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ABSTRACT 
 
 

CHARACTERIZATION OF THE MAGNETIC NOZZLE REGION OF 
HIGH-POWERED ELECTRIC PROPULSION THRUSTERS USING 

NUMERICAL SIMULATION, RF INTERFEROMETRY AND 
ELECTROSTATIC PROBES 

 
by  

Christopher A. Deline 
 
 
 
 

Chair:  Brian E. Gilchrist 

 

Experimental results are presented from the plume of a high powered (200 kW) DC 

plasma gun emitting into an applied magnetic nozzle.  The plasma source operated on 

helium and hydrogen and was attached to a large (3 m x 5 m) vacuum chamber kept at 

low background pressure (< 2x10-6 Torr).  Density profiles, electron temperature and ion 

velocity are measured in a region where the ratio of plasma kinetic pressure to magnetic 

pressure was β = 0.2 – 20.  Numerical simulations are employed to compare experimental 

results with theoretical predictions of plasma detaching from magnetic fields.  Significant 

particle deviation from confining magnetic fields was found for conditions approximating 

β > 1 in accordance with magnetic detachment theory. 

 



 xxv

Unique accomplishments of this research include measurements of propulsion-

appropriate plasmas exiting a magnetic nozzle and transitioning from β < 1 to β > 1.  This 

region is of particular interest for magnetized plasma thrusters since inefficient magnetic 

detachment may result in a serious efficiency penalty for their use in proposed in-space 

propulsion systems.  Nozzle efficiency estimates are provided based on simulated and 

measured experiment conditions.  In particular, an optimized magnetic nozzle condition 

is found that theoretically improves nozzle efficiency by 10% over the standard magnetic 

dipole condition. 

 

Plasma diagnostics are utilized, including microwave interferometers and Langmuir triple 

probes.  Diagnostic theory is reviewed for these tools, specifically for the conditions 

found in this experiment.  Prior theory was sometimes found inapplicable to the 

experimental conditions, particularly in the case of a Langmuir triple probe in a flowing 

plasma.  To account for inadequacies in standard theory, numerical simulations were 

conducted to find calibration factors for the appropriate experimental conditions. 

 

In addition, a new measurement methodology is developed utilizing electrostatic probes 

and microwave interferometers in tandem.  Detailed density profiles were collected using 

this method, and a comprehensive error analysis was conducted.  The error in density 

measurements was determined to be much lower than the error in electrostatic probe 

measurements, and on the order of microwave interferometer uncertainty – as low as 

10%. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.0 Overview 

1.1 Motivation for Electric Propulsion  

The National Vision for Space Exploration which was unveiled in 2003 has given a focus 

to the space industry in America.  That focus is to look beyond our near-earth 

environment and to begin expanding our human presence to the Moon, Mars and beyond.  

As Michael Griffin, then-NASA chief stated during a 2003 congressional hearing: 

“Human expansion into space is a continuation of the ancient human imperative to 

explore, to exploit, to settle new territory when and as it becomes possible to do so.”  And 

while he conceded that conventional rocket propulsion will suffice to get us around in the 

near-term, “In the long run, some form of nuclear-electric propulsion is likely to offer the 

best combination of efficiency and packaging capability for interplanetary flight.” 

[Griffin 2003] 

 

The technology of electric propulsion that he was speaking of differs from conventional 

rocket propulsion in that electrical energy from the spacecraft bus is converted into 

kinetic energy in the rocket exhaust.  [Martinez-Sanchez 1998]  This is particularly useful 

for deep space missions because of the limitations of standard rocket fuel which is 
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seen in the following equation.  The thrust developed from a rocket exhaust is equal to 

0ex spT mv m g I= =& & , where spI  is the specific impulse of the exhaust, and g0 is the 

gravitational acceleration at the earth’s surface.  Since longer missions benefit from a 

reduction in propellant mass fraction, in order to maintain a high thrust level, Isp must be 

increased proportionately.  While a standard chemical rocket e.g. the space shuttle main 

engine produces a maximum Isp of 460 s [Humble 1995], electric thrusters such as the ion 

thrusters used on NASA’s DS1 mission produce a much higher Isp = 3200 s. [Rayman 

2000]  Thus, less propellant mass need be used for a given mission, leaving more mass 

for larger payloads, or greater mission Δv.  If one considers that with the use of 

conventional rockets and without gravity assist or aerobraking, a Mars mission is 

required to carry 85% of its weight as fuel, vs. e.g. 15% for a 3000 s Isp electric 

propulsion thruster [Racca 2001], the benefits of EP can be enormous. 

 

In particular, when ferrying humans across the solar system, trip times must be kept as 

short as possible to limit the deleterious effects of space travel, including heavy ion 

radiation bone loss and psychological difficulties [White 2001].  This is why Michael 

Griffin suggested high-powered nuclear-electric propulsion as a technology worth 

pursuing, since in-space nuclear fission reactors could theoretically provide power levels 

greater than the ~1x105 W levels of power reasonably generated by solar arrays [Wertz 

1999]. This propulsion technology could reduce trip times by 50% [Karavasilis 2001] 

[Sankaran 2004]. High-powered electric propulsion can also be an enabling technology 

for deep space missions that require a large change in orbital velocity ( VΔ ) to visit 

planetary bodies of interest, such as the icy moons of Jupiter in the now-canceled JIMO 
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mission [Olesen 2004].  In these long duration missions, the improved lifetime of 

electrodeless plasma thrusters can be highly desirable. [Longmier, 2006] 

 

1.2 Magnetic nozzle background  

A trait typical of some but not all of these high powered propulsion systems is the need 

for an applied magnetic field in order to produce or heat the exhaust plasma.  

Downstream of the system’s magnetic coils, the applied field diverges, forming a 

magnetic nozzle analogous to the de-Laval rocket nozzle.  The magnetic nozzle serves to 

direct and expand the plasma flow, increasing its directed axial energy and minimizing 

plume impingement on the surrounding spacecraft structure.  Some high powered EP 

concepts employing a magnetic nozzle include applied-field MPD thrusters [Tikhonov, 

1997], fusion rockets, [Kammash, 2000],[Williams, 2004] , the Variable Specific Impulse 

Magnetoplasma Rocket (VASIMR) [Squire, 2003] [Arefiev, 2004] and helicon thrusters. 

[Charles, 2006] , [Toki, 2006].  A notional magnetic nozzle is shown in Figure 1.1 

exhibiting axisymmetry and a magnetic field and plasma flux oriented principally in the z 

direction. 
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Figure 1.1:  Notional magnetic nozzle showing plasma source emitting on-axis into 
an expanding magnetic field. 
 

In order for the magnetic nozzle to have any effect, the plasma must be magnetized.  This 

means conceptually that the applied magnetic field is sufficiently strong to hold ions and 

electrons in orbits around the axial field.  A measure of this condition is plasma Beta 

β  where  

  
2 2

0
2

i i

A

n m vv
v B

μ
β

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 (1.1) 

 

β is equal to the ratio of kinetic energy in the plasma flow to magnetic energy, defined in 

these terms as /K BW Wβ =  when 2/2vnmW iiK =  and 2 / 2BW B μ= .  β is also equal to 

the ratio of the ion flow velocity to the Alfvén velocity vA squared where 
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A mn
Bv
0μ

=  (1.2) 
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The Alfvén velocity is the velocity at which perturbations in the applied magnetic field 

(Alfvén waves) propagate. 

 

What this all means for a magnetized plasma is that if β is less than unity, the magnetic 

field is strong enough to direct and confine the plasma flow.  If β is greater than unity (or 

equivalently flow velocity v > vA) the plasma flow is uninfluenced by the applied 

magnetic field, with some amount of magnetic flux trapped along with the plasma flow.  

For this final separation condition, the ratio of ion kinetic energy density outweighs the 

confining magnetic field energy density, and the plasma expands freely.  This is 

analogous to the solar wind expanding away from the sun’s magnetic field.  

 

If the above theory holds true for electric propulsion thrusters as well as for the solar 

wind, the prospects of producing useful thrust from such a thruster are good.  However it 

is not universally accepted that the same theory applies to both situations, and 

experimental evidence is wanted to strengthen this theoretical claim.  If measurements 

could be conducted in the high β region of a magnetized plasma source, and show that 

the plume is detached from magnetic fields by the time β > 1, it would show strong 

support for the aforementioned theory.   However, if the plasma plume fails to detach 

from the curving magnetic field or diverges excessively, the thrust of the rocket will be 

greatly reduced.   
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Several previous studies have been conducted to investigate the accelerating potential of 

magnetic nozzles, and their ability to produce a plume detached from applied magnetic 

fields.  These studies provide the background for this current work. 

 

1.2.0 Magnetic nozzle literature survey 

A diverging magnetic nozzle has been investigated both numerically and experimentally 

in conjunction with MPD arcjets.  [Walker 1971] [Chubb, 1972] [Inutake 2002]  The 

detachment issue was not dealt with explicitly in these works, but the accelerating effect 

of magnetic nozzles was successfully studied.  In these cases the effect of a magnetic 

nozzle was to reduce the electron temperature by a factor of 3-6x, and to increase the ion 

Mach number by a factor of ~2x.  These results can be understood in two ways, which 

will be investigated more thoroughly in Section 2.4.  The first process occurring is 

isentropic expansion whereby thermal energy in the form of ion and electron temperature 

is converted to directed kinetic energy as the plume expands.  The second process is 

conservation of magnetic moment whereby azimuthal kinetic energy is converted to axial 

kinetic energy as Bz decreases.  Thus ion acceleration was shown to occur for plasma 

flowing in a diverging magnetic nozzle, and thermal energy was experimentally 

demonstrated to be converted into directed axial energy by the magnetic pressure of the 

diverging magnetic nozzle. 

 

An early investigation of plasma detachment from magnetic fields was produced by 

Gerwin et al. [Gerwin 1989].  A 2-D ideal MHD analysis of a diverging magnetic nozzle 

was conducted for a large range of input temperatures (1eV – 100 eV), and densities (6 
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orders of magnitude) of a hydrogen plasma. For plasma with high conductivity the flow 

tended to follow diverging magnetic field lines.  Gerwin et al. did not address systems in 

which the plasma beta is greater than one, and thus does not replicate the conditions 

considered in this work.  Several other limited analyses were also completed giving an 

estimate of cold collisionless (infinite conductivity) plasma flow detaching from 

diverging magnetic fields.  [Sercel, 1990]  [Hooper, 1993]   The results of these analyses 

showed that a small portion (4%) of the magnetic nozzle is able to produce detached 

plasma flow without the need for collisional transport across field lines.  However, in a 

real device, finite conductivity and turbulence were theorized to improve on this 

detachment rate.  These initial ideal MHD simulations provided a bleak outlook on the 

prospect for magnetic detachment due to the restrictive assumptions of plasma 

confinement, neglecting cross-field diffusion and ignoring the loss of confinement for 

β > 1 conditions. 

 

Further resistive MHD simulations accounted for these non-ideal factors and gave a much   

higher and more accurate estimate of detachment efficiency.  [Mikellides, 2002]  

completed a simulation of a high power (GW class) fusion thruster with a detached flow 

and 70% nozzle efficiency.  Both MHD simulations and Particle-in-cell simulations were 

completed for the VASIMR thruster geometry [Ilin 2002]  .  Several hallmarks of 

magnetic detachment were shown in this simulation after a distance of z = 2-3 meters.  

This includes a stabilization of axial ion energy, ion Larmor radius ρi becoming greater 

than the magnetic field curvature /B B∇  and the plasma β growing greater than unity 
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The transition of a plasma flow from sub-Alfvénic to super-Alfvénic (β increasing above 

unity) was investigated in an ideal MHD analysis by Arefiev et al. [Arefiev 2005]  .  In 

their analysis, a β > 1 flow is guaranteed to detach from the spacecraft.  The detachment 

efficiency of the nozzle is limited by cosine losses and induced currents in the nozzle 

wall (if applicable), but overall efficiency was determined to be much greater than in 

previous ideal MHD analyses which neglected this β > 1 condition.  A recommendation 

was made for efficiency purposes that the applied magnetic nozzle fields be made with 

straight diverging lines (decreasing with 1/R2 rather than dipole fields decreasing with 

1/R3) to limit the formation of inefficient diamagnetic currents.  This recommendation is 

investigated later in Chapter 5. 

 

1.2.1 Helicon double layer  

The present work does not deal directly with this phenomenon, but due to its similarity in 

application, a literature review is provided.  The discovery of a current-free double layer 

in a helicon discharge is a relatively recent occurrence that has been said to have potential 

for electric space propulsion. [Charles, 2003 ; Cohen, 2003] In a current-free double layer 

a narrow potential drop (< 100 Debye lengths in width) results in an accelerated ion beam 

in the downstream direction, and an accelerated electron beam back towards the plasma 

source.  The Argon ion beam in [Charles, 2003] was reported to be accelerated to > 20eV 

which is highly supersonic (M = 2-3).    The potential drop in the double-layer was found 

to be highly sensitive to pressure, only occurring for pressures of 2x10-1 – 2x100 mTorr. 

[Lieberman, 2006]  PIC simulations show that the double layer formation is also 

dependent on the rate of expansion of the plasma in the diverging magnetic nozzle. 



 9

[Meige, 2005]  This double-layer has been suggested as a mechanism to provide thrust 

for in-space propulsion [Charles, 2006].  Although thrust has not yet been measured from 

such a device, and its utility as a means of electric space propulsion may in practice be 

lower than expected ([Fruchtman, 2006]), it has been suggested via simulation that the 

ion beam emerging from a helicon double layer will be magnetically detached.  [Gesto, 

2006].  If a helicon double-layer thruster proves to be a feasible system for in-space 

propulsion, it could provide a potential area of applicability for the magnetic nozzle work 

presented in this dissertation.  

 

1.3    Summary of contributions   

Several previous simulations have investigated a high – β plasma exiting a magnetic 

nozzle, and previous experiments have investigated nozzle physics for low β. However, 

no prior experiment has been conducted that focused on high-β plasma at a distance of 

several meters from the plasma source.  No prior experiment has combined a high 

powered plasma source with a large vacuum chamber and low neutral background 

pressure to achieve the collisionless conditions and high thrust required to achieve β > 1 

detachment within the experiment scale length. 

 

The main theme of this work is experimental investigation of high powered EP thruster 

plumes, specifically those utilizing a magnetic nozzle.  In particular, experimental 

evidence of magnetic detachment is sought.  Diagnostics used for this measurement will 

be discussed including microwave interferometers and electrostatic probes.  

Measurements from these diagnostics will be presented along with detailed simulation 
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and analysis to compare measurement with theory.  The questions that will be 

investigated include – Is magnetic detachment occurring in this experiment? Under what 

conditions will the magnetized plasma plume detach from its applied magnetic fields?  

And at what efficiency will this detachment occur? 

 

The unique contributions from this work include: 

 

• Detailed measurement and description of the plasma environment for a high-powered 

(> 200 kW) DC thruster plume in regions of plasma β spanning from 0.2 to 20. 

• Development of a novel hybrid measurement technique incorporating both RF 

interferometer and electrostatic probe that combines the strengths of both measurements.  

A detailed error analysis was conducted showing the absolute density error of this 

method to be comparable to the error of the microwave interferometer alone.  The results 

from this method were compared with scanning microwave interferometry with Abel 

inversion, and standard Langmuir probe theory. 

• Numerical simulations of a Langmuir triple probe immersed in flowing plasma.  

Classical diagnostic theory does not account for Langmuir triple probes in a flowing 

plasma, and errors associated with their use were formerly unknown except in a few 

conditions. A range of plasma conditions was simulated including those encountered in 

the experiment.  The relative error of the classical Langmuir triple probe measurement for 

these conditions was calculated and compared with previous results. 

• Development of a quasi-1D numerical simulation of the DDEX experiment comparing 

the experimentally determined density profiles with theoretical plasma profiles.  A 
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simulation utilizing initial conditions and results similar to the experiment suggests that 

magnetic detachment plays a role in determining plume profiles. 

• Theoretical estimates of nozzle efficiency based on simulation.  Computer code was 

developed to predict the efficiency of various magnetic nozzle configurations.  An 

optimized condition was found that is theorized to increase nozzle efficiency by ~10% 

over a simple magnetic dipole condition. 

• Benchmarking of quasi-1D code with a second 2D MHD code.  Both codes produced 

similar plume profiles and nozzle efficiency predictions given identical initial conditions.  

The second code which has heritage in the magnetized fusion community helps to 

increase confidence in the simpler 1D model. 

 

1.4 Thesis outline 

The dissertation is arranged as follows: 

 

Chapter 1 provides motivation, background information and a literature review of the 

study of magnetic nozzles.  It also states key findings of this dissertation, and poses major 

questions that the research intends to answer. 

 

Chapter 2 details the theory of plasma diagnostics used in this experiment.  Also, the 

details of a novel hybrid method of plasma density profile measurement will be provided.  

Prior theory on the physics occurring in the magnetic nozzle region of the experiment 

will also be given.  Experimental results will be compared with this prior theory in later 

chapters.   
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Chapter 3 gives experimental details on the facility, the plasma source and the 

diagnostics.  A detailed neutral pressure analysis of the vacuum chamber is given, and 

error terms in the microwave interferometer diagnostics is provided. 

 

Chapter 4  presents experimental results and analysis.  Plasma density profiles are 

provided at several locations in the experiment, along with electron temperature and flow 

velocity measurements.  Estimates of error are given including a calibration factor for 

Langmuir triple probes in flowing plasma. 

 

Chapter 5  compares experimental results with theory and simulation.  A novel computer 

code is detailed and benchmarked against other similar codes.  Nozzle efficiency 

estimates are given for multiple experiment conditions. 

 

Chapter 6 concludes the research, provides a summary of key findings, and gives 

suggestions for future research. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

 

2.0 Overview 

This section includes diagnostic theory, an introduction to the hybrid measurement 

technique used in this experiment, and an overview of magnetic nozzle physics.   

 

The diagnostics sections will provide background theory on the plasma diagnostics used 

in this work.  An effort was made to limit the scope of this overview to only that theory 

which is of critical importance to understanding the measurements conducted.  Langmuir 

probe theory is investigated in the context of using Langmuir triple-probes to provide ion 

density and electron temperature measurements (ni and Te).  Interferometer theory is 

applied towards a quadrature homodyne RF interferometer used to detect line-integral 

electron density.   

 

In the hybrid measurement section, theory is given on a novel measurement technique 

combining both Langmuir triple-probes and RF interferometers in what is termed a 

hybrid approach. [Deline, 2007] The relevant assumptions made for each diagnostic is 

presented, along with limitations and sample data.   
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The magnetic nozzle section explains physical processes that govern plasma exhaust as it 

exits a magnetic nozzle.  Different magnetic nozzle zones are defined, with the relevant 

governing equations provided for each region.  Prior experimental results are given for 

those regions that are not studied in detail with this experiment. 

 

 

2.1  Langmuir probes 

2.1.0 Introduction 

Simple conducting in-situ probes to measure the plasma voltage-current characteristic are 

one of the first plasma diagnostics ever developed, and remain some of the most useful 

and widespread diagnostics [Langmuir, 1926].  Their size and shape and construction can 

vary, depending on the conditions of the plasma to be measured. With these in-situ 

electrostatic probes, the ion and electron fluxes are directly sampled from the plasma.  A 

modulation of the probe voltage with respect to the plasma is accomplished thorough 

external circuits, which provides a current-voltage characteristic I(V).  It should be noted 

that the circuit must be closed by grounding the external circuit to the experiment 

chamber or the plasma generating electrode, providing an adequate return current path.  

The shape of a typical I(V) characteristic is given in Figure 2.1.  The traits typical of all 

probe characteristics are the plasma potential Vp, the floating potential, Vf, and ion and 

electron saturation currents Ii
sat and Ie

sat respectively.   
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Figure 2.1: a.) Notional Langmuir probe (P) in contact with a plasma showing the 
definition for collected current and probe voltage.  B.) General form of the 
Langmuir probe characteristic.  Vf is the floating probe potential at I = 0. Vp = 0 is 
the plasma potential, Ie

sat and  Ii
sat are the electron and ion saturation currents, 

respectively.  
 

The plasma potential is the potential of the undisturbed plasma surrounding the probe.  At 

this potential, no electric field is formed around the probe, and no particles are 

accelerated to it.  However, due to the lower mass and higher velocity of the electron, 

more thermal collisions of negative particles take place with the probe, giving it a net 

positive current.  As the probe bias is decreased, electrons are repelled and ions are 

attracted to the collector.  In a Maxwellian distribution of electrons, the current 

characteristic decreases exponentially with probe potential until the current contributions 

from the ions and electrons are equal.  At this point, the net current is zero, and the probe 

is at the floating potential.  This is the voltage to which an insulated body will float when 

it is placed in contact with plasma.  Although no current is being drawn, the surrounding 

plasma is perturbed by the formation of a sheath in which electrons are depleted.  The 

thickness of this sheath is on the order of a few Debye lengths where   

a) b)
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is the electron Debye length. 

 

The ion saturation current sat
iI  is reached when the bias is sufficiently negative to repel 

the majority of electrons, with mainly ion current being collected.   The I(V) 

characteristic continues to collect additional ion current beyond the ion saturation current 

as the probe sheath expands outwards.  A standard measurement of sheath thickness hs 

can be approximated for planar collisionless sheaths in non-drifting plasma by [Raizer, 

1991]:  

 
3

4| |
s D

e

e Vh
T

λ
⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

 (2.2) 

 

The electron saturation current sat
eI  is likewise attained when ions are excluded by the 

probe bias and electrons are solely collected.  This occurs at a bias slightly higher than VP 

the plasma potential. 

 

2.1.1 Probe size, shape and construction concerns 

The collecting area of the electrostatic probe must be chosen carefully such that the probe 

conforms to the theory used to deduce relevant plasma parameters.  One such 

consideration is that the probe sheath be considered collisionless around the probe, thus 

/ 1mfp Dλ λ >>  where mfpλ  is the collisional mean free path for the relevant particle species.  
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For ion collection, the relevant particle collisions are ion-ion and ion-neutral, while for 

electron collection the relevant particle collisions are electron-electron and electron-

neutral. Electron-ion collision rates are equal to or lower than any of these other collision 

processes. Furthermore, in all experiments considered here, / 1mfp Dλ λ >> .  Another 

consideration is the radius of the probe rp with respect to plasma Debye length Dλ .  In the 

limiting case of 1p Dr λ <  the probe collects particles according to orbital-motion limited 

(OML) theory.  This is an appropriate case for small cylindrical wires in low density 

plasmas, e.g. space plasmas.  The opposite limiting case for the work here is the thin 

sheath limit where 1p Dr λ >>  or more appropriately, ( ) /s p ph r r+ ~ 1 where hs is the sheath 

thickness.  In this limiting case, also known as space-charge limited collection, the ion 

saturation current is not expected to increase with bias since the probe sheath is 

considered a planar sheath which only expands in 1-D.  The use of thin sheath theory is 

appropriate for our condition of large cylindrical geometries in high density laboratory 

plasmas.  Both theories assume that the probe length is long compared with its radius to 

reduce the influence of current collection at the tip.   

 

The shape of the electrostatic probe also provides an element of freedom for the probe 

designer with typical shapes being planar, cylindrical or spherical.  In the case of this 

experiment, cylindrical probes were chosen for their ease of construction and close 

tolerance in diameter.  They are oriented perpendicular to the flow of the plasma, and 

also perpendicular to the magnetic field lines in this experiment to minimize non-ideal 

collection due to cross-magnetic field transport issues.  Flow effects will be explained in 

detail below.  In addition to the shape, the composition of the probe must be considered.  
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The collection or emission of secondary electrons from the probe surfaces is undesired as 

it results in a net decrease or increase in ion saturation current respectively.  The probe 

material was chosen to be stainless steel as this has both a moderate secondary electron 

emission (SEE) coefficient, and a high melting point. [Schächter, 1998]  Exotic materials 

like Tanatalum were considered for their lower SEE coefficient, but their difficulty to 

work with and high cost outweighed their benefits.  Another concern for the accurate 

measurement of electron temperature Te is the uniformity of the collection surface.  

Variation in the work function of the material leads to additional error in Te.   However 

this is more of an issue when working with low temperature space plasmas.  For the 

higher temperatures found in the laboratory plasmas considered here, the probe’s material 

non-uniformity is much less of a concern.The influence of surrounding insulators was 

also considered, as alumina ceramics can readily give off secondary electrons. [Hopman, 

2003]  This was not found to be a large concern for this diagnostic since ion saturation 

current was the measurement of most importance, the collection of which results in the 

repulsion of any secondary electrons born from surrounding insulators.   

 

Another concern for our laboratory plasma is the flow velocity.  Standard probe theory 

assumes a non-flowing collisionless plasma, which is seen in the following equation.  

The ion saturation current collected to a cylindrical conductor for static, or slowly drifting 

plasma with ½mivi
2 <  eTe is:  [Hoegy, 1973]  
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where: qi = ion charge, vi = ion drift velocity, Te  = electron temperature [eV], mi = mean 

ion mass, Sp = probe surface area and ( ) /s p ph r r+  is the ratio of  probe radius to cylindrical 

sheath radius ≈ 1 for the thin sheath approximation.   

 

For vi  = 0, equation (2.3) reduces to the standard Bohm formulation for thin-sheath ion 

saturation current collection. [Mott-Smith (1926) eq. 25] 

 

The addition of a greater flow component ½mivi
2 >  eTe results in additional ion saturation 

current collected to the probe.  The combination of thermal current plus ram current 

collected to a cylindrical probe in the thin-sheath limit is: [Hoegy, 1973] 
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   (2.4) 

 

An assumption was made in the derivation [Hoegy, 1973 Eq. (11a)] that ½mivi
2 >  eTe   

thus equation (2.4) does not reduce to the standard Bohm equation for ion saturation 

current at vi = 0, like equation (2.3) does.  

 

In addition to providing increased ion saturation current, the flow component requires 

that multiple Langmuir probes not be oriented in a line parallel to the flow vector, 

otherwise the first probe will shadow the other probes.  This concern is considered during 

the experiment setup in Chapter 3. 
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2.1.2 Langmuir triple-probe theory 

Collecting the entire I(V) characteristic through a full probe bias sweep will provide all of 

the plasma parameters of interest: Te, ne, Vp  and ni.  However, in a transient plasma with 

parameters changing faster than the duration of the sweep, a full bias sweep will not be 

fast enough to provide adequate temporal resolution.  A triple-probe configuration like 

that in Figure 2.2 allows the measurement of ni and Te to high temporal resolution.  For a 

more detailed description of this device, the reader is directed to Chen and Sekiguchi 

(1965) or Bufton (1996) .  

 

 

 

Figure 2.2:  Circuit schematic for Langmuir triple-probe.  Resistor R is the sensing 
resistor for measuring ion saturation current.  V12 is the floating probe 
measurement ≈ 1 V, and Vbias is the supplied voltage bias, which is nearly equal to 
V13 due to the small voltage drop across resistor R.  Vp is the plasma potential, and 
Vf  is the floating potential.     
 

The following assumptions are made for current flowing to these probes: 1) The electron 

energy distribution is Maxwellian, 2) the collisional mean free path for electrons is large 

with respect to both the ion sheath thickness hs and probe radius rp, and 3) the thickness 
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of the ion sheath is smaller than the probe separation so that interaction between the three 

probes is negligible.  The validity of these assumptions is considered in Section 3.2.1. 

 

Under these conditions, the currents to probes 1, 2 and 3 are as follows:  

 

 1 1 1exp( / ) ( )sat sat
e e iI I V T I V− = − +  (2.5) 

 2 2 2exp( / ) ( )sat sat
e e iI I V T I V= − +  (2.6) 

 3 3 3exp( / ) ( )sat sat
e e iI I V T I V= − +  (2.7) 

  

where V1, I1 are the bias and collected current for the positively biased probe, V2, I2 are 

the bias and collected current for the floating probe, and V3 , I3 are the bias and collected 

current for the negatively biased probe.  Since the floating probe is at the floating 

potential, I2 = 0.  Additionally, Ii
 sat is the ion “saturation” current given by Eq. (2.4), and 

Ie
 sat is the electron saturation current: [Hoegy, 1973] 

 

 ( )1/ 2/ 2sat
e p e e eI S n q eT mπ=  (2.8) 

 

In the original triple-probe theory, the assumption is made that the variation in ion current 

Ii
 sat (V) with the change in probe potential is negligible compared with that of the electron 

current, i.e. Ii
 sat (V1) = Ii

 sat (V2) = Ii
 sat (V3)  [Chen, 1965].  This is not rigorously correct, 

and this assumption can yield significant errors in the measurement of Te, which will be 

considered in Section 4.1.3.  However, by following the original ideal theory we can 

pursue a useful mathematical simplification: 



 22

 

 ( )
( )

121 2

1 3 13

1 exp
1 exp

I I
I I

φ
φ

− −+
=

+ − −
 (2.9) 

 

Where φ13 =  V13 / Te  = (V1  – V3 )/ Te  and φ12 = V12 / Te = (V1 – V2 )/ Te.  Furthermore we 

can also state that I2 = 0, and I1 = I3.  Therefore: 
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− −
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− −
 (2.10) 

 

Since V13 is a known voltage, and is typically set to be much larger than Te /e, the RHS 

denominator of Eq. (2.10) reduces to 1 and the electron temperature in eV can be written 

as  

 [ ] 12eV / ln 2eT V=  (2.11) 

 

As was previously stated, the preceding derivation for Te contains assumptions which 

tend to over-estimate Te, as will be discussed in 4.1.3.   
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2.2 Diagnostics theory – microwave interferometry 

2.2.0 Interferometer overview 

A microwave interferometer is an instrument for detecting the refractive index of a 

medium by passing a high frequency wave through it, and comparing the wave’s phase 

shift with a reference that does not pass through the medium.  A simple schematic (Figure 

2.3) shows the major components, including the oscillator, mixer, and transmit and 

receive antennas.  In this interferometer, a mixer determines the relative phase difference 

between a reference leg, which is connected directly from the power divider to one 

terminal of the mixer, and a scene leg, which is transmitted between two horn antennas 

through the plasma medium.  The phase of the reference beam remains constant while the 

phase of the scene beam changes based on the plasma’s refractive index.  The mixer 

output is equal to the phase difference between the legs, plus a DC offset.  A quadrature 

mixer includes a second phase output that is offset from the first by 90 degrees in phase.   

Heterodyne interferometers are not considered here. 

 

 

Figure 2.3: A basic microwave interferometer schematic.  The mixer has two inputs, 
the scene leg which includes the link between the Tx and Rx horn antennas, and a 
reference leg, which is typically contained entirely within waveguide.  The two 
quadrature output channels are 90o out of phase. 
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The use of microwave interferometers for active probing of plasmas has several 

advantages over in-situ diagnostics like the Langmuir probe.  First, the interferometer is a 

non-intrusive diagnostic which does not perturb the ambient plasma.  This reduces the 

uncertainty arising from probe-plasma interactions, and allows measurements in high 

temperature plasmas that would otherwise destroy physical probes.  Secondly, the 

measurement error for a properly calibrated interferometer is generally much lower than 

the error in a Langmuir probe measurement due to probe theory’s dependence on 

multiple plasma parameters. [Overzet, 1993] Some limitations of a microwave 

interferometer include a limited ability to obtain spatial density.  Because it provides a 

line-integrated density measurement, a spatial distribution must often be assumed to 

determine local plasma density.  One option to obtain a limited spatial distribution is a 

spatial scanning of the plasma plume with the microwave interferometer, using Abel 

inversion to determine local plasma density. [Hutchinson, 2002] [Gilchrist,1997]  This 

can be a time consuming process, particularly if an accurate alignment is taken for the 

interferometer instrument at each radial location. The inversion also requires radial 

symmetry in the plasma column.  Another limitation of microwave interferometry is the 

inability to measure electron temperature and plasma potential, which the Langmuir 

probe is able to collect.  A derivation of the governing equations for microwave 

interferometry requires a look at electromagnetic waves propagating through a plasma. 
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2.2.1 Electromagnetic wave propagation in plasmas 

Electromagnetic (EM) waves propagating through a plasma have been studied by many 

researchers for a variety of reasons.  In this chapter we will limit our investigation to the 

ordinary (o) EM wave propagating through a plasma column.  The o-wave is a high 

frequency (ω > ωp) wave propagating in absence of an applied magnetic field B0, or with 

the electric field E || B0.  Suggested resources for a more in-depth formulation of this and 

other propagating waves include [Stix, 1992] [Heald, 1978] and [Hutchinson, 2002] 

 

The plasma frequency, ωp can be derived from first principles as follows.  Consider a 

plane slab of plasma in which the electrons have been displaced by a small distance x−Δ .  

Assume that the ions are stationary.  Also assume that no magnetic field is present, or that 

a static field B0 = Bx  is present.   The Lorentz force for electrons in x̂  is  

 

 e x xm v eE= −&  (2.12) 

 

where me and e are the electron mass and charge.  If an electromagnetic wave were 

launched in the x̂  direction of form  

 

 ( )k i tEe ω−rE =  (2.13) 

then Eq. (2.12) can be written as 

 

 e x e x xm v m i v eEω= − = −&  (2.14) 

Solving for vx : 
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An equation for current density can now be written using Ohm’s law:  

 

 x e x x xj en v Eσ= − = ⋅  (2.16) 

where 
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and  

 2 2
0p e e en q mω ε=  (2.18) 

 

 is the plasma frequency squared.  Using the relation for dielectric constant of a 

medium, xε : 
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The dispersion relation for an ordinary wave can now be written using the familiar 

equation from optics : 
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The plasma conductivity and dielectric constant are generally written in tensor form to 

account for plasma anisotropy, thus, the above formulation is only valid for the ordinary 

wave, for which interactions with the applied magnetic field can be ignored.  This is the 

case when Ex || B0 or for propagation frequencies ω >> ωce.  (Here, ωce is the electron 

cyclotron frequency): 

 ce
e

eB
m

ω =   (2.21) 

 

The overall phase φ  of a plane wave traveling from distance –L to L  is 

 

 d
L

L
kφ

−
= ∫ l  (2.22) 

 

Where k is the wavenumber, thus the relative phase shift for a wave traveling through a 

region of plasma is found by integrating Eq. (2.20): 

 

 ( )2 2
0 0 1 1 d

L

p pL
kφ φ φ ω ω

−
Δ = − = − −∫ l  (2.23) 

 

Assuming sufficiently high scene beam frequency (such that 2 2 0.1pω ω <  )  Eq. (2.23) 

can be expanded by Taylor series to 
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where ω is the interferometer frequency, 2L is the plasma column diameter, and ne is the 

electron density.  The above formulation assumes that collisional dissipation is 

negligible, (νc / ω << 1) and that attenuation from refraction and reflection is limited.  It 

is further assumed that the spatial distribution of density varies slowly, such that 

1/ 2 <<∇ kk .  This is termed the geometric optics approximation that allows the EM 

wave to be considered a plane wave even in the presence of a density gradient. [Jeffreys, 

1946]  It is also assumed that the plasma extent is much larger than the scene beamwidth, 

although techniques exist to deal with this exigency.  [Kraft, 2006]      

 

The superposition of the two electric fields at the microwave detector is then equal to: 

  

 0( )i ti t
r sE E e E φ φ ωω +Δ −−= +  (2.26) 

 

Where Er is the reference electric field, Es is the scene electric field, φ0 is the initial phase 

difference between the scene beam and the reference beam, and Δφ is the phase shift due 

to the plasma.  Reflections and attenuation are considered separately in the next section. 
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2.2.2 Attenuation and reflection of waves  

An EM wave traveling through plasma will undergo a certain amount of attenuation and 

reflection due to interaction with the plasma, or the experiment chamber.  With a non-

quadrature interferometer, beam attenuation can be mistaken for a phase shift and 

attributed to electron density. However a quadrature mixer utilizes two reference 

channels- one 90 degrees out of phase with the other.  This results in two output voltages, 

and decouples amplitude and phase of the received signal, allowing beam attenuation to 

be considered separately.  Thus, attenuation due to plasma interactions need not be 

considered an error term since its effects are removed from the phase measurement of the 

interferometer.  The sources of beam attenuation are electron-ion collisions, and 

refraction of the plasma beam.  Heald et al. [Heald, 1978] states that the attenuation 

coefficient α0 due to collisions is 

 

 
1/ 22 2

0 2 21
2

e p p

c
ν ω ω

α
ω ω

−
⎛ ⎞

≈ −⎜ ⎟⎜ ⎟
⎝ ⎠

    [m-1] (2.27) 

 

Electron-ion collisions are deemed to be small in all experiments (νe < 0.3 GHz; α0< 0.05 

m-1) thus the majority of attenuation will be due to beam refraction.  Refraction effects 

can be substantial, especially if the transmitting antenna is on the order of the size of the 

plasma column. [Ohler, 1996] [Davis, 2006]  These authors pursued a ray-tracing 

analysis to determine the spatial evolution of discrete portions of the wave.  The ray 

trajectory is solved by a differential form of Snell’s law, whereby the plasma acts as a 

diverging lens.  Only those rays that are intercepted by the receiver antenna are counted 
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towards the total power, therefore the wave is attenuated when compared with the non-

plasma case.  An illustration of this process is shown in Figure 2.4. 

 

Figure 2.4: Example of the ray tracing process for three different points along the 
antenna aperture.  The dashed rays represent example rays that would not be 
received by the antenna.   [Davis, 2006] 
 

An analysis of refraction and attenuation for the present experiment setup is given in 

Section 3.2.4.4. 

 

Reflections of the EM wave are also possible both from gradients in the plasma refractive 

index, and from the vacuum chamber walls.  Due to the geometric optics condition 

1/ 2 <<∇ kk , reflections from plasma gradients are ignored.  However, multiple 

reflections from walls could result in indirect radiation reaching the receive antenna.  
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This case is assumed here to be a double reflection, with the wave exiting the transmit 

horn, reflecting from chamber walls twice (thereby traversing the plasma column a total 

of three times), and arriving at the receiving antenna with arbitrary phase and amplitude. 

The amplitude and phase of the reflected wave are determined via calibration of the 

instrument, which is discussed in Section 2.2.3.  Equation (2.28) shows a modification of 

Eq. (2.26) for the reflected portion of the wave at the detector. An attenuation coefficient 

α0, reflection coefficient (amplitude) ρ , and reflection coefficient (phase) βr are included 

to match the assumption of a triple-reflection. 

 

 0(3 )3
0(1 ) ri t

rfl sE E φ φ β ωα ρ Δ + + −= −  (2.28) 

 

With a proper calibration, the reflections arising from surrounding objects can be 

accounted for in the final interferometer measurement, and can be calibrated out of the 

resulting density measurement.  Higher order reflections (>3) are not specifically 

included in (2.28), but their contribution to error is small, as will be discussed in Section 

3.2.4. 

 

2.2.3 Diagnostics theory - interferometer calibration 

We will now consider a quadrature interferometer model using Eqs. (2.26) and (2.28).  

Two separate RF paths are combined at the mixer – a reference path of amplitude Er and 

a scene (plasma) path containing both the direct radiation Es, and the reflected radiation 

Erfl. (Figure 2.5)  
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Figure 2.5: Electric field superposition for the mixer in Figure 2.3.  Scene path 
includes direct (Es) and reflected (Erfl) waves while reference path includes Er. 
 

 

A microwave detector (mixer) compares the phase of the two RF paths.  The electric field 

at the microwave detector is a superposition of the fields given in Eqs. (2.26) and (2.28): 

 

 0( ) (2 )2
0 0(1 ) 1 (1 ) ri t ii t

r sE E e E eφ φ ω φ βω α α ρΔ + − Δ +− ⎡ ⎤= + − + −⎣ ⎦  (2.29) 

 

where again, E and ω are the field amplitude and frequency, respectively; the subscripts r 

and s denote the reference and scene fields, respectively; α0 and ρ are the attenuation and 

reflection magnitude coefficients, respectively; Δφ is the phase shift of the scene beam 

relative to its initial phase without plasma perturbation; φ0 is the initial phase difference 

between the reference beam and the non-reflected scene beam; and βr is the added phase 

shift of the reflected component of the scene beam.  The attenuation coefficient 0α  is 

included to account for cases in which there is modulation of the scene beam amplitude 

when the plasma is present (e.g., refractive bending); by definition α0 = 0 when the 

plasma is absent.  
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Furthermore the voltage output from the interferometer quadrature detector can be 

modeled as: [Dobson, 2004]    
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%
 (2.30) 

 

where VD is the diode “dark” voltage.  Eq. (2.30) can be used to model both the in-phase, 

and quadrature channel, although the individual coefficients will be unique for each 

channel.   

 

A simplified version of Eq. (2.30) is developed as follows.  Assuming the special 

condition ρ = 0 (no reflections), Eq. (2.30) reduces to 

 

 ( )1 0 4cosV C Cφ φ= Δ + +%  (2.31) 

 

for the in-phase channel and 

 
 1 0 4cos( / 2 )QV C Cφ φ π φ′ ′′ = Δ + − + +%                      (2.32) 

 

for the quadrature channel, where primed values are for the quadrature channel, 

1 02(1 ) r sC E Eα= − , 2 2
4 0((1 ) )r s DC E E Vα= + − +  and Qφ  is the quadrature phase offset:  

0 0 / 2Qφ φ φ π′= − + .  In the special case that the I and Q channels of the mixer are exactly 

90o offset, then 0Qφ = .  Eq. (2.31) and Eq. (2.32) allow one to solve directly for φΔ  by 



 34

 
( )

( )
( )1 41

1 4

tan tan
cos( )

Q

Q

C V C

C V C
φ φ

φ
−

⎡ ⎤′′ −⎢ ⎥Δ = −⎢ ⎥′ −⎢ ⎥⎣ ⎦

%

%
 (2.33) 

 

If each of the coefficients of the above equation were known then the phase shift φ  

would be a function of the two detector voltages.  A physical calibration of the 

interferometer is necessary to obtain these values. 

 

In order to find the necessary calibration coefficients in Eq. (2.33) an in-line phase shifter 

can be used to change the effective measurement pathlength through more than one 

wavelength λ.  By artificially changing Δφ in Eq. (2.31) and (2.32), V% and V ′%  can be 

changed through a full 2π revolution, allowing calibration data to be fit to the 

interferometer model. This procedure will provide C1, C4, and φQ, or the detectors’ 

amplitude, DC offset and quadrature offset respectively, which are the major calibration 

coefficients in the special case ρ = 0 (zero reflections).  In order to determine the effect of 

reflections however, a phase shifter is not enough; the horn antennas must be physically 

moved through at least x = 1 λ and the entire equation of Eq. (2.30) used.  Instead of a 

plasma perturbation or phase shifter changing Δφ, the substitution kxφ = is made, where 

x is the antenna motor position during the calibration.  This process is necessary because 

simply shifting φ is not enough to determine the effect of ρ and βr in Eq. (2.30).  By 

physically moving the horn antennas, the reflection components ρ(x) and βr(x) change 

non-linearly, and can be isolated from the linear change of φ = kx.  If reflections are to be 

accounted for, the simplified equation for phase given in Eq. (2.33) cannot be used.  
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Using this process, there are seven coefficients that must be fit in Eq. (2.30): Er, Es, ρ, βr, 

φ0, VD and k.  Assuming ρ = 0 and substituting kxφ =  requires only four coefficients to 

be fit to the simplified Eq. (2.31): C1, C4, k and φ0.  The results of interferometer 

calibration in this experiment are addressed in Chapter 3. 

   

2.2.4 Diagnostics theory - Abel inversion 

Abel inversion requires taking multiple line-integrated density measurements along 

separate chords of the plasma column.  This technique enables one to estimate a radial 

distribution of density n(r) with an instrument that only gives line integral density values 

N(r).  For the technique to work, one has to make the assumption that the plasma column 

is cylindrically symmetric, i.e. it is independent of θ in the coordinate system (r,θ, z).  

But given this constraint, the Abel inversion allows a series of chord integrals to be 

transformed into a radial distribution.  This formulation is known as the “symmetric” 

Abel inversion [Whittaker 1902]. Further information on the topic are supplied by 

[Gottardi, 1979], [Hutchinson, 2002], and [Ha, 2004]: 

 

 

 

Figure 2.6: Coordinates for Abel inversion of a vertical scanning interferometer  
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Beginning with equation (2.25) then transforming to cylindrical coordinates, one finds an 

equation for the line integrated phase shift Δφ: 
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The inverse Abel transform is then written as: 
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π

−−
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The above formulation can be used as-is to determine the radial density distribution.  

Numerically speaking, the radial distribution can be found by summing the derivatives of 

the measured phase shift over the plasma column edge to the radial point of interest.  The 

derivative is approximated by taking the difference between the function at two points 

and dividing by the distance between the two measurements. The step size can be greatly 

reduced by fitting an analytic function to the discrete measurements of Δφ .  The analytic 

function allows n(r) to be calculated with higher resolution, and reduces the noise 

contribution from the derivative )( φΔ
dy
d .  In the case of the experiment considered here, 

the radial distribution does fit to an analytic Gaussian distribution, as will be discussed in 

Chapter 4.  We can also substitute for the detected interferometer line integral Ne into Eq. 

(2.35):  
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Resulting in: 
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Again, as will be discussed in Chapter 4, the line integral density Ne(y) can be fit to a 

Gaussian distribution with 3 fitting coefficients, C1, C2, and C3: 
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If we substitute Eq. (2.38) into Eq. (2.37) and numerically solve the integral, we have: 
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For small C1, the error function approaches 1 thus giving a Gaussian radial density. Alter-

native methods utilize a Fourier transform allowing generic functions to be analyzed, 

[Smith, 1988]  but these methods are more sensitive to measurement noise and provide 

no advantages in the present situation.  
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Details for the uncertainty analysis for the above Abel inversion are described in 

Appendix B. 

 

2.3 Diagnostics theory – Hybrid measurement 

A novel method for producing accurate radial density profiles was developed for this 

experiment, with an overview given here. [Deline, 2007]  First a Langmuir probe was 

scanned across the plasma column collecting ion saturation current along a microwave 

interferometer chord.  Shot to shot variation from the plasma source was factored out by 

normalizing each probe data point to the interferometer measurement for that shot.  Since 

the interferometer is kept stationary, it provides a record of temporal changes in the 

plasma source.  Probe measurements at various radial positions provide the shape of the 

plasma column.  The individual probe measurements are integrated across the scan width, 

and compared with the RF interferometer signal.  The interferometer chord density 

measurement, which already is a line integral density, is matched to the line integrated 

probe density measurement by introducing a scalar constant.  Accurately calibrated point 

density at each of the scan positions results from this process.  This method takes 

advantage of the benefits of both instruments: accurate density measurements from an RF 

interferometer, and high spatial resolution measurements from an electrostatic probe.  

The radial density profile of the plasma is thus accurately measured over several plasma 

shots and probe measurements.  
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Figure 2.7:  Hybrid method description.  (a) illustrates a transverse probe scan over 
multiple plasma shots i  with a probe measurement [solid red] taken at a different 
position xj for each plasma shot.  (b) shows the steps of the hybrid method, including 
normalization of the probe response, summing over the scan length and comparing 
the sum with microwave interferometer measurements. 

 

 

A detailed analysis of the hybrid method is as follows: A transverse scan across the 

plasma plume at axial location z consists of a number i=1, M of plasma shots each taken 

with the Langmuir probe at a particular radial position xj, j=1, M. (Figure 2.7)  In the 

analysis here, a single time point t in the discharge is considered, resulting in a single data 

point for each shot with the two diagnostics: Vi from the Langmuir triple-probe and Ni 

from the RF interferometer.  Note that Ni is a line integral density measurement, and Vi is 

a voltage reading across the probe’s current sensing resistor R as in Figure 2.2.  As this is 

in essence an ion saturation current measurement, Vi is related to a point density ni 

through a proportionality factor. We define this factor α as : 

 

…
.

(a) (b) 

Scan probe across chord l 
collecting probe response Vii 

Assemble a line-integral 
value from discrete Vi 

Normalize each Vii by 
interferometer signal Ni 

Apply a fitting coefficient α to 
match Ni to ∑ni Δx 
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i in Vα=  (2.40) 

 

where α is constant over a transverse scan.  One could equivalently say that  j jn Vα=  

since α is constant.  Please note the distinction between this proportionality factor α, and 

the attenuation coefficient α0 discussed earlier as there is no relation between these two 

similar-looking variables. 

 

In a transverse scan, then, ni,j represents the density at a given position during a given 

shot, noting that only one density per shot is actually measured by the probe:  ni ≡ ni,i.  

The other M-1 positions are sampled during different shots.  Thus, in order to accurately 

combine probe measurements from different radial positions, shot-to-shot variation must 

be accounted for.  In this technique, it is assumed that all shots are identical except for a 

global scale factor given by Ni.  That is, for any given position j, the ratio of n’s for a pair 

of shots i and i’ is  
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=      (2.41)  

 

For i' = j, 
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=      (2.42)  

where nij = nj is a measured value. The line integral density Ni for a given shot is 

approximately equal to the sum: 
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where the jxΔ  are contiguous segments centered on the jx . Using Eqs. (2.41) and (2.42) 

in Eq. (2.43) we have 
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The calibrated density profile is then given by Eqs. (2.40) and (2.45):  
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In this manner, the RF interferometer line integral density measurement is compared to 

the sum of electrostatic probe density measurements along the scan length M xΔ .   

 

A number of modifications can be included with this initial method if the situation 

warrants it.  Two modifications in particular that were investigated include the situations 

of a radial scan that does not include the entire chord width of the interferometer, and a 

radial scan that does not occur at the exact same axial location as the interferometer 

measurement chord.  Ideally the scan length from x1 to xM will cover the entire 

interferometer scene beam length l ,  from 1l  to 2l .  If this is not the case, a term iN ′  
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must be substituted for iN  that adds the discrete scans of Eq. (2.43) with that part of the 

interferometer chord that lies outside of the probe scan width: 
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where ni(x) is the full density profile, either inferred from the partial scan, or determined 

explicitly from a prior scan covering all l . iN ′  varies with i but, by assumption, the ratio    

'
i iN N  is constant, and the adjusted calibration constant becomes: 

 

 '
i

adj
i

N
N

α α=  (2.48) 

 

A further adjustment of the line integral density can be made in the event that the 

Langmuir probe measurement location is not along the microwave interferometer beam.  

Note that in general, an axial offset is not necessary because the scanning Langmuir 

probes can be made sufficiently small to not interfere with the interferometer 

measurement.  However, for several probe scans in this work, the probe was positioned 

slightly behind the interferometer due to an error in positioning, thus this modification 

must be investigated.  The basic adjustment is done to account for any column divergence 

between the two measurements.  In the case of this work, as will be discussed in Chapter 

4, the plasma plume had a radial profile that fit very well to a Gaussian distribution, and 

the velocity could be assumed to be constant over small axial distances. With these 
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assumptions, along with flux conservation, the change in line integral density between 

axial positions z1 and z2  can be expressed as: 

 

 max, 11 2

2 1 max, 2

zz z

z z z

nN R
N R n

= =  (2.49) 

 

where Rz1 and Rz2 are the radii of the Gaussian plasma column at axial locations z1 and z2 

respectively, and nmax,z1 and nmax,z2 are the centerline plasma densities at z1 and z2.  The 

radius of the Gaussian plasma column is known at the two measurement locations due to 

either a scan of the microwave interferometer, or a scan of the Langmuir probe.  Thus the 

change in peak density and line integral density can be estimated from Eq. (2.48).  As 

applied to the hybrid measurement approach, the line density iN ′  from Eq. (2.46) is 

further adjusted by a factor of 1 2/z zR Rγ ≡  such that 
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The final formulation for electron density ni at each measurement point xj for i=j is thus: 
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Using this methodology, full radial density profiles can be produced vs. time by 

combining and scaling multiple Langmuir probe measurements taken at a number of 

radial positions.  In addition, non-ideal scans including those which do not cover the 

entire interferometer beam width, or which include an axial offset from the interferometer 

beam can be accommodated, although the error associated with these measurements is 

increased.  A full error analysis of this method can be found in Appendix A. 

 

2.4 Magnetic Nozzle Theory 

2.4.0 Introduction 

There are several regions of interest at the outlet of a converging-diverging magnetic 

nozzle. (Figure 2.8)  The diverging portion of the magnetic nozzle begins just 

downstream of the nozzle inlet or throat, which is the region of peak magnetic field.   The 

near-nozzle region begins at the nozzle inlet and continues for a short distance, until the 

ratio of centerline magnetic field B to inlet magnetic field B0 reaches approximately 

B0/B = 10 (about 30 cm from the nozzle peak field).  This is a region of momentum 

transfer and adiabatic expansion.  It also contains the highest plasma density and 

temperature that is found in the magnetic nozzle.  This is a region not studied in detail in 

the present experiment due to space and equipment limitations, but is important 

nonetheless.  It will briefly be discussed with important findings from prior experiments 

presented.   
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Figure 2.8: Schematic of magnetic nozzle showing nozzle coordinate system and 
nozzle regions. 
 

The far-nozzle region occurs as the plume’s kinetic Beta approaches unity, where  

 

 
2 2

2 2
0/A i i

v v
v B n m

β
μ

= =     (2.52)  

 

β is the ratio of kinetic energy to magnetic energy in the plasma flow, defined in these 

terms as /K BW Wβ =  when 2 / 2K i i zW m n v=  and 2
0/ 2BW B μ= .  It is equivalently 

defined as the square of the ratio of bulk flow velocity to Alfvén velocity where: 

 

 vA = 0/ i iB n mμ  (2.53) 

 



 46

is the Alfvén velocity.  It is the far-nozzle region (approximately 0.9 m from the nozzle 

peak field in the present experiment) that is of interest for detachment experiments 

because it is here that the magnetic nozzle ceases to influence the trajectories of the 

plume, as the plasma continues on a ballistic trajectory.  In this region, meaningful nozzle 

efficiency numbers can be measured, defined here as the portion of plume momentum 

that is axially directed. Nozzle efficiency will be discussed more fully in Section 2.4.6. 

 

In between these two somewhat arbitrarily defined nozzle regions lies the mid-nozzle 

region.  This region is characterized by nearly constant temperature, plasma expansion 

along magnetic field lines, and diffusion across magnetic field lines as will be discussed 

in the following sections. 

 

2.4.1 Conditions for magnetized plasma 

For a magnetic nozzle to have any effect on the plasma plume, the plume must be 

magnetized.  The classical definition of this condition is ri < R(z), where ri is the plasma 

ion cyclotron radius 

 2
i

i
ci

Tmvr
eBω

⊥= =  (2.54) 

 

 and R(z) is the half-maximum radius of the plasma. This is a loose definition based on 

single particle theory, assuming that individual ion orbits must be contained within the 

plume diameter.  When this condition is broken, the magnetic field may be too weak to 

confine plasma particles.  Fortunately in this experiment, standard conditions resulted in 

ri < R(z) at least up to the far-nozzle region, as will be shown in Section 4.1.7. 
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The experiment must also remain collisionless in the nozzle region for momentum to be 

transferred and for efficiency to be maximized.  Ion-neutral collisions dramatically slow 

the plasma flow and enhance cross-magnetic field transport.  [Lieberman, 1994]  These 

are both undesired effects in a nozzle experiment.  As will be shown in the next chapter, 

the ion-neutral mean free path in this experiment was at least 2.2 m, which is longer than 

the experiment scale length.  What few ion-neutral collision effects were detected in the 

experiment are discussed in Section 4.3. 

 

2.4.2 Near Magnetic Nozzle Region 

A converging-diverging magnetic nozzle directs a plasma flow much as its 

thermodynamic counterpart the Laval nozzle does.  At the Laval nozzle inlet, the nozzle 

area is minimized, and the gas flow velocity reaches Mach 1, accelerating as the nozzle 

area increases [Anderson, 1990].  Similarly, for the magnetic nozzle the nozzle inlet 

corresponds to a point of maximum magnetic field, minimum plasma column radius, and 

the onset of supersonic flow.  The plasma flow velocity v then increases past M = 1. The 

plasma Mach number M is defined as  

 M= v/Cs  (2.55) 

where Cs is the ion sound speed:  
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and / 1p vC Cγ = ≈  is the ratio of specific heats for electrons or ions.      
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Plasma expansion and acceleration in the near-nozzle region is governed by several 

physical effects.  The DDEX experiment did not make any measurements in the near-

nozzle region, so some previous results will be summarized here.  [Inutake, 2002] and 

[Ando, 2006] present results of a magnetoplasmadynamic thruster (MPD thruster) 

emitting into a highly configurable magnetic nozzle.  Triple probes, fast scanning 

Langmuir probes, laser induced fluorescence (LIF) and Mach probes provide electron  & 

ion temperature measurements, density measurements and flow velocity measurements in 

the near-nozzle region. 

 

 

Figure 2.9:  Near-nozzle measurements for a helium MPD thruster [Inutake, 2002]. 
Axial profiles of: (a) magnetic field, (b) Mi (c) Axial velocity (d) Ion temperature  
 

 

In the near-nozzle region defined as B0/B < 10, Figure 2.9 shows a number of 

experimental trends from the [Inutake, 2002] experiment.  The ion Mach number 

increases from M = 1 up beyond M = 2.5 until ion-neutral collisions significantly reduce 
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the flow velocity.  The ion temperature (along with electron temperature, not shown) 

decreases from a peak value of 14 eV to less than 4 eV within the B0/B < 10 near-nozzle 

zone.  Also, plasma density decreases as the plume expands.  The theory used to explain 

the acceleration and cooling of the plume in the near-nozzle region in [Inutake, 2002] is 

one-dimensional isentropic flow, which assumes that no dissipative processes, and no 

energy-producing processes are acting on the plasma plume.  Given these assumptions, 

the governing equations for Mach number and temperature are [Anderson, 1990]: 
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Where (R/R0)2 is a ratio of the plume area roughly equal to the ratio B0/B, and all initial 

variables with subscript 0 are taken at the nozzle throat where B is maximum.  A ratio of 

specific heats γ  between 1 and 1.2 best matched experiment results presented in Figure 

2.9. 

 

It was found that the preceding isentropic model is valid when frequent ion-ion collisions 

cause the plume to behave as a fluid, e.g. the ion collision frequency is on the order of or 

larger than the ion cyclotron frequency: / 1ci iiω ν < .  [Ando, 2006]  For more infrequent 

collisions, / 1ci iiω ν > and the ions behave as single particles.  In this single particle 
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regime, the ion’s magnetic moment is conserved, leading to the standard 1st adiabatic 

invariance law of [Chen, 1984]: 

 21
2 /mv Bμ ⊥≡  = const (2.59) 

 

After accounting for conservation of energy ( 2 2
zv v⊥+  = const) the axial velocity at 

location z1 is: 

 ( )2 2 2
1 0 0 1 01 /z zv v v B B⊥= + −   (2.60) 

 

where variables with subscript 0 are taken at the nozzle throat, coincident with peak 

applied magnetic field.  This model is more applicable in the mid-nozzle region of the 

present experiment, where single particle motion dominates collective motion. 

 

It should be noted that both models are in effect taking energy from the plasma’s 

perpendicular motion and converting it to directed axial motion.  This energy transfer is 

occurring in the isentropic model by a decreasing temperature and increasing ion Mach 

number.  In the single particle model, the perpendicular velocity v⊥ decreases with B 

while v|| increases with B due to magnetic moment conservation.   

 

2.4.3 Mid-Magnetic Nozzle Region 

The mid-magnetic nozzle region is characterized by a lower ion and electron temperature 

after isentropic expansion has cooled the plasma exhaust and converted much of the 

perpendicular energy to parallel.  Some acceleration of the flow is still possible based on 

Eq. (2.60), as it is assumed in this region that / 1ci iiω ν >  with ions following single 
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particle trajectories.  For the most part, ion guiding centers are frozen onto magnetic field 

lines.  However, cross-magnetic field transport occurs, depending on the magnetic field 

strength.  In this analysis, cross-field diffusion is driven by electron motion, with ions 

following along to maintain quasineutrality. [Hooper, 1993]   

 

For sufficiently low magnetic fields and in absence of neutral collisions, electrons follow 

classical diffusion, characterized by a diffusion rate proportional to B-2.  According to 

[Okuda, 1973] the radial diffusion coefficient in 2D cylindrical coordinates is:  
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The above expression is only valid if electrons diffuse a distance greater than a Debye 

length in the execution of one gyro-orbit.  In practical terms this limit condition for 

classical diffusion is: [Dawson, 1971] 
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Eq. (2.62) places an upper limit on magnetic field B, therefore a high enough magnetic 

field can lead to the invalidation of the condition for classical diffusion.  For a high 

enough applied magnetic field, the influence of individual particle collisions becomes 

less important than large-scale convective motion.  The onset of low-frequency 
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convective plasma waves leads to a diffusion rate proportional to B-1 which is termed 

Bohm diffusion: 

 1[mks]
16

e
Bohm

TD
B

≈  (2.63) 

 

The condition for the onset of Bohm diffusion is similar to Eq. (2.62) and for example 

requires a magnetic field approximately three times higher assuming Te = 1 eV:  

[Dawson, 1971] 
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In between these two magnetic field conditions below the Bohm lower limit and above 

the classical upper limit lies a middle ground that follows neither classical diffusion nor 

Bohm diffusion.  Numerical simulations have successfully modeled this regime.  [Okuda, 

1973]  However, modeling this middle diffusion case is not a concern for the analysis of 

this experiment because under all operating conditions, the applied magnetic field was 

low enough to result in classical diffusion based on Eq. (2.62).  This will be shown in 

Section 4.1.8.  

 

2.4.4 Far-nozzle region and super-Alfvénic detachment 

Several analyses predict that at sufficient distances downstream of the magnetic nozzle 

throat, the plasma flow continues in the axial direction, detached from the influence of 

applied magnetic fields. [Arefiev, 2005]  [Ilin, 2002] [Gesto, 2006] [Brenning, 2005] 

[Cassibry, 2006]   In an applied magnetic nozzle, the plasma kinetic energy density  
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21
2k i i zW m n v=  decreases downstream due to flux conservation.  However, magnetic 

energy density 2
0/ 2BW B μ=  decreases more quickly and thus β = Wk / WB , the ratio of 

the plasma’s kinetic energy density to magnetic field energy density, will necessarily 

increase downstream even if the plasma velocity remains the same.  According to theory, 

when  β becomes greater than unity, the magnetized plasma becomes unmagnetized, or at 

least weakly self-magnetized with the external magnetic field no longer influencing the 

flowing plasma.  This is a situation analogous to the solar wind flowing outward from the 

sun’s magnetic field. [Parker, 1958]  Thus, just as the solar wind is able to propagate far 

downstream of the sun, a high-β  magnetically detached electric rocket plume should 

continue propagating far downstream of the magnetic nozzle outlet. 

 

This has great implications for the usefulness of magnetized plasma sources for electric 

propulsion, because it enables the transfer of momentum from the plasma plume despite 

the spacecraft’s closed magnetic fields.  With this allowance for momentum exchange 

across closed magnetic fields, the spacecraft still produces thrust even as the magnetic 

flux lines close on themselves. 

 

The experiment described later in this work was designed to investigate this transition 

from β < 1 to β > 1.  The experimental results section will provide measurements that are 

consistent with the above theory. 
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2.4.5 Polarization drift  

Polarization drift is considered here because it can be an aid to cross-field transport under 

certain conditions.  A number of detailed experiments and theoretical models have been 

conducted for cross-magnetic field transport experiments. These results show that for 

specific magnetic configurations, plasma cross-field transport can exist for β < 1 

conditions. Schmidt [Schmidt 1960] initially considered the dynamics of a low – β 

collisionless plasma beam moving perpendicular to a magnetic field B.  He shows that as 

the plasma moves across field lines, a self-induced electric field E arises such that  

0=×+ BvE  where v is the plasma flow velocity.  The consequence of this field is that a 

zero-order BE ×  plasma drift arises which opposes the curvature of the magnetic field, 

transporting the plasma across the field lines.   

 

There are several conditions suggested by both experiment and theory for the onset of 

this BE ×  diffusion.  The first condition is that the plasma exhaust must have sufficient 

kinetic energy to set up the polarization charge separation.  

 

 ( )2
1 / i

pi ci
e
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ω ω+ >>  (2.65) 

 

where ωpi and ωci  are the ion plasma frequency and gyrofrequency, respectively. [Wessel 

1981]  [Ishizuka 1982] [Wessel 1990].     
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The second condition places an upper limit on the radius of the plasma plume compared 

to the ion gyroradius r / ri such that the diffusion process is dominated by BE ×  diffusion 

rather than magnetic expulsion: 
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r K β β

<  (2.66) 

 

Where βth = Wth /WB and Wth is the ion thermal energy density 2/2
thiii vmn  and K is an 

experimentally determined constant ≈ 2.3. [Hurtig 2004]   [Brenning 2005] .  The plasma 

flow must have a strong perpendicular component in order to be affected in this way, 

which is not the case for a small divergence angle magnetic nozzle.  However, given an 

extreme magnetic curvature, e.g. a reversed magnetic field condition, polarization drift 

may become more pronounced. 

 

2.4.6 Magnetic nozzle efficiency 

A performance measurement useful to the rocket systems engineer includes the thrust T 

or momentum flux exiting a given plane in the rocket plume, where 

 

 2( ) [ ]z i i zT z v m m n v dS N= = ∫&  (2.67) 

 

This value will change throughout the magnetic nozzle as accelerating and decelerating 

forces influence the plasma flow.  Upon detachment from applied magnetic fields, the 

plume trajectory and the thrust approach an asymptotic value, assuming that ion-neutral 
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collisions are minimal.  The rocket thrust, measured at a point after detachment is 

attained can provide a measure of nozzle efficiency: 

 

 2 2
0 0

/noz z z z zz z
T T mnv dS mnv dSη =∞ = =∞ =

= = ∫ ∫  (2.68) 

 

Where 0z = is the nozzle throat where axial magnetic field is at a maximum, and z = ∞  

is in the detachment zone, i.e. β > 1 for the whole plume profile.  This nozzle efficiency 

provides a performance metric for the rocket nozzle designer who may be interested in 

maximizing nozzle performance while minimizing system mass and power requirements.  

The above equation can also be stated as a cosine loss term, which for small values of 

trajectory angle θ  and averaged over the plume is approximately equal to [Arefiev, 

2005]: 

 
2

1
4noz

θη ≈ −     (2.69) 

 

A second way of describing the same nozzle metric is by looking at the nozzle’s power 

efficiency, as opposed to its thrust or momentum efficiency.  A measurement of jet power 

Pjet integrates measured ion density and axial velocity over the entire 2D nozzle plane: 
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Likewise the jet nozzle efficiency ,N jetη  can be stated as 
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Measurements of ne and vz across the entire plume will allow one to determine the above 

values by experiment. 
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CHAPTER 3 

EXPERIMENT CONFIGURATION 

 

3.0 Overview  

Laboratory conditions suitable for magnetic detachment research must meet several 

conditions.  First, the experiment must employ a plasma source capable of producing a 

sufficiently dense and energetic flow to reach the β > 1 condition.  Second, the vacuum 

chamber used must be large enough to allow for the long pathlengths required to achieve 

β > 1.  Third, the vacuum chamber must be kept at a neutral background pressure 

sufficiently low to keep ion-neutral charge-exchange mean free path less than the path 

length for achieving β > 1. 

 

An experiment setup meeting the above criteria, named the Demostration of Detachment 

Experiment (DDEX) was set up at the NASA Marshall Space Flight Center in Huntsville, 

AL.  This NASA project was initiated in 2005 as a response to a Broad Agency 

Announcement award, and was co-led by Dr. Boris Breizman and Dr. Roger Bengtson 

both from the University of Texas, Austin.  The multiple-institution team that 

investigated this project hailed from Alabama (UA- Huntsville, Marshall Space Flight 

Center, Auburn University), Texas (UT-Austin, Ad Astra Rocket Company) and 

Michigan (UM- Ann Arbor) and comprised 4 faculty members, four graduate students 
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and numerous NASA civil servants.  Though the project was only funded for one year, 

the collaborators produced eight conference presentations, and one journal article during 

the course of the experiment. [Chavers, 2006]  [Deline, June 2006]  [Deline, July 2006] 
 

[Schuettpelz, 2006] 
 [Cassabry, 2006]  [Deline, July 2007]  [Deline, September 2007]  

[Breizman, 2007]  [Deline, 2007]  

 

The project’s goal was to investigate the dynamics of plasma expansion within, and 

detachment from an applied magnetic nozzle.  The applied magnetic field would have to 

be strong enough to initially confine the plasma, and the plasma source would have to be 

powerful enough to impart the plasma flow with enough kinetic energy to eventually 

break free from the applied magnetic fields within the limits of the vacuum chamber’s 

physical size and collision-inducing neutral background pressure.  In order to achieve this 

goal, a large (2.75 m x 5 m) vacuum chamber was outfitted with a 200–300 kW pulsed 

DC plasma source emitting into a 0.07 T peak field magnetic nozzle.   

 

3.1 DDEX Experiment – Facilities 

3.1.0 Vacuum chamber configuration 

The vacuum chamber used in this experiment is a 2.75 meter diameter by 5 meter long 

cylindrical stainless steel tank with numerous electrical feedthroughs and diffusion 

pumps providing 80,000 to 100,000 liters per second pumping speed on hydrogen (see 

Figure 3.1 and [Chavers, 2005]).  The two diffusion pumps allow the use of lighter gases 

(helium and hydrogen) and keep the pre-pulse chamber background pressure below 
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2x10-6 Torr resulting in an estimated charge exchange mean free path in excess of the 

experiment size.  Pressure analysis is investigated in more detail in Section 3.1.3.   

 

Figure 3.1: Detachment Demonstration Experiment (DDEX) 30 m3 main chamber.  
Two diffusion pumps on the bottom provide 100,000 l/s pumping for light gasses.  
Experiment is located at NASA Marshall Space Flight Center, Huntsville, AL. 
 

The vacuum tank has a smaller (1-m-diameter by 0.75-m-long) cylindrical extension 

called the “spool piece” attached to its front end, as seen in Figure 3.2.  The spool piece 

provides a mounting location for the plasma source, a series of three external coils 

wrapped around its circumference, and a small bore, high field “choke magnet”.  The 

center of this choke magnet defines the origin of the chamber coordinate axis, with the 

axial position z = 0 m denoting both the center of the choke magnet and the position of 

peak magnetic field.  The DC plasma source is mounted directly to the spool piece, at 

axial location z = -0.3 m.  Access to the chamber is provided by a removable endcap on 

the downstream end of the chamber, opposite the plasma source. 
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Figure 3.2: Detachment Demonstration Experiment  (DDEX) magnetic nozzle 
section.   Shown are the “spool piece”, plasma gun, RF interferometer and choke 
magnet coil.  Main tank is to the right of the photo.  Z = 0 axial location is at the 
center of the choke magnet.  Inset shows orientation relative to Figure 3.1. 
 

 

3.1.1 Vacuum magnetic fields 

The DC magnetic field inside the experiment is defined by five sets of magnet coils.  The 

plasma source contains a 300-turn magnet with an inner diameter of 5.1 cm.  The choke 

magnet is a 166-turn magnet with inner diameter of 25.4 cm, located at z = 0 m.  These 

two small-bore coils define the majority of the applied magnetic field in the experiment.  

Additional current carrying coils are wound around the 91 cm diameter spool piece at 

z = 0.2 m, z = 0.5 m and z = 0.8 m, in the following number of turns: 30, 21 and 14.  

These external current carrying coils are made of AWG 8 wire, and are used to tailor the 

magnetic nozzle shape in the mid-nozzle region.   

 

The resulting vacuum magnetic field depends on the currents flowing through the magnet 

coils.  A standard condition (listed as Dataset #3 in Table 4.1) uses 5 A in the gun coil, 

Spool piece 

Choke 
magnet 
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100 A in the choke coil, and 10 A, 3 A, and 3 A in the final three nozzle magnets 

respectively.  The peak magnetic field intensity under these conditions is 0.068 T on-axis, 

falling off with 1/z2 in the nozzle section until the applied field intensity becomes 

~0.001 T at a location 0.8 m from the choke magnet. (Figure 3.4)  At a point 1.85 m from 

the choke magnet, superposition of the earth’s field (5x10-5 T, 60o inclination) with the 

applied field results in constant flux lines bending downwards into the chamber walls as 

shown in Figure 3.3.  On-axis measurements with a 3D magnetometer confirm this 

theoretical field map.   
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Figure 3.3  Standard magnetic field profile in the DDEX experiment.  Trajectories 
are lines of constant magnetic flux mapped back to the plasma gun source.   
Magnetic field map was confirmed by magnetometer measurements. 
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Figure 3.4: Magnetic field intensity (theoretical) on-axis for standard magnetic 
nozzle conditions, listed as Dataset #3 in Table 4.1.  
 

 

3.1.2 Plasma source 

For the DDEX experiment, one plasma source is used – a pulsed DC plasma washer gun 

operating at 200 - 300 kW.  A schematic diagram of the gun is shown in Figure 3.5.  The 

washer gun consists of a 2 cm tall stack of molybdenum washers of inner diameter 

0.5 cm and outer diameter 2 cm.  A molybdenum anode and cathode at either end of the 

washer stack provide the discharge arc.  Isolation between the washers is provided by 1 

mm thick boron nitride ceramic washers with inner diameter 1 cm.  Hydrogen and helium 

were used as a feedgas, although other gases are possible.  Typical discharge pulse 

lengths are a few milliseconds, with manufacturer reported plasma densities at ne 

≈ 1x1020 m-3 and electron temperature Te ≈ 10 eV at the source aperture. [Fiksel, 1996]  

A charged capacitor bank provides typical discharge voltages and currents of 270 V and 

700 A respectively, as shown in Figure 3.6.  In the nozzle experiment, measured 

temperatures in the nozzle section were never greater than Te = 1.5 eV suggesting the 

plasma underwent significant cooling as it exited the plasma source. Given this 1.5 eV 
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temperature upper bound, and a magnetic nozzle two meters in length, the transit time is 

0.1 ms for hydrogen.  A typical pulse length is an order of magnitude longer than the 

transit time, thus allowing the plasma to reach steady state during this experiment. 

 

The gas delivery system for the pulsed DC plasma source consists of a small gas 

reservoir that is filled by a high pressure gas tank once per day.  The reservoir is kept at 

5-10 psi and feeds the plasma gun through a Parker high speed solenoid valve.  The 

response time of the Parker solenoid valve is < 5 msec for a 2.5 msec pulse.  Error! 

Reference source not found. shows an example of the timing of the gas valve and 

discharge current.  A trigger pulse of < 1 msec duration is provided by the data 

acquisition computer to synchronize data acquisition, gas valve opening and capacitor 

discharge.   

 

 

Figure 3.5  High powered plasma gun used in this experiment [Fiksel 1996] 
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Figure 3.6(a): Plasma source discharge current measured for hydrogen shots.  
Discharge voltage for this typical shot was 270 V.   
 

 

Figure 3.6(b): Example neutral gas rate Igas (left) and discharge current Id (right) 
[Fiksel, 1996]. Neutral gas flow is the non-ionized neutral flux leaving the source, 
and is reported as equivalent Amps, assuming two electrons per diatomic hydrogen 
molecule.  Neutral gas rate is lower than discharge current due to the plasma gun’s 
high ionization fraction. 
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3.1.3 DDEX Neutral pressure analysis 

3.1.3.1 Pressure data 

Pressure data is recorded at two locations in the DDEX experiment.  An MKS Baratron 

627B is located inside the spool piece to detect the pressure rise during a pulse.  This 

capacitance manometer has a moderate time response of 20 msec and a pressure detection 

threshold of 2x10-5 Torr.    Since this pressure sensitivity is not good enough to detect the 

lower baseline pressure inside the expansion chamber, a second pressure gauge is used in 

the main vacuum tank.  The Granville-Phillips Stabil-Ion gauge is an ionizing vacuum 

gauge with an ultra-high vacuum sensitivity of 1x10-10 Torr.  This pressure sensor is 

much more sensitive to lower pressure, and gives more accurate pressure readings prior 

to a plasma shot.  However, it has a slow time response (0.5 s) compared with the 

Baratron.  Because this ionizing pressure gauge is located downstream of the expected 

detachment zone, it is mainly used to provide base pressure measurements in this 

experiment. 

 

Pressure data for helium and hydrogen shots are very similar, so the pressure of only one 

species (helium) will be presented.  As shown in Figure 3.7, the pre-pulse background 

pressure in the DDEX experiment is measured by the ion gauge to be 1.7x10-6 Torr.    

The Baratron has a sensitivity of 2x10-5 Torr and thus cannot measure this low of a 

baseline pressure.  After the shot, both the Baratron and ion gauge measure a peak 

pressure of 1-2x10-4 Torr with the Baratron showing the higher pressure of the two.  The 

greater measured pressure inside the spool piece may be due to its smaller volume and 

greater distance from the diffusion pumps.  It may also be due to differences in sensitivity 
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between the ion gauge and Baratron, or that that the ion gauge’s slower time response 

misses the peak of the transient pressure rise.  Superposition of a Langmuir probe trace 

shows the timing of the plasma shot relative to the neutral pressure rise.  The timing of 

the Baratron measurement is crucial, as this provides the best high-speed measurement of 

pressure.  According to the manufacturer, [MKS, 2007] the device has a 20 msec 

response time due to noise filtering electronics. Taking this delay into account by shifting 

the pressure response back by 20 msec, the background pressure measured by the 

Baratron during a plasma shot is 4x10-5 Torr.  Because the filtering electronics results in 

substantial uncertainty in the timing of the pressure rise, the pressure during a plasma 

shot could be as high as 2x10-4 Torr, if the peak pressure value is used. 
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Figure 3.7: Pressure data for helium pulse.  Ion gauge gives high sensitivity 
background pressure in the main chamber.  Langmuir probe response (scaled) 
shows timing of the pulse.  Baratron provides fast time response pressure in the 
spool piece.  (20 msec delay accounted for). Pressure = 4x10-5 Torr during the pulse, 
up to as high as 2x10-4 Torr due to timing uncertainty. 
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The time required to return the vacuum chamber to its original low baseline pressure 

depends on which pressure sensor you consider.  An extended pressure measurement is 

given in Figure 3.8.  According to the Baratron sensor, the chamber pressure returns to 

below its measurement threshold (2x10-5 Torr) within 2 seconds of a pulse.  The ion 

gauge requires more time to reach this pressure reading; neutral pressure is measured at 

2x10-5 Torr after 5 seconds, and a full 20 seconds are required to return to its low pre-

pulse pressure level of 2x10-6 Torr.  Whether it actually takes this long for the vacuum 

chamber to return to this low baseline pressure is unknown – trapped gas or slow 

response time of the ion gauge may be affecting the readings.  Therefore, 20 seconds 

should be considered a conservative guess as to how long must be waited after a pulse for 

the vacuum chamber to return to favorable vacuum conditions.  This timing was 

considered while operating the DDEX experiment, as pulses were taken at an interval of 

at least 60 seconds.  This allowed time for the vacuum chamber to return to a baseline 

pressure, and also allowed time for the plasma source capacitors to recharge, and for the 

x-z translation stage to be moved. 
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Figure 3.8: Extended pressure data for helium pulse.  Ion gauge shows a long time 
constant to return to baseline pressure, which may be an artifact of the gauge.  
Baratron shows a much faster time response. 
 

3.1.3.2 Ion gauge sensitivity to different gases 

Ion gauge sensitivity is dependent on the species of gas present in the system.  This is not 

the case with the Baratron capacitance manometer that detects the static pressure of the 

neutral gas against a flexible diaphragm.  However, with an ion gauge reading, the 

measurement may have to be adjusted by a calibration constant to reflect the relative 

sensitivity of the ion gauge to different species. 

 

A list of calibration coefficients is presented by [Bartmess 1983].  Helium has a relative 

sensitivity of 0.20, while hydrogen has a relative sensitivity of 0.44, meaning that 

pressure measurements from an ion gauge should be divided by these values to obtain the 

true pressure reading.  Therefore, the ion gauge pressure readings in Figure 3.7 and 

Figure 3.8 may need to be increased by nearly a factor of 5 for the helium measurements 

Ion gauge 

Baratron 
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and a factor of 2 for the hydrogen measurements.  This is a potential problem because by 

including this calibration factor the ion gauge pressure reading ends up being greater than 

the Baratron pressure measurements, even though it is farther from the gas source and 

closer to the diffusion pumps.  One response to this possible problem is that it is possible 

that the aforementioned calibration should only be used for low pressures below 1x10-5 

Torr as stated in the user’s manual.  [Granville-Phillips 1999]  Accounting for this 

possible source of uncertainty, it should be noted that the peak pressure recorded by the 

ion gauge may be as high as 5x10-4 Torr for helium and 2x10-4 Torr for hydrogen. 

 

The pre-pulse baseline pressure may also have a different value due to the ion gauge’s 

species-dependent sensitivity.  However, this is a difficult problem to address because 

whereas the post-pulse pressure rise is certainly due to the propellant gas (helium or 

hydrogen), the baseline pressure is more likely to be due to leaks in vacuum fittings or 

outgassing from hydrocarbons present inside the vacuum chamber.  Therefore the exact 

gas species is unknown.  Assuming that the likeliest source of neutral background 

pressure is air leaking into the vacuum chamber (Air ~ 78% N2, 21% O2, 1% Ar), the 

calibration coefficient is 0.98 ~ 1.  No modification is therefore required, and the pre-

pulse baseline pressure stands at 1.7 x10-6 Torr as measured by the ion gauge. 
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3.1.3.3 Plasma velocity vs. neutral gas velocity 

A neutral gas travels at a most probable speed vm equal to: [Tipler, 2000] 

 

 kT = ½ mvm
2.  (3.1) 

 

Based on this estimate, the diatomic hydrogen neutral gas released by the puff valve 

travels at a speed of approximately 1.6 km/s.  Likewise, neutral helium gas travels at 

approximately 1 km/s as it is released into the DDEX experiment.  The corresponding 

trip time for neutral gas to travel the 2 m length of the DDEX experiment is 

approximately  1.25 msec for hydrogen and 2 msec for helium.  The equivalent trip time 

for ionized hydrogen or helium is an order of magnitude faster, as will be shown in 

Section 4.1.4.  The plasma pulse duration is only 3 msec, and occurs very near the time of 

gas valve opening, as shown in Figure 3.6(b).  This suggests that a large fraction of the 

downstream plume can be measured prior to the neutral gas pressure arriving at the same 

measurement location.  Therefore, even under the worst possible pressure conditions, 

there exists a window of time in the first 1-2 msec of the pulse where there is not likely to 

be interference from neutral gas.  This condition is considered in the measurements 

section, and density profiles are reported within the first 2 msec of the plasma pulse. 

 

3.1.3.4 Randolph Criterion 

The influence of neutral particles is an important consideration for this experiment since 

we are attempting to prove the transfer of momentum in a plasma plume in a simulated 

space environment.  The Randolph criterion [Randolph, 1993]  has been suggested as an 
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upper pressure limit for facility effects on the EP plume to be negligible, based on ion-

neutral collision effects.  This level has been set at 1.3x10-5 Torr for Hall thrusters 

operating on xenon.  Compared with the pre-pulse pressure in the chamber of 1.7x10-6 

Torr, the DDEX facility meets the Randolph criterion by nearly an order of magnitude 

prior to a shot.  However, immediately following a shot, the chamber pressure rises to 

2x10-4 Torr which is beyond the Randolph criterion. The timing of this pressure rise is 

crucial, because if the pressure rise occurs during a plasma shot, collisional dissipation 

could result.   

 

As stated above, the Baratron pressure gauge has a 20 msec delay due to noise filtering 

electronics.  If this delay is accounted for, the neutral pressure was measured to be 

4x10-5 Torr during the 3 msec plasma pulse.  This pressure exceeds the Randolph 

criterion as stated above.  However, as will be shown, the Randolph criterion should be 

adjusted according to the gas species.  Based on this adjusted pressure limit, the 

background pressure in this experiment meets the criteria for negligible neutral gas 

interaction. 

 

3.1.3.5 Collisional mean free path 

The neutral background pressure plays an important role in determining the collisional 

mean free path of the plasma.  An additional component to this calculation is the collision 

cross-section.  Data for the collision cross-section for Hydrogen, Argon and Helium can 

be consulted and used along with neutral particle density to estimate the mean free path 
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for collisions in the experiment.  The following table lists approximate collision cross-

sections for a variety of conditions: 

 
 

Gas species σCEX  σtotal Ref. 
He+-He, 6eV 1.2 x10-19 m2 

1.6 x10-19 m2 
3.5 x10-19 m2 

…………………. 
[McDanel 1993] 
[Gilbody 1957] 

H2
+-H2, 2eV 7 x10-20 m2 …………… [Gilbody 1957] 

Ar+-Ar, 20eV 2.2 x10-19 m2 6 x10-19 m2 [McDanel 1993] 
Ar+-Ar, 500 eV 2.0 x10-19 m2 4 x10-19 m2 [McDanel 1993] 
Xe+-Xe, 200 eV 4x10-19 m2 

5.5x10-19 m2 
…………….. 
…………….. 

[Randolph 1993] 
[Miller 2002] 

Table 3.1:  Collisional cross-sections for Helium, Hydrogen Argon and Xenon.  σCEX 
is the charge exchange cross-section.  σtotal is the total cross section including 
momentum exchange. 
 

 
where σCEX is the ion-neutral charge exchange cross section and σtotal is the total collision 

cross section, including charge exchange and elastic scattering. Discrepancy between 

sources, where it exists, can be considered experimental uncertainty.  The charge 

exchange mean free path is determined by  

 

 ,
1 1

i n
CEX neutn

λ
σ

=  (3.2) 

 

 where σtotal could alternatively be substituted into the above equation to obtain the total 

collisional mean free path, and nneut is determined by the ideal gas law to be: 

 

 neut
B neut

Pn
k T

=   (3.3) 
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where P is the neutral gas pressure in Pascal, kB is Boltzmann’s constant, and Tneut is the 

neutral background temperature in Kelvin, taken to be equal to 293 K, approximately 

equal to the chamber temperature.  Of course, the chamber temperature value is a bit of 

an approximation - the experiment took place in Alabama in the summertime and could 

have been warmer, up to 298 K.  This is a relatively small contributor to uncertainty 

though, so the standard 293 K is taken for this analysis. 

 

Given the above cross sections, Figure 3.9 gives the appropriate mean-free-paths.  With a 

pre-pulse neutral background pressure of 1.7x10-6 Torr, the charge exchange mean free 

path for helium is around 110 m, and 250 m for hydrogen, both of which are much 

greater than the scale length of the experiment.  Post-pulse the pressure spikes at 2x10-4 

Torr, which leads to a 0.9 meter charge exchange mean free path for helium and 2.2 m for 

hydrogen.  This is less than or on the order of the experiment scale length, ~ 2 m.  

Therefore, significant slowing of the plasma flow could occur if the plasma pulse occurs 

during this peak measured pressure of 2x10-4 Torr. 

 

As stated in 3.1.3.1, by accounting for a pressure measurement delay of 20 msec, the 

Baratron measured a pressure of 4x10-5 Torr during the pulse.  Due to timing uncertainty 

the pressure during the pulse could have been as high as 2x10-4 Torr.  At 4x10-5 Torr, the 

charge exchange mean free path is 4.7 m for helium and 11 m for hydrogen, which is 

greater than the experiment path length.  The total mean free path including charge and 

momentum exchange is 2.2 m for helium and even greater for hydrogen.  All of these 
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mean free paths are larger than the experiment length of 2 m.  However, none of the 

mean free paths are so large that charge exchange collisions can be neglected altogether; 

therefore further experimental evidence of ion-neutral charge exchange collisions will be 

investigated in Section 4.3.  The impact of ion-neutral momentum exchange collisions on 

plume trajectories is considered in Section 5.1.5.3. 

 

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E-06 1.00E-05 1.00E-04 1.00E-03

Chamber pressure (Torr)

M
ea

n 
fre

e 
pa

th
 (m

)

H+ CEX
He CEX
Ar CEX
He total
Xe CEX

 

Figure 3.9:  Collisional mean free path for four gas types.  Xenon is included for 
comparison sake – no testing was performed with Xenon.  CEX denotes the mean 
free path for charge exchange collisions.  Total denotes the mean free path for both 
charge exchange and elastic scattering. 
 

 

3.1.3.6 Species dependent Randolph criterion 

It is interesting to note that for a given pressure, the charge exchange mean free path λi,n 

for xenon is a factor of three less than λi,n for helium, and a factor of seven shorter than 

λi,n for hydrogen.  This has importance with regards to the Randolph criterion, since the 

criterion was formulated specifically for the collisional effects of a thruster operating on 
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xenon. It is assumed that the Randolph criterion would be different for a different 

operating gas.  A species independent limit can be found if the ion-neutral charge 

exchange mean free path is used instead of the neutral pressure.  The Randolph limit for 

xenon is 1.3x10-5 Torr, which can equivalently be stated as a charge exchange mean free 

path of λi,n = 4.7 m.  To match this λi,n in H+ and He+, the neutral pressure limit is instead 

9.2x10-5 Torr and 4.3x10-5 Torr, respectively.  These pressure values can be considered 

species-dependent Randoph criteria for the neutral background pressure for thrusters 

operating on hydrogen and helium.  These re-stated Randolph criteria are an 

improvement for this experiment, because now the 4x10-5 Torr pressure measured during 

a shot will meet the species-dependent Randolph criteria.  This is reflective of the 

relatively long charge exchange mean free paths in the experiment. 

 

3.2 DDEX Diagnostics 

The DDEX experiment was instrumented with a variety of plasma diagnostics.  Some of 

these will be discussed in this work, including Langmuir triple-probes, microwave 

interferometers, Mach probes and time-of-flight photomultiplier tubes.  Other diagnostics 

such as flux loops and b-dot probes did not provide information useful for this work.  

They will not be considered further here. The experiment was focused on making 

measurements of magnetic detachment and the transition from β <1 to β >1.  Diagnostics 

were therefore concentrated in the mid-nozzle to far-nozzle region of this experiment. 

Figure 3.10 shows an isometric view of the experiment, and Figure 3.11 provides a top 

view with the spatial layout of all diagnostics. 
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Figure 3.10:  Diagnostic setup of the MSFC magnetic nozzle experiment.  Axial 
location of diagnostic instruments are noted.  Vertical triple-probe array not shown.  
Coordinates as follows: X-axis is transverse to the plasma flow in the horizontal 
direction. Z-axis is parallel to plasma flow down the chamber.  Y-axis is along a 
vertical cross-section of the chamber. 
 

 

Figure 3.11:  Detailed overhead view showing positions of all diagnostics.  The 
scanning triple probe at the end of the boom can reach from z = 0 m – 2.0 m and 
from x = -0.5 m – 0.5 m, and is shown at the center of its extent.   The Mach probe is 
affixed to the bottom of the chamber and slightly below centerline. 
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The relevant measurements to be made in the mid-nozzle to far-nozzle region of the 

DDEX experiment are density (ne,ni), temperature (Te) and velocity (vi ) .  In order to 

make these measurements, the following equipment was employed: 

 

• A 2-D translation stage with diagnostics boom to allow measurements throughout 

the chamber with millimeter positioning accuracy. 

• A small scanning triple-probe attached to the diagnostics boom to measure ni and 

Te throughout the experiment.  Typical measurements were taken in a radial scan along 

the scene beam of a microwave interferometer 

• A vertical array of six Langmuir triple-probes attached to the diagnostics boom, to 

provide Te and ni profiles for each shot.    

• A microwave interferometer operating simultaneously at 70 GHz, 90 GHz and 

110 GHz to provide line-integral ne measurements close to the plasma source. 

• A second, multi-channel interferometer operating at 15 GHz to provide line-

integral ne measurements in the far-nozzle region. 

• Photomultiplier tubes to record natural plasma fluctuations at multiple locations, 

giving an estimate of vi by time-of-flight. 

• A Mach probe to measure vi. 

 

The following sections give further details on the above-mentioned diagnostics used in 

the DDEX experiment. 
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3.2.0 Data acquisition system 

Unless explicitly stated otherwise, diagnostic signals are optically isolated by Terahertz 

Technologies Inc. analog to optical converters, part number LTX 510 that are powered by 

an isolated rack of 12 V 7.0 Amp-hour lead acid batteries.  The signal is routed via 

optical fiber to a Terahertz Technologies TIA500 optical to analog converter.  The 

measurement rack consists of a National Instruments BNC 2090 breakout box and a PXI 

1042 chassis running four PXI 6254 analog-to-digital converter cards and a PXI 8336 

timer card.  This provides 128 analog channels operating at 16 bits and 1Megasample / 

second.  A second high-speed rack consists of five PXI 5112 oscilloscope cards operating 

at 100 MHz, and an Acquiris DC270 providing 20 channels at 1Gigasample / second.  

This second rack provides high-speed digitization for high frequency measurements such 

as plasma gun current, B-dot probes and photomultiplier tubes.  The data is digitized and 

stored on a network computer to be backed up and retrieved at a later date. 

 

3.2.1 Langmuir triple- probes – plasma assumptions 

In Section 2.1.1, it was assumed that the following plasma conditions were true in the 

area around the triple probes: 1) The electron energy distribution is Maxwellian, 2) the 

collisional mean free path for electrons is large with respect to both the ion sheath 

thickness hs and probe radius rp, and 3) the thickness of the ion sheath is smaller than the 

probe separation so that interaction between the three probes is negligible.  For the 

DDEX experiment, these conditions are valid for the following reasons. 1) The electron 

collision period inside the plasma source [mks units] is [Huba, 2006]  
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 12 3/ 2 12.91x10 ln secee e en Tν − − −⎡ ⎤= Λ ⎣ ⎦  (3.4) 

 

For ne ≈ 1x1020 m-3 and Te ≈ 10 eV inside the plasma gun, this yields νee =1x10-8 seconds.  

Given Eq. (3.1), the transit time of a 10 eV hydrogen plasma exiting the 2 cm plasma 

source is 4x10-7 seconds, meaning the electrons have several characteristic times to 

thermalize before exiting the plasma source.  2) Using measured data from Chapter 4 for 

the furthest upstream location of the probe, and using Eq. (3.4) the νee  collisional period 

is 2x10-8 seconds resulting in a mean free path of  

 

 e
ee ee

e

eT
m

λ ν=  (3.5) 

 

or λee = 2.6 cm which is much greater than the largest probe radius used (rp= 0.12 cm).  

Collisions other than electron-electron happen with even lower frequency and are also not 

a factor.  3)  At its maximum extent, the sheath size is (from Eq. (2.2) using Te = 1.5 eV 

and ne = 1x1017 m-3 ): hs =  0.4 mm which is much smaller than the smallest inter-probe 

spacing of 2 mm, and also much smaller than the electron mean free path λee.  The 

assumptions used in Chapter 2 are therefore valid for all measurements made in the 

DDEX experiment. 

 

3.2.2 Small boom-mounted Langmuir triple-probe  

An X-Z translation stage inside the chamber allows remote radial scans of the plasma 

exhaust.  A Langmuir triple-probe (Figure 3.12) is positioned on the end of a 1.3 m boom 
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attached to this motion stage, and oriented perpendicular to the plasma flow.  The 

Langmuir triple-probe is composed of three stainless steel cylindrical collectors (probe 

tips) of radius 0.45 mm and height 5 mm.  The separation of each of the three stainless 

steel conducting probe tips is at least 2 mm.  The probes are arrayed such that each 

conductor is not shadowing another during the experiment.  A short piece of alumina 

ceramic maintains the position of the collecting tips, and houses the wiring that connects 

to the stainless probe tips.  Coaxial cables run from the probe tips down the boom out to a 

BNC patch panel at the vacuum chamber wall.  A photograph of the small scanning 

triple-probe is shown in Figure 3.13. 

 

 
 (a)  (b) 
 
Figure 3.12:  Electrical schematic (a) and top view of the scanning Langmuir triple 
probe (b).  Probe conductor diameter and height are 0.9 mm and 5 mm respectively. 
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Figure 3.13:  Photograph of scanning Langmuir triple probe (vertical orientation) at 
the end of the diagnostics boom.  Two other probes are visible here (B-dot probes) 
but are far enough away to not affect LP measurement. 
 
 
 
The middle pin (pin two) is left floating to provide electron temperature measurements.  

The floating signal is optically isolated with input impedance of 1 MΩ, resulting in a 

current draw several orders of magnitude below the ion saturation current.  Pins one and 

three are biased to 44 V relative to one another by a series of 9 V batteries, with ion 

current measured by a 10 Ω shunt resistor.  Providing a large DC bias ensures that pin 3 

is well into ion saturation, collecting only ion current. 

 

The approximate centerline plasma density at the two limiting axial locations is 

3 x 1018 m-3 at z = 0.43 m and 1 x 1017 m-3 at z = 1.85 m. The electron temperature is less 

than 1.5 eV throughout the measured portion of the experiment. The Langmuir triple-

probe tip radius rp is therefore many Debye lengths at the upstream location (rp = 86 λD), 

but only tens of Debye lengths (rp = 16 λD) at the downstream location.  The Langmuir 
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probe is assumed to be operating in the thin sheath regime, which requires rp >> λD.  

Errors may be introduced in the Langmuir probe measurements due to large Debye 

lengths with respect to the probe radius rp and therefore large sheath size.  This is 

particularly the case for downstream measurements where the thin-sheath assumption is 

only partially valid, i.e. where plasma Debye length is greater than 10% of the probe 

radius.  While the absolute density results will not be affected much (as this is determined 

by the hybrid probe - interferometer method) this thin-sheath violation will introduce an 

error term in the calculated plasma column diameter for downstream measurements.  A 

full accounting of plume width error is provided in Appendix B.  Errors in the 

measurement of Te will be discussed in Section 4.1.3.   It is also assumed that the radius 

of the triple-probe is small with regards to the radial density gradient.  Given the probe 

radius (4.5x10-4 m) and the upstream plasma column radius of 8.5x10-2 m, this is a fair 

assumption.  To reduce end effects, the probe must be long compared with its radius.  In 

the case of the small scanning triple probe, the probe tip accounts for only 4 % of the 

total probe surface area.   

 

3.2.3 Vertical triple-probe array 

A 6-element Langmuir triple-probe array is also mounted on the boom to determine the 

plume’s radial distribution for each shot.  This array consists of six triple-probes arrayed 

vertically at 0.126 m intervals.  Relative to the chamber centerline, the y coordinates of 

the six triple probes are y = ±0.064 m, ±0.191 m and ±0.317 m.  The probe tip radius for 

these conductors is a larger 0.12 cm with 0.6 cm of the conductor length exposed.  The 

conductor material is made from stainless steel welding rod that is sheathed in an alumina 
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ceramic tube 6.6 cm long.  Unlike the small boom-mounted triple probe whose probe axis 

is vertical, these triple-probes are mounted horizontally, with all 18 conductors of the 6 

triple-probes lying in the same vertical plane, as shown in Figure 3.14 and Figure 3.15.  

End effects will be more evident for this probe than the scanning triple-probe since the tip 

surface area comprises 9% of the total surface area.  Since absolute density measurements 

are determined by comparison with a microwave interferometer, this end-effect error 

does not contribute to density measurement error.  

 

The vertical probe array is mounted 0.34 m behind the small boom-mounted triple probe, 

making its measured plasma density correspondingly smaller.  The larger radius allows 

the probe to fit within the thin-sheath criteria at the downstream position, with the ratio of 

probe radius to Debye length of rp = 43 λD at z = 1.85 m.  This is nearly a factor of 3 

improvement over the small boom-mounted triple-probe which leads to an improvement 

in accuracy of plasma density measurements at this downstream location.   

 

The electrical connections and data acquisition setup for the vertical Langmuir triple-

probe array are identical to those described above for the small boom-mounted triple 

probe.  A 44 V bias is provided with 9 V batteries, and ion current is detected across a 

10 Ω sensing resistor.  The potential of the electron-collecting probe is measured with 

respect to the floating pin, which is used to measure electron temperature. 
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Figure 3.14: Electrical configuration (a) and dimensions (b) of triple probe vertical 
array consisting of 6 sets of probes.  Plasma is flowing out of the page in view (b). 
 

 

Figure 3.15: Langmuir triple-probe vertical array.  Simultaneous Te and ne data is 
recorded on each of the six triple-probes. 
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3.2.4 Microwave interferometers - overview 

Additional chamber diagnostics include microwave interferometers, positioned at two 

axial locations to provide spatial and temporal density measurements.  The upstream 

interferometer is a polychromatic quadrature interferometer that operates simultaneously 

at 70 GHz, 90 GHz and 110 GHz.  The downstream interferometer is positioned about 

1.5 meters from the first interferometer, and operates at a lower 15 GHz.  These particular 

frequencies were chosen to provide a plasma density measurement range consistent with 

the expected plasma density at each measurement location. 

 

3.2.5 Polychromatic microwave interferometer 

This instrument was developed and operated by the Marshall Space Flight Center, and 

used in prior experiments. [Dobson, 2004]  The interferometer is positioned near the 

nozzle entrance, 0.33 m downstream from the choke magnet.  The spatial resolution for 

this interferometer is 0.015 m, with a minimum sensitivity of 1016 m-3 over the 1 m path 

length.  [Chavers, 2006]  The transmit and receive antennas can also be moved to 

different vertical positions, providing a vertical density profile.   

 

The interferometer is composed of a receiver and transmitter, connected by flexible 

coaxial cables for the reference leg, and horn antennas for the plasma measurement leg.  

Local oscillators within the transmitter section are frequency multiplied and directed to a 

transmitting horn antenna equipped with Gaussian optics.  The optics focal length is 

~0.6 m, and provides a measurement spot size of 0.02 m at 70 GHz.  For each of the three 

frequencies, the reference and scene components are split into two signals before 
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combination at the receiver, one of which is shifted in phase to produce a quadrature 

measurement.  Figure 3.16 shows a schematic drawing. 

 

 

 
Figure 3.16:  Schematic of the polychromatic interferometer showing both the 
transmit and receiving sections.  [Dobson, 2004] 
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Figure 3.17: Polychromatic interferometer operating at multiple frequencies. (70 
GHz, 90 GHz and 110 GHz)  The interferometer can be moved vertically by a 
manual elevation stage.  The large black cylinder on the right contains the Gaussian 
optics lens antenna. 
 

 

3.2.5.1 Refraction and calibration of polychromatic interferometer 

Calibration of the polychromatic interferometer was performed daily by the staff at 

MSFC.  The microwave detectors were found to be quite stable from day to day, and 

reflections were found to be minimal due to the interferometer antenna’s narrow 

beamwidth. 

 

Manufacturer’s data shows that the polychromatic interferometer beamwidth at 70 GHz 

is 1.5 cm with a focal distance of 0.6 m.  Compared with the plasma’s full-width half-

maximum of 18cm presented in Chapter 4, the interferometer beamwidth is 

approximately 10x smaller.  As discussed in Section 2.2.2, a ray tracing program can be 

implemented which predicts attenuation due to plasma refraction.  Given the upstream 

plume measurements discussed in Section 4.1.1.1 this yields a predicted beam attenuation 

of -1.7 dB at 70 GHz. 
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3.2.6 15 GHz interferometer 

A second interferometer instrument is located 1.5 m downstream of the first 

interferometer in the far-nozzle region, and was based on a previous University of 

Michigan design.  [Gilchrist, 1997]  This 15 GHz instrument is actually two independent 

systems consisting of separate horn antennas, oscillators and mixers, with one positioned 

0.3 m below the other and sampling two different parts of the plume at the same axial 

position.  The Ka- band local oscillators operate at approximately 15 GHz and are each 

split into two separate paths by 3-port power dividers.  The scene beams are routed via 

coaxial cable and SMA connectors to +25 dBi standard gain pyramidal horn antennas and 

received on the other side of the plasma column by identical receiver antennas.  A 

separate coaxial cable is routed from the receiver horn to one input of a quadrature diode 

mixer.  The second input of the diode mixer is fed directly by the 15 GHz local oscillator.  

A schematic of this quadrature interferometer is given in Figure 3.18.   

 

All of the active components of the system are mounted onto a copper backplane and 

located inside the vacuum chamber.  The backplane was rigidly attached to an aluminum 

structure providing a thermal path to the chamber.  Power was applied continuously to 

the system over the multiple month testing period, with no degradation or thermal 

variation detected.  The horn antennas were attached to vertical support beams inside the 

chamber, with the transmit side separated from the receive side by 1.7 m.  The axial 

position of this installation is z = 1.85 m.  The vertical positions of the two channels are 

y = 0 m and y = -0.305 m. 
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Interferometer calibration is achieved by a motor stage on the transmitting antenna, 

shown in Figure 3.19.  This servo-driven linear ball screw uses a feedback potentiometer 

to determine when it has moved through about 1” (2.54 cm), corresponding to one and a 

half wavelengths at 15 GHz.  This allows pre- and post-shot calibration of the 

interferometers to account for changes in the DC offset and amplitude of the signal.  

Stability of the interferometer calibration over time suggests that only one interferometer 

calibration is necessary for each set of radial scans in the DDEX experiment. 

 
 
 

  
Figure 3.18: 15 GHz RF interferometer schematic.  Two independent systems were 
used in the DDEX experiment, one on the chamber centerline and one 0.3 m below. 
The I and Q output denote the two phase-quadrature outputs from each 
interferometer system. 
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Figure 3.19: Close-up of the linear motor mechanism used to calibrate the 15 GHz 
interferometer. (note: the metal plate on the front of the bottom lens was removed 
prior to data collection) 
 

 

3.2.6.1 15 GHz Interferometer density ranges and sensitivity 

An RF interferometer is useful in detecting plasma up to a certain maximum density 

before the RF wave starts being cut off. This value is given by ω  > 3ωp.  Given this 

assumption, the maximum plasma frequency detectable is ω = 2π* 5GHz.  Using Eq. 

(2.17) for plasma frequency, the maximum peak density detectable by the 15 GHz 

interferometer is 3x1017 m-3.  This is an adequate range for density measurement where 

the interferometer is going to be operated.   

 

The absolute minimum sensitivity of the interferometer is driven by the mean error in 

phase measurement.  According to Dobson et al. (2004) a phase error of 0.17 radian is 
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typical for a measurement that is fitted to a calibration curve employing four parameters 

per channel.  In the context of the exhaust interferometer, a 0.17 radian minimum 

sensitivity corresponds to a minimum line integral density sensitivity of 3x1015 m-2. 

 

In a practical system there are other limitations to the sensitivity including the noise floor 

of the output channel, and the resolution of the digitizer.  In the case of the current 

version of the 15 GHz interferometer, the mixer output is amplified 8x.  This produces a 

signal output of 25 mVppk.  The approximate noise floor of the system is 50x lower at 

0.5 mVppk.  This corresponds to a phase shift of  sin-1 (1/50) =  2x10-2 radian.  This 

measurement is lower than the previous estimate of 0.17 radian, so the measurement 

resolution should not be a limiting factor. 

 

In summary, the maximum and minimum plasma density that can be measured by the 

15GHz exhaust interferometer is: nmax = 3x1017 m-3 and  Nmin = 3x1015 m-2. 

 

3.2.6.2 Horn antenna radiation pattern and cross-channel interference test 

The radiation pattern of the interferometer’s +24 dBi standard gain horn was tested in the 

University of Michigan Radiation Lab anechoic chamber.  Two horn antennas were held 

at 2 m separation from each other and one was rotated in the H-plane (long aperture 

dimension).  A 15 GHz +13 dBm signal was fed to the transmit antenna, and the response 

detected at the receive antenna with a spectrum analyzer.  As shown in Figure 3.20, a 

3 dB beamwidth of 11º was detected at a horn-horn separation of 2 m. The maximum 

signal level detected by the receiver antenna was -68 dBm. 



 93

  10dB

  20dB

  30dB 30o

330o

0o

with lens

without lens

 
Figure 3.20:  H-plane (vertical) radiation pattern of the 15 GHz horn antenna 
measured at 2m.  +24dBi horn with 11o beamwidth, with and without correction 
optics. 
 

Next, it was desired to test the cross-channel interference between the two independent 

interferometer channels.  In order to simulate the relative isolation between adjacent 

channels, the transmit horn was offset by 12” (0.305 m) and kept at the same angle, so the 

horns were misaligned.  This was intended to simulate the two channels which are 

separated vertically by 0.305 m.  A schematic drawing of this setup can be seen in Figure 

3.21.  A measurement of radiation pattern resulted in a drop of 11 dB at 0º between the 

aligned case and the misaligned case.  A peak maximum occurred at -7.5º (approximately 

the angle at which the receive horn is pointed at the transmit horn).  From this test, it 

appears that the channel-channel isolation for a 0.305 m horn separation at 2 m distance 

is 11 dB.  This corresponds to a maximum phase error of 8x10-2 radians, which is greater 

than the system noise floor, but less than the minimum phase sensitivity determined in 

3.2.6.1.  The use of RF absorbent foam did not appear to improve this isolation.  

Alternating the receive and transmit horns of the two channels so that the transmit horn of 
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channel 1 was opposite the transmit horn of channel 2 would further increase the channel 

isolation, but this was not deemed necessary for the experiment since the phase error is 

low compared with the minimum interferometer sensitivity. 

 

 
 

Figure 3.21:  Schematic of antenna offset test inside the University of Michigan 
anechoic chamber.  A 12” (0.3 m) offset resulted in an 11 dB attenuation, which 
simulates the channel-channel isolation for the two independent chords. 

 

 

3.2.6.3 15 GHz Interferometer far-field calculation 

The radiation pattern of an antenna can be greatly simplified in the far-field by the 

Fraunhofer approximation.  [Balanis, 1997]  This far-field approximation can be used 

with amplitude errors of 2% at a distance R >2a2/λ, where a is the longest dimension.  For 

the 24 dBi antennas used, the aperture height is a = 15.5 cm, so the desired separation is 

R = 2.3 m.  The separation that was used in the experiment is 1.7 m – much less than this 

distance.  The electric field amplitude error associated with operating at R =1.7 is 5% if 

far-field approximations are assumed.  This may increase the error in the interferometer 

phase measurement because of a non-uniform phase front arriving at the receive antenna.   
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The use of parabolic optics would remove these errors because the lenses create a 

uniform phase front beyond the antenna’s focal length. [Oliver, 1993]   In the case of the 

second (lower) interferometer channel, a pair of parabolic lenses was available and 

installed.  The upper interferometer channel was left without corrective optics.  Looking 

at relative tests of the horns with and without parabolic lenses, the beamwidth was 

narrowed by 1o and the main lobe was made much more uniform with the use of the 

parabolic optics.  They were omitted from the upper interferometer channel for cost and 

availability reasons. 

 

The impact of neglecting parabolic optics and the far-field spacing can be estimated by 

computer simulation.  A 2D method-of-moments simulation similar to [Davis, 2006] was 

employed.  The aperture of the transmitting and receiving horn antennas were divided 

into discrete elements, 0.5 mm in length.  An electric field was assigned to each finite 

element of the transmitting aperture according to the antenna distribution function 

[Balanis, 1997] 

 ( )
0( ) cos nj x

n nE x E x e
a

δφπ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.6) 

 

Where a is the antenna height, xn is the x position of the transmitting element n, and 

δφ(xn) is the phase variation across the horn aperture.  This phase distribution is also 

given by [Balanis, 1997] to be: 

 ( )2 2
0( )n a a nx k L L xδφ = − −  (3.7) 
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Where La is the antenna length and k0 is the free-space wave number.  The total electric 

field at each receiving element position xm can be calculated by summing the field 

contributions from each transmitting position xn.   
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0
1

cos cos
4

p n nj k r xN
n m

m
n n

x x eE x E
a a r

δφπ π
π

+

=

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
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∑  (3.8) 

 

Where rn is the separation between element xn and xm, and the scalar Green’s function 

was used in (3.8).   [Kong, 2000]  In the absence of plasma, the free-space wave number 

k0 substitutes for the plasma wave number kp.  If plasma is present, the wave number kp is 

taken from Eq. 2.19.  It should be noted that kp is spatially varying due to the plasma 

density distribution. 

 

If the antenna characteristics of the 15 GHz interferometer are considered, the aperture 

height a is 15.5 cm, and the horn length is La = 33.5 cm.  The separation between the 

receive and transmit horn is 1.7 m.  The plume at z = 1.85 is shown in Section 4.1.1.4 to 

have a peak centerline density of ne = 1x1017 m-3
 and to follow a Gaussian profile with 

full-width half-max of 90 cm.  Given these inputs, the phase error owing to lack of 

parabolic optics and antenna positioning is 8x10-3 radians.  This is lower than the noise 

floor of 2x10-2 radians, and is not expected to contribute to measurement error. 

 

3.2.6.4 Beam refraction and interferometer calibration   

Refractions due to plasma can increase the phase errors and magnitude errors of the 

received signal.  As previously stated, magnitude errors are not explicit error terms in this 
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experiment because the quadrature mixer decouples the amplitude and phase of the 

received signal.  Phase errors can be introduced by the increased pathlength of bending 

rays, and by changing the distribution of the received rays on the receiving antenna 

aperture.  These phase errors are considered error terms, as they can affect density 

measurements. 

 

The ray tracing technique described in 2.2.2 is used to track the propagation of rays, and 

can give an estimate of the signal attenuation due to the plasma acting as a diverging lens.  

The 15 GHz interferometer has a horn antenna of vertical dimension a = 15.5 cm.  As 

stated in Section 3.2.6.3, the plume at the position of the 15 GHz interferometer has a 

peak centerline density of ne = 1x1017 m-3
 and follows a Gaussian profile with full-width 

half-maximum of 90 cm.  A ray tracing simulation with these inputs was based on the 

Matlab code given in [Ohler, 1996] and [Davis, 2006], and the results are shown in 

Figure 3.22.  By comparing the total E field intercepted at the receive antenna with and 

without plasma, the attenuation factor from refraction was found to be a modest 

α0 = -0.4 dB.  
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Figure 3.22:  Ray tracing simulation for 15.5 cm horn antenna operating at 15 GHz 
and transmitting into a Gaussian plasma distribution of peak density 1x1017 m-3 and 
full-width half-maximum 90 cm.  The transmitting antenna is on the left and the 
receiving antenna is on the right.  Total beam attenuation is -0.4 dB. 
 

 

The phase errors arising from refraction could be determined directly by combining the 

above ray tracing technique with the method-of-moments simulation of Section 3.2.6.3.  

This would compute the total electric field arriving at the receive antenna, accounting for 

refractive wave-bending.  However, as this is a much more computationally intense 

process than the previous two simulations, and the additional error is expected to be on 

the order of the phase error arising from lack of parabolic optics (8x10-3 radians), this 

analysis was omitted.  This omission is further justified by prior analyses [Vest, 1975] 

[Tallents, 1984]  in which the phase error from mildly refracting, axisymmetric plasma 

columns was found to be small. 
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Calibration of the 15 GHz interferometer occurred daily while testing was underway.  As 

described in Section 2.2.3, this process detects drift in the quadrature mixers and 

reflections from the surrounding chamber.  In practice, the separation of the horn 

antennas is changed by a distance x, and the voltage response of the two channels of the 

quadrature mixer ( )V x%  and ( )V x′%  are fit to Eq. (2.30) and (2.31) with the substitution 

Δφ = kx.  If reflections are to be included, Eq. (2.29) is used instead.  A least-squares 

fitting method using the Matlab toolkit cftool fits the analytical models to the 

experimental data.  Fit error is expressed as a percentage of the signal’s amplitude.  

Figure 3.23 shows a plot of the calibration data, along with the analytical models that best 

fit the data. 

 

 
Figure 3.23:  Calibration data for the upper 15 GHz interferometer.  I is the 
primary channel and Q is the quadrature channel, offset in phase by 90o.  The fitted 
data shows the standard 4-parameter fit, with an RMS fit error of 5.6%.  The more 
accurate seven-parameter fit includes reflections and has an RMS fit error of 3.9%.  
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The root-mean-square fit error for the four interferometer channels is given in Table 3.1.  

The four-element fit of Eq. (2.30) neglects reflections, and resulted in an RMS fit error of 

5.6% for the upper interferometer.  The seven-element fit of Eq. (2.29) accounts for 

reflections, and improves this fit error to ~3.9%. 

 
 
 
 15 GHz upper 

channel, I 
15 GHz upper 
channel, Q 

15 GHz lower 
channel, I 

15 GHz lower 
channel, Q 

4-element 
RMS error 5.6% 5.6% 2.45% 1.68% 

Reflection 
coefficient ρ 0.06 0.064 0.022 0.006 

7-element 
RMS error 3.9% 3.3% 1.4% 1.56% 

 

Table 3.1: Sample calibration curve fitting for the 15 GHz interferometer, upper 
and lower channels, and primary and quadrature detectors.  RMS error is the fit 
error between the calibration data and the particular model. 
 

 

The fitting error for the full seven-element calibration is only a modest improvement over 

the simpler four-element calibration, affording a reduction of 1.7% in fit error  The 

downside of the seven-element calibration is that Eq. (2.29) can not be expressed as a 

function of ( )V x%  and ( )V x′% .  To solve for Δφ, and thus Ne , Eq. (2.29) must be solved 

numerically at each time point, which is computationally intensive. Therefore, the 

simpler four-element calibration is used in this work, allowing the numerically less 

intensive Eq. (2.32) to be used.  
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3.2.6.5 2π ambiguity resolved with Langmuir probe data  

On occasion, the plasma shot will yield interferometer data containing ambiguous phase 

shifts which could either be real phase shifts due to density changes, or spurious data due 

to missed fringes.  This may occur during a large jump in density at the beginning of a 

shot, coupled with an insufficient sampling rate to detect the rising edge.  This may also 

be the case when large amplitude RF noise is picked up on the signal line.  In these cases, 

Langmuir probe data taken during the same shot may provide some estimate of the proper 

temporal shape of the plasma plume, since probe measurements are not susceptible to the 

same 2π ambiguity.  During any given shot, the Langmuir triple-probe provides a local 

measurement of ion flux Γi = ni vi which, assuming constant velocity, can provide a 

temporal density profile to compare with the microwave interferometer measurement. 

 

The raw Langmuir probe voltage is scaled to match the microwave interferometer phase 

φMWI  by a multiplicative constant 
LP

MWI

V
φ

κ = .  The constant κ is different at different 

points in time, so the software utilized for this data analysis averages κ over the last 25% 

of the plasma shot.  This timing was chosen because the microwave interferometer data 

was well-behaved on the trailing edge of the shot, free from 2π fringe shifts and 

interfering RF noise.  The following plot shows the close agreement between scaled 

Langmuir probe data and interferometer data during the trailing edge of the plasma shot. 
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Figure 3.24: Plot of Langmuir probe data scaled to the 15 GHz interferometer.  The 
portion of probe data where the scaling factor is calculated is highlighted.   

 

During the bulk of the plasma shot, the microwave interferometer measurement becomes 

noisy, and sometimes shows a different shape than the Langmuir probe data.  This may 

be due in part to the local nature of the probe data, while the microwave interferometer 

returns an averaged line-integral density measurement over the entire chord. 

 

Once the probe data is adjusted by the κ scaling coefficient, the microwave 

interferometer phase is constrained by software to follow within a window around the 

probe data.  Interferometer data 5/3π radian greater than the probe data is shifted 

downwards by −2π.  Interferometer data –π radian below the probe data is shifted 

upwards by +2π.  The following plot shows the result of such an adjustment: 

 



 103

0 1 2 3 4
0

2

4

6

8

10

Time (ms)

P
ha

se
 s

hi
ft 

(ra
d)

Interferometer
Probe (scaled)
2π phase shift

 
Figure 3.25:  2π ambiguity in microwave interferometer measurement resolved by 
comparison with probe data.  The microwave interferometer density is shifted down 
by 2π at two locations to coincide with the scaled Langmuir triple-probe 
measurement. 
 

By the above method, noisy and otherwise ambiguous interferometer data can be quickly 

and accurately resolved to a state which is appropriate for conversion to a density 

measurement.   

 

3.2.7 Time of flight velocity detection  

Ion velocity was roughly calculated using several different methods.  For time of flight 

velocimetry, two spatially distributed sensors sample the same plasma at high time 

resolution.  Natural fluctuations in the plasma are picked up by both sensors, with a time 

delay between the positions.  An example of this time shifted data can be seen in Figure 

3.26.  The time lag along with the known sensor separation distance determines the 

velocity at which the plasma fluctuations and, presumably, the ions are traveling.  

Langmuir probes with an axial separation of 0.47 m and photomultiplier tubes with a 

separation of 0.3 m provide the density fluctuation measurements.  A data acquisition 

system running at 1 GigaSample / sec provides adequate temporal resolution to detect the 
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plasma fluctuations.  While the Langmuir probes detect ion current directly related to the 

plasma density, the photomultiplier tubes are measuring photoemission from the plasma, 

which is averaged over the 1D line of sight of the detector.  It is assumed that fluctuations 

in this line integral photoemission and density fluctuations in the plasma move at the 

same speed as the bulk plasma.  In other words, these fluctuations are assumed to not be 

waves or disturbances moving at speeds other than the axial ion velocity.  This is the 

same approach considered by [Spores, 1993] for time of flight measurements on an arcjet 

thruster. 

 

The first photomultiplier tube is positioned at z = 0.33 m, in-line with the polychromatic 

interferometer.  The second photomultiplier tube is positioned at z = 0.63 m, therefore 

time of flight measurements provide average velocities between these two positions. The 

Langmuir probes are movable and can provide an axial scan of velocity, since they are 

located on the translation stage.  It should be noted here that a small (0.06 m) radial offset 

exists between the upstream Langmuir probe and the downstream probe that was not 

considered in the time of flight analysis.  Relative to the other sources of error, this offset 

does not affect measurements.  
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Figure 3.26: Time of flight raw data showing time shifted downstream profile.  This 
measurement used photomultiplier tubes to detect an approximate ion flow velocity.  
An appropriate 23 μs time shift in the downstream data yields the approximate ion 
velocity = 13 km/s for Helium.  [Dobson, 2007] 
 

 

3.2.8 Mach probe velocity detection  

Ion flow velocity was also estimated with a two-conductor Mach probe.  Based in part on 

the design by [MacLatchy, 1992] this probe has one upstream facing pin and one 

downstream facing pin as shown in Figure 3.27.   
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Figure 3.27:  Example diagram of a Mach probe with 1 mm diameter stainless steel 
collectors. 
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The Mach probe is constructed of stainless steel, and has collecting pins of 1 mm 

diameter and 2 mm length.  Each collecting pin is biased negatively to collect ion 

saturation current.  An insulating separation barrier prevents axial directed flow from 

reaching the downstream facing pin.  The Mach probe is affixed in the chamber at z = 

0.33 m to detect vi at the same axial location as the polychromatic interferometer.   

 

The ion Mach number measurement is derived from the ratio of upstream to downstream 

current according to: [Hutchinson, 2002] 

 

 ⎟
⎠
⎞

⎜
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Here the ion Mach number is defined as: 

 

 
1/ 2

e e i i
i

i

eT eTM v
m

γ γ
−

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
 (3.10) 

 
Ti was never measured directly in this experiment, but is assumed to be equal to Te , as 

was also assumed for the hybrid measurement technique. The ratio of specific heats is 

also assumed to be γ = 1.  These two assumptions contribute to uncertainty in the final 

Mach probe measurement. 

 

Further details on the construction and analysis of the Mach probe diagnostic are given in 

[Meyer, 2007].  
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CHAPTER 4 

EXPERIMENTAL RESULTS AND ANALYSIS 

 

4.0   Overview 

As discussed in Chapter 3, the DDEX experiment provided an opportunity to research a 

high-powered plasma source coupled with a magnetic nozzle emitting into a large, high 

vacuum chamber.  Experimental results are presented here involving investigations of 

plasma flow under several different magnetic nozzle conditions.  The goal of these 

measurements was to characterize the plume under magnetized conditions (β < 1) and 

unmagnetized conditions (β > 1) comparing results with detachment theory.  Magnetized 

plasma can be found near the plasma source where applied magnetic field energy density 

outweighs the plume’s kinetic energy density.  Unmagnetized plasma can be found 

further downstream as the diverging magnetic nozzle’s field strength drops off.  To create 

a more dramatic decrease in magnetic nozzle strength, a reversed coil configuration was 

also investigated, with results from this cusp field compared with those from a standard 

magnetic nozzle.   

 

The previously discussed diagnostics were applied in the plume of the DDEX experiment 

to measure several plasma parameters.  The plasma density profile was mapped to high 

accuracy at a number of axial locations.  Likewise the electron temperature and the ion
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 flow velocity were measured at multiple locations to help support numerical simulations 

and models of the plume’s detachment from magnetic field lines.  Plasma density and 

velocity measurements provide the plasma’s beta β and therefore allows an estimate of 

the location of the β >1 transition.  Plume trajectories and profile widths allow 

comparisons with the magnetic field profile to determine the degree of detachment from 

magnetic fields, both while β < 1 and β > 1. 

 

An overhead view of the experiment’s magnet coil configuration is shown in Figure 4.1.  

Experiment conditions are given in Table 4.1 for each of the major configurations.  The 

section of this chapter is listed in which each condition is initially discussed, along with 

the date on which the data were measured, the magnitude of the magnet nozzle currents, 

the discharge voltage of the plasma gun, and the propellant gas species.  Data presented 

later in this chapter references Table 4.1’s listed experiment configurations. 
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Figure 4.1:  Magnet coil positions for the DDEX experiment. 
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 Dataset #1 Dataset #2 Dataset #3 Dataset #4 

Section discussed 4.0.1 4.1.1.1 4.1.1.3 4.1.1.5 

Propellant species H H H He 

Experiment dates 5/31/06 8/16/06 5/30/06-6/1/06 4/27/06-5/4/06 

I_gun 17A – 90A  22 A 5 A 5 A 

I_choke 0 A 90 A 100 A 90 A 

I_noz#1 0 A 5 A 10 A 10 A 

I_noz#2 0 A 3 A 3 A 3 A 

I_noz#3 0 A 3 A 3 A 3 A 

Gun voltage 270 V 270 V 270 V 270 V 
 
Table 4.1:  Conditions for the experiments considered in Chapter 4.  Each dataset is 
referenced by number later in the text. 
 
 
 

4.0.1 Plasma source dependence on magnetic field strength 

An initial minor experiment investigated the operation of the plasma gun by varying 

current in the plasma gun’s magnet.  The experiment conditions are listed as Dataset #1 

in Table 4.1.  This experiment was an attempt to verify that the plasma was magnetized at 

its source, and that the plume shape responded to different magnetic field conditions.  

The width of the plasma plume was measured with a scanning Langmuir probe at 

z = 0.43 m, still in the low-β (magnetized) region of the plume.  The plasma gun operated 

on hydrogen in this experiment, with a gun magnet current between Igun = 17 A and 90 A.  

The other magnet coils (choke magnet, nozzle coil magnets) were not operated at the 

same time.  Due to the small diameter of the gun magnet, a peak magnetic field of 

2700 G was produced for Igun = 90 A as shown in Figure 4.2. The resulting plume 

diameter, defined as the full-width at half-maximum, is shown in Figure 4.3.  An inverse 
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relationship exists between applied magnetic field B and plume diameter, with a narrower 

plume at higher B-field.  Since the discharge current (not shown) remained constant, and 

centerline density (not shown) increased with decreasing diameter in accordance with 

particle flux conservation, it is not likely that this plume narrowing was due to reduced 

plasma flux.  If the plasma plume were not magnetized, its diameter would not have 

changed in response to an increased B- field.  This qualitatively indicates that the plasma 

is responding to the higher field by becoming more highly confined, and is therefore 

magnetized at the plasma source. 
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Figure 4.2: Magnetic field profile on-axis for the four gun current configurations.  
Magnetic nozzle is off during this particular experiment. 
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Figure 4.3: Effect of increased gun magnetic field on the full-width half-maximum 
plume diameter at z = 0.43 m.  Higher magnet coil current reduces the plume 
diameter suggesting that the plume is magnetized at the source.  Other nozzle coils 
are off during this test, and plasma source voltage and feed rate are kept constant. 
 

Due to time constraints, the high gun magnet currents in this test were not repeated in 

subsequent tests; the magnetic nozzle field in subsequent tests was primarily supplied by 

a high current in the small-bore choke magnet, instead of in the gun magnet.  Therefore a 

direct comparison cannot be drawn between the experiment conditions in Section 4.0.1 

and those found in Section 4.1.  This experiment was not necessarily intended to prove 

that the plume conditions in Datasets #2, #3 and #4 were also magnetized at the plasma 

source.  It was merely included to show that conditions exist in this experiment setup 

wherein plume diameter is influenced by a changing magnetic field.  It is possible that in 

the other data sets, the plume was also magnetized at the source, but this remains to be 

shown by other experimental methods and theory.  A direct proof by varying the choke 

magnetic field (not the gun magnetic field) and ensuring that the plume diameter 

responds to the magnetic field increase was not accomplished in the DDEX experiments.  

However, further experiments were conducted by adjusting the nozzle coil current.  

These results are discussed in Section 4.2. 
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4.1 Experimental results – diverging magnetic nozzle field  

The magnetic field configuration was kept approximately constant in these experiments 

to follow a “standard” nozzle coil current configuration.  The coil currents are given in 

Table 4.1 under the headings Dataset #2 thru Dataset #4.  These three data sets were 

collected on different days, and each has a slightly different magnet coil current setting.  

This situation is not ideal because we desire a comparison between the results for each 

data set.  However, as is shown in Figure 4.4, the B - field is nearly the same for each 

configuration beyond the choke magnet at z = 0 m.  The major difference in magnetic 

field profile arises from the higher gun magnetic field in Dataset #2, which is not 

assumed to result in a significantly different plume diameter from the other two data sets.  

This assumption is dealt with in more detail in Section 4.1.1.1.   
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Figure 4.4:  Comparison of the axial magnetic field for three of the data sets in 
Table 4.1. 
 

 

Unlike the test conditions in Dataset #1 (Table 4.1) which has no current in the choke 

magnet, the choke magnet current in Datasets #2 thru #4 is quite high, with Ichoke = 90 A-
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100 A.  This results in a high-field region underneath the choke magnet, and a peak 

magnetic field between 620 G (Datasets #2 and #4), and 680 G (Dataset #3).  The nozzle 

coil currents resulted in straight diverging magnetic field lines until around z = 0.8 m at 

the farthest extent of nozzle coil #3.  This nozzle configuration was the desired magnetic 

field configuration for the majority of plume profile measurements conducted in Section 

4.1.  The magnetic field strength on-axis and magnetic field contours for Dataset #3 are 

also displayed in Figures 3.3 and 3.4. 

 

4.1.1 Density profiles  

Density profiles were measured by a number of methods, at several axial positions.  For 

hydrogen experiments, the scanning polychromatic interferometer produced a vertical 

density profile by Abel inversion at z = 0.33 m.  This interferometer profile is the farthest 

upstream measurement that was collected in the DDEX experiment.  Horizontal scans of 

Langmuir triple probes provided density profiles at z = 0.43 m, z = 0.90 m, z = 1.57 m 

and z = 1.85 m. Using the hybrid probe-interferometer theory developed in Section 2.3, 

accurate density profiles were produced from these scans.   

 

Helium experiments also involved radial density measurements.  Although Abel 

inversion was not attempted with the polychromatic interferometer using helium, 

horizontal triple-probe scans using the hybrid method produced accurate radial density 

profiles at z = 0.43 m, z = 0.90 m and z = 1.83 m. 

 



 114

Each of these profile scans suggested that density follows a Gaussian radial distribution 

that can be modeled by: 

 
22

22 ( )2
max max( , ) ( ) ( ) 2

rr
R zwn r z n z e n z
−−

= =  (4.1) 

 

Here, two different methods of reporting the profile width are shown.  R(z) is the half-

maximum radius, with plasma density at r = R equal to half the maximum density.  This 

convention is easy to apply experimentally and is therefore the method of choice for 

reporting experimental profile widths.  A second convention is more often associated 

with statistical mathematics and uses the normal distribution.  In this case the 

1/ e radius = w corresponds to one standard deviation from the center of the normal 

distribution at a value equal to 61% of the peak.    

 

Any error bars that are presented with experimental measurements in this work follow 

this statistical mathematics convention.  The 2σ uncertainty terms that accompany 

experimental data represent a two-standard-deviation unit of error.  Statistically speaking, 

95% of repeated measurements will fall within this 2σ  interval. 

 

4.1.1.1 Abel inversion density profile 

Line integral density was measured at z = 0.33 m by scanning the upstream 

polychromatic interferometer from y = -0.09 m to y = 0.09 m in 0.013 m increments.  The 

experiment conditions for this test are listed in Table 4.1 as Dataset #2.  As discussed in 

Section 2.2.4, the interferometer chord density Ne(y) displayed a Gaussian profile in y 

which was fit to the following analytic function by the method of least squares:  
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The C3 vertical offset term is neglected from this analysis, as it can easily be re-

introduced after the inversion process, but breaks the necessary condition of axisymmetry 

for the Abel integral.  There was an apparent 2 cm shift vertical of centerline for the 

plume profile, which could be the result of a slight misalignment in magnetic field coils, 

or other asymmetry in the experiment setup.  Figure 4.5 shows the interferometer chord 

density at multiple time steps, along with the appropriate Gaussian least-squares fit.  
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Figure 4.5:  Ne(y) interferometer line integral density with Gaussian best fit vs. 
interferometer Y location.  Multiple plots show data at different time intervals 
during the shot, averaged over 0.2 msec.  Note the approximate 2 cm offset in the 
plus-Y direction.  Possible probe shadowing is present at y = 0.04 m. 
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The coefficients determined for the least squares fit of Ne(y) to Eq. (4.2) are used in the 

equation for radial electron density ne(r) given in Eq. (2.39) and re-stated below: 

 

 2
2
1

2 2 2 2 2
2 1 2
2 2

1 1 1 11

2( ) exp
2

e r
C

C C Ca r r a rn r Erf Erf
C C C CCe

π
π π

⎡ ⎤ ⎡ ⎤⎡ ⎤− − −
= =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
 (4.3) 

 

The resulting Gaussian radial profile is shown in Figure 4.6 and has a column half-

maximum radius of 4.5 - 5 cm and a centerline density average of 1 x 1019 m-3.  Abel 

inversion requires axial symmetry, and thus the 2 cm vertical offset apparent in Figure 

4.5 was manually removed from this plot.   Error analysis was performed for the above 

measurement, and is detailed in Appendix B.  2σ  uncertainty for the density amplitude is 

16%.  Likewise, 2σ  uncertainty for the plume width is 13%. 
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Figure 4.6: Vertical interferometer scan showing electron density in m-3 at z = 0.33 
m.  Abel inversion of 48 separate measurements produced a Gaussian distribution 
with half-maximum radius of 4.5 - 5 cm and centerline density average of 1x1019 m-3.  
The initial transient response in the first 0.2 msec shows a density peak followed by 
a more stable discharge.  A 2 cm vertical shift is not shown. 
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The time dependent profile width is plotted below in Figure 4.7.  The profile closely 

follows a Gaussian distribution, the radius of which is given in Figure 4.7.  After a 0.4 

second startup, the plume reached a profile radius between 4.5 cm and 5 cm with a width 

uncertainty of 13%.  Towards the end of the shot after approximately 2 msec, the peak 

centerline density decreases.  The plume also expands, possibly due to collisional 

dissipation. 
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Figure 4.7:  Half-maximum radius R is determined by fitting a Gaussian radial 
profile to the distribution n(r).  Radius = 4.5 – 5 cm, from 0.4 – 1.6 msec.  Error 
analysis suggests a 13% uncertainty in profile width.   
 

This measurement suggests that during a shot, there is some time variation in the 

centerline density.  During the shot, for the first 1.5 msec, the plume width remains 

constant within measurement uncertainty even though the centerline density changes by 

as much as a factor of 2.  Also, the error bars on plume diameter are only 13% as opposed 

to the absolute density measurement error of 16%.  Therefore the plume width is known 

to a higher accuracy than the absolute density.  The Gaussian fit error is also low, 
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meaning that the plume can be described as a Gaussian distribution at this z = 0.33 m 

location.   

 

In Figure 4.4, it is shown that the source magnetic field for Dataset #2 differs from that of 

Dataset #3.  This difference primarily occurs between the axial positions of z = -0.3 m 

and z = 0 m, and thus does not represent a difference in the nozzle field, only in the 

plasma source.  When comparing data between these three data sets, the magnetic field 

difference is assumed to have a negligible effect within the aforementioned 13-16% 

density measurement error bars.  An argument can be made for this assumption by 

examining Figure 4.3 and noting that no significant plume diameter change occurred 

between an applied gun magnet current of 17 A and 30 A.  It is possible that this plateau 

represents a lower plume diameter limit, in which case a further reduction of gun magnet 

current to 5 A would also yield no plume diameter change.  In the absence of further 

experimental evidence, it is taken as an assumption that the plume conditions can be 

compared between Dataset #2 and Dataset #3 within measurement uncertainty.  

 

4.1.1.2 Measurement of downstream plasma width using two interferometers 

A method similar to Abel inversion was used downstream for determining density 

profiles.  Rather than using multiple measurements from the same interferometer during 

subsequent shots, the downstream interferometer setup utilized two simultaneous 

independent chords. One chord was located on centerline, and the other was located 

0.305 m below it.  While two data points do not give a large statistical sample, this setup 

does give an estimate of plume size that can be compared with other methods. 
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As shown in Figure 4.10 and described by Eq. (4.1) the plasma density profile in DDEX 

is approximately Gaussian, with a varying width and peak density.  A line integral of a 

Gaussian distribution is itself a Gaussian distribution with identical width.  Thus, given 

two line integral density measurements: N1 on the centerline and N2 0.305 m below the 

centerline, the detected line integral density is: 

  

  
20.305

2 1 2 RN N
⎛ ⎞−⎜ ⎟
⎝ ⎠=  (4.4) 

 
Solving for R yields   

  
( )

1/ 2

1 2

ln 20.305 [m]
ln

R
N N

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.5) 

 

This method allows a measurement of the ½-maximum plume radius independent of the 

hybrid measurement technique.  Experimental data using this technique will be presented 

in the following section (Figure 4.13) in addition to plume width measured with the 

hybrid method.  

 

4.1.1.3 Hybrid density profile at z = 0.43 m 

The hybrid density measurement method (Section 2.3) was applied to a plasma described 

in Dataset #3 of Table 4.1.  Langmuir probe scans were conducted 0.1 m downstream of 

the polychromatic interferometer from x = -0.18 m to x = 0.10 m in 23 steps.  The 0.28 m 

scan intercepted 91% of the line integral plasma density resulting in a peak density 



 120

measurement of 3x1018 m-3.  Figure 4.8 shows the resulting density map produced by the 

hybrid probe-interferometer technique. As was discussed in support of Eq. (2.48), a scan 

that only intercepts a portion of the line integral plasma density must include an 

adjustment term that is applied to the α proportionality constant.  Error bar contours on 

the density measurement were determined by taking the 2 nσ  confidence interval, shown 

in Figure 4.9, which gives a peak density uncertainty of 4x1017 m-3.  Details on the error 

analysis procedure are given in Appendix A.  The relative error values 2 /
in inσ  are lowest 

along the centerline of the plasma column, at 9% -15% depending on the time in the shot.  

Relative uncertainty increases towards the plume edges and at the end of the plasma shot. 

 

 

Figure 4.8:  Horizontal (probe) scan showing plasma density at z = 0.43 m from 23 
separate shots.  Centerline density: 3x1018 m-3 with R half-maximum radius of 
0.085 m. 
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Figure 4.9:  Magnitude of error for data plotted in Figure 4.8.  Peak density error: 
4x1017 m-3.  This includes the offset error γσ  due to the 0.10 m probe-interferometer 
separation. 

 

The plasma profile at time t can readily be fit to a Gaussian radial distribution in Eq. 

(4.1).  A least-squares fit determines the Gaussian parameters by minimizing the density 

residue Res: 

  ( ) 2
max

1

( ) ; ( ); ( )
M

i i
i

Res n t n x R t n t
=

= −⎡ ⎤⎣ ⎦∑ %  (4.6) 

 

with R(t) equal to the plasma ½-maximum radius and nmax(t) equal to the centerline 

plasma density at time t.   The upstream scan could be fit to a Gaussian distribution with 

an average RMS fit error of 2%, and a 0.085 m column radius at half-max.  Uncertainty 

in the density measurements was used in a Monte Carlo analysis to determine error bars 

for the column width measurement, which is detailed in Appendix B.  Error values of 

2 ( )w tσ = 8-10% are typical for the upstream scan.  The radial profile data and associated 
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Gaussian fit for one point in time is shown in Figure 4.10.  The overall profile width and 

goodness of fit to a Gaussian distribution for the entire shot is shown in Figure 4.11. 
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Figure 4.10: Z = 0.43 m density profile at t = 1.5 ms. 2 nσ error bars shown along 
with Gaussian least-squares fit and 2R(t) column diameter.   
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Figure 4.11:  Z = 0.43 m column diameter 2R measurement vs. time.  The plume 
averaged 0.17 m half-maximum diameter (solid) with a Gaussian fit residue of 2% 
(dashed).  2 wσ error bars were determined from Monte Carlo analysis.    
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In determining the upstream hybrid density profile, an offset correction to the line 

integral density was required. Two different plasma profiles were sampled, one by the 

Langmuir probe at z2 = 0.43 m, where the hybrid measurement was made, and the other 

by the polychromatic interferometer at z1 = 0.33 m.   Ordinarily the plasma would be 

sampled at the same axial position by both instruments, as was accomplished at the 

downstream location. Here, the interferometer reading had to be adjusted to account for 

plasma expansion between the two instruments.  For this purpose, an assumption of 

plasma flux conservation and constant velocity was made.  The assumption of flux 

conservation and constant velocity is good within 20% as will be shown in Section 5.3.  

The contribution to the total error from these assumptions is considered below. 

 

With this assumption, the line integral density ratio 1 2z zN N  is related to the column 

width and centerline density ratios as: 

 

 max, 11 2

2 1 max, 2

zz z

z z z

nN R
N R n

= =  (4.7) 

 

where Rz1 and Rz2 are the widths of the Gaussian plasma column at axial locations z1 and 

z2 respectively, and nmax,z1 and nmax,z2 are the centerline plasma densities at z1 and z2.  For 

the data presented here, Rz1 is taken from the vertical interferometer scan described 

above.  
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For the uncertainty analysis, an additional independent error term may be included to 

account for this offset correction: 2 2 2
j jN N γσ σ σ→ + . The offset error γσ is on the order of 

the overall measurement uncertainty ( nσ ) and is included in Figure 4.9 and Figure 4.10.   

 

The radial profile measurements conducted at z = 0.43 m confirm what was shown by the 

Abel inversion measurement at z = 0.33 m.  The radial profile fits to a Gaussian 

distribution to within 2% for the first 2 msec of the shot.  During this time, plume 

diameter remains relatively constant with width error at any given time at 8-10%.  The 

plume width uncertainty is lower than absolute density uncertainty, which is 2σn / n =  

10-15% for this scan. 

 

4.1.1.4 Hybrid density profile at z = 1.85 m 

Scans were also conducted at z = 1.85 m along the measurement chord of the centerline 

microwave interferometer from x = -0.46 m to x = 0.46 m in 13 steps.  The plume 

conditions are still equal to those provided in Table 4.1 as Dataset #3.  The 92 cm scan 

intercepted 79% of the line integral plasma density at that axial location with a peak 

centerline plasma density of 1017 m-3.  (Figure 4.12)  Following the error analysis given 

in Appendix A, the 2 nσ density error bars for the downstream measurements equal ~20% 

along the centerline.   The radial density profile fits to a Gaussian distribution with an 

RMS fit error of 4.8%, and a half-maximum column radius of 0.45 m.   

 

As discussed in Section 4.1.1.2 the vertical density profile was monitored by a second 

interferometer chord, offset from the axial centerline by y = -0.3 m.  The two separate 
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vertical measurements allowed an independent estimate of the plasma column diameter 

as described in Eq. (4.5).  The R(z) values from the two independent methods agree on 

average by 5%, as shown in Figure 4.13.  Error bars on the downstream width 

measurement are larger than the upstream error bars on account of the greater uncertainty 

in the Gaussian fit and the absolute density.  It should also be noted that in Figure 4.13, 

the probe scan shows an increasing plume diameter after 2 msec, while the 

two-interferometer comparison shows a decreasing plume diameter after 2 msec.  This 

discrepancy can be explained by a decrease in measurement accuracy at lower plasma 

densities.  At the downstream scan location, the probe-radius-to-Debye-length ratio 

rp / λD is lower (<10) at the plume edge, and at the tail end of a shot.  This exposes the 

probe measurement to non-ideal plasma conditions and yields an elevated density 

measurement due to orbit motion limited (OML) current collection as opposed to thin 

sheath current collection.  This apparent enhancement is more pronounced at the plume 

edges where the density is low, therefore giving the appearance of a wider plume.  The 

interferometer measurement method does not suffer from this non-ideal effect.  

Therefore, only the first 1-2 msec of plume measurements are considered for analysis 

where the two measurement methods agree, and any apparent disagreements after t = 2 

msec are discounted. 
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Figure 4.12:  Density profile at z = 1.85 m, averaged over t = 0.5 – 1.5 msec.  Average 
centerline density: 8.5 x1016 m-3.  Peak centerline density: 1x1017 m-3.  Error bars 
include 2 nσ  density error and standard deviation error over 50 datapoints. 

 

 
 

Figure 4.13:  2R plasma diameter at z = 1.85 m averaged 0.91 m. Two methods of 
plume width are compared: scan profile (black) and two-chord interferometer 
(grey).  The profile shape was fit to a Gaussian with an average fit residue of 4.8%.   
2 wσ  plume width error bars were determined from Monte Carlo analysis.   
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4.1.1.5 Other hybrid density profiles  

In addition to the above radial scans, a number of other profile measurements were 

conducted in a similar manner.  Tables 4.1 and 4.2 summarize the results of the hybrid 

method scans for Dataset #3 and Dataset #4. 

 

 z = 0.43 H z = 0.90 H z = 1.57 H z = 1.85 H 

Density (m-3) 3x1018 6.4x1017 1.2x1017 1x1017 

R(z) radius (m) 0.085 0.188 0.41 0.45 
 

Table 4.2: Scanning Langmuir probe results for hydrogen conditions given as 
Dataset #3 in Table 4.1.  Density reported is the mean centerline electron density for 
hybrid probe-interferometer measurements.  The profile width is reported as the 
plasma half-maximum radius.  
 
 

 z = 0.43 He z = 0.90 He z = 1.85 He 

Density (m-3) 3.5x1018 8x1017 1x1017 

R(z) radius (m) 0.095 0.19 0.50 
 
Table 4.3: Scanning Langmuir probe results for helium conditions given as Dataset 
#4 in Table 4.1.  Density reported is the mean centerline density for hybrid 
Langmuir probe-interferometer measurements.  The profile width is reported as the 
plasma half-maximum radius. 
 

 

The Table 4.2 radial profiles at z = 0.90 m and z = 1.57 m occurred farther away from the 

microwave interferometer than what was previously considered.  The error for this 

density measurement is therefore greater due to the offset error γσ .  The estimated 

density error for these two scan locations is 15-20% on the centerline.  This falls in 

between the density error for the z = 0.43 m scan, and the z = 1.85 scan.  The uncertainty 

in plume width measurement at z = 0.90 m and z = 1.57 m is also estimated at 15-20%, 
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which is midway between the plume width uncertainty at the farthest upstream and 

downstream measurements.  The plume width and density measurements in Table 4.2 and 

Table 4.3 are to be used later in Section 5.1 as experimental verification of various 

magnetic detachment simulations, and summarize the plume trajectories for both helium 

and hydrogen operation. 

 

Uncertainty for the helium data given in Table 4.3 is approximately equal to the 

uncertainty for hydrogen at the same axial position.  This suggests that the relative 2-

sigma error bars for z = 0.43 m measurements are a minimum of 10-15%, and 20% 

uncertainty at z = 1.85 m. 

 

4.1.2 Triple probe electron temperature 

Electron temperature was measured by a small scanning triple-probe for both helium and 

hydrogen shots (Dataset #3 and #4 in Table 4.1) throughout the course of the experiment.  

A vertical array of triple-probes also provided spatial temperature measurements on every 

shot.  Temperature maps showed very little change in Te as the probe position was 

changed.  Triple-probe measurements close to the upstream polychromatic interferometer 

were the same as measurements taken farther back in the chamber, just as triple-probe 

measurements on the centerline of the chamber were identical to those taken at the plume 

edge.  Plasma flow velocity may have had an effect on the Te measurements, which is 

investigated by computer simulation in Section 4.1.3.  These simulations suggest that a 

correction term based on probe diameter, probe bias and ion Mach number needs to be 

included in the standard triple-probe analysis.  These computer simulations of biased 
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cylinders in a flowing plasma will be shown to suggest a temperature reduction of 14% 

for hydrogen triple-probe measurements, and a 8% reduction for helium measurements. 

 

4.1.2.1 Scanning probe Te measurement based on standard theory 

The standard triple probe equation in Eq. (2.11) discussed in Section 2.1.2 was used to 

measure the electron temperature based on the triple-probe voltage V12 = V1 – V2.  The 

helium conditions in Dataset #4 showed a constant electron temperature of 1.4 eV +/- 

15% while hydrogen conditions in Dataset #3 showed a slightly lower electron 

temperature of 1.2 eV +/- 20%.  These measurements are not adjusted for flowing plasma 

or sheath expansion effects, which are discussed later in Section 4.1.3.  The error bars, 

however, are large enough to encompass uncertainty from these non-ideal effects. 
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Figure 4.14: Helium radial Te profile taken at z = 0.43 m.  Te ~ 1.4 eV.  Error bars 
encompass a 8% reduction in temperature due to flowing plasma effects as 
discussed in Section 4.1.3.  
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Figure 4.15: Hydrogen axial profile Te ~ 1.2 eV.  Error bars include a 14% 
reduction in temperature due to flowing plasma simulations as discussed in Section 
4.1.3. 
 

Error analysis was not performed in a typical statistical manner for this data because the 

shot-to-shot variation (random error) was much smaller than the estimated fixed error.  In 

this case, the presence of flowing plasma and possible non-uniformity in the triple-probe 

collecting areas would lead to bias errors that are not apparent in shot to shot noise.  An 

overall error of 20% for hydrogen measurements was determined from the RMS 

combination of ~15% uncertainty from flowing plasma simulations, and the 10% 

uncertainty normally associated with triple-probe measurements. [Ogram, 1979]  Helium 

Te measurements likewise have an overall uncertainty of 15% from the RMS combination 

of 8% uncertainty from flowing plasma simulations, and 10% uncertainty normally 

associated with triple-probe measurements. 

 



 131

4.1.2.2 Triple probe array Te measurement 

The vertical triple probe array was also used to measure electron temperature.  The theory 

and methodology for this measurement is the same as for the radial scans produced with 

the small boom-mounted triple probe.  However, the vertical array of six independent 

devices helps to eliminate errors due to potential fabrication mistakes in one particular 

instrument.  In one particular helium shot, the electron temperature was simultaneously 

measured with the small scanning triple probe and the 6-element triple probe array.  One 

probe array element at y = -0.19 m was not functioning due to a loose connection.  The 

other 6 measurements are shown in Figure 4.16.  As was shown in Figure 4.14, the 

electron temperature measurement for helium was 1.4 eV +/- 15%.  One probe located at 

y = 0.19 m consistently under-reported electron temperature.  This may be due to 

manufacturing error leading to a relatively larger collecting area for the positively biased 

pin, compared with the ion-collecting pin.  Since different probes made measurements at 

different radial positions, the measurements shown in Figure 4.16 can be considered an 

indication that electron temperature is approximately constant with radial profile.  This 

compares favorably with Figure 4.14 and Figure 4.15 to show Te to be relatively constant 

with both radial and axial position. 
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Figure 4.16:  Helium Te measurements taken with the vertical triple probe array at z 
= 0.90 m.  The datapoint at y = 0 is the small triple probe used in Figure 4.14 and 
Figure 4.15.   The probe element at y = 0.19 m consistently under-reported 
temperature.   
 

 

In summary, the electron temperature was found to be uniform throughout the areas of 

the experiment that were measured, with standard triple probe analysis yielding Te values 

of 1.2 eV +/- 20% for hydrogen, and 1.4 eV +/- 15% for helium.  The experiment 

conditions for these two measurements correspond respectively to Dataset #3 and Dataset 

#4 in Table 4.1. 

 

4.1.3 Non-ideal effects on Te measurement  

It has previously been found that an ion flow component can introduce significant errors 

in a triple probe’s measurement of Te. [Tilley, 1994]  [Woo, 2006] This error was 

described in the original triple-probe method as an asymmetry in ion collection between 

the three biased probes due to growth of the ion sheath at large negative bias. [Chen, 
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1965] Since this experiment involves measuring electron temperature in flowing plasma, 

it is worthwhile to investigate the error introduced by the ion flow term and other non-

ideal effects. 

 

Analytical and experimental investigations have previously addressed this issue for 

collisional flowing plasma [Ogram, 1979], collisionless flowing plasma in the OML limit 

[Chang, 1977], and a directed ion beam on top of a non-flowing collisionless plasma. 

[Choi, 2006]   For this experiment we consider the conditions of flowing collisionless 

plasma with electron Debye length λD smaller than the probe radius rp.  This condition is 

characterized by an asymmetric sheath structure surrounding the negative conductor, 

typically requiring computer simulation to accurately predict ion current collection.  

 

Recent investigations into the collection of ion current to negatively biased cylindrical 

conductors have shown that rather than following a monotonic increase with increasing 

flow velocity, as was previously suggested [Laframboise, 1966]  [Hoegy, 1973], the ion 

current follows a more complex non-monotonic relationship. [Xu, 1992] [McMahon, 

2005] [Choinière, 2007]  Using an iterative Vlasov and Poisson solver, detailed sheath 

structures around conducting cylinders have been simulated, and accurate ion current can 

be estimated.  These recent advances in the simulation of ion current collected to a 

conducting cylinder in a moving plasma can be applied towards the configuration of a 

Langmuir triple probe to provide calibration factors for a range of ion flow conditions (M 

= 0-10) probe sizes (rp / λD = 10-100) and voltage bias (φ = -5 − -20) where M is the ion 
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Mach number, / ( ) /e i iM v e T T m= + , rp is the probe radius, λD is the Debye length and 

φ is the dimensionless probe bias V/Te where Te is in electron volts.   

 

4.1.3.1 Triple probe simulation method 

The numerical simulation tool KiPS-2D (Kinetic Plasma Solver 2d) has been developed 

to investigate charged structures placed in a flowing plasma. [Choinière, 2007] By 

iteratively solving the steady-state Poisson and Vlasov equations in the region 

surrounding probe geometries of interest, this computer code is able to simulate current 

collected to cylindrical conductors in a plasma environment.  The adaptive mesh of KiPS-

2D and its ability to run in parallel on many tens of LINUX workstations allows the 

accurate simulation of sheath structure and potential in a vast region surrounding any 2-D 

conductive object, and allows for non-dimensional potentials in excess of φ = V/Te = 

5000.  The KiPS solver and model has been validated against previous existing models in 

the low-voltage regimes where they overlap, and by high-voltage experiments involving 

conductive cylinders in flowing plasma. [Choinière, 2005]  The unique high voltage 

range of this software was not required in the present simulation since probe biases were 

only investigated to φ13 = V13/Te =  40.  Only the lower voltage range of the KiPS code 

was utilized, which has been compared successfully with prior simulations and theory. 

 

4.1.3.2 Modified triple probe Te measurement theory 

A modification can be made to Eq. (2.10) to account for deviation from ideal probe 

behavior.  By introducing calibration factors h1, h2, and h3 the new relationship between 

the three probe potentials is: [Chen, 1965] [Ogram, 1979] 
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Where φ12 and φ13 are probe biases normalized by electron temperature in eV:  

φ13 = (V1 - V3 )/ Te,  φ12 = (V1 – V2 )/ Te , and h1, h2, and h3 are correction factors due to the 

difference between ideal probe current and actual probe current.  In the ideal triple probe 

case, h1, h2, and h3 become unity, zero, and zero respectively, and the triple probe 

equation reduces to Eq. (2.11).  However, if the h correction factors are considered, Eq. 

(2.11) is not exact and Eq. (4.8) must be solved for Te with the inclusion of nonzero 

correction factors.  This yields an electron temperature adjustment of δT , where: 

 

 ( )12 ln 2 1 Tφ δ= +  (4.9) 

  

It is the goal of simulations to determine the nonlinear temperature correction factor δT 

over the parameter space of interest.   
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Figure 4.17 (same as Figure 2.2):  Circuit schematic for Langmuir triple-probe.  V12 
is the floating probe measurement ≈ 1 V, and V13 is the supplied voltage bias, 
assuming a negligible voltage drop across R.  Vp is the plasma potential, and Vf  is the 
floating potential.   
 

 

 

4.1.3.3 Flowing plasma simulations 

Collection of ion current and electron current to the conductor is simulated for several 

bias conditions, Mach numbers and probe diameters.   The magnetic field is assumed to 

be zero for all simulations.  This is a valid assumption for the moderate B – field 

encountered here confirmed by a probe radius rp smaller than the electron cyclotron 

radius rce.  Figure 4.18 displays a typical trace of collected currents.  Electron current 

collected to the probe follows an analytical profile with thermal electron current defined 

as [Hoegy, 1973]  

 ( ) ( )1/ 2/ 2 exp
the

e p e e e

I

I S n q eT mπ φ=
144424443

 (4.10) 
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where Ithe is the thermal electron current collected at the plasma potential, and φ is the 

nondimensional probe bias with respect to the plasma potential < 0.  Ion current Ii is 

simulated based on the KiPS-2D code [Choiniere, 2008] and summed with the electron 

current to determine the floating potential Vf where ( ) ( ) 0e f i fI Iφ φ+ = .   

 

The number of simulations and thus computation time is kept to a minimum by 

simulating fewer probe bias conditions and interpolating between the data points.  The 

resolution is artificially increased by applying an exponential interpolation to Ie and a 

polynomial interpolation to Ii.  Comparison with a case in which the data points are all 

simulated rather than interpolated shows an interpolation error of less than 1%. 

 

The probe biases φ12 and φ13 are determined by iteratively solving for current collected at 

probes 1 and 3 until ( ) ( )12 12 13 0e i f e i fI Iφ φ φ φ φ+ ++ + + − =  since the two probes are 

connected in series.  Due to the much higher electron mobility, the positively biased 

Probe 1 is at a potential only slightly above the floating potential while the negatively 

biased Probe 3 is well below the floating potential of Probe 2.  One sample I-V 

simulation used to determine triple-probe response is shown in Figure 4.18. 
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Figure 4.18: KiPS-2D simulation result showing ion and electron current collected 
vs. non-dimensional probe bias φ = V/Te.  This representative simulation is for rp / λD 
= 105, M = 1.08.    Triple probe potentials V1, V2, and V3 are shown on this curve for 
the condition V13 = 25 Te.  V12 provides the Te measurement. 
 

The current collecting potential at probes 1 and 3 is thus determined by the probe bias φ13 

and current conservation between the two probes.  This fixes the voltage at probe 1 for a 

given φ13 and allows comparison with the floating potential Vf = V2 to determine the 

unknown bias φ12. It is this unknown bias that, via Eq. (4.9), determines the electron 

temperature correction factor δT. 

 

4.1.3.4 Non-ideal results and discussion 

Simulations were conducted for M = 0-3.5, rp = 1-90λD and probe bias φ13 = V13 / Te =  

4-20.  The triple probe response φ12 was found to vary widely from the ideal value of ln 2 

based on the parameter varied.  The probe bias φ13 contributes significantly to this 

variation, with φ12 increasing monotonically as probe bias φ13 increases.  The response 

can be attributed to an expansion of the ion collecting sheath, resulting in increased 
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effective ion collection area vs. electron collection area.  It should be noted here that this 

effect is pronounced for cylindrical probes and would be significantly less pronounced 

for flat-plate probes.  This is shown by the temperature correction being greater for 

probes of small radius than for larger probes (Figure 4.19). Larger probes more closely 

approximate flat-plate collectors with a radius that is large compared with the sheath 

thickness.  Plasma flow effects manifest themselves at small probe radius (rp < 30 λD ) as 

well.    
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Figure 4.19:  Temperature correction δt as a function of probe radius rp/λ d.  Probe 
bias held constant at φ13 = V13 / Te  = 10.   

 

Given a large enough probe radius (rp > 90 λD) the temperature correction δT is less than 

10% for any bias and Mach number up to φ13 = V13 / Te  = 20 and M = 3.5. 

 

The triple probe potential φ13 is plotted against φ12 / φ13, the ratio of voltage response to 

applied voltage, in Figure 4.20.  Three previously reported theoretical and experimental 

results are listed as well: ideal triple-probe results from (Chen, 1965), OML collisionless 
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results from (Kamitsuma, 1977), and flowing collisionless MPD thruster measurements 

from (Tilley, 1994).  The simulation results can be fit to an expression of the form: 

 

 ( ) 2

13 1 12 13/ kkφ φ φ −=  (4.11) 

 

where k1 and k2 are determined by the best fit, given rp / λD and M constant.  The 

goodness of fit is dependent on the simulation parameters and bias range, with most 

simulations fitting to ±1% for φ13 > 6.  For the modest voltages considered here, the 

temperature calibration due to sheath expansion follows Eq. (4.11), so long as electron 

current is excluded (φ13 >> |φf| ).  The value of φ12 in these simulations is related to δT by 

Eq. (4.9). 

 

 
Figure 4.20:  Electron temperature calibration for select conditions.  Plot shows 

( )13 1 3 / eV V Tφ = −  , the nondimensional probe potential against φ12/φ13, the ratio of 
voltage response to probe voltage.  (---): Orbit Motion Limited results from 
(Kamitsuma, 1977) for the conditions rp / λD =0, M = 0 in a collisionless plasma.  (---
): Ideal triple probe results of Chen & Sekiguchi.  (o): Experimental results of 
Tilley, 1994 for a high Mach number MPD thruster plume.   
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Non-flowing results are summarized in Figure 4.21 over a range of probe radii, 

rp = 1-90 λD.  The best-fit coefficients for Eq. (4.11) vary monotonically with probe 

radius rp, with k1 increasing from the orbital-motion limit value of 0.45 (Kamitsuma, 

1977) to the ideal thin-sheath value of ln 2 (Chen, 1965), and with k2 decreasing from 

1.34 (OML) to 1 (thin-sheath).  The goodness of the fit to Eq. (4.11)  is ±1%, given φ13 > 

6.  The coefficients determined here by simulation precisely match values previously 

reported for non-flowing OML analysis of small probes (rp < 1 λD ) and approach ideal 

thin-sheath coefficients for the large probe condition (rp > 100 λD).  
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Figure 4.21:  Simulated results of φ12/φ13 for M =0, best fit coefficients to the 
equation: ( ) 2

13 1 12 13/ kk V Vφ −= .  OML limit results (circles) are from Kamitsuma, 
1977.  Thin sheath limit (dashed line)  is from Chen & Sekiguchi, 1965.  Ti / Te = 1. 
 

 

A finite plasma flow velocity U was introduced into the simulations to determine the 

effect on δT.  As was also the case with non-flowing simulations, results are fit to Eq. 
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(4.11) within ±1% for φ13 > 6.  However, the dependence on M is non-monotonic, with δT 

increasing with M for M < ~2 and decreasing again for M >> 1.  Similar behavior is seen 

in [McMahon, 2005] and [Choiniere, 2007] for ion current collected to conducting 

cylinders in flowing plasma.  The behavior was previously reported for conditions of 

moderate probe size and plasma flow: 0.2 <
%

 r0 <
%

 50; M <
%

 2.  Under these conditions, 

which are intermediate between orbital-motion-limited and sheath-area-limited current 

collection, the ion flow was found to introduce strong asymmetries in the sheath potential 

contributing to a ram-side compression of the sheath and a wake-side expansion of the 

sheath.  McMahon et al. [2005] found that the effect of this sheath potential asymmetry 

on ion current is reduced as M increases, as the incidence angle of collected ions is 

reduced, and as the collected currents’ dependence on electric field is thereby diminished.  

The effect this has on the temperature correction is to generally reduce δT for large M > 2.  

(Figure 4.22)  For large M, current collection is dominated by ram current, which has the 

effect of reducing the disparity in electron current vs. ion current owing to ion sheath 

expansion.  This can be seen in a reduced δT for high M.   For M <
%

 2, the effect of 

increasing Mach number appears to depend on rp, since δT decreases with M for small 

rp / λD, and slightly increases with M for larger rp / λD. 
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Figure 4.22: Temperature correction δT as a function of dimensionless Mach 
number / ( ) /e i iM v e T T m= + .   δT  decreases with M for rp ≤  5 λD, but the behavior 
is non-monotonic for M ≥  10. 
 

 

 

 

Table 4.4:  Fitting coefficients to ( ) 2

13 1 12 13/ kkφ φ φ −=  for experiment conditions 
investigated.  Goodness of fit is +/- 1% for  6 < φ13 < 20.  Asymptotic values for large 
M and rp / λD are k1 = ln2 =0.693 and k2 = 1. 
 

 

k1: rp=1λD rp=10λD rp=30λD rp=50λD rp=90λD 
Mach 0 0.452 0.535 0.594 0.626 0.643 

Mach 0.7 0.498 0.530 0.593 0.619 0.631 
Mach 1.4 0.474 0.518 0.599 0.610 0.638 
Mach 2.1 0.445 0.517 0.591 0.611 0.648 
Mach 2.8 0.494 0.528 0.588 0.625 0.653 
Mach 3.5 0.505 0.534 0.597 0.630 0.653 

      

k2: rp=1λD rp=10λD rp=30λD rp=50λD rp=90λD 
Mach 0 1.34 1.18 1.10 1.06 1.04 

Mach 0.7 1.27 1.19 1.10 1.07 1.05 
Mach 1.4 1.28 1.20 1.10 1.08 1.05 
Mach 2.1 1.28 1.19 1.10 1.08 1.04 
Mach 2.8 1.21 1.17 1.10 1.06 1.04 
Mach 3.5 1.18 1.15 1.09 1.06 1.04 
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The fitting coefficients to Eq. (4.11) for several M and rp can be seen in Table 4.4.  A 

general trend can be seen at large M and rp / λD for the k1 and k2 fitting coefficients to 

approach the thin-sheath limits of ln2 and 1 respectively.  For intermediate values of M, 

the trend is for the fitting coefficients to remain constant (within numerical uncertainty) 

or to diverge slightly, depending on the rp / λD.  Smaller rp / λD appear to be more 

responsive to change in plasma flow velocity M due to the increased susceptibility to 

sheath asymmetry, as was found in McMahon, 2005.  Uncertainty in these coefficients is 

estimated at 1% due to fit error.  The percentage of error in a triple-probe temperature 

measurement δT can therefore be calculated for various values of ion Mach number M 

and probe radius rp by using Table 4.4’s values in Eq. (4.11) and Eq. (4.9). 

 

4.1.3.5 Other uncertainties 

The triple-probe schematic in Figure 2.2  includes a current sensing resistor R that was 

neglected in this analysis.  The voltage drop over this resistor will affect the ion 

collecting probe bias φ3, and can be modeled as a small uncertainty in the applied bias 

φ13.  As can be seen by the slope of Figure 4.18, a small increase in bias φ13 yields less 

than one percent of that increase in φ12.  We are therefore justified in neglecting resistor R 

in the analysis for small values of R. 

  

In practical measurements, the temperature ratio Ti / Te is often unknown.  For the 

preceding simulations, only one case was studied:  Ti / Te = 1.  According to the non-

flowing analysis of [Kamitsuma, 1977], a reduction in Ti / Te  leads to enhanced deviation 

from the thin sheath ideal, similar to a decrease in M.  However, the effect is limited, with 
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an assumption of Ti = 0 leading to only a 7% increase in δT for φ13 = 20.  With the 

flowing plasma simulations of [McMahon, 2005], the ratio Ti / Te was shown to have a 

greater effect, with a 15% change in the minimum ion current collected between the cases 

Ti / Te = 1 and Ti / Te = 0.5. 

 

4.1.3.6 Experiment-specific simulations 

Additional specific simulations targeted conditions relevant to the experiment’s triple 

probe measurements:  hydrogen plasma, ne = 3x1018 m-3, Te = 1 eV and vi = 15 km/s.  The 

cylindrical probe radius is rp = 0.045 cm and the probe bias is V13 = -44V yielding a probe 

radius-to-Debye length ratio of rp = 105 λD, an ion Mach number of M = 1.08, and a 

nondimensional probe bias of φ13 = V13 / Te = 44.  These simulation parameters 

approximately correspond with experimental data taken with the scanning triple-probe on 

centerline at z = 0.43 m.  

 

The simulations’ values for δT in the flowing and non-flowing case provide a useful 

comparison with standard triple-probe theory.  Including the ion Mach number M = 1.08 

resulted in a correction coefficient of δT = 14%, suggesting that measured electron 

temperatures are artificially high in the presence of a flowing plasma.  The non-flowing 

plasma simulation (M = 0) results in δT = 8%, suggesting a small correction factor is 

necessary even for a stationary plasma.  Therefore, based on this analysis, the measured 

hydrogen electron temperature of 1.2 eV is too high by approximately 14% due to the 

influence of ion flow and sheath expansion.  Accounting for these non-ideal effects, 

along with the 10% standard uncertainty for triple-probe measurements, [Ogram, 1979] 
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yields Te error bars of 20%.  Similar simulations of 1 eV helium plasma suggest 

correction factors of δT = 8% for vi = 17 km/s flowing conditions.  Combined with the 

standard triple-probe uncertainty of 10%, the result is helium electron temperature 

measurement of Te = 1.4 eV +/- 15 %. 

 

4.1.4 Ion velocity measurements 

Measuring the axial component of ion velocity is important for several reasons.  Vz is a 

term in the measurement of β, which determines the point of detachment for the exhaust 

plume.  The axial velocity also contributes to the measurement of axial momentum, thrust 

and nozzle efficiency.  Accurately knowing the ion velocity distribution is a key to 

understanding the performance of a thruster or magnetic nozzle.  Highly accurate velocity 

measurements were not achieved in the DDEX experiment.  However, time of flight 

velocimetry, Mach probes and Langmuir probes all gave corroborating estimates of the 

ion flow velocity with varying degrees of uncertainty as described below. 

 

4.1.4.1 Time of flight velocimetry 

Two separate time-of-flight campaigns were conducted.  The first employed helium as a 

feed gas, and used both Langmuir probes and photomultiplier tubes (PMT) connected to a 

high-speed digitizer for time-of-flight measurements.  The second campaign employed 

hydrogen as a feed gas, but only used photomultiplier tubes. 

 

An axial scan was performed whereby the Langmuir probe time of flight probes were 

moved to different positions in the chamber while maintaining the same probe separation.  
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The time-of-flight measurement process is discussed in Section 3.2.7  The resulting 

velocity values for helium are shown in Figure 4.23.  Langmuir probe time-of-flight 

measurement suggests an ion flow velocity of 14 km/s at the axial position z = 0.43 m 

increasing to vi = 17 km/s at z = 1.85 m.  The uncertainty in these measurements is 40%, 

obscuring any real axial trend in velocity.  Further measurements and theory provided in 

Section 4.1.6 and Section 5.3 will suggest that the flow accelerates slightly (<30%) from 

z = 0.33 m to z = 1.85 m. This is not inconsistent with the Langmuir probe time-of-flight 

measurements given here in Figure 4.23  A second time of flight measurement was made 

using stationary photomultiplier tubes, showing an average vi = 14 km/s.  The mean flow 

velocity was measured between the two detectors, positioned at z = 0.329 m and z = 

0.633 m.  2σ error bars were based on 9 separate shots and equal +/- 40% for the 

photomultiplier tube data.   
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Figure 4.23: Helium ion velocity time-of-flight measurement, using photomultiplier 
tubes and separated Langmuir probes.  2σ error bars for probe time-of-flight is 
40%. [Dobson, 2007] Probe theory velocity is discussed in Section 4.1.5.   
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Figure 4.24:  Hydrogen ion flow velocity based on photomultiplier time of flight and 
Mach probe measurement.   No axial scan of velocity was performed.  Probe theory 
velocity is discussed in Section 4.1.5.  Mach probe data is discussed in Section 
4.1.4.2. 
 

 

The time of flight measurements conducted with hydrogen as shown in Figure 4.24 did 

not include an axial scan, and thus were only conducted with the stationary PMTs.  The 

PMT time of flight measurements returned an average flow velocity of 15 km/s over 

seven measurements. The error bars for these measurements were considerably higher 

~50% owing both to the higher flow velocity, and the greater standard deviation in 

measured velocities. 

 

In summary, time of flight velocity measurements show that axial flow velocity for 

helium and hydrogen shots were between 10 km/s and 20 km/s with a possibility of a 

slight velocity increase with axial position.  Error bars for this technique were large, but 

the results will be shown to be consistent with several independent velocity diagnostics. 
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4.1.4.2 Mach probe measurements 

A Mach probe was also inserted into the plume to detect flow velocity at z = 0.33 m.  

Details on the data collection and analysis are given in [Meyer, 2007].  The results from 

this work are included in Figure 4.24 for comparison with other ion velocity 

measurements.  Data suggests that the hydrogen plume was traveling with ion Mach 

number between M = 1 and M = 1.3.  Given an electron temperature of 1.2 eV (and 

assuming Ti = Te ), this yields an ion flow velocity of 14 km/s – 19 km/s. The signal-to-

noise ratio for this diagnostic was low, particularly for the downstream facing current 

collector. The error bars on the Mach probe measurement are estimated to be 30% due to 

the signal-to-noise ratio, and uncertainty in Te, Ti, and γ.  Helium measurements were not 

made with the Mach probe. 

 

The measurement of vz taken with the Mach probe falls within error bars of the time-of- 

flight velocity measurement described above. 

 

4.1.4.3 Probe theory velocity measurement 

According to Eq. (2.4), the first-order ion current collected to cylindrical probes is linear 

with ni and vi.  Therefore, knowing the current response from a Langmuir probe and the 

plasma density at that location allows one to predict vi.  Likewise, predicting plasma 

density from probe theory requires an estimate of vi.  In Section 4.1.5 an independent 

estimate of plasma density is determined from probe theory, requiring estimates of vi 

under those conditions.  Based on velocity measurements from the Mach probe and time 
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of flight, the velocity values used for this Langmuir probe analysis are vi = 14 km/s and 

17 km/s for helium at z = 0.43 m and 1.85 m respectively, and vi = 15 km/s and 19 km/s 

for hydrogen at z = 0.43 m and 1.85 m, respectively.  The values are listed in Figure 4.23 

and Figure 4.24 for comparison sake.  These values for vi are within the error bars of the 

other velocity measurements, and their use in Section 4.1.5 yields consistent density 

results, as will be discussed in the following section. 

 

4.1.5 Langmuir Probe density profile  

Probe theory can provide an independent plasma density measurement that can be 

compared with the hybrid method.  Re-stating Eq. (2.4) we obtain ion saturation current 

sat
iI  in a flowing thermal plasma: [Hoegy, 1973]  

 

 2

1 1 ...
2

s psat e
i p i i i

p i i

h r eTI S n q v
r m vπ
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= + +⎜ ⎟
⎝ ⎠

 (4.12) 

 

As was discussed in Section 4.1.4, Mach probe and time-of-flight measurements give an 

estimate of the ion flow velocity.  For hydrogen, the velocity was taken to be vi = 15 km/s 

+/- 5 km/s at the upstream interferometer location increasing to vi = 19 km/s +/- 6 km/s at 

the downstream interferometer location. As discussed in Section 4.1.2 the hydrogen 

electron temperature was determined by Langmuir triple-probe to be Te = 1.2 eV +/- 0.2 

eV throughout the exhaust region of the experiment.  The probe sheath thickness hs is 

determined by the matrix sheath equation in Eq. (2.2)  to be ~ 8λD greater than the probe 

radius.  Figure 4.25 gives a comparison of Eq. (4.12) (probe theory alone) with the hybrid 
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analysis using both upstream and downstream RF interferometers. At both measurement 

locations, probe theory alone provided densities 50% lower than the hybrid analysis, with 

an even greater discrepancy at lower density values.  The discrepancy is possibly due to 

an over-estimate of ion collection area or over-estimate of ion flow velocity, but this 

result is consistent with previously under-reported density values when comparing 

electrostatic probes with interferometer measurement. [Kinderdijk, 1972], [Overzet, 

1993]   
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Figure 4.25: Comparison of hybrid density measurements with Langmuir probe 
density measurements. The curves marked “Probe only” are from Eq. (4.12), 
relative to the hybrid density measurement.  Comparison shows that probe theory 
alone under-predicts plasma density by 50%.  
 

The same procedure was repeated for helium shots, using the flow velocity suggested by 

time of flight analysis: vz = 14 km/s +/- 5 km/s and 17 km/s +/- 5 km/s at the positions z = 

0.43 m and z = 1.85 m respectively.  Also, as was discussed in Section 4.1.2, an electron 

temperature of Te = 1.4 eV was used.  The probe sheath thickness hs is found by the 

matrix sheath assumption to be ~ 4.5λD greater than the probe radius.  Figure 4.26 
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compares the density predicted by probe theory with the hybrid theory results.  As in the 

hydrogen case, probe theory alone under-predicts helium density- by 40% upstream and 

60% downstream. 

 

0 3

0

1

Upstream

Time (msec)

P
la

sm
a 

de
ns

ity
 (n

or
m

al
iz

ed
)

Probe only

Hybrid method

0 3

0

1

Downstream

Time (msec)

Probe only

Hybrid method

 
Figure 4.26:  Helium probe theory at the upstream and downstream interferometer.  
Comparison with hybrid method suggests that probe theory alone under-predicts 
plasma density by 40%-60%. 
 

 

The above comparisons highlight the difficulties in achieving accurate density 

measurements from probe theory alone, particularly when electron temperature and flow 

velocity measurements have significant uncertainty.  Interferometer-compensated hybrid 

analysis is expected to have much reduced uncertainty because it is insensitive to such 

factors as ion flow velocity, electron temperature, probe surface area, and current sensing 

electronics gain.  

 

Although density measurements were not in exact agreement  between the probe theory 

and the hybrid probe-interferometer method, the results show that the probe density 
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measurement is consistently ~50% lower than the hybrid density measurement over four 

different plasma conditions.  This consistency suggests that a bias error may be present in 

the measurement, e.g. a wrong assumed probe diameter, resistor value etc. that equally 

affects all measurements.  Again, the velocity values needed to obtain these consistent 

results were vz  = 15 km/s and vz = 19 km/s  at z = 0.43 m and z = 1.85 m, respectively for 

hydrogen.  The velocity values used to obtain consistent probe density results for helium 

were vz = 14 km/s and vz = 17 km/s at z = 0.43 m and z = 1.85 m, respectively.  These 

probe theory velocity values are within the error levels of the other velocity 

measurements in Figure 4.23 and Figure 4.24, and are listed as “Probe theory” in these 

two figures.  These data points are not an independent measurement of velocity, which 

explains why they do not have associated error bars.  The data points merely document 

the flow velocity values used in this section to find density values from probe theory.   

 

4.1.6 Flux conservation measurements   

Mass conservation requires that ion flux is conserved over two surfaces A1 and A2 

perpendicular to the axis: 
1 2

i z i z
A A

n qv dA n qv dA=∫ ∫ .  Simultaneous interferometer 

measurements give a line integral of the electron density arriving at the two 

interferometer axial locations: z = 0.33 m and z = 1.85 m.  While the interferometers 

don’t directly give area integral density, the aforementioned probe scans have provided 

profile shape and width information required to extract 2D area integrated density.  

Integrating Eq. (4.1) in 1D yields:  

 

 ( )
2

2 1 2( )
max max( ) ( ) 2 ln 2 ( )

r
R zN z n z dx n R zπ
−

∞ −

−∞
= =∫   (4.13) 
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while integrating Eq. (4.1) in 2D over a surface perpendicular to the axis yields: 
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Thus area integral density is determined by N(z) line integral density and R(z) profile 

width, assuming axisymmetry and quasineutrality (ni = ne).  By comparing in dA∫  at two 

axial locations, one of two measurements can be made:  1.) the acceleration of flow zv&  

assuming flux conservation, or  2.) the degree of flux conserved in the experiment 

assuming constant velocity vz.  A comparison of the total integrated density as measured 

by the two interferometers in this experiment located at z = 0.33 m and z = 1.85 m is 

shown in Figure 4.27.   

 

The density integral = in dA∫  at the downstream interferometer was found to be 10%-

30% lower than at the upstream interferometer for hydrogen shots.  The density decrease 

was particularly apparent at the beginning of a shot.  A possible explanation for this 

downstream plasma density decrease could be the influence of collisions between ions 

and neutral gas, or plume impingement upon diagnostic probes and other structures in the 

plume leading to a loss of plasma flux.  An alternative explanation is that the flow 

velocity increased by 10-30% between the two positions.  This acceleration would lead to 

a decrease in density due to flux conservation.  In all likelihood, a combination of the two 

factors is occurring since loss of plasma flux is a definite possibility, but some indication 

of velocity increase was previously shown in Section 4.1.4.  Since the flow velocity vi 
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was not measured within 30% at the two interferometer positions, no definite distinction 

can be made between the two explanations for the drop in density.    
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Figure 4.27:  a): in dA∫ at two interferometer locations: z = 0.33 m and z = 1.85 m.  
Density integral determined from interferometer measurement and profile width.  
b): in dA∫  at z = 1.85 m, normalized to upstream measurement.   70%-90% total 
density conserved for most of the shot.   
 

 

The same process is repeated for helium data with both upstream and downstream 

interferometer measurements.  The z = 1.85 m profile radius R(1.85 m) was measured to 

be 0.50 m, and the upstream profile radius R(0.33 m) was taken to be 0.055 m.  The 

upstream radius had to be extrapolated from measurements at z = 0.43 m because unlike 

the hydrogen experiments, helium experiments did not provide an interferometer scan 

and Abel inversion at z = 0.33 m.  As will be shown in Section 0, the simulated plume 

radius for helium is 1 cm larger than the hydrogen plume at z = 0.33 m.  This is consistent 

with measured plume radii at z = 0.43 m.  Figure 4.28 shows a comparison of total 

integrated density for helium at both the upstream and downstream location.   
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The resulting comparison of upstream vs. downstream density integral for helium again 

provides an estimate of flux conservation, or flow acceleration.  Like the hydrogen 

results, there is a slight decrease in overall density at the downstream location with 80% - 

95% of the total density recorded.  Assuming flux is conserved, this is consistent with a 

flow acceleration of 5% - 20%.  Assuming constant velocity, the same data suggests that 

5%-20% of the total ion flux is lost.  Considering the error bars of both interferometer 

density measurements, and considering the assumed column radius at the upstream 

location, it is inconclusive which one of these conditions is occurring.  However, a slight 

increase in flow velocity would be consistent with time-of-flight measurements and the 

flux probe measurements in Figure 4.23. 
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   (a)  (b) 

Figure 4.28: Helium interferometer measurements showing 2D integral of density at 
z = 0.33 m and z = 1.85 m. Plot (b) shows a ratio of downstream to upstream density 
integral, suggesting that 80%-95% of total density is conserved, consistent with a 
slight acceleration in axial velocity.   
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4.1.7 Ion gyroradius 

It has been suggested that a plasma plume’s radius must be greater than the local ion 

gyroradius for that plasma to be confined and directed by a magnetic nozzle.  [Hooper, 

1993]  This alternate condition for magnetized plasma is expressed by the following 

relationship: 

 ,

,

i i i
ci p

c i i

v m Tr r
qB mω

⊥≡ = <   (4.15) 

 

Investigating this value is important to show that any measured detachment from 

magnetic fields was not caused by a breaking of this alternate magnetized plasma 

condition, instead of β > 1 detachment.  Although we do not have values for Ti or rp at all 

points in the experiment, we can make a worst-case estimate that ensures the condition in 

Eq. (4.15) is met for all regions of interest.  Using Ti = Te is a high estimate for Ti and 

gives an upper bound to what ion temperature can achieve.  Since no better estimate of Ti 

is available, this value will be used.  Also, defining rp by the half-maximum radius R(z) 

of the plasma is a conservative measure of the plume width since only half of the 

Gaussian distribution would be accounted for.  The more appropriate value would be rp = 

2w, which accounts for 95% of the distribution.  (in accordance with Eq. 4.1)    Given 

these two caveats, Figure 4.29 gives a comparison of rp and rci for a 1.5 eV hydrogen 

plasma (which is itself an upper estimate of electron temperature).  The plume radius was 

determined by the method described in Section 0, resulting in rp = rci at z = 1.0 m.  

Therefore, the above-mentioned condition of rp > rci  holds until at least z = 1.0 m, and 

probably further due to the conservative estimates of Ti.   
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Figure 4.29: Comparison of ion gyroradius and plasma radius for hydrogen plasma.  
rp and rci cross at z = 1.0 m.  Ti = Te = 1.5 eV. 

 
  

4.1.8 Experimental measurement of Beta 

Like the measurement of ion gyroradius, an estimate of plasma Beta requires several 

assumptions since not all parameters were measured everywhere in the experiment.  

Looking at Eq. (2.52), and re-stated in (4.16) the crucial measurements to determine β are 

ni and vi  given that B is known.     

 

 2 2
0/ /k B i i iW W m n v Bβ μ= =  (4.16) 

 

From Section 4.1.4 we have an estimate of vi = 10 km/s – 20 km/s depending on the gas 

species and the measurement location.  For simplicity’s sake, a constant velocity of 14 

km/s will be used for helium and 15 km/s will be used for hydrogen.  Density 
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measurements are given in Tables 4.1 and 4.2.  Given those inputs, along with a 

numerical model for magnetic field, β can be estimated at the centerline of each of the 

probe scan locations: 

 

 z = 0.33 m z = 0.43 m z = 0.90 m z = 1.57 m z = 1.85 m 

Hydrogen β = 0.15 β = 0.16 β = 1.3 β = 7.5 β = 16 

Helium N/A β = 0.64 β = 5.7 N/A β =57 

 

Table 4.5: Estimate of centerline plasma β at the locations included in radial scans.  
N/A indicates that plasma density was not measured at this location. 
 

The above table gives an approximate location at which the flow begins to experience 

magnetic detachment effects.  The centerline β is greater than unity once the axial 

position z = 0.9 m is reached, suggesting that by this location in the experiment, the 

plume should begin to be detached from the influence of applied magnetic fields.  

Uncertainty in the flow velocity, and radial variations in density may move the initiation 

of β > 1 detachment upstream or downstream.  Certainly by the time the plasma flow 

reaches z = 1.85 m, it is (theoretically) well beyond the influence of applied fields since 

β = 16 and β = 57 for hydrogen and helium flows, respectively.   

 

Considering the full extent of the hydrogen flow velocity error bars: 15 km/s  +/- 4 km/s, 

the plasma β on centerline will always reach unity before the ion gyroradius exceeds the 

2w plasma radius.  This is an important consideration because these are both potential, 

competing conditions for the plasma to become de-magnetized.  In order to differentiate 

between the two conditions, the plasma flow must achieve β > 1 before rci / rp > 1. 
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4.1.9 Cross-magnetic field diffusion regime 

As was discussed in Section 2.4.3, the diffusion rate at low magnetic fields follows 

classical diffusion scaling.  For greater magnetic field strength, cross-field diffusion is 

enhanced by convective motion.  The enhanced diffusion regime is a bridge between 

classical diffusion and Bohm diffusion and according to Eq. 2.58 the onset of enhanced 

diffusion occurs at: 

  
1/ 2 1/3

0
2

0

e e en m TB
e

ε
ε

⎛ ⎞ ⎛ ⎞≤ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (4.17) 

 

Figure 4.30 shows the diffusion regime encountered in the experiment, according to 

centerline plasma density and applied magnetic field.  It is clear from this figure that the 

peak magnetic field in this experiment is almost two orders of magnitude below what is 

required to produce enhanced diffusion.  Therefore, cross-magnetic field diffusion occurs 

according to classical diffusion in this experiment. 
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Figure 4.30: Cross-magnetic field diffusion regime for the plasma plume according 
to the limit condition in Eq. (4.17).  Measurement according to centerline plasma 
density and applied magnetic field shows that the experiment meets the criterion for 
classical diffusion. 
 

 

4.2 Reversed magnetic field experiments 

An interesting study was conducted wherein the nozzle coil currents were reversed, 

providing a region of reversed magnetic field in the experiment. [Deline, 2006]  The main 

choke magnet was held at +100 A, but the three nozzle coils wrapped around the spool 

piece were held at –40 A, -20 A and –20 A respectively.  The reverse current 

configuration led to zero magnetic field strength on-axis after the magnet coils.  (Figure 

4.31)  This resulted in lines of constant magnetic flux being discontinuous between the 

region of plasma production, and the downstream plasma diagnostics.  (Figure 4.32)   In 

the reverse field experiment, plasma would never reach the downstream measurement 

area if it were to completely follow lines of constant magnetic flux.  If any plasma 

exhaust were to be detected in the downstream measurement area, this would suggest that 

stretching or breaking free from applied magnetic fields was occurring. 
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 I_gun I_choke I_noz #1 I_noz #2 I_noz #3 

Config. A 5 A 100 A 10 A 3 A 3 A 

Config. B 5 A 100 A 0 A 0 A 0 A 

Config. C 5 A 100 A -40 A -20 A -20 A 

Config. D 5 A 100 A +40 A +20 A +20 A 

Table 4.6:  Magnetic coil conditions for the reversed-field experiment 
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Figure 4.31 Axial magnetic field on the reverse coil experiment centerline.  All 
configurations: 5A in the plasma source magnet and 100A in the choke magnet, with 
a peak field of 700 gauss.  Magnet conditions are shown in Table 4.6.  
 

 
Figure 4.32: Lines of constant magnetic flux for magnet configuration ‘C’.  Note 
that no magnetic flux lines connect the upstream plasma source with the down-
stream interferometer measurement region due to the reversed magnetic field.   
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Two identical plasma shots were produced using helium as a feed gas, with two different 

magnetic field configurations: Configuration ‘B’ using 0A in the three nozzle coils, and 

Configuration ‘C’ using reversed current in the three nozzle coils. 

 

4.2.1 Interferometer density measurements 

Plasma density measurements were taken by the z = 1.85 m microwave interferometer 

during both the standard (configuration ‘B’) and reverse (configuration ‘C’) shots.  Both 

line integral density, and plume radius was recorded, as discussed in Section 4.1.1.2.  It is 

also important to show that the plasma source was unchanged between the two shots- that 

the only change in the setup was with the nozzle magnetic field.  The plasma source 

discharge voltage was 300V for both shots, and the discharge current for the two shots 

was also identical.  This suggests that the initial conditions are identical for the two shots.  

(Figure 4.33) 
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Figure 4.33:   (a) Comparison of gun current between 5/4/06 shot 166 (nominal 
magnetic field) and shot 173 (reverse magnetic field) for 300V discharge voltage.   
Initial conditions for the two shots were very similar.  (b)  15 GHz interferometer 
measurement at z = 1.85 m.  Line integral density was the same within shot-shot 
variation for the two magnetic configurations.  (c)  Plume half-maximum radius at z 
= 1.85 m.  The plume radius for both magnetic configurations was 30-35 cm.   
 

The resulting downstream interferometer measurements show that despite the dramatic 

difference between the two magnetic configurations, the resulting plume measurements 

remain the same.  Both show a peak line integral density of ~1.5x1016 m-2 with a plume 

radius of ~30-35 cm.  The very small difference that can be perceived between the two 

conditions is due mostly to shot-to-shot variation, and certainly is not indicative of a 

(a) 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
(c) 
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drastic change in the plume despite a large change in the applied magnetic field.  (Figure 

4.33)  This evidence is a strong indicator that applied magnetic fields are not affecting the 

plasma exhaust’s particle flux beyond a certain point in the magnetic nozzle. 

 

4.2.2 Comparison with positive magnetic field adjustment  

In the previous section, very little difference was measured by the downstream 

interferometer despite a very large change in the magnetic field.  This might lead one to 

suspect that the magnetic nozzle has no influence on the downstream plume.  However, 

this is not the case.  There are three additional magnetic field profiles listed in Table 4.6 

besides the cusp configuration: Config. A, B and D.  The magnetic nozzle currents for 

these three configurations are:  [10 A, 3 A, 3 A], [0 A, 0 A, 0 A], and [40 A, 20 A, 20 A] 

respectively.  By investigating the plume’s change for these three minor adjustments to 

the nozzle coil currents, the influence of the applied magnetic nozzle can be 

demonstrated. 

 

The plasma source was operated under the same discharge conditions for these three 

nozzle configurations.  Plume profile widths were determined at the axial position 

z = 0.9 m by the vertical Langmuir triple-probe array as discussed in Section 3.2.3.  One 

single shot was taken for each magnetic field configuration, and each of the six Langmuir 

probe density responses was time averaged over the entire shot.  This provides a plume 

density profile measurement for each shot. 
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Figure 4.34:  Plume radial profile for three magnetic nozzle configurations.  Density 
is measured by vertical Langmuir probe array at z = 0.9 m and displayed as probe 
current (arb. units).  Plume half-maximum radius R for the three configurations is: 
Config. A: 15.5 cm.  Config. B: 16.3 cm.  Config. D: 13 cm. 

 
As shown in Figure 4.34, some variation does exist in the three magnetic profiles.  In 

particular, the application of higher nozzle field creates a denser, narrower plume which 

is consistent with the magnetic nozzle affecting plume profiles.  The result of applying 

the high nozzle field strength of configuration ‘D’ (40A, 20A and 20A in the last three 

nozzle coils) was to double the measured centerline density compared with the no-nozzle 

condition of configuration ‘B’.  The high-field configuration ‘D’ also resulted in a half-

maximum radius of R = 13 cm which is a reduction from the configuration ‘B’ plume 

width of R = 16.3 cm.   

 

As expected, the application of higher nozzle fields results in a narrower, denser plume.  

This can be seen as a verification of the nozzle’s effect on the plume while the plume is 

still magnetically confined.  This then brings up the question why a complete reversal of 
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current in magnetic nozzle coils (i.e. Configuration ‘C’) yielded no apparent difference in 

the downstream plume.  One possible answer is that negative current in the nozzle coils 

reduced the magnetic field in the nozzle region, allowing magnetic detachment to occur 

farther upstream.  The result of this earlier detachment was to impart the plume with a 

slightly narrower trajectory angle yielding no change in plume density and profile width 

at the downstream interferometer at z = 1.85 m, when compared with configuration ‘B’.  

Another possible answer is that an additional cross-magnetic field transport phenomenon 

occurs in the presence of a strongly diverging magnetic field.  For instance, high 

frequency electric fields have been discovered in prior experiments that involved plasma 

flowing perpendicular to an applied magnetic field. [Schmidt 1960], [Ishizuka 1982],  

[Brenning 2005].  In these previous studies the directed velocity of the plasma was hardly 

changed by the application of strong perpendicular magnetic fields.  It is possible that a 

similar effect is arising in this experiment when strongly diverging magnetic flux lines 

are created as opposed to a small divergence angle magnetic nozzle.  Further 

investigation of this additional cross-field transport effect is outside the scope of this 

work, but possible follow-on experiments are described in Section 6.2: Future work. 

 

4.3 Charge exchange collision effects in the DDEX experiment 

Ion-neutral collisions pose a source of error in the interpretation of this experiment 

because hypothetical deviations of the plasma from the magnetic field that would 

otherwise be attributed to magnetic detachment may in fact be caused by collisions.  

Experimental evidence of ion-neutral charge exchange collisions is therefore an 

important topic of discussion. 
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An example of the experimental effect of charge exchange collisions can be spotted in 

Figure 2.9 (b), which shows Mach probe data from an MPD thruster experiment.  

Insufficient pumping in this case led to a dramatic decrease in Mach number (ion 

velocity) at greater distances from the plasma source.   Ion density (not shown) 

dramatically increases as well due to flux conservation.  A similar effect should be sought 

in the present experiment. 

 

In Section 3.1.3 the theoretical effect of ion-neutral collisions was discussed, and the 

measured neutral background pressure during a pulse was found to be between 4x10-5 

Torr and 2x10-4 Torr. This yields an ion-neutral charge exchange mean free path in 

hydrogen of 2.2 m – 11 m, and about a factor of two less for helium.  Due to the rising 

pressure in the vacuum chamber, collisional effects are likely to be more visible towards 

the end of a shot, and more apparent in experiments using helium rather than hydrogen. 

 

Figure 4.28 therefore provides the best possibility for evidence of ion-neutral interaction.  

In comparing the upstream and downstream area integral density in helium, as described 

in Section 4.1.6, the downstream density appears to rise towards the end of a shot.  This 

may indicate a slight deceleration due to charge exchange collisions.  However, it is 

debatable whether Figure 4.28 or the hydrogen data in Figure 4.27 shows a substantial 

increase in density above what could be considered natural fluctuations.   Compared with 

the large decrease in Mach number shown in Figure 2.9, the density change is rather 

small. 
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A second set of data to investigate is the axial scan of velocity shown in Figure 4.23.  

Although the error bars for this measurement are large, it does not give any indication of 

a substantial decrease in velocity by z = 2 m. 

 

It can therefore be suggested that the pressure data can not conclusively rule out ion-

neutral charge exchange collisions in the DDEX experiment.  However the plume 

measurement data does not show conclusive evidence of a density rise or a velocity 

decrease commensurate with strong ion-neutral charge exchange collisions.  It is 

therefore theoretically possible that ion-neutral collisions are occurring in this 

experiment, but the effect of charge exchange collisions was not seen in any experimental 

data.  The experimental impact of ion-neutral momentum exchange collisions is 

considered in Section 5.1.5.3. 
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CHAPTER 5 

SIMULATION AND ANALYSIS 

 

5.0 Overview 

The simulations considered in this chapter will help provide some answers to the 

questions posed in Chapter 1: Is magnetic detachment occurring in this experiment? 

Under what conditions will the magnetized plasma plume detach from its applied 

magnetic fields?  And at what efficiency will this detachment occur?  As we have already 

seen in the cusp magnetic field experiment of Section 4.2, conditions were found that 

demonstrate plasma transport across sharply diverging magnetic field lines.  That was an 

example of magnetic detachment, because a magnetized plasma was observed to be 

unaffected by a large change in the applied magnetic field. The last two questions posed 

in Chapter 1 require a more detailed examination of experimental results in order to be 

answered.  

 

Simulations were conducted based on the initial conditions found in the experiment.  Two 

different computer codes are employed- one is a novel quasi-1D simulation developed for 

this dissertation, and the second is a previously published 2D code based on the ideal 

MHD equations.  The two codes were able to duplicate a variety of the experimental 

measurements reported in Chapter 4, including plume profile widths and plasma density 

values.  Velocity effects seen in the experiment are also compared with analytical 
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models, providing a better understanding of the magnetic nozzle’s accelerating effects. 

 

5.1 Quasi-1D Numerical simulations  

Several models for plasma expansion were produced to accompany the above 

experimental data, evaluating the influence of high-β detachment. [Deline, 2007] These 

models were chosen to deal specifically with the measured plume diameters, given the 

assumption of constant velocity.  The validity of this assumption as stated in Section 

4.1.6 and 4.3 is good within ~20% for the beginning of a shot before the pressure rise has 

a chance to slow the flow down. The initial simulation couples a static 2D vacuum 

magnetic field map (shown in Figure 5.1) with a steady-state model in which the plume 

follows magnetic field lines exclusively.  This is equivalent to the case of flowing plasma 

frozen onto vacuum field lines under steady state conditions.   

 

Additionally, because the plume’s radial density profile is approximately Gaussian at all 

locations, a quasi-1D assumption was used in which the plume’s ½ maximum radius R(z) 

is variable, but its density profile remains Gaussian.  If the plasma plume is frozen onto 

magnetic field lines, the total captured magnetic flux 2( ) ( )zR z B zπ is conserved, and the 

plume width R(z)  is equal to:  

  ( )
1/ 2

0 ,0( ) / ( ) /z zR z R B z B
−

=  (5.1) 

 

where 0R  and ,0zB  are the plasma ½ maximum radius at z = 0 and magnetic field at z = 0, 

respectively.  The radial expansion rate of the plume envelope dR/dz can be defined by a 

radial velocity vr and a (constant) axial velocity vz where:    
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5.1.1 Magnetic field model 

The magnetic fields in the DDEX experiment were calculated over a 100 x 100 cell 

simulation space using an analytic expression for the off-axis magnetic field of an 

infinitely thin current loop.  Each coil winding is considered a separate 1-D current loop, 

with the total magnetic field at each point in the simulation space equal to the sum of 

contributions from all the windings.  The off-axis magnetic field from a thin cylindrical 

current loop of radius r0 is [Jackson, 1975] [Jackson, 1999]: 
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 (5.4) 

 

Where B0 is the centerline magnetic field in Tesla: 0
0

02
IB

r
μ

= , and α = r/r0, β = z/r0,  

/z rγ = , ( )2 21Q α β⎡ ⎤= + +⎣ ⎦ ,  and 4k
Q
α

=  .  The functions K(k) and E(k) are the 

complete elliptic integrals of the 1st and 2nd kind, respectively.  A Matlab code determines 

the vacuum magnetic field map based on applied currents and coil geometries for the 
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various nozzle magnets.  The resulting magnetic field map was successfully benchmarked 

against centerline magnetic field readings from a translation stage mounted three-axis 

Hall probe. [Chavers, 2006]  

 

 

 

Figure 5.1: 2D Vacuum magnetic field model used for the numerical simulations.  
Hydrogen simulations used the coil conditions provided as Dataset #3 in Table 4.1, 
and helium simulations used the coil conditions in Dataset #4. 
 

 

5.1.2 Experimental data inputs 

Initial conditions were chosen for the plasma simulations based on the experimental 

setup.  The electron temperature was set at Te = 1.2 eV for hydrogen and Te = 1.4 eV for 

helium according to measurements from Section 4.1.2. The simulation was quite 

insensitive to electron temperature, and minor adjustment of these values within Te 

experimental uncertainty does not significantly affect the simulation.  A constant axial 

velocity vz was varied in the range of 16 km/s +/- 3 km/s for hydrogen and 14 km/s +/ - 2 

km/s for helium.  These values are within the error bars for the measurements discussed 

in Section 4.1.4, and are adjusted to show velocity’s effect on the profile shape. The 
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initial density distribution inside the plasma source was based on the gun inner diameter 

of 1 cm.  An initial plume radius equal to R0 = 0.5 cm was chosen with a peak density of 

ne = 8.75x1020 m-3. These initial plasma conditions are within the reported parameters 

provided for the plasma source [Fiksel, 1996] and match the farthest upstream plasma 

density measurements made in the experiment, shown in Section 4.1.1.1. Helium 

simulations use the same initial column radius and a slightly higher initial density ne = 

1x1021 m-3.  

 

The experimentally determined plume densities and profile widths from Table 4.2 and 

Table 4.3 are used for comparison with the simulation results.   This data is superimposed 

on top of the magnetic field map as shown in Figure 5.2 and Figure 5.3 for hydrogen and 

helium, respectively. 

 

 

 

Figure 5.2: Experimentally determined density profiles for hydrogen from Table 
4.2.  White dots represent measured column half-maximum radius.  The magnetic 
field is shown for the operating conditions of Dataset #3 in Table 4.1. 
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Figure 5.3: Experimentally determined density profiles for helium from Table 4.3.  
White dots represent measured column half-maximum radius.  The magnetic field is 
shown for the operating conditions of Dataset #4 in Table 4.1. 
 

 

5.1.3 Initial simulation #1: frozen-in condition 

A MATLAB simulation based on Euler’s method [Edwards, 1996] is used with axial step 

size dz = 6.7 mm and with initial conditions chosen according to Section 5.1.2.  The axial 

step size was chosen small enough to not contribute to numerical inaccuracy.  The profile 

width R(z) is updated for each axial step based on Eq. (5.1) which assumes that plasma is 

frozen onto magnetic field lines.   The centerline plasma density n(z) is updated for each 

step by flux conservation:  

  ( )2( ) ( ) 0z
d R z n z v
dz

=    (5.5) 

 

The flow velocity is assumed constant, as discussed in Section 5.1.  By following 

magnetic field lines out from the plasma source, the plume trajectory is plotted in Figure 

5.4 by displaying R(z) along with the experimentally determined profile widths:  
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Figure 5.4: Initial frozen-in simulation for hydrogen showing experimental data 
points (white dots) and simulated plume trajectory (dashed).   
 

It is clear from Figure 5.4 that the initial simulation does not match the experimental data 

very well.  The experimental plume profiles were measured with high resolution, and 

uncertainties in plume width are on the order of 10%.  Therefore, an appropriate 

simulation should come at least this close to matching the experimental data points.  In 

the case of these frozen-in simulations, the plume width expands too slowly.  This is also 

the case for the helium simulations, which are considered separately in Section 5.1.5.1. 

 

5.1.4 Simulation #2: Classical cross-field diffusion  

It was found that the radial expansion rate from the basic model in Section 5.1.3 is too 

slow to properly account for the measured plasma profiles.  An improvement on this 

initial simulation includes the addition of an enhanced radial velocity term Dv  into Eq. 

(5.2) to account for cross-magnetic field diffusion: 

  

  ( ) r D

z

dR z v v
dz v

+
=      (5.6) 
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Here, Dv is an approximate radial velocity due to diffusion, and is measured at the plume’s 

half-maximum radius R(z).  For the purposes of this simple simulation, the magnetic 

nozzle is assumed to be paraxial, meaning radial magnetic field is ignored and vD is 

assumed to be exclusively in the radial direction.  The radial diffusion rate is included 

along with the plasma’s perpendicular expansion due to magnetic field curvature.   

 

As determined in Section 4.1.9, the cross-field diffusion rate is governed by classical 

diffusion.  Using Fick’s law, vD can be defined from the classical diffusion coefficient 

[Chen 1984]:  

  D e env D nΓ = = − ∇  (5.7) 

 

  e
D e

e

n
v D

n
∇

= −  (5.8) 

 

where the classical diffusion rate for electrons De was previously defined in Eq. (2.61)  

as: 
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 (5.9) 

  

For this simulation, the magnetic field and electron density required to define ωp and ωce 

were taken at the position R(z) instead of on centerline. Using the Gaussian density 

profile from Eq. (4.1) to determine the density gradient, the diffusion velocity reduces to:    
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If density and magnetic field values were taken from the centerline instead of at R(z), the 

diffusion rate would be a factor of 2 faster due mainly to the increase in centerline plasma 

density.  By using the density and magnetic field values at R(z), the diffusion rate at the 

half-maximum radius is calculated, which is desired because the quasi-1D simulation 

defines the plume profile width by the half-maximum radius. 

 

A simulation was performed using the enhanced perpendicular velocity drift in Eq. (5.10) 

included with the geometric expansion velocity vr in Eq. (5.6). The same initial 

conditions and flux conservation assumptions that were used in Section 5.1.3 are used 

again.  The resulting diffusion simulation for hydrogen is shown in Figure 5.5, with 

multiple diffusion rates shown, between 0.1 times vD  to the full vD diffusion velocity. 

 

 
Figure 5.5:  Numerical simulation for hydrogen comparing classical diffusion re-
sults (dots) for multiple diffusion rates.  Radial diffusion velocity vD was adjusted 
from 0.1 vD to  vD.  Also shown are frozen-in simulations (dash) and experimental 
data (white) from Figure 5.4. 
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The simulation results in Figure 5.5 show an improvement in fitting to the first three 

experimental data points.  Particularly when compared with the frozen-in simulation, the 

cross-field diffusion simulation does a much better job of matching the experimental 

data.  However, at an axial location much greater than z = 1 m the diffusion simulation 

diverges from the experimental conditions.  If a lower diffusion rate is chosen, the 

simulated trajectories match the downstream density profiles better.  However in 

reducing the diffusion rate, the upstream trajectories no longer fit.  If the last two 

experimental data points are neglected, a cross-field diffusion velocity of 0.5 vD best 

matches the initial three plume profiles.  No diffusion rate could be chosen that would 

result in this particular simulation matching all five of the experimental data points. 

 

While the use of Eq. (5.10) for radial velocity appears to satisfy certain experimental 

results within a factor of two, its use in diffusion simulations does present a theoretical 

problem. This is specifically because the radial velocity vD is inversely proportional to 

radial position, instead of being constant with radial position.  If a full 2D simulation 

were employed using the diffusion velocity in Eq. (5.10), the density profile would 

quickly cease to be a Gaussian as the center diffused faster than the outer edges.  While 

this is not necessarily a problem for the quasi-1D simulations considered here, it suggests 

an incomplete physical picture that would have to be addressed for any future 2D 

simulations.  The diffusion rate chosen for these simulations is to a certain extent chosen 

a posteriori in order to best fit the experimental data.  This should not necessarily be 

considered a failing of the simulation, but a recognition that there is a factor of >2 

uncertainty in the diffusion rate to account for errors in both the paraxial nozzle 
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assumption, the quasi-1D assumption, and the empirical nature of cross-magnetic field 

diffusion rates. 

 

5.1.5 Simulation #3: Beta > 1 Detachment 

Since no arbitrary diffusion rate could be chosen that would result in all of the data points 

being fit, and frozen flow assumptions resulted in far too narrow trajectories, a more 

sophisticated physical model is required to fix the simulation.  The fact that the 

downstream data points do not fit at all may be due to a breaking of the magnetic 

confinement conditions, as discussed in Section 4.1.8 for high-β plasmas.  Another term 

for this situation is magnetic detachment, which is predicted to occur when the plasma β 

increases above unity. 

 

A third 1-D high-β trajectory  model is produced using the same initial conditions as in  

Section 5.1.3, and the best-fit classical diffusion rate of vD / 2.  As will be seen, this 

model appears to fit all measured profile widths, both for helium and hydrogen data.  In 

this model, β is an indication of plasma detachment which changes with z: 

)(/)()( 22
0 zBvznmz zi μβ = .  As was discussed in Section 4.1.8, the plasma β reaches 

unity by z = 0.9 m for both hydrogen and helium experiments.  Upon reaching the 1β >  

transition, the plasma plume is no longer affected by applied magnetic field, and the 

profile continues on a ballistic trajectory defined by: 

 

  
2

2

( ) 0 for 1d R z
dz

β= >  (5.11) 
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From this point onward, the plume trajectory angle remains constant.  The profile width 

still increases, and the centerline density still decreases according to Eq. (5.5).  Since the 

simulation is quasi-1D, the entire plume is assumed to detach as a whole once the 

centerline plasma density achieves 1β > .  In reality, this is not an accurate situation, 

since the plasma β is much lower towards the plume edges than in the plume center and 

hence the center should detach sooner.  A full 2D simulation is required to simulate a 

more realistic detachment contour.   

 

The third (β > 1) model was adjusted by assigning different axial velocities to the 

simulation’s initial conditions. Vz remains constant with z despite the change in initial 

condition, and a comparison of the resulting trajectories can be seen in Figure 5.6 for the 

initial velocities vz = 15 km/s, 17 km/s and 19 km/s.  A change in axial velocity will 

affect the profile shape primarily by determining how early the plume detaches.  Higher 

constant velocities result in quicker detachment, and thus narrower profiles.  The higher 

constant velocity also reduces the relative effect of cross-magnetic field diffusion. 
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Figure 5.6:  Comparison of high β detachment simulations with hydrogen for varying 
axial velocity.  Velocity is constant with z.  vz = 19 km/s best fits experimental profiles 
(white circles). 

 

  
 

 
Figure 5.7: Plume trajectories for hydrogen.  Black dashed line shows field line 
mapping only.  Red dotted line shows field line mapping plus cross-field diffusion at 
vD / 2 radial velocity.  Black solid line shows field line mapping, plus cross-field 
diffusion, plus β > 1 detachment with an axial velocity equal to vz = 19 km/s.   
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A comparison of the three simulation methods is shown in Figure 5.7 and shows the 

benefits of the high- β model.  Simulation #1 which assumes the plume is frozen to 

magnetic field lines underestimates the plume width by a significant amount.   The cross-

field diffusion model (#2) will properly account for the upstream radial density profiles, 

but will not account for the downstream density profiles. Only the high-β detachment 

trajectory model (#3) was able to account for both the upstream and downstream column 

widths measured in the experiment.  In particular, a flow velocity for hydrogen of vz = 19 

km/s best fit experimental profiles.  This flow velocity is within measurement error bars. 

 

A table of simulation results is included which compares measured and simulated 

density, velocity and profile width: 

 

 

  
Simulation 
values 

Measured 
values 

Velocity, z =  0.33 m 19 km/s --- 
Velocity, z =  0.43 m 19 km/s 15 km/s 
Velocity, z =  1.85 m 19 km/s 19 km/s 
R(z) , z =  0.33 m 4.8 cm 5 cm 
R(z) , z =  0.43 m 6.9 cm 8.5 cm 
R(z) , z =  1.85 m 47 cm 45 cm 
ne, z =  0.33 m 9.6 x 1018 1 x 1019 

ne, z =  0.43 m 4.6 x 1018 3.7 x 1018 

ne, z =  1.85 m 9.9 x 1016 1x1017 

 

Table 5.7:  Hydrogen simulation results for high-β detachment simulation.  Initial 
conditions are: R0= 0.5 cm, v0 = 19 km/s, ne,0 = 8.75x1020

 m-3.  Radial diffusion 
velocity is vD / 2.  Experiment values are taken from Section 4.1 
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While several assumptions were made in this 1D numerical simulation: constant velocity, 

vacuum magnetic fields, paraxial nozzle assumption and purely radial diffusion, the 

resulting simulations appear to match with hydrogen experimental data within error bars, 

but only when magnetic detachment is taken into account.   

 

5.1.5.1   Helium simulations 

Numerical simulations similar to those detailed above were also conducted for helium.  

As stated in Section 5.1.2, the initial conditions for helium were similar to those for 

hydrogen with identical plume width R(z) = 0.5 cm and slightly higher density: ne = 

1x1021 m-3.  A constant flow velocity of vi = 14 km/s +/- 2km/s and electron temperature 

Te = 1.4 eV were used.  Also, the radial diffusion velocity vD was included, based on the 

classical diffusion Eq. (5.10).  Figure 5.8 shows a comparison of radial velocity from 

0.1 vD to the full vD diffusion velocity.  Best agreement with the data was again found 

when a diffusion velocity equal to 0.5 vD was used.  A comparison of high-β detachment 

simulations with the other two helium simulations is shown in Figure 5.9.  

 

As was the case with hydrogen simulations, the helium radial profiles could all be fit by 

the high-β detachment simulation.  A table of simulation results is included which 

compares measured and simulated velocity, centerline density, and profile width. 
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Figure 5.8: Numerical simulation for helium comparing classical diffusion results 
(red dots) for multiple diffusion rates.  Radial diffusion velocity vD was adjusted 
from 0.1 vD to 1.0 vD.  Also shown are frozen-in simulations (black dashed) and 
experimental data (white) from Figure 5.3. 
 

 

 

 
Figure 5.9: Trajectory simulations for helium.  Black dashed line shows field line 
mapping only.  Red dotted line shows field line mapping plus classical cross-field 
diffusion at vD / 2 radial velocity.  Black solid line shows field line mapping, plus 
cross-field diffusion, plus β > 1 detachment with an axial velocity equal to vz = 
14 km/s.   
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Simulation 
values Measured values 

Velocity, z =  0.33 m 14 km/s --- 
Velocity, z =  0.43 m 14 km/s 14 km/s 
Velocity, z =  1.85 m 14 km/s 17 km/s 
R(z) , z =  0.33 m 5.5 cm --- 
R(z) , z =  0.43 m 8 cm 10 cm 
R(z) , z =  1.85 m 46 cm 50 cm 
ne, z =  0.33 m 8.2 x 1018 --- 
ne, z =  0.43 m 4 x 1018 3.5 x 1018 

ne, z =  1.85 m 1.2 x 1017 1 x 1017 

 

Table 5.8:  Helium simulation results for high-β detachment simulation.  Initial con-
ditions are: R0= 0.5 cm, v0 = 14 km/s, ne,0 = 1x1021

 m-3.  Radial diffusion velocity is 
vD / 2.  Experiment values are taken from Section 4.1. 
 
 
 
 

5.1.5.2 β  > 1 detachment vs. rci > rp detachment    

The above simulations indicate that magnetic detachment is occurring in the plasma flow.  

As stated in Section 4.1.7, there are two different theories regarding the onset of magnetic 

detachment: β > 1 and rci > rp and it may be difficult to discern between the two 

conditions in this experiment. Based on the experimental evidence, the specifics of 

exactly where and exactly how magnetic detachment is occurring are slightly ambiguous.  

For instance, uncertainty in flow velocity makes it difficult to pinpoint the exact axial 

location where plasma β > 1.  Also the plasma radius rp which is compared with ion 

cyclotron radius rci can be defined by the ½ maximum radius, or the 1/e radius, or the 2w 

radius with differences between the definitions or rp ranging up to 70%.  This suggests 

there is some ambiguity in determining where the condition for rci < rp magnetization is 

met, and where it is violated.   
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To investigate this effect further, the previously reported simulations were adjusted to 

achieve magnetic detachment, not when β >1, but when rci > rp.  Initial conditions and 

diffusion assumptions were chosen identical to those in Section 5.1.5 and 5.1.5.1.  

However, the detachment condition was changed such that when centerline rci > R(z), the 

plume was assumed to detach, and the plume trajectory was kept constant. 

 

The results of these alternate detachment simulations were not entirely conclusive.  There 

was a significant shift in the centerline detachment position, with the hydrogen 

detachment point shifted back by 11 cm, and the helium detachment shifted back by 33 

cm.  However, the plume width was only increased by 12% and 14% respectively at z = 

1.85 m.  This is within the measurement uncertainty of plume width, and thus rci > R(z) 

can not be excluded as a possible detachment mechanism.  A different experiment would 

need to be devised to eliminate this possible detachment mechanism, even if β > 1 

detachment is favored for reasons of theory.    

 

5.1.5.3 β  > 1 detachment vs. collisional dissipation    

As stated in Section 4.3, plume measurements do not show measureable evidence of ion-

neutral charge exchange collisions.  However, pressure measurements can not rule out the 

possibility of some ion-neutral collisions in this experiment.  It is therefore possible that 

ion-neutral momentum exchange collisions are responsible for some of the plume 

trajectories measured in this experiment.  To address this issue, an investigation was 

made into what neutral pressure would be required to substantially affect measured plume 

trajectories.  Figure 5.4 provides a good starting point for this analysis as it provides ideal 
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trajectories following the applied magnetic field line in absence of collisions or cross-

field diffusion.  In order to conduct this analysis, a quasi-1D simulation was conducted, 

assuming that ions follow magnetic field lines, but each instance of an ion-neutral 

momentum exchange collision would result in a radial displacement of the ion equal to 

the ion cyclotron radius.  Momentum exchange collision cross-sections were taken from 

Table 3.1 using the total collision cross-section for helium.  This helium collision cross-

section is a worst-case estimate, since collision cross-sections for hydrogen are smaller. 

 

Given these assumptions, the plume was simulated with initial conditions taken from 

plume profile widths at z = -0.16 m and z = 0.33 m.  The required neutral pressure to 

allow collisional dissipation to account for the remaining plume widths was determined.  

In between the plasma gun aperture at z = -0.16 m and the upstream interferometer 

measurement point at z = 0.33 m, a neutral background pressure of 1x10-3 Torr is 

required to account for the plume width broadening.  Between z = 0.33 m and z = 0.43 m, 

a neutral pressure of 4.5x10-4 Torr is required to account for the plume width at 

z = 0.43 m.  It should be noted that both of these pressure values are several times greater 

than the peak chamber pressure of 2x10-4 Torr, measured inside the smaller (1 m 

diameter) spool piece at z = 0.5 m.  Although a higher local pressure within the plume is 

possible, it is probably not much higher due to the very large (1 m) diameter chamber and 

the fact that molecular flow dominates at this pressure range. 

 

In addition, the downstream measurement points are fit very poorly by assuming an 

increased plume width due to ion-neutral collisions.  Indeed, by using initial conditions 
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equal to the measured plume width and density at z = 0.33 and following vacuum 

magnetic fields out to z = 1.85 m, the plume half-maximum diameter is too wide by 15 

cm even without assuming any cross-field transport.  Any additional assumption of ion-

neutral collisions in this far region of the nozzle yields even greater divergence from the 

measured plume diameters.   

 

In conclusion, to account for the plume widths measured at z = 0.33 m and z = 0.43 m, 

the required pressure acting through ion-neutral momentum exchange collisions is far 

greater than any measured pressures in the experiment.  In addition, the far downstream 

plume width measured at z = 1.85 m cannot be accounted for at all, given any assumption 

of cross-magnetic field diffusion or ion-neutral momentum exchange collisions.  Ion- 

neutral collisions can therefore not realistically explain any of the measured plume 

widths, and are expected to play a minimal role in the data and conclusions presented for 

this experiment. 

 

5.1.6 Quasi 1D simulations of nozzle efficiency 

The simulations in Section 5.1.5 can be employed to estimate the rocket thrust and nozzle 

efficiency, based on Eq. (2.68) and Eq. (2.69).  These values were not backed up by 

experimental verification, but qualitative results can still be obtained from simulation, 

particularly for varying nozzle conditions.  Assuming a Gaussian density profile from Eq. 

(4.1), a substitution can be made in Eq. (2.68) for thrust T: 
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A further substitution must be made in Eq. (5.12) for the axial component of flow 

velocity vz(r).  While the overall velocity v0 is constant for this simulation, due to energy 

conservation the axial portion must be a function of r according to )()( 22 rvrv rz + = v0.  

This reflects the fact that a particle at a given z is going to have a higher directed velocity 

vz on the centerline (r = 0) than a particle at the edge of the plume (r = R).  The ratio 

vr / vz  at the plume half-max radius R is defined by the trajectory angle θ  by:  

 

  ( )zR d/dtan -1=θ  (5.13) 

 and:  

  vz (r)= v0 cos (θ  ) (5.14) 

 

The above definition of theta is determined by the plume angle at r = R. For all other 

radial positions other than the half-maximum radius, the derivative dr/dz is not tracked in 

the simulation.  An alternate method for determining the ratio of vr to vz for these other 

radial positions requires a definition of trajectory angle that varies in r: θ(r) and is shown 

in Figure 5.10 and described here.     
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Figure 5.10:  Determining vz(r) for a theoretical plume. Plume radius R is plotted 
against axial position z for a representative plume.  The derivative dR/dz is found 
for a given axial position zi.  The z - intercept of the line tangent to R(z) at point zi is 
used to determine the trajectory angle θ (r), which is used in Eq. (5.14) to find vz(r). 
 

With the value dR/dz in hand for a given axial position zi, a z-intercept value zintercept can 

be found from the line tangent to the plume trajectory R(z) at zi.  This intercept point on 

the z – axis is used as a plasma “point source” to find a trajectory angle for all r positions 

along the radial profile at zi.  The radially varying trajectory angle is found by 

trigonometry: 

 ⎟
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which allows axial velocity vz to be found by Eq. (5.14).  It should be noted that zintercept 

has a different value for each axial position zi along the plume due to the difference in 

dR/dz at that axial location.  However, it is assumed to be the same for each position r 

along the profile.  The two methods of determining θ  in Eq. (5.13) and Eq. (5.15) yield 

the same result at the plume half-maximum point r = R. 



 192

 

A further simplification can be made for the inverse tangent in Eq. (5.15), which 

combined with Eq. (5.14)  yields: 
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Substitution into (5.12) yields: 
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which is solved numerically at each z position.  For large z, this value asymptotically 

approaches the T∞  thrust at detachment.  To determine the T0 initial thrust, the 

assumption is made that v(r) is exclusively axial for the nozzle inlet initial conditions, 

and thus Eq. (5.17) at z0 is: 

  2 2
0 0 0 0 02 / ln 4T m n v Rπ=  (5.18) 

 

Figure 5.11 shows a calculation of ηnoz = T(z)/T0 for the standard magnetic nozzle 

conditions used in Figure 5.6 for hydrogen.  The asymptotic efficiency for this simulation 

was 91%, meaning that the total thrust at a distance far from the nozzle was 91% of the 

inlet thrust.  The peak thrust from this simulation was T0 = 60 mN. 
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Figure 5.11: Nozzle efficiency ηnoz for standard magnetic field simulations.  Efficien-
cy asymptotically approaches 91% for vz = 19 km/s.  A lower axial velocity decreases 
the nozzle efficiency. A lower limit to efficiency is reached at the point of 
detachment, which is somewhat of a 1-D numerical artifact. 

 

Using this tool, a number of parameters can be changed to investigate their effect on 

efficiency.  The first parameter adjusted was axial velocity.  Not surprisingly, a decrease 

in axial velocity results in a decrease in nozzle efficiency.  This is due to the wider 

profiles from increased radial diffusion, and due to the downstream shift of the β > 1 

detachment point where the trajectory angle is greater.  It should be noted in Figure 5.11 

that the nozzle efficiency reaches an abrupt lower limit upon achieving the β = 1 

condition on centerline.  This is accurate as far as the assumptions of the 1-D model are 

concerned, and highlight the limitations of the 1-D assumptions.  Subsequent simulations 

allowing for 2-D detachment contours are considered later (e.g. Figure 5.16), and do not 

show the same efficiency plateau. 

 

The second parameter adjusted in this simulation was applied magnetic field.  Magnetic 

field strength B was adjusted by changing the simulated current flowing in each of the 
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three nozzle coils wrapped around the chamber’s spool piece.  The efficiency 

improvement that results from a change in B depends less on the magnitude of B, and 

more on the gradient of B near the point of detachment. If a large axial gradient zB∇  

exists immediately prior to detachment, the trajectory angle becomes greater.  A smaller 

magnetic field gradient results in a narrower trajectory.  Using both positive and negative 

currents to custom tailor a shallow magnetic field gradient, the trajectories can be 

optimized to yield simulated nozzle efficiencies as high as 98%, as shown in Table 5.9.   

 

Nozzle coil #1 Nozzle coil #2 Nozzle coil #3 ηnoz 

10A 3 A 3 A 0.91 
40A 40 A 40 A 0.91 
0A 0 A 0 A 0.87 
0A -20 A 35 A 0.98 

 

Table 5.9: Nozzle efficiency for different simulated nozzle coil currents.  Standard 
magnetic field conditions (1st entry) yielded 91% efficiency.  Highest nozzle efficien-
cy resulted from nozzle currents of 0 A, -20 A and 35 A. 
 
 

 

Figure 5.12: Magnetic field and plume trajectories optimized for nozzle efficiency.  
Applied nozzle currents of [0A, -20A, 35A] result in ηnoz = 0.98. 
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Again, the efficiency improvements determined from simulation were not verified 

experimentally, and near 100% nozzle efficiency is probably not practically realizable.  

However these simulations highlight the importance of fully characterizing the rocket 

nozzle, and understanding the physical processes involved in magnetic detachment. 

Coupled with experimental verification, magnetic detachment simulations offer a 

valuable tool to future magnetic nozzle designers. 

 

5.1.7 Limitations of the Quasi-1D simulation  

Under standard magnetic field conditions, the quasi-1D simulations appear to predict 

plume profiles within measurement uncertainty.  However certain operating conditions 

exist that could not be successfully modeled with this code.  Section 4.0.1 dealt with the 

plasma source’s response to increased magnetic field.  These magnetic field conditions 

yielded much higher peak magnetic fields than the standard configuration: 2700 gauss vs. 

700 gauss.  In this preliminary experiment, the source magnetic field was decreased a 

factor of 6, leading to an increase in plume diameter by a factor of 1.5.  When this 

condition is simulated using the above model however, the experimental results are not 

duplicated; simulated plume radii are too large by a factor of ~2.  An adjustment of initial 

conditions within a range of experimental uncertainty was also unable to replicate the 

experimental results.  This suggests a breakdown of the model under these much higher 

magnetic field conditions.   The cause of this breakdown may be an indication of the need 

for a more comprehensive MHD simulation for the high ne and Bz encountered in these 

conditions.  
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Also the cusp-magnetic field conditions given in Section 4.2 produced aberrant 

simulation results.  The sharp reduction of magnetic field in the cusp field region resulted 

in high values of ( )z
d B z
dz

 that violate the quasi-1D, small divergence angle assumptions 

of the simulation.  The resulting plume trajectories were strongly diverging for any initial 

conditions chosen, and do not approximate experimental results.  Here too, significant 

factors not considered in the quasi-1D simulations are likely at play. 

 

5.2 2D MHD simulations 

A second code was developed by the University of Texas based on the ideal MHD 

equations.  Details on the operation and underlying equations of this code can be found in 

[Breizman 2007] and are not discussed in detail here, as this code is mainly employed 

here to benchmark the quasi-1D code developed for this dissertation.  The MHD model is 

an improvement over the previously discussed quasi-1D code in several regards.  It is a 

two dimensional code allowing arbitrary radial density distribution, which allows for 

detachment contours rather than requiring the entire plume to detach at one axial position.  

As noted in Section 4.1.8, plasma β is not uniform across the plume radius due to the 

radial profile of density.  The code also accounts for plasma diamagnetic currents, which 

will affect the total magnetic field within the plume.  This provides for stretching of 

magnetic field lines as predicted by ideal MHD theory.  However, also because the code 

uses ideal MHD theory, there is no provision for cross-magnetic field diffusion.  Plasma 

density is effectively glued onto lines of constant magnetic flux, and cannot diffuse off of 

them.  This may result in a more narrow density profile compared with the quasi-1D 

simulations if diffusion is important in this simulation regime. 
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5.2.1 MHD initial conditions 

An MHD simulation was conducted approximating the conditions in the DDEX 

experiment.  The initial conditions for this experiment were chosen to match the 

simulated plume conditions at z = 0.33 m at the upstream interferometer.  These 

conditions are ne,max = 1x1019 m-3, R = 0.048  m, and vz = 19 km/s.  Additionally, a cold 

plasma (Te = 0 eV) was assumed.  This was done to disable ambipolar acceleration 

effects in the MHD code and to constrain vz to a constant value. The initial conditions 

used in this MHD simulation begin at z = 0.33 m rather than at the plasma source at z = 

-0.15 m because without the capability to simulate cross-magnetic field diffusion, the 

resulting MHD trajectories are far too narrow.   Even so, important details about the 

detachment process can still be modeled in this smaller scale simulation.  Beginning with 

initial conditions at the upstream interferometer, downstream profiles are created and 

compared with both the quasi-1D simulation and experiment.  An axisymmetric 

simulation area of width and length of 200x1000 units was utilized to provide adequate 

radial and axial resolution.   

 

5.2.2 Plume profile comparison 

The first comparison between the two simulations is made by comparing plume 

trajectories.  Table 5.10 shows a summary of the density, velocity and profile width 

found at three axial positions from the MHD simulation.  Not surprisingly, the MHD 

simulation compares favorably with both experiment and the 1D simulation, with density 

and profile widths coming within the error bars of experiment data, and coming within 

10% of the quasi-1D simulations given in Section 5.1.5.  The fact that the MHD 



 198

trajectory comes so close to quasi-1D simulations despite differences in the codes 

suggests that cross-magnetic field diffusion effects in this low- magnetic field 

downstream zone are negligible. 

 

  
MHD 
simulation 

Quasi-1D 
Simulation  

Measured 
values 

Velocity, z =  0.33 m 19 km/s 19 km/s --- 
Velocity, z =  0.43 m 19 km/s 19 km/s 15 km/s 
Velocity, z =  1.85 m 19 km/s 19 km/s 19 km/s 
R(z) , z =  0.33 m 4.8 cm 4.8 cm 5 cm 
R(z) , z =  0.43 m 7.9 cm 6.9 cm 8.5 cm 
R(z) , z =  1.85 m 46 cm 47 cm 45 cm 
ne, z =  0.33 m 1 x 1019 9.6 x 1018 1 x 1019 

ne, z =  0.43 m 4.1 x 1018 4.6 x 1018 3.7 x 1018 

ne, z =  1.85 m 8.4 x 1016 9.9 x 1016 1x1017 

 

Table 5.10: Comparison of MHD simulation results with quasi-1D and experiment 
results for plume radius and centerline density.  Initial conditions at z = 0.33 m are 
set equal for MHD and quasi-1D simulations. 
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Figure 5.13:  (a) MHD simulation results comparing plume centerline density 
(dashed line) with experimentally determined plume centerline density (circles).  (b)  
MHD simulation results comparing plume ½-maximum radius (dashed line) with 
experimentally determined plume ½-maximum width (circles).   
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5.2.3 Vacuum vs. plasma magnetic fields  

A major improvement in the MHD code vs. the quasi-1D code involves accounting for 

plasma currents, which influence applied magnetic fields.  Azimuthal plasma current 

loops arise to oppose applied nozzle currents according to Lenz’s law.  The extent to 

which the applied field is reduced by the induced fields arising from diamagnetic currents 

depends on the kinetic energy available in the plasma flow.  Results from the MHD 

simulation (Figure 5.14) show that the vacuum magnetic field can be reduced somewhat 

(up to 10-20%) on the plume centerline.  The magnetic field reduction is less pronounced 

at the edges of the plume where the density is lower. There is also axial and radial 

variation in the magnetic field adjustment, which may just be numerical artifacts.  Taking 

these issues into account, the diamagnetic current can be generalized to have the greatest 

effect at low magnetic field, shortly before detachment.   

 

0.5 1 1.5 2

0

10

20

30

40

Z (m)

B
z 

(G
au

ss
)

Vacuum Bz
Plasma Bz

 
Figure 5.14:  Comparison of plasma magnetic field with vacuum magnetic field for 
the MHD simulation, located on centerline.  Some radial variation in plasma B-field 
is present, and not represented in this plot. 
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Despite the reduction in magnetic field, the plume profiles of the two simulations remain 

similar.  What then would cause the two different simulations (1D and MHD) to lead to 

the same conclusions on profile shape?  It is possible that the influence of cross-magnetic 

field diffusion in the 1D simulation performs a similar function to the diamagnetic 

current effects in the MHD simulation, resulting in slightly wider plume widths than 

would normally be expected.  Another possibility is that the diamagnetic current provides 

negligible impact on the overall plume profile, and that the downstream plume width is 

determined mostly from initial conditions and the β > 1 position.   

 

5.2.4 2D detachment contour 

Another benefit of the 2D model is the ability to simulate 2D detachment contours.  Since 

β is a function of ne, vz and B, the ratio of kinetic to magnetic energy density is much 

lower at the edges of the plasma column than on centerline, resulting in detachment 

occurring first at the plume’s center.  A 2-D plot of plasma β will show that rather than 

detaching at one axial position, the β > 1 detachment contour will extend out at an angle 

to the centerline. Figure 5.15 gives a 2-D contour plot of plasma β and shows the β > 1 

contour stretching from z = 0.4 m on the plume centerline out past z = 1.5 at the plume 

edge.  In fact, according to the MHD simulations, there is a tenuous outer portion of the 

plume that never reaches the β = 1 detachment condition, and is likely trapped on closed 

magnetic field lines barring other non-ideal factors.  This can be seen by the fact that the 

trajectory angle at detachment increases with radial position to an angle approaching θ = 

90o at the plume edge. 
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Figure 5.15:  2D Contour plots of plasma β showing lower β at the plume edge.  If 
this were a 1D detachment contour, the β = 1 line would be vertical, and the plume 
trajectory angle would be constant with radius. 
 

The effect of this 2D detachment contour and the trapped portion of the plume will 

unfortunately be to decrease the nozzle efficiency.  Although the high-density core of the 

exhaust can detach and continue at a low trajectory angle, the tenuous outer plume 

detaches much later at a greater trajectory angle, if it detaches at all.  This outer plume 

contributes less thrust to the overall total due to the higher cosine loss.  The enhanced 

losses at the edges may also increase radial diffusion of the center plasma due to the 

increased density gradient. 

 

5.2.5 2D simulation of nozzle efficiency 

As stated above, the MHD simulations resulted in profile widths comparable to the quasi-

1D simulations given similar upstream conditions.  Although the ½ maximum profiles 

were similar, the 2D results show that a reduction in overall nozzle efficiency can be 

attributed to the tenuous outer portion of the plume which detaches at a much greater 

angle, if it detaches at all.  According to MHD simulations, the overall nozzle efficiency 

is ηnoz = 85% for the standard magnetic field configuration which represents a decrease of 
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5-6% compared to the quasi-1D simulations.  The majority of this reduction arises from 

the ability to track a 2D detachment contour.  The 2D simulation suggests that the core of 

the plume still detaches with high efficiency, while the plume edge detaches at lower 

efficiency representing a momentum flux decrease of ~6%.  Figure 5.16 gives nozzle 

efficiency plots for the MHD simulations.   

 
A second MHD simulation was run using the optimized magnetic field conditions 

theorized to increase efficiency in the quasi-1D simulation.  The plasma initial conditions 

remained the same, while the magnet nozzle currents were adjusted to [0A, -20A 35A] 

rather than the standard coil currents: [10A, 3A, 3A].  Using the same analysis for 

efficiency as before, the nozzle momentum efficiency for the optimized MHD simulation 

was found to increase to 91%, a performance gain of 6%.  As was the case with the quasi-

1D simulation, carefully tailoring magnetic fields to reduce the magnetic field gradient in 

the area of β > 1 detachment yielded significantly improved efficiency.   
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Figure 5.16:  MHD simulations of nozzle efficiency ηnoz.  Standard nozzle field con-
ditions show an efficiency of 85% while the optimized nozzle field yields ηnoz = 91% 
and no nozzle coils yields ηnoz = 83%.  By comparison, quasi-1D simulations of the 
two conditions yielded nozzle efficiencies 4-7% greater. 
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Nozzle coil #1 Nozzle coil #2 Nozzle coil #3 2D ηnoz 1D ηnoz 

10A 3 A 3 A 0.85 0.91 
0A 0 A 0 A 0.83 0.87 
0A -20 A 35 A 0.91 0.98 

Table 5.11:  Comparison of simulated nozzle efficiency for quasi-1D simulation 
(from Table 5.9), and 2D MHD simulation.  2D simulations yield efficiency 4-7% 
lower than the equivalent 1D simulation due mostly to a 2-dimensional detachment 
contour that is less efficient. 
 

 

Comparing the quasi-1D simulations with the MHD simulations serves to increase 

confidence in both models.  This is particularly true because not only were experimental 

plume profiles successfully duplicated, but a theoretical nozzle efficiency increase found 

in one model was also found in the independent 2D simulation.  The successful 

comparisons of the two codes in the mid-nozzle region and the far-nozzle region suggest 

that the effect of cross-magnetic field diffusion is small in this low B and ne region.  The 

slight difference between vacuum and plasma magnetic fields in the MHD code suggests 

that following vacuum magnetic fields in the quasi-1D code vs. plasma magnetic fields is 

an appropriate simplification.  And the fact that plume half-maximum diameters were 

nearly identical for both simulations, while nozzle efficiency varied by 6-7% suggests 

that an inefficiency exists with the tenuous outer plume where detachment occurs later 

than in the high density core. 

 

An important observation is that both simulations suggest that β > 1 magnetic detachment 

is occurring in the plume of the DDEX experiment.   
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5.3 Flow acceleration estimates 

One assumption that has gone into both the 1D and 2D simulations that should be 

investigated in more depth is the assumption of constant velocity.  As discussed in 

Sections 4.1.4, 4.1.5, and 4.1.6, some evidence exists for a slight increase in axial 

velocity from z = 0.33 m to z = 1.85 m.  Flux conservation measurements with two 

simultaneous interferometers are consistent with a 15 +/- 10 %  increase in flow velocity 

for hydrogen and 10 +/- 5% increase for helium.  Ion density measurements based on 

Langmuir probe theory are best fit by the assumption that vz increases by 20-25% 

between z = 0.43 m and z = 1.85 m.  Also, an axial time of flight scan shows a similar 

increase for helium experiments. 

 

A theoretical prediction of flow velocity increase can be based on Eq. (2.60), stating that 

conservation of magnetic moment leads to axial acceleration with magnetic field 

decrease:  

 ( )2 2 2
1 0 0 1 01 /z zv v v B B⊥= + −  (5.19) 

 

This relationship is valid as long as the plume is magnetized.  The above equation may 

provide a useful guide in predicting the change of axial velocity in this experiment.  The 

initial conditions for hydrogen at z = 0.33 m are set equal to vz = 14 km/s and v⊥  equal to 

the thermal velocity /th e iv eT M= at 1.2 eV:  10.7 km/s. 
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Figure 5.17: Comparison of theoretical velocity increase from Eq. (2.60) with mea-
sured velocity from Figure 4.24.  Initial conditions at z = 0.33 m assumed are: vz = 
14 km/s and v⊥ = 10.7 km/s.  Predicted acceleration of 25% is consistent with 
experiment results. 
 

According to Eq. (5.19), an acceleration of 25% is theorized between z = 0.33 m and z = 

1.85 m.  This falls within the error bars of velocity measurement, and conservation of 

flux measurements from Section 4.1.6.  Due to the magnetic field drop-off, most of the 

acceleration occurs by z = 0.8 m before the β > 1 detachment point. 

 

Likewise, helium simulations were produced with initial conditions taken at z = 0.43 m.   

vz = 14 km/s while v⊥ = the thermal velocity of helium at 1.4 eV:  5.8 km/s.  An 

acceleration of 9% is predicted by Eq. (2.60) between z = 0.43 m and z = 1.85 m which is 

consistent with the conservation of flux measurements from Section 4.1.6 and is within 

error bars of experimental measurement.   
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Figure 5.18:  Comparison of theoretical velocity increase from Eq. (2.60) with mea-
sured velocity from Figure 4.23.  Initial conditions at z = 0.43 m: vz = 14 km/s and 
v⊥ = 5.8 km/s.  Predicted 9% acceleration is consistent with conservation of flux 
measurements from Section 4.1.6. 
 

The results of these investigations suggest that some acceleration of the flow is consistent 

with both theory and experimental evidence.  For simplicity’s sake, numerical 

simulations in Sections 5.1 and 5.2 assumed a constant flow velocity. However, including 

the effect of flow acceleration in these simulations would produce only a small change in 

the final trajectory shape and nozzle efficiency.  In fact, the nozzle efficiency would be 

improved by accounting for the conversion of perpendicular velocity to parallel directed 

motion.   
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CHAPTER 6 

CONCLUSION 

 

Several initial questions were posed in Chapter 1: Is magnetic detachment occurring in 

this experiment? Under what conditions will the magnetized plasma plume detach from 

its applied magnetic fields?  And at what efficiency will this detachment occur?  These 

questions were addressed to varying degrees through the course of this dissertation.  In 

addition, results from analysis of the experiment setup and diagnostic devices were 

discussed, reducing the uncertainty of some of the experimental data. 

 

In areas where the key questions posed in the introduction were not completely answered, 

suggestions are given for further avenues of research.  In addition, as is the case with 

most successful experiments, new questions were raised that must be dealt with in turn.    

 

6.1 Summary of findings 

The DDEX experiment was one of the first to study a magnetized plasma exiting a 

magnetic nozzle and transitioning from low to high β  ( 2 2
0 /i i im n v Bβ μ=  ).  Several 

experimental findings are presented, along with a summary of findings derived from 

matching numerical simulations. 
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6.1.1 Experiment results 

A neutral background pressure analysis was conducted for the experiment’s vacuum 

chamber, indicating that neutral collisions during the plasma pulse are less significant 

towards the beginning of a pulse, if at all.  A long collisional mean free path during this 

time was the result of the experiment’s large vacuum tank and fast pumping speed.  The 

pressure analysis was backed up by conservation of flux measurements that showed little 

to no density spike at the downstream interferometer, which would have been evident in 

the event of significant ion-neutral collisions.  This finding suggests collisional 

dissipation did not significantly influence measured plume trajectories, but may have 

resulted in slight deceleration towards the end of a pulse. 

 

The effect that changing the magnetic field had on the plume width was investigated by 

adjusting the magnetic coil currents in the plasma source and in the magnetic nozzle.  

One conclusion of the test in Section 4.0.1 was that changing the coil current at the 

plasma source resulted in significant changes in the plume profile at an upstream 

location.  However, in Section 4.2, similar changes in the nozzle coil currents even to the 

point of creating a reverse (cusp) magnetic field did not significantly affect plume 

profiles.  This qualitatively suggests that the plasma in this experiment was confined by 

magnetic fields at the plasma source where β is low, but continues unimpeded by applied 

magnetic fields at a position where β > 1. 

 

The subject of magnetic detachment was further investigated by comparing 

experimentally determined plume widths with simulated trajectories.  Two independent 
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simulations predicted similar trajectories given the condition that high- β plasma is free 

from the influence of applied magnetic fields.  This corresponds with the theory that 

magnetic detachment does occur for magnetized plasmas, and that its onset condition is 

β > 1.  A slightly adjusted simulation that substituted the detachment condition rci > R(z) 

for β > 1  also yielded similar plume trajectories, and so the exact mechanism for plasma 

detachment remains a bit uncertain, although β > 1 is the favored theoretical mechanism, 

and was a better fit to experimental results. 

 

An estimate of ion flow velocity was also given based on direct experimental 

measurements, flux conservation estimates and conservation of magnetic moment theory.  

All three methods agree within error bars, and suggest a 10-30% axial acceleration, with 

hydrogen experiencing more acceleration than helium.  While trajectory simulations 

assumed constant velocity for simplicity’s sake, a variable velocity would not 

substantially affect the predicted density profiles.  In fact the primary result of plume 

acceleration would be an improvement in estimated nozzle efficiency. 

 

6.1.2 Simulation results 

Other major findings resulting from simulations are as follows.  Two independent 

numerical codes were employed – one assuming 1D profile shapes, and the second 

allowing for 2D profiles.  The 1D code accounted for cross-field diffusion approximately 

equivalent to classical diffusion, and the 2D code solved the ideal MHD equations which 

do not account for cross-field transport.  Despite the different architectures and 

assumptions, the two codes yielded nearly identical plume widths when starting with the 
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same magnetic field profile and plume initial conditions.  This independent verification 

and benchmarking against experimental results helped to increase the confidence in both 

codes. 

 

The two simulations also produced nozzle (thrust) efficiency estimates.  Due to certain 

1D assumptions, the 1D code results in a 4-7% over-estimate of nozzle efficiency in 

comparison with the 2D MHD code.  In both cases, nozzle efficiency asymptotically 

approaches a constant value beyond the axial position where β > 1. When surveying a 

number of magnetic field configurations, the 2D code reports a nozzle efficiency of 83% 

for a simple magnetic dipole, or 91% for an optimized nozzle.  Both efficiency estimates 

assume a constant ion flow velocity, which may not be the case; ion acceleration may 

improve the actual nozzle efficiency.  These results, while unverified experimentally, 

help to highlight the importance of properly designing and characterizing the nozzle 

region of a potential thruster.  

 

6.1.3 Diagnostic theory 

Standard diagnostics theory was re-visited for the experimental conditions found herein.  

Specifically, Langmuir triple-probe theory was extended to make it compatible with a 

supersonic plasma plume.  Prior theory was analyzed by computer simulations of current 

collected to a biased cylinder.  For the experimental conditions considered in this work, 

an electron temperature calibration factor of 8-14% was deemed necessary, which fits 

within the measurement uncertainty of 15%-20%.  General simulations were also 

considered including a number of flow velocities (M = 0-3.5) and probe dimensions (r0 = 
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1-90).  The results indicate that the Te calibration factor is only weakly dependent on ion 

Mach number, and much more dependent on probe radius r0.  For probe radius to Debye 

length ratios of r0 > 70, the Te correction term is insensitive to both ion Mach number and 

probe bias.  For a stationary plasma (M = 0) the simulations compared favorably with 

prior OML simulations at the small probe limit (r0 = 1) and with ideal thin-sheath theory 

at the large probe limit (r0 = 90). 

 

A novel hybrid method of accurately determining density profiles was also developed 

based on RF interferometer and Langmuir probe measurements.  This method was 

employed during the experiment, and yielded density measurement uncertainty of 9%-

15%, which is on the order of the RF interferometer accuracy.  A detailed error analysis 

was conducted for this method, in addition to a sensitivity analysis which determined the 

hybrid method to be relatively tolerant of errors in radial position and RF interferometer 

noise.   

 

6.2 Future work 

Some questions were not fully answered by this work and will require further 

investigations to be resolved.  More experimental effort is necessary to fully understand 

nozzle efficiency and magnetic detachment in alternate magnetic field topologies.  Also, 

the role of diffusion and other cross-magnetic field transport in this experiment remains 

unclear.  
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Computer simulations in Chapter 5 indicate that magnetic detachment is occurring when 

β > 1.  Several details of the simulations remain unresolved however, including the 

influence of cross-magnetic field diffusion and diamagnetic currents.  Although the 1D 

and MHD codes each only included one of the effects respectively, the resulting profile 

shapes were very similar, begging the question whether diffusion is an important effect at 

all, and if so, how should it properly be incorporated into a computer simulation.  An 

additional uncertainty is the importance of ion cyclotron radius rci in detachment.  Since 

the condition rci > R(z) coincided fairly closely with the condition β > 1 in this 

experiment, it was difficult to exclude it as a magnetic detachment mechanism.  Future 

experiments may be designed which make this distinction clear. 

 

One of the questions posed in Chapter 1: “with what efficiency does the plume detach?” 

can only be partially answered.   Experimental verification is required, entailing plasma 

density and flow velocity measurements at multiple radial positions, and at a distance 

sufficiently downstream to be considered detached.  Density and profile shape were 

successfully determined in this experiment, but multiple radial velocity measurements 

were not made, particularly with low enough uncertainty to give accurate nozzle 

efficiency estimates.  In addition, the downstream radial profile was only measured out to 

the half-maximum radius, which is not enough to accurately map the detached plume 

profile.  A more accurate flow velocity measurement, when integrated with density over 

the entire radial profile, will provide the total momentum flux, and therefore the thrust 

and efficiency.  Also, performing this operation during several different magnetic nozzle 

configurations, and comparing with simulated nozzle efficiencies will greatly improve 
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the confidence in the computer models, and their ability to predict nozzle efficiency 

improvements.  

 

Another way in which this research can be applied in the future is to an actual proposed 

magnetized plasma thruster.  The Ad Astra Rocket Company is in the process of 

evaluating a dual-stage plasma source utilizing a helicon antenna to create a high density 

plasma and an ion cyclotron resonance antenna to accelerate it.  The thruster, termed 

VASIMR is part of the motivation for this research, and its development would benefit 

from these findings.  A parametric study of VASIMR’s nozzle efficiency using the 

techniques described in this dissertation would be useful for systems modeling and future 

design modifications. 

 

Another avenue for further research includes better assessing the conditions seen during 

the cusp- coil experiment (Section 4.2), and the gun current experiment (Section 4.0.0).  

The 1D and 2D numerical simulations used to explain the majority of the experimental 

results of this dissertation appear to break down during these two special cases.  The high 

magnetic fields and large magnetic field divergence under these conditions may require a 

more accurate diffusion simulation, or the invoking of new physics.  In particular, the 

large magnetic curvature seen in the cusp magnetic field experiment has similarities to 

the experiments of Schmidt [Schmidt 1960], Ishizuka et al. [Ishizuka 1982]  and Brenning 

et al. [Brenning 2005] .  In these experiments, anomalous cross-magnetic field transport 

was identified and attributed to spontaneous high frequency electric field formation and E 

x B drift.  Further diagnostics of the DDEX experiment with high frequency electrostatic 
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probes could determine if such processes are occurring during extreme cusp field 

conditions in this experiment.  

 

In conclusion, much is still unknown about plasma detachment from magnetic fields.  

However, this dissertation has discussed methods and diagnostics that may be applied to 

the nozzle region of high powered magnetized plasma thrusters, and has identified 

possible physical effects occurring in this region.  Further experiment and modeling is 

necessary to refine our knowledge of the nozzle region of thrusters, and will help 

improve the efficiency of the devices that may someday be carrying probes or humans far 

outside the earth-moon system. 
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APPENDIX A  

 

 Error analysis for the Hybrid method  

 

 

Error analysis for the hybrid measurement method was conducted based on standardized 

uncertainty.  [Coleman, 1999]  [Taylor, 1994]  In the statistical analysis of a multivariable 

function, each individual element of uncertainty is weighted mathematically, to determine 

the function’s overall level of uncertainty.  Our function in question is ni from Eq. (2.46): 
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which is based on three independent measurements, each contributing to the overall error.  

Statistical analysis replaces each of the three variables , ,j j jV N xΔ  with a normal 

distribution centered about the measured value, and with standard deviation , ,
j jV N xσ σ σ Δ .  

These sigma values represent the individual uncertainty in each of the three 

measurements.  Likewise, 
inσ  represents the total overall error in the density 

measurement. 
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The position error xσ Δ  is assumed constant for all shots i and all time t and therefore has 

no subscript j.  The position error is estimated to be half the incremental resolution of the 

translation stage x-axis, equal to 1.8º times the 0.25” / revolution screw pitch, with  

/x xσ Δ Δ  = 0.125 %.   

 

The interferometer measurement error 
iNσ  varies with shot number i and time t. For the 

upstream interferometer,
iNσ  is determined from the spread in densities among the three 

independent frequency channels of the instrument. For the downstream interferometer, 

iNσ  is determined by Monte Carlo error analysis as detailed in Appendix B.  Typical 

values of /
iN iNσ  are 2-3% for the upstream interferometer and 4-5% for the downstream 

interferometer.  

 

The probe voltage measurement error 
iVσ  is set equal to the RMS value of steady state 

probe voltage prior to and directly following a plasma shot.  This no-plasma condition 

gives a good estimate of random fluctuation in the probe voltage. While the probe data 

(taken at 50 kHz) is time averaged over ten samples for synchronization with the 

interferometer data (taken at at 40 kHz), 
iVσ  is determined from un-averaged data to 

account for high speed fluctuations which may contribute to error. 
iVσ  is then held 

constant with time for each plasma shot i, with 
iVσ ~ 4-5 mV. /V Vσ is on the order of 

/N Nσ  or greater for all of the data presented here.  
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We now derive the equation for 
inσ , which neglecting correlations and considering bias 

and random errors together, is (from Taylor, 1994 eq. A-3): 
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From Eq. (2.45): 
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Therefore, 
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∑  

 

Until we finally have: 
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VxV V M x
N V x N V N

σ σσ σσ α α αΔ

=

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞Δ⎪ ⎪⎢ ⎥⎜ ⎟= − + + Δ +⎨ ⎬⎜ ⎟ ⎜ ⎟Δ ⎢ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∑  (A.9) 

 

This can be stated as a percentage of the total density measurement by dividing by 

2 2 2
i in Vα= : 
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M
V Nn V x j

i
ji i i j j j

VxV M x
n N V x N V N

σ σσ σ σ
α αΔ

=

⎡ ⎤⎛ ⎞⎛ ⎞Δ ⎢ ⎥⎜ ⎟= − + + Δ +⎜ ⎟ ⎜ ⎟Δ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  (A.10) 
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where , ,
j jN V xσ σ σΔ  are the standard deviations for , ,j jN V xΔ  respectively.  A 2-sigma 

(95%) error bar for the measured value in  may be taken as ± 2
inσ .  

 

The sensitivity of the density error 
inσ  was investigated with respect to the measurement 

errors , ,
j jN V xσ σ σ Δ .  Assuming, for simple illustrative purposes, a flat radial profile and 

fixed errors.  Eq. (A.10) is re-stated: 

 

 ( )
2 2 2 2

2 2 2 2

1 1n V x NM
n M V x N
σ σ σ σΔ⎡ ⎤

= − + +⎢ ⎥Δ⎣ ⎦
 (A.11) 

 

This illustrates the relative weight of the probe voltage error Vσ . The point density 

error nσ  tends to scale directly with Vσ , but scales as 1/ M  with Nσ  and xσ Δ . Thus the 

hybrid approach is more tolerant of interferometer errors and translation stage position 

errors than of errors in the probe voltage measurement.  This suggests that care should be 

taken to reduce the random noise in the Langmuir probe measurement path as this 

disproportionately affects the final measurement error. 
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Figure A.1: Relative strength of error terms for a sample radial profile 
measurement.  This shows the relative unimportance of the ΔX term in the error 
analysis and the relative importance of the probe voltage, particularly towards the 
edges of the plume.   
 

 

For the upstream measurements, an additional term may be added to account for any 

errors introduced by the axial offset correction, 2 2 2
j jN N γσ σ σ→ + .  This error is difficult to 

quantify statistically but is assumed to no more than double the error in interferometer 

measurement.   
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APPENDIX B   

 

Monte Carlo simulations of interferometer error and plume width error   

 

 

When attempting to define the error bounds of a complicated multivariable function, it is 

sometimes easier to run a number (several thousand) of simulations with each of the input 

variables being changed by a small delta, chosen randomly from a normal distribution 

with width equal to the uncertainty of that input measurement.  The output function will 

then change randomly due to the small changes of the input parameters.  The output 

distribution’s standard deviation gives a good measure of the overall uncertainty without 

having to determine it analytically.  Monte Carlo simulation is a powerful statistical tool 

brought to bear on two particular problems – the first being an estimate of error in the 15 

GHz interferometer measurement, and the second being an estimate of error in 

determining plasma column width measurements. 

 

B.1 15 GHz interferometer error analysis 

Two sources of error are assumed to contribute to the overall uncertainty in the 

interferometer measurement.  The first is random fluctuations in the plasma measurement 

voltage, and the second is uncertainty in fitting the calibration constants to the calibration 

data. As shown in Figure 3.23 and Table 3.1 there is a 2-5% RMS error in fitting the 
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calibration data to the interferometer model.  The calibration constant uncertainties 

represent systematic errors, “fossilized” from the calibration data. [Moffat, 1988]  This 

discrepancy contributes to the overall uncertainty in the interferometer measurement.  A 

method similar to [Dobson, 2004] was followed to determine the overall effect of this 

error. 

 

A Gaussian distribution is used composed of Vi , iC  for the Monte Carlo simulation:  

 

 0 2i i CC C y σ≡ ±  (B.1) 

 

 ( ) 2i i VV V t y σ≡ ±  (B.2) 

 

where V(t) is the microwave interferometer voltage measurement at time t, and ,C Vσ σ  

are the standard deviations of the calibration vector and interferometer random 

fluctuation respectively.  Vσ  is set equal to the standard deviation of the interferometer 

signal prior to plasma turn-on.  yi are derived from random numbers xi such that 

[ ]erf ; {0..1}i i iy x x= = .  For these simulations, i can be as high as 1000 to reach steady 

state.  Each dimension k of the vector in Eq. (B.1) can be written separately: 

 

 , 0, ,2k i k i C kC C y σ≡ ±  (B.3) 
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where k = {1..4} for the four-element fit to Eq. (2.28) or k = {1..7} for the seven-element 

fit to Eq. (2.30).  0,kC  then represents the best-fit calibration coefficients to the 

corresponding interferometer model.  Ck,i  are elements of the Gaussian distribution  f(Ck) 

centered around C0,k with standard deviation ,C kσ .  The derivation of ,C kσ  is as follows.  

The sum of squares residue Res from the calibration model is: 

 

 ( )
2

0,
1

;
N

n n k
n

Res V V x C
=

⎡ ⎤= −⎣ ⎦∑ %  (B.4) 

 

where Vn is the microwave interferometer signal voltage measured at calibration motor 

position xn for n = {1..N}.  A theoretical residue Res′  was defined: 

 

 ( )
2

0 0,
1 1 1

( ) ( ; ) ( ; )
N N K

n n k k
n n k k

VRes C V x C V x C C C
C= = =

⎡ ⎤∂⎡ ⎤′ = − ≅ −⎢ ⎥⎣ ⎦ ∂⎣ ⎦
∑ ∑∑

%
% %  (B.5) 

 

and the ,C kσ  were determined from the conditions that (1) the mean value of Res′  be 

equal to the measured residue from (B.4): 

 

 
2

2
,

1 1

( )
K N

C k
k n k

VRes C Res
C

σ
= =

⎛ ⎞∂′ ≅ =⎜ ⎟∂⎝ ⎠
∑ ∑

%
 (B.6) 

 

and (2) the individual errors be proportional, statistically, to ( ) 1

kV C
−

∂ ∂% : 
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, 0 0 ,

1 1

ˆ( ; ) ( ; )
N N

C k n n k C k
n nk

V ResV x C V x C c
C K

σ σ
= =

⎛ ⎞∂ ⎡ ⎤≅ − + =⎜ ⎟ ⎣ ⎦∂⎝ ⎠
∑ ∑

%
% %  (B.7) 

 

The quantity ( ; )n k

k

V x C
C

∂
∂

%
 is solved for each of the four elements in a modified version of 

Eq. (2.28): 

 ( )1 2 3 4( ; ) cosn k nV x C C C x C C= + +%  (B.8) 

 

Resulting in the following: 

 ( )3 2
1

( ) cosn
n

V x C C x
C

∂
= +

∂

%
 (B.9) 

       

 ( )1 3 2
2

( ) sinn
n n

V x C C C x x
C

∂
= − +

∂

%
 (B.10) 

 

           ( )1 3 2
3

( ) sinn
n

V x C C C x
C

∂
= − +

∂

%
 (B.11) 

 

   
4

( ) 1nV x
C

∂
=

∂

%
 (B.12) 

 

The quantity 
2

1

( ; )N
n k

n k

V x C
C=

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

∑
%

 is then solved numerically for the calibration data.  A 

large number of data points n = {1000..12000} is used which extends over a 2π cycle of 
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the interferometer signal.  The standard deviations ,C kσ  are found from Eq. (B.7), with 

the fit residue Res determined from the sum of squares error that is reported from the 

curve fitting tool cftool in Matlab.  Sample data for one channel of the 15 GHz 

interferometer is as follows:   

 

Sum of 
Squares error: Res = 0.285    

2

1

N

n k

V
C=

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

∑
%

 C1 = 5180 C2 = 508 C3 = 9.8 C4 = 11000 

σCk: σC1 = 3.71 x10-3 σC2 = 1.2 x10-2 σC3 = 8.5 x10-2 σC4 = 2.6 x10-3 

 
Table B.1:  Sample data for the I channel of MWI2 interferometer.  Calibration 
4/27/06 shot 64. n = {1000..12000} 

 

 

Once the necessary ,C kσ  and Vσ  are determined, the Monte Carlo simulation can be 

conducted using Eqs. (B.2), (B.3), (2.30) and (2.33).  Vi and Ck,i are chosen randomly 

from their respective Gaussian distributions and used in Eq. (2.33).  The resulting phase 

is used in (2.25) to determine the line integral plasma density.  Over several thousand 

random choices of Vi and Ck,i an output distribution of Ne density is obtained, with mean 

Ne,0 and standard deviation σN.  The uncertainty in the interferometer measurement is 

then stated as equal to 2σN which is a 95% confidence interval around the interferometer 

measurement. 
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B.2 Plume width error analysis 

A similar technique to B.1 was pursued to determine the error in the measurement of 

plume column diameter w.  At any point in time, the radial density profile n(r) can be fit 

to a theoretical Gaussian distribution: 

 
2

0
2

0

( )
2

max( )
r r
wn r n e

− −

=%  (B.13) 

 

 by minimizing the profile fitting residue Res: 

  

 ( ) 2
0

1

( ) ; ;
M

m m
m

Res n r n r r w
=

= −⎡ ⎤⎣ ⎦∑ %  (B.14) 

 

with w equal to the 1/ e radius.   In order to determine the uncertainty for the plume 

width w, a Monte Carlo simulation replaces the measured density n(rm) with  

 

 ( ) 2i m i nn n r y σ≡ ±  (B.15) 

 

where nσ  is the standard deviation of density uncertainty from Eq. (A.9) and yi are 

derived from random numbers xi such that [ ]erf ; {0..1}i i iy x x= = .  By propagating 

density uncertainties forward, the profile fit is calculated over several thousand random 

changes to ni.  The resulting Gaussian distribution of w is centered about the measured 

value w0 with a standard deviation.  The uncertainty in plume width is defined as 2σw 

which corresponds to a 95% confidence interval about the measured plume width. 
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B.3 Abel Inversion error analysis 

An estimate of the experimental uncertainty from using the Abel inversion method can 

also be found using a method similar to that shown in B.1.  The analytic function used to 

determine ( )eN y%  is (from Eq. (2.38)): 

 

 ( )
2

3
2 2

1

( )expe
y CN y C
C

⎡ ⎤⎛ ⎞− −
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
%  (B.16) 

 

 by minimizing the fit residue Res: 

 

  ( )
2

1 2 3
1

( ) ; ; ;
N

n n
n

Res N y N y C C C
=

⎡ ⎤= −⎣ ⎦∑ %  (B.17) 

 

Using Eq. (B.7) the quantity ( ; )n k

k

V x C
C

∂
∂

%
 is solved for each of the calibration coefficients 

in (B.16): 
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( ) ( )
2
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2 32

1

2
3 1

2 exp
y C

C C y
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⎛ ⎞−
− −⎜ ⎟⎜ ⎟∂ ⎝ ⎠=

∂

%
 (B.20)  

 

The Matlab function cftool is used to determine the sum of squares error Res over the 45-

point radial profile.  A single time point t = 0.8 msec is chosen to simplify the error 

analysis.  The sum of squares error at this time point is Res = 3.87x1032.   The quantity   

2

1

( ; )N
n k

n k

V x C
C=

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

∑
%

 is then solved numerically, and Eq. (B.7) is again used to calculate the 

various σCk  error terms: 

 
Sum of 

Squares error: Res = 3.87x1032   

Ck: C1 = 0.056 m C2 = 4.7x1016 m-2 C3 = 0.02 m 
σCk: σC1 = 3.5 x10-3 σC2 = 2.4 x1015 σC3 = 3.0 x10-3 

 
Table B.2:  Abel inversion best-fit coefficients and their associated uncertainty 
interval.  Data taken at t = 0.8 msec over a 45 point radial profile.  
 

 

We can immediately determine the uncertainty term in the plume width from Eq. (2.39), 

since the plume width is purely a function of C1.  Given that the value of C1 at t = 0.8 

msec is C`1 = 0.056 m, the 2σ  uncertainty is 0.007 m, or 12.5%. 

 

The uncertainty in the amplitude in Eq. (2.39) is the RMS combination of σC1 and σC2: 
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2 2

2 1
ampl

2 1

C C

C C
σ σσ

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (B.21) 

 

This leads to a 2σ amplitude uncertainty of 16%. 
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APPENDIX C 

 

VASIMR data and results  

 

 

C.1 Overview 

The VASIMR™  thruster (VAriable Specific Impulse Magnetoplasma Rocket) is a dual-

stage plasma rocket employing helicon waves to create a plasma, and ion cyclotron 

resonance frequency waves (ICRF) to accelerate it.  [Chang-Diaz 2000, Arefiev 2004]  

The thruster employs high magnetic fields (~1 T) and high power (> 60 kW peak) for the 

present configuration.  The project was previously run by the NASA Advanced Space 

Propulsion Lab (ASPL), Houston TX.  A congressional Space Act Agreement in June 

2005 allowed the VASIMR™ technology to become privatized, and NASA ASPL was 

transformed into a private entity named Ad Astra Rocket Company.  Prior to 

privatization, the experiment was operating in the VX-50 (50 kW total power) 

configuration.  After 2006, the experiment underwent a power upgrade and was renamed 

VX-100.  (100 kW total power)  Certain details of this latter experiment’s construction 

and performance remain restricted due to proprietary and State Department regulations. 
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Figure C.1: The author in front of the VX-100 laboratory experiment.  The left side 
of the picture shows the 4 m3 vacuum dump tank connected to the conical expansion 
section.  Electrical feedthroughs and viewports allow access to the plasma in this 
expansion section. 

 

 

C.2 Experiment Setup 

The VX-50 experiment consists of a linear arrangement of a gas injector, magnetic coils, 

helicon antenna, ICRF antenna, expansion cone and vacuum tank.  The magnets used to 

produce the magnetized plasma were changed out for the VX-100 experiment, as were 

the antennas and other internal structures.  The external pumping system and expansion 

chamber remain the same however, as do the plasma diagnostics.  The general 

configuration of the VX-100 also remains the same as the VX-50 experiment.  Where 

certain details of the VX-100 construction can not be included, a description of the VX-

50 construction will be substituted. 
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C.2.1 Vacuum tank and magnetic field profile 

A detailed model of the VX-50 experiment is shown in Fig. C.2. Four separate magnet 

coils produce the magnetic field configuration in the VX-50 experiment.  When 

optimized for deuterium (as shown in Fig. C.2) the magnetic field peaks at 0.7 T with 

wide plateaus in the vicinity of the helicon antenna and the ICRF antenna.  A similar 

profile is used in the VX-100 experiment, although upgraded water cooled magnets allow 

operation up to 2 Tesla which improves performance on heavier gasses (Neon and 

Argon). 

 

 
 

Figure C.2: VX-50 configuration and magnetic field profile.  This profile is tailored 
for operation on deuterium. 
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The experiment is connected to a 4 m3 vacuum tank which serves as a neutral gas dump.  

Neutral background pressure is high in this tank, peaking at 1x10-3-1x10-4 Torr during a 

shot.  The plasma is highly collisional in this region, making measurements of thrust and 

efficiency meaningless here.  Measurements just downstream of the ICRF antenna do not 

suffer from the high collision rate, and upstream neutral pressures are lower. Therefore, 

diagnostics are placed as close to the last magnet as possible to mitigate the effect of ion-

neutral collisions. 

 

C.2.2 Experiment conditions 

The experimental data considered here was collected over several shots on March 2, 

2007.  The VX-100 device was operating in helicon-only mode with 18 kW of RF power 

to the helicon.  No power was coupled to the ICRF antenna during this experiment.  A 

series of 40 shots was taken with 0.5 second duration resulting in repeatable plasma 

conditions.  A neutral Argon flow rate of 1800 sccm provided neutral gas to the helicon 

source.  This corresponds to a neutral atom flux of 8x1020 particles / s with an ionization 

fraction of 100%, as will be shown below. 

 

C.2.3 Diagnostics 

Multiple plasma diagnostics were used in the aft section of the VX-100 experiment.  

Diagnostics are located downstream of the last nozzle magnet (z = 1.48 m) before the ion 

plume becomes highly collisional.  A two-axis translation stage provides axial and 

vertical scanning of the plume at this location.  A suite of instruments is mounted on the 

boom of this translation stage, including a retarding potential analyzer (RPA), cylindrical 
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Langmuir probe and cylindrical flux probe.  The RPA provides ion energy distribution, 

which is not considered here.  The cylindrical Langmuir probe is a swept-bias probe 

providing ion saturation current, electron temperature and plasma potential.  The 

cylindrical flux probe provides ion saturation current, and electron temperature, although 

the latter measurement is not analyzed here. 

 

Two stationary diagnostics are also introduced in the downstream plasma plume.  A 

70 GHz microwave interferometer is stationed at z = 1.635 m with a horizontal field of 

view.  A second feedthrough at z = 1.76 m allows the insertion of a 10-collector array of 

planar flux probes.  These ten discs are 0.64 cm diameter collectors spaced 3 cm apart 

that collect ion current when biased to ion saturation.  The probe array is inserted 

horizontally through a flexible Wilson seal that allows the shaft to be moved back and 

forth, permitting a horizontal scan across the entire plasma plume. 

 

C.2.3.1 70 GHz interferometer 

Two configurations of the 70 GHz interferometer were used during the VX-100 

experiment.  The initial utilization was of the old VX-50 interferometer consisting of 

external electrical components and waveguide, with the horn antennas mounted on the 

inside of the vacuum chamber.  All data presented in this Appendix was taken with this 

configuration.  A substantial undertaking commenced to redesign the 70-GHz 

interferometer to operate entirely inside the vacuum chamber.  The configuration of this 

device is archived here.  Identical oscillator components and similar mixer and splitter 

components were used in both interferometer setups.  The horn antennas for the VX-50 
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setup had a separation of ~ 1 m which meets the far-field condition.  Both configurations 

align the horn’s E-plane with the thruster axis, resulting in the ordinary wave (o-wave) 

being launched in the plasma plume.  A linear phase shifter was positioned in-line with 

the VX-50 interferometer’s plasma leg allowing a phase calibration to be performed.  No 

such calibration was included with the VX-100 upgrade. 

 

 

Heat 
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QWB-V70HR
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Figure C.3:  70 GHz interferometer schematic for VX-100 implementation inside 
vacuum chamber.  Drawing shows configuration and Quinstar Inc. part numbers.  
The VX-50 experiment utilized a different setup with the waveguide routed around 
the outside of the vacuum chamber.  Glass-mica feedthroughs allowed waveguide 
connections to the internally mounted horn antennas. 
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Figure C.4: 70 GHz interferometer mounted to the VX-100 experiment.  
Components were re-arranged from the schematic in Figure C.3, but the same parts 
were used. 

 

At 70 GHz, the cutoff density for the ordinary wave is 6x1019 m-3.  Nonlinear effects 

manifest themselves at a density 50% below cutoff.  Although the bulk plasma density in 

the VX-100 plume was below this level, sporadic density spikes were occasionally seen 

that resulted in the 70 GHz instrument cutting off.  This was particularly seen at the 

higher power levels > 20 kW.  To ensure a useable interferometer signal, the helicon 

power was maintained at 18 kW for these experiments. 

 

C.2.3.2 Swept Langmuir Probe 

Radial scans of plasma density and electron temperature were produced with a swept 

Langmuir probe.  The probe is attached to the front of a retarding potential analyzer 

which is mounted to the two-axis translation stage.  The cylindrical probe is composed of 

a thin tungsten wire with a collecting area of approximately 3x10-5 m2. A 60Vpp, 50 Hz 
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voltage sweep is sent to the Langmuir probe collecting current in the ion saturation zone, 

transition zone and electron saturation zone.  RF compensation circuitry rejects high 

frequency components of the collected current for more accurate Te and Vp measure-

ments.  [Paranjpe, 1990] [Sudit, 1993] [Flender, 1996]   

 

 
 

Figure C.5:  Photograph of the RF compensated Langmuir probe at the end of a 
retarding potential analyzer.  The entire instrument is mounted on a stainless steel 
boom attached to the 2-axis translation stage. 
 

Rather than having a fixed bias as does a Langmuir triple-probe, the swept Langmuir 

probe undergoes the entire probe I-V sweep from ion saturation to electron saturation.  

The following analysis of Langmuir probe traces follows the approach given in 

[Choiniere, 2005] for non-flowing OML (thin probe) theory. 

 

The plasma density ne ≈ ni is determined from the slope of the ion current squared to 

probe voltage: Ii
2 / V0.  This assumes that ion current follows the equation: 
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where Uev is the ion flow energy in eV.  For large V0 the density ni can be found by 

 

 
2

1.5
0 2

ii
i

p c

mdIn
dV A e

π
= −  (C.2) 

 

Given this ion density, the electron current contribution can be extracted from the total 

Langmuir probe trace.  By subtracting the ion current, the retardation regime of the 

electron characteristic can be analyzed to extract electron temperature.  The next plot to 

be made is that of ( )ln /e theI I  where Ithe is the electron thermal current: 

 

 
2

c e
the p e c

e

e TI A n e
mπ

=  (C.3) 

 

 
Figure C.6:  Langmuir probe I-V trace.  Blue line represents entire probe 
characteristic.  Red line represents electron current only. 
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Figure C.7: Plot of ln(Ie / Ithe) vs. probe voltage showing a linear fit in the electron 
retardation zone.  Electron temperature is equal to the slope of the line in this fit.   
 

Based on the exponential dependence of electron current to V0 / Te, the slope of the best 

fit line through this retardation zone ( Vf  < V0 < Vp ) is equal to the electron temperature. 

 

C.2.3.3 Flux Probes 

The two flux probes used in this experiment are of different construction, but of similar 

function.  Both are biased to –40 V with respect to the experiment ground to collect ion 

saturation current.  The electrodes of both flux probes are composed of exotic metal to 

limit the effect of secondary electron emission– Tungsten for the cylindrical flux probe 
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and Molybdenum1 for the planar flux probe.  [Barnett 1990] [Schächter 1998]  Both have 

alumina ceramic as an insulating structure around the electrodes, and both utilize an 

isolation amplifier circuit to remove the –40 V common mode voltage from the small 

signal of the ion current.  The measurement from these flux probes provides Γi =niqvi  ion 

current density, which can be integrated over the plume area to produce total ion current. 

 

The cylindrical flux probe (Figure C.9) was originally designed as a Langmuir triple 

probe.  The electrodes are 4 mm diameter tungsten cylinders with 6 mm exposed above 

the alumina insulator.  The junction between the conductor and insulator is recessed 

within the surrounding alumina tube to reduce the effect of the vacuum-conductor-

insulator triple point.  The two sets of three conductors are aligned linearly, and separated 

by 15 cm to act as a time of flight monitor.  However, the shadowing of conductors by 

those positioned in front led to the re-tasking of the probe as a flux probe with only the 

foremost cylindrical electrode collecting ion current. 

 

                                                 

1 Only one of the ten collectors is actually Molybdenum.  The remainder are composed of stainless 

steel which also has a low secondary electron emission coefficient.  The Molybdenum collector is 

compared with the others to see if secondary emission is a significant effect on a shot-shot basis. 
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Figure C.8:  Isolation amplifier schematic for Langmuir triple probe.  A circuit 
based on this design was also used for swept Langmuir probe signal isolation, and 
for flux probe signal isolation.  The main circuit components are ISO124 isolation 
amplifiers and DCP011515 dual switching power supplies. 
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Figure C.9:  Cylindrical flux probe, originally designed to be a Langmuir triple 
probe with time of flight capability.  The electrodes are 4mm diameter Tungsten 
rods.  When operating as a flux probe, only the rightmost electrode collects current. 
 

The signal from the cylindrical flux probe was isolated from chamber ground using a 

unity-gain isolation amplifier circuit, shown in Figure C.8.  This serves to remove the 

common mode voltage from the ion current signal and maintains isolation between 

instrument ground and chamber ground.  The cylindrical flux probe is mounted to the end 

of a long stainless steel boom attached to the 2-axis translation stage.  A similar boom 

holds the retarding potential analyzer and swept Langmuir probe at a vertical separation 

of 5 cm above the flux probe. 

 

The ten-collector flux probe array (Figure C.10) collects a radial profile of ion current in 

the exhaust plume.  The planar collectors are flat stainless steel discs of 6.4 mm diameter.  

The inter-electrode spacing is 3 cm and the alumina ceramic insulator supporting the 

discs has a small vacuum gap between the conductor and insulator, to minimize the 

insulator-vacuum-conductor triple point.  The array can be extended all the way through 

the exhaust plume to collect a full horizontal profile. 
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Figure C.10: Flux probe array inserted in the exhaust plume.  Multiple planar 
collectors are spaced along an alumina ceramic tube. 

C.3 Experiment Results 

Over the course of the multiple plasma shots, a vertical measurement scan was performed 

by the 2-axis translation stage scanning approximately in line with the 70 GHz 

interferometer at z = 1.635 m.  A horizontal scan is subsequently performed by the 10-

collector probe array at a position 12.5 cm downstream of the interferometer at z = 1.76 

m.  Due to the limitations on vertical travel in the vacuum chamber and the vertical offset 

of the two plume diagnostic booms, the swept Langmuir probe was only able to collect 

data for the top 65% of the plume, while the cylindrical flux probe was only able to 

collect data for the bottom 65% of the plume.  The two instruments overlapped for 12 cm 

at the center of the plume.  By scaling and summing the two scans, a total profile is 

produced.   

 

The hybrid probe-interferometer method is employed to produce accurate radial density 

based on the 70 GHz data, the swept probe data, and the cylindrical flux probe data. 

(Figure C.11) The microwave interferometer measured a horizontal chord density while 
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the probe scan was conducted vertically, but this dichotomy was assumed to provide little 

additional error to the measurement due to the similarity in horizontal and vertical profile 

evidenced by the planar flux probe array measurements.  A large asymmetry was found 

in the vertical density profile with the peak shifted up by +7 cm.  A similar +7 cm shift to 

the right was found during the flux probe array’s horizontal density scan. 
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Figure C.11:  Radial density profile measurement in the plume of the VX-100 
experiment operating on Argon at 18 kW helicon power.  Red dashed line: 
horizontal flux probe density with peak density adjustment based on 12.5 cm axial 
offset.  Blue line: hybrid method based on 70 GHz interferometer and combined flux 
probe and swept Langmuir probe data.  Light green line: density based on OML 
Langmuir probe theory. 
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The ten collector flux probe array measured ion current density at 12 separate positions 

during the multiple plasma shots.  Although plasma density was not directly measured, an 

estimate of plasma density can be produced by combining an ion velocity with the 

measured ion flux.  From prior measurements using the retarding potential analyzer, a 

typical ion energy of Ei = 15-16 eV was measured in the plume.  This corresponds to a 

flow velocity of ~8.5 km/s with Argon.  Since the horizontal scan was conducted at an 

axial position 12.5 cm behind the vertical scan, it was 24% wider and 50% less dense 

than the vertical scan.  In Figure C.11, the horizontal density profile was adjusted to 

reflect this offset.  The measured R(z) by the two profile scans was different by 24%, so 

according to flux conservation the downstream peak density was increased by (R2 / R1)2 = 

53% to compare it directly with the vertical scan.  The horizontal scan then compares 

quite favorably with the vertical scan, showing the same peak density offset and similar 

peak density. 

 

The third density measurement included in Figure C.11 is the swept Langmuir probe 

density profile based on OML theory.  As discussed above, calculation of the ion density 

in the neighborhood of the Langmuir probe is part of the electron temperature analysis.  

Since the swept Langmuir probe only covered 65% of the vertical scan, a partial density 

measurement results.  In the region where the Langmuir probe and flux probe overlap, the 

qualitative agreement is good.  The peak plasma density for the Langmuir probe theory is 

only 50-60% of the hybrid density result, which is similar to the findings in 4.1.4.  This 

can therefore be considered a partial validation of the density profile produced by the 

hybrid probe measurement. 
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A 2D integral over the plume can be conducted, assuming axisymmetry and a velocity 

that is uniform over the profile.  Of course, the plot in Figure C.11 shows that the plume 

was definitely not axisymmetric, so the validity of this operation is questionable.  If the 

large density peak to the upper-right of the plume was a localized phenomenon, revolving 

the radial profile over π radians could result in a large over-estimate of the total ion flux.  

Also, assuming uniform velocity over the plume profile may introduce error to the total.  

Given these caveats, the 2D integral of flux is performed: 

  

 
0totI r nqv dr d
π

θ
∞

−∞
= ∫ ∫   (C.4) 

 

where Itot is the total ion current (flux) in the plume.  Given the previous velocity 

measurement of vi  = 8.5 km/s, this results in a total ion flux of 1.4 x1021 ions / s or 225 

Amps.  Considering that the total neutral gas feed rate is 1800 sccm = 8x1020 particles / s 

the resulting ionization efficiency is 175%.  This appears to be a physical impossibility, 

and could be an indication of several effects.  The first possibility is the invalidity of the 

assumption of axisymmetry and constant velocity.  This points to the need for a more 

accurate measurement of density and velocity over the entire plume, not just one or two 

radial scans.  The second potential effect is neutral gas recycling.  Prior to plasma turn-

on, there is a large pre-pulse puff of neutral gas.  This effectively fills the chamber with 

neutral argon prior to ignition, which could be contributing ions along with the 1800 

sccm of propellant. 
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A second type of density scan was also performed on the VX-100: an axial density scan.  

By positioning the swept Langmuir probe on the chamber centerline and moving the 

translation stage backwards into the vacuum tank, an axial profile of density was 

collected over several shots.  Starting just behind the microwave interferometer position 

at z = 1.68 m and moving back past z = 2 m, a density scan covering a factor of 3 

decrease was produced.  When plotted against a scaled measurement of magnetic field 

intensity in Figure C.12, the density begins diverging beyond z = 1.78 m.  This may be an 

indication of a velocity decrease leading to the density not scaling with the magnetic field 

(as an ideal magnetized plasma should be doing).  One possible cause of a velocity 

decrease is ion-neutral collisions which are expected to be an influence in the exhaust of 

this experiment.  This departure of density from magnetic field scaling may be an 

indication of neutral particle effects in the VX-100 experiment. 

 

 
 

Figure C.12:  Axial scan of density on the chamber centerline.  Swept Langmuir 
probe provides density data based on OML analysis.  Divergence of density from 
scaled magnetic field suggests possible neutral particle collisions. 
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C.4 Conclusion 

Multiple radial and axial profiles of density were produced in the plume of the VX-100 

thruster experiment.  Correlation between instruments was good, despite differences in 

operation and construction.  Both vertical and horizontal radial profiles detected non-

axisymmetric density distributions with a peak density shifted 7 cm to the right and up.  

A 2D integral over the plume density and velocity produced a prediction of 175% 

ionization efficiency, which is attributed to errors in the axisymmetry assumption and 

possible netural gas recycling in the chamber.  Despite these potential errors, very high 

neutral gas utilization is predicted in the VX-100 device (~100%).  An axial survey of 

density showed density decreasing with axial position, but not proportional to the 

decrease in magnetic field.  This raises the prospect of ion-neutral particle interaction 

leading to flow velocity reduction in this area of the experiment. 

 

The limitations raised in this experiment have highlighted the importance of more 

accurate assessment of the ion flux in the exhaust of the VX-100 experiment.  

Fortunately, this undertaking has largely been started or completed in the form of 

improved plume diagnostics.  Firstly, the cylindrical flux probe has been replaced by a 

planar flux probe with surrounding guard ring.  This guard ring helps to minimize edge 

effects from a non-uniform plasma sheath surrounding non-guarded planar probes.  A 

more accurate ion density measurement results.  Secondly, the 70 GHz interferometer 

system has been improved by positioning it entirely inside the vacuum chamber, and 

placing it on a vertical translation stage allowing for radial profiles of density with Abel 

inversion.  The third and potentially most significant improvement to the diagnostics 
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system is the inclusion of a pendulum flux probe which is swept across the entire plume 

area in a single shot.  This addresses the problem of non-axisymmetric plume profiles by 

taking measurements at a number of positions in the plume per shot.  When combined 

with ion energy distribution data from retarding potential analyzers, a radial scanning 

interferometer and a guard-ring flux probe, this greatly reduces the uncertainty inherent 

in plume measurements.  
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APPENDIX D 

 

MATLAB code  

 

 

A majority of the computer code utilized for data reduction and analysis in this 

experiment was written in MATLAB v7.  A selection of code is archived here in the 

following order: 

 

density_analysis_v4.m:  An Interferometer data analysis program.  Raw data files are 

selected for the downstream interferometer.  A calibration of the interferometer is applied 

to the data, and spurious 2π phase shifts are removed.  The data is scaled and compared 

with Langmuir probe data to determine the location of the spurious 2π phase shifts.  The 

interferometer phase shift is converted to line integral density based on the interferometer 

wavelength.  Results are saved in a comma separated file. 

 

cfile_CAD_scan4_v4.m:  One of many radial scan programs.  Radial profiles are created 

via the hybrid method, reported earlier in this dissertation.  Raw data saved by 

density_analysis_v4 is loaded for shots comprising a transverse scan.  Both microwave 

interferometer data and Langmuir probe data for each shot is loaded, parsed and 

averaged.  An implementation of the hybrid technique provides accurate radial density 
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profiles based on the radial Langmuir probe scan.  Error bars are determined by Monte 

Carlo simulation. 

 

magnetic_nozzle_sim_hydrogen.m:  Quasi 1-D numerical simulation based on flux 

conservation, magnetic field mapping and high-Beta detachment.  Initial conditions are 

provided based on experimental conditions.  Plume trajectories are calculated and 

compared with experimentally measured column widths.  Classical diffusion is included 

for cross-magnetic field transport. 

 

For the most part, this code is included as a reference to the method employed – it is not 

reported here in complete form, and would not necessarily operate correctly without 

necessary data sources or subroutines.  It is commented in a way which should make 

clear to anyone familiar with the MATLAB operating language what process was 

employed to collect and analyze data. However, don’t expect to copy-paste this into 

Matlab and have it work as-is. 
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%density_analysis_v4.m  

%Interferometer data analysis program - Used to analyze calibration shots and data taken on the DDEX %experiment 
with interferometer #2 and #3 (downstream interferometers. 
% 
%Enter in location of interferometer calibration file, then fit that file to  the analytical model used by Dobson, Jones, and 
Chavers.  the experiment data is then compared to the calibration and a plasma density is %determined.  Monte Carlo 
random analysis provides error bars given fossilized errors in the calibration %coefficient 
  
%%%%%%%%%%%%%% 
%Load calibration file for both interferometers. 
clear density2 density3 theta2 theta3 
reply=input('Load new calibration? y/n [n]:','s');  
if isempty(reply) 
    reply = 'n'; 
end 
  
if reply ~= 'n' 
    clear all 
   
    Datapath = uigetdir('D:\!Work\DDEX\Data\Run Date 04-27-2006\Plasma','Enter Data directory'); 
    [CI2 CQ2] = loadMWIcal(Datapath,2);    %Return the 4 cal coefficients used to fit to a sine wave: 
C1*sin(V(t)*C2+C3)+C4 
  
    [CI3 CQ3] = loadMWIcal(Datapath,3);    %Return the 4 coefficients used to fit to a sine wave: C1*sin(V(t)*C2+C3)+C4 
  
end 
  
    if ~(CI2 | CQ2) 
        disp('MWI2 cal not found'); MWI2flag=0; 
    else 
        MWI2flag=1; 
    end 
    if ~(CI3 | CQ3) 
        disp('MWI3 cal not found'); MWI3flag=0; 
    else 
        MWI3flag=1; 
    end 
     
    if ~(CI2 | CI3 | CQ2 | CQ3) 
        error('calibration file not found') 
    end 
  
%calculate the quadrature error Quadrature_offset 
Quadrature_offset2 =min(abs(CQ2(3)-CI2(3)-[0,pi/2,-pi/2,3*pi/2,-3*pi/2])); 
  
if MWI3flag 
    Quadrature_offset3 =min(abs(CQ3(3)-CI3(3)-[0,pi/2,-pi/2,3*pi/2,-3*pi/2])); 
end 
  
%%%%%%% 
%load the data file to analyze 
if ~exist('Datapath') 
    Datapath='D:\!Work\DDEX\Data\Run Date 04-27-2006\Plasma'; 
end 
 Datapath = uigetdir(Datapath,'Enter Data directory'); [DataI2,DataQ2] = readMWIbin(Datapath,2); 
     if ~(DataI2 | DataQ2) 
        disp('MWI2 data not found'); MWI2flag=0; 
    end 
  [DataI3,DataQ3] = readMWIbin(Datapath,3); 
       if ~(DataI3 | DataQ3) 
        disp('MWI3 data not found');        MWI3flag=0; 
    end 
clear theta2 theta3 
 
%%%%%%%%%%% 
%isolate the data required.  look at 20ms before and 40ms after the peak phase. 
[temp,maxindex]=max(abs(DataI2(:,2))); 
[temp,stop]=min(abs(DataI2(:,1)-DataI2(maxindex,1)-0.020)); 
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[temp,start]=min(abs(DataI2(:,1)-DataI2(maxindex,1)+0.040)); 
theta2(:,1) = DataI2(start:stop,1); 
if MWI3flag  %If lower interferometer channel data exists 
    theta3(:,1) = DataI3(start:stop,1); 
end 
%%%%%%%%%%% 
% Apply the simplified 4-calibration coefficient equation to find Theta phase: 
theta2(:,2) = atan2(CI2(1).*(DataQ2(start:stop,2) - CQ2(4)) -tan(Quadrature_offset2).*(cos(Quadrature_offset2).* CQ2(1).* 
(DataI2(start:stop,2) - CI2(4))) ... 
    ,cos(Quadrature_offset2).* CQ2(1).* (DataI2(start:stop,2) - CI2(4))); 
  
if MWI3flag 
    theta3(:,2) = atan2(CI3(1).*(DataQ3(start:stop,2) - CQ3(4)) -tan(Quadrature_offset3).*(cos(Quadrature_offset3).* 
CQ3(1).* (DataI3(start:stop,2) - CI3(4))) ... 
    ,cos(Quadrature_offset3).* CQ3(1).* (DataI3(start:stop,2) - CI3(4))); 
end 
 
%%%%%%% 
% determine the error bar in radians at this location.  MonteCarloError 
% returns the sigma, so 2*sigma gives the approximate error bar. 
clear Errortheta2 Errortheta3 
for n = 1:length(theta2) 
    Errortheta2(n,1) = 2*MonteCarloError(DataI2(start+n-1,2),DataQ2(start+n-1,2),CI2,CQ2,sigmaCI2,sigmaCQ2,sigmaV);  
% Monte Carlo subroutine (not included in this Appendix) 
    if MWI3flag 
        Errortheta3(n,1) = 2*MonteCarloError(DataI3(start+n-1,2),DataQ3(start+n-
1,2),CI3,CQ3,sigmaCI3,sigmaCQ3,sigmaV); 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%% 
%Use unwrap code from MATLAB 
[theta2(:,3),dp_corr2]=MWIunwrap(theta2(:,2)); % algorithm similar to MATLAB’s unwrap  function 
%Find initial phase  
theta0_2 = mean(theta2(length(theta2)-100:length(theta2),3)); 
theta2(:,4)= theta2(:,3)-theta0_2;  %theta(:,4) is the normalized phase shift 
 
%%%%%%%%%%%%%%%%%%%%% 
%load the LP file–for correlating with interferometer data to find erratic 2pi shifts in interferometer data 
clear LP1 LP2 
[DataLP1,DataLP2] = readLPbin(Datapath); 
if ~(DataLP1 | DataLP2) 
        disp('LP data not found') 
else         
    
%chop the LP data 
LP2(:,1) = DataLP2(start:stop,1); LP2(:,2) = DataLP2(start:stop,2); 
LP2(:,3) = LP2(:,2) - mean(LP2(length(LP2)-100:length(LP2),2)); 
end 
  
if MWI3flag   %Unwrap lower interferometer data and determine initial phase 
    [theta3(:,3),dp_corr3]=MWIunwrap(theta3(:,2)); 
  
    %Find initial phase 
    theta0_3 = mean(theta3(length(theta3)-100:length(theta3),3)); 
    theta3(:,4)= theta3(:,3)-theta0_3; 
  
    %%%%%%%%%%%%%%%%%%%%% 
    %MWIphaseAdjust - Adjust the phase of an input MWI reading by adjusting 2pi 
    %phase missed at beginning of shot.  This code is not archived here. 
    [theta2(:,4),dp2,theta3(:,4),dp3]=MWIphaseAdjust(theta2(:,4),theta3(:,4)); 
    dp_corr2 = dp_corr2+dp2;  %locations of 2pi adjustments that had to be made 
    dp_corr3 = dp_corr3+dp3; %locations of 2pi adjustments that had to be made  
end 
  
%%%%%%%%%%%%% 
% Adjust MWI3 data based on LP2 data.  This does more 2pi fringe adjustment based on the langmuir %probe data.   
%%%%%%%%%%%%% 
if CQ3(1) 
    threshold = 4;  %value of LP data that should be used to match with interferometer 
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    [temp,LP2(:,3)]=correlateLPwithMWI(theta3(:,4),LP2(:,3),threshold);  %function not archived here 
end 
  
%%%%%%%%%%%%%%%%%%% 
%  Adjust MWI2 data based on LP2 data. 
%%%%%%%%%%%%%%%%%%% 
  
threshold = 10;% value of LP data that should be used to match with interferometer 
[theta2(:,4),temp]=correlateLPwithMWI(theta2(:,4),theta3(:,4),threshold); %function not archived here 
[temp,LP2(:,3)]=correlateLPwithMWI(theta2(:,4),LP2(:,3),threshold); %function not archived here 
  
%Convert phase shift [radians] to density 
  
density2(:,1) = theta2(:,1); 
if MWI3flag 
    density3(:,1) = theta3(:,1); 
end 
 
Int_factor = 1;   %assuming square distribution across entire 1 meter distance  
density2(:,2) = rad2dens(theta2(:,4),Int_factor); % Function to convert radians to density 
density2Error = rad2dens(Errortheta2,Int_factor); 
  
if MWI3flag 
    density3(:,2) = rad2dens(theta3(:,4),Int_factor); density3Error = rad2dens(Errortheta3,Int_factor); 
end 
  
if DataLP2 
    LP2(:,4) = rad2dens(LP2(:,3),Int_factor); 
end 
  
%%%%%%%%%%%%%%%%%%%%%% 
 %chop and average the data, this average based on 50 kHz on DAQ6254   
  Mave=10;  %Average over 10 data points  
    Mm1ave=9; 
  
     for j=1:floor(length(density2)/Mave) 
        density2_ave(j,1)=mean(density2(j*Mave-Mm1ave:j*Mave,1)); 
        density2_ave(j,2)=mean(density2(j*Mave-Mm1ave:j*Mave,2)); 
        % positive error bars on density 
        density2_ave(j,3)=mean(density2(j*Mave-Mm1ave:j*Mave,2)-density2Error(j*Mave-Mm1ave:j*Mave)); 
        % negative error bars on density 
        density2_ave(j,4)=mean(density2(j*Mave-Mm1ave:j*Mave,2)+density2Error(j*Mave-Mm1ave:j*Mave)); 
         
        if MWI3flag 
          density3_ave(j,1)=mean(density3(j*Mave-Mm1ave:j*Mave,1)); 
          density3_ave(j,2)=mean(density3(j*Mave-Mm1ave:j*Mave,2)); 
            %positive error bars on density 
          density3_ave(j,3)=mean(density3(j*Mave-Mm1ave:j*Mave,2)-density3Error(j*Mave-Mm1ave:j*Mave)); 
            %negative error bars on density 
          density3_ave(j,4)=mean(density3(j*Mave-Mm1ave:j*Mave,2)+density3Error(j*Mave-Mm1ave:j*Mave)); 
        end 
         
        if DataLP2 
            LP2_ave(j,1)=mean(LP2(j*Mave-Mm1ave:j*Mave,1)); 
            LP2_ave(j,2)=mean(LP2(j*Mave-Mm1ave:j*Mave,3)); 
            LP2_ave(j,3)=mean(LP2(j*Mave-Mm1ave:j*Mave,4)); 
        end 
    end 
    %find the Full Width Half Max based on 2 interferometer analysis 
    if MWI3flag 
        FWHM = 24*2.54*sqrt(-1*log(.5))./sqrt(-1.*log(density3_ave(:,2)./density2_ave(:,2))); 
    end 
     
%%%%%%%%%%%%%%%%%%%%% 
% plotting section - plot total theta error as a percentage   
figure 
plot(theta2(:,1),Errortheta2./theta2(:,4)) 
hold on 
plot(theta2(:,1),theta2(:,4)./max(theta2(:,4)),'r') 
hold off 
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temp=axis; 
axis([0.446 0.458 0 1 ]) % for 6/1 data 
  
%plot average density from microwave interferometer 
figure 
plot(density2_ave(:,1),density2_ave(:,2)) 
hold on 
  
if MWI3flag 
    plot(density3_ave(:,1),density3_ave(:,2),'r') 
    plot(density3_ave(:,1),density3_ave(:,3),'r:') 
    plot(density3_ave(:,1),density3_ave(:,4),'r:') 
end 
plot(density2_ave(:,1),density2_ave(:,3),':') 
plot(density2_ave(:,1),density2_ave(:,4),':') 
  
xlabel('Time(s)') 
ylabel('Line integrated density over 1m path (m^-^2)') 
set(gcf,'DefaulttextInterpreter','none') 
title(['Plot of averaged density for ' Datapath(regexp(Datapath,'Run_'):length(Datapath)) '. Error bars shown.']) 
if MWI3flag 
    legend('MWI 2','MWI 3','ErrorBars') 
    axis([density2(1690,1) density2(2445,1) min([density2(:,2);density3(:,2)]) max([density2(:,2);density3(:,2)])]) 
else 
    legend('MWI 2','Langmuir probe') 
end 
hold off 
%%%%%%%%%%%%%%%%%%%%%% 
%SAVE DATA TO FILE 
%%%%%%%%%%%%%%%%%%%%%% 
if ~exist('Save_path') 
    Save_path = uigetdir(Datapath,'Enter folder to save data'); 
else 
    Save_path = uigetdir(Save_path,'Enter folder to save data'); 
end 
  
%Make savefile directories 
[s,mess,messid]=mkdir([Save_path,'\EMF']); 
if mess 
    disp(mess); 
end 
  
[s,mess,messid]=mkdir([Save_path,'\JPG']); 
if mess 
    disp(mess); 
end 
  
[s,mess,messid]=mkdir([Save_path,'\FIG']); 
if mess 
    disp(mess); 
end 
  
%suppress warnings due to legend having too few plots 
warning off all; 
  
savedata(1).filename=[char(Datapath(max(regexp(Datapath,'\'))+1:length(Datapath))) '_error']; 
%save plots to file 
saveas(gcf,[Save_path,'\EMF\',savedata(1).filename,'.emf']); 
saveas(gcf,[Save_path,'\JPG\',savedata(1).filename,'.jpg']); 
saveas(gcf,[Save_path,'\FIG\',savedata(1).filename,'.fig']); 
  
%create save file variables  
savedata(1).time2=density2(:,1); 
savedata(1).dens2Error = density2Error; 
if CQ3(1) 
    savedata(1).time3=density3(:,1); 
    savedata(1).dens3Error = density3Error; 
end 
%%%%%%% 
%Use fprintf to save file 
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%print header 
fid = fopen([Save_path '\' Datapath(regexp(Datapath,'Run_'):length(Datapath)) '_error.tab'],'wt'); 
  
if fid==-1 
    disp(['The file could not be opened']) 
    return 
end 
  
fprintf(fid,'Batch process run on %s\n',Datapath); 
fprintf(fid,'Batch process run on %s\n',datestr(now)); 
fprintf(fid,'Cal coefficients\n'); 
fprintf(fid,'CI2:\tCQ2:\tCI3:\tCQ3:\n'); 
if CQ3(1) 
    fprintf(fid,'%f\t%f\t%f\t%f\n',[CI2;CQ2;CI3;CQ3]); 
else 
    fprintf(fid,'%f\t%f\t%f\t%f\n',[CI2;CQ2;[0 0 0 0];[0 0 0 0]]); 
end 
fprintf(fid,'\n%s',savedata(1).filename); 
if CQ3(1) 
    fprintf(fid,'\n%s\t%s\t%s\t%s','MWI2_time','MWI2_error (m^-2)','MWI3_time','MWI3_error (m^-2)'); 
    fprintf(fid,'\n%f\t%f\t%f\t%f',[savedata(1).time2';savedata(1).dens2Error';savedata(1).time3';savedata(1).dens3Error']); 
    else 
    fprintf(fid,'\n%s\t%s','MWI2_time','MWI2_error (m^-2)'); 
    fprintf(fid,'\n%f\t%f',[savedata(1).time2';savedata(1).dens2Error']); 
end 
fclose(fid); 
 
%%%%% 
%Convert interferometer signal in radians to density 
function [density] = rad2dens(theta,int_factor) 
e_c = 1.6e-19;  %electric charge in coulomb 
epsilon_0 = 8.85e-12;   %permittivity in  F/m 
m_e = 9.1e-31; 
f = 15e9;       % 15 GHz oscillator 
c = 3e8;        %speed of light in vacuum 
density = theta*2*epsilon_0*m_e*2*pi*f*c/e_c^2/int_factor; 
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%cfile_CAD_scan4_v4.m  based in part on Jonathan Jones's (NASA MSFC) cfile_T.m customized to run on 
%6/1/06 scans 16-29 with downstream interferometer.  RGB interferometer correlated for flux conservation 
%calibration file in 5/31/06 scan 25.   
%Code implements the hybrid probe analysis for a radial scan of langmuir 
%probe along the downstream interferometer. 
  
%Error bars are imported for interferometer data, and applied to the total scan based 
%on RevSciInst error analysis 
  
%modified 7/26/07 to include the most recent cal data, and to adjust the LP 
%probe theory to account for matrix sheath expansion. 
Plots = 1; %turn plots on or off 
 
% file to read data from .tab file 
 Datapath = 'E:\!Work\DDEX\Reduced data\6-1-06\shots 16-29 with LP z = 55\'; 
Datapath = uigetdir(Datapath,'Enter Data directory to run batch process on'); 
Savepath = uigetdir(Datapath,'Enter folder to save data'); 
  
D1=dir(Datapath);n=length(D1);ii=0; 
Start_Shot=16;End_Shot=28;Num_Shots=End_Shot-Start_Shot+1; 
jpos=[-18:3:18 ];%radial position of shots (in inches) 
StartTime = 0.450; StopTime = 0.455; %desired start and stop of plot 
for sh=Start_Shot:End_Shot;  % shot numbers to reduce 
    if sh<10 
        shot=strcat('000',num2str(sh)); 
    end 
    if sh>9 & sh<100 
        shot=strcat('00',num2str(sh)); 
    end 
    if sh>99 
        shot=strcat('0',num2str(sh)); 
    end 
    for i=3:n  %read the density data into a data structure 
        if length(D1(i).name)==12 
            if strcmp(D1(i).name(5:8),shot) 
                ii=ii+1; 
                data(ii).name=D1(i).name; 
                data(ii).shotnum=sh; 
                path2=strcat(Datapath,'\',D1(i).name); 
                try 
                    fid = fopen(path2,'r','l'); 
                    if fid==-1 
                        error(['Problems opening ' path2]) 
                    end 
                    for i = 1:11 
                        tline = fgetl(fid); 
                    end 
                    a= fscanf(fid, '%g %g %g %g %g %g', [6 inf]); a = a';  fclose(fid);    
                    data(ii).density2 = a(:,2);data(ii).density3 = a(:,4); 
                    data(ii).lp2_vi = a(:,6);data(ii).time = a(:,1); 
                catch 
                    disp(['Could not open file '  path2]); 
                end 
            end 
            %import errorbars into the structure 
        elseif length(D1(i).name)==18 
            if strcmp(D1(i).name(5:8),shot) && strcmp(D1(i).name(10:14),'error') 
                path2=strcat(Datapath,'\',D1(i).name); 
                try 
                    fid = fopen(path2,'r','l'); 
                    if fid==-1 
                        error(['Problems opening ' path2]) 
                    end 
                    for i = 1:11 
                        tline = fgetl(fid); 
                    end 
                    a= fscanf(fid, '%g %g %g %g', [4 inf]);a = a'; fclose(fid);   
                    data(ii).density2Error = a(:,2);data(ii).density3Error = a(:,4); 
                    data(ii).errorTime = a(:,1); 
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                catch 
                    disp(['Could not open file '  path2]); 
                end 
            end 
        end 
    end 
end 
  
  
%read the upstream RGB denstiy file 
path3=('E:\!Work\DDEX\Data\RGB Interferometer 06-01-2006\'); 
path3 = [uigetdir(path3,'Enter directory with RGB data') '\']; 
D1=dir(path3);n=length(D1);ii=0; 
for sh=Start_Shot:End_Shot;  % shot numbers to reduce 
    if sh<10 
        shot=strcat('000',num2str(sh)); 
    end 
    if sh>9 & sh<100 
        shot=strcat('00',num2str(sh)); 
    end 
    if sh>99 
        shot=strcat('0',num2str(sh)); 
    end 
    for i=3:n 
        if length(D1(i).name)>28 
            if strcmp(D1(i).name(6:9),shot) 
                ii=ii+1; 
                data(ii).name=D1(i).name; 
                data(ii).shotnum=sh; 
                path4=strcat(path3,D1(i).name); 
                path5=strcat(path4, '\MWI1_RGB_D.bin'); 
                path6=strcat(path4, '\MWI1_DError.bin'); 
                data(ii).RGB_d=readbin(path5);  %read in RGB density and time.  Density in cm^-3 
                data(ii).RGB_error=readbin(path6);  %read in RGB error and time.  Density in cm^-3 
            end 
        end 
    end 
end 
  
LP2_VI_cal = 1/5.436; %opto-isolator calibration factor (divide by this to get true reading) 
%Condition the data just loaded 
for ii=1:Num_Shots 
  %remove DC offset from langmuir probe data 
    vi2_offset(ii)=mean(data(ii).lp2_vi(1:100)); 
    data(ii).lp2_vi=(data(ii).lp2_vi-vi2_offset(ii))/LP2_VI_cal; 
  %sync up times of each shot by cutting data prior to LatestStart 
    temp2=find(data(ii).lp2_vi > 0.02); 
    RisingEdge(ii)=temp2(1); 
    tempRGB = find(data(ii).RGB_d.dat > 1*10^11); 
    RisingEdgeRGB(ii) = tempRGB(1); 
  %determine RMS value for lp2 for subsequent error analysis 
    temp=data(ii).lp2_vi(1:1000); 
    data(ii).lp2_vi_sigma = norm(temp)/sqrt(length(temp));    
end 
   
%delay the start of data for shots that have an earlier rising edge 
  
LatestStart=max(RisingEdge); 
for ii = 1:Num_Shots 
    CropIndex(ii) =LatestStart-RisingEdge(ii)+1; 
    
data(ii).density2(CropIndex(ii):length(data(ii).density2))=data(ii).density2(1:length(CropIndex(ii):length(data(ii).density2))); 
    
data(ii).density3(CropIndex(ii):length(data(ii).density3))=data(ii).density3(1:length(CropIndex(ii):length(data(ii).density3))); 
    data(ii).lp2_vi(CropIndex(ii):length(data(ii).lp2_vi))=data(ii).lp2_vi(1:length(CropIndex(ii):length(data(ii).lp2_vi))); 
    data(ii).time(CropIndex(ii):length(data(ii).time))=data(ii).time(1:length(CropIndex(ii):length(data(ii).time))); 
    
data(ii).density2Error(CropIndex(ii):length(data(ii).density2Error))=data(ii).density2Error(1:length(CropIndex(ii):length(data
(ii).density2Error))); 
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data(ii).density3Error(CropIndex(ii):length(data(ii).density3Error))=data(ii).density3Error(1:length(CropIndex(ii):length(data
(ii).density3Error))); 
end 
%%%%%%%%%%%%%%%%%%%%%% 
%chop and average the data, this average based on 50 kHz on DAQ6254 and 
%40 kHz on RGB data 
for ii = 1:Num_Shots 
    Mave=10;  %number of shots to average LP and downstream interferometer 
    Mm1ave=Mave-1; 
    Mave2=8;  %number of shots to average upstream interferometer over 
    Mm1ave2=Mave2-1; 
    %average LP and downstream MWI data based on 50 kHz data rate 
    for j=1:floor(length(data(ii).density2)/Mave) 
        data(ii).lp2_vi_ave(j)=mean(data(ii).lp2_vi(j*Mave-Mm1ave:j*Mave)); 
        data(ii).density2_ave(j)=mean(data(ii).density2(j*Mave-Mm1ave:j*Mave)); 
        data(ii).density3_ave(j)=mean(data(ii).density3(j*Mave-Mm1ave:j*Mave)); 
        data(ii).time_ave(j)=mean(data(ii).time(j*Mave-Mm1ave:j*Mave)); 
        data(ii).density2Error_ave(j)=mean(data(ii).density2Error(j*Mave-Mm1ave:j*Mave)); 
        data(ii).density3Error_ave(j)=mean(data(ii).density3Error(j*Mave-Mm1ave:j*Mave)); 
    end 
  
    %average RGB data based on 40 kHz data rate. 
    for j=1:floor(length(data(ii).RGB_d.dat)/Mave2) 
        data(ii).RGB_d.ave(j)=mean(data(ii).RGB_d.dat(j*Mave2-Mm1ave2:j*Mave2)); 
        data(ii).RGB_error.ave(j)=mean(data(ii).RGB_error.dat(j*Mave2-Mm1ave2:j*Mave2)); 
        data(ii).RGB_d.aveT(j)=mean(data(ii).RGB_d.t(j*Mave2-Mm1ave2:j*Mave2)); 
    end 
 %sync up times of each MWI shot by comparing to RisingEdge. 
    temp2=find(data(ii).lp2_vi_ave > 0.02); 
    RisingEdge(ii)=temp2(1); 
 %sync up times of each RGB shot by comparing to RisingEdgeRGB 
    tempRGB = find(data(ii).RGB_d.ave > 1*10^11); 
    RisingEdgeRGB(ii) = tempRGB(1); 
    data(ii).RGB_d.ave=data(ii).RGB_d.ave(RisingEdgeRGB(ii)-
RisingEdge(ii)+1:length(data(ii).lp2_vi_ave)+RisingEdgeRGB(ii)-RisingEdge(ii)); 
    data(ii).RGB_error.ave=data(ii).RGB_error.ave(RisingEdgeRGB(ii)-
RisingEdge(ii)+1:length(data(ii).lp2_vi_ave)+RisingEdgeRGB(ii)-RisingEdge(ii)); 
    data(ii).RGB_d.aveT=data(ii).RGB_d.aveT(RisingEdgeRGB(ii)-
RisingEdge(ii)+1:length(data(ii).lp2_vi_ave)+RisingEdgeRGB(ii)-RisingEdge(ii)); 
 %determine sigma (LP2 error) for averaged LP2 data 
    temp=data(ii).lp2_vi_ave(1:100); 
    data(ii).lp2_vi_sigma_ave = norm(temp)/sqrt(length(temp)); 
end 
  
%Sort the shots into a position in ascending order 
clear sortData 
[jsort,Isort]=sort(jpos); 
  
for i=1:Num_Shots 
    data(Isort(i)).pos = jsort(i); 
    sortData(i)=data(Isort(i)); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
%Determine the hybrid probe beta based on interferometer and probe data 
clear beta beta2 n2 
for i=1:length(data(ii).time_ave) 
    beta(i)=0; 
    beta2(i)=0; 
    for ii=1:Num_Shots-1 
        if jsort(ii+1)>jsort(ii) 
            beta2(i)=beta2(i)+abs((sortData(ii).lp2_vi_ave(i)/(sortData(ii).density2_ave(i)))*abs(jsort(ii+1)-jsort(ii))*.0254);  %be 
sure path is right 
        end 
    end 
    
beta2(i)=beta2(i)+abs((sortData(Num_Shots).lp2_vi_ave(i)/(sortData(Num_Shots).density2_ave(i)))*abs(jsort(Num_Shots)
-jsort(Num_Shots-1))*.0254);  %be sure path is right 
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    for jj=1:Num_Shots 
        sortData(jj).n2(i)=sortData(jj).lp2_vi_ave(i)/beta2(i); 
        n2(jj,i)=sortData(jj).lp2_vi_ave(i)/beta2(i); 
         
     
    % LP scan only covers +/- 46 cm of the plume.  for a 91cm FWHM this is 
    % only 78.8% of the total plume density. 
    Scan_percentage = 0.788; 
         sortData(jj).n2(i)=sortData(jj).lp2_vi_ave(i)/beta2(i)*Scan_percentage; 
        n2(jj,i)=sortData(jj).lp2_vi_ave(i)/beta2(i)*Scan_percentage; 
        sortData(jj).beta2(i) = beta2(i)/Scan_percentage; 
   end 
end 
  
% fit data to probe theory.  Adjusted for optoisolator calibration coeff. 
e_c = 1.602e-19;    %electron charge (C) 
q_i = 1*e_c;    %ionic charge (C) 
m_i = 1.67e-27*1;   %Hydrogen mass (kg) 
S_frontal = 0.9*5*1e-6; %probe frontal area (m^2) 
S_p = S_frontal*pi; % LP2 probe total area  
r_p =0.9/2*1e-3;     %probe radius (m) 
R_sense  = 100;     %sensing resistor (ohms) 
T_e = 1.2;            %Electron temp (eV) 
T_i = 1.2;          %ion temp (eV) 
Ma = 1.95;  %Ion mach number 
%v_i = sqrt(e_c*T_i/m_i)*Ma; 
v_i = 19e3;         %ion velocity (m/s) 
V_p = 40;           %probe voltage (V) 
  
%%%%%% 
s = v_i*sqrt(m_i/2/e_c/T_i); % scaled velocity for combined probe theory 
I_thermal = S_p*q_i*sqrt(e_c*T_i/(2*pi*m_i)); %Random probe current collection / n_i 
  
clear velocity fitfactor 
for jj = 1:Num_Shots 
%velocity based on flux probe data: I_flux = n*q*v*S_p 
    plasmaIndex=find(sortData(jj).n2>0.001*max(sortData(jj).n2)); 
    b = sortData(jj).lp2_vi_ave(plasmaIndex); 
    A = sortData(jj).n2(plasmaIndex)*q_i*S_frontal*R_sense; 
    [velocity(jj),temp] = lsqr(A',b',1e-5,500); 
    %ion density based on combined thin-sheath theory, s = v_i*sqrt(m_i/2/e_c/T_i) 
    % I_thermal = S_p*n_i*q*sqrt(e_c*T_i/(2*pi*m_i)) 
    % For s>1:  I = I_thermal * a/r*2/sqrt(pi)*s*(1+1/(4*s^2)) 
    % For s<1: I = I_thermal * a/r * (1+s^2/2) 
    % 
    % where a/r is the sheath radius / probe radius.  Use matrix sheath 
    % a = r_p+debye*(2*V_p/T_e)^1/2;  % 
     debye = sqrt(8.85e-12/1.6e-19*T_e./sortData(jj).n2); 
     a = r_p+debye*(2*V_p/T_e)^1/2;  %Matrix sheath 
     if s>1 
        sortData(jj).LPprobetheory_ave=sortData(jj).lp2_vi_ave/R_sense/I_thermal./(a)*r_p/(2/sqrt(pi)*s*(1+1/(4*s^2))); 
%combined probe theory large s 
     else 
         sortData(jj).LPprobetheory_ave=sortData(jj).lp2_vi_ave/R_sense/I_thermal./(a)*r_p/(1+s^2/2); %combined probe 
theory small s 
     end 
     [fitfactor(jj),temp] = lsqr(sortData(jj).n2(plasmaIndex)',sortData(jj).LPprobetheory_ave(plasmaIndex)',1e-6,300); 
  
    %ion density based on standard probe theory: I = 0.61*q_i*n_0* 
    % *sqrt(e_c*T_i/m_i)*S_p 
    %9_6_07 use matrix sheath expansion to determine probe collection area. 
    % S_p = pi*2a * 5mm 
     
    S_p = pi*2*a*5e-3; 
    sortData(jj).LPstandardprobetheory=sortData(jj).lp2_vi_ave/R_sense/q_i./S_p/0.61/sqrt(e_c *T_e/m_i);  %standard 
probe theory 
end 
  
%Fit the profile at each position in time to a Gaussian.  FWHM compares 
%MWI_2 with MWI_3.  FWHM2 uses a fit to the langmuir probe scan 
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clear FWHM FWHM2 fjj RMSError;jj=1; 
for i = StartIndex:StopIndex  % time location of the plasma shot 
    fjj(jj,:) = g_fit_new2(jsort',n2(:,i),[10,1e16,0]);  %use new gaussian fit program CAD 
    FWHM2(jj)=abs(fjj(jj))*.0254*2*(log(2))^0.5; 
     % determine RMS error from fit (as a percentage of magnitude) 
    RMSError(jj) = norm(n2(:,i)'-fjj(jj,2)*exp(-((jsort-fjj(jj,3)).^2)/fjj(jj,1)^2))/norm(n2(:,i))/sqrt(length(n2(:,i))); 
    jj=jj+1; 
end 
%take average FWHM over all shots 
FWHM=0; 
for ii = 1:Num_Shots 
    FWHM =FWHM+ 24*.0254*sqrt(-1*log(.5))./sqrt(-
1.*log(data(ii).density3_ave(StartIndex:StopIndex)./data(ii).density2_ave(StartIndex:StopIndex))); 
end 
FWHM = FWHM ./ Num_Shots; 
  
%%%%%%%%%%%%%%%%%%% 
% Error analysis 
% Errorbar equation:  sigma_n^2 = Beta^2*V_i^2*[M*(sigma_alpha^2/alpha^2)+  
% (1 - 2V_i*Beta*alpha/N_i)*sigma_v_i^2/V_i^2] + (Beta^2 * alpha*V_i)^2* 
% SUM(jj:1:M) [ (sigma_V_jj^2/V_jj^2 + sigma_N_jj^2/N_jj^2)*(V_jj^2 / N_jj^2)] 
  
 alpha = 2*0.0254; sigma_alpha = 1.59e-5;M = Num_Shots; 
% sigma_V_i(jj) = data(jj).lp2_vi_sigma_ave;  %This assumes sigma_ave is used 
for i = 1:length(sortData(1).time_ave); %StartIndex:StopIndex   % % look at error 
    SumError(i) = 0; 
%       Error equation for alpha_i = non-constant.  use sigma_vi not sigma_vi_ave    
    for jj = 1:M 
        %%% lp2_vi_sigma_ave averaged 
SumError(i)=SumError(i)+ (sigma_alpha^2/alpha^2+data(jj).lp2_vi_sigma_ave^2/data(jj).lp2_vi_ave(i)^2 + ... 
            (data(jj).density2Error_ave(i)/2)^2/data(jj).density2_ave(i)^2)*(data(jj).lp2_vi(i)^2 *alpha^2 / ... 
            data(jj).density2_ave(i)^2); 
    end 
    for jj = 1:M 
        %%% lp2_vi_sigma_ave averaged 
    n2Error(jj,i)=2*sqrt( beta2(i)^-2*data(jj).lp2_vi_ave(i)^2*(( ... 
            (1-2/beta2(i)*alpha*data(jj).lp2_vi_ave(i)/data(jj).density2_ave(i))*data(jj).lp2_vi_sigma_ave^2 / ... 
            data(jj).lp2_vi_ave(i)^2) + beta2(i)^-2  * SumError(i))); 
    end 
end 
sigmaAlpha2_alpha2 = sigma_alpha^2 / alpha^2; 
for jj =1:M 
     %%% lp2_vi_sigma_ave averaged 
     sigmaV2_V2(jj) =  mean(sortData(jj).lp2_vi_sigma_ave.^2 ./ (sortData(jj).lp2_vi_ave(StartIndex+6:StartIndex+13)).^2); 
     sigmaN2_N2(jj) =  mean((sortData(jj).density2Error_ave(StartIndex+6:StartIndex+13)/2).^2./ ...  
          sortData(jj).density2_ave(StartIndex+6:StartIndex+13).^2); 
end 
  
%%%%%%%%%%%%%%%%%%% 
%%determine errorbars on FWHM2.  takes 3-4 hours to run.  not all functions 
%%are archived here. 
% clear n2dist FWHM2_alt FWHM2_error 
% jj=6; 
% for i = StartIndex+5:StartIndex+15  % time location of the plasma shot 
%     temp = size(n2Error); 
%     clear sigmaMonteCarlo 
%     for N = 1:1000 
%         n2dist = n2(:,i) + randn(temp(1),1).*n2Error(:,i); 
%         sigmaMonteCarlo(N,:) = g_fit_new2(jsort',n2dist,[10,1e16,0]);  %use new gaussian fit program CAD 
%         sigmaMonteCarlo(N,1)=abs(sigmaMonteCarlo(N,1))*.0254*2*(log(2))^0.5; % adjust to FWHM 
%     end 
%     [FWHM2_alt(jj),FWHM2_error(jj)] = normfit(sigmaMonteCarlo(find(sigmaMonteCarlo(:,1)<2))); 
%     FWHM2_error(jj) 
%     jj=jj+1; 
% end 
  
%% Determine conservation of flux based on RGB vs. MWI interferometer data 
RGB_FWHM = 0.093;   %9.3cm full width half max 
RGB_sigma = RGB_FWHM*0.5*(2*log(2))^-.5;    %Sigma width for Gaussian distribution 
RGB_2D_IF = 2*pi*RGB_sigma^2; %2D integral of Gaussian with peak = 1 
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RGB_1D_IF = sqrt(RGB_2D_IF); %1D integral of Gaussian with peak = 1 
  
Ka_FWHM = 0.90;  %90cm full width half max 
Ka_sigma = Ka_FWHM*0.5*(2*log(2))^-.5;%Sigma width for Gaussian distribution 
Ka_2D_IF = 2*pi*Ka_sigma^2; %2D integral of Gaussian with peak = 1 
Ka_1D_IF = sqrt(Ka_2D_IF);  %1D integral of Gaussian with peak = 1 
  
for ii = 1: Num_Shots 
    if ii == 2 
        figure 
    else 
        figure(1) 
    end 
    semilogy((data(ii).time_ave-0.451)*1000,abs(data(ii).density2_ave)./Ka_1D_IF.*Ka_2D_IF,'k','LineWidth',2);hold on 
    semilogy((data(ii).time_ave-
0.451)*1000,0.5*(data(ii).RGB_d.ave+[data(ii).RGB_d.ave(2:300),1]).*1e5./RGB_1D_IF.*RGB_2D_IF,'b','LineWidth',2);hol
d off 
    xlabel('Time (ms)','FontSize',12);ylabel('Density integrated over profile m^{-1}','FontSize',12) 
    ArealFraction(1:299,ii) = abs(data(ii).density2_ave(1:299))./Ka_1D_IF.*Ka_2D_IF ./ 
(.5*(data(ii).RGB_d.ave(2:300)+data(ii).RGB_d.ave(1:299)).*1e5./RGB_1D_IF.*RGB_2D_IF); 
    ArealFraction(300,ii)=1; 
end 
figure(Num_Shots+1) 
plot(data(1).time_ave,mean(ArealFraction'),'LineWidth',2) 
xlabel('Time (s)','FontSize',12);ylabel('n_{1.85} / n_{0.33}  density ratio ','FontSize',12) 
  
figure(Num_Shots+2) 
plot((data(1).time_ave-0.451)*1000,mean(ArealFraction'),'LineWidth',5) 
xlabel('Time (ms)','FontSize',18);ylabel('n_{1.85} / n_{0.33}  ','FontSize',18) 
  
figure(Num_Shots+3) 
errorbar((data(1).time_ave(200:215)-
0.451)*1000,mean(ArealFraction(200:215,:)'),std(ArealFraction(200:215,:)'),'k','LineWidth',2) 
xlabel('Time (ms)','FontSize',12);%ylabel('n_{1.85} / n_{0.33}  ','FontSize',18) 
  
%%%%  Gaussian fitting function - fits a shifted gaussian function to x-y data 
function [estimates, model] = g_fit_new2(xdata, ydata,start_point) 
model = @gaussfun; 
if ~exist('start_point') 
    start_point= [10,1e12]; 
end 
start_point(3) = 0; 
estimates = fminsearch(model, start_point, optimset('MaxIter',5000,'MaxFunEvals',5000,'Display','off')); 
    function [sse, FittedCurve] = gaussfun(params) 
        A = params(2);sigma = params(1);x_off = params(3); 
        FittedCurve = A.* exp(-((xdata-x_off) ./ sigma).^2); 
        ErrorVector = FittedCurve - ydata; 
        sse = sum(ErrorVector .^ 2); 
    end 
end 
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%magnetic_nozzle_sim_hydrogen.m: simulation of 5/30/06 hydrogen scan. 
%Quasi 1D magnetic field  simulation using Hydrogen, classical diffusion, 
% constant velocity and 1.2eV Te. 
  
%spatial grid subdivisions 
divisions_in_z = 2000; divisions_in_r = 10; 
%84 current sources and 10,000 points takes about 8 seconds to calculate on a 2.7 ghz Pentium IV 
  
%earth magnetic field 
%In huntsville, field runs north to south, at a 45 (actually 64 deg) degree angle with respect to the ground 
%DDEX is oriented north to south, so that Bz_earth is positive with respect to model 
earth = 1;  %switch to turn earth's field off and on 
B_earth = 0.52/10000;Bz_earth = -cos(64)/2*B_earth;Br_earth = -sin(64)/2*B_earth; 
  
zmax = 1.5;% axial limit of simulation  
number_of_stages=7;     %number of nozzle magnets 
turns_in_r = [10 15 10  2  1  1  4];  turns_in_z = [30 20 13  15  21  15  9];  % coil windings for each magnet          
%radius to center of innermost coil         z position of center of leftmost coil 
stage(1).rmin=1*.0254;                           stage(1).zmin=-1.14;%.475-3*.0254 
stage(1).block_height = 1*.0254;                 stage(1).block_width =  4*.0254; 
  
stage(2).rmin=.75*.0254;                         stage(2).zmin=-.5; 
stage(2).block_height = 1*.0254;                 stage(2).block_width = 1*.0254; 
  
stage(3).rmin = 5.*.0254;                        stage(3).zmin = -.91;  %N2 coil 
stage(3).block_height = 2.5*.0254;               stage(3).block_width = 4*.0254; 
  
stage(4).rmin = 18.*.0254;                       stage(4).zmin = -.72;     %Magnet 4 
stage(4).block_height = .0808*.0254*2;           stage(4).block_width = 3.5*.0254; 
  
stage(5).rmin = 18.*.0254;                       stage(5).zmin = -.42; 
stage(5).block_height = .0808*.0254;             stage(5).block_width = 3.5*.0254; 
  
stage(6).rmin = 18.*.0254;                       stage(6).zmin = -.12; 
stage(6).block_height = .0808*.0254;             stage(6).block_width = 3.5*.0254; 
  
stage(7).rmin = 4*.0254;                         stage(7).zmin = -.88; %additional coil for choke field 
stage(7).block_height = 1*.0254;                  stage(7).block_width = 3*.0254; 
% ----------------------------------define currents--------------------------------------- 
ampsperturn = [5 0 100 10 3 3 100] ;  %nominal currents 
%ampsperturn = [5 0 100 0 -20 35 100] ;  %optimized efficiency 
%========================================================================================== 
  
for ii = 1:number_of_stages 
    stage(ii).coil_current = ampsperturn(ii); 
end 
for ii = 1:number_of_stages 
    stage(ii).block_subdivisions_r = turns_in_r(ii); 
    stage(ii).block_subdivisions_z = turns_in_z(ii); 
    stage(ii).stage_current = turns_in_r(ii)*turns_in_z(ii)*ampsperturn(ii); 
end 
  
  
%----Calculate the current sources for the magnetic nozzle  
current_source_count = 0; 
for ii = 1:number_of_stages 
    %determine the type of stage to determine the method for determining the current source parameters r, z, and I 
    number_of_sources = stage(ii).block_subdivisions_r*stage(ii).block_subdivisions_z; 
    current_per_source = stage(ii).stage_current/number_of_sources; 
  
    dr = stage(ii).block_height/stage(ii).block_subdivisions_r; 
    dz = stage(ii).block_width /stage(ii).block_subdivisions_z; 
    for rr = 1:stage(ii).block_subdivisions_r 
        for zz = 1:stage(ii).block_subdivisions_z 
            current_source_count = current_source_count + 1; 
            coil_current(current_source_count) = current_per_source; 
            coil_z(current_source_count) = dz*(zz-1) + dz/2 + stage(ii).zmin; 
            coil_r(current_source_count) = dr*(rr-1) + dr/2 + stage(ii).rmin; 
        end 
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    end 
end 
  
%eliminate coils that have no current (have been turned off) 
    no_current_indices = find(coil_current==0); 
    if(isempty(no_current_indices)) 
    else 
        number_of_coils_off = length(no_current_indices); 
        current_source_count = current_source_count - number_of_coils_off; 
        if(current_source_count==0) 
            'no current, thus no field for this run' 
            break 
        else 
            [dummy,ii] = sort(abs(coil_current)); 
            coil_current = coil_current(ii); 
            coil_r       =       coil_r(ii); 
            coil_z       =       coil_z(ii); 
            coil_current = coil_current(number_of_coils_off + 1:current_source_count + number_of_coils_off); 
            coil_r       =       coil_r(number_of_coils_off + 1:current_source_count + number_of_coils_off); 
            coil_z       =       coil_z(number_of_coils_off + 1:current_source_count + number_of_coils_off); 
        end 
    end 
%=================================================definition of grid 
%---determine boundaries based on coil specifications 
  
r0 = 0;r1 = min(coil_r(:)); 
z0 = min(coil_z(:));z1 = max(coil_z(:)); 
dz = z1-z0;dr = r1-r0; 
if(dz==0), dz = dr; end 
z0 = z0-dz/2;z1 = max(z1+dz/2,zmax);dz = z1-z0; 
dz = dz/(divisions_in_z);dr = dr/(divisions_in_r); 
rv = [r0:dr:r1]';r = rv*ones(1,divisions_in_z+1); 
zv = [z0:dz:z1];z = ones(divisions_in_r+1,1)*zv; 
%====================end definition of grid 
%alocate memory for Br, Bz, r, z 
Br = zeros(divisions_in_r+1,divisions_in_z+1); 
Bz = zeros(divisions_in_r+1,divisions_in_z+1); 
%add the earth's field 
if(earth);    Br = Br+Br_earth;    Bz = Bz+Bz_earth;  end 
  
%======================================loop over geometry to calculate magnetic induction field 
%[Br,Bz] = Bcalc(Br,Bz,r,z,coil_r,coil_z,coil_current) 
for rr = 1:divisions_in_r+1 
    for zz = 1:divisions_in_z+1 
        [Br(rr,zz), Bz(rr,zz)] = Bcalc(Br(rr,zz),Bz(rr,zz),r(rr,zz),z(rr,zz),coil_r,coil_z,coil_current); 
    end 
end 
%==========================plot data 
figure(1), plot(coil_z+.862, coil_r,'.','color',[1 .7 .1]), set(gca,'ylim',[-r1 r1]), hold on; r1; 
figure(1), plot(coil_z+.862,-coil_r,'.','color',[1 .7 .1]), axis equal 
xlabel('Z (m)'), ylabel('R (m)') 
drawchamber2(.862,0,1)% draw the chamber with metric units and a 0.862 m offset 
%------------- Draw surface plot of magnetic field 
clear r2 z2 Br2 Bz2 
divisions_in_Br = 100;divisions_in_Bz = 100; 
rbounds = [-0.5,1.5];zbounds = [-.4,3]; 
for rr = 1:divisions_in_Br+1 
    r2(rr) = rr*(rbounds(2)-rbounds(1))/divisions_in_Br+rbounds(1); 
end 
for zz = 1:divisions_in_Bz+1 
    z2(zz) = zz*(zbounds(2)-zbounds(1))/divisions_in_Bz+zbounds(1); 
end 
for rr = 1:divisions_in_Br+1 
    for zz = 1:divisions_in_Bz+1 
        [Br2(rr,zz), Bz2(rr,zz)] = Bcalc(0,0,r2(rr),z2(zz)-.862,coil_r,coil_z,coil_current); 
    end 
end 
figure(1);hold on 
pcolor(z2(:),r2(:),log10(1e4*sqrt(Bz2.^2+Br2.^2))) 
shading interp;hold off; 
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colorbar('YLim',[-1 3], 'YTick',[-1 0 1 2 3],'YTickLabel',{'0.1 G','1 G','10 G','100 G','1000 G'}) 
  
%================================= 
%Begin quasi-1D nozzle simulation 
%================================= 
T_e = 1.2;  % Electron temperature for hydrogen simulation 
e_c = 1.602e-19; 
m_i = 1.67e-27 * 1;  % Ion mass for hydrogen 
m_e = 9.1e-31; 
gamma = 1;  %Ratio of specific heats 
Cs = sqrt(gamma*e_c*T_e/m_i); %ion sound speed 
n_0 = 8.75e20;% initial density peak at z = -0.16m  
FWHM_0 = 0.01;% initial full width half max at z = -0.16m  
v_0 = 19e3;% initial velocity at z = -0.16m 
fudgefactor = 0.5; %classical diffusion multiplicative adjustment.  =1 for  
n_lamda_D2 =.548*T_e;    %n*(lambda_D)^2 determine the regime of diffusion (bohm vs. classical) 
  
%set initial conditions at z =  -0.16m (plasma gun aperture) 
[temp,index0] = min(abs(z(1,:)+0.862+0.16)); v(1,1:index0)=v_0; ne(1,1:index0)=n_0; 
B0 = Bz(1,index0 );FWHM(1,1:index0)=FWHM_0;r_larmor(1,1:index0) = sqrt(T_e)/B0/1e4; 
Thrust_0=2*pi*m_i*v_0^2*n_0*getthrust((index0)*dz,FWHM_0/2);Thrust(1,1:index0)=Thrust_0; 
  
Beta(1,1:index0)=(v(1,1:index0).*sqrt(4*pi*1e-7*ne(1,1:index0)*m_i)./Bz(1,1:index0)).^2; 
BetaIndex = 0; 
  
for i = index0:divisions_in_z 
    % calculate larmor radius, plasma frequency and cyclotron frequency for classical diffusion estimation 
    r_larmor(1,i)=sqrt(T_e)/Bz(1,i)/1e4; 
    omega_p(1,i)=56.4*sqrt(ne(1,i));   %plasma electron frequency 
    omega_p(2,i)=omega_p(1,i).*sqrt(0.5); %omega_p at FWHM 
    omega_p(3,i)=omega_p(1,i).*sqrt(0.05); %omega_p at 2W 
    omega_c(1,i)=1.76e11*Bz(1,i); 
  
    Thrust(1,i)=2*pi*m_i*v_0^2*ne(1,i)*getthrust((i-index0)*dz,FWHM(1,i)/2); 
    %look for beta >1 
    if (Beta(1,i) > 1 && z(1,i)>-.862) || BetaIndex 
        if ~BetaIndex 
            BetaIndex = i; 
            %continue linear FWHM and 1/R^2 ne 
            dFWHM = FWHM(i)-FWHM(i-1); 
        end 
  
        FWHM(1,i+1) = FWHM(1,i)+dFWHM; 
        %determine n_e from flux conservation 
        ne(1,i+1) = ne(1,i)*v(1,i-1)*FWHM(1,i)^2/v(1,i)/FWHM(1,i+1)^2; 
        %velocity is constant 
        v(1,i+1) = v(1,i); 
    else 
        %determine v_perp using FWHM/2 
        [Brtemp,Bztemp] = Bcalc(0,0,FWHM(1,i)/2,z(1,i),coil_r,coil_z,coil_current); 
        omega_c(2,i)=1.76e11*Bztemp; 
        %use Okuda et al diffusion rates 
        if omega_p(2,i)/omega_c(2,i)>(n_lamda_D2)^(1/3) 
            %use classical diffusion 
            
v_perp(1,i)=fudgefactor*10000/8*2*log(2)*4/FWHM(1,i)^2*sqrt(pi/2)*omega_p(2,i)^3/omega_c(2,i)^2/(0.5*ne(1,i))*(1+(2*m
_i/(m_i+m_e))^.5); 
        elseif omega_p(2,i)/omega_c(2,i)<(n_lamda_D2)^(1/4) 
            %use Bohm diffusion 
            v_perp(1,i) = 0.345*T_e/Bztemp/FWHM(1,i)^2;  %real Bohm scaling 
        else 
            %use intermediate diffusion 
            v_perp(1,i)=1/16*sqrt(T_e*e_c/(2*pi*ne(1,i)*(m_i+m_e)))*fudgefactor; 
        end 
  
        %limit v_perp to Cs.  Perpendicular diffusion limited to thermal rate 
        if v_perp(1,i)>Cs 
            v_perp(1,i)=Cs; 
        end 
        %determine FWHM from B-field scaling 
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        FWHM(1,i+1)=FWHM(1,i)*sqrt(Bz(1,i)/Bz(1,i+1)); 
        %include cross-field diffusion 
        FWHM(1,i+1) = FWHM(1,i+1) + 2*v_perp(1,i)/v(1,i)*dz;  %factor of 2 because the column is expanding upwards and 
downwards 
        %determine n_e from flux conservation 
        ne(1,i+1) = ne(1,i)*v(1,i-1)*FWHM(1,i)^2/v(1,i)/FWHM(1,i+1)^2; 
        %constant velocity 
        v(1,i+1)=v(1,i); 
    end 
end 
%plot FWHM on figure 1 
figure(1);hold on;plot(z(1,index0:divisions_in_z)+.862,FWHM(1,index0:divisions_in_z)./2,'k','LineWidth',3) 
%% Include data points on figure 1 
figure(1);hold on;plot([0.33 .43 0.9 1.57 1.85],[0.1 .17 .42 .8 .9]./2,'ko','Markersize',8,'Markerfacecolor',[.7 .78 1]) 
hold off 
  
 
function [Br, Bz]= Bcalc(Br,Bz,r,z,coil_radius,coil_z,coil_current) 
%Magnetic field calculation at a given r,z location.  Code written by Greg Chavers - MSFC 
%magnetic permeability of free space 
mu0 = 4*pi*1e-7; 
B0 = coil_current.*mu0./2.0./coil_radius; 
alpha   = abs(r./coil_radius); 
dz      = z - coil_z; 
beta    = dz./coil_radius; 
Q       = ((1+alpha).^2 + beta.^2); 
M       = 4.0.*alpha./Q; 
gamma   = dz./(r+eps); 
[K,E]   = ellipke(M); 
Bz = sum(B0./pi       ./sqrt(Q).*(E.*((1-alpha.^2-beta.^2)./(Q-4.*alpha))+K)); 
Br = sum(B0./pi.*gamma./sqrt(Q).*(E.*((1+alpha.^2+beta.^2)./(Q-4.*alpha))-K)); 
  
function [thrust_out]=getthrust(z,R) 
%function to complete numerical integration of T(z) by performing the 
%integral Int[r/(1+r/z)^2 *2^-(r^2/R^2),r,0,4R] 
thrust_fun = @(r)(r./(1+(r./z).^2) .*2.^-(r.^2/R^2)); 
thrust_out = quad(thrust_fun,0,4*R); 
 
%draw the vacuum chamber spool.  Code written by Greg Chavers - MSFC 
function drawchamber2(x0,y0,useSIunits) 
if(useSIunits), 
    %first, put x0, y0 into inches and convert later 
    x0 = x0/.0254; % set x0 at spool piece chamber interface 
    y0 = y0/.0254; 
    conversion = .0254; 
else 
    conversion = 1.0; 
    x0=x0-1.437/.0254; % set x0 at spool piece chamber interface 
end 
%left and right large flange on spool 
rectangle('position',cf46(x0-31.5,y0)*conversion) 
rectangle('position',cf46(x0-30,y0)*conversion) 
rectangle('position',cf46(x0-1.5,y0)*conversion) 
%'barrel' of spool 
spool_radius = 17.25; 
rectangle('position',[(x0-28.5) -spool_radius 27 34.5]*conversion) 
%adjacent conflat to mount spool to 'nipple' on chamber 
rectangle('position',cf46(x0,y0)*conversion) 
 %chamber nipple 
nipple_length = 8.1; 
rectangle('position',[(x0+1.5) -18 nipple_length 36]*conversion) 
  
%plot the vacuum chamber, using a curve fit for the door, y = -x^n 
chamber_radius = 53.5;door_length = 27.74;door_slope = 9/2; 
n=(door_length*door_slope/chamber_radius);   
xend=(chamber_radius/door_length)^(1/(n-1)); 
x = [0:.01:xend];  y=-x.^n;p = length(y):-1:1;   y=y(p);  %reverse order on y 
%scale x and y and adjust position to fit door size 
x =  x0 + 1.5 + nipple_length + x/(-y(1))*(chamber_radius-spool_radius); 
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y = -y/y(1)*(chamber_radius-spool_radius);y = y + abs(y(1)) + spool_radius; 
x = x*conversion;  y = y*conversion;   
plot(x,y,'k','linewidth',1) 
plot(x,-y,'k','linewidth',1) 
rectangle('position',[x(end) -y(end) 1.5*conversion 2*y(end)]) 
  
%draw the ports on the chamber door, connecting to the closest points on the curve describing the chamber 
y1 = 31.25*conversion;y4 = 41.13*conversion;dx = 6.28*conversion; 
[dummy,iy1]=min(abs(y-y1));[dummy,iy4]=min(abs(y-y4)); 
x1 = x(iy1); y1 = y(iy1);x4 = x(iy4); y4 = y(iy4);x2 = x1-dx;  y2 = y1;x3 = x2;     y3 = y4; 
lh1 = line([x1 x2],[y1 y2]); set(lh1,'linewidth',1);lh2 = line([x2 x3],[y2 y3]); set(lh2,'linewidth',1) 
lh3 = line([x3 x4],[y3 y4]); set(lh3,'linewidth',1);lh4 = line([x1 x2],[-y1 -y2]); set(lh4,'linewidth',1) 
lh5 = line([x2 x3],[-y2 -y3]); set(lh5,'linewidth',1);lh6 = line([x3 x4],[-y3 -y4]); set(lh6,'linewidth',1) 
%draw the conflat on the ports 
rectangle('position',[(x2/conversion-1) (y1/conversion+9.88/2-11.64/2) 1 11.64]*conversion) 
rectangle('position',[(x2/conversion-1) -(y1/conversion+9.88/2+11.64/2) 1 11.64]*conversion) 
%draw the vacuum chamber, last flange, and door 
chamber_length = 15*12; 
rectangle('position',[(x(end)+1.5*conversion) -y(end) chamber_length*conversion 2*y(end)]) 
rectangle('position',[(x(end)+(1.5+chamber_length)*conversion) -y(end) 1.5*conversion 2*y(end)]) 
x = x+x(end)-x(1)+(3+chamber_length)*conversion; 
plot(x,y(p),'k','linewidth',1);plot(x,-y(p),'k','linewidth',1);plot([x(end),x(end)],[y(1),-y(1)],'k','linewidth',1) 
%10" conflat ports, viewing 
rectangle('Curvature', [1 1],'position',[(x0 -26)  -5  10 10]*conversion) 
rectangle('Curvature', [1 1],'position',[(x0 -14) -5  10 10]*conversion) 
%10" conflat ports, at bottom 
drawcf10(x0 - 21, y0,conversion);drawcf10(x0 - 9,y0,conversion) 
%3" conflat ports, on top 
drawcf03(x0-24, y0,conversion);drawcf03(x0-18,y0,conversion) 
drawcf03(x0-12,y0,conversion);drawcf03(x0-6,y0,conversion) 
%nipple, flange stacks, collar, quarts tube, antennae on spool 
radius = 4;width = 4;r_flange1 = 9.85/2;r_flange2 = 9.85/2;r_flange3 = 4; 
radius2 = 3;width2 = 3;r_flange4 = 2;w_flange = 1;r_collar = 1; 
w_collar = 1.25;x1_antennae = x0-19.5;r_antennae = r_collar; 
w_antennae = 3.25;r_tube = 1.75/2;w_tube = 27.75;x1_tube = x0-w_tube-4*w_flange-width; 
rectangle('position',[(x0-31.5-width) (y0-radius) width 2*radius]*conversion) 
rectangle('position',[(x0-31.5-width-1*w_flange) (y0-r_flange1) w_flange 2*r_flange1]*conversion) 
rectangle('position',[(x0-31.5-width-2*w_flange) (y0-r_flange2) w_flange 2*r_flange2]*conversion) 
rectangle('position',[(x0-31.5-width-3*w_flange) (y0-r_flange3) w_flange 2*r_flange3]*conversion) 
rectangle('position',[(x0-31.5-width-3*w_flange-width2) (y0-radius2) width2 2*radius2]*conversion) 
rectangle('position',[(x0-31.5-width-4*w_flange-width2) (y0-r_flange3) w_flange 2*r_flange3]*conversion) 
rectangle('position',[(x0-31.5-width-5*w_flange-width2) (y0-r_flange3) w_flange 2*r_flange3]*conversion) 
rectangle('position',[(x0-31.5-width-5*w_flange-2*width2) (y0-radius2) width2 2*radius2]*conversion) 
rectangle('position',[(x0-31.5-width-6*w_flange-2*width2) (y0-r_flange3) w_flange 2*r_flange3]*conversion) 
  
function x = cf46(x0,y0) 
%return coordinates for large flanges on spool in inches 
%the vector x refers to x, y, width, and height of rectangle,  
%where x and y are the lower left corner of rectangle 
x(1) = 0   + x0;x(2) = -23 + y0;x(3) = 1.5;x(4) = 46; 
  
function drawcf10(x0,y0,conversion) 
%draws 10" conflats on spool  
x = -5  + x0;y = -19.25 + y0;w = 10;h = 1; 
rectangle('position',[x     y     w h]*conversion) 
rectangle('position',[(x+1) (y+1) 8 h]*conversion) 
  
function drawcf03(x0,y0,conversion) 
%draws 3" conflats on spool top 
x = -1.5  + x0;y = 18.75  + y0;w = 3;h = 0.5; 
rectangle('position',[x         y  w    h]*conversion) 
rectangle('position',[(x0-0.75) 17.25 1.5  1.5]*conversion) 
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