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CHAPTER I 

INTRODUCTION 

 

Campylobacter jejuni Biology 

Infections and sequelae 

 Campylobacter jejuni is a small, Gram-negative, spiral-shaped, microaerophilic 

bacterium in the epsilon class of proteobacteria.  C. jejuni is one of the most common 

causes of food borne gastroenteritis in the United States (Foodnet, 2007).  Infection most 

commonly occurs by consumption of contaminated poultry products, as C. jejuni is found 

at high levels in poultry gastrointestinal tracts.  C. jejuni can also colonize other animals 

with few or no symptoms and human infection can occur from other livestock, family 

pets, contaminated drinking water and unpasteurized milk (Fig. 1).   

 C. jejuni gastroenteritis is usually self-limiting and is characterized in the U.S. 

and other developed countries by bloody diarrhea, abdominal pain and fever (reviewed in 

(Blaser et al., 1983)).  In the developing world, however, C. jejuni infection usually 

manifests as a watery diarrhea (reviewed in (Blaser et al., 1983)).  C. jejuni infection, 

while usually resolving within a week, can lead to serious neurological sequelae.  These 

include Guillain-Barré syndrome (GBS), characterized by ascending muscle weakness or 

paralysis, and the less common GBS variant, Miller-Fisher syndrome (MFS), 

characterized by weakness or paralysis of the ocular muscles (reviewed in (Yuki and 

Koga, 2006; Yuki, 2007b)).   
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Figure 1. The sources and outcomes of C. jejuni infection.  Several environmental 
reservoirs can lead to human infection by C. jejuni.  It colonizes the chicken 
gastrointestinal tract in high numbers, primarily in the mucosal layer, and is passed 
between chicks within a flock through the fecal–oral route.  C. jejuni can enter the water 
supply, where it can associate with protozoans, such as freshwater amoebae, and possibly 
form biofilms.  C. jejuni can infect humans directly through the drinking water or through 
the consumption of contaminated animal products, such as unpasteurized milk or meat, 
particularly poultry.  In humans, C. jejuni can invade the intestinal epithelial layer, 
resulting in inflammation and diarrhea. 
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Genetic and genomic tools 

 Despite the frequency of C. jejuni infection and potential for neurological 

sequelae, our understanding of C. jejuni pathogenesis lags far behind that of many other 

pathogens.  However, the determination of the complete genome sequence of several C. 

jejuni strains and plasmids has heralded the beginning of a new era of C. jejuni research 

(Bacon et al., 2002; Fouts et al., 2005; Gundogdu et al., 2007; Hofreuter et al., 2006; 

Parkhill et al., 2000).  These projects have revealed the potential mechanisms by which 

C. jejuni associates with the host; for example, the complete sequencing of pVir, a 

plasmid that is found in some isolates of C. jejuni, has led to the identification of a type 

IV secretion system that has been demonstrated to have a role in cell invasion and 

pathogenicity in ferrets (Bacon et al., 2000; Bacon et al., 2002).  Along with the 

publication of the genome sequence, progress has been spurred by the development of 

multiple genetic and genomic tools for use in C. jejuni, including microarrays, 

transposons for efficient random mutagenesis, signature-tagged mutagenesis, new 

reporter constructs and vectors for constructing in-frame deletion mutants and 

chromosomal point mutations (Carrillo et al., 2004; Colegio et al., 2001; Dorrell et al., 

2001; Gaynor et al., 2005; Golden et al., 2000; Grant et al., 2005; Hendrixson et al., 

2001; Hendrixson and DiRita, 2003, 2004). 

Genetic variation and natural transformation  

C. jejuni displays extensive genetic variation, which has arisen from intragenomic 

mechanisms as well as genetic exchange between strains.  Sequencing the genome of C. 

jejuni has revealed the presence of hypervariable sequences that consist of 

homopolymeric tracts (Parkhill et al., 2000).  Genome sequence data has also indicated 
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that the frequency of variation within these sequences is high, which may be partly due to 

the lack of clear homologues of many E. coli DNA-repair genes (Parkhill et al., 2000).  

Most of the hypervariable sequences that have been found are in regions that encode 

proteins involved in the biosynthesis or modification of surface-accessible carbohydrate 

structures, such as the capsule, lipooligosaccharide (LOS) and flagellum (Parkhill et al., 

2000) (Fig. 2).  Variation in these structures arises from mechanisms such as phase  

variation, gene duplication and deletion, frameshifts and point mutations (Gilbert et al., 

2002; Guerry et al., 2002; Karlyshev et al., 2002; Karlyshev et al., 2005b; Linton et al., 

2000; Parkhill et al., 2000). 

C. jejuni is naturally competent, meaning that it can take up DNA from the 

environment.  This leads to recombination between strains, which allows the generation 

of even more genetic diversity.  The horizontal transfer of both plasmid and chromosomal 

DNA occurs both in vitro and during chick colonization, which indicates that natural 

transformation could have an important role in genome plasticity and in the spread of 

new factors such as antibiotic resistance, even in the absence of selective pressure 

(Avrain et al., 2004; de Boer et al., 2002; Wilson et al., 2003).  In vitro, C. jejuni displays 

a marked preference for DNA from C. jejuni strains, as opposed to DNA from other 

species (Wilson et al., 2003).  In addition, the frequency of natural transformation is 

affected by carbon dioxide and bacterial cell density, which indicates that horizontal 

exchange is probably environmentally regulated in vivo (Wilson et al., 2003).   

Transposon mutagenesis of C. jejuni has identified several genes that are required 

for natural transformation, including some components of a type II secretion system 
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Figure 2. The C. jejuni glycome and surface structures.  The C. jejuni cell surface 
displays several structures, including many polysaccharides, that have vital roles in C. 
jejuni biology, particularly host–bacterium interactions.  The capsule, a highly variable 
polysaccharide, is important for virulence, epithelial cell adherence and invasion.  The 
lipooligosaccharide (LOS) is also highly variable and has a role in serum resistance, 
epithelial cell adherence and invasion.  LOS structures of C. jejuni can display molecular 
mimicry of neuronal gangliosides, which is linked to Guillain-Barré syndrome and 
Miller-Fisher syndrome.  The flagellum is required for colonization, virulence and 
epithelial cell invasion and also acts as a secretion apparatus for invasion antigens.  The 
flagellin is modified by O-linked glycosylation.  This modification is required for 
flagellar assembly and is, therefore, important for motility, virulence and epithelial cell 
adherence and invasion.  The N-linked-glycosylation system modifies some periplasmic 
and outer-membrane proteins.  The N-linked glycan is also important for colonization and 
epithelial cell adherence and invasion, but the role of this glycan in these processes is 
unclear. 
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(Wiesner et al., 2003).  A candidate-gene approach to identify competence genes has 

implicated elements of a plasmid-encoded type IV secretion system as well as genes for 

N-linked glycosylation, LOS biosynthesis and a homologue of H. pylori DprA, a putative 

DNA-processing enzyme, as being necessary for wild-type levels of natural 

transformation (Bacon et al., 2000; Fry et al., 2000; Larsen et al., 2004; Takata et al., 

2005).  In addition, a recent search for proteins binding to a specific promoter identified 

the protein Cj0011c, which binds DNA non-specifically and appears to be a periplasmic 

DNA receptor involved in transformation (Jeon and Zhang, 2007).  Mutants lacking 

cj0011c, while less competent than wildtype, retain high levels of competence compared 

to other transformation mutants (Jeon and Zhang, 2007).  This indicates that other DNA 

receptors may be involved, and these may provide the specificity for C. jejuni DNA that 

it is not inherent in Cj0011c (Jeon and Zhang, 2007).  However, other than the 

identification of these genes, no specific mechanism has yet been elucidated that explains 

how extracellular DNA is recognized and taken up by C. jejuni. 

Lipooligosaccharide and capsule  

Consistent with a role in immune avoidance, the LOS of C. jejuni is highly 

variable.  Various C. jejuni LOS structures resemble human neuronal gangliosides.  This 

molecular mimicry is thought to lead to autoimmune disorders, including GBS, a 

paralytic neuropathy that occurs following approximately 1 in every 1,000 cases of 

campylobacteriosis, and MFS, a variant of GBS (reviewed in (Hughes, 2004; 

Komagamine and Yuki, 2006; Nachamkin, 2002; Yuki and Koga, 2006; Yuki, 2007a, b)).  

The type of sequelae (GBS, MFS, or other variants), if one occurs, is determined by the 

particular ganglioside mimicked by the C. jejuni LOS (reviewed in (Yuki, 2007a, b)).  In 



  

 7

addition, genes involved in LOS biosynthesis have been implicated in serum resistance, 

as well as adherence to, and the invasion of, INT 407 cells (Fry et al., 2000). 

Until recently, many strains of C. jejuni were thought to produce both LOS and a 

high molecular weight lipopolysaccharide (HMW LPS).  In fact, the HMW LPS is now 

known to be a highly variable capsular polysaccharide, rather than an LPS (Karlyshev et 

al., 2000).  The structures of the capsules of several C. jejuni strains have been 

determined.  The capsule structure of C. jejuni strain 11168 includes 6-methyl-D-glycero-

α-L-glucoheptose, β-D-glucouronic acid modified with 2-amino-2-deoxyglycerol, β-D-

GalfNAc and β-D-ribose (St Michael et al., 2002), and contains a novel modification on 

the GalfNAc (Szymanski et al., 2003).  The capsule structure of C. jejuni strain RM1221 

has also been determined and includes 6-deoxy-D-manno-heptose and D-xylose (Gilbert 

et al., 2007), which are two sugars that are not often detected in bacterial 

polysaccharides.  Other strains possess teichoic acid-like or hyaluronic acid-like capsules 

(McNally et al., 2005; McNally et al., 2006b).  The extensive variation in the capsule 

structure has been attributed to multiple mechanisms that include phase variation of 

structural genes and an O-methyl phosphoramidate modification (Karlyshev et al., 2000; 

Karlyshev et al., 2005a; St Michael et al., 2002; Szymanski et al., 2003).   

The C. jejuni capsule is important for serum resistance, the adherence and 

invasion of epithelial cells, chick colonization and virulence in a ferret model (Bachtiar et 

al., 2007; Bacon et al., 2001; Jones et al., 2004).  An historical scheme for serotyping C. 

jejuni strains is now known to be based on differences in capsule structure (Karlyshev et 

al., 2000), which indicates that the capsular polysaccharide is accessible to the immune 

system and that the extensive variation in its structure probably has a key role in the 
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evasion of the host immune response.  Additionally, the capsule might have a role beyond 

host colonization, such as protection against desiccation or phage infection, although 

these possibilities have not yet been explored. 

Protein glycosylation  

C. jejuni expresses two protein glycosylation systems: one modifies serine or 

threonine residues on flagellin (O-linked glycosylation) and the other modifies asparagine 

residues on many proteins (N-linked glycosylation).  Prior to the discovery of the N-

linked modification system in C. jejuni, N-linked glycosylation had been observed only in 

eukaryotes and archaea (Szymanski et al., 1999).  Mutant analysis indicates that some 

enzymes might be capable of functioning in both O-linked glycosylation or N-linked 

glycosylation pathways (Guerry et al., 2007), but whether this normally occurs in vivo is 

unclear.  

Proteins of the O-linked glycosylation system, as well as many of their 

biochemical functions and a hypothetical biosynthetic pathway, have been elucidated by 

a combination of sequence analysis, targeted mutation and chemical analysis (Chou et al., 

2005; Guerry et al., 2006; McNally et al., 2006a; Thibault et al., 2001).  The flagellin in 

C. jejuni strain 81-176 is glycosylated with pseudaminic acid at up to 19 sites, which 

accounts for approximately 10% of its observed mass (Thibault et al., 2001).  The 

flagellin of Campylobacter coli strain VC167 is modified with legionaminic acid, and the 

genes that encode the proteins that are involved in the biosynthesis of this glycan are 

shared by many strains of C. jejuni (not including strain 81-176) (McNally et al., 2007).  

This indicates that this modification might also occur in these strains (McNally et al., 

2007).  A specific recognition sequence for O-linked glycosylation has not been 
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identified, although the addition of the glycan is thought to require surface exposure and 

hydrophobicity (Thibault et al., 2001).  O-linked glycosylation of flagellin is necessary 

for the proper assembly of the flagellar filament (Goon et al., 2003), which has led to the 

hypothesis that the O-glycan might have a role in the interactions of flagellin subunits 

with one another or with other elements of the flagellar apparatus.  In keeping with the 

importance of flagella and motility to many aspects of C. jejuni biology, defects in O-

linked glycosylation result in a loss of motility, a decrease in the adherence to and 

invasion of host cells and decreased virulence in ferrets (Guerry et al., 2006).  It is 

unknown whether O-linked glycosylation has any role in immune avoidance or the host-

cell interaction. 

Unlike other surface carbohydrate structures of C. jejuni (such as LOS, the 

capsule and the O-linked glycan), the N-linked glycan is conserved in all C. jejuni strains 

that have been examined, as well as in C. coli (Dorrell et al., 2001; Szymanski et al., 

1999; Szymanski et al., 2003).  The conservation of N-linked glycosylation, compared 

with the variability of other surface carbohydrate traits, suggests that N-linked 

glycosylation might play a more fundamental role in the biology of C. jejuni.  The N-

linked glycosylation system, which is encoded by the pgl genes (Szymanski et al., 1999), 

has been extensively studied since its discovery, both for a better understanding of its role 

in C. jejuni pathogenicity and for its potential importance in biotechnological applications 

(Glover et al., 2005a; Glover et al., 2005b; Glover et al., 2006; Kowarik et al., 2006a; 

Olivier et al., 2006; Weerapana et al., 2005).  The N-linked glycan that is assembled by 

the Pgl system consists of a heptasaccharide, unlike the tetradecasaccharide that is 

transferred by the eukaryotic N-linked glycosylation machinery (Wacker et al., 2002; 
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Young et al., 2002).  In contrast to the O-linked glycosylation system, a consensus 

sequence element (sequon) for N-linked glycosylation – D/E-X1-N-X2-S/T (where X1 and 

X2 can be any amino acid except proline) (Kowarik et al., 2006b; Nita-Lazar et al., 2005) 

– has been identified.  The glycosylation sequon is necessary, but not sufficient, for 

glycosylation, which indicates that other sequences or factors, such as tertiary or 

quaternary structure, also have a role (Kowarik et al., 2006b). 

The specific effect of a sequon mutation was tested with the periplasmic protein 

Cj1496c (Kakuda and DiRita, 2006).  A strain that lacked Cj1496c was defective for both 

chick colonization and adherence to INT 407 human intestinal epithelial cells in vitro.  

However, a strain that expressed a Cj1496c sequon mutant, which expressed wild-type 

levels of protein that could not be glycosylated, colonized chicks to levels equivalent to 

wildtype and was not defective for INT 407 cell association (Kakuda and DiRita, 2006).  

By contrast, VirB10, a competence protein that is N-glycosylated by the Pgl system, 

might require glycosylation for its function.  A mutant allele that lacked one of its two 

functional glycosylation sequons (virB10N87A) was unable to complement a virB10 

mutant to wild-type levels of competence (Larsen et al., 2004). 

The role of N-linked glycosylation in the biology of C. jejuni is not clear.  Strains 

with pgl mutations exhibit reduced adherence and invasion in the INT 407 intestinal cell 

line as well as defects in natural competence (Larsen et al., 2004) and colonization in 

mouse and chick models (Hendrixson and DiRita, 2004; Kakuda and DiRita, 2006; 

Karlyshev et al., 2004; Kelly et al., 2006; Szymanski et al., 2002).  N-linked 

glycosylation changes the immunoreactivity of at least some glycosylated proteins 

(Szymanski et al., 1999), which suggests that N-linked glycosylation might be involved 
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in the evasion of the immune system.  However, most proteins that are modified by the 

Pgl system are predicted to be periplasmic, rather than surface exposed (Young et al., 

2002), and therefore it is unclear how modifying these proteins would enhance immune 

avoidance.  Lectin-binding studies have identified numerous glycosylated proteins that 

are located mostly in the periplasm or membrane (Kowarik et al., 2006b; Linton et al., 

2002; Nita-Lazar et al., 2005; Young et al., 2002), but no obvious hypothesis for the role 

of N-linked glycosylation has arisen from the knowledge of which proteins are 

glycosylated. 

In summary, although our knowledge of these two post-translational 

modifications, O-linked and N-linked glycosylation, has greatly increased in recent years, 

there are still many gaps in our understanding.  We have a good understanding of the 

mechanisms that are involved in N-linked glycosylation, but the biological function of 

this glycan is poorly understood.  Conversely, although less is known about the 

mechanisms that are involved in O-linked glycosylation, its role in Campylobacter 

biology, particularly its importance in flagella assembly and, consequently, host-cell 

interactions, is better appreciated. 

Secretion  

The secretion mechanisms of C. jejuni are poorly characterized relative to those 

of other bacterial pathogens.  C. jejuni secretes a protein, called CiaB, that is required for 

the invasion of cultured epithelial cells (Konkel et al., 1999a, b).  ciaB expression, but not 

secretion, is induced by exposure to the bile salt deoxycholate (Malik-Kale et al., 2008), 

which would likely be encountered during host colonization.  Mutants that lack ciaB 



  

 12

exhibit reduced chick colonization levels (Ziprin et al., 2001), which implies that cell 

invasion might be an underappreciated factor in chick colonization. 

The mechanism of CiaB secretion and its role in invasion has been likened to the 

model of type III secretion systems, in which effectors are injected directly into host cells 

(Konkel et al., 1999a; Rivera-Amill et al., 2001).  However, C. jejuni does not encode a 

type III secretion system and evidence for the direct injection of CiaB is lacking.  Rather, 

CiaB and other secreted Cia proteins (CiaA–H) require a functional flagellar export 

apparatus for their secretion (Konkel et al., 2004), which is similar to the secretion of 

some proteins from Yersinia spp. (Young et al., 1999).  In addition to Cia proteins, the 

flagellar export apparatus of C. jejuni secretes FlaC, which is required for adherence to 

and invasion of HEp-2 cells and shares limited homology with the major and minor 

flagellins (FlaA and FlaB) (Song et al., 2004).  Additionally, the small protein FspA 

requires the flagellum for secretion (Poly et al., 2007).  Two variants of FspA are 

expressed by different C. jejuni strains, one of which binds INT 407 cells and induces 

apoptosis (Poly et al., 2007).  Thus, the flagellar export apparatus is an important 

secretion mechanism in C. jejuni and is required for host-cell invasion and possibly for 

strain-specific apoptosis affects. 

Cytolethal distending toxin  

C. jejuni produces cytolethal distending toxin (CDT), which is also produced by a 

diverse group of other bacterial species, including E. coli, Actinobacillus 

actinomycetemcomitans, Haemophilus ducreyi and Helicobacter hepaticus.  The toxin 

causes arrest at the G1/S or G2/M transition of the cell cycle, depending on the cell type 

(Hassane et al., 2001; Hassane et al., 2003; Lara-Tejero and Galan, 2000, 2001; 
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Whitehouse et al., 1998).  The active holotoxin is a tripartite complex of CdtA, CdtB and 

CdtC (Lara-Tejero and Galan, 2001) (Fig. 3), although one study has indicated that CdtB 

and CdtC combined have some cytotoxicity without CdtA (Lee et al., 2003). 

The role of CDT in C. jejuni pathogenesis remains unclear, but its mechanism of 

action is becoming understood.  CdtB is known to be the toxic component, as 

microinjection or transfection of this subunit alone into host cells leads to the effects that 

are observed with the holotoxin (Lara-Tejero and Galan, 2000).  CdtB is thought to act as 

a DNase, as it shares similarity with a family of DNase I-like proteins.  CdtB localizes to 

the nucleus of host cells, causes DNA damage and, ultimately, phosphorylation of the 

histone protein H2AX, thereby recruiting the DNA-repair protein Rad50 to double-strand 

breaks (Hassane et al., 2003).  These activities require residues of CdtB that are shared 

with members of the DNase I family (Elwell and Dreyfus, 2000; Lara-Tejero and Galan, 

2000).  However, these residues are conserved within the larger phosphodiesterase family 

to which CdtB belongs and will therefore be required for catalytic activity even if CdtB is 

not a DNase (Hassane et al., 2001).  CdtB has weak DNase activity in vitro (Lara-Tejero 

and Galan, 2000), and studies that have attempted to determine whether DNA damage in 

vivo is a direct or indirect result of CdtB activity have produced conflicting results 

(Hassane et al., 2001; Li et al., 2002; Mao and DiRienzo, 2002; Sert et al., 1999; 

Whitehouse et al., 1998). 

CdtB nuclear localization has been evident for several years (Lara-Tejero and 

Galan, 2000), and the mechanism behind this localization was recently established.  CdtB 

sequences from several species contain putative bipartite nuclear-localization signals  
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Figure 3. Uptake and activity of cytolethal distending toxin.  The cytolethal distending 
toxin (CDT) holotoxin consists of three subunits, CdtA, CdtB and CdtC.  CdtA and CdtC 
are thought to bind to an unknown receptor on the host cell surface.  CDT is taken up into 
host cells by way of clathrin-coated pits.  Following internalization, nuclear localization 
signals on CdtB probably lead to its active transport into the nucleus through the classical 
nuclear-import cycle.  Once in the nucleus, the toxin leads to double-strand DNA breaks 
and cell-cycle arrest.  Whether or not CdtB acts as a DNase to cause the DNA damage 
directly, as opposed to this being an indirect effect of some other CdtB enzymatic 
activity, has yet to be definitely established.  The arrows marked Cj? indicate the aspects 
of CDT uptake or activity that have only been studied using CDT from species other than 
Campylobacter jejuni.  
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(NLSs), most of which are in the carboxy half of the protein (McSweeney and Dreyfus, 

2004).  At least one of the two putative NLSs in E. coli CdtB-II is definitely required for  

nuclear localization and cytotoxicity (McSweeney and Dreyfus, 2004).  An amino-

terminal region of A. actinomycetemcomitans CdtB is also required for nuclear 

localization, and this domain is necessary for cellular distension and cell-cycle arrest by 

A. actinomycetemcomitans CDT (Nishikubo et al., 2003).  This region of A. 

actinomycetemcomitans CdtB contains one complete and one partial bipartite NLS, 

which potentially explains the affect on nuclear localization (McSweeney and Dreyfus, 

2004).  Together, these studies emphasize the importance of the active transport of the 

toxin to the nucleus.  A formal demonstration of the role of the NLS in C. jejuni CdtB has 

not been reported. 

The functions of CdtA and CdtC in this family of toxins are unclear, but one or 

both might mediate binding to host cells.  CdtA and CdtC have some similarity to the B 

chain of the ricin toxin, which is responsible for receptor-mediated endocytosis of ricin 

(Lara-Tejero and Galan, 2001).  Additionally, CdtA and CdtC bind HeLa cells with 

specificity, probably using the same receptor (Lee et al., 2003).  As H. ducreyi CDT is 

taken up into cells by clathrin-coated pits, it seems likely that CdtA and CdtC mediate 

binding and subsequent internalization through this pathway (Cortes-Bratti et al., 2000) 

(Fig. 3). 

The fact that a microorganism such as C. jejuni, which establishes long-term, 

asymptomatic associations with many hosts, has retained a toxin such as CDT is 

intriguing.  CDT is responsible for some of the secretion of interleukin (IL)-8, a hallmark 

of C. jejuni pathogenesis, but there are also CDT-independent mechanisms of IL-8 
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stimulation (Hickey et al., 2000).  CDT might have a role in asymptomatic, commensal 

infections, which would provide a way to either avoid host immune-response 

mechanisms or redirect them towards tolerance.  In vitro, C. jejuni CDT induces 

apoptosis in monocytic cell lines (Hickey et al., 2005).  Experiments that used a mouse 

model of H. hepaticus colonization suggest that CDT has a function in immune 

modulation and persistent colonization (Ge et al., 2005; Pratt et al., 2006).  In addition, 

the persistent C. jejuni colonization of wild-type mice, but not mice that are deficient for 

nuclear factor (NF)-κB, requires CdtB, which indicates that CDT might allow C. jejuni to 

escape immune surveillance in an NF-κB-dependent manner (Fox et al., 2004).  In 

chickens, which are the more natural hosts for C. jejuni, CDT is expressed by bacteria in 

the ceca, a site of heavy colonization, although colonized chicks do not generate CDT-

neutralizing antibodies (AbuOun et al., 2005).  Furthermore, mutants that lack CDT 

colonize chicks with wild-type efficiency (Biswas et al., 2006). 

Adherence mechanisms  

To colonize hosts, microorganisms typically require adherence factors, which are 

often surface appendages such as the pili that are found on the surface of many Gram-

negative and Gram-positive species.  Genome annotations of several C. jejuni strains do 

not include obvious pilus or pilus-like open reading frames (Fouts et al., 2005; Parkhill et 

al., 2000).  A multi-protein type II-like secretion system of a type that is associated with 

pilus assembly in Vibrio cholerae and Neisseria gonorrhoeae was identified as part of the 

competence machinery, but an actual pilus-like structure has not been identified (Wiesner 

et al., 2003). 
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Despite the lack of identifiable adherence organelles, several proteins contribute 

to C. jejuni adherence to eukaryotic cells.  CadF binds specifically to fibronectin, which 

is located basolaterally on epithelial cells in situ (Konkel et al., 1997; Monteville and 

Konkel, 2002; Monteville et al., 2003).  The fibronectin-binding domain of CadF consists 

of amino acids 134–137 (FRLS), which represents a novel fibronectin-binding motif 

(Konkel et al., 2005).  CadF is required for maximal binding and invasion by C. jejuni in 

vitro, and cadF mutants are greatly reduced in chick colonization compared with the wild 

type (Monteville et al., 2003; Ziprin et al., 1999).  CadF is similar to E. coli OmpA and 

forms membrane channels, but the role of this activity, if any, has not been established 

(Mamelli et al., 2006). 

Another characterized adhesion, JlpA, is a surface-exposed lipoprotein that is 

crucial for HEp-2 cell binding (Jin et al., 2001).  JlpA binds to Hsp90α, some of which is 

surface localized in these cells (Jin et al., 2003).  Binding to Hsp90α by JlpA activates 

NF-κB and p38 mitogen-activated protein (MAP) kinase, both of which contribute to 

proinflammatory responses (Jin et al., 2003).  This indicates that some of the 

inflammation that is observed during C. jejuni pathogenesis might be related to JlpA-

dependent adherence.  Another lipoprotein, CapA, was implicated as a possible adhesion 

(Ashgar et al., 2007).  CapA is an autotransporter that is homologous to an 

autotransporter adhesin, and CapA-deficient mutants have decreased adherence to Caco-2 

cells and decreased colonization and persistence in a chick model (Ashgar et al., 2007). 

Paradoxically, some putative adhesins of C. jejuni are located in the periplasm.  

The Peb1 adhesin, also known as CBF1, is one such adhesin.  Although crucial for 

adherence to HeLa cells (Kervella et al., 1993; Pei et al., 1998), Peb1 is periplasmic and 
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shares homology to the periplasmic-binding proteins of amino acid ATP-binding cassette 

(ABC) transporters (Leon-Kempis Mdel et al., 2006; Pei and Blaser, 1993).  In fact, Peb1 

binds to both aspartate and glutamate with high affinity, and peb1-deficient mutants 

cannot grow if these amino acids are the major carbon source (Leon-Kempis Mdel et al., 

2006).  Although Peb1 has not been localized to the inner or outer membrane, some has 

been observed in culture supernatants (Leon-Kempis Mdel et al., 2006).  Furthermore, 

Peb1 contains a predicted signal peptidase II recognition site, a common motif in surface-

localized lipoproteins, and so there is a possibility that some Peb1 is surface accessible, 

despite the failure of fractionation techniques to demonstrate this (Leon-Kempis Mdel et 

al., 2006; Pei and Blaser, 1993).  Mutants that lack peb1 colonize mice poorly, but this 

could be attributed to the loss of either the adhesion or the amino-acid-transport 

functions, or both (Leon-Kempis Mdel et al., 2006; Pei et al., 1998).  Another 

periplasmic protein, the glycoprotein Cj1496c, which has homology to a magnesium 

transporter, is also required for wild-type levels of adherence (see above) (Kakuda and 

DiRita, 2006).  The mechanism by which these periplasmic proteins contribute to host-

cell adherence by C. jejuni is unclear. 

Invasion mechanisms 

Campylobacter invades intestinal epithelial cells, albeit at much lower levels than 

other invasive pathogens such as Shigella and Salmonella.  The mechanism that controls 

this invasion is being dissected experimentally, but complete understanding is 

complicated by differences between strains.  Studies of the events involved in initiation 

of invasion by C. jejuni have demonstrated that C. jejuni interaction with caveolae is 

required for invasion (Hu et al., 2006; Watson and Galan, 2008).  However, the 
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observation that C. jejuni invasion does not require dynamin, which facilitates caveolae-

mediated endocytosis, indicates that the role of caveolae in invasion is not to facilitate 

endocytosis, but rather signal transduction (Watson and Galan, 2008).  There is evidence 

that C. jejuni initiates multiple signal transduction cascades in host cells involving host 

protein kinases and small Rho GTPases (Hu et al., 2006; Krause-Gruszczynska et al., 

2007; Watson and Galan, 2008) and this may be accomplished at least in part by 

interactions with caveolae-localized receptors (Watson and Galan, 2008).   

It is clear that all strains require microtubule polymerization for maximal 

invasion, although some also require microfilament polymerization (Biswas et al., 2000, 

2003; Hu and Kopecko, 1999; Monteville et al., 2003; Oelschlaeger et al., 1993).  This is 

different from the microfilament-dependent mechanism of entry that is used by many 

other invasive bacteria, in which the disruption and subversion of actin-based processes 

has been well described (reviewed in (Finlay, 2005; Selbach and Backert, 2005)).  

Scanning electron microscopy has captured epithelial cell membrane pseudopods 

extending towards and enveloping C. jejuni (Biswas et al., 2000), and 

immunofluorescence experiments have indicated that these pseudopods contain 

microtubules (Hu and Kopecko, 1999).  C. jejuni invasion of primary chick intestinal 

epithelial cells has been reported (Byrne et al., 2007; Van Deun et al., 2007), and also 

appears to be predominantly microtubule-dependent (Van Deun et al., 2007).   

Additional efforts are being made to understand the long-term fate of intracellular 

C. jejuni.  C. jejuni-containing vacuoles (CCV) appear to move along microtubules to the 

perinuclear region of the cell by interactions with dynein (Hu and Kopecko, 1999).  The 

CCV deviates from the endocytic pathway and apparently avoids fusion with lysosomes 
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(Watson and Galan, 2008).  If C. jejuni is delivered to the lysosomes by Fc-mediated 

endocytosis, intracellular survival dramatically decreases (Watson and Galan, 2008).  

There is evidence that long-term survival by C. jejuni is accompanied by physiological 

changes including oxygen sensitivity (Watson and Galan, 2008).  Further evidence that 

the CCV environment requires adaptation by C. jejuni comes from the observation that C. 

jejuni that lack polyphosphate kinase (Ppk1), which have survival defects during various 

environmental stresses, are also defective in long-term intracellular survival (Candon et 

al., 2007).  The role of invasion and intracellular survival in C. jejuni colonization and 

pathogenesis, possibly in immune evasion or establishment of a protected reservoir, has 

not yet been definitively established. 

A recent addition to the C. jejuni invasion literature is the somewhat controversial 

finding that invasion is preceded by subcellular migration, termed “subvasion” (van 

Alphen et al., 2008).  This study found that C. jejuni first localizes beneath host cells, 

then invades them.  This behavior, however, was studied with non-confluent, non-

polarized cells (van Alphen et al., 2008), so the relevance of subcellular invasion in this 

assay or in vivo remains unclear.  Further, this study did not include non-C. jejuni 

controls (van Alphen et al., 2008) to determine if such subvasion is observed with other 

invasive pathogens and may be, perhaps, an artifact of the invasion assay as opposed to a 

novel invasion mechanism.  Finally, the authors suggest that the loss (or dramatic 

decrease) of CheW, a chemotaxis protein, in a strain with increased subvasion indicates 

that this behavior is accomplished by chemotaxis (van Alphen et al., 2008).  CheW is a 

critical protein in the chemotactic machinery and is required for chemotaxis in E. coli 

(reviewed in (Wadhams and Armitage, 2004)).  The loss of detectable CheW would be 
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expected to greatly diminish, if not completely abrogate, chemotaxis by C. jejuni.  The 

logic behind the assertion that less CheW leads to more efficient chemotaxis-mediated 

migration beneath cells is difficult to follow.  Much more information is needed to assess 

the relevance of and mechanism underlying this phenotype. 

C. jejuni factors required for chick colonization 

Studies using genetic screens and/or targeted mutagenesis of candidate genes have 

led to a growing understanding of which C. jejuni traits are important in chicken 

colonization.  A common emerging theme from this work is the importance of flagella 

and flagellar motility.  Signature-tagged mutagenesis of C. jejuni in a chick model of 

infection resulted in the identification of two methyl-accepting chemotaxis receptors and 

other elements of the flagellar and chemotactic machinery as being important for wild-

type chick colonization (Hendrixson and DiRita, 2004).  Additionally, mutants in the 

genes that encode the flagellins and flagellar biosynthesis regulators FlgR, σ54 and σ28 all 

display defects in chick colonization (Fernando et al., 2007; Hendrixson and DiRita, 

2004; Hendrixson, 2006; Nachamkin et al., 1993; Wassenaar et al., 1993; Wosten et al., 

2004) .   

Other regulators that are not associated with flagellar motility are also important 

for efficient chick colonization.  These include CbrR, which regulates deoxycholate 

resistance and contains two response-regulator domains and a GGDEF domain, thereby 

implicating this protein in regulating production of the second messenger cyclic 

diguanylate (c-di-GMP) (Raphael et al., 2005).  Deoxycholate has been found to induce 

ciaB expression, as well as other virulence factors (Malik-Kale et al., 2008).  In addition, 

deoxycholate may affect gene expression directly via the TetR-like regulator CmeR, 
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which is required for wildtype levels of chick colonization (Gu et al., 2007; Guo et al., 

2008).  Mutants in the DccRS two-component system, for which an activating signal is 

unknown, are also poor colonizers of chicks compared with wild type (MacKichan et al., 

2004).  The DccRS-regulated genes that have been identified have no known or predicted 

functions, but one appears to be essential for growth and mutants in two others lead to 

chick colonization defects (MacKichan et al., 2004). 

One trait of chickens that is different from humans and other mammals and could 

contribute to the different outcomes of infection with C. jejuni is body temperature.  

Chickens have a body temperature that ranges from 41 to 45°C, as opposed to the 37°C 

that is normal in humans, making temperature a potential signal for host-specific 

infection.  Transcription profiles of C. jejuni cultures that were shifted from 37°C to 42°C 

showed evidence of potential alterations in membrane structure by the upregulation of 

genes for transport and binding proteins, as well as cell wall and envelope constituents 

(Stintzi, 2003).  In vitro growth at 42°C, but not 37°C, requires the Clp protease complex 

(Cohn et al., 2007), indicating that this complex likely plays a key role in chick 

colonization, although this has not been tested directly.  Additionally, there is a 

regulatory system that might contribute to survival at the higher temperatures.  RacRS is 

a two-component system that is required for wildtype chick colonization, and mutants 

that lack RacRS have a growth defect at 42°C (Bras et al., 1999).  The RacRS system can 

act as both an activator and repressor to regulate gene expression, sometimes in a 

temperature-dependent manner (Bras et al., 1999).  Expression of cj0414 and cj0415 is 

upregulated at 42°C (Pajaniappan et al., 2008), although it is not known if this requires 

RacRS.  These genes encode gluconate dehydrogenase, which is required for use of 
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gluconate as an electron donor (Pajaniappan et al., 2008).  A cj0415 mutant was impaired 

in chick colonization, indicating that gluconate is an important electron donor during 

colonization (Pajaniappan et al., 2008).   

Several genes that control mechanisms other than motility and gene regulation are 

also required for chick colonization.  These include genes encoding the N-linked 

glycosylation system, as well as proteins modified by this system (Hendrixson and 

DiRita, 2004; Kakuda and DiRita, 2006; Karlyshev et al., 2004) and various adherence 

and invasion factors, such as cadF and ciaB (Ziprin et al., 1999; Ziprin et al., 2001).  

Stress adaptations appears to be important in chick colonization, as a ppk1 mutant, with 

defects in stress survival, has a dose-dependent chick colonization defect (Candon et al., 

2007).  γ-glutamyl transpeptidase (GGT) is required for long term persistence in, but not 

initial colonization of chicks (Barnes et al., 2007).  It is unclear, however, what role GGT 

plays during chick colonization as it could contribute to oxidative stress resistance, to 

biosynthesis of amino acids or to both (Barnes et al., 2007).  Finally, antimicrobial 

resistance mechanisms, reduction of nitrate and nitrite, and elements of metabolism that 

are related to low iron, low oxygen (but not anaerobic) and high serine or other amino-

acid environments might have significant effects on chick colonization (Lin et al., 2003; 

Luo et al., 2003; Palyada et al., 2004; Purdy et al., 1999; Velayudhan et al., 2004; 

Weingarten et al., 2008; Woodall et al., 2005). 
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Chemotaxis and Methyl-accepting Chemotaxis Proteins 

Flagella-mediated motility 

 While other mechanisms of motility exist, flagella-mediated motility is the most 

well-studied in bacteria and archaea.  Flagella, which are helical in nature, propel 

microbes forward by rotating, and are powered by the proton motive force or, less 

frequently, a sodium motive force (reviewed in (Armitage, 2006)).  Different numbers 

and distributions of flagella have been found, including a single flagella at or near one or 

both poles, several flagella at one or both poles, and flagella distributed randomly over 

the cell surface (peritrichous flagella) (reviewed in (Armitage, 2006)).   

Differing distributions of flagella clearly lead to different swimming behaviors 

and necessitate different control mechanisms, all of which are mediated by changes in the 

direction of flagellar rotation (reviewed in (Armitage, 2006)).  In the case of E. coli, 

which has peritrichous flagella, the flagella form a bundle and move together when 

rotating counter-clockwise (CCW).  Thus, CCW rotation leads to forward motion or 

smooth-swimming.  When some of these flagella change to clockwise rotation (CW), the 

bundled flagella separate resulting in a tumbling motion of the bacterium.  Once the 

flagella return to a CCW rotation, the flagella again form a bundle and lead to smooth-

swimming, but now in a new direction.  Chemotaxis, the ability to swim toward 

attractants and away from repellents, is mediated by changes in the frequency of runs 

(smooth-swimming) to tumbles.  In the absence of an attractant or repellent gradient, the 

bacteria will engage in a random walk of runs and tumbles.  In the presence of such a 

gradient, however, this “random walk” becomes biased.  The frequency of direction 

changes (tumbles) increase if the bacteria move toward a repellent or away from an 
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attractant.  On the other hand, direction changes decrease if the bacteria move away from 

a repellent or toward an attractant (i.e. smooth-swimming predominates). 

In other bacteria, direction changes do not necessarily occur as a result of tumbles 

(reviewed in (Armitage, 2006)).  The flagellum of Rhodobacter spaeroides, for example, 

normally rotates CW, leading to smooth-swimming (reviewed in (Armitage, 2006)).  At 

some frequency, this rotation stops and the flagellum forms a tight coil (reviewed in 

(Armitage, 2006)).  As bacteria are too small to experience significant inertia, the bacteria 

come to a rest.  They are buffeted by Brownian motion, resulting in a new direction when 

CW rotation resumes (reviewed in (Armitage, 2006)).  The flagellum of Psuedomonas 

aeruginosa normally rotates CCW (reviewed in (Armitage, 2006)).  Upon switching to 

CW, the flagella very briefly reverse the movement of the bacteria (reviewed in 

(Armitage, 2006)).  The flagella of Sinorhizobium meliloti, which are peritrichous like 

those of E. coli, don’t change their direction of rotation (reviewed in (Armitage, 2006)).  

Rather, some of the flagella slow down, leading the bundle to come apart and the 

bacterium to change direction (reviewed in (Armitage, 2006)).  The polar bundles of 

flagella found on Rhodospirillum rubrum, however, rotate in opposite directions to propel 

the bacterium forward (reviewed in (Armitage, 2006)).  The bacterial direction of 

swimming is altered when both polar bundles change their direction of rotation (reviewed 

in (Armitage, 2006)).  An alternative swimming pattern has been observed in marine 

vibroid bacteria with single bipolar flagella (Thar and Kuhl, 2003).  These bacteria swim 

by a combination of translation along and rotation around the short axis of the cell and it 

is proposed that changes in the rotational speed of one of the two flagella leads to 

direction changes (Thar and Kuhl, 2003).  Another variation is seen in Vibrio 



  

 26

alginolyticus, which utilizes two types of flagella: sodium motive force powered polar 

flagella for swimming in liquid and proton motive force powered lateral flagella for 

swarming on surfaces (reviewed in (Armitage, 2006)).  Both of these flagella are 

regulated by the same chemotaxis machinery, but the output is quite different.  While the 

polar flagellum switches between CCW (runs) and CW (tumbles), the lateral flagella only 

rotate CCW and the direction of movement is altered by changes in rotational speed 

(Kojima et al., 2007).  In light of so many swimming patterns and methods of direction 

changes, the ability of very similar signal transduction pathways to regulate chemotaxis 

in such diverse organisms is somewhat astounding.  

Chemotaxis signal transduction in E. coli 

 The signal transduction machinery responsible for chemotaxis is best 

characterized in E. coli (Fig. 4).  Other microbes use core elements of the E. coli 

paradigm, with some variations that are discussed below (Table 1).  Chemotaxis 

responses occur in four steps (adapted from (Szurmant and Ordal, 2004)): signal 

recognition, excitation, adaptation, and signal termination.  The first step, signal 

recognition, is carried out by chemotaxis receptors (methyl-accepting chemotaxis 

proteins or MCPs) (discussed below).  MCPs and MCP-like proteins interact with CheW 

and CheA, which signal to CheY, to stimulate excitation of the chemotaxis system.  

Adaptation involves CheB and CheR and signal termination requires CheZ. 

 CheA is a histidine kinase that trans-autophosphorylates within a dimer (reviewed 

in (Wadhams and Armitage, 2004)).  The phosphate group can subsequently be 

transferred to one of two response regulator domain-containing proteins, CheY or CheB 

(reviewed in (Armitage, 2006; Wadhams and Armitage, 2004)).  In E. coli, CheA kinase  
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Figure 4.  E. coli proteins involved in chemotaxis signal transduction.  Signals sensed 
by MCPs are translated to changes in flagellar rotation by a signal transduction cascade.  
Proteins involved in this cascade include the scaffold protein CheW, the histidine kinase 
CheA, and the response regulator CheY, which interacts with the motor switch protein 
FliM when phosphorylated.  CheZ interacts with a small variant of CheA and acts as a 
phosphatase to terminate signal transduction.  The methyltransferase CheR and 
methylesterase CheB (which is also a response regulator) are involved in adaptation.  
Finally, fumarate is not sensed by MCPs, but binds to Frd, which in turns interacts with 
the motor switch protein FliG. 
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Table 1. Proteins involved in chemotaxis signal transduction.  
 

Protein Name Class of Protein Role in Chemotaxis 
methyl-accepting 
chemotaxis protein 
(MCP)Ec, Bs, Cj 

Chemoreceptor Receptor for chemotaxis stimulus. 

CheAEc, Bs, Cj Histidine protein 
kinase 

Autophosphorylates in response to MCPs. 
Phosphorylates CheY and CheB. 

CheWEc, Bs, Cj Adaptor protein Required for formation of MCP-CheA-CheW 
complex. 

CheYEc, Bs, Cj Response regulator 
Binds FliM when phosphorylated to alter 
flagellar rotation. Multiple CheYs may act as 
phosphate sinks. 

FliMEc, Bs, Cj  motor switch 
protein 

Alters flagellar rotation in response to  
CheY-P binding. 

FliGEc, Bs, Cj motor switch 
protein 

Alters flagellar rotation in response to 
fumarate-Frd. 

CheBEc, Bs, Cj Response regulator, 
methylesterase 

Removes methyl groups from MCPs. 
Activated upon phosphorylation. 

CheREc, Bs, Cj Methyltransferase Constitutively methylates MCPs. 

CheZEc Phosphatase Stimulates dephosphorylation of CheY, 
leading to signal termination. 

FrdEc, Cj Fumarate reductase Binds FliG to alter flagellar rotation in 
response to fumarate. 

HP0170Cj Phosphatase? Appears to be a distant CheZ homolog and 
possible CheY-phosphatase. 

CheVBs, Cj CheW-CheY fusion
May function as a phosphate sink, leading to 
signal termination. Alternatively, may 
function in adaptation. 

FliYBs Switch protein Has some CheY-P phosphatase activity. 

CheCBs FliY-like protein Has low CheY-P phosphatase activity. 
Inhibits CheD activity. 

CheX CheC-truncation Has strong CheY-P phosphatase activity. 

CheDBs Methylesterase 
Removes methyl groups from MCPs. 
Inhibited by CheC. CheC-CheD complex 
stabilized by CheY-P. 

FrzE CheA-CheY fusion Similar role as CheA. Role of CheY domain 
unknown. 

FrzZ CheY-CheY fusion One CheY domain binds FliM, the other acts 
as phosphate sink. 

 

This table summarizes the chemotaxis proteins discussed in the text, as well as their 
function and role in chemotaxis.  Superscripts Ec, Bs and Cj indicate that a homologue is 
found in E. coli, B. subtilis or C. jejuni, respectively. 
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activity is inhibited by an increase in attractant binding or a decrease in repellent binding 

to MCPs (reviewed in (Szurmant and Ordal, 2004; Wadhams and Armitage, 2004)). 

 The CheW structure revealed that this protein contains two Src-homology 3 

(SH3) domains, although there is no sequence homology to eukaryotic SH3 domains 

(reviewed in (Baker et al., 2006; Wadhams and Armitage, 2004)).  CheW possesses no 

known enzymatic activity.  Rather, CheW is thought of as a scaffolding protein, 

transmitting the MCP signal to CheA (reviewed in (Armitage, 2006; Wadhams and 

Armitage, 2004)).  Specifically, CheW is thought to stabilize CheA in an active 

conformation (reviewed in (Baker et al., 2006)). 

 Once CheA autophosphorylates, the phosphate group can be transferred to CheY, 

giving rise to CheY-P (reviewed in (Armitage, 2006; Wadhams and Armitage, 2004)).  

CheY-P, but not CheY, interacts with FliM in the flagellar switch and increases the 

probability of CW rotation of the flagella (tumbles) (reviewed in (Armitage, 2006; 

Wadhams and Armitage, 2004)).  Thus, CheY/CheY-P is the ultimate output of the 

chemotaxis signal transduction pathway.   The phospho-relay from CheA (histidine 

kinase) to CheY (response regulator) is similar to other pairs of regulatory proteins 

known as two-component systems (TCS), many of which regulate transcription.  The 

~10-20s half-life of CheY-P is much shorter than that of other TCS response regulators, 

which may be on the order of several minutes (reviewed in (Armitage, 2006)).  This is 

consistent with the fact that CheA/CheY regulate a behavior (chemotaxis) that operates 

on a much faster time-scale than the changes in transcription mediated by other TCS 

proteins.  A less understood characteristic of CheY is its ability to be acetylated by 

acetyl-CoA-synthetase as well as its ability to autoacetylate (reviewed in (Wadhams and 
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Armitage, 2004)).  CheY acetylation levels are quite high in vivo and appear to be mainly 

attributable to autoacetylation (Yan et al., 2008).  CheY acetylation appears to contribute 

to chemotaxis, particularly the response to addition of a repellent, but the mechanism 

underlying this effect has not been elucidated (Barak et al., 2006).  

 Once the chemotaxis system is excited, resulting in production of CheY-P, the 

system must undergo adaptation.  Adaptation is a type of “memory” mechanism, by 

which bacteria can sense changes in their environment relative to what they have recently 

experienced (reviewed in (Armitage, 2006; Wadhams and Armitage, 2004)).  Adaptation 

resets the signaling state of the MCP, and consequently CheA, to prestimulus levels 

(reviewed in (Armitage, 2006; Wadhams and Armitage, 2004)).  This allows temporal 

gradient sensing, where a further increase or decrease in the MCP stimulus is required to 

alter CheA activity, and therefore CheY-P levels (reviewed in (Armitage, 2006; 

Wadhams and Armitage, 2004)).  E. coli adaptation is accomplished by a methylation 

scheme involving CheB and CheR. 

 Like CheY, CheB contains a response regulator domain and can be 

phosphorylated following CheA autophosphorylation (reviewed in (Armitage, 2006; 

Wadhams and Armitage, 2004)).  CheB is also a methylesterase, and this activity is 

stimulated ~10-fold by CheB phosphorylation (reviewed in (Armitage, 2006; Szurmant 

and Ordal, 2004)).  CheB removes methyl groups that have been added to conserved 

glutamates by CheR (reviewed in (Armitage, 2006; Wadhams and Armitage, 2004)).  

These glutamates can also be glutamines, which are post-translationally deamidated by 

CheB, resulting in glutamate (reviewed in (Armitage, 2006; Wadhams and Armitage, 

2004)).  The affect of methylation/demethylation appears to be a change in the charge of 
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methylation sites on MCPs, resulting in a change in conformation that reduces signaling 

to CheA (reviewed in (Baker et al., 2006)).  CheB phosphorylation occurs less rapidly 

than CheY phosphorylation, which ensures that excitation precedes adaptation (reviewed 

in (Wadhams and Armitage, 2004)). 

 CheR is a constitutively active methyltransferase that adds methyl groups to the 

conserved glutamates of MCPs (reviewed in (Armitage, 2006; Wadhams and Armitage, 

2004)).  CheR interacts with a C-terminal pentapeptide, NWETF, on some MCPs, and it 

is interactions with pentapeptide-containing MCPs which primarily localizes CheR to 

MCP clusters (reviewed in (Armitage, 2006; Wadhams and Armitage, 2004)).  CheR 

levels are much lower than those of MCPs; CheR moves through MCP clusters 

methylating the MCPs to which it is bound, as well as neighboring MCPs lacking the 

pentapeptide (reviewed in (Armitage, 2006; Wadhams and Armitage, 2004)).  

 Signal termination in E. coli is accomplished by the activity of CheZ, a 

phosphatase that increases the auto-dephosphorylation rate of CheY-P (reviewed in 

(Armitage, 2006; Wadhams and Armitage, 2004)).  This further decreases the half-life of 

CheY-P to ~200ms (reviewed in (Wadhams and Armitage, 2004)).  CheZ binds a 

truncated form of CheA (CheAs) that results from an alternative transcriptional start site 

for cheA (reviewed in (Baker et al., 2006)).  CheZ, in complex with CheAs, binds and 

destabilizes CheY-P (reviewed in (Baker et al., 2006)).   

In a departure from the above signal transduction cascade, fumarate has been 

shown to impact the switching frequency and bias of flagellar rotation in E. coli directly.  

This behavior is mediated by fumarate reductase (Frd) which binds the switch protein 

FliG and switches the direction of flagellar rotation (Cohen-Ben-Lulu et al., 2008).  The 
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mechanism of fumarate-Frd switching is unclear at present, but is CheY-independent, 

indicating that it does occur independently of the chemotaxis signal transduction pathway 

described above (Cohen-Ben-Lulu et al., 2008; Prasad et al., 1998).  It has been 

postulated that fumarate binding by Frd may alter the interaction between Frd and FliG, 

but this has not yet been shown (Cohen-Ben-Lulu et al., 2008).  It remains to be seen 

whether other examples of MCP-independent effects on chemotaxis exist. 

Variations on chemotaxis signal transduction in other microbes 

 Elements of the E. coli chemotaxis machinery are found in all other chemotactic 

bacteria and archaea, most of which have added layers of complexity compared to E. coli.  

The Bacillus subtilis chemotaxis system has also been fairly well characterized and, 

while similar to that of E. coli, contains significant differences.  For example, the effect 

of attractant on CheA activity is reversed in B. subtilis relative to E. coli.  In B. subtilis, 

attractant binding increases CheA activity and repellent binding inhibits CheA activity 

(reviewed in (Armitage, 2006; Szurmant and Ordal, 2004)).  Consistent with this reversal, 

CheY-P still interacts with FliM, but that interaction results in CCW rotation of the 

flagella leading to smooth-swimming (reviewed in (Armitage, 2006; Szurmant and Ordal, 

2004)).   

 Significant differences exist between E. coli and other microbes in their 

mechanisms of signal termination.  Until recently, it was thought that the CheZ 

phosphatase that decreases the CheY-P half-life was only found in γ-proteobacteria, 

which include E. coli, and β-proteobacteria (reviewed in (Szurmant and Ordal, 2004)).  

However, a gene (HP0170) has been identified in the ε-proteobacterium H. pylori that 

appears to be a distant CheZ homologue (Terry et al., 2006).  While CheY-P phosphatase 
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activity has not been definitely demonstrated for HP0170, the protein does contain 

several conserved residues in the CheZ active site (Terry et al., 2006).  Potential HP0170 

homologues were subsequently identified in all Proteobacteria groups, as well as in the 

Firmicute group, indicating that CheZ may be more widespread than previously believed 

(Terry et al., 2006).  As HP0170 homologues diverge significantly from CheZ, it remains 

to be seen whether they have CheY-P phosphatase activity and whether there are any 

functional differences between this family of CheZ-like proteins and those resembling E. 

coli CheZ.  

Other bacteria and archaea that lack CheZ must have an alternate mechanism for 

signal transduction.  Many bacterial genomes encode two or more CheY proteins and the 

reigning hypothesis is that one of these functions as a phosphate sink, as has been shown 

for Sinorhizobium meliloti (reviewed in (Wadhams and Armitage, 2004)).  Alternatively, 

several bacterial genomes encode a CheW-CheY fusion protein, named CheV, which has 

also been postulated to function as a potential phosphate sink (reviewed in (Wadhams 

and Armitage, 2004)).  This role of CheV is somewhat controversial, as experiments have 

shown that CheV is instead important for adaptation in B. subtilis (Karatan et al., 2001).  

B. subtilis CheV is phosphorylated relatively slowly and CheV-P is relatively stable, 

making it an unlikely candidate for a phosphate sink (Karatan et al., 2001).  Whether 

these characteristics are shared by other CheV proteins is not clear.   

B. subtilis also expresses two proteins that decrease the CheY-P half-life, the 

flagellar switch protein FliY and CheC, which has some homology to FliY.  Other 

species express CheX, an apparent truncation of CheC that is a stronger CheY-P 

phosphatase than either CheC or FliY and may play a role in signal termination (Muff et 
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al., 2007).  Although CheC does have CheY-P phosphatase activity, the rate of CheY-P 

dephosphorylation is much slower than CheX or FliY and this activity appears to be 

dispensible for B. subtilis chemotaxis in vivo (Muff and Ordal, 2007).  Rather, a role for 

CheC in adaptation has been suggested (discussed below) (Muff and Ordal, 2007).  In the 

case of R. sphaeroides, which expresses six CheY proteins, some have argued that these 

may act as phosphate sinks (reviewed in (Szurmant and Ordal, 2004)).  Others have 

argued that this species may not have need of a signal termination mechanism as all six 

CheY proteins in this species have very short CheY-P half-lives (reviewed in (Wadhams 

and Armitage, 2004)).  One study indicated that some R. sphaeroides make two kinds of 

flagella, a single subpolar flagellum and multiple polar flagella and that each type of 

flagellum is regulated by 3 of the 6 CheY proteins (del Campo et al., 2007).  Whether all 

of these CheYs function as response regulators or some act as phosphate sinks remains 

undetermined.  

 An alternative set of domain fusions are present in the Frz chemotaxis system of 

Myxococcus xanthus (Inclan et al., 2007).  M. xanthus has a protein, FrzE that consists of 

a CheA-CheY fusion.  The FrzE CheA domain autophosphorylates and in turn facilitates 

phosphotransfer to its own CheY domain, as well as to either of two CheY domains fused 

together in the protein FrzZ (Inclan et al., 2007).  FrzZ is the output response regulator 

and it appears one of its two CheY domains may act as a phosphate sink, but only under 

certain growth conditions (Inclan et al., 2007).   

 A complex variant on the CheA-CheY fusion, FrzE, is seen in Pseudomonas 

aeruginosa.  This protein, ChpA is the histidine kinase in the Chp-Pil chemotaxis system 

regulating type IV pili twitching motility (Whitchurch et al., 2004).  ChpA contains nine 
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potential phosphorylation sites: six that contain histidine as the phospho-acceptor, one 

containing a serine as the phospho-acceptor, one containing a threonine phospho-acceptor 

and a CheY domain (Whitchurch et al., 2004).  The function of each of these alternative 

phosphorylation sites has not been elucidated, but it is interesting to note that ChpA 

homologues containing multiple histidine and either serine or threonine phospho-

acceptors have been identified in other species, each of which contain type IV pili 

(Whitchurch et al., 2004).  

 Other bacteria also differ from E. coli in their adaptation mechanisms.  In B. 

subtilis deamidation is performed by CheD, not CheB (reviewed in (Szurmant and Ordal, 

2004)).  In addition, unlike E. coli where methylation at each site has the same effect on 

MCP status and CheA activity, different sites seem to play different roles in B. subtilis.  

In the B. subtilis chemoreceptor McpB, one methylation site is important for adaptation 

following either the addition or removal of an attractant, while another methylation site is 

important for adaptation only following addition of an attractant (reviewed in (Szurmant 

and Ordal, 2004; Wadhams and Armitage, 2004)).  A third methylation site in McpB may 

be required for regulation of methylation, as opposed to returning the MCP to prestimulus 

activity levels (reviewed in (Szurmant and Ordal, 2004)).  An additional difference in 

adaptation mechanisms was elucidated in Thermotoga maritima.  While T. maritima 

expresses a CheR homologue capable of methylating MCPs, this methylation is 

independent of the pentapeptide motif to which E. coli CheR binds (Perez and Stock, 

2007).  Further analysis indicated that only approximately 10% of all bacterial MCPs 

contain the pentapeptide and there are many bacteria that do not express any MCPs 



  

 36

containing the pentapeptide (Perez and Stock, 2007).  Clearly, pentapeptide-independent 

methylation by CheR is a widespread alternative to the E. coli CheR activity.  

 The proteins CheC and CheD appear to function in methylation-dependent 

adaptation.  The CheD of T. maritima has been shown to possess methylesterase activity, 

in addition to the previously mentioned deamidase activity (Chao et al., 2006).  CheB and 

CheD of T. maritima demethylate overlapping subsets of MCPs (Chao et al., 2006).  

Further, CheC inhibits CheD activity and the CheC-CheD interaction is stabilized by 

CheY-P, leading to adaptation of CheD-demethylated MCPs (Chao et al., 2006; Muff and 

Ordal, 2007).  Whether there is an intrinsic advantage to having separable adaptation 

systems (CheB-dependent and CheD-dependent) for different subsets of MCPs is not yet 

clear.    

 When levels of an attractant are low, a methylation-independent system of 

adaptation involving CheV seems to be effective.  CheV-mediated adaptation appears to 

require phosphorylation of the response regulator (CheY-like) domain of CheV (reviewed 

in (Szurmant and Ordal, 2004)).  In Helicobacter pylori, which lacks CheR and CheB, 

three CheV homologues are present and may serve as the only mechanism of adaptation 

(reviewed in (Szurmant and Ordal, 2004)).  

 In another departure from E. coli, many species contain multiple sets of 

chemoreceptors and chemotaxis genes the expression of which is regulated (reviewed in 

(Armitage, 2006)).  Whereas E. coli always expresses the same MCPs, other species vary 

their MCP contingents depending on their current environment.  This may allow these 

species to respond to changes in a stimulus only when that stimulus is limiting (reviewed 

in (Armitage, 2006)).   
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 All of the above mechanisms of chemotaxis support the biased random walk 

means of chemotaxis where the bacteria are guided by temporal sensing of a gradient.  It 

has long been argued that bacteria are too small to engage in the spatial sensing of 

gradients employed by eukaryotes, where differences in the concentration of an attractant 

(or repellent) at different positions in the cell are used to sense gradients.  However, there 

is preliminary evidence that larger bacteria (≥5μm) may be able to engage in spatial 

sensing of gradients (Thar and Kuhl, 2003).  Although spatial gradient sensing by 

bacteria has not been definitively established, it would provide a potential explanation for 

the widespread observation of bipolar localization of MCPs (Thar and Kuhl, 2003). 

Known types of MCPs and stimuli 

 The prototypical MCPs of E. coli sense stimuli including amino acids, sugars, 

dipeptides, pyrimidines, pH, temperature and blue-light (Liu and Parales, 2008; Wright et 

al., 2006) (reviewed in (Armitage, 2006; Wadhams and Armitage, 2004)).  Each of these 

MCPs has a periplasmic domain that (except in the cases of pH, temperature and blue-

light) bind their respective stimuli directly or indirectly via periplasmic binding proteins 

(reviewed in (Armitage, 2006; Baker et al., 2006; Wadhams and Armitage, 2004)).  In 

those MCPs where it has been studied, the stimulus or periplasmic binding protein binds 

at the interface of two monomers in a dimer (reviewed in (Armitage, 2006; Wadhams and 

Armitage, 2004)).  This periplasmic domain is flanked by two transmembrane domains.   

C-terminal to the second transmembrane domain is a HAMP domain.  HAMP 

domains (named for their presence in histidine kinases, adenylyl cyclases, methyl-

accepting chemotaxis proteins and phosphatases) (Aravind and Ponting, 1999) represent 

a common motif in numerous bacterial signal transduction proteins.  Most HAMP 
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domain-containing proteins are bacterial, but they have also been identified in archaea 

and lower eukaryotic organisms.  HAMP domains are thought to play a role in 

intramolecular communication between input and output domains of a single protein 

(Appleman et al., 2003; Appleman and Stewart, 2003; Aravind and Ponting, 1999).  In 

the case of MCPs, the HAMP domain is thought to be involved in transmitting the MCP 

signal from the periplasmic domain to the C-terminus of the MCP, the highly conserved 

domain (so-called because it is well conserved in all MCPs) (reviewed in (Armitage, 

2006; Baker et al., 2006; Wadhams and Armitage, 2004).  This highly conserved domain 

consists of the flexible bundle (Alexander and Zhulin, 2007), methylation helices and the 

signaling domain, which interacts with CheA and CheW (reviewed in (Armitage, 2006; 

Baker et al., 2006; Wadhams and Armitage, 2004).  

MCPs containing variations on this architecture have been identified in a number 

of microbes.  In addition to the four MCPs with the previously described topology, E. coli 

expresses an energy taxis transducer with a cytoplasmic input domain.  This protein, Aer, 

and other energy taxis transducers are discussed below.  Many bacteria and archaea also 

express MCPs with no apparent transmembrane region (reviewed in (Wadhams and 

Armitage, 2004)).  Several archaea also express two proteins that function together in 

phototaxis.  These phototaxis receptors consist of a transmembrane sensory rhodopsin 

and an associated transducer, which has two transmembrane helices, a HAMP domain 

and an HCD (reviewed in (Klare et al., 2004; Oprian, 2003)).   

Signal transduction within MCPs 

 The signal provided by receptor binding site occupation must be translated across 

the membrane to the signaling domains located in the cytoplasmic C-terminus of MCPs.  
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This is accomplished by a small ~1-2Å piston-like shift in one transmembrane helix 

relative to another (reviewed in (Falke and Hazelbauer, 2001)).  Modeling studies based 

on cross-linking analysis indicate that this shift may be larger, perhaps on the order of 4-

6Å (Peach et al., 2002).  These modeling studies, as well as further structural studies, 

suggest that this piston-like shift of the transmembrane helix may also be accompanied 

by a rotational movement of this helix or MCP monomer (Moukhametzianov et al., 2006; 

Peach et al., 2002). 

This piston-like shift in transmembrane helices must be transmitted to the HCD of 

the MCP by the HAMP domain.  Our knowledge about HAMP domains has been limited 

by a dearth of structural information until very recently.  HAMP domains share very 

limited sequence conservation, and no single residue is absolutely conserved in all 

HAMP domains.  Recently, the structure of the HAMP domain from the Archaeoglobus 

fulgidus protein Af1503 was solved (Hulko et al., 2006).  This structure consisted of two 

amphipathic helices (AS-1 and AS-2) that come together in the only known occurrence of 

a parallel coiled-coil (Hulko et al., 2006).  These helices form a four-helix bundle in a 

HAMP domain dimer, which adopts an unusual knobs-to-knobs conformation (Hulko et 

al., 2006).  A rotation of the HAMP domain helices relative to one another could 

potentially bring them into the more common knobs-into-holes conformation (Hulko et 

al., 2006). These findings gave rise to a model where the transmembrane helix shift is 

translated into a gear-like 26° rotation of the helices relative to one another within the 

HAMP dimer four-helix bundle (Hulko et al., 2006).   

Af1503 is atypical of HAMP domain-containing proteins in that it lacks an output 

signal transduction domain (Hulko et al., 2006), so it was unknown whether this HAMP 
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structure would be representative of other HAMP domains.  However, cysteine-scanning 

mutagenesis combined with in vivo disulfide cross-linking analysis of Tar and Aer, two 

chemoreceptors in E. coli, are consistent with the Af1503 structure (Swain and Falke, 

2007; Watts et al., 2008b).  

The HAMP domain signal, possibly the rotation of the HAMP helices in the four-

helix bundle, must then be translated to the HCD.  There is some evidence that this 

occurs via a newly defined region of the HCD, termed the flexible bundle region 

(Alexander and Zhulin, 2007).  The flexible bundle contains a previously identified 

glycine hinge and it is proposed that bending at this glycine hinge is a key signaling 

mechanism (Alexander and Zhulin, 2007).  A mechanical model suggests that rotation 

can be converted into bending in the presence of such a hinge (personal communication 

in (Watts et al., 2008b)). 

One model asserts that this bending results in an increased distance between 

signaling domains (Parkinson, 2007).  The signaling domain is the portion of the HCD 

that interacts directly with CheW and CheA (reviewed in (Armitage, 2006)).  Supporting 

this bending model, distances between receptors have been found to increase upon 

attractant binding and decrease upon repellent binding in vivo (reviewed in (Hazelbauer 

et al., 2008)).  The distance between signaling domains is also affected by the 

methylation state of the methylation domain within the HCD, presumably due to the 

difference in charge resulting from the presence or absence of a methyl group (reviewed 

in (Baker et al., 2006)).  In fact, there is evidence that methylation reverses the piston-

like shift of MCP transmembrane helices (reviewed in (Hazelbauer et al., 2008)).  This 

implies that the HAMP domain, in addition to converting transmembrane shifts into 
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bending of the signaling domain, must also convert methylation-induced “unbending” 

into a reversal of the transmembrane shift.  This is the first indication that HAMP 

domains may function in two directions (reviewed in (Hazelbauer et al., 2008)).   

The overall model of signal transduction presented here explains signaling in 

transmembrane MCPs.  However, cytoplasmic MCPs lacking transmembrane helices 

remain poorly understood.  What signal does the HAMP domain of these MCPs sense, 

and does the HAMP domain transmit that signal to the HCD in the same way as in 

transmembrane MCPs?  Additionally, in MCPs that contain a membrane anchor, but both 

the input and output domains are cytoplasmic, does the path of signal transduction 

include the transmembrane domains?  Or is the signal transmitted directly from the input 

domain to the HAMP domain?  If the latter, could the HAMP domains of transmembrane 

MCPs interact with alternative, cytoplasmic input domains to transmit additional signals?  

Clearly, while these studies and models provide a framework for understanding 

transmembrane MCPs, many questions remain about how other MCPs might function. 

MCP interactions 

 Accumulating evidence indicates that MCP homodimers do not function in a 

vacuum, but instead interact in higher order arrays (reviewed in (Hazelbauer et al., 2008; 

Kentner and Sourjik, 2006)).  Further, modeling and experimental evidence both suggest 

that these higher order arrays of MCPs and associated chemotaxis proteins are 

responsible for several aspects of chemotactic signaling, including signal gain, large 

signal ranges, receptor cooperativity, signal integration and adaptation (reviewed in 

(Hazelbauer et al., 2008; Kentner and Sourjik, 2006)).   
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 MCP homodimers can participate in most of the signal transduction outlined 

above, but they are incapable of activating the CheA kinase (reviewed in (Hazelbauer et 

al., 2008)).  Rather, CheA activation requires multiple homodimers, likely a trimer of 

dimers (reviewed in (Hazelbauer et al., 2008)).  Such trimers of dimers appear to form in 

vivo and can form without the assistance of other chemotaxis proteins (reviewed in 

(Hazelbauer et al., 2008; Kentner and Sourjik, 2006)).  However, trimers of dimers are 

stabilized by CheW and CheA (reviewed in (Hazelbauer et al., 2008)).  

 Even these trimers of dimers do not appear to be the in vivo functional unit.  

Rather, patches containing thousands of receptors and associated chemotaxis proteins are 

found in cells and within these, several dozen receptors appear to form a cooperative unit 

(reviewed in (Hazelbauer et al., 2008)).  These patches likely consist of arrays of trimers 

of dimers, but this is not the only possibility.  T. maritima MCPs form “hedgerows,” long 

lines of receptors, as opposed to trimers of dimers, and it is postulated that these may 

come together to form larger lattices (reviewed in (Hazelbauer et al., 2008; Kentner and 

Sourjik, 2006)).  While residues important for trimerization are well-conserved, trimer of 

dimer formation has not been well-studied beyond E. coli (reviewed in (Hazelbauer et al., 

2008)).   

 These patches of MCPs are frequently localized to the poles and those that are 

non-polar tend to occur at future sites of cell division; more specifically, lateral clusters 

of MCPs occur at intervals corresponding to approximately 1/8th the length of the cell, 

marking division sites of the next two generations (Thiem et al., 2007).  Polar 

localization and cluster formation are closely related, with the same region of MCPs 

being required for both (reviewed in (Kentner and Sourjik, 2006)).  The role of polar 
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localization remains unclear, but several possibilities have been suggested.  As mentioned 

above, although not well-accepted, it is possible that these polar arrays could function as 

a “nose” of sorts, allowing spatial gradient sensing, as opposed to, or in additional to, 

temporal gradient sensing (Thar and Kuhl, 2003) (reviewed in (Armitage, 2006)).  

Alternatively, polar localization may be required for receptor methylation or facilitate 

formation of higher order clusters of MCPs, which is in turn responsible for proper 

chemotactic responses (reviewed in (Armitage, 2006)).  Finally, polar localization may 

simply be energetically favored by the shape of the higher order clusters/arrays (reviewed 

in (Kentner and Sourjik, 2006)). 

 In some bacteria, with multiple sets of chemotaxis proteins, differential 

localization may aid the separation of signaling from different chemotaxis systems.  In 

particular, R. sphaeroides expresses multiple transmembrane MCPs, localized to poles, 

and non-membrane bound MCPs, termed transducer like proteins (Tlps), localized to 

discrete regions of the cytoplasm (reviewed in (Armitage, 2006)).  Different subsets of 

chemotaxis proteins co-localize with either polar/MCP or cytoplasmic/Tlp arrays, 

indicating that their signaling is not integrated (reviewed in (Armitage, 2006)).  An 

additional example of discrete patch formation occurs in P. aeruginosa.  In P. 

aeruginosa, che genes are expressed throughout growth, while che2 genes are only 

expressed during stationary phase (Guvener et al., 2006).  While a stationary phase-

specific MCP, McpA, can be incorporated into the polar Che patches, Che2 patches 

remain distinct from Che patches (Guvener et al., 2006).  This occurs despite the fact that 

both Che and Che2 patches are polarly localized, frequently occurring at the same pole in 



  

 44

a given cell (Guvener et al., 2006).  The potential advantages of non-integration of 

signaling by subsets of chemotaxis proteins are unclear and demand further study. 

MCPs and nonchemotaxis responses 

 Many bacteria other than E. coli express multiple sets of che genes (reviewed in 

(Szurmant and Ordal, 2004)).  Some of these Che systems are not involved in 

chemotaxis, but in regulation of other phenotypes.  The most studied cases of this occur 

in Myxococcus xanthus, a Gram-negative bacterium with a complex developmental life 

cycle.  The M. xanthus genome encodes eight sets of che genes and several of these 

regulate chemotaxis via non-flagellar motility (using Type IV pili and adhesion 

complexes) (reviewed in (Zusman et al., 2007)).  The Che3 system, on the other hand, 

appears to regulate developmental gene expression based on nutrient availability via 

CrdA, a σ54 activator (reviewed in (Zusman et al., 2007)).  Additionally, the Che7 system 

is involved in regulating fatty acid composition during different developmental states 

(reviewed in (Zusman et al., 2007)).  In another variation on Che system functions, the 

Che6 system is involved in Type IV pilus assembly, but does not affect expression of 

Type IV pili genes (reviewed in (Zusman et al., 2007)).  The mechanisms underlying the 

regulatory activity of the Che6 and Che7 systems have not yet been described.  

 A set of che genes in P. aeruginosa encode the Wsp proteins involved in biofilm 

formation (reviewed in (Zusman et al., 2007)).  The Wsp response regulator, WspR, 

contains a GGDEF domain, which is involved in generation of the second messenger c-

di-GMP, increased levels of which are associated with biofilm formation in many 

bacteria (Hickman et al., 2005).  A system with homology to Wsp regulates cellulose 
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production in Pseudomonas fluorescens, potentially via a similar mechanism (Hickman et 

al., 2005). 

 Rhodospirillum centenum contains three Che systems, only one of which, Che1, is 

involved in chemotaxis (reviewed in (Zusman et al., 2007)).  The activity of Che2 has 

some similarity to Che6 of M. xanthus, as Che2 is required for flagellar assembly, but has 

no effect on flagellar gene expression, indicating that it acts post-transcriptionally 

(Berleman and Bauer, 2005).  Che3, on the other hand, regulates R. centenum 

development (Berleman et al., 2004).  R. centenum forms cysts, a cell type that is 

resistant to several environmental stresses, in response to decreased nutrient availability.  

che3 mutants, however, form cysts in rich media, where they would not ordinarily be 

formed (Berleman et al., 2004).   

E. coli chemotaxis genes are also apparently involved in development, as the 

chemotaxis system is required for swarming motility, but this motility does not involve 

chemotaxis (Burkart et al., 1998).  The mechanism behind this is unknown and it may be 

that flagellar mediated chemotactic movement affects swarming cell development, as 

opposed to the chemotaxis system playing a direct role in gene regulation (reviewed in 

(Harshey, 2003)).  If the E. coli chemotaxis system does have a direct impact on gene 

regulation, it would be the only known instance of a chemotaxis system involved in both 

chemotaxis and gene regulation.  In all other cases discussed here, chemotaxis systems 

are dedicated to regulating one or the other, but not both.  

 There are clear functional consequences of gene regulation and regulation of 

macromolecular structure assembly by chemotaxis systems stemming from the presence 

of adaptation mechanisms.  In chemotaxis, various adaptation systems (discussed above) 
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allow a response to be triggered by a stimulus and then dampened in the presence of 

continued stimulation.  Similarly, with gene regulation by Che systems one would expect 

changes in gene expression to be transitory, occurring with the initiation of signaling and 

falling off once signaling is attenuated by adaptation (reviewed in (Armitage, 2003; 

Zusman et al., 2007).  Using such a mechanism to control development of M. xanthus 

fruiting bodies and R. centenum cysts in response to high cell density or starvation would 

allow the initiation of development to occur for a brief period and be suppressed when 

genes involved in later stages of development are expressed, despite the fact that high cell 

density or starvation continues (reviewed in (Zusman et al., 2007)). 

 

Energy Taxis 

Energy taxis behaviors 

 Energy taxis is the ability of microbes to alter their direction of motility in 

response to changes in the local environment affecting energy-generating processes 

(Alexandre et al., 2004; Taylor and Zhulin, 1998).  In this behavior, receptors sense 

changes in the redox state of components of the electron transport system (ETS) or in the 

closely coupled proton motive force (reviewed in (Taylor and Zhulin, 1998)).  Energy 

taxis behaviors include some forms of aerotaxis, phototaxis, taxis to electron acceptors, 

and even chemotaxis in those cases where the bacteria sense chemicals based on changes 

in energy generation resulting from their metabolism (reviewed in (Alexandre and 

Zhulin, 2001; Alexandre et al., 2004; Taylor and Zhulin, 1998; Taylor et al., 1999)).   

Discerning energy taxis behaviors from other kinds of taxis can be difficult and 

requires knowledge regarding the sensory mechanism involved.  For example, both E. 



  

 47

coli and B. subtilis engage in aerotaxis, but E. coli senses changes in environmental 

oxygen indirectly through changes in the ETS (see below), whereas B. subtilis senses 

changes in oxygen directly via a myoglobin-like oxygen sensor (Hou et al., 2000).  

Additionally, while energy taxis is necessarily metabolism-dependent, not all 

metabolism-dependent taxis is energy taxis.  Some bacteria sense and respond to 

secondary metabolites, as opposed to responding to the original signal or changes in 

energy generation resulting from its metabolism (reviewed in (Alexandre et al., 2004)).  

Energy taxis transducers 

Aer and Tsr, the E. coli energy taxis transducers discussed below, are the most 

well-understood energy taxis transducers to date.  However, other energy taxis 

transducers that employ different energy sensing mechanisms have been identified.  A 

phototaxis transducer, Ptr, has been identified in R. centenum (Jiang and Bauer, 2001).  

Ptr has a classical MCP topology, with two transmembrane domains, a periplasmic 

domain and a cytoplasmic HCD (Jiang and Bauer, 2001).  The periplasmic domain 

contains a sequence motif resembling the b-type heme-binding sequence in cytochrome 

b6, leading to the hypothesis that Ptr senses changes in photosynthesis associated electron 

transport via a heme cofactor (Jiang and Bauer, 2001).   

An apparent aerotaxis transducer in Desulfovibrio vulgaris has been identified and 

shown to undergo methylation upon the addition of oxygen or a reducing agent indicating 

that it is an energy taxis transducer (Fu et al., 1994).  As a dcrA mutation does not have a 

significant impact on aerotaxis, it is assumed that there are additional aerotaxis/energy 

taxis transducers in this species (Fu and Voordouw, 1997).  DcrA has a periplasmic 

region with a consensus c-type heme binding site and has been demonstrated to bind 
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heme (Fu et al., 1994).  Biophysical studies of DcrA-heme indicate that this protein may 

sense oxygen, redox and/or CO (Yoshioka et al., 2005).  It has been noted, however, that 

DcrA also possesses a cytoplasmic PAS domain (Ponting and Aravind, 1997), which 

does not bind a cofactor (unpublished data in (Yoshioka et al., 2005)).  Thus, DcrA may 

have two sensory modules and mediate responses to multiple redox signals.  

Energy taxis, the dominant behavior in Azospirillum brasilense (Alexandre et al., 

2000), is mediated in part by the MCP-like protein Tlp1, although another unidentified 

energy taxis transducer is also postulated (Greer-Phillips et al., 2004).  Tlp1, like Ptr of R. 

centenum, has the topology of a classical MCP (Greer-Phillips et al., 2004).  The 

periplasmic region of Tlp1 has no homology to known functional domains or motifs, but 

similar periplasmic domains have been identified in a large number of predicted MCPs 

and histidine kinases in a diverse group of bacteria (Greer-Phillips et al., 2004).  Thus, 

this uncharacterized periplasmic domain may represent a novel and well-conserved 

energy sensing mechanism.  Tlp1 was found to play a key role in root colonization by A. 

brasilense, a necessary step in the contribution of this bacterium to the growth of many 

agriculturally important crops (Greer-Phillips et al., 2004).  

In H. pylori, an energy taxis transducer, TlpD, was recently identified 

(Schweinitzer et al., 2008).  TlpD lacks any predicted transmembrane domains and does 

not possess homology to any known oxygen or redox sensing domains, leaving open the 

question of signal and sensory mechanism within this protein (Schweinitzer et al., 2008).   



  

 49

Aer: An Energy Taxis Transducer in E. coli 

Identification of energy taxis transducers in E. coli 

 A mechanism to alter motility based on the energy level of the cell had long been 

postulated prior to identification of any energy taxis receptors (reviewed in (Taylor, 

1983; Taylor et al., 1999)).  Early studies led to the Links-Clayton hypothesis which 

proposed that the behaviors we now term energy taxis would be mediated by an ATP-

sensor (Clayton, 1958).  This hypothesis has since been discarded, as defects in ATP-

synthesis have no effect on energy taxis behaviors.  Rather, a collection of studies pointed 

to the more rapid changes in either the ETS or the closely coupled proton motive force as 

likely energy taxis signals (Bespalov et al., 1996; Clancy et al., 1981; Laszlo and Taylor, 

1981; Miller and Koshland, 1977; Shioi et al., 1988; Taylor et al., 1979; Zhulin et al., 

1997).  A comparison of the requirements for energy taxis with those of conventional 

chemotaxis indicated that these behaviors were both mediated by Che proteins (Laszlo 

and Taylor, 1981; Rowsell et al., 1995).  Energy taxis behaviors, however, did not require 

any known MCPs (Bespalov et al., 1996; Laszlo and Taylor, 1981; Zhulin et al., 1997), 

indicating that there may be another MCP-like protein responsible for transducing an 

energy taxis signal. 

 Aer, unlike the other E. coli MCPs, was identified as a likely aerotaxis/energy 

taxis transducer on the basis of sequence homology upon completion of the E. coli 

genome sequence (Bibikov et al., 1997; Rebbapragada et al., 1997).  The N-terminus of 

Aer has similarity to other known oxygen sensors, including FixL, NifL and Bat, as well 

as the blue light sensor Wc-1 (Bibikov et al., 1997; Rebbapragada et al., 1997).  This 

region is now known to contain a PAS domain that binds an FAD cofactor (Bibikov et 
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al., 1997; Bibikov et al., 2000).  Sequence analysis also indicated that Aer had a helical 

hairpin membrane anchor and a C-terminal HCD (Bibikov et al., 1997; Rebbapragada et 

al., 1997).  An amphipathic sequence immediately following the membrane anchor was 

also noted (Rebbapragada et al., 1997) and is now known to be a HAMP domain 

(Bibikov et al., 2000).  (See Fig. 5 for a schematic of Aer domains and topology.) 

Behavioral assays with insertion and deletion mutants of aer demonstrated that 

this strain has altered – not abrogated – aerotaxis and energy taxis responses (Bibikov et 

al., 1997; Rebbapragada et al., 1997).  An aer tsr double mutant, however, had no 

residual aerotaxis/energy taxis behavior (Rebbapragada et al., 1997).  Aerotaxis in this 

double mutant could be recovered by expression of either Aer or Tsr (Rebbapragada et 

al., 1997).  Together, these data indicate that Aer (Bibikov et al., 1997; Rebbapragada et 

al., 1997) and Tsr (Rebbapragada et al., 1997) are the long sought after energy taxis 

transducers of E. coli.  

 Aer and Tsr could conceivably sense either electron transport or proton motive 

force.  These proteins differ, however, in the strength of their responses to different 

oxidizable substrates in a manner consistent with the hypothesis that Aer senses redox 

changes and Tsr senses changes in proton motive force (Greer-Phillips et al., 2003).  To 

differentiate between these closely related processes, strains were designed that expressed 

one of two NADH dehydrogenase enzymes and one of two cytochrome oxidases 

(Edwards et al., 2006).  Pairwise combinations of different NADH dehydrogenases and 

cytochrome oxidases result in different H+/e- ratios (i.e. different numbers of protons 

exported per electron flowing through the ETS), giving rise to differing changes in proton 

motive force in response to oxygen (Edwards et al., 2006).  These mutants were  
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Figure 5.  Schematic of Aer domains and topology.  Aer contains an N-terminal PAS 
domain with an FAD cofactor thought to senses changes in electron transport.  The PAS 
domain is linked to a transmembrane helical hairpin by the F1 segment.  The HAMP 
domain, which consists of two helices (AS-1 and AS-2) resides between the membrane 
anchor and the C-terminal highly conserved signaling domain (HCD), which interacts 
with CheW and CheA to transmit a signal to the chemotaxis machinery.  The locations of 
truncations discussed in the text are indicated. 
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combined with aer and/or tsr mutations in an attempt to correlate aerotactic responses to 

either proton motive force or electron transport.  Tsr-mediated aerotaxis correlated well 

with the proton motive force (Edwards et al., 2006).   

Aer-mediated aerotaxis, on the other hand, did not correlate with either the proton 

motive force or respiration (Edwards et al., 2006).  Rather, Aer function was strongly 

affected by the presence or absence of NADH dehydrogenase I (NDH-1) (Edwards et al., 

2006).  NDH-1 was not absolutely required for aerotaxis under all conditions, however 

(Edwards et al., 2006).  Specifically, NDH-1 was required for aerotaxis in temporal and 

plate assays, but not in capillary assays (Edwards et al., 2006).  Temporal assays assess 

the time required to return to prestimulus tumbling frequency after exposure to a change 

in oxygen concentration in a gas flow chamber (Edwards et al., 2006).  Plate assays 

involve the inoculation of a culture into a semi-solid agar plate.  As the bacteria use up 

the available nutrients, they swim through to agar toward optimal concentrations of a 

carbon source or energy source forming rings of differing diameters (Edwards et al., 

2006).  In capillary assays, liquid cultures are drawn into a capillary tube and an oxygen 

gradient results from the combination of bacterial metabolism and oxygen diffusion from 

the air in the capillary.  The bacteria form a band at the position relative to the air-liquid 

interface where the optimal oxygen concentration occurs (Edwards et al., 2006).  The 

mechanism underlying the discrepancy in requirement of NDH-1 based on the assay 

method remains unclear.  Nevertheless, this evidence suggests that Aer is a redox sensor 

and that NDH-1 is one potential source of the signal sensed by Aer, but cannot be the sole 

contributor (Edwards et al., 2006). 
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Further information arises from studies of NADH-dependent flavin reductase 

(Fre).  Fre affects, but is not required for, Aer-mediated aerotaxis (personal 

communication in (Taylor, 2007)).  Fre reduces approximately 80% of the free 

cytoplasmic FAD, but might also interact with some proteins to provide FADH directly 

(Woodmansee and Imlay, 2002). 

 A detailed understanding of the source(s) of the Aer signal is one of the most 

significant unanswered questions regarding this protein (Taylor, 2007).  It is clear that the 

Aer signal is closely related to the redox status of the ETS.  Efforts using two-hybrid 

techniques to identify an Aer interaction partner that could link Aer to the ETS have been 

unsuccessful (personal communication in (Taylor, 2007)).  It is possible that NDH-1 can 

reduce the Aer FAD cofactor directly, but in that case there must be another factor that 

can substitute for NDH-1 under some conditions (Edwards et al., 2006), perhaps a 

quinone, NADH or free FAD(H2) from the ETS (Taylor, 2007).  As the Aer PAS domain 

has a relatively low affinity for FAD (discussed below) another possibility is that the Aer 

FAD cofactor exchanges with cytoplasmic FAD(H2) pools, in which case the Aer FAD 

cofactor’s redox state would reflect the cytoplasmic FAD/FADH2 ratio (Taylor, 2007).    

Further studies are needed to differentiate between all of these possibilities. 

Aer topology and dimerization 

 Aer localized to the membrane in subcellular fractionation experiments (Bibikov 

et al., 1997).  Sequence analysis indicates a hydrophobic segment approximately 40 

residues in length occurring between the PAS and HAMP domains of Aer (Bibikov et al., 

1997).  Although most transmembrane prediction programs suggest this region consists 

of a single transmembrane helix, placing the PAS domain in the periplasm, the length of 
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this segment and rarity of periplasmic PAS domains led to the prediction that this region 

instead forms two transmembrane helices in a hairpin conformation (Rebbapragada et al., 

1997).  Such a membrane anchor would place the PAS domain and the HAMP and HCD 

domains in the cytoplasm (Rebbapragada et al., 1997).   

The topology of Aer has been probed with cysteine-scanning mutagenesis in the 

hydrophobic segment combined with in vivo disulfide cross-linking and accessibility 

studies (Amin et al., 2006).  These studies confirmed that Aer contains two 

transmembrane helices (TM1 and TM2) separated by a rigid four residue periplasmic 

loop (Amin et al., 2006, 2007).  Although the intervening periplasmic loop contains a 

proline, known to induce helical hairpins in transmembrane regions, many substitutions 

and insertions can be accommodated at this position while maintaining wildtype topology 

and function (Amin et al., 2006).  These results are consistent with an absence of a role of 

this periplasmic loop in signaling (Amin et al., 2006).   

Using native cysteines for in vivo disulfide cross-linking analysis, Aer was shown 

to form homodimers, with residues in the membrane anchor and HAMP domain present 

at the dimer interface (Ma et al., 2004).  Point mutations in the AS-2 of the HAMP 

domain that abrogate FAD binding (see below) had no effect on dimerization (Ma et al., 

2004).  Additionally, Aer fragments Aer2-231 and Aer2-285 both dimerize, indicating that 

the HAMP domain (residues 206-258), although at the dimerization interface, is not 

required for dimerization (Ma et al., 2004).  Together these data demonstrate that the 

HCD domain, the HAMP domain and FAD binding are all dispensible for formation of 

the Aer homodimer (Ma et al., 2004).  Cysteine-scanning/cross-linking analysis also 
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indicated that the periplasmic loops of Aer monomers are in close proximity to one 

another within Aer homodimers and trimers of dimers (Amin et al., 2007).   

Aer PAS domain and FAD binding 

 PAS domains, named for the first three proteins in which they were found (Per, 

Arnt, Sim) (Nambu et al., 1991) have been identified in eubacteria, archaea and 

eukaryotes.  In eukaryotes, PAS domains are involved in such diverse phenotypes as 

Drosophila and mammalian development, mammalian oxygen homeostasis, mammalian 

circadian rhythm, human obesity, learning disabilities, and cardiac arrhythmia (reviewed 

in (Crews, 2003)).  Most bacterial PAS domains are found in sensor kinases of two 

component systems, but they have also been found in other kinases, in transcriptional 

regulators and in proteins synthesizing the second messenger c-di-GMP (reviewed in 

(Taylor and Zhulin, 1999; Taylor et al., 2003)).  Bacterial PAS domains sense signals 

such as oxygen, cellular redox status and various wavelengths of light to regulate 

behaviors including nitrogen fixation and metabolism, root nodulation during plant 

symbiosis, photosystem biosynthesis, degradation of aromatic hydrocarbons, sporulation 

and virulence gene expression (reviewed in (Taylor and Zhulin, 1999; Taylor et al., 

2003)).   

PAS domains sense changes in the environment via a wide variety of cofactors 

including FAD, FMN, heme, the 4-hydroxycinnamyl chromophore, iron-sulfur clusters or 

with no associated cofactor (reviewed in (Taylor and Zhulin, 1999; Taylor et al., 2001)).  

Those PAS domains structures that have been solved share a glove-like fold, with 

variation in the central pocket that would presumably account for the ability of different 
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PAS domains to accommodate such different cofactors (reviewed in (Zhong et al., 

2003)).  

 The Aer PAS domain binds an FAD cofactor.  Overexpression of Aer led to the 

accumulation of a chromophore at the membrane (Bibikov et al., 1997).  Fluorescence 

spectra and various chromatography techniques determined that this chromophore was 

likely FAD (Bibikov et al., 1997).  To definitively establish that Aer binds FAD, the 

protein was purified and denatured, which led to the release of a compound with the same 

mass (Bibikov et al., 2000), HPLC retention time and fluorescence spectrum as FAD 

(personal communication in (Repik et al., 2000)).  The FAD cofactor was easily 

dissociated from Aer and could be extracted by overnight dialysis, indicating that Aer 

binds FAD less avidly than other flavoproteins do (personal communications in (Bibikov 

et al., 2000; Repik et al., 2000)). Once the mature Aer protein is folded, FAD binding is 

apparently not necessary for protein stability, as FAD can be removed by dialysis without 

ensuing degradation (personal communication in (Taylor, 2007)).  FAD was isolated 

from Aer up to a ratio of one FAD per Aer monomer (personal communication in (Repik 

et al., 2000)).  Together with the easy dissociation of FAD from Aer, this suggests that 

one FAD cofactor participates in a reversible association with each Aer monomer.  As 

discussed above, the accepted hypothesis is that the redox state of this FAD cofactor 

reflects the status of the ETS and that this is the signal sensed by Aer.   

 PAS domain regions and residues important for FAD binding and/or Aer function 

have been identified in screens of random and cysteine-scanning mutants, as well as 

truncations of Aer, for defects in aerotaxis (Bibikov et al., 2000; Repik et al., 2000; Watts 

et al., 2006b).  Most point mutants that abrogate FAD binding fall into the Aer PAS 
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domain (others are discussed below) and these point mutations are found in all predicted 

structural features of the PAS domain (Bibikov et al., 2000).  Mutation of one residue 

(Tyr111) predicted to be in the proximity of the FAD binding site gave rise to an 

intriguing phenotype.  The Y111C point mutation led to an inverted aerotactic response; 

it caused tumbling (CW signal) in response to an oxygen increase where wildtype cells 

swim smoothly (CCW signal) (Repik et al., 2000).   

 The N-terminal cap (Aer residues 1-19) is the least conserved region within PAS 

domains (Taylor et al., 2001).  Truncations in the N-terminal cap and an M21P 

substitution led to greatly diminished levels of Aer, while other substitutions in and near 

the N-terminal cap led to less severe reductions in Aer levels (Watts et al., 2006b).  This 

indicates that the N-terminal cap is critical for the stability of Aer.  In addition, the 

junction of the N-terminal cap and the PAS core seems critical for Aer signaling, as this 

was a “hot spot” for null aerotactic mutants (Watts et al., 2006b).   

The N-terminal cap participates in the dimer interface of the E. coli direct oxygen 

sensor (DOS) protein PAS domain (Kurokawa et al., 2004),  raising the hypothesis that 

the N-terminal cap of Aer could be contributing to Aer function by aiding dimerization.  

The position of the N-terminal cap in a homodimer was explored using cysteine 

substitution and in vivo disulfide cross-linking experiments (Watts et al., 2006b).  These 

experiments indicated that N-terminal cap is not a dimerization interface, but rather faces 

outward from the Aer homodimer, requiring lateral diffusion in the membrane to collide 

with the N-terminal cap of other homodimers (Watts et al., 2006b).  In fact, although 

PAS domains often form homodimers, there is no evidence to date that the PAS domain 

of Aer dimerizes (Taylor, 2007).  That being said, Aer2-231 dimerizes despite an inability 



  

 58

to bind FAD, indicating that the PAS domain, F1 segment and membrane anchor are 

sufficient for dimerization (Ma et al., 2004).  As there is no significant homology 

between Aer homologues in the membrane anchor or F1 regions, it seems likely that the 

PAS domain does mediate dimerization.  Additional studies are necessary to test this 

hypothesis. 

 The current model of the Aer FAD redox signal is as follows (Repik et al., 2000; 

Taylor, 2007; Watts et al., 2006b).  During maximal electron transport, the semi-quinone 

form of FAD (FADH.) predominates.  Sub-maximal electron transport may be detected 

by increased levels of the fully oxidized (FAD) and fully reduced (FADH2) forms.  Either 

FAD or FADH2 lead to a CW signal (tumbling), whereas FADH. leads to a CCW signal 

(smooth swimming).  In this model, the inverted response of the Y111C mutant can be 

explained if the wildtype tyrosine is in close proximity to the FAD moiety and the 

presence of a cysteine residue in the mutant shifts the redox potential of the FAD cofactor 

such that FAD, rather than FADH., predominates during maximal electron transport, 

leading to an inappropriate CW signal (tumbling) (Repik et al., 2000; Taylor, 2007). 

Evidence for a HAMP-PAS interaction 

 As discussed above, conventional MCPs transmit a signal from the periplasm to 

the cytoplasmic HCD via a shift of their transmembrane helices relative to one another.  

Due to the unique topology of Aer, where both the input (PAS) and output (HAMP, 

HCD) domains are located in the cytoplasm, a different route of signal transduction 

seems likely within this protein.  Rather than traversing the inner membrane, the Aer 

signal has been proposed to move parallel to the membrane by direct interaction of the 

PAS and HAMP domains (reviewed in (Taylor, 2007)).  More than 1200 proteins are 
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predicted by SMART analysis to include both PAS and HAMP domains.  Thus, there is 

significant interest in the possibility that these domains have functional interactions in 

signal transduction and in Aer as a model for these proposed interactions.  

The Aer HAMP domain appears to be required for proper maturation of the 

protein and FAD binding by the PAS domain.  Analysis of Aer fragments created by 

nonsense mutations indicated that both the PAS domain and the HAMP domain are 

required to bind FAD (Bibikov et al., 2000).  Further experiments indicated that a 

fragment consisting solely of the PAS domain and F1 segment of Aer (Aer2-166) was 

predominantly insoluble, residing in inclusion bodies or a non-dissociable complex with 

the chaperone protein GroEL (Herrmann et al., 2004).  These data indicate that this 

fragment cannot fold in an aqueous environment, leading to the hypothesis that the 

folding of the Aer PAS domain requires regions of Aer outside of the PAS domain itself 

(Herrmann et al., 2004).  Fragments consisting of Aer residues 2-231 and 2-285, which 

include the membrane anchor, both insert into the membrane, however, Aer2-285 binds 

FAD and Aer2-231 does not (Herrmann et al., 2004).  These data suggest that residues 231-

285, which includes much of the Aer HAMP domain (residues 206-258) and proximal 

signaling domain, are required for binding of FAD by the PAS domain (Herrmann et al., 

2004).   

Several point mutations in the Aer HAMP and proximal signaling domains have 

been found to abrogate FAD binding (Bibikov et al., 2000; Buron-Barral et al., 2006; Ma 

et al., 2005; Watts et al., 2004; Watts et al., 2008b).  Point mutations that affected FAD 

binding predominantly clustered in the HAMP domain AS-2 (see below) (Ma et al., 

2005; Watts et al., 2004).  HAMP domain mutants that eliminate FAD binding were used 
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to screen for psuedorevertants.  Several second site mutations in the PAS domain restored 

FAD binding in the HAMP mutant backgrounds (Watts et al., 2004).  Most of these were 

non-specific, with three point mutants (S28G, A65V and A99V) restoring FAD binding 

to a large number of HAMP point mutants (Watts et al., 2004).   

The interpretation of these point mutation results, however, has recently been 

called into question by the finding that many of these point mutants affect the stability of 

Aer, and this may be responsible for the lower levels of FAD-binding observed (Buron-

Barral et al., 2006).  This conclusion is supported by the fact that the “general 

suppressor” of these mutations, S28G, dramatically increases the stability of Aer (Buron-

Barral et al., 2006).  This would provide a mechanism for counteracting the effects of 

HAMP mutations that does not necessarily require direct interaction between the 

domains.  

More definitive evidence of a HAMP-PAS interaction arises from the discovery 

of allele specific second site suppressors in each domain.  One HAMP point mutant 

(C253R) was not complemented by the aforementioned non-specific suppressors and was 

used to screen for specific suppressors (Watts et al., 2004).  Such a pseudorevertant was 

identified (N34D), which was specific to C253R (i.e. it did not restore FAD binding to 

other HAMP point mutants (Watts et al., 2004)).  N34 is not predicted to be located near 

the predicted FAD binding pocket (Watts et al., 2004).  A reverse screen for suppressors 

of the N34D point mutant yielded only C253R (Watts et al., 2004).  This specific pair of 

suppressor mutations is strong, albeit indirect, evidence of a direct interaction between 

the PAS and HAMP domains of Aer.   
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Aer HAMP domain structure 

 The identity of the HAMP domain of Aer was confirmed by PSI-BLAST (Ma et 

al., 2005).  However, the predicted secondary structure of the Aer HAMP domain differs 

significantly from that of other HAMP domains.  While most HAMP domains consist of 

two amphipathic helices separated by a connector, the Aer HAMP domain is predicted to 

contain one amphipathic helix (AS-1) and one hydrophobic, or buried, helix (AS-2) 

separated by the connector (Ma et al., 2005).  Based on the genetic evidence discussed 

above, it appears that AS-2 may mediate HAMP-PAS interactions, in addition to 

participating in HAMP-HAMP interactions within a dimer (Ma et al., 2005; Watts et al., 

2004), possibly explaining why this helix is predicted to be buried.   

 Cysteine-scanning/cross-linking analysis was combined with in silico modeling of 

the Aer HAMP and proximal signaling domains to test their predicted secondary and 

tertiary structures (Watts et al., 2008b).  The results of this analysis were consistent with 

a HAMP domain containing two α-helices in a coiled-coil separated by a structured loop 

(Watts et al., 2008b).  In the case of both helices (AS-1 and AS-2), the rate of 

dimerization was inversely correlated with the β-carbon distances in the in silico model 

(Watts et al., 2008b).  As this model was constructed using the coordinates of the Af1503 

HAMP domain structure (Hulko et al., 2006), it appears that both HAMP domains share 

the same structure.  There is no such correlation between dimerization rates and predicted 

β-carbon distances in the connector region between AS-1 and AS-2, indicating that either 

this region is flexible or the structure of the connector differs between Aer and Af1503 

(Watts et al., 2008b).   
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 When mapped onto the in silico model of the Aer HAMP domain, several 

previously identified CW-biased point mutations clustered together at the base of the 

HAMP domain four-helix bundle (Watts et al., 2008b).  These point mutations may alter 

signal input to the HAMP domain, locking the HAMP domain in the CW-signal 

conformation (Taylor, 2007; Watts et al., 2008b).  Thus, this cluster of residues may 

represent a PAS domain interaction surface (Taylor, 2007; Watts et al., 2008b). Such a 

surface would have direct bearing on the hypothesis that the Aer signal is transmitted 

directly from the PAS domain to the HAMP domain. 

Analysis of the Aer proximal signaling domain by cysteine-scanning mutagenesis 

and in vivo disulfide cross-linking supported a coiled-coil α-helical structure for this 

region as well (Watts et al., 2008b).  However, the helix is not continuous as there is 

evidence for a loop in the middle of the proximal signaling domain, indicating that this 

domain actually consists of extensions of the AS-2 helix and signaling domain helix, both 

separated by a loop (Watts et al., 2008b).  Although the position is slightly different from 

that within other MCPs, this loop likely corresponds to the hinge with the flexible bundle 

which is postulated to translate HAMP rotation into bending of the signaling domain 

(Alexander and Zhulin, 2007; Watts et al., 2008b). 

Role of membrane anchor and F1 segment 

The membrane anchor of Aer appears to contribute to proper folding of the 

protein.  Aer2-166, which terminates immediately prior to the membrane anchor  (residues 

167-205), is found in inclusion bodies and in a non-dissociable complex with GroEL 

(Herrmann et al., 2004).  In contrast, Aer2-231 inserts in the membrane, indicating that it is 

released from the GroEL complex (Herrmann et al., 2004).  These data indicate that the 
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membrane domain may be required for Aer folding.  However, Aer2-231 does not bind 

FAD (Herrmann et al., 2004), indicating that elements beyond the membrane anchor, 

specifically the HAMP domain, are required for complete maturation of the protein.   

There is no apparent conservation in the membrane anchor region among Aer 

homologues (Bibikov et al., 2000), and mutations affecting aerotaxis have not been 

identified in this region to date.  Therefore, it is likely that the membrane anchor affects 

Aer folding indirectly, perhaps by maintaining proper orientation of the PAS and HAMP 

domains.  The membrane anchor may also serve to bring the PAS domain of Aer in close 

proximity to the ETS (Bibikov et al., 2000).  An Aer mutant with the membrane anchor 

deleted, but all other functional domains intact, neither associated with the membrane nor 

bound FAD (Bibikov et al., 2000).  Whether this membrane anchor deletion is in 

inclusion bodies or in complex with GroEL was not determined, so it is not yet possible 

to differentiate between potential roles of this region in Aer folding and function.  

However, a functional Aer homologue lacking a membrane anchor has been 

characterized (see below), confirming that this region should be not critical for signal 

transduction. 

The region between the PAS domain and membrane anchor of Aer has been 

designated the F1 segment (Bibikov et al., 2000).  Point mutations in the F1 segment that 

lead to an aerotaxis defect have been identified (Bibikov et al., 2000; Buron-Barral et al., 

2006), albeit with much lower frequency than HAMP point mutations (Buron-Barral et 

al., 2006).  As with the membrane anchor, there is no significant homology among Aer 

homologues in the F1 segment (Bibikov et al., 2000).  However, both monomers in an 

Aer homodimer need to possess the F1 segment to be functional (Watts et al., 2006a).  
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Together, these data suggest that the F1 segment may contribute indirectly to Aer 

function, perhaps playing a role in proper folding or orientation of the protein. 

Route of signal transduction within an Aer dimer 

 The HAMP-PAS interaction required for FAD binding and the signaling pathway 

in Aer could each conceivably be either intra- or inter-subunit within an Aer homodimer.  

Using intragenic complementation experiments, combining multiple point mutations 

and/or truncations within monomers or mixed dimers, it was established that HAMP-PAS 

interaction between cognate subunits in an Aer dimer is required for FAD binding (Watts 

et al., 2006a).  In contrast, the signaling pathway involved the PAS domain and HCD 

within a single subunit (Watts et al., 2006a).  Signaling required only one PAS domain 

and one HCD in each dimer, and these had to be in the same monomer (Watts et al., 

2006a).  Two full-length HAMP domains were required for aerotaxis, but a HAMP point 

mutation that abrogates FAD binding could be tolerated if present on the subunit 

possessing both functional PAS and HCD domains (Watts et al., 2006a).   

These data are consistent with three models of signal transduction within Aer 

(Watts et al., 2006a):  1) The signal is transduced from a PAS domain to the HAMP 

domain on the same dimer, via interactions that are different from those between cognate 

subunits supporting FAD binding.  2) The signal is transduced from a PAS domain to the 

cognate HAMP domain and back to the HCD of the original subunit.  3) The signal is 

transmitted directly from a PAS domain to the proximal signaling domain of the same 

monomer, and the HAMP domain is not involved in signaling.  The evidence for a role of 

HAMP domains in signal transduction within other proteins argues against this last 

possibility, but it cannot yet be ruled out. 



  

 65

Interactions with other MCPs 

 There are approximately 300 copies of Aer per E. coli cell (personal 

communication in (Taylor et al., 2001)), making Aer a low-abundance chemoreceptor (Li 

and Hazelbauer, 2004).  Based on these estimates, if MCP dimers are randomly 

incorporated into trimers of dimers, Aer would be predicted to exist almost exclusively in 

mixed trimers of dimers (i.e. trimers containing one Aer homodimer and two homodimers 

of other MCPs) (Gosink et al., 2006).  If Aer is expressed to high levels in the absence of 

other MCPs, it can form Aer-exclusive trimers of dimers (Gosink et al., 2006).  However, 

when the high-abundance MCP Tar is present, Aer forms mixed trimers of dimers and 

shows no preference for unmixed (Aer-exclusive) trimers of dimers (Gosink et al., 2006).  

The ability of Aer to form mixed trimers of dimers indicates that the absence of a large 

periplasmic sensory domain and the presence of the cytoplasmic PAS domain in Aer do 

not interfere with trimer of dimer formation (Amin et al., 2007).  As with other trimers of 

dimers in a complex including CheA and CheW (Studdert and Parkinson, 2005), these 

associations are quite stable and do not exchange neighbors over time (Amin et al., 

2007).  As Aer is a low abundance chemoreceptor, it would be expected to have minimal 

impact on the steady-state activity of CheA in wildtype E. coli (Gosink et al., 2006).  In 

fact, in the absence of other MCPs, Aer must be expressed to levels approximately 

equivalent to the total number of MCPs in a wildtype cell to promote optimal energy 

taxis (Gosink et al., 2006). 

Adaptation 

 Prior to the identification of Aer, it was established that aerotaxis by E. coli did 

not require the methylation/adaptation elements of the chemotactic machinery (Bespalov 
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et al., 1996; Niwano and Taylor, 1982; Zhulin et al., 1997).  The Aer HCD lacks the 

consensus methylation sites present in the other E. coli MCPs (Bibikov et al., 2004).  

HCD methylation in MCPs can be detected by SDS-PAGE, as CheR and CheB 

modifications lead to changes in their gel mobility of MCPs.  However, no CheR or 

CheB dependent mobility shifts are seen with Aer (Bibikov et al., 2004).  Moreover, 

CheR, CheB, the other MCPs and the noncanonical sites corresponding to normally 

methylated regions of the HCD are all dispensible for Aer-mediated aerotaxis (Bibikov et 

al., 2004).  Further, a chimera consisting of the PAS-TM-HAMP regions of Aer fused to 

the HCD of Tar is capable of both methylation-dependent and methylation-independent 

aerotaxis (Bibikov et al., 2004).  This result was surprising in that it indicated that the 

PAS-TM-HAMP portion of Aer, rather than the HCD, was sufficient for methylation-

independence (Bibikov et al., 2004; Taylor, 2004).  This observation led to the 

suggestion that the methylation-independence of Aer may be attributable to the signal 

that Aer senses.  If the redox signal sensed by the PAS domain FAD cofactor is transient, 

then the Aer response may also be inherently transitory and adaptation would not be 

necessary (Bibikov et al., 2004; Taylor, 2004).   

Evidence from other energy taxis systems indicates, however, that some are 

methylation-independent.  Aerotaxis by an Aer homologue in Pseudomonas aeruginosa 

appears to be methylation dependent (Hong et al., 2004b).  Energy taxis in Azospirillum 

brasilense, which is not mediated by an Aer-homologue, is methylation-independent 

(Stephens et al., 2006).  The D. vulgaris energy taxis receptor DcrA, also not an Aer 

homologue, is methylated upon exposure to oxygen or a reducing agent, but whether 

methylation is necessary for energy taxis has not been determined (Fu et al., 1994).  It 
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may be that different energy taxis transducers and various stimuli lead to differing 

requirements for methylation. 

Effect on gene expression 

 A study examining the effect of mutations in the master flagellar transcriptional 

activators, FlhC and FlhD, on gene expression in E. coli suggested a role for Aer in gene 

regulation (Pruss et al., 2003).  Aer was upregulated by FlhC and FlhD (Pruss et al., 

2003), presumably via the sigma factor, σ28, as sequence analysis indicates that Aer has a 

σ28-dependent promoter (Park et al., 2001).  Microarray and transcriptional fusion 

analysis indicated that Aer is involved in activating transcription of several genes 

encoding enzymes involved in anaerobic respiration, as well as the Entner-Doudoroff 

pathway, the major route of degradation of sugar acids (Pruss et al., 2003).  The authors 

of this study indicated preliminary evidence, involving a cheY mutant, that this regulation 

by Aer is independent of its role in chemotaxis, however this data has not yet been 

published (Pruss et al., 2003).  While other MCPs have been implicated in gene 

regulation, those systems usually involve alternate sets of chemotaxis proteins that are 

involved strictly in gene regulation, as opposed to chemotaxis (discussed above).  As 

there is only one set of chemotaxis proteins in E. coli, the mechanism of gene regulation 

by Aer remains to be elucidated.  Without publication of the data showing that Aer-

mediated regulation is independent of its function in chemotaxis, it is impossible to 

discount the possibility that this apparent gene regulation is instead due to the altered 

environment encountered by bacteria incapable of energy taxis. 
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Aer homologues in other organisms 

 Aer homologues were originally identified on the basis of sequence homology in 

Pseudomonas putida, Yersinia pestis, V. cholerae (three orfs), Shewanella putrifaciens, 

Salmonella typhimurium and the transposon Tn1721 (Bibikov et al., 2000).  To identify 

other potential Aer homologues, I used the SMART architecture analysis tool (Letunic et 

al., 2004).  This analysis identified proteins with domain architecture similar to that of 

Aer in 45 Gram-negative genera.  A SMART search for proteins that contain a PAS 

domain and HCD (or MA, for methyl-accepting domain), without regard for domain 

order or the presence or absence of transmembrane regions or other functional domains, 

currently identifies 587 eubacterial proteins including some in Gram-positives, 34 

archaeal proteins and one protein in the eukaryote Oryza sativa (rice).  

Clearly, Aer-like proteins are quite common and widespread.  However, only a 

handful of Aer homologues have been characterized.  Of three apparent Aer homologues 

in V. cholerae, only one functions in aerotaxis in vitro (Boin and Hase, 2007).  Several 

Aer homologues have been identified in P. putida, including one lacking a 

transmembrane region (Nichols and Harwood, 2000; Sarand et al., 2008).  Two of the 

membrane-bound Aer homologues, in different strains, have been found to contribute to 

aerotaxis (Nichols and Harwood, 2000) and metabolism-dependent taxis to 

(methyl)phenols (Sarand et al., 2008).   

In P. aeruginosa, two Aer homologues were identified, including one lacking a 

transmembrane region (Hong et al., 2004b).  Both of these contribute to aerotaxis, as 

single mutants have altered aerotaxis, and a double mutant lacks an aerotactic response 

(Hong et al., 2004b).  This is the only evidence to date that an Aer protein lacking a 
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membrane anchor can transduce an energy taxis signal, although such proteins are 

identified by SMART and comprise an uncharacterized family of proteins, termed McpA 

homologues, identified in several bacteria on the basis of sequence alone (Minerdi et al., 

2002).  Oddly, an apparent Aer homologue lacking a membrane anchor was identified 

and found to be important for various forms of chemotaxis in Sinorhizobium meliloti, but 

the PAS domain was dispensible for this phenotype (Meier et al., 2007). 

Recently, two Aer homologues were identified and demonstrated to function in 

aerotaxis of the plant pathogen Ralstonia solanacearum (Yao and Allen, 2007).  Both 

Aer homologues are required for wildtype levels of localization to and aggregation on 

tomato roots (Yao and Allen, 2007).  Additionally, mutants in both aer genes appear to 

overproduce biofilm compared to wildtype and to levels similar to nonmotile and 

nontactic mutants, indicating that aerotaxis is a key regulator of biofilm formation in this 

species (Yao and Allen, 2007).   

An additional link between an Aer homologue and biofilm formation can be 

found in P. aeruginosa.  Recently, another Aer homologue was identified in P. 

aeruoginosa, containing two PAS domains and an HCD (Morgan et al., 2006).  This 

protein, BldA, was important in biofilm dispersal in response to sudden changes in a 

variety of stimuli (Morgan et al., 2006).  Surprisingly, biofilm dispersal required neither 

flagella-mediated swimming or pili-mediated twitching motility, indicating that the affect 

of BldA on biofilm dispersal was not mediated by an affect on energy taxis or chemotaxis 

(Morgan et al., 2006).  Rather, it appears that BldA has a dramatic affect on c-di-GMP 

levels, which in turn regulate the adhesive nature of the bacterium (Morgan et al., 2006).  

The nature of the link between BldA and c-di-GMP levels is not clear, but BldA does not 
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appear to affect c-di-GMP directly, as it does not possess GGDEF or EAL domains 

(Morgan et al., 2006).   

 While Aer homologues in E. coli and Salmonella appear to be regulated in a σ28-

dependent manner (Frye et al., 2006; Park et al., 2001), there is evidence of additional 

layers of regulation of Aer homologues in other bacteria.  In P. aeruginosa, the anaerobic 

regulator ANR upregulates expression of one Aer homologue, but not the other Aer 

homologue which lacks a membrane anchor (Hong et al., 2004a).  Conversely, the Aer 

homologue lacking a membrane anchor is upregulated by the stationary phase σ-factor 

RpoS, but the other Aer homologue is not (Hong et al., 2005).  In Shewanella oneidensis, 

the transcript encoding an Aer homologue is upregulated in the presence of metal 

terminal electron acceptors (Beliaev et al., 2005), but the mechanism underlying this 

regulation remains unclear.  Three Aer homologues in one strain of P. putida, one lacking 

a membrane anchor, were differentially regulated over the course of the growth curve and 

in response to different carbon sources (Sarand et al., 2008).  Differential regulation may 

explain why only some Aer homologues in strains harboring multiple homologues have 

been seen to affect aerotaxis in vitro.  

 

Motility and Taxis in C. jejuni 

C. jejuni flagella and flagellar regulation 

C. jejuni flagella and flagellar motility are vital to many aspects of C. jejuni 

biology, including host colonization, virulence in ferret models, secretion and host-cell 

invasion.  Consequently, the regulation of flagella biogenesis and motility is an active 

area of research.  Various studies have elucidated a flagellar regulatory hierarchy that 
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includes σ54 (encoded by rpoN) and σ28 (encoded by fliA) as the flagellar σ-factors and 

the two-component system FlgRS (which is phase variable) (Carrillo et al., 2004; Colegio 

et al., 2001; Hendrixson and DiRita, 2003; Hendrixson, 2006; Jagannathan et al., 2001; 

Wosten et al., 2004).  FlgR apparently represents a new class of NtrC-like regulators that 

lack a DNA-binding motif (Joslin and Hendrixson, 2008).  Homologues of the flagellar 

master regulators FlhC and FlhD, which are crucial for flagellar gene expression in other 

species, have not been identified in the C. jejuni genome (Parkhill et al., 2000).  Two 

proteins, FlgP and FlgQ, that are required for flagellar motility have recently been 

identified, but their roles are unclear; no homologues of these proteins are found in E. 

coli and only uncharacterized homologues have been identified in other species 

(Sommerlad and Hendrixson, 2007).   

C. jejuni flagella contribute to more than just motility.  As mentioned above, the 

flagellum is the only identified secretion mechanism in C. jejuni.  Additionally, there is 

accumulating evidence that the C. jejuni flagellum contributes to biofilm formation 

(Kalmokoff et al., 2006; Reeser et al., 2007).  Finally, C. jejuni flagellin does not 

stimulate TLR-5, due to deviations from the more common residues at the locations 

recognized by this innate immune receptor (Andersen-Nissen et al., 2005). 

C. jejuni chemotaxis mechanisms 

Chemotaxis probably has an important role in both the commensal and pathogenic 

lifestyles of C. jejuni.  C. jejuni has a flagellum at one or both poles and apparently 

swims by alternating runs and tumbles, but in high viscosity this changes to runs and 

pauses (Szymanski et al., 1995), presumably due to the lessened impact of Brownian 

motion.  C. jejuni motility in high viscosity is highly relevant, as the bacterium is often 
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found in the mucous layer of the gastrointestinal tract.  In fact, C. jejuni motility appears 

well-suited to this environment, as its swimming velocity, which is already much higher 

than many other bacteria, increases with increasing viscosity (Szymanski et al., 1995).  C. 

jejuni displays chemotactic motility towards amino acids that are found in high levels in 

the chick gastrointestinal tract, organic acid intermediates of the TCA cycle and 

components of mucus including fucose (Hugdahl et al., 1988).  Non-mucin bile 

components are chemorepellents (Hugdahl et al., 1988).  Mutants that lack either cj0019c 

(DocB) or cj0262c, which are both methyl-accepting chemotaxis receptors (there are ten 

in total), show decreased chick colonization, but the attractants or repellents to which 

these proteins respond are unknown (Hendrixson and DiRita, 2004).  Strains that either 

lack or overexpress CheY show decreased virulence in the ferret model (Yao et al., 

1997).  All of these data demonstrate the central role of motility and chemotaxis in C. 

jejuni commensalism and pathogenesis.  

Genome sequence analysis has shown that the C. jejuni genome encodes most 

features of the E. coli chemotaxis system (Marchant et al., 2002; Parkhill et al., 2000).  

However, C. jejuni lacks a homologue of the E. coli phosphatase CheZ, but does possess 

a homologue of CheV (Marchant et al., 2002; Parkhill et al., 2000) which may act as a 

phosphate sink.  C. jejuni also encodes a homologue of HP0170 (discussed above) which 

may be a CheY-P phosphatase, although that has not been tested (Terry et al., 2006).   

C. jejuni adaptation systems have not been studied, but sequence analysis raises 

some interesting possibilities.  C. jejuni CheR falls in the pentapeptide-independent class 

by sequence analysis and all of C. jejuni MCPs lack pentapeptide sequences (Perez and 

Stock, 2007).  In addition, only some C. jejuni MCPs possess methylation sites 
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(Marchant et al., 2002).  C. jejuni CheB is unique in that it does not contain a response 

regulator domain (Marchant et al., 2002).  This leads to the hypothesis that both 

methylation and demethylation of MCPs might both be constitutive in C. jejuni and 

leaves open the question of how adaptation occurs in this bacterium (Marchant et al., 

2002).  Perhaps CheV-mediated adaptation (discussed above) is the only means of 

adaptation necessary for C. jejuni, as appears to be the case with the close relative H. 

pylori (Marchant et al., 2002).  The presence of both CheR and CheB as well as 

methylation sites on some MCPs, however, suggests that there may be a role for 

methylation-dependent adaptation in chemotaxis to some stimuli.  

Clearly, C. jejuni chemotaxis combines elements of the signal transduction 

pathways of E. coli, B. subtilis and others.  While understanding these model systems will 

aid our study of C. jejuni chemotaxis, much remains to be understood in terms of how 

these elements combine to control C. jejuni motility. 

C. jejuni energy taxis 

 An energy taxis system identified in Campylobacter jejuni consists of a variation 

on the domain arrangement found in Aer (Fig. 6).  A transposon screen of mutants with 

defects in motility identified insertions in cetA and cetB, which are encoded by adjacent 

genes on the C. jejuni genome (Hendrixson et al., 2001).  CetB contains a predicted PAS 

domain and no other functional domains.  CetA is predicted to contain a transmembrane 

region, a HAMP domain and the HCD.  Mutants lacking cetA or cetB are deficient in 

energy taxis (Hendrixson et al., 2001).  A gene upstream of cetA, cj1191c, was also noted 

to have high levels of similarity to cetB, although no role for this gene in energy taxis is 

known. 
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Figure 6.  Schematic of predicted domains, topology and interactions of CetA and 
CetB.  CetB contains a predicted PAS domain.  CetA contains a predicted 
transmembrane region, HAMP domain and HCD.  We hypothesize that CetB interacts 
with CetA to transduce an energy taxis signal.  
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These studies led to the hypothesis that CetA and CetB interact to transduce an 

energy taxis signal via a similar mechanism as that proposed for the single protein Aer.  

Specifically, we predict that CetB interacts with the HAMP domain of CetA, as is 

suggested of the PAS and HAMP domains of Aer.  An additional hypothesis arises from 

the division of the domains of Aer into two proteins.  We hypothesize that CetA and/or 

CetB may be able to interact with other proteins to regulate phenotypes other than energy 

taxis.  This dissertation aims to test these hypotheses. Chapter II contains the molecular 

and biochemical characterization of CetA and CetB and includes experiments aimed at 

determining whether these proteins interact with each other.  Chapter III tests whether the 

domain architecture of CetA and CetB are unique to Campylobacter and whether these 

proteins may be involved in separate cellular processes other than energy taxis.  
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CHAPTER II 

CHARACTERIZATION OF CETA AND CETB, A BIPARTITE ENERGY TAXIS 
SYSTEM IN CAMPYLOBACTER JEJUNI 

 

Summary 

 The energy taxis receptor Aer, in Escherichia coli, senses changes in the redox 

state of the electron transport system via an FAD cofactor bound to a PAS domain.  The 

PAS domain is thought to interact directly with the Aer HAMP domain to transmit this 

signal to the highly conserved domain (HCD) found in chemotaxis receptors.  An energy 

taxis system in Campylobacter jejuni is composed of two proteins, CetA and CetB, that 

have the domains of Aer divided between them.  CetB has a PAS domain, while CetA has 

a predicted transmembrane region, HAMP domain and the HCD.  In this study, we 

examined the expression of cetA and cetB, as well as the biochemical properties of the 

proteins they encode.  cetA and cetB are co-transcribed independently of the flagellar 

regulon.  CetA has two transmembrane helices in a helical hairpin, while CetB is a 

peripheral membrane protein very tightly associated with the membrane.  CetB levels are 

CetA-dependent.  Additionally, we demonstrated that both CetA and CetB participate in 

complexes, including a likely CetB dimer and a complex that may include both CetA and 

CetB.  This study provides a foundation for further characterization of the signal 

transduction mechanisms within CetA/CetB. 
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Introduction 

 Motile bacteria alter the direction in which they swim based on changes in the 

local environment.  These changes can be sensed directly in classical chemotaxis, where 

changes in the local concentration of a stimulus (i.e. an amino acid or sugar) are sensed in 

a metabolism-independent fashion, often by transmembrane methyl-accepting chemotaxis 

proteins (MCPs).  Changes in the local environment can also be sensed indirectly by 

monitoring energy-generating processes within the cell.  In this behavior, termed energy 

taxis, receptors sense changes in the redox state of components of the electron transport 

system (ETS) or in the closely coupled proton motive force (Taylor and Zhulin, 1998).  

Energy taxis behaviors include some forms of aerotaxis, phototaxis, taxis to electron 

acceptors, and even chemotaxis in those cases where the bacteria sense chemicals based 

on changes in energy generation resulting from their metabolism (Alexandre et al., 2004; 

Taylor and Zhulin, 1998; Taylor et al., 1999). 

 Energy taxis receptors and their signal transduction mechanisms have been well-

characterized in Escherichia coli.  E. coli contains two energy taxis receptors: Tsr, a 

classic serine-responsive MCP that also senses changes in the proton motive force, and 

Aer, which senses changes in the redox state of element(s) of the ETS (Rebbapragada et 

al., 1997).  Aer has been suggested to sense these changes via the redox state of an FAD 

cofactor bound to the N-terminal PAS domain (Taylor, 2007).  This signal is thought to 

be transmitted to the HAMP domain of Aer (named for its presence in histidine kinases, 

adenylyl cyclases, MCPs and phosphatases) (Aravind and Ponting, 1999) by a direct 

PAS-HAMP interaction (Taylor, 2007).  Finally, the HAMP domain relays the signal to 

the highly conserved domain (HCD) (named for its prevalence in MCPs) (Taylor, 2007).  
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Aer also possesses two transmembrane domains with a small intervening periplasmic 

loop, but there is, as yet, no evidence for the involvement of this region in signal 

transduction (Amin et al., 2006).  This differs from classical MCPs which are thought to 

transmit signals sensed by a periplasmic domain to the HAMP and HCD domains by a 

shift in their transmembrane helices (Chervitz and Falke, 1996; Moukhametzianov et al., 

2006). 

 Flagellar motility plays a vital role in the pathogenicity of C. jejuni, one of the 

most common causes of gastroenteritis in the United States, as well as in its colonization 

of livestock reservoirs, most commonly poultry (Guerry, 2007; Young et al., 2007).  An 

energy taxis system identified in Campylobacter jejuni consists of a variation on the 

domain arrangement found in Aer.  A transposon screen of mutants with defects in 

motility identified insertions in cetA and cetB, which are adjacent genes on the C. jejuni 

genome (Hendrixson et al., 2001).  CetB contains a predicted PAS domain and no other 

functional domains.  CetA is predicted to contain a transmembrane region, a HAMP 

domain and the HCD.  Mutants lacking cetA or cetB are deficient in energy taxis 

(Hendrixson et al., 2001).  These studies led to the hypothesis that CetA and CetB 

interact to transduce an energy taxis signal via a similar mechanism as that proposed for 

the single protein Aer.  Specifically, we predict that CetB interacts with the HAMP 

domain of CetA, as is suggested of the PAS and HAMP domains of Aer.  However, 

significant divergence between the HAMP domains of Aer and CetA suggest that the 

molecular nature of these interactions likely differ (see Chapter III).  In addition, the 

separation of the domains of Aer between CetA and CetB implies that these proteins may 

also be able to function independently of each other to participate in other signaling 
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processes.  We have determined that CetA and CetB define a new family of HAMP/PAS 

containing proteins, with pairs of similar proteins identified in 22 species thus far (see 

Chapter III). 

In this study, we initiated the molecular and biochemical characterization of CetA 

and CetB, testing predictions about their transcription, topology, localization and 

interaction.  We found that cetA and cetB are co-transcribed independently of the flagellar 

regulon.  We demonstrated that CetA and CetB are both membrane-associated; CetA by 

two transmembrane helices in a helical hairpin; CetB in a peripheral manner, likely via 

protein-protein interactions.  In addition, we uncovered evidence of a likely protein-

protein interaction between CetA and CetB, including low levels of CetB in the absence 

of CetA, and the existence of high molecular weight complexes that appear to include 

both proteins.   

 

Materials and Methods 

Bacterial strains and culture conditions. All bacterial strains and plasmids used 

in this study are listed in Table 2.  DRH212, a spontaneous streptomycin resistant mutant 

of the clinical isolate C. jejuni 81-176, was the background strain for all mutants studied 

and is referred to as wildtype (Hendrixson et al., 2001).  C. jejuni was routinely grown on 

Mueller-Hinton (MH) agar with 10 μg/ml trimethoprim under microaerophilic conditions 

(85% N2, 10% CO2, 5% O2) in a tri-gas incubator.  Biphasic cultures were grown in 

20mL MH broth overlaid on 20mL MH agar under microaerophilic conditions.  For C. 

jejuni, the following antibiotic concentrations were used: 10 μg/ml trimethoprim, 30 

μg/ml cefaperazone, 50 μg/ml kanamycin, 20 μg/ml chloramphenicol and 0.1 or 2 mg/ml  
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Table 2. Bacterial strains and plasmids used in Chapter II.  
 

Strain or 
plasmid Relevant characteristics Reference 

   
Bacteria   
   E. coli   

      JM101 F´ traD36 proA+B+ lacIq Δ(lacZ)M15/ Δ(lac-proAB) glnV 
thi New England Biolabs 

      DH5α/ 
     pRK212.1 

contains conjugative plasmid for transfer of plasmid into 
C. jejuni 

(Figurski and Helinski, 
1979) 

      TG1 ΔhsdS Δ(lac-proAB) supE thi F′ [traD36 proAB+ laclq 
ΔlacZM15] (Sambrook et al., 1989) 

    C. jejuni   
      DRH212 81-176 SmR, spontaneous mutant (Hendrixson et al., 2001) 
      DRH307 ΔcetB (Hendrixson et al., 2001) 
      DRH311 ΔfliA (Hendrixson et al., 2001) 
      DRH321 ΔrpoN (Hendrixson et al., 2001) 
      DRH333 ΔcetA (Hendrixson et al., 2001) 
      KYCj172 ΔcetAB This study 
   
Plasmids   
   pRY108 KmR, E. coli/C. jejuni shuttle vector (Yao et al., 1993) 

   pECO102 C. jejuni plasmid for gene expression from cat promoter, 
CmR (Wiesner et al., 2003) 

   pECO101 pRY108 derivative with cat promoter in XhoI-BamHI 
site, KmR This study 

   pTrcphoA pTrc99a containing ‘phoA (lacks phoA codons 1-26) (Blank and Donnenberg, 
2001) 

   pTrclacZ pTrc99a containing ‘lacZ (lacks lacZ codons 1-7) (Blank and Donnenberg, 
2001) 

   pKTY295 pECO101 with cj1191c-flag cloned into EcoRI and XhoI 
sites This study 

   pKTY360 pRY108 with 2.4 kb fragment containing cetA and cetB 
coding sequence cloned into the XmnI site Chapter III 

   pKTY367 pKTY360 with the Y116A mutation in the cetA coding 
sequence Chapter III 

   pKTY213 pECO101 with cetB cloned into the BamHI and XhoI 
sites This study 

   pKTY300 pECO101 with cetAB cloned into BamHI and XhoI sites This study 

   pKTY333 pTrcphoA with cetA codons 1-5 cloned into NcoI and 
XmaI sites This study 

   pKTY349 pTrcphoA with cetA codons 1-24 cloned into NcoI and 
XmaI sites This study 

   pKTY344 pTrcphoA with cetA codons 1-50 cloned into NcoI and 
XmaI sites This study 

   pKTY343 pTrcphoA with cetA codons 1-140 cloned into NcoI and 
XmaI sites This study 

   pKTY334 pTrcphoA with cetA (full length) cloned into NcoI and 
XmaI sites This study 

   pKTY331 pTrcphoA with cetB (full length) cloned into NcoI and 
XmaI sites This study 

   pKTY332 pTrclacZ with cetA codons 1-5 cloned into NcoI and 
XmaI sites This study 

   pKTY328 pTrclacZ with cetA codons 1-24 cloned into NcoI and This study 
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XmaI sites 

   pKTY327 pTrclacZ with cetA codons 1-50 cloned into NcoI and 
XmaI sites This study 

   pKTY329 pTrclacZ with cetA codons 1-140 cloned into NcoI and 
XmaI sites This study 

   pKTY326 pTrclacZ with cetA (full length) cloned into NcoI and 
XmaI sites This study 

   pKTY330 pTrclacZ with cetB (full length) cloned into NcoI and 
XmaI sites This study 

   pBW208 pECO102 with ctsP and C-terminal FLAG tag Wiesner and DiRita, in 
preparation 
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streptomycin.  E. coli was grown in Luria-Bertani (LB) agar or broth. For E. coli, the 

following antibiotic concentrations were used: 50 μg/ml kanamycin, 30 μg/ml 

chloramphenicol or 100 μg/ml ampicillin.  

Construction of plasmids for gene expression in C. jejuni.   To construct a 

kanamycin selectable plasmid for gene expression in C. jejuni, an 82-bp fragment 

containing the promoter for the C. jejuni chloramphenicol acetyltransferase (cat) gene 

from pRY109 (Yao et al., 1993) was amplified by PCR using primers containing 5’ XbaI 

and BamHI sites. These primers were used to amplify the 82-bp fragment, and the 

resulting fragment cloned into pRY108 (Yao et al., 1993) giving rise to the plasmid 

pECO101.  Except for antibiotic selection, pECO101 functions similarly to the 

previously constructed plasmid pECO102 (Wiesner et al., 2003).  To construct a plasmid 

expressing a FLAG-tagged Cj1191c from the cat promoter, the cj1191c coding sequence 

was amplified by PCR with primers containing restriction sites so that an EcoRI site was 

added immediately 5’ to cj1191c and the FLAG coding sequence followed by an XhoI 

site immediately 3’ to cj1191c for cloning into pECO101.  To construct a plasmid 

expressing cetB from the cat promoter, the cetB coding sequence was amplified by PCR 

with primers containing restriction sites so that a BamHI site was added immediately 5’ 

to cetB and an XhoI site immediately 3’ to cetB for cloning into pECO101.  To construct 

a plasmid expressing both cetA and cetB from the cat promoter, the cetA and cetB coding 

sequences and intergenic region were amplified by PCR with primers containing 

restriction sites so that a BclI site was added immediately 5’ to cetA and an XhoI site 

immediately 3’ to cetB.  The resulting fragment was digested with BclI and XhoI and 
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cloned into the BamHI and XhoI sites of pECO101.  All plasmids were confirmed by 

DNA sequencing. 

Conjugation of plasmids into C. jejuni.  Plasmids were conjugated into C. jejuni 

as described by Guerry et al (Guerry et al., 1994).  Briefly, C. jejuni was grown on MH 

agar with 10 μg/ml trimethoprim for 16-20 hours and resuspended in MH broth to an 

OD600 of 1.0.  Overnight cultures of the E. coli donor strain (DH5α[pRK212.1] 

containing the plasmid to be conjugated into C. jejuni) were diluted into fresh LB broth 

and grown to an OD600 of 0.5.  500 μl of the donor culture was centrifuged and the pellet 

washed twice with MH broth, then resuspended in 1 ml of the C. jejuni recipient culture.  

This mixture was spotted onto MH agar with no antibiotics. After 5 hours at 37°C in 

microaerophilic conditions, the bacteria were resuspended and spread onto MH agar 

containing 10 μg/ml trimethoprim, 30 μg/ml cefaperazone, 2 mg/ml streptomycin and 50 

μg/ml kanamycin.  PCR was used to verify transfer of the plasmid to the recipient C. 

jejuni strain.  

RNA extractions and RT-PCR.  C. jejuni strains were grown in biphasic 

cultures for 48 hours.  RNA extractions were performed using Qiagen RNAprotect and 

Qiagen RNeasy according to manufacturer’s instructions, without the use of on-column 

DNase treatment.  To eliminate contaminating DNA, 10x DNase buffer (200mM sodium 

acetate pH 4.5, 100mM MgCl2, 100mM NaCl) and 10 units of DNase I (RNase-free, 

Roche) were added to each RNA sample and incubated at room temperature for 1 hour.  

DNase was removed by sequential phenol and chloroform extractions, followed by 

ethanol precipitation.  The final concentration of RNA in each sample was quantified by 

OD260.   
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Qualitative RT-PCR was performed as follows.  2.5μg of RNA was mixed with 

3μg random primers (Invitrogen) and cDNA synthesized using MMLV reverse 

transcriptase (Invitrogen) according to manufacturer’s instructions.  Control reactions 

with MMLV reverse transcriptase omitted were performed simultaneously to detect any 

contaminating DNA.  Equal amounts of cDNA products were then used as a template for 

PCR using either 2 primers within rpoA or one primer within cetA and one primer within 

cetB.  Control reactions using genomic DNA as a template were also performed.  RT-

PCR products were separated on a 0.8% agarose gel and visualized with ethidium 

bromide. 

SDS-PAGE and Western blots.  For SDS-PAGE of whole cell lysates, C. jejuni 

strains were grown on MH agar for 16-20 hours, then resuspended in MH broth to an 

OD600 of 0.8.  The bacteria were pelleted by centrifugation and the pellet resuspended in 

100μL 2x sample buffer.  All other samples were normalized by protein concentration or 

OD600 as indicated below.  Samples were boiled then separated on 10% or 12.5% 

polyacrylamide gels (as indicated).  Proteins were transferred to nitrocellulose 

membranes and probed with rabbit anti-CetA (1:10,000-1:75,000, generated against an 

internal peptide by Open Biosystems) or rabbit anti-CetB (1:500-1:5000, generated 

against an internal peptide by Open Biosystems) followed by either goat anti-rabbit 

alkaline phosphatase-conjugated secondary antibody (1:10,000, Zymed) or goat anti-

rabbit peroxidase-conjugated secondary antibody (1:20,000, Pierce).  For detection of 

Cj1191c-FLAG and CtsP-FLAG, membranes were probed with anti-FLAG peroxidase-

conjugated antibody (1:1000, Sigma).  Alkaline phosphatase probed Western blots were 

developed using the chromogenic substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro 
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blue tetrazolium as previously described (Sambrook et al., 1989).  Peroxidase probed 

Western blots were developed using the Western Lightning kit (PerkinElmer). 

Topology predictions.  Transmembrane domain predictions were preformed 

using DAS (http://www.sbc.su.se/~miklos/DAS).  Signal sequence predictions were 

performed using LipoP (http://www.cbs.dtu.dk/services/LipoP).  Hydrophobicity of 

individual residues within the predicted CetA transmembrane region was assessed by 

plotting the Kyte-Doolittle value of each residue in this region.  This approach resembles 

that used recently to analyze the attributes of individual HAMP domain residues (Hulko 

et al., 2006) and differs from the usual Kyte-Doolittle analysis, which gives the average 

hydrophobicity of 19 residues centered at each position.   

Topology analysis using PhoA and LacZ fusions.  The plasmids pTrcphoA and 

pTrclacZ were used to construct plasmids containing C-terminal PhoA or LacZ fusions to 

full-length or truncated CetA.  pTrcphoA consists of the coding sequence for phoA 

without codons 1-26 (the signal sequence), denoted ‘phoA, cloned into pTrc99a (Blank 

and Donnenberg, 2001).  pTrclacZ consists of the coding sequence of lacZ without 

codons 1-7, denoted ‘lacZ, cloned into pTrc99a (Blank and Donnenberg, 2001).  

Truncations of cetA consisting of the first 24, first 50 or first 140 codons and full-length 

cetA were amplified using primers that added an NcoI site immediately 5’ and an XmaI 

site immediately 3’ to the coding sequence for cloning into the NcoI and XmaI sites of 

pTrcphoA and pTrclacZ.  The first 5 codons of cetA were inserted between the NcoI and 

XmaI sites of pTrcphoA and pTrclacZ using Pfu mutagenesis (Weiner et al., 1994).  All 

resulting plasmids were confirmed by DNA sequencing.   
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Each of the above plamids, including the original vectors, was transformed into E. 

coli strain TG1, which lacks phoA and lacZ.  Alkaline phosphatase and β-galactosidase 

activities of each strain were assessed as previously described (Manoil, 1991; Miller, 

1972).  Assays were performed in triplicate and the average and standard deviation 

calculated for each strain. 

Subcellular fractionation.  C. jejuni strains were grown on MH agar for 16-20 

hours and resuspended in 10mM HEPES pH 7.4.  Cells were lysed by one freeze-thaw 

cycle, followed by sonication 3-6 times for 10 seconds.  Cellular debris was removed by 

centrifugation at 10,000 x g for 10 minutes.  Soluble and membrane fractions were 

separated by ultracentrifugation at 100,000 x g for 1 hour.  Following ultracentrifugation, 

the supernatant contained soluble (cytoplasmic and periplasmic proteins) and the pellet 

contained insoluble (membrane) proteins.  Protein concentrations were quantitated using 

the Bio-Rad Protein Assay.  Equal amounts of protein from each sample were run on 

SDS-PAGE for Western analysis. 

Isocitrate dehydrogenase assays.  Subcellular fractions were assayed for 

isocitrate dehydrogenase activity as previously described (Myers and Kelly, 2005).  

Briefly, equal amounts of protein from each fraction were incubated with 5mM Tris pH 

8.0, 1mM nicotinamide adenine dinucleotide phosphate (NADP), 1mM MgCl2 and 5mM 

sodium isocitrate at room temperature.  Isocitrate dehydrogenase activity was monitored 

by measuring the rate of increase of OD340, which represents the rate of NADPH 

production.  The percent of isocitrate dehydrogenase specific activity within each fraction 

was determined.  For all fractionation experiments, at least 90% of the isocitrate 

dehydrogenase specific activity was found in the soluble fraction. 
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Membrane extraction.  C. jejuni strains were grown and fractionated into 

soluble and membrane fractions as described above.  The membrane fraction was then 

mixed 1:1 with 10mM HEPES pH 7.4 or 10mM HEPES pH 7.4 containing 3M urea, 5M 

urea, 12M urea, 1M NaCl, 3M NaCl, or 0.3% Triton X-100 (concentrations given are 

twice the final concentration).  These mixtures were incubated at 4°C with rocking for 30 

minutes to 1 hour, followed by ultracentrifugation at 100,000xg for 1 hour.  Following 

ultracentrifugation, the supernatant contained soluble proteins and the pellet insoluble 

proteins. The soluble proteins were precipitated with cold acetone.  Both soluble and 

insoluble samples were resuspended in an equal volume of 10mM HEPES pH 7.4 and 

mixed 1:1 with 2x sample buffer.  Equal volumes of each sample were used for SDS-

PAGE and Western analysis. 

in vivo cross-linking.  C. jejuni strains were grown on MH agar for 16-20 hours 

then resuspended in MH broth to an OD600 of 8.0.  2.5mM 

dithiobis(succinimidyl)propionate (DSP) in DMSO was added to each culture, with 

additional DMSO added to bring the combined DSP and DMSO volume to 1/10th of the 

final volume.  Untreated samples received 1/10th final volume of DMSO.  Samples were 

incubated at room temperature in ambient atmosphere for 20 minutes.   50mM Tris pH 

8.0 was added to each sample to quench any remaining DSP.  Equal volumes of each 

samples were run on SDS-PAGE without β-mercaptoethanol or DTT added to the sample 

buffer, as these would cleave the DSP mediated cross-linking.   
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Results 

 cetA and cetB are co-transcribed independently of the flagellar regulon, and 

CetB levels are CetA-dependent.  Our hypothesis that CetA and CetB interact to 

transduce an energy taxis signal is based in part on the fact that they are encoded by 

adjacent genes on the C. jejuni chromosome.  As there are 17bp between the cetA and 

cetB genes, we expected that they would be co-transcribed.  We tested this prediction by 

performing RT-PCR using one primer within each gene (Fig. 7A).  If both cetA and cetB 

are present on the same transcript, then a single product spanning both genes would arise 

from these primers.  This predicted product was present when the wildtype RNA was 

used as the template for RT-PCR, but not when RNA from the ΔcetA, ΔcetB or ΔcetAB 

mutants was used or when reverse transcriptase was omitted from the reaction (Fig. 7B).  

A product of the same size was also visible when genomic DNA was used for the PCR 

template.  As a control, we performed RT-PCR with primers within the rpoA gene, which 

encodes the housekeeping sigma factor, σ70.  The rpoA RT-PCR product was evident in 

all RT samples (Fig. 7C).  These data support our hypothesis that cetA and cetB are co-

transcribed. 

 C. jejuni has only three known sigma factors identified within its genome: σ70, σ54 

(encoded by rpoN) and σ28 (encoded by fliA).  The latter two sigma factors are required 

for the flagellar transcriptional cascade in C. jejuni (Hendrixson and DiRita, 2003).  

Levels of CetA and CetB were unaffected in strains lacking σ54 or σ28, indicating that 

cetA and cetB are likely expressed in a σ70-dependent fashion (Fig. 8A).  

 Western blots also demonstrated that CetB levels are at or below our limit of 

detection in the ΔcetA mutant (Fig. 8A).  This is true whether CetB is expressed from the  
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Figure 7.  RT-PCR analysis of cetAB locus.  A.  Location of primers within cetA and 
cetB used to determine if both genes are present on one transcript.  Expected PCR 
product size is given.  B.  RT-PCR results using primers shown in A.  C.  RT-PCR results 
using primers within rpoA that result in an 180bp product.  In both B and C, results from 
RT-PCR using RNA from wildtype, ΔcetA, ΔcetB and ΔcetAB are shown.  Control 
reactions were performed in which reverse transcriptase (RT) was omitted from the 
cDNA synthesis reaction, in order to rule out the presence of contaminating DNA.  As a 
positive control, the PCR products resulting from use of genomic DNA as the template 
are also shown. 
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Figure 8.  Expression of CetA and CetB in various genetic backgrounds.  A.  Whole 
cell extracts were prepared from wildtype, ΔcetB, ΔcetA, ΔcetAB, ΔrpoN and ΔfliA.  
These were separated by 12.5% SDS-PAGE and CetA and CetB detected by 
immunoblotting.  B.  Whole cell extracts were prepared from ΔcetB and ΔcetAB with 
pECO101, pECO101::cetB, pECO101::cetAB, pRY108, pRY108::cetAB or 
pRY108::cetA(Y116A)cetB.  These samples were separated by 12.5% SDS-PAGE and 
CetA and CetB detected by immunoblotting.  C.  Whole cell extracts were prepared from 
the indicated strains containing either pECO101 or pECO101::cj1191c-flag.  These 
samples were separated by 12.5% SDS-PAGE and Cj1191c-FLAG detected by 
immunoblotting. 
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chromosome (Fig. 8A) or from a plasmid under the control of a constitutive promoter 

(Fig. 8B), indicating that the low level of CetB expression in the ΔcetA mutant is not due 

to a polar effect of this in-frame deletion.  Additionally, when both CetA and CetB are 

expressed from a plasmid bearing their native promoter, but CetA is rendered unstable by 

a HAMP domain point mutation (Y116A, see Chapter III), CetB levels are also quite low 

(Fig. 8B).  The loss of stability of one protein in the absence of another is a frequent 

indication of a protein-protein interaction.  Our data are consistent with CetB stability 

being CetA-dependent, however we cannot rule out a potential effect of CetA on CetB 

translation.  Cj1191c, an apparent CetB paralogue encoded by the gene upstream of cetA, 

exhibits no role in energy taxis (Hendrixson et al., 2001).  Unlike those of CetB, Cj1191c 

levels are not CetA-dependent (Fig. 8C). 

 CetA has two transmembrane domains in a helical hairpin.  We used the DAS 

algorithm to predict whether CetA and/or CetB possess transmembrane domains.  

According to this analysis, CetA has a transmembrane region of 36-38 amino acids in 

length from residues 6 to 43 or 7 to 42, depending on the cut-off used (Fig. 9A).   

DAS analysis indicates that CetB does not have any transmembrane domains (Fig. 9B).  

As the LipoP program indicates that CetB also does not possess a signal sequence (data 

not shown), we predict that CetB is located in the C. jejuni cytoplasm.   

A dip in the DAS profile score is apparent at about the mid-point of the predicted 

transmembrane region in CetA.  Closer examination of the hydrophobicity of each 

residue showed a strongly hydrophilic residue near the mid-point of this region (Fig. 9C).  

This residue is a histidine (His24) which is known to induce turns in transmembrane 

helices, giving rise to helical hairpins (Monne et al., 1999a; Monne et al., 1999b).   



  

 92

 

 

Figure 9.  Prediction of transmembrane regions for CetA and CetB.  A.  DAS 
analysis results for CetA.  B.  DAS analysis results for CetB.  C.  Hydrophobicity (Kyte-
Doolittle values) of each residue within the DAS-predicted transmembrane region of 
CetA. 
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Additionally, the predicted transmembrane region is flanked on either side by positively 

charged residues (K3, R44, H46, K47).  Such residues near transmembrane helices have 

been proposed to act like the flukes of an anchor to moor the protein into the membrane, 

with the positive residues residing on the cytoplasmic surface of the protein (Boyd and 

Beckwith, 1989).  These observations led us to hypothesize that CetA may contain two 

transmembrane helices in a helical hairpin confirmation, as opposed to the single 

transmembrane helix predicted by DAS analysis. 

 To differentiate between the single transmembrane helix predicted by the DAS 

algorithm and our prediction that CetA has two transmembrane helices, we performed 

topology analysis using phoA and lacZ fusions.  phoA encodes alkaline phosphatase, 

which is active in the periplasm and inactive in the cytoplasm.  lacZ encodes β-

galactosidase, an enzyme that is active in the cytoplasm and too bulky to be transported 

to the periplasm.  Fusion of β-galactosidase to periplasmic regions of a protein leads to 

the embedding of the fusion in the membrane, resulting in improper folding and a loss of 

enzymatic activity (Froshauer et al., 1988).  By comparing alkaline phosphatase and β-

galactosidase activities resulting from fusions at various locations within a protein, we 

can develop a good prediction of the topology of that protein (Manoil and Beckwith, 

1986; Manoil, 1990; Silhavy and Beckwith, 1985).   

We made phoA and lacZ fusions such that alkaline phosphatase or β-galactosidase 

would be fused C-terminally to full-length CetA or to CetA that was truncated at residue 

5, 24, 50 or 140 (Fig. 10A).  These fusions were expressed in an E. coli strain lacking 

lacZ and phoA and assayed for alkaline phosphatase and β-galactosidase activity.  The 

only alkaline phosphatase fusion construct with significant activity was that at His24 of  
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Figure 10.  Location and activities of LacZ and PhoA fusions to CetA.  A.  Locations 
of PhoA and LacZ fusions to truncated or full-length CetA are indicated.  LacZ or PhoA 
was fused C-terminally to the truncated or full-length protein. B.  Alkaline phosphatase 
activity of PhoA fusions.  C.  β-galactosidase activity of LacZ fusions.  In both B and C, 
‘PhoA and ‘LacZ indicate the empty vectors pTrcphoA and pTrcLacZ, respectively. 
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CetA (Fig. 10B).  The β-galactosidase fusion at this location (His24), was also the fusion 

with the lowest β-galactosidase activity (Fig. 10C).  This fusion did have β-galactosidase 

activity above background levels, however.  Work in other laboratories has indicated that 

β-galactosidase fusions to periplasmic regions, which do not lead to translocation of the 

fusion but rather embed the protein in the membrane, can sometimes lead to degradation 

of the fusion and release of native β-galactosidase, giving rise to activity (Georgiou et al., 

1988; Gott and Boos, 1988).  These studies caution that use of β-galactosidase fusions 

must be complemented by an alternative topological probe, such as alkaline phosphatase, 

which is likely a more reliable indicator of subcellular localization.  Together, our results 

indicate that His24 is accessible to the periplasm, whereas all of the other fusion locations 

are found in the cytoplasm.  These data support our prediction that CetA has two 

transmembrane helices in a helical hairpin. 

 CetA is an integral membrane protein and CetB is a peripheral membrane 

protein.  The above phoA/lacZ fusion experiments were performed in E. coli.  We sought 

to determine the localization of CetA and CetB in C. jejuni.  To do so, we prepared and 

analyzed subcellular fractions for localization of CetA and CetB.  Wildtype C. jejuni was 

lysed as described in Materials and Methods.  Soluble and membrane-associated proteins 

were then separated by ultracentrifugation.  These samples were analyzed for the 

presence of CetA and CetB by Western blot.  While some CetA is detectable in the 

soluble fraction, the majority of both CetA and CetB are in the membrane fraction (Fig. 

11).  Less than 10% of the isocitrate dehydrogenase specific activity (Myers and Kelly, 

2005) was found in membrane fractions during these experiments.  The presence of a 

minority of soluble CetA could be due to incomplete fractionation or the presence of  
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Figure 11.  Subcellular fractionation of CetA and CetB.  Whole cell lysates were 
separated into soluble and membrane fractions by ultracentrifugation.  These fractions 
were separated by 12.5% SDS-PAGE.  CetA and CetB were detected by immunoblotting.  
Membrane fractions contained <10% of the isocitrate dehydrogenase specific activity.  
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newly synthesized protein that has not yet localized to the membrane (Crawford et al., 

2003).   

 As DAS analysis indicated that CetB does not have a transmembrane region, the 

presence of CetB in the membrane fraction suggests that CetB is a peripheral membrane 

protein, associated with the membrane by protein-protein interactions or by direct 

interaction with the membrane.  In order to determine the nature of the association of 

CetB with the membrane, we performed membrane extraction experiments.  In these 

experiments, a C. jejuni strain was used that expressed a FLAG-tagged CtsP protein, 

which had been previously characterized by our lab as a peripheral membrane protein 

(Wiesner and DiRita, in preparation).  The bacteria were lysed and separated into soluble 

and membrane fractions as described above.  The membrane fraction was then treated 

with urea, NaCl or buffer alone.  Urea denatures proteins and disrupts protein complexes, 

thereby releasing peripheral membrane proteins (Borel and Simon, 1996; Gilmore and 

Blobel, 1985).  High salt treatment weakens ionic interactions between peripheral 

membrane proteins and other membrane proteins or the polar head groups of the lipid 

bilayer (Hugle et al., 2001; Kretzschmar et al., 1996).  Integral membrane proteins should 

remain insoluble following treatment with urea or high salt.  Peripheral membrane 

proteins may be soluble following urea and/or high salt treatment depending on the 

nature and strength of their membrane association.   

After these treatments, the soluble and insoluble proteins were separated by 

ultracentrifugation and probed for the presence of CetA, CetB and CtsP-FLAG.  Both 

CtsP and CetB could be solubilized in 6M urea, while CetA could not (Fig. 12A).  CtsP 

was soluble in 1.5M NaCl, but both CetA and CetB remained insoluble following high  
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Figure 12.  Membrane extractability of CetA and CetB.  A. Membrane extractability 
in buffer alone or in urea.  B.  Membrane extractability in NaCl.  C.  Membrane 
extractability in Triton X-100.  Membrane fractions following subcellular fractionation of 
wildtype cells expressing CtsP-FLAG (a peripheral membrane protein) were treated with 
buffer alone (10mM HEPES) or buffer containing the indicated concentrations of urea or 
NaCl.  Soluble and insoluble proteins were separated by ultracentrifugation.  Samples 
were separated on 12.5% SDS-PAGE and probed for the indicated protein by 
immunoblotting. 
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salt treatment (Fig. 12B).  CetA and CetB are both soluble following treatment with 

0.15% Triton X-100 (Fig. 12C), indicating that they are soluble when the membrane itself 

is disrupted.  From these results, we conclude that CetA is an integral membrane protein 

and CetB is a peripheral membrane protein.  The release of CetB from the membrane 

following treatment with urea, but not high salt, indicates that CetB has an avid 

association with the membrane, possibly as a result of protein-protein interactions. 

 CetA and CetB associate in larger complexes.  In order to test further whether 

CetA and CetB interact with one another and/or other proteins, we performed in vivo 

cross-linking experiments.  Cells were treated with 2.5mM of the membrane permeable 

primary amine cross-linker DSP in DMSO or with DMSO alone.  DSP was inactivated 

by addition of 50mM Tris pH 8.0, these samples were analyzed by non-reducing SDS-

PAGE and probed for CetA or CetB by Western blot.   

When cross-linked wildtype samples were separated on 10% SDS-PAGE and 

immunoblotted with anti-CetA, several species with molecular weights between 

approximately 115.5 kD and 181.8 kD were apparent (Fig.13A).  The largest of these 

species (arrow, Fig. 13A) was absent in the cross-linked sample from the ΔcetB strain.  A 

CetA-containing species migrating between approximately 115.5 kD and 181.8 kD was 

observed in both wildtype and ΔcetB samples not subjected to cross-linking (Fig. 13A, 

13B), although this band is much fainter in the wildtype sample.   

When cross-linked wildtype samples were run on 12.5% SDS-PAGE, we detected 

two species on immunoblotting with anti-CetB (Fig. 13C).  One was the predicted size of 

the CetB monomer (19.3 kD) and the other was the predicted size of a CetB homodimer 

(38.6 kD).  In order to detect higher molecular weight CetB complexes, larger amounts of  
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Figure 13.  Cross-linking of CetA and CetB.  A.  anti-CetA Western blots of DSP 
cross-linked samples run on 10% SDS-PAGE.  Arrow indicates a high molecular weight 
species present in the wildtype cross-linked sample, but not in the ΔcetB cross-linked 
sample.  B.  longer exposure of anti-CetA Western blots of samples not subjected to 
cross-linking run on 10% SDS-PAGE.  C.  anti-CetB Western blot of DSP cross-linked 
lysates run on 12.5% SDS-PAGE.  D.  anti-CetB Western blots of higher concentrations 
of DSP cross-linked samples run on 10% SDS-PAGE.  In A, B, C and D, wildtype, ΔcetB 
and ΔcetA cells were treated with either 2.5mM DSP in DMSO or DMSO alone.  The 
cross-linker (DSP) was quenched and the samples separated by SDS-PAGE (without β-
mercaptoethanol or DTT added to the sample buffer) then probed for the presence of 
CetA and CetB by immunoblotting.  
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wildtype cross-linked samples were run on 10% SDS-PAGE and probed with anti-CetB 

(Fig. 13D).  To obtain separation of larger complexes, the gel was run for a longer period 

of time, leading the CetB monomer to run off the gel.  In this Western blot, the apparent 

homodimer was present, as were several species with higher molecular weights, 

including one between approximately 64.2 kD and 82.2 kD and two major species 

between approximately 115.5 kD and 181.8 kD (Fig. 13D).  The largest of these species 

(arrow, Fig. 13D) was approximately the same size as the largest CetA species (arrow, 

Fig. 13A). 

The identity of each of these CetA and CetB complexes has not been definitively 

determined, but some inferences can be made.  In particular, the largest CetA and CetB 

complexes, approximately the same size, are consistent with a single complex containing 

both proteins.  The molecular weight of this species is between approximately 115.5 kD 

and 181.8 kD, which would be consistent with a complex comprised of two CetA 

monomers (51.0 kD each) and two CetB monomers (19.3 kD each).  We also hypothesize 

that CetA forms a homodimer, as do other MCPs, and this could be one of the CetB-

independent species present in the blot shown in Figure 13A.  Further, we expect CetA to 

interact with other elements of the chemotactic machinery, as discussed below. 

  

Discussion 

In this study, we carried out the molecular and biochemical characterization of 

CetA and CetB, the bipartite energy taxis system of C. jejuni.  We found that cetA and 

cetB are co-transcribed, likely in a σ70-dependent manner.  We established that CetA is an 

integral membrane protein with two transmembrane helices in a helical hairpin 
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conformation.  CetB, on the other hand, is a peripheral membrane protein, that is 

evidently capable of forming a homodimer.  We determined that CetB levels are CetA-

dependent and that CetA and CetB each participate in several high molecular weight 

complexes including one complex that appears to include both proteins.  These data are 

consistent with a protein-protein interaction between CetA and CetB.  Together these 

data support a model in which we hypothesize a membrane-associated CetB dimer senses 

changes in electron transport and relays that signal to the integral membrane protein CetA 

via a direct interaction (Fig. 14).  This signal is then transduced to the chemotactic 

machinery, allowing a change in direction of motility based on changes in the local 

environment that impact electron transport. 

CetA and CetB are encoded by adjacent genes 17bp apart on the C. jejuni 

chromosome.  Based on the small intergenic distance, as well as the fact that both are 

required for energy taxis (Hendrixson et al., 2001), we expected that cetA and cetB would 

be co-transcribed.  RT-PCR analysis indicated that this is the case (Fig. 7).  Additionally, 

wildtype levels of CetA and CetB were expressed in mutants lacking the sigma factors 

required for expression of genes involved in flagellar assembly and function, σ54 and σ28 

(Hendrixson and DiRita, 2003) (Fig. 8A).  This indicates that neither of these sigma 

factors is required for expression of the cetAB transcript.  This differs from E. coli and 

Salmonella typhimurium, where aer expression appears to be σ28-dependent (Frye et al., 

2006; Park et al., 2001).  We do not know whether other MCPs are expressed 

independently of the flagellar regulon in C. jejuni or whether cetA and cetB will prove to 

be unique in this respect.    
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Figure 14.  Current model of CetA and CetB localization, topology and function.  
CetB, which exists as a dimer, is peripherally associated with the membrane, possibly by 
protein-protein interactions.  CetA is an integral membrane protein with two 
transmembrane domains in a helical hairpin.  Our data are consistent with a CetB-CetA 
interaction, providing a mechanism for transduction of the energy taxis signal to the 
chemotactic machinery.  (See discussion for more detail.) 
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Topology prediction programs indicated that CetA contains a single, fairly long 

transmembrane helix, and that CetB is entirely cytoplasmic (Fig. 9A, 9B).  Closer 

examination of the predicted transmembrane helix of CetA led us to hypothesize that this 

protein instead contains two transmembrane helices separated by a short periplasmic 

loop, a so-called helical hairpin.  We based this prediction on the presence of a histidine, 

His24, in the middle of this predicted transmembrane helix.  Histidine has been shown to 

induce helical hairpin formation within transmembrane helices (Monne et al., 1999a; 

Monne et al., 1999b).  We tested these topological predictions by making alkaline 

phosphatase and β-galactosidase fusions at multiple locations within CetA, including 

His24 (Fig. 10A).  The enzyme activities of these fusions are consistent with CetA 

containing two transmembrane regions and a short periplasmic loop that includes His24 

(Fig. 10B, 10C).  Further studies are necessary to precisely define the ends of this loop.  

However, there are two glycines present 4-5 residues N-terminal and C-terminal to 

His24.  Glycine also displays some turn-inducing tendencies in transmembrane helices 

and appears to predominate as the N-terminal residue in helical hairpin loops (Monne et 

al., 1999b).  Accordingly, we would predict that the periplasmic loop of CetA may 

extend from Gly19 to His24, potentially continuing on to Gly28.  From our topology 

analysis with CetA, we arrive at a conclusion similar to the Aer topology model, which 

was derived biochemically (Amin et al., 2006). 

The sequence analysis and fusion data indicate that CetA is an integral membrane 

protein and CetB is cytoplasmic.  We further examined the subcellular location of both 

CetA and CetB when expressed from the chromosome of C. jejuni.  These experiments 

demonstrated that both CetA and CetB localize to the membrane of C. jejuni (Fig. 11).  
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Membrane extraction experiments, using various conditions to disrupt protein 

associations with the membrane, indicated that CetA is an integral membrane protein and 

CetB is a peripheral membrane protein (Fig. 12).  As CetB is released from the 

membrane following urea treatment, but not high salt treatment, we conclude that CetB is 

membrane-associated via a strong interaction, likely with other proteins as opposed to the 

membrane itself.  We predict that CetB associates with the membrane by interacting with 

either CetA or an unidentified element(s) of the ETS whose redox state CetB is predicted 

to sense.  Attempts to determine whether or not the membrane-association of CetB is 

CetA-dependent have been confounded by the extremely low level of CetB expression in 

the absence of CetA. 

Based on the fact that CetA and CetB possess all of the domains of the energy 

taxis receptor Aer and are required for energy taxis by C. jejuni (Hendrixson et al., 2001), 

we predict that CetA and CetB interact directly to transduce an energy taxis signal.  We 

observed that CetB levels are extremely low in the absence of CetA, whether CetB is 

expressed from the chromosome or from a multicopy plasmid (Fig. 8).  Protein-protein 

interactions often manifest themselves in the loss of stability of one protein when the 

other is not present.  This may be the case with CetA and CetB.  However, at present we 

cannot rule out that CetA may instead have an effect on the levels of translation of CetB.  

If the latter scenario is true, then the cis element via which CetA affects translation must 

be strictly contained within the coding sequence of cetB, based on the maintenance of the 

CetA-dependent effect when the cetB orf is expressed constitutively from a multicopy 

plasmid.  One could differentiate between an effect of CetA on stability or on translation 

of CetB using pulse-chase experiments.  However, such experiments would require either 



  

 106

an inducible promoter system, which has not yet been developed for C. jejuni, or the 

ability to immunoprecipiate CetB, which we have been unable to do despite repeated 

attempts.   

Evidence of an interaction between CetA and CetB was obtained from in vivo 

cross-linking experiments.  In these experiments, whole cells were treated with the 

membrane permeable primary amine cross-linker DSP.  When the cross-linked samples 

were probed for the presence of CetA by Western blot, a high molecular weight species 

was evident in the wildtype sample that was absent in the ΔcetB mutant sample (Fig. 

13A).  A high molecular weight species of similar size was also observed by anti-CetB 

Western blot (Fig. 13D).  Due to the low levels of CetB in the ΔcetA mutant, we cannot 

be conclusive as to whether this species is present in the ΔcetA mutant sample.  The size 

of this cross-linked species is consistent with a complex consisting of two CetA 

monomers and two CetB monomers.  These data, together with the fact that CetB levels 

are CetA-dependent, are consistent with an interaction between CetA and CetB.  Efforts 

to gather more direct evidence for such an interaction by yeast two-hybrid (Parrish et al., 

2007) and bacterial two-hybrid systems (data not shown) have been unsuccessful.  

Membrane proteins have often proved difficult to analyze using these methods.  

Additionally, CetB appears to form inclusion bodies when expressed at high levels in E. 

coli (data not shown), further confounding this approach and others involving expression 

in this background.  While our results are consistent with an interaction between CetA 

and CetB, further studies are necessary to develop more direct evidence for or against 

such an interaction. 
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In other work, we determined that the HAMP domains of CetA and Aer differ 

significantly (see Chapter III).  Based on similarity to the HAMP domain of CetA, we 

identified a family of 55 pairs of CetA- and CetB-like proteins (which we call 

HAMP/PAS pairs) in a diverse group of bacterial species (see Chapter III).  The HAMP 

domains of this family contain nine conserved residues which we suggest may define a 

PAS-domain interaction surface (see Chapter III).  Single alanine substitutions at these 

positions do not alter the localization of CetB to the membrane.  If these conserved 

residues are involved in CetA-CetB interactions, we predict that substitutions at multiple 

positions within this region may lead to a change in CetB stability, CetB membrane 

localization and/or CetA-CetB complex formation.   

Our in vivo cross-linking experiments also indicate that CetB forms a homodimer 

(Fig. 13C).  PAS domains often form dimers, but it was not previously known if this was 

the case with CetB.  In addition, whether or not the PAS domain of Aer dimerizes has yet 

to be established (Taylor, 2007).  Further experiments aimed at defining the dimerization 

surface of CetB may provide genetic evidence for or against dimerization of the Aer PAS 

domain, based on similarity or dissimilarity in this region.  The identification of CetB 

mutants deficient in dimerization would also allow us to test whether CetB dimer 

formation is required for energy taxis. 

The in vivo cross-linking also demonstrated that CetA and CetB participate in 

several other high molecular weight complexes.  Such complexes are expected, as 

interactions with the chemotaxis machinery would be necessary for CetA and CetB to 

transduce an energy taxis signal.  Specifically, we expect that CetA would dimerize, as 

MCPs are known to function as homodimers.  Additionally, we expect CetA to interact 



  

 108

with the adaptor protein, CheW (19.5 kD) facilitating an interaction with the histidine 

kinase CheA (85.3 kD).  CetA may also interact with CheV (38.9 kD), which has a 

CheW-like domain as well as a C-terminal CheY-like response regulator domain.  

Although CetA methylation has not yet been demonstrated, CetA does possess an 

apparent methylation site (Marchant et al., 2002), indicating that it may also interact with 

the adaptation proteins CheB (20.1 kD) and CheR (30.6 kD).  In addition, MCP 

homodimers associate in large arrays with the basic unit being trimers of dimers, so CetA 

may also interact with other C. jejuni MCPs, but these complexes would likely be larger 

than those detected in our cross-linking experiments.  The CetB complexes we observe 

could be higher order CetB oligomers.  It is also possible that CetB interacts with other 

unidentified proteins.  In particular, we might expect that CetB interacts with elements of 

the electron transport system as discussed above.  

We can make some predictions about CetB based on sequence comparisons with 

the PAS domain of Aer.  Three residues in the PAS domain of Aer (Arg57, His58 and 

Asp60) are required for FAD binding (Repik et al., 2000), are located close to the 

predicted FAD binding site, and are conserved in Aer-like (FAD-binding) PAS domains 

(personal communication in (Taylor, 2007)).  These residues align with identical or 

similar residues in CetB (Arg50, His51 and Glu53).  Based on these similarities, we 

predict that CetB binds an FAD cofactor.  Additionally, the HAMP domain of Aer is 

required for proper folding and FAD binding by the PAS domain.  This requirement, 

however, can be subverted by non-specific suppressor mutations in the PAS domain 

(S28G, A65V and A99V) which allow FAD binding in the presence of HAMP domain 

point mutations that usually abrogate FAD binding (Buron-Barral et al., 2006; Watts et 
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al., 2004).  These suppressing residues (Gly28, Val65 and Val99) are the naturally 

occurring residues at the equivalent positions in CetB (Gly21, Val58 and Val92).  This 

intriguing fact suggests that CetB may be able to fold and bind FAD without interacting 

with the CetA HAMP domain.  Additionally, CetB does not contain homology to the N-

terminal cap of the Aer PAS domain (Aer residues 1-19).  This region was found to be 

critical for Aer protein stability (Watts et al., 2006b).  If the lack of this domain plays 

some role in the instability of CetB in the ΔcetA mutant, we would predict that fusion of 

the Aer N-terminal cap to CetB might lead to increased stability.  More experiments are 

necessary to test these sequence based predictions. 

These studies have allowed us to further refine our model of energy taxis signal 

transduction by CetA and CetB (Fig. 14) and make testable predictions about how this 

bipartite system works vis-à-vis what is known about the Aer single protein energy taxis 

receptor.  Based on studies of both Aer and CetA/CetB, we predict that CetB binds an 

FAD cofactor whose redox state reflects that of element(s) of the ETS.  CetB localizes to 

the membrane via avid associations consistent with a protein-protein interaction, which 

would place CetB in close proximity to the ETS.  Whether CetB interacts directly with 

elements of the ETS or the FAD cofactor is exchanged between CetB and elements of 

this system remains unknown.  Regardless, we suggest that this signal is transmitted to 

CetA by a direct interaction between CetB and CetA.  Our data are consistent with such 

an interaction.  We predict that this interaction occurs between the PAS domain of CetB 

and the HAMP domain of CetA, as is suggested for Aer.  The molecular nature of this 

interaction likely differs significantly from that within Aer (see Chapter III).  We have 

also identified several pairs of HAMP-containing and PAS-containing proteins which we 
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suggest may function analogously to CetA and CetB (see Chapter III), indicating that we 

may be able to extrapolate new knowledge about the properties of CetA and CetB to 

similar proteins in other organisms.  The work presented here has provided information 

on the expression of and biochemical properties of CetA and CetB, allowing us to both 

further our understanding of these proteins as well as build a foundation for future studies 

aimed at elucidating the molecular mechanisms of signal transduction within this energy 

taxis system.
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CHAPTER III 

CONSERVED RESIDUES IN THE HAMP DOMAIN DEFINE A NEW FAMILY 
OF PROPOSED BIPARTITE ENERGY TAXIS RECEPTORS 

 

Summary 

 HAMP domains, found in many bacterial signal transduction proteins, generally 

transmit an intramolecular signal between an extracellular sensory domain and an 

intracellular signaling domain.  Studies of HAMP domains in proteins where both the 

input and output signals occur intracellularly are limited to those of the Aer energy taxis 

receptor of Escherichia coli, which has both a HAMP domain and a sensory PAS 

domain.  Campylobacter jejuni has an energy taxis system consisting of the domains of 

Aer divided between two proteins, CetA (HAMP-containing) and CetB (PAS-

containing).  In this study, we found that the CetA HAMP domain differs significantly 

from that of Aer in predicted secondary structure.  Using similarity searches, we 

identified 55 pairs of HAMP/PAS proteins encoded by adjacent genes in a diverse group 

of microorganisms.  We propose that these HAMP/PAS pairs form a new family of 

bipartite energy taxis receptors.  Within these proteins, we identified nine residues in the 

HAMP and a proximal signaling domain that are highly conserved, at least three of which 

are required for CetA function.  Additionally, we demonstrated that CetA contributes to 

C. jejuni invasion of human epithelial cells, while CetB does not.  This finding supports 
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the hypothesis that members of HAMP/PAS pairs possess the capacity to act 

independently of each other in cellular traits other than energy taxis.  

 

Introduction 

 HAMP domains (named for their presence in histidine kinases, adenylyl cyclases, 

methyl-accepting chemotaxis proteins and phosphatases) (Aravind and Ponting, 1999) 

represent a common element in numerous bacterial signal transduction proteins.  There 

are more than 11,700 known or predicted proteins containing HAMP domains identified 

in the SMART database (Letunic et al., 2004).  The vast majority of these proteins are 

bacterial, but HAMP domains have also been identified in archaea and lower eukaryotic 

organisms.  HAMP domains are thought to play a role in intramolecular communication 

between input and output domains of a single protein (Appleman et al., 2003; Appleman 

and Stewart, 2003; Aravind and Ponting, 1999).  HAMP domains have predominantly 

been studied in transmembrane receptors that translate a signal originating extracellularly 

to an intracellular signal transduction domain.   

Our understanding of how HAMP domains function has been hampered by 

considerable sequence divergence among these domains and a paucity of structural data.  

Sequence analysis and mutagenesis studies indicated that HAMP domains consist of two 

amphipathic helices (AS-1 and AS-2) which are joined by a flexible loop region to form a 

coiled-coil (Appleman and Stewart, 2003; Butler and Falke, 1998; Singh et al., 1998).  

Recently, the structure of the HAMP domain from the Archaeoglobus fulgidus protein 

Af1503 was solved (Hulko et al., 2006).  Af1503 is atypical of HAMP domain-

containing proteins in that it lacks an output signal transduction domain (Hulko et al., 
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2006).  This structure consisted of two amphipathic helices that come together in the only 

known occurrence of a parallel coiled-coil.  These helices form a four-helix bundle in a 

HAMP domain dimer.  This four-helix bundle adopts an unusual knobs-to-knobs 

conformation.  These findings gave rise to a model where a shift in two transmembrane 

helices is translated into a gear-like 26° rotation of the helices relative to one another 

within the HAMP dimer four-helix bundle (Hulko et al., 2006).  

While many HAMP domains occur in transmembrane receptors with extracellular 

input and intracellular output domains, this is not true of all HAMP domains.  Search of 

the SMART database reveals that there are more than 400 known or predicted proteins 

with a HAMP domain that lack a predicted transmembrane domain.  The mechanism by 

which HAMP domains might function in such proteins has not been extensively probed.  

Studies of a HAMP domain-containing protein in which the input and output signals both 

occur in the cytoplasm are limited to Aer of Escherichia coli.  Aer, the major energy taxis 

receptor of E. coli, possesses four major domains: i) a PAS domain (named after three 

proteins Per, ARNT and Sim, where it was first identified) (Taylor and Zhulin, 1999) that 

binds FAD, the redox state of which is thought to reflect the redox state of element(s) of 

the electron transport system; ii) two transmembrane domains separated by a short 

periplasmically accessible region; iii) a HAMP domain; and iv) a conserved signaling 

domain present in all methyl-accepting chemotaxis proteins (MCPs) (Alexander and 

Zhulin, 2007; Taylor, 2007).  The PAS domain of Aer has been predicted to interact 

directly with the HAMP domain to transmit an energy taxis signal parallel to, rather than 

across, the inner membrane (Taylor, 2007).   
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An energy taxis system consisting of a variation on the domain arrangement of 

Aer was previously identified in Campylobacter jejuni (Hendrixson et al., 2001).  C. 

jejuni, a microaerophilic, Gram-negative bacterium commonly found in the 

gastrointestinal tract of chickens and other livestock, is one of the most common causes 

of food borne gastroenteritis in the U.S.  The flagellum and motility of this bacterium has 

proven essential for both its commensal and pathogenic lifestyles (Guerry, 2007; Young 

et al., 2007).  An energy taxis system of C. jejuni was identified in a screen of a 

transposon library for mutants defective in flagellar motility (Hendrixson et al., 2001).  

This system consists of two proteins, CetA and CetB, which together contain all of the 

domains of the single protein Aer.  CetA, a predicted membrane bound protein, possesses 

a predicted HAMP domain and the signaling domain. CetB, a predicted cytoplasmic 

protein, possesses a predicted PAS domain (Hendrixson et al., 2001).   

CetA and CetB are proposed to interact with one another directly to transduce an 

energy taxis signal via a similar mechanism to the single protein Aer (Hendrixson et al., 

2001).  As the HAMP domain of Aer is proposed to interact directly with the PAS 

domain, we hypothesize that the HAMP domain of CetA may mediate an interaction 

between CetA and CetB.  Separation of these domains into distinct proteins may enable 

CetA and/or CetB to interact with other proteins and participate independently in 

alternate signaling pathways (Hendrixson et al., 2001).   

In this study, we determined that the HAMP domain of CetA differs from that of 

Aer in predicted secondary structure.  Based upon similarity with the CetA HAMP 

domain, we identified other members of a new family of putative bipartite energy taxis 

transducers.  We found that the CetA homologues in this family possess highly conserved 
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HAMP domain residues, at least three of which are required for wildtype function of 

CetA in energy taxis.  Finally, we determined that the ΔcetA mutant, but not the ΔcetB 

mutant, has a defect in invasion of human epithelial cells, supporting the hypothesis that 

CetA and/or CetB may function independently of one another in cellular processes other 

than energy taxis.  

 

Materials and Methods 

Bacterial strains and culture conditions.  All bacterial strains and plasmids used 

in this study are listed in Table 3.  DRH212, a spontaneous streptomycin resistant mutant 

of the clinical isolate C. jejuni 81-176 (Hendrixson et al., 2001), was the background 

strain for all mutants studied and is referred to as wildtype.  C. jejuni was routinely grown 

on Mueller-Hinton (MH) agar with 10 μg/ml trimethoprim under microaerophilic 

conditions (85% N2, 10% CO2, 5% O2) in a tri-gas incubator.  For C. jejuni, the following 

antibiotic concentrations were used: 10 μg/ml trimethoprim, 30 μg/ml cefaperazone, 50 

μg/ml kanamycin, 20 μg/ml chloramphenicol and 0.1 or 2 mg/ml streptomycin.  E. coli 

was grown in Luria-Bertani (LB) agar or broth. For E. coli, the following antibiotic 

concentrations were used: 50 μg/ml kanamycin or 100 μg/ml ampicillin.  

Bioinformatic analysis.  The HAMP domain in CetA was identified by PSI-

BLAST (Altschul et al., 1997).  Proteins that contained a HAMP domain and proximal 

signaling domain similar to those of CetA (residues 44-139) were identified by a BLAST 

search of the protein non-redundant database.  Those proteins identified in this BLAST 

search that also possessed a neighboring open reading frame containing a PAS domain 

were further analyzed for the presence of other functional domains using the SMART  
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Table 3. Bacterial strains and plasmids used in Chapter III.  
 

Strain or plasmid Relevant characteristics Reference 
   
Bacteria   
   E. coli   

      JM101 F´ traD36 proA+B+ lacIq Δ(lacZ)M15/ Δ(lac-proAB) glnV 
thi New England Biolabs 

      DH5α/ 
      pRK212.1 

contains conjugative plasmid for transfer of plasmid into 
C. jejuni 

(Figurski and Helinski, 
1979) 

    C. jejuni   

      DRH212 81-176 SmR, spontaneous mutant (Hendrixson et al., 
2001) 

      DRH304 cetB::cat-rpsL, intermediate strain for deletion 
mutagenesis 

(Hendrixson et al., 
2001) 

      DRH307 ΔcetB (Hendrixson et al., 
2001) 

      DRH321 ΔrpoN (Hendrixson et al., 
2001) 

      DRH333 ΔcetA (Hendrixson et al., 
2001) 

      KYCj172 ΔcetAB This study 
   
Plasmids   
   pUC19 AmpR New England Biolabs 
   pRY108 KmR, E. coli/C. jejuni shuttle vector (Yao et al., 1993) 

   pKTY60 pUC19 with 3.5kb fragment containing cj1191c, cetA and 
cetB region cloned into the KpnI site This study 

   pKTY62 pKTY60 with a deletion from the first codon of cetA to 
the last codon of cetB This study 

   pKTY152 pKTY60 with the D94A mutation in the cetA coding 
sequence This study 

   pKTY153 pKTY60 with the E102A mutation in the cetA coding 
sequence This study 

   pKTY154 pKTY60 with the E97A mutation in the cetA coding 
sequence This study 

   pKTY155 pKTY60 with the K118A mutation in the cetA coding 
sequence This study 

   pKTY156 pKTY60 with the R101A mutation in the cetA coding 
sequence This study 

   pKTY157 pKTY60 with the R117A mutation in the cetA coding 
sequence This study 

   pKTY158 pKTY60 with the R71A mutation in the cetA coding 
sequence This study 

   pKTY159 pKTY60 with the Y116A mutation in the cetA coding 
sequence This study 

   pKTY160 pKTY60 with the Y99A mutation in the cetA coding 
sequence This study 

   pKTY360 pRY108 with 2.4 kb fragment containing cetA and cetB 
coding sequence cloned into the XmnI site This study 

   pKTY361 pKTY360 with the R71A mutation in the cetA coding 
sequence This study 

   pKTY362 pKTY360 with the D94A mutation in the cetA coding 
sequence This study 

   pKTY363 pKTY360 with the E97A mutation in the cetA coding This study 
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sequence 

   pKTY364 pKTY360 with the Y99A mutation in the cetA coding 
sequence This study 

   pKTY365 pKTY360 with the R101A mutation in the cetA coding 
sequence This study 

   pKTY366 pKTY360 with the E102A mutation in the cetA coding 
sequence This study 

   pKTY367 pKTY360 with the Y116A mutation in the cetA coding 
sequence This study 

   pKTY368 pKTY360 with the R117A mutation in the cetA coding 
sequence This study 

   pKTY369 pKTY360 with the K118A mutation in the cetA coding 
sequence This study 
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tool (Letunic et al., 2004).  These proteins were also assessed for the presence of 

transmembrane domains using the DAS (dense alignment surface) method (Cserzo et al., 

1997).  Proteins predicted to contain one long transmembrane helix with a strong dip in 

hydrophobicity in the middle of this region, corresponding to helical hairpin residues 

(Monne et al., 1999a; Monne et al., 1999b), were designated as possessing two 

transmembrane domains on the basis of topology analysis of CetA (see Chapter II).  The 

G+C % of each HAMP-containing bipartite family member gene was plotted against the 

G+C % of the genome in which it was found.  Using Excel, a linear regression trendline 

and associated R2 value were calculated.  HAMP domains and adjacent regions from 

homologous proteins were aligned using CLUSTALX (Thompson et al., 1997) with 

default parameters.  Conserved residues were identified using Nigel Brown’s consensus 

script (available at www.bork.embl-heidelberg.de/Alignment/consensus.html).  

Modeling of CetA Structure.  The structure of HAMP domain from 

Archaeoglobus fulgidus (PDB ID: 2ASW) was used as the foundation for modeling the 

structure of CetA. To model the HAMP domain of CetA, the amino acid sequence of 

2ASW was mutated into that of CetA using the graphics program O (Jones et al., 1991) 

and the single amino acid insertion was fit using the program’s lego-loop option.  The 

resulting CetA model was then placed into a box of waters containing a minimum of two 

shells of water, minimized and put through simulated annealing using torsion angle 

dynamics in CNS (Crystallography and NMR System) (Brunger et al., 1998).  

Construction of ΔcetAB deletion mutant.  The ΔcetAB deletion mutant was 

constructed essentially as described by Hendrixson et al (Hendrixson et al., 2001).  The 

cetA and cetB coding sequences with 1036bp upstream and 595bp downstream were 
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amplified by PCR with primers designed with KpnI sites at their 5’ ends for cloning into 

pUC19.  The resulting plasmid was pKTY60.  A deletion from the first codon of cetA to 

the last codon of cetB was created via Pfu mutagenesis (Weiner et al., 1994).  This 

plasmid, pKTY62, was electroporated into DRH304, which harbors the cat-rpsL cassette 

in the cetB coding sequence.  Transformants were selected on 2 mg/ml streptomycin and 

screened for sensitivity on 20 μg/ml chloramphenicol.  The deletion was confirmed by 

PCR analysis and chromosomal sequencing.   

Construction of a plasmid to complement the ΔcetAB mutant.  pKTY60 was 

digested with ApaLI and BsrBI.  The resulting fragment containing the cetA and cetB 

coding sequences, along with 299 bases upstream and 202 bases downstream was blunted 

by T4 DNA polymerase.  This fragment was then cloned into the XmnI site in the E. 

coli/C. jejuni shuttle vector pRY108 (Yao et al., 1993). 

Site-directed mutagenesis.  Point mutations in the cetA coding sequence leading 

to alanine substitutions (R71A, D94A, E97A, Y99A, R101A, E102A, Y116A, R117A, 

K118A) were made in pKTY60 using Pfu mutagenesis (Weiner et al., 1994).  DNA 

sequence of the resulting plasmids was determined to confirm the presence of the point 

mutation and ensure the absence of additional mutations.  These plasmids were then 

digested with ApaLI and BsrBI and the resulting fragment cloned into the XmnI site of 

pRY108 as described above.  The orientation of the insertions into pRY108 was checked 

by multiple restriction digests to confirm that the resulting plasmids, pKTY361-

pKTY369, are identical to pKTY360 except for the indicated point mutations. 

Conjugation of plasmids into C. jejuni.  Plasmids were conjugated into C. jejuni 

as described by Guerry et al (Guerry et al., 1994).  Briefly, C. jejuni was grown on MH 
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agar with 10 μg/ml trimethoprim for 16-20 hours and resuspended in MH broth to an 

OD600 of 1.0.  Overnight cultures of the E. coli donor strain (DH5α[pRK212.1] 

containing the plasmid to be conjugated into C. jejuni) were diluted into fresh LB broth 

and grown to an OD600 of 0.5.  500 μl of the donor culture was centrifuged and the pellet 

washed twice with MH broth, then resuspended in 1 mL of the C. jejuni recipient culture.  

This mixture was spotted onto MH agar with no antibiotics. After 5 hours at 37°C in 

microaerophilic conditions, the bacteria were resuspended and spread onto MH agar 

containing 10 μg/ml trimethoprim, 30 μg/ml cefaperazone, 2 mg/ml streptomycin and 50 

μg/ml kanamycin.  PCR was used to verify transfer of the plasmid to the recipient C. 

jejuni strain.  

SDS-PAGE and Western blots.  For SDS-PAGE of whole cell lysates, C. jejuni 

strains were grown on MH agar for 16-20 hours, then resuspended in MH broth to an 

OD600 of 0.8.  The bacteria were pelleted by centrifugation and the pellet resuspended in 

100μL 2x sample buffer.  Samples were boiled then separated on 12.5% polyacrylamide 

gels.  Proteins were transferred to nitrocellulose membranes and probed with rabbit anti-

CetA (1:10,000-1:75,000, generated against an internal peptide by Open Biosystems) or 

rabbit anti-CetB (1:500-1:5000, generated against an internal peptide by Open 

Biosystems) followed by goat anti-rabbit alkaline phosphatase-conjugated secondary 

antibody (1:10,000, Zymed).  Western blots were developed using the chromogenic 

substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium as previously 

described (Sambrook et al., 1989).   

Motility assays.  C. jejuni was grown on MH agar containing 10 μg/ml 

trimethoprim and 50 μg/ml kanamycin for 16-20 h and resuspended in MH broth to an 
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OD600 of 0.4.  0.4 μl of each strain was injected into MH motility medium containing 

0.4% agar.  Plates were incubated for 28 h in microaerophilic conditions.  The diameter 

of the outermost motility ring was measured with calipers.  The average and standard 

deviation of six replicates was calculated and the assay was repeated three times. 

Tissue culture.  The human epithelial cell line INT 407 was used in invasion 

experiments.  INT 407 cells were cultured in DMEM + 10% FBS supplemented with 

GIBCO MEM non-essential amino acids and 2mM glutamine (referred to as DMEM 

hereafter) in a 37°C, 5% CO2 incubator.  When cells were cultured in the absence of C. 

jejuni, the DMEM was supplemented with 10 units/ml penicillin and 10 μg/ml 

streptomycin.  

Adherence and invasion assays.  For invasion assays, INT 407 cells were seeded 

at approximately 105 cells/well in each well of a 24-well plate and incubated in the 

absence of antibiotics for an additional 12-18 h.  For the inoculum, C. jejuni strains were 

grown on MH agar for 16-20 h and resuspended in DMEM.  The INT 407 cells were 

rinsed twice with PBS and inoculated with C. jejuni at an MOI of ~200.  The 24-well 

plates were centrifuged at 150 x g for 5 minutes, then incubated in a 37°C, 5% CO2 

incubator.  To determine the number of total cell-associated bacteria, the cells were 

incubated for 2 h, rinsed twice with PBS, lysed in PBS + 0.1% Triton X-100, and serial 

dilutions were plated on MH agar to obtain colony forming units (cfu).  To determine the 

number of intracellular bacteria, the cells were incubated for 2 h, rinsed twice with PBS 

and incubated for an additional 2.5h in DMEM + 100μg/ml gentamicin.  The cells were 

then rinsed twice with PBS, lysed in PBS + 0.1% Triton X-100, and serial dilutions were 

plated on MH agar to obtain cfu.  For invasion time course experiments, the cells were 
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infected with C. jejuni as described above.  At 0.5 h, 1 h, 1.5 h, 2 h or 4 h post-infection, 

the numbers of total cell-associated and intracellular bacteria were determined as 

described above.  To assess invasion, the percentage of total cell-associated bacteria that 

were intracellular was calculated.  To assess adherence, the percentage of the inoculum 

that was cell-associated was calculated.  The average and standard deviation of three 

replicates were obtained and each invasion assay and time course assay was repeated a 

minimum of three times. 

Secretion assay.  C. jejuni cultures were metabolically labeled with [35S]-

methionine as previously described elsewhere (Konkel and Cieplak, 1992).  Supernatant 

fluids were concentrated four-fold by the addition of ice-cold 1 mM HCl-acetone. The 

pellets were air dried and resuspended in 100 µl of water and 100 µl of 2x sample buffer.  

Equal volumes of the concentrated samples were separated on 12.5% SDS-PAGE. 

Autoradiography was performed with Kodak BioMax MR film at -80°C.  

 

Results 

CetA and Aer differ in predicted HAMP domain secondary structure.  Using 

PSI-BLAST, the CetA HAMP domain was identified as residues 47-101.  This region 

was not identified as a HAMP domain by SMART analysis.  This is not surprising 

because of a high degree of divergence between various HAMP domains. Current HAMP 

domain models miss more than 30% of HAMP homologues (Rekapalli and Zhulin, 

unpublished data).  The CetA HAMP domain is significantly divergent from that of Aer. 

The HAMP domain of Aer has an unusual predicted secondary structure (Ma et 

al., 2005).  While the canonical HAMP domain consists of two amphipathic helices (AS-
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1 and AS-2), Aer possesses one amphipathic helix (AS-1) and one hydrophobic helix 

(AS-2) (Fig. 15A) (Ma et al., 2005).  In contrast to the unusual secondary structure of 

Aer, CetA is predicted to have the more common HAMP domain structure of two 

amphipathic helices (Fig. 15B).  

CetA and CetB found a new family of proposed bipartite energy taxis 

receptors.  Aer and CetA/CetB contain the same domains and are hypothesized to 

transduce energy taxis signals via a similar mechanism (Hendrixson et al., 2001).  

However, the differences in HAMP domain primary and secondary structure between Aer 

and CetA led us to examine the CetA HAMP domain in more detail.  Using the HAMP 

domain and proximal signaling domain (residues 44-139) of CetA in a BLASTP search 

of the non-redundant database, we identified 63 proteins with similar domain 

arrangements to that of CetA.  55 of them were encoded by genes with a neighboring 

open reading frame (orf) encoding a PAS domain and lacking other functional domains, 

similar to cetA and cetB, which are adjacent in the C. jejuni genome.  We refer to these 

pairs of proteins encoded by adjacent genes as HAMP/PAS pairs (Table 4).   

The CetA-like (HAMP-containing) members of this family can be divided into 8 

classes, based on predicted topology and functional domains (Fig. 16).  Most CetA 

homologues fall into Classes I-III, which contain a HAMP domain, a signaling domain 

and two, one or zero transmembrane domains, respectively.  There are only two predicted 

proteins in Class II, with a single predicted transmembrane domain.  It is possible that 

these genes contain a sequencing error leading to an incorrect predicted transcriptional 

start site.  Variations on the domain arrangement of CetA containing additional domains 

or lacking the signaling and/or transmembrane domains were also identified (Classes IV- 
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Figure 15.  Secondary structure analysis of the Aer and CetA HAMP domains.  A. 
Aer HAMP domain contour plot of secondary-structure probabilities at indicated residues 
(PSA server).  B.  CetA HAMP domain contour plot of secondary-structure probabilities 
at indicated residues (PSA server). 
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Table 4. Members of the bipartite family of energy taxis transducers identified by 
similarity to the CetA HAMP and proximal signaling domain. 
 

Species/strain Accession no. e-valuea Classb PAS neighbor 
accession no.c 

     
Azoarcus sp. BH72 YP_934977 9.00E-04 I YP_934978 

     
Bradyrhizobium japonicum USDA 110 NP_769616 2.00E-06 Id NP_769615 

     
Caminibacter mediatlanticus TB-2 ZP_01871323 0.001 I ZP_01871324 

 ZP_01870851 0.002 I ZP_01870852 
     

Campylobacter coli RM2228 ZP_00367208 8.00E-51 Id ZP_00367209, 
ZP_00367207 

     
Campylobacter concisus 13826 YP_001466825 2.00E-06 III YP_001466824 

     
Campylobacter curvus 525.92 YP_001408340e 0.001 III YP_001408339 

     

Campylobacter jejuni 11168 NP_282337 7.00E-51 Id NP_282336, 
NP_282338 

     

Campylobacter jejuni 81-176 YP_001000865 7.00E-51 Id YP_001000864, 
YP_001000866 

     

Campylobacter jejuni HB93-13 ZP_01070888 7.00E-51 I ZP_01070815, 
ZP_01071201 

     

Campylobacter jejuni CG8486 ZP_01809879 7.00E-51 Id ZP_01809880, 
ZP_01809878 

     

Campylobacter jejuni 260.94 ZP_01069112 7.00E-51 Id ZP_01069301, 
ZP_01069270 

     

Campylobacter jejuni CF93-6 ZP_01068608 7.00E-51 Id ZP_01068595, 
ZP_01068567 

     

Campylobacter jejuni 81116 YP_001482710 7.00E-51 Id YP_001482711, 
YP_001482709 

     

Campylobacter jejuni RM1221 YP_179311 7.00E-51 Id YP_179312, 
YP_179310 

     

Campylobacter jejuni 84-25 ZP_01099629 8.00E-51 Id ZP_01099329, 
ZP_01099967 

     
Campylobacter jejuni doylei 269.97 YP_001397715 2.00E-49 Id YP_001397716 

     
Campylobacter  lari RM2100 ZP_00368322 7.00E-34 I ZP_00368323, 
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ZP_00368324 
     

Campylobacter upsaliensis RM3195 ZP_00371342 1.00E-38 I ZP_00371343, 
ZP_00371341 

     
Chromobacterium violaceum ATCC 

12472 NP_900065 3.00E-04 I NP_900066 

     
Dechloromonas aromatica RCB YP_287205 7 I YP_287206 

     
Kineococcus radiotolerans SRS30216 YP_001363132 0.009 III YP_001363131 

     
Magnetospirillum gryphiswaldense 

MSR-1 CAM75236 0.003 Id CAM75237 

 CAM75032 0.005 V CAM75033 

 CAM78133 0.065 VI CAM78134, 
CAM78135f 

     
 Magnetospirillum magneticum AMB-1 YP_419949g 3.00E-04 I YP_419948 

 YP_423371 0.002 I YP_423372 
 YP_423064 0.06 I YP_423063 
 YP_420357 0.07 I YP_420358 
 YP_421559 0.13 I YP_421560 
 YP_419547 1.9 I YP_419548 
     

Magnetospirillum magneticum MS-1 ZP_00055894 4.00E-04 IV ZP_00055893 
 ZP_00207863 9.00E-04 I ZP_00207862 

 ZP_00208993 0.003 VIII ZP_00208994, 
ZP_00051415 f 

 ZP_00054945h 0.43 VII ZP_00054944 
     

Oceanobacter sp. RED65 ZP_01306652 0.32 I ZP_01306653 
     

Oceanospirillum sp. MED92 ZP_01166142 0.051 I ZP_01166143 
     

Reinekea sp. MED297 ZP_01113626 0.88 I ZP_01113627 
     

Rhodopseudomonas palustris BisA53 YP_783562 1.00E-04 I YP_783563 
     

Rhodopseudomonas palustris BisB5 YP_568532 4.00E-04 I YP_568531 
 YP_571029 0.26 I YP_571030 
     

Rhodopseudomonas palustris BisB18 YP_534502 2.00E-06 I YP_534503 
     

Rhodopseudomonas palustris CGA009 NP_949817i 8.00E-05 I NP_949818i 
 NP_949819i 1.00E-04 II NP_949820i 
 NP_949538 1.00E-04 Id NP_949539 
 NP_949647 0.45 I NP_949648 
     

Rhodopseudomonas palustris HaA2 YP_484693 3.00E-07 II YP_484692 
 YP_485035 8.00E-04 I YP_485034 
 YP_484934 0.16 I YP_484933 

     
Rhodospirillum rubrum ATCC 11170 YP_428546j 0.011 I YP_428545 

     
Stappia aggregata IAM 12614 ZP_01546232 2.00E-04 Id ZP_01546231 
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Sulfurimonas denitrificans DSM 1251 YP_392559 1.00E-05 III YP_392560 

     
Wolinella succinogenes DSM 1740 NP_907800 1.00E-11 I NP_907801 

 NP_906923 6.00E-09 Id NP_906922 
 NP_907510 3.00E-05 Id NP_907511 

 

a e-value obtained from BLAST search with CetA HAMP and proximal signaling domain (amino acids 44-
139). 
b Class of HAMP domain-containing bipartite family member (see Fig. 2). 
c Adjacent gene encoding a PAS domain, but no other domains unless so indicated. 
d Transmembrane helix prediction programs predict one transmembrane helix, but we propose that there are  
two transmembrane helices present in a helical hairpin (see Materials and Methods). 
e Misannotated as a DNA binding response regulator. 
f PAS neighbor contains additional predicted functional domains. 
g Misannotated as a sensory rhodopsin II transducer. 
h Misannotated as MCP, but does not contain the HCD. 
i These HAMP/PAS pairs are adjacent to one another. 
j Misannotated as a response regulator. 
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Figure 16.  Classes of HAMP-containing bipartite family members.  HAMP-
containing proteins from Table 1 were analyzed by SMART and DAS and separated into 
different classes on the basis of predicted topology and functional domains.  
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VIII).  In all, we identified 55 HAMP/PAS pairs, 40 of which are in genera other than 

Campylobacter (Table 4).  The majority of organisms containing HAMP/PAS pairs 

belong to the epsilon class of proteobacteria, but HAMP/PAS pairs are also found in the 

alpha, beta, and gamma classes of proteobacteria as well as in one Gram-positive, the 

actinobacterium Kineococcus radiotolerans (Table 5).  The GC content of the HAMP 

genes corresponds well to that of the genomes in which they are found (Fig. 17A).  

Several strains contain more than one HAMP/PAS pair (Fig. 17B).  In those strains that 

contain multiple HAMP/PAS pairs, the HAMP members of different HAMP/PAS pairs 

may also fall into more than one class (Fig. 17C).  We propose that these HAMP/PAS 

pairs comprise a new family of bipartite energy taxis receptors.   

Bipartite family members contain conserved HAMP and proximal domain 

residues.  The HAMP domain and proximal signaling domain of representative CetA-

like bipartite family members were aligned using CLUSTALX (Fig. 18).  Nine residues 

are highly conserved within this subfamily, but not within the HAMP consensus 

sequence.  HAMP domains, in general, share very low levels of sequence conservation, 

so the presence of such highly conserved residues is notable.  Interestingly, most of 

highly conserved residues are predicted to participate in protein-protein interactions 

(charged and aromatic).  

To understand the placement of these conserved residues in the protein, a model 

of the CetA HAMP domain was created.  The amino acid sequence of CetA was threaded 

onto the averaged NMR structure of Archaeoglobus fulgidus (2ASW), the only HAMP 

domain present in the Protein Data Bank, using the graphics program O (Jones et al., 

1991).  Four of the five conserved residues that fall within the HAMP domain (R71, D94,  
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Table 5.  Taxonomic distribution of bipartite family members 
 
 

Taxonomic phylum # strains with HAMP/PAS pairs 
α-proteobacteria 11 

β-proteobacteria 3 

ε-proteobacteria 18 

γ-proteobacteria 3 

actinobacteria 1 
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Figure 17.  Distribution of bipartite family members.  A.  The G+C % of each gene 
encoding a HAMP protein in the bipartite family plotted vs. the G+C % of the genome in 
which it resides.  A linear regression trendline and R2 value are shown.  The data point 
for the Kineococcus radiotolerans HAMP protein is circled.  Arrow indicates the data 
point for the Magnetospirillum magneticum AMB-1 HAMP protein found in the 
magnetosome island (see Discussion).  B.  Histogram indicating the number of 
HAMP/PAS pairs per strain.  C.  Histogram indicating the number of classes represented 
by the HAMP member of HAMP/PAS pairs in strains harboring multiple HAMP/PAS 
pairs. 
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Figure 18.  Distribution of conserved residues within the HAMP and proximal 
signaling domains of CetA homologues.  Multiple alignment of the HAMP and 
proximal signaling domains of representative CetA homologues.  Strongly conserved 
positions that are likely to contribute to protein-protein interactions are highlighted in 
blue (negative charge), red (positive charge) and green (aromatic). Strongly conserved 
positions that are likely to contribute primarily to structure and mildly conserved 
positions are highlighted in gray.   
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E97 and R101) appear to cluster near one another on the surface of the HAMP four-helix 

bundle (Fig. 19B).  The fifth conserved residue in the HAMP domain (Y99), however, is 

located between the two monomers and is predicted to be involved in tyrosine stacking 

interactions between HAMP monomers at the base of the four-helix bundle (Fig. 19B).  

The four remaining conserved residues (E102, Y116, R117 and K118) fall outside of the 

Af1503 structure used to model the CetA HAMP domain and, therefore, their location 

within the protein cannot be predicted.  This model of the CetA HAMP domain structure 

shows an overall dipole moment, as the N-terminal half of the structure has a net positive 

charge, while the C-terminal half of the structure has a net negative charge (Fig. 19C).  

When we calculated the electrostatic surface potentials for the Af1503 HAMP domain, an 

overall dipole moment was also apparent, although less pronounced than in the CetA 

HAMP domain structural model (Fig. 19D). 

Conserved HAMP domain residues are important for CetA function.  

Attempts to complement a ΔcetA mutant with a plasmid expressing cetA from a 

constitutive promoter were unsuccessful (data not shown), likely because the relative 

levels of CetA to CetB, as well as the levels of these proteins relative to other MCPs, are 

important for proper energy taxis signal transduction. A double deletion strain was 

constructed with the deletion extending from the first codon of cetA to the last codon of 

cetB.  We also constructed a plasmid, pKTY360, consisting of the cetA and cetB genes, 

as well as 299 bases upstream and 202 bases downstream, cloned into the pRY108 E. 

coli/C. jejuni shuttle vector (Yao et al., 1993).  This plasmid does not contain a promoter 

to drive expression of the cloned region, so cetAB expression must originate from their  
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Figure 19.  Model of CetA HAMP domain.  A.  The sequence alignment of CetA and 
AF1503 HAMP domains from ClustalW2 (Chenna et al., 2003) 
(http://www.ebi.ac.uk/Tools/clustalw2/index.html) is shown with the hydrophobic 
residues of the heptad repeat and linker region boxed in yellow.  The secondary structure 
prediction for CetA (Cuff and Barton, 2000) (http://www.compbio.dundee.ac.uk/~www-
jpred/index.html) and the published secondary structure of AF1503 are shown above and 
below their amino acid sequences, respectively.  Helices and β-strands are represented as 
black rectangles and arrows, respectively.  Residues mutated in CetA are italicized.  B.  
The model of a CetA HAMP domain dimer is depicted as a ribbon diagram with the 
mutated residues shown in ball-n-stick.  The views for individual molecules are separated 
by a 90° rotation about the y-axis.  C.  Electrostatic surface potentials for the modeled 
structure of CetA were calculated using APBS (Baker et al., 2001) and mapped onto their 
respective solvent accessible surfaces using Pymol (DeLano, 2002).  Negative potentials 
(-10 kT/e) are shown in red, positive potentials (10 kT/e) in blue.  The views are the same 
as in B. The proteins structures are shown at the same magnification for each view.  D.  
Electrostatic surface potentials for the Af1503 HAMP domain structure were calculated 
as in C.    
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native promoter.  pKTY360 (pRY108::cetAB) partially complements the motility defect 

of the ΔcetAB double mutant in MH motility agar (Fig. 20).   

Alanine substitutions were made for each of the conserved residues in CetA in the 

context of pKTY360.  Several of these substitutions led to a growth defect or loss of 

CetA stability (Fig. 21A, 21B), but three substitutions (R71A, Y99A and K118A; 

pKTY361, pKTY364 and pKTY369, respectively) retained growth kinetics and CetA 

expression levels at or near that of ΔcetAB [pKTY360] (Fig. 21A, 21C).  Mutant proteins 

with these substitutions exhibited abrogated or reduced ability to rescue the motility 

defect of the ΔcetAB double deletion strain (Fig. 20).  These results indicate that at least 

some of the conserved residues within the bipartite family HAMP and proximal signaling 

domains are required for wildtype function. 

ΔcetA has an epithelial cell invasion defect, but ΔcetB does not.  CetA and 

CetB are each required for energy taxis in C. jejuni, suggesting a functional interaction 

whose mechanism may be similar to that of Aer (Hendrixson et al., 2001).  However, the 

separation of Aer domains into two proteins in CetA and CetB, as well as other members 

of this family, raises the possibility that each member of a HAMP/PAS pair may 

contribute independently to different traits.  As C. jejuni is a common commensal of 

chickens, we previously tested ΔcetA and ΔcetB mutants in a chick colonization model 

and both mutants colonized to wildtype levels (Hendrixson and DiRita, 2004).   

C. jejuni actively invades human epithelial cells, a trait associated with its 

pathogenicity (Kopecko et al., 2001).  To determine whether or not CetA or CetB 

contribute to this phenotype, we tested mutants in a tissue culture model of invasion (Hu 

and Kopecko, 1999; Oelschlaeger et al., 1993).  INT 407 cells were infected with  
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Figure 20.  Influence of point mutations on CetA function in motility.  Motility 
assays were performed on WT, ΔcetAB and ΔrpoN strains containing an empty vector, 
pRY108, or pRY108::cetAB (with and without the indicated HAMP and proximal 
signaling domain point mutations).  
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Figure 21.  CetA and CetB expression levels and growth kinetics of CetA HAMP 
domain point mutants.  A.  Whole cell extracts were prepared from ΔcetAB with 
pRY108, pRY108::cetAB or pRY108::cetAcetB containing the indicated cetA point 
mutants.  These samples were separated by 12.5% SDS-PAGE and CetA and CetB 
detected by immunoblotting.  B.  Growth curves of strains expressing CetA point mutants 
that slowed growth.  C.  Growth curves of strains expressing CetA point mutants that 
maintained wildtype growth.  
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wildtype (DRH212), ΔcetA, ΔcetB or ΔcetAB at a multiplicity of infection of ~200.  

Immediately upon infection, bacteria were centrifuged onto the INT 407 cells, in order to 

rule out any motility effects on the invasion assay.  After two hours, the number of total 

cell-associated bacteria was determined in half of the wells (see Materials and Methods) 

and gentamicin was added to the remaining wells to kill extracellular bacteria. After a 

further 2.5 hours, the number of intracellular bacteria was determined as described in 

Materials and Methods and the percentage of total cell associated bacteria that were 

intracellular (invaded) was calculated.  Strains lacking cetA alone, or both cetA and cetB, 

invaded INT 407 cells approximately 5-times less efficiently than wildtype, whereas a 

ΔcetB mutant invaded at wildtype levels (Fig. 22A).   

Further investigation of the invasion defect exhibited by the ΔcetA mutant was 

done by performing a kinetic analysis of invasion.  The percentage of total cell-associated 

bacteria that had invaded the INT 407 cells was determined at various times between 30 

minutes and 4 hours post-infection (Fig. 22B).  The level of invasion by the ΔcetA mutant 

remained lower than that of wildtype at all times.  The rate of invasion by the ΔcetA 

mutant was initially much lower than that of wildtype.  By 2 to 4 hours post-infection, 

however, the rate of invasion by the ΔcetA mutant reached near wildtype levels.  These 

results indicate that the ΔcetA mutant lags in the initiation of invasion compared to 

wildtype.  

While there is at present an incomplete understanding of C. jejuni invasion 

mechanisms, several factors are known to affect invasion in the tissue culture model we 

used here.  We tested the affect of cetA and cetB mutations on these factors in an attempt 

to discern the root of the ΔcetA invasion defect (Fig. 23).  While the ΔcetA mutant does  
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Figure 22.  Effect of cetA and cetB mutations on epithelial cell invasion.  A.  INT 407 
cells were infected with wildtype, the ΔcetB mutant, the ΔcetA mutant and the ΔcetAB 
mutant.  The percent of total cell-associated bacteria that were intracellular following a 2 
hour infection was calculated.  B.  INT 407 cells were infected with wildtype and the 
ΔcetA mutant.  The percent of total cell-associated bacteria that were intracellular 
following a 30 minute, 1 hour, 1.5 hour, 2 hour, for 4 hour infection. 
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Figure 23.  Effect of cetA and cetB mutations on factors impacting epithelial cell 
invasion. A.  INT 407 cells were infected with wildtype, the ΔcetB mutant, the ΔcetA 
mutant and the ΔcetAB mutant.  The percent of the inoculum that was cell-associated 
following a 2 hour infection was calculated.  B.  Motility assays were performed on 
wildtype, the ΔcetB mutant, the ΔcetA mutant and the ΔcetAB mutant.  C.  C. jejuni 
secretion assays were performed on cultures that were inoculated in RPMI 1640 medium 
supplemented with and without fetal bovine serum (FBS) for 3 hr.  A 1:2 dilution of the 
wildtype sample following FBS stimulation is included for comparison. 
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have an adherence defect, this defect is quite small (Fig. 23A).  In addition, adherence 

(total cell-associated cfu) was used to normalize the invasion data, so the invasion defect 

of the ΔcetA mutant cannot be accounted for by this slight decrease in adherence.  While 

the ΔcetA mutant has a motility defect (Hendrixson et al., 2001), the ΔcetB mutant has a 

slightly larger motility defect (Fig. 23B), indicating that this phenotype also does not 

likely explain the invasion defect of the ΔcetA mutant.  Finally, C. jejuni secretes several 

proteins (Cia proteins) some of which may be involved in invasion.  Secretion can be 

stimulated in vitro by the addition of fetal bovine serum (FBS) (Rivera-Amill et al., 

2001).  The ΔcetA mutant secretes Cia proteins at levels similar to wildype (Fig. 23C), 

indicating that altered Cia secretion is not the reason for the invasion defect we observed.  

Further studies are necessary to reveal the mechanism underlying the contribution of 

CetA to epithelial cell invasion. 

 

Discussion 

 In this study, we identified a new family of apparent bipartite energy taxis 

receptors that contain HAMP and proximal signaling domains homologous to CetA.  

These domains have several highly conserved residues, at least three of which are 

required for CetA function in C. jejuni motility.  We propose that these conserved 

residues, several of which cluster on the exterior of the base of the HAMP domain four-

helix bundle, make up the PAS-interaction surface.   

In further studies of the CetA/CetB HAMP/PAS pair, we demonstrated that the 

ΔcetA mutant has a very different phenotype from that of the ΔcetB mutant in human 

epithelial cell invasion.  These findings support the hypothesis that CetA and CetB, and 
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perhaps other members of the bipartite family, can act independently to regulate traits 

other than energy taxis, possibly via interactions with as yet unknown proteins (Fig. 24). 

Thus, we have both identified a new family of apparent bipartite energy taxis receptors 

and provided evidence of a functional consequence of having the domains of Aer 

separated into distinct proteins within this family.   

 The predicted secondary structures of Aer and CetA HAMP domains differ 

substantially from one another.  Aer has previously been found to possess a hydrophobic 

helix (AS-2) where most HAMP domains have a second amphipathic helix (Fig. 15A) 

(Ma et al., 2005).  The hydrophobic nature of the Aer AS-2 is proposed to reflect the fact 

that this helix is involved both in HAMP-HAMP interactions (between Aer monomers in 

a dimer), and in HAMP-PAS interactions (Ma et al., 2005).  As Aer and CetA/CetB are 

proposed to transduce an energy taxis signal via similar mechanisms, we predict that the 

HAMP domain of CetA would also be involved in both HAMP-HAMP and HAMP-PAS 

interactions.  If so, then the fact that the CetA HAMP domain, in contrast to Aer, contains 

two amphipathic helices (Fig. 15B) is unexpected.  We propose that the amphipathic 

nature of AS-2 allows the CetA HAMP domain to exist in two states: one in which it 

interacts with the CetB PAS domain and one in which it is not associated with CetB and 

the PAS-interaction surface is exposed.  If the CetA HAMP AS-2 were hydrophobic, like 

that of Aer, this latter state would be energetically unfavorable.  Assuming that the CetA 

AS-2 does interact directly with CetB, the molecular nature of this interaction must differ 

substantially from that between the HAMP and PAS domains of Aer.   

 Based on similarity with the CetA HAMP and proximal signaling domain and 

genome context, numerous HAMP/PAS pairs homologous to CetA and CetB were  
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Figure 24.  Proposed model for CetA/CetB function compared to Aer.  CetA and 
CetB are proposed to transduce an energy taxis signal via a similar mechanism as Aer.  
However, CetA is proposed to interact with another unidentified protein to promote 
invasion, while CetB does not. See discussion for details.  
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identified (Table 4).  We propose that these HAMP/PAS pairs comprise a new family of 

bipartite energy taxis receptors.  The species containing HAMP/PAS pairs represent a 

broad range of bacteria, including α-proteobacteria, β-proteobacteria, ε-proteobacteria, γ-

proteobacteria, and one Gram-positive actinobacterium (Table 5).  The GC content of the 

HAMP-containing bipartite family genes generally agrees well with that of the bacterial 

genome in which they are found (Fig. 17A).  This is true even of the sole Gram-positive 

with a HAMP/PAS pair, K. radiotolerans (circled in Fig. 17A).  This suggests that these 

genes were not recently spread by a horizontal gene transfer.  There are a few possible 

exceptions to this, with slightly lower GC contents in the HAMP gene relative to their 

genome. One of these, indicated by an arrow in Fig. 17A, occurs in a genomic island 

discussed below.  The species containing HAMP/PAS pairs include human pathogens, 

animal commensals, plant symbionts, and species found in marine, aquatic and soil 

environments.  Together, these observations suggest that these HAMP/PAS pairs have 

been conserved under a diverse set of selection pressures.   

Other than CetA and CetB, none of the HAMP/PAS pairs has been studied 

beyond sequence analysis.  The presence of multiple MCPs with PAS neighbors in the 

genome sequence of Rhodopseudomonas palustris CGA009 has been observed and the 

fact that similar sets of genes are found in Magnetospirillum and Rhodospirillum was 

noted (Larimer et al., 2004).  The genes pointed out in this study are members of the 

bipartite family identified here.  Several of the strains containing multiple HAMP/PAS 

pairs, Magnetospirillum gryphiswaldense MSR-1, M. magneticum AMB-1 and M. 

magneticum MS-1, are capable of magnetoaerotaxis (also called magnetotaxis).  In 

magnetoaerotaxis, bacteria are oriented along magnetic field lines by magnetosomes and 
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move along those field lines in response to an oxygen gradient (Bazylinski and Frankel, 

2004).  The receptor(s) responsible for the aerotaxis component of magnetoaerotaxis 

remain unknown, and we propose that one or more of the HAMP/PAS pairs we identified 

in these species may play a role.  One such HAMP/PAS pair, YP_420357 (amb0994) and 

YP_420358 (amb0995) in M. magneticum AMB-1, is located in a genomic 

“magnetosome island” the deletion of which leads to a loss of magnetosome formation 

and magnetoaerotaxis (Fukuda et al., 2006).  This island, and this HAMP/PAS pair, has a 

lower GC content than the rest of the genome (arrow, Fig. 17A), indicating that it may 

have arrived via horizontal transfer.  

 In several Campylobacter species, there are two PAS neighbors encoded by genes 

flanking the gene encoding the HAMP protein.  These are likely homologous to cetB and 

cj1191c, which flank cetA in the C. jejuni 11168 genome (Hendrixson et al., 2001).  The 

role of cj1191c remains unclear.  Multiple attempts at constructing an in-frame deletion 

in this orf have been unsuccessful.  The C. lari HAMP gene has two PAS neighbors, but 

rather than flank the HAMP gene, both PAS neighbors occur on the same side of the 

HAMP gene.  The same arrangement is seen for second PAS neighbors of HAMP genes 

in Magnetospirillum gryphiswaldense MSR-1 and Magnetospirillum magneticum MS-1.  

In these last two cases, however, the PAS neighbor further from the HAMP protein 

possesses additional functional domains, as predicted by SMART.  In M. 

gryphiswaldense MSR-1, CAM78135 is predicted to possess a PAS domain, a 

transmembrane region, an histidine kinase domain and an ATPase domain.  In M. 

magneticum MS-1, ZP_00051415 is predicted to possess a PAS domain, a 

transmembrane region and a HAMP domain, which was not identified in the initial 
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BLASTP search.  Whether or not the PAS domains of these proteins interact with their 

HAMP neighbors remains an open question.  

The various classes of CetA-like HAMP-containing proteins (Fig. 16) present 

some novel functional possibilities.  In Class IV, there is an apparent NAD-dependent 

glycerol-3-phosphate dehydrogenase domain (GPDH) at the C-terminus of the protein.  

GPDH is a key glycolytic enzyme.  Beyond its role in glycolysis, however, various 

eukaryotic GPDH homologues have been implicated in an osmotic stress response, 

resistance to reactive oxygen species and redox regulation (Ansell et al., 1997; Jeong et 

al., 2004; Shen et al., 2006).  These last two functions are accomplished via regulation of 

the NADH/NAD+ ratio (Ansell et al., 1997; Jeong et al., 2004; Shen et al., 2006).  We 

speculate that the PAS domain signal may modulate the activity of the GPDH domain in 

order to maintain a proper redox environment in the cell.  If so, this PAS domain may 

bind NAD(H), as opposed to FAD(H).  It is difficult, however, to envision how this 

signal might be propagated to the GPDH domain from the HAMP domain, when there is 

an intervening HCD domain.   

In Class V of HAMP-containing CetA-like proteins, there is a C-terminal PilZ 

domain.  PilZ domains are thought to be cyclic diguanylate (c-di-GMP) effector domains, 

with the binding of this second messenger resulting in an altered confirmation (Benach et 

al., 2007).  This leads to the hypothesis that the Class V domain arrangement may allow 

this MCP-like protein to alter flagellar rotation in response to both PAS and c-di-GMP 

signals.  Class VI has the same domains as CetA, but with a larger periplasmic loop.  We 

propose that this domain arrangement may allow this MCP-like protein to sense an 

extracellular signal, as well as the PAS domain signal.  This would be somewhat 
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analogous to the alternate energy taxis receptor in E. coli, Tsr, which senses changes in 

extracellular serine, as well as changes in proton motive force (Edwards et al., 2006).   

Classes VII and VIII contain no apparent output domains.  It is unclear whether 

these “orphan” HAMP domains could function without being covalently linked to an 

output domain.  It should be noted that the first HAMP domain structure to be solved was 

that of the Archaeoglobus fulgidus protein Af1503, which contains a transmembrane 

domain and HAMP domain, but no C-terminal output domain (Hulko et al., 2006).  This 

HAMP domain structure has since been supported by cysteine cross-linking studies of 

Tar and Aer (Swain and Falke, 2007; Watts et al., 2008a), indicating that the Af1503 

HAMP domain folds similarly to known functional HAMP domains.  HAMP domains 

have been proposed to signal via both cis and trans mechanisms (Hulko et al., 2006).  A 

trans mechanism would be necessary for Af1503 and the Class VII and VIII proteins to 

function in signal transduction.  A trans signaling mechanism might also explain how the 

PAS signal in Class IV could be relayed to the C-terminal GPDH domain discussed 

above. 

 Within the HAMP and proximal signaling domain of the bipartite family 

members, we identified nine highly conserved residues that are not conserved in a 

canonical HAMP domain (Fig. 18).  These residues occur in the connector between AS-1 

and AS-2, in AS-2 and in the proximal signaling region.  We examined the effect of 

alanine substitutions at each of these positions in CetA.  Only three of the point mutations 

(R71A, Y99A and K118A) retained the growth kinetics and CetA expression levels of 

cells expressing the wildtype sequence (Fig. 21).  Each of these point mutants was unable 

to restore motility when expressed in the ΔcetAB mutant (Fig. 20), prompting our 
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conclusion that these residues are required for wildtype function of CetA in motility.  

Complementation tests with these mutant plasmids for the invasion phenotype of the 

ΔcetA mutant have been difficult to interpret (Young and DiRita, data not shown).  To 

test these residues for their role in C. jejuni invasion may require that we cross these 

mutations onto the chromosome, which works with varying efficiency in C. jejuni.  We 

cannot draw any conclusions about the role of the other six conserved residues in CetA 

function.  Other substitutions may be required to probe the role of these residues.   

 The current model of signal transduction through Aer includes a direct interaction 

between the PAS and HAMP domains, allowing the FAD redox signal to be transmitted 

parallel to the inner membrane (Taylor, 2007).  Current evidence for such an interaction 

is thus far indirect.  Deletion of, or mutations in, the Aer HAMP domain disrupt Aer 

maturation and FAD binding (Bibikov et al., 2000; Buron-Barral et al., 2006; Ma et al., 

2005).  A point mutation in the HAMP domain that abrogated aerotaxis by Aer could be 

specifically suppressed by a second-site mutation in the PAS domain (Watts et al., 2004).  

We propose that the CetA HAMP domain and CetB interact, similarly to the proposed 

PAS-HAMP interaction in Aer.  Studies to investigate this proposed interaction are 

currently under way.  Further, we predict that the other HAMP-PAS pairs in the bipartite 

family identified in this study also interact with one another. 

 Modeling the structure of the Aer HAMP domain onto that previously determined 

for Af1503 led to the observation that point mutations resulting in a constant “signal on” 

state of Aer cluster together at the base of the four-helix bundle formed by the HAMP 

dimer (Watts et al., 2008b).  These point mutations may strengthen the proposed PAS-

HAMP interaction and define the PAS-HAMP interaction surface (Taylor, 2007; Watts et 
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al., 2008b).  Most of the conserved residues within the HAMP domains of the bipartite 

family members are predicted to be located at the base of the HAMP dimer four-helix 

bundle, near one another on the surface of this dimer (Fig. 19B).  We hypothesize that 

this region of the HAMP domain dimer plays a role in HAMP-PAS interactions between 

members of the HAMP/PAS pairs in this family of proteins.  

The one residue in the CetA HAMP domain model that does not fall on the same 

surface as the others is Y99 (Fig. 19B).  While the role of this tyrosine in HAMP domain 

function remains unclear, the location of these tyrosines in our model lends support to a 

recently proposed model of HAMP domain signaling (Hulko et al., 2006).  Specifically, 

if the helices of the HAMP domain four-helix bundle do rotate relative to one another, 

they must do so in the direction proposed by Hulko et al. (Hulko et al., 2006); rotation in 

the opposite direction would be prevented by steric hindrance by Y99.   

The HAMP domain of CetA is a polar structure, with a positively charged N-

terminus and negatively charged C-terminus (Fig. 19C).  This dipole moment is apparent, 

but less pronounced, in the Af1503 structure (Fig. 19D), and may be a previously 

unrecognized feature of HAMP domains.  As the N-termini of HAMP domains are 

generally proximal to the inner membrane, it may be that the net positive charge in this 

region acts as an attractive force, further tethering the HAMP domain to the membrane.  

The role of the net negative charge of the base of the HAMP domain is more speculative.  

As this region has been implicated in Aer in the PAS-HAMP interaction, we propose that 

there may be a cognate positive surface on the CetB PAS domain facilitating interaction 

between CetA and CetB.  As the AS-2 helix of Aer is hydrophobic, we would predict that 

the equivalent surface of the Aer PAS domain would comprise a hydrophobic patch.   
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 C. jejuni is one of the most prevalent causes of bacterial gastroenteritis in the US 

(Foodnet, 2007).  While not considered a highly invasive organism, compared to bacteria 

such as Salmonella and Shigella, C. jejuni has been seen to actively invade non-

phagocytic human epithelial cells in tissue culture models (Konkel and Joens, 1989; 

Oelschlaeger et al., 1993).  Our studies indicate that the ΔcetA mutant and the ΔcetAB 

mutant have an approximately 5-fold defect in invasion compared to wildtype (Fig. 22A).  

Compared to some other known invasion mutants in C. jejuni, the magnitude of the 

invasion defect of the ΔcetA mutant is a relatively small (Goon et al., 2006; Konkel et al., 

2004; Szymanski et al., 2002).  What is striking about our observations regarding 

invasion is not the magnitude of the ΔcetA effect, but rather that a cetB mutation shows 

no defect (Fig. 22A).  If CetA and CetB function solely as partners to transduce an energy 

taxis signal, we would expect that both the ΔcetA and ΔcetB mutants would have similar 

phenotypes.  It should be noted that CetB levels are quite low in the ΔcetA mutant (see 

Chapter II).  However, the lack of an invasion defect by the ΔcetB mutant rules out a role 

for CetB in invasion.  We conclude that CetA and CetB function independently of one 

another to regulate invasion.  A previous study found that a transposon insertion in cetB 

led to an increase in adherence to INT 407 cells and a decrease in invasion of INT 407 

cells (Golden and Acheson, 2002).  These results clearly differ from our findings that the 

ΔcetB mutant is unaffected in adherence (Fig. 23A) or invasion (Fig. 22A).  This 

difference is likely attributable to the use of a transposon insertion mutant in the previous 

study, as opposed to the in-frame deletion used in our experiments. 

One explanation for the invasion defect of the ΔcetA mutant is that this results 

from the motility defect of this mutant.  To reduce the contribution of motility to invasion 
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in these experiments, the bacteria are brought into contact with the INT 407 cells by a 

low speed centrifugation at the beginning of the assay.  However, this may not 

completely eliminate motility effects on invasion.  In any event, we would expect a 

motility defect to manifest itself as a decrease in the number of adherent bacteria.  This 

should be reflected in both the number of total cell-associated bacteria and, 

proportionally, the number of intracellular bacteria.  We eliminated this potential 

contribution of motility to our results by determining the percentage of total cell-

associated bacteria that are intracellular.  When calculated this way, the ΔcetA and 

ΔcetAB mutants still have an approximately 5-fold defect in invasion (Fig. 22A).  Finally, 

it should be noted that the ΔcetB mutant is actually slightly, but reproducibly, less motile 

than the ΔcetA mutant (Fig. 23B).  Accordingly, if the invasion defect of the ΔcetA 

mutant were due to its motility defect, the ΔcetB mutant should have an invasion defect 

that is equal to or greater than that of the ΔcetA mutant.  As this is not the case, we 

conclude that the invasion defect of the ΔcetA mutant cannot be attributed solely to that 

strain’s motility defect.   

We have determined that the invasion defect of the ΔcetA mutant results from an 

initial lag in the rate of invasion.  By 2-4 hours post-infection, the ΔcetA mutant invades 

at rates near or at wildtype levels (Fig. 22B).  The mechanism of C. jejuni invasion is still 

being dissected, but appears to be mainly microtubule-dependent (Kopecko et al., 2001), 

which differentiates the C. jejuni invasion process from that of many invasive pathogens 

that use host cell actin for internalization.  Also, proteins secreted from the flagellum are 

known to be required for C. jejuni invasion (Konkel et al., 1999a; Konkel et al., 2004; 

Song et al., 2004).  Metabolic labeling experiments showed no significant changes in the 
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ability of the ΔcetA mutant to secrete proteins associated with invasion (Fig. 23C).  

Additionally, C. jejuni invasion involves host cell protein kinase activity as well as a 

subset of small Rho GTPases (Biswas et al., 2004; Hu et al., 2006; Krause-Gruszczynska 

et al., 2007), and we speculate that the ΔcetA mutant has a defect in its ability to initiate 

these signaling events.  A recent study observed that C. jejuni can migrate beneath 

(“subvade”) epithelial cells in tissue culture prior to invasion (van Alphen et al., 2008).  

However, it was observed that increased subvasion efficiency correlated with decreased 

CheW expression and decreased motility in soft agar (van Alphen et al., 2008).  If CetA 

contributes to subvasion, it would appear that it must do so independently of CetB and 

the chemotactic machinery.  Until more mechanistic details about both subvasion and the 

initiation of epithelial cell signaling events are known, the molecular mechanisms behind 

the invasion defect of the ΔcetA mutants will remain to be elucidated.   

We suggest that the finding that the ΔcetA mutant has an invasion defect, while 

the ΔcetB mutant does not, indicates that CetA may interact with another protein to 

contribute to invasion in a CetB-independent manner.  However, we have not yet ruled 

out the fact that CetA may have an inherent CetB-independent function that does not 

require an additional interaction partner.  For example, it is possible that CetA senses a 

signal directly and independently of CetB.  CetA contains a histidine residue in its short 

periplasmic loop (Chapter II), which could provide a mechanism for pH-sensing, 

although there is no evidence as yet to this effect.  Such a sensory mechanism, or any 

other that requires regions of CetA alone, would allow CetA to regulate CetB-

independent behaviors, in addition to CetB-dependent energy taxis.   
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In summary, we identified a new family of proposed bipartite energy taxis 

receptors, similar to the CetA/CetB system in C. jejuni.  Although we suggest that the 

HAMP/PAS pairs in this family transduce and energy taxis signal via a similar 

mechanism as Aer, there are clear departures from the Aer model.  Differences from the 

Aer HAMP domain primary and secondary structure, as well as the presence of highly 

conserved residues within the HAMP and proximal domains of these family members, 

suggest that the nature of the PAS-HAMP interaction within this family is 

mechanistically different from that in Aer.  Finally, the involvement of CetA, but not 

CetB, in epithelial cell invasion supports our hypothesis that the members of HAMP/PAS 

pairs may act independently of each other to control phenotypes other than energy taxis.  

Further studies are needed to determine if these bipartite family members are in fact 

energy taxis receptors, to further investigate the nature of the putative HAMP-PAS 

interaction and to determine those cellular processes in which these proteins may be 

involved outside of energy taxis.  Such studies will both expand our knowledge of these 

bipartite family members as well as provide insight regarding potential mechanisms for 

the function of other HAMP domains that may sense intracellular signals.  
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CHAPTER IV 

CONCLUSION 

 

 This work centers on the CetA/CetB energy taxis system in C. jejuni.  When these 

studies were initiated, cetA and cetB had been identified and found to be required for 

energy taxis.  Based on similarity to Aer, we predicted that CetA and CetB interact, likely 

at the CetA HAMP domain.  Further, we hypothesized that this interaction mediates the 

transduction of an energy taxis signal from CetB to CetA and, accordingly, to the CheA 

histidine kinase.  We made one additional prediction – that CetA and CetB, by virtue of 

being separate proteins (and unlike Aer), might be able to act independently of each 

other.  Specifically, we predicted that CetA and/or CetB might have other interaction 

partners through which they could influence processes other than energy taxis.  The broad 

aim of this dissertation was to characterize the CetA/CetB energy taxis system.  

Specifically, this work aimed to test two key hypotheses: 1) CetA and CetB interact 

directly to transduce an energy taxis signal; 2) CetA and CetB function independently to 

regulate responses other than energy taxis.  

In Chapter II, we initiated the molecular and biochemical characterization of CetA 

and CetB.  We determined that cetA and cetB are co-transcribed independently of the 

flagellar σ-factors, σ54 and σ28.  As there are only three known σ-factors in C. jejuni, this 

suggests that cetA and cetB are transcribed in a σ70-dependent fashion.  This implies that 

CetA and CetB may be present when there are no flagella to power energy taxis, 

consistent with the possibility that one or both may be involved in non-energy taxis
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responses.  We also determined that both CetA and CetB are membrane proteins.  CetA 

contains a helical hairpin membrane anchor, similar in topology to that of Aer.  CetB, on 

the other hand, is a peripheral membrane protein, associated with the membrane with an 

avidity suggestive of a protein-protein interaction. 

In work described in Chapter II, we determined that both CetA and CetB 

participate in larger protein complexes.  CetB forms a homodimer, as well as 

participating in larger complexes.  CetA is involved in complexes lacking CetB, one of 

which is present at higher levels in the ΔcetB mutant than wildtype.  Most pertinent to our 

hypotheses, however, CetA and CetB appear to participate in a complex together.  This 

finding, along with the fact that CetB levels are CetA dependent, supports our hypothesis 

that CetA and CetB interact. 

As described in Chapter III, we determined that the CetA and Aer HAMP 

domains differ significantly from one another in secondary structure.  This implies that if 

CetA and CetB interact, as do the Aer HAMP and PAS domains, the molecular nature of 

these interactions must differ significantly.  Based upon similarity to the HAMP domain 

of CetA, we identified several pairs of adjacent genes encoding proteins with similarity to 

CetA and CetB.  We propose that these genes represent a new family of bipartite energy 

taxis transducers. 

Within this family, there are nine HAMP domain residues that are highly 

conserved.  In an in silico model of the CetA HAMP domain, several of these residues 

are present on the same surface, indicating that they may define an interaction surface.  

As these residues are conserved within the bipartite family, and the location of this 

cluster is similar to a proposed PAS domain interaction surface on the Aer HAMP 



   

 157

domain, we propose that these conserved HAMP domain residues define a CetB 

interaction surface on CetA.   

Also as described in Chapter III, we determined that CetA, but not CetB, 

contributes to human epithelial cell invasion by C. jejuni.  This finding supports our 

hypothesis that CetA and/or CetB act independently of one other to participate in traits 

other than energy taxis.  While we have not yet defined the precise role played by CetA 

in invasion, we did determine that the invasion defect of the ΔcetA mutant lies in the 

initiation of invasion.  The initiation process involves interactions with host-cell 

receptors, likely in caveolae, followed by host cell signaling events including protein 

kinases and small Rho GTPases (Krause-Gruszczynska et al., 2007).  Additionally, C. 

jejuni may “subvade” epithelial cells prior to invasion, although this is less well-

established (van Alphen et al., 2008).  It is not yet clear which of these aspects of the 

initiation of invasion is affected by the presence or absence of CetA.  

Emerging questions and future directions 

 While this work has provided support for key hypotheses regarding the function 

of the C. jejuni CetA/CetB energy taxis system, many questions remain and several more 

have emerged as a result of our findings.  Although my experiments were limited to CetA 

and CetB, this work has implications beyond these two proteins and beyond C. jejuni.  I 

will conclude by addressing potential directions of future study with respect to CetA and 

CetB function, as well as suggesting implications of our findings beyond these two 

proteins. 

 A central remaining question regarding the CetA/CetB energy taxis system is the 

nature of the proposed CetA-CetB interaction.  Our data thus far are consistent with such 
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an interaction and suggest candidates for an interaction surface.  Particularly, we propose 

that the conserved HAMP and proximal signaling domain residues in the bipartite family 

define a CetB interaction surface.  However, alanine substitutions at only three of these 

could be tested for motility phenotypes due to growth or stability affects of the others.  

These three alanine substitutions reduced or eliminated CetA/CetB-mediated motility.  In 

order to study the rest of these conserved residues, other substitutions may be required.  I 

suggest the generation of random substitutions at each position using degenerate primers, 

and subsequent screening for motility defects.  Additionally, none of these point mutants 

affected CetB levels or membrane localization, except in the cases where CetA stability 

was also affected.  I propose that, as several residues are present at this predicted 

interaction surface, a combination of multiple mutations may be necessary to disrupt the 

CetA-CetB interaction to the point where CetB levels or localization are affected.   

The corresponding interaction surface on CetB remains completely undefined. 

The dipole moment of the predicted CetA HAMP domain structure, with a general 

negative charge at the base of the HAMP domain, might suggest a corresponding positive 

patch on the surface of CetB.  Pseudoreversion analysis of the type used with Aer may be 

quite helpful here. Specifically, random mutagenesis of CetB in the context of mutations 

in the conserved CetA HAMP and proximal signaling domains, followed by screening for 

increased motility, may allow the identification of both specific and non-specific 

suppressors.  Specific CetB suppressors of CetA HAMP point mutations would provide 

strong evidence for a direct interaction between the two, as well as the location of such an 

interaction surface on CetB. 
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A much more daunting approach to the study of CetA and CetB interactions could 

be potentially quite valuable.  Studies of Aer and other MCPs in E. coli have benefited 

tremendously from the combination of cysteine-scanning mutagenesis and in vivo 

disulfide cross-linking analysis (Amin et al., 2006, 2007; Swain and Falke, 2007; Taylor 

et al., 2007; Watts et al., 2006b; Watts et al., 2008b).  While the application of this 

approach to CetA and CetB would be tedious and logistically challenging, it could result 

in significant advances.  Within CetB, whole-protein cysteine-scanning and in vivo 

disulfide cross-linking could identify the CetB dimerization surface.  Once identified, 

these residues could be targeted for further mutagenesis to disrupt CetB dimerization.  

This would allow us to determine whether CetB dimerization is required for energy taxis, 

for membrane localization or for interaction with CetA.  Further, once these residues are 

identified, we could determine if they are conserved in Aer, which would indicated 

whether the PAS domain of Aer also dimerizes and provide the ability to potentially 

disrupt this dimerization.   

Cysteine-scanning and in vivo disulfide cross-linking analysis of the entire CetA 

protein would be more difficult and I would hesitate to start with a completely undirected 

approach, as the protein consists of 459 amino acids, compared to 165 in CetB.  Rather, I 

would begin with cysteine-scanning mutagenesis of the HAMP and proximal signaling 

domains of CetA.  These could be used for in vivo disulfide cross-linking analysis to test 

the validity of the in silico model of the CetA HAMP domain structure, as was done with 

Aer (Watts et al., 2008b).  Additionally, pairwise combinations of CetA and CetB 

cysteine mutants could be co-expressed and analyzed by in vivo disulfide cross-linking to 
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probe for interacting residues on both proteins.  Again, this suggestion entails a 

tremendous amount of work, but could provide a wealth of new information. 

CetA and CetB were both identified in large complexes other than the one that 

appears to include both proteins.  It would be very instructive to identify the components 

of all of these complexes by LC-MS/MS.  In Chapter II, we make some predictions about 

potential interaction partners of CetA, including Che proteins.  We also predict that CetB 

might interact directly with elements of the electron transport system.  Further, we predict 

that one or more of CetB’s interaction partners are involved in the association of CetB 

with the membrane.  Identification of the proteins within CetB complexes may provide 

targets for mutagenesis to test these predictions.  Further, as mentioned above, CetA 

participates in a CetB-independent complex that is present at higher levels in the ΔcetB 

mutant than wildtype.  Identification of the members of this complex may lead to some 

insight into CetB-independent functions of CetA.   

Several experiments that we would like to perform are hampered by the low 

levels of CetB in the absence of CetA.  We suspect that this is due to decreased stability 

of CetB in the absence of CetA, but that is not yet definitive.  However, based on the 

finding that the Aer N-terminal cap is important for stability (Watts et al., 2006b), and 

CetB contains no homology to this part of the Aer PAS domain, I suggest that fusion of 

the Aer N-terminal cap to CetB may result in increased stability of CetB.  This fusion 

would then provide a tool to answer some questions that currently elude us.  For example, 

a more stable variant of CetB might allow us to determine whether CetB membrane 

localization is CetA dependent.  Also, increased CetB stability might allow us to 

determine whether the high molecular weight complexes in which CetB participates are 
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present in the ΔcetA mutant.  Additionally, such a variant might be necessary to 

determine whether multiple CetA HAMP point mutations affect the localization of CetB, 

if wildtype CetB is less stable in such a background. 

Studies with Aer indicate that the PAS-HAMP interactions required for FAD 

binding by the HAMP domain may not be identical to the interactions resulting in signal 

transduction.  Specifically, signal transduction within an Aer dimer occurs from PAS 

domain to HCD domain of the same monomer, but FAD binding requires the HAMP 

domain on the cognate monomer (Watts et al., 2006a).  It would be interesting to test the 

route of signal transduction within CetA/CetB.  Can mutations in the conserved HAMP 

residues be tolerated in the same CetA monomer as an HCD mutation?  Or must they also 

be in cognate monomers?  If we identify CetA point mutations in the HAMP domain that 

abrogate the proposed FAD binding by CetB, can those mutations be tolerated in the 

same monomer as an HCD mutation?  Or, like equivalent mutations in the Aer HAMP 

domain, must they be in the cognate monomer?  Experiments such as these will aid our 

understanding of the molecular mechanism of signal transduction within CetA and 

between CetA and CetB. 

Another broad set of remaining questions relates to the cetB paralogue located 

upstream of cetA, cj1191c.  In Chapter II, I demonstrated that levels of a tagged version 

of cj1191c are not CetA-dependent.  I have also observed that overexpression of cj1191c 

leads to a severe growth defect (data not shown).  These data indicate that there are 

functional differences between CetB and Cj1191c.  However, that is extent of our 

conclusions regarding Cj1191c at this point.  Constructing an in-frame deletion mutant of 

cj1191c, as well as a double deletion strain lacking both cj1191c and cetB would allow us 
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to ask some crucial questions.  Is cj1191c involved in energy taxis? Is cj1191c involved 

in human epithelial cell invasion?  If so, this might explain why invasion is CetB-

independent, as perhaps CetA functions with Cj1191c for this trait.  Production of 

antibodies to Cj1191c would allow us to determine whether this protein dimerizes, as 

does CetB, and whether Cj1191c and CetB can form heterodimers.  Additionally, we 

could use such antibodies to ask whether Cj1191c interacts with CetA and whether the 

levels of the native protein, expressed from the chromosome, are CetA-dependent.   

Several other questions remain regarding CetA/CetB function.  Does CetB bind 

FAD, as sequence conservation would suggest?  Likely the answer to this question awaits 

purification of CetB, a non-trivial undertaking due to the protein’s avid association with 

the membrane and tendency to form inclusion bodies when overexpressed.  Regarding 

CetA, what is the mechanism underlying the invasion defect of the ΔcetA mutant?  

Answering this question may be complicated by the small magnitude of the invasion 

defect, only 5-fold.  As the initial events in C. jejuni invasion become clearer, more tools 

may be available to dissect this phenotype.  For now, experiments determining the effect 

of the ΔcetA mutant on host cell protein phosphorylation would be enlightening, as would 

experiments to determine the effects of small Rho GTPase inhibitors on the ΔcetA mutant 

compared to wildtype.  As more becomes known about the relevance and mechanism of 

“subvasion,” it may be possible to determine if there are steps in this process in which the 

ΔcetA mutant is impaired.   

Other questions less central to our main hypotheses, but important for a more 

complete understanding of CetA and CetB also remain.  Is CetA methylated?  If so, is 

methylation required for energy taxis?  A corollary to this is the question of how 
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adaptation occurs in C. jejuni generally.  As the C. jejuni CheR is pentapeptide-

independent (Perez and Stock, 2007), and CheB lacks a response regulator domain 

(Marchant et al., 2002), the system clearly deviates from the E. coli and B. subtilis 

paradigms.  Are any C. jejuni MCPs methylated?  If so, is this methylation required for 

chemotaxis, and how is methylation regulated so that it leads to appropriate adaptation?  

If not, is CheV involved in adaptation? And is this required for energy taxis by C. jejuni?  

Or is energy taxis by CetA/CetB independent of adaptation mechanisms, as is Aer-

mediated energy taxis in E. coli?  Mutants lacking CheB, CheR and CheV would be 

instructive here. 

Also, while not mentioned in the Campylobacter literature, my sequence analysis 

indicates that there is a cytoplasmic aer homologue in C. jejuni, cj1110c.  While an 

insertion in cj1110c does not lead to a motility defect similar to the ΔcetA and ΔcetB 

mutant (Hendrixson and DiRita, 2004), the possibility for redundancy is clear.  Can 

cj1110c complement the ΔcetAB mutant?  This may seem unlikely due to the phenotypes 

of a ΔcetAB mutant, where cj1110c is present, but it is possible that cj1110c is not 

expressed under our culture conditions or is not expressed to high enough levels to 

compensate for the loss of cetA and cetB.  Can the Cj1110c PAS domain interact with the 

CetA HAMP domain?  Alternatively, can CetB interact with the Cj1110c HAMP 

domain?  The Cj1110c HAMP domain was not identified as being similar to that of CetA, 

which leads me to predict that interactions of this sort between these energy taxis systems 

are unlikely, but this prediction should be tested.  If there is not cross-talk between 

Cj1110c and CetA/CetB, do they sense different signals? Are they expressed under 

different conditions?  Work on other species harboring multiple Aer homologues 
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suggests that these systems are not necessarily redundant in function (Boin and Hase, 

2007; Sarand et al., 2008). 

cetA and cetB appear to be expressed independently of the flagellar regulon, 

which is a departure from the regulation of MCPs in E. coli.  Are cetA and cetB unique in 

this regard, or are other MCPs also expressed independently of the flagellar regulon in C. 

jejuni?  Gene expression in wildtype has been compared with that of fliA and flhA 

mutants by microarray analysis (Carrillo et al., 2004).  These experiments did not identify 

any MCPs as being expressed at lower levels in these mutants (Carrillo et al., 2004).  In 

fact, the only chemotaxis gene affected by either mutation is cheY (Carrillo et al., 2004).  

FlhA acts upstream of both σ54 and σ28 regulated flagellar genes in C. jejuni (Carrillo et 

al., 2004; Hendrixson and DiRita, 2003).  If MCP and che gene expression is unaffected 

in flhA and fliA mutants, then MCPs and che genes are not co-regulated with flagella in 

this bacterium.  If MCPs and Che proteins are present in the absence of flagella, do they 

have a function other than regulation of flagellar rotation?  In other organisms, discrete 

sets of MCPs and Che proteins are involved in gene regulation (or regulation of 

macromolecular structure assembly) and do not participate in chemotaxis.  Perhaps in C. 

jejuni, one set of MCPs and Che proteins is involved in both chemotaxis and gene 

regulation.  This concept is entirely speculative at this point, but intriguing nonetheless. 

 In Chapter III, I identified a family of proteins with similarity to CetA and CetB 

and suggested that they also interact to regulate energy taxis.  However, our knowledge 

about these proteins is entirely limited to their sequences.  Are these proteins in fact 

energy taxis transducers?  Do they interact with one another?  Many of these genes were 

identified in species lacking in genetic tools.  Some of these species also encode 
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unusually high numbers of MCPs, including multiple sets of bipartite family members, 

Aer homologues and cytoplasmic Aer homologues.  Studying these proteins in their 

native background may not be practical.  While cross-species complementation does not 

always work with MCPs, including with apparent Aer homologues (Nichols and 

Harwood, 2000), attempts to use bipartite family members to complement ΔcetAB may 

prove more successful than attempts to study them by knock-out and complementation in 

their native background.  If such cross-species complementation experiments prove 

fruitful, then the ΔcetAB mutant could be used to study other family members in more 

detail.  In particular, in those strains expressing multiple HAMP/PAS pairs, I am curious 

as to whether there is any specificity within these pairs.  Or can HAMP-containing 

proteins have multiple PAS partners and vice versa?  Is there a difference in affinity 

between different HAMP/PAS proteins?  Characterization of other bipartite family 

members would help us more fully understand the nature of the proposed HAMP/PAS 

interaction. 

Some HAMP-containing members of the bipartite family represent compelling 

targets for further study because of additional functional domains.  The M. magneticum 

protein ZP_00055894 contains an additional GPDH domain.  Does this alter the 

NAD+/NADH ratio?  If so, does this occur in concert with an energy taxis response?  

The M. gryphiswaldense protein CAM75032 contains a PilZ domain.  Is energy taxis by 

this protein affected by c-di-GMP levels?  Does the PilZ domain interact with the HAMP 

domain of this protein?  There are HAMP-containing proteins in the bipartite family that 

lack apparent output domains.  Are these also involved in energy taxis?  
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 Beyond the bipartite family members, our studies raise intriguing possibilities for 

MCPs and other HAMP-containing proteins.  If HAMP domains can bind and respond to 

signals from separate proteins containing sensory domains, then might MCP sensing be 

more flexible than previously thought?  Is it possible that a given MCP could have 

multiple sensory partners, some signaling through the transmembrane helices and some 

directly through the HAMP domain?  If so, then might these partners change during 

different growth conditions, as well?  Additionally, if HAMP domain signaling is 

bidirectional, an intracellular signal might alter the conformation of an MCP such that it 

is insensitive to an extracellular signal or vice versa.  These possibilities are certainly 

raised by the M. gryphiswaldense protein CAM78133, which contains a large periplasmic 

domain in addition to the CetA-like HAMP domain.  Finally, if such sensory flexibility is 

possible with MCPs, might it also be possible with other HAMP-containing signal 

transduction proteins?  The possibility for these sorts of additional interactions with 

MCPs and other HAMP-containing proteins is compelling.  

 At first glance, the CetA/CetB system may appear to be a slight variation on the 

energy taxis transducer Aer.  However, the CetA/CetB system diverges significantly from 

Aer.  Differences between the Aer and CetA HAMP domains are clear and, based on 

them, we identified a family of CetA/CetB-like proteins, indicating that this system may 

be a widespread alternative to Aer.  Understanding the mechanism of CetA/CetB signal 

transduction will ultimately help us to understand energy taxis in other species containing 

these bipartite family members, many of which are of environmental or biotechnological 

import.  Additionally, new knowledge gained regarding CetA/CetB function may be 

applicable to other MCPs and, potentially, other HAMP-containing proteins, which are 
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numerous.  My studies and others of chemotaxis and energy taxis in a wide variety of 

microorganisms demonstrate an extensive capacity for variation within microbes.  The 

only organisms that appear to conform completely to model systems (E. coli and B. 

subtilis) are themselves or their close relatives.  Other microbes continually reveal novel 

and complex ways to regulate chemotaxis and energy taxis responses.  The CetA/CetB 

system represents just one such variation.  
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APPENDIX 

Effect of ΔcetA and ΔcetB mutations on C. jejuni gene expression 

 

As described in Chapter I, multiple instances of MCPs and Che proteins 

regulating gene expression or macromolecular structure assembly have been described.  

In most cases, these MCPs and Che proteins are dedicated to their regulatory role and do 

not participate in chemotaxis.  However, one report indicated that Aer, the energy taxis 

transducer of E. coli, also plays a role in gene expression (Pruss et al., 2003).  

Specifically, Aer was found to be involved in activating transcription of several genes 

encoding enzymes involved in anaerobic respiration, as well as the Entner-Doudoroff 

pathway, the major route of degradation of sugar acids (Pruss et al., 2003).  The authors 

of this study assert that this regulation by Aer is independent of its role in chemotaxis, 

however the data supporting this result was not published (Pruss et al., 2003).  

We sought to determine whether CetA and/or CetB might play a role in regulating 

gene expression in C. jejuni and, if so, whether this regulation is independent of their 

roles in energy taxis.  As a first approach to these questions, we used microarrays to 

examine the affect of the ΔcetA and ΔcetB mutations on gene expression, when compared 

to wildtype.  For these experiments, wildtype (DRH212), ΔcetA and ΔcetB were grown 

biphasically in MH media under microaerophilic conditions to an OD600 of 1.0.  Cells 

were collected by centrifugation and RNA isolated as described in Chapter II.  RNA 
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quality was assessed using the Agilent 2100 Bioanalyzer with the RNA 6000 Nano 

Lapchip® kit (Agilent Technologies).   

For each experiment, RNA was converted to labelled cDNA and genomic DNA 

labelled using a direct labelling method.  Genomic DNA labelled-Cy3 and cDNA from 

the RNA sample labelled with Cy5 were combined and mixed, then purified using the 

MinElute PCR purification kit from QIAGEN.  After purification the sample was 

hybridized against a C. jejuni array.  The C. jejuni array was constructed using PCR 

products from primers designed to reduce cross-hybridization.  The array contains all of 

the open reading frames in the C. jejuni 11168 genome, as well as additional open 

reading frames identified in several other strains, including 81-176, our background 

strain.  After hybridization, the slides were washed and dried. 

Microarray slides were scanned using a GMS 418 Array Scanner on Cy3 and Cy5 

channels.  BlueFuse For Microarrays (BlueGnome, Version 2.0), was used to quantify 

microarray images.  Bayesian statistical models were used to automatically generate a 

confidence estimate in each result. These estimates are used to assign a color coded 

confidence flag to each spot and to combine replicate data.  Image alignment was carried 

out using BlueFuse Image Aligner (BlueGnome, Version 1.0).  These arrays contained 

duplicate genes on an array, thus an additional option of data ‘Fusing’ was carried out 

where averaging out occurs.  This function aims to ignore data that are highly skewed, 

thus lessening the effect of that particular spot on the final signal intensity ratio.  

GeneSpring analysis software (Silicon Genetics, Version 7.1), was used to analyze 

microarray data.  Each experiment had a normalization procedure carried out, dividing 

each gene in the selected sample(s) by the mean of that gene’s measurement in the 
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control sample.  Using this data set, a t-test was carried out with a 5% null hypothesis.  

Genes whose expression levels were significantly different between samples according to 

this t-test, and whose fold-induction or fold-decrease is greater than or equal to a cut-off 

value of 1.5 are listed.   

The results of these experiments are presented in Tables 5-10.  217 and 144 genes 

are downregulated in the ΔcetA and ΔcetB mutants, respectively, compared to wildtype 

(Tables 5 and 7).  The largest class of genes downregulated in these mutants compared to 

wildtype are known or predicted to be involved in membrane transport, including iron 

transport.  Both mutants also downregulate three predicted transcriptional regulators, 

providing a potential mechanism for the effects of gene expression observed.  Several 

components of the natural transformation apparatus are also downregulated in the ΔcetA 

mutant.  77 and 86 genes are upregulated in the ΔcetA and ΔcetB mutants, respectively, 

compared to wildtype (Tables 6 and 8).  Most of these genes are involved in metabolism, 

electron transport and biosynthetic processes.  Notably, several cytochromes are 

upregulated in both mutants compared to wildtype.   

Differences in gene expression between the ΔcetA and ΔcetB mutants were 

observed, but these gene sets were smaller.  50 genes were downregulated in the ΔcetB 

mutant compared to the ΔcetA mutant (Table 10).  These included several flagella-

associated genes, although the ΔcetB mutant is fully motile.  Only 23 genes were 

upregulated in the ΔcetB mutant compared to the ΔcetA mutant, with transport proteins 

the largest class represented here (Table 11).  

In order to verify the effects on gene expression observed by microarray analysis, 

we used qRT-PCR to test the expression of several representative genes.  This also  
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Table 6. Genes downregulated in the ΔcetA mutant compared to wildtype 

 
orf ida gene name fold-decrease annotation/updated functional informationb 

cj1190c cetA 17.54385965 probable MCP-domain signal transduction protein 

cj0975  9.523809524 probable outer-membrane protein; similar to OM proteins 
involved in specific protein secretion/activation  

cj1615 chuB 6.993006993 probable hemin uptake system permease protein 
cj1614 chuA 5.988023952 hemin uptake system outer membrane receptor 

cj1617 chuD 5 probable hemin uptake system periplasmic hemin-binding 
protein 

cj0246c  4.901960784 probable MCP-domain signal transduction protein 
cj0291c glpT' 4.405286344 glycerol-3-phosphate transporter, possible pseudogene 
cj1582c  4.166666667 probable peptide ABC-transport system permease protein 
cj0613 pstS 4.032258065 possible periplasmic phosphate binding protein 
cj0517 crcB 3.816793893 probable integral membrane protein 
cj0057  3.802281369 possible periplasmic protein 

cj1470c ctsF 3.731343284 
probable type II protein secretion system F protein 
pseudogene/involved in natural transformation (Wiesner et al., 
2003) 

cj0044c  3.6900369 unknown 

cj1471c ctsE 3.424657534 probable type II protein secretion system E protein/involved in 
natural transformation (Wiesner et al., 2003) 

cj0300c modC 3.389830508 probable molybdenum transport ATP-binding protein 
cj0174c  3.322259136 possible iron-uptake ABC transport system permease protein 
cj0046  3.236245955 probable transmembrane transport protein pseudogene 

cj1211  3.144654088 probable integral membrane protein, 33.9% identity to HP1361 
(called competence locus E (comE3)) 

cj0614 pstC 3.115264798 probable phosphate transport system permease protein 
cj1385 katA 3.03030303 catalase 
cj1555c  2.985074627 unknown 
cj0999c  2.88184438 probable integral membrane protein 
cj1616 chuC 2.873563218 probable hemin uptake system ATP-binding protein 
cj1283 ktrB 2.857142857 probable K+ uptake protein 
cj1613c chuZ 2.801120448 unknown/heme oxygenase (Ridley et al., 2006) 
cj1590c  2.762430939 probable peptide ABC-transport system ATP-binding protein 
cj0741  2.680965147 unknown 

cj0571  2.645502646 
possible transcriptional regulator; similar in C-terminus to two 
hypothetical DeoR family transcriptional regulators from E. 
coli 

cj1436c  2.645502646 probable aminotransferase/located in capsule biosynthesis 
locus (Karlyshev et al., 2000) 

cj1330  2.631578947 unknown, some similarity to predicted oxidoreductases  
cj0580c  2.610966057 probable oxidoreductase 
cj0616 pstB 2.597402597 probable phosphate transport ATP-binding protein 

cj0263 zupT 2.590673575 probable integral membrane protein/metal permease 
(Weingarten et al., 2008) 

cj1453c  2.570694087 unknown 
cj0563  2.557544757 unknown 
cj0793 flgS 2.551020408 probable signal transduction histidine kinase/σ54-dependent 
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two-component system kinase (Hendrixson and DiRita, 2003; 
Wosten et al., 2004) 

cj1587c  2.551020408 probable ABC transporter 
cj0241c  2.544529262 possible iron-binding protein 
cj1254  2.481389578 unknown 
cj1530  2.469135802 probable ATP/GTP-binding protein 

cj1586 cgb 2.421307506 probable bacterial hemoglobin/single domain globin involved 
in nitrosative stress response (Elvers et al., 2004) 

cj0304c bioC 2.403846154 possible biotin synthesis protein 
cj0058  2.398081535 possible periplasmic protein 
cj1669c  2.398081535 probable ATP-dependent DNA ligase 

cj0262c docC 2.375296912 probable methyl-accepting chemotaxis signal transduction 
protein 

cj0865 dsbB 2.341920375 possible disulfide oxidoreductase 
cj1268c  2.325581395 unknown 
cj1040c  2.314814815 probable transmembrane transport protein 
cj1212c  2.257336343 possible polysaccharide modification protein 
cj0430  2.252252252 probable integral membrane protein 

cj1538c  2.242152466 possible anion-uptake ABC-transport system ATP-binding 
protein 

cj0341c  2.232142857 possible integral membrane protein 
cj1622 ribD 2.232142857 probable riboflavin-specific deaminase 
cj1647 iamA 2.227171492 probable ABC transport system ATP-binding protein 
cj1583c  2.222222222 probable peptide ABC-transport system permease protein 
cj0340  2.222222222 possible nucleoside hydrolase 
cj1187c arsB 2.212389381 possible arsenical pump membrane protein 
cj1551c  2.202643172 probable type I restriction enzyme S protein 
cj0680c uvrB 2.188183807 probable excinuclease ABC subunit B 
cj0937  2.169197397 probable integral membrane protein 
cj0836 ogt 2.164502165 probable methylated-DNA--protein-cysteine methyltransferase 
cj0444  2.150537634 probable tonB-denpendent outer membrane receptor 

cj0082 cioB 2.145922747 
probable cytochrome bd oxidase subunit II/cyanide 
independent oxidase, not cytochrome bd type (Jackson et al., 
2007) 

cj1179c fliR 2.136752137 probable flagellar biosynthetis protein 
cj1549c  2.127659574 probable type I restriction enzyme R protein 
cj1588c  2.127659574 probable transmembrane transport protein 

cj0523  2.118644068 Cj0523, possible membrane protein, may be fragment of 
pseudogene 

cj1389 dcuC 2.114164905 
probable transmembrane transport protein 
pseudogene/involved in efflux of succinate (Hofreuter et al., 
2006) 

cj1713  2.114164905 unknown 
cj0727  2.114164905 probable periplasmic solute-binding protein 
cj1241  2.114164905 probable transmembrane transport protein 
cj0301c modB 2.109704641 probable molybdenum transport system permease protein 
cj1000  2.096436059 probable transcriptional regulator, LysR family 
cj1581c  2.092050209 probable peptide ABC-transport system ATP-binding protein 
cj1276c  2.087682672 probable integral membrane protein 
cj1467  2.083333333 unknown 
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cj0692c  2.083333333 possible membrane protein 
cj1544c  2.074688797 probable integral membrane protein 
cj1628 exbB2 2.036659878 probable exbB/tolQ family transport protein 
cj1113  2.012072435 unknown 
cj1716c leuD 2.008032129 probable 3-isopropylmalate dehydratase small subunit 

cj1039 murG 2 
possible UDP-N-acetylglucosamine--N-acetylmuramyl-
(pentapeptide) pyrophosphoryl-undecaprenol N-
acetylglucosamine transferase 

cj0888c  1.996007984 ABC transport system ATP-binding protein 
cj1630 tonB2 1.988071571 probable tonB transport protein 
cj0289c peb3 1.976284585 major antigenic peptide  

cj0920c  1.968503937 
probable ABC-type amino-acid transporter permease 
protein/involved in aspartate and glutamate transport (Reid et 
al., 2008b) 

cj0308c bioD 1.968503937 possible dethiobiotin synthetase 

cj1584c  1.960784314 probable peptide ABC-transport system periplasmic peptide-
binding protein 

cj0620  1.953125 unknown 
cj1556  1.945525292 unknown 

cj0175c  1.926782274 possible iron-uptake ABC transport system periplasmic iron-
binding protein 

cj1383c  1.915708812 unknown 

cj0017c dsbI 1.915708812 probable ATP/GTP binding protein/involved in disulfide bond 
formation (Raczko et al., 2005) 

cj0862 pabB 1.915708812 probable para-aminobenzoate synthase component I 
cj1384c  1.901140684 unknown 

cj1472c ctsX 1.890359168 probable membrane protein/involved in natural transformation 
(Wiesner et al., 2003) 

cj1676 murB 1.886792453 possible UDP-N-acetylenolpyruvoylglucosamine reductase 

cj1146c waaV 1.883239171 possible glucosyltransferase/los biosynthesis (Parker et al., 
2005) 

cj1275c  1.865671642 probable periplasmic protein 
cj1095  1.865671642 probable integral membrane protein 
cj0684 priA 1.865671642 probable primosomal protein N' 
cj0849c  1.865671642 unknown 
cj0850c  1.862197393 transmembrane transport protein 
cj0606  1.862197393 probable periplasmic protein 
cj0323  1.858736059 unknown 
cj0302c  1.858736059  unknown 
cj1218c ribA 1.858736059 probable riboflavin synthase alpha chain 
cj1646 iamB 1.85528757 possible ABC transport system permease protein 
cj0464 recG 1.848428835 probable ATP-dependent DNA helicase 
cj0690c  1.834862385 possible restriction/modification enzyme 
cj0377  1.834862385 probable ATPase 
cj0198c  1.818181818 unknown 
cj0825  1.818181818 possible processing peptidase 
cj0495  1.818181818 unknown 
cj1722c  1.814882033 unknown 
cj0247c  1.814882033 unknown 
cj0033  1.811594203 probable integral membrane protein 
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cj0826  1.798561151 probable integral membrane protein 
cj0792  1.798561151 unknown 
cj1068  1.798561151 probable integral membrane protein 
cj1651c map 1.792114695 probable methionine aminopeptidase 
cj0951c  1.792114695 probable MCP-domain signal transduction protein 
cj0313  1.782531194 probable integral membrane protein 
cj1257c  1.773049645 possible efflux pump 
cj0335 flhB 1.769911504  probable flagellar biosynthetic protein 
cj0524  1.745200698 unknown 
cj1560  1.739130435 probable membrane protein 
cj1661  1.730103806 possible ABC transport system permease protein 
cj0546  1.727115717 unknown 
cj0339  1.724137931 probable transmembrane transport protein 
cj1634c aroC 1.709401709 probable chorismate synthase 
cj1547  1.700680272 unknown 

cj1712  1.686340641 unknown, 40.9% identity to HP1530 (called purine nucleoside 
phosphorylase (punB)) 

cj1452  1.686340641 possible integral membrane protein 
cj0651  1.680672269 possible integral membrane protein 

cj0634 dprA 1.677852349 Unknown/ involved in natural transformation (Takata et al., 
2005) 

cj1225  1.675041876 unknown 
cj0904c  1.675041876 probable RNA methylase 
cj0295  1.672240803 possible acetyltransferase 

cj0486 fucP 1.672240803 probable sugar transporter/involved in fucose transport 
(Saidijam et al., 2005) 

cj0312 pth 1.669449082 probable peptidyl-tRNA hydrolase 
cj1285c  1.669449082 unknown 
cj1442c  1.669449082 unknown 
cj1731c ruvC 1.666666667 probable crossover junction endodeoxyribonuclease 

cj0238  1.663893511 probable integral membrane protein/putative mechanosensitive 
ion channel (Reid et al., 2008b) 

cj1237c  1.661129568 possible phosphatase 
cj0733  1.652892562 unknown 
cj1562  1.650165017 unknown 
cj0728  1.650165017 probable periplasmic protein 
cj1663  1.647446458 probable ABC transport system ATP-binding protein 
cj1352 ceuB 1.644736842 probable enterochelin uptake permease 
cj0863c xerD 1.642036125 probable DNA recombinase 
cj1664  1.642036125 possible periplasmic thioredoxin 
cj1263 recR 1.639344262 probable recombination protein 
cj1246c uvrC 1.639344262 probable excinuclease ABC subunit C 
cj0390  1.639344262 possible transmembrane protein 
cj1042c  1.62601626 probable transcriptional regulatory protein, AraC family 
cj1038  1.62601626 probable cell division/peptidoglycan biosynthesis protein 
cj1239 pdxA 1.623376623 probable pyridoxal phosphate biosynthetic protein 
cj0325 xseA 1.620745543 probable exodeoxyribonuclease VII large subunit 
cj0376  1.620745543 possible periplasmic protein 
cj1393 metC' 1.618122977 probable cystathionine beta-lyase 
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cj1648  1.618122977 possible ABC transport system periplasmic substrate-binding 
protein 

cj0593c  1.615508885 probable integral membrane protein 

cj0081 cioA 1.615508885 
probable cytochrome bd oxidase subunit I/ cyanide 
independent oxidase, not cytochrome bd type (Jackson et al., 
2007) 

cj1633  1.615508885 unknown 
cj0860  1.607717042 probable integral membrane protein 

cj1474c ctsD 1.602564103 probable type II protein secretion system D protein/involved in 
natural transformation (Wiesner et al., 2003) 

cj0272  1.6 unknown 

cj0031  1.597444089 probable DNA restriction/modification enzyme, N-terminal 
half 

cj1532  1.592356688 possible periplasmic protein 

cj0861c pabA 1.592356688 probable para-aminobenzoate synthase glutamine 
amidotransferase component II 

cj1311 pseF 1.592356688 
probable acylneuraminate cytidylyltransferase (CMP-N-
acetylneuraminic acid synthetase)/involved in flagella 
glycosylation (McNally et al., 2006a) 

cj1687  1.592356688 possible efflux protein 
cj0580c  1.587301587 probable integral membrane protein 
cj1563c  1.582278481 probable transcriptional regulator, MerR family 
cj0451 rep 1.582278481 probable ribulose-phosphate 3-epimerase 
cj0654c  1.57480315 probable transmembrane transport protein pseudogene 
cj0179 exbB1 1.569858713 biopolymer transport protein 
cj0820c fliP 1.567398119 probable flagellar biosynthesis protein 
cj1684c  1.567398119 probable transmembrane transport protein 
cj0309c  1.564945227 probable efflux protein 
cj1169c  1.560062402 probable periplasmic protein 
cj0500  1.560062402 probable ATP/GTP binding protein 
cj0837c  1.560062402 unknown 

cj1028c ctsW 1.557632399 possible purine/pyrimidine phosphoribosyltransferase/involved 
in natural transformation (Wiesner et al., 2003) 

cj1552c  1.557632399 unknown 
cj0453 thiC 1.557632399 probable thiamin biosynthesis protein 
cj0852c  1.557632399 possible integral membrane protein 
cj0005c  1.550387597 possible molybdenum containing oxidoreductase 
cj1089c  1.550387597 unknown 
cj0253  1.547987616 unknown 

cj0890c  1.545595054 

probable sensory transduction transcriptional regulator, 
response regulator receiver domain/response regulator  
involved in oxidative stress resistance (reviewed in (Murphy et 
al., 2006)) 

cj0851c  1.543209877 probable integral membrane protein 
cj0827 truA 1.543209877 probable tRNA pseudouridine synthase 
cj1379 selB 1.543209877 probable selenocysteine-specific elongation factor 
cj1278c  1.540832049 unknown 
cj1629 exbD2 1.538461538 probable exbD/tolR family transport protein 
cj0305c  1.529051988 unknown 
cj1032 cmeE 1.529051988 possible membrane fusion component of efflux system 
cj0560  1.526717557 probable integral membrane protein 
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cj0889c  1.526717557 
probable sensory transduction histidine kinase/histidine kinase  
involved in oxidative stress resistance (reviewed in (Murphy et 
al., 2006)) 

cj1649  1.526717557 probable lipoprotein 
cj1717c leuC 1.522070015 probable 3-isopropylmalate dehydratase large subunit 
cj1277c  1.522070015 probable ABC transporter ATP-binding protein 
cj0353c  1.522070015 probable phosphatase 
cj0736  1.519756839 unknown 
cj0905c alr 1.519756839 probable alanine racemase 
cj0243c  1.517450683 unknown 
cj0378c  1.515151515 probable integral membrane protein 
cj1546  1.515151515 unknown 
cj0619  1.515151515 probable integral membrane protein 
cj0250c  1.510574018 probable transmembrane transport protein 
cj0585 folP 1.510574018 probable dihydropteroate synthase 
cj1260c dnaJ 1.503759398 probable chaperone 
cj0099 birA 1.503759398 possible biotin--[acetyl-CoA-carboxylase] synthetase 
cj1457c  1.501501502 unknown 

 

aorf id’s in this table and all subsequent tables are taken from C. jejuni 11168 genome 
sequence (Parkhill et al., 2000).  
bC. jejuni 11168 gene annotations are given (Parkhill et al., 2000).  If more recent 
functional information is available, that is provided with references.  This applies to this 
table and all subsequent microarray tables.  
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Table 7. Genes upregulated in the ΔcetA mutant compared to wildtype 
 

orf id gene name fold-induction annotation/updated functional information 

cj1199  3.494 probable iron/ascorbate-dependent oxidoreductase 
cj1200  3.446 probable periplasmic protein 
cj0569  3.16 unknown 
cj0681  2.89 unknown 

cj1201 metE 2.757 probable 5-methyltetrahydropteroyltriglutamate--homocysteine 
methyltransferase 

cj0491 rpsL 2.092 30S ribosomal protein S12 
cj0425  2.042 probable periplasmic protein 
cj0781 napG 2.032 probable ferredoxin 
cj1611 rpsT 2.024 probable 30S ribosomal protein S20 
cj0347 trpF 2.003 probable N-(5'-phosphoribosyl)anthranilate isomerase 
cj0225  1.989 probable acetyltransferase 
cj0348 trpB 1.964 probable tryptophan synthase beta chain 
cj0739  1.945 unknown 
cj0482 uxaA' 1.898 possible altronate hydrolase N-terminus 
cj0331c  1.895 unknown 
cj0156c  1.887 unknown 
cj1513c  1.868 possible periplasmic protein 
cj0748  1.862 unknown 
cj0180 exbD1 1.859 biopolymer transport protein 
cj0913c hupB 1.858 DNA-binding protein HU homologue 
cj1083c  1.84 possible nuclease 
cj0771c  1.798 probable periplasmic protein 
cj1727c metY 1.797 possible O-acetylhomoserine (thiol)-lyase 

cj1520  1.766 unknown/removed from new annotation due to presence of 
CRISPR sequences (Gundogdu et al., 2007) 

cj1138  1.764 probable galactosyltransferase 
cj0926  1.762 possible membrane protein 
cj1265c hydC 1.762 probable Ni/Fe-hydrogenase B-type cytochrome subunit 
cj0874c  1.749 possible cytochrome C 
cj0073c  1.734 unknown 
cj0876c  1.723 probable periplasmic protein 
cj1186c petA 1.715 probable ubiquinol-cytochrome C reductase iron-sulfur subunit 

cj0922c pebC 1.694 
probable ABC-type amino-acid transporter ATP-binding 
protein/component of PEB1 aspartate and glutamate ABC 
transporter (Leon-Kempis Mdel et al., 2006) 

cj1488c ccoQ 1.687 cb-type cytochrome C oxidase subunit IV 
cj0450c rpmB 1.686 50S ribosomal protein L28 
cj0770c  1.679 probable periplasmic protein 
cj0345 trpE 1.671 possible anthranilate synthase component I 
cj1115c  1.668 probable membrane protein 
cj0346 trpD 1.664 probable anthranilate synthase component II 

cj1294 pseC 1.662 probable aminotransferase/involved in flagella glycosylation 
(Obhi and Creuzenet, 2005) 

cj0095 rpmA 1.662 50S ribosomal protein L27 
cj0537 oorB 1.655 probable OORB subunit of 2-oxoglutarate:acceptor 
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oxidoreductase 

cj0226 argB 1.647 probable acetylglutamate kinase 

cj1185c petB 1.638 probable ubiquinol-cytochrome C reductase cytochrome B 
subunit 

cj1339c flaA 1.632 flagellin A 

cj0512 purC 1.631 probable phosphoribosylaminoimidazole-succinocarboxamide 
synthase 

cj1267c hydA 1.627 probable Ni/Fe-hydrogenase small subunit 
cj1087c  1.626 possible periplasmic protein 
cj0448c  1.625 probable MCP-type signal transduction protein 
cj1056c  1.609 unknown 

cj0536 oorA 1.608 probable OORA subunit of 2-oxoglutarate:acceptor 
oxidoreductase 

cj0526c fliE 1.604 probable flagellar hook-basal body complex protein 
cj0265c  1.603 probable cytochrome C-type heme-binding periplasmic protein 
cj0459c  1.585 unknown 

cj0274 lpxA 1.581 probable acyl-[acyl-carrier-protein]--UDP-N-
acetylglucosamine O-acyltransferase 

cj1337  1.58 unknown 
cj1500  1.57 probable integral membrane protein 
cj1063  1.562 possible acetyltransferase 
cj0422c  1.561 unknown 
cj1690c rpsE 1.558 30S ribosomal protein S5 
cj1505c  1.556 unknown 
cj0621  1.549 unknown 
cj0476 rplJ 1.544 probable 50S ribosomal protein L10 

cj1290c accC 1.543  probable biotin carboxylase (subunit of acetyl-CoA 
carboxylase (EC 6.4.1.2)) 

cj1338c flaB 1.542 flagellin B 
cj0588 tlyA 1.54 possible hemolysin 
cj1595 rpoA 1.54 probable DNA-directed RNA polymerase alpha chain 
cj0012c  1.54 non-heme iron protein 
cj0933c pycB 1.536 possible pyruvate carboxylase B subunit 
cj1696c rplX 1.529 50S ribosomal protein L24 
cj0409 frdA 1.528 probable fumarate reductase flavoprotein subunit 
cj0980  1.523 possible peptidase, 
cj0437 sdhA 1.523 probable succinate dehydrogenase flavoprotein subunit 
cj0408 frdC 1.519 probable fumarate reductase cytochrome B subunit 

cj1639  1.517 unknown/involved in iron-sulfur cluster biogenesis (Reid et al., 
2008a) 

cj1698 rpsQ 1.507  30S ribosomal protein S17 
cj0566  1.505 unknown 
cj1668  1.502 probable periplasmic protein 
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Table 8. Genes downregulated in the ΔcetB mutant compared to wildtype 
 

orf id gene name fold-decrease annotation/updated functional information 

cj0975  7.462686567 probable outer-membrane protein 
cj1614 chuA 5.376344086 hemin uptake system outer membrane receptor 
cj0046  5.208333333 probable transmembrane transport protein pseudogene 
cj1615 chuB 4.95049505 probable hemin uptake system permease protein 

cj0793 flgS 4.608294931 
probable signal transduction histidine kinase/σ54-dependent two-
component system kinase (Hendrixson and DiRita, 2003; 
Wosten et al., 2004) 

cj0999c  4.081632653 probable integral membrane protein 
cj0246c  3.521126761 probable MCP-domain signal transduction protein 
cj1385 katA 3.460207612 catalase 
cj0741  3.367003367 unknown 
cj1582c  3.095975232 probable peptide ABC-transport system permease protein 
cj0580c  3.039513678 probable oxidoreductase 
cj0727  3.03030303 probable periplasmic solute-binding protein 

cj1211  2.93255132 probable integral membrane protein, 33.9% identity to HP1361 
(called competence locus E (comE3)) 

cj0291c glpT' 2.93255132 glycerol-3-phosphate transporter, possible pseudogene 
cj1467  2.915451895 unknown 
cj0041 fliK 2.865329513 unknown/flagella hook length control gene (Kamal et al., 2007) 

cj1471c ctsE 2.857142857 probable type II protein secretion system E protein/involved in 
natural transformation (Wiesner et al., 2003) 

cj0243c  2.824858757 unknown 
cj0937  2.645502646 probable integral membrane protein 
cj0613 pstS 2.564102564 possible periplasmic phosphate binding protein 
cj1669c  2.557544757 probable ATP-dependent DNA ligase 
cj0334 ahpC 2.469135802 probable alkyl hydroperoxide reductase 
cj1613c chuZ 2.469135802 unknown/heme oxygenase (Ridley et al., 2006) 

cj1389 dcuC 2.444987775 probable transmembrane transport protein pseudogene/involved 
in efflux of succinate (Hofreuter et al., 2006) 

cj1039 murG 2.433090024 
possible UDP-N-acetylglucosamine--N-acetylmuramyl-
(pentapeptide) pyrophosphoryl-undecaprenol N-
acetylglucosamine transferase 

cj1555c  2.415458937 unknown 
cj1453c  2.398081535 unknown 

cj1586 cgb 2.392344498 probable bacterial hemoglobin/single domain globin involved in 
nitrosative stress response (Elvers et al., 2004) 

cj1581c  2.386634845 probable peptide ABC-transport system ATP-binding protein 
cj0174c  2.358490566 possible iron-uptake ABC transport system permease protein 
cj0792  2.352941176 unknown 

cj1617 chuD 2.352941176 probable hemin uptake system periplasmic hemin-binding 
protein 

cj0428  2.331002331 unknown 
cj0563  2.325581395 unknown 
cj0616 pstB 2.325581395 probable phosphate transport ATP-binding protein 
cj1530  2.320185615 probable ATP/GTP-binding protein 
cj1393 metC' 2.304147465 probable cystathionine beta-lyase 
cj0058  2.304147465 possible periplasmic protein 
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cj1000  2.288329519 probable transcriptional regulator, LysR family  
cj0571  2.283105023 possible transcriptional regulator, DeoR family 
cj1283 ktrB 2.283105023 probable K+ uptake protein 

cj0629 capA 2.232142857 possible lipoprotein/autotransporter involved in adherence 
(Ashgar et al., 2007) 

cj1551c  2.222222222 probable type I restriction enzyme S protein 
cj1676 murB 2.222222222 possible UDP-N-acetylenolpyruvoylglucosamine reductase 
cj0057  2.197802198 possible periplasmic protein 

cj0262c docC 2.197802198 probable methyl-accepting chemotaxis signal transduction 
protein 

cj1040c  2.192982456 probable transmembrane transport protein 
cj0716  2.178649237 probable phospho-2-dehydro-3-deoxyheptonate aldolase 
cj1169c  2.178649237 probable periplasmic protein 
cj1618c  2.164502165 unknown 
cj0849c  2.164502165 unknown 

cj0263 zupT 2.127659574 probable integral membrane protein/metal permease 
(Weingarten et al., 2008) 

cj1275c  2.118644068 probable periplasmic protein 
cj0523  2.114164905 possible membrane protein, may be fragment of pseudogene 

cj0861c pabA 2.109704641 probable para-aminobenzoate synthase glutamine 
amidotransferase component II 

cj0850c  2.074688797 transmembrane transport protein 
cj1587c  2.057613169 probable ABC transporter 
cj1394  2.057613169 probable fumarate lyase 
cj1268c  2.040816327 unknown 
cj0495  2.036659878 unknown 
cj0692c  2.032520325 possible membrane protein 
cj0620  2.008032129 unknown 
cj0715  1.976284585 transthyretin-like periplasmic protein 
cj1622 ribD 1.968503937 probable riboflavin-specific deaminase 
cj1254  1.960784314 unknown 
cj0289c peb3 1.953125 major antigenic peptide 
cj1095  1.949317739 probable integral membrane protein 
cj0524  1.937984496 unknown 
cj0593  1.915708812 probable integral membrane protein 
cj1729c flgE2 1.912045889 probable flagellar hook subunit protein 
cj1113  1.908396947 unknown 
cj0736  1.883239171 unknown 
cj1373  1.872659176 probable integral membrane protein 
cj0353c  1.834862385 probable phosphatase 
cj0198c  1.824817518 unknown 

cj0175c  1.821493625 possible iron-uptake ABC transport system periplasmic iron-
binding protein 

cj0340  1.811594203 possible nucleoside hydrolase 

cj1025c flgQ 1.811594203 Unknown/flagella-associated protein with unknown function 
(Sommerlad and Hendrixson, 2007) 

cj1263 recR 1.805054152 probable recombination protein 
cj1381  1.798561151 probable lipoprotein 
cj0500  1.788908766 probable ATP/GTP binding protein 
cj0762c aspB 1.788908766 probable aspartate aminotransferase 
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cj1650  1.776198934 unknown 
cj1344c  1.773049645 probable glycoprotease 
cj1646 iamB 1.766784452 possible ABC transport system permease protein 
cj0557c  1.757469244 probable integral membrane protein 
cj1548c  1.754385965 probable type I restriction enzyme R protein 
cj0888c  1.754385965 ABC transport system ATP-binding protein 
cj1716c leuD 1.751313485 probable 3-isopropylmalate dehydratase small subunit 
cj0464 recG 1.742160279 probable ATP-dependent DNA helicase 
cj1382c fldA 1.736111111 flavodoxin 
cj0323  1.724137931 unknown 
cj0826  1.715265866 probable integral membrane protein 
cj1563c  1.694915254 probable transcriptional regulator, MerR family 
cj1560  1.683501684 probable membrane protein 
cj1660  1.675041876 probable integral membrane protein 

cj0444  1.669449082 probable tonB-denpendent outer membrane receptor 
pseudogene 

cj1538c  1.666666667 possible anion-uptake ABC-transport system ATP-binding 
protein 

cj1630 tonB2 1.661129568 probable tonB transport protein 
cj1259 porA 1.658374793 major outer membrane protein (MOMP) 
cj1556  1.655629139 unknown 
cj1547  1.652892562 unknown 
cj1509c fdhC 1.650165017 probable formate dehydrogenase, cytochrome B subunit 
cj1634c aroC 1.650165017 probable chorismate synthase 
cj1544c  1.647446458 probable integral membrane protein 
cj0003 gyrB 1.63132137 probable DNA gyrase subunit B 
cj0600  1.63132137 unknown 
cj525c pbpB 1.628664495 probable penicillin-binding protein 
cj0043 flgE 1.62601626 probable flagellar hook protein 
cj1651c  1.618122977 probable methionine aminopeptidase 
cj1341c  1.615508885 unknown 

cj0938c aas 1.612903226 probable 2-acylglycerophosphoethanolamine acyltransferase / 
acyl-acyl carrier protein synthetase 

cj0453 thiC 1.612903226 probable thiamin biosynthesis protein 
cj1276c  1.610305958 probable integral membrane protein 
cj1295  1.610305958 unknown 
cj0113 pal 1.607717042 peptidoglycan associated lipoprotein  
cj1466 flgK 1.607717042 possible flagellar hook-associated protein 
cj0599  1.607717042 probable periplasmic protein 
cj0067  1.605136437 unknown 
cj1187c arsB 1.602564103 possible arsenical pump membrane protein 
cj1242  1.594896332 unknown 
cj0548 fliD 1.592356688 probable flagellar hook-associated protein 
cj0002 dnaN 1.584786054 probable DNA polymerase III 
cj1369  1.582278481 probable transmembrane transport protein 

cj1648  1.577287066 possible ABC transport system periplasmic substrate-binding 
protein 

cj0698 flgG 1.57480315 probable flagellar basal-body rod protein 
cj0946  1.572327044 probable lipoprotein 
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cj0313  1.572327044 probable integral membrane protein 
cj1284 ktrA 1.569858713 probable K+ uptake protein 
cj0680c uvrB 1.569858713 probable excinuclease ABC subunit B 

cj0082 cioB 1.567398119 probable cytochrome bd oxidase subunit II/cyanide independent 
oxidase, not cytochrome bd type (Jackson et al., 2007) 

cj1713  1.557632399 unknown 

cj1474c ctsD 1.552795031 probable type II protein secretion system D protein/involved in 
natural transformation (Wiesner et al., 2003) 

cj1532  1.547987616 possible periplasmic protein 
cj0862c pabB 1.547987616 probable para-aminobenzoate synthase component I 
cj0024 nrdA 1.547987616 ribonucleoside-diphosphate reductase alpha chain 
cj0948c  1.547987616 possible transmembrane transport protein 
cj1481c  1.545595054 possible helicase 
cj0099 birA 1.538461538 possible biotin--[acetyl-CoA-carboxylase] synthetase 
cj1285c  1.53609831 unknown 
cj1588c  1.53609831 probable transmembrane transport protein 
cj0956c thdF 1.506024096 probable thiophene and furan oxidation protein 
cj1663  1.503759398 probable ABC transport system ATP-binding protein 
cj0589 ribF 1.501501502 possible riboflavin kinase/FMN adenylyltransferase 
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Table 9. Genes upregulated in the ΔcetB mutant compared to wildtype 
 

orf id gene name fold-induction annotation/updated functional information 

cj1422c  4.76 possible sugar transferase 
cj1199  3.65 probable iron/ascorbate-dependent oxidoreductase 
cj1200  3.55 probable periplasmic protein 

cj1201 metE 2.792 probable 5-methyltetrahydropteroyltriglutamate--
homocysteine methyltransferase 

cj0181 tonB1 2.65 possible tonB transport protein 
cj0681  2.545 unknown 
cj0225  2.49 probable acetyltransferase 
cj0347 trpF 2.483 probable N-(5'-phosphoribosyl)anthranilate isomerase 
cj0566  2.389 unknown 
cj0007 gltB 2.293 probable glutamate synthase (NADPH) large subunit 
cj0348 trpB 2.271 probable tryptophan synthase beta chain 
cj0874c  2.155 possible cytochrome C 
cj0987c  2.151 probable integral membrane protein 
cj1727c metY 2.136 possible O-acetylhomoserine (thiol)-lyase 
cj1087c  2.132 possible periplasmic protein 
cj1004  2.052 probable periplasmic protein 
cj0425  2.046 probable periplasmic protein 
cj0818  2.013 probable lipoprotein 
cj0226 argB 1.881 probable acetylglutamate kinase 
cj1188c gidA 1.879 glucose inhibited division protein A homologue 
cj1229 cbpA 1.874 probable curved-DNA binding protein 
cj0770c  1.871 probable periplasmic protein 

cj0922c pebC 1.869 
probable ABC-type amino-acid transporter ATP-binding 
protein/component of PEB1 aspartate and glutamate ABC 
transporter (Leon-Kempis Mdel et al., 2006) 

cj0345 trpE 1.858 possible anthranilate synthase component I 
cj1265c hydC 1.805 probable Ni/Fe-hydrogenase B-type cytochrome subunit 
cj1138  1.791 probable galactosyltransferase 
cj1726c metA 1.787 probable homoserine O-succinyltransferase 

cj1139c wlaN 1.772 probable galactosyltransferase/involved in los biosynthesis, 
phase variable (Linton et al., 2000) 

cj1600 hisH 1.757 probable amidotransferase 
cj0423  1.747 probable integral membrane protein 
cj1029c mapA 1.746 probable lipoprotein 

cj0264c  1.735 probable molybdopterin-containing oxidoreductase/TMAO 
and DMSO reductase (Hofreuter et al., 2006) 

cj0685c  1.725 possible sugar transferase 
cj0346 trpD 1.716 probable anthranilate synthase component II 

cj0576 lpxD 1.709 probable UDP-3-O-[3-hydroxymyristoyl] glucosamine N-
acyltransferase 

cj0239c nifU 1.68 nifU protein homologue/scaffold for iron-sulphur cluster 
assembly (Reid et al., 2008a) 

cj1682c gltA 1.677 probable citrate synthase 
cj0757 hrcA 1.676 possible heat shock regulator 
cj0552  1.67 unknown 
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cj0771c  1.663 probable periplasmic protein 
cj0491 rpsL 1.658 30S ribosomal protein S12 
cj0448c  1.651 probable MCP-type signal transduction protein 
cj0511  1.649 probable secreted protease 

cj1294 pseC 1.642 probable aminotransferase/involved in flagella glycosylation 
(Obhi and Creuzenet, 2005) 

cj1488c ccoQ 1.64 cb-type cytochrome C oxidase subunit IV 
cj1513c  1.64 possible periplasmic protein 

cj0265c  1.636 probable cytochrome C-type heme-binding periplasmic 
protein 

cj0883c  1.633 unknown 
cj0626 hypE 1.63 probable hydrogenase isoenzymes formation protein 
cj0251c  1.629 highly acidic protein 
cj1680c  1.628 probable periplasmic protein 
cj0169 sodB 1.623 superoxide dismutase (Fe) 
cj1267c hydA 1.622 probable Ni/Fe-hydrogenase small subunit 
cj0330c rpmF 1.619 probable 50S ribosomal protein L32 
cj0781 napG 1.597 probable ferredoxin 
cj0873c  1.593 unknown 
cj1342c  1.593 unknown 
cj1690c rpsE 1.593 30S ribosomal protein S5 
cj0369c  1.588 ferredoxin domain-containing integral membrane protein 
cj0140  1.585 unknown 

cj0536 oorA 1.579 probable OORA subunit of 2-oxoglutarate:acceptor 
oxidoreductase 

cj1122c wlaJ 1.572 possible integral membrane protein 
cj0935c  1.572 probable transmembrane transport protein 
cj0496  1.572 unknown 

cj0854c  1.567 probable periplasmic protein/cytochrome c signature motif 
(Reid et al., 2008b) 

cj1008c aroB 1.566 probable 3-dehydroquinate synthase 

cj1424c gmhA2 1.562 probable phosphoheptose isomerase/involved in capsule 
biosynthesis (Karlyshev et al., 2005a) 

cj0157c  1.562 probable integral membrane protein 
cj1674  1.561 unknown 
cj0252 moaC 1.561 probable molybdenum cofactor biosynthesis protein C 
cj1115c  1.559 probable membrane protein 
cj0766c tmk 1.55 probable thymidylate kinase 
cj0408 frdC 1.547 probable fumarate reductase cytochrome B subunit 

cj0274 lpxA 1.54 probable acyl-[acyl-carrier-protein]--UDP-N-
acetylglucosamine O-acyltransferase 

cj0224 argC 1.539 probable N-acetyl-gamma-glutamyl-phosphate reductase 
cj1116c ftsH 1.534 probable membrane bound zinc metallopeptidase 
cj1266c hydB 1.531 probable Ni/Fe-hydrogenase large subunit 
cj1132c wlaA 1.52  unknown/los biosynthesis (Bernatchez et al., 2005) 
cj1245c  1.515 possible membrane protein 
cj0944c  1.514 probable periplasmic protein 
cj0782 napH 1.512 probable ferredoxin 
cj0066c aroQ 1.51 probable 3-dehydroquinate dehydratase 
cj1274c pyrH 1.506 probable uridylate kinase 
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cj0128c  1.506 unknown 
cj0689 ackA 1.505 probable acetate kinase 
cj0839c  1.504 unknown 
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Table 10. Genes downregulated in the ΔcetB mutant compared to the ΔcetA mutant 
 

orf id gene name fold-decrease annotation/updated functional information 

cj0113 pal 3.496503497 peptidoglycan associated lipoprotein  
cj1189c cetB 3.194888179 possible signal-transduction sensor protein 
cj0569  2.72479564 unknown 

cj1448c kpsM 2.34741784 probable capsule polysaccharide export system inner 
membrane protein 

cj1522c  2.34741784 unknown 

cj0041 fliK 2.277904328 unknown/flagella hook length control gene (Kamal et al., 
2007) 

cj1380  2.267573696 probable periplasmic protein 
cj0043 flgE 2.247191011 probable flagellar hook protein 
cj0698 flgG 2.2172949 probable flagellar basal-body rod protein 

cj1331 ptmB/neuA3 2.183406114 
probable acylneuraminate cytidylyltransferase (CMP-N-
acetylneuraminic acid synthetase)/involved in flagella 
glycosylation (Karlyshev et al., 2002) 

cj0716  2.145922747 probable phospho-2-dehydro-3-deoxyheptonate aldolase 
cj1650  2.123142251 unknown 
cj1729c flgE2 2.087682672 probable flagellar hook subunit protein 
cj1463  2.079002079 unknown 
cj0428  2.036659878 unknown 
cj0334 ahpC 1.984126984 probable alkyl hydroperoxide reductase 
cj1242  1.949317739 unknown 
cj1462 flgI 1.904761905 probable flagellar P-ring protein 
cj0887c flaD 1.901140684 possible flagellin 

cj0793 flgS 1.879699248 
probable signal transduction histidine kinase/σ54-dependent 
two-component system kinase (Hendrixson and DiRita, 
2003; Wosten et al., 2004) 

cj1466 flgK 1.876172608 possible flagellar hook-associated protein 
cj0243c  1.872659176 unknown 
cj0095 rpmA 1.848428835 50S ribosomal protein L27 
cj1656c  1.779359431 unknown 

cj1184c petC 1.748251748 possible ubiquinol-cytochrome C reductase cytochrome C 
subunit 

cj0589 ribF 1.745200698 possible riboflavin kinase/FMN adenylyltransferase 
cj0913c hupB 1.736111111 DNA-binding protein HU homologue 

cj1357c nrfA 1.733102253 probable periplasmic cytochrome C/putative nitrate reductase 
(Pittman et al., 2007) 

cj1259 porA 1.703577513 major outer membrane protein (MOMP) 
cj0697 flgG2 1.694915254 probable flagellar basal-body rod protein 
cj1056c  1.655629139 unknown 
cj0331c  1.650165017 unknown 

cj0577c queA 1.647446458 probable S-adenosylmethionine:tRNA ribosyltransferase-
isomerase 

cj0002 dnaN 1.628664495 probable DNA polymerase III 
cj0584  1.62601626 unknown 

cj0223  1.615508885 probable pseudogene, similar to several members of the IgA 
protease/hemaglutinin/sepA family 

cj0727  1.577287066 probable periplasmic solute-binding protein 
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cj0118  1.567398119 unknown 
cj0147c trxA 1.5625 thioredoxin 
cj0687c flgH 1.555209953 probable flagellar L-ring protein precursor 
cj1369  1.540832049 probable transmembrane transport protein 
cj1344c  1.533742331 probable glycoprotease 
cj0391c  1.529051988 unknown 

cj0578c tatC 1.524390244 probable sec-independent protein translocase/component of 
twin-arginine translocase system (Hofreuter et al., 2006) 

cj0982c  1.510574018 probable amino-acid transporter periplasmic solute-binding 
protein 

cj0547 flaG 1.508295626 possible flagellar protein 
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Table 11. Genes upregulated in the ΔcetB mutant compared to the ΔcetA mutant 
 

orf id gene name fold-induction annotation/updated functional information 

cj1190c cetA 16.07 probable MCP-domain signal transduction protein 
cj1422c  3.312 possible sugar transferase 
cj1722c  3.142 unknown 
cj0618  2.259 unknown 
cj0987c  2.216 probable integral membrane protein 

cj1617 chuD 2.098 probable hemin uptake system periplasmic hemin-binding 
protein 

cj0007 gltB 1.964 probable glutamate synthase (NADPH) large subunit 
cj0181 tonB1 1.956 possible tonB transport protein 
cj0370 rpsU 1.873 30S ribosomal protein S21 
cj0699c glnA 1.833 probable glutamine synthetase 

cj1678 capB 1.804 possible lipoprotein/putative autotransporter (Ashgar et al., 
2007) 

cj1188c gidA 1.801 glucose inhibited division protein A homologue 

cj1472c ctsX 1.743 probable membrane protein/involved in natural transformation 
(Wiesner et al., 2003) 

cj0301c modB 1.726 probable molybdenum transport system permease protein 
cj1004  1.704 probable periplasmic protein 

cj1584c  1.663 probable peptide ABC-transport system periplasmic peptide-
binding protein 

cj0818  1.639 probable lipoprotein 
cj0566  1.565 unknown 
cj1583c  1.542 probable peptide ABC-transport system permease protein 
cj0496  1.536 unknown 

cj1413c  1.532 possible polysaccharide modification protein/located in capsule 
biosynthesis locus (Gundogdu et al., 2007) 

cj1679  1.521 unknown 
cj0239 nifU 1.52 nifU protein homologue 
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allowed us to test whether the changes in gene expression we saw in the ΔcetA and ΔcetB 

mutants were present in other motility and chemotaxis mutants.  For these experiments, 

cultures of wildtype, ΔcetA, ΔcetB, ΔcetAB, cheY::solo (non-chemotactic) and ΔrpoN 

(non-motile) were grown biphasically in MH media under microaerophilic conditions for 

48 hours.  The cells were collected by centrifugation and RNA isolated as described in 

Chapter II.  cDNA was generated using random primers (Invitrogen) and MMLV reverse 

transcriptase (Invitrogen).  Primers 19-21bp in length were designed for qPCR to have a 

Tm of 56°C ± 1.07°C and to produce 200bp fragments of the gene of interest (Table 12).  

Amounts of PCR product produced after each cycle during qPCR were monitored using 

SYBR green (Stratagene).  rpoA, which encodes the housekeeping σ-factor σ70, was used 

to normalize qPCR data for each gene and fold-expression compared to wildtype was 

calculated for each mutant strain.  qPCR reactions were preformed in triplicate with the 

mean and (where indicated) standard deviation reported.   

We chose to test the expression of two genes involved in iron transport, chuA and 

chuD, which were downregulated in ΔcetA and ΔcetB compared to wildtype, according to 

our microarray data.  chuD was also upregulated in the ΔcetB mutant compared to the 

ΔcetA mutant, according to our microarray data.  Additionally, we tested the expression 

of two transcriptional regulators, cj0571 and cj1000, as well as a single domain globin, 

cgb, all of which were downregulated in both the ΔcetA and ΔcetB mutants compared to 

wildtype in our microarray experiments.  Finally, we tested the expression of pal, which 

encodes a peptidoglycan-associated lipoprotein, as this gene was the most highly 

downregulated in the ΔcetB mutant compared to the ΔcetA mutant in our microarray 

experiments.  The results of these experiments are shown in Figure 25.   
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Table 12. Primers used for qRT-PCR 
 
 
Primer # Gene target Sequence 
AB001 chuA GGA TTC AAA TTT ACG CAA TG 
AB002 chuA TAA TAG CAT GCC CAT CAA TC 
AB003 cgb AGC AAT GGC GAT TTT AAT G 
AB004 cgb AAG CAA CTT CCC AAG CTT TA 
AB005 cj1000 ATT TTT GGC AAG ATG ATG AAC 
AB006 cj1000 CGC AGC CAT TCT ATC AAG T 
AB007 pal TTC AAA TCG TGG TTC AGG T 
AB008 pal CGC AGT TTC CTT CAA CAG TA 
AB011 cj0571 GCC AAA TCA AAC CTT ACA AAC 
AB012 cj0571 CAC TTC TTT GCT TTC TCC AA 
AB013 rpoA TGC TTA TAC GCC AAC AGA AT 
AB014 rpoA TAC CAC GCA TGC TAT CAA AT 
AB027 chuD AAC CTC AAA ACT TAC AAG CGT A 
AB028 chuD TTT GGC CTA AGG TTG TGA TA 
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Figure 25.  qRT-PCR analysis of gene expression in energy taxis, chemotaxis and 
motility mutants.  qRT-PCR was used to assess the expression of genes found to be up- 
or down-regulated in the ΔcetA or ΔcetB mutants by microarray analysis.  Fold-induction 
relative to wildtype in ΔrpoN (non-motile), ΔcetA, ΔcetB, ΔcetAB and cheY::solo (non-
chemotactic) is reported.  A.  qRT-PCR analysis of chuA, cgb and cj1000 expression.  B.  
qRT-PCR analysis of pal, cj0571 and chuD expression. 



   

 192

As expected from our microarray data, all of these genes were downregulated in 

the ΔcetA and ΔcetB mutants, as well as the ΔcetAB mutant compared to wildtype.  In 

addition, chuD expression was higher in the ΔcetB mutant than the ΔcetA mutant, also 

supporting our microarray observations.  The difference in pal expression between ΔcetA 

and ΔcetB, however, is small and likely insignificant.  All of the genes tested were also 

downregulated in the cheY::solo mutant (non-chemotactic) and the ΔrpoN mutant (non-

motile).  While there are some differences in the extent of downregulation of these genes 

in each of the mutants tested, it is clear that the same trends predominate in the non-

chemotactic and non-motile mutants tested as in the ΔcetA and ΔcetB mutants.  

These data led us to conclude that many, if not all, of the changes in gene 

expression observed in the ΔcetA and ΔcetB mutants in our microarray experiments are 

likely due to the mutants’ defects in energy taxis, as opposed to more direct changes in 

gene regulation.  Specifically, cells lacking the ability to swim away from an energy poor 

environment, whether due to a defect in the CetA/CetB system or a more general defect 

in chemotaxis or motility, will find themselves experiencing a similar environment and 

will alter their gene expression accordingly.  If correct, this would imply that CetA/CetB-

mediated energy taxis is a major determinant of the C. jejuni local environment in vitro.  

Whether this is true under other culture conditions or in vivo remains to be seen.  While 

there may still be differences in gene expression observed in our microarrays that are 

cetA-specific and/or cetB-specific, we have no convincing evidence that this will be the 

case based on our qRT-PCR analysis.   
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