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ABSTRACT

Astronomical observations strongly suggest that our universe is now accelerating and

contains a substantial admixture of dark vacuum energy. Using numerical simulations

to study this newly consolidated cosmological model (with a constant density of dark

energy), we show that astronomical structures freeze out in the near future and that

the density profiles of dark matter halos approach the same general form. Every dark

matter halo grows asymptotically isolated and thereby becomes the center of its own

island universe. Each of these isolated regions of space-time approaches a universal

geometry and we calculate the corresponding form of the space-time metric.

Introduction. The basic cosmological parameters that describe our universe have now been

measured with compelling precision. Recent measurements of the cosmic microwave background

radiation indicate that the universe is spatially flat [1]. Complementary measurements of the

redshift-distance relation using Type Ia supernovae strongly suggest that the universe is now ac-

celerating [2]. Taken together, the current astronomical data argue for a cosmological model with

matter density Ωm,0 = 0.3, dark vacuum energy density Ωv,0 = 0.7, curvature constant k = 0, and

Hubble constant H0 = 70 km s−1 Mpc−1. Although the time dependence of the dark energy has

not been fully determined, the current data are consistent with the vacuum energy density being

temporally constant, as this work assumes.

This newly consolidated cosmological model represents a milestone in our understanding of the

universe. The large scale space-time of the universe is now known and its corresponding metric can

be specified. In the absence of structure formation, the universe is homogeneous and isotropic, and
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the space-time would be described by the maximally symmetric Robertson-Walker metric [3]. Since

the universe does contain gravitationally collapsed structures, however, the metric that describes

space-time is one step more complicated — it must include the contribution from the structures.

If the universe is already starting to accelerate, as observations indicate, then structure for-

mation is virtually finished. In the relatively near future, the universe will approach a state of

exponential expansion and growing cosmological perturbations will freeze out on all scales. Exist-

ing structures will grow isolated. Because the parameters of our universe are now relatively well

known, this future evolution of cosmological structure can now be predicted with a high degree

of confidence. Several recent papers have begun to explore the possible future effects of vacuum

energy density [4–6], and demonstrate that the universe will indeed break up into a collection of

“island universes”, each containing one gravitational bound structure.

In this essay, we present the results of a recent series of numerical simulations that describe

the evolution of structure in a universe dominated by dark vacuum energy (with Ωv,0 = 0.7 at the

present epoch). These numerical experiments show that each gravitationally bound halo structure

grows isolated and that its density profile always approaches the same general form. After describing

the numerical simulations in greater detail and specifying the form of this density profile, we

construct the metric for each isolated patch of space-time. Each island universe attains the same

geometry and we find the universal form for the metric that describes these patches of space-time.

Numerical Simulations. As part of a more comprehensive study of structure formation in

the future of an accelerating universe, we have performed a series of numerical simulations [7]. This

set of cosmological simulations used the GADGET numerical package [8] and was run on an Intel

parallel cluster (at U. Michigan Center for Academic Computing). The simulations were set up

using a standard suite of initial conditions starting at scale factor a = 0.05 [9], and were evolved

forward into the future until the scale factor had grown to a = 100. The cosmology was chosen to

have the standard parameters described above, with Ωm,0 = 0.3, Ωv,0 = 0.7, and H0 = 70 km s−1

Mpc−1. All of the work reported here uses this choice of cosmological parameters.

The simulations followed the evolution of a cubic, periodic region with comoving linear size 366

Mpc. Only the evolution of the dark matter was computed and we only obtain information about

dark matter halos at relatively large spatial scales. The numerical resolution was set by using
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1283 dark matter particles, each with an effective mass of 9.57 ×1011M⊙. The force resolution

had a constant value of 285 kpc. With this force and mass resolution, the inner workings of the

galaxy formation process are not well-resolved, but larger scale structures — the dark matter halos

containing most of the mass — are well characterized.

Hundreds of dark matter halos form within the volume of the universe studied by the simula-

tions. The evolution from high redshift to the present follows the now-standard scenario. Most of

the structure in the universe is already in place by the present epoch with a = 1. As the universe

evolves into the future, the structures grow more defined and more isolated. As the accelerating

universe continues to expand, bound structures separate rapidly from each other [5–7]. In the long

term, existing cosmic structures remain bound but grow isolated, as illustrated by Figure 1. A

large cluster will become effectively isolated in about 120 Gyr, whereas a smaller structure (like

our Local Group) will grow isolated in about 180 Gyr. These structures will be embedded within

an accelerating universe with a constant horizon scale, where the horizon distance rH is given by

rH = χ−1 =
c

H0

2

π

( 15

Ωv,0

)1/2
≈ 12, 600 Mpc . (1)

This horizon distance rH is not the same as the particle horizon, but rather is essentially the

Hubble radius. The distance scale rH provides an effective “boundary for microphysics” within the

much larger space-time of the universe [3]. The acceleration of the universe effectively divides our

present-day space-time into many smaller “island universes”. For this discussion, we consider the

center of each dark matter halo to lie at the center of its own island universe. As we show next,

these dark matter halos develop density profiles with a universal form in both time and mass (for

our chosen cosmology).

Generic Form for the Density Profile. Numerical simulations indicate that cosmic struc-

tures, from galaxies to clusters, tend to develop the same basic form for the density profiles of

their dark matter halos [7,10]. As a result, every island universe will attain the same geometry for

its space-time. In order to estimate the geometry of these space-times, we must first estimate the

(nearly universal) form for the density profile of the dark matter halos.

Using the results from our numerical simulations, we have constructed a composite dark matter

halo from the 50 largest halos produced by one realization of the simulation. These 50 halos are

normalized so that the mean interior density has the same value at the spatial scale r200 (the
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radius at which the enclosed density is 200 times the critical density). With this normalization, the

individual dark matter halos show relatively little dispersion (with a mean of about 35 percent) and

hence the composite average is well defined. The profiles are close to being spherically symmetric

(this point is discussed in Refs. [7,11]) so we consider density distributions that depend only on

radius. The composite profiles are shown in Figure 2 for varying cosmological epochs, starting from

the present (top curve) and extending to a = 100 (bottom curve). Notice how the density profiles

display the same characteristic form over a wide range of epochs, with each subsequent profile

being a stretched version of the previous one. This fact that dark matter halos tend to approach

a universal form has been noted earlier [10], although the previous composite profiles were more

limited in spatial extent and did not match smoothly onto the background universe.

The density profile at every cosmological epoch can be fit with a spherical density profile of

the form

ρ(r) =
ρ0

r/rS [1 + (r/rS)p]3/2
[1 + r/r∞]1+3p/2 . (2)

This profile describes the basic radial dependence of dark matter halos in the inner regions and

matches smoothly onto the background density of the universe at large radii. Using the parameters

rS = 0.50 r200 and p = 1.8, the above functional form provides a good fit to the numerically

determined density profiles for all epochs. In order to match the profile onto the background

density of the universe, the remaining parameter r∞ must scale according to r∞ = r∞(0)a
6/(3p+2),

where the present-day value r∞(0) = 4.7 r200. The resulting fits to the density profiles are shown

as the dashed curves in Figure 2. This relatively simple function (eq. [2]) applies over a factor

of 10 in halo mass scale, and fits the numerically calculated density profiles over nearly 5 decades

in radial scale, 11 decades in density, and a factor of 100 in the scale factor a. Over this range,

the RMS departure of the fitted functions (eq. [2]) from the composite averages is 0.13 in log10 ρ

(which corresponds to differences of ∼ 35% in ρ).

Asymptotic Form for the Metric. Using the specified form (eq. [2]) for the density profile,

we can now determine the line element ds2 for the space-time within the horizon distance rH [12].

The center of the coordinate system is taken to be at the center of the cluster (or galaxy) and the

mass distribution is assumed to be spherically symmetric. We begin by writing the line element in
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the form

ds2 = −

(

1 − A(r) − χ2r2
)

dt2 +
(

1 − B(r) − χ2r2
)−1

dr2 + r2dΩ2 , (3)

where we have explicitly separated out the the contribution due to the cosmological constant, which

is set by the parameter χ2
≡ (2π3/45)1/2Λ2/Mpl (where the energy scale Λ ≈ 0.0003 eV for Ωv,0

= 0.7). In an “empty” universe containing only vacuum energy, the line element would have the

above form with A = 0 = B. Because of the vacuum contribution, the metric contains an outer

horizon at rH = χ−1. This outer horizon supports the emission of radiation through a Hawking-like

mechanism [13] and hence the future universe will be filled with a nearly thermal bath of radiation

with temperature T ∼ χ ∼ 10−33 eV and characteristic wavelength λ ∼ rH ∼ 12, 600 Mpc. This

radiation will become the dominant background radiation field after about one trillion years. The

functions A(r) and B(r) take into account additional curvature due to the mass distribution, which

has a density profile given by equation [2].

If we adopt units in which c = 1 (and hence G = Mpl
−2), the function B(r) can be written in

the form

B(r) = 2G
m(r)

r
= 8πG

1

r

∫ r

0
ρ(r̃)r̃2dr̃ , (4)

where the density profile ρ(r) is given by equation [2]. Since we are interested in the asymptotic

form for the metric, we can consider late times for which the scale r∞ is stretched beyond the

horizon rH . In this limit, the function B(r) can be simplified to the form

B(r) = 4πGρ0r
2
S

1

ξ

∫ ξ

0

xdx

(1 + xp)3/2
≡ η0β(ξ) . (5)

In the second equality, we have defined the parameter η0 = 4πGρ0r
2
S which sets the “strength” of the

curvature and the dimensionless function β(ξ) which specifies the radial dependence of the metric

coefficient (where ξ = r/rS). For typical values, the strength parameter η0 ≈ 10−6, indicating that

the departure from flatness is relatively small. The resulting function β(ξ) is shown in Figure 3.

The function A(r) is related to the usual gravitational potential Φ through the definition

e2Φ
≡ 1 − A(r) [12], where the potential is defined through the source equation

dΦ

dr
=

G[m(r) + 4πr3p]

r(r − 2Gm)
. (6)

In this setting, the mass is dominated by collisionless dark matter particles and the pressure p is

negligible. Furthermore, the potential is small so that we can use the approximation e2Φ
≈ 1 + 2Φ
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and hence A(r) = −2Φ(r), with Φ given by the integral of equation [6]. As a result, the function

A(r) can be written in the form

A(r) = A∞ −

∫ r

0

2Gm(r)

r

dr/r

1 − 2Gm(r)/r
= η0

[

α∞ −

∫ ξ

0

β(ξ)

1 − β(ξ)

dξ

ξ

]

≡ η0α(ξ) , (7)

where η0 and β(ξ) are as defined previously. We have also defined an analogous dimensionless

function such that A(r) = η0α(ξ). The quantity A∞ and its dimensionless counterpart α∞ are

defined so that the potential Φ vanishes at spatial infinity [12]. As before, the dimensionless

parameter η0 = 4πGρ0r
2
S ≈ 10−6 sets the level of the curvature. The resulting function α(ξ) is

shown in Figure 3. This completes the specification of the metric.

Summary. In this essay, we have constructed the asymptotic form of the metric that describes

space-time in our cosmological future. Using numerical simulations, we have demonstrated that

individual gravitationally bound structures will become isolated in the near future and thereby

become their own “island universes” (Figure 1). Each of these gravitationally bound entities —

dark matter halos — will attain a characteristic form for its density distribution (see Figure 2 and

equation [2]). Finally, each bound structure will live at the center of its own island universe, and

the metric of the surrounding space-time can be described by a line element of the form

ds2 = −

(

1 − η0 α(ξ) − χ2r2
)

dt2 +
(

1 − η0 β(ξ) − χ2r2
)−1

dr2 + r2dΩ2 , (8)

where η0 = 4πGρ0r
2
S , ξ = r/rS , and where α(ξ) and β(ξ) are shown in Figure 3. Astronomical

entities (planets, stars, and galaxies) living within the universe will continue to evolve over much

longer time scales [4,14], but space-time itself can be described by equation [8] for the vast majority

of the total life of the universe.

The idea that some type of dark energy could affect the expansion of the universe dates back

to Einstein’s original introduction of a cosmological constant. Although this idea has been called

Einstein’s greatest blunder, the currently observed cosmic acceleration suggests that this concept

may become one of Einstein’s greatest legacies. The motivation for the cosmological constant was

to keep the cosmos static. In a twist of irony, the observed dark vacuum energy does not make

the universe static, but rather drives it to expand at an accelerating rate. But even though the

universe expands and changes, and its constituent astrophysical objects age, this essay shows that

the local space-time metric does approach a “static” asymptotic form (eq. [8]).
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Fig. 1.— Results of numerical simulations of structure formation in an accelerating universe with a

constant density of dark vacuum energy. Top panel shows a portion of the universe at the present

epoch when the scale factor a = 1 (cosmic age 14 Gyr). The box in the upper panel shows the region

that expands to become the picture in the center panel, which shows a portion of the universe at a

future epoch when a = 11.4 (cosmic age 54 Gyr). The box in the center panel expands to become

the picture shown in the bottom panel when the scale factor a = 100 (cosmic age 92 Gyr). By this

future epoch, the dark matter halo in the center of the bottom panel has grown effectively isolated.
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Fig. 2.— The density profile for dark matter halos. Each curve shows the average of the 50 largest

dark matter halos in the numerical simulation for a given time, ranging from the present epoch a = 1

(top curve) to a = 100 (bottom curve). The numerically determined results (averaged together)

are shown as the solid curves. The dashed curves show the fits to the numerical results obtained

from the analytic density profile of equation [2]. The dot-dashed curve shows the asymptotic form

of the density profile (in the limit t, a → ∞).
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Fig. 3.— The dimensionless functions α(ξ) and β(ξ) appearing in the asymptotic form of the space-

time metric of equation [8]. The functions are plotted versus the dimensionless radial coordinate

ξ = r/rS (see text). These functions, in conjunction with equation [8], specify the line element for

the majority of the life of the universe.
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