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ABSTRACT 

Vehicle crashworthiness is an important design attribute which designers strive to 

improve. However, design for structural crashworthiness is a difficult task. A vehicle 

structure must have the strength to shield the passenger compartment, as well as the 

compliance to cushion the impact energy. The physics that govern the crash phenomenon 

involves nonlinear interactions of impact, plasticity and contact mechanics. With current 

state of the art, no analytical models of reliable accuracy are deemed possible for vehicle 

structures of realistic level of complexity. The best known analysis method is nonlinear 

finite element (FE) modeling that includes the fine geometric details of the structural 

components, fine element sized mesh and detailed nonlinear material models. Detailed 

FE analysis however requires enormous computational resources thereby severely 

hindering the success of general-purpose optimization approaches that otherwise prove 

effective in a broad spectrum of problems. With limitations on the available 

computational resources, an approach which is more of an art used by vehicle designers 

is that of manipulation of the crash mode, or crash mode matching. The crash mode is the 

gross-motion of the structure, which is qualitatively assessed by observing the time 

history of deformation of various zones of the structure. Crash mode matching involves 

adjusting the design variables of the structure in order to achieve a desirable structural 

deformation history. An experienced designer can make a good estimate of what the 

desirable structural deformation history should be, and can perform the necessary 

adjustment to the design variables to attain it and thus obtain good designs. This manual 



 xv

crash mode matching typically requires only a few trial FE runs. This dissertation aims to 

develop an algorithmic design methodology for parametric structural crashworthiness 

optimization by formalizing the crash mode matching approach. 

 

In order to formalize the crash mode matching approach, a quantitative 

representation of the crash mode is introduced. The crash mode is defined as a matrix of 

time series, with dimensions of the matrix being the structural location and type of 

deformation. The time series in each element of the matrix records the deformation 

history. A comparison metric is then introduced for the degree of matching between crash 

modes of different designs. The metric is the integral of the error between the time series 

in the elements of the crash mode matrix. Thus the comparison metric is itself a matrix of 

error values, with its dimensions being the structural location and type of deformation. 

Finally, an algorithm is design for automated crash mode matching. The algorithm 

heuristically directs stochastic sampling of the design space to regions which are 

expected to have better match to the desired crash mode. This is achieved by adjusting 

the mean and standard deviation of a normal distribution that governs the stochastic 

sampling of each design variable. Adjustment of the mean and standard deviation is 

performed via Fuzzy logic rules that are defined by the algorithm user in analogy to the 

type of decisions that an experienced designer would make when observing certain 

conditions in the structural crash mode. Introducing randomness into the sampling 

procedure allows for the algorithm to have global convergence properties, as well as 

accounting for the fact that different expert designers may have different opinions on how 

to modify a design.  

 



 xvi

Implementation of the proposed framework is applied to two real-life case studies 

involving front half of a vehicle, as well as full vehicle models. The studies show the 

success of the proposed methodology in attaining high performance designs, while 

requiring a modest number of detailed FE runs, and hence reasonable computational 

resources. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Passenger vehicle crashworthiness is extremely important for public safety. 

According to the National Highway Traffic safety administration (NHTSA)
*
, in the year 

of 2000, there were more than six million highway traffic crashes, in which included: 

 41,821 fatal crashes 

 3,189,000 crashes resulting in injuries 

 4,286,000 crashes resulting in property damage only 

 

Although continuous efforts are spent towards accident prevention through better 

highway traffic management and accident prevention systems in vehicles, the possibility 

of occurrence of a crash can never be brought to zero. Therefore, vehicle safety in the 

event of a crash is an important design attribute for vehicle manufacturers. Aside from 

government and insurance standards, which are nowadays a requirement before vehicle 

manufacturers are permitted to put a new vehicle on the road, vehicle manufacturers 

strive to improve the crashworthiness of their vehicles as a moral responsibility as well as 

improve the market attractiveness of their vehicles. 

                                                 

*
 http://www.nhtsa.dot.gov/ 

http://www.nhtsa.dot.gov/
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1.2 Background 

1.2.1 Design for Structural Crashworthiness 

Safety systems in vehicles after a crash event initiates are mostly passive in 

nature, except for air bags. Passive crash safety systems in a vehicle may be categorized 

into: 

 

 Structural crashworthiness systems: this is the performance of the 

vehicle structure during the crash event 

 Non-structural systems: such as seat belts 

 

Seat belts and airbags serve to cushion high acceleration spikes on the passenger, 

but have insignificant contribution on dissipating the crash energy of the vehicle. The 

major opportunity for continued improvement of the overall vehicle crashworthiness is 

that of structural design for crashworthiness, which is the focus of this research. In the 

rest of this dissertation, the term “crashworthiness”, unless otherwise stated, will be 

referring to structural crashworthiness. 

 

Design for vehicle structural crashworthiness is a difficult task due to the 

combined effect of several issues: 

 

 Actual crash testing, is a destructive type testing and only possible 

after a vehicle prototype is built, thus very expensive and time 

consuming 
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 Analytical modeling of real vehicle structure is all but impossible, 

since the underlying physics involves combinations of dynamic 

impact, plasticity, contact mechanics and very complex geometrical 

shapes.  

 

 Numerical modeling of the crash event is difficult. Recent advances in 

the finite element (FE) method have been incorporated into 

commercial packages that enable designers to obtain fairly accurate 

estimates of a structural crash performance. However, to achieve 

acceptable accuracy, the FE model of the vehicle typically includes 

hundreds of thousands, or even millions of elements. Such detailed FE 

models require enormous (expensive) computational resources. While 

many attempts have been made at reduced order numerical models, 

none have proven consistent accurate crash performance predictions 

 

 Design decisions are often non-obvious. The structure should have 

enough compliance to absorb and cushion the crash energy, but must 

retain integrity in sensitive areas such as the passenger compartment 

and fuel system. Also, due to the underlying nonlinear physics, the 

design variables sometimes have strong nonlinear interactions that are 

difficult to predict a-priori. The nonlinear variable interactions also 

lead to high chance of existence of local optima. 

 

In view of such difficulties, the dominant design automation approach in practice 

is that of conducting design of experiments (DOE) to sample the design space via a FE 
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model (Phadke 1993), then use the samples to construct a response surface model (RSM). 

The RSM maps the inputs (design variables) to the outputs (crashworthiness measures), 

and is then used within an optimization algorithm to estimate desirable vales for the 

design variables (Simpson et. al. 2004). The design suggested via the RSM is then re-

tested via FE simulations, and if discrepant, a new DOE/RSM study may be conducted. 

The main difficulties of the approach however are: 

 

 Difficulty in attaining good fidelity for the RSM. If the design domain 

is large (Simpson et. al. 2004), an extremely large number of samples 

in DOE are needed to properly capture the functional nonlinearity 

between inputs and outputs. If the design domain is confined to small 

vicinity, then the results obtained via the RSM are local only to such 

vicinity. 

 

 The computational resources required for the approach are quite 

enormous. A study in (Yang et. al. 2001) required 512 processors 

running in parallel for 72 hours for a half-million element FE model. 

As computer computational speed increases, so does the level of detail 

in FE models, thereby the total invested time and cost to perform this 

kind of study remains all but prohibitive. 

 

 Response surface modeling is a general purpose technique that 

abstracts the underlying physics of the problem and does not attempt 

to take advantage of them. Abstraction of the underlying physics 

prevents expertise-based design adjustment. For example, a designer 
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observing the structural behavior during crash of a FE model may gain 

insight as to where reinforcement needs to be made at a structural 

zone that is deforming more than intended. Such type of insight is not 

available when only observing input-output relations from a response 

surface model.  

 

 

1.2.2 Structural Crash Modes and Crash Mode Matching 

Another approach used in practice by vehicle designers, is that of manipulation of 

the crash mode. This involves the pre-planning of a desirable sequence of deformation, 

folding and crush of the different structural zones, then the adjustment of the structural 

design to attain the desired structural deformation history. Such approach is more of an 

art than a formal algorithmic procedure. There are no formal rules for discovering a good 

structural deformation sequence, or for adjusting the design variables to attain such a 

sequence. Despite the lack of formality in this approach, an experienced designer is 

typically able to attain a good design with only a handful of trial iterations, which is 

significantly more efficient than any other known automated design approach.  

 

A simple illustration of the crash modes is shown in Fig. 1.1, where design of a 

single structural member is considered. Since the crash energy has to be absorbed via 

deformation in the structure, an example of a desirable crash mode is shown in Fig. 1.1.b. 

In this crash mode, the structure deforms at the front (zone 1) in order to absorb crash 

energy. With most of the crash energy dissipated as plastic deformation in zone 1, this 

prevents excessive deformation near the passenger compartment (zone 2). An example of 
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an undesirable crash mode is the one shown in Fig. 1.1.c. In this crash mode, zone 1 is 

excessively strong (or zone 2 is insufficiently strong), resulting in most of the structural 

deformation occurring in zone 2 (near passenger compartment), which is undesirable. 

 

 

 
Figure 1.1. Examples of crash modes in Vehicle Structures: (a) Structural member 

considered. (b) Desired crash mode. (c) A design that has a bad crash mode. 

 

(a) 

(b) (c) 
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An example of crash mode matching approach is shown in Fig. 1.2. Steps of the 

crash mode matching in this example are listed as: 

 

 Given a design whose crash mode is sketched in Fig. 1.2.a, which initially 

deforms in zone 1 but does not absorb all the crash energy there, so 

deformation in zone 2 follows, a designer decides to make zone 1 stronger 

in order to absorb more energy in zone 1 

 Making zone 1 too strong however, may result in zone 1 not deforming 

and all (sketched in Fig. 1.2.b), which results in all the deformation 

happening in zone 2 (undesirably large deformation). A stronger structural 

zone absorbs more crash energy only if deformation happens in that zone. 

A designer attempting to correct the crash mode might then decide to 

make zone 2 stronger and slightly reduce the strength of zone 1. 

 With a proper balance of the relative strength between zones 1 and 2, with 

enough strength in zone 1, the designer is able to attain the desired crash 

mode where minimal deformation occurs in zone 2 (sketched in Fig. 1.2.c) 

 

In analogy, the RSM approach is like a blind person with a cane (cannot see the 

underlying physics), while the crash mode matching is like a weak sighted person (cannot 

fully predict the physics, but has some grasp on it). In general, being weak sighted is 

better than totally blind. Thus, if it is possible to formalize the crash mode matching 

approach, the approach would potentially give a better edge over all others that don’t 

recognize the underlying physics of the crash. Attempts at such formalization seem to be 

largely overlooked in the literature. 
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Figure 1.2. Example of Crash Mode Matching 

 

(a) An initial 

design 

(b) First design 

adjustment 

(c) Second design 

adjustment 

Deformation starts in 

zone 1 

Time 

Time 

Time 

Deformation starts in 

zone 1 All crash energy is 

absorbed in zone 1 

Deformation starts in 

zone 2 

Some deformation 

happens in zone 2 

Designer Says: 

- Make zone 1 stronger 

Designer Says: 

- Make zone 2 stronger 

- Make zone 1 slightly less strong 
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1.2 Thesis Goal 

This research aims to achieve the following goals: 

 

 Formalization of the crash mode matching approach 

 Design of an algorithm that implements crash mode matching for parametric 

structural crashworthiness optimization 

 

1.3 Approach 

In order to formalize the crash mode matching approach, the first step was to 

introduce a quantitative representation of the crash mode. The representation is defined as 

a matrix of time series, with dimensions of the matrix being the structural location and 

type of deformation. The time series in each element of the matrix records the 

deformation history (discussed in detail in chapter 5). This representation is to replace 

qualitative visual observation of the structural deformation history.  

 

The next step was to define a comparison metric for the degree of match between 

the crash modes of a design and that desired. The metric is the integral of the error 

between the time series in the elements of the crash mode matrices. Thus the comparison 

metric is itself a two dimensional matrix of error values, with its dimensions being the 

structural location and type of deformation, which is a fairly compact data set to examine. 

 

The last step was to introduce an algorithm for automated crash mode matching. 

The algorithm heuristically directs stochastic sampling of the design space to regions 
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which are expected to have better match to the desired crash mode. This is achieved by 

adjusting the mean and standard deviation of a normal distribution that governs the 

stochastic sampling of each design variable. Adjustment of the mean and standard 

deviation is performed via Fuzzy logic rules that are defined by the algorithm user in 

analogy to the type of decisions that an experienced designer would make when 

observing certain conditions in the structural crash mode. Introducing randomness into 

the sampling procedure allows for the algorithm to have global convergence properties, 

as well as accounting for the fact that different expert designers may have different 

opinions on how to modify a design. 

 

Being a random search algorithm, its performance may vary from one run to 

another for the same problem. However, the algorithm does conform to the necessary 

conditions to assure global convergence given sufficient number of iterations. Although 

the global convergence property has little practical value when considering only few 

allowed iterations, the case studies presented in this thesis demonstrate the possibility of 

attaining good designs with relatively few iterations. 

 

A necessary additional piece of information that the developed algorithm requires 

is the quantitative values for the desired crash mode. While discovery of the desired crash 

mode remains an open-ended problem, it is often possible to adapt prior knowledge from 

previous vehicle designs to estimate the desired crash mode. While not proven, it is also 

observed that reduced order dynamic models could be effective for discovery of desirable 

crash modes. Demonstrated in the thesis is that although lacking in accurate predictions, 

reduced order models are often capable of capturing the gross motion of a structure, 

hence able to observe crash modes. 
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1.4 Organization of the Dissertation 

The outline of this dissertation is summarized as:  

 

Chapter 1 introduces the problem of structural crashworthiness design, highlights 

the main difficulties associated with it, and states the course of action to address some of 

those difficulties. 

 

Chapter 2 reviews the state of the art literature related to the field. The literature 

review includes sections that examine types of optimization problems involved, crash 

simulation models as well as the optimization algorithms. 

 

Chapter 3 presents a formal definition of the crash worthiness design optimization 

problem that is the focus of this dissertation and gives an overview of the proposed 

methodology. 

 

Chapter 4 discusses crash modes in the qualitative sense via simple examples. The 

main hypothesis about crash modes is stated. Exploration of crash modes for a given 

vehicle structure is also discussed. Equivalent mechanism model, which is a reduced 

order dynamic model developed specifically for approximated modeling of structural 

members subjected to crash conditions, is presented as one of the options for qualitative 

exploration of crash modes. 

 

Chapter 5 presents numerical measures for quantitative analysis of crash modes, 

as well as for comparison of crash modes in different structures. 
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Chapter 6 introduces an automated design algorithm for structural optimization 

for crashworthiness via crash mode matching. Analysis of the global convergence 

properties of the algorithm via Markov chains is also presented. 

 

Chapter 7 presents the first case study in this dissertation. The case study involves 

optimization of an idealized vehicle model, with the front half of the vehicle modeled as 

box-section structural members and subjected to frontal crash against a rigid barrier. The 

optimization objective is to reduce the structural mass, while complying with constraints 

on allowable deformation and maximum acceleration. 

 

Chapter 8 presents the second case study in this dissertation. The case study 

involves a multi-objective optimization for minimizing deformation and acceleration in a 

full vehicle model subject to offset frontal crash against a deformable barrier. 

 

Chapter 9 concludes the dissertation. A summary of contributions and discussion 

of future extensions is presented 
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CHAPTER 2 

RELATED WORK 

This chapter presents a review of relevant literature to the research conducted in 

this dissertation. At first, the review covers the broad categories of structural 

crashworthiness design then focuses on the main interest of the dissertation, which is 

parametric structural crashworthiness design. Special sections are dedicated to modeling 

and algorithms for crashworthiness. The chapter concludes with a highlight on the 

dissertation thrust areas. 

 

2.1 Design Optimization for Structural Crashworthiness 

Design optimization for vehicle structural crashworthiness may be categorized 

into two broad categories according to the objective of the optimization. Those are: 

 

 Topology Optimization for Structural Crashworthiness 

 Parametric Optimization for Structural Crashworthiness 

 

In topology optimization, the objective is to perform optimum allocation of 

structural material to an allotted space with the structure is allowed to occupy. Examples 

of topology optimization for structural crashworthiness may be found in: (Mayer, 
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Kikuchi and Scott 1996, Soto and Diaz 1999, Luo et. al. 2000, Mayer 2001, Gea and Luo 

2001, Soto 2001). 

 

 
Fig. 2.1. Topology Optimization verses Parametric Optimization 

 

(a) Example Topology Optimization: structural conceptual 

design generation (Saitou et. al. 2005) 

(b) Example Parametric Optimization: Sizing of the 

dimensions of a sheet metal component cross section 
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The output of topology optimization is typically a structural concept rather than 

an actual final design of the structure (Fig. 2.1.a). While useful at the early design stages 

of a completely new vehicle, results of topology optimization seldom take into 

consideration many of the structural details such as component manufacturing and 

assembly, joints and non-structural components packaging. Since such construction 

details will effectively alter the structure from the idealized model optimum topology, the 

need for further design adjustments after topology optimization is still a necessity. In 

some cases, the structural topology is all but already pre-dictated by the vehicle styling, 

and components packaging. In which case, topology optimization for structural 

crashworthiness has secondary importance relative to optimizing the final structures, a 

task which is the objective of parametric optimization. 

 

Parametric optimization for structural crashworthiness proceeds from fixed 

topology. In parametric optimization, a set of sizing design variables is defined. Typical 

design variables definitions include dimensions, sheet metal thicknesses and materials of 

structural components. Examples of parametric design optimization for structural 

crashworthiness may be found in: (Yang et. al. 1999, Chen 2001, Kurtaran et. al. 2001, 

Yang et. al. 2001, Redhe et. al. 2002, Andersson and Redhe 2003, Gu et. al. 2004, 

Hamza and Saitou 2005) 

 

Parametric optimization for structural crashworthiness can tackle very detailed FE 

models (Yang et. al. 2001) of the vehicle that have high performance prediction accuracy 

(Fig. 2.1.b). Parametric optimization is suitable for final design adjustments, and it is the 

focus of this dissertation. In further discussion in the dissertation, parametric structural 

crashworthiness design optimization is referred to as “crashworthiness design.” 
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2.2 Crash Simulation Models used in Crashworthiness Design 

Any design optimization process typically involves several iterations of trial 

designs. Building real prototypes in order to perform the NHTSA standard safety tests is 

a requirement, however conducting such tests is extremely costly and time consuming, 

and is thus only used for final design verifications. Some virtual crashworthiness testing 

is required during the design iterations. Closed-form analytical solutions are not an option 

for use as a simulation tool for virtual crashworthiness testing due to the extreme 

complexity of the crash phenomenon. Closed-form analytical solutions are all but 

impossible to obtain for vehicle structures of any real-life level of complexity. Instead, 

numerical approximation models have to be used. Typical numerical approximation used 

for crash simulation may be classified into three broad categories: 

 

 Detailed nonlinear finite element (FE) models 

 Reduced order dynamic models 

 Functional approximation or response surface models (RSM) 

 

 

2.2.1 Nonlinear Finite Element Models 

Detailed nonlinear finite element models provide the best known accuracy 

solutions to the estimation of structural crashworthiness performance. With the 

implementation of many recent advancements in the finite element methods into 

commercial software packages (LSTC 2001, ESI 2003), these models have become the 

norm for the estimation of structural crashworthiness performance. Examples of detailed 

FE for crashworthiness design of a full vehicle models may be found in (Yang et. al. 
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2001, Soto 2001, Andersson and Redhe 2003, Hamza and Saitou 2005) and for 

crashworthiness design of individual components (sub-structures) in (Chen 2001, Koanti 

and Caliskan 2001, Kurtaran et. al. 2001, Soto 2003, Hamza and Saitou 2003). 

 

While nonlinear finite element models provide the best known accuracy in 

estimation of structural crashworthiness performance, their typical downside is two-fold: 

 

 Models that examine only sub-structures are not guaranteed to provide a 

good estimate of the sub-structure when other interacting members are 

present 

 Models that include full vehicle details require enormous computational 

resources, thereby hindering the direct applicability of many (if not all) 

design optimization algorithms  

 

 

2.2.2 Reduced Order Dynamic Models 

Reduced order dynamic models for structural crashworthiness design have been 

around since the time when the computational resources for FE methods were not easily 

available (Song 1986). These types of models range from lumped mass models (Beneet 

et. al. 1991) coarse-mesh FE models (Chellapa and Diaz 2002) and fine-grained lumped 

models (Abramowicz 2003, Abramowicz 2004, Takada and Abramowicz 2004, Hamza 

and Saitou 2004). While differing in details of implementation, these types of models 

have common treats (to various extents): 
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 These models attempt to capture the gross motion of the structure during 

the crash event 

 The models require less computational resources the detailed FE models, 

since they deal with a reduced number of differential equations 

 

Reduced order dynamic models also have typical downsides: 

 

 Introduction of an extra level of abstraction between the model and the 

actual physical structure of the vehicle. For example, the dimensions and 

sheet metal thickness in some structural component in a FE model are a 

representation of the same dimensions and sheet thickness in the real 

structure. In a reduced order dynamic model however, a nonlinear spring 

may represent a structural member. The spring parameters (such as 

stiffness) are not as easy to correlate to actual dimensions of the structural 

member in the real structure 

 

 Less accuracy of performance prediction, as with any dynamic model with 

reduced number of degrees of freedom compared to FE models (Takada 

and Abramowicz 2004, Hamza and Saitou 2004) 

 

These downsides are the reason why such models are seldom used in practice by 

vehicle designers 
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2.2.3 Response Surface Models 

Functional approximation models or response surface models (RSM) are general-

purpose meta-models, which are popular in many engineering applications. A meta-

model is essentially a “model of a model”. When some application involves a model that 

has expensive computations (such as a detailed FE model), then the meta-model provides 

a computationally efficient approximation of it. 

 

Several examples of such meta-models are listed in the review article in (Simpson 

et. al. 2004). In general, RSM are constructed via two steps: 

 

1. Conducting design of experiments (DOE) to acquire sample data of some 

trial designs. Performance evaluation of the sample data typically involves 

the computationally expensive numerical models. 

 

2. Fitting of the sample data via a functional approximation meta-model. 

Examples of such meta-models include polynomial regression (Box et. al. 

1978, Myers and Montgomery 1995, Yang et. al. 2001), various types of 

neural networks (Dyn et. al. 1996, Haykin 1998, Hansen and Salamon 

2002,) as well as Kriging (Krige 1951, Sasena et. al. 2002). 

 

RSM models that are constructed via detailed nonlinear FE models seem to be the 

dominant popular design automation approach for structural crashworthiness 

optimization in practice. However, RSM models for crashworthiness have some serious 

drawbacks. Their popularity is mainly attributed to the unpopularity of the other options; 

extreme computational resource requirements for using detailed FE throughout all the 
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design iterations, or the extra level of abstraction involved in using reduced order 

dynamic models. The downsides of RSM models are: 

 

 Although inputs to a RSM can be the same design variables as inputs to a 

detailed FE model, there is a high level of abstraction and loss of the 

physical sense of the problem. After a RSM model is constructed, one 

could observe the predicted performance change (of total deformation for 

example) verses a change in a design variable, such as a structural 

component size, but provides no insight into how such performance 

change happened, such as which structural component deformed more or 

which zone of the structure is a likely candidate for a reinforcement. 

 

 Due to the nonlinear nature of the underlying physics of the crash 

phenomenon, there are often many nonlinear interactions between the 

design variables. Such interactions make it extremely difficult to obtain 

high fidelity RSM over a wide range of the design variables while using a 

reasonable number of sample in the DOE 

 

 RSM models are general purpose meta-models that are independent 

underlying-physics of the application they are used in. Oftentimes when 

tackling the design of a particular engineering application, there’s more 

information about the physics that could aid the designer (for example, in 

a linear elastic structure, adjusting for uniform strain is optimal utilization 

of structural material to maximize crash energy absorption). Thus use of a 

meta-model that has this independence of underlying-physics, eliminates 
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the chance to incorporate physical-based design insights in guiding the 

optimization. 

 

 

2.3 Optimization Algorithms for Structural Crashworthiness 

Publications in the literature that employ reduced order models tend to have their 

focus set on modeling and accuracy issues rather than design optimization algorithms. 

This is mainly because reduced order dynamic models tend to have low computational 

requirements, therefore can be easily linked with off the shelf optimization algorithms 

that are available in commercial optimization software packages. However, the accuracy 

and fidelity of reduced order dynamic models are usually the prime concern. 

 

Publications that focus on crashworthiness optimization algorithms are usually 

referring to algorithms that would be linked to a detailed nonlinear FE model, often 

within the framework of a RSM that serves as a surrogate for performance estimation 

within the iterations of the optimization algorithm. 

 

In (Yang et. al. 2001), the optimization algorithm that runs on the RSM was 

Sequential Quadratic Programming (SQP). The constructed RSM was a second order 

polynomial regression, and hence SQP seemed a natural choice. Construction of the RSM 

is the bulk of the computational work when compared to several calls to the RSM for 

estimating performance. Thus when employing more elaborate RSM models than second 

order polynomial regression, several global search techniques (Michalewiz, and Fogel 

2000) such as Simulated Annealing, Genetic Algorithms, Tabu search, DIRECT can be 
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effectively employed. Genetic algorithms (GA) seem to be a popular choice to run 

optimization on the RSM (Chen 2001, Andersson and Redhe 2003). The basic steps in a 

genetic algorithm (Goldberg 1989) are explained as follows: 

 

1.  Define the  search space via upper and lower bounds on all design 

variables 

2. Randomly initialize a Current Population of designs P within the search 

space 

3. Evaluate the objective function(s) for every design in P 

4. Assign a Fitness Value to every design in P, the fitness function is chosen 

so that the better designs have better fitness 

5. Pass the current best design into a New Population of designs Pnew 

6. Select two designs from P, the selection is randomized, but giving higher 

probability of selection to designs that have higher fitness. 

7. Perform mating between the selected designs to produce two new designs 

that are added to Pnew. The mating usually involves a combination of 

simple copying, linear averaging, projection and partial randomization. 

8. Repeat at step 6 until the number of designs in Pnew is equal to those in P, 

then Pnew replaces P and becomes the Current Population 

9. Repeat at step 3 until termination condition. Termination condition may be 

a pre-set number of iterations or discovery of a design with a target 

performance 

10. Return the best design in current population 
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Convergence of the genetic algorithm to the global optimum within the search 

space pending satisfaction of certain convergence conditions is shown in (Goldberg 

1989). From a practical point of view, application of GA is seldom guaranteed to provide 

the global optimum; however, its capability to continually sample the search space and 

not get trapped in a local optimum is the main source for its popularity. The anatomy of 

GA also makes the number of design samples it requires rather huge, which makes it 

prohibitively expensive to link to a detailed FE model, but a good on a pre-constructed 

RSM. The thing to remember is that design recommended by the GA can be the optimum 

of the RSM model (not the detailed FE model), which is only as good as accuracy of the 

RSM model itself. 

 

Another class of RSM-based algorithms is that of incremental model building and 

enhancement of the RSM model. A notable approach that could prove effective, although 

not known to have been applied to Crash optimization problems, is the SuperEgo 

algorithm (Sasena et. al. 2002). This algorithm combines DIRECT as a sampling 

algorithm along Kriging as an incrementally enhanced RSM. The difficulty in applying 

this approach is that the technique is possibly more sensitive to the increase in the 

number of design variables (requires drawing more new samples of detailed FE 

simulations, exponentially increasing as the number of design variables increases) than 

genetic algorithms running on RSM (only uses the initial pre-constructed RSM model).  

 

Among possible remedies of inaccuracies in non-incrementally enhanced RSM 

models, is the construction of several RSM from different sets of DOE samples, then 

running an optimization algorithm on each RSM model separately. The recommended 

optimum of each RSM is then examined via the detailed FE model, and the best among 
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all is the one reported. A notable optimization algorithm that works along these lines is 

provided in (Hamza and Saitou 2005). The technique is termed Multi-scenario Surrogates 

Co-Evolutionary Genetic Algorithm (MSCGA). MSCGA runs GA populations on two or 

three RSM models constructed from different sets of DOE samples, with the GA 

“fitness” giving credit to designs that are estimated to have high performance among all 

the RSM models. The reported result of MSCGA is a set of designs, with the set 

extremities being the individual optimum of each RSM model, and the “center” of the set 

being designs that are estimated to have good performance among all the RSM models. 

 

 

2.4 Thrust Area for this Dissertation 

Detailed nonlinear finite element models are so far the only type of models whose 

accuracy of crashworthiness performance estimation is deemed acceptable by designers, 

prior to final design verifications involving prototype building and crash testing. The 

computational resources for the detailed FE models are enormous, and continue to be so 

(as computers become faster, the FE models become more detailed). Conventional design 

optimization methods for structural crashworthiness typically involve some adaptation of 

a conventional optimization algorithm and combining it with a conventional RSM model 

that is constructed on a pre-set sample of designs. The conventional methods have their 

limitations set by the availability of computational resources to construct and/or refine 

RSM models. 

 

Another approach which is used in practice by vehicle designers is that of 

manipulation of the crash mode, or crash mode matching. The approach, which is more 
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of an art rather than an algorithmic procedure, involves adjusting the design variables of 

the structure in order to achieve a desired deformation history. A notable work along 

these lines may be found in (Soto 2003), where topology optimization of one structural 

member is conducted to attain a desired time-deformation pattern. The concept of re-

formulating the crashworthiness design problem into that of matching a desired 

deformation history seems otherwise overlooked in the literature. Hence, the thrust area 

for this dissertation is that of developing a formal algorithmic procedure for crash mode 

matching. It is conjectured that this approach, which incorporates knowledge of the 

physical behavior of the crash phenomenon into the design optimization process is to 

have its advantages in computational efficiency compared to the conventional methods. 
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CHAPTER 3 

METHODOLOGY OVERVIEW 

This chapter lays out the proposed methodology for crashworthiness design. A 

formal description of the scope of parametric structural crashworthiness optimization 

problems is presented, then an overview of the general steps in the proposed 

methodology is laid out. 

 

3.1 Scope of Optimization Problems 

The proposed methodology is intended for parametric optimization of structural 

crashworthiness problems. The problem formulation could be stated as: 

 

Minimize: f (x)      (Equation 3.1) 

Subject to: g(x) ≤ 0     (Equation 3.2) 

 

Where: 

x is the vector of design variables xi i = 1, …, nVar.  

f is the objective function to be minimized. For multiple objectives, f is 

replaced by f, which is a vector of objectives to be minimized. 

g is the vector of inequality constraints gi i = 1, …, nCon. Constraints are set 

in the negative-null form. 
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It is also assumed that one can define CM(x): the crash mode of the structure. 

CM(x) is a matrix of time series, explained in detail later in chapters 4 and 5. While 

CM(x) does not necessarily represent objectives or constraints, the proposed 

methodology requires the capability to evaluate it in order to guide the search algorithm. 

 

Notes: 

 

 It is assumed that evaluation of some of the objectives and/or constraints for some 

value of x requires computational simulation of the crash performance of the 

structure (or experimental evaluation). Typical quantities that are regarded as 

objectives and/or constraints include: displacement/deformation, acceleration and 

structural mass. 

 

 The problem formulation does not include equality constraints. The reasoning 

behind this is as follows: 

o Constraints in crashworthiness problems are generally one-sided. For 

example, it may be unacceptable to exceed a target value of maximum 

acceleration, deformation, or injury criteria. However, lower values of 

maximum acceleration, deformation or risk of injury are not harmful. 

o The crash phenomenon often exhibits noise (whether true measurement 

noise in an actual crash test or numerical integration errors in a FE model) 

in some of the measurable quantities such as acceleration. Constraining a 

measurable quantity to an exact single target value is impractical and can 

result in making the entire design space infeasible. 
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 The design variables may be discrete, continuous, or mixed. Typical studies 

include design variables that correspond to the dimensions or materials of 

structural components. However, the proposed methodology requires fixed 

topology, so the design variables don’t correspond to topological variations. 

 

3.2 Overview of the Proposed Methodology 

The proposed methodology follows along the lines of a typical design 

methodology for crashworthiness optimization, with some additions and variations on 

some steps. Section 3.2.1 provides an overview of the steps in a typical design 

methodology in research, then section 3.2.2 highlights the variations in the proposed 

methodology. 

 

3.2.1 Typical Steps of Parametric Crashworthiness Design 

Typical steps of parametric crashworthiness design are shown in Fig. 3.1. The 

first step in any design optimization methodology is to construct a reliable model for 

performance prediction of design changes. Parametric structural crashworthiness 

optimization proceeds from fixed structural topology that has been determined via 

topology optimization and vehicle styling. The construction of a detailed FE model is the 

usual practice at this stage. The FE model serves for design performance prediction 

throughout the optimization process. The next step is the translation of performance 

requirements (such as acceleration, deformation and injury criteria) into objectives and 

constraints. Creation of measurement points is done in the FE model to ensure proper 

recording of the objectives and constraints during a FE simulation run. 
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Figure 3.1. Typical steps for parametric crashworthiness design 
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The next step usually involves some designer experience, as it is the translation of 

the existing data about the structural components’ dimensions and materials into design 

variables. A designer may choose to limit the number of optional choices for some 

components, or fix some of them as constants in order to avoid having too many design 

variables and too large a design search space, which is not good for any optimization 

algorithm. On the other hand, too few variables or choices per variable may not allow the 

optimization algorithm to find possibly good designs because they are not in the search 

space. Once the design variables are decided, it is usual practice to add linking scripts to 

the FE model so that design variable changes can be automatically updated in the FE 

model. 

 

With the FE model ready and the objectives, constraints and design variables 

setup; the designer uses available computational resources to run an optimization 

algorithm. The discussion in this section is generic, so the algorithm in question may be 

any of the generic design optimization algorithms. The algorithm is drawn as a black box 

in Fig. 3.1 to emphasize that once started, the human user has little or no control on the 

designs that the algorithm would recommend for exploration. The nature of the 

crashworthiness problem in a vehicle structure of a realistic level of complexity makes it 

impossible to guarantee optimality. However, most algorithms that would be used for 

such a problem have better chance of discovering good designs when allowed to perform 

many design space samples. The number of samples is often limited by the availability of 

computational resources to run as many FE simulations. 

 

It is worth noting that the success of the typical approach is often dependent on 

how well the designer made use of his “non-algorithmic” skills in terms of proper choice 
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of design variables, their ranges and the optimization algorithm to use. Too few or too 

restricted ranges on the design variables may exclude possibly good designs from the 

search space the optimization algorithm examines. Too many design variables/choices 

may cause failure of the optimization algorithm to discover any good design within a 

resource-wise-feasible number of design samples. Realistically speaking, there could be 

an outer loop (not shown in Fig. 3.1), where in the case of failure to discover satisfactory 

results after several attempted optimization runs, the designer might have to use a 

different optimization algorithm, or modify the definitions of the design variables. 

 

The proposed methodology presented in the next section incorporates more of the 

designers’ knowledge about crashworthiness within the methodology. It is conjectured 

that such knowledge would allow the optimization algorithm (the part where the designer 

has little or no control on) to discover good designs while using a smaller number of 

design samples. This is equivalent to more exploration, hence better likelihood to 

discover better designs using comparable amount of computational resources. 

 

 

3.2.2 Proposed Methodology for Crashworthiness Design 

The proposed methodology (Fig. 3.2) follows the same steps as typical 

methodologies in the construction of the performance prediction model (detailed FE) and 

the definition of objectives, constraints and design variables. However, there is more 

information from the designers’ knowledge-base, or design space exploration via 

simplified reduced order dynamic models, that is incorporated into the methodology. The 

pivot of such additional knowledge is that of the crash modes. 
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The concept of the crash mode (CM) is qualitatively understood by vehicle 

designers as the “time history of deformation in various structural zones”. The CM is 

often like a “fingerprint” of a design and dictates whether it would exhibit high quality 

performance (in terms of the objectives and constraints) or not. Conscientious is that 

good designs have good CM and bad designs have bad CM, and conversely, designs with 

good CM are good designs, while designs with bad CM are bad designs. 

 

In analogy to the definition of the design variables, the designer also needs to 

define the crash mode for the constructed FE model (definition of the CM, both 

qualitatively and quantitatively are discussed in detail in Chapters 4 and 5). The designer 

also needs to define what would be a desirable crash mode as well as a set of generic 

design adjustment rules for crash mode matching. The adjustment rules are analogous to 

an expert-system but are fairly simple to construct for the automated crash mode 

matching algorithm presented in this thesis, which is discussed in detail in Chapter 6. 

 

The automated crash mode matching algorithm performs the role of an 

optimization algorithm in a typical structural crashworthiness optimization methodology; 

which is the automated sampling on the design space in order to discover good designs. 

However, it is hypnotized that the proposed methodology setup (incorporating knowledge 

base) would allow the proposed algorithm to have more success than a generic 

optimization algorithm at discovering high quality designs while utilizing reasonable 

computational resources. Examples and case studies presented in this dissertation serve to 

support the hypothesis. 
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Figure 3.2. Steps in the Proposed Methodology for crashworthiness design 
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3.3 Summary 

This chapter presented the scope of optimization problems addressed in this thesis 

and a high level overview of the proposed methodology. The proposed methodology 

enhances the existing methodology by incorporating the concept of crash modes and an 

automated crash mode matching algorithm. The crash modes are discussed in detail in 

chapters 4 and 5, while the automated crash mode matching algorithm is discussed in 

detail in chapter 6. 

 

 



 35 

CHAPTER 4 

QUALITATIVE EXPLORATION OF CRASH MODES 

This chapter presents two example problems of structures that are subjected to 

crash conditions. The examples are simple enough to thoroughly analyze via solving 

multiple instances of the problem in order to explore all the possible crash modes for the 

said structures. The examples serve to support the hypothesis that crash modes could be 

useful in guiding an optimization search. The chapter proceeds with a discussion of 

approaches for exploration and discovery of desirable crash modes for problems of 

realistic complexity. One such crash mode exploration method (developed as a utility 

tool) is presented in detail. 

 

4.1 Examples of Crash Modes in Structures 

4.1.1 Two-Mass-Springs Problem 

This section presents a simple structure that demonstrates how the crash mode can 

significantly influence the crashworthiness performance. The example (Fig. 4.1) portrays 

a vastly simplified situation of a payload (m1) that crashes at an initial speed (vo) onto a 

wall, with a front deformable structure ahead of it, represented by one mass (m2) and two 

nonlinear springs (k1 , k2). Both springs behave in an idealized manner that corresponds to 

a deforming structure during crash (Fig. 4.2), where there is an initial linear spring 
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behavior, followed by a collapse to a steady constant force behavior. This load-

deformation pattern is an idealization of the typical behavior of axial crushing of a thin 

walled box-section (Han and Yamada 2000, Koanti and Kaliskan 2001). Parameters for 

each spring are as follows: 

 

Fp is the peak force of the spring 

Fs is the steady force of the spring after the peak 

dp is the spring displacement at which the peak force of the spring occurs 

ds is the maximum spring displacement, beyond which, the spring becomes a 

rigid object 

 

 

 
Figure 4.1. Two-Mass-Springs Problem 
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Figure 4.2. Crush behavior of the nonlinear springs 

 

 

The total energy a spring can absorb is calculated as:  

 

Ei = 0.5 Fpi dpi + Fsi (dsi – dpi)  i = 1, 2  (Equation 4.1) 

 

The parameter values used in this example are listed in Table 4.1. The setting of 

absorbable amounts of energy in each spring ensures that the system can stop (or bounce 

back). It is noted in this study that only one parameter (r = E2 / E1) is an implicit variable 

that is allowed to change. r is the ratio of the total energy that may be absorbed in each 

spring. In essence, this ratio represents the relative strength between the two parts of the 

deformable structure. 
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Table 4.1. Parameter values for the two-mass-spring example 

 

Symbol Description Value Unit 

m1 Payload mass 50 kg 

m2 / m1 Ratio of masses 0.02  

vo Initial velocity for both masses 10.0 m/s 

Fp1 / Fs1 Peak value to steady value in 1
st
 spring 3.0  

Fp2 / Fs2 Peak value to steady value in 2
nd

 spring 3.0  

dp1 / ds1 Peak displacement to maximum 

displacement in 1
st
 spring 

0.02  

dp2 / ds2 Peak displacement to maximum 

displacement in 2
nd

 spring 

0.02  

ds1 Maximum displacement in 1
st
 spring 0.25 m 

ds2 Maximum displacement in 2
nd

 spring 0.25 m 

E1 + E2 Total absorbable energy 1.2 ×  

0.5 (m1 + m2) vo
2 

 

r = E2 / E1 Ratio of absorbable energy in springs (variable)  

 

This example is simple enough to allow for analytical expression of the 

differential equations of motion, based on the various possible situations of the nonlinear 

springs. The equations of motion for all possible case are: 

 

 Case when both springs are in the linear region: 
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
 (Equation 4.2) 
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 Case when 1st spring is in the linear region, 2
nd

 spring in steady force region: 
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 Case when 2
nd

 spring is in the linear region, 1
st
 spring in steady force region: 
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 Case when 1st spring is in the linear region, 2
nd

 spring is totally compressed (assumed 

full plastic collision against wall): 

 

1 1 1 1 1( / ) 0p pm x F d x        (Equation 4.5) 

 

 Case when 2nd spring is in the linear region, 1
st
 spring is totally compressed 

(assumed full plastic collision between the two masses): 

 

1 2 1 2 2 1( ) ( / ) 0p pm m x F d x        (Equation 4.6) 

 

 Case when both springs are in the steady force region: 

 

1 2 11 1 1

1 2 1 2 22 2 2

( )0 0 0

( ) ( )0 0 0

s

s s

sign x x Fm x x

sign x x F sign x Fm x x

        
                   

 

  
   

 (Equation 4.7) 
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 Case when 1st spring is in the steady force region, 2
nd

 spring is consumed (assumed 

full plastic collision against wall): 

 

1 1 1 1( ) sm x sign x F         (Equation 4.8) 

 

 Case when 2
nd

 spring is in the steady force region, 1
st
 spring is consumed (assumed 

full plastic collision between the two masses): 

 

1 2 1 1 2( ) ( ) sm m x sign x F         (Equation 4.9) 

 

A computer program is written via the C++ programming language to solve the 

equations (4.2 – 4.9), given the initial conditions (
1 2 1 2, 0ox x v x x     ) for a value of 

r. Since the total absorbable energy (E1 + E2) is selected as a constant value (Table 4.1), 

setting a value of r allows calculation of both E1 and E2. Equation (4.1) is then used to 

calculate the peak and steady values of the nonlinear springs (Fp1, Fs1,  Fp2, Fs2). 

Numerical integration is performed to obtain the time response of the system via simple 

logic in the C++ program, which checks the displacement state in each spring, and 

accordingly selects the correct governing differential equation among equations (4.2 – 

4.9). The displacements and velocities of the two masses are then fed as initial conditions 

for the new governing equation.  

 

It can be shown that varying the ratio r for this example problem produces two 

possible crash modes: 

 Crash Mode #1: 1
st
 spring exceeds peak force first, which happens at high values 

of r when spring #2 is stronger. This crash mode is sketched in Fig. 4.3(a). 
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 Crash Mode # 2: 2
nd

 spring exceeds peak first, which happens at low values of (r) 

when spring #1 is stronger. This crash mode is sketched in Fig. 4.3(b) 

 

Deformation plots of both springs for various values of the strength ratio r are 

shown in Fig. 4.4 and Fig. 4.5 respectively. 

 

 

 
Figure 4.3. Sketching of the Crash Modes in the Two-Mass-Springs Problem: (a) 

Crash Mode #1, (b) Crash Mode #2 
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Figure 4.4. Deformation plot for the 1

st
 spring 

 

 
Figure 4.5. Deformation plot for the 2

nd
 spring 
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Assuming that the objective of designing the springs is to minimize the maximum 

acceleration experienced at the payload mass, this maximum value is recorded in the C++ 

solver program. A plot of the maximum acceleration verses the relative strength of the 

two springs (r) is shown in Fig. 4.6.  

 

 
Figure 4.6. Maximum acceleration for the payload mass (m1) 
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because the weaker spring will be crushed first and reach the steady force region while 
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at a perfectly balanced strength ratio (r = 0.5). The least attainable maximum acceleration 

is achieved around the region of (r = 0.6). This is due to the dynamic effects of the 

masses which maintain CM#2 (2
nd

 spring deforms before the 1
st
 spring), even though if 

2
nd

 spring is slightly stronger. The 1
st
 spring then serves as a softer cushion for the 

payload mass resulting in overall lower maximum acceleration. Increasing r beyond a 

certain value (around r = 0.61) causes a change of the crash mode to CM#1 (1
st
 spring 

crushes first), which is accompanied by a significant change in the crashworthiness 

performance (large undesirable increase in the maximum acceleration). 

 

This simple example serves to highlight the concept of a crash mode, as well as its 

effect in dictating the crashworthiness performance. A more complex example is 

provided in the next section. 

 

4.1.2 Vehicle Mid-Rail Problem 

This section further demonstrates the effect of crash modes on the 

crashworthiness performance via a more involved example of a vehicle mid-rail shown in 

Fig. 4.7. The mid rail is assumed to have a uniform rectangular box cross-section 

throughout its entire length. The box is assumed to be made up of mild steel sheet. 

Parameters for the model are listed in Table 4.2. The problem has one independent 

variable (t1), which is the thickness of the sheet metal in zone #1 (Fig. 4.7), and one 

dependent variable (t2), which is the thickness of the sheet metal in zone #2, and is 

calculated in accordance to (t1) to maintain a constant structural mass of the rail. It is 

desirable to explore the region of values for the design variable that result in the minimal 
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deformation in zone #2 (closer to the passenger compartment) as the rail deforms to 

absorb the kinetic energy in the payload (M). Zone deformation is calculated simply as 

the difference in position along the x-axis direction between the zone ends. 

 

 

 
Figure 4.7. Vehicle Mid Rail Model 

 

A finite element model (FE) is constructed for the mid rail using the LS-DYNA 

commercial software (LSTC 2001). The model response is simulated for several test 

values of (t1). Since FE simulations of crashworthiness problems often exhibit noise, as 

well as undesirable sensitivity to meshing variations, each simulation is performed five 

times with slight (sub 0.1mm) randomization of the node positions in the mesh. The 

reported values represent the average response of the five runs. 
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Table 4.2. Parameter values for the Vehicle Mid Rail example 

 

Symbol Description Value Unit 

M Payload mass 200.0 kg 

vo Initial velocity 10.0 m/s 

L1 Length of Zone #1 650.0 mm 

L2 Length of Zone #2 375.0 mm 

h Box section height 90.0 mm 

b Box section width 60.0 mm 

 Inclination angle 23.5 deg 

d Z-direction rail axis offset 120.0 mm 

t1 Sheet thickness in Zone #1 (Variable) mm 

t2 Sheet thickness in Zone #2 5.6 – 1.8 t1 mm 

 

Summary of the deformation in Zone #2 as function of (t1) is shown in Fig. 4.8. 

Three different regions of behavior of the deformation in zone #2 verses t1 are identified 

in plot in Fig. 4.8. Examining the animation of the deformation history for designs in the 

different regions leads to the identification of three crash modes, which are are sketched 

in Fig. 4.9: 

 

 Crash mode #1 (Fig. 4.9a) occurs at small values of (t1) and is characterized 

by a crush (axial deformation) in zone #1, but the deformation is not sufficient 

to absorb all the crash energy, so it is followed by a deformation in zone #2 in 

the form of two plastic hinges 



 47 

 Crash mode #2 (Fig. 4.9b) occurs at some mid-range values of (t1), where the 

axial deformation in zone #1 is sufficient to absorb most of the crash energy 

and results in negligible deformation taking place in zone #2 

 

 Crash mode #3 (Fig. 4.9c) occurs at large values of (t1), where zone #1 is too 

strong and doesn’t exhibit any appreciable plastic deformation, causing all the 

crash energy absorption to happen in zone #2 in the form of plastic hinging. 

 

 

 
Figure 4.8. Deformation in Zone #2 as function of (t1) 
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Figure 4.9. Sketching of the Crash Modes in the Vehicle Mid-Rail Problem 

 

 

From a designer’s perspective, CM #3 is the least desirable since it exhibits large 
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(otherwise it doesn’t deform at all and absorbs no crash energy, as in CM #3). 
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This example serves to further highlight the importance of crash modes in 

dictating crashworthiness performance of structures. It demonstrates how changing a 

design variable too much in what might seem to be a beneficial direction can result in a 

switch of the crash mode from a good one to a bad one. The switch in the crash mode 

from good to bad also changes a good design into a bad one. A listing of the hypotheses 

made regarding crash modes in this thesis is provided in the next section. 

 

4.2 Hypotheses of Crash Modes 

Based on the observations from the two examples presented in sections 4.1.1 and 

4.1.2, as well as discussions with vehicle designers in practice, the following are the main 

hypotheses of crash modes: 

 

 Distinctive and drastic changes in the crashworthiness performance (such 

as deformation or acceleration) happen upon the change of crash modes. 

This was demonstrated in both examples at the transitions between 

different crash modes (Fig. 4.6 at r  0.6 and Fig. 4.8 at t1  0.9 and t1  

1.3) 

 Designs exhibiting the same crash mode tend to have similar performance 

in terms of objective functions. Furthermore, the trends in the objective 

functions versus the design variables seem to maintain their monotonicity 

within the same crash mode. For example, in Fig. 4.6, increasing the value 

of r seems to benefit the objective as long as crash mode #1 is in effect, 

but this trend changes when CM #2 is in effect. Also, in Fig. 4.8, 
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increasing t1 is beneficial while CM #1 is in effect, but the opposite 

happens when CM #3 is in effect. 

 Crash modes provide a partitioning of the design domain. Thus, attaining 

the desired crash mode implies a high likelihood of being in the vicinity of 

an optimal design.  

 

Due to the complexity of crashworthiness models involving vehicle structural 

models of realistic level of detail, it is perceived impossible to prove these hypotheses. 

The validity of the hypotheses however are empirically demonstrated in the simple 

examples presented in this chapter, and validated in the case studies of realistic vehicle 

models in Chapter 7. 

 

4.3 Exploration of Crash Modes of a Vehicle Structure 

4.3.1 Options for Crash Modes Exploration 

The proposed methodology essentially guides the crashworthiness design 

optimization via biasing the search to favor desirable crash modes. As such, knowledge 

of the desired crash mode is a requirement to begin with, before the proposed method can 

be applied. It is important to note that in many cases of full vehicle structures, such 

desired crash mode is already “mostly known” from previous experience with older 

vehicle models or similar structures. In the case of completely new conceptual designs 

however, the luxury of prior knowledge about the desired crash mode could be 

unavailable, thus requiring a study in itself. The options for exploring vehicle structural 

crash modes are discussed in this section. 
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In the absence of prior knowledge about similar designs, discovery of the 

desirable crash mode (needed in the proposed methodology) could be as much of a 

challenging task as the optimization problem via conventional methodology. In the 

examples presented in section 4.1, exploration of the crash modes was performed via 

exhaustive search, i.e. sampling of a dense grid over all possible values for the design 

variables. Exhaustive search is only feasible in the simplest of problems, due to the 

exponential growth in the size of the design space with respect to the number of design 

variables. Exhaustive search is infeasible for any crashworthiness problem of a realistic 

level of complexity. Feasible approaches to discover the desirable crash mode are:  

 

 Partial design space sampling via design of experiments (DOE) (Taguchi, 

G., 1993, Phadke, 1989). In this approach, a systematically well spread out 

number of sample designs are explored in the design space. A designer 

applying this approach would hope that one of the samples would be in the 

vicinity of an optimal design, and hence exhibit the desirable crash mode. 

The effectiveness of partial sampling however is diminished in problems 

involving a large number of design variables. 

 

 Performing an optimization run via conventional methodology. Since the 

crash mode hypotheses state that the optimum design has the optimum 

crash mode; discovery of the optimum design is also discovery of the 

optimum crash mode.  

 

Discovery of the desirable crash mode in the absence of prior knowledge about it 

might seem like vicious cycle in the logical flow of the proposed methodology. The 
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desirable crash mode is needed to discover the optimum design, yet the optimum design 

is needed to discover the desirable crash mode. However, one could very well argue that 

if the good crash model for similar vehicle designs is generic enough to carry over from 

prior knowledge to a new design, then the good crash mode can carry over from a 

simplified model of the vehicle structure to the detailed FE model.  

 

The argument of the generality of carry-over of good crash mode across models 

alleviates the restraint on using simplified crashworthiness models. Simplified models 

may not be suitable for direct use in optimization (due to inaccurate predictions for 

objectives and constraints), but they may be suitable for exploring the crash modes. 

Possible simplified models for exploring the crash modes are: 

 

 Coarse-mesh finite element models: where reduction of computational 

resources required comes at a sacrifice of some accuracy of estimated 

results 

 

 Coarse-grained reduced order dynamic models: where entire sections of 

the structure are lumped into equivalent masses and springs/dampers 

(Beneet et. al. 1991) (example sketch in Fig. 4.10b). Clearly the loss of 

physical detail of the structure is a hindering issue, aside from fidelity 

 

 Fine-grained reduced order dynamic models: where the important 

structural members are represented member-by-member as sets of masses 

and springs/dampers (Takada and Abramowicz, 2004, Hamza and Saitou 

2005) (example sketch in Fig. 4.10c).While these models resemble coarse 
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mesh FE techniques in the trade-off between accuracy and speed of 

computation, they are very suited for observing crash modes due to the 

implicit identification of the important structural members prior to the 

construction of such models 

 

 

 
Fig. 4.10. Different models of a vehicle structure: (a) a finite element model of a 

structure (b) lumped mass model and (c) equivalent mechanism model 
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Of the considered options for exploring the crash modes of a vehicle structure, the 

ones expected to be most effective are the coarse mesh finite element methods and the 

fine grained reduced order dynamic models. One class of fine-grained reduced order 

dynamic models was developed in this thesis, and called the Equivalent Mechanism (EM) 

models. The EM models allow for one-to-one correspondence in zone geometry 

definition and have shown effectiveness in modeling small to moderate sized vehicle 

structures (Hamza and Saitou 2003-2006). The EM models are explained in further detail 

in the next subsection. 

 

 

4.3.2 Crash Modes Exploration via Equivalent Mechanism Models 

This section discusses equivalent mechanism (EM) models as a fine-grained 

reduced order dynamic model that could be employed for structural crash modeling, with 

the purpose of discovering the desirable crash mode. An EM model (Fig. 4.10c) is a 

network of rigid beams joined by prismatic and revolute joints with special nonlinear 

springs. The springs are designed to mimic the force-displacement and moment-rotation 

characteristics of thin-walled beams often found in the body of vehicle structures. 

Mapping of the physical dimensions to their equivalent springs is performed by 

interpolation on pre-compiled databases of structural cross-sections (Hamza and Saitou 

2004b); similar to the way civil engineers use standard steel-section tables. In essence, 

the EM models are fine-grained lumped mass models, similar to Abramowicz’s Super 

Folding beam element (Abramowicz 2003, 2004), with the main difference being in the 

nonlinear springs equation and method of spring properties estimation. 
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The key assumptions for applying EM models to explore and discover crash 

modes are: 

 

 The observable crash modes in detailed FE models exist in the constructed 

EM models 

 Crashworthiness performance of EM models qualitatively corresponds to 

that of real structures. In other words, good crash modes in reality are 

good in EM models and bad ones are bad 

 

Just as with most assumptions about the crash phenomena in vehicle models that 

have a realistic level of detail, the governing equations are so complex that the presented 

key assumptions are difficult to prove or disprove. However, some arguments could be 

drawn out to justify why the assumptions can be acceptable: 

 

Existence of the crash modes in EM models: 

 In essence, the crash mode of a real structure is a sequence of crash energy 

dissipation events. A good crash mode is one that allocates the appropriate 

amount of energy to the appropriate structural zone at the appropriate 

time. The EM models allow a one-to-one correspondence in zone 

geometry definition. Zones in the detailed FE model are typically defined 

as the collection of elements that form a structural member (e.g. bumper, 

rail, pillar). Thus, the EM models allow having one zone for every zone 

defined in the detailed FE. Thus, the crash mode observed in EM is a 

similar allocation of crash energy to structural zones as a crash mode that 

occurs in the detailed FE model. 



 56 

 
Fig. 4.11. Procedure to estimate the desirable crash mode via EM models 
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database is used to estimate the nonlinear springs in an EM model that corresponds to the 

detailed FE model. Use of a database of physical components to estimate the parameters 

of the nonlinear springs ensures that the nonlinear springs in the EM model always 

correspond to some physically realizable structure. Crashworthiness performance is then 

estimated via dynamic simulation of the EM model. The estimated performance is then 

returned to the optimization algorithm, and the optimization algorithm re-iterates. Genetic 

algorithms, being popular for a broad spectrum of problems (Goldberg 1989, Deb et. al. 

2000) were implemented, although other algorithms could be applied within this 

framework. At the end of the optimization run, the main interest is the observed crash 

mode associated with having good crash performance, rather than the specific values of 

the design variables. Inaccuracy in the reduced order dynamic models may prevent using 

the optimum values of the design variables as seen in the reduced order dynamic model. 

However, it is hypothesized that the observed desirable crash mode can be carried over 

from the reduced order dynamic model to the detailed FE model, just as one would carry 

over a desirable crash mode from prior knowledge of similar designs to a new design. 

 

4.3.3 Details of Equivalent Mechanism Models 

Implementation of EM models is fairly simple. The main structural members of 

the vehicle frame, which are typically modeled using plate or shell elements in FE 

models, are approximated as sets of rigid masses connected by prismatic and revolute 

joints that have special nonlinear springs (Fig. 4.10c). The deformation resistance 

behavior of the springs is chosen to capture the behavior of the structural members. The 

EM models are then solved using a conventional dynamic simulation algorithm, thereby 

providing an estimation of the overall vehicle structure behavior. 
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Fig. 4.12 shows typical deformation resistance curves of short thin-walled beams 

with box and hat sections, subject to axial twisting, transversal bending, and axial 

crushing (Hamza and Saitou 2004b), obtained using the LS-DYNA software. In both 

plots, the horizontal axis is displacement or rotation, while the vertical axis is the reaction 

force or moment. These curves were generated using the loading conditions sketched in 

Fig. 4.13, where one side is held fixed, while the other side is subjected to forced 

deformation of small uniform velocity (quasi-static). The recorded resistance to motion 

(axial force in case of axial crush, moments in the cases of bending and twisting) at the 

moving side is recorded into the component database for the given structural section 

shape and dimensions. 

 

Observation over a wide range of dimensions for the cross-sections geometry and 

wall thickness, show the load-deformation curves bearing distinct similarities to Fig. 4.12 

in: 

1) The steep, linear rise in resistance for small deformation  

2) The saturation at elasticity limit 

3) The gradual drop to a steady-state resistance.  

 

Experimental observations in the literature confirms this deformation pattern (Han 

and Yamada 2000, Koanti, R. P. and Caliskan 2001) as long as the considered members 

are short enough so that no multiple folds of the sheet metal are formed (which results in  

secondary peaks). 
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Fig. 4.12. Typical deformation resistance curves for (a) box section and (b) hat 

section.  
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Fig. 4.13. Loading conditions for generating the component database curves for EM 

models. (a) Axial Crush, (b) Bending and (c) Twisting 

 

 

The spring force (or moment) Fk within EM models is given as a sum of the 

forces corresponding to each of the four zones illustrated in Fig. 4.14, blended together 

using sigmoid functions (Mathworks 2001), which are a continuous version of the step 

function: 
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where: 
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  is the instantaneous amount of deformation, referenced to the un-

deformed length of the spring. 

 Fe is the maximum elastic force (or moment). 

 e is the maximum elastic deformation occurring at the transition between 

zones 1 to 2. 

 Fp is the peak deformation resistance force. 

 p is the deformation at which the peak deformation resistance occurs at 

the transition from zones 2 to 3 (Fig. 4.14). 

 Fs is the steady state resistance force after collapse. 

 s is the deformation at which the resistance falls within 2% of the steady 

state value. 

 Lc is the maximum deformable length (or angle) occurring at the transition 

from zones 3 to 4 (Fig. 4.14). 
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Fig. 4.14. EM nonlinear spring behavior and main curve parameters 
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The estimation of the other tuning parameters is done by referring to component 

databases of pre-analyzed FE models of the short, thin-walled beams with different sizes 

of box and hat sections and wall thicknesses. A different set of the tuning parameters (Fe, 

e, Fp, p, Fs, and s) are identified for different directions of deformation of the nonlinear 

spring, in order to better represent the difference in behavior between tension and 

compression, as well as bending in un-symmetric sections.  

 

The task of generating the component database is quite elaborate, however, once 

generated for a family of cross-sections, they can be used in any EM model much like a 

civil engineer uses steel-section tables. The current implementation of EM models only 

has Box (Fig. 4.12(a)) and Hat (Fig. 4.12(b)) sections generated (Hamza and Saitou 

2004b). The steps for generating a component database are listed as follows: 

 

1. Construct a base FE model of the cross-section in question. The FE model 

should be able to get automatically modified by controlling the cross-

section geometric variables such as dimensions and sheet thickness(es). 

The model would also be setup to run the loading cases corresponding to 

axial, bending (along 2 main axes) and twisting (Fig. 4.13) 

2. Construct a grid of data points that span the ranges of the cross-section 

geometric variables values 

3. Run the FE-model for the axial, bending and twisting loading. Record the 

load-deformation curves. 

4. Repeat step #3 a number of times with small-scale randomization (less 

than 0.1mm) on the node positions of the FE mesh. FE simulations of 

crash conditions are reported in the literature to sometimes exhibit 
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idealistic behavior, especially for perfectly straight sections and sheet 

components. This step is introduced to avoid such idealization. In (Hamza 

and Saitou 2004b), the FE model for every point in the data grid was run 5 

times. 

5. Generate an averaged loading curve for each of the loading cases (axial, 

bending and twisting) using the data obtained in steps #3 and #4. 

6. Identify the spring tuning parameters (Fe, e, Fp, p, Fs, and s)axial that 

make an EM nonlinear spring (Equation 4.10) fit as best as possible within 

the average axial load deformation curve 

7. Repeat step #6 for the bending and twisting load cases to obtain (Fe, e, Fp, 

p, Fs, and s)bending-vertical , (Fe, e, Fp, p, Fs, and s) bending-transverse and (Fe, 

e, Fp, p, Fs, and s)twisting  

8. Repeat steps #3 to #7 for every point in the grid of data points that span 

the ranges of the cross-section variables 

9. The component database is now ready for use, and given some cross-

section dimensions, the spring tuning parameters (Fe, e, Fp, p, Fs, and s 

for axial, bending and twisting) may be recalled for use with an EM 

model. For dimensions that do not exactly correspond to a grid point in the 

database, a suitable interpolation scheme is employed. In (Hamza and 

Saitou 2004b) a radial basis neural network (Haykin, 1998, Mathworks 

2001) seemed to provided good interpolation performance. 

 

A further update to the EM modeling capability was the addition of a Side-squish 

nonlinear spring, which allows modeling of situations when a structural member gets 

squeezed between two rigid bodies (sketched in Fig. 4.15). An example of a side-squish 
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situation is when the vehicle bumper gets squeezed between an object it hits, and some of 

the power-train components. This situation is not a well represented as axial, bending, nor 

torsional deformation, yet clearly involves crash energy dissipation. In the EM 

implementation, the side-squish spring also follows equation 4.10, but with the spring 

constants identified from a different component database. The database was generated 

following the steps #1 through #9, with only side-squish crash conditions being 

considered. 

 

 

 
Fig. 4.15. Sketch of a side-squish crash condition 

 

The nonlinear spring described by equation 4.10 is the fundamental component in 

EM models, which is implemented into a computation code via the C++ programming 

language. Construction of an EM model is similar to the construction of a FE model 

made entirely of beam elements. However, instead of nodes and beam elements, there are 

Bulky object 

Side squish zone of the 

structural member 

Bulky object 

Structural member 
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rigid point-masses connected via prismatic and revolute joints (spherical joints, in case of 

3D analysis). A brief tutorial on the use of the developed software to construct an EM 

model is provided in Appendix A. 

 

Simulations via EM models were successful in the discovery of the desirable 

crash mode for vehicle structures of small and medium levels of complexity (Hamza and 

Saitou 2003, 2004(a, c), 2005). Application for the discovery of the desirable CM for a 

model representing the front half of a vehicle is presented in Chapter 7. 

 

4.4 Summary 

This chapter presented a qualitative overview of structural crash modes. Simple 

examples were presented to demonstrate the crash mode hypotheses as being distinct, 

characteristic and provide a partitioning of the design space into regions where the design 

exhibit similar crashworthiness performance. The chapter also discussed the discovery of 

desirable crash mode(s) for a vehicle structure, and how reduced order dynamic model 

may be beneficial for the exploration task. Equivalent Mechanism models, being a 

reduced order dynamic model developed exclusively for crash modeling, were presented 

in this chapter as a candidate modeling approach for discovery of the desirable crash 

mode. 
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CHAPTER 5 

QUANTIFICATION OF CRASH MODES 

Previous discussions of vehicle structural crash modes in this thesis have only 

considered the crash mode concept from a qualitative sense. In order to incorporate crash 

mode matching into the proposed methodology, quantitative definitions need to be 

established to allow for automated crash mode matching. This chapter introduces formal 

quantitative definitions for the crash mode as well as quantitative metrics for comparison 

of degree of mismatch between vehicle structure designs having different crash modes. 

 

 

5.1 Quantitative Definition of Crash Modes 

5.1.1 Definition 

The crash mode (CM) is qualitatively understood as the time history of 

deformations in various zones of the vehicle structure. A quantitative definition for the 

crash mode is proposed in this thesis as a matrix of time series corresponding to different 

deformation types averaged over different regions of structural zones : 

 

CM  = (cmij(t));   i =1, 2, 3;   j = 1, …, m   (Equation 5.1) 
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where: 

cmij(t)  R is the total deformation of a structural zone at time t 

t  [0, Tf] is the time instant at which the structure is observed. t 

ranges from zero to the final crash time Tf 

i  is an index on deformation type, which can be one of three 

possible types: 1) axial crush, 2) bending and 3) side-squish 

j  is an index on the number of zones 

m  is the number of zones defined for the structure 

 

Successful application of the proposed methodology relies on a proper selection 

of the structural zones and deformation types. The definition of the crash mode places no 

restriction on the definition of zones. An extreme case (and obviously improper) would 

be to regard the entire structure as one zone, which would not show a distinction between 

qualitatively identifiable different crash modes. Another improper extreme example 

would be to regard every element in a FE mesh as a separate zone, which while allowing 

distinction between different crash modes, has too many numerical modes that 

correspond to only few qualitatively-different modes. Also with the types of deformation, 

a variety of proper and improper choices are possible. Thus, it is the task of the designers 

(users of the proposed methodology) to ensure proper selection of zones as well as 

deformation types for the crash mode definition. While typically obvious to an 

experienced designer, some suggested guidelines for proper selection of zones are: 

 

 A region of the structure, which would be qualitatively judged as a 

structural member should be regarded as one zone, possibly divided into two 

or three zones at most if it’s a large member 
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 Only significant types of deformation that contribute to crash energy 

absorption should be recorded. For example, in the case studies considered 

in this thesis, the index i of the deformation type had three possible values: 

1 = axial crush, 2 = bending and 3 = side squish. It is noted that not every 

zone exhibits all of the deformation types, for example the bumper of a 

vehicle exhibits significant side squishing, but negligible axial 

deformation. 

 

5.1.2 Calculation of the Crash Mode for Finite Element Models 

Emanating from the definition of the crash mode in equation 5.1, this section 

provides an implementation to calculate the numeric values of the crash mode for FE 

models. A computer software is developed via visual C++ to assist the task. Fig. 5.1 

shows a screen shot of the program, along with an example FE mesh. The program is 

compatible with FE mesh file for both LS-DYNA and PAM-Crash softwares.  

 

The program user has the following tasks: 

1. Decide on the structural zones, and types of deformation to be recorded 

for each zone 

2. Define key observable cross-sections for deformation measurement for 

each zone 

3. Define key observable nodes for displacement measurement for each 

observable cross-section 
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The program then automatically retrieves the time history of motions for the key 

observable nodes from the commercial software’s solution file. The defined nodes for 

each key observable section are used to calculate the position at the centroid of the cross-

section. The relative motion of the centroids of the section (Fig. 5.2) with respect to the 

initial undeformed position is used to calculate relative displacements and rotations via 

vector algebra. The total sum of deformation is then calculated for each defined zone. It 

is noted that the torsional component of the rotation is disregarded as not being a major 

contributor in the considered case studies, and that the two bending components at every 

cross-section are vectorially added for one effective bending value. 

 

 
Figure 5.1. Screen shot of computer program for assisting the calculation of crash 

mode for finite element models 

Mounted 

observational mesh 

for a structural zone 

Finite element mesh 
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Details of the vector algebra to calculate the total deformations of a zone are 

illustrated in Fig. 5.2. The observational mesh is defined by the designer and it includes n 

key cross-sections in every structural zone and several key nodes in each key cross 

section. The vector points ri,o (i = 1, … n) are the positions of the centroids of nodes in 

each of the key cross-sections in the structure’s un-deformed state. Vector points ri,t are 

the centroids’ positions at some time t during the crash event. 

 

The total axial crush in a zone at time t is calculated as: 

 

cm1j(t) =  
1

1, , 1, ,

1

( ) ( )
n

i t i t i o i o

i

r r r r


 



      (Equation 5.2) 

 

The total bending in a zone at time t is calculated as:  
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 (Equation 5.3) 

 

The total side-squish in a zone is calculated exactly like the axial crush (using 

equation 5.2), except the observational mesh for the side squish is selected along the 

transverse direction of the structural zone (instead of the axial direction in case of the 

axial crush). 

 



 72 

 
Figure 5.2. Tracking zone deformations on a FE mesh for calculating the crash 

mode 

 

5.1.3 Calculation of the Crash Mode for Equivalent Mechanism Models 

Calculation of equivalent values of the crash mode for EM models is a simple 

task, because the EM models already incorporate deformable joints with mounted 

nonlinear springs. The program user needs only to identify the structural members that 

comprise a zone, and the deformation types of interest. The program then automatically 

sums over the deformations of the joints in the defined structural zones to calculate the 

CM values; axial joints for axial crush, rotational joints for bending, and side-squish axial 

joints for side squish values. 
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5.2 Comparison of Crash Modes 

5.2.1 Metric for Degree of Crash Mode Mismatch 

With the capability to calculate the crash mode values for a given structural model 

discussed in section 5.1.1, this section discusses metrics for judging the degree of match 

or mismatch between a crash mode of a given structure and a desired crash mode. A 

mismatch metric is defined in this section that corresponds to the definition of the crash 

mode in section 5.1.1. In essence, the crash mode mismatch metric is a two-dimensional 

matrix with dimensions being the number of zones and the number of deformation types. 

Each entry in the matrix is a time integral of the absolute error between actual and desired 

crash modes, normalized with respect to the desired crash mode. The mismatch metric is 

defined as: 

 

CMM = (cmmij);   i =1, 2, 3;   j = 1, …, m   (Equation 5.4) 
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   (Equation 5.5) 

 

where: 

cmij(t) is the time series of deformation type i in zone j from the 

crash mode of the design currently being tested. This data 

is usually available as a time series rather than a continuous 

function of time because it is obtained from a FE model 
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that only saves deformation values at discrete time 

intervals. 

cmij
*
(t) is the time series of deformation type i in zone j from the 

desired crash mode 

 

In many practical cases, it is often difficult to have accurate or detailed time 

history information of the desirable crash mode. This issue motivated the development of 

a more compact form of the crash mismatching metric. Examination of the profile of a 

times-series from a typical crash mode (Fig. 5.3) reveals three main stages of the time 

series: 

 

1. Deformation occurring somewhere else in the structure, and deformation 

in the considered zone is negligible 

 

2. Plastic deformation: which happens fairly rapid and during which, the 

considered zone is contributing to dissipate crash energy while plastically 

deforming 

 

3. Retention of deformed shape: in which the considered zone has consumed 

its folding space (cannot deform any more), and it is no longer 

contributing to the dissipation of crash energy. At this stage, if the crash 

energy is not fully dissipated, the structure typically undergoing further 

deformation in other zones of the structure, but not the considered zone. 
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This allows for a compact approximation of the desired crash mode as a step 

function: 

 

cm
*

ij(t) = (tto) d     (Equation 5.6) 

 


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 


otherwise1

0 if0
)(

t
t      (Equation 5.7) 

 

Where (t) is the unit step function, d and to are the magnitude and start time of 

the step (Fig 3.3), respectively. 

 

 

 

Fig. 5.3. Typical profile of a crash mode time series cmij(t) and its approximation as 

a step function.  
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Adoption of the step function approximation for the desirable crash mode 

significantly facilitates the use of prior expertise, because the designer using the proposed 

methodology only needs to provide the pairs (t0, d) for each cmij
*
 instead of a full time 

series. 

 

 

5.2.2 Relaxed Metric for Degree of Crash Mode Mismatch 

While the crash mismatch metric introduced in equation 5.5 seems like a natural 

definition, it has the downside of making no numerical distinction between a crash mode 

exhibiting more deformation than desired values from a crash mode exhibiting roughly 

equal amount of less deformation than the desired values. Furthermore, crash modes for 

designs that do positive error over some portion of the time integral then recover via 

negative error over another portion, while not exactly matching the desired crash mode, 

are better than other designs that go only one side of the error (positive or negative). This 

can be argued because the deformations in structural zones are generally associated with 

energy dissipation, a truly mismatching crash mode of a design is one that completely 

misses the target value in some zone / deformation type. The need for exact match at 

every time instant can redundant. Fig. 5.4 shows a sketch of two cmij time series. The 

crash mode mismatch metric evaluate to the same value for both series (evaluated via 

equation 5.5). However, from a qualitative sense, series #1 (exhibiting positive and 

negative errors over the time history) is a better match to the desired crash mode 
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Fig. 5.4. Example time series mismatch relative to a desired crash mode.  

 

 

To address the shortcomings of the mismatch metric calculated via equation 5.5, a 

relaxation of equation 5.5 is introduced by removing the absolute operator from the error 

integrals. 
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    (Equation 5.8) 

 

The relaxed mismatch metric is perceived beneficial as it can take on either 

positive or negative values, which can be a direct indication to the designer (or the 

automated crash mode matching algorithm) as to which structural zones are overly strong 
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(cmmij evaluates to a negative value) or overly weak (cmmij evaluates to a positive value). 

Also, in a scenario such as the one presented in Fig. 5.4, series #1, which has a better 

qualitative match to the desired crash mode than series #2, would have less mismatch 

error than series #2 when the relaxed mismatch metric (equation 5.8) is used. 

 

In the examples and case studies presented in chapters 6, 7 and 8, the relaxed 

mismatch metric (equation 5.8)  will be the one used for crash modes comparison and 

crash mode matching. 

 

 

5.3 Summary 

This chapter introduced quantitative definitions for the crash mode as well as 

quantitative metrics for comparison of degree of mismatch between vehicle structure 

designs having different crash modes. The next chapter presents the core algorithm in the 

proposed methodology that uses the crash mode definitions in this chapter to perform 

automated crash mode matching. 
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CHAPTER 6 

AUTOMATED CRASH MODE MATCHING ALGORITHM 

This chapter presents the final piece in the proposed methodology, which is the 

automated design optimization algorithm that uses crash modes matching to accelerate 

the discovery of good designs. A simple example is also provided in this chapter to 

demonstrate the steps of the algorithm and provide a comparison with other existing 

optimization algorithms. 

 

6.1 Algorithm Overview 

The algorithm for automated crash mode matching is based stochastic sampling of 

the search space (Fig. 6.1). The algorithm seeks to find the optimum values of the design 

variables (x
*
) that minimize the objective(s) f(x) (equation 3.1), subject to the constraints 

g(x) (equation 3.2). 

 

The algorithm is started at some initial design and iterations are repeated 

throughout the search. The algorithm draws out a number of sample designs in every 

iteration according to a multi-dimensional Gaussian distribution on the design variables. 

The averages and standard deviations of the Gaussian distributions for each design 

variable are adjusted at the beginning of every iteration based on the degree of mismatch 

between the crash mode of the current design and the desired crash mode. A copy the 
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best encountered design is stored separately before then the best among an iteration’s 

samples becomes the new current design. Iterations are continued till the discovery of a 

design that has satisfactory performance or until a pre-set number of sample designs are 

examined. 

 

 

 
Figure 6.1. Overview of the automated crash mode matching algorithm 
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6.2 Algorithm Inputs 

There are four categories of the algorithm inputs, these are listed as: 

 

1. Definition of the optimization problem: Detailed FE model and definitions 

of the Design variables (x), (including lower and upper bounds on the 

design variables, xmin and xmax respectively), Objective(s) (f(x)) and 

constraints (g(x)). 

2. Crash mode matching data: Definition of the zones and deformation types 

for calculating the crash modes, as well as values for the desirable crash 

mode cmij
*
 = (t0ij, d ij), i = 1, 2, 3, j = 1, …, m 

3. Sampling distribution adjustment rules: Rl, l = 1, …, nRules. The 

automated crash mode matching algorithm uses fuzzy logic (Hopgood 

2001) to adjust the Gaussian distributions on the design variables for 

sampling the search space. An advantage to fuzzy logic is that it allows 

application of logical rules to qualitatively assessed quantities then 

recommends numerical values as an output. An example rule is shown in 

Fig. 6.2. Every rule has a logical term and an action term. The fuzzy sets 

used in this dissertation in the logical term can be one of {NH: highly 

negative, NL: low negative, Z: near zero, PL: low positive, PH: highly 

positive}. The nominal adjustment value ( a ) is some number set for every 

defined fuzzy rule. A guideline for selecting the value of a  is given as: 

 For small increase/decrease adjustment, a  is recommended to be 

approx. +/- one tenth of the range of the design variable whose 

distribution is being adjusted. This is only a guideline that seemed 
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to work well in some test problems. The algorithm user may use 

other values if appropriate knowledge of the problem is at hand. 

 For small increase/decrease adjustment, a  is recommended to be 

approx. +/- one fifth of the range of the design variable whose 

distribution is being adjusted 

4. Tuning parameters for the algorithm: Number of sample designs to 

examine in each iteration (nIterSamples), minimum values for the standard 

deviations of the Gaussian distributions (i,min i = 1, …, nVar) and a 

maximum number of iterations (nIter) 

 

 

 
Fig. 6.2 Example fuzzy design adjustment rule 

 

 

6.3 Algorithm Steps 

6.3.1 Algorithm Pseudo-code 

1. Start at an initial design x
o
, Evaluate x

o
, set current best design x

*
 = x

o
 

2. Initialize iteration counter iIter = 0 

R3: If cmm24 is PH and cmm13 is NH,  then adjust x5 by a  

Rule number Logical Term Action Term 
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3. If x
o
 is better than x

*
, set x

*
 = x

o
 

4. If iIter ≥ nIter, goto step #18 (termination) 

5. Evaluate the relaxed crash mode mismatch metric for current design cmmij 

i = 1, 2, 3, j = 1, …, m  (according to equation 5.8) 

6. Initialize the Gaussian distributions for sampling the design space for 

current iteration:  = x
o
,  = 0 

7. Initialize the fuzzy logic rules counter: l = 0 

8. Set l = l + 1 

9. Evaluate the fuzzy rule Rl. Every fuzzy rule returns a rule activity-value  

(a [0, 1]), index of affected design variable (ia  {1, 2, …, nVar}) and 

adjustment level ( a ). Calculate the sampling distribution adjustment value 

a  according to: 

.a a a     (Equation 6.1) 

 

10. Adjust the Gaussian distributions: 
a ai i a   , 

a ai i a    

11. If l < nRules, goto step #8 (loop until all fuzzy rules have been evaluated) 

12. Ensure the standard deviations of the Gaussian distributions are equal to or 

larger than the minimum: If i, <i,min , set i, = i,min , i = 1, …, nVar 

13. Generate sample designs x
k
, k = 1, …, nIterSamples from the search space 

with the Gaussian probability distribution (, ) 

14. Run the detailed FE model for each sample design, save the FE run 

results, and evaluate f(x
k
) and (g(x

k
), k = 1, …, nIterSamples 

15. Identify x
†
, as the best among the drawn samples x

k
, k = 1, …, 

nIterSamples 

16. Set x
o
 = x

†
 and iIter = iIter + 1 
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17. Goto step #3 (beginning next iteration of the main loop) 

18. Return x
*
, f(x

*
) and (g(x

*
) 

 

6.3.2 Algorithm Details 

Implementation of the algorithm into computer code is performed via the C++ 

programming language. Source code of the program is provided in Appendix D. Details 

of the main steps of the algorithm are provided as follows: 

 

The proposed algorithm examines a number of sample designs in every iteration 

then uses the best among the sample as the new current design, but best among the 

samples may not be better than current design. Step #3 of the algorithm ensures that a 

separate record is kept for the best encountered design during the stochastic sampling. 

This is known in Genetic Algorithms literature as “elitism”, which is important for the 

convergence properties of any optimization algorithm that uses stochastic sampling of the 

search space. 

 

The criteria for comparison between two designs as to which is “better” which is 

used in step #3 (and later in step #15) are summarized as: 

 If both designs are infeasible (one or some g(x) > 0), a penalty function is 

employed (weighted sum of amount of constraint violation) for the 

comparison. 

 If one design is feasible (all g(x) ≤ 0), yet the other design is infeasible 

(one or some g(x) > 0), the feasible design is a better design 
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 If both designs are feasible (all g(x) ≤ 0), the design with least value of 

f(x) is the better design. Ties are broken randomly. If there are multiple 

objectives, weighting is employed. 

 

Step #5 uses the saved results of the detailed FE model for current design to 

evaluate the relaxed crash mode mismatch metric (Equation 5.8). 

 

Step #6 initializes the Gaussian distributions for generating the sample designs in 

the current iteration. The distributions are initially centered on the current design ( = x
o
) 

and having zero variance ( = 0) 

 

Steps #7 through #11 is a loop over the defined fuzzy rules (Hopgood 2001) for 

design adjustment (third category of the algorithm inputs in section 6.2). Each rule has a 

qualitative logical term and a qualitative action term (Fig. 6.2), explained as follows:  

 

 The logical term typically examines part of the relaxed crash mode 

mismatch metric. For example: “If cmm12 is NH”.. The logical term is 

evaluated in the algorithm into the action value a, which is simply the 

value of the membership function (Hopgood 2001) in the qualitative level 

values {NH, NL, Z, PL, PH}. The membership functions implemented in 

the algorithm are two-sided sigmoid functions (Mathworks, 2001), shown 

in Fig. 6.3. 
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 For logical terms that employ multiple logical expressions, for example “If 

cm13 is PH AND cm25 is Z”, the action value a is calculated as the 

minimum of the membership values in each expression. 

 The action term of the fuzzy rule provides an index ia for the design 

variable whose sampling distribution is to be modified, and the adjustment 

value a . The value of a  is used for the calculation of the total adjustment 

value a  via equation 6.1. Finally, the mean and standard deviation values 

of the design variable in question ( ,
a ai i  ) are updated in step #10. 

 

 

 
Fig. 6.3. Membership functions for the fuzzy design adjustment rules 
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Step #12 re-adjusts the standard deviation on the sampling distributions so that 

they are at least at the minimum values as in the algorithm tuning inputs (fourth category 

of the algorithm inputs in section 6.2) 

 

Step #13 uses the computer’s random number generator to generate a number of 

sample designs with the design variable values following the Gaussian distribution (, ). 

 

Steps #14 through #16 go through performing the detailed FE runs for each of the 

generated sample designs. Best design among the samples becomes the new current 

design and the iteration counter is updated. 

 

The algorithm iterations are continued till the pre-set number of iterations is 

reached, then the best encountered design (which is being recorded in step #3) is 

returned. 

 

 

6.4 Algorithm Convergence 

The proposed algorithm for crash mode matching is a stochastic search technique. 

As with all stochastic search algorithms, there are the following drawbacks: 

 No guarantees on producing the same answer to the same problem every 

time the algorithm is run 

 Convergence to the global optimum is not guaranteed unless certain 

criteria are fulfilled 
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The discussion in this section follows similar analysis to one of the convergence 

proofs of genetic algorithms (Coello et. al. 2001). There are two sufficient conditions for 

global convergence of a genetic algorithm, which are summarized as: 

 Elitism: This is keeping a separate record of the best member(s) in the GA 

population until a better one(s) is discovered. In analogy, this condition is 

met in step #3 of the proposed algorithm. 

 Reachability: This is having non-zero probability to reach the optimum 

from any randomized initial population. In analogy, this condition is met 

in the proposed algorithm because the Gaussian distributions for the 

design space sampling have non-zero probability over the entire search 

space. 

 

The discussion in this section shows that with the elitism and reachability 

conditions met, it is possible to establish the proof of convergence for the proposed 

algorithm as well. 

 

6.4.1 Algorithm Convergence for Discrete Design Variables 

The proof in this section considers the case when all the design variables in the 

vector x are discrete. The proof will employ Markov chains (Resnick 1992) to show that 

the best encountered design in the algorithm (x
*
) converges to the global optimum (x

**
) 

within a finite number of iterations. 

 

Some of the definitions from Discrete Markov Chains (Resnick 1992) are used in 

the proof and are listed as: 



 89 

 Stochastic state: is some observable quantity which may change over time.  

 Discrete-state: is a stochastic state which may only take on certain discrete 

values that may be enumerated i = 1, 2, …, NStates 

 Discrete-time-discrete-state: is a discrete state which changes over time, 

but only during regular discrete periods of time. 

 State Transition Matrix (P): is a matrix of probability values for the 

transition between one state to another in a discrete-time-discrete-state 

stochastic process. P = {Pij} = P(i → j). Fig. 6.4 shows an illustration of a 

state transition matrix. The value Pij inside a cell of the matrix is the 

probability of transition from the discrete state i (row index) to the discrete 

state j (column index) in the next time step. A grey colored cell illustrates 

Pij having a non-zero value, while a white colored cell illustrates Pij = 0. 

 Class of States: are a group of states having some common property. For 

example, in the observation of people in a queue, with the state being the 

number of people in the queue. All states that correspond to a queue less 

than 5 people may be considered a class of states 

 Closed Class of States: are classes of states that have only zero values in 

the state transition matrix for transition between any of the states in the 

closed class to a state outside the closed class. By definition, when the 

state of a stochastic process reaches a closed class, it may change to other 

states within the closed class, but cannot change to a state outside the 

closed class. In Fig. 6.4, the discrete states 2, 3 and 4 form a close class 

because the probability of transition from any of those states to some other 

state (besides states 2, 3 and 4) is zero. 
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Fig. 6.4 Illustrations of some Concepts in Discrete-Time-Discrete-Event Markov 

Chains 

 

 

The proposed algorithm for automated crash mode matching is modeled as a 

Markov Chain: 

 

The state is defined as the pair of vectors (x
o
, x

*
), i.e. current design and best 

encountered design so far 

Current State (i) 

N
ex

t 
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at
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(j
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1 2 3 4 … NStates 

N
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a
te

s 
1

 
3
 

2
 

4
 

…
 

State transition 
proability: 

Grey: 0 <P ≤ 1 
White: P = 0 

States #2, #3 &#4 are forming a closed class. 
Transition probabilities to states outside the 
class are zero 
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Since the design variables are discrete and have lower and upper bounds (from 

algorithm inputs, section 6.2), then the number of all possible values for (x
o
, 

x
*
), is finite and can be enumerated 1, …, NStates 

 

Thus, the algorithm state (x
o
, x

*
) is a discrete state 

 

The algorithm state (x
o
, x

*
) only changes (updates to values of x

o
 and/or x

*
) once 

per iteration of the main loop (steps #3 through #17) in the proposed 

algorithm 

 

Thus, the algorithm state (x
o
, x

*
) is a discrete-time-discrete-state. With time in this 

case being the iteration counter iIter 

 

Define a class C
*
: (x, x

**
) as all the states that include the global optimum 

 

C
*
 is closed class of states. This is established via step #3 in the proposed 

algorithm. When/if the optimum design (x
**

) is encountered by the algorithm, 

the algorithm will set x
*
 = x

**
. Since x

*
 now holds a copy of the optimum 

design, it will no longer be changed again in step #3 of the algorithm. 

 

Since the distributions for generating the samples in the proposed algorithm are 

Gaussian distributions thus having non-zero values of the state transition 

probabilities (Pij) in the state transition matrix are all non-zero as long as x
*
 ≠ 

x
**

.(so there exists a chance for x
*
 .to change in step #3). 
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Thus, C
*
 is the only closed class in the Markov Chain. 

 

The absorption property (Resnick 1992) of discrete-time-discrete-state Markov 

chains that have a finite number of states, indicates that the state of the 

Markov chain gets absorbed in one of the closed classes in finite time. Note: 

time in this Markov Chain is the number of iteration of the algorithm iIter 

 

Since C
*
 is the only closed class in the Markov Chain, it is thus established that 

the algorithm can be started at some (x
o
, x

o
) and it converges to (x, x

**
) within 

a finite number of iIter 

 

 

6.4.2 Algorithm Convergence for Continuous Design Variables 

The proposed algorithm is meant to be applicable to problems involving discrete, 

continuous or mixed discrete and continuous variables. While it is not possible to 

guarantee convergence to the exact optimum in finite time if one or some of the design 

variables are continuous, this sub-section provides a discussion to show that it is possible 

to achieve convergence to a design that is at -distance (which can be made very a small 

distance in the space of design variables, but not zero) from the optimum design x
** 

within finite time. 

 

Replace all the design variables xi , i = 1, …, nVar that may take continuous 

values, with discrete variables that may only take on values: 

 xi
†
 = xi,min +k . (xi,max – xi,min)/ nDiv, k = 0, 1, …, nDiv (Equation 6.2) 
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The discrete problem (x
†
 replacing x) now replaces the original problem. In the 

discrete problem, there exists an optimal design x
†*

 that is within -distance 

from x
**

.  can be made sufficiently small (but still  > 0) by choosing nDiv 

sufficiently large. 

 

The convergence proof in section 6.4.1 is repeated for the discrete problem. This 

shows the algorithm started at some (x
o†

, x
o†

)  and it converges to (x
†
, x

†*
) 

within a finite number of iIter 

 

 

6.5 Demonstrative Example 

This section presents a step by step demonstration of the automated crash mode 

matching algorithm to vehicle mid-rail problem that was introduced in chapter 4. The 

model of the problem is shown in Fig. 6.5 and data is summarized in Table 6.1. The sheet 

metal thicknesses (t1, t2) in zone #1 and zone #2 respectively are independent variables, 

and are assumed to take discrete values between 1.0mm and 4.0mm in steps of 0.2mm. 

 

 

6.5.1 Inputs to the Algorithm 

Category #1 of Inputs: Objectives, Constrains & Design Variables: 

The objective is to reduce the total deformation in zone #2: 

Min. f (t1, t2) = Total deformation in zone #2  (Equation 6.3) 
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Figure 6.5. Vehicle Mid Rail Model 

 

 

There are two independent design variables (t1, t2) which are the sheet metal 

thicknesses in zone #1 and zone #2 respectively. Both t1, t2  {1.0, 1.2, 1.4, …, 4.0}. 

There are no explicit constraints in this example. 

 

It is noted that there are no constraints on structural weight in this optimization 

problem. At first glance, this might imply that the optimum design to minimize 

deformation would be attained by setting both variables t1, t2 at maximum range (for 

maximum structural stiffness). However, this is not true because it leads to an undesirable 

crash mode (deformation at zone #2 first). 

 

 

Zone #1 Zone #2 

vo 

x 

z 

y 

M 
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Table 6.1. Parameter values for the Vehicle Mid Rail example 

 

Symbol Description Value Unit 

M Payload mass 200.0 kg 

vo Initial velocity 10.0 m/s 

L1 Length of Zone #1 650.0 mm 

L2 Length of Zone #2 375.0 mm 

h Box section height 90.0 mm 

b Box section width 60.0 mm 

 Inclination angle 23.5 deg 

d Z-direction rail axis offset 120.0 mm 

t1 Sheet thickness in Zone #1 (Variable) mm 

t2 Sheet thickness in Zone #2 (Variable) mm 

 

 

Category #2 of Inputs: Desirable Crash Mode: 

A good estimate of the desirable crash mode for this structure is to have a large 

amount of axial deformation in zone #1 and a small amount of bending deformation in 

zone #2. When accurate time history profile for the desired crash mode is not available, it 

is convenient to use the compact form of the desired crash mode (Equation 5.6). The 

selected values in this example are: 

 

cm11
*
  (t01, d1) = (0.03, 500): 500mm total axial deformation in zone #1, reaching 

half the deformation value at time 0.03 (30ms after hitting the barrier). 

500mm is reasoned to be a large amount of deformation (compared to 
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650mm, which is the total axial length of zone #1) and 30ms is reasoned to 

be an early crush (initial crash velocity 10m/s, for the deformation to reach 

half its final value in zone #1 after 30ms, means crush must initiate in zone 

#1). 

 

cm22
*
  (t02, d1) = (0.06, 0.1): 0.1 rad for total bending in zone #2, reaching half 

the deformation value at time 0.06 (60ms after hitting the barrier). 0.1rad is 

essentially requiring almost zero deformation in zone #2, however zero 

values are not allowed as inputs in desired crash mode otherwise it would 

cause a numerical singularity in Equation 5.8. 60ms is reasoned to be a late 

crush 

 

Given the configuration of the structure, the rest of zone/deformation types 

(bending in zone #1 and axial deformations in zone #2) were not deemed important for 

this example study. 

 

Category #3 of Inputs: Sampling Distribution Adjustment Rules: 

No deep insights as to the behavior of the crash mode verses changes in the 

design variables are assumed available for this study. The only rules defined are simple-

logic of: “if a structural zone is deforming too much, then it could use reinforcement, 

then the design variable affecting the zone should be increased”. A listing of the fuzzy 

rules is given as: 

 

R1: If cmm11 is NH then adjust t1 by “-ve large amount” 

R2: If cmm11 is NL then adjust t1 by “-ve small amount” 
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R3: If cmm11 is PL then adjust t1 by “+ve small amount” 

R4: If cmm11 is PH then adjust t1 by “+ve large amount” 

R5: If cmm22 is NH then adjust t2 by “-ve large amount” 

R6: If cmm22 is NL then adjust t2 by “-ve small amount” 

R7: If cmm22 is PL then adjust t2 by “+ve small amount” 

R8: If cmm22 is PH then adjust t2 by “+ve large amount” 

 

Category #4 of Inputs: Tuning Parameters for the Algorithm: 

The number of samples per iteration was chosen as nIterSamples = 8 

The total number of iterations was chosen as nIter = 20 

The minimum value for the standard deviations on the sampling distributions was 

chosen as 1,min = 2,min = 0.3mm (within 5% to 10% of the variables’ minimum to 

maximum ranges) 

 

 

6.5.2 Simulation of the Algorithm Steps 

The sub-section goes through a simulation of steps of one iteration of the 

automated crash mode matching algorithm. 

 

The initial design x
o
 was at (t1, t2) = (2.0mm, 3.0mm). This start was a random 

choice close to the mid ranges of the design variables. 
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Step 1: 

FE model is run for the values of (x
o
). The objective function value (total 

deformation in zone #2), f (x
o
) = 378mm. 

 

Step 3: 

Since this is the first iteration in the algorithm, the values of x
o
 and f (x

o
) are the 

best known (so far), so they are copied to x
*
 and f (x

*
) 

 

Step 5: 

The mean values of the sampling distributions are initialized to coincide on x
o
: 

1  = 2.0mm 

2 = 3.0mm 

 

Using the results of the FE run for the values of (x
o
), the relaxed crash mode 

mismatch metric (Equation 5.8) is calculated. The values came out to be:  

cmm11 = – 0.15 

cmm22 = 36.7 

 

Using the two-sided sigmoid membership functions (Fig. 6.2), membership values 

are calculated for the crash mismatch metrics: 

cmm11 has membership values: 0.301, 0.689, 0.015, 0.000 in NH, NL, PL, PH 

respectively 

cmm22 has membership values: 0.000, 0.000, 0.000, 1.000, in NH, NL, PL, PH 

respectively 
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Steps 9 & 10: 

Application of the sampling adjustment rules is performed (step #9 and #10 in the 

algorithm): 

R1: activity value a = 0.301 (membership of cmm11 in NH), action is on the 

sampling distribution of t1, by an amount: 

a  =  – (t1,max – t1,min)/5 = -0.6mm.  

This adjusts 1 by a  = 0.301 × -0.6, now 1 = 1.819mm 

This also adjusts 1 by a , now 1 = 0.181mm 

R2: activity value is 0.689 (membership of cmm11 in NL), action is on the 

sampling distribution of t1, by an amount: 

a  =  – (t1,max – t1,min)/10 = -0.3mm.  

This adjusts 1 by a  = 0.689 × -0.3, now 1 = 1.613mm 

This also adjusts 1 by a , now 1 = 0.387mm 

R3: activity value is 0.015 (membership of cmm11 in PL), action is on the 

sampling distribution of t1, by an amount: 

a  = (t1,max – t1,min)/10 = 0.3mm.  

This adjusts 1 by a  = 0.015× 0.3, now 1 = 1.617mm 

This also adjusts 1 by a , now 1 = 0.391mm 

R8: activity value is 1.000 (membership of cmm22 in PH), action is on the 

sampling distribution of t2, by an amount: 

a  = (t1,max – t1,min)/5 = 0.6mm.  

This adjusts 2 by a  = 1.000× 0.6, now 2 = 3.6mm 

This also adjusts 2 by a , now 2 = 0.6mm 
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R4, R5, R6, R7 have activity values of almost zero (membership of cmm11 in 

PH, and memberships of membership of cmm22 in NH, NL, PL 

respectively), thus almost no effect on the sampling distributions. 

 

Standard deviations are checked verses their minimum set values (step #12 in the 

algorithm), which is 0.3mm in the algorithm inputs. Both 1, 2 are already sufficiently 

large. 

 

Step 12: 

The sampling distributions are then used to generate 8 sample designs following a 

Gaussian distribution with the mean values (1, 2) = (1.617, 3.6) and standard deviations 

(1, 2) = (0.39, 0.6). Since the design variables may only take on discrete values, the 

generated samples are rounded off to the nearest discrete value of (t1, t2) 

 

The samples generated in this instance of simulation were: (1.8, 3.2), (1.6, 4.0), 

(1.2, 3.8), (1.4, 3.6), (1.8, 3.2), (1.4, 3.4), (1.6, 3.6), (1.8, 3.4) 

 

Best among the samples in this simulation of the algorithm was at (1.2, 3.8), 

which is: 

t 1 = 1.2mm 

t 2 = 3.8mm 

f (1.2, 3.8) = 2.04mm 
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Step 3: 

The current design x
o
 is now replaced by the values (1.2, 3.8), and since the 

objective function value f (1.2, 3.8) was better than the previously best known. The 

current best known design is also updated: 

x
o
  = (1.2, 3.8) 

x
*
 = x

o
 

 

20 more iterations of the algorithm (similar to the steps described in this sub-

section) are repeated, then the values of x
*
 and f (x

*
) are returned. 

 

 

6.5.3 Performance Assessment of the Algorithm 

It is worth noting that the size of the search space (total number of possible 

designs) for this optimization problem is 256, which is a small enough number to allow 

for exhaustive search (full enumeration of every design in the search space). While 

completely impractical for crashworthiness design problems that involve structures of 

realistic level of complexity, exhaustive search was performed for this problem to ensure 

the discovery of the global optimum and use it for assessment of the performance of the 

automated crash mode matching algorithm. 

 

Exhaustive search revealed the global optimum for this problem to be at: 

t 1 = 1.2mm 

t 2 = 4.0mm 

f (1.2, 4.0) = 2.01mm 
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As with all stochastic search-based algorithms, the global convergence property 

(section 6.4) only guarantees convergence to the global optimum after running the 

algorithm for a sufficiently large number of iterations. The algorithm does not necessarily 

produce the same result it is run. In order to assess the performance of the algorithm, 100 

independent runs were performed, with different initial state of the random number 

generator. Summary of the results is provided in Table 6.2. 

 

Out of 100 runs in this study, the automated crash mode matching algorithm was 

successful in attaining the exact optimum in 85 runs. Furthermore, 99 runs out of the 100 

produced a result whose objective function value was within 10% of the optimum. 

Designs within 10% of the optimum (10% of 2.01mm deformation in zone #2 is 

approximately 2.2mm) had a crash mode that correctly matches the desirable crash mode 

from a qualitative sense. Designs encountered during exhaustive search that didn’t match 

the desired crash mode had deformations in zone #2 in range between 300mm and 

450mm. 

 

As a comparison, the optimization problem was also addressed via Genetic 

Algorithm (GA), which is well known and popular stochastic based search (Goldberg 

1989, Michalewiz, and Fogel, 2000). Parameter settings for tuning of the GA are listed in 

Table 6.3. All the parameters are typical values from the literature except the population 

size of 8, which is a small number for typical GA. It is noted however, that in typical GA 

application problems, the population size is usually less than 1% of the size of the search 

space. A population size of 8 is in fact 3.1% of the size of the search space. Also, for an 

appropriate comparison, the total number of objective function evaluations is set to the 

same value as the automated crash mode matching algorithm runs: 20 generations × 8 
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population size is 160 objective evaluations, which is the same as the 20 iterations, with 8 

samples in each iteration for the automated crash mode matching algorithm. 

 

 

 

Table 6.2. Summary of the Results of 100 Algorithm Runs 

 

 Auto-CMM GA 

Number of runs successfully attaining 

the optimum 
85 84 

Number of runs successfully attaining a 

result within 10% of the optimum 
99 89 

 

 

 

Table 6.3. Genetic Algorithm Parameters used in Study 

 

Number of Generations 20 

Population Size 8 

Crossover Probability 90% 

Mutation Probability 5% 

Crossover Type Arithmetic / Heuristic 

Mutation Type Randomize within upper and 

lower bound 
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Results of the GA are displayed in Table 6.2. It is observed that for 100 

independent runs, GA was successful in attaining the exact optimum 84 times. . 

Furthermore, 89 runs out of the 100 produced a result whose objective function value was 

within 10% of the optimum. Overall, this study shows a slight advantage of the 

automated crash mode matching algorithm compared to GA. In more complex problems, 

direct linking of GA to detailed FE models may not be feasible with available 

computational resources (for example, the case study presented in Chapter 8). 

 

On a side note, exhaustive search of this problem revealed that the objective 

function doesn’t have any local minima except the global optimum, so any hill-climber 

type optimization algorithm (Michalewiz, and Fogel, 2000) is guaranteed to find the 

optimum regardless of the starting point. Local minima however are a known issue in 

crashworthiness design problems even ones involving fairly simple structures (Chen 

2001). This is the reason hill-climber or gradient based algorithms are rarely used for 

crashworthiness problems involving structures of realistic level of complexity, and were 

not included in this study. 

 

6.6 Summary 

This chapter presented the proposed crashworthiness optimization algorithm that 

employs automated crash mode matching to accelerate the discovery of good designs 

within a stochastic search framework. Global convergence properties of the algorithm are 

established, and a simple example is presented to demonstrate the algorithm performance 

from a practical point of view. The next chapters provide application studies of the 

proposed crashworthiness design methodology to larger scale vehicle structures. 
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CHAPTER 7 

CASE STUDY 1: FRONT HALF-BODY VEHICLE MODEL 

 

This chapter presents a case study in which the proposed methodology for 

structural crashworthiness design is examined. The study considers a simplified FE 

model of a vehicle with only few box-section members, undergoing a full-lap frontal 

crash against a rigid barrier. The proposed methodology is successful in attaining good 

designs while requiring moderate computational resources. 

 

7.1 Problem Model 

The model of the vehicle (Fig. 7.1) is set to simulate frontal crash conditions 

against a rigid barrier. The FE model has the following specifications: 

 

 All main structural members are box-section 

 The engine and power train are represented as a rigid box of mass 250 kg, 

connected to the engine mounting points via stiff beams. 

 The rest of the vehicle mass (600 kg) is represented as a lumped mass connected 

to the structure via stiff beams. 

 Crash speed is 15.6 m/s (35 mph) 

 Coefficient of friction at the rigid barrier is 0.3 

 Material model is elastic-plastic for mild steel 
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There are 4 continuous and 14 discrete design variables:  

 

 h1, b1 [mm]: height and width of the box-section of upper rails and cross members 

(continuous in [50, 150]). These variables govern the dimensions of the box 

sections in zones 1 through 6, 13 and 14 as indicated in Fig. 7.1 

 h2, b2 [mm]: height and width of the box-section of lower rails and cross members 

(continuous in [50, 150]). These variables govern the dimensions of the box 

sections in zones 9 through 12 as indicated in Fig. 7.1.  

 Zones 7 and 8 are connectors between upper and lower members and have 

tapering cross section between them. 

 t1, …, t14 [mm]: sheet metal thickness of the box-section, for structural zones 1 

through 14 as indicated in Fig.7.1 (discrete in {0.6, 0.8, 1.0, …, 4.2, 4.4}). 

 

The design objective is to minimize the structural mass, subject to safety 

constraints on the passenger:  

 

 f  [kg]: structural weight, to be minimized 

 g1 < 100 [mm]: intrusion into passenger compartment, measured as the maximum 

relative deformation during the crash event between points A and B in Fig. 7.1 

 g2 < 30 [G]: maximum acceleration at passenger compartment during the crash 

event, measured at point A in Fig. 7.1 
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Fig. 7.1. FE model of front half of a vehicle subjected to full-overlap frontal crash. 
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7.2 Previous Optimization Attempts 

This section summarizes previous optimization attempts for this case study 

problem. Running optimization over a response surface meta-model which was used to 

approximate the behavior of the FE model achieved little success. Limited success was 

achieved in in (Hamza and Saitou 2004c) via application of genetic algorithm (GA) 

(Goldberg 1989, Michalewicz 1996) directly to the FE model. The study in (Hamza and 

Saitou 2004c) also examined manual (non-automated) crash mode matching (with the 

desired crash mode identified via an EM model). The manual crash mode matching 

produced the best (so far known) result to the problem. 

 

7.2.1 Optimization via Response Surface Models 

As discussed in chapter 2, structural crashworthiness optimization via response 

surface models seems to be the most popular approach for automated design in practice. 

The approach follows 3 main steps: 

 

1. Sampling of the design space via detailed FE model runs 

2. Fitting of a response surface model over the sampled designs to form a meta-

model 

3. Running an optimization algorithm while using the meta model for the 

objectives and constraints estimation (instead of the detailed FE model) 

 

In step #1, a standard orthogonal array L54 (Phadke 1993) was used for design of 

experiments (DOE) drawing of samples in design space. The L54 array allows for data 

fitting of up to 25 variables, with each variable being sampled at 3 different levels. Use of 
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this array for sampling only requires running the detailed FE model for 54 sample designs 

(compared to a full factorial DOE of 3
18

 = 387420489 samples), but the higher order 

interactions between the variables cannot be observed.  

 

Depending on the variables to column assignments (Phadke 1993) in the standard 

orthogonal array, there can be multiple instances of an orthogonal array (i.e. different 

values of the design variables in the set of 54 design samples). In this study, 2 different 

instances of the L54 orthogonal array were used. Full listing of the sample designs and 

the values of objective and constraints obtained from the detailed FE model is provided in 

Appendix B. The generated design samples are labeled sample set #1 and sample set #2  

 

In step #2, 2
nd

 order polynomial and Kriging were used to fit the samples data of 

each sample set, as well as all the generated samples. This allowed the construction of 6 

different meta-models, listed in Table 7.1. The meta-models were labeled RSM1 through 

RSM6. 

 

In step #3, genetic algorithm (GA) is used for the design optimization by running 

it while using the constructed meta-models for estimation of the objective and 

constraints. Since the objective and constraints estimation via the meta-models is very 

fast, this allowed a thorough GA run until full convergence of the GA. Parameters for the 

GA runs are listed in Table 7.2. 
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Table 7.1 Listing of the Constructed Meta-Models for Case Study 1  

 

Meta-Model Description 

RSM1 2
nd

 Order polynomial fitted over sample set #1 

RSM2 2
nd

 Order polynomial fitted over sample set #2 

RSM3 2
nd

 Order polynomial fitted over both sample set  #1 and #2 

RSM4 Kriging fitted over sample set #1 

RSM5 Kriging fitted over sample set #2 

RSM6 Kriging fitted over both sample set  #1 and #2 

 

Table 7.2. GA Parameters used in Optimization via Response Surface Models 

 

Number of Generations 150 

Population Size 80 

Crossover Probability 90% 

Mutation Probability 5% 

Crossover Type Arithmetic / Heuristic 

Mutation Type Randomize within upper and lower bound 

 

GA runs are performed for each of the constructed meta-models. The optimum 

values for the design variables for each run are listed in Table 7.3. The detailed FE model 

is then used to check the objective and constraint values of the obtained designs. It is 

observed that none of the runs were successful in producing a feasible design (g1 always 

violated). This result highlights the main drawback in optimization via response surface 

methods, which is the risk of obtaining invalid results if the constructed meta-model(s) is 

not sufficiently accurate. 
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Table 7.3 Results of Optimization via Response Surface Models 

 

 RSM1 RSM2 RSM3 RSM4 RSM5 RSM6 

h1 [mm] 90.0 90.0 90.0 90.0 90.0 90.0 

b1 [mm] 54.3 58.4 57.9 50.0 55.3 56.3 

h2 [mm] 50.0 51.6 50.0 50.0 50.0 50.2 

b2 [mm] 70.1 70.0 76.1 70.0 70.0 70.8 

t1 [mm] 2.0 2.0 2.0 2.0 2.0 2.0 

t2 [mm] 1.8 2.0 2.0 1.8 1.8 1.8 

t3 [mm] 1.6 1.8 1.8 1.6 1.6 1.6 

t4 [mm] 2.6 3.0 2.6 2.6 3.0 2.6 

t5 [mm] 3.2 3.2 3.2 3.2 3.2 3.2 

t6 [mm] 3.0 3.0 3.0 2.8 3.0 3.2 

t7 [mm] 1.2 1.2 1.2 1.0 1.0 1.0 

t8 [mm] 2.2 2.2 2.2 2.0 2.2 2.2 

t9 [mm] 2.6 2.4 2.6 2.8 2.4 2.4 

t10 [mm] 2.6 2.6 2.6 2.6 2.6 2.6 

t11 [mm] 2.8 2.8 3.2 2.8 2.8 3.0 

t12 [mm] 2.4 2.4 2.4 2.6 2.6 2.6 

t13 [mm] 1.8 1.8 1.8 1.8 1.8 1.8 

t14 [mm] 2.4 2.4 2.4 2.4 2.4 2.4 

f [kg] 

(RSM estimate) 
53.7 56.1 56.8 53.1 54.9 55.3 

g1 [mm] (≤ 100)  

(RSM estimate) 
100.0 99.6 99.8 99.7 99.9 99.6 

g2 [G] (≤ 30)  

(RSM estimate) 
26.3 29.2 28.3 26.5 27.9 28.3 

f [kg] 

(detailed FE) 
54.2 56.3 57.1 53.3 55.1 55.5 

g1 [mm] (≤ 100)  

(detailed FE) 
148.5 161.6 146.4 158.6 172.4 154.6 

g2 [G] (≤ 30)  

(detailed FE) 
27.1 30.4 29.9 26.7 28.1 26.8 

 

Improving the prediction accuracy of a meta-model may be achieved by 

restricting the ranges of variation for the design variables, or by increasing the number of 

sample designs used to construct the meta-model. However, both options seem infeasible 

for this case study. Restricting the ranges of the variables eliminates regions of the design 
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space and should not be done unless enough knowledge of the problem at hand suggests 

that the excluded regions do not contain optimal designs. Increasing the number of the 

sample designs to construct the model is impractical beyond a certain point. The meta-

models that were fitted using 108 design samples (RSM3 and RSM6) had only slightly 

better accuracy (Table 7.3) than the models that were fitted using 54 samples (RSM1, 

RSM2, RSM5 and RSM5). With the number of design samples to construct the meta-

model becoming as many as a few hundreds, the computational resources requirement 

would be fairly similar to linking an optimization algorithm directly to the detailed FE 

model, which is examined in the next sub-section. 

 

 

7.2.2 Optimization via Genetic Algorithm 

In this optimization attempt, genetic algorithm is directly linked to the detailed FE 

model. The GA parameters are listed in Table 7.4. It is noted that due to limitations on 

the available computational resources, the population size and number of generations for 

this GA run is smaller than what would typically be used. This GA run is essentially an 

attempt to discover a good design while using available computational resources for 500 

detailed FE runs (population size of 50 × 10 generations). 

 

The best obtained design by the GA run is listed in Table 7.5. The design is 

feasible (both constraints g1 and g2 are less than their maximum allowed values). 

However, neither constraint is close to its maximum allowed value, which would suggest 

the existence of better designs than the one discovered. However, the available 

computational resources (500 detailed FE runs) did not allow for finding better designs. 
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Table 7.4. GA Parameters for directly linked GA with the detailed FE model 

 

Number of Generations 10 

Population Size 50 

Crossover Probability 90% 

Mutation Probability 5% 

Crossover Type Arithmetic / Heuristic 

Mutation Type Randomize within upper and lower bound 

 

 

Table 7.5 Best obtained design by GA 

 

h1 [mm] 114.0 

b1 [mm] 67.0 

h2 [mm] 69.0 

b2 [mm] 95.0 

t1 [mm] 2.2 

t2 [mm] 2.0 

t3 [mm] 1.8 

t4 [mm] 2.8 

t5 [mm] 3.0 

t6 [mm] 3.0 

t7 [mm] 1.2 

t8 [mm] 2.2 

t9 [mm] 2.6 

t10 [mm] 2.8 

t11 [mm] 3.0 

t12 [mm] 2.4 

t13 [mm] 2.0 

t14 [mm] 2.2 

f [kg] 73.1 

g1 [mm] (≤ 100) 62.0 

g2 [G] (≤ 30) 25.9 
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7.2.3 Optimization via Manual Crash Mode Matching 

A study was performed in (Hamza and Saitou 2004c) which was aimed at testing 

the hypothesis that manipulating the crash mode of the structure can be an effective way 

of attaining good designs. In this study, a thorough optimization run via GA was 

performed on an EM model in order to identify the desirable crash mode in the 

qualitative sense. The design variables were then adjusted manually (non-automated) in 

order to adjust the crash mode to qualitatively match the desirable crash mode. This led to 

the discovery of the currently best known design for the problem in this case study. 

Summary of the study in (Hamza and Saitou 2004c) is provided in this sub-section. 

 

Construction of the EM model of the problem (Fig. 7.2) was performed using the 

developed computer software. Optimization is then performed by running GA while 

using the EM model (instead of the detailed FE) for the estimation of objectives and 

constraints. The GA parameters are listed in Table 7.6. The result of the GA run on EM 

model converged to the values of the design variables listed in Table 7.7. The crash mode 

of the obtained design is shown in Fig. 7.3 and is designated as the desirable crash mode. 

 

 

Table 7.6. GA Parameters for GA linked with EM model 

 

Number of Generations 50 

Population Size 100 

Crossover Probability 90% 

Mutation Probability 5% 

Crossover Type Arithmetic / Heuristic 

Mutation Type Randomize within upper and lower bound 
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Fig. 7.2. EM model of front half of a vehicle subjected to full-overlap frontal crash 

 

 
Fig. 7.3. Desirable crash mode as identified via GA linked with EM model 

Not much deformation 

in rest of the structure 

Early side-squish in zone 1 
and crush in zone 2 

Some crush in 
zones 3, 4 & 9 

Side-squish in zone 10 

Moderate bending 
in zone 9 

Moderate bending 
in zone 5 

(a) 40 millisecond (a) 80 millisecond 
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Table 7.7 Design obtained by running GA linked with EM model 

 

h1 [mm] 99.0 

b1 [mm] 50.0 

h2 [mm] 50.0 

b2 [mm] 77.0 

t1 [mm] 0.8 

t2 [mm] 2.6 

t3 [mm] 2.2 

t4 [mm] 1.8 

t5 [mm] 3.0 

t6 [mm] 3.0 

t7 [mm] 1.0 

t8 [mm] 2.0 

t9 [mm] 2.6 

t10 [mm] 4.4 

t11 [mm] 3.2 

t12 [mm] 2.0 

t13 [mm] 3.0 

t14 [mm] 2.0 

f [kg] – EM estimate 62.0 

g1 [mm] (≤ 100) – EM estimate 95.0 

g2 [G] (≤ 30) – EM estimate 24.0 

f [kg] – detailed FE 58.0 

g1 [mm] (≤ 100) – detailed FE 254.0 

g2 [G] (≤ 30) – detailed FE 25.0 

 

 

Highlights of the qualitatively observed crash mode are shown in Fig. 7.3. Within 

the first 40 milliseconds of the crash event, most of the structural deformation occurs in 

the form of side-squish in the bumper (zone 1) and axial crush in the front crush module 

(zone 2). Towards the end of the crash event (80 milliseconds), the engine block squeezes 

the front cross bar (zone 10), and moderate amounts of axial crush and bending occur in 

3, 4, 5 and 9. 
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Fig. 7.4. Crash Mode of design identified via GA linked with EM model: (a) EM 

Model, (b) Detailed FE Model 

 

 

However, testing the values of the design variables via a detailed FE model 

produced an infeasible design (constraint g1 violated), with a qualitatively-different crash 

mode (Fig. 7.4) as observed from the animation time history in FE model compared with 

the EM. It was hypotheses that adjusting the design variables in order to attain the 

desirable crash mode should improve the crashworthiness performance. This design 

variables adjustment (Table 7.8, adjustments shown as a shaded cells in the table) was 

performed using qualitative observation of the crash mode in the detailed FE model (Fig. 

7.5). 

 

 

 

(a) EM Model (b) Detailed FE Model 

Too quick deformation in zones 1, 2, 3 

Too much bending 
in zone 9 

Too much bending 
in zones 5, 6 
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Steps for manually adjusting the crash mode are listed as follows:  

 

 Iteration 1: it was observed in the CM of the EM that the frontal zones 1, 

2, 3 were deforming too quickly, so the sheet thickness was increased in 

these zones. Also, excessive bending was occurring at the rear, so 

thickness was increased in zones 4, 5, 6, 14. The front cross bar was too 

stiff and was not collapsing properly, so the thickness in zone 10 and the 

width of lower member were reduced. Also, thickness was increased at the 

vertical member connecting the two rails (zone 7). The resulting design of 

iteration 1 had a much better cabin intrusion performance of 135 mm 

compared to 254 mm, but was still short of the target of 100 mm. 

 

 Iteration 2: in an attempt to further prevent too early collapse of the front 

zones, the thickness in zones 2, 3, 4, 7, 9 was increased, but this resulted 

in zone 3 not deforming at all, and the resulting crash mode had bad 

performance, so iteration 2 was abandoned. 

 

 Iteration 3: Prevention of too early collapse of the front structural zones 

was next attempted by increasing the width of upper structural members 

and height of lower structural members. Height of upper structural 

members was slightly reduced. Sheet thickness in zones 1, 4, 7, 9, 12 was 

increased, while sheet thickness in zones 10, 11 was reduced. The 

resulting design did achieve an acceptable cabin intrusion of 81 mm, but 

the maximum acceleration became 35G, which was slightly above the 

target of 30G. 
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Table 7.8 Steps for Manual Crash Mode Matching 

 
 

 Iterations of CM Matching  

1 2 3 4 5 6 7 

h1 [mm] 100.0 100.0 90.0 90.0 90.0 90.0 90.0 

b1 [mm] 50.0 50.0 80.0 80.0 80.0 80.0 80.0 

h2 [mm] 50.0 50.0 60.0 60.0 60.0 60.0 60.0 

b2 [mm] 70.0 70.0 70.0 70.0 50.0 50.0 50.0 

t1 [mm] 2.8 2.8 3.2 3.2 3.2 3.2 3.2 

t2 [mm] 2.8 3.2 2.8 2.8 2.8 2.4 2.4 

t3 [mm] 2.4 2.8 2.4 2.4 2.0 2.0 2.0 

t4 [mm] 2.4 2.8 2.8 2.8 2.8 2.8 2.8 

t5 [mm] 4.2 4.2 4.2 4.2 4.2 4.2 4.2 

t6 [mm] 3.2 3.6 3.2 3.2 3.2 3.2 2.8 

t7 [mm] 2.0 2.4 2.4 2.8 2.8 2.8 3.2 

t8 [mm] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

t9 [mm] 2.6 2.4 2.4 2.4 2.4 2.4 2.4 

t10 [mm] 3.6 3.6 3.2 3.2 2.8 2.6 2.6 

t11 [mm] 3.2 3.2 2.8 2.8 1.6 1.6 1.2 

t12 [mm] 2.0 2.0 2.8 2.8 2.8 2.8 2.8 

t13[mm] 3.0 3.0 3.0 1.8 1.8 1.8 1.8 

t14 [mm] 2.2 2.2 2.2 2.2 2.2 2.2 2.2 

f [kg] 70.0 70.0 72.0 72.0 70.0 68.0 66.9 

g1 [mm] 135.0 300.0 81.0 74.0 72.0 74.0 76.0 

g2 [G] 29.0 31.0 35.0 34.0 32.0 30.6 29.4 

 

 

 Iteration 4: the slight CM mismatch between iteration 3 and the target CM 

identified by the optimal EM (Fig. 7.3) seemed to be apparent at zone 9, 

which was not axially deforming but got bent at the connection to zones 7 

and 11. An attempted remedy was to increase the sheet thickness in zone 

7. Also, it was observed that Zone 13 was hardly deforming at all, so sheet 

thickness in it was reduced. The resulting design more closely resembled 

the target CM and performed better than iteration 3. However, the 

acceleration level was at 34 g was still above the target of 30 g. 
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Fig. 7.5 Steps for Manual Crash Mode Matching 

 

 

 Iterations 5, 6 and 7: The crash mode of iteration 4 was qualitatively close 

to the desired. This suggested that the acceleration levels that were higher 

than the target values may be due some zones in the line(s) of force being 

excessively stiff. Selective reductions in the sheet thickness in zones 2, 3, 

From GA run 
via EM model 

Iteration 1 

Iteration 2 Iteration 3 

Iteration 4 Iteration 5 

Iteration 6 Iteration 7 
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6, 7, 10, 11 successfully brought the acceleration level within the desired 

limits without violating the constraint on allowable deformation. 

 

The final design obtained via manual crash mode matching is currently the best 

known design for the problem in this case study. 

 

 

7.3 Optimization via Proposed Methodology 

This section discusses the application of the proposed methodology for automated 

crashworthiness design to the case study problem. Steps for applying the automated crash 

mode matching algorithm are presented. 

 

7.3.1 Inputs to the Automated Crash Mode Matching Algorithm 

Category #1 of Inputs: Objectives, Constrains & Design Variables: 

This is the same as the problem formulation discussed in section 7.1. The object f 

is to minimize the structural weight, subject to the constraints  g1, g2 on deformation and 

acceleration, by adjusting the values of the design variables h1, b1, h2, b2, t1, …, t14  

 

Category #2 of Inputs: Desirable Crash Mode: 

With 14 defined structural zones, with up to 3 types of deformation (axial, 

bending and side-squish) in each zone, there could be up to 42 crash mismatch metrics 

cmmij. However, not all zones experience significant amounts of all deformation types. 

Furthermore deformation (and energy absorption) in some zones can have more 
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significant influence on the crashworthiness performance than in other zones. For 

example, the upper and lower rails (zones 2, 3, 9 and 11) have more influence on the 

crashworthiness than the connectors and cross-members (zones 7, 8, 12, 13, 14). Hence, 

selection of the significant crash mismatch metrics cmmij was performed. The select 

mismatch metrics, which will be used in the fuzzy rules for adjusting the design space 

sampling, were termed (1, 2, …, 19) and are listed in Table 7.9. Reasoning for the 

selection is provided as follows: 

 

 All zones except zone 1 (bumper) and zone 10 (front lower cross bar) do 

not experience any significant side-squishing. Zones 1 and 10 (1, 2) do 

not experience any significant axial or bending deformation. 

 Very little deformation occurs in zones 4 and 6 (13, 14), so the axial and 

bending values of the crash mismatch metric were combined 

 Zones 7, 8, 12, 13 and 14 (15, 16, 17, 18, 19) are cross bars and 

connectors with less contribution to absorbing the crash energy, so the 

axial and bending values of the crash mismatch metric were combined 

 

Values for the compact representation of the desirable crash mode (t0, d) were 

obtained from the EM model that was optimized via GA in section 7.2.3. Estimation of 

(t0, d) is illustrated in Fig. 7.6. The d value is taken as the steady state value averaged 

over the last 5% of time of the crash event. The t0 value is taken as the time at which the 

deformation in the zone reaches 50% of the d value. The values for this case study are 

listed in Table 7.10. 
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Table 7.9 Crash Mode Mismatch Metrics in Case Study 1 

 

Symbol Value Description 

1 cmm31 Side-squish in zone 1 

2 cmm310 Side-squish in zone 10  

3 cmm12 Axial crush in zone 2  

4 cmm22 Bending in zone 2  

5 cmm13 Axial crush in zone 3  

6 cmm23 Bending in zone 3  

7 cmm15 Axial crush in zone 5  

8 cmm25 Bending in zone 5  

9 cmm19 Axial crush in zone 9  

10 cmm29 Bending in zone 9  

11 cmm111 Axial crush in zone 11  

12 cmm211 Bending in zone 11  

13 0.5×(cmm14+ cmm24) Combined axial crush and bending in zone 4  

14 0.5×(cmm16+ cmm26) Combined axial crush and bending in zone 6  

15 0.5×(cmm17+ cmm27) Combined axial crush and bending in zone 7  

16 0.5×(cmm18+ cmm28) Combined axial crush and bending in zone 8  

17 0.5×(cmm112+ cmm212) Combined axial crush and bending in zone 12  

18 0.5×(cmm113+ cmm213) Combined axial crush and bending in zone 13  

19 0.5×(cmm114+ cmm214) Combined axial crush and bending in zone 14  

 

 
Fig. 7.6. Estimation of (t0, d) values for a crash mode 

 

average value over last 

10% of the crash event 

d 

0.5 ×d 

t0 
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Table 7.10 Compact representation values for the desired crash mode 

 

Crash Mode 
Desired Values 

t0 (ms) d (mm or rad) 

cm
*

31 14.0 85.0 mm 

cm
*

310 16.5 70.0 mm 

cm
*

12 12.0 250.0 mm 

cm
*

22 28.0 1.2 rad 

cm
*

13 30.0 350.0 mm 

cm
*

23 30.0 1.2 rad 

cm
*

15 48.0 100.0 mm 

cm
*

25 48.0 0.8 rad 

cm
*

19 30.0 100.0 mm 

cm
*

29 30.0 1.4 rad 

cm
*

111 25.0 200.0 mm 

cm
*

211 36.0 0.7 rad 

cm
*

14 60.0 5.0 mm 

cm
*

24 60.0 0.1 rad 

cm
*

16 60.0 5.0 mm 

cm
*

26 60.0 0.1 rad 

cm
*

17 50.0 5.0 mm 

cm
*

27 50.0 0.1 rad 

cm
*

18 27.0 5.0 mm 

cm
*

28 27.0 0.1 rad 

cm
*

112 40.0 5.0 mm 

cm
*

212 40.0 0.2 rad 

cm
*

113 48.0 5.0 mm 

cm
*

213 48.0 0.2 rad 

cm
*

114 52.0 10.0 mm 

cm
*

214 52.0 0.7 rad 

 

 

Category #3 of Inputs: Sampling Distribution Adjustment Rules: 

Full listing of all the fuzzy rules in this case study is provided in tabulated form in 

Appendix C. A total of 238 fuzzy rules were defined . The rules were defined 

based on simple heuristics: 
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 If the crash mode mismatch metric for a zone/deformation type is positive 

(more deformation than desired), then the sampling distribution of the 

design variables that are perceived to affect the zone in question is 

adjusted to favor increasing the value of the design variable (make the 

zone stronger) 

 If the crash mode mismatch metric for a zone/deformation type is negative 

(less deformation than desired), then the sampling distribution of the 

design variables that are perceived to affect the zone in question is 

adjusted to favor decreasing the value of the design variables (make the 

zone less stiff) 

 

Example fuzzy rules in this study are:  

 

If 1 is NH, then a  = -0.4, ia = 5  

(ia = 5 means this rule adjusts sampling distributions on t1) 

If 1 is PL, then a  = +0.2, ia = 5 

(ia = 5 means this rule adjusts sampling distributions on t1) 

If 3 is NL and 4 is PL, then a  = +6.0, ia = 1 

(ia = 1 means this rule adjusts sampling distributions on h1) 

 

Category #4 of Inputs: Tuning Parameters for the Algorithm: 

 

The number of iterations and number of samples per iteration were chosen such 

that the total number of detailed FE runs would be within 50 runs: 

The number of samples per iteration was chosen as nIterSamples = 6 
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The total number of iterations was chosen as nIter = 8 

 

The minimum value for standard deviation of the sampling distributions was set 

within 5% to 10% of the ranges of variation for each variable:  

Minimum value for the standard deviations on the sampling distributions was 

chosen as min = 0.2mm for the variables (t1, …, t14)  

Minimum value for the standard deviations on the sampling distributions was 

chosen as min = 2.0mm for the variables (h1, b1, h2, b2)  

 

 

7.3.2 Results of the Automated Crash Mode Matching Algorithm 

Four independent runs of the automated crash mode matching algorithm were 

performed. In two of the runs, the initial design was the same starting point as manual 

crash mode matching (Table 7.7). This starting point (Start Pt#1) represents a light 

weight structure that violates the constraint on allowed deformation (g1) The two other 

runs of the algorithm were started at some overly stiff design. . The second starting point 

(Start Pt#2) represents a heavy weight structure that violates the constraint on allowed 

acceleration (g2). Both starting points are listed in Table 7.11. Crash mode plots for each 

start point are shown in Fig. 7.7 and Fig 7.8 respectively. 

All of the four runs of the automated crash mode matching algorithm were 

successful in attaining feasible designs. The best and worst designs (in terms of objective 

function value) among the four runs are listed in Table 7.11, and their crash mode plots 

are shown in 7.9 and Fig 7.10 respectively. 

 



 127 

Table 7.11 Summary of Automated Crash Mode Matching Algorithm Runs 

 

 
Start 

Pt#1 

Start 

Pt#2 

Auto 

CM – 

Best 

Auto 

CM – 

Worst 

h1 [mm] 99.0 120.0 83.0 94.0 

b1 [mm] 50.0 80.0 77.0 77.0 

h2 [mm] 50.0 90.0 54.0 68.0 

b2 [mm] 77.0 100.0 56.0 105.0 

t1 [mm] 0.8 3.2 2.6 3.2 

t2 [mm] 2.6 1.4 1.6 2.2 

t3 [mm] 2.2 2.0 2.2 2.0 

t4 [mm] 1.8 3.0 4.6 3.4 

t5 [mm] 3.0 3.0 4.4 3.0 

t6 [mm] 3.0 3.0 3.2 2.6 

t7 [mm] 1.0 2.0 3.4 2.0 

t8 [mm] 2.0 2.4 1.6 1.6 

t9 [mm] 2.6 2.4 2.2 1.8 

t10 [mm] 4.4 2.4 2.6 3.2 

t11 [mm] 3.2 3.2 1.8 1.8 

t12 [mm] 2.0 3.2 3.0 3.0 

t13 [mm] 3.0 2.0 2.0 0.6 

t14 [mm] 2.0 2.0 2.2 2.0 

f [kg] 58.0 89.0 68.8 72.6 

g1 [mm] 254.0 87.1 97.0 89.0 

g2 [G] 25.0 35.8 26.8 27.4 
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Fig. 7.7 Crash Mode Plot for Start Pt#1: Step function curves represent the 

desirable crash mode. The actual recorded crash mode time series plot is 

superimposed, and the normalized error integral value () is stated 

1 = -0.70 2 = -0.45 

3 = +0.22 

4 = +1.40 
5 = -0.02 

6 = +0.13 

7 = +0.09 8 = +0.25 

9 = -0.50 

10 = -0.25 
11 = +1.82 

12 = +1.89 

13 = +0.69 14 = +6.15 

15 = +0.67 

16 = -0.55 

17 = -0.26 
18 = -0.22 

19 = +0.11 
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Fig. 7.8 Crash Mode Plot for Start Pt#2: Step function curves represent the 

desirable crash mode. The actual recorded crash mode time series plot is 

superimposed, and the normalized error integral value () is stated 

1 = -0.31 2 = +0.60 

3 = -0.02 

4 = -0.41 
5 = +0.02 

7 = +0.27 8 = +0.01 

10 = -0.08 
11 = -0.11 

13 = 1.64 14 = -0.24 

16 = -0.44 17 = -0.15 18 = -0.92 

19 = +0.39 

6 = +0.14 

9 = +0.19 

12 = -0.51 

15 = +0.40 
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Fig. 7.9 Crash Mode Plot for best run of the automated crash mode matching 

algorithm. Step function curves represent the desirable crash mode. The actual 

recorded crash mode time series plot is superimposed, and the normalized error 

integral value () is stated 

1 = +0.39 2 = +0.18 

4 = +0.11 
5 = +0.05 

7 = +0.02 8 = +0.14 

10 = +0.14 

11 = -0.43 

13 = +0.64 

14 = -0.29 

16 = +0.28 

17 = -0.21 

19 = -0.41 

3 = +0.11 

18 = -0.31 

6 = -0.14 

9 = +0.03 

12 = -0.49 

15 = +0.05 
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Fig. 7.10 Crash Mode Plot for worst run of the automated crash mode matching 

algorithm. Step function curves represent the desirable crash mode. The actual 

recorded crash mode time series plot is superimposed, and the normalized error 

integral value () is stated 

1 = +0.53 

2 = -0.21 

4 = -0.65 
5 = +0.05 

7 = +0.09 

8 = +0.26 

10 = +0.57 

11 = +0.03 

13 = +1.90 
14 = -0.32 

16 = -0.22 17 = +0.13 

19 = -0.23 

3 = -0.16 

18 = +0.47 

6 = -0.36 

9 = +0.05 

12 = -0.42 

15 = +0.23 



 132 

7.4 Summary of Results 

Comparison of results for various optimization attempts for this case study is 

provided in Table 7.12, and graphically in Fig. 7.11. Optimization via response surface 

models performed in section 7.2.1 (Table 7.3) did not yield any feasible designs and thus 

is not included in the comparison. The best known design for this problem is the one 

attained via manual crash mode matching (convenient practice in automotive industry), 

however the manual crash mode matching is more of an art rather than an automated 

design approach.  

 

All of the four runs that were performed via the automated crash mode matching 

algorithm were successful in attaining feasible designs. The best among the results of the 

automated crash mode matching algorithm is within 2% in objective function value from 

the best know result to this case study problem. The worst among the results of the 

automated crash mode matching algorithm was still better than the result obtained via 

GA. Total computational resources for the automated crash mode matching algorithm, 

however is less the 25% of that required for GA. 
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Table 7.12. Case Study 1: Summary of Results 

 

 GA 
Manual 

CM 

Auto 

CM – 

Best 

Auto 

CM – 

Worst 

h1 [mm] 114.0 88.0 83.0 94.0 

b1 [mm] 67.0 80.0 77.0 77.0 

h2 [mm] 69.0 60.0 54.0 68.0 

b2 [mm] 95.0 50.0 56.0 105.0 

t1 [mm] 2.2 3.2 2.6 3.2 

t2 [mm] 2.0 2.4 1.6 2.2 

t3 [mm] 1.8 2.0 2.2 2.0 

t4 [mm] 2.8 2.8 4.6 3.4 

t5 [mm] 3.0 4.2 4.4 3.0 

t6 [mm] 3.0 2.8 3.2 2.6 

t7 [mm] 1.2 3.2 3.4 2.0 

t8 [mm] 2.2 2.0 1.6 1.6 

t9 [mm] 2.6 2.4 2.2 1.8 

t10 [mm] 2.8 2.6 2.6 3.2 

t11 [mm] 3.0 1.2 1.8 1.8 

t12 [mm] 2.4 2.8 3.0 3.0 

t13 [mm] 2.0 1.8 2.0 0.6 

t14 [mm] 2.2 2.2 2.2 2.0 

f [kg] 73.1 66.9 68.8 72.6 

g1 [mm] 62.0 76.0 97.0 89.0 

g2 [G] 25.9 29.4 26.8 27.4 

# FE runs 500 10 50 50 

# EM runs – 500 500 500 

Comp. time [hour] 350 55 75 75 
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Fig. 7.11 Case Study 1: Summary of Results 

 

 

hr kg, mm, g 
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CHAPTER 8 

CASE STUDY 2: FULL VEHICLE MODEL 

This chapter presents a case study of a detailed FE vehicle model subjected to 

offset frontal crash against a deformable barrier. A baseline model of a real vehicle is 

used in the study. Data about dimensions, deformations and acceleration is only listed in 

normalized form throughout this study
†
. The objective of this case study is mainly to 

show the success of the automated crash mode matching algorithm works when linked to 

a fully detailed vehicle model. 

 

 

8.1 Problem Model 

A detailed FE model of the vehicle and offset deformable barrier is shown in Fig. 

8.1. The model has a total of more than half-million elements, mostly shell elements to 

model the sheet metal structural components. The model also includes solid elements for 

the bulky/rigid components such as the power-train components. 

 

The problem is formulated as an unconstrained, multi-objective problem with the 

objectives being the minimization of the maximum deformation and acceleration. 

                                                 

†
 Due to propriety issues, the normalization scaling constants cannot be disclosed 
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Fig. 8.1 Detailed FE model of a vehicle subjected to offset frontal crash against a 

deformable barrier 

 

 

 f1 is the normalized maximum deformation, to be minimized 

 f2 is the normalized maximum acceleration, to be minimized 

 

A total of 49 sheet metal components were selected for exploring the effects of 

design adjustments. Some sheet metal components that build up the same structural 

member (or part of it) were grouped together and set to change according to one design 

variable. Thus, the thickness of the 49 sheet metal components was governed by 12 

design variables (x1, …, x12). All the variables are discrete since they correspond to the 

sheet metal thickness. Structural weight was not considered a constraint or an objective in 

this study 
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Due to propriety issues, the values of the design variables will only be listed in 

some normalized form, with a value of 1.0 being the baseline. Each variable has up to 7 

possible values, which would be: x1, …, x12  {0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15}.  

 

 

8.2 Exploration of the Design Space 

Computational resources required for performing one detailed FE run for this 

problem are at an average of 200 hours of CPU time. Even with available parallel 

computing resources at the University of Michigan Center for Advanced computing, the 

lengthy computation time for running the FE model made it prohibitive to use GA 

directly linked with the detailed FE model (as was done in case study 1 in section 7.2.2). 

Instead, only orthogonal arrays sampling and response surface models were used to 

explore the design space. 

 

The standard orthogonal array L27 (Phadke 1993) was used for design of 

experiments (DOE) drawing of samples in design space. The L27 array allows for data 

fitting of up to 13 variables, with each variable being sampled at 3 different levels. Two 

independent L27 arrays (generated by randomizing the column order of the array) were 

used. Each of the arrays required 27 detailed FE runs, for a total of 54 runs. 

 

Results of the design space sampling (f1 – f2 values) are shown in Fig. 8.2. It is 

observed that the baseline design is already Pareto-optimal within the 54 samples of the 

two orthogonal arrays. When performing a clustering analysis on the f1 – f2 values, the 

sample designs seem to have one of four behavior categories:  
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Fig. 8.2 Baseline, DOE samples and MSCGA results for Case Study 2 

 

 Cluster #1: maintains a good balance between f1 and f2  

 Cluster #2: has very good f1 but bad f2  

 Cluster #3: has bad f1 yet very good f2  

 Cluster #4: is bad in both f1 and f2  

 

Further exploration of the design space was also performed through optimization 

using a GA running on response surface models constructed via the DOE samples. The 

algorithm used for this task is called Multi-Scenario Co-evolutionary Genetic Algorithm 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DOE Samples

Base Line

Best from DOE Samples

Best from MSCGA

Cluster #1 

Cluster #2 

Cluster #3 

Cluster #4 

f1 

f2 



 139 

(MSCGA). Details of the algorithm are in (Hamza and Saitou 2005). A brief summary of 

the algorithm is provided as: 

 

 Multiple response surface models are constructed for the problem. 3 RSM were 

constructed in this problem: one RSM with data fitting on samples of the first 

orthogonal array, one RSM with data fitting on samples of the second orthogonal 

array and one RSM with data fitting on all the samples. The type of RSM used in 

this study was 2
nd

 order polynomial. 

 All objectives and constraints (if any) are estimated during the algorithm run via 

the constructed RSMs. No detailed FE simulations are needed until the end of the 

MSCGA run 

 The algorithm co-evolves multiple populations (illustration shown in Fig. 8.3), 

each population is tied with one of the constructed RSMs. So, for this problem, 3 

populations were co-evolved. 

 The fitness in each of the evolving populations is treated in a Pareto-sense. Set to 

favor designs that have good performance estimate on the RSM for which it is 

tied, as well as good performance estimate among all the other RSMs. 

 At the end of the MSCGA run, each population would include designs that are 

best as estimated by the RSM the population is tied to. This is the same result one 

would obtain from simply running a regular GA linked with that RSM. These 

designs are then checked via detailed FE 

 At the end of the MSCGA run, each population would also include designs that 

seem to have good performance as estimated by all the constructed RSMs. Those 

designs are also checked via detailed FE 
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After running MSCGA linked to the constructed RSMs, there were 7 new sample 

designs that were checked via detailed FE (2 designs from each sub-population, plus an 

additional design that had the best estimated performance in a weighted average from all 

3 constructed RSMs). Out of the 7 new sample designs, 4 were Pareto-optimal and in 

cluster #1 (Fig. 8.2) of the values of f1 – f2 

 

 

 
Fig. 8.3 Illustration of MSCGA algorithm 
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8.3 Automated Crash Mode Matching 

Testing of the automated crash mode matching algorithm is performed in this 

section. A total of 10 structural zones are defined for the crash mode matching. 

Normalized values from the baseline design are set as the desirable crash mode. The 

crash mode mismatch metric for axial and bending deformations were combined into one 

crash mismatch metric for each of the 10 zones (1, 2, …, 10) in a similar manner to 

case study 1. A total of 52 fuzzy rules for adjustment of the design space sampling were 

defined in a similar manner to the rules defined for case study 1.  

 

The automated crash mode matching algorithm was tested starting from 2 

different starting points, shown in Fig. 8.4. The first starting point (SP#1) is a 

representative sample from cluster #2 (low deformation, but higher acceleration), while 

the second starting point (SP#2) is a representative sample from cluster #3 (low 

acceleration, but higher deformation). Normalized values for design variables and 

objectives for the baseline, SP#1 and SP#2 are listed in Table 8.1. Crash mode plots for 

SP#1 and SP#2 are shown in Fig. 8.5 and Fig. 8.6 respectively. 
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Fig. 8.4 Starting points for the automated crash mode matching algorithm 

 

A total of 4 runs of the automated crash mode matching algorithm were 

performed (2 starting at each starting point). The number of samples per iteration of the 

algorithm nIter was set to 4 (in accordance with available computational resources). 
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Table 8.1 Normalized values for design variables and objectives of baseline design 

and starting points for the automated crash mode matching algorithm 

 

 Baseline SP#1 SP#2 

x1 1.00 1.00 1.00 

x2 1.00 1.00 0.90 

x3  1.00 0.90 0.90 

x4  1.00 0.90 1.00 

x5  1.00 1.10 1.00 

x6 1.00 1.00 1.10 

x7 1.00 1.15 1.15 

x8  1.00 0.90 1.15 

x9 1.00 1.10 1.10 

x10 1.00 1.15 0.90 

x11 1.00 0.90 1.15 

x12 1.00 1.00 1.10 

f1  0.53 0.47 0.85 

f2  0.95 1.42 0.86 

 

 

Table 8.2 Normalized values for design variables and objectives of baseline design 

and final results of the automated crash mode matching algorithm 

 

 Baseline Run #1 Run #2 Run #3 Run #4 

x1 1.00 1.15 1.10 0.95 1.00 

x2 1.00 1.10 1.05 0.90 0.90 

x3  1.00 0.95 0.95 0.90 0.90 

x4  1.00 0.90 0.90 1.00 0.95 

x5  1.00 1.10 1.10 1.10 1.10 

x6 1.00 1.00 0.95 1.00 1.05 

x7 1.00 1.10 1.15 1.00 1.15 

x8  1.00 0.90 0.90 1.10 1.05 

x9 1.00 0.90 1.15 1.10 1.10 

x10 1.00 1.10 1.05 0.90 0.90 

x11 1.00 1.15 1.10 1.10 1.10 

x12 1.00 0.85 1.00 1.05 0.90 

f1  0.53 0.45 0.54 0.65 0.48 

f2  0.95 1.09 1.10 0.89 1.08 
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Fig. 8.5 Crash Mode Plot for Start Pt#1 

 

10 = -0.49 9 = -0.08 

8 = -0.43 7 = -0.11 

6 = -0.26 5 = -0.44 

4 = +0.19 3 = +0.03 

2 = +0.04 1 = +0.06 
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Fig. 8.6 Crash Mode Plot for Start Pt#2 

10 = +0.12 9 = +1.24 

8 = -0.62 7 = -0.45 

6 = +0.15 5 = -0.61 

4 = +0.08 3 = -0.02 

2 = -0.07 1 = +0.92 
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All runs of the automated crash mode matching algorithm were successful in 

producing a design in cluster #1 in at most 2 iterations of the algorithm (Fig. 8.7). 

Furthermore, the designs discovered by run #1 and run #4 are Pareto-optimal with respect 

to the current known designs. Normalized values for design variables and objectives for 

the baseline and run #1 through #4 are listed in Table 8.2. Crash mode plots for run #1 

through #4 are shown in Fig. 8.8 through Fig. 8.11 respectively. 

 

 

 
Fig. 8.7 Progress of the Runs of the Automated Crash Mode Matching Algorithm 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DOE Samples

Base Line

Best from DOE Samples

Best from MSCGA

Auto-CM

Run #1 

Run #2 

Run #3 

Run #4 

Cluster #1 

f1 

f2 



 147 

 
Fig. 8.8 Crash Mode Plot for Final Design in Run#1 

 

10 = -0.33 9 = -0.08 

8 = -0.43 7 = -0.18 

6 = -0.26 
5 = -0.11 

4 = +0.06 3 = +0.03 

2 = +0.02 1 = +0.04 
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Fig. 8.9 Crash Mode Plot for Final Design in Run#2 

 

10 = -0.38 9 = -0.24 

8 = -0.33 7 = -0.10 

6 = -0.22 5 = -0.62 

4 = +0.43 3 = -0.03 

2 = +0.03 1 = +0.03 
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Fig. 8.10 Crash Mode Plot for Final Design in Run#3 

 

10 = -0.17 9 = -0.12 

8 = -0.64 7 = -0.16 

6 = +0.02 5 = -0.03 

4 = -0.26 3 = +0.03 

2 = +0.12 1 = +0.09 
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Fig. 8.11 Crash Mode Plot for Final Design in Run#4 

 

10 = -0.23 9 = -0.21 

8 = -0.55 7 = -0.04 

6 = -0.09 5 = -0.01 

4 = -0.09 3 = -0.01 

2 = +0.18 1 = -0.05 
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8.4 Summary 

This chapter presented application of the automated crash mode matching 

algorithm to a case study of a detailed full vehicle model subjected to frontal crash 

against an offset deformable barrier. Four runs of the proposed algorithm were started at 

designs that mismatched the desirable crash mode and were successful in improving the 

design performance by adjusting the crash mode to the desired one. This is a 

demonstration of the effectiveness of the proposed methodology when applied to vehicle 

models of realistic level of detail. 
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CHAPTER 9 

CONCLUSION 

This chapter concludes the dissertation. It includes a summary of the work, list of 

contributions and expected future extensions. 

 

9.1 Dissertation Conclusion 

The research performed in this dissertation targeted the development of a design 

methodology for parametric structural crashworthiness by formalizing the crash mode 

matching approach. A quantitative representation of the crash mode is introduced, as well 

as comparison metrics for the degree of mismatch in crash mode between different 

designs. An algorithm is then design for automated crash mode matching. The algorithm 

heuristically directs stochastic sampling of the design space based on Fuzzy logic rules 

that are defined in analogy to the type of decisions that an experienced designer would 

make for crash mode matching. 

 

Two case studies were presented to demonstrate that the proposed methodology. 

The first study considered a frontal half body box-section structure vehicle model 

subjected to frontal impact conditions against a rigid barrier. The problem had one 

objective and two constraints. The proposed methodology was successful in attaining 

feasible, good performance designs at a reasonable amount of computational requirement. 
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In the second study, a detailed finite element model of a full vehicle subjected to frontal 

crash against an offset deformable barrier was considered. The problem was formulated 

as a two-objective problem. Within the limited available computational resources, several 

tested runs of the proposed methodology were successful in adjusting the design variables 

started at non-favorable designs and attain an improved performance. 

 

 

9.2 Contributions 

The main contribution of this dissertation is the formalization of crash mode 

matching as a methodology for structural crashworthiness design. This formalization 

included: 

 

 Introduction of quantitative metrics for crash modes assessment and 

comparison based on the recorded time history of deformation in different 

structural zones 

 

 Development of Equivalent mechanism models, which are reduced order 

dynamic models, to assist in exploration and discovery of desirable crash 

modes 

 

 Development of a stochastic design-space sampling algorithm for 

parametric structural crashworthiness optimization via automated crash 

mode matching 
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9.3 Future Work 

While there could be several extensions to the research presented in this 

dissertation, the following are perceived attractive: 

 

 Hybridizing features from response surface methods and crash modes 

matching approaches. During some of the performed studies, the input-

output relations that are fitted by the RSM remain well conditioned as long 

as there is no change in the crash mode. While RSM alone cannot detect a 

change in the crash mode, elements from the crash mode matching 

approach may help overcome this difficulty. 

 

 Developing of further systematic approaches to explore and discover 

desirable crash modes for vehicle structures. This could follow several 

routes of reduced order mass-spring type models, pure kinematic models 

and/or coarse mesh finite element models 

 

 Developing better metrics for assessment of the degree of crash mode 

mismatch. The developed automated crash mode matching algorithm 

requires a metric that is able to indicate whether the deformation in a zone 

is less or more than the desired amount. The relaxed mismatch metric used 

in this thesis, which is a simple normalized error integral, was sufficient in 

the considered case studies. The relaxed metric however has a drawback 

that in some occasions, a mismatching crash mode that has both positive 

and negative portions in its time history might not be well detected. 
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APPENDIX A 
Tutorial: Construction of an EM Model 

 
 
Sketches of the main components (complete symmetry about global YZ plane is 

assumed), which are to be included in the EM model are provided in Figures A.1  – Fig. 
A.5. 
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Fig. A.1 Sketch of key point locations 
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Fig. A.2 Sketch of key point locations 
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Fig. A.3 Sketch of key point locations 
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Fig. A.4 Sketch of key point locations 
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Fig. A.5 Sketch of key point locations 
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The main screen of the dODE Crash Designer software looks like in Fig. A.6. The 
main modeling commands are accessible through the menu system: 

 
Modeling → Key Point → Add… 
Modeling → Key Point → Edit… 
Modeling → Key Point → Delete 
Modeling → Key Point → Identify 
 
Modeling → EM Link → Add… 
Modeling → EM Link → Edit… 
Modeling → EM Link → Delete 
Modeling → EM Link → Identify 
 
Modeling → Side Squisher → Add… 
Modeling → Side Squisher → Edit… 
Modeling → Side Squisher → Delete 
Modeling → Side Squisher → Identify 
 
Modeling → Rigid Body → Add… 
Modeling → Rigid Body → Edit… 
Modeling → Rigid Body → Delete 
Modeling → Rigid Body → Identify 
 
Modeling → Panel → Add… 
Modeling → Panel → Edit… 
Modeling → Panel → Delete 
Modeling → Panel → Identify 
 
Modeling → Force Curve → Add… 
Modeling → Force Curve → Edit… 
Modeling → Force Curve → Delete 
Modeling → Force Curve → Identify 
 
 

Alternatively, the modeling commands are also available through the modeling toolbar 
(Fig. A.6) 
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Adding Components 

Editing Components 

Deleting Components 

Identifying Components’ Label 

Key Point 

EM Structural Member 

Side Squisher 

Rigid Body 

Panel 

Force Curve 

 
Fig. A.6 Main Screen of dODE Crash Designer and Modeling Toolbar 
 
 
EM modeling starts by adding Key Points, upon which the rest of the EM modeling 
components are mounted. Key points also specify the initial and boundary (fixed/free) 
conditions. Unless otherwise specified, the boundary conditions are set to fully free along 
all directions and rotations, and the initial conditions are set as initial velocity equal to -
18.05 m/s along the global Y-direction. All units in model are assumed to follow SI 
system (kg, m, sec). 
 
Start by adding Key points (as per the sketches in Fig. A.1-A.5). Fig. A.7 shows the 
dialog for Adding (and/or editing a Key point).  
 
Next create EM structural links. The Add/Edit dialog for EM structural links is shown in 
Fig. A.8. Among the main inputs of the EM link are the connectivity key points, which 
may be entered directly (if their labels are know), or by clicking the “Select…” button to 
open a selection screen. In the selection screen, left clicking selects the nearest entity, 
right clicking selects the “next-nearest” entity, pressing the “enter” or “space” key 
accepts the selection, while pressing the “esc” key cancels the selection. The Add/Edit 
dialog for EM structural links also allows selection of the available databases for the 
cross-section and the interpolating surrogate. Selecting the section type automatically 
determines the number of dimensions which can be entered (3 for box sections: height, 
width and thickness). When done click the “OK” button.  
 
When done with creating the EM links, the screen should look similar to Fig. A.9 
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Fig. A.7 Add/Edit Key Point Dialog 
 

 
Fig. A.8 Add/Edit EM-link Dialog 
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Fig. A.9 Main Screen of dODE Crash Designer and Modeling, EM model 
constructed 
 
 
Additional features offered by the software include options to add a representation for 
panels (Fig. A.10), rigid bodies (Fig. A.11) and Force curves (Fig. A.12). 
 
 
To solve the EM model. From the menu system, select: 
 
Solver → Parameters… 
 
Adjust the solver parameters as shown in Fig. A.13, then select the menu command: 
 
Solver → Run… 
 
The software automatically saves the model before attempting to solve. Then, a progress 
bar indicates the solver progress. 
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Fig. A.10 Add/Edit Panel Dialog 
 
 

 
Fig. A.11 Add/Edit Rigid Body Dialog 
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Fig. A.12 Add/Edit Force Curve Dialog 
 
 

 
Fig. A.13 Solver Parameters Dialog 
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APPENDIX B 
DOE Samples for Construction of RSM for Case Study 1 

 
 

Table B.1 Sample Set #1 
 Sample Number 
 1 2 3 4 5 6 
h1 (mm) 90.0 110 130 90 110 130 
b1 (mm) 50.0 50 50 70 70 70 
h2 (mm) 50.0 70 90 70 90 50 
b2 (mm) 70.0 70 70 90 90 90 
t1 (mm) 2.0 2.2 2.4 2.0 2.2 2.4 
t2 (mm) 1.8 1.8 1.8 2.0 2.0 2.0 
t3 (mm) 1.6 1.8 2.0 2.0 1.6 1.8 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 2.8 3.0 3.2 2.8 3.0 3.2 
t6 (mm) 2.8 2.8 2.8 3.0 3.0 3.0 
t7 (mm) 1.0 1.2 1.4 1.0 1.2 1.4 
t8 (mm) 2.0 2.2 2.4 2.2 2.4 2.0 
t9 (mm) 2.4 2.6 2.8 2.8 2.4 2.6 
t10 (mm) 2.6 2.6 2.6 2.6 2.6 2.6 
t11 (mm) 2.8 2.8 3.0 3.0 3.0 3.0 
t12 (mm) 2.2 2.4 2.4 2.4 2.6 2.2 
t13 (mm) 1.8 2.0 1.8 1.8 2.0 2.2 
t14 (mm) 2.0 2.0 2.2 2.2 2.2 2.2 
f (kg) 51.2 62.6 75.1 64.8 74.4 75.6 
g1 (mm) 276.5 154.4 182.1 152.3 81.2 55.5 
g2 (g) 23.7 28.3 36.6 29.4 27.8 29.1 
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Table B.2 Sample Set #1 – continued 
 Sample Number 
 7 8 9 10 11 12 
h1 (mm) 90 110 130 90 110 130 
b1 (mm) 90 90 90 50 50 50 
h2 (mm) 90 50 70 50 70 90 
b2 (mm) 110 110 110 110 110 110 
t1 (mm) 2.0 2.2 2.4 2.0 2.2 2.4 
t2 (mm) 2.2 2.2 2.2 2.2 2.2 2.2 
t3 (mm) 1.8 2 1.6 1.6 1.8 2 
t4 (mm) 2.6 2.8 3.0 3.0 2.6 2.8 
t5 (mm) 2.8 3 3.2 3.2 2.8 3.0 
t6 (mm) 3.2 3.2 3.2 2.8 2.8 2.8 
t7 (mm) 1.0 1.2 1.4 1.2 1.4 1.0 
t8 (mm) 2.4 2.0 2.2 2.0 2.2 2.4 
t9 (mm) 2.6 2.8 2.4 2.4 2.6 2.8 
t10 (mm) 2.6 2.6 2.6 2.8 2.8 2.8 
t11 (mm) 3.2 3.2 3.2 3.0 3.0 3.0 
t12 (mm) 2.6 2.2 2.4 2.4 2.6 2.2 
t13 (mm) 1.8 2.0 2.2 2.0 2.2 1.8 
t14 (mm) 2.4 2.4 2.4 2.2 2.2 2.2 
f (kg) 76.4 77.3 87.6 60.9 70.6 79.0 
g1 (mm) 68.6 103.0 52.9 164.7 152.2 237.5 
g2 (g) 29.1 26.6 37.9 25.1 26.2 29.9 

 
 
Table B.3 Sample Set #1 – continued 

 Sample Number 
 13 14 15 16 17 18 
h1 (mm) 110 130 90 110 130 90 
b1 (mm) 70 70 90 90 90 70 
h2 (mm) 90 50 90 50 70 50 
b2 (mm) 70 70 90 90 90 110 
t1 (mm) 2.2 2.4 2 2.2 2.4 2.2 
t2 (mm) 1.8 1.8 2.0 2.0 2.0 2.0 
t3 (mm) 1.6 1.8 1.8 2.0 1.6 2.0 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 2.8 3.0 3.2 2.8 3.0 3.0 
t6 (mm) 3.0 3.0 3.2 3.2 3.2 2.8 
t7 (mm) 1.4 1.0 1.2 1.4 1.0 1.4 
t8 (mm) 2.4 2.0 2.4 2.0 2.2 2.2 
t9 (mm) 2.4 2.6 2.6 2.8 2.4 2.4 
t10 (mm) 2.8 2.8 2.8 2.8 2.8 3.0 
t11 (mm) 3.2 3.2 2.8 2.8 2.8 3.2 
t12 (mm) 2.2 2.4 2.2 2.4 2.6 2.2 
t13 (mm) 2.2 1.8 2.0 2.2 1.8 1.8 
t14 (mm) 2.4 2.4 2.0 2.0 2.0 2.0 
f (kg) 71.0 71.0 74.3 74.2 81.9 66.7 
g1 (mm) 124.8 72.9. 94.5 117.5 51.2 185.4 
g2 (g) 30.1 30.9 31.3 33.3 29.0 31.3 
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Table B.4 Sample Set #1 – continued 
 Sample Number 
 19 20 21 22 23 24 
h1 (mm) 110 130 90 110 130 90 
b1 (mm) 70 70 90 90 90 50 
h2 (mm) 70 90 70 90 50 90 
b2 (mm) 110 110 70 70 70 90 
t1 (mm) 2.4 2.0 2.2 2.4 2.0 2.2 
t2 (mm) 2.0 2.0 2.2 2.2 2.2 1.8 
t3 (mm) 1.6 1.8 1.8 2.0 1.6 1.6 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 3.2 2.8 3.0 3.2 2.8 3.0 
t6 (mm) 2.8 2.8 3.0 3.0 3.0 3.2 
t7 (mm) 1.0 1.2 1.4 1.0 1.2 1.4 
t8 (mm) 2.4 2.0 2.4 2 2.2 2.0 
t9 (mm) 2.6 2.8 2.8 2.4 2.6 2.6 
t10 (mm) 3.0 3.0 3.0 3.0 3.0 3.0 
t11 (mm) 3.2 3.2 2.8 2.8 2.8 3.0 
t12 (mm) 2.4 2.6 2.4 2.6 2.2 2.6 
t13 (mm) 2.0 2.2 1.8 2.0 2.2 1.8 
t14 (mm) 2.0 2.0 2.2 2.2 2.2 2.4 
f (kg) 76.0 84.3 69.2 78.8 73.8 66.7 
g1 (mm) 91.8 89.1 138.4 100.0 152.4 130.1 
g2 (g) 25.5 32.3 30.9 33.6 27.5 29.5 

 
 
Table B.5 Sample Set #1 – continued 

 Sample Number 
 25 26 27 28 29 30 
h1 (mm) 110 130 90 110 130 90 
b1 (mm) 50 50 90 90 90 50 
h2 (mm) 50 70 50 70 90 70 
b2 (mm) 90 90 70 70 70 90 
t1 (mm) 2.4 2.0 2.2 2.4 2.0 2.4 
t2 (mm) 1.8 1.8 2 2.0 2.0 2.2 
t3 (mm) 1.8 2.0 1.8 2.0 1.6 1.6 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 2.6 
t5 (mm) 3.2 2.8 3.0 3.2 2.8 3.0 
t6 (mm) 3.2 3.2 2.8 2.8 2.8 3.0 
t7 (mm) 1.0 1.2 1.4 1.0 1.2 1.2 
t8 (mm) 2.2 2.4 2.4 2.0 2.2 2.0 
t9 (mm) 2.8 2.4 2.4 2.6 2.8 2.8 
t10 (mm) 3.0 3.0 2.6 2.6 2.6 2.6 
t11 (mm) 3.0 3.0 3.0 3.0 3 3.2 
t12 (mm) 2.2 2.4 2.6 2.2 2.4 2.2 
t13 (mm) 2.0 2.2 1.8 2.0 2.2 2.2 
t14 (mm) 2.4 2.4 2.4 2.4 2.4 2.0 
f (kg) 65.3 73.0 64.3 73.3 79.5 62.4 
g1 (mm) 100.0 119.5 157.2 66.9 79.4 246.1 
g2 (g) 27.0 30.0 27.6 33.9 33.3 28.0 
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Table B.6 Sample Set #1 – continued 
 Sample Number 
 31 32 33 34 35 36 
h1 (mm) 110 130 90 130 90 110 
b1 (mm) 50 50 70 70 70 70 
h2 (mm) 90 50 90 70 50 70 
b2 (mm) 90 90 110 110 90 90 
t1 (mm) 2.0 2.2 2.4 2.2 2.2 2.4 
t2 (mm) 2.2 2.2 1.8 1.8 2.2 2.2 
t3 (mm) 1.8 2.0 2.0 1.8 2.0 1.6 
t4 (mm) 2.8 3.0 2.6 3.0 2.8 3.0 
t5 (mm) 3.3 2.8 3.0 2.8 3.2 2.8 
t6 (mm) 3.0 3.0 3.2 3.2 2.8 2.8 
t7 (mm) 1.4 1.0 1.2 1.0 1.0 1.2 
t8 (mm) 2.2 2.4 2.2 2.0 2.2 2.4 
t9 (mm) 2.4 2.6 2.6 2.4 2.4 2.6 
t10 (mm) 2.6 2.6 2.6 2.6 2.8 2.8 
t11 (mm) 3.2 3.2 2.8 2.8 2.8 2.8 
t12 (mm) 2.4 2.6 2.4 2.2 2.6 2.2 
t13 (mm) 1.8 2.0 2.2 2.0 2.2 1.8 
t14 (mm) 2.0 2.0 2.2 2.2 2.4 2.4 
f (kg) 69.3 70.1 73.7 78.2 64.3 70.6 
g1 (mm) 155.4 152.6 113.4 82.4 137.4 112.2 
g2 (g) 30.0 28.2 28.7 28.4 31.9 24.8 

 
 
Table B.7 Sample Set #1 – continued 

 Sample Number 
 37 38 39 40 41 42 
h1 (mm) 130 90 110 130 90 110 
b1 (mm) 70 90 90 90 50 50 
h2 (mm) 90 70 90 50 90 50 
b2 (mm) 90 110 110 110 70 70 
t1 (mm) 2.0 2.2 2.4 2.0 2.2 2.4 
t2 (mm) 2.2 1.8 1.8 1.8 2.0 2.0 
t3 (mm) 1.8 1.8 2.0 1.6 1.6 1.8 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 3.0 3.2 2.8 3.0 3.2 2.8 
t6 (mm) 2.8 3.0 3.0 3.0 3.2 3.2 
t7 (mm) 1.4 1.0 1.2 1.4 1.0 1.2 
t8 (mm) 2.0 2.4 2.0 2.2 2.0 2.2 
t9 (mm) 2.8 2.8 2.4 2.6 2.6 2.8 
t10 (mm) 2.8 2.8 2.8 2.8 2.8 2.8 
t11 (mm) 2.8 3.0 3.0 3.0 3.2 3.2 
t12 (mm) 2.4 2.2 2.4 2.6 2.4 2.6 
t13 (mm) 2.0 2.2 1.8 2.0 2.2 1.8 
t14 (mm) 2.4 2.0 2.0 2.0 2.2 2.2 
f (kg) 78.6 75.0 83.1 79.7 63.6 62.6 
g1 (mm) 58.2 106.3 132.3 55.5 142.0 164.9 
g2 (g) 31.4 30.6 31.0 28.4 27.6 26.3 
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Table B.8 Sample Set #1 – continued 
 Sample Number 
 43 44 45 46 47 48 
h1 (mm) 130 90 110 130 90 110 
b1 (mm) 50 90 90 90 50 50 
h2 (mm) 70 50 70 90 70 90 
b2 (mm) 70 90 90 90 110 110 
t1 (mm) 2.0 2.2 2.4 2.0 2.4 2.0 
t2 (mm) 2.0 1.8 1.8 1.8 2.2 2.2 
t3 (mm) 2.0 1.8 2.0 1.6 1.6 1.8 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 3.0 3.2 2.8 3.0 2.8 3.0 
t6 (mm) 3.2 2.8 2.8 2.8 3.0 3.0 
t7 (mm) 1.4 1.0 1.2 1.4 1.4 1.0 
t8 (mm) 2.4 2.4 2.0 2.2 2.0 2.2 
t9 (mm) 2.4 2.4 2.6 2.8 2.8 2.4 
t10 (mm) 2.8 3.0 3.0 3.0 3.0 3.0 
t11 (mm) 3.2 3.2 3.2 3.2 2.8 2.8 
t12 (mm) 2.2 2.4 2.6 2.2 2.6 2.2 
t13 (mm) 2.0 2.2 1.8 2.0 2.0 2.2 
t14 (mm) 2.2 2.2 2.2 2.2 2.4 2.4 
f (kg) 68.8 69.0 78.1 82.9 66.8 73.0 
g1 (mm) 172.0 142.3 80.1 60.3 148.8 128.9 
g2 (g) 31.3 27.6 31.8 34.2 30.6 27.9 

 
 
Table B.9 Sample Set #1 – continued 

 Sample Number 
 49 50 51 52 53 54 
h1 (mm) 130 90 110 130 110 130 
b1 (mm) 50 70 70 70 70 90 
h2 (mm) 50 90 50 70 50 50 
b2 (mm) 110 70 70 70 90 110 
t1 (mm) 2.2 2.4 2.0 2.2 2.2 2.4 
t2 (mm) 2.2 2.2 2.2 2.2 2.0 2.2 
t3 (mm) 2.0 2.0 1.6 1.8 1.8 2.0 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 3.2 2.8 3.0 3.2 3.0 3.2 
t6 (mm) 3.0 3.2 3.2 3.2 2.8 2.8 
t7 (mm) 1.2 1.4 1.0 1.2 1.0 1.0 
t8 (mm) 2.4 2.2 2.4 2.0 2.2 2.4 
t9 (mm) 2.6 2.6 2.8 2.4 2.6 2.8 
t10 (mm) 3.0 3.0 3.0 3.0 2.6 2.6 
t11 (mm) 2.8 3.0 3.0 3.0 2.8 2.8 
t12 (mm) 2.4 2.2 2.6 2.6 2.2 2.2 
t13 (mm) 1.8 2.0 1.8 1.8 1.8 1.8 
t14 (mm) 2.4 2.0 2.0 2.0 2.2 2.4 
f (kg) 72.6 68.9 66.6 74.9 66.0 81.9 
g1 (mm) 75.5 254.4 185.9 67.8 123.9 41.5 
g2 (g) 26.0 29.9 30.7 31.5 28.0 32.2 
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Table B.10 Sample Set #2 
 Sample Number 
 1 2 3 4 5 6 
h1 (mm) 90 110 130 110 130 90 
b1 (mm) 50 70 70 70 90 70 
h2 (mm) 50 50 70 50 50 70 
b2 (mm) 70 70 70 90 110 70 
t1 (mm) 2.0 2.0 2.2 2.2 2.4 2.4 
t2 (mm) 1.8 2.2 2.2 2.0 2.2 1.8 
t3 (mm) 1.6 1.6 1.8 1.8 2.0 2.0 
t4 (mm) 2.6 3.0 2.6 2.8 3.0 2.6 
t5 (mm) 2.8 3.0 3.2 3.0 3.2 3.0 
t6 (mm) 2.8 3.2 3.2 2.8 2.8 3.0 
t7 (mm) 1.0 1.0 1.2 1.0 1.0 1.2 
t8 (mm) 2.0 2.4 2.0 2.2 2.4 2.2 
t9 (mm) 2.4 2.8 2.4 2.6 2.8 2.4 
t10 (mm) 2.6 3.0 3.0 2.6 2.6 2.6 
t11 (mm) 2.8 3.0 3.0 2.8 2.8 3.0 
t12 (mm) 2.2 2.4 2.6 2.2 2.2 2.4 
t13 (mm) 1.8 2.2 1.8 1.8 1.8 2.0 
t14 (mm) 2.0 2.0 2.0 2.2 2.4 2.0 
f (kg) 51.1 66.6 74.9 66.0 81.9 63.6 
g1 (mm) 276.4 185.9 67.8 123.9 41.4 202.2 
g2 (g) 23.7 30.7 31.5 28 32.2 35.9 

 
 
Table B.11 Sample Set #2 – continued 

 Sample Number 
 7 8 9 10 11 12 
h1 (mm) 110 130 90 110 130 90 
b1 (mm) 90 50 90 50 70 50 
h2 (mm) 70 70 90 90 90 50 
b2 (mm) 90 110 70 90 110 70 
t1 (mm) 2.0 2.2 2.2 2.4 2.0 2.0 
t2 (mm) 2.0 2.2 1.8 2.0 2.2 2.0 
t3 (mm) 1.6 1.8 1.8 2.0 1.6 1.6 
t4 (mm) 2.8 3.0 2.6 2.8 3.0 3.0 
t5 (mm) 3.2 2.8 3.2 2.8 3.0 3.0 
t6 (mm) 3.0 3.0 3.2 3.2 3.2 2.8 
t7 (mm) 1.2 1.2 1.4 1.4 1.4 1.2 
t8 (mm) 2.4 2.0 2.4 2.0 2.2 2.0 
t9 (mm) 2.6 2.8 2.4 2.6 2.8 2.6 
t10 (mm) 2.6 2.6 2.6 2.6 2.6 2.8 
t11 (mm) 3.0 3.0 3.2 3.2 3.2 3.2 
t12 (mm) 2.4 2.4 2.6 2.6 2.6 2.6 
t13 (mm) 2.0 2.0 2.2 2.2 2.0 2.0 
t14 (mm) 2.2 2.4 2.2 2.2 2.4 2.4 
f (kg) 75.0 75.4 72.9 73.1 84.9 55.2 
g1 (mm) 62.0 94.4 95.3 202.2 38.0 152.5 
g2 (g) 32.0 27.2 34.4 27.7 36.4 28.4 
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Table B.12 Sample Set #2 – continued 
 Sample Number 
 13 14 15 16 17 18 
h1 (mm) 110 130 90 110 130 90 
b1 (mm) 70 90 70 90 50 90 
h2 (mm) 50 50 70 70 70 90 
b2 (mm) 90 110 70 90 110 70 
t1 (mm) 2.2 2.4 2.4 2.0 2.2 2.2 
t2 (mm) 2.2 1.8 2.0 2.2 1.8 2.0 
t3 (mm) 1.8 2.0 2.0 1.6 1.8 2.6 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 3.2 2.8 3.2 2.8 3.0 2.8 
t6 (mm) 2.8 2.8 3.0 3.0 3.0 3.2 
t7 (mm) 1.2 1.2 1.4 1.4 1.4 1.0 
t8 (mm) 2.2 2.4 2.2 2.4 2.0 2.4 
t9 (mm) 2.8 2.4 2.6 2.8 2.4 2.6 
t10 (mm) 2.8 2.8 2.8 2.8 2.8 2.8 
t11 (mm) 3.2 3.2 2.8 2.8 2.8 3.0 
t12 (mm) 2.6 2.6 2.2 2.2 2.2 2.4 
t13 (mm) 2.0 2.0 2.2 2.2 2.2 1.8 
t14 (mm) 2.0 2.2 2.4 2.0 2.2 2.4 
f (kg) 69.5 82.5 65.7 74.6 74.6 71.7 
g1 (mm) 99.7 94.6 174.7 171.6 96.0 98.0 
g2 (g) 26.0 30.7 33.9 30.9 28.7 30.4 

 
 
Table B.13 Sample Set #2 – continued 

 Sample Number 
 19 20 21 22 23 24 
h1 (mm) 110 130 90 110 130 90 
b1 (mm) 50 70 50 70 90 70 
h2 (mm) 90 90 50 50 50 70 
b2 (mm) 90 110 90 110 70 90 
t1 (mm) 2.4 2.0 2.0 2.2 2.4 2.4 
t2 (mm) 2.2 1.8 1.8 2.0 2.2 1.8 
t3 (mm) 2.0 1.6 2.0 1.6 1.8 1.8 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 3.0 3.2 2.8 3.0 3.2 3.0 
t6 (mm) 3.2 3.2 3.0 3.0 3.0 3.2 
t7 (mm) 1.0 1.0 1.0 1.0 1.0 1.2 
t8 (mm) 2.0 2.2 2.2 2.4 2.0 2.4 
t9 (mm) 2.8 2.4 2.8 2.4 2.6 2.8 
t10 (mm) 2.8 2.8 3.0 3.0 3.0 3.0 
t11 (mm) 3.0 3.0 3.0 3.0 3.0 3.2 
t12 (mm) 2.4 2.4 2.6 2.6 2.6 2.2 
t13 (mm) 1.8 1.8 2.2 2.2 2.2 1.8 
t14 (mm) 2.0 2.2 2.2 2.4 2.0 2.2 
f (kg) 71.9 81.6 60.1 72.2 78.8 68.8 
g1 (mm) 264.8 35.1 185.9 117.1 54.2 119.4 
g2 (g) 26.0 32.3 27.2 26.7 31.4 28.8 
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Table B.14 Sample Set #2 – continued 
 Sample Number 
 25 26 27 28 29 30 
h1 (mm) 110 130 90 110 130 90 
b1 (mm) 90 50 90 50 70 50 
h2 (mm) 70 70 90 90 90 50 
b2 (mm) 110 70 90 110 70 90 
t1 (mm) 2.0 2.2 2.2 2.4 2.0 2.0 
t2 (mm) 2.0 2.2 1.8 2.0 2.2 1.8 
t3 (mm) 2.0 1.6 1.6 1.8 2.0 1.8 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 3.2 2.8 3.2 2.8 3.0 3.2 
t6 (mm) 3.2 3.2 2.8 2.8 2.8 3.2 
t7 (mm) 1.2 1.2 1.4 1.4 1.4 1.4 
t8 (mm) 2.0 2.2 2.0 2.2 2.4 2.4 
t9 (mm) 2.4 2.6 2.8 2.4 2.6 2.8 
t10 (mm) 3.0 3.0 3.0 3.0 3.0 2.6 
t11 (mm) 3.2 3.2 2.8 2.8 2.8 3.0 
t12 (mm) 2.2 2.2 2.4 2.4 2.4 2.2 
t13 (mm) 1.8 1.8 2.0 2.0 2.0 2.0 
t14 (mm) 2.4 2.0 2.2 2.4 2.0 2.2 
f (kg) 79.2 68.9 75. 73.2 77.0 58.6 
g1 (mm) 67.2 214.7 88.0 143.6 136.1 189.8 
g2 (g) 29.3 24.3 29.5 26.0 37.5 27.7 

 
 
Table B.15 Sample Set #2 – continued 

 Sample Number 
 31 32 33 34 35 36 
h1 (mm) 110 130 90 110 130 90 
b1 (mm) 70 90 70 90 50 90 
h2 (mm) 50 50 70 70 70 90 
b2 (mm) 110 70 110 70 90 110 
t1 (mm) 2.2 2.4 2.4 2.0 2.2 2.2 
t2 (mm) 2.0 2.2 2.2 1.8 2.0 2.2 
t3 (mm) 2.0 1.6 1.6 1.8 2.0 2.0 
t4 (mm) 2.6 2.8 2.6 2.8 3.0 2.6 
t5 (mm) 2.8 3.0 2.8 3.0 3.2 3.0 
t6 (mm) 3.2 3.2 2.8 2.8 2.8 3.0 
t7 (mm) 1.4 1.4 1.0 1.0 1.0 1.2 
t8 (mm) 2.0 2.2 2.0 2.2 2.4 2.2 
t9 (mm) 2.4 2.6 2.6 2.8 2.4 2.6 
t10 (mm) 2.6 2.6 2.6 2.6 2.6 2.6 
t11 (mm) 3.0 3.0 3.2 3.2 3.2 2.8 
t12 (mm) 2.2 2.2 2.4 2.4 2.4 2.6 
t13 (mm) 2.0 2.0 2.2 2.2 2.2 1.8 
t14 (mm) 2.4 2.0 2.2 2.4 2.0 2.2 
f (kg) 70.5 76.1 69.3 72.3 73.4 76.8 
g1 (mm) 152.3 123.4 139.8 68.0 106.5 116.6 
g2 (g) 31.1 28.2 33.3 32.2 29.2 29.8 
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Table B.16 Sample Set #2 – continued 
 Sample Number 
 37 38 39 40 41 42 
h1 (mm) 130 90 110 130 90 110 
b1 (mm) 70 50 70 90 70 90 
h2 (mm) 90 50 50 50 70 70 
b2 (mm) 90 90 110 70 90 110 
t1 (mm) 2.0 2.0 2.2 2.4 2.4 2.0 
t2 (mm) 2.0 2.2 1.8 2.0 2.2 1.8 
t3 (mm) 1.8 2.0 1.6 1.8 1.8 2.0 
t4 (mm) 3.0 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 2.8 3.2 2.8 3.0 2.8 3.0 
t6 (mm) 3.0 3.0 3.0 3.0 3.2 3.2 
t7 (mm) 1.2 1.4 1.4 1.4 1.0 1.0 
t8 (mm) 2.0 2.2 2.4 2 2.4 2.0 
t9 (mm) 2.4 2.4 2.6 2.8 2.4 2.6 
t10 (mm) 2.6 2.8 2.8 2.8 2.8 2.8 
t11 (mm) 2.8 3.2 3.2 3.2 2.8 2.8 
t12 (mm) 2.6 2.4 2.4 2.4 2.6 2.6 
t13 (mm) 1.8 1.8 1.8 1.8 2.0 2.0 
t14 (mm) 2.0 2.4 2.0 2.2 2.4 2.0 
f (kg) 77.7 58.7 71.0 75.9 67.7 80.0 
g1 (mm) 69.4 151.5 122.2 61.1 147.5 88.9 
g2 (g) 28.0 27.9 25.0 32.5 32.4 30.4 

 
 
Table B.17 Sample Set #2 – continued 

 Sample Number 
 43 44 45 46 47 48 
h1 (mm) 130 90 110 130 90 110 
b1 (mm) 50 90 50 70 50 70 
h2 (mm) 70 90 90 90 50 50 
b2 (mm) 70 90 110 70 90 110 
t1 (mm) 2.2 2.2 2.4 2.0 2.0 2.2 
t2 (mm) 2.0 2.2 1.8 2.0 2.2 1.8 
t3 (mm) 1.6 1.6 1.8 2.0 1.8 2.0 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 3.2 3.0 3.2 2.8 3.0 3.2 
t6 (mm) 3.2 2.8 2.8 2.8 3.2 3.2 
t7 (mm) 1.0 1.2 1.2 1.2 1.2 1.2 
t8 (mm) 2.2 2.0 2.2 2.4 2.4 2.0 
t9 (mm) 2.8 2.4 2.6 2.8 2.4 2.6 
t10 (mm) 2.8 2.8 2.8 2.8 3.0 3.0 
t11 (mm) 2.8 3.0 3.0 3.0 2.8 2.8 
t12 (mm) 2.6 2.2 2.2 2.2 2.4 2.4 
t13 (mm) 2.0 2.2 2.2 2.2 2.2 2.2 
t14 (mm) 2.2 2.4 2.0 2.2 2.4 2.0 
f (kg) 69.8 73.4 74.5 75.9 59.2 74.3 
g1 (mm) 75.4 152.8 152.7 167.7 137.0 113.1 
g2 (g) 29.2 26.4 24.7 36.0 29.5 28.3 
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Table B.18 Sample Set #2 – continued 
 Sample Number 
 49 50 51 52 53 54 
h1 (mm) 130 90 110 130 90 110 
b1 (mm) 90 70 90 50 90 50 
h2 (mm) 50 70 70 70 90 90 
b2 (mm) 70 110 70 90 110 70 
t1 (mm) 2.4 2.4 2.0 2.2 2.2 2.4 
t2 (mm) 2.0 2.0 2.2 1.8 2.0 2.2 
t3 (mm) 1.6 1.6 1.8 2.0 2.0 1.6 
t4 (mm) 2.6 2.8 3.0 2.6 2.8 3.0 
t5 (mm) 2.8 3.2 2.8 3.0 2.8 3.0 
t6 (mm) 3.2 2.8 2.8 2.8 3.0 3.0 
t7 (mm) 1.2 1.4 1.4 1.4 1.0 1.0 
t8 (mm) 2.2 2.0 2.2 2.4 2.2 2.4 
t9 (mm) 2.8 2.8 2.4 2.6 2.8 2.4 
t10 (mm) 3.0 3.0 3.0 3.0 3.0 3.0 
t11 (mm) 2.8 3.2 3.2 3.2 3.2 3.2 
t12 (mm) 2.4 2.6 2.6 2.6 2.2 2.2 
t13 (mm) 2.2 1.8 1.8 1.8 2.0 2.0 
t14 (mm) 2.2 2.0 2.2 2.4 2.0 2.2 
f (kg) 76.7 71.9 72.6 72.9 78.7 68.6 
g1 (mm) 72.1 127.0 101.7 97.2 129.1 143.9 
g2 (g) 32.3 26.7 29.0 32.5 32.7 23.6 
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APPENDIX C 
Fuzzy Logic Sampling Adjustment Rules for Case Study 1 

 
 
 

The following tables summarize the 238 fuzzy rules used in the case study 1. 

Values in a table indicate adjustments to the respective design variable. For example, 

Table C.1 represents the following five fuzzy rules for adjusting t1:  

 

 

If δ1 is NH, then a%  = -0.4, ia = 5 

If δ1 is NL, then a%  = -0.2, ia = 5 

If δ1 is Z, then a%  = +0.1, ia = 5 

If δ1 is PL, then a%  = +0.2, ia = 5 

If δ1 is PH, then a%  = +0.4, ia = 5 

 

 

 

 

Table C.1 Fuzzy rules for adjusting t1 

  Membership of δ1 

  NH NL Z PL PH 

  -0.4 -0.2 +0.1 +0.2 +0.4
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Table C.2 Fuzzy rules for adjusting t2 

  Membership of δ3 

  NH NL Z PL PH 

  -0.2 -0.1 +0.05 +0.1 +0.2

  Membership of δ4 

  NH NL Z PL PH 

   +0.1 +0.2

  Membership of δ3 

  NH NL Z PL PH 

NH  

NL  

Z  

PL +0.15 +0.10

M
em

b.
 o

f δ
4 

PH +0.20 +0.15
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Table C.3 Fuzzy rules for adjusting t3 

  Membership of δ5 

  NH NL Z PL PH 

  -0.2 -0.1 +0.05 +0.1 +0.2

  Membership of δ6 

  NH NL Z PL PH 

   +0.1 +0.2

  Membership of δ5 

  NH NL Z PL PH 

NH  

NL  

Z  

PL +0.15 +0.10

M
em

b.
 o

f δ
6 

PH +0.20 +0.15

 

 

Table C.4 Fuzzy rules for adjusting t4 

  Membership of δ13 

  NH NL Z PL PH 

  -0.4 -0.2 +0.2 +0.4

 



177 

Table C.5 Fuzzy rules for adjusting t5 

  Membership of δ7 

  NH NL Z PL PH 

  -0.2 -0.1 +0.1 +0.2

  Membership of δ8 

  NH NL Z PL PH 

  -0.2 -0.1 +0.1 +0.2

 

Table C.6 Fuzzy rules for adjusting t6 

  Membership of δ14 

  NH NL Z PL PH 

  -0.4 -0.2 +0.2 +0.4

 

Table C.7 Fuzzy rules for adjusting t7 

  Membership of δ15 

  NH NL Z PL PH 

  -0.4 -0.2 +0.2 +0.4

 

Table C.8 Fuzzy rules for adjusting t8 

  Membership of δ16 

  NH NL Z PL PH 

  -0.4 -0.2 +0.2 +0.4
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Table C.9 Fuzzy rules for adjusting t9 

  Membership of δ9 

  NH NL Z PL PH 

  -0.2 -0.1 +0.1 +0.2

  Membership of δ10 

  NH NL Z PL PH 

  -0.2 -0.1 +0.1 +0.2

 

Table C.10 Fuzzy rules for adjusting t10 

  Membership of δ2 

  NH NL Z PL PH 

  -0.4 -0.2 +0.1 +0.2 +0.4

 

Table C.11 Fuzzy rules for adjusting t11 

  Membership of δ11 

  NH NL Z PL PH 

  -0.2 -0.1 +0.1 +0.2

  Membership of δ12 

  NH NL Z PL PH 

  -0.2 -0.1 +0.1 +0.2

 

Table C.12 Fuzzy rules for adjusting t12 

  Membership of δ17 

  NH NL Z PL PH 

  -0.4 -0.2 -0.1 +0.2 +0.4
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Table C.13 Fuzzy rules for adjusting t13 

  Membership of δ18 

  NH NL Z PL PH 

  -0.4 -0.2 -0.1 +0.2 +0.4

 

 

 

Table C.14 Fuzzy rules for adjusting t14 

  Membership of δ19 

  NH NL Z PL PH 

  -0.4 -0.2 -0.1 +0.2 +0.4
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Table C.15 Fuzzy rules for adjusting h1 

  Membership of δ3 

  NH NL Z PL PH 

NH  

NL  

Z +6.0 +3.0

PL +9.0 +6.0 +3.0

M
em

b.
 o

f δ
4 

PH +12.0 +9.0 +6.0

  Membership of δ5 

  NH NL Z PL PH 

NH  

NL  

Z +6.0 +3.0

PL +9.0 +6.0 +3.0

M
em

b.
 o

f δ
6 

PH +12.0 +9.0 +6.0

  Membership of δ7 

  NH NL Z PL PH 

NH  -3.0 -6.0 -9.0 -12.0

NL +3.0 -3.0 -6.0 -9.0

Z +6.0 +3.0 -3.0 -6.0

PL +9.0 +6.0 +3.0 -3.0

M
em

b.
 o

f δ
8 

PH +12.0 +9.0 +6.0 +3.0

 



181 

Table C.16 Fuzzy rules for adjusting b1 

  Membership of δ3 

  NH NL Z PL PH 

NH  

NL  

Z -4.0 -2.0

PL -6.0 -4.0 -2.0

M
em

b.
 o

f δ
4 

PH -8.0 -6.0 -4.0

  Membership of δ5 

  NH NL Z PL PH 

NH  

NL  

Z -4.0 -2.0

PL -6.0 -4.0 -2.0

M
em

b.
 o

f δ
6 

PH -8.0 -6.0 -4.0

  Membership of δ7 

  NH NL Z PL PH 

NH  +2.0 +4.0 +6.0 +8.0

NL -2.0 +2.0 +4.0 +6.0

Z -4.0 -2.0 +2.0 +4.0

PL -6.0 -4.0 -2.0 +2.0

M
em

b.
 o

f δ
8 

PH -8.0 -6.0 -4.0 -2.0
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Table C.17 Fuzzy rules for adjusting h2 

  Membership of δ9 

  NH NL Z PL PH 

NH  -3.0 -6.0 -9.0 -12.0

NL +3.0 -3.0 -6.0 -9.0

Z +6.0 +3.0 -3.0 -6.0

PL +9.0 +6.0 +3.0 -3.0

M
em

b.
 o

f δ
10

 

PH +12.0 +9.0 +6.0 +3.0

  Membership of δ11 

  NH NL Z PL PH 

NH  -3.0 -6.0 -9.0 -12.0

NL +3.0 -3.0 -6.0 -9.0

Z +6.0 +3.0 -3.0 -6.0

PL +9.0 +6.0 +3.0 -3.0

M
em

b.
 o

f δ
12

 

PH +12.0 +9.0 +6.0 +3.0
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Table C.18 Fuzzy rules for adjusting b2 

  Membership of δ9 

  NH NL Z PL PH 

NH  +2.0 +4.0 +6.0 +8.0

NL -2.0 +2.0 +4.0 +6.0

Z -4.0 -2.0 +2.0 +4.0

PL -6.0 -4.0 -2.0 +2.0

M
em

b.
 o

f δ
10

 

PH -8.0 -6.0 -4.0 -2.0

  Membership of δ11 

  NH NL Z PL PH 

NH  +2.0 +4.0 +6.0 +8.0

NL -2.0 +2.0 +4.0 +6.0

Z -4.0 -2.0 +2.0 +4.0

PL -6.0 -4.0 -2.0 +2.0

M
em

b.
 o

f δ
12

 

PH -8.0 -6.0 -4.0 -2.0
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APPENDIX D 
Source Code Header Files for the Automated Crash Mode Matching Algorithm 

 
 

File:  RandGen.h 
 
//Includes 
#ifndef H_CPP_RandGenRand 
#define H_CPP_RandGenRand 
 
#include <fstream> 
using namespace std; 
#include <cmath> 
 
 
 
class RandGen 
{ 
protected: 
 
  
public:  //C++ class initializations 
 
 //Constructor 
 RandGen() {} 
 
 //Destructor 
 ~RandGen() {} 
 
protected: 
 
 void init_genrand(unsigned long s) {srand(s);} 
 
 // generates a random number on [0,0xffffffff]-interval 
 unsigned long genrand_int32() {return rand();} 
 
 // generates a random number on (0,1)-real-interval 
 double genrand_real3() 
 { 
  return (((double)genrand_int32()) + 0.5)*(1.0/32768.0);  
 } 
 
public: 
 
 //Seeding Funcions 
 void seed(unsigned long s) {init_genrand(s);} 
 
 //Function to Generate a Uniformy distributed Random Number on the 
(0,1)-real-interval 
 double rand01() {return genrand_real3();} 
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 //Function to Generate a random number uniformaly distributed 
within a range 
 double randrng(double drmin, double drmax) {return drmin+(drmax-
drmin)*rand01();} 
 
 //Function to Generate an integer Number uniformly distributed 
witihin a range 
 int randint(int irmin, int irmax) 
  {return int(1.0*irmin+((irmax-irmin)+1.0-1e-8)*rand01());} 
 
 //Function to generate a boolean random result, give probability 
of returning true 
 bool randbool(double dptrue)  
  {if (rand01() <= dptrue) return true; else return false;} 
 
 //Function to generate a poisson distributed random value 
 int randpoisson(double daverage) 
 { 
  if (daverage<1.0e-7) daverage=1.0e-7; 
  double drnd01=rand01(); 
 
  int icurchoice=0; 
  double dcurfact=1.0; 
  double dcurp=exp(-daverage)*pow(daverage, 0.0)/dcurfact; 
 
  while (dcurp<drnd01) { 
 
   icurchoice++; 
   dcurfact = dcurfact * icurchoice; 
   dcurp+=exp(-daverage)*pow(daverage, 
double(icurchoice))/dcurfact; 
  } 
 
  return icurchoice; 
 } 
 
 //Function to generate a normally distributed random number 
 double randn(double daverage, double dsd) 
 { 
  double dpi=4.0*atan(1.0); 
 
  double drnd1=rand01(); 
  double drnd2=rand01(); 
  double dy=sqrt(-2.0*log(drnd1))*cos(2.0*dpi*drnd2); 
 
  return daverage + dsd*dy; 
 } 
}; 
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#endif //H_CPP_RandGenRand 
 
 
File:  rfuzzy.h 
 
//Includes 
#ifndef H_CPP_RFuzzy 
#define H_CPP_RFuzzy 
 
#include "RandGen.h" 
 
 
 
 
//Abstract class for Fuzzy membership function 
class RFZMemberShipFnAbs 
{ 
protected: 
 
 /*Each derived class must define its own data storage, 
allocation/deallocatin 
 and tuning, but all derived classes will eventually use a "number" 
of levels*/ 
 
 //Number of set levels 
 int inlevels; 
 
public: 
 
 //Constructor 
 RFZMemberShipFnAbs() 
 { 
  inlevels=0; //Is a flag for non-initilized state 
 } 
 //Destructor 
 ~RFZMemberShipFnAbs() {inlevels=0;} 
 
 //Function to check if class is initialized 
 bool isinitialized() 
 { 
  if (inlevels<=0) return false; 
  else return true; 
 } 
 
 //Function to return the number of set levels 
 int getnlevels() const {return inlevels;} 
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 //Virtual Function, for intializing memory allocation, given 
number of set levels, 
 // also allows passing generic initialization data via a void 
pointer 
 virtual void init(int icnlevels, const void *pvinitdata=NULL) {} 
 
 //Virtual Function for tuning the membership functions 
 virtual void tune(const void *pvtunepar) {} 
 //Virtual Function for tuning the membership functions 
 virtual void tune(const double *pdtunepar) {} 
 
 //Virtual equality operator to make a duplicate copy of another 
 virtual void operator=(const RFZMemberShipFnAbs &other) {} 
 
 //Virtual Function for writing into a file stream 
 virtual void writeinf(ofstream *pfout) const {} 
 //Virtual Function for reading contents out of a file stream 
 virtual void readfromf(ifstream *pfin) {} 
 
 
 //Virtual Function to check the membership value of an input in 
one of the sets 
 virtual double getmembershipval(double dinvalue, int isetlevelid) 
const {return 0.0;} 
 
 //Virtual Function to plot the contents in a tab-delimited text 
file 
 virtual void plotmemfn(const char *pcfname, int insteps=1001) 
const {} 
}; 
 
 
 
//Implementation class for Fuzzy Traingular membership function 
class RFZMemberShipFnTrig : public RFZMemberShipFnAbs 
{ 
protected: 
 
 //Storage of set level centers 
 double *pdlevelcenters; 
 
public: 
 
 //Constructor 
 RFZMemberShipFnTrig() 
 { 
  RFZMemberShipFnAbs::RFZMemberShipFnAbs(); 
  pdlevelcenters=NULL; 
 } 
 //Destructor 
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 ~RFZMemberShipFnTrig() 
 { 
  if (inlevels>0)  
  { 
   delete [inlevels] pdlevelcenters; 
   pdlevelcenters=NULL; 
  } 
  RFZMemberShipFnAbs::~RFZMemberShipFnAbs(); 
 } 
 
 
 //Initialization function 
 void init(int icnlevels, const void *pvinitdata=NULL); 
 
 //Function for tuning the membership functions 
 void tune(const void *pvtunepar) 
 { 
  const double *pdtune=(const double *)(pvtunepar); 
  tune(pdtune); 
 } 
 //Function for tuning the membership functions 
 void tune(const double *pdtunepar); 
 
 //equality operator to make a duplicate copy of another 
 void operator=(const RFZMemberShipFnAbs &other); 
 
 //Function for writing into a file stream 
 void writeinf(ofstream *pfout) const; 
 //Function for reading contents out of a file stream 
 void readfromf(ifstream *pfin); 
 
 
 //Function to check the membership value of an input in one of the 
sets 
 double getmembershipval(double dinvalue, int isetlevelid) const 
 { 
  if (isetlevelid<0) return 0.0; 
  if (isetlevelid>=inlevels) return 0.0; 
 
  if (isetlevelid==0) 
  { 
   if (dinvalue<=pdlevelcenters[0]) return 1.0; 
   else if (dinvalue>=pdlevelcenters[1]) return 0.0; 
   else return 1.0 - (dinvalue-
pdlevelcenters[0])/(pdlevelcenters[1]-pdlevelcenters[0]); 
  } 
  else if (isetlevelid==inlevels-1) 
  { 
   if (dinvalue>=pdlevelcenters[inlevels-1]) return 1.0; 
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   else if (dinvalue<=pdlevelcenters[inlevels-2]) return 
0.0; 
   else return (dinvalue-pdlevelcenters[inlevels-
2])/(pdlevelcenters[inlevels-1]-pdlevelcenters[inlevels-2]); 
  } 
  else 
  { 
   if (dinvalue<=pdlevelcenters[isetlevelid-1]) return 
0.0; 
   else if (dinvalue>=pdlevelcenters[isetlevelid+1]) 
return 0.0; 
   else if (dinvalue<=pdlevelcenters[isetlevelid]) return 
(dinvalue-pdlevelcenters[isetlevelid-1])/(pdlevelcenters[isetlevelid]-
pdlevelcenters[isetlevelid-1]); 
   else return 1.0-(dinvalue-
pdlevelcenters[isetlevelid])/(pdlevelcenters[isetlevelid+1]-
pdlevelcenters[isetlevelid]); 
  } 
 } 
 
 //Function to plot the contents in a tab-delimited text file 
 void plotmemfn(const char *pcfname, int insteps=1001) const; 
}; 
 
 
 
//Implementation class for Fuzzy Sigmoid membership function 
class RFZMemberShipFnSigmoid : public RFZMemberShipFnAbs 
{ 
protected: 
 
 //Storage of level centers 
 double *pdlevelcenters; 
 
 //Storage of a-parameters 
 double *pdapars; 
 //Storage of b-parameters 
 double *pdbpars; 
 //Storage of c-parameters 
 double *pdcpars; 
 
 //a-parameter scaling value 
 double daparscaling; 
 
 
 //Utility function for sigmoid calculation 
 double utlcalcsigmoid(double dx, double da, double dc) const 
 { 
  double dy=da*(dx-dc); 
  if (dy>0.0) return 1.0/(1.0+exp(-dy)); 
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  else return exp(dy)/(1.0+exp(dy)); 
 } 
 
public: 
 
 //Constructor 
 RFZMemberShipFnSigmoid() 
 { 
  RFZMemberShipFnAbs::RFZMemberShipFnAbs(); 
  daparscaling=2.0; 
 } 
 //Destructor 
 ~RFZMemberShipFnSigmoid() 
 { 
  if (inlevels>0) 
  { 
   delete [inlevels] pdlevelcenters; 
   delete [inlevels-1] pdapars; 
   delete [inlevels] pdbpars; 
   delete [inlevels-1] pdcpars; 
 
   pdlevelcenters=NULL; 
   pdapars=NULL; 
   pdbpars=NULL; 
   pdcpars=NULL; 
  } 
 
  RFZMemberShipFnAbs::~RFZMemberShipFnAbs(); 
 } 
 
 
 //Initialization function 
 void init(int icnlevels, const void *pvinitdata=NULL); 
 
 //Function for tuning the membership functions 
 void tune(const void *pvtunepar) 
 { 
  const double *pdtune=(const double *)(pvtunepar); 
  tune(pdtune); 
 } 
 //Function for tuning the membership functions 
 void tune(const double *pdtunepar); 
 
 //equality operator to make a duplicate copy of another 
 void operator=(const RFZMemberShipFnAbs &other); 
 
 //Function for writing into a file stream 
 void writeinf(ofstream *pfout) const; 
 //Function for reading contents out of a file stream 
 void readfromf(ifstream *pfin); 



191 

 
 
 //Function to check the membership value of an input in one of the 
sets 
 double getmembershipval(double dinvalue, int isetlevelid) const 
 { 
  if (isetlevelid<0) return 0.0; 
  if (isetlevelid>=inlevels) return 0.0; 
 
  if (isetlevelid==0) 
  { 
   return pdbpars[0]*(1.0-utlcalcsigmoid(dinvalue, 
pdapars[0], pdcpars[0])); 
  } 
  else if (isetlevelid==inlevels-1) 
  { 
   return pdbpars[inlevels-1]*utlcalcsigmoid(dinvalue, 
pdapars[inlevels-2], pdcpars[inlevels-2]); 
  } 
  else 
  { 
   return pdbpars[isetlevelid]*utlcalcsigmoid(dinvalue, 
pdapars[isetlevelid-1], pdcpars[isetlevelid-1]) 
    *(1.0-utlcalcsigmoid(dinvalue, 
pdapars[isetlevelid], pdcpars[isetlevelid])); 
  } 
 } 
 
 //Function to plot the contents in a tab-delimited text file 
 void plotmemfn(const char *pcfname, int insteps=1001) const; 
}; 
 
 
 
 
//Class for Inputs fuzzifier (container of fuzzy membership function for 
each input) 
class RFZInputFuzzyfier 
{ 
protected: 
 
 //Number of input variables - also serves as memory allocation 
flag 
 int ininputs; 
 
 //Storage of Defaulted membership functions - sigmoidal type 
 RFZMemberShipFnSigmoid *psigmdftstore; 
 //Storage of Pointers to membership functions 
 RFZMemberShipFnAbs **ppmembershipfns; 
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 //Temporary storage of a current input vector 
 double *pdtmpcurinput; 
 
 //Function to free allocated memory 
 void freemem(); 
 
public: 
 
 //Constructor 
 RFZInputFuzzyfier(); 
 //Destructor 
 ~RFZInputFuzzyfier() {freemem();} 
 
 
 //Initialization function - defaults to sigmoid memberships 
 void init(int icninputs); 
 //Function for initialization of memory allocation from file 
stream 
 void initf(ifstream *pfin); 
 
 //Function to set pointer to a membership function class 
 void setmembershipfn(int iinputid, RFZMemberShipFnAbs 
*pmembershipfn); 
 
 //Function to re-initialize a membership function 
 void reinitmembershipfn(int iinputid, int inlevels, const void 
*pvinitdata=NULL); 
 
 //Function to tune a membership function 
 void tunemembershipfn(int iinputid, const void *pvtunepar); 
 //Function to tune a membership function 
 void tunemembershipfn(int iinputid, const double *pdtunepar); 
 
 //Function to re-initialize and tune (all) current membership 
functions from file stream 
 void tunemembershipfnsf(ifstream *pfin); 
 
 
 //Function to check if class is ready to perform calculations 
 bool isreadytocompute() const; 
 
 
 //Function to write class contents to file stream 
 void writef(ofstream *pfout) const; 
 
 
 //Function accept an input vector and internally calculate its 
membership values 
 void setcurinput(const double *pdcurinput) const 
 { 
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  if (!isreadytocompute()) return; 
 
  const double *pdctmp=pdtmpcurinput; 
  double *pdtmp=(double *)(pdctmp); 
 
  for (int icount=0; icount<ininputs; icount++) 
  { 
   pdtmp[icount]=pdcurinput[icount]; 
  } 
 } 
 
 //Function to return the current input's membership value (for 
inputID & level) 
 double getcurmembershipvalue(int iinputid, int isetlevelid) const 
 { 
  if (!isreadytocompute()) return 0.0; 
 
  if (iinputid<0) return 0.0; 
  if (iinputid>=ininputs) return 0.0; 
 
  return ppmembershipfns[iinputid]-
>getmembershipval(pdtmpcurinput[iinputid], isetlevelid); 
 } 
 
 //Function to return the number of inputs 
 int getninputs() const {return ininputs;} 
 
 //Function to return a constant pointer to the membership function 
requested 
 const RFZMemberShipFnAbs *getcptrmembershipfn(int iinputid) const  
 { 
  if (iinputid<0) return NULL; 
  if (iinputid>=ininputs) return NULL; 
  return ppmembershipfns[iinputid]; 
 } 
}; 
 
 
 
 
//Class for Fuzzy elementary "boolean" expression 
class RFZElemBooleanExpr 
{ 
protected: 
 
 //Input variable ID 
 int iinputid; 
 
 //Level ID to check 
 int itargetlevel; 
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public: 
 
 //Constructor 
 RFZElemBooleanExpr() 
 { 
  iinputid=0; 
  itargetlevel=0; 
 } 
 //Destructor 
 ~RFZElemBooleanExpr() {} 
 
 //Initialization function 
 void init(int icinputid, int ictargetlevel) 
 { 
  iinputid=icinputid; 
  itargetlevel=ictargetlevel; 
 } 
 //Function to write contents to file stream 
 void writef(ofstream *pfout) const 
 { 
  *pfout << iinputid << char(9) << itargetlevel << endl; 
 } 
 //Function to read contents from file stream 
 void readf(ifstream *pfin) 
 { 
  *pfin >> iinputid; 
  *pfin >> itargetlevel; 
 } 
 
 
 //Function to check current expression value with regards to a set 
of inputs' state 
 double getexprvalue(const RFZInputFuzzyfier *pfuzzyinputstate) 
const 
 { 
  return pfuzzyinputstate->getcurmembershipvalue(iinputid, 
itargetlevel); 
 } 
 
 //Function to return ID of input variable 
 int getinputid() const {return iinputid;} 
 
 //Function to return target level for input variable 
 int gettargetlevel() const {return itargetlevel;} 
}; 
 
 
 
//Abstract class for fuzzy rule 
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class RFZFuzzyRuleAbs 
{ 
protected: 
 
 //Output variable ID 
 int ioutputid; 
 
 //Base value for output 
 double doutbaseval; 
 
public: 
 
 //Constructor 
 RFZFuzzyRuleAbs() 
 { 
  ioutputid=0; 
  doutbaseval=0.0; 
 } 
 //Destructor 
 ~RFZFuzzyRuleAbs() {} 
 
 //Function to return Output ID 
 int getoutputid() const {return ioutputid;} 
 
 
 //Function to set output values 
 void setoutputvalues(int icoutpitid, double dcoutbaseval) 
 { 
  ioutputid=icoutpitid; 
  doutbaseval=dcoutbaseval; 
 } 
 
 
 //Virtual Function to compute output value 
 virtual double getoutputval(const RFZInputFuzzyfier 
*pfuzzyinputstate) const {return doutbaseval;} 
  
 //Virtual Function to adjust the rule  
 virtual void setexprvalues(const int *pipar, const double 
*pdpar=NULL, const void *pvpar=NULL) {} 
 
 //Virtual Function to write contents to a file stream 
 virtual void writef(ofstream *pfout) const 
 { 
  *pfout << ioutputid << char(9) << doutbaseval << endl; 
 } 
 
 //Virtual Funciton to read contents from a file stream 
 virtual void readf(ifstream *pfin) 
 { 
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  *pfin >> ioutputid; 
  *pfin >> doutbaseval; 
 } 
 
 
 //Virtual Function to return the highest ID of input variable in 
expression 
 virtual int getmaxinputid() const {return 0;} 
 
 //Virtual Function to write rule in a nicely formatted form to a 
file stream 
 virtual void formatrule(ofstream *pfout) const {} 
 
 //Virtual assigment operator to copy from another 
 virtual void operator=(const RFZFuzzyRuleAbs &other) {} 
}; 
 
 
 
//Implementation class for fuzzy rule, as a simple string of and-
operators as min vals 
class RFZFuzzyRuleSStrAndasMin : public RFZFuzzyRuleAbs 
{ 
protected: 
 
 //Number of elementary expressions 
 int inexprs; 
 
 //Storage of elementary expressions 
 RFZElemBooleanExpr *pexprs; 
 
 
public: 
 
 //Constructor 
 RFZFuzzyRuleSStrAndasMin() 
 { 
  RFZFuzzyRuleAbs::RFZFuzzyRuleAbs(); 
 
  inexprs=1; 
  pexprs=new RFZElemBooleanExpr[inexprs]; 
 } 
 //Destructor 
 ~RFZFuzzyRuleSStrAndasMin() 
 { 
  delete [inexprs] pexprs; 
 
  RFZFuzzyRuleAbs::~RFZFuzzyRuleAbs(); 
 } 
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 //Function to compute output value 
 double getoutputval(const RFZInputFuzzyfier *pfuzzyinputstate) 
const 
 { 
  double dcurfact=1.0; 
  double dcurval; 
 
  for (int icount=0; icount<inexprs; icount++) 
  { 
   dcurval=pexprs[icount].getexprvalue(pfuzzyinputstate); 
   if (dcurfact>dcurval) dcurfact=dcurval; 
  } 
 
  return dcurfact*doutbaseval; 
 } 
  
 //Function to adjust the rule  
 void setexprvalues(const int *pipar, const double *pdpar=NULL, 
const void *pvpar=NULL); 
 
 //Function to write contents to a file stream 
 void writef(ofstream *pfout) const; 
 
 //Funciton to read contents from a file stream 
 void readf(ifstream *pfin); 
 
 //Function to return the highest ID of input variable in 
expression 
 int getmaxinputid() const  
 { 
  int imaxinid=0; 
  for (int icount=0; icount<inexprs; icount++) 
  { 
   if (imaxinid<pexprs[icount].getinputid()) 
   { 
    imaxinid=pexprs[icount].getinputid(); 
   } 
  } 
  return imaxinid; 
 } 
 
 //Function to write rule in a nicely formatted form to a file 
stream 
 void formatrule(ofstream *pfout) const 
 { 
  *pfout << "IF "; 
  *pfout << "(InputID_" << pexprs[0].getinputid() << " 
IsAtLevel "  
   << pexprs[0].gettargetlevel() << ")"; 
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  for (int icount=1; icount<inexprs; icount++) 
  { 
   *pfout << " AND (InputID_" << 
pexprs[icount].getinputid() << " IsAtLevel "  
    << pexprs[icount].gettargetlevel() << ")"; 
  } 
  *pfout << " THEN OutputID_" << ioutputid << " IsAdujustedBy 
" << doutbaseval << endl; 
 } 
 
 //Assignment operator to copy from another 
 void operator=(const RFZFuzzyRuleAbs &other); 
}; 
 
 
 
 
//Class for Fuzzy Rule Base (collection of rules) 
class RFZFuzzyRuleBase 
{ 
protected: 
 
 //Number of rules 
 int inrules; 
 
 //Storage of Defaulted rules - simple and-strings 
 RFZFuzzyRuleSStrAndasMin *pandstrs; 
 
 //Storage of Pointers to rules 
 RFZFuzzyRuleAbs **pprules; 
 
 
 //Function to free allocated memory 
 void freemem(); 
 
public: 
 
 //Constructor 
 RFZFuzzyRuleBase(); 
 //Destructor 
 ~RFZFuzzyRuleBase() {freemem();} 
 
 
 //Function to reset all contents, and/or pre-allocate memory for a 
number of rules 
 void reset(int icnrules=0); 
 //Function to perform the reset from file stream 
 void resetf(ifstream *pfin); 
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 //Function to set a rule (by linking pointers to appropriate rule 
class) 
 void setrule(int iruleid, RFZFuzzyRuleAbs *pruleobj); 
 
 //Function to adjust exisiting rule's output properties 
 void setruleoutputvalues(int iruleid, int icoutputid, double 
dcoutbaseval); 
 
 //Function to adjust existing rule's logical reasoning 
 void setruleexprvalues(int iruleid, const int *pipar, const double 
*pdpar=NULL,  
  const void *pvpar=NULL); 
 
 //Function to read the rules' data from file stream 
 void setrulesf(ifstream *pfin); 
 
 
 //Function to write class contents to file stream 
 void writef(ofstream *pfout) const; 
 
 //Function to provide a nicely formatted listing of Fuzzy rules to 
a file 
 void formatfuzzyrules(const char *pcfname) const; 
 
 //Function to return the number of rules 
 int getnrules() const {return inrules;} 
 
 //Function to return a constant pointer to rule object 
 const RFZFuzzyRuleAbs *getcptrrule(int iruleid) const {return 
pprules[iruleid];} 
 
 //Function to check the maximum input ID 
 int getmaxinputid() const 
 { 
  int imaxinid=0; 
  for (int icount=0; icount<inrules; icount++) 
  { 
   if (imaxinid<pprules[icount]->getmaxinputid()) 
   { 
    imaxinid=pprules[icount]->getmaxinputid(); 
   } 
  } 
  return imaxinid; 
 } 
 //Function to check the maximum output ID 
 int getmaxoutputid() const 
 { 
  int imaxoutid=0; 
  for (int icount=0; icount<inrules; icount++) 
  { 
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   if (imaxoutid<pprules[icount]->getoutputid()) 
   { 
    imaxoutid=pprules[icount]->getoutputid(); 
   } 
  } 
  return imaxoutid; 
 } 
}; 
 
 
 
 
//Class for an output stochasitc variable activated by voting in rule 
base 
class RFZRandOutputVarViaRBVoting 
{ 
protected: 
 
 //Current Value 
 double dcurval; 
 
 //Minimum value for SD 
 double dminsigma; 
 
 //Current variable adjustments setting 
 double dcurav; 
 //Current variable adjustments absolute sum 
 double dadjstabssum; 
 
 //Current SD 
 double dcursigma; 
 
public: 
 
 //Constructor 
 RFZRandOutputVarViaRBVoting(); 
 //Destructor 
 ~RFZRandOutputVarViaRBVoting() {} 
 
 //Assignment operator to copy from another 
 void operator=(const RFZRandOutputVarViaRBVoting &other); 
 
 
 //Function to setup "large value", also resets voting 
 void setminsigma(double dcminsigma) {dminsigma=dcminsigma;} 
 //Function to set current value, also resets voting 
 void setcurvalue(double dccurval); 
 
 
 //Function to place a vote 
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 void votetochangeby(double dvotedchange); 
 
 
 //Function to write the tunable (large value) to file stream 
 void writef(ofstream *pfout) const 
 { 
  *pfout << dminsigma << endl; 
 } 
 //Function to read the tunable (min. SD) from file stream 
 void readf(ifstream *pfin) 
 { 
  double dtmpval; 
  *pfin >> dtmpval; 
  setminsigma(dtmpval); 
 } 
 
 //Function to write current distribution values to file stream 
 void writedistribtof(ofstream *pfout) const 
 { 
  *pfout << dcurval << char(9) << dcurav << char(9) << 
dcursigma << endl; 
 } 
 
 //Function to return current value 
 double getcurval() const {return dcurval;} 
 
 //Function to return current average value of votes 
 double getcurav() const {return dcurav;} 
 //Function to return current SD 
 double getcursd() const {return dcursigma;} 
 
 
 //Function to perform a Monte-Carlo instant of the variable 
accoring to current distribution 
 double getrandval(RandGen *prand) const 
 { 
  if (dcursigma<=0.0) return dcurav; 
  return prand->randn(dcurav, dcursigma); 
 } 
 //Function to perform a Monte-Carlo instant of the variable 
accoring to current distribution 
 double getrandval(RandGen *prand, double drmin, double drmax) 
const 
 { 
  double dmcval=getrandval(prand); 
  if (dmcval<drmin) dmcval=drmin; 
  if (dmcval>drmax) dmcval=drmax; 
  return dmcval; 
 } 
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 //Function to perform a Monte-Carlo instant of the variable 
accoring to current distribution 
 double getrandval(RandGen *prand, int inchoices, const double 
*pdchoices) const 
 { 
  double dcval=getrandval(prand); 
 
  int ichoiceid=0; 
  double dbestdist=fabs(dcval-pdchoices[0]); 
  double dcurdist; 
 
  for (int icount=1; icount<inchoices; icount++) 
  { 
   dcurdist=fabs(dcval-pdchoices[icount]); 
   if (dbestdist>dcurdist) 
   { 
    dbestdist=dcurdist; 
    ichoiceid=icount; 
   } 
  } 
  return pdchoices[ichoiceid]; 
 } 
}; 
 
 
 
//Class for a set of output stochasitc variables activated by voting 
from a rule base 
class RFZRandOutputVarViaRBVotingSet 
{ 
protected: 
 
 //Number of output variables 
 int inoutputs; 
  
 //Storage of output variable objects 
 RFZRandOutputVarViaRBVoting *poutvars; 
 
public: 
 
 //Constructor 
 RFZRandOutputVarViaRBVotingSet() 
 { 
  inoutputs=0; 
  poutvars=NULL; 
 } 
 
 //Destructor 
 ~RFZRandOutputVarViaRBVotingSet() 
 { 
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  if (inoutputs>0) delete [inoutputs] poutvars; 
 } 
 
 //Initialization function 
 void init(int icnoutputs, const double *pdminsds=NULL); 
 
 //Function to write output variables' "large value" tunable to a 
file stream 
 void writef(ofstream *pfout) const; 
 
 //Function to read output variables' "large value" tunable from a 
file stream 
 void readf(ifstream *pfin); 
 
 //Function to write current distribution values to file 
 void writedistribtof(const char *pcfname) const 
 { 
  ofstream fout(pcfname); 
  for (int icount=0; icount<inoutputs; icount++) 
  { 
   poutvars[icount].writedistribtof(&fout); 
  } 
  fout.close(); 
 } 
 
 //Function to set output variables states to cope with input 
states and rule base 
 void settostate(const RFZInputFuzzyfier *pinputstate,  
  const RFZFuzzyRuleBase *prulebase, const double 
*pdcurvarvals) 
 { 
  if (inoutputs<=0) return; 
 
  int icount; 
  for (icount=0; icount<inoutputs; icount++) 
  { 
   poutvars[icount].setcurvalue(pdcurvarvals[icount]); 
  } 
 
  int inrules=prulebase->getnrules(); 
  const RFZFuzzyRuleAbs *pcurrule; 
 
  for (icount=0; icount<inrules; icount++) 
  { 
   pcurrule=prulebase->getcptrrule(icount); 
   poutvars[pcurrule-
>getoutputid()].votetochangeby(pcurrule->getoutputval(pinputstate)); 
  } 
 } 
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 //Function to return the number of output variables 
 int getnoutvars() const {return inoutputs;} 
 //Function to return a constant pointer to output variables 
 const RFZRandOutputVarViaRBVoting *getoutvars() const {return 
poutvars;} 
}; 
 
 
#endif //H_CPP_RFuzzy 
 
 
File:  AbsCrashMode.h 
 
//Include section 
#ifndef H_CPP_AbsCrashMode 
#define H_CPP_AbsCrashMode 
 
#include <fstream> 
#include <cmath> 
using namespace std; 
 
 
 
//Pre-set constants 
 
const double D_CrashModeBase_TimeInstantTol = 1.0e-7; 
const double D_CrashModeHardLim_DeformVal = 1.0e-6; 
 
 
 
//Base Class (abstracted) for definition of crash mode 
class CrashModeBase 
{ 
protected: 
 
 //An identifier for Crash Mode Object "Type" 
 int iobjtype; 
 //Initialization flag 
 int iisinitialized; 
 //Solution availability flag 
 int iissolavailable; 
 
 //Number of zones 
 int inzones; 
 //Maximum number of deformation types per zone 
 int inmaxdeformtypes; 
 //Number of deformation tyoes in each zone 
 int *pindeformtypes; 
 //Number of "recordable time instances" for time 
 int intimeinstt; 
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 //Number of "recordable time instances" for the deformation 
 int intimeinstdef; 
 //Storage of time instances 
 double *pdtimeinst; 
 //Storage of deformation instances 
 double *pddefinst; 
 
 
 //Utility function to allocate memory for CM data storage 
 void utl_malloc(int icnzones, int icnmaxdeformtypes,  
  int icntimeinstt, int icntimeinstdef) 
 { 
  utl_freemem(); 
 
  inzones=icnzones; 
  inmaxdeformtypes=icnmaxdeformtypes; 
  intimeinstt=icntimeinstt; 
  intimeinstdef=icntimeinstdef; 
 
  pindeformtypes=new int[inzones*inmaxdeformtypes]; 
  pdtimeinst=new double[intimeinstt]; 
  pddefinst=new 
double[inzones*inmaxdeformtypes*intimeinstdef]; 
 } 
 //Utility function to freem memory of CM data storage 
 void utl_freemem() 
 { 
  if (inzones*inmaxdeformtypes>0) delete 
[inzones*inmaxdeformtypes] pindeformtypes; 
  if (intimeinstt>0) delete [intimeinstt] pdtimeinst; 
  if (inzones*inmaxdeformtypes*intimeinstdef>0)  
   delete [inzones*inmaxdeformtypes*intimeinstdef] 
pddefinst; 
 
  inzones=0; 
  inmaxdeformtypes=0; 
  intimeinstt=0; 
  intimeinstdef=0; 
 
  pindeformtypes=NULL; 
  pdtimeinst=NULL; 
  pddefinst=NULL; 
 
  iisinitialized=0; 
  iissolavailable=0; 
 } 
 
 //Utility function to place a value in its correct ZDT position in 
matrix 
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 void utl_placedfrmvalue(double ddfrmvalue, int izoneid, int 
ideftypeid, int itimeinstid) 
 { 
  pddefinst[inzones*inmaxdeformtypes*itimeinstid + 
izoneid*inmaxdeformtypes + ideftypeid] 
   = ddfrmvalue; 
 } 
 
public: 
 
 //Constructor 
 CrashModeBase() 
 { 
  iobjtype=0;    //Object Type is set to "Base 
Class" 
  iisinitialized=0;  //Initialization is set to "OFF" 
 
  inzones=0; 
  inmaxdeformtypes=0; 
  intimeinstt=0; 
  intimeinstdef=0; 
 
  pindeformtypes=NULL; 
  pdtimeinst=NULL; 
  pddefinst=NULL; 
 } 
 //Destructor 
 ~CrashModeBase() {utl_freemem();} 
 
 
 //Function to return identifier for object type 
 int get_objtype() const {return iobjtype;} 
 
 //Function to return the number of zones 
 int get_nzones() const {return inzones;} 
 //Function to return the maximum number of deformation types 
 int get_nmaxdeformtypes() const {return inmaxdeformtypes;} 
 //Function to return the number of deformation types in all zones 
 const int *get_ndeformtypes() const {return pindeformtypes;} 
 
 //Function to return the number of stored time instants 
 int get_nstoretimeinstants() const {return intimeinstt;} 
 //Function to return the number of stored deformation instants 
 int get_nstoredefrominstants() const {return intimeinstdef;} 
  
 //Function to return the stored time instant values 
 const double *get_storetimeinstants() const {return pdtimeinst;} 
 
 //Function to return object initialization state (returns true if 
isinitialized==1) 
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 bool check_initialization() const {if (iisinitialized==1) return 
true; else return false;} 
 //Function to return solution availability state (returns true if 
iissolavailable==1) 
 bool check_solavailability() const {if (iissolavailable==1) return 
true; else return false;} 
 
 
   /*Virtual Functions that need to be defined in derived 
classes*/ 
 
 //Crash mode model initialization from data object 
 virtual void init(const void *pvdata) {} 
 //Crash mode model initialization from file 
 virtual void initf(const char *pcmmodelfname) {} 
 //Saving model to file 
 virtual void savemodel(const char *pcmmodelfname) const {} 
  
 //Extracting CM values from a solution storage object (can also be 
a file) 
 virtual void extractCM(const void *pvsolobj) {} 
 
 //Writing CM values to file 
 virtual void saveCMvals(const char *pcfname) const {} 
 //Reading CM values from file 
 virtual void readCMvals(const char *pcfname) {} 
 
 
   /*Virtual Functions that "may" need to be re-defined 
in derived classes*/ 
 
 //Function to return "equivalent deformation value", given zone, 
deformation type & time 
 virtual double getcmvalue_zdt(int izoneid, int ideftypeid, int 
itimeinstid) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
  if ((izoneid<0)||(izoneid>=inzones)) return -3.0; 
  if ((ideftypeid<0)||(ideftypeid>=pindeformtypes[izoneid])) 
return -4.0; 
  if ((itimeinstid<0)||(itimeinstid>=intimeinstdef)) return -
5.0; 
 
  return pddefinst[inzones*inmaxdeformtypes*itimeinstid +  
       izoneid*inmaxdeformtypes + 
ideftypeid]; 
 } 
 //Function to return "equivalent deformation value", given zone, 
deformation type & time 
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 virtual double getcmvalue_zdt(int izoneid, int ideftypeid, double 
dtimeinst) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
  if ((izoneid<0)||(izoneid>=inzones)) return -3.0; 
  if ((ideftypeid<0)||(ideftypeid>=pindeformtypes[izoneid])) 
return -4.0; 
  if (intimeinstt!=intimeinstdef) return -5.0; 
  if (intimeinstt<2) return -6.0; 
 
  int itid1=0; 
  int itid2=1; 
  for (int icount=0; icount<intimeinstt-1; icount++) 
  { 
   if (pdtimeinst[itid2]>=dtimeinst) break; 
   itid1=itid2; 
   itid2++; 
  } 
 
  double dval1 = pddefinst[inzones*inmaxdeformtypes*itid1 + 
izoneid*inmaxdeformtypes + ideftypeid]; 
  double dval2 = pddefinst[inzones*inmaxdeformtypes*itid2 + 
izoneid*inmaxdeformtypes + ideftypeid]; 
  double drrel = (dtimeinst-
pdtimeinst[itid1])/(pdtimeinst[itid2]-pdtimeinst[itid1]); 
  return (1.0-drrel)*dval1 + drrel*dval2; 
 } 
 //Function to return "equivalent deformation value", given zone & 
deformation type (final time values) 
 virtual double getcmvalue_zd(int izoneid, int ideftypeid) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
 
  int inlaststeady=intimeinstdef/10; 
  if (inlaststeady<1) inlaststeady=1; 
   
  double dsumsteady=0.0; 
  for (int icount=0; icount<inlaststeady; icount++) 
  { 
   dsumsteady+=getcmvalue_zdt(izoneid, ideftypeid, 
intimeinstdef-1-icount); 
  } 
 
  return dsumsteady/double(inlaststeady); 
 } 
 //Function to return "equivalent deformation value", given zone & 
time (summed over deformation types) 
 virtual double getcmvalue_zt(int izoneid, int itimeinstid) const 
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 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
 
  double dsumdef=0.0; 
  int indeftypes=pindeformtypes[izoneid]; 
  for (int icount=0; icount<indeftypes; icount++) 
  { 
   dsumdef+=getcmvalue_zdt(izoneid, icount, itimeinstid); 
  } 
  return dsumdef; 
 } 
 //Function to return "equivalent deformation value", given zone & 
time (summed over deformation types) 
 virtual double getcmvalue_zt(int izoneid, double dtimeinst) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
 
  double dsumdef=0.0; 
  int indeftypes=pindeformtypes[izoneid]; 
  for (int icount=0; icount<indeftypes; icount++) 
  { 
   dsumdef+=getcmvalue_zdt(izoneid, icount, dtimeinst); 
  } 
  return dsumdef; 
 } 
 //Function to return "equivalent deformation value", given zone 
(final time values - summed over deformation types) 
 virtual double getcmvalue_z(int izoneid) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
 
  double dsumdef=0.0; 
  int indeftypes=pindeformtypes[izoneid]; 
  for (int icount=0; icount<indeftypes; icount++) 
  { 
   dsumdef+=getcmvalue_zd(izoneid, icount); 
  } 
  return dsumdef; 
 } 
}; 
 
 
 
//Sub-category of CrashModeBase: Detailed deformation history crash mode 
curves 
class CrashModeDetTHist : public CrashModeBase 
{ 
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public: 
 
 //Constructor 
 CrashModeDetTHist() 
 { 
  CrashModeBase::CrashModeBase(); 
 
  iobjtype=1;    //Object Type is set to 
"Detailed Time History" 
  iisinitialized=1;  //Initialization is set to "ON" 
 } 
 //Destructor 
 ~CrashModeDetTHist() {CrashModeBase::~CrashModeBase();} 
 
 //Writing CM values to file 
 void saveCMvals(const char *pcfname) const; 
 //Reading CM values from file 
 void readCMvals(const char *pcfname); 
}; 
 
 
 
//Sub-category of CrashModeBase: Deformation history approximated via 
hard-limit basis 
class CrashModeHardLim : public CrashModeBase 
{ 
protected: 
 
 //Utility function for extraction and storage of CM values 
 void extractCMpcmp(const double *pdmags, const double *pdtinsts,  
  int icnzones, double dclastime); 
public: 
 
 //Constructor 
 CrashModeHardLim() 
 { 
  CrashModeBase::CrashModeBase(); 
 
  iobjtype=2;    //Object Type is set to "Hard-
limit approximation" 
  iisinitialized=1;  //Initialization is set to "ON" 
 } 
 //Destructor 
 ~CrashModeHardLim() {CrashModeBase::~CrashModeBase();} 
 
 
 //Writing CM values to file 
 void saveCMvals(const char *pcfname) const; 
 //Reading CM values from file 
 void readCMvals(const char *pcfname); 
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 //Function to convert from a detailed CM history 
 void convertfromdethist(const CrashModeDetTHist *pdetcmhistobj); 
 
 
 //Function to return "equivalent deformation value", given zone, 
deformation type & time Instant ID 
 double getcmvalue_zdt(int izoneid, int ideftypeid, int 
itimeinstid) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
  if ((izoneid<0)||(izoneid>=inzones)) return -3.0; 
  if ((ideftypeid<0)||(ideftypeid>=pindeformtypes[izoneid])) 
return -4.0; 
 
  if (itimeinstid==0) 
  { 
   return 0.0; 
  } 
  else 
  { 
   return pddefinst[izoneid*inmaxdeformtypes + 
ideftypeid]; 
  } 
 } 
 //Function to return "equivalent deformation value", given zone, 
deformation type & time 
 double getcmvalue_zdt(int izoneid, int ideftypeid, double 
dtimeinst) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
  if ((izoneid<0)||(izoneid>=inzones)) return -3.0; 
  if ((ideftypeid<0)||(ideftypeid>=pindeformtypes[izoneid])) 
return -4.0; 
 
  double djumpinstant=pddefinst[inzones*inmaxdeformtypes + 
izoneid*inmaxdeformtypes + ideftypeid]; 
 
  if (dtimeinst<djumpinstant-D_CrashModeBase_TimeInstantTol) 
  { 
   return 0.0; 
  } 
  else if 
(dtimeinst>djumpinstant+D_CrashModeBase_TimeInstantTol) 
  { 
   return pddefinst[izoneid*inmaxdeformtypes + 
ideftypeid]; 
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  } 
  else 
  { 
   double drelval=0.5*(dtimeinst-
djumpinstant+D_CrashModeBase_TimeInstantTol)/D_CrashModeBase_TimeInstant
Tol; 
   return drelval*pddefinst[izoneid*inmaxdeformtypes + 
ideftypeid]; 
  } 
 } 
 //Function to return "equivalent deformation value", given zone & 
deformation type (final time values) 
 double getcmvalue_zd(int izoneid, int ideftypeid) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
  return getcmvalue_zdt(izoneid, ideftypeid, 1); 
 } 
 //Function to return "equivalent deformation value", given zone & 
time (summed over deformation types) 
 double getcmvalue_zt(int izoneid, int itimeinstid) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
 
  if (itimeinstid<=0) itimeinstid=0; 
  else itimeinstid=1; 
 
  double dsumdef=0.0; 
  int indeftypes=pindeformtypes[izoneid]; 
  for (int icount=0; icount<indeftypes; icount++) 
  { 
   dsumdef+=getcmvalue_zdt(izoneid, icount, itimeinstid); 
  } 
  return dsumdef; 
 } 
 //Function to return "equivalent deformation value", given zone & 
time (summed over deformation types) 
 double getcmvalue_zt(int izoneid, double dtimeinst) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
 
  double dsumdef=0.0; 
  int indeftypes=pindeformtypes[izoneid]; 
  for (int icount=0; icount<indeftypes; icount++) 
  { 
   dsumdef+=getcmvalue_zdt(izoneid, icount, dtimeinst); 
  } 
  return dsumdef; 
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 } 
 //Function to return "equivalent deformation value", given zone 
(final time values - summed over deformation types) 
 double getcmvalue_z(int izoneid) const 
 { 
  if (iisinitialized!=1) return -1.0; 
  if (iissolavailable!=1) return -2.0; 
 
  double dsumdef=0.0; 
  int indeftypes=pindeformtypes[izoneid]; 
  for (int icount=0; icount<indeftypes; icount++) 
  { 
   dsumdef+=getcmvalue_zd(izoneid, icount); 
  } 
  return dsumdef; 
 } 
 
}; 
 
 
#endif //H_CPP_AbsCrashMode 
 
 
File:  autocmmatcher.h 
 
//Include section 
#ifndef H_CPP_AutoCMMatcher 
#define H_CPP_AutoCMMatcher 
 
#include "rfuzzy.h" 
#include "AbsCrashMode.h" 
 
 
//Class for Fuzzy Sampler 
class ACMMFuzzySampler 
{ 
protected: 
 
 //Membership functions for Input Fuzzification 
 RFZInputFuzzyfier inputfuzzifier; 
 
 //Fuzzy Rule Base 
 RFZFuzzyRuleBase fuzzyrules; 
 
 //Rand variales for sampling 
 RFZRandOutputVarViaRBVotingSet randvarsset; 
 
 
public: 
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 //Constructor 
 ACMMFuzzySampler() {} 
 //Destructor 
 ~ACMMFuzzySampler() {} 
 
 
 //Function to return a pointer to input fuzzifier object 
 RFZInputFuzzyfier *getptr_inputfuzzifier() {return 
&inputfuzzifier;} 
 //Function to return a pointer to fuzzy rule base 
 RFZFuzzyRuleBase *getptr_fuzzyrules() {return &fuzzyrules;} 
 //Function to return a pointer to the random variales for sampling 
 RFZRandOutputVarViaRBVotingSet *getptr_randvarssetr() {return 
&randvarsset;} 
 
 //Function to return a constant pointer to input fuzzifier object 
 const RFZInputFuzzyfier *getcptr_inputfuzzifier() const {return 
&inputfuzzifier;} 
 //Function to return a constant pointer to fuzzy rule base 
 const RFZFuzzyRuleBase *getcptr_fuzzyrules() const {return 
&fuzzyrules;} 
 //Function to return a constant pointer to the random variales for 
sampling 
 const RFZRandOutputVarViaRBVotingSet *getcptr_randvarssetr() const 
{return &randvarsset;} 
 
 
 //Function to write contents to a file 
 void writef(const char *pcfname) const; 
 //Function to read contents from a file 
 void readf(const char *pcfname); 
 
 //Function to write current distribution of the Gauusian variables 
to file 
 void writedistribtof(const char *pcfname) const 
 { 
  randvarsset.writedistribtof(pcfname); 
 } 
 
 //Function to return the number of inputs 
 int getninputerrs() const {return inputfuzzifier.getninputs();} 
 //Function to return the number of rules 
 int getnrules() const {return fuzzyrules.getnrules();} 
 //Function to return the number of controlled/sampled/output 
variables 
 int getnoutputcrtl() const {return randvarsset.getnoutvars();} 
 
 
 //Function to check for I/O consistency 
 bool isconsistent() const 
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 { 
  if (!inputfuzzifier.isreadytocompute()) return false; 
 
  int ininputerrs=inputfuzzifier.getninputs(); 
  int inoutputcrtl=randvarsset.getnoutvars(); 
 
  if (fuzzyrules.getmaxinputid()>=ininputerrs) return false; 
  if (fuzzyrules.getmaxoutputid()>=inoutputcrtl) return false; 
 
  return true; 
 } 
 
 //Function to plot the membership functions of an input to a file 
 void plotinputmemberships(const char *pcfname, int iinputid, int 
inplotpoints=1001) const 
 { 
  if (iinputid<0) return; 
  if (iinputid>=inputfuzzifier.getninputs()) return; 
 
  inputfuzzifier.getcptrmembershipfn(iinputid)-
>plotmemfn(pcfname, inplotpoints); 
 } 
 
 
 //Function to put a nicely formatted listing of Fuzzy rules into a 
file 
 void formatfuzzyrules(const char *pcfname) const 
 { 
  fuzzyrules.formatfuzzyrules(pcfname); 
 } 
 
 
 //Function to ready class for Monte-Carlo sampling 
 void readysampling(const double *pdcurinputerrs, const double 
*pdcuroutdesvar) 
 { 
  inputfuzzifier.setcurinput(pdcurinputerrs); 
  randvarsset.settostate(&inputfuzzifier, &fuzzyrules, 
pdcuroutdesvar); 
 } 
 //Function to produce a Monte-Carlo sample of a design variable 
(output) 
 double randsamplevar(int ioutvarid, RandGen *prand) 
 { 
  int inoutvar=randvarsset.getnoutvars(); 
  if (ioutvarid<0) return 0.0; 
  if (ioutvarid>=inoutvar) return 0.0; 
  return 
randvarsset.getoutvars()[ioutvarid].getrandval(prand); 
 } 
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 //Function to produce a Monte-Carlo sample of a design variable 
(output) 
 double randsamplevar(int ioutvarid, RandGen *prand, double drmin, 
double drmax) 
 { 
  int inoutvar=randvarsset.getnoutvars(); 
  if (ioutvarid<0) return 0.0; 
  if (ioutvarid>=inoutvar) return 0.0; 
  return randvarsset.getoutvars()[ioutvarid].getrandval(prand, 
drmin, drmax); 
 } 
 //Function to produce a Monte-Carlo sample of a design variable 
(output) 
 double randsamplevar(int ioutvarid, RandGen *prand, int inchoices, 
const double *pdchoices) 
 { 
  int inoutvar=randvarsset.getnoutvars(); 
  if (ioutvarid<0) return 0.0; 
  if (ioutvarid>=inoutvar) return 0.0; 
  return randvarsset.getoutvars()[ioutvarid].getrandval(prand, 
inchoices, pdchoices); 
 } 
}; 
 
 
 
//Class for ACMM design variable definition 
class ACMMDesignVarDef 
{ 
protected: 
 
 //Allocated memory size 
 int inalloc; 
 //Number of "choices", =0 for continuous variables 
 int inchoices; 
 
 //Storage of choices, 1st 2 slots used for min/max in case of 
continuous variable 
 double *pdvalstore; 
 
 //Current value 
 double dcurval; 
 
public: 
 
 //Constructor 
 ACMMDesignVarDef() 
 { 
  inalloc=10; 
  pdvalstore=new double[inalloc]; 
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  inchoices=0; 
  pdvalstore[0]=0.0; 
  pdvalstore[1]=1.0; 
 
  dcurval=0.0; 
 } 
 //Destructor 
 ~ACMMDesignVarDef() 
 { 
  delete [inalloc] pdvalstore; 
 } 
 
 
 //Function to setup the variable as continuous, also resets value 
to minimum range 
 void setcontinuous(double drmin, double drmax) 
 { 
  inchoices=0; 
  pdvalstore[0]=drmin; 
  pdvalstore[1]=drmax; 
  dcurval=drmin; 
 } 
 
 //Function to setup the variable as discrete, also resets value to 
1st option 
 void setdiscrete(int icnchoices, const double *pdchoices) 
 { 
  if (icnchoices<1) return; 
  if (icnchoices>inalloc) 
  { 
   delete [inalloc] pdvalstore; 
   inalloc=icnchoices; 
   pdvalstore=new double[inalloc]; 
  } 
  inchoices=icnchoices; 
  for (int icount=0; icount<inchoices; icount++) 
  { 
   pdvalstore[icount]=pdchoices[icount]; 
  } 
  dcurval=pdvalstore[0]; 
 } 
 
 //Function to read model contents from file stream 
 void readf(ifstream *pfin) 
 { 
  *pfin >> inchoices; 
  if (inchoices<0) inchoices=0; 
  if (inchoices==0) 
  { 
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   *pfin >> pdvalstore[0]; 
   *pfin >> pdvalstore[1]; 
  } 
  else 
  { 
   if (inchoices>inalloc) 
   { 
    delete [inalloc] pdvalstore; 
    inalloc=inchoices; 
    pdvalstore=new double[inalloc]; 
   } 
   for (int icount=0; icount<inchoices; icount++) 
   { 
    *pfin >> pdvalstore[icount]; 
   } 
  } 
  dcurval=pdvalstore[0]; 
 } 
 
 //Function to write model contents to file stream 
 void writef(ofstream *pfout) const 
 { 
  *pfout << inchoices << char(9); 
  if (inchoices==0) 
  { 
   *pfout << pdvalstore[0] << char(9); 
   *pfout << pdvalstore[1] << char(9); 
  } 
  else 
  { 
   for (int icount=0; icount<inchoices; icount++) 
   { 
    *pfout << pdvalstore[icount] << char(9); 
   } 
  } 
  *pfout << endl; 
 } 
 
 //Function to read value from file stream 
 void vreadf(ifstream *pfin)  
 { 
  double dtmp; 
  *pfin >> dtmp; 
  setvalue(dtmp); 
 } 
 //Function to write value to file stream 
 void vwritef(ofstream *pfout) const {*pfout << dcurval <<endl;} 
 
 
 //Function to check if variable is discrete 
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 bool isdiscrete() const 
 { 
  if (inchoices==0) return false; 
  else return true; 
 } 
 //Function to return current value of variable 
 double getcurval() const {return dcurval;} 
 
 //Function to return minimum range (if continuous) 
 double getrmin() const {return pdvalstore[0];} 
  
 //Function to return maximum range (if continuous) 
 double getrmax() const {return pdvalstore[1];} 
  
 //Function to return number of choices (if discrete) 
 int getnchoices() const {return inchoices;} 
  
 //Function to return discrete choices 
 const double *getchoices() const {return pdvalstore;} 
 
 
 //Function to set current value (or set to nearest allowed value) 
 void setvalue(double dnewval) 
 { 
  dcurval=dnewval; 
  if (inchoices==0) 
  { 
   if (dcurval<pdvalstore[0]) dcurval=pdvalstore[0]; 
   if (dcurval>pdvalstore[1]) dcurval=pdvalstore[1]; 
  } 
  else 
  { 
   double dcurerr; 
   int ibestchoice=0; 
   double dminerr=fabs(dnewval-pdvalstore[0]); 
   for (int icount=1; icount<inchoices; icount++) 
   { 
    dcurerr=fabs(dnewval-pdvalstore[icount]); 
    if (dminerr>dcurerr) 
    { 
     dminerr=dcurerr; 
     ibestchoice=icount; 
    } 
   } 
   dcurval=pdvalstore[ibestchoice]; 
  } 
 } 
 
 //Assignment operator, copies contents of another 
 void operator=(const ACMMDesignVarDef &other) 
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 { 
  delete [inalloc] pdvalstore; 
  inalloc=other.inalloc; 
  pdvalstore=new double[inalloc]; 
  inchoices=other.inchoices; 
  pdvalstore[0]=other.pdvalstore[0]; 
  pdvalstore[1]=other.pdvalstore[1]; 
  for (int icount=0; icount<inchoices; icount++) 
  { 
   pdvalstore[icount]=other.pdvalstore[icount]; 
  } 
  dcurval=other.dcurval; 
 } 
}; 
 
 
//Class for Objective an Function and/or Constraint scaling & storage 
class ACMMOFConScStr 
{ 
protected: 
 
 //Scaling weight 
 double dweight; 
 
 //Storage of current value 
 double dcurval; 
 
public: 
 
 //Constructor 
 ACMMOFConScStr() {reset();} 
 //Destructor 
 ~ACMMOFConScStr() {} 
 
 //Function to reset values 
 void reset() 
 { 
  dweight=1.0; 
  dcurval=0.0; 
 } 
 
 //Function to return weight 
 double getweight() const {return dweight;} 
 //Function to return current stored value 
 double getcurval() const {return dcurval;} 
 
 //Function to set weight 
 void setweight(double dcweight) {dweight=dcweight;} 
 //Function to set current value 
 void setcurval(double dcval) {dcurval=dcval;} 
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 //Function to read weight from file stream 
 void readf(ifstream *pfin) {*pfin >> dweight;} 
 //Function to write weight to file stream 
 void writef(ofstream *pfout) const {*pfout << dweight << endl;} 
 
 //Function to read value from file stream 
 void vreadf(ifstream *pfin) {*pfin >> dcurval;} 
 //Function to write value to file stream 
 void vwritef(ofstream *pfout) const {*pfout << dcurval << endl;} 
 
 
 //Assignment Operator to copy from another 
 void operator=(const ACMMOFConScStr &other) 
 { 
  dweight=other.dweight; 
  dcurval=other.dcurval; 
 } 
}; 
 
 
 
//Class for Design variales, Objectives & Constriants model storage & 
instantitiation 
class ACMMVOCModelInst 
{ 
protected: 
 
 //Number of design variables 
 int invar; 
 //Number of objectives 
 int inobj; 
 //Number of constraints 
 int incon; 
 
 //Storage of Design Variables 
 ACMMDesignVarDef *pvars; 
 //Storage of Objectives 
 ACMMOFConScStr *pobjs; 
 //Storae of Constraints 
 ACMMOFConScStr *pcons; 
 
 
 //Function to free allocated memory 
 void freemem(); 
 
public: 
 
 //Constructor 
 ACMMVOCModelInst(); 
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 //Destructor 
 ~ACMMVOCModelInst() {freemem();} 
 
 
 //Function to initialize allocations for variables 
 void initvars(int icnvars); 
 //Function to initialize allocations for objectives 
 void initobjs(int icnobjs); 
 //Function to initialize allocations for constraints 
 void initcons(int icncons); 
 
 
 //Function to write contents (model) to file 
 void writef(const char *pcfname) const; 
 //Function to read contents (model) from file 
 void readf(const char *pcfname); 
 
 //Function to write current values to file 
 void vwritef(const char *pcfname) const; 
 //Function to read current values from file 
 void vreadf(const char *pcfname); 
 
 
 //Assignment operator, copies contents of another 
 void operator=(const ACMMVOCModelInst &other); 
 
 //Function to return the number of variables 
 int getnvar() const {return invar;} 
 //Function to return the number of objectives 
 int getnobj() const {return inobj;} 
 //Function to return the number of constraints 
 int getncon() const {return incon;} 
 
 
 //Function to return a constant pointer to variables 
 const ACMMDesignVarDef *getcptrvars() const {return pvars;} 
 //Function to return a constant pointer to objectives 
 const ACMMOFConScStr *getcptrobjs() const {return pobjs;} 
 //Function to return a constant pointer to constraints 
 const ACMMOFConScStr *getcptrcons() const {return pcons;} 
 
 
 //Function to return a pointer to variables 
 ACMMDesignVarDef *getptrvars() {return pvars;} 
 //Function to return a pointer to objectives 
 ACMMOFConScStr *getptrobjs() {return pobjs;} 
 //Function to return a pointer to constraints 
 ACMMOFConScStr *getptrcons() {return pcons;} 
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 //Utility function to grab variable values 
 void getvarvals(double *pdvars) const 
 { 
  for (int icount=0; icount<invar; icount++) 
  { 
   pdvars[icount]=pvars[icount].getcurval(); 
  } 
 } 
 //Utility function to grab objective values 
 void getobjvals(double *pdobjs) const 
 { 
  for (int icount=0; icount<inobj; icount++) 
  { 
   pdobjs[icount]=pobjs[icount].getcurval(); 
  } 
 } 
 //Utility function to grab constraint values 
 void getconvals(double *pdcons) const 
 { 
  for (int icount=0; icount<incon; icount++) 
  { 
   pdcons[icount]=pcons[icount].getcurval(); 
  } 
 } 
 
 
 //Utility function to set variable values 
 void setvarvals(const double *pdvars) 
 { 
  for (int icount=0; icount<invar; icount++) 
  { 
   pvars[icount].setvalue(pdvars[icount]); 
  } 
 } 
 //Utility function to set objective values 
 void setobjvals(const double *pdobjs) 
 { 
  for (int icount=0; icount<inobj; icount++) 
  { 
   pobjs[icount].setcurval(pdobjs[icount]); 
  } 
 } 
 //Utility function to set constraint values 
 void setconvals(const double *pdcons) 
 { 
  for (int icount=0; icount<incon; icount++) 
  { 
   pcons[icount].setcurval(pdcons[icount]); 
  } 
 } 
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 //Utility function to compare with another in terms of design 
objectives 
 // returns -1 if worse than other, 1 if better, 0 if same as 
 int IsBetterThan(const ACMMVOCModelInst &other) const; 
}; 
 
 
 
//Class for CM error comparison elementary term 
class ACMMErrCompElemTerm 
{ 
protected: 
 
 //Zone ID 
 int izoneid; 
 
 //Deformation Type ID 
 int ideformtypeid; 
 
 //Scaling constant 
 double dscwt; 
 
public: 
 
 //Constructor 
 ACMMErrCompElemTerm() 
 { 
  izoneid=0; 
  ideformtypeid=0; 
  dscwt=1.0; 
 } 
 //Destructor 
 ~ACMMErrCompElemTerm() {} 
 
 
 //Function to write contents to file stream 
 void writef(ofstream *pfout) const 
 { 
  *pfout << izoneid << char(9) << ideformtypeid << char(9) << 
dscwt << endl; 
 } 
 //Function to read contents from file stream 
 void readf(ifstream *pfin) 
 { 
  *pfin >> izoneid; 
  *pfin >> ideformtypeid; 
  *pfin >> dscwt; 
 } 
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 //Function to set zone ID 
 void setzoneid(int iczoneid) {izoneid=iczoneid;} 
 //Function to return zone ID 
 int getzoneid() const {return izoneid;} 
 
 //Function to set deformation type ID 
 void setdeftypeid(int icdeftype) {ideformtypeid=icdeftype;} 
 //Function to return deformation type ID 
 int getdeftypeid() const {return ideformtypeid;} 
 
 //Function to set scaling weight 
 void setsclwtid(double dcwt) {dscwt=dcwt;} 
 //Function to return scaling weight 
 double getsclwtid() const {return dscwt;} 
 
 
 //Assignment operator to copy from another 
 void operator=(const ACMMErrCompElemTerm &other) 
 { 
  izoneid=other.izoneid; 
  ideformtypeid=other.ideformtypeid; 
  dscwt=other.dscwt; 
 } 
 
 
 //Function to calculate equivalent "measure value" out of CM 
history 
 double calcEqCMValueT(const CrashModeBase *pcmobj, double 
dtimeval) const 
 { 
  return dscwt*pcmobj->getcmvalue_zdt(izoneid, ideformtypeid, 
dtimeval); 
 } 
}; 
 
 
 
//Class for CM error comparison expression 
class ACMMErrCompExpr 
{ 
protected: 
  
 //Number of elementary terms 
 int interms; 
 
 //Storage of terms 
 ACMMErrCompElemTerm *pterms; 
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public: 
 
 //Constructor 
 ACMMErrCompExpr() 
 { 
  interms=0; 
  pterms=NULL; 
 } 
 //Destructor 
 ~ACMMErrCompExpr() 
 { 
  if (interms>0) delete [interms] pterms; 
 } 
 
 //Function to initialize/set number of terms 
 void init(int icnterms) 
 { 
  if (interms>0) delete [interms] pterms; 
  interms=icnterms; 
  if (interms>0) pterms=new ACMMErrCompElemTerm[interms]; 
 } 
 
 //Function to write contents to file stream 
 void writef(ofstream *pfout) const 
 { 
  *pfout << interms << endl; 
  for (int icount=0; icount<interms; icount++) 
  { 
   pterms[icount].writef(pfout); 
  } 
 } 
 //Function to read contents from file stream 
 void readf(ifstream *pfin) 
 { 
  int itmp; 
  *pfin >> itmp; 
  init(itmp); 
  for (int icount=0; icount<interms; icount++) 
  { 
   pterms[icount].readf(pfin); 
  } 
 } 
 
 
 //Function to return the number of terms 
 int getnterms() const {return interms;} 
 //Function to return a contant pointer to terms 
 const ACMMErrCompElemTerm *getcptrterms() const {return pterms;} 
 //Function to return a pointer to terms 
 ACMMErrCompElemTerm *getptrterms() {return pterms;} 
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 //Function to calculate equivalent "measure value" out of CM 
history 
 double calcEqCMValueT(const CrashModeBase *pcmobj, double 
dtimeval) const 
 { 
  double dsumval=0.0; 
  for (int icount=0; icount<interms; icount++) 
  { 
   dsumval+=pterms[icount].calcEqCMValueT(pcmobj, 
dtimeval); 
  } 
  return dsumval; 
 } 
 
 
 //Assignment operator to copy from another 
 void operator=(const ACMMErrCompExpr &other) 
 { 
  if (interms>0) delete [interms] pterms; 
  interms=other.interms; 
  if (interms>0) pterms=new ACMMErrCompElemTerm[interms]; 
  for (int icount=0; icount<interms; icount++) 
  { 
   pterms[icount]=other.pterms[icount]; 
  } 
 } 
}; 
 
 
 
//Class for CM error value comparison 
class ACMMErrCompValue 
{ 
protected: 
 
 //Hard limit CM values calculation object 
 ACMMErrCompExpr hlexpr; 
 
 //Detailed history CM values calculation object 
 ACMMErrCompExpr dhexpr; 
 
public: 
 
 //Constructor 
 ACMMErrCompValue() {} 
 //Destructor 
 ~ACMMErrCompValue() {} 
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 //Function to return a constant pointer to HL CM values 
calculation object 
 const ACMMErrCompExpr *getcptr_hlobject() const {return &hlexpr;} 
 //Function to return a constant pointer to DH CM values 
calculation object 
 const ACMMErrCompExpr *getcptr_dhobject() const {return &dhexpr;} 
 //Function to return a pointer to HL CM values calculation object 
 ACMMErrCompExpr *getptr_hlobject() {return &hlexpr;} 
 //Function to return a pointer to DH CM values calculation object 
 ACMMErrCompExpr *getptr_dhobject() {return &dhexpr;} 
 
 
 //Function to write contents to file stream 
 void writef(ofstream *pfout) const 
 { 
  hlexpr.writef(pfout); 
  dhexpr.writef(pfout); 
 } 
 //Function to read contents from file stream 
 void readf(ifstream *pfin) 
 { 
  hlexpr.readf(pfin); 
  dhexpr.readf(pfin); 
 } 
 
 
 //Function to calculate equivalent error measure 
 double calcErrMeasure(const CrashModeDetTHist *pdhcm, const 
CrashModeHardLim *phlcm) const 
 { 
  int inevals=pdhcm->get_nstoretimeinstants(); 
  const double *pdtimeinsts=pdhcm->get_storetimeinstants(); 
  double dsumerr=0.0; 
  for (int icount=0; icount<inevals; icount++) 
  { 
   dsumerr+=dhexpr.calcEqCMValueT(pdhcm, 
pdtimeinsts[icount]) 
     -hlexpr.calcEqCMValueT(phlcm, 
pdtimeinsts[icount]); 
  } 
  return dsumerr/double(inevals); 
 } 
 
 
 //Assignment operator, to copy from another 
 void operator=(const ACMMErrCompValue &other) 
 { 
  hlexpr=other.hlexpr; 
  dhexpr=other.dhexpr; 
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 } 
}; 
 
 
 
//Class for CM error values comparison 
class ACMMErrCompValues 
{ 
protected: 
 
 //Number of error measures 
 int inerrs; 
 
 //Storage of error measures calculators 
 ACMMErrCompValue *perrcalcstore; 
 
 //Weighting for error measures (required only for comparing 
"goodness of CM match") 
 double *pderrwts; 
 
 
 //Function to free allocated memory 
 void freemem(); 
 
public: 
 
 
 //Constructor 
 ACMMErrCompValues(); 
 //Destructor 
 ~ACMMErrCompValues() {freemem();} 
 
 
 //Initialization function (sets number of error measures) 
 // also initializes weights to unity 
 void init(int icnerrs); 
 
 //Function to set weights 
 void setweights(const double *pdwtvals); 
 
 
 //Function to write contents to file 
 void writef(const char *pcfname) const; 
 //Function to read contents from file 
 void readf(const char *pcfname); 
 
 
 //Function to return the number of error measures 
 int getnerrs() const {return inerrs;} 
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 //Function to return a constant pointer to error weights 
 const double *geterrwtss() const {return pderrwts;} 
  
 //Function to return a constant pointer to error calculation 
objects 
 const ACMMErrCompValue *getcptrerrobjs() const {return 
perrcalcstore;} 
 //Function to return a pointer to error calculation objects 
 ACMMErrCompValue *getptrerrobjs() {return perrcalcstore;} 
 
 
 //Function to calculate error measures 
 void calcErrs(double *pderrvals, const CrashModeDetTHist *pdhcm,  
  const CrashModeHardLim *phlcm) const 
 { 
  for (int icount=0; icount<inerrs; icount++) 
  { 
  
 pderrvals[icount]=perrcalcstore[icount].calcErrMeasure(pdhcm, 
phlcm); 
  } 
 } 
 
 //Function to calculate an "Equivalent" overall error measure 
 double calcErr(const CrashModeDetTHist *pdhcm, const 
CrashModeHardLim *phlcm) const 
 { 
  double dsumwt=0.0; 
  for (int icount=0; icount<inerrs; icount++) 
  { 
  
 dsumwt+=pderrwts[icount]*fabs(perrcalcstore[icount].calcErrMeasure
(pdhcm, phlcm)); 
  } 
  return dsumwt; 
 } 
 
 //Function to write plots of CM error differences 
 void plotfErrs(const char *pcfname, const CrashModeDetTHist 
*pdhcm,  
  const CrashModeHardLim *phlcm) const; 
}; 
 
 
 
//Class for proposed CM matching algorith (main core iterator) 
class ACMMMainIterator 
{ 
public: 
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 //Constructor 
 ACMMMainIterator() {} 
 //Destructor 
 ~ACMMMainIterator() {} 
 
 //Function to run a step of the algorithm via file input 
 int runsetpf(const char *pcstepmasterfname); 
}; 
 
 
#endif //H_CPP_AutoCMMatcher 
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