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CHAPTER 1  
 

INTRODUCTION 

1.1 Motivation 

With the development of the advanced manufacturing technologies, new 

manufacturing paradigm, such as cellular manufacturing, flexible manufacturing and 

reconfigurable manufacturing are widely adopted by manufacturers to perform complex 

manufacturing operations. In order to ensure modularity, flexibility and reconfigurability 

of a manufacturing system, the manufacturing operations are often divided into 

interconnected groups and performed on a series of manufacturing workstations or work-

stages.  This strategy leads to the Multistage Manufacturing Processes (MMP’s).  MMP’s 

are applied to deliver product with complex functionalities and/or high quality 

requirements.  Examples of such processes include: (i) the automotive body assembly 

process that assembles multiple parts on multiple stations, (ii) the machining processes 

that manufacture engine heads through multiple operations performed in a series of stages, 

and (iii) the semiconductor manufacturing processes that fabricate integrated circuits (IC) 

through hundreds of steps.  The common characteristics of MMP are as follows: (i) a 

process with a series of operations are performed at multiple manufacturing stages or 

stations, (ii) the designated features of a product are generated sequentially at more than 

one stages, (iii) the output features from an upstream stages are used as the input features 

for downstream stages, and therefore, (iv) there are complex interactions between the 

process and product quality, as well as between different stages. 

Quality, productivity, and cost are the most critical performance measures of 

MMP’s. Since all these measures are influenced by the variation of the key product 
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characteristics (KPC’s), it is crucial to improve the stability of manufacturing process, 

reduce the variation of KPC’s and, thus, ensure the delivery of quality product.  However, 

due to the increasing product functionality and product variety, MMP’s are very complex 

and may introduce many sources that contribute to the large variation of product quality.  

The unprecedented process complexity makes the quality assurance of MMP’s a very 

challenging engineering problem. 

The rapid advancements in information and sensing technology have created a 

data-rich manufacturing environment where heterogeneous data, including qualitative 

and quantitative data, are generated and collected from different phases of the entire 

product realization process.  For instance, computer aided design (CAD) data, together 

with the designated product functionalities and quality specifications will be generated in 

the product design phase.  Process plan will be determined in the process design phase to 

describe inter-connected groups of manufacturing operations and their precedence 

relationship.  In manufacturing phase, in order to monitor process stability and control 

product quality, in-line sensing data, in terms of the measurements of KPC’s, will be 

collected at final and/or intermediate stages.   

Heterogeneous data pose great challenges to traditional quality assurance 

methodologies, which are mainly based on statistical analysis of observational data.  For 

instance, statistical process control (SPC) focuses on detecting changes from process 

measurements.  With the advancements in multivariate statistical process control (MSPC), 

integration of SPC-APC (Automatic Process Control) and SPC for auto-correlated data, 

traditional quality control methodologies have been significantly improved and adopted 

in many applications.  However, limited diagnostic information can be provided solely 

based on the out-of-control signals casted by the control charts.  This is because that the 

traditional SPC methodologies focus only on the process measurement data, without 

systematically incorporating the product/process design information.  The most recent 

decade witnessed the development of new industrial engineering tools for effective 

quality assurance of MMP’s.  These methodologies, characterized by the effective 

integration of engineering domain knowledge with in-process sensing data, 

fundamentally enhance the quality engineers’ capability in process change detection, root 
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cause diagnosis and manufacturing system maintenance.  Most of these research efforts 

concentrate on the quality assurance during the manufacturing phase of the product 

realization.  However, the product quality is determined not only by the stability of the 

manufacturing processes, but also by the design of product and processes.  It is desirable 

to conduct a systematic research that addresses quality assurance in all phases of product 

realization. 

Various types of readily available data create tremendous opportunities for the 

development of such a unified methodology.  By combining engineering domain 

knowledge, control theory, optimization algorithm and multivariate statistical analysis, 

this methodology will fuse the product/process design data with in-process quality 

measurement data.  From this data fusion, knowledge of variation reduction will be 

generated and/or discovered to deepen the understanding of processes, product quality, 

and their complex interactions.  The knowledge will be used to derive generic variation 

propagation model, based on which quality assurance are improved in both design and 

manufacturing.  

1.2 Dissertation Research Overview 

From the perspective of quality assurance, an MMP can be described by a 

production stream and a data stream (Shi 2006), as whown Figure 1.1.   The lower panel 

of Figure 1-1 illustrates the production stream of a typical MMP, with each stage in the 

series represented as a block.  In a certain stage of an MMP, process imperfections, e.g., 

locator error, will introduce quality problems that manifest as random deviations of 

features’ measurements from their nominal values.  Compounded with the quality input 

from the preceding stages, these quality problems will be transmitted to the downstream 

stages and finally accumulated in the final product.  This kind of product quality variation 

and its propagation in an MMP is discussed by Liu and Hu (1997), using the term stream 

of variation (SoV), as suggested by Koren (Hu 1997). 
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Figure 1-1. Production stream and data stream of MMP’s. 

Associated with production stream is the data stream, as shown in the upper panel 

of Figure 1-1.  A data stream is formed by measurement data collected from stage to 

stage (the curve of Mi(1), … Mi(k), …, Mi(N), along X-axis), from attributes to attributes 

(M1, …, Mi, …, Mm along the Z-axis) and from time to time (the time series curve along 

Y-axis).  For instance, in semiconductor industry, a wide range of measurements are made 

on each wafer fabricated in a lot (thousands of wafers in a lot), including particle data, in-

line electrical measurements and final probe test data.  As a result, approximately 1.5 Gb 

of data are collected per week.  In automotive industry, a body-in-white (BIW) consists 

of 150-200 sheet-metal components that assembled together along over 60 assembly 

stations, involving 2,000 locating elements and more than 4,000 spot welds (Apley and 

Shi 2001).  The optical coordinate measurement machines (OCMM) implemented in the 

plant provide capability to measure 100-150 points on each major assembly with a 100% 

inspection rate.  The massive amount of data provides tremendous opportunity for more 

effective monitoring and diagnosis of the process.  However, due to the complexity of the 

production stream and data stream in an MMP, quality control for reducing the product 

quality variation (variation reduction) is of great challenge.  The challenges are mainly 
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caused by the three types of correlation imbedded in the quality measurement data 

collected from MMP’s: inter-stage correlation, spatial correlation and temporal 

correlation, as denoted in Figure 1-1. 

 

Figure 1-2. Correlations imbedded in the massive measurement data 

The inter-stage correlation is the result of the interaction among the operations 

performed at different stages.  As shown in Figure 1-2 (a) and (b) (Jin and Shi 1999), 

two-dimensional (2-D) parts, Part A and Part B, are fixed by a set of fixture locating pins, 

P1 to P4, and are assembled at stage 1.  The error of P4 makes Part B deviate from its 

nominal position, as depicted by dashed rectangular.  Even if there is no error at stage 2, 

this deviation will be propagated to stage 2, where subassembly, A&B, is assembled with 

Part C.  If the key product characteristics (KPC) on the upper-right corner of Part B, 

KPC1, are measured at both stage 1 and stage 2, they are correlated to each other.  The 

Spatial correlation refers to the correlation between the measurements of different KPC.  

Figure 1-2 (c) shows four KPC points, KPC1 to KPC4, to be measured after stage 1, as 

illustrated by the “●” in the layout.  Corresponding to the deviation of P4, these four 

points will deviate together, as shown by the arrows.  The arrows visualize the patterns of 

the spatial correlations, with the direction indicating the deviation direction and the 

relative length indicating the deviation magnitudes.  The temporal correlation reflects the 

random changes of the process from sample to sample.  Figure 1-2 (c) and (d) shows 
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different spatial patterns on sample i and sample j, which are different discrete samples 

assembled at different time.  Their correlation reflects the changes of the process over 

time. 

1.2.1 Research Problems 

The development of quality assurance methodology focuses on the investigation 

of the three types of correlations imbedded in data stream.  Several fundamental problems 

and challenges in both design and manufacturing need to be addressed. 

(i) Variation propagation modeling for MMP’s:  To conduct variation reduction, it 

is necessary to understand the propagation of variation in MMP’s by 

mathematically describing the propagation at the system level, in addition to models 

at the stage level, which is challenging. It is not sufficient to generate such a 

system-level model by simply grouping together models of individual stage.  A 

generic methodology is desired to model 3-D variation propagation in a broad class 

of MMP’s.  The developed model will enable the investigation of various 

fundamental issues in variation reduction, including variation analysis, process 

monitoring, and variation source identification.   

(ii) Quality assured process planning for MMP’s.  Quality assurance for advanced 

manufacturing is a continuous effort and should be systematically engaged in all the 

phases of product realization since the final product quality will be affected by the 

decisions made in different phases, including design and manufacturing.  This is 

especially challenging for MMP’s because of the complex variation propagation.  It 

is crucial to make decisions in both design and manufacturing for a series of 

interrelated manufacturing stages, each of which is affected and/or affecting the 

others.  Due to this stage-wise interrelation, experience-based approaches are 

widely adopted in initial product/process design phase.  Variation propagation 

modeling provides capability to address this interrelation and to evaluate and 

benchmark alternative design candidates.  With this capability, design of an MMP 

can be formulized as an optimal sequential decision making problem to identify the 

optimal plan that ensure the final product quality. 



 

7 

(iii) Process variation source identification.  The quality assured product/process 

design and the generic variation propagation modeling will essentially improve the 

capability of process diagnosis in terms of variation sources identification.  In order 

to improve its effectiveness and efficiency, variation source identification should 

take into account the situation that the process has significant deviation from 

designated target.  Under this condition, diagnosis results based on pre-assumed 

quantitative variation propagation models may not truly reflect the real process 

faults and thus possibly lead to misleading conclusion.  Therefore, the robustness 

issue of the variation source identification at production launch phase needs to be 

investigated through integration of appropriate representation of product/process 

design data and advanced multivariate statistical analysis methods. 

1.2.2 Research Objectives 

The objective of this dissertation research is to develop a unified methodology for 

quality assurance in MMP based on the fusion of various types of data from product 

design, process planning and in-process measurements.  By fusing multidisciplinary 

techniques, knowledge of process variations and their propagation will be utilized in 

modeling, designing and diagnosing MMP’s, as illustrated in Figure 1-3.  More 

specifically, the following research will be conducted: 

(i) An innovative, generic 3-D state-space model: A 3-D variation propagation model 

quantitatively describes complex Stream of Variation (SoV) in a broad class of 

MMP’s.  The potential contribution of this research is that it can quantitatively 

describe the complex interactions among quality characteristics and potential 

process variation sources and the variation propagation.  The developed model 

enables the investigation of various fundamental issues in variation reduction, 

including variation analysis, process monitoring, and variation source 

identification.  Especially, the modeling concept and techniques can be applied in 

the early phases of the product realization to effectively evaluate the product and 

process design alternatives. 
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Figure 1-3. Paradigm of quality assurance in MMP 

(ii) An SoV-model based quality-assured setup planning methodology:  Such a 

methodology determines the optimal workpiece setups and operation sequences to 

reduce the cost related to process precision and ensure the delivery of quality 

product.  The potential contribution of this research is that it addresses the setup 

planning by formulizing it as a sequential optimal decision making problem.  Also, 

it creates the potential for concurrent development of system-level process 

planning, fixture design, process control strategy, maintenance planning and other 

critical aspects of the advanced manufacturing. 

(iii) A robust variation sources identification methodology: The variation source 

identification methodology helps extract spatial variation patterns from 

multivariate measurement data and matches them with predefined qualitatively 

engineering patterns.  The potential contribution of this research is that it provides 

a capability to diagnose process without complex quantitative engineering 

modeling.  The diagnostic results are robust to frequent process changes and can 

be used to deepen quality engineers’ understanding of the nature of variation 

patterns and variation propagation in MMP’s, especially at production launch 

phase. 
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1.3 Related Work 

Corresponding to the research objectives defined in the previous section, research 

work will be divided into three domains: variation propagation modeling for MMP’s, 

process design for MMP’s, and process diagnosis for MMP’s.  In this section, a 

comprehensive review of the existing methodologies in all the three domains will be 

presented. 

1.3.1 Variation Propagation Modeling 

The complex inter-stage correlation imbedded in the data stream makes it 

extremely difficult to monitor and diagnose MMP’s, since the observed final product 

variation is an accumulation of variations from all stages.  Therefore, in order to conduct 

variation reduction, it is important to understand how variation is introduced and 

transmitted across the stages.  An N-stage manufacturing process and its variation 

propagation are illustrated in Figure 1-4, where xk is a p×1 vector representing the quality 

of the p KPC at stage k, and k is the stage index, k = 1, 2, …, N.  yk is a m×1 

measurement vector of KPC quality at stage k.  The system input vector, uk, contains the 

process-induced quality problems, including the potential process faults in fixture, 

machine tool and/or cutting tools.  From a modeling perspective, the elements of uk are 

the key control characteristics (KCC) or potential process faults at stage k.  Vectors wk 

and vk are the un-modeled process error and measurement error at stage k, respectively. 

... ...xk-1 xk

uk

yk

Stage 
1

Stage
k

Stage
k+1

Stage
N

+

x0

vk

wk

yN

+ vN

u1 w1

x1 xk+1

uk+1 wk+1

xN-1

uN wN  

Figure 1-4. Stream of variation in an MMP 
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The purpose of the process modeling is to figure out the relationship between yk 

and xk, xk and uk, and especially, xk and xk-1.  Existing variation propagation modeling 

approaches can be divided into two categories: statistical modeling techniques and 

engineering modeling techniques. 

Statistical modeling methods construct the variation propagation model from the 

historical quality measurement data collected at all the stages in an MMP.  The model 

coefficients are estimated to describe the relationship between the data from two adjacent 

stages.  Univariate KPC measurements collected from adjacent stages are used to fit a 

first order AR(1) model with the quality variable(s) from the downstream one of the two 

adjacent stages as the response and that from the upstream one as the predictor (Lawless 

et al. 1999).  Fong and Lawless (1998) further extend this approach to cases where 

multiple KPC are considered.  Since the proposed non-stationary AR(1) model is fitted 

from the true KPC measurement data, its approximate validity is of great concern.  First, 

the existence of covariance of measurement error causes bias on the estimation of 

coefficient matrix Ak (Fong and Lawless 1998).  Second, the model fitting is based on the 

assumption that the same KPC are measured at every stage and the inter-stage correlation 

exists only between the two adjacent stages.  This was addressed by adopting the 

regression adjustment concepts introduced by (Mendel 1969), which regresses ,i kx  on all 

the upstream ,i κx  (κ = 1,2,…, k-1).  Normality and constant variance are also important 

assumptions for fitting the AR(1) model, Agrawal et al.(1999) recommended various 

diagnostic model-checking techniques to verify the satisfaction of the assumption.  For 

other industrial applications where these assumptions do not hold, generalized linear 

model (GLM) was utilized to deal with the count response (Skinner et al. 2003), gamma-

distributed response (Jearkpaporn et al. 2003; Jearkpaporn et al. 2005), respectively.  

Finally, the variation propagation is formulated as a function of model coefficients that 

estimated from sample measurement data.  Therefore, it is desirable to investigate the 

effects of sampling uncertainty.  Agrawal et al. (1999) proposed two methods, parametric 

bootstrapping and normal approximation, to construct the confidence intervals of 

variance proportion. 
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Engineering modeling methods are based on engineering domain knowledge of 

product and process design.  The essence of engineering modeling is to mathematically 

represent the knowledge in terms of relationships between potential process faults and 

quality of KPC’s.  Due to the complex inter-stage correlation, although the modeling and 

compensation for single-stage manufacturing process have been intensively studied 

(Ramesh et al. 2000), the efforts for MMP are relatively new and mainly focused on the 

model of geometrical and dimensional variation propagation.  Jin and Shi (1999) applied 

the state space concept in system and automatic control theories to discrete-

manufacturing process modeling, and developed a state space modeling technique to 

depict the variation propagation in 2-D automotive body assembly process.  

Mantripragada and Whitney (1998) proposed a “datum flow chain (DFC)” concept to 

identify and define the kinematics constraints and mates in the assembly process.  This 

concept was further explicitly defined in a discrete state transition model to describe the 

variation propagation in assembly process, from a perspective of assembly structure 

design (Mantripragada and Whitney 1999).  The state space model concept was also 

adopted by Huang et al.(2003) in modeling multistage machining processes.  The implicit 

nonlinear nature of their method was addressed by (Djurdjanovic and Ni 2001) and a 

linear model was obtained by using Taylor series expansion.  Zhou et al. (2003) further 

improved the modeling technique by providing explicit expression for derivation of all 

the system matrices in the model.  Differential motion vector, a concept widely used in 

robotics, was adopted as the state vectors to represent the dimensional deviations of KPC. 

Table 1-1 Comparison of variation propagation modeling techniques 

 Statistical Modeling Engineering Modeling 

Model 
constructed from 

Historical measurement data 
collected at all stages 

Engineering domain knowledge on 
product/process design 

Modeling 
assumption 

Stable process, large sample size Sufficient and accurate knowledge, 
small faults magnitudes 

Interactions 
modeled 

Inter-stage quality interaction Inter-stage quality interaction, 
quality/fault interaction 

Model 
performance 

Coefficients estimation deteriorates 
as the number of stage, N, getting 
large 

Only affected by in-accurate 
knowledge 
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The differences between the statistical modeling technique and engineering 

modeling technique are summarized in Table 1-1.  These variation propagation modeling 

techniques provide the basis for the process monitoring and process fault diagnosis of 

MMP.  In this dissertation research, a more generic state space model will be developed 

to describe the 3-D variations and their propagations in multistage assembly processes. 

Based on differential motion vector representation used in robotic manipulation, the new 

modeling technique provides more features to model a broad class of fixturing schemes 

and explicitly consider impacts of initial variations.   

1.3.2 Design of MMP’s 

Successful design of MMP’s will significantly reduce the potential quality 

problems at the early phase of product realization and thus improve the productivity of 

the manufacturing systems.  Traditional process design approaches are frequently based 

on the evaluation of candidate design options by considering product dimensional 

variation.  Among the evaluation strategies, process capability analysis is widely adopted 

to evaluate process stability with a set of indices, such as Cp or Cpk for single or multiple 

KPC’s.  Those indices can be directly computed from the KPC measurements collected 

from final product, but the relationship between the quality output and the process 

variation sources is not explicitly defined.  Furthermore, the indices can only be 

evaluated when the process is under full production, not in the process design phase.  

Another category of process design methodologies are based on the Taguchi methods 

(Taguchi 1986), which emphasize on the direct experimentation and/or robust design 

with the aid of computer design models (Otto and Antonsson 1993; Parkinson et al. 

1993).  These approaches improve the process design’s effectiveness and efficiency.  

However, some limitations are obvious.  First, the statistical model achieved from 

physical experiments or computer simulation will only reflect limited number of 

situations that potentially present in a real process.  There is no physical model that 

explicitly links the design alternatives with output.  Second, the design of MMP should 

consider many factors simultaneously, including potential variation sources, potential 

fixturing schemes, and operation sequences.  Without the integration of product and 

process data, efficiency and cost effectiveness of the robust design will be questionable.   
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Recently, incorporating variation propagation model with process design 

evaluation was investigated.  Based on the analytical expression of key product/process 

design characteristics for MMP’s, various indices were used to evaluate different design 

candidates and critical stages/operations that contribute most to the final product 

variations can be identified through variation analysis.  This will be accomplished before 

the launch of a real production and thus, improve the process design strategy.  However, 

the evaluation-oriented methodologies are still inefficient for the design of MMP’s, since 

number of combination of design factors will be very large.  The designer will only get 

the best result from options that have been tried.  There is no systematic approach that 

analytically relates the design factors with the evaluation indices and formulizes the 

design as an optimization problem. 

In this dissertation research, setup planning for MMP’s will be investigated.  

Based on the generic 3-D state space model, this research focuses on optimally 

determining fixturing schemes and operation sequences to achieve designated product 

quality and at the same time release the tolerance requirements on process factors, such 

as fixture locator pin positions. 

1.3.3 Process Variation Source Identification 

A fundamental strategy to reduce variation in manufacturing phase is to first 

identify the sources of variation, i.e., process diagnosis, and then to take remedial action 

(Lawless et al. 1999).  The diagnosis depends on the understanding of the process 

obtained either from historical data or from the engineering domain knowledge.  The 

introduction of the engineering model enables effective diagnosis.  According to 

dependence on engineering model, the existing approaches can be divided into three 

categories: direct estimation, engineering-model-based pattern matching and signature 

estimation. 

Direct estimation approach requires an accurate engineering model developed off-

line to describe the inter-stage correlation and spatial correlation imbedded in the data 

stream of an MMP.  The model is then combined with in-line measurement data to 

estimate and infer the parameters of the distribution of variation sources.  The state space 
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engineering model is utilized to conduct diagnosis of MMP’s.  Based the model, Huang 

and Shi (2004) proposed a concept of “virtual operation measurements”.  This research 

provided a straightforward methodology to identify faulty stage(s) in an MMP.  However, 

the variation sources can not be pin-pointed.  This limitation was addressed by Zhou et al. 

(2004), who developed a statistical estimation methodology to identify the root-causes of 

dimensional variation in an MMP.  The linear state space model is also transformed to a 

general linear mixed model (Rao and Kleffe 1988).  Maximum likelihood estimation 

(MLE) method was selected to estimate the fixed effects (mean-shift) and random effects 

(increase of variance), because it provides estimation results with desirable statistical 

properties.  In addition to the point estimation, hypothesis testing was conducted to 

provide the confidence level of the root-cause identification.  Ding et al. (2005) 

investigated the interrelationship of different available estimation techniques and 

compared their properties, including pre-requisite conditions, bias and dispersion 

characteristics.  Diagnosability is another critical concern about the direct estimation 

approach.  This is, again, because of the complicated inter-stage correlations and spatial 

correlation.  Ding et al. (2002) established an analogy between the concepts of 

diagnosability and the observability developed in classical control theory.  Zhou et al. 

(2003) generalized Ding’s work and proposed a concept of minimum diagnosable 

class(MDC).   

Different from the direct estimation approach, the engineering-model-based 

pattern matching approaches do not directly use the engineering model.  Instead, the 

model coefficients are treated as a library to store the expected spatial patterns of all the 

potential process variation sources.  It is assumed that if a process variation source 

present in an MMP, a corresponding symptom will be reflected in the measurement of the 

final product or downstream intermediate products.  The spatial pattern of this process 

variation source can be extracted from the analysis of the covariance matrix of the 

measurement data.  The process fault identification can then be conducted by mapping 

the extracted patterns with expected patterns. Ceglarek and Shi studied the fixture fault 

diagnosis for autobody assembly (Ceglarek and Shi 1996) and sheet metal assembly 

(Ceglarek and Shi 1999), respectively. The geometric/dimensional relationship between 

fixture failure mode and KPC measurements are modeled quantitatively and the spatial 
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patterns for potential fixture failure modes are determined.  It was proved that under 

single fault situation, the spatial pattern defined in the model is coincident with the 

eigenvector associated with the largest eigenvalue of the covariance matrix.  Therefore, 

principal component analysis (PCA) and the pattern recognition approach were used 

extract and match the spatial patterns with the expected ones for diagnosis purpose.  This 

approach is further extended by Rong et al. (2000) to the diagnosis for compliant beam 

structure assemblies.  Ding et al.(2002) adopted the same strategy to conduct the single 

fault diagnosis for MMP.  Sample uncertainty and measurement noise are the two 

concerns about this type of approaches.  Rong et al. (2000) investigated the sample 

uncertainty of the eigen-space analysis, assuming the simple structure of the 

measurement noise covariance.  Ding et al. (2002) studied the impact of measurement 

noises with a general covariance structure on the pattern matching of single fault under 

the large sample assumption.  Li et al (2004) further investigated the robustness issue by 

considering both the sample uncertainty and general structured measurement noise.  The 

proposed robust method has higher identification probability when the two assumptions 

are not satisfied.   

The signature-estimation-based process diagnosis approaches do not depend on 

pre-constructed engineering model.  Since it is reasonable to assume that different 

process faults cause different spatial correlation patterns, process diagnosis can be 

accomplished by estimating, visualizing and interpreting the expected spatial patterns, or 

signature, imbedded in the variance-covariance of measurement data.  Apley and Shi 

(2001) proposed a factor analysis method for multiple process faults diagnosis.  Although 

the same linear model as defined in engineering model was assumed to describe the linear 

relationship between quality variables and process faults, the model coefficients are NOT 

known.  The diagnosis is implemented by estimating the model coefficients with Factor 

Analysis.  To avoid the unrealistic orthogonality assumption required by factor analysis, a 

ragged lower-triangular form of coefficient matrix was assumed.  Physical interpretations 

of the extracted signature vectors were pursued after the estimation step.  The assumption 

on the form of coefficient matrix was further released by Apley and Lee (2003) through 

adopting Independent component analysis (ICA) to estimate the spatial variation patterns 
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from measurement data.  Instead of focusing on the estimation of individual variation 

pattern, Jin and Zhou (2006) proposed a systematic technique to estimate the signatures 

of multiple process faults.  The space spanned by the eigenvectors associated with large 

Eigenvalues of measurement covariance matrix was compared with the space spanned by 

the fault signatures stored in a process fault library, which was established by historical 

diagnostic results.  Rigorous testing procedure was also developed to identify the 

variation sources.   

These quantitative, model-based techniques fundamentally improve the capability 

of variation sources identification.  In this dissertation research, an engineering-driven 

factor analysis will be developed to identify multiple variation sources present in an 

MMP.  Different from existing approaches, the proposed one uses qualitative engineering 

indicator vectors to direct the rotation of factor loadings and estimate the true spatial 

patterns of variation sources.  The estimated spatial patterns can be used to update the 

engineering domain knowledge. 

1.4 Organization of the Dissertation 

This dissertation presents the initial research efforts in developing a unified 

methodology for quality assurance of MMP’s.  The proposed methodologies are mainly 

applied in both design and manufacturing phases of product realization.  Chapter 2, 

Chapter 3 and Chapter 4 are organized as individual research papers, addressing inter-

connected research problems. 

Chapter 2 presents a 3-D generic state space model of variation propagation in 

multistage assembly processes.  Potential applications of the model are discussed.  

Chapter 3 developed a quality assured setup planning methodology for MMP’s, based on 

the quality evaluation capability provided by the generic modeling technique introduced 

in Chapter 2.  The optimal setup planning decisions made in the design phase provide not 

only information of fixturing schemes and operation sequences, but also knowledge about 

the spatial patterns of potential variation sources.  This type of engineering knowledge 

will be used in Chapter 4 to direct the rotation of the factor loadings that extracted from 
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the factor analysis of multivariate KPC measurement data.  The rotation results best 

estimate the true spatial patterns of variation sources that actually present in an MMP and 

will be used as diagnosis tool in manufacturing phase of product realization.  Finally, 

Chapter 6 summarizes the dissertation and its original contributions.  Potential future 

study is also discussed. 
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CHAPTER 2  
 

STATE SPACE MODELING FOR 3-DIMENSIONAL VARIATION 

PROPAGATION IN MULTISTAGE ASSEMBLY PROCESSES1 

Abstract 

Dimensional variation propagation modeling is a critical enabling technique for 

product quality variation reduction in a multistage assembly process. However, the 

complicated interrelationships among different stages make the modeling extremely 

difficult. This paper aims to improve the existing modeling techniques by developing a 

more generic approach to covering broader assembly processes. In the paper, a systematic 

approach is proposed to describe the dimensional variations induced by various sources 

in the process and model their transmission along a sequence of stages in a state space 

format. A concept of differential motion vector is adopted to represent deviations with 

respect to four types of coordinate systems and formulate the deviation propagation as a 

series of homogeneous transformation among these different coordinate systems. A 

generic mechanism is proposed in this chapter to first time represent the effect of part 

feature variations induced from the initial part fabrication processes. 

 

 

                                                 

 

1 Liu, J., Jin, J., and Shi, J., 2007, submitted to IEEE Transactions on Automation Science and Engineering, under revision. 
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2.1 Introduction 

Multistage assembly processes (MAP’s) are widely adopted in manufacturing 

industries to deliver products with complex designated functionalities and/or high quality 

requirements. In an MAP, parts or subassemblies from disparate sources are assembled 

together through a series of operations executed at multiple stages to form a final 

assembled product. The quality of the final products are reflected by a set of 

measurements of Key Product Characteristics (KPC’s) which are defined as dimensions 

relating datums or features on different parts of an assembly. Quality KPC’s can be 

achieved when all parts are located in the correct design position and orientation with 

respect to (w.r.t.) the six spatial degrees of freedom (dof). However, due to imperfections 

in assembly stages, e.g., fixture locators’ deviations from the nominal positions and/or 

part features’ deviations from the nominal geometry, assembly errors may be introduced 

and cause random deviations of KPC measurements from their designated nominal 

positions. As some features generated in upstream stages of an MAP are used as datum 

features in downstream stages, these deviations will propagate and accumulate, leading to 

large variations on the KPC’s of final assembled products, or even severe interferences 

among parts and/or subassemblies. 

Reducing the dimensional variation is, in practice, an essential issue for 

improving product quality as well as the productivity of an MAP. It is greatly beneficial 

to develop an automatic variation reduction strategy by monitoring process consistency 

and identifying the variation sources based on available online KPC measurements. The 

availability and accessibility of such data has been significantly improved with the 

advancements of sensing technology and information techniques. The implementation of 

in-line automatic measurement devices has created a data-rich environment which is 

capable of performing 100% inspection in an MAP with tremendous data streams (Shi 

2006). However, complex interactions between KPC measurements and potential process 

variation sources and the inter-correlation among different assembly stages make it 

extremely challenging to effectively utilize those data streams for variation reduction 

purposes. Therefore, the development of a mathematical model, which can fully represent 
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the product-process interactions and variation propagation, is considered as the first 

critical step of variation reduction. 

The recent decade has witnessed the development of variation propagation 

modeling methodologies, which can be divided into two categories: statistical modeling 

and engineering modeling. Statistical modeling methods construct variation propagation 

models from historical quality measurement data collected at all stages in an MAP. 

Lawless et al. (1999) and Agrawal et al. (1999) investigated the variation transmission 

issues in multistage manufacturing processes by constructing an AR(1) model in a state 

space format. The estimated model coefficients are used to describe the inter-correlation 

among the KPC’s from two adjacent stages. Based on KPC measurements, these 

statistical models aided quality engineers in understanding inter-stage correlations under 

certain faulty conditions in an MAP. However, the process-quality interactions are not 

considered in these models, which limited their diagnostic capability in linking KPC 

variations with process variation sources. 

Engineering variation propagation modeling is conducted based on engineering 

domain knowledge of product/process design, rather than fitting the measurement data 

collected from real manufacturing processes. Different from statistical modeling 

techniques, the essence of engineering modeling is to mathematically represent quality-

process interactions and inter-stage correlation in a series of equations based on the 

engineering design knowledge, e,g, computer aided design (CAD) and computer aided 

manufacturing (CAM). 

For assembly process, Mantripragada and Whitney (1998) proposed a concept of 

datum flow chain (DFC) to capture the underlying datum logic, at an abstract level, by 

classifying assembly processes into two types: (i) Type-I, which assembles parts together 

according completely to their pre-fabricated mating features, e.g., furniture assembly; and 

(ii) Type-II, which achieves final assembly by welding, riveting, etc., parts located by 

fixtures according to a pre-defined DFC, e.g., automotive and aircraft body assembly. 

Method for modeling the variation propagation in these two types of assembly process 

was introduced by Mantripragada and Whitney (1999) from a perspective of assembly 
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structure design. However, the explicit model derivation procedure was not discussed. Jin 

and Shi (1999) proposed state space modeling techniques for 2-Dimensional (2D) sheet 

metal assembly, without taking into account the 3D Type-I assembly process. State space 

model was adopt by Huang et al. (2003) to model the variation propagation in multistage 

machining processes, with an approximate linearization strategy. Zhou et al. further 

improved the modeling technique by providing explicit expressions for deriving all the 

system matrices in the model. Differential motion vectors (DMV), a concept widely used 

in robotics, was adopted as the state vectors to represent the location and orientation 

deviations of KPC’s (Zhou et al. 2003). In machining process modeling, fixture locators 

are reasonably assumed to be deployed on a single datum surface. However, this 

assumption does not hold for a general assembly process. Recently, Huang et al. (2007) 

developed a generic 3D variation model for a group of locating schemes. However, the 

deviations of features on parts induced from part fabrication processes are not explicitly 

considered. Therefore, a more systematic coordinate system definition mechanism is 

needed to reduce the modeling complexity and increase its generality. 

In this chapter, an explicit modeling technique is developed to mathematically 

describe 3D variation propagation in a general MAP. The proposed state space model 

adopts DMV as the components of the state vectors to describe parts’ dimensional 

deviations. System matrices in state transition and observation equations are explicitly 

derived by mathematically representing geometric relationships among parts, fixtures and 

reorientation operations. Section 2.2 introduces the mathematical representations of 

various types of deviations in an MAP. The details of the state space modeling procedure 

are presented in Section 2.3. Concluding remarks and potential applications of the 

proposed modeling techniques are discussed in Section 2.4. 

2.2 Geometrical Representation for Deviation Modeling 

An assembly process is used to attach interchangeable parts together in a 

sequential manner to create a finished product with complicated structure which cannot 

be obtained by other fabrication processes. Depending on the complexity of the product, 

an assembly process consists of multiple stages so the operation related movements are 
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reduced to the minimum.  Every stage of an MAP assembles two or more parts and/or 

subassemblies, which are located by either fixtures or the constraint surfaces or features, 

e.g., hole or plane, of other parts. If any deviation occurs on a fixture locator, or a 

constraint surface of a part, a dimensional deviation will be generated on some features 

on the subassembly. These faulty features will transmit such deviations to downstream 

stages through DFC Assembly quality is characterized by KPC measurements taken at 

the intermediate or final stage. This series of KPC measurements data carries all the 

information of process deviations and their transmission along multiple stages, as 

illustrated by Figure 1-1. To study the nature of this complicated deviation transmission, 

it is necessary to mathematically represent all the deviation information. 

 

Figure 2-1. Illustration of deviation transmission in an MAP. 

2.2.1 Coordinate Systems Definition 

As aforementioned, there are three types of elements involved in the deviation 

transmission: fixtures, parts located by fixtures, and features on parts. Describing their 

geometric deviations and interrelationship is essential for variation propagation modeling. 

These deviations can be defined w.r.t. four types of different coordinate systems (CS). 

(i) RCS denotes the reference coordinate system which globally defines the reference 

for all the elements in an MAP. In this chapter, an RCS, as defined as ORXRYRZR in 

Figure 2-2, is assumed to be error free and unchanged for the entire process. 

(ii) FCS denotes the fixture coordinate system attached to individual fixtures. Every 

fixture used in MAP is represented as an FCS and its deviation is represented as the 
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deviation of true FCS from nominal 0FCS, where the left superscript 0 represents 

the nominal CS. In an assembly process, the deviation of an FCS is caused by two 

factors: datum surfaces deviation and fixture locator deviation. Two most 

commonly used 3-2-1 fixturing schemes are considered in this chapter. A general 3-

2-1 layout is shown in Figure 2-2 (a), which holds a subassembly composed of three 

parts. The six degrees of freedom of an subassembly can be fully confined by a 

general 3-2-1 fixture by supporting its ① primary datum surface (PD), e.g., EFGH, 

with three locators L1, L2 and L3; ② seco ndary datum surface (SD), e.g., FKMG,  
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 (b) Pin-hole fixturing scheme 

Figure 2-2. Illustration of 3-2-1 fixturing scheme and CS definition. 

with two locators P1 and P2; and ③ tertiary datum surface (TD), e.g., EFKJ, with 
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locator P3. The FCS, OFXFYFZF is defined as shown in Figure 2-2 (a). The origin OF 

is located within the primary datum surface and at the intersection of secondary and 

tertiary datum surfaces. Three axes are determined according to right-hand-rule 

(RHR), with ZF, XF and YF perpendicular to PD, SD and TD, respectively. A 

common alternative of the general 3-2-1 fixture setup is shown in Figure 2-2 (b). 

The three locators attaching SD and TD are replaces by a four-way pin, P1, inserted 

in a hole, and a two-way pin, P2, inserted in a slot. For this alternative, the origin OF 

is located at the intersection of the PD and the center line of the short hole. YF axis 

is within PD and parallel to the long axis of the slot. ZF is coincident with the norm 

of PD and XF is determined according to RHR. 

(iii)PCS denotes the part coordinate system attached to an individual part.  Every part to 

be assembled in an MAP is represented as a unique PCS and its deviation is 

represented as the deviation of the true PCS from nominal 0PCS. A PCS will be 

attached to the PD of a part when it is assembled. As shown in Figure 2-2 (a.1) and 

Figure 2-2 (b.1), OAXAYAZA is part A’s PCS, which is located at the center of the 

PD of part A. ZA is coincident with the norm of PD, and XA and YA are determined 

following RHR. 

(iv) LCS denotes the local coordinate system attached to individual features. According 

to their functionalities in an MAP, all features can be classified into two categories, 

which are:  ① Datum features or components of datum surfaces. For instance, in 

Figure 2-2 (a.2) and (b.2), surface features p1, p2 and p3 (marked as Op1Xp1Yp1Zp1, 

Op2Xp2Yp2Zp2, Op3Xp3Yp3Zp3, respectively, in both Figure 2-2 (a.2) and Figure 2-2 

(b.2)) compose the PD of the subassembly, surface features s1 and s2 (Os1Xs1Ys1Zs1 

and Os2Xs2Ys2Zs2 in Figure 2-2.) compose the SD, and surface feature t (OtXtYtZt in 

Figure 2-2) serves as the TD. These datum features will transmit deviations 

introduced at the upstream stages to the current stage. ② Components of KPC’s. 

For instance, features s1 and s2 in Figure 2-2 (b.2) also serve as the components of 

a KPC defined as the distance between the center of the hole, s1, and that of the slot, 

s2. To construct the model, an LCS will be assigned to every feature that serves 

above two functional roles. 
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2.2.2 Vectorial Deviation Representation 

Vectorial representation proposed by Yau (Yau 1997) is adopted in this chapter to 

represent the three elements in an MAP. It can directly link KPC measurements with 

design requirements based on the same dimensional representation principles of 

coordinate measurement machine (CMM) and computer-aided-design / computer-aided-

manufacturing (CAD/CAM) systems. The position and orientation of an element can be 

defined by a vector that consists of a location vector and an orientation angular vector 

w.r.t. a certain CS. For instance, part A represented by PCS, OAXAYAZA can be defined 

w.r.t. FCS as ( ) ( )
TT T

 F F F
A A A

⎡ ⎤= ⎢ ⎥⎣ ⎦
r t ω , where T[   ]F F F F

A A A Ax y z=t  and T[   ]F F F F
A A A Aφ θ ψ=ω . 

This indicates that the projections of OA on XF, YF and ZF are ,  and F F F
A A Ax y z , 

respectively; and the orientation of axes XA, YA and ZA can be obtained by sequentially 

rotating FCS around ZF, YF and the new ZF with Euler angles of F
Aφ , F

Aθ  and  F
Aψ , 

respectively. For the part A shown in Figure 2-2 (a.1), F
Aφ =0, F

Aθ = π, and F
Aψ = π/2. With 

this mechanism, the interactions among features, parts and fixtures in an MAP can be 

described with the geometrical relationships among their CS’s, by directly using 

homogeneous transformation matrix (HTM). Assuming the vectorial representation of 

CS1 w.r.t. CS2 is ( ) ( )
TT T2 2 2

1 1 1 ⎡ ⎤= ⎢ ⎥⎣ ⎦
r t ω , an HTM, 2

1H , is defined as: 

2 2
2 1 1
1 1

⎡ ⎤
= ⎢ ⎥
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R t
H

0
, (2.1) 
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⎥⎦

R

, (2.2) 
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is a rotation matrix corresponding to the orientation vector, 2
1ω ; “c” and “s” denote “cos” 

function and “sin” function, respectively. 

Based on the CS definition, the deviation of the three elements in an MAP can be 

represented by DMV’s (Paul 1981) defined in their own CS’s. For instance, the deviation 

of part A is represented as T T T
A A A[  ]=x d δ , where dA contains three small translational 

deviations (
AXd , 

AYd and 
AZd , along XA, YA and ZA, respectively) whereas δA contains 

three small rotational deviations (
AXδ , 

AYδ and 
AZδ , around XA, YA and ZA, respectively). 

These deviations will be further transformed w.r.t. different CS’s to describe the 

deviation transmission and accumulation, according to the geometrical interrelationships 

among the three different elements in an MAP. The inter-CS transformation follows 

Corollary 1(Zhou et al. 2003). 

Corollary 1 : consider three different coordinate systems, CS1, CS2 and CS3. 

Given the deviations of CS3 w.r.t. CS2, 2
3x , the deviations of CS2 w.r.t. CS1, 1

2x , and the 

corresponding HTM, 0 1
2H  and 0 2

3H , the deviation of CS3 w.r.t. CS1 can be derived as 

1 2 1 2
3 3 2 3= ⋅ +x M x x , (2.3) 

where, 

( ) ( ) ( )
( )

T T2 2 2
3 3 32

3 T2
3

ˆ
,

⎡ ⎤− ⋅
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R R t
M

0 R
 

and 2
3R  is the rotation matrix associated with the nominal orientation vector, 2

3ω , i.e., the 

nominal orientation of CS3 w.r.t. CS2. And skew symmetric matrix, 2
3t̂ , is determined by 

the nominal location vector, 2
3t  ( 2

3t =[ 2
3x  2

3y  2
3z ]T), as 

2 2
3 3

2 2 2
3 3 3

2 2
3 3

0
ˆ 0

0

z y
z x
y x

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

t . (2.4) 
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This corollary can be used to derive the deviation translation among different 

CS’s. For instance, given the deviation of a feature (CS3 in corollary 1) w.r.t. a PCS (CS2), 

and the deviation of the PCS (CS2) w.r.t. RCS (CS1), the deviation of the feature (CS3) 

w.r.t. RCS (CS1) can be derived from the nominal location and orientation of the PCS in 

RCS, as defined in corollary 1. 

2.3 State Space Modeling for Multistage Assembly Processes 

Variation propagation modeling is a procedure of describing the random deviation 

translation among different CS’s. Given the product/process design information, model 

coefficients are determined by the part design, process sequences, fixturing schemes and 

geometric relationships among fixture locators, parts and features on the parts. The entire 

model can be constructed by modeling the deviation components, deviations propagation 

and their observations. 

2.3.1 Modeling Deviation Components 

At the stage k of an MAP, overall dimensional deviations consist of components 

that are contributed by three types of sources: 

(i) Assembly process induced deviations: including the error of fixture locators and 

operation deviations caused by other assembling devices. Operation deviations refer to 

the deviations contributed by the operations after the part/subassembly being fixed by the 

fixtures. Thus, this type of deviations is represented as the deviation of PCS w.r.t. the true 

FCS. As discussed by Camelio at al. (2003), operation deviation is a composition of 

many possible deviation sources, which are quite dependent on particular operation 

situation. Detailed modeling of certain types of operations have been thoroughly studied 

for single-stage level in (Liu and Hu 1997; Shiu et al. 1997). To simplify the problem and 

focus on the variation propagation modeling, this paper assumes that the operation 

deviations are given modeling inputs. Fixture induced deviations, e.g., locator P3’s error 

in Figure 2-3 (a), will be represented as the deviation of true FCS (OFXFYFZF) w.r.t. 

nominal 0FCS (0OF
0XF

0YF
0ZF). 
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(a) Process induced deviation at stage 1 (b) Datum induced deviation at stage 2 
Figure 2-3. Illustration of deviation sources in an MAP 

Assuming that there are FXk fixtures used at the stage k to locate FXk 

parts/subassemblies, each fixture, as illustrated in Figure 2-3 (a), is made up of six fixture 

locators. The coordinates of L1, L2 and L3 in 0Fk,j are 
0 0 0

, , ,( , , )k j k j k jF F F
hx hy hzL L L , h=1,2,3, and that 

of P1, P2 and P3 are 
0 0 0

, , ,( , , )k j k j k jF F F
wx wy wzP P P , where  w=1,2,3. For the fixture scheme in 

Figure 2-3 (b), five locators are used and can be described in a similar format. In this 

chapter, the fixture induced deviation is represented as the deviation of the FCS of the jth 

fixture at the stage k, Fk,j, from its nominal 0Fk,j, i.e., 
0

,

,

k j

k j

F
Fx .  This deviation is caused by 

small deviations on the fixture locators denoted as 

0 0 0 0 0 0 0
, , , , , , ,

T

, 1 2 3 1 2 3
k j k j k j k j k j k j k jF F F F F F F

k j z z z x x yL L L P P P⎡ ⎤=
⎣ ⎦

u + + + + + + . (2.5) 

Analytical research has been conducted by Cai et al. (1997) to study the infinitesimal 

error of rigid body fixturing scheme. Based on their results and the fixture error analysis 

strategy in (Zhou et al. 2003), fixture induced deviation is modeled as a linear 

transformation of the fixture locator deviation, 

0 00
, ,

, , ,
k j k j

k j

F FF
F k j k j= ⋅x T u , (2.6) 

where the coefficient matrix 
0

,
F

k jT  for general and pin-hole fixturing schemes are defined 

in Appendix I. 
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In a generic type I assembly process, it is not unusual to use some features on 

certain parts as fixture locators (called feature locators in this chapter) to locate other 

parts. In these cases, deviations of those feature locators w.r.t. to their own PCS should be 

transformed to that w.r.t. 0FCS. A collection of six feature locators’ DMV’s w.r.t. their 

own PCS’s is denoted as ,
L

k jx  = ( ), ( , , )1

, ,1

T
k i L k j

L k j

P
T

⎡
⎢⎣

x  ( ), ( , , )2

, ,2

T
k i L k j

L k j

P
Tx  ( ), ( , , )3

, ,3

T
k i L k j

L k j

P
Tx  ( ), ( , , )1

, ,1

T
k i P k j

P k j

P
Tx  

( ), ( , , )2

, ,2

T
k i P k j

P k j

P
Tx ( ), ( , , )3

, ,3

TT
k i P k j

P k j

P
T

⎤
⎥⎦

x , where subscript index for each DMV, “●,k,j”, indicates the 

feature functions as the locator “●” of the fixture j at the stage k, i.e., 

{ }1 2 3 1 2 3L ,L ,L ,P ,P ,P•∈ . Superscript “i(●,k,j)” is a function indicating the index of the part 

that contains feature “●,k,j”, and , ( , , )

, ,

k i k j

k j

P
T

•

•
x represents the deviation of the feature “●,k,j” in 

the subscripts w.r.t. the PCS’s of “i(●,k,j)” in the superscripts. Also, let ,
L R

k jx = 

( )1

T

( , , )
R
i L k j

⎡
⎢⎣

x ( ), ( , , )2

T

k i L k j

R
Px ( ), ( , , )3

T

k i L k j

R
Px ( ), ( , , )1

T

k i P k j

R
Px ( ), ( , , )2

T

k i P k j

R
Px  ( ), ( , , )3

TT

k i P k j

R
P

⎤
⎥⎦

x  be a collection of 

six parts’ DMV’s w.r.t. RCS, according to the corollary 1, a collection of six feature 

locators’ DMV w.r.t. RCS can be derived as 

, , , ,(1)FL R L R L
k j k j k j k j= +x B x x  

where ( ), ,1

T

, L k j

FL R R
k j T

⎡= ⎢⎣
x x ( ), ,2

T

L k j

R
Tx ( ), ,3

T

L k j

R
Tx ( ), ,1

T

P k j

R
Tx  ( ), ,2

T

P k j

R
Tx  ( ), ,3

TT

P k j

R
T

⎤
⎥⎦

x , , (1)k jB = 

{ }, ( , , )

, ,

k i k j

k j

P
Tdiag •

•
M , is a diagonal block matrix with diagonal blocks as , ( , , )

, ,

k i k j

k j

P
T

•

•
M . Since it is 

rational to assumed that 0Fk,j has no deviation w.r.t. RCS, i.e., DMV 
0

,
0

,

k j

k j

FR
RF

= =x x 0 . 

According to corollary 1, 
0 0

, ,

, , , , , , , ,

k j k j

k j k j k j k j

F FR R R
T T R T T• • • •

= + =x M x x x . Thus, a collection of six 

feature locators’ DMV’s w.r.t. 0Fk,j can be derived as 
0

,
,

k jFFL
k jx = 

( )0
,

, ,1

T
k j

L k j

F
T

⎡
⎢⎣

x ( )0
,

, ,2

T
k j

L k j

F
Tx ( )0

,

, ,3

T
k j

L k j

F
Tx ( )0

,

, ,1

T
k j

P k j

F
Tx ( )0

,

, ,2

T
k j

P k j

F
Tx ( )0

,

, ,3

TT
k j

P k j

F
T

⎤
⎥⎦

x . 
0

,
,

k jFFL
k jx  enables the derivation 
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of 
0

,
F

k ju  from DMV’s of individual features. Referring to its definition, only the deviation 

along a particular axis of a fixture locator is considered as a component in 
0

,
F

k ju . Therefore, 

00
,

, 0, , ,
k jFF FL

k j k j k j= ⋅u S x , (2.7) 

where 0, ,k jS is a diagonal selector matrix, i.e., 0, , { ( )}k j diag •= ∗S s , s●(∗ ) is an 1×6 vector 

with the ∗ th element equal to 1 and others equal to 0, and { }1 2 3 1 2 3L ,L ,L ,P ,P ,P•∈ . 

(ii) Datum features induced deviations: including the datum features deviations 

caused by preceding assembly processes (or called re-orientation induced deviation (Jin 

and Shi 1999)), as the subassembly BC’s deviation shown in Figure 2-3 (b); and that 

caused by the part fabrication processes, as the deviation of slot feature on part A in 

Figure 2-3 (b). 

For a stage k with FXk parts or subassemblies to be assembled, a fixturing 

schemes with three datum surfaces is defined for each general 3-2-1 fixture j, j=1,2,…, 

FXk, as illustrated in Figure 2-2 (a),  The PD associated with the fixture j at the stage k, 

PDk,j, is composed of three features, p1,k,j, p2,k,j, and p3,k,j, which are in touch with locators 

L1, L2 and L3 at datum points q1, q2 and q3, respectively. With the same notation format, 

the SDk,j consists of two features, s1,k,j and s2,k,j, touching locators P1 and P2 at datum 

points q4 and q5, respectively. The TDk,j that touches locator P3 at datum point q6 is 

denoted as tk,j. Representing the deviations of the six datum features w.r.t. RCS with six 

DMV’s as 
, ,1p k j

R
Tx ,

, ,2p k j

R
Tx ,

, ,3p k j

R
Tx ,

, ,1s k j

R
Tx ,

, ,2s k j

R
Tx  and 

, ,t k j

R
Tx , datum induced deviations for the 

fixturing scheme j at the stage k is modeled as the deviations of true FCS (Fk,j) w.r.t. RCS 

(R): 

, , , , , , ,1 2 3

, , , , , ,1 2

1, , 2, , 3, ,

4, , 5, , 6, ,            ,
k j p k j p k j p k j

s k j s k j t k j

R R R R
F k j T k j T k j T

R R R
k j T k j T k j T

= + +

+ + +

x T x T x T x

T x T x T x
 (2.8) 
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where T1,k,j through T6,k,j are determined by the nominal location of the six datum points, 

q1 through q6, and that of fixture locators, as shown in Figure 2-2 (a.2). The derivation 

procedure and values of T1,k,j through T6,k,j can be found in Appendix II. 

(iii) Noises: including the system noise that cannot be modeled with the linear state 

space representation and the noises introduced by measurement devises. 

2.3.2 Modeling Deviation Propagation 

Based on the geometric deviation representation of the three elements in an MAP, 

and the modeling of deviation components that induced by datum features and fixture 

locators, variation (deviation) propagation can be described in a state space model. As 

denoted in Figure 1-1, the deviation of an assembly after the stage k is represented by a 

state vector, xk, which is a stack of the MDV’s of all parts assembled. With the deviation 

of the part r (r=1,2,…, S) at the stage k being represented as a 6×1 vector, ,
R
k rx  (the 

deviation of PCSr from its nominal, w.r.t. RCS, at stage k),  the state vector of a final 

assembly with S parts will be ( ) ( ) ( )
TT T T

,1 ,1 ,
R R R

k k k k S
⎡ ⎤= ⎢ ⎥⎣ ⎦

x x x x" . Before the first stage, 

there is no process operated and therefore no deviations, i.e., x0 = 06S×1. As parts or 

subassemblies pass through an MAP, the elements corresponding to the assembled parts 

may be changed to reflect their quality deviations, whereas the elements corresponding to 

unassembled parts remain zeros. At each stage k of an MAP, dimensional deviations may 

come from three types of sources. 

Denoting deviations of all parts after the stage k-1 as state vector xk-1, all 

deviations induced by part fabrication processes and assembly process performed at the 

stage k as uk, and deviations of in-process KPC’s measured at the stage k as yk, the 

variation (deviation) propagation in an MAP can be formulated in a linear discrete state 

space model: 

1 ,

,
k k k k k k

k k k k k k

−= + +

= + +

x A x B u w

y C x D u v
 (2.9) 
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where Akxk-1 represents the deviations transmitted from upstream stages by re-orientation 

movements; Bkuk represents the quality deviations introduced from the stage k; Ckxk 

reflects that the KPC deviations are calculated from the linear combination of quality 

deviation; the KPC deviations contributed from deviations of features on incoming parts 

are captured by Dkuk; wk and vk are the un-modeled system noise and measurement noise. 

1k−x
k

R
Fx

kx

( )0
 . ., k

k k

F FR
F Fi ex xF

ku

S
ku

O
ku

k

D R
Fx

F
kx

N R
kx

D
kx

 

Figure 2-4. Procedure of derivation of deviation propagation model 

The modeling of deviation components that induced by datum features and fixture 

locators on a single-stage fixturing scheme provides the basis for deviation propagation 

modeling on a multi-stage level, which is a procedure of deriving system matrices in the 

state transition equations in Eq.(2.9). Figure 2-4 shows the major steps to determine the 

system matrices Ak and Bk in the state transition equation of the stage k. These steps are 

the mathematical representation of the physical operations at each stage of an MAP. 

S1: Modeling initial deviations of datum features. For every part/subassembly 

fixed by fixture j at the stage k, there are six datum features. Their deviations due to re-

orientation movements, i.e., generated and transmitted from preceding stage k-1, can be 

derived from the parts’ deviations generated at preceding stages, i.e., 

( ), , 11P R
k j k j k −= ⋅x S x  

= ( ), ( , , )1

T

k i p k j

R
P

⎡
⎢⎣

x ( ), ( , , )2

T

k i p k j

R
Px ( ), ( , , )3

T

k i p k j

R
Px ( ), ( , , )1

T

k i s k j

R
Px ( ), ( , , )2

T

k i s k j

R
Px  ( ), ( , , )

TT

k i t k j

R
P

⎤
⎥⎦

x  

where ,
P R

k jx  is an intermediate vector containing the deviations of all parts (w.r.t. RCS) 

that provide datum features for fixture j at the stage k, where the subscript, i(●,k,j), is a 
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function indicating the index of the part that contains datum feature ●, 

{ }1 2 3 1 2, , , , ,p p p s s t•∈ , for fixture j at stage k. the selector matrix, Sk,j(1), is determined 

by the datum scheme defined in the process design, 

, (1)k jS = T
( 1, , )i p k j⎡⎣θ

T
( 2, , )i p k jθ T

( 3, , )i p k jθ  T
( 1, , )i s k jθ T

( 2, , )i s k jθ
TT

( , , )i t k j ⎤⎦θ . (2.10) 

( , , )i k j•θ is a 6×6S matrix of S 6×6 square sub-matrices, where the i(●,k,j) one is an identity 

matrix and others are sub-matrices of zeros. 

Datum features deviations may also be contributed by the part fabrication 

processes. They are represented as ,
S

k jx = ( ), ( , , )1

, ,1

T
k i p k j

p k j

P
T

⎡
⎢⎣

x  ( ), ( , , )2

, ,2

T
k i p k j

p k j

P
Tx  ( ), ( , , )3

, ,3

T
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p k j

P
Tx  

( ), ( , , )1

, ,1

T
k i s k j

s k j

P
Tx  ( ), ( , , )2

, ,2

T
k i s k j

s k j

P
Tx  ( ), ( , , )

, ,

TT
k i t k j

t k j

P
T

⎤
⎥⎦

x , where ( , , )i k j•
•x  is the DMV of datum feature, ●, w.r.t 

the PCS of part i(●,k,j), and { }1 2 3 1 2 3L ,L ,L ,P ,P ,P•∈ . These initial deviations can be 

translated to that w.r.t. the RCS by applying corollary 1, 

, , , ,(1)D R P R S
k j k j k j k j= ⋅ +x A x x , (2.11) 

where , (1)k jA = , ( , , )

, ,
{ }k i k j

k j

P
Tdiag •

•
M  is a diagonal block matrix with diagonal blocks as 

, ( , , )

, ,

k i k j

k j

P
T

•

•
M given in Eq.(2.3). 

Eq. (2.11) models the initial deviations of datum features for fixturing scheme j at 

the stage k.  It can be applied to all the FXk fixturing schemes used at the stage k. A stack 

of all ,
P R

k jx , i.e., ( )T

,1
P R P R

k k
⎡= ⎢⎣

x x ( )T

,2
P R

kx … ( )
TT

, k

P R
k FX

⎤
⎥⎦

x , is obtained by 

1(0)P R
k k k −=x A x , (2.12) 
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where ( )T
,1(0) (1)k k

⎡=
⎣

A S ( )T
,2 (1)kS … ( )

TT

, (1)
kk FX

⎤
⎥⎦

S . Similarly, denoting 

( )T

,1
D D R

k k
⎡= ⎢⎣

x x ( )T

,2
D R

kx … ( )
TT

, k

D R
k FX

⎤
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x , and ( )T

,1
S S

k k
⎡= ⎢⎣

u x ( )T

,1
S

kx … ( )
TT

, k

S
k FX

⎤
⎥⎦

x , 

by repetitively applying corollary 1, we can have 

(1)D P R S
k k k k= ⋅ +x A x u , (2.13) 

where { },(1) (1)k k jdiag=A A . In Eq.(2.13), D
kx , P R

kx  and S
ku  are all in the space of 

6 6 1kFX⋅ ⋅ ×ℜ , and 6 6 6 6(1) k kFX FX
k

⋅ ⋅ × ⋅ ⋅∈ℜA . Eq. (2.13) implies that the initial datum features’ 

deviations are contributed by two sources: the deviations generated at the preceding 

stages and that generated when the incoming parts are fabricated. 

S2: Modeling re-orientation deviation. For the jth fixturing scheme at the stage k, 

datum induced re-orientation deviations are derived by plugging ,
D R

k jx  into Eq.(2.8), 

, , ,(2)
k j

D R D R
F k j k j= ⋅x A x , (2.14) 

where , 1, ,(2) [k j k j=A T 2, ,k jT 3, ,k jT 4, ,k jT 5, ,k jT 6, ,k jT ] for general 3-2-1 fixturing scheme, or 

, 1, ,(2) [k j k j=A T 2, ,k jT 3, ,k jT 4, ,k j
∗T 5, ,k j

∗T 6, ,k j
∗T ] for pin-hole fixturing scheme. The datum 

induced re-orientation deviations for all FXk fixturing schemes can be obtained by 

stacking up all 
,k j

D R
Fx . Denoting deviations (caused by datum deviations) of all Fk,j, 

j=1,2,…,FXk, w.r.t. RCS as 
k

D R
Fx = ( ),1

T

k

D R
F

⎡
⎢⎣

x  ( ),2

T

k

D R
Fx  … ( ),

TT

k FXk

D R
F

⎤
⎥⎦

x , we have 

(2)
k

D R D
F k k= ⋅x A x . (2.15) 

where Fk represents all FXk fixtures at the stage k, { },(2) (2)k k jdiag=A A , and 

6 6 6(2) k kFX FX
k

⋅ × ⋅ ⋅∈ℜA . 
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S3: Modeling fixture induced deviation. For the jth fixture used at the stage k, 

fixture induced deviation can be computed by plugging the fixture locators’ deviation 

defined by Eq. (2.5) or Eq. (2.7) into Eq. (2.6), i.e., 
0 0

,

, , ,
k j

k j

F F F
F k j k j= ⋅x T u . In this chapter, 

nominal FCS’s are assumed to be deviation-free, i.e., DMV 0
,k j

R
F

=x 0 . Thus, by applying 

corollary 1, the fixture induced deviations can be further represented as deviation of FCS 

w.r.t., RCS, i.e., 
0 0 0

, , ,
0, , , ,,

k j k j k j

k j k j k j k jk j

F F FF R R
F F F FF

= + =x M x x x , and 

0

, , ,(3)
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F R F
F k j k j= ⋅x A u ,  (2.16) 

where , ,(3) F
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x  denote the 

deviations of all Fk,j, j=1,2,…,FXk, w.r.t. R that caused by fixture locators’ deviations 

represented by ( )0 T

,1
F F

k k
⎡= ⎢⎣

u u ( )0 T

,2
F

ku … ( )0
TT

, k

F
k FX

⎤
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u , we have 

(3)
k

F R F
F k k= ⋅x A u , (2.17) 

where { },(3) (3)k k jdiag=A A , 6 1kFXF
k

×∈ℜu ,and 6 6(3) k kFX FX
k

×∈ℜA . 

S4: Modeling overall fixturing deviations. Since both datum induced deviations 

and fixture induced deviations affect assembly quality through fixturing scheme, their 

deviations derived in steps S2 and S3 can be added together to form the overall fixturing 

deviations, i.e., 

, , ,k j k j k j

R D R F R
F F F= +x x x , (2.18) 

and by stacking up deviations of all Fk,j, j=1,2,…,FXk, we have 

k k k

R D R F R
F F F= +x x x , (2.19) 

where 
k

R
Fx ,

k

D R
Fx ,

k

F R
Fx 6 1kFX ×∈ℜ . 
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S5: Calculate overall deviations at the stage k. The overall deviations at the stage 

k are the combination of overall fixturing deviations and operations induced deviations.   

As aforementioned, operations deviations are assumed given by the deviations of parts 

w.r.t. true FCS. Denoting lk,j as the number of parts on a subassembly located by fixture j 

at the stage k (lk,j=1 for a single part), operation deviations are represented as 

T
,

O
k j ⎡= ⎣u 0 … ( ),

, (1, , )

T
k j

k r k j

F
Px … ( ),

, ( , , )

T
k j

k r c k j

F
Px … ( ),

, ( , , ),

T
k j

k r l k jk j

F
Px … 

TT ⎤⎦0 , where 0 is a 6×1 vector 

of zeros, subscript r(c,k,j) is a function indicating the indices of parts on the subassembly 

c, c=1,2,…, lk,j , and r(c,k,j) {1,2,..., }S∈ . According to corollary 1, overall parts 

deviations caused by a single fixture j are represented as deviations of parts w.r.t. RCS, 

i.e., 

,, , ,(4)
k j

N R R O
k j k j F k j= ⋅ +x A x u , (2.20) 

where T
, (4)k j ⎡= ⎣A Θ … ( ),

, (1, , )

T
k j

k r k j

F
PM ... ( ),

, ( , , )

T
k j

k r c k j

F
PM … ( ),

, ( , , ),

T
k j

k r l k jk j

F
PM …

TT ⎤⎦Θ , and Θ  is a 

6×6 matrix of zeros. Assuming that deviations of Fk,j from 0Fk,j  are very small compared 

to the dimensional of fixture layout, according to Zhou et al. (2003), ,

, ( , , )

k j

k r c k j

F
PM can be 

replaced  by
0

,

, ( , , )

k j

k r c k j

F
PM . 

Eq. (2.20)models overall deviations from a single fixture j at the stage k. For all 

FXk fixtures, N R
kx , is the summation of ,

N R
k jx , i.e., 

(4)
k

N R R O
k k F k= ⋅ +x A x u , (2.21) 

where ( ),1
kFXN R N R

k k jj=
= ∑x x , ,1(4) (4)k k⎡= ⎣A A ,2 (4)kA  … , (4)

kk FX ⎤⎦A , ,1
kFXO O

k k jj=
= ∑u u , 

N R
kx  and O

ku  6 1S×∈ℜ  and  6 6(4) kS FX
k

×∈ℜA . 

S6: Calculate overall deviations after the stage k. After assembly operations at 

the stage k, the deviations of parts w.r.t. RCS are the combinations of the deviations 

transmitted from preceding stages and that generated at the current stage k, i.e., 
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1
N R

k k k−= +x x x . (2.22) 

The intermediate results listed in Eq. (2.11)-(2.21) are the building-blocks of the 

system matrices in model (2.9). Plugging them into Eq. (2.22),  the state transition 

equation in model (2.9) can be represented as 

[ ]

[ ]

6 6 1

6 6

(4) (2) (1) (0)

       (4) (2) (4) (3)

k S S k k k k k

S
k

F
k k k k S S k k

O
k

× −

×

= + ⋅ ⋅ ⋅

⎡ ⎤
⎢ ⎥+ ⋅ ⋅ ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

x I A A A A x

u
A A A A I u w

u

, (2.23) 

The detailed derivations are presented in Appendix III. 

2.3.3 Modeling Deviation Measurements 

The derivation of the deviation observation equation can be conducted in a similar 

way. Since a KPC is a dimensional deviation relating a datum or a features on different 

parts. Consider a stage where the number of KPC’s being measured is Mk, the mth KPC, 

m=1,2,…, Mk, involves fm,k features on fm,k different parts. An intermediate vector, ,
S R

k mx , 

which represents deviations of all fm,k parts that are involved with the mth KPC at the 

stage k, can be derived as 

( ), , 2S R
k m k m k= ⋅x S x = ( ), (1, , )

T

k i k m

R
P

⎡
⎢⎣

x ( ), ( 2 , , )

T

k i k m

R
Px ...

 ( ), ( , , ),

TT

k i f k mm k

R
P

⎤
⎥⎦

x
,
 

where the subscript, i(●,k,m), is a function indicating the part that contains feature ●, 

●=1,2,…, fm,k, and selector matrix, Sk,m(2), is determined by the measurement strategy 

with a form similar to Sk,j(1) defined in Eq. (2.10). Corresponding to ,
S R

k mx , the feature 

deviations caused by part fabrication processes are 

,
P

k m =x ( ), (1, , )

1, ,

T
k i k m

k m

P
T

⎡
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x ( ), ( 2 , , )

2, ,

T
k i k m

k m

P
Tx … ( ), ( , , ),

, ,,

TT
k i f k mm k

f k mm k

P
T

⎤
⎥⎦

x , 
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where ( , , )i k j•
•x  is the deviation of the feature, ●, w.r.t the PCS of part i(●,k,m). These 

features’ deviations w.r.t. RCS can be achieved by applying corollary 1, 

, , , ,(1)M R P S
k m k m k m k m= ⋅ +x C x x = ( )1, ,

T

k m

R
T

⎡
⎢⎣

x ( )2, ,

T

k m

R
Tx … ( ), ,,

TT

f k mm k

R
T

⎤
⎥⎦

x , (2.24) 

where, , ( , , )

, ,, (1) { }k i k m

k m

P
k m Tdiag •

•
=C M . The Linear combination of the fm,k elements in 

,
M R

k mx features is implemented by a row vector ck,m to represent the deviation of the mth 

KPC, i.e., 

, , ,
M R

m k k m k my = c x , (2.25) 

Eq. (2.25)models the deviations of the mth KPC at the stage k, which can be 

applied to all Mk KPC’s measured at the stage k. Let PM R
kx  be a stack of all ,

P
k mx , 

m=1,2,…, Mk, i.e., ( )T

,1
PM R P

k k
⎡= ⎢⎣

x x ( )T

,2
P

kx … ( )
TT

, k

P
k M

⎤
⎥⎦

x , we have 

(0)PM R
k k k=x C x , (2.26) 

where ( )T

,1(0) (1)k k
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C S ( )T
,2 (1)kS … ( )
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kk M
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S . Also, denoting ( )T
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M M R
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x x  

( )T

,2
M R

kx  … ( )
TT
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M R
k M

⎤
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x , and ( )T

,1
M S

k k
⎡= ⎢⎣

u x ( )T

,1
S

kx … ( )
TT

, k

S
k M

⎤
⎥⎦

x , by repetitively 

applying corollary 1, we can have 

(1)M PM R M
k k k k= ⋅ +x C x u , (2.27) 

where { },(1) (1)k k mdiag=C C . Finally, by staking up all Mk KPC’s, yk will be 

(2) M
k k k=y C x . (2.28) 
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where ( )T

,1(2)k k
⎡=
⎣

C c ( )T
,2kc … ( )

TT

, kk M
⎤
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c . By plugging the intermediate results in Eq. 

(2.24)-(2.28), the deviations of KPC measurements are 

(2) (1) (0) (2) M
k k k k k k k= ⋅ ⋅ ⋅ + ⋅y C C C x C u . (2.29) 

It should be noted that the term (2) SM
k k⋅C u  reflects the KPC deviations 

contributed by the incoming parts fabricated before the assembly processes. Denoting 

( )TS
k k

⎡= ⎢⎣
u u ( )TF

ku ( )TO
ku ( )

TTSM
k

⎤
⎥⎦

u  as the combination of all the deviations induced 

by part fabrication processes and assembly process, the system matrices in model (2.9) 

are: 

6 6 (4) (2) (1) (0)k S S k k k k×= + ⋅ ⋅ ⋅A I A A A A , (2.30) 

6 6 6 6(4) (2) (4) (3)
kk k k k k S S S M× ×⎡ ⎤= ⋅ ⋅⎣ ⎦B A A A A I 0 ,  (2.31) 

(2) (1) (0)k k k k= ⋅ ⋅C C C C , and  (2.32) 

(36 6 6 ) (2)
k k kk M FX FX S k× + +⎡ ⎤= ⎣ ⎦D 0 C , (2.33) 

where Ia×a is an a×a identity matrix and 0c×d is an c×d matrix with all zero elements. 

2.4 Conclusion 

Complicated correlations between different stages of an MAP make it difficult for 

engineers to understand the product quality variation propagation along stages and thus 

significantly impede the alternative product/process design evaluation and process 

variation sources identification. In this chapter, an analytical variation propagation 

modeling technique is proposed based on DMV representation. The model is presented in 

a state space format, for which a systematic procedure has been developed. Compared 

with existing MAP modeling techniques, the proposed one is more generic by covering 

both Type-I and Type-II assembly and by including the impact of part fabrication errors 

on assembly quality. 
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The proposed state space model for MAP has great potentials for various 

applications to achieve quality assurance in MAP: (i) Since the interactions between 

process variables (i.e., fixture locators deviations) and quality variables (i.e., KPC 

deviations) are mathematically represented, variation sources identification can be 

conducted by collecting KPC measurement data and solving the equations. (ii) This 

model can also be used as a tool for quality assured product or process design. By 

providing an analytical prediction of quality variations, alternative design options will be 

evaluated to choose the one that can cost-effectively deliver good quality. This strategy 

moves the quality assurance to the early stage of production realization and will reinforce 

total quality management. (iii) The structure of state space model makes it possible to 

adopt some of the classical control theories to solve engineering problems related to 

quality engineering, e.g., diagnosability study and sensor placement. (iv) Since the 

deviations of features that caused by part fabrication process are explicitly modeled, the 

variation sources can be traced back to upstream productions so that product designer can 

either use the model to assign tolerances to different part suppliers, or conduct tolerance 

synthesis among different parts to improve quality and reduce manufacturing costs.  
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CHAPTER 3  
 

QUALITY ASSURED SETUP PLANNING BASED ON THE STREAM-OF-

VARIATION MODEL FOR MULTISTAGE MACHINING PROCESSES2 

Abstract 

Setup planning is a set of activities used to arrange manufacturing features into an 

appropriate sequence for processing.  It has significant impacts on the product quality, 

which is often measured in terms of dimensional variation in the Key Product 

Characteristics (KPC).  Current approaches to setup planning are experience-based and 

tend to be conservative by selecting unnecessarily precise machines and fixtures to ensure 

final product quality.  This is especially true in multistage machining processes (MMP’s) 

because it has been difficult to predict the variation propagation and its impact on the 

KPC quality of final product.  In this chapter, a new methodology is proposed to realize 

cost-effective, quality assured setup planning for MMP’s.  Setup planning is formulated 

as an optimization problem based on quantitative evaluation of variation propagations.  

The optimal setup plan minimizes the cost related to process precision (CRPP) and 

satisfies the quality specifications.  The proposed approach can significantly improve the 

effectiveness as well as the efficiency of the setup planning for MMP’s. 

  

                                                 

 

2 Liu, J., Shi, J., and Hu, S.J., 2007, accepted by IIE Transactions, Quality and Reliability Engineering. 
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3.1 Introduction 

Process planning is the systematic determination of the steps by which a product 

is manufactured.  It is a key element that bridges activities in design and manufacturing.  

In the past decades, process planning and its automation enablers have received extensive 

study and made significant progress (Maropoulos 1995).  Many reported approaches of 

process planning include conceptual process planning, setup planning and detailed 

process planning, as shown in Figure 3-1.  Conceptual process planning includes 

engineering feature recognition, process selection, and machine/tooling selection.  

Detailed process planning includes fixture design, quality-assurance-strategy selection, 

and cost analysis. 

 

Figure 3-1. The existing commonly used setup planning approaches 

Setup planning constitutes a critical component that connects conceptual process 

planning and detailed process planning.  Conceptual process planning provides 

qualitative information to setup planning, including designated features, selected 

processes and datum scheme constraints.  The purpose of setup planning is to arrange 

manufacturing features into an appropriate sequence of setups in order to ensure product 

quality and productivity (Huang and Liu 2003).  A setup plan is comprised of setup 

formation, datum scheme selection and setup sequencing (Huang 1998).  It defines a 
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series of datum/fixturing schemes for a multi-stage machining process (MMP), as shown 

in Figure 3-1.  However, the setup plan obtained from those traditional methods provides 

limited instructive information to subsequent planning activities in detailed process 

planning. 

Product quality is one of the main concerns of setup planning.  A well defined 

setup plan should be able to satisfy quality specifications under normal manufacturing 

conditions.  Product quality is affected by the outcome of setup planning since the series 

of datum and fixtures defined by a specific setup plan may introduce errors which will 

propagate along the machining stages and accumulate in the final product.  Different 

setup plans specify different datum/fixturing schemes, lead to different variation 

propagation scenario, and result in different product quality.  Thus, one of the major tasks 

in setup planning is to identify the optimal setup from multiple alternatives to ensure 

product quality. 

Some research has been conducted in quality assured setup planning, addressing 

issues in setup formation, datum scheme selection and setup sequencing.  Zhang et al. 

(1996) proposed principles for achieving tolerance control proactively via appropriately 

grouping and sequencing features according to their tolerance relationships.  

Mantripragada and Whitney (1998) presented the “datum flow chain” concept to relate 

datum logic explicitly with product KPC tolerances and assembly sequences.  

Quantitative approaches were also developed to evaluate variation stack-up associated to 

different process design.  Rong and Bai (1996) presented a method to verify machining 

accuracy corresponding to fixture design.  Song et al. (2005) developed a Monte Carlo 

simulation-based method to analyze the quality impact of production planning.  Xu and 

Huang (2006) modeled the simulated quality distributions in multiple attributes utility 

(MAU) function.  Besides the simulation-based approaches, analytical methods were also 

studied to investigate the interactions between product quality and process variability.  

For a given setup plan, Stream of Variation (SoV) methodologies (Shi 2006) and state 

space modeling techniques were developed to model the dimensional variation 

propagation along different setups (Ding et al. 2002; Hu 1997; Huang et al. 2007; Jin and 

Shi 1999; Zhou et al. 2003). 
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Cost-effectiveness is another critical concern in setup planning.  It can be 

evaluated in terms of the cost related to process precision (CRPP), such as the cost to 

achieve necessary fixture precision to satisfy product quality requirements.  The precision 

refers to the inherent variability in an MMP and CRPP is the cost for achieving necessary 

precision level to ensure the satisfaction of product quality requirements.  CRPP is 

assumed to be inversely proportional to the necessary process precision.  Corresponding 

to different setup plans, different process precision is required and thus different costs are 

incurred.  Therefore, setup planning should be a discrete constrained optimization 

procedure.  Ong et al (2007) considered various cost factors in the optimization index, 

including the cost of machines and fixtures.  However, these cost factors are not directly 

linked with process precision. 

It is desirable that the optimal setup plan is the one that satisfies product quality 

specification with relatively imprecise fixtures and machines to minimize the CRPP.  

However, the setup plans developed solely based on principles and experiences could be 

very conservative.  Although they are generally feasible with respect to the quality 

consideration, cost-effectiveness may not be optimal.  For instance, in order to ensure the 

final product quality, engineers tend to conservatively select unnecessarily precise 

fixtures and thus cause unnecessary CRPP.  This is especially true for the upstream stages 

of an MMP because of the lack of the capabilities for variation propagation evaluation.  

Furthermore, in order to automate the process planning, the outcomes of setup planning 

should be effectively integrated with other activities of detailed process planning, e.g. 

fixture design.  Fixture layout design for a particular setup is critical input information for 

setup planning, whereas the setup planning results determine the MMP whose fixture 

system should be optimized on process level.  However, although the fixture layout 

design has been successfully investigated on both single stage level (Cai et al. 1997) and 

process level (Kim and Ding 2004), effective setup/fixture planning study is still 

primitive.  This is because that the qualitative-principle based setup planning provides 

limited potential for specifying quantitative precision requirements of fixture design.  In 

addition, conservative process precision requirements will make the designed fixture 

unnecessarily expensive.  This functional limitation of conventional setup planning 

significantly hinders the implementation of the process planning automation. 
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Existing setup planning approaches are summarized in Table 3-1.  As can be seen, 

most reported research has focused on the evaluation of setup plan alternatives.  Some 

work exists for conducting optimal setup planning, based on qualitative or simulation-

based evaluation of product quality.  Although the simulation provides an effective 

strategy to compare alternative setup plans regarding their output product quality, it 

consumes a substantial amount of time and computational resources. 

Table 3-1. Approaches for setup planning 

 Evaluation-Oriented              
Setup Planning 

Optimization-Oriented 
Setup Planning 

Qualitative Quality 
Evaluation 

Zhang et al. (1996); Mantripragada 
and Whitney (1998). 

Ong et al., (2007) 

Simulation-based 
Quality Evaluation 

Song et al., (2005) Xu and Huang, (2006) 

Analytical Quality 
Evaluation 

Hu, S.J. (1997); Ding et al., (2002); 
and Zhou et al. (2003), etc. 

To be studied in this 
chapter 

 

This chapter adopts an integrated setup/fixture planning strategy in process 

planning. It focuses on the systematic development of a cost-effective, quality assured 

setup planning, which is a fundamental enabler of the integrated setup/fixture planning.  

Because of the complexity of the integrated problem and the overwhelming 

computational requirements, an iterative approach is appropriate.  As illustrated in Figure 

3-2, the stage/setup level optimal fixture layouts for all candidate datum schemes are first 

determined and fixed.  In each stage, different datum scheme options may be assigned 

with different fixture layouts.  These stage/setup level fixture layouts are the inputs to the 

setup planning, together with the information on feature representation, design 

specification, constraints on datum scheme and setup sequence.  As shown in Figure 3-2, 

the development of the proposed setup planning consists of three steps: (i) Candidate 

setup formations and datum schemes are formulated based on input information. Their 

potential variation stack-up can be analytically predicted by the SoV model.  (ii) Based 

on those candidate setups defined in step (i), the setup planning is formulated as a 
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sequential decision making on an optimal series of setups that cost-effectively satisfies 

product quality specifications.  A cost criterion is defined to evaluate the optimality of  
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Figure 3-2. Overview of the proposed “SoV-based, quality assured setup planning” 

candidate setup plans under the constraints of product quality specifications.  (iii) 

Dynamic Programming (DP) is used to solve the optimal sequential decision making 

problem and generate the optimal setup plan, which provides setup information for 

subsequent activities in process planning.  Based on analytical quality evaluation strategy, 

the proposed optimal setup planning methodology will be effective and efficient.  When 

the optimal setup plan is determined, Kim and Ding (2004)’s approach can be applied to 

achieve process-level optimal fixture layout, which will be used to update the stage/setup 

level fixture layouts for repeating the iterative optimization procedure. 

The remainder of this chapter is organized as follows.  The SoV-based optimal 

setup planning methodology is introduced in Section 3.2.  Section 3.3 presents a case 

study by applying the proposed approach to generate setup plan for MMP’s.  Conclusions 

and future works will be discussed in Section 3.4.  
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3.2 Quality Assured, Cost Effective Setup Planning 

The design specifications of a machined product are often satisfied by machining 

operations performed on a series of stages.  In each stage, a set of features will be 

generated with a specific setup.  Due to the variation of the machining operations, the 

dimensional precision of the final product is affected by three major variation sources: 

(i) Machine and cutting tool, which refers to the random deviation of the cutting tools 

from their nominal paths. 

(ii) Fixture, which refers to the random deviation of the fixture locators from their 

nominal positions. 

(iii) Datum, which refers to the random deviation of the datum features, generated in 

previous stages, from their nominal positions and/or dimensions.  

Both (i) and (ii) are treated as random process deviation.  The third source exists 

because some features generated in the upstream stages are used as the datum features in 

the downstream stages according to the setup plan.  Thus, the dimensional variation, 

which is introduced by fixtures and/or machine and cutting tools in the upstream stages, 

will be propagated through datum features and accumulated in the features generated in 

the downstream stages through datum features.  Different setup plans, i.e., different 

datum schemes and different setup sequences, lead to different variation propagation 

scenarios, and thus, result in different final product quality.  In order to compare 

candidate setup plans, an effective method is needed to evaluate the impacts of potential 

datum schemes and setup sequences on the quality of final product. 

3.2.1 Variation Propagation Model for Setup Planning 

One effective tool to model the variation propagation in MMP’s is the state space 

modeling technique (Shi 2006).  Zhou et al. (2003) presented a detailed derivation and 

validation of the model with given process/product design, including the information of 

setup formation, datum scheme selection and setup sequence.  However, some additions 

are necessary due to the following unique characteristics in setup planning: 
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(i) Multiple datum scheme options: In setup planning, every stage has a set of 

candidate datum schemes.  Different datum schemes support different operations 

that generate different features, which further constrain the pool of candidate datum 

schemes for downstream stages.  Also, datum scheme selection is directly related to 

the fixture design and thus significantly affects the CRPP.  Thus, there is a need for 

explicit representation of the selected datum scheme for every stage. 

(ii) Setup precedence requirements: According to the design specifications, some 

features must be fabricated in a stage with comparatively precise datum features, 

which may be machined in an upstream stage.  This kind of precedence 

relationships is not often straightforward to determine, especially when the 

tolerance interdependences among features are complicated.  Therefore, the 

capability to explicitly represent the sequence of setups and the chain of datum 

schemes is needed to evaluate different setup precedence options. 

(iii)Tracing the setup chain: Since the CRPP is inversely proportional to the precision 

of fixtures, process planners tend to select less precise fixtures to reduce the cost.  

However, this will increase the dimensional variation of the generated features and 

increase the datum variation if some of them are used as datum in the downstream 

stages.  As a result, the datum features with large variation force the downstream 

fixtures to be very precise to satisfy quality specifications.  In other words, due to 

the complex variation propagation, relaxing the upstream process precision may 

result in the need for tighter tolerances in the downstream processes and thus 

increase the total CRPP.  Therefore, to achieve an overall cost-effectiveness, the 

variation propagation of the setup chain must be traced and explicitly modeled. 

Figure 3-3 illustrates variation propagation scenario of the setup plan of an MMP.  

The nomenclature is explained as follows: 
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Figure 3-3. Variation propagation in a setup plan 

• The datum scheme (DS) of stage k (k = 1, 2, …, N) is denoted as DS dk (dk = 1, 

2, …, Dk, where Dk is the total number of feasible datum scheme options for stage 

k).  A datum scheme refers to the coordinate system specified by a group of datum 

surfaces, within which the machining process can be performed.  Datum scheme is 

very important to the variation propagation modeling since all those three 

aforementioned variation sources affect the quality of newly generated features 

through datum, as shown in Figure 3-3. 

• Corresponding to a selected datum scheme dk in stage k, the quality of all features 

are denoted by a state vector kd
kx , with each element represents the dimensional 

deviation from its nominal value. 

• The random deviation of process variables associated with a selected datum scheme 

dk in stage k is denoted as kd
ku .  Corresponding to the major variation sources, kd

ku  

models the random process deviations of both machine/cutting tools and fixture 

locators, as defined in (Zhou et al. 2003).  Represented as deviations of the tool 

path from its nominal path, kd
ku  models many types of sources, including geometric 

and kinematics errors, thermal errors, cutting force induced errors and tool-wear 

induced errors (Zhou et al. 2003).  The elements in kd
ku  are called process variables 

and are treated as independent system input following multivariate normal 

distribution. 

• The un-modeled system noises due to the model linearization are represented by 

kw .  Compared to the deviations modeled in kd
ku  and kd

kx , the elements in wk are 
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higher order small values. kw  are assumed to be independent of any component of 

kd
ku (k = 1, 2, …, N; dk = 1, 2, …, Dk).  And, the elements of kw  are assumed to be 

independent of each other and have zero mean. 

• Since the features are measured in the coordinate system defined by the selected 

datum scheme dk, the measurements of quality are denoted as kd
ky .  In this chapter, 

the measurements are assumed to be multivariate normal. 

• The measurement noise is denoted by a random vector kv , which is independent of 

kd
kx , kd

ku  and kw  (k = 1, 2, …, N; dk = 1, 2, …, Dk).  The components of kv  are 

assumed to be independent of each other and have zero mean.  And the magnitudes 

of vk components are determined by the accuracy/precision of the measurement 

device, which are usually on the level of 1μm. 

Adopting the assumptions of rigid part and small error, a linear state space model 

can be constructed to associate the product quality with a sequence of setups according to 

the setup plan, as shown in Eq. (3.1), 

1
1 1

,    1, 2,..., ,

k k k k k

k k k

dd d d d
k k k k k k

d d d
k k k k k N

−
− −= + +

= + =

x A x B u w

y C x v
 (3.1) 

where 1
11
−

−−
kk d

k
d
k xA  represents the datum induced random deviation corresponding to the 

selected datum scheme dk in stage k, and 1
1
−

−
kd

kx is the quality, in terms of dimensional 

deviation, transmitted from upstream stages. kk d
k

d
k uB describes the impact of deviation 

from the process variables, corresponding to the selected datum scheme dk, in the quality 

of features generated in stage k.  kd
kC is the observation matrix mapping features’ quality 

to the measurements.  A validation of this SoV modeling in (Zhou et al. 2003) 

demonstrates that the SoV model can adequately represents the process errors and their 

propagations in the multistage machining process.  Ren et al. (2006) further demonstrated 

that the model linearization is valid when number of stage is moderate. 
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Figure 3-4. Datum scheme alternatives for sequential decision making 

As aforementioned, setup planning is a series of decisions based on alternative 

datum schemes for multiple stages, as illustrated in Figure 3-4.  For the optimal datum 

scheme selected for stage k, Eq. (3.1) can be reformulated as: 

1
1 1 ,

,

k k k k k

k k k

d d d d d
k k k k k k

d d d
k k k k

∗ ∗ ∗ ∗ ∗
−

∗ ∗ ∗

− −= + +

= +

x A x B u w

y C x v
 (3.2) 

where },...,2,1{ kkkk Dddd =∈∗ , for k = 1, 2, …, N, represents the index of the selected 

optimal datum scheme in stage k.  Please note that ∗
kd  is one link of the optimal datum 

scheme chain ( )**
2

*
1 ... Nddd  that is determined through considering all the stages in 

the entire processes.  Thus, ∗
kd  may not necessarily be optimal for a single stage k. 

The state space model in Eq. (3.2) can be transformed into a linear input-output 

model as: 

( ) ( ) ( )
, ,0 0 ,

1 1
,k k i i k k

k k
d d d d d d
k k k i i i k k k k i i k

i i

• • •

= =

= + + +∑ ∑y C Φ B u C Φ x C Φ w v  (3.3) 

where )(
,
•
ikΦ  is the state transition matrix tracing the datum schemes transformation from 

stage i to k-1; and ikk d
i

d
k

d
kik AAAΦ "21

21
)(

,
−−

−−
• =  for i < k, and IΦ =•)(

,kk .  Initial state vector 0x  

represents the original quality of the part that enters the first stage of the process.  

Without loss of generality, 0x is set to 0.  Then Eq. (3.3) changes to 



 

57 

( ) ( )
, ,

1 1
,k k i i k

k k
d d d d d
k k k i i i k k i i k

i i

• •

= =

= + +∑ ∑y C Φ B u C Φ w v  (3.4) 

For a selected datum scheme, dk, and the decisions on datum schemes for 

upstream stages { }121 ... −kddd , the coefficient matrices, kd
kA , kd

kB , kd
kC and )(

,
•
ikΦ  

( k,i ,...,21= ), can be derived following the same procedure as presented in (Zhou et al. 

2003).  This variation propagation modeling technique provides the setup planer a tool to 

predict the product quality of candidate datum schemes and alternative setup sequences 

of an MMP.  Compared to the method, proposed by Xu and Huang (2006), that can only 

assess the quality after the whole setup plan is defined, state space modeling provides the 

capability to assess product quality for each intermediate setup.  This modeling technique 

can be effectively incorporated into the decision making process for the optimal setup 

plan determination. 

3.2.2 Setup Plan Evaluation Strategy 

Different setup plan will result in different product quality in terms of KPC 

variation and incur different CRPP.  From the optimization point of view, setup planning 

can be formulated as a discrete constrained optimization problem. 

3.2.2.1 Optimization of the Setup Planning 

In this chapter, the objective of setup planning is to minimize the CRPP while 

satisfying the KPC quality constraints.  The mathematical representation is defined as: 

min   { ( )}

s.t.     ,   1, 2,..., . 
i

i i
i

y

C

USL LSL i Mτ
σ
−

≥ =

u
Tu uT

T

 (3.5) 

where T]...[
21 Puuu TTT=uT  is a P×1 vector with each element 

juT represents the 

tolerance of a corresponding process variable iu defined in u, and 

[ ]TT
N

TT uuuu ...21= , with ku ( Nk ,...,2,1= ) as a 1×kp  vector representing the 

process variables (i.e., fixture locator deviations) in stage k.  Please note that 
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∑ =
=

N

k kpP
1

.  M is the total number of KPC and P is the total number of process 

variables.  iUSL  and iLSL  are the predefined Upper Specification Limit and Lower 

Specification Limit of KPC iy , respectively.  
iyσ  is the standard deviation of KPC iy  

and iτ is a constant, Mi ,...,2,1= .  )( uuT TC  is the CRPP function of process tolerance.  

Various cost functions have been proposed for different tolerance synthesis.  Considering 

the structural simplicity, a reciprocal function is adopted in this chapter: 

1
  ,

j

P
j

j u

w
C

T=

= ∑Tu  (3.6) 

where jw ’s, Pj ,...,2,1= , are weighting coefficients.  These weighting coefficients 

should be determined according to practical situation.  For instance, coefficients assigned 

to the fixtures used in the same stage can be equal to each other; fixtures or machine tools 

manufactured by the same supplier or used in the same stage may be assigned with the 

same value.  More discussions on the selection of those weighting coefficients are 

provided in the case studies in Section 3.3. 

For a complicated MMP, there always exist multiple quality characteristics.  It is 

desirable to define a multivariate process capability index for process quality control.  

However, at the setup planning stage, there is no a priori information of the correlations 

between quality characteristics.  A scalar multivariate process capability index may be 

misleading if it is defined without appropriate consideration of correlations between 

quality characteristics.  Thus, in industrial applications, for the sake of convenience, most 

of the tolerance regions are specified as a collection of individual specifications for each 

variable, as defined in Eq. (3.5).  The intersection of these specifications would form a 

rectangular solid zone (Jackson 1991).  Chen (1994) proposed a multivariate process 

capability index over a rectangular solid tolerance zone V={y ∈ RM: max(|yi-μ i|/ri, 

i=1,2,…,M)≤1}.  Based on this definition, a necessary condition for a process to be 

capable over a rectangular solid zone is that each individual univariate process is capable 

with respect to the corresponding specification limits.  In addition,  according to the 

discussion of Chen (1994), correlations between quality characteristics make the process 
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more capable over a rectangular tolerance zone.  Therefore, in this chapter, individual 

process capability constraints are adopted to conservatively ensure that the setup plan is 

capable to satisfy to the specifications on all quality characteristics. 

Ding et al. (2005) studied the relationship between tolerance and variation of 

process variables through examining the clearance of the pin-hole locating pair.  In this 

chapter, the process capability ratio, /
j jj u uTη σ= , are assumed to be constants.  

Therefore, the tolerance of a process variable can be replaced by its standard deviation.  

Recall that the elements in kd
ku  are defined as the deviations of fixture locators with zero 

mean, thus their variances )( 22
ju uE

j
=σ , Pj ,...,2,1= .  Let T

uuu P
][

21
σσσ …=uΞ , 

the tolerance of process variables can be defined by 

1 2 1 2... { , , ..., }
P

T

u u u PT T T diag η η η⎡ ⎤= = ⋅⎣ ⎦u uT Ξ .  Then the objective function, 

( )CTu uT , in Eq. (3.5) can be transformed to: 

1
( )     .

j

P
j

j j u

w
C

η σ=

=
⋅∑u u  (3.7) 

3.2.2.2 Dynamic Programming formulation 

Previous sections present the techniques that enable: (i) the description of the 

impacts of datum scheme selection and setup sequencing on the variation of product 

quality, (ii) the modeling of the variation propagation, and (iii) the quantitative evaluation 

of the candidate setup plans.  Based on these enablers, setup planning can be formulated 

as a sequential decision making on the selections of datum schemes in all stages to satisfy 

quality specifications with overall cost-effectiveness.  In this sequential decision making 

problem, the datum scheme selected for stage k is affected by that selected for the 

upstream stages and will affect that selected for the downstream stages.  This 

characteristic is identical to that of dynamic programming (DP) problem.  Therefore, DP 

methodology is adopted to solve the optimization problem.   
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Figure 3-5 illustrates a sequential decision process for a chain of datum scheme 

selection.  There are N+1 columns in the diagram, representing the N stages of the 

machining processes, and an initial DP state ),( 0x• .  Each column k (k = 1, 2,…, N) 

consists of Dk nodes, corresponding to Dk feasible datum schemes.  A node ),( kd
kk xQ , dk 

=1, 2,…, Dk, in Figure 3-5 is a DP state that represents the datum scheme selection in 

stage k, where kQ defines the in-process quality specifications for the features generated 

from stage 1 to stage k.  Since the quality specifications for the incoming part is not 

related to the quality consideration of the machining process, it is set to “• ” in the initial 

DP state, i.e., not specified.  According to Eq. (3.5), kQ is an MM × matrix with the 

diagonal elements ( ) 2

, , , , ,k i i k i k i iq USL LSL τ⎡ ⎤= −⎣ ⎦   ;,...,2,1 Mi =  Nk ,...,2,1= . ikUSL ,  and 

ikLSL ,  are the given in-process specification limits for KPC i in stage k.  The off-diagonal 

elements of kQ can also be specified regarding to the covariance matrix structure of 

kd
ky for a given dk.   The connections linking nodes in column k-1 to those in column k 

reflect state transitions.   
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Figure 3-5. DP network of setup planning decision sequence 
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Given the datum scheme and setup sequence selected for upstream stages, 

different nodes from two neighbor stages are connected or disconnected, according to the 

pre-defined datum scheme constraints.  Although there are Dk potential DP states for each 

stage, the process planner observes only the one that is finally selected.  Therefore, the 

concept of “DP-stage” ),( kk xQ is defined to “contain” all the possible states, ),( kd
kk xQ , 

dk =1, 2,…, Dk, in a column k (Denardo 2003).  As shown in the bottom portion of Figure 

3-5, the ku  “contains” all the possible kd
ku ’s, dk =1, 2,…, Dk.  Associated with each DP-

stage is a set of decisions kΘ  on datum scheme selection. 

Selecting datum scheme, dk, incurs cost ),( kkk dV u  and implements transition 

from DP-stage ),( 11 −− kk xQ to DP-stage ),( kk xQ .  Let ),( kkk duq be the constraints on 

the KPC variations generated in stage k if datum scheme dk is selected.  In other words, 

),( kkk duq  is the maximum KPC variations that can be allowed after the fabrication 

performed in stages 1 through k.  Also let ),),,(( 1−kkkk ddt xQ  be the state transition 

function linking 1
1
−

−
kd

kx  and kd
kx , then Eq. (3.1) can be of the form 

k
d
k

d
k

d
k

d
kkkkk

d
k

kkkkk ddt wuBxAxQx ++== −
−−−

1
111 ),),,(( .  The decision-making on dk’s, 

(k=1,2,…, N) repeats itself for all stages, following ),),,(( 1−kkkk ddt xQ .  The cost of 

decision dk in stage k is defined as 

,
1

( , ) ( )     ,
k

k
dk
k

dk
k j

p
jd

k k k k
j j u

w
V d C

η σ=

= =
⋅∑u

u u  (3.8) 

where kp ( Nk ,...2,1= ) is the dimension of kd
ku  and ∑ =

=
N

k kpP
1

.  kd
jku ,

σ  is the standard 

deviation of the jth element of kd
ku , kpj ,...,2,1= .  This cost can be interpreted as the 

cost consumed to provide enough process precision for stage k, corresponding to the 

selected datum scheme dk.  Let ),( kkL xQ  be the minimum CRPP that is consumed from 

stage 1 to stage k by selecting datum schemes d1, d2,…, dk, and generating quality 

variation at most kQ , the DP function can be defined as: 
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⎨
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 (3.9) 

where kQ is pre-defined, ),( kkk duq  and ),( kkk dV u  can be derived based on the state 

space model (1).  According to Eq. (3.4), the covariance matrix of kd
ky  is: 

 
( ) ( ) ( ) ( )

( ) ( )

1 T T( ) ( ) ( ) ( )
, , , ,

1

( ) ( )
, ,

1

 

                ,

k i k i k k k k
d d dk i k

ik k

k k

i k

k
d d d d d d d d
k k i i k k i i k k k k k k k k

i
k Td d

k k i k k i
i

−
• • • •

=

• •

=

= +

+ +

∑

∑

y u u

w v

Σ C Φ B Σ C Φ B C Φ B Σ C Φ B

C Φ Σ C Φ Σ
(3.10) 

where •Σ is the covariance matrix for variable “ • ”.  Eq. (3.10) shows that the KPC 

covariance can be treated as the accumulated covariance of all process variables used 

from stage 1 to stage k, plus the covariance of the un-modeled process variations and the 

variance of measurement noise.  In order to ensure that the product quality generated 

from stage 1 to stage k satisfies the specifications, dk
ky

Σ  should satisfy the specification 

,

2
, , ,  1, 2,..., ,dk

k i
k i is q i Mσ ≤ ⋅ =

y
 (3.11) 

where 2

,
kd
iky

σ is the ith diagonal element of matrix kd
ky

Σ , iikq ,,  is the ith diagonal element of 

matrix kQ and the scalar s is a safety-factor ( 10 ≤≤ s ).  Since kw and kv contains second 

or higher order of small values whose magnitudes are much smaller than that of kd
kx  and 

kd
ku , their contributions to the kd

ky
Σ  can be ignored.  Thus, by eliminating the third and 

the fourth terms of the right-hand-side of Eq. (3.10), kd
ky

Σ can be approximated by 

( ) ( )

( ) ( )

1 T( ) ( )
, ,

1
T( ) ( )

, ,                             .

k i k i
d dk i

ik

k k k k
dk
k

k
d d d d
k k i i k k i i

i

d d d d
k k k k k k k k

−
• •

=

• •

=

+

∑y u

u

Σ C Φ B Σ C Φ B

C Φ B Σ C Φ B

�
 (3.12) 
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The first term on the right-hand-side of Eq. (3.12) stands for the quality covariance 

(measured based on datum scheme dk) accumulated from stage 1 to stage k, whereas the 

second term stands for the quality covariance generated in stage k by selecting datum 

scheme dk.  Let 

( ) ( )
1

1 T( ) ( )
, ,

1
,k i k i

di
k i

k
d d d d
k k i i k k i i

i
•

−

−
• •

=

= ∑y u
Σ C Φ B Σ C Φ B�  (3.13) 

be the quality covariance accumulated from stage 1 to stage k-1, the amount of newly 

generated quality covariance can be derived as: 

( ) ( )
1

T( ) ( )
, , .k k k k

d dk kk kk k

d d d d
d k k k k k k k k•

−

• •= − =
yy u

Σ Σ Σ C Φ B Σ C Φ B� �  (3.14) 

Since the process cost modeled in Eq. (3.7) is inversely proportional to the process 

variations.  In order to minimize the process cost, process variations, the diagonal 

elements in dk
ku

Σ , k=1,2,…N, should be relaxed as much as possible.  This will lead to the 

increase of the KPC variations defined by the diagonal elements in dk
ky

Σ� .  Considering the 

quality constraints specified by Qk, kd
ky

Σ~  should satisfy 

,dk
k

ks=
y

Σ Q�  (3.15) 

where s is the same as that defined in Eq. (3.11).  Given the kQ ’s, Nk ,...,2,1= , the 

constraints ),( kkk duq has the form 

( )
( ) ( )

1

T( ) ( )
, ,

( , )

                   .

k

k k k k
dk
k

k k k k

d d d d
k k k k k k k k

d s •
−

• •

= −

=

y

u

q u Q Σ

C Φ B Σ C Φ B

�
 (3.16) 

From Eq. (3.16), the covariance matrix of kd
ku  can be derived as 

( ) ( ) ( )
1

T( ) ( ) , dk
kk

k k ks •
−

−−• •⎡ ⎤= − ⎢ ⎥⎣ ⎦yu
Σ Γ Q Σ Γ�  (3.17) 
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where kkkk d
k

d
k

d
kkk

d
kk BCBΦCΓ == •• )(

,
)( , and ( )−Δ  denotes the Moore-Penrose inverse of the 

rectangular matrix Δ .  •
−1

~
ky

Σ  contains the variation propagation information and is 

determined by the datum scheme selection and sequencing decisions made for upstream 

stages.  When )(•
kΓ  is column-wise full rank, Eq. (3.17) can give a real solution of kd

ku
Σ .  

Assuming that the process variables are mutually independent, the tolerance specification 

for kd
ku  can be obtained by a pk ×1 vector 

T
1 2[ ]  ,k k k

dk kk

d d d
k k k pη σ η σ η σ=

u
T …  (3.18) 

where ( )2
kd

jσ is the jth diagonal elements of ,dk
ku

Σ j=1,2,…,pk, k=1,2,…,N and dk= 

1,2,…Dk.  According to the definition of kd
ku , dk

ku
T contains the tolerance of 

machining/cutting tools and fixture locators.  In order to increase the exchangeability of 

fixture locators, improve maintainability of the fixture system, and reduce the “Long-Run 

Overall Production Cost,” different locators on the same fixture are assigned with the 

same tolerance, as discussed by Chen et al. (2006).  Therefore, fixture locators’ 

tolerances can also be specified as kd
kη σ∗ , where min{ }k k

f

d d
jj J

σ σ∗ ∈
=  and Jf is a set 

containing all the index of fixture locators in kd
ku .  With Equations from Eq. (3.8) to Eq. 

(3.18), setup planning can be formulated as solving a series of DP functional equations 

3.2.2.3 Optimization algorithm 

Reaching algorithm (Denardo 2003) is used to solve the dynamic programming 

problem defined in Eq. (3.9).  According to Figure 3-5, the value of each DP-state node 

),( kd
kk xQ  is denoted as 

kdks , , which represents the minimum process precision cost 

incurred so far from stage 1 to stage k by selecting datum scheme dk in stage k.  Let 1
,

−k

k

d
dkv  

denote the corresponding cost incurred in stage k corresponding to datum selections of 

the upstream stage k-1 and that of the stage k, and ),(1
, kkk

d
dk dVv k

k
u=− .  The pseudo code 

of the reaching algorithm is defined as: 
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(i) Set 0,0 =•s  and +∞=
kdks ,  for k =1, 2, …, N; dk =1, 2, …, Dk , 

(ii) DO for k = 1, 2,…, N 

(iii) DO for dk = 1, 2, …, Dk 

{ }1

1
1 1

, , 1, ,min , inf { } .k

k k k k
k k

d
k d k d k d k dd

s s s v
Θ

−

−
− −

−∈
← +  

In this algorithm, 1
,
k

k

d
k dv −  will be set to ∞ for an infeasible datum scheme selection.  

This value indicates that, given the variation accumulated in upstream stages, the selected 

datum scheme at current stage cannot meet the quality specification.  The final results 

include (i) the minimized total CRPP, ),( NNL xQ ; (ii) a sequence of decisions 

( )**
2

*
1 Nddd …  on datum schemes for a sequence of stages, which is the optimal setup 

plan; and (iii) the tolerance specifications, uT , of the fixtures used in all stages. 

 

Figure 3-6. Part drawing and KPC specifications 

3.3 Case Study 

A case study is conducted to demonstrate the SoV-model based, quality assured 

optimal setup planning for an MMP.  The product KPC and their associated design 

specifications are defined in Figure 3-6.  Based on the analysis of features locations and 

tooling approaching directions, a 3-stage machining process is proposed.  The candidate  



 

66 

 

Figure 3-7. Setup options for a 3-stagae machining process 

datum schemes for each stage are proposed and shown in Figure 3-7.  Correspondingly, 

stage/setup level fixture layouts are assumed as given.  These include general 3-2-1 

fixturing schemes (e.g., Setup Option 1_1) and pin-hole fixturing schemes (e.g., Setup 

Option 2_1), as discussed by Zhou et al.(2003). 

Table 3-2. Setup options for the 3-stage machining process 

Stage Index 
1 2 3 

DS: TF-FF-RF DS: BF-BF11-BF12 DS: BF-BF11-BF12 1 
SF: BF, BF11, 

BF12 
SF: FF, FF11, FF12, 

KF 
SF: TF, TF11, LF, LF11, LF12, 

RF, RF11, RF12 
       

DS: FF-TF-RF DS: BF-BF11-BF12 DS: FF-FF11-FF12 2 
SF: BF, BF11, 

BF12 
SF: TF, TF11 SF: FF, FF11, FF12, KF, LF, 

LF11, LF12, RF, RF11, F12 
       

DS: BF-FF-LF DS: TF-FF-RF DS: BF-BF11-BF12 3 
SF: TF, TF11 SF: BF, BF11, BF12 SF: TF, TF11, LF, LF11, LF12, 

RF, RF11, RF12, KF 
 

Table 3-2 summarizes the alternative datum schemes (DS) and setup formations 

(SF) for each stage.  Corresponding to these datum scheme candidates dk’s (k=1, 2, 3), the 
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coefficient matrices in state space models, kd
kA , kd

kB and kd
kC , are generated. According 

to the constraints on datum scheme and datum sequence, the DP network is established, 

as shown in Figure 3-8. 
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Figure 3-8. DP network for the 3-stagae machining process 

The intermediate results are summarized in Table 3.  The optimal setup plan is 

identified and highlighted, in Figure 3-8, as the bold path.  The optimal setup plan is: (i) 

in the 1st stage, the part is fixed with datum features BF, FF and LF, and features TF, 

TF11 are generated; (ii) in the 2nd stage, the part is fixed with datum features TF, FF and 

TF, and features BF, BF11 and BF12 are generated; (iii) The remaining features will be 

generated in the 3rd stage with the part being fixed on datum features BF, BF11 and 

BF12.  This optimal setup plan can be denoted as a DFC: {{BF-FF-LF}, {TF-FF-TF}, 

{BF-BF11-BF12}}, with the total CRPP of 79.983. 

Table 3-3. Intermediate results of reaching algorithm 

Stage 
kdks ,  

1 2 3 
1 31.275 60.095 87.791 
2 47.244 68.744 98.085 Setup option kd  

3 17.408 40.742 79.983* 
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One of the by-products of the SoV-based setup planning methodology is the 

tolerance specifications for the fixture design.  In this case study, based on the ∗
iu

σ ’s, 
i
∗u

T  

(i=1, 2, 3) are given as 
1
∗u

T =[0.086 0.086 0.086 0.086 0.086 0.086]T, 
2
∗u

T = [0.037 0.037 

0.037 0.037 0.037 0.037] T, and 
3
∗u

T = [0.019 0.019 0.019 0.019 0.019 0.019] T. The 

fixture design that meets these specifications will be cost-effective and sufficiently 

precise to ensure the product quality.  The results show that the fixtures for upstream 

stages, i.e., stage 1 and stage 2, are not required to be as precise as that for the 

downstream operations, i.e. the optimal setup plan is not conservative. 

Sensitivity analysis was also conducted to examine the impact of the assignments 

of weighting coefficients’ values on the optimization results.  It is assumed that: (i) the 

weighting coefficients assigned to the locators belonging to the same fixture are the same; 

(ii) fixtures used at stage 1 will be assigned different weighting coefficients from that 

assigned to fixtures used at stage 2 and stage 3, and (iii) the weighting coefficients 

assigned to fixtures used in stage 2 and stage 3 are the same.  For instance, if a sum of 

weighting coefficients, 0.1 (0.1/6 for each locator) is assigned to stage 1 fixture, that for 

fixtures in stage 2 and stage 3 will be 0.45 (0.45/6 for each locator).  

Table 3-4. Impact of sum weighing coefficients on optimization results 

Case 
Number 

Sum Weighting 
Coefficients for 

Stage 1 
Optimal Setup Plan 

1 0.1 {{FF-TF-RF},{ BF-BF11-BF12},{BF-BF11-BF12}} 
2 0.2 {{BF-FF-LF},{TF-FF-TF},{BF-BF11-BF12}} 
3 0.3 {{BF-FF-LF},{TF-FF-TF},{BF-BF11-BF12}} 
4 0.4 {{BF-FF-LF},{TF-FF-TF},{BF-BF11-BF12}} 
5 0.5 {{BF-FF-LF},{TF-FF-TF},{BF-BF11-BF12}} 
6 0.6 {{BF-FF-LF},{TF-FF-TF},{BF-BF11-BF12}} 
7 0.7 {{BF-FF-LF},{TF-FF-TF},{BF-BF11-BF12}} 
8 0.8 {{BF-FF-LF},{TF-FF-TF},{BF-BF11-BF12}} 
9 0.9 {{BF-FF-LF},{TF-FF-TF},{BF-BF11-BF12}} 
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Table 3-4 shows the optimization results associated to different combinations of 

the coefficients assignments.  The optimal setup plans are consistent, except for case 1, 

where fixture in stage 1 is significantly under-weighted with a weighting coefficient 0.1.  

This indicates that the optimization result for this case study is not sensitive to the value 

of weighting coefficient.  This is because the datum scheme option 3 for stage 1 

significantly out-performs the other two options in terms of CRPP.  The differences 

among those three options dominate the whole optimization of the three stages, as shown 

in Figure 3-8. 

3.4 Conclusion 

This chapter proposed a methodology for optimal setup planning for MMP’s.  

Based on the SoV concept, state space modeling technique is expanded to be applicable 

to datum selection and setup sequencing decisions.  The SoV model provides the basis 

for quantitative, analytical evaluation of the quality impacts of candidate setup plans.  

This evaluation capability enables the formulation of the setup planning as an 

optimization problem that minimizes the CRPP with the final product quality as 

constraints. DP is employed to solve this sequential optimal decision making problem. 

In the proposed method, setup planning is formulated as a Dynamic Programming 

problem, which provides a nice representation of the sequential decision making 

procedure.  However, one disadvantage of DP is that it needs intensive computational 

resources.  When the number of stages and the number of alternative datum schemes are 

getting large, the cost for obtaining an optimal solution will be unaffordable.  Potential 

solutions include: (i) Using different formulation, such as reinforcement learning, 

neurodynamic programming or approximate dynamic programming; (ii) Incorporating 

engineering domain knowledge to decouple an MMP into smaller segments of sub-

processes and/or add more constraints to reduce the number of alternative datum schemes.  

These topics will be investigated in our future work. 
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CHAPTER 4  
 

ENGINEERING-DRIVEN FACTOR ANALYSIS FOR VARIATION SOURCES 

IDENTIFICATION IN MULTISTAGE MANUFACTURING PROCESSES3 

Abstract 

Variation source identification is an important task of quality assurance in 

multistage manufacturing processes (MMP).  However, existing approaches, including 

the quantitative engineering-model-based methods and the data-driven methods, provide 

limited capabilities in variation sources identification.  This chapter proposes a new 

methodology that does not depend on accurate quantitative engineering models.  Instead, 

engineering domain knowledge about the interactions between potential variation sources 

and product quality variables are represented as qualitative indicator vectors.  These 

indicator vectors guide the rotation of the factor loading vectors that are derived from 

factor analysis of the multivariate measurement data.  Based on this engineering-driven 

factor analysis, a procedure is presented to identify multiple variation sources that present 

in an MMP.  The effectiveness of the proposed methodology is demonstrated in a case 

study of a three-stage assembly process. 

                                                 

 

3 Liu, J., Shi, J., and Hu, S.J., 2007, accepted by ASME Transactions, Journal of Manufacturing Science and Engineering, 
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Nomenclature 

y:  a p×1 vector containing random deviations of p KPC’s 

us:  an s ×1 vector containing random deviations of s process variation sources that 

present in the process 

Γs:  a p× s matrix with each column a spatial pattern vector of a variation source  

p:  the number of KPC’s 

s:  the number of variation sources that present in the process 

L:  a p× s initial loading matrix with each column vector, lj, an initial factor loading 

vector 

lj:  an p×1 initial factor loading vector, and lj is orthogonal to lt when j≠t, j,t=1,2,…, s  

L*: a p× s rotated loading matrix with each column vector, *
jl , an rotated factor loading 

vector 

*
jl :  a p×1 rotated factor loading vector, j=1,2,…, s  

T: a p× M indicator matrix with each column vector, τm, an indicator vector derived 

from engineering knowledge representation 

τm:  a p×1 indicator vector, m=1,2,…, M 

Μ: the number of potential variation sources 

kikF : : the ik
th feature in stage k,  ik=1, 2, …, nk 

nk : the number of features in stage k 

klkFX : : the lk
th fixtures  used in stage k, lk=1, 2,…, tk 

tk: the number of fixtures used in stage k 
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4.1 Introduction 

Variation source identification is an important task of quality assurance in 

multistage manufacturing processes (MMP’s) (Ferrell and Elmaghraby 1990).  The 

variation sources are special causes of variation in key product characteristics (KPC’s).  

Since KPC’s variation affects the final product quality as well as the manufacturing 

system productivity (Heikes and Montgomery 1981), it is essential to conduct variation 

reduction by detecting process variation changes and identifying the underlying variation 

sources.  This is especially challenging for MMP’s, where multiple stages are involved in 

generating designated KPCs or functionality of a product.  As illustrated in Figure 4-1, in 

stage k of an MMP, special causes (Montgomery 2004) (e.g., excessive variation of the 

locations of locating pins) will increase the variation of some KPC’s measurements to a 

level that exceeds their tolerances.  Compounded with the input quality transmitted from 

preceding stages, these quality problems will be further propagated to the downstream 

stages and accumulated to the final product.  In order to trace the variation propagation 

and monitor an MMP, it is ideal to take measurements in every stage.  However, to 

reduce the inspection cost, it is customary to measure KPC’s only after the final stage, 

e.g., stage N, as shown in Figure 4-1.  Therefore, the complex variation propagation and 

the lack of in-process measurements make it extremely difficult to identify the variation 

sources in an MMP (Shi 2006). 

 

Figure 4-1. Complex variation propagation scenario in an MMP 

Variation source identification can be accomplished by investigating multiple 

KPC’s and their spatial patterns, since the spatial patterns reflect the characteristics of the 

variation sources.  As shown in Figure 4-2 (a), part A and part B are fixed by fixture 
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locating pins, P1 to P4, and are assembled in stage 1.  P1 and P3 are 4-way pins that 

restrain the degree of freedoms of the parts along X and Z axes, whereas P2 and P4 are 2-

way pins that restrain the parts from rotating around the axis perpendicular to the XZ 

plane.  The subassembly is then assembled with Part C in stage 2.  Five (5) features, two 

locating holes, F1 and F3, and three corner points, F2, F4 and F5, are considered and their 

position along X and Z axes are the KPC’s.  The variations of the locating pins are the 

variation sources since they cause excessive variation in the KPC’s. For instance, in stage 

1, the variation of P4 along z direction, defined as a variation source P4_z, leads to orient- 

 

Figure 4-2. KPC’s, variation source and their SPV’s 

ation variation of Part B and thus causes the position variation of F4.  KPC’s are grouped 

together to form spatial pattern vectors (SPV’s), which describe the effects of a variation 

sources. As shown in Figure 4-2 (c), P4_z’s SPV is a 10×1 vector corresponding to 10 

KPC’s.  In stage 1, only F4 are affected by P4_z, thus F4(x) and F4(z) in the SPV will be 

non-zero values, denoted as “#”.  Because of the variation propagation caused by parts’ 

reorientation, P4_z’s SPV in stage 2 is different, indicating that F2, F3 and F4 are all 

affected by P4_z  introduced in preceding stage 1.  Figure 4-2 shows that each individual 

potential variation source in a stage of an MMP will have its particular SPV.  This one-

to-one relationship makes it possible to identify the variation sources by investigating the 

SPV’s, which are either derived from engineering domain knowledge about 

product/process design, or estimated from multivariate measurements of KPC’s. 
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Table 4-1. Summary of reported variation source identification approaches 

 Engineering-Driven Data-Driven 

Features 

• SPV’s are derived from accurate a 
priori engineering knowledge of 
product/process design. 

• SPV’s are defined with exact 
values. 

• Variation sources are identified by 
engineering-model-based direct 
estimation. 

• SPV’s are estimated from 
multivariate quality measurement 
data. 

• Exact values of true SPV’s are 
unknown. 

• Variation sources are identified by 
pattern interpretation according to 
engineering knowledge. 

Limitations 

• Comprehensive and accurate 
engineering knowledge is 
mandatory. 

• Diagnostic results are not robust to 
unknown tooling position due to 
adjustments or worn out. 

• Engineering knowledge is not 
directly involved in the estimation of 
SPV’s. 

• Achieved spatial patterns may not be 
the best estimates of true SPV’s. 

 

Progresses have been made in recent years in developing methodologies to 

implement this basic idea in MMP’s (Shi 2006).  Existing approaches can be divided into 

two categories: engineering-driven approaches and data-driven approaches, as 

summarized in Table 4-1. 

Engineering-driven approaches intend to directly link the engineering knowledge 

of the process variation sources with the KPC measurements through mathematical 

modeling.  Jin and Shi (1999) developed the state space models to represent the 

geometrical relationships between KPC and process key control characteristics (KCC’s) 

according to product/process design information.  Mantripragada and Whitney proposed 

a “datum flow chain (DFC)” concept for an assembly (1998) and explicitly defined it in a 

discrete state transition model to describe the variation propagation in assembly process 

(Mantripragada and Whitney 1999).  State space modeling techniques are further 

investigated and applied in assembly processes (Camelio et al. 2003; Ding et al. 2002) 

and machining processes (Djurdjanovic and Ni 2001; Huang et al. 2000; Zhou et al. 

2003).  These modeling approaches lead to a generic linear model: 

,y = Γu + v  (4.1) 
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where y ( 1×ℜ∈ py ) is a vector of dimensional deviations of p KPC’s.  Vector u ( 1×ℜ∈ Mu ) 

consists of the deviations of M potential process variation sources.  Γ ( Mp×ℜ∈Γ ) in 

engineering-driven approaches is a constant coefficient matrix derived from the 

product/process design and it describes the linear interactions between process (potential 

variation sources) and product (KPC’s).  The negligible un-modeled factors and 

measurement noise are represented by vector v ( 1×ℜ∈ pv ).  Based on the linear model 

(4.1), diagnostic approaches have been developed (Ding et al. 2002; Zhou et al. 2004).  

These engineering-model-based techniques fundamentally improve the capability of 

variation sources identification.  However, significant effort is needed to derive and 

validate the exact values of the coefficients of the model, i.e., the values of the elements 

in matrix Γ.  The dependence on comprehensive and accurate a priori engineering 

knowledge also impacts the robustness of the diagnosis approach.  When unknown 

tooling adjustments are performed, the engineering knowledge will be either 

incomprehensive or inaccurate.  Thus the model will no longer reflect the true linear 

interactions between process and quality and may lead to unreliable or misleading 

diagnostic results. 

Data-driven approaches avoid the dependence on accurate a priori engineering 

knowledge and complex model derivation.  Wolbercht et al. (2000) developed a system 

to implement real time monitoring an diagnosis of MMP’s using Bayesian networks.  The 

method depends on in-process measurement data collected at several points throughout 

the process.  When the KPC measurements are only available at the final stage, diagnosis 

is conducted by directly estimating the SPV’s imbedded in the multivariate 

measurements of KPC’s and matching them to the expected SPV’s of potential variation 

sources.  This is equivalent to estimating a matrix Γs whose s column vectors are the 

SPV’s of the s variation sources that actually present in an MMP.    Ceglarek and Shi 

(1996) employed a principal component analysis (PCA) technique to extract a single 

spatial pattern from KPC covariance matrix and compare them with predefined spatial 

patterns of potential variation sources.  Liu et al. (1997) proposed a factor analysis (FA) 

based method to diagnose an MMP through investigating multiple orthogonal SPV’s.  

The diagnosis capability of those approaches is confined by the assumptions of 
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orthogonality.  Apley and Shi (2001) developed an FA method to extract and interpret the 

SPV’s of the variation sources.  An assumption a ragged lower-triangular Γ matrix is 

mandatory.  Independent component analysis techniques were also used by Apley and 

Lee (2003) to separate variation sources “blindly,” with constraints on auto-correlation 

and distribution conditions.  Jin and Zhou (2006) developed a method to identify 

variation sources through analyzing fault space, which is spanned by the eigenvectors of 

the covariance matrix of measurement data.  However, when there is more than one 

variation sources present in a process, the estimated SPV’s will be different from the true 

SPV’s and thus insufficient to guide corrective actions.  This is because that the existing 

data-driven methods do not directly use the engineering knowledge when analyzing the 

multivariate statistics of KPC measurements. 

 

Figure 4-3. Overview of the proposed approach 

In order to improve the interpretation of data-driven approaches and avoid 

dependence on accurate models, it is important to directly use the engineering knowledge 

to direct statistical data analysis.  Liu and Hu (1997) and Camelio and Hu (2003) 

developed designated component analysis (DCA) approach based on mutually orthogonal 

designated variation patterns that are derived directly from knowledge of product/process 
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design.  This approach facilitates the diagnosis of multiple fixture faults that present in a 

single stage of an assembly process.  However, it has limited potential to be applied in 

MMP’s.  This is because that variation propagation along stages will make the designated 

variation patterns more complicated and thus un-orthogonal to each other.  And the 

orthonomalization of those patterns will change their physical interpretations and result in 

misleading diagnostic conclusion.  In this chapter, an engineering-driven FA method is 

proposed for estimating multiple non-orthogonal true SPV’s and identifying their 

underlying variation sources in MMP’s.  This method involves four steps: (i) converting 

engineering domain knowledge into qualitative indicator vectors, (ii) deriving the initial 

principal factor loading vectors, (iii) rotating the initial factor loading vectors to estimate 

the true SPV’s, and (iv) identifying of multivariate variation sources, as shown in Figure 

4-3.  Different from existing data-driven methods, the engineering knowledge of the 

impacts of potential variation sources is systematically represented in a set of qualitative 

indicator vectors to directly guide the factor rotation.  The rotated factor loading vectors 

are the best estimation of true SPV’s and therefore, can be used to best interpret the true 

nature of the variation sources and to direct corrective actions.  Compared to the 

engineering-driven methods, it is robust to process changes since no exact model 

coefficient values are needed.  This method effectively integrates the engineering 

knowledge with statistical analysis of multivariate KPC measurements.  It combines the 

advantages of the engineering-driven approaches and data-driven approaches, and 

overcome their limitations. 

The remainder of this chapter is organized as follows.  Section 4.2 provides an 

overview of the proposed methodology and presents the necessity of the engagement of 

engineering domain knowledge in guiding SPV estimation. Section 4.3 introduces the 

qualitative representation of engineering domain knowledge and engineering-driven 

factor analysis for variation sources identification.  Case study results are presented in 

Section 4.4 to demonstrate the capability of the proposed method.  Conclusions and 

future works are discussed in Section 4.5. 
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4.2 Overview of the Methodology 

This chapter focuses on directly incorporating the engineering knowledge in 

guiding the estimation of SPV’s.  The variation sources identification starts from 

statistically analyzing multivariate KPC measurements, collected at the final stage of an 

MMP.  The objective is to detect large variations, estimate their SPV’s, and interpret or 

map them with the expected spatial patterns.  This can be achieved by analyzing the 

covariance matrix of KPC measurements with the FA method (Lawley and Maxwell 

1971) that adopts the linear model defined in Eq. (4.1).  Following assumptions about Eq. 

(4.1) are made: 

(i) y follows p-dimensional multivariate normal distribution, i.e., y~Np(μy,Σy).  Since 

only the quality problem manifested as increased KPC variations are considered in 

this chapter, it is assumed that μy=0. 

(ii) us is an s×1 (s < p) unknown vector containing the deviations of s variation sources 

that present in an MMP.  It follows an s-dimensional multivariate normal 

distribution, i.e., us ~ Ns(0, 
suΣ ).  Since the variation sources, e.g., fixture locators, 

are often fabricated, installed and maintained separately for different stations, it is 

reasonably to assume that 
suΣ is a diagonal matrix. 

(iii)Different from that defined in Eq. (4.1), FA assumes that Γs  (Γs=[γ1 γ2 ... γs]) is an 

unknown constant p×s matrix that reflects the linear impacts of us on y.  Each 

column vector γi is called a loading vector corresponding to the ith element in u, and 

in this chapter, the column vector γi is an SPV of the ith variation source. The 

objective of the proposed method is to estimate the γi’s, i=1,2,…,s, in Γs to 

investigate the natures of the variation sources and identify them. 

(iv) v follows a p-dimensional multivariate normal distribution, i.e., v~Np(0,Σv). In this 

chapter, it is assumed that all KPC’s are measured by the same measuring device.  

Thus, measurement noises are independent of each other, i.e., Σv=σ2I, where σ2 is a 

scalar and I is an identity matrix with an appropriate dimension.  It is also 
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reasonable to assume that v is independent of us, i.e., the measurement noises are 

independent of the variation sources. 

With the above assumptions, the covariance matrix of y can be computed as 

T
ss s= +y u vΣ Γ Σ Γ Σ , (4.2) 

The first step in estimating Γs is to determine the number of variation sources 

present in an MMP, i.e., s.  Based on the eigenvalue-eigenvector pairs derived from 

eigen-decomposition of yΣ , s can be determined by Akaike Information Criterion (AIC) 

and Minimum Description Length (MDL) criterion, as defined in Eq. (4.3) and Eq.(4.4), 

),2()/log()()(AIC qpqgaqpnq qq −+−=  and  (4.3) 

,2/)log()2()/log()()(MDL nqpqgaqpnq qq −+−=  (4.4) 

where n is the sample size, and q is the number of the largest eigenvalues considered.  aq 

and gq are the arithmetic mean and the geometric mean of the rest (p-q) smallest 

eigenvalues of yΣ , respectively.  In order to determine s, AIC(q) and MDL(q) are 

iteratively evaluated for q=1, …, p-1, and s is equal to the q* that minimizes AIC(q*) or 

MDL(q*).  As recommended by Apley and Shi (Apley and Shi 2001), when small 

magnitudes of variations are expected, adopting AIC will result in a high probability of 

correct number estimation.  Otherwise, MDL criteria should be adopted to achieve 

consistent estimation of q*. 

Apley and Shi (2001) showed that if s variation sources are present in the process, 

the enginvalues of Σy, λi (i=1, 2, …, p), will have a relationship such that λ1 ≥ λ2 ≥ … ≥ 

λs > σ2 = λs+1= … = λp .  In addition, Jin and Zhou (2006) showed that the s eigenvectors 

associated with the largest s eigenvalues of Σy span the same linear space of the s SPV’s 

in Γs .  Therefore, it is applicable to estimate the true SPV’s by performing an eigen-

decomposition of Σy, 
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where Es=[e1 e2 … es] and Λs=diag{λ1, λ2, ..., λs} are the matrix composed of 

eigenvectors ei and λi, respectively.  L = [l1 l2 … ls] = Es(Λs − σ2Ι)1/2  is the loading 

matrix in FA, where li’s, i=1,2,…, s, are initial loading vectors that are orthogonal to each 

other. Compared to Eq.(4.2), li’s are the initial estimates of the scaled γi’s since span{l1 

l2…ls} = span{γ1 γ2 ... γs}.  σ2I is assumed to be the covariance matrix of measurement 

noise, i.e., Σv .   However, in practice, the value of σ2 is often not available, or the Σv is 

not in such a simple structure.  Therefore, an approximation of L can be achieved by 

2/1
ssΛEL ≈ . (4.6) 

This approximation will make the initial factor loading vectors deviate from their true 

values.  According to the investigation conducted by Li, et al. [23], when σ2 is much 

smaller than λi, i=1,2,…,s, the deviations will be negligible. 

When there is a single variation source present in an MMP, i.e., s=1, the initial 

estimation, l1, is an effective estimation of the scaled true SPV of that variation source 

(Ceglarek and Shi 1996).  However, when there are multiple variation sources, i.e., s > 1, 

the eigenvectors may not be coincident with SPV’s of the s variation sources, unless 

those true SPV’s are orthogonal to each other.  Treating the eigenvector-based loading 

vectors as estimates of true SPV’s may yield non-interpretable or even misleading results 

and consequently provide limited information for diagnosis and corrective actions.  Thus, 

the orthogonal factor loading vectors should be rotated, obliquely, to estimate true SPV’s 

of the variation sources.  Various oblique factor rotation methods have been developed 

based on explanatory criteria to achieve simple structure and improved factor 

interpretability (Darton 1980). However, these criteria have limited justification for the 

diagnostic purpose, since the rotated loading vectors may not be effective in estimating 

the true SPV’s of variation sources.  Target rotation (Lawley and Maxwell 1971) 

provides directional information for factor rotation with hypothesized patterns.  This 

technique is adopted in this chapter, with target patterns systematically defined by the 
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engineering domain knowledge.  Thus, the rotated factor loading vectors have the right 

structures that best estimate the true SPV’s of the variation sources. 

 

 

Figure 4-4. Conceptual illustration of indicator vector guided factor rotation 

The underlying idea of the target guide rotation is illustrated in Figure 4-4.  For a 

case where three KPC’s, X1, X2, and X3, are measured, the three-dimensional (3-D) 

measurement data can be shown in a 3-D scatter plot.  Suppose that there are two (2) 

variation sources present in the process, the measurement data points will be scattered in 

a 2-D plane and within an ellipse, as shown in Figure 4-4 (a).   Orthogonal factor loading 

vectors can be achieved from eigen-analysis of data covariance matrix.  These orthogonal 
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loading vectors and the true SPV’s of the two variation sources will span the same 2-D 

plane.  And the true SPV’s could be any linear combinations (rotation) of the orthogonal 

loading vectors, as shown as the “potential true spatial patterns” in Figure 4-4 (b).  

Information that indicates the direction of the true SPV’s is critically important for the 

rotation.  For instance, if it is known that a certain variation source affects only X2 and X3, 

its true SPV must span the plane defined by axis X2 and axis X3, i.e., plane X2X3, and 

simultaneously span the ellipse plane, as shown in Figure 4-4 (c).  This means that the 

true SPV is the intersection of the plane X2X3 and the ellipse plane.  The direction 

information of each potential variation source can be represented with an indicator vector, 

e.g., [0 1 1]T, where those three elements correspond to three KPC’s, X1, X2, and X3, and 

their values indicate whether the corresponding KPC is affected (1) or not affected (0) by 

the variation source.  Therefore, in this case, if the direction information corresponding to 

the two potential variation sources are [0 1 1]T and [1 1 0]T, respectively, the scaled true 

SPV’s can be estimated, as shown in Figure 4-4 (c) and Figure 4-4 (d), respectively. 

As illustrated in Figure 4-4, in order to estimate the true SPV’s of variation 

sources from multivariate statistical analysis, it is crucial to (i) obtain engineering domain 

knowledge on interactions between product KPC’s and potential variation sources and 

represent it in an appropriate form, and (ii) use the engineering knowledge in guiding the 

factor rotation to estimate the true SPV’s. The variation sources are identified based on 

the interpretation of the estimated true SPV’s. 

4.3 Engineering-Driven Factor Analysis for Variation Sources Identification 

This section introduces the proposed new methodology following the ideas 

illustrated in Section 4.2.  Basically, the methodology includes three components: (i) 

qualitative engineering domain knowledge representation, (ii) indicator-vector-guided 

factor rotation for estimating the scaled true SPV, and (iii) the procedure of multiple 

variation sources identification. 
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4.3.1 Engineering Knowledge Representation 

A successful engineering knowledge representation for variation sources 

identification needs a thorough description of an MMP, and a mechanism to interrelate 

potential variation sources with the KPC’s.  More importantly, it is necessary to provide 

directional indication of true SPV’s. 

 

Figure 4-5. Graphical description of an MMP 

Engineering knowledge about an MMP comes from the product and process 

design, which includes the process flow, the manufacturing datum schemes selected for 

each operation, the features generated in a series of operations, their precedence 

relationships, and the potential variation sources.  The description of an MMP can be 

represented in a diagram, as shown in Figure 4-5. 

This diagram contains a “Feature View” and a “Device View“, and includes four 

categories of information about an MMP:  (i) process flow and precedence relationships, 

(ii) potential variation sources, (iii) relationships between potential process variation 

sources and KPC’s, and (iv) deviation propagation scenario. 

The process flow and precedence relationships include process sequence 

information, operations information and datum flow information.  As shown in Figure 

4-5, process sequence is presented as N layers in the two views of the diagram, 

corresponding to the N stages of an MMP.  Operations information indicates the features 

generated in each stage.  Denoted as dashed boxes in Figure 4-5, 
kikF :  represents the ik

th 
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feature (ik=1, 2, …, nk) generated in stage k, and nk is the number of features generated in 

stage k, k=1,2,…,N.  For each feature, its KPC’s are denoted as circles nodes, e.g., , 

following vector feature representation (Zhou et al. 2003).  Datum flow information is 

shown through the linkage between features.  In feature view, features in a particular 

stage k are linked with some features generated in upstream stages.  This means that those 

upstream features are used as the datum features in stage k. 

Potential variation sources are in the machine tool, fixtures and datum features, 

as discussed by Jin and Shi (1999), and Zhou et al. (2003).  In Figure 4-5, fixtures are 

denoted as dashed blocks, and are organized in different layers in the device view, where 

klkFX :  represents the lk
th fixtures (lk=1, 2,…, tk)  used in stage k, and tk is the total number 

of fixtures used in stage k.  This chapter considers the most commonly used 3-2-1 

fixturing scheme.  Vectorial notation for fixture components used in (Jin and Shi 1999; 

Zhou et al. 2003) are adopted and its elements are represented as the square nodes within 

the blocks, e.g., 1f . 

 

Figure 4-6. Qualitative representation of quality/process interaction 

The relationships between potential process variation sources and KPC’s 

describe the impacts of potential variation sources on KPC’s.  These impacts are denoted 

as the connections linking the process variables in the device view, e.g., f2 of 
1:1 lFX , and 

the KPC’s in the feature view, e.g., y of F1:1.  With the fixtures and features represented 
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in a vector form, the linear relationship between them can be described with a qualitative 

indicator matrix, as illustrated by Figure 4-6.  The interactions between three KPC’s, Δx, 

Δz, and Δβ, of F1:1 and three variation sources, Δxp1, Δzp1, and Δzp2, of FXi are considered.  

Their generic geometric relationship can be described in a matrix developed in (Jin and 

Shi 1999; Zhou et al. 2003), as shown in Figure 4-6.  Qualitative representation matrix 

can be achieved by keeping zero elements in the generic geometric relationship matrix 

and replacing the non-zero elements with 1’s.  The remaining 0’s in the pattern matrix are 

called specified elements, and the 1’s are unspecified elements.   In the qualitative 

indicator matrix, the i,jth element indicates whether the jth variation source has an impact 

on the ith quality variable.    When it is 1, there will be a connection between the two 

nodes in the graphical representation, and vise versa.  As shown in Figure 4-6, according 

to the qualitative representation, Δzp1 of fixture FXi affects Δz, and Δβ of F1:1. 

Deviation propagation is caused by the faulty datum features generated in 

upstream stages.  It can be described by linking the datum features with the features 

generated based on them.  As shown in Figure 4-5, feature 
1:1 nF  is used as the datum in 

stage 2.  Thus, if the f2 of 
1:1 kFX causes an deviation of 

1:1 nF in the y direction, this 

deviation will be propagated to the x’s of 
2:2 iF and 

2:2 nF , and further propagated to the x’s 

of FN:1 and 
NnNF : , since 

2:2 iF  is selected as the datum feature in stage N.  Therefore, the 

graphical representation of deviation propagation is a path that connects the potential 

variation sources with all the affected KPC’s.  The rationale underlying the connections is 

the same as that of the state transition matrices proposed in (Jin and Shi 1999; Zhou et al. 

2003). 

4.3.2 Indicator Matrix Definition 

The graphical description of an MMP in Figure 4-5 should be transformed to a 

qualitative indicator matrix to guide the SPV transformation.  The feature view of an 

MMP contains p KPC’s in y of Eq. (4.1), whereas the device view contains M potential 

variation sources in u.  Although matrix Γ is not known since the exact values of its 
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elements are not derived, we can still use a p×M indicator matrix, T = [τim], to link 

potential variation sources with KPC’s, where 

⎪
⎩

⎪
⎨

⎧

=
                                                                    Otherwise;,0

               riable;quality va   theand sourcevariation 
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i
m

imτ  (4.7) 

for i=1,2,…,p, and m=1,2,…,M.  The column vectors, τm, in matrix T are indicator 

vectors to indicate the direction information of true SPV’s of variation sources, where 

τm=[τ1m τ2m  … τpm]T.  The column vectors in Γ of Eq. (4.1) are the true SPV’s of all 

potential variation sources, whereas the columns in pattern matrix T only partially reflect 

Γ. 

 

4.3.3 Indicator-Vector-Guided True SPV Estimation 

Factor rotation is a transformation technique to improve the interpretability of 

factor loadings, i.e., the initial estimates of true SPV’s.  The objective is to find a rotation 

matrix R to transform the orthogonal initial factor loading vectors that are defined in 

Eq.(4.6), to 

RΛELRL 2/1*
ss≈= ,   (4.8) 

which best estimates the scaled true SPV’s of underlying variation sources.  In this 

chapter, indicator matrix T works as a target that guides the factor rotation. Two 

assumptions are necessary to make the target factor rotation applicable (Lawley and 

Maxwell 1971): 

(i) us is an s×1 (s < p) unknown vector containing the deviations of s variation sources 

that present in an MMP.  It follows an s-dimensional multivariate normal 

distribution, i.e., us ~ Ns(0, 
suΣ ).  Since the variation sources, e.g., fixture locators, 

are often fabricated, installed and maintained separately for different stations, it is 
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reasonably to assume that 
suΣ is a diagonal matrix. 

(ii) Each indicator vector, τm, should contain at least s-1 specified elements, i.e., 0’s; 

(iii) The indicator vectors are different from each other.  That is, if an operator, ⊗ , is 

defined such that 011 =⊗ , 000 =⊗ , 101 =⊗ , and 110 =⊗ , hold for scalars, and 

∑ =
⊗=⊗

p

t tltklk 1
T )( ττττ , k ≠ l, hold for vectors, the indicator vectors should satisfy 

0T ≠⊗ lk ττ , for k ≠ l . (4.9) 

The initial p×s orthogonal factor loading matrix can be denoted as L= [lij], 

whereas the rotated factor loading matrix can be denoted as ][ **
ijl=L , where i= 1,2, …, p, 

and j=1, 2, …, s.  Let rj denote the jth column of the rotation matrix R, then the jth column 

of L* can be achieved by 

,*
jj Lrl =  j = 1, 2, …, s. (4.10) 

The objective of the indicator-vector-guided factor rotation is to achieve maximum 

agreement between the estimated SPV’s and the spatial patterns specified by a priori 

knowledge.   This means that, corresponding to the specified elements, , of a given 
jmτ in 

T, (i.e., 
jmi*τ =0, 

jmIi ∈* , },...,2,1{ pI
jm ⊂  and },...,2,1{ Mmj ⊂ ),  the elements, *

* ji
l , of 

the rotated loading vector, *
jl , should also have values that are close to zero.  This can be 

evaluated by the sum of squares of the elements corresponding to the specified elements 

in 
jmτ , 

∑
∈

=
jmIi

jijj lmag
*

*
2* )()( , j= 1, 2, …, s, and },...,2,1{ Mmj ∈ , (4.11)  

where agj(mj) is the agreement index of loading vector j with respect to indicator vector 

jmτ .  In order to achieve best agreement, agj(mj), should be minimized.  In other words, 

the factor rotation can be formulated as a problem to find a rotation vector rj to minimize 
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Eq. (4.11), subject to the sum of squares of all elements being held constant.  This is 

equivalent to maximizing the sum of squares of the unspecified elements (Lawley and 

Maxwell 1971).   Given an indicator vector, 
jmτ , r

m j
L  denotes a restricted loading matrix 

that can be achieved by replacing all the elements in the i*th row of L with zeros ( i = 

1,2,…, p) whenever 
jmiτ * =0 and keeping all the rows corresponding to unspecified 

elements in 
jmτ  unchanged.  Consider vector )()( jj

r
mj

r
j mm

j
rLl = , )( j

r
j ml  and )( jj mr  

are the restricted rotated loading vector and rotation vector corresponding to
jmτ , 

respectively.  )( j
r
j ml  can be treated as the result of replacing all the specified elements in 

*
jl  with zeros.  Thus, the sum of squares of the unspecified elements can be calculated 

accordingly and the factor rotation can be formulated as an optimization problem, i.e., for 

a given 
jmτ , },...2,1{ Mmj ∈ , 

( ) ( )
.     s.t.

)()(  max

T*T*

T

)(

jjjj

jj
r
mjj

r
mm

mm
jj

jj

llll

rLrL
r

=
 (4.12) 

Lagrange multiplier method for solving (4.12) indicates that the optimal rotation vector 

rj(mj), is the eigenvector associated with the largest eigenvalue of matrix Hj(mj), where 

( ) ( )[ ]r
m

r
mjj jj

m LLLLH T1T)( −
= . (4.13) 

Based on this relationship, for a given
jmτ , the rotated loading vector that achieves 

maximum agreement can be defined as 

)()(*
jjjj mm Lrl = , j = 1, 2, …, s, (4.14) 

and the associated agreement coefficient, agj(mj), can be calculated. 
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4.3.4 Procedure of Multiple Variation Sources Identification 

The indicator-vector-guided factor rotation defines the derivation procedure that 

determines the rotation vector to achieve a single rotated loading vector that maximizes 

the agreement with the given 
jmτ .  Corresponding to the s variation sources that are 

present in an MMP, the s rotation vectors rj(mj) can be calculated successively for j = 1, 

2,…, s.  The s indicator vectors, 
jmτ , are selected from Tj, where Tj is the indicator 

matrix containing the indicator vectors for rotating *
jl .  This means that mj is also a 

decision variable.  Rotation vectors rj(mj) ( },...2,1{ Mmj ∈ ) are determined and their 

agreement coefficients agj(mj) will be calculated for different 
jmτ .  For each rotated 

loading vector, *
jl , j=1,2,…, s, the index *

jm  that minimizes agreement coefficient is 

determined by 

)](min[ arg*
jj

m
j magm

j

= . (4.15) 

Let h be a predefined threshold value that reflects the desired agreement of the rotated 

loading vectors with respect to the indicator vectors.  If hmag jj <)( * , it indicates that the 

*
jm th process variation source is identified.  Otherwise, it indicates that an unknown 

variation source is present and its SPV is not pre-specified in T.  According to Eq. (4.1), 
*
jl  reflects the combined impact of the variation sources and the measurement noise.  For 

the elements (of *
jl ) corresponding to the specified elements (0’s) of indicator vectors, 

their magnitudes should be in the same scale of measurement noise.  Thus, the threshold 

value h can be determined as, σσ ph << , where σ  is the average of the standard 

deviations of measurement noises, and p is the number of KPC’s. 

After identifying the jth process variation source, its indicator vectors will be 

removed from Tj.  Thus, *
1+jm  can only be chosen from the reduced pattern matrix, Tj+1, 

where Tj+1 = },...,,|{ 21 jk mmmk ≠τ .  For each *
jm , j = 1,2,…,s, the optimal rotation 
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vectors, )( *
jj mr , are determined and used to form rotation matrix R

�
, where 

[ ])()()( **
22

*
11 ss mmm rrrR …

�
= .  In practice, it is convenient to rescale the columns of 

R
�

 to make the rotation vectors have unit variances.  This rescaling is accomplished by 

DRR
�

= , (4.16) 

where D is a diagonal matrix with positive diagonal elements, defined by 

( )[ ]1T2 −
= RRD

��
diag , and diag(X) denotes the diagonal part of matrix X.  Therefore, 

based on Eq. (8) through Eq. (4.16), rotated factor loading vectors of L* give the best 

estimations of the true SPV’s of the variation sources. 

The procedure for process variation sources identification is illustrated in Figure 

4-7.  The four major steps are summarized as follows: 

 

Figure 4-7. Procedure of multiple variation sources identification for an MMP 
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S1: An indicator matrix, T, is obtained from the engineering domain knowledge 

to represent the relationships between the potential variation sources and KPC’s. 

S2: The number of variation sources that present in an MMP is determined by 

using the eigen-decomposition of Σy and AIC or MDL criteria. 

S3: All the s initial estimates of SPV’s are sequentially rotated based on indicator 

matrix, Tj, j = 1,2,…,s.  The rotation results indicate that either the known variation 

sources are identified or unknown sources are found.  Index jm∗  and rotation vectors 

)( *
jj mr  , j = 1,2, …, s, are recorded and in indicator matrix Tj is updated. 

S4:  Process variation sources **
2

*
1 ,...,, smmm  are identified and their true SPV’s, 

vectors in L*, are estimated based on normalized rotation matrix R. 

 

Figure 4-8. A three-stage assembly processes 

4.4 Case Study 

A case study of a three-stage assembly process, as shown in Figure 4-8, is 

conducted to demonstrate the effectiveness of the proposed methodology.  In this process, 

three panel parts are assembled in the first two stages to form an automotive side aperture.  

As summarized in Table 4-2, in each stage, the parts and/or subassembly are fixed by 

fixtures with a 4-way pin (e.g., P1) and a 2-way pin (e.g., P2).  In the third stage, nineteen 
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(19) KPC features, F1 through F19, are measured to monitor the dimensional quality of the 

final side-aperture ABC.  These features are measured in terms of X-direction and Z-

direction deviations from their nominal positions.  Thus, there are totally 38 KPC’s 

considered. 

Table 4-2. Summary of the three-stage assembly process 

Stage Fixture Operations 

1 Fix part A by FX1:1 (P1 and P2)  
Fix part B by FX1:2 (P3 and P4) 

Assemble part A and part B  

   

2 Fix subassembly AB by FX2:1 (P5 and P6) 
Fix part C by FX2:2 (P7 and P8) 

Assemble subassembly AB and 
part C  

   

3 Fix side aperture ABC by FX3:1 (P9 and 
P10) 

Measure 19 features (F1~F19) 
on side aperture ABC 

 

As a preparation of variation source identification, graphical description of this 3-

stage assembly process is developed, as shown in Figure 4-9.  The nineteen KPC features 

in different stages are denoted in different layers in the Feature View.  In the Device 

View, every fixture contains three elements, where f1 and f2, represent the potential X-

direction and Z-direction variation sources of 4-way pins, respectively, and f3 represents 

the potential Z-direction variation source of 2-way pins.  The connections link the 

potential variation sources to some KPC’s, indicating the product/process interactions.  

For instance, Figure 4-9 shows that if the potential variation source f2 of FX1:2 actually 

present in the process, all the features on part B (F1:3 through F1:16) will be affected in 

stage 1 and will deviate from their nominal positions.  According to the process design, 

these random deviations will be propagated to stage 2 and reflected in the measurements. 

For simplicity, only the fixtures used in stage 1 and stage 2 are considered and thus there 

are 12 potential variation sources.  Accordingly, a 38×12 qualitative indicator matrix T 

for the 12 potential variation sources is established.  For instance, the indicator vector for 

f2 of FX1:2 is ][ T
6

T
28

T
42_2:1

010τ =
fFX , where 0m is a m×1 column vector with all elements 

equal to 0, and 1n is a n×1 column vector with all element equal to 1. 
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Figure 4-9. Graphical description of 3-stage assembly process 

Monte Carlo simulation is performed to generate measurement data based on the 

linear model (1), where the matrix Γ is derived by state space model introduced in (Jin 

and Shi 1999). The Γ matrix contains 12 true SPV’s, denoted as 
tfjkFX _:

γ , corresponding 

to 12 potential 

 

Figure 4-10. Determination of the number of variation sources according to AIC 

variation sources of ft of fixture j used in stage k.  The input vector u follows 12-variate 

normal distribution, i.e., u~N(012,Σu).  In this case, f2 of FX1:2 (i.e., P3, Z-direction, 

denoted as 
2_2:1 fFX ) and f3 of FX2:1 (i.e., P6, Z-direction, denoted as 

3_1:2 fFX ) are 

simulated as the variation sources, as shown in Figure 4-8.  Thus, the 5th and the 9th 

diagonal elements of Σu are 0.6 and 0.4, respectively, whereas the other diagonal 

elements of Σu are set to be 0.01.  The measurement noise vector v follows 38-variate 
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normal distribution, i.e., v~N(038,Σv), where Σv is a 38×38 diagonal matrix with its 

diagonal elements ranging from 0.001 to 0.01. There are 150 samples simulated to 

generate KPC measurements. 

   

(a)      (b) 
Figure 4-11. Comparison of the rotated loading vectors with the true SPV 

Following the procedure proposed in Section 3, the engineering-driven factor 

analysis was conducted.  AIC value indicates that there are s=2 variation sources present, 

as shown in Figure 4-10.  According to the agreement coefficients, the two 

aforementioned variation sources are identified.  The two rotated factor loadings, *
1l , and 

*
2l , are compared with 

2_2:1 fFXγ  and 
3_1:2 fFXγ , respectively, in Figure 4-11. 

    

 (a)  (b) 
Figure 4-12. Comparison of standardized SPV’s 

Figure 4-12 shows the comparison of the standardized rotated loading vectors and 

the standardized true SPV’s.  This visual comparison shows that the rotated factor 
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loading vectors agree with the true SPV’s very well.  Also shown in Figure 12 are the 

standardized SPV’s estimated with methods in (Jin and Zhou 2006) (v1 and v2) and in 

(Liu and Hu 1997) (e1 and e2).  There are significant discrepancies between e1, v1 and 

2_2:1 fFXγ , and between e2, v2 and 
3_1:2 fFXγ .  This is because the angle between 

2_2:1 fFXγ and 

3_1:2 fFXγ  is 51.58°, the orthogonal factor loading rotation cannot give an acceptable 

estimation of the true SPV’s. 

The estimated SPV’s, *
1l , and *

2l , are visualized in Figure 4-13.  The SPV of 

variation source 1, *
1l , shows that all the features on part B, F3~F16, deviate from their 

nominal positions along a circle centered at the slot S1.  This SPV indicates that P3 used 

in stage 1 has an abnormally large variation along Z direction.  The SPV of variation 

source 2, *
2l ,  shows that all the features on subassembly AB, F1~F16 , deviate from their 

nominal positions along a circle centered at the hole H1.  This SPV indicates that P6 used 

in stage 2 has an abnormally large variation along Z direction.  In practice, although their 

true SPV’s are unknown, the variation sources can still be identified by visualizing and 

interpreting the geometric implications of the estimated SPV’s. 

  

Figure 4-13. Visualization of estimated SPV’s 

A mathematical way to justify the agreement between loading vectors with true 

SPV is to calculate the angle between these two vectors, when the true SPV’s in Γ  are 

known.  The smaller the angle, the better the two vectors match.  Ding et al. (Ding et al. 

2002) and Li et al. (Huang et al. 2007) used a method to define the boundary of the 

perturbation caused by measurement noise.  This boundary is represented as an angle of 

the cone surrounding an SPV and can be calculated according to the eigenvalues 
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associated with the SPV’s, and eigenvalues of Σv.   The maximum and minimum 

eigenvalues of the matrix A are denoted as λmax(A) and λmin(A), respectively.  According 

to the simulation conducted in the case study, λmax(Σv) = 0.01, λmax(Σv)/ λmin(Σv) is 10, 

and the ratio of eigenvalues associated with SPV’s over λmax(Σv) is approximately equal 

to 20.350.  Based on the equation (7) in (Huang et al. 2007), the boundary angle will be 

approximately equal to 11.28°.  According to the standardized rotated loading vectors and 

true SPV’s, the angle between *
1l  and 

2_2:1 fFXγ  is 4.05°, and that between *
2l  and 

3_1:2 fFXγ  is 

6.21°, which means the rotated loading vectors fall in the boundary of true SPV’s and 

thus, identify variation sources and give a best estimation of the true SPV’s.  It should be 

emphasized that these diagnosis results are obtained following the method proposed in 

this chapter, which does not require the accurate state space model.  In other word, the 

proposed method is more robust to unknown process adjustments or tooling worn out and 

has more appealing capability in variation sources identification. 

Although, for the sake of simplicity, a three-stage assembly process is used to 

demonstrate the effectiveness in identifying multiple variation sources in MMP’s,  the 

proposed methodology is applicable for more complex MMP’s with more stages.  For 

such a complex process, the graphical description of the MMP will contain more layers 

for more stages.  In each layer, more feature nodes and fixture nodes may be considered.  

Their interactions will still be denoted as links connecting nodes in different views and 

different layers, as shown in Figure 4-5.  More qualitative indicator vectors will be 

derived from the graphical knowledge presentation, corresponding to more potential 

variation sources that may present in the process.  The dimension of the measurements of 

KPC’s, y, may also increase.  However, these changes will not affect the effectiveness of 

the proposed methodology.  This is because that, the two necessary assumptions for 

indicator vectors are more likely to be satisfied, as the number of stages increases. For 

instance, if the process is properly designed, the random deviation of a locating pin used 

in stage 10 will less likely affect the features generated in stage 1.  The efficiency of the 

proposed methodology will not be affected dramatically either.  According to the 

procedure illustrated in Figure 4-7, if there are s variation sources that present in an MMP 
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that contains M potential variation sources, ∑ =
−−

s

q
qsM

1
)1( iterations are needed to 

identify them.  Whereas the method introduced in (Jin and Zhou 2006) considers all those 

s eigenvectors together to form a fault space and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
M
s

 iterations to finish the variation 

sources identification.  This will substantially increase the computational load. 

4.5 Conclusion 

The identification of process variation sources in an MMP demands the 

integration of engineering domain knowledge with appropriate multivariate statistical 

analysis.  This chapter presents a methodology to implement this integration in estimating 

the true SPV’s of the variation sources, without complex quantitative modeling of the 

interactions between process variation sources and KPC’s.  Instead, the engineering 

knowledge about those relationships is represented as a qualitative indicator matrix.  The 

key element of this methodology is the indicator vectors defined based on 

product/process knowledge to guide the factor rotation, which significantly improves the 

diagnostic interpretability of factor loadings and thus ensures the applicability of FA in 

variation sources identification.  A procedure based on this factor rotation technique is 

developed for diagnosing MMP’s by identifying multiple process variation sources, 

whose SPV’s are non-orthogonal.  Although the effectiveness of the proposed 

methodology is demonstrated through a case study of dimensional variation sources 

identification in a manufacturing process, the method can also be used in other 

applications where the measurements of observable variables can be linearly linked with 

a set of latent variables, as defined in Eq.(4.1). 

In order to implement the proposed methodology in a complex MMP, various 

resources are necessary.  For instance, software is needed to aid engineers in converting 

product/process design information into graphical and qualitative representations.  The 

estimation of SPV’s also needs substantial amount of multivariate data.  Thus, advanced 

measurement system, such as in-line Optical Coordinate Measuring Machines, are 

desirable to create a data-rich environment to reduce the uncertainty caused by the 

random samples.  The developed methodology could be sensitive to data uncertainty or 
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missing data.  More research needs to be done to investigate the impacts of sample 

uncertainty on the effectiveness of the proposed methodology and improve its robustness. 
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CHAPTER 5  
 

CONCLUSIONS AND FUTURE RESEARCH 

The research presented in this dissertation is concluded by summarizing the main 

achievements and the original contributions.  Potential future studies are also discussed in 

this section. 

5.1 Conclusions 

The massive, readily available data generated and collected from different phases 

of product realization create tremendous opportunity to improve the quality assurance of 

MMP’s.  In this dissertation, the framework of a unified methodology is proposed to 

effectively fuse the data by combining engineering domain knowledge, control theory, 

optimization algorithms and advanced multivariate statistical analysis and generate 

knowledge for the quality assurance purpose.  The knowledge is then applied in different 

phases of product realization to systematically improve the quality as well as productivity 

of MMP’s.  Within this proposed framework, some initial research has been done in 

variation propagation modeling, process design and process variation source 

identification.   

The original contributions of this dissertation can be summarized as the following 

key components. 

(i) An generic 3-D state space approach for analytical modeling of the stream of 

variation in MMP’s.  Based on DMV representation, the model mathematically 

describes the process induced variations and their propagations along stages.  

Compared with existing modeling techniques, the proposed one extend current 

model to 3-D processes where it is crucial to investigate the dimensional variation 
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in a more realistic 3-D space.  Also, the model is able to cover a wider variety of 

processes, including both Type-I and Type-II assembly process.  The impacts of 

part fabrication errors on product quality are explicitly incorporated in the model.  

Although the presented modeling technique is formulized for the multistage 

assembly processes, it has great potential to be extended to other categories of 

processes where dimensional variation is of great concern.  The proposed model 

creates the scientific basis for developing novel research in product/process 

design, process monitoring and diagnosis.  Especially, the process evaluation 

capability provided by this model enables the quality assurance in the early stage 

of production realization and significantly improve the current process design 

strategy.  

(ii) A quality assured setup planning methodology for MMP’s.  Based on the quality 

evaluation capability provided by the SoV modeling, setup planning is formulized 

as an optimal sequential decision problem that minimizes the CRPP with the final 

product quality as constraints.  This is the first optimization approach to setup 

planning based on analytical evaluation.  Both the effectiveness and the efficiency 

have been significantly improved.  Although only the setup planning of multistage 

machining process is investigated, the generic problem formulation and analytical 

evaluation techniques can also be applied in the process design of other types of 

MMP’s.  The outputs of the quality assured setup planning include an optimal 

setup plan and the tolerances of potential variation sources, the spatial patterns of 

which define their impacts on quality variables under normal production condition.  

These spatial patterns can further be utilized in process diagnosis in 

manufacturing phase of product realization.  This research also enables the 

concurrent design of process operations and design of tooling, such as fixture 

layout design, etc.  

(iii)An innovative engineering-driven factor analysis method for variation source 

identification.  Different from existing engineering-driven approaches and data-

driven approaches, the proposed one integrates the qualitatively-represented 

engineering domain knowledge with the multivariate statistical analysis, without 
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the dependence on the complex, accurate quantitative SoV model.  Instead, the 

engineering knowledge on product/process interactions is represented as a series 

of qualitative indicator vectors, which are used to direct the estimation of true 

spatial patterns from the eigen-analysis of multivariate measurement data.  This 

approach significantly improves the robustness of the diagnostic results under the 

situation that the real process has significantly deviating from its nominal 

condition, and/or the accurate engineering domain knowledge is not available.  

The proposed generic approach can also be applied to the study of all the process 

whose input and output can be linearly related to each other.   

Table 1-1 lists the research topics of quality assurance for MMP’s in design and 

manufacturing phases, the existing methodologies and the new advancements that have 

been achieved based on this dissertation research.  Also listed are the problems need to be 

addressed as future research, which will be discussed in the next section. 

5.2 Discussion of Future Research 

This dissertation presented initial research efforts in a general framework quality 

assurance in MMP’s.  In order to achieve the ultimate research objective of a unified 

methodology that can be applied to different phases of product realization, much more 

problems should be solved.  Some issues worth investigating are: 

(i) Improving SoV model for covering more processes.  Current state space model are 

mainly based on the engineering knowledge about the Kinematic relationships 

between variation sources and KPC’s.  Dimensional variation can be modeled under 

certain assumptions, such as small variation magnitudes, acceptable linearization 

residuals, etc.  With the development of new advanced manufacturing processes, 

more quality features will be considered and the interaction between process 

variation sources and quality features may not sufficiently described based solely on 

Kinematics.  New modeling research should be addressed in three directions: a) 

including more quality features that is not currently covered; b) incorporating 

physical experiment results into model to  
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Table 5-1 Comparison of variation propagation modeling techniques 

Research Problems Existing Methodologies New Advancements 

Process 
Planning 

Evaluation-oriented (Zhang, 
et al., 1996; Song, et al., 
2005; etc.) 
Simulation-based 
Optimization-oriented (Ong, 
et al., 2002; Xu and Huang, 
2006; etc.) 

Tolerance 
Synthesis 

Process-oriented (Ding, et 
al., 2005) 

Quality Assured Setup 
Planning for Multistage 
Machining Processes (Liu 
et al., 2007a) Design 

Fixture 
Layout 
Design 

Stage-Level (Cai, et al., 1997; 
Carlson, 2001; etc.) 
Process-Level (Kim and 
Ding, 2004; etc.) 

Future research: 
Integrated setup and 
fixture planning. 

Variation 
Propagation 
Modeling 

2D Assembly (Jin and Shi, 
1999; etc.) 
3D Machining (Zhou et al., 
2003; etc.) 

3D Variation Propagation 
Modeling for Multistage 
Assembly Process (Liu, et 
al., 2007b.) 

Process 
Monitoring 

SPC (Skinner, 2006; etc.) 
MSPC (Zantek, et al., 2006; 
etc.) 

Root Cause 
Diagnosis 

Engineering-driven (Zhou, et 
al., 2004; etc.) 
Data-driven (Wolbrecht, et 
al., 2000;  Li et al., 2008; etc.) 

Engineering-driven Factor 
Analysis for Variation 
Source Identification (Liu, 
et al., 2005.; Liu, et al., 
2007c.) 

Manufa-
cturing 

Process 
Control 

SPC-APC (Box and Kramer, 
1992; Zhong and Shi, 2007; 
etc.) 
Control and Compensation 
(Fenner et al., 2005; 
Izquierdo, et al., 2007; etc.) 

Future Research:  
Feed-Forward Control for 
Multistage Assembly 
Process with 
Consideration of SoV 
Model Uncertainty. 
 

 

represent more relationships beyond kinematics; and thus need c) combining the 

results of data-based statistical modeling and engineering-knowledge-based 

physical modeling.  The engineering-driven FA methodology presented in Chapter 

4 creates potential of hybrid modeling effort, which is enabled by the integration of 

existing knowledge and the discovered knowledge. 
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(ii) Considering data uncertainty in quality assurance decision making.  Since data 

plays an increasingly important role in the unified methodology of quality assurance 

in MMP’s, the uncertainty induced by the heterogeneous data will significantly 

affect the decisions made based on it.  For instance, as discussed in Chapter 4, 

sample uncertainty and measurement noise may alter the identification of variation 

sources and cause misleading diagnostic conclusion.  Also, in aforementioned 

hybrid modeling, uncertainty induced by experimental data needs to be investigated 

to ensure the validity of the model.  Other decisions, such as those made for fixture 

layout design and process control, need also consider the uncertainty induced by the 

model, or by the initial variation of parts.  This is because the decision made only 

considering deterministic situation will not be robust to uncertainty. 

(iii)Developing unified, concurrent and responsive quality assurance methodology for 

MMP’s.  This dissertation presented some initial research efforts.  However, the 

framework based on the generic model and data infrastructure enables the future 

research works on the concurrent and responsive quality assurance.  For instance,  

in addition to the integrated setup and fixture planning in design phase and the 

robust control strategy for process compensation in manufacturing phase, research 

are also needed in quality assured product design, responsive maintenance, and 

concurrent product/process improvements based on in-process inspection.  

All these research will contribute to a potential new paradigm of quality assurance 

for MMP’s.  The characteristic of this new paradigm is that, knowledge of quality 

assurance will be generated from multidisciplinary investigation of various types of data 

and will be applied to different phases of product realization in a concurrent and 

responsive way. 
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APPENDICES 

Appendix I: Coefficient Matrix of Different Fixturing Schemes 

For the general 3-2-1 fixture locating scheme, as shown in Figure 2-2 (a), 

coefficient matrix 
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where 
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For the pin-hole fixturing scheme shown in Figure 2-2 (b), fixture locator 

deviation can be alternatively represented as 
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and the coefficient matrix is defined as 
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Appendix II: Derivation of Coefficient Matrices T1,k,j through T6,k,j  

Given the six datum features defined in Section 2.2.1, matrices T1 through T6 can 

be derived by investigating the six datum points where fixture locating pins and datum 

features touch with each other. It is assumed that datum points q1, q2 and q3 are the datum 

points touching the three primary datum features, p1, k, j, p2, k, j, and p3, k, j, respectively; q4 

and q5, touch with the secondary datum features, s1, k, j and s2, k, j, respectively, and q6 

touch with the tertiary datum feature t k, j. The nominal coordinates of these six points in 

Fk,j are denoted as ,
1

k jFq , ,
2

k jFq , ,
3

k jFq , ,
4

k jFq , ,
5

k jFq  and ,
6

k jFq , respectively. Denoting 

TT 1⎡ ⎤= ⎣ ⎦q q� , the coordinates of point q1 w.r.t. datum feature, 1, ,
1

k jpq� , can be achieved by 

performing homogeneous transformation twice, i.e., from Fk,j to RCS and from RCS to 

LCS of  p1, k, j. With the same strategy, following transformation relationships can be 

obtained: 

1, , , 1, ,

,

2, , , 2 , ,

,

3, , , 3, ,

,

1, , , 1, ,

,

2, , , 2 , ,

,

, , ,

,

1 1

2 2

3 3

4 4

5 5

6 6

k j k j k j

k j

k j k j k j

k j

k j k j k j

k j

k j k j k j

k j

k j k j k j

k j

k j k j k j

k j

p F pR
R F

p F pR
R F

p F pR
R F

s F sR
R F

s F sR
R F

t F tR
R F

⎧ =
⎪
⎪ =
⎪
⎪ =⎪
⎨

=⎪
⎪

=⎪
⎪

=⎪⎩

H H q q

H H q q

H H q q

H H q q

H H q q

H H q q

� �

� �

� �

� �

� �

� �

. (A4) 

When the parts are fixed, six locating pins are in touch with the six datum features. 

Therefore, points q1 though q6 will be right on the datum feature. Since the z direction is 

defined as the normal direction of the surface, the z coordinates of these six points, w.r.t 

corresponding datum feature, will be zeros, i.e.,  , ,

(3)
0k j

i
•⎡ ⎤ =⎣ ⎦q�  for i=1,2,…,6 and 

{ }1 2 3 1 2, , , , ,p p p s s t•∈ . [v](3) denotes the third (3rd) element of vector v.  It is easy to 

show that q1 touching p1, k, j leads to 

1, , , 1, , ,

1, , , 1, , ,

0 0
1 1(3) (3)

k j k j k j k j

k j k j k j k j

p F p FR R
p F p F

⎡ ⎤ ⎡ ⎤⋅ ⋅ = ⋅ ⋅⎣ ⎦ ⎣ ⎦Δ H q Δ H q� � , (A5) 



 

114 

where 

1, , 1, ,

1, ,

ˆ

0
k j k j

k j

R R
p pR

p

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

θ d
Δ

0
, and  

1, , 1, , 1, , 1, ,

1, , , , , ,
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0 0 0 0
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0 0 0 1
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k j

p p p p
p F F F F
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⎡ ⎤
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⎢ ⎥⎣ ⎦

n o a t
H  

Eq. (A5) can be further manipulated as 

1, , , , , ,

1, , , 1, , 1, , ,

T T
0 0 0

1 1(3)

k j k j k j k j k j

k j k j k j k j k j

p F F F FR R
p F p p F

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ ⋅ = × ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
Δ H q a q a x� , and  (A6) 

1, , , 1, , 1, ,

1, , , 1, , , 1, , ,

1, , 1, ,

1, , , 1, , , 1, ,

0 0 0
1 (3) (3) (3)

0 0

(3)
                                           

k j k j k j k j

k j k j k j k j k j k j

k j k j

k j k j k j k j k j

p F p pR R R
p F p F p F

p pR R R
p F p F p

⎡⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ ⋅ = × ×⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢⎣

⎡ ⎤ ⎡ ⎤× × +⎣ ⎦ ⎣

Δ H q θ n θ o

θ a θ t d

�

,
1(3)

. k jF⎤ ⋅⎦ ⎥⎦
q�

 (A7) 

Same strategy can be used to derive the other five equations for q2 though q6, and 

the six equations can be combined together to form an equation system as defined in (A8). 

, , ,

1, , 1, ,

, , ,

2 , , 2, ,

, , ,

3, , 3, ,

, , ,
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1, , 1, , 1, , 1, , ,

1, , , 1, , , 1, , , 1, , , 1, ,
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2, , , 2, , , 2, ,

0 0 0 0
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(A8) 

  By solving the equation system, we can express the DMV 
,k j

R
Fx as a linear 

combination of the deviations of datum features, as defined in Eq.(2-8). The fixture 

locating scheme ensure that all the six degree-of-freedom of the part/subassembly will be 

constrained.  At the mean time, it also guarantees that the inverse of the matrix on the left 

hand side of Eq. (A8) exists. In practice, the primary, secondary and tertiary datum 

surfaces are often defined to be orthogonal to each other. This standardization, as 

illustrated in Figure 2-2, simplifies the derivation of T1,k,j through T6,k,j. Given the 

nominal coordinates of q1 through q6 in Fk,j, 

, , ,
T

1 1 1 0k j k j k jF F F
x yq q⎡ ⎤= ⎣ ⎦q , , , ,

T

2 2 2 0k j k j k jF F F
x yq q⎡ ⎤= ⎣ ⎦q , 
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y zq q⎡ ⎤= ⎣ ⎦q , , , , ,
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x y zq q q⎡ ⎤= ⎣ ⎦q ,

, , ,
T

6 6 60k j k j k jF F F
x zq q⎡ ⎤= ⎣ ⎦q , and nominal HTM for Fk,j w.r.t. the LCS’s of three PD features 

(p1,k,j, p2,k,j, and p3,k,j), 
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The coefficient matrices for modeling PD induced deviation are: 



 

116 

, 1, , , 1, ,

, ,

, 1, , , 1, ,

, ,

, 1, , ,

,

0 02 2 2
1 1

1 1 1

0 01, , 3 3 3
1 1

1 1 1

0 04 4 4
1 1

1 1 1

0 0 0 0 0 0
0 0 0 0 0 0

0 0 ( ) ( ) 0

0 0 ( ) ( ) 0

0 0 ( ) (

k j k j k j k j

k j k j

k j k j k j k j

k j k j

k j k j k j

k j

F p F p
y Fy x Fx

F p F pk j
y Fy x Fx

F p F
y Fy x Fx

C C Cq t q t
C C C
C C Cq t q t
C C C
C C Cq t q t
C C C

⋅ + − ⋅ +

=
⋅ + − ⋅ +

⋅ + − ⋅ +

T

1, ,

,
) 0

0 0 0 0 0 0

k j

k j

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

, 2, , , 2, ,

, ,

, 2, , , 2 , ,

, ,

, 2, , ,

,

0 05 5 5
2 2

1 1 1

0 02, , 6 6 6
2 2

1 1 1

0 07 7 7
2 2

1 1 1

0 0 0 0 0 0
0 0 0 0 0 0

0 0 ( ) ( ) 0

0 0 ( ) ( ) 0

0 0 ( ) (

k j k j k j k j

k j k j

k j k j k j k j

k j k j

k j k j k j

k j

F p F p
y Fy x Fx

F p F pk j
y Fy x Fx

F p F
y Fy x

C C Cq t q t
C C C
C C Cq t q t
C C C
C C Cq t q
C C C

− − ⋅ + ⋅ +

=
− − ⋅ + ⋅ +

− − ⋅ + ⋅ +

T

2, ,

,
) 0

0 0 0 0 0 0

k j

k j

p
Fxt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ , 

, 3, , , 3, ,

, ,

, 3, , , 3, ,

, ,

, 3, ,

,

0 08 8 8
3 3

1 1 1

0 03, , 9 9 9
3 3

1 1 1

010 10
3

1 1

0 0 0 0 0 0
0 0 0 0 0 0

0 0 ( ) ( ) 0

 
0 0 ( ) (

0 0 ( )

0 0 0 0

k j k j k j k j

k j k j

k j k j k j k j

k j k j

k j k j

k j

F p F p
y Fy x Fx

F p F pk j
y Fy x Fx

F p
y Fy

C C Cq t q t
C C C
C C Cq t q t
C C C
C C q t
C C

⎡
⎢
⎢
⎢

⋅ + − ⋅ +⎢
⎢
⎢=

⋅ + − ⋅ +⎢
⎢
⎢

⋅ +⎢
⎢
⎢⎣

T

, 3, ,

,

010
3

1

) 0

( ) 0

0 0

k j k j

k j

F p
x Fx

C q t
C

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

− ⋅ + ⎥
⎥
⎥⎦

, 

where , , , , , , , , , , , ,
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the coefficient matrices for modeling SD and TD induced deviation are: 
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For pin-hole fixturing scheme shown in Figure 2-2 (b), the nominal HTM for Fk,j w.r.t. 

the LCS’s of SD features (s1,k,j, s2,k,j) and that of TD feature tk,j, are 
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k j k j

k j

s
Fys

F s
Fz

t

t

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎣ ⎦

H , ,

,

0

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

k j

k j

t
F

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

H ,  

and the coefficient matrices for modeling SD and TD induced deviation will be 

,

4, ,

5

0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0 0 0k j

k j

F
yq

∗

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

T , 

, , 2, , ,

,

5, ,

0
5 5 5

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 ( ) 0 0k j k j k j k j

k j

k j

F F s F
y y Fy yq q t q

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

T  , 

6, ,

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

k j
∗

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

T . 
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Appendix III: Derivation of State Transition Equation 

This appendix section shows the procedure for deriving Eq.(2-23): Substituting 

Eq. (2-21) into Eq. (2-22), we have 

1 (4)
k

R O
k k k F k−= + ⋅ +x x A x u , (A9) 

Further plugging in Eq. (2-19), we have 

1 (4) ,
k k

D R F R O
k k k F F k− ⎡ ⎤= + ⋅ + +⎣ ⎦x x A x x u  (A10) 

Substituting Eq. (2-13) and Eq. (2-17) into (A10), we have 

1 (4) (2) (1)

         (4) (2) (4) (3) ,

P R
k k k k k k

S F O
k k k k k k k

−= +

+ + +

x x A A A x

A A u A A u u
 (A11) 

And finally by substituting P R
kx  by Eq. (2-12), we can achieve 

1 1(4) (2) (1) (0)

         (4) (2) (4) (3) ,
k k k k k k k

S F O
k k k k k k k

− −= +

+ + +

x x A A A A x

A A u A A u u
 (A12) 

This leads to Eq. (2-23). 
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