Biased Replacement Policies for Web Caches:
Differential Quality-of-Service and Aggregate
User Value*

Terence Kelly" Yee Man Chan Sugih Jamin
{tpkelly,ymc, jamin}@eecs.umich.edu
Electrical Engineering & Computer Science

Jeffrey K. Mackie-Mason
jmm@umich.edu
School of Information & Dept. of Economics

University of Michigan
Ann Arbor, MI 48109 USA

January 22, 1999

$Id: wlfu.tex,v 1.28 1999/01/22 23:33:22 tpkelly Exp $

Abstract

Disk space in shared Web caches can be diverted to serve some sys-
tem users at the expense of others. Cache hits reduce server loads,
and if servers desire load reduction to different degrees, a replacement
policy which prioritizes cache space across servers can provide differen-
tial quality-of-service (QoS). We present a simple generalization of least-
frequently-used (LFU) replacement that is sensitive to varying levels of
server valuation for cache hits. Through trace-driven simulation we show
that under a particular assumption about server valuations our algorithm
delivers a reasonable QoS relationship: higher byte hit rates for servers
that value hits more. We furthermore adopt the economic perspective
that value received by system users is a more appropriate performance
metric than hit rate or byte hit rate, and demonstrate that our algorithm
delivers higher “social welfare” (aggregate value to servers) than LRU or
LFU.

*Submitted to the Fourth International Web Caching Workshop, San Diego, California,
31 March-2 April 1999. Acceptance notification deadline is 15 February 1999. Details available
at http://www.ircache.net/Cache/Workshop99/.

tContact author.

Biased Replacement Policies January 22, 1999 1

1 Introduction

As World Wide Web usage has grown dramatically in recent years, so has the
recognition that shared Web caches—L2 proxy caches serving corporate- or
campus-sized LANs, and L3 caches embedded within wide-area networks—can
play an important role in reducing server loads, client request latencies, and
network traffic. Of the many Web cache replacement policies that have been
proposed and evaluated [2, 6, 18, 25], none attempt to provide variable levels
of service to clients and servers. This is surprising, because shared caches are
obvious loci for differential quality-of-service (QoS) mechanisms. Disk space in
shared caches is a strategically-placed resource, and it is reasonable to suppose
that QoS differentiation might be achieved by devoting it to those who value it
most.

It might be argued that because RAM and secondary storage densities are
rising, and prices falling, the efficient management of shared caches via clever re-
placement policies is unnecessary. We take the opposite view. Computing power
and prices have respectively risen and fallen for decades, yet scarcity remains a
problem for nearly every identifiable resource, at least in some contexts. Expe-
rience shows that system user demand often grows faster than system capacity.
Furthermore, it is widely observed that Web cache hit rates are proportional to
the logarithm of cache size, and that replacement policies differ substantially in
performance. A better replacement policy can therefore yield the same bene-
fits as a several-fold increase in cache size. Given that cache space is a scarce
resource, it is reasonable to apply economic principles and perspectives to the
problem of allocating it.

We adopt the view that a networked resource ultimately is only as good as its
users think it is. Therefore, we seek to design a feasible cache replacement policy
that provides greater aggregate value to system users than do existing policies.
This goal is known in the economics literature as social welfare mazximization,
and we think it is a better guide to design than conventional performance met-
rics such as hit rate and byte hit rate. To increase aggregate user value, we
want a cache to deliver better service to users who value caching more. As a
constraint on replacement policy design, we further require decentralized op-
eration, in the sense that all system components (clients, servers, and caches)
pursue “self-interest,” acting only upon local information. We make the last re-
quirement not only to avoid communication overheads but also because we are
interested in cache resources shared over a public internet, amongst autonomous,
not generally cooperative system users.

We will do better at increasing aggregate user value if we can obtain mean-
ingful measures of heterogeneous user values for service. In the work reported
below we simply assume that users provide reasonably accurate estimates of the
value they receive from caching, which are then used to bias a cache replace-
ment algorithm. Since users are generally self-interested, they need appropriate
incentives to provide accurate reports of their private valuations. One well-
understood approach to providing incentives for value revelation is through a
market or price system. In this paper we show that if reasonable valuation

Biased Replacement Policies January 22, 1999 2

information is available, then it can be used to improve caching performance
as measured by social welfare. We argue informally that if system users are
furthermore charged fees related to their declared valuations, we expect that
they will report reasonable values.

The use of price systems and market-like schemes for computer resource al-
location has been proposed sporadically for at least three decades [20]. Markets
are particularly appealing in distributed computing systems, because in some
models they compute optimal resource allocations in a decentralized (and hence
scalable) manner. One design method involves building “computational mar-
ket economies” directly inspired by microeconomic theory. Examples of this
approach include the Spawn distributed computing system [22] and Kurose &
Simha’s file allocation scheme [14]; see Wellman [24] for a review of “market-
oriented programming” and its application to distributed resource allocation.
An alternative design methodology, used in this paper, is to generalize a well-
known algorithm in an economically meaningful way.

We describe a simple generalization of the familiar least-frequently-used
(LFU) replacement policy that permits servers to increase the allocation of
shared cache space to the URLs they host, thereby reducing server workloads.
We show that if we assume a particular distribution of server valuations, our
algorithm delivers substantially higher aggregate value to servers than ordinary
LFU and LRU. Furthermore, high-value servers receive higher byte hit rates
than low-value servers. Finally, our algorithm requires neither global infor-
mation nor “altruism” in any system component, and can be retrofitted onto
existing Web caches and protocols.

2 Biased Replacement Policies

We propose aggregate user value as the design objective for Web cache replace-
ment policies. This objective contrasts with, for example, increasing byte hit
rate. Byte hit rate is easily measurable and may seem objective. However, it
ignores any heterogeneity in the valuation of caching services between system
users, or by a given user over time. There is ample evidence that users do
place heterogeneous value on network services, suggesting that it may be useful
to bias resource allocation according to these differential values. For example,
many dedicated private networks are built for users willing to pay more for lower
latency. Residential users are demonstrating quite different willingness-to-pay
for local access bandwidth (using analog, ISDN or xDSL phone lines, or coaxial
cable connections). Therefore, we proceed from the view that even if it is not
possible to perfectly observe all user values in order to maximize their sum, we
should try to design a system that is likely to approximate this goal.

In this paper we focus almost exclusively on one class of system users: Web
servers; in Section 4 we discuss a client-centered approach and some of the
difficulties surrounding it. Servers experience reduced workloads (and their
clients receive faster service) if their URLs are served from cache. To represent
server valuations for caching, suppose that when a cache hit on URL w occurs,

Biased Replacement Policies January 22, 1999 3

the server associated with u receives value equal to W, X size(u); equivalently,
upon a miss the server incurs a cost of W,, x size(u). We seek a replacement
policy that attempts to maximize the sum over all cache hits of W, x size(u).
In a more realistic model the cost of serving a request (and hence the value of
not serving it) would include a constant term and would depend on a server’s
current load as well as the size of the requested object. Our main intent in
this paper is to explore replacement policies sensitive to server valuations, so
we have favored simplicity over realism in our choice of cost and benefit models.
We plan to explore more sophisticated models in future work.

It is natural to describe cache replacement policies in terms of the sorting
algorithms implicit in them [25]. Conceptually, a Web cache maintains a list of
URLs sorted according to some key(s); a replacement policy removes URLs from
the tail of this list. For example, least-recently-used (LRU) replacement sorts
URLSs on time of last access, and LFU sorts on number of references. We define
server-weighted LFU cache replacement (swLFU) as follows: For every cached
URL u, let N, be the number of references to u since it entered the cache! and
let weight W,, describe the value per byte received by u’s server when hits on
u occur. The primary sort key in swLFU is W, x N,, and the secondary sort
key is time since last access. Note that if W, = 1 for all u, swLFU reduces
to ordinary LFU (with LRU as a “tie breaker”), and if W,, = 0 for all u it
reduces to LRU. See Figure 1 for a pseudocode description of the algorithm. By
sorting URLs on N,, x W,,, swLFU retains those URLs that contribute most to
aggregate user value per unit of cache space:

contribution of u to aggregate value W, X size(u) x N,
unit size size(u)

If servers must pay the cache for the value they receive (shown as an optional
feature in Figure 1), we may say that swLFU attempts to increase cache revenue.
The overhead of billing in a pay-for-service scheme need not be large; servers
might pay caches at long intervals, e.g., monthly.

Weights in swLFU represent the extent to which servers value cache hits,
and swLFU is sensitive to differences in server valuations. For simplicity, in this
paper we say that servers directly reveal W, to an swLFU cache. Is it plausible
to assume that servers will reveal truthful weight values? In general no, but
analyzing the extent to which servers would deviate from truth-telling in our
scheme is beyond the scope of this paper.? It is reasonable to argue that if W,

L As Breslau et al. note [5], it is important to distinguish between Perfect LFU and In-Cache
LFU. The former stores reference counts on all URLs, including those not in cache; the latter
remembers N, only for cached URLs. This paper discusses a variant of In-Cache LFU.

2The Revelation Principle of mechanism design (see, e.g., Mas-Colell et al. [16]) informs us
that without loss of generality we can restrict ourselves to selecting an allocation mechanism—
a market for buying higher sort keys—from those in which it i¢s optimal to tell the truth. By
restricting design to this set of incentive compatible mechanisms, we need not assess strategic
lying. Thus, it is easier to obtain definitive results. Incentive compatibility analysis is an
important facet of our ongoing work. See McAfee and McMillan [17] for a review of incentive
properties in auctions and Varian [21] for a discussion of mechanism design as applied to
“software agents.”

Biased Replacement Policies January 22, 1999 4

for each request
u < requested URL
if w is in cache
deliver u to client
record access time of u
N, « N, +1
[optional] charge (W, X size(u)) dollars to server of u
else
retrieve v and W, from server
deliver u to client
if size(u) < cache size
while (sum of sizes of cached URLSs + size(u) > cache size)
among cached URLs with minimal N x W, remove LRU item
place u in cache
record W, and access time of u
N, <1
end if
end for

Figure 1: The swLFU algorithm. N, is the number of references to URL u since
it entered the cache, and W, is a weight supplied by the server associated with
u indicating how much the server values cache hits; it may be “piggybacked” on
HTTP reply headers and so adds little to server-cache communication overheads.
Note that we must explicitly account for URLs larger than the cache. If an
implementation of swLFU stores records of cached URLs in a list sorted on
N x W and time of last access, worst-case time to serve a request is linear in the
number of cached URLs. By contrast, LRU implemented with a move-to-front
list requires only constant time to serve a request.

Biased Replacement Policies January 22, 1999 5

if (200 != $htcode || ($method ne "GET" && $method ne "HEAD") ||
$logtag eq "TCP_DENIED" || $logtag eq "TCP_NEGATIVE_HIT" ||
$logtag eq "TCP_CLIENT_REFRESH" || $logtag =~ /"UDP_/ ||
$logtag =~ /"ERR_/ ||
($url =" m! http:! &&
$url =~ m!\.cgi/I\.cgi$lcgi-[bwlinl|/cgi/I\?!i)) {
$number_skipped++;
next;

Figure 2: Perl code to filter NLANR access logs, used within loop that iterates
over all requests. The regular expression that identifies dynamic content is
similar to that used within the Squid cache. We reject requests with HTTP
reply code other than 200 because we are interested in successful requests for
data not present in browser caches. This code removed 38.1% of all requests at
the PA cache site, 41.7% at the SV site, and 36.3% at UC.

are tied to payments, servers will be deterred from reporting inflated weights.
Furthermore, provided that servers know they will receive more cache hits if
and only if they declare higher weight, they have an incentive to report weights
that reasonably approximate their true valuations.

3 Experiments

In order to evaluate the aggregate value and quality-of-service that swLFU de-
livers to servers, we conducted a number of trace-driven simulations comparing
it with LRU and unweighted LFU (using time since last access as a secondary
sort key). Asinput we selected three large request streams collected by National
Laboratory for Applied Network Research (NLANR) caches at Palo Alto (PA),
Silicon Valley (SV), and the University of Illinois at Urbana-Champaign (UC)
during the period 15 August—28 August 1998 [11]. We filtered the raw NLANR
access logs by removing all unsuccessful requests and requests for dynamic con-
tent; Figure 2 shows the actual Perl code used for this purpose. NLANR access
logs record the number of bytes written to clients for each request rather than
the size of URLs, and this field often varies across requests for the same URL
(HTTP headers vary in size, URLs change, and clients sometimes abort transfers
manually). We define the size of a URL to be the maximum recorded transfer
size among all requests for it. Table 1 displays summary statistics for our three
request streams. We make no attempt to model cache consistency or “freshness”
issues in any way; we assume that URLs remain unchanged for the duration of
our simulation. We furthermore do not attempt to model aborted client-cache
or cache-server connections. We wish to focus primarily on social welfare and
QoS issues, so we have chosen the simplest possible evaluation framework.

Biased Replacement Policies January 22, 1999 6

PA site SV site UC site
7 servers 114,381 124,698 105,710
URLs 3,412,105 3,744,274 2,884,598
7 requests 7,011,622 7,897,659 5,568,112
Bytes req’d 131,665,275,664 161,620,444,331 127,346,723,989

Value req’d 264,025,996,908,451 319,466,493,484,667 264,106,487,028,562

Infinite cache

size (bytes) 60,037,623,775 66,976,225,688 51,825,514,504
hit rate 51.3364 52.5901 48.1943
byte HR 54.4013 58.5596 59.3036
value HR 48.5422 57.4670 56.5745

Table 1: Summary statistics on our three request streams after filtering. Given
our assignment of weights to URLs, “value requested” refers to the total value
servers would receive if every request were served from cache, including first
requests for URLs; infinite cache value hit rate refers to the fraction of value
requested that would be delivered by a cache large enough to store all requested
URLs.

Popularity of URLs with N_u > 3 at three NLANR sites
15 August - 28 August 1998
1e+06 T T T T

DN—
S

100000 | 0C e]

5 10000]

£

2 1000 1

g

=]

s

€ 100}]

10 +

1 L
1 10 100 1000 10000 100000 1e+06
Popularity rank

Figure 3: URL reference counts follow a Zipf-like distribution. Shown are ref-
erence counts IV, for all URLs in our three request streams with N, > 3.

3.1 Assigning W,

In order to evaluate swLFU we must assign weights W, to the URLs in request
streams. Early experiments (not reported here) revealed that swLFU acts much
like LFU in terms of its hit/miss behavior if URL weights are drawn from
a narrow range, e.g., 1-10. The reason is the Zipf-like distribution of URL
reference counts (see Figure 3). Because N, values vary over five orders of
magnitude, weights W, must span a wide range if the replacement decisions
made by swLFU are to differ much from those of ordinary LFU. For example,

Biased Replacement Policies January 22, 1999 7

consider four URLs with reference counts of 1, 20, 400, and 8000. Observe
that no assignment of weights in the range 1-10 to these URLs will alter their
weighted sorted order as compared with their unweighted order. If servers are
not sufficiently heterogeneous with respect to cache hit valuations, swLFU may
offer relatively little advantage over LFU.

In our experiments we consider the case where servers are very heteroge-
neous. We do this by first assigning a unique integer identifier ID, to each
server, then assigning weights W to servers according to the formula

W —].OIDS mod 5

and finally setting W, = W for each URL u hosted by server s (a server is
simply the hostname or IP address component of a URL). The result is that
W,, are drawn from the set {1, 10, 100, 1000, 10000}.

3.2 Results

We simulated LRU, LFU, and swLFU caches of sizes of 1, 4, 16, 64, 256, and
1024 megabytes for each of our three request streams (in all cases one gigabyte
is less than 3% of infinite cache size). As measured by our primary performance
metric of aggregate value delivered to servers, swLFU performs noticeably better
than the other two algorithms. See Table 2 for all of our results and Figure 4 for
plots of “value hit rate” (VHR) as a function of cache size. Value hit rate is a
normalized measure of social welfare exactly analogous to byte hit rate (BHR).
Whereas BHR is the number of bytes actually served from cache divided by
the number of bytes requested, VHR is the value actually received by servers
divided by the value they would receive if every request, including first requests,
were served from cache. Note that in the special case of homogeneous valuations
(i.e., all W,, = k for some constant k), VHR is identical to BHR (just as BHR
equals hit rate in the special case where all URLs have equal size).

Particularly striking is the difference in value to servers between unweighted
LFU and swLFU: the latter delivers value hit rates between one third and one
half higher than those of the former for large cache sizes (boxed data in Table 2).
A value-aware algorithm can generate substantially higher social welfare than
its value-insensitive cousin.

As expected, swLFU favors URLs with high weights. A positive correla-
tion between service quality (byte hit rate) and weight value is evident when
we examine the byte hit rates on URLs in each of our five weight categories
(Figure 5). In a sense, our results are based on a sample size of one, i.e., one
assignment of weights to URLs, and this accounts for the anomalous UC QoS
curve. The relationship between W, and byte hit rate is as we would expect for
the other two traces. As shown in the lower part of Figure 5, for the SV data a
tenfold increase in W, generally corresponds to a doubling in byte hit rate.

Of course, because swLFU does not consider all hits to be equal, it improves
value hit rate at the expense of conventional performance metrics. For most
cache sizes, LRU and LFU obtain hit rates and byte hit rates roughly twice as

Biased Replacement Policies January 22, 1999 8

cache size (megabytes)
1 4 16 64 256 1,024

PA trace
LRU 1.24 3.54 9.09 15.09 20.32 24.95
VHR LFU 1.53 3.89 8.73 13.36 16.09 | 20.62
swLFU 2.78 6.50 13.93 18.56 22.74 | 31.55

LRU 1.25 4.71 1279 20.12 26.33 31.98
BHR LFU 1.85 5.76 14.57 1897 21.38 26.54
swLFU 0.85 2.59 6.62 8.22 9.39 12.20

LRU 1.88 3.59 6.17 945 1311 18.37
HR LFU 271 4.74 735 10.15 13.01 17.28
swLFU 1.55 2.63 4.07 5.13 6.51 9.90

SV trace
LRU 3.53 9.07 14.75 22.94 29.09 35.00
VHR LFU 3.99 11.74 16.55 20.11 25.25 | 28.84
swLFU 7.02 14.13 19.51 27.06 33.33 | 39.14

LRU 2.29 5.86 10.66 18.57 31.63 37.22
BHR LFU 3.13 710 11.34 1531 2159 29.95
swLFU 1.95 4.63 7.22 9.67 12.28 14.36

LRU 3.15 5.40 8.58 12.10 16.01 21.57
HR LFU 4.27 6.74 9.87 13.26 16.15 19.72
swLFU 2.43 4.30 6.25 7.96 9.75 12.77

UC trace
LRU 259 7.27 1507 2351 33.13 39.83
VHR LFU 352 845 15.04 22.36 29.58 [34.66
swLFU 4.93 1145 21.11 30.06 36.58 | 43.81

LRU 4.40 9.57 16.71 26.43 36.08 42.06
BHR LFU 496 11.01 1811 24.05 31.87 37.66
swLFU 2.80 6.49 10.83 15.11 18.85 23.54

LRU 4.26 744 10.73 13.79 17.18 22.20
HR LFU 6.54 9.08 11.53 1391 16.48 19.72
swLFU 4.08 5.91 7.75 9.45 11.51 13.86

Table 2: Value hit rate (VHR), byte hit rate (BHR), and hit rate (HR) as func-
tion of cache size for LRU, LFU, and swLFU on three request streams. Boxes
emphasize that swLFU yields markedly higher value than LFU at a reasonable
cache size.

Biased Replacement Policies

January 22, 1999

PA site 8/15-8/28

SWLFU ——
w0l LRU

30

20

value hit rate (%)

10

16 64 256 1024
cache size (MB)

SV site 8/15-8/28

SWLFU ——

20| LRU -~

value hit rate (%)

16 64 256 1024
cache size (MB)

UC site 8/15-8/28

SWLFU ——

40

value hit rate (%)

10 +

Figure 4: Value hit rate as function of cache size for LRU, LFU, and swLFU at

three NLANR cache sites.

16 64 256 1024
cache size (MB)

Biased Replacement Policies January 22, 1999 10

Quality-of-Service as function of URL weight

50 ‘ : ; ;
p—
45 [SV e -
uc - -
40 t .
35 | q

byte hit rate (%)
N
(4]

20 R
15 R
10 b
5«]
0 L
1 10 100 1000 10000
URL weight
UC data anomaly: Infinite cache byte hit rates as f(weight)
80 T T T
75 b
< 70 4
XX
2
S 65t 1
=
g
a2 60+ 4
55 R
50 L
1 10 100 1000 10000
URL weight
QoS as f(weight) at SV site (log scales)
40 g
30 R
< 201 R
S
Q
©
E
o 10 R
=
o
4+]
1 10 100 1000 10000
URL weight

Figure 5: Quality-of-service as a function of W,,.

Upper figure: byte hit rates for URLs in each of five W, categories, 1024-MB
cache simulations. The anomalous UC data point for W, = 100 is purely the
result of chance. Middle figure: infinite cache byte hit rates by weight category
for UC site. The relationship between W, and byte hit rate is unusual for the
UC trace because infinite cache byte hit rates are remarkably high among URLs
assigned weight 100. Lower figure: data for SV site only, logarithmic vertical
axis.

Biased Replacement Policies January 22, 1999 11

high as swLFU. We have argued that aggregate value to system users is a more
appropriate performance metric than hit rate or byte hit rate, and our results
show that swLFU provides both greater value and reasonable QoS differentia-
tion to servers. A complete cost/benefit model, which is beyond the scope of
this paper, would account for costs incurred and value received by all system
users, including Web clients (who experience higher latency under swLFU) and
network users (who encounter higher traffic due to swLFU’s lower byte hit rate).
Our results demonstrate that a familiar replacement policy can be modified to
yield greater social welfare under a very simple and incomplete cost/benefit
model. It is reasonable to suppose that value-sensitive algorithms can be de-
signed to improve aggregate user value under more realistic assumptions, and
this is the central goal of our ongoing work.

4 Client Bias

We might define a client-weighted LFU replacement policy (cwLFU) with pri-
mary sort key V,, given by

clients ¢

where n;, is the number of references to u by client i, w; is the value client 4
receives per requested byte when a hit occurs on u, and therefore w; x size(u)
is client ¢’s fee in a pay-for-hits implementation. This definition assumes that
client value due to reduced latency is directly proportional to URL size; it is
more reasonable to assume that latency will include a constant term representing
connection setup time as well as a linear term representing transfer time. Again,
at this stage we favor simplicity over realism in our cost/benefit models.

We do not present experimental results on cwLFU for two reasons. First,
we rely on NLANR data for our empirical evaluations, and because of the way
client IP addresses are anonymized in NLANR access logs it is impossible to
track individual clients for more than one day, so trace-driven simulations of
cwLFU for longer periods are impossible.

A second difficulty with cwLFU is more subtle. If we define the mean
weighted value of a URL as V,, = V,, /N, where N, = Y, n;,, cwLFU’s pri-
mary sort key is V', x Ny, i.e., V,, plays the same role as W, in swLFU. Clearly,
if cwLFU is to differ significantly from unweighted LFU, the values of V,, must
be different; conversely if V,, is similar for all URLs then cwLFU will cache
roughly the same items as LFU. If client weights w; are entirely independent
of reference counts n;,, the central limit theorem causes V', to converge to the
expected value of the distribution of the w;. To illustrate this phenomenon,
we obtained n;, data from an NLANR access log, randomly assigned to clients
integer weights w; in the range 1-10, and computed V= Vu/N, for URLs
with N, > 50. As shown in Figure 6, values of V,, cluster strongly around 5.5.
The net effect, confirmed by early experiments not reported here, is that by any
performance metric cwLFU and ordinary LFU perform similarly.

Biased Replacement Policies January 22, 1999 12

Mean weighted value of URLS with N_u > 50
200

SV cache site 8/26/98 ——

180 |- -

160 |- 4

number of URLS

5 6 7
mean weighted value

Figure 6: Histogram of mean weighted values V', for popular URLs in NLANR’s
Silicon Valley L3 cache request log of 26 August 1998 (a busy day at a busy site)
for a particular random assignment of w; values to clients. Other assignments
of w; yield qualitatively similar results.

It is reasonable to suppose that in the real world a correlation exists between
the extent to which clients value faster service and the information they request;
we might imagine that Wall Street Journal readers are wealthy and impatient,
whereas the National Enquirer’s audience has less money and more patience. If
this is true, then the “central limit theorem effect” might pose less of a problem
for cwLFU. However plausible they may be, correlations between n,; and w;
are purely speculative, and we do not attempt to model them in this paper.
In future work we hope to devise cache management schemes sensitive to both
client and server valuations; at this point we can only report that simple variants
of weighted LFU do not appear promising as client-value-sensitive replacement
policies.

5 Conclusions & Future Work

We have shown that it is straightforward to generalize LFU to take into account
heterogeneous server valuations of cache hits. Our simulation results demon-
strate that under a particular artificial assignment of valuations to servers in
actual trace data sets, swLFU delivers higher aggregate value to servers than
LRU or LFU, and furthermore can provide reasonable variable QoS to servers.

In future work we shall explore more sophisticated assumptions about server
behavior. Specifically, we conjecture that if servers adaptively adjust their re-
ported hit valuations W, in response to changes in workload, swLFU can provide
a decentralized dynamic load balancing mechanism (see Karaul et al. [13] for a
quasi-economic Web server load balancing scheme).

Biased Replacement Policies January 22, 1999 13

We are also investigating biased generalizations of other well-known replace-
ment policies. For instance, LRU is described by a move-to-front list dynamic,
and it is easy to generalize this as a move-toward-front rule: upon a cache hit,
the requested URL moves toward the head of the list a distance determined by
a weight factor. URLs with higher weights flee the grim reaper at the tail of the
list more rapidly. Our results show that LRU obtains higher byte hit rates than
LFU for large cache sizes, so it may be a more promising algorithm to generalize
than LFU.

Finally, incentive compatibility analysis will figure heavily in our future ef-
forts.

6 Acknowledgments

Professor Michael Wellman provided valuable guidance to this project, and we
thank Jonathan Womer for many useful discussions. Bill Walsh supplied valu-
able feedback on a late draft on very short notice, and David Ortiz offered a
novel perspective on weighted LFU caching.

DARPA/ITO award F30602-97-1-0228 funded most of our work. A RAND
Corporation information survivability project led by Bob Anderson and co-
sponsored by NSA, DARPA, and the Assistant Secretary of Defense for C3I
provided substantial early support.

Trace data used in our simulations were collected by the National Laboratory
for Applied Network Research under National Science Foundation grants NCR-
9616602 and NCR-9521745.

Tom Hacker of the University of Michigan Center for Parallel Computing
made available computing resources which greatly facilitated our experiments.

References

[1] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira.
Characterizing reference locality in the WWW. Technical Report TR-96-
11, Boston University Computer Science Department, 1996. Available on
the Web at http://www.cs.bu.edu/techreports/.

[2] Martin F. Arlitt and Carey L. Williamson. Internet web servers: Workload
characterization and performance implications. IEEE/ACM Transactions
on Networking, 5(5):631-644, October 1997.

[3] Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crovella. Changes
in Web client access patterns: Characteristics and caching implica-
tions. Technical Report BUCS-TR-1998-023, Boston University Com-
puter Science Department, November 1998. Available on the Web
at http://www.cs.bu.edu/techreports/. This is a follow-up to Refer-
ence [9].

Biased Replacement Policies January 22, 1999 14

[4]

[8]

[10]

[11]

[12]

[13]

Paul Barford and Mark Crovella. Generating representative Web work-
loads for network and server performance evaluation. In Proceedings of the
1998 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pages 151-160, July 1998. Available on
the Web at http://www.cs.bu.edu/faculty/crovella/paper-archive/
sigm98-surge.ps.

Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. On
the implications of Zipf’s law for web caching. Available on the Web at
http://www.cs.wisc.edu/"cao/papers/.

Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In
Proceedings of the 1997 USENIX Symposium on Internet Technology and
Systems, pages 193-206, December 1997. Tech report version available on
the Web at http://www.cs.wisc.edu/"cao/papers/gd-size.html.

Ron Cocchi, Scott Shenker, Deborah Estrin, and Lixia Zhang. Pricing in
computer networks: Motivation, formulation, and example. IEEE/ACM
Transactions on Networking, 1(6):614-627, December 1993. A later draft,
dated 15 May 1995, also exists.

Mark E. Crovella and Azer Bestavros. Self-similarity in world wide
web trafficc Evidence and possible causes. IEFEE/ACM Transac-
tions on Networking, 5(6):835-846, December 1997. Available on
the Web at http://www.cs.bu.edu/faculty/crovella/paper-archive/
self-sim/journal-version.ps.

Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella. Characteristics
of WWW client-based traces. Technical Report BU-CS-95-010, Boston
University Computer Science Department, July 1995. Available on the Web
at http://www.cs.bu.edu/techreports/. See Reference [3] for a follow-
up study.

Peter B. Danzig, Richard S. Hall, and Michael F. Schwartz. A case for
caching file objects inside internetworks. Technical Report CU-CS-642-
93, University of Colorado at Boulder Department of Computer Science,
March 1993. Available on the Web at http://catarina.usc.edu/danzig/
ftp.sigcom93.ps.Z.

National Laboratory for Applied Network Research. Anonymized access
logs. ftp://ftp.ircache.net/Traces/.

Bernardo A. Huberman, Peter L. T. Pirolli, James E. Pitkow, and Rajan M.
Lukose. Strong regularities in world wide web surfing. Science, 280:95-97,
3 April 1998.

Mehmet Karaul, Yannis A. Korilis, and Ariel Orda. A market-based archi-
tecture for management of geographically dispersed, replicated web servers.
In Proceedings of the First International Conference on Information and
Computation Economics (ICE-98), pages 158-165, October 1998.

Biased Replacement Policies January 22, 1999 15

[14] James F. Kurose and Rahul Simha. A microeconomic approach to optimal
resource allocation in distributed computer systems. IEEE Transactions
on Computers, 38(5):705-717, May 1989.

[15] Carlos Maltzahn, Kathy J. Richardson, and Dirk Grunwald. Performance
issues of enterprise level web proxies. In Proceedings of the 1997 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 13-23, June 1997. Available on the Web at
http://www.cs.colorado.edu/homes/carlosm/public html/mypapers.html.

[16] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeco-
nomic Theory. Oxford University Press, 1995. ISBN 0-19-507340-1.

[17] R. Preston McAfee and John McMillan. Auctions and bidding. Journal of
FEconomic Literature, XXV:699-738, June 1987.

[18] Luigi Rizzo and Lorenzo Vicisano. Replacement policies for a proxy cache.
Technical Report RN/98/13, University College London Department of
Computer Science, 1998. Available on the Web at
http://www.iet.unipi.it/"1uigi/1rv98.ps.gz.

[19] Sheldon Ross. Stochastic Processes. John Wiley & Sons, second edition,
1996. ISBN 0-471-12062-6.

[20] I. E. Sutherland. A futures market in computer time. Communications of
the ACM, 11(6):449-451, June 1968.

[21] Hal R. Varian. Economic mechanism design for computerized agents. In
Proceedings of the First USENIX Conference on Electronic Commerce, July
1995. Available on the Web at http://www.sims.berkeley.edu/ hal/
people/hal/papers.html.

[22] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffery O.
Kephart, and W. Scott Stornetta. Spawn: A distributed computational
economy. IEEE Transactions on Software Engineering, 18(2):103-117,
February 1992.

[23] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible
and proportional-share resource management. In Proceedings of the First

Symposium on Operating System Design and Implementation, November
1994.

[24] Michael P. Wellman. Market-oriented programming: Some early lessons.
In S. Clearwater, editor, Market-Based Control: A Paradigm for Dis-
tributed Resource Allocation. World Scientific, 1996. Available on the Web
at http://ai.eecs.umich.edu/people/wellman/Publications.html.

[25] Stephen Williams, Marc Abrams, Charles R. Standridge, Ghaleb Abdulla,
and Edward A. Fox. Removal policies in network caches for world-wide
web documents. In Proceedings of ACM SIGCOMM ’96, pages 293-305,
1996.

