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Abstract

Recent advances in material systems have expanded the temperature range over which

adhesively bonded composite joints can be used. In this work, several tools are

developed for use in modeling joints over a broad range of temperatures. First, a

set of dimensionless parameters is established which can be used for analysis of joint

performance for an orthotropic symmetric double lap joint. A critical dimensionless

ratio of mechanical and thermal loads is identified. The ratio predicts characteristics

of the resulting stress distribution. A bonded joint finite element is also developed,

wherein a joint-specific finite element is formulated based on an analytical solution.

The resulting element allows for mesh-independent joint evaluation and multi-joint

simulation at a system or vehicle level. As a mid-level analysis technique, the element

has significant predictive and cost advantages over the previously available methods.

An advanced analysis technique, the discrete cohesive zone method, is developed and

demonstrated in a general element formulation. Initially, the element is examined

from the perspective of computational efficiency and robustness. Two efficient traction

laws are formulated and are compared to a traction law that is in common use. The

element is subsequently used to investigate the interactions of adhesive parameters in

standard adhesive characterization experiments. This quantification of experimental

sensitivities allows for a deliberate mapping of cumulative experimental results to an

appropriate set of model constitutive parameters. With knowledge of the parameter

interactions, a set of experimental results are interpreted to determine a set of adhesive

constitutive parameters for T650/AFR-PE-4/FM680-1, a high temperature material

system of current interest.
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Chapter 1

Introduction

1.1 Motivation

The use of advanced composite materials has increased significantly over the last

decade and is expected to be a dominant class of materials for aircraft and space-

craft for the foreseeable future. Composite materials have been used extensively in

high performance and military application where cost is secondary to performance.

Advances in manufacturing techniques, increased volumes, environmental concerns,

and accumulated field experience have made the technology accessible for a larger

customer base. This base includes commercial aircraft, energy generating structures,

prosthetic devices, and consumer products.

Technological improvements in composite materials have been accompanied by

an improvement in structural adhesives. As a result, the use of bonded joints has

supplemented or replaced the use of traditional mechanical fasteners in composite

and metallic structures. In these structures, adhesively bonded joints are in common

use due to improved load distribution, increased service life, reduced machining cost,

and/or reduced complexity, [4]. Confidence in such joints has grown with accumu-

lated usage as evidenced by the implementation of bonded joints in the joint strike

fighter and long range strike aircraft programs, [19, 121]. Additionally, adhesively

bonded composite joints have expanded into the automotive industry, [82]. Despite

this significant increase in usage, it is prudent to recall the claim of Her [56] that

approximately 70% of structural failures initiate in joints. Therefore, joint design is

critical to structural integrity.

Beyond the increased usage associated with lower costs and improved manufactur-

ing techniques, recent advances in structural epoxies and adhesives have also expanded
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the temperature range over which fibrous composite materials can be used. These

epoxies and adhesives, developed to provide structural integrity at high temperature,

are subjected to operating environments that are more severe than have been previ-

ously specified for bonded joints. Furthermore, the required manufacturing processes

impose broad temperature ranges during the curing cycle. As a result, it is known

that high stress gradients can exist near the edges of bonded joints due to mismatches

in thermal expansion coefficients and elastic moduli, [77]. Components made from

these materials carry a significant risk of adverse stress caused by differential thermal

expansion. Due to the increased use of composite materials and bonded joints, the

need for efficient and effective thermo-mechanical analysis tools is great.

The design of joints is often carried out in an ad-hoc fashion that relies heavily

on laboratory testing and empirical models. If the role of temperature resistant

composites is to expand, their use must be supported by an improved understanding

of bonded joints. Additional research is required in order to expand the modeling

capability for bonded joints and to determine the mechanical response of material

systems over their range of use.

1.2 Objectives and outline of the dissertation

The present study is motivated by three primary objectives for bonded composite

joints: the development of robust and efficient analytical tools, the reporting of consti-

tutive interactions that are present in common test methods, and the accumulation

of experimental data in support of the analytical developments in the dissertation.

These are distinct objectives, each with a significant body of literature. In lieu of a

comprehensive literature review in this introductory chapter, the primary objectives

are briefly introduced and a contextual overview is provided in this section. A thorough

literature review of the chapter-level objectives is provided in the introduction to each

chapter. The structure of the dissertation is illustrated in figure 1.1.

1.2.1 Robust and efficient analytical tools

It is critical that robust modeling tools are developed for the design and analysis of

adhesively bonded joints. Therefore, three separate techniques are developed that

represent a variety of approaches to evaluating structures with bonded joints.

The first contribution is a set of dimensionless parameters for predicting the stress
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field in a specific composite joint. To demonstrate the methodology, several virtual

work solutions are computed for an orthotropic symmetric double lap joint that is

subjected to thermal and mechanical loading. The solutions, presented in chapter 2,

differ in complexity and accuracy. Each solution yields dimensionless parameters

that can be used for comparative analysis of joint stress. Using the dimensionless

parameters, a designer can quickly ascertain the effect of a change in that specific joint.

To demonstrate the utility of the method, analytical stress predictions are compared

to numerical results predicted by a finite element (FE) analysis and are found to be in

good agreement.

A second and related technique is presented in chapter 3. FE models are widely

employed for analyzing joints. Continuum FE techniques, however, have limitations

that are revealed in any attempt to create a model for that purpose. In order to

overcome some of these limitations, a bonded joint finite element (BJFE) is formulated.

The BJFE provides a method to analyzing the stress field of a joint using a single

finite element. In doing so, it overcomes two major obstacles in joint analysis: mesh

generation and mesh dependency. To create the BJFE element, a virtual work solution

for the joint is embedded as a shape function of the element. As a result, the strain

and stress fields are accurately represented using a small number of degrees of freedom.

The BJFE element is a mid-level analysis technique that allows effective comparison

of multiple joints in a single analysis with no mesh dependency. It is targeted for

early design and sizing studies where high-level analyses techniques are prohibitively

expensive and high-fidelity material properties are unavailable.

A third analytical technique is presented in chapter 4 and is referred to as the

discrete cohesive zone method (DCZM). Whereas the BJFE is developed for early

analysis and design studies, the DCZM element is intended for high-level predictions

and progressive failure analysis of bonded joints. Building on the foundation of its

predecessors, the DCZM element is formulated as a set of non-linear springs that

enforce a specified traction law.1 The traction law is modular and can be chosen based

on several criteria. The method incorporates crack initiation and propagation and

allows for accurate computations of load history during joint failure. The effect of the

traction law on the efficiency, robustness, and cost of the solution is also examined in

chapter 4.

1 The phrases “traction law” and “traction separation law” are used in the literature to describe
spring-based cohesive constitutive relationships. For brevity, “traction law” is used in this dissertation.
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1.2.2 Constitutive interactions in common experimental meth-
ods

The foundation for any validated failure analysis technique is a database of experimen-

tal observations that can be used for model comparison. In the context of modeling

decohesion in structures, it is necessary to determine the critical parameters that

govern failure. These include a set of crack initiation (σc) and propagation (Gc)

parameters for each fracture mode.

Although the determination of σc and Gc is necessary for modeling the decohesive

behavior of any adhesive or laminated system, it is also necessary to consider the

assumptions that are made in computing these values from experimental results.

Traditional data reduction techniques make assumptions about the traction law and

experiments which may not correspond to the assumptions necessary for robust nu-

merical modeling. In addition to uncertainty regarding the assumed traction law and

its relation to the real traction response, there are also uncertainties and interactions

(present in the models and experiments) that can affect the interpretation of an

experimental result. Traditional methods of mapping the experimental result to a

numerical implementation may provide a poor set of parameters for computation.

To address these uncertainties in the characterization experiments, a sensitivity

analysis has been completed and is reported in chapter 5. The outcome of the sensitiv-

ity study provides a methodology for mapping a set of experimental results to a set of

appropriate constitutive parameters. The methodology accounts for the unavoidable

interactions and uncertainties that are present in all experiments. It also provides

justification for choosing a traction law based on efficiency and robustness.

1.2.3 Accumulation of experimental data

Proper design of joints requires accurate descriptions of the material systems which

compose the joint. As a result, this dissertation includes an investigation of the

temperature dependence of a specific material system of current interest. T650/AFR-

PE-4/FM680-1 is a temperature resistant material system that is being qualified

for use in aeroshell structures [107] and other applications. It is essential that this

material system be characterized over the range of its expected use; therefore, values

of the necessary cohesive parameters have been determined in Mode I and Mode II up

to 350 ◦C. The results of this investigation are presented in chapter 6.
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1.3 Significant contributions of this dissertation

The following contributions to the field of temperature dependent adhesively bonded
joint analysis are reported in this dissertation:

1. Analytical solutions and dimensionless numbers for quick assessments of double
lap joint performance when subjected to thermal and mechanical loads.

2. A dimensionless number characterizing the relative importance of mechanical
and thermal loads (or any scalar load) to a lap joint.

3. A bonded joint finite element technique that can be used to compute all critical
kinematic and kinetic values in a joint from a single element.

4. A 2D/3D implementation of a discrete cohesive zone method finite element with
a modular traction law.

5. Two efficiency and robustness oriented traction laws for use in the prediction of
adhesive/cohesive failure or delamination. Additionally, an implementation of a
commonly used traction law as a module for the DCZM element.

6. A sensitivity analysis for three common adhesive tests. The outcome is a quan-
tification of the interactions between constitutive and geometric parameters that
are inseparable during experiments and modeling.

7. A technique for mapping a complete set of adhesive experimental results to a
complete set of adhesive parameters. The technique accounts for the interactions
that are present in the adhesive experiments.

8. A technique for inverse modeling of the value of GIc from the double cantilever
beam test.

9. An experimental determination of the fracture parameters for T650/AFR-PE-
4/FM680-1 over the temperature range of 20-350 ◦C. These parameters are
required to predict failure in joints composed of this material system.

1.4 Publications related to this dissertation

The following publications are available at the time of the dissertation defense:

1. Peter A. Gustafson and Anthony M. Waas. Efficient and robust traction
laws for the modeling of adhesively bonded joints. In Proceedings of the
AIAA/ASME/ASCE/AHS/ASC 49th Structures, Structural Dynamics, and Ma-
terials Conference, Apr 7-10 2008, Schaumburg, IL, number 2008-1847. American
Institute of Aeronautics and Astronautics, 2008.

2. Peter A. Gustafson, Arnaud Bizard, and Anthony M. Waas. Dimension-
less parameters in symmetric double lap joints: An orthotropic solution for
thermomechanical loading. International Journal of Solids and Structures,
44(17):5774–5795, August 2007

3. Peter A. Gustafson and Anthony M. Waas. T650/AFR-PE-4/FM680-1 Mode
I critical energy release rate at high temperatures: Experiments and numerical
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models. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC 48th Structures,
Structural Dynamics, and Materials Conference, Apr 23-26 2007, Honolulu HI,
number 2007–2305. American Institute of Aeronautics and Astronautics, 2007.

4. Peter A. Gustafson and Anthony M. Waas. A macroscopic finite element for
a symmetric double lap joint subjected to mechanical and thermal loading. In
Proceedings of the AIAA/ASME/ASCE/AHS/ASC 48th Structures, Structural
Dynamics, and Materials Conference, Apr 23-26 2007, Honolulu HI, number
2007–2308. American Institute of Aeronautics and Astronautics, 2007. Also
presented at: 16th International Conference on Composite Materials, Kyoto
Japan, 2007.

5. Peter A. Gustafson and Anthony M. Waas. A macroscopic joint finite element
for a symmetric double lap joint. In Proceedings of the American Society of
Composites 21st Annual Technical Conference, number 204. American Society
of Composites, Sept 2006.

6. Peter A. Gustafson, Arnaud Bizard, and Anthony M. Waas. Dimensionless
parameters in symmetric double lap joints: an orthotropic solution for thermo-
mechanical loading. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC 47th

Structures, Structural Dynamics, and Materials Conference, May 1-4 2006, New-
port RI, number 2006–1959. American Institute of Aeronautics and Astronautics,
2006.

The contents of this dissertation that are not contained in the listed publications

are in preparations for dissemination in conference or journal papers.
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Chapter 2

Dimensionless parameters in
symmetric double lap joints: an

orthotropic solution for
thermomechanical loading

Analysis of joints can be conducted using several methodologies. The two most

prevalent methods are closed-form analytical solutions and numerical solutions; hybrid

methods can also be developed. In this chapter, two closed-form thermomechanical

analytical models are developed for orthotropic double lap joints with a view to

identifying dimensionless parameters that describe the behavior of the joint under

combined thermomechanical loads. The solutions, based on the principle of virtual

work, differ in the complexity of the assumed stress field. The first solution is similar

to Volkersen [104] with the addition of orthotropic and thermal effects. The second

solution, extending the work of Davies [39], captures the peel stress as well as the trac-

tion free boundary condition at the adhesive edge. Relevant dimensionless parameters

are identified in terms of geometric, material, and load quantities. A dimensionless

load ratio is identified which dictates the shape of the stress distribution. This ratio

can also be used to determine the dominant loading mechanism. Dimensionless stress

plots are presented for representative lap joints.

2.1 Introduction

The main objective of this chapter is to develop appropriate dimensionless parameters

that govern joint performance under combined thermal and mechanical loading. These
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Figure 2.1 Schematic of the double lap joint with end posts

parameters can be used to identify the effects of material orthotropy and joint geometry

on joint performance. Two thermomechanical models are presented for the symmetric

double lap joint shown in figure 2.1, a common joint. The first model, referred to as the

shear-only model (SO), can be considered a thermomechanical extension to Volkersen

[104]. The joint response is calculated based on the assumption of a simplified stress

field. The solution provides a basic methodology for predicting the effects of key

parameters on the global shear response of the joint. A second model extends the first

to allow for the calculation of peel stresses while simultaneously satisfying the traction

free boundary condition at the adhesive edge. It will be referred to as the shear-peel

model (SP). To establish the utility of these models, both are compared to a reference

continuum finite element (FE) model. Finally, both analytical models are found to

contain an identical dimensionless ratio of thermal to mechanical loads. The ratio can

be used to identify the relative importance of the two load types to joint design.

2.2 A brief summary of double lap joint analytical

models

Several authors have provided analytical solutions to bonded joints. The first author

was Volkersen [104] who was followed by Goland and Reissner [51]. Both presented

solutions to the single lap joint. An incomplete list of references on the single lap joint

includes Hart-Smith [55], Peppiatt [80], Renton and Vinson [85], Allman [10], Her

[56], and Yang et al. [117]. Summary articles have been provided by Benson [20] and

Adams et al. [4]. A corresponding list of references on the double lap joint includes

Hart-Smith [54], Gilibert and Rigolot [48], Sen and Jones [91], Sen and Jones [90],

Her [56], Mendels et al. [69], and Mortensen and Thomsen [71]. The last of these is

an analytical derivation of the governing equations, though the lack of an available

closed-form solution causes the evaluation to be numerical. The double lap solution
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of Davies [39] inspired the shear-peel model analysis of the current work. Though

intended for single lap joints, the work of Volkersen [104] could be used for double lap

joints with only slight modification.

There are several important issues in bonded lap joints which have been neglected

or have been outside the scope of the analysis. Three of these issues will be considered

in the derived models. First, in an idealized lap joint, the edge of the adhesive is a

traction free surface. The average shear stress builds to an extremum over a small

boundary region. Though this is captured in some models, it is not captured in the

influential work of Goland and Reissner [51]. For example, in the double lap solution of

Hart-Smith [54], inappropriate interpretation of the model could lead to a conclusion

that the shear stress is maximized at the edge of the adhesive, where it is actually zero.

Several authors have developed double lap joint models which capture the traction

free boundary condition, however, the derived solutions are either numerical [90, 91] or

the governing differential equation is of high order [108]. Though the models which do

not resolve the traction free edge condition can be correctly interpreted by an analyst

(as is required for the SO solution in section 2.3.1), it is advantageous and analytically

more pleasing to satisfy this boundary condition when possible. It was noted by

Benson [20] that a minimum 4th order differential equation (of the displacement field)

is required to capture the traction free surfaces. The SP solution of this work satisfies

the requirement. The direct advantage over the SO solution is the ability to calculate

peel stress.

A second issue in the available literature is a lack of accounting for the anisotropic

material behavior of the joint constituents (adherends and adhesive) in analytical form.

Exceptions exist, for example Erdogan and Ratwani [46] and Delale et al. [44], however,

these are neither double lap joint models nor are all constituents anisotropic. This lack

of an anisotropic material description is critical when considering laminated composite

materials. Transverse properties are often significantly lower than in-plane properties

for a given laminate, [54]. Recent research into transverse reinforcement of composite

laminates such as z-pin [25, 30, 98] and 3D woven composites [31, 60, 73] increases

the relevance of anisotropic joint solutions, particularly with respect to the anisotropic

nature of the adhesive. Finally, since high temperature curing cycles are frequently

needed for temperature resistant materials, prudence dictates that anisotropic material

behavior should be included in thermomechanical analytical models. This need has

been recognized and is an active area of current research.1 In contrast, this chapter

provides closed-form, parametric solutions with orthotropic material properties in

1 Recent work includes: [19, 71, 72, 118, 120–122].
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all constituents. The parametric nature of these solutions reveal insights into joint

performance.

A third issue in the prior treatment of bonded joints is found at the corner interfaces

between the adherends and the adhesive. In these locations, geometric discontinu-

ities cause unbounded stress concentrations in any solution based on linear elastic

continuum mechanics, [61]. Though non-linear material response might ensure that

the stress remains finite, [122], the peak stresses at the corners are dependent on the

specific geometry and material behavior. The possible effects are not considered in the

analytical models presented in this dissertation since they require different modeling

strategies rooted in fracture mechanics. The geometric discontinuity, however, affects

the FE models which are used for comparison and therefore must be considered when

evaluating the FE results. Specifically, it is important to recognize that the reference

linear elastic FE model in this work is not a correct solution at the corners. It is flawed

at these geometric discontinuities and the stress concentrations will not converge with

increasing element density. Therefore, direct comparisons between the FE solution

and the analytical solutions are only meaningful away from the singular corners. In

contrast to FE based solutions which do not readily allow consistency from analysis to

analysis, the closed-form analytical models in this dissertation do allow for meaningful

comparison between different joint designs. The models have no mesh dependence

and the predicted stresses remain finite for all joint geometries.

Finally, temperature effects were not considered in most of the analytical double

lap joint models that are currently available. The authors are aware of the work of

Hart-Smith [54], Chen and Nelson [26], Vinson and Zumsteg [103], and Adams et al.

[2] who included thermal effects in their solutions. Hart-Smith provided a double lap

joint solution which included thermal loading, however, the work focused on material

non-linearities and did not capture the traction free boundary condition, [54]. The

bonded joint solutions of Chen and Nelson [26] include thermal expansion, however,

the materials are isotropic and no double lap analysis is included. The contributions

of Vinson and Zumsteg [103] include a composite thermomechanical solution of a

double lap joint. The solution is difficult to evaluate, however, as it requires the

solution of eighteen simultaneous boundary conditions which can only be reasonably

solved numerically. Qualitative assessments cannot be made since no plots of the

predicted stresses were provided. Finally, the work of Adams et al. [2] focused on

thermal loading in lap joints, however, the subject matter was single lap joints and the

solutions were FE based. In the following sections of this paper, two thermomechanical

analytical models of the double lap joint are presented and appropriate dimensionless
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parameters are identified. These models are shown to be useful in evaluating the

thermomechanical performance of the joint.

2.3 Analytically derived stress field in a double lap

joint including thermal expansion

A schematic of a double lap joint is shown in figure 2.1; a symmetric geometry is

assumed and two solutions are presented.

2.3.1 Model where the adhesive carries only shear stress

In the first solution, it is assumed that the stress field only varies along the direction of

loading. The adherends are assumed to carry only longitudinal normal stress and the

adhesive is assumed to carry only shear stress. Due to symmetry, the bending moments

in the joint are assumed to be negligible and bending of the adherends is not included.

Under these assumptions, the stress field is only a function of x.2 Thermal expansion

is assumed to be linear with temperature. Though it is likely they are significant

[54], plasticity, creep, and other non-linearities of the constituents are ignored. With

those restrictions and assuming plane strain deformation, the constitutive equations

for material κ are governed by:


εκ11 (x)

εκ22 (x)

γκ12 (x)

 =


1−νκ13 νκ31

Eκ11
−νκ23 νκ31+νκ21

Eκ22
0

−νκ13 νκ32+νκ12

Eκ11

1−νκ23 νκ32

Eκ22
0

0 0 1
Gκ12




σκ11 (x)

σκ22 (x)

τκ12 (x)


+

 ακ33 νκ31 + ακ11

ακ33 νκ32 + ακ22

0

∆T

(2.1)

A plane stress assumption could be substituted by setting the out-of-plane Poisson

terms to zero (νκ13 = νκ31 = 0). The central adherend is referred to as material

a; an equilibrium element for the central adherend is pictured in figure 2.2(a). Fig-

ure 2.2(b) represents the outer adherend, referred to as material c. In these two areas,

2Although they greatly simplify the computation of the stress field, these assumptions do not
strictly satisfy equilibrium requirements.
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x-equilibrium requires:

dσa11 (x)

dx
= − 2

ta
τb12(x),

dσc11 (x)

dx
= − 1

tc
τb12(x),

(2.2)

where x is measured from the left edge of the adhesive. Solving equation 2.2 for τb12(x)

and equating leads to:

tc
dσc11 (x)

dx
=
ta
2

dσa11 (x)

dx
. (2.3)

The natural boundary conditions at the edge of adherend a are:

σa11 (0) = 0,

σa11 (l) =
2P

ta
.

(2.4)

Equation 2.4 is the longitudinal normal stresses in the central adherend at the edges

of the joint. Combining equations 2.2-2.4 yields a relationship between stresses in the

central and outer adherends:

σc11 (x) =
P

tc
− ta

2tc
σa11 (x) . (2.5)

Since the shear stress is assumed to be constant through the thickness of the

adhesive, the shear stress in the adhesive is determined by equation 2.2 and the

solution to equation 2.5. As summarized in appendix A, equations 2.2-2.5 can be

combined using the principle of virtual work to solve for the central adherend stress.

Doing so leads to a differential equation in the following form:

d2σa11 (x)

dx2
+ ω2σa11 (x) + ψ∆T + ψP = 0. (2.6)

In equation 2.6, the thermal and mechanical loads enter the differential equation in

the form of system parameters (ψ∆T and ψP ). Before stating the values of the system

parameters (ω2, ψ∆T , and ψP ), it is reasonable to non-dimensionalize equation 2.6,

13



τa12(x)

τa12(x)

δx

taσa11(x) σa11(x+ δx)

(a) Equilibrium element of the central adherend

τc12(x)

δx

tcσ11(x, y) σ11(x+ δx, y)

(b) Equilibrium element of the outer adherend

τb12(x, y)

τb12(x, y)

τb12(x, y + δy)

τb12(x+ δx, y)

δx

δy

(c) Equilibrium element of the adhesive
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therefore the following substitutions are made:

ψ̄∆T = ψ∆T
l2

Ea11

,

ψ̄P = ψP
l2

Ea11

,

x̄ =
x

l
,

ω̄ = lω,

τ̄b12(x̄) =
τb12(lx̄)

Ea11

,

σ̄a11(x̄) =
σa11(lx̄)

Ea11

.

(2.7)

In equation 2.7, the dimensionless axial stress σ̄a11(x̄) could be confused with the

axial strain εa11. It is not the axial strain, since the stress field is not uniaxial. In

other analytical models, the average shear stress has been chosen as the normalizing

factor. In contrast in this work, the modulus of the central adherend (Ea11) is used for

the normalization since a thermal load without an externally applied mechanical load

results in a zero average shear stress. Though this choice loses the convenient “stress

concentration factor” associated with the average shear stress normalization, it is

necessary to avoid a singular result for thermal loads. Upon substitution, equation 2.6

becomes:
d2σ̄a11 (x̄)

dx̄2
+ ω̄2σ̄a11 (x̄) + ψ̄∆T + ψ̄P = 0, (2.8)

which is a dimensionless form of the governing equation. The parameters ω̄2, ψ̄∆T and

ψ̄P are:

ω̄2 =
2Gb12l

2

tb

[
(νc13νc31 − 1)

Ec11tc
+

2(νa13νa31 − 1)

Ea11ta

]
,

ψ̄∆T =

[
4Gb12l

2 (αc33νc31 − αa33νa31 + αc11 − αa11)

Ea11tatb

]
∆T ,

ψ̄P =−
[

4Gb12l
2 (νc13νc31 − 1)

Ea11Ec11tatbtc

]
P.

(2.9)

Equation 2.9 contains dimensionless parameters for both thermal and mechanical

loading. Thermal expansion of the adhesive is not a factor in this model since the

adhesive is assumed to carry no longitudinal normal stress.3 A solution to equation 2.6

3 The assumption of zero longitudinal normal stress in the adhesive greatly simplifies the calcu-
lations and is reasonable for calculating shear stress (and peel stress in the SP solution) as long as

15



is:

σ̄a11(x̄) = ā sin(ω̄x̄) + b̄ cos(ω̄x̄)− ψ̄∆T + ψ̄P
ω̄2

. (2.10)

Boundary conditions for longitudinal normal stress are:

σ̄a11(0) = 0,

σ̄a11(1) =
2P

taEa11

.
(2.11)

Application of the boundary conditions leads to:

ā =−
[

Ec11 tb tc
2Gb12 l2 sin ω̄ (νc13 νc31 − 1)

+
cos ω̄ − 1

ω̄2 sin ω̄

]
ψ̄P −

(cos ω̄ − 1)

ω̄2 sin ω̄
ψ̄∆T ,

b̄ =
ψ̄∆T + ψ̄P

ω̄2
.

(2.12)

Equation 2.12 completes the SO solution. Plots of the solution are shown in figures 2.5-

2.9.

The SO solution minimizes solution complexity. As a result, it lacks certain desir-

able features. It neither predicts a traction free adhesive edge, nor does it quantify

the peel stress. Despite these shortcomings, the model is useful. For example, it

provides an orthotropic solution which includes consideration of thermal expansion.

In equation 2.9, it identifies important dimensionless parameters which dictate the

joint stress distribution. In the present form, the solution can be used as a first order

analysis tool in the design and sizing of composite bonded double lap joints. The SO

solution also provides a foundation for the more advanced formulation derived in the

next section. It is that formulation which predicts a zero traction at the adhesive

edge.

2.3.2 Model where the adhesive carries shear and peel stress

The second double lap joint solution is the shear-peel model, an extension of the

shear-only model analysis. The adhesive is no longer confined to carry only shear

stress. Instead, it is assumed to carry shear and peel stresses as shown (in a general

the strain energy due to this stress component is a small relative to the total strain energy. The
model breaks down in joints with similar adherend thermal expansion and a large differential thermal
expansion relative to the adhesive. In those joints, the longitudinal thermal stress of the adhesive
will be greater than the adhesive shear and peel stresses. Therefore, a different type of analysis is
appropriate.
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τ12(x, y)

τ12(x, y)

τ12(x, y + δy)

τ12(x+ δx, y)

δx

δyσ11(x, y)

σ22(x, y)

σ22(x, y + δy)

σ11(x+ δx, y)

Figure 2.2 Generalized equilibrium parallelepiped

form) in figure 2.2. The adherends are assumed to be stiff and carry only normal

stresses as in the SO solution. For convenience, a fictitious structural element called an

“end post” is located at the edge of the adhesive. This post is assumed to transfer shear

stress at adhesive the edge to the adherends. In making this assumption, the traction

boundary condition is satisfied a priori. This modeling approach has been used for

double lap joints as described by Davies [39]; the current model can be considered an

extension. The end post element, shown in figure 2.1 and highlighted in figure 2.3, is

carried through the calculations until it is made infinitesimal (tp → 0) to restore the

correct geometry.

With the exception of the peel stress in the adhesive layer, the stress fields in

the adherends are as described in the SO solution. The x-equilibrium equations in

section 2.3.1 hold, however, y-equilibrium in the adhesive is included in the analysis.

σb22(x, y)

σb22(x, y + δy)

τb12(x)

tp

δy

Figure 2.3 Equilibrium element of the left end post
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Force equilibrium in the y direction of the adhesive requires:

∂σb22 (x, y)

∂y
= −dτb12(x)

dx
, (2.13)

where σb22 (x, y) is assumed to be linear4 in y:

σb22 (x, y) = c0 + c1y. (2.14)

For convenience, the peel stress at the adhesive interface is assumed to be zero,

σb22 (x, tb) = 0, therefore:

σb22 (x, y) = c0

(
1− y

tb

)
. (2.15)

Though this assumption could be challenged, it enables y-equilibrium to be considered

with minimum solution complexity and is justified when the average adhesive peel

stress is considered in section 2.5.5 Combining equations 2.13 and 2.15 leads to:

σb22 (x, y) =
ta
2

(y − tb)
d2σa11 (x)

dx2
. (2.16)

Force equilibrium in the y direction on the left end post requires:

dF (y, x = 0)

dy
= −τb12(0). (2.17)

The force carried by the end post is also assumed to be linear in y:

F (y, x = 0) = d0 + d1y. (2.18)

Combining equations 2.2 and 2.18 leads to:

F (y, x = 0) =
ta
2

dσa11(x = 0)

dx
y + d0. (2.19)

Using similar arguments for the right end post and applying the equilibrium re-

quirement that the total end post force vanishes on each side, the end post governing

4 A linear stress field is the lowest order function that satisfies equilibrium.
5This assumption is removed in the bonded joint finite element formulation presented in chapter 3.
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equations are:

F (y, x = 0) =
ta
2

dσa11(x = 0)

dx

(
y − tb

2

)
,

F (y, x = l) = −ta
2

dσa11(x = l)

dx

(
y − tb

2

)
.

(2.20)

Having established the equilibrium requirements, application of the principal of

virtual forces leads to a differential equation of the form:

d4σa11 (x)

dx4
+ β

d2σa11 (x)

dx2
+ γσa11 (x) + φ∆T + φP = 0. (2.21)

As in the SO solution, the thermal and mechanical loads enter equation 2.21 in the

form of system parameters φT and φP . Delaying explicit statement of the parameters,

non-dimensionalizing substitutions can be made:

x̄ =
x

l
,

β̄ = l2β,

γ̄ = l4γ,

σ̄a11(x̄) =
σa11(lx̄)

Ea11

,

τ̄b12(x̄) =
τb12(lx̄)

Ea11

,

φ̄∆T = φT
l4

Ea11

,

φ̄P = φP
l4

Ea11

.

(2.22)

As summarized in appendix A, the combination of equations 2.2, 2.16, 2.20, and

2.22 yield a differential equation for the normalized stress in the central adherend:

d4σ̄a11 (x̄)

dx̄4
+ β̄

d2σ̄a11 (x̄)

dx̄2
+ γ̄σ̄a11 (x̄) + φ̄∆T + φ̄P = 0. (2.23)
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The dimensionless system parameters are:

β̄ =
3Eb22 l

2

2Gb12 t2b (νb23 νb32 − 1)
,

γ̄ =
3Eb22 l

4

t3b (νb23 νb32 − 1)

[
(νc13 νc31 − 1)

Ec11 tc
+

2 (νa13 νa31 − 1)

Ea11 ta

]
,

φ̄∆T =

[
6Eb22l

4 (αc33νc31 − αa33νa31 + αc11 − αa11)

Ea11tat3b (νb23νb32 − 1)

]
∆T,

φ̄P =−
[

6Eb22l
4 (νc13νc31 − 1)

Ea11Ec11tat3btc (νb23νb32 − 1)

]
P.

(2.24)

A solution to equation 2.23 is:

σ̄a11(x̄) = Āeλ̄1x̄ + B̄e−λ̄1x̄ + C̄eλ̄3x̄ + D̄e−λ̄3x̄ − φ̄∆T

γ̄
− φ̄P

γ̄
. (2.25)

The bi-quadratic equation 2.25 has two dimensionless system parameters λ̄1 and

λ̄3 given by:

λ̄2
[13] =

−β̄ ±
√
β̄2 − 4γ̄

2
, (2.26)

which are presented in terms of the orthotropic material properties in appendix C.1.

The appearance of β̄ and γ̄ in λ̄2
[13], (which govern the axial and shear stress

distributions along the adherend (equation 2.13) and adhesive (equation 2.16)) illus-

trates the relative importance of the adhesive and adherend mechanical properties

and the joint geometry. Similarly, φ̄∆T and φ̄P are two load parameters that are a

combination of adhesive and adherend thermal and mechanical properties, loading,

and joint geometry.

The basis functions Ā, B̄, C̄, and D̄ in equation 2.25 are determined by application

of the boundary conditions. The boundary conditions are presented in full form in

appendix B as equation B.1 and in reduced form in equation 2.27.

D̄ + C̄ + B̄ + Ā− φ̄∆T + φ̄P
γ̄

= 0

e−λ̄3D̄ + eλ̄3C̄ + e−λ̄1B̄ + eλ̄1Ā− φ̄∆T + φ̄P
γ̄

− 2P

Ea11ta
= 0

−λ̄3D̄ + λ̄3C̄ − λ̄1B̄ + λ̄1Ā = 0

−λ̄3e
−λ̄3D̄ + λ̄3e

λ̄3C̄ − λ̄1e
−λ̄1B̄ + λ̄1e

λ̄1Ā = 0

(2.27)

Physically, the boundary conditions represent axial normal stress and shear stress at

the ends of the central adherend. The reduced form of the boundary conditions are
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achieved by allowing the end posts to approach zero thickness (taking the limit as

tp → 0). This procedure forces the shear stress at the post locations to zero which

results in a traction free surface at the adhesive edge.

The solution of equation 2.27 for Ā, B̄, C̄, and D̄ requires lengthy combinations

of the system parameters. They are presented in a compact form in equation 2.28

where certain repeating values have been represented as sets of coefficients (µ). The

values of the µ coefficients are presented in appendix C.2. With the presentation of

equation 2.28, the SP solution is now completed.

Ā =
µAT φ̄∆T + (µAT + µ2 µ3 µAP ) φ̄P

µ1

B̄ =
µBT φ̄∆T + (µBT + µ2 µ3 µBP ) φ̄P

µ1

C̄ =
µCT φ̄∆T + (µCT + µ2 µ3 µCP ) φ̄P

µ1

D̄ =
µDT φ̄∆T + (µDT + µ2 µ3 µDP ) φ̄P

µ1

(2.28)

The SP solution overcomes some of the effects previously ignored in bonded joint

analysis. Most significantly, it is an orthotropic thermomechanical solution which

ensures that the shear stress at the traction free edge is zero. It does so with the

minimal required complexity of a fourth order governing differential equation.

The analysis is an elastic solution and neglects the effect of adhesive and adherend

plasticity, if any, on the joint. This effect, however, has been addressed analytically,

[54]. The inclusion of plasticity is best treated through a numerical solution.

2.3.3 Dimensionless ratio of thermal and mechanical loads

Using the dimensionless loading parameters defined in equations 2.9 and 2.24, a

dimensionless load ratio (φ̄aR) and total load (φ̄tot) can be defined.

φ̄aR =
φ̄∆T

φ̄P
= −Ec11 tc (αc33 νc31 − αa33 νa31 + αc11 − αa11) ∆T

(νc13 νc31 − 1) P

φ̄tot = φ̄P + φ̄∆T

(2.29)

The ratio φ̄aR is a measure of the relative importance of thermal and mechanical loads.

The dimensionless number given in equation 2.29 is based on the stress in the central

adherend σ̄a11(x̄). Using equation 2.5 and similarly collecting terms into dimensionless
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loads, a conjugate dimensionless load ratio can be written for the stress field in the

outer adherend σ̄c11(x̄);

φ̄cR =
Ea11 ta (αc33 νc31 − αa33 νa31 + αc11 − αa11) ∆T

2 (νa13 νa31 − 1) P
. (2.30)

The importance of the load ratios φ̄[ac]R must not be underestimated. When

|φ̄[ac]R| � 1, mechanically induced stress dominates the stress field in the adherend.

Conversely, when |φ̄[ac]R| � 1, the thermally induced stress field is dominant. Finally,

when |φ̄[ac]R| ≈ 1, thermal and mechanical loads are both significant to the total stress

field. Using φ̄aR as a guide, it is easy to show that some common joints (such as

aluminum to carbon fiber reinforced polymer matrix composite) can be dominated by

thermal loading when a large ∆T is present. It is significant that the dimensionless

load ratio is the same whether the SO or the SP is used to derive it. It is, therefore,

independent of the adhesive stress field assumption.

Examining equations 2.29 and 2.30, it is apparent that the dimensionless load ratio

in one adherend depends largely on the stiffness of the other adherend.

With the dimensionless load ratio in mind, a load-based normalization can be

defined by rewriting the axial stress as:

¯̄σa11 =
σ̄a11

¯̄φtot

, (2.31)

or, more intuitively:

σ̄a11(x̄) = ¯̄σa11( ¯̄φP , x̄) · ¯̄φtot. (2.32)

This second normalization can be propagated throughout the solution so that the SO

and SP solutions are written as:

¯̄σa11(x̄) = ¯̄a sin(ω̄x̄) + ¯̄b cos(ω̄x̄)− 1

ω̄2
,

¯̄σa11(x̄) = ¯̄A
(

¯̄φP

)
eλ̄1x̄ + ¯̄B

(
¯̄φP

)
e−λ̄1x̄ + ¯̄C

(
¯̄φP

)
eλ̄3x̄ + ¯̄D

(
¯̄φP

)
e−λ̄3x̄ − 1

γ̄
.

(2.33)

The boundary conditions become:

¯̄σa11(0) = 0,

¯̄σa11(1)− 2P

taEa11φ̄tot

= 0,
(2.34)
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for the SO solution and:

¯̄D
(

¯̄φP

)
+ ¯̄C

(
¯̄φP

)
+ ¯̄B

(
¯̄φP

)
+ ¯̄A

(
¯̄φP

)
− 1

γ̄
= 0,

e−λ̄3 ¯̄D
(

¯̄φP

)
+ eλ̄3 ¯̄C

(
¯̄φP

)
+ e−λ̄1 ¯̄B

(
¯̄φP

)
+ eλ̄1 ¯̄A

(
¯̄φP

)
− 1

γ̄
− 2P

Ea11taφ̄tot

= 0,

−λ̄3
¯̄D
(

¯̄φP

)
+ λ̄3

¯̄C
(

¯̄φP

)
− λ̄1

¯̄B
(

¯̄φP

)
+ λ̄1

¯̄A
(

¯̄φP

)
= 0,

−λ̄3e
−λ̄3 ¯̄D

(
¯̄φP

)
+ λ̄3e

λ̄3 ¯̄C
(

¯̄φP

)
− λ̄1e

−λ̄1 ¯̄B
(

¯̄φP

)
+ λ̄1e

λ̄1 ¯̄A
(

¯̄φP

)
= 0,

(2.35)

for the SP solution.

Using the load ratio φ̄aR, the basis functions can be split into linear equations of

the mechanical fraction of the load. Defining the mechanical load fraction as:

¯̄φP =
φ̄P
φ̄tot

=
(
1 + φ̄aR

)−1
, (2.36)

the functions ¯̄a and ¯̄b from equation 2.33 for a load normalized solution can be written

as:

¯̄a =− Ec11 tb tc
2Gb12 l2 sin ω̄ (νc13 νc31 − 1)

¯̄φP −
cos ω̄ − 1

ω̄2 sin ω̄
,

¯̄b =
1

ω̄2
.

(2.37)

Similarly, the ¯̄A, ¯̄B, ¯̄C, and ¯̄D functions can be written as:

¯̄A
(

¯̄φP

)
=
µ3µAP
µ1µ2

¯̄φP +
µAT
µ1

,

¯̄B
(

¯̄φP

)
=
µ3µBP
µ1µ2

¯̄φP +
µBT
µ1

,

¯̄C
(

¯̄φP

)
=
µ3µCP
µ1µ2

¯̄φP +
µCT
µ1

,

¯̄D
(

¯̄φP

)
=
µ3µDP
µ1µ2

¯̄φP +
µDT
µ1

,

(2.38)

where the µ parameters are given in appendix C.2. In these forms, it becomes apparent

that the functions ¯̄a, ¯̄b, ¯̄A, ¯̄B, ¯̄C, ¯̄D (and by extension ā, b̄, Ā, B̄, C̄, D̄) govern the

stress distribution via the thermal and mechanical load ratio, φ̄aR. This conclusion

enhances its relevance to the study of thermomechanical loading of lap joints.

The forms presented in equations 2.37 and 2.38 allows an iterative version of the

SO or SP solution to be applied using numerical methods, when the mechanical load is
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Figure 2.4 The FE mesh

Table 2.1 Geometric and loading assumptions for model comparison

(a) ASTM double lap joint geometric features (mm).

Component Thickness Length

Outer Adherend 1.6 76.2
Adhesive 0.2 or 1.0 12.7

Central Adherend 3.2 76.2

(b) Assumed loading.

Load Type Value

P (N·mm−1) 10
∆T (oC) 10

dependent on the thermal load. For example, they allow the solution of displacement

constrained thermomechanical problems. The approach also facilitates the inclusion

of an analytically derived shape function into an application specific finite element.

An example of this usage is presented in chapter 3.

2.4 A continuum FE model of a symmetric double

lap joint

2.4.1 Benchmarking

To establish confidence in the SO and SP models derived in section 2.3, a comparison

with a linear elastic FE solution is presented in this section. A 2D FE model has been

generated for the ASTM International (ASTM) double lap joint [12]. The mesh is
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Table 2.2 Assumed material properties in FE, SO, and SP solutions (moduli in GPa,
expansion coeffs. in µε·oC−1)

Material Aluminum Titanium AS4/3501-6 FM300
(0o)

E11 70 110 148 1.98
E22 70 110 10.6 1.98
E33 70 110 10.6 1.98
G12 26.3 41.4 5.61 0.71
G13 26.3 41.4 5.61 0.71
G23 26.3 41.4 3.17 0.71
ν12 0.33 0.33 0.30 0.40
ν13 0.33 0.33 0.30 0.40
ν23 0.33 0.33 0.59 0.40
α11 23 9 -0.8 20
α22 23 9 29 20
α33 23 9 29 20

shown in figure 2.4 and the assumed geometries are given in table 2.1(a). The solution

was obtained from Abaqus R© using linear plain strain elements (CPE4). Only half of

the joint was modeled due to symmetry. The stress concentrations at the material

interfaces were not resolved in the vicinity of the corner despite a fine mesh, since the

singular stress field cannot be resolved with the linear elastic FE technique. Therefore,

direct comparison is not made at the corners. Mechanical and thermal loading was

specified as listed in table 2.1(b). The mechanical load was applied far away from

the lap joint and the thermal load was applied to all nodes. Displacement symmetry

constraints were enforced along the mid-plane of the central adherend. Non-linear

geometric stiffness was assumed.

Aluminum (AL) is the central adherend in all models; the outer adherends were

AL, titanium (TI), and AS4/3501-6 (AS4), [57]. For simplicity, the adhesive properties

were assumed to be isotropic and were estimated base on Cytec FM300 adhesive.6

The assumed material properties are summarized in table 2.2.

Stresses for all models are reported at the mid plane of the adhesive. For the

peel stress in the SP model, the mid-plane is the average peel stress. All peel stress

comparisons are made to within 0.05 mm of the adhesive edge (25% of the adhesive

thickness for the 0.20 mm adhesive models). The choice of appropriate comparison

limit is complicated by the large gradients near the joint edge. The 0.05 mm location

6It is difficult to find bulk adhesive properties for adhesive materials.
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was chosen to be sufficiently far away from the edge so as to avoid comparison in

the areas of the FE model that are dominated by the singular stress field. In those

areas, the mesh dependent result has singular tensile and compressive stresses at the

opposing interfaces with the adherends. In contrast, the SP predicted stress is not

mesh dependent, is monotonically increasing in the comparison zone, and is finite.

A consistent choice of comparison limit, therefore, ensures that the value of the SP

predicted stress will correlate with the strength of the stress singularity near the edge

(where a strong peel stress is predicted).

2.5 Comparison of continuum FE and analytical

model results for ASTM lap specimens

Figures 2.5-2.9 show the stress predicted by the SO, SP, and FE models due thermal

and mechanical loads applied to several joints.

2.5.1 Aluminum-Aluminum joint

Examining the AL-AL results shown in figures 2.5(a) and 2.5(d), all three of the models

predict that the shear and peel stress due to thermal loading is small.7 This result

is obvious, since the two adherends have no mechanical load and possess the same

expansion coefficient.

Model predictions for an AL-AL joint with applied mechanical load are shown in

figures 2.5(b) and 2.5(e). The first of these two figures shows the normalized shear

stress (τ̄b12) in the joint. The correlation between the FE, SO, and SP models is

generally good, though the SO and SP models over predict the shear stress near the

edges in comparison to the FE solution. Total shear (the area under the x̄-τ̄b12 curves)

is preserved because the SO and SP solutions under predict the stress in the middle

of the joint relative to the FE model. The traction free boundary condition is only

captured by the FE and SP solutions, as expected.

The plots in figure 2.5(e) show the peel stress due to mechanical load as predicted

by FE and SP solutions. It is apparent that differences exist in predicted peel stresses.

Near the edges of the joint, however, a direct correlation is found. This correlation

7This is the special case of adherends with similar thermal expansion subjected to primarily
thermal loads. If the expansion coefficient of the adhesive was substantially different from that of the
adherends, it would be appropriate to conduct a different type of analysis with primary focus on the
adhesive expansion.
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Figure 2.5 FE, SO, and SP models of an AL-AL double lap joint with 0.2 mm FM300
adhesive. φ̄aR = 0
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Figure 2.6 FE, SO, and SP models of an AL-TI double lap joint with 0.2 mm FM300
adhesive. φ̄aR = −3.68
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Figure 2.7 FE, SO, and SP models of an AL-TI double lap joint with 1.0 mm FM300
adhesive. φ̄aR = −3.68
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Figure 2.8 FE, SO, and SP models of an AL-AS4 (0o) double lap joint with 0.2 mm FM300
adhesive. φ̄aR = −7.33
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Figure 2.9 FE, SO, and SP models of an AL-AS4 (90o) double lap joint with 0.2 mm
FM300 adhesive. φ̄aR = 0.40
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between the two solutions at the near edge location is important, since peel stress

is often a cause of failure in lap joints. Similarly, figures 2.5(c) and 2.5(f) show the

predicted stress state due to a mixed loading condition, where both thermal and

mechanical loads are applied. In the AL-AL joint, it is clear that mechanical loading

dominates the stress state as predicted by the load ratio (φ̄aR = 0).

2.5.2 Aluminum-Titanium joint

The FE, SO, and SP model predictions for AL-TI lap joints are shown in figures 2.6

and 2.7. There are several observations which add confidence in the use of the derived

dimensionless parameters. First, figures 2.6(a) and 2.7(a) show strong correlation

between the FE model and the SO and SP models when thermal loading is applied to

joints with differing adhesive thicknesses. The predicted shear stress is zero in the

middle of the joint, which is required when there is no mechanical load. Also, the SO

and SP solutions for mechanical load in figures 2.6(b) and 2.6(d) and figures 2.7(b)

and 2.7(d) have similar correlation to the AL-AL joint. They show that the shear stress

concentration at the edges is larger when the adhesive is thin than when it is thick.

Mixed loading for AL-TI joints is shown in figures 2.6(c) and 2.6(f) (for 0.2 mm

adhesive thickness) as well as figures 2.7(c) and 2.7(f) (for 1.0 mm adhesive thickness).

These figures show that the SO and SP solutions compare favorably with the FE

solution over the majority of the joint when the loading is thermal and mechanical. As

in the AL-AL comparison, both SO and SP models tend to over-predict the shear stress

and the SP solution reasonably predicts the peel stress near the edges of the AL-TI

joint. Finally, in comparing figures 2.6(a)-2.6(f) to figures 2.7(a)-2.7(f), both the SO

and SP models correlate well with the FE solution as the thickness of the adhesive is

increased.

2.5.3 Aluminum-AS4/3501-6 joints

The stress predictions for the AL-AS4 joints are shown in figures 2.8-2.9. Uniaxial fiber

alignment for the orthotropic AS4 is aligned with the x axis in figures 2.8 and with

the z axis in figures 2.9. Though the latter is an unlikely joint arrangement, it is a

useful exercise to examine the orthotropic nature of the SO and SP solutions. It is

apparent in figures 2.8(a) and 2.8(d) and figures 2.9(a) and 2.9(d) that differences in

the orthotropic expansion coefficients have a significant effect. The sign of the stress

changes upon a 90o orientation change. The magnitude of the stress is significantly
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lower as the fibers are aligned perpendicular to the cross section of the joint. This

result is intuitive, since the material is much more compliant when loaded in the 90o

orientation.

2.5.4 The effect of φ̄aR on load dominance

Upon examining all predicted stress results in figures 2.5-2.9, the effect of the thermo-

mechanical load ratio φ̄aR is apparent. The AL-AL joint, at |φ̄aR| = 0, is dominated

by mechanical load. Both AL-TI joints, at |φ̄aR| = 3.68, have significant contributions

from both thermal and mechanical load. Comparing AL-AS4 (0o, |φ̄aR| = 7.33) and

(90o, |φ̄aR| = 0.40) joints in figure 2.8 and figure 2.9, the stress field in AL-AS4 (0o)

lap joints is primarily due to thermal loading whereas the stress field in AL-AS4 (90o)

joint derives primarily from mechanical load. These results show the importance of

φ̄aR in decoupling the effects of thermal and mechanical load; the effects of β̄ and γ̄

are reflected in the axial and shear stress distribution in the adherend and adhesive.

Further, φ̄aR provides an effective metric for determining the relative importance of

thermal and mechanical loads to shear and peel stresses.

2.6 Conclusion

Two closed-form analytical models for the stress distribution in an orthotropic double

lap joint have been presented with a view to identifying key dimensionless parameters

that govern joint behavior under thermo-mechanical loads. The shear-only model

assumes only shear stress exists in the adhesive and produces a similar result to the

work of Volkersen with the addition of thermal expansion. It is a tractable solution

with valuable dimensionless parameters, though is does not capture peel stress or a

traction free edge. It is a useful tool for basic thermomechanical design and sizing of

joints. The shear-peel model, which is similar but more complex than the shear-only

model, does account for shear and peel stress. The 4th order governing differential

equation allows for proper representation of the traction free adhesive edge. Like the

shear-only model, the shear-peel model has valuable dimensionless parameters which

can be used as tools in joint design and sizing. Unlike linear elastic FE solutions,

finite stress concentrations are predicted by the shear-only and shear-peal models.

Therefore, they can be used for quick iteration in joint sizing and for meaningful joint

comparison based solely on constitutive material properties and joint geometry. The
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orthotropic nature of the solutions are especially valuable for composite materials

which often have diminished transverse properties or transverse reinforcement.

Dimensionless parameters, written in terms of the joint geometry as well as the

orthotropic adherend and adhesive properties, have been identified and shown to be

useful in interpreting the stress distribution in the joint. Two dimensionless load

parameters (φ̄∆T and φ̄P ) and a critical dimensionless load ratio (φ̄aR) and its con-

jugate parameter (φ̄cR) have been identified. These parameters predict the stress

distribution within the joint. The dimensionless load ratio is identically derived using

either the shear-only or shear-peel solutions. It can be used as measure of the relative

importance of mechanical and thermal loading in a joint of known (or expected)

loading. The φ̄aR ratio also allows for isolation of the thermal and mechanical portions

of the solution. The isolation facilitates an iterative solution when the combined

thermal and mechanical loads are interdependent.
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Chapter 3

A bonded joint finite element for a
symmetric double lap joint

subjected to mechanical and
thermal loads

Chapter 2 provides a closed-form joint analysis based on the principle of virtual work,

a classical analytical method. Chapter 4 describes a numerical technique, the finite

element method, where the joint analysis is provided via a unique discrete cohesive

zone element. In this chapter, a hybrid method is developed incorporating features

of classical analytical and numerical methods. A bonded joint finite element for a

symmetric double lap joint is presented. It is capable of calculating field quantities in

the lap zone while using only four degrees of freedom.

The element stiffness and load vector formulations have unique, load dependent,

non-linear shape functions based on an analytical solution. The adaptive shape

functions are formulated in terms of the dimensionless mechanical load fraction ( ¯̄φP )

and total load ( ¯̄φtot) and are capable of predicting the thermal and mechanical load

response. The bonded joint element has been implemented as a user element in the

Abaqus R© commercial finite element code. A comparison of the stress predictions for

the bonded joint element and a 2D continuum model are presented and are found to

be in good agreement. Therefore, the element provides a computationally efficient

and mesh independent stress prediction. The single element reproduces the analytical

solution with minimal analyst input and can be easily incorporated into early design

and sizing studies.
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3.1 Introduction

Despite decades of development, the design and modeling of bonded joints is an active

area of research. Continuum finite element (FE) models are the current state of the art

and are widely available in the literature where work began as early as 1971 ([109], and

[3] are early references). More recently, promising advances in cohesive zone (including

[59, 64, 65, 102, 115]), discrete cohesive zone ([113], chapter 4), fracture mechanics

([106]), probabilistic prediction ([18], [62]), virtual crack closure technique (including

[49, 50, 63, 105, 110, 112, 114]), and other adhesive region models (including [74], [52],

[53]) have greatly increased the predictive capability of FE techniques. Cohesive zone

models have been incorporated into commercial software including Abaqus R© [1] and

Genoa R© [29], as well as freely available research codes like Tahoe R© [87]. Despite their

availability, the listed techniques are expensive and require extensive user expertise.

There are ongoing efforts to develop rapid analysis techniques ([75, 76, 94]), a key

enabling technology for vehicle designers.

Though models built with the tools listed above can be accurate, they rely on

the presence of a meshed joint. Continuum elements represent the adherends; the

adhesive is represented by continuum elements or a discrete traction law. There is

substantial overhead in creating and analyzing joints using these and other continuum

numerical methods. Mesh generation and manipulation is an obstacle for anything

beyond academic geometries. Mesh density is also a consideration, since the compu-

tational time for basic joints can be significant if non-linear material properties and

material degradation criterion are included. As a result, there are ongoing efforts

to evaluate analytical techniques that are less mesh dependent. For example, the

Composites Affordability Initiative has recommended a p-based analysis code for

analysis of adhesively bonded joints,1 since the use of p-based codes should be less

mesh dependent than h-based FE codes. Similarly, Bednarcyk et al. [19] used a higher

order, semi-analytical theory (developed for functionally graded materials) to analyze

a double lap and a bonded doubler joint. These techniques was reported to be less

mesh dependent than h-based analysis methodologies. In this chapter, a bonded joint

finite element (BJFE) is developed as a specialized element and technique for efficient

joint analysis. The BJFE has no mesh dependency and requires minimal meshing

overhead.

1http://www.esrd.com [Feb. 2007]
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3.2 Background

The aim of this chapter is to develop a BJFE capable of predicting basic joint perfor-

mance analysis with a limited number of degrees of freedom and with little meshing

overhead. As a result, this element could be adopted for initial joint sizing in FE

models at all system levels. The element is capable of predicting stress and strain

fields of orthotropic constituents in thermal and mechanical loading environments.

The orthotropy of a joint is of particular concern in laminated composite materials

since transverse properties are often significantly lower than in-plane properties in a

laminate, [54]. Further, since high temperature curing cycles are frequently needed for

temperature resistant materials, prudence dictates that orthotropic material behavior

should be included in thermo-mechanical FE models.

In considering the solution accuracy required for the BJFE technique, there are

many factors which affect the stress field and associated joint failure. These include

adhesive spew [3] and the geometric discontinuity and unbounded stresses associated

with stepwise geometries, [61]. Additionally, material non-linearity has a significant

effect on the stress field [54, 122] and requires a level of material characterization that

is often unavailable early in an analysis cycle. All of the specialized joint analysis

techniques (cohesive elements, the virtual crack closure technique, and others) require

high level material properties. In many circumstances, a designer has insufficient

information or time to obtain a highly accurate solution and instead would prefer

a simple, directionally correct analysis. These types of analyses are often useful in

tradeoff studies and to identify likely problem areas needing further study.

With that goal in mind, it might be considered adequate to perform linear elastic

FE analysis with a basic geometry (ie square corners), similar to the continuum FE

analysis used for comparison in this chapter. In such a solution, however, the singular

stress field causes a broad range of predicted stresses near the edges, particularly at the

material interfaces. This is an undesirable and unavoidable feature that emerges when

a linear elastic material description is used for a corner consisting of two materials

that are perfectly bonded.

For example, a typical double lap joint result for predicted σ̄b22 is highlighted

in figure 3.1.2 It is apparent that the peel stress can be accurately determined as

a function of longitudinal position over most of the joint. In the critical areas near

the edges of the joint, however, the predicted stress field varies widely and is mesh

dependent. The severity of the mesh dependency is shown in figure 3.2, where the

2 The typical result is taken from a model associated with figures 2.1 and 2.4.
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Figure 3.1 Typical linear elastic peel stress distribution due to mixed loading

predicted stress increases without bound with increasing element density. Even when

non-linear material properties are assumed, which sometimes can ensure that the

stress remains bounded [54], mesh dependency and convergence remain a concern.

When this is the case, it is common practice to create several costly meshes at different

densities in order to verify that the stress results have converged. Smeltzer III and

Lundgren [94] is a recent example of this practice.

In view of the alternatives presented above and in order to be useful to an analyst,

the BJFE must accurately represent the value of the most critical stresses in the joint

while consistently and correctly predicting the trends from joint to joint. It must

accomplish this with no mesh dependency and insignificant meshing overhead. Further,

its use must not directly burden the user with the significant calculations typically as-

sociated with analytical solutions such as those in chapter 2. In the remaining sections

of this chapter, a bonded joint element is developed to meet these requirements.

The predicted stresses and resulting displacements have non-trivial spatial non-

linearities and as such are not well represented by a small number of linear or quadratic

finite elements. The displacement field, however, can be represented by appropriate

load dependent adaptive shape functions N
(

¯̄φP

)
with a single element. Based on the

stress predictions presented in section 3.3, an element with a load dependent stiffness

matrix K
(

¯̄φP

)
and consistent loading vector F

(
¯̄φP

)
are presented in the following
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Figure 3.2 Typical mesh “convergence” study for linear elastic stepwise geometry

sections.

3.2.1 The element concept

A schematic of the BJFE element concept is shown in figure 3.3. In it, the complete lap

joint is replaced with a single finite element with six degrees of freedom (DOF). Four

displacement DOF (q1, q2, q3, q4) are used to represent four discrete displacement loca-

tions and two internal DOF (P1, P1) are used to determine the load “character”. The

displacement field is interpolated with application-specific adaptive shape functions,

detailed in section 3.4. The load “character” is a ratio of the thermal and mechanical

loads and governs the internal displacement field via the adaptive shape functions.

The adaptive shape functions allow accurate predictions of the stress and strain field

in a double lap joint through use of a single finite element.
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Figure 3.3 Symmetric double lap joint and BJFE representation.

3.3 Derivation of the advanced shear and peel

model

In chapter 2, two dimensionless solutions are developed for a symmetric, orthotropic

double lap joint subjected to thermomechanical loading. The primary purpose of

those solutions is to establish relevant dimensionless parameters that predict the stress

field. Using those parameters and the “simple” analytical solutions that they are

based on, the effects of various material and loading properties on a joint stress field

can be determined. The solutions were not precise in their predictions, despite being

adequate to correctly predict trends. It is anticipated that the user of the BJFE would

desire more precision, therefore, a third analytical solution is developed for the BJFE.

The solution is more “complex” than those that were presented in chapter 2. It is

designed, however, for automated use within the BJFE where solution complexity is

no longer an issue.

A double lap joint is schematically represented in figure 2.1. The central adherend

is referred to as material a and the outer adherend is referred to as material c. Material

b is the adhesive and is thin in comparison to the adherends. The objective is to

develop adaptive shape functions based on the equilibrium stress due to thermal and

mechanical loading. The material is assumed to be linear elastic and orthotropic with

linear orthotropic thermal expansion. The joint is assumed to deform in plane strain

and the material constitutive response is given by equation 2.1.

A general parallelepiped is shown in figure 2.2. Force equilibrium in x and y

directions can be written as:∑
F1 = 0,

= δy (σ11(x+ δx, y)− σ11(x, y)) + δx (τ12(x, y + δy)− τ12(x, y)) ,∑
F2 = 0,

= δx (σ22(x, y + δy)− σ22(x, y)) + δy (τ12(x+ δx, y)− τ12(x, y)) .

(3.1)
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Equation 3.1 can be rewritten as the shear-normal stress relationship for each con-

stituent:

∂σ11(x, y)

∂x
= −∂τ12(x, y)

∂y
,

∂σ22(x, y)

∂y
= −∂τ12(x, y)

∂x
.

(3.2)

In chapter 2, the adherends were assumed to carry only longitudinal normal stress

and the adhesive was assumed to carry only shear and peel stresses. In this chapter,

those assumptions are relaxed so that the adherends also transmit shear stress. For

convenience, the adherend shear stress fields are assumed to vary linearly in y through-

out the specimen.3 As a result, equation 3.2 dictates that the adherend longitudinal

normal stresses are functions of x only; the peel stresses are linear functions of x and

y. The longitudinal normal stress in the adhesive is still assumed to be zero, therefore

equation 3.2 dictates that the shear stress in the adhesive is a function of x only.4

Traction free boundaries are present on the top and bottom surfaces of the joint.

The centerline of the central adherend is free of shear due to symmetry. These

requirements are expressed as:

τc12(x, tb + tc) = 0,

σc22(x, tb + tc) = 0,

τa12(x,−ta
2

) = 0.

(3.3)

Stress continuity at the joint interfaces requires:

σb22(x, 0) = σa22(x, 0),

σc22(x, tb) = σb22(x, tb),

τb12(x, 0) = τa12(x, 0),

τc12(x, tb) = τb12(x, tb).

(3.4)

Finally, longitudinal normal stress boundary conditions are imposed by the mechanical

3A linear assumption is the lowest order polynomial which satisfies the equilibrium equations.
4The limitations imposed by this assumption are described in chapter 2.
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loads at the edges of central adherend a and are expressed as:

σa11(0) = 0,

σa11(l) =
2P

ta
.

(3.5)

By sequentially writing a linear form for each stress component (using the stress

field assumptions) and by applying boundary and continuity conditions to determine

the linear constants, equations can be written for each stress component in terms of

the central adherend stress σa11 (x). The process is as described in chapter 2 with

the addition of several stress components (τa12 (x, y), σa22 (x, y), τc12 (x, y), σc22 (x, y)).

The resulting stress equations are detailed on the left side of table A.2.

In addition to the boundary conditions specified in equations 3.3-3.5, the adhesive

edge shear stress is forced to zero using the end post technique described in chapter 2.

The stresses in the edge posts are also listed on the left side of table A.2.

The solution for the central adherend normal stress (σa11 (x)) is computed applica-

tion of the principle of virtual forces as detailed in appendix A. In brief summary of the

computation, each stress component is a function of σa11 (x). For each component, a

corresponding virtual stress component is written in terms of the virtual normal stress

σ̂a11 (x). (The virtual stress components are shown on the right side of table A.2.)

By integrating potential energy over the volume of the joint and minimizing for any

admissible σ̂a11 (x), a differential equation is written for the central adherend stress

field σa11 (x) as a function of all material properties and loads.

d4σa11 (x)

dx4
+ β

d2σa11 (x)

dx2
+ γσa11 (x) + φ∆T + φP = 0. (3.6)

In equation 3.6, all material terms have been grouped according to their order of

derivative (β and γ) and all load terms have been grouped into thermal (φ∆T ) and

mechanical parameters (φP ). Equation 3.6 is identical in form to the shear-peel model

solution differential equation (equation 2.23) in chapter 2, as is its solution. The

material constants β and γ and the load constants φ∆T and φP are more complex due

to the increase in the retained stress components in the potential energy minimization.5

The solution to equation 3.6 was given as equation 2.33 in a normalized form and the

5The improved accuracy of this model over its predecessor is a direct result of the addition of
these previously neglected terms.
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same normalization is applied here.

x̄ =
x

l
,

β̄ = l2β,

γ̄ = l4γ,

φ̄∆T = φ∆T
l4

Ea11

,

φ̄P = φP
l4

Ea11

,

¯̄φtot = φ̄P + φ̄∆T ,

¯̄φP =
φ̄P
¯̄φtot

,

¯̄σκij(x̄) =
σκij(lx̄)

Ea11
¯̄φtot

.

(3.7)

In equation 3.7, x̄ is the dimensionless spatial coordinate measured from the left edge

of the joint, β̄ and γ̄ are dimensionless material parameters, and φ̄P and φ̄∆T are the

dimensionless mechanical and thermal loads. The dimensionless total load is ¯̄φtot and

is used to further normalize the stresses ¯̄σκij(x̄). Similarly, the mechanical fraction of

the dimensionless total load is ¯̄φP . Each of the terms in equation 3.7 are explicitly

reported in terms of the constitutive and load quantities in appendix E.

The solution form reported in equation 2.33 is reused with updated parameters:

¯̄σa11

(
x̄, ¯̄φP

)
= ¯̄A

(
¯̄φP

)
eλ̄1x̄+ ¯̄B

(
¯̄φP

)
e−λ̄1x̄+ ¯̄C

(
¯̄φP

)
eλ̄3x̄+ ¯̄D

(
¯̄φP

)
e−λ̄3x̄− 1

γ̄
. (3.8)

This solution to equation 3.6 is an equation for the normalized central adherend

stress (¯̄σa11

(
x̄, ¯̄φP

)
), from which all stress components can be determined using

equation 3.7 and the equations in table A.2. As in the prior chapter, the material

parameters in equation 3.8 are recast as the roots of the bi-quadratic differential

equation.

λ̄2
[13] =

−β̄ ±
√
β̄2 − 4γ̄

2
. (3.9)
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The equations for the dimensionless basis functions ( ¯̄A, ¯̄B, ¯̄C, ¯̄D) are:

¯̄A
(

¯̄φP

)
=
µ3 µAP
µ1 µ2

¯̄φP +
µA∆T

µ1

,

¯̄B
(

¯̄φP

)
=
µ3 µBP
µ1 µ2

¯̄φP +
µB∆T

µ1

,

¯̄C
(

¯̄φP

)
=
µ3 µCP
µ1 µ2

¯̄φP +
µC∆T

µ1

,

¯̄D
(

¯̄φP

)
=
µ3 µDP
µ1 µ2

¯̄φP +
µD∆T

µ1

.

(3.10)

In equation 3.10, the basis functions are linear in the mechanical fraction of the total

load ( ¯̄φP ). As a result, they effectively separate the thermal and mechanical loads.

The basis functions are composed of several material parameter combinations, denoted

by µ, whose values are listed in appendix C.2. In combination, equations 3.8-3.10

provide a solution to the double lap joint that is sufficiently accurate to accomplish

the goals of the BJFE.6

3.4 Formulation of the finite element

A schematic of the BJFE is shown in figure 3.3. The element is one dimensional; all

displacement DOF are oriented along the 1-axis. Two of the displacement DOF (q1

and q4) are external and connect the joint element to the external structure. The

remaining displacement DOF are internal to the element and are used in conjunction

with supplemental equations in order to determine the mechanical loading fraction

( ¯̄φP ) required by the adaptive shape function. The mechanical load that is carried

across the joint can be calculated using internal DOF P1 and P2.

The derivation of the element is presented in stages. First the outer section

sub-elements are formulated from the equilibrium stress equation. The formulation is

subsequently generalized for the lap region sub-element. An equilibrium formulation

is required since the displacement field is governed by an adaptive shape function that

is dependent on load character.

6The solution in this section is incomplete without additional information provided in chapter 2.
Specifically, the application of boundary conditions is required to bridge between the differential
equation equation 3.6 and the stress solution equation 3.8.
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x

y
q3 q4

P2

le

(a) Sub-element for the central adherend outside of
the lap region

x

y
q2 q3

le

(b) Sub-element for the lap region of the double lap joint

Figure 3.4 BJFE sub-elements

3.4.1 Stiffness and load contribution of the adherends out-
side of the lap region

The stress in the adherend structures outside the lap region are assumed to have

no transverse stress (σk22 = 0). The orthotropic adherend constitutive relationship

is given in equation 2.1. All Poisson terms will be set to zero in the initial portion

of the derivation. Thus, the sub-elements outside the lap region are equivalent to

truss elements. A more general analysis would include these Poisson terms, however,

retaining them in this derivation deters the demonstration without adding value.

As a preface to the remainder of this section, the following derivation may seem

unnecessary since the truss element has linear shape functions and is well understood.

The reader could skip to the next section without loss of substance. The subsequent

derivation of the lap region’s adaptive shape functions, however, is completed using

the same steps. The intermediate results of that derivation are too long to be included

in the text. As a result, a detailed derivation is presented for this sub-element where

it can be easily understood.

With a view to deriving the adaptive shape functions in the lap region, the stress

field in the outer center adherend is written directly from equilibrium:

σa11 (x̄) =
P

ta
, (3.11)
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where x̄ is the natural coordinate of this section, defined as:

x̄ =
x

le
. (3.12)

The sub-element local x, y directions are defined from the left edge of the sub-element

and the sub-element length is le as shown in figure 3.4(a). The sub-element displace-

ment DOF are temporarily replaced by a single extensional DOF given by:

qe = q4 − q3. (3.13)

From equations 2.1 and 3.11, the strain field can be written as:

εa11 (x̄) =
σa11 (x̄)

Ea11

+ αa11∆T. (3.14)

Integration of the strain field yields the axial displacement field,

ua (x̄) =

∫ x̄

0

εa11 (x̄)

(
dx

dx̄

)
dx̄. (3.15)

The extension (qe) is given by:

ua (x̄ = 1) = qe,

= le

[
P

Ea11ta
+ αa11∆T

]
.

(3.16)

The intent of this section is to understand the subsequent lap region derivation,

therefore, recall that the joint section stress field given in equation 3.8 is written

in terms of dimensionless loads. To generalized the loads for this sub-element, non-

dimensionalizing substitutions are made:

P =ψ̄P Ea11 ta,

∆T =
ψ̄T
αa11

,
(3.17)

Parameters ψ̄∆T and ψ̄P are dimensionless thermal and mechanical loads. Additionally,

all critical values can be written in terms of the mechanical load fraction ( ¯̄ψP ) and
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the total load ( ¯̄ψtot):

¯̄ψtot = ψ̄T + ψ̄P ,

ψ̄P = ¯̄ψP
¯̄ψtot,

ψ̄T = ¯̄ψtot

(
1− ¯̄ψP

)
.

(3.18)

Combining equations 3.11, 3.14-3.16, and 3.18, the axial displacement field can be

written as:

ua (x̄) = le
¯̄ψtot x̄, (3.19)

and the extension DOF can be written as:

qe = le
¯̄ψtot. (3.20)

The displacement field of equation 3.19 is written in terms of the unknown total load

( ¯̄ψtot). Using equation 3.20, the total load can be isolated as a linear function of the

extension DOF (qe),
¯̄ψtot =

qe
le
. (3.21)

In equations 3.19 and 3.21, a linear displacement field is recovered and can be

written as a shape function N(x̄, ¯̄ψP ).

ua (x̄) = x̄ qe

= N(x̄, ¯̄ψP ) qe
(3.22)

As the shape function has been determined from equilibrium, the mechanical load

fraction ( ¯̄ψP ) is implicitly included in equations 3.21 and 3.22 (although it has been

eliminated). Equation 3.22 is otherwise unremarkable, however, it is a necessary step

in the process of deriving a shape function from the equilibrium equations.7 Using

equation 3.22, the strain and stress can be written in terms of qe and the shape

function derivative B(x̄, ¯̄ψP ),

εa11 (x̄) =

(
dx̄

dx

)
d

dx̄
ua (x̄) ,

=
B(x̄, ¯̄ψP ) qe

le
,

(3.23)

7The standard FE process is to assume a polynomial shape function and derive all quantities from
the resulting displacement field.
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σa11 (x̄) = Ea11 (εa11 − αa11∆T ) ,

= Ea11

(
B(x̄, ¯̄ψP )qe

le
− αa11∆T

)
.

(3.24)

In the example of the central adherend outside the lap section, B(x̄, ¯̄ψP ) = 1.

The strain energy and external work terms are:

U =

∫ ta

0

∫ 1

0

σa11

(
x̄, ¯̄ψP

)
δεa11

(
x̄, ¯̄ψP

)(dx
dx̄

)
dx̄ dy,

W = Pqe.

(3.25)

In contrast to equation 3.11 which was used to obtain the shape functions, equa-

tion 3.24 and equation 3.25 are written in terms of the temperature change and load

(∆T and P ). This is necessary to correctly compute the strain energy and work

required for obtaining the stiffness matrix and load vector.

Restoring the discrete displacements (q3, q4) in place of the extension (qe), the

strain energy is:

U =
Ea11 (q4 − q3)

∫ y1

y0

∫ 1

0
B
(
x̄, ¯̄ψP

)(
(q4 − q3)B

(
x̄, ¯̄ψP

)
− αa11le∆T

)
dx̄ dy

2 le
.

(3.26)

With the work and strain energy fully defined, the potential energy equation can

be used to extract the stiffness matrix and load vector:

d

d~qe
Π =

d

d~qe
(U −W ) ,

= 0,

→ Ke~qe = ~Fe.

(3.27)

The sub-element stiffness matrix, Ke, is:

Ke =

∑
κ

Eκ11

∫ yκ1

yκ0

∫ 1

0

B2
κ

(
x̄, ¯̄ψP

)
dx̄ dyκ

le

[
1 −1

−1 1

]
(3.28)
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and the sub-element load vector, ~F , is:

~Fe = P

{
−1

1

}
+
∑
κ

ακ11Eκ11

(∫ y1

y0

∫ 1

0

Bκ

(
x̄, ¯̄ψP

)
dx̄ dyκ

)
∆T

{
−1

1

}
(3.29)

In this section which focuses on the central adherend sub-element, the summations

in equations 3.28 and 3.29 include only the central adherend (κ = a). It is evident that

when B
(
x̄, ¯̄ψP

)
= 1 (for this sub-element), the appropriate truss element stiffness is

recovered. Therefore, the sub-element stiffness and load quantities can be derived from

equilibrium using non-dimensionalized loads and their ratios. Identical sub-element

formulations are used for the central adherend and outer adherends (external to the

lap region).

Stiffness and load contribution of the adhesively lap section

In the prior section, a general method was developed for calculating a stiffness matrix

and load vector which are load dependent. More specifically, the stiffness matrix

and load vector were derived as functions of the ratio of dimensionless thermal and

mechanical loads, rewritten in terms of the mechanical load fraction ( ¯̄ψP ). Although

the truss type element derivation necessarily resulted in a linear displacement field

and a load independent stiffness matrix, the method is general. In this section, it is

used to develop an adaptive shape function for the displacement field of the lap region

of a symmetric double lap joint.

Following the order of the derivation in the prior section and applying it to the

sub-element shown in figure 3.4(b), the equilibrium stress field must be known. Within

the assumptions of its derivation.8, the double lap joint stress field has the following

8See section 3.3
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components for the adherends and adhesive:

σa11

(
x̄, ¯̄φP ,

¯̄φtot

)
=Ea11

¯̄φtot

(
¯̄A
(

¯̄φP

)
eλ̄1x̄ + ¯̄B

(
¯̄φP

)
e−λ̄1x̄ + ¯̄C

(
¯̄φP

)
eλ̄3x̄ + ¯̄D

(
¯̄φP

)
e−λ̄3x̄ − 1

γ̄

)
,

σb12

(
x̄, ¯̄φP ,

¯̄φtot

)
= −ta

2

(
dx̄

dx

)(
d

dx̄
σa11

(
x̄, ¯̄φP ,

¯̄φtot

))
,

σb22

(
x̄, y, ¯̄φP ,

¯̄φtot

)
=
ta
2

(
dx̄

dx

)2(
d2

dx̄2
σa11

(
x̄, ¯̄φP ,

¯̄φtot

))
(y − tb),

σc11

(
x̄, ¯̄φP ,

¯̄φtot

)
=
P

tc
−
taσa11

(
x̄, ¯̄φP ,

¯̄φtot

)
2 tc

.

(3.30)

The stress components not listed in equation 3.30 can be determined but are of less

interest.

In the discrete space of the FE model, the known (or desired) quantities are the

applied temperature change (∆T , assumed to be constant throughout the element) and

the nodal loads and displacements. The load quantities must be recast into their dimen-

sionless forms to conform to the governing equation for σa11 (x). Non-dimensionalizing

parameters are defined so that:

∆T =
Θ

θ∆T

φ̄∆T ,

P =
Θ

θP
φ̄P .

(3.31)

Application of equation 3.31 to the equilibrium stress field and constitutive law, the
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strain can be written as a linear function of the total load ¯̄φtot:

εa11

(
x̄, ¯̄φP , ¯̄φtot

)
¯̄φtot

= (1− νa13νa31)

·
(
e−λ̄3x̄ ¯̄D

(
¯̄φP
)

+ eλ̄3x̄ ¯̄C
(

¯̄φP
)

+ e−λ̄1x̄ ¯̄B
(

¯̄φP
)

+ eλ̄1x̄ ¯̄A
(

¯̄φP
)
− 1
γ̄

)
+

Θ
θ∆T

(
1− ¯̄φP

)
(αa33νa31 + αa11) ,

εc11

(
x̄, ¯̄φP , ¯̄φtot

)
¯̄φtot

=
Ea11ta (νc13νc31 − 1)

2Ec11tc

·
(
e−λ̄3x̄ ¯̄D

(
¯̄φP
)

+ eλ̄3x̄ ¯̄C
(

¯̄φP
)

+ e−λ̄1x̄ ¯̄B
(

¯̄φP
)

+ eλ̄1x̄ ¯̄A
(

¯̄φP
))

+
Θ
θ∆T

(
1− ¯̄φP

)
(αc11 + αc33νc31)

+
1

Ec11tc
(1− νc13νc31)

(
Ea11ta

2γ̄
+

¯̄φP Θ
θP

1

)
.

(3.32)

It is assumed that the total elongation is the same for the adherends. Therefore,

the elongation equations are:

qe =

(
dx

dx̄

)∫ 1

0

εa11

(
x̄, ¯̄φP ,

¯̄φtot

)
dx̄,

qe =

(
dx

dx̄

)∫ 1

0

εc11

(
x̄, y, ¯̄φP ,

¯̄φtot

)
dx̄.

(3.33)

As in the prior section, the sub-element elongation qe is defined as:

qe = q3 − q2. (3.34)

In equation 3.33, the elongation is written as a function of the dimensionless total

load ( ¯̄φtot). The total load is not known a priori and must be eliminated in favor

of an available quantity (the total elongation qe) so that a stiffness matrix can be

calculated. This is accomplished by application of the boundary conditions to the

51



result of equation 3.33:(
dx

dx̄

)∫ x̄

0

εa11

(
x̄, ¯̄φP ,

¯̄φtot

)
dx̄

∣∣∣∣
x̄=0

= 0,(
dx

dx̄

)∫ x̄

0

εa11

(
x̄, ¯̄φP ,

¯̄φtot

)
dx̄

∣∣∣∣
x̄=1

= qe,(
dx

dx̄

)∫ x̄

0

εc11

(
x̄, ¯̄φP ,

¯̄φtot

)
dx̄

∣∣∣∣
x̄=0

= 0,(
dx

dx̄

)∫ x̄

0

εc11

(
x̄, ¯̄φP ,

¯̄φtot

)
dx̄

∣∣∣∣
x̄=1

= qe.

(3.35)

Specifically, the elongation is zero when x̄ = 0 (x̄ = 0 is the reference from which

elongation is measured) and the total elongation is qe when x̄ = 1. Applying these

boundary conditions and solving for the total load ( ¯̄φtot) as a function of elongation

(qe) in each strain equation, the total load can be replaced in equation 3.32:

¯̄φtota = ¯̄Φaqe,

¯̄φtotc = ¯̄Φcqe.
(3.36)

The intermediate terms ( ¯̄Φa, ¯̄Φc) are detailed in appendix E. Substituting equation 3.36

into equation 3.32, the displacement field is known in terms of total elongation and

the shape functions. shape functions and their derivatives can now be written for each

adherend:

ua

(
x̄, ¯̄φP , qe

)
= Na

(
x̄, ¯̄φP

)
qe,

uc

(
x̄, ¯̄φP , qe

)
= Nc

(
x̄, ¯̄φP

)
qe,

Ba

(
x̄, ¯̄φP

)
=

d

dx̄
Na

(
x̄, ¯̄φP

)
,

Bc

(
x̄, ¯̄φP

)
=

d

dx̄
Nc

(
x̄, ¯̄φP

)
.

(3.37)

The shape functions in equation 3.37 are detailed in the appendix D. With es-

tablished shape functions, the stiffness matrix and load vector can be integrated

numerically using equations 3.38 and 3.39.

Ke =

∑
κ

Eκ11

∫ yκ1

yκ0

∫ 1

0

B2
κ

(
x̄, ¯̄φP

)
dx̄ dyκ

le

[
1 −1

−1 1

]
(3.38)

52



~Fe = P

{
−1

1

}
+
∑
κ

ακ11Eκ11

(∫ y1

y0

∫ 1

0

Bκ

(
x̄, ¯̄φP

)
dx̄ dyκ

)
∆T

{
−1

1

}
(3.39)

In equations 3.38 and 3.39, the summation includes both adherends (κ = a, c). The

sub-element stiffness matrix is adaptive to the character of the load through ¯̄φP . The

strain in the adherends is related, via the material constitutive response given in

equation 2.1, to the stress fields known from equation 3.8 and table A.2. These strains

are related to the stiffness matrix by shape functions derivatives.

The final requirement for element calculations is knowledge of the mechanical load

(P ), used to determine the load character ( ¯̄φP ) of the lap section sub-element.

Calculation of the load carried across the lap section

Using the equilibrium equation for the central adherend outside the lap section, it is

known that the internal load can be determined from:

qe =
P2le
Ea11ta

+ αa11le∆T. (3.40)

In terms of the displacement DOF, the above equation can be written as an additional

equation in the sub-element stiffness matrix and load vector:

[
Ea11ta
le

−Ea11ta
le

1
]

q3

q4

P2

 =
{
−Ea11 taαa11 ∆T

}
. (3.41)

In equation 3.41, the mechanical load (P2) can be written as an additional degree of

freedom and that is available during every increment.9

3.4.2 The FE implementation

The BJFE formulation requires an iterative solution since the mechanical load in the

joint is not known in general. Therefore, the adaptive shape functions have been

implemented as a user element subroutine (UEL) for Abaqus R©, a commercial non-linear

FE package.

9 The current formulation of the element carries two internal load degrees of freedom, P1 and P2

as shown in figure 3.3. Strictly speaking, this only requires one additional DOF.
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Figure 3.5 The solution procedure for the BJFE user element subroutine.

The displacement, stress, and strain fields are dependent on the ratio of the me-

chanical to thermal load through the mechanical load fraction ( ¯̄φP ). This ratio must be

calculated by the BJFE. A general approach for any solution algorithm was developed

in section 3.4.1. In the UEL implementation, the Newton-Raphson solution algorithm

[93] allows complete elimination of the mechanical load DOF. Though the equations10

describing the algorithm are deferred to chapter 4, a flowchart of the Newton-Raphson

algorithm (as it relates to the BJFE) is shown in figure 3.5.

In addition to the constitutive and geometric quantities, the inputs to the BJFE are

the current iteration’s displacements (uMi ) and the relative temperature change (∆T ).

The first step in the UEL is to compute the (constant) central and outer sub-element

stiffnesses using equation 3.28. The central and outer sub-element load vectors are

then computed using equation 3.29 and uMi . By first computing the load vectors in

10See equations 4.17-4.22).
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the outer sub-elements, the mechanical load can be used to calculate consistent shape

functions and stiffnesses in the lap region.11 The thermal load (∆T ) is assumed to

be constant through the element and is applied as a user distributed load [1] into

the BJFE. The initial iteration’s value of ∆T is determined automatically by the

solver based on the method chosen by the user. The default is a linear ramping of the

temperature change over the step.

With knowledge of the current iteration’s value of the mechanical load fraction

( ¯̄φP ), the current iteration’s shape functions and matrices are calculated for the lap

zone sub-element. The lap zone stiffness matrix and load vector are integrated numer-

ically using a modified midpoint rule. The modification offsets the integration point

by 1
2

interval so that the extremes of the joint section are included in the integration.

Equal weighting is given to each interval, except that the end points have a weighting

of 1
2

the other intervals.

The number of integration points is defined by the user. The number is usually

dictated by the desire to resolve stress gradients within the lap zone.12 The field

quantities are calculated from table A.2 (at each integration point) based on the

calculated ∆T and P for the increment. Using this procedure, all stress and strain

quantities of interest are calculated in a manner consistent with the shape function

displacement field. Further, the shape functions and the resulting stiffness matrix

are consistent in the Newton-Raphson algorithm and therefore exhibit quadratic

termination, [27]. Though the displacement interpolation is non-linear in ¯̄φP , the

element tangent stiffness is a smooth function of ¯̄φP over the majority of the range of
¯̄φP . Worst-case analyses converged with relative ease in all attempts.

The final task of the UEL is to assemble the sub-element stiffness matrices and load

vectors into element-level matrices with four DOF (using standard assembly techniques

[27]) and return them to the solver.

11The outer sub-element load vectors provide the current iteration’s values of the mechanical
loads in the lap region sub-element (provided by P1 and P2 in the general procedure). These forces
should be equal if no body forces are applied, however, it is possible that they differ during iteration
and have negligible differences after the solution completes (according to the specified convergence
tolerances). Therefore, the two values are averaged for the purposes of calculating P and ¯̄φP .

12 The stiffness and load matrices converge with a smaller number of integration points than is
usually desired for stress evaluation.
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3.5 Benchmarking

The stress prediction of the BJFE has been compared to a plane strain continuum

FE model. In the BJFE, the entire model consists of a single element. In the contin-

uum model, a 2D mesh has been generated. Both models are based on the ASTM

International (ASTM) double lap joint, [12]. The continuum mesh is shown in figure 2.4

and the assumed geometries are given in table 2.1(a). The solver is Abaqus R© Standard

and the continuum mesh consists entirely of linear plain strain elements (CPE4I). Half

of the joint is modeled due to symmetry. Loading is specified as listed in table 2.1(b).

The mechanical load is applied far away from the lap joint and the thermal load

is applied to all nodes. Displacement symmetry constraints are enforced along the

mid-plane of the central adherend. Non-linear geometric stiffness is assumed.

Aluminum (AL) is the central adherend in all models; the outer adherends are

titanium (TI) and AS4/3501-6 (AS4) [57]. For simplicity, the adhesive properties are

assumed to be isotropic and are estimated based on Cytec FM300 adhesive. The

assumed material properties are summarized in table 2.2 of appendix A. The shear

stresses from the continuum model are reported at the centerline of the adhesive. The

centerline is the most representative location for comparison with the uniform shear

stress predicted by the BJFE. The peel stress in the continuum model is reported at the

interface between the adhesive and the central adherend. The choice of location has a

large effect on the predicted peel stress, as was shown in figure 3.1. The adhesive to

central adherend interface (a-b) comparison location is chosen because the BJFE model

can be used as a measure of the severity of the stress field caused by the singularity

at this location. The peel stress reported from the BJFE is the average peel stress

through the thickness (the stress equation is evaluated at y = tb
2

).

3.5.1 Comparison of the BJFE and continuum FE models

Plots of stresses predicted by the continuum and BJFE models are shown in figures 3.6-

3.10. Figure 3.6 shows the predictions for a AL-AL double lap joint. When this joint is

subjected to thermal loading, as is shown in figures 3.6(a) and 3.6(b), both models

predict that the stress is negligible.13 This stress result is intuitive, since the two

adherends have identical thermal expansion coefficients. Figures 3.6(c) and 3.6(d)

show shear and peel stress predictions of the AL-AL joint subjected to mechanical

13This is the special case of identical adherends. Thermal expansion of the adhesive is the primary
source of loading. As reported in chapter 2, a different analytical procedure may be more appropriate.
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Figure 3.6 Continuum and BJFE models of AL-AL joint with 0.2 mm adhesive
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Figure 3.7 Continuum and BJFE models of AL-TI joint with 0.2 mm adhesive
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Figure 3.8 Continuum and BJFE models of AL-TI joint with 1.0 mm adhesive
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Figure 3.9 Continuum and BJFE models of AL-AS4 (0o) joint with 0.2 mm adhesive

60



-4

-2.8

-1.6

-0.4

0.8

2

0.01 0.25 0.5 0.75 0.99

τ̄b12

x̄

FE BJFE

(a) τ̄b12 due to φ̄∆T

0.01 0.25 0.5 0.75 0.99
-2

-1.4

-0.8

-0.2

0.4

1

σ̄b22

x̄

FE BJFE

(b) σ̄b22 due to φ̄∆T

-4

-2.8

-1.6

-0.4

0.8

2

0.01 0.25 0.5 0.75 0.99

τ̄b12

x̄

FE BJFE

(c) τ̄b12 due to φ̄P

0.01 0.25 0.5 0.75 0.99
-2

-1.4

-0.8

-0.2

0.4

1

σ̄b22

x̄

FE BJFE

(d) σ̄b22 due to φ̄P

-4

-2.8

-1.6

-0.4

0.8

2

0.01 0.25 0.5 0.75 0.99

τ̄b12

x̄

FE BJFE

(e) τ̄b12 due to φ̄P+φ̄∆T

0.01 0.25 0.5 0.75 0.99
-2

-1.4

-0.8

-0.2

0.4

1

σ̄b22

x̄

FE BJFE

(f) σ̄b22 due to φ̄P+φ̄∆T

Figure 3.10 Continuum and BJFE models of AL-AS4 (90o) joint with 0.2 mm adhesive
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loading; good agreement is exhibited in both figures. The peak shear stress predicted

by the BJFE is similar to that predicted by the continuum model, though there is

a difference in predicted peak location. The peel stress predicted by the BJFE is in

adequate agreement with the continuum model and its value does not suffer from any

mesh dependency. Figures 3.6(e) and 3.6(f) show mixed loading for the AL-AL joint

which are almost identical to the mechanical load predictions for this joint.

Figure 3.7 shows the stresses predicted by the continuum and BJFE models for

an AL-TI joint. Thermal loading is non-trivial and the stress predictions resulting

from it are shown in figures 3.7(a) and 3.7(b) for shear and peel. In this joint type,

the predicted shear stress is in good agreement for thermal, mechanical, and mixed

loading, as is shown in figures 3.7(a), 3.7(c), and 3.7(e). In all cases, the peak shear

stress predicted by the BJFE adequately matches the continuum model. The peak

location is consistently found to be further from the edge in the BJFE than in the

continuum model. Looking at the peel stress predictions shown in figures 3.7(b),

3.7(d), and 3.7(f), good agreement is found again. The stress predicted by the BJFE is

similar to the continuum model and is representative of the (unconverged) singular

peel stress result.

The BJFE solution is orthotropic; an example of a composite application is shown

in figures 3.9 and 3.10. The figures show two AL-AS4 joints subjected to thermal,

mechanical, and mixed loading. The laminate shown in figure 3.9 has fibers oriented

longitudinally (0o) and the laminate shown in figure 3.10 has fibers oriented trans-

versely (90o). Despite the unlikelihood of the 90o fiber orientation (relative to the joint

loading axis) in practical applications, the two figures shows that the BJFE solution is

in adequate agreement with the continuum solution in both cases and for all three

load types.

In comparing figures 3.6-3.10 to the corresponding plots in chapter 2, it is apparent

that the virtual work solution used in the BJFE is more accurate than are the simpler

solutions. This is a direct result of the inclusion of additional stress terms in the virtual

work solution. Based on the cumulative agreement shown in figures 3.6-3.10, it can

be concluded that the BJFE element adequately predicts the shear stress in a double

lap joint. The peel stress predicted by the BJFE model is found to be consistently

in agreement with the value of the (unconverged) singular stress field in all figures.

Therefore, it can be used as a mesh independent indicator of peel stress, useful for

joint-to-joint comparison.
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Model Nodes Elements DOF
CPE4I 22100 21600 44300
BJFE 4 1 4

Table 3.1 Approximate size of the double lap joint FE models

3.6 Conclusion

In this chapter, a bonded joint finite element has been developed. It is capable of

predicting the lap joint field quantities in the lap zone using four degrees of freedom.

It does so without burdening the user with mesh dependency or significant meshing

overhead. The BJFE is formulated by embedding an analytical solution directly within

the element. Its stiffness and load response are based on adaptive non-linear shape

functions that are dependent on the load character. All critical terms are formulated

as functions of the dimensionless mechanical load fraction ( ¯̄φP ) allowing for solution

via an iterative, non-linear FE solver. To demonstrate its capability, the element

has been implemented as a user element subroutine in the commercial finite element

package Abaqus R©.

Based on comparison with continuum FE solutions, the four node BJFE is capable

of adequately predicting stress and strain in a joint due to thermal and mechanical

loads. With this element, initial sizing and trade studies can be accomplished with

a significantly reduced meshing investment and a reduction in computation time

(compared with the continuum finite element method). The element lays a foundation

for advancements in bonded joint elements. Using the techniques demonstrated in

this chapter, it is anticipated that available analytical solutions can be reformulated

as application specific bonded joint elements.
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Chapter 4

A discrete cohesive zone element
formulation for efficient and robust

computation

In this chapter, a discrete cohesive zone method element is developed for predicting

decohesion in a finite element model. Finite elements provide flexibility that is not

present in closed-form analytical methods (chapter 2) and hybrid methods (chapter 3).

The discrete cohesive zone method element is formulated as a combination of non-linear

springs and dashpots. The springs enforce a modular traction law allowing a user

specified form of the law to be applied. The dashpots allow for viscous regularization

in the event of unstable crack propagation. Three traction laws are described and

are compared in their computational efficiency and robustness. The smooth traction

laws (based on the beta distribution and sine functions) are found to have greater

computational efficiency than the trapezoidal traction law. Efficiency gains are due to

the elimination of the stiffness discontinuities associated with the trapezoidal traction

law. The sinusoidal traction law is found to be more robust and efficient than the

other traction laws.

4.1 Introduction

Finite element modeling and other forms of computational analysis have become

indispensable tools in system design and mission preparation. An active area of

research is the application of these methods to the field of adhesive systems, bonded

joints, and delamination. Though finite element (FE) modeling of adhesively bonded
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joints began as early as 1971 [3, 109], it remains an active area of research.1

The continuous cohesive zone method (CCZM) models are particularly well suited

to composite materials where the length scale of the process zone is larger than any

characteristic length of the material [21, 35, 81, 88, 100, 101, 116]. Cohesive zone

models have begun to be incorporated into commercial software including Abaqus R©

[1, 23] and Genoa R© [29] as well as freely available research codes like Tahoe R© [87].

Though they are an important advancement, these “production level” continuum cohe-

sive elements have not been widely adopted. A primary obstacle to their widespread

use is the local and highly non-linear constitutive response of the adhesive materials

and their adherends. In addition, bonded joints can be subject to catastrophic failure

modes that are accompanied by large and sudden changes in load and structural

stiffness. When combined, these two analytical obstacles cause difficulty in obtaining a

converged solution and have prevented widespread deployment of the available analysis

techniques. Research is underway to develop improvements to the available methods

[75, 76, 94].

Using simple arguments, Hillerborg et al. [58] provided the essential components

of a spring-based traction law element capable of analyzing crack formation and

propagation. The “fictitious crack” element featured the ability to predict new cracks

based on a stress criterion (σc) while also predicting crack growth based on an energy

criterion (Gc). The concept has experienced a (independently conceived) revival and

found application to laminated composite materials [96, 97], geometrically non-linear

behavior [111], and Mode II fracture [113]. The method has recently been referred to

as the discrete cohesive zone method (DCZM). Similar elements were presented by Cui

and Wisnom [33] and Shahwan and Waas [92].

The DCZM technique is a promising alternative to the CCZM. Continuous cohesive

zone elements have been found to be mesh sensitive (in some circumstances), to suffer

from convergence difficulty during the softening portion of the cohesive law, and to

have sensitivity to aspect ratio, [6, 42, 43, 123]. A comprehensive description of the

strengths and weaknesses of the cohesive zone methodologies is provided by Xie and

Waas [113]. In contrast to CCZM, the DCZM methodology treats the process zone as a

point-wise spring foundation that is discretized to node pairs of adjoining surfaces. The

method is scalable to the node spacing and is claimed to be free of mesh dependency,

[58, 113]. The stiffness matrix is sparse and is therefore computationally efficient.

Though it does not avoid instability due to strain softening, careful application of

damping stabilization can improve convergence.

1See chapter 3 for a list of recent references.
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Reliable and efficient convergence remains the largest computational hurdle in

deployment of robust cohesive models. The propagation of a softening law through

a structure is computationally challenging, [38]. Attempts to address this difficulty

have had mixed success. Arc length methods have been reported by several authors

[7, 70, 102], however, they tend to suffer from large spurious oscillations. It was

claimed that a lack of mesh refinement caused the oscillation, though it is unclear

what role the strain softening traction law may have played. Line search algorithms

are often considered a remedy for lack of convergence, however, complications arise for

non-conservative problems, [8]. When used in conjunction with the primary methods of

this work, neither of these methods were found to have significant additional benefits.

In this chapter, the approach to obtain robust convergence is to apply a traction

law with “smooth” stiffness gradients.2 Smooth laws have been used, though it does

not appear that they were designed with improved convergence as their primary goal.

For example, Goyal et al. [53] used a law based on the exponential function with

no stiffness discontinuities. A line search algorithm was employed and the stiffness

was set to zero when the law was undergoing strain softening. It was claimed that

convergence difficulties were eliminated, though independent verification is still pend-

ing. Alfano and Crisfield [7] claim that the use of the tangent modulus should give

better convergence of the residual norms; therefore, a tangent stiffness was used for

the current work. Corigliano et al. [28] also used an exponential traction law; however,

no claim was made about convergence.

The DCZM element is developed for use in modeling decohesion in structures. The

element features a computationally efficient traction separation formulation, optional

viscous damping for stabilization, standard 2D and 3D interfaces, and a modular

interface for specifying a traction law. Three traction laws are implemented, one

which is in common use and the others which are designed specifically for convergence

efficiency. A comparison of the convergence efficiency and robustness of the three laws

is provided based on models of two coupon-level tests.

4.2 The discrete cohesive zone method

The element in this work (hereafter referred to as “the current element”) evolved from

the formulation of Xie and Waas [113] (hereafter referred to as “the Xie element”).

The formulation has been modified to provide a (perceived) improvement in user

2An option for viscous damping is included in the formulation.
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Figure 4.1 Four-node 2D DCZM element with surrounding elements. Adhesion is enforced
with non-linear springs between node pairs.

interface, the addition of user controlled damping, and a modularity in traction law.

For ease of explanation and comparison, the derivation of the current element details

a 2D implementation. Since 3D problems are of critical importance, the code for the

element has been written as a 3D element. Any descriptive language or calculation in

the derivation can immediately be extended to three dimensions.

The DCZM element is illustrated (in 2D form) in figure 4.1 and conforms to the

layout for a 2D four-node element in Abaqus R©. A similar conforming layout is also

provided for the 3D version of element. Recall that the current element evolved from

the Xie element. Compared to that element, the first modification is to the node

layout. The node numbering and connectivity in the Xie element does not follow

common convention. It is a four-node element with two “dummy” nodes, meaning

the element transmits forces only at two nodes. The dummy nodes serve to measure

the cohesive area that the element represents. Although the nodal layout of the Xie

element is capable of providing the intended function of the element, it is recognized

that a standard node layout is usually desired. As a result, there are no dummy nodes

in the current element and the contact area is measured from nodes that are active.

All nodes in the current element transfer adhesive forces.

4.2.1 The key element matrices

Although the current node arrangement has the advantage of providing a conventional

node layout, it requires a slight increase in per contact node computational cost over

that of the Xie node arrangement. Most active nodes are active in two elements.

Evaluation of stiffness and force is required at each active node in each element. Unlike

the Xie element, however, the current element is formulated so that an arbitrary

number of integration points can be used. As a result, the current element has the

potential to be a “softer” element, smoothing transitions in non-linear traction laws.
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Additional integration points offer the possibility of improved convergence [40] in

marginally stable analysis (at a given mesh density) or the use of lower mesh densities.3

As a second option for improved convergence over the Xie element, the current element

offers modularity for the form of the traction law. Three forms are presented and

compared in section 4.4. The traction law is written generically as σi(δ
IP
i (j)) in the

element derivation.

Although the current element (in 2D form) is a four-node element, in practice it is

an element consisting of four two-node non-linear spring elements and four two-node

linear dashpot elements. These sub-elements transmit spring forces in the x (shear)

and y (peel) directions for each of two node pairs. Therefore, the element force vector

and stiffness matrix shown in equation 4.1 appear as they would appear if four spring

elements were assembled.

Kel =



K14x 0 0 0 0 0 −K14x 0

0 K14y 0 0 0 0 0 −K14y

0 0 K23x 0 −K23x 0 0 0

0 0 0 K23y 0 −K23y 0 0

0 0 −K23x 0 K23x 0 0 0

0 0 0 −K23y 0 K23y 0 0

−K14x 0 0 0 0 0 K14x 0

0 −K14y 0 0 0 0 0 K14y


,

Fel =
[
−F14x −F14y −F23x −F23y F23x F23y F14x F14y

]T

(4.1)

A detailed derivation of the components of equation 4.1 is deferred to section 4.2.3.

4.2.2 Justification for use of internal damping

The second major modification to the Xie element is the addition of internal damping.

In Xie and Waas [113] it was reported that the Xie element had no convergence

difficulties associated with a triangular traction law. In this work, it was observed that

the local stability and convergence of a model may depend on the traction separation

3The author has experienced circumstances where an increase in the number of integration points
in the DCZM elements has allowed a DCB model to obtain a converged solution that would otherwise
fail to converge (with a fixed mesh density and a set of adhesive parameters). This aspect of the
element formulation is not thoroughly explored in this work. Instead, the smooth traction laws
(presented in sections 4.4.2-4.4.3) are formulated to improve convergence. No claim is made regarding
the robustness of the integration point strategy as a method to improve convergence or reduce CPU

cost in a DCB or other analysis, only that the potential exists to do so.
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behavior of the constituents and the strain energy of the specimen. For example,

the crack advance of the double cantilever beam (DCB) experiment was observed

to be discontinuous on occasion, advancing in small increments. Though the DCB

exhibited a globally stability, the local instabilities in the experiment require additional

investigation. The stability traits are mirrored in the FE model based on the DCZM

element. In addition, the ability of the solver to obtain a converged solution may also

depend on the mesh density (since the model’s increments of deformation and crack

advance are intimately tied to this density).

In physical tests, it is common for this stepwise (stick-slip) dynamic crack prop-

agation to occur. Further, it is difficult to construct a cohesive element that is

unconditionally convergent for an implicit static solver, since crack propagation sta-

bility is dependent on the energetics of the system. Ideally, all forms of dynamic

crack advance (including stepwise dynamic) would be addressed with a dynamic

element formulation and a dynamic FE solver (implicit or explicit). There are many

circumstances, however, where an implicit static solver is preferred and appropriate.

It is common to add dissipative mechanisms to the static formulation, [24, 102]. The

addition can stabilize the solution and facilitate convergence.

Damping capability is built into many solvers. In Abaqus R©, for example, a co-

hesive analysis could include dissipation at every degree of freedom4 or locally at

the cohesive section5. If dynamic cracking occurs in small stepwise increments and a

dynamic analysis is not desired, it is justifiable to add small amounts of dissipation

to the implicit static solution. The global solution variables (stiffness, load) require

small changes. Dissipation could be considered to represent the energy that goes into

sound, heat, or other viscous damping effects. If dynamic cracking occurs in large

increments, dissipation may be the only available method for achieving a converged

solution with a static solver. In either case, comparison between the FE model and the

experimental data may determine if this modeling technique is justified. Caution must

be used, however, since different geometries will exhibit different stability boundaries.

The energy lost to viscous dissipation can have comparable magnitude to the energy

associated with crack formation.

To facilitate convergence, a user controlled option of viscous dissipation was for-

mulated into the current DCZM element. Dissipation is added via linear dashpots on

each node pair in each direction.

4Via the (*STATIC, STABILIZE) keyword
5Via the (*SECTION CONTROLS, VISCOSITY=µ) keyword
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4.2.3 Components of the DCZM force vector and stiffness ma-
trix

The element load vector and stiffness matrix components presented in equation 4.1 are

derived here in this section. The displacement vector (in the element local orientation)

is given by:

uel =
[
u1x u1y u2x u2y u3x u3y u4x u4y

]T
. (4.2)

Each component of the reaction force Fnm i (acting between nodes n and m, direction i)

and stiffness matrix Knm i is composed of the combination of traction law (superscript

k) and viscous (superscript µ) components:

F14i =F k
14i + F µ

14i,

F23i =F k
23i + F µ

23i,

K14i =Kk
14i +Kµ

14i,

K23i =Kk
23i +Kµ

23i.

(4.3)

Traction law contributions to the element matrices

The traction law component of the force vector is a moment balanced sum of integra-

tion point forces over an arbitrary number of equally spaced integration points (nIP):

F k
14i =

nIP∑
j=1

N1(j) · F k IP
i (j),

F k
23i =

nIP∑
j=1

N2(j) · F k IP
i (j).

(4.4)

In equation 4.4, the integration point forces F k IP
i (j) are weighted by shape functions

in order to translate the forces and moments into nodal forces:

N1(j) =

(
1− ζ(j)

2

)
,

N2(j) =

(
1 + ζ(j)

2

)
.

(4.5)

70



The local coordinate ζ(j) for integration point number (j = [1 , ... , nIP]) varies linearly

from -1 to 1 at the left and right edges of the element:

ζ(j) =

(
2

nIP − 1

)
· (j − 1)− 1. (4.6)

The integration point forces are:

F k IP
i (j) = σi(δ

IP
i (j)) · AIP(j), (4.7)

where the traction law is given by σi(δ
IP
i (j)) and AIP(j) is the integration point area.

The form of the law is arbitrary and the DCZM element is modular to accept any form

provided by the user. Three forms have been evaluated and are reported in section 4.4.

The integration point relative displacements are determined by a linear interpolation

of the relative displacement of the nodal degrees of freedom (DOF):

δIP
i (j) = N1(j) ·∆u14i +N2(j) ·∆u23i. (4.8)

The node pair relative displacements are:

∆u14i =u4i − u1i,

∆u23i =u3i − u2i,
(4.9)

and the integration points areas are:

AIP(j) =
b · (x2 − x1)

ϕ (nIP − 1)
. (4.10)

In equation 4.10, the elemental contact area (b · (x2 − x1))
6 is distributed to the

integration points as nIP − 1 parcels. All integration points have the same area (one

parcel) except for the nodal integration points which divide the final parcel into

two parts. This parcelling is accomplished by the term (ϕ) in the denominator of

equation 4.10:

ϕ =

{
2 if j = {1, nIP},
1 if j 6= {1, nIP}.

(4.11)

The integration point positions include the node positions, therefore, a minimum of

two integration points are required. Figure 4.2 provides an example of the integration

point layout and area weighting for nIP = 5.

6b is the depth of the element in the third dimension and is assumed to be one in the 2D element.
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1 2 3 4 5

Figure 4.2 Example of DCZM element with 5-point integration. The spacing is uniform
and the contact area is uniformly distributed with the exception of the nodal integration
points. The nodal integration points are allotted 1/2 the contact area associated with the
internal integration points.

With the force vector derivation complete, the traction law stiffness components

are derived in a similar way. The integration point stiffness is:

Kk IP
i (j) =

d

d δIP
i (j)

σi(δ
IP
i (j)) · AIP(j), (4.12)

and the element stiffness matrix components are:

Kk
14i =

nIP∑
j=1

N1(j) ·Kk IP
i (j),

Kk
23i =

nIP∑
j=1

N2(j) ·Kk IP
i (j).

(4.13)

The derivative in equation 4.12 is discontinuous at the critical displacements for the

trapezoidal traction law (TTL), therefore, it is applied in a discrete (∆u ≤ ∆uc) sense.

Dissipative contributions to the element matrices

Having completed the derivation for the traction law contributions to the elemental

matrices, it was reported in section 4.2 that a method of energy dissipation is required

(for some geometries and traction laws) to facilitate a converged solution. In the

current element, dissipation is implemented as an internal dashpot on each relative

degree of freedom. The dashpot components of the force are given by:

F µ
14i =µ14i ·∆u̇14i,

F µ
23i =µ23i ·∆u̇23i,

(4.14)
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where the viscosities (µ14i, µ23i) are non-zero only in a viscous zone defined by a user

specified multiplier (Cµ > 1) of the critical relative displacement δc:

µnm i =

{
µi if δi ≤ Cµ δc,

0 if δi > Cµ δc.
(4.15)

In the author’s experience, the effective Cµ value depends on the traction law. Values

between 3 and 5 have been effective for the TTL (described in section 4.4.1) and 2 has

been effective for the beta distribution traction law (BDTL) and sinusoidal traction

law (STL) (described in sections 4.4.2-4.4.3). The relative velocities of the nodes are

the time derivative of the relative displacements in equation 4.9.

In practice, the dashpot forces given in equation 4.14 only need be applied during

unstable time increments of a solution. The time incrementation scheme drives the

increment to a small value if a converged solution is not readily found. Therefore, the

DCZM implementation sets the viscosities (µ14i, µ23i in equation 4.14) to zero unless the

time increment is small (∆t < 10−4). Localized dissipation is active during (potentially

unstable or non-convergent) increments of initial separation and subsequent softening.

Dissipation is removed once adhesive failure has been established.7

For an iterative static solver with time based incrementation (such as the Newton

method solver in Abaqus R© [1]), it is beneficial for convergence to account for the

viscous dissipation in the stiffness matrix. The “viscous stiffness” contribution for a

given increment of time (∆t) is given by:

Kµ
14i =

µ14i

∆t
,

Kµ
23i =

µ23i

∆t
.

(4.16)

The derivations in this section were presented in the local coordinate frame of the

element, however, the element formulation is general. All forces and stiffnesses are

rotated into the global coordinate system by the user element subroutine (UEL).

4.2.4 The FE implementation

With equation 4.16, all components of the element stiffness matrix and load vector are

complete. The DCZM element has been implemented as a UEL in the general purpose

7The use of damping for stabilization is case dependent, therefore, no universal recommendation
can be made for the parameters µnm i and Cµ.
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Figure 4.3 Typical process zone using the DCZM element

non-linear solver Abaqus R© Standard. A typical peeling process zone associated with

crack propagation is shown in figure 4.3.

4.3 Solution efficiency

In section 4.2, it was reported that crack stability depends on the specimen loading

and the traction law. A detailed description of this dependency is reported in this

section. Two topics must be considered when addressing solution efficiency for the

computation of cohesive problems: structural instability and numerical convergence.

4.3.1 The critical crack separation

In structures with adhesive bonds, structural instability can occur due to sudden

failure of the bonded interface. In static FE analysis of adhesive failure, the absence of

inertial accounting can cause an imbalance between the strain energy release rate and

the energy dissipation due to permanent deformation. This imbalance can cause a

significant change in the stiffness and load of the system. As a result, an incremental

FE solver may fail to converge to an equilibrium solution.

At a fixed level of strain energy release rate near the critical value, the stability

margin is dependent on the critical crack separation (δc) in figures 4.4, 4.5, and 4.10.

In relative terms, if the value of δc is large, the system is soft. For a fixed displacement

in this state, load transfer occurs over a large material volume and the strain energy

is small for the global displacement. As the global displacement increases, the load

paths smoothly transition to neighboring elements via a gradual and dispersed stiffness
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change. The solver finds the equilibrium path with relative ease. Conversely, if δc is

small, the load transfer is concentrated into a small material volume with a large strain

energy. An increase in global displacement causes a localized change in stiffness and

displacement field. Therefore, it is more difficult for the solver to find the equilibrium

path.

Based on these arguments, larger values of δc result in more efficient solutions due

to ease of convergence.

4.3.2 The stiffness gradient

A second consideration in solution efficiency is the continuity of the traction law.

Consider the Newton solver as described by Simulia [93]. Linearization of the virtual

work equations yields:

FN(uMi + cMi+1) = 0. (4.17)

FN is the force component conjugate to the Nth variable in the problem. uMi and

cMi+1 are the values of the Mth variable in iteration i and the absolute error (i.e. the

correction vector) of the Mth variable in iteration i + 1. A Taylor expansion of

equation 4.17 yields:

FN(uMi ) +
∂FN(uMi )

∂uPi
cPi+1 +

∂2FN(uMi )

∂uPi ∂u
Q
i

cPi+1 c
Q
i+1 + ... = 0. (4.18)

If the force functions are sufficiently smooth and uMi is a close approximation of the

true solution, the higher order terms in equation 4.18 are negligible. The correction

can be iteratively computed via:

KNP
i cPi+1 = −FN

i , (4.19)

where KNP
i is the tangent stiffness matrix defined by:

KNP
i =

∂FN(uMi )

∂uP
, (4.20)

and the residual force vector is:

FN
i = FN(uMi ). (4.21)

75



Subsequent iterations are computed as:

uMi+1 = uMi + cMi+1, (4.22)

until a converged solution is obtained.

In this scheme, the value of the correction is linearly computed from the current

residual vector and the current tangent stiffness matrix. Convergence is accepted when

the values of FN
i and cMi+1 are sufficiently small. If the higher order derivatives (the

stiffness gradient) in equation 4.18 are large, however, then the higher order terms can

be significant. This causes equation 4.20 to compute a poor approximation for the

correction vector, leading to convergence difficulties. When this occurs, it is necessary

to reduce the solver increment size. The reduction results in higher computational

cost. In this way, the smoothness of the traction law is a critical component of the

solution efficiency and robustness.

4.4 The traction laws

The DCZM element described in section 4.2 is modular in the application of traction

laws. It has been shown that the form of the traction law is not critical in the

global load displacement response, [47, 66, 78, 84, 102, 113, 119]. Therefore, the

modularity of the DCZM element offers some flexibility in controlling the cohesive

model. More specifically, the form of the traction law can be specified to suit one of

several purposes. For example, the law applied in the FE model can be the “most

accurate” representation of the actual traction separation response. Alternatively, the

law can also be formulated for the simplicity of implementation [8] or for the purposes

of numerical efficiency and robustness. In this section, these last two objectives are

adopted and three traction laws are evaluated.

A feature of each implementation is that the element will unload along a line from

the origin to the force associated with the extreme separation. Reload follows the

same path as the prior unloading path, preserving any material degradation.

4.4.1 The trapezoidal traction law

The trapezoidal traction law (schematically shown in figure 4.4) is a widely used

traction law. It is a generalization of the triangular law used in the Xie element [113]

and elsewhere. Implementation is convenient due to the simplicity of formulating the
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αpl

Figure 4.4 The trapezoidal traction law

three linear regions of the law. The three regions are referred to as the initial linear

response region, the optional “plastic” region, and the strain softening region.

Each fracture mode (I, II, III) requires three parameters to implement the TTL.

In two dimensional problems, the required parameters are the critical energy release

rates (GIc, GIIc), the critical stresses (σIc, τIIc), and the shape factors (αIpl, α
II
pl ) that

define the “plasticity”. In the TTL, the shape factor is the ratio of the rectangular

area in the flat section of the traction law to the total area enclosed by the traction

law (Gc). Shown in figure 4.4, αpl is bound by zero (restoring a triangular law) and

one.
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Efficiency considerations related to the TTL

Despite being simple in implementation, the TTL is a law that can suffer from severe

convergence difficulties. For example, as the peak stress is crossed in the triangular law

(αpl = 0), the tangent stiffness undergoes a change in sign from positive to negative.

The local stiffness gradient is infinite, potentially8 causing a significant decrease in

the the increment size. These discontinuities were recognized by Alfano and Crisfield

[7] and were referred to as limit points. Furthermore, after convergence passed the

limit point at a given integration point, large solution increments can be restored only

when no other integration points are near their critical separation. When hundreds or

thousands of discontinuous integration points exist, the solution can fail to converge

or the average increment size can cause the analysis to be prohibitively expensive.

If plasticity is introduced into the TTL, convergence may improve since the magni-

tude of the step stiffness change is reduced. Unfortunately, a second limit point is

necessarily introduced; therefore, the effect on efficiency is uncertain.

Beyond the stiffness discontinuities, the efficiency of the TTL is also effected by the

value of the three parameters that are used to define it. The cohesive strength (σc),

the shape factor (αpl), and the critical energy release rate (Gc) all affect δc; therefore,

they affect convergence. The efficiency is also affected by the critical energy release

rate (Gc) through the effects directly described by classical fracture mechanics and

crack stability.

To improve convergence efficiency, there is value in the use of a “smooth” constitu-

tive law which avoids stiffness discontinuities. Traction laws with “smooth” derivatives

have been examined before, [70, 86] however, the form of the law appears to have

been chosen for mathematical convenience instead of numerical considerations. No

quantitative assessment of the relative “convergence efficiency and robustness” of the

laws were reported.

The objective of the remainder of this chapter is to evaluate several traction laws.

In addition to the TTL, two smooth traction laws are developed based on the beta

distribution and sine functions.
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Figure 4.5 The beta distribution traction law.
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4.4.2 The beta distribution traction law

Consider the beta probability distribution:

β (x, a, b) =
xa−1(1− x)b−1∫ 1

0
ua−1(1− u)b−1 du

, (4.23)

where the denominator is the beta function. As a probability distribution, the value

of its integral is one over the interval x = [0, 1].∫ 1

0

β (x, a, b) dx = 1 (4.24)

Therefore, the distribution can be mapped to a finite traction-separation space with

known values of Gc.

Mapping the BDTL to the critical energy release rate

Two parameters are required (Gc, σc) and two requirements must be met to complete

the mapping. First, the maximum value of β
(
δ
δc
, a, b

)
is mapped to the critical stress

through a multiplicative constant. Subsequently, the traction law can be written as:

σβ

(
δ

δc

, a, b

)
=
σc β

(
δ
δc
, a, b

)
βmax (a, b)

. (4.25)

In equation 4.25, βmax (a, b) is the maximum value of the probability density function

(PDF). Second, the traction law must integrate to the value of Gc.∫ δc

0

σc

βmax (a, b)
β

(
δ

δc

, a, b

)
dδ = Gc (4.26)

A change of variables is required to map the integral in equation 4.26 into the space

of the PDF:

dδ = δc dx, (4.27)

which allows equation 4.26 to be written as:

σc δc

βmax (a, b)

∫ 1

0

β (x, a, b) dx = Gc. (4.28)

8It is common to use step changes in constitutive response in FE modeling and doing so does not
always cause convergence difficulties. It is the magnitude of the step that is important as well as the
number of integrations points that are actively transitioning.
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In equation 4.28, the integral portion of the left hand side evaluates to one, therefore

the critical displacement is calculated as:

δc =
βmax (a, b)

σc

Gc. (4.29)

The maximum value of the beta distribution (βmax (a, b)) must be calculated. After

multiplying the right hand side of (4.23) by its denominator, equation 4.30 must be

extremized:

(1− x)b−1 xa−1. (4.30)

Setting the x derivative of equation 4.30 to zero yields:

(a− 1) (1− x)b−1 xa−2 − (b− 1) (1− x)b−2 xa−1 = 0. (4.31)

Equation 4.31 can be solved for xmax which is a maximum for values of a and b that

are appropriate for the BDTL:

xmax =
a− 1

b+ a− 2
. (4.32)

Inserting equation 4.32 into the distribution function, the maximum value is:

βmax (a, b) =
xmax

a−1(1− xmax)b−1∫ 1

0
ua−1(1− u)b−1 du

. (4.33)

With equation 4.33, the mapping of the traction law is complete. The BDTL, shown

in figure 4.5, has been implemented as a traction law module to accompany the DCZM

element.

Efficiency considerations related to the BDTL

It has been established that the form of the traction law affects the computational

efficiency through the increment size. Specifically, it was shown that the second

derivative of the traction law, when large, can cause difficulty is obtaining an accurate

correction vector. In this section, the stiffness gradient of the BDTL is investigated.

The parameters a and b have a significant effect on the efficiency of the solution

as well as the ability of the solution to obtain a converged equilibrium. In order

for the traction law to be reasonable and resemble the TTL, the appropriate ranges

are 1 < a < 3 and a < b < 10. These values are not all appropriate for use in an
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element; the primary criteria are the stiffness gradients and the overall shape of the

distribution.

As shown in the figure 4.6, low values of a and high values of b skew the beta

distribution to the left. High values of b also cause an increase in concavity on the

down slope of the curve. A value of a just larger than 1.0 would closely match the

traditional triangular traction law while providing a continuous derivative, however,

the left skew causes large stiffness gradients and significant convergence difficulty.

Similarly, the resulting system models are less stable since smaller portions of a

structure transfer load. (The energy release rate is higher for a fixed configuration.)

Beyond generalities, figure 4.8 shows that the stiffness gradients near δ
δc

= 0 approach

infinity as a approaches 1.0. For a greater than 2.0, the stiffness gradients remain

large near the origin where the stiffness starts at zero. Figures 4.7 and 4.9 examine the

effect of small variations around the value a = 2.0 and show that even small diversions

cause significant stiffness gradients. Therefore, a = 2.0 is the most appropriate for

this traction law.9 A value of b = 5.0 was assigned based on the general shape of the

BDTL, though the parameter is not as critical to model convergence (subject to its

constraints).

9 This result could have be anticipated after examining the form of the beta distribution equation,
however, the figures 4.6-4.9 provide an efficient means of interpretation.
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Figure 4.6 The effect of broad variation of a on the BDTL. Small values of a skew the
distribution to the left.
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Figure 4.7 The effect of narrow variation of a on the BDTL

84



-1.00

0.00

1.00

2.00

3.00

4.00

0.00 0.25 0.50 0.75 1.00

K
KRef

Separation Interval δ/δc

a = 1.10, b = 5.00
a = 1.40, b = 5.00
a = 1.70, b = 5.00
a = 2.00, b = 5.00
a = 2.30, b = 5.00

Figure 4.8 The effect of broad variation of a on the tangent stiffness. The stiffness
gradients are substantial as a departs from 2.0.
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Figure 4.9 The effect of narrow variation of a on the tangent stiffness. Even a small
departure from a = 2.0 causes large stiffness gradients.
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4.4.3 The sinusoidal traction law

Although the BDTL is a smooth law resembles the shape of the TTL, it is possible

to derive a law that is more smooth. In the limit of obtaining a (non-zero) smooth

stiffness derivative, a parabolic traction law could be assumed. Unfortunately, such

an assumption would require that all cohesive integration points are simultaneously

at relative displacements where the stiffness is changing (since the resulting stiffness

gradient would be a non-zero constant). Although the maximum stiffness derivative

would be minimized, the linearity assumptions of the Newton solver would be a poor

global approximation during every iteration.

In a typical analysis, only a small portion of the cohesive integration points are in

critical zones. The remainder of the cohesive elements are likely to transfer relatively

low tractions. Therefore, it is desirable for the traction law to have regions of near

linearity, particularly in the lower tractions, so that a relatively small number of

integration points are undergoing a significant change in stiffness during an iteration.

The BDTL provides this feature at some level, however, the initial derivative of

the stiffness (in the low traction region) is non-zero. A function with a zero initial

derivative and a low maximum derivative is the sine function. As a result, it may be

a good function on which to model a traction law.

As with all the traction laws, the integral of a sinusoidal stress-relative displacement

curve must equal the critical energy release rate (Gc) and the maximum value must

map to the critical stress (σc). The following traction law meets these requirements:

σsin

(
δ

δc

)
= σc sin(π

δ

δc

),

δc =
πGc

2σc

.

(4.34)

The integration point stiffness is a constant times the cosine function and the

second derivative remains relatively small at a constant times the sine function. The

traction law in equation 4.34 is shown in figure 4.10.

The STL provides a mathematically convenient formulation for a traction law. It is

symmetric about its midpoint and its initial stiffness is relatively low, therefore, it does

not resemble the common traction laws. The STL, however, offers a clear advantage

over the traditional laws. The initial stiffness derivative of the STL is zero while the

maximum stiffness derivative is relatively small. An evaluation of the efficiency of the

STL is next.

87



0

σc

0 δc

σ

δ

G
Gc −G

Initial Load
Unload/Reload

Figure 4.10 The sinusoidal traction law

88



4.5 Comparison of traction law solution efficiency

and robustness

In brief summary of section 4.4.3, the traction law affects the solution efficiency

through the stiffness gradient as well as through its effect on δc. The critical stress is

also affects δc and efficiency.

The purpose of the smooth laws is to improve the solution efficiency and robustness

by minimizing the stiffness discontinuities and gradients. Whereas convergence and

stability are well defined for a solution algorithm, they are not well defined at the

level of the constitutive law. To evaluate the solution efficiency of the traction laws, it

is useful to compare available metrics.

Two metrics for solution efficiency will be used to compare the traction laws. The

first is the average size of the smallest increments during a given solution. The stiffness

gradient affects the likelihood of obtaining a converged solution and the minimum

increment size is a simple metric which correlates to the ease of convergence. The

second efficiency metric is the number of iterations required to obtain a given solution.

Although the number of iterations also correlates with the ease of convergence, it is

also a direct metric of the CPU cost of a given solution. The number of iterations will

be identical across job repetition regardless of system resources, provided that the

solver algorithm remains fixed.10

Two efficiency metrics will be used since neither metric is an adequate (inde-

pendent) representation of the solution efficiency. For example, it is possible in an

unstable model (like a single lap joint) for a solver to converge without finding the

peak load point, [24], particularly if large increments are maintained. As a result, a

cap on increment size is often required to ensure the peak load is found in a model.

Efficiency conclusions would be misleading if the peak load is not captured, however,

the cap adds a significant number of iterations that would not be required. This makes

the number of iterations an imperfect metric of efficiency. Conversely, the number of

iterations (the direct CPU cost) is not the same for each increment. A given increment

size could converge in one iteration or tens of iterations, therefore, increment size is

an imperfect metric of efficiency. Since neither metric is ideal, both will be used in

the comparison.

The increment based solution efficiency is defined as the ratio of the mean incre-

ment size for the smallest ten increments (∆t10
mean) to the maximum allowed increment

10Alfano and Crisfield [7, 8] established a precedent for using the average increment size and the
total number of iterations as metrics for convergence efficiency.
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size (∆tmax).

ηinc = Mean
∆t10

mean

∆tmax

(4.35)

The smallest ten increments in a given analysis are exclusive of any step completion

increments. The maximum increment size (∆tmax) is specified to ensure the peak load

is captured. Ten increments are averaged in order to remove isolated effects and to

allow for an indication of increment size recovery.

The iteration based solution efficiency is defined as:

ηiter =
Γmin

Γactual

. (4.36)

Γmin is the minimum number of iterations which would be required to solve the system

(based on the specified size limits) and Γactual is the actual number of iterations that

are required. In both equation 4.35 and equation 4.36, the solution efficiency is set to

zero if the job does not converge.

A comparison of the effective solution efficiency for a large set of single lap

joint (SLJ) and end notch flexure (ENF) analyses were run with three11 traction laws.

The two model types exhibit different failure mechanisms and global stabilities. The

SLJ analysis exhibits catastrophic failure, however, there is no surface interaction once

the cohesive bond has failed. The ENF analysis maintains global stability, however,

the surfaces remain in contact and continue to interact after adhesive failure. The

two model types are representative of many applications of cohesive elements.

4.5.1 Efficiency comparison

For the SLJ models, a histogram of the solution efficiency based on minimum increment

size is shown in figure 4.11. Figure 4.12 provides a similar comparison of the iteration

efficiency. Each is based on 1024 SLJ model runs. In the figures, the differences

between the jobs within a given traction law are the governing parameters of the

law (GIIc, τIIc, etc) and the geometry.12 The TTL models each have unique values of

shape factor (αpl), whereas the triangular law models all have a zero shape factor (by

definition). In all SLJ analyses, a viscous damping coefficient of µ = 104 was used to

11The three laws are the trapezoidal traction law, the beta distribution traction law, and the
sinusoidal traction law. In the plots of efficiency, the trapezoidal traction law is subdivided into a
triangular law and the general trapezoidal law.

12 The design and analysis of computer experiments analysis sites from chapter 5 are used as an
array of parameter values for the efficiency comparison.
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improve convergence due to the catastrophic failure associated with the test.

From the SLJ iteration efficiency results (ηiter), it is apparent that the smooth

traction laws require fewer iterations (on average) than the TTL. The overall effect of

the traction law on the minimum iteration efficiency (ηinc), however, is inconclusive.

There are no definitive trends in the data. It is likely that the catastrophic failure

mode of the SLJ test drives the minimum increment size downwards at the point

of failure and that the success of viscous stabilization is quasi-random among the

different models. The triangular and general forms of the trapezoidal traction law

have nearly identical convergence characteristics for the SLJ test.

A more definitive result is found in the ENF model efficiency. Figures 4.13 and

4.14 report minimum increment and iteration efficiencies for 1024 ENF model runs.

As with the SLJ models, the difference between the models within a law are the values

of the adhesive parameters (GIIc, τIIc, etc) and the geometry. In this set of figures, it

is clear that the smooth traction laws outperform the laws based on the TTL. The

minimum increment size remains larger and the number of iterations is smaller for

the smooth laws. Among the triangular and trapezoidal forms of the TTL, there is a

negligible difference in performance. In comparing the smooth laws, the STL clearly

outperforms the BDTL in both metrics of efficiency.

4.5.2 Robustness comparison

A final metric of traction law performance is the overall ability of the solution to

converge for an analysis type. Key to this metric is the reliability of convergence. If a

traction law is fast for some analyses but fails to converge for other analyses, then the

law is non-optimal. An analyst is likely to choose a more reliable law with a higher

cost than a cheap law that is suspect with respect to convergence reliability.

Table 4.1 reports the percentage of analyses that were successfully completed for

the two model types. Using the TTL as the baseline, the BDTL was slightly less reliable

and the STL was significantly more reliable for the SLJ model type. The ENF model

type was more definitive as the BDTL and STL were both robust in comparison to the

TTL. More than twice as many analyses were successfully completed when the smooth

laws were used than when the TTL law was used. Of all the traction laws, the STL

was the most reliable in both model types by a large margin.
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Table 4.1 Percentage of jobs that converged to completion
Triangular TTL BDTL STL

SLJ 65.9% 65.9% 61.4% 80.7%
ENF 29.8% 25.0% 61.7% 76.7%

4.6 Conclusion

In this chapter, a FE element has been developed for use in modeling decohesion

in structural applications. The element features a sparse stiffness matrix, optional

viscous damping for stabilization, standard 2D and 3D interfaces, and a modular

interface for specifying the desired traction law. Three traction laws are implemented,

one which is in common use and the others which are developed with the objective of

computational efficiency and robustness.

A comparison of the efficiency of the three laws is shown in the context of their

application to two coupon-level experiments. In both model types, the smooth laws

(the beta distribution traction law and the sinusoidal traction law) reduce the number

of iterations required to converge through the specified loading. The effect of traction

law on the minimum increment size is mixed. The smooth laws have a positive effect

on the minimum increment size in the ENF models, whereas in the SLJ model their

effect is ambiguous. The global instability of the SLJ structure dominates this result,

driving the minimum increment size down in both model types. Of the two efficiency

metrics, the number of iterations is the most direct metric of computational cost. The

efficiency based on minimum increment size is a useful metric primarily when the

number of iterations is influenced by other modeling requirements.

The choice of traction law has a significant effect on the overall solution robustness.

The SLJ models based on the BDTL were found to be slightly less robust than the TTL;

SLJ models based on the STL were found to be more robust. For ENF models, the

smooth traction laws were significantly more likely to result in a converged solution

than models with the TTL. Of the three laws, the STL was found to be the most

efficient and the most robust. The BDTL is more efficient than the TTL, but robustness

depends on the problem being solved.

The general trend of improved convergence and robustness resulting from use of

the smooth laws implies that traction law shape should be considered when modeling

adhesively bonded structures. The use of a smooth law is likely to reduce the overall

cost of computation without effecting the global response or accuracy of the solution.
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Figure 4.11 A measure of efficiency for SLJ models based on increment size. The ηinc

metric is inconclusive for this model type.
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Figure 4.12 A measure of efficiency for SLJ models based on the number of iterations.
The smooth laws are significantly more efficient based on the ηiter metric for this model type.
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Figure 4.13 A measure of efficiency for ENF models based on increment size. The smooth
laws are significantly more efficient based on the ηinc metric for this model type.
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Figure 4.14 A measure of efficiency for ENF models based on the number of iterations.
The smooth laws are significantly more efficient based on the ηiter metric for this model type.
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Chapter 5

The interactions of adhesive
constitutive parameters and their

effects on common adhesive
experiments

Experimental characterization of material systems is necessary for prediction of joint

behavior. Proper reduction of experimental data requires a thorough understanding of

the experiments. The discrete cohesive zone method, developed in chapter 4, requires

a set of material parameters; therefore, the sensitivity of the results from three coupon

level adhesive experiments to these parameters is considered next.

The experiments described in this chapter are used to determine sets of parameters

for adhesive constitutive models. The assumed form of the traction law is emphasized

(used in modeling cohesive failure) and the interactions between parameters of the

law are examined. It is shown that the double cantilever beam test is excellent with

limited interactions; the end notch flexure and single lap joint tests have interactions

which require careful attention in mapping their outputs to an appropriate set of

adhesive parameters. It is also shown that the traction law is insignificant to the

outcome of the models; therefore, the choice of a computationally efficient traction

law is justified. The sensitivities are illustrated through many finite element models

with parameters that are chosen via Latin hypercube sampling. Surrogate models are

created via kriging analysis and are used to compute the sensitivities.
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5.1 Background

Experiments are conducted for several reasons including characterization and valida-

tion. The outcomes of simple experiments are often used as the inputs for predictive

models of other systems.1 This is particularly true in inverse modeling and modeling

for experimental correlation. In these applications, most aspects of a given experiment

are used as inputs to a model.

All characterization experiments have a number of control variables as well as a

number of unknowns. As inputs, the control variables primarily consist of geometric

properties but can also include constitutive parameters that are determined in other

experiments (i.e. moduli, Poisson’s ratios). The unknowns usually consist of constitu-

tive behavior (i.e. yield strengths, critical energy release rates) but may also consist of

quantities that are difficult to measure during the experiment (i.e. crack length). Due

to the nature of the experimental work presented in chapter 6, these control variables

and unknowns are herein referred to as “inputs”. The term “outputs” will be reserved

for the metrics used for correlation (i.e. the predicted or experimentally measured

quantity such as the maximum load or the slope of the load-displacement curve).

In standardized coupon-level characterization experiments, there are generally

accepted methods to determine the unknowns from the control variables. An ideal

experiment would have a one-to-one mapping between a complete set of inputs and

the value of the output metric. For example, a tensile specimen of uniform material

with a known cross section (the set of inputs) can be used in conjunction with a

strain gauge and load cell measurement (the outputs) to determine the modulus of

the material. This idealization is not often found in practice. It is possible that

the “solvable” mechanics of the system are such that the inputs and outputs are

under-determined. Alternatively, each input has a level of uncertainty, based on a

measurement uncertainty or a stochastic process, such that the output metric is not

unique to a single set of inputs.

As an example of an under-determined system, consider a series of experiments

conducted on a capped hollow tube of unknown material. Due to the caps over the

ends of the tube, the specific cross section of the tube is unknown. Assume that an

experimentalist must provide the best possible prediction of the outcome of a torsion

test based on the outcomes of a single tensile and a single bending test. In order to

1 The emphasis added to the word “simple” is due to its generality. Experiments need not be
“simple” to yield useful information, nor do the systems that are being predicted need to be more
complex than the experiments used to generate inputs. The emphasis is indicative of common desire.
“Simple” can mean “well understood”, “inexpensive”, or any other desirable quality.
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accomplish this prediction, the experimentalist would generate models of all three tests.

An output metric would be measured during each preliminary experiment (such as

the measured slopes of the load-displacement curves in the tensile and bending tests).

In order to best predict the outcome of the torsion test, the experimentalist would

map these outputs to an appropriate set of inputs. In this case, “appropriate” means

that the inputs cause the tension and bending models to reproduce the measured

load-displacement slopes from the experiments. Due to the uncertainties present in

the specimen, the set of inputs (the assumed modulus and cross section) that produce

the desired output are not unique. Consequently, the experimentalist must choose the

set of inputs that are most likely to predict the outcome of the torsion experiment.

The experimentalist could also specify a range of appropriate inputs that are capable

of reproducing the preliminary tests and subsequently predict a range of possible

outcomes for the torsion experiment.

In chapter 6, a constitutive model is developed for the prediction of adhesively

bonded structural systems that consist of T650/AFR-PE-4/FM680-1. To develop this

constitutive model, a set of experiments has been conducted. Prior to reporting the

constitutive model, however, this chapter lays the foundation on which the model is

developed. In this chapter, the focus is primarily on the experiments, with contextual

references to chapter 6. In chapter 6, the focus is primarily on the outcome of the

tests with references to the conclusions presented in this chapter.

The experiments that are used in chapter 6 to determine the adhesive parameters

are the double cantilever beam (DCB) test, the button peel stress (BPS) test2, the end

notch flexure (ENF)3 test, and the single lap joint (SLJ) test. In practice, each has been

used to determine a specific constitutive parameter (GIc, σIc, GIIc, and τIIc). A method

of computing the corresponding constitutive parameters based on the measured load

and displacement exists, though uncertainties remain in each experiment.

A critical uncertainty in the experiments is the constitutive response of the ad-

hesive. The shape of the constitutive relation cannot be easily determined and is

therefore assumed. The constitutive response further consists of all the parameters

that define the assumed form (and their stochastic distributions). It is the values of

these parameters that are sought in the individual coupon level experiments. A second

uncertainty in the experiments is the geometric features, such as the time history of

the crack length. Finally, stochastic uncertainty is present in each experiment, such as

2 The author is not aware of a test that is generally accepted for the determination of σIc in
composite materials. Consequently, an appropriate BPS experiment is developed to determine σIc.

3 The standard for the ENF test is still evolving, [36].
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in the constitutive response of the adherends. In a composite specimen, for example,

the adherends consist of fibers and matrix that have undergone a manufacturing

cycle. During this cycle, process defects can impact the effective constitution of the

adherends. The remainder of this chapter is devoted to exploring how the input

uncertainties affect the outputs of the adhesive tests and, consequently, how these

uncertainties affect the mapping of the outputs back into the “best” constitutive

model for the adhesive.

It has been shown that the shape of the traction law is not important, [102, 113],

though this has not been robustly established for all common tests. The author is not

aware of systematic studies that have illustrated the adhesive parameter interactions

and how those interactions affect the experiments.

5.1.1 Review of the standard tests

The DCB test

The principal objective of the DCB test is to determine the value of GIc for a given

adhesive or inter-laminar interface. The test is well established and commonly used

[86] and a significant body of literature exists. The experimental load displacement

curve has two distinct phases. They will be referred to as the linear elastic and crack

advance phases.

Analytical solutions have been published for each of the two phases, [70, 79]. For

example, working under the assumption that GIc is the sole critical parameter, Mi

et al. [70] provides an analytical solution for the two portions of the curve. The linear

elastic response is governed by:

P =
3

2

EIδ

a3
0

, (5.1)

and the crack advance is governed by:

δ =
2

3

(b GIcEI)
3
2

EIP 2
. (5.2)

If all the terms of equations 5.1 and 5.2 are well known and the underlying assump-

tions hold, they can be used to compute GIc. In practice, however, the uncertainties

associated with the terms in equations 5.1 and 5.2 require more sophisticated data

reduction in order to map the test result to an appropriate value of GIc.
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To address the uncertainties present in DCB testing, ASTM International (ASTM)

provides recommended procedures for the experiment and for data reduction, [14].4

Three possible data reduction methods are recommended: modified beam theory,

compliance calibration (CC), and modified CC. The CC techniques are used to com-

pensate for the material and geometric uncertainties that are present in the beam

theory solutions. A “critical load” is required in each data reduction option. That

load can be the maximum load, the point of deviation from linearity, the point of

visual delamination, or the so-called 5% increase in compliance5. Regardless of the

chosen data reduction technique, the computed value of GIc is proportional to that

critical load.

Another common data reduction technique is the direct energy balance method,

also known as the area method. After initial linear loading to the “critical load”, the

load decreases predictably (i.e. equation 5.2) while a measurable crack advance is

driven. The specimen is unloaded while the data acquisition system remains active.

In this way, the load-displacement curve can be numerically integrated to determine

the external work that is expended during the test. The work is proportional to the

critical load for a well behaved sample whose behavior can be approximately described

by linear elastic fracture mechanics. To determine GIc using the direct energy balance

approach, the work is divided by the crack advance area, where any appropriate crack

measurement technique can be used to determine the area. An advantage of the

area method is that it inherently provides an average value for GIc over relatively

large area of the adhesive material. As it cannot account for the “R-curve”, it is not

recommended for systems where fiber bridging is likely, [14]. Due to its simplicity and

inherent averaging, the area method is used in chapter 6 as one of two methods to

determine GIc for the T650/AFR-PE-4/FM680-1 adhesive system.

With the intent of understanding the sensitivity of the DCB output to the test

parameters, it is recognized that all of the DCB data reduction methods find that GIc

is proportional to the maximum line load (P̄max). As a result, the finite element (FE)

design and analysis of computer experiments (DACE) sensitivity study presented in

section 5.2 uses the predicted value of P̄max as the model output. In short, the study

presents the sensitivity of the value of P̄max to the model inputs.

4 The ASTM recommends usage only on unidirectional ply materials due to fiber bridging and the
“R-curve”. Fiber bridging is less likely in woven adherends and is not a concern for the pre-cured
adherends used in chapter 6.

5The 5% compliance analysis method uses the initial slope of the load-displacement curve as a
reference and establishes the critical load at the intersection the curve with a ray from the origin.
The ray has a slope that is 5% lower than the reference slope.
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(a) Global view of the ENF model

(b) Local view of the ENF model

(c) A typical ENF experiment

Figure 5.1 A typical ENF model and experiment

The ENF test

Although the ASTM has resolved to adopt the end notch flexure test as the standard

test for determining the value of GIIc, the standard has not yet been ratified and is

evolving, [36]. As a result, there are several experimental and analysis techniques that

have been considered. Davidson and Zhao [36] have recently evaluated a large number

of data reduction techniques, of which two will be described.

An analytical solution6, used by a number of authors [5, 34, 41, 83, 89], is given

by:

GIIc =
9 P̄max δ a

2
0

2 (2 l3 + 3 a3
0)
. (5.3)

As in the DCB data reduction techniques, the analytical solution presented in equa-

tion 5.3 has uncertainties which make it impractical for determining GIIc from

experimental data. To overcome these uncertainties, CC methods are available,

including:

GIIc =
P̄max

2

∂C (a)

∂a

∣∣∣∣
a0

. (5.4)

6Davidson and Zhao [36] provide references for three separate analytical solutions.
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In equation 5.3, C(a) is a best fit compliance curve of the form:

C (a) = A+ma3. (5.5)

C(a) is established by measuring the compliance of a given specimen over a variety

of crack lengths. Equations 5.3 and 5.4 both compute a GIIc that is proportional to

the maximum load during the test. Therefore, the sensitivity analysis in section 5.3

uses the value of P̄max as the measured outcome of the FE model. As with the DCB

test, the analytical solution (equation 5.3) assumes that GIIc completely governs the

adhesive crack propagation. This assumption will be tested in section 5.3.

The SLJ test

The SLJ test is considered next. The ASTM claims that the SLJ test is the most widely

used test for comparative studies of bonded products, [13]. It is used to determine the

comparative apparent shear strength of a given system. Of the three tests discussed in

this chapter, the SLJ test has the most complex mechanism of failure and is the least

able to provide a direct mapping to the desired constitutive parameter (τIIc).

Although several analytical solutions exist for the stress distribution in the SLJ

joint7, the stress field can not be uniquely determined due to the reentrant corners

in the joint. In practice, the reported output of a SLJ test is the “apparent shear

strength”, defined as the failure load divided by the lap area. This value is useful

only for comparison purposes and is not useful as a constitutive parameter. When the

adhesive system is modeled as a cohesive zone (as in this dissertation), the reentrant

corners of the joint are eliminated and a critical shear stress (τIIc) can more clearly

be defined as a constitutive parameter. Unfortunately, this does not overcome the

complexity of the SLJ test. An appropriate value of τIIc must be carefully extracted

from the test results.

To emphasize this point, the ASTM provides several recommended procedures for

the SLJ test, [15, 16]. In doing so, they warn of the risks associated with improper

interpretation of the test result. Basic procedures for interpreting the outcome of the

SLJ test are given in [13].8

7Volkersen [104] provided the first shear-lag analytical solution to the SLJ.
8In the introduction to this standard, it is claimed that the failure load is usually controlled by

the tensile stress of the adhesive and not by the shear stress. The results presented in section 5.4
of the current work are much more explicit in reporting the relevance of the adhesive constitutive
relationship.
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(a) A typical SLJ model

(b) A typical SLJ experiment

Figure 5.2 A typical SLJ model and experiment. These images were taken just prior to
failure.

While recognizing the complexity of the SLJ test, it is apparent that the most

quantifiable output from the test is the maximum line load (P̄max). Therefore, the

sensitivity analysis presented in section 5.4 uses this value as the model output. In

doing so, it illustrates the relationships between the input variables (including the

critical adhesive constitutive parameters) and the experimental output variable.

5.1.2 Kriging analysis using the DACE toolkit

To explore the effect of the inputs and their uncertainties on the critical experimental

outputs, FE studies have been conducted on the three common adhesive tests using

kriging analysis and the DACE toolkit, [67].9 In each of the adhesive experiments,

a set of variables is identified that may have significant effect on the model output.

First among these variables are the adhesive constitutive parameters; they are the

parameters to be determined in chapter 6. Emphasis is placed on the adhesive consti-

tution since the available analytical solutions assume monotonic relationships between

the adhesive parameters and the tests that are used to determine them. As efficient

tools like the discrete cohesive zone method (DCZM) element become available and

these parameters become widely used, it is important to determine if the underlying

9Though the DACE toolkit was designed for use with Matlab R©, a one line change in the source
code enabled it to be run within Octave c©. The choice Octave c© as a software package allowed for
consistent and direct interaction with the scripted interfaces for data reduction.
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assumptions are acceptable in context. The remaining variables (other than constitu-

tive parameters) are chosen based on their likelihood of having significant effect on

the output variable and their value as comparative inputs. The mixed mode failure

criterion for all three tests is assumed to be:(
GI

GIc

)n
+

(
GII

GIIc

)n
= 1. (5.6)

Mode mixity is not addressed in this dissertation. The mode mixity exponent (n) is

assumed to be one.

Since a primary focus of this dissertation is the effect of temperature on joint

behavior, it is desirable to include temperature within the list of variables. The effect

of temperature, however, often results in a change of the constitutive properties of the

specimen or in thermal expansion. The current study has been done assuming identical

adherends, thus nullifying the need to consider expansion effects. In context, the

principal manifestation of temperature will be a change in the stiffness of the adherends

and a change in the adhesive constitutive parameters. The latter are determined by

the tests under investigation, therefore, only the former will be explicitly mentioned

in the descriptive sections below. As a result, temperature is implicitly incorporated

through the inclusion of stiffness and modulus uncertainty (D and E).

Having identified an appropriate set of design variables, a range of reasonable

values was assigned to each. The Latin hypercube sampling (LHS) technique [68]

(incorporated into DACE) was used to create an array of value sets (called sites) for

the experimental variables. In this technique, the range of each variable is divided into

n non-overlapping intervals. A point is sampled randomly from within each interval

and the variables combinations are joined randomly from among the intervals. (A

uniform distribution is assumed within the intervals and equally likely pairings are

assumed for the random assignment.) The method ensures that the vector space is

well represented and that each variable has as many unique values as there are sites.

Using LHS, higher order effects and interactions can be identified with fewer sites than

in a classical orthogonal array. The reduction in sites facilitates the inclusion of a

larger number of variables, including variables which may not have significant effect

on the model output.10

10These variables are often excluded from an orthogonal array since the number of required runs
increases exponentially with the number of variables. The exclusion, based on the best judgment of
the analyst, may or may not be appropriate. Conversely, LHS explicitly determines the importance of
the variables while minimizing the impact of additional variables on the number of runs that are
required.
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Figure 5.3 Example of LHS with two variables and four sites. Each variable takes on four
unique values.

To quickly incorporate the sites into FE models, the FE mesh was parameterized

based on the chosen variables. The assignment of variable values to the FE models

was managed by an automated shell script (using the bash shell on a Linux platform).

The script generated individual job files based on the variable values. Job submission,

data reduction, and data set compilation were also managed by a set of bash shell

scripts.

Data reduction and analysis of the compiled data sets were completed in Octave c©

using the DACE package. DACE provides a complete methodology for creation of a

surrogate model. A complete description is provided in Lophaven [67]; a brief sum-

mary is provided here. The first step in creating the surrogate is normalization of the

input and output variables so that each has a mean of zero and a standard deviation

of one. The normalization is followed by a regression; a second order polynomial

regression function is chosen from the available options.11 The regression function and

its coefficients are the surrogate model. A predictor script can be used to apply the

surrogate model to any desired variable site (within the design space). The conclusions

in this chapter are based on the output of the surrogate predictor and the properties

of the surrogate model itself.

11 DACE provides options for several built-in regression functions.
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The principal outcome of this study is a quantification of the sensitivity of the out-

put metrics to the input variables. These sensitivities are identified by the regression

coefficients (βk,l) of the surrogate model. Since the regression function is a second

order function, each variable has a linear coefficient as well as a coefficient for the

product of that variable with each other variable. The magnitude of the coefficients

represent the output sensitivity to the input variables. If an output is highly sensitive

to an input, the magnitude of the linear coefficients are approximately one:

|βk,l| ≈ 1.0. (5.7)

If an output in insensitive to an input, then the linear coefficients are near zero:

|βk,l| ≈ 0.0. (5.8)

Similarly, the magnitudes of the product coefficients are indicative of the relative

importance of variable interactions.

The values of the regression coefficients are not independent of the range specified

for each variable in the DACE array. Care must be taken to choose a range for each

variable that is reasonable for a given test. An inappropriate range may overwhelm

the other variables and distort the conclusion. An appropriate range can best be

determined by systematic examination of the βk,l values and the DACE predictions.

The predictions must be found reasonable in the context of experimental evidence.

Since the range of the variables affect the value of the βk,l coefficients, the coeffi-

cients should not be considered an absolute value. Rather, the relative magnitudes of

the coefficients are important. If the magnitude of one βk,l is several times another,

the variable has a larger effect on the output. If the magnitude of one βk,l is slightly

larger than another value, they have relatively equal importance.

In the following sections, the sensitivities to some input variables are widely known

and could have been predicted by examining the analytical solutions. These variables

are included primarily to determine their relative importance in comparison to the

adhesive parameters. For these known sensitivities, existing methods (such as CC)

are available for mapping the output back to appropriate constitutive input. Con-

versely, the author found no studies that illustrate the sensitivities within the adhesive

constitutive models. These sensitivities must be closely examined.

Each of the sensitivity studies reported below use the trapezoidal traction law (TTL)

as the traction law for the FE model. This is deliberate despite the penalty paid in

solution efficiency. In doing so, the relative importance of the shape of the traction law
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Figure 5.4 DCB specimen geometry

is included in the sensitivity study (and found to be insensitive). In fact, each traction

law in chapter 4 was used in a separate DACE study for this work. The outcome of

these studies were nearly identical, though they are not explicitly reported. The beta

distribution traction law (BDTL) DACE analysis was used for data reduction of the

Mode II test results in chapter 6. 12

5.2 Sensitivity analysis for the double cantilever

beam test

In this section, the DCB test is explored. A schematic of a DCB specimen is shown in

figure 5.4, indicating the geometric variables in the DACE array. In addition to the

geometric variables, the four primary adhesive parameters are included as well as the

shape factor associated with the TTL. The variables and their ranges are listed in

table 5.1. A representative FE result is shown in figure 4.3 and properties of the FE

models are provided in table 5.2(a).

Recall that the maximum line load (P̄max) is assumed to be proportional to the

value of GIc and is the output of the DCB test. Since the magnitudes of βk,l indicate

the sensitivity of P̄max to a given variable, βk,l is reported.

The linear βk,l values for each of the DCB variables are shown in figure 5.5. The

most important predictor of P̄max is GIc, followed by a0 and D. The model output,

therefore, is most sensitive to GIc. The quadratic βk,l values shown in figure 5.6

further confirm these key variables, since the largest interactions are among these same

variables. This result is not a surprise; the sensitivities to D and a0 are widely known

and the value of GIc is supposed to be proportional to the value of GIc. Presumably,

the values of D and a0 are known to a high degree of precision. If they are not, the

12The BDTL was the smooth law that was available during experimental data reduction. Design
studies will likely use the BDTL or a similar law. Therefore the constitutive models developed in
chapter 6 reflect this likelihood.
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Table 5.1 Variables in the DCB DACE array

Variable Min Max

GIc 100 J/m2 1000 J/m2

GIIc 100 J/m2 2000 J/m2

σIc 1.5 MPa 25 MPa
τIIc 2.1 MPa 25 MPa
αpl 0% 50%
D 6.6 Nm2 21.0 Nm2

l 110 mm 150 mm
a0 20 mm 50 mm

-1

-0.5

0

0.5

1

GIc GIIc σIc τIIc αpl D l a0

βk,l

Figure 5.5 Linear βk,l values for variables in the DCB DACE array
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Table 5.2 Approximate size of the DACE FE models

(a) The DCB FE model

Number of elements 5000
Number of user nodes 5300
Number of variables 29000

(b) The ENF FE model

Number of elements 16000
Number of user nodes 14000
Number of variables 97000

(c) The SLJ FE model

Number of elements 7400
Number of user nodes 7900
Number of variables 51000

sensitivity of P̄max to these variables can be accounted by CC methods, though this

can be difficult in practice.13

An important observation from the βk,l values is that GIc is the only adhesive

parameter which has a significant effect on P̄max. Though this has been assumed

in the analytical solutions, it has not been previously confirmed in the context of

cohesive zone FE modeling techniques. This result confirms that the DCB test is ideally

suited to determining the value of GIc. There are no interactions between the adhesive

constitutive parameters that would cause difficulty in mapping the experimental value

of P̄max to a specific value of GIc.

To illustrate the relative importance of the variables, figure 5.7 shows the interac-

tions between the two most critical adhesive parameters (GIc, σIc) in the DCB test. In

these figures, both of which show the same effect in different forms, the values of GIc

and σIc are varied over their specified range while the remaining variables are fixed at

their mean values. The value of P̄max from the DACE predictor is shown on the z-axis

in figure 5.7(a), whereas figure 5.7(b) shows contours of P̄max over the same range.

It is apparent that GIc (the adhesive parameter with the highest value of βk,l) is far

more critical than the second most important adhesive variable. Furthermore, there is

little interaction between these two variables (or any other pair of adhesive variables),

as evidenced by the near verticality of the contour lines in figure 5.7(b).

13The fixed hinge location makes CC of a single specimen unpractical. Multiple specimen CC would
require uniformity from specimen to specimen that is unavailable in this study. This is particularly
true with respect to the temperature effects on stiffness, since each temperature would require a new
calibration.
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Figure 5.6 Quadratic βk,l values for variables in the DCB DACE array

The remaining plots in this subsection (figures 5.8-5.10) illustrate the interactions

between the variables GIc, D, and a0. For variables with significant interactions, any

of an large number of combinations of these parameters will yield the same P̄max.

For example, since a large initial crack length (a0) would decrease the values of P̄max

relative to a small a0 (with all other variables fixed) in the same way a lower GIc would

decrease the value of P̄max relative to a larger GIc (with all other variables fixed). The

value P̄max is not uniquely defined by one of the two variables. If adhesive parameters

had significant interactions, it would be difficult to map the test data to a unique

value GIc. This difficulty will be observed in the upcoming sections covering the ENF

and SLJ tests.

The DCB output (P̄max) is relatively insensitive to the form of the traction law

(varied by the shape factor αpl). Since the relative magnitude of the linear and

quadratic coefficients of βk,l are all near zero (see figure 5.5 and figure 5.6), the exact

form of the traction law is not important to the outcome of the prediction. This

confirms the expectation of an experiment that is dominated by the critical energy

release rate. Finally, temperature is important during the DCB test due to its likely

effects on stiffness (D). Stiffness uncertainty (in any form) needs to be addressed
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Figure 5.7 Effect of variations of GIc and σIc on DCB P̄max

112



Table 5.3 Variables in the ENF DACE array

Variable Min Max

GIc 100 J/m2 1000 J/m2

GIIc 100 J/m2 2000 J/m2

σIc 1.5 MPa 25 MPa
τIIc 2.1 MPa 25 MPa
αpl 0% 50%
D 6.56 Nm2 21.2 Nm2

a0

l
40% 90%

µ 0 .50
2 l 96.5 mm 107 mm

during data reduction.

5.3 Sensitivity analysis for the end notch flexure

test

In this section, the end notch flexure test is explored. The geometry of the ENF

specimen is shown in figure 5.11 as well as the geometric variables in the DACE array.

As in the prior section, the four primary adhesive parameters are included in addition

to the geometric variables and the shape factor for the TTL. These variables and their

ranges are listed in table 5.3. Properties of the FE model are given in table 5.2(b) and

a typical FE mesh is shown in figure 5.1.

The principal objective of the ENF test is to determine the value of GIIc for a given

adhesive. The accepted method for determining GIIc from an experiment is the CC

method and the value of GIIc is assumed proportional to P̄max. Under the assumptions

of the CC method, the value of τIIc has no effect on the value of P̄max and therefore

is not a factor in the calculation. In this section, that assumption is found to be

insufficient in the context of FE cohesive zone modeling.

The linear βk,l values for the DACE variables are shown in figure 5.12 and the

quadratic βk,l coefficients are shown in figure 5.13. In the ENF test, GIIc is the most

significant of the adhesive parameters; D and a0

l
also have significance. These are ex-

pected sensitivities based on classical analysis of the ENF specimen. The τIIc parameter

also has a significant effect on P̄max. This important conclusion can be visualized in

two ways. First, the linear βk,l coefficient magnitude (figure 5.12) is approximately one
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Figure 5.12 Linear βk,l values for variables in the ENF DACE array

fifth that of the βk,l coefficient of GIIc (and approximately one third of the coefficients

for D and a0

l
). Furthermore, the strength of the interaction between τIIc and a0

l
is

as strong as that between GIIc and D (as revealed in figure 5.13). Based on these

observations, the effect of τIIc on the ENF test should not be neglected when mapping

the test results into a set of inputs for future models. At a minimum, a suitable test

for τIIc (such as the SLJ test) must also be considered when preparing the adhesive

constitutive model from the results of the ENF test.

This conclusion is more concretely illustrated in figure 5.14. In figure 5.14(a),

the value of P̄max is plotted on the z axis while the range of values of GIIc and τIIc

are plotted on the x and y axes. In contrast to figure 5.7(b), the contour lines in
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Figure 5.13 Quadratic βk,l values for variables in the ENF DACE array

figure 5.14(b) are not predominately vertical. A given value of P̄max can be achieved

with any suitably chosen pair of (GIIc, τIIc). The ENF test is not ideal for determining

GIIc and presents a challenge in mapping the experimental outcome back to a set of

constitutive parameters. This mapping should be done in conjunction with the SLJ

test (or another suitable test) in order to choose an appropriate pairing of constitutive

parameters.

The effect of temperature is relevant to the stiffness parameter (D) in the ENF

test. Although the value of P̄max is sensitive to the stiffness, this can be accounted for

via CC techniques with relative ease. Also, the traction law is relatively unimportant

to P̄max (as in the DCB test). In figure 5.12, the βk,l value for the shape parameter

(αpl) is relatively small. Further, no critical interactions are seen in figure 5.13.14

Although not explicitly described in the text, figures 5.15 and 5.16 are included in

order to illustrate the interactions between the significant model inputs and the value

of P̄max for the ENF test.

14The traction law is somewhat more important in the ENF test than the DCB test. This is expected
in a test that shows some dependency on the stress parameters. The shape factor (αpl), however, is
still insignificant relative to the other variables.
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Table 5.4 Variables in the SLJ DACE array
Variable Min Max

GIc 100 J/m2 1000 J/m2

GIIc 100 J/m2 2000 J/m2

σIc 1.5 MPa 25 MPa
τIIc 2.1 MPa 25 MPa
αpl 0% 50%
E 59.5 GPa 80.5 GPa
ll 10 mm 40 mm
lg 2 mm 50 mm
ln 2 mm 50 mm
h 1.06 mm 1.44 mm

5.4 Sensitivity analysis for the single lap joint test

Though it is viewed as a test for determining the comparative apparent value of τIIc,

it is clear from section 5.3 that the SLJ test could play a more substantial role in

determining the Mode II parameters in an adhesive characterization. To understand

that role more fully, a sensitivity analysis is applied to the SLJ test. The geometric

variables are shown in figure 5.17 and are used in addition to the adhesive constitutive

parameters. The range of those variables is established in table 5.4. A representa-

tive model result is shown in figure 5.2(a) and properties of the model are given in

table 5.2(c).

The linear correlation coefficients βk,l for the SLJ test are shown in figure 5.18.

There are several parameters that have a significant effect on the value of P̄max. As

expected, the two largest βk,l coefficients are the lap length (ll) and the critical shear

stress (τIIc). The critical strain energy release rate (GIIc), however, is almost as

important as τIIc. Finally, the Mode I critical strain energy release rate (GIc) is also

important due to the eccentric loading of the specimen and mixed-mode field at the

crack tip. In contrast to the statements in [13], it is GIc (not σIc) that has significant

effect on the failure of the SLJ specimen.
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Figure 5.18 Linear βk,l values for variables in the SLJ DACE array

The most important interaction (for establishing a constitutive law) is between

GIIc and τIIc; it is illustrated in figure 5.20. For low values of GIIc, the maximum load

is dependent primarily on τIIc. In figure 5.20(b), this is seen as contours that are

primarily vertical. As the value of GIIc increases, however, the contour lines become

more horizontal and the critical energy release rate becomes the dominant parameter

for determining P̄max. In this regime, the SLJ test in isolation would be ineffective in

determining the value of τIIc.

A second interaction, between GIc and GIIc, is illustrated in figure 5.21. For low

values of GIc, the failure mode is either Mode I or mixed-mode such that the value of

P̄max is limited by the value of GIc. For values of GIc over a critical value, however,

this failure mode no longer dominates and the value of P̄max becomes more dependent

on the value of τIIc and other parameters. A similar effect is seen in figures 5.22(a)

and 5.22(b) relating GIc to τIIc.

Figure 5.25(b) illustrates the interaction between τIIc and ll; the contour lines are

almost diagonal. This is expected since the value of P̄max should increase with τIIc or ll

(for low values of ll). A similar interaction is seen between GIIc and ll as illustrated in

figure 5.24(b). The implicit variable temperature is most likely to affect the stiffness
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Figure 5.19 Quadratic βk,l values for variables in the SLJ DACE array

of the lap joint through the modulus parameter E. The sensitivity of P̄max to E,

however, is relatively small. Therefore, the SLJ test is not likely to have uncertainties

related to temperature.

In short, three out of the four primary adhesive constitutive parameters have criti-

cal importance in the SLJ test, despite its traditional use as a method of determining

one parameter (τIIc). Therefore, it is necessary to examine GIIc (based on the ENF

test) and GIc (based on the DCB test) to properly interpret the results of a SLJ test.

Only appropriate parameter sets can be used to to predict the values of P̄max in all

three tests.

5.5 Interpretation of experimental results

It is evident that the interactions of the constitutive parameters should be accounted

when mapping the experimental results into a set of constitutive inputs for FE anal-

ysis. This is a significant departure from traditional practice where parameters are

considered properties that can be uniquely defined by a single test.

A mapping method for data reduction is described next. First, the Mode I param-
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eters are should be determined using the DCB test (for GIc) and an appropriate BPS

test (for σIc). Then the ENF tests results should be interpreted using traditional CC

methods (to determine a distribution of appropriate GIIc values). Lastly, the single lap

joint test results should be evaluated. The constitutive parameter values established

in the other experiments must be used to determine the appropriate range of values

for τIIc from the SLJ. A demonstration of this procedure is presented in chapter 6.

5.6 Conclusion

Finite element sensitivity studies have been presented for three experiments (double

cantilever beam, end notch flexure, single lap joint) that are commonly used to deter-

mine adhesive constitutive parameters (GIc, GIIc, τIIc). The variables in the studies

included four adhesive parameters and a shape factor. Each was allowed to vary over

a relatively wide range. Using the kriging analysis technique, it was determined that

significant interactions exist between the Mode II parameters in the characterization

tests.

Of the three experiments considered, only the double cantilever beam test exhibited

limited interaction between the adhesive constitutive variables; therefore, it is useful

as an independent test to determine the GIc parameter. Unlike the double cantilever

beam test, parameter interactions were prevalent in the single lap joint and end notch

flexure tests. Therefore, the results of these tests must be interpreted together. In

the single lap joint test, the Mode I parameter GIc also plays a non-negligible role.

Interpretation of this experimental result is the most difficult, since GIIc should be

considered and GIc could be considered when mapping the test output to τIIc.

Of the three tests that were included in the sensitivity study, none were significantly

effected by the value of σIc. Therefore, σIc can be determined independently, given

that the experiment for this test is considered unlikely to exhibit interaction effects.

Though this conclusion is supported by Mi et al. [70], independent verification of this

assumption should be included if a standard test for σIc is developed.

Beyond the interactions of the adhesive constitutive parameters, the relevant geo-

metric and adherend constitutive variables were also examined. Though the effects of

these parameters are well understood, the relative magnitudes (with respect to the

adhesive parameters) of the effects were presented. Of the effects, the stiffness (D and

E) dependence on temperature is most relevant to the interpretation of the double

cantilever beam and end notch flexure tests. These effects may be accounted through
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the use of compliance calibration or inverse modeling techniques.

Finally, a method has been developed for mapping a set of experimental results to

an appropriate set of constitutive parameters for an adhesive system. The method

represents a departure from the traditional methods of interpreting test results indi-

vidually, however, it is required in view of the significant interactions between the

adhesive constitutive parameters.
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Chapter 6

T650/AFR-PE-4/FM680-1 at high
temperatures: experiments and

numerical models

An experimental program to establish a constitutive model for the T650/AFR-PE-

4/FM680-1 adhesive system is described next. The model is based on the four

parameter beta distribution traction law described in chapter 4. A range of values

for the four parameters (GIc, GIIc, σIc, τIIc) are computed from a set of experimental

results and the parameter interactions found in chapter 5. Values of all four parameters

are determined over the temperature range of 20 to 350 ◦C. Due to experimental

limitations, two methods for determining GIc are reported; the area method critical

energy release rate (Ga
Ic) and the inverse method critical energy release rate (Gi

Ic). The

values of all the other parameters are based on the constitutive parameter mapping

procedure described in chapter 5.

6.1 Background

Temperature resistant composite materials are currently being qualified for use as

structural components of aeroshell systems and other high temperature structures.

One candidate material system, T650/AFR-PE-4, has recently been the subject of

an experimental program for material characterization, [107]. The AFR-PE4 resin,

developed at the Air Force Research Laboratory, is a polyimide matrix with a glass

transition temperature of 360 ◦C. It is likely to expand the operating temperatures

over which long fiber reinforced composite structures are used. Composite components
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based on AFR-PE4 (and similar resins) are expected to allow a reduction in the mass

of the structural supports for ablative and resistive thermal protection systems.

It is critical that the T650/AFR-PE-4 material system be tested in a representative

operating environment, therefore, qualification and other tests must be completed over

the operating temperature range of the material. This is true for all components of a

material system, including the adhesive systems which will allow for efficient joining.

In this chapter, a material system composed of T650/AFR-PE-4 combined with

FM680-1 adhesive is assembled into coupon level specimens and tested to determine

the adhesive constitutive parameters. Loading was applied at temperatures between

20-350 ◦C.

A reference set of adhesive constitutive parameters for the T650/AFR-PE-4/FM680-

1 material system is determined. Specifically, the values for GIc, σIc, GIIc, and τIIc

are computed from experimental results. When combined with the beta distribution

traction law (BDTL) and the discrete cohesive zone method (DCZM) finite element

presented in chapter 4, these parameters provide the ability to model bond line failure

in structures made from T650/AFR-PE-4/FM680-1. Other traction laws could be

used with minimal changes to the reported values.

In section 6.3, double cantilever beam (DCB) experiments and analysis of the

Mode I critical energy release rate (GIc) are presented (in two forms). First, the

area method1 critical energy release rate (Ga
Ic) is determined using image analysis of

crack propagation. Second, the inverse method critical energy release rate (Gi
Ic) is

determined through the use of inverse finite element (FE) analysis based on the DCZM

methodology. In section 6.4, the Mode I strength (σIc) is determined by a specialized

button peel stress (BPS) experiment. Subsequently, the Mode II critical energy release

rate (GIIc) is determined (in section 6.5) by the compliance calibration (CC) analysis

technique for the end notch flexure (ENF) test. Finally, the Mode II strength (τIIc)

is determined (in section 6.6) based on single lap joint (SLJ) experimental results.

The inverse design and analysis of computer experiments (DACE) mapping procedure

(describe in chapter 5) is used to determine an appropriate value of τIIc. This allows

the interactions between τIIc, GIIc, and GIc to be properly accounted so that the

resulting constitutive parameters are appropriate for all the coupon level tests as well

as structures composed of the T650/AFR-PE-4/FM680-1 material system.

Due to ITAR restrictions on the subject materials, some detail is excluded from

this dissertation. The measured material parameters are presented as normalized

quantities. Some other properties and manufacturing details are omitted. All numeri-

1The area method is also known as the direct energy balance method.
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cal values and plots are normalized by the mean of the Mode I inverse method critical

energy release rate at room temperature (Gi ave
Ic (T = 20)).

Ḡa
Ic =

Ga
Ic

Gi ave
Ic (T = 20)

,

Ḡi
Ic =

Gi
Ic

Gi ave
Ic (T = 20)

,

σ̄Ic =
σIc

Gi ave
Ic (T = 20)

,

ḠIIc =
GIIc

Gi ave
Ic (T = 20)

,

τ̄IIc =
τIIc

Gi ave
Ic (T = 20)

,

P̄ =
P

Gi ave
Ic (T = 20)

.

(6.1)

The experiments used to determine these parameters are approximately two-

dimensional, therefore, P in equation 6.1 is reported as the line load (the load per

unit depth).

6.2 Geometry selection and specimen preparation

The four adhesive characterization experiments in this chapter are the DCB test,

the BPS test, the ENF test, and the SLJ test. The pre-preg material, T650/AFR-PE-4,

was donated by Cytec, Inc. The adhesive, FM680-1, was donated by Goodrich, Inc.

Due to the cost associated with each material, a limited quantity was available. As a

result, a principle consideration in sizing each specimen was material consumption. To

conserve material, all laminates were constructed of four plies. Four was considered

the minimum number of layers for structural integrity.

6.2.1 The double cantilever beam geometry

A schematic of the DCB specimen is shown in figure 5.4. Manufacturing constraints

were significant in sizing the overall geometry of the specimen. The specimen length

is one half the manufacturable plate size. The specimen width, 20 mm, was set to

maximize the specimen yield while ensuring measurable loads.
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Figure 6.1 Typical BPS specimens before and after the experiment

6.2.2 The button peel stress geometry

Unlike the other coupon level specimens, the BPS specimen adherends were not lami-

nated on site. Instead, they were cut from a plate (of the same material) that was

donated by the Pratt & Whitney Corporation.2 As with the other specimen types,

manufacturing constraints dictated the geometry. Only one plate was available as a

source for BPS specimens. The required number of BPS experiments dictated a mini-

mum of sixteen specimens be manufactured from the plate (with additional specimens

for pretesting).

There were several requirements in establishing the specimen geometry shown in

figure 6.1. First, an accurate estimate of the adhesive surface area is required for com-

putation of the peel stress. The uncertainty associated with adhesive spew precluded

a geometry where the adhesive only covered a small portion of the adherend surface.

Second, the cured adhesive layer is thin and prevents the insertion of a gripping fixture

in a gap formed by the adhesive thickness. Third, the extreme temperatures during the

experiment (and the high strength of FM680-1 at those temperatures) cause reliability

concerns for any fixture attached by bonding. In view of the constraints, a machine

screw with a tapered head was inserted through a counter-sunk hole in the center of

each square adherend. The screws (shown in figure 6.1) were found to be an effective

fixture. The square specimen was found to meet manufacturing constraints.

Initial testing showed that fast fracture was the failure mode of the BPS specimen.

Fast fracture is a minimal criterion to establish that σIc is the dominant parameter in

failure, therefore, the specimen geometry was accepted.3

2 Courtesy of Dr. R. A. Naik.
3No standard BPS specimen is currently available for composite materials. The current specimen

is believed to yield an appropriate value for σIc. Results with a variant of the BPS have been reported
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6.2.3 The end notch flexure geometry

Sizing the ENF specimen was straightforward given the material and manufacturing

constraints. The DCB geometry was found to be appropriate for the ENF specimen;

therefore, it was selected. The DCB/ENF geometry conforms to the guidelines proposed

by Davidson and Zhao [36] for the upcoming ASTM International (ASTM) standard.

6.2.4 The single lap joint geometry

The objective of the SLJ test is to determine the Mode II strength (τIIc) for use in the

DCZM element traction law. Although the ASTM recommends a specific geometry for

the SLJ test, initial tests showed that the failure load would exceed the load frame

capacity (for the available Instron model 4201 electromechanical load frame with an

Instron model 3119 temperature chamber).

To select an appropriate alternative geometry, an analytical design of experiments

(DOE) was completed to assess specimen geometric variables. The base FE model was

generated using parameters derived from initial experimental data. Notch length (ln)

was found to have a negligible effect on the output.4 Since the specimen geometry was

required to depart from the ASTM recommendation, the value of ln was reduced to

limit material consumption. The DOE and preliminary experiments indicated that a

specimen width of 12.5 mm would be appropriate over the entire range of temperatures,

therefore, it was selected as the nominal specimen width.

6.2.5 Specimen preparation

All specimens (with the exception of the BPS specimens) were prepared in batches

using bidirectional woven T650 lamina pre-impregnated with AFR-PE-4. The layers

were arranged by hand layup into [0, 90]s laminates and cured in a Wabash model 30-

1515 press. The multi-step curing cycle followed the manufacturer’s recommendation

[107] as closely as possible with modifications required for hot press operations.5 The

cured laminate plate had two distinct surface textures referred to as smooth (released

from the stainless steel mold plate) and rough (released from the peel ply/fiberglass

batting). The cured plate geometry was approximately 315×315×1.25 mm.

by Sun [99] who examined a steel/adhesive/steel material system. The development of a standardized
procedure and specimen would add confidence to the results.

4This was confirmed by the sensitivity analysis presented in chapter 5.
5 The details of the curing cycle are ITAR restricted, contact the manufacturer for additional

detail.
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Following the cure cycle, each laminate was cut into four smaller plates of ap-

proximately 155×155×1.25 mm. This plate size set the total length of the DCB and

ENF specimens. All specimens were prepared with adherends obtained from the same

laminate. Prior to any bonding, the plates were lightly roughened with 200 grit

sandpaper and cleaned with acetone.

For the DCB and ENF specimens, the small plates were bonded in pairs so that the

adhesive covered a portion of the surface (sufficient to yield the bonded lengths shown

in figures 5.4 and 5.11). For the SLJ specimens, two plates were bonded to overlap by

25.4 mm. Stainless steel mold plates supported the free ends of the SLJ adherends. In

each assembly, the bonding was completed using Cytec FM680-1 adhesive film (an

adhesive carried on a fiberglass scrim). The adhesive was cured during a separate

step in the hot press.6 The assemblies were arranged so that the adhesive layer was in

contact with one rough and one smooth side of the adherends. A 50µm film sheet of

Kapton (coated with Loctite 770-NC mold release) was inserted between the DCB and

ENF adherends to initiate a crack.

In contrast to the other specimen types, the BPS specimens were cut from the

laminate provide by Pratt & Whitney Corporation. The laminate allowed for addi-

tional adherend thickness and provided a robust hole/countersink structure that was

able to withstand the experimental loads. The sixteen layer laminate was cut into

square specimens with 20 mm (nominal) sides. The nominal laminate thickness was

5.7 mm. A 4 mm diameter hole was drilled into each square to accommodate the

machine screw that was used as a fixture. The hole was countersunk until the screw

head was below flush. The squares, in pairs, were then lightly roughened with the 200

grit sandpaper on the bonding face and cleaned with acetone. Prior to assembly, the

#6-32 machine screws were coated with six coats of Freekote 770NC mold release to

ensure minimal adhesion in the event of adhesive spew.7 FM680-1 adhesive squares

were placed over the bonding surfaces and a hole was cut in the adhesive scrim. The

machine screw was passed through the adhesive so that the screw head remained free

of adhesive. The faces of the adherends and the screw heads were aligned prior to the

adhesive curing cycle.

Subsequent to curing, the assembly was post-cured according to the manufacturer’s

recommended cycle. For the SLJ specimens, the free adherend ends were cut roughly

in half and used as the doubling section between the wedge grips.8 The nominal size

6The adhesive cure cycle was also modified slightly from the manufacturer’s recommendation due
to hot press operations.

7 Post-test inspection revealed that there was no significant adhesive spew over the screw head.
8The doubling was initially held in place by J-B Weld epoxy, however, at high temperatures this
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(a) A DCB/ENF specimen shown at different scales

(b) A SLJ specimen

Figure 6.2 Typical DCB/ENF and SLJ specimens

of the notch (ln) was 2 mm. In the last step of the DCB, ENF, and SLJ manufacturing

process, the edges of the bonded plates were trimmed and individual specimens were

cut from the remaining material.

The geometry of the DCB, ENF, and SLJ specimens are shown schematically in

figures 5.4, 5.11, and 5.17. Figure 6.2(a) shows a typical DCB/ENF specimen at several

visual scales. A typical SLJ specimen is shown in figure 6.2(b). BPS specimens (pre

and post experiment) are shown in figure 6.1. After all trimming, the nominal length

(l) of the DCB/ENF specimen was 130 ±3 mm and the nominal width (b) was 20 ±
0.3 mm. The nominal width of the SLJ specimen was 12.5 ± 0.3 mm. The nominal

thickness (h) of the DCB/ENF/SLJ specimen adherends were 1.25 ± 0.05 mm and the

nominal thickness of the BPS specimen was 5.7 mm± 0.03 mm.

The position of the Kapton (i.e. the position of the initial crack tip) for the DCB

specimen was 20 ± 2 mm relative to the hinge. Due to the high temperatures to

which the joints were subjected, the hinges were attached with #4-40 machine screws.

Holes were drilled in the specimens to accommodate these screws. The hole size was

set so that the conical heads of the machine screws were approximately flush with the

inside surfaces of the DCB specimen (the screw shank protruded outward from the

specimen centerline). The resulting hinged specimen (as tested) had less than 0.5 mm

of initial displacement caused by the screw heads.

epoxy broke down. Although this required care in gripping, there were no significant adverse effects
since the two adherends (in the doubling section) did not slip relative to each other.
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6.3 Experimental determination of GIc

In this section, the Mode I critical energy release rate is reported for the T650/AFR-

PE-4/FM680-1 material system over a broad range of temperatures.

6.3.1 The double cantilever beam experimental protocol

The DCB experiments were completed on an Instron model 5585 electro-mechanical

loading frame.9 The specimens, including grips, were enclosed in an Instron

model 3119 environmental chamber and brought to the specified temperatures

(T = {20, 150, 250, 350} ◦C). Four specimens were tested at each temperature level.

The air inside the environmental chamber was stirred constantly to ensure uniformity.

The temperature was maintained to ±2 ◦C. A minimum of 20 minutes was allowed to

obtain thermodynamic equilibrium after reaching the specified temperature. Prior to

the measured load-displacement cycle, a natural crack was initiated by enforcing a

crosshead displacement of 5 mm while at temperature. Therefore, the initial crack

length (a0) was determined by this initial enforced displacement. The DCB specimens

were subsequently loaded via displacement control at 5 mm/min. An escalating

sawtooth displacement pattern was prescribed. The bounding displacements were:

wtip = [0, 8, 0, 11, 0, 14, 0, 17, 0, 20] mm. Load and displacement measurements were

acquired at a minimum of 10 Hz. Photographic images were taken at 5 second intervals

(or faster) to determine the apparent crack position.

6.3.2 The area method: Ga
Ic

Representative test results

A set of typical load-displacement curves are shown in figure 6.4. The curves were

numerically integrated to determine the total work done during each displacement

cycle. The total work is composed of several components:

Wtot = Wfrac +Wpl +Wdis, (6.2)

where Wtot is the total work done, Wfrac is the work done to create new fracture

surfaces, Wpl is the work that causes permanent deformation (hereafter referred to

9The DCB tests were conducted on a Instron 5585 frame and thermal chamber in an alternate
laboratory. This work was completed prior to the installation of a dedicated facility with the Instron
4201 frame used in the remainder of the experiments.
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as plasticity) in the adherends, and Wdis is all other dissipative mechanisms. For a

linear-elastic DCB specimen, the plastic and dissipative terms are absent in equation 6.2

and all the external work goes to the creation of fracture surfaces. The critical energy

release rate (GIc) is equal to this fracture work divided by the new crack surface area:

GIc =
Wfrac

∆a · b
. (6.3)

Equation 6.3 is a good approximation for the T650/AFR-PE-4/FM680-1 specimens at

most temperatures. After the test, there was no visual indication of plastic deformation

in the specimen. As shown in figure 6.4, the sawtooth loading pattern exhibits linear

initial loading and linear unload-reload cycles with minimal hysteresis (for all but the

350 ◦C specimens). The specimen load goes to the zero load point as displacement

goes to zero, indicating little or no permanent deformation. Equation 6.3 does not hold

at 350 ◦C due to moderate permanent deformation. This can also be seen in figure 6.4,

where the sawtooth displacement cycle exhibits some differences between the unload

and reload load-displacement curves. This hysteresis is indicative of non-negligible

dissipative mechanisms during the test. The unload path does not return to zero

load at zero displacement, which re-enforces the observation of plastic deformation.

Further, in two of the four specimens tested at 350 ◦C, the specimen failed due to

adherend fracture. Large amounts of dissipated energy were associated with these

fractures.10

Due to the uncertain non-linear constitutive and dissipative effects, the area method

critical energy release rate is defined as:

Ga
Ic =

Wtot

∆a · b
. (6.4)

The area method critical energy release rate (Ga
Ic) must not confused with the “true”

critical energy release rate at high temperature. There is insufficient information to

completely determine the temperature dependence and contributions of plastic work

(Wpl) and other dissipative mechanisms (Wdis) to the total work (Wtot) in the DCB

test, therefore Ga
Ic cannot be considered a “true” GIc. An alternative method for

determining GIc will be presented in section 6.3.3 to address this concern.

10In Whitley and Collins [107], the T650/AFR-PE-4 material system was found to suffer a signifi-
cant reduction in the interlaminar shear strength at this temperature, therefore the two specimen
failures at this temperature are not surprising.
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The apparent crack advance

Image analysis was used to determine the time history of the apparent crack position.

A label-paper grid with 0.5 mm spacing was adhered to the edge of each specimen and

was used to aid in determining the crack position during data reduction. For each spec-

imen, a pixel length calibration was done. A typical photograph had ≈ 50 pixels/mm.

The initial crack position was measured from a line connecting the center of the hinges

to the initial crack tip. In subsequent images, common points were identified and used

to determine the prior and current crack position. Crack propagation was measured

linearly from the prior crack position to the current crack position in each frame. In

this way, the apparent crack position (a) and apparent crack increment (∆a) could

be determined even when the global deflection made direct linear measurement from

the hinge difficult. At a minimum, image analysis was completed at the beginning

and end of the test cycle as well as the beginning of each unload phase of the cycle.

Therefore, all sub-cycle crack positions were determined as well as the initial and final

crack positions. Additional images were analyzed, as required, to track crack position

throughout each test.

Distribution of Ga
Ic

The area method critical energy release rate Ga
Ic was calculated with equation 6.4 and

the time history of a for each specimen. The average and standard deviation (σ)11 of

the four specimens were calculated for each temperature and are shown in figure 6.5 as

well as table 6.2. A loose positive correlation was found between the temperature and

Ga
Ic.

12 This increase in Ga
Ic is consistent with an increase in material ductility at higher

temperatures in this mode, however, there is insufficient information to eliminate

the possible influence of a gradual increase in adherend plasticity with temperature.

Permanent deformation is apparent in the specimens tested at 350 ◦C.

Additional observations

The area method has been determined to be less reliable than the various compli-

ance calibration methods, [95]. Unfortunately, individual compliance calibration per

11The standard deviations in this work are sample standard deviations, the square-root of the
unbiased estimator for the variance.

12The mean and standard deviation at 350 ◦C in figure 6.5 are based on the two specimens which
did not exhibit adherend fracture.
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Figure 6.3 Typical image used for analysis of apparent crack propagation.

specimen is difficult for the DCB test due to the manufacturing constraint of a fixed

hinge. A “general” compliance calibration for all specimens would be desired, however,

it would require a consistent stiffness from specimen to specimen. In this set of

experiments with thin adherends consisting of only a few layers, adherend stiffness

may not be consistent from specimen to specimen. Small variations in thickness

and small differences in fiber position within the cross section inevitably lead to

differences in stiffness, since there is little opportunity for strain averaging in thin

laminates. This stiffness uncertainty is further emphasized by the manufacturing

variations inherent in the hand layup process. For the DCB adherends, the standard

deviation of the measured stiffness was 7.4% of the mean stiffness (as determined by

3-point bend tests at room temperature). Additionally, since compliance is dependent

on temperature, CC is difficult due to the number of specimens required. Therefore,

the area and inverse methods (described in section 6.3.3) are used to determine GIc in

T650/AFR-PE-4/FM680-1.

In the DCB test, the adhesive always failed at the interface with the rough side

of the adherend. In each specimen, the fiberglass scrim carrier remained bonded to

the smooth adherend. In a few specimens, small patches of scrim (∼30 mm2) were

found on the rough adherend, however, this was uncommon. It is likely, therefore,

that surface roughness played a role in the adhesive failure.

Finally, the critical energy release rates (Ga
Ic and Gi

Ic) and the peak loads increased
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Figure 6.4 Typical load-displacement for T650/AFR-PE-4/FM680-1 DCB specimens.
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Table 6.1 Approximate size of the coarse and fine DCB FE models.

Coarse Mesh Fine Mesh

Elements 1050 4700
Nodes 1200 5000
Solution time (s) 25 145

with increasing temperature. This trend has been observed where material ductility

increases with increasing temperature, [11, 95]. Asp [11] concluded, however, that the

literature is ambiguous as to the effects of temperature on GIc. The decreasing values

of GIIc reported in section 6.5 support Asp’s assertion.13

6.3.3 The inverse method: Gi
Ic

Description of the FE model

Due to the uncertainties in plastic work and other dissipative mechanisms, the DCB

experimental results were used to generate a quantitative inverse model of the DCB test.

A 2D model was created and Abaqus R© [1] was used as the FE solver. The adherends

were modeled with linear elastic, orthotropic, CPE4I elements. The adhesive was

replaced by a layer of novel DCZM elements (described in chapter 4). To establish

mesh convergence, two meshes were generated (shown in figure 6.6 with additional

detail provided in table 6.1). They were found to provide nearly identical results in

predicted load-displacement response as shown in figure 6.6(b). This result reinforces

the claim made in Xie and Waas [113] that the DCZM element is essentially mesh

independent. It was observed, however, that the model’s ability to obtain a completed

solution (i.e. solution convergence) is mesh dependent. Due to the small CPU time

requirements of the model, the fine mesh was chosen for additional study. It exhibited

slightly less “chatter”14 during steady state crack propagation and was deemed more

likely to obtain solution convergence for all model inputs.

13Asp’s conclusion was with respect to interlaminar GIc, however, the result may be general to all
modes.

14The “chatter” is tied to the mesh density and the εsoftening in the traction law. Larger elements
have larger integration point areas; therefore, they are constrained to have larger increments of crack
advance. The resulting global load-displacement response can lose smoothness.
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(a) The coarse (top) and fine (bottom) meshes used to evaluate convergence.

P

Crosshead Displacement

Coarse mesh Fine mesh

(b) Predicted load-displacement results for the coarse and fine meshes. The
coarse mesh exhibits “chatter” that is not present in the fine mesh.

Figure 6.6 DCB FE models in two mesh densities
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The inverse modeling procedure

With the experimental results and the DCZM element, a second value of the critical

energy release rate (Gi
Ic) was established by inverse modeling the measured load-

displacement in a FE environment. An iterative algorithm was developed using custom

scripts developed for Octave c© [45]. Within Octave c©, the scripts supplied initial mate-

rial parameters to the FE model, called the FE solver, extracted the load-displacement

output, evaluated it against convergence criteria, and modified the input deck for

re-analysis (if needed).

Criteria for inverse model acceptance

Inverse modeling requires metrics to evaluate model output. The objective in inverse

modeling is to match experimentally measured loads while accurately representing

geometry and material properties. This must be accomplished despite uncertainties

and experimental variability. For the DCB test, the principal uncertainties are the

stiffness of the adherends, the initial crack length (due to non-planer cracks and

measurement error), and the critical energy release rate (due to manufacturing or

material variability and unknown temperature dependence). Since GIc is the material

parameter of interest, assumptions were made regarding the remaining uncertainties.

For the DCB test, two criteria were established as output metrics. The first criterion

was to match the initial slope of the load-displacement curve within a tolerance of

±1%. The initial slope of the load-displacement curve is a function of a0 and the

stiffness of the adherends. Though either could be modified during inverse modeling,

the specimen stiffness was held constant and the initial crack position was modified. In

matching the initial slope by adjusting a0, initial crack position is determined within

the error bounds of the specimen stiffness.

A second requirement in matching the experimental loads is to predict the load

during crack advance. Once the stiffness and initial crack length are established,

the load during crack advance is dependent on crack position and adherend plastic

deformation. In an ideal specimen with no plasticity, the crack advance load would be

governed by GIc. Significant adherend plasticity, however, will change the load during

crack advance.

In the inverse modeling algorithm, it is assumed that GIc is constant and the

crack position is the dominant variable in defining the load. Therefore, the Mode I

critical energy release rate (GIc) was used to match the load during crack advance.

No plasticity is included in the FE analysis, however, the predicted and experimental
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load-displacement can be compared as one indication of the validity of the plasticity

assumption.

The measured loads during crack advance are significantly more variable than is

the initial slope, therefore, there is no clear inversion criterion with respect to where

and how the loads should be evaluated. Common evaluation points (for the purposes

of calculating GIc via CC techniques) are the onset of non-linearity, the 5% offset point,

and the peak load point, [95]. Unfortunately, when evaluated at an isolated point, the

calculated value of GIc is not an average value and may not be the best quantitative

evaluation of material adhesion. In the inversion algorithm, an attempt was made to

determine the average value of critical energy release rate over the entire crack advance.

The criterion was, therefore, based on a curve fit of the whole load-displacement curve

during crack advance.

The following procedure was established for determining the critical energy release

rate via inverse modeling. First, the crack advance portions of the curves were identi-

fied from the measured and modeled load-displacement curves. The crack advance

portion ranged from the displacement at the peak load to the maximum displacement

for the specimen (excluding overlapping displacements due to cyclic loading). A

linear, least-squares fit was applied to each of the isolated curves. A load value was

calculated based on each of the fit lines; the evaluation point was 1/2 the distance

from the peak load to the max displacement of the measured load-displacement curve.

These “representative loads” allowed comparison of the measured and modeled crack

propagation curves via the best fit equations. Therefore, the second inverse modeling

criterion required that the representative load from the model be within 1% of the

representative load from the measured data.

In the GIc inverse modeling scheme, there was no procedure for evaluating the

cohesive strength of the T650/AFR-PE-4/FM680-1 material system, although, it could

be added without significant difficulty. It was determined that the cohesive strength

(σIc) and the shape factor of the traction law (αpl) govern the transition between the

initial slope and the subsequent crack propagation portions of the load-displacement

curve.15 This transition could be used to invert these parameters, however, the BPS test

described in section 6.4 is expected to provide a more precise method of determining

the cohesive strength. Since the BPS results were not yet available when the inverse

modeling was completed, effective values of these parameters were fixed based on

15The trapezoidal traction law was used in the inverse modeling procedure since the smooth
traction laws were not yet available when the work was completed. The DCB is insensitive to the
traction law shape factor (αpl), therefore, any difference in results would be negligible.
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Table 6.2 Distributions of ḠIc

Temperature area method Inverse Method
T ◦C Ḡa

Ic ± σ Ḡi
Ic ± σ

20 1.27± 0.36 1.00± 0.21
150 1.38± 0.25 1.23± 0.21
250 1.52± 0.21 1.37± 0.07
350 2.01± 0.79 1.36± 0.22

observed transitions between initial load-displacement stiffness and crack propagation.

Distribution of Gi
Ic

Typical FE predictions of DCB load-displacement Gi
Ic are shown in figure 6.7 as well

as the associated experimental result for the same specimen. The measured load-

displacement cycles are well captured by the inversion (at all temperatures). The

values used to create these curves, summarized in table 6.2, are very likely to represent

the GIc values present in the material system.

Figure 6.8 shows the distribution of Ḡi
Ic determined by inverse modeling. The

values of Ḡi
Ic are found to be smaller and less variable than the values of Ḡa

Ic. This is

expected, since Ḡa
Ic contains energy that is associated with adherend plasticity and

dissipation in the experiment, whereas the models used for Ḡi
Ic are linear elastic and

contain minimal dissipation (to ensure a converged solution). The Ḡi
Ic values are more

representative of “true” ḠIc since they do not contain significant energy dissipation

contributions other than the creation of new crack surfaces. The computed values of

Ḡi
Ic are not “true” ḠIc, since the FE models did not include adherend plasticity that

may be present (especially at high temperature).

Comparing the measured and modeled load-displacement in figure 6.7, it is appar-

ent that the DCB test can be well modeled without the inclusion of adherend plasticity.

Considering the excellent correlation between modeled and measured loads in the

crack advance portion of the curves, it is likely that plasticity (Wpl) is a small portion

of the total work (even at 350 ◦C). It is therefore likely that the other dissipative

mechanisms (Wdis) are the bulk of the difference between Ḡa
Ic and Ḡi

Ic in table 6.2.
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Figure 6.7 Typical normalized load-displacement and inverse model results for T650/AFR-
PE-4/FM680-1 DCB specimens.
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6.4 Experimental determination of σIc

The critical peel stress (σIc) is the second parameter in the traction law and is

determined by the button peel stress test. For this and the remaining experiments,

an Instron model 4201 electromechanical load frame was used. An Instron model

3119 environmental chamber enclosed the specimen and controlled temperature to the

tolerances described in section 6.3. Custom steel wedge grips (shown in figure 6.9)

were used in this and the SLJ test (to be reported in section 6.6). Four BPS failure

tests were completed at each of four temperatures.

6.4.1 The button peel stress experimental protocol

The BPS experimental protocol began with the specimens being placed into the wedge

grips so that the machine screw threads and the knurled wedge grip faces interlocked.

Very little clamping force was required to prevent slippage during the test, therefore,

no compression beyond the natural compression of the wedge was required. The outer

face of the specimen was flush with the tips of the wedge grips. The setup is shown in

figure 6.9

The specimens were loaded in displacement control at 0.5 mm/min until fracture.

High speed video was taken of the fracture event. The video showed that the initial

fracture event completely severed interface in most specimens. In the remaining

specimens (usually at high temperature), the crack propagated over the majority of

the interface while leaving a few strands of fiberglass scrim bridging the crack. The

bridging was at least partially due to increased friction in the wedge grips at high

temperature. (The grips had to be knocked free with a malleable hammer at the

conclusion of these tests.) Since the specimens were loaded in displacement control

and friction prevented complete severance, the bridging scrim was deemed insignificant

relative to the total surface area. For the purposes of data reduction, all specimens

were considered to have failed instantly. Typical normalized load-displacement results

for the BPS experiments are shown in figure 6.11. The critical stress values (σIc) were

calculated using:

σIc =
Pfail

ABPS

. (6.5)

In equation 6.5, Pfail is the failure load and ABPS is the bonded surface area of the

BPS specimen. In order to accurately account for the screw head and it’s reduction of

the bonded surface area, ABPS was determined through photographic evaluation of

the failed specimen. The evaluation consisted of a (manually guided) image threshold
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Figure 6.9 Setup of wedge grips for the BPS specimen. The outer surfaces of the specimen
were flush with the grip tips at the start of each experiment. Friction between the grips and
their housing prevented complete severance of the scrim in some specimens.
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Figure 6.10 Typical photograph used to determine the BPS bonded area

of a surface image which allowed the pixels of the surface area to be counted. A linear

ruler was included in the photograph in order to establish the pixel density, from

which the area was calculated. A sample photograph from this process is shown in

figure 6.10. The figure also illustrates a typical failure; the scrim was found to be

distributed to both the smooth and rough sides of the specimen.

6.4.2 The button peel stress results for σIc

The distributions of σIc are shown as a function of temperature in figure 6.12. Unlike

GIc, the value of σIc decreases with temperature. Whereas increased plasticity was

a likely cause of increased GIc at higher temperatures, it is also a likely cause of

decreased σIc. The variability of σIc is similar in relative magnitude to variability of

GIc (approximately 20% of the mean value). When combined with the GIc results in

section 6.3, the Mode I parameters are now defined.
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Figure 6.11 Typical normalized load-displacement for BPS specimens
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6.5 Experimental determination of GIIc

The Mode II critical energy release rate (GIIc) is the third parameter in the traction

law for T650/AFR-PE-4/FM680-1 and is considered next. It is computed from the

results of the end notch flexure test.

6.5.1 The end notch flexure experimental protocol

The ENF specimen geometry was described in section 6.2.3. The experiments were

completed according to the geometric and data reduction recommendations presented

by Davidson and Sun [37]. Four specimens were tested at each of the four temperatures.

The specimen geometry was almost identical to the DCB specimens, except for the

initial crack position. It was referenced to the roller support instead of the hinge. The

total span (2 l) was 104 mm and the support rollers had a diameter of 6.35 mm. The

loading roller was 12.7 mm in diameter.

Whereas the hinge limited the ability to do compliance calibration in the DCB test,

the ENF specimen had no such restriction. Therefore, a compliance calibration was

completed for each specimen with the curve fitting equation given in equation 5.5.

The nominal crack fractions for the calibration were {0.4, 0.5, 0.6, 0.7, 0.8} and

the crosshead displacement was taken to 2.0 mm at all temperatures except 350 ◦C.

At 350 ◦C, the crosshead displacement during calibration was limited to 1.5 mm to

ensure no damage would occur. The nominal crack tip was determined by physical

examination of both edges of the ENF specimen. There is significant uncertainty about

the actual crack position due to the possibility of jagged crack fronts, [36].

The last calibration cycle was applied at a crack fraction of 0.5. Thereafter, the

loading was continued from that point up to failure. After an initial crack propagation

was observed during the experiment, the specimen was then partially unloaded to

allow additional loading cycles. In this way, the same specimen was used to achieve at

least three separate values of GIIc for each specimen. These values were averaged prior

to inclusion in the data set used to generate figure 6.14. The averaging technique is

meant to provide a more representative value of GIIc for the whole specimen.

6.5.2 The end notch flexure results for GIIc

Typical load-displacement curves for the ENF test are shown in figure 6.13. The

compliance calibration cycles are apparent in the figures; there are several curves at
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Figure 6.13 Typical load-displacement for ENF specimens
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Figure 6.14 Distribution of ḠIIc as a function of temperature

different nominal crack lengths shown. Additionally, the loading and unloading cycles

are also readily visible in the plots. The ENF experiments exhibited linear load-unload

behavior in all specimens except at 350 ◦C.

The computed values of GIIc are shown in figure 6.14. Comparing figure 6.14 with

figures 6.8 and 6.12, it is apparent that the variability in GIIc is far greater than for

GIc and σIc. This significant variability presents numerous challenges to be addressed

in a later work. It is likely that the nature of the composite weave, with pockets of

matrix material, contributes to the variability in the ENF results. It is possible that

these pockets have greater effect on the ENF experiments than the other experiments.
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Another possible source of variability is the rate of crack advance, [36, 99]. “Stick-slip”

crack advance behavior was observed in some specimens, therefore, rate effects cannot

be discounted. Despite the variability, the mean value of GIIc is fairly consistent

over the entire temperature range. The critical energy release rate in Mode II is

approximately double the value in Mode I.

6.6 Experimental determination of τIIc

The final parameter in the adhesive constitutive law is the critical shear stress (τIIc).

It is determined by proper interpretation of the single lap joint test.

6.6.1 The single lap joint experimental protocol

The single lap joint test was completed for four specimens at four temperatures.

Specimens were prepared as reported in section 6.2.5. The wedge grip assembly was

completed outside the oven and then placed into the load frame. (External assembly

minimized heat losses during high temperature tests.) Unlike the BPS specimen, the

relatively smooth surfaces of the adherends in the SLJ test caused difficulty with

slippage in the wedge grips. In addition to the natural compression caused by the

wedges, the knurled grip faces were compressed into the specimen with bolts. After

the assembly reached the desired temperature, it was allowed to equilibrate for 20

minutes. Subsequently, displacement control was enforced at 0.5 mm/min until failure

occurred.

6.6.2 The single lap joint results for τIIc

Representative normalized load-displacement curves for the SLJ test are shown in

figure 6.16. After an initial displacement advance where wedge settling occurred, the

load scaled linearly with displacement until failure. A few specimens, randomly over

the temperatures, exhibited a small but noticeable crack advance with associated

load drop prior to failure. An example of this is the 350 ◦C specimen in figure 6.16.

One specimen (at 250 ◦C, highlighted in figure 6.16) was observed to slip in the

grips, however, this only had the effect of unloading the specimen slightly. Loading

was able to continue through the slippage up to a failure point. The slope of the

load-displacement curve did not change appreciably after the slippage, therefore it
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Figure 6.15 Distribution of SLJ P̄max as a function of temperature

was deemed to have negligible effect on the experiment. In two of the experiments

(one at 20 ◦C and one at 350 ◦C), the failure was not entirely in the adhesive or at the

adherend/adhesive interface. The specimens exhibited partial (20 ◦C) or total (350 ◦C)

interlaminar failure. As a result, the values from these experiments are excluded from

the results plotted in figure 6.15.

It was shown in chapter 5 that the SLJ test cannot be used in isolation to determine

appropriate values for τIIc. To map the experimental results to a usable set of values

for τIIc, the distribution of peak line loads was calculated at each temperature. This
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distribution is shown in figure 6.15. Using the DACE surrogate model from chapter 5,

contour lines were established in (GIIc, τIIc) space from the values of the P̄max dis-

tributions. In the surrogate, GIIc and τIIc were allowed to vary while the remaining

variables were fixed at their experimental nominal values.16

The DACE equivalent contours of P̄max are shown as curving lines in figure 6.17. A

conclusion of chapter 5 is apparent in this figure; there is a range of (GIIc, τIIc) pairs

that would predict the outcome of the SLJ experiments. To complete the parameter

mapping, the ranges of GIIc established by the ENF test are overlaid on the contour

plot as vertical lines. The appropriate range of (GIIc, τIIc) pairs for general use is the

area within the two bands.

6.7 Application of the DCZM technique to a simple

structural test

To explore the applicability of the parameters that have been determined in the prior

sections, a simple structural test (SST) has been completed. The experimental setup,

shown in figure 6.18, was designed to subject the material system to a complex state

of stress in three dimensions.

Like the other tests in this chapter, the geometry of the SST was dictated by the

limited supply of materials. To achieve the complex interfacial stress state without

significant investment of materials, a stiffened plate specimen was designed via a series

of FE models. A candidate geometry was proposed, manufactured, and tested. It was

found to exhibit a repeatable failure with asymmetric adhesive fracture at the tip of

one of the stiffeners. Therefore, the specimen was subjected to in-depth analysis.

The SST specimen was simply supported on the top and bottom ends and free on

the sides. The plate was loaded in compression on the Instron 4201 frame.

6.7.1 The measured load-displacement curve and model re-
sults

A representative load-displacement curve for the SST is shown in figure 6.20. Initial

loading was linear elastic which continued until global buckling of the specimen.

16In chapter 5, it was shown that the value of σIc also affects the maximum load in the SLJ test
(to a lesser degree than GIIc and τIIc). In this application of the conclusions of that chapter, only
GIIc and τIIc are allowed to vary due to the significant variability in the experimentally determined
GIIc. The variability is likely to overwhelm the effects of σIc.
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Figure 6.16 Typical load-displacement for SLJ specimens
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Figure 6.17 Range of material parameters for Mode II
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(a) Typical buckled SST specimen

(b) Typical Moire fringe patterns of a buckled SST specimen

Figure 6.18 The experimental setup for the SST
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Table 6.3 Approximate size of the SST FE model

Number of elements 79000
Number of user nodes 101000
Number of variables 1360000

Shortly after global buckling, all three SST specimens exhibited decohesion at one of

the stiffener terminus locations.

FE models of the SST specimen were completed using the 3D version of the DCZM

element and the adhesive constitutive law determined in the prior sections. A repre-

sentative model result is shown in figure 6.19 and properties of the model are given in

table 6.3. Three of these models are overlaid on top of the experimental results in fig-

ure 6.20.17 The models are referred to as Nominal Gc, 20% of Nominal Gc, and Lower

Bound. Looking first at the FE model which used nominal values of all the adhesive

constitutive parameters (“Nominal Gc”), it is observed that the slope of the load

displacement curve and the buckling load are both well predicted. The displacement at

fracture, however, is not well captured; the fracture in the model occurs well past the

displacement where fracture occurred in the experiment. Consequently, a subsequent

model was completed using 20% of the nominal adhesive values of Gc. This model

predicted failure at much lower values of crosshead displacement, however, fracture

still occurred at a larger displacement than occurred in the experiment. Further

reduction in the adhesive parameters resulted in convergence difficulty.

6.7.2 Possible reasons for over-prediction of fracture dis-
placement

It is clear that some mechanism of failure is not captured by the FE model. To bound

the model results, an analysis of the response for the plate with decohered stiffeners

is shown in figure 6.20 as “Lower Bound”. The FE model results correctly bound

the structural response. Upon stiffener decohesion, the specimen jumps from one

equilibrium path to another. The two equilibrium paths are well captured by the FE

models.

Adequate prediction of the decohesion event remains an open question. There are

17The SST specimen was subject to initial settling of the loading frame prior to exhibiting purely
linear elastic behavior. The intercept of the FE model predictions are shifted to reflect an appropriate
intercept for the experimental results.

167



(a) Global view of buckled mode

(b) Local view of stiffener terminus showing crack initiation

Figure 6.19 Representative model of the SST
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several likely reasons why this event has not been captured. First, the SST specimen is

subject to unstable crack propagation, however, it is also dependent on the toughness

of the material system. The SST is likely to have substantial sensitivity to the large

variability in Mode II critical energy release rate (GIIc). A larger adhesive surface area

is under active load transfer than in the ENF test, therefore, it is likely that an area of

lower GIIc exists under critical traction. If any surface area fails, the remaining areas

are likely to follow due to unstable crack propagation. The failure event is dictated by

the material that has the lowest critical energy release rate within the distribution in

the specimen, hence an assumption of nominal GIIc should be expected to over-predict

the failure event.18

A second possible explanation for the over-prediction of failure load is rate de-

pendency in the critical energy release rates. “Dynamic” crack advancement has

been observed to have lower values of critical energy release rate than “quasi-static”

crack advances, [36, 99]. The experimental values of Gc were all determined using

a (relatively) slow rate of crack advance. If the T650/AFR-PE-4/FM680-1 material

system is rate dependent, the dynamic crack propagation event in the SST specimen

would be expected to occur at a lower failure load than the steady state values of

Gc predict. Furthermore, rate dependence in GIIc would help to explain the large

variability in the quasi-static GIIc values determined in section 6.5. Both the ENF and

DCB specimens were observed to exhibit some level of “stick-slip” (piecewise crack

advance) and the rates of those advances vary from specimen to specimen. Although

no attempt was made to determine the rates of crack advance, it is possible that the

wide variability in the GIIc values is due (at least in part) to rate effects.

Finally, it is possible that the mixed-mode assumption19 is not appropriate for

T650/AFR-PE-4/FM680-1.20

Only additional testing in mixed mode loading and at different rates of crack ad-

vance can determine if these possible reasons are correct explanations for the difference

between the predicted and measured response in the SST test. Unfortunately, the

available material for experimentation has been exhausted. Acquisition of additional

materials would have to be justified by ongoing interest and support from the sponsors

of this work.

18Since the ENF specimen is subject to stable crack propagation, it is not dependent on the
minimum toughness in the same way that the SST is dependent on the minimum toughness.

19See equation 5.6.
20A short list of references for mixed-mode fracture includes: [7, 9, 11, 17, 22, 23, 32, 35, 113]. The

list is not exhaustive. Due to ITAR, no published mixed-mode data on T650/AFR-PE-4/FM680-1 is
currently available.
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Figure 6.20 Typical load-displacement in the SST experiment and FE model. Nominal
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6.8 Conclusion

An experimental study of the adhesive parameters of a T650/AFR-PE-4/FM680-1

material system has been presented. A four parameter constitutive law (GIc, σIc,

GIIc, and τIIc) has been developed for the DCZM element over the range of 20-350 ◦C.

Four types of experiments were completed and a novel mapping approach was used

to determine a complete set of parameter values that can properly account for the

traction law interactions that occur in the characterization experiments.

The first parameter is the Mode I critical energy release rate (GIc) as determine

by the double cantilever beam test. Two separate forms of the critical energy release

rate were computed based on the area method (Ga
Ic) and the inverse method (Gi

Ic).

The values of GIc were found to increase with increasing temperature. At 350 ◦C,

the calculation of Ga
Ic may have been effected by adherend plasticity as well as other

dissipative mechanisms. The values of Gi
Ic, however, are not nearly as sensitive to

dissipative effects and yield models with excellent experimental correlation. Finite

elements and the discrete cohesive zone method were used to inverse model the exper-

imental results. Two criteria were established to compare the experimental results

with the inverse model output. At the conclusion of the inversion, the model results

were found to be in excellent agreement with the experimental measurements.

The second parameter in the traction law was the critical peel stress (σIc). This

parameter was determined from a set of custom button peel stress experiments. The

values were found to decrease with temperature. The remaining parameters in the

traction law (GIIc and τIIc) were determined by the mapping procedure recommended in

chapter 5. First, the distributions of GIIc were determined using compliance calibration

and the ENF test. The adhesive retained its toughness through 250 ◦C; it decreased

thereafter. The variability in GIIc was higher than the other parameters. Subsequently,

the SLJ test was completed and the results were mapped to τIIc (in the context of the

established GIIc values). The ranges of τIIc were found to decrease with temperature

after 150 ◦C. This novel mapping of experimental results to appropriate material

parameters was necessary due to parameter interactions in the standard experiments.

The four parameter constitutive law provides a distribution of model inputs for de-

sign and analysis of joints made from the T650/AFR-PE-4/FM680-1 material system.

Generalization of the constitutive law to structural predictions will require additional

investigation due to possible rate effects in the adhesive parameters.
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Chapter 7

Conclusions and future work

In this dissertation, several methods are developed for the design and analysis of

adhesively bonded joints. Those methods are briefly summarized in this chapter and

suggestions are made for future work.

7.1 Summary of contributions

In chapter 2, two closed-form analytical solutions are developed which allow stress

field prediction in orthotropic adhesively bonded symmetric double lap joints. The

objective of the solutions is to reveal underlying joint performance characteristics via

a set of dimensionless parameters. A critical dimensionless load ratio is found which

predicts the character of the stress distribution based on the ratio of applied thermal

and mechanical loads. The solutions are compared to finite element (FE) models and

are found to provide directionally correct comparative results. Predictions using the

analytical solutions are suitable for joint sizing and joint to joint comparison. The

orthotropic material description in the solutions is important for composite materials,

particularly with recent advancements in z-pin and 3D woven composites.

Closed-form analytical solutions provide valuable insight, however, their use is

limited by the complexity of the equations. Numerical solutions have more flexibil-

ity, though, they too have limitations. In chapter 3, a compromise is found in the

bonded joint finite element. The bonded joint finite element (BJFE) uses an accurate

displacement interpolation for analyzing a specific type of joint. In doing so, it allows

a complicated analytical solution to be used in the context of the numerical (FE) work

flow. In the current implementation, the displacement interpolation within the BJFE

is based on a closed-form analytical solution which would difficult to use in general
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practice. In automated BJFE form, however, the element and its underlying solution

accurately predict the field properties in a double lap joint. It does so in a manner

that is accessible for an analyst. The BJFE enables the inclusion of multiple joints in

a system or vehicle level FE analysis where doing so would be prohibitively expensive

with classical techniques. The BJFE is mesh-independent, therefore, it removes the

burdon of carefully constructed FE meshes and significantly reduces the total cost

joint analysis. The BJFE is a mid-level analysis technique, bridging the gap between

the inexpensive approach (no analysis) and the expensive approach (high level single

joint analysis).

The objective of the BJFE analysis is to rapidly identify problem areas where the

higher level techniques should be used. It is not intended to replace the detailed anal-

ysis techniques that are capable of precisely predicting joint failure. One higher level

technique, referred to as the discrete cohesive zone method (DCZM), is presented in

chapter 4. The DCZM element is intended to predict joint failure along a defined crack

path. The prediction is accomplished via a set of non-linear spring elements which

provide fracture initiation and propagation criteria. Localized plastic deformation and

fracture energies are enveloped into a set of adhesive constitutive parameters. The

resulting element provides a framework for 2D and 3D models of delamination, crack

initiation, and crack propagation.

An important obstacle to widespread use of DCZM and similar techniques is the

convergence of cohesive models. The unstable nature of many cohesive problems,

when combined with the strain softening in the constitutive laws, yields poorly condi-

tioned matrices and convergence difficulties. In additional to a general description

of the current DCZM element, chapter 4 addresses convergence through the use of

two smooth traction laws that are designed for convergence efficiency. The smooth

laws, modeled after the beta probability distribution and sine functions, are found to

exhibit significantly lower cost and greater robustness (relative to the triangular and

trapezoidal laws that are in common use) in two canonical problems.

The justification for choosing a “smooth” traction law is presented in chapter 5.

The sensitivities of standard experiments to experimental parameters are examined

using techniques for design and analysis of computer experiments. In addition to

showing that the form of the traction law is negligible (and thereby establishing

justification for the use of a computationally efficient traction law), the sensitivities of

the assumed adhesive parameters are quantified and compared to the well understood

geometric and constitutive parameters. The double cantilever beam test is found to be

an excellent test for determining the critical energy release rate in Mode I (GIc). The
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end notch flexure test is a good test, however, a minor interaction is identified between

the critical energy release rate (GIIc) and the critical stress (τIIc) of the adhesive

constitutive model. The interaction justifies careful consideration of the outcomes of

other tests in mapping of the test results to a set of constitutive parameters. Finally,

the single lap joint test is found to be highly sensitive to three adhesive constitutive

parameters (GIc, GIIc, τIIc). As a result, significant consideration must be given to

other test results when mapping the single lap joint results to a set of constitutive

parameters. At the conclusion of chapter 5, a mapping procedure is developed that

accounts for the experimental interactions.

Finally, chapter 6 applies the DCZM analysis technique and the outcome of the

sensitivity analysis to interpret a set of experimental results for a material system of

current interest. The results of four sets of experiments are described and used to

establish a range of appropriate material parameters for use in modeling structures of

composed of T650/AFR-PE-4/FM680-1. The experiments were performed over the

temperature range of 20-350 ◦C. The mapping procedure described in chapter 5 is

demonstrated based on the experimental results. Finally, the outcome of a structural

test is reported which highlights open issues in modeling adhesive joints in complex

structures.

7.2 Future work

The techniques described in this dissertation have potential for improving the predic-

tion of joint behavior over a range of temperatures. The field is developing, however,

and significant research is still needed.

7.2.1 Additional bonded joint finite elements

There is a great need for analytical sizing tools for composite joints. Building on the

BJFE technique developed in chapter 3, a “toolbox” of joint specific elements could

be assembled for use in joint sizing, trade studies, and system level analysis. Several

joint specific element types should be created. For example, candidate joints types

include: single lap, scarf, bevel, step, and butt strap joints. Beyond the development

of other joint element types, failure metrics could be embedded in the BJFE technique.

This would extend their usefulness beyond sizing and comparative analysis to initial

and/or progressive failure predictions. Furthermore, hybrid BJFE joint elements could
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Figure 7.1 Schematic representation of a mesh of composite shell elements with ply-by-ply
delamination capabilities.

be formulated that are predictive of bolted-bonded or other hybrid joints.

7.2.2 Prediction of delamination growth

A primary failure mechanism of composite materials is delamination. Among the

causes of delamination in aircraft is impact (such as a bird strike, hail, ground debris,

or other ballistic impacts).

To improve the engineering response to decohesion in joints and delamination, ad-

vanced composite manufacturing techniques are being developed which align fibers in

the “out-of-plane” direction. These 3D woven composites and z-pin methods intimately

stitch the interlaminar interfaces. As a result, these composite joints and laminates

are likely to have higher delamination and decohesion strength and toughness values.

In these materials, the fundamental physical mechanisms of delamination may differ

from the traditional mechanisms; therefore, further research into fracture and failure

are needed. Due to the complexity of these 3D woven composite systems, it is likely

that advanced computational techniques will be required to marry the local behavior

of the fibers and matrix to the global behavior of the structures.

Prediction of delamination can be accomplished through the integration of shell

element and DCZM element formulations and is a natural extension of the research

described in this chapter 4. This “delamination shell element”, shown schematically

in figure 7.1, could provide a physically based delamination scheme on a ply-by-

ply basis within a composite model. The technique would provide cutting edge

predictive capabilities that are essential to design and assessment of structural ro-

bustness. Delamination shell elements are directly applicable to the development of:

aircraft, spacecraft, automobiles, nautical structures, defense applications, and energy

generating structures.
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Figure 7.2 A stiffened composite specimen subjected to compression and modeled with
delamination shell elements. Adhesive failure is predicted at the termination of the stiffener.
Broad adoption of 3D delamination models is likely to require improvements in convergence
efficiency and robustness of cohesive elements

7.2.3 Efficient analytical solutions for structural joints, com-
posite delamination, and progressive failure

Although progress has been made, the DCZM and similar analysis techniques can be

improved. An obstacle to widespread use is the lack of robust convergence and the

associated computational cost. The concept of choosing a traction law with computa-

tional efficiency in mind is an improvement (reported in chapter 4), however, it does

not completely eliminate convergence difficulties. For example, it is still difficult to

obtain a solution when large numbers of integration points are simultaneously in a

strain softening regime. Also, unstable crack advance remains a challenge. Further

research is required to improve analysis robustness in the face of these challenges.

Advancements will be necessary for larger 3D structural analysis and prediction of

delamination via the delamination shell element.

7.2.4 Hybrid joints

Bolted joints have been viewed as sub-optimal when applied to fiber reinforced com-

posite materials. They are, however, in common use in composite joint applications.

Hybrids joints (bolted and bonded) are of current interest due to their redundant load
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paths and relative improvement in load transfer efficiency.

As an example of the potential of hybrid joints, large scale wind turbines are likely

to be an important contributor to world energy supplies in the middle and long term.

Turbine blades are limited in size by transportation requirements. Transportation

also adds considerably to the cost of installation of wind turbine facilities. As a result,

turbine manufactures are investigating optimal methods by which turbine blades can

be manufactured in sections and assembled on site. These methods include bolted

and hybrid bolted/bonded joints along the blade span. Similarly, NASA’s Project

Constellation is considering the use of hybrid joints for the Orion Crew Module and

other applications. The redundancy of load path is seen as necessary to ensure safety.

If turbine blades are to be optimally assembled and human space flight is to be

conducted safely, it will be critical that these bolted and hybrid joint failure mecha-

nisms are well understood and predicted. Experiments must be designed to illustrate

critical aspects of bolted and hybrid joint failure. It is certain that the design (material

selection, stacking sequence, etc) and fabrication of the composite layup will effect

bolted joint failure mechanisms. Properly designed and executed experiments are

necessary for determining these effects. Predictive computational capabilities must

validated against the experiments. These computational capabilities may be based on

(or similar to) the BJFE or may take a different form as dictated by the fundamental

physics of the problem.

Other areas of direct applicability for bolted and hybrid joints are rocket bodies,

reentry parachute attachments, aircraft fuselage, and many others. Bolted and hybrid

joints compose parallel fields which deserves similar treatment as has been given to

bonded joints at the center of this work.

7.2.5 Joint fatigue

Ongoing developments in non-destructive evaluation and integrated structural health

monitoring will provide unprecedented capability to identify structural damage in

composite structural applications such as joints. During initial design or after identi-

fication of damage, prediction of damage progression and life are essential steps in

decision making with regard to safety and structural integrity.

Whereas the fatigue life of metallic structures has been studied for decades and

is still an active area of research, the added complexity of composite materials will

require a significant level of additional research. Damage progression models are

necessary at the local and structural levels as well as in coupled local/global models.
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Since composite materials do not exhibit an “endurance stress”, a composite fatigue or

joint fatigue approach is likely to require analytical tools that included load spectrum

analysis and representative load selection. Matrix, adhesive, and fiber failure must be

considered independently and in a coupled sense. Chemical composition/degradation

and hygrothermal effects must also be evaluated in joints of polymeric composites.

Composite joint fatigue and life prediction is crucial to the aircraft industry. Cyclic

pressurization of fuselages and repetitive loading of primary structural components

are critical areas that require accurate prediction of damage progression and fatigue

life.

7.2.6 Rate effects in T650/AFR-PE-4/FM680-1 and experi-
mental correlation

Although a constitutive model has been established for prediction of cohesive failure

of T650/AFR-PE-4/FM680-1 (chapter 6), this set of parameters has only been used in

a limited set of circumstances. Open questions remain such as the possibility of rate

dependence in the critical energy release rates and the appropriate mixed-mode failure

criterion. Also, T650/AFR-PE-4/FM680-1 is an isolated material system among

many systems. As new material systems become available, it is likely that unforeseen

behavior will be observed.

Due to the complexity of joint responses and failure mechanisms, experimental

correlation need be emphasized before consensus can be established on appropriate

design parameters and modeling techniques.

7.3 Concluding remarks

The potential benefits of adhesively bonded joints are attractive to structural design-

ers. Current analytical capabilities require larger design margins than are desired

for validated analytical techniques. Additional improvements are needed if analyti-

cal, computation, and experimental methods are to enhance and extend the use of

adhesively bonded joints in engineering practice.
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Appendix A

Extended description of the virtual
work calculations

The principal of virtual work solutions are briefly summarized below. Equilibrium

relations derived in sections 2.3 and 3.3 are given in tables A.1 and A.2 as well as

their associated virtual stress quantities.

In tables A.1 and A.2, all virtual stress quantities can be written in terms of the

central adherend virtual stress σ̂a11. The principal of virtual work is applied using:

δW =
∑
i

∫
(σ̂iεi) dVi = 0, (A.1)

where i represents the quantities listed in tables A.1 and A.2 for each solution. Equa-

tion A.1 applies for an arbitrary virtual stress σ̂a11 (x). Plane strain constitutive

relations (described in equation 2.1) govern each material (represented by the index

κ). The field equations and boundary terms of the SO, SP, and BJFE solutions become

apparent when integration of equation A.1 is performed by parts.
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Appendix B

Boundary conditions for the SP

and BJFE solutions

The pre-simplified version of the longitudinal normal stress boundary conditions for

the left and right edges of the joint are:

D̄ + C̄ + B̄ + Ā− φ̄∆T

γ̄
− φ̄P

γ̄
= 0,

e−λ̄3D̄ + eλ̄3C̄ + e−λ̄1B̄ + eλ̄1Ā− φ̄∆T

γ̄
− φ̄P

γ̄
− 2P

Ea11ta
= 0.

(B.1)

When normalized by the total load φ̄tot, the normal stress boundary conditions become:

D̄ + C̄ + B̄ + Ā− 1

γ̄
= 0,

e−λ̄3D̄ + eλ̄3C̄ + e−λ̄1B̄ + eλ̄1Ā− 1

γ̄
− 2P

Ea11taφ̄tot

= 0.
(B.2)

The pre-simplified version of the shear stress boundary conditions at the edges of
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the joint are:

3αb33Eb22 l
4 νb32 ∆T

Ea11 ta tb νb23 νb32 − Ea11 ta tb
+

3αb22Eb22 l
4 ∆T

Ea11 ta tb νb23 νb32 − Ea11 ta tb

+

(
Ep0 l2 λ̄2

3 tp νb23 νb32 − Ep0 l2 λ̄2
3 tp + Eb22 l

3 λ̄3

)
D̄

Ep0 tp νb23 νb32 − Ep0 tp

+

(
Ep0 l2 λ̄2

3 tp νb23 νb32 − Ep0 l2 λ̄2
3 tp − Eb22 l

3 λ̄3

)
C̄

Ep0 tp νb23 νb32 − Ep0 tp

+

(
Ep0 l2 λ̄2

1 tp νb23 νb32 − Ep0 l2 λ̄2
1 tp + Eb22 l

3 λ̄1

)
B̄

Ep0 tp νb23 νb32 − Ep0 tp

+

(
Ep0 l2 λ̄2

1 tp νb23 νb32 − Ep0 l2 λ̄2
1 tp − Eb22 l

3 λ̄1

)
Ā

Ep0 tp νb23 νb32 − Ep0 tp
= 0,

3αb33Eb22 l
4 νb32 ∆T

Ea11 ta tb νb23 νb32 − Ea11 ta tb
+

3αb22Eb22 l
4 ∆T

Ea11 ta tb νb23 νb32 − Ea11 ta tb

+

(
Epl l

2 λ̄2
3 e

−λ̄3 tp νb23 νb32 − Epl l2 λ̄2
3 e

−λ̄3 tp + Eb22 l
3 λ̄3 e

−λ̄3

)
D̄

Epl tp νb23 νb32 − Epl tp

+

(
Epl l

2 λ̄2
3 e

λ̄3 tp νb23 νb32 − Epl l2 λ̄2
3 e

λ̄3 tp − Eb22 l
3 λ̄3 e

λ̄3

)
C̄

Epl tp νb23 νb32 − Epl tp

+

(
Epl l

2 λ̄2
1 e

−λ̄1 tp νb23 νb32 − Epl l2 λ̄2
1 e

−λ̄1 tp + Eb22 l
3 λ̄1 e

−λ̄1

)
B̄

Epl tp νb23 νb32 − Epl tp

+

(
Epl l

2 λ̄2
1 e

λ̄1 tp νb23 νb32 − Epl l2 λ̄2
1 e

λ̄1 tp − Eb22 l
3 λ̄1 e

λ̄1

)
Ā

Epl tp νb23 νb32 − Epl tp
= 0.

(B.3)
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Appendix C

Definition of the SP and BJFE

solution parameters

C.1 System parameters λ̄[13] in terms of the or-

thotropic material properties

λ̄2
[13] =

±
√

9E2
b22l

4

4G2
b12t

4
b(νb23νb32−1)2 − 12Eb22l4(Ea11taνc13νc31+2Ec11tcνa13νa31−2Ec11tc−Ea11ta)

Ea11Ec11tat3btc(νb23νb32−1)

2

− 3Eb22l
2

4Gb12t2b (νb23νb32 − 1)

(C.1)
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C.2 µ parameters for the SP and BJFE solution ba-

sis functions

µAT =
λ̄3

(
eλ̄3 − 1

)
γ̄

µBT =
eλ̄1λ̄3

(
eλ̄3 − 1

)
γ̄

µCT = −
λ̄1

(
eλ̄1 − 1

)
γ̄

µDT = −
λ̄1

(
eλ̄1 − 1

)
eλ̄3

γ̄

µAP = −
(
λ̄3e

2λ̄3+λ̄1 − λ̄1e
2λ̄3+λ̄1 + 2λ̄1e

λ̄3 − eλ̄1λ̄3 − λ̄1e
λ̄1

)
µBP = eλ̄1

(
−2λ̄1e

λ̄3+λ̄1 + λ̄3e
2λ̄3 + λ̄1e

2λ̄3 − λ̄3 + λ̄1

)
µCP =

λ̄1

(
λ̄3e

λ̄3+2λ̄1 − λ̄1e
λ̄3+2λ̄1 + λ̄3e

λ̄3 + λ̄1e
λ̄3 − 2eλ̄1λ̄3

)
λ̄3

µDP = −
λ̄1e

λ̄3

(
2λ̄3e

λ̄3+λ̄1 − e2λ̄1λ̄3 − λ̄3 − λ̄1e
2λ̄1 + λ̄1

)
λ̄3

µ1 = λ̄3e
λ̄3+λ̄1 − λ̄1e

λ̄3+λ̄1 + λ̄3e
λ̄3 + λ̄1e

λ̄3 − eλ̄1λ̄3 − λ̄3 − λ̄1e
λ̄1 + λ̄1

µ2 = λ̄3e
λ̄3+λ̄1 − λ̄1e

λ̄3+λ̄1 − λ̄3e
λ̄3 − λ̄1e

λ̄3 + eλ̄1λ̄3 − λ̄3 + λ̄1e
λ̄1 + λ̄1

µ3 =
Ec11λ̄3t

3
btc (νb23νb32 − 1)

3Eb22l4 (νc13νc31 − 1)

(C.2)

187



Appendix D

BJFE shape functions and
derivatives within the lap region

Na

(
x̄, ¯̄φP

)
le

¯̄Φa

=− (1− νa13νa31)

·

e−λ̄3x̄ ¯̄D
(

¯̄φP
)

λ̄3
+
−eλ̄3x̄ ¯̄C

(
¯̄φP
)

λ̄3
+
e−λ̄1x̄ ¯̄B

(
¯̄φP
)

λ̄1
+
−eλ̄1x̄ ¯̄A

(
¯̄φP
)

λ̄1
+
x̄

γ̄


+ x̄χ∆T

(
1− ¯̄φP

)
(αa33νa31 + αa11) ,

Nc

(
x̄, ¯̄φP

)
l ¯̄Φc

=
Ea11ta (1− νc13νc31)

2Ec11tc

·

e−λ̄3x̄ ¯̄D
(

¯̄φP
)

λ̄3
−
eλ̄3x̄ ¯̄C

(
¯̄φP
)

λ̄3
+
e−λ̄1x̄ ¯̄B

(
¯̄φP
)

λ̄1
−
eλ̄1x̄ ¯̄A

(
¯̄φP
)

λ̄1


+
x̄ (1− νc13νc31)

Ec11tc

(
¯̄φPχP +

Ea11ta
2γ̄

)
+ x̄χ∆T

(
1− ¯̄φP

)
(αc33νc31 + αc11) ,

(D.1)
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Ba

(
x̄, ¯̄φP

)
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¯̄Φa

= (1− νa13νa31)

·
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e−λ̄3x̄ ¯̄D

(
¯̄φP
)

+ eλ̄3x̄ ¯̄C
(

¯̄φP
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+ e−λ̄1x̄ ¯̄B
(

¯̄φP
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(

¯̄φP
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− 1
γ̄

)
+ χ∆T (1− ¯̄φP ) (αa33νa31 + αa11) ,

Bc

(
x̄, ¯̄φP
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¯̄Φc

=− (1− νc13νc31)
Ea11ta
2Ec11tc

·
(
e−λ̄3x̄ ¯̄D

(
¯̄φP
)

+ eλ̄3x̄ ¯̄C
(

¯̄φP
)

+ e−λ̄1x̄ ¯̄B
(

¯̄φP
)

+ eλ̄1x̄ ¯̄A
(

¯̄φP
)
− 1
γ̄

)
+

¯̄φPχP (1− νc13νc31)
Ec11tc

+ χ∆T (1− ¯̄φP ) (αc33νc31 + αc11) .

(D.2)
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Appendix E

BJFE solution parameters in terms
of material properties and loads

The following parameters are used in the text in order to facilitate compact equations:

E.1 Dimensionless system parameters

Table E.1 Dimensionless system parameters

Load Parameters Material Parameters

φ̄P = θPP
Θ

β̄ =
θβ
Θ

φ̄∆T = θ∆T∆T
Θ

γ̄ = θγ
Θ
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E.2 Dimensional material parameters

θβ = +
t3a

24l2

[
(νa12 + νa13νa32)

Ea11

+
(νa21 + νa23νa31)

Ea22

]
− t2atc

24l2

[
(νc12 + νc13νc32)

Ec11

+
(νc21 + νc23νc31)

Ec22

]
+

t2a
4l2Ea11

(
tb (νa12 + νa13νa32) +

tc
2

(νa12 + νa13νa32)

)
+

t2a
4l2Ea22

(
tb (νa21 + νa23νa31) +

tc
2

(νa21 + νa23νa31)

)
− t2a

8l2

[
tc

3Gc11

+
tb
Gb11

]
θγ =

t2a
4Ec11tc

(1− νc13νc31) +
ta

2Ea11

(1− νa13νa31)

(E.1)

E.3 Dimensional load parameters

θ∆T =
ta

2Ea11

(αa11 − αc11 + αa33νa31 − αc33νc31)

θP =− ta
2tcEa11Ec11

(1− νc13νc31)
(E.2)

E.4 Dimensional system parameter

Θ = + (1− νa23νa32)
t3a

8l4Ea22

[
t2a
30

+
tatc
6

+
t2c
4

+
tatb
3

+ tbtc + t2b

]
+ (1− νb23νb32)

t2atb
4l4Eb22

[
t2c
4

+
t2b
3

+
tbtc
2

]
+ (1− νc23νc32)

t2at
3
c

80l4Ec22

(E.3)
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E.5 Denominators of the elimination coefficients

The denominators from equation 3.36 are:

¯̄Ξa = + leλ̄1 (1− νa13νa31)
(
eλ̄3+λ̄1 − eλ̄1

)
¯̄D
(

¯̄φP

)
+ leλ̄1 (1− νa13νa31)

(
e2λ̄3+λ̄1 − eλ̄3+λ̄1

)
¯̄C
(

¯̄φP

)
+ leλ̄3 (1− νa13νa31)

(
eλ̄3+λ̄1 − eλ̄3

)
¯̄B
(

¯̄φP

)
+ leλ̄3 (1− νa13νa31)

(
eλ̄3+2λ̄1 − eλ̄3+λ̄1

)
¯̄A
(

¯̄φP

)
− leλ̄1λ̄3e

λ̄3+λ̄1

(
(1− νa13νa31)

γ̄
− χ∆T

(
1− ¯̄φP

)
(αa11 + αa33νa31)

)
,

¯̄Ξc =− Ea11ta
2Ec11tc

leλ̄1 (1− νc13νc31)
(
eλ̄1 + eλ̄3+λ̄1

)
¯̄D
(

¯̄φP

)
− Ea11ta

2Ec11tc
leλ̄1 (1− νc13νc31)

(
e2λ̄3+λ̄1 − eλ̄3+λ̄1

)
¯̄C
(

¯̄φP

)
− Ea11ta

2Ec11tc
leλ̄3 (1− νc13νc31)

(
eλ̄3 + eλ̄3+λ̄1

)
¯̄B
(

¯̄φP

)
− Ea11ta

2Ec11tc
leλ̄3 (1− νc13νc31)

(
eλ̄3+2λ̄1 − eλ̄3+λ̄1

)
¯̄A
(

¯̄φP

)
+
leλ̄1λ̄3e

λ̄3+λ̄1

2Ec11tc

(
(1− νc13νc31)

γ̄

(
Ea11ta + 2γ̄ ¯̄φPχP

))
+
leλ̄1λ̄3e

λ̄3+λ̄1

2Ec11tc

(
χ∆T

(
1− ¯̄φP

)
(αc11 + αc33νc31)

)
.

(E.4)

E.6 Simplification coefficients

¯̄Φa =
λ̄1λ̄3e

λ̄3+λ̄1

¯̄Ξa

¯̄Φc =
λ̄1λ̄3e

λ̄3+λ̄1

¯̄Ξc.

(E.5)
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¯̄Ξa = + leλ̄1 (1− νa13νa31)
(
eλ̄3+λ̄1 − eλ̄1

)
¯̄D
(

¯̄φP

)
+ leλ̄1 (1− νa13νa31)

(
e2λ̄3+λ̄1 − eλ̄3+λ̄1

)
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(

¯̄φP

)
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(
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