

DESIGN FOR VEHICLE STRUCTURAL

CRASHWORTHINESS VIA CRASH MODE MATCHING

by

Karim T. Hamza

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2008

Doctoral Committee:

Associate Professor Kazuhiro Saitou (Chair)
Professor Sridhar Kota
Professor Panos Papalambros
Associate Professor Peter Washabaugh
Ciro Soto, Ford Motor Company

 ii

To my parents Dalal and Tarek, and my lovely wife Aml

 iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Kazuhiro

Saitou for giving me the opportunity to work on this challenging topic and for providing

continuous guidance, mentorship, advice, and support. I’d also like to thank the

committee members for their valuable advice and comments.

This work was partially supported by Nissan Technical Center, North America,

Inc. (NTCNA). Special thanks are due to Ms. Kumi Hatsukano, Mr. Noboro Tateishi, Mr.

Masakazu Nakamura, Mr. Ken Jimbo and Mr. Akira Toyama for many insightful

discussions. Partial support also came from ESI North America, Inc. and Livermore

Software Technology Corp. through academic discounts of their commercial crash

simulation software.

I would also like to thank members of the University of Michigan’s Center for

Advanced Computing, whose technical support greatly assisted this work. Special thanks

go to Dr. Abjit Bose, Dr. Randall Crawford, Dr. Matthew Britt and Dr. Andrew Caird.

I would also like to thank all University of Michigan professors and

administrative staff with whom I had the opportunity to take courses or engage in

discussions. Finally and most importantly, I’d like to thank my family, friends, lab-mates,

and colleagues for being there… for making the whole experience worthwhile.

 iv

TABLE OF CONTENTS

DEDICATION... ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... viii

LIST OF TABLES ... xi

LIST OF APPENDICES ... xiii

ABSTRACT.. xiv

CHAPTER 1 INTRODUCTION...1

1.1 Motivation...1

1.2 Background...2

1.2.1 Design for Structural Crashworthiness ..2

1.2.2 Structural Crash Modes and Crash Modes Matching5

1.3 Thesis Goal ...9

1.4 Approach...9

1.5 Organization of the Dissertation ...11

CHAPTER 2 RELATED WORK..13

2.1 Design Optimization for Structural Crashworthiness ...13

2.2 Crash Simulation Models used in Crashworthiness..16

2.2.1 Nonlinear Finite Element Models..16

2.2.2 Reduced Order Dynamic Models...17

 v

2.2.3 Response Surface Models ..19

2.3 Optimization Algorithms for Structural Crashworthiness21

2.4 Thrust Area for this Dissertation...24

CHAPTER 3 METHODOLOGY OVERVIEW ..26

3.1 Scope of Optimization Problems ..26

3.2 Overview of the Proposed Methodology ..28

3.2.1 Typical Steps of Parametric Crashworthiness Design.................................28

3.2.2 Proposed Methodology for Crashworthiness Design31

3.3 Summary ...34

CHAPTER 4 QUALITATIVE EXPLORATION OF CRASH MODES35

4.1 Examples of Crash Modes in Structures...35

4.1.1 Two-mass-springs Problem ...35

4.1.2 Vehicle Mid-Rail Problem...44

4.2 Hypotheses of Crash Modes ...49

4.3 Exploration of Crash Modes of a Vehicle Structure...50

4.3.1 Options for Crash Modes Exploration ...50

4.3.2 Crash Modes Exploration via Equivalent Mechanism Models....................54

4.3.3 Details of Equivalent Mechanism Models...57

4.4 Summary ...66

CHAPTER 5 QUANTIFICATION OF CRASH MODES..67

5.1 Quantitative Measure for Crash Modes ..67

5.1.1 Definition ...67

5.1.2 Calculation of the Crash Mode for Finite Element Models.........................69

5.1.3 Calculation of the Crash Mode for Equivalent Mechanism Models............72

 vi

5.2 Comparison of Crash Modes ..73

5.2.1 Metric for Degree of Crash Mode Mismatch...73

5.2.1 Relaxed Metric for Degree of Crash Mode Mismatch.................................76

5.3 Summary ...78

CHAPTER 6 AUTOMATED CRASH MODE MATCHING ALGORITHM79

6.1 Algorithm Overview ...79

6.2 Algorithm Inputs...81

6.3 Algorithm Steps ..82

6.3.1 Algorithm Pseudo-code ...82

6.3.2 Algorithm Details...84

6.4 Algorithm Convergence..87

6.4.1 Algorithm Convergence for Discrete Design Variables88

6.4.2 Algorithm Convergence for Continuous Design Variables92

6.5 Demonstrative Example..93

6.5.1 Inputs to the Algorithm..93

6.5.2 Simulation of the Algorithm Steps ..97

6.5.3 Performance Assessment of Algorithm ...101

6.6 Summary ...104

CHAPTER 7 CASE STUDY 1: FRONT HALF-BODY VEHICLE MODEL........105

7.1 Problem Model..105

7.2 Previous Optimization Attempts...108

7.2.1 Optimization via Response Surface Models ..108

7.2.2 Optimization via Genetic Algorithm ...112

7.2.3 Optimization via Manual Crash Mode Matching114

 vii

7.3 Optimization via Proposed Methodology ...121

7.3.1 Inputs to the Automated Crash Mode Matching Algorithm121

7.3.2 Results of the Automated Crash Mode Matching Algorithm126

7.4 Summary of Results..132

CHAPTER 8 CASE STUDY 2: FULL VEHICLE MODEL135

8.1 Problem Model..135

8.2 Exploration of the Design Space...137

8.3 Automated Crash Mode Matching..141

8.4 Summary ...151

CHAPTER 9 CONCLUSION..152

9.1 Dissertation Conclusion ..152

9.2 Contributions...153

9.3 Future work...154

APPENDICES..155

BIBLIOGRAPHY..232

 viii

LIST OF FIGURES

Figure

1.1. Examples of crash modes in Vehicle Structures...6

1.2. Example of Crash Mode Matching...8

2.1. Topology Optimization verses Parametric Optimization14

3.1. Typical steps for parametric crashworthiness design29

3.2. Steps in the Proposed Methodology for crashworthiness design..................33

4.1. Two-Mass-Springs Problem ...36

4.2. Crush behavior of the nonlinear springs ...37

4.3. Sketching of the Crash Modes in the Two-Mass-Springs Problem..............41

4.4. Deformation plot for the 1st spring..42

4.5. Deformation plot for the 2nd spring...42

4.6. Maximum acceleration for the payload mass ...43

4.7. Vehicle Mid Rail Model ...45

4.8. Deformation in Zone #2 as function of (t1)...47

4.9. Sketching of the Crash Modes in the Vehicle Mid-Rail Problem48

4.10. Different models of a vehicle structure...53

4.11. Procedure to estimate the desirable crash mode via EM models..................56

4.12. Typical deformation resistance curves for box and hat sections59

4.13. Loading conditions for generating the component database curves for
EM models..60

 ix

4.14. EM nonlinear spring behavior and main curve parameters62

4.15. Sketch of a side-squish crash condition ..65

5.1. Screen shot of computer program for assisting the calculation of crash
mode for finite element models ..70

5.2. Tracking zone deformations on a FE mesh for calculating the crash
mode..72

5.3. Typical profile of a crash mode time series and its approximation as a
step function..75

5.4. Example time series mismatch relative to a desired crash mode..................77

6.1. Overview of the automated crash mode matching algorithm80

6.2. Example fuzzy design adjustment rule ...82

6.3. Membership functions for the fuzzy design adjustment rules86

6.4. Illustrations of some Concepts in Discrete-Time-Discrete-Event
Markov Chains..90

6.5. Vehicle Mid Rail Model ...94

7.1. FE model of front half of a vehicle subjected to full-overlap frontal
crash ..107

7.2. EM model of front half of a vehicle subjected to full-overlap frontal
crash ..115

7.3. Desirable crash mode as identified via GA linked with EM model115

7.4. Crash Mode of design identified via GA linked with EM model117

7.5. Steps for Manual Crash Mode Matching ..120

7.6. Estimation of (t0, d) values for a crash mode..128

7.7. Crash Mode Plot for Start Pt#1...128

7.8. Crash Mode Plot for Start Pt#2...129

7.9. Crash Mode Plot for best run of the automated crash mode matching
algorithm...130

 x

7.10. Crash Mode Plot for worst run of the automated crash mode matching
algorithm...131

7.11. Case Study 1: Summary of Results...134

8.1. Detailed FE model of a vehicle subjected to offset frontal crash against
a deformable barrier..136

8.2. Baseline, DOE samples and MSCGA results for Case Study 2138

8.3. Illustration of MSCGA algorithm...140

8.4. Starting points for the automated crash mode matching algorithm142

8.5. Crash Mode Plot for Start Pt#1...144

8.6. Crash Mode Plot for Start Pt#2...145

8.7. Progress of the Runs of the Automated Crash Mode Matching
Algorithm..146

8.8. Crash Mode Plot for Final Design in Run#1 ..147

8.9. Crash Mode Plot for Final Design in Run#2 ..148

8.10. Crash Mode Plot for Final Design in Run#3 ..149

8.11. Crash Mode Plot for Final Design in Run#4 ..150

 xi

LIST OF TABLES

Table

4-1. Parameter values for the two-mass-spring example38

4-2. Parameter values for the Vehicle Mid Rail example46

6-1. Parameter values for the Vehicle Mid Rail example95

6-2. Summary of the Results of 100 Algorithm Runs..103

6-3. Genetic Algorithm Parameters used in Study...103

7-1. Listing of the Constructed Meta-Models for Case Study 1110

7-2. GA Parameters used in Optimization via Response Surface Models110

7-3. Results of Optimization via Response Surface Models..............................111

7-4. GA Parameters for directly linked GA with the detailed FE model113

7-5. Best obtained design by GA ...113

7-6. GA Parameters for GA linked with EM model ..114

7-7. Design obtained by running GA linked with EM model116

7-8. Steps for Manual Crash Mode Matching ..119

7-9. Crash Mode Mismatch Metrics in Case Study 1 ..123

7-10. Compact representation values for the desired crash mode........................124

7-11. Summary of Automated Crash Mode Matching Algorithm Runs127

7-12. Case Study 1: Summary of Results...133

 xii

8-1. Normalized values for design variables and objectives of baseline
design and starting points for the automated crash mode matching
algorithm...143

8-2. Normalized values for design variables and objectives of baseline
design and final results of the automated crash mode matching
algorithm...143

 xiii

LIST OF APPENDICES

Appendix

A. Tutorial: Construction of an EM Model ..156

B. DOE Samples for Construction of RSM for Case Study 1164

C. Fuzzy Logic Sampling Adjustment Rules for Case Study 1..........................174

D. Source Code Header Files for the Automated Crash Mode Matching
Algorithm..184

 xiv

ABSTRACT

Vehicle crashworthiness is an important design attribute which designers strive to

improve. However, design for structural crashworthiness is a difficult task. A vehicle

structure must have the strength to shield the passenger compartment, as well as the

compliance to cushion the impact energy. The physics that govern the crash phenomenon

involves nonlinear interactions of impact, plasticity and contact mechanics. With current

state of the art, no analytical models of reliable accuracy are deemed possible for vehicle

structures of realistic level of complexity. The best known analysis method is nonlinear

finite element (FE) modeling that includes the fine geometric details of the structural

components, fine element sized mesh and detailed nonlinear material models. Detailed

FE analysis however requires enormous computational resources thereby severely

hindering the success of general-purpose optimization approaches that otherwise prove

effective in a broad spectrum of problems. With limitations on the available

computational resources, an approach which is more of an art used by vehicle designers

is that of manipulation of the crash mode, or crash mode matching. The crash mode is the

gross-motion of the structure, which is qualitatively assessed by observing the time

history of deformation of various zones of the structure. Crash mode matching involves

adjusting the design variables of the structure in order to achieve a desirable structural

deformation history. An experienced designer can make a good estimate of what the

desirable structural deformation history should be, and can perform the necessary

adjustment to the design variables to attain it and thus obtain good designs. This manual

 xv

crash mode matching typically requires only a few trial FE runs. This dissertation aims to

develop an algorithmic design methodology for parametric structural crashworthiness

optimization by formalizing the crash mode matching approach.

In order to formalize the crash mode matching approach, a quantitative

representation of the crash mode is introduced. The crash mode is defined as a matrix of

time series, with dimensions of the matrix being the structural location and type of

deformation. The time series in each element of the matrix records the deformation

history. A comparison metric is then introduced for the degree of matching between crash

modes of different designs. The metric is the integral of the error between the time series

in the elements of the crash mode matrix. Thus the comparison metric is itself a matrix of

error values, with its dimensions being the structural location and type of deformation.

Finally, an algorithm is design for automated crash mode matching. The algorithm

heuristically directs stochastic sampling of the design space to regions which are

expected to have better match to the desired crash mode. This is achieved by adjusting

the mean and standard deviation of a normal distribution that governs the stochastic

sampling of each design variable. Adjustment of the mean and standard deviation is

performed via Fuzzy logic rules that are defined by the algorithm user in analogy to the

type of decisions that an experienced designer would make when observing certain

conditions in the structural crash mode. Introducing randomness into the sampling

procedure allows for the algorithm to have global convergence properties, as well as

accounting for the fact that different expert designers may have different opinions on how

to modify a design.

 xvi

Implementation of the proposed framework is applied to two real-life case studies

involving front half of a vehicle, as well as full vehicle models. The studies show the

success of the proposed methodology in attaining high performance designs, while

requiring a modest number of detailed FE runs, and hence reasonable computational

resources.

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Passenger vehicle crashworthiness is extremely important for public safety.

According to the National Highway Traffic safety administration (NHTSA)
*
, in the year

of 2000, there were more than six million highway traffic crashes, in which included:

 41,821 fatal crashes

 3,189,000 crashes resulting in injuries

 4,286,000 crashes resulting in property damage only

Although continuous efforts are spent towards accident prevention through better

highway traffic management and accident prevention systems in vehicles, the possibility

of occurrence of a crash can never be brought to zero. Therefore, vehicle safety in the

event of a crash is an important design attribute for vehicle manufacturers. Aside from

government and insurance standards, which are nowadays a requirement before vehicle

manufacturers are permitted to put a new vehicle on the road, vehicle manufacturers

strive to improve the crashworthiness of their vehicles as a moral responsibility as well as

improve the market attractiveness of their vehicles.

*
 http://www.nhtsa.dot.gov/

http://www.nhtsa.dot.gov/

 2

1.2 Background

1.2.1 Design for Structural Crashworthiness

Safety systems in vehicles after a crash event initiates are mostly passive in

nature, except for air bags. Passive crash safety systems in a vehicle may be categorized

into:

 Structural crashworthiness systems: this is the performance of the

vehicle structure during the crash event

 Non-structural systems: such as seat belts

Seat belts and airbags serve to cushion high acceleration spikes on the passenger,

but have insignificant contribution on dissipating the crash energy of the vehicle. The

major opportunity for continued improvement of the overall vehicle crashworthiness is

that of structural design for crashworthiness, which is the focus of this research. In the

rest of this dissertation, the term “crashworthiness”, unless otherwise stated, will be

referring to structural crashworthiness.

Design for vehicle structural crashworthiness is a difficult task due to the

combined effect of several issues:

 Actual crash testing, is a destructive type testing and only possible

after a vehicle prototype is built, thus very expensive and time

consuming

 3

 Analytical modeling of real vehicle structure is all but impossible,

since the underlying physics involves combinations of dynamic

impact, plasticity, contact mechanics and very complex geometrical

shapes.

 Numerical modeling of the crash event is difficult. Recent advances in

the finite element (FE) method have been incorporated into

commercial packages that enable designers to obtain fairly accurate

estimates of a structural crash performance. However, to achieve

acceptable accuracy, the FE model of the vehicle typically includes

hundreds of thousands, or even millions of elements. Such detailed FE

models require enormous (expensive) computational resources. While

many attempts have been made at reduced order numerical models,

none have proven consistent accurate crash performance predictions

 Design decisions are often non-obvious. The structure should have

enough compliance to absorb and cushion the crash energy, but must

retain integrity in sensitive areas such as the passenger compartment

and fuel system. Also, due to the underlying nonlinear physics, the

design variables sometimes have strong nonlinear interactions that are

difficult to predict a-priori. The nonlinear variable interactions also

lead to high chance of existence of local optima.

In view of such difficulties, the dominant design automation approach in practice

is that of conducting design of experiments (DOE) to sample the design space via a FE

 4

model (Phadke 1993), then use the samples to construct a response surface model (RSM).

The RSM maps the inputs (design variables) to the outputs (crashworthiness measures),

and is then used within an optimization algorithm to estimate desirable vales for the

design variables (Simpson et. al. 2004). The design suggested via the RSM is then re-

tested via FE simulations, and if discrepant, a new DOE/RSM study may be conducted.

The main difficulties of the approach however are:

 Difficulty in attaining good fidelity for the RSM. If the design domain

is large (Simpson et. al. 2004), an extremely large number of samples

in DOE are needed to properly capture the functional nonlinearity

between inputs and outputs. If the design domain is confined to small

vicinity, then the results obtained via the RSM are local only to such

vicinity.

 The computational resources required for the approach are quite

enormous. A study in (Yang et. al. 2001) required 512 processors

running in parallel for 72 hours for a half-million element FE model.

As computer computational speed increases, so does the level of detail

in FE models, thereby the total invested time and cost to perform this

kind of study remains all but prohibitive.

 Response surface modeling is a general purpose technique that

abstracts the underlying physics of the problem and does not attempt

to take advantage of them. Abstraction of the underlying physics

prevents expertise-based design adjustment. For example, a designer

 5

observing the structural behavior during crash of a FE model may gain

insight as to where reinforcement needs to be made at a structural

zone that is deforming more than intended. Such type of insight is not

available when only observing input-output relations from a response

surface model.

1.2.2 Structural Crash Modes and Crash Mode Matching

Another approach used in practice by vehicle designers, is that of manipulation of

the crash mode. This involves the pre-planning of a desirable sequence of deformation,

folding and crush of the different structural zones, then the adjustment of the structural

design to attain the desired structural deformation history. Such approach is more of an

art than a formal algorithmic procedure. There are no formal rules for discovering a good

structural deformation sequence, or for adjusting the design variables to attain such a

sequence. Despite the lack of formality in this approach, an experienced designer is

typically able to attain a good design with only a handful of trial iterations, which is

significantly more efficient than any other known automated design approach.

A simple illustration of the crash modes is shown in Fig. 1.1, where design of a

single structural member is considered. Since the crash energy has to be absorbed via

deformation in the structure, an example of a desirable crash mode is shown in Fig. 1.1.b.

In this crash mode, the structure deforms at the front (zone 1) in order to absorb crash

energy. With most of the crash energy dissipated as plastic deformation in zone 1, this

prevents excessive deformation near the passenger compartment (zone 2). An example of

 6

an undesirable crash mode is the one shown in Fig. 1.1.c. In this crash mode, zone 1 is

excessively strong (or zone 2 is insufficiently strong), resulting in most of the structural

deformation occurring in zone 2 (near passenger compartment), which is undesirable.

Figure 1.1. Examples of crash modes in Vehicle Structures: (a) Structural member

considered. (b) Desired crash mode. (c) A design that has a bad crash mode.

(a)

(b) (c)

 7

An example of crash mode matching approach is shown in Fig. 1.2. Steps of the

crash mode matching in this example are listed as:

 Given a design whose crash mode is sketched in Fig. 1.2.a, which initially

deforms in zone 1 but does not absorb all the crash energy there, so

deformation in zone 2 follows, a designer decides to make zone 1 stronger

in order to absorb more energy in zone 1

 Making zone 1 too strong however, may result in zone 1 not deforming

and all (sketched in Fig. 1.2.b), which results in all the deformation

happening in zone 2 (undesirably large deformation). A stronger structural

zone absorbs more crash energy only if deformation happens in that zone.

A designer attempting to correct the crash mode might then decide to

make zone 2 stronger and slightly reduce the strength of zone 1.

 With a proper balance of the relative strength between zones 1 and 2, with

enough strength in zone 1, the designer is able to attain the desired crash

mode where minimal deformation occurs in zone 2 (sketched in Fig. 1.2.c)

In analogy, the RSM approach is like a blind person with a cane (cannot see the

underlying physics), while the crash mode matching is like a weak sighted person (cannot

fully predict the physics, but has some grasp on it). In general, being weak sighted is

better than totally blind. Thus, if it is possible to formalize the crash mode matching

approach, the approach would potentially give a better edge over all others that don’t

recognize the underlying physics of the crash. Attempts at such formalization seem to be

largely overlooked in the literature.

 8

Figure 1.2. Example of Crash Mode Matching

(a) An initial

design

(b) First design

adjustment

(c) Second design

adjustment

Deformation starts in

zone 1

Time

Time

Time

Deformation starts in

zone 1 All crash energy is

absorbed in zone 1

Deformation starts in

zone 2

Some deformation

happens in zone 2

Designer Says:

- Make zone 1 stronger

Designer Says:

- Make zone 2 stronger

- Make zone 1 slightly less strong

 9

1.2 Thesis Goal

This research aims to achieve the following goals:

 Formalization of the crash mode matching approach

 Design of an algorithm that implements crash mode matching for parametric

structural crashworthiness optimization

1.3 Approach

In order to formalize the crash mode matching approach, the first step was to

introduce a quantitative representation of the crash mode. The representation is defined as

a matrix of time series, with dimensions of the matrix being the structural location and

type of deformation. The time series in each element of the matrix records the

deformation history (discussed in detail in chapter 5). This representation is to replace

qualitative visual observation of the structural deformation history.

The next step was to define a comparison metric for the degree of match between

the crash modes of a design and that desired. The metric is the integral of the error

between the time series in the elements of the crash mode matrices. Thus the comparison

metric is itself a two dimensional matrix of error values, with its dimensions being the

structural location and type of deformation, which is a fairly compact data set to examine.

The last step was to introduce an algorithm for automated crash mode matching.

The algorithm heuristically directs stochastic sampling of the design space to regions

 10

which are expected to have better match to the desired crash mode. This is achieved by

adjusting the mean and standard deviation of a normal distribution that governs the

stochastic sampling of each design variable. Adjustment of the mean and standard

deviation is performed via Fuzzy logic rules that are defined by the algorithm user in

analogy to the type of decisions that an experienced designer would make when

observing certain conditions in the structural crash mode. Introducing randomness into

the sampling procedure allows for the algorithm to have global convergence properties,

as well as accounting for the fact that different expert designers may have different

opinions on how to modify a design.

Being a random search algorithm, its performance may vary from one run to

another for the same problem. However, the algorithm does conform to the necessary

conditions to assure global convergence given sufficient number of iterations. Although

the global convergence property has little practical value when considering only few

allowed iterations, the case studies presented in this thesis demonstrate the possibility of

attaining good designs with relatively few iterations.

A necessary additional piece of information that the developed algorithm requires

is the quantitative values for the desired crash mode. While discovery of the desired crash

mode remains an open-ended problem, it is often possible to adapt prior knowledge from

previous vehicle designs to estimate the desired crash mode. While not proven, it is also

observed that reduced order dynamic models could be effective for discovery of desirable

crash modes. Demonstrated in the thesis is that although lacking in accurate predictions,

reduced order models are often capable of capturing the gross motion of a structure,

hence able to observe crash modes.

 11

1.4 Organization of the Dissertation

The outline of this dissertation is summarized as:

Chapter 1 introduces the problem of structural crashworthiness design, highlights

the main difficulties associated with it, and states the course of action to address some of

those difficulties.

Chapter 2 reviews the state of the art literature related to the field. The literature

review includes sections that examine types of optimization problems involved, crash

simulation models as well as the optimization algorithms.

Chapter 3 presents a formal definition of the crash worthiness design optimization

problem that is the focus of this dissertation and gives an overview of the proposed

methodology.

Chapter 4 discusses crash modes in the qualitative sense via simple examples. The

main hypothesis about crash modes is stated. Exploration of crash modes for a given

vehicle structure is also discussed. Equivalent mechanism model, which is a reduced

order dynamic model developed specifically for approximated modeling of structural

members subjected to crash conditions, is presented as one of the options for qualitative

exploration of crash modes.

Chapter 5 presents numerical measures for quantitative analysis of crash modes,

as well as for comparison of crash modes in different structures.

 12

Chapter 6 introduces an automated design algorithm for structural optimization

for crashworthiness via crash mode matching. Analysis of the global convergence

properties of the algorithm via Markov chains is also presented.

Chapter 7 presents the first case study in this dissertation. The case study involves

optimization of an idealized vehicle model, with the front half of the vehicle modeled as

box-section structural members and subjected to frontal crash against a rigid barrier. The

optimization objective is to reduce the structural mass, while complying with constraints

on allowable deformation and maximum acceleration.

Chapter 8 presents the second case study in this dissertation. The case study

involves a multi-objective optimization for minimizing deformation and acceleration in a

full vehicle model subject to offset frontal crash against a deformable barrier.

Chapter 9 concludes the dissertation. A summary of contributions and discussion

of future extensions is presented

 13

CHAPTER 2

RELATED WORK

This chapter presents a review of relevant literature to the research conducted in

this dissertation. At first, the review covers the broad categories of structural

crashworthiness design then focuses on the main interest of the dissertation, which is

parametric structural crashworthiness design. Special sections are dedicated to modeling

and algorithms for crashworthiness. The chapter concludes with a highlight on the

dissertation thrust areas.

2.1 Design Optimization for Structural Crashworthiness

Design optimization for vehicle structural crashworthiness may be categorized

into two broad categories according to the objective of the optimization. Those are:

 Topology Optimization for Structural Crashworthiness

 Parametric Optimization for Structural Crashworthiness

In topology optimization, the objective is to perform optimum allocation of

structural material to an allotted space with the structure is allowed to occupy. Examples

of topology optimization for structural crashworthiness may be found in: (Mayer,

 14

Kikuchi and Scott 1996, Soto and Diaz 1999, Luo et. al. 2000, Mayer 2001, Gea and Luo

2001, Soto 2001).

Fig. 2.1. Topology Optimization verses Parametric Optimization

(a) Example Topology Optimization: structural conceptual

design generation (Saitou et. al. 2005)

(b) Example Parametric Optimization: Sizing of the

dimensions of a sheet metal component cross section

 15

The output of topology optimization is typically a structural concept rather than

an actual final design of the structure (Fig. 2.1.a). While useful at the early design stages

of a completely new vehicle, results of topology optimization seldom take into

consideration many of the structural details such as component manufacturing and

assembly, joints and non-structural components packaging. Since such construction

details will effectively alter the structure from the idealized model optimum topology, the

need for further design adjustments after topology optimization is still a necessity. In

some cases, the structural topology is all but already pre-dictated by the vehicle styling,

and components packaging. In which case, topology optimization for structural

crashworthiness has secondary importance relative to optimizing the final structures, a

task which is the objective of parametric optimization.

Parametric optimization for structural crashworthiness proceeds from fixed

topology. In parametric optimization, a set of sizing design variables is defined. Typical

design variables definitions include dimensions, sheet metal thicknesses and materials of

structural components. Examples of parametric design optimization for structural

crashworthiness may be found in: (Yang et. al. 1999, Chen 2001, Kurtaran et. al. 2001,

Yang et. al. 2001, Redhe et. al. 2002, Andersson and Redhe 2003, Gu et. al. 2004,

Hamza and Saitou 2005)

Parametric optimization for structural crashworthiness can tackle very detailed FE

models (Yang et. al. 2001) of the vehicle that have high performance prediction accuracy

(Fig. 2.1.b). Parametric optimization is suitable for final design adjustments, and it is the

focus of this dissertation. In further discussion in the dissertation, parametric structural

crashworthiness design optimization is referred to as “crashworthiness design.”

 16

2.2 Crash Simulation Models used in Crashworthiness Design

Any design optimization process typically involves several iterations of trial

designs. Building real prototypes in order to perform the NHTSA standard safety tests is

a requirement, however conducting such tests is extremely costly and time consuming,

and is thus only used for final design verifications. Some virtual crashworthiness testing

is required during the design iterations. Closed-form analytical solutions are not an option

for use as a simulation tool for virtual crashworthiness testing due to the extreme

complexity of the crash phenomenon. Closed-form analytical solutions are all but

impossible to obtain for vehicle structures of any real-life level of complexity. Instead,

numerical approximation models have to be used. Typical numerical approximation used

for crash simulation may be classified into three broad categories:

 Detailed nonlinear finite element (FE) models

 Reduced order dynamic models

 Functional approximation or response surface models (RSM)

2.2.1 Nonlinear Finite Element Models

Detailed nonlinear finite element models provide the best known accuracy

solutions to the estimation of structural crashworthiness performance. With the

implementation of many recent advancements in the finite element methods into

commercial software packages (LSTC 2001, ESI 2003), these models have become the

norm for the estimation of structural crashworthiness performance. Examples of detailed

FE for crashworthiness design of a full vehicle models may be found in (Yang et. al.

 17

2001, Soto 2001, Andersson and Redhe 2003, Hamza and Saitou 2005) and for

crashworthiness design of individual components (sub-structures) in (Chen 2001, Koanti

and Caliskan 2001, Kurtaran et. al. 2001, Soto 2003, Hamza and Saitou 2003).

While nonlinear finite element models provide the best known accuracy in

estimation of structural crashworthiness performance, their typical downside is two-fold:

 Models that examine only sub-structures are not guaranteed to provide a

good estimate of the sub-structure when other interacting members are

present

 Models that include full vehicle details require enormous computational

resources, thereby hindering the direct applicability of many (if not all)

design optimization algorithms

2.2.2 Reduced Order Dynamic Models

Reduced order dynamic models for structural crashworthiness design have been

around since the time when the computational resources for FE methods were not easily

available (Song 1986). These types of models range from lumped mass models (Beneet

et. al. 1991) coarse-mesh FE models (Chellapa and Diaz 2002) and fine-grained lumped

models (Abramowicz 2003, Abramowicz 2004, Takada and Abramowicz 2004, Hamza

and Saitou 2004). While differing in details of implementation, these types of models

have common treats (to various extents):

 18

 These models attempt to capture the gross motion of the structure during

the crash event

 The models require less computational resources the detailed FE models,

since they deal with a reduced number of differential equations

Reduced order dynamic models also have typical downsides:

 Introduction of an extra level of abstraction between the model and the

actual physical structure of the vehicle. For example, the dimensions and

sheet metal thickness in some structural component in a FE model are a

representation of the same dimensions and sheet thickness in the real

structure. In a reduced order dynamic model however, a nonlinear spring

may represent a structural member. The spring parameters (such as

stiffness) are not as easy to correlate to actual dimensions of the structural

member in the real structure

 Less accuracy of performance prediction, as with any dynamic model with

reduced number of degrees of freedom compared to FE models (Takada

and Abramowicz 2004, Hamza and Saitou 2004)

These downsides are the reason why such models are seldom used in practice by

vehicle designers

 19

2.2.3 Response Surface Models

Functional approximation models or response surface models (RSM) are general-

purpose meta-models, which are popular in many engineering applications. A meta-

model is essentially a “model of a model”. When some application involves a model that

has expensive computations (such as a detailed FE model), then the meta-model provides

a computationally efficient approximation of it.

Several examples of such meta-models are listed in the review article in (Simpson

et. al. 2004). In general, RSM are constructed via two steps:

1. Conducting design of experiments (DOE) to acquire sample data of some

trial designs. Performance evaluation of the sample data typically involves

the computationally expensive numerical models.

2. Fitting of the sample data via a functional approximation meta-model.

Examples of such meta-models include polynomial regression (Box et. al.

1978, Myers and Montgomery 1995, Yang et. al. 2001), various types of

neural networks (Dyn et. al. 1996, Haykin 1998, Hansen and Salamon

2002,) as well as Kriging (Krige 1951, Sasena et. al. 2002).

RSM models that are constructed via detailed nonlinear FE models seem to be the

dominant popular design automation approach for structural crashworthiness

optimization in practice. However, RSM models for crashworthiness have some serious

drawbacks. Their popularity is mainly attributed to the unpopularity of the other options;

extreme computational resource requirements for using detailed FE throughout all the

 20

design iterations, or the extra level of abstraction involved in using reduced order

dynamic models. The downsides of RSM models are:

 Although inputs to a RSM can be the same design variables as inputs to a

detailed FE model, there is a high level of abstraction and loss of the

physical sense of the problem. After a RSM model is constructed, one

could observe the predicted performance change (of total deformation for

example) verses a change in a design variable, such as a structural

component size, but provides no insight into how such performance

change happened, such as which structural component deformed more or

which zone of the structure is a likely candidate for a reinforcement.

 Due to the nonlinear nature of the underlying physics of the crash

phenomenon, there are often many nonlinear interactions between the

design variables. Such interactions make it extremely difficult to obtain

high fidelity RSM over a wide range of the design variables while using a

reasonable number of sample in the DOE

 RSM models are general purpose meta-models that are independent

underlying-physics of the application they are used in. Oftentimes when

tackling the design of a particular engineering application, there’s more

information about the physics that could aid the designer (for example, in

a linear elastic structure, adjusting for uniform strain is optimal utilization

of structural material to maximize crash energy absorption). Thus use of a

meta-model that has this independence of underlying-physics, eliminates

 21

the chance to incorporate physical-based design insights in guiding the

optimization.

2.3 Optimization Algorithms for Structural Crashworthiness

Publications in the literature that employ reduced order models tend to have their

focus set on modeling and accuracy issues rather than design optimization algorithms.

This is mainly because reduced order dynamic models tend to have low computational

requirements, therefore can be easily linked with off the shelf optimization algorithms

that are available in commercial optimization software packages. However, the accuracy

and fidelity of reduced order dynamic models are usually the prime concern.

Publications that focus on crashworthiness optimization algorithms are usually

referring to algorithms that would be linked to a detailed nonlinear FE model, often

within the framework of a RSM that serves as a surrogate for performance estimation

within the iterations of the optimization algorithm.

In (Yang et. al. 2001), the optimization algorithm that runs on the RSM was

Sequential Quadratic Programming (SQP). The constructed RSM was a second order

polynomial regression, and hence SQP seemed a natural choice. Construction of the RSM

is the bulk of the computational work when compared to several calls to the RSM for

estimating performance. Thus when employing more elaborate RSM models than second

order polynomial regression, several global search techniques (Michalewiz, and Fogel

2000) such as Simulated Annealing, Genetic Algorithms, Tabu search, DIRECT can be

 22

effectively employed. Genetic algorithms (GA) seem to be a popular choice to run

optimization on the RSM (Chen 2001, Andersson and Redhe 2003). The basic steps in a

genetic algorithm (Goldberg 1989) are explained as follows:

1. Define the search space via upper and lower bounds on all design

variables

2. Randomly initialize a Current Population of designs P within the search

space

3. Evaluate the objective function(s) for every design in P

4. Assign a Fitness Value to every design in P, the fitness function is chosen

so that the better designs have better fitness

5. Pass the current best design into a New Population of designs Pnew

6. Select two designs from P, the selection is randomized, but giving higher

probability of selection to designs that have higher fitness.

7. Perform mating between the selected designs to produce two new designs

that are added to Pnew. The mating usually involves a combination of

simple copying, linear averaging, projection and partial randomization.

8. Repeat at step 6 until the number of designs in Pnew is equal to those in P,

then Pnew replaces P and becomes the Current Population

9. Repeat at step 3 until termination condition. Termination condition may be

a pre-set number of iterations or discovery of a design with a target

performance

10. Return the best design in current population

 23

Convergence of the genetic algorithm to the global optimum within the search

space pending satisfaction of certain convergence conditions is shown in (Goldberg

1989). From a practical point of view, application of GA is seldom guaranteed to provide

the global optimum; however, its capability to continually sample the search space and

not get trapped in a local optimum is the main source for its popularity. The anatomy of

GA also makes the number of design samples it requires rather huge, which makes it

prohibitively expensive to link to a detailed FE model, but a good on a pre-constructed

RSM. The thing to remember is that design recommended by the GA can be the optimum

of the RSM model (not the detailed FE model), which is only as good as accuracy of the

RSM model itself.

Another class of RSM-based algorithms is that of incremental model building and

enhancement of the RSM model. A notable approach that could prove effective, although

not known to have been applied to Crash optimization problems, is the SuperEgo

algorithm (Sasena et. al. 2002). This algorithm combines DIRECT as a sampling

algorithm along Kriging as an incrementally enhanced RSM. The difficulty in applying

this approach is that the technique is possibly more sensitive to the increase in the

number of design variables (requires drawing more new samples of detailed FE

simulations, exponentially increasing as the number of design variables increases) than

genetic algorithms running on RSM (only uses the initial pre-constructed RSM model).

Among possible remedies of inaccuracies in non-incrementally enhanced RSM

models, is the construction of several RSM from different sets of DOE samples, then

running an optimization algorithm on each RSM model separately. The recommended

optimum of each RSM is then examined via the detailed FE model, and the best among

 24

all is the one reported. A notable optimization algorithm that works along these lines is

provided in (Hamza and Saitou 2005). The technique is termed Multi-scenario Surrogates

Co-Evolutionary Genetic Algorithm (MSCGA). MSCGA runs GA populations on two or

three RSM models constructed from different sets of DOE samples, with the GA

“fitness” giving credit to designs that are estimated to have high performance among all

the RSM models. The reported result of MSCGA is a set of designs, with the set

extremities being the individual optimum of each RSM model, and the “center” of the set

being designs that are estimated to have good performance among all the RSM models.

2.4 Thrust Area for this Dissertation

Detailed nonlinear finite element models are so far the only type of models whose

accuracy of crashworthiness performance estimation is deemed acceptable by designers,

prior to final design verifications involving prototype building and crash testing. The

computational resources for the detailed FE models are enormous, and continue to be so

(as computers become faster, the FE models become more detailed). Conventional design

optimization methods for structural crashworthiness typically involve some adaptation of

a conventional optimization algorithm and combining it with a conventional RSM model

that is constructed on a pre-set sample of designs. The conventional methods have their

limitations set by the availability of computational resources to construct and/or refine

RSM models.

Another approach which is used in practice by vehicle designers is that of

manipulation of the crash mode, or crash mode matching. The approach, which is more

 25

of an art rather than an algorithmic procedure, involves adjusting the design variables of

the structure in order to achieve a desired deformation history. A notable work along

these lines may be found in (Soto 2003), where topology optimization of one structural

member is conducted to attain a desired time-deformation pattern. The concept of re-

formulating the crashworthiness design problem into that of matching a desired

deformation history seems otherwise overlooked in the literature. Hence, the thrust area

for this dissertation is that of developing a formal algorithmic procedure for crash mode

matching. It is conjectured that this approach, which incorporates knowledge of the

physical behavior of the crash phenomenon into the design optimization process is to

have its advantages in computational efficiency compared to the conventional methods.

 26

CHAPTER 3

METHODOLOGY OVERVIEW

This chapter lays out the proposed methodology for crashworthiness design. A

formal description of the scope of parametric structural crashworthiness optimization

problems is presented, then an overview of the general steps in the proposed

methodology is laid out.

3.1 Scope of Optimization Problems

The proposed methodology is intended for parametric optimization of structural

crashworthiness problems. The problem formulation could be stated as:

Minimize: f (x) (Equation 3.1)

Subject to: g(x) ≤ 0 (Equation 3.2)

Where:

x is the vector of design variables xi i = 1, …, nVar.

f is the objective function to be minimized. For multiple objectives, f is

replaced by f, which is a vector of objectives to be minimized.

g is the vector of inequality constraints gi i = 1, …, nCon. Constraints are set

in the negative-null form.

 27

It is also assumed that one can define CM(x): the crash mode of the structure.

CM(x) is a matrix of time series, explained in detail later in chapters 4 and 5. While

CM(x) does not necessarily represent objectives or constraints, the proposed

methodology requires the capability to evaluate it in order to guide the search algorithm.

Notes:

 It is assumed that evaluation of some of the objectives and/or constraints for some

value of x requires computational simulation of the crash performance of the

structure (or experimental evaluation). Typical quantities that are regarded as

objectives and/or constraints include: displacement/deformation, acceleration and

structural mass.

 The problem formulation does not include equality constraints. The reasoning

behind this is as follows:

o Constraints in crashworthiness problems are generally one-sided. For

example, it may be unacceptable to exceed a target value of maximum

acceleration, deformation, or injury criteria. However, lower values of

maximum acceleration, deformation or risk of injury are not harmful.

o The crash phenomenon often exhibits noise (whether true measurement

noise in an actual crash test or numerical integration errors in a FE model)

in some of the measurable quantities such as acceleration. Constraining a

measurable quantity to an exact single target value is impractical and can

result in making the entire design space infeasible.

 28

 The design variables may be discrete, continuous, or mixed. Typical studies

include design variables that correspond to the dimensions or materials of

structural components. However, the proposed methodology requires fixed

topology, so the design variables don’t correspond to topological variations.

3.2 Overview of the Proposed Methodology

The proposed methodology follows along the lines of a typical design

methodology for crashworthiness optimization, with some additions and variations on

some steps. Section 3.2.1 provides an overview of the steps in a typical design

methodology in research, then section 3.2.2 highlights the variations in the proposed

methodology.

3.2.1 Typical Steps of Parametric Crashworthiness Design

Typical steps of parametric crashworthiness design are shown in Fig. 3.1. The

first step in any design optimization methodology is to construct a reliable model for

performance prediction of design changes. Parametric structural crashworthiness

optimization proceeds from fixed structural topology that has been determined via

topology optimization and vehicle styling. The construction of a detailed FE model is the

usual practice at this stage. The FE model serves for design performance prediction

throughout the optimization process. The next step is the translation of performance

requirements (such as acceleration, deformation and injury criteria) into objectives and

constraints. Creation of measurement points is done in the FE model to ensure proper

recording of the objectives and constraints during a FE simulation run.

 29

Figure 3.1. Typical steps for parametric crashworthiness design

Define the objective(s)

and constraints

Performance

Requirements

Construct performance-

prediction model

(Detailed FE)

Fixed Structure

Topology

Data about

“allowed”

design changes

Define the Design

Variables

Run an Optimization

Algorithm

Interpret Results

Y

N

Satisfactory?

Finish

 30

The next step usually involves some designer experience, as it is the translation of

the existing data about the structural components’ dimensions and materials into design

variables. A designer may choose to limit the number of optional choices for some

components, or fix some of them as constants in order to avoid having too many design

variables and too large a design search space, which is not good for any optimization

algorithm. On the other hand, too few variables or choices per variable may not allow the

optimization algorithm to find possibly good designs because they are not in the search

space. Once the design variables are decided, it is usual practice to add linking scripts to

the FE model so that design variable changes can be automatically updated in the FE

model.

With the FE model ready and the objectives, constraints and design variables

setup; the designer uses available computational resources to run an optimization

algorithm. The discussion in this section is generic, so the algorithm in question may be

any of the generic design optimization algorithms. The algorithm is drawn as a black box

in Fig. 3.1 to emphasize that once started, the human user has little or no control on the

designs that the algorithm would recommend for exploration. The nature of the

crashworthiness problem in a vehicle structure of a realistic level of complexity makes it

impossible to guarantee optimality. However, most algorithms that would be used for

such a problem have better chance of discovering good designs when allowed to perform

many design space samples. The number of samples is often limited by the availability of

computational resources to run as many FE simulations.

It is worth noting that the success of the typical approach is often dependent on

how well the designer made use of his “non-algorithmic” skills in terms of proper choice

 31

of design variables, their ranges and the optimization algorithm to use. Too few or too

restricted ranges on the design variables may exclude possibly good designs from the

search space the optimization algorithm examines. Too many design variables/choices

may cause failure of the optimization algorithm to discover any good design within a

resource-wise-feasible number of design samples. Realistically speaking, there could be

an outer loop (not shown in Fig. 3.1), where in the case of failure to discover satisfactory

results after several attempted optimization runs, the designer might have to use a

different optimization algorithm, or modify the definitions of the design variables.

The proposed methodology presented in the next section incorporates more of the

designers’ knowledge about crashworthiness within the methodology. It is conjectured

that such knowledge would allow the optimization algorithm (the part where the designer

has little or no control on) to discover good designs while using a smaller number of

design samples. This is equivalent to more exploration, hence better likelihood to

discover better designs using comparable amount of computational resources.

3.2.2 Proposed Methodology for Crashworthiness Design

The proposed methodology (Fig. 3.2) follows the same steps as typical

methodologies in the construction of the performance prediction model (detailed FE) and

the definition of objectives, constraints and design variables. However, there is more

information from the designers’ knowledge-base, or design space exploration via

simplified reduced order dynamic models, that is incorporated into the methodology. The

pivot of such additional knowledge is that of the crash modes.

 32

The concept of the crash mode (CM) is qualitatively understood by vehicle

designers as the “time history of deformation in various structural zones”. The CM is

often like a “fingerprint” of a design and dictates whether it would exhibit high quality

performance (in terms of the objectives and constraints) or not. Conscientious is that

good designs have good CM and bad designs have bad CM, and conversely, designs with

good CM are good designs, while designs with bad CM are bad designs.

In analogy to the definition of the design variables, the designer also needs to

define the crash mode for the constructed FE model (definition of the CM, both

qualitatively and quantitatively are discussed in detail in Chapters 4 and 5). The designer

also needs to define what would be a desirable crash mode as well as a set of generic

design adjustment rules for crash mode matching. The adjustment rules are analogous to

an expert-system but are fairly simple to construct for the automated crash mode

matching algorithm presented in this thesis, which is discussed in detail in Chapter 6.

The automated crash mode matching algorithm performs the role of an

optimization algorithm in a typical structural crashworthiness optimization methodology;

which is the automated sampling on the design space in order to discover good designs.

However, it is hypnotized that the proposed methodology setup (incorporating knowledge

base) would allow the proposed algorithm to have more success than a generic

optimization algorithm at discovering high quality designs while utilizing reasonable

computational resources. Examples and case studies presented in this dissertation serve to

support the hypothesis.

 33

Figure 3.2. Steps in the Proposed Methodology for crashworthiness design

Define the objective(s)

and constraints

Performance

Requirements

Construct performance-

prediction model

(Detailed FE)

Fixed Structure

Topology

Data about

“allowed”

design changes

Define the Design

Variables

Run Automated

Crash Mode Matching

Interpret Results

Y

N

Satisfactory?

Finish

Define the observable Crash Mode

Define the Desirable Crash Mode

Define generic design adjustment rules

Knowledge-

Base

and/or

Reduced Order

Dynamic

Models

 34

3.3 Summary

This chapter presented the scope of optimization problems addressed in this thesis

and a high level overview of the proposed methodology. The proposed methodology

enhances the existing methodology by incorporating the concept of crash modes and an

automated crash mode matching algorithm. The crash modes are discussed in detail in

chapters 4 and 5, while the automated crash mode matching algorithm is discussed in

detail in chapter 6.

 35

CHAPTER 4

QUALITATIVE EXPLORATION OF CRASH MODES

This chapter presents two example problems of structures that are subjected to

crash conditions. The examples are simple enough to thoroughly analyze via solving

multiple instances of the problem in order to explore all the possible crash modes for the

said structures. The examples serve to support the hypothesis that crash modes could be

useful in guiding an optimization search. The chapter proceeds with a discussion of

approaches for exploration and discovery of desirable crash modes for problems of

realistic complexity. One such crash mode exploration method (developed as a utility

tool) is presented in detail.

4.1 Examples of Crash Modes in Structures

4.1.1 Two-Mass-Springs Problem

This section presents a simple structure that demonstrates how the crash mode can

significantly influence the crashworthiness performance. The example (Fig. 4.1) portrays

a vastly simplified situation of a payload (m1) that crashes at an initial speed (vo) onto a

wall, with a front deformable structure ahead of it, represented by one mass (m2) and two

nonlinear springs (k1 , k2). Both springs behave in an idealized manner that corresponds to

a deforming structure during crash (Fig. 4.2), where there is an initial linear spring

 36

behavior, followed by a collapse to a steady constant force behavior. This load-

deformation pattern is an idealization of the typical behavior of axial crushing of a thin

walled box-section (Han and Yamada 2000, Koanti and Kaliskan 2001). Parameters for

each spring are as follows:

Fp is the peak force of the spring

Fs is the steady force of the spring after the peak

dp is the spring displacement at which the peak force of the spring occurs

ds is the maximum spring displacement, beyond which, the spring becomes a

rigid object

Figure 4.1. Two-Mass-Springs Problem

m1
m2 k1 k2

vo
vo Wall

 37

Figure 4.2. Crush behavior of the nonlinear springs

The total energy a spring can absorb is calculated as:

Ei = 0.5 Fpi dpi + Fsi (dsi – dpi) i = 1, 2 (Equation 4.1)

The parameter values used in this example are listed in Table 4.1. The setting of

absorbable amounts of energy in each spring ensures that the system can stop (or bounce

back). It is noted in this study that only one parameter (r = E2 / E1) is an implicit variable

that is allowed to change. r is the ratio of the total energy that may be absorbed in each

spring. In essence, this ratio represents the relative strength between the two parts of the

deformable structure.

Displacement

Spring Force

Fp

Fs

dp ds

Linear Region

Steady Force Region

 38

Table 4.1. Parameter values for the two-mass-spring example

Symbol Description Value Unit

m1 Payload mass 50 kg

m2 / m1 Ratio of masses 0.02

vo Initial velocity for both masses 10.0 m/s

Fp1 / Fs1 Peak value to steady value in 1
st
 spring 3.0

Fp2 / Fs2 Peak value to steady value in 2
nd

 spring 3.0

dp1 / ds1 Peak displacement to maximum

displacement in 1
st
 spring

0.02

dp2 / ds2 Peak displacement to maximum

displacement in 2
nd

 spring

0.02

ds1 Maximum displacement in 1
st
 spring 0.25 m

ds2 Maximum displacement in 2
nd

 spring 0.25 m

E1 + E2 Total absorbable energy 1.2 ×

0.5 (m1 + m2) vo
2

r = E2 / E1 Ratio of absorbable energy in springs (variable)

This example is simple enough to allow for analytical expression of the

differential equations of motion, based on the various possible situations of the nonlinear

springs. The equations of motion for all possible case are:

 Case when both springs are in the linear region:

1 1 1 11 1 1

1 1 1 1 2 22 2 2

/ /0 0

/ / /0 0

p p p p

p p p p p p

F d F dm x x

F d F d F dm x x

        
                  




 (Equation 4.2)

 39

 Case when 1st spring is in the linear region, 2
nd

 spring in steady force region:

1 1 1 11 1 1

1 1 1 1 2 22 2 2

/ / 00

/ / ()0

p p p p

p p p p s

F d F dm x x

F d F d sign x Fm x x

        
                  




 (Equation 4.3)

 Case when 2
nd

 spring is in the linear region, 1
st
 spring in steady force region:

1 2 11 1 1

2 2 1 2 12 2 2

0 0 ()0

0 / ()0

s

p p s

sign x x Fm x x

F d sign x x Fm x x

         
        

        

 

 
 (Equation 4.4)

 Case when 1st spring is in the linear region, 2
nd

 spring is totally compressed (assumed

full plastic collision against wall):

1 1 1 1 1(/) 0p pm x F d x  (Equation 4.5)

 Case when 2nd spring is in the linear region, 1
st
 spring is totally compressed

(assumed full plastic collision between the two masses):

1 2 1 2 2 1() (/) 0p pm m x F d x   (Equation 4.6)

 Case when both springs are in the steady force region:

1 2 11 1 1

1 2 1 2 22 2 2

()0 0 0

() ()0 0 0

s

s s

sign x x Fm x x

sign x x F sign x Fm x x

        
                   

 

  

 (Equation 4.7)

 40

 Case when 1st spring is in the steady force region, 2
nd

 spring is consumed (assumed

full plastic collision against wall):

1 1 1 1() sm x sign x F   (Equation 4.8)

 Case when 2
nd

 spring is in the steady force region, 1
st
 spring is consumed (assumed

full plastic collision between the two masses):

1 2 1 1 2() () sm m x sign x F    (Equation 4.9)

A computer program is written via the C++ programming language to solve the

equations (4.2 – 4.9), given the initial conditions (
1 2 1 2, 0ox x v x x    ) for a value of

r. Since the total absorbable energy (E1 + E2) is selected as a constant value (Table 4.1),

setting a value of r allows calculation of both E1 and E2. Equation (4.1) is then used to

calculate the peak and steady values of the nonlinear springs (Fp1, Fs1, Fp2, Fs2).

Numerical integration is performed to obtain the time response of the system via simple

logic in the C++ program, which checks the displacement state in each spring, and

accordingly selects the correct governing differential equation among equations (4.2 –

4.9). The displacements and velocities of the two masses are then fed as initial conditions

for the new governing equation.

It can be shown that varying the ratio r for this example problem produces two

possible crash modes:

 Crash Mode #1: 1
st
 spring exceeds peak force first, which happens at high values

of r when spring #2 is stronger. This crash mode is sketched in Fig. 4.3(a).

 41

 Crash Mode # 2: 2
nd

 spring exceeds peak first, which happens at low values of (r)

when spring #1 is stronger. This crash mode is sketched in Fig. 4.3(b)

Deformation plots of both springs for various values of the strength ratio r are

shown in Fig. 4.4 and Fig. 4.5 respectively.

Figure 4.3. Sketching of the Crash Modes in the Two-Mass-Springs Problem: (a)

Crash Mode #1, (b) Crash Mode #2

Time = 0.00 Time = 0.01 Time = 0.03 Time = 0.08

(a) Crash

Mode #1

(Large r)

(b) Crash

Mode #2

(Small r)

Spring #1

deforms

Spring #1 fully

crushed

Spring #2

deforms

Spring #2

deforms

Spring #2 fully

crushed

Spring #1

deforms

 42

Figure 4.4. Deformation plot for the 1

st
 spring

Figure 4.5. Deformation plot for the 2

nd
 spring

D
ef

o
rm

at
io

n
 (

m
)

Time (s)

Crash Mode #2

Crash Mode #1

Discontinuity in the response

verses r due to crash mode change

r = 0.01

r = 0.6

r = 0.7

r = 0.99

Time (s)

D
ef

o
rm

at
io

n
 (

m
)

Crash Mode #2

Crash Mode #1

r = 0.6

Discontinuity in the response

verses r due to crash mode change

r = 0.01

r = 0.99

r = 0.7

 43

Assuming that the objective of designing the springs is to minimize the maximum

acceleration experienced at the payload mass, this maximum value is recorded in the C++

solver program. A plot of the maximum acceleration verses the relative strength of the

two springs (r) is shown in Fig. 4.6.

Figure 4.6. Maximum acceleration for the payload mass (m1)

It is intuitively understood that extremely low or high values of r are undesirable,

because the weaker spring will be crushed first and reach the steady force region while

providing low deceleration of the payload mass. This will evidently result in the payload

mass hitting the stronger spring at higher velocity after the weaker spring is fully

compressed, causing higher maximum acceleration to be experienced by the payload.

Counter-intuitively, however, the least attainable maximum acceleration is not achieved

(r)

M
ax

.
A

cc
el

.
(m

/s
2
)

Crash Mode #2

Crash Mode #1

 44

at a perfectly balanced strength ratio (r = 0.5). The least attainable maximum acceleration

is achieved around the region of (r = 0.6). This is due to the dynamic effects of the

masses which maintain CM#2 (2
nd

 spring deforms before the 1
st
 spring), even though if

2
nd

 spring is slightly stronger. The 1
st
 spring then serves as a softer cushion for the

payload mass resulting in overall lower maximum acceleration. Increasing r beyond a

certain value (around r = 0.61) causes a change of the crash mode to CM#1 (1
st
 spring

crushes first), which is accompanied by a significant change in the crashworthiness

performance (large undesirable increase in the maximum acceleration).

This simple example serves to highlight the concept of a crash mode, as well as its

effect in dictating the crashworthiness performance. A more complex example is

provided in the next section.

4.1.2 Vehicle Mid-Rail Problem

This section further demonstrates the effect of crash modes on the

crashworthiness performance via a more involved example of a vehicle mid-rail shown in

Fig. 4.7. The mid rail is assumed to have a uniform rectangular box cross-section

throughout its entire length. The box is assumed to be made up of mild steel sheet.

Parameters for the model are listed in Table 4.2. The problem has one independent

variable (t1), which is the thickness of the sheet metal in zone #1 (Fig. 4.7), and one

dependent variable (t2), which is the thickness of the sheet metal in zone #2, and is

calculated in accordance to (t1) to maintain a constant structural mass of the rail. It is

desirable to explore the region of values for the design variable that result in the minimal

 45

deformation in zone #2 (closer to the passenger compartment) as the rail deforms to

absorb the kinetic energy in the payload (M). Zone deformation is calculated simply as

the difference in position along the x-axis direction between the zone ends.

Figure 4.7. Vehicle Mid Rail Model

A finite element model (FE) is constructed for the mid rail using the LS-DYNA

commercial software (LSTC 2001). The model response is simulated for several test

values of (t1). Since FE simulations of crashworthiness problems often exhibit noise, as

well as undesirable sensitivity to meshing variations, each simulation is performed five

times with slight (sub 0.1mm) randomization of the node positions in the mesh. The

reported values represent the average response of the five runs.

Zone #1 Zone #2

vo

x

z

y

M

 46

Table 4.2. Parameter values for the Vehicle Mid Rail example

Symbol Description Value Unit

M Payload mass 200.0 kg

vo Initial velocity 10.0 m/s

L1 Length of Zone #1 650.0 mm

L2 Length of Zone #2 375.0 mm

h Box section height 90.0 mm

b Box section width 60.0 mm

 Inclination angle 23.5 deg

d Z-direction rail axis offset 120.0 mm

t1 Sheet thickness in Zone #1 (Variable) mm

t2 Sheet thickness in Zone #2 5.6 – 1.8 t1 mm

Summary of the deformation in Zone #2 as function of (t1) is shown in Fig. 4.8.

Three different regions of behavior of the deformation in zone #2 verses t1 are identified

in plot in Fig. 4.8. Examining the animation of the deformation history for designs in the

different regions leads to the identification of three crash modes, which are are sketched

in Fig. 4.9:

 Crash mode #1 (Fig. 4.9a) occurs at small values of (t1) and is characterized

by a crush (axial deformation) in zone #1, but the deformation is not sufficient

to absorb all the crash energy, so it is followed by a deformation in zone #2 in

the form of two plastic hinges

 47

 Crash mode #2 (Fig. 4.9b) occurs at some mid-range values of (t1), where the

axial deformation in zone #1 is sufficient to absorb most of the crash energy

and results in negligible deformation taking place in zone #2

 Crash mode #3 (Fig. 4.9c) occurs at large values of (t1), where zone #1 is too

strong and doesn’t exhibit any appreciable plastic deformation, causing all the

crash energy absorption to happen in zone #2 in the form of plastic hinging.

Figure 4.8. Deformation in Zone #2 as function of (t1)

(t1) mm

D
ef

o
rm

at
io

n
.
(m

)

Crash Mode #2 Crash Mode #1 Crash Mode #3

 48

Figure 4.9. Sketching of the Crash Modes in the Vehicle Mid-Rail Problem

From a designer’s perspective, CM #3 is the least desirable since it exhibits large

deformation in zone #2 of the mid rail, while crash mode #2 is the most desirable since it

results in the least deformation in zone #2. Achieving the desired crash mode for this

problem requires correct adjustment of the design variable t1 so that zone #1 is neither too

weak (otherwise it doesn’t absorb all the crash energy, as in CM #1), nor too strong

(otherwise it doesn’t deform at all and absorbs no crash energy, as in CM #3).

Time = 0.00 Time = 0.03 Time = 0.06 Time = 0.09

(a) Crash

Mode #1

(b) Crash

Mode #2

(c) Crash

Mode #3

Plastic Prismatic Joint

Plastic Hinge

Plastic Prismatic Joint

Plastic Hinge

 49

This example serves to further highlight the importance of crash modes in

dictating crashworthiness performance of structures. It demonstrates how changing a

design variable too much in what might seem to be a beneficial direction can result in a

switch of the crash mode from a good one to a bad one. The switch in the crash mode

from good to bad also changes a good design into a bad one. A listing of the hypotheses

made regarding crash modes in this thesis is provided in the next section.

4.2 Hypotheses of Crash Modes

Based on the observations from the two examples presented in sections 4.1.1 and

4.1.2, as well as discussions with vehicle designers in practice, the following are the main

hypotheses of crash modes:

 Distinctive and drastic changes in the crashworthiness performance (such

as deformation or acceleration) happen upon the change of crash modes.

This was demonstrated in both examples at the transitions between

different crash modes (Fig. 4.6 at r  0.6 and Fig. 4.8 at t1  0.9 and t1 

1.3)

 Designs exhibiting the same crash mode tend to have similar performance

in terms of objective functions. Furthermore, the trends in the objective

functions versus the design variables seem to maintain their monotonicity

within the same crash mode. For example, in Fig. 4.6, increasing the value

of r seems to benefit the objective as long as crash mode #1 is in effect,

but this trend changes when CM #2 is in effect. Also, in Fig. 4.8,

 50

increasing t1 is beneficial while CM #1 is in effect, but the opposite

happens when CM #3 is in effect.

 Crash modes provide a partitioning of the design domain. Thus, attaining

the desired crash mode implies a high likelihood of being in the vicinity of

an optimal design.

Due to the complexity of crashworthiness models involving vehicle structural

models of realistic level of detail, it is perceived impossible to prove these hypotheses.

The validity of the hypotheses however are empirically demonstrated in the simple

examples presented in this chapter, and validated in the case studies of realistic vehicle

models in Chapter 7.

4.3 Exploration of Crash Modes of a Vehicle Structure

4.3.1 Options for Crash Modes Exploration

The proposed methodology essentially guides the crashworthiness design

optimization via biasing the search to favor desirable crash modes. As such, knowledge

of the desired crash mode is a requirement to begin with, before the proposed method can

be applied. It is important to note that in many cases of full vehicle structures, such

desired crash mode is already “mostly known” from previous experience with older

vehicle models or similar structures. In the case of completely new conceptual designs

however, the luxury of prior knowledge about the desired crash mode could be

unavailable, thus requiring a study in itself. The options for exploring vehicle structural

crash modes are discussed in this section.

 51

In the absence of prior knowledge about similar designs, discovery of the

desirable crash mode (needed in the proposed methodology) could be as much of a

challenging task as the optimization problem via conventional methodology. In the

examples presented in section 4.1, exploration of the crash modes was performed via

exhaustive search, i.e. sampling of a dense grid over all possible values for the design

variables. Exhaustive search is only feasible in the simplest of problems, due to the

exponential growth in the size of the design space with respect to the number of design

variables. Exhaustive search is infeasible for any crashworthiness problem of a realistic

level of complexity. Feasible approaches to discover the desirable crash mode are:

 Partial design space sampling via design of experiments (DOE) (Taguchi,

G., 1993, Phadke, 1989). In this approach, a systematically well spread out

number of sample designs are explored in the design space. A designer

applying this approach would hope that one of the samples would be in the

vicinity of an optimal design, and hence exhibit the desirable crash mode.

The effectiveness of partial sampling however is diminished in problems

involving a large number of design variables.

 Performing an optimization run via conventional methodology. Since the

crash mode hypotheses state that the optimum design has the optimum

crash mode; discovery of the optimum design is also discovery of the

optimum crash mode.

Discovery of the desirable crash mode in the absence of prior knowledge about it

might seem like vicious cycle in the logical flow of the proposed methodology. The

 52

desirable crash mode is needed to discover the optimum design, yet the optimum design

is needed to discover the desirable crash mode. However, one could very well argue that

if the good crash model for similar vehicle designs is generic enough to carry over from

prior knowledge to a new design, then the good crash mode can carry over from a

simplified model of the vehicle structure to the detailed FE model.

The argument of the generality of carry-over of good crash mode across models

alleviates the restraint on using simplified crashworthiness models. Simplified models

may not be suitable for direct use in optimization (due to inaccurate predictions for

objectives and constraints), but they may be suitable for exploring the crash modes.

Possible simplified models for exploring the crash modes are:

 Coarse-mesh finite element models: where reduction of computational

resources required comes at a sacrifice of some accuracy of estimated

results

 Coarse-grained reduced order dynamic models: where entire sections of

the structure are lumped into equivalent masses and springs/dampers

(Beneet et. al. 1991) (example sketch in Fig. 4.10b). Clearly the loss of

physical detail of the structure is a hindering issue, aside from fidelity

 Fine-grained reduced order dynamic models: where the important

structural members are represented member-by-member as sets of masses

and springs/dampers (Takada and Abramowicz, 2004, Hamza and Saitou

2005) (example sketch in Fig. 4.10c).While these models resemble coarse

 53

mesh FE techniques in the trade-off between accuracy and speed of

computation, they are very suited for observing crash modes due to the

implicit identification of the important structural members prior to the

construction of such models

Fig. 4.10. Different models of a vehicle structure: (a) a finite element model of a

structure (b) lumped mass model and (c) equivalent mechanism model

Revolute joints with nonlinear
torsional springs

minor
masses

mass mass

(a)

(b)

(c)

Prismatic joints with
nonlinear axial springs

 54

Of the considered options for exploring the crash modes of a vehicle structure, the

ones expected to be most effective are the coarse mesh finite element methods and the

fine grained reduced order dynamic models. One class of fine-grained reduced order

dynamic models was developed in this thesis, and called the Equivalent Mechanism (EM)

models. The EM models allow for one-to-one correspondence in zone geometry

definition and have shown effectiveness in modeling small to moderate sized vehicle

structures (Hamza and Saitou 2003-2006). The EM models are explained in further detail

in the next subsection.

4.3.2 Crash Modes Exploration via Equivalent Mechanism Models

This section discusses equivalent mechanism (EM) models as a fine-grained

reduced order dynamic model that could be employed for structural crash modeling, with

the purpose of discovering the desirable crash mode. An EM model (Fig. 4.10c) is a

network of rigid beams joined by prismatic and revolute joints with special nonlinear

springs. The springs are designed to mimic the force-displacement and moment-rotation

characteristics of thin-walled beams often found in the body of vehicle structures.

Mapping of the physical dimensions to their equivalent springs is performed by

interpolation on pre-compiled databases of structural cross-sections (Hamza and Saitou

2004b); similar to the way civil engineers use standard steel-section tables. In essence,

the EM models are fine-grained lumped mass models, similar to Abramowicz’s Super

Folding beam element (Abramowicz 2003, 2004), with the main difference being in the

nonlinear springs equation and method of spring properties estimation.

 55

The key assumptions for applying EM models to explore and discover crash

modes are:

 The observable crash modes in detailed FE models exist in the constructed

EM models

 Crashworthiness performance of EM models qualitatively corresponds to

that of real structures. In other words, good crash modes in reality are

good in EM models and bad ones are bad

Just as with most assumptions about the crash phenomena in vehicle models that

have a realistic level of detail, the governing equations are so complex that the presented

key assumptions are difficult to prove or disprove. However, some arguments could be

drawn out to justify why the assumptions can be acceptable:

Existence of the crash modes in EM models:

 In essence, the crash mode of a real structure is a sequence of crash energy

dissipation events. A good crash mode is one that allocates the appropriate

amount of energy to the appropriate structural zone at the appropriate

time. The EM models allow a one-to-one correspondence in zone

geometry definition. Zones in the detailed FE model are typically defined

as the collection of elements that form a structural member (e.g. bumper,

rail, pillar). Thus, the EM models allow having one zone for every zone

defined in the detailed FE. Thus, the crash mode observed in EM is a

similar allocation of crash energy to structural zones as a crash mode that

occurs in the detailed FE model.

 56

Fig. 4.11. Procedure to estimate the desirable crash mode via EM models

Correspondence in performance of crash modes:

 Since the crashworthiness performance measures considered in this

research are ultimately time histories of structural deformations

(displacements and accelerations), having a bad deformation pattern in an

EM model (for example: excessive deformation near passenger

compartment) would be observed as a bad crash mode. Conversely, a good

deformation pattern in EM models would be observed as a good crash

mode.

The procedure to apply EM models in order to discover desirable crash modes is

illustrated in Fig. 4.11. The procedure goes through an optimization run, where the

optimization algorithm guesses values of the design variables. Next a component

Performance
estimation via EM

Model

Guessing
physical

dimensions

Re-iteration via an
optimization algorithm

Component
database

 57

database is used to estimate the nonlinear springs in an EM model that corresponds to the

detailed FE model. Use of a database of physical components to estimate the parameters

of the nonlinear springs ensures that the nonlinear springs in the EM model always

correspond to some physically realizable structure. Crashworthiness performance is then

estimated via dynamic simulation of the EM model. The estimated performance is then

returned to the optimization algorithm, and the optimization algorithm re-iterates. Genetic

algorithms, being popular for a broad spectrum of problems (Goldberg 1989, Deb et. al.

2000) were implemented, although other algorithms could be applied within this

framework. At the end of the optimization run, the main interest is the observed crash

mode associated with having good crash performance, rather than the specific values of

the design variables. Inaccuracy in the reduced order dynamic models may prevent using

the optimum values of the design variables as seen in the reduced order dynamic model.

However, it is hypothesized that the observed desirable crash mode can be carried over

from the reduced order dynamic model to the detailed FE model, just as one would carry

over a desirable crash mode from prior knowledge of similar designs to a new design.

4.3.3 Details of Equivalent Mechanism Models

Implementation of EM models is fairly simple. The main structural members of

the vehicle frame, which are typically modeled using plate or shell elements in FE

models, are approximated as sets of rigid masses connected by prismatic and revolute

joints that have special nonlinear springs (Fig. 4.10c). The deformation resistance

behavior of the springs is chosen to capture the behavior of the structural members. The

EM models are then solved using a conventional dynamic simulation algorithm, thereby

providing an estimation of the overall vehicle structure behavior.

 58

Fig. 4.12 shows typical deformation resistance curves of short thin-walled beams

with box and hat sections, subject to axial twisting, transversal bending, and axial

crushing (Hamza and Saitou 2004b), obtained using the LS-DYNA software. In both

plots, the horizontal axis is displacement or rotation, while the vertical axis is the reaction

force or moment. These curves were generated using the loading conditions sketched in

Fig. 4.13, where one side is held fixed, while the other side is subjected to forced

deformation of small uniform velocity (quasi-static). The recorded resistance to motion

(axial force in case of axial crush, moments in the cases of bending and twisting) at the

moving side is recorded into the component database for the given structural section

shape and dimensions.

Observation over a wide range of dimensions for the cross-sections geometry and

wall thickness, show the load-deformation curves bearing distinct similarities to Fig. 4.12

in:

1) The steep, linear rise in resistance for small deformation

2) The saturation at elasticity limit

3) The gradual drop to a steady-state resistance.

Experimental observations in the literature confirms this deformation pattern (Han

and Yamada 2000, Koanti, R. P. and Caliskan 2001) as long as the considered members

are short enough so that no multiple folds of the sheet metal are formed (which results in

secondary peaks).

 59

Fig. 4.12. Typical deformation resistance curves for (a) box section and (b) hat

section.

Axial crushing

Bending

Twisting

Axial crushing

Bending

Twisting

(a)

Displacement or Rotation

F
o
rc

e
 o

r
M

o
m

e
n
t

(b)

Displacement or Rotation

F
o
rc

e
 o

r
M

o
m

e
n
t

 60

Fig. 4.13. Loading conditions for generating the component database curves for EM

models. (a) Axial Crush, (b) Bending and (c) Twisting

The spring force (or moment) Fk within EM models is given as a sum of the

forces corresponding to each of the four zones illustrated in Fig. 4.14, blended together

using sigmoid functions (Mathworks 2001), which are a continuous version of the step

function:

1 1 2 2 3 3 4 4() () () ()kF sig F sig F sig F sig F    (Equation 4.10)

(a) Axial Crush

(b) Bending

(c) Twisting

Fixed End
Axial loading, imposed
via forced constant
velocity motion

Fixed End

Torsional loading,
imposed via forced
constant rotational
velocity motion

Fixed End Fixed End

Bending loading, imposed via forced
constant rotational velocity motion

 61

where:

1
e

e

F
F 




 (Equation 4.11)

2

2 2

()
()

()

p e

p p

p e

F F
F F  

 


  


 (Equation 4.12)

4

()
()

3 ()
p

s p

s p sF F F F e
 

 





  

 (Equation 4.13)

4 ()e
s c

e

F
F F L


  

 (Equation 4.15)

  is the instantaneous amount of deformation, referenced to the un-

deformed length of the spring.

 Fe is the maximum elastic force (or moment).

 e is the maximum elastic deformation occurring at the transition between

zones 1 to 2.

 Fp is the peak deformation resistance force.

 p is the deformation at which the peak deformation resistance occurs at

the transition from zones 2 to 3 (Fig. 4.14).

 Fs is the steady state resistance force after collapse.

 s is the deformation at which the resistance falls within 2% of the steady

state value.

 Lc is the maximum deformable length (or angle) occurring at the transition

from zones 3 to 4 (Fig. 4.14).

 62

Fig. 4.14. EM nonlinear spring behavior and main curve parameters

In Fig. 4.14, zone 4 represents the high stiffness after crushing the full deformable

length. The behavior during unloading is assumed to go parallel to the elastic zone

starting from the maximum deformation that had occurred. This unloading regime

mimics the energy loss due to plastic deformation and removes the need to include

explicit dampers in the EM model.

The maximum deformable length Lc is estimated from the length, geometry and

connectivity of the represented structural member. For example, in a crush module of

100mm length modeled using 4 springs in series, the total deformable length Lc for each

spring would be 100 / 4 = 25mm.

Deformation

F
or

ce
 o

r
M

om
en

t

Zone 1

p

Fe

Zone 2 Zone 3 Zone 4

Unloading

Fp

Fs

e s Lc

 63

The estimation of the other tuning parameters is done by referring to component

databases of pre-analyzed FE models of the short, thin-walled beams with different sizes

of box and hat sections and wall thicknesses. A different set of the tuning parameters (Fe,

e, Fp, p, Fs, and s) are identified for different directions of deformation of the nonlinear

spring, in order to better represent the difference in behavior between tension and

compression, as well as bending in un-symmetric sections.

The task of generating the component database is quite elaborate, however, once

generated for a family of cross-sections, they can be used in any EM model much like a

civil engineer uses steel-section tables. The current implementation of EM models only

has Box (Fig. 4.12(a)) and Hat (Fig. 4.12(b)) sections generated (Hamza and Saitou

2004b). The steps for generating a component database are listed as follows:

1. Construct a base FE model of the cross-section in question. The FE model

should be able to get automatically modified by controlling the cross-

section geometric variables such as dimensions and sheet thickness(es).

The model would also be setup to run the loading cases corresponding to

axial, bending (along 2 main axes) and twisting (Fig. 4.13)

2. Construct a grid of data points that span the ranges of the cross-section

geometric variables values

3. Run the FE-model for the axial, bending and twisting loading. Record the

load-deformation curves.

4. Repeat step #3 a number of times with small-scale randomization (less

than 0.1mm) on the node positions of the FE mesh. FE simulations of

crash conditions are reported in the literature to sometimes exhibit

 64

idealistic behavior, especially for perfectly straight sections and sheet

components. This step is introduced to avoid such idealization. In (Hamza

and Saitou 2004b), the FE model for every point in the data grid was run 5

times.

5. Generate an averaged loading curve for each of the loading cases (axial,

bending and twisting) using the data obtained in steps #3 and #4.

6. Identify the spring tuning parameters (Fe, e, Fp, p, Fs, and s)axial that

make an EM nonlinear spring (Equation 4.10) fit as best as possible within

the average axial load deformation curve

7. Repeat step #6 for the bending and twisting load cases to obtain (Fe, e, Fp,

p, Fs, and s)bending-vertical , (Fe, e, Fp, p, Fs, and s) bending-transverse and (Fe,

e, Fp, p, Fs, and s)twisting

8. Repeat steps #3 to #7 for every point in the grid of data points that span

the ranges of the cross-section variables

9. The component database is now ready for use, and given some cross-

section dimensions, the spring tuning parameters (Fe, e, Fp, p, Fs, and s

for axial, bending and twisting) may be recalled for use with an EM

model. For dimensions that do not exactly correspond to a grid point in the

database, a suitable interpolation scheme is employed. In (Hamza and

Saitou 2004b) a radial basis neural network (Haykin, 1998, Mathworks

2001) seemed to provided good interpolation performance.

A further update to the EM modeling capability was the addition of a Side-squish

nonlinear spring, which allows modeling of situations when a structural member gets

squeezed between two rigid bodies (sketched in Fig. 4.15). An example of a side-squish

 65

situation is when the vehicle bumper gets squeezed between an object it hits, and some of

the power-train components. This situation is not a well represented as axial, bending, nor

torsional deformation, yet clearly involves crash energy dissipation. In the EM

implementation, the side-squish spring also follows equation 4.10, but with the spring

constants identified from a different component database. The database was generated

following the steps #1 through #9, with only side-squish crash conditions being

considered.

Fig. 4.15. Sketch of a side-squish crash condition

The nonlinear spring described by equation 4.10 is the fundamental component in

EM models, which is implemented into a computation code via the C++ programming

language. Construction of an EM model is similar to the construction of a FE model

made entirely of beam elements. However, instead of nodes and beam elements, there are

Bulky object

Side squish zone of the

structural member

Bulky object

Structural member

 66

rigid point-masses connected via prismatic and revolute joints (spherical joints, in case of

3D analysis). A brief tutorial on the use of the developed software to construct an EM

model is provided in Appendix A.

Simulations via EM models were successful in the discovery of the desirable

crash mode for vehicle structures of small and medium levels of complexity (Hamza and

Saitou 2003, 2004(a, c), 2005). Application for the discovery of the desirable CM for a

model representing the front half of a vehicle is presented in Chapter 7.

4.4 Summary

This chapter presented a qualitative overview of structural crash modes. Simple

examples were presented to demonstrate the crash mode hypotheses as being distinct,

characteristic and provide a partitioning of the design space into regions where the design

exhibit similar crashworthiness performance. The chapter also discussed the discovery of

desirable crash mode(s) for a vehicle structure, and how reduced order dynamic model

may be beneficial for the exploration task. Equivalent Mechanism models, being a

reduced order dynamic model developed exclusively for crash modeling, were presented

in this chapter as a candidate modeling approach for discovery of the desirable crash

mode.

 67

CHAPTER 5

QUANTIFICATION OF CRASH MODES

Previous discussions of vehicle structural crash modes in this thesis have only

considered the crash mode concept from a qualitative sense. In order to incorporate crash

mode matching into the proposed methodology, quantitative definitions need to be

established to allow for automated crash mode matching. This chapter introduces formal

quantitative definitions for the crash mode as well as quantitative metrics for comparison

of degree of mismatch between vehicle structure designs having different crash modes.

5.1 Quantitative Definition of Crash Modes

5.1.1 Definition

The crash mode (CM) is qualitatively understood as the time history of

deformations in various zones of the vehicle structure. A quantitative definition for the

crash mode is proposed in this thesis as a matrix of time series corresponding to different

deformation types averaged over different regions of structural zones :

CM = (cmij(t)); i =1, 2, 3; j = 1, …, m (Equation 5.1)

 68

where:

cmij(t)  R is the total deformation of a structural zone at time t

t  [0, Tf] is the time instant at which the structure is observed. t

ranges from zero to the final crash time Tf

i is an index on deformation type, which can be one of three

possible types: 1) axial crush, 2) bending and 3) side-squish

j is an index on the number of zones

m is the number of zones defined for the structure

Successful application of the proposed methodology relies on a proper selection

of the structural zones and deformation types. The definition of the crash mode places no

restriction on the definition of zones. An extreme case (and obviously improper) would

be to regard the entire structure as one zone, which would not show a distinction between

qualitatively identifiable different crash modes. Another improper extreme example

would be to regard every element in a FE mesh as a separate zone, which while allowing

distinction between different crash modes, has too many numerical modes that

correspond to only few qualitatively-different modes. Also with the types of deformation,

a variety of proper and improper choices are possible. Thus, it is the task of the designers

(users of the proposed methodology) to ensure proper selection of zones as well as

deformation types for the crash mode definition. While typically obvious to an

experienced designer, some suggested guidelines for proper selection of zones are:

 A region of the structure, which would be qualitatively judged as a

structural member should be regarded as one zone, possibly divided into two

or three zones at most if it’s a large member

 69

 Only significant types of deformation that contribute to crash energy

absorption should be recorded. For example, in the case studies considered

in this thesis, the index i of the deformation type had three possible values:

1 = axial crush, 2 = bending and 3 = side squish. It is noted that not every

zone exhibits all of the deformation types, for example the bumper of a

vehicle exhibits significant side squishing, but negligible axial

deformation.

5.1.2 Calculation of the Crash Mode for Finite Element Models

Emanating from the definition of the crash mode in equation 5.1, this section

provides an implementation to calculate the numeric values of the crash mode for FE

models. A computer software is developed via visual C++ to assist the task. Fig. 5.1

shows a screen shot of the program, along with an example FE mesh. The program is

compatible with FE mesh file for both LS-DYNA and PAM-Crash softwares.

The program user has the following tasks:

1. Decide on the structural zones, and types of deformation to be recorded

for each zone

2. Define key observable cross-sections for deformation measurement for

each zone

3. Define key observable nodes for displacement measurement for each

observable cross-section

 70

The program then automatically retrieves the time history of motions for the key

observable nodes from the commercial software’s solution file. The defined nodes for

each key observable section are used to calculate the position at the centroid of the cross-

section. The relative motion of the centroids of the section (Fig. 5.2) with respect to the

initial undeformed position is used to calculate relative displacements and rotations via

vector algebra. The total sum of deformation is then calculated for each defined zone. It

is noted that the torsional component of the rotation is disregarded as not being a major

contributor in the considered case studies, and that the two bending components at every

cross-section are vectorially added for one effective bending value.

Figure 5.1. Screen shot of computer program for assisting the calculation of crash

mode for finite element models

Mounted

observational mesh

for a structural zone

Finite element mesh

 71

Details of the vector algebra to calculate the total deformations of a zone are

illustrated in Fig. 5.2. The observational mesh is defined by the designer and it includes n

key cross-sections in every structural zone and several key nodes in each key cross

section. The vector points ri,o (i = 1, … n) are the positions of the centroids of nodes in

each of the key cross-sections in the structure’s un-deformed state. Vector points ri,t are

the centroids’ positions at some time t during the crash event.

The total axial crush in a zone at time t is calculated as:

cm1j(t) =  
1

1, , 1, ,

1

() ()
n

i t i t i o i o

i

r r r r


 



   (Equation 5.2)

The total bending in a zone at time t is calculated as:

cm2j(t)=

2
2, 1, 1, , 2, 1, 1, ,

1 2, 1, 1, , 2, 1, 1, ,

() () () ()

() () () ()

n
i t i t i t i t i o i o i o i o

i i t i t i t i t i o i o i o i o

r r r r r r r r
ArcCos ArcCos

r r r r r r r r


     

      

          
               



 (Equation 5.3)

The total side-squish in a zone is calculated exactly like the axial crush (using

equation 5.2), except the observational mesh for the side squish is selected along the

transverse direction of the structural zone (instead of the axial direction in case of the

axial crush).

 72

Figure 5.2. Tracking zone deformations on a FE mesh for calculating the crash

mode

5.1.3 Calculation of the Crash Mode for Equivalent Mechanism Models

Calculation of equivalent values of the crash mode for EM models is a simple

task, because the EM models already incorporate deformable joints with mounted

nonlinear springs. The program user needs only to identify the structural members that

comprise a zone, and the deformation types of interest. The program then automatically

sums over the deformations of the joints in the defined structural zones to calculate the

CM values; axial joints for axial crush, rotational joints for bending, and side-squish axial

joints for side squish values.

Un-deformed structural zone,

un-deformed positions of nodes

Deformed structural zone,

deformed positions of nodes

r1,o

r2,o

r3,o

rn,o

rn,t

r1,t

r2,t

r3t,

un-deformed shape, off-which

deformations are calculated

 73

5.2 Comparison of Crash Modes

5.2.1 Metric for Degree of Crash Mode Mismatch

With the capability to calculate the crash mode values for a given structural model

discussed in section 5.1.1, this section discusses metrics for judging the degree of match

or mismatch between a crash mode of a given structure and a desired crash mode. A

mismatch metric is defined in this section that corresponds to the definition of the crash

mode in section 5.1.1. In essence, the crash mode mismatch metric is a two-dimensional

matrix with dimensions being the number of zones and the number of deformation types.

Each entry in the matrix is a time integral of the absolute error between actual and desired

crash modes, normalized with respect to the desired crash mode. The mismatch metric is

defined as:

CMM = (cmmij); i =1, 2, 3; j = 1, …, m (Equation 5.4)

cmmij =

*

0

*

0

() ()

()

f

f

T

ij ij

t

T

ij

t

cm t cm t dt

cm t dt









 (Equation 5.5)

where:

cmij(t) is the time series of deformation type i in zone j from the

crash mode of the design currently being tested. This data

is usually available as a time series rather than a continuous

function of time because it is obtained from a FE model

 74

that only saves deformation values at discrete time

intervals.

cmij
*
(t) is the time series of deformation type i in zone j from the

desired crash mode

In many practical cases, it is often difficult to have accurate or detailed time

history information of the desirable crash mode. This issue motivated the development of

a more compact form of the crash mismatching metric. Examination of the profile of a

times-series from a typical crash mode (Fig. 5.3) reveals three main stages of the time

series:

1. Deformation occurring somewhere else in the structure, and deformation

in the considered zone is negligible

2. Plastic deformation: which happens fairly rapid and during which, the

considered zone is contributing to dissipate crash energy while plastically

deforming

3. Retention of deformed shape: in which the considered zone has consumed

its folding space (cannot deform any more), and it is no longer

contributing to the dissipation of crash energy. At this stage, if the crash

energy is not fully dissipated, the structure typically undergoing further

deformation in other zones of the structure, but not the considered zone.

 75

This allows for a compact approximation of the desired crash mode as a step

function:

cm
*

ij(t) = (tto) d (Equation 5.6)



 


otherwise1

0 if0
)(

t
t (Equation 5.7)

Where (t) is the unit step function, d and to are the magnitude and start time of

the step (Fig 3.3), respectively.

Fig. 5.3. Typical profile of a crash mode time series cmij(t) and its approximation as

a step function.

Time

Crash mode time series

t0

d

D
e
fo

rm
a

ti
o

n

d

Step function
approximation

Elastic
deformations

Plastic
deformations

Little further
deformation

 76

Adoption of the step function approximation for the desirable crash mode

significantly facilitates the use of prior expertise, because the designer using the proposed

methodology only needs to provide the pairs (t0, d) for each cmij
*
 instead of a full time

series.

5.2.2 Relaxed Metric for Degree of Crash Mode Mismatch

While the crash mismatch metric introduced in equation 5.5 seems like a natural

definition, it has the downside of making no numerical distinction between a crash mode

exhibiting more deformation than desired values from a crash mode exhibiting roughly

equal amount of less deformation than the desired values. Furthermore, crash modes for

designs that do positive error over some portion of the time integral then recover via

negative error over another portion, while not exactly matching the desired crash mode,

are better than other designs that go only one side of the error (positive or negative). This

can be argued because the deformations in structural zones are generally associated with

energy dissipation, a truly mismatching crash mode of a design is one that completely

misses the target value in some zone / deformation type. The need for exact match at

every time instant can redundant. Fig. 5.4 shows a sketch of two cmij time series. The

crash mode mismatch metric evaluate to the same value for both series (evaluated via

equation 5.5). However, from a qualitative sense, series #1 (exhibiting positive and

negative errors over the time history) is a better match to the desired crash mode

 77

Fig. 5.4. Example time series mismatch relative to a desired crash mode.

To address the shortcomings of the mismatch metric calculated via equation 5.5, a

relaxation of equation 5.5 is introduced by removing the absolute operator from the error

integrals.

cmmij =

 *

0

*

0

() ()

()

f

f

T

ij ij

t

T

ij

t

cm t cm t dt

cm t dt









 (Equation 5.8)

The relaxed mismatch metric is perceived beneficial as it can take on either

positive or negative values, which can be a direct indication to the designer (or the

automated crash mode matching algorithm) as to which structural zones are overly strong

Time

d
D

e
fo

rm
a

ti
o

n

Desired crash
mode

Series #1 (deformation qualitatively
matching well)

Series #2 (deformation not
matching well)

 78

(cmmij evaluates to a negative value) or overly weak (cmmij evaluates to a positive value).

Also, in a scenario such as the one presented in Fig. 5.4, series #1, which has a better

qualitative match to the desired crash mode than series #2, would have less mismatch

error than series #2 when the relaxed mismatch metric (equation 5.8) is used.

In the examples and case studies presented in chapters 6, 7 and 8, the relaxed

mismatch metric (equation 5.8) will be the one used for crash modes comparison and

crash mode matching.

5.3 Summary

This chapter introduced quantitative definitions for the crash mode as well as

quantitative metrics for comparison of degree of mismatch between vehicle structure

designs having different crash modes. The next chapter presents the core algorithm in the

proposed methodology that uses the crash mode definitions in this chapter to perform

automated crash mode matching.

 79

CHAPTER 6

AUTOMATED CRASH MODE MATCHING ALGORITHM

This chapter presents the final piece in the proposed methodology, which is the

automated design optimization algorithm that uses crash modes matching to accelerate

the discovery of good designs. A simple example is also provided in this chapter to

demonstrate the steps of the algorithm and provide a comparison with other existing

optimization algorithms.

6.1 Algorithm Overview

The algorithm for automated crash mode matching is based stochastic sampling of

the search space (Fig. 6.1). The algorithm seeks to find the optimum values of the design

variables (x
*
) that minimize the objective(s) f(x) (equation 3.1), subject to the constraints

g(x) (equation 3.2).

The algorithm is started at some initial design and iterations are repeated

throughout the search. The algorithm draws out a number of sample designs in every

iteration according to a multi-dimensional Gaussian distribution on the design variables.

The averages and standard deviations of the Gaussian distributions for each design

variable are adjusted at the beginning of every iteration based on the degree of mismatch

between the crash mode of the current design and the desired crash mode. A copy the

 80

best encountered design is stored separately before then the best among an iteration’s

samples becomes the new current design. Iterations are continued till the discovery of a

design that has satisfactory performance or until a pre-set number of sample designs are

examined.

Figure 6.1. Overview of the automated crash mode matching algorithm

Current Design

Y

N

Return best discovered design

Better than best

known so far?
Store separate copy Y

Calculate relaxed crash mode

mismatch metric for current design

Adjust sampling distributions

Termination?

N

Examine sample designs

Best among sample designs becomes

the new current design

 81

6.2 Algorithm Inputs

There are four categories of the algorithm inputs, these are listed as:

1. Definition of the optimization problem: Detailed FE model and definitions

of the Design variables (x), (including lower and upper bounds on the

design variables, xmin and xmax respectively), Objective(s) (f(x)) and

constraints (g(x)).

2. Crash mode matching data: Definition of the zones and deformation types

for calculating the crash modes, as well as values for the desirable crash

mode cmij
*
 = (t0ij, d ij), i = 1, 2, 3, j = 1, …, m

3. Sampling distribution adjustment rules: Rl, l = 1, …, nRules. The

automated crash mode matching algorithm uses fuzzy logic (Hopgood

2001) to adjust the Gaussian distributions on the design variables for

sampling the search space. An advantage to fuzzy logic is that it allows

application of logical rules to qualitatively assessed quantities then

recommends numerical values as an output. An example rule is shown in

Fig. 6.2. Every rule has a logical term and an action term. The fuzzy sets

used in this dissertation in the logical term can be one of {NH: highly

negative, NL: low negative, Z: near zero, PL: low positive, PH: highly

positive}. The nominal adjustment value (a) is some number set for every

defined fuzzy rule. A guideline for selecting the value of a is given as:

 For small increase/decrease adjustment, a is recommended to be

approx. +/- one tenth of the range of the design variable whose

distribution is being adjusted. This is only a guideline that seemed

 82

to work well in some test problems. The algorithm user may use

other values if appropriate knowledge of the problem is at hand.

 For small increase/decrease adjustment, a is recommended to be

approx. +/- one fifth of the range of the design variable whose

distribution is being adjusted

4. Tuning parameters for the algorithm: Number of sample designs to

examine in each iteration (nIterSamples), minimum values for the standard

deviations of the Gaussian distributions (i,min i = 1, …, nVar) and a

maximum number of iterations (nIter)

Fig. 6.2 Example fuzzy design adjustment rule

6.3 Algorithm Steps

6.3.1 Algorithm Pseudo-code

1. Start at an initial design x
o
, Evaluate x

o
, set current best design x

*
 = x

o

2. Initialize iteration counter iIter = 0

R3: If cmm24 is PH and cmm13 is NH, then adjust x5 by a

Rule number Logical Term Action Term

 83

3. If x
o
 is better than x

*
, set x

*
 = x

o

4. If iIter ≥ nIter, goto step #18 (termination)

5. Evaluate the relaxed crash mode mismatch metric for current design cmmij

i = 1, 2, 3, j = 1, …, m (according to equation 5.8)

6. Initialize the Gaussian distributions for sampling the design space for

current iteration:  = x
o
,  = 0

7. Initialize the fuzzy logic rules counter: l = 0

8. Set l = l + 1

9. Evaluate the fuzzy rule Rl. Every fuzzy rule returns a rule activity-value

(a [0, 1]), index of affected design variable (ia  {1, 2, …, nVar}) and

adjustment level (a). Calculate the sampling distribution adjustment value

a according to:

.a a a  (Equation 6.1)

10. Adjust the Gaussian distributions:
a ai i a   ,

a ai i a  

11. If l < nRules, goto step #8 (loop until all fuzzy rules have been evaluated)

12. Ensure the standard deviations of the Gaussian distributions are equal to or

larger than the minimum: If i, <i,min , set i, = i,min , i = 1, …, nVar

13. Generate sample designs x
k
, k = 1, …, nIterSamples from the search space

with the Gaussian probability distribution (, )

14. Run the detailed FE model for each sample design, save the FE run

results, and evaluate f(x
k
) and (g(x

k
), k = 1, …, nIterSamples

15. Identify x
†
, as the best among the drawn samples x

k
, k = 1, …,

nIterSamples

16. Set x
o
 = x

†
 and iIter = iIter + 1

 84

17. Goto step #3 (beginning next iteration of the main loop)

18. Return x
*
, f(x

*
) and (g(x

*
)

6.3.2 Algorithm Details

Implementation of the algorithm into computer code is performed via the C++

programming language. Source code of the program is provided in Appendix D. Details

of the main steps of the algorithm are provided as follows:

The proposed algorithm examines a number of sample designs in every iteration

then uses the best among the sample as the new current design, but best among the

samples may not be better than current design. Step #3 of the algorithm ensures that a

separate record is kept for the best encountered design during the stochastic sampling.

This is known in Genetic Algorithms literature as “elitism”, which is important for the

convergence properties of any optimization algorithm that uses stochastic sampling of the

search space.

The criteria for comparison between two designs as to which is “better” which is

used in step #3 (and later in step #15) are summarized as:

 If both designs are infeasible (one or some g(x) > 0), a penalty function is

employed (weighted sum of amount of constraint violation) for the

comparison.

 If one design is feasible (all g(x) ≤ 0), yet the other design is infeasible

(one or some g(x) > 0), the feasible design is a better design

 85

 If both designs are feasible (all g(x) ≤ 0), the design with least value of

f(x) is the better design. Ties are broken randomly. If there are multiple

objectives, weighting is employed.

Step #5 uses the saved results of the detailed FE model for current design to

evaluate the relaxed crash mode mismatch metric (Equation 5.8).

Step #6 initializes the Gaussian distributions for generating the sample designs in

the current iteration. The distributions are initially centered on the current design ( = x
o
)

and having zero variance ( = 0)

Steps #7 through #11 is a loop over the defined fuzzy rules (Hopgood 2001) for

design adjustment (third category of the algorithm inputs in section 6.2). Each rule has a

qualitative logical term and a qualitative action term (Fig. 6.2), explained as follows:

 The logical term typically examines part of the relaxed crash mode

mismatch metric. For example: “If cmm12 is NH”.. The logical term is

evaluated in the algorithm into the action value a, which is simply the

value of the membership function (Hopgood 2001) in the qualitative level

values {NH, NL, Z, PL, PH}. The membership functions implemented in

the algorithm are two-sided sigmoid functions (Mathworks, 2001), shown

in Fig. 6.3.

 86

 For logical terms that employ multiple logical expressions, for example “If

cm13 is PH AND cm25 is Z”, the action value a is calculated as the

minimum of the membership values in each expression.

 The action term of the fuzzy rule provides an index ia for the design

variable whose sampling distribution is to be modified, and the adjustment

value a . The value of a is used for the calculation of the total adjustment

value a via equation 6.1. Finally, the mean and standard deviation values

of the design variable in question (,
a ai i ) are updated in step #10.

Fig. 6.3. Membership functions for the fuzzy design adjustment rules



m
e

m
b

e
rs

h
ip

 v
a

lu
e

-0.1 -0.3 -0.5 0.1 0.3 0.5 0.7

0.0

0.2

0.4

0.6

0.8

1.0

NH PH
Z NL PL

Crash Mode Mismatch cmmij

M
em

b
er

sh
ip

 V
al

u
e

 87

Step #12 re-adjusts the standard deviation on the sampling distributions so that

they are at least at the minimum values as in the algorithm tuning inputs (fourth category

of the algorithm inputs in section 6.2)

Step #13 uses the computer’s random number generator to generate a number of

sample designs with the design variable values following the Gaussian distribution (, ).

Steps #14 through #16 go through performing the detailed FE runs for each of the

generated sample designs. Best design among the samples becomes the new current

design and the iteration counter is updated.

The algorithm iterations are continued till the pre-set number of iterations is

reached, then the best encountered design (which is being recorded in step #3) is

returned.

6.4 Algorithm Convergence

The proposed algorithm for crash mode matching is a stochastic search technique.

As with all stochastic search algorithms, there are the following drawbacks:

 No guarantees on producing the same answer to the same problem every

time the algorithm is run

 Convergence to the global optimum is not guaranteed unless certain

criteria are fulfilled

 88

The discussion in this section follows similar analysis to one of the convergence

proofs of genetic algorithms (Coello et. al. 2001). There are two sufficient conditions for

global convergence of a genetic algorithm, which are summarized as:

 Elitism: This is keeping a separate record of the best member(s) in the GA

population until a better one(s) is discovered. In analogy, this condition is

met in step #3 of the proposed algorithm.

 Reachability: This is having non-zero probability to reach the optimum

from any randomized initial population. In analogy, this condition is met

in the proposed algorithm because the Gaussian distributions for the

design space sampling have non-zero probability over the entire search

space.

The discussion in this section shows that with the elitism and reachability

conditions met, it is possible to establish the proof of convergence for the proposed

algorithm as well.

6.4.1 Algorithm Convergence for Discrete Design Variables

The proof in this section considers the case when all the design variables in the

vector x are discrete. The proof will employ Markov chains (Resnick 1992) to show that

the best encountered design in the algorithm (x
*
) converges to the global optimum (x

**
)

within a finite number of iterations.

Some of the definitions from Discrete Markov Chains (Resnick 1992) are used in

the proof and are listed as:

 89

 Stochastic state: is some observable quantity which may change over time.

 Discrete-state: is a stochastic state which may only take on certain discrete

values that may be enumerated i = 1, 2, …, NStates

 Discrete-time-discrete-state: is a discrete state which changes over time,

but only during regular discrete periods of time.

 State Transition Matrix (P): is a matrix of probability values for the

transition between one state to another in a discrete-time-discrete-state

stochastic process. P = {Pij} = P(i → j). Fig. 6.4 shows an illustration of a

state transition matrix. The value Pij inside a cell of the matrix is the

probability of transition from the discrete state i (row index) to the discrete

state j (column index) in the next time step. A grey colored cell illustrates

Pij having a non-zero value, while a white colored cell illustrates Pij = 0.

 Class of States: are a group of states having some common property. For

example, in the observation of people in a queue, with the state being the

number of people in the queue. All states that correspond to a queue less

than 5 people may be considered a class of states

 Closed Class of States: are classes of states that have only zero values in

the state transition matrix for transition between any of the states in the

closed class to a state outside the closed class. By definition, when the

state of a stochastic process reaches a closed class, it may change to other

states within the closed class, but cannot change to a state outside the

closed class. In Fig. 6.4, the discrete states 2, 3 and 4 form a close class

because the probability of transition from any of those states to some other

state (besides states 2, 3 and 4) is zero.

 90

Fig. 6.4 Illustrations of some Concepts in Discrete-Time-Discrete-Event Markov

Chains

The proposed algorithm for automated crash mode matching is modeled as a

Markov Chain:

The state is defined as the pair of vectors (x
o
, x

*
), i.e. current design and best

encountered design so far

Current State (i)

N
ex

t
St

at
e

(j
)

1 2 3 4 … NStates

N
St

a
te

s
1

3

2

4

…

State transition
proability:

Grey: 0 <P ≤ 1
White: P = 0

States #2, #3 are forming a closed class.
Transition probabilities to states outside the
class are zero

 91

Since the design variables are discrete and have lower and upper bounds (from

algorithm inputs, section 6.2), then the number of all possible values for (x
o
,

x
*
), is finite and can be enumerated 1, …, NStates

Thus, the algorithm state (x
o
, x

*
) is a discrete state

The algorithm state (x
o
, x

*
) only changes (updates to values of x

o
 and/or x

*
) once

per iteration of the main loop (steps #3 through #17) in the proposed

algorithm

Thus, the algorithm state (x
o
, x

*
) is a discrete-time-discrete-state. With time in this

case being the iteration counter iIter

Define a class C
*
: (x, x

**
) as all the states that include the global optimum

C
*
 is closed class of states. This is established via step #3 in the proposed

algorithm. When/if the optimum design (x
**

) is encountered by the algorithm,

the algorithm will set x
*
 = x

**
. Since x

*
 now holds a copy of the optimum

design, it will no longer be changed again in step #3 of the algorithm.

Since the distributions for generating the samples in the proposed algorithm are

Gaussian distributions thus having non-zero values of the state transition

probabilities (Pij) in the state transition matrix are all non-zero as long as x
*
 ≠

x
**

.(so there exists a chance for x
*
 .to change in step #3).

 92

Thus, C
*
 is the only closed class in the Markov Chain.

The absorption property (Resnick 1992) of discrete-time-discrete-state Markov

chains that have a finite number of states, indicates that the state of the

Markov chain gets absorbed in one of the closed classes in finite time. Note:

time in this Markov Chain is the number of iteration of the algorithm iIter

Since C
*
 is the only closed class in the Markov Chain, it is thus established that

the algorithm can be started at some (x
o
, x

o
) and it converges to (x, x

**
) within

a finite number of iIter

6.4.2 Algorithm Convergence for Continuous Design Variables

The proposed algorithm is meant to be applicable to problems involving discrete,

continuous or mixed discrete and continuous variables. While it is not possible to

guarantee convergence to the exact optimum in finite time if one or some of the design

variables are continuous, this sub-section provides a discussion to show that it is possible

to achieve convergence to a design that is at -distance (which can be made very a small

distance in the space of design variables, but not zero) from the optimum design x
**

within finite time.

Replace all the design variables xi , i = 1, …, nVar that may take continuous

values, with discrete variables that may only take on values:

 xi
†
 = xi,min +k . (xi,max – xi,min)/ nDiv, k = 0, 1, …, nDiv (Equation 6.2)

 93

The discrete problem (x
†
 replacing x) now replaces the original problem. In the

discrete problem, there exists an optimal design x
†*

 that is within -distance

from x
**

.  can be made sufficiently small (but still  > 0) by choosing nDiv

sufficiently large.

The convergence proof in section 6.4.1 is repeated for the discrete problem. This

shows the algorithm started at some (x
o†

, x
o†

) and it converges to (x
†
, x

†*
)

within a finite number of iIter

6.5 Demonstrative Example

This section presents a step by step demonstration of the automated crash mode

matching algorithm to vehicle mid-rail problem that was introduced in chapter 4. The

model of the problem is shown in Fig. 6.5 and data is summarized in Table 6.1. The sheet

metal thicknesses (t1, t2) in zone #1 and zone #2 respectively are independent variables,

and are assumed to take discrete values between 1.0mm and 4.0mm in steps of 0.2mm.

6.5.1 Inputs to the Algorithm

Category #1 of Inputs: Objectives, Constrains & Design Variables:

The objective is to reduce the total deformation in zone #2:

Min. f (t1, t2) = Total deformation in zone #2 (Equation 6.3)

 94

Figure 6.5. Vehicle Mid Rail Model

There are two independent design variables (t1, t2) which are the sheet metal

thicknesses in zone #1 and zone #2 respectively. Both t1, t2  {1.0, 1.2, 1.4, …, 4.0}.

There are no explicit constraints in this example.

It is noted that there are no constraints on structural weight in this optimization

problem. At first glance, this might imply that the optimum design to minimize

deformation would be attained by setting both variables t1, t2 at maximum range (for

maximum structural stiffness). However, this is not true because it leads to an undesirable

crash mode (deformation at zone #2 first).

Zone #1 Zone #2

vo

x

z

y

M

 95

Table 6.1. Parameter values for the Vehicle Mid Rail example

Symbol Description Value Unit

M Payload mass 200.0 kg

vo Initial velocity 10.0 m/s

L1 Length of Zone #1 650.0 mm

L2 Length of Zone #2 375.0 mm

h Box section height 90.0 mm

b Box section width 60.0 mm

 Inclination angle 23.5 deg

d Z-direction rail axis offset 120.0 mm

t1 Sheet thickness in Zone #1 (Variable) mm

t2 Sheet thickness in Zone #2 (Variable) mm

Category #2 of Inputs: Desirable Crash Mode:

A good estimate of the desirable crash mode for this structure is to have a large

amount of axial deformation in zone #1 and a small amount of bending deformation in

zone #2. When accurate time history profile for the desired crash mode is not available, it

is convenient to use the compact form of the desired crash mode (Equation 5.6). The

selected values in this example are:

cm11
*
  (t01, d1) = (0.03, 500): 500mm total axial deformation in zone #1, reaching

half the deformation value at time 0.03 (30ms after hitting the barrier).

500mm is reasoned to be a large amount of deformation (compared to

 96

650mm, which is the total axial length of zone #1) and 30ms is reasoned to

be an early crush (initial crash velocity 10m/s, for the deformation to reach

half its final value in zone #1 after 30ms, means crush must initiate in zone

#1).

cm22
*
  (t02, d1) = (0.06, 0.1): 0.1 rad for total bending in zone #2, reaching half

the deformation value at time 0.06 (60ms after hitting the barrier). 0.1rad is

essentially requiring almost zero deformation in zone #2, however zero

values are not allowed as inputs in desired crash mode otherwise it would

cause a numerical singularity in Equation 5.8. 60ms is reasoned to be a late

crush

Given the configuration of the structure, the rest of zone/deformation types

(bending in zone #1 and axial deformations in zone #2) were not deemed important for

this example study.

Category #3 of Inputs: Sampling Distribution Adjustment Rules:

No deep insights as to the behavior of the crash mode verses changes in the

design variables are assumed available for this study. The only rules defined are simple-

logic of: “if a structural zone is deforming too much, then it could use reinforcement,

then the design variable affecting the zone should be increased”. A listing of the fuzzy

rules is given as:

R1: If cmm11 is NH then adjust t1 by “-ve large amount”

R2: If cmm11 is NL then adjust t1 by “-ve small amount”

 97

R3: If cmm11 is PL then adjust t1 by “+ve small amount”

R4: If cmm11 is PH then adjust t1 by “+ve large amount”

R5: If cmm22 is NH then adjust t2 by “-ve large amount”

R6: If cmm22 is NL then adjust t2 by “-ve small amount”

R7: If cmm22 is PL then adjust t2 by “+ve small amount”

R8: If cmm22 is PH then adjust t2 by “+ve large amount”

Category #4 of Inputs: Tuning Parameters for the Algorithm:

The number of samples per iteration was chosen as nIterSamples = 8

The total number of iterations was chosen as nIter = 20

The minimum value for the standard deviations on the sampling distributions was

chosen as 1,min = 2,min = 0.3mm (within 5% to 10% of the variables’ minimum to

maximum ranges)

6.5.2 Simulation of the Algorithm Steps

The sub-section goes through a simulation of steps of one iteration of the

automated crash mode matching algorithm.

The initial design x
o
 was at (t1, t2) = (2.0mm, 3.0mm). This start was a random

choice close to the mid ranges of the design variables.

 98

Step 1:

FE model is run for the values of (x
o
). The objective function value (total

deformation in zone #2), f (x
o
) = 378mm.

Step 3:

Since this is the first iteration in the algorithm, the values of x
o
 and f (x

o
) are the

best known (so far), so they are copied to x
*
 and f (x

*
)

Step 5:

The mean values of the sampling distributions are initialized to coincide on x
o
:

1 = 2.0mm

2 = 3.0mm

Using the results of the FE run for the values of (x
o
), the relaxed crash mode

mismatch metric (Equation 5.8) is calculated. The values came out to be:

cmm11 = – 0.15

cmm22 = 36.7

Using the two-sided sigmoid membership functions (Fig. 6.2), membership values

are calculated for the crash mismatch metrics:

cmm11 has membership values: 0.301, 0.689, 0.015, 0.000 in NH, NL, PL, PH

respectively

cmm22 has membership values: 0.000, 0.000, 0.000, 1.000, in NH, NL, PL, PH

respectively

 99

Steps 9 & 10:

Application of the sampling adjustment rules is performed (step #9 and #10 in the

algorithm):

R1: activity value a = 0.301 (membership of cmm11 in NH), action is on the

sampling distribution of t1, by an amount:

a = – (t1,max – t1,min)/5 = -0.6mm.

This adjusts 1 by a = 0.301 × -0.6, now 1 = 1.819mm

This also adjusts 1 by a , now 1 = 0.181mm

R2: activity value is 0.689 (membership of cmm11 in NL), action is on the

sampling distribution of t1, by an amount:

a = – (t1,max – t1,min)/10 = -0.3mm.

This adjusts 1 by a = 0.689 × -0.3, now 1 = 1.613mm

This also adjusts 1 by a , now 1 = 0.387mm

R3: activity value is 0.015 (membership of cmm11 in PL), action is on the

sampling distribution of t1, by an amount:

a = (t1,max – t1,min)/10 = 0.3mm.

This adjusts 1 by a = 0.015× 0.3, now 1 = 1.617mm

This also adjusts 1 by a , now 1 = 0.391mm

R8: activity value is 1.000 (membership of cmm22 in PH), action is on the

sampling distribution of t2, by an amount:

a = (t1,max – t1,min)/5 = 0.6mm.

This adjusts 2 by a = 1.000× 0.6, now 2 = 3.6mm

This also adjusts 2 by a , now 2 = 0.6mm

 100

R4, R5, R6, R7 have activity values of almost zero (membership of cmm11 in

PH, and memberships of membership of cmm22 in NH, NL, PL

respectively), thus almost no effect on the sampling distributions.

Standard deviations are checked verses their minimum set values (step #12 in the

algorithm), which is 0.3mm in the algorithm inputs. Both 1, 2 are already sufficiently

large.

Step 12:

The sampling distributions are then used to generate 8 sample designs following a

Gaussian distribution with the mean values (1, 2) = (1.617, 3.6) and standard deviations

(1, 2) = (0.39, 0.6). Since the design variables may only take on discrete values, the

generated samples are rounded off to the nearest discrete value of (t1, t2)

The samples generated in this instance of simulation were: (1.8, 3.2), (1.6, 4.0),

(1.2, 3.8), (1.4, 3.6), (1.8, 3.2), (1.4, 3.4), (1.6, 3.6), (1.8, 3.4)

Best among the samples in this simulation of the algorithm was at (1.2, 3.8),

which is:

t 1 = 1.2mm

t 2 = 3.8mm

f (1.2, 3.8) = 2.04mm

 101

Step 3:

The current design x
o
 is now replaced by the values (1.2, 3.8), and since the

objective function value f (1.2, 3.8) was better than the previously best known. The

current best known design is also updated:

x
o
 = (1.2, 3.8)

x
*
 = x

o

20 more iterations of the algorithm (similar to the steps described in this sub-

section) are repeated, then the values of x
*
 and f (x

*
) are returned.

6.5.3 Performance Assessment of the Algorithm

It is worth noting that the size of the search space (total number of possible

designs) for this optimization problem is 256, which is a small enough number to allow

for exhaustive search (full enumeration of every design in the search space). While

completely impractical for crashworthiness design problems that involve structures of

realistic level of complexity, exhaustive search was performed for this problem to ensure

the discovery of the global optimum and use it for assessment of the performance of the

automated crash mode matching algorithm.

Exhaustive search revealed the global optimum for this problem to be at:

t 1 = 1.2mm

t 2 = 4.0mm

f (1.2, 4.0) = 2.01mm

 102

As with all stochastic search-based algorithms, the global convergence property

(section 6.4) only guarantees convergence to the global optimum after running the

algorithm for a sufficiently large number of iterations. The algorithm does not necessarily

produce the same result it is run. In order to assess the performance of the algorithm, 100

independent runs were performed, with different initial state of the random number

generator. Summary of the results is provided in Table 6.2.

Out of 100 runs in this study, the automated crash mode matching algorithm was

successful in attaining the exact optimum in 85 runs. Furthermore, 99 runs out of the 100

produced a result whose objective function value was within 10% of the optimum.

Designs within 10% of the optimum (10% of 2.01mm deformation in zone #2 is

approximately 2.2mm) had a crash mode that correctly matches the desirable crash mode

from a qualitative sense. Designs encountered during exhaustive search that didn’t match

the desired crash mode had deformations in zone #2 in range between 300mm and

450mm.

As a comparison, the optimization problem was also addressed via Genetic

Algorithm (GA), which is well known and popular stochastic based search (Goldberg

1989, Michalewiz, and Fogel, 2000). Parameter settings for tuning of the GA are listed in

Table 6.3. All the parameters are typical values from the literature except the population

size of 8, which is a small number for typical GA. It is noted however, that in typical GA

application problems, the population size is usually less than 1% of the size of the search

space. A population size of 8 is in fact 3.1% of the size of the search space. Also, for an

appropriate comparison, the total number of objective function evaluations is set to the

same value as the automated crash mode matching algorithm runs: 20 generations × 8

 103

population size is 160 objective evaluations, which is the same as the 20 iterations, with 8

samples in each iteration for the automated crash mode matching algorithm.

Table 6.2. Summary of the Results of 100 Algorithm Runs

 Auto-CMM GA

Number of runs successfully attaining

the optimum
85 84

Number of runs successfully attaining a

result within 10% of the optimum
99 89

Table 6.3. Genetic Algorithm Parameters used in Study

Number of Generations 20

Population Size 8

Crossover Probability 90%

Mutation Probability 5%

Crossover Type Arithmetic / Heuristic

Mutation Type Randomize within upper and

lower bound

 104

Results of the GA are displayed in Table 6.2. It is observed that for 100

independent runs, GA was successful in attaining the exact optimum 84 times. .

Furthermore, 89 runs out of the 100 produced a result whose objective function value was

within 10% of the optimum. Overall, this study shows a slight advantage of the

automated crash mode matching algorithm compared to GA. In more complex problems,

direct linking of GA to detailed FE models may not be feasible with available

computational resources (for example, the case study presented in Chapter 8).

On a side note, exhaustive search of this problem revealed that the objective

function doesn’t have any local minima except the global optimum, so any hill-climber

type optimization algorithm (Michalewiz, and Fogel, 2000) is guaranteed to find the

optimum regardless of the starting point. Local minima however are a known issue in

crashworthiness design problems even ones involving fairly simple structures (Chen

2001). This is the reason hill-climber or gradient based algorithms are rarely used for

crashworthiness problems involving structures of realistic level of complexity, and were

not included in this study.

6.6 Summary

This chapter presented the proposed crashworthiness optimization algorithm that

employs automated crash mode matching to accelerate the discovery of good designs

within a stochastic search framework. Global convergence properties of the algorithm are

established, and a simple example is presented to demonstrate the algorithm performance

from a practical point of view. The next chapters provide application studies of the

proposed crashworthiness design methodology to larger scale vehicle structures.

 105

CHAPTER 7

CASE STUDY 1: FRONT HALF-BODY VEHICLE MODEL

This chapter presents a case study in which the proposed methodology for

structural crashworthiness design is examined. The study considers a simplified FE

model of a vehicle with only few box-section members, undergoing a full-lap frontal

crash against a rigid barrier. The proposed methodology is successful in attaining good

designs while requiring moderate computational resources.

7.1 Problem Model

The model of the vehicle (Fig. 7.1) is set to simulate frontal crash conditions

against a rigid barrier. The FE model has the following specifications:

 All main structural members are box-section

 The engine and power train are represented as a rigid box of mass 250 kg,

connected to the engine mounting points via stiff beams.

 The rest of the vehicle mass (600 kg) is represented as a lumped mass connected

to the structure via stiff beams.

 Crash speed is 15.6 m/s (35 mph)

 Coefficient of friction at the rigid barrier is 0.3

 Material model is elastic-plastic for mild steel

 106

There are 4 continuous and 14 discrete design variables:

 h1, b1 [mm]: height and width of the box-section of upper rails and cross members

(continuous in [50, 150]). These variables govern the dimensions of the box

sections in zones 1 through 6, 13 and 14 as indicated in Fig. 7.1

 h2, b2 [mm]: height and width of the box-section of lower rails and cross members

(continuous in [50, 150]). These variables govern the dimensions of the box

sections in zones 9 through 12 as indicated in Fig. 7.1.

 Zones 7 and 8 are connectors between upper and lower members and have

tapering cross section between them.

 t1, …, t14 [mm]: sheet metal thickness of the box-section, for structural zones 1

through 14 as indicated in Fig.7.1 (discrete in {0.6, 0.8, 1.0, …, 4.2, 4.4}).

The design objective is to minimize the structural mass, subject to safety

constraints on the passenger:

 f [kg]: structural weight, to be minimized

 g1 < 100 [mm]: intrusion into passenger compartment, measured as the maximum

relative deformation during the crash event between points A and B in Fig. 7.1

 g2 < 30 [G]: maximum acceleration at passenger compartment during the crash

event, measured at point A in Fig. 7.1

 107

Fig. 7.1. FE model of front half of a vehicle subjected to full-overlap frontal crash.

1

2
3 4

6

10

11

12

9

13

14

8

7

Engine & Power
Train, modeled as
a solid block

Rigid Barrier

Rest of vehicle

mass, lumped Ground

Suspension

springs

5

(b) Side view sketch

(c) Isometric view of mesh and main components

Main structural members in
front half of vehicle, numbered
by zones 1 through 14

Upper members box

section dimensions

b1

h1

Lower members box

section dimensions
b2

h2

Point A

Point B

(a) Top view sketch

 108

7.2 Previous Optimization Attempts

This section summarizes previous optimization attempts for this case study

problem. Running optimization over a response surface meta-model which was used to

approximate the behavior of the FE model achieved little success. Limited success was

achieved in in (Hamza and Saitou 2004c) via application of genetic algorithm (GA)

(Goldberg 1989, Michalewicz 1996) directly to the FE model. The study in (Hamza and

Saitou 2004c) also examined manual (non-automated) crash mode matching (with the

desired crash mode identified via an EM model). The manual crash mode matching

produced the best (so far known) result to the problem.

7.2.1 Optimization via Response Surface Models

As discussed in chapter 2, structural crashworthiness optimization via response

surface models seems to be the most popular approach for automated design in practice.

The approach follows 3 main steps:

1. Sampling of the design space via detailed FE model runs

2. Fitting of a response surface model over the sampled designs to form a meta-

model

3. Running an optimization algorithm while using the meta model for the

objectives and constraints estimation (instead of the detailed FE model)

In step #1, a standard orthogonal array L54 (Phadke 1993) was used for design of

experiments (DOE) drawing of samples in design space. The L54 array allows for data

fitting of up to 25 variables, with each variable being sampled at 3 different levels. Use of

 109

this array for sampling only requires running the detailed FE model for 54 sample designs

(compared to a full factorial DOE of 3
18

 = 387420489 samples), but the higher order

interactions between the variables cannot be observed.

Depending on the variables to column assignments (Phadke 1993) in the standard

orthogonal array, there can be multiple instances of an orthogonal array (i.e. different

values of the design variables in the set of 54 design samples). In this study, 2 different

instances of the L54 orthogonal array were used. Full listing of the sample designs and

the values of objective and constraints obtained from the detailed FE model is provided in

Appendix B. The generated design samples are labeled sample set #1 and sample set #2

In step #2, 2
nd

 order polynomial and Kriging were used to fit the samples data of

each sample set, as well as all the generated samples. This allowed the construction of 6

different meta-models, listed in Table 7.1. The meta-models were labeled RSM1 through

RSM6.

In step #3, genetic algorithm (GA) is used for the design optimization by running

it while using the constructed meta-models for estimation of the objective and

constraints. Since the objective and constraints estimation via the meta-models is very

fast, this allowed a thorough GA run until full convergence of the GA. Parameters for the

GA runs are listed in Table 7.2.

 110

Table 7.1 Listing of the Constructed Meta-Models for Case Study 1

Meta-Model Description

RSM1 2
nd

 Order polynomial fitted over sample set #1

RSM2 2
nd

 Order polynomial fitted over sample set #2

RSM3 2
nd

 Order polynomial fitted over both sample set #1 and #2

RSM4 Kriging fitted over sample set #1

RSM5 Kriging fitted over sample set #2

RSM6 Kriging fitted over both sample set #1 and #2

Table 7.2. GA Parameters used in Optimization via Response Surface Models

Number of Generations 150

Population Size 80

Crossover Probability 90%

Mutation Probability 5%

Crossover Type Arithmetic / Heuristic

Mutation Type Randomize within upper and lower bound

GA runs are performed for each of the constructed meta-models. The optimum

values for the design variables for each run are listed in Table 7.3. The detailed FE model

is then used to check the objective and constraint values of the obtained designs. It is

observed that none of the runs were successful in producing a feasible design (g1 always

violated). This result highlights the main drawback in optimization via response surface

methods, which is the risk of obtaining invalid results if the constructed meta-model(s) is

not sufficiently accurate.

 111

Table 7.3 Results of Optimization via Response Surface Models

 RSM1 RSM2 RSM3 RSM4 RSM5 RSM6

h1 [mm] 90.0 90.0 90.0 90.0 90.0 90.0

b1 [mm] 54.3 58.4 57.9 50.0 55.3 56.3

h2 [mm] 50.0 51.6 50.0 50.0 50.0 50.2

b2 [mm] 70.1 70.0 76.1 70.0 70.0 70.8

t1 [mm] 2.0 2.0 2.0 2.0 2.0 2.0

t2 [mm] 1.8 2.0 2.0 1.8 1.8 1.8

t3 [mm] 1.6 1.8 1.8 1.6 1.6 1.6

t4 [mm] 2.6 3.0 2.6 2.6 3.0 2.6

t5 [mm] 3.2 3.2 3.2 3.2 3.2 3.2

t6 [mm] 3.0 3.0 3.0 2.8 3.0 3.2

t7 [mm] 1.2 1.2 1.2 1.0 1.0 1.0

t8 [mm] 2.2 2.2 2.2 2.0 2.2 2.2

t9 [mm] 2.6 2.4 2.6 2.8 2.4 2.4

t10 [mm] 2.6 2.6 2.6 2.6 2.6 2.6

t11 [mm] 2.8 2.8 3.2 2.8 2.8 3.0

t12 [mm] 2.4 2.4 2.4 2.6 2.6 2.6

t13 [mm] 1.8 1.8 1.8 1.8 1.8 1.8

t14 [mm] 2.4 2.4 2.4 2.4 2.4 2.4

f [kg]

(RSM estimate)
53.7 56.1 56.8 53.1 54.9 55.3

g1 [mm] (≤ 100)

(RSM estimate)
100.0 99.6 99.8 99.7 99.9 99.6

g2 [G] (≤ 30)

(RSM estimate)
26.3 29.2 28.3 26.5 27.9 28.3

f [kg]

(detailed FE)
54.2 56.3 57.1 53.3 55.1 55.5

g1 [mm] (≤ 100)

(detailed FE)
148.5 161.6 146.4 158.6 172.4 154.6

g2 [G] (≤ 30)

(detailed FE)
27.1 30.4 29.9 26.7 28.1 26.8

Improving the prediction accuracy of a meta-model may be achieved by

restricting the ranges of variation for the design variables, or by increasing the number of

sample designs used to construct the meta-model. However, both options seem infeasible

for this case study. Restricting the ranges of the variables eliminates regions of the design

 112

space and should not be done unless enough knowledge of the problem at hand suggests

that the excluded regions do not contain optimal designs. Increasing the number of the

sample designs to construct the model is impractical beyond a certain point. The meta-

models that were fitted using 108 design samples (RSM3 and RSM6) had only slightly

better accuracy (Table 7.3) than the models that were fitted using 54 samples (RSM1,

RSM2, RSM5 and RSM5). With the number of design samples to construct the meta-

model becoming as many as a few hundreds, the computational resources requirement

would be fairly similar to linking an optimization algorithm directly to the detailed FE

model, which is examined in the next sub-section.

7.2.2 Optimization via Genetic Algorithm

In this optimization attempt, genetic algorithm is directly linked to the detailed FE

model. The GA parameters are listed in Table 7.4. It is noted that due to limitations on

the available computational resources, the population size and number of generations for

this GA run is smaller than what would typically be used. This GA run is essentially an

attempt to discover a good design while using available computational resources for 500

detailed FE runs (population size of 50 × 10 generations).

The best obtained design by the GA run is listed in Table 7.5. The design is

feasible (both constraints g1 and g2 are less than their maximum allowed values).

However, neither constraint is close to its maximum allowed value, which would suggest

the existence of better designs than the one discovered. However, the available

computational resources (500 detailed FE runs) did not allow for finding better designs.

 113

Table 7.4. GA Parameters for directly linked GA with the detailed FE model

Number of Generations 10

Population Size 50

Crossover Probability 90%

Mutation Probability 5%

Crossover Type Arithmetic / Heuristic

Mutation Type Randomize within upper and lower bound

Table 7.5 Best obtained design by GA

h1 [mm] 114.0

b1 [mm] 67.0

h2 [mm] 69.0

b2 [mm] 95.0

t1 [mm] 2.2

t2 [mm] 2.0

t3 [mm] 1.8

t4 [mm] 2.8

t5 [mm] 3.0

t6 [mm] 3.0

t7 [mm] 1.2

t8 [mm] 2.2

t9 [mm] 2.6

t10 [mm] 2.8

t11 [mm] 3.0

t12 [mm] 2.4

t13 [mm] 2.0

t14 [mm] 2.2

f [kg] 73.1

g1 [mm] (≤ 100) 62.0

g2 [G] (≤ 30) 25.9

 114

7.2.3 Optimization via Manual Crash Mode Matching

A study was performed in (Hamza and Saitou 2004c) which was aimed at testing

the hypothesis that manipulating the crash mode of the structure can be an effective way

of attaining good designs. In this study, a thorough optimization run via GA was

performed on an EM model in order to identify the desirable crash mode in the

qualitative sense. The design variables were then adjusted manually (non-automated) in

order to adjust the crash mode to qualitatively match the desirable crash mode. This led to

the discovery of the currently best known design for the problem in this case study.

Summary of the study in (Hamza and Saitou 2004c) is provided in this sub-section.

Construction of the EM model of the problem (Fig. 7.2) was performed using the

developed computer software. Optimization is then performed by running GA while

using the EM model (instead of the detailed FE) for the estimation of objectives and

constraints. The GA parameters are listed in Table 7.6. The result of the GA run on EM

model converged to the values of the design variables listed in Table 7.7. The crash mode

of the obtained design is shown in Fig. 7.3 and is designated as the desirable crash mode.

Table 7.6. GA Parameters for GA linked with EM model

Number of Generations 50

Population Size 100

Crossover Probability 90%

Mutation Probability 5%

Crossover Type Arithmetic / Heuristic

Mutation Type Randomize within upper and lower bound

 115

Fig. 7.2. EM model of front half of a vehicle subjected to full-overlap frontal crash

Fig. 7.3. Desirable crash mode as identified via GA linked with EM model

Not much deformation

in rest of the structure

Early side-squish in zone 1
and crush in zone 2

Some crush in
zones 3, 4 & 9

Side-squish in zone 10

Moderate bending
in zone 9

Moderate bending
in zone 5

(a) 40 millisecond (a) 80 millisecond

 116

Table 7.7 Design obtained by running GA linked with EM model

h1 [mm] 99.0

b1 [mm] 50.0

h2 [mm] 50.0

b2 [mm] 77.0

t1 [mm] 0.8

t2 [mm] 2.6

t3 [mm] 2.2

t4 [mm] 1.8

t5 [mm] 3.0

t6 [mm] 3.0

t7 [mm] 1.0

t8 [mm] 2.0

t9 [mm] 2.6

t10 [mm] 4.4

t11 [mm] 3.2

t12 [mm] 2.0

t13 [mm] 3.0

t14 [mm] 2.0

f [kg] – EM estimate 62.0

g1 [mm] (≤ 100) – EM estimate 95.0

g2 [G] (≤ 30) – EM estimate 24.0

f [kg] – detailed FE 58.0

g1 [mm] (≤ 100) – detailed FE 254.0

g2 [G] (≤ 30) – detailed FE 25.0

Highlights of the qualitatively observed crash mode are shown in Fig. 7.3. Within

the first 40 milliseconds of the crash event, most of the structural deformation occurs in

the form of side-squish in the bumper (zone 1) and axial crush in the front crush module

(zone 2). Towards the end of the crash event (80 milliseconds), the engine block squeezes

the front cross bar (zone 10), and moderate amounts of axial crush and bending occur in

3, 4, 5 and 9.

 117

Fig. 7.4. Crash Mode of design identified via GA linked with EM model: (a) EM

Model, (b) Detailed FE Model

However, testing the values of the design variables via a detailed FE model

produced an infeasible design (constraint g1 violated), with a qualitatively-different crash

mode (Fig. 7.4) as observed from the animation time history in FE model compared with

the EM. It was hypotheses that adjusting the design variables in order to attain the

desirable crash mode should improve the crashworthiness performance. This design

variables adjustment (Table 7.8, adjustments shown as a shaded cells in the table) was

performed using qualitative observation of the crash mode in the detailed FE model (Fig.

7.5).

(a) EM Model (b) Detailed FE Model

Too quick deformation in zones 1, 2, 3

Too much bending
in zone 9

Too much bending
in zones 5, 6

 118

Steps for manually adjusting the crash mode are listed as follows:

 Iteration 1: it was observed in the CM of the EM that the frontal zones 1,

2, 3 were deforming too quickly, so the sheet thickness was increased in

these zones. Also, excessive bending was occurring at the rear, so

thickness was increased in zones 4, 5, 6, 14. The front cross bar was too

stiff and was not collapsing properly, so the thickness in zone 10 and the

width of lower member were reduced. Also, thickness was increased at the

vertical member connecting the two rails (zone 7). The resulting design of

iteration 1 had a much better cabin intrusion performance of 135 mm

compared to 254 mm, but was still short of the target of 100 mm.

 Iteration 2: in an attempt to further prevent too early collapse of the front

zones, the thickness in zones 2, 3, 4, 7, 9 was increased, but this resulted

in zone 3 not deforming at all, and the resulting crash mode had bad

performance, so iteration 2 was abandoned.

 Iteration 3: Prevention of too early collapse of the front structural zones

was next attempted by increasing the width of upper structural members

and height of lower structural members. Height of upper structural

members was slightly reduced. Sheet thickness in zones 1, 4, 7, 9, 12 was

increased, while sheet thickness in zones 10, 11 was reduced. The

resulting design did achieve an acceptable cabin intrusion of 81 mm, but

the maximum acceleration became 35G, which was slightly above the

target of 30G.

 119

Table 7.8 Steps for Manual Crash Mode Matching

 Iterations of CM Matching

1 2 3 4 5 6 7

h1 [mm] 100.0 100.0 90.0 90.0 90.0 90.0 90.0

b1 [mm] 50.0 50.0 80.0 80.0 80.0 80.0 80.0

h2 [mm] 50.0 50.0 60.0 60.0 60.0 60.0 60.0

b2 [mm] 70.0 70.0 70.0 70.0 50.0 50.0 50.0

t1 [mm] 2.8 2.8 3.2 3.2 3.2 3.2 3.2

t2 [mm] 2.8 3.2 2.8 2.8 2.8 2.4 2.4

t3 [mm] 2.4 2.8 2.4 2.4 2.0 2.0 2.0

t4 [mm] 2.4 2.8 2.8 2.8 2.8 2.8 2.8

t5 [mm] 4.2 4.2 4.2 4.2 4.2 4.2 4.2

t6 [mm] 3.2 3.6 3.2 3.2 3.2 3.2 2.8

t7 [mm] 2.0 2.4 2.4 2.8 2.8 2.8 3.2

t8 [mm] 2.0 2.0 2.0 2.0 2.0 2.0 2.0

t9 [mm] 2.6 2.4 2.4 2.4 2.4 2.4 2.4

t10 [mm] 3.6 3.6 3.2 3.2 2.8 2.6 2.6

t11 [mm] 3.2 3.2 2.8 2.8 1.6 1.6 1.2

t12 [mm] 2.0 2.0 2.8 2.8 2.8 2.8 2.8

t13[mm] 3.0 3.0 3.0 1.8 1.8 1.8 1.8

t14 [mm] 2.2 2.2 2.2 2.2 2.2 2.2 2.2

f [kg] 70.0 70.0 72.0 72.0 70.0 68.0 66.9

g1 [mm] 135.0 300.0 81.0 74.0 72.0 74.0 76.0

g2 [G] 29.0 31.0 35.0 34.0 32.0 30.6 29.4

 Iteration 4: the slight CM mismatch between iteration 3 and the target CM

identified by the optimal EM (Fig. 7.3) seemed to be apparent at zone 9,

which was not axially deforming but got bent at the connection to zones 7

and 11. An attempted remedy was to increase the sheet thickness in zone

7. Also, it was observed that Zone 13 was hardly deforming at all, so sheet

thickness in it was reduced. The resulting design more closely resembled

the target CM and performed better than iteration 3. However, the

acceleration level was at 34 g was still above the target of 30 g.

 120

Fig. 7.5 Steps for Manual Crash Mode Matching

 Iterations 5, 6 and 7: The crash mode of iteration 4 was qualitatively close

to the desired. This suggested that the acceleration levels that were higher

than the target values may be due some zones in the line(s) of force being

excessively stiff. Selective reductions in the sheet thickness in zones 2, 3,

From GA run
via EM model

Iteration 1

Iteration 2 Iteration 3

Iteration 4 Iteration 5

Iteration 6 Iteration 7

 121

6, 7, 10, 11 successfully brought the acceleration level within the desired

limits without violating the constraint on allowable deformation.

The final design obtained via manual crash mode matching is currently the best

known design for the problem in this case study.

7.3 Optimization via Proposed Methodology

This section discusses the application of the proposed methodology for automated

crashworthiness design to the case study problem. Steps for applying the automated crash

mode matching algorithm are presented.

7.3.1 Inputs to the Automated Crash Mode Matching Algorithm

Category #1 of Inputs: Objectives, Constrains & Design Variables:

This is the same as the problem formulation discussed in section 7.1. The object f

is to minimize the structural weight, subject to the constraints g1, g2 on deformation and

acceleration, by adjusting the values of the design variables h1, b1, h2, b2, t1, …, t14

Category #2 of Inputs: Desirable Crash Mode:

With 14 defined structural zones, with up to 3 types of deformation (axial,

bending and side-squish) in each zone, there could be up to 42 crash mismatch metrics

cmmij. However, not all zones experience significant amounts of all deformation types.

Furthermore deformation (and energy absorption) in some zones can have more

 122

significant influence on the crashworthiness performance than in other zones. For

example, the upper and lower rails (zones 2, 3, 9 and 11) have more influence on the

crashworthiness than the connectors and cross-members (zones 7, 8, 12, 13, 14). Hence,

selection of the significant crash mismatch metrics cmmij was performed. The select

mismatch metrics, which will be used in the fuzzy rules for adjusting the design space

sampling, were termed (1, 2, …, 19) and are listed in Table 7.9. Reasoning for the

selection is provided as follows:

 All zones except zone 1 (bumper) and zone 10 (front lower cross bar) do

not experience any significant side-squishing. Zones 1 and 10 (1, 2) do

not experience any significant axial or bending deformation.

 Very little deformation occurs in zones 4 and 6 (13, 14), so the axial and

bending values of the crash mismatch metric were combined

 Zones 7, 8, 12, 13 and 14 (15, 16, 17, 18, 19) are cross bars and

connectors with less contribution to absorbing the crash energy, so the

axial and bending values of the crash mismatch metric were combined

Values for the compact representation of the desirable crash mode (t0, d) were

obtained from the EM model that was optimized via GA in section 7.2.3. Estimation of

(t0, d) is illustrated in Fig. 7.6. The d value is taken as the steady state value averaged

over the last 5% of time of the crash event. The t0 value is taken as the time at which the

deformation in the zone reaches 50% of the d value. The values for this case study are

listed in Table 7.10.

 123

Table 7.9 Crash Mode Mismatch Metrics in Case Study 1

Symbol Value Description

1 cmm31 Side-squish in zone 1

2 cmm310 Side-squish in zone 10

3 cmm12 Axial crush in zone 2

4 cmm22 Bending in zone 2

5 cmm13 Axial crush in zone 3

6 cmm23 Bending in zone 3

7 cmm15 Axial crush in zone 5

8 cmm25 Bending in zone 5

9 cmm19 Axial crush in zone 9

10 cmm29 Bending in zone 9

11 cmm111 Axial crush in zone 11

12 cmm211 Bending in zone 11

13 0.5×(cmm14+ cmm24) Combined axial crush and bending in zone 4

14 0.5×(cmm16+ cmm26) Combined axial crush and bending in zone 6

15 0.5×(cmm17+ cmm27) Combined axial crush and bending in zone 7

16 0.5×(cmm18+ cmm28) Combined axial crush and bending in zone 8

17 0.5×(cmm112+ cmm212) Combined axial crush and bending in zone 12

18 0.5×(cmm113+ cmm213) Combined axial crush and bending in zone 13

19 0.5×(cmm114+ cmm214) Combined axial crush and bending in zone 14

Fig. 7.6. Estimation of (t0, d) values for a crash mode

average value over last

10% of the crash event

d

0.5 ×d

t0

 124

Table 7.10 Compact representation values for the desired crash mode

Crash Mode
Desired Values

t0 (ms) d (mm or rad)

cm
*

31 14.0 85.0 mm

cm
*

310 16.5 70.0 mm

cm
*

12 12.0 250.0 mm

cm
*

22 28.0 1.2 rad

cm
*

13 30.0 350.0 mm

cm
*

23 30.0 1.2 rad

cm
*

15 48.0 100.0 mm

cm
*

25 48.0 0.8 rad

cm
*

19 30.0 100.0 mm

cm
*

29 30.0 1.4 rad

cm
*

111 25.0 200.0 mm

cm
*

211 36.0 0.7 rad

cm
*

14 60.0 5.0 mm

cm
*

24 60.0 0.1 rad

cm
*

16 60.0 5.0 mm

cm
*

26 60.0 0.1 rad

cm
*

17 50.0 5.0 mm

cm
*

27 50.0 0.1 rad

cm
*

18 27.0 5.0 mm

cm
*

28 27.0 0.1 rad

cm
*

112 40.0 5.0 mm

cm
*

212 40.0 0.2 rad

cm
*

113 48.0 5.0 mm

cm
*

213 48.0 0.2 rad

cm
*

114 52.0 10.0 mm

cm
*

214 52.0 0.7 rad

Category #3 of Inputs: Sampling Distribution Adjustment Rules:

Full listing of all the fuzzy rules in this case study is provided in tabulated form in

Appendix C. A total of 238 fuzzy rules were defined . The rules were defined

based on simple heuristics:

 125

 If the crash mode mismatch metric for a zone/deformation type is positive

(more deformation than desired), then the sampling distribution of the

design variables that are perceived to affect the zone in question is

adjusted to favor increasing the value of the design variable (make the

zone stronger)

 If the crash mode mismatch metric for a zone/deformation type is negative

(less deformation than desired), then the sampling distribution of the

design variables that are perceived to affect the zone in question is

adjusted to favor decreasing the value of the design variables (make the

zone less stiff)

Example fuzzy rules in this study are:

If 1 is NH, then a = -0.4, ia = 5

(ia = 5 means this rule adjusts sampling distributions on t1)

If 1 is PL, then a = +0.2, ia = 5

(ia = 5 means this rule adjusts sampling distributions on t1)

If 3 is NL and 4 is PL, then a = +6.0, ia = 1

(ia = 1 means this rule adjusts sampling distributions on h1)

Category #4 of Inputs: Tuning Parameters for the Algorithm:

The number of iterations and number of samples per iteration were chosen such

that the total number of detailed FE runs would be within 50 runs:

The number of samples per iteration was chosen as nIterSamples = 6

 126

The total number of iterations was chosen as nIter = 8

The minimum value for standard deviation of the sampling distributions was set

within 5% to 10% of the ranges of variation for each variable:

Minimum value for the standard deviations on the sampling distributions was

chosen as min = 0.2mm for the variables (t1, …, t14)

Minimum value for the standard deviations on the sampling distributions was

chosen as min = 2.0mm for the variables (h1, b1, h2, b2)

7.3.2 Results of the Automated Crash Mode Matching Algorithm

Four independent runs of the automated crash mode matching algorithm were

performed. In two of the runs, the initial design was the same starting point as manual

crash mode matching (Table 7.7). This starting point (Start Pt#1) represents a light

weight structure that violates the constraint on allowed deformation (g1) The two other

runs of the algorithm were started at some overly stiff design. . The second starting point

(Start Pt#2) represents a heavy weight structure that violates the constraint on allowed

acceleration (g2). Both starting points are listed in Table 7.11. Crash mode plots for each

start point are shown in Fig. 7.7 and Fig 7.8 respectively.

All of the four runs of the automated crash mode matching algorithm were

successful in attaining feasible designs. The best and worst designs (in terms of objective

function value) among the four runs are listed in Table 7.11, and their crash mode plots

are shown in 7.9 and Fig 7.10 respectively.

 127

Table 7.11 Summary of Automated Crash Mode Matching Algorithm Runs

Start

Pt#1

Start

Pt#2

Auto

CM –

Best

Auto

CM –

Worst

h1 [mm] 99.0 120.0 83.0 94.0

b1 [mm] 50.0 80.0 77.0 77.0

h2 [mm] 50.0 90.0 54.0 68.0

b2 [mm] 77.0 100.0 56.0 105.0

t1 [mm] 0.8 3.2 2.6 3.2

t2 [mm] 2.6 1.4 1.6 2.2

t3 [mm] 2.2 2.0 2.2 2.0

t4 [mm] 1.8 3.0 4.6 3.4

t5 [mm] 3.0 3.0 4.4 3.0

t6 [mm] 3.0 3.0 3.2 2.6

t7 [mm] 1.0 2.0 3.4 2.0

t8 [mm] 2.0 2.4 1.6 1.6

t9 [mm] 2.6 2.4 2.2 1.8

t10 [mm] 4.4 2.4 2.6 3.2

t11 [mm] 3.2 3.2 1.8 1.8

t12 [mm] 2.0 3.2 3.0 3.0

t13 [mm] 3.0 2.0 2.0 0.6

t14 [mm] 2.0 2.0 2.2 2.0

f [kg] 58.0 89.0 68.8 72.6

g1 [mm] 254.0 87.1 97.0 89.0

g2 [G] 25.0 35.8 26.8 27.4

 128

Fig. 7.7 Crash Mode Plot for Start Pt#1: Step function curves represent the

desirable crash mode. The actual recorded crash mode time series plot is

superimposed, and the normalized error integral value () is stated

1 = -0.70 2 = -0.45

3 = +0.22

4 = +1.40
5 = -0.02

6 = +0.13

7 = +0.09 8 = +0.25

9 = -0.50

10 = -0.25
11 = +1.82

12 = +1.89

13 = +0.69 14 = +6.15

15 = +0.67

16 = -0.55

17 = -0.26
18 = -0.22

19 = +0.11

 129

Fig. 7.8 Crash Mode Plot for Start Pt#2: Step function curves represent the

desirable crash mode. The actual recorded crash mode time series plot is

superimposed, and the normalized error integral value () is stated

1 = -0.31 2 = +0.60

3 = -0.02

4 = -0.41
5 = +0.02

7 = +0.27 8 = +0.01

10 = -0.08
11 = -0.11

13 = 1.64 14 = -0.24

16 = -0.44 17 = -0.15 18 = -0.92

19 = +0.39

6 = +0.14

9 = +0.19

12 = -0.51

15 = +0.40

 130

Fig. 7.9 Crash Mode Plot for best run of the automated crash mode matching

algorithm. Step function curves represent the desirable crash mode. The actual

recorded crash mode time series plot is superimposed, and the normalized error

integral value () is stated

1 = +0.39 2 = +0.18

4 = +0.11
5 = +0.05

7 = +0.02 8 = +0.14

10 = +0.14

11 = -0.43

13 = +0.64

14 = -0.29

16 = +0.28

17 = -0.21

19 = -0.41

3 = +0.11

18 = -0.31

6 = -0.14

9 = +0.03

12 = -0.49

15 = +0.05

 131

Fig. 7.10 Crash Mode Plot for worst run of the automated crash mode matching

algorithm. Step function curves represent the desirable crash mode. The actual

recorded crash mode time series plot is superimposed, and the normalized error

integral value () is stated

1 = +0.53

2 = -0.21

4 = -0.65
5 = +0.05

7 = +0.09

8 = +0.26

10 = +0.57

11 = +0.03

13 = +1.90
14 = -0.32

16 = -0.22 17 = +0.13

19 = -0.23

3 = -0.16

18 = +0.47

6 = -0.36

9 = +0.05

12 = -0.42

15 = +0.23

 132

7.4 Summary of Results

Comparison of results for various optimization attempts for this case study is

provided in Table 7.12, and graphically in Fig. 7.11. Optimization via response surface

models performed in section 7.2.1 (Table 7.3) did not yield any feasible designs and thus

is not included in the comparison. The best known design for this problem is the one

attained via manual crash mode matching (convenient practice in automotive industry),

however the manual crash mode matching is more of an art rather than an automated

design approach.

All of the four runs that were performed via the automated crash mode matching

algorithm were successful in attaining feasible designs. The best among the results of the

automated crash mode matching algorithm is within 2% in objective function value from

the best know result to this case study problem. The worst among the results of the

automated crash mode matching algorithm was still better than the result obtained via

GA. Total computational resources for the automated crash mode matching algorithm,

however is less the 25% of that required for GA.

 133

Table 7.12. Case Study 1: Summary of Results

 GA
Manual

CM

Auto

CM –

Best

Auto

CM –

Worst

h1 [mm] 114.0 88.0 83.0 94.0

b1 [mm] 67.0 80.0 77.0 77.0

h2 [mm] 69.0 60.0 54.0 68.0

b2 [mm] 95.0 50.0 56.0 105.0

t1 [mm] 2.2 3.2 2.6 3.2

t2 [mm] 2.0 2.4 1.6 2.2

t3 [mm] 1.8 2.0 2.2 2.0

t4 [mm] 2.8 2.8 4.6 3.4

t5 [mm] 3.0 4.2 4.4 3.0

t6 [mm] 3.0 2.8 3.2 2.6

t7 [mm] 1.2 3.2 3.4 2.0

t8 [mm] 2.2 2.0 1.6 1.6

t9 [mm] 2.6 2.4 2.2 1.8

t10 [mm] 2.8 2.6 2.6 3.2

t11 [mm] 3.0 1.2 1.8 1.8

t12 [mm] 2.4 2.8 3.0 3.0

t13 [mm] 2.0 1.8 2.0 0.6

t14 [mm] 2.2 2.2 2.2 2.0

f [kg] 73.1 66.9 68.8 72.6

g1 [mm] 62.0 76.0 97.0 89.0

g2 [G] 25.9 29.4 26.8 27.4

FE runs 500 10 50 50

EM runs – 500 500 500

Comp. time [hour] 350 55 75 75

 134

Fig. 7.11 Case Study 1: Summary of Results

hr kg, mm, g

 135

CHAPTER 8

CASE STUDY 2: FULL VEHICLE MODEL

This chapter presents a case study of a detailed FE vehicle model subjected to

offset frontal crash against a deformable barrier. A baseline model of a real vehicle is

used in the study. Data about dimensions, deformations and acceleration is only listed in

normalized form throughout this study
†
. The objective of this case study is mainly to

show the success of the automated crash mode matching algorithm works when linked to

a fully detailed vehicle model.

8.1 Problem Model

A detailed FE model of the vehicle and offset deformable barrier is shown in Fig.

8.1. The model has a total of more than half-million elements, mostly shell elements to

model the sheet metal structural components. The model also includes solid elements for

the bulky/rigid components such as the power-train components.

The problem is formulated as an unconstrained, multi-objective problem with the

objectives being the minimization of the maximum deformation and acceleration.

†
 Due to propriety issues, the normalization scaling constants cannot be disclosed

 136

Fig. 8.1 Detailed FE model of a vehicle subjected to offset frontal crash against a

deformable barrier

 f1 is the normalized maximum deformation, to be minimized

 f2 is the normalized maximum acceleration, to be minimized

A total of 49 sheet metal components were selected for exploring the effects of

design adjustments. Some sheet metal components that build up the same structural

member (or part of it) were grouped together and set to change according to one design

variable. Thus, the thickness of the 49 sheet metal components was governed by 12

design variables (x1, …, x12). All the variables are discrete since they correspond to the

sheet metal thickness. Structural weight was not considered a constraint or an objective in

this study

 137

Due to propriety issues, the values of the design variables will only be listed in

some normalized form, with a value of 1.0 being the baseline. Each variable has up to 7

possible values, which would be: x1, …, x12  {0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15}.

8.2 Exploration of the Design Space

Computational resources required for performing one detailed FE run for this

problem are at an average of 200 hours of CPU time. Even with available parallel

computing resources at the University of Michigan Center for Advanced computing, the

lengthy computation time for running the FE model made it prohibitive to use GA

directly linked with the detailed FE model (as was done in case study 1 in section 7.2.2).

Instead, only orthogonal arrays sampling and response surface models were used to

explore the design space.

The standard orthogonal array L27 (Phadke 1993) was used for design of

experiments (DOE) drawing of samples in design space. The L27 array allows for data

fitting of up to 13 variables, with each variable being sampled at 3 different levels. Two

independent L27 arrays (generated by randomizing the column order of the array) were

used. Each of the arrays required 27 detailed FE runs, for a total of 54 runs.

Results of the design space sampling (f1 – f2 values) are shown in Fig. 8.2. It is

observed that the baseline design is already Pareto-optimal within the 54 samples of the

two orthogonal arrays. When performing a clustering analysis on the f1 – f2 values, the

sample designs seem to have one of four behavior categories:

 138

Fig. 8.2 Baseline, DOE samples and MSCGA results for Case Study 2

 Cluster #1: maintains a good balance between f1 and f2

 Cluster #2: has very good f1 but bad f2

 Cluster #3: has bad f1 yet very good f2

 Cluster #4: is bad in both f1 and f2

Further exploration of the design space was also performed through optimization

using a GA running on response surface models constructed via the DOE samples. The

algorithm used for this task is called Multi-Scenario Co-evolutionary Genetic Algorithm

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DOE Samples

Base Line

Best from DOE Samples

Best from MSCGA

Cluster #1

Cluster #2

Cluster #3

Cluster #4

f1

f2

 139

(MSCGA). Details of the algorithm are in (Hamza and Saitou 2005). A brief summary of

the algorithm is provided as:

 Multiple response surface models are constructed for the problem. 3 RSM were

constructed in this problem: one RSM with data fitting on samples of the first

orthogonal array, one RSM with data fitting on samples of the second orthogonal

array and one RSM with data fitting on all the samples. The type of RSM used in

this study was 2
nd

 order polynomial.

 All objectives and constraints (if any) are estimated during the algorithm run via

the constructed RSMs. No detailed FE simulations are needed until the end of the

MSCGA run

 The algorithm co-evolves multiple populations (illustration shown in Fig. 8.3),

each population is tied with one of the constructed RSMs. So, for this problem, 3

populations were co-evolved.

 The fitness in each of the evolving populations is treated in a Pareto-sense. Set to

favor designs that have good performance estimate on the RSM for which it is

tied, as well as good performance estimate among all the other RSMs.

 At the end of the MSCGA run, each population would include designs that are

best as estimated by the RSM the population is tied to. This is the same result one

would obtain from simply running a regular GA linked with that RSM. These

designs are then checked via detailed FE

 At the end of the MSCGA run, each population would also include designs that

seem to have good performance as estimated by all the constructed RSMs. Those

designs are also checked via detailed FE

 140

After running MSCGA linked to the constructed RSMs, there were 7 new sample

designs that were checked via detailed FE (2 designs from each sub-population, plus an

additional design that had the best estimated performance in a weighted average from all

3 constructed RSMs). Out of the 7 new sample designs, 4 were Pareto-optimal and in

cluster #1 (Fig. 8.2) of the values of f1 – f2

Fig. 8.3 Illustration of MSCGA algorithm

Generation #1

Population #1

RSM #1

Population #3

RSM #3

Population #2

RSM #2

Cross fitness

Population #1

RSM #1

Population #3

RSM #3

Population #2

RSM #2

Generation #2

Population #1

RSM #1

Population #3

RSM #3

Population #2

RSM #2

Generation #n

…

 141

8.3 Automated Crash Mode Matching

Testing of the automated crash mode matching algorithm is performed in this

section. A total of 10 structural zones are defined for the crash mode matching.

Normalized values from the baseline design are set as the desirable crash mode. The

crash mode mismatch metric for axial and bending deformations were combined into one

crash mismatch metric for each of the 10 zones (1, 2, …, 10) in a similar manner to

case study 1. A total of 52 fuzzy rules for adjustment of the design space sampling were

defined in a similar manner to the rules defined for case study 1.

The automated crash mode matching algorithm was tested starting from 2

different starting points, shown in Fig. 8.4. The first starting point (SP#1) is a

representative sample from cluster #2 (low deformation, but higher acceleration), while

the second starting point (SP#2) is a representative sample from cluster #3 (low

acceleration, but higher deformation). Normalized values for design variables and

objectives for the baseline, SP#1 and SP#2 are listed in Table 8.1. Crash mode plots for

SP#1 and SP#2 are shown in Fig. 8.5 and Fig. 8.6 respectively.

 142

Fig. 8.4 Starting points for the automated crash mode matching algorithm

A total of 4 runs of the automated crash mode matching algorithm were

performed (2 starting at each starting point). The number of samples per iteration of the

algorithm nIter was set to 4 (in accordance with available computational resources).

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DOE Samples

Base Line

Best from DOE Samples

Best from MSCGA

SP#1

f1

f2 SP#2

Cluster #1

 143

Table 8.1 Normalized values for design variables and objectives of baseline design

and starting points for the automated crash mode matching algorithm

 Baseline SP#1 SP#2

x1 1.00 1.00 1.00

x2 1.00 1.00 0.90

x3 1.00 0.90 0.90

x4 1.00 0.90 1.00

x5 1.00 1.10 1.00

x6 1.00 1.00 1.10

x7 1.00 1.15 1.15

x8 1.00 0.90 1.15

x9 1.00 1.10 1.10

x10 1.00 1.15 0.90

x11 1.00 0.90 1.15

x12 1.00 1.00 1.10

f1 0.53 0.47 0.85

f2 0.95 1.42 0.86

Table 8.2 Normalized values for design variables and objectives of baseline design

and final results of the automated crash mode matching algorithm

 Baseline Run #1 Run #2 Run #3 Run #4

x1 1.00 1.15 1.10 0.95 1.00

x2 1.00 1.10 1.05 0.90 0.90

x3 1.00 0.95 0.95 0.90 0.90

x4 1.00 0.90 0.90 1.00 0.95

x5 1.00 1.10 1.10 1.10 1.10

x6 1.00 1.00 0.95 1.00 1.05

x7 1.00 1.10 1.15 1.00 1.15

x8 1.00 0.90 0.90 1.10 1.05

x9 1.00 0.90 1.15 1.10 1.10

x10 1.00 1.10 1.05 0.90 0.90

x11 1.00 1.15 1.10 1.10 1.10

x12 1.00 0.85 1.00 1.05 0.90

f1 0.53 0.45 0.54 0.65 0.48

f2 0.95 1.09 1.10 0.89 1.08

 144

Fig. 8.5 Crash Mode Plot for Start Pt#1

10 = -0.49 9 = -0.08

8 = -0.43 7 = -0.11

6 = -0.26 5 = -0.44

4 = +0.19 3 = +0.03

2 = +0.04 1 = +0.06

 145

Fig. 8.6 Crash Mode Plot for Start Pt#2

10 = +0.12 9 = +1.24

8 = -0.62 7 = -0.45

6 = +0.15 5 = -0.61

4 = +0.08 3 = -0.02

2 = -0.07 1 = +0.92

 146

All runs of the automated crash mode matching algorithm were successful in

producing a design in cluster #1 in at most 2 iterations of the algorithm (Fig. 8.7).

Furthermore, the designs discovered by run #1 and run #4 are Pareto-optimal with respect

to the current known designs. Normalized values for design variables and objectives for

the baseline and run #1 through #4 are listed in Table 8.2. Crash mode plots for run #1

through #4 are shown in Fig. 8.8 through Fig. 8.11 respectively.

Fig. 8.7 Progress of the Runs of the Automated Crash Mode Matching Algorithm

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DOE Samples

Base Line

Best from DOE Samples

Best from MSCGA

Auto-CM

Run #1

Run #2

Run #3

Run #4

Cluster #1

f1

f2

 147

Fig. 8.8 Crash Mode Plot for Final Design in Run#1

10 = -0.33 9 = -0.08

8 = -0.43 7 = -0.18

6 = -0.26
5 = -0.11

4 = +0.06 3 = +0.03

2 = +0.02 1 = +0.04

 148

Fig. 8.9 Crash Mode Plot for Final Design in Run#2

10 = -0.38 9 = -0.24

8 = -0.33 7 = -0.10

6 = -0.22 5 = -0.62

4 = +0.43 3 = -0.03

2 = +0.03 1 = +0.03

 149

Fig. 8.10 Crash Mode Plot for Final Design in Run#3

10 = -0.17 9 = -0.12

8 = -0.64 7 = -0.16

6 = +0.02 5 = -0.03

4 = -0.26 3 = +0.03

2 = +0.12 1 = +0.09

 150

Fig. 8.11 Crash Mode Plot for Final Design in Run#4

10 = -0.23 9 = -0.21

8 = -0.55 7 = -0.04

6 = -0.09 5 = -0.01

4 = -0.09 3 = -0.01

2 = +0.18 1 = -0.05

 151

8.4 Summary

This chapter presented application of the automated crash mode matching

algorithm to a case study of a detailed full vehicle model subjected to frontal crash

against an offset deformable barrier. Four runs of the proposed algorithm were started at

designs that mismatched the desirable crash mode and were successful in improving the

design performance by adjusting the crash mode to the desired one. This is a

demonstration of the effectiveness of the proposed methodology when applied to vehicle

models of realistic level of detail.

 152

CHAPTER 9

CONCLUSION

This chapter concludes the dissertation. It includes a summary of the work, list of

contributions and expected future extensions.

9.1 Dissertation Conclusion

The research performed in this dissertation targeted the development of a design

methodology for parametric structural crashworthiness by formalizing the crash mode

matching approach. A quantitative representation of the crash mode is introduced, as well

as comparison metrics for the degree of mismatch in crash mode between different

designs. An algorithm is then design for automated crash mode matching. The algorithm

heuristically directs stochastic sampling of the design space based on Fuzzy logic rules

that are defined in analogy to the type of decisions that an experienced designer would

make for crash mode matching.

Two case studies were presented to demonstrate that the proposed methodology.

The first study considered a frontal half body box-section structure vehicle model

subjected to frontal impact conditions against a rigid barrier. The problem had one

objective and two constraints. The proposed methodology was successful in attaining

feasible, good performance designs at a reasonable amount of computational requirement.

 153

In the second study, a detailed finite element model of a full vehicle subjected to frontal

crash against an offset deformable barrier was considered. The problem was formulated

as a two-objective problem. Within the limited available computational resources, several

tested runs of the proposed methodology were successful in adjusting the design variables

started at non-favorable designs and attain an improved performance.

9.2 Contributions

The main contribution of this dissertation is the formalization of crash mode

matching as a methodology for structural crashworthiness design. This formalization

included:

 Introduction of quantitative metrics for crash modes assessment and

comparison based on the recorded time history of deformation in different

structural zones

 Development of Equivalent mechanism models, which are reduced order

dynamic models, to assist in exploration and discovery of desirable crash

modes

 Development of a stochastic design-space sampling algorithm for

parametric structural crashworthiness optimization via automated crash

mode matching

 154

9.3 Future Work

While there could be several extensions to the research presented in this

dissertation, the following are perceived attractive:

 Hybridizing features from response surface methods and crash modes

matching approaches. During some of the performed studies, the input-

output relations that are fitted by the RSM remain well conditioned as long

as there is no change in the crash mode. While RSM alone cannot detect a

change in the crash mode, elements from the crash mode matching

approach may help overcome this difficulty.

 Developing of further systematic approaches to explore and discover

desirable crash modes for vehicle structures. This could follow several

routes of reduced order mass-spring type models, pure kinematic models

and/or coarse mesh finite element models

 Developing better metrics for assessment of the degree of crash mode

mismatch. The developed automated crash mode matching algorithm

requires a metric that is able to indicate whether the deformation in a zone

is less or more than the desired amount. The relaxed mismatch metric used

in this thesis, which is a simple normalized error integral, was sufficient in

the considered case studies. The relaxed metric however has a drawback

that in some occasions, a mismatching crash mode that has both positive

and negative portions in its time history might not be well detected.

155

APPENDICES

156

APPENDIX A
Tutorial: Construction of an EM Model

Sketches of the main components (complete symmetry about global YZ plane is

assumed), which are to be included in the EM model are provided in Figures A.1 – Fig.
A.5.

(0.58, -0.78, 0.2)
X

Y
Z

(0.5, -0.78, 0.2)
(0.3, -0.78, 0.2)

(0.3, -0.75, 0.45)

Fig. A.1 Sketch of key point locations

X

Y
Z

(0.45, 0.14, 0.25)

(0.5, -0.78, 0.2)

(0.49, -0.24, 0.21)

(0.5, -0.64, 0.2)

(0.48, -0.01, 0.25)

(0.5, -0.52, 0.2)

(0.43, 0.48, -0.07)

(0.43, 0.2, 0.15)

(0.43, 0.3, 0.08)

(0.43, 1.88, -0.07)

(0.43, 1.5, -0.07)

(0.43, 1.15, -0.07)

Fig. A.2 Sketch of key point locations

157

X

Y
Z

(0.26, 0.45, -0.06)

(0.17, 1.88, -0.06)

(0.17, 1.5, -0.06)

(0.17, 1.15, -0.06)

(0.3, 0.15, -0.085)

(0.37, 0.0, -0.12)

(0.45, -0.5, -0.05)

(0.48, -0.62, 0.0)

Fig. A.3 Sketch of key point locations

X

Y
Z

(0.72, 0.44, 0.54)

(0.48, -0.67, 0.45)

(0.3, -0.75, 0.45)

(0.72, -0.4, 0.54)

(0.72, -0.05, 0.54)

Fig. A.4 Sketch of key point locations

X

Y
Z (0.72, 0.44, 0.54)

(0.72, 1.15, 0.055)

(0.72, 1.5, 0.06)

(0.72, 2.25, 0.06)

(0.7, 2.6, 0.67)

(0.61, 2.47, 1.03)

(0.7, 1.62, 0.63)

(0.56, 1.74, 1.11)

(0.72, 0.5, 0.67)

(0.72, 0.44, 0.05)

Fig. A.5 Sketch of key point locations

158

The main screen of the dODE Crash Designer software looks like in Fig. A.6. The
main modeling commands are accessible through the menu system:

Modeling → Key Point → Add…
Modeling → Key Point → Edit…
Modeling → Key Point → Delete
Modeling → Key Point → Identify

Modeling → EM Link → Add…
Modeling → EM Link → Edit…
Modeling → EM Link → Delete
Modeling → EM Link → Identify

Modeling → Side Squisher → Add…
Modeling → Side Squisher → Edit…
Modeling → Side Squisher → Delete
Modeling → Side Squisher → Identify

Modeling → Rigid Body → Add…
Modeling → Rigid Body → Edit…
Modeling → Rigid Body → Delete
Modeling → Rigid Body → Identify

Modeling → Panel → Add…
Modeling → Panel → Edit…
Modeling → Panel → Delete
Modeling → Panel → Identify

Modeling → Force Curve → Add…
Modeling → Force Curve → Edit…
Modeling → Force Curve → Delete
Modeling → Force Curve → Identify

Alternatively, the modeling commands are also available through the modeling toolbar
(Fig. A.6)

159

Adding Components

Editing Components

Deleting Components

Identifying Components’ Label

Key Point

EM Structural Member

Side Squisher

Rigid Body

Panel

Force Curve

Fig. A.6 Main Screen of dODE Crash Designer and Modeling Toolbar

EM modeling starts by adding Key Points, upon which the rest of the EM modeling
components are mounted. Key points also specify the initial and boundary (fixed/free)
conditions. Unless otherwise specified, the boundary conditions are set to fully free along
all directions and rotations, and the initial conditions are set as initial velocity equal to -
18.05 m/s along the global Y-direction. All units in model are assumed to follow SI
system (kg, m, sec).

Start by adding Key points (as per the sketches in Fig. A.1-A.5). Fig. A.7 shows the
dialog for Adding (and/or editing a Key point).

Next create EM structural links. The Add/Edit dialog for EM structural links is shown in
Fig. A.8. Among the main inputs of the EM link are the connectivity key points, which
may be entered directly (if their labels are know), or by clicking the “Select…” button to
open a selection screen. In the selection screen, left clicking selects the nearest entity,
right clicking selects the “next-nearest” entity, pressing the “enter” or “space” key
accepts the selection, while pressing the “esc” key cancels the selection. The Add/Edit
dialog for EM structural links also allows selection of the available databases for the
cross-section and the interpolating surrogate. Selecting the section type automatically
determines the number of dimensions which can be entered (3 for box sections: height,
width and thickness). When done click the “OK” button.

When done with creating the EM links, the screen should look similar to Fig. A.9

160

Fig. A.7 Add/Edit Key Point Dialog

Fig. A.8 Add/Edit EM-link Dialog

161

Fig. A.9 Main Screen of dODE Crash Designer and Modeling, EM model
constructed

Additional features offered by the software include options to add a representation for
panels (Fig. A.10), rigid bodies (Fig. A.11) and Force curves (Fig. A.12).

To solve the EM model. From the menu system, select:

Solver → Parameters…

Adjust the solver parameters as shown in Fig. A.13, then select the menu command:

Solver → Run…

The software automatically saves the model before attempting to solve. Then, a progress
bar indicates the solver progress.

162

Fig. A.10 Add/Edit Panel Dialog

Fig. A.11 Add/Edit Rigid Body Dialog

163

Fig. A.12 Add/Edit Force Curve Dialog

Fig. A.13 Solver Parameters Dialog

164

APPENDIX B
DOE Samples for Construction of RSM for Case Study 1

Table B.1 Sample Set #1
 Sample Number
 1 2 3 4 5 6
h1 (mm) 90.0 110 130 90 110 130
b1 (mm) 50.0 50 50 70 70 70
h2 (mm) 50.0 70 90 70 90 50
b2 (mm) 70.0 70 70 90 90 90
t1 (mm) 2.0 2.2 2.4 2.0 2.2 2.4
t2 (mm) 1.8 1.8 1.8 2.0 2.0 2.0
t3 (mm) 1.6 1.8 2.0 2.0 1.6 1.8
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 2.8 3.0 3.2 2.8 3.0 3.2
t6 (mm) 2.8 2.8 2.8 3.0 3.0 3.0
t7 (mm) 1.0 1.2 1.4 1.0 1.2 1.4
t8 (mm) 2.0 2.2 2.4 2.2 2.4 2.0
t9 (mm) 2.4 2.6 2.8 2.8 2.4 2.6
t10 (mm) 2.6 2.6 2.6 2.6 2.6 2.6
t11 (mm) 2.8 2.8 3.0 3.0 3.0 3.0
t12 (mm) 2.2 2.4 2.4 2.4 2.6 2.2
t13 (mm) 1.8 2.0 1.8 1.8 2.0 2.2
t14 (mm) 2.0 2.0 2.2 2.2 2.2 2.2
f (kg) 51.2 62.6 75.1 64.8 74.4 75.6
g1 (mm) 276.5 154.4 182.1 152.3 81.2 55.5
g2 (g) 23.7 28.3 36.6 29.4 27.8 29.1

165

Table B.2 Sample Set #1 – continued
 Sample Number
 7 8 9 10 11 12
h1 (mm) 90 110 130 90 110 130
b1 (mm) 90 90 90 50 50 50
h2 (mm) 90 50 70 50 70 90
b2 (mm) 110 110 110 110 110 110
t1 (mm) 2.0 2.2 2.4 2.0 2.2 2.4
t2 (mm) 2.2 2.2 2.2 2.2 2.2 2.2
t3 (mm) 1.8 2 1.6 1.6 1.8 2
t4 (mm) 2.6 2.8 3.0 3.0 2.6 2.8
t5 (mm) 2.8 3 3.2 3.2 2.8 3.0
t6 (mm) 3.2 3.2 3.2 2.8 2.8 2.8
t7 (mm) 1.0 1.2 1.4 1.2 1.4 1.0
t8 (mm) 2.4 2.0 2.2 2.0 2.2 2.4
t9 (mm) 2.6 2.8 2.4 2.4 2.6 2.8
t10 (mm) 2.6 2.6 2.6 2.8 2.8 2.8
t11 (mm) 3.2 3.2 3.2 3.0 3.0 3.0
t12 (mm) 2.6 2.2 2.4 2.4 2.6 2.2
t13 (mm) 1.8 2.0 2.2 2.0 2.2 1.8
t14 (mm) 2.4 2.4 2.4 2.2 2.2 2.2
f (kg) 76.4 77.3 87.6 60.9 70.6 79.0
g1 (mm) 68.6 103.0 52.9 164.7 152.2 237.5
g2 (g) 29.1 26.6 37.9 25.1 26.2 29.9

Table B.3 Sample Set #1 – continued

 Sample Number
 13 14 15 16 17 18
h1 (mm) 110 130 90 110 130 90
b1 (mm) 70 70 90 90 90 70
h2 (mm) 90 50 90 50 70 50
b2 (mm) 70 70 90 90 90 110
t1 (mm) 2.2 2.4 2 2.2 2.4 2.2
t2 (mm) 1.8 1.8 2.0 2.0 2.0 2.0
t3 (mm) 1.6 1.8 1.8 2.0 1.6 2.0
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 2.8 3.0 3.2 2.8 3.0 3.0
t6 (mm) 3.0 3.0 3.2 3.2 3.2 2.8
t7 (mm) 1.4 1.0 1.2 1.4 1.0 1.4
t8 (mm) 2.4 2.0 2.4 2.0 2.2 2.2
t9 (mm) 2.4 2.6 2.6 2.8 2.4 2.4
t10 (mm) 2.8 2.8 2.8 2.8 2.8 3.0
t11 (mm) 3.2 3.2 2.8 2.8 2.8 3.2
t12 (mm) 2.2 2.4 2.2 2.4 2.6 2.2
t13 (mm) 2.2 1.8 2.0 2.2 1.8 1.8
t14 (mm) 2.4 2.4 2.0 2.0 2.0 2.0
f (kg) 71.0 71.0 74.3 74.2 81.9 66.7
g1 (mm) 124.8 72.9. 94.5 117.5 51.2 185.4
g2 (g) 30.1 30.9 31.3 33.3 29.0 31.3

166

Table B.4 Sample Set #1 – continued
 Sample Number
 19 20 21 22 23 24
h1 (mm) 110 130 90 110 130 90
b1 (mm) 70 70 90 90 90 50
h2 (mm) 70 90 70 90 50 90
b2 (mm) 110 110 70 70 70 90
t1 (mm) 2.4 2.0 2.2 2.4 2.0 2.2
t2 (mm) 2.0 2.0 2.2 2.2 2.2 1.8
t3 (mm) 1.6 1.8 1.8 2.0 1.6 1.6
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 3.2 2.8 3.0 3.2 2.8 3.0
t6 (mm) 2.8 2.8 3.0 3.0 3.0 3.2
t7 (mm) 1.0 1.2 1.4 1.0 1.2 1.4
t8 (mm) 2.4 2.0 2.4 2 2.2 2.0
t9 (mm) 2.6 2.8 2.8 2.4 2.6 2.6
t10 (mm) 3.0 3.0 3.0 3.0 3.0 3.0
t11 (mm) 3.2 3.2 2.8 2.8 2.8 3.0
t12 (mm) 2.4 2.6 2.4 2.6 2.2 2.6
t13 (mm) 2.0 2.2 1.8 2.0 2.2 1.8
t14 (mm) 2.0 2.0 2.2 2.2 2.2 2.4
f (kg) 76.0 84.3 69.2 78.8 73.8 66.7
g1 (mm) 91.8 89.1 138.4 100.0 152.4 130.1
g2 (g) 25.5 32.3 30.9 33.6 27.5 29.5

Table B.5 Sample Set #1 – continued

 Sample Number
 25 26 27 28 29 30
h1 (mm) 110 130 90 110 130 90
b1 (mm) 50 50 90 90 90 50
h2 (mm) 50 70 50 70 90 70
b2 (mm) 90 90 70 70 70 90
t1 (mm) 2.4 2.0 2.2 2.4 2.0 2.4
t2 (mm) 1.8 1.8 2 2.0 2.0 2.2
t3 (mm) 1.8 2.0 1.8 2.0 1.6 1.6
t4 (mm) 2.6 2.8 3.0 2.6 2.8 2.6
t5 (mm) 3.2 2.8 3.0 3.2 2.8 3.0
t6 (mm) 3.2 3.2 2.8 2.8 2.8 3.0
t7 (mm) 1.0 1.2 1.4 1.0 1.2 1.2
t8 (mm) 2.2 2.4 2.4 2.0 2.2 2.0
t9 (mm) 2.8 2.4 2.4 2.6 2.8 2.8
t10 (mm) 3.0 3.0 2.6 2.6 2.6 2.6
t11 (mm) 3.0 3.0 3.0 3.0 3 3.2
t12 (mm) 2.2 2.4 2.6 2.2 2.4 2.2
t13 (mm) 2.0 2.2 1.8 2.0 2.2 2.2
t14 (mm) 2.4 2.4 2.4 2.4 2.4 2.0
f (kg) 65.3 73.0 64.3 73.3 79.5 62.4
g1 (mm) 100.0 119.5 157.2 66.9 79.4 246.1
g2 (g) 27.0 30.0 27.6 33.9 33.3 28.0

167

Table B.6 Sample Set #1 – continued
 Sample Number
 31 32 33 34 35 36
h1 (mm) 110 130 90 130 90 110
b1 (mm) 50 50 70 70 70 70
h2 (mm) 90 50 90 70 50 70
b2 (mm) 90 90 110 110 90 90
t1 (mm) 2.0 2.2 2.4 2.2 2.2 2.4
t2 (mm) 2.2 2.2 1.8 1.8 2.2 2.2
t3 (mm) 1.8 2.0 2.0 1.8 2.0 1.6
t4 (mm) 2.8 3.0 2.6 3.0 2.8 3.0
t5 (mm) 3.3 2.8 3.0 2.8 3.2 2.8
t6 (mm) 3.0 3.0 3.2 3.2 2.8 2.8
t7 (mm) 1.4 1.0 1.2 1.0 1.0 1.2
t8 (mm) 2.2 2.4 2.2 2.0 2.2 2.4
t9 (mm) 2.4 2.6 2.6 2.4 2.4 2.6
t10 (mm) 2.6 2.6 2.6 2.6 2.8 2.8
t11 (mm) 3.2 3.2 2.8 2.8 2.8 2.8
t12 (mm) 2.4 2.6 2.4 2.2 2.6 2.2
t13 (mm) 1.8 2.0 2.2 2.0 2.2 1.8
t14 (mm) 2.0 2.0 2.2 2.2 2.4 2.4
f (kg) 69.3 70.1 73.7 78.2 64.3 70.6
g1 (mm) 155.4 152.6 113.4 82.4 137.4 112.2
g2 (g) 30.0 28.2 28.7 28.4 31.9 24.8

Table B.7 Sample Set #1 – continued

 Sample Number
 37 38 39 40 41 42
h1 (mm) 130 90 110 130 90 110
b1 (mm) 70 90 90 90 50 50
h2 (mm) 90 70 90 50 90 50
b2 (mm) 90 110 110 110 70 70
t1 (mm) 2.0 2.2 2.4 2.0 2.2 2.4
t2 (mm) 2.2 1.8 1.8 1.8 2.0 2.0
t3 (mm) 1.8 1.8 2.0 1.6 1.6 1.8
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 3.0 3.2 2.8 3.0 3.2 2.8
t6 (mm) 2.8 3.0 3.0 3.0 3.2 3.2
t7 (mm) 1.4 1.0 1.2 1.4 1.0 1.2
t8 (mm) 2.0 2.4 2.0 2.2 2.0 2.2
t9 (mm) 2.8 2.8 2.4 2.6 2.6 2.8
t10 (mm) 2.8 2.8 2.8 2.8 2.8 2.8
t11 (mm) 2.8 3.0 3.0 3.0 3.2 3.2
t12 (mm) 2.4 2.2 2.4 2.6 2.4 2.6
t13 (mm) 2.0 2.2 1.8 2.0 2.2 1.8
t14 (mm) 2.4 2.0 2.0 2.0 2.2 2.2
f (kg) 78.6 75.0 83.1 79.7 63.6 62.6
g1 (mm) 58.2 106.3 132.3 55.5 142.0 164.9
g2 (g) 31.4 30.6 31.0 28.4 27.6 26.3

168

Table B.8 Sample Set #1 – continued
 Sample Number
 43 44 45 46 47 48
h1 (mm) 130 90 110 130 90 110
b1 (mm) 50 90 90 90 50 50
h2 (mm) 70 50 70 90 70 90
b2 (mm) 70 90 90 90 110 110
t1 (mm) 2.0 2.2 2.4 2.0 2.4 2.0
t2 (mm) 2.0 1.8 1.8 1.8 2.2 2.2
t3 (mm) 2.0 1.8 2.0 1.6 1.6 1.8
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 3.0 3.2 2.8 3.0 2.8 3.0
t6 (mm) 3.2 2.8 2.8 2.8 3.0 3.0
t7 (mm) 1.4 1.0 1.2 1.4 1.4 1.0
t8 (mm) 2.4 2.4 2.0 2.2 2.0 2.2
t9 (mm) 2.4 2.4 2.6 2.8 2.8 2.4
t10 (mm) 2.8 3.0 3.0 3.0 3.0 3.0
t11 (mm) 3.2 3.2 3.2 3.2 2.8 2.8
t12 (mm) 2.2 2.4 2.6 2.2 2.6 2.2
t13 (mm) 2.0 2.2 1.8 2.0 2.0 2.2
t14 (mm) 2.2 2.2 2.2 2.2 2.4 2.4
f (kg) 68.8 69.0 78.1 82.9 66.8 73.0
g1 (mm) 172.0 142.3 80.1 60.3 148.8 128.9
g2 (g) 31.3 27.6 31.8 34.2 30.6 27.9

Table B.9 Sample Set #1 – continued

 Sample Number
 49 50 51 52 53 54
h1 (mm) 130 90 110 130 110 130
b1 (mm) 50 70 70 70 70 90
h2 (mm) 50 90 50 70 50 50
b2 (mm) 110 70 70 70 90 110
t1 (mm) 2.2 2.4 2.0 2.2 2.2 2.4
t2 (mm) 2.2 2.2 2.2 2.2 2.0 2.2
t3 (mm) 2.0 2.0 1.6 1.8 1.8 2.0
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 3.2 2.8 3.0 3.2 3.0 3.2
t6 (mm) 3.0 3.2 3.2 3.2 2.8 2.8
t7 (mm) 1.2 1.4 1.0 1.2 1.0 1.0
t8 (mm) 2.4 2.2 2.4 2.0 2.2 2.4
t9 (mm) 2.6 2.6 2.8 2.4 2.6 2.8
t10 (mm) 3.0 3.0 3.0 3.0 2.6 2.6
t11 (mm) 2.8 3.0 3.0 3.0 2.8 2.8
t12 (mm) 2.4 2.2 2.6 2.6 2.2 2.2
t13 (mm) 1.8 2.0 1.8 1.8 1.8 1.8
t14 (mm) 2.4 2.0 2.0 2.0 2.2 2.4
f (kg) 72.6 68.9 66.6 74.9 66.0 81.9
g1 (mm) 75.5 254.4 185.9 67.8 123.9 41.5
g2 (g) 26.0 29.9 30.7 31.5 28.0 32.2

169

Table B.10 Sample Set #2
 Sample Number
 1 2 3 4 5 6
h1 (mm) 90 110 130 110 130 90
b1 (mm) 50 70 70 70 90 70
h2 (mm) 50 50 70 50 50 70
b2 (mm) 70 70 70 90 110 70
t1 (mm) 2.0 2.0 2.2 2.2 2.4 2.4
t2 (mm) 1.8 2.2 2.2 2.0 2.2 1.8
t3 (mm) 1.6 1.6 1.8 1.8 2.0 2.0
t4 (mm) 2.6 3.0 2.6 2.8 3.0 2.6
t5 (mm) 2.8 3.0 3.2 3.0 3.2 3.0
t6 (mm) 2.8 3.2 3.2 2.8 2.8 3.0
t7 (mm) 1.0 1.0 1.2 1.0 1.0 1.2
t8 (mm) 2.0 2.4 2.0 2.2 2.4 2.2
t9 (mm) 2.4 2.8 2.4 2.6 2.8 2.4
t10 (mm) 2.6 3.0 3.0 2.6 2.6 2.6
t11 (mm) 2.8 3.0 3.0 2.8 2.8 3.0
t12 (mm) 2.2 2.4 2.6 2.2 2.2 2.4
t13 (mm) 1.8 2.2 1.8 1.8 1.8 2.0
t14 (mm) 2.0 2.0 2.0 2.2 2.4 2.0
f (kg) 51.1 66.6 74.9 66.0 81.9 63.6
g1 (mm) 276.4 185.9 67.8 123.9 41.4 202.2
g2 (g) 23.7 30.7 31.5 28 32.2 35.9

Table B.11 Sample Set #2 – continued

 Sample Number
 7 8 9 10 11 12
h1 (mm) 110 130 90 110 130 90
b1 (mm) 90 50 90 50 70 50
h2 (mm) 70 70 90 90 90 50
b2 (mm) 90 110 70 90 110 70
t1 (mm) 2.0 2.2 2.2 2.4 2.0 2.0
t2 (mm) 2.0 2.2 1.8 2.0 2.2 2.0
t3 (mm) 1.6 1.8 1.8 2.0 1.6 1.6
t4 (mm) 2.8 3.0 2.6 2.8 3.0 3.0
t5 (mm) 3.2 2.8 3.2 2.8 3.0 3.0
t6 (mm) 3.0 3.0 3.2 3.2 3.2 2.8
t7 (mm) 1.2 1.2 1.4 1.4 1.4 1.2
t8 (mm) 2.4 2.0 2.4 2.0 2.2 2.0
t9 (mm) 2.6 2.8 2.4 2.6 2.8 2.6
t10 (mm) 2.6 2.6 2.6 2.6 2.6 2.8
t11 (mm) 3.0 3.0 3.2 3.2 3.2 3.2
t12 (mm) 2.4 2.4 2.6 2.6 2.6 2.6
t13 (mm) 2.0 2.0 2.2 2.2 2.0 2.0
t14 (mm) 2.2 2.4 2.2 2.2 2.4 2.4
f (kg) 75.0 75.4 72.9 73.1 84.9 55.2
g1 (mm) 62.0 94.4 95.3 202.2 38.0 152.5
g2 (g) 32.0 27.2 34.4 27.7 36.4 28.4

170

Table B.12 Sample Set #2 – continued
 Sample Number
 13 14 15 16 17 18
h1 (mm) 110 130 90 110 130 90
b1 (mm) 70 90 70 90 50 90
h2 (mm) 50 50 70 70 70 90
b2 (mm) 90 110 70 90 110 70
t1 (mm) 2.2 2.4 2.4 2.0 2.2 2.2
t2 (mm) 2.2 1.8 2.0 2.2 1.8 2.0
t3 (mm) 1.8 2.0 2.0 1.6 1.8 2.6
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 3.2 2.8 3.2 2.8 3.0 2.8
t6 (mm) 2.8 2.8 3.0 3.0 3.0 3.2
t7 (mm) 1.2 1.2 1.4 1.4 1.4 1.0
t8 (mm) 2.2 2.4 2.2 2.4 2.0 2.4
t9 (mm) 2.8 2.4 2.6 2.8 2.4 2.6
t10 (mm) 2.8 2.8 2.8 2.8 2.8 2.8
t11 (mm) 3.2 3.2 2.8 2.8 2.8 3.0
t12 (mm) 2.6 2.6 2.2 2.2 2.2 2.4
t13 (mm) 2.0 2.0 2.2 2.2 2.2 1.8
t14 (mm) 2.0 2.2 2.4 2.0 2.2 2.4
f (kg) 69.5 82.5 65.7 74.6 74.6 71.7
g1 (mm) 99.7 94.6 174.7 171.6 96.0 98.0
g2 (g) 26.0 30.7 33.9 30.9 28.7 30.4

Table B.13 Sample Set #2 – continued

 Sample Number
 19 20 21 22 23 24
h1 (mm) 110 130 90 110 130 90
b1 (mm) 50 70 50 70 90 70
h2 (mm) 90 90 50 50 50 70
b2 (mm) 90 110 90 110 70 90
t1 (mm) 2.4 2.0 2.0 2.2 2.4 2.4
t2 (mm) 2.2 1.8 1.8 2.0 2.2 1.8
t3 (mm) 2.0 1.6 2.0 1.6 1.8 1.8
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 3.0 3.2 2.8 3.0 3.2 3.0
t6 (mm) 3.2 3.2 3.0 3.0 3.0 3.2
t7 (mm) 1.0 1.0 1.0 1.0 1.0 1.2
t8 (mm) 2.0 2.2 2.2 2.4 2.0 2.4
t9 (mm) 2.8 2.4 2.8 2.4 2.6 2.8
t10 (mm) 2.8 2.8 3.0 3.0 3.0 3.0
t11 (mm) 3.0 3.0 3.0 3.0 3.0 3.2
t12 (mm) 2.4 2.4 2.6 2.6 2.6 2.2
t13 (mm) 1.8 1.8 2.2 2.2 2.2 1.8
t14 (mm) 2.0 2.2 2.2 2.4 2.0 2.2
f (kg) 71.9 81.6 60.1 72.2 78.8 68.8
g1 (mm) 264.8 35.1 185.9 117.1 54.2 119.4
g2 (g) 26.0 32.3 27.2 26.7 31.4 28.8

171

Table B.14 Sample Set #2 – continued
 Sample Number
 25 26 27 28 29 30
h1 (mm) 110 130 90 110 130 90
b1 (mm) 90 50 90 50 70 50
h2 (mm) 70 70 90 90 90 50
b2 (mm) 110 70 90 110 70 90
t1 (mm) 2.0 2.2 2.2 2.4 2.0 2.0
t2 (mm) 2.0 2.2 1.8 2.0 2.2 1.8
t3 (mm) 2.0 1.6 1.6 1.8 2.0 1.8
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 3.2 2.8 3.2 2.8 3.0 3.2
t6 (mm) 3.2 3.2 2.8 2.8 2.8 3.2
t7 (mm) 1.2 1.2 1.4 1.4 1.4 1.4
t8 (mm) 2.0 2.2 2.0 2.2 2.4 2.4
t9 (mm) 2.4 2.6 2.8 2.4 2.6 2.8
t10 (mm) 3.0 3.0 3.0 3.0 3.0 2.6
t11 (mm) 3.2 3.2 2.8 2.8 2.8 3.0
t12 (mm) 2.2 2.2 2.4 2.4 2.4 2.2
t13 (mm) 1.8 1.8 2.0 2.0 2.0 2.0
t14 (mm) 2.4 2.0 2.2 2.4 2.0 2.2
f (kg) 79.2 68.9 75. 73.2 77.0 58.6
g1 (mm) 67.2 214.7 88.0 143.6 136.1 189.8
g2 (g) 29.3 24.3 29.5 26.0 37.5 27.7

Table B.15 Sample Set #2 – continued

 Sample Number
 31 32 33 34 35 36
h1 (mm) 110 130 90 110 130 90
b1 (mm) 70 90 70 90 50 90
h2 (mm) 50 50 70 70 70 90
b2 (mm) 110 70 110 70 90 110
t1 (mm) 2.2 2.4 2.4 2.0 2.2 2.2
t2 (mm) 2.0 2.2 2.2 1.8 2.0 2.2
t3 (mm) 2.0 1.6 1.6 1.8 2.0 2.0
t4 (mm) 2.6 2.8 2.6 2.8 3.0 2.6
t5 (mm) 2.8 3.0 2.8 3.0 3.2 3.0
t6 (mm) 3.2 3.2 2.8 2.8 2.8 3.0
t7 (mm) 1.4 1.4 1.0 1.0 1.0 1.2
t8 (mm) 2.0 2.2 2.0 2.2 2.4 2.2
t9 (mm) 2.4 2.6 2.6 2.8 2.4 2.6
t10 (mm) 2.6 2.6 2.6 2.6 2.6 2.6
t11 (mm) 3.0 3.0 3.2 3.2 3.2 2.8
t12 (mm) 2.2 2.2 2.4 2.4 2.4 2.6
t13 (mm) 2.0 2.0 2.2 2.2 2.2 1.8
t14 (mm) 2.4 2.0 2.2 2.4 2.0 2.2
f (kg) 70.5 76.1 69.3 72.3 73.4 76.8
g1 (mm) 152.3 123.4 139.8 68.0 106.5 116.6
g2 (g) 31.1 28.2 33.3 32.2 29.2 29.8

172

Table B.16 Sample Set #2 – continued
 Sample Number
 37 38 39 40 41 42
h1 (mm) 130 90 110 130 90 110
b1 (mm) 70 50 70 90 70 90
h2 (mm) 90 50 50 50 70 70
b2 (mm) 90 90 110 70 90 110
t1 (mm) 2.0 2.0 2.2 2.4 2.4 2.0
t2 (mm) 2.0 2.2 1.8 2.0 2.2 1.8
t3 (mm) 1.8 2.0 1.6 1.8 1.8 2.0
t4 (mm) 3.0 2.8 3.0 2.6 2.8 3.0
t5 (mm) 2.8 3.2 2.8 3.0 2.8 3.0
t6 (mm) 3.0 3.0 3.0 3.0 3.2 3.2
t7 (mm) 1.2 1.4 1.4 1.4 1.0 1.0
t8 (mm) 2.0 2.2 2.4 2 2.4 2.0
t9 (mm) 2.4 2.4 2.6 2.8 2.4 2.6
t10 (mm) 2.6 2.8 2.8 2.8 2.8 2.8
t11 (mm) 2.8 3.2 3.2 3.2 2.8 2.8
t12 (mm) 2.6 2.4 2.4 2.4 2.6 2.6
t13 (mm) 1.8 1.8 1.8 1.8 2.0 2.0
t14 (mm) 2.0 2.4 2.0 2.2 2.4 2.0
f (kg) 77.7 58.7 71.0 75.9 67.7 80.0
g1 (mm) 69.4 151.5 122.2 61.1 147.5 88.9
g2 (g) 28.0 27.9 25.0 32.5 32.4 30.4

Table B.17 Sample Set #2 – continued

 Sample Number
 43 44 45 46 47 48
h1 (mm) 130 90 110 130 90 110
b1 (mm) 50 90 50 70 50 70
h2 (mm) 70 90 90 90 50 50
b2 (mm) 70 90 110 70 90 110
t1 (mm) 2.2 2.2 2.4 2.0 2.0 2.2
t2 (mm) 2.0 2.2 1.8 2.0 2.2 1.8
t3 (mm) 1.6 1.6 1.8 2.0 1.8 2.0
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 3.2 3.0 3.2 2.8 3.0 3.2
t6 (mm) 3.2 2.8 2.8 2.8 3.2 3.2
t7 (mm) 1.0 1.2 1.2 1.2 1.2 1.2
t8 (mm) 2.2 2.0 2.2 2.4 2.4 2.0
t9 (mm) 2.8 2.4 2.6 2.8 2.4 2.6
t10 (mm) 2.8 2.8 2.8 2.8 3.0 3.0
t11 (mm) 2.8 3.0 3.0 3.0 2.8 2.8
t12 (mm) 2.6 2.2 2.2 2.2 2.4 2.4
t13 (mm) 2.0 2.2 2.2 2.2 2.2 2.2
t14 (mm) 2.2 2.4 2.0 2.2 2.4 2.0
f (kg) 69.8 73.4 74.5 75.9 59.2 74.3
g1 (mm) 75.4 152.8 152.7 167.7 137.0 113.1
g2 (g) 29.2 26.4 24.7 36.0 29.5 28.3

173

Table B.18 Sample Set #2 – continued
 Sample Number
 49 50 51 52 53 54
h1 (mm) 130 90 110 130 90 110
b1 (mm) 90 70 90 50 90 50
h2 (mm) 50 70 70 70 90 90
b2 (mm) 70 110 70 90 110 70
t1 (mm) 2.4 2.4 2.0 2.2 2.2 2.4
t2 (mm) 2.0 2.0 2.2 1.8 2.0 2.2
t3 (mm) 1.6 1.6 1.8 2.0 2.0 1.6
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0
t5 (mm) 2.8 3.2 2.8 3.0 2.8 3.0
t6 (mm) 3.2 2.8 2.8 2.8 3.0 3.0
t7 (mm) 1.2 1.4 1.4 1.4 1.0 1.0
t8 (mm) 2.2 2.0 2.2 2.4 2.2 2.4
t9 (mm) 2.8 2.8 2.4 2.6 2.8 2.4
t10 (mm) 3.0 3.0 3.0 3.0 3.0 3.0
t11 (mm) 2.8 3.2 3.2 3.2 3.2 3.2
t12 (mm) 2.4 2.6 2.6 2.6 2.2 2.2
t13 (mm) 2.2 1.8 1.8 1.8 2.0 2.0
t14 (mm) 2.2 2.0 2.2 2.4 2.0 2.2
f (kg) 76.7 71.9 72.6 72.9 78.7 68.6
g1 (mm) 72.1 127.0 101.7 97.2 129.1 143.9
g2 (g) 32.3 26.7 29.0 32.5 32.7 23.6

174

APPENDIX C
Fuzzy Logic Sampling Adjustment Rules for Case Study 1

The following tables summarize the 238 fuzzy rules used in the case study 1.

Values in a table indicate adjustments to the respective design variable. For example,

Table C.1 represents the following five fuzzy rules for adjusting t1:

If δ1 is NH, then a% = -0.4, ia = 5

If δ1 is NL, then a% = -0.2, ia = 5

If δ1 is Z, then a% = +0.1, ia = 5

If δ1 is PL, then a% = +0.2, ia = 5

If δ1 is PH, then a% = +0.4, ia = 5

Table C.1 Fuzzy rules for adjusting t1

 Membership of δ1

 NH NL Z PL PH

 -0.4 -0.2 +0.1 +0.2 +0.4

175

Table C.2 Fuzzy rules for adjusting t2

 Membership of δ3

 NH NL Z PL PH

 -0.2 -0.1 +0.05 +0.1 +0.2

 Membership of δ4

 NH NL Z PL PH

 +0.1 +0.2

 Membership of δ3

 NH NL Z PL PH

NH

NL

Z

PL +0.15 +0.10

M
em

b.
 o

f δ
4

PH +0.20 +0.15

176

Table C.3 Fuzzy rules for adjusting t3

 Membership of δ5

 NH NL Z PL PH

 -0.2 -0.1 +0.05 +0.1 +0.2

 Membership of δ6

 NH NL Z PL PH

 +0.1 +0.2

 Membership of δ5

 NH NL Z PL PH

NH

NL

Z

PL +0.15 +0.10

M
em

b.
 o

f δ
6

PH +0.20 +0.15

Table C.4 Fuzzy rules for adjusting t4

 Membership of δ13

 NH NL Z PL PH

 -0.4 -0.2 +0.2 +0.4

177

Table C.5 Fuzzy rules for adjusting t5

 Membership of δ7

 NH NL Z PL PH

 -0.2 -0.1 +0.1 +0.2

 Membership of δ8

 NH NL Z PL PH

 -0.2 -0.1 +0.1 +0.2

Table C.6 Fuzzy rules for adjusting t6

 Membership of δ14

 NH NL Z PL PH

 -0.4 -0.2 +0.2 +0.4

Table C.7 Fuzzy rules for adjusting t7

 Membership of δ15

 NH NL Z PL PH

 -0.4 -0.2 +0.2 +0.4

Table C.8 Fuzzy rules for adjusting t8

 Membership of δ16

 NH NL Z PL PH

 -0.4 -0.2 +0.2 +0.4

178

Table C.9 Fuzzy rules for adjusting t9

 Membership of δ9

 NH NL Z PL PH

 -0.2 -0.1 +0.1 +0.2

 Membership of δ10

 NH NL Z PL PH

 -0.2 -0.1 +0.1 +0.2

Table C.10 Fuzzy rules for adjusting t10

 Membership of δ2

 NH NL Z PL PH

 -0.4 -0.2 +0.1 +0.2 +0.4

Table C.11 Fuzzy rules for adjusting t11

 Membership of δ11

 NH NL Z PL PH

 -0.2 -0.1 +0.1 +0.2

 Membership of δ12

 NH NL Z PL PH

 -0.2 -0.1 +0.1 +0.2

Table C.12 Fuzzy rules for adjusting t12

 Membership of δ17

 NH NL Z PL PH

 -0.4 -0.2 -0.1 +0.2 +0.4

179

Table C.13 Fuzzy rules for adjusting t13

 Membership of δ18

 NH NL Z PL PH

 -0.4 -0.2 -0.1 +0.2 +0.4

Table C.14 Fuzzy rules for adjusting t14

 Membership of δ19

 NH NL Z PL PH

 -0.4 -0.2 -0.1 +0.2 +0.4

180

Table C.15 Fuzzy rules for adjusting h1

 Membership of δ3

 NH NL Z PL PH

NH

NL

Z +6.0 +3.0

PL +9.0 +6.0 +3.0

M
em

b.
 o

f δ
4

PH +12.0 +9.0 +6.0

 Membership of δ5

 NH NL Z PL PH

NH

NL

Z +6.0 +3.0

PL +9.0 +6.0 +3.0

M
em

b.
 o

f δ
6

PH +12.0 +9.0 +6.0

 Membership of δ7

 NH NL Z PL PH

NH -3.0 -6.0 -9.0 -12.0

NL +3.0 -3.0 -6.0 -9.0

Z +6.0 +3.0 -3.0 -6.0

PL +9.0 +6.0 +3.0 -3.0

M
em

b.
 o

f δ
8

PH +12.0 +9.0 +6.0 +3.0

181

Table C.16 Fuzzy rules for adjusting b1

 Membership of δ3

 NH NL Z PL PH

NH

NL

Z -4.0 -2.0

PL -6.0 -4.0 -2.0

M
em

b.
 o

f δ
4

PH -8.0 -6.0 -4.0

 Membership of δ5

 NH NL Z PL PH

NH

NL

Z -4.0 -2.0

PL -6.0 -4.0 -2.0

M
em

b.
 o

f δ
6

PH -8.0 -6.0 -4.0

 Membership of δ7

 NH NL Z PL PH

NH +2.0 +4.0 +6.0 +8.0

NL -2.0 +2.0 +4.0 +6.0

Z -4.0 -2.0 +2.0 +4.0

PL -6.0 -4.0 -2.0 +2.0

M
em

b.
 o

f δ
8

PH -8.0 -6.0 -4.0 -2.0

182

Table C.17 Fuzzy rules for adjusting h2

 Membership of δ9

 NH NL Z PL PH

NH -3.0 -6.0 -9.0 -12.0

NL +3.0 -3.0 -6.0 -9.0

Z +6.0 +3.0 -3.0 -6.0

PL +9.0 +6.0 +3.0 -3.0

M
em

b.
 o

f δ
10

PH +12.0 +9.0 +6.0 +3.0

 Membership of δ11

 NH NL Z PL PH

NH -3.0 -6.0 -9.0 -12.0

NL +3.0 -3.0 -6.0 -9.0

Z +6.0 +3.0 -3.0 -6.0

PL +9.0 +6.0 +3.0 -3.0

M
em

b.
 o

f δ
12

PH +12.0 +9.0 +6.0 +3.0

183

Table C.18 Fuzzy rules for adjusting b2

 Membership of δ9

 NH NL Z PL PH

NH +2.0 +4.0 +6.0 +8.0

NL -2.0 +2.0 +4.0 +6.0

Z -4.0 -2.0 +2.0 +4.0

PL -6.0 -4.0 -2.0 +2.0

M
em

b.
 o

f δ
10

PH -8.0 -6.0 -4.0 -2.0

 Membership of δ11

 NH NL Z PL PH

NH +2.0 +4.0 +6.0 +8.0

NL -2.0 +2.0 +4.0 +6.0

Z -4.0 -2.0 +2.0 +4.0

PL -6.0 -4.0 -2.0 +2.0

M
em

b.
 o

f δ
12

PH -8.0 -6.0 -4.0 -2.0

184

APPENDIX D
Source Code Header Files for the Automated Crash Mode Matching Algorithm

File: RandGen.h

//Includes
#ifndef H_CPP_RandGenRand
#define H_CPP_RandGenRand

#include <fstream>
using namespace std;
#include <cmath>

class RandGen
{
protected:

public: //C++ class initializations

 //Constructor
 RandGen() {}

 //Destructor
 ~RandGen() {}

protected:

 void init_genrand(unsigned long s) {srand(s);}

 // generates a random number on [0,0xffffffff]-interval
 unsigned long genrand_int32() {return rand();}

 // generates a random number on (0,1)-real-interval
 double genrand_real3()
 {
 return (((double)genrand_int32()) + 0.5)*(1.0/32768.0);
 }

public:

 //Seeding Funcions
 void seed(unsigned long s) {init_genrand(s);}

 //Function to Generate a Uniformy distributed Random Number on the
(0,1)-real-interval
 double rand01() {return genrand_real3();}

185

 //Function to Generate a random number uniformaly distributed
within a range
 double randrng(double drmin, double drmax) {return drmin+(drmax-
drmin)*rand01();}

 //Function to Generate an integer Number uniformly distributed
witihin a range
 int randint(int irmin, int irmax)
 {return int(1.0*irmin+((irmax-irmin)+1.0-1e-8)*rand01());}

 //Function to generate a boolean random result, give probability
of returning true
 bool randbool(double dptrue)
 {if (rand01() <= dptrue) return true; else return false;}

 //Function to generate a poisson distributed random value
 int randpoisson(double daverage)
 {
 if (daverage<1.0e-7) daverage=1.0e-7;
 double drnd01=rand01();

 int icurchoice=0;
 double dcurfact=1.0;
 double dcurp=exp(-daverage)*pow(daverage, 0.0)/dcurfact;

 while (dcurp<drnd01) {

 icurchoice++;
 dcurfact = dcurfact * icurchoice;
 dcurp+=exp(-daverage)*pow(daverage,
double(icurchoice))/dcurfact;
 }

 return icurchoice;
 }

 //Function to generate a normally distributed random number
 double randn(double daverage, double dsd)
 {
 double dpi=4.0*atan(1.0);

 double drnd1=rand01();
 double drnd2=rand01();
 double dy=sqrt(-2.0*log(drnd1))*cos(2.0*dpi*drnd2);

 return daverage + dsd*dy;
 }
};

186

#endif //H_CPP_RandGenRand

File: rfuzzy.h

//Includes
#ifndef H_CPP_RFuzzy
#define H_CPP_RFuzzy

#include "RandGen.h"

//Abstract class for Fuzzy membership function
class RFZMemberShipFnAbs
{
protected:

 /*Each derived class must define its own data storage,
allocation/deallocatin
 and tuning, but all derived classes will eventually use a "number"
of levels*/

 //Number of set levels
 int inlevels;

public:

 //Constructor
 RFZMemberShipFnAbs()
 {
 inlevels=0; //Is a flag for non-initilized state
 }
 //Destructor
 ~RFZMemberShipFnAbs() {inlevels=0;}

 //Function to check if class is initialized
 bool isinitialized()
 {
 if (inlevels<=0) return false;
 else return true;
 }

 //Function to return the number of set levels
 int getnlevels() const {return inlevels;}

187

 //Virtual Function, for intializing memory allocation, given
number of set levels,
 // also allows passing generic initialization data via a void
pointer
 virtual void init(int icnlevels, const void *pvinitdata=NULL) {}

 //Virtual Function for tuning the membership functions
 virtual void tune(const void *pvtunepar) {}
 //Virtual Function for tuning the membership functions
 virtual void tune(const double *pdtunepar) {}

 //Virtual equality operator to make a duplicate copy of another
 virtual void operator=(const RFZMemberShipFnAbs &other) {}

 //Virtual Function for writing into a file stream
 virtual void writeinf(ofstream *pfout) const {}
 //Virtual Function for reading contents out of a file stream
 virtual void readfromf(ifstream *pfin) {}

 //Virtual Function to check the membership value of an input in
one of the sets
 virtual double getmembershipval(double dinvalue, int isetlevelid)
const {return 0.0;}

 //Virtual Function to plot the contents in a tab-delimited text
file
 virtual void plotmemfn(const char *pcfname, int insteps=1001)
const {}
};

//Implementation class for Fuzzy Traingular membership function
class RFZMemberShipFnTrig : public RFZMemberShipFnAbs
{
protected:

 //Storage of set level centers
 double *pdlevelcenters;

public:

 //Constructor
 RFZMemberShipFnTrig()
 {
 RFZMemberShipFnAbs::RFZMemberShipFnAbs();
 pdlevelcenters=NULL;
 }
 //Destructor

188

 ~RFZMemberShipFnTrig()
 {
 if (inlevels>0)
 {
 delete [inlevels] pdlevelcenters;
 pdlevelcenters=NULL;
 }
 RFZMemberShipFnAbs::~RFZMemberShipFnAbs();
 }

 //Initialization function
 void init(int icnlevels, const void *pvinitdata=NULL);

 //Function for tuning the membership functions
 void tune(const void *pvtunepar)
 {
 const double *pdtune=(const double *)(pvtunepar);
 tune(pdtune);
 }
 //Function for tuning the membership functions
 void tune(const double *pdtunepar);

 //equality operator to make a duplicate copy of another
 void operator=(const RFZMemberShipFnAbs &other);

 //Function for writing into a file stream
 void writeinf(ofstream *pfout) const;
 //Function for reading contents out of a file stream
 void readfromf(ifstream *pfin);

 //Function to check the membership value of an input in one of the
sets
 double getmembershipval(double dinvalue, int isetlevelid) const
 {
 if (isetlevelid<0) return 0.0;
 if (isetlevelid>=inlevels) return 0.0;

 if (isetlevelid==0)
 {
 if (dinvalue<=pdlevelcenters[0]) return 1.0;
 else if (dinvalue>=pdlevelcenters[1]) return 0.0;
 else return 1.0 - (dinvalue-
pdlevelcenters[0])/(pdlevelcenters[1]-pdlevelcenters[0]);
 }
 else if (isetlevelid==inlevels-1)
 {
 if (dinvalue>=pdlevelcenters[inlevels-1]) return 1.0;

189

 else if (dinvalue<=pdlevelcenters[inlevels-2]) return
0.0;
 else return (dinvalue-pdlevelcenters[inlevels-
2])/(pdlevelcenters[inlevels-1]-pdlevelcenters[inlevels-2]);
 }
 else
 {
 if (dinvalue<=pdlevelcenters[isetlevelid-1]) return
0.0;
 else if (dinvalue>=pdlevelcenters[isetlevelid+1])
return 0.0;
 else if (dinvalue<=pdlevelcenters[isetlevelid]) return
(dinvalue-pdlevelcenters[isetlevelid-1])/(pdlevelcenters[isetlevelid]-
pdlevelcenters[isetlevelid-1]);
 else return 1.0-(dinvalue-
pdlevelcenters[isetlevelid])/(pdlevelcenters[isetlevelid+1]-
pdlevelcenters[isetlevelid]);
 }
 }

 //Function to plot the contents in a tab-delimited text file
 void plotmemfn(const char *pcfname, int insteps=1001) const;
};

//Implementation class for Fuzzy Sigmoid membership function
class RFZMemberShipFnSigmoid : public RFZMemberShipFnAbs
{
protected:

 //Storage of level centers
 double *pdlevelcenters;

 //Storage of a-parameters
 double *pdapars;
 //Storage of b-parameters
 double *pdbpars;
 //Storage of c-parameters
 double *pdcpars;

 //a-parameter scaling value
 double daparscaling;

 //Utility function for sigmoid calculation
 double utlcalcsigmoid(double dx, double da, double dc) const
 {
 double dy=da*(dx-dc);
 if (dy>0.0) return 1.0/(1.0+exp(-dy));

190

 else return exp(dy)/(1.0+exp(dy));
 }

public:

 //Constructor
 RFZMemberShipFnSigmoid()
 {
 RFZMemberShipFnAbs::RFZMemberShipFnAbs();
 daparscaling=2.0;
 }
 //Destructor
 ~RFZMemberShipFnSigmoid()
 {
 if (inlevels>0)
 {
 delete [inlevels] pdlevelcenters;
 delete [inlevels-1] pdapars;
 delete [inlevels] pdbpars;
 delete [inlevels-1] pdcpars;

 pdlevelcenters=NULL;
 pdapars=NULL;
 pdbpars=NULL;
 pdcpars=NULL;
 }

 RFZMemberShipFnAbs::~RFZMemberShipFnAbs();
 }

 //Initialization function
 void init(int icnlevels, const void *pvinitdata=NULL);

 //Function for tuning the membership functions
 void tune(const void *pvtunepar)
 {
 const double *pdtune=(const double *)(pvtunepar);
 tune(pdtune);
 }
 //Function for tuning the membership functions
 void tune(const double *pdtunepar);

 //equality operator to make a duplicate copy of another
 void operator=(const RFZMemberShipFnAbs &other);

 //Function for writing into a file stream
 void writeinf(ofstream *pfout) const;
 //Function for reading contents out of a file stream
 void readfromf(ifstream *pfin);

191

 //Function to check the membership value of an input in one of the
sets
 double getmembershipval(double dinvalue, int isetlevelid) const
 {
 if (isetlevelid<0) return 0.0;
 if (isetlevelid>=inlevels) return 0.0;

 if (isetlevelid==0)
 {
 return pdbpars[0]*(1.0-utlcalcsigmoid(dinvalue,
pdapars[0], pdcpars[0]));
 }
 else if (isetlevelid==inlevels-1)
 {
 return pdbpars[inlevels-1]*utlcalcsigmoid(dinvalue,
pdapars[inlevels-2], pdcpars[inlevels-2]);
 }
 else
 {
 return pdbpars[isetlevelid]*utlcalcsigmoid(dinvalue,
pdapars[isetlevelid-1], pdcpars[isetlevelid-1])
 *(1.0-utlcalcsigmoid(dinvalue,
pdapars[isetlevelid], pdcpars[isetlevelid]));
 }
 }

 //Function to plot the contents in a tab-delimited text file
 void plotmemfn(const char *pcfname, int insteps=1001) const;
};

//Class for Inputs fuzzifier (container of fuzzy membership function for
each input)
class RFZInputFuzzyfier
{
protected:

 //Number of input variables - also serves as memory allocation
flag
 int ininputs;

 //Storage of Defaulted membership functions - sigmoidal type
 RFZMemberShipFnSigmoid *psigmdftstore;
 //Storage of Pointers to membership functions
 RFZMemberShipFnAbs **ppmembershipfns;

192

 //Temporary storage of a current input vector
 double *pdtmpcurinput;

 //Function to free allocated memory
 void freemem();

public:

 //Constructor
 RFZInputFuzzyfier();
 //Destructor
 ~RFZInputFuzzyfier() {freemem();}

 //Initialization function - defaults to sigmoid memberships
 void init(int icninputs);
 //Function for initialization of memory allocation from file
stream
 void initf(ifstream *pfin);

 //Function to set pointer to a membership function class
 void setmembershipfn(int iinputid, RFZMemberShipFnAbs
*pmembershipfn);

 //Function to re-initialize a membership function
 void reinitmembershipfn(int iinputid, int inlevels, const void
*pvinitdata=NULL);

 //Function to tune a membership function
 void tunemembershipfn(int iinputid, const void *pvtunepar);
 //Function to tune a membership function
 void tunemembershipfn(int iinputid, const double *pdtunepar);

 //Function to re-initialize and tune (all) current membership
functions from file stream
 void tunemembershipfnsf(ifstream *pfin);

 //Function to check if class is ready to perform calculations
 bool isreadytocompute() const;

 //Function to write class contents to file stream
 void writef(ofstream *pfout) const;

 //Function accept an input vector and internally calculate its
membership values
 void setcurinput(const double *pdcurinput) const
 {

193

 if (!isreadytocompute()) return;

 const double *pdctmp=pdtmpcurinput;
 double *pdtmp=(double *)(pdctmp);

 for (int icount=0; icount<ininputs; icount++)
 {
 pdtmp[icount]=pdcurinput[icount];
 }
 }

 //Function to return the current input's membership value (for
inputID & level)
 double getcurmembershipvalue(int iinputid, int isetlevelid) const
 {
 if (!isreadytocompute()) return 0.0;

 if (iinputid<0) return 0.0;
 if (iinputid>=ininputs) return 0.0;

 return ppmembershipfns[iinputid]-
>getmembershipval(pdtmpcurinput[iinputid], isetlevelid);
 }

 //Function to return the number of inputs
 int getninputs() const {return ininputs;}

 //Function to return a constant pointer to the membership function
requested
 const RFZMemberShipFnAbs *getcptrmembershipfn(int iinputid) const
 {
 if (iinputid<0) return NULL;
 if (iinputid>=ininputs) return NULL;
 return ppmembershipfns[iinputid];
 }
};

//Class for Fuzzy elementary "boolean" expression
class RFZElemBooleanExpr
{
protected:

 //Input variable ID
 int iinputid;

 //Level ID to check
 int itargetlevel;

194

public:

 //Constructor
 RFZElemBooleanExpr()
 {
 iinputid=0;
 itargetlevel=0;
 }
 //Destructor
 ~RFZElemBooleanExpr() {}

 //Initialization function
 void init(int icinputid, int ictargetlevel)
 {
 iinputid=icinputid;
 itargetlevel=ictargetlevel;
 }
 //Function to write contents to file stream
 void writef(ofstream *pfout) const
 {
 *pfout << iinputid << char(9) << itargetlevel << endl;
 }
 //Function to read contents from file stream
 void readf(ifstream *pfin)
 {
 *pfin >> iinputid;
 *pfin >> itargetlevel;
 }

 //Function to check current expression value with regards to a set
of inputs' state
 double getexprvalue(const RFZInputFuzzyfier *pfuzzyinputstate)
const
 {
 return pfuzzyinputstate->getcurmembershipvalue(iinputid,
itargetlevel);
 }

 //Function to return ID of input variable
 int getinputid() const {return iinputid;}

 //Function to return target level for input variable
 int gettargetlevel() const {return itargetlevel;}
};

//Abstract class for fuzzy rule

195

class RFZFuzzyRuleAbs
{
protected:

 //Output variable ID
 int ioutputid;

 //Base value for output
 double doutbaseval;

public:

 //Constructor
 RFZFuzzyRuleAbs()
 {
 ioutputid=0;
 doutbaseval=0.0;
 }
 //Destructor
 ~RFZFuzzyRuleAbs() {}

 //Function to return Output ID
 int getoutputid() const {return ioutputid;}

 //Function to set output values
 void setoutputvalues(int icoutpitid, double dcoutbaseval)
 {
 ioutputid=icoutpitid;
 doutbaseval=dcoutbaseval;
 }

 //Virtual Function to compute output value
 virtual double getoutputval(const RFZInputFuzzyfier
*pfuzzyinputstate) const {return doutbaseval;}

 //Virtual Function to adjust the rule
 virtual void setexprvalues(const int *pipar, const double
*pdpar=NULL, const void *pvpar=NULL) {}

 //Virtual Function to write contents to a file stream
 virtual void writef(ofstream *pfout) const
 {
 *pfout << ioutputid << char(9) << doutbaseval << endl;
 }

 //Virtual Funciton to read contents from a file stream
 virtual void readf(ifstream *pfin)
 {

196

 *pfin >> ioutputid;
 *pfin >> doutbaseval;
 }

 //Virtual Function to return the highest ID of input variable in
expression
 virtual int getmaxinputid() const {return 0;}

 //Virtual Function to write rule in a nicely formatted form to a
file stream
 virtual void formatrule(ofstream *pfout) const {}

 //Virtual assigment operator to copy from another
 virtual void operator=(const RFZFuzzyRuleAbs &other) {}
};

//Implementation class for fuzzy rule, as a simple string of and-
operators as min vals
class RFZFuzzyRuleSStrAndasMin : public RFZFuzzyRuleAbs
{
protected:

 //Number of elementary expressions
 int inexprs;

 //Storage of elementary expressions
 RFZElemBooleanExpr *pexprs;

public:

 //Constructor
 RFZFuzzyRuleSStrAndasMin()
 {
 RFZFuzzyRuleAbs::RFZFuzzyRuleAbs();

 inexprs=1;
 pexprs=new RFZElemBooleanExpr[inexprs];
 }
 //Destructor
 ~RFZFuzzyRuleSStrAndasMin()
 {
 delete [inexprs] pexprs;

 RFZFuzzyRuleAbs::~RFZFuzzyRuleAbs();
 }

197

 //Function to compute output value
 double getoutputval(const RFZInputFuzzyfier *pfuzzyinputstate)
const
 {
 double dcurfact=1.0;
 double dcurval;

 for (int icount=0; icount<inexprs; icount++)
 {
 dcurval=pexprs[icount].getexprvalue(pfuzzyinputstate);
 if (dcurfact>dcurval) dcurfact=dcurval;
 }

 return dcurfact*doutbaseval;
 }

 //Function to adjust the rule
 void setexprvalues(const int *pipar, const double *pdpar=NULL,
const void *pvpar=NULL);

 //Function to write contents to a file stream
 void writef(ofstream *pfout) const;

 //Funciton to read contents from a file stream
 void readf(ifstream *pfin);

 //Function to return the highest ID of input variable in
expression
 int getmaxinputid() const
 {
 int imaxinid=0;
 for (int icount=0; icount<inexprs; icount++)
 {
 if (imaxinid<pexprs[icount].getinputid())
 {
 imaxinid=pexprs[icount].getinputid();
 }
 }
 return imaxinid;
 }

 //Function to write rule in a nicely formatted form to a file
stream
 void formatrule(ofstream *pfout) const
 {
 *pfout << "IF ";
 *pfout << "(InputID_" << pexprs[0].getinputid() << "
IsAtLevel "
 << pexprs[0].gettargetlevel() << ")";

198

 for (int icount=1; icount<inexprs; icount++)
 {
 *pfout << " AND (InputID_" <<
pexprs[icount].getinputid() << " IsAtLevel "
 << pexprs[icount].gettargetlevel() << ")";
 }
 *pfout << " THEN OutputID_" << ioutputid << " IsAdujustedBy
" << doutbaseval << endl;
 }

 //Assignment operator to copy from another
 void operator=(const RFZFuzzyRuleAbs &other);
};

//Class for Fuzzy Rule Base (collection of rules)
class RFZFuzzyRuleBase
{
protected:

 //Number of rules
 int inrules;

 //Storage of Defaulted rules - simple and-strings
 RFZFuzzyRuleSStrAndasMin *pandstrs;

 //Storage of Pointers to rules
 RFZFuzzyRuleAbs **pprules;

 //Function to free allocated memory
 void freemem();

public:

 //Constructor
 RFZFuzzyRuleBase();
 //Destructor
 ~RFZFuzzyRuleBase() {freemem();}

 //Function to reset all contents, and/or pre-allocate memory for a
number of rules
 void reset(int icnrules=0);
 //Function to perform the reset from file stream
 void resetf(ifstream *pfin);

199

 //Function to set a rule (by linking pointers to appropriate rule
class)
 void setrule(int iruleid, RFZFuzzyRuleAbs *pruleobj);

 //Function to adjust exisiting rule's output properties
 void setruleoutputvalues(int iruleid, int icoutputid, double
dcoutbaseval);

 //Function to adjust existing rule's logical reasoning
 void setruleexprvalues(int iruleid, const int *pipar, const double
*pdpar=NULL,
 const void *pvpar=NULL);

 //Function to read the rules' data from file stream
 void setrulesf(ifstream *pfin);

 //Function to write class contents to file stream
 void writef(ofstream *pfout) const;

 //Function to provide a nicely formatted listing of Fuzzy rules to
a file
 void formatfuzzyrules(const char *pcfname) const;

 //Function to return the number of rules
 int getnrules() const {return inrules;}

 //Function to return a constant pointer to rule object
 const RFZFuzzyRuleAbs *getcptrrule(int iruleid) const {return
pprules[iruleid];}

 //Function to check the maximum input ID
 int getmaxinputid() const
 {
 int imaxinid=0;
 for (int icount=0; icount<inrules; icount++)
 {
 if (imaxinid<pprules[icount]->getmaxinputid())
 {
 imaxinid=pprules[icount]->getmaxinputid();
 }
 }
 return imaxinid;
 }
 //Function to check the maximum output ID
 int getmaxoutputid() const
 {
 int imaxoutid=0;
 for (int icount=0; icount<inrules; icount++)
 {

200

 if (imaxoutid<pprules[icount]->getoutputid())
 {
 imaxoutid=pprules[icount]->getoutputid();
 }
 }
 return imaxoutid;
 }
};

//Class for an output stochasitc variable activated by voting in rule
base
class RFZRandOutputVarViaRBVoting
{
protected:

 //Current Value
 double dcurval;

 //Minimum value for SD
 double dminsigma;

 //Current variable adjustments setting
 double dcurav;
 //Current variable adjustments absolute sum
 double dadjstabssum;

 //Current SD
 double dcursigma;

public:

 //Constructor
 RFZRandOutputVarViaRBVoting();
 //Destructor
 ~RFZRandOutputVarViaRBVoting() {}

 //Assignment operator to copy from another
 void operator=(const RFZRandOutputVarViaRBVoting &other);

 //Function to setup "large value", also resets voting
 void setminsigma(double dcminsigma) {dminsigma=dcminsigma;}
 //Function to set current value, also resets voting
 void setcurvalue(double dccurval);

 //Function to place a vote

201

 void votetochangeby(double dvotedchange);

 //Function to write the tunable (large value) to file stream
 void writef(ofstream *pfout) const
 {
 *pfout << dminsigma << endl;
 }
 //Function to read the tunable (min. SD) from file stream
 void readf(ifstream *pfin)
 {
 double dtmpval;
 *pfin >> dtmpval;
 setminsigma(dtmpval);
 }

 //Function to write current distribution values to file stream
 void writedistribtof(ofstream *pfout) const
 {
 *pfout << dcurval << char(9) << dcurav << char(9) <<
dcursigma << endl;
 }

 //Function to return current value
 double getcurval() const {return dcurval;}

 //Function to return current average value of votes
 double getcurav() const {return dcurav;}
 //Function to return current SD
 double getcursd() const {return dcursigma;}

 //Function to perform a Monte-Carlo instant of the variable
accoring to current distribution
 double getrandval(RandGen *prand) const
 {
 if (dcursigma<=0.0) return dcurav;
 return prand->randn(dcurav, dcursigma);
 }
 //Function to perform a Monte-Carlo instant of the variable
accoring to current distribution
 double getrandval(RandGen *prand, double drmin, double drmax)
const
 {
 double dmcval=getrandval(prand);
 if (dmcval<drmin) dmcval=drmin;
 if (dmcval>drmax) dmcval=drmax;
 return dmcval;
 }

202

 //Function to perform a Monte-Carlo instant of the variable
accoring to current distribution
 double getrandval(RandGen *prand, int inchoices, const double
*pdchoices) const
 {
 double dcval=getrandval(prand);

 int ichoiceid=0;
 double dbestdist=fabs(dcval-pdchoices[0]);
 double dcurdist;

 for (int icount=1; icount<inchoices; icount++)
 {
 dcurdist=fabs(dcval-pdchoices[icount]);
 if (dbestdist>dcurdist)
 {
 dbestdist=dcurdist;
 ichoiceid=icount;
 }
 }
 return pdchoices[ichoiceid];
 }
};

//Class for a set of output stochasitc variables activated by voting
from a rule base
class RFZRandOutputVarViaRBVotingSet
{
protected:

 //Number of output variables
 int inoutputs;

 //Storage of output variable objects
 RFZRandOutputVarViaRBVoting *poutvars;

public:

 //Constructor
 RFZRandOutputVarViaRBVotingSet()
 {
 inoutputs=0;
 poutvars=NULL;
 }

 //Destructor
 ~RFZRandOutputVarViaRBVotingSet()
 {

203

 if (inoutputs>0) delete [inoutputs] poutvars;
 }

 //Initialization function
 void init(int icnoutputs, const double *pdminsds=NULL);

 //Function to write output variables' "large value" tunable to a
file stream
 void writef(ofstream *pfout) const;

 //Function to read output variables' "large value" tunable from a
file stream
 void readf(ifstream *pfin);

 //Function to write current distribution values to file
 void writedistribtof(const char *pcfname) const
 {
 ofstream fout(pcfname);
 for (int icount=0; icount<inoutputs; icount++)
 {
 poutvars[icount].writedistribtof(&fout);
 }
 fout.close();
 }

 //Function to set output variables states to cope with input
states and rule base
 void settostate(const RFZInputFuzzyfier *pinputstate,
 const RFZFuzzyRuleBase *prulebase, const double
*pdcurvarvals)
 {
 if (inoutputs<=0) return;

 int icount;
 for (icount=0; icount<inoutputs; icount++)
 {
 poutvars[icount].setcurvalue(pdcurvarvals[icount]);
 }

 int inrules=prulebase->getnrules();
 const RFZFuzzyRuleAbs *pcurrule;

 for (icount=0; icount<inrules; icount++)
 {
 pcurrule=prulebase->getcptrrule(icount);
 poutvars[pcurrule-
>getoutputid()].votetochangeby(pcurrule->getoutputval(pinputstate));
 }
 }

204

 //Function to return the number of output variables
 int getnoutvars() const {return inoutputs;}
 //Function to return a constant pointer to output variables
 const RFZRandOutputVarViaRBVoting *getoutvars() const {return
poutvars;}
};

#endif //H_CPP_RFuzzy

File: AbsCrashMode.h

//Include section
#ifndef H_CPP_AbsCrashMode
#define H_CPP_AbsCrashMode

#include <fstream>
#include <cmath>
using namespace std;

//Pre-set constants

const double D_CrashModeBase_TimeInstantTol = 1.0e-7;
const double D_CrashModeHardLim_DeformVal = 1.0e-6;

//Base Class (abstracted) for definition of crash mode
class CrashModeBase
{
protected:

 //An identifier for Crash Mode Object "Type"
 int iobjtype;
 //Initialization flag
 int iisinitialized;
 //Solution availability flag
 int iissolavailable;

 //Number of zones
 int inzones;
 //Maximum number of deformation types per zone
 int inmaxdeformtypes;
 //Number of deformation tyoes in each zone
 int *pindeformtypes;
 //Number of "recordable time instances" for time
 int intimeinstt;

205

 //Number of "recordable time instances" for the deformation
 int intimeinstdef;
 //Storage of time instances
 double *pdtimeinst;
 //Storage of deformation instances
 double *pddefinst;

 //Utility function to allocate memory for CM data storage
 void utl_malloc(int icnzones, int icnmaxdeformtypes,
 int icntimeinstt, int icntimeinstdef)
 {
 utl_freemem();

 inzones=icnzones;
 inmaxdeformtypes=icnmaxdeformtypes;
 intimeinstt=icntimeinstt;
 intimeinstdef=icntimeinstdef;

 pindeformtypes=new int[inzones*inmaxdeformtypes];
 pdtimeinst=new double[intimeinstt];
 pddefinst=new
double[inzones*inmaxdeformtypes*intimeinstdef];
 }
 //Utility function to freem memory of CM data storage
 void utl_freemem()
 {
 if (inzones*inmaxdeformtypes>0) delete
[inzones*inmaxdeformtypes] pindeformtypes;
 if (intimeinstt>0) delete [intimeinstt] pdtimeinst;
 if (inzones*inmaxdeformtypes*intimeinstdef>0)
 delete [inzones*inmaxdeformtypes*intimeinstdef]
pddefinst;

 inzones=0;
 inmaxdeformtypes=0;
 intimeinstt=0;
 intimeinstdef=0;

 pindeformtypes=NULL;
 pdtimeinst=NULL;
 pddefinst=NULL;

 iisinitialized=0;
 iissolavailable=0;
 }

 //Utility function to place a value in its correct ZDT position in
matrix

206

 void utl_placedfrmvalue(double ddfrmvalue, int izoneid, int
ideftypeid, int itimeinstid)
 {
 pddefinst[inzones*inmaxdeformtypes*itimeinstid +
izoneid*inmaxdeformtypes + ideftypeid]
 = ddfrmvalue;
 }

public:

 //Constructor
 CrashModeBase()
 {
 iobjtype=0; //Object Type is set to "Base
Class"
 iisinitialized=0; //Initialization is set to "OFF"

 inzones=0;
 inmaxdeformtypes=0;
 intimeinstt=0;
 intimeinstdef=0;

 pindeformtypes=NULL;
 pdtimeinst=NULL;
 pddefinst=NULL;
 }
 //Destructor
 ~CrashModeBase() {utl_freemem();}

 //Function to return identifier for object type
 int get_objtype() const {return iobjtype;}

 //Function to return the number of zones
 int get_nzones() const {return inzones;}
 //Function to return the maximum number of deformation types
 int get_nmaxdeformtypes() const {return inmaxdeformtypes;}
 //Function to return the number of deformation types in all zones
 const int *get_ndeformtypes() const {return pindeformtypes;}

 //Function to return the number of stored time instants
 int get_nstoretimeinstants() const {return intimeinstt;}
 //Function to return the number of stored deformation instants
 int get_nstoredefrominstants() const {return intimeinstdef;}

 //Function to return the stored time instant values
 const double *get_storetimeinstants() const {return pdtimeinst;}

 //Function to return object initialization state (returns true if
isinitialized==1)

207

 bool check_initialization() const {if (iisinitialized==1) return
true; else return false;}
 //Function to return solution availability state (returns true if
iissolavailable==1)
 bool check_solavailability() const {if (iissolavailable==1) return
true; else return false;}

 /*Virtual Functions that need to be defined in derived
classes*/

 //Crash mode model initialization from data object
 virtual void init(const void *pvdata) {}
 //Crash mode model initialization from file
 virtual void initf(const char *pcmmodelfname) {}
 //Saving model to file
 virtual void savemodel(const char *pcmmodelfname) const {}

 //Extracting CM values from a solution storage object (can also be
a file)
 virtual void extractCM(const void *pvsolobj) {}

 //Writing CM values to file
 virtual void saveCMvals(const char *pcfname) const {}
 //Reading CM values from file
 virtual void readCMvals(const char *pcfname) {}

 /*Virtual Functions that "may" need to be re-defined
in derived classes*/

 //Function to return "equivalent deformation value", given zone,
deformation type & time
 virtual double getcmvalue_zdt(int izoneid, int ideftypeid, int
itimeinstid) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;
 if ((izoneid<0)||(izoneid>=inzones)) return -3.0;
 if ((ideftypeid<0)||(ideftypeid>=pindeformtypes[izoneid]))
return -4.0;
 if ((itimeinstid<0)||(itimeinstid>=intimeinstdef)) return -
5.0;

 return pddefinst[inzones*inmaxdeformtypes*itimeinstid +
 izoneid*inmaxdeformtypes +
ideftypeid];
 }
 //Function to return "equivalent deformation value", given zone,
deformation type & time

208

 virtual double getcmvalue_zdt(int izoneid, int ideftypeid, double
dtimeinst) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;
 if ((izoneid<0)||(izoneid>=inzones)) return -3.0;
 if ((ideftypeid<0)||(ideftypeid>=pindeformtypes[izoneid]))
return -4.0;
 if (intimeinstt!=intimeinstdef) return -5.0;
 if (intimeinstt<2) return -6.0;

 int itid1=0;
 int itid2=1;
 for (int icount=0; icount<intimeinstt-1; icount++)
 {
 if (pdtimeinst[itid2]>=dtimeinst) break;
 itid1=itid2;
 itid2++;
 }

 double dval1 = pddefinst[inzones*inmaxdeformtypes*itid1 +
izoneid*inmaxdeformtypes + ideftypeid];
 double dval2 = pddefinst[inzones*inmaxdeformtypes*itid2 +
izoneid*inmaxdeformtypes + ideftypeid];
 double drrel = (dtimeinst-
pdtimeinst[itid1])/(pdtimeinst[itid2]-pdtimeinst[itid1]);
 return (1.0-drrel)*dval1 + drrel*dval2;
 }
 //Function to return "equivalent deformation value", given zone &
deformation type (final time values)
 virtual double getcmvalue_zd(int izoneid, int ideftypeid) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;

 int inlaststeady=intimeinstdef/10;
 if (inlaststeady<1) inlaststeady=1;

 double dsumsteady=0.0;
 for (int icount=0; icount<inlaststeady; icount++)
 {
 dsumsteady+=getcmvalue_zdt(izoneid, ideftypeid,
intimeinstdef-1-icount);
 }

 return dsumsteady/double(inlaststeady);
 }
 //Function to return "equivalent deformation value", given zone &
time (summed over deformation types)
 virtual double getcmvalue_zt(int izoneid, int itimeinstid) const

209

 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;

 double dsumdef=0.0;
 int indeftypes=pindeformtypes[izoneid];
 for (int icount=0; icount<indeftypes; icount++)
 {
 dsumdef+=getcmvalue_zdt(izoneid, icount, itimeinstid);
 }
 return dsumdef;
 }
 //Function to return "equivalent deformation value", given zone &
time (summed over deformation types)
 virtual double getcmvalue_zt(int izoneid, double dtimeinst) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;

 double dsumdef=0.0;
 int indeftypes=pindeformtypes[izoneid];
 for (int icount=0; icount<indeftypes; icount++)
 {
 dsumdef+=getcmvalue_zdt(izoneid, icount, dtimeinst);
 }
 return dsumdef;
 }
 //Function to return "equivalent deformation value", given zone
(final time values - summed over deformation types)
 virtual double getcmvalue_z(int izoneid) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;

 double dsumdef=0.0;
 int indeftypes=pindeformtypes[izoneid];
 for (int icount=0; icount<indeftypes; icount++)
 {
 dsumdef+=getcmvalue_zd(izoneid, icount);
 }
 return dsumdef;
 }
};

//Sub-category of CrashModeBase: Detailed deformation history crash mode
curves
class CrashModeDetTHist : public CrashModeBase
{

210

public:

 //Constructor
 CrashModeDetTHist()
 {
 CrashModeBase::CrashModeBase();

 iobjtype=1; //Object Type is set to
"Detailed Time History"
 iisinitialized=1; //Initialization is set to "ON"
 }
 //Destructor
 ~CrashModeDetTHist() {CrashModeBase::~CrashModeBase();}

 //Writing CM values to file
 void saveCMvals(const char *pcfname) const;
 //Reading CM values from file
 void readCMvals(const char *pcfname);
};

//Sub-category of CrashModeBase: Deformation history approximated via
hard-limit basis
class CrashModeHardLim : public CrashModeBase
{
protected:

 //Utility function for extraction and storage of CM values
 void extractCMpcmp(const double *pdmags, const double *pdtinsts,
 int icnzones, double dclastime);
public:

 //Constructor
 CrashModeHardLim()
 {
 CrashModeBase::CrashModeBase();

 iobjtype=2; //Object Type is set to "Hard-
limit approximation"
 iisinitialized=1; //Initialization is set to "ON"
 }
 //Destructor
 ~CrashModeHardLim() {CrashModeBase::~CrashModeBase();}

 //Writing CM values to file
 void saveCMvals(const char *pcfname) const;
 //Reading CM values from file
 void readCMvals(const char *pcfname);

211

 //Function to convert from a detailed CM history
 void convertfromdethist(const CrashModeDetTHist *pdetcmhistobj);

 //Function to return "equivalent deformation value", given zone,
deformation type & time Instant ID
 double getcmvalue_zdt(int izoneid, int ideftypeid, int
itimeinstid) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;
 if ((izoneid<0)||(izoneid>=inzones)) return -3.0;
 if ((ideftypeid<0)||(ideftypeid>=pindeformtypes[izoneid]))
return -4.0;

 if (itimeinstid==0)
 {
 return 0.0;
 }
 else
 {
 return pddefinst[izoneid*inmaxdeformtypes +
ideftypeid];
 }
 }
 //Function to return "equivalent deformation value", given zone,
deformation type & time
 double getcmvalue_zdt(int izoneid, int ideftypeid, double
dtimeinst) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;
 if ((izoneid<0)||(izoneid>=inzones)) return -3.0;
 if ((ideftypeid<0)||(ideftypeid>=pindeformtypes[izoneid]))
return -4.0;

 double djumpinstant=pddefinst[inzones*inmaxdeformtypes +
izoneid*inmaxdeformtypes + ideftypeid];

 if (dtimeinst<djumpinstant-D_CrashModeBase_TimeInstantTol)
 {
 return 0.0;
 }
 else if
(dtimeinst>djumpinstant+D_CrashModeBase_TimeInstantTol)
 {
 return pddefinst[izoneid*inmaxdeformtypes +
ideftypeid];

212

 }
 else
 {
 double drelval=0.5*(dtimeinst-
djumpinstant+D_CrashModeBase_TimeInstantTol)/D_CrashModeBase_TimeInstant
Tol;
 return drelval*pddefinst[izoneid*inmaxdeformtypes +
ideftypeid];
 }
 }
 //Function to return "equivalent deformation value", given zone &
deformation type (final time values)
 double getcmvalue_zd(int izoneid, int ideftypeid) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;
 return getcmvalue_zdt(izoneid, ideftypeid, 1);
 }
 //Function to return "equivalent deformation value", given zone &
time (summed over deformation types)
 double getcmvalue_zt(int izoneid, int itimeinstid) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;

 if (itimeinstid<=0) itimeinstid=0;
 else itimeinstid=1;

 double dsumdef=0.0;
 int indeftypes=pindeformtypes[izoneid];
 for (int icount=0; icount<indeftypes; icount++)
 {
 dsumdef+=getcmvalue_zdt(izoneid, icount, itimeinstid);
 }
 return dsumdef;
 }
 //Function to return "equivalent deformation value", given zone &
time (summed over deformation types)
 double getcmvalue_zt(int izoneid, double dtimeinst) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;

 double dsumdef=0.0;
 int indeftypes=pindeformtypes[izoneid];
 for (int icount=0; icount<indeftypes; icount++)
 {
 dsumdef+=getcmvalue_zdt(izoneid, icount, dtimeinst);
 }
 return dsumdef;

213

 }
 //Function to return "equivalent deformation value", given zone
(final time values - summed over deformation types)
 double getcmvalue_z(int izoneid) const
 {
 if (iisinitialized!=1) return -1.0;
 if (iissolavailable!=1) return -2.0;

 double dsumdef=0.0;
 int indeftypes=pindeformtypes[izoneid];
 for (int icount=0; icount<indeftypes; icount++)
 {
 dsumdef+=getcmvalue_zd(izoneid, icount);
 }
 return dsumdef;
 }

};

#endif //H_CPP_AbsCrashMode

File: autocmmatcher.h

//Include section
#ifndef H_CPP_AutoCMMatcher
#define H_CPP_AutoCMMatcher

#include "rfuzzy.h"
#include "AbsCrashMode.h"

//Class for Fuzzy Sampler
class ACMMFuzzySampler
{
protected:

 //Membership functions for Input Fuzzification
 RFZInputFuzzyfier inputfuzzifier;

 //Fuzzy Rule Base
 RFZFuzzyRuleBase fuzzyrules;

 //Rand variales for sampling
 RFZRandOutputVarViaRBVotingSet randvarsset;

public:

214

 //Constructor
 ACMMFuzzySampler() {}
 //Destructor
 ~ACMMFuzzySampler() {}

 //Function to return a pointer to input fuzzifier object
 RFZInputFuzzyfier *getptr_inputfuzzifier() {return
&inputfuzzifier;}
 //Function to return a pointer to fuzzy rule base
 RFZFuzzyRuleBase *getptr_fuzzyrules() {return &fuzzyrules;}
 //Function to return a pointer to the random variales for sampling
 RFZRandOutputVarViaRBVotingSet *getptr_randvarssetr() {return
&randvarsset;}

 //Function to return a constant pointer to input fuzzifier object
 const RFZInputFuzzyfier *getcptr_inputfuzzifier() const {return
&inputfuzzifier;}
 //Function to return a constant pointer to fuzzy rule base
 const RFZFuzzyRuleBase *getcptr_fuzzyrules() const {return
&fuzzyrules;}
 //Function to return a constant pointer to the random variales for
sampling
 const RFZRandOutputVarViaRBVotingSet *getcptr_randvarssetr() const
{return &randvarsset;}

 //Function to write contents to a file
 void writef(const char *pcfname) const;
 //Function to read contents from a file
 void readf(const char *pcfname);

 //Function to write current distribution of the Gauusian variables
to file
 void writedistribtof(const char *pcfname) const
 {
 randvarsset.writedistribtof(pcfname);
 }

 //Function to return the number of inputs
 int getninputerrs() const {return inputfuzzifier.getninputs();}
 //Function to return the number of rules
 int getnrules() const {return fuzzyrules.getnrules();}
 //Function to return the number of controlled/sampled/output
variables
 int getnoutputcrtl() const {return randvarsset.getnoutvars();}

 //Function to check for I/O consistency
 bool isconsistent() const

215

 {
 if (!inputfuzzifier.isreadytocompute()) return false;

 int ininputerrs=inputfuzzifier.getninputs();
 int inoutputcrtl=randvarsset.getnoutvars();

 if (fuzzyrules.getmaxinputid()>=ininputerrs) return false;
 if (fuzzyrules.getmaxoutputid()>=inoutputcrtl) return false;

 return true;
 }

 //Function to plot the membership functions of an input to a file
 void plotinputmemberships(const char *pcfname, int iinputid, int
inplotpoints=1001) const
 {
 if (iinputid<0) return;
 if (iinputid>=inputfuzzifier.getninputs()) return;

 inputfuzzifier.getcptrmembershipfn(iinputid)-
>plotmemfn(pcfname, inplotpoints);
 }

 //Function to put a nicely formatted listing of Fuzzy rules into a
file
 void formatfuzzyrules(const char *pcfname) const
 {
 fuzzyrules.formatfuzzyrules(pcfname);
 }

 //Function to ready class for Monte-Carlo sampling
 void readysampling(const double *pdcurinputerrs, const double
*pdcuroutdesvar)
 {
 inputfuzzifier.setcurinput(pdcurinputerrs);
 randvarsset.settostate(&inputfuzzifier, &fuzzyrules,
pdcuroutdesvar);
 }
 //Function to produce a Monte-Carlo sample of a design variable
(output)
 double randsamplevar(int ioutvarid, RandGen *prand)
 {
 int inoutvar=randvarsset.getnoutvars();
 if (ioutvarid<0) return 0.0;
 if (ioutvarid>=inoutvar) return 0.0;
 return
randvarsset.getoutvars()[ioutvarid].getrandval(prand);
 }

216

 //Function to produce a Monte-Carlo sample of a design variable
(output)
 double randsamplevar(int ioutvarid, RandGen *prand, double drmin,
double drmax)
 {
 int inoutvar=randvarsset.getnoutvars();
 if (ioutvarid<0) return 0.0;
 if (ioutvarid>=inoutvar) return 0.0;
 return randvarsset.getoutvars()[ioutvarid].getrandval(prand,
drmin, drmax);
 }
 //Function to produce a Monte-Carlo sample of a design variable
(output)
 double randsamplevar(int ioutvarid, RandGen *prand, int inchoices,
const double *pdchoices)
 {
 int inoutvar=randvarsset.getnoutvars();
 if (ioutvarid<0) return 0.0;
 if (ioutvarid>=inoutvar) return 0.0;
 return randvarsset.getoutvars()[ioutvarid].getrandval(prand,
inchoices, pdchoices);
 }
};

//Class for ACMM design variable definition
class ACMMDesignVarDef
{
protected:

 //Allocated memory size
 int inalloc;
 //Number of "choices", =0 for continuous variables
 int inchoices;

 //Storage of choices, 1st 2 slots used for min/max in case of
continuous variable
 double *pdvalstore;

 //Current value
 double dcurval;

public:

 //Constructor
 ACMMDesignVarDef()
 {
 inalloc=10;
 pdvalstore=new double[inalloc];

217

 inchoices=0;
 pdvalstore[0]=0.0;
 pdvalstore[1]=1.0;

 dcurval=0.0;
 }
 //Destructor
 ~ACMMDesignVarDef()
 {
 delete [inalloc] pdvalstore;
 }

 //Function to setup the variable as continuous, also resets value
to minimum range
 void setcontinuous(double drmin, double drmax)
 {
 inchoices=0;
 pdvalstore[0]=drmin;
 pdvalstore[1]=drmax;
 dcurval=drmin;
 }

 //Function to setup the variable as discrete, also resets value to
1st option
 void setdiscrete(int icnchoices, const double *pdchoices)
 {
 if (icnchoices<1) return;
 if (icnchoices>inalloc)
 {
 delete [inalloc] pdvalstore;
 inalloc=icnchoices;
 pdvalstore=new double[inalloc];
 }
 inchoices=icnchoices;
 for (int icount=0; icount<inchoices; icount++)
 {
 pdvalstore[icount]=pdchoices[icount];
 }
 dcurval=pdvalstore[0];
 }

 //Function to read model contents from file stream
 void readf(ifstream *pfin)
 {
 *pfin >> inchoices;
 if (inchoices<0) inchoices=0;
 if (inchoices==0)
 {

218

 *pfin >> pdvalstore[0];
 *pfin >> pdvalstore[1];
 }
 else
 {
 if (inchoices>inalloc)
 {
 delete [inalloc] pdvalstore;
 inalloc=inchoices;
 pdvalstore=new double[inalloc];
 }
 for (int icount=0; icount<inchoices; icount++)
 {
 *pfin >> pdvalstore[icount];
 }
 }
 dcurval=pdvalstore[0];
 }

 //Function to write model contents to file stream
 void writef(ofstream *pfout) const
 {
 *pfout << inchoices << char(9);
 if (inchoices==0)
 {
 *pfout << pdvalstore[0] << char(9);
 *pfout << pdvalstore[1] << char(9);
 }
 else
 {
 for (int icount=0; icount<inchoices; icount++)
 {
 *pfout << pdvalstore[icount] << char(9);
 }
 }
 *pfout << endl;
 }

 //Function to read value from file stream
 void vreadf(ifstream *pfin)
 {
 double dtmp;
 *pfin >> dtmp;
 setvalue(dtmp);
 }
 //Function to write value to file stream
 void vwritef(ofstream *pfout) const {*pfout << dcurval <<endl;}

 //Function to check if variable is discrete

219

 bool isdiscrete() const
 {
 if (inchoices==0) return false;
 else return true;
 }
 //Function to return current value of variable
 double getcurval() const {return dcurval;}

 //Function to return minimum range (if continuous)
 double getrmin() const {return pdvalstore[0];}

 //Function to return maximum range (if continuous)
 double getrmax() const {return pdvalstore[1];}

 //Function to return number of choices (if discrete)
 int getnchoices() const {return inchoices;}

 //Function to return discrete choices
 const double *getchoices() const {return pdvalstore;}

 //Function to set current value (or set to nearest allowed value)
 void setvalue(double dnewval)
 {
 dcurval=dnewval;
 if (inchoices==0)
 {
 if (dcurval<pdvalstore[0]) dcurval=pdvalstore[0];
 if (dcurval>pdvalstore[1]) dcurval=pdvalstore[1];
 }
 else
 {
 double dcurerr;
 int ibestchoice=0;
 double dminerr=fabs(dnewval-pdvalstore[0]);
 for (int icount=1; icount<inchoices; icount++)
 {
 dcurerr=fabs(dnewval-pdvalstore[icount]);
 if (dminerr>dcurerr)
 {
 dminerr=dcurerr;
 ibestchoice=icount;
 }
 }
 dcurval=pdvalstore[ibestchoice];
 }
 }

 //Assignment operator, copies contents of another
 void operator=(const ACMMDesignVarDef &other)

220

 {
 delete [inalloc] pdvalstore;
 inalloc=other.inalloc;
 pdvalstore=new double[inalloc];
 inchoices=other.inchoices;
 pdvalstore[0]=other.pdvalstore[0];
 pdvalstore[1]=other.pdvalstore[1];
 for (int icount=0; icount<inchoices; icount++)
 {
 pdvalstore[icount]=other.pdvalstore[icount];
 }
 dcurval=other.dcurval;
 }
};

//Class for Objective an Function and/or Constraint scaling & storage
class ACMMOFConScStr
{
protected:

 //Scaling weight
 double dweight;

 //Storage of current value
 double dcurval;

public:

 //Constructor
 ACMMOFConScStr() {reset();}
 //Destructor
 ~ACMMOFConScStr() {}

 //Function to reset values
 void reset()
 {
 dweight=1.0;
 dcurval=0.0;
 }

 //Function to return weight
 double getweight() const {return dweight;}
 //Function to return current stored value
 double getcurval() const {return dcurval;}

 //Function to set weight
 void setweight(double dcweight) {dweight=dcweight;}
 //Function to set current value
 void setcurval(double dcval) {dcurval=dcval;}

221

 //Function to read weight from file stream
 void readf(ifstream *pfin) {*pfin >> dweight;}
 //Function to write weight to file stream
 void writef(ofstream *pfout) const {*pfout << dweight << endl;}

 //Function to read value from file stream
 void vreadf(ifstream *pfin) {*pfin >> dcurval;}
 //Function to write value to file stream
 void vwritef(ofstream *pfout) const {*pfout << dcurval << endl;}

 //Assignment Operator to copy from another
 void operator=(const ACMMOFConScStr &other)
 {
 dweight=other.dweight;
 dcurval=other.dcurval;
 }
};

//Class for Design variales, Objectives & Constriants model storage &
instantitiation
class ACMMVOCModelInst
{
protected:

 //Number of design variables
 int invar;
 //Number of objectives
 int inobj;
 //Number of constraints
 int incon;

 //Storage of Design Variables
 ACMMDesignVarDef *pvars;
 //Storage of Objectives
 ACMMOFConScStr *pobjs;
 //Storae of Constraints
 ACMMOFConScStr *pcons;

 //Function to free allocated memory
 void freemem();

public:

 //Constructor
 ACMMVOCModelInst();

222

 //Destructor
 ~ACMMVOCModelInst() {freemem();}

 //Function to initialize allocations for variables
 void initvars(int icnvars);
 //Function to initialize allocations for objectives
 void initobjs(int icnobjs);
 //Function to initialize allocations for constraints
 void initcons(int icncons);

 //Function to write contents (model) to file
 void writef(const char *pcfname) const;
 //Function to read contents (model) from file
 void readf(const char *pcfname);

 //Function to write current values to file
 void vwritef(const char *pcfname) const;
 //Function to read current values from file
 void vreadf(const char *pcfname);

 //Assignment operator, copies contents of another
 void operator=(const ACMMVOCModelInst &other);

 //Function to return the number of variables
 int getnvar() const {return invar;}
 //Function to return the number of objectives
 int getnobj() const {return inobj;}
 //Function to return the number of constraints
 int getncon() const {return incon;}

 //Function to return a constant pointer to variables
 const ACMMDesignVarDef *getcptrvars() const {return pvars;}
 //Function to return a constant pointer to objectives
 const ACMMOFConScStr *getcptrobjs() const {return pobjs;}
 //Function to return a constant pointer to constraints
 const ACMMOFConScStr *getcptrcons() const {return pcons;}

 //Function to return a pointer to variables
 ACMMDesignVarDef *getptrvars() {return pvars;}
 //Function to return a pointer to objectives
 ACMMOFConScStr *getptrobjs() {return pobjs;}
 //Function to return a pointer to constraints
 ACMMOFConScStr *getptrcons() {return pcons;}

223

 //Utility function to grab variable values
 void getvarvals(double *pdvars) const
 {
 for (int icount=0; icount<invar; icount++)
 {
 pdvars[icount]=pvars[icount].getcurval();
 }
 }
 //Utility function to grab objective values
 void getobjvals(double *pdobjs) const
 {
 for (int icount=0; icount<inobj; icount++)
 {
 pdobjs[icount]=pobjs[icount].getcurval();
 }
 }
 //Utility function to grab constraint values
 void getconvals(double *pdcons) const
 {
 for (int icount=0; icount<incon; icount++)
 {
 pdcons[icount]=pcons[icount].getcurval();
 }
 }

 //Utility function to set variable values
 void setvarvals(const double *pdvars)
 {
 for (int icount=0; icount<invar; icount++)
 {
 pvars[icount].setvalue(pdvars[icount]);
 }
 }
 //Utility function to set objective values
 void setobjvals(const double *pdobjs)
 {
 for (int icount=0; icount<inobj; icount++)
 {
 pobjs[icount].setcurval(pdobjs[icount]);
 }
 }
 //Utility function to set constraint values
 void setconvals(const double *pdcons)
 {
 for (int icount=0; icount<incon; icount++)
 {
 pcons[icount].setcurval(pdcons[icount]);
 }
 }

224

 //Utility function to compare with another in terms of design
objectives
 // returns -1 if worse than other, 1 if better, 0 if same as
 int IsBetterThan(const ACMMVOCModelInst &other) const;
};

//Class for CM error comparison elementary term
class ACMMErrCompElemTerm
{
protected:

 //Zone ID
 int izoneid;

 //Deformation Type ID
 int ideformtypeid;

 //Scaling constant
 double dscwt;

public:

 //Constructor
 ACMMErrCompElemTerm()
 {
 izoneid=0;
 ideformtypeid=0;
 dscwt=1.0;
 }
 //Destructor
 ~ACMMErrCompElemTerm() {}

 //Function to write contents to file stream
 void writef(ofstream *pfout) const
 {
 *pfout << izoneid << char(9) << ideformtypeid << char(9) <<
dscwt << endl;
 }
 //Function to read contents from file stream
 void readf(ifstream *pfin)
 {
 *pfin >> izoneid;
 *pfin >> ideformtypeid;
 *pfin >> dscwt;
 }

225

 //Function to set zone ID
 void setzoneid(int iczoneid) {izoneid=iczoneid;}
 //Function to return zone ID
 int getzoneid() const {return izoneid;}

 //Function to set deformation type ID
 void setdeftypeid(int icdeftype) {ideformtypeid=icdeftype;}
 //Function to return deformation type ID
 int getdeftypeid() const {return ideformtypeid;}

 //Function to set scaling weight
 void setsclwtid(double dcwt) {dscwt=dcwt;}
 //Function to return scaling weight
 double getsclwtid() const {return dscwt;}

 //Assignment operator to copy from another
 void operator=(const ACMMErrCompElemTerm &other)
 {
 izoneid=other.izoneid;
 ideformtypeid=other.ideformtypeid;
 dscwt=other.dscwt;
 }

 //Function to calculate equivalent "measure value" out of CM
history
 double calcEqCMValueT(const CrashModeBase *pcmobj, double
dtimeval) const
 {
 return dscwt*pcmobj->getcmvalue_zdt(izoneid, ideformtypeid,
dtimeval);
 }
};

//Class for CM error comparison expression
class ACMMErrCompExpr
{
protected:

 //Number of elementary terms
 int interms;

 //Storage of terms
 ACMMErrCompElemTerm *pterms;

226

public:

 //Constructor
 ACMMErrCompExpr()
 {
 interms=0;
 pterms=NULL;
 }
 //Destructor
 ~ACMMErrCompExpr()
 {
 if (interms>0) delete [interms] pterms;
 }

 //Function to initialize/set number of terms
 void init(int icnterms)
 {
 if (interms>0) delete [interms] pterms;
 interms=icnterms;
 if (interms>0) pterms=new ACMMErrCompElemTerm[interms];
 }

 //Function to write contents to file stream
 void writef(ofstream *pfout) const
 {
 *pfout << interms << endl;
 for (int icount=0; icount<interms; icount++)
 {
 pterms[icount].writef(pfout);
 }
 }
 //Function to read contents from file stream
 void readf(ifstream *pfin)
 {
 int itmp;
 *pfin >> itmp;
 init(itmp);
 for (int icount=0; icount<interms; icount++)
 {
 pterms[icount].readf(pfin);
 }
 }

 //Function to return the number of terms
 int getnterms() const {return interms;}
 //Function to return a contant pointer to terms
 const ACMMErrCompElemTerm *getcptrterms() const {return pterms;}
 //Function to return a pointer to terms
 ACMMErrCompElemTerm *getptrterms() {return pterms;}

227

 //Function to calculate equivalent "measure value" out of CM
history
 double calcEqCMValueT(const CrashModeBase *pcmobj, double
dtimeval) const
 {
 double dsumval=0.0;
 for (int icount=0; icount<interms; icount++)
 {
 dsumval+=pterms[icount].calcEqCMValueT(pcmobj,
dtimeval);
 }
 return dsumval;
 }

 //Assignment operator to copy from another
 void operator=(const ACMMErrCompExpr &other)
 {
 if (interms>0) delete [interms] pterms;
 interms=other.interms;
 if (interms>0) pterms=new ACMMErrCompElemTerm[interms];
 for (int icount=0; icount<interms; icount++)
 {
 pterms[icount]=other.pterms[icount];
 }
 }
};

//Class for CM error value comparison
class ACMMErrCompValue
{
protected:

 //Hard limit CM values calculation object
 ACMMErrCompExpr hlexpr;

 //Detailed history CM values calculation object
 ACMMErrCompExpr dhexpr;

public:

 //Constructor
 ACMMErrCompValue() {}
 //Destructor
 ~ACMMErrCompValue() {}

228

 //Function to return a constant pointer to HL CM values
calculation object
 const ACMMErrCompExpr *getcptr_hlobject() const {return &hlexpr;}
 //Function to return a constant pointer to DH CM values
calculation object
 const ACMMErrCompExpr *getcptr_dhobject() const {return &dhexpr;}
 //Function to return a pointer to HL CM values calculation object
 ACMMErrCompExpr *getptr_hlobject() {return &hlexpr;}
 //Function to return a pointer to DH CM values calculation object
 ACMMErrCompExpr *getptr_dhobject() {return &dhexpr;}

 //Function to write contents to file stream
 void writef(ofstream *pfout) const
 {
 hlexpr.writef(pfout);
 dhexpr.writef(pfout);
 }
 //Function to read contents from file stream
 void readf(ifstream *pfin)
 {
 hlexpr.readf(pfin);
 dhexpr.readf(pfin);
 }

 //Function to calculate equivalent error measure
 double calcErrMeasure(const CrashModeDetTHist *pdhcm, const
CrashModeHardLim *phlcm) const
 {
 int inevals=pdhcm->get_nstoretimeinstants();
 const double *pdtimeinsts=pdhcm->get_storetimeinstants();
 double dsumerr=0.0;
 for (int icount=0; icount<inevals; icount++)
 {
 dsumerr+=dhexpr.calcEqCMValueT(pdhcm,
pdtimeinsts[icount])
 -hlexpr.calcEqCMValueT(phlcm,
pdtimeinsts[icount]);
 }
 return dsumerr/double(inevals);
 }

 //Assignment operator, to copy from another
 void operator=(const ACMMErrCompValue &other)
 {
 hlexpr=other.hlexpr;
 dhexpr=other.dhexpr;

229

 }
};

//Class for CM error values comparison
class ACMMErrCompValues
{
protected:

 //Number of error measures
 int inerrs;

 //Storage of error measures calculators
 ACMMErrCompValue *perrcalcstore;

 //Weighting for error measures (required only for comparing
"goodness of CM match")
 double *pderrwts;

 //Function to free allocated memory
 void freemem();

public:

 //Constructor
 ACMMErrCompValues();
 //Destructor
 ~ACMMErrCompValues() {freemem();}

 //Initialization function (sets number of error measures)
 // also initializes weights to unity
 void init(int icnerrs);

 //Function to set weights
 void setweights(const double *pdwtvals);

 //Function to write contents to file
 void writef(const char *pcfname) const;
 //Function to read contents from file
 void readf(const char *pcfname);

 //Function to return the number of error measures
 int getnerrs() const {return inerrs;}

230

 //Function to return a constant pointer to error weights
 const double *geterrwtss() const {return pderrwts;}

 //Function to return a constant pointer to error calculation
objects
 const ACMMErrCompValue *getcptrerrobjs() const {return
perrcalcstore;}
 //Function to return a pointer to error calculation objects
 ACMMErrCompValue *getptrerrobjs() {return perrcalcstore;}

 //Function to calculate error measures
 void calcErrs(double *pderrvals, const CrashModeDetTHist *pdhcm,
 const CrashModeHardLim *phlcm) const
 {
 for (int icount=0; icount<inerrs; icount++)
 {

 pderrvals[icount]=perrcalcstore[icount].calcErrMeasure(pdhcm,
phlcm);
 }
 }

 //Function to calculate an "Equivalent" overall error measure
 double calcErr(const CrashModeDetTHist *pdhcm, const
CrashModeHardLim *phlcm) const
 {
 double dsumwt=0.0;
 for (int icount=0; icount<inerrs; icount++)
 {

 dsumwt+=pderrwts[icount]*fabs(perrcalcstore[icount].calcErrMeasure
(pdhcm, phlcm));
 }
 return dsumwt;
 }

 //Function to write plots of CM error differences
 void plotfErrs(const char *pcfname, const CrashModeDetTHist
*pdhcm,
 const CrashModeHardLim *phlcm) const;
};

//Class for proposed CM matching algorith (main core iterator)
class ACMMMainIterator
{
public:

231

 //Constructor
 ACMMMainIterator() {}
 //Destructor
 ~ACMMMainIterator() {}

 //Function to run a step of the algorithm via file input
 int runsetpf(const char *pcstepmasterfname);
};

#endif //H_CPP_AutoCMMatcher

232

BIBLIOGRAPHY

233

BIBLIOGRAPHY

Abramowicz, W., 2003, “Thin-Walled Structures as Impact Energy Absorbers,” Thin

Walled Structures, vol. 41, pp. 91-107.

Abramowicz, W., 2004, “An alternative formulation of the FE method for arbitrary

discrete/continuous models,” Int. J. of Impact Engineering, vol. 30, pp. 1081-

1098.

Andersson, J. and Redhe, M., 2003, “Response Surface Methods for Pareto Optimization

in Crashworthiness Design,” Proceedings of the ASME 2003 Design Engineering

and Technical Conference, September 2-6, Chicago, IL, DETC 03 / DAC 48752.

Bennett, J. A., Lust, R. V. and Wang, J.T., 1991, “Optimal Design Strategies in

Crashworthiness and Occupant Protection,” ASME Winter Annual Meeting,

Atlanta, GA, 126, pp. 51-66.

Besset, D., 2001, Object-Oriented Implementation of Numerical Methods, Morgan

Kaufmann, San Francisco, CA.

Box, G., Hunter, W. and Hunter, J., 1978, Statistics for Experimenters, John Wiley &

Sons, New York.

Chellappa, S. and Diaz, A., 2002, “A Multi-Resolution Reduction Scheme for Structural

Design,” Proc. NSF 2002 Conference, January 2002, pp. 98-107.

Chen, S., 2001, “An Approach for Impact Structure Optimization using the Robust

Genetic Algorithm,” Finite Elements in Analysis and Design, Vol. 37, pp. 431-

446.

Chen, W., Allen, J., Mavris, D. and Mistree, F., 1996, “A Concept Exploration Method

for Determining Robust Top-Level Specifications,” Engineering Optimization,

Vol. 26, pp. 137-158.

Chen, W., Allen, J., Tsui, K. and Mistree, F., 1996, “A Procedure for Robust Design:

Minimizing Variations Caused by Noise Factors and Control Factors,” ASME

Journal of Mechanical Design, Vol. 118, pp. 478-485.

Chen, W., Sahai, A., Messac, A., and Sundararaj, G., 2000, “Exploration of the

Effectiveness of Physical Programming in Robust Design,” ASME Journal of

Mechanical Design, Vol. 122, pp. 155-163.

234

Chen, W., Wiecek, M., and Zhang, J., 1999, “Quality Utility – A Compromise

Programming Approach to Robust Design,” ASME Journal of Mechanical

Design, Vol. 121, pp. 179-187.

Chen., W., Garimella, R. and Michelena, N., 1999, “Robust Design for Improved Vehicle

Handling under a Range of Maneuver Conditions,” Proceedings of the ASME

1999 Design Engineering and Technical Conferences, September 12-15, Las

Vegas, Nevada, DETC 99 / DAC 8580.

Coello, C., Van Veldhuizen, D. and Lamont, G., 2002, Evolutionary Algorithms for

Solving Multi-Objective Problems, Kluwer Academic/Plenum Publishers, New

York.

Deb, K., Argawal, S., Pratab, A. and Meyarivan, T., 2000, “A Fast Elitist Non-

Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-

II,” Proceedings of the Parallel Problem Solving from Nature VI Conference,

Paris, France, pp. 849-858.

Dyn, N., Levin, D. and Rippa, S., 1986, “Numerical Procedures for Surface Fitting of

Scattered Data by Radial Basis Functions,” SIAM Journal of Scientific and

Statistical Computing, Vol. 7, No. 2, pp. 639-659.

ESI, 2003, PAM-Crash Software Manuals, ESI Group, 6, rue Hamelin, BP 2008-16,

75761 Paris Cedex 16, France.

Gea, H. C. and Luo, J., 2001, “Design for Energy Absorption: A Topology Optimization

Approach,” Proc. ASME 2001 Design Engineering and Technical Conferences,

September 9-12, Pittsburgh, PA, DETC 2001 / DAC 21060.

Goldberg, D., 1989, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley Inc., New York.

Gu, L., Tyan, T. and Yang, R. J., 2004, “Vehicle Structure Optimization for Crash

Pulse,” Proceedings of the ASME 2004 Design Engineering and Technical

Conference, September 28 – October 2, Salt Lake City, Utah, DETC 2004-57479.

Guenter, F., Muellerschon, H. and Roux, W., 2004, “Robustness Study of an LS-DYNA

Occupant Simulation Model at DaimlerChrysler Commercial Vehicles using LS-

OPT,” 8th International LS-DYNA users Conference, pp. 1031-1042.

Hajela, P. and Lee, E., 1997, “Topological Optimization of Robocraft Subfloor Structures

for Crashworthiness Condsiderations, ” Computers and Structures, Vol. Vol. 64,

No. 1-4, pp. 65-76.

235

Hamza, K. and Saitou, K., 2003, “Design Optimization of Vehicle Structures for

Crashworthiness using Equivalent Mechanism Approximations,” Proc. ASME

2003 Design Engineering and Technical Conference, September 2-6, Chicago, IL,

DETC/DAC 48751.

Hamza, K. and Saitou, K., 2004, “Crash Mode Analysis of Vehicle Structures based on

Equivalent Mechanism Approximations,” Proc. 5th International Symposium on

Tools and Methods of Competitive Engineering, Lausanne, Switzerland, April 13

- 17, pp. 277-287.

Hamza, K. and Saitou, K., 2004, “Crashworthiness Design Using Meta-Models for

Approximating of Box-Section Members,” Proc. 8th Cairo University

International Conference on Mechanical Design and Production, Cairo, Egypt,

January 4-6, 1, pp. 591-602.

Hamza, K. and Saitou, K., 2004, “Design for Crashworthiness of Vehicle Structures via

Equivalent Mechanism Approximations and Crash Mode Matching,” Proc. ASME

2004 Mechanical Engineering Congress, November 13-20, Anaheim, CA,

IMECE2004-62226.

Hamza, K. and Saitou, K., 2004, “Design Optimization of Vehicle Structures for

Crashworthiness via Equivalent Mechanism Approximations,” Proc. SAE World

Congress, Detroit, MI, Paper no. 04B-126.

Hamza, K. and Saitou, K., 2005, “Design for Structural Crashworthiness using

Equivalent Mechanism Approximations,” Journal of Mechanical Design, vol. 127,

pp. 485-492.

Han, J. and Yamada, K., 2000, “Maximization of the Crushing Energy Absorption of the

S-Shaped Thin-Walled Square Tube,” Proc. 8th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, September 6-8,

Long Beach, CA, AIAA Paper Number: AIAA-2000-4750.

Hansen, L. and Salamon, P., 1990, “Neural Network Ensembles,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 12, No. 10, pp. 993-1001.

Haykin, S., 1998, Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice

Hall, Englewood Cliffs, New Jersey.

Hopgood, A. A., 2001, Intelligent Systems for Engineers and Scientists, 2nd Edition,

CRC Press, New York, USA.

236

Ignatovich, C. L. and Diaz, A., 2002, “Physical Surrogates in Design Optimization for

Enhanced Crashworthiness,” Proc. 9th AIAA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, September 4-6, Atlanta, Georgia,

AIAA Paper Number: AIAA-2002-5537.

Jin, R., Du, X., and Chen, W., 2001, “The Use of Metamodeling Techniques for

Optimization Uder Uncertainty,” Proceedings of the ASME 2001 Design

Engineering and Technical Conferences, September 9-12, Pittsburgh, PA, DETC

2001 / DAC 21039.

Koanti, R. P. and Caliskan, A. G., 2001, “Stochastic Applications in Crashworthiness,”

Proc. 2001 ASME International Mechanical Engineering Congress, November

11-16, New York, NY, IMECE 2001/AMD 25433.

Krige, D., 1951, “A Statistical Approach to some Mine Evaluations and Allied Problems

at the Witwatersrand,” M.Sc. Thesis, University of Witwatersrand, Germany.

Kurtaran, H., Omar, T. and Eskandarian, A., 2001, “Crashworthiness Design

Optimization of Energy-Absorbing Rails for the Automotive Industry,” Proc.

ASME 2001 International Mechanical Engineering Congress and Exposition,

November 11-16, New York, NY, IMECE2001-AMD25452.

LSTC, 2001, LS-DYNA Software Manuals, Livermore Software Technology

Corporation, Livermore, CA, USA.

Luo, J., Gea, H. C. and Yang, R. J., 2000, “Topology Optimization for Crush Design,”

Proc. 8th AIAA /USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, September 6-8, Long Beach, CA, AIAA Paper

Number: AIAA-2000-4770.

Martin, J., and Simpson, T., 2004, “On the use of Kriging Models to Approximate

Deterministic Computer Models,” Proceedings of the ASME 2004 Design

Engineering and Technical Conference, September 28 – October 2, Salt Lake

City, Utah, DETC 2004-57300.

Mase, T., Wang, J. T., Mayer, R., Bonello, K. and Pachon, L., 1999, “A Virtual Bumper

Test Laboratory for FMVR 581,” Proc. ASME 1999 Design Engineering and

Technical Conferences, September 12-15, Las Vegas, Nevada, DETC 99 / DAC

8572.

MathWorks, 2001, MatLab 6 Documentation, MathWorks Inc., Natick, MA, USA.

237

Mayer, R. R., 2001, “Application of Topological Optimization Techniques to Automotive

Structural Design,” Proc. ASME 2001 International Mechanical Engineering

Congress and Exposition, November 11-16, New York, NY, IMECE 2001 / AMD

25458.

Mayer, R. R., Kikuchi, N. and Scott, R. A., 1996, “Application of Topological

Optimization Techniques to Structural Crashworthiness,” International Journal for

Numerical Methods in Engineering, vol. 39, pp. 1383-1403.

Mayer, R. R., Maurer, D. and Bottcher, C., 2000, “Application of Topological

Optimization Program to the Danner Test Simulation,” Proc. ASME 2000 Design

Engineering and Technical Conferences, September 10-13, Baltimore, Maryland,

DETC 2000 / DAC 14292.

McAllister, C. and Simpson, T., 2003, “Multidisciplinary Robust Design Optimization of

an Internal Combustion Engine,” ASME Journal of Mechanical Design, Vol. 125,

pp. 124-130.

Michalewicz, Z., 1996, Genetic Algorithms + Data Structures = Evolution Programs. 3rd

edition, Springer-Verlag, Berlin-Heidelberg

Michalewiz, Z. and Fogel, D. B., 2000, How to Solve it: Modern Heuristics, Springer-

Verlag Berlin Heidelberg, New York.

Myers, R. and Montgomery, D., 1995, Response Surface Methodology: Process and

Product Optimization using Designed Experiments, Wiley & Sons, New York.

NHTSA, National Highway Traffic Safety Administration, http://www.nhtsa.dot.gov/

Owen, A., 1992, “Orthogonal Arrays for Computer Experiments, Integration and

Visualization,” Statistica Sinica, Vol. 2, pp. 439-452.

Parkinson, A., Sorensen, C. and Pourhassan, N., 1993, “A General Approach for Robust

Optimal Design,” ASME Journal of Mechanical Design, Vol. 115, pp. 74-80.

Phadke, M., 1993, Quality Engineering using Robust Design, Prentice Hall PTR,

Englewood Cliffs, New Jersey.

Redhe, M. and Nilsson, L., 2002, “Using Space Mapping and Surrogate Models to

Optimize Vehicle Crashworthiness Design,” Proc. 9th AIAA/ISSMO Symposium

on Multidisciplinary Analysis and Optimization, September 4-6, Atlanta, Georgia,

AIAA Paper Number: AIAA-2002-5536.

http://www.nhtsa.dot.gov/

238

Rumelhart, D., Hinton, G. and Williams, R., 1986, “Learning Internal Representations by

Error Propagation,” Parallel Distributed Processing: Explorations in the

Microstructures of Cognition, 1: Foundations, MIT Press, Cambridge, MA, pp.

318-362.

Resnick, S., 1992, Adventures in Stochastic Processes, Birkhaeuser Boston c/o Springer

Science, New York, NY.

Sacks, J., Welch, W., Mitchell, T. and Wynn, H., 1989, “Design and Analysis of

Computer Experiments,” Statistical Science, Vol. 4, No. 4, pp. 409-435.

Saitou, K., Izui, K., Nishiwaki, S. and Papalambros, P., 2005, “A Survey of Structural

Optimization in Mechanical Product Development,” Journal of Computing and

Information Science in Engineering, Vol. 5, pp. 214-226.

Sasena, M., Papalambros, P and Goovaerts, 2002, “Exploration of Metamodeling

Sampling Criteria for Constrained Global Optimization,” Engineering

Optimization, Vol 34, No. 3, pp. 263-278.

Shi, Q. Hagiwara, I. and Takashima, F., 1999, “The Most Probable Optimal Design

Method for Global Optimization,” Proc. ASME 1999 Design Engineering and

Technical Conferences, September 12-15, Las Vegas, Nevada, DETC 99 / DAC

8635.

Siah, S., Sasena, M., Volakis, J., Papalambros, P. and Wise, R., 2004, “Fast Parameter

Optimization of Large-Scale Electromagnetic Objects using DIRECT with

Kriging Metamodeling,” IEEE Transactions on Microwave Theory and

Techniques, Vol. 52, No. 1, pp. 276-284.

Simpson, T., Booker, A., Ghosh, D., Giunta, A., Koch, P. and Yang, R., 2004,

“Approximation Methods in Multidisciplinary Analysis and Optimization: A

Panel Discussion,” Structural and Multidisciplinary Optimization, vol. 27, pp.

302-313.

Song, J. O., 1986, “An Optimization Method for Crashworthiness Design,” SAE

transactions, Paper number: 860804, pp. 39-46.

Soto, C. A. and Diaz, A. R., 1999, “Basic Models for Topology Design Optimization in

Crashworthiness Problems,” Proc. ASME 1999 Design Engineering and

Technical Conferences, September 12-15, Las Vegas, Nevada, DETC 99 / DAC

8591.

Soto, C. A., 2001, “Optimal Structural Topology Design for Energy Absorption: A

Heurtistic Approach,” Proc. ASME 2001 Design Engineering and Technical

Conferences, September 9-12, Pittsburgh, PA, DETC 2001 / DAC 21126.

239

Soto, C. A., 2001, “Structural Topology for Crashworthiness Design by Matching Plastic

Strain and Stress Levels,” Proc. ASME 2001 International Mechanical

Engineering Congress and Exposition, November 11-16, New York, NY, IMECE

2001 / AMD 25455.

Soto., C., 2003, “Structural Topology Design Optimization for Controlled Crash

Behavior,” Proc. ASME 2003 Design Engineering and Technical Conference,

September 2-6, Chicago, IL, DETC/DAC-48733.

Srivastava, A., Hacker, K., Lewis, K. and Simpson T., 2004, “A Method for Using

Legacy Data for Metamodel-Based Design of Large-Scale Systems,” Structural

and Multidisciplinary Optimization, Vol. 28, pp. 146-155.

Stein, M., 1987, “Large Sample Properties of Simulations using Latin Hypercube

Sampling,” Technometrics, Vol. 29, pp. 143-151.

Sundaresan, S., Ishii, K. and Houser, D., 1995, “A Robust Optimization Procedure with

Variations on Design Variables and Constraints,” Engineering Optimization, Vol.

24, pp. 101-117.

Taguchi, G., 1993, Taguchi on Robust Technology Development: Bringing Quality

Engineering Upstream, ASME Press, New York.

Takada, K. and Abramowicz, W., 2004, “Fast Crash Analysis of 3D Beam Structures

Based on Object Oriented Formulation,” Proc. 2004 SAE World Congress,

Detroit, Michigan, Paper no. 04B-119.

Tang, X. and Cheng, J., 1997, “Crash/Crush Analysis of Vehicle Structures Utilizing

Thin-Walled Beam Elements,” Proc. ASME Design Engineering and Technical

Conferences, September 14-17, Sacramento, CA, DETC97/CIE-4454.

Wanas, N. and Kamel, M., 2002, “Weighted Combination of Neural Network

Ensembles,” Proceedings of the IEEE International Joint Conference on Neural

Networks, Vol. 2, pp. 1748-1752.

Werfel, J., Mitchell, M. and Crutchfield, J., 2000, “Resource Sharing and Coevolution in

Evolving Cellular Automata,” IEEE Transactions on Evolutionary Computation,

Vol. 4, No. 4, pp. 388-393.

Wu, Y. and Arribas, J., 2003, “Fusing Output Information in Neural Networks: Ensemble

Performs Better,” Proceeding of the 25th International Conference of the IEEE

EMBS, September 17-21, Cancun, Mexico, pp. 2265-2268.

240

Yang, R. J., Gu, L., Liaw, L., Gearhart, C., Tho, C. H., Liu, X. and Wang, B. P., 2000,

“Approximations for Safety Optimization of Large Systems,” Proc. ASME 2000

Design Engineering and Technical Conferences, September 10-13, Baltimore,

Maryland, DETC 2000 / DAC 14245.

Yang, R. J., Gu, L., Tho, C. H. and Sobieski, J., 2001, “Multidisciplinary Optimization of

a Full Vehicle with High Performance Computing,” Proceedings of the American

Institute of Aeronautics and Astronautics 2001 Conference, pp. 688-698, AIAA

Paper Number: AIAA-2001-1273.

Yang, R. J., Tho, C. H., Wu, C. C., Johnson, D. and Cheng, J., 1999, “A Numerical Study

of Crash Optimization,” Proc. ASME 1999 Design Engineering and Technical

Conferences, September 12-15, Las Vegas, Nevada, DETC 99 / DAC 8590.

Yang, R. J., Wang, N., Tho, C. H., Bobineau, J. P. and Wang, B. P., 2001,

“Metamodeling Development for Vehicle Frontal Impact Simulation,” Proc.

ASME 2001 Design Engineering and Technical Conferences, September 9-12,

Pittsburgh, PA, DETC 2001 / DAC 21012.

Zhou, Z., Wu, J. and Tang, W., 2002, “Ensembling Neural Networks: Many Could be

Better than All,” Artificial Intelligence, Vol. 137, pp. 239-263.

	CHAPTER0.pdf
	 ACKNOWLEDGMENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF APPENDICES
	 ABSTRACT

	CHAPTER1.pdf
	CHAPTER2.pdf
	CHAPTER3.pdf
	CHAPTER4.pdf
	CHAPTER5.pdf
	CHAPTER6.pdf
	CHAPTER7.pdf
	CHAPTER8.pdf
	CHAPTER9.pdf
	CHAPTERix-APPENDIX.pdf
	APPENDICES

	CHAPTERx-BIBLIOGRAPHY.pdf

