly binding ligands, such as 30-AMP (Fig. 1b),

show poor clustering, although both show similar predicted bind-

ing energies. The docking protocol, as revealed in the clustering,

is capturing some aspect of the binding energetics that is miss-

ing from the current empirical free energy force field.

Vibrational Entropies from Cluster Size

Table 2 includes the results from regression analysis. Observed

binding energies were fit with models that included the predicted

AutoDock4 energy and one of the two clustering models: the

2 Å threshold model RMSD or the distance-weighted model

wRMSD. In both cases, modest improvement was seen. The

standard error of the predicted binding energy was reduced

slightly, and the multiple R-squared increased.

Table 3 shows the effectiveness of the cluster size models in

rescoring. The first column shows the poor predictive ability of

the basic AutoDock4 method: when looking at only the confor-

mation of best energy, only 3/22 identifies the proper conforma-

tion (these results are also shown in Table 1). The second and

third columns show the results when the cluster size measure is

included. Both methods show excellent predictive ability, rank-

Table 2. Results of Regression.

SdtErr MultRsq

Coeff (t value)

DGAD4
term Cluster term

DGAD4 1.806 0.864 0.577 (11.6) n/a

DGAD4 1 RMSD 1.737 0.881 0.658 (9.6) 1.148 (1.6)

DGAD4 1 wRMSD 1.709 0.884 0.658 (10.2) 1.098 (1.9)

DGAD4 1 RK 1.841 0.866 0.380 (2.2) 0.084 (0.6)

Colony 1.703 0.880 n/a 0.483 (12.4)

DGAD4 1 Vb 1.691 0.887 1.381 (3.4) 1.030 (2.0)

Table 3. Results of Rescoring.

AD4 wRMSD RMSD Best RK Fit RK Best colony Fit Vb Lowest RMSD

50AMP 4.04 0.83 0.81 0.81 4.04 0.93 0.95 0.78

7deazaAMP 3.46 0.80 0.81 0.81 0.87 0.80 0.85 0.77

50ADP 3.03 0.78 0.78 0.78 0.80 0.77 2.72 0.69

30deoxyAMP 3.13 0.90 0.90 0.81 3.47 3.13 0.81 0.77

50PMP 3.33 0.89 0.89 0.90 3.34 0.89 0.93 0.81

NmethylAMP 0.82 0.84 0.82 0.82 2.37 0.87 2.42 0.78

8aminoAMP 1.63 1.63 1.63 1.63 1.78 1.58 0.80 1.52

2aminoAMP 3.99 0.96 0.97 0.96 3.99 1.79 3.87 0.81

30phosphoAMP 3.21 3.21 3.20 3.48 3.50 3.80 3.08 2.76

2methoxyAMP 3.56 1.31 1.31 1.31 3.18 2.42 3.89 0.81

bmethAPS 0.81 0.81 0.81 0.81 0.78 0.73 2.61 0.63

20deoxyAMP 4.10 1.10 1.39 3.45 3.89 3.89 2.72 0.94

adenosine 3.64 0.68 0.69 3.64 2.60 3.37 4.81 0.59

dimethylAMP 3.03 2.69 3.22 3.03 4.41 3.84 2.71 1.35

50IMP 3.12 2.83 1.48 0.83 4.08 0.93 0.88 0.99

30deoxyadenosine 4.74 0.59 0.61 0.61 0.61 0.58 5.16 0.56

50phosphoribose 3.62 3.78 3.78 3.89 2.83 3.77 0.93 1.75

30AMP 3.87 3.82 3.87 3.87 3.95 5.16 3.96 3.02

20deoxyadenosine 4.78 4.78 4.78 4.69 2.39 2.79 1.79 1.12

ribose 10.62 1.72 1.73 1.62 10.62 1.71 1.55 1.55

adenine 2.81 2.81 2.81 6.44 2.97 1.49 1.58 1.48

50IDP 3.90 0.98 0.98 0.80 2.26 0.74 2.56 0.81

3 15 16 14 5 13 10 20/22

RMSD values are given for the docked conformation of best energy as determined by each method, with values

[2.00 Å in bold. The final line gives the number of conformations in each column with RMSD\ 2.00 Å.
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ing the expected conformation as the best in 15/22 or 16/22

cases.

The significance of this result may be estimated by compari-

son with a statistical method based on Bernoulli trials. We cal-

culated the fraction of dockings with RMSD less than 2 Å for

each compound, which ranges from 0.00 for 30-phospho-50-AMP

to 0.99 for 30-deoxyadenosine. Using these fractions, we can

estimate the expected number of correct conformations we

would obtain by randomly choosing a conformation for each

compound. This analysis estimates that random choice would

give a correct answer in 12.35 cases, with a standard deviation

of 1.72, out of the 22 compounds.

Vibrational Entropies from the RK Method

We also tested the RK method for evaluating the entropic com-

ponent for ranking the binding energies. The entropy calculated

by this method is typically in the order of tens of kcal/mol, and

so if it is simply added to the predicted energy from AutoDock4,

the binding energy is predicted to be positive in all cases. How-

ever, these energies are effective for reranking, as shown in the

fourth column in Table 3 (marked ‘‘best RK’’), correctly predict-

ing the conformation of 14/22 compounds.

A regression analysis of the RK entropy showed a slightly

worse prediction of the binding energy, as shown in Table 2,

and a very slight improvement in reranking, correctly predicting

5/22 compounds.

In our work with the RK method, we have noticed one

potential limitation: the evaluation of the configurational integral

is strongly influenced by the number of observations in each

cluster. The method attempts to evaluate the extent of favorable

regions of the local energy landscape by evaluating the bounds

on each cluster. However, because these clusters are composed

of a small number of individual observations, clusters with few

individuals will give smaller extents just through simple statis-

tics. Figure 2 shows a scatter plot of cluster size vs. the RK en-

tropy. The two lines show the upper and lower bounds of clus-

ters composed of a set of points randomly distributed within a

small constant volume of conformational space, and then used to

calculate the RK entropy. The random distribution captures

many of the features of the RK data, and so we might expect

that the RK method, when applied to clusters generated by

AutoDock, is more a reflection of the cluster size than of the

extent of the local energy landscape. Notably, in a recent publi-

cation,16 a direct measure of cluster size was used instead of the

estimated conformational extent in a similar study to estimate

vibrational entropies in the context of several scoring methods.

Conformational Free Energies from the Colony Method

The ‘‘Colony’’ method,9 originally developed to score candidate

loop conformations in protein structure prediction, uses the

RMSD values to the constellation of neighboring conformations

to evaluate a conformational free energy. In cases where a con-

formation has many close neighbors, the Colony energy will be

more favorable. As shown in Table 3, the Colony energy per-

forms well for the rescoring of docked conformations in APS re-

ductase, predicting the expected conformation in 13/22 cases.

The use of the Colony method for prediction of binding free

energies is problematic, because the constant term in the Colony

equation is difficult to calculate. However, if we assume that

this term in approximately the same across our test set of com-

pounds, a regression analysis of Colony energies with the

observed binding energies shows a moderate improvement over

the predicted energies from AutoDock4, as shown in Table 2.

Vibrational Entropies from Local Sampling of the

Energy Landscape

Ideally, we like to start with a single docked conformation and,

by analyzing the local energy landscape, evaluate this entropic

contribution to the binding strength. As a first step toward this

goal, we have randomly sampled the conformational space

around each docked conformation and calculated a configura-

tional integral based on the energy landscape. This is partially

effective for improving the prediction of free energies and in

reranking. The regression showed a small improvement in the

standard error, and the method was able to rank 10/22 com-

pounds.

Comparing two of the compounds from this study, we can

see how these configurational integrals capture the underlying

landscape. 50-AMP and 30-AMP have the same number and type

of atoms and the same number of torsional degrees of freedom,

but widely different experimental binding constants. In docking,

50-AMP gives a tight cluster of 61/100 docked conformations in

the expected location, whereas weaker-binding 30-AMP shows a

scatter of different, small cluster conformations.

Looking at the energy landscape around the docked confor-

mation, as shown in Figures 3 and 4, we find that 50-AMP has a

broader energy well than 30-AMP. Thus, small motions of 30-
AMP will run up against large steric contacts, whereas small

motions of 50-AMP do not encounter bad contacts.

Unfortunately, these types of correlations were difficult to

extract for other compounds, where the structural similarity was

not as great. Looking at the entire set, the greatest trend was a

strong correlation between the value of the configurational inte-

gral and the number of torsional degrees of freedom in the mol-

ecule. This is not a surprise, because this merely reflects the

magnitude of the entropy involved in freezing these torsional

degrees of freedom into a confined space of the active site. The

more subtle effect of the local shape of that active site, as seen

in the 50-AMP vs. 30-AMP landscapes, is overshadowed by this

larger effect.

Discussion

The ultimate goal of this work is to find a computationally trac-

table method to evaluate the vibrational entropy contribution of

binding, and thus improve our predicted binding energies. This

is essential for the future success of docking in computer-aided

drug design, where the common presence of false positives and

false negatives during virtual screening is a major problem in

current studies.

The results presented here suggest that the cluster size is an

effective and cheap method for evaluating these vibrational con-
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tributions, which significantly improve the identification of

proper binding modes within a single complex, and slightly

improve the ranking of different compounds. The Colony

method shows a similar success, which should come as no sur-

prise because it also uses a measure of cluster size to evaluate

the entropic contribution.

These cluster size methods, however, are not satisfying from

a conceptual level, because they are relying on some unknown

combination of the overall energy landscape and the details of

the docking protocol. Ideally, we like to develop a computation-

ally inexpensive method that analyses the energy landscape,

both locally and globally, and uses that information to identify

the major binding modes and affinities. The RK method was

designed with this goal in mind. It uses a simple method to esti-

mate the local conformational area that is available to a given

ligand. Unfortunately, the results shown in Figure 2 suggest that

the method is primarily a reflection of the cluster size, as

opposed to a quantification of the local energy landscape. The

RK term is highly dependent on the actual number of observa-

tions in each cluster and their orientation relative to one another

in conformational space, not just the overall conformational vol-

ume available to the conformations.

Our attempt to characterize the local energy landscape

through random sampling has provided some provocative, but

not definitive, results. The results presented in Figure 3 show

that there are significant differences in the local energy land-

scape for two forms of AMP, differences that correlate strongly

with the large difference in binding constants between these two

compounds. However, this principle did not generalize over the

entire set. Our current hypothesis is that the docking analysis,

and thus the clustering, is capturing information over a larger

area of conformational space that we sampled in this work, and

that sampling of this larger space will be necessary to develop

Figure 3. Analysis of the local energy landscape. Each point repre-

sents a small random change in conformation away from the most

favorable bound conformation. RMSD values are calculated between

the perturbed conformation and the starting conformation. 50-AMP

shows a wide basin, with very few unfavorable conformations until

they are a distance of about 0.5 Å RMSD from the bound conforma-

tion. 30-AMP shows a narrower basin, with many unfavorable con-

formations as distances less than 0.25 Å RMSD.

Figure 4. Analysis of the local translational energy landscape. Con-

formations were sampled in the range of 21 to 11 Å in the x and y
directions around the most favorable bound conformation. The

energy of the sampled conformations is shown here, with the outer

contour at 21.5 kcal/mol and additional contours at 21.5 kcal/mol

increments.
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an effective method for directly evaluating the conformational

entropy contribution to binding. However, use of the cluster size

in multiple docking experiments is a fast and easy way to esti-

mate this contribution, and is a viable method for improving

current docking results.
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