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ABSTRACT

Optimal design of large systems is easier if the optimization model can be decomposed
and solved as a set of smaller, coordinated subproblems. Casting a given design problem into a
particular optimization model by selecting objectives and constraints is generally a subjective
task. This article describes how such a subjective selection can be made so that the resulting
optimal design model can be directly partitioned into an appropriate decomposed form. This
process is termed decomposition synthesis. A particular methodology for synthesizing

hierarchically decomposed optimal design models is presented together with examples.

August, 1995



INTRODUCTION

Solving an optimal design problem by decomposition methods involves partitioning a
given optimal design problem (ODP) into several smaller problems and coordinating their
solutions to obtain the solution to the original problem. The process of identifying and executing
appropriate partitioning of a given ODP is referred to as Decomposition Analysis (Wagner 1993,
Wagner and Papalambros 1993a, 1993b). Decomposition of a design problem that has been cast
in an optimization model form is linked to the mathematical structure of the already selected
objective and constraint functions. For example, if the objective is expressed as a sum of terms,
then the solution to the problem using a decomposed form is enhanced. In general, casting a
given design problem as an optimization model is subjective. Therefore, one may seek to
synthesize an ODP by defining the appropriate model functions so that the resulting model can
be directly partitioned and solved in a decomposed form. Decomposition Synthesis is defined as
the process of synthesizing a decomposable ODP from a general design problem. Successful
decomposition synthesis will allow an ODP of identified decomposition to be composed and
solved by a desired decomposition method. This is especially useful in the optimal design of
large systems (Papalambros 1995).

A general design problem (GDP) is modeled as

Findxe F
subjectto h(x,p) = 0 (1)
g(X, p) <0

where h, g are vectors of design criteria represented by equalities and inequalities that are
functions of the design variables x and parameters p, and F is the set constraint on the design
variables. The GDP is transformed to an ODP by selecting one or more design criteria from

above and composing a scalar objective, namely,

Minimize f (x, p)

subject to h(x,p) = 0 )
gx,p) <0

andxe F



where p'is a vector of parameters that includes any weights used in composing the scalar
substitute objective f. In general, the objective is a vector function which must be scalarized into
a scalar substitute form so that the methods of mathematical programming can be used. For

q
example, if there are g objectives fi(xj, p),i=1,..., q, thenfix, p') = ¥ fi(xj, p') with x; being a

i=1

subvector (any vector defined from the components of a given vector) of the design vector x. See
Athan (1994) for further details on scalar substitute functions.

The functional representations in Eq. (1) and (2) can be converted to equivalent matrix
and graph representations: the functional dependence table (FDT) and a bipartite graph or a
hypergraph (Wagner and Papalambros 1993a, Michelena and Papalambros 1995a). Functional,
matrix, and bipartite graph representations for an example GDP are shown in Fig. 1. Note that a
graph G is bipartite if its vertex set V can be divided into two disjoint subsets V; and V; such that
every edge in G joins a vertex in V; with a vertex in V, (Deo 1990). Representation of an ODP is
similar, with each term f; in a scalar objective represented by a vertex in the graph or a row in the
FDT. All graphs are assumed to be connected. (A graph G is connected if a path exists between

every pair of vertices.)
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Fig. 1 Alternate Representations of a General Design Problem

Decomposition methods for solving ODPs can be classified into hierarchical and
nonhierarchical, and further into primal and dual methods. A given problem may be decomposed
and/or solved in more than one way. A recent review and analysis of the decomposability of
optimal design problems is given in Wagner (op. cit.). Rigorous partitioning techniques for

decomposition analysis have been presented by Michelena and Papalambros (1994, 1995a, b).



The decomposition synthesis methodology proposed below makes use of the partitioning tools of
decomposition analysis. The methodology consists of two main steps. First, a "block-angular”
or a "dual-angular” structure in the GDP is found using a graph partitioning method. Next, an
ODP is composed with an identified hierarchical decomposition based on the structure found for
the GDP.

The next section formalizes some basic concepts for hierarchical and nonhierarchical
decomposition. A methodology for hierarchical decomposition synthesis is then presented

followed by examples illustrating its application.

HIERARCHICAL AND NONHIERARCHICAL DECOMPOSITION

‘A decomposition method is characterized by the mathematical structure that defines the
subproblems and by the coordination strategy that connects them in the solution process. Before
describing a synthesis methodology it is necessary to define rigorously what we mean by
hierarchical or nonhierarchical decomposition of an ODP. In this section we present definitions

that can be applied to both primal and dual formulations.

Primal Decomposition
The primal formulation of the ODP is the functional representation in Eq.(2). Assuming

a summation objective (expressed as sum of terms) as in Eq. (2) we have

q
minimize  f(X, p) = Y, fi(x;, p) €)

xeF i=1 v

subjectto:  gi(x,p) <0 Jj=1,..J,
hn(x, p) =0 m=1,.,M.

Consider the two sets C, X defined as

C = [Cl’ C2""Y Ct”"’ CT}’ X = {x19x2’"'9 xi!"" xN] (4)



where each g;, hn, and each f; term in the objective is represented by a member ¢, in the set C.
The set C is composed of T functions where T = (g + J + M). Each design variable is represented

by an x; in the set X.

Definition 1: A decomposition of an optimal design problem into K subproblems is the ordered
triple P; = (Z;, Vi, W), V i = 1,..., K, where Z; is the set of design variables to be optimized in
problem i, V; is the set of functions in problem i, W; is the set of variables that the functions in

the set V; depend on, and Z;, V;, W; satisfy the following:

Z;+9)cX, VicC, WicX (5)

VZ=X gW=C
i i

Z,'('\Zj =@, V,'ﬁVj=@, Vi¢j,andi,j,= 1,...,.K

with each function in the set V; dependent on one or more of the design variables that are

elements of the set Z;.
Definition 2. The input to problem i from problem j is defined by the set /;;, where
1,']' =W, n Zj, J#I. 6)

Definition 3: The linking variables of two subproblems i and j are defined by the set L;; = L,

where

Lij=1ij U [ji. J#i. )
Definition 4: The linking variables in a decomposition are defined by the set L,, where

L= " Ly, )]

ijii#j

In a directed graph representation of an ODP (Deo 1990, Wagner 1993) the decomposed
problems are the nodes and the inputs are the directed edges.



Definition 5: A directed graph G is said to be an out-tree or an arborescence (Deo op.cit.) if
(a) G contains no directed circuit or semicircuit,

(b) there is precisely one vertex of zero in-degree, the root of the out-tree.

Definition 6: A decomposition of an optimal design problem is hierarchical (nonhierarchical) if

its directed graph representation is (not) an out-tree (Figs. 2, 3).

Fig. 2 Hierarchical decomposition graph Fig. 3 Nonhierarchical decomposition graph

As an example, consider the ODP

r(ninimiz;e X+ XX, + XX + X,

Xy, X9, X

1°720 73 (9)
=X, =0, [y =X, e =%

subject to:
g1=x1xx3- 8<0 g2=- (x1+x+x3-2)<0
g3=-(x1)<0 g4=x1-4<0 gs=-(x2) <0
g6=x2-4<0 g7=-(x3) <0 g8 =x3-4<0.

In a hierarchical decomposition, Fig. 4(a), input flow is unidirectional (from the master
problem to the subproblems) and linking variables are (x1, x3); in a nonhierarchical one, Fig. 4(b)

inputs are bi-directional and (x1, x2, x3) link the decomposed problems.

Dual Decomposition

The Lagrangian dual problem of the primal ODP in Eq.(2) is defined as (e.g., Bazaraa et

al. 1993)
maximize (min L =£(x,p")+ " h(x, p) + A" g(x, p)} (10)
WA20)  x



Master Problem

Functions:

fi=x1  fa=x3
83=-X, §4=x -4
87=-X3, gg=x3-4

Variables: x,, x5

Problem 1

Functions:

fi=x1. fa=x3
g2=-1+ X+ x3-2)
83=-X1, 84=x-4
87=-X3 gg=x3-4
Variables: x;, x3

X1, X3 4

X1, X3 ‘ ? Xy

Subproblem
Functions:
fa=x1%y f3=X223
81 =X XXy - 8
8r=-(x;+ Xy + x3-2)

Problem 2
Functions:
Ja=x1X9, f3=23%3
81 =X1X%3 - 8

85=-X 86 =X -4

85=-X3, 86=Xp- 4

Variables: x, Variables: x;

(@ (b)

Fig. 4 (a) Hierarchical, and (b) nonhierarchical decomposition of the example formulation

where W, A (vectors) are the Lagrangian multipliers or dual variables. Under convexity
assumptions and suitable constraint qualifications, the primal and dual problems have the same
optimal objective values. In such cases it may be advantageous to apply decomposition methods
on the dual problem instead of the primal. Definitions of hierarchical and nonhierarchical
decomposition remain the same in the dual space, except that the set X will include both primal
and dual variables, and c; in general will be a function of both primal design and dual variables.
In the definitions for the dual, the primal objective f is replaced by the Lagrangian L, and f; by L;.

A simple two-level hierarchical decomposition of the dual is shown in Fig. 5. Problem A
is the master problem defined in the dual space, linking variables are the dual ones, and Problem
B is the subproblem defined in the primal space. If Problem A is not “pure,” i.e., primal

variables must be included in it, then the dual decomposition will become nonhierarchical.



Problem A

variables: (A, p)
¢ A, W - linking variables

Problem B
f(x, p")

uTh(x, p)

ATgx, p)

variables: x

Fig. 5 Hierarchy in dual decomposition

Note that instead of including all constraints in the Lagrangian, some of them may be left
out and treated separately in the primal. Then the dual variables will correspond to linking
constraints that are relaxed when solving the problem (Lootsma 1990). Also, a Lagrangian
separable in the primal will allow partition into several subproblems. These cases are illustrated

further in the example section.

METHODOLOGY FOR HIERARCHICAL DECOMPOSITION SYNTHESIS

A method for hierarchical decomposition, primal or dual, can be applied when the ODP
model has the exact form required by the relevant coordination strategy. A methodology for
decomposition synthesis aims at transforming a GDP into the desired form of a decomposable

ODP.

Primal Decomposition Synthesis
Here we consider ODPs that can be solved by primal hierarchical decomposition
methods. Assume the decomposed model has a master problem and g subproblems. Then the

original GDP must be cast into the block-angular structure shown in Fig. 6 and Eq. (11).
(X)) <0 ho(xo) =0 (11a)

gi(Xp, x) <0 hi(xo, x;) = 0 i=1..,q (11b)



Fig. 6 Block-angular structure in the GDP

Identifying Structure

The required structural form is sought using graph partitioning methods applied to the
bipartite graph representation of the GDP. As linking variables (vertices) x, are removed, the
functions that depend exclusively on these variables correspond to gy, hy in Eq. (11a). The
corresponding function vertices will be isolated after removal of linking variable vertices from
the graph. (A vertex is isolated if it is not connected to any other vertex by an edge.) In Fig. 7(a)
the FDT of a general design problem is shown. In the bipartite graph, Fig. 7(b), the set {x4, x5}
is selected as hnking variables. Removing the corresponding vertices leaves g3 and gs isolated.

Each connected component in the remaining portion of the graph that excludes the
vertices already identified with Eq. (11a) must have the structure of Eq. (11b). (A graph is a
connected component if a path exists between every pair of vertices in that graph. An isolated
vertex is also a connected componént but with just one vertex.) Fig. 7(c) shows the resulting

partitions A = {g1, g4, X1, X2}, B = (22, g6, X3, X¢}. The new FDT shown in Fig. 7(d) is block-

angular.
- Eq. (11a)

Xy|Xo| X3| X4} X5 | X6
81110/0]1[0{0
glolol1]1]1]0 A
glololol1]o]o x)—(8y
&1[1l0l1]1]0 Eq. (11b)
8(0/0/0]/0/1]0 %%
g

6l 0/0/1]1]1]1 5

@) () © d)

Fig. 7 Steps in identifying block-angular structure in the GDP
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Algorithms for identifying connected components in a graph can be used to find
partitions as in Fig. 7(c) for a particular choice of linking variables. Correct choice of linking
variables is a key decision as studied in Decomposition Analysis (Wagner 1993, Michelena and
Papalambros 1995a, b). Also, partitions such as A and B in Fig. 7(c) need not be the only way
the graph can be partitioned to fit the particular structural form. For example, one could combine
A and B into a larger single cluster and still produce the required structure. The resulting
clusters, however, may not be internally connected and hence not always acceptable (Wagner
op.cit.). Identifying a suitable structure for synthesis must include acceptability criteria

determined by the user.

Composing the ODP

After identifying the block-angular structure in the GDP, an ODP can be synthesized by
creating a summation objective function as follows: (i) select a function from the block {go, Xo},
Eq.(11a); (ii) select a function from each block i, i = 1,..., ¢, Eq.(11b); (iii) add all selected
functions with appropriate weights w;, i = 0, ..., g; this is the objective function; (iv) append all
constraints to the objective to complete the model. The resulting structure will have the form of

Eq. (12) and Fig. 8.

q
minimize [ = fo(Xg,Wo)+ 3 f;(XX;,W;) (12)
X , X, i=1
0’71
subject to:
go(x0) <0, ho(xp) =0
gi(xo, x) <0, h;(xo, x;) =0 i=1,.,q

This ODP can be decomposed into a master problem in the linking variables x¢ and ¢
subproblems in the local variables xj. A hierarchical coordination method such as those
proposed by Kirsch (1981) or Azarm (1988) can be used to solve it. The functions selected need
not be weighted linearly; exponential or other nonlinear weighting forms can be used (Athan

1994).
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Fig. 8 Hierarchically Decomposed ODP

Not all terms need be present in Eq. (12). For a given choice of linking variables, no
functions may exist in the set corresponding to Eq. 11(a). Also, objective function terms for
composing the ODP may be selectable only from the set corresponding to Eq. 11(a) as required
in the formulations used by Sobieski (1982), and Haftka (1984). The objective composed in the

above two cases will not include all terms in f of Eq. (12).

Dual Decomposition Synthesis
To apply dual hierarchical decomposition methods we must identify a dual-angular

structure in the GDP, as in Eq. (13) and Fig. 9.

q
Y gi(x) <0 J={-CgyursJ (a)
i=1
q
Y hmi(x)) =0 m=M-Cy),.... M (b)
i=1
gi(x;) <0 Jj=l..,q (©) (13)
hy,(Xn) =0 m=1,.,q (d)

Here C, and C), are the number of coupling inequality and equality functions identified in
the GDP, respectively.
Identification of structure in the GDP is similar to the primal case. The graph is

partitioned by removing vertices that correspond to functions.

1



Fig. 9 Dual-angular structure in the GDP Fig. 10 Hierarchically decomposed ODP

However, it is necessary that these linking functions be separable in the variables x; of the
independent connected components to ensure separability in the dual objective. Thus, a
particular partitioning of the GDP is acceptable only if the above separability criterion is met.
Given a dual-angular partitioning, a hierarchically decomposed ODP solvable by dual methods
can be created by constructing an appropriate objective, as in the primal case, namely,
q

minimize f= iz:l Ji (x; ,Wy) (14)
subject to the constraints in Eq. (13). The resulting FDT will have a structure as in Fig. 10. The
Lagrangian of this formulation is additively separable in xj and the problem can be solved with
dual decomposition methods, e.g., Lasdon (1968). For a linear model the Dantzig-Wolfe (1960)
method can be used.

EXAMPLES
The methodology for primal or dual decomposition synthesis is demonstrated below with

some simple examples.

Example 1: Pressure Vessel Design

A GDP for pressure vessel design based on a model in Wilde (1978) is given in Table 1.
The vessel is made of a cylindrical body and is welded on both sides by hemispherical heads.

12



Table 1 Pressure vessel problem [Example 1]

Functional Description of the Design Matrix
Representation Requirements Representation
X1 | X2 | X3 | X4
21(x1, X2, x3) £0 | Cylinder mass limits 1 {1 (110
g2(x1,x4) £0 Hemisphere mass limits 1 {0 |0 |1
23(x1,x2) <0 Stress limits in cylinderwalls [1 |1 |0 |0
g24(x1,x4) <0 Stress limits in head walls 1 {0 ]0 |1
gs(x1,x3) <0 Volume requirement 1 {0 |1 ]0
g26(x3) <0 Limit on cylinder length 0|0 |1]0

The variables x;,..., x4 are cylinder and head radii, cylinder thickness, cylinder length,
and head thickness, respectively. Decomposition into a master problem and two subproblems is
sought. If x; is chosen as the linking variable and removed, the bipartite graph of the GDP
partitions into two connected components, partitions I and II, Fig. 11(a). A block-angular
structure is identified, Fig. 11(b), with no function terms identified with Eq. 11(a), and xp = x1, X1
= (x3, x3), and X2 = x4. Functions g1, g2 are selected for a linearly weighted objective, i.e.,
minimize the volume of the cylinder and heads. The synthesized ODP, Fig. 12, is now ready to
be decomposed into a master problem in the linking variables x;, and two subproblems in the
local variables (x3, x3) and x4. instead of g1, g2 one can use the stresses in the cylinder and heads

to compose the objective.

@) (®)
Fig. 11 (a) Partitioning of the GDP, (b) Block-angular GDP [Example 1]

13



minimize [ = fi[=w; g1+ f2[=w, &1
(xl,..., x4)

subject to:

g1(x1, x2,x3) <0 g2(x1,x4) <0
g3(x1,x2) <0 ga(x1,x4) <0
85(x1,x3) <0 g6(x3) <0

@ (b)

Fig. 12 Synthesized ODP: (a) Functional form, (b) Matrix form [Example 1]

Example 2: Resource Management
Consider the GDP developed based on a problem in the area of resource management of

an economic system (Wong 1970, appearing as test problem #113, in Hock and Schittkowski

1982), Eq. (15).

81(x1,x2) £0 g2(x3,x4) <0

g3(xs, x6) <0 g4(x7,x8) <0

85(x9, x10) <0 86(x1, X2, x7,x3) <0

g7(x1, X2, 9. X10) 0 gs(x1, X2, x3,x4) <O (15)
g9(x1, X2, x3,x4) <0 g10(x1, X2, x5, x6) £ 0

g11(x1, X2, X9, x10) £ 0

hi(x1, x2, X7, x8) =0 ha(x1, x2, x5, x6) = 0

We seek a decomposition with a master problem and four subproblems. Repeating the
steps of previous example we obtain the ODP in Fig. 13. The set of linking variables is {x1, x2}
and {g1, gs, £10, &6, &7} is the set of functions chosen to compose the objective. The synthesized
ODP is decomposable into a master problem in the linking variables {x;, x2}, and four

subproblems in the local variables {x3, x4}, {x5, X6}, {x7, X8}, {x9, X10}.

14
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Fig. 13 Synthesized ODP - Matrix Form [Example 2]

Example 3: Solar House Heating System

This GDP is based on a model proposed by Wilde (1978) and is presented in Table 2.

Solar energy collected by a sheet collector is used to heat water stored in a tank. The heat from

the tank is released in a controlled fashion to the rooms by free convention and radiation. The

design problem is to select the collector area x;, radius of storage tank x;, height of storage tank

x3, wall insulation thickness x4, roof insulation thickness x5, and weather stripping length xg, so

that the house is maintained at about constant temperature at assumed cold weather conditions.

Table 2 Design problem of a solar house heating system and its FDT representation [Example 3]

GDP - Functional Description

Description of the Design Criteria

21(x1, X2, X3, X4, X5, Xg) < 0

limits on cost

g2(x1, X4, x5, X6) <0

heat input into water

g23(x1) £0 limits on collector size area
g24(x4) £0 limits on wall insulation
gs5(xs) <0 limits on roof insulation

g6(x2, x3) <0

wall area of the water tank

g1(x1, X2, x3) £0

heat storage capacity of water tank

gs3(xs) £0

O | | | O] | b | pma| 22
= R = = == R
O | | O | O O | 3
O|O|O| Of | O | pemi] &2
O|o| || O] | | |2
Ol Ol O O | bt | | &

limits on weather stripping length

We seek an ODP that can be decomposed hierarchically into a master problem and four

subproblems in the dual space. We must first find coupling or linking functions. Selecting {g;,

15



g2} as the coupling functions and removing them partitions the bipartite graph of the GDP as in
Fig. 14(a). This partition would be acceptable if {g;, g2} are additively separable in the
partitioned variables x;, namely, [{x1, x2, x3}, {x4}, {xs}, and {x¢}]. From the original model in
Wilde (op. cit.), g1 is additively separable in the functions {g11(x1), g12(x2, x3), g13(x4), g14(x6)},
and g, is additively separable in the functions {g21(x1), g22(x4), g23(xs), g24(x¢)}. The current
partitioning is therefore acceptable. The dual-angular structure in the GDP identified is shown in
Fig. 14(b). One could choose { g3, g4, g5, g8} from the partitions and compose an ODP as shown
in Fig. 15, to minimize the weighted sum of collector area, wall insulation, roof insulation, and

weather stripping length.

IV @ | II

‘-;I‘I . | .

(@) ()

Fig. 14 (a) Partitioning of the GDP, (b) Dual-angular GDP [Example 3]

minimize [ = fi[=wy g1+ fo[=w, g4]
(Jr1 ..... x6)

+ f3[= w3 gs]+ fal=wy g]

subject to:

g1(x1, X2, X3, X4, X5, X6) S0

82(x1, x4, x5, x6) <O

83x1) <0 84(x4) <0
85(xs) <0 86(x2, x3) <0
g1(x1, %2, x3) S0 gglxs) <0

(@ (b)
Fig. 15 Synthesized ODP: (a) Functional form, (b) Matrix form [Example 3]
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Example 4: Management of Water Resources

Consider the GDP developed based on a problem in the area of water resource
management proposed by Sung (1978) (cited in an example problem by Haimes et al., 1990,
exercise.# 1, section 9.5), Eq. (16). We seek an ODP that is decomposable into a master problem

and three subproblems in the dual.

81(x1,x2) £0 g2(x3, x4) <0 g3(xs, X6, x7) <0

84(x2) <0 g5(x3, x4) <0 g6(x4, x7) <0

871(x1) <0 8s(x2) <0 g9(x3) <0

g10(x4) <0 g11(x5) <0 g12(x6) SO (16)
813(x7) <0 hi(x1, x2,x3) =0 hy(xs, x6, x7) =0

All equality and inequality functions are linear and so additively separable in each
variable. A hierarchically decomposed ODP obtained after going through steps as in the
previous example is shown in Fig. 16. Coupling functions are {1, g6}, and (g1,..., g3} is the set

of functions chosen to compose the objective.

X->21X1| X2 X3{X4]| X5

(=l lel{e] {o] (o] o] fe)
(o] [l o] for] [en] fan)] e

812
213

s
(][] o] (o] [eo] [an] fe] [a]
(=] [ [l o] [o] [e] fe] [a)
QOO O|O|O
(=] [ fan] fan] {an)

Fig. 16 Synthesized ODP - Matrix form [Example 4]
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CONCLUDING REMARKS

In the methodology for hierarchical decomposition synthesis presented here the GDP
partitioning to achieve a specific decomposition goal is not unique. There may also be several
decomposition goals that need be explored and compared. Studying these alternatives is itself an
optimization problem. Methods for “optimal” decomposition synthesis are currently under
investigation.

The selection of a particular decomposition method depends on number of factors, and
the following guidelines may be useful. Primal (dual) methods would be preferable if (a) the
GDP can be partitioned with a small number of linking variables (functions), (b) constraint
feasibility need (not) be maintained throughout the iterations, and (c) the GDP has a small
(large) number of variables and a large (small) number of constraints. A hierarchically
decomposed ODP for solution by both primal and dual methods can be synthesized from a GDP
by introducing new variables, especially for highly coupled GDPs (Wismer and Chattergy 1978).
The disadvantage is increase in the size of the problem. Such cases can be handled also by the
methods presented here. As the GDP becomes more coupled, nonhierarchical decomposition
may be the only way to partition the problem without increasing its size. It is not clear what
should be the basis for synthesis in such a case.

Synthesizing an ODP that can be decomposed into a specified number of g subproblems
may not be always possible. Also, a ¢ value may not be determinable a priori. In such cases
GDP partitions for different values of ¢ must be studied and a suitable g value selected.

Only a two-level hierarchical decomposition synthesis was discussed here but the
methodology can be extended to multi-level synthesis. Also, instead of a scalar substitute
objective, one could treat the individual objectives as components of a vector and solve the
vector minimization problem with a variety of techniques.

In conclusion, the proposed synthesis approach is an attractive, more systematic way to
formulate and solve large optimal system design problems. The resulting optimization model

need not be solved necessarily by decomposition methods.
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