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CHAPTER 1 

INTRODUCTION 
 
 
 
In order to increase safety and improve economy and performance in nuclear power 

plants, the source and extent of component degradations should be identified before 

failures and breakdowns occur. Having an efficient and robust degradation monitoring 

system provides valuable information about the onset and progress of degradations to the 

operator or any decision maker in order to allow better analysis of the current state of the 

plant and make better decisions on the plant operation. This helps to: 

 

• Prevent loss of safety and sustain the controllability of the plant by taking 

corrective actions to prevent the failure of the degraded component, to prevent 

this degradation from triggering another degradation or a failure (tightly 

coupled events) and to take precautions to reduce the impact of the failure of 

this component on its environment 

• Improve the economy and performance of a plant by optimizing the scheduled 

maintenance intervals based on real time component degradation information 

and using an additional prognosis step by which the expected failure time of 

the degraded component can be predicted, and hence increase the capacity 

factors. 

 

It is crucial for the next generation of nuclear power plants, which are designed to have a 

long core life and high fuel burnup, to have a degradation monitoring system. For 

example, the IRIS (International Reactor Innovative and Secure) reactor, which has an 

integral configuration was designed to have a three year fuel cycle [1]. If
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not detected in advance, degradation of one of the components may result in a failure that 

can lead to loss of safety or an unanticipated shutdown before the next refueling period. 

Therefore, it is essential to detect and diagnose the degradations in order to keep the 

reactor in a safe state, to meet the designed reactor core lifetime and to optimize the 

scheduled maintenance. 

 

We assume that degradations take place before failures occur, but the time required for a 

degradation to progress to a failure varies for every component. In Figure 1, we illustrate 

the evolution of degradation in time. During the nominal operating conditions, the 

degradation monitoring system is in operation in order to detect degradation. After the 

onset of degradation, the degradation monitoring system is designed to detect the 

degradation and isolate the probable components that can lead to that degradation in a 

multicomponent system. The severity of the degradation should also be identified by 

estimating the magnitude of the change from the nominal. These three tasks should be 

performed before the degradation is so severe that there is no time to take any corrective 

actions, or none of these actions can help prevent the failure of that component and 

reduce the impact of this failure within the system in a timely manner. 

 

Figure 1. The evolution of degraded component state in time. 

Nominal Degraded 
Failure 

Degradation Monitoring 

Time 

Component 
State 
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Nevertheless not all degradations in the components necessarily result in a failure, but still 

they may reduce the efficiency and safety margins of the system and therefore they 

should be monitored. 

 

The nuclear industry, like other large industries, presents challenges on constructing a 

framework for degradation monitoring.  Nuclear power plants are comprised of systems 

in which many components interact in a very complex way. Some of these components 

are tightly coupled with each other and may result in cascade failures in the system where 

the origin of the event may be hard to identify. Since in many instances it is impossible to 

observe the characteristics of these components directly, observable states are used to 

infer these characteristics. However, both neutronic and thermal hydraulic design 

limitations in the nuclear power plants restricts the number of sensors to be used and the 

choice of sensor locations. Also small component degradations are particularly hard to 

identify because their signatures in the observations may not be noticeable. An extreme 

environment in a nuclear power plant can also cause the sensors to degrade in addition to 

the components, and this may result in inaccurate measurements.  The system models in 

nuclear power plants, which are used to provide analytical redundancy, may also be 

highly nonlinear and low fidelity. Treating these nonlinearities with approximations in 

order to obtain a tractable model may introduce additional uncertainty into the 

identification of component degradations. The substantial modeling errors in low fidelity 

systems and simultaneous multicomponent degradations may also mask the signature of 

degradations to be identified. 

 

In this dissertation, our main goal is to develop techniques for degradation monitoring in 

nuclear power plants by addressing the challenges described above. Our objectives are: 

 

• To construct a unified framework for degradation monitoring based on sequential 

probabilistic inference using nonlinear filtering for high dimensional and nonlinear 

systems 
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• To utilize a reliability degradation database within this framework to: 

o Improve estimation of nominal states for low fidelity system models 

o Design a robust degradation detection and isolation scheme 

o Develop techniques to improve the performance of a filter when it cannot 

follow an abrupt change due to obliviousness or sample impoverishment 

• To develop practical algorithms that work online, in particular by developing a 

method that can work with relatively few particles 

• To test these algorithms for monitoring simultaneous multicomponent 

degradations. 

 

There have been a variety of methods proposed for the tasks of degradation/fault 

monitoring. These methods can be analyzed under three broad groups: model-based, 

knowledge-based and signal processing methods. Model-based methods utilize the 

process measurements with the model of the monitored plant. These methods use 

residuals that indicate the inconsistencies between the actual system behavior and the 

expected system behavior, which is obtained by using the system model. These residuals 

can be used for detection and diagnostic purposes [2,3]. Model-based techniques like 

diagnostic observers, parity equations and state/parameter estimation techniques can be 

used for degradation monitoring. Diagnostic observer [4,5] and sliding mode observer [6] 

methods are based on reconstructing the outputs of the system from the measurements 

with the aid of  the observers or filters to obtain residuals for detection and isolation of 

the faults. Parity equations [7-9] are based on simple algebraic projections and geometry. 

This method computes a residual vector that is zero when no fault is present, and non-

zero otherwise, to detect that a fault has occurred. The residual will also be different for 

different faults, to enable diagnosing which fault has occurred [10]. State estimation 

techniques are based on estimation of unobservable states by using the observations and 

the system model. A detailed literature review for state/parameter estimation will be 

performed in Chapter 2. Recent progress made in system identification (parameter 

estimation) is discussed in a review paper [11]. 
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Knowledge-based methods are proposed [12,13] for problems when system models are 

not precisely known. Knowledge about the structure of the process, the functions of 

systems and components, and qualitative models of the system under various faulty 

conditions are required to estimate the system dynamics.  Heuristic knowledge from the 

training processes is of great importance. Some of the knowledge-based methods also use 

certain models built by neural networks, fuzzy systems, or expert systems to map the 

inputs and outputs of the unknown system [14]. As in model-based methods, residuals are 

generated to detect and diagnose degradations [15,16].  

 

Signal processing methods like wavelet analysis [17], principal components analysis [18], 

etc., are based on signal decomposition and are also being used in degradation 

monitoring. Even though signal processing techniques have superior capability in 

identifying faults, they have difficulties with noises, disturbances and uncertainties that 

are not accounted for in the training process; these can make the online signal clusters 

differ from the expected ones, thus causing errors in fault diagnosis [14]. 

 

Hybrid methods are also used for the tasks of degradation monitoring. Alpay and Garcia 

[19] utilized model-based and data-driven methods in a parallel hybrid modeling 

structure to minimize modeling uncertainty in order to obtain a sensitive anomaly 

detection method. Yildiz and Golay [20] combined several artificial intelligence 

techniques for fault diagnosis and prognosis. 

 

One particular system estimation approach using a discrete cell-to-cell mapping 

technique [21,22] can account for uncertainties in system modeling and monitored state 

to generate probabilistic ranking of possible faults.  An application of the technique for 

online risk monitoring [22] of a pressurizer indicates the importance of developing 

probabilistic techniques for system monitoring and diagnosis. 

 

Since there has been extensive work on the modeling of nuclear power plants, and since 

high dimensional states and degradations of unknown origin it is relatively harder to 

utilize knowledge-based and signal processing methods, so we have employed model-
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based methods in this dissertation. For the cases when the system model is low fidelity or 

when degradations change the system parameters, in order to minimize the discrepancy 

between the real and modeled system behavior, we proposed to utilize a database with the 

model-based method to construct a hybrid model structure. The “mixing” factor of each 

data source is determined by using the residuals in a multiple hypothesis testing scheme 

in this hybrid model. For the model-based part, we focused on state/parameter estimation 

techniques in a sequential probabilistic inference framework. A detailed review of 

available techniques for state and parameter estimation is performed in Chapter 2.  In 

Section 2.1 we first describe a general hidden Markov model. We then state our 

assumptions for degradation monitoring and modify this model by introducing 

component states, which are the parameters of degradation we need to monitor. In 

Section 2.2 we derive the framework for recursive Bayesian estimation to solve the 

sequential probabilistic inference problem. We also define the well-posedness and 

optimality of the solution to recursive Bayesian estimation problem. Since the optimal 

solution is intractable, approximate methods seeking suboptimal solutions are reviewed 

in Section 2.3. In Section 2.4, we address the problem of treating nonlinearity in 

transforming a probability density function (pdf). We review nonlinear extensions of 

Kalman filtering and particle filtering, and their approximations for dealing with the 

nonlinearities in the system model. In Subsection 2.4.2, we investigate the approximation 

of linearizing the nonlinear system model around the nominal state, which is the basis for 

extended Kalman filtering (EKF). In Subsection 2.4.3, we review the unscented 

transform in which an approximation of a pdf is performed by finding a set of points 

(deterministic sampling) to match certain moments of that pdf, rather than approximating 

the nonlinear system model. We also derive the unscented Kalman filtering (UKF) based 

on this approximation, and present an application of degradation monitoring in which we 

detect and diagnose fouling in steam generators of the IRIS reactor using UKF in 

Subsection 2.4.3.5. In Subsection 2.4.4 we review particle filtering, which is a sequential 

Monte Carlo method based on approximating the pdf as in the UKF but instead with 

stochastic samples. We also derive the sampling importance resampling algorithm on 

which we base our degradation monitoring technique.  
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In Chapter 3, we address the inability of a filter to respond to an abrupt change and 

propose solutions to this problem by introducing another data source, namely a reliability 

degradation database. In Section 3.1, we construct a joint estimation framework to 

estimate both the system states and component states (state and parameters). In 

Subsection 3.2.1, we present the problem of obliviousness in nonlinear extensions of 

Kalman filtering. We propose an algorithm based on covariance matching in EKF that 

works adaptively in a multiple hypothesis testing setting. We apply this algorithm for the 

diagnosis of degradations of multiple components. We test our algorithm with a balance 

of plant (BOP) model of a boiling water reactor (BWR). We also propose another 

algorithm to combine a UKF algorithm with the reliability degradation database by 

solving a multiobjective optimization problem. We present an application of this scheme 

in degradation monitoring of a fast reactor. In Subsection 3.2.2 we address the sample 

impoverishment problem in the particle filtering and its negative effect on detection and 

diagnosis of component degradations. We briefly review different techniques for this 

problem and in Section 3.3 we propose a novel technique that uses the Metropolis 

Hastings algorithm, which is a well known Markov chain Monte Carlo (MCMC) method, 

in order to introduce a reliability degradation database into particle filtering. This 

technique, which works as a multiple hypothesis testing algorithm, helps the filter to 

explore the state space to efficiently and accurately estimate the component degradations.  

In addition to the estimation of the magnitude of degradations, by monitoring the relative 

likelihoods of the hypotheses this algorithm also determines the degradation mode. In 

Subsection 3.3.3, we extended this algorithm to be used in degradation detection and 

isolation by introducing another database for detection and isolation purposes. The 

schematic of this algorithm is shown in Figure 2. 

 

In Chapter 4, we test our new algorithm with a balance of plant model of a boiling water 

reactor. In Section 4.1, we describe the system model, and system/component states, 

which we estimate in our degradation monitoring algorithm. In Subsection 4.1.2, we list 

the process observation variables and analyze the detectability of degradations through 

the measurements. We present a representative reliability degradation database, which we  
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Figure 2. The schematic of the degradation monitoring algorithm. 
 

utilize in constructing the multiple hypotheses to be tested through the Metropolis 

Hastings algorithm in Section 4.2. In Section 4.3 we analyze the performance of the 

particle filtering algorithm with respect to the magnitude of modeling noise, sample size 

and ability to respond to an abrupt change in the component states. We test the 

degradation detection and isolation part of our algorithm in Section 4.4. We simulate 

single degradations and simultaneous binary and triple degradations to evaluate the 

performance of this algorithm. In Section 4.5, we use selected single, binary and triple 

degradations to test the degradation estimation part of our algorithm. 

 

In summary, our contributions in this dissertation are: 

 

• We develop techniques to modify filtering algorithms in order to utilize additional 

data sources in detection and estimation of degradations 

Degradation 
Detection 

Degradation 
Isolation 

System 
Model 

Measurements 

Degradation 
Database I 

Degradation 
Estimation 

Degradation 
Database II 

Particle 

Filtering 

Estimated States 
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• We construct a degradation monitoring framework in which we use a novel 

multiple hypothesis testing algorithm based on the Metropolis Hastings method 

that utilizes a reliability degradation database: 

o To solve the sample impoverishment problem in particle filtering 

o To improve the performance of particle filtering for small sample size and 

low fidelity models 

o To construct a degradation detection and isolation algorithm 

o To construct a degradation estimation algorithm: 

 To estimate the magnitude of the degradations 

 To identify degradation modes by which the component degrades. 
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CHAPTER 2 

ESTIMATION THEORY 
 
 
 
Estimation in nonlinear, high dimensional systems can be very difficult. In most of the 

real world applications, linear process models are not available and approximate 

techniques relying on linearization cannot be used. Simulation techniques based on 

Monte Carlo sampling are promising, but the computational burden is high. Techniques 

have therefore been developed to approximate the probability density functions (pdfs), 

rather than the process model, to reduce the computational cost and to obtain higher order 

approximations than linearization. 

 

In this chapter, we review various estimation techniques. We concentrate mainly on 

nonlinear filtering techniques to develop a framework based on sequential probabilistic 

inference, which is the problem of estimating the hidden variables of a system in an 

optimal and consistent fashion given noisy or incomplete observations, for real time 

degradation monitoring.  

 

The structure of this chapter is as follows. In Section 2.1, we define the characteristics of 

the process model. We use a hidden Markov model structure where the states are 

unobservable. Within this model we then derive the Bayesian framework for a sequential 

probabilistic inference problem in Section 2.2. We discuss the possible solutions for 

recursive Bayesian estimation in Section 2.3. For linear Gaussian system models, we 

derive the Kalman filter in the Bayesian framework. In Section 2.4, for nonlinear system 

models we derive two approximate filtering techniques, extended Kalman filtering and 

unscented Kalman filtering. We also present a new demonstrative example application in 

which we use unscented Kalman filtering to estimate the fouling of steam generator tubes 
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in IRIS (International Reactor Innovative and Secure). In Subsection 2.4.4, we present 

particle filtering as a solution to the recursive Bayesian estimation problem. After testing 

different problems (some of them are presented in Subsections 2.4.3.5, 3.2.1.2 and 

3.2.1.3) by using the extensions of Kalman filtering for our degradation monitoring 

framework, we instead adopt particle filtering, which provides a better approximation for 

nonlinear filtering and use this to create new algorithms that can perform better in change 

estimation by utilizing multiple data sources. In the rest of Section 2.4.4, we review 

Monte Carlo sampling and sequential importance sampling to derive the sampling 

importance resampling filter on which we base our degradation monitoring algorithm.  

 

2.1. STOCHASTIC DESCRIPTION OF THE SYSTEM MODEL 
 
We employed a hidden Markov model (HMM) representation. A HMM is a doubly 

stochastic process with an underlying stochastic process that is not directly observable 

but can be observed only through another stochastic process that produces the sequence 

of observations [23]. In our context, the HMM consists of a trivariate process C
t
,X

t
,Y

t{ }  

where C , X and Y  are random variables that represent model parameters (component 

states), system dynamic states and process observations, respectively. The model 

parameters are treated as constant but uncertain component characteristics, which define 

the component states of the system. The set of component states C
t{ }

t!0
 is designated as 

an unobserved (hidden) stationary first order Markov process on a state space  C  with 

initial probability density p c
0( )  where 

 
C
0
! p c

0( )  (~ denotes that random variable Z  is 

distributed according to a probability density p z( ) ) and Markov transition distribution 

function p !c | c( ) . When  C is discrete 

 
 

 
Ct |Ct!1 = ct!1( ) ! p " | ct!1( ) , (2.1) 

 
which should be read random variable C

t
 is distributed according to p ! | ct"1( ) . The 

process X
t{ }

t!0
is an unobserved first order Markov process on a state space  X  with 
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initial probability density p x
0( )  where 

 
X
0
! p x

0( )  and Markov transition distribution 

function p !x | x,c( ) .  When  X  is discrete 

 
 

 
Xt | Xt!1 = xt!1,Ct = ct( ) ! p " | xt!1,ct( ) . (2.2) 

 
The process X

t{ }  is called the system state of the model; note that this is a function of 

the component state. Inference has to be carried out only in terms of the observable 

process Y
t{ } . The observable process 

 
Y
t
!Y( )  is assumed to be conditionally 

independent given the bivariate process C
t
,X

t{ }  and of marginal distribution p y | x,c( ) . 

For discrete Y , 

 
 

 
Yt | Xt = xt ,Ct = ct( ) ! p ! | xt ,ct( ) . (2.3) 

 
This hidden Markov model is illustrated in Figure 3. 

 

 

Figure 3. The graphical representation of the HMM. 

 

In order to represent a general physical system within the HMM, we construct the 

dynamic state space model (DSSM) for a general discrete-time nonlinear system  

 
 

  
x

k
= f x

k!1
,w

k

x
;c

k( ),  (2.4) 

 
  
y

k
= h x

k
,v

k
;c

k( ).  (2.5) 
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where f !( ) is the state transition function subject to modeling noise  w
x  at time step k, 

and h !( )  is the observation function subject to sensor noise  v . The noise sequences are 

assumed to be independent and white with known pdfs. We assume that if the component 

is degraded, the component state undergoes random, discrete transitions. Otherwise, it 

stays constant and we write the component state 

 
 

  
c

k
= c

k!1
+ w

k

c
,  (2.6) 

 
which is subject to an additive modeling noise w

c . The component transition density 

p ck | ck!1( )  is specified by the modeling noise distribution p w
c( ) , the state transition 

density p xk | xk!1,ck( )  is determined by the state transition function f !( )  and the 

modeling noise distribution p w
x( ) , the observation likelihood function p yk | xk ,ck( ) is 

determined by the observation function h !( )  and the measurement noise distribution 

p v( )  at time step k. The dynamic state-space model, the initial probability densities of 

the system and component states and statistics of the noise random variables constitutes 

the probabilistic model as illustrated in Figure 3.  

 

The key problem to be solved is to find an optimal algorithm to recursively estimate the 

hidden state variables x
k
,c

k( )  as the noisy measurements yk  become available. 

 

2.2. RECURSIVE BAYESIAN ESTIMATION 
 

Bayesian analysis, interpreting the probability as a conditional measure of uncertainty, is 

one of the popular methods to solve inverse problems. In Bayesian inference all of the 

uncertainties (including states and parameters which are either time-varying or static but 

unknown) are treated as random variables. The inference is performed within the 

Bayesian framework given all available information [24]. In a Bayesian framework the 

posterior density p Xk |Yk( )  of the state 
 
X
k
= x

0
, x
1
,…, x

k{ }  given all the observations 

 
Yk = y

1
, y
2
,…, yk{ }  constitutes the solution to the sequential probabilistic inference 
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problem (for the present, we do not include the component state C
k
 in the notation; it can 

be considered part of the system state X
k
 for the moment). Our aim is to estimate 

recursively in time the posterior density p Xk |Yk( )  and marginalized posterior density, 

which is also known as the filtering density p xk |Yk( )  inside the Bayesian framework. 

 

At any time k, the posterior density is given by the Bayes’ theorem 

 

 p Xk |Yk( ) =
p Yk | Xk( ) p Xk( )

p Yk( )
.  (2.7) 

 
It is possible to obtain straightforwardly a recursive formula for this density. At first, we 

rewrite Eq. (2.7) by using Yk = yk ,Yk!1{ }  and X
k
= x

k
,X

k!1{ } , and then using the 

definition of conditional probability, we obtain 

 

 
p Xk |Yk( ) =

p yk ,Yk!1 | Xk( ) p xk ,Xk!1( )
p yk ,Yk!1( )

=
p yk |Yk!1,Xk( ) p Yk!1 | yk ,Xk( ) p xk ,Xk!1( )

p yk |Yk!1( ) p Yk!1( )
.

 

 
Since we assumed earlier that the observations are independent given the state, then 

p yk |Yk!1,Xk( ) = p yk | Xk( )  and p Yk!1 | yk ,Xk( ) = p Yk!1 | Xk( ) . Also, Eq. (2.5) states that 

the measurements up to time k-1 depend on the state trajectory up to time k-1, so that 

p Yk!1 | Xk( ) = p Yk!1 | Xk!1( )  and so 

 

 p Xk |Yk( ) =
p yk | Xk( ) p Yk!1 | Xk!1( ) p xk ,Xk!1( )

p yk |Yk!1( ) p Yk!1( )
. 

 
In the last step, we use the definition of conditional probability and the first order Markov 

property of the state to write p xk ,Xk!1( ) = p xk | Xk!1( ) p Xk!1( ) = p xk | xk!1( ) p Xk!1( )  and 
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apply Bayes’ theorem  p Xk!1 |Yk!1( ) =
p Yk!1 | Xk!1( ) p Xk!1( )

p Yk!1( )
. Rearranging the equation, 

we obtain a recursive formula for the posterior density as 

 

 p Xk |Yk( ) = p Xk!1 |Yk!1( )
p yk | xk( ) p xk | xk!1( )

p yk |Yk!1( )
.  (2.8) 

  
The filtering density can be written by means of the Bayes’ theorem 

 

 p xk |Yk( ) =
p Yk | xk( ) p xk( )

p Yk( )
.  (2.9) 

 
We can also construct a recursive formulation for the filtering density. At first, we rewrite 

Eq. (2.9) by using Yk = yk ,Yk!1{ } , and then using the definition of conditional probability, 

we obtain 

 

 
p xk |Yk( ) =

p yk ,Yk!1 | xk( ) p xk( )
p yk ,Yk!1( )

=
p yk |Yk!1, xk( ) p Yk!1 | yk , xk( ) p xk( )

p yk |Yk!1( ) p Yk!1( )
.

 

 
By using our assumption that the observations are independent given the state, then 

p yk |Yk!1, xk( ) = p yk | xk( )  and p Yk!1 | yk , xk( ) = p Yk!1 | xk( ) . Applying the Bayes’ 

theorem p xk |Yk!1( ) =
p Yk!1 | xk( ) p xk( )

p Yk!1( )
 and rearranging the equation yields 

 

 p xk |Yk( ) =
p yk | xk( ) p xk |Yk!1( )

p yk |Yk!1( )
.  (2.10) 

 
The prior density p xk |Yk!1( ) , which predicts the state by utilizing the system model is 

constructed based on the conditional density of x
k!1

 given all the observations, 

p xk!1 |Yk!1( ) , prior to time k and the state transition function (Eq. (2.4)) as 
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 p xk |Yk!1( ) = p xk | xk!1( )" p xk!1 |Yk!1( )dxk!1  (2.11) 

 
where  

 
 p xk | xk!1( ) = " xk ! f xk!1,wk

x
;ck( )( ) p wk

x( )dwk

x

# . (2.12) 

 
The observation likelihood density is calculated using the observation function (Eq. (2.5)) 

 
 p yk | xk( ) = ! yk " h xk ,vk ;ck( )( ) p vk( )dvk# . (2.13) 

 
The denominator of Eq. (2.10) is a scalar normalization constant  

 
 p yk |Yk!1( ) = p yk | xk( )" p xk |Yk!1( )dxk . (2.14) 

 
Equations (2.10) - (2.14) constitute the recursive Bayesian estimation solution to the 

sequential probabilistic inference problem. Having completed the formulation for 

recursive Bayesian estimation to solve the sequential probabilistic inference problem, 

next we define well-posed and optimal nonlinear filtering. 

 

2.2.1. Well-Posed Filtering 
 

Filtering is indeed an inverse problem. Given the history of the observations and the 

dynamic state space model, we try to find the best estimates of the states. An inverse 

problem is said to be well-posed if it satisfies: existence, uniqueness and stability [24]. If 

there is a large disparity in the sensitivity of the solutions to perturbations in initial 

conditions, inputs, and measurement errors, the filtering problem is ill-posed [25]. These 

may cause the observation function to be a many to one mapping function, which results 

in a non-unique solution to this stochastic filtering problem. Sinitsyn [26] defines the 

main factors that lead to the ill-posedness in filtering problem as insufficient smoothness 

of the observations, hereditary kernels and the non-Markov behavior of the random 

processes. For online estimation he introduced the conditionally optimal filtering (COF) 

idea, which is based on restricting the class of filters in such a way that any filter can be 
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useful for online estimation. The absolute optimality of estimators are given up for 

computational simplicity [26]. 

 

For high dimensional systems with a limited number of noisy measurements, if the 

filtering problem is ill-posed then introducing additional data sources and smoothing the 

measurements may help the filter to find a unique solution. In Chapter 3, we propose to 

introduce a reliability degradation database into the filtering algorithm in order to find a 

unique solution for high dimensional systems, especially in estimation of simultaneous 

component degradations.  

 

2.2.2. Optimal Filtering 
 

The optimality of a filter can be defined through a loss function L x, x̂( ) , where x̂  is the 

state estimate. The loss function is defined such that the larger the estimation error 

x ! x̂( ) , the greater the loss. Given the marginalized posterior density at time step k, the 

expected loss is defined to be 

 
 ! L xk , x̂k( ) |Yk"# $% = L xk , x̂k( ) p xk |Yk( )& dxk .  (2.15) 

 
For the quadratic loss function L x

k
, x̂

k( ) = x
k
! x̂

k( ) xk ! x̂k( )
T , the optimal estimate can 

be derived by minimizing the loss function. By taking the partial derivative with respect 

to the estimated state x̂
k
 

 
!

!x̂k
xk " x̂k( ) xk " x̂k( )

T
p xk |Yk( )# dxk$

%
&
' =

!

!x̂k
xk " x̂k( ) xk " x̂k( )

T
p xk |Yk( )dxk#

= "2 xk " x̂k( )
T
p xk |Yk( )dxk#

= "2 xk
T
p xk |Yk( )dxk# + 2 x̂k

T
p xk |Yk( )dxk# ,

(2.16) 

 
and by setting Eq. (2.16) to zero, the optimal estimate is found to be the posterior mean 
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 x̂k = ! xk |Yk[ ] = xk p xk |Yk( )" dxk ,  (2.17) 

 
which is also called the minimum mean-squared error (MMSE) estimate. This is the most 

common loss function and for Gaussian posterior densities the mode and median 

estimates coincide with the mean. 

 

The maximum a posteriori (MAP) estimate tries to find the mode of the marginalized 

posterior density with the loss function L x, x̂( ) = ! x
k
" x̂

k( ) , and then the optimal choice 

is the mode of the posterior pdf. If the loss function is of the form L x, x̂( ) = x ! x̂ , the 

optimal estimate is the median of the posterior pdf [27]. 

 

Both MMSE and MAP estimates require the calculation of the posterior density, but 

MAP does not require the calculation of the normalization constant and therefore is less 

computationally expensive. However, the MAP estimate has a drawback especially for 

high-dimensional systems. High probability density does not mean high probability mass. 

A narrow spike with a very small support can have a very high density, but the actual 

probability of the corresponding state estimate can be very small [24]. For high-

dimensional systems especially with high modeling noises, the support of the mode 

should be analyzed. 

 

2.3. APPROXIMATE METHODS FOR RECURSIVE BAYESIAN 
ESTIMATION 
 

Equations (2.10) - (2.14) form the basis for the optimal Bayesian solution with respect to 

any loss function to the sequential probabilistic inference problem. This recursive 

propagation of the posterior density is only a conceptual solution and in general, it cannot 

be determined analytically [28]. Under certain constraints solutions exist, e.g., for linear-

Gaussian systems Kalman filtering provides the closed form solution. Often the optimal 

solution is intractable and approximate methods seeking suboptimal solutions are 

generally used. Some of these approximate methods include: 
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• Grid-based filtering (GBF) approximates the multi-dimensional integrals with 

large but finite sums over a uniform grid. This is similar to particle filtering, 

except in particle filtering the particles are distributed in the state space according 

to the pdf of the state. Therefore, the computational requirements of the grid-

based filtering increase exponentially with the dimension of the state. Since, it is 

more computationally expensive than particle filtering, this limits its application 

[29]. Recently, the adaptive grid risk sensitive filter (AGRSF) was introduced by 

Bhaumik et al. [30] to address the poor numerical efficiency and finite resolution 

of the grid-based filters. AGRSF is based on setting deterministic grid points in 

the risk sensitive parts of the state space.  

• In Gaussian approximations, the filtering distribution is approximated by a 

Gaussian (Eq. A.1) 

 
 p xk |Yk( ) = N xk ; xk , Pxx( )

k( ).  (2.18) 

 
The mean x

k
 and the covariance P

xx( )
k
 of the Gaussian approximation can be 

computed by matching the first two moments of the filtering distribution. As 

stated earlier, the Kalman filter (KF) [31] provides the optimal closed form 

solution for linear Gaussian systems. For nonlinear Gaussian systems, the KF 

framework can be used if the process and observation models are linearized using 

a first order truncated Taylor series expansion around the current estimates, which 

is the basis for extended Kalman filter (EKF) [32]. EKF approximation is valid if 

all the higher order derivatives of the nonlinear functions are negligible over the 

monitored region of state variables. This approximation often introduces large 

errors in the EKF calculated posterior mean and covariance of the transformed 

Gaussian random variable (GRV), which may lead to suboptimal performance 

and sometimes divergence of the filter. The unscented Kalman filter (UKF) 

addresses some of the approximation issues of the EKF in the KF framework. 

Unlike the EKF, the UKF does not approximate the nonlinear process and 

observation models; it uses the complete nonlinear models and instead 

approximates the distribution of the state random variable [33].  
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• The particle filter (PF) is a statistical, brute force approach to estimation in 

nonlinear non-Gaussian systems. It was invented to numerically implement the 

recursive Bayesian estimation formulation of the posterior density. It is a 

simulation based method to compute the filtering distribution and provides a 

better approximation than any KF derivatives with the price of an increased level 

of computational effort [29].  

 

In the rest of this chapter, we focus on Kalman filter derivatives and particle filtering. We 

first derive the KF within the Bayesian framework. We analyze the approximations 

introduced in EKF and UKF by propagating the mean and covariance through the 

nonlinear model and present both of the filtering algorithms. We then derive the PF and 

its approximations. 

 

2.3.1. Kalman Filtering 
 

The discrete time KF gives the closed form solution to the optimal filtering problem for 

linear Gaussian systems. Consider the linear dynamic state space model 

 
 x

k
= F

k ,k!1
x
k!1

+ w
k

, (2.19) 

 yk = Hkxk + vk  (2.20) 

 
where 

 
x
k
!!

nx  is the state vector with initial distribution 
 
x
0
! N x

0
,P

0( ) , 
 
yk !!

ny is the 

measurement vector, F
k ,k!1

 is the state transition matrix and H
k
is the observation matrix; 

w
k{ }  and v

k{ } are zero mean white Gaussian noise processes independent of each other 

with known covariance matrices Q  and R , respectively. 

 

 
 

wk ! N 0,Q( ), vk ! N 0,R( ),

E wkwj

T!" #$ = Q%kj , E vkvj
T!" #$ = R%kj , E vkwj

T!" #$ = 0.
 (2.21) 

 
 

 



 

 21 

In probabilistic terms the model is 

 
 p xk | xk!1( ) = N xk ;Fk ,k!1xk!1,Q( ) , (2.22) 

 p yk | xk( ) = N yk ;Hkxk ,R( ) . (2.23) 

 
The optimal filtering equations for the linear model given in Eqs. (2.19)-(2.21) can be 

evaluated in closed form as 

 

 

p xk |Yk!1( ) = N xk ; x̂k
!
,Pk

!( )

p xk |Yk( ) = N xk ; x̂k ,Pk( )

p yk |Yk!1( ) = N yk ;Hk x̂k
!
,Sk( )

 (2.24) 

 
where x̂

k

!  is the estimate of x
k

before we process the measurement at time k, x̂
k

 is the 

estimate of x
k

after we process the measurement at time k, P
k

! is the covariance of the 

estimation error of x̂
k

! , and P
k

is the covariance of the estimation error of x̂
k

. The time 

update equations for the state estimate and its error covariance are 

 

 
x̂k
!
= Fk ,k!1x̂k!1,

Pk
!
= Fk ,k!1Pk!1Fk ,k!1

T
+Q.

 (2.25) 

 
The measurement update equations are 

 

 

x̂k = x̂k
!
+ Kk yk ! Hk x̂k

!( ),

Kk = Pk
!
Hk

T
Sk
!1
,

Sk = HkPk
!
Hk

T
+ R,

Pk = Pk
!
! KkSkKk

T
.

 (2.26) 

 
The derivation of the KF in the Bayesian framework is presented in Appendix B. 
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2.4. NONLINEAR EXTENSIONS OF KALMAN FILTERING 
 

In this section, we derive the nonlinear extensions of the Kalman filter. We mainly focus 

on extended Kalman filter (EKF) and unscented Kalman filter (UKF) and evaluate the 

validity of their approximations by investigating the propagation of means and 

covariances in nonlinear equations. We start with discussing the nonlinear transformation 

of a random variable through linearization which forms the basis for extended Kalman 

filtering and then through unscented transform to derive unscented Kalman filtering and 

compare these transformation with the true ones. 

 

2.4.1. General Nonlinear Transformation Problem 
 

Suppose that  x !!n
x , with mean  x , and covariance 

 
P

xx
, is transformed by a general 

nonlinear function
 
y = f x( ) . The statistics of 

 y
 can be calculated once the density of the 

transformed distribution is determined. In filtering applications, the mean  y  and 

covariance 
 
P

yy
 are the necessary statistics of 

 y
  to be computed. 

 

It is difficult to transform a probability density function through a nonlinear function. 

Complexity arises mainly for high dimensional and highly nonlinear systems. If the 

computational load is a concern, linearization of the nonlinear function around a nominal 

point is one of the choices despite its low accuracy for highly nonlinear functions. 

Another choice would be a Monte Carlo type method, which uses random sampling to 

simulate the prior distribution to be transformed in order to compute the necessary 

statistics of the transformed one. This forms the basis for particle filtering if performed 

sequentially. For these types of methods, in order to gain higher accuracy, the number of 

samples needs to be large, which increases the computational load. Recently, Julier and 

Uhlmann [34] proposed another method namely unscented transform (UT) for 

propagation of the necessary statistics with a Monte Carlo like method. The main 

difference is UT uses deterministic sampling that is specific to the type of the problem by 
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reducing the computational load based on the choice of number and location of the 

samples.  

 

2.4.1.1. Propagation of the True Mean 

 

Suppose that  x  is a GRV with mean  x . By expanding 
 
y = f x( )  in Taylor series around 

the mean  x = x  

 

 

   

y = f x( )

= f x( ) + D
!x
f +

1

2!
D
!x

2 f +
1

3!
D
!x

3 f +…

 (2.27) 

 
where   !x = x ! x , which has zero mean and covariance

 
P

xx
, and 

 

 

   

D
!x

m f = !x
j

!
!x

jj=1

n
x

"
#

$
%

&

'
(

m

f

x= x

.  (2.28) 

 
The mean of 

 y
 can be written as 

 

 

   

y = E f x( ) + D
!x
f +

1

2!
D
!x

2 f +
1

3!
D
!x

3 f +…
!

"
#

$

%
&

= f x( ) + E D
!x
f +

1

2!
D
!x

2 f +
1

3!
D
!x

3 f +…
!

"
#

$

%
&.

 (2.29) 

 
For any integer   m ! 0  

 

 

   

E D
!x

2m+1 f!" #$ = E !x
j

%
%x

jj=1

n
x

&
'

(
)

*

+
,

2m+1

f

x= x

!

"

-
-
-

#

$

.

.

.

= 0

 (2.30) 
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because for any symmetric pdf (i.e., let   p(r)  be the symmetric pdf of  r , then 

  p(r) = p(!r)  and if  m  is odd 
 
r

m
= ! !r( )

m

)  the central odd moments are zero. 

Rewriting Eq. (2.29) 

 

 
   

y = f x( ) + E
1

2!
D
!x

2 f +
1

4!
D
!x

4 f +…
!

"
#

$

%
& . (2.31) 

 
The second order term can also be written as  

 

 

   

E
1

2!
D
!x

2 f
!

"
#

$

%
& =

1

2
E !x

j

'
'x

jj=1

n
x

(
)

*
+

,

-
.

2

f

x= x

!

"

#
#
#

$

%

&
&
&

=
1

2
E !x

i
!x

j

'2

'x
i
'x

ji, j=1

n
x

(
)

*
+

,

-
. f

x= x

!

"

#
#

$

%

&
&

=
1

2
E !x

i
!x

j
!" $%

'2 f

'x
i
'x

ji, j=1

n
x

(
x= x

=
1

2
P

xx( )
ij

'2 f

'x
i
'x

ji, j=1

n
x

(
x= x

 (2.32) 

 
Rearranging Eq. (2.31), the true mean of 

 y
 is  

 

 
   

y = f x( ) +
1

2
P

xx( )
ij

!2 f

!x
i
!x

ji, j=1

n
x

"
x= x

+ E
1

4!
D
!x

4 f +
1

6!
D
!x

6 f +…
#

$
%

&

'
( . (2.33) 

 

2.4.1.2. Propagation of the True Covariance 

 

The covariance of 
 y

 is 

 

 
  
P

yy
= E y ! y( ) y ! y( )

T"
#$

%
&'

. (2.34) 

 
By using Eqs. (2.27) and (2.31), one can write 
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y ! y = D
!x
f +

1

2!
D
!x

2 f +
1

3!
D
!x

3 f +…
"

#
$

%

&
' ! E

1

2!
D
!x

2 f +
1

4!
D
!x

4 f +…
"

#
$

%

&
' . (2.35) 

 
Substituting Eq. (2.35) into Eq. (2.34) and using the property derived in Eq. (2.30) that 

odd central moments of a symmetric distribution are zero 

 

 

   

P
yy
= E D

!x
f D

!x
f( )

T!
"#

$
%&
+ E D

!x
f

1

3!
D
!x

3 f
'
()

*
+,

T

+
1

2!
D
!x

2 f
1

2!
D
!x

2 f
'
()

*
+,

T

+
1

3!
D
!x

3 f D
!x
f( )

T
!

"
#
#

$

%
&
&

+ E
1

2!
D
!x

2 f
!

"
#

$

%
&E

1

2!
D
!x

2 f
!

"
#

$

%
&

T

+…

(2.36) 

 
The second order moment can be written as 

 

 

   

E D
!x
f D

!x
f( )

T!
"#

$
%&

= E !x
j

'f

'x
jj=1

n
x

(
x= x

!x
k

'f

'x
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n

(
x= x
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*
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,

-
.

T!

"

#
#

$

%

&
&

= E !x
j

'f

'x
jj ,k=1

n
x

(
x= x

'f

'x
k x= x

)

*
+

,

-
.

T

!x
k

T

!

"

#
#

$

%

&
&

= F
j

P
xx( )

jk
j ,k=1

n
x

( F
k

T

= FP
xx

FT

 (2.37) 

 

where 
 

F =
!f

!x
x= x

is the Jacobian matrix at  x = x . Then, the true covariance of 
 y

 is  

 

 

   

P
yy
= FP

xx
FT

+ E D
!x
f

1

3!
D
!x

3 f
!
"#

$
%&

T

+
1

2!
D
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2 f
1
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 (2.38) 
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2.4.2. Linearization 
 

Extended Kalman filtering is based on linearization of the nonlinear system model around 

the nominal trajectory of the system state.  

 

2.4.2.1. Propagation of the Linearized Mean 

 

A linearization is performed by expanding 
 
y = f x( )  in Taylor series around the mean of 

the GRV  x = x  up to first order 

 

 
  

y = f x( )
= f x( ) + D

!x
f

 (2.39) 

 
where   !x = x ! x . The linearized mean of 

 y
 can be written as 

 

 

  

y
L

= E f x( ) + D
!x
f!

"
#
$

= f x( ) + E D
!x
f!" #$

= f x( )

 (2.40) 

 
by using the property derived in Eq. (2.30) that odd central moments of a symmetric 

distribution are zero. The linearization matches the true mean of 
 y

 up to first order. 

 

2.4.2.2. Propagation of the Linearized Covariance 

 

The linearized covariance of 
 y

is 

 

 
 

P
yy( )

L
= E y ! y

L( ) y ! y
L( )

T"
#$

%
&'

 (2.41) 

 
Combining Eqs. (2.39) and (2.40), one can write 

 
 

  
y ! y

L
= D

!x
f . (2.42) 
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Substituting Eq. (2.42) into Eq. (2.41) 

 

 
  

P
yy( )

L
= E D

!x
f D

!x
f( )

T!
"#

$
%&

. (2.43) 

 
By using the second order moment derived in Eq. (2.37), the linearized covariance of 

 y
is 

given as 

 
 

 
P

yy( )
L
= FP

xx
F

T . (2.44) 

 
The linearization matches the true covariance of 

 y
 up to third order. 

 

2.4.2.3. Extended Kalman Filtering 

 

Consider the nonlinear system equations 

 
 xk = f xk!1,wk( ) , (2.45) 

 yk = h xk ,vk( )  (2.46) 

 
where the noise characteristics are given in Eq. (2.21). For 

 k = 1,2,… , the EKF algorithm 

is: 

1. Compute the following Jacobian matrices evaluated at the state estimate, x̂
k!1

 

 

 

  

F
k!1

=
"f

"x
x̂

k!1

,

L
k!1

=
"f

"v
x̂

k!1

.

 (2.47) 

 
2. Perform the time update of the state estimate and estimation error covariance 

 
 x̂k

!
= f x̂k!1,0( ) , (2.48) 

 Pk
!
= Fk!1Pk!1Fk!1

T
+ Lk!1QLk!1

T . (2.49) 
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3. Compute the following Jacobian matrices evaluated at the state estimate, x̂
k

!  

 

 

  

H
k
=
!h

!x
x̂

k

"

,

M
k
=
!h

!w
x̂

k

"

.

 (2.50) 

 
4. Perform the measurement update of the state estimate and estimation error 

covariance 

 
 x̂k = x̂k

!
+ Kk yk ! h x̂k

!
,0( )"

#
$
% , (2.51) 

 K
k
= P

k

!
H

k

T
H

k
P
k

!
H

k

T
+ M

k
RM

k

T( )
!1

, (2.52) 

 P
k
= I ! K

k
H

k( )Pk
! . (2.53) 

 
In order to reduce the linearization error associated with the EKF, various approaches 

have been employed. In the iterated EKF, the state estimate x̂
k

!  where the Jacobian 

matrices for the observation equation are computed is refined [29]. In the second order 

EKF, a second order Taylor series expansion of the nonlinear system equations is 

performed [32].  In the Gaussian sum filter approach, a non-Gaussian pdf is 

approximated by a sum of Gaussian pdfs. Since the true pdfs of the modeling and 

measurement noises can be approximated by a sum of N Gaussian pdfs, one can run N 

filters in parallel and then combine them to obtain an estimate [35].  

 

For the cases when the system is highly nonlinear, most of these techniques do not work 

effectively and can cause the filter to diverge. A recent technique proposed to have a 

better approximation than EKF and its variations is the unscented Kalman filtering that 

we present in the next section. 
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2.4.3. Unscented Transform 
 

Unscented transform is an alternative approximate technique for transforming random 

variables through a nonlinear function. The idea behind this approach is that it is easier to 

approximate a probability distribution than it is to approximate an arbitrary nonlinear 

function or transformation [36]. 

 

It is based on finding a set of individual points in the state-space to approximate  certain 

moments of the true pdf of   x !!
n

x . Each point is then transformed through a nonlinear 

function to yield a transformed sample. The necessary statistics are calculated from these 

transformed samples. The deterministic selection of the sample points separates this 

algorithm from Monte Carlo type methods, which use random sampling. 

 

The steps in the UT are as follows: 

1. Calculate a set of points (sigma points) and weights ! = "
i( )
,W

i( ){ }  that capture 

the first and second moments (or higher) of the prior random variable. 

2. Transform each point through the nonlinear function 

 
 

   
!

i( )
= f "

i( )( ) i = 0,…,2n
x

. (2.54) 

 
3. Approximate the posterior statistics as 

 

 

  

y
UT

= W
i( )!

i( )

i=0

2n
x

" ,

P
yy( )

UT
= W

i( ) !
i( ) # y

UT( ) ! i( ) # y
UT( )

T

.
i=0

2n
x

"

 (2.55) 

 
In the next section, the selection framework of the sigma points will be discussed and the 

set of sigma points for the second order UT will be generated. Then, the approximation of 

the mean and covariance of the posterior random variable by UT will be analyzed by 

comparing them with the true mean and covariance.  
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2.4.3.1. Selection of the Sigma Points 

 

The selection of the sigma points depends on the order of moments to be captured. As the 

desired order of moments increases, the minimum number of points to capture these 

statistics increases.    

 

Let   p(x)  be the pdf of  x . The solution of a constraint function 
  
g ! , p(x)"# $% = 0  for the 

set of the sigma points !  contains the information of how many sigma points should be 

used, where they are located, and what weights are assigned to each point. The solution 

embraces some degree of freedom in the choice of points, which can be reduced by 

assigning a cost function 
  
C ! , p(x)"# $%  to the different solutions. The sigma points are 

obtained by solving 

 
 

  
min
!

C ! , p(x)"# $% subject to g ! , p(x)"# $% = 0.  (2.56) 

 
Although sigma points for higher order moments have been calculated [37], only the 

sigma point selection for second order UT for GRVs will be discussed here. 

 

Suppose that  x  is a GRV. The distribution of  x  with an arbitrary mean and covariance 

can be transformed to the standard Gaussian, which is zero mean and has unit variance. 

Then,  x  can be written as 

 
  x = x + Cz  (2.57) 

 
where  z  has the standard Gaussian distribution and  C  is a matrix square root of

 
P

xx
, 

 
CC

T
= P

xx
. 

 

The sigma points should capture the first two moments of z in the second order UT. Let 

 z
i( )  be the i-th component of  z . The covariance is 
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E z
i( )( )

2!

"
#

$

%
& = 1 'i  (2.58) 

 
and since the distribution is symmetric, all odd-ordered moments are zero. The minimum 

number of points whose distribution obeys these conditions has the structure shown in 

Figure 4. 

 

There are two types of points. The first type consists of a point at the origin and has a 

weight   W
0( ) . The second type consists of symmetrically distributed 2n points which lie 

on the coordinate axes a distance 
  
s

1
 from the origin and have the same weight   W

1( ) . 

Therefore the second order UT uses 2nx+1 sigma points. 

 

 
Figure 4. The set of points chosen for a 2-D distribution [38]. Because of the 
symmetry, the other two sigma points are not shown. 
 

The weights and locations of the points are chosen with regard to the constraint function. 

There are two constraints: the first one is the covariance of the sigma points should be 

equal to the identity and the second one is the weights should be normalized, 
  

W
i( )

i
! = 1 . 

 

((0,0),W(0)) 

((0,s1),W(1)) 

((s1,0),W(1)) 
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g ! , p x( )"# $% =
2W

1( )
s

1

2 &1

W
0( )
+ 2n

x
W

1( ) &1

'

(
)
)

*

+
,
,

 (2.59) 

 
Due to the symmetry of the points it is only necessary to ensure the condition holds in 

one particular direction. The solution of the constraint equation 
  
g ! , p(x)"# $% = 0  is 

  
s

1
= 1 2W

1( )  and 
  
W

0( )
= 1! 2n

x
W

1( ) . There is a degree of freedom, which corresponds 

to the value of   W
1( ) . By reparameterizing 

  
W

1( )
! 1 2 n

x
+"( )  with a scaling constant !  

and multiplying by  C , the sigma points for  x are 

 

 

  

!
0( )
= x W

0( )
=" n

x
+"( )

!
i( )
= x + n

x
+"( )P

xx( )
i

W
i( )
= 1 2 n

x
+"( )

!
i+n( )

= x # n
x
+"( )P

xx( )
i

W
i+n( )

= 1 2 n
x
+"( )

 (2.60) 

 

where 
 

n
x
+!( )P

xx( )
i

is the i-th row or column of the matrix square root of 
 

n
x
+!( )P

xx
 

and  W
i( )  is the weight associated with the i-th point. The degree of freedom is transferred 

to the choice of ! which can be eliminated by the cost function. One possible choice for 

the cost function is to minimize the error between the fourth order moments of the sigma 

points and the true distribution. For a GRV, 

 

 
  

E z
i( )( )

4!

"
#

$

%
& = 3 'i . (2.61) 

 
Using the symmetry, the cost function is 

 
 

  
c ! , p x( )"
#

$
% = 2w

1( )
s

1

4 & 3 , (2.62) 
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which is zero when 
  
w

1
= 3 2s

1

4
= 1 6  or 

  
! = 3" n

x
. The cost function minimizes the error 

in the kurtosis with the set of 2nx+1 samples. In order to match the exact kurtosis a 

different set of sigma points would be needed (fourth order UT) [38]. 

 

2.4.3.2. Propagation of the UT Mean 

 

One can approximate the mean y of the posteriori distribution by transforming each sigma 

point using the nonlinear function
 
y = f x( )  and taking the weighted sum of the 

transformed sigma points. The transformed sigma points are computed as 

 
 

   
!

i( )
= f "

i( )( ) i = 0,…,2n
x

 (2.63) 

 

where 
 

!
i
= n

x
+"( )P

xx( )
i

and the sigma points are 

 

 

  

!
0( )
= x W

0( )
=" n

x
+"( )

!
i( )
= x +#

i
W

i( )
= 1 2 n

x
+"( )

!
i+n( )

= x $ #
i

W
i+n( )

= 1 2 n
x
+"( )

 (2.64) 

 
The approximated mean of 

 y
, denoted as 

 
y

UT
, is 

 

 
  

y
UT

= W
i( )!

i( )

i=0

2n
x

" . (2.65) 

 
To compute

 
y

UT
, each 

 
!

i( )  in Eq. (2.63) is expanded in Taylor series around  x , yielding 

 

 

   

y
UT

=
!

n
x
+!

f x( ) +
1

2 n
x
+!( )

f x( ) + D
"

i

f +
1

2!
D

"
i

2 f +
1

3!
D

"
i

3 f +…
#

$
%

&

'
(

i=1

2n
x

)

= f x( ) +
1

2 n
x
+!( )

D
"

i

f +
1

2!
D

"
i

2 f +
1

3!
D

"
i

3 f +…
#

$
%

&

'
(.

i=1

2n
x

)
(2.66) 
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For any integer   m ! 0  
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i

2m+1 f
i=1
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x
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#
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"
$
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'
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f

x= x

*

+

,
,
,
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.

/
/
/i=1

2n
x

"
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j ,i( )
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#x
j
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j=1

n
x

" f

x= x

*

+
,
,

-

.
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/i=1

2n
x

"
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j ,i( )

2m+1 #2m+1

#x
j
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i=1

2n
x

" f

x= x

*

+
,
,

-

.
/
/j=1

n
x

"

= 0

 (2.67) 

 
by using the symmetry of the sigma points as 

 
!

i
= "!

i+n
x

 for 
   
i = 1,…,n

x
. Therefore, all 

of the odd terms in Eq. (2.66) will be zero. The second order term in Eq. (2.66) can be 

written 

 

 

  

1

2 n
x
+!( )

1

2
D"

i

2 f
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1
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x= x
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x
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=
1
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j
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n
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# f
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i=1

2n
x

#

=
1

2 n
x
+!( )

"
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i,k

$2

$x
j
$x

k

f

x= x

.
i=1

n
x

#
j ,k=1

n
x

#

 (2.68) 

 
By using the symmetry of the sigma points as 

 
!

i
= "!

i+n
x

 for 
   
i = 1,…,n

x
and substituting 

  
!

i, j
and 

  
!

i,k
 we find that 
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#
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  (2.69) 

 
Eq. (2.66) can be written as 

 

 
   

y
UT

= f x( ) +
1

2
P

xx( )
jk

!2 f

!x
j
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k x= x
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n
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i
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i
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i=1

2n
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" . (2.70) 

 
The comparison between the true mean of 

 y
 derived in Eq. (2.33) and the approximation 

of the mean of 
 y

 by UT shows that they match up to third order. The scaling constant !  

may also be used to minimize the error coming from the higher order terms.  

 

2.4.3.3. Propagation of the UT Covariance 

 

The covariance of  
 y

 can be approximated by UT using  

 

 
  

P
yy( )

UT
= W

i( ) !
i( ) " y

UT( ) ! i( ) " y
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T

i=0
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By expanding Eq. (2.63) in Taylor series and combining with Eq. (2.66), one can write 
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Rearranging Eq. (2.72) we find 
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The approximation of the covariance of 

 y
 by UT shows that it matches up with the true 

covariance to the third order. 

 

2.4.3.4. Unscented Kalman Filtering 

 

For the nonlinear system model described in Eq. (2.45) and Eq. (2.46), for 
 k = 1,2,… , the 

UKF algorithm is: 

1. First, choose the sigma points as specified in Eq. (2.60) 
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! n

x
+"( ) P

xx
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i

W
i+n( )

= 1 2 n
x
+"( )

 (2.74) 

 
where the current best estimate for the mean and covariance of x

k!1
 are x̂

k!1
 and 

P
xx( )

k!1
. 

2. Perform the time update of the state estimate and the estimation error covariance. 

a. Use Eq. (2.45) to propagate the set of sigma points through the state 

equation. 
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 x̂k
!( )

i( )
= f x̂k!1

i( )
,0( ) . (2.75) 

 
b. Combine the x̂

k

!( )
i( )

 vectors to obtain a priori state estimate at time k.  

 

 x̂
k

!
= W

i( )
x̂
k

!( )
i( )

i=0

2nx

" . (2.76) 

 
c. Estimate the corresponding a priori error covariance by adding the error 

covariance for the modeling noise. 

 

 
  

P
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k
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i( )
! x̂

k
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#$

%
&' x̂

k
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i( )
! x̂
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%
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2n
x

( + Q . (2.77) 

 
3. Perform the measurement update of the state estimate and the estimation error 

covariance 

a. Use Eq. (2.46) to obtain the expected measurements with the a priori 

sigma points 

 
 ŷk

i( )
= h x̂k

!( )
i( )
,0( ) . (2.78) 

 
b. Combine the ŷk

i( ) vectors to obtain the predicted measurement at time k, 

 

 ŷk = W
i( )
ŷk
i( )

i=0

2nx

! . (2.79) 

 
c. Estimate the corresponding covariance of the predicted measurement by 

adding the error covariance for the measurement noise 
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i( )
ŷ

k

i( )
! ŷ

k( ) ŷ
k
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d. Estimate the cross covariance between x̂

k

!  and ŷk  
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%
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e. The measurement update of the state estimate and estimation error 

covariance are obtained using the regular Kalman filtering equations 

 
 x̂k = x̂k

!
+ Kk yk ! ŷk[ ],  (2.82) 

 Kk = Pxy( )
k
Pyy( )

k

!1

,  (2.83) 

 Pxx( )
k
= Pxx

!( )
k
! Kk Pxy( )

k

T

.  (2.84) 

 
The UKF was proposed by Julier and Uhlmann [33] in an attempt to provide a better 

approximation for nonlinear dynamic state space models than EKF. It is a derivativeless, 

deterministic sampling based on the Kalman filter structure and consistently outperforms 

the EKF not only in terms of estimation accuracy, but also in filter robustness and ease of 

implementation [33]. 

 

In the next section we perform an application of the UKF to estimate the degradation in 

the steam generators (SGs) of IRIS (International Reactor Innovative and Secure). 

 

2.4.3.5. Application: IRIS SG Degradation [39] 

 

As stated in Chapter 1, it is a very important task in nuclear reactors to monitor and 

diagnose the degradations before serious failures occur. Next generation of nuclear 

reactors are designed to have a long core life and high fuel burnup. For example, the IRIS 

reactor was originally designed to have a three year fuel cycle [1]. Since IRIS has an 

integral configuration where all the primary system components including pumps, steam 

generators, a pressurizer, and control rod drive mechanisms, are located inside the reactor 

vessel, a failure in one of these systems may result in loss of safety or interruption of 

operation. Therefore, especially for the next generation of nuclear reactors, a consistent 

and efficient degradation monitoring algorithm should be developed to prevent loss of 

safety and to improve the economy of the reactor. 
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Estimating the deposition of crud (i.e., corrosion products) on heat transfer surfaces is 

one of the problems we are interested in. Crud buildup can occur either in the core on the 

surface of fuel cladding or in the SG both inside and outside of the SG tubing. It impedes 

the heat transfer and increases the resistance to the fluid flow, resulting in higher pressure 

drops. In the steam generator, the growth of these deposits causes the thermohydraulic 

performance to be degraded with time. In the reactor core, these deposits result in 

degradation in the heat transfer performance, which can lead to local hot spots and 

cladding failure.  

 

The complex structure and extreme environment in the reactor core and the steam 

generator limits the placements of the sensors to observe crud buildup. In this application 

our goal is to detect the SG fouling in IRIS by estimating the crud deposition on the SG 

tubes.  

 

The IRIS SG is a helical-coil once-through design with the primary fluid flowing outside 

the tubes. Eight SG modules are located in an annular space between the core barrel and 

reactor vessel. Feedwater enters the SG through a nozzle in the reactor vessel wall and 

passes through the lower feed water header. The feedwater enters the SG tubing, and is 

heated to saturation, boiled to steam, and superheated as it flows upward to the upper 

steam header [4]. 

 

We chose UKF for not only being a better approximation than EKF for highly nonlinear 

systems, but also its ease of applicability especially when the model is represented by 

pre-compiled computer codes like RELAP5 [40] in which calculation of Jacobians can be 

very time consuming and difficult. 

 

We employed a joint estimation approach (described in Section 3.1) in which we 

augmented the state vector to include both component states c  and the system states x  as 

z = x c[ ]
T . The discrete time nonlinear dynamic state space model given in Eqs. (2.4)-

(2.6) can be represented in a joint estimation framework as 
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 zk = f zk!1,wk( )  (2.85) 

 yk = h zk ,vk( )  (2.86) 

 
where  w

k{ }  and v
k{ } are zero mean white Gaussian noise processes independent of each 

other with known covariance matrices Q  and R , respectively. We also augmented the 

modeling noise vector as 

 

 
 

wk = wk

x
wk

c!" #$
T

! N 0,Q =
Qx 0

0 Qc

!

"
%

#

$
&

'

()
*

+,
 (2.87) 

 
We used RELAP5 as our model. However, RELAP5 does not contain the necessary 

routines to practice SG fouling applications. We wrote a script to add a crud layer 

gradually into the RELAP5 model. The script needs the deposition rate and location as 

inputs and generates the input for RELAP5, which is then run for a time interval where 

the crud deposition is assumed to be constant. Then the script processes the output of 

RELAP5 to prepare the input for the next time interval. This loop is terminated when the 

crud layer no longer changes. 

 

We assumed that crud formation occurs at 10 s after the start of the simulation, rather 

than through a slow deposition over years of operation. We simulated the fouling of the 

SG tubes by considering crud buildup uniformly inside the SG tubes as shown in Figure 

5. 

 

In our implementation, the plant behavior is observed through the temperature at the 

outlet of the secondary side. The system states are represented through the pressure 

distribution inside the secondary side tubes and pressure drop is calculated through these 

states. The component state to be estimated is the crud layer thickness. 
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Figure 5. The fouling boundary inside the secondary side tubes. 
 

The stand-alone SG model was constructed by using the RELAP5 model [41] developed 

by Westinghouse, Polytechnic of Milan and University of Zagreb. We used the same 

nodalization for the primary and secondary sides of the SG by using the nominal 

conditions of the SG primary and secondary side inlets as boundary conditions. The 

nodalization of the stand-alone SG model is given in Figure 6. 

 

The SG tubes in IRIS are assumed to be composed of Inconel Alloy 690. Since the 

formation and thickness of the crud is not known, we tried our algorithm for different 

values of thermal conductivity and different thicknesses of the crud. We started our 

analysis by assuming the thermal conductivity of the crud layer is ~50% less than the 

thermal conductivity of Inconel Alloy 690 in the operating temperature range. We 

introduced a 0.5 mm crud layer deposition along the length of the tubes and simulated the 

measurement, which is the temperature at the outlet of the secondary side with 0.5% 

noise added. The simulated measurement, and the estimated measurement (through UKF 

as a state) are shown in Figure 7. 

 

 

fouling boundary 

13.24 

17.46 
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Figure 6. The nodalization of the stand-alone IRIS SG model. 
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Figure 7. Simulated and estimated measurement for 0.5 mm crud thickness and 
50% decrease in thermal conductivity of Inconel. 
 

We applied the UKF to obtain a best estimate of the thickness of the crud layer, 

considered as a component state [Figure 8(a)], together with a best estimate of the 

pressure drop along the secondary side [Figure 8(b)]. 
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(a) Crud layer thickness (b) Secondary side pressure drop 

Figure 8. Simulated and estimated component and system states for 0.5 mm crud 
thickness and 50% decrease in thermal conductivity of Inconel. 
 

The UKF algorithm successfully estimates the thickness of the crud layer and the 

pressure distribution along the secondary side of the SG. A detailed sensitivity analysis 

can be found in our paper [39]. 

 

2.4.4. Particle Filtering 
 

In this section, we derive the particle filtering algorithm that we used to generate our new 

technique in the rest of this thesis. As explained in the previous sections, for nonlinear 

systems the extensions of Kalman filter are based on various assumptions to assure 

tractability. But in general, the dynamic state space model could be high dimensional, 

highly nonlinear and the states could be non-Gaussian. Particle filtering is a sequential 

Monte Carlo method alternative to the filtering methods described before. It has a wide 

range of applicability especially in nonlinear non-Gaussian systems and an easier 

implementation capability with a price of increased computational effort. After testing 

different filtering techniques, we chose particle filtering because of its better 

approximations and wide range of applicability. Our goal is to obtain a general 

framework for a degradation monitoring algorithm and we believe particle filtering suits 

our needs.  
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We start this section by describing Monte Carlo sampling. We discuss how to construct a 

proposal distribution when we cannot sample from the target distribution. We form the 

basis for sequential importance sampling (SIS) and explain the weight degeneracy 

problem in SIS. We finish this section with reviewing sampling importance resampling 

(SIR) algorithm, which is developed as a remedy for the weight degeneracy problem.  

 

2.4.4.1. Monte Carlo Sampling 

 

The multi-dimensional integrations given in Eqs. (2.11) - (2.14) can be approximated by 

Monte Carlo sampling. As mentioned in Section 2.3, the computational complexity grows 

exponentially with the dimension of the integration in the grid based filtering. Monte 

Carlo methods have an advantage over classical numerical integration, because the 

relative error, which does not explicitly depend on the state dimension, is of the order of 

O N
!1/2( )  where N is the number of samples. 

 

Consider the computation of an integral at time step k 

 
 

 
I = g xk( )dxk

!
nx! .  (2.88) 

 
To implement Monte Carlo methods, we rewrite the integral in the form 

 
 

 
I f( ) = f Xk( ) p Xk |Yk( )dXk

!
nx! ,  (2.89) 

 
where g xk( ) = f Xk( ) p Xk |Yk( )  and p Xk |Yk( )  is the posterior density of the state 

 
X
k
= x

1
, x

2
,…, x

k{ }  given all the observations 
 
Yk = y

1
, y
2
,…, yk{ } . 

 

Monte Carlo methods rely on the assumption that we are able to simulate N  independent 

and identically distributed (i.i.d.) random samples, also named particles, 

 
X
k

i( )
;i = 1,…,N{ }  sampled from p Xk |Yk( ) . An empirical estimate of this distribution is 

then 
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 p Xk |Yk( ) =
1

N
!

i=1

N

" Xk # Xk

i( )( ).  (2.90) 

 
The Monte Carlo estimate of the integral in Eq. (2.89) then becomes 

 

 ÎN f( ) =
1

N
f Xk

i( )( )
i=1

N

! .  (2.91) 

 
Because the particles are independent, this estimate is unbiased. If the posterior variance 

of f Xk( ) , 
 
! 2

= f Xk( ) " I f( )( )
2

p Xk |Yk( )dX
!
nx#  is finite, then the variance of ÎN f( )  is 

equal to !
2

N
 . By the strong law of large numbers 

 

 ÎN f( ) !
N!+"

a.s.

I f( )  (2.92) 

 

where !
a.s.

denotes almost sure convergence. Moreover, the central limit theorem yields 

 
 N ÎN f( ) ! I f( )( ) "

N#+$
N 0,%

2( ),  (2.93) 

 
where !  denotes convergence in distribution [42]. This means that as N ! +" , the 

uncertainty on the approximation will tend to zero. 

 

Even though it may seem that this proposed method is sufficient to approximate integrals 

like Eq. (2.89), it is usually impossible to sample efficiently from the posterior density 

p Xk |Yk( ) , because this density can be multivariate, non-standard and known only up to 

a proportionality constant [42]. Importance sampling is based on sampling from an 

alternative density, called the proposal density in order to direct the particles to the 

regions of importance. 
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2.4.4.2. Importance Sampling 

 

Let q Xk |Yk( )  be a proposal distribution that covers the support of the posterior 

distribution p Xk |Yk( ) . Since p Xk |Yk( )  is a normalized pdf, 

 

 
p Xk |Yk( )
q Xk |Yk( )! q Xk |Yk( )dXk = 1  

 
and so dividing Eq. (2.89) by this yields 

 

 I f( ) =
f Xk( )W Xk( )q Xk |Yk( )dXk!
W Xk( )q Xk |Yk( )dXk!

 (2.94) 

 
where W X

k( )  is known as the importance weight, 

 

 W Xk( ) =
p Xk |Yk( )
q Xk |Yk( )

.  (2.95) 

 
By drawing N i.i.d. particles 

 
X
k

i( )
;i = 1,…,N{ }  from q Xk |Yk( ) , the Monte Carlo estimate 

of the integral is calculated as  

 

 

 

ÎN f( ) =

1

N
f Xk

i( )( )W Xk

i( )( )
i=1

N

!

1

N
W Xk

j( )( )
j=1

N

!
= f Xk

i( )( ) !W Xk

i( )( )
i=1

N

!  (2.96) 

 
where 

 

 

 

!W Xk

i( )( ) =
W Xk

i( )( )

W Xk

j( )( )
j=1

N

!
. 
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Because p Xk |Yk( )  appears in 
 

!W X
k

i( )( )  only in a ratio, we can compute 
 

!W X
k

i( )( )  without 

knowing the normalized p Xk |Yk( ) , but can instead use any function that is 

preoperational to it. The importance sampling estimate ÎN f( )  is biased but consistent, 

namely the bias vanishes at a rate of O N( ) [24].  Under additional assumptions, a central 

limit theorem with a convergence rate still independent of the dimension of the integrand 

can be obtained [43].  

 

In this form of the importance sampling, one needs to take all the measurements before 

estimating the posterior distribution, which increases the computational complexity 

because one needs to compute the importance weights every time step. This problem can 

be solved through sequential importance sampling. 

 

2.4.4.3. Sequential Importance Sampling (SIS) 

 

If the proposal distribution is chosen in the following factorized form 

 
 q Xk |Yk( ) = q Xk!1 |Yk!1( )q xk | Xk!1,Yk( ),  (2.97) 

 
we can perform the importance sampling recursively. By iterating we obtain 

 

 q Xk |Yk( ) = q x
0( ) q xk | Xk!1,Yk( ).

k=1

n

"  (2.98) 

 
In Eq. (2.8) we obtained the following recursive formula for the posterior density 

 

 p Xk |Yk( ) = p Xk!1 |Yk!1( )
p yk | xk( ) p xk | xk!1( )

p yk |Yk!1( )
.  

 
By using this equation and Eq. (2.97), the importance weights can be updated recursively  
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W Xk

i( )( ) =
p Xk

i( )
|Yk( )

q Xk

i( )
|Yk( )

! p Xk"1

i( )
|Yk"1( )

p yk | xk
i( )( ) p xk

i( )
| xk"1

i( )( )
q Xk"1

i( )
|Yk"1( )q xk

i( )
| Xk"1

i( )
,Yk( )

!W Xk"1

i( )( )
p yk | xk

i( )( ) p xk
i( )
| xk"1

i( )( )
q xk

i( )
| Xk"1

i( )
,Yk( )

.

 (2.99) 

 
Note that, we left out the normalization constant p yk |Yk!1( )  to write this proportionality. 

In Bayesian filtering we are more interested in the filtering density instead of the 

posterior density. In the next section, we construct the SIS filtering algorithm. 

 

2.4.4.4. Sequential Importance Sampling Filter 

 

In order to calculate the filtering density, we assume q xk | Xk!1,Yk( ) = q xk | xk!1, yk( )  

(states are first order Markovian). Now, at each time step only x
k

i( )  needs to be stored and 

therefore one can discard the state trajectory X
k!1

i( )  and history of measurements Y
k!1

. The 

modified importance weights are 

 

 W xk
i( )( )!W xk"1

i( )( )
p yk | xk

i( )( ) p xk
i( )
| xk"1

i( )( )
q xk

i( )
| xk"1

i( )
, yk( )

,  (2.100) 

 
and the filtering density can be approximated as 

 

 p xk |Yk( ) ! W xk
i( )( )

i=1

N

" # xk $ xk
i( )( )  (2.101) 

 
where the weights are defined in Eq. (2.100). The SIS filtering algorithm consists of 

recursive propagation of the weights and support points as each measurement is received 

sequentially [28]. For 
 k = 1,2,… , the SIS filtering algorithm is: 

1. For 
 i = 1,…,N  sample 

 
xk
i( )
! q xk | xk!1

i( )
, yk( ) . 
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2. For 
 i = 1,…,N , evaluate the importance weights using Eq. (2.100). 

3. Normalize the importance weights 

 

!W xk
i( )( ) =

W xk
i( )( )

W xk
j( )( )

j=1

N

!
. 

 

The selection of the proposal distribution is the crucial design step in particle filtering, 

because it can greatly affect the performance of the filter. 

 

It is often convenient to adopt the prior distribution as the proposal distribution 

 
 q xk | xk!1

i( )
, yk( ) = p xk | xk!1

i( )( ).  (2.102) 

 
In this case, the importance weights in Eq. (2.100) satisfy 

 
 W xk

i( )( )!W xk"1
i( )( ) p yk | xk

i( )( ).  (2.103) 

 

2.4.4.5. Weight Degeneracy Problem  

 

One of the problems with SIS filtering is the degeneracy of the weights. As time 

increases all but a few particles will have negligible weight. It has been shown [44] that 

the variance of the importance weights can only increase in time, and therefore it is 

impossible to avoid weight degeneracy. A suitable measure of degeneracy is the effective 

sample size Neff , introduced by Kong et.al [45], 

 

 Neff =
N

1+ Cov
q !|Yk( )

W xk
i( )( )( )

=
N

1+ E
q !|Yk( )

W xk
i( )( )

2

( )
. (2.104) 

 
This cannot be evaluated analytically, because true weights, W x

k

i( )( )  are impossible to 

obtain. Instead, the effective sample size may be estimated by 
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 N̂eff =
1

W xk
i( )( )

2

i=1

N

!
.  (2.105) 

 
Notice that small Neff  indicates severe degeneracy. In order to reduce the effects of the 

weight degeneracy problem, either we can obtain a better proposal density or we use a 

resampling step, which is the basis for the sampling importance resampling (SIR) filter.  

 

2.4.4.6. Sampling Importance Resampling Filter 

 

When Neff  falls below some threshold, one may use a resampling scheme to eliminate 

particles that have low importance weights and split particles with high importance 

weights [46]. The resampling step involves generating a new set of particles at time step k 

by resampling N times with replacement from an approximate discrete representation of 

the filtering distribution given in Eq. (2.101) in the form 

 

 p̂ xk |Yk( ) =
1

Ni=1

N

! " xk # xk
* i( )( ) =

n
i( )

Ni=1

N

! " xk # xk
i( )( )  (2.106) 

 
where n i( )  is the number of copies of the particle x

k

i( )  in the new set of particles 

 
x
k

* i( )
;i = 1,…,N{ }  with equal weights, 1 / N . As N ! +" ,  

 

 
 

E I f( ) ! f xk( ) p̂ Xk |Yk( )dxk
!
nx"( )

2#
$%

&
'(

 

 
goes to zero [47]. 

 

Among many different resampling algorithms three of them are presented here [47]: 

 

1. Multinomial Resampling: Generate N uniform numbers, 
 
u

i( )
!U 0,1( ) . Use 

these samples to select x
k

* i( ) according to the multinomial distribution. That is, 
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 xk
* i( )

= x F
!1
u

i( )( )( ) = xkj( )  (2.107) 

 

with j  such that u
i( ) ! W xk

m( )( )
m=1

j"1

# , W xk
m( )( )

m=1

j

#$

%
&

'

()
 where F

!1  denotes the 

generalized inverse of the cumulative probability distribution of the normalized 

particle weights. 

2. Stratified Resampling: Generate N ordered random numbers 

 

 
 

u
i( )
=
i !1( ) + !u i( )

N
 (2.108) 

 
where 

 
!u
i( )
"U 0,1( ) , and use them to select x

k

* i( ) according to the multinomial 

distribution. 

3. Systematic Resampling: Generate N ordered random numbers 

 

 
 

u
i( )
=
i !1( ) + !u

N
 (2.109) 

 
where 

 
!u "U 0,1( ) , and use them to select x

k

* i( ) according to the multinomial 

distribution. 

 

The resampling step may also introduce new problems into the particle filter. Resampling 

may limit the parallelization of the algorithm, since the particles may be combined at 

some point [28]. Since the particles with high importance weights are selected many 

times, it may lead to a loss of diversity among the particles. This problem is known as 

sample impoverishment. Solving this problem in a filter to perform degradation 

monitoring is the primary contribution of this dissertation. This will be the focus of 

Chapter 3.  

 

In the SIR algorithm proposal distribution is chosen as the prior distribution as given in 

Eq. (2.102). For 
 k = 1,2,… , the SIR filtering algorithm is: 
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1. For 
 i = 1,…,N , sample 

 
xk
i( )
! p xk | xk!1

i( )( ) .  

2. For 
 i = 1,…,N , evaluate the importance weights using Eq. (2.103). 

3. Normalize the importance weights. 

4. Resample with replacement N  particles according to the importance weights with 

one of the resampling algorithms described above. 
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CHAPTER 3 

INTRODUCTION OF A RELIABILITY DEGRADATION 
DATABASE INTO DEGRADATION MONITORING 

FRAMEWORK 
 
 
 

In the preceding chapter we reviewed various nonlinear filtering techniques. We also 

presented an application of degradation monitoring in the steam generators of the IRIS 

reactor. In this chapter we address a very important problem with the filtering techniques, 

which is the inability of a filter to estimate an abrupt change. Because we model 

degradations as abrupt changes in the component states, using a filter as a black box for 

this kind of problem might result in inaccurate estimates of the states. Thus, we propose 

techniques to improve the filter in order to respond to the changes in the component 

states. 

 

We start this chapter with the description of the state space model for the degradation 

monitoring problem in the joint parameter/state estimation framework. In section 3.2 we 

redefine the problem discussed above for both the extensions of Kalman filter and 

particle filter. The main issue is that the covariance of the estimate will become small. 

This is usually a desirable property for an unbiased estimate showing that the filter’s 

belief in the estimate is high. This appears in different ways for different filtering 

algorithms but the consequence is the same: if there is an abrupt change in one of the 

states, then it is hard for the filter to respond to that change. This can lead to the filter 

converging to the wrong state. On the other hand, if our belief to the system model is low, 

then the problem may be ill-posed, especially for high dimensional systems. 



 

 54 

As stated in Chapter 1, our goal in this thesis is twofold. First, we want to generate a 

general framework for degradation monitoring. Second we want to construct a framework 

to combine multiple data sources, e.g., reliability degradation database, sensor data, filter 

estimates, etc. So, generating new techniques as a remedy for the problems mentioned in 

the previous paragraph by introducing a reliability degradation database unites our goals 

to obtain a general framework for degradation monitoring. In Section 3.3 we propose to 

use a reliability degradation database to improve the performance of the filter by 

exploring the state space in the direction of possible degradations and by eliminating the 

less likely state transitions using a MCMC move step. 

 

In Subsection 3.3.3 we extend our algorithm to be used in degradation detection and 

isolation. Our earlier work on degradation monitoring based on parameter (component 

state) estimation using the extended Kalman filter [48] [49], unscented Kalman filter [50] 

[39] [51] and particle filtering [52] reinforced our belief in the efficacy of particle 

filtering in this thesis mainly because of its consistency and efficiency as an estimator.  

 

3.1. STOCHASTIC MODEL FOR DEGRADATION MONITORING 
 

The dynamic system state model for a general discrete-time nonlinear system is given in 

Eqs. (2.4) – (2.6). We employ a joint estimation framework in which the system and 

component states are concatenated by utilizing an augmented state vector representation, 

z = x c[ ]
T . In this framework, the estimations are generated simultaneously, in contrast 

to dual estimation techniques where two coupled filters are run to estimate both the 

system and component states. For the Kalman filtering framework, Nelson [53] showed 

for a range of problems that the joint estimation approach is expected to provide better 

estimates.  

 

We consider a general physical system, which contains n
c  physical components 

described via component characteristics  c
v
!!

n
v , i.e., valve flow areas, pump 

characteristics, etc., which define the component state 
 
c = c

1
c
2

… c
n
c

!" #$
T

 of the 
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system. There need not be a one-to-one correspondence between the number of actual 

components in the system and the number of component characteristics. Not only more 

than one component characteristic may be needed to define a component state, but also 

one component characteristic may affect more than one component.  

 

The dynamic state space model restructured for our joint estimation framework is 

 

 zk =
xk

ck

!

"
#

$

%
& =

f xk'1,wk

x
;ck( )

ck'1 + wk

c

!

"
#

$

%
&,  (3.1) 

 yk = h zk( ) + vk .  (3.2) 

 
The noise sequences are assumed to be independent and white as described in Eq. 2.87 

and to have known pdfs. We treat the component states c
k
 as constant but uncertain 

model parameters. If there is a degradation associated with one of the components, then 

we expect the component state to change abruptly, but stay constant after this change. 

  

In the real plant, the components within a system may degrade due to a random change in 

their characteristics. The degradation will then affect the system states and monitored 

process variables. For example, the steam generator tubes may degrade because of crud 

deposition inside the tubes, which results in changing one of its characteristics, i.e., the 

flow area. The decrease in the flow area increases the pressure drop and affects the 

system states, i.e., nodal pressure distribution along the tubes. Also, the degradation 

deteriorates the heat transfer and consequently decreases the tube outlet temperature, 

which can be monitored through a sensor. 

 

Small degradations in the components may be harder to detect and isolate compared to 

larger degradations and failures within the components. The reason is that the signature 

of small degradations on the process may be lost within noise. One other issue is even if 

the effect of the degradation on the measurement is identified, for high dimensional 

systems there could be many component trajectories that can produce the observed 

change because of the large uncertainties in the system, and that can lead to an ill-posed 
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filtering problem. Throughout the thesis we assume that analytical redundancy exists, i.e., 

the influence of the degradation upon the analytical redundancy is observable, and the 

component degradations are detectable.  

 

As stated in Section 2.1 the component states undergo random, discrete transitions and 

stay constant between these transitions. Upon the introduction of degradation e.g., within 

component 1 between time steps k-1 and k, as illustrated in Figure 9, the component state 

changes according to 

 
 cdeg,k = cnom,k!1 + "c

k
+ w

k

c  (3.3) 

 
Since the transition is random, !c

k
 is not known. After the degradation occurs, the 

dynamic state space model given in Eqs. (3.1) and (3.2) is no longer representative of the 

real plant behavior because of the change in the component state. The challenge is how 

we can modify the filtering algorithm to explore the state space in order to estimate the 

states optimally in real time. In the next section, we redefine this problem in a systematic 

way for different estimation algorithms and review alternative techniques to overcome 

this problem. 

 

 

Before starting this discussion, we rewrite Eqs. (2.10) – (2.14) for the filtering density in 

the joint estimation framework 

t tk-1 tk tk+1 

c1(t) 

cdeg 

cnom 

Figure 9. The change in the component state due to degradation. 
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 p zk |Yk( ) =
p yk | zk( ) p zk |Yk!1( )

p yk |Yk!1( )
. (3.4) 

 
The prior density is 

 
 p zk |Yk!1( ) = p zk | zk!1( )" p zk!1 |Yk!1( )dzk!1 . (3.5) 

 
The state transition density is written by using the definition of conditional probability as 

 

 p zk | zk!1( ) =
p xk ,ck , xk!1,ck!1( )
p xk!1,ck!1( )

=
p xk | xk!1,ck ,ck!1( ) p xk!1,ck ,ck!1( )

p xk!1,ck!1( )
. 

 
As given in Eq. (3.1), the system state at time k is a function of system state at time k-1 

and component state at time k, so p xk | xk!1,ck ,ck!1( ) = p xk | xk!1,ck( ) . Using the 

definition of the conditional probability again we obtain 

 

 
p zk | zk!1( ) =

p xk | xk!1,ck( ) p ck | xk!1,ck!1( ) p xk!1,ck!1( )
p xk!1,ck!1( )

= p xk | xk!1,ck( ) p ck | xk!1,ck!1( )

 (3.6) 

 
where for the dynamic state space model given in Eq. (3.1), 

 
 p xk | xk!1,ck( ) = " xk ! f xk!1,wk

x
;ck( )( ) p wk

x( )dwk

x

# , (3.7) 

 p ck | xk!1,ck!1( ) = " ck ! ck!1 + wk

c( )( ) p wk

c( )dwk

c

# . (3.8) 

 
The observation likelihood density is calculated using the observation function as 

 
 p yk | zk( ) = ! yk " h zk ,vk( )( ) p vk( )dvk# . (3.9) 

 
The denominator of Eq. (3.4) is a scalar normalization constant given by 

 
 p yk |Yk!1( ) = p yk | xk( )" p yk |Yk!1( )dxk . (3.10) 
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3.2.  THE PROBLEM OF CHANGE ESTIMATION IN NONLINEAR 
FILTERING ALGORITHMS 
 

Filtering techniques suffer from various problems besides the approximations introduced 

to assure tractability for nonlinear systems. One of these problems is the inability of the 

filter to respond to abrupt changes in the states. We call abrupt change as any change in 

the component states that occurs either instantaneously or at least very fast with respect to 

the sampling period of the measurements [54]. Abrupt changes by no means refer to 

changes with large magnitude; on the contrary, we are interested in estimation of the 

small changes. 

 

After running a filter for a long time successfully, the error covariance of estimation gets 

very small. This prevents the filter from responding to a change in the state because the 

reduction in the error covariance limits the state space that the filter searches. Assisting 

the filter to explore the state space is obviously a solution but there is no unique way of 

doing it. In the next sections, we discuss this problem for different nonlinear filtering 

algorithms. 

 

3.2.1. Oblivious Nonlinear Kalman Filtering 

 

When the noise inputs to the system are small or when the filter operates over long time 

intervals, the covariance matrix becomes very small and optimistic. The filter gain 

therefore becomes small, and the filter relies on old measurements and becomes 

“oblivious” to new measurements. If an abrupt change occurs, the filter will respond 

quite sluggishly, yielding poor performance [55,56]. 

 

There are a variety of techniques like limited memory filter [55], exponentially age-

weighted filter [57], adaptive fading Kalman filter [58] and covariance matching [32] for 

keeping the filter sensitive to the new measurements. In this dissertation, we suggest a 

new idea, which is to solve this problem in a multiobjective optimization framework 

when another data source is present i.e., a reliability degradation database. In the 
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following subsections we first review covariance matching and analyze its performance 

in EKF with an application. Then, we show the effects of  “obliviousness” in UKF with 

an application and propose a multiobjective optimization framework to improve the 

behavior of the filter. 

 

3.2.1.1. Covariance Matching 

 

The basic idea behind the covariance matching techniques is to make the residuals 

consistent with their statistics. In our paper Probabilistic Techniques for Diagnosis of 

Multiple Component Degradations [48], we developed this technique in an innovative 

way to construct multiple hypotheses in order to isolate the faulty components and 

estimate the magnitude of the fault/s. We present this application in the next subsection. 

 

Consider the innovation sequence !k = yk " Hk x̂k
"( ) , which has a covariance 

S
k
= H

k
P
k

!
H

k

T
+ R  given in Eq. 2.26. After an abrupt change, the innovation is expected 

to be large, but its covariance is still small because of the filter’s insensitivity to the 

measurements. Since the actual covariance is expected to be much larger 

thanS
k
= H

k
P
k

!
H

k

T
+ R , in this technique we increase the modeling noise covariance Q  in 

order to increase P
k

!  and so match the anticipated value of S
k
. 

  

Suppose that the filter estimates x̂
k!1

 and P
k!1

 are available at time k-1. The degradation 

is introduced between time steps k-1 and k. After detecting the degradation, we choose a 

time lag nt and calculate the residuals from k to k+nt -1 in order to give some statistical 

smoothing and calculate 

 

 S
k
= E !

k+ l
!
k+ l

T"# $% =
1

n
t

!
k+ l
!
k+ l

T

l=0

nt &1

'  (3.11) 

  
This will produce consistency between the residuals and their statistics. We obtain an 

equation for Q  by setting the covariance of the residual  
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 H
k
P
k

!
H

k

T
+ R = E "

k+ l
"
k+ l

T#$ %&  (3.12) 

 
and so 

 
 Hk Fk ,k!1Pk!1Fk ,k!1

T
+Q( )Hk

T
+ R = E "k+ l"k+ l

T#$ %&  (3.13) 

 
finally yielding 

 
 HkQHk

T
= E !k+ l!k+ l

T"# $% & HkFk ,k&1Pk&1Fk ,k&1
T

Hk

T & R . (3.14) 

 
If H  is of rank less than n

z
 Eq. (3.14) does not give a unique solution for Q  [59]. 

 

In the next subsection, we present how we utilized this technique to solve the oblivious 

filter problem in a multicomponent system. 

 

3.2.1.2. Application: Adaptive EKF with Covariance Matching [48] [49] 

 

We developed an adaptive extended Kalman filtering algorithm for the diagnosis of 

degradations of multiple components in nuclear power plants. Our diagnostic algorithm 

uses the measurement residuals to generate a noise input to the uncertain component state 

in an adaptive Kalman filtering algorithm so that various postulated component 

degradations may be statistically represented. The diagnostic algorithm has been tested 

with a balance of plant (BOP) model of a boiling water reactor (BWR).  

 

In this joint estimation framework where !( )
x
 and !( )

c
denote the functions describing the 

system and component states, respectively, given one measurement residual !
k
 without 

smoothing  we may assume !
k

2  is the maximum likelihood estimate [32] of E !
k
!
k

T"# $%  

 
 !k

2
= E !k!k

T"# $% = HkFk ,k&1Pk&1Fk ,k&1
T

Hk

T( )
x
+ HkQHk

T( )
x
+ HkQHk

T( )
c
+ R . (3.15) 

 
The expected covariance of the measurement residual T  before recognizing any 
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component transition  

 
 T = Hk!1Fk!1,k!2Pk!2Fk!1,k!2

T
Hk!1

T( )
x
+ Hk!1QHk!1

T( )
x
+ R  (3.16) 

 
with the recognition that we introduce a finite modeling noise covariance, Qc to account 

for modeling errors associated with the component transition.  

 

We assume the measurement residual !  is a zero-mean Gaussian, so we may evaluate 

the consistency between the expected value T and observed value !
k

2  of residual variance 

by monitoring the statistic 

 
 d* = !

k
T

"1!
k

T
,  (3.17) 

 
which is described by a ! 2 -distribution [9] with ny  degrees of freedom for ny  

observations.  If d* > !"

2 , where !"

2  is obtained from a ! 2 -table, representing ! % 

desired test significance, then we declare that a modeling deficit exists, i.e., a component 

state transition has occurred resulting in a statistically significant deviation between 

observed and predicted process variables.  Upon the detection of a system anomaly of 

unknown origin, we proceed to determine what changes in the component state 

c
k!1

" c = ĉ
k{ }  could have resulted in the measurement deficit !

k

2 " T .   

 

Since we do not know either the type or magnitude of the fault, we estimate the 

component characteristic uncertainty by considering the impact of each single 

component fault one at a time. We assume that the covariance of the residual changes at 

time step k due to the change in the component states resulting 

HkFk ,k!1Pk!1Fk ,k!1
T

Hk

T( )
x
+ HkQHk

T( )
x
+ R = T . Thus, assuming individual component 

transitions are uncorrelated, we design the noise covariance Qc to be diagonal so that 

Eqs.  (3.15) and (3.16) yield 

 
 Hk!1QHk!1

T( )
c
= "k

2 ! T . (3.18) 
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For component i, Eq. (3.18) is used to model the uncertainty in system state modeling as 

the largest manifestation of the component perturbation, in terms of the i-th diagonal 

element of Qc 

 
 qc,ii = max

1!s!ny
"k
2 # T( )

s
hc,si
2$

%
&
'  (3.19) 

 
provided that such a perturbation is physically feasible.  Here, the component 

hc,si = !ys !ci( )  of Jacobian matrix H
c
 represents the sensitivity coefficient connecting 

observation y
s
 to component c

i
.  The corresponding uncertainty in system state x can be 

specified in an ad hoc manner with hx,sj = !ys !x j( )  and a diagonal matrix Qx 

 
 qx, jj = max

1!i!nc

qc,iihc,si
2

hx,sj
2( ) . (3.20) 

 
For each component i, we construct a hypothesis by replacing only the i-th diagonal 

element of Qc by qc,ii  and updating the Qx withqx, jj . This choice of the elements of 

Q =
Q

x
0

0 Q
c

!

"
#

$

%
&  increases the covariance matrix in Equation (3.15) to introduce additional 

modeling uncertainty and are tested to determine if the updated covariance matrix Q is 

thoroughly accounting for the observed modeling deficit !
k

2 " T  of Eq. (3.18). Allowing 

for each of n
c
 components to be either in a faulted or normal operating state, we need to 

execute a bank of J = 2nc  adaptive filters, which yield a set of J multivariate pdfs for the 

component/system characteristics. We then determine which of the J pdfs might 

represent a component fault and of these, which are significantly different from one 

another [48].  This determination reduces the original set of J feasible component states 

to a reduced set of J* unique feasible component states characteristic of faulted 

component behavior.  
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The next step is to find which hypotheses are more probable. In order to do that, we first 

draw a sample from the nominal density 
 

cnom
i( )
! pnom c | y( ) = pnom x,c | y( )

x

!  

where
 i = 1,…,N . Then for each hypothesis we perform the following, for

 
hyp = 1,…, J * : 

1. For 
 i = 1,…,N  draw a sample from the pdf

 

chyp
i( )
! phyp c | y( ) = phyp x,c | y( )

x

! . 

2. Evaluate the weights for each sample based on the transition/non-transition 

probabilities obtained from the degradation database [48]. 

3. Normalize the weights. 

 

This algorithm provides the relative likelihood for each hypothesis. 

 

To demonstrate these algorithms, a low order model of a BOP representative of the Big 

Rock Point BWR [60] was used. The balance of plant is represented by 11 system 

variables and observed via five system observation variables. Nine component 

characteristics were chosen for this demonstration.  The details of this model are given in 

Chapter 4. A binary system fault composed of a 5% increase (from nominal) in the 

effective flow area of the main steam valve and a simultaneous 10% decrease (from 

nominal) in the low pressure turbine efficiency was considered in one of the test cases. 

After detecting the fault in terms of expected residuals and generating 130 different 

hypotheses (for 9 components, at most 3 simultaneous faults were considered) the 

performances of the expected hypotheses were calculated and plotted in Figure 10. 

  

Hypothesis A was generated by considering component 2 as constant but uncertain, while 

Hypothesis B was generated by considering both of the components were constant but 

uncertain at the time of the fault. Since there was not enough uncertainty inserted into 

component 1 in Hypothesis A, it needed a longer time to converge to the correct 

perturbed state. Therefore, Hypothesis B was found to be the correct fault/no fault 

combination for this test case. 

 

The linearization approximation of the nonlinear system model and the Gaussian 

assumption of the state variables in the EKF, and the ad hoc approach of Eq. (3.20) that 
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we employed to calculate the magnitude of the modeling error covariance, prevent the 

use of these algorithms in a more general framework. Adding additional modeling noise 

to the states also decreases the precision of the estimates. A more detailed analysis of this 

application example can be found in [48]. 
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(a) Flow area of the main steam valve (component 1). (b) Low pressure turbine efficiency (component 2). 

Figure 10. The evolution of two BOP components obtained through the adaptive 
filter. 
 

3.2.1.3. Application: Multiobjective Optimization with UKF [51] 

 

In this application, we propose to utilize a reliability degradation database compiled from 

past operational characteristics, tests and maintenance reports for the components of 

interest to improve the convergence rate of a filter and even to prevent it from diverging 

for highly nonlinear systems. 

 

To combine the real time filtering algorithm with the reliability database we propose to 

solve a multiobjective optimization problem. The first objective is to maximize the 

conditional component state pdf given the measurement history calculated via a filtering 

estimate of the component. The second objective is to maximize the component state pdf 

given past operational characteristics derived from the reliability database.  

 

A multiobjective optimization problem usually has no unique, perfect solution. However, 

one can introduce a set of nondominated, alternative solutions known as the Pareto 

optimal set [61]. If both of the pdf’s are Gaussian, the Pareto optimal points for that 
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component are the ones between the two means. The mean of the true component state is 

located between these Pareto optimal points, and the belief on either source of 

information should be set to estimate it. 

 

We employed the weighted sum method [61] to form the cost function as 

 
 

  
p c

k
| Y

k( ) = ! p
f

c
k

| Y
k( ) + 1"!( ) p

db
c

k
| c

k"1( )  (3.21) 

 
where 

 
p

f
and 

 
p

db
are conditional pdf’s for the component states obtained from UKF and 

reliability database, respectively. !  is a weighting coefficient that expresses the relative 

“importance” of the objectives and controls their involvement in the cost functional, 

which can be calculated by direct search, min-max principle [62] or set by expert opinion. 

 

In UKF, at each time step we update the mean of the estimated component state with the 

one from the reliability database by assuming the conditional mean of the component 

state can be written as
  
E c

k
!" #$ = %E c

k
!" #$ f

+ 1&%( )E c
k

!" #$db
.  

 

A sodium-cooled plutonium-uranium metal fueled fast reactor core was chosen to test 

this algorithm. A simplified model of the plant [63] was employed. The system state is 

represented through 14 variables, which include normalized neutronic power, six delayed 

precursor concentrations, four group decay heat fractions, coolant exit and fuel and 

cladding average temperatures. The components to be estimated are the coolant flow rate 

and the total reactivity (including feedback).  Coolant exit temperature and normalized 

neutronic power can be measured. 

 

The plant behavior was first monitored during steady state operation. Then a transient 

was introduced into the constant coolant flow rate 
   
!m

0
 due to a pump coast-down at t = 

200 s in the form of  

 
 

   
!m(t) = !m

0
a + be

!"t( )  (3.22) 



 

 66 

where the parameters (a, b and λ) are functions of the type of degradation in the pump.  

 

By setting 
   
!m

0
= 2583 kg/s and a = 0.08, b = 0.921, λ = 0.069315 [63], we simulated the 

transient behavior of the plant. We then applied UKF to obtain the best estimates of the 

system and component states. Although the filter was converged to the nominal values of 

the states in the steady state operation, in the transient part it could not respond to the 

change in the system behavior promptly as shown in Figure 11.  

 

In order to improve the convergence characteristics of the filter we used our proposed 

modified UKF algorithm based on multiobjective optimization. We assumed a and b are 

known constants, and λ is a random variable with a Gaussian pdf given in the reliability 

database. The expected value of λ in the database is 0 for nominal and 0.069315 (true 

value) for degraded conditions. As a trial, we set our beliefs in the filter and the database 

to be equal in this algorithm, so ! = 0.5  was selected somewhat arbitrarily. Then, we 

updated the best estimate of the coolant flow rate in the filter with the expected value of λ 

from the reliability database according to 
  
E !"# $% = 0.5& E !"# $% f

+ 0.5& E !"# $%db
 at each 

time step. We tried the algorithm also with a wrong degradation mode in which the 

expected value of λ is 0.023105. 

 

Coolant exit temperature is one of the measurements and is plotted in Figure 11 along 

with its true and estimated (UKF, Modified UKF (True Degradation Mode), Modified 

UKF (Wrong Degradation Mode)) evolutions in time. 

 

Notice that the UKF by itself follows the nominal plant behavior very well, but at the 

time of the degradation it is so well converged that it cannot promptly follow the transient 

during the pump coast-down. On the other hand, the filter combined with the reliability 

database (even an imperfect database) adjusts much more quickly; it still deviates during 

the transient, but not as much, and it quickly finds the new steady state after the transient. 
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Figure 11. The evolution of true, noisy and estimated coolant exit temperature. 
 

Average fuel and cladding temperatures are given in Figure 12 with their true and 

estimated (using UKF, Modified UKF (True Degradation Mode), Modified UKF (Wrong 

Degradation Mode)) evolutions in time. 

 

 

Figure 12. The evolution of true and estimated average fuel and cladding 
temperatures. 
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Combining different sources of information (data fusion) in a multiobjective optimization 

framework improves the performance of the filter. In Figures 11 and 12 we see that the 

UKF by itself converges to the degraded state quite slowly, but when combined with 

information from a database, it can converge much more quickly. This is true even when 

the database is imperfect. Because of this, we will exploit the combination of a database 

with particle filtering as the main contribution of this thesis to degradation monitoring.  

 

3.2.2. Sample Impoverishment Problem in Particle Filtering  
 

In the particle filtering (PF) sample impoverishment occurs if the region of state space in 

which the pdf p yk | zk( )  has significant values does not overlap with the pdf p zk |Yk!1( ) . 

Like in the oblivious nonlinear Kalman filtering, if the variances of the states become 

very small during the nominal state estimation, then the pdf p zk |Yk!1( )  will be highly 

peaked. Degradation occurring in one of the component states alters the pdf p yk | zk( ) . 

After the resampling step this will result in multiplication of only a few particles and 

elimination of the rest, which leads to sample attrition. Because of this the PF cannot 

respond to the change in that component state and eventually all of the particles will 

collapse into a single one. This issue is particularly acute in our case where we use a joint 

estimation approach that deals with constant parameters e.g., component states, as part of 

the augmented state vector [64].  

 

This phenomenon is very important for degradation monitoring in nuclear power plants, 

because a degradation detection, isolation and estimation algorithm should be capable of 

estimating both the nominal and degraded states with minimal error. If the methods suffer 

from sample impoverishment, then the estimated states will not be able to represent the 

real plant behavior, which can result in taking incorrect operational actions and put the 

reactor in an unsafe state, which may result in an unanticipated shutdown. 

 

There are a couple of techniques to overcome this sample impoverishment problem in 

particle filters. In the next section, we will first discuss the roughening technique, which 
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is a PF representation of covariance matching. Then, we will concentrate on a Markov 

chain Monte Carlo (MCMC) move technique and develop our multiple hypotheses 

testing algorithm on it. 

 

3.2.2.1. Roughening 

 

Gordon et.al. [46], proposed adding small random disturbances to state particles after the 

resampling step in addition to any existing modeling noise in order to reduce sample 

impoverishment. As in the covariance matching technique, there is no unique way to 

specify the characteristics of the noise. Also, if the state is high dimensional, it is very 

difficult to apply this technique. Finally, this technique increases the variance of the 

estimates and the precision of the resulting inferences is inevitably limited [64]. 

 

3.2.2.2. Markov Chain Monte Carlo Move Step 

 

Markov chain Monte Carlo (MCMC) methods are powerful algorithms that help to solve 

most of the Bayesian problems when the data are available in batches [65]. In particular, 

there is no need for the normalizing constant to be known and the state space can be high 

dimensional. The applications of MCMC methods involve generating many samples from 

the posterior distribution of the model parameters by using a Markov chain and then 

approximating the posterior expectations with sample averages [66].  For sequential cases 

in which the states are estimated recursively in time as data are available, MCMC can be 

used for drawing samples from candidate invariant distributions as a step in particle 

filtering.  However, since the posterior distribution evolves over time, MCMC methods 

are computationally intensive.  

 

In this thesis, we propose to use a Markov chain Monte Carlo move step as a tool for 

combining multiple sources of information. Our novel approach is constructed by using a 

multiple hypothesis testing algorithm based on a MCMC method to find a remedy for 

sample impoverishment problem in particle filtering. 
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In order to construct the framework for this methodology, we first start with a discussion 

on Markov chain Monte Carlo. Then, we present the Metropolis-Hastings algorithm, 

which is the MCMC method we will use in the rest of the thesis. We also review the 

resample-move algorithm proposed by Gilks and Berzuini [66], which is a sequential 

implementation of MCMC, before presenting our approach. 

 

3.2.2.2.1. Markov Chain Monte Carlo 

 

Markov chain Monte Carlo is a strategy for generating samples while exploring the state 

space using a Markov chain mechanism. This mechanism is constructed so that the chain 

spends more time in the most important regions.  

 

We start with the definition of Markov chain. A Markov chain is a series of random 

variables X
k{ }  in which the distribution of  X

k
 depends entirely on the value of X

k!1
, 

i.e., 

 
 

 
p xk | x k!1,…, x

1( ) = p xk | x k!1( ) . (3.23) 

 
A Markov chain can be specified by the marginal density of the initial state X

0
, and the 

conditional density of X
k
 given the possible values of X

k!1
, which is also defined as the 

transition kernel of the Markov chain as  

 
 K xk | x k!1( ) = p xk | x k!1( ) . (3.24) 

 
If the transition kernel does not depend on time, the Markov chain is homogeneous and it 

remains invariant for all k.  

 

Using the transition kernels, we can find the target density, i.e., the probability of state at 

time k+1 

 
 p xk+1( ) = K xk+1 | x k( )! p xk( )dxk . (3.25) 
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The invariant distribution is defined as the distribution over the states of a Markov chain 

that remains unchanged when once it is reached. In section 2.1, component states are 

defined as time invariant Markov chains, so that 

 
 p c( ) = K c | ck( )! p ck( )dck . (3.26) 

 
The target density p c( )  is invariant with respect to the Markov chain with transition 

kernel K c | c
k( ) . 

 

For any starting point C
0
= c

0
, these Markov chains will converge to the invariant 

density p c( ) , as long as the transition kernel obeys the following properties:  

1. Irreducibility: For any state of the Markov chain, the kernel is constructed such 

that there is a positive probability of visiting all other states 

2. Aperiodicity: The kernel satisfies that the chain should not get trapped in cycles. 

 

A sufficient, but not necessary condition to ensure that the target density p c( )  is the 

desired invariant one is the following reversibility (detailed balance) condition 

 
 p ck( )K c | ck( ) = p c( )K ck | c( ) . (3.27) 

 
That is, if a transition occurs from a component state chosen according to the target 

densities, then the probability of that transition being from component state c
k
 to c  is the 

same as the probability of it being from the state c  to c
k
. It is also possible for a 

distribution to be invariant without detailed balance holding [67]. 

 

MCMC methods are based on irreducible and aperiodic Markov chains that have the 

target distribution as an invariant distribution. One way to design these methods is to 

ensure that detailed balance is satisfied [68]. 

 

It is not merely enough to find a Markov chain that we can sample from an invariant 

distribution. We also require that the Markov chain be ergodic, which means regardless 



 

 72 

of the choice of initial probabilities a target distribution converges to an invariant 

distribution as k!" . Clearly, an ergodic Markov chain can have only one invariant 

distribution [67]. 

 

In MCMC methods, the invariant distribution or density is assumed to be known, but the 

transition kernel is unknown.  In order to generate samples from the invariant 

distribution, MCMC methods attempt to find a kernel whose nth iteration (for large n) 

converges to the target distribution given an arbitrary starting point [24].  

 

In the next subsection we present a well known MCMC method, the Metropolis-Hastings 

algorithm, which we use in our multiple hypothesis testing algorithm. 

 

3.2.2.2.2. The Metropolis–Hastings Algorithm 

 

For high dimensional problems, MCMC simulation is the only known general approach 

for providing a solution to the Bayesian inference problem within a reasonable time [68]. 

The Metropolis-Hastings (MH) algorithm is the most popular MCMC method. The MH 

algorithm was first studied by Metropolis et. al. [69], and later extended for cases when 

the proposal distribution is not symmetric by Hastings [70].  

 

Assume the conditional proposal density q c | ck( )  is easy to simulate from and either 

explicitly available (up to a multiplicative constant) or symmetric, i.e., 

q c | ck( ) = q ck | c( ) . The target density p c( )  must be available to some extent: a general 

requirement is that the ratio p c( ) q c | ck( )  is known up to a constant [71]. During each 

iteration of the MH algorithm a candidate sample is drawn from the proposal density 

 
c
i( )
! q c | ck( )  and accepted with a probability 

 

 ! ck ,c
i( )( ) =

min 1,
p c

i( )( )q ck | c
i( )( )

p ck( )q c
i( )
| ck( )

"

#

$
$

%

&

'
'

p ck( )q c
i( )
| ck( ) > 0

1 o / w

(

)
**

+
*
*

 (3.28) 
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where 0 < ! c
k
,c

i( )( ) < 1. If the candidate sample is accepted the chain moves to a new 

state, otherwise the chain is left in its current state.  

 

The MH algorithm is as follows [71]: 

Given c
k
and for 

 i = 1,…,N , 

1. Draw a sample from the proposal density, 
 
c
i( )
! q c | ck( ) . 

2. Sample 
 
u !U 0,1( ) . 

3. Compute the acceptance probability ! c
k
,c

i( )( )  from Eq. (3.28). 

4. If u < ! c
k
,c

i( )( )  accept the candidate state c
k+1 = c

i( ) ; otherwise reject it and retain 

the current statec
k+1

= c
k
. 

 

The probability that the Markov chain stays at c
k
 is given by 

 
 r ck( ) = q c | ck( ) 1! " ck ,c

i( )( )( )dc# . (3.29) 

 
The transition kernel for the MH algorithm can then be written 

 
 KMH ck+1 | ck( ) = q ck+1 | ck( )! ck ,ck+1( ) + " ck+1 # ck( )r ck( ) . (3.30) 

 

If C
k{ }  is the Markov chain produced by the MH algorithm, for every conditional 

density q , the transition kernel satisfies the detailed balance and p c( )  is the invariant 

distribution of the chain [71]. 

 

As implied above in the MH algorithm, we only need to know the target distribution up 

to a constant of proportionality; the normalizing constant of the target distribution is not 

required. The success or failure of the algorithm depends on the choice of the proposal 

density.  If the proposal is too narrow, only one mode of the target distribution might be 

visited. On the other hand, if it is too wide, the rejection rate can be very high, resulting 

in high correlations. If all the modes are visited while the acceptance probability is high, 
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the chain is said to “mix” well [68]. 

 

A practical approach for the construction of a MH algorithm is to consider a local 

exploration of the neighborhood of the current values of the Markov chain through a 

random walk. One choice is to simulate c i( ) according to 

 
 c

i( )
= c

k
+ !

i( )  (3.31) 

 
where ! i( )  is a random perturbation sampled fromq c ! ck( )  [71]. 

 

It is unrealistic to hope for a generic MCMC sampler that would function in every 

possible setting. The more generic proposals like the random walk MH algorithms are 

known to fail in large dimension and disconnected supports, because they may take too 

long to explore the space of interest. 

 

The efficiency of the Metropolis-Hastings algorithm is determined by the ratio of the 

accepted samples from a proposal density to the total number of samples. Too large or 

too small variance of the proposal density may result in inefficient sampling. For the 

random walk MH algorithm, high acceptance rate does not necessarily indicate that the 

algorithm is moving correctly since it may indicate that the random walk is moving too 

slowly. 

 

3.2.2.2.3. MCMC Particle Filter 

 

When the system is high dimensional, the performance of the particle filter depends to a 

large extent on the choice of the proposal distribution. By utilizing MCMC methods in 

the particle filtering, we can deal with complex non-standard probability densities. 

 

The basic idea is that if the particles are distributed according to the filtering distribution 

p zk |Yk( )  then applying a Markov chain transition kernel K z | z
k( )  with invariant 
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distribution p ! |Yk( )  such that K z | zk( ) p zk |Yk( )dzk = p z |Yk( )!  to each particle still 

results in a set of particles distributed according to the filtering distribution. However, the 

new particles might have been moved to more “important” areas of the state space. Note 

that, we can incorporate any of the standard MCMC methods, like Metropolis-Hastings 

algorithm into the filtering framework, but we no longer require the kernel to be ergodic 

[68]. 

 

One different interpretation of this approach is, one can think of the transition kernel as 

being used to simulate the dynamics of a modified probabilistic model. 

 

Berzuini and Gilks [72] [66] proposed resample-move algorithm in which they integrated 

MCMC into particle filtering. An initial set of component states c
0

i( ){ } is sampled from 

p c
0( )  and is used in the particle filtering algorithm until time step 1. Then it is resampled 

and moved in the state space to a new position by using a MCMC method to form 

another set c
1

i( ){ } . This process continues so that, at time k+1, for 
 k = 1,2,… the current 

particle set c
k

i( ){ } is resampled and moved to form c
k+1

i( ){ } . Each resampling is an 

importance weighted resampling, and each resampled particle is moved according to a 

Markov chain transition kernel.  

 

Having discussed the basics of the MCMC methods and the available algorithms that 

utilize MCMC in particle filtering, in the next section we construct our new algorithm 

based on multiple hypothesis testing. 

 

3.3. PARTICLE FILTERING WITH AN MCMC MULTIPLE 
HYPOTHESIS TESTING STEP 
 

Particle filtering is a powerful tool for state estimation. But as mentioned earlier, the 

sample impoverishment problem prevents the PF from estimating abrupt changes in the 

component states. Besides the sample impoverishment problem, for low fidelity systems 

with high dimensional state space, PF may end up estimating the wrong states. The 
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reason is that for high dimensional low fidelity models with a limited number of 

measurements the filtering problem may be ill-posed. One other issue for high 

dimensional systems is that if the proposal density is not close to the filtering density, 

then the weights of the particles may be very uneven, that is only few particles with large 

importance weights will dominate the estimation. Also this problem prevents PF from 

fully exploring the state space and results in the same effect of the sample 

impoverishment problem. 

 

In order to resolve these issues, one possible solution is to employ an MCMC method to 

search the state space of interest. To design an effective algorithm that can work in real 

time, this scheme should be capable of moving the particles to more important regions 

without any delay. Since, the best source of data is records kept of the actual systems and 

equipments being diagnosed, we are proposing the use of a reliability degradation 

database that can be generated from plant specific data to derive different transition 

kernels to be tested through an MCMC method. 

 

In order to use a degradation database in construction of these kernels, we first need to 

analyze the kind of information available. 

 

3.3.1. Reliability Degradation Analysis and Construction of the 
Degradation Database 
 

The concepts of reliability degradation analysis in nuclear reactors were originally 

introduced in NUREG/CR-5612, Degradation Modeling with Application to Aging and 

Maintenance Effectiveness Evaluations [73] and were expanded in NUREG/CR-5967, 

Development and Application of Degradation Modeling to Define Maintenance Practices 

[74]. While NUREG/CR-5612 focused on developing technical methods to evaluate 

times of degradations and maintenances for time trends and for measures of the 

efficiency of the maintenance, NUREG/CR-5967 focused on developing Markov models 

to quantify the probabilities of safety system components being in various degraded 

states. In NUREG/CR-6415, Applications of Reliability Degradation Analysis the 

connection between these developed models of degradation analysis and applications 
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were investigated to determine the reliability and risk effects of the maintenances 

undertaken [75]. 

 

In a reliability degradation analysis, by evaluating the records of a component’s 

performance we can identify the occurrences of degradation of that component. One may 

use records of past operational experience, maintenance reports, manufacturer 

specifications or expert judgment to construct the database. We would like to note that 

for degradation analysis, additional evaluation is needed beyond development of a 

Probabilistic Risk Assessment (PRA) database in which only the potential failures of the 

components are identified. 

 

The types of data we are interested in are the component degradation reliabilities, 

corresponding degradation modes and the expected occurrences (frequencies) of these 

degradation modes. 

 

For example, suppose we would like to estimate nx system and 3 component states. These 

components can be residual heat removal (RHR) pumps, service water (SW) pumps and 

air compressors. At first, we need to have probability density functions for time to 

degradation in that component. Assuming the time to degradation in a component is 

distributed according to an exponential distribution, then the probability that the 

component is degraded at time t is 

 
 F(t) = 1! e

!"t  (3.32) 

 
where ! is the rate of degradation. 

 

A representative data set is shown in Table I for this simple case. In the top row, 

component number, number of modes (nominal and degradation modes) and degradation 

rate (exponential distribution is assumed for the pdf of time to degradation) for that 

component are specified. For example, if the first component is the SW pump, then the 

expected  degradation  modes  can  be  the  erosion of the pump internals causing leakage  
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past the impeller to the suction side of the pump or a small hole in the coupling cooling 

water line. In order to decide if the component is in the nominal or in a degraded state, we 

define component characteristics. A component characteristic represents the operability 

of the physical component. For the SW pump, the component characteristic can be the 

mass flow rate.  

 

The hard constraints for that component value are entered in the third row as minimum 

and maximum admissible values for that component (minimum and maximum mass flow 

rate for the SW pump). Then the type of probability distribution functions (Gaussian, 

gamma, uniform, etc.) for the nominal and degraded modes along with the parameters of 

that distribution are recorded. For a Gaussian the parameters are location and scale, for 

gamma they are shape and scale. The gamma process is also considered because it is a 

natural model for degradation processes in which deterioration is supposed to take place 

gradually over time in a sequence of tiny increments [76]. Assuming a Gaussian pdf is 

chosen, the mean and variance of the nominal distribution is specified. For all modes, 

then the probability that the component is in that mode at time t is needed to complete the 

database. For the nominal case, since we assumed that time to degradation in a 

component is distributed according to exponential distribution, the reliability at time t is 

 
 R(t) = e

!"t  (3.33) 

 
For the degradation modes, it is indeed the expected occurrence of the modes, which can 

be calculated using the normalized expected frequencies at time t. 

 

3.3.2. Degradation Estimation Using Multiple Hypothesis Testing with 
MCMC 
 

As mentioned in reviewing the Metropolis-Hastings algorithm, there is no generic 

scheme to apply to all of the problems. Adding a reliability degradation database 

introduces real plant information into this scheme in order to assist the filter to explore 

the important state space regions of interest and by doing so opens up the state space for 
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the particle filter to be able to converge to the true states even if they are not explicitly 

introduced by the database.  

 

As stated in our nonlinear system model, the component state  c !!n
c  is assumed to 

undergo random, discrete transitions and stays constant between these transitions for 

nominal conditions 

 
 c

k!1
= c

k!2
+ w

k!1

c
. (3.34) 

 

Degradation changes the nominal trajectory of the component as 

 
 c

k
= c

k!1
+ "c

k
+ w

k

c . (3.35) 

 
Since we do not know the amount of degradation, !c

k
, we cannot switch the nominal 

model to the degraded model in the particle filtering algorithm in order to update the 

prior transition density. In most cases the particle filtering has been in operation for a 

long time before the detection of the degradation and may suffer from a sample 

impoverishment problem, which prevents it to explore the state space effectively. We 

propose to use past real plant operational data that have been quantified in the reliability 

degradation database to generate proposal densities (candidate transition kernels) for 

improving the search for the state space through an MCMC technique. These densities 

are characterizing various degradation modes for all components in the database. In the 

database, the conditional density that the component is in a degraded state given that it 

was in its nominal state 

 
 

 
q !ck( )

j ,d
= ck " ck"1( ); j = 1,…,nc;d = 1,…,nd j( )  (3.36) 

 
is stored. !ck( )

j ,d
is the distribution of the change from nominal state c

k!1
 to degraded 

state c
k
 for component j and degradation mode d and nd j( )  is the total number of 

possible degradation modes for component j. The probability of finding the component j 

in the nominal state at time k is given by its reliability, Rk( )
j
. The occurrence probability 
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of degradation mode d for component j at time k is ! k( )
j ,d

, and the sum of the 

occurrence probabilities of all of the degradation modes 
 
d = 1,…,nd j( )  at time k satisfies 

1! Rk( )
j( ) = " k( )

j ,d
d=1

nd j( )

# and are also available in the database.  

 

The true invariant target density is the filtering density p zk |Yk( ) . By using the 

degradation database, we can construct the following proposal density for the component 

state 

 

 q ck | ck!1( ) = " j Rk( )
j
q wk( )

j
= ck ! ck!1( ) + # k( )

j ,d
q $ck( )

j ,d
= ck ! ck!1( )

d=1

nd j( )

%
&

'
(

)

*
+

j=1

nc

% (3.37) 

 
where ! j  represents the likelihood of component j being degraded at the detection time 

of the degradation. If the time to degradation is distributed according to an exponential 

distribution, then it is simply the ratio of the degradation rate of component j to the total 

degradation rates, ! j =
" j

"l
l

#
. However, after the detection time, ! j  will be treated as a 

variable in the adaptation scheme described in Subsection 3.3.2.1. It will be made 

proportional to the acceptance ratio of the particles from the degradation modes of 

component  j. 

 

The proposal distribution for the component state q ck | ck!1( )  given in Equation (3.37) is 

built on characteristics of the degraded components and corresponding modes extracted 

from the reliability degradation database.  We calculate the proposal distribution for the 

augmented state as in Equation (3.6) 

 
 q zk | zk!1( ) = p xk | xk!1,ck( )q ck | xk!1,ck!1( ) . (3.38) 

 
This proposal density increases the variance of the filtering density. For high dimensional 

systems, exploring the state space for all combinations of the degradations may take a 
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long time. Therefore, it is useful to draw samples from one mode at a time, keeping all 

the other ones fixed. The proposal density described above is also multimodal. If the 

modes are separated by regions of very low probabilities, it may become difficult to jump 

from one region to another. A multiple hypothesis testing algorithm, described below, 

will resolve both of these issues. 

 

Moreover, in degradation monitoring our aim is not only to estimate the magnitude of the 

degradation in a component, but also try to isolate the cause of the degradation, namely 

identifying the degradation mode. If one uses the Kalman filter or its derivatives to have 

an MMSE or MAP estimate of the component state, just by checking the distance 

between e.g., the means of the estimate and the degradation modes, and deciding on 

which mode is in effect based on this information can lead to an incorrect decision on the 

degraded mode. The problem is that whenever there is degradation in a component 

caused by a specific mode, the component state does not change the same exact amount. 

We use a pdf to represent this behavior. Then, in order to isolate the correct degradation 

mode, we need to match our estimated density with the one from the mode and decide 

based on the overlapping regions. One other way of doing this is by creating a multiple 

hypothesis testing algorithm based on MCMC, which takes care of matching these 

densities intrinsically and quantifies the probability of having a specific degradation 

mode in effect by analyzing the number of particles accepted from different hypotheses. 

 

Assume we have one component with two degradation modes, which are equally likely to 

occur at time step k. Then Equation (3.37) can be rewritten (! = 1 for one component) 

 

 
q ck | ck!1( ) = Rk( )

1
q wk( )

1
= ck ! ck!1( ) +

1! Rk( )
1

( )
2

q "ck( )
1,1
= ck ! ck!1( )

+
1! Rk( )

1
( )

2
q "ck( )

1,2
= ck ! ck!1( ).

 (3.39) 

 
A representative pdf for the nominal component state at time k, given the component 

state at time k-1, is estimated through the particle filtering algorithm and expected to be 

highly peaked because of the sample impoverishment problem is shown in Figure 13(a). 
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The proposal pdf constructed by assuming all modes are Gaussian using Equation (3.39) 

for the component state at time k, given the nominal component state at time k-1 is 

illustrated in Figure 13(b). 

 

 
(a) The pdf for filter estimate at time k. 

 
(b) The proposal pdf at time k. 

Figure 13. The conditional probability density for the filter estimate and the 
proposal. 
 

As seen in Figure 13(b), the proposal distribution is multimodal, which may suffer from 

the problem mentioned earlier. We also lose some information about degradation modes 

because of the overlapping regions. We propose to use a multiple hypothesis testing 

algorithm by which we treat the support of each degradation mode separately as shown in 

Figure 14. 

 

 

Figure 14. The pdfs for the nominal and degraded modes of a component.  
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Multiple hypotheses are built on different proposal densities that explore the state space 

in the direction of single, binary, etc degradation modes. We construct the hypotheses 

according to the components and respective degradation modes then calculate the 

proposal density for the augmented state using Equation (3.38).  The no degradation 

hypothesis is constructed as 

 
 

 
H
0
: ck

i( )
! q wk( )

j
= ck ! ck!1( ); j = 1,…,nc . (3.40) 

 
The hypotheses for single degradations are generated by assuming one of the components 

is degraded, but the rest are not. If we have nd j( )  degradation modes for each 

component j , then the total number of hypotheses for single degradations is 

 

 nsingle = nd j( )
j=1

nc

! . 

 
Then, for 

 
h = 1,…,nsingle  and 

 
j = 1,…,nc , the single degradation hypotheses are 

constructed as  

 

 

 

Hh :
ck
i( )
! q !ck( )

j ,d
= ck " ck"1( );d = 1,…,nd j( )

ck
i( )
! q wk( )

l
= ck " ck"1( );l # j;l = 1,…,nc

 (3.41) 

 
For n

c
components, the total number of possible binary degradations is 

 

 nbinary = nd j( ) ! nd l( )
j=1

nc

"
l=1,l# j

nc

" . 

 
For 

 
h = 1,…,nbinary  and 

 
j = 1,…,nc ,

 
l = 1,…,n

c
 , l ! j   the binary degradation hypotheses 

are constructed as 
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H jl :

ck
i( )
! q !ck( )

j ,d1
= ck " ck"1( );d1 = 1,…,nd j( )

ck
i( )
! q !ck( )

l ,d2
= ck " ck"1( );d2 = 1,…,nd l( )

ck
i( )
! q wk( )

p
= ck " ck"1( ); p # l # j; p = 1,…,nc .

 (3.42) 

 
Hypotheses based on triple and more degradations can be constructed in the same way. 

The number of hypotheses increases as the dimension of the component states and 

number of possible degradation modes increase. In PF, the number of particles should be 

large enough to provide the necessary support for all of the hypotheses. In Section 3.3.3, 

we propose a degradation isolation algorithm in order to obtain a feasible set of degraded 

components as a solution to this problem. 

 

The following MH acceptance probability [29] is used in our multiple hypothesis testing 

algorithm 

 

 ! ẑk
"
, #zk( ) = min 1,

p yk | #zk( )q #zk | ẑk"1
i( )( )

p yk | ẑk
"( ) p ẑk

"
| ẑk"1

i( )( )

$
%
&

'&

(
)
&

*&
.  (3.43) 

 
where 

 
ẑk!1
i( )
! p zk!1 |Yk!1( )  denotes the a posteriori estimate of the augmented state by the 

particle filter at time k-1, ẑ
k

! is the a priori estimate of the augmented state by the particle 

filter given ẑ
k!1

i( ) , 
 
!zk
i( )
! q !zk | ẑk"1

i( )( )  is the proposed state based on single or 

multicomponent degradation hypotheses. The first fraction in Eq. (3.43) is the ratio of the 

measurement probability conditioned on the proposed particle to the measurement 

probability conditioned on the a priori particle estimated through PF. The second fraction 

is the ratio of the probability of the proposed particle to the probability of the a priori 

particle estimated through PF, both conditioned on the a posteriori particle at the previous 

time. The acceptance probability increases as the probability of the new particle increases 

and the a priori particle estimated through PF is therefore changed to the proposed one if 

it has a low probability of being selected. 
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If the number of particles generated for the particle filtering is N , we draw a total of N  

samples from the proposal distributions of all of the hypotheses. The number of particles 

to be sampled from hypothesis h is 

 
 Nh = N !" j ! #  (3.44) 

 

where ! j  the likelihood that component j being degraded at the detection time of the 

degradation, ! = Rk( )
j
 for no degradation hypothesis of component j, or ! = " k( )

j ,d
 for 

single degradation hypothesis of component j and degradation mode d, or 

! = " k( )
j1 ,d1

# " k( )
j2 ,d2

 for binary degradation hypothesis of component j1 and 

degradation mode d1  and component j2 and degradation mode d2, etc. 

 

Let !Z
k

 denote the set of all the particles generated by all hypotheses at time k, 

!Z
k
= !z

k

i( ){ }
i=1

N

 and let A
k ,h

 be the subset of !Z
k

 that consists of the particles accepted 

from hypothesis h by the MH algorithm at time k, A
k ,h

= !z
k

i( )
;u

i( )
< " ẑ

k

#
, !z

k

i( )( ){ }
i=1

Nh

 where 

 
u

i( )
!U 0,1( )  and ! ẑ

k

"
, #z

k

i( )( )  is the acceptance probability. We define the relative 

likelihood of hypothesis H
h

 as the ratio of the number of particles accepted from 

hypothesis h to the total number of particles accepted 

 

 p Hh | !( ) =
1Ak ,h

i=1

Nh

" #zk
i( )( )

1Ak ,h
i=1

Nh

" #zk
i( )( )

h=1

nhyp

"
 (3.45) 

 

where 1
Ak ,h

!z
k

i( )( ) =
1 !z

k

i( ) "A
k ,h

0 !z
k

i( ) #A
k ,h

$
%
&

'&
 is an indicator function. 

 

Our multiple hypothesis testing algorithm is as follows: 

Given the degradation is detected at time !k , for 
 k = !k , !k +1, !k + 2,…  
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1. Construct nhyp  hypotheses 
 
H
0
,H

1
,… representing no degradation, single 

degradations, binary degradations, etc. by extracting the proposal densities 

 
q
0
,q
1
,…  from the reliability degradation database. 

2. Sample 
 
ẑk!1
i( )
! p zk!1 |Yk!1( )  for

 i = 1,…,N . 

3. Sample 
 
ẑk
!( )

i( )
! p zk | ẑk!1

i( )( )  for
 i = 1,…,N . 

4. For 
 
h = 1,2,…,nhyp  

a. Compute the number of particles to be sampled from each hypothesis from 

Eq. (3.44). 

b. Sample 
 
!zk
i( )
! qh !zk | ẑk"1

i( )( ) = p !xk | x̂k"1
i( )
,ck( )qh ck | ĉk"1

i( )( )  for
 
i = 1,…,N

h
. 

c. Compute the acceptance probability  

! ẑk
"
, #zk( ) = min 1,

p yk | #zk( )qh #zk | ẑk"1
i( )( )

p yk | ẑk
"( ) p ẑk

"
| ẑk"1

i( )( )

$
%
&

'&

(
)
&

*&
.  

d. If u < ! ẑ
k

"
, #z

k( )  accept the candidate state !z
k

; otherwise reject it and 

retain the current state ẑ
k

! . 

e. Compute the relative likelihood of hypothesis h, p Hh | !( ) , which is the 

ratio of the number of particles accepted from hypothesis h to the total 

number of particles accepted from Eq. (3.45) 

 

This algorithm, in which we utilized the MH algorithm in a multiple hypothesis testing 

setting moves the particles to the important regions of the state space and consequently 

provides better estimates than PF alone. By monitoring the likelihood of the hypotheses 

computed, it is also possible to find the right degradation mode without any additional 

effort.  

 

The transition kernel for the MH algorithm is obtained as 

 
 K zk

!
| ẑk!1

i( )( ) = qh zk
!
| ẑk!1

i( )( )" ẑk
!
, zk

!( ) + # zk
! ! ẑk

!( )r ẑk!( )
h

$ . (3.46) 
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This transition kernel causes the particles to visit the state space of all probable 

degradation modes.  

 

In the next section, we discuss how this hypothesis testing algorithm may be used 

adaptively to find the feasible set of degraded components and modes. 

 

3.3.2.1. Adaptive MCMC Hypothesis Testing Algorithm  

 

As mentioned in the section 3.2.2.2.2, the efficiency of the MCMC methods is 

determined by the ratio of the accepted samples to the total number of samples.  

 

As the number of components and the number of degradation modes increase the 

computational burden of the MCMC hypothesis testing algorithm increases. One way to 

handle this is to eliminate those hypotheses for which the samples drawn from the 

corresponding degradation’s proposal density are not accepted or have a very low 

acceptance ratio and to draw more samples from the proposal density of a hypothesis if 

more particles are accepted from that hypothesis. This adaptation scheme works like a 

resampling algorithm, which organizes the state space to be explored in the support of the 

proposal densities from which more particles are accepted. 

  

The algorithm for the adaptation scheme is as follows 

Given the degradation is detected at time !k , for k = !k  

1. Follow the steps of the multiple hypothesis testing algorithm 

For
 k = !k +1, !k + 2,…  

2. Replace step 4.a byNh = N ! p Hh | "( )  and follow the same algorithm 

 

If the number of particles in each hypothesis is not enough to represent the support of the 

proposal density that they built on, or if some of the hypotheses mask the effect of the 

other ones, then it may take some time for the PF itself to start exploring the right 

directions in the state space. We call this the burn-in period of the MCMC hypothesis 

testing algorithm. The adaptive part of the algorithm in this form may suffer during this 
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burn-in period. Therefore, given the degradation is detected at time !k , we run the first 

step of the adaptation algorithm for
 
k = !k , !k +1,…, !k + t

b
 where t

b
is the burn-in period 

that is determined by training. Then we continue with step 2. 

 

For the possibility of having two or more degradations occurring at different times, we 

never eliminate a hypothesis totally. Even if there are no particles accepted from 

hypothesis h, i.e., p Hh | !( ) = 0 , we still keep sampling from the proposal density of that 

hypothesis according to a predetermined threshold for samples.  

 

3.3.3. Degradation Detection and Isolation 
 

The principle of degradation detection is always based on the comparison between actual 

and redundant information. In the case of hardware redundancy, the redundant 

information is generated by several sensors measuring the same physical quantity. 

Another way of generating redundancy is via the mathematical description of the process. 

The model reflects the behavior of the process in the nominal state and the process 

signals are compared with this reference information. If the model contains time-

dependent differential equations where the history of the measurement information is 

used to solve them, it is called temporal analytical redundancy. If the process can be 

described by algebraic or transcendental equations, only actual measurement values are 

needed for the fault detection, which is called non-temporal analytical redundancy [77]. 

 

Assuming analytical redundancy exists, in order to detect degradation we should see the 

influence of the degradation upon the analytical redundancy. That is, a degradation with a 

certain mode is detectable if at least one of the static and/or temporal relationships among 

measurements and/or inputs becomes incorrect after the degradation occurs [78]. 

 

Two challenges in the detection problem are the complexity and the nonlinearity of the 

process models. Most of the detection models are developed for the cases when linear 
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models are available or nonlinear models can be linearized around an operating point or 

nonlinear models can be decomposed into static nonlinearities and linear dynamics [8].  

 

As mentioned in Chapter 1, parameter/state estimation methods, dedicated observers, 

parity equations, and change detection and symptom generation methods are examples of 

fault detection and isolation methods. In the case of abrupt changes, state estimations and 

parity equations may react faster than parameter estimation. That is due to the fact that 

parameter estimation is intended for the estimation of constant values and removing the 

influence of disturbances with time. Introducing time-varying parameters by including a 

dynamic state space model for them as in our joint estimation framework helps to 

overcome this problem on cost of disturbance rejection [2]. 

 

In this dissertation we focused on using particle filtering for the detection and isolation of 

the degradations. 

 

3.3.3.1. Degradation Detection with Particle Filtering  

 

Change detection using particle filtering has received considerable attention recently. Li 

and Kadirkamanathan [79] used a particle filtering based likelihood ratio approach for 

fault diagnosis. Before the degradation, the component is in nominal state, i.e., c = c
nom

. 

After the degradation, assuming the amount of degradation is known, the component state 

is c = cdeg . The detection problem given all the observations up to time n, consists of 

testing between two hypotheses which can be written as 

 

 
H
0
: k > n

H
1
: k ! n

 

 
where k is the unknown degradation time. Hypothesis H

0
 is the null hypothesis stating 

no degradation is detected before time n. Hypothesis H
1
 is constructed based on the 

degradation occurred before time n. Replacing the unknown degradation time k by its 

maximum likelihood estimate (MLE) underH
1
, i.e.,  
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 k̂n = argmax
1!k!n

p Yn | cnom ,cdeg ,k( ) = argmax
1!k!n

Sk
n  (3.47) 

 
with 

 

 
p Yn | cnom ,cdeg ,k( ) = p yj ,Yj!1 | cnom ,cdeg ,k( )

j=0

n

"

= p yj ,Yj!1 | cnom( )
j=0

k!1

" p yj ,Yj!1 | cdeg( )
j= k

n

"

 (3.48) 

 
where p yj ,Yj!1 | cnom ,cdeg ,k( )  denotes the predictive density of yj  given Yj!1  when one 

has c = c
nom

 for the time interval 
 
0,1,…,k !1{ }  and c = cdeg  afterwards. 

 

The likelihood ratio (LR) is 

 

 
 

Sk
n
! ln

p yj ,Yj!1 | cdeg( )
p yj ,Yj!1 | cnom( )

"

#
$

%

&
'

j= k

n

(  (3.49) 

 
The change detector can be obtained 

 

 

 

gn ! Sk̂n
n
= max
1!k!n

Sk
n >

H1

<
H0

"  (3.50) 

 
where g

n
is the decision function and ! is the threshold. That is, decide H

1
whenever g

n
 

exceeds !  and H
0

otherwise. The change alarm is set at the time given by 

 
 talarm = min n : gn > !{ } = min n :max

1"k"n
Sk
n
> !{ }  (3.51) 

 
If the degraded model, namely cdeg  is not known as in our case, then Eq. (3.49) is a 

function of two independent unknown parameters, the change time and the degraded 

state. In this case, it should be written as 
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 Sk
n
= Sk

n
cdeg( ) = ln

p yj ,Yj!1 | cdeg( )
p yj ,Yj!1 | cnom( )

"

#
$

%

&
'

j= k

n

(  (3.52) 

 

One solution is to replace cdeg  by its MLE, which results in the generalized likelihood 

ratio (GLR) algorithm. Thus the decision function of the GLR change detector, which 

involves the double maximization, is given by 

 
 gn = max

1!k!n
sup
cdeg

Sk
n
cdeg( ) . (3.53) 

 
The detection rule is the same as in Eq. (3.51). It is difficult to make any precise 

theoretical statement on the optimal properties of such a test in the nonlinear non-

Gaussian framework [80]. 

 

If the degraded model is known, the particle filtering implementation of this LR approach 

requires computing Eq. (3.49) . This can be done using particle methods. However, to 

compute the LR for a given k one needs two particle filters (change at time k and no 

change). This means that to compute g
n
one requires n+2 particle filters: one for c = c

nom
 

between 0 and n and n+1 filters where c = c
nom

 for j < k  and c = cdeg for j ! k . When the 

degraded model is not known and cdeg  belongs to a finite set of cardinality M, one has to 

use Mn+1 particle filters. When cdeg  is a continuous set, one would need to use the Eq. 

(3.53) [80]. For high dimensional systems where the multi-component degradations are 

possible, as in our work, this method is computationally very intensive and the algorithm 

becomes very complex. 

 

3.3.3.2. Degradation Detection and Isolation Using Multiple Hypothesis Testing with 
MCMC 
 

In this dissertation, we focus on the detection of degradations via parameter/state 

estimation in which degradations occur within the components of a system. The 

component characteristics follow the model in Eq. (3.1). The system states and 
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measurements evolve through the nonlinear models Eqs. (3.1) and (3.2). We also assume 

analytical redundancy exists and degradations are detectable.  

 

A multiple hypothesis testing algorithm designed as a dedicated bank of observers has 

been used in this area for a long time [81], [56], [82]. The methodology we proposed for 

the estimation of the degradations in a multi-component system via a multiple 

hypothesis-testing algorithm in section 3.3.2 can be modified to be used as an efficient 

degradation detection scheme. Even though this algorithm is capable of detecting the 

degradation, for the sake of generating an algorithm that can work in real time with a 

limited number of particles, we introduce this step specifically designed for the detection 

of the degradation/s and for isolation of the prospective components that can lead to 

degradation/s. 

 

The difference between this modified algorithm and the original one is that in this 

detection scheme we only have two degradation modes, which are created in order to set 

a threshold for the detection of degradation in each component. These degradation modes 

need not be a real representation of any expected modes. Each mode represents a change 

in the nominal characteristics. By drawing samples from these prospective pdfs and using 

these with the nominal estimated particles coming from the filter in the MH algorithm at 

each time step, we can determine which particles are more consistent with the real 

measurements. Even though the MH Algorithm is being used to find the invariant 

distribution, neither are we seeking to find this distribution nor are we exploring the state 

space to find which moves are better. The idea is to generate a scheme to detect a change 

from nominal and isolate the candidate components that may cause this change in a high 

dimensional system. 

 

Assume we have two components. Before the degradation, both components are in their 

nominal states, c
nom

. After the degradation, we assume that the component states cdeg  are 

still constant but uncertain. As we reviewed in section 3.3.3.1, Li and Kadirkamanathan 

[79] set up the detection problem based on testing the two hypotheses given all the 

observations up to time tn 
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H

t0
: t

k
> t

n

H
t1
: t

k
! t

n

 (3.54) 

 

where tk is the unknown change time and subscript t indicates that this test is for detection 

time.  

 

Assuming the change in the component states is detectable, after the degradation the 

likelihood function at time k, p yk | zk( ) = p yk | cdeg , xk( )  should be different than the 

likelihood function at time k-1, p yk!1 | zk!1( ) = p yk!1 | cnom , xk!1( ) . Here cdeg  does not mean 

that both components are degraded, it just represents that each component state is 

uncertain, i.e., may be degraded or not. 

 

As mentioned earlier, we do not know the degraded model. Also, we may not use the 

particle filter to identify the degraded model because of the sample impoverishment 

problem. In order to detect the deviation in the measurements caused by component 

degradation, we propose to use our multiple hypothesis testing algorithm with MCMC in 

particle filtering by setting artificial degradation modes to construct the database rather 

than using a reliability degradation database based on real plant operating characteristics. 

For one component degradation, we propose two proposal pdfs.  Each of these pdfs is 

constructed by setting a positive or negative shift in the distribution of the component 

state. Uniform distribution is a good choice to represent these pdfs, because we do not 

want overlapping proposal densities for the sake of detection.  

 

As we did in Section 3.3.2 we construct the hypotheses according to the components and 

respective degradation modes, then calculate the proposal density for the augmented state 

using Eq. (3.38).  Since we are not trying to estimate the amount of degradations and we 

only want to detect and isolate the degradations in this algorithm, we only construct the 

null hypothesis and hypotheses based on single degradation. This makes the detection 

scheme computationally inexpensive. We use the same hypothesis construction scheme 

presented in Eqs. (3.40) and (3.41) as 
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H
0
: ck

i( )
! q wk( )

j
= ck ! ck!1( ); j = 1,…,nc , 

 
and for 

 
h = 1,…,nsingle  and 

 
j = 1,…,nc , 

 

 

Hh :
ck
i( )
! q !ck( )

j ,d
= ck " ck"1( );d = 1,…,nd j( )

ck
i( )
! q wk( )

l
= ck " ck"1( );l # j;l = 1,…,nc .

 

 
In this method, we use the relative likelihoods of the hypotheses to decide if there is 

degradation or not. Since we do not know the degraded model, we systematically use the 

MH algorithm for each hypothesis to doubly maximize 

 
 max

1!k!n
sup
cdeg

S
k

n
cdeg( ) . (3.55) 

 
Note that, we do not try to explore the state space to find the degraded state that 

maximizes the test statistic globally. Instead, we are interested in finding a local 

maximum of the test statistic with the given artificial degradation modes of that 

component to detect the deviation from the nominal state. 

 

We use two different tests for change detection. Both of them are based on different 

characteristics of the relative likelihoods of the hypotheses. Assume we are in the process 

of estimating the nominal states. We start using our modified multiple hypothesis testing 

algorithm with artificial modes. We monitor the maximum number of particles accepted 

from each hypothesis except the nominal one, which has the current maximum number of 

particles accepted. Degradation in a component moves the component state in the 

direction of a specific degradation mode. Since the proposal densities of the artificial 

modes do not have the support of the target distribution, we indeed expect a sample 

impoverishment problem that causes the particles to collapse on one of the boundaries of 

the uniform distribution. Geometrically, this will increase the number of particles 

accepted for the hypotheses that are close to the target distribution. Even if a single 

degradation is simulated, there could be more than one hypothesis that has high 
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acceptance ratios because of the noisy measurement. If the measurement is smoothed 

then the number of potential hypotheses will decrease (see Chapter 4).  

 

By using the information of maximum number of particles accepted we construct two 

tests. The first one is based on directly monitoring the relative likelihoods of the 

hypotheses 

 
 Sk

n
cdeg( ) = max

h
p Hh | !( ) . (3.56) 

 

The change detector can be obtained from 

 

 gn = Sk̂n
n
= max
1!k!n

Sk
n >

Ht1

<
Ht 0

"  (3.57) 

 
where g

n
is the decision function and ! is the threshold. That is, decide H

t1
whenever g

n
 

exceeds !  and H
t0

otherwise. The change alarm is set at the time given by 

 
 talarm = min n : gn > !{ } = min n :max

1"k"n
Sk
n
> !{ }  (3.58) 

 
Roberts et. al. [83], recommend the use of distributions with an acceptance ratio close to 

0.25 for models of high dimension and equal to 0.5 for models of dimension 1 or 2. This 

heuristic rule is based on the asymptotic behavior of an efficiency criterion equal to the 

ratio of the variance of the estimator based on an i.i.d. sample and variance of the 

estimator. Therefore, for high dimensional systems we chose ! = 0.25  as the threshold.  

 

The second test is based on the change in variance of the maximum number of particles 

accepted. The change detector is 

 

 gn = Sk̂n
n
= Sk

n
! mk

n( ) >
H1

<
H0

"  (3.59) 
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where  

 
 Sk

n
cdeg( ) = var max

h
p Hh | !( )( )  (3.60) 

 
and 

 
 mk

n
cdeg( ) = min

1! p!n
Sp
n . (3.61) 

 
The change alarm is set at the time given by 

 
 talarm = min n : gn > !{ } = min n :max

1"k"n
Sk
n
> mk

n
+ !{ }  (3.62) 

 
If the influence of the degradation on the measurement is significant, the first test can be 

used to determine the degradation time. If the influence of the degradation on the 

measurement is not significant, it is better to monitor the variance of the maximum 

number of accepted particles to decide if a degradation has occurred or not. In Chapter 4, 

we present how we use both tests effectively. 

 

In order to isolate the candidate components that can be degraded, after detection of the 

degradation we first gather the relative likelihoods of the hypotheses constructed for the 

same component, e.g., hypothesis 1 is constructed based on the proposal density of 

component 1 degradation mode 1, and hypothesis 2 is constructed based on the proposal 

density of component 1 degradation mode 2, so that p c
1
| !( ) = p H

1
| !( ) + p H

2
| !( ) . 

We monitor the change in p c
j
| !( )  for each component j. We define 

 
 Sj

nc = p cj | !( )  (3.63) 

 
and the mean of the relative likelihood of component j before the degradation as 

 
 mk , j

n,nc cj( ) = E Sj
nc t( )!" #$  (3.64) 
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where 1 ! t ! k  and k  is the time that degradation is detected. So the isolation detector is 

 

 gj = Sĵ
nc = Sj

nc ! mk , j

n,nc( ) >
H1

<
H0

" . (3.65) 

 
The isolated component set is given by 

 
 c = c

j
;g

j
> !{ } . (3.66) 

 

The characteristics of these prospective pdfs affect the efficiency of the algorithm. If the 

total number of particles is small and the variances of the pdfs are too large then the MH 

algorithm can reject a lot of particles. Therefore, especially for high dimensional systems, 

the characteristics of these pdfs need to be determined after detailed analysis for the 

detection of different multi-component degradations. 

 

Having chosen an acceptance ratio, the characteristics of the prospective pdfs can be 

calibrated individually for high dimensional systems by taking into account the 

detectability of the degradations. In practice, the use of a MH algorithm must be preceded 

by a calibration step, which determines an acceptable range for the simulation of 

distributions. 

 

One of the major advantages of this step is to isolate the components that can be degraded 

and disengage the rest of them in the estimation part for faster computation with limited 

number of particles. 
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CHAPTER 4 

DEMONSTRATIVE APPLICATION: BWR BALANCE OF 
PLANT 

 
 
 
In the preceding chapters we presented the theoretical basis of estimation theory, and the 

problem and possible solutions to the inability of a filter to estimate an abrupt change, 

which in this dissertation corresponds to the estimation of degradation in the components 

of a nonlinear system. For the extensions of the nonlinear Kalman filtering, we generated 

two algorithms. The first algorithm, which utilizes the EKF, is based on generating 

multiple hypotheses by perturbing the error covariance of the modeling noise in order to 

match the difference on the residual covariance before and after the degradation. The 

second algorithm is constructed on the UKF and is based on combining an additional data 

source, which is the reliability degradation database, with the UKF in a multiobjective 

optimization problem. In Section 3.3 we proposed a solution to the sample 

impoverishment problem of PF. We generate multiple hypotheses based on different 

degradation modes of components in a system. The necessary data to construct these 

hypotheses, such as the probability that a degradation mode can occur at a specific time, 

the pdf of degraded state given the nominal state, etc., are extracted from a reliability 

degradation database. We test these hypotheses in a MCMC move step and this algorithm 

allows the PF to explore the state space in the direction of degradation.  

 

In this chapter, we demonstrate how our novel particle filtering algorithm based on 

multiple hypotheses testing with an MCMC move step works in a general degradation 

monitoring framework. In the next section, we present the system model in which we 

implement our algorithm, and then in subsequent sections we present results of our PF 

algorithm in detecting and diagnosing various degradations in this system. 
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4.1. SYSTEM MODEL 

 
We consider a low order nonlinear model developed for the balance of plant (BOP) of 

Big Rock Point boiling water reactor (BWR) [60]. The system model is explained in 

detail in Appendix C. The schematic diagram for the balance of plant is shown in Figure 

15. The system accepts saturated steam at 6.89 MPa from a main steam line to produce a 

station output of 50 MW(e). In the process, a small portion of feed steam is bled to the 

reheater through a reheat steam valve, while the remainder of the steam passes through a 

main steam valve and into the steam chest of the high pressure (HP) turbine. The steam 

undergoes a slight expansion in the steam chest before expanding across the HP turbine. 

Wet steam is bled from the end of the HP turbine to supply the HP feedwater heater 

(FWH) while the remainder is passed through a moisture separator and reheater before 

entering the low pressure (LP) turbine as saturated steam. Condensed steam from the 

moisture separator and reheater is then fed into the HP FWH where it combines with the 

bleed flow, tapped from the HP turbine, and flows into the LP FWH.  Additional LP 

FWH stock is tapped at several locations along the expanse of the LP turbine, thus 

resulting in only 50% of the total bleed steam contributing to power production in the LP 

turbine.  The combined bleed flows and condensed reheater flow are then extracted from 

the shell side of the LP FWH and diverted to a water treatment system. A constant 

enthalpy make-up flow is provided from the condenser and is pumped through both 

FWHs and returned to the reactor [48].  

 

A time-lag representation is used to describe the dynamics of the turbines, FWHs, and 

reheater, while Callender's empirical relationship [84] is used as an equation of state for 

saturated steam. The FWHs are represented with a simplified model that assumes the 

heat transfer is directly proportional to the shell-side flow and inversely proportional to 

the tube-side flow. The reheater is represented as a point for the purpose of modeling 

heat transfer. The intermediate and LP turbines are lumped together and modeled as one 

LP turbine while the flow-pressure drop relationship for both HP and LP turbines is 

effectively represented by a simple correlational model.  Efficiencies are assumed 

independent of  operating   level   for both HP and LP turbines. The condenser and pump 
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dynamics are not explicitly modeled; rather a constant feedwater flow rate of 77.3 kg/s at 

a constant enthalpy of 151.8 J/kg from the condenser and a constant pump head are 

assumed.  Control is also not explicitly represented. The overall system model for the 

BOP is based on the analysis of Shankar [60]. 

 

4.1.1. Component and System States 
 

The BOP is represented via 11 system states 
 
x
1
, x

2
,…, x

11{ }  as described in Table II. The 

differential equations describing this system are developed based on the work of Shankar 

[60] and presented in Appendix C.  The model parameters representing the Big Rock 

Point BWR are obtained from Aumeier [85]. Nine component characteristics 

 
c
1

v
,c
2

v
,…,c

9

v{ }  are chosen for this demonstration, each of which is described in Table III 

and indicated in Figure 15. The set of component characteristics was chosen so that each 

characteristic represents a single component state, i.e., c = cv .   

 

Table II. System state variables. 

Variable Description Nominal Value 

� 

x
1
 Saturated steam enthalpy at steam chest (HP turbine 

feed) (kJ/kg) 2766.8 

2
x  Saturated steam density at steam chest (HP turbine 

feed) (kg/m3) 36.487 

3
x  Wet steam flowrate out of HP turbine (kg/s) 63.240 

4
x  Saturated steam density out of reheater (kg/m3) 5.895 

5
x  Saturated steam enthalpy out of reheater (kJ/kg) 2965.2 

6
x  Reheat steam flow to HP FWH (kg/s) 6.662 

7
x  Heat transfer rate in reheater (MW) 9.558 

8
x  Steam flowrate out of LP turbine (kg/s) 40.980 

9
x  Feedwater enthalpy into HP FWH (kJ/kg) 507.0 

10
x  Feedwater enthalpy out of  HP FWH (kJ/kg) 742.9 

11
x  Reheat steam flowrate from HP FWH to LP FWH 

(kg/s) 22.639 
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Table III. Component state variables. 

Variable Component Description Nominal Value 

1
c  HP bleed taps and 

associated piping HP steam bleed (%) 8.80 

2
c  LP bleed taps and 

associated piping LP steam bleed (%) 23.31 

3
c  Main steam valve Effective flow area (m2) 5.24×10-2 

4
c  Reheat steam valve Effective flow area (m2) 6.67×10-4 

5
c  Reheater Heat Transfer Parameter (kJ/kgK) 44.29 

6
c  HP FWH Heat Transfer Parameter (kJ/kgK) 760.6 

7
c  LP FWH Heat Transfer Parameter (kJ/kgK) 804.7 

8
c  HP turbine Turbine efficiency (%) 86.0 

9
c  LP turbine Turbine efficiency (%) 83.0 

 

4.1.2. Observations and Detectability 
 

As shown in Figure 15, sensors are placed to obtain 5 different measurements and 

working with a sampling frequency of 1 Hz. In our simulations, we treated the sensor 

noise by adding 1% white Gaussian noise on the measurements. The observation 

variables are listed in Table IV. 

 

Table IV. System observation variables. 

Variable Description Nominal Value 
1
y  Torque on LP turbine shaft (kJ) 93.55 

2
y  Torque on HP turbine shaft (kJ) 44.98 

3
y  HP turbine exhaust pressure (MPa) 1.391 

4
y  Feedwater flowrate out of LP FWH (kg/s) 35.03 

5
y  Feedwater temperature out of HP FWH (oC) 175.3 

 

Detectability of degradation is a function of the dynamics of the degradation. Therefore, 

as we mentioned in Section 3.3.3 it is harder to detect degradations of low magnitudes 
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especially in a noisy environment. In order to determine that the degradations in the 

component states are detectable through the observations for this BOP model, we 

performed a sensitivity analysis. We modeled degradations as a 5% change in the 

component states and plot the absolute change in the measurements (without sensor 

noise) as functions of time given in Figures 16 - 24. Note that, this analysis is mainly 

performed for single component degradations. For simultaneous multicomponent 

degradations, this analysis is not enough to decide if those degradations are detectable or 

not. The reason is that some multicomponent degradations may produce similar 

measurements that are particularly hard to distinguish when there is measurement noise. 

Therefore, for degradation  monitoring of a real plant, more detailed analysis is required 

for detectability of simultaneous multi-component degradations. 

 

 

Figure 16. The absolute change in the measurements after degradation in 
component 1 is introduced at t = 0 s. 
 



 

 105 

 

Figure 17. The absolute change in the measurements after degradation in 
component 2 is introduced at t = 0 s. 
 

 

 

Figure 18. The absolute change in the measurements after degradation in 
component 3 is introduced at t = 0 s. 
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Figure 19. The absolute change in the measurements after degradation in 
component 4 is introduced at t = 0 s. 
 

 

 

Figure 20. The absolute change in the measurements after degradation in 
component 5 is introduced at t = 0 s. 
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Figure 21. The absolute change in the measurements after degradation in 
component 6 is introduced at t = 0 s. 
 

 

 

Figure 22. The absolute change in the measurements after degradation in 
component 7 is introduced at t = 0 s. 
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Figure 23. The absolute change in the measurements after degradation in 
component 8 is introduced at t = 0 s. 
 

 

 

Figure 24. The absolute change in the measurements after degradation in 
component 9 is introduced at t = 0 s. 
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As observed in this analysis, component degradations that are introduced as abrupt 

changes in their states do not all affect the measurements in the same way. Some of the 

measurements react to these changes immediately, while the responses of others are 

slowly varying. This can be a characteristic of the degradation dynamics or the sensor 

may be placed far from the component so that the effect of the component shows a delay 

on the measurement. This is often a problem of sensor placement, but in many cases we 

cannot replace the sensors because of the limitations of the environment. In these 

circumstances, we must know that even though analytical redundancy exists, we cannot 

detect the degradations immediately.  

 

This preliminary analysis on the detectability of the component degradations shows that 

the impact of degradations in components 2, 3, 8 and 9 on some of the measurements are 

notable and instant, which makes degradations in these components relatively easy to 

detect. Degradations in components 1 and 4 do not have significant effects on the 

measurements, and when the measurement noise is large, it will be difficult to detect 

these degradations. The effects of degradations in components 6 and 7 on the 

measurements are slowly varying and because of that it may take a while to detect these 

degradations. The effect of degradation in component 5 on the measurements is very 

small because there is not any sensor placed around the reheater to detect any degradation 

in the heat transfer characteristics of the reheater. So, it is almost impossible to detect it; 

we really need to place another sensor in the system to detect this degradation. 

 

In the next section, we present how we constructed the reliability degradation database 

for both the estimation and detection of degradations. 

 

4.2. RELIABILITY DEGRADATION DATABASE 
 

For this BOP system, we constructed a representative reliability database to demonstrate 

the basic concepts and the capabilities of the algorithms we propose. This degradation 

database is constructed for demonstrational purposes only and it cannot be used for 

application to any real system.  
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All of the component states are represented in this database. We assume that each 

component has two degradation modes. We also set the same degradation rate for all 

components. This makes the monitoring problem more challenging for the components 

that degrade more frequently than the others in the real operational life. Considering the 

time to degradation is distributed according to an exponential distribution, the probability 

of having component j degraded at time tk is ! j = 1" e
"#tk . By assuming the degradation 

rate as ! = 0.0002 (1/h), we expect in 6 months all of the components can degrade with a 

probability of 0.6. For demonstration purposes, we believe that any of these components 

can degrade equally likely and consequently in our multiple hypothesis testing algorithm 

we start with an equal number of samples drawn for the hypotheses constructed for each 

component.  

 

We set the hard constraints for each component state by considering the physical range of 

values that it can take. For example, for the component states 8 and 9, which are LP and 

HP turbine efficiencies, we set the range of values as 0,1( ] . If in the sampling step, we 

draw a sample beyond these limits, we continue sampling until we obtain a sample in this 

range. 

 

The conditional pdfs q ck | ck!1( )  representing the nominal and the degraded modes are 

chosen as Gaussians. The mean and the variance of each pdf are specified in the database. 

We also set the probability that a component is in a particular mode (nominal or 

degraded) at time t, which we defined previously as the occurrence probability of that 

mode. This occurrence probability may change with time. For the nominal mode of a 

component, this is the reliability of the component, which is the probability that the 

component is not degraded. Again, considering the time to degradation is distributed 

according to exponential distribution, for the nominal mode this is e!"tk . For the 

degradation mode d and component j, we set these occurrence probabilities according to 

the expected frequencies at time tk ! k( )
j ,d

 and normalize these probabilities for each 

component, e.g., if up to time tk on average, 4 components degraded with mode 1, and 2 

components degraded with mode 2, then the total probability of degradation is 1! e!"tk( )  
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and the occurrence probability of each mode is ! k( )
j ,1
=
2

3
1" e

"#tk( )  and 

! k( )
j ,2

=
1

3
1" e

"#tk( ) . 

 

A representative data set is given in Appendix D for the estimation problem.  

 

4.3. A PRELIMINARY ANALYSIS ON PARTICLE FILTERING 
 

In this section, we analyze the performance of the particle filter without any 

modifications by using our BOP model. Throughout this section we use the SIR 

algorithm described in Subsection 2.4.4.6.  We start this analysis by estimation of the 

nominal component states for different setups. At first, we analyze the effect of the 

modeling error on the PF estimates for this high dimensional system. We run the particle 

filter with 1000 particles for both 1% and 0.5% modeling noise. The estimated 

component state corresponding to the main steam valve flow area is plotted in Figure 25. 

 

 

Figure 25. The estimated main steam valve flow area for 1% and 0.5% modeling 
noise by using the PF only. 
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For this high dimensional system adding additional modeling noise into the state 

parameters deteriorates the component state estimates. This results in PF being non 

robust for high modeling noises and prevents us from applying techniques like 

roughening where we add additional modeling noise to assist the filter in exploring the 

state space. 

 

We also analyzed the effect of the number of particles on the component state estimates 

for 1% modeling noise. For this purpose we run the PF for 100 and 1000 particles. The 

component state estimates corresponding to the main steam valve flow area for these 

cases are given in Figure 26. 

 

As we stated in Section 2.4.4.1, increasing the number of particles in the PF helps the 

filter in obtaining better estimates, but this also increases the computational burden. For 

this case increasing the number of particles by a factor of 10 increases the computational 

time approximately by a factor of 10. 

 

 

Figure 26. The estimated main steam valve flow area for 100 and 1000 particles by 
using the PF only. 
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Finally, we analyzed the performance of the PF in the case of a degradation. We assumed 

degradation in LP bleed taps or associated piping caused a 5% decrease in the LP steam 

bleed at t = 1000 s. We run the PF for 2000 seconds for 10000 particles. The estimates of 

component state 2 are plotted in Figure 27. 

 

 

Figure 27. The estimates of component state 2 for 10000 particles by using the PF 
only. 
 

As mentioned in Chapter 3, even though the number of particles in the filter is increased 

because of the sample impoverishment problem, PF cannot respond to an abrupt change 

in the states. 

 

In the next section, we analyze the performance of our new algorithm described in 

Section 3.3, for both degradation detection and isolation, and degradation estimation. 

 

4.4. DEGRADATION DETECTION AND ISOLATION 
 

As we discussed in Section 3.3.3, for the degradation detection problem we construct 

another database with artificial modes. Artificial modes are designed to represent slight 
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deviations from the nominal states in order to detect the degradations. The idea is, when 

the test statistics given in Eq. 3.57 or Eq. 3.59 computed by using one of the hypotheses 

constructed with the proposal density of one of these artificial modes exceeds some 

threshold, then we reject the null hypothesis given in Eq. 3.54 in favor of the alternative 

one stating that there is degradation. 

 

The database constructed to detect the degradations in this system model is given in 

Appendix D. As suggested before, we chose the pdfs representing the modes distributed 

according to uniform distribution. The nominal mode is constructed for component j as 

 q cj ,k = cj ,nom | cj ,k!1 = cj ,nom( ) =U 0.995 " cj ,nom ,1.005 " cj ,nom( )  

where c
nom

 is the mean of the nominal distribution. The two proposal pdfs are constructed 

for the degradation modes as 

 q cj ,k == cdeg | cj ,k!1 = cnom( ) =U 0.995 " 1! r( ) " cj ,nom( ),1.005 " 1! r( ) " cj ,nom( )( )  

 q cj ,k == cdeg | cj ,k!1 = cnom( ) =U 0.995 " 1+ r( ) " cj ,nom( ),1.005 " 1+ r( ) " cj ,nom( )( )  

where r  is the threshold for degradation detection representing the deviation from the 

nominal mean. The selection of r  may affect the isolation of the degraded components. 

As shown in Figure 28, picking r  too large may opt for the nominal hypothesis even 

though the component is degraded. Also extra caution should be taken in the selection of 

r , because some components may have larger effect on the measurements than the other 

ones. So, picking the same r  for all of the components may mask the detectability of 

some of the components. From that point of view, r  also can be used to balance the 

component effects on the measurement. A detailed analysis should be performed before 

implementing this scheme in a real plant to determine the best choices for the threshold. 

 

In this application after a preliminary analysis, we chose r = 2%  for component states 2, 

3, 4 and 5 and r = 10%  for component states 1, 6, 7, 8 and 9. The support of the uniform 
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distribution is arranged to detect a minimum change of 5% in the component states. The 

database we constructed for degradation detection is given in Appendix D. 

 

  

Figure 28. True nominal and uncertain degraded component states, and expected 
values of the component states for the two hypotheses. 
 

As mentioned before, there is no adaptation step in terms of multiplying or eliminating 

the particles drawn from these pdfs. Starting with the same initial conditions, all of the 

hypotheses are being tested by the MH algorithm first to find the best set of particles 

among the modes that has the ability to reproduce the measurements, then the best set of 

particles coming through the database is being compared with the particles from the 

particle filter to help the filter to perform better for the nominal estimation and to detect 

the component degradations. 

 

We first set the thresholds for the test statistics to be used in the multiple hypothesis 

testing algorithm. For the first test in which the test statistic is the maximum acceptance 

ratio of the particles for each hypothesis, as we discussed in Subsection 3.3.3.2 we chose 

a threshold of 0.5. For the second test for degradation detection in which the test statistic 

is the maximum change in the variance of the acceptance ratio of the particles for each 

hypothesis, we chose a threshold of 0.005. For the third test in which the test statistic is 

the change in the relative likelihood of the component after the detection of the 

degradation we chose a threshold of 0.01. 
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Based on our preliminary analysis, we observed that incorrect hypotheses might have 

higher relative likelihoods than the correct ones. The main reason is that if the 

measurement noise is high at an instant of time and the impact of degradation in a 

component is not notable on the measurements, then particles drawn from the incorrect 

hypotheses may reproduce the measurements and get accepted. This can be eliminated by 

smoothing the measurements with a moving average technique, which results in better 

isolation of the components that are degraded, but it might reduce the performance in 

promptly detecting the true degradation time. This is a necessary trade-off. 

 

In order to improve the degradation isolation capability of our algorithm, we smoothed 

the noisy measurements through a moving average filter only for the first part of the 

algorithm by replacing the measurement at time step k with the average of neighboring 

data points within a span 

 ys( )
k
=

1

M +1
ys( )

k+ j
j=!M

0

"  

where M +1  is the span and  s !!
ny . In the second part of the algorithm where we are 

updating the particles coming from the particle filtering with the ones coming from the 

hypotheses, we used regular noisy measurements. 

 

We tested our proposed algorithm in detection and isolation of single, binary and triple 

component degradations. 

 

4.4.1. Single Component Degradations 
 

We chose two cases to demonstrate single component degradations. In the first one, we 

consider degradation in the main steam valve (component 3). We simulated the 

degradation as a 5% step increase in the effective flow area of the main steam valve at t = 

1000 s. We run our detection and isolation algorithm for 2000 seconds. The computed 

test statistics for degradation detection are plotted in Figure 29. 
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By observing both of the tests statistics, we reject the null hypothesis in favor of the 

alternative one constructed on the onset of degradation. In this case, we chose the first 

test (Figure 29(a)), which is statistically significant and detects the degradation earlier at t 

= 1010 s than the second test. We also plotted the test statistic for degradation isolation in 

Figure 30. 

 

In Figure 30, we only plotted the components whose test statistics are higher than the 

threshold. We observe that the test statistics of hypotheses constructed with the 

degradation modes of components 3 and 9 are significantly high after the detection time 

1010 seconds. Therefore, we only need to consider components 3 and 9 when we wish to 

estimate the amount of degradation. We not only isolated the correct degraded 

component successfully in this set of components, but also reduced the number of 

hypotheses to be constructed in the degradation estimation part dramatically. 

 

 
(a) The maximum relative likelihoods of the hypotheses. 
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(b) The change in the variance of the maximum relative likelihoods of the hypotheses. 

Figure 29. The test statistics for degradation detection in the main steam valve. 
 

 

 

Figure 30. The test statistics for degradation isolation in the main steam valve. 
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In the second case we consider degradation in the LP bleed taps and associated piping 

(component 2). This time we consider an incipient degradation, which develops slowly in 

time starting at t = 1000 s and ends 200 seconds later, reaching to a total of 5% decrease 

in the LP steam bleed. The computed test statistics for the degradation detection of this 

incipient degradation are plotted in Figure 31. 

 

By observing both of the tests statistics, we chose the second test (Figure 31(b)), which is 

statistically more significant and detects the degradation at t = 1055 s. In this slowly 

developing degradation at the time of the detection, the degradation has perturbed the 

component state by 1.25%. This shows how sensitive is our detection scheme even for 

small degradations. We also plotted the test statistic for degradation isolation in Figure 

32. 

 

From the degradation isolation statistic, we observe that the hypotheses constructed with 

the degradation modes of components 1, 2 and 8 are statistically significant. Even for the 

slowly varying degradations, our detection and isolation algorithm performs quite well. 

 

 
(a) The maximum relative likelihoods of the hypotheses. 
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(b) The change in the variance of the maximum relative likelihoods of the hypotheses. 

Figure 31. The test statistics for detection of a slowly varying degradation in the LP 
bleed taps and piping. 
 

 

 

Figure 32. The test statistics for degradation isolation in the LP bleed taps and 
piping. 
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4.4.2. Binary Component Degradations 
 

One of the biggest challenges is to detect and estimate simultaneous multiple 

degradations.  The problem is, if different degradations occur at the same time, one may 

mitigate the effect of the other on the measurements and the detection algorithm may not 

be able to respond to these changes, especially if the change disappears within the noisy 

measurements. From this point of view, the detection algorithm should be very sensitive 

even to the slight changes and have the ability to be trained for hard to follow transitions. 

 

In this subsection, we use our algorithm to detect multiple degradations occurring 

simultaneously at one instant in time. Degradations occurring one at a time can be 

modeled as single degradations even if one degradation triggers another one. This is due 

to the delay that is a function of the change in the environment or component 

characteristics.  

 

We demonstrate the performance of our algorithms with two different binary component 

degradations. In the first case, we consider simultaneous degradations in components 3 

and 8, which are the main steam valve and HP turbine. We simulated the degradations as 

a 5% step increase in the effective flow area of the main steam valve and a 5% step 

decrease in the HP turbine efficiency at t = 1000 s. We run our detection and isolation 

algorithm for 2000 seconds. The computed test statistics for degradation detection are 

plotted in Figure 33. 

 

By observing both of the tests statistics, we set the detection time to 1015 seconds. We 

also plotted the test statistic for degradation isolation in Figure 34. 

 

From the degradation isolation statistic, we observe that the hypotheses constructed with 

the degradation modes of components 3 and 8 are statistically significant and our 

isolation algorithm correctly determines the components for this binary degradation case. 

As shown in Figure 30, the degradation in component 3 isolated the potential degraded 
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components as component 3 and 9. By introducing this binary degradation, our algorithm 

eliminates component 9 and detects the effect of component 8, successfully. 

 

 
(a) The maximum relative likelihoods of the hypotheses. 

 
(b) The change in the variance of the maximum relative likelihoods of the hypotheses. 

Figure 33. The test statistics for detection of simultaneous binary degradations in 
the main steam valve and HP turbine. 
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Figure 34. The test statistics for isolation of simultaneous binary degradations in the 
main steam valve and HP turbine. 
 

In the second case, we consider simultaneous degradations in components 2 and 4, which 

are the LP bleed taps and piping, and reheat steam valve. We simulated the degradations 

as a 5% step decrease in the LP steam bleed and a 10% step increase in the effective flow 

area of the reheat steam valve occurring at t = 1000 s. We run our detection and isolation 

algorithm for 2000 seconds. The computed test statistics for degradation detection are 

plotted in Figure 35. 

 

By observing both of the tests statistics, we set the detection time to 1025 seconds. We 

also plotted the test statistic for degradation isolation in Figure 36. 

 

For this binary component degradation case, the isolation test statistics for components 2, 

3, 4, 5, 7 and 8 are statistically significant. At the onset of degradation, components 1 and 

6 also have significant statistics but then the consistency of their test statistics diminishes. 

Our algorithm isolates a set of components in which the correct degraded components are 

present. The reason for isolating a large set is mainly because of the detectabilities of 

each  component.  As  mentioned  in Section 4.1.2, some of the components may produce 
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(a) The maximum relative likelihoods of the hypotheses. 

 
(b) The change in the variance of the maximum relative likelihoods of the hypotheses. 

Figure 35. The test statistics for detection of simultaneous binary degradations in 
the reheat steam valve and LP bleed taps and piping. 
 

the same impact on the measurements and if these impacts are not significant, e.g., large, 

then it is harder to isolate the components. In these cases, one should carry out all 
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candidate components derived from these hypotheses to our adaptive estimation 

algorithm to modify the reliability degradation database. 

 

 

Figure 36. The test statistics for isolation of simultaneous binary degradations in the 
reheat steam valve and LP bleed taps and piping. 
 

4.4.3. Triple Component Degradations 
 

As discussed in the preceding sections, as the number of simultaneous component 

degradations increase, it may get harder to detect the degradations and isolate the 

components because of the ill-posedness of the problem. Therefore more observations are 

needed for these cases. In this section we test our algorithm in detection and isolation of 

simultaneous triple component degradations.  

 

We consider simultaneous degradations in components 1, 2 and 4, which are the HP 

bleed taps and piping, LP bleed tap and piping and reheat steam valve. We simulated the 

degradations as a 5% step decrease in the HP steam bleed, a 5% step decrease in the LP 

steam bleed and a 10% step increase in the effective flow area of the reheat steam valve 
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occurring at t = 1000 s. We run our detection and isolation algorithm for 2000 seconds. 

The computed test statistics for degradation detection are plotted in Figure 37. 

 

By observing both of the tests statistics, we set the detection time to 1025 seconds and 

plotted the test statistic for degradation isolation in Figure 38. 

 

The isolation test statistics show that components 1, 2, 3, 4, 5 and 8 are statistically 

significant. Adding component 1 into the binary degraded components of the previous 

case (Figure 36) gives rise to its test statistics as expected and at the same time 

component 7 was eliminated from the set of isolated components. The reason is that 

adding degradation of component 1 changed all the observations except feedwater 

temperature, which is the only measurement, that component 7 can be detected.  

 

 
(a) The maximum relative likelihoods of the hypotheses. 
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(b) The change in the variance of the maximum relative likelihoods of the hypotheses. 

Figure 37. The test statistics for detection of simultaneous binary degradations in 
the reheat steam valve, LP bleed taps and piping and HP bleed taps and piping. 
 

 

 

Figure 38. The test statistics for isolation of simultaneous binary degradations in the 
reheat steam valve, LP bleed taps and piping and HP bleed taps and piping. 
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These results show that our algorithm performs well in detecting and isolating the 

degradations introduced by single, binary and triple components if analytical redundancy 

exists and if the degradations in the components are detectable. 

 

4.5. DEGRADATION ESTIMATION 
 

In this section, we test our degradation estimation algorithm for selected single, binary 

and triple component degradations. We use the reliability database given in Appendix D 

in this scheme where for each component we consider 2 degradation modes. We started 

testing the algorithm with single component degradation. 

 

4.5.1. Single Component Degradation 
 

In Section 4.4.1, we considered degradation in the main steam valve (component 3) and 

tested our degradation detection and isolation algorithm for this case. We simulated the 

degradation as a 5%  step increase  in  the  effective  flow  area of the main steam valve at 

t = 1000 s.  

 

 

Figure 39. The pdfs for nominal and degradation modes stored in the database, and 
the simulated degradation of component 3. 
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This change corresponds to the mean of one of the degradation modes of component 3, 

that is stored in the reliability degradation database for estimation given in Appendix D, 

as illustrated in Figure 39. 

 

As shown in the preceding section, after running our algorithms we detected the 

degradation at 1010 seconds, just 10 seconds after it actually occurred, and we isolated 

components 3 and 9 as the probable degraded ones. In our new estimation algorithm, we 

therefore focus on only these two components and construct our proposal densities by 

using the degradation modes of components 3 and 9 and the nominal modes of the rest of 

the components. We run our estimation algorithm for 1990 seconds after the detection 

time. The estimated means of component states 3 and 9 are plotted in Figure 40. 

  

 
(a) The true and estimated effective flow area for the main steam valve. 
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(b) The true and estimated LP turbine efficiency. 

Figure 40. The estimated means of the isolated component states 3 and 9. 
 

As stated in 3.3.2.1, the occurrence probabilities of component j and degradation mode d, 

!( )
j ,d

 in the database are used only at the time of the detection. After that they are set as 

variables proportional to the relative likelihoods of the hypotheses in the adaptation 

scheme. Monitoring these probabilities help us to distinguish the correct degradation 

mode among all the modes. In Figure 41, the evolution of occurrence probabilities of the 

degradation modes of component 3 is given. 

 

Degradation mode I, which corresponds to the correct degradation mode, consistently 

generates the highest number of particles that are accepted through the MH algorithm. 

We also expect some particles generated by the nominal mode to be accepted because of 

the overlapping support regions. Due to modeling and measurement noise particles 

generated by the proposal densities of degradation mode 2 is also observed to be 

accepted, but the acceptance ratio is very low. 
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Figure 41. The evolution of occurrence probabilities of the degradation modes of 
component 3. 
 

As seen in Figure 40(a) and (b), our algorithm estimates the true degradation for 

component 3 along with no degradation in component 9, promptly. In this estimate we 

used a database that has the correct degradation mode. This is indeed the main idea 

behind introducing a reliability degradation database in our calculations; helping the filter 

explore the most probable regions of interest and quickly converge to the true component 

state. But sometimes components degrade randomly or there is not any degradation 

reported on this new degradation mode, so that the database might not contain any 

information about some new degradation.  

 

In order to explore the effect of not having the simulated degradation mode in the 

database or having the simulated degradation mode lying in the very low probability 

regions of the other modes in the database, we prepared two different databases. For both 

cases, we simulated the degradation as a 5% step increase in the effective flow area of the 

main steam valve at t = 1000 s. The first database is constructed by changing the 

characteristics of one of the degradation modes of component 3 in the original database. 
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This mode is moved such that the simulated degradation is located between the nominal 

mode and this mode as illustrated in Figure 42. 

 

 

Figure 42. The pdfs of the nominal and degradation modes stored in the updated 
database 1, and the simulated degradation of component 3. 
 

This change in the characteristics of one of the degradation modes in the database leaves 

the simulated degradation in a very low probability region. We ran our estimation 

algorithm with this updated database and plotted the estimated means of component state 

3 in Figure 43. Note that we did not plot the component state 9 estimates, because the 

change in its estimates is not noticeable for this database update. 

 

Even though the correct degradation is located in a very low probability region, our 

algorithm successfully estimates the amount of degradation. This shows the strength of 

combining a particle filter with a database. Both of them are working together to get the 

best estimate. The evolution of occurrence probabilities of the degradation modes of 

component 3 is given in Figure 44. 
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Figure 43. The estimated means of component state 3 by using the updated database 
1. 
 

For this case, it is hard to decide which mode is in effect, because the simulated 

degradation is located between the means of the nominal and one of the degradation 

modes. By considering the particle filter itself suffers from the sample impoverishment 

problem, we believe that its estimates of component 3 are based on the nominal state and 

the variance of the estimates are smaller than the variance of the nominal mode in the 

database. Consequently, this will increase the number of particles accepted from the 

degradation database, because some of the particles generated from the nominal mode of 

the database are no better in reproducing the measurements than the particles coming 

from the particle filter. Therefore in Figure 44, we observe that the occurrence probability 

of degradation mode I is higher than that of the nominal mode, and our algorithm 

correctly determines the right degradation mode. 

 

The second database is constructed by moving one of the degradation modes such that the 

simulated degradation is not set in the direction of the expected degradations as 

illustrated in Figure 45. 
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Figure 44. The evolution of occurrence probabilities of the degradation modes of 
component 3 for the updated database 1. 
 

This change in the characteristics of one of the degradation modes in the database leaves 

the simulated degradation again in a very low probability region. We ran our estimation 

algorithm with this updated database and plotted the estimated means of component state 

3 in Figure 46. 

 

This case is a very good example showing that even if the degradation modes are not able 

to represent the true degradations, our algorithm still correctly estimates the amount of 

degradation. This is due to the inclusion of a nominal mode in the database. The sample 

impoverishment problem in the particle filtering minimizes the variance of the nominal 

state estimates. Since the nominal mode with a Gaussian pdf we introduced in the 

database has a larger variance, this helps the filter to explore the state space better than 

the particle filtering.  As a remark, in general exploring the state space with only one 

mode that has a very large variance increases computational burden as in the grid based 

filter, because the efficiency mainly depends on the number of particles generated. 
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Figure 45. The pdfs of the nominal and degradation modes stored in the updated 
database 2, and the simulated degradation of component 3. 
 
 

 

Figure 46. The estimated means of component state 3 by using the updated database 
2. 
 



 

 136 

Introducing the degradation modes both reduces the computational time dramatically 

because of the ability to work with a smaller sample size and helps to identify the correct 

degradation modes. 

 

By monitoring the occurrence probabilities of the modes, as expected we found that the 

nominal mode has the highest number of particles accepted. In these cases, since there is 

not any degradation mode in the direction of the degradation, we cannot use the scheme 

for identifying the degradation mode. After the estimation of this degradation, one should 

know that this degradation has not been reported before and should be analyzed further in 

the real process. 

 

4.5.2. Binary Component Degradations 
 

 

In Section 4.4.2, we considered simultaneous degradations in components 3 and 8, which 

are the main steam valve and HP turbine. We simulated the degradations as a 5% step 

increase in the effective flow area of the main steam valve and a 5% step decrease in the 

HP turbine efficiency and by observing the tests statistics for degradation detection we 

decided that the degradation is detected at 1015 seconds, just 15 seconds after the 

degradation occurs. We also run our degradation isolation algorithm and by monitoring 

the test statistics we observed that the correct hypotheses, which are constructed with the 

degradation modes of components 3 and 8, are statistically significant. We run our 

estimation algorithm for 1985 seconds after the detection time. The estimated means of 

component states 3 and 8 are plotted in Figure 47. 

 

In this simultaneous binary component degradation case, our algorithm successfully 

estimates the true degradations of components 3 and 8. The database for estimation given 

in Appendix D, which contains the true degradation modes, is used in this test case. 
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In order to distinguish the correct degradations for both of the components, we monitored 

the occurrence probabilities. In Figure 48 the degradation modes of components 3 and 8 

are given. 

 

 
(a) The true and estimated effective flow area for the main steam valve. 

 
(b) The true and estimated HP turbine efficiency. 

Figure 47. The estimated means of the isolated component states 3 and 8. 
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(a) Computed occurrence probabilities of the degradation modes of component 3. 

 
(b) Computed occurrence probabilities of the degradation modes of component 8. 

Figure 48. The evolution of occurrence probabilities of the degradation modes of 
components 3 and 8. 
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In both component degradations, mode I is the correct degradation mode and consistently 

generates the highest number of particles that are accepted through the MH algorithm. As 

mentioned before, for component 3 some particles generated by the nominal mode also 

get accepted because of the overlapping support regions. Due to the modeling and 

measurement noises, particles generated by the proposal densities of degradation mode II 

are also observed to be accepted, but the acceptance ratio is very low. For component 8, 

the distinction between the modes is more notable and after some time the degradation 

mode II does not contribute to the number of particles accepted. This is mainly due to the 

sensitivity of the measurements for this change in the component state 8. In this binary 

case our degradation estimation algorithm not only estimates the correct amount of 

degradations but also identifies the correct degradation modes. 

 

4.5.3. Triple Component Degradations 
 

For simultaneous triple degradations we use the same case from Section 4.4.3. We 

assumed simultaneous degradations in components 1, 2 and 4, which are the HP bleed 

taps and piping, LP bleed tap and piping and reheat steam valve. We simulated the 

degradations as a 5% step decrease in the HP steam bleed, a 5% step decrease in the LP 

steam bleed and a 10% step increase in the effective flow area of the reheat steam valve 

occurring at t = 1000 s. By observing the test statistics of our degradation detection 

algorithm, we concluded that the degradation occurred at 1025 seconds, 25 seconds after 

the degradation occurs. Also, our degradation isolation algorithm showed that 

components 1, 2, 3, 4, 5 and 8 are statistically significant.  

 

We set up our degradation estimation algorithm based on the hypotheses of components 

1, 2, 3, 4, 5 and 8 and set the rest of the component states to their nominal values. We run 

our estimation algorithm for 1975 seconds after the detection time. The estimated means 

of component states 1, 2, 3, 4, 5 and 8 are plotted in Figure 49. 

 

As seen in Figure 49(a), (b) and (d), our algorithm is able to estimate the change in the 

component states. Even though the estimated component states are noisy, the trends of 
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the estimates are indicating the correct amount of degradation. Also, our algorithm 

identifies that the components 3,5 and 8 are not degraded as shown in Figure 49(c), (e) 

and (f).  

 

 
(a) The true and estimated HP steam bleed. 

 
(b) The true and estimated LP steam bleed. 
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(c) The true and estimated effective flow area for the main steam valve. 

 

 
(d) The true and estimated effective flow area for the reheat steam valve. 
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(e) The true and estimated heat transfer parameter of reheater. 

 

 
(f) The true and estimated HP turbine efficiency. 

Figure 49. The estimated means of the isolated component states 1, 2, 3, 4, 5 and 8. 
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We also monitored the relative occurrence probabilities of each degradation mode for 

components 1,2 and 4. The evolution of the occurrence probabilities is given in Figure 

50. 

 

 
(a) Computed occurrence probabilities of the degradation modes of component 1. 

 
(b) Computed occurrence probabilities of the degradation modes of component 2. 
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(c) Computed occurrence probabilities of the degradation modes of component 4. 

Figure 50. The evolution of occurrence probabilities of the degradation modes of 
components 1, 2 and 4. 
 

For all of the component degradations, mode I is the correct degradation mode and it 

generates the highest number of particles that are accepted through the MH algorithm. 

Besides the overlapping of the support regions of pdfs for different degradation modes 

and noises in the system, we differentiated one more effect, which is the sample size. For 

small sample sizes, it may be hard for a sampling algorithm to generate particles that 

cover the support of the real pdf. This may result in closer occurrence probabilities for 

each mode and makes it hard to distinguish the real degradation mode. Increasing the 

sample size helps to solve this problem. 

 

It is hard to identify small component degradations, because their effects on the 

observations may not be noticeable. It is also hard to monitor simultaneous multiple 

degradations because the counter effects of the degradations in multiple components may 

mask each other’s effect. As shown in this chapter, our degradation monitoring algorithm 

is able to detect, isolate and estimate both single and simultaneous multiple degradations. 
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CHAPTER 5 

CONCLUSIONS 
 
 
 
In this dissertation we constructed a degradation monitoring framework in which we used 

a novel multiple hypothesis testing algorithm based on the Metropolis Hastings method 

by incorporating a reliability degradation database. This algorithm was proposed to 

address the inability of a filter to respond to an abrupt change, ill-posedness of a filter for 

high dimensional systems and the poor performance of a filter for low fidelity models. 

 

In Chapter 1, the necessity of having a degradation monitoring system in a nuclear power 

plant was outlined and the challenges for developing a robust and efficient degradation 

monitoring system capable of detecting and identifying multiple component degradations 

were discussed. We set our objectives as: 

 

• To construct a unified framework for degradation monitoring based on sequential 

probabilistic inference for high dimensional and nonlinear systems 

• To utilize a reliability degradation database within sequential probabilistic 

inference to: 

o Improve estimation of nominal states for low fidelity system models 

o Design a robust degradation detection and isolation scheme 

o Develop techniques to improve the performance of a filter when it cannot 

follow an abrupt change due to obliviousness or sample impoverishment 

• To develop practical algorithms that work online, in particular by developing a 

method that can work with relatively few particle
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• To test these algorithms for monitoring simultaneous multicomponent 

degradations. 

 

With this set of objectives, in Chapter 2 we reviewed the available techniques in order to 

construct a unified degradation monitoring framework. We concentrated on model-based 

methods, which utilize the process measurements with the model of the monitored plant. 

We utilized nonlinear filtering techniques based on state/parameter estimation to develop 

a framework based on sequential probabilistic inference, which is the problem of 

estimating the hidden variables of a system in an optimal and consistent fashion given 

noisy or incomplete observations. We employed a hidden Markov model structure where 

the states are unobservable and derived the recursive Bayesian estimation formulation in 

order to estimate the marginalized posterior density of the states given the measurement 

history. We reviewed various approximate methods to find a tractable solution for the 

sequential probabilistic inference problem in high dimensional nonlinear systems. We 

addressed the problem of treating nonlinearity in transforming a probability density 

function and derived the nonlinear extensions of Kalman filtering and particle filtering, 

and discussed their approximations for dealing with the nonlinearities in the system 

model. We presented an application of degradation monitoring in which we detected and 

diagnosed fouling in steam generators of the IRIS reactor using unscented Kalman 

filtering.  

 

In Chapter 3, we addressed an important problem with the nonlinear filtering techniques, 

which is the inability of a filter to respond to an abrupt change. This prevents their use as 

“black boxes” for any application. This problem is known as the oblivious filter problem 

in nonlinear extensions of Kalman filtering, and the sample impoverishment problem in 

particle filtering. We proposed an algorithm based on covariance matching in extended 

Kalman filtering and applied this algorithm for the diagnosis of degradations of multiple 

components. We tested our algorithm with a balance of plant model of a boiling water 

reactor. We also proposed another algorithm to combine an unscented Kalman filtering 

algorithm with a reliability degradation database by solving a multiobjective optimization 



 

 147 

problem. We presented an application of this scheme in degradation monitoring of a fast 

reactor.  

 

By addressing the approximations of the nonlinear extensions of Kalman filtering and the 

proposed algorithms, we focused on particle filtering. We discussed the sample 

impoverishment problem in particle filtering and its negative effect on detection and 

diagnosis of component degradations. After reviewing different techniques to address this 

problem, we proposed a novel technique based on multiple hypothesis testing. This 

technique helped the filter explore the state space more effectively in order to estimate 

the degradations in the system by introducing another data source, which is a reliability 

degradation database. The Metropolis Hastings algorithm was utilized in the selection of 

the “important” regions of the state space to be explored based on the consistency of the 

real and the expected measurements. We also extended this algorithm for detection and 

isolation of the degradations to complete the construction of the degradation monitoring 

framework. 

 

In Chapter 4, we tested our new algorithm with a balance of plant model of a boiling 

water reactor. We applied both the degradation detection and isolation algorithm, and the 

degradation estimation algorithm to test problems with single degradations and 

simultaneous binary and triple degradations in this nuclear power plant system to 

evaluate the performance of these algorithms. For example, we studied a binary 

degradation where degradations in the main steam valve and high pressure turbine are 

assumed to take place at the same time. By monitoring the test statistics (Eqs. (3.57) and 

(3.59)) of our degradation detection algorithm, we detected the degradation just 15 

seconds after it actually occurred, as shown in Figure 33. Our degradation isolation 

algorithm  (Eqs. (3.63) – (3.66)) identified two components, which are indeed the real 

degraded components, and so reduced the number of probable component degradations 

dramatically. By using 2 components with 1 nominal and 2 degradation modes each, we 

constructed 4 hypotheses based on single component degradations (Eq. (3.41)) and 4 

hypotheses based on binary component degradations (Eq. (3.42)). In our degradation 

estimation algorithm after drawing particles from the proposal densities of each 
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hypothesis, we used the MH algorithm (Eq. (3.43)) to test these particles with those 

estimated through a particle filtering algorithm based on their capability of reproducing 

the measurements. This scheme helped us determine the marginalized posterior density 

that represents the true evolution of the states by which we calculated the expectations of 

the estimates as shown in Figure 47. By monitoring the relative likelihoods of each 

hypothesis based on their contributions to the marginalized posterior density (Eq. (3.45)) 

as presented in Figure 48, we also identified the correct degradation modes that caused 

this binary degradation. 

 

The performance of the new algorithm was shown to be quite satisfactory for detecting, 

isolating and estimating abrupt and incipient degradations, and single and simultaneous 

multi-component degradations. In addition, this algorithm successfully isolates the 

correct degradation mode by which the component degrades. 

 

In summary, 

 

• We developed techniques to modify filtering algorithms in order to utilize 

additional data sources in detection and estimation of degradations 

• We constructed a degradation monitoring framework in which we use a novel 

multiple hypothesis testing algorithm based on the Metropolis Hastings method 

while utilizing a reliability degradation database: 

o To solve the sample impoverishment problem in the particle filtering 

o To improve the performance of particle filtering for small sample size and 

for low fidelity models 

o To construct a degradation detection and isolation algorithm 

o To construct a degradation estimation algorithm: 

 To estimate the magnitude of the degradations 

 To isolate degradation modes. 
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The algorithms presented were shown to be very effective for monitoring of multiple 

component degradations. However, there remain several areas that could be given 

additional attention: 

 

• Real time computing: Based on our results for the balance of plant model, 

processing 1 second takes approximately 25 seconds on a single 3MHz cpu with 

1GB RAM. This is almost the same for both the degradation detection and 

isolation, and degradation estimation algorithms. In order to obtain real time 

computing, we need to decrease the computing time at least by a factor of 25. The 

following approaches should be studied for the real time implementation of the 

algorithm. 

o Parallelization: Similar to other Monte Carlo methods, particle filtering 

algorithms are parallelizable. In the adaptation part of our algorithm, we 

gather the information of accepted particles in order to calculate the new 

distribution of particles. Therefore, the effect of the adaptation part on 

parallelization should be studied. If we assume a 100% parallelization, 

then we need 25 cpus for 1000 particles and 250 cpus for 10000 particles 

to run our algorithm for this application in real time. These are certainly 

achievable numbers as part of a nuclear power plant degradation system. 

o Using deterministic sampling techniques: As we reviewed in Section 

2.4.3, we can find a set of points to approximate certain moments of a pdf. 

For standard and unimodal pdfs, one may use deterministic sampling to 

reduce the sample size, with a corresponding reduction of the computing 

time. 

• Introducing environmental effects to improve the performance of the 

technique: The adaptation scheme that we proposed in Subsection 3.3.2.1 also 

can be used to introduce environmental effects into the hypothesis testing 

algorithm. If we believe that a change in the environmental variables, which we 

can detect by a measurement or an estimate of a system state through our 

algorithm, triggers degradation, then we can update our adaptation algorithm 

according to this effect. Suppose that a particular change in a system state triggers 
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the degradation of a specific component e.g., decreased steam quality may 

increase the likelihood of reduced bleed flow due to plugging of the taps. After 

estimating the change in the system state through the algorithm, one may update 

the relative likelihood of that hypothesis with a correction factor that represents 

the cascade effect. 

• Introduction of degradation monitoring in probabilistic risk assessment 

(PRA): The static safety profile of a nuclear power plant based on failures in a 

system can be derived from a probabilistic risk assessment application. By 

updating the base PRA of a plant to reflect the changes in the parameters and the 

environment introduced by the degradations in the components, the instantaneous 

and average risk can be quantified in real time. In addition, by employing 

prognostics models for the degradations, risk predictions in the future can be 

carried out. Living PRA and risk monitoring techniques are based on determining 

the risk associated with the expected unavailability of systems and components. 

Degradations in the system can affect both the PRA model structure and model 

parameters. By using our algorithm to estimate the degradations in the 

components, with some modifications within the living PRA or risk monitoring 

techniques, a more informative safety profile of the plant can be obtained in real 

time. 

• Lack or quality of a reliability degradation database: The performance of the 

proposed algorithms depends on the quality of the component reliability data. It is 

important to emphasize that the data extracted from past operational experience 

have value only to the extent that the conditions under which the data were 

generated remain applicable. Therefore having a plant specific reliability database 

is essential. If no reliability data exists, then the only choice is to generate 

probability density functions of degradation modes based on a grid representation. 

• Application of this technique to different areas: The idea of introducing a data 

source into particle filtering may help in solving problems in other disciplines. 

One possible application is in music analysis and transcription. For single 

instruments playing one note at a time, music transcription is an easy task. But, 
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for the cases of many notes playing simultaneously, it is hard to detect which 

instruments are playing, what their pitches are, etc. By using a harmonic modeling 

approach and constructing a database to represent the characteristics of the 

instruments, one may use our proposed technique in music transcription. 
 

Although there remains additional challenges as stated above, we met our objectives in 

this dissertation.  
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APPENDIX A 

PROPERTIES OF THE GAUSSIAN DISTRIBUTION 
 
 
 
Definition: If  X !!

n
x  is a random vector and has multivariate Gaussian distribution with 

mean x  and the covariance P , the probability density function is 

 

 N x; x ,P( ) =
1

2!( )
n
x

P

exp "
1

2
x " x( )

T

P
"1
x " x( )

#
$%

&
'(
.  (A.1) 

 
Lemma A.1: (Joint density of Gaussian variables) If random vectors  X !!

n
x and 

 Y !!
ny have the Gaussian pdfs 

 
 

 
X = x( ) ! N x; x ,P( )  (A.2) 

 
 
Y = y | X = x( ) ! N y;Hx,R( )  (A.3) 

 
then, the joint density of X and Y  and the marginal distribution of Y are [27] 
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Y = y( ) ! N Hx ,HPH

T
+ R( )  (A.5) 

 
Lemma A.2: (Conditional density of Gaussian variables) If random vectors 

 
Z
1
!!

nz1 and 

 
Z
2
!!

nz2 have the joint pdf, 
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then the marginal and conditional densities of Z

1
and Z

2
 are [27] 
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Lemma A.3: (Matrix inverse). If A = B

!1
+ CD

!1
C

T , then the inverse of matrix A is [27] 

 
 A

!1
= B ! BC D + C

T
BC( )

!1

C
T
B.  (A.11) 
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APPENDIX B 

DERIVATION OF THE KALMAN FILTER IN THE 
BAYESIAN FRAMEWORK 

 
 
 
We followed the work of Sarkka [27] and Chen [24] in this derivation. In order to obtain 

the marginal distribution of x
k
, p xk |Yk!1( ) , we first calculate the joint distribution of x

k
 

and x
k!1

 given the measurement history up to time k-1, p xk , xk!1 |Yk!1( )  by using Lemma 

A.1 

 

 

p xk , xk!1 |Yk!1( ) = p xk | xk!1( ) p xk!1 |Yk!1( )
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The marginal distribution of x

k
 is obtained using Lemma A.2 

 
 p xk |Yk!1( ) = N xk ; x̂k

!
,Pk

!( )  (B.2) 

 
where x̂

k

!
= F

k ,k!1
x̂
k!1

 and Pk
!
= Fk ,k!1Pk!1Fk ,k!1

T
+Qk

. 

 

Next, we wish to calculate x̂
k
 and P

k  using Eq. (2.10). We write 

 

 p xk |Yk( ) =
N yk ;Hkxk ,Rk( )N xk ; x̂k

!
,Pk

!( )
p yk |Yk!1( )

.  (B.3) 

 
Since multiplication of two Gaussians is again a Gaussian and the denominator is a 

normalizing constant, we can write 
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 p xk |Yk( )! Aexp "
1

2
yk " Hkxk( )

T
R

"1
yk " Hkxk( ) "

1

2
xk " x̂k

"( )
T

Pk
"( )

"1
xk " x̂k

"( )#
$%

&
'(
.(B.4) 

 
where A  is a constant. For Gaussian posterior densities, the mode and median estimates 

coincide with the mean. Then, for example the MAP estimate of the state is 

 

 
! log p xk |Yk( )

!xk xk = x̂k

= 0.  (B.5) 

 
Applying Eq. (B.5) in Eq. (B.4) yields 
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T
R

!1
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!( )
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( )
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Pk
!
x̂k
!
+ Hk

T
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!1
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By using Lemma A.3 it is simplified as 

 
 x̂k = x̂k

!
+ Kk yk ! Hk x̂k

!( )  (B.7) 

 
where K

k
 is the Kalman gain defined as 

 
 K

k
= P

k

!
H

k

T
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P
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By using Eq. (B.7) and Eq. (2.20), the covariance of the estimate error at time k, 

P
k
= E x

k
! x̂

k( ) xk ! x̂k( )
T"

#
$
%

 can be written 
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k
= H
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P
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T
+ R

k
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APPENDIX C 

SIMULATION MODEL OF THE BALANCE OF PLANT 
 
 
 
The simulation model of balance of plant (BOP) is based on the Aumeier’s compilation 

[85] of Shankar’s work [60]. The following assumptions are made in this model: 

 

• The relationship between enthalpy, specific volume and pressure (i.e., the 

equation of state) for the superheated steam follows Callender’s empirical 

relationship [84] for all non-constant pressure processes. 

• The flow-pressure drop relation for the high pressure (HP) and low pressure (LP) 

turbine follows w = K ! P"( )  where ! P"( )  is the change in the product of 

pressure and specific volume from the turbine inlet to the turbine exit and K  is a 

constant. 

• Turbine dynamics are represented via simplified time-lag models. 

• Turbine efficiencies are assumed constant for all power levels. 

• HP turbine bleed flow is tapped after steam expansion and thus the entire flow 

through the turbine contributes to power production. LP turbine bleed flow is 

tapped at various points in the steam expansion process resulting in only 50% of 

bled steam contributing to power production. 

• Heat exchange in the reheater is assumed to be perfect and the dynamics of mass 

balance and energy balance are lumped at a point. 

• Heat transfer in HP and LP feedwater heaters (FWH) is directly proportional to 

the shell side and inversely proportional to the tube side flow. 
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• Condenser and feedwater pumps are not explicitly modeled. Condenser supplies 

constant enthalpy feedwater stream. Pump produces constant head. 

• Valve coefficients are constant 

• System accepts saturated steam at a constant pressure of 6.895 MPa. 

 

With these assumptions the system equations representing the BOP may be derived using 

the appropriate conservation laws and state relationships. 

 

1. Steam Chest Model 

 

Steam enters the steam chest from the main steam line (via main steam admission valve) 

where it undergoes a slight expansion before expanding across the HP turbine. We begin 

with the following equations for conservation of mass and energy: 

 

 V
c

d

dt
!
c
= w

1
" w

2
 (D.1) 

 V
c

d

dt
!
c
h
c( ) = w1hs " w2hc + Vc

dP
c

dt
 (D.2) 

 
where 

 V
c
 = volume of steam chest (m3), 

 !
c
 = density of steam in steam chest (kg/m3), 

 P
c
 = pressure of steam chest (MPa), 

 w
1
 = steam flow rate entering steam chest from main steam admission valve (kg/s), 

 w
2

 = steam flow rate into HP turbine (kg/s), 

 h
c
 = enthalpy of steam in steam chest (J/kg), 

 h
s
 = enthalpy of steam entering steam chest (J/kg). 

 

If one assumes the density !
c
 is approximately constant, Eq. (D.2) may be written as 
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A simplified form of Callender’s equation: 

 
 P

c
= !

c
k
1
h
c
" k

2( )  (D.4) 

 

can be differentiated, and if one makes the assumption that 
d

dt
!
c
" 0 , the result can be 

inserted into Eq. (D.3) to yield 
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where k

1
and k

2
 are constants from Callender’s empirical equation determined for a 

given nominal operating point. 

 

Shankar’s inconsistency in the treatment of 
d

dt
!
c
 introduces little error since for the 

small, relatively fast transients, this term is typically small. An empirical relationship is 

used to model the HP turbine and is written as: 

 
 w

2
= A

k2
P
c
!
c
" P

r
!
2

 (D.6) 

 
where 

 A
k2

 = constant descriptive of steam expansion in steam chest, 

 P
r
 = pressure at HP turbine exhaust (MPa), 

 !
2
 = steam density at HP turbine exhaust (kg/m3). 

 

The density !
2
 is represented using a homogeneous equilibrium model for a two phase 

mixture: 

 

 !
2
=

1

xvg + 1" x( )vf
 (D.7) 

 
where 
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 vg  = specific volume of saturated vapor at HP turbine exhaust pressure (m3/kg), 

 vf  = specific volume of saturated liquid at HP turbine exhaust pressure (m3/kg), 

 x  = quality of steam exiting HP turbine. 

 

The steam quality is expressed in terms of mixture enthalpy h
2
 as: 

 

 x =
h
2
! hf

hfg
 (D.8) 

 
where 

 hf  = enthalpy of saturated liquid at HP turbine exhaust pressure (J/kg), 

 hfg  = latent heat of vaporization at HP turbine exhaust pressure (J/kg). 

 

The flow rate of saturated steam through the main steam admission valve is represented 

using conservation of energy and assuming flow dependence only on the steam pressure 

before the valve [84]. The steam flow rate through the valve may then be expressed as: 

 
 w

1
= C

1
A
1
P
s
!
s

 (D.9) 

 
where 

 C
1
 = valve coefficient for main steam admission valve, 

 A
1
 = main steam admission valve effective flow area (m2), 

P
s
 = steam pressure in main steam line (MPa), 

!
s
 = steam density in main steam line (kg/m3). 

 

The equations of state representing the latent heat of vaporization, enthalpy of saturated 

liquid, and specific volumes are represented by the following linear relationships: 

 
 hf = 8.2573!10

5
+ 0.44 Pr "1.3788( )  (D.10) 

  hfg = 1.961!10
6
" 0.4 Pr "1.3788( )  (D.11) 
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 vg = 0.1428 ! 0.0166 Pr !1.378( )  (D.12) 

 vf = 0.0011 , (D.13) 

 
while the enthalpy h

2
 of the wet steam exiting the HP turbine is represented using the 

following empirical relationship: 

 

 
h
2
= 2.3822 !10

6
+ 0.3 P

r
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 (D.14) 

 
where  

!  = efficiency of expansion process =0.86. 

 

2. HP Turbine 

 

A simple time lag representation for the conservation of mass and momentum is used to 

model the steam flow rate through the HP turbine. For a control volume encompassing 

the HP turbine this yields: 

 

 !
w2

d

dt
""w
2
= w

2
# w

HPB
# ""w

2
 (D.15) 

 
where 

 !
w2

 = representative time constant associated with HP turbine (s), 

!!w
2

 = wet steam flow rate from HP turbine to reheater (kg/s), 

w
HPB

 = bleed flow rate from HP turbine to HP FWH (kg/s). 

 

The flow rate of bleed steam is represented as a constant fraction of the total steam flow 

entering the HP turbine and is written as: 

 
 w

HPB
= K

HPB
w
2
 (D.16) 

 
where 
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K
HPB

 = fraction of steam flow through HP turbine bled to HP FWH. 

 

3. Moisture Separator 

 

The moisture separator is considered a static element and can be modeled using 

conservation of mass for a control volume encompassing the moisture separator, which 

yields: 

 
 w

MS
= w

2
! w

HPB
! "w

2
 (D.17) 

 
where 

w
MS

 = condensed steam flow rate out of moisture separator (kg/s), 

!w
2

 = saturated steam flow rate into reheater (kg/s), 

 

In this representation, the mass flow rate entering the control volume is approximated as 

static, i.e., !!w
2
= w

2
" w

HPB
. The steam flow rate out of the moisture separator is then 

approximated as the vapor constituent entering the unit, which is represented as  

 
 !w

2
= x !!w

2
. (D.18) 

 
4. Reheater 

 

For purposes of modeling energy transfer characteristics, the reheater is modeled as a 

point. We first describe the tube-side properties of the reheater using conservation of 

mass and energy as 
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If the same assumption is made regarding 
d

dt
!
r
 as was made with 

d

dt
!
c
, then Eq. (D.20) 

becomes 

 

 1! k
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dt
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Qr + "w
2
hg ! w3hr

Vr#r

+
Pr "w

2
! w

3( )
#r
2
Vr

. (D.21) 

 
where 

 V
r
 = volume of reheater (m3), 

 !
r
 = main steam density exiting heater (kg/m3), 

 w
3
 = main steam flow rate out of reheater to LP turbine (kg/s), 

 h
r
 = main steam enthalpy exiting reheater (J/kg), 

 hg  = saturated vapor enthalpy exiting reheater (J/kg). 

 Q
r
 = rate of energy transfer in reheater (W). 

 

For purposes of calculating the steam flow rate leaving the reheater, the reheater tubes are 

modeled as a throttling valve, and thus the steam flow rate is represented as 

 
 w

3
= K

3
P
r
!
r

 (D.22) 

 
where 

 K
3
 = representative valve coefficient. 

 

The equation of state relating the pressure, density and enthalpy is again represented by 

Callender’s equation 

 
 P

r
= !

r
k
1
h
r
" k

2( )  (D.23) 

 
where the linear relationship for the enthalpy of saturated vapor is 

 
 hg = 2.7875 !10

6
+ 0.04 Pr "1.3788( ) . (D.24) 
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For the shell side of the reheater, we use a simple time lag representation for conservation 

of mass and momentum: 

 

 !
r1

d

dt
"w
RS
= w

RS
# "w

RS
 (D.25) 

 
and conservation of energy 

 

 ! r2
d

dt
Qr =

wRS + "wRS

2

#
$%

&
'(
HRS Ts ) Tr( ) )Qr  (D.26) 

 
where 

 !
r1

 = time constant characteristic of tube side steam flow through reheater (s), 

!
r2

 = time constant characteristic of energy transfer from shell to tube side of  

          reheater (s), 

w
RS

 = reheat steam flow rate into shell side of reheater (kg/s), 

!w
RS

 = condensed reheat steam flow rate out of shell side of reheater (kg/s), 

H
RS

 = reheater heat transfer parameter (J/kg-K), 

T
s
 = reheat steam temperature - shell side of reheater (K), 

T
r
 = main steam temperature - tube side of reheater (K). 

 

The flow rate of reheat steam bled from the main steam line through the reheat steam 

admission valve is modeled in a fashion analogous to the flow of steam through the main 

steam admission valve, i.e., through a throttling valve, resulting in: 

 
 w

RS
= C

2
A
2
P
s
!
s

 (D.27) 

 
where 

 C
2

 = valve coefficient – reheat steam valve, 

 A
2
 = reheat steam valve effective flow area (m2). 
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The temperature of the shell side steam is represented via the following empirical 

relationship: 

 

 T
s
= 557.92 +

0.125 P
s
! 6.894( ) + 459.67
1.8

 (D.28) 

 
while the temperature of the tube side steam is represented using the ideal gas law as 

 

 T
r
=

P
r

!
r
R

. (D.29) 

 
5. LP Turbine 

 

As with the HP turbine, the LP turbine is modeled with a simple time lag representation 

of mass and momentum. For a control volume encompassing the HP turbine we then 

have: 

 

 !
w3

d

dt
"w
3
= 1# K

LPB( )w3 # "w
3
 (D.30) 

 
where 

 !
w3

 = time constant characteristic of LP turbine (s), 

!w
3
 = wet steam flow rate exiting LP turbine (s), 

K
LPB

 = fraction of steam into LP turbine bled to LP FWH. 

 

The flow rate w
LPB

 of steam bled from the LP turbine to the LP FWH is defined to be a 

fixed fraction of the total steam flow rate entering the turbine and thus is written as 

 
 w

LPB
= K

LPB
w
3
. (D.31) 
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6. LP Feedwater Heater 

 

Heat transfer from the shell side to tube side of the LP FWH is represented using a simple 

correlational model relating the fluid mass flow rates on each side of the heater and a 

time lag representation of the dynamics. A constant feedwater flow rate is assumed. 

Conservation of energy for a control volume surrounding the heater may be written as 

 

 ! LPH

d

dt
hLPH = QLPH + h

0
" hLPH  (D.32) 

 
where 

 !
LPH

 = time constant characteristic of energy transfer in LP FWH (s), 

h
LPH

 = enthalpy of feedwater leaving LP FWH – tube side (J/kg), 

h
0
 = enthalpy of makeup feedwater from condenser to LP FWH – tube side (J/kg), 

Q
LPH

 = energy transferred from shell to tube side in LP FWH (J/kg). 

 

A mass conservation relationship will be written for the HP FWH and thus is not needed 

here (tube side flow from LP FWH feeds into tube side of HP FWH). The energy transfer 

in the LP FWH is assumed directly proportional to the shell side flow and inversely 

proportional to the tube side flow and may thus be written as: 

 

 Q
LPH

= H
LPH

w
HPH

+ w
LPB

w
FW

. (D.33) 

 
where 

H
LPH

 = heat transfer parameter of LP FWH (J/kgK), 

w
HPH

 = feedwater flow rate from shell side of HP FWH to shell side LP FWH (kg/s), 

w
FW

 = makeup feedwater flow rate from condenser to LP FWH – tube side (kg/s). 
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7.  HP Feedwater Heater 

 

The equations describing the HP FWH are derived in a fashion analogous to those 

descriptive of the LP FWH. For a control volume encompassing the HP FWH we may 

express conservation of energy as 

 

 !HPH

d

dt
hHPH = QHPH + hLPH " hHPH  (D.34) 

 
 and conservation of mass and momentum as 

 

 !"
HPH

d

dt
w
HPH

= w
2
# !w

2
+ !w

RS
# w

HPH
 (D.35) 

 
where 

 !
HPH

 = time constant characteristic of energy transfer in HP FWH (s), 

!"
HPH

= time constant characteristic of shell side flow rate of HP FWH (s), 

h
HPH

 = enthalpy of feedwater exiting tube side HP FWH (J/kg), 

Q
HPH

 = energy transferred from shell to tube side in HP FWH (J/kg). 

 

Again energy transfer is assumed directly proportional to shell side flow and inversely 

proportional to tube side flow resulting in 

 

 Q
HPH

= H
HPH

w
HPB

+ w
MS

+ w
RS

w
FW

. (D.36) 

 
where 

H
HPH

 = heat transfer parameter of HP FWH (J/kgK), 

 

8. Turbine Work Output 

 

Turbine work expressions are obtained using conservation of energy as 
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 E
HP

= !
HP
w
2
h
2
" #h

2( )  (D.37) 

 E
LP

= !
LP

w
3
" 0.5w

LPB( ) hr " h4( )  (D.38) 

 
where 

E
HP

 = power produced in HP turbine (W), 

E
LP

 = power produced in LP turbine (W), 

!
HP

= HP turbine energy conversion efficiency = 0.86, 

!
LP

= LP turbine energy conversion efficiency = 0.83, 

!h
2
 = isentropic enthalpy of wet steam exiting HP turbine (J/kg), 

h
4

 = isentropic enthalpy of steam exiting LP turbine (J/kg). 

 

The total steam flow through the high and low pressure turbines is represented as w
2

 and 

w
3
! 0.5w

LPB( ) , respectively, while h
s
! "h

2( )  and h
r
! h

4( )  represent the isentropic 

enthalpy drop across the high and low pressure turbines, respectively. The isentropic exit 

enthalpy from the LP turbine is assumed constant at 

 
 h

4
= 2.0887 !10

6 (J/kg) (D.39) 

 
while the wet steam enthalpy exiting the HP turbine is represented with the following 

empirical state equation: 

 
 !h

2
= 2.3822 "10

6
+ 0.3 P

r
#1.3788( ) # 0.0011 Pr #1.3788( )

2

# 0.1 P
c
# 6.894( ). (D.40) 

 
The turbine torque can be expressed in terms of the turbine power as: 

 
 T

HP
= 120!E

HP
 (D.41) 

 T
LP

= 120!E
LP

 (D.42) 

 

for an assumed angular shaft velocity of 120! rad/s and where 

T
HP

 = torque exerted on HP turbine shaft (J), 

T
LP

 = torque exerted on LP turbine shaft (J). 
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APPENDIX D 

RELIABILITY DEGRADATION DATABASES FOR THE 
BALANCE OF PLANT MODEL 

 
 
 
 
Table V. Reliability degradation database for degradation estimation. 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

1 3 0.0002 0 100 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

8.80 0.20 0.333 8.36 0.20 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

9.24 0.20 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

2 3 0.0002 0 100 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

23.31 1.36 0.333 22.15 1.36 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

24.46 1.36 0.333 
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Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

3 3 0.0002 0 10.48×10-2 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

5.24×10-2 0.68×10-2 0.333 5.50×10-2 0.68×10-2 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

4.98×10-2 0.68×10-2 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

4 3 0.0002 0 13.34×10-4 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

6.67×10-4 0.11×10-4 0.333 7.34×10-4 0.11×10-4 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

6.00×10-4 0.11×10-4 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

5 3 0.0002 0 88.58 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

44.29 4.9 0.333 42.08 4.9 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

46.50 4.9 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

6 3 0.0002 0 1521.2 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

760.6 1446.28 0.333 722.57 1446.28 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

798.63 1446.28 0.333 
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Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

7 3 0.0002 0 1609.4 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

804.7 1602.0 0.333 764.47 1602.0 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

844.94 1602.0 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

8 3 0.0002 0 100 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

86.0 18.49 0.333 81.7 18.49 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

90.3 18.49 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

9 3 0.0002 0 100 Gaussian 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

83.0 17.22 0.333 78.85 17.22 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

87.15 17.22 0.333 
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Table VI. Reliability degradation database for degradation detection and isolation. 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

1 3 0.0002 0 100 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

8.80 0.20×10-4 0.333 9.68 0.20×10-4 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

7.92 0.20×10-4 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

2 3 0.0002 0 100 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

23.31 1.36×10-4 0.333 23.78 1.36×10-4 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

22.84 1.36×10-4 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

3 3 0.0002 0 10.48×10-2 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

5.24×10-2 0.68×10-6 0.333 5.34×10-2 0.68×10-6 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

5.14×10-2 0.68×10-6 0.333 
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Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

4 3 0.0002 0 13.34×10-4 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

6.67×10-4 0.11×10-8 0.333 6.80×10-4 0.11×10-8 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

6.54×10-4 0.11×10-8 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

5 3 0.0002 0 88.58 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

44.29 4.9×10-4 0.333 45.18 4.9×10-4 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

43.40 4.9×10-4 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

6 3 0.0002 0 1521.2 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

760.6 1446.28×10-4 0.333 836.66 1446.28×10-4 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

684.54 1446.28×10-4 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

7 3 0.0002 0 1609.4 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

804.7 1602.0×10-4 0.333 885.17 1602.0×10-4 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

724.23 1602.0×10-4 0.333 
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Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

8 3 0.0002 0 100 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

86.0 18.49×10-4 0.333 94.6 18.49×10-4 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

77.4 18.49×10-4 0.333 

Component 
Number 

Number of 
Modes 

Degradation 
Rate (1/h) 

Minimum 
Value 

Maximum 
Value PDF Type 

9 3 0.0002 0 100 Uniform 

Nominal 
Mean 

Nominal 
Variance 

Nominal 
Mode 
Probability 

Degradation 
Mode I Mean 

Degradation 
Mode I 
Variance 

Degradation 
Mode I 
Probability 

83.0 17.22×10-4 0.333 91.3 17.22×10-4 0.333 

Degradation 
Mode II 
Mean 

Degradation 
Mode II 
Variance 

Degradation 
Mode II 
Probability 

74.7 17.22×10-4 0.333 
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