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ABSTRACT
Prior theory and empirical work emphasize the enormous
free-riding problem facing peer-to-peer (P2P) sharing net-
works. Nonetheless, many P2P networks thrive. We ex-
plore two possible explanations that do not rely on altru-
ism or explicit mechanisms imposed on the network: direct
and indirect private incentives for the provision of public
goods. The direct incentive is a traffic redistribution effect
that advantages the sharing peer. We find this incentive
is likely insufficient to motivate equilibrium content shar-
ing in large networks. We then approach P2P networks as a
graph-theoretic problem and present sufficient conditions for
sharing and free-riding to co-exist due to indirect incentives
we call generalized reciprocity.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.1.2 [Models and Principles]: User/Machine
Systems—human factors; H.4.m [Information Systems]:
Miscellaneous

General Terms
Design, Human Factors, Theory, Economics

Keywords
peer-to-peer, p2p, networks, file-sharing

1. INTRODUCTION
Studies of peer-to-peer (P2P) networks as static games

predict these systems should suffer from enormous free-riding—
peers download but do not upload—in the absence of altru-
ism or explicit incentive mechanisms to encourage content
uploading [11]. The fact that many peers free ride is also
empirically confirmed [13, 1, 7]. However, in practice P2P
networks such as eDonkey, KaZaa, and Gnutella, persist and
flourish despite free-riding. One possible explanation for this
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puzzling phenomenon is that altruism might sustain these
networks. Rather than rely on this deus ex machina, we
explore two alternative explanations: direct and indirect in-
centives for the private provision of public goods.1 2 Our
immediate goal is to understand economic conditions under
which networks of self-interested participants might be sus-
tainable despite equilibrium free-riding. Our ultimate goal
is to develop a plausible model of P2P behavior in order to
evaluate various proposed mechanisms to increase sharing,
and to develop our own mechanism for the same.

In the next section, we investigate a direct private incen-
tive to provide public goods proposed by Krishnan et al. [9],
who suggest that sharing redistributes traffic in the network
to the advantage of the sharing peer. We explore, in Section
3, generalized reciprocity as an indirect incentive explana-
tion of both sharing and free riding on P2P networks. We
close with a discussion of limitations in our work, and plans
to continue this research.

2. DIRECT PRIVATE INCENTIVES
Providing files (sharing) to a P2P network is an instance

of the private provision of public goods [14].3 Sharing pro-
vides direct benefits to others for which, in the absence of an
explicit incentive mechanism, the sharing peer is not com-
pensated. One suggested explanation for the nonetheless
observed sharing is that in the process of providing a bene-
fit to other users, a sharing peer is simultaneously obtaining
a direct private benefit, similar to the personal incentive to
donate, for example, to support a public radio station. Kr-
ishnan et al. [9] model a particular form of this, which we
call the “offload effect”: sharing redistributes traffic in the
network to the advantage of the sharing peer. In a P2P net-
work, suppose peers A and B each want a different file, but
both files are available from peer C. If peer A has the file

1We are not claiming that altruism does not exist or is unim-
portant. Rather, taken as a primitive, it is not susceptible
to analysis, and does not help answer design questions. For
example, if sharing occurs solely due to axiomatic tastes for
altruism, we will have nothing to say about how to encourage
increased sharing, unless we have a story about why people
want to be altruistic: that is, what incentives do they have
for sharing?
2Some P2P protocols impose“altruistic”(always on) sharing
as a default setting. It may be a good design principle to
encourage people to act as if they were altruistic, but that
leaves open the incentives question: why do they not change
the default setting?
3We adopt the widely-used convention of referring to up-
loading as sharing.



that B desires, by offering to share with B agent A may get
her file sooner from C, by offloading some of the demand on
C.4

Krishnan et al. show that an offload effect could support a
network in which all peers share is a dominant strategy equi-
librium. After modeling the traffic redistribution and net-
work congestion more precisely, we find it implausible that
the offload effect alone is sufficient to motivate the amount
of sharing seen on successful P2P networks.

2.1 Modeling offloading
We construct a four-period game. In period 1, n ≥ 3

players join the network. In period 2, each player chooses
whether to share or not, at a fixed cost of c or zero, respec-
tively. Capacity is fixed and scaled so that a player can share
at most one unit in a sharing period. In period 3, each player
requests a unit of content from the network. The network
protocol randomly assigns each request to one player who
has decided to share in period 2. For consistency we adopt
the important simplifying assumption made by Krishnan et
al. that every node has at least one file wanted by any other
node. Suppose k ≥ 2 players have decided to share their con-
tent in period 2; then the probability that player i’s request
is assigned to sharing player s is 1

k
. If multiple requests are

assigned to a sharing player, she randomly chooses one to
serve. In period 4, files are shared, and payoffs are realized.

Suppose in period 3, i’s request, together with m other
requests, has been assigned to player s. s will pick i’s request
to serve with probability 1

m+1
. Given that the event of any

peer’s request being assigned to a sharing peer is 1
k
, this

event follows a Bernoulli distribution, and the event that m
other players will be assigned to node s follows a binomial
distribution, m ∼ b(n − 2, p).5

Consider an arbitrary node i deciding whether to share.
She calculates the expected value from sharing or not (uS

i ,
uN

i ). These values are defined as the probability of obtaining
one unit of content. If i shares, the total number of sharing
nodes is k + 1; if she doesn’t, it’s k. Thus, the probability
that another peer will choose the same source node as i is p =

1
k+1

if i shares, and q = 1
k

if i does not share. Now we need
to calculate the expected value for i of being served by s, or
E[(m+1)−1]. We calculate this as sum of the probabilities of
m taking on each possible value on {0, . . . , n− 2}, times the
probability that i gets a file from s when there are exactly
m other demanders on s. Thus, the expected values, uS

i and
uN

i , are:6

uS
i (n, p) = Σn−2

m=0C
m
n−2p

m(1 − p)n−2−m 1

m + 1

=
1 − (1 − p)n−1

(n − 1)p
(1)

and similarly,

4We take a game-theoretic approach to studying incentives
in P2P networks, and will use graph theory in the next sec-
tion, so we use peer, node and player interchangeably.
5The number of trials is n − 2 because there are n down-
loading agents, but the set of possible other agents than i
downloading from s excludes i and s.
6Equations (1) and (2) are a simplified approximation. The
difference is qualitatively unimportant; see section Lemma
3 - explaining footnote 6 in the appendix.

uN
i (n, q) =

1 − (1 − q)n−1

(n − 1)q
, (2)

where Cy
x is the number of combinations “x choose y”. We

define the marginal benefit of sharing (MBS) as the differ-
ence between uS

i and uN
i :

MBSi(n, p, q) = uS
i (n, p) − uN

i (n, q). (3)

2.2 Privately provided public good
If the sharing cost is low enough, nodes will share to obtain

the offloading benefit.

Lemma 1. MBSi(n, p, q) > 0.

Proof. See appendix.

Lemma 1 implies if the cost of sharing, c, is less than
MBS(n, p, q), there is a dominant strategy equilibrium in
which all peers choose to share. This verifies that our model
is consistent with the results in [9].

2.3 How large is the offloading benefit?
It is straightforward to show that MBS is decreasing in

the number of other sharing nodes, k, so the incentive for
a marginal node to share decreases in larger networks. But
the equilibrium outcome of the game depends on the relative
values of c and MBS. Without an empirical estimate for
c, it is difficult to determine whether the offload effect is
meaningful for a P2P network. We can, however, gain an
appreciation for the magnitude of the offloading effect by
analyzing it as a percentage increase in a non-sharing peer’s
utility. Denote this increase by Gi:

Gi(n, p, q) =
MBS(n, p, q)

uN
i (n, q)

(4)

Lemma 2 below characterizes the asymptotic properties
of Gi. As n → ∞, Gi converges to 1

k
. For example, when

k = 30, by sharing her content, a player can only increase
the probability of obtaining one unit of content by 3.3%.
It seems implausible that in medium or large networks this
small gain would motivate many peers to share their content.
Further, since k ≤ n by definition, we see that Gi converges
to zero as k increases, which means the benefit of sharing
vanishes the more other peers are sharing.

Lemma 2.

lim
n→∞

Gi =
1

k
.

Proof. See appendix.

In Figure 1 we plot Gi against n, for various small values of
k. This illustrates our point that the gain of sharing becomes
independent of the number of peers in large networks, and it
decreases in the number of nodes that are sharing their con-
tent. We conclude that although the offloading effect may
play some role in P2P networks, the private incentives it sug-
gests are likely insufficient to motivate equilibrium content
sharing in large networks.



100 200 300 400 500 600 700
n

0.2

0.4

0.6

0.8

1
Gi The gain of sharing

k=2 k=4 k=6 k=8 k=10 k=12

Figure 1: The gain of sharing for player i.

A

CB

1

1

1

1

Figure 2: A simple example

3. INDIRECT PRIVATE INCENTIVES: GEN-
ERALIZED RECIPROCITY

We turn to a different candidate explanation for sharing:
generalized reciprocity in a repeated game.7 In BitTorrent,
a form of direct reciprocity is implemented by embedding a
tit-for-tat type of strategy in the client software [3]. This
provides a form of direct incentive for uploading, similar to
the offloading incentive we studied in the previous section.
One type of indirect incentive for contributing to the public
good is “generalized reciprocity” [10]:

I’ll do this for you without expecting anything
specific back from you, in the confident expecta-
tion that someone else will do something for me
down the road. (p. 21)

Generalized reciprocity also plays a role in motivating knowl-
edge sharing [8]. In a P2P network, generalized reciprocity
may be loosely described as a cycle in the directed graph in
which each peer contributes to second peer, but receives a
contribution from a third peer. We shall formally charac-
terize conditions on the topology of the graph such that it
has an equilibrium in which some self-interested peers con-
tribute while others free-ride. Generalized reciprocity can
arise when direct reciprocity is impossible, for example when
demands between node pairs are very asymmetric.

7Contribution to public goods may be motivated by various
indirect incentives other than generalized reciprocity, e.g.,
reputation, self-image, and popularity in the community. To
implement such motivators, the system requires some kind
of individual identity, which is often not available in peer-to-
peer file-sharing systems. Participants usually stay anony-
mous. For systems in which these motivations are available,
we speculate that there will be more contributors than in
systems for which no such motivations exist.

We suppose there is no private benefit from sharing (i.e.,
no altruism, and no offloading effect), but that peers are
interconnected through a network topology, and anticipate
participating for an indefinite length of time. Feigenbaum
and Shenker [5] suggested graph theory to model incentives
in network problems because peer incentives might affect the
formation of the graph. We follow Shneidman and Parkes
[12] who suggest graph configuration may affect incentive
structures. In particular, we characterize a family of graphs
that support a generalized reciprocity equilibrium. Like us,
Afergan and Sami [2] use repeated games theory to study
problems on network topologies.

We illustrate with the simple graph in Figure 2. Each
labeled, directed link represents the direction and volume
of the traffic between the two end nodes of the link. In a
repeated game of indefinite duration, B and C download a
file from each other and both upload a file to A. A, however,
is a free rider. Suppose peers restrict themselves to either
sharing with every node or not sharing at all.8 Suppose
further that the benefit of receiving one unit of content is
significantly higher than the cost of sharing it. With these
assumptions B and C sharing is an equilibrium as long as
they are receiving enough content. If say, B stops sharing, C
will find it unprofitable to share, hence will also stop sharing.
Thus the network breaks down due to B’s deviation.

3.1 Definitions and assumptions
We model peers’ interactions as an infinitely repeated

game with a fixed time discount factor δ adopted by all
peers.9 A set of demand relationships among the n peers
in the network is given exogenously, and remains constant
through out. These relationships can be represented as a
directed graph, D. Loosely speaking, a directed graph is a
set of nodes connected by directed edges [4]. A path is a
sequence of consecutive nodes and edges, with no nodes re-
peated. A path which ends at the node it begins is called a
cycle. Two cycles are independent if they do not share any
nodes in common. A graph is connected if there is an undi-
rected path connecting every pair of nodes. A graph that
is not connected can be divided into connected components,
each of which is a connected subgraph. For example, Fig-
ure 3 is a directed connected graph with independent cycles
(1, a12, 2, a23, 3, a34, 4, a41) and (10, a1011, 11, a1110). The link
label values are the demand quantities. The graph has an
equivalent representation as an n×n adjacency matrix with
each element σij the demand from peer j to peer i.

3.2 Game setup
For simplicity, we define matrix B as a binary demand

matrix obtained by converting the positive link intensities
in D into 1, with element bij the demand from j to i. We
focus on an arbitrary component of the graph with the ad-
jacency matrix K associated with it. K is thus connected
and consists of k players. K remains constant through out
the game and its member peers have complete information
of K. In each stage game, permissible actions for player i,
aij , are defined as follows,

8We remove this assumption for Proposition 2.
9With an appropriate increase to the discount rate, we can
accommodate a finite but random time in the network,
rather than an infinite horizon.



1

2

3

4

5

6

7

8

9
10

11

a
12

a
23

a
34

a
41

a
35

a
16

a
17

a
48

a
49

a
10_9

a
10_11

a
11_10

Figure 3: An example of equilibrium action graph

aij =

{
1 if σij 6= 0 and i shares to j
0 if σij = 0 or i does not share to j

In each round, the stage game is played and then payoffs
are realized. Players observe all players’ actions in the pre-
vious round before the next round starts. Each peer receives
a positive value of v when she obtains a unit of file, and in-
curs a positive cost of c when she shares a unit of file to any
other peer.

In round t, the actions chosen by the peers constitute a
k×k action matrix, A, which again corresponds to a directed
graph. For node i, Σk

i=1aij is its out-degree and Σk
i=1aji is

its in-degree. When Σk
i=1aij = 0, which means peer i does

not share her file to any other peer, she is considered a free-

rider; otherwise she is considered a sharing peer. We also
define a parameter ρi as the ratio between i’s out-degree and

in-degree, ρi =
Σk

i=1aij

Σk
i=1

aji
.

3.3 Equilibrium analysis
We propose that an action matrix A∗ can be sustained in

equilibrium, if its corresponding graph satisfies the following
properties,

P.1 No nodes have an in-degree of zero, and maxi{ρi} <
δv
c

.

P.2 Any two cycles in the graph are independent.

P.3 Any leaf node is connected to a node that par-
ticipates in a cycle.

Figure 3 shows a graph that satisfies properties P.1–P.3.
The condition on the out-degree/in-degree ratio in P.1 lim-
its consideration to networks in which users get enough net
benefit that participating is better for them than is dropping
out of the network. This condition can surely be relaxed to
accommodate altruistic users. Property P.2 is purely to sim-
plify the analysis, and we know from examples that there are
networks in which users participate in more than one cycle
and yet the result of our proposition still holds. We are

1

3 2

4 5

Figure 4: An example of an unsustainable graph

working to relax this condition in ongoing research. Prop-
erty P.3 rules out a type of agents who are not leaf nodes and
do not participate in any cycles, e.g., node 4 in Figure 4.
Node 4 would always be better off to stop uploading to node
5 since there is no generalized return on the contribution.

We claim that free-riding on such a graph may exist in
equilibrium even without altruistic players or the offload-
ing effect. We formalize this intuition in Proposition 1, as
a subgame perfect Nash equilibrium (SPNE). A profile of
strategies constitutes a Nash equilibrium if given all other
players’ strategies, no player can benefit from deviating from
her own strategy. A profile of strategies is a SPNE if it is a
Nash equilibrium of the game itself, and if it induces a Nash
equilibrium in every subgame [6].

Proposition 1. In an infinitely repeated game with the

afore-mentioned stage game, if the action matrix A satisfies

property P.1–P.3, there exists a SPNE which can have both

sharing peers and free-riders.

Proof. Two types of nodes in any graph A satisfy prop-
erties P.1 ∼ P.3. We label the nodes on the cycle as cycle

nodes and the nodes that do not have child nodes as leaf

nodes. We restricts peers in each round to play either Share
or Not Share with all demanding nodes: if i plays Share,
aij = bij , ∀j 6= i; and if i plays Not Share, aij = 0, ∀j.

We consider two peer strategies, Not Share and the local
grim trigger strategy (LGTS). In LGTS peer i plays Share in
the first round and continues sharing as long as ρi < δv

c
. We

show that a strategy profile in which the cycle nodes play
LGTS and the leaf nodes play Not Share is a SPNE. First,
leaf nodes, by playing Not Share while receiving value from
their parent nodes do not have any incentive to deviate.

Second, cycle node i can either follow LGTS or deviate by
playing Not Share. We calculate the continuation payoffs
of each from round t onwards, as ut

i. If she follows the
equilibrium strategy, LGTS, her continuation payoff is,

ut
i = vΣk

i=1aji − cΣk
i=1aij (5)

If player i deviates from LGTS in round t, the other nodes
in the same cycle will know before round t + 1 that she has
deviated. Therefore in round t + 1 no nodes will share to
her. This is due to P.2, which implies that a peer belongs
to no more than one cycle, such that once one peer deviates
from LGTS, the cycle is going to be broken. Foreseeing this
happening, no peer in the cycle will share in round t + 1.
Thus player i’s continuation payoff is,

ut
i = (1 − δ)vΣk

i=1aji (6)

The cycle nodes will choose to follow LGTS if the following
inequality holds,

vΣk
i=1aji − cΣk

i=1aij > (1 − δ)vΣk
i=1aji, (7)
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which is equivalent to ,

ρi <
δv

c
. (8)

Inequality (8) is satisfied by property P.1. For completeness,
we can easily verify that once a cycle node or a leaf node
has deviated, there is no incentive for her to return to the
equilibrium strategy. In this equilibrium, the cycle nodes
are sharing peers and the leaf nodes are free-riders.

If P.3 is not satisfied, then there will be at least one node
that is neither a cycle nor a leaf node, such as node 4 in
Figure 4.10 A graph with such types of nodes will not be
an SPNE because these nodes will be unambiguously better
off not uploading any files, and thus will deviate from the
proposed equilibrium.

Thus even without altruistic peers, an offloading effect
or an explicit incentive mechanism to encourage sharing,
sharing can exist due to generalized reciprocity. Moreover,
free-riding may exist too. The intuition is simple: peers care
a lot about fulfilling their demands, and the cost of sharing is
low, so they can tolerate free-riding to a certain extent. More
free-riding does not occur because of the threat of a local

grim trigger strategy (LGTS)11: if a node stops uploading to
A, node A will leave the network forever, which through the
generalized reciprocity cycle punishes the miscreant node,
discouraging it from free-riding in the first place (see proof).

We derived Proposition 1 under restrictive conditions: all
nodes could observe all flows (the flow topology), and nodes
may only choose from a strategy space restricted to either
upload to every requester, or upload to none. These two
assumptions taken together are clearly not very general: if
nodes know the entire flow topology then why punish all
requesters when a single node deviates? Likewise, if node
4 knows node 8 is a free-rider in Figure 3, why not cut off
only node 8 rather than all nodes?

We are working on a model of generalized reciprocity with
incomplete information about the flow topology, and with
an unrestricted space of strategies. These assumptions seem
reasonable for the pseudonymous Internet. We have one pre-
liminary result that illustrates how generalized reciprocity
can support P2P networks with equilibrium free-riding in
more general settings. We assume peers only know the flows
in which they participate and each peer selectively shares to
other peers to maximize her value.

Proposition 2. In an infinitely repeated game, with only

local knowledge of the flow graph and selective strategies, the

10Such a node may upload a file to another node, but at some
point a node in that chain will be a terminal leaf node.

11Or others; LGTS is sufficient to support the equilibrium,
but may not be unique.

flow graph depicted in Figure 5 is a weak perfect Bayesian

equilibrium.

Proof. See appendix.

4. DISCUSSION
We have shown the existence of an equilibrium in a con-

strained family of network topologies, under two different
game forms. Both cases are restrictive, and we would like
to relax our assumptions to obtain more general results. We
would also like to characterize the set of equilibria to assess
the plausibility of outcomes with a mixture of sharing and
free-riding. Further, we would like to characterize other fam-
ilies of network topologies, to uncover those features (size,
connectedness, overlapping cycles, etc.) that affect the equi-
librium configurations. Of course, we would also like to
address the question we asked about the offloading effect:
is generalized reciprocity important enough to explain the
amount of sharing we see in large networks?

Our ultimate goal is to use the model as a principled foun-
dation to explore the design and performance of various in-
centive mechanisms to encourage sharing in P2P networks.
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APPENDIX

Proof of Lemma 1

uS
i (n, p) =

1 − (1 − p)n−1

(n − 1)p
(9)

=
1 − (1 − p)n−1

(n − 1)(1 − (1 − p))

=
1 + (1 − p) + · · · + (1 − p)n−2

n − 1
.

Here we used the sum of a geometric series
∑n

k=0 rk =
1−rn+1

1−r
. Let In,p = 1 + (1 − p) + · · · + (1 − p)n−2. Then

uS
i (n, p) simplifies to uS

i (n, p) = In,p/(n − 1). Similarly, let
In,q = 1 + (1 − q) + · · · + (1 − q)n−2, then uN

i (n, q) can be
written as uN

i (n, q) = In,q/(n − 1). Since p = 1
k+1

< q = 1
k
,

1 − p > 1 − q and (1 − p)x > (1 − q)x, x = 0, · · · , n − 2.
Therefore MBS(n, p, q) > 0.

Proof of Lemma 2

lim
n→∞

MBS(n, p, q)

uN
i (n, q)

= lim
n→∞

1−(1−p)n

p

1−(1−q)n

q

− 1 =
1

k
.

Lemma 3 – explaining footnote 6
Equation (1) and (2) are an approximation of uS

i (n, k) and
uN

i (n, k), which do not take into account the payoff differ-
ence between sharing peers and free-riders. The precise ex-
pressions of uS

i (n, k) and uN
i (n, k) are as follows,

uS
i (n, k)

= Σk−1
s=0Σn−k−1

l=0 Cs
k−1Cl

n−k−1(
1

k
)s(1 −

1

k
)k−s−1

(
1

k + 1
)l(1 −

1

k + 1
)n−k−l−1 1

s + l + 1
, (10)

and

uN
i (n, k)

= Σk−1
s=0Σn−k−1

l=0 Cs
k−1Cl

n−k−1(
1

k
)l(1 −

1

k
)n−k−l−1

(
1

k − 1
)s(1 −

1

k − 1
)k−s−1 1

s + l + 1
. (11)

The marginal benefit of sharing for node i follows as,

MBSi(n, k) = uS
i (n, k) − uN

i (n, k). (12)

And Lemma 1 becomes

Lemma 3. ∀ n > 3, and ∀ k > 2(k < n), MBSi(n, k) > 0.

Proof. We consider a hypothetical scenario, in which when
node i shares her files, only some nodes know that she does. That
is, those who do not know that i shares will continue as if i did
not. Suppose X (0 ≤ X ≤ k)12out of the k sharing nodes and Y
(0 ≤ Y ≤ n − k − 1) out of the n − k − 1 free riding nodes know
that i is sharing and the rest k − X and n − k − Y − 1 nodes do
not know it. The payoff of node i is then a function of n, k, X,
and Y ,

ui(n, k, X, Y )

= Σk−X−1
s=0 ΣX

x=0Σ
n−k−Y −1
l=0 ΣY

y=0

Cs
k−X−1Cx

XCl
n−k−Y −1C

y
Y

(
1

k − 1
)s(1 −

1

k − 1
)k−X−s−1(

1

k
)x(1 −

1

k
)X−x

(
1

k
)l(1 −

1

k
)n−k−Y −l−1(

1

k + 1
)y(1 −

1

k + 1
)Y −y

1

s + l + x + y + 1
. (13)

In this scenario, uN
i could be re-interpreted as if i shared but

no other nodes knew that she did. Similarly, uS
i could be re-

interpreted as if i shared and all other nodes knew that she did.
That is,

uS
i (n, k) = ui(n, k, k, n − k − 1); (14)

uN
i (n, k) = ui(n, k, 0, 0). (15)

If we could show that

ui(n, k, X + 1, Y ) > ui(n, k, X, Y ), (16)

and
ui(n, k, X, Y + 1) > ui(n, k, X, Y ), (17)

we would have effectively shown that

ui(n, k, k, n − k − 1) > ui(n, k, 0, 0). (18)

According to equation (14) and (15), we would also have shown
that

uS
i (n, k) > uN

i (n, k).

Now, we show the proofs for inequality (16) and (17). For
simplicity in notation, we use Ω to denote the following part of
equation (13),

Ω = ΣX
x=0Σ

n−k−Y −1
l=0 ΣY

y=0Cx
XCl

n−k−Y −1C
y
Y

(
1

k
)x(1 −

1

k
)X−x(

1

k
)l(1 −

1

k
)n−k−Y −l−1

(
1

k + 1
)y(1 −

1

k + 1
)Y −y.

12In equation (13), the maximum of X is k − 1 instead of
k. This is because the node chosen by i for downloading is
not counted, since its downloading choice does not affect i’s
payoff.



and re-write equation (13) as

ui(n, k, X, Y )

= Σk−X−1
s=0 Cs

k−X−1(
1

k − 1
)s(1 −

1

k − 1
)k−X−s−1

Ω
1

s + l + x + y + 1

= Σ0
s=0Cs

k−X−1(
1

k − 1
)s(1 −

1

k − 1
)k−X−s−1

Ω
1

s + l + x + y + 1

+Σk−X−2
s=1 Cs

k−X−2(
1

k − 1
)s(1 −

1

k − 1
)k−X−s−1

Ω
1

s + l + x + y + 1

+Σk−X−2
s=1 Cs−1

k−X−2(
1

k − 1
)s(1 −

1

k − 1
)k−X−s−1

Ω
1

s + l + x + y + 1

+Σk−X−1
s=k−X−1Cs

k−X−1(
1

k − 1
)s(1 −

1

k − 1
)k−X−s−1

Ω
1

s + l + x + y + 1
. (19)

The last step uses the fact that Cs
k−X−1 = Cs

k−X−2 + Cs−1
k−X−2.

Combining the first two terms and the last two terms in the pre-
vious equation, we have

ui(n, k, X, Y )

= Σk−X−2
s=0 Cs

k−X−2(
1

k − 1
)s(1 −

1

k − 1
)k−X−s−1

Ω
1

s + l + x + y + 1

+Σk−X−1
s=1 Cs−1

k−X−2(
1

k − 1
)s(1 −

1

k − 1
)k−X−s−1

Ω
1

s + l + x + y + 1

= (1 −
1

k − 1
)Σk−X−2

s=0 Cs
k−X−2(

1

k − 1
)s

(1 −
1

k − 1
)k−X−s−2Ω

1

s + l + x + y + 1

+(
1

k − 1
)Σk−X−2

s=0 Cs
k−X−2(

1

k − 1
)s

(1 −
1

k − 1
)k−X−s−2Ω

1

s + l + x + y + 2
. (20)

The last step involves substituting t for s − 1 and then s for t.
Using the same method, we obtain ui(n, k, X + 1, Y ),

ui(n, k, X + 1, Y )

= (1 −
1

k
)Σk−X−2

s=0 Cs
k−X−2(

1

k − 1
)s

(1 −
1

k − 1
)k−X−s−2Ω

1

s + l + x + y + 1

+
1

k
Σk−X−2

s=0 Cs
k−X−2(

1

k − 1
)s

(1 −
1

k − 1
)k−X−s−2Ω

1

s + l + x + y + 2
. (21)

Finally,

ui(n, k, X + 1, Y ) − ui(n, k, X, Y )

= (
1

k − 1
−

1

k
)Σk−X−2

s=0 Cs
k−X−2(

1

k − 1
)s

(1 −
1

k − 1
)k−X−s−2Ω

1

s + l + x + y + 1

−(
1

k − 1
−

1

k
)Σk−X−2

s=0 Cs
k−X−2(

1

k − 1
)s

(1 −
1

k − 1
)k−X−s−2Ω

1

s + l + x + y + 2
. (22)

Notice that 1
k−1

− 1
k

> 0 and each term in the first term is weighed

more than the second term, since 1
s+l+x+y+1

> 1
s+l+x+y+2

. We

conclude that

ui(n, k, X + 1, Y ) − ui(n, k,X, Y ) > 0. (23)

Applying the same logic to ui(n, k, X, Y + 1)− ui(n, k, X, Y ), we
can also show

ui(n, k, X, Y + 1) − ui(n, k,X, Y ) > 0. (24)

Proof of Proposition 2 (sketch)
Suppose all the peers adopt individual grim-trigger strategy (IGTS).
Whenever a pair of peers each demand one unit of content from
each other, IGTS requires they start by sharing with each other
and stop sharing forever if one has deviated in the previous pe-
riod. Suppose further that a node has diffuse (uniform) priors
over the distribution of possible flow topologies (each possibility
is equally likely). These beliefs will be sustained in equilibrium
because there are no moves by nature and the problem is station-
ary so there are no changes in flows that are informative about
the unobserved links. The proof follows 5 steps:

Step.1 Show that node B in Figure 6.(a) will choose to stop
sharing to C. This can be done by examining Figure
6.(c), (d), (e), and (f), which represent all of B’s pos-
sible beliefs. Given that each peer is individually ra-
tional, in (c), (e), and (f) B can gain from cutting off
C. In (d), B can gain from cutting off either A or C.
Thus it is profitable for B to stop sharing to C.

Step.2 Following the same logic as in Step. 1, show that
node B in Figure 6.(b) will choose not to deviate and
continue sharing to A.

Step.3 To show that Figure 5 can be sustained in a weak
perfect Bayesian equilibrium, we only need to show
that node B in both Figure 7.(a) and (b) will not de-
viate, since these two cases represent scenarios for all
nodes in Figure 5.

Step.4 In Figure 7.(a), B only knows the links that she
participates in, and the total number of nodes in the
graph. Table 113 lists all the 64 possible flow graphs
that B may believe to be true, out of which only 28
satisfy individual rationality according to the results
of Step.1 and 2. These 28 graphs are marked with
“Yes” in the “Possible?” column. The rest 36 graphs
are eliminated as impossible due to the reasons listed
in the “Reason” column. For example, in No. 5, node
C is sharing to both B and A but not receiving any
files from any nodes. Node C would benefit from cut-
ting off both A and B. Thus the graph in No. 5 is not
possible and hence B should eliminate it as a possi-
ble belief. After eliminating all impossible beliefs, 28
equally likely flow graphs are left. These 28 beliefs are
further analyzed in Table 2, each row of which lists

13Table 1-4 are put online at http://www-personal.si.
umich.edu/~ljian/papers/icec08-supp-appendix.pdf.



a particular belief, whether B can profit by deviating
from its current equilibrium actions, and the resulted
flow graph if it deviates. This analysis shows that in
9 cases, B profits by cutting off D; in 9 other cases B
profits by cutting off A; in 8 cases B profits by cutting
off either A or D; and in the rest 2 cases, B could cut
off both A and D and free-ride. Thus if B cuts off D,
with probability 2+8+9

28
= 19

28
this is a profitable devia-

tion and it receives (v−c) from period t onwards. And

with probability 9
28

node C will eventually stop shar-
ing to B, and B would drop out and receive a payoff
of zero. With a discount factor of δ, node B’s contin-
uation payoff when cutting off D in period t, UD

t , is
calculated as follows,

UD =
19(v − c)

28
+

9(1 − δ)

28
(25)

( v − c
︸ ︷︷ ︸

period t

+ δ(v − c)
︸ ︷︷ ︸

period t+1

+ δ2(−c)
︸ ︷︷ ︸

period t+2

)

Equation 25 shows B’s payoffs in period t, t + 1, and
t + 2 if she cuts off D when she should have cut off
A. From period t + 3 onwards node B drops out and
receives zero payoff. Collecting terms, equation 25
simplifies to

UD
t = v − c −

9δ2v

28
+

9δ3c

28
(26)

By symmetry, UA
t = UD

t . If B decides to cut off both

A and D, her payoff UAD
t is

UAD
t =

2v

28
+

26(v + δv)(1 − δ)

28
(27)

On the other hand, B receives Ue
t = v − 2c if she

maintains the current equilibrium strategy. Therefore,
the conditions for node B not to deviate are:

UD
t < Ue

t , (28)

and

UAD
t < Ue

t , (29)

which simplify to

c <
9δ2v

28 + 9δ3
, (30)

and

c <
13δ2v

28
. (31)

Combining inequalities 30 and 31 we conclude that if

c < 9δ2v
28+9δ3 , node B will choose not to deviate from

the equilibrium strategy.

Step.5 Similar logic applies to Figure 7.(b), in which if c <
6δ2v

7
node B will choose not to deviate from the equi-

librium strategy. Similar to Table 1 and 2, Table 3 and
4 list node B’s possible beliefs and strategies.
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Figure 7: Node B’s Beliefs


