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Chapter 1 

 

Introduction 
 

Research on the integration of emotion and cognition has existed for many years 

(Schorr, 2001).  This research has made great strides in establishing that emotion and 

cognition are, in fact, intimately connected, and several computational models have 

emerged that embody these ideas (Ortony et al., 1988; Neal Reilly, 1996; Gratch & 

Marsella, 2004; Hudlicka, 2004).  However, the integrations achieved to date are to some 

extent incomplete.  On the one hand, the claim that cognition is a necessary antecedent to 

at emotion is well established, and specific cognitive mechanisms that support emotion 

have even been established (Smith & Kirby, 2001).  However, the computational 

realizations of this integration have largely been pragmatic.  Thus, if an emotion theory 

claims that some cognitive step must take place, such as determining whether a stimulus 

is relevant to the current goal, then a subsystem is implemented that makes it take place, 

with little consideration of its overall role in cognition and why it must take place.  That 

is, the link between core cognitive functions and emotion has yet to be fully explored. 

Our approach is to start with a theory of cognitive control called PEACTIDM 

(Newell, 1990; pronounced PEE-ACK-TEH-DIM) and show how a set of emotion 

theories called appraisal theories naturally fills in missing pieces in PEACTIDM, while 

PEACTIDM provides the computational structures needed to support appraisal theories.  

PEACTIDM is a set of abstract functional operations that all agents must perform in 

order to generate behavior (the acronym denotes these operators, described in detail 

below:  Perceive, Encode, Attend, Comprehend, Tasking, Intend, Decode, Motor).  While 

PEACTIDM describes the abstract operations, it does not specify the source and types of 

data that these operations manipulate.  We claim that appraisal theories (Roseman & 

Smith, 2001) provide exactly the required data. Conversely, PEACTIDM provides the 



 2 

functional operations missing from appraisal theories.  An important consequence of this 

integration is that appraisals can be generated incrementally, leading to a time course of 

emotions.  This integration is performed within the Soar cognitive architecture (Laird, 

2008), but could equally apply to similar cognitive architectures such as ACT-R 

(Anderson, 2007).  We furthermore show that the integration provides a natural basis for 

understanding the role of mood and feelings.  

The main purpose of this thesis is to explore the feasibility and potential value of 

this integration. Since there are no existing integrations of this kind, a direct comparison 

to alternative approaches is impossible.  Instead, our evaluation focuses on whether the 

integrated model produces behavior that is qualitatively consistent with PEACTIDM and 

appraisal theory.  We will also address Picard’s (1997) list of properties that an emotional 

system should have (Chapter 5). 

While we rely on psychological theories to inform our approach, our emphasis is 

on the functional benefits (in terms of artificial intelligence) that we can derive from this 

theory.  Possible functional benefits might include enhanced memory retrieval, 

physiological preparation for action, and learning.  In this thesis, we explore the use of 

emotion as an intrinsic motivation to drive reinforcement learning.  This exploration is 

carried out in two domains under a variety of conditions in order to tease out the impact 

of various parts of the model (Chapters 7-9).  The integration also results in extensions to 

reinforcement learning, such as the source of intrinsic reward, and automatic setting of 

the learning and exploration rate parameters. 

The remainder of this thesis is organized as follows.  In Chapter 2 we provide 

background on cognitive and emotion theories, with a focus on PEACTIDM, Soar and 

Scherer’s (2001) appraisal theory.  In Chapter 3 we describe the unification of these in 

the context of a model of a simple, short task.  In Chapter 4 we describe a slightly more 

complex model of an extended synthetic task, and in Chapter 5 we present an evaluation 

of that model.  Chapter 6 describes related work in the context of our theory.  Chapter 7 

introduces the integration of emotion and reinforcement learning.  Our purpose is to see if 

emotion can be used as the basis of a reward signal to intrinsically motivate the agent.  

Initial results are also presented.  Based on our success there, we decided to explore 
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additional issues.  Would the system scale to a more complex domain?  How do various 

aspects of the system influence the performance?  Specifically, what influence do various 

appraisals have?  Chapter 8 introduces a new, more complex domain in which we explore 

these issues, and also describes revisions to the model based both on our earlier 

experience with the model and demands of the more complex domain.  Chapter 9 

presents a series of experiments designed to explore these issues, along with our 

evaluation of the results.  Finally, Chapter 10 summarizes, describes future work, and 

concludes.
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Chapter 2 

 

Background 
 

In this chapter, we describe PEACTIDM, a theory of cognitive control, and 

present background on cognitive theories, particularly Soar, in terms of PEACTIDM.  

We then present background on emotion theories, and make the connection between 

PEACTIDM and appraisal theories as complementary pieces of the cognition/emotion 

integration puzzle. 

2.1 Cognitive systems 

2.1.1 PEACTIDM: An abstract computational theory of cognitive 

control 

PEACTIDM is a theory of cognitive control where cognition is decomposed into 

a set of abstract functional operations (Newell 1990).  PEACTIDM stands for the set of 

eight abstract functional operations hypothesized as the building blocks of immediate 

behavior: Perceive, Encode, Attend, Comprehend, Tasking, Intend, Decode, and Motor.  

These functions are abstract because although many of them may often be primitive 

cognitive acts, they can require additional processing, whose details are not specified by 

Newell’s theory. Furthermore, Newell did not speculate about the actual data processed 

by these functions. 

PEACTIDM was developed from a functional analysis of immediate behavior—

tasks with short timescales where interaction with the environment dominates behavior. It 

is consistent with human data on some tasks (Newell 1990) and prior work in GOMS-like 

paradigms (John, Rosenbloom & Newell 1985). 
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We will describe PEACTIDM via illustration with a simple immediate choice 

response task adapted from a task described by Newell.  (As we demonstrate shortly, 

even a simple example like this can have an emotional component.)  In the task, a subject 

is faced with two lights and two buttons.  The lights are both within the subject’s fovea.  

The subject’s task is to focus on a neutral point between the lights and wait for a light to 

come on.  When a light comes on, the subject must press the button corresponding to that 

light.  The subject gets feedback that the correct button was pressed by the light turning 

off in response to the press.  The subject’s reaction time is the time it takes to turn off the 

light.     

In PEACTIDM, Perceive is the reception of raw sensory inputs.  In this case, the 

subject perceives one of the lights turning on.  Encode is the transformation of that raw 

sensory information into features that can be processed by the rest of cognition.  In this 

example, a representation is created that indicates one light has come on.  Attend is the 

act of attending to a stimulus element.  In this case, it is not an overt eye movement but is 

some type of covert attention that must select the lit light (even though the light is already 

foveated).  Comprehend is the act of transforming a stimulus into a task-specific 

representation (if necessary) and assimilating it into the agent’s current understanding of 

the situation, such as classification or identification.  In our example, the subject verifies 

that one of the two lights has come on (that is, his attention was not drawn by some other 

stimulus). Tasking is the act of setting the task (i.e., the goal) in the internal cognitive 

state.  In our example, Tasking takes place in an earlier cycle before the task begins—the 

subject is already poised, looking at the lights with a finger ready to press a button and 

knows which button to press for which light.  It is via Tasking that Comprehend knows 

what to expect and Intend knows what operation to choose based on the input.  Given the 

task and the comprehension of the stimulus, Intend initiates a response, in this case, 

pressing a button.  Decode translates the response from Intend into a series of motor 

actions.  Motor executes the action; in our example, the pressing of the button.  In 

general, Comprehend, Intend, and Tasking may require an arbitrary amount of processing 

to perform their functions, although in this task very little processing is required to 

support those functions. 
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Figure 2.1: Basic PEACTIDM cycle.  

The agent repeats this cycle forever. The output from a step primarily feeds into the next step, but 

the output of Intend also feeds into the next cycle’s Comprehend.  Tasking (not shown) competes 

with Attend.  Tasking modifies the current goal, which also serves as an input to the Encode and 

Comprehend cycles. 

 

Newell argued that the ordering of PEACTIDM functions is determined largely 

by the data dependencies between the functions (see Figure 2.1).  Perceive must occur 

before Encode, which must occur before Comprehend, which must occur before Intend, 

which must occur before Decode, which must occur before Motor.  In some simple cases, 

the presence of a stimulus is all that is required for the task, and thus the Encoding step 

may be skipped.  Tasking is the most flexible.  In the implementation presented here, 

Tasking competes with Attend.  That is, the agent can either Attend (and thus complete 

the cycle as shown in Figure 2.1), or it can Task (in which case it immediately precedes 

to Perceive to restart the cycle).  An alternative approach has it compete with Intend (see 

section 8.3.2). 

2.1.2 Approaches to cognitive modeling 

Although PEACTIDM describes a set of abstract operations, it does not describe 

which mechanisms realize these operations and different approaches to cognitive 
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modeling suggest different mechanisms. The cognitive architecture approach we pursue 

here decomposes cognition into more primitive computational components that are the 

building blocks for functional capabilities.  The interactions among these components 

give rise to temporal dynamics within the system. A typical cognitive architecture 

consists of memories (both long-term and short-term) with different performance 

characteristics.  For example, memories can differ what type of knowledge is 

stored/learned, how knowledge is represented in the memory, how it is learned, and how 

it is retrieved.  There can also be processing components that combine knowledge, such 

as to select between alternative interpretations or intentions.  Most cognitive architectures 

also have perceptual and motor systems.  Thus, a cognitive architecture provides task-

independent structure and subsystems that is shared across all tasks, while using task-

dependent knowledge to specialize behavior for a given task. Cognitive architectures are 

essentially computational systems for acquiring, encoding and using knowledge. 

A cognitive architecture implements PEACTIDM by implementing the abstract 

operations via a combination of its subsystems and knowledge that directs the 

interactions of those subsystems.  We have chosen Soar, to realize PEACTIDM, although 

it should be possible to implement it in other architectures such as ACT-R (Anderson, 

2007), EPIC (Kieras & Meyer, 1997), or Clarion (Sun, 2006).  

 In section 2.1.4.1 we will sketch how PEACTIDM might be realized in other 

architectures in the context of the immediate choice response task. 
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Figure 2.2: The Structure of Soar. 

 

2.1.3 Soar 

Soar is a cognitive architecture that has been used both for cognitive modeling 

and for developing real-world application of knowledge-rich intelligent systems. Figure 

2.2 is an abstract block diagram of Soar, which shows the major memories (rounded 

edges) and processing modules (square edges). In the bottom middle is Soar’s short-term 

memory (often called its working memory). The short-term memory holds the agent’s 

assessment of the current situation, derived from perception (lower middle) and via 

retrieval of knowledge from its long-term memories. It has three long-term memories: 

procedural (production rules), semantic, and episodic, as well as associative learning 

mechanisms.  In this work, the semantic and episodic memories are not used, but we will 
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return to them in our discussion of future work.  The appraisal detector will be discussed 

in section 3.4. 

Soar avoids the use of syntax-based conflict resolution mechanisms of traditional 

rule-based systems by firing all matched rules in parallel and focusing deliberation on the 

selection and application of operators. Proposed operators are explicitly represented in 

working memory, and deliberation is possible through rules that evaluate and compare 

the proposed operators. Soar follows a decision cycle (Figure 2.3) which begins with an 

Input phase in which the agent gets input from the environment.  This is followed by the 

Propose phase in which rules fire to elaborate knowledge onto the state, and propose and 

compare operators.  Next, based on the structures created by those rules, Soar selects an 

operator in the Decide phase and creates a structure in short-term memory representing 

the chosen operator.  This choice may be determined by the comparison knowledge, or it 

may be random.  Once an operator has been selected, rules with knowledge about how to 

Apply that operator can fire.  Some of these rules may generate output commands.  

Finally, Output is processed (e.g., the world is updated in response to an action). 

 

Figure 2.3: The Soar decision cycle. 

 

Sometimes, there may not be sufficient knowledge to apply an operator.  This is 

called an impasse.  When that happens, Soar creates a substate structure in Short-Term 

Memory.  This structure allows the Soar decision cycle to continue by allowing rules to 

match in the substate leading to the selection and application of suboperators that can 

help the agent resolve the impasse.  For example, it may be that the operator is abstract, 

in that it requires many discrete steps (i.e., suboperators) to implement.  Thus, the 

substate supplies a context in which the suboperators that execute these steps can be 
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selected.  When the final step completes the application, the impasse is resolved and Soar 

can select a new operator in the top state.  Soar can also learn one or more new rules that 

summarize the processing done in the substate via a process called chunking (Laird, 

Rosenbloom & Newell, 1986), allowing the impasse to be skipped in the future, which 

results in faster processing. 

2.1.4 Implementing PEACTIDM in Soar 

In this section, we walk through the simple immediate choice response task 

presented earlier (section 2.1.1) and describe how it is possible to map PEACTIDM onto 

Soar. This implementation closely following Newell’s (1990) description. 

Recall the task situation: the agent is faced with two lights and two buttons; the 

task is to press the button corresponding to the light that comes on.  Before the task even 

begins, the agent does Tasking, which creates a structure in short-term memory 

describing the goal, which includes a prediction that a light is going to come on.  

Perceive is the reception of raw sensory inputs; in Soar this means that a structure 

describing which light comes on is created in short-term memory.  This structure causes 

Encoding rules in procedural memory to match and generate domain-independent 

augmentations are added (e.g., the light coming on means the agent can make progress in 

the task).  Rules in Soar fire in parallel, so if there were multiple stimuli, an encoded 

structure would be generated for each at the same time.  Attend is implemented as an 

operator; this is natural since PEACTIDM only allows one stimulus to be Attended to at a 

time, and Soar only allows one operator to be selected at a time.  Thus, there will be one 

proposed Attend operator for each stimulus; which one is selected is influenced by the 

Encoded information.  In this task, only one Attend operator is proposed (since there is 

only one stimulus).  Comprehend is implemented as a set of operators; exactly how many 

are required depends on the complexity of the task and situation.  In this task, there is 

only one Comprehend operator, which verifies that the stimulus is what was expected (as 

determined by Tasking earlier).  Intend is implemented as an abstract operator.  Thus, an 

impasse is created and a set of operators that work together resolve the impasse by 

selecting a response (in this task, to push the button) and creating a prediction of the 

outcome of that action (in this task, that the light will turn off).  In Soar, Decode is 
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merely sending the selected action to the output system, and Motor is handled by the 

simulation of the environment. 

Soar naturally supports the various kinds of processing required by PEACTIDM: 

fast Encoding via parallel rule firing, single stimulus selection via operators, and arbitrary 

processing via operator chaining and impasses.  Soar can even learn to compress the 

arbitrary processing via its chunking mechanism, increasing reactivity (see section 3.8 for 

an example). 

2.1.4.1 Implementing PEACTIDM in Other Cognitive Architectures 

As we can see, PEACTIDM fits naturally with Soar.  Earlier, however, we 

claimed that there was no inherent connection between PEACTIDM and Soar, and that 

PEACTIDM could also be implemented in other cognitive architectures such as ACT-R 

(Anderson 2007), EPIC (Kieras & Meyer, 1997), or Clarion (Sun, 2006). 

We will give a brief sketch describing how PEACTIDM might be implemented in 

ACT-R, highlighting the key capabilities necessary to achieve this.  ACT-R is composed 

of several modules, each of which performs a distinct function.  The declarative memory 

module stores a copy of everything the agent thinks about.  These memories can be 

retrieved later via an explicit retrieval, which returns the best partially matching memory.  

The goal module contains the agent’s current goal structure.  The imaginal module is like 

a scratch pad the agent can use to store any structure.  The perceptual and motor modules 

connect the agent to the environment.  Each of these modules has an associated buffer 

that exposes its information to the system (somewhat analogous to Soar’s Short-Term 

Memory).  For example, the goal module’s buffer simply contains the goal structure, 

whereas the declarative memory module’s buffer can contain a cue, which triggers a 

retrieval that overwrites the cue.  A rule module matches rules based on the contents of 

the buffers and selects a single rule to fire next (if multiple rules match, a conflict 

resolution mechanism chooses one). 

Perceive may be naturally implemented via ACT-R’s perceptual module.  In 

general, the necessary ability is to bring external information into the architecture.  

Encode needs the ability to transform or augment this information so that it is in a form 
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that the rest of the system can easily use.  We utilized Soar’s ability to fire multiple rules 

in parallel in order to generate multiple encodings.  ACT-R can only fire one rule at a 

time, making it difficult to map Encoding onto specific cognitive functions in ACT-R.  

Given the level of output of the perceptual systems in ACT-R (e.g., words), a more 

reasonable mapping would be to have Encoding handled by the perceptual module, so 

that when external information is available to cognition, is it already Encoded.  Attend 

requires the ability to choose a single Encoded structure for further processing.  In ACT-

R, since only one rule can fire at a time, a separate rule can be associated with each 

Encoded structure that creates appropriate structures in one of the available buffers 

(either goal or imaginal).  The competition between possible Attend rules in ACT-R is 

analogous to the competition between Attend operators in Soar.  Comprehend can also be 

implemented as a series of rule firings, some of which may induce retrievals from 

declarative memory.  For example, the verify operator in Soar may be implemented as an 

attempt to retrieve a prediction structure that matches the current situation.  This actually 

allows for at least three levels of match: if the retrieval fails, then the prediction was not 

even close, whereas if the retrieval succeeds, then the prediction was at least close.  An 

additional step via a rule can determine if the prediction matches exactly or not.  A 

possible issue in this would be if an old prediction was retrieved, and not the most recent 

one.  If temporal information is stored with a prediction, then a rule may be able to 

determine if this has happened and classify accordingly (e.g., no match at all).  Tasking 

can be implemented as rules or retrievals that ultimately create and modify structures in 

the goal buffer.  Intend may be directly implemented as a rule in ACT-R, or it may be a 

subtask (similar to how Soar uses a substate).  Decode and Motor may be handled by 

ACT-R’s motor module. 

As we can see, some aspects of ACT-R potentially make PEACTIDM more 

difficult to implement (e.g., the Encode function), but other aspects may be more 

realistic, or suggest alternative implementations in Soar.  For example, ACT-R’s 

perceptual and motor modules may improve Perceive and Motor; Soar has been extended 

with similar capabilities before (Chong, 1997), which would improve the realism of 

perception and action modeled in this research. Using ACT-R’s partially matching 
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declarative memory for Comprehend also suggests a similar route for Soar via its 

semantic memory. 

2.1.5 Architectural Requirements of PEACTIDM 

Thus, our usage of PEACTIDM has revealed possible strengths and weaknesses 

in both Soar and ACT-R.  For example, in Soar, we are required to abstract away from 

the details of Perception and Motor, whereas in ACT-R, reliance on the perceptual 

module for Encoding means that ACT-R cannot learn Encoded structures
1
.  In general, 

the requirements of PEACTIDM may expose the strengths and weaknesses of other 

existing architectures as well.  Table 2.1 reviews the architectural requirements for each 

PEACTIDM function and how Soar and ACT-R support them.   

Function Architectural Requirements Soar ACT-R 

Perceive Support perception Abstracted into 

environment 

interface 

Part of perception 

module 

Encode Generate multiple structures in 

parallel 

Parallel rule 

firings 

Part of perception 

module 

Attend Single out one stimulus for additional 

processing 

Operator 

selection 

Rule firing 

Comprehend Support arbitrary processing ranging 

from short (e.g., verify) to long (e.g., 

understanding complex relationships) 

Sets of operators, 

possibly in 

impasses 

Sets of rules; 

declarative 

memory 

Tasking Support making persistent changes in 

memory 

Operator 

application rules 

Goal buffer 

Intend Support arbitrary processing ranging 

from short (e.g., push button) to long 

(e.g., complex, temporally extended 

action); support creating predictions 

Sets of operators, 

impasses 

Sets of rules 

Decode Expand compact command 

descriptions into complex motor 

sequences; possibly support parallel 

processing of multiple commands 

Parallel rule 

firings; abstracted 

into environment 

interface 

Part of motor 

module 

Motor Support motor execution Abstracted into 

environment 

interface 

Part of motor 

module 

Table 2.1: Summary of the architectural requirements for PEACTIDM. 

 

                                                 
1
 To be clear, we make no attempt to learn Encoded structures in Soar, either, but as Encoding is 

integrated with Soar’s central mechanisms, this exploration is possible without resorting to architectural 

modifications. 
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An additional requirement not listed above is the ability to learn.  In principle, 

learning can take place in all functions except perhaps Perceive and Motor.  Soar and 

ACT-R have comparable learning mechanisms that cover at least many of the kinds of 

learning possible in PEACTIDM.  We discuss learning in our model in section 3.8 and 

chapters 7-9. 

Finally, we can discuss what flexibility an architecture gives up by committing to 

PEACTIDM.  At some level, the answer may be nothing—the functions can be viewed as 

a recasting of existing functionality.  But it does suggest that certain kinds of processing 

would be inappropriate.  For example, it suggests that the architecture should not support 

executing physical actions directly from, say, Comprehend.  Perhaps more generally, it 

suggests that different structures should be involved in different steps (e.g., a 

Comprehend structure is not also a Motor command).  But given that these functions are 

abstract, multiple possible mappings to any architecture are likely to work, and without 

more detailed specifications, it would be difficult to definitively exclude particular 

mappings. 

2.1.6 What PEACTIDM and cognitive architectures provide 

PEACTIDM provides constraints on the structure of processing that are more 

abstract than cognitive architectures like Soar or ACT-R.  While Soar and ACT-R specify 

processing units, storage systems, data representations, and the timing of various 

mechanisms, they are only building blocks and by themselves do not specify how 

behavior is organized to produce immediate behavior. PEACTIDM specifies the abstract 

functions and control that these components must perform in order to produce intelligent 

immediate behavior. 

Some of the key constraints that arise from the combination of PEACTIDM and 

cognitive architectures are: 

 The set of computational primitives that behavior must arise from (Cognitive 

architecture) 

 The temporal dynamics of cognitive processing and behavior (Cognitive 

architecture & PEACTIDM) 



 15 

 The existence of core knowledge and structures that must be reused on all 

tasks (Cognitive architecture & PEACTIDM) 

The principle theoretical gain in positing and appealing to a level of analysis at 

the abstract functional operator level is that it identifies common computational functions 

across a wide range of tasks.   It thus provides a level of description at which a range of 

regularities may be expressed concerning the nature of these functions.  We now exploit 

this level of description by showing how the inputs and outputs that these operators 

require implies that they must in fact constitute an affective system of a kind assumed in 

appraisal theories of emotion. 

2.2 Emotion modeling 

2.2.1 What can emotion provide? 

PEACTIDM and cognitive architectures describe processes and constraints on 

representation and the timescale of those processes, but they do not describe the specific 

knowledge structures that are actually used to produce behavior—it is up to the modeler 

to describe those, and the space of possibilities is large.  Consider PEACTIDM: What 

structures does Encode generate?  Given multiple stimuli, what information does Attend 

use to choose which to focus on?  What information does Comprehend generate?  What 

information does Intend use to generate a response?  We propose that much of the 

information required by PEACTIDM is generated by the same processes that generate 

emotion, and that these processes are, in fact, the PEACTIDM operations themselves.  

The abstract functions of PEACTIDM need information about relevance, goals, 

expectations, and so on, and compute them to carry out their functions.  The results of 

these computations, then, cause an emotional response. 

2.2.2 Introduction to appraisal theories 

The hypothesis that there is a relationship between the way someone interprets a 

situation (along certain dimensions, such as Discrepancy, Outcome Probability, and 

Causal Agency) and the resulting emotional response is a defining characteristic of 

appraisal theories.  Appraisal theories argue that emotions result from the evaluation of 

the relationship between goals and situations along specific dimensions (see Roseman & 
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Smith 2001 for an overview).  For purpose of understanding the functional role of 

emotion in cognitive architectures, appraisal theories are appealing because they are 

naturally described at the cognitive level, as opposed to the neurological or sociological 

levels.  Smith & Lazarus (1990) argued that, in general, emotions allow for a decoupling 

between stimulus and response, which is required to allow organisms to adapt to a 

broader range of situations.  This decoupling, then, meant that more complex cognition 

was required to fill in the gap.  In other words, complex cognition goes hand-in-hand 

with complex emotion.  Thus, it has been claimed that one of the primary functions of 

more complex cognition is to support appraisal generation (Smith & Lazarus, 1990). 

Appraisal theories fit naturally into our immediate choice response task. When the 

subject presses the button, he Encodes the state of the light and Attends to it.  In the 

Comprehend stage, he verifies that the light’s state matches his prediction. Suppose that 

after the first several trials, the experimenter disables the buttons so that the light stays 

turned on even when the correct button is pressed.  When the subject Intends pressing the 

button, he still creates the same prediction—that the light will turn off.  When the subject 

presses the button, though, the light does not turn off.  Thus, when the subject gets to the 

Comprehend step, he will detect a mismatch between the actual state and the expected 

state.  

This mismatch is called Discrepancy from Expectation, and the subject generates 

a structure to represent it. If the subject has high confidence in an unmet prediction, it 

might react differently from when the subject has low confidence in an unmet prediction. 

Thus, when the subject generates the prediction, an Outcome Probably is also generated.  

In this case, since the subject had no reason to suspect that the light would not turn off 

when the correct button was pushed, the Outcome Probability was very high. 

Since the Discrepancy from Expectation in this case conflicts with the Outcome 

Probability, we expect the subject would experience surprise.  The subject may not even 

believe what just occurred, and try to press the button again, going through the same 

steps.  However, the second time through, the Outcome Probability is probably lower, 

and certainly after a few tries, the subject will realize that the button is not functioning.  

Emotionally, the subject’s reaction may vary based on many factors, such as who he 
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thinks is at fault (which we call the Causal Agent).  If he thinks he broke the button, he 

might feel shame.  If he thinks he is being thwarted by the researcher, he might feel anger 

(especially if there was supposed to be some reward based on his performance). 

Appraisal theories are complementary to the general cognitive model we 

described in that they provide a description of the data being processed by cognition.  

Integration with cognitive architecture can provide the mechanisms and processes that 

lead to appraisals and which utilize the results of appraisal (e.g., emotions, moods and 

feelings; see sections 2.2.3 and 4.2). 

2.2.3 Scherer’s appraisal theory 

Just as we have chosen to implement our model in a specific cognitive 

architecture, Soar, we have also chosen a specific appraisal theory to work with: that 

proposed by Scherer (2001). We do not have a strong theoretical commitment to Scherer 

model, and we have chosen it largely because of the extensiveness of the theory. Most 

appraisal theories have six to eight appraisal dimensions, while Scherer’s theory has 

sixteen appraisal dimensions. Thus, in the long run, if we can model Scherer’s theory, 

there is less chance of us missing some important dimension than if we started with a 

simpler, possibly less complete theory. 

Scherer sixteen appraisal dimensions are shown in Table 2.2.  These dimensions 

are divided into four groups: relevance, implication, coping potential and normative 

significance.  The columns are modal emotions—typical labels assigned to regions of 

appraisal space close to the sets of values shown. 
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Table 2.2: A mapping from appraisal dimensions to modal emotions with dimensions grouped by 

function (adapted from Scherer 2001).   

Those dimensions in italics are not implemented in our current model.  Open cells mean all values 

allowed.  Abbreviations: Unfamiliar = Unfamiliarity, Unpredict = Unpredictable, Conducive = 

Conduciveness, med=medium, intent = intentional, neg = negligence, Enjoy=Enjoyment, 

Disp=Displeasure, Cont=Contempt, Anx=Anxiety, Wor=Worry, ang=anger, Bore=Boredom, Indiff = 

Indifference. 

 

 Enjoy/ 

Happiness 

Elation/ 

Joy 

Disp/ 

Disgust 

Cont/ 

Scorn 

Sadness/ 

Dejection 

Despair Anx/ 

Wor 

Relevance        

Novelty        

  Suddenness low high/med   low high low 

  Unfamiliar   high  high very 

high 

 

  Unpredict medium high high   high  

Intrinsic 

Pleasantness 

high  very 

low 

    

Goal 

Relevance 

medium high low low high high med 

Implication        

Cause: Agent    other  other/ 

nature 

other/ 

nature 

Cause: 

Motive 

intent chance/ 

intent 

 intent chance/ 

neg 

chance/ 

neg 

 

Outcome 

Probability 

very high very high very 

high 

high very high very 

high 

med 

Discrepancy 

from 

Expectation 

low     high  

Conducive high very high   low low low 

Urgency very low low med low low high med 

Coping 

potential 

       

Control    high very low very 

low 

 

Power    low very low very 

low 

low 

Adjustment high medium  high medium very 

low 

med 

Normative 

significance 

       

Internal 

Standards 

Compatibility 

   very 

low 

   

External 

Standards 

Compatibility 

   very 

low 
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 Fear Irritation/ 

Cold ang 

Rage/ 

Hot ang 

Bore/ 

Indiff 

Shame Guilt Pride 

Relevance        

Novelty        

  Suddenness high low high very 

low 

low   

  Unfamiliar high  high low    

  Unpredict high medium high very 

low 

   

Intrinsic 

Pleasantness 

low       

Goal 

Relevance 

high medium high low high high high 

Implication        

Cause: Agent other/ 

natural 

 other  self self self 

Cause: 

Motive 

 intent/ 

neg 

intent  intent/ 

neg 

intent intent 

Outcome 

Probability 

high very high very 

high 

very 

high 

very high very 

high 

very 

high 

Discrepancy 

from 

Expectation 

high  high low    

Conducive low low low   high high 

Urgency very high medium high low high med low 

Coping 

potential 

       

Control  high high med    

Power very low medium high med    

Adjustment low high high high medium med high 

Normative 

significance 

       

Internal 

Standards 

Compatibility 

    very low very 

low 

very 

high 

External 

Standards 

Compatibility 

 low low   very 

low 

high 

 

The Relevance dimensions relate to what the agent should be paying attention to.   

Suddenness is perceptual in nature; it reflects the extent to which a stimulus is intense or 

has a rapid onset.  Unfamiliarity and Unpredictability characterize the stimulus in the 

context of the agent’s experience: Unfamiliarity is the extent to which this stimulus is 

different than other things the agent has seen before, and Unpredictability is the extent to 
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which the stimulus could not have been predicted.  Intrinsic Pleasantness is how pleasant 

the stimulus is, independent of the current goal.  Goal Relevance is how important the 

stimulus is with respect to the current goal (in a good or bad way).  

The implication dimensions describe the agent’s understanding of the situation.  

Causal Agent and Motive describe who caused the situation and why.  Outcome 

Probability and Discrepancy from Expectation are related to explicit predictions about the 

situation; that is, how likely the prediction was thought to be, and to what extent it was 

accurate.  Conduciveness is how good or bad the situation is with respect to the current 

goal.  Urgency describes the extent to which immediate action is required. 

The Coping Potential dimensions describe the agent’s ability to deal with the 

situation.  Control is the extent to which anyone can change the situation, whereas Power 

is the extent to which the agent can change the situation.  Adjustment is the agent’s 

ability to deal with the situation if it doesn’t change. 

Finally, the Normative Significance dimensions describe social aspects of the 

situation.  External Standards Compatibility is the extent to which the situation is in line 

with cultural and social norms, whereas Internal Standards Compatibility is the extent to 

which the situation is in line with personal norms (e.g., personal morals and values). 

Scherer’s model differs from many appraisal theories in that it assumes a 

continuous space of emotion as opposed to categorical emotions.  Like all appraisal 

theories, Scherer provides a mapping from appraisal values to emotion labels, but he 

describes these labels as modal emotions—that is, common parts of the emotion space.  

Given that the majority of existing computational models are categorical (Gratch & 

Marsella, 2004; Neal Reilly, 1996; Hudlicka, 2004), exploring a continuous model may 

help clarify the benefits and challenges of such a model.  Furthermore, while our theory 

is continuous, it would be trivial to add categorical labels to regions if desired.  Indeed, 

we introduce a labeling function later that does this (although we use it purely for 

analysis; see sections 3.4 and 5.1.1). 

Another way in which Scherer’s theory differs from most is that he proposes that 

appraisals are not generated simultaneously.  Rather, he claims that appraisals are 
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generated in the order of the groupings given above for efficiency reasons.  For example, 

there is no sense in wasting resources on computing the implications of a stimulus if the 

stimulus is irrelevant.  We will return to this point after we have described our specific 

model. 

Scherer also proposes a process model describing how, at an abstract level, the 

appraisals are generated and how they influence other cognitive and physiological 

systems, but it does not provide details of all the data needed to compute the appraisals, 

nor the details of those computations.  Our computational model describes the details. 

Since the computational details include new constraints on how the model as a whole 

works, our model differs in some ways from Scherer’s theory.  This arises in part because 

of the need to develop a computational model of generation, and also because of the more 

limited scope of our model.  Scherer’s theory pays some attention to the physiological 

and neurological aspects of emotion, but like most appraisal theories, does not include 

detailed mappings from the theory to specific behavioral data or brain structures.  Our 

model does not include a physiological or neurological model, and does not yet attempt 

to mode indirect influences on cognition or action tendencies.  While these are excellent 

candidates for future work, our primary focus here is on the generation of appraisals in 

the context of PEACTIDM, and how appraisals influence behavior; thus, a symbolic 

cognitive approach is most appropriate. 
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Chapter 3 

 

Theory and Implementation of Integration 
 

The main theoretical proposal is that cognitive and behavioral control, as 

characterized by PEACTIDM, requires appraisal information, and that this appraisal 

information is computed directly by the PEACTIDM operations themselves.  The 

generation of appraisals, and their accompanying emotional responses, then, is a 

byproduct of the system’s normal operation.   In this section, we provide the details of the 

integration of PEACTIDM and appraisal theory, building on Scherer’s (2001) theory as 

described above (Table 2.2), though it should be possible to apply other comprehensive 

appraisal theories in a similar way. 

In this chapter and Chapter 4, we describe aspects of our theory using examples.  

In this section, we continue to use the simple choice response task described earlier to 

give a detailed account of how this integration is realized. Thus, we address how 

appraisals and emotion are generated and over what time course, how they are 

represented, how emotion intensity is calculated, and the influence of expectations.  

Chapter 4 demonstrates how the model works in a more complex, extended task that we 

will use to demonstrate additional appraisals and introduce mood, feeling and their 

behavioral influences. 

The simple choice response task follows the steps outlined in Table 3.1.  This 

version has been slightly extended past our previous description to show what happens 

immediately following the button push.  The times for Perceive, Decode and Motor are 

taken from Newell (1990).  Steps implemented as operators (as described in section 

2.1.4) take 50 milliseconds (the assumed timing of the Soar decision cycle). 
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Time (ms) PEACTIDM Processing Notes 

0  Light on 

40 Perceive  

90 Encode+Attend  

140 Comprehend Verifies prediction 

190 Intend (to push button) 

240  Impasse 

290  Create prediction 

340  Push button 

420 Decode+Motor Light off 

460 Perceive  

510 Encode+Attend  

560 Comprehend Verifies prediction 

610 Tasking (to mark task complete) 
Table 3.1: PEACTIDM steps to the simple choice reaction task. 

 

To summarize this extended version of the task, the light comes on, and the agent 

Perceives, Encodes and Attends to the light, and Comprehend verifies that this is what is 

expected.  It then Intends to push the corresponding button.  Intend is implemented as an 

abstract operator whose impasse is resolved by a set of operators in Soar that work 

together to both generate the push button command and create a prediction (that the light 

will go off). After this command is decoded and physically executed, the light turns off.  

This change is Perceived, Encoded and Attended, followed by Comprehension.  Finally, 

the agent marks the task complete. 

In the process of performing these PEACTIDM steps for this task, appraisal 

values are generated, which produce an emotional reaction.  In this task, only a subset of 

the appraisals are relevant, namely Suddenness, Goal Relevance, Conduciveness, 

Outcome Probability, and Discrepancy from Expectation.  Figure 3.1 shows the 

relationship between PEACTIDM and appraisal generation and which appraisal 

information influences which steps in the PEACTIDM process. 

Perceive and Encode generate relevance appraisals, which are used by Attend.  

Comprehend generates assessment appraisals which are used by Intend.  Intend generates 

the Outcome Probability appraisal, which is used by Comprehend in the next cycle.  

Tasking (not shown) is influenced by the current emotional state (not shown), which is 

determined by the appraisals.  Critically, our claim is that the PEACTIDM steps require 
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this appraisal information in order to perform their functions, and thus it must be 

generated by earlier steps. 

 

Figure 3.1: The PEACTIDM cycle with corresponding appraisals.   

Suddenness and Unpredictability are actually generated by Perceive, but like other pre-Attend 

appraisals, are not active until Attend. 

 

3.1 Appraisal Values 

The appraisals differ not only in how they are generated, but also in the types and 

ranges of values they can have with some appraisal values being numeric, while others 

are categorical. Table 3.2 shows the ranges of values we have adopted for the appraisals 

in our system. 

Suddenness [0,1] Unpredictability [0,1] 

Goal Relevance [0,1] Discrepancy from Expectation [0,1] 

Intrinsic Pleasantness [-1,1] Outcome Probability [0,1] 

Conduciveness [-1,1] Causal Agent [self, other, nature] 

Control [-1,1] Causal Motive  

[intentional, negligence, chance] Power [-1,1] 
Table 3.2: Appraisal dimensions with ranges. 

 

Comprehend 

Perceive 

Encode 

Attend 

Intend 

Decode 

Motor 

Raw Perceptual 
Information 

Stimulus 
Relevance 

Stimulus chosen 
for processing 

Current Situation 
Assessment 

Action 

Motor 
Commands 

Environmental 
Change 

Suddenness 
Unpredictability 
Goal Relevance 

Intrinsic Pleasantness 

Causal Agent/Motive 
Discrepancy 

Conduciveness 
Control/Power 

Prediction 

Outcome 
Probability 
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For the numeric dimensions, most existing computational models use the range 

[0, 1] (e.g. Gratch & Marsella, 2004). The implication is that the 0 end of the range is less 

intense than the 1 end of the range. For some dimensions, this is true: a stimulus with 

Suddenness 1 would be considered more sudden that a stimulus with Suddenness 0. For 

other dimensions, though, being at the “low” end could be just as intense as being at the 

“high” end. For example, if I pass an exam, I will appraise this as high Conduciveness 

and have a strong positive feeling. However, if I fail the exam, I will appraise this as very 

low Conduciveness, (i.e. highly unconducive) and will experience a strong negative 

feeling. Thus, for these dimensions we use the range [-1, 1]—that is, values near zero 

(e.g. not very conducive or very unconducive) would have a low impact on feeling, but 

values near the extremes (e.g. very conducive or very unconducive) would have high 

impact on feeling. 

3.2 Computing the Active Appraisal Frame 

In the following sections, we trace the generation of appraisals in our example. To 

make the calculations easier to follow, we will use extreme values, such as 1.0, for the 

appraisals, even though less extreme values would be more realistic.  

In our example, before the task began (perhaps when waiting for the light to come 

on), the agent engaged in Tasking which did two things: it created a structure 

representing the task and a prediction structure that a light will come on.  This prediction 

structure has an associated Outcome Probability appraisal value, which we assume is the 

extreme value, 1.0.  When the light comes on, Perceive generates a value for the 

Suddenness appraisal, with value 1.0.  Then, during Encoding, a structure is created with 

the following information: which light came on (which is domain-dependent), and 

whether this stimulus is on the path to completing the task.  The fact that a light came on 

leads to a Goal Relevance appraisal value of 1.0. 

The appraisals are stored in an appraisal frame, which is the set of appraisals that 

describe the current situation that the agent is thinking about it (Gratch & Marsella 2004).  

Before an agent Attends to a stimulus, there may be several appraisal frames that have 
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been started—one for each stimulus the agent perceives.  We call these the pre-attentive 

appraisal frames. 

Attend then uses the available appraisal frames to select the stimulus to Attend to. 

For example, the stimulus that is most Sudden may be preferred. (See the connection 

between Encode and Attend in Figure 3.1).  When a stimulus is Attended, a flag marks 

the associated appraisal frame as the active frame. Once a frame becomes active, several 

other appraisals can occur.  This is in line with our hypothesis that Comprehension 

follows Attend, and that Comprehension generates the data necessary for further 

processing (e.g., Intending an action; see the connection between Attend and 

Comprehend and Tasking in Figure 3.1).  Specifically, the calculation that the stimulus is 

on the path to the goal leads to a Conduciveness value of 1.0. 

What distinguishes our use of appraisal frames from Gratch & Marsella (2004) is 

that we use a single active frame to limit which appraisals are generated, whereas they 

have multiple complete frames; computationally, this makes our approach more efficient.  

Additionally, while Gratch & Marsella also use the appraisal frame to inform an 

attention-like process, our approach implies limits on what information can actually 

influence that process. 

3.3 Sequences and Time Courses of Appraisals 

Now that we have described how appraisals are generated, we will discuss the 

implications of that process on the sequencing and time course of appraisals.  Scherer 

(2001) proposes that the appraisals are generated sequentially because the outcomes of 

some appraisals obviate the need for others.  For example, if none of the relevance 

appraisals indicates that a stimulus is interesting, then there is no need to continue 

processing the stimulus.  Our model also imposes sequential constraints (see Figure 3.1), 

but for two reasons, one of which is related to Scherer’s.  Attend will not choose a 

stimulus unless one of the relevance dimensions indicates that it is interesting, much like 

Scherer’s theory describes.  However, additional ordering constraints arise from the flow 

of data in the model.  For example, since Discrepancy from Expectation arises from the 

Comprehension function, it occurs after the Conduciveness appraisal (which is activated 
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upon Attending).  Similarly, the Outcome Probability appraisal is generated in the Intend 

step, which comes after Comprehension.  Thus, while Scherer’s argument for sequential 

appraisal generation centers on efficiency and the wastefulness of generating irrelevant 

appraisals, our data-driven model extends that to also impose an ordering based on data-

driven constraints: the appraisals cannot be generated earlier (regardless of the 

efficiency).  The idea of appraisals being data-driven has been mentioned elsewhere (see 

Roseman & Smith 2001 p.12-13 for a brief overview of this point), but the idea has been 

used to argue that appraisal ordering is not fixed at all.  Data-driven processing combined 

with PEACTIDM implies at least a partial ordering. 

A corollary to this is that some appraisals take longer to generate than others.  In 

the implementation, all appraisals are generated by rules that test features of the agent’s 

internal state, and thus fire as soon as possible.  However, the amount of time it takes to 

generate the required features varies.  As just stated, the Discrepancy from Expectation 

appraisal rule cannot fire until the required information has been generated by 

Comprehend (which in turn requires that the Attend operator has been executed).  A more 

complex model might require an arbitrary amount of processing to generate the 

information necessary so that a Causal Agent appraisal rule can fire.  In general, the 

amount of processing required by the Comprehend, Intend, and Tasking steps to enable 

the generation of various appraisals may be arbitrary, which is consistent with the 

inference vs. appraisal distinction made by Marsella & Gratch (in press).  Thus, the 

model not only implies partially ordered sequences of appraisals, but it also implies 

varying time courses for the generation of those appraisals. 

3.4 Determining the Current Emotion 

Appraisal theories claim that appraisals are precursors to emotion (see Table 2.2).  

Given the theory we have described so far, it may seem that appraisal alone is sufficient.  

However, as we will see in Chapter 4, emotion has functional value beyond appraisal, in 

that it represents situation knowledge in a task-independent form that can be used to 

influence control and hence behavior.  Here we will simply describe the emotion 

mechanism. 
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A mechanism called the Appraisal Detector (Smith & Kirby 2001) processes the 

active frame to determine the current emotion.  It is via this mechanism that the active 

frame affects the rest of the system.  Emotion theories disagree as to how many emotions 

a human can have at once.  Our current model supports one active appraisal frame at a 

time, and thus only one emotion (not to be confused with mood or feeling, which are 

separate; these will be discussed in Chapter 4).  The pre-attentive appraisals generated for 

the other stimuli do not influence the current emotion in our model. 

In many systems (Ortony et al, 1988), the emotion is reported as a label (such as 

anger, sadness, joy, …) with an intensity.  These categorical theories of emotion assume 

that there are a small, fixed number of possible feelings that vary only in intensity.  In our 

model, like in Scherer’s (2001) theory that inspires it, each unique appraisal frame 

corresponds to a unique experience.  Categorical, linguistic labels can be generated by 

segmenting the space of appraisal frames, and we do this for our own analytical purposes. 

However, the current model does not use these labels, and even if it did, at best such 

labels would be a model of how an individual in a particular culture might label the 

emotions.  For example, in the current problem, since Conduciveness and Goal 

Relevance are positive, and other appraisals such as Causal Agent are not being 

considered (which would lead to Pride), the agent’s current emotion would correspond to 

Joy. The actual representation is the active appraisal frame: Suddenness=1.0, Goal 

Relevance=1.0, Outcome Probability=1.0, and Conduciveness=1.0. 

3.5 Calculating Intensity 

In addition to determining an appraisal as a point in a multi-dimensional space (or 

as a category), the system must also determine the intensity.  Intensity is important 

because it summarizes the importance of the emotion, and thus indicates to what degree it 

should influence behavior. Emotions with low intensity are likely to be caused by less 

important stimuli than emotions with high intensity. 

Overall our approach combines the numeric dimensions of the active appraisal 

frame to form a single numeric intensity value; since the categorical dimensions are non-

numeric, they do not participate in the intensity calculation. 
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3.5.1 Criteria 

There are many ways to produce an intensity value from a frame, and although 

there is little theory or empirical evidence to guide us, we define three general criteria for 

an intensity function: 

1) Limited range: Intensity should map onto [0,1]. This is common to most 

existing theories.  

2) No dominant appraisal: No single appraisal value should dominate the intensity 

function; each should contribute to the result but no single value should determine the 

result. This criterion eliminates a commonly used basis for combination: multiplication 

(e.g., Gratch & Marsella, 2004).  One critical problem with multiplication is that if any 

dimension has a zero value, then the intensity will be zero, regardless of the other values. 

3) Realization principle: Expected stimuli should be less intense than unexpected 

stimuli (Neal Reilly 2006). This is in contrast to Gratch & Marsella (2004) where 

intensity is maximized when the likelihood is 1. 

3.5.2 The Intensity Function 

To construct our intensity function, we begin with the last criterion. In our model, 

Likelihood most closely maps onto Outcome Probability (OP). However, rather than 

computing the change in Outcome Probability, we instead rely on the value of 

Discrepancy from Expectation (DE). These dimensions together imply a change in 

likelihood. If outcome probability and discrepancy from expectation are both high, then 

the intensity should be high since expected outcomes were not met. Similarly, if outcome 

probability and discrepancy are both low, then intensity should be high again, because 

something that was considered unlikely actually happened. If outcome probability and 

discrepancy have opposite values, then intensity should be low. (because either a likely 

stimulus occurred or an unlikely stimulus did not occur). This leads us to the first part of 

our function, which we call the surprise factor: 

𝐼 =  1 − 𝑂𝑃  1 − 𝐷𝐸 +  𝑂𝑃 ∙ 𝐷𝐸 … 
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This function has low values when Outcome Probability and Discrepancy are at 

opposite ends of their ranges (because each product will be a combination of a low and 

high value), and high values when they are at the same end (because one of the products 

will be the combination of two high values). For example, if Outcome Probability = .9 

and Discrepancy = .1, then I = .18. Similarly, if Outcome Probability = .9 and 

Discrepancy = .9, then I = .82. 

To meet the first and second criteria, we notice that a simple function that allows 

each dimension to contribute is an average. A sum will not work because it would exceed 

the legal range as defined by the first criterion. To get magnitudes, we take the absolute 

values of those appraisals that can be negative. In general, one might expect that some 

dimensions contribute more than others do in the intensity calculation. In the absence of 

supporting data, however, we will assume all dimensions contribute equally. Thus, we 

normalize the dimensions with a [-1, 1] range
2
. 

We must now combine these two parts. Two obvious candidates are 

multiplication and averaging. We have chosen multiplication. An implication of this is 

that, if there is either no surprise or none of the other appraisals has any magnitude, the 

intensity will be zero.  This does not violate our “no dominate appraisal” criterion, since 

it requires the influence of multiple appraisals in either case.  It also entails a different 

interpretation of the “realization principle” than averaging would—multiplication ensures 

a completely expected outcome results in zero intensity, whereas averaging merely 

implies reduced intensity.  

Thus, for the subset of appraisals we are considering in this thesis, we have: 

𝐼 = [ 1 − 𝑂𝑃  1 − 𝐷𝐸 +  𝑂𝑃 ∙ 𝐷𝐸 ] ∙
𝑆 + 𝑈𝑃 +

 𝐼𝑃 
2 + 𝐺𝑅 +

 𝐶𝑜𝑛𝑑 
2 +

 𝐶𝑟𝑡𝑙 
2 +

 𝑃 
2

𝑛𝑢𝑚_𝑑𝑖𝑚𝑠
 

where OP=Outcome Probability, DE=Discrepancy from Expectation, 

S=Suddenness, UP=Unpredictability, IP=Intrinsic Pleasantness, GR=Goal Relevance, 

                                                 
2
 As described in Chapter 8, this normalization was removed in the revised system. 
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Cond=Conduciveness, Ctrl=Control, P=Power, and num_dims is the number of 

dimensions included in the average (7, if all dimensions have values). 

In those cases where one or more values for appraisals in the averaging part of the 

equation are missing (as in our current simple choice reaction task example), the average 

is taken over the values that are present.  If either Outcome Probability or Discrepancy 

from Expectation is missing, then the present value is multiplied by the averaging part (in 

this model, the Outcome Probability is always present in an active appraisal frame since 

there is always a prediction). 

 

Figure 3.2: The task as split into PEACTIDM stages with the signed emotion intensity at each point 

in time. 

 

3.5.3 Implications of the Intensity Function 

The intensity function is biased so that some classes of emotions are inherently 

more (or less) intense than others. For example, the emotions that Scherer’s theory would 

label as Boredom/Indifference are composed of low values for most dimensions 

combined with high outcome probability and low discrepancy, resulting in low intensity 

(see Table 2.2 for Scherer’s mapping from appraisals to emotions). On the other hand, 

Scherer’s Rage/Hot Anger emotions are composed of mostly high values, with high 

outcome probability and high discrepancy, resulting in high intensity. This is congruent 
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with many circumplex models of emotion (see section 8.3.3), which also propose 

different intensities for different emotions, suggesting a bridge between circumplex 

models and appraisal models. 

3.6 Modeling the Task 

Returning to our example, the intensity of the Joy following the light coming on is 

Outcome Probability multiplied by the average of Suddenness, Goal Relevance, and 

Conduciveness.  Since these all have value 1, the intensity is 1.  Figure 3.2 shows the 

entire task in terms of the PEACTIDM stages with the emotion intensity at each point in 

time. 

Next, the agent verifies the prediction in the Comprehend step.  Recall that the 

prediction was created before the task began, and it said that a light would come on.  The 

prediction was accurate, so a value of 0 is generated for Discrepancy from Expectation.  

This causes the intensity of the emotion to drop to 0 because the surprise factor of the 

intensity is 0 (we might now call the emotion boredom). 

Following Comprehend, the agent Intends to push the button.  As described 

earlier, this causes the architecture to generate a prediction that the light will go off when 

the button is pressed, and it generates the command to push the button.  The prediction 

replaces the previous prediction (that the light would come on) and has a new Outcome 

Probability associated with it (again, let’s assume it is 1).  This is followed by Decode 

and Motor with the result that the button is pushed and the light turns off.  This change is 

Perceived, Encoded and Attended with appraisals generated as before, again resulting in a 

positive emotion with an intensity of 1.  Comprehend confirms the prediction, causing the 

intensity to return to 0.  Finally, Tasking marks the task structure as complete. 

3.7 The Revised Task 

When the world behaves as expected, there is very little to get excited about.  

Emotional reactions are often strongest when unexpected things occur.  To explore this, 

we revised the task so that the light does not turn off when the button is pushed.  How 

does this change the appraisals? The first part of the task (up to the pushing of the button) 

is exactly the same so that the Suddenness and Goal Relevance appraisals have values of 
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1, just like before.  However, now when the button is pushed, nothing happens, so that 

when the stimulus (the light) is Attended to, Conduciveness is -1 because the stimulus is 

not on the path to the goal, as shown in Figure 3.3.  The intensity of the emotion is still 1, 

but the valence is negative (because Conduciveness is negative). Our labeling function 

(section 5.1.1) calls this appraisal frame Displeasure.  Comprehend determines that the 

prediction was inaccurate, resulting in a Discrepancy from Expectation value of 1.  Thus, 

whereas before the intensity returned to 0 at this point, it now stays at 1, and thus the 

negative emotion persists (see Figure 3.3).  We can only speculate at what would happen 

next, since the situation is presumably not covered by the task instructions; in our 

version, the agent still does Tasking and marks the task as complete. 

 

Figure 3.3: The revised task as split into PEACTIDM stages with the signed emotion intensity at each 

point in time. 
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3.8 A Brief Look at Human Data 

Given that we are exploring this simple task for which human timing data exists, 

the question naturally arises: does it match the human data?  To be clear, the goal of this 

thesis is not to match human data.  Rather, it is to explore the integration of cognition and 

emotion, for which virtually no human data exists.  But since we have the opportunity to 

explore the human data, we will do so briefly here. 

The data reported by Newell (1990) states that the average reaction time from 

when the light comes on to when the button is pushed is 350 ms, with considerable 

variance.  This corresponds to the first part of the task as described here.  By looking at 

Table 3.1, we see that the model reported here takes 420 ms.  However, the model 

reported here did not know how to directly implement the Intend function, and thus had 

to impasse and do the required subfunctions in sequence.  Soar has a learning mechanism 

called chunking that can learn new rules based on the results generated during an impasse 

so that, in the future, the impasse can be avoided and the operator, in this case Intend, can 

be implemented directly.  In this case, chunking learns rules that allow the agent to 

generate the push button command and create a prediction in parallel
3
.  This results in the 

following timing: 

Time (ms) PEACTIDM Processing Notes 

0  Light on 

40 Perceive  

90 Encode+Attend  

140 Comprehend Verifies prediction 

190 Intend (Push button and Create prediction) 

270 Decode+Motor Light off 
Table 3.3: Timing of first part of task after chunking. 

 

After chunking, the task actually completes too fast.  In Newell’s (1990) original 

sketch of how Soar would perform this task, an extra “discrimination” operator was 

included after the verify operator in the Comprehend step.  The purpose of this operator 

was to tell which light had actually come on so the proper button could be selected.  

                                                 
3
 We do not use chunking in the rest of the thesis.  This is because the rest of the thesis is not 

concerned with human timing data, and ignoring chunking allows us to avoid dealing with certain chunking 

issues that may arise in more complex models. 
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Adding this to the model would push the timing up to 320 ms, which is considerably 

closer to the human data.  However, in Soar, it was much more natural for this 

information to be generated by the Encode step.  Since this does not depend on an 

operator, it does not take additional time. 

Alternate timings for the steps that result in a closer fit are possible, but to date 

detailed human timing experiments have not been done in this version of Soar, so we do 

not have guidance in refining this model.  Regardless, the takeaway point is that the 

timing data is not grossly off; it is still in the ballpark. 

3.9 Discussion of the model 

The emotional reaction of an agent to the task depends on at least two factors: to 

what extent the things occur as the agent has predicted them to, and what is at stake for 

the agent.  In Figure 3.2, the agent has very brief reactions to the stimulus (in Soar, on the 

order of 50 milliseconds), which immediately go away when the agent realizes that the 

results are consistent with its expectations.  This demonstrates how incrementally 

generated appraisal information leads to the emotion time courses.  In Figure 3.3, when 

the outcome is unexpected, the agent’s reaction is prolonged.  Thus, even for a mundane 

task like pushing a button, emotional responses are possible.  In the example, the 

appraisal values were extreme for demonstrative purposes, which would reflect a 

situation in which the consequences of the agent’s actions are extremely important—such 

as the World Championship of button pushing, or if a large amount of money is riding on 

the agent’s performance. One has only to watch TV game shows where the only action is 

choosing a box to open to see examples of extreme emotional responses for mundane 

actions.   To emulate mundane button pushing, lower appraisal values would be used, 

which would result in little emotional reaction. 

3.10 Summary 

In this section, we demonstrated the integration of PEACTIDM and appraisals in 

our implementation.  This included many details that go beyond PEACTIDM and 

appraisal, including value ranges for appraisals, active appraisal frames, and the 
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calculation of intensity.  Finally, we touched on our model’s relationship to human data 

and showed that, with learning, it is in the ballpark. 

The next chapter describes the model in the context of a task that involves 

multiple actions over time.  At the end of that section will be a discussion of some of the 

implications of the model which apply equally well to this simple model, but which the 

reader may find easier to appreciate in the more complex context.  Hence, that discussion 

is delayed until then. 
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Chapter 4 

 

 A Non-Learning Model in a More Complex, Extended 

Task 
 

In the previous chapter, we described the integration of PEACTIDM and appraisal 

theory in Soar in the context of a very simple task.  In this section, we extend that model 

to a more complex (but still fairly simple) extended task that utilizes more appraisal 

dimensions.  Unlike the previous task, this task may take an arbitrary number of 

PEACTIDM “cycles” to complete.  This raises new issues, such as how previous 

emotions affect new emotions, and the role of Tasking when the ongoing task may be 

viewed as different subtasks. Addressing these issues will allow us to address qualitative 

questions such as, does the model produce coherent, useful behavior in the long term? Do 

the appraisals affect behavior and vice versa?  Do appraisals have a reasonable (if not 

human-matching) time course?  These and other questions will be addressed in the 

evaluation (Chapter 5). 

For an ongoing task, we have chosen a simple Pacman-like domain called Eaters  

(Figure 4.1) that eliminates complexities of real-world perception and motor actions, 

while supporting tasks that although simple, allow for a range of appraisals and emotions. 

Eaters is a 2-D grid world in which the agent can move from square to square except 

where there is a wall. The agent can sense the contents of the cells immediately to its 

north, south, east and west.  The agent’s task is to move from its starting location to a 

specified goal location.  This may not always be possible, in which case an intelligent 

agent should choose to give up so it can move on to other tasks.  The task ends when the 

agent notices it has achieved the goal or when it gives up.  Later in the thesis (Chapter 8) 

we will present a more complex model. 
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Figure 4.1: A screenshot of eaters. 

The agent is the Pacman-like figure at location (3,4), walls are black cells, and open spaces are light-

colored cells.  

 

In terms of PEACTIDM, the agent will need to Perceive its surroundings, 

including information about what lies in each direction (e.g., walls, open spaces), create 

structures representing the encoded form of the input (e.g., some direction is passable and 

whether moving in that direction leads closer to the goal), Attend to one of the encoded 

structures, Comprehend that structure in terms of its current understanding of the 

situation (e.g., is the situation what the agent predicted), Intend an action if possible (e.g., 

if the Attended structure can be acted upon to get closer to the goal), and then perform the 

Intended action (via Decode and Motor).  Tasking will play a role when the agent is 

stuck; for example, it may need to create a subtask to circumvent a wall, or to give up.  

In appraisal theory terms, each choice point (e.g., what to Attend to, what to 

Intend, when to give up) will be guided by emotional information.  Thus, the steps 

preceding these choice points must generate the appraisals that, directly or indirectly, 

influence the choices to be made. 

What follows are the details of how each PEACTIDM function is implemented in 

this model, including how the appraisals fit in. 

4.1 PEACTIDM in the Eaters Domain 

This section describes how PEACTIDM as implemented in Soar is used to 

perform the Eaters task.  Some aspects of these phases are domain-specific (e.g., the 
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stimuli and actions), but most of the core processing (Encode, Comprehend, Tasking) is 

general and taken directly from the previous model. 

4.1.1 Perception and Encoding 

Perception and Encoding generate structures that lead to relevance appraisals used 

by Attend to determine which stimulus to process.  We do not directly model the Perceive 

function.  The Eaters environment provides symbolic inputs to the Soar agent.  Each 

direction (north, south, east and west) is considered a stimulus; thus, a separate structure 

is Encoded for each direction, which includes information such as whether the direction 

is passable, whether it is on the path to the goal or not, the distance to the goal, and 

whether the agent is making progress.  The distance to the goal is an estimate based on 

Manhattan distance and may be incorrect if there are walls between the agent and the 

goal. If the agent is at a goal location, it will have a separate Encoded structure for the 

goal completion. The Encoded structure is fairly general—any task in which there is a 

path to the goal that can be blocked and where there is an estimate of distance to the goal 

can be Encoded in this way. 

Figure 4.2 shows an example that will be used throughout the rest of this section.  

The goal is for the agent to reach location (7,4) (marked by the star) and the agent has 

moved from the west.  The agent will have four encoded structures, one for each cardinal 

direction.  The north, south and west structures will be marked as passable, directly off 

the path (since those directions will increase the distance to the goal), and at a distance of 

4 from the goal.  The east structure will be marked as impassable but directly on the path 

to the goal. 
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Figure 4.2: Encoded structures for each stimulus. 

The star shows the goal location. 

Relevance appraisals are generated directly from these Encoded structures.  The 

north, south, and east stimuli have some Suddenness, whereas the west stimulus has no 

Suddenness (since the agent just came from there).  In any environment, the agent will 

likely have some general expectations about what things to expect, and our agent expects 

there not to be many walls in the world.  Thus, the north, south and west stimuli have low 

Unpredictability, but the east stimulus has a high Unpredicatability.  Our agent is also 

averse to walls (since they only ever get in its way).  Thus, it finds them Intrinsically 

Unpleasant giving the east stimulus a low Intrinsic Unpleasantness value.  Finally, since 

the east direction is on the path to the goal, it is highly Goal Relevant, but the other 
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stimuli are not (Figure 4.3).  Note that, in this model, only one goal or subgoal is active at 

a time, and thus Goal Relevance is computed with respect to that goal. 

 

 

Figure 4.3: Pre-attentive appraisal frames for each encoded structure. 

 

4.1.2 Attending 

In general, the agent wants to make progress towards its goal, so stimuli that are 

Goal Relevant should given priority.  However, Sudden or Unpredictable stimuli may 

also require attention, since these may be signals of danger or opportunity that needs to 

be dealt with. This is essentially an exploit versus explore tradeoff.  Finally, stimuli that 

are intrinsically pleasant or unpleasant (independent of the current goal) may also deserve 

attention.  In this model, each stimulus is appraised along the Suddenness, 

Unpredictability, Intrinsic Pleasantness, and Goal Relevance dimensions, determining the 

appraisal frame (Figure 3.1). 
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In this model, the selection of which stimulus is Attended to is a weighted random 

choice, with weights determined by the values of the appraisals just discussed.  Since 

unusual stimuli are more likely to be worthy of Attention, as described above, appraisals 

with more extreme values lead to larger weights; that is, more interesting stimuli are 

more likely to be Attended to.  Thus, the appraisals provide a task-independent language 

for knowledge that can influence control. 

In our example, the north and south Attend proposals have moderate weights, 

whereas the west Attend proposal has a slightly lower weight (since its Suddenness is 

lower).  The east Attend proposal has a higher weight because it is on the path to the goal, 

leading to an appraisal of Goal Relevance, and it has a wall, which is Intrinsically 

Unpleasant.  Thus, the agent is most likely to Attend east. 

4.1.3 Comprehension 

Next, the agent performs the Comprehend function, which adds several additional 

appraisal values to the active frame (Figure 4.4).  The agency of the stimulus is 

determined (in this model, “nature” is always the Causal Agent and “chance” is always 

the Causal Motive).  The Conduciveness is also determined—if the stimulus direction is 

passable and on the path to the goal, it has high Conduciveness, whereas if it is off the 

path or blocked it has low Conduciveness.  The Control and Power appraisals are also 

generated—if a stimulus direction is passable, Control and Power are rated high, whereas 

if the direction is impassable, Control and Power are low.  While this domain is very 

simple, and thus the generation of these appraisal values is very simple, a more complex 

domain would potentially require arbitrary processing to determine values for any of 

these appraisals.  We will not consider such extended processing here. 

In our example, since the agent is Attending to the east stimulus, which is 

impassable but on the path to the goal, it will generate appraisals of low Conduciveness, 

low Power, and low Control (since it can’t walk through walls).  Causal Agency and 

Motive are “nature” and “chance”, as noted above. 

As in the previous model, the agent then Comprehends the stimulus by verifying 

it via comparison to the current prediction (as generated by the previous Intend) leading 
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to the generation of the Discrepancy from Expectation appraisal.  If the stimulus is a 

match, then the Discrepancy from Expectation appraisal is low; if there is not a match, 

then the Discrepancy is high. 

Unlike the previous model, once a stimulus has been verified, the agent performs 

another Comprehend step that determines if further processing is warranted.  This gives 

the agent a chance to “back out” if it determines that processing should not proceed.  That 

is, the agent answers the question, can additional processing of this stimulus lead to an 

action that helps me?  The agent uses a heuristic called dynamic difference reduction to 

make this choice.  Difference reduction (Newell, Shaw & Simon 1960) attempts to take 

internal processing steps to reduce the difference between the current state description 

and the goal state description.  Dynamic difference reduction (Agre 1988) takes the steps 

in the world to avoid the need for increasing amounts of memory to track one’s 

imaginary progress.  Thus, difference reduction leads to plans whereas dynamic 

difference reduction leads to actions.  In our model, if a stimulus can be acted upon (i.e., 

it is associated with a passable direction) and it does not lead directly away from the goal, 

then Comprehension is complete and the agent acts upon it (it does the Intend function).  

Otherwise, the agent chooses a second Comprehend operator, Ignore.  Ignore marks the 

stimulus as processed and allows control to return to Attend, which will choose another 

stimulus to process from the remaining stimuli as above.  This deactivates the appraisal 

frame for the Ignored stimulus. 

In our example, the agent is Attending east, which is a wall.  Comprehend will 

find a mismatch (since our simple model almost always predicts a passable route to the 

goal).  This will trigger an appraisal of high Discrepancy from Expectation, which is 

added to the current frame.  Since there is a wall, the agent cannot directly act upon the 

stimulus, so it then Ignores it.  In fact, the agent is trapped by its goal in this case.  As it 

Attends and Comprehends to each stimulus, it will find that the remaining stimuli lead 

away from the goal.  Thus, Ignore will eliminate all of the remaining stimuli. 
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Figure 4.4: The agent attends East, making that appraisal frame active. 

The Comprehend function adds to this frame.  The agent decides to Ignore this stimulus. 

 

4.1.4 Tasking 

When the agent has no options left, it is forced to engage in Tasking.  This is an 

addition to the previous model which did not engage in Tasking during the task itself 

(only before the task began and at the very end).  Generally speaking, Tasking is about 

managing goals (e.g., creating goals, giving up on goals, etc.).  In this case, the agent 

creates a subtask to get around the blockage.  In general, there are at least two types of 

goals.  One type is abstract—the goal cannot be acted upon directly and must be broken 

down into more concrete components (perhaps many times) until it is in a form that can 

be directly acted upon.  For example, the goal “Go to Work” is very abstract, and must be 

broken down to something that can be directly executed, such as “take a step”.  The other 

type is concrete—the goal can be acted upon directly.  This is the form of goals in this 

model.  When the agent temporarily retasks itself for the purpose of making progress on 

its original goal, we call this subtasking, and we call the new goal structure a subtask. 

The goal that the agent cannot make progress on is to go to (7, 4).  The reason that 

the agent is stuck on this goal is that its control knowledge and task formulation are too 

restrictive.  Movement in any available direction will take it further from the goal, which 

violates its dynamic difference heuristic.  In order to move around the blockage, it needs 

to temporarily get further away from the goal.  Thus, the agent needs to retask and create 
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a goal that is less constraining, allowing it to get further from the main goal, but without 

violating its constraints in the new goal.  The agent does this by defining the step it would 

ideally take—in this case, it would ideally move east to x=4.  It sets this as its new 

subtask.  That is, there is no constraint in the y (north-south) direction. 

When an agent creates a subtask, it records information that gives it some idea of 

whether it is making progress or not.  Specifically, it records the distance to the parent 

task (goal) at that time.  It also tracks the minimum distance it has ever been to the goal 

upon entering a subtask.  If the current distance to the goal is less than the minimum 

distance to the goal, then the subtask is considered a “good” subtask—that is, the agent 

knows that, even though it has to retask, it is making progress towards the goal.  If the 

distance to the goal is not reduced, then the subtask is considered a “bad” subtask—that 

is, the agent cannot tell if it is actually making progress by retasking.  The Encode 

function adds this good/bad subtask information to each Encoded structure, and this 

information influences some of the appraisals. In this model, the Conduciveness appraisal 

is more positive in good subtasks. 

As alluded to above, once the agent has this new subtask, the Encoded stimuli are 

regenerated (since there is a different context for them now) and the agent can then re-

Attend to the stimuli to see if any are now suitable.  The agent can theoretically create an 

arbitrary number of nested subtasks this way, but for the current task it only needs one at 

a time (although it may create several in the course of completing the goal). 

In our example, this is the agent’s first subtask, so it defaults to a good subtask.  

The agent might still Attend to the east stimulus first and ignore it again, but when it 

Attends to, for example, the north stimulus, it will find that it is no longer directly off the 

path to the subtask.  Instead it is now a sideways move (since it neither gets it closer to 

nor further away from x=4).  Thus, the agent determines that this stimulus can be used for 

Intention processing (Figure 4.5). 
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Figure 4.5: The agent creates a subtask to get around the blockage. 

The stars show the possible locations that would solve the subtask.  This causes new encoded 

structures to be created.  The agent Attends north. 

 

4.1.5 Intending 

Once the agent has found a stimulus it can act upon, it performs the Intend 

function, which is also implemented as a Soar operator.  As in the previous model, Intend 

proposes moving in the direction of the stimulus.  It also creates a new prediction 

structure—namely that the next stimulus direction will be passable and on the path to the 

goal (Figure 4.6) in this model, the agent is always optimistic in this way).  If the agent is 

currently one step away from the goal, then it creates a goal achievement prediction.  

Along with the prediction, the agent also generates an Outcome Probability appraisal.  As 

before, the Outcome Probability is tied to the prediction, and thus all appraisal frames in 

the situation that results from an Intend will inherit this same Outcome Probability 

(Figure 3.1). 
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In our example, Intend proposes moving north.  The Intend operator sends a 

command to the environment to move north, and also creates a prediction.  Since it is 

pursuing a subtask, the agent is less confident of its predictions, so it only rates the 

Outcome Probability of this prediction as moderate. 

 

Figure 4.6: The agent Intends moving north. 

 It creates a prediction of the next stimulus it will see. 

 

4.1.6 Decode and Motor 

We do not directly model the Decode and Motor functions.  The model uses 

Soar’s standard method of communicating an action command to the simulated 

environment, which then executes it, leading to a new input state.  For simplicity, in the 

model presented here, actions never fail (e.g., if the agent Attends to a wall, it will Ignore 

it instead of trying to move into it).  However, our work on learning does allow action 

failures (see Chapter 7). 

4.2 Emotion, Mood, and Feeling 

In the previous model, we described how active appraisal frames become 

emotions.  That is still true in this model.  However, since the agent behaves over a long 
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period of time in this task, the question naturally arises, how do emotions affect each 

other over time?  In this section we will introduce mood and feeling.  The functional 

aspects of these will be discussed in section 4.3. 

Recall that some existing computational models attempt to address the issue of 

how an emotion affects a succeeding one (see Chapter 6).  Still, these models, and most 

theories, do not make an explicit distinction between emotion, mood and feelings; some 

only describe emotion (Hudlicka, 2004), some only describe emotion and mood (Gratch 

& Marsella, 2004) and some describe emotion, but mood only vaguely (Smith & Lazarus, 

1990).  One existing distinction made between emotion and mood is in terms of 

timescale: emotions are short-lived while moods tend to last longer (Rosenberg 1998).  

Some physiologically-oriented theories of emotion (Damasio 1994, 2003) distinguish 

between emotions and feelings: emotions have some impact on physiology, and the agent 

perceives or feels these changes, called the agent’s feelings.  That is, feelings are our 

perception of our emotions. 

This distinction between emotion, mood and feeling is not universally accepted; 

indeed, what processes and phenomena are considered “emotional” is a subject of 

considerable debate. In our model, the specific labels are less important than the 

computational processes, structures and connections that make up the model as a whole. 

For example, Frijda et al. (1989) consider action tendencies to be part of emotion, 

whereas in our model we have action tendencies separate from emotion. Nevertheless, 

since the architecture supports the generation of action, and we have added the ability to 

generate emotion, mood, and feeling, the mechanisms are in place to allow an integration 

of these with action.  Indeed, action is partially influenced by feeling in the present model 

(see section 4.3).  That these phenomena are inextricably bound is not debated; how we 

choose label them is an expository convenience. 

In our model, we maintain a distinction between emotion and feeling, and also 

introduce mood. Emotion is the currently-active appraisal frame. In our model, we use a 

simple model of mood, where mood is a weighted average-like aggregation over past 

emotions computed at the individual appraisal level, so that mood is represented as an 

appraisal frame. This initial model of mood captures some of the time course and 
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interactions among emotions, while ignoring many of the complexities of a more 

complete model of mood.  Feeling is the combination of emotion and mood, represented 

as an appraisal frame, augmented by an intensity. Thus, in the previous model, what we 

reported as the agent’s emotion with intensity (e.g., Joy, 1.0) is actually the agent’s 

feeling and feeling intensity.  Since feeling is represented using an appraisal frame, the 

intensity calculation we proposed previously (section 3.5) still applies. 

The remainder of this section contains a lot of details that, while important to 

understanding exactly how the system works, are irrelevant to the big picture, so the 

reader should feel free to skip ahead to section 4.3 on page 58.  

Figure 4.7 shows how the agent generates an appraisal frame (its emotion), which 

interacts with another appraisal frame (its mood) to generate its perceived appraisal frame 

(its feeling). We call these appraisal frames because their structure is a collection of 

appraisal dimensions, not because the agent, via an appraisal process, directly sets the 

contents of them (the agent only directly sets the contents of the emotion frame). When 

necessary, we will distinguish among them by referring to the emotion frame, the mood 

frame, or the feeling frame. This contrasts with most other theories in which emotion, 

mood, and feeling are not distinguished by separate structures. 

The representation of feeling as an appraisal frame is most likely a simplification 

because feelings are the perception of the physiological reactions to the combination of 

mood and emotion (Damasio 1994; 2003). Nonetheless, whatever structure is produced 

will be the basis for intensity, and the analysis we develop below should apply to that 

structure. Non-computational ideas regarding such structure have been proposed (Lambie 

& Marcel 2002).  

Given a feeling frame, the system calculates the intensity of that feeling (using the 

method described in section 3.5). Intensity gives the agent an indication of how important 

a feeling is, and thus helps determine to what extent the feeling should influence 

behavior. 

Thus, the remaining questions are, how is the mood appraisal frame generated, 

and how does the emotion appraisal frame combine with the mood appraisal frame to 
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produce the feeling appraisal frame?  In the creation of the theory, we have tried to rely on 

existing work and data. However, for the level of detail required in a computational 

model, such prior work is limited. Thus, we are faced with numerous decisions where 

there is little or no guidance from the literature. In these cases, we have tried to choose 

the simplest alternative (recognizing that “simplest” can be a subjective concept); that is, 

we are applying Occam’s Razor. Our long-term strategy (beyond this thesis) is to see 

where these simple assumptions fall short, which will indicate where additional 

complexity is required. Thus, the theory we present is likely oversimplified, but it 

provides a starting point for future work. 

We will begin with our model of mood, and then describe how it combines with 

emotion to generate feeling. 

4.2.1 Mood 

In our model, emotion is based on the agent’s appraisal of the current situation 

independent of any historical context. To avoid wild fluctuations in feeling, historical 

context is necessary, but this context should be biased toward those evaluations that are 

temporally relevant. Mood provides this historical context of recent emotions. Thus, we 

make the simple assumption that the mood combines with the current emotion to form the 

feeling that the agent perceives; more complex models are possible, of course. 

To the extent that mood is physiological in nature, there are some phenomena that 

can guide our model. In the undoing effect (Fredrickson & Levenson, 1998), 

physiological changes due to negative emotions return to baseline (the natural state for 

some positive emotions) more quickly when followed by a positive emotion. One 

possible interpretation of this is that the mood “chases” the emotion (i.e. the mood tries to 

change to match the state defined by the emotion), but will still decay on its own if left 

alone. 

Mood starts out neutral (i.e. all zero values). To model the influence of emotion 

on mood, the mood “moves” towards the emotion each time step. In the current model, 

we have adopted a simple approach where the mood moves x% (our current experimental 

value is 10%) of the distance along each dimension towards the emotion in each cycle. 
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Additionally, the system decays mood by y% (experimental value is 1%) each cycle. 

Thus, each emotion influences mood for a theoretically infinite amount of time, but the 

magnitude of the influence decreases exponentially with time.  Therefore, if there were 

no influence of emotion, mood would eventually become neutral. This model is 

summarized in Figure 4.7. 

4.2.2 Combining Mood and Emotion to form Feeling 

In general, the relationship between appraisal frames may be complex with 

interactions among multiple dimensions. However, we have no reason to assume this, so 

instead we simpler assumption that each appraisal dimension in a frame influences only 

the corresponding dimension in the other frame.  

 

Figure 4.7: An emotion frame influences and combines with the mood frame to produce the feeling 

frame, which is perceived by the agent. 

 

Before we can discuss how mood and emotion combine to create feelings, we 

must discuss the nature of the appraisal dimensions and their values that make up the 

frames. 

4.2.3 Value Ranges for Categorical Appraisals 

The value ranges for each appraisal dimension was described in section 3.1.  

However, we need to return to the issue of categorical representation: how is it that 

different categorical values can be combined across frames? 
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To address this issue, we use a numerical representation of the categorical 

appraisals for the purposes of combination. Causal Agent and Causal Motive can each 

take on three values: Self, Other, Nature; and Intentional, Chance, Negligence, 

respectively. Our approach is to convert these categorical values into mutually exclusive 

features, each with its own numeric value in the range [0, 1]. Thus, the original Causal 

Agent feature is expanded into three features: Causal-Agent-Self, Causal-Agent-Other, 

and Causal-Agent-Nature. For the emotion frame, the selected value gets 1 and the others 

get 0. For example, if the value of Causal Agent is nature, then the dimension Causal-

Agent-Nature gets a value of 1 while Causal-Agent-Self and Causal-Agent-Other get 0. 

The values for these dimensions are now numeric and are treated like other numeric 

values so that the mood tracks recent historical values for these dimensions. The feeling 

value is then the combination of these dimensions from the frames, just like the other 

dimensions. However, after combination, multiple categorical values can be non-zero, 

representing confusion about which is the true value. In these cases, the agent perceives 

the categorical value of the dimension with the highest numeric value. Thus, if Causal-

Agent-Self = .4, Causal-Agent-Other = .7, and Causal-Agent-Nature = .2, the agent 

would perceive Causal Agent = Other.  

4.2.4 Criteria for the Combination Function 

There are many options for combining the values of mood and emotion to 

produce a feeling; we introduce several criteria below that such a combination function 

should meet. Simple combination functions such as averaging or multiplication have been 

shown to be inadequate, as our criteria will illustrate. Existing work (Neal Reilly 1996, 

2006) has already provided some relevant criteria; however, that work has been done at 

the more abstract level of emotions of the same kind (e.g. Joy .3 and Joy .2). Our theory 

is defined at a lower level, that of individual appraisal dimensions and their “intensity” 

(e.g. Suddenness .3 and Suddenness .2). However, the criteria defined for these higher-

level models still apply at the lower level, because the criteria are about how to combine 

intensities of the same kind, and are agnostic as to the kinds are. 

We make the simplifying assumption that the dimensions are independent, so our 

combination function takes as input a particular dimension from the mood and emotion 
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frames to produce the corresponding dimension of the feeling frame. This function is 

applied to each dimension of the frames. 

We begin by noting that we want to avoid a large range of inputs from mapping 

onto a small range of outputs because then the agent will not be able to distinguish 

between those inputs, and thus will not be able to form diverse responses. This criterion 

is subjective. 

1) Distinguishability of inputs: Large input ranges should have large output 

ranges. Capping of extreme values may be necessary, but it should have minimal impact. 

Next, we consider constraints from prior work: when combining values of the 

same sign, the result should be further from zero than the input with the largest 

magnitude, but less than or equal to the sum of the inputs (Neal Reilly 1996, 2006). The 

intuition is that the values should build on each other, but the combination should not be 

more than the parts. For example, if the mood’s Suddenness value is .3 and the emotion’s 

Suddenness value is .5, the feeling’s Suddenness value should be at least .5 but no more 

than .8. 

For values of opposite signs, the result should be closer to zero than the maximum 

magnitude, but be at least the sum of the inputs. Furthermore, the result should be further 

from zero than the sum of the results. The intuition is that the smaller value is dragging 

down the larger value, but the amount of the reduction should be no more than the 

magnitude of the smaller value. For example, if mood’s Conduciveness is .3 and 

emotion’s Conduciveness is -.5, the result should be between -.5 and -.2. 

We can state the above by defining the combining function C, which has inputs 

vemotion and vmood: 

2) Limited range: C(vemotion, vmood) should be between the input with the maximum 

magnitude and the sum of the inputs. 

Another issue is that, if possible, the value should not go out of scale. This can 

happen with middle values combined with a strict sum (e.g. .6 and .6). Values can always 

be capped, but capping middle values means the agent will be unable to distinguish 

among a large set of possible inputs, which violates our first criterion. Thus, our next 
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criterion is that the combination should not be linear (Neal Reilly, 2006). While C(.5, .5) 

should be much less than 1, C(.1, .1) can be very close to .2. The intuition is that low-

intensity stimuli can result in a moderate intensity reaction, but moderate-intensity stimuli 

should not result in extreme intensity reactions. That is: 

3) Non-linear: For small inputs, C is nearly additive, but for large inputs, C is 

closer to a max. Put another way, for small values the derivative of C can be close to 1, 

but for large values, the derivative of C should be closer to 0. 

We also identify several properties that enforce symmetry on the function. These 

properties do not result from any intuition or data, but rather represent reasonable first 

guesses given the lack of information. That is, these are default assumptions and not hard 

constraints. We would be satisfied with a theory that violated these criteria so long as the 

theory recognized the implications of the bias. For example, here may be some basis for a 

positivity bias (Diener & Diener 1996), but it is not clear whether such a bias belongs in 

the combination function or in the processes that generate the emotion frame. 

4) Symmetry around 0: C(x, 0) = C(0, x) = x. If the mood or emotion input is 0, 

then the other input dominates. If they are both zero, then the result should be zero. 

5) Symmetry of opposite values: C(x, -x) = 0. The mood and emotion can cancel 

each other out. 

6) Symmetry of all values: C(x, y) = C(y, x). The mood and emotion have equal 

influence on the feeling. 

4.2.5 The Combination Function 

As a starting point, we will use Neal Reilly’s (2006) proposed function for 

combining intensity values of the same kind, and then modifying it as necessary to meet 

our criteria: 

𝐼 = 0.1 ∙ log2  210∙𝑒𝑚

𝑒𝑚

 

This function was designed to deal only with positive values. For most of those 

values, the function meets criterion 2 (limited range) and 3 (non-linear). The log 

combination ensures that the result is at least the max value, but no more than the sum. 
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Further, the derivative of the log is near 1 for small values, but decreases for larger 

values. For example, I(.1, .1) = .2, but I(.5, .5) = .6. 

Perhaps surprisingly, the function fails criterion 2 (limited range) at the lower 

extreme (I(0, .1) = .15), 4 (symmetry around 0; I(0, .1) = .15). The function does fulfill 

criterion 6 (symmetry of all values) for positive values. Criterion 5 (symmetry of opposite 

values) does not really apply since the function does not deal with negative values. 

The problems with this function can be fixed. To deal with negative values 

(criterion 5), we introduce a Sign function and absolute values. The absolute values allow 

us to work with the magnitudes of the inputs, while the Sign function allows us to restore 

the signs that were removed by the absolute values. To do this, we break the function into 

two parts: the sum part and the log part. The sum part treats the exponent as a magnitude, 

but applies the original sign before including the value in the sum (see function below). 

To center the function at 0 (criterion 4), we recognize that we need to end up 

taking the log of 1 (to get 0). If each input is 0, then the result of the exponent will be 1, 

and thus the sum part will be 2. To fix this, we subtract 1 from each magnitude of the 

sum (so the sum will be 0 for zero-valued inputs), and then add the Sign of the sum to the 

sum before taking the log (to maintain symmetry). 

We originally chose b=e instead of 2 because the resulting values are less extreme 

near the edges of the input range, which helps meet criterion 1 (distinguishability of 

inputs). However, this function still fails criterion 1. The log scale of the function causes 

the result of an extreme input value and nearly any other input value of opposite sign to 

fall into a very narrow range. For example, C(.9, -.1) = .89998, whereas C(.9, -.5) = 

.89816—nearly the same value. To fix this, we introduce a piecewise function that varies 

b depending on the inputs. If the signs are equal, then b=e. If the signs are opposite, then 

b=1.1, which spreads out the resulting values. For example, C(.9, -.1) = -.85453, whereas 

C(.9, -.5) = .58561. 

The final function is shown below. A complete example showing mood and 

emotion frames combining to form a feeling frame is shown in  

Table 4.1.
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𝐶 𝑣𝑚𝑜𝑜𝑑 , 𝑣𝑒𝑚𝑜𝑡𝑖𝑜𝑛  = 0.1 ∙ 𝑆𝑖𝑔𝑛 𝑆 ∙ log𝑏  𝑆 + 𝑆𝑖𝑔𝑛 𝑆   

where                     𝑆 =   𝑆𝑖𝑔𝑛 𝑣 ∙  𝑏10∙ 𝑣 − 1  

𝑣=𝑣𝑚𝑜𝑜𝑑 ,𝑣𝑒𝑚𝑜𝑡𝑖𝑜𝑛

and             𝑆𝑖𝑔𝑛 𝑣 =  
1 if 𝑣 ≥ 0
−1 else

 

and                          𝑏 =  
𝑒 if 𝑆𝑖𝑔𝑛 𝑣𝑚𝑜𝑜𝑑  = 𝑆𝑖𝑔𝑛(𝑣𝑒𝑚𝑜𝑡𝑖𝑜𝑛 )
1.1 else

 

If 𝐶 𝑣𝑚𝑜𝑜𝑑 , 𝑣𝑒𝑚𝑜𝑡𝑖𝑜𝑛  >    1 then 𝐶 𝑣𝑚𝑜𝑜𝑑 , 𝑣𝑒𝑚𝑜𝑡𝑖𝑜𝑛  =    1

If 𝐶 𝑣𝑚𝑜𝑜𝑑 , 𝑣𝑒𝑚𝑜𝑡𝑖𝑜𝑛  < −1 then 𝐶 𝑣𝑚𝑜𝑜𝑑 , 𝑣𝑒𝑚𝑜𝑡𝑖𝑜𝑛  = −1

 

 

4.2.6 Discussion of the Combination Function 

The combination function, together with the intensity function we presented 

earlier, can sometimes lead to unexpected results. Even though the combination function 

has a building effect (i.e. if the inputs have the same sign, the magnitude of the result will 

be at least as large as the magnitude of the largest input), this will not necessarily result in 

a higher the intensity for the feeling. Given the way Outcome Probability and 

Discrepancy from Expectation influence intensity via the surprise factor, even if both of 

those values go up, the intensity may actually go down. For example, suppose the 

Discrepancy and Outcome Probability for the feeling are both .1 (and assume all other 

dimensions were 1.0). This would lead to an intensity of .82. However, if both of these 

dimensions then increased to .2, the intensity would fall to .68. 

Unlike other models (Neal Reilly, 1996; Gratch & Marsella, 2004; Hudlicka, 

2004), the mood and feeling processes do not combine emotions; they combine 

individual appraisals.  This could lead to unexpected feelings.  For example, an emotion 

best described as elation-joy combined with a mood best described as anxiety-worry can 

result in a feeling best described as displeasure-disgust.  This is an interesting prediction 

of the model that we have not yet investigated. 

Given the lack of relevant data on which to base our theory, rather than present 

comparative results, we instead demonstrate the system’s behavior. First, we give a 

complete example showing the output of the combination and intensity functions and 
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discuss its consequences. Then we show actual feeling intensity data from the Eaters 

domain that demonstrates the realization principle.  

 

Table 4.1 shows a complete example of mood and emotion frames combining to create a 

feeling frame, along with the intensity of each frame. While the agent only perceives the 

intensity of the feeling frame, it can be useful to generate intensities for the other frames 

to aid our understanding of the system. 

 

Table 4.1: An example combination of a mood and emotion frame to form a feeling frame.  

Approximate linguistic labels provided based on Scherer’s (2001) modal emotions. 

 

Figure 4.8 shows feeling intensity data excerpted from an agent in the Eaters 

domain. As the figure shows, feeling intensity is maximized when the agent first realizes 

that it will achieve its task, and is less when the agent actually achieves the task. This is 

because going into the state where the realization occurs, the agent has a prediction which 

assumes that the task completion is not imminent with some moderate Outcome 

Probability. The realization that task completion is indeed imminent violates this 

expectation. Thus, Outcome Probability was at least moderate, and Discrepancy from 

Expectation was high, leading to a higher intensity (assuming no major changes in the 

other appraisals). Following this, the agent now predicts that the task will be 

 Mood Emotion Feeling 

Suddenness [0,1] .235 0 .235 

Unpredictability [0,1] .400 .250 .419 

Intrinsic-pleasantness [-1,1] -.235 0 -.235 

Goal-relevance [0,1] .222 .750 .750 

Causal-agent (self) [0,1] 0 0 0 

Causal-agent (other) [0,1] 0 0 0 

Causal-agent (nature) [0,1]  .660 1 1 

Causal-motive (intentional) [0,1] 0 0 0 

Causal-motive (chance) [0,1]  .660 1 1 

Causal-motive (negligence) [0,1] 0 0 0 

Outcome-probability [0,1] .516 .750 .759 

Discrepancy [0,1] .326 .250 .362 

Conduciveness [-1,1] -.269  .500 .290 

Control [-1,1] -.141 .500 .402 

Power [-1,1] -.141  .500 .402 

Label  anx-wor ela-joy ela-joy 

Intensity .088  .094 .127 
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accomplished with high probability, so when it is in fact accomplished, Outcome 

Probability is high and Discrepancy is low, causing the intensity to be lower. 

 

Figure 4.8: Feeling intensity is maximized when the agent realizes the task will be completed, as 

opposed to when it actually completes. 

 

4.3 The Influence of Emotion, Mood and Feeling upon 

Behavior 

Feeling adds knowledge to the state representation in a task-independent format 

that combines representations of current (emotion) and past (mood) situations, and thus is 

more general than emotion or mood alone. Feeling can be used to guide control, and thus 

it can influence behavior.  Task-dependent representations can still influence behavior 

both directly (as in how the agent might choose to cope with its feelings in a particular 

domain) and indirectly (in that appraisals can be generated from task-dependent 

representations).  Emotion theories describe a number of influences of emotion, mood, 

and feeling, including effects on cognitive processing (Forgas 1999) and coping (Gross & 

John 2003), and integration with action tendencies (Frijda et al., 1989).  Our current 

approach is very simple, included to demonstrate the possibility of feelings influencing 

behavior and focusing on one aspect of coping: coping by giving up on goals.  

Most AI systems, when faced with a difficult or impossible task, have no way to 

recognize that they should give up and will work on the problem until all resources are 
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exhausted.  By providing emotional feedback, our model allows the agent to detect that it 

is not making progress towards the goal, and thus it can choose to discard that goal 

(possibly so it can move on to another goal or stop wasting resources).  This behavior 

could be accomplished without emotions, moods, and feelings, but they provide a natural 

way to achieve this. 

In our model, when the agent fails to make direct progress, it will form a subtask.  

While pursuing a subtask, the agent can choose to give up if its current feeling of 

Conduciveness is negative. Giving up is another form of Tasking—it removes the current 

goal.  As this feeling intensity increases, the agent is exponentially more likely to give up.  

Mood plays a role here by tempering or enhancing the current emotion.  Thus, if things 

are going well (mood is positive) but the agent experiences a momentary setback 

(emotion is negative), the overall feeling intensity will be lower, making giving up less 

likely.  If things have been going poorly, however, the setback will build on that, 

resulting in a more intense negative feeling, making giving up more likely.  The option to 

give up is in competition with other activities in the subtask, specifically attending to 

possible directions in which it can move.  That is, the agent still makes a weighted 

random choice, with giving up being an option whose weight is exponential in the 

magnitude of the negative feeling intensity. As the agent eliminates more of its Attend 

options (by Attending to and then Ignoring them), it becomes more likely to give up 

(since there is less competition from other Attend proposals). 

While the current model only has this single direct influence of feelings on 

behavior, each appraisal of each stimulus has an indirect influence.  As described above, 

at the Attend stage, the pre-attentive appraisals influence where attention is focused next.  

Furthermore, past appraisals influence the current feeling via mood, and thus indirectly 

influence the agent’s decision to give up or not. 

4.4 Summary 

To summarize, the integrated model described in Chapter 3 extends to an 

extended task such as the one described in this chapter with more appraisal dimensions 

involved.  As before, the structures that many of the PEACTIDM steps use and generate 
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are based on appraisals.  In this model, the Perceive and Encode step generates the 

Suddenness, Unpredictability, Intrinsic Pleasantness and Goal Relevance.  Attend uses 

these to choose a stimulus to process further.  Attending also enables the generation of 

other appraisals, including Conduciveness, Causal Agent, Causal Motive, Control, and 

Power.  The Comprehend step is implemented as a verification operator (which generates 

Discrepancy from Expectation) and an ignore operator.  Tasking allows for the 

generation of subtasks when there are no useful actions to take (that is, all other stimuli 

have been Ignored).  Intend takes the action associated with the currently-attended 

encoded structure and creates a prediction of the outcome of that action, as well as the 

Outcome Probability of it.  When pursuing a subtask, the agent has the opportunity to 

give up (another Tasking operator).  This combination of appraisal and PEACTIDM 

leads naturally to sequential constraints on appraisal generation. 

The probability of giving up is influenced directly by the feeling’s Conduciveness 

dimension, and also indirectly by all the other numeric appraisals via the intensity of the 

current feeling.  Feelings are determined by combining mood and emotion, with mood 

being influenced by emotion. 

The model as presented does not use the Unfamiliarity, Urgency, Adjustment, 

Internal Standards, or External Standards appraisal dimensions from Scherer’s theory.  

These were not critical for this domain, and adding these to our architecture is future 

work. 

Finally, we want to note that although the model is implemented in Soar using 

Scherer’s appraisal theory, the underlying theory is intended to be general.  That is, we 

have not intentionally introduced any constraints that would prevent this theory from 

being implemented, for example, in ACT-R using a different appraisal theory (as 

discussed in section 2.1.4.1). 

The next chapter describes experiments intended to evaluate this model.
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Chapter 5 

 

Evaluation of the Non-Learning Model 
 

What kind of evaluation is appropriate for this model?  Clearly, given the 

computational nature of the system, it is possible to generate quantitative results.  

However, given the lack of human data or existing systems to compare to, these results 

can only be used to support claims about the system itself, as opposed to a comparison. 

First we consider Picard’s (1997) properties that an emotional system should 

have: 

1. Emotional behavior: System has behavior that appears to arise from 

emotions. 

2. Fast primary emotions: System has fast “primary” emotional responses to 

certain inputs. 

3. Cognitively generated emotions: System can generate emotions, by 

reasoning about situations, especially as they concern its goals, standards, 

preferences, and expectations. 

4. Emotional experience: System can have an emotional experience, 

specifically cognitive and physiological awareness and subjective feelings. 

5. Body-mind interactions: System’s emotions interact with other processes 

such as memory, perception, decision making, learning, physiology, etc. 

We begin with 3 (cognitively generated emotions).  The system has this property 

as it uses cognitively generated appraisals as the basis for its emotions. Similarly, the 

system exhibits 2 (fast primary emotions) because the system generates appraisals 

beginning at the Perception and Encoding phases, and those become active at the Attend 

phase.  While some have argued that appraisals are “too cognitive,” and thus can’t be 
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used to generate fast emotional responses (Zajonc, 1984), Soar naturally supports this fast 

appraisal generation, so long as no significant inference is required (Marsella & Gratch, 

in press).  Indeed, one implication of the Scherer (2001) theory is that the relevance 

appraisals (suddenness, unfamiliarity, unpredictability, intrinsic pleasantness, goal 

relevance) are generated very early, and our system reflects that.  Moreover, as soon as 

the appraisal frame becomes active, the appraisals become the emotion.  Then, as further 

processing generates more appraisals, these are added to the emotion.  In the case that 

additional processing is necessary, Soar can learn to speed that processing via its 

chunking mechanism, as discussed in section 3.8. 

In terms of 4 (emotional experience), the system has some emotional experience 

but it is incomplete. The system is cognitively aware of its emotional state (the appraisals 

and the resulting feeling are available in Soar’s working memory).  Also, the feelings are 

subjective in the sense that the agent can, in principle, interpret them however it sees fit.  

While we did not explore this here, there is nothing that prevents cultural knowledge 

from being added that would allow the agent to generate labels for or other interpretations 

of the feeling frame the system generates. However, in the current implementations, it has 

only a trivial physiological system. 

For 5 (mind-body interactions), emotions can influence decision making, in that 

the agent can decide to give up when its emotional state is bad.  We evaluate this 

quantitatively in the context of coherent behavior below.  In Chapter 7, we describe an 

extension of this system that learns as well.  However, we have not yet explored 

connections to memories, perception, physiology, or a host of other areas that could be 

influenced by emotion. 

The remaining criterion, 1, is whether the agent exhibits emotional behavior.  We 

will explore this quantitatively below. 

Picard’s list can be extended with additional requirements.  First, while we have 

described how the model works at the micro level, we have not yet demonstrated that it 

actually produces useful, purposeful behavior.  Does it even finish the task?  If not, does 

its emotional state justify the failure?  Furthermore, there are several implications that 
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should be explored.  For example, if an agent’s feelings are determined by the available 

stimuli, then different environments should lead to different feelings.  Additionally, even 

in environments where the distance to the goal is the same, since Attend takes 

information about the situation (in a task-independent representation) into account (e.g., 

Suddenness), different environments should result in different amounts of time to 

completion.  We also claimed in the last section that feelings should impact behavior, 

both directly and indirectly.  Thus, we suggest that there should be a loop: behavior 

influences feelings, which influence behavior. 

We will show results that suggest the model meets the additional requirements 

described above (summarized here): 

6. The model works and produces useful, purposeful behavior. 

7. Different environments lead to differences in behavior, including: 

a. Different time courses 

b. Different feeling profiles 

8. In a given environment where the agent has choices, these choices impact 

feelings and thus the agent’s success. 

As discussed earlier, for simplicity, we used a non-human agent in the synthetic 

Eaters environment.  Thus, while we present time course data, these data should not be 

mapped onto real time for comparison to humans given the simplicity of the Eaters 

environment, sensors, and effectors. 

5.1 Methodology 

To evaluate the agent, we used several different mazes in the Eaters domain with 

a specific goal location in each.  In each maze, the distance from the start to the goal was 

44 moves (except for the last maze, in which it was impossible to reach the goal).  Our 

aim in designing these mazes was to place the agent in progressively more difficult 

situations to demonstrate the properties listed above.  In the first maze (Figure 5.1), the 

agent did not have to ever retask to reach the goal, and there were no distracting stimuli; 

that is, it could not see any walls on its way to the goal.  The second maze (Figure 5.2) is 

exactly the same as the first except that the path to the goal is lined with walls (and hence 
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distractions).  Thus, even though there are fewer possible moves, there are just as many 

Attend opportunities, and they are actually more interesting (hence, distracting).  The 

third maze (Figure 5.3) is very similar to the second, except that there is a kink in the path 

that requires a brief retasking to maneuver around.  This is because the agent has no 

direct way of making progress when it reaches the kink—if it moves north, it will be 

further from the goal, and it can’t move east because of the wall.  Thus, retasking allows 

it to temporarily move further from its original goal.  The fourth maze (Figure 5.4) 

contains twists and turns such that four subtasks are required to reach the goal.  In the 

fifth maze (Figure 5.5), it is not possible to reach the goal. 

 

Figure 5.1: An Eaters maze without any distractions. 

 

 

Figure 5.2: An Eaters maze with distractions. 

 

 

Figure 5.3: An Eaters maze with distractions and one subtask. 
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Figure 5.4: An Eaters maze with distractions and multiple subtasks. 

 

 

Figure 5.5: An Eaters maze that cannot be successfully completed. 

 

5.1.1 Labeling Appraisal Frames 

While the agent does not use linguistic labels to determine its behavior, we found 

such a labeling function is useful in analyzing the agent’s behavior (indeed, we use it in 

the results reported here).  The labeling function is based on the Manhattan distance 

between the agent’s appraisal frame and the modal emotions defined by Scherer (see 

Table 2.2).  Since some modal emotions have many unspecified values (which are treated 

as distance 0), some emotions are frequently closer to the feeling frame than others, even 

when their specified appraisal values are not good matches.  Elation/Joy is one such 

emotion (it has open values for Intrinsic Pleasantness, Discrepancy from Expectation, 

Control and Power).  To compensate for this, we only considered modal emotions that 

have a Conduciveness with the same sign (or an open Conduciveness).  In other words, 

we divided the emotions into positive and negative emotions based on Conduciveness, 
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and ensured that only labels with the same valence as the frame could be applied.  Thus, 

it is not possible for a feeling with negative Conduciveness to be labeled as Elation/Joy. 

An unusual case in the labeling function is the Displeasure-Disgust label: Scherer 

defines it in terms of Intrinsic Pleasantness rather than in terms of Conduciveness (see 

Table 2.2), so we split instances of these into positive and negative, as defined by 

whether Conduciveness was positive or negative.  Thus, positive Displeasure-Disgust is 

when that label most closely matches the current feeling, but Conduciveness is positive.  

This can occur when the agent must do something it dislikes, but is necessary to make 

progress in the task.  Real-life examples might be washing the dishes or cleaning a toilet. 

5.2 Results 

In the first two mazes, the agent will never give up, since it never has to retask.  

However, we anticipate that the distractions from the walls in the second maze will make 

it take significantly longer to complete than the first, and that the agent will experience 

more negative emotions as a result.  In the last three mazes, retasking is required and thus 

the agent can fail.  In the third and fourth mazes, the addition of the subtasks require extra 

processing that could cause the agent to take longer to complete the mazes.  Moreover, in 

the fourth maze, the agent is likely to give up before achieving the goal because of it 

detects it is not making progress.  We expect that the agent will alway give up on the fifth 

maze because it is impossible to solve.  We expect this to take less time than the fourth 

maze, because in the fourth maze the agent is always making progress, whereas in the 

fifth maze, after the first subtask, the agent detects that it is not making progress, which 

should lead the agent to feel worse and hence give up sooner. 

Figure 5.6 shows the time course of behavior in the different mazes, as well as the 

success rate in each maze.  As we predicted, the mazes do lead to different time courses, 

which fulfills property 7a (different time courses).  In general, as the mazes increase in 

difficulty, the agent takes longer to complete (or give up on) them.  When the agent does 

give up, though, it takes less time.  This makes sense since the agent is stopping early.  

Still, the maze with multiple subtasks takes longer than the maze with a single subtask 

when the agent gives up.  The impossible maze takes slightly less (but still statistically 
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significant) time to give up.  This is because, after the first subtask, all subtasks are 

considered “bad” subtasks, whereas in the other mazes all subtasks are “good” subtasks.  

This should mean that there are more negative appraisals in the impossible maze, causing 

the agent to feel worse and thus give up sooner. 

 

Figure 5.6: Number of decision cycles required to complete each maze. 

Success and failure cases shown separately.  The line shows the success rate.  All differences are 

statistically significant (1000 trials for each maze, >95% confidence level). 

 

In Figure 5.7 we see that the data are consistent with this analysis.  The feeling 

labels in the figure are generated as described in section 5.1.1. In each maze’s feeling 

profile, the positive feeling (elation-joy) instances outweigh the negative feeling (anxiety-

worry and displeasure-disgust) instances except for the impossible maze, where the 

negative feelings dominate.  We can also see that each maze produces a different feeling 

profile, and that feeling profiles also differ between the success and failure cases.  This 

supports property 7b (different feeling profiles).  In contrast, the failure cases for mazes 3 

and 4, the positive and negative feelings are nearly equal.  This is to be expected given 

that the subtasks are “good,” the agent positively appraises every move it makes (since it 
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thinks it is making progress).  Thus, this offsets the negative feelings to some extent.  

However, each negative feeling in a subtask represents an opportunity to give up, and 

these more frequent opportunities lead to failure. 

This, together with the data from Figure 5.6 supports properties 1 (emotional 

behavior) and 8 (choices influence feelings).  That is, success and failure (both absolutely 

and in terms of rate) are defined by different feeling profiles, implying that feelings do 

influence behavior.  Furthermore, even within the same maze the success and failure 

cases have different profiles, implying that the choices the agent makes in those mazes 

impacts feelings and behavior. 

 

Figure 5.7: The average number of decision cycles each kind of feeling was active. 

Labels were produced by our labeling function. The success and failures for mazes 3 and 4 reported 

separately.  “Other” includes Boredom-Indifference, Fear, Positive Displeasure-Disgust, and 

Sadness-Dejection.  Differences between bars within a group (e.g., no distractions, etc.) are 

statistically significant (1000 trials for each maze, >95% confidence level). 

 

Finally, the above analysis supports property 6 (purposeful, useful behavior).  

That is, the agent’s behavior and feeling profiles are expected given its task and 
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environments.  The agent completes the task in many cases, and when it fails, it has a 

negative feeling profile which justifies giving up. 

As a final comment, as shown in Figure 5.7, the agent experiences a wide breadth 

of feeling types in these mazes (seven different kinds according to our labeling function).  

Given the limited nature of the domain, one might expect a much more limited set of 

feelings.  Indeed, we have shown that multiple feelings can arise from simple 

manipulations of the environment, even in similar situations.  One way is via interactions 

with the goal—adding structure that requires subtasks leads to many different feelings 

emerging.  Another way is via interactions between mood (including decay) and emotion.  

Sometimes, even though we might classify a mood one way and an emotion another way, 

their combination results in yet another classification.  This prediction could help explain 

why people are sometimes confused about their feelings. 

5.3 An Intermediate Summary 

Before moving on to our explorations into learning, we would like to summarize 

what we have learned so far.  We have presented a novel integration of cognition and 

emotion based on the functional fit between appraisal theory and an abstract theory of 

cognitive control (PEACTIDM):  cognition (as PEACTIDM) provides the processes 

necessary to generate emotions, whereas emotion  (via appraisals) provides the data 

which cognition (via PEACTIDM) functionally demands.  To evaluate the feasibility of 

this theory, we extended the Soar cognitive architecture to include the computational 

mechanisms necessary to support our proposed integration. We explored this system 

within the context of a simple stimulus response task and an ongoing task.  Our 

evaluation centered on qualitative and quantitative issues regarding whether the system 

actually works and has features consistent with a complete emotion system.  For the most 

part, it succeeds, although we discussed several avenues for future expansion. 

We summarize the key theoretical features of our proposal as follows:  

1. Appraisals are a functionally required part of cognitive processing; they cannot be 

replaced by some other emotion generation theory. 
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2. Appraisals provide a task-independent language for control knowledge, although 

their values can be determined by task-dependent knowledge.  Emotion and mood, 

by virtue of being derived from appraisals, abstract summaries of the current and 

past states, respectively.  Feeling, then, augments the current state representation 

with knowledge that combines the emotion and mood representations and can 

influence control. 

3. The integration of appraisal and PEACTIDM implies a partial ordering of 

appraisal generation. 

4. This partial ordering specifies a time course of appraisal generation, which leads 

to time courses for emotion, mood and feeling.   

5. Emotion intensity is largely determined by expectations and consequences for the 

agent; thus, even seemingly mundane tasks can be emotional under the right 

circumstances. 

6. In general, appraisals may require an arbitrary amount of inference to be 

generated.  That is, the theory supports Marsella & Gratch’s (in press) distinction 

between appraisal and inference. 

This system lays the groundwork for extensive additional research.  We present 

some of that research starting in Chapter 7, namely on intrinsically motivated 

reinforcement learning, and describe other areas in the future work at the end (Chapter 

10).  Next, however, we will briefly discuss the relationship of this theory in the context 

of related work.
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Chapter 6 

 

Related work 
 

Like the Soar system we described in this paper, there are several implemented 

computational systems that use appraisal theory in some form and realize a functional 

agent that can behave in some environment, and in fact systems such as Gratch and 

Marsella’s (2004) EMA (EMotion and Adaptation) inspired the current work.  The 

primary goal of these systems is generating believable behavior, and there is less of an 

emphasis on the underlying theoretical integration of emotion and cognition, beyond the 

assertion that cognition is required to generate appraisals.  In addition to different goals, 

these systems differ from the Soar system in two theoretically important ways.  First, 

most existing systems generate appraisals and emotions all at once and then only rely on 

the emotion outcome.  That is, while the emotion has an impact on the system, the 

appraisals do not.   This property can be appreciated by observing that the emotion 

generation could occur via a non-appraisal process, and the system would not know the 

difference.  In contrast, appraisal generation is required as part of the Soar agent’s normal 

processing—they cannot be replaced by some other emotion-generation process. 

Second, a consequence of appraisals being generated as part of the Soar agent’s 

normal processing is that there is a time course to the generated appraisals and resulting 

emotions so that the during processing of a single stimulus, the agent’s emotions can 

change as new information becomes available.  Many existing systems do not support 

this because the appraisals are generated all at once. 

In the remainder of this section we will briefly describe various systems with 

respect to these two distinguishing issues, as well as several other dimensions, including 

system type (architecture or modular), which appraisal theory is used, how many 
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emotions the system can have and whether they are categorical or continuous, and 

whether it has mood and feeling. Table 6.1 summarizes the comparison. 

EMA is a computational model of a simple appraisal theory implemented in Soar 

7 (an older version of Soar).  EMA uses its own appraisal theory based on common 

dimensions from several existing theories.  Like our model, appraisals are generated 

incrementally, but attention does not gate the generation of later appraisals.  Rather, EMA 

generates multiple appraisal frames at once, and an attention mechanism focuses on a 

single frame, which determines the emotion.  One or more categorical labels are then 

assigned to the single emotion instance; we interpret this as more specific emotion labels, 

as opposed to multiple emotions.  EMA also has mood, which is an aggregate of all 

current appraisal frames; in contrast, mood in our system is an aggregate over previous 

emotions (including the current emotion).  Finally, the appraisals are required by EMA’s 

coping mechanism, but not directly by other mechanisms (e.g., the attention mechanism 

uses emotion intensity, but not the appraisals). 

MAMID (Hudlicka, 2004) is a system aimed at building emotions into a cognitive 

architecture.  MAMID’s architectural mechanisms are higher level than Soar’s, making it 

more a modular system by comparison.  For example, it has a Situation Assessment 

module and an Action Selection module, as opposed building these out of more primitive 

components.  Like EMA, the appraisals used are common to many theories.  Unlike our 

system, MAMID generates an intensity for each of several categorical emotions.  While 

this is modulated by the previous emotion, there is no separate mood concept.  Appraisals 

in MAMID are generated “all at once,” in the sense that the Affect Appraiser module 

takes in information about the current situation and outputs an emotional state.  Thus, 

appraisal is not necessarily required by the system, and could be replaced by some other 

method for generating emotion. 

Ortony, Clore and Collins (1988) describe a theory (commonly called the OCC 

model) that was not originally intended for use in systems that have emotion, but has 

since been implemented for that purpose.  We will discuss OCC in the context of Neal 

Reilly’s (1996) Em system.  As a theory, OCC does not specify the architecture of the 

underlying system, but Em is implemented as a modular system.  OCC uses a small set of 
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appraisals inspired by existing theories to generate an emotion hierarchy.  In Em, 

multiple categorical emotions can exist simultaneously.  OCC only briefly touches on 

mood, but leaves it unspecified.  In Em, mood is an aggregation of current emotions, 

similar to how EMA uses an aggregate of current appraisal frames.  Like MAMID, Em 

uses an Emotion Generation module that takes a situation description and outputs an 

emotion—the fact that it uses OCC (and hence appraisal) internally is not critical to its 

functioning.  Like MAMID, then, appraisals are not generated incrementally. 

Kismet (Breazeal, 2003) is a social robot.  It is a modular system, but as a 

functioning robot, it handles real perception and motor.  It also has physiological drives.  

While it has “appraisals,” these are arousal, valence, and stance, which are better 

described as a circumplex model (Yik et al, 1999).  Kismet can be in a single categorical 

emotion state at a time, and there is no mood (although the current emotion can indirectly 

influence the next emotion).  Appraisal is not incremental, in the sense that all appraisal 

dimensions always have a value.  Additionally, the appraisal information is only used to 

generate the emotions, and thus is not actually required by the system. 

System Appraisal 

Theory 

Emotion Type Mood/ 

Feeling 

Incremental 

Appraisals 

Appraisals 

required 

EMA Mixture Categorical Single Mood only Yes Coping only 

MAMID Mixture Categorical Multiple No No No 

OCC/Em Mixture Categorical Multiple Mood only No No 

Kismet Circumplex Categorical Single No No No 

Our system Scherer Continuous Single Yes Yes Yes 
Table 6.1: Comparison summary. 
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Chapter 7 

 

The Learning Model and an Initial Evaluation 
 

The previous discussion begs the question: what functionality do emotions 

provide?  As we alluded in Chapter 1,emotions may enhance aspects of the cognitive 

architecture’s functioning.  For example, memory retrieval may be enhanced by the use 

of emotion cues, or various parameters may be influenced by emotion.  Perception and 

comprehension of a situation may be influenced by emotion.  Physiologically, emotion 

may help prepare the body for action; e.g., fear might elevate heart rate and breathing, in 

case the agent needs to run away.  Emotions are also widely recognized as important 

aspects of communication, via facial expression, tone of voice, and posture.  Emotion 

may also play a role in learning. 

In this thesis, our focus in on learning, although we do touch on parameter 

adjustment in Chapter 9.  Our existing mood module could be considered a very abstract 

physiological model, but currently, detailed modeling of physiology is not supported by 

Soar (although we won’t rule out the possibility for the future).  We also have not 

explored emotion in social contexts yet, and thus have no model of emotional 

communication. 

In this chapter, we present work in which reinforcement learning is driven by 

emotion. Intuitively, feelings serve as a reward signal that motivates the agent to learn to 

perform better (that is, to improve the feelings it experiences). The agent learns to behave 

in a way that makes it feel good while avoiding feeling bad. Coupled with a task that the 

agent wants to complete, the agent learns that completing the task makes it feel good. 

This work contributes not only to research on emotion in providing a functional 

computational grounding for feelings, but it also contributes to research in reinforcement 
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learning by providing a possible detailed theory of the origin and basis of intrinsically-

motivated reward. 

7.1 Intrinsically Motivated Reinforcement Learning 

In traditional reinforcement learning, an agent perceives states in an environment 

and takes actions. A critic, located in the environment, provides a rewards and 

punishments in response to the choices being made (Figure 7.1a). The agent learns to 

maximize the reward signal (Sutton & Barto, 1998). This model is highly abstract and 

assumes a source of reward that is specific to every task. 

In intrinsically motivated reinforcement learning, the environment is split into 

internal and external parts. The organism is composed of the internal environment 

together with the agent (Singh et al., 2004). The critic resides in the internal environment, 

and thus the organism generates its own rewards. 

In our system, the appraisal process is the critic, and the resulting valenced feeling 

intensity provides the reward signal over which the agent learns (Figure 7.1b). 
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                              (a)                                                                                           (b) 

Figure 7.1: Comparison of standard and intrinsically motivated reinforcement learning systems. 

(a) A traditional reinforcement learning system.  The critic is part of the environment.  (b) Our 

system viewed as an intrinsically motivated reinforcement learner.  The critic is realized as the 

appraisal process, and is part of the organism.  (Adapted from Singh et al., 2004.) 
 

7.2 Related Work 

As alluded above, Singh et al. (2004) implemented an intrinsically motivated 

reinforcement learning system.  In their model, the agent generates intrinsic reward for 

unexpected events; this drives the agent to learn skills.  That is, there is a set of actions 

the agent can take, and when they are combined together in the right sequences, the 

environment changes.  For example, the agent can flip a switch, which may cause a light 

to turn on.  In a more complex case, the agent can perform a complex series of actions 

(including things like turning on music, kicking a ball, and lower level eye and hand 

movements) that ultimately result in a toy monkey crying out.  When these changes are 

new to the agent, it receives reward for causing them.  As they become more familiar, 

reward diminishes.  Thus, the agent is intrinsically motivated to learn skills.  The system 

also incorporates extrinsic reward.  The idea is that the agent can learn skills via intrinsic 

reward, and then utilize them in the pursuit of extrinsic rewards.  For example, the agent 
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might get an extrinsic reward when the monkey cries out, but get intrinsic reward for all 

of the intermediate skills it must learn to do so (e.g., kicking the ball). 

While this work demonstrates how intrinsically generated reward can lead to 

learning, it is very abstract and thus does not address any of the issues concerning 

integration with cognition or cognitive architecture.  We could interpret the agent as 

generating an unexpectedness appraisal, but clearly this work is not in the context of a 

complete appraisal theory. 

There have been other attempts to integrate emotion-like processes with 

reinforcement learning. Hogewoning et al. (2007) and Hogewoning (2007) describe a 

system developed in Soar that adjusts its exploration rate based on short- and long-term 

reward trajectories. They consider the reward histories to be a kind of affect 

representation. This work is differs from our own in that it emphasizes adjusting 

exploration rate, it is not based appraisal theories, and rewards are not intrinsically 

generated. 

Salichs & Malfaz (2006) describe a system with the three emotions: happiness, 

sadness and fear. Happiness and sadness serve as positive and negative rewards, while 

fear affects the selection of “dangerous” actions. Happiness is generated when an external 

stimulus is present that is related to current internal drives (e.g., if hungry and food is 

present, the agent will be happy). Sadness is when the desired external stimulus is not 

present. Fear is when the state values have a large variance (even if positive overall). This 

work is interesting in that it connects physiology to goals and thus emotion. However, its 

range of emotions is limited, and there is no underlying theory that unifies the emotions 

(they are each determined separately), nor is there a principled integration with cognition. 

7.3 Reinforcement Learning in Soar 

As noted above, we generated a reward signal using the agent’s current feeling.  

To take advantage of this reward signal, we used Soar’s reinforcement learning 

mechanism (Nason & Laird 2005).  This mechanism works by learning expected values 

for future reward to aid in the selection of operators. This knowledge is represented in 

Soar via numeric preference values associated with operator proposals.  These numeric 
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values are created by rules called RL rules that match a proposed operator in a given 

context (as determined by the conditions of the rules).  A given RL rule may be very 

specific or very abstract, and thus may match in many or few contexts.  Thus, there is no 

single state representation; rather, the state is determined by the features tested by all of 

the conditions of the RL rules that match at any given time.  When multiple operators are 

proposed in a given situation, the agent will select the one with the highest value (in an 

epsilon greedy fashion (Sutton & Barto 1998)).  For example, if operator A is proposed 

with a numeric preference of 0.3, and operator B is proposed with a numeric value of 0.8, 

operator B will be selected unless an exploratory move is made, in which case the 

selection occurs uniformly randomly.  The agent can receive a reward in the (which 

occurs when a rule places a numeric value in a special place in Short-Term Memory).  In 

the Decision Phase, if there is a reward available, the values of the RL rules involved in 

the selection of the current operator are adjusted using a variant of the SARSA algorithm 

adapted for Soar (Nason & Laird 2005).  This, in turn can change behavior as the RL 

rules associated with operators that lead to the most reward will tend towards higher 

values than other RL rules. 

7.4 Reinforcement Learning in the Model 

The reward signal was generated as follows: the magnitude was determined by the 

intensity of the feeling, and the sign was determined by the valence of the Conduciveness 

appraisal.  Thus, the reward signal falls into the [-1,1] range. 

In order to allow the agent to learn, we added several RL rules associated with 

various decision points.  Thus, instead of making random decisions about, say, which 

direction to move in given a set of Encoded structures, the agent instead learns which 

actions to take as it gains experience, e.g., those that lead it closer to the goal..  Thus, the 

agent learns which stimuli to Attend to, whether it should ignore an Attended stimulus or 

Intend taking an action, when to create subtasks, and when to retrieve supertasks. 

Because of this, the potential for inferior performance exists: for example, the agent can 

ignore a stimulus that is on the path to the goal, or it can Intend moving into a wall. The 

agent will have to learn not to do these things.  Table 7.1 summarizes what the agent can 

and cannot learn. 
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Perceive/Encode No learning; for a given situation, the same structures are generated. 

Attend vs. Tasking The agent learns to choose among four or five stimuli to attend to and 

two subtasks to create (or one to retrieve).  Thus, it must choose from 

between five to seven possible operators in this step. 

Verify vs. Ignore The agent learns when to process the stimulus further.  However, once 

chosen, both routes have a fixed outcome (i.e., the agent does not learn 

“how” to do them). 

Intend No learning.  Once the agent has Attended and verified a stimulus, the 

action is determined (move in the direction associated with the 

stimulus). 
Table 7.1: Summary of what the agent can and cannot learn. 

 

The features tested by the RL rules associated with each of the operators are 

summarized in Table 7.2.  As we can see, it’s actually fairly complicated; we discuss how 

we simplified this in the next chapter. 

Feature Operator 

Passable Attend, Tasking, Ignore, Intend 

Path Attend, Tasking, Ignore, Intend 

Good/bad Subtask Attend, Tasking, Ignore, Intend 

X,Y location Tasking 

Features across multiple stimuli Tasking 

Subtask type Give up 
Table 7.2: Summary of features tested by RL rules associated with various operators. 

Tasking includes both Create Subtask and Retrieve Supertask. 

 

The reader will notice that the features here are not the agent’s current feelings.  

We did explore using the feeling frame values as features, but it did not work (results not 

shown).  The issue is that most appraisals are continuous in nature; thus, in order to have 

RL rules that match in multiple situations, the features would need to be value ranges.  

Unfortunately, even with a small number of bins, this still lead to a large number of RL 

rules, each of which only matched in a small number of situations, which meant learning 

was slow.  Additionally, from a theoretical standpoint, there’s no reason to believe that 

the current values of the agent’s feelings will tell it much about what it should do next, 

since it includes historical information which can skew the description away from the 

current situation.  Thus, while the feelings were used to generate rewards, they were not 

used as the state features.  The reader might wonder about using the emotion frame as 
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state features; however, as the emotion frame is derived directly from the above features, 

this would have been equivalent to using those features, which is what we did. 

We also extended the description of a subtask to include a route to the subtask 

location. For example, if the subtask is to reach x=4, the description would specify 

whether that would be accomplished by moving north or south. This is to allow the agent 

to learn distinct values for each of these routes, since they may not both lead to the goal.  

The task is shown in Figure 7.2 with the optimal subtask locations marked. 

 

Figure 7.2: The maze used for the learning tests. 

The paths of the optimal subtask locations are shown. 

 

Additionally, minor changes were made to the exact values of several of the 

appraisals. These values are still qualitatively the same as we reported earlier but were 

tweaked to improve learning. For example, sometimes the agent would get stuck in 

cycles where it could get infinite reward; adjusting the values slightly was sufficient to 
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overcome this problem in this simple domain.  We will return to the cycle problem again 

in Chapter 9 where we provide a better solution.  We also disabled the agent’s ability to 

give up. This allowed us to assess the ability of the agent to learn without interference 

from this additional effect. We could have explored learning when to give up, but decided 

not to in order to simplify the learning problem the agent faces. 

While the problem may look very simple (there are no branches in the maze), 

from a reinforcement learning perspective, learning to solve these problems has its 

challenges. First, the problem is partially observable. The RL rules associated with most 

operator proposals do not include the x,y location of the agent (the create-subtask 

operator proposal is an exception
4
).  Second, the agent always has four stimuli to contend 

with (five when the goal completion internal stimulus is present); this is exacerbated by 

the inability to determine what state it is in.  Additionally, it has to contend with whether 

it should be Tasking or not, and how.  Third, the problem is non-Markovian; that is, the 

available sensory information at each step is not guaranteed to be sufficient to uniquely 

determine the best action and additional historical information may be required.  For 

example, the agent doesn’t know what direction it just came from, and thus can’t easily 

avoid backtracking.  Mood provides some historical information, but also contributes to 

the non-Markovian nature of the problem.  This is because mood influences the current 

feeling, which determines reward, and mood is influenced by previous states.  Finally, the 

agent doesn’t know the effects of its actions (e.g., it doesn’t know that moving into a wall 

will get it nowhere).  These factors make this task quite challenging. 

Still, this task is far from impossible.  Recall that each Encoded structure contains 

information about whether the associated direction is on the path towards the goal or not 

(section 4.1.1).  Because this is generated by dynamic difference reduction, a wall might 

be marked as “on path” because, if the agent could move there, it would indeed be closer 

to the goal.  Thus, the agent essentially has to learn to follow the stimuli that are on path, 

unless the only on path stimuli is not passable, in which case it needs to learn to create 

the proper subtask to get around the blockage (i.e., moving north vs. moving south).  

                                                 
4
 Providing the x,y coordinates for create-subtask operator proposals reduces the partial 

observability; this was simply to make the problem easier. 
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Still, if it simply moves past a point where it should be creating a subtask (see Figure 

7.2), then moving backwards will actually be marked as on path and passable, and thus 

lead to short-term reward, even though it does not actually get the agent closer to the 

goal.  Once a stimulus is Attended, it must learn whether to ignore it or not.  Generally, 

the agent will eventually learn to Attend to the right stimulus, and thus needs to learn to 

not ignore it, but the agent may learn to ignore a “bad” stimulus that is Attended because 

of an exploratory move. 

7.5 Methodology 

Three agent types were tested: a standard reinforcement learning agent, which 

only received reward at the end when it accomplished the task, an agent that had no mood 

(so its feelings were its emotions) and a full agent that included mood. 

We expect the standard reinforcement learning agent to have difficulty since it 

does not have access to the sensor that tells it how far it is from the goal. This may seem 

like an unfair comparison; however, creating a standard reinforcement learning agent 

with this capability but without the other appraisal information is difficult, since the 

appraisal representations comprise part of the state representation. If we were to remove 

the appraisal information, then the standard reinforcement learning agent would really be 

solving a different problem.  If we leave the appraisal information, the agent is not really 

standard. However, the agent without mood can be viewed as a very rough approximation 

of an agent that would take advantage of this information to generate more frequent 

rewards. This approximation includes appraisal information, but without mood it is not 

the complete emotion system.  Thus, we have two extremes and an intermediate agent: an 

agent with no emotion information at all, an agent with emotion but no mood, and an 

agent with both emotion and mood. 

The agents learned across 15 episodes. This was repeated in 50 trials. We 

recorded the amount of time it took each agent to complete the task (measured in Soar 

decision cycles). Because of the task difficulty, the agents would sometimes get 

hopelessly lost; thus, to limit processing time, episodes were cut off at 10000 decision 
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cycles. We report the median to avoid skewing the data. 

 

Figure 7.3: Learning results for three different agents. 

 

7.6 Results 

The results are shown in Figure 7.3 and Figure 7.4. The horizontal axis is the 

episode number, while the vertical axis is the median amount of time it took the agent to 

complete the task.  

First consider Figure 7.3. The standard reinforcement learning agent never made 

any significant progress. This is expected because 15 training episodes do not provide the 

agent with enough experience when it only gets a single reward for each episode.  In 

reinforcement learning, the reward “backs up” only one state per episode, and there are 

many more than 15 states on the path to the solution in this domain
5
.  

                                                 
5
 Calculating the exact number of states is difficult due to the nature of RL in Soar.  However, we 

estimate there to be more than 500 states. 
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The agent whose feeling is just its emotion (without mood) does not appear to be 

learning at first, but the values eventually converge. The agent whose feelings are 

composed of both emotion and mood does much better earlier on, learning much faster. 

Figure 7.4 shows a close-up of the last several episodes for the two agents with 

emotions. The “error” bars show the first and third quartiles, which gives an indication of 

the amount of variability in the agents’ behavior at that point. As we can see, the median 

for both agents reach optimality at the same time, but the variability of the agent with 

mood is much lower. In fact, the variability of the moodless agent reaches all the way to 

10000 even in the final episode, implying that fewer agents did well on the task. In 

contrast, by the final episode, the agent with mood has small variance. 

 

Figure 7.4: Close-up of last several episodes for agent with just emotion and agent with emotion and 

mood. 

“Error” bars show first and third quartiles. 
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7.7 Discussion 

The first thing to note is that the agents with emotion learn very fast relative to the 

standard reinforcement learning agent. This is because they get frequent reward signals 

(on every decision cycle) and thus get intermediate feedback on how they are doing. The 

standard reinforcement learning agent only gets reward feedback at the end, and thus it 

takes a long time for that information to propagate back to earlier actions.  This result is 

not unexpected since part of the agent’s feeling is related to whether it is getting closer to 

the goal or not (albeit with the caveats mentioned earlier, it was not clear that the agent 

would be able to learn at all). 

Next, the agent with mood learns faster. The reason is because, sometimes when 

the agent is doing some internal bookkeeping kinds of processing, it is not experiencing 

an emotion. Thus, the agent without mood will get zero reward for those states, and later 

reward has to propagate back through those states. Propagation takes time (this is why the 

standard reinforcement learning agent takes so long to learn). 

The agent with mood, however, carries a summary of its recent emotions forward 

into those states (with some decay). Thus, these states get reasonable value estimates, 

which speeds up the propagation immensely. 

The reader may be concerned that all we have shown is that intermediate rewards 

speed learning, regardless of their origin.  We agree that meaningful intermediate rewards 

should always speed learning; what we have presented is a theory about the origin of 

those rewards and how they are applied to an integrated system centered on abstract 

functional operations, and a demonstration that the rewards generated by that theory do, 

in fact, speed learning.
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Chapter 8 

 

Revising the Model: Extending to a Continuous 

Domain; Improving Simplicity and Correctness 
 

8.1 Open Questions 

Based on our experience with the previously described model, many questions 

arose, including: 

 Will our model work in a more complex domain? That is, will it scale to a 

continuous time, continuous space domain? 

 Which aspects of the model are responsible for its performance?  That is, 

which appraisals really make a difference in learning? 

 Is the model more complicated than it needs to be? That is, can some aspects 

of the agent be unified or eliminated to produce a simpler model that allows us 

to more directly answer the previous question? 

In order to address these questions, we created a new domain and streamlined the 

model.  Also, rather than use the full model for the task, we chose a subset of appraisals 

to develop and analyze more fully.  In this chapter, we will describe the new domain and 

the revised model. 
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8.2 A New Environment and Task 

 

Figure 8.1: The room environment. 

The agent is the green triangle; starting configuration for this map shown.  The numbers show the 

ids of the rooms and blocks (the ids of gateways are not shown).  This map has seven rooms the agent 

can see (the lower-left room is required to make the map rectangular, but is not part of the agent’s 

environment), six gateways, and two blocks.  The storage room is id 13 (upper-right). 

 

The new environment is called the Room environment (Figure 8.1).  It is a 2D 

world, with rectangular rooms connected by doors (1-dimensional gateways).  Rooms 

may contain zero or more blocks.  The environment is discrete in the sense that walls, 

blocks, etc. are located on an underlying grid (for example, a block takes up one grid 

space), but continuous in that the agent can move in a continuous fashion (that is, unlike 

Eaters, the agent does not move from grid location to grid location discretely).  Each 

object (room, gateway, or block) has a unique id, which the agent can perceive.  The 

agent can also perceive the locations of the objects in terms of their angle and distance 

relative to itself.  Areas and gateways are always visible to the agent, while blocks can 

only be seen if they are in the agent’s vision cone.  Time in this domain is discretized at 

the decision cycle level (so time moves forward one step for each decision cycle in Soar, 

regardless of whether the agent is doing anything).  The actions the agent can take 

include turning and moving forward (at fixed rates each time step), picking up a block (if 

in an adjacent grid space) and putting down a block (in the grid space in front of the 

agent).  The agent can move forward and turn at the same time, and can only carry one 

block at a time. 
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The task we created for the agent in this environment is called the clean house 

task.  The world represents a house with some blocks scattered throughout.  One of the 

rooms is designated the storage room.  The agent’s task is to clean all the rooms.  This 

involves moving any blocks it finds to the storage room.  Even if a room has no blocks, 

the agent must still visit it in order to know that.  Furthermore, the agent does not know 

the layout of the house, so it must find out how many rooms and blocks there are.  Thus, 

although the agent knows the id of the storage room at the beginning, it must still find 

that room. 

Does this environment and task fulfill our needs?  The room environment is 

certainly more complex than the Eaters environment, including continuous time 

(essentially) and space, and more actions.  The task is also more complex, involving 

moving objects around as opposed to just moving the agent around.  Thus, this should 

give us ample opportunity to see if the model scales. 

In terms of allowing us to test the influence of various appraisals, the domain 

should provide enough features to develop models for several appraisals, but not all (for 

example, as a single-agent task, there is not much opportunity to explore causality).  Still, 

it is sufficient for exploring the premise of the thesis; namely, to see if this kind of a 

system can work at all (or, having accomplished that, to explore why it works).  Finally, 

this domain certainly doesn’t impede us from trying to simplify the model. 

8.3 Revising the Model 

There were multiple issues with the previous model that we addressed via various 

revisions: 

 The model requires different domain-specific knowledge (8.3.1) (e.g., how to 

encode the stimuli for this domain and what the subtasks are).  This wasn’t an 

issue with the previous model; it was just a basic requirement.  The model was 

also extended to include the ability for the agent to create a task-specific map 

of the environment; this was necessary primarily because, without knowledge 

of where the blocks are and what rooms are clean, the agent would have no 

way to know when it had completed the task. 
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 The previous model had issues with prediction that resulted from the way 

Tasking interacted with Intend. This was addressed by unifying Tasking with 

Encoding and Intending (8.3.2).  

 Previously, the theory determined the valence of the reward based solely on 

the Conduciveness dimension.  As we looked more closely at other appraisals, 

it seems that more than just Conduciveness should contribute to valence.  This 

led us to change not only the calculation of valence, but also the calculation of 

the resulting reward (8.3.3). 

 There were some changes prompted by the continuous nature of the 

environment (8.3.4).  Specifically, we adjusted the time appraisals continue to 

influence emotion, mood and feeling, and how reward should back up 

between temporally distant states. 

 Some aspects of the model complicated learning and obscured the core issues 

(i.e., ignoring stimuli and giving up), or introduced arbitrary constraints (i.e., 

inability to Attend to the same stimulus twice).  These aspects were removed 

to simplify the model (8.3.5). 

 There was an error in the way feeling intensity was calculated that was 

corrected (8.3.5). 

We will address each of these in turn. 

8.3.1 Domain-specific knowledge 

There are three kinds of external stimuli, one for each of the objects in the world: 

rooms, gateways, and blocks.  As in Eaters, there are also internally generated stimuli for 

completed tasks.  The agent has one top-level (super) task, which is to clean the house, 

and two subtasks: clean the current room, and go to another area.  In this domain, each 

task type has a unique completion stimulus associated with it. 

The agent creates an Encoded structure for each stimulus containing information 

used to drive behavior directly and to support the creation of appraisals.  A summary of 

the Encoded information is shown in Table 8.1; details are discussed below. 
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Common Id, Type, Passable, Path, Distance-to-goal, Progress 

Room (Common) 

Gateway To-room-id, Range, Angle 

Block Range, Angle 

Task-completed (Common) 
Table 8.1: Encoded features for various stimuli. 

 

For direct behavior, each stimulus contains information directly from perception 

such as its type and id; these are used by the agent to determine what kinds of actions can 

be taken in response to a stimulus, and to distinguish stimuli of the same type. Gateways 

and blocks also contain the angle the agent must turn to face it and the range (distance) to 

the object, which is used to determine how to physically move to it.  Gateways include 

the id of the room to which they connect, which is necessary for the agent to determine if 

parts of the world are not yet explored.. 

For appraisal generation, the Encoded information is further augmented with 

internal information including whether the stimulus is “on the path” to the current task, 

the distance to the goal, and whether the agent is making progress.  The path and progress 

augmentations help determine the agent’s Goal Relevance and Conduciveness appraisal 

values.  This is described in the next chapter. 

Each stimulus is labeled as “on the path” or “off the path”.  For example, if the 

agent is already carrying a block, then attending to another block would be considered off 

the path.  On the other hand, if the agent’s current task is to go to some room, and there is 

a gateway that leads to that room, the corresponding stimulus would be on the path.  Task 

completion stimuli are always on the path.  Path information comprises a lot of 

knowledge that helps guide the agent; we will revisit this later. 

Distance to the goal (not to be confused with range to objects) is calculated in the 

following way.  For the clean house task, the distance is the number of rooms not yet 

cleaned, plus one if there are any unvisited rooms (since there may be entirely unknown 

rooms in that case).  For the clean room task, the distance is the number of known blocks 

currently in the room, plus one if the room needs to be checked (recall that the agent can 

only see blocks in its vision cone, so there may be blocks it is unaware of in the room).  
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For the go to room task, the distance is the number of rooms the agent must traverse to 

get to the destination room from its current location. 

The purpose of computing distances is to support the generation of the progress 

augmentation.  An agent is making progress if the distance to the goal is less on the next 

attend operator.  In the case where the task has just changed (because the agent created a 

subtask or retrieved the supertask), progress is determined by whether the agent was 

making progress previously (that is, when no previous distance is available to compare 

to, we assume the agent is doing as well as it was). 

With respect to intentions, each stimulus can only be responded to in a single 

way, based on context.  This is to focus the learning problem as discussed in the next 

chapter.  Thus, if attending to a gateway, the agent will move through that gateway.  If 

attending to a block, the agent will move to the block and pick it up (unless it is already 

carrying a block, in which case it will just move to the block and do nothing).  If 

attending to a room other than the storage room, the agent will spin in place.  This allows 

it to see all the blocks in the room (or confirm that there are no blocks in the room).  If 

attending to the storage room, the agent will put down the block it is carrying.  If it is not 

carrying a block, then it will just spin. 

We don’t consider this limitation particularly restrictive.  In the Eaters model, the 

agent already had the choice to give up or ignore instead of Intending; adding additional 

possible actions would be similar. 

Finally, the model was extended by giving the agent the ability to create a task-

specific map.  The agent creates a map of the world as it moves about; thus, it knows 

which rooms are connected to which, whether they have been visited, and if it has seen 

any blocks in them. 

This map is built using operators that are not related to appraisals.  In the 

PEACTIDM framework they could be considered Comprehend operators, but their use 

was primarily pragmatic, and not a serious attempt to model how people would do this.  

The information in this map is used to determine when the clean house task is finished 

(all rooms in the map are marked as clean).  It is also used to calculate the distance for the 
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go to room subtask.  Finally, it is used to calculate some of the path information (e.g., if 

not carrying a block and the clean house task is active, then creating a subtask to go to a 

room that contains a block is on the path). 

8.3.2 The Unification of Tasking with Encoding and Intending 

In the previous model, Tasking was handled by different operators than 

Attending.  That is, the agent could choose to Attend to a stimulus or to engage in 

Tasking.  This resulted in some additional complexity: if the agent chose to Attend, then 

it would follow a Comprehend-Intend path and deal with verifying predictions, whereas 

if it chose to Task (e.g., create a subtask), then it has to use a different set of operators 

that did not involve Comprehension (including verifying predictions) or Intending. 

This caused problems with predictions.  First, the agent’s predictions were 

generated in the context of the current (sub)task, which meant that if the agent switched 

tasks, the prediction was invalidated.  This would lead to many cases where there was no 

prediction.  Furthermore, this made the prediction aspects of the system fragile 

(predictions had to be dealt with properly in all possible edge cases where they might be 

invalidated, and the system had to know what to do when there was no prediction).  The 

root of the issue is that Tasking is essentially an internal action, but it doesn’t generate or 

process predictions in the same way that external (Intended) actions do. 

Furthermore, this separation made the learning problem more complex (at least 

conceptually), because the agent had to separately learn not only what to Attend to, but 

whether it should be Tasking instead.  Maintaining this distinction was challenging and 

unnecessary.   

 In the revised model, Tasking opportunities (i.e., creating new subtasks or 

retrieving the supertask) are all Encoded as internal stimuli (Figure 8.2), similar to how 

task completion stimuli are Encoded internally.  As with all stimuli, the agent always 

makes predictions about what stimulus will be perceived next; thus, the agent can predict 

that it will perform Tasking next, or what stimulus it will Attend to following a Tasking 

operation.  The Tasking operation itself is performed in the Intend step.  Thus, the agent’s 

cycle is always “Attend-Comprehend-Intend.”  Does this imply a major change to 
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PEACTIDM?  Not really; it is essentially a matter of perspective and semantics.  We 

could either say we have changed PEACTIDM by integrating Tasking with Encode, 

Attend, and Intend, but we could just as easily say that, from the PEACTIDM 

perspective, these are completely separate processes, and the fact that they share 

operators is an implementation detail.  Still, it is an important implementation detail that 

has simplified the code, but also unifies the theory in an interesting way.  Thus, we prefer 

to think of it as a theoretical modification. 

 

Figure 8.2: Example of stimuli the agent must choose among for Attention. 

This example is when the agent has just started (and thus only knows about rooms immediately 

adjacent to the starting room).  As the agent learns about more rooms, it will have stimuli to create 

subtasks to go to those rooms, too. 

8.3.3 Valence and the Calculation of Reward 

 In the Eaters model, the magnitude of the reward was the feeling intensity, and its 

valence was the valence of the conduciveness dimension.  The problem with this 

approach is that more dimensions than just conduciveness appear to contain valence 

information.  In particular, those dimensions whose values can be negative imply a 

valence.  For example, intrinsic pleasantness can have a value that implies intrinsically 

unpleasant, which should impact the valence. 

To accommodate this, the valence needed to be represented as a continuous value 

instead of just a sign.  That way, different appraisals with valences can interact to 

produce an overall valence.  This is accomplished merely by averaging the valences 
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together.  Averaging means the final valence value will be in the [-1, 1] range, just like 

the individual appraisals that contribute to it. 

But how do valence and intensity interact, then, to produce a reward?  For 

inspiration, we turn to circumplex models of emotion (see Yik et al., 1999 for a review).  

In circumplex models of emotion, there are commonly two dimensions used to describe 

an emotion: intensity (variously called arousal, activation, engagement, etc.) and valence 

(also called pleasantness).  Various combinations of these dimensions are associated with 

various emotions (Figure 8.3).  Our interpretation of circumplex theory is that, unlike 

appraisals, which describe emotion antecedents, these dimensions describe what an 

emotion looks like when it is manifest. 

With regards to reward, we consider some cases.  Suppose intensity is very high 

(near 1), but valence is very low (near 0).  In this case, the reward should be a medium 

value, since the stimulus is simultaneously important (intense) but unclear (not strongly 

valenced).  The agent, thus, should not be influenced too strongly by this outcome.  

Consider the case where the intensity is very high but the valence is exactly zero.  This 

time, the reward should be zero because the stimulus is not punishing or rewarding—it is 

merely exciting (in a completely neutral way).  A simple way of combining intensity and 

valence to produce these results is simply to multiply them.  Thus, the reward still falls in 

the [-1, 1] range. 
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Figure 8.3: Typical circumplex model. 

Adapted from Feldman Barrett & Russell (1998). 

 

8.3.4 Adapting to a Continuous environment 

The change to a continuous environment raised some issues related to the effects 

of time.  First is the issue of the duration of an emotion.  Previously, an emotion lasted 

the entire time the corresponding appraisal frame was active.  In the discrete domain of 

Eaters, this meant a few decision cycles before the agent was ready to attend to another 

stimulus.  In the continuous time and space of the room environment, the agent is 

attending to a stimulus for the entire time it takes to execute the resulting intention.  For 

example, if the agent is attending to a gateway on the other side of the room, the appraisal 

frame for that stimulus will be active as the agent moves across the room, which may be 

over 100 decision cycles.  This can cause major skewing of the reward: actions that take 

longer will be rewarded or punished more.  Mood will be similarly skewed.  To prevent 

this, an appraisal frame is deactivated as soon as the intention begins (in Soar terms, 

when the Intend operator is selected).  Thus, the appraisal frame is only active for two 

decision cycles: Attend and Comprehend.  It is during this time that the agent may 

receive non-zero reward; the rest of the time reward is zero. 
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Second, there is the issue of how reward should backup to previous states that are 

separated by time.  In the discrete case, every decision cycle corresponded to a 

reinforcement learning state, even if it was a fixed decision (that is, every operator had an 

associated RL rule).  This resulted in many RL rules whose only purpose was to allow 

values to backup from later operators.  Furthermore, the exact descriptions of these states 

could influence how values backed up through them.  To circumvent this issue entirely, 

Soar’s reinforcement learning mechanism was given the ability to “jump gaps” between 

RL states.  Thus, two RL states can be separated by as many decision cycles (that is, 

time) as necessary and reward will backup from one to the other (discounted by the 

number of decision cycles in between).  For example, suppose the agent Attends to a 

gateway across the room.  The next stimulus it Attends to might be the new area it ends 

up in.  With gap jumping, the agent will not need an RL rule for every decision cycle in 

between (e.g., while it walks across the room). 

8.3.5 Simplifications 

The agent’s ability to ignore stimuli was removed.  This was so we could better 

focus the learning problem (see Chapter 9 for more details).  This has behavioral 

implications as well—if the agent Attends to a stimulus, it commits to performing the 

corresponding action, which may be lengthy (e.g., walking across the room).  Without the 

ability to ignore, the agent is stuck doing this action (even if it was chosen as an 

exploratory move).  This is actually not out of line with how ignore was originally 

intended to be used; in the non-learning Eaters, it allowed the agent to avoid acting on 

impassable stimuli (i.e., walls).  There are no such stimuli in the Room domain, so 

leaving out ignore does not represent a major change in capability. 

8.3.6 Corrections 

Another change has to do with how feeling intensity is calculated.  Previously, 

dimensions whose values are in the [-1,1] range were “normalized” by dividing by 2.  

Ostensibly, this was to put them in the same range as those dimensions whose values are 

in the [0,1] range.  Upon reflection, however, we decided this was a mistake.  In the 

intensity calculation, we take the absolute values of these larger ranges, which already 

forces them into the [0,1] range.  By dividing by 2, we essentially forced them into the 
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[0,0.5] range, which meant that they had less influence than the unnormalized 

dimensions.  This “normalization” was removed. 

8.4 Summary 

The model was revised to work in a new continuous domain.  Tasking was unified 

with Encoding and Intend.  The way reward is generated was modified to allow for 

multiple sources of valence.  Minor simplifications and corrections were made. 

In the next chapter, we will explore the effects of various combinations of a 

subset of appraisals on learning in an attempt to determine how aspects of the system 

actually contribute to its performance.  We will also explore how feelings can influence 

other aspects of the architecture.
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Chapter 9 

 

Learning Experiments and Evaluation in the 

Continuous Domain 

9.1 What is the Agent Learning? 

In the model, there are at least two kinds of things the agent can learn about: 

which stimulus to Attend to, and what to Intend in response to the chosen stimulus.  (In 

principle, there are other things the agent could be learning, such as how to Encode 

stimuli, how decompose the task into subtasks, RL state representations, etc., but these 

things are not handled by our current theory or model.)  In the revised model, we chose to 

focus on the Attention problem; thus, every stimulus in a given context has only one 

response (as described earlier).  Given that Tasking options are now represented as 

stimuli, learning what to Attend to includes learning when and what to Task. 

In Soar terms, this means there are only RL rules associated with the Attend 

operator.  Those rules represent the state using the following features: 

 task type (clean-house, clean-room, goto-room) 

 task object (id of the storage room, room to clean, or room to go to) 

 whether the task has been completed or not 

 the unique id associated with the stimulus (e.g., the id of a block) 

 path (on or off) 

 progress (true or false) 

 whether agent is carrying a block or not 

 passable (always true in this task) 
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This representation is a further expansion of the representation used in Eaters.  

While features like passable, path, progress and current task
6
 have been retained, new 

domain-specific features have also been added, such as whether the agent is carrying a 

block.  Features such as the task object and the unique id of the stimulus are intended to 

be fairly domain-general, but may not be appropriate for some domains. 

9.2 Choosing Appraisals to Explore 

One of the goals of the revised model is to allow us to identify how various 

appraisals influence the agent’s learning via their impact on the reward signal, and 

possibly the Q-values directly.  In general, many of the appraisals in the previous model 

had very simple (even constant) calculations for their values.  Thus, they probably 

exerted little influence on the outcome.  Developing a theory for computing each 

appraisal could be the topics of several theses, and the value of trivial implementations is 

questionable.  Thus, we opted not to include many of the appraisals.  Furthermore, given 

our focus on learning what to Attend to (including Tasking), but not on how to Intend, 

some appraisals are more appropriate for this exploration than others.  We explored a 

subset of the dimensions from the previous model: Conduciveness, Outcome Probability, 

Discrepancy from Expectation, Goal Relevance, and Intrinsic Pleasantness.  We will 

discuss here which appraisals we included or not and why, and then discuss the appraisals 

we explored in more depth in the next sections. 

First consider the Relevance appraisals (see Table 2.2).  These appraisals are 

supposed to help the agent determine what to Attend to; unfortunately, most of them are 

too low-level in nature to be suitable for serious modeling in Soar.  Suddenness is 

perceptually based; given that our implementation of the environment and task does not 

include a strong model of perception, we opted to leave it out.  Similarly, taking 

Unpredictability seriously seems to require tracking low-level statistical data, for which 

the current model in Soar is not well suited.  Goal Relevance, on the other hand, is a 

higher-level construct that we could easily model (see section 9.7).  Our model also made 

it easy to explore Intrinsic Pleasantness (see section 9.8). 

                                                 
6
 In Eaters, progress and task were combined into a single good/bad subtask feature.  These are 

now represented separately. 
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The next grouping in Table 2.2 is the implication appraisals.  According to 

Scherer’s theory, many of these dimensions, like Causal Agent, Causal Motive, Control 

and Power, are more directly relevant to choosing a response (Intending) than to choosing 

what to Attend to.  Furthermore, for the room environment and clean house task, there is 

only one agent, making causality less interesting.  Thus, these dimensions were also left 

out.  However, the Conduciveness dimension is directly relevant to the model’s learning 

(see section 9.5).  Additionally, since the model already generates predictions, including 

Outcome Probability and Discrepancy from Expectation was natural (see section 9.6). 

Other dimensions in Scherer’s theory not mentioned above (Unfamiliarity, 

Urgency, Adjustment, and Internal and External Standards) were not included in the 

original model.  Again, given that each one could be a thesis by itself, we chose not to 

engage in trivial explorations of them. 

In the sections ahead, we will describe the models of the appraisals we chose.  

While these models are an improvement over the earlier models, they are still fairly 

simple.  The goal here is to show that non-trivial models of these appraisals can 

contribute to learning in a complex domain.  As stated above, a “complete” model of any 

particular dimension is well beyond the scope of this (and probably any single) thesis. 

9.3 Methodology and Results Interpretation 

The results below are of the agent solving the task in the environment shown in 

Figure 8.1 (storage room in the upper-right; see section 8.2 for details).  Except where 

noted, the experiments were conducted with the following parameters: 50 trials of 15 

episodes each.  Learning rate and exploration rate held constant at 0.3 and 0.1, 

respectively; the exploration method is epsilon greedy.  Because the agent can get stuck 

in cycles, episodes were cutoff after 10000 decision cycles.  To avoid these outliers from 

skewing the data, medians are reported instead of means.  Finally, to give an idea of the 

variability in the results, the first and third quartiles are also reported in the charts of 

decision cycles, total reward, and fraction correct predictions. 

In interpreting the results, it should be noted that the first quartile of, say, the 

decision cycles chart does not necessarily correspond to the first quartile of the total 
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rewards chart.  In fact, it is often the case that the third quartile of the decision cycles 

corresponds to the first quartile of the total rewards, because longer task times typically 

correspond to less reward.  The only way to be sure (indeed, the only way in which it 

matters) is when a quartile has an unusual shape.  In these cases, the unusual shape is 

often visible in the different charts, making it easy to see what corresponds to what. 

Another result we report is failures.  The failure data show the number of times 

the agent had to be cutoff (reached the decision cycle limit), which is usually indicative 

of a cycle (sometimes, but not necessarily, an infinite reward cycle) or just failure to 

learn.  The failure figures show the total number of failures across all trials for each 

episode.  These data can show trends in the way the agent fails as it learns.  The failure 

tables show three kinds of failure counts.  Total Failures is the number of episodes across 

all trials that were cutoff (total number of episodes is 50*15 = 750 for most experiments).  

Trial Failures is the number of trials that had at least one failed episode.  Final Episode 

Failures is the number of trials whose final episode was a failure.  We consider this 

number to be the most informative.  If it is lower than the Trial Failures, it implies that 

the agent was able to recover from other failures (and if the cutoff was higher, that the 

other failure numbers would come down).  If both Final Episode Failures and Trial 

Failures were high, then it would imply that the agent was learning cyclical behavior, or 

failing to learn at all.  If both numbers are low, then it implies that the agent is learning 

well all the time.  The failure figures and tables give complementary views of the failure 

data. 

9.4 Overview of Results 

In this section, we provide an overview of the results to help the reader. 

1. Conduciveness (9.5): The agent learns to do well, but has a several failures. 

2. Outcome Probability and Discrepancy from Expectation (9.6): The agent learns 

just as well, and failures are reduced to zero. 

3. Goal Relevance (9.7): The agent’s knowledge about important stimuli dominates 

performance, leading to very little learning (the agent does well right away).  A 

reduced-knowledge version shows that the goal relevance improves performance, 
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but the other appraisals are still necessary for learning in knowledge-poor 

situations. 

4. Intrinsic Pleasantness (9.8): This appraisal had a mixed influence on performance, 

which is expected for an appraisal that is independent of the goal. 

5. Other results (9.9): Mood (9.9.1) had no effect.  We also tried dynamically 

changing the exploration rate (9.9.2) and learning rate (9.9.3) parameters of the 

RL system based on the agent’s feelings.  That is, the feelings were used to 

regulate other parts of the cognitive architecture.  This had a generally positive 

impact (faster convergence), but also resulted in slightly more failures. 

A more detailed summary of the results is given at the end of the chapter. 

9.5 Exploring Conduciveness 

Perhaps the single most important appraisal, conduciveness, is the agent’s most 

direct measure of how good or bad the current situation is for it.  To review, the 

appraisals influence the feeling intensity and valence (indeed, if Conduciveness is the 

only appraisal, it determines them), which in turn determines reward.  Thus, this appraisal 

alone is sufficient to generate a reward signal, and thus we expect the agent to learn to 

accomplish the task. That is, using this appraisal alone will tell us if the task is structured 

properly (with respect to how it is encoded, etc.) so that it is learnable at all.  However, 

we expect other appraisals to help refine the reward signal or otherwise influence the 

agent’s behavior in ways that result in improved learning (e.g., faster, or fewer errors, 

etc.). 

9.5.1 Calculating Conduciveness 

The calculation of Conduciveness was greatly simplified from the original model 

in order to make it easier to see how the system works (and to remove any mystery about 

what is really responsible for the results).  In the revised model, Conduciveness is based 

only on the path (on/off) and progress (true/false) aspects of the encoded stimuli as 

shown in Table 9.1. 
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 Path: On Path Off 

Progress: True 1.0 -0.5 

Progress: False -0.5 -1.0 
Table 9.1: Conduciveness values. 

 

The values for “on path and progress true” and “off path and progress false” are 

self explanatory: it is good for the agent to be doing well and bad for it not to be doing 

well.  The other values were chosen to be negative to avoid infinite reward cycles.  An 

infinite reward cycle is a sequence of actions that leads to infinite reward, such that the 

agent learns to do that cycle instead of the task.  Traditional RL domains do not have this 

problem because the agent only gets rewarded upon completion of the task (and rewards 

elsewhere are zero or negative).  In a system where the agent generates its own rewards 

all the time, we must be very careful to structure the task such that the agent cannot get 

infinite reward by repeating the same set of actions over and over.  For example, a 

common cycle that this value structure eliminates is creating a subtask that is on path, and 

then retrieving the supertask (which is off path), and then creating the on path subtask 

again, etc.  If an on path stimulus were rewarding independent of progress, this could lead 

to an infinite reward cycle.  Clearly, there are many possible value structures that would 

work, but we found this one to be adequate (it is still not perfect, but reward cycles are 

rare, so the agent does not usually find them). 

9.5.2 Conduciveness Results 

The experimental setup for this experiment is exactly as described above. 
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Figure 9.1: Decision cycles to task completion for Conduciveness experiment. 

The agent learns to complete the task in fewer decision cycles across several episodes.  Median, first, 

and third quartiles shown. 

 

 

Figure 9.2: Total reward accumulated during task for Conduciveness experiment. 

The agent learns to accumulate more total reward across several episodes. 
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Figure 9.3: Failures across trials for each episode for Conduciveness experiment. 

Failures generally increase until the end where there is a reduction. 

 

Final Episode Failures Trial Failures Total Failures 

3 12 57 
Table 9.2: Failures for Conduciveness experiment. 

The agent fails many times, but usually recovers. 
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probably do better (in terms of failures) if the cutoff were raised; however, this would not 

affect the results for the number of decision cycles and total reward, so we did not run 

additional experiments. 

We conclude from these results that the Conduciveness appraisal is sufficient for 

learning, although there is certainly room for improvement. 

9.6 Exploring Outcome Probability and Discrepancy from 

Expectation 

As described before, making predictions is a central aspect of the model.  In 

Scherer’s theory, predictions are associated with an Outcome Probability appraisal, and 

their success or failure is captured via the Discrepancy from Expectation appraisal.  Thus, 

the inclusion of these makes sense for our model.  The inclusion should give us insights 

into how these appraisals influence learning. 

We expect these appraisals to influence feeling intensity (and thus reward, since it 

is calculated from feeling intensity).  As discussed earlier, an outcome that is expected 

should result in less intense emotions than one that is unexpected.  This principle is 

integrated into our feeling intensity equation via the Outcome Probability and 

Discrepancy from Expectation appraisals, making them crucial to our theory.  

Furthermore, since feeling intensity is an input to the calculation of reward, these 

dimensions will influence the reward the agent gets, and hence its learning. 

Generating values for these requires generating predictions.  In the previous 

model, prediction generation was very simple: the agent always predicted that the next 

stimulus would be passable and on the path, except when it was about to accomplish the 

task, in which case it predicted that the next stimulus would be the task completion 

stimulus. 

In an effort to make more realistic predictions, we introduced a new memory.  

This memory records every stimulus that the agent experiences and links representing 

which stimuli have ever occurred in sequence, making it conceptually similar to Nuxoll’s 

(2007) episodic memory, but our memory is more tailored to our needs.  Specifically, it 
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also includes “strength” values for each link, which is intended to represent how 

frequently and recently a particular sequence occurred.  The frequency and recency 

information tells the agent how commonly this link is used.  The idea is that, as it gains 

experience, the agent will settle into following the same sequence of actions (namely, 

those that maximize reward), thus experience the same sequence of stimuli.  This will 

cause the strengths of the links between those stimuli to increase (and the strengths of 

other links to decrease).  The agent can then use this information to make predictions 

about what it thinks will happen next (e.g., the strongest link connects to the stimulus that 

has occurred next most commonly).  The use of strength perhaps makes it more similar to 

Kaplan & Kaplan’s (1982) notion of contiguity in cognitive maps (i.e., stimuli that occur 

close together in time tend to become associated).  We will simply refer to this memory 

as the episodic memory (not to be confused with Nuxoll’s episodic memory). 

The strengths of the links in the episodic memory have values in the [0,1] range 

and are updated as follows.  When a stimulus is attended to, the strength of the link 

between the previously attended stimulus and the next stimulus is increased by a constant 

(we used 0.2 because it allowed the agent to potentially maximize the strength in a fairly 

small number of experiences, but not so small that it would thrash).  If this is a new link, 

then it is given an initial value of that constant.  To preserve contiguity, other links that 

are not used must be decreased in strength (otherwise, everything could eventually be 

associated with everything).  Thus, all other links emanating from the previous stimulus 

are decreased in strength by another constant (we used 0.05, which is smaller than our 

increase constant, to reflect that the decrease is probably being “split” among many links, 

as per Kaplan et al. (1991).  A better model might actually calculate the decrease based 

on the number of links, but we started with a simple model that proved sufficient for our 

purposes).  Strength values are capped at 0 and 1.  Thus, if the agent learns to do some 

particular sequence, then that link will eventually have strength 1 while all other links 

from the previous stimulus will have strength 0.  Finally, each recorded stimulus has a 

total strength value, which is the sum of the strengths of the links emanating from it.  

This value is used to generate a pseudo probability as described below. 
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The stimuli that are recorded in the episodic memory are exactly those stimuli that 

the agent encodes, but augmented with a context value.  The purpose of the context is to 

disambiguate some stimuli so the agent can learn the sequences properly.  For example, 

the current stimulus might be gateway-17, but unless the agent records which side of 

gateway-17 it is on, the next stimulus in the sequence will be pulled between the stimuli 

for each of the rooms.  The context value is actually a combination of the current room, 

the current task type, and the current task object id.  By including this information, most 

sequences can be disambiguated, which essentially reduces the noise in the system, 

giving us to get a clearer picture of what the agent is able to learn. 

This episodic memory is used to generate values for the Outcome Probability and 

Discrepancy from Expectation appraisals in the following way.  When the agent Intends 

something, it creates a prediction with an associated Outcome Probability.  The 

prediction is the stimulus at the end of the strongest link, and the Outcome Probability is 

the strength of that link divided by the previous stimulus’s total strength.  If there are no 

links (because the previous stimulus is new), then the agent makes a default “passable, on 

path” prediction like the original model, with an Outcome Probability of 0.5.  

Discrepancy from Expectation is calculated as 0 if the currently Attended stimulus 

matches the prediction, and 0.5 if not (as determined by Comprehend). 

While this model of the Outcome Probability and Discrepancy from Expectation 

appraisals is an improvement over the original model’s methods, there are issues.  First, 

the value calculated for Outcome Probability is not actually a probability.  Rather, it is 

pseudo probability in the sense that, the larger it is, the more likely the event is to occur.  

This follows directly from the way in which the strengths are computed.  Certainly, at 

extreme values, the agent must have a history of almost always or almost never following 

that link, and thus the value most likely does represent a probability in those cases.  

Again, the value reflects frequency and recency, so even if, historically, the agent has 

followed link A more, if recently it has repeatedly followed link B, then the stimulus 

corresponding to link B will be given a high Outcome Probability. 

Second, one could argue that predictions should be based on actions instead of 

stimuli (i.e., predicting the outcome of actions taken in some state).  However, since 
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actions are tied to stimuli in this model, this is really the same thing.  Furthermore, the 

agent is not predicting the outcome of an action/stimulus, but rather what it will be 

Attending to next.  These are related in that the situation the agent ends up in as a result 

of the action it takes contains many possible stimuli the agent can Attend to, one of which 

should be the predicted stimulus.  But the agent may still choose to Attend to some other 

stimulus instead.  In other words, the agent is not predicting the situation it will end up in, 

but which stimulus it will Attend to in that situation.  Finally, one could argue that when 

there is a mismatch between the prediction and reality, the value of Discrepancy from 

Expectation should reflect the extent of the mismatch.  For example, the prediction is 

partially correct (e.g., it correctly predicted a gateway, but the wrong one), the 

Discrepancy value should be lower than if the prediction is completely off.  We agree that 

this is worth exploring in the future, but felt our simpler model was a sufficient starting 

point for our exploration.  Thus, there is plenty of room for improvement in this model, 

but our results should be indicative of the usefulness of these appraisals. 

Finally, we expect the way in which these appraisals are generated to have some 

side effects: reward will tend towards zero as the agent accumulates experience, which 

should help eliminate the infinite reward cycles described earlier.  As the agent learns, it 

will settle into a fixed sequence.  Repeating this sequence enough will result in the 

strengths of the associated links going to 1, while all other strengths go to 0.  Thus, these 

stimuli will be predicted with an Outcome Probability of 1.   Since the agent is following 

this sequence, it will predict the associated stimuli and thus Discrepancy from 

Expectation will be 0.  With these values, the calculated intensity will be 0, and thus the 

reward will be 0.  Thus, we expect total accumulated reward to go up in earlier episodes, 

but down in later episodes.  In other words, the reward becomes non-stationary.  In the 

case of an infinite reward cycle, this may eventually break the cycle as the values of the 

Attend operators are reduced towards 0 (but if the alternative values are negative, a cycle 

may still exist).  In practice, such cycles are very rare, so the agent doesn’t usually find 

them. 
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9.6.1 Outcome Probability and Discrepancy from Expectation Results 

The experimental conditions are exactly as reported earlier.  The Conduciveness 

appraisal is still enabled, as are the Outcome Probability and Discrepancy from 

Expectation appraisals. 

 

Figure 9.4: Decision cycles to task completion for Outcome Probability and Discrepancy from 

Expectation experiment. 

The agent learns to complete the task in fewer decision cycles across several episodes.  Median, first, 

and third quartiles shown. 
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Figure 9.5: Total reward accumulated during task for Outcome Probability and Discrepancy from 

Expectation experiment. 

The agent learns to accumulate more total reward across several episodes, but reward decreases 

slightly towards the end. 

 

 

 

Figure 9.6: Fraction of predictions made that are correct for Outcome Probability and Discrepancy 

from Expectation experiment. 

The agent learns to predict more accurately across several episodes. 
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Final Episode Failures Trial Failures Total Failures 

0 0 0 
Table 9.3: Failures for Outcome Probability and Discrepancy from Expectation experiment. 

The agent never fails. 

 

Figure 9.4 shows that the agent learns to complete the task in fewer decision 

cycles over several episodes.  Figure 9.5 shows that the agent also learns to increase its 

total reward, but with a slight decrease towards the end.  This matches our qualitative 

prediction that reward would go down.  The approximate optimal reward is not shown 

here since reward is non-stationary and thus does not tend towards some maximum.  This 

will be true for the remainder of the reward results in this chapter.  The agent’s ability to 

correctly predict outcomes also improved across episodes, as shown in Figure 9.6.  Thus, 

the episodic memory and the appraisals seem to be functioning as intended. 

Comparing to the agent with Conduciveness only, the number of decision cycles 

did not change (compare Figure 9.1 and Figure 9.4).  However, the number of failures 

went to 0 across all categories (Table 9.3), implying that cycles were broken, or that the 

agent learned good behavior more quickly.  (Note that good behavior does not necessarily 

correspond to fewer decision cycles).  Finally, we note that the scale of the rewards is 

reduced compared to the Conduciveness only condition (Figure 9.2).  Again, this is 

expected because the intensity’s “surprise factor” will often be less than 1 (and never 

more than 1), forcing the intensity (and thus reward) to have a smaller magnitude in 

general. 

We conclude from these results that adding the Outcome Probability and 

Discrepancy from Expectation appraisals to the system results in learning improvements 

via the ability to make better predictions and to generate more accurate values for these 

appraisals with respect to those predictions. 

9.7 Exploring Goal Relevance 

The purpose of Goal Relevance is to help the agent choose what to Attend to.  

Specifically, if something is not Goal Relevant, the agent shouldn’t waste any resources 

on it.  By including this, we hope to learn how a proactive influence on what stimulus to 
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Attend to interacts with reinforcement learning (which learns after an action has been 

selected). 

In the revised model, Goal Relevance is entirely based on the stimulus’s path 

on/off augmentation, as shown in Table 9.4.  In other words, Goal Relevance is the 

continuous numeric translation of the binary values for path.  (Clearly, in a more complex 

model, it may be more that that). 

Path On Path Off 

1.0 0.0 
Table 9.4: Goal Relevance values. 

 

There are multiple ways in which Goal Relevance could influence what the agent 

attends to.  The most obvious is simply to include allow it to influence feeling intensity, 

as before.  Thus, more relevant stimuli will result in more intense feelings (and thus more 

extreme rewards).  One problem with this approach is that, if there are many other 

appraisals, the effect of Goal Relevance will be washed out (since, unlike Outcome 

Probability and Discrepancy from Expectation, it is just averaged in with the others).  On 

the other hand, if there are very few other appraisals, Goal Relevance can skew the values 

too strongly.  Indeed, in experiments not shown, allowing Goal Relevance to influence 

feeling intensity resulted in the creation of infinite reward cycles.  The problem was that, 

for positive rewards, Conduciveness and Goal Relevance were both 1 (because the 

stimulus was on path), so the magnitude of positive rewards was unchanged.  But for 

negative rewards in the case where the stimulus was on path but progress was false, 

Conduciveness would be -0.5 while Goal Relevance was still 1.  The effect was to 

essentially decrease the magnitude of negative rewards in enough cases that the agent 

was able to nearly always find an infinite reward cycle.  We could possibly have avoided 

this by manipulating the exact values of the appraisals, or the underlying values from 

which they are generated, but this was undesirable since it meant exploring a large 

parameter space, and probably finding a domain-specific set of values. 

An alternative solution is to recognize that, by giving a stimulus a particular path 

value, the agent is indicating that it already knows if a stimulus is relevant or not.  Thus, 
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rather than just learning after the fact that a stimulus should or should not have been 

Attended to, the agent can influence the selection directly. 

We call this direct influence value boosting, which works like this.  Each Attend 

operator has some value as learned by the agent via reinforcement learning.  The agent 

“boosts” this value by adding the value of the Goal Relevance appraisal to it.  Thus, for 

stimuli on the path, the agent adds 1 to the value, and for stimuli off the path, the value is 

unchanged (0 is added).  Since the rewards the agent gets are no greater than 1, most of 

the values are less than 1, and thus adding 1 is a major boost.  Essentially, the agent 

ignores stimuli that are off the path. 

This does not mean that the agent is automatically perfect.  In any given situation, 

there may be many stimuli that are on the path.  For example, if the agent is in the 

supertask and not carrying a block, all subtasks to go to rooms that have not yet been 

visited, or that are known to contain blocks, are on the path.  The agent must still learn 

which order to do these in.  Furthermore, because the value of these operators is 

artificially inflated, the learned values will often be negative (to reduce the summed value 

closer to the actual value).  Given enough time, the value of an operator can actually be 

reduced to the point that other operators can have higher values. 

9.7.1 Goal Relevance Results 

The experimental conditions are exactly as reported earlier.  The Conduciveness 

Outcome Probability and Discrepancy from Expectation appraisals are still enabled.  The 

Goal Relevance appraisal does not influence the feeling intensity or reward directly, but 

via value boosting. 
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Figure 9.7: Decision cycles to task completion for Goal Relevance experiment. 

Except for a blip in the third quartile and some minor learning early on, the agent’s performance is 

flat. 

 

 

 

Figure 9.8: Total reward accumulated during task for Goal Relevance experiment. 

Reward decreases across episodes, with an intermediate pronounced dip corresponding to the 

pronounced rise in decision cycles. 
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Figure 9.9: Failures across trials for each episode for Goal Relevance experiment.   

There is a pronounced peak corresponding to the pronounced variations in the other data. 

 

 

Figure 9.10: Fraction of predictions made that are correct for Goal Relevance experiment. 

The agent’s predictions are fairly flat, ending slightly worse than how it began. 

 

 

Final Episode Failures Trial Failures Total Failures 

0 12 26 
Table 9.5: Failures for Goal Relevance experiment. 

The agent fails many times, but always recovers. 
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Except for a small amount of early learning and a blip in the middle, the number 

of decision cycles to task completion is flat (Figure 9.7).  This is to be expected, given 

that the agent knows the path value for every stimulus; all it must learn is a good order in 

which to Attend to the on path stimuli (which accounts for the early learning).  The blip 

occurs because, as described earlier, the boosting has artificially inflated the values of 

some operators, causing the learned values to become very negative.  In some cases, 

these values will become negative enough that they outweigh the boost, which may 

suddenly cause some other stimuli (which are probably off path and untried) to become 

higher-valued.  The agent will then Attend to these stimuli until it discovers that they are 

even worse, at which point it returns to the on path stimuli. 

The reward starts high and goes low (Figure 9.8).  Again, this is expected, as the 

agent is choosing stimuli that are on path, and thus highly rewarding, since the agent has 

not experienced them much yet.  As it repeats these choices, however, the surprise factor 

of the intensity calculation decreases, leading to decreased reward.  There is also blip 

corresponding to the one in the decision cycles. 

Similar to the decision cycles, the fraction of correct predictions is fairly flat 

(Figure 9.10).  There is a slight initial decrease resulting from the fact that, early on, the 

episodic memory contains no information, so the agent is always making the default 

prediction (passable and on path).  Since this prediction is very vague, and the agent is 

choosing nearly all on path stimuli (except for exploratory moves), the predictions are 

correct the vast majority of the time.  As the episodic memory grows, the agent makes 

more specific predictions, and thus is wrong more often. 

The failure data (Figure 9.9 and Table 9.5) show a peak in failures around episode 

10, corresponding to blips in the decision cycle and reward data.  This is consistent with 

the explanations for those above. 

9.7.2 Knowledge Revision 

We found these results somewhat uncompelling.  On the one hand, value boosting 

works.  However, due to the exhaustive knowledge the agent has regarding path 

information, it looks like it accounts for nearly all of the agent’s performance, which 
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raises questions of the usefulness of the other appraisals.  Does this mean that the other 

appraisals are unnecessary?  The answer is no.  First, there is some learning going on, 

even if only a little.  Furthermore, Goal Relevance alone cannot be used to generate 

rewards in this model since it does not have a valence.  Thus, Conduciveness, at least, is 

necessary.  Additionally, the number of failures is higher than it is when Goal Relevance 

is not included, yet the agent still always finishes the task.  This implies that there is 

indeed learning going on that allows the agent to recover, and as we saw, Outcome 

Probability and Discrepancy from Expectation have positive effects on failure reduction.   

Still, the results would be more compelling if the learning was more obvious.  

Given the complexity of the task, the agent needs a lot of this kind of domain-specific 

knowledge or else it fails to learn (experiments not shown).  However, we may be able to 

reduce the agent’s knowledge some, and thus provide greater opportunity for learning, 

thus better demonstrating how the appraisals can all work together.  That is, we want to 

show that, even in the absence of exhaustive knowledge, this appraisal still has a positive 

influence on the agent’s learning. 

Performing an exhaustive set of experiments to determine the minimum amount 

of acceptable knowledge would have been prohibitively expensive.  Instead, we pulled 

out a few key pieces of knowledge and made the path value for those situations 

“unknown”.  This had the side effect of requiring us to introduce an “unknown” value for 

progress as well.  This is because, when the agent first creates a subtask (and thus has no 

reference point to compare progress in that subtask), it inherits the path value of the 

subtask stimulus itself (so if the task was on path, then the first step is considered to be 

making progress, etc.).  Thus, if the path value for the task is unknown, then the progress 

for the first step in a subtask will also be unknown.  Thus, we expanded the definitions of 

Goal Conduciveness and Goal Relevance to account for these new values.  For 

Conduciveness, only the clearly good situation is given a positive value; the others are 

negative to discourage cycles (Table 9.6).  For Goal Relevance, unknown is given an 

intermediate value (Table 9.7). 
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 Path: On Path: Unknown Path Off 

Progress: True 1.0 -0.25 -0.5 

Progress: Unknown -0.25 -0.25 -0.75 

Progress: False -0.5 -0.75 -1.0 
Table 9.6: Conduciveness values (accounting for unknown path and progress). 

The values for the old cases are unchanged. 

 

Path On Path Unknown Path Off 

1.0 0.5 0.0 
Table 9.7: Goal Relevance values (accounting for unknown path). 

The old values for the old cases are unchanged. 

 

One piece of knowledge removed concerned the go to room subtask.  When the 

agent is in room A and wants to get to room B, and these rooms are adjacent, then the 

stimulus corresponding to the gateway connecting the rooms is considered on path, and 

all other gateways are off path.  This knowledge was left in.  The knowledge that was 

removed covered the situation when the rooms were not adjacent.  For that case, 

previously the agent would look in the task-specific map that it had created and find 

which adjacent rooms were closer to the destination than the current room.  Gateways 

leading to those rooms were marked as on path.  Now, if the agent is more than one room 

away from the destination, the path values for the gateways are all unknown, and it must 

learn the best route to the destination. 

The other piece of knowledge concerned when to attend to rooms when in the 

clean house supertask.  The agent usually wants to create subtasks when in the supertask, 

and always wants to ignore gateways and blocks (if the agent wants to go somewhere or 

clean something, it should create the appropriate subtask).  This knowledge was left in.  

With regards to attending to rooms while in the supertask, however, the situation is more 

complex.  Usually the agent wants to ignore rooms just as it wants to ignore gateways 

and blocks.  The exception is when the agent is carrying a block and is in the storage 

room.  In that case, Attending to the room results in the agent putting down the block.  

The knowledge about when room stimuli in the supertask are on or off the path was 

removed and made unknown. 
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9.7.3 Reduced Knowledge Results 

For the reduced knowledge version, we ran for 30 episodes instead of 15, and set 

the cutoff at 20000 decision cycles instead of 10000.  This is to help the agent cope with 

the increased difficulty of the task. 

 

Figure 9.11: Decision cycles to task completion for reduced knowledge Goal Relevance experiment. 

The agent learns at first, followed by some unlearning and recovery. 
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Figure 9.12: Total reward accumulated during task for reduced knowledge Goal Relevance 

experiment. 

Reward roughly tracks the shape of the decision cycles. 

 

 

Figure 9.13: Fraction of predictions made that are correct for reduced knowledge Goal Relevance 

experiment. 

Predictions get better at first and then level off. 
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Figure 9.14: Failures across trials for each episode for reduced knowledge Goal Relevance 

experiment.   

Failures are erratic after initial learning, but reduced towards end. 

 

Final Episode Failures Trial Failures Total Failures 

2 29 58 
Table 9.8: Failures for reduced knowledge Goal Relevance experiment. 

The agent fails many times, but usually recovers. 

 

The reduced knowledge results show that the agent must still learn; Goal 

Relevance does not eliminate the usefulness of the other appraisals.  There are at least 

two kinds of learning that are happening: early and late.  The early learning takes place in 

the first 3-5 episodes (see all figures above), and is much more pronounced than in the 

agent with full knowledge.  It is here that the agent is learning what to do with the 

“unknown” stimuli.  After that, the agent experiences regression in learning (most 

pronounced in Figure 9.11 and Figure 9.14; note the correspondence between the third 

quartile in Figure 9.11, the first quartile in Figure 9.12, and the peaks in Figure 9.14), just 

as it did in the full knowledge case (Figure 9.7).  In this case, the regression is worse, 

probably because some of the stimuli the agent gets exposed to are “unknown”.  Thus, 

whereas before the agent only had to deal with “off path” stimuli, it now must also deal 

with “unknown” stimuli.  Still, the agent eventually recovers. 
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We conclude that Goal Relevance has a generally positive impact on performance 

by reducing the number of contenders for Attention that the agent must learn to 

distinguish among.  With exhaustive knowledge, the agent is able to do this very well, but 

even with reduced knowledge the agent generally does better than without this appraisal.  

This implies that, in addition to Goal Relevance, the other Relevance appraisals 

(Suddenness, etc.) are also worth future exploration. 

9.8 Exploring Intrinsic Pleasantness 

Intrinsic Pleasantness is an unusual appraisal because its value is independent of 

the current task.  Another way to look at this is that it reflects long-term learning or an 

evolutionary adaptation to treat certain stimuli as always good or bad.  For example, 

someone on a diet may still find cake to be Intrinsically Pleasant because of the rewards it 

has consistently provided in the past (or because evolution has made us inherently desire 

high-energy foods).  Our model does not attempt to learn values for Intrinsic 

Pleasantness, but it does allow us to explore the effects of Intrinsic Pleasantness values 

for various stimuli on behavior and learning. 

As with Goal Relevance, we can either just allow Intrinsic Pleasantness to 

influence intensity, or we can use value boosting.  Unlike Goal Relevance, as a valenced 

appraisal, Intrinsic Pleasantness also influences valence (until now, valence was entirely 

determined by Conduciveness).  This makes intuitive sense (consider the cake example), 

and is what motivated us to make the circumplex-inspired changes described earlier.  

Additionally, Intrinsic Pleasantness does not share underlying values with other 

appraisals like Goal Relevance did, so we don’t expect there to be inherent conflict like 

there was between Goal Relevance and Conduciveness.  Finally, value boosting for 

Intrinsic Pleasantness requires the development of additional theory; for example, what 

do we do with negative values?  Do we still allow Intrinsic Pleasantness to influence 

valence but not intensity?  Or do we allow both?  Thus, to keep things simple, we decided 

to explore Intrinsic Pleasantness without value boosting. 
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9.8.1 Intrinsic Pleasantness Results 

The experimental conditions are exactly as reported earlier, with a cutoff of 20000 

and 15 episodes.  The Conduciveness Outcome Probability and Discrepancy from 

Expectation appraisals are still enabled, but Goal Relevance is not.  Intrinsic Pleasantness 

influences feeling intensity and valence as described earlier. 

For this experiment, we gave blocks an Intrinsic Pleasantness value of 1.0 

(everything else was neutral).  This means that the valence generated for a block stimulus 

will have a strong positive bias.  This will interact with the Conduciveness value, which 

will either reinforce that bias, or counteract it.  Depending on the situation, this may have 

positive or negative effects on the agent’s learning and behavior.  For example, in many 

cases, Attending to a block will ultimately be a good thing, as this is necessary in order to 

get blocks into the storage room.  In these cases, boosting the valence of the block will 

help the agent learn more quickly that this is a good thing to do.  However, there are other 

cases where Attending to a block is the wrong thing to do.  For example, if the agent is 

already carrying a block, or if the block is in the storage room, then Attending to the 

block is a distraction.  When Conduciveness was the only input to valence, the block 

would have had a negative valence in these situations.  However, with Intrinsic 

Pleasantness, these may end up having a positive or neutral valence.  This may make it 

more difficult for the agent to learn not to do those things.  In fact, there may be new 

reward cycles because of the increase in positive valence.  If so, the agent may still be 

able to learn to overcome these at the cost of slower learning. 
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Figure 9.15: Decision cycles to task completion for Intrinsic Pleasantness experiment. 

The agent learns across episodes, but doesn’t do as well in the third quartile. 

 

 

Figure 9.16: Total reward accumulated during task for Intrinsic Pleasantness experiment.  The agent 

learns to get more reward across episodes. 

The third quartile here appears to correspond to the third quartile in the decision cycles, implying 

that there were some reward cycles. 
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Figure 9.17: Fraction of predictions made that are correct for Intrinsic Pleasantness experiment. 

The agent learns to improve its predictions across episodes. 

 

 

Figure 9.18: Failures across trials for each episode for Intrinsic Pleasantness experiment.   

Failures remain fairly flat. 

 

Final Episode Failures Trial Failures Total Failures 

7 23 90 
Table 9.9: Failures for Intrinsic Pleasantness experiment. 

The agent had at least one failure in almost half of the trials, but was able to recover most of the time. 
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In terms of decision cycles (Figure 9.15), the agent does fairly well in the first two 

quartiles, but not the third.  The third quartile probably represents cases in which the 

agent had more trouble with conflicted events (where Conduciveness and Intrinsic 

Pleasantness have conflicting values).  Even in the first two quartiles, the agent does less 

well in comparison to an agent without Intrinsic Pleasantness (Figure 9.4); it starts and 

finishes higher (note the scales on the two graphs are different).  This is to be expected, 

though, given that Intrinsic Pleasantness can sometimes conflict with Conduciveness.  

The total reward (Figure 9.16) tells a similar story.  The third quartile seems to indicate 

that the agent found some reward cycles (hence the spike in the middle), which would 

explain why the third quartile for the decision cycles is so much higher. The agent also 

learns to make better predictions (Figure 9.17).  Compared to an agent without Intrinsic 

Pleasantness (Figure 9.6), the agent actually starts better but ends worse.  The early 

success could be a reflection of early cyclical behavior (i.e., the agent learning to predict 

bad cycles) or that the agent learns to pick up blocks faster.  The slightly worse prediction 

performance at the end is just a reflection of the conflict between Intrinsic Pleasantness 

and Conduciveness.  Finally, the agent has many failures (Figure 9.18 and Table 9.9), but 

learns to recover from most of them at the very end.  Thus, while there were cycles the 

agent was able to learn to overcome them.  That is, they were not infinite in that negative 

reward from later stimuli eventually overcame the positive bias.  Furthermore, the 

repetition inherent in cyclical behavior would have reduced the feeling intensity due to 

the interaction between Outcome Probability, Discrepancy from Expectation, and the 

episodic memory. 

Thus, we see an interesting interaction between Intrinsic Pleasantness and the 

task—they can sometimes conflict, but learning is able to overcome these issues.  In other 

tasks, it may be that Intrinsic Pleasantness is always helpful or always conflicting, in 

which case we would expect to see more extreme results (either good or bad).  However, 

in order for this appraisal to make functional sense, the net effect should be positive.  

Thus, further exploration into this appraisal should be conducted in the future. 
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9.9 Additional Experiments 

There were at least two experiments we wanted to conduct with the revised 

system that are not directly related to specific appraisals; the purpose of these 

experiments was to explore extensions to the model.  First, we wanted to explore whether 

mood has the same positive effect here as it did in the Eaters domain.  Second, in all of 

these experiments so far, the learning and exploration rates were constant.  This may have 

prevented the system from achieving its full potential because it may not have been able 

to converge properly, and exploration may have forced it to make some bad moves.  We 

explored whether emotion can be used to modulate these aspects of reinforcement 

learning. 

9.9.1 Mood 

We tested mood with Conduciveness, Outcome Probability, and Discrepancy 

from Expectation enabled, with many different values for the decay and movement rates 

(results not shown).  We hypothesized that mood would essentially propagate values 

forward to new states, giving them better initial values.  Unfortunately, mood seemed to 

have virtually no impact on the agent (results not shown); the results are nearly identical 

to the agent under the same conditions without mood.  The only difference is that the 

scale of the total rewards is much larger (the max is higher and the min is lower).  This is 

not surprising because, with mood, the agent is getting non-zero rewards all the time, not 

just in the couple decision cycles between Attend and Intend.  Still, the shape of the 

rewards is the same. 

We speculate that the reason mood has no impact in this domain may be because 

of the domain itself, or the reduced noise (e.g., fewer and higher quality appraisals), or 

possibly an unexpected impact of one of the many changes we made to the agent.  While 

this is essentially a negative result, it is also worth noting that mood did not have a 

negative impact on the agent.  Clearly, further exploration is required here in the future. 

9.9.2 Dynamic Exploration Rate 

Traditional reinforcement learning systems usually decrease exploration rate in a 

fixed way (e.g., linear across actions or episodes).  While this approach may work for 



 129 

agents in fixed domains, we find this approach unsatisfactory for a system that aspires to 

be general, since the agent can never know how many actions or episodes it has left for 

any given task. 

Wilson (1996) describes several exploration strategies, grouping them into global 

strategies (e.g., constant rate, descending function of time, or statistical measurements of 

properties like reward or error over time) and local strategies (e.g., statistical 

measurements of properties relating to the current input).  Work by Hogewoning (2007), 

mentioned earlier, is a global strategy that automatically adjusts exploration rate based on 

statistical analysis of long-term and short-term rewards over time.  This strategy requires 

keeping a history of rewards.  Furthermore, they assume the agent is using Boltzmann 

action selection, whereas we are using epsilon greedy. 

We tried a couple of simpler approaches based on the agent’s feeling intensity and 

valence.  The idea is that if the feeling valence is positive, then things are probably going 

well, so exploration rate is set to 0.  If the feeling valence is negative, then things could 

probably be going better, so the exploration rate is set to the absolute value of the reward 

(feeling intensity multiplied by feeling valence).  That is, the worse things are (in terms 

of both intensity and valence), the higher the exploration rate.  The exploration rate 

naturally falls in the [0,1] range with this setup.  If mood is disabled, this is a local 

exploration strategy (since it is determined by the current stimulus only).  If mood is 

enabled, then this is essentially a hybrid global/local strategy since the agent’s current 

feeling is a combination of its emotion (which is about the current stimulus) and its mood 

(which is about recent stimuli). 

Below we show the results with emotion only.  Conduciveness, Outcome 

Probability and Discrepancy from Expectation are enabled.  The cutoff is set at 10000 

decision cycles (so these results are directly comparable to those in Figure 9.4, Figure 

9.5, Figure 9.6 and Table 9.3). 
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Figure 9.19: Decision cycles to task completion for Dynamic Exploration experiment. 

Compared to the agent without Dynamic Exploration, this agent takes slightly fewer decision cycles. 

 

 

Figure 9.20: Total reward accumulated during task for Dynamic Exploration experiment. 

Compared to the agent without Dynamic Exploration, this agent has a much more pronounced dip in 

reward. 
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Figure 9.21: Fraction of predictions made that are correct for Dynamic Exploration experiment. 

Compared to the agent without Dynamic Exploration, this agent learns to be much more accurate. 

 

 

Figure 9.22: Failures across trials for each episode for Dynamic Exploration experiment.   

Early failures are more erratic but settle at a constant level. 

 

Final Episode Failures Trial Failures Total Failures 

4 19 69 
Table 9.10: Failures for Dynamic Exploration experiment. 

The agent has more failures than without Dynamic Exploration. 
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Figure 9.23: Decision cycles to task completion with and without Dynamic Exploration (medians).   

With Dynamic Exploration, the agent learns slightly faster and better. 

 

 

Figure 9.24: Total reward accumulated during task with and without Dynamic Exploration 

(medians).   

With Dynamic Exploration, the reward peaks sooner and reduces faster. 
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Figure 9.25: Fraction of predictions made that are correct with and without Dynamic Exploration 

(medians).   

The agent with Dynamic Exploration learns much faster and better. 

 

With Dynamic Exploration, the agent’s performance generally improved.  The 
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(Figure 9.20 and Figure 9.24).  This was not surprising given the pronounced 

improvement in prediction accuracy (about 15% at the end, with a faster initial climb; 

Figure 9.21 and Figure 9.25).  The implication was that exploration rate did in fact reduce 

over time, and that the agent converged to consistent good behavior. 

Where the agent did not improve is in failures (Figure 9.22 and Table 9.10).  

Whereas before the agent had no failures, it now had many (although still few final 

failures, implying it usually recovers).  The cause for this was probably those cases where 
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consistent pattern of behavior.  The agent could probably do better, but the small 

magnitude means the exploration rate in these situations is very low.  In essence, the 

agent was locked into this bad behavior for a long time.  The only way to break out was 

either to accumulate enough negative reward to reduce the value sufficiently (which 
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would take a long time given the small magnitude), or to “get lucky” enough times to 

find a better option.  Still, as the quartiles in the other results show, these failures are 

outside the norm. 

With mood enabled, the agent’s performance (not shown) matched the above 

results.  Given that mood had no impact on the agent without Dynamic Exploration, this 

is not surprising. 

9.9.3 Dynamic Learning Rate 

As with exploration rate, traditional reinforcement learning systems typically 

change learning rate in a fixed way, and we found this unsatisfactory for the same reasons 

as above. 

As with Dynamic Exploration Rate, we tried tying the learning rate to the agent’s 

feeling intensity and valence.  In situations where the agent has strong feelings, the 

implication is that there is more to learn, whereas when feelings are weak, there is less to 

learn.  Thus, Dynamic Learning Rate was defined as the absolute value of the feeling 

intensity multiplied by the feeling valence (that is, the absolute value of the reward). 

There may be an interesting interaction between learning rate and episodic 

memory (via the Outcome Probability and Discrepancy from Expectation appraisals).  

For example, when the agent first learns about something particularly good, it should 

learn a lot about it, but as it repeats that action many times, the feeling intensity goes 

down.  However, with Dynamic Learning Rate, the learning rate will go down, too, 

which will effectively lock in a higher value.  Thus, this value will not go down to zero 

over time, so the agent should never “unlearn” the higher value.  Additionally, if the 

agent ever makes a bad exploratory move, it should get a large negative penalty (since it 

is unexpected) and that should come with a high learning rate, helping the agent to learn 

about negatively valued actions quickly. 

We performed experiments with Conduciveness, Outcome Probability, and 

Discrepancy from Expectation enabled.  The agent learned across 15 episodes with a 

10000 decision cycle cutoff. 
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In all cases, the results for number of decision cycles, total reward, and fraction 

correct predictions are virtually identical to the same conditions without Dynamic 

Learning Rate, and thus these are not shown.  Instead, we focus on the failures. 

In the first experiment, we simply enabled Dynamic Learning Rate.  This matched 

the original results obtained with a fixed learning rate (Table 9.3); that is, there were no 

failures. 

In the next experiment, we enabled both Dynamic Learning Rate and Dynamic 

Exploration Rate.  This time, the agent performed much better (Figure 9.26 and Table 

9.11), than with Dynamic Exploration alone (Figure 9.22 and Table 9.10), but still more 

than zero.  However, the data show that all failures occurred early; once some initial 

learning took place, agent never failed.  

 

Figure 9.26: Failures across trials for each episode for Dynamic Learning and Exploration 

experiment.   

Some early failures but none in later episodes. 

 

Final Episode Failures Trial Failures Total Failures 

0 4 4 
Table 9.11: Failures for Dynamic Learning and Exploration experiment. 

The agent has far fewer failures than with Dynamic Exploration alone. 

 

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fa
ilu

re
s

Episodes



 136 

Finally, we tried Dynamic Learning and Exploration with mood enabled.  The 

agent performed slightly worse under this condition (Figure 9.27 and Table 9.12).  This 

may be variability in the data (since mood has previously had no effect), or it may be that 

mood, in effect, actually introduces a little bit of noise.  The fact that the failures are more 

spread out across episodes supports the noise explanation, although the agent was still 

able to recover by the end. 

 

Figure 9.27: Failures across trials for each episode for Dynamic Learning and Exploration 

experiment with mood.   

Failures are more spread out across episodes. 

 

Final Episode Failures Trial Failures Total Failures 

0 7 7 
Table 9.12: Failures for Dynamic Learning and Exploration experiment with mood. 

The agent had slightly more failures than without mood. 

 

9.10 Summary 

Our goal was twofold.  First, we wanted to demonstrate that the system was still 

capable of learning in a complex, continuous environment.  Second, we wanted to 

explore how various appraisals influenced that learning, in an attempt to tease apart the 

effects of the different parts of what has become a complex system. 
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For the first point, the agent was clearly able to learn in the new domain.  This 

was repeatedly demonstrated in our experiments used to address the second point.  For 

the second point, we chose a subset of five appraisals (the rest were disabled).  We tested 

Conduciveness alone, which was generally successful but suffered from some failures.  

Next, we introduced Outcome Probability and Discrepancy from expectation.  The values 

for these were tied to the system’s prediction ability, which was enhanced with an 

episodic memory.  This resulted in zero failures.  This setup with Conduciveness, 

Outcome Probability, Discrepancy from Expectation, and the episodic memory was used 

as a base for the remaining experiments. 

To this base we first added Goal Relevance via a boosting mechanism, which 

almost did too well.  We argued that this did not obviate the need for the other appraisals, 

and reinforced this with a second experiment with reduced knowledge, which 

demonstrated that learning still takes place.  Next we added Intrinsic Pleasantness to the 

base.  This took the form of positive valence for blocks.  As expected, the results were 

mixed, but overall the agent did well and learned to recover from negative situations.  We 

also explored mood in the context of the base model, but found that it had no impact.  

Finally, we tried dynamically changing the exploration and learning rates.  Dynamic 

Exploration rate had a generally positive effect, but resulted in more failures.  By itself, 

Dynamic Learning Rate had no effect, but when combined with Dynamic Exploration 

Rate, it retained the benefits of Dynamic Exploration while also reducing failures.  An 

important takeaway from these dynamics experiments is that emotion was able to 

regulate another part of the cognitive architecture with positive results. 

Table 9.13 summarizes the key points for each of the experiments we ran. 
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Conduciveness Foundation to learning. Agent learns to perform the task better 

over time. 

Outcome Probability 

and Discrepancy 

from Expectation 

Introduced episodic memory for generating predictions as basis 

for generating values for these appraisals.  Agent learns to 

predict better over time.  Also results in much improved failure 

rates. 

Goal Relevance Used to “boost” value of proposed Attend operators.  Agent 

does extremely well (except for failures), to the point where it 

almost isn’t learning, raising questions about the value of other 

appraisals.  Knowledge about Goal Relevance was reduced, 

leading to more learning. 

Intrinsic 

Pleasantness 

Used to provide a task-independent bias on valence.  Results 

are mixed, as expected, but agent generally learns to overcome 

problems. 

Mood Mood had no effect in this domain under a variety of 

circumstances. 

Dynamic 

Exploration and 

Learning Rates 

Emotion was used to regulate another part of the cognitive 

architecture.  Dynamic Exploration Rate resulted in tighter 

convergence and better prediction accuracy, but more failures.  

Dynamic Learning Rate had no impact alone (e.g., failures 

were still zero), but combined with Dynamic Exploration, 

retained the benefits of Dynamic Exploration while reducing 

failures. 
Table 9.13: Summary of experiments and key takeaway points from the results. 

 

Finally, we want to summarize our contributions to reinforcement learning.  We 

connected emotion, mood and feeling to reinforcement learning by hypothesizing the use 

of feeling as an intrinsically motivating reward signal (Chapter 7).  In this context, mood 

provides a time-averaging effect over reward, allowing rewards to be generated in states 

that lack external stimuli.  This method of generating reward worked in both discrete and 

continuous environments (Chapters 7-9).  In the continuous case, we introduced a method 

for skipping over temporal gaps between RL states as caused by impasses and non-

learned processing (section 8.3.4).  Finally, we demonstrated how aspects of the emotion 

system can be used to manipulate aspects of the reinforcement learning system; 

specifically, we used emotion to regulate the learning and exploration rate parameters.
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Chapter 10 

 

Summary, Future Work, and Conclusion 
 

In summary, we have presented an integration of cognition and emotion, in which 

each side provides a functional necessity to the other: cognition (as PEACTIDM) 

provides the processes necessary to generate emotions (via appraisals), whereas emotion 

(via appraisals) provides the data which cognition (via PEACTIDM) processes.  On top 

of this theoretical grounding, we extended the Soar cognitive architecture to include the 

computational mechanisms necessary to support our proposed integration.  

This integration was realized in a Soar model of the simple choice response task 

(Chapter 3).  This model demonstrated that cognition and emotion both provided insights 

about each other, including new mechanisms for cognitive architectures and 

representations for emotions, including active appraisal frames, the appraisal detector, 

and emotion intensity. We also touched on human data. 

To explore further, we then extended the model to an ongoing task in the artificial 

Eaters environment (Chapter 4).  For this domain, we expanded the set of appraisals the 

model generated.  The new domain also introduced many new issues, such as creation of 

subtasks and long-term influences of emotion.  The later led us to propose a model of the 

interaction between emotion, mood and feeling.  We also demonstrated a connection 

between emotion and behavior (in both directions), including the temporal dynamics, in 

our evaluation of this model (Chapter 5). 

Work in this non-learning model begged the question: what are the functional 

benefits of emotion?  In response to this question, we proposed that it may serve as an 

intrinsic motivator (that is, internal reward signal) for reinforcement learning (Chapter 7).  

Our verification of this began with an extension of the non-learning model so that it could 
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learn in the same simple Eaters domain.  This was successful: the agent was able to 

improve its performance in the domain.  However, the complexity of the system made it 

difficult to tell how various aspects of the model actually contributed to its performance.  

Additionally, we wanted to explore how the model would scale to a more complex 

domain. 

To explore these issues, we introduced the Room domain, which has continuous 

time and space properties.  The model was revised in several ways to deal with this new 

domain, including changes in knowledge and refinements to the way various aspects 

worked (Chapter 8).  To explore performance in this new environment (Chapter 9), we 

enabled only a subset of appraisals in various configurations.  We also introduced a new 

episodic memory mechanism to better support the generation of predictions and the 

associated Outcome Probability and Discrepancy from Expectation appraisals.  We 

demonstrated that each of the selected appraisals influences the agent’s learning and 

behavior, usually positively. We also explored mood in this domain, but with negative 

results.  Finally, we looked at using feelings to dynamically modulate exploration and 

learning rates.  This resulted is generally improved performance. 

There are vast, overlapping areas we have yet to explore.  One goal is to expand 

to a more complete model of emotion, including its integration with the rest of cognition 

and physiology.  This expansion will likely provide additional constraints to help shape 

our theory, and our theory may provide additional constraints on the theories in these 

areas. For example, how we represent appraisals and emotion may be influenced by these 

other areas, and vice versa.  Besides these areas, we will also discuss scalability, and 

validation.  

Beyond our very abstract mood model, the system has no notion of physiology.  

Physiology plays critical roles in action tendencies (Frijda et al., 1989), non-verbal 

communication such as facial expression (Ekman, et al., 1987) and tone of voice, and 

other more basic physiological measures such as skin conductance, heart rate, and blood 

pressure.  Once a more complete physiological model is in place, we can also explore 

introspection about the current physiological state, for example, which may extend to 
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emotion recognition (Picard, 1997).  Basic drives such as hunger and thirst can also be 

explored in the context of emotion. 

On the cognitive side, we have scratched the surface of learning, but that remains 

a major area for continued research.  For example, we have not yet explored how 

appraisal values might be learned.  We also need to explore how emotion interacts with 

other cognitive mechanisms; for example, the episodic and semantic memories depicted 

in Figure 2.2.  Such a system could allow phenomena ranging from priming effects 

(Neumann, 2001) to emotional intelligence (Picard, 1997) to be explored.  While we did 

scratch the surface of actually allowing emotion to influence decision making, clearly 

there is much more to be done there as well. 

We demonstrated that the system can scale to a more complex environment with 

more complex appraisal value generation.  But there is also the matter of simply 

generating more appraisals; for example, what about socially oriented appraisals?  Does 

the system scale to explaining aspects of social interaction and culture? 

Finally, there is the issue of validation.  There are multiple ways in which we 

might attempt to validate the system going forward: believability (Neal Reilly, 1996), 

human data (which we explored briefly), physiological measures, behavior, and decision 

making (Gratch et al., 2006), and functionality (e.g., learning, which we have already 

started to explore, the impact of additional appraisals, etc.). 

This partial list demonstrates the vast amount of work remaining; it seems 

unlikely that anything short of a complete human intelligence system can actually address 

it all.  Indeed, this is perhaps a key point that emotion researchers have been making for a 

long time: emotion is a key aspect of human-level intelligence. 

In conclusion, our system has several features and implications, which we list 

below.  For ease of understanding, we have included the list we presented earlier (section 

5.3) and extended it here: 

1. Appraisals are a functionally required part of cognitive processing; they cannot be 

replaced by some other emotion generation theory. 
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2. Appraisals provide a task-independent language for control knowledge, although 

their values can be determined by task-dependent knowledge.  Emotion and mood, 

by virtue of being derived from appraisals, abstract summaries of the current and 

past states, respectively.  Feeling, then, augments the current state representation 

with knowledge that combines the emotion and mood representations and can 

influence control. 

3. The integration of appraisal and PEACTIDM implies a partial ordering of 

appraisal generation. 

4. This partial ordering specifies a time course of appraisal generation, which leads 

to time courses for emotion, mood and feeling.   

5. Emotion intensity is largely determined by expectations and consequences for the 

agent; thus, even seemingly mundane tasks can be emotional under the right 

circumstances. 

6. In general, appraisals may require an arbitrary amount of inference to be 

generated.  That is, the theory supports Marsella & Gratch’s (in press) distinction 

between appraisal and inference. 

The following are additions to the original list: Internal and external stimuli are treated 

identically. 

8. Circumplex models can be synthesized from appraisal models: they provide a 

description of the emotion generated by appraisal. 

9. Reinforcement learning is driven by intrinsically generated rewards based on the 

agent’s feeling. 

10. Mood averages reward over time, allowing states with no reward-invoking 

stimulus to still have a reward associated with them.  This leads to improved 

learning in some cases. 

11. The system scales to continuous time and space environments.  Changes made to 

support this include adding a temporal gap jump to reinforcement learning to 

allow rewards to propagate back through non-RL states. 

12. Each appraisal contributes to the agent’s performance. 

13. Reinforcement learning parameters can be influenced by the current emotional 

state, resulting in improved performance. 
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Emotion has become an active area of research in recent years.  We hope this 

thesis makes a meaningful contribution to this area, and reminds researchers in both the 

cognitive architecture and emotion camps of the important role each must play in the 

search for understanding.



 144 

References 
 

Agre, P. (1988). The dynamic structure of everyday life. Dissertation, MIT, 

Electrical Engineering and Computer Science, Cambridge. 

Anderson, J. R. (2007). How Can the Human Mind Exist in the Physical 

Universe? New York: Oxford University Press. 

Breazeal, C. (2003). Function Meets Style: Insights from Emotion Theory 

Applied to HRI. IEEE Transactions in Systems, Man, and Cybernetics, Part C , 34 (2), 

187-194. 

Chong, R. S., & Laird, J. (1997). Identifying Dual-Task Executive Process 

Knowledge using EPIC-Soar. Proceedings of the Nineteenth Annual Conference of the 

Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Damasio, A. (1994). Descarte's error: Emotion, reason, and the human brain. 

New York: Avon Books. 

Damasio, A. (2003). Looking for Spinoza: Joy, sorrow, and the feeling brain. 

USA: Harcourt. 

Diener, E., & Diener, C. (1996). Most people are happy. Psychological Science , 

7 (3), 181-185. 

Ekman, P., Friesen, W., O'Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., 

Heider, K., et al. (1987). Universals and Cultural Differences in the Judgments of Facial 

Expressions of Emotion. Journal of Personality and Social Psychology , 53 (4), 712-717. 

Feldman Barrett, L., & Russell, J. (1998). Interdependence and bipolarity in the 

structure of current affect. Journal of Personality and Social Psychology , 74, 967-984. 

Forgas, J. P. (1999). Network theories and beyond. In T. Dalgleish, & M. Power 

(Eds.), Handbook of Cognition and Emotion (pp. 591-611). Chichester, England: Wiley 

and Sons. 

Fredrickson, B., & Levenson, R. (1998). Positive emotions speed recovery from 

cardiovascular sequelae of negative emotions. Cognition and Emotion , 12 (2), 191-220. 

Frijda, N. H., Kuipers, P., & ter Schure, E. (1989). Relations among emotion, 

appraisal, and emotional action readiness. Journal of Personality and Social Psychology , 

57, 212-228. 



 145 

Gratch, J., & Marsella, S. (2004). A domain-independent framework for modeling 

emotion. Cognitive Systems Research , 5 (4), 269-306. 

Gross, J. J., & John, O. P. (2003). Individual differences in two emotion 

regulation processes: Implications for affect, relationships, and well-being. Journal of 

Personality and Social Psychology (85), 348-362. 

Hogewoning, E. (2007). Strategies for Affect-Controlled Action-Selection in Soar-

RL. Technical Report 07-01, Leiden University, Leiden Institute of Advanced Computer 

Science. 

Hogewoning, E., Broekens, J., Eggermont, J., & Bovenkamp, E. (2007). 

Strategies for Affect-Controlled Action-Selection in Soar-RL. In J. Á. Mira (Ed.), Nature 

Inspired Problem-Solving Methods in Knowledge Engineering, Second International 

Work-Conference on the Interplay Between Natural and Artificial Computation. 2, pp. 

501-510. La Manga del Mar Menor, Spain: Springer. 

Hudlicka, E. (2004). Beyond Cognition: Modeling Emotion in Cognitive 

Architectures. Proceedings of the International Conference of Cognitive Modelling, 

ICCM 2004, (pp. 118-123). Pittsburgh, PA. 

John, B. E., Rosenbloom, P. S., & Newell, A. (1985). A theory of stimulus-

response compatibility applied to human-computer interaction. Proceedings of CHI'85 

Human Factors in Computer Systems. New York: Association for Computing Machinery. 

Kaplan, S. S., & Chown, E. (1991). Tracing Recurrent Activity in Cognitive 

Elements (TRACE): A Model of Temporal Dynamics in a Cell Assembly. Connection 

Science , 3, 179-206. 

Kaplan, S., & Kaplan, R. (1982). Cognition and Environment. New York: 

Praeger. 

Kieras, D., & Meyer, D. E. (1997). An overview of the EPIC architecture for 

cognition and performance with application to human-computer interaction. Human-

Computer Interaction , 12, 391-438. 

Laird, J. (2008). Extending the Soar Cognitive Architecture. Proceedings of the 

First Conference on Artificial General Intelligence. Memphis: IOS Press. 

Laird, J., Rosenbloom, P., & Newell, A. (1986). Chunking in Soar: The Anatomy 

of a General Learning Mechanism. Machine Learning , 1 (1), 11-46. 

Lambie, J. A., & Marcel, A. J. (2002). Consciousness and the varieties of emotion 

experience: A theoretical framework. Psychological Review , 109 (2), 219-259. 

Lathrop, S. (2008). Extending Cognitive Architectures with Spatial and Visual 

Imagery Mechanisms. Dissertation, University of Michigan, Electrical Engineering and 

Computer Science, Ann Arbor. 



 146 

Marsella, M., & Gratch, J. (in press). EMA: A Process Model of Appraisal 

Dynamics. Journal of Cognitive Systems Research . 

Nason, S., & Laird, J. (2005). Soar-RL, Integrating Reinforcement Learning with 

Soar. Cognitive Systems Research , 6 (1), 51-59. 

Neal Reilly, W. S. (1996). Believable Social and Emotional Agents. Technical 

Report CMU-CS-96-138, Carnegie Mellon University, Pittsburgh. 

Neal Reilly, W. S. (2006). Modeling what happens between emotional 

antecedents and emotional consequents. Proceedings of the Eighteenth European 

Meeting on Cybernetics and Systems Research (pp. 607-612). Vienna, Austria: Austrian 

Society for Cybernetic Studies. 

Neumann, R. (2001). The causal influences of attributions on emotioins: A 

procedural priming approach. Psychological Science , 11 (3), 179-182. 

Newell, A. (1990). Unified Theories of Cognition. Cambridge: Harvard 

University Press. 

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report on a general problem 

solving program. Proceedings of the International Conference on Information Processing 

(pp. 256-264). Paris: UNESCO. 

Nuxoll, A. (2007). Enhancing Intelligent Agents with Episodic Memory. 

Dissertation, University of Michigan, Electrical Engineering and Computer Science, Ann 

Arbor. 

Ortony, A., Clore, G., & Collins, A. (1988). The Cognitive Structure of Emotions. 

Cambridge, MA: Cambridge University Press. 

Picard, R. (1997). Affective Computing. Cambridge, MA: MIT Press. 

Roseman, I., & Smith, C. A. (2001). Appraisal Theory: Overview, Assumptions, 

Varieties. In K. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal Processes in 

Emotion: Theory, Methods, Research. New York: Oxford University Press. 

Rosenberg, E. L. (1998). Levels of analysis and the organization of affect. Review 

of General Psychology , 2, 247-270. 

Salichs, M., & Malfaz, M. (2006). Using Emotions on Autonomous Agents. The 

Role of Happiness, Sadness, and Fear. Proceedings of the AISB'06 Adaptation in 

Artificial and Biological Systems, (pp. 157-164). Bristol, UK. 

Scherer, K. (2001). Appraisal Considered as a Process of Multilevel Sequuential 

Checking. In K. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal Processes in 

Emotion: Theory, Methods, Research. New York: Oxford University Press. 



 147 

Schorr, A. (2001). Appraisal: The Evolution of an Idea. In K. Scherer, A. Schorr, 

& T. Johnstone (Eds.), Appraisal Processes in Emotion: Theory, Methods, Research (pp. 

20-34). New York: Oxford University Press. 

Singh, S., Barto, A., & Chentanez, N. (2004). Intrinsically Motivated 

Reinforcement Learning. Proceedings of Advances in Neural Information Processing 

Systems 17 (NIPS).  

Smith, C. A., & Kirby, L. A. (2001). Toward delivering on the promise of 

appraisal theory. In K. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal Processes in 

Emotion: Theory, Methods, Research (pp. 121-138). New York: Oxford University Press. 

Smith, C. A., & Lazarus, R. S. (1990). Emotion and adaptation. In L. A. Pervin 

(Ed.), Handbook of Personality Theory and Research (pp. 609-637). New York: 

Guilford. 

Sun, R. (2006). The CLARION cognitive architecture: Extending cognitive 

modeling to social simulation. In R. Sun (Ed.), Cognition and Multi-Agent Interaction. 

New York: Cambridge University Press. 

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An Introduction. 

Cambridge, MA: MIT Press. 

Wang, Y., & Laird, J. (2006). Integrating Semantic Memory into a Cognitive 

Architecture. Technical Report CCA-TR-2006-02, University of Michigan. 

Wilson, S. (1996). Explore/Exploit Strategies in Autonomy. In P. Maes, M. 

Mataric, J. Pollack, J. Meyer, & S. Wilson (Ed.), From Animals to Animats 4: 

Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. 

Cambridge, MA: MIT Press/Bradford Books. 

Yik, M., Russell, J., & Feldman Barrett, L. (1999). Structure of Self-Reported 

Current Affect: Integration and Beyond. Journal of Personality and Social Psychology , 

77 (3), 600-619. 

Zajonc, R. (1984). On the primacy of affect. American Psychologist , 39, 117-

123. 

 


