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CHAPTER I

Introduction

An omnipresent issue in realistic application domains is that the performance of

autonomous agents is subject to system constraints. Resource constraints restrict the

set of actions that an agent can take, which means that the agent might not be able

to accomplish all its goals under its current resource configuration. Computational

time limitations restrict the number of states that an agent can model and reason

over, which means that the agent might not be able to formulate a policy that can

respond to all possible eventualities in the pre-execution planning stage.

Let us consider the following example application. A Mars rover needs to reach

particular locations to carry out its scientific tasks. The environment is stochastic

and dangerous. To move safely, the rover should carry particular instruments (such

as a rubberized anti-skip grip), each of which can help the rover better handle an

exogenous event during its travel. The rover should also carry some other particular

instruments (such as a panoramic camera) required to perform its scientific tasks. If

the capacity of the rover is restricted, a problem arises: the rover might be unable

to carry all its desired instruments (e.g., because of the limited weight it can carry).

Furthermore, even without agent capacity limitations, a similar resource-constrained

issue may occur in an environment where a group of rovers share a set of instruments.

1
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When the shared instruments are scarce and when the rovers are distributed in the

environment, a rover might only be able to perform a subset of its desired tasks

because the scarcity of the shared resources could mean that a rover can have only

a subset of its desired instruments, and the distributed nature of the problem world

could mean that an instrument assigned to one rover cannot be utilized by others.

Another possible type of constraints in the rover world is that a rover may only

have limited time to “think” about how to carry out its tasks. For example, if a rover

has multiple complex scientific tasks, each of which requires the rover to reason over

a large state space, the rover may fall into trouble when it has to start to operate

in the world at a particular time. The limitation of computation time restricts the

number of states that the rover can search, which implies that the rover might be

unable to formulate a complete and optimal policy that can respond, in a timely

manner, to all possible eventualities that might occur when performing the scientific

tasks.

As other examples, a real-time autonomous driving agent might be unable to

schedule all of its desired actions (watching for pedestrians, checking surrounding

traffic, reading gauges, etc.) frequently enough because it cannot redirect its limited

perceptual resources fast enough in all relevant directions. A branch of a delivery

company might be unable to deliver all its packages in time because it should share

scarce delivery vehicles with other branches of the company. An autonomous aircraft

flying a prolonged mission might not have time to prepare a plan over the entire

mission before it starts to execute the plan.

These (and similar) problems motivate the study of mission-phasing techniques.

We argue that one effective way of improving performance of constrained agents is to

adopt a phasing strategy. In resource-constrained environments, constrained agents
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can improve their performance by exploiting resource reconfiguration/reallocation

opportunities, at which points a large problem (mission) can be decomposed into a

collection of sub-problems (phases).1 That is to say, a capacity-limited agent may

enhance its performance by reconfiguring how it uses its capacity, re-customizing

its action set, and switching to a new policy that can handle future events better

as it moves from phase to phase; a group of agents sharing scarce resources may

reconfigure the distribution of resources and adopt a new joint policy to use the

limited resources more effectively as time passes.

Analogously, in time-critical environments, an agent can adopt a phasing strategy

to improve its performance too. By decomposing a large problem into phases, an

agent could choose to focus computation only on near-term high-value phases. Then,

while executing the plans for earlier phases, the agent could use available computation

time during execution to reconsider aspects of the problem and improve its solutions

for the current and future phases.

The objective of this dissertation is the development of two classes of mission-

phasing techniques, including the resource-driven mission-phasing approach and the

computation-driven mission-phasing approach, corresponding to the aforementioned

resource constraints and computational time limitations respectively. It should be

emphasized that this mission-phasing study is not only to optimize the use of the

predefined/existing resource-reconfiguration or problem-reconsideration opportuni-

ties available in the midst of execution, but to automate the process of determining

where to establish such opportunities, according for the cost of creating them, in

complex stochastic environments.

The structural frameworks of the resource-driven mission-phasing (RMP) and

1A phase, by definition, means a stage in a process of change or development.



4

computation-driven mission-phasing (CMP) techniques have a lot in common. They

are both based upon problem decomposition, they both need to allocate “things”

(i.e., resources or time), and they both should formulate policies in each phase. Nev-

ertheless, because of fundamental differences between the constraints caused by the

limitations of non-consumable execution resources and the constraints caused by the

limitations of consumable computation time2, the implementations of these tech-

niques (problem decomposition, resource/time allocation, and policy formulation)

are considerably different. Briefly put, RMP deals with the constraints that restrict

the set of actions to include in the policy while CMP deals with the constraints

that affect the policy formulation procedure. Section 1.1 and Section 1.2 separately

discuss these two classes of the mission-phasing problems.

1.1 Phasing for Resource Constraints

As was briefly stated above, a capacity-limited agent may improve its performance

by adopting a phasing strategy — when the agent reaches a particular state, it can

choose to reconfigure its resources and adopt a new policy to use its limited capacity

more effectively given the particular trajectory the world has taken. That is, unlike

an unconstrained agent that can execute a policy that is optimal for all possible

eventualities, a capacity-limited agent can benefit from judiciously breaking its over-

all mission into phases, where as it moves from phase to phase it can reconfigure its

capacity usage and adopt a different, more effective policy for its current phase.

For the Mars rover example, the performance of a capacity-limited rover (that

can carry either travel instruments or scientific instruments but not both) will be

improved if a resource-reconfiguration point (e.g., a toolbox or a supply station)

2Computation time, which refers to the time for using computational processors (e.g., CPUs), is consumable,
but processors themselves are non-consumable. If we deal with limitations on allocating processors that enable
computation, we should use RMP (instead of CMP) techniques to schedule the allocation of the processors.
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can be set up near the location where scientific tasks are performed. This resource-

reconfiguration point decomposes the rover’s mission into two phases. In the phase

starting at the rover’s initial location and ending at the resource reconfiguration

point, the rover can choose to carry only the travel instruments to reduce its risk

during travel. When it reaches the resource reconfiguration point, the rover can

switch to the scientific instruments to get ready for its scientific tasks in the subse-

quent phase.

In a similar fashion to single-agent systems, reconfiguring resources during exe-

cution can also have an advantageous effect in environments where multiple agents

share scarce resources. In such environments, an individual agent is often unable to

execute some of its possible actions because resources required by those actions are

currently held by other agents. How the resources are allocated among the agents

will dictate the actions each agent will be capable of performing, and thus how the

agents will act to accomplish their goals in the environment. One way to alleviate

such resource scarcity is to redistribute resources among the agents over time. As an

example, the rovers’ need for their previously assigned instruments may diminish as

time passes, since the relevant tasks may have been accomplished (or have expired),

which suggests that redistributing the instruments in the group of rovers at some

proper time points in the midst of execution may be an effective way to improve the

total expected utility of the rovers, even if redistribution can incur a cost.

The idea of reconfiguring resources to improve agent performance is fairly straight-

forward, but it is a challenging problem to reconfigure resources in the optimal way.

Briefly put, it requires solving the problem of optimally creating and exploiting mis-

sion phases, accounting for the cost of creating them, along with the problem of

making the optimal resource configurations at the entries of each phase, as well as
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the problem of formulating optimal executable policies for each phase. The primary

goal of our resource-driven mission-phasing study in this dissertation is to design

computationally efficient algorithms to exactly solve this class of challenging prob-

lems. Toward this end, this work develops a suite of algorithms that can formulate

complex resource-driven mission-phasing problems into compact mathematical for-

mulations. Thereafter, by simultaneously solving problem decomposition, resource

(re)configuration, and policy formulation problems, these algorithms can effectively

and fruitfully exploit problem structure, which often results in a significant reduction

in computational cost.

1.2 Phasing for Computational Time Limitations

The second primary objective of this dissertation is the design of computation-

driven mission-phasing techniques to handle the challenges raised by computational

time limitations.

Let us revisit the example problem where a rover implementing a scientific mis-

sion needs to plan and perform a sequence of independent tasks (each of which can

be thought of an independent phase decision procedure). The rover has to start

to execute its mission at a particular time point, which could mean that the rover

does not have sufficient time to reason over all of its future tasks prior to beginning

execution. As mentioned previously, the rover may do better by focusing its com-

putational effort only on near-term high-value tasks in its pre-execution planning

stage, and then taking advantage of additional computation time (or even paying

some costs to acquire more computation time) during execution to reconsider and

improve its solutions for future tasks. This assertion is not surprising. The chal-

lenges, though, are in automating the process of allocating computation time to
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appropriate phases given the uncertainty and complexity of the problem domain,

and in designing computationally efficient algorithms to solve the coupled problems

of deciding both when to deliberate given its cost, and which decision procedures to

execute during deliberation intervals.

Furthermore, besides needing to make intelligent decisions about time allocation

for multiple phases, the agent should also be able to utilize the allocated computation

time within each phase effectively. One potential way is to adopt a heuristic search

method as the inner-phase policy-formulation solver. Unlike a classical dynamic

programming algorithm (e.g., value iteration) that evaluates the full state space

and finds an optimal policy for every state, the heuristic search typically focuses on

the states that are likely to be reached when following an optimal (or high-quality)

policy from the initial state, while ignoring other states, to yield a good solution

within limited time.

In a similar structure to the resource-driven mission-phasing approach, the compu-

tation-driven mission-phasing approach also consists of three components: problem

decomposition, time allocation, and policy formulation. The problem decomposi-

tion component defines boundary states so that the phases’ problems can be solved

(approximately) independently. The time allocation component manages the distri-

bution of computation time (that may be available before or during execution) among

phase decision procedures to let the agent bias its computation on more valuable or

more important phases. The policy formulation component uses the heuristic search

to selectively expand and explore states in order to build a high-quality partial policy

within the allotted computation time. These techniques work together to help an

autonomous agent improve its performance in time-critical environments.
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1.3 Main Contributions

The primary goal of this dissertation is the development of mission-phasing tech-

niques to improve the performance of constrained agents by establishing and exploit-

ing resource reconfiguration or problem reconsideration opportunities in the midst of

mission execution. Toward this end, a suite of computationally efficient algorithms

are designed, analyzed and empirically evaluated in this work.

The major contributions of the work presented in this dissertation are outlined

below.

Resource-Driven Mission-Phasing

• Effectively Exploiting Resource Reconfiguration Opportunities.

This work explicitly takes into account potential resource reconfiguration op-

portunities in the midst of execution, and extends prior one-shot resource-

allocation-and-policy-formulation techniques to also solve the problem of how

to optimally reconfigure resources during execution. By considering and ex-

ploiting such opportunities, autonomous agents may well accomplish their goals

even when they are subject to capacity/resource constraints. This represents

an effective and inexpensive strategy to improve agent performance in resource-

constrained environments.

• Automatically Determining Phase-Switching Points.

This work designs automated resource-driven mission-phasing techniques, which

can automatically determine the optimal phase-switching points (where the con-

strained agents reconfigure resources and switch policies), accounting for the

cost of creating them, in stochastic and constrained environments. It elimi-

nates the need for having phases predefined in the description of a mission, and,
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in turn, resolves potential sub-optimality due to improper phase definitions by

users, which improves the applicability of the resource-driven mission-phasing

techniques.

• Exploiting Problem Structure for Finding Exact Solutions Efficiently.

In comparison with the straightforward MDP-based approach that explicitly

models resources in the state representation and treats resource reconfigura-

tion activities as explicit actions, the resource-driven mission-phasing approach

presented in this dissertation takes an alternative way to characterize resource

reconfigurations and phase transitions, which thus avoids the exponential in-

crease in the size of the state/action space. Moreover, through simultaneously

solving three intertwined problems, including problem decomposition, resource

configuration, and policy formulation, the approach presented in this disserta-

tion can effectively exploit problem structure to reduce computational cost.

Computation-Driven Mission-Phasing

• Judiciously Allocating Time in Complex Environments.

The computation-driven mission-phasing approach decomposes a large problem

into multiple phases for utilizing limited computation time better. To meet

the demand for new algorithms that can intelligently and quickly manage the

distribution of limited time among multiple phases in complex stochastic en-

vironments, this work develops a novel deliberation scheduling approach based

upon mathematical programming. This deliberation scheduling approach can

be applied to a considerably wider variety of problem domains to find opti-

mal or near-optimal deliberation schedules, compared to prior computationally-

tractable deliberation scheduling approaches.
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• Effectively Using Limited Computation Time by Heuristic Search.

To cope with the challenging problem where an autonomous agent may have

only a finite amount of “think time” to build and solve a large Markov decision

process for its planning problem within a phase, we design a heuristic search

method in this work, which biases state space expansion towards states that are

believed to lie along trajectories of high-quality policies, while ignoring other

states, to yield a better policy within time limits. Empirical results highlight

the ability of this algorithm to cope with limited computation time, and thus it

represents a promising new strategy for anytime policy formulation.

1.4 Overview

This dissertation is organized as follows:

Chapter II starts with a relatively simple single-agent resource-driven mission-

phasing problem where phase-switching states are known a priori. Exploiting

such fixed phase-switching states, we can work out a particular, efficient algo-

rithm. Of course, not all applications have phase-switching states predefined

in their problem descriptions. This chapter then describes solution algorithms

for solving general resource-driven mission-phasing problems, in which an agent

needs to determine for itself where to reconfigure resources, how to reconfigure

resources, and what are optimal executable policies subject to the (re)configured

resources.

Chapter III extends the resource-driven mission-phasing techniques presented in

Chapter II to a class of multi-agent systems for sequentially allocating resources

among a group of cooperative agents. This chapter follows a similar progression

as in Chapter II, in terms of giving the agents increasing latitude in determining
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when to reallocate resources.

Chapter IV focuses on the deliberation scheduling component of the computation-

driven mission-phasing approach. This chapter begins by describing a funda-

mental mathematical-programming-based approach for scheduling phase deci-

sion procedures. Then this formulation is extended to solve more challenging

problems where phase transitions can be non-deterministic and problems where

phase transitions can be affected by an agent itself. Several other extensions

are also discussed in this chapter, including how to linearize nonlinear objective

functions.

Chapter V presents an anytime policy formulation algorithm that prioritizes the

queue of states waiting to be expanded based on an estimate of the likelihood

that the state would be encountered when following a high-quality policy from

the initial state. Together with the deliberation scheduling techniques presented

in Chapter IV, this algorithm enables an autonomous agent to concentrate its

limited computation time on high-value portions of the problem state space. To

evaluate the overall computation-driven mission-phasing approach, this chapter

also describes and illustrates a heuristic decomposition algorithm, which can ef-

fectively and efficiently decompose a class of time-critical problems (represented

in TÆMS models) into multiple sub-problems.

Chapter VI concludes this dissertation with a summary of contributions of this

work, and a discussion of questions that remain open together with possible

future research directions.



CHAPTER II

Resource Reconfiguration in Single-Agent Systems

As was previously stated in Section 1.1, one potential way to enhance the per-

formance of a capacity-limited agent is to break its overall mission into phases. In

such a way, the constrained agent could handle each smaller and simpler phase bet-

ter under its capacity limits, and utilize its restricted capacity more effectively by

reconfiguring its resources (which affects its capacity use) when moving from phase

to phase. Obviously, if an agent could reconfigure its resources and its capacity use

in every state, then it could obtain the same reward as in the unconstrained case

(assuming that there is no action whose total capacity costs all by itself exceed the

agent’s capacity limits). In practice, though, constrained systems often have restric-

tions on the states in which an agent can reconfigure resources and switch policies.

For instance, a rover might require being close to a supply station for changing its

instruments, but the number of supply stations that can be built in the rover envi-

ronment may be limited (e.g., due to the limited amount of supplies that can be sent

to Mars), which means only a subset of states can have accessible supply stations.

In this chapter, a state that allows an agent to reconfigure its resources and

switch its policy is referred as a phase-switching state. A set of phase-switching

states decompose the overall state space of a problem into multiple (not necessarily

12
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non-overlapped) phases, where each phase is associated with its own way of resource

configuration and executable policy. The objectives of this chapter are to system-

atically investigate the effects of the resource-driven mission-phasing strategy, and

to develop solution algorithms that can automate the process of creating and using

optimal phase-switching states even when the system is complex and stochastic.

The rest of this chapter is organized as follows: it begins by giving a formal def-

inition of the single-agent resource-driven mission-phasing problem in Section 2.1,

and then recaps Markov decision processes (MDPs) and related policy formulation

techniques in Section 2.2 because most work in this dissertation is based upon MDP

models. In Section 2.3, the computational complexity of the problem is theoretically

analyzed and discussed, illustrating why standard approaches are computationally

intractable for the problem. Section 2.4 and Section 2.5 look into the single-agent

resource-driven mission-phasing problem and some of its variations, and for each,

present, analyze, and illustrate a solution algorithm. Experimental results are shown

in Section 2.6 where the effectiveness and efficiency of our automated mission-phasing

techniques are empirically evaluated. Then, this work is contrasted with prior work

in Section 2.7. Finally, Section 2.8 concludes this chapter with a summary of contri-

butions of the work presented in this chapter.1

2.1 Problem Definition

In numerous application domains, planning processes are complicated by uncer-

tainties in the environments. The Markov decision process provides a formal frame-

work for stochastic planning. However, the optimal policy derived by modeling

and solving a classical unconstrained MDP might not be executable by a capacity-

limited agent because the capacity limitation may restrict the set of actions that can

1This chapter is largely based on work that was originally reported in (Wu and Durfee, 2005).
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be scheduled in the policy. To cope with this issue, this work introduces a problem

model that extends the classical MDP model to also take into account constraints

in the agent capacity as well as constraints in reconfiguring the usage of the agent

capacity.

In a formal definition, a single-agent resource-driven mission-phasing (S-RMP)

optimization problem is a constrained optimization problem with the inputs of Markov

decision process M, initial probability distribution α, agent capacity constraint C,

and resource reconfiguration constraint2 R, where:

� M is a classical MDP, which can be represented as a tuple 〈S,A, P,R〉, where

S is a finite state space, A is a finite action space, P is the state transition

probability function, and R is the reward function.3 A detailed description of

MDPs will be given in Section 2.2.

� α = {αi} specifies the initial probability distribution over states, where αi is

the probability that the agent starts at state i.

� Agent capacity constraint C can be represented as 〈O,C, U,Γ, Γ̂〉, in a similar

manner to that used by Dolgov and Durfee (2006):

� O = {o} is a finite set of indivisible non-consumable execution resources,

e.g., O = {camera, spectrometer, etc.}.

� C = {c} is a finite set of capacities of the agent, e.g., C = {weight, space,

etc.}.

� U = {uo,a,i} represents resource requirements for executing actions, where

uo,a,i ∈ {0, 1} indicates whether the agent requires resource o to execute

2Because resource reconfiguration comes along with phase switching, in the following discussion, resource recon-
figuration constraints are sometimes called phase-switching constraints to improve readability.

3In this work, we do not separately model temporal constraints or ordering constraints between tasks. If present,
these would be captured implicitly in the MDP model.
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action a in state i.4 For example, uo=camera, a=take picture, i=any state = 1 says

that the prerequisite of taking a picture is having a camera.

� Γ = {τo,c} defines capacity costs of the resources, where τo,c defines the

amount of agent capacity c required to hold one unit of resource o. For

example, τo=camera, c=weight = 2 and τo=camera, c=space = 1 says that carrying

a camera will consume two units of the carrying weight and one unit of the

carrying space of the agent.

� Γ̂ = {τ̂c} specifies the limits of the agent capacities, e.g., τ̂c=weight = 4

denotes the maximum weight of four units that an agent can carry.

� Resource reconfiguration constraint R (sometimes also called phase-switching

constraint) specifies restrictions on creating phase-switching states at which the

constrained agent can reconfigure its resources and adjust its use of its limited

capacities. A typical resource reconfiguration constraint R can be formulated as

〈λ, λ̂〉 (and one of its generalizations will be discussed in Section 2.5.3), where:

� λ = {λi} indicates resource reconfiguration costs, where λi denotes the

cost for making state i into one that is conducive for the constrained

agent to reconfigure resources and switch policies. For the rover exam-

ple, λi=any state = 10 defines the cost of setting up each additional supply

station (equivalently, the cost of creating each additional phase-switching

state) in the world where the rover operates.

� λ̂ specifies the cost limit for creating phase-switching states. For example,

λ̂ = 40, given the above constraint λi=any state = 10, indicates that at most

four phase-switching states can be created in the rover world.
4To simplify the presentation, it is assumed that the resource requirement is binary, which implies that an agent

will not be interested in more than one unit of a particular resource, but all results presented in this and the next
chapter can be generalized to non-binary resource requirement cases without much difficulty.
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Given the inputs M, α, C, and R, the objective of the S-RMP optimization

problem is to maximize the total expected utility of the capacity-restricted agent by

identifying a set of phase-switching states S ′ = {sk}, which decompose the overall

problem into a collection of phases, and, for each phase k, determining a resource

configuration Δk and an executable policy πk that would be adopted by the agent

at the entry to that phase.

Specifically, from a constrained optimization perspective, the S-RMP optimization

problem could be formulated as follows:

Objective:

maximize the utility of the overall policy π

subject to the following constraints:

i) The set of phase-switching states S ′ = {sk} should satisfy the phase-switching

constraint R.

ii) Within each phase k, resource configuration Δk should satisfy the agent capacity

constraint C.

iii) Within each phase k, policy πk should be executable with respect to the resource

configuration Δk.

iv) The overall policy π is composed of phase policies πk, i.e., phase policy πk is

adopted by the agent when it encounters a phase-switching state sk ∈ S ′ in the

midst of its execution.

Clearly, the S-RMP optimization problem involves three intertwined components:

i) problem decomposition, ii) resource configuration, and, iii) policy formulation,

whose relationships are illustrated in Figure 2.1. Problem decomposition (which
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Resource
Configuration

Policy
Formulation

Problem
Decomposition

Create resource reconfiguration points

Define the set of executable policiesDetermine the system utility

Figure 2.1: The structural framework of the S-RMP optimization problem, involving problem de-
composition, resource configuration, and policy formulation.

creates phase-switching states) paves the foundation for resource configuration and

reconfiguration; resource configuration dictates what policies are executable in each

phase; policy formulation determines transitions within and among phases as well

as what goals can be achieved by the agent, which in turn determines the utility of

problem decomposition and resource (re)configuration.

Each of these three component problems and some combinations of them have

been investigated in a number of research fields (but none of the prior approaches is

computationally tractable to the S-RMP optimization problem that tightly couples

problem decomposition, resource configuration, and policy formulation). A compre-

hensive discussion that contrasts this work with prior work is postponed to Section 2.7

after our computationally efficient solution approach to the S-RMP optimization

problems is presented.
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2.2 Background: MDPs and Constrained MDPs

The main aim of this section is to introduce the classical Markov decision process

(MDP) and its extended model — the constrained MDP, because the majority of

the work throughout this dissertation is based on these foundations.

2.2.1 MDPs

In general, a classical discrete-time, fully-observable Markov decision process

with a finite state space and a finite action space can be defined as a four-tuple

〈S,A, P,R〉 (Puterman, 1994), where:

• S is a finite state space.

• A is a finite action space. For a state i ∈ S, Ai ⊆ A represents the set of actions

that can be executed at the state i.

• P = {pi,a,j} represents state transition probability where pi,a,j is the probability

that the agent reaches state j if it executes action a in state i.

For any state i and action a,
∑

j pi,a,j must be no greater than one.
∑

j pi,a,j = 1

means that the agent will always stay in the system when executing action a

in state i, while
∑

j pi,a,j < 1 means that there is some probability of the agent

being out of the system (which can be equivalently interpreted as that the agent

enters a sink state where the agent would stay there forever) when executing

action a in state i.

• R = {ri,a} is the (bounded) reward function where ri,a is the reward that the

agent will receive if it executes action a in state i.

The Markov decision process is an extension of the well-known Markov chain. The

main property of a MDP is that it possesses the Markov property (Bellman, 1957):
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if the current state of a MDP at time t is known, transitions to a new state at time

t + 1 only depend on the current state (and, of course, the action(s) chosen at it),

but are independent of the previous history of states.

In a MDP, the decision-making agent chooses its actions based upon its observa-

tion of the current state of the world, with the motivation of maximizing its aggregate

reward. A (stationary) policy for a MDP is defined as a mapping from states to ac-

tions: π : i→ a where i ∈ S and a ∈ Ai. The objective of the decision-making agent

is to find an optimal policy that maximizes some predefined cumulative function of

rewards. Let {i0, i1, ..., it, ...} and {a0, a1, ..., at, ...} represent a particular state and

action sequence by following the policy π, and let E[ ] denote the expectation func-

tion, then a typical cumulative reward function of a non-discounted MDP can be

defined as:

U(π) = E[
∞∑
t=0

rit,at ]

Similarly, the cumulative reward function of a discounted MDP with the discount

factor γ can be defined as:5

U(π) = E[
∞∑
t=0

(γ)t × rit,at ]

The mission-phasing techniques in this dissertation are illustrated using tran-

sient, non-discounted MDPs, although in general these techniques will also apply

to discounted MDPs and other contracting MDPs. In a transient MDP (in which

∑
j pi,a,j < 1 at some states), an agent will eventually leave the corresponding Markov

chain, after running a policy for a finite number of steps (Kallenberg, 1983). In other

words, given a finite state space, it is assumed that the agent visits any state only a

finite number of times for any policy, which in turn means that the total expected

reward function U(π) = E[
∑∞

t=0 rit,at ] is bounded.

5In this dissertation, (a)b represents an exponent, while ab represents a superscript.
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There have been a number of computationally-efficient polynomial-time algo-

rithms for deriving an optimal policy to a given MDP. The following introduces

some of these techniques.

Value Iteration

The value iteration algorithm starts with arbitrary initial state values V 0(i) for

every state i ∈ S, and then repeats the Bellman backup iteration process defined

below (assuming no discounts).

V k+1(i)← max
a∈Ai

[ ri,a +
∑
j∈S

pi,a,j × V k(j) ]

It has been shown that the sequence of state values V k will eventually converge

to optimal state values V ∗ in any contracting MDP (Kallenberg, 1983; Puterman,

1994; Sutton and Barto, 1998).6

At that convergence point,

V ∗(i) = max
a∈Ai

[ ri,a +
∑
j∈S

pi,a,j × V ∗(j) ]

and the choices of maximizing action for each state form an optimal policy π∗ =

{π(i)}, where

π(i)← argmax
a∈Ai

[ ri,a +
∑
j∈S

pi,a,j × V ∗(j) ]

Policy Iteration

The policy iteration algorithm is another common policy formulation algorithm.

It alternates the following two steps, beginning with a randomly generated initial

policy π0:

� Policy Evaluation: for the current policy πk, calculate state values V k. Since the

policy is fixed and known, the Markov decision process is reduced to a Markov
6The transient MDP of interest in this work is a subclass of contracting MDPs.
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chain. A Markov chain can be solved in O(|S|3), where |S| represents the size

of the MDP state space, by formulating it into linear equations and adopting

standard linear algebra methods.

� Policy Improvement : calculate an updated policy πk+1 using the following one-

step look-ahead:

πk+1(i)← argmax
a∈Ai

[ ri,a +
∑
j∈S

pi,a,j × V k(j) ]

Because each policy is guaranteed to be a strict improvement over the previous

one (unless the policy has already been optimal) and a finite MDP (with a finite state

and action space) has only a finite number of different policies, the policy iteration

procedure will eventually converge to an optimal policy and optimal state values

after a finite number of iterations (Puterman, 1994).

Linear Programming

The value iteration and policy iteration algorithms are widely used in solving

classical unconstrained MDPs. However, it is surprisingly hard to extend these al-

gorithms to also work on a constrained problem without considerably increasing the

size of the state space and/or the action space of the unconstrained MDP. For that

reason, a number of researchers have proposed and utilized an alternative solution ap-

proach, which is based upon mathematical programming (Altman, 1998; Feinberg,

2000; Dolgov and Durfee, 2003). The procedure of formulating an unconstrained

MDP into a linear program (whose solution yields an optimal policy maximizing the

total expected reward) is described below, because our work extends this approach.

Let xi,a, which is often called occupation measure or visitation frequency (Dolgov

and Durfee, 2006), denote the expected number of times action a is executed in state

i, then the function
∑

i

∑
a xi,a × ri,a can be used to represent the total expected
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reward, and the problem of finding an optimal policy to the MDP is equivalent to

solving the following linear program:

max
∑
i

∑
a

xi,a × ri,a (2.1)

subject to:

∑
a

xj,a = αj +
∑
i

∑
a

pi,a,j × xi,a : ∀j

xi,a ≥ 0 : ∀i, ∀a

where αj is the probability that the agent is initially in state j, and the constraint

(named the probability conservation constraint)
∑

a xj,a = αj +
∑

i

∑
a pi,a,j × xi,a

guarantees that the expected number of times state j is visited must equal the initial

probability distribution at state j plus the expected number of times state j is entered

via all possible transitions.

When the linear program Eq. 2.1 is solved, it is trivial to derive an optimal

policy that specifies the action(s) to take in a given state. Specifically, assigning a

probability of executing action a in state i as πi,a =
xi,a∑
a xi,a

will maximize the total

expected reward. If any probability πi,a has a value other than zero or one, the

optimal policy is randomized; otherwise it is deterministic.

2.2.2 Constrained MDPs

Formulating unconstrained MDPs as linear programs makes it easier to take into

account additional constraints, including the agent capacity constraints and resource

constraints. Several of such constrained optimization problems have been investi-

gated by Dolgov and Durfee (2003, 2006). In order to familiarize readers with some

background knowledge on constrained Markov decision processes and the techniques

used to solve them, a brief introduction to their work is given below.
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Using the same notations as in the S-RMP optimization problem defined in Sec-

tion 2.1, a constrained MDP that models agent capacity limitations can be repre-

sented as 〈M, α, C〉, where:

� The classical MDPM is represented as 〈S,A, P,R〉.

� α = {αi} indicates the initial probability distribution.

� The agent capacity constraint C is represented as 〈O,C, U,Γ, Γ̂〉. As a reminder,

U = {uo,a,i} indicates whether the agent needs resource o to execute action a in

state i, Γ = {τo,c} defines how much capacity c would be consumed to hold one

unit of resource o, and Γ̂ = {τ̂c} specifies the limit of the agent capacity c.

The linear programming formulation (Eq. 2.1) paves the way for incorporating

agent capacity constraints. Namely, the capacity limitations can be modeled by

imposing the following mathematical constraints (shown in Eq. 2.2) on occupation

measure xi,a defined and used in the linear program Eq. 2.1.

∑
o

τo,c ×Θ(
∑
i

∑
a

uo,a,i × xi,a ) ≤ τ̂c : ∀c (2.2)

where Θ(z) is a step function, defined as

Θ(z) =

⎧⎪⎨
⎪⎩

1 z > 0

0 otherwise

The constraint indicates that, given the resource requirement parameter uo,a,i = 1,

the agent will have to employ τo,c amount of its capacity c to hold resource o if it

decides to schedule action a in state i in its policy.

Note that the Θ(z) function is a nonlinear function. In general, directly solving

nonlinear constrained optimization problems is difficult. Fortunately, there is a sim-

ple way that can transform the nonlinear constraint Eq. 2.2 into linear constraints
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through introducing some integer variables (Dolgov and Durfee, 2003). Thereafter,

state-of-art integer linear programming techniques (which are typically more efficient

than nonlinear programming techniques) can be adopted to solve constrained MDPs.

The reformulated constraints are depicted below.

∑
i

∑
a uo,a,i × xi,a
X

≤ Δo : ∀o
∑
o

τo,c ×Δo ≤ τ̂c : ∀c

Δo ∈ {0, 1} : ∀o

where Δo, a binary integer in the set {0, 1}, is introduced to indicate whether the

agent uses its limited capacity to hold resource o. X is a constant that is no less

than sup
∑

i

∑
a xi,a, which is applied to guarantee that

∑
i

∑
a uo,a,i×xi,a

X
never exceeds

one (because
∑

i

∑
a uo,a,i × xi,a ≤

∑
i

∑
a xi,a ≤ sup

∑
i

∑
a xi,a ≤ X). One way to

compute X is to solve an unconstrained MDP:

X = max
∑
i

∑
a

xi,a (2.3)

subject to:

∑
a

xj,a = αj +
∑
i

∑
a

pi,a,j × xi,a : ∀j

xi,a ≥ 0 : ∀i, ∀a

To summarize, the constrained MDP that models the agent’s capacity limitations

can be formulated into a mathematical program Eq. 2.4 (i.e., by putting Eq. 2.1 and

the above integer linear constraints together), whose solution will yield an optimal

capacity usage configuration and an optimal executable policy.
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max
∑
i

∑
a

xi,a × ri,a (2.4)

subject to:

∑
a

xj,a = αj +
∑
i

∑
a

pi,a,j × xi,a : ∀j
∑

i

∑
a uo,a,i × xi,a
X

≤ Δo : ∀o
∑
o

τo,c ×Δo ≤ τ̂c : ∀c

xi,a ≥ 0 : ∀i, ∀a

Δo ∈ {0, 1} : ∀o

In Eq. 2.4, pi,a,j, ri,a, αj , uo,a,i, τo,c, τ̂c, and X are constants, while xi,a are contin-

uous variables and Δo are binary integer variables, which indicates that Eq. 2.4 is a

mixed integer linear program (MILP).

Mixed integer linear programming is the discrete version of linear programming

with an additional requirement that partial variables must be integers. MILPs can

be solved by a variety of highly optimized algorithms and tools (Cook et al., 1998;

Wolsey, 1998). Recently, there has been substantial progress on using MILPs in

automated planning (Earl and D’Andrea, 2005; Kautz and Walser, 2000; van Beek

and Chen, 1999; Vossen et al., 1999), and the automated resource-driven mission-

phasing techniques presented in this dissertation are based upon the MILP as well.

2.2.3 An Example

To help readers better understand the constrained MDP approach, this subsection

illustrates it through an example problem. Our automated resource-driven mission-

phasing approach, which extends the constrained MDP approach, will be illustrated

using the same example problem as well.
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a1 (0.1), noop (0.8)

a1 (0.9), noop (0.2) a2 (1.0), noop (1.0)

a4 (0.1), noop (0.5)

a4 (0.8), noop (0.2)

a4 (0.1), noop (0.3)

a5 (0.8), noop (0.2)

a5 (0.2), noop (0.8)

a3 (0.9), noop (0.05)

a3 (0.1), noop (0.95)

Figure 2.2: A simple single-agent example.

The example problem is shown in Figure 2.2. The problem has six states {S1, S2, S3,

S4, S5, S6} and six possible actions {a0=noop, a1, a2, a3, a4, a5}, where the agent starts

at S1, and a0 is a noop that represents the fact that the agent has the freedom of not

executing any action. There are five types of resources {o1, o2, o3, o4, o5} in the prob-

lem. Executing action ai ∈ {a1, a2, a3, a4, a5} requires the agent having resource oi,

while the action noop does not require any resource by definition. That is, u1,1,1 = 1,

u2,2,2 = 1, u3,3,3 = 1, u4,4,4 = 1, u5,5,5 = 1, and uo,a,i = 0 in all other cases.
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If the number of resources the agent can carry is unlimited, this example problem

is, in fact, a classical unconstrained MDP. Using a policy formulation algorithm (e.g.,

value iteration or policy iteration), we could easily compute the optimal policy, which

is [S1 → a1, S2 → noop/a2, S3 → a3, S4 → a4, S5 → a5, S6 → noop], and the total

expected reward is 174.65.

Suppose instead that the capacity of the agent is highly restricted, such that

now the agent can carry only one resource (but it can choose which one to carry),

which means it can only execute a policy with at most one action that is not a noop.

We can solve this problem by parameterizing Eq. 2.4 with the resource requirement

parameters described above, the MDP-related parameters depicted in Figure 2.2,

and the constant X = 70.24 computed by Eq. 2.3. The resulting MILP is shown

below:

max −5× x1,0 − 5× x1,1 − 20× x2,0 − 20× x2,2 − 5× x3,0 − 5× x3,3

−5× x4,0 − 5× x4,4 − 5× x5,0 − 5× x5,5 + 200× x6,0

subject to:

x1,0 + x1,1 = 0.5× x4,0 + 0.1× x4,4 + 1.0

x2,0 + x2,2 = 0.8× x1,0 + 0.1× x1,1 + 0.8× x5,0 + 0.2× x5,5

x3,0 + x3,3 = 0.2× x1,0 + 0.9× x1,1 + x2,0 + x2,2 + 0.3× x4,0 + 0.1× x4,4

x4,0 + x4,4 = 0.95× x3,0 + 0.1× x3,3

x5,0 + x5,5 = 0.05× x3,0 + 0.9× x3,3 + 0.2× x4,0 + 0.8× x4,4

x6,0 = 0.2× x5,0 + 0.8× x5,5

(additional constraints on the next page)
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x1,1 ≤ 70.24×Δ1

x2,2 ≤ 70.24×Δ2

x3,3 ≤ 70.24×Δ3

x4,4 ≤ 70.24×Δ4

x5,5 ≤ 70.24×Δ5

5∑
o=1

Δo ≤ 1

Using a MILP solver, such as cplex (www.ilog.com), we can easily derive an optimal

solution to the above MILP:

[(x10, x11), (x20, x22), (x30, x33), (x40, x44), (x50, x55), x60]

=[(3.47, 0), (3.03, 0), (5.21, 0), (4.95, 0), (0, 1.25), 1]

[Δ1,Δ2,Δ3,Δ4,Δ5] = [0, 0, 0, 0, 1]

That is, the optimal policy is [S1 → noop, S2 → noop, S3 → noop, S4 → noop, S5 →

a5, S6 → noop], and the corresponding total expected reward is reduced to 65.02

(from 174.65 in the unconstrained case) due to the limitation on the agent capac-

ity. This is the optimal policy for the constrained agent that uses a single policy

throughout its entire mission. We will use this example as we go along to illustrate

the degree to which our automated mission-phasing techniques can improve that

expected reward.

2.3 Computational Complexity Analysis

Typically, finding an exact solution to a S-RMP optimization problem is com-

putationally challenging because not only should it decide on an optimal way to

decompose the problem into phases, but it should determine how to reconfigure re-
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sources (and capacity usage) at the entry to each phase and determine what the

optimal executable policy is within each phase. These three component problems

— problem decomposition, resource configuration, and policy formulation — are

strongly intertwined: the optimality of the solution to one component problem is

with respect to the solutions to the other two component problems.

The purposes of this section are to theoretically analyze computational complexity

of the S-RMP optimization problem and to illustrate why standard approaches are

not computationally tractable in solving it. The improvement of the techniques

presented in this chapter over those approaches will be empirically illustrated and

discussed in Section 2.6.

Let us start by proving the following theorem:

Theorem II.1. S-RMP optimization is NP-complete.

Proof: The proof of S-RMP optimization being NP-hard is trivial, because one

of its special cases, which includes only one phase (i.e., the agent can only configure

its resources at the beginning of mission execution), has been proven to be NP-hard

through a reduction from the well-known KNAPSACK problem (Dolgov and Durfee,

2003; Dolgov, 2006).

The presence in NP can be proven in the following way. For a MDP with n states,

it is clear that there can be at most n phases (i.e., n phases in the extreme situation

where every state is a phase-switching state). By featuring phase id (assuming each

phase has a unique id) in the state representation, a generalized MDP with at most n2

states can be constructed in polynomial time and the phase policies can be combined

into an overall policy to this generalized MDP in polynomial time too. Given the

generalized MDP and its policy, the problem is reduced to solving a Markov chain.

Since a Markov chain can be verified in polynomial time, S-RMP optimization is in
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NP.

Given its presence in both NP and NP-hard, S-RMP optimization is proven to be

NP-complete. �

To further illustrate computational complexity of the S-RMP optimization prob-

lem, the rest of this section discusses and explains why two standard approaches —

the brute-force search algorithm and the MDP-based algorithm — are, in general,

computationally challenging in solving the S-RMP optimization problem.

The brute-force search approach. The brute-force search algorithm enumerates

all possible problem decomposition schemes, and, for each decomposition scheme,

enumerates all possible ways to configure and reconfigure resources, and, finally,

for each possible way of problem decomposition and resource (re)configuration,

derives optimal phase policies that are executable with respect to the configured

resources.7

Let us consider an example problem: there are o different resources, the agent

can hold c out of o resources (given capacity cost τo,c = 1 and capacity limit

τ̂c = c), the size of the MDP state space is s, and there can be up to k phases

in the system (given that the cost for making one state i into a phase-switching

state is λi = 1 and that the amount of cost that can be used to create phase-

switching states is λ̂ = k).

In the example, the brute-force search approach would need to enumerate Cs−1
k−1

different ways of problem decomposition, where Cx
y represents the total number

of ways of taking y out of x things at a time, and Cs−1
k−1 instead of Cs

k in the

formulation is because it is assumed that the capacity-limited agent can always

configure its resources in its initial state (i.e., the first phase always starts at
7Enumerating all possible policies is unnecessary, because there exist a number of efficient policy formulation

algorithms.
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the initial state). Given a decomposition, the number of possible ways to se-

quentially configure resources is a product of the numbers of possible ways of

configuring resources in each phase. That is, for each problem decomposition

scheme, there are (Co
c )
k possible ways of configuring and reconfiguring resources.

As a result, the brute-force search approach needs to solve Cs−1
k−1× (Co

c )
k MDPs,

each of which is a non-trivial stochastic planning problem with s× k states.

Even for moderately complex problems, the brute-force search approach is com-

putationally intractable. For example, if s = 20, o = 9, k = 3, and c = 3, the

approach would need to enumerate and solve 101, 352, 384 policy formulation

problems in order to find an optimal solution to the S-RMP optimization prob-

lem. As another example, if s = 40, o = 9, k = 6, and c = 3, the approach

would need to enumerate and solve 2.02× 1017 policy formulation problems.

The MDP-based approach. Unlike the brute-force search approach that consid-

ers each S-RMP component problem in isolation, the MDP-based approach

incorporates resources into the state representation, and models resource re-

configuration activities as explicit actions. Compared to the brute-force search

approach, it avoids the examination of an exponential (exponential in the prod-

uct of the number of resources and the number of phases) number of MDPs with

a cost of an exponential (exponential only in the number of resources) increase

in the size of the state and action space.

Intuitively, the MDP-based algorithm is faster than the brute-force search algo-

rithm since the resource reconfiguration process is now embedded in the policy

formulation process of the generalized MDP, and the policy formulation prob-

lem can be solved using efficient dynamic programming methods (instead of
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enumerating all possible combinations of resource configuration actions).

However, the MDP-based approach is still computationally challenging, not

only because it now has an exponentially larger state space (i.e., the size of

the state space increases from s to s × Co
c ) but also because it still needs to

cope with phase-switching constraints that restrict the states where resource-

reconfiguration actions can be taken. There are typically two ways to take

into account phase-switching constraints. We can either construct and solve a

single constrained MDP that can be formulated into a MILP with s−1 binary

variables (i.e., using the MILP formulation Eq. 2.4), or enumerate all Cs−1
k−1

possible decomposition schemes, and, for each, solve an unconstrained MDP.

That is, for the previous example with s = 40, o = 9, k = 6, and c = 3, the

decision-making agent can choose either to solve a single constrained MDP with

s×Co
c = 3, 360 states and s−1 = 39 binary variables, or to solve Cs−1

k−1 = 575, 757

unconstrained MDPs, each of which has the same size of the state space as the

above constrained MDP.

As illustrated in the above example problem, both the brute-force search approach

and the MDP-based approach are not computationally efficient for the S-RMP opti-

mization problem. This is primarily because these two approaches do not take into

account problem structure that can be exploited to speed up the process of finding an

exact solution. The brute-force search approach deals with S-RMP component prob-

lems in isolation, while the MDP-based approach combines the resource-configuration

and policy-formulation components in a naive way, which results in an exponentially

larger policy formulation problem. Neither of these two approaches can effectively

exploit interactions and influences among the S-RMP component problems.

Instead, as we will see, the solution algorithms designed in this work can take
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advantage of problem structure by formulating problem decomposition, resource

configuration, and policy formulation problems into a compact mathematical pro-

gram and solving these component problems simultaneously and effectively using a

highly optimized tool. As will be shown in Section 2.6, the algorithms presented in

this chapter can find exact solutions to the problems similar to the above examples

within a reasonable time (i.e., a few seconds).

2.4 Exploiting Fixed Phase-Switching States

To this point, we have formally defined the S-RMP optimization problem, re-

capped its background, and theoretically analyzed its computational complexity. In

this and the next sections, we will present and illustrate our computationally efficient

automated mission-phasing algorithms for solving S-RMP optimization problems.

We begin our examination of automated mission-phasing techniques by first ex-

amining a simplified variation of the S-RMP optimization problem, in which phase-

switching states are defined and known a priori. This problem is clearly a subclass

of the standard S-RMP optimization problem with stricter restrictions: i) if state

i is in a predefined phase-switching set, the phase-switching cost λi = 0 since that

phase-switching state already exists, ii) λi > 0 otherwise, and iii) the cost limit

λ̂ = 0.

This variation fits many problems where the opportunities to reconfigure resources

and switch policies are dictated by the state of the world rather than being a choice

of the agent. In the case of a Mars rover, the locations on Mars where it can change

its instruments may be very limited, and well known to it. Exploiting the fact that

phase-switching states are fixed, we can work out a particular, efficient algorithm

(while a more general but maybe slower algorithm will be presented in Section 2.5).
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Decomposition techniques for planning in stochastic domains are widely used for

large environments with many states (a detailed discussion of problem decomposition

techniques will be given in Section 2.7). In those approaches, states are partitioned

into small regions, a policy is computed for each region, and then these local policies

are pieced together to obtain an overall policy (Parr, 1998; Precup and Sutton, 1998;

Lane and Kaelbling, 2001). Our automated mission-phasing techniques are analogous

to those decomposition techniques — partitioning a mission into multiple phases

leads to smaller state and action spaces in each phase — though our motivation

for mission-phasing is the constraints on policies agents can execute rather than

the reduction of computational cost during policy formulation. Nonetheless, we can

exploit these ideas.

Our algorithm for solving S-RMP optimization problems with predefined phase-

switching states is based upon abstract MDPs. An abstract MDP is composed of

abstract states, each of which corresponds to a mission phase. The “action” for an

abstract state is the policy used in its corresponding phase. It is here assumed that

none of constraints is associated with more than one phase. The discussion of more

general constraints is postponed to the next section.

Since it is assumed that agent constraints in one phase cannot be affected by

policy choices in another phase, the abstract MDP is an unconstrained MDP (at the

abstract level) even though internally each phase is still a constrained MDP. The

algorithm thus uses a policy iteration approach at the abstract level together with

an embedded MILP solver within phases. The embedded MILP solver finds possible

executable policies and their expected rewards for each of the phases, while different

policies may have different probabilities of reaching the various phase-switching states

at the “edges” of the phase. The outer policy iteration algorithm at the abstract
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level iteratively searches for the combination of phase policies that maximizes the

reward across the whole mission.

The detailed procedure of the abstract MDP solver is illustrated below:

1. Partitioning the mission into phases.

When phase-switching states are given, partitioning a mission into multiple

phases is straightforward. Start from a phase-switching state, and then keep

expanding through all connected transitions until encountering other phase-

switching states. The resulting state space is the phase state space correspond-

ing to that phase-switching state.

2. Policy iteration.

The following policy iteration algorithm is adopted after the mission is parti-

tioned.

(a) Solve the corresponding unconstrained MDP and compute state values V (s)

for each phase-switching state s. V (s) are used as initial values of phase-

switching states since they are likely to provide good estimates.

(b) In the abstract MDP, each phase is treated as an abstract state and each

policy for a phase is treated as an abstract action for that phase’s abstract

state. The policy iteration algorithm alternates between the following two

steps:

Policy improvement : Rather than enumerating all possible policies (ab-

stract actions) for a phase (abstract state), the algorithm uses a con-

strained MDP solver (that was shown in Eq. 2.4) to calculate the opti-

mal policy in the phase, given the current state values of the (outgoing)

neighboring phase-switching states.
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Policy evaluation: Given abstract actions, calculate V (s) for each phase-

switching state s. For small state spaces, standard linear algebra meth-

ods are often the best solutions for policy evaluation. For large state

spaces, a simplified value iteration algorithm might be preferred (sim-

plified because the policy in each phase is fixed).

Unlike much “best-response” hill-climbing work, the above abstract MDP has

fixed state transition functions and fixed reward functions in both the abstract level

and the phase level because the agent enters a phase always at the same phase-

switching state, which guarantees the above policy iteration algorithm will return an

optimal solution.

Theorem II.2. The abstract MDP policy iteration procedure will converge to an

optimal solution.

Proof: In each iteration, the new abstract policy is a strict improvement over the

previous one. Since the total expected reward of the abstract MDP is bounded

(because the total expected reward of the corresponding unconstrained MDP is

bounded), the iteration procedure will eventually converge.

At the convergence point, both the phase MDPs and the abstract MDP satisfy

the Bellman optimality equation (because of the nature of the linear programming

solver and the policy iteration algorithm), indicating that the derived policy is an

optimal policy. �

Running Example

We now return to our running example introduced in Section 2.2.3 to illustrate

how the total expected reward can be improved if the agent can reconfigure its

resources at some states. Let us say that the agent knows it is able to reconfigure
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Figure 2.3: An abstract MDP with three phases.

resources and switch policies at states S1, S3 and S4. These three phase-switching

states decompose the example problem into three phases. The corresponding abstract

MDP is constructed and shown in Figure 2.3, which is composed of three abstract

states.

Using the above abstract MDP policy-iteration algorithm and assuming the same

parameters (especially that an executable policy cannot have more than one action

that is not a noop), we can see that the state values of the phase-switching states

eventually converge to

V (S1) = 113.65 V (S3) = 120.65 V (S4) = 123.05

The optimal policy in phase I is [S1 → a1, S2 → noop] (with resource o1), the optimal



38

policy in phase II is [S2 → noop, S3 → noop, S5 → a5, S6 → noop] (with resource o5),

and the optimal policy in phase III is [S2 → noop, S4 → noop, S5 → a5, S6 → noop]

(with resource o5 too). The total expected reward is now 113.65, which is 74.8%

higher than not exploiting those phase-switching states.

Thanks to the policy iteration procedure, the abstract MDP solver generally con-

verges quickly. However, it should be noted that two limitations are inherent in

the abstract MDP solver. One of the limitations is that the abstract MDP solver

requires that phase-switching states are known a priori, which restricts its applica-

bility (although we can combine it with some phase-switching-state heuristic search

techniques). The other limitation is due to the possible existence of constraints run-

ning across multiple phases. The abstract MDP is an unconstrained MDP and so the

policy iteration algorithm is efficient and well suited. In other words, the abstract

MDP solver cannot cope with constraints associated with multiple abstract states,

such as restrictions on the expected number of visits to a particular state that be-

longs to multiple phases. In contrast, the general S-RMP solution algorithms that

will be presented in the next section do not have such limitations.

2.5 Determining Optimal Phase-Switching States

2.5.1 Solution Algorithm

In a general S-RMP optimization problem, phase-switching states are not defined

and known a priori. Instead, given phase-switching cost {λi} (where λi denotes the

cost for making state i into one that is conducive for an agent to reconfigure resources)

and a cost limit λ̂, the objective of the agent is to find an optimal phase-switching

set S ′ ⊆ S subject to
∑

i∈S′ λi ≤ λ̂, along with optimal resource configurations and

optimal executable policies within each phase, to maximize its expected cumulative

reward.
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As stated, the abstract MDP solver presented in Section 2.4 cannot be directly

used for the general S-RMP optimization problem. In this section, we construct a

mixed integer linear program, the solution to which yields the optimal set of phase-

switching states maximizing the total expected reward, as well as optimal resource

configurations and executable policies within each phase. We make a simplifying

assumption that a START state (which has a positive initial probability distribution

αj) is always a phase-switching state. This assumption makes the presentation clearer

and the representation more concise, as well as sidestepping the question of what the

“default” agent policy might be (since that is what it would use if it could not

configure resources in its START state).

Let xki,a be the expected number of times action a is executed in state i within

phase k. Clearly, if state i is not reachable in phase k, then xki,a = 0. Let αkj =

∑
a x

k
j,a −

∑
i

∑
a pi,a,j × xki,a where pi,a,j is the state transition probability, then αkj

provides a way to characterize transitions among phases. If state j is not a phase-

switching state, then αkj = 0 for any k, since within any phase the expected number of

times of visiting state j (
∑

a x
k
j,a) must equal the expected number of times of entering

state j through all possible transitions (
∑

i

∑
a pi,a,j × xki,a). If state j is a phase-

switching state,
∑

k α
k
j = αj . Recall that αj is the initial probability distribution

for state j.
∑

k α
k
j = αj guarantees that the total expected number of times of

visiting state j must equal the initial probability distribution for state j plus the

total expected number of times of entering state j through all possible transitions.

Now, we can formulate the S-RMP optimization problem into a mixed integer

linear program,8 which is shown in Eq. 2.5. The objective function
∑

i

∑
a

∑
k x

k
i,a×

ri,a in the MILP represents the total expected reward accumulated across all phases,

8Given that S-RMP optimization is NP-complete, MILP (also NP-complete) is a reasonable formulation and it
allows us to exploit a variety of existing highly optimized MILP algorithms and tools.
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where ri,a is the MDP reward function.

max
∑
k

∑
i

∑
a

xki,a × ri,a (2.5)

subject to:

probability conservation constraints:

∑
a

xkj,a = αkj +
∑
i

∑
a

pi,a,j × xki,a : ∀k, ∀j
∑
k

αkj = αj : ∀j

xki,a ≥ 0 : ∀k, ∀i, ∀a

capacity constraints:
∑

i

∑
a uo,a,i × xki,a
X

≤ Δk
o : ∀o, ∀k

∑
o

τo,c ×Δk
o ≤ τ̂c : ∀c, ∀k

Δk
o ∈ {0, 1} : ∀o, ∀k

phase-switching constraints:

αkj
X
≤ Λj : ∀k, ∀j

∑
j

λj × Λj ≤ λ̂

Λj ∈ {0, 1} : ∀j

• As stated above, the constraint
∑

a x
k
j,a = αkj +

∑
i

∑
a pi,a,j × xki,a models the

conservation of probability within each phase.

• The constraint
∑

k α
k
j = αj indicates the probability conservation constraint

across phases, i.e.,
∑

k α
k
j =

∑
k(

∑
a x

k
j,a −

∑
i

∑
a pi,a,j × xki,a) =

∑
a xj,a −

∑
i

∑
a pi,a,j × xi,a = αj , where xi,a =

∑
k x

k
i,a is the total expected number of

times action a is executed in state i.
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• The capacity constraints
∑

i

∑
a uo,a,i×xk

i,a

X
≤ Δk

o and
∑

o τo,c × Δk
o ≤ τ̂c are a

multi-phase version of the capacity constraints discussed in Eq. 2.4, where X =

max
∑

i

∑
a xi,a can be computed by using Eq. 2.3.

• Λj in the constraint
αk

j

X
≤ Λj is a binary variable, where Λj = 1 when state j

is a phase-switching state, and Λj = 0 otherwise. We can prove X ≥ supαkj as

follows:

supαkj = sup(
∑
a

xkja −
∑
i

∑
a

paijx
k
ia)

≤ sup
∑
a

xkja

≤
∑
i

∑
a

∑
k

xkia

= X

Therefore, this constraint and the constraint Λj ∈ {0, 1} guarantee that ∃k :

αk
j

X
> 0⇒ Λj = 1, which implies that a state must be a phase-switching state if

there is some “transition leakage” at that state in any phase.

• The constraint
∑

j λj × Λj ≤ λ̂ says that the cost of creating phase-switching

states must be no greater than the cost limit λ.

• Other constraints denote the ranges of variables. Note that there are no range

restrictions for αkj .

By definition, Λj and Δk
o in the solution to Eq. 2.5 indicate phase-switching states

and resource configuration (within each phase), respectively. We here show how to

derive an optimal overall policy by examining xki,a.

The detailed procedure of deriving the overall policy is described below.
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1. Computing the optimal phase policy in each phase.

This is the same as before — at state i, action a is executed with probability

πki,a =
xk

i,a∑
a x

k
i,a

. In the following discussion, we use πk = {πki,a} to denote the

phase policy in phase k.

2. Determining the phase policy to adopt at a phase-switching state.

This is also trivial. The agent should choose phase policy πk with probability

Πk
i =

xk
i∑

k x
k
i

at phase-switching state i for maximizing its total expected reward,

where xki =
∑

a x
k
i,a.

Improving Computational Efficiency

The solution algorithm presented in Eq. 2.5 assumes that any state can be made

into a phase-switching state (as long as its cost does not exceed the phase-switching

cost limit), but it is very easy to make the algorithm also work in situations where

some states are restricted from being phase-switching states. We just need to filter

these states in the MILP formulation by, for each filtered state j, not modeling it

with binary variable Λj and always setting its associated αkj to be zero.

In fact, the restriction on feasible phase-switching states often reduces compu-

tational cost of our MILP-based algorithm since it reduces the number of integer

variables in the MILP formulation. This suggests that one potential way to improve

computational efficiency of the algorithm is to examine the cost λi and discard some

“bad” states with unreasonably high phase-switching costs before formulating the

MILP. In such a way, only |S| − |Bad| states need to be considered as candidate

phase-switching states in the MILP formulation.

Another way, which can also often considerably reduce computational cost, is

to trim down the set of k in the MILP formulation. That is to say, rather than
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ranging k from 1 to |S| (|S| is the size of the MDP state space), we can do a

preliminary computation to compute the upper bound (denoted as K) of the number

of phases among all possible ways of setting up phase-switching states, and then

restrict k ∈ {1, .., K} (instead of k ∈ {1, .., |S|}). The way of computing K is

presented below.

K = max
∑
i

Λi (2.6)

subject to:

∑
j

λj × Λj ≤ λ̂

Λi ∈ {0, 1}

In tightly constrained S-RMP optimization problems, K is often much smaller

than |S|, which greatly reduces the number of variables in the MILP formulation

and thus can often considerably improve the efficiency.

Running Example

This section concludes by illustrating the solution algorithm on our running ex-

ample illustrated in Figure 2.2. Recall that, as was shown in Section 2.4, when

the agent is allowed to reconfigure its resources and switch its policy at S1, S3 and

S4, its total expected reward is 113.65 (higher than the reward 70.24 in the non-

resource-reconfiguration case, but still much lower than the optimal reward 174.65

in the unconstrained case). Rather than predefining the phase-switching states, we

now assume that λ1 = 0, λi∈{2,...,6} = 1, and λ̂ = 2. That is to say, two additional

phase-switching states besides the START state S1 can be chosen by the agent from

any states in the system.

We use the same transition probability pi,a,j , reward ri,a, initial probability distri-

bution αj, resource requirement cost uo,a,i, capacity cost τo,c, capacity limit τ̂c, and



44

the constant value X as in Section 2.2.3. The phase-switching costs λi and the cost

limit λ̂ are given above. Using Eq. 2.6, we can find K = 3, and the optimal integer

solution to the mixed integer linear program Eq. 2.5 is:

[Λ1,Λ2,Λ3,Λ4,Λ5,Λ6] = [1, 0, 1, 0, 1, 0]
∣∣∣∣∣∣∣∣∣∣∣
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=
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1, 0, 0, 0, 0

0, 0, 1, 0, 0

0, 0, 0, 0, 1

∣∣∣∣∣∣∣∣∣∣∣

That is, the optimal set of phase-switching states is S ′ = {S1, S3, S5}. By exam-

ining continuous variables xki,a (not shown here because there are too many of them),

we can see that the total expected reward of the agent is 173.80 by choosing the

resource o1 and adopting the policy [S1 → a1, S2 → noop] at S1, switching to the

resource o3 and the policy [S3 → a3, S4 → noop] when reaching S3, and switching to

the resource o5 and the policy [S2 → noop, S5 → a5, S6 → noop] when reaching S5.

2.5.2 Variation: Maximizing the Total Reward, Accounting for Cost

This subsection demonstrates the extensibility of our MILP-based algorithm by

showing how easily it can be revised to work for another important variation of the S-

RMP optimization problem where neither the phase-switching states are predefined

(Section 2.4) nor the cost of creating phase-switching states is bounded (Section

2.5.1). We now assume that phase switching can occur at any state, and at as many

states as desired, and that (similarly as in Section 2.5.1) there is a cost associated with

letting a state be a phase-switching state. However, instead of being subject to some

cost limits, these costs are now calibrated with the utility associated with executing

policies. Now the optimization problem is to maximize the total expected reward,

accounting for the costs of creating phase-switching states, without predetermining
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which are the phase-switching states or how many there will be. As shown below,

designing an algorithm for such problems is trivial. It is just a simple mathematical

reformulation of Eq. 2.5. The detail is presented in Eq. 2.7.

max
∑
k

∑
i

∑
a

xki,a × ri,a −
∑
i

λi × Λi (2.7)

subject to:

probability conservation constraints:

∑
a

xkj,a = αkj +
∑
i

∑
a

pi,a,j × xki,a : ∀k, ∀j
∑
k

αkj = αj : ∀j

xki,a ≥ 0 : ∀k, ∀i, ∀a

capacity constraints:
∑

i

∑
a uo,a,i × xki,a
X

≤ Δk
o : ∀o, ∀k

∑
o

τo,c ×Δk
o ≤ τ̂c : ∀c, ∀k

Δk
o ∈ {0, 1} : ∀o, ∀k

phase-switching constraints:

αkj
X
≤ Λj : ∀k, ∀j

Λj ∈ {0, 1} : ∀j

where λi is the cost for creating phase-switching state i, and the objective function

∑
k

∑
i

∑
a x

k
i,a × ri,a −

∑
i λi ×Λi represents the total expected reward of the policy

minus the cost for creating phase-switching states.

Running Example

Let us revisit our running example to illustrate how the above algorithm can be

used to solve the variation of the S-RMP optimization problem. Suppose that λ1 = 0
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Case Phase-Switching
States Utility

unconstrained, Section 2.2.3 S1, S2, S3, S4, S5, S6 -75.35

non-phasing, Section 2.2.3 S1 65.02

three fixed phases,  Section 2.4 S1, S3, S4 13.65

two additional phases, Section 2.5.1 S1, S3, S5 73.80

unlimited  phases, accounting for 
cost, Section 2.5.2 S1, S5 102.55

Figure 2.4: Comparison of the solutions to the example problem, given that the cost of creating
each additional phase-switching state is 50.

(assuming the START state is already a phase-switching state) and λi = c for any

other state. Using the above MILP formulation (Eq. 2.7), we can find that when

0 < c ≤ 0.85 the optimal phase-switching states are [S1, S3, S4, S5], when 0.85 < c ≤

21.25, the optimal phase-switching states are [S1, S3, S5], when 21.25 < c ≤ 87.53, the

optimal phase-switching states are [S1, S5], and when c > 87.53 the optimal decision

is not to create additional phase-switching states besides the START state S1. As

expected, the number of phase-switching states decreases as the cost of creating

phase-switching states increases.

As a specific example, when c = 50, the optimal set of phase-switching states is

{S1, S5}. The optimal resource configuration and executable policy in the phase ini-

tiated at S1 are {o3} and [S1 → noop, S2 → noop, S3 → a3, S4 → noop], respectively;

the optimal resource configuration and executable policy in the phase initiated at S5

are {o5} and [S2 → noop, S3 → noop, S4 → noop, S5 → a5], respectively. The policy

utility is 152.55 (reward)− 50× 1 (cost) = 102.55.

To help readers understand and compare this solution with the solutions derived
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in the previous sections, Figure 2.4 shows their solution utilities (where the utility

is defined as the reward of the policy minus the cost of creating phase-switching

states). Not surprisingly, the utility of the solution presented in this subsection is

higher than the others since it is derived by the algorithm (Eq. 2.7) that can decide

the optimal amount of cost for creating phase-switching states.

2.5.3 Variation: Cost Associated with Partial State Features

Note that, sometimes, making one state into a phase-switching state would provide

“free” phase-switching feasibility for some other states, because whether a state

supports phase-switching might be determined only by partial features in the state

representation (and clearly it is possible that two distinct states have the same partial

features). For example, in the rover domain, the state representation might include

several other features (e.g., the direction that the rover faces) besides the feature

“location”, and so, if a supply station is built at a particular location for a particular

state, then any state that has the same “location” feature as that particular state

will allow for phase switching (without paying any additional cost) regardless of what

its other features are.

Let us say that the MDP state space S consists of L disjoint subsets S1, S2, ...,

Sl, ..., SL where if any state within Sl is a phase-switching state then all states in

Sl are phase-switching states as well. Let λl denote the cost associated with Sl, i.e.,

the cost of making any state in Sl into a phase-switching state, and let λ̂ denote the

cost limit for creating phase-switching states. Clearly, this is a generalization of the

previous phase-switching constraint: when every Sl contains exactly one state, this

representation is equivalent to the phase-switching constraint R previously presented

in Section 2.1.

The new mixed integer linear program with the generalized phase-switching con-
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straint is formulated in Eq. 2.8, which is very similar to Eq. 2.5, except for some

minor revisions in the portion of phase-switching constraints.

max
∑
k

∑
i

∑
a

xki,a × ri,a (2.8)

subject to:

probability conservation constraints:

∑
a

xkj,a = αkj +
∑
i

∑
a

pi,a,j × xki,a : ∀k, ∀j
∑
k

αkj = αj : ∀j

xki,a ≥ 0 : ∀k, ∀i, ∀a

capacity constraints:
∑

i

∑
a uo,a,i × xki,a
X

≤ Δk
o : ∀o, ∀k

∑
o

τo,c ×Δk
o ≤ τ̂c : ∀c, ∀k

Δk
o ∈ {0, 1} : ∀o, ∀k

phase-switching constraints:

αkj
X
≤ Λl : ∀k, ∀l, ∀j∈Sl

∑
l

λl × Λl ≤ λ̂

Λl ∈ {0, 1} : ∀l

where binary variable Λl denotes whether Sl is a phase-switching set.

Running Example

Let us go back to the running example. Suppose now that the state space is

composed of Sl=1 = {S1}, Sl=2 = {S2, S3}, Sl=3 = {S4, S5}, and Sl=4 = {S6}, and

that λl=0 = 0, λl �=0 = 1, and λ̂ = 1. The solution to Eq. 2.8 will yield a policy with
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a reward 165.68 using phase-switching states {S1, S4, S5}, where the spending of one

unit of cost creates both phase-switching state S4 and phase-switching state S5.

2.6 Experimental Evaluation

To this point, we have described a suite of single-agent resource-driven mission-

phasing problems and techniques for solving them, using a simple example to illus-

trate these ideas. Ultimately, the significance of these techniques hinges on their

computational efficiency in solving problems that are more difficult. In this section,

we give an empirical evaluation of our techniques focusing on problems with a more

complex state space and a larger resource set. Our experiments are implemented on a

simplified Mars rover domain in which an autonomous rover operates in a stochastic

environment. Following much of the literature on similar problems (Bererton et al.,

2003; Dolgov and Durfee, 2006), the Mars rover domain is represented using a grid

world.

2.6.1 Experimental Setup

In the grid world, there are some wall locations through which the rover cannot

move. Each of other locations is associated with an execution resource, which, if held

by the rover, can help the rover move safely in that location. Nonetheless, the agent

can also move without holding any resource, but this will result in a high uncertainty

in action outcomes and likely cause damage to the rover.

In addition, we say that there are multiple tasks randomly distributed in the grid

world. When the rover reaches a location that possesses a task, if the rover currently

carries the task-required execution resource, the rover can choose to perform a do

action (that carries out the task) and receive a reward. Once any task is carried out,

the mission is accomplished and the rover will leave the system.
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The characteristics of results presented in this chapter are not sensitive to exact

parameters used in our experiments, but for the sake of reproducibility, we describe

the detailed parameters below. The procedure of building a random grid world is

illustrated in Figure 2.5. When a n× n grid world is built, 40% of the locations are

randomly chosen as wall locations, and 10% of the locations are randomly chosen as

task locations. To avoid simple test problems, we only use grid worlds whose number

of reachable locations (from the rover’s starting location) is greater than half of the

total number of locations (i.e., greater than n2/2).

At each task location, there is a task that could be accomplished by the rover and

generate a reward. To make the problem interesting and challenging, we distinguish

tasks by setting different rewards for them. We sort tasks by their Manhattan dis-

tances to the starting location of the rover (the smallest distance first), and let the

ith task have a reward i. Therefore, it is not always true that the rover would desire

and pursue high-reward tasks because low-reward tasks are closer to the rover and

might be easier and safer to complete.

The rover always starts at the left bottom corner of a grid world, and its objective

is to maximize its expected reward. At each time step, the rover chooses an action in

its action set {wait, up, left, down, right, safe-up, safe-left, safe-down, safe-right, do}.
Actions wait, up, left, down, and right can be executed without requiring the rover to

carry any particular resource. In contrast, performing a safe-moving action safe-up,

safe-left, safe-down, or safe-right in a non-wall location requires a particular resource

(related to that location), which is randomly uniformly selected from resource set

O when the problem is built. Analogously, performing action do at a task location

requires a particular resource that is also randomly uniformly selected. It should be

pointed out that performing an action needs at most one resource, but a resource
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Figure 2.5: The procedure of creating a random grid world. (a) 40% of the locations are randomly
chosen as walls. (b) 10% of the locations are randomly chosen for tasks. (c) resource
requirements are randomly set.
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may enable the agent to safely move in multiple locations, and/or carry out multiple

tasks. The resource requirement information is known to the rover a priori.

The following lists the detailed action parameters used in our experiments:

wait can be executed at any non-wall location without requiring any resource. After

the execution of this action, the rover will stay at its current location with

probability 0.95, and be out of the system with probability 0.05 (e.g., running

out of battery).

up, down, left, right can be executed at any non-wall location without requiring

any resource. Each of these actions achieves its intended effect with probability

0.4, moves the rover into each of the other three directions (except the intended

direction) with probability 0.1, keeps the rover in the current location with

probability 0.1, and causes damage to the rover (and then the rover is out of

the system) with probability 0.2. Furthermore, if the rover bumps into a wall,

it will stay at its current location.

safe-up, safe-down, safe-left, safe-right can be executed only in locations whose

required resources are currently held by the rover. Compared to an unsafe-

moving action, such a safe-moving action achieves the intended effect with a

much higher probability 0.95, and falls into some failure situations with a lower

probability 0.05. Similarly as before, when the rover bumps into a wall, it stays

at its current location.

do can be executed only for tasks whose required resources are currently held by

the rover. When action do is executed, the rover receives a reward, and leaves

the system (since the mission is accomplished).

The capacity of the rover is restricted: the capacity limit is τ̂ , and carrying each
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resource will incur one unit capacity cost. That is to say, the rover can carry no

more than τ̂ resources.

We run experiments on a Core 2 Duo machine and use cplex 10.1 as our MILP

solver. In our experiments, each average data point is computed from 20 randomly

generated problems. We choose this number of random problems because, as shown

in our experiments, 20 test problems (for each data point) are sufficient to illustrate

the trend of our results while avoiding too long an experimental time to collect data

(where the long time is because the prior standard algorithm, to which our approach

is compared, finds optimal solutions slowly).

2.6.2 Optimality

We start the evaluation by showing the improved reward from using the phas-

ing strategy over the approach that does not consider the possibility of switching

resources in the midst of execution. Let us first consider the case where there are

five supply stations distributed in the environment (the first station is always at the

START state and the remaining four stations are randomly uniformly distributed

in the grid world when the problem is generated). Other parameters are set as fol-

lows: n = 8, i.e., the size of the grid world is 8 by 8, and |O| = 9, i.e., there are

nine different types of resources in the system. As shown in Figure 2.6 (i.e., the

5-fixed-phases curve vs. the non-phasing curve), exploiting the resource reconfigu-

ration opportunities (using the abstract MDP solver presented in Section 2.4) can

considerably improve the performance of the rover, e.g., receiving a reward about

40% higher than the reward when not taking advantage of the supply stations, given

that the rover can carry only three resources.

Figure 2.6 also compares the performance of the rover between the case where the

locations of supply stations are randomly pre-selected and the case where the loca-
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Figure 2.6: Exploiting fixed phase-switching states increases the agent’s reward, and finding optimal
phase-switching states further increases the reward.

tions of the same number of supply stations (i.e., five phases, given that λi=START =

0, λi�=START = 1, and λ̂ = 4) can be determined by the rover itself. As expected,

finding optimal phase-switching states (which can be done by using the MILP al-

gorithm presented in Section 2.5.1) is of value in tightly constrained environments.

For example, on average, it yields a reward about 46% higher than the approach

that randomly selects phase-switching states when the number of carried resources

is limited to τ̂ = 3.

Figure 2.7 examines the effectiveness of the resource-driven mission-phasing ap-

proach from another perspective, showing the reward of the rover as a function of

the number of phase-switching states that can be built in the environment (with

other system parameters n = 8, |O| = 9, and τ̂ = 3). We can see that (as ex-

pected) breaking the mission into multiple phases can significantly improve the total

expected reward of the constrained rover. For example, setting up two additional
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Figure 2.7: The reward increases as the number of phases increases.

supply stations in the 8 × 8 grid world environment (and so breaking it into three

phases) can almost double the average reward that the rover can gain without using

phasing.

We conclude the optimality evaluation by examining the MILP-based algorithm

(presented in Section 2.5.2) in the case where supply stations can be built at any

location, and at as many locations as desired, but creating each additional supply

station (besides the existing one at the START location) will incur a cost c. Other

parameters are the same as above. The problem objective is to maximize the net

utility (the reward of the rover minus the cost of creating supply stations).

The empirical results in Figure 2.8 illustrate that our solution approach can wisely

determine the number of phases that should be created, accounting for the cost of

creating them. As shown in the top figure, when the cost is low, the approach makes

a decision of creating 2.1 additional supply stations on average. In such cases, the

rover can receive a reward close to the maximum reward (i.e., 3.77) that can be
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Figure 2.8: The impact of phase-switching cost on phases and utility. Top figure: the optimal
number of phases decreases as the cost of creating each additional phase increases.
Bottom figure: the expected utility of the system decreases as the cost of creating each
additional phase increases.



57

gained in the unconstrained MDP case. On the other hand, when the cost is high

(e.g., c = 2), the approach chooses not to create additional supply stations at all

in most cases (and so the rover only configures resources at the START location).

The resulting reward, cost, and utility (defined as reward minus cost) are shown

as functions of the cost of creating each additional station in the bottom figure of

Figure 2.8. Together with the results shown in Figure 2.6, we can clearly see that

our approach (Eq. 2.7) yields a better solution than the approach of not using the

phasing strategy that returns a constant utility 1.78 regardless of the cost parameter

c. It is also better than the approach of always building a constant number (e.g.,

2) of additional supply stations that can result in a negative utility when the cost

parameter c is high.

2.6.3 Computational Efficiency

One of the major objectives of the work presented in this chapter is the design of

a computationally-efficient solution approach for the S-RMP optimization problem.

Section 2.3 has given a theoretical analysis on the computational complexity of the

S-RMP optimization problem; this subsection is intended to empirically evaluate

the efficiency of the solution approach presented in this chapter in solving complex

S-RMP optimization problems. To make the presentation concise, only the runtime

performance of the MILP-based algorithm described in Section 2.5.1 is shown, i.e.,

focusing on the standard S-RMP optimization problem defined in Section 2.1.9

Section 2.3 introduced two standard algorithms that may be used for the S-RMP

optimization problem, including the brute-force search approach based upon enumer-

ation and the MDP-based approach incorporating resource features in the MDP state

representation. Enumerating all decompositions, and then, for each, enumerating all

9Our experiments also show that the trends of results for other variations of the S-RMP optimization problem
are similar to those described in this subsection.
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possible resource configurations and reconfigurations can be thought of as a (very

slow) brute-force search algorithm for our formulated MILP. Therefore, we do not

report its empirical results, since state-of-art MILP solvers (such as cplex which we

use) usually follow more sophisticated branch-and-bound (B&B) strategies, and it is

well established in the mathematical programming literature that the B&B approach

is, in general, significantly better than the straightforward brute-force search (in both

the runtime for finding an optimal solution and the anytime performance of finding

a good solution). Based on an extensive search in the Artificial Intelligence and the

Operations Research literatures, we have found that the MDP-based approach is the

only existing approach (besides the brute-force search) that is directly applicable

for the S-RMP optimization problem. We will thus focus on the comparison of our

MILP-based algorithm and the MDP-based algorithm in the following discussion.

The MDP-based algorithm used in our experiment is a slightly revised version of

that described in Section 2.3, where we reduce its exponential-size action space to

a linear-size action space with the cost of making its state space reasonably bigger.

Specifically, only a new “drop-all” action and |O| new “pick-one” actions are added

into the original action space (instead of adding 2|O| “resource reconfiguration” ac-

tions). That is to say, rather than performing resource reconfiguration in one step,

the agent now switches to a new bundle of resources by first implementing a “drop-

all” action and then sequentially performing “pick-one” actions until it has all its

desired resources. According to our experience, this revised algorithm is usually more

computationally efficient than the version with the exponential-size action space.

Recall that the MDP resulting from incorporating resource features in the state

representation is still a constrained MDP because phase-switching constraints place

restrictions on which states resource-reconfiguration-related actions can be performed.
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Figure 2.9: The runtime increases and then decreases as the number of phases increases.

The constrained MDP solver (Eq. 2.4) has been shown to be efficient in solving large-

size constrained MDPs (Dolgov, 2006), and so this work uses it for solving such

remodeled constrained MDPs.10

To provide a better idea about the computational complexity of our experiment

domain and solution techniques, we begin by showing what a “hard” resource-driven

mission-phasing problem is, particularly along the dimension of the number of phases

that can be created. We use the same parameters as in Figure 2.7, but analyze

runtime instead. The results are shown in Figure 2.9, which demonstrates how the

running time for deriving an optimal S-RMP solution varies as the number of supply

stations that can be created in the environment increases. In the figure, the solid

line shows the average, and each data point, which is shown as “×”, corresponds to

a single run.

10In the MILP formulation for solving the remodeled constrained MDP, the number of binary variables equals the
number of states specified in the S-RMP problem definition. That is, the runtime of the MDP-based algorithm is
exponential to the input size but not doubly exponential.
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As shown in the figure, the running time is low when the number of phases is

small, and it gradually increases as the number of phases increases. This is not

surprising, because the number of variables (both continuous variables and binary

variables) in the MILP formulation is linear to the number of phases. However,

the interesting discovery is that, after some point, the runtime starts to decrease

although the size of the MILP still keeps increasing. We believe this is because,

when the number of phases is large, there are a number of different ways to set up

phase-switching states while achieving the same maximum reward. In other words,

the S-RMP optimization problem with a large number of phase-switching states

becomes under-constrained, and might have many different optimal solutions. The

MILP-based algorithm presented in this work can effectively exploit this property,

and reduce computational costs. Based upon this complexity profile, to highlight the

ability of solving “hard” problem instances, the following experiments set the phase-

switching cost limit λ̂ to 2 (which means that there can be up to three phases in

the system, assuming that creating each additional phase-switching state incurs one

unit cost), unless we want to examine how the running time changes as the number

of phases increases.

Figure 2.10 compares the average time for finding an optimal solution between

our MILP-based algorithm and the standard MDP-based algorithm along the lines

of the number of phases (top-left figure), the number of carried resources (top-right

figure), the number of resource types (bottom-left figure), and the size of the grid

world (bottom-right figure). We can see that our MILP-based algorithm is usually

considerably faster than the MDP-based algorithm, particularly in complex problem

instances.

In the top-left figure, the results of the MILP-based algorithm are the same as
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Figure 2.10: Runtime comparison between the MILP-based algorithm and the MDP-based algo-
rithm. The MILP-based algorithm finds an exact solution to a S-RMP optimization
problem faster than the standard MDP-based algorithm. Parameters are set as fol-
lows. Top-left figure: n = 8, τ̂ = 3, |O| = 9, λ̂ = {0, 1.., 6}. Top-right figure: n = 8,
τ̂ = {1, ..., 7}, |O| = 9, λ̂ = 2. Bottom-left figure: n = 8, τ̂ = 3, |O| = {3, 4, ..., 12},
λ̂ = 2. Bottom-right figure: n = {5, 6, ..., 10}, τ̂ = 3, |O| = 9, λ̂ = 2.
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those shown in Figure 2.9, which have already been discussed. Interestingly (but not

surprisingly), unlike the other three figures, the curve of the MDP-based algorithm

in this figure does not monotonically increase as the value of the input parameter

increases. This is because the input parameter in this figure, the number of phases,

does not affect the size of the state space of the expanded MDP. Furthermore, the

constrained MDP method (Eq. 2.4) used to solve the expanded MDP can exploit

problem structure when the problem becomes under-constrained. This explains why

the running time decreases after some point (but the time is still much higher than

that of the MILP-based approach).

The top-right figure also demonstrates a trend for the running time of the MILP-

based algorithm decreasing after the value of the input parameter (i.e., the number

of resources that can be carried by the rover) is above a particular threshold. The

reason is similar to that used to explain Figure 2.9 — the MILP-based algorithm can

effectively discover and exploit the fact that the problem becomes under-constrained.

In contrast, the MDP-based algorithm incorporating resource features into the state

representation leads to a MDP whose size grows very rapidly as the number of

resources that can be carried increases, and thus results in a significant increase in

the running time.

As illustrated in the bottom-left figure and the bottom-right figure, the runtime

of the MILP-based algorithm also increases considerably slower than the MDP-based

algorithm, although, unlike the top-left and top-right figures, the runtime monoton-

ically increases as either the number of resource types or the size of the grid world

increases (because in general the increases of these two parameters will not make the

problem become under-constrained by themselves).

The reason for the significant reduction in computational cost is that our MILP-
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based approach can formulate the S-RMP optimization problem in a compact (as

opposed to exponential) formulation, which paves the way for taking advantage of

state-of-art MILP solvers to effectively solve the coupled problems of problem decom-

position, resource configuration, and policy formulation. It is important to emphasize

that the MILP-based approach uses no approximation techniques (and so it will find

optimal solutions). The compactness of the formulation is because the MILP-based

approach folds the process of solving a NP-complete S-RMP problem into the pro-

cess of solving a NP-complete MILP (where the MILP can be solved efficiently by

state-of-art solvers).

Specifically, the MDP-based approach models resources in the MDP representa-

tion regardless of valuations of subsets of the resources, and then it reasons over the

generalized MDP to determine an optimal way of configuring and reconfiguring re-

sources. In contrast, our MILP-based solver finds an exact S-RMP solution by taking

advantage of the embedded branch-and-bound MILP method to discard subsets of

fruitless candidate solutions (through upper and lower estimated bounds). Although

the MILP-based approach and the MDP-based approach have similar worst-case

runtime, i.e., requiring exponential time to enumerate all possible ways of sequen-

tially configuring resources (which is reasonable because S-RMP is NP-complete),

the average-case performance of the MILP-based approach is often much better than

the MDP-based approach because of the effectiveness of the branch-and-bound algo-

rithm for pruning suboptimal solutions. This is particularly helpful in cases where

suboptimal decompositions can be detected easily and early because a large num-

ber of possible resource configurations and executable policies can then be discarded

without much computational effort.
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2.6.4 Anytime Performance

The primary goal (and contribution) of the work presented in this chapter is the

development of a computationally efficient approach for finding an exact solution

to a S-RMP optimization problem. The empirical results shown previously in this

evaluation section have demonstrated and confirmed the effectiveness and efficacy

of our approach in deriving an optimal solution. Nevertheless, it is worth pointing

out that the MILP-based algorithm can also be used to find a high-quality solution

within limited time through exploiting the anytime performance of state-of-art MILP

solvers. We conclude this section with a preliminary examination of this ability.

Figure 2.11 presents empirical results under two different experimental settings,

where the x-axis represents the runtime in a logarithmic scale, the y-axis represents

the normalized reward,11 and the error bars on the plot show the standard deviation.

These results illustrate that the MILP-based algorithm performs reasonably well in

finding a high-quality solution. For examples, in the problem with a 9× 9 (12× 12)

grid world where finding an exact solution takes about 40 (570) seconds on average,

our MILP-based algorithm can find a near-optimal solution with above 95% of the

optimal solution quality within 4 (30) seconds on average.

Since the design of our S-RMP solver focuses on the capability of quickly finding

an exact solution, we believe that some alternative solution approaches (such as

heuristic search and factored MDPs) may have better anytime performance than the

approach presented in this chapter. The significance of our MILP-based anytime

S-RMP solution approach is that it does not rely on any particular domain-specific

heuristic and knowledge, highlighting the ability to automate the process of creating

and using mission phases in complex environments.

11The reward of the optimal solution is normalized to one for each test problem.
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Figure 2.11: Anytime performance of the MILP-based algorithm. Parameters are set as follows:
τ̂ = 3, |O| = 9, λ̂ = 2, n = 9 (top figure), and n = 12 (bottom figure).
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2.7 Related Work

The S-RMP optimization problem involves three intertwined component prob-

lems: mission (problem) decomposition, resource configuration, and policy formula-

tion. Each of these S-RMP component problems has been studied in a wide variety

of research fields. The combinations of any two of them have also gained much at-

tention in recent years. This section gives an overview of related work, and discusses

why those prior approaches are not directly applicable to the S-RMP optimization

problem of interest in this chapter.

As was presented in Section 2.1, the S-RMP optimization problem is defined by

extending an unconstrained MDP model to include agent capacity constraints and

phase-switching constraints. The organization of this section follows the way of that

definition. It begins with a discussion of policy formulation techniques, followed by

a discussion of resource configuration techniques. It then reviews problem decom-

position techniques and their combinations with policy formulation and/or resource

configuration work. This section concludes with a discussion of the “mode-transition”

research that is related to this work but does not fit clearly into the previous cate-

gories.

Policy Formulation. The well-known Markov decision process has been described

in Section 2.2. By formulating a sequential decision-making problem into a MDP

model, a number of efficient (polynomial-time) solvers, such as the value iteration and

policy iteration algorithms, can be used to compute an optimal policy (Puterman,

1994).

However, directly applying these algorithms in resource-constrained systems, such

as the resource-driven mission-phasing problem studied in this chapter, typically



67

involves incorporating resource features in the MDP state representation (and so

actions can be conditioned on resource availability), which will result in an expo-

nential increase in the size of the state space (Meuleau et al., 1998), i.e., the well

known “curse of dimensionality” challenge. It has been shown in the empirical re-

sults (Section 2.6.3) that the exponential-size state space can result in computational

inefficiency.

Resource Configuration. Motivated by the fact that in a number of domains

(such as the Mars rover domain) it is impossible (or too expensive) to resolve re-

source constraints by enhancing the agent’s architecture, improving the performance

of a constrained agent under its limited architecture has been an active subject in

recent years, i.e., a class of “bounded optimality” study (Russel, 2002). The Co-

operative Intelligent Real-Time Control Architecture (CIRCA) is one such research

effort (Musliner et al., 1993, 1995). CIRCA uses a simple myopic approach to com-

pute feasible policies. It starts with building an optimal unconstrained policy with-

out worrying about its real-time requirements, and then myopically repairs the policy

until executable on the real-time system.

Not surprisingly, the (fast) myopic approach adopted by CIRCA might result in

suboptimal policies that cannot fully utilize the agent’s capacity. Several other re-

cent studies have proposed alternative algorithms for searching for a policy that is

executable within the agent capacity constraints and that optimizes the expected

(possibly discounted) reward accrued over the entire agent execution. For example,

Altman (1998) adopted a Lagrangian and dual LP approach to solve constrained

MDPs with total cost criteria. Feinberg (2000) analyzed the complexity of con-

strained discounted MDPs. Of particular relevance to the work in this dissertation
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is the study of strongly-coupled resource allocation and policy formulation problems

by Dolgov and Durfee (2003, 2006). Their approach implements simultaneous com-

binatorial optimization and stochastic optimization via reduction to mixed integer

linear programming, which has been recapped in Section 2.2.

However, these prior studies on constrained agents are based upon the assumption

that the agent’s limited capacity is configured by the resources it procures prior

to execution but cannot be reconfigured during plan execution. In other words,

they do not consider the possibilities of reconfiguring capacity usage in the midst of

execution, and do not work on optimizing the use of such opportunities. A seemingly

feasible solution to the S-RMP optimization problem is to enumerate all possible

ways of decomposing a mission, then, for each decomposition, adopt existing (one-

shot) constrained optimization techniques to derive an optimal executable policy in

each phase independently, and finally combine these optimal phase solutions into

an overall solution. However, this approach does not work in most cases. It not

only suffers from a large number (often exponential in the number of MDP states) of

possible ways of problem decomposition, but, more importantly, a policy in one phase

can usually only be optimized with respect to the policies planned for subsequent

phases that might be entered.

Problem Decomposition. In the literature of stochastic planning, a number of de-

composition algorithms have been proposed to speed up the planning process. The

discovery of “recurrent classes” of MDPs is one such decomposition strategy, which

can discover an exact state space decomposition in an environment with uncertain-

ties (Puterman, 1994; Boutilier et al., 1999). A recurrent class represents a special

absorbing subset of the state space, which means that once an agent enters a recur-
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rent class it remains there forever no manner what policy it adopts. Puterman (1994)

has suggested a variation of the Fox-Landi algorithm (Fox and Landi, 1968) to dis-

cover recurrent classes. With the discovery of the recurrent classes, the MDP solver

can derive an optimal overall policy by building an optimal policy in each recurrent

class independently and then constructing and solving a reduced MDP consisting

only of transient states (i.e., removing the recurrent classes in the MDP).

Of course, not all application problems can be exactly decomposed into indepen-

dent sub-problems. However, many of them are composed of multiple weakly-coupled

sub-problems where the number of states and transitions connecting two neighbor-

ing sub-problems is relatively small. A number of heuristic decomposition methods

have been designed to exploit such weakly-coupled relationships. As an example,

in the robot navigation domain (Parr, 1998; Precup and Sutton, 1998; Lane and

Kaelbling, 2001), doorways (or similar connection structures, such as bridges) can

be used to break a large environment into blocks of states, e.g., one block for each

room. Two neighboring blocks are only connected by a small number of doorway

states. Once a weakly-coupled state space is decomposed into several pieces, there

are a few methods that can be used to efficiently build an overall policy based upon

sub-problem policies. One common method is to let each sub-problem iteratively

exchange information with its neighboring sub-problems, and repeatedly revises (if

necessary) its sub-policy based upon its updated knowledge about utilities or values

of its neighbors until an overall (approximately) optimal solution is derived (Dean

and Lin, 1995).

Besides the application in stochastic planning, decomposition techniques have also

been shown to be beneficial for resource management in many realistic application

domains. Several resource allocation algorithms have been developed for the problem
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of allocating a set of heterogeneous resources with availability constraints to maxi-

mize a given utility function (Wu and Castanon, 2004; Palomar and Chiang, 2006;

Reveliotis, 2005). For example, Wu and Castanon (2004) presented an approximation

solution algorithm using decomposition combined with dynamic programming, and

their experimental results showed that the algorithm produces near-optimal results

with much reduced computational effort.

In addition to the Artificial Intelligence (AI) techniques discussed above, decom-

position techniques, which are often integrated with hierarchical control (also called

multilevel control in some literature), have received much attention in recent years

in Operations Research, Operations Management, Systems Theory, Control Theory,

and several other fields (Sethi et al., 2002; Antoulas et al., 2001; Xiao et al., 2004;

Phillips, 2002; Teneketzis et al., 1980). Many manufacturing systems are large and

complex; the management of such systems requires recognizing and reacting to a

wide variety of events that could be deterministic or stochastic. Obtaining exact

optimal policies to run these systems is often very difficult both theoretically and

computationally. By exploiting the fact that real-world systems are often charac-

terized by several decision sub-systems, e.g., a company consists of departments of

marketing, production, personnel, and so on, one popular way to deal with the com-

putational complexity challenge is to develop methods of hierarchical decision-making

for these systems. The fundamental ideas are to reduce the overall complex problem

into multiple smaller, manageable sub-problems, to solve these sub-problems, and

to coordinate solutions of the sub-problems so that overall system objectives and

constraints are satisfied (Sethi et al., 2002).

To summarize, it is well established that utilizing decomposition can greatly re-

duce computational costs in many situations. However, all the aforementioned prior
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decomposition techniques are not directly applicable for the S-RMP optimization

problem. The underlying reason is that decomposition points that are good at re-

ducing computational efforts are not necessarily (and, very likely, irrelevant with) the

optimal points for constrained agents to reconfigure resources. It is worth emphasiz-

ing that S-RMP decomposition tackles capacity constraints instead of computation

time constraints (where computation time constraints will be discussed and addressed

in computation-driven mission-phasing (CMP) techniques that will be presented in

Chapters IV and V). Indeed, in general, the mission decomposition in the S-RMP

solution will not in itself reduce computational requirements because a policy in one

phase can usually only be optimized with respect to the policies planned for possible

subsequent phases.

Mode Transition. Finally, it is important to distinguish the resource-driven

mission-phasing research from the “mode-transition” research implemented in the

fields of Operations Research and Control Theory (Schrage and Vachtsevanos, 1999;

Wills et al., 2001; Karuppiah et al., 2005). At first glance, these two research fields

have a lot in common: they both work on transitions from one sub-problem to an-

other, and both take into account resource reconfiguration. However, it should be

pointed out that they emphasize distinct aspects, and are applicable for different

application domains.

First of all, in the mode-transition approach, operational modes are usually tightly

associated with some explicit actions (e.g., hover and fly-forward modes in the he-

licopter example described by Schrage and Vachtsevanos (1999)), corresponding to

some particular states (e.g., sleep, search, seed, and final modes defined by Bojinov

et al. (2002)), or characterized with some explicit purposes (e.g., passing through a
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narrow tunnel and then traversing rough terrain requires a self-reconfiguring robot

to adjust its shape to achieve its goal better (Rus and Vona, 2001)). In contrast

to the explicit definition or representation of modes in the mode-transition research,

phases in the S-RMP problem are usually much more difficult to identify. The phas-

ing information is hidden in the MDP model, and finding optimal phases is usually

a challenging task.

Second, in the mode-transition research, mode transition and resource reconfig-

uration are often triggered by real-time events, e.g., responding to an unexpected

disastrous event and reconfiguring resources for fault toleration (Drozeski, 2005). In

contrast, the resource-driven mission-phasing study assumes that a decision-making

agent has complete information about the environment prior to its execution, and

one of its main objectives is to find the optimal points for reconfiguring resources and

capacity usage. That is, phase switching in S-RMP is a choice of the agent instead of

a reactive response to an exogenous event. More specifically, the S-RMP technique

presented in this chapter utilizes sequential decision-making (for look-ahead) to iden-

tify optimal resource reconfiguration and policy switching states. It emphasizes how

to reconfigure resources and switch policies so that the agent would not (or would be

less likely to) enter into the predicament of encountering undesirable events, instead

of studying how to reconfigure resources in real-time to respond to an unexpected

event.

Finally, much prior mode-transition research, particularly in the Control Theory

literature, investigates how to perform a smooth functional transition among modes,

but the work in this dissertation simply assumes that there are aggregate resource

(re)configuration actions, each of which can be a sequence of primitive actions of

arranging resources. This dissertation does not address the details of how the agent
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mechanically implements mode-transition and resource-reconfiguration actions.

2.8 Summary

In this chapter, we have analyzed several variations of a single-agent resource-

driven mission-phasing problem, corresponding to several cases of phase-switching

constraints, and presented a suite of computationally efficient algorithms for finding

and using mission phases. We have shown through analysis and experiments that our

approach can considerably reduce the computational cost for finding an exact solution

to a complex S-RMP optimization problem in comparison with prior approaches.

The contributions of the work presented in this chapter are summarized as follows:

• The work explicitly takes into account potential opportunities of a capacity-

limited agent for reconfiguring its capacity usage in the midst of mission ex-

ecution, and develops an abstract MDP solver to help the constrained agent

optimize the use of the existing phase-switching states. As shown in our em-

pirical results (Figure 2.6), exploiting such resource reconfiguration and policy-

switching opportunities can considerably increase the reward of the constrained

agent.

• The work designs a novel MILP-based algorithm to automate the process of

finding and using mission phases in complex, stochastic environments, which

eliminates the need of having phases predefined in the description of a mission.

With this algorithm, the mission-phasing strategy can be generalized to a wide

variety of application domains.

• The MILP-based algorithm presented in this chapter is computationally effi-

cient. It formulates a complex mission-phasing problem into a compact math-

ematical formulation, and simultaneously solves three component problems —
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mission decomposition, resource (re)configuration, and policy formulation — to

exploit the problem structure. The empirical results (presented in Figure 2.10)

have shown that the approach makes a significant reduction in computational

cost, compared to the standard MDP-based approach.

• Much prior constrained-agent research either does not consider the possibility of

reconfiguring the usage of agent capacity during execution, or only studies how

to reactively reconfigure resources in response to an exogenous event, or uses

some simple strategy to manage resources (and so, often sub-optimally). To

the best of our knowledge, our problem model and solution algorithms, based

upon the MDP model and sequential decision-making theory, are the first com-

putationally efficient approach for optimally solving the coupled problems of

mission decomposition, resource configuration, and policy formulation in con-

strained, stochastic environments.



CHAPTER III

Resource Reallocation in Multi-Agent Systems

In multi-agent systems, besides capacity limitations of each agent, there often

exist other resource constraints, caused by a group of agents sharing a limited set of

resources. Typically, the resources taken by one agent can affect the resources avail-

able to other agents. That is to say, in resource-limited environments, an individual

agent may be unable to procure all of its desired resources (even when its capacity

does not restrict the amount of resources it can hold) because some other agents may

be interested in those resources as well. How the resources are allocated among the

agents will dictate the actions each agent will be capable of performing, and thus

how the agents will act and interact to accomplish their goals in their environments.

Making effective resource-allocation decisions is of importance to such systems where

a group of agents share scarce resources.

Commonly, the problem of determining an optimal resource allocation among

agents operating in a stochastic world is computationally challenging. Assessing the

value of a particular bundle of resources to an agent requires the agent to formulate

an optimal policy based only on the actions that the bundle of resources enables.

Since the number of resource bundles is exponential in the number of resources, the

policy optimization process may have to be solved an exponential number of times.

75
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Furthermore, once the agents have computed valuations for each of the resource

bundles, identifying an optimal assignment of the bundles to the agents may require

enumerating all possible combinations of resource bundles, which could lead to a

doubly-exponential-time algorithm. Fortunately, a much more efficient algorithm has

been designed that can solve the coupled problems of combinatorial optimization (for

resource allocation) and stochastic optimization (for policy formulation) efficiently

through exploiting problem structure (Dolgov and Durfee, 2005, 2006).

However, making optimal one-shot resource allocation decisions, though an im-

portant step towards improving the effectiveness of resource utilization, has not yet

solved the problem of optimizing the use of the limited resources. One reason is that

an agent may only need a resource for a particular task within a particular time

period. As a Mars rover example where multiple rovers share limited instruments,

a rover might no longer need a previously assigned instrument after accomplishing

a particular scientific experiment, and so another rover can request this instrument

to better carry out its remaining experiments (and vice versa). This suggests that

reconfiguring resource assignments among a group of agents in the midst of mission

execution could be a promising way to improve the system performance in resource-

constrained multi-agent environments.

The prior work (Dolgov and Durfee, 2005, 2006) would generate an optimal al-

location of resources assuming that, once the resources were distributed among the

agents, the initial allocation would persist throughout the remainder of the agents’

execution. The work in this chapter relaxes that assumption, and instead investigates

the implications of allowing agents to redistribute resources among themselves in the

midst of execution. This leads to solving the problem of sequential (as opposed to

one-shot) resource allocation, along with the problem of optimizing agents’ policies
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for the execution phases between neighboring reallocations.

To solve this sequential multi-agent resource-allocation problem, we extend our

techniques from the S-RMP optimization problem presented in Chapter II. The work

in that chapter analyzed how a single agent should select a different subset of the

available resources at different times, and developed strategies for deciding on the

optimal states at which to reconfigure resources and switch policies, given constraints

and/or costs on such states. Analogously, the sequential resource allocation study

in this chapter analyzes how a group of agents should sequentially reconfigure the

distribution of the limited resources among themselves, and is to develop automated

resource-driven mission-phasing techniques for solving three intertwined problems —

problem decomposition, resource allocation, and policy formulation — in multi-agent

environments with resource constraints and with uncertainties.

The rest of this chapter is organized as follows. Section 3.1 gives a formal problem

definition, followed by a background introduction in Section 3.2 and complexity

analysis in Section 3.3. Section 3.4 and Section 3.5 look at several increasingly general

variations of sequential resource allocation problems, and for each, present, analyze,

and illustrate solution algorithms. Both efficiency and optimality of our techniques

are evaluated in Section 3.6. Finally, Section 3.7 summarizes the contributions of

the work presented in this chapter.1

3.1 Problem Definition

Stochastic planning in multi-agent environments is typically much more challeng-

ing than that in single-agent environments, particularly when each agent has only

a partial view of the global environment. Previous complexity analyses have shown

that the general decentralized Markov decision process (Dec-MDP) is NEXP com-

1This chapter is largely based on work that was originally reported in (Wu and Durfee, 2007a).
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plete (Bernstein et al., 2000; Goldman and Zilberstein, 2004), which means that

exactly solving a Dec-MDP may be extremely difficult. Fortunately, in many ap-

plication domains, the actions taken by one agent may not impact other agents’

transitions. For example, when a few delivery robots operate in a large open envi-

ronment, interactions may be rare and easily avoidable. The development of efficient

algorithms for such loosely-coupled systems has gained much attention among many

researchers (Meuleau et al., 1998; Becker et al., 2004; Dolgov and Durfee, 2005).

In keeping with the prior work, the work in this chapter focuses on loosely-coupled

multi-agent systems2 where a group of cooperative agents are coupled through shar-

ing resources (i.e., actions selected for one agent might restrict the actions available

to the others), but the actions executed by one agent cannot impact rewards and

transitions of the others. As is a common assumption in the resource-allocation re-

search literature, this work also assumes that, once the resources are distributed,

the utility that each agent can achieve is only a function of its assignment of the

resources and does not depend on what resources are given to other agents and how

they use these resources. In addition, it is here assumed that a scheduled resource

reassignment can always succeed at its scheduled time point. At the end of this

dissertation, the discussion of future work will talk about the implications of relax-

ing this assumption. Finally, to simplify the presentation and make the discussion

clearer, the discussion in the rest of this chapter will not consider and model capacity

limits of the agents. However, the techniques presented in this chapter can be easily

extended to also include agent capacity constraints.3

In a similar fashion to the S-RMP optimization problem that was presented in

2A general multi-agent mission-phasing problem can be solved exactly (but perhaps not efficiently) by using the
S-RMP solution approach presented in Chapter II on the joint state and action space of the interacting agents,
assuming that each agent has a full view of the joint state.

3A “dummy” agent may be created to hold unallocated resources.
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Chapter II, a multi-agent resource-driven mission-phasing (M-RMP) problem can be

defined as a constrained optimization problem with the following inputs M, α, C,
and R:

� M = {Mm} is a set of classical MDPs, where Mm represents agent m’s MDP

and it can be modeled in the same way as described in Section 2.2. That is,

Mm = 〈Sm, Am, {pmi,a,j}, {rmi,a}〉 where Sm is a finite state space of agent m, Am

is a finite action space of agent m, pmi,a,j is the probability that agent m reaches

its state j when it executes action a in its state i, and ri,a is the reward that

agent m can receive when it performs action a in its state i.

� α = {αmi } specifies the initial probability distribution over states, where αmi is

the probability that agent m is initially in its state i.

� C represents resource constraints in the system, which can be represented as

〈O,U, Ω̂〉:

� O is a finite set of shared, indivisible, non-consumable execution resources.

� U = {umo,a,i} represents resource requirements of agents, where the binary

parameter umo,a,i ∈ {0, 1} indicates whether agent m requires resource o to

execute action a when it is in its state i.

� Ω̂ = {ω̂o} specifies resource limitations, where ω̂o is the maximum amount

of resource o that could be shared by agents in the system.

� R specifies constraints on resource reallocation. We remain agnostic in this work

as to the means by which resource redistribution occurs. In particular, we do

not require agents to be in same (physical) state(s) to exchange resources. We

assume that if the agents have agreed to redistribute resources at a particular
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time then resources can always be successfully collected and reassigned at that

time. We capture the efforts required for such resource reallocation activities as

costs 〈{ψt}, ψ̂〉:4

� {ψt} indicates resource reallocation costs, where ψi denotes the cost for

reconfiguring the resource assignment at time t.5 Note that ψt is only

associated with time t regardless of what resources and how many of them

are reassigned. A variation of resource reallocation constraints where the

reallocation cost depends on the amount of resources being transferred will

be discussed and analyzed in Section 3.5.2 after presenting the solution

algorithm to the M-RMP optimization problem defined in this section.

� ψ̂ specifies the limit on the amount of cost that could be spent in resource

reallocation. For a Mars rover example, ψt=any time = 1 and ψ̂ = 4 might

say that at most four resource reconfiguration events could be scheduled

during a particular mission execution.

M-RMP deals with a particular class of multi-agent stochastic planning problems

where agents can communicate as much as they need before the start of the mission,

but, once the mission starts, the distributed nature of the environment would prevent

the agents from exchanging information further. That is to say, the central decision-

making agent6 has complete world information in the pre-execution planning stage,

but each agent can observe only its local state during execution (but with common

knowledge of global time). In general, a multi-agent planning problem where central

4This is different from buffer pool research (Lehman and Carey, 1986; Sacco and Schkolnick, 1982), which often
assumes that buffer size can be changed immediately and free of charge.

5In cases where the costs of reconfiguring resources are associated with joint states of interacting agents instead of
only their time points, if joint states are fully observable during execution, modeling a M-RMP problem as a S-RMP
problem (which was solved in the previous chapter) on the joint state space is a reasonable solution approach since
the joint state space has to be modeled and considered in such cases.

6The decision-making agent can be one of the cooperative agents operating in the environment, or the entire
group of the agents (if using distributed mathematical programming techniques), or even some other agent outside
the group.
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planning is followed by distributed execution would lead to a NEXP-complete decen-

tralized MDP problem because planning should account for history of interactions

among agents in such cases (Bernstein et al., 2000; Goldman and Zilberstein, 2004).

However, recall that M-RMP assumes that agents are transition independent and

reward independent. That is to say, we only need to consider interactions of resource

sharing among agents. Resource assignments change as time passes, and time t al-

ways reaches t+ 1 in the next step (i.e., in a deterministic way), which implies that

we may be able to exploit this property and work out a particular, more efficient

algorithm. It should be emphasized that M-RMP is an open-loop decision-making

problem where the resource reallocations will occur as scheduled regardless of specific

execution trajectories of each agent. That is to say, resource allocation decisions are

made in the pre-execution planning stage, by accounting for uncertainty over the

durations of needs of the resources and the probability distributions over states at

the particular times of entering phases, but the way of allocating resources is not

affected by particular execution trajectories. For example, resources will not be re-

distributed earlier even if every agent finishes using its assigned resources earlier than

expectation in a particular run since M-RMP assumes that the agents are unable to

communicate each other during execution.

The objective of the M-RMP optimization problem is to maximize the total ex-

pected reward of a group of agents within a finite time horizon by judiciously reallo-

cating the limited, shared resources among the agents over time. To meet this need,

the solution algorithm needs to determine when to reallocate resources, i.e., find an

ordered set of time steps {tk} to decompose the overall problem into multiple phases.

Phase k starts at time tk (at which point the resource allocation changes) and lasts

until the resource allocation changes again (and the agents enter the subsequent
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phase at time tk+1). In addition, for each phase k, the algorithm needs to deter-

mine how to allocate resources, i.e., finding an optimal resource allocation for each

phase. Resource allocation decisions are made in the pre-execution planning stage,

by accounting for the joint state probability distributions at the particular times of

entering the phases, but the way of allocating resources does not depend on specific

joint states (given that joint states are not observable). Finally, the algorithm needs

to determine how to use resources. Note that, when problem decomposition and

resource allocation decisions are made, the M-RMP problem would be reduced to

a transition-independent and reward-independent multi-agent MDP problem, which

is indeed equivalent to multiple single-agent MDP problems where action choices of

each agent only depend on the agent’s own current state and are neither affected by

the agent’s historical states nor by actions of other agents.

Although much simpler than a general decentralized MDP problem, such an au-

tomated multi-agent mission-phasing problem is still computationally challenging

because it needs to determine not only how to initially allocate limited shared re-

sources, but also when to reallocate resources, what the best way of reallocating

resources is, and what the best executable policies with respect to the reallocated

resources are. These three component problems — mission decomposition, resource

allocation, and policy formulation — are strongly intertwined. The utility of decom-

posing a problem into phases and the utility of allocating resources for each phase

are unknown until executable policies are formulated and evaluated, but the policies

cannot be formulated until the phases are built and the resources are allocated.



83

3.2 Background: Integrated Resource Allocation and Policy Formulation

This section is to familiarize readers with some background knowledge about how

the prior approach (designed by Dolgov and Durfee (2005, 2006)) solves integrated

resource-allocation and policy-formulation problems because the work in this chapter

extends their work to also solve the problem of optimally decomposing a mission into

phases and the problem of sequentially allocating resources.

Their work is under the same loosely-coupled multi-agent system assumption as

in this work, and their algorithm is presented below in Eq. 3.1, where the constant

parameters pmi,a,j, r
m
i,a, and αmj , respectively, represent the state transition probability

function, the reward function, and the initial probability distribution of agentm. The

constant parameter umo,a,i indicates whether agent m requires resource o to execute

action a in its state i. The continuous variable xmi,a represents the expected number of

times agent m executes action a in its state i, and the binary variable Δm
o represents

whether one unit of resource o is assigned to agent m prior to execution.

max
∑
m

∑
i

∑
a

xmi,a × rmi,a (3.1)

subject to:

probability conservation constraints:

∑
a

xmj,a = αmj +
∑
i

∑
a

pmi,a,j × xmi,a : ∀m, ∀j

xmi,a ≥ 0 : ∀m, ∀i, ∀a

resource constraints:∑
i

∑
a u

m
o,a,i × xmi,a
X

≤ Δm
o : ∀m, ∀o

∑
m

Δm
o = ω̂o : ∀o

Δm
o ∈ {0, 1} : ∀m, ∀o



84

• The objective function
∑

m

∑
i

∑
a x

m
i,a × rmi,a represents the sum of cumulative

rewards among all agents, based upon the assumption that the agents are loosely

coupled (i.e., actions taken by one agent will not impact other agents’ rewards

and transitions).

• The constraint
∑

a x
m
j,a = αmj +

∑
i

∑
a p

m
i,a,j×xmi,a guarantees probability conser-

vation at every state for every agent, which is a multi-agent version of the prob-

ability conservation constraint in the single-agent MDP formulation (Eq. 2.1)

described in the previous chapter.

• X is a constant equal to or greater than sup
∑

i

∑
a x

m
i,a (where in a finite horizon

MDP, X can be set to the finite horizon T since each agent can only execute

T actions within that horizon). The constraint
∑

i

∑
a u

m
o,a,i×xm

i,a

X
≤ Δm

o implies

that xmi,a must be zero (i.e., action a cannot be executed by agent m in state

i) when umo,a,i = 1 (i.e., agent m must have resource o to execute action a in

its state i) and Δm
o = 0. xmi,a is unrestricted otherwise since X is no less than

∑
i

∑
a u

m
o,a,i × xmi,a by definition.

• The constraint
∑

m Δm
o = ω̂o guarantees that the total amount of resource

o allocated across all agents must equal the amount of available resource o

(assuming the resources will be completely assigned). This constraint can be

easily relaxed to the constraint
∑

m Δm
o ≤ ω̂o by introducing an additional

dummy agent to keep unallocated resources.

The optimal joint policy can be easily derived from the solution to the above

MILP in a similar way to that discussed in Section 2.2. That is, to maximize the total

expected reward of the group of agents, agent m should choose a with probability

πmi,a =
xm

i,a∑
a x

m
i,a

when it is in its state i.
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Task 2
----------------------
Reward: 12
RL: 2
DL: 10
Resource:

Task 1
----------------------
Reward: 10
RL: 1
DL: 4
Resource: 1 2

Task 3
----------------------
Reward: 28
RL: 5
DL: 8
Resource:

Task 1
----------------------
Reward: 26
RL: 1
DL: 7
Resource:

Task 2
----------------------
Reward: 6
RL: 3
DL: 8
Resource:

Task 3
----------------------
Reward: 12
RL: 6
DL: 10
Resource:1

1

2

2

1 2

Figure 3.1: A simple two-agent example.

3.2.1 A Multi-Agent Example

This subsection describes a simple multi-agent resource-allocation example prob-

lem, illustrating the above solution approach and examining the impact of resource

limitations on system performance. This example problem will also be used later

to illustrate the improvement in the system performance using the mission-phasing

techniques presented in this chapter.7

In this example problem, two cooperative agents attempt to maximize their total

expected reward within ten time steps. Each agent has three tasks. At each time

step, an agent can choose to continue its previously started task (if there is one and

if the required resources are still assigned to that agent), to start a new task (and

abort its current task if there is one), or simply to do nothing. In addition, we say

that a task that has been aborted previously (and thus has failed) can be re-tried,

but no task can be accomplished more than once.

Figure 3.1 shows the detailed information of the tasks in the example problem,

including release (RL) time (i.e., when the task becomes available), deadline (DL)

7A complete evaluation of our techniques (in both improving the utility and reducing the computational cost)
will be presented in Section 3.6.
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Figure 3.2: Optimal resource allocation when resources are unlimited.

(i.e., when the task becomes unavailable), reward, and resource prerequisite. For

example, agent 1 can start (or continue) its task 1, which will incur a reward 10

if accomplished, at any time step within the interval [1, 4) given that it has one

unit of resource 1 at that time. The uncertainty in this problem is in the amount

of time required to execute a task. Here, we say that, if an agent starts a task and

does not abort it during execution, then the agent has probability 0.3, 0.4, and 0.3

of accomplishing it within one, two, and three time steps, respectively.

When the resources are sufficient (i.e., each agent has all of its desired resources

as illustrated in Figure 3.2), this becomes an unconstrained MDP problem for each

agent. Using a standard policy formulation algorithm (e.g., value iteration and policy

iteration), we can easily compute the optimal unconstrained policy for each agent,

which yields the total expected reward 93.64.

Suppose instead that the resources are scarce, i.e., there is only one unit of resource

1 and one unit of resource 2 in the system at any time step. It is not obvious how to

distribute these resources among the two agents. Adopting Eq. 3.1, we can find that

the optimal one-shot allocation is to give all resources to agent 1 and let agent 2
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Figure 3.3: Optimal one-shot resource allocation when resources are scarce.

idle over the entire execution, as shown in Figure 3.3, and the total expected reward

is 49.64 in this case, much lower than the reward (93.64) in the above unconstrained

case. In the following sections, we will use this example as we go along to see the

degree to which sequential allocation of the resources can improve the reward in this

problem world with the limited shared resources.

3.3 Computational Complexity Analysis

The M-RMP optimization problem is a challenging decision-making problem, in-

volving three intertwined components: mission decomposition, resource allocation,

and policy formulation. This section starts by theoretically analyzing the compu-

tational complexity of the M-RMP optimization problem, and then explains why

several related prior approaches are not computationally tractable for finding an

exact solution to the M-RMP optimization problem.

Theorem III.1. M-RMP optimization is NP-complete.

Proof: It is trivial to prove that the M-RMP optimization problem is NP-complete.

First, given that its special case — one-shot resource allocation and policy formula-
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tion — can be proven to be NP-complete through a reduction from the KNAPSACK

problem (Dolgov, 2006), M-RMP optimization is NP-hard.

Second, given a solution to the M-RMP problem, the satisfaction of resource con-

straints and resource reallocation constraints can be verified in linear time. After

that, for each agent, incorporating its policy into its MDP model, the M-RMP opti-

mization problem becomes a Markov chain, which can be solved in polynomial time.

That is, M-RMP optimization is in NP.

With both NP and NP-hard, M-RMP optimization is NP-complete. �

Decentralized MDP. As previously discussed in Chapter II, modeling resources

into the MDP state representation and formulating resource-reconfiguration ac-

tivities as actions is one possible way to solve a S-RMP optimization problem

(although it is much slower than our MILP-based algorithms). However, the

same idea is generally inapplicable to the M-RMP optimization problem, be-

cause even a small problem will result in a computationally intractable problem

of solving a decentralized MDP (Dec-MDP) (Bernstein et al., 2000; Goldman

and Zilberstein, 2004).

Note that the outcomes of a resource-reconfiguration action performed by one

agent depend on whether interacting agents will perform corresponding resource-

reconfiguration actions at the same time. Typically, a joint action of reconfig-

uring resource assignments among a group of agents can succeed only when the

amount of released resources is equal to or greater than the amount of requested

resources among all participant agents, which means that the resulting Dec-

MDP is not transition independent. A general Dec-MDP is NEXP-complete

(Bernstein et al., 2000), and so the decision-making agent may face a NEXP-

complete problem with an exponential-size input (exponential in the size of
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the resource set) when using the idea of incorporating resources in the state

representation. In general, this is an extremely difficult problem.

Combinatorial optimization and stochastic optimization. Each phase in a M-

RMP problem is a one-shot resource-allocation and policy-formulation problem.

However, directly using the prior integrated combinatorial optimization and

stochastic optimization approach (Dolgov and Durfee, 2005, 2006) (recapped in

Section 3.2) to compute resource allocations and executable policies for each

phase independently and then piecing these phase policies together to obtain

an overall policy is, in general, not a feasible solution approach for the M-RMP

optimization problem. The underlying reason (besides the reason that it has to

enumerate all possible ways of decomposing the problem) is that the MILP for-

mulation in Eq. 3.1 requires the initial probability distribution αmj to be known

a priori. However, αmj of a phase generally depends on the policy of its previous

phase, but the policy of the previous phase usually can only be optimized with

respect to the current and future phases.

Auction-based resource allocation. The last prior solution technique discussed

in this section is based upon auction-based resource allocation techniques (Pekec

and Rothkopf, 2003; de Vries and Vohra, 2003). In brief, each agent submits

a set of valuations over its possible sequential resource assignments, which are

often called bids, to a central decision-making agent.8 The central decision-

making agent then decides how to sequentially allocate resources among those

agents.

This is a feasible solution for a simple M-RMP optimization problem, but it will

8Based upon the cooperative-agent assumption, it does not matter whether the central agent is in the group of
agents that share resources to achieve goals, or it is out of the group.
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quickly become intractable as the problem size increases. Let us illustrate this

through an example. A group of m = 5 agents want to maximize their total

expected reward within t = 10 time steps, there are o = 5 different types of

resources in the environment, and resource assignments can be (re)configured

k = 3 times (i.e., one initial allocation prior to execution and two realloca-

tions in the midst of execution). In such a case, each agent needs to solve

Ct−1
k−1 × (2)o×k = 1, 179, 648 non-trivial sequential decision-making problems to

evaluate all possible sequential resource assignments. After that, the central

agent needs to solve a winner determination problem (WDP) where each of five

agents submits 1, 179, 648 bids. Although, WDP is relatively simple when the

participant agents are cooperative (instead of being self-interested) and many of

the possible combinations of these bids can be pruned without further analysis

(e.g., it is unnecessary to consider and evaluate a combination of bids whose

resource-reallocation schedules are in conflict), WDP is still computationally

challenging when the input size is large.

Unlike much of the prior work that considers each M-RMP component problem

in isolation, the work in this chapter develops automated mission-phasing techniques

(that will be presented in the next two sections) that can simultaneously solve the

coupled problems of mission decomposition, resource allocation, and policy formula-

tion to exploit interactions among them and to reduce computational cost.

3.4 Exploiting a Fixed Resource Reallocation Schedule

In a similar fashion to Chapter II, we begin with a simplified variation of the M-

RMP optimization problem where the schedule of reallocating resources is dictated a

priori, i.e., resource reallocation cost ψt = 0 if time step t is specified in a predefined
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schedule, ψt > 0 otherwise, and the cost limit ψ̂ = 0.

As was explained in Section 3.3, directly applying the (one-shot) integrated combi-

natorial optimization and stochastic optimization approach to compute an executable

policy for each phase independently and then piecing phase policies together for an

overall policy is usually not feasible. This section presents an alternative solution

approach to address this issue. In brief, rather than dealing with each phase inde-

pendently, we can link those phases together through modeling transition probability

conservation. The detail is shown in the following MILP:

max
∑
m

∑
i

∑
a

xmi,a × rmi,a (3.2)

subject to:

probability conservation constraints:

∑
a

xmj,a = αmj +
∑
i

∑
a

pmi,a,j × xmi,a : ∀m, ∀j

xmi,a ≥ 0 : ∀m, ∀i, ∀a

resource constraints:∑
i∈Sk

∑
a u

m
o,a,i × xmi,a

T
≤ Δm,k

o : ∀k, ∀m, ∀o
∑
m

Δm,k
o = ω̂o : ∀o, ∀k

Δm,k
o ∈ {0, 1} : ∀k, ∀m, ∀o

where transition probability pmi,a,j, reward rmi,a, initial probability distribution αmj (at

the beginning of the execution), occupation measure xmi,a, resource prerequisite umo,a,i,

resource limit ω̂o, finite horizon T , and the objective function
∑

m

∑
i

∑
a x

m
i,a × rmi,a

are the same as in Eq. 3.1. New binary variables Δm,k
o indicate whether agent m

is assigned one unit of resource o within phase k. The constraint
∑

m Δm,k
o = ω̂o

says that, for any resource type o within any phase k, the amount of the allocated
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resources must equal the amount of the available resources.

An agent can leave a phase and enter another phase as time passes, but, in a

global view, the total expected number of times that agent m visits any state j must

equal the probability that agent m is initially at state j plus the total expected

number of times that agent m enters state j via all possible transitions. That is,

the same constraint
∑

a x
m
j,a = αmj +

∑
i

∑
a p

m
i,a,j × xmi,a as in Eq. 3.1 can be used

to model probability conservation. On the other hand, a phase transition, which

is triggered by a resource reallocation, might change the set of executable actions

(in particular states). To model the characteristic that the set of executable actions

might differ in different phases, we use the binary variable Δm,k
o to indicate whether

agent m has resource o within phase k, and link xmi,a and Δm,k
o with the constraint

∑
i∈Sk

∑
a u

m
o,a,i×xm

i,a

T
≤ Δm,k

o (where S
k represents the set of states within phase k). That

is, xmi,a ≡ 0 (i.e., action a is not executable in state i by agent m within phase k)

if umo,a,i = 1 (i.e., requiring resource o) and Δm,k
o = 0 (i.e., not having resource o)

for any resource o. Otherwise, xmi,a is not restricted since at most T actions can be

executed during one execution with time horizon T .

Deriving an optimal sequential resource allocation and a joint policy from the

solution to Eq. 3.2 is straightforward. At the start time of phase k, resources are

redistributed in the following way: if Δm,k
o = 1, then one unit of resource o is assigned

to agent m. Every agent m should adopt its policy πmi,a =
xm

i,a∑
a x

m
i,a

for maximizing the

total expected reward of the group of agents.

Running Example

We now return to the example presented in Section 3.2.1 to illustrate how the

total expected reward can be improved when the resources can be reallocated in the

midst of execution. Let us say that the resources can be redistributed at times 1,
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Figure 3.4: Optimal sequential resource allocation for four predefined phases.

3, 6, and 8 ; this resource-reallocation schedule decomposes the example problem

horizon into four phases of roughly equal size. Formulating and solving this M-RMP

problem with Eq. 3.2 yields the sequential allocation depicted in Figure 3.4. We

can see that the resources are managed in a smarter way, where agent 2 no longer

idles over the entire execution. As a result, the total expected reward increases to

65.04, 31% higher than that of using the one-shot resource allocation. However, it

should be noted that, although evenly decomposing a problem into phases might be

a good strategy in some situations, we might be able to do better by optimizing the

reallocation schedule, which will be discussed in the next section.

3.5 Determining an Optimal Resource Reallocation Schedule

3.5.1 Solution Algorithm

This section investigates the general M-RMP optimization problem where there is

no pre-determined schedule to reallocate resources, and so agents have to determine

for themselves when to reconfigure their resource assignments for achieving their

remaining goals better. As was defined in Section 3.1, given the inputs M, α, C,
and R, the objectives of the M-RMP optimization problem are to find an optimal
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resource reallocation schedule (subject to the resource reallocation constraint R),

which decomposes the overall problem into multiple phases, and to find the optimal

resource allocation among agents (subject to the resource constraint C) within each

phase, as well as to derive optimal executable phase policies for each agent.

Obviously, a straightforward approach to the M-RMP optimization problem is

to enumerate all possible schemes of decomposing a problem into phases, and, for

each scheme, adopt the solution algorithm presented in Section 3.4 to determine

the best solution. However, when the number of possible decompositions is large,

this straightforward approach may become impractical. This section presents an

alternative solution approach that extends the MILP formulation in Eq. 3.2 to also

include the decision-making about problem decomposition.

The extended MILP is shown in Eq. 3.3, where the objective function and prob-

ability conservation constraints are the same as Eq. 3.2. The distinction is that,

in order to characterize the limitations on resource reallocation cost and the occur-

rences of resource-reallocation events, this new formulation represents the resource

constraints at each time step (instead of at each phase), and puts in supplementary

constraints to model phase transitions.

max
∑
m

∑
i

∑
a

xmi,a × rmi,a (3.3)

subject to:

probability conservation constraints:

∑
a

xmj,a = αmj +
∑
i

∑
a

pmi,a,j × xmi,a : ∀m, ∀j

xmi,a ≥ 0 : ∀m, ∀i, ∀a

(additional constraints on the next page)
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resource constraints:

∑
i∈St

∑
a

umo,a,i × xmi,a ≤ Δm,t
o : ∀t, ∀m, ∀o

∑
m

Δm,t
o = ω̂o : ∀o, ∀t

Δm,t
o ∈ {0, 1} : ∀t, ∀m, ∀o

reallocation constraints:

Δm,t
o −Δm,t−1

o ≤ Ψt : ∀o, ∀t > 1, ∀m

Ψt=1 = 1

∑
t

ψt ×Ψt ≤ ψ̂

Ψt ∈ {0, 1} : ∀t

where pmi,a,j , r
m
i,a, α

m
j , xmi,a, u

m
o,a,i, ω̂o, and T have the same definitions as before.

St represents the set of states associated with time t. New binary variable Δm,t
o

indicates whether resource o is assigned to agent m at time t. The second portion

of the Eq. 3.3’s constraints (i.e., resource constraints), based upon Δm,t
o , guarantees

that the total amount of allocated resources must equal the total amount of available

resources at any time point.

To model the cost limit in resource reallocation, this approach introduces new

binary variable Ψt to symbolize whether the resources are to be redistributed at

time t. To sidestep the question of what the default resource allocation might be, it

is assumed that the resources are always initially allocated at the beginning of the

execution, i.e., Ψt=1 = 1. Note that Δm,t
o − Δm,t−1

o can never be greater than one

since Δm,t
o and Δm,t−1

o are binary values in {0, 1} ; the constraint Δm,t
o −Δm,t−1

o ≤ Ψt

thus points out that Ψt must be one if any agent m procures any extra resource at

time t compared to time t− 1. In other words, any resource reassignment at time t
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Figure 3.5: Optimal sequential resource allocation for four phases without a predefined schedule.

will lead to Ψt = 1, which means that we can use the constraint
∑

t ψt × Ψt ≤ ψ̂ to

limit the total cost for resource reallocation.

Clearly, by definition, there is a one-to-one mapping between possible sequential

resource allocations and possible integer solutions. In addition, given a particular

sequential resource allocation, the MILP would be reduced to a linear program whose

solution space is equivalent to executable policy space (because resource constraints

would prune inexecutable actions). In other words, the MILP solution space includes

the best way of allocating resources together with the best way of utilizing the

allocated resources, and so finding an optimal solution to the MILP is equivalent to

finding an optimal way of sequentially allocating and utilizing resources.

Running Example

Recall that a fixed set of reallocation times {1, 3, 6, 8} are chosen in Section 3.4,

which results in a reward of 65.04. Now, let us say that the agents will determine

for themselves a set of reallocation times given an upper bound of four for the size

of this set, i.e., ψt=1 = 0, ψt�=1 = 1, and ψ̂ = 3. Using Eq. 3.3, the optimal schedule

to reallocate resources is computed as {1, 4, 5, 8}. Figure 3.5 depicts the detailed
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allocation. We can see that this schedule is more sophisticated; it gives high priority

and allots sufficient time for agents to accomplish their high-reward tasks (i.e., task

3 of agent 1, and task 1 of agent 2 ). As a result, the total expected reward for those

two agents increases to 72.25, which is 11.1% higher than the simple heuristic of

evenly decomposing the problem into phases, and 45.5% higher than for not taking

resource reallocations into account.

3.5.2 Variation: Maximizing the Total Reward, Accounting for Cost

In a similar layout to Chapter II, this subsection extends the MILP-based algo-

rithm to a variation of the M-RMP optimization problem where neither the resource-

reallocation schedule is predefined (Section 3.4) nor the number of times for reallo-

cating resources is restricted due to the bounded cost of creating phases (Section

3.5.1). Instead, it is now assumed that resource reallocation can occur at any time,

and as many times as desired, but a cost should be paid for transferring resources

among agents and this cost is calibrated with the utility of the MDP policy, and thus

the optimization problem is to maximize the total expected reward, accounting for

the cost of redistributing resources in the midst of execution.

We begin by examining a binary-cost case where, if a resource reallocation is

scheduled at time t, it will charge the group of agents a constant fee ψt regard-

less of what resources and how many of them are redistributed in that reallocation

process. In general, coping with such binary reallocation costs is relatively easy be-

cause Eq. 3.3 has paved the way to characterize time steps for reconfiguring resource

assignments.

Eq. 3.4 shows the solution algorithm to such a sequential resource allocation

problem, which is a slight revision of Eq. 3.3, i.e., adopting a new objective function

∑
m

∑
i

∑
a x

m
i,a×rmi,a−

∑
t ψt×Ψt, and removing the constraint

∑
t ψt×Ψt ≤ ψ̂ that
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is no longer applicable since the agents can now reallocate resources as frequently as

they desire.

max
∑
m

∑
i

∑
a

xmi,a × rmi,a −
∑
t

ψt ×Ψt (3.4)

subject to:

probability conservation constraints:

∑
a

xmj,a = αmj +
∑
i

∑
a

pmi,a,j × xmi,a : ∀m, ∀j

xmi,a ≥ 0 : ∀m, ∀i, ∀a

resource constraints:

∑
i∈St

∑
a

umo,a,i × xmi,a ≤ Δm,t
o : ∀t, ∀m, ∀o

∑
m

Δm,t
o = ω̂o : ∀o, ∀t

Δm,t
o ∈ {0, 1} : ∀t, ∀m, ∀o

cost constraints:

Δm,t
o −Δm,t−1

o ≤ Ψt : ∀o, ∀t > 1, ∀m

Ψt=1 = 1

Ψt ∈ {0, 1} : ∀t

In the following discussion, we consider a more difficult variation of the M-RMP

optimization problem where the cost incurred in redistributing resources is deter-

mined by the amount of resources being transferred among the agents. Since it is

assumed that the agents are cooperative, it does not matter which agent pays the

resource transfer costs. Without loss of generality, let us say that agent m pays the

cost cm,to when it obtains one unit of resource o at time t from someone else, and the

agent releasing that resource pays no cost.
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Similarly to the above, Δm,t
o is used to represent whether resource o is currently

held by agent m at time t. The cost that agent m should pay for getting resource o

at time t can then be represented as cm,to ×Θ(Δm,t
o −Δm,t−1

o ) where function Θ(z) is

a piecewise linear function, defined as:

Θ(z) =

⎧⎪⎨
⎪⎩

z z > 0

0 otherwise

This piecewise linear constraint can be equivalently represented using multiple lin-

ear constraints by introducing continuous variables εm,to . The new MILP formulation

is shown below:

max
∑
m

∑
i

∑
a

xmi,a × rmi,a −
∑
o

∑
m

∑
t

cm,to × εm,to (3.5)

subject to:

probability conservation constraints:

∑
a

xmj,a = αmj +
∑
i

∑
a

pmi,a,j × xmi,a : ∀m, ∀j

xmi,a ≥ 0 : ∀m, ∀i, ∀a

resource constraints:

∑
i∈St

∑
a

umo,a,i × xmi,a ≤ Δm,t
o : ∀t, ∀m, ∀o

∑
m

Δm,t
o = ω̂o : ∀o, ∀t

Δm,t
o ∈ {0, 1} : ∀t, ∀m, ∀o

cost constraints:

εm,t=1
o = Δm,t=1

o : ∀o, ∀m

εm,to ≥ Δm,t
o −Δm,t−1

o : ∀o, ∀t > 1, ∀m

εm,to ≥ 0 : ∀o, ∀t, ∀m
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Figure 3.6: Optimal sequential resource allocation, given that the transfer cost is 5 per unit.

That is, when t > 1, εm,to is constrained by εm,to ≥ 0 and εm,to ≥ Δm,t
o − Δm,t−1

o .

In other words, εm,to ≥ 1 when Δm,t
o > Δm,t−1

o (i.e., Δm,t
o = 1, and Δm,t−1

o = 0), and

εm,to ≥ 0 under other circumstances. Note that the objective function of Eq. 3.5 is

to maximize
∑

m

∑
i

∑
a x

m
i,a × rmi,a −

∑
o

∑
m

∑
t c
m,t
o × εm,to , which implies that the

second term
∑

o

∑
m

∑
t c
m,t
o × εm,to should be as small as possible for an optimal

solution that yields the highest expected utility. That is, εm,to should reach its lower

bound for any optimal solution to Eq. 3.5, i.e., εm,to = 1 when Δm,t
o > Δm,t−1

o (i.e.,

when agent m acquires resource o at time t) and εm,to = 0 otherwise, which exactly

matches our expectation of using εm,to to represent the piecewise linear cost function

Θ(Δm,t
o −Δm,t−1

o ).

Running Example

We now revisit our running example to illustrate how the above algorithm manages

the transfer of resources among the agents when considering the transfer cost. Not

surprisingly, as the transfer cost increases, the amount of resources to be transferred

decreases. As an example, when the cost of transferring one unit of any resource

is 5, the optimal sequential resource allocation, which is shown in Figure 3.6, is to
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Case Resource Allocation 
Schedule Utility

non-phasing, Section 3.2.1 transfer 2 resources at T1 39.64

4 fixed phases,  Section 3.4

transfer 2 resources at T1
transfer 2 resources at T3
transfer 2 resources at T6
transfer 1 resource at T8

30.04

three  additional phases, 
Section 3.5.1

transfer 2 resources at T1
transfer 1 resource at T4
transfer 1 resource at T5
transfer 1 resource at T8

47.25

unlimited  phases, accounting 
for cost, Section 3.5.2

transfer 2 resources at T1
transfer 1 resource at T4
transfer 1 resource at T5

48.72

Figure 3.7: Comparison of the resource reallocation schedules to the example problem, given that
the transfer cost is 5 per unit.

transfer only four units of resources over the entire execution (with two units at the

initial time 1, one unit at time 4, and one unit at time 5 ).

Figure 3.7 shows and compares this schedule and the schedules depicted in the

previous sections. As expected, the algorithm in Eq. 3.5 yields a reallocation schedule

with the highest utility, i.e., a utility of 48.72.

3.6 Experimental Evaluation

The computational complexity of the M-RMP optimization problem has been

theoretically analyzed in Section 3.3. This section is intended to empirically evaluate

the effectiveness and computational efficiency of the MILP-based solution algorithms

presented in this chapter, using a grid world environment similar to that used in the

previous chapter.9

9An empirical evaluation in the domain with problems similar to (but more complex than) the example shown in
Figure 3.1 can be found in our published paper (Wu and Durfee, 2007a).
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3.6.1 Experimental Setup

Each test problem instance includes m cooperative agents where each agent op-

erates in its own n × n grid world that is independent of all others. The starting

location of each agent is always at the center of its grid world. The objective of the

group of agents is to maximize their total expected reward within T time steps. In a

similar fashion to single-agent test problems used in Section 2.6, where a grid world

is generated, 40% of the locations are randomly chosen as wall locations, and 10%

of the locations are randomly chosen as task locations. The rewards of the tasks are

randomly set, i.e., the ith task (in a random order) is associated with a reward i.

The tasks are temporally constrained by their release times and deadlines. The

release time of a task indicates the time step when the task becomes available, i.e.,

attempting the task before its release time will return zero reward. The deadline of a

task indicates the time step when the task becomes unavailable, i.e., doing the task

after its deadline will also return zero reward. The temporal constraints are randomly

set. The release time of a task is an integer uniformly and randomly selected in the

range [1, T − 2] where T is the time horizon, and a task will always expire in three

time steps. That is to say, the time window of task i is [ti, ti + 3) where ti is a

random integer in [1, T − 2]. A task can be repeated multiple times (and each time

it will give the same reward) within its time window.

The action space of each agent is {wait, up, left, down, right, safe-up, safe-left, safe-

down, safe-right, do}. All actions except action do have the exactly same definitions

as before (Section 2.6). The resource prerequisite of the do action is also the same

as before, but its outcomes are defined in a new way (to make test problems more

interesting): after the do action is executed, the agent will stay at the same location

with probability 0.95 and will be out of the system with probability 0.05. That is to
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Figure 3.8: Exploiting fixed phases increases the reward, and finding optimal phases further in-
creases the reward.

say, instead of terminating the execution after completing a task, an agent may now

stay in the system to do more tasks until the time horizon T is reached.

The system is constrained by resource limitations. There are |O| different types

of resources in the system. Each resource type has only one unit, which is shared by

m agents.

3.6.2 Optimality

Figure 3.8 demonstrates the improvement of our sequential resource allocation

approaches over the prior one-shot resource allocation approach. The x-axis of the

figure represents the number of agents in the world, and the y-axis specifies the total

expected reward of the group of agents.10 Other parameters are set as follows: T =

10, n = 5, and |O| = 5. We can see that, by taking into account resource reallocation

opportunities in the midst of execution, the agents could gain a considerably higher

10In this section, each average data point is computed from 20 random test problems.
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reward. For example, in the case that five fixed resource (re)allocation times (one at

the initial time step and the other four randomly and uniformly selected when the

test problem is defined) are available in the midst of execution, our mission-phasing

approach, using Eq. 3.2 and denoted as 5-fixed-phases, achieves a reward 50% higher

than that of not exploiting resource-reallocation opportunities. We can also see that

(as expected) finding and using the optimal resource-allocation and phase-switching

time points can further improve the system performance, e.g., the 5-optimal-phases

approach (using Eq. 3.3 and assuming that four additional phase-switching points

besides the one at the initial time step can be created under the phase-switching cost

limit) achieves a reward about 20% higher than the aforementioned 5-fixed-phases

solution.

Another interesting discovery from Figure 3.8 is that the improvement of sequen-

tial resource allocation over one-shot resource allocation increases as the number of

agents increases. This is because, given that the number of resources is fixed (i.e., a

fixed number of five resources), the more agents there are, the scarcer the resources

are. That is to say, assigning a resource to the right agent at the right time be-

comes increasingly important to the system performance as the constrainedness of

the system increases.

Figure 3.9 uses the same parameters as in Figure 3.8 (i.e., T = 10, n = 5, m = 5,

and |O| = 5), but looks at the problem from the perspective of the phase-switching

cost limit. The results show that the reward of the agents can considerably increase

by creating phase-switching points in the midst of execution. However, it should

be pointed out that, unlike the S-RMP optimization problem, even if the group of

agents can reallocate resources among themselves at every time step, they are usually

unable to achieve the same reward (which is 37.2 on average in our test problems)
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Figure 3.9: The reward increases as the phase-switching cost limit (that determines the number of
phases) increases.

as in the unconstrained case with unlimited resources. This is because, at each time

step, the joint action space is restricted by the limitation of resources (i.e., assigning

a resource to one agent may prevent another agent executing some of its possible

actions at that time), though this restriction can change as time passes.

Unlike Figure 3.9 where the phase-switching cost limit is pre-specified to restrict

the number of phases, Figure 3.10 examines the M-RMP optimization problem where

the phase-switching cost is modeled in the objective function but does not directly

limit the number of phases that could be created. As shown, our MILP-based solution

approach (using Eq. 3.4) can judiciously determine the number of phases to create,

accounting for the cost of creating them. For example, resources are (re)allocated

more than six times on average when the cost of creating each additional phase is

very low, but the resources are usually only allocated once (at the initial time step)

when that cost is high.
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Figure 3.10: The impact of phase-switching cost on phases and utility. Top Figure: the optimal
number of phases decreases as the cost of creating each additional phase increases.
Bottom Figure: the expected utility decreases as the cost of creating each additional
phase increases.
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Figure 3.11: The runtime increases and then decreases as the number of times of resource realloca-
tion increases.

3.6.3 Computational Efficiency

To understand the impact of the number of phases on the computational cost and

to choose “hard” M-RMP test problems for the following computational efficiency

evaluation, we now run experiments with the same parameters as in Figure 3.9, but

collect and examine the results of average runtime for finding exact solutions to the

test problems. As shown in Figure 3.11, the MILP-based solution approach can

exploit the aspects both when the M-RMP optimization problem is over-constrained

(when the number of phases is small) and when the M-RMP problem is under-

constrained (when the number of phases is large), and reduce computational costs

for solving the problems in both cases. According to this complexity profile, the

phase-switching cost limit ψ̂ is set to 3 in the following experiments11 (which means

that the problem can be decomposed into four phases, under the assumption that

11The reason for setting ψ̂ = 3 instead of ψ̂ = 2 is that some of test problems in the following evaluation are larger
and more complex.
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ψt=1 = 0 and ψt�=1 = 1), unless we would like to examine the effects of varying the

number of phases.

We compare our MILP-based algorithm with the WDP-based algorithm (using

the auction-based resource allocation strategy), which is the most computationally-

efficient approach among the three prior related approaches discussed in Section 3.3

for solving M-RMP optimization problems. Recall that the WDP-based algorithm

involves two steps. First, each agent submits its valuations of its possible sequential

resource allotments to a central agent. The number of bids is CT−1
K−1 × (2)|O|×K (as

explained in Section 3.3). Second, the central agent solves a winner determination

problem. Let us assume that the central agent has a perfect filtering method (al-

though it usually does not), and so it only needs to consider and evaluate “valid”

combinations of bids. This assumption reduces the number of possible combinations

from (CT−1
K−1 × (2)|O|×K)m to CT−1

K−1 × (m)|O|×K where the reason of using the base

m in the exponentiation (m)|O|×K is that there are m different ways to allocate one

resource in the group with m agents.

However, even with this enhancement, the WDP-based algorithm is still compu-

tationally intractable for moderately complex M-RMP optimization problems (where

it is often unable to find an exact solution even given 100 hours of cpu time). Note

that the lower bound of the running time of the WDP-based algorithm can be ap-

proximated as CT−1
K−1×(2)|O|×K×tbid+CT−1

K−1×(m)|O|×K×teval where tbid is the average

runtime of evaluating a sequential resource allotment (i.e., a bid) by modeling and

solving an unconstrained finite-horizon MDP, and teval is the average runtime of eval-

uating a feasible combination of agents’ bids. This work uses a sampling method to

estimate the runtime, i.e., tbid and teval are estimated from 100,000 random runs.

Figure 3.12 shows and compares the runtime results under various parameter



109

2 4 6 8 10

10
5

10
10

10
15

number of phases

r
u
n
t
i
m
e
 
(
s
e
c
o
n
d
s
)

 

 
MILP−based
WDP−based

4 6 8 10

10
5

10
10

10
15

number of resource types
r
u
n
t
i
m
e
 
(
s
e
c
o
n
d
s
)

 

 
MILP−based
WDP−based

6 8 10 12 14
10

0

10
5

10
10

10
15

horizon

r
u
n
t
i
m
e
 
(
s
e
c
o
n
d
s
)

 

 
MILP−based
WDP−based

4 6 8 10
10

0

10
5

10
10

10
15

number of agents

r
u
n
t
i
m
e
 
(
s
e
c
o
n
d
s
)

 

 
MILP−based
WDP−based

Figure 3.12: Runtime comparison between the MILP-based algorithm and the WDP-based algo-
rithm. Parameters are set as follows: Top-left figure n = 5, T = 10, m = 5, |O| = 5,
and ψ̂ = {1, 2, ..., 9}. Top-right figure n = 5, T = 10, m = 5, |O| = {4, 5, ..., 10},
and ψ̂ = 3. Bottom-left figure n = 5, T = {6, 7, ..., 14}, m = 5, |O| = 5, and ψ̂ = 3.
Bottom-right figure n = 5, T = 10, m = {3, 4, ..., 10}, |O| = 5, and ψ̂ = 3.
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settings.12 Note that the y-axis is in a logarithmic scale. These results illustrate

and emphasize that the MILP-based algorithm, which formulates and simultaneously

solves the coupled problems of mission decomposition, resource allocation, and policy

formulation using a single compact MILP formulation, can effectively and fruitfully

exploit the inter-relationship among these component problems. As a result, it is

significantly faster than the WDP-based approach that considers the component

problems in isolation.

3.6.4 Anytime Performance

The MILP-based approach presented in this chapter is designed to find an exact

solution to the M-RMP optimization problem. Nevertheless, since the approach can

adopt an anytime MILP solver for its formulated MILP,13 it can also serve as an

anytime M-RMP solver.

This evaluation section concludes by empirically analyzing anytime performance

of the MILP-based algorithm (Eq. 3.3). As shown in Figure 3.13, the anytime perfor-

mance of our algorithm is (at least) reasonably good, given that it does not depend

on any domain-specific heuristic and knowledge. For example, in the simpler test

problems with parameters n = 5, T = 10, m = 5, |O| = 5, and ψ̂ = 3, the algo-

rithm finds a near-optimal solution (with above 95% of the optimal reward) within 4

seconds on average, while finding an optimal solution takes about 20 seconds. As an-

other example, in the more complex problems with n = 6, T = 12, m = 6, |O| = 6,

and ψ̂ = 3, it takes about 20 seconds to find a near-optimal solution on average,

compared to about 650 seconds for finding an exact solution.

12Neither MILP nor WDP uses parallel computation.
13The cplex solver used in this work is an anytime solver that usually has good anytime performance.
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Figure 3.13: Anytime performance of the MILP-based algorithm. Parameters are set as follows.
Top figure: n = 5, T = 10, m = 5, |O| = 5, and ψ̂ = 3. Bottom figure: n = 6, T = 12,
m = 6, |O| = 6, and ψ̂ = 3.
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3.7 Summary

In this chapter, we have presented, analyzed, and empirically evaluated a MILP-

based approach that automates the process of finding and using optimal resource

reallocation schedules for a group of agents operating in complex environments with

resource limitations and with uncertainties. Our analytical and experimental results

have shown that the approach can greatly reduce computational cost compared to

prior approaches.

The contributions of the work in this chapter are summarized as follows:

• This work extends the prior techniques for solving the one-shot resource-allocation-

and-policy-formulation problem to also solve the problem of optimally decom-

posing the agents’ overall activities into a sequence of phases. It generalizes the

integrated resource-allocation and policy-formulation approach.

• This work extends our single-agent resource-driven mission-phasing techniques

to multi-agent environments. The presented approach can explicitly take into

account resource reallocation opportunities in the midst of execution to redis-

tribute resources among agents over time, and can automate the process of

finding and using such opportunities in complex constrained and stochastic en-

vironments. The experimental results (shown in Figure 3.8 and Figure 3.9)

have shown and emphasized that the approach is an effective way to improve

the agents’ reward in resource-constrained systems.

• Similarly to our S-RMP techniques, the M-RMP techniques presented in this

chapter can effectively exploit interactions among the coupled problems of mis-

sion decomposition, resource allocation, and policy formulation by representing

all of them in a single compact formulation and solving them simultaneously
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there. The results (shown in Figure 3.12) highlighted the significance of our tech-

niques in reducing computational cost, compared to the approach that considers

mission decomposition, resource allocation, and policy formulation in isolation.



CHAPTER IV

Scheduling Phase Decision Procedures

The previous two chapters have examined and illustrated the effectiveness of our

automated resource-driven mission-phasing (RMP) techniques in resource-constrained

systems. The remainder of this dissertation will focus on another family of constraints

— computational time limitations,1 and present computation-driven mission-phasing

(CMP) techniques for improving agent performance in time-critical environments.2

4.1 Computation-Driven Mission-Phasing Overview

4.1.1 Introduction

Computational time limitations commonly reside in online application domains.

For example, an autonomous aircraft flying a prolonged mission might not have time

to prepare a plan that specifies actions and reactions for all possible contingencies

over the entire mission before it must start to execute the plan. This raises challenges

for finding the best possible solutions within the time limits.

The essential ideas of our computation-driven mission-phasing techniques are pre-

sented in Figure 4.1. In a wide variety of research fields, enormous efforts have been

devoted to speeding up planning through “divide and conquer” strategies. These

1Although some approaches presented in this dissertation are applicable for problems with both resource con-
straints and computation constraints, a thorough study of such problems is beyond the scope of this dissertation and
will be addressed in the future research.

2This chapter is largely based on work that was originally reported in (Wu and Durfee, 2006b).
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techniques decompose a large complex problem into multiple (approximately) inde-

pendent pieces and can often gain significant speedup by solving each sub-problem

separately and then combining sub-problem solutions together into an overall solu-

tion. However, given a large complex online problem, even with a decomposition

method that can properly decompose the problem into independent sub-problems

(phases), the resulting phases may still be too large to be solved completely under

computation bounds.

One potential way to address this issue is to adopt an anytime policy formulation

method, building partial policies for each phase. To this end, our CMP work designs

a heuristic search algorithm which is prone to explore and expand states that are

likely to be reached by following high-quality policies.

Note that, in many application domains, the value and importance of sub-problems

in a mission may vary a lot, which suggests that a sophisticated approach should

be able to bias its computational efforts on high-value sub-problems. The CMP ap-

proach presents an automated deliberation-scheduling algorithm to selectively dis-

tribute limited computation time among phases, based upon their predicted con-

tributions to the utility of the overall solution. Furthermore, besides the ability to

utilize the available time prior to mission execution, the deliberation scheduling al-

gorithm also explicitly takes into account possible additional computation time in

the midst of mission execution. Intuitively, an agent can often do better to focus

computation only on near-term high-value phases. Then, while executing the plans

for earlier phases, the agent could use available computation time during execution

to reconsider aspects of the problem and improve its solutions for the current and

future phases.
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4.1.2 CMP vs. RMP

To provide readers with a better understanding of why the RMP approaches previ-

ously presented in Chapter II and Chapter III are not applicable for CMP problems,

we here discuss the differences between computation-driven mission-phasing tech-

niques and resource-driven mission-phasing techniques. In short, the RMP work

developed efficient off-line techniques where phasing is driven by the need to real-

locate resources, while the CMP work focuses on online techniques where phasing

is driven by the need to focus on high-value sub-problems and the need to exploit

possible available computation time in the midst of execution.

Although either of the phasing approaches consists of three component problems

(i.e., mission decomposition, resource/time allocation, and policy formulation), the

solution techniques differ considerably because of the fundamental distinctions be-

tween computational time limitations and resource constraints. Usually, the RMP

work does not explicitly consider computation bounds (although computationally

efficient algorithms are required), and its objective is to find an exact solution in-

dicating optimal problem decomposition, optimal resource allocations, and optimal

executable policies. In contrast, the CMP work is driven by computational time

limits, which means that achieving optimality in that way is usually impossible since

thinking how to use the limited computation time indeed consumes the time that

can otherwise be used for actual problem solving. Therefore, the CMP work in this

dissertation faces the following requirements:

• Quickly and properly decompose a large complex mission into multiple (nearly)

independent phases

• Quickly and properly distribute the limited computation time among phases



118

• Effectively utilize the allocated computation time for each phase

4.1.3 Overview

One major reason that planning in environments with uncertainties is difficult

is that an agent starts from a known initial state but goes into branching futures.

Decomposition techniques can reduce computational cost by finding “known” inter-

mediate goal states and encouraging the agent to work off from these intermediate

states. There have been a number of existing decomposition methods using this idea,

e.g., the “doorway” decomposition heuristic in robot navigation domains (Parr, 1998;

Precup and Sutton, 1998; Lane and Kaelbling, 2001), and the mission decomposition

techniques in autonomous aircraft domains (Goldman et al., 2001). These tech-

niques have been shown to be able to significantly reduce the runtime for finding an

approximately optimal solution.

On the down side of the decomposition techniques, an incorrect guess of inter-

mediate goal states may cause “confusion” at the transition points between phases

(i.e., the agent might be unable to reach the intermediate state it was expected to

reach), and result in a negative impact on the agent’s performance. Therefore, like

much of the prior work using the decomposition strategy, our CMP work emphasizes

the problems in which sub-problems are weakly connected so that the intermediate

goal states can be determined in a reasonably straightforward manner (by exploiting

domain-specific knowledge).3 Though it is not the focus of this work, we will illus-

trate the idea of exploiting such weakly-connecting relationships through a realistic

application problem in Section 5.5.1 where our CMP techniques are to be evaluated.

The novelty and the main contributions of our CMP work are its deliberation

3Nevertheless, as will be presented in the next chapter, the heuristic search component of our CMP approach
is often able to quickly find, by itself, a high-quality solution to a large complex problem with strongly interacting
sub-problems.
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scheduling techniques (for time allocation) and heuristic search techniques (for any-

time policy formulation), which will be presented in this and the next chapter, re-

spectively.

The rest of this chapter is organized as follows. Section 4.2 introduces related work

in the deliberation scheduling literature. Section 4.3 gives a fundamental definition of

the deliberation scheduling problem of interest in this work, followed by its solution

algorithm presented in Section 4.4. The solution algorithm is extended to deal with

more complex objective functions and non-deterministic phase transitions in Section

4.5 and Section 4.6, respectively. Experimental results are shown in Section 4.7,

where the efficiency and optimality of our approach is evaluated. Finally, Section 4.8

summarizes the contributions of our work presented in this chapter.

4.2 Background: Deliberation Scheduling

In the planning research literature, the process of scheduling decision proce-

dures to maximize overall system performance is often called deliberation schedul-

ing (Boddy and Dean, 1989, 1994; Goldman et al., 2001; Horvitz, 2001; Musliner

et al., 2005). Deliberation scheduling starts with the premise that an anytime al-

gorithm is able to produce improving plans given increased computation time, and

needs to carefully manage the distribution of the computation time among deci-

sion procedures in environments where multiple decision procedures share limited

computation time.

A fundamental construct in the deliberation scheduling research is the perfor-

mance profile. The performance profile of an anytime algorithm indicates the pre-

dicted utility of a solution (derived by that algorithm) as a function of the algorithm’s

runtime to derive that solution. Typically, the performance profile of an anytime al-
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gorithm is learned through applying that algorithm to solve many similar problem

instances (similar to the online problem of concern) in an off-line planning stage, and

then the results derived at various time points are collected and averaged to predict

how much utility an online decision procedure can achieve without actually solving

that online problem.

Based upon the construct of performance profiles, several deliberation scheduling

methods have been developed to answer “planning when to plan” questions. Boddy

and Dean (1989, 1994) proposed an optimal deliberation scheduling method for a

particular family of decision procedures with piecewise linear concave performance

profiles. Their algorithm works backwards from the occurrence time of the last event,

and, at every iteration through the main loop, the algorithm allocates some interval

of computation time to the decision procedure that is expected to incur the largest

gain. Under the simplifying assumption that performance profiles of all considered

decision procedures are strictly concave, this myopic algorithm can guarantee to find

an optimal deliberation schedule.

Horvitz (2001) explored policies for proactive allocation of idle time for potential

future decision procedures. That work explicitly considered uncertainty (i.e., the

probability of the occurrence of future decision procedures), explored several families

of performance profiles (but still not as general as the work presented in this chapter),

and presented methods to derive ideal policies for guiding pre-computation in several

settings.

Goldman et al. (2001) proposed a greedy deliberation scheduling algorithm, which

myopically looks one-step ahead along all of its immediate deliberation action choices

to find the action that results in a plan with the highest expected utility. They

compared the performance of this greedy method with an optimal (but very slow)
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deliberation scheduling algorithm based upon MDP models, and showed through

experiments that their myopic method can often find a fairly good solution within a

short time (Goldman et al., 2001; Musliner et al., 2005).

However, these prior approaches are only optimal with respect to limited types of

performance profiles of decision procedures, and/or ignore some important aspects of

online problems that may be exploited to improve agent performance (e.g., an agent

may choose to pay a cost for some additional time to derive a better solution). The

work in this chapter is directed at addressing some of those issues.

4.3 Problem Definition

The deliberation scheduling procedure is the core component of our computation-

driven mission-phasing techniques. It is based on the premise that an online, complex

problem can be decomposed into multiple nearly-independent phases, and its goal is

to help a time-limited agent focus its computation on high-value phases as well as

help the agent exploit possible additional time in the midst of execution to reconsider

system aspects and improve solutions to future phases.

In general, to find a good way for distributing the limited deliberation time among

multiple phases, an autonomous agent should have some prior knowledge to pre-

dict how much utility a phase decision procedure can achieve, but without actually

spending much time solving that decision procedure. The reason is obvious. Once

computation time is spent, it is useless to schedule its use. The work in this chapter

uses the same assumption as in the prior deliberation scheduling work introduced

in Section 4.2 — performance profiles of the phase decision procedures are known a

priori. A detailed discussion about how to construct and use performance profiles of

our test problems is postponed to the CMP evaluation section (Section 5.5.2) in the
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next chapter.

Clearly, a sophisticated deliberation scheduling approach should not only be able

to deal with the cases where the intervals of computation time are pre-specified, but

should also be able to address more general cases where an agent has the choice of

using as much computation time as it desires but there is a cost associated with

using the time. The deliberation costs at different phases may be different. For a

Mars rover example, more deliberation before executing the mission will incur a cost

of delaying the mission, and more deliberation during execution will incur a cost of

distracting the rover from responding to external events. In this work, we refer to

the functions that characterize the relationship between the amount of time used by

an agent and the cost the agent should pay as deliberation cost functions.

With the constructs of the performance profiles and the deliberation cost func-

tions, it is time to formulate the deliberation scheduling problems of interest in this

chapter. This section gives the definition of a fundamental deliberation scheduling

problem, in which the objective function is linear and phase transitions are determin-

istic. After laying out our solution algorithm to this problem, the formulation will be

extended to represent more complicated nonlinear objective functions (Section 4.5)

and non-deterministic phase transitions (section 4.6).

A deliberation scheduling problem is an optimization problem with the inputs

〈B,V, C〉:

� Problem B consists of a sequence of phases {phase1, phase2, . . ., phasen}. Once

an agent leaves phasei, it will enter phasei+1.

� V = {Vi(t)} define performance profiles where Vi(t) predicts the utility of phase

i given the amount of its assigned computation time t.
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Figure 4.2: Deterministic phase transitions in two situations: simultaneous planning and execution
(left) and interleaved planning and execution (right).

� C = {Ci(τ)} define deliberation cost functions where Ci(τ) denotes the cost of

using the amount of computation time τ at phase i.

The objective of the problem is to maximize the cumulative utility across all

phases by determining a deliberation schedule specifying at which time intervals

to “think” about which phases. The solution schedule will help the agent use its

limited computation time in a clever way, i.e., spending more time performing policy

formulation in high-value phases, balanced by less completed policies in the other

phases.

4.4 Solution Algorithm

4.4.1 Nonlinear Formulation

Given that the transitions among phases are deterministic, a mission can be rep-

resented as a chain of phases as shown in Figure 4.2. The left side of the figure

depicts the case where deliberation and execution can occur simultaneously, such
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that deliberation about future phases can be done during execution of the current

phase. The right side of the figure shows interleaved planning and execution, where

an interval for deliberation is followed by an interval for execution, which in turn is

followed by time for deliberation, and so on. This chapter describes and illustrates

our deliberation scheduling approach in situations where planning and execution in-

terleave. Nonetheless, the presented algorithms are also applicable in the situations

where an agent can plan and execute in parallel, assuming that the agent would not

revise its phase policy that it is currently executing.

Let τ0 be the amount of computation time that the autonomous agent initially

has when the problem is presented, and τi (i ≥ 1) be the amount of additional com-

putation time that the agent can have after finishing the execution of the previous

phase and before beginning the execution of phasei. Let us temporarily assume that

τi is fixed and specified a priori ; this assumption will be relaxed shortly. The de-

liberation scheduling problem is then to schedule decision procedures within these

available computation time intervals so that the expected utility of the mission so-

lution is maximized. A straightforward strategy is to allocate τi to decisioni (where

decisioni represents the decision procedure for phasei), but this myopic approach is

usually suboptimal since it might be fruitful to use some of the time to get a head

start on decision procedures for future phases.

Let ti denote the total amount of computation time scheduled for the decision

procedure of phasei. The deliberation scheduling problem with deterministic phase

transitions can then be represented in the following mathematical formulation:
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max
∑
i

vi (4.1)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

vi = Vi(ti) : ∀i

ti ≥ 0 : ∀i

where ∀k ∈ {0, 1, . . . , n} :
∑k

i=0 ti ≤
∑k

i=0 τi indicates the fact that the amount of

scheduled computation time can never exceed the amount of available computation

time at any point. vi is the expected utility of the solution to phasei, and the

objective function
∑

i vi represents the total expected utility.

If Vi(t) is a linear function of t for any phasei, then the constraints vi = Vi(ti)

in Eq. 4.1 are trivial linear constraints, and the deliberation scheduling problem can

be formulated as a linear program that is solvable in polynomial time. However, for

most anytime algorithms (e.g., the RTDP algorithm (Barto et al., 1995), the LAO*

algorithm (Hansen and Zilberstein, 2001)), performance profiles V (t) are nonlinear.

Nonlinear optimization problems are usually computationally intractable. In the fol-

lowing discussion, we present how to use approximation techniques for linearization.

4.4.2 Linearization

• Continuous concave performance profile

For many anytime algorithms (e.g., the RTDP algorithm), the rate of refinement

of the solution slows down with increasing computational activity, which means

that Vi(t) is a continuous concave function by definition. It has been well estab-

lished that a continuous concave function can be approximated as a piecewise
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Figure 4.3: A piecewise linear approximation example: a continuous concave function (left), and
its piecewise linear approximation (right).

linear concave function (e.g., Powell, 1981). Using a sufficiently large number

of pieces, such an approximation usually performs well. Figure 4.3 shows an

example of approximating function V (t) = 0.5 × (1 − e−0.5t) with a piecewise

linear concave function that is composed of eight linear pieces.

In this work, we adopt a naive but fast algorithm to construct piecewise linear

functions, which, at each iteration, myopically adds a linear piece that will

most reduce the approximation error (defined as the maximum gap between the

input function and its approximation function). Our empirical results show that

this myopic algorithm can, in general, approximate a function within several

milliseconds, and thus is well suited for online applications.

Let Vi,j(t) = ai,j×t+bi,j be the linear function used to represent the jth segment

of the piecewise linear concave curve. Then, the continuous concave function

Vi(t) can be approximated as Vi(t) = minj ai,j × t+ bi,j. In turn, the constraint

vi = Vi(ti) in Eq. 4.1 becomes vi = minj ai,j × ti + bi,j , and the deliberation
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scheduling problem can be formulated into the following program:

max
∑
i

vi (4.2)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

vi = min
j
ai,j × ti + bi,j : ∀i

ti ≥ 0 : ∀i

Eq. 4.2 is mathematically equivalent to the following linear program (Eq. 4.3)

because vi always reaches its upper bound minj ai,j × t+ bi,j when the objective

function
∑

i vi is maximized.

max
∑
i

vi (4.3)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

vi ≤ ai,j × ti + bi,j : ∀i, ∀j

ti ≥ 0 : ∀i

A linear program can be solved fast (i.e., in polynomial time), which explains

why much prior work has focused on piecewise linear concave performance pro-

files and there exist fast algorithms (e.g., Boddy and Dean, 1994) that can find

optimal deliberation schedules for such problems.

• General nonlinear performance profile

In the previous discussion, we have approximated deliberation scheduling prob-

lems that have decreasing return rate performance profiles into linear programs.
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Figure 4.4: A discretization example: a general nonlinear function (left), and its discrete function
(right).

Now, we consider more general nonlinear performance profiles, and use dis-

cretization to remove nonlinearity in such functions. Figure 4.4 shows an exam-

ple of discretization. For a detailed discussion of the discretization techniques,

we refer to (Powell, 1981).

Let Ti,j and Vi,j represent the jth time point and its corresponding value on

the discretized function of Vi(t), and let binary variable δi,j represent whether

time point Ti,j is selected. The deliberation scheduling problem can then be

formulated into the following mixed integer linear program:

max
∑
i

vi (4.4)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

(additional constraints on the next page)
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ti =
∑
j

Ti,j × δi,j : ∀i

vi =
∑
j

Vi,j × δi,j : ∀i

∑
j

δi,j = 1 : ∀i

ti ≥ 0 : ∀i

δi,j ∈ {0, 1} : ∀i, ∀j

The constraint
∑

j δi,j = 1 says that a certain amount of computation time is

scheduled for decision procedure decisioni. The constraints ti =
∑

j Ti,j × δi,j
and vi =

∑
j Vi,j × δi,j model the performance profile Vi(t) through binary

variable δi,j .

It should be noted that, for the phases with continuous concave performance

profiles, we can approximate those performance profiles with piecewise linear

functions. That is to say, we only need to discretize non-concave performance

profiles. This strategy reduces the number of binary variables used in the MILP

and thus often improves the computational efficiency.

4.4.3 Determining Optimal Deliberation Intervals

In the discussion so far, it is assumed that τi is known a priori, but, in many

online application domains, τi is associated with a cost function Ci(τi) rather than

being pre-specified. Let us consider as an example an information gathering agent

that responds to a user query, which may choose to immediately return a cached

answer, whose computational cost is low but whose solution utility may also be low

because the returned information is not up-to-date. The agent can also choose to

spend some time querying remote servers, which may result in a high-quality answer
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but runs the risk of the user losing patience and no longer being interested in the

answer. In this and similar situations, an agent needs to determine the amount of

computation time it should use, accounting for the cost of using it.

Thanks to the mathematical programming formulation, it is fairly easy to make

this extension. We just need to model deliberation cost functions Ci(τ) with some

additional constraints, and account for the cost
∑

i ci in the objective function. That

is,

max
∑
i

(vi − ci) (4.5)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

vi = Vi(ti) : ∀i

ci = Ci(τi) : ∀i

τi ≥ 0 : ∀i

ti ≥ 0 : ∀i

Notice that the deliberation cost functions Ci(τ) are analogous to the performance

profiles Vi(t) in this formulation, which means that we can use the approximation

techniques described previously to linearize the constraint ci = Ci(τi) as well. Specif-

ically, when Ci(τ) is a continuous convex function (i.e., increasing cost rate), we can

approximate it as a piecewise linear convex function, i.e., Ci(τ) = maxj ci,j× τ +di,j,

while, when Ci(τ) is a general nonlinear function, we can build a discrete function

instead.
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4.4.4 An Example

This section concludes by examining the algorithm presented above on a simple

example problem (more empirical results will be shown in Section 4.7). In this exam-

ple, there are four phases phasei∈{0,1,2,3} whose performance profiles and deliberation

cost functions are defined below and illustrated in Figure 4.5.

V0(t) = 3.1319× (1− e−0.8233t)

V1(t) = 4.0886× (1− e−0.3603t)

V2(t) = 0.2965× (1− e−0.8393t)

V3(t) = 2.3293× (1− e−0.3057t)

C0(τ) = 0.2037× (τ − 1)1.5115 when τ ≥ 1

C1(τ) = 0.4808× τ 1.1843 when τ ≥ 0

C2(τ) = 0.4038× (τ − 3)1.8348 when τ ≥ 3

C3(τ) = 0.2129× (τ − 1)1.9415 when τ ≥ 1

and Ci(τ) = 0 otherwise

Approximating each Vi(t) and Ci(τ) as a piecewise linear function with 20 pieces,

this deliberation scheduling problem can then be formulated as a linear program.

With the LP solver cplex (www.ilog.com), the total expected utility is 5.40, and

solving the LP takes 0.012 seconds.

The deliberation schedule is shown in Figure 4.6. In detail, the agent spends

4.068 time units on its decision procedures for phase0 and phase1 before it starts to

execute the mission. After phase0 is completed, it uses 0.6844 additional time units

to improve the solution to phase1. Since phase2 has a much lower expected utility
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Figure 4.6: Optimal deliberation schedule to the example problem. Di represents the decision
procedure for phasei.

than phase3 (i.e., 0.2965 vs. 2.3293 in the maximum utility), most of the available

computation time before executing phase2 is used for the decision procedure for

phase3. The resulting schedule achieves 20% higher expected utility than using a

myopic algorithm that only runs the decision procedure of phasei right before that

phase.

4.5 Extension: Nonlinear Objective Functions

In the previous section, we have presented solution algorithms for the linear objec-

tive function
∑

i vi and its generalized version
∑

i(vi−ci), which fit many application

domains where the utility of a mission is the cumulative utility throughout all its

phases. An intuitive example is that of an autonomous delivery robot making several

rounds of deliveries; its total utility is the sum of the utilities of individual package

deliveries.

However, the interests in some application domains might not be the cumulative

utility. For example, in the Coordinator domain (Musliner et al., 2006; Wu and

Durfee, 2007b), the utility of a task might be the minimum utility of its subtasks. Or,

as another example, in the autonomous aircraft domain (Goldman et al., 2001), the

utility can be defined as the probability of successfully completing the mission, and

thus the overall utility is the product of the probabilities of successfully completing



134

each phase.

Our solution algorithms can be easily revised to suit these (and similar) domains.

The underlying idea is that many nonlinear objective functions can be linearized (but

not necessarily as
∑

i vi) through mathematical reformulation. Hence, the techniques

presented in Section 4.4 are also applicable for them. In the rest of this section, we

illustrate this idea by showing how to deal with the two example types of nonlinear

objective functions mentioned above.

4.5.1 Minimum of Phase Utilities

In some application domains (e.g., the Coordinator domain (Musliner et al., 2006;

Wu and Durfee, 2007b)), the utility of a mission is the minimum utility of individual

phases. That is, the problem is to

max min
i
vi (4.6)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

vi = Vi(ti) : ∀i

ti ≥ 0 : ∀i

In general, directly solving such a nonlinear optimization problem (with a nonlin-

ear objective function mini vi) is difficult. However, the nonlinear objective function

can be easily reformulated as a linear objective function v with additional linear

constraints ∀i : v ≤ vi. That is, Eq. 4.6 can become:
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max v (4.7)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

vi = Vi(ti) : ∀i

v ≤ vi : ∀i

ti ≥ 0 : ∀i

We can then convert Eq. 4.7 into a linear program or a mixed integer linear

program through the approximation techniques described in Section 4.4.4

4.5.2 Product of Phase Utilities

The objective function
∏

i vi is often used in application domains where the prob-

ability of successfully completing a mission is concerned, e.g., the aforementioned

autonomous aircraft domain (Goldman et al., 2001). In such domains, the delibera-

tion scheduling problem can be formulated as:

max
∏
i

vi (4.8)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

vi = Vi(ti) : ∀i

ti ≥ 0 : ∀i
4In a similar manner, we can solve the problem where the intervals of computation time are associated with

deliberation cost functions and the objective is to maximize min(vi − ci).
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By using a logarithmic transformation (εi = ln vi), Eq. 4.8 can be reformulated

into Eq. 4.9:

max e
∑

i εi (4.9)

subject to:

k∑
i=0

ti ≤
k∑
i=0

τi : ∀k

εi = V ′
i (ti) : ∀i

ti ≥ 0 : ∀i

where V ′
i (t) ≡ lnVi(t).

Note that the function ex is a monotonically increasing function, maximizing e
∑

i εi

is equivalent to maximizing
∑

i εi, and so the objective function is linearized (while

the nonlinearity is moved to performance profiles that can be linearized using the

previously presented approximation techniques).5

4.6 Extension: Non-Deterministic Phase Transitions

Section 4.5 discussed how to extend the fundamental solution algorithms presented

in Section 4.4 to also work for application domains with nonlinear objective functions.

This section extends the algorithms in another way — transitions among phases.

4.6.1 Uncertain Phase Transitions

The solution algorithms presented in Section 4.4 are built upon deterministic

phase transitions. We now consider deliberation scheduling problems where phase

transitions are uncertain and these transitions are not controllable by agents, and

we will discuss more general phase transitions in Section 4.6.2 and Section 4.6.3. In

5Similarly, we can also use the logarithmic transformation for the problem where the intervals of computation
time are associated with deliberation cost functions and the objective to maximize

∏
i vi/

∏
i ci.
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Figure 4.7: Uncertain phase transitions.

this work, we focus on situations where phase transitions can be represented as a

tree. Figure 4.7 shows one such problem. When the agent leaves a phase, it will

reach one of the subsequent phases with some probability. This study of uncertain

phase transitions is similar to Horvitz’s previous work (Horvitz, 2001), in which

future instances are non-deterministic, but our techniques explore this topic further

by explicitly taking into account deliberation costs and more general performance

profiles.

We here assume that phase transitions are uncertain but known a priori.6 Let pi,j

represent the transition probability from phasei to phasej , and then the probability

of reaching phasej in the mission, denoted as Pj , can be computed from pi,j × Pi

where P0 = 1. Let Ai denote the set composed of phasei and its ancestor phases,

and let Di denote the set composed of phasei and its possible descendant phases.

Since computation time scheduled for decision procedure decisioni can be from any

phase in Ai, ti =
∑

k∈Ai
ψk,i where ψk,i is the period of computation time that is

6Nevertheless, the solution algorithm presented in this section can be extended to environments where the agent
might not know all future phases a priori, i.e., by introducing a leak phase (with predefined reaching probability and
performance profile) to approximately model unknown future phases.
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located at phasek and will be used for phasei’s decision procedure. The deliberation

scheduling problem with uncertain phase transitions then becomes

max
∑
i

Pi × (vi − ci) (4.10)

subject to:

ti =
∑
k∈Ai

ψk,i : ∀i

τk ≥
∑
i∈Dk

ψk,i : ∀k

vi = Vi(ti) : ∀i

ci = Ci(τi) : ∀i

τi ≥ 0 : ∀i

ti ≥ 0 : ∀i

ψk,i ≥ 0 : ∀k, ∀i

where the constraints ∀k : τk ≥
∑

i∈Dk
ψk,i guarantee that the amount of scheduled

computation time cannot exceed the amount of available computation time at any

point within the mission.

The constraints ti =
∑

k∈Ai
ψk,i and τk ≥

∑
i∈Dk

ψk,i do not introduce additional

nonlinearities. Therefore, using the techniques described in Section 4.4, Eq. 4.10 can

be approximated into a linear program whenever, for any phasei, Vi(t) is a continuous

concave function and Ci(τ) is a continuous convex function. Otherwise, Eq. 4.10 can

be approximated into a mixed integer linear program using discretization techniques.

After solving the linear program or the mixed integer linear program, it is trivial to

derive deliberation schedules from ψk,i (since ψk,i actually explains the schedule by

definition).
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Figure 4.8: Controllable phase transitions.

4.6.2 Controllable Phase Transitions

In the previous sections it is assumed that transition probabilities (either deter-

ministic or uncertain) between phases are specified a priori. We here extend our

mathematical programming formulation to a more complicated deliberation schedul-

ing problem (shown in Figure 4.8) where phase transitions may be controllable by

the agent itself. For example, when there are multiple paths to the same destination,

action choices of the agent determine (possibly stochastically) which phase may be

reached next, and in turn affect the utility that the agent can receive in its subsequent

phases.

With such an extension, deliberation scheduling problems become more challeng-

ing because an agent not only needs to control its reasoning, but also needs to find

a policy that maps each phase (abstract state) to an action choice.7 A straightfor-

ward way for solving such problems is to enumerate all possible policies, and then,

for each policy, adopt the algorithms presented in the previous sections. However,

7The actions mentioned here are high-level, abstract actions controlling phase transitions instead of the actions
performed in specific states.
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when the number of policies is large, this straightforward strategy might become

infeasible. This subsection presents an alternative approach, which incorporates the

policy formulation process in the previously presented mathematical programming

formulation.

Let pi,a,j represent the probability that the agent reaches phasej if it executes

action a in phasei, let αi represent the probability that the agent is initially in

phasei, and let xi,a represent the expected number of times that action a is executed

in phasei. We can then formulate deliberation scheduling problems with controllable

phase transitions into:

max
∑
i

xi × (vi − ci) (4.11)

subject to:

probability conservation constraints:

∑
a

xj,a = αj +
∑
i

∑
a

pi,a,j × xi,a : ∀j

xi =
∑
a

xi,a : ∀i

xi,a ≥ 0 : ∀i, ∀a

time allocation constraints:

ti =
∑
k∈Ai

ψk,i : ∀i

τk ≥
∑
i∈Dk

ψk,i : ∀k

vi = Vi(ti) : ∀i

ci = Ci(τi) : ∀i

(additional constraints on the next page)
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τi ≥ 0 : ∀i

ti ≥ 0 : ∀i

ψk,i ≥ 0 : ∀k, ∀i

where xi =
∑

a xi,a is the total expected number of times phasei is visited. In this

work, it is assumed that the structure of phase transitions can be represented as

a tree and so a phase cannot be visited more than once during the mission (the

implications of relaxing this assumption will be discussed in the future work section

at the end of this dissertation). That is to say, xi can be used to represent the

probability of visiting phasei.

As introduced in Section 2.2, the constraint
∑

a xj,a = αj +
∑

i

∑
a pi,a,j × xi,a

indicates that the expected number of times phasej is visited must equal the initial

probability distribution at phasej plus the expected number of times phasej is entered

via all possible transitions.

The objective function
∑

i xi× (vi− ci) in Eq. 4.11, which represents the total ex-

pected utility, is a quadratic function (since xi, vi and ci are all variables). Quadratic

optimization problems are generally computationally challenging. To deal with this,

a way to reformulate Eq. 4.11 into a MILP using discretization approximation tech-

niques is presented below.

Performance-profile-related parameters Ti,j, Vi,j and δi,j were defined in Section

4.4. We now define deliberation-cost-function-related parameters Γi,j, Ci,j and σi,j

in a similar way, i.e., Γi,j and Ci,j represent the jth time point and its corresponding

value in the discretized function of Ci(τ) respectively, and binary variable σi,j rep-

resents whether time point Γi,j is selected, and so Eq. 4.11 can be approximated as
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the following mixed integer linear program.

max
∑
i

∑
j

(χi,j × Vi,j − ζi,j × Ci,j) (4.12)

subject to:

probability conservation constraints:

∑
a

xj,a = αj +
∑
i

∑
a

pi,a,j × xi,a : ∀i

xi =
∑
a

xi,a : ∀i

xi,a ≥ 0 : ∀i, ∀a

time allocation constraints:

ti =
∑
j

Ti,j × δi,j : ∀i

τi =
∑
j

Γi,j × σi,j : ∀i

ti =
∑
k∈Ai

ψk,i : ∀i

τk ≥
∑
i∈Dk

ψk,i : ∀k

τi ≥ 0 : ∀i

ti ≥ 0 : ∀i

ψk,i ≥ 0 : ∀k, ∀i

constraints for connecting xi, χi,j, and δi,j:

∑
j

δi,j = 1 : ∀i

∑
j

χi,j = xi : ∀i

(additional constraints on the next page)
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χi,j ≤ δi,j : ∀i, ∀j

χi,j ≥ 0 : ∀i, ∀j

δi,j ∈ {0, 1} : ∀i, ∀j

constraints for connecting xi, ζi,j, and σi,j:

∑
j

σi,j = 1 : ∀i

∑
j

ζi,j = xi : ∀i

ζi,j ≤ σi,j : ∀i, ∀j

ζi,j ≥ 0 : ∀i, ∀j

σi,j ∈ {0, 1} : ∀i, ∀j

The constraints
∑

j δi,j = 1 (where δi,j are binary variables) and χi,j ≤ δi,j (χi,j ≥
0) indicate that, for each phasei, there exists at most one nonzero variable χi,j, and

the constraint
∑

j χi,j = xi says that this nonzero variable must equal xi. All these

constraints work together to guarantee χi,j = xi × δi,j. In a similar manner, we can

reason that ζi,j = xi × σi,j.

Now, we can linearize the quadratic objective function in Eq. 4.11. That is,

∑
i

xi × (vi − ci)

�
∑
i

∑
j

(xi × Vi,j × δi,j − xi × Ci,j × σi,j)

=
∑
i

∑
j

(χi,j × Vi,j − ζi,j × Ci,j)

which is the linear objective function (where Vi,j and Ci,j are constants) used in

Eq. 4.12.

ψk,i in the solution to Eq. 4.12 represents the deliberation schedule, and the policy
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that maps each phase to its action choice can be derived from xi,a: in phasei, action

a is executed with probability πi,a =
xi,a∑
a xi,a

.

4.6.3 Policy-Oriented Phase Transitions

In the most difficult deliberation-scheduling problems, the probabilities of reaching

subsequent phases may depend on the policy formulated in the current phase. That

is to say, transition probabilities among phases may change as an agent spends more

time computing (better) phase policies.

A preliminary algorithm to solve such challenging policy-oriented-phase-transition

problems is to interleave the process of scheduling deliberations (using the algorithms

presented earlier in this chapter) and the process of formulating policies (using any-

time policy formulation algorithms, some of which will be discussed in the next

chapter). That is, the agent starts by scheduling phase decision procedures with

some estimates of phase transition probabilities (e.g., assuming the same transition

probability to all possible subsequent phases), and then formulates phase policies ac-

cording to the resulting schedule. During the policy formulation process, if it turns

out that actual phase transition probabilities deviate a lot from the previously esti-

mated probabilities, the agent will stop building policies. It will run the deliberation

scheduling algorithm again with the updated phase transition information, and then

continue to formulate policies according to the updated deliberation schedule.

It is clear that this is a myopic algorithm, and it may be possible to do better by

exploiting domain-specific knowledge that can used to predict the changes of phase

transitions over time. However, a thorough investigation of this topic is beyond the

scope of this dissertation.
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4.7 Experimental Evaluation

It is important to remember that the running time of the deliberation scheduling

algorithm itself consumes computation time that could otherwise be used for delib-

eration. In other words, if an agent spends too much time scheduling deliberations,

then it might have too little time to actually deliberate. As shown by Goldman

et al. (2001), a MDP-based algorithm can also solve general deliberation scheduling

problems (like ours), but they also pointed out that the computational complexity of

that MDP-based algorithm is exponential in the number of phases and thus usually

not applicable in time-limited domains. This section gives an empirical evaluation

of our algorithms, particularly in the aspect of computational efficiency.

The results presented in this section are based upon test problems where the objec-

tive is to maximize the cumulative reward across all phases. However, the problems

with the nonlinear objective functions discussed in Section 4.5 would have similar

results (and our experiments confirmed this argument) because our mathematical re-

formulation of those objective functions does not considerably affect computational

complexity of the test problems.

We here evaluate our deliberation scheduling techniques using some randomly gen-

erated performance profiles and deliberation cost functions (the detailed procedure

is presented below). We will evaluate the deliberation scheduling techniques again

in a realistic application domain after presenting our anytime policy formulation

algorithm and constructing its performance profiles in the next chapter.

The rest of this section is organized as follows. We start by discussing our exper-

imental setup. We then evaluate our algorithms for deterministic phase transitions,

uncertain phase transitions, and controllable phase transitions, respectively.
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4.7.1 Experimental Setup

The choices of performance profiles and deliberation cost functions as well as their

exact parameters are not critical for the trends seen in the results presented in this

section, but for the sake of reproducibility the details are described here.

We use continuous concave functions Vi(t) = M × (1−e−K×t) to evaluate the LP-

based algorithm, and use general nonlinear functions Vi(t) = Q
1+e−J×(t−D) to evaluate

the MILP-based algorithm. The examples of those functions have been shown in

Figure 4.3 and Figure 4.4. In both cases, continuous convex functions Ci(τ) = C×τN

are used as our deliberation cost functions.

The parameters are randomly set: M ∼ [0.5, 5.0], K ∼ [0.05, 0.5], Q ∼ [0.5, 5.0],

J ∼ [1.0, 2.0], D ∼ [1.0, 3.0], C ∼ [0.05, 0.5], and N ∼ [1.3, 1.6], where x ∼ [L, U ]

represents that x is uniformly distributed in the range [L, U ]. The only rule we used

to choose parameter ranges is to avoid a “simple zone” of the test problems where

the deliberation costs are so high that it is obvious that none of the deliberations

should be done.

In our experimental results shown in this section, each data point is the average

value from 100 runs, and curves in the following figures are smoothed to improve

readability.

4.7.2 Deterministic Phase Transitions

Figure 4.9 shows the computational efficiency of our algorithms in solving de-

liberation scheduling problems with deterministic phase transitions, where m in the

figure denotes the number of pieces for each function if using piecewise linear approx-

imation, and denotes the number of points for each function if using discretization.

The y-axis of the figure specifies the total amount of runtime, including the time for
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Figure 4.9: Runtime of the LP-based algorithm (top) and the MILP-based algorithm (bottom) for
deterministic phase transitions.

making the piecewise linear approximation or discretization, and the time for con-

structing and solving a LP/MILP. We can see that, although slower than the myopic

algorithm that attempts to maximize Vi(t) − Ci(t) at each individual phase with-

out worrying about future phases, our algorithms compute near-optimal solutions

reasonably fast, especially when m is small, and their solution utilities significantly

outperform that of the myopic algorithm as shown in Figure 4.10.

Not surprisingly, using a small m will reduce the approximation accuracy, and

thus impair optimality. In Figure 4.10, we evaluate the optimality of our algorithms

with various m, the myopic algorithm, and a naive algorithm that does not take into

account additional available time in the midst of execution (but it can optimize the

use of the available time prior to execution). Since, to the best of our knowledge,
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Figure 4.10: Optimality of the LP-based algorithm (top) and the MILP-based algorithm (bottom)
for deterministic phase transitions.

there are no existing algorithms that are able to compute optimal deliberation sched-

ules in those test problems (because of their nature of being nonlinear optimization

problems), we use the solution of our algorithms with a large m (i.e., m = 100, which

can usually make the approximation function very close to the input function) as the

baseline. These empirical results show that, with m = 20, our algorithms are close

to optimal. More importantly, we can see that our algorithms, even with a small m

(such as m=5), can result in a much higher utility than the myopic algorithm and

the naive algorithm.

4.7.3 Uncertain Phase Transitions

When testing our algorithms in problems with uncertain phase transitions, we as-

sume that the phase transitions can be represented as a complete binary tree. When



149

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of phases

r
u
n
t
i
m
e
 
(
s
e
c
o
n
d
s
)

 

 
LP (m=20)
LP (m=10)
LP (m=5)
Myopic

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of phases

r
u
n
t
i
m
e
 
(
s
e
c
o
n
d
s
)

 

 
MILP (m=20)
MILP (m=10)
MILP (m=5)
Myopic

Figure 4.11: Runtime of the LP-based algorithm (top) and the MILP-based algorithm (bottom) for
uncertain phase transitions.

the agent leaves a phase with two children, it will reach its left child and its right

child with probability ρ and 1− ρ, respectively, where ρ is uniformly distributed in

the range [0.0, 1.0]. Figure 4.11 shows the computational efficiency of our algorithms.

Similarly as before, our algorithms are able to compute a near-optimal deliberation

schedule within one second for a complex mission with 100 phases.

It is also interesting to note that the myopic algorithm also performs pretty well

on average in Figure 4.12. This is because, for uncertain phase transitions, the

time spent on a future phase is less valuable since it is possible that the agent will

eventually not reach that future phase. In other words, in such cases, the agent is

more prone to act myopically. However, unlike the myopic algorithm that always

focuses on the upcoming phase, our mathematical-programming-based approach can
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Figure 4.12: Optimality of the LP-based algorithm (top) and the MILP-based algorithm (bottom)
for uncertain phase transitions.

look ahead and decide by itself which phases it should focus on. That is to say, our

algorithms will not miss good opportunities of “preheating” future high-value phases.

As shown in Figure 4.13, though our algorithm uses a very coarse approximation with

m = 5 (and so its computation time is close to the myopic algorithm as was shown in

Figure 4.11), it outperforms the myopic algorithms in most cases (97%).8 It achieves

a utility 85% higher than the myopic algorithm in the best case, and achieves a utility

only 2% lower than the myopic algorithm in the worst case.

4.7.4 Controllable Phase Transitions

Finally, we evaluate our algorithm in solving problems with controllable phase

transitions. It is again assumed that the phase transitions can be represented as a

8Indeed, if we use a sufficiently large m, the solution utility of our algorithm will never be lower than the myopic
algorithm.
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Figure 4.13: The utility ratio of the LP-based algorithm (m = 5) to the myopic algorithm on 100
test problems.
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complete binary tree. At each phase with two children, there are two possible actions

a1 and a2. a1 moves the agent to the left child with probability ρ and to the right

child with probability 1 − ρ, and a2 achieves the opposite effect. As is easy to see,

the problems with controllable phase transitions will be reduced to problems with

deterministic or uncertain phase transitions once action choices are made. That is,

the optimality comparison results in the problems with controllable phase transitions

would be similar to the previous results. Our experiments have confirmed this: the

results are similar to Figure 4.10 when ρ is close to 1.0 (i.e., more deterministic), and

similar to Figure 4.12 when ρ is close to 0.5 (i.e., more random).

On the other hand, the problems with controllable phase transitions are in general

more computationally challenging than those with deterministic or uncertain phase

transitions. When the number of phases is large in a complex problem, the MILP-

based algorithm might need a relatively long time to find an exact deliberation

schedule. Note that state-of-the-art MILP solvers (such as cplex) are usually able to

return a good solution using much less time. Thus, for an online application problem,

we can adopt a two-step algorithm: it first derives a policy (a mapping from phases

to actions) by solving Eq. 4.12 with a limited time; with that policy, the problem is

reduced to an easier one with deterministic/uncertain phase transitions, and then it

can solve the reduced problem again and return a deliberation schedule.

As shown in Figure 4.14 where the solution utility without computational time

limitation is normalized to one and error bars show standard deviation, this two-step

algorithm is usually able to compute an approximately optimal deliberation schedule

within a short time, which makes it applicable in time-limited domains.
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Figure 4.14: Average anytime performance of the two-step algorithm for controllable phase transi-
tions. Parameters are set as follows: 30 phases, m = 10, and ρ = 0.9.

4.8 Summary

Deliberation scheduling is the process of scheduling decision procedures to maxi-

mize the overall system performance, and it is the core component of our computation-

driven mission-phasing techniques. This chapter has presented a mathematical-

programming-based approach for scheduling phase decision procedures, and illus-

trated it through several increasingly complex classes of deliberation scheduling prob-

lems. The presented algorithms can simultaneously and efficiently solve the coupled

problems of deciding both when to deliberate given its cost and which decision pro-

cedures to execute during deliberation intervals. In comparison with prior work, this

work can cope with a richer set of performance profiles and deliberation cost func-

tions (through piecewise linear approximation and discretization techniques), and is

applicable in complex stochastic domains where phase transitions may be uncertain.
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The contributions of the work presented in this chapter are listed as follows:

• This work explicitly takes into account computation time that may be used in

the midst of execution, and models the cost of using such computation time

with deliberation cost functions. A new deliberation scheduling approach has

been designed, which can help a time-limited agent judiciously determine the

amount of computation time it should use, accounting for the cost of using that

time, in several complex settings. As shown in the experimental results, this

approach can improve agent performance in both deterministic environments

(Figure 4.10) and stochastic environments (Figure 4.12).

• This work extends prior work that focused on continuous concave performance

profiles. By formulating a deliberation scheduling problem into a mathematical

program and using approximation techniques, this work can find a near-optimal

deliberation schedule for decision procedures with any types of performance

profiles.

• Furthermore, the mathematical programming formulation provides a domain-

independent framework on which we can easily make simplifying transforma-

tions or impose additional constraints. The extension for coping with nonlinear

objective functions has been introduced in Section 4.5, and the extension for

handling non-deterministic phase transitions has been discussed in Section 4.6.

• Most importantly, the deliberation scheduling approach presented in this chap-

ter is computationally efficient. The empirical results (shown in Figure 4.9 and

Figure 4.11) have highlighted its ability to find a near-optimal schedule within

a short time, e.g., finding a near-optimal schedule for a complicated problem

with 100 phases within one second.



CHAPTER V

Effective Inner-Phase Heuristic Search

In Chapter V, we presented, analyzed and empirically evaluated a mathematical-

programming-based deliberation scheduling approach, which we showed to be effi-

cient and effective in the management of limited computation time in a wide variety

of environments with different degrees of complexities and uncertainties. In general,

that deliberation scheduling approach can judiciously schedule policy formulation

procedures performed by any anytime policy formulation algorithm. Nevertheless,

to make the most effective use of scarce time in time-critical systems, the deliberation

scheduling approach should, not surprisingly, collaborate with a policy formulation

algorithm with the best possible anytime performance.

To address this issue, this chapter investigates the problem where an autonomous

agent has a finite amount of “think time” (assigned by our deliberation scheduling

algorithm) for each phase, during which the agent builds and solves a Markov deci-

sion process for the corresponding phase decision procedure, after which the agent

executes the policy of the phase MDP it has solved. Not surprisingly, time limita-

tions could mean that the agent is unable to model and reason over the full state

space of the phase (even though each phase decision procedure is often much simpler

than the overall decision procedure), in which case the agent would only be able to

155
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find a policy for the portion of the state space it does generate. In executing this

policy, if the agent reaches a state that is at the edge of its generated state space,

the policy does not provide an action choice for this state or any subsequent state.

The objective in this chapter is to design an anytime policy formulation approach

for finding a high-quality (partial) solution for each phase within its time limit. To

this end, this chapter develops a heuristic search approach, highlighting the following

two features. First, to speed up the process of finding a high-quality solution, the

heuristic search approach selectively explores and expands the state space, i.e., focus-

ing on a subset of states that are believed to lie along trajectories of an approximately

optimal policy, balanced by spending less computational efforts on other states. Sec-

ond, besides the process of formulating a complete policy in that selectively explored

state space, the approach also adopts a fast planning algorithm to generate “coarse”

solutions for states outside the explored space, which help the agent handle, though

maybe not optimally, additional eventualities that are not captured in its formulated

policy.

The rest of this chapter is organized as follows. Section 5.1 reviews related work

in the field of anytime policy formulation. Section 5.2 describes the ideas behind

our heuristic search approach. As an illustration (and also for the sake of evalu-

ation), Section 5.3 explicitly implements these general and fundamental ideas in a

class of challenging time-constrained problems represented in TÆMS models, and

Section 5.4 empirically compares our solution approach with several prior heuris-

tic search methods. In Section 5.5, we give a preliminary evaluation of the overall

computation-driven mission-phasing approach, in which heuristic search is incorpo-

rated with problem decomposition and deliberation scheduling to further improve

the effectiveness of utilizing limited time. Finally, Section 5.6 summarizes the work
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presented in this chapter.1

5.1 Background: Heuristic Search

In numerous application domains, only a small portion of the state space of the

complex stochastic system can be reached by following an optimal policy from some

predefined initial state. This fact has inspired the development of a number of

efficient policy formulation algorithms. Typically, these algorithms adopt heuristic

search techniques to selectively expand and explore a large state space, and they

are often able to generate an optimal policy while avoiding exhaustive enumeration

of all possible states. This section briefly introduces three popular heuristic search

algorithms.

5.1.1 RTDP

The real-time dynamic programming (RTDP) algorithm is one of the most well-

known heuristic search approaches (Barto et al., 1995). The algorithm performs

successive trials on the environment. Each trial starts at the initial state of the

world and ends at a goal state. In each trial, value updates are only performed on

the states actually visited in that trial. The fundamental advantage of this algorithm

is that it can quickly avoid paths that lead to low rewards. Thus, the exploration

looks mainly at a promising subset of the state space.

The procedure of the RTDP algorithm is outlined as follows:

� Start with an admissible value function V.

� Repeat trials until the time limit is reached or an optimal policy is found.

For each trial, start by setting the current state i to the initial state and then

repeat the following steps until reaching a goal state:
1This chapter is partially based on work that was originally reported in (Wu and Durfee, 2007b).
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I. Improve the value function by performing Bellman backup on the current

state i

V (i)← max
a∈Ai

[ ri,a +
∑
j∈S

pi,a,j × V (j) ]

II. Pick up the best greedy action based upon

π(i)← argmax
a∈Ai

[ ri,a +
∑
j∈S

pi,a,j × V (j) ]

and change the current state i to the next state that results from a sample

stochastic transition by performing that action.

To improve convergence speed and/or anytime performance of the RTDP algo-

rithm, several variations of the algorithm have recently been developed. The labeled

RTDP (LRTDP) algorithm speeds up the convergence process by keeping track of

the states over which the value functions have already converged, and thus it can

avoid visiting those states again (Bonet and Geffner, 2003).

The bounded RTDP (BRTDP) algorithm and the focused RTDP (FRTDP) al-

gorithm maintain both upper and lower bounds on the value function, and so they

can focus on states that are both relevant (likely reached under the current policy)

and poorly understood (large gap between upper and lower bounds), which has been

shown to be able to improve agent performance in (at least) stochastic shortest path

problems (McMahan et al., 2005; Smith and Simmons, 2006).

5.1.2 Envelope

The envelope algorithm (Dean et al., 1995) is an alternative heuristic search ap-

proach. It starts with a restricted state space (or envelope) that only contains a path

from the initial state to the goal state, and then gradually extends that envelope to

include more states and computes new policies. Given more computation time, the

algorithm will compute a more complete partial policy.
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The procedure of the algorithm is summarized below:

� Start with an envelope including only a nominal path from the initial state to

the goal state.

� Repeat the following steps until the time limit reaches or an optimal policy is

found.

I. Extend the envelope by including states that are outside the envelope of the

current policy but that may be reached upon executing the policy. There are

several possible strategies for choosing which states to add. For a detailed

discussion of these strategies, we refer to (Dean et al., 1995).

II. Compute a new policy in the extended envelope using the policy iteration

algorithm. The policy generated in the previous step can be used as the

starting point for policy iteration, which can usually result in fewer itera-

tions for finding an optimal policy within the envelope.

The envelope algorithm is particularly good at solving “goal-oriented” MDPs, but

one potential drawback is that it is not directly applicable to general MDPs in which

there might be no explicit goal states.

5.1.3 AO* and LAO*

The AO* (Martelli and Montanari, 1978) algorithm and its recent extension (the

LAO* algorithm (Hansen and Zilberstein, 2001)) are analogous to the well-known

A* search algorithm. They start search at the initial state, and use an admissible

heuristic function to direct the search. They repeatedly expand the “best” partial

solution graph until a complete optimal policy is found. The procedure is outlined

below, in which forward expansion of the best partial solution graph is interleaved

with a state value revision step:
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� Start with an explicit graph including only the initial state.

� Repeat the following steps until the best solution graph has no non-terminal tip

states.

I. Expand some non-terminal tip state n of the best partial solution graph.

II. Update state values V (i) based upon some admissible heuristic evaluation

function h(i), i.e.,

V (i) =

⎧⎪⎨
⎪⎩

h(i) if i is a non-terminal tip state

maxa∈Ai
[ ri,a +

∑
j∈S pi,a,j × V (j) ] otherwise

II. Mark best actions according to

π(i)← argmax
a∈Ai

[ ri,a +
∑
j∈S

pi,a,j × V (j) ]

and update the best partial solution graph.

The AO* and LAO* algorithms are designed as efficient off-line policy formulation

methods. They can often find an optimal solution without searching all reachable

states.

5.2 Coping with a Very Large State Space

Unlike a classical dynamic programming algorithm (e.g., value iteration and policy

iteration) that evaluates the full state space and finds an optimal policy for every

state, the heuristic search algorithms introduced in Section 5.1 can often significantly

reduce efforts spent on states that will never be reached by following an optimal

policy from the initial state. In problems with large state spaces, this has an obvious

advantage over dynamic programming since the heuristic search algorithms might

find optimal solution policies from the initial state by considering many fewer states.



161

This section outlines a new heuristic-search policy formulation approach, which

adopts a similar idea of being selective in expanding and exploring a large state space.

However, unlike much prior work (e.g., the AO* algorithm) emphasizing the reduc-

tion of computation time for finding an optimal policy, our heuristic search approach

puts emphasis on finding a high-quality solution within a pre-specified computation

bound, and highlights the ability to handle challenging situations where computa-

tion time is so limited that even an agent that can “perfectly” expand its state space

cannot (within the time limits) search every state reachable by the optimal policy.

Figure 5.1 captures the essential ideas of our heuristic search approach. The

limitation of computation time restricts the number of states that an agent can ex-

pand and explore. The decision about which subset of the MDP state space to be

expanded (“unrolled”) will affect the quality of the derived policy. Our heuristic

search algorithm, named informed unroller (IU), biases expansion towards states

that are believed to lie along trajectories of high-quality policies. Specifically, the

IU algorithm prioritizes the queue of states waiting to be expanded based on an

estimate of the likelihood that the state would be encountered when executing an

(approximately) optimal policy from the initial state. In other words, the IU al-

gorithm emphasizes the exploration of the state space that is likely to be reached

by following approximately optimal policies, while ignoring other states, to yield a

better policy when the time limit is reached.

In order to correctly estimate the probabilities of states being reached by the op-

timal policy, a decision-making agent should take into account probable actions in

the future when it evaluates states at the edge of its partially unrolled state space

since these evaluations will affect the policy that is used to estimate the reaching

probabilities. Clearly, in time-limited environments, considering all possible future
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Figure 5.1: Illustration for the informed unroller algorithm. (a) An illustrative example about
the complete reachable state space and a subset of the states that may be reached by
following an optimal policy. (b) A typical sequence of state space expansions using the
IU algorithm.
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eventualities is computationally infeasible since it requires a full look-ahead (which

is indeed equivalent to optimally solving the problem). One alternative practica-

ble way is to generate fast but “coarse” solutions, which start at the edge states

and end at some terminal states, using a fast planning algorithm. For the sake of

reducing computational costs, the IU algorithm builds such coarse solutions based

upon simplified MDP models in which stochastic state transitions are reduced to be

deterministic. Without uncertainties, the complicated stochastic-planning problem

modeled in the MDP becomes a considerably simpler classical planning and search

problem. The decision-making agent can then choose to use a fast search method

(such as the breadth-first search and the best-first search) to find an optimal deter-

ministic plan, or to use an even faster greedy planning method to find a myopically

optimal solution.

These plausible solutions are used to estimate the values of the edge states, e.g.,

through predicting and evaluating execution trajectories of the world. The partial

policy formulated based upon such estimates is believed to be able to match an

optimal policy reasonably well because that formulated policy can partially take into

account future eventualities that are not modeled in the explored state space but

that may be encountered when following the complete optimal policy.

Moreover, it is worth pointing out an additional advantage from building those

coarse solutions: in situations where an agent has no (or very limited) computational

capability in the midst of execution, the coarse solutions may, in a timely manner,

tell the agent how to act when execution runs past the edge states. This is clearly

an advantage over the naive approach of letting the agent randomly pick up an

applicable method when out of the partial policy.

Recall that in the problems of interest in this chapter the computation time limit
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Figure 5.2: An example non-stationary heuristic evaluation function. tlim represents computation
time limit and V ∗(i) represents the optimal state value of state i.

is fixed and known a priori (since computation time is assigned by the delibera-

tion scheduling algorithm prior to the policy formulation stage). To make better

usage of the computation time, the IU algorithm adopts a non-stationary heuris-

tic evaluation function, which is illustrated in Figure 5.2. When computation time

is sufficient, the IU algorithm adopts an admissible (or approximately admissible)

heuristic evaluation function that not only evaluates the coarse solution built on

an edge state but also considers potential improvements that can be made on that

coarse solution by further state space expansion and exploration efforts. In a sim-

ilar manner to many prior heuristic search algorithms (e.g., the LAO* and RTDP

algorithms), such an admissible heuristic evaluation function may help the agent

find alternative policies that are better than the previously formulated ones. On

the other hand, the heuristic evaluation function decreases as the amount of com-

putation time used increases. When the time approaches its limit, the IU algorithm
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adopts a non-admissible heuristic evaluation function that is only dependent on the

edge state and the coarse solution built on it (but not taking into account possible

improvement on that coarse solution since no computation time is available for it).

Typically, expanding the best-so-far policy using a non-admissible heuristic function

that underestimates state values would improve the estimate of the utility of that

policy, making it further outperform other partial policies. That is to say, in situa-

tions with scarce computation time, the IU algorithm would rather focus on making

its current policy more complete than exploring and examining alternative policies

that may be better than the current policy, but only if given sufficient time for state

space expansion.

So far, we have described the fundamental and general concepts of the informed

unroller algorithm. To better illustrate these ideas and to empirically evaluate and

compare this algorithm with prior methods, in the next section the IU algorithm

is implemented to solve a particular class of time-constrained problems that are

represented in TÆMS models.

5.3 Heuristic Search for Large TÆMS Problems

TÆMS is a hierarchical modeling language capable of representing complex task

networks with intra-task uncertainties and inter-task dependencies (Lesser et al.,

2004). It has been widely used to model complex realistic applications, such as the

Information Gathering problem (Wagner et al., 2006), and the Coordinator prob-

lem (Musliner et al., 2006).

One way to find an optimal solution to a single-agent TÆMS problem is to ex-

pand the states implicitly defined in the TÆMS model into a Markov decision process

(Wagner et al., 2006), and then build a policy using a MDP policy formulation algo-
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rithm, such as the backward induction algorithm and the value iteration algorithm.

However, this solution approach quickly becomes infeasible as the size and the com-

plexity of the TÆMS model increases. For example, in a moderately complex TÆMS

model with m = 20 applicable methods where each method has o = 9 different pos-

sible outcomes and d = 8 methods can be performed over one execution, there are

about (o×m)d ≈ 1.1×1018 possible states for the agent to generate and reason over.

To address such large state spaces, our IU algorithm constructs a policy for its

selectively-generated state space, and generates greedy plans starting at the edges of

the expanded state space. As will be seen, the combination of the sequential decision

making (for a subset of states that are likely to be reached by high-quality policies)

and the fast planning (for other relevant states) can often yield a good solution to

a large TÆMS problem within a short time in both the situations where the agent

has limited computational capability during execution and the situations where the

agent has no computational capability during execution.

The following discussion begins by introducing the TÆMS model in Section 5.3.1,

followed by a recap of the prior approach for fully unrolling a TÆMS model into a

MDP in Section 5.3.2. The detailed implementation of our heuristic-search-based IU

algorithm is explained in Section 5.3.3.

5.3.1 Introduction: TÆMS Models

In a TÆMS task model2 (Lesser et al., 2004), leaf nodes represent methods (prim-

itive actions). A method might have multiple possible outcomes with different dura-

tions and qualities. An internal node in the model is a task, which is associated with

a quality accumulation function (QAF) (such as sum, min, and max) that describes

how the qualities of the subtasks of a task can be used to calculate the quality of

2Since we focus on single-agent problems, we omit the introduction of multi-agent interactions that can be
represented in TÆMS models.
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the task itself. A node in the TÆMS model might be constrained by release time

(earliest possible start time) and deadline, and the temporal constraint applies re-

cursively downward: a subtask inherits the most restrictive of its own constraints

and those of its parent. A method violating its temporal constraint will yield zero

quality. The TÆMS model also supports representing dependencies among tasks,

such as enablement, disablement, facilitation, and hindrance, with non-local effect

(NLE) links (Lesser et al., 2004). A NLE link indicates a task interrelationship where

the execution of some task will have a positive or negative effect on the quality or

duration of another task. Given a problem represented in a TÆMS model, the ob-

jective is to find a policy maximizing the expected quality at the root node of the

model.

Figure 5.3 shows an example TÆMS model with 21 nodes, which we will use

to illustrate our heuristic search techniques. The temporal constraint of a node is

represented in the format [ta, tb], where ta and tb represent the release time and

deadline of the node, respectively. The description of the temporal constraint (if

there is one) is placed under the node’s name. In this example, a single method

might have multiple possible outcomes. The distribution on the quality of a method

outcome is depicted in the format Q : a ± b, which implies that the method has

probability 0.5, 0.25, and 0.25 of yielding the expected quality a, minimum quality

a − b, and maximum quality a + b, respectively. The duration distribution of the

method outcome is depicted in a similar format D : a′ ± b′, which says that the

method will complete at its expected duration a′, minimum duration a′ − b′, and

maximum duration a′ + b′ with probability 0.5, 0.25, and 0.25, respectively. There

is an enable NLE in this example, which indicates that task Ctask3b can yield a

positive quality only when task Ctask2b has achieved a positive quality first.
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Figure 5.3: A simple example TÆMS model with 9 tasks, 12 primitive methods, and 1 enablement
NLE.
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5.3.2 Unrolling TÆMS Models into MDPs

Markov decision processes provide a good framework to compute optimal policies

in uncertain environments, and thus are well suited for TÆMS problems having

uncertainties in qualities and durations of method outcomes. This subsection recaps

the prior approach for fully unrolling a TÆMS model into a MDP (Wagner et al.,

2006; Musliner et al., 2006), whose solution policy will maximize the expected quality

at the root of the TÆMS model, because our techniques extend these foundations.

In the TÆMS MDP, a state is defined as 〈t,M〉, where t is the current time,

and M is a set of method outcomes {o}. Each outcome o = 〈m, τ, d, q〉 stores the

information of its execution method m, start time τ , duration d, and quality q. Such

a state representation assures that the conditional probability distribution of future

states, given the present state and all past states, depends only upon the current state

and not on any past state, i.e., the Markov property holds. When an agent executes

a method mi, which has probability pi of taking di time steps and yielding quality qi,

in state 〈t,M〉, the agent will reach the successor state 〈t + di,M
⋃ {〈mi, t, di, qi〉}〉

with probability pi.

The unrolling procedure is summarized in Procedure 1. It is similar to an (un-

informed) breadth-first search. At each loop, it pops the top state from the queue

openList (line 4), and finds the set of applicable methods that can be executed

in that state by examining their temporal and NLE constraints in the model (line

5). It then generates successor states for each applicable method according to state

transition functions described above (line 6), updates the MDP (line 8), and puts

newly generated, non-terminal successor states (those for times prior to the problem

horizon) at the end of openList (line 10).

The unrolling procedure stops when openList is empty. At that point, the TÆMS
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Procedure 1 mdp = unroll(model)
1: Initialize empty mdp, initState

2: openList← {initState}
3: repeat

4: state← dequeue(openList)
5: for all m ∈ applicable-methods(state, model) do

6: succs← successor-states(state, m, model)
7: for all succ ∈ succs do
8: mdp← update(state, m, succ, mdp)

9: if succ is not a terminal state then
10: enqueue(succ, openList)

11: end if
12: end for

13: end for
14: until openList is empty

15: return mdp

model is fully unrolled into a finite horizon MDP. Each MDP terminal state captures

method outcomes of a possible execution trajectory of the problem, and the reward

of the state is the quality of the root node of the TÆMS model given that execution

trajectory. On the other hand, the internal states in the MDP state space always

have zero reward, since all activities will be evaluated at the end of the execution (i.e.,

in terminal states). Given state transition probabilities and rewards, the backward

induction algorithm can be used to generate an optimal policy in time linear in the

number of states (Puterman, 1994).

5.3.3 Informed Unroller

Many application domains, such as the Coordinator domain (Musliner et al.,

2006), are complicated, and often lead to very large state spaces. The above full

(uninformed) unrolling procedure may not be practical for these complex problems,

especially when computation time is limited. A straightforward solution to this time-
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limitation challenge is to stop the unrolling procedure at a pre-specified time point.

Thereafter, rewards are computed for edge states of the partially unrolled state space,

based upon the (partial) execution trajectories represented in those states, and the

backward induction algorithm is used to derive a policy for the partially unrolled

state space.

However, this straightforward approach suffers from two drawbacks. First, the

limited computation time only allows a subset of states to be expanded and ex-

plored. The unrolling procedure described in Section 5.3.2 implements an uninformed

breadth-first style expansion, which will expand all paths to equal (partial) depth

regardless of the chance of the agent traversing the path. Second, the approach

does not consider and specify actions to take after the agent executing a policy goes

beyond the partially unrolled state space. Intuitively, randomly choosing an action

(when out of the policy) is unlikely to be an effective way in accruing quality.

To address the first drawback mentioned above (the second will be discussed later),

our informed-unroller (IU) algorithm prioritizes the queue of states waiting to be

unrolled based on an estimate of the likelihood that the state would be encountered

when executing an optimal policy from the initial state. Because the probability

of reaching a state is dependent on the policy, the IU algorithm intersperses policy

formulation (using the backward induction algorithm) with unrolling. It should be

noted that, although the backward induction algorithm is fast (i.e., its runtime is

linear to the number of states), formulating a policy at each state expansion step is

generally too costly. To balance the benefits of unrolling more states and of being

more directed in the unrolling direction, the IU algorithm recomputes a policy and

reorders the states waiting to be expanded less frequently. The empirical results

presented in this work are based upon a heuristic to sort the queue of states waiting
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to be expanded when the size of the unrolled state space has doubled since the last

sorting.

The details of the IU algorithm are shown in Procedure 2, where lines 6 − 15

are similar to the aforementioned uninformed unroller algorithm except that line 12

inserts the newly generated successor state in a new way described below (instead of

always placing it at the end of openList).

Let state i represent the state being expanded, and let state j represent one of

its successor states. If the reaching probability of state i is Pi, then the reaching

probability of the new successor state j is estimated as:

Pj =
Pi ×maxa pi,a,j

|Ai|
where pi,a,j represents the state transition probability function, and |Ai| represents

the number of applicable actions at state i.

That is, the estimated reaching probability of the new successor state is the reach-

ing probability of its ancestor state (that leads to the new successor state) multiplied

by the maximum transition probability from the ancestor state to the new succes-

sor state, followed by a discount factor 1/|Ai|. According to Pj , the new successor

state is inserted into openList while keeping openList sorted in descending order

of estimated reaching probabilities. Since the IU algorithm does not sort openList

at each iteration, this insertion process is a helpful, supplementary mechanism to

help the agent emphasize the exploration of the promising subset of the state space

(that is believed to be reached with high likelihood by high-quality policies) between

openList sorting procedures.

Line 17 in Procedure 2 evaluates edge states of the partially unrolled state space

by building and evaluating greedy plans starting at the edge states; the details will

be discussed later (in Procedure 3). Line 18 solves the MDP by using the backward
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Procedure 2 mdp = informed-unroll(model, tlim)
1: Initialize empty mdp, initState

2: preSortSize← 10
3: K ← 2

4: openList← {initState}
5: repeat
6: state← dequeue(openList)

7: for all m ∈ applicable-methods(state, model) do
8: succs← successor-states(state, m, model)

9: for all succ ∈ succs do
10: mdp← update(state, m, succ, mdp)

11: if succ is not a terminal state then
12: insert(succ, openList, mdp)

13: end if
14: end for
15: end for

16: if size(mdp) ≥ K × preSortSize then
17: mdp← eval-edge-states(mdp, model)

18: policy ← solve(mdp)
19: prob← compute-reaching-prob(mdp, policy)

20: openList← sort(openList, prob)
21: preSortSize← K × preSortSize
22: end if

23: until openList is empty or runtime reaches tlim
24: return mdp
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induction algorithm to derive a policy, and line 19 computes the probability of the

agent reaching each edge state when executing the derived policy. Edge states waiting

to be expanded are sorted in line 20 according to their probabilities of being reached,

where the state with the highest reaching probability is placed at the top of the

queue, i.e., in a highest-probability-first manner.

To build an intermediate policy that can properly guide the IU exploration di-

rection, potential activities in the future should be considered when evaluating edge

states. An exact evaluation of an edge state requires a full look-ahead, and is ob-

viously impractical. Instead, the IU algorithm computes the heuristic value of an

edge state by adopting a fast greedy algorithm to build a plan starting at that edge

state.3 Unlike a policy considering all possible eventualities, a plan only represents

a particular execution trajectory. Specifically, a plan is composed of deterministic

copies of TÆMS methods. Each deterministic method (deterministic because it has

exactly one outcome) corresponds to one actual TÆMS method; its duration is the

maximum duration of the TÆMS method and its quality is the expected quality of

the TÆMS method.

As stated, these greedy plans can serve two purposes. First, given an edge state

i and a greedy plan p starting at it, the IU algorithm can predict a unique terminal

state i′ at the end of the execution of the plan p (i.e., by adding deterministic

outcomes of the methods represented in the plan p into the state i). The quality of

this terminal state i′ can then be fed back to estimate the state value of the edge

state i. Considering possible improvement in the further state exploration, the IU

3In some domains, problems come with some (suboptimal but good) initial solutions, and we can use these
solutions to evaluate edge states instead.
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Procedure 3 [plan, state] = greedy-plan(state, model)
1: Initialize an empty plan

2: while state is not a terminal state do
3: method← best-method(state, model)

4: plan← add(method, plan)
5: state← successor-state(state, method)

6: end while
7: return plan, state

algorithm sets the heuristic value of an edge state i to:

f(i) = qual(i) +K(t)× (qual(i′)− qual(i)) (5.1)

where qual(i) and qual(i′) indicate the qualities accumulated by the completed meth-

ods modeled in state i and i′, respectively, and K(t) is a decreasing function. In em-

pirical results shown in this chapter, a linearly decreasing function is adopted, which

is initially set to the ratio of the average maximum duration of all applicable TÆMS

methods to the average expected duration of those methods (because determinis-

tic methods in the greedy plan take their maximum durations instead of expected

durations), and then gradually decreases to 1.0 as computation time approaches its

limit.

Second, these plans can tell the agent what to execute (though maybe sub-

optimally) after the agent reaches the edge of the partially unrolled space during

execution. Recall that a deterministic method uses the maximum duration of its

corresponding TÆMS method, and so the plan composed of deterministic methods

is always executable, i.e., the agent can simply wait if a TÆMS method completes

before its maximum duration.

The details of generating a greedy plan are presented in Procedure 3. Given an

edge state, the procedure starts with an empty plan (line 1), and then gradually
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Procedure 4 method = best-method(state, model)

1: m̂← applicable-det-methods(state, model)

2: if m̂ is empty then
3: return wait

4: end if
5: m̂← argmaxm∈m̂ quality(successor-state(state, m), model)
6: m̂← argmaxm∈m̂ is-in-unexplored-branch(state, m, model)

7: m̂← argmaxm∈m̂ −1×deadline(m)
8: m̂← argmaxm∈m̂ method-success-prob(m)

9: m̂← argmaxm∈m̂ qual-density(m)
10: return one-of(m̂)

augments the plan by myopically adding deterministic methods until reaching the

problem horizon (lines 2 – 6).

The heuristic used to decide which deterministic method to be inserted into the

plan is described in the best-method procedure shown in Procedure 4, where the

function “argmax” stands for the arguments of the maximum, i.e., the set of argu-

ments for which the value of the given expression attains its maximum value. The

best-method procedure begins by checking applicable deterministic methods (line 1).

If none of the methods can be executed, it returns a wait method that will let the

agent idle one time step (lines 2 – 4). Otherwise, given a set of applicable methods,

the procedure chooses the method(s) that can lead to the successor state(s) with the

highest quality (line 5). If multiple deterministic methods tie, the heuristic picks the

method(s) located in an unexplored branch where an unexplored branch refers to a

sub-model rooted at a TÆMS node that is directly under a min QAF and has zero

quality so far (line 6). If tied again, the methods are, in turn, filtered by their dead-

lines (line 7), success probabilities (i.e., the probability of successfully completing a

method while ignoring its temporal constraints) (line 8), and quality densities (i.e.,
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Figure 5.4: Comparison of the runtime between the uninformed unroller and the informed unroller
on the example. The informed unroller finds an approximately optimal solution within
1 second and finds an optimal solution within 10 seconds, while the uninformed unroller
takes 442 seconds to find a complete, optimal solution.

the quality divided by the duration) (line 9).

This section concludes by comparing the uninformed unroller (UU) algorithm (de-

scribed in Section 5.3.2) and the informed unroller (IU) algorithm (described in this

section) on the example problem depicted in Figure 5.3. As shown in Figure 5.4, the

informed unroller finds an (approximately) optimal policy considerably faster than

the uninformed unroller. Specifically, the informed unroller finds an approximately

optimal solution within 1 second and finds an optimal solution within 10 seconds,

while the uninformed unroller needs 442 seconds to find an optimal solution.

To provide a better understanding of state expansion and exploration behaviors,

Figure 5.5 summarizes the states unrolled by these two solvers when the unrolling

time is limited to 10 seconds for either of them. As illustrated, the uninformed

unroller unrolls a larger state space than the informed unroller, but its exploration
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Figure 5.5: Comparison of the state space expansions between the uninformed unroller and the
informed unroller on the example. The informed unroller explores deeper than the
uninformed unroller although the informed unroller expands fewer states (where time
limit is 10 seconds).

depth toward the finite horizon is shallower. This is as expected. The breadth-

first style search of the uninformed unroller results in exploring all paths to equal

depth regardless of the probability that the agent will traverse the path (which is

unlikely to be an effective way when the number of states that can be generated is

restricted). In contrast, although the informed unroller explores a smaller number of

states (because it spends much of its computation time building greedy plans at edge

states and computing intermediate policies to guide further exploration), it is able to

explore deeper due to its selective search strategy of focusing on states with higher

probability of being reached in high-quality solutions and ignoring many other states

with low or zero reaching probabilities.
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5.4 Experimental Evaluation

As discussed above, the IU algorithm is capable of finding a high-quality solution

within a short time, which makes it a potentially promising approach for time-critical

applications. This section helps test this claim through evaluating and comparing

the IU algorithm with prior effective heuristic search algorithms.

Our tests are based upon the Coordinator project (Musliner et al., 2006). The

Coordinator project researches real-world multi-agent coordination problems, and

has gained much attention in recent years (Musliner et al., 2006; Raja et al., 2006;

Emami et al., 2006; Zhang and Xu, 2006). The empirical results shown in this sec-

tion are collected from 16 3-agent and 22 4-agent problems from the Coordinator

project4, which are divided into 136 single-agent TÆMS problems. The computa-

tional complexity of these problems varies. The simplest test problem has only 26

nodes in its TÆMS model (that leads to several thousands of MDP states), but the

most complex one has 155 nodes (that leads to tens of millions of MDP states),

which provides a diverse test set to evaluate TÆMS solvers under a wide variety of

situations.

We compare our IU algorithm with the AO* algorithm and the RTDP algorithm,

which were introduced in Section 5.1.5 To improve computational efficiency of the

AO* algorithm, instead of revising cost at each iteration, our implementation of

the AO* algorithm, in a similar way to (Hansen and Zilberstein, 2001), only revises

costs and updates action choices once all of the edge states at the last cost-revision

point have been expanded. We have also implemented and evaluated some varia-

tions of the RTDP algorithm, including the bounded RTDP and focused RTDP al-

4These problems are devised and used by a large research team (of which we are part) centered at Honeywell
Labs.

5The envelope algorithm is not implemented and evaluated because it is not directly applicable to problems
without explicit goal states.
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gorithms which have been shown to have better anytime performance in stochastic-

shortest-path problems. However, in our problems (that typically have very large

state spaces), none of these variations outperforms the RTDP algorithm on average,

which we believe is mainly because the large size of the state space makes the upper

and lower bounds of states difficult to converge.

Like many heuristic algorithms, the heuristic evaluation functions used are critical

to the performance of heuristic-search-based policy formulation methods. The work

is this dissertation compares the performance of the IU, AO*, and RTDP solvers

under three different heuristic functions described below.

greedy-plan heuristic: a non-admissible heuristic that estimates state values through

building and evaluating greedy plans at edge states. The detail was described

in Eq. 5.1.

max-qual heuristic: an admissible heuristic that estimates the value of an edge

state based upon the assumption that all current and future applicable methods

(denoted as M) can be successfully completed by the agent starting at that edge

state:

f(i) = qual(state(i,M))

constant-value heuristic: a fast heuristic that returns the sum of a constant value

42 and the quality accumulated so far at the edge state:6

f(i) = qual(i) + 42

Empirical results are shown in Figure 5.6. The first column indicates the names

of the heuristic search solvers. The second column specifies the heuristic evaluation

6The value of 42 was chosen as an arbitrary constant, because this was the answer given by the computer in The
Hitchhiker’s Guide to the Galaxy in response to being asked the meaning of life, the universe, and everything.
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Quality

Algorithm
Heuristic
Evaluation
Function

Case I: 
No

Computation
during

Execution

Case II: 
Limited

Computation
during

Execution

#States
(thousands)

IU 136.7 138.4 106.3

AO* 124.1 127.2 140.4

RTDP

greedy-
plan

118.8 120.5 138.9

IU 73.1 86.1 177.7

AO* 67.7 85.1 210.4

RTDP

max-qual

74.5 86.5 224.2

IU 74.3 91.4 224.1

AO* 69.2 87.1 270.1

RTDP

constant-
value

73.8 90.6 272.5

Figure 5.6: Optimality comparison among IU, AO*, RTDP, and their variations.

functions used to evaluate edge states. The third column denotes the average solution

qualities over the aforementioned 136 test problems when computation time is limited

to 100 seconds, based upon the assumption that the agent has no computation power

in the midst of execution and thus it simply follows the greedy plan (if feasible) or

randomly picks up applicable methods when running out of the partial policy. The

fourth column is similar to the third one except that it is assumed that the agent

now has limited computation power and so it can invoke the best-method procedure

(Procedure 4) to find and execute a myopically optimal method. The last column

indicates the numbers of states expanded within the 100-second unrolling time.

Adopting an admissible heuristic function is a preliminary condition for the AO*

and RTDP algorithms to find optimal solution policies. However, as shown in Fig-
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ure 5.6, in situations where computation time is limited, the admissible max-qual

heuristic does not perform well. The underlying reason is that the state space of

a TÆMS MDP is often very large, such that even with 100 seconds the heuristic

search algorithms can only search a small fraction of the reachable state space. The

max-qual heuristic optimistically assumes that all future applicable methods can be

accomplished; this overestimation of the state values encourages the agent to sched-

ule high-quality methods in its partial policy (regardless of the method completion

times). High-quality methods often have long durations, which means that schedul-

ing high-quality methods for the early stage may squeeze time windows for executing

future methods. In other words, the max-qual heuristic may make the agent achieve

high quality in the tasks that are modeled in the expanded state space, but may

result in low quality in the future tasks (that have not been explored yet). Note that

many Coordinator problems have complex reward structures in which the quality of

a task may be the minimum quality of its subtasks. In such situations, the max-

qual heuristic might severely impair the performance of the agent because of the low

quality of the future tasks.

The results also show that the performance of the constant-value heuristic is poor.

This is because, although the constant-value heuristic can evaluate edge states very

quickly (and thus it results in the largest explored spaces among the three heuris-

tic evaluation functions), the algorithms using this heuristic are often not correctly

guided to promising areas in the midst of search since this heuristic overlooks the

differentiation of potential activities that the agent can perform when starting at

various edge states.

Among all three heuristic evaluation functions, the greedy-plan heuristic is the

best, particularly in situations where the agent has no computation power in the
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midst of execution. The greedy-plan heuristic requires the agent to spend effort

building greedy plans during the heuristic search procedure, which, without surprise,

reduces the number of states that the agent can expand. However, as shown in the

results, it is worthwhile to do this. These plans provide a good knowledge about

potential promising exploration areas. In other words, when the agent needs to

determine policy actions in its partially unrolled state space (for AO* and IU) or

in the visited trials (for RTDP), it can have a better understanding about potential

activities in the future, which in turn means that the agent can be smarter in selecting

which subset of states to explore. As a result, within the limited time, the agent can

formulate a better partial policy despite searching fewer states. Moreover, typically,

these plans are better than randomly selecting methods, which explains why the

greedy-plan heuristic considerably outperforms the others when the agent has no

computational power during execution, e.g., the IU algorithm gets a quality 136.7

using the greedy-plan heuristic, which is 87% higher than the quality 73.1 using the

max-qual heuristic, and 84% higher than the quality 74.3 using the constant-value

heuristic.

We conclude this section with a detailed look at the anytime performance of

the aforementioned three heuristic search algorithms using the greedy-plan heuristic

(that is the best). Figure 5.7 displays the average results collected from the 136

test problems. Its x-axis indicates the runtime, and its y-axis represents the average

solution quality. Clearly, the IU algorithm outperforms the RTDP algorithm and

the AO* algorithm. We believe that the reason for IU being better than RTDP is

that RTDP runs trials to the problem horizon, and so it may spend much compu-

tational effort in building greedy plans for states that are far away from the initial

state. Because of the large branching factor, these states have only a small prob-
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Figure 5.7: Anytime performance comparison among the IU, AO*, and RTDP algorithms.

ability of being reconsidered and reused during trial runs and a small probability

of being reached during execution, which makes the effort spent in those states less

contributive in deriving a good partial policy. On the other hand, the reason for IU

being better than AO* is that although AO* can focus its computational effort on

its partial solution graph (instead of considering all reachable states like the unin-

formed unroller algorithm), the AO* algorithm does not explicitly and intentionally

differentiate edge states in its partial solution graph like the IU algorithm does (i.e.,

probability-first search), mainly because the AO* algorithm was originally designed

as an off-line policy formulation algorithm for deriving optimal solutions.

In sum, unlike the RTDP algorithm that runs trials to the problem horizon, which

may lead to a long but narrow exploration area, and unlike the AO* algorithm that

treats edge states equally, which may lead to a wide but short exploration area, we
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believe that the IU algorithm strikes a good balance between the width and the

depth of its explored state space, and thus it is able to find a high-quality solution

faster.

5.5 Computation-Driven Mission-Phasing for Large TÆMS Problems

As shown in the previous section, for the problems with large state spaces but with

limited computation time, the IU algorithm can often find a better solution than the

prior heuristic search algorithms, which makes the IU algorithm a promising anytime

policy formulation algorithm. However, it should be noted that the IU algorithm still

suffers from several drawbacks. First, it does not consider the problem structure that

may be exploited to reduce the total number of MDP states. Second, it is unable to

effectively exploit computation time available in the midst of execution to improve

its solution. Third, it cannot determine how much time it should use for its policy

formulation procedure in environments where an agent can choose to pay for more

computation time. Fortunately, all the above drawbacks can be overcome by our

computation-driven mission-phasing approach where the IU algorithm works with a

problem decomposition method (that will be presented in the next subsection) and

the deliberation scheduling algorithm (that was presented in the last chapter) to

further improve the performance of time-limited agents.

This section is organized as follows. It starts by presenting a heuristic decomposi-

tion method in Section 5.5.1, and then describes a way of constructing performance

profiles of the IU algorithm in Section 5.5.2. The reader who is not interested in

these details may go directly to the experimental results in Section 5.5.3 where we

empirically evaluate the overall computation-driven mission-phasing approach.
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5.5.1 Heuristic Decomposition

Much research work has been devoted to speeding up planning by breaking prob-

lems into sequences of sub-problems, such as the “landmarks” approach (Porteous

et al., 2001) and the “doorway” decomposition heuristic (Parr, 1998). These de-

composition techniques exploit “weak connections” points between parts of a large

problem, which can often result in a significant reduction in the computational cost

for finding an optimal or an approximately optimal solution. In this subsection, we

describe a TÆMS model heuristic decomposition method, based upon a similar idea.

The decomposition method partitions the time horizon of a large TÆMS problem

into several disjoint time windows, each of which corresponds to a smaller TÆMS

MDP problem. The implementation is outlined in Procedure 5. It begins by examin-

ing the given model to determine nodes that will be used as the root nodes of phase

models (line 2). The heuristic adopted in this work is to choose nodes at the deepest

level of the model where some nodes have specified release times and/or deadlines

(because the decomposition method will adjust these temporal constraints to make

phase problems independent). In cases where the resulting phases are too large (i.e.,

with more than 105 states), nodes at a deeper level will be selected. After that, for

each of the selected nodes, the algorithm constructs a phase problem corresponding

to the sub-model rooted at that node (line 5). Phases are then sorted according to

deadlines of root-nodes of their models to get ready for merging (line 8).

In order to keep interactions and dependencies in the TÆMS task network, for

each NLE, the decomposition method merges the phase containing the NLE’s source

node, and the phase containing the NLE’s destination node, as well as all phases

between them (line 9).7 Of course, in a highly (NLE) connected problem, this might

7An alternative way is to use internal commitments, which is one of our future research directions.
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Procedure 5 phases = heuristic-decompose(model, tlim)
1: Initialize empty phases

2: nodes = find-phase-root-nodes(model)
3: for all node ∈ nodes do

4: Initialize phase
5: phase.model ← sub-model(node, model)

6: phases← add(phase, phases)
7: end for
8: phases← sort-phases(phases)

9: phases← merge-nle-linked-phases(phases)
10: phases← merge-small-phases(phases)

11: phases← split-overlap-by-hill-climbing(phases)
12: return phases

lead to phase problems with large TÆMS models. However, it can still rely on the

IU algorithm to find a good solution to a large phase MDP problem within a short

time. The decomposition method also attempts to merge several small neighboring

phases into a moderate-size phase (where the resulting phase would not exceed 104

states) (line 10). This is because a moderate-size phase can still be solved efficiently

by the IU algorithm while it can maintain (most of) the temporal constraints of the

tasks within the merged phases.

The step after merging phases is to determine temporal boundaries of the result-

ing phases. In the work presented in this dissertation, the heuristic decomposition

method starts with a straightforward way of evenly splitting time-window overlaps

between relevant phases, and then implements a hill-climbing procedure to improve

the time-window splits (line 11). The detail of the hill-climbing procedure is de-

scribed in Procedure 6.

At each hill-climbing iteration, the method spends a predefined amount of time

tlim′ (that is 1% of the amount of time available prior to execution or a constant 0.1
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Procedure 6 phases = split-overlap-by-hill-climbing(phases)

1: phases← evenly-split-overlap(phases)
2: repeat

3: for all phase ∈ phases do
4: if time-window-changed(phase) then

5: phase.mdp← informed-unroll(phase.model, tlim′)
6: end if

7: end for
8: phase← find-phase(phases)

9: phase← enlarge-time-window(phase)
10: until a local maximum is found or the number of iterations exceeds
K

11: return phases

second, whichever is smaller, in our implementation) running the IU algorithm for

each phase whose time window has been changed in the last iteration (lines 3 − 7).

Thereafter, the decomposition method chooses a phase that appears to be able to

improve the overall solution quality most by enlarging the time window of that phase

(line 8). In detail, this find-phase procedure starts at the root-node of the original

overall TÆMS model. It selects a subtask node with the highest quality density if

the root-node’s QAF is sum or max, and selects a subtask node with the lowest

quality if the root-node’s QAF is min. If the selected node corresponds to a phase,

the procedure returns that phase. Otherwise, it repeats the above procedure from

the selected subtask node until a phase is found. After a phase is selected, the

decomposition method enlarges the time window of that phase by tightening time

windows of its neighboring phases (line 9). The hill-climbing procedure repeats the

above time-window revision iteration until a local maximum is found or the number

of iterations exceeds a predefined constant K (K = 50 in our implementation). At

this point, the problem represented in a large TÆMS model has been decomposed
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into a sequence of smaller phase problems corresponding to independent sub-models

with disjoint time windows.

It should be pointed out that, using the heuristic decomposition method, the agent

may fail to derive an optimal overall policy to the original problem model even given

unlimited computation time. This is due to two reasons. First, splitting time-window

overlaps may result in stricter temporal constraints on the participant tasks, which

restrict the state and action space of the problem. Second, due to the nonlinearities in

some QAFs (such as min), the combination of optimal phase policies may not be an

optimal solution to the overall problem. The reason is that maximizing a nonlinear

function of expected values does not necessarily maximize the expected value of the

nonlinear function, e.g., max min(E(x), E(y)) �= maxE(min(x, y)) where E() is the

expectation function, and x and y are random variables.

However, in time-critical environments, the decomposition method is of value.

Problem decomposition results in smaller state spaces, which could mean that the

agent can find a high-quality solution faster. In the empirical results shown at the

end of this chapter, we will see that the combination of the decomposition method

and the IU algorithm can help the agent build a better solution within limited time

than the IU algorithm by itself.

5.5.2 Constructing Performance Profiles

A follow-on problem of decomposing a large problem model into multiple phase

models is that the decision-making agent would need to cope with more than one

decision procedure (one for each phase). Despite the reduced size of the state space

(due to decomposition), in time-critical situations formulating a complete and opti-

mal policy for each phase might still be impractical (because typically an effective

decomposition method breaks a problem only at weakly-connected points and so the
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resulting sub-problems might still be moderately large). Using an anytime policy

formulation solver (such as the IU algorithm) is only part of the answer. There is

also the need for the agent to judiciously distribute its limited computation time

among multiple phases.

In general, the utility of time allocation is dependent on two factors: the accuracy

of performance profiles used to predict the solution quality of decision procedures,

and the optimality of the deliberation schedule built upon those performance profiles.

Chapter IV has presented a mathematical-programming-based deliberation schedul-

ing algorithm that can quickly make an optimal or near-optimal allocation of the

limited computation time, based upon the given performance profiles. We here dis-

cuss the remaining challenge: how to construct accurate performance profiles. We

illustrate our approach on the TÆMS MDP problems introduced before, but the

ideas can also apply to other similar problem domains.

As described in Section 4.2 and Section 4.4, performance profiles are used to char-

acterize the expected performance of decision procedures for varying computation-

time allotments. They give the agent some prior knowledge about the problems it

is to solve. Therefore, in situations with limited computation time and with more

than one decision procedure, the agent can predict the expected performance of each

decision procedure, and then, based upon these predictions, judiciously distribute its

time over those decision procedures.

The fundamental insight of using performance profiles is that similar problem

instances would have similar runtime performance, which means that the definition of

the “similarity” of problem instances affects the accuracy of performance profiles. A

simple construct of performance profiles that directly maps runtime into the expected

quality of the solution derived within that amount of time (i.e., assuming all problem
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instances in the running domain are similar) is often insufficient to give a good

prediction of how the decision procedure performs because some problem instances

may be considerably more challenging than others even in the same application

domain. That is to say, a good construct of performance profiles must take into

account problem features that can greatly affect computational complexity.

For the TÆMS test problems used in this chapter, several features of the TÆMS

models are considered when constructing performance profiles. The details are dis-

cussed below. The empirical results show that our construct of performance profiles

performs reasonably well (although we do not argue that it is the best way for all

general problems).

In detail, the performance profile of a phase decision procedure is conditional on

the following inputs besides the runtime t:

� An integer l, which corresponds to the size of the phase state space. We say that

a phase problem has complexity level l if the estimated size of its state space

(that is computed as (b)d where b is the average number of method outcomes,

and d is the duration of the time window of the phase divided by the average

expected duration of methods in that phase) falls in the range [1000× l, 1000×

(l + 1)].

� An integer o, which characterizes time-window overlaps (i.e., temporal con-

straint overlaps) of tasks in the phase problem. Specifically, a phase problem

has overlap level o if the ratio of the average overlap “width” to the average

time-window “width” is in the range [0.1× o, 0.1× (o+ 1)].

� An integer f , which indicates how many alternative methods the agent has for

a task on average.
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It should be pointed out that the quality of TÆMS methods may be arbitrarily

different from problem to problem. To meet this challenge, our construct of perfor-

mance profiles is based upon the normalized solution quality (instead of the actual

quality). That is, the expected quality of the solution generated with a predefined

small amount of runtime τ (τ is set to 0.1 seconds in our implementation) is normal-

ized to a constant 1.0 (and the solution quality at other time points is scaled in the

same proportion). According to our experience, this normalized performance profile,

together with a preliminary online examination, can better predict the performance

of the phase decision procedure than a standard performance profile.

The detailed procedure of generating and using such normalized performance

profiles in our test domain is described below.

� In the off-line stage:

� 36 problems (out of the 136 test problems introduced in Section 5.4) are

randomly selected, and are decomposed into 7, 782 phase problems using a

decomposition method similar to that presented in Section 5.5.1 (but NLEs

may be arbitrarily added or removed to generate more test problems).

� These phase problems are categorized into groups according to their features

F (including l, o and f introduced above). All phase problem instances

in the same group have the same features, and their normalized solution

qualities over time t are averaged and stored in a function v = VF(t).

� In the online stage:

� Run the decomposition method presented in Section 5.5.1 to decompose the

input problem into multiple phases.
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� For each phase i, run the IU algorithm for a short period of time τ (defined

above) to derive a preliminary solution, whose solution quality (denoted as

Qi) will be combined with the normalized performance profile to generate

a standard performance profile in the next step.

� For each phase i, find the corresponding normalized performance profile

(built in the off-line stage) according to the phase’s features Fi, and compute

its standard performance profile as Vi(t) = Qi × VFi
(t).

� Compute a deliberation schedule using the deliberation scheduling approach

presented in Chapter IV, based upon the phases’ performance profiles Vi(t)

(and deliberation cost functions Ci(τ) if applicable).

� Follow the derived deliberation schedule to build phase policies with the IU

algorithm. Note that performance profiles provide predictions, which means

that they may sometimes deviate from the actual results. To cope with this

issue, in the procedure for formulating policies (or even in the procedure

for executing policies if the agent can reconsider its solution in the midst

of execution), the agent can choose to re-run the deliberation scheduling

algorithm with the updated information when the actual performance of

the solution deviates a lot from the prediction, and then follow the new

deliberation schedule for policy formulation.8

The above procedure is indeed the computation-driven mission-phasing proce-

dure, which incorporates informed unrolling, deliberation scheduling, and problem

decomposition. As will be shown in the evaluation section, this CMP procedure can

make more effective usage of the limited computation time than the pure informed

8In this work, this repair step is not implemented in the experiments since the performance profiles we constructed
and used predict solution qualities reasonably well.
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unrolling procedure and other prior approaches.

5.5.3 Experimental Evaluation

This subsection empirically evaluates the efficacy of our computation-driven mis-

sion phasing approach in the same test domain as used to evaluate the IU algorithm

in Section 5.4. As was mentioned in Section 5.5.2, 36 problems were randomly se-

lected for the training set for building performance profiles, and so the results shown

in this subsection are based upon the remaining 100 test problems.

In order to give a comprehensive evaluation, for each test problem, this work not

only considers the case where the agent has a finite computation time prior to exe-

cution, but also considers the case where the agent has some additional computation

time in the midst of execution as well as the case where the agent can have as much

computation time as it likes by paying additional costs. The parameters of these

three test cases are defined as follows:

Case I : The agent has a limited computation time (i.e., t seconds) prior to execu-

tion to construct a solution, and it has no additional computation time during

execution to improve that solution. Both t = 50 and t = 100 scenarios are

tested.

Case II : The agent has a constant amount of computation time (i.e., 5 seconds)

prior to execution to construct a solution, but it has some additional com-

putation time (i.e., τ seconds per step) to reconsider the problem features and

improve its solution in the midst of execution. Both τ = 0.5 and τ = 1 scenarios

are tested.

Case III : The agent can use as much computation time as it desires prior to

execution to formulate its policy, but spending more time in formulating the
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Case I Case II Case III 
Algorithm 

t = 50  t = 100  = 0.5  = 1.0 C = 1 C = 2 

CMP 144.2 149.3 137.4 143.2 128.4 120.5

IU 133.9 136.7 124.8 130.7 114.5 106.8

RTDP 113.1 118.8 117.3 125.2 98.3 90.7

Figure 5.8: The optimality comparison between phasing and non-phasing. CMP outperforms IU
and RTDP in all test cases, based upon the average results over 100 test problems.

policy will delay the mission more and so result in a higher penalty, which is

defined as C(t) = c × t, where c denotes the cost per second and t represents

the amount of the computation time used. In a similar manner to Case I, it is

assumed that no further deliberation is available in the midst of execution. In

this case, both c = 1 and c = 2 scenarios are tested.

The rest of this subsection is organized as follows. It starts by comparing the

CMP approach with the techniques without using the phasing strategy, and then

evaluates and compares each component technique of the CMP approach with prior

techniques while keeping the other two components constant.

Phasing vs. Non-Phasing

Figure 5.8 illustrates and compares the results, averaged over 100 test problems,

among the CMP approach and the other two approaches — RTDP and IU. These two

approaches do not depend on phasing but can also exploit computation time both

before and during execution. The RTDP algorithm exploits additional computation

time during execution by starting trials at the current state (instead of the initial

state) and updating values of the states that may be reached in the future. The
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IU algorithm exploits additional time during execution by trimming its MDP and

openList and continuing the unrolling process to unroll more states when moving

from state to state.9

From the empirical results, we can see that the CMP approach performs better

than the RTDP algorithm and the IU algorithm. This is mainly due to two reasons.

First, decomposing a large problem into phases often reduces the number of MDP

states, which in turn results in a smaller search place and so the agent can find a

high-quality solution more quickly. Second, the CMP approach is more sophisticated

in allocating computation time. It is worth pointing out that the RTDP, IU, and

CMP approaches adopt considerably different ways of utilizing computation time.

The RTDP algorithm repeatedly performs trials each of which starts at the current

state and ends at the problem horizon, which could mean that computation time is

roughly evenly distributed from the current state to the problem horizon. The IU

algorithm implements a probability-first style search. Since states near the agent’s

current state usually have higher reaching probabilities than states far away from

the current state (because of branching futures), the IU algorithm will focus more

on the states near the current state (but, of course, not so much as the uninformed

unroller). In contrast, the CMP approach adopts the mathematical-programming-

based deliberation scheduling algorithm (as will be shown, whose runtime is negligible

in comparison to policy formulation time) to decide which phases are worth more

computation time. Such a selective way of allocating and using computation time

makes the CMP approach find better solutions than the RTDP and IU approaches

within time limits.
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Case I Case II Case III Heuristic 
Search 

Algorithm 
(with DEC 
and MP) 

t = 50  t = 100  = 0.5  = 1.0 C = 1 C = 2 

IU 144.2 149.3 137.4 143.2 128.4 120.5

AO* 130.5 141.9 128.8 138.7 109.1 100.1

RTDP 122.5 134.7 116.4 129.5 107.9 98.2

Figure 5.9: Evaluation of the CMP heuristic search component. The IU algorithm outperforms
the AO* algorithm and the RTDP algorithm in all test cases, based upon the average
results over 100 test problems. These heuristic search algorithms work with the same
problem decomposition and deliberation scheduling algorithms.

Evaluation of the Policy Formulation Component

Figure 5.9 shows the results for three inner-phase heuristic search algorithms,

including the IU, AO*, and RTDP algorithms, together with the same problem

decomposition method (described in Section 5.5.1) and the same mathematical-

programming-based deliberation scheduling algorithm (described in Chapter IV).

The results are similar to those shown in Section 5.4, and support the previous con-

clusion that the IU algorithm can be a better policy formulation algorithm than the

AO* algorithm and the RTDP algorithm in situations with limited computation time

and with very large state spaces (at least for these types of test problems).

Evaluation of the Deliberation Scheduling Component

Figure 5.10 evaluates the deliberation scheduling component of the CMP ap-

proach. The mathematical-programming-based (MP-based) deliberation scheduling

algorithm presented in Chapter IV is compared with a naive deliberation scheduling

9The trimming procedure, removing states that are no longer reachable, is for improving computational efficiency.
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Case I Case II Case III Deliberation 
Scheduling 
Algorithm 
(with DEC 
and IU) 

t = 50  t = 100  = 0.5  = 1.0 C = 1 C = 2 

MP 144.2 149.3 137.4 143.2 128.4 120.5

Naive 131.7 135.6 118.4 126.7 114.2 108.9

MDP 76.2 94.5 64.8 67.2 14.2 -73.1

Figure 5.10: Evaluation of the CMP deliberation scheduling component. The MP-based deliber-
ation scheduling algorithm outperforms the naive deliberation scheduling algorithm
and the MDP-based deliberation scheduling algorithm in all test cases, based upon
the average results over 100 test problems. These deliberation scheduling algorithms
work with the same problem decomposition and informed unroller algorithms.

algorithm, which attempts to evenly distribute computation time among phases, and

a MDP-based deliberation scheduling algorithm (Goldman et al., 2001).

The MP-based algorithm can quickly find a near-optimal deliberation schedule

with respect to the given performance profiles, i.e., 0.12 seconds on average, and a

maximum 0.54 seconds for the largest test problem with 21 phases. The cost is low

— this amount of time is usually negligible in comparison with the time used for

policy formulation that is typically between 10 and 100 seconds, but the gain can be

high — the deliberation schedule derived using this small amount of time can help

the agent judiciously spend its remaining time on policy formulation procedures. In

contrast, the MDP-based algorithm, though also able to find a near-optimal deliber-

ation schedule, takes a long time (i.e., up to several hundred seconds) to derive the

schedule. As a result, the agent might not have time for actual deliberations and

thus its performance is poor, particularly in case III where the time used will incur

a cost. On the other hand, although the naive algorithm can find a deliberation
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Case I Case II Case III Decomposition
Algorithm 

(with IU and 
MP) t = 50  t = 100  = 0.5  = 1.0 C = 1 C = 2 

DEC 144.2 149.3 137.4 143.2 128.4 120.5

DEC-Large 138.4 141.4 131.2 138.3 118.5 112.4

DEC-Small 100.6 102.1 99.7 101.4 96.5 97.2

Figure 5.11: Evaluation of the CMP problem decomposition component. The heuristic decompo-
sition method using a moderate merging size outperforms the method using a large
merging size or a small merging size in all test cases, based upon the average results
over 100 test problems. These problem decomposition methods work with the same
deliberation scheduling and informed unroller algorithms.

schedule very quickly (i.e., 0.03 seconds on average), its solution is often suboptimal

since it does not consider the differences of the values of phases.

Evaluation of the Problem Decomposition Component

This evaluation section concludes by evaluating the last CMP component — prob-

lem decomposition. The heuristic decomposition method presented in Section 5.5.1

is compared against two of its variations (since no prior decomposition methods are

directly applicable to TÆMS models), including a DEC-Large method that merges

small neighboring phases until the estimated number of states in the resulting phase

is greater than a large predefined merging size 105 (vs. 104 in the CMP decomposi-

tion method), and a DEC-Small method that uses a small merging size 103 and so

it often does not merge phases.

From the empirical results shown in Figure 5.11, we can see that the heuristic

decomposition method with the moderate merging size (104) performs best. The

DEC-Large method, though better than the approaches without phasing (whose
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results were shown in Figure 5.8), often yields phases with large state spaces and thus

slows down the procedure for finding high-quality solutions because larger phases

typically take longer time. On the other hand, the DEC-Small method results in

small phases, in each of which the agent might be able to formulate a complete and

optimal policy. However, recall that phasing partitions the problem time horizon

into disjoint time windows, which means that having more independent phases may

need to place stricter temporal constraints on the tasks within these phases and thus

may impair the optimality. This explains why the solution quality of the DEC-Small

method (that oversimplifies the problem) is far below the solution quality of the DEC

method.

5.6 Summary

In this chapter, we have presented and empirically evaluated the informed unroller

algorithm that can quickly find a high-quality solution to a complex problem with a

very large state space, and have integrated this algorithm with problem decomposi-

tion and deliberation scheduling techniques to further improve the performance of a

time-limited agent.

The contributions of the work presented in this chapter can be summarized as

follows:

• To cope with computationally challenging situations where an agent only has

a finite amount of “think time” to build and solve a large MDP for its phase

decision procedure, this chapter has designed the informed unroller algorithm,

which emphasizes the expansion of a subset of states that are believed to have a

high probability of lying along trajectories of high-quality policies, while ignor-

ing other states, to yield a better policy within the time limit. The empirical
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results (shown in Figure 5.6 and Figure 5.7) from the Coordinator domain have

demonstrated the ability of this algorithm to find a high-quality solution faster

than the prior heuristic search techniques, and thus the IU algorithm represents

a promising new way for anytime policy formulation.

• The overall computation-driven mission-phasing approach, in which the in-

formed unroller algorithm works with the problem decomposition and delib-

eration scheduling techniques, has been presented and evaluated. The problem

decomposition method exploits problem structure to create phases and reduce

the size of the state spaces, the across-phase deliberation scheduling techniques

automatically distribute computation time among phase decision procedures ac-

cording to their predicted values to the overall solution quality, and the inner-

phase informed unroller algorithm biases state space expansion efforts towards

states that are likely to be reached by high-quality policies. Together, these

techniques help the agent better focus on “critical” regions of a large state

space, and thus can often improve the performance of the time-limited agent.

For example, as shown in Figure 5.8, the CMP approach achieved, on average,

about 10% higher quality than the IU algorithm in the Coordinator test prob-

lems (and the IU algorithm has been shown to have better performance than

prior approaches). This means that the computation-driven mission-phasing

approach is of value in time-critical application domains.



CHAPTER VI

Conclusion

The work in this dissertation designed, analyzed, and evaluated a suite of com-

putationally efficient algorithms that can automatically identify and utilize resource

reconfiguration opportunities in resource-constrained environments and problem re-

consideration opportunities in time-critical environments. The analytical and exper-

imental results illustrated and emphasized that the mission phasing approach, incor-

porating problem decomposition, resource/time allocation, and policy formulation,

can help a constrained agent judiciously and effectively exploit those opportunities

to improve its performance.

This chapter concludes the dissertation with a summary of the main contributions

of this work and a discussion of several promising future research directions.

6.1 Summary of Contributions

This work consists of two parts, corresponding to two popular constraints: the

resource constraint and the computation time constraint.

� Resource-Driven Mission-Phasing

The first part of this dissertation coped with non-consumable execution resource

constraints. Chapter II presented a MILP-based approach that automates the

202
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process of finding and using phases for a capacity-limited agent. Chapter III

extended this phasing idea to multi-agent environments where a group of agents

share scarce resources. The contributions of this part of the work can be sum-

marized as follows.

� This work explicitly took into account potential opportunities in the midst

of execution to reconfigure resources and switch policies, and designed com-

putationally efficient algorithms (including an abstract MDP algorithm for

single-agent resource reconfiguration problems and a MILP-based algorithm

for multi-agent resource reallocation problems) to optimize the use of these

fixed opportunities in complex stochastic systems. The empirical results

(Figure 2.6 and Figure 3.8) confirmed that exploiting such phase-switching

opportunities can considerably improve the agent performance, particularly

in tightly constrained systems (the reward doubles in some test cases).

� As an extension to utilizing fixed phase-switching opportunities, Section 2.5

(for single-agent systems) and Section 3.5 (for multi-agent systems) pre-

sented MILP-based algorithms that are able to automate the process of

finding and using mission phases in stochastic, constrained systems, which

not only eliminates the need for having phases predefined in the descrip-

tion of a mission, but also avoids potential sub-optimality caused by phases

being improperly defined by a user.

� The automated resource-driven mission-phasing algorithms presented in

this work are computationally efficient. Through formulating a whole mission-

phasing problem into a compact mathematical formulation and then simul-

taneously solving the coupled problems of mission decomposition, resource

allocation, and policy formulation, the presented algorithms could effec-
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tively exploit problem structure, which results in a significant reduction in

computational cost in comparison with the approach that considers mission

decomposition, resource allocation, and policy formulation in isolation (e.g.,

a reduction from hours to seconds as was shown in Figure 3.12).

� Unlike much prior work where agents reactively reconfigure resources when

exogenous events occur, this work, based upon Markov decision processes

and sequential decision-making theory, can proactively determine and op-

timally utilize resource reconfiguration opportunities. It provides a new

computationally efficient resource-reconfiguration mechanism for resource-

constrained environments.

� Computation-Driven Mission-Phasing

The computation-driven mission-phasing approach, the focus of the second part

of this dissertation, aimed to further prior problem decomposition techniques

that can properly decompose a problem into sub-problems but cannot solve all

sub-problems completely within time limits. To this end, this work developed

a mathematical-programming-based deliberation-scheduling approach that can

selectively and effectively distribute limited computation time among multiple

sub-problems, and developed a heuristic-search-based informed-unroller algo-

rithm to make effective use of the assigned computation time within each sub-

problem. Together they could help a time-limited agent focus its computational

effort on high-value subsets of states within high-value phases. The contribu-

tions of this part of the work are summarized below.

� Scheduling Phase Decision Procedures

Chapter IV presented a new deliberation scheduling approach for compu-



205

tation time allocation. Compared to prior computationally efficient tech-

niques, the techniques presented in this work are capable of finding near-

optimal solutions in a wider variety of environments due to the following

factors.

• This work explicitly considered opportunities (and modeled the costs)

of improving policies of the future phases in the midst of execution,

and developed a computationally efficient approach to solve the cou-

pled problems of deciding both when to deliberate given its cost, and

which decision procedures to execute during deliberation intervals. The

experimental results showed and emphasized that this approach could

improve agent performance in both deterministic environments (Fig-

ure 4.10) and stochastic environments (Figure 4.12).

• Using piecewise linear approximation and discretization techniques (in-

troduced in Section 4.4.2), the deliberation scheduling approach pre-

sented in this work can cope with any class of performance profiles,

which extended prior work focusing on concave performance profiles.

• The mathematical programming formulation provides a general and fun-

damental framework, which can be reformulated or extended to model

other system aspects. As an illustration, Section 4.5 discussed how

to transform deliberation scheduling problems with nonlinear objective

functions into more computationally tractable problems with linear ob-

jective functions.

• The deliberation scheduling approach presented in this work is appli-

cable in complex environments with uncertainties. Problems with non-

deterministic phase transitions have been analyzed prior to this work
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(e.g., Horvitz, 2001), but this work is more general since it can auto-

matically schedule deliberations based upon deliberation costs and can

tackle more general performance profiles.

� Efficient Inner-Phase Heuristic Search

To cope with challenging problems where an agent only has a finite amount

of “think time” to build and solve a large MDP for its phase decision pro-

cedure, the work in Chapter V designed the informed unroller algorithm,

which emphasizes the expansion of a subset of states that are believed to

have a high probability of lying along trajectories of high-quality policies.

The empirical evaluation (shown in Section 5.4) demonstrated the ability

of this heuristic search algorithm to effectively and efficiently explore a

large state space within limited computation time, and thus it represented

a promising new strategy for anytime policy formulation.

6.2 Future Work

Although this dissertation presented a suite of algorithms to improve agent per-

formance in constrained stochastic systems, there is still much interesting work left

in the research areas of this dissertation. Several promising future research directions

are outlined below.

� Resource Constraints and Time Limitations

Resource-driven mission-phasing problems are NP-complete. Although the so-

lution approaches designed in this work can exploit problem structure to reduce

computational cost, finding an exact solution to a complex RMP problem might

still be difficult, particularly in time-limited environments.

This work performed some preliminary investigation on problems with both
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resource constraints and time limitations (in Section 2.6.4 and Section 3.6.4)

through directly exploiting anytime performance of state-of-art MILP solvers.

In the future, I would like to examine other possibilities, including heuristic

search methods that can selectively search large MDP state spaces, and factored

MDP solvers that can exploit problem structure and sparsity within the MDPs.

� Resource Reallocation and Decentralized MDPs

A simplifying assumption made in this work is that, once a resource reallocation

is scheduled, participant agents will always be able to successfully redistribute

resources among themselves at that scheduled time, regardless of which states

they are in. I plan to relax this assumption in the future to consider sequential

resource allocation problems with additional constraints on when and where the

agents are able to exchange resources. For example, physical agents might only

be able to exchange resources when they are at the same location at the same

time. Or, as another example, a task might not be aborted once it starts, which

means that it may be impossible to reassign the resources used by that task

until the task is completed.

Decentralized MDPs are one possible way to solve such problems. Our pre-

liminary work in (Wu and Durfee, 2006a) (not included in this dissertation)

has developed a MILP-based algorithm for solving transition independent Dec-

MDPs. That work linked the Dec-MDP formulation with the MILP formula-

tion, and pointed out one way to characterize resource constraints in the MILP

formulation. In the future, I will dig deeper in this direction.

� Extensions in Deliberation Scheduling

This work presented a fundamental mathematical-programming-based deliber-
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ation scheduling algorithm, and illustrated its extensions for nonlinear objective

functions and non-deterministic phase transitions. One of my future research

directions is to investigate some other potential extensions including:

• For an online application problem with a large number of phases, a complete

mathematical formulation might be too complex to be solvable within time

limits. Considering the fact that probabilities of reaching phases in the far

future are often low due to uncertainties, one possible solution is to restrict

the number of phases being put into the mathematical formulation. As time

passes, deliberation scheduling can be implemented again in the midst of

execution.

• This work made a simplifying assumption that the utility of a phase is

determined only by the computation time assigned for it. This is not always

true. For example, phasei might also gain utility when allocating time

for another (relevant) phasej because phasei and phasej might have some

similar sub-problems. Thanks to the mathematical formulation presented

in this work, it is often easy to model such relations, e.g., vi = Vi(ti, tj). I

will systematically investigate the implications of relaxing this assumption

in the future.

• Finally, with the above techniques of limiting look-ahead steps and model-

ing inter-influence between phases, an autonomous agent might be able to

solve deliberation scheduling problems with loops in phase transitions by

unrolling the transition graph to make it acyclic. This is another promising

future research topic.
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6.3 Closing Remarks

System constraints affect the performance of autonomous agents. This work de-

signed, analyzed, and evaluated mission phasing approaches, in which the problem

decomposition, resource/time allocation, and policy formulation techniques are inte-

grated, to help constrained agents perform better in both resource-limited environ-

ments and time-limited environments.

While there are still many open questions (some of which were discussed in the

previous section), this dissertation showed that the phasing strategy is an effective

way for improving resource/time allocation in stochastic systems, and helped pave

the way for future work on constrained systems.
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