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Abstract

For several time-staged operations management problems, the optimal immediate de-
cision is dependent on the choice of problem horizon. When that horizon is very long
or indefinite, an appropriate modeling technique is infinite horizon optimization. For
problems that have stationary data over time, optimizing system performance over
an infinite horizon is generally no more difficult than optimizing over a finite horizon.
However, restricting problem data to be stationary can render the models unrealistic,
failing to include nonstationary aspects of the real world.

The primary difficulty in nonstationary, infinite horizon optimization is that the prob-
lem to solve can never be known in its entirety. Thus, solution techniques must rely
upon increasingly longer finite horizon problems. Ideally, the optimal immediate
decisions to these finite horizon problems converge to an infinite horizon optimum.
When finite detection of that optimal decision is possible, we call the underlying in-
finite horizon problem well-posed. The literature on nonstationary, infinite horizon
optimization has generally relied upon either uniqueness of the optimal immediate
decision or monotonicity of that decision as a function of horizon length. In this the-
sis, we require neither of these, instead developing a more general structural condition
called coalescence that is equivalent to well-posedness.

Chapters 2-4 study infinite horizon variants of three deterministic optimization appli-
cations: concave cost production planning, single machine replacement, and capaci-
tated inventory planning. For each problem, we show that coalescence is equivalent
to well-posedness. We also give a solution procedure for each application that will
uncover an infinite horizon optimal immediate decision for any well-posed problem.

In Chapter 5, we generalize the results of these applications to a generic classes
of optimization problems expressible as dynamic programs. Under two different sets
of assumptions concerning the finiteness of and reachability between states, we show
that coalescence and well-posedness are equivalent. We also give solution procedures
that solve any well-posed problem under each set of assumptions. Finally, in Chapter
6, we introduce a stochastic application: the infinite horizon asset selling problem,
and again show that coalescence and well-posedness are equivalent and give a solution
procedure to solve any such well-posed problem.

ix



Chapter 1

Introduction to Infinite Horizon,
Nonstationary Optimization

1.1 Motivation for Infinite Horizon,

Nonstationary Optimization

Some of the earliest models in Operations Research involve making optimal decisions

at fixed time intervals over an infinite time horizon. For example, the Economic Order

Quantity characterizes an optimal solution to the problem of determining the min-

imum cost order size when demand, as well as fixed and variable production costs,

are constant over time (see, for example, [28], p. 50). Turning our attention to a

stochastic problem, the literature on Markov Decision Processes generally requires

that the sets of actions and their associated rewards and transition probabilities re-

main constant over time. This assumption facilitates the restriction of the search for

optimal policies to those that are also stationary in time (see, for example, Puterman

[35], p. 119).

Indeed, for a time-staged optimization problem with infinitely many parameters, un-

less those parameters are stationary in time or at least follow a predictable pattern,

the entire problem can never be known at once! That is the key challenge motivating

this thesis. See Figure 1.1 for a depiction of the impossibility of capturing an entire
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Figure 1.1: Impossibility of Capturing an Entire Nonstationary Infinite Horizon Fore-

cast

nonstationary forecast. In that figure, each period n has a state transition function fn

and a cost function cn, so that the problem could be solved using dynamic program-

ming with a minimization objective. The class of all permissible forecasts is denoted

by Φ. Although the figure shows only the first five periods’ worth of forecast being

fixed, that number could be arbitrarily large and the difficulty would persist.

Real-world problems typically are not stationary and are subject to noise from outside.

When the time-varying influences can be forecast, then the infinite horizon problem

can have at least some of its parameters captured. For example, a job shop may have

some work regularly scheduled and have other custom jobs that arrive over time.

The sales team can give estimates of the custom jobs until some point in the future,

but the reliability of those estimates deteriorates as the planning horizon increases.

However, the scheduling team needs to make a production schedule now. Thus, they

must rely upon a finite horizon truncation of the infinite horizon forecast, where the
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forecast consists of the jobs with associated machining requirements, deadlines, and

revenues.

1.2 Background

If the decision maker wishes to determine an infinite horizon optimal immediate deci-

sion, then he or she must choose a horizon sufficiently long that an optimal immediate

decision, given the parameters revealed through that horizon, is also optimal for any

future parameters. When this condition holds, the given horizon is called a forecast

horizon, and in this thesis, we will call such a problem well-posed. However, there

is no guarantee that a forecast horizon exists. Examples of nonstationary, infinite

horizon optimization problems for which no forecast horizon exists can be found in

the context of general infinite horizon optimization [1], production planning [8], and

asset selling [16].

On the other hand, there is a substantial literature both in establishing general condi-

tions under which a forecast horizon exists, and in developing solution procedures that

will yield an infinite horizon optimal initial decision for an infinite horizon nonstation-

ary optimization problem. An excellent classified bibliography of research endeavors

in both of these directions over a broad spectrum of applications and theory was

recently made in [10]. In light of that article, we will only mention other research as

it pertains to this thesis.

The largest portion of the forecast horizon literature deals with algorithm devel-

opment and implementation. Generally speaking, most of these algorithms rely upon

possessing a dynamic programming formulation of the problem under study so that

the state of the system can be characterized given all previous decisions and the

problem parameters, carefully choosing a set of states through which all optimal

state sequences must pass, then checking for agreement in the initial decision for the
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finite horizon problem restricted to pass through each of these states. If there is

agreement, then one stops. Otherwise, one moves forward in time, reconstructs the

state set, and repeats.

The primary difficulty in constructing an effective forecast horizon detection pro-

cedure is balancing the conflict between being too conservative in constructing the

state sets, and thereby omitting some optimal states that could indicate that the

problem is not well-posed, or in being too liberal in the construction by including

non-optimal states and thereby failing to notice agreement over the truly optimal

states. A set of states in a time-staged problem chosen so that every optimal state

sequence must pass through that set is called a regeneration set, and a regeneration

set that contains only states optimal for some infinite horizon problem identical to

the one under consideration through at least the time of that set is called a minimal

regeneration set. When agreement in the optimal initial decision occurs over all the

finite horizon problems with terminal states in a minimal regeneration set, then an

infinite horizon optimal initial decision has been discovered. As Lundin and Mor-

ton [32] explain, “the quest for [forecast] horizons and other related procedures may

be reduced to the quest for regeneration sets.” While regeneration sets can often

be rather easy to construct, minimal regeneration sets can become exceedingly diffi-

cult. The problems studied in this work will have straightforward characterizations

of their minimal regeneration sets, facilitating the development of effective solution

procedures.

1.3 Overview of Approach

The problems chosen in this thesis all satisfy the condition that there exists a feasible

solution with finite total cost. Therefore, the optimality criterion for each problem

will be that of total cost, whether the objective is to minimize (cost) or to maximize

(rewards). Under the total cost optimality criterion and the existence of feasible
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infinite horizon solutions with finite total cost, many researchers have pointed out

that one can bound the maximum deviation from optimal total cost by solving to

optimality a finite horizon problem. That is, one can obtain optimal solutions over a

finite horizon that ensure total cost within ε of the optimal infinite horizon cost for

any ε > 0. See, for example, [30, 17] in the context of production planning and [4]

in the context of equipment replacement. This thesis makes the distinction that the

decision maker desires convergence by looking at incrementally longer finite horizon

problems not just in terms of cost, but also in terms of policy. Thus, even if solv-

ing a sufficiently long finite horizon problem can yield a policy that, if followed and

optimally appended over the horizon, can bring the total cost within an acceptable

amount of the true optimal cost, this thesis adopts the convention that failure to

converge in policy as well is unacceptable.

Fortunately, it is generally the case that there exists a sequence of finite horizon

optimal initial decisions that converges, in finite time, to an infinite horizon opti-

mal initial decision. Bean and Smith [1, 2] explore this topic extensively, as does

Lasserre [29]. We will follow a course similar to those works, except that we explic-

itly drop the assumption that the optimal initial decision (or any decision, for that

matter) is unique. The assumption of uniqueness of the optimal initial decision acts

as a surrogate (in fact, it is a sufficient condition) for the solvability of a particu-

lar problem instance. However, since there exist examples of problem instances for

which the optimal initial decision is not unique, this thesis will permit the existence

of multiple optima. In this thesis, solvability implies the existence of a finite time

horizon sufficiently long that knowledge of problem parameters beyond that horizon is

not necessary for determining an infinite horizon optimal initial decision. Solvabil-

ity is independent of the computational burden required by a solution procedure for

detecting an infinite horizon optimal initial decision, and is even independent of the

existence of such an algorithm. This notion of solvable will henceforth be referred to
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as well-posed. For a treatment of well-posedness in the context of non-homogeneous

Markov Decision Processes, see Cheevaprawatdomrong et al [16].

Under some circumstances, the existence of multiple optima poses no difficulty to

convergence to an infinite horizon optimal initial decision. Yet under other circum-

stances, when multiple optima exist, convergence (in the horizon length) of the op-

timal initial policy may never occur. The difference between these two events can

be explained by a general condition called coalescence that will frequently appear in

this thesis. In short, this work will show that for a variety of applications, a problem

instance is well-posed if and only if coalescence is satisfied. Although in Chapter 5

coalescence is defined for a large class of optimization problems, explicitly defining

coalescence for specific applications can lend some insight as to the solvability of

those applications and into the construction of effective solution procedures. Thus,

coalescence will be recast for each application treated in this thesis, even if the results

concerning solvability are similar.

For the applications in this work, for any finite horizon truncation of an infinite

horizon forecast, the problem class contains an infinite number of problem exten-

sions. Thus, in attempting to solve the problem, a decision maker must account for

all potential future extensions. An appropriate paradigm for the forecasting function

is an oracle that reveals a period’s worth of parameters each time it is called. The

oracle knows all the parameters over the infinite horizon and must reveal the param-

eters for any specified period when called to do so. The decision maker, querying the

oracle, must make a decision based upon only the parameters revealed by the oracle

and any bounds on the future behavior of the oracle (such as application-specific as-

sumptions). However, it may be possible for future oracle calls to reveal that finite

horizon optimal decisions based upon previously revealed parameters are no longer

optimal. A problem is well-posed if it is possible to make an infinite horizon optimal
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initial decision after only finitely many oracle calls.

Chapters 2-4 will present infinite horizon nonstationary versions of the following

discrete-time deterministic optimization problems: concave cost production planning,

single machine replacement economy, and capacitated inventory planning. Each chap-

ter will characterize the optimal strategies, define coalescence, show that it is nec-

essary and sufficient for the solvability of a problem instance, and describe solution

procedures guaranteed to solve any well-posed problem instance for the respective

problem. Chapter 5 describes a more general class of deterministic optimization prob-

lems, and for each of three different sets of structural assumptions of varying strength,

exposes the critical role of coalescence in the solvability of problem instances and de-

scribes a solution procedure guaranteed to solve any well-posed problem instance for

each set of assumptions.

Lastly, in Chapter 6, it is shown that coalescence is also synonymous with the solv-

ability of a classic stochastic problem - the asset selling problem. Interestingly, the

most concise structural meaning of coalescence, among all the applications in this

work, arises from this stochastic problem. A new solution procedure that will solve

any well-posed asset selling problem appears in that chapter along with a detailed

analysis of its performance.
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Chapter 2

An Infinite Horizon Concave Cost
Production Planning Problem

2.1 Introduction

The goal in a deterministic production planning problem is to meet demand for a

single product at minimum production and inventory holding costs. Even though

several efficient solution procedures exist to solve a variety of production planning

problems over a given finite horizon, it is often not clear whether a specific finite

horizon is sufficiently long for planning purposes when the data are non-stationary

owing to technological and other economic changes. Initial production decisions for

a problem with a short horizon are likely to prove non-optimal when future data are

revealed, whereas planning for a very long finite horizon is challenging owing to the

difficulty in forecasting data. Moreover, the actual horizon for which a manufacturing

firm is likely to be in business is often very long and indefinite. A model that effec-

tively addresses all of these issues is the infinite horizon, nonstationary production

planning model.

Unfortunately, non-stationary, infinite horizon models introduce another complica-

tion. They are characterized by infinite data that clearly cannot be known at once.

When a problem in which only n periods’ worth of data has been revealed possesses

an n-horizon optimal initial decision that is also optimal for any potential realiza-

8



Problem Horizon x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7
5 9 0 14 0 0 - -
6 14 0 0 14 0 0 -
7 18 0 0 0 15 0 0

Table 2.1: Finite Horizon Optimal Strategies for an Unsolvable Production Planning
Problem

tion of future parameters, n called a forecast horizon. As a result, the notion of a

forecast horizon is paramount in this context. In this chapter, we give a novel condi-

tion called coalescence which is both necessary and sufficient for finite detection of a

forecast horizon, along with a solution procedure that will find a forecast horizon in

finite time whenever one exists. In general, a forecast horizon may not exist, render-

ing it impossible to detect an optimal initial decision, as the following example shows.

Example of an unsolvable problem

Bhaskaran and Sethi [8] present a pair of undiscounted, deterministic, infinite hori-

zon production planning problems in which there is never agreement in the optimal

initial decisions when solving the corresponding incrementally longer finite horizon

truncations. We will focus on the first of their two examples, modifying it only

through applying a discount factor. Let the production and holding cost forecasts,

respectively, be

cn(x) =

{
1, x > 0
0, otherwise

,

hn(x) = .05x

for all periods n, with demand forecast d = (5, 4, 5, 4, 5, 5, 5, · · · ). For any single-

period discount factor α ≥ .87, Table 2.1 characterizes the optimal production de-

cisions in each period of the 5-, 6-, and 7-period problems. Let x∗n, n = 1, . . . , 7

denote the optimal production quantity in period n. Moreover, the stationary prob-

lem beginning in period 5 has a unique infinite horizon optimal production plan x∗

9



Strategy x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7 x∗8 · · ·
1 9 0 14 0 0 15 0 0 · · ·
2 14 0 0 14 0 0 15 0 · · ·
3 18 0 0 0 15 0 0 15 · · ·

Table 2.2: Infinite Horizon Optimal Strategies for an Unsolvable Production Planning
Problem

in which

x∗n =

{
15, n mod 3 = 1
0, otherwise

.

Consider the three infinite horizon strategies resulting from acting optimally in the

5-, 6- and 7-period problems followed by acting optimally in the stationary problem

by producing 15 units every three periods, as shown in the table below. The costs of

these three strategies converge to the same infinite horizon total cost, and thus, all

three initial decisions are infinite horizon optimal.

Thus, there are three infinite horizon optimal initial decisions: produce 9, 14, or

18 units. However, when solving a finite horizon problem whose horizon length is

a multiple of 3, the unique optimal initial production quantity is 9 units. Likewise,

when that horizon length divided by 3 has remainder 1, the unique optimal initial

production quantity is 14, and when the remainder is 2, the optimal quantity is 18.

These optimal solutions alternate as the horizon length increases. However, raising

the production costs to

cn(x) =

{
3, x > 0
0, otherwise

for example, in all periods n ≥ n′ for some n′ > 8, while keeping all other parameters

fixed, can render the optimal initial decision resulting in a setup in period n′ non-

optimal. Recall that only finitely many periods’ worth of parameters can be known

at once, so although the problem may appear stationary indefinitely long, there is

no assurance that it will always remain so. Thus, finite horizon solution methods

can never be guaranteed to return an infinite horizon optimal initial decision, so no
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forecast horizon exists for this problem and it is not well-posed.

2.1.1 Literature Review

In this chapter, we will focus on nonstationary, infinite horizon concave cost pro-

duction planning models, including as a special case the infinite horizon version of

the well-known dynamic lot size model (DLSM). The problem of detecting a fore-

cast horizon for the DLSM has long attracted researchers. Over the years, both the

robustness and the computational effort of algorithms devoted to this pursuit have

improved. What follows is a brief discussion of solution procedures in the concave cost

production planning literature, with an emphasis on those designed for the DLSM.

Early work in this area, including Wagner and Whitin [42] (hereafter W-W) and

Zabel [43], demonstrate how to solve the DLSM with stationary unit production

costs. Their stopping rule specifies that when l(n), the last optimal setup period

in an n-period problem, is equal to n, then n is a forecast horizon. Moreover, they

show that l(n) is monotone nondecreasing in n. Eppen et al [21] allow the variable

production costs to vary with time instead of holding them stationary as their prede-

cessors did, and they find that the last finite horizon optimal production point might

not be monotonic. In order to obtain the W-W planning horizon theorem for the

general model, they then require that the “marginal cost of production does not rise

as rapidly over time as the sum of holding costs.” They show that the case of non-

decreasing setup costs, for example, results in this condition. Where this condition

on the marginal production costs is not met, they try to decrease the number of po-

tential last production points by deriving a “violator set” of periods whose marginal

production costs rise slowly enough that they could potentially supplant l(n) (they

implicitly assume L(n) = {l(n)} for all n, i.e., the optimal last production period is

always unique) as an optimal last production point prior to period n for some longer

horizon problems. When the violator set is empty, a planning horizon has been found.
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However, like W-W, this stopping rule may never be satisfied even when a planning

horizon exists.

For the same problem, Lundin and Morton [32] were the first to explicitly identify a

regeneration set, a set of periods Z (with upper bound zu) such that any finite horizon

problem in agreement with the problem through period zu has at least one optimal

solution with a regeneration point (zero-inventory point) in Z. Further procedural

improvements were offered by Chand and Morton [11] and Federgruen and Tzur [22].

Bensoussan et al [6] allow for general piecewise linear, concave production and hold-

ing cost functions in their work. Given a finite forecast (the terminal period of which

they call a forecast horizon, though it differs from the notion of a forecast horizon

predominant in the literature), they provide an algorithm which is designed to de-

tect any existing planning horizons. Recently, Dawande et al [18] developed integer

programming formulations to detect minimal forecast horizons, when they exist, for

a subclass of the DLSM when future demand is restricted to integer multiples of of a

given positive real number.

On the other hand, few researchers have discussed problem classes for which an algo-

rithm designed to detect forecast horizons for the DLSM will actually stop. For the

restricted class of problems in which demand is stationary for some initial number of

periods, Chand et al [13] give existence conditions for forecast horizons in the undis-

counted DLSM. Chand et al [14] give existence conditions for forecast horizons in the

discounted DLSM. Using continuous discounting and a finite set of policy alterna-

tives at each decision epoch, Bean and Smith [1] show that many sequential decision

problems (including concave cost production planning) have unique infinite horizon

optimal decisions, and that a forecast horizon thus exists for most such problems.

Their results are applied in the paper by Bean et al [5] which considers the general

12



DLSM.

Federgruen and Tzur [22] base their claim that the event of failing to detect a fore-

cast horizon for the DLSM is “presumably rare” on empirical evidence gleaned from

experiments that they ran. While their observation is quite likely to be true, it would

be advantageous to know specific conditions for existence of forecast horizons for the

DLSM, and for concave cost production planning problems in general.

2.1.2 Overview of Approach

The remainder of this chapter will proceed as follows. In §2.2, we rigorously define

a class of infinite horizon, deterministic, concave cost production planning problem

without backlogging. This class of problems includes, but is not limited to, the DLSM.

In §2.3, we introduce the coalescence property, which for this problem class, arises

when some infinite horizon optimal initial decision may be continued by other infinite

horizon optimal decisions to share at least one zero-inventory point with any other

infinite horizon optimal production plan. We show that satisfying the coalescence

condition is necessary and sufficient for finite detection of an infinite horizon optimal

initial decision, and we employ coalescence to identify solvable problem classes.

In §2.4, we give a new solution algorithm that will solve any solvable problem in

our class, meaning it will detect an infinite horizon optimal initial decision as long

as one can be detected by some exact algorithm. This solution algorithm runs with

effort that is constant in a bound on the time between optimal zero-inventory points,

no matter the length of the forecast horizon. Whereas solution procedures in the

literature designed specifically for the DLSM can fail for more general concave cost

problems, our algorithm successfully detects a forecast horizon any time one exists

for a general class of concave cost production planning problems. We offer concluding

remarks in §2.5.

13



2.2 Model and Assumptions

We first present the infinite horizon, deterministic, discounted, concave cost produc-

tion planning problem without backlogging. Its variables and parameters appear

below.

dn = demand forecast for period n (we assume that dn ∈ Z+)
d = d = (d1, d2, . . .), the infinite horizon demand forecast

cn(·) = undiscounted production cost function in period n
c = (c1(·), c2(·), . . .), the infinite horizon production cost forecast

hn(·) = undiscounted inventory holding cost function in period n
h = (h1(·), h2(·), . . .), the infinite horizon inventory holding cost forecast
p = (d, c, h), a triple referred to as the problem or forecast

xn = decision variable representing the quantity produced in period n
in = inventory level beginning period n
α = one-period discount factor (0 < α < 1)

The optimization problem is then

min
∑∞

n=1 αn−1[cn(xn) + hn(in)]

subject to in + xn − in+1 = dn, n = 1, 2, . . . (2.1)

xn, in ∈ Z+, n = 1, 2, . . .

The initial inventory i1 = 0. Note that in is determined by the demand forecast and

production decisions through period n− 1.

Definition 2.1. We say that x = (x1, x2, . . .) is a feasible production plan (with

resulting inventory plan i) for forecast p if x and i satisfy program (1).

At this point, we introduce the three main assumptions used in this chapter.

Assumption 2.1. For all n, cn ≥ 0 and hn ≥ 0 are non-negative concave functions,

with cn(0) = hn(0) = 0 for all n.

Assumption 2.2. There exists an upper bound L <∞ on the maximum number of

periods over which it could be optimal to carry a unit of inventory, independent of the

problem parameters.
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Assumption 2.3. For any forecast p, there exists a feasible production plan with

finite total discounted cost.

We are now in a position to set forth some additional notation.

D = {d : dn ∈ Z+, dn ≤ d̄ <∞, for all n}
C = {c : c satisfies Assumption 2.1}
H = {h : h satisfies Assumption 2.1}
P = {p = (d, c, h) : d ∈ D, c ∈ C, h ∈ H}, the set of all possible forecasts

Pn(p) = the set of all p′ ∈ P that are in agreement with forecast p through
period n

pn = (dn, cn, hn), the n-period truncation of p
pn = (dn, cn, hn), the n-period truncation of p with uniformly zero demand

as well as cost function forecasts beginning period n + 1
X ∗(p) = the set of all infinite horizon optimal production plans for forecast p
X ∗

1 (p) = the set of all infinite horizon optimal first period production decisions
for forecast p ∈ P

X ∗n
1 (p) = ∩p′∈Pn(p)X

∗
1 (p′), the set of first period decisions that are infinite

horizon optimal for all forecasts in agreement with forecast p through
period n

V (p, x) =
∑∞

n=1 αn−1cn(xn) + hn(in), the total cost of production plan x and
resulting inventory plan i for problem p

Throughout this chapter, whenever we mention an optimal production plan x∗, we

mean that x∗ is an optimal production plan for the infinite horizon problem p, unless

noted otherwise. Also, the first n optimal production decisions for a problem pn are

optimal for the n-horizon forecast pn.

We note here that we will limit consideration of optimal production plans to those in

which

x∗n · i∗n = 0, ∀n, (2.2)

where i∗ is the inventory plan resulting from x∗ and demand forecast d. That there

is no loss of optimality in doing this is described in A.1.

We note that if the zero-inventory production policy restriction (2.2) arose through
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natural constraints on the problem, then we could relax the concave cost assumption

Assumption 2.1. The concave cost assumption is included only to obtain the zero-

inventory production policy restriction. This restriction is useful in that production

decisions concern only the number of periods’ worth of demand to satisfy at each

production point, rather than considering all possible production levels.

2.3 Forecast Horizons for the Concave Cost

Production Planning Problem

In this section, we will give necessary and sufficient conditions for the existence of

a forecast horizon, or in other words, for the ability to find infinite horizon optimal

production decisions for some initial set of periods.

2.3.1 Solvability Definitions

We define here both well-posed and forecast horizon - two definitions that formalize

the meaning of solvability - as they pertain to concave cost production planning

problems. The second definition has been used extensively in the literature, while the

first is less common. We feel the first definition captures more concisely the essence

of solvability.

Definition 2.2. Forecast p is well-posed with respect to P if there exists some period

N̄ such that X ∗N̄
1 (p) 6= ∅.

A well-posed problem requires only a finite number of periods’ worth of forecast in

order to detect an optimal initial decision that is also optimal for any problem in

agreement with it through its forecast horizon, which we now define.

Definition 2.3. Period N∗ is a forecast horizon for problem p with respect to class

P if there exists an infinite horizon optimal initial decision x∗1 such that x∗1 ∈ X ∗N
1 (p)

for all N ≥ N∗.
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In other words, existence of a forecast horizon N∗ implies that one can find an initial

optimal solution to any problem in agreement with p through the first N∗ periods by

solving the finite horizon problem pN∗
. Well-posedness or the existence of a forecast

horizon is highly dependent upon the problem class. For example, if P = {p}, a

singleton, then p is certainly well-posed. It is straightforward to see that a problem

is well-posed with respect to its problem class if and only if a forecast horizon exists

for that problem with respect to its problem class. Moreover, if either condition is

satisfied, the problem is solvable.

2.3.2 Necessary and Sufficient Conditions for Well-Posed
Problems

As we saw in the example at the beginning of this chapter, difficulty in detecting an

infinite horizon optimal initial decision can arise when ties in minimum total cost exist

among multiple production plans with distinct initial decisions. Although such cases

might be rare in practice, it is important that they be considered so that a solution

procedure does not fail in their presence. We provide in this section a rigorous analysis

of problems with multiple optima and distinguish solvable problems from unsolvable

problems by the behavior of their optima.

Definition 2.4. Let x∗ and x∗∗ be infinite horizon optimal production plans for prob-

lem p, with corresponding inventory plans i∗ and i∗∗, respectively. We say that x∗∗

is optimally reachable from x∗ if ∃y∗ ∈ X ∗(p) with inventory plan j∗ such that

j∗m = i∗m = 0 and j∗n = i∗∗n = 0 for some m and n, n ≥ m.

In other words, one optimal production plan is optimally reachable from another if

some of the optimal decisions of the first plan can be appended by some optimal

continuation to share a common zero inventory position with the second plan in some

period. Clearly, if i∗n and i∗∗n = 0 in period n, then i∗ optimally reaches i∗∗, though

this need not be the case. In the case that all infinite horizon optimal production

plans are optimally reachable from one or more plans sharing some optimal initial
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Figure 2.1: Sketch of Coalescence in a Production Planning Problem

decision(s), the problem has the following characteristic.

Definition 2.5. We say that p satisfies the coalescence condition (or is coalescent)

if there exists an optimal plan x∗ ∈ X ∗(p) called a source plan such that any other

optimal production plan is optimally reachable from x∗.

For a graphical illustration of coalescence, see Figure 2.1, which shows a sketch of the

infinite horizon optimal decisions in the first six periods of some problem. The arcs

represent carrying inventory from one production point to the next. The continuous,

dashed, and dotted lines represent the three different optimal production plans; call

them 1, 2 and 3, respectively. Plans 1 and 2 join at period three, marked by the first

arrow, and plans 1 and 3 join at period 4, marked by the second arrow. Thus, plan

1 is a source plan and this problem is coalescent.

We are now prepared to present the main results of this section. The proof of the

main theorem to follow will flow more easily by first presenting a technical lemma.

See A.3 for a proof.

Lemma 2.1. Let p ∈ P and choose any subsequence of integers {nj} with associated

forecasts {p(nj)}, p(nj) ∈ Pnj(p) ∀j. Then there exist a further subsequence {njk
} ⊆

{nj} with associated optimal production plans {x̃∗(njk
)}, x̃∗(njk

) ∈ X ∗ (p(njk
)) ∀k,

and some x̃∗ ∈ X ∗(p) such that x̃∗(njk
) → x̃∗, where convergence is componentwise.
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Theorem 2.2. Problem p is well-posed with respect to P if and only if it satisfies the

coalescence condition.

Proof. Suppose that p is well-posed with respect to P . Choose x∗ ∈ X ∗(p) and N

such that x∗1 is an infinite horizon optimal initial decision for all p′ ∈ PN(p). Then in

particular, x∗1 is an optimal initial decision for pn (and hence pn) for all n ≥ N . By

(2.2), every optimal plan for p must have a zero-inventory point at some period in

{N, N +1, . . . , N +L}. Since x∗1 is an optimal initial decision for each of the problems

pN , pN+1, . . . , pN+L, it is straightforward how to construct an optimal production plan

beginning with x∗1 that shares a zero-inventory point with any other optimal plan for

p. Thus, well-posedness with respect to P implies coalescence.

Now suppose that p is coalescent but is not well-posed with respect to P . Let x∗∗

be a source plan. Then there exists a subsequence {nj}∞j=1 and p(nj) ∈ Pnj(p) such

that x∗∗1 /∈ X ∗
1 (p(nj)) for all j. But Lemma 2.1 states that, resorting to a further sub-

sequence {njk
}∞k=1, there exists some sequence of infinite horizon optimal production

plans x∗(njk
) ∈ X ∗(p(njk

)) for all k such that x∗(njk
)→ x̃∗ ∈ X ∗(p).

By assuming that p is coalescent, x̃∗ is reached at some period M by some infinite

horizon optimal plan with initial decision x∗∗1 . Let K(M) be large enough that x∗(njk
)

is in agreement with x̃∗ up through and including period M for all k ≥ K(M). Note

that such a K(M) exists in light of Lemma 2.1. By the Principle of Optimality, there

now exists a p(njk
)-optimal plan ∀k ≥ K(M) with initial decision x∗∗1 , and which is in

agreement with x∗(njk
) beginning period M . Hence, x∗∗1 ∈ X ∗

1 (p(njk
)) ∀k ≥ K(M).

We’ve reached a contradiction and thus conclude that satisfying the coalescence con-

dition is sufficient for well-posedness.

For the problem class P , well-posedness and coalescence of a fixed infinite horizon

forecast are equivalent. The choice of P is important, for we will see in the example
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in section 2.3.3 that the equivalence between well-posedness and coalescence may not

hold when the problem class differs from P .

2.3.3 Examples of Well-Posed Problems

In this section, we will expose several examples of problem classes whose solvability

is easily determined by applying the coalescence condition. Recalling the example

given in §2.1, it is easy to see that that problem is not coalescent since the three

optimal production plans have no common zero-inventory points. Therefore, it is not

well-posed.

Unique infinite horizon optimal solution

Suppose that p ∈ P has a unique infinite horizon optimal solution. Then, in par-

ticular, there is a unique optimal initial decision, and a unique first (after the first

period) zero-inventory position. That the coalescence condition is satisfied follows

trivially, and therefore, any such problem is well-posed. Compare the ease of this ap-

proach with the proof that forecast horizons exist for a general class of infinite horizon

discounted problems involving sequential decisions having unique infinite horizon op-

timal solutions in Bean and Smith [1].

Stationary forecast and cost parameters

Let the stationary demand be d1 = d2 = · · · = a ∈ Z+ with stationary cost forecasts

c1(x) = c2(x) = · · · = c(x) and h1(i) = h2(i) = · · · = h(i), for all x, i ∈ Z+. At

each zero-inventory point, the decision maker is faced with a constant set of alter-

natives. The set consists of the number of periods’ worth of demand to satisfy, and

the undiscounted costs of each alternative in the set do not change from production

point to production point. Specifically, there are L + 1 alternatives at each zero-

inventory point, with lengths f1 = 1, f2 = 2, f3 = 3, . . . , fL+1 = L + 1 and costs

p1 = c(a), p2 = c(2a)+αh(a), . . . , pL+1 = c((L+1)a)+
∑L

j=1 αjh ((L− j + 1)a). This
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problem is an instance of the infinite horizon discounted knapsack problem of Shapiro

and Wagner [40].

Following the procedure in [40], one can obtain all turnpike policies, that is, all alter-

natives resulting in the lowest annualized discounted cost. Let there be 1 ≤M ≤ L+1

turnpike policies. If M = 1, then there is a unique infinite horizon optimal produc-

tion plan and the coalescence condition is trivially satisfied as noted under the last

heading. If M ≥ 2, then let j1, j2, . . . , jM be the turnpike policies, each in terms of

the number of succeeding periods whose demand is satisfied by current production.

Note that the set of infinite horizon optimal production plans is the infinite Cartesian

product of the ji’s, i = 1, . . . ,M , so that each optimal plan is a string of turnpike

policies initiated at zero-inventory points. Without loss of generality, let the optimal

source plan be to choose j1 at each zero-inventory point.

We can construct an optimal plan from the source plan reaching any other optimal

plan y∗ as follows. Because any infinite horizon optimal plan consists of an infinite

number of decisions, and there are a finite number of turnpike policies, y∗ has an

infinite number of decisions of some length ji′ .

1. Reveal the decisions of y∗ until j1 decisions of length ji′ (among m total deci-

sions) have been observed.

2. Rearrange the decisions of y∗ into another infinite horizon optimal plan y∗′ such

that the first j1 decisions are of length ji′ and the other m− j1 decisions are as

in y∗.

3. y∗′ can be reached by an optimal plan beginning with the initial decision of the

source plan after ji′ decisions of length j1, followed by appending the m − j1

decisions among the first m decisions of y∗.

4. This composite plan then reaches y∗ at its mth zero-inventory point.
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Since y∗ was chosen arbitrarily, it is seen that stationary problems satisfy the coales-

cence condition. Therefore, they are also well-posed. The strength of this result is

that stationary problems are well-posed, even when they are contained in the class P

of all possible forecasts. This result is of assistance in the following section.

Stationary cost, constant initial demand

The stationary cost DLSM was studied at length in Chand, Sethi and Sorger [14];

its undiscounted analogue was studied (with similar results) in Chand, Sethi and

Proth [13]. In essence, those authors give an upper bound on the number of initial

periods over which demand must also remain stationary in order to guarantee the

existence of a forecast horizon. Using numerical studies, they find that the forecast

horizons are generally quite short in practice, though the upper bound on the initial

demand may be longer. While their proofs of the existence of forecast horizons for

this class of problems are straightforward, it is even easier to see that the problems

are well-posed by using the coalescence condition. In light of the previous example,

stationary problems are well-posed, so that any forecast which is initially stationary

long enough is also well-posed. In other words, forecast horizons exist for initially

stationary forecasts in the class P of all possible forecasts, where both demands and

costs are permitted to vary.

Cyclic forecast

The inclusion of this problem class is intended to illustrate that even some cyclic

problems fail to be well-posed. Consider a cyclic production planning problem of

cycle length 2, where the costs and demands for the first two periods are as follows.

Knowing the first two periods’ worth of parameters describes the entire infinite

horizon problem instance, which we denote p. Consider the two feasible production

plans x′ and x′′, with production occurring in periods 1,3,5,7,. . . under x′ and in

periods 1,2,4,6,. . . under x′′. The total costs V (p, x′) and V (p, x′′) attributable to x′
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Period Demand Production Cost Holding Cost
1 1 K1 + v1x h1x
2 2 K2 + v2x h2x

Table 2.3: General Problem Parameters for Cyclic Forecast under Fixed Plus Linear
Costs

Period Demand Production Cost Holding Cost
1 1 K1 + 2x 2.5x
2 2 2 + 3x 1.5x

Table 2.4: Problem Parameters for Non-Well-Posed Cyclic Production Planning Fore-
cast

and x′′, respectively, can be calculated as

V (p, x′) =
K1 + 3v1 + 2αh2

1− α2
(2.3)

V (p, x′′) = K1 + v1 + α

(
K2 + 3v2 + αh1

1− α2

)
(2.4)

Setting V (p, x′) = V (p, x′′), we can obtain an expression for any one of the cost

parameters in terms of the remaining parameters so that the two total costs are

equal. Choosing K1 to be the dependent variable, we can write it as

K1 =
−2v1 − 2αh2 − α2v1 + αK2 + 3αv2 + α2h1

α2
. (2.5)

With K1 thus chosen, if x′ is an optimal solution for p, then so is x′′, and vice versa. Of

course, the other parameters must satisfy some feasibility constraints for K1, namely,

that (2.5) results in a nonnegative right hand side. For a variety of values for the cost

parameters and discount factor, the production plans x′ and x′′ are indeed optimal.

For example, consider the following instance of the above form, where K1 can be

determined by the other parameters (its value is 4.50 in this case). To see that

the only two infinite horizon optimal initial decisions for the above problem are to

produce for one and two periods, respectively, consider any production plan which

produces for the first n ≥ 3 periods initially. Then one must solve either the problem

p again or the problem p′ (although discounted by a factor of αn) where the even-

numbered periods of p′ have parameters equal to those of the odd-numbered periods
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of p and vice versa in period n+1. However, it can be shown that total cost for both

p and p′ is minimized by production in every other period (as opposed to every one,

three, four, five, etc. periods), and hence, there is no incentive to use any production

plan other than x′ and x′′. Thus, since V (p, x′) = V (p, x′′), we have that x′ and x′′

are both infinite horizon optimal for p. Clearly, x′ and x′′ do not coalesce, and this

problem instance is not well-posed. We conclude that it is not true in general that

all cyclic problems (or even all cyclic problems of cycle length 2) are well-posed with

respect to the class P of forecasts.

On the other hand, consider the problem class P ′, which is equivalent to P , but

with the further restriction that all of its problems are cyclic with cycle length at

most N (a fixed and known value imposed upon the oracle). Here, once the first

N + 1 periods’ worth of p are known, the entire problem is known. Moreover, all

future extensions are also known since P ′N(p) = {p}, a singleton. Thus, any infinite

horizon optimal initial decision for p is also optimal for all p′ ∈ PN(p), and p is

well-posed by definition. Interestingly, by this argument, the problem p in the exam-

ple above is well-posed with respect to P ′, even though we have shown that p is not

coalescent. This apparent contradiction can be explained by the fact that P ′ 6= P .

2.4 Solution Procedures

In general, one cannot know a priori if a production planning problem has unique

infinite horizon optimal initial decisions or if it has stationary parameters. However,

there appears to be consensus in the DLSM forecast horizon literature that forecast

horizons exist for virtually all randomly generated instances. Because of the impos-

sibility of forecasting infinite nonstationary data, it is in general necessary to verify

algorithmically (rather than by inspection) that a problem is well-posed.
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2.4.1 A New Stopping Rule Algorithm

As discussed in §2.1, stopping rules developed to solve the DLSM may fail in the

case of general concave costs. Others developed for general concave cost production

planning problems may become computationally expensive as they fail to adequately

trim the list of potential optimal last production points. It will be shown that the

solution algorithm in this section will solve any solvable concave cost problem, and

that it runs with effort that is constant, even as the horizon length grows arbitrarily

long. Recall that L represents an (integer) upper bound on the number of periods

over which it can be optimal to carry a unit of inventory. With L thus defined, any

interval [N, N +L] is a regeneration set, and a solution algorithm for a given problem

p immediately follows.

Algorithm 2.1.

1. Set M = 1.

2. If
M+L⋂
n=M

X ∗
1 (pn) 6= ∅, stop. Return N∗ = M and any x∗ ∈

M+L⋂
n=M

X ∗
1 (pn).

3. Otherwise, set M ←M + 1. Return to 2.

Let

L(n) = {j : j is an optimal last production point for the n-period problem},

and let l(n) = min{j : j ∈ L(n)}, the minimum last optimal production point for

the n-period problem. We rely upon Assumption 2.2 in that for any forecast in P

and any n, l(n) is a member of the interval [n − L, n]. Thus, one must simply store

the set of optimal initial production decisions for each finite horizon problem and

look at the intersection of those sets over L + 1 consecutive finite horizon problems.

The exact method of determining and storing X ∗
1 (pn) in Step 2 may be determined

by the implementor. In practice, it is generally the case that when multiple optimal

solutions exist for some finite horizon problem pn, they are relatively few in number.
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Let di,j =
∑j

k=i dk. If F (n) represents the cost of an optimal solution for pn, then

one would need to store the value of F (n) and the set of optimal predecessors

S(n) = {j < n|F (j) + αjcj+1(dj+1,n) +
n∑

k=j+2

αk−1h(dk,n) = F (n)}.

The following theorem shows that the algorithm will solve every solvable problem in

P .

Theorem 2.3. Algorithm 2.1 will finitely terminate if and only if p is well-posed.

Proof. Suppose that p is well-posed. Then there exists some period N∗ such that

X ∗N∗
1 (p) 6= ∅. In particular, since the problems pn, n = N∗, . . . , N∗+L are in PN∗

(p),

there is at least one x∗ which is optimal for each of the pn and which is also opti-

mal for all p′ ∈ PN∗
(p). Moreover, any optimal solution to the problem pn also is

an optimal policy for the first n periods of the problem pn and vice versa. Thus, x∗

is optimal for pn, n = N∗, . . . , N∗+L as well, and it will be detected by Algorithm 2.1.

Now suppose that Algorithm 2.1 stops at some period N∗ in solving problem p.

Then there is an initial decision x∗1 which is optimal for each of the problems pn,

n = N∗ − L, . . . , N∗. By definition of L, any forecast of horizon length greater than

N∗ must have at least one zero-inventory point in the interval [N∗ − L, N∗]. This

includes the infinite horizon forecast p, as well as all forecasts p′ ∈ PN∗
(p). By

the Principle of Optimality, x∗1 is an infinite horizon optimal initial decision for all

p′ ∈ PN∗
(p), so X ∗N∗

1 (p) 6= ∅ and p is well-posed.

If p ∈ P is not well-posed, then it should be highlighted that no exact solution al-

gorithm (including this one) will detect an infinite horizon optimal initial decision.

When the problem is not well-posed, no matter how many oracle calls are made, the

algorithm will always find some period whose set of optimal initial decisions has none

in common with those of the previous period. The algorithm will run interminably

in this case.
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If p is well-posed, it is possible to find an arbitrary number of periods’ worth of

infinite horizon optimal decisions by iteratively applying Algorithm 2.1. If x∗1, the

initial infinite horizon optimal decision as found by the algorithm, satisfies demand

for the first n1 periods, then one can roll forward to period n1 + 1 and apply the al-

gorithm anew. As a final clarifying remark, in the spirit of the discussion in 2.3.3, we

note that the stopping rule algorithm will solve any well-posed problem with respect

to the problem class P , but we make no such guarantees for other problem classes.

This statement should in no way diminish the power of Algorithm 2.1, for P is a fairly

generic problem class. As we saw in 2.3.3, difficulties arose when we restricted P .

Thus, well-posedness may be a more useful (meaning easy to verify algorithmically)

property when applied to a large problem class like P , whereas a larger proportion of

forecasts may be well-posed within a smaller problem class like P ′.

2.4.2 A Note Regarding Computational Complexity

The number of computations in an iteration of Algorithm 2.1 is highly dependent

upon the bound L. The algorithm must find the optimal initial decisions for the first

L + 1 finite horizon problems in the initial iteration. If it fails to stop at that time,

then the optimal initial decisions must be found for the finite horizon problem of

length L+2 and compared to those of the previous L, and so on. Each finite horizon

problem requires 2L additions and comparisons (and 2n when n < L) in order to find

its optimal initial decision(s), provided that the costs to go are immediately available.

However, the heaviest computational burden is incurred by updating the costs to go

from each of periods n − L, n − L + 1, . . . , n − 1 to period n at each iteration. This

requires O(L2) work.

Admittedly, if both L and the forecast horizon N∗ are large, Algorithm 2.1 can be

computationally expensive. However, by choosing L to be as small as possible, one can
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minimize excess computations. Therefore, the algorithm is best suited to problems

in which one can make accurate estimates of the bounds on the cost functions.

2.4.3 Solving A Problem Chosen at “Random”

The results of the authors mentioned earlier in this chapter agree in that nearly all

DLSM instances, when randomly generated, can have their infinite horizon optimal

initial decision found using a relatively small number of finite horizon problems. We

wish to reinforce the notion that randomly generated problems are almost always

well-posed by choosing a problem whose demand forecast all readers are familiar

with: the digits of the constant π. We will show that for a variety of cost parameters,

our stopping rule algorithm is satisfied and yields an infinite horizon optimal initial

decision.

We let α = .99, cn(x) =

{
K, x > 0
0, x = 0

, and hn(x) = hx for all n. We choose

this structure for simplicity: for fixed d, an optimal production plan remains optimal

for any other values of K and h as long as the ratio K/h remains constant. Let

r = K/h. By holding the cost parameters constant over time, it is also easy to derive

the value of L. In this case, L is conservatively defined (since demand can be zero in

some periods) as

L = arg min
n

{
K +

n∑
j=2

αj−1h > αn−1K

}
, (2.6)

which can be reduced to

L =

⌈
logα

[(
α

1− α

) (
1

1− α
+

r

α

)−1
] ⌉

. (2.7)

Table 2.5 shows the optimal production points for the incrementally longer finite

horizon problems, until satisfying Step 2 of Algorithm 2.1. The lines within the

columns denoting the optimal production points indicate the beginning and end of

the interval over which the stopping rule is satisfied. The length of the interval

depends upon the value of L, and L varies according to r. When the number of
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Optimal setups Optimal setups Optimal setups
Period Demand r = 5 (L = 5) r = 10 (L = 11) r = 20 (L = 20)

1 3 1 1 1
2 1 1 1 1
3 4 1 1, 3 1
4 1 1, 3 1, 3 1
5 5 1, 3, 4, 5 1, 3, 5 1, 5
6 9 1, 3, 4, 5, 6 1, 3, 5 1, 5
7 2 1, 3, 5, 6 1, 5
8 6 1, 3, 5, 8 1, 5
9 5 1, 3, 5, 8 1, 5, 8
10 3 1, 3, 5, 8 1, 5, 8
11 5 1, 3, 5, 8, 10 1, 5, 8
12 8 1, 3, 5, 8, 11 1, 5, 8, 11
13 9 1, 5, 8, 12
14 7 1, 5, 8, 11, 13
15 9 1, 5, 8, 12, 14
16 3 1, 5, 8, 11, 13, 15
17 2 1, 5, 8, 11, 13, 15
18 3 1, 5, 8, 11, 13, 15
19 8 1, 5, 8, 11, 13, 15, 18
20 4 1, 5, 8, 11, 13, 15, 19
21 6 1, 5, 8, 11, 13, 15, 19
22 2 1, 5, 8, 11, 13, 15, 19
23 6 1, 5, 8, 11, 13, 15, 19, 21
24 4
25 3

Table 2.5: Forecast Horizon Results for Production Planning Example

finite horizon problems in agreement equals L for that column, then the stopping

rule algorithm is satisfied. One observation from the above solutions is that for

every finite horizon problem solved for each value of r, the optimal production plan is

unique. As we have seen, infinite horizon problems with unique optimal production

plans are well-posed, and so the experimental results here are encouraging. Moreover,

storage and comparison of the set of optimal initial decisions in step 2 of Algorithm

2.1 is facilitated by having unique optimal initial decisions.
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2.4.4 Experimental Results for Algorithm 2.1

We conducted a series of simulation experiments to investigate the sensitivity of

Algorithm 2.1 to (i) changes in the magnitude of L and (ii) changes in the variability

of demand. To do this, we first derived a general formula for L, which assumes

knowledge of the minimum and maximum marginal values of the production and

holding costs. Specifically, if c > 0 and c̄ < ∞ are upper and lower bounds on the

marginal production costs and h is a lower bound on the marginal holding cost, then

L is the minimum integer N satisfying

c +
N−1∑
n=0

αnh > αN c̄, (2.8)

which can be calculated as

L =

⌈
logα

[
c + h

1−α

c̄ + h
1−α

] ⌉
+ 1 (2.9)

Notice that L is not sensitive to the actual values of demand. For simplicity, we

generated the costs as fixed-plus-linear for production and linear for holding. In this

case, c̄ can be expressed as c̄ = c̃ + K̄, where c̃ is a bound on the unit production

cost and K̄ is a bound on the setup costs. All cost parameters and demands were

correlated from period to period, but independent of one another, with a 50% chance

of increasing or decreasing and an allowable increase or decrease of up to 20% (uni-

formly distributed) of the distance to the upper or lower bound. There were four

combinations of cost parameters and two levels of demand variability, making eight

different cases in total, with 1000 runs for each. The summary statistics for these

cases lie in Table 2.6, where the last two columns show the average and standard

deviation of the calculated forecast horizons for the 1000 runs of each case.

As can be seen in Table 2.6, the average forecast horizon for the cases considered

closely follows L, plus a modest linear function of the ratio of the maximum to min-

imum production cost plus another modest linear function of the minimum holding

cost. This is intuitive: smaller marginal production and holding costs tend to en-

courage producing in larger batches, so the optimal initial production quantities will
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Max demand Prod costs Setup costs Holding costs L Avg FH St Dev FH

16 [15, 30] [50, 100] [4, 8] 29 34.3 3.13
16 [5, 40] [50, 100] [4, 8] 34 38.6 2.01
16 [15, 30] [50, 100] [8, 16] 16 19.3 1.08
16 [15, 30] [50, 100] [2, 4] 55 62.5 3.24
8 [15, 30] [50, 100] [4, 8] 29 37.2 4.07
8 [5, 40] [50, 100] [4, 8] 34 41.7 3.46
8 [15, 30] [50, 100] [8, 16] 16 21.1 2.80
8 [15, 30] [50, 100] [2, 4] 55 66.3 5.11

Table 2.6: Forecast Horizon Results for Production Planning Simulations

tend to cover a larger number of periods than they would if those costs were higher.

However, the number of periods required for a forecast horizon in excess of L is small

compared to L on average in all cases.

As for the second hypothesis, lower demand variability tends to increase the forecast

horizons. Again, this is an intuitive result: higher volatility in demand would accel-

erate the rate of setups as higher demand quantities become more expensive to build

ahead in inventory. This agrees with the experimental results reported in Lundin and

Morton [32]. Figure 2.2 shows a comparison of the average forecast horizon versus

L for the high demand variability (max d = 16) and for the low demand variability

(max d = 8) and suggests that increasing demand variability modestly decreases the

average forecast horizon. Perhaps the most significant observation from this study

is that actual forecast horizons computed with Algorithm 2.1 depend primarily upon

the value of L and less upon problem-specific parameters.

2.4.5 Solving for an Entire Infinite Horizon Optimal
Production Schedule

The reader may observe that Algorithm 2.1 only yields one decision at a time, and

that well-posedness of a problem instance only ensures that at most a few periods’

worth of optimal decisions can be determined immediately. This is because in general,
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Figure 2.2: Graph of Average Forecast Horizon Versus L for High and Low Demand
Variability

only one production decision needs to be made at a time. However, after each decision

is made, time rolls forward to the next period and the next decision confronts the

decision maker. In effect, the problem is inherently different once time rolls forward.

The problem parameters for the periods whose optimal production decisions have been

made become irrelevant once those decisions are fixed. In this way, well-posedness can

be tested each time the problem rolls forward. Clearly, if a forecast has the property

that a forecast horizon exists for each of its optimal production decisions, then the

forecast is infinite horizon solvable in an algorithmic sense, where repeated calls to

Algorithm 2.1 uncover the optimal decisions sequentially, but not all at once. Since

the problem class P is, in general, nonstationary, this algorithmic sense of infinite

horizon solvability is the best we can hope for.

2.5 Conclusions

We have considered the class of single-item, deterministic production planning prob-

lems under concave costs, discounting, and bounded demands. We focused on solving

such problems when the study horizon is infinite. Because solving such problems re-

32



quires in general an infinite amount of data, we identified coalescence as a necessary

and sufficient condition under which an optimal initial (or initial few) decisions can

be found using only finitely many periods worth of parameters. When this occurs,

we call the problem well-posed. We gave a new solution algorithm that will solve any

well-posed problem. Conversely, any non-well-posed problem will fail to be solved by

this algorithm or by any other exact algorithm. By recursively applying the algo-

rithm, problems possessing a forecast horizon for each period’s optimal production

decision can also be solved in their entirety.
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Chapter 3

An Infinite Horizon Equipment
Replacement Model

3.1 Introduction

The equipment replacement problem has a rich literature dating back to the mid-20th

century. See Fraser and Posey [25] and Pierskalla and Voelker [34] for more detailed

reviews. A firm requires a certain type of equipment in order to operate. That equip-

ment must be purchased and maintained, it may produce revenues or have operating

costs or both, and it may have a salvage value (either an income when the equipment

is sold or an expense to junk the equipment) at the end of its useful lifetime. All

of these cost and revenue sources may vary over time, or by the brand of equipment

purchased, or both. At each time step, there is a set of challengers available for pur-

chase. The objective is to schedule machine purchases and disposals in such a way as

to minimize total discounted cost.

Classical work on the topic either assumed the problem to extend over only a fi-

nite horizon, or to have stationary decision alternatives and cash flows over time, or

both. Among the first attempts to break from that tradition is the paper of Sethi and

Chand [39], in which they consider a dynamic, infinite horizon equipment replacement

problem in an improving technological environment. Because of the impossibility of

capturing the entire sequence of decision alternatives and cash flows for an infinite
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horizon, nonstationary problem, they develop methods for finding only the optimal

initial decision (to replace or not to replace the existing equipment) while knowing

the problem parameters only through some finite horizon, called a forecast horizon.

In [12], they generalize upon the model in [39] by allowing for multiple replacement

alternatives at each replacement period and obtain similar results. Goldstein et al

[26] improve upon the computational burden of the algorithm in [12].

Without assuming a particular technological environment, Bean, Lohmann, and Smith

[3] generalize the finite horizon equipment replacement model of Oakford, Lohmann,

and Salazar [33] to an infinite horizon model, allowing for time-varying sets of chal-

lengers and cash flows, as long as the maximum equipment lifetime is known and

finite. They discuss a procedure that will uncover an optimal current decision, re-

gardless of potential future cash flows and challengers, whenever it is possible to do

so, and call the time at which that occurs an equivalent finite horizon. In [4], un-

der the assumption of a non-degrading technological environment, the same authors

formulate the infinite horizon, nonstationary, equipment replacement problem with

m challengers available as a math program using vector notation. Rather than look-

ing for an exact forecast horizon, they give error bounds on using a finite horizon

truncation of the infinite horizon forecast.

3.2 Problem Description and Notation

The model under consideration offers a single choice of replacement equipment (chal-

lenger) in each period, with the decision consisting of the duration of the equipment’s

lifetime before replacement. Since the firm expects to be in business indefinitely long,

an infinite horizon approach is appropriate for the model. However, the firm should

account for the possibility of either ceasing its operations, or at least, of the obso-

lescence of the type of equipment. This consideration will appear explicitly in the
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model parameters below. We also adopt the convention that the equipment does not

generate revenue, though this convention could just as easily be discarded through a

simple modification of the operating costs.

3.2.1 Notation

α = discount factor, where 0 < α < 1.
L = maximum physical lifetime of equipment in number of periods.

on(m) = undiscounted operating cost (on(m) ≥ 0) of equipment in its mth
period of operation (1 ≤ m ≤ L) that was purchased in period n.

pn = undiscounted purchase cost of equipment purchased in period n.
sn(m) = undiscounted salvage value (sn(m) ≥ 0) of equipment purchased in

period n and salvaged after lifetime of m periods.

cn(m) = pn − αmsn(m) +
∑n+m

k=n αk−non(k − n + 1), total cost of
purchasing new equipment in period n and retaining it for m periods.

bn = binary variable denoting whether the equipment is required in period
n. If bn = 1, then equipment is required in period n. If bn = 0, then
equipment is not required in period n, and bm = 0 for all m > n.

b = (b1, b2, . . .)
T , the business requirement vector.

bn = (b1, b2, . . . , bn, 0, 0, . . .)
T : the business requirement vector in which the

equipment becomes obsolete at the conclusion of period n.

c =


 c1(1) · · · c1(L)

c2(1) · · · c2(L)
...

...
...

 , b

: the problem (or equivalently, forecast).

C = class of all permissible forecasts.
CN(c) = class of all permissible forecasts with the added restriction that for

c′ ∈ CN(c), c′n(m) = cn(m) ∀n = 1, . . . , N and m = 1, . . . , L; i.e., the
class of permissible forecasts identical to c through period N .

cN =


 c1(1) · · · c1(L)

c2(1) · · · c2(L)
...

...
...

 , bN

: a forecast identical to c, but in which

the equipment becomes obsolete beginning period N + 1.

xn =

{
0, if keeping current equipment in period n
j, if purchasing equipment for scheduled lifetime j in period n

x = (xn)∞n=1: a replacement strategy. If xn > 0, then period n is called a
replacement period under strategy x.

xN = (xn)N
n=1: a N -horizon replacement strategy.

V (c, x) =
∑∞

n=1 αncn(xn): total cost of replacement strategy x for forecast c.
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X ∗(c) = set of all infinite horizon optimal replacement sequences for forecast
c.

X ∗
1 (c) = set of all infinite horizon optimal initial equipment purchases for

forecast c.

X ∗n
1 (c) =

⋂
c′∈Cn(c)

X∗
1 (c′): the set of initial decisions that are infinite horizon

optimal for all c′ ∈ Cn(c)
Note that if there were multiple challengers in each period, we could reduce the pos-

sible selections to a singleton for each combination of period n and feasible lifetime

m. Let the cost of purchasing equipment j in period n for lifetime m be cj
n(m). If

there are K equipment choices in period n with feasible lifetimes of m periods, then

remove from consideration all equipment j, 1 ≤ j ≤ K such that cj
n(m) > mink ck

n(m)

and set cn(m) = mink ck
n(m). We are then indifferent as to the equipment choice as

long as it attains the minimum for its combination of replacement period and lifetime.

Thus, the results in this chapter apply equally well to the case of multiple replacement

equipment options. Also, if it is infeasible to have an operation lifetime of m or more

for equipment purchased in period n, then set on(m) =∞.

3.2.2 Assumptions and Preliminaries

The following two assumptions are fundamental to the rest of this chapter.

Assumption 3.1. sn(m) ≥ sn+1(m) for all n and m; i.e. salvage value is nonin-

creasing in the age of a piece of equipment. In other words, there is no antiquing of

equipment.

Assumption 3.2. For all c ∈ C, every feasible replacement strategy has finite total

cost.

We define C as the set of all equipment replacement forecasts c satisfying Assumptions

3.1-3.2. We now present the discounted equipment replacement problem with no
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antiquing, as described above, as an optimization problem.

minimize
∑∞

n=1 αncn(xn)
subject to zn(x) = maxm≤n[m + xm − n], n = 1, 2, . . .

zn(x) ≥ bn, n = 1, 2, . . .
xn ∈ {0, 1, . . . , L}, n = 1, 2, . . .

(3.1)

We will call zn(x) the remaining lifetime in period n under replacement strategy x.

Thus, the first two constraints in (3.1) represent the requirement that there is a piece

of equipment on hand at all required times under business requirement forecast b.

Assumption 3.1 results in the first lemma below, while Assumption 3.1 leads directly

to the second.

Lemma 3.1. Suppose that in forecast c, bn−1 = 1 and bn = 0 (equipment becomes

obsolete beginning period n). Then the total cost obtained by salvaging the terminal

equipment beginning period n is at most that of keeping it for any additional time

beyond period n.

Proof. Because bn = 0, one need not have any equipment on hand beginning period

n. Thus, it would only prove optimal to retain the terminal equipment (purchased in

some period m) into period n or beyond if cm(n−m) < cm(n−m− 1). But by the

nonnegative operating costs and Assumption 3.1, cn(j) ≤ cn(j + 1) for all j ≤ L and

n. We conclude that it is at least as cheap to salvage the terminal equipment at the

close of business as it is to retain it any further.

By Lemma 3.1, an optimal solution to problem cN has total cost at most that of any

optimal solution to any other c′ ∈ CN(c) (with business requirement vector b′) with

b′N = 1. We also have the following corollary, given without proof.

Corollary 3.2. An optimal solution for an N-horizon problem whose cost and busi-

ness requirement forecasts are the same as those of the first N periods of c is also

optimal for the first N periods of problem cN .

Lemma 3.3. Without loss of optimality, we can restrict consideration to those strate-

gies for c in which xn > 0 if and only if zn−1(x) · bn = 1 for all n ≥ 1. In other words,
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one need only consider replacement strategies in which new equipment is purchased

if and only if the current equipment has completed its scheduled lifetime (and the

equipment is still required).

Proof. First, observe that if zn−1(x) · bn = 1, then there will be no equipment on

hand beginning period n. Since the equipment is still required at period n, it is then

necessary to purchase equipment with some lifetime k ∈ {1, . . . , L}. On the other

hand, consider the case where zn−1(x) > 1. This implies that the current equipment

has at least one more period of remaining scheduled lifetime. Let l < n be the period

in which the current equipment was purchased and m′ its scheduled lifetime where

m′ + l ≥ n. Then the cost due to the current equipment is cl(m
′).

Suppose the total cost over the first l + m′ periods is minimized by setting xk > 0 for

some k ∈ {n . . . , m+m′}. By nonnegativity of the operating costs and by Assumption

3.1, total cost could be reduced further by salvaging in period k (rather than in period

l + m′) the equipment purchased in period l. This contradicts the assertion that the

total cost over the first l+m′ periods was minimized by setting xk > 0, and the proof

is complete.

3.3 Problem Solvability

In this section, we establish the meaning of coalescence and well-posed for equipment

replacement problems and show that the two properties are equivalent.

3.3.1 Additional Definitions

Definition 3.1. Let x∗ and x∗∗ be optimal replacement strategies for problem c. We

say that x∗ reaches x∗∗ if there exists y∗ ∈ X ∗(c) such that zM(y∗) = zM(x∗) and

zN(y∗) = zN(x∗∗) for some M and N , M ≤ N .

In other words, one optimal replacement strategy reaches another if there is some

way of optimally following the first strategy for some initial number of periods, then
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following some optimal continuation to share a common replacement period with the

second strategy. By iteratively reaching, it may be possible to reach many different

optimal replacement strategies from a single optimal initial decision. In the special

case that all optimal replacement strategies can be reached from one or more strategies

sharing an optimal initial decision, the problem has the following characteristic.

Definition 3.2. We say that c satisfies the coalescence condition (or is coalescent)

if there exists an optimal source strategy x∗ ∈ X ∗(c) such that any other optimal

replacement strategy for c can be reached from x∗.

As we did in Chapter 2 for production planning, we define the terms well-posed

and forecast horizon as they pertain to the infinite horizon equipment replacement

problem.

Definition 3.3. Forecast c ∈ C is well-posed if there exists some period N∗ such that

X ∗N∗
1 (c) 6= ∅.

Well-posedness enables us to directly identify infinite horizon problems which cannot

be solved by any finite horizon techniques, as we will soon see. It is also important to

formalize the definition of a forecast horizon for the equipment replacement problem.

Definition 3.4. Period N∗ is a forecast horizon for class CN∗
(c) if there exists an

infinite horizon optimal initial decision x∗1 such that x∗1 ∈ X ∗N
1 (c) for all N ≥ N∗.

In other words, existence of a forecast horizon N∗ implies that one can find an initial

optimal solution to any problem in agreement with c through the first N∗ periods by

solving the finite horizon problem cN∗
.

3.3.2 Necessary and Sufficient Conditions for Well-Posed
Problems

The proof of the main theorem to follow will flow more easily by first presenting a

technical lemma. See Appendix B.1 for a proof.
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Lemma 3.4. Consider a forecast c and a sequence of forecasts {c(n)}∞n=1 where c(n) ∈

Cn(c) ∀n. Then there is some subsequence {nk}∞k=1, a corresponding sequence of

optimal replacement strategies {x̂∗(k) ∈ X ∗(c(nk))}∞k=1, and x∗ ∈ X ∗(c) such that

x̂∗(k) → x∗.

We now present the main result of this section.

Theorem 3.5. Problem c ∈ C is well-posed if and only if it satisfies the coalescence

condition.

Proof. Suppose that c is well-posed. Choose x∗ ∈ X ∗(c) and N such that x∗1 is an

initial optimal decision for all c′ ∈ CN(c). Then in particular, x∗1 is an optimal initial

decision for cn (and hence cn) for all n ≥ N . By Lemma 3.3 and the definition of L,

every optimal strategy for c must have a replacement period in {N, N +1, . . . , N +L}.

Since x∗1 is an initial optimal decision for each of the problems cN , cN+1, . . . , cN+L, it

is straightforward how to construct an optimal replacement strategy beginning with

x∗1 to any other optimal plan for c. Thus, well-posedness implies coalescence.

Now suppose that c is coalescent but is not well-posed. Let x∗∗ be a source strategy.

Then there exists a subsequence {nj}∞j=1 and c(j) ∈ Cnj(c) such that x∗∗1 /∈ X ∗
1 (c(j))

for all j. But Lemma 3.4 states that, resorting to a further subsequence {njk
}∞k=1,

there exists some sequence of optimal replacement strategies x∗(k) ∈ X ∗(c(njk
)) for all

k such that x∗(k) → x̃∗ ∈ X ∗(c).

By assuming that c is coalescent, x̃∗ is reached at some period M by some opti-

mal strategy with initial decision x∗∗1 . Let K(M) be large enough that x∗(k) is in

agreement with x̃∗ up through and including period M for all k ≥ K(M). Note that

such a K(M) exists in light of Lemma 3.4. By the Principle of Optimality, there

now exists a c(k)-optimal plan ∀k ≥ K(M) with initial decision x∗∗1 , and which is in

agreement with x∗(k) thereafter. Hence, x∗∗1 ∈ X ∗
1 (c(k)) ∀k ≥ K(M). We’ve reached a
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contradiction and thus conclude that satisfying the coalescence condition is sufficient

for well-posedness.

3.3.3 Solution Algorithm

If c ∈ C is not well-posed, then it should be highlighted that no exact solution algo-

rithm will detect an infinite horizon optimal initial decision. It is impossible to amass

in finite time all parameters of an infinite horizon equipment replacement problem

belonging to C. Thus, a solution algorithm must rely on making decisions based on

finite horizon problems.

Bean, Lohmann, and Smith [3] present a solution procedure for the infinite horizon

equipment replacement model. We give it here under the notation of this chapter,

and show that the procedure will solve any well-posed equipment replacement prob-

lem. It will also be shown that the solution procedure will run with effort that is

constant, even as the horizon length grows arbitrarily long. As before, let L represent

the maximum feasible lifetime.

Algorithm 3.1.

1. Set M = 1.

2. If
M+L⋂
n=M

X ∗
1 (cn) 6= ∅, stop. Return N∗ = M and any x∗ ∈

M+L⋂
n=M

X ∗
1 (cn).

3. Otherwise, set M ←M + 1. Return to 2.

One must simply store the set of optimal initial purchases for each finite horizon

problem and look at the intersection of those sets over L + 1 consecutive finite hori-

zon problems. The exact method of determining and storing X ∗
1 (cn) in Step 2 may

be determined by the implementor. In practice, it is generally the case that when

multiple optimal solutions exist for some finite horizon problem cn, they are relatively
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few in number. This algorithm is only intended to be a framework. Nevertheless, it

can be shown to have desirable properties.

Theorem 3.6. Algorithm 3.1 will finitely terminate if and only if c is well-posed.

Proof. Suppose that c is well-posed. Then there exists some period N∗ such that

X ∗N∗
1 (c) 6= ∅. In particular, since the problems cn, n = N∗, . . . , N∗ + L are in CN∗

(c),

there is at least one x∗ which is optimal for each of the cn which is also optimal for all

c′ ∈ CN∗
(c). Moreover, by Lemmas 3.1 and 3.3, any optimal solution to the problem

cn also is an optimal strategy for the first n periods of the problem cn and vice versa.

Thus, x∗ is optimal for cn, n = N∗, . . . , N∗ + L as well, and it will be detected by

Algorithm 3.1.

Now suppose that Algorithm 3.1 stops at some period N∗ in solving problem c.

Then there is an initial optimal solution x∗ which is optimal for each of the problems

cn, n = N∗ − L, . . . , N∗. By definition of L, any forecast of horizon length greater

than N∗ must have at least one purchase point in the interval {N∗ − L, . . . , N∗}.

This includes the infinite horizon forecast c, as well as all forecasts c′ ∈ CN∗
(c). By

the Principle of Optimality, x∗1 is an optimal initial decision for all c′ ∈ CN∗
(c), so

X ∗N∗
1 (c) 6= ∅ and c is well-posed.

If c is well-posed, it is possible to find an arbitrary number of periods’ worth of opti-

mal decisions by iteratively applying Algorithm 3.1. If x∗1, the initial infinite horizon

optimal decision as found by the algorithm, purchases an equipment for the first n1

periods, then one can roll forward to period n1 + 1 and apply the algorithm anew.

By definition, a non-well-posed problem instance always has a future period whose

parameters will render the current set of finite horizon optimal decisions non-optimal

when solving the finite horizon problems corresponding to that period. In other

words, a solution algorithm must make repeated calls to an oracle to discover future
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problem parameters. When the problem is not well-posed, no matter how many calls

to the oracle are made, the algorithm will always find some period whose set of opti-

mal solutions has none in common with those of the previous period. The algorithm

will run interminably in this case.

3.3.4 Comments on Solvability of Special Problem

Structures

The problem class C contains a vast number of special problem structures, including

various forms of technological improvement, technological degradation, and techno-

logical stationarity. Researchers have investigated the form of optimal policies under

special cases of technological change. This is discussed somewhat in Cheevaprawat-

domrong and Smith [15], who prove the paradoxical result that under geometrically

improving technology costs, the effect of increasing the geometric factor is to decrease

the optimal rate of equipment replacement.

It would be desirable to make a claim about the solvability of some dynamic sub-

class of problems. Unfortunately, without making specific structural assumptions,

the lack of knowledge about the entire stream of problem parameters precludes the

ability to prove that the problem is well-posed. However, for the subclass of prob-

lems that have stationary cash flows and business requirements for a sufficiently long

initial period of time, it is possible to show that such problems are well-posed, even

in the presence of the possibility of nonstationary parameters further in the future.

Solution procedures for the infinite horizon, discounted, purely stationary problem

are discussed at length in [25], section 4.2.

That initially stationary problems are well-posed can be seen by reformulating cN

as a variant of the famous knapsack problem, where the objective is to minimize total

cost with the constraint that zn(x) ≥ 1 for 1 ≤ n ≤ N , i.e., there is equipment on
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hand at all times. Such a problem fits within the framework of Shapiro and Wagner

[40], who show that for each set of knapsack items (in this case, equipment lifetimes),

there exists a time horizon N∗ sufficiently long that any truncation of length N∗

or longer has an optimal initial decision which is the item which has the maximum

(minimum) equated annual reward (cost).

To see that this N∗ is a forecast horizon, we note that every optimal replacement

strategy for every c′ ∈ CN∗
(c) has at least one replacement period in the time interval

[N∗, N∗ + L]. Thus, there exists an optimal replacement strategy for c′ that has the

same optimal initial decision as for cN∗
. The strength of this result is that the cash

flows for c need not remain stationary indefinitely in order to claim that a forecast

horizon exists. In general, the forecast horizon can be quite short, especially when

ties do not exist among equated annual cost of different equipment lifetimes. Also,

even though the sets of decision alternatives and their total lifetime costs are assumed

to be stationary, this does not imply that the operating costs or salvage values need

remain stationary. Rather, they can vary arbitrarily, so long as they are constant for

fixed equipment lifetimes.

3.4 Conclusions

We considered the infinite horizon nonstationary equipment replacement problem.

The model explicitly considered just a single challenger, although implicitly multiple

challengers could be considered. A finite maximum feasible lifetime was assumed,

costs were bounded, antiquing of equipment was forbidden, and the equipment was

permitted to become obsolete at any point in time. Under these assumptions, we

showed that the ability to find an optimal initial decision (lifetime of the first piece of

equipment) is equivalent to the coalescence condition, which roughly states that the

network of optimal replacement strategies must be connected. We also gave a simple

solution procedure that will yield an infinite horizon optimal initial decision in finite
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time whenever it is possible to do so.
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Chapter 4

An Infinite Horizon Capacitated
Inventory Planning Problem

4.1 Introduction

Frequently, it is not realistic when modeling the operations of a manufacturing firm

to assume that inventory levels can be set arbitrarily high ahead of future demands.

Liu and Tu [31] indicate that process industries such as paper, petrochemical, or

pharmaceutical manufacturing, as well as food processing, are constrained more by

inventory capacity than by production capacity, although the latter may also exist.

They also report that the inventory capacity case has not been well-studied. More-

over, the existing literature on inventory capacity-constrained production planning

has been dominated by algorithmic advances for the finite horizon problem. The

reader is referred to [31] for an up-to-date literature review for algorithmic advances

for the finite horizon problem.

Sandbothe and Thompson [37] obtain forecast horizon results for the infinite horizon

capacitated lot size model with constant cost parameters and variable production

and inventory costs under the stockout cost option. They provide sufficient condi-

tions for the existence of a forecast horizon along with an efficient solution procedure

to detect one. We generalize their model by allowing arbitrary cost functions and

include revenue functions as well, while holding the inventory capacity constant over
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time. While we do not offer any algorithmic improvements over theirs for a given

finite horizon problem, we do give necessary and sufficient conditions for finite solv-

ability of any infinite horizon forecast instance. We also give a general algorithm that

will compute in finite time an infinite horizon optimal first period decisions for any

solvable problem.

4.2 Model and Assumptions

In this application, integer-valued customer demands must be met from existing in-

ventory, and inventory has at all times bounded capacity S̄. Unmet demand is lost

and not backlogged, so that this is a lost-sales model without stockout penalty. Thus,

this is a conservation model in the language of [31]. There exist costs cn(x) and hn(y)

associated with replenishing x units of inventory and of holding y units of inventory,

respectively, in period n. Also, the revenue generated from satisfying z units of de-

mand in period n is rn(z). The objective is to maximize total profit while obeying

the inventory capacity. All parameters are deterministic.

With these parameters in place, we define the problem as φ = (c, h, r, d), where

c, h, and r are the infinite sequences of replenishment cost, holding cost, and revenue

functions, and d is the infinite sequence of demands. As each φ is an infinite stream

of functions and integer demands, and we have made no restriction that c, h, r or

d are constant sequences, it becomes important to define carefully the class of all

permissible forecasts Φ. Specifically, we only require the following two assumptions.

Assumption 4.1. For all φ ∈ Φ, demand is strictly positive at least once every M

periods.

Assumption 4.2. For all φ ∈ Φ,
∑∞

n=1 αn−1rn(S̄) <∞. In other words, total profit

is always finite since total revenue is always finite.

With Φ defined, we can define the subclass function Φn(φ), which is the class of
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all φ′ ∈ Φ whose parameters in periods 1 through n are identical to those of the

fixed problem φ. The decisions made in any period should depend upon the on-hand

inventory quantity beginning that period and upon all future demands, costs, and

revenues. Thus, it is reasonable to formulate a dynamic programming recursion for

solving a fixed problem φ ∈ Φ with the state in each period n as the inventory quantity

on hand beginning period n. This leads to the following functional equation.

fn(y; φ) = max
0≤zn≤dn,0≤yn≤S̄−zn

[
rn(zn)− cn((zn + yn − y)+)− hn(yn) + αfn+1(yn; φ)

]
(4.1)

The optimization problem is to solve f1(y0; φ), where y0 is the initial on-hand inven-

tory. From this recursion, we see that the dynamic programming state at any period

n for a fixed forecast φ is the inventory quantity ending the previous period, yn−1.

Because of limited capacity S̄, the set of feasible states is limited to cardinality at

most S̄ + 1 in each period.

The decisions in each period n are doubles xn = (yn, zn), where yn is the inven-

tory quantity and zn is the fulfillment quantity. For a given entering inventory quan-

tity yn−1 and demand level dn, and for a desired fulfillment quantity zn ≤ dn and

ending inventory quantity yn ≤ S̄ − zn, there are actually an infinite number of

feasible replenishment quantities. However, since inventory is bounded at all times

by S̄, replenishment amounts over and above S̄ − yn−1 are superfluous and must be

discarded. Therefore, it is without loss of optimality that we consider only replen-

ishment amounts in the interval {0, . . . , S̄ − yn−1}. This fact is reflected in (4.1) by

expressing the replenishment quantity as (zn + yn− yn−1)
+, where y is actually yn−1,

and yn ≤ S̄ − zn.

We call an infinite sequence x = (yn, zn)∞n=1 of inventory and fulfillment quantity

decisions a fulfillment strategy. Feasibility of a fulfillment strategy x depends upon

the chosen problem φ. We say that x is feasible for φ = (c, h, r, d) if, for all periods
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n,

1. 0 ≤ zn ≤ dn, and

2. 1 ≤ yn ≤ S̄ − zn.

Additionally, we say that x is an optimal fulfillment strategy for φ if x is feasible for

φ and if fixing the decisions under x result in total profit f1(y0, φ).

Remark 4.1. Because demand doesn’t have to be satisfied, it is feasible for any

problem φ to set xn = (y0, 0) for all n.

Remark 4.2. For any inventory quantity 0 ≤ yn ≤ S̄ in any period n for any problem

φ, there is a feasible fulfillment strategy for φ with inventory quantities yn−1 ending

period n− 1 and yn ending period n for any yn−1 ≤ yn.

Proof. Replenish yn − yn−1 units of inventory in period n and set zn = 0.

Remark 4.3. For any pair of inventory quantities yn and ym with ym < yn and any

problem φ ∈ Φ, there is a feasible fulfillment strategy with inventory levels yn ending

period n and ym ending period m for any m ≥ n + M(yn − ym).

Proof. By definition of M , any problem in φ has at least one unit of demand each M

periods. Therefore, in any interval of M periods, there exists at least one period n′ in

which zn′ can feasibly be set to 1. By replenishing no inventory between periods n and

m for m = n + M and setting zn′ = 1 at some point in that interval, we can reduce

the inventory level by 1 unit every M periods. Thus, it is feasible for any φ ∈ Φ

to reduce the inventory quantity by an amount equal to (yn − ym) in M(yn − ym)

periods.

4.3 Problem Solvability

As with production planning and equipment replacement, the nonstationary nature

of an infinite horizon capacitated inventory problem mandates that one rely upon
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finite horizon truncations of the problem. When an initial fulfillment decision that

is optimal after knowing only the parameters an n-period problem is also optimal

for any infinite horizon problem identical to the n-period problem through its first

n periods, then the problem can be solved in finite time. This prompts us to define

well-posed and forecast horizon for this new problem class.

Definition 4.1. Problem φ ∈ Φ is well-posed if there exists a period N∗ and initial

decision x∗1 = (y∗1, z
∗
1) such that y∗1 and z∗1 are optimal first period inventory and

fulfillment quantities, respectively, for any φ′ ∈ ΦN∗
(φ).

Definition 4.2. Period N∗ is a forecast horizon for problem φ ∈ Φ if there exist

first period inventory and fulfillment quantities y∗1 and z∗1 that are optimal for all

φ′ ∈ ΦN∗
(φ).

Again, as with production planning and equipment replacement, we seek general con-

ditions under which a problem φ ∈ Φ is well-posed. To this end, we define reachability

and coalescence in the context of this chapter, and show that coalescence is equivalent

to well-posed under the construction we have demonstrated.

Definition 4.3. Let x1 = (y1, z1) and x2 = (y2, z2) be two feasible fulfillment strate-

gies for some problem φ ∈ Φ. We say that x1 reaches x2 if there exists a feasible

fulfillment strategy x3 = (y3, z3) such that y1
m = y3

m and y2
n = y3

n for some m ≤ n.

Definition 4.4. Problem φ ∈ Φ is coalescent if there exists some optimal fulfillment

strategy x∗ = (y∗, z∗) for φ such that any other optimal fulfillment strategy for φ can

be reached from x∗.

A fulfillment strategy satisfying the properties of x∗ in Definition 4.4 is called a source

strategy. We proceed to give two technical results that will be required in the proof

of the main theorem to follow.

Lemma 4.4. Let φ ∈ Φ and choose any subsequence of integers {nj} with asso-

ciated forecasts {φ(nj)}, φ(nj) ∈ Φnj(φ) for all n. Then there exist a further sub-
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sequence {njk
} ⊆ {nj} with associated optimal fulfillment strategies {x̃∗(njk

)} opti-

mal for φ(njk
) for each k and some optimal fulfillment strategy x̃∗ for φ such that

x̃∗(njk
) → x̃∗, where convergence is componentwise.

Please see Appendix C.1 for a proof.

Lemma 4.5. For each φ ∈ Φ, period n, and inventory quantity 0 ≤ yn ≤ S̄, there

exists a forecast φ(yn) such that yn is the unique optimal inventory quantity ending

period n for φ(yn).

Proof. We will construct a φ(yn) that will have yn as its unique optimal inventory

quantity ending period n. Let φ(yn) be identical to φ through period n. Set dn+1 = yn

and dn+2 = 0. Set rn+1(·) = cn+1(·) = 1
α
(1 + ε)cn(·) and hn+1(·) = (1 + ε)hn(·) for

some ε > 0. Also, set cn+2(y) = min1≤m≤n(cm(x + y) − cm(x) for 0 ≤ y ≤ S̄ and

0 ≤ x ≤ S̄ − y. With these parameter and function constructions for φ(yn), we ob-

serve the following.

First, any demand in periods n + 3 or later can be fulfilled with strictly greater

profit by a replenishment in period n + 2 or later since cn+2(y) ≤ cm(x + y)− cm(x)

for all y and m ≤ n + 1 and positive inventory costs are incurred in period n + 1.

Second, the profit incurred by holding yn units forward from period n for demand

fulfillment in period n + 1 is strictly greater than any profit by retaining any of that

amount for demand fulfillment in period n. Putting these two facts together, since the

demand in period n + 1 is exactly yn, the unique optimal inventory quantity ending

period n under φ(yn) is yn. Note that the parameters of φ(yn) after period n + 2 are

irrelevant to this result.

Theorem 4.6. Problem φ ∈ Φ is well-posed if and only if it is coalescent.

Proof. Suppose first that φ is well-posed. Then there exists a period N∗ and first

period decision x∗1 = (y∗1, z
∗
1) such that x∗1 is also optimal for any φ′ ∈ ΦN∗

(φ). If
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x∗1 is the unique optimal first period decision for φ, then φ is trivially coalescent. So

suppose that there exist multiple optimal first period decisions for φ, and in particu-

lar, that there are k∗ ≥ 2 distinct optimal period N∗ inventory quantities. Call these

quantities y1
N∗ , . . . , yk∗

N∗ . By Lemma 4.5, each yi
N∗ must also be the unique optimal

inventory quantity ending period N∗ for some φi ∈ ΦN∗
(φ). But x∗1 is an optimal first

period decision for each φi, i = 1, . . . , k∗. By the Principle of Optimality, there exists

an optimal fulfillment strategy for φ that has x∗1 as an optimal first period decision and

yi
N∗ as its inventory quantity ending period N∗ for i = 1, . . . , k∗. Thus, φ is coalescent.

Now suppose that φ is coalescent but is not well-posed. Let x∗∗ be an optimal source

strategy. Then there exists a subsequence {nj}∞j=1 and φ(j) ∈ Φnj(φ) such that x∗∗1 is

not optimal for φ(j) for all j. But Lemma 4.4 states that, resorting to a further sub-

sequence {njk
}∞k=1, there exists some sequence of optimal fulfillment strategies x∗(k)

for forecasts φ(jk) for all k such that x∗(k) → x̃∗, which is optimal for φ.

By assuming that φ is coalescent, x̃∗ is reached at some period M by some opti-

mal fulfillment strategy with initial decision x∗∗1 . Let K(M) be large enough that

x∗(k) is in agreement with x̃∗ up through and including period M for all k ≥ K(M).

Note that such a K(M) exists in light of Lemma 4.4. By the Principle of Optimal-

ity, there now exists a φ(jk)-optimal fulfillment strategy for all k ≥ K(M) with first

period decision x∗∗1 , and which is in agreement with x∗(k) thereafter. Hence, x∗∗1 is

an optimal fulfillment strategy for φ(jk) for all k ≥ K(M). We’ve reached a contra-

diction and thus conclude that satisfying the coalescence condition is sufficient for

well-posedness.

4.4 Solution Procedure

We have identified coalescence as a necessary and sufficient condition for finite solv-

ability of a given problem. However, because coalescence is a property of an infinite
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horizon problem, which cannot be known in finite time, to solve a given problem will

generally require an algorithm. In this section, we provide an algorithm which will

provide in finite time an optimal first period decision for any well-posed φ ∈ Φ.

Algorithm 4.1. Choose φ ∈ Φ and set n = 1.

1. For y = 0, . . . , S̄, find X∗
1 (φn|y), the set of optimal first-period decisions for the

n-period truncation of p with the terminal state restricted to be y.

2. If ∃x∗1 ∈ ∩0≤y≤S̄X∗
1 (φn|y), then stop. x∗1 is an optimal first-period decision for

φ and n is a forecast horizon. Otherwise, increase n by 1 and return to step 1.

Theorem 4.7. Algorithm 4.1 stops in finite time if and only if φ is well-posed.

Proof. Suppose that φ is well-posed. Then there exists a period N∗ and first period

decision x∗1 such that x∗1 is also optimal for all φ′ ∈ ΦN∗
(φ). By Lemma 4.5, for

each y ∈ {0, . . . , S̄}, there exists φ(y) such that x∗1 is the unique optimal first-period

decision for φ(y). Thus, at period N∗, Algorithm 4.1 will stop and return x∗1.

Now suppose that Algorithm 4.1 stops at period N∗ with optimal first-period de-

cision x∗1. Then x∗1 is an optimal first-period decision along some optimal finite hori-

zon fulfillment strategy to each inventory quantity y ∈ {0, . . . , S̄}. By finiteness of

{0, . . . , S̄}, and the fact that every optimal fulfillment strategy for any φ′ ∈ ΦN∗
(φ)

must have an inventory quantity ending period N∗ in that set, we see by the Principle

of Optimality that x−1∗ is an optimal first-period decision for all φ′ ∈ ΦN∗
(φ). Thus,

φ is well-posed.

4.5 Conclusions

We have studied the infinite horizon, nonstationary, capacitated inventory planning

problem with deterministic demands, costs, and revenues. Under the assumptions

that demand is strictly positive at least once every M periods and that maximum
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total profit is always finite, we showed that the ability to find optimal first-period

fulfillment and inventory quantities is equivalent to a condition called coalescence. Co-

alescence roughly stipulates that if there exist multiple optimal fulfillment strategies,

then there must be some optimal first-period decision such that any other optimal

fulfillment strategy has a common inventory quantity in some period with another op-

timal fulfillment strategy that has the specified optimal first-period decision. We also

gave a solution procedure that will detect in finite time an infinite horizon optimal

first-period decision any time it is possible to do so.
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Chapter 5

General Deterministic Infinite
Horizon Optimization

5.1 Introduction

Each of the previous three chapters established the equivalence between coalescence

and well-posedness for a specific operations management application. One might well

suppose that such a relationship persists for more complex problems, or at a higher

level of abstraction. In this chapter, we show that indeed, a large class of optimization

problems that can be formulated as dynamic programs also satisfy the coalescence -

well-posedness equivalence.

Within the literature on the existence and discovery of forecast horizons in general

deterministic optimization, Bean and Smith [1] show that a forecast horizon exists

for a general class of problems when the optimal strategy is unique. In [2], they show

that a weak reachability condition is necessary and sufficient for finite discovery of

the optimal initial decision, again under the uniqueness assumption. They also give

a solution procedure that will detect the optimal initial decision in finite time when

the uniqueness and weak reachability conditions are met, and stopping sets of states

are appropriately chosen.

In this chapter, we consider a slightly less general formulation than the generic net-
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works used in [1] and [2] in that we restrict decisions and transitions to occur at fixed

time periods. However, we maintain the level of generality sufficiently high so as to

include many typical applications. We also relax the assumption of uniqueness of

the optimal strategy. We give necessary and sufficient conditions for finite detection

of the optimal initial condition under two different sets of finiteness and reachabil-

ity conditions, along with algorithms for each. We show that these finiteness and

reachability conditions are satisfied by some well-known applications.

5.2 Model and Assumptions

We consider a class P of infinite horizon, discrete time, deterministic problems or

forecasts p, each of which can be formulated as a dynamic program. A forecast p

consists of all transition functions, constraints, and cost functions that are necessary

to give, for any sequence of decisions x, a certificate of feasibility or infeasibility, the

resulting state sequence s(x; p) if x is feasible, and the total cost of the decisions and

resulting states. The objective is to select, for a given forecast p, a sequence x of

decisions that is feasible for problem p and that minimizes total discounted cost. We

assume that for each p ∈ P , there exists a feasible decision sequence which results

in total cost bounded in each period by some uniform constant B < ∞. Coupling

this assumption with a one period discount factor α, where 0 < α < 1, we see that

each p has an optimal solution which has finite total cost, with upper bound B
1−α

. For

each p ∈ P and each period n, let Pn(p) represent the subclass of all forecasts whose

parameters in the first n periods are identical to those of p.

We will follow a construction of decision and state sets and transition functions very

similar to that in Schochetman and Smith [38], although we will be precise here in

specifying the forecast p ∈ P for which each states and decisions are possible and/or

feasible. First, we denote the sets of all possible decisions and states available in

period n by Yn and Sn, respectively. These sets may be finite or countable, although
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we will require finiteness of these sets at times in order to obtain results in section

5.3. The sets Y =
∏∞

n=1 Yn and S =
∏∞

n=1 Sn contain all possible decision and state

sequences, respectively. However, because we are concerned here with ensuring that

decisions are optimal for a variety of forecasts, we find it necessary to further specify

the sets of all possible decisions and states available in period n for a given forecast

p by Yn(p) and Sn(p), respectively, so that Yn(p) ⊆ Yn and Sn(p) ⊆ Sn for each n.

We adopt the convention that state transitions occur at the beginning of the pe-

riod, so the state at the end of each period is a function of the previous period’s

state and the decision made in the current period. Specifically, let s0 be the initial

state. Then, for a forecast p, the state sn in period n is dynamically assigned via

the equations sn = fn(sn−1, yn; p), where yn ∈ Yn(p). Of course, not all decisions

yn ∈ Yn(p) may be feasible for a given sn−1 and p, so let Yn(sn−1; p) be the set of all

available decisions when the state is sn−1 beginning period n under forecast p. Thus,

Sn(p) = {fn(sn−1, yn; p) : sn−1 ∈ Sn−1(p), yn ∈ Yn(sn−1; p)} (5.1)

represents all the feasible states in period n under forecast p. We say that x ∈ Y is

a feasible decision sequence for p if xn ∈ Yn(sn−1; p) and sn = fn(sn−1, xn; p) for all

n. Similarly, we say that s ∈ S is a feasible state sequence for p if xn ∈ Yn(sn−1; p)

and sn = fn(sn−1, xn; p) for all n. We define the feasible decision space for p X(p) to

be the subset of Y consisting of all x which are feasible decision sequences for p ,and

the feasible state space for p T (p) to be the subset of S consisting of all s which are

feasible state sequences for p.

We will assume that for any forecast p, if state sn is feasible in period n, i.e. sn ∈

Sn(p), then sn ∈ Sn(p′) for all p′ in agreement with p through period n. Moreover,

Yn+1(sn; p) is nonempty for any p, sn ∈ Sn(p), and all n, so that any finite horizon

feasible state or decision sequence can be feasibly extended arbitrarily far beyond

period n, for any forecast in agreement with p through period n.
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For each forecast p, exercising a feasible decision sequence x results in a unique

state sequence s(p, x). The converse is not necessarily true, that is, if s is a sequence

of feasible states for p, then there may exist multiple feasible decision sequences

x1, x2, . . . , xk such that sn(p, x1) = · · · = sn(p, xk) for all periods j. However, in such

a case, we will assume that only a feasible decision sequence xi, i ∈ {1, . . . , k} such

that s(p, x) achieving minimum total cost among all xi will be considered, where ties

among minimum-cost decision sequences resulting in the same state sequence can be

broken arbitrarily. Thus, we will operate under the assumption that for a particular

problem p, feasible state and decision sequences have a one-to-one correspondence, al-

though this assumption does not preclude greater generality. Consequently, although

the total cost of a decision sequence x for a forecast p is a function of both the deci-

sions and their resulting states, it is sufficient to identify only one of the two sequences

in order to know both.

Let V (p, x) denote the total discounted cost of exercising decision sequence x un-

der forecast p, where V (p, x) =∞ if x /∈ X(p). Then the optimization problem for p

is

V ∗(p) = min
x∈X(p)

V (p, x). (5.2)

Let T ∗(p) (X∗(p)) represent the set of all optimal state sequences (optimal decision

sequences) for forecast p, with T ∗
n(p) (X∗

n(p)) as the set of optimal states (optimal

decisions) in period N . Necessarily, T ∗(p) ⊆ T (p) and X∗(p) ⊆ X(p), with analogous

inclusions holding for the single-period sets. It is also important to identify, for each

forecast, the sets of states and decisions in each period which are optimal for some

forecast in agreement with the forecast through that period. To this end, let

T ∗∗
n (p) =

⋃
p′∈Pn(p)

T ∗
n(p′) (5.3)
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and

X∗∗
n (p) =

⋃
p′∈Pn(p)

X∗
n(p′) (5.4)

denote the sets of potentially optimal states and potentially optimal decisions for

forecast p, respectively, in period n. If sn ∈ T ∗∗
n (p), then clearly sn ∈ T ∗∗

n (p′) for all

p′ ∈ Pn(p). We will also assume that sn ∈ T ∗∗
n (p) implies that Yn+1(sn; p′) 6= ∅ for all

p′ ∈ Pn(p); that is, if sn is potentially optimal for p in period n, then sn lies on some

feasible state sequence for any forecast in agreement with p through period n. We

now introduce three important assumptions that are properties of the problem class

P .

Assumption 5.1 (Type I Assumptions).

1. For all forecasts p ∈ P, periods n, and sn ∈ T ∗∗
n (p), there exists a forecast

p′ = (p1, . . . , pn, qn+1, qn+2, . . .) ∈ P such that sn is the unique infinite horizon

optimal state ending period n for forecast p′.

2. For all forecasts p ∈ P, horizons n, sn ∈ T ∗∗
n (p) and sn+L ∈ T ∗∗

n+L(p), there

are decisions xn+1, xn+2, . . . , xn+L and states tn+1, tn+2, . . . , tn+L−1 such that

xn+1 ∈ Yn+1(sn; p), tn+1 = fn+1(sn, xn+1; p), tj = fj(tj−1, xj; p) ∈ Sj(p) for

j = n + 2, . . . , n + L and fn+L(tn+L−1, xn+L; p) = sn+L. In other words, for

any forecast, there exists a feasible decision sequence that connects any pair of

potentially optimal states that are at least L periods apart, where L <∞ and L

is independent of p and n.

3. For all forecasts p ∈ P and horizons n, T ∗∗
n (p) and X∗∗

n (p) are finite (though

not necessarily uniformly bounded).

The first Type I Assumption implies that all potentially optimal states in any period

n for any forecast p are the unique optimal states in that period for some forecast

in Pn(p), and therefore, every member of the potentially optimal state set must be

considered in checking for agreement of the optimal initial decision (making each
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potentially optimal state set a minimal regeneration set in the language of the liter-

ature). The second Type I Assumption impedes an optimal state sequence for one

forecast from getting too “far away” in the sense of total cost by using a carefully

chosen continuation from any of its potentially optimal state sequences. The third

Type I Assumption will become important in obtaining convergence of finite horizon

optimal state sequences and in creating a solution procedure.

5.3 Problem Solvability

Suppose that p has multiple optimal decision sequences. Let x∗ and x∗∗ be two such

sequences. We say that x∗∗ is optimally reachable from x∗ if there exists an optimal

solution x∗∗∗ (possibly x∗ itself) such that sm(p, x∗) = sm(p, x∗∗∗) and sn(p, x∗∗) =

sn(p, x∗∗∗) for some m, n with m ≤ n.

Definition 5.1. We say that p is coalescent or satisfies the coalescence condition if

there exists some optimal solution x∗ such that every other optimal solution for p is

optimally reachable from x∗. In this case, such an x∗ is called a source solution.

Figure 5.1 shows a depiction of coalescence in a general, time-staged, discrete opti-

mization problem. The single first state on each side represents the problem’s fixed

initial state. The bold paths, solid or dashed, represent the optimal solutions. For

the problem on the left, the two optimal solutions do not reach one another in the fig-

ure, and assuming that they continue to run separately over the infinite horizon, the

problem is not coalescent. On the other hand, for the problem on the right, assuming

that there are just two optimal initial decisions, the dashed path is a source solution

and the problem is coalescent. We now define well-posed and forecast horizon in the

context of general deterministic infinite horizon optimization, and we also formalize

the definition of planning horizon that frequently appears in the literature.

Definition 5.2. We say that p is well-posed if there exist a period N∗ and initial

decisions x∗n, n = 1, . . . , N for some 1 ≤ N ≤ N∗ such that x∗1, . . . , x
∗
N are optimal
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Figure 5.1: Sketch of Coalescence in General Deterministic Optimization

decisions for all p′ ∈ PN∗
(p).

Definition 5.3. If there exist a period N∗ and initial decisions x∗n, n = 1, . . . , N for

some 1 ≤ N ≤ N∗ such that x∗1, . . . , x
∗
N are optimal decisions for all p′ ∈ PN∗

(p),

then we call N∗ a forecast horizon and N a planning horizon for problem p with

respect to class P.

Lemma 5.1. Let p ∈ P and choose any increasing subsequence of positive integers

{nj} with associated forecasts {p(nj)}, where p(nj) ∈ Pnj(p) ∀n. Then, under the

Type I Assumptions, there exist a further subsequence {njk
} ⊆ {nj} with associated

optimal decision sequences {x̃∗(njk
)}, x̃∗(njk

) ∈ X ∗ (p(njk
)) ∀n, and some x̃∗ ∈ X∗(p)

such that x̃∗(njk
) → x̃∗, where convergence is componentwise.

See Appendix D for a proof. This result prepares us for the main result of this section.

Theorem 5.2. Under the Type I Assumptions, forecast p ∈ P is well-posed if and

only if it is coalescent.

Proof. Suppose p is well-posed and the Type I Assumptions hold. Let y∗ be an arbi-

trary infinite horizon optimal decision sequence and let N∗ be a period such that x∗1

is an infinite horizon optimal initial decision for all p′ ∈ PN∗
(p). Such an N∗ and x∗1

exist by well-posedness of p. Then by the first Type I Assumption, there exists a spe-

cific forecast p′ ∈ PN∗
(p) such that sN∗(p, y∗) is the unique infinite horizon optimal
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state ending period N∗ for forecast p′. By well-posedness, x∗1 is an infinite horizon

optimal initial decision for p′, so that there is some x∗ ∈ X∗(p′) which has initial

decision x∗1 and state sN∗(p, y∗) ending period N∗. Thus, y∗ is optimally reachable

from x∗, and having chosen y∗ arbitrarily, p is coalescent.

Now suppose that p is coalescent but is not well-posed with respect to P . Let x∗∗ be

a source solution. Then there exists a subsequence {nj}∞j=1 and p(nj) ∈ Pnj(p) such

that x∗∗1 /∈ X∗
1 (p(nj)) for all j. But Lemma 5.1 states that, resorting to a further

subsequence {njk
}∞k=1 if necessary, there exists some sequence of infinite horizon opti-

mal decision sequences x∗(njk
) ∈ X∗(p(njk

)) for all k such that x∗(njk
)→ x̃∗ ∈ X∗(p).

By assuming that p is coalescent, x̃∗ is optimally reached at some period M by

some infinite horizon decision sequence, optimal for p, with initial decision x∗∗1 . Let

K(M) be large enough that x∗(njk
) is in agreement with x̃∗ up through and includ-

ing period M for all k ≥ K(M). By the Principle of Optimality, there now exists a

p(njk
)-optimal decision sequence ∀k ≥ K(M) with initial decision x∗∗1 , and which is in

agreement with x∗(njk
) beginning period M . Hence, x∗∗1 ∈ X∗

1 (p(njk
)) ∀k ≥ K(M).

We’ve reached a contradiction and conclude that satisfying the coalescence condition

is sufficient for well-posedness.

5.4 Solution Procedures

In this section, we present three different solution procedures. The first is the sim-

plest and can be applied whenever the sets of potentially optimal states are readily

available. Recognizing that these sets often require thoughtful derivation that is

application-specific, the second procedure incorporates a general method from [24]

that both iteratively constructs the sets of potentially optimal states and invokes a

stopping rule at each iteration. However, since for many applications the problem-

specific functions required to successfully implement the second procedure may not
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exist, we introduce a third solution procedure. This procedure requires a stronger as-

sumption (introduced in [38]) of reachability than in the second Type I Assumption

that, when satisfied, gives rise to an implementation as simple as the first procedure.

5.4.1 A Simple Solution Procedure

While coalescence can occasionally aid in identifying well-posed problems, the nature

of infinite horizon nonstationary optimization generally precludes a priori knowledge

of all problem parameters. Rather, these parameters are more frequently uncovered

sequentially, and conclusions regarding well-posedness of a problem instance must be

determined algorithmically. A primary difficulty in constructing such an algorithm

lies in ensuring that it yields an infinite horizon optimal initial decision any time a

problem is well-posed without stopping prematurely and yielding an initial decision

that is not optimal for some potential future parameters. That is, the algorithm

should stop finitely if and only if the problem is well-posed.

Clearly, p is well-posed if and only if there exists some optimal first period state

s∗1 and period N such that for each sN ∈ T ∗∗
N (p), s∗1 lies on a minimum cost solution

to sN . By the third Type I Assumption, we can hope to verify this condition in finite

time. However, to verify this condition requires a complete characterization of T ∗∗
n (p)

for all n and p ∈ P. In general, this can be extremely difficult, although we shall

show that it is possible for both the concave cost production planning and equipment

replacement problems, and we will give a method in the next section to generate

T ∗∗
n (p) for a general class of problems. For now, however, we will assume knowledge

of T ∗∗
n (p) to give the following solution procedure.

Assumption 5.2. For all p ∈ P and periods n, T ∗∗
n (p) is known.

Algorithm 5.1. Consider a fixed p ∈ P. Set n = 1.

1. For all sn ∈ T ∗∗
n (p), find X∗

1 (pn|sn), the set of all optimal initial decisions for
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the n-horizon truncation of p with the state ending period n restricted to be sn.

2. If there exists x∗1 ∈ ∩sn∈T ∗∗
n (p)X

∗
1 (pn|sn), then return x∗1 and stop. Otherwise,

increment n by 1 and return to step 1.

Theorem 5.3. Under the Type I Assumptions and Assumption 5.2, Algorithm 5.1

stops finitely if and only if p ∈ P is well-posed.

Proof. Suppose that the Type I Assumptions hold. Suppose that p is well-posed.

Then there exists some period N∗ and initial decision x∗1 such that x∗1 is an optimal

initial decision for all p′ ∈ PN∗
(p). By the third Type I Assumption, the set T ∗∗

N∗(p) is

finite. Furthermore, by definition, every optimal state sequence for every p′ ∈ PN∗
(p)

passes through T ∗∗
N∗(p). But Algorithm 5.1 will find the set of optimal initial decisions

for each partial state sequence with an ending state in T ∗∗
N∗(p). Since x∗1 is an optimal

initial decision for each of those partial state sequences by well-posedness of p, and

each of the potentially optimal ending states is known by Assumption 5.2, Algorithm

5.1 will stop at period N∗ and return x∗1.

Now suppose that Algorithm 5.1 stops at period N∗ with optimal initial decision

x∗1. Then x∗1 is an optimal initial decision for any optimal state sequence passing

through T ∗∗
N∗ . Since every optimal solution for every p′ ∈ PN∗

(p) must pass through

there, the Principle of Optimality says that x∗1 is an optimal initial decision for all

p′ ∈ PN∗
(p). Thus, p is well-posed.

5.4.2 An Integrated Procedure to Derive Potentially
Optimal State Sets and Find Optimal First Decisions

Since a choice for T ∗∗
n (p) is often not obvious, we seek a general method for construct-

ing these sets. Following Federgruen and Tzur [24], we can efficiently generate T ∗∗
n (p)

for a subset of the general class of problems we have chosen in this chapter. First, we

need to express the forecast as a shortest path problem in an acyclic network. Then,

we need to develop difference functions to compare two nodes as optimal predecessor
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nodes to a fixed, third node. Finally, we can use the difference functions to char-

acterize regions of potential future parameters for which a given node is optimal; in

other words, we can generate sets of potentially optimal states. The method used in

this section to construct T ∗∗
n (p) will follow that in [24], being adapted to the problem

class P defined in this chapter.

Reformulation as a Shortest Path Problem

Let pN represent the N -period truncation of forecast p ∈ P . Under the addi-

tional assumption that there exist finite, known sets X̄∗∗
n (p) and T̄ ∗∗

n (p) such that

X∗∗
n (p) ⊆ X̄∗∗

n (p) and T ∗∗
n (p) ⊆ T̄ ∗∗

n (p) for n = 1, . . . , N , we can express pN as a short-

est path problem on an acyclic network. The node set N = {0, 1, . . . , n} contains all

states in ∪n∈{1,...,N}T
∗∗
n (p) ∪ s0. For all nodes i, j, i < j, the cost of arc (i, j) is given

by c(i, j), where c(i, j) = +∞ if it is infeasible to transition from i to j. In general,

c(i, j) is finite if and only if i ∈ Sn(p), j ∈ Sn+1(p) and there exists some decision

y such that j = fn+1(i, y; p), although there may exist feasible decisions that incur

infinite cost. We observe that in this construction, the node sets and arc costs are

completely determinable from the forecast p, which contains all potentially optimal

decision and state sets, transition functions, and costs.

Let F (j) denote the cost of the shortest path from node 0 to node j ∈ N, and

F (l, j) = F (l) + c(l, j)

is the minimum cost of a path from node 0 to node j with the restriction that node

l < j is the next-to-last node on the path (the predecessor of j). Also, let

L(j) = {l : F (l, j) = F (j)}

represent the set of optimal predecessor nodes to node j and

Q(j) = {l : l is the first node after node 0 on some optimal path to node j}. The Q
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sets can be expressed recursively as

Q(j) =

{
∪i∈L(j)Q(i) if 0 /∈ L(j)
∪i∈L(j)Q(i) ∪ {j} otherwise

(j = 1, . . . , n).

A Finite Solution Procedure for Well-Posed Problems

Continuing with the model derived in Federgruen and Tzur, we now define difference

functions ∆k,l(j) : N→ R by

∆k,l(j) = F (k, j)− F (l, j),

which determines which of a given pair of nodes k and l is preferable as the predecessor

node to node j ∈ N. We now include the following key assumption, which Federgruen

and Tzur have shown is satisfied by a number of important applications, such as multi-

item joint replenishment systems, combined inventory routing, machine scheduling

issues, and single item stochastic inventory settings.

Definition 5.4. Problem p ∈ P is said to satisfy the Difference Function Assumption

if each node in N can be characterized by a finite set of indicators X = (X1, X2, . . . , Xm)

such that all difference functions can be written in the form

∆k,l(j) = δk,l(X(j)) = δk,l(X1(j), X2(j), . . . , Xm(j)),

where the function δk,l(·) can be evaluated knowing only the forecast parameters through

node l and X(j) can be evaluated knowing only the forecast parameters through node

j.

In this manner, upon reaching node l, the difference function can be evaluated for

any future node j ≥ l given the indicator values X1(j), X2(j), . . . , Xm(j).

We now proceed to show how the difference functions can be used to construct the

sets of potentially optimal predecessor nodes, and hence, the sets T ∗∗
N (p) of potentially

optimal states. Let Ω(j) be the set of all nodes in {0, . . . , j} that are optimal pre-

decessor nodes for some later node with appropriate indicator values. Here, we will
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follow the approach of Federgruen and Tzur for the general case of possible non-linear

difference functions.

For each k = 1, . . . , r, let Rik(j) denote the region of all vectors of indicator val-

ues X ∈ Rm for which ik is the best predecessor node among all nodes in Ω(j).

Then

Rik = {X = (X1, X2, . . . , Xm) ∈ Rm : δik,il(X) ≤ 0 ∀l = 1, . . . , r, l 6= k}.

To obtain the set Ω and the R sets each time the node set is augmented (i.e. the

horizon is increased), we introduce here a simple update procedure. Initially, Ω(0) =

{0} and R0(0) = Rm. Assume at iteration j that Ω(j) = {i1, i2, . . . , ir} with the

corresponding R regions are known. By definition of Ω, Ω(j + 1) ⊆ {Ω(j)∪ {j + 1}}.

To check whether to include node j+1 or not in Ω(j+1), it is sufficient to see whether

the (possibly) nonlinear program

Rj+1(j + 1) = {X ∈ Rm : δj+1,il(X) ≤ 0, l = 1, . . . , r}

has a feasible solution. If it does, then node j +1 should be added. Likewise, to check

whether a node ik ∈ Ω(j) needs to be eliminated in iteration j + 1, see if

Rik(j + 1) = Rik(j) ∩ {X ∈ Rm : δik,j+1(X) ≤ 0}

is nonempty. If it is not, then node ik may be eliminated as an optimal predecessor

for some potential future node. With this update procedure established, an algorithm

to solve any well-posed instance immediately follows.

Algorithm 5.2.

1. Set N = 0, Ω(0) = {0} and R0(0) = Rm.

2. Set N ← N + 1. For j ∈ T̄ ∗∗
N (p),

(a) add node j to N, with arc costs c(i, j) for all i < j;
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(b) determine whether {j} ∈ Ω(j);

(c) determine whether to remove any i ∈ Ω(j − 1) in updating Ω(j).

3. Let Ω
(∑N

k=1

∣∣T̄ ∗∗
k (p)

∣∣) = {i1, . . . , im} ⊆ T̄ ∗∗
N (p). If there exists a node q∗ > 0

with q∗ ∈ Q(ir) for all r = 1, . . . ,m, then stop. The initial decision resulting

in the state corresponding to node q∗ is an optimal initial decision for all p′ ∈

PN(p), and p is well-posed. Otherwise, return to 2.

We note that following the complete Update step for period N , the Ω set is precisely

T ∗∗
N (p), as desired. Thus, any state in that set must be optimal for some forecast in

agreement with p through period N . If every one of those states lies on an optimal

path (for problem pN) passing through a common initial state, then the initial decision

resulting in that initial state must be optimal for any p′ ∈ PN(p), and p is well-posed.

Conversely, if p is well-posed, then there must exist some period N at which Algorithm

5.2 will stop. We can thus state the following result.

Theorem 5.4. Under the Type I Assumptions and the Difference Function Assump-

tion, Algorithm 5.2 stops in finite time if and only if p ∈ P is well-posed.

5.4.3 A Solution Procedure for Problems with Finite

Feasible State Spaces

To this point, we have avoided assuming that the sets of feasible states are finite,

rather requiring that the sets of potentially optimal states are finite. We also required

in the second Type I Assumption that any pair of potentially optimal states at least

L periods apart can be feasibly connected. In many applications, such as equipment

replacement, it is also reasonable to expect that any pair of feasible states can be

feasibly connected after some uniformly bounded number of periods. Schochetman

and Smith call this property Bounded Reachability in Definition 4.1 of [38], which we

repeat here in slightly different language as one of the second set of assumptions.
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Assumption 5.3 (Type II Assumptions).

1. For all forecasts p ∈ P, periods n, and sn ∈ Sn(p), there exists a forecast

p′ = (p1, . . . , pn, qn+1, qn+2, . . .) ∈ P such that sn is the unique infinite horizon

optimal state ending period n for forecast p′.

2. For all forecasts p ∈ P, periods n, sn ∈ Sn(p) and sn+R ∈ Sn+R(p), there are

decisions xn+1, xn+2, . . . , xn+R and states tn+1, tn+2, . . . , tn+R−1 such that xn+1 ∈

Yn+1(sn; p), tn+1 = fn+1(sn, xn+1; p), tj = fj(tj−1, xj; p) ∈ Sj(p) for j = n +

2, . . . , n+R and fn+R(tn+R−1, xn+R; p) = sn+R. In other words, for any forecast,

there exists a feasible decision sequence that connects any pair of feasible states

that are at least R periods apart, where R <∞ and R is independent of p and

n.

3. For all forecasts p ∈ P and periods n, Sn(p) and Yn+1(sn; p) for all sn ∈ Sn(p)

are finite (though not necessarily uniformly bounded).

Proposition 5.5. If the second Type II Assumption is satisfied and R ≤ L, then

the second Type I Assumption is also satisfied. Moreover, the first and third Type II

Assumption imply their Type I counterparts.

Proof. To show that the first and third Type II Assumptions imply their Type I

counterparts is straightforward since all potentially optimal states and decisions are

also feasible for any p. Suppose that the second Type II Assumption is satisfied.

Then consider any pair of potentially optimal states at least L periods apart. Since

L ≥ R and potentially optimal states are also feasible, we conclude that the second

Type I Assumption is also satisfied.

Note that even if L > R, the second Type II Assumption still implies that a modified

form of the second Type I Assumption holds by setting L = R. For the sake of

simplicity, we will assume in this section that R ≤ L.
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In section 5.3, the second Type I Assumption was invoked only in the proof of Lemma

5.1. Thus, since the second Type II Assumption implies the second Type I Assump-

tion, all the results in that section will still hold here, and we claim the following

without having to reconstruct the proofs.

Corollary 5.6. When all of the Type I assumptions are met or if their Type II

counterparts are met, p ∈ P is well-posed if and only if it is coalescent.

We could also follow the same solution procedure here and claim that Algorithm

5.1 stops finitely if and only if p ∈ P is well-posed. However, we have assumed in

this section a more favorable problem structure; namely, that Bounded Reachability

holds. Note that Schochetman and Smith [38] assumed a uniformly bounded feasible

state space in each period in order to obtain their solvability results for the same

class of problems. When the Type II Assumptions are satisfied, the only additional

requirement to apply a solution procedure analogous to Algorithm 5.1 is a knowledge

of the feasible state sets. We know assume such a knowledge.

Assumption 5.4. For all p ∈ P and periods n, Sn(p) is known.

The following solution procedure exploits the finiteness and complete characterization

of the feasible decision and state spaces as well as the Bounded Reachability Property.

Algorithm 5.3. Consider a fixed p ∈ P. Set n = 1.

1. For all sn ∈ Sn(p), find X∗
1 (pn|sn), the set of all optimal initial decisions for

the n-horizon truncation of p with the state ending period n restricted to be sn.

2. If there exists x∗1 ∈ ∩sn∈Sn(p)X
∗
1 (pn|sn), then return x∗1 and stop. Otherwise,

increment n by 1 and return to step 1.

Theorem 5.7. Under the Type II Assumptions and Assumption 5.4, Algorithm 5.3

stops finitely if and only if p ∈ P is well-posed.
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Proof. Suppose that p is well-posed. Then there exists some period N∗ and initial

decision x∗1 such that x∗1 is an optimal initial decision for all p′ ∈ PN∗
(p). By the

third Type II Assumption, the set SN∗(p) is finite. Furthermore, by the first Type

II Assumption, every member of SN∗(p) is the unique optimal state in period N∗ for

some p′ ∈ PN∗
(p). But Algorithm 5.3 will find the set of optimal initial decisions for

each partial state sequence with an ending state in SN∗(p), which set is known by

Assumption 5.4. Since x∗1 is an optimal initial decision for each of those partial state

sequences by well-posedness of p, Algorithm 5.3 will stop at period N∗ and return x∗1.

Now suppose that Algorithm 5.3 stops at period N∗ with optimal initial decision

x∗1. By the third Type II Assumption and the Principle of Optimality, x∗1 is an opti-

mal initial decision for all p′ ∈ PN∗
(p). Thus, p is well-posed.

Theorem 5.7 tells us that any time the sets of feasible states are known, finite, and

identical to the sets of potentially optimal states for all problems in the problem

class, then any well-posed problem will be solved by Algorithm 5.3. Although the

hypothesis for this result may appear strong, it is not vacuous, as we will show in

section 5.5. By Corollary 5.6 and Theorem 5.7, we can recast Theorem 5.7 as follows.

Corollary 5.8. Under the Type II Assumptions and Assumption 5.4, Algorithm 5.3

stops finitely if and only if p ∈ P is coalescent.

This claim concerning Algorithm 5.3 now becomes stronger than that made for the

corresponding solution procedure in [38] in that they only gave a sufficient condition

for its stopping rule to be satisfied.

5.5 Example Applications

A number of applications can be shown to satisfy the Type I or Type II Assumptions

or some combination thereof, and can therefore be solved by one or more of the
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solution procedures in the previous section. We show that the applications in chapters

2-4 fit in one or more of these sets of assumptions.

5.5.1 Concave Cost, Single-Item Production Planning

Under the assumption that there exist uniform upper bounds on demand (d̄) and

on the number of periods between optimal production points (L), we see that the

second Type I Assumption is satisfied. Since production capacity is unbounded and

a unit of inventory is never optimally carried more than L periods, we also see that

the third Type I Assumption is satisfied. Finally, since we allow the possibility that

no demand occurs beyond period N of any N -period problem, and any finite horizon

problem always optimally terminates with zero inventory, we see that the first Type I

Assumption is also satisfied. The sets T ∗∗
n (p) for any period n and any problem p are

the inventory levels {0, . . . , Ld̄}. See Appendix D.2 for a full justification of this claim.

When the Type I Assumptions are met, problem p ∈ P is well-posed if and only

if it is coalescent (by Theorem 5.2), and a direct implementation of Algorithm 5.1

will find an optimal initial decision for p if and only if it is well-posed (by Theorem

5.3). These are precisely the claims made in Chapter 2. Algorithm 2.1 runs differ-

ently. Rather than requiring the inventory ending period n to take on all possible

values in T ∗∗
n (p), it instead looks over the optimal initial production decisions to the

finite horizon problems for each of the previous L periods. Either method may be

used.

5.5.2 Equipment Replacement

The application in Chapter 3 differs from the production planning example in that

there exists a uniform upper bound on the maximum feasible lifetime. The state in

this application is the remaining scheduled lifetime of the current equipment. By

allowing the machine to become obsolete at any time, the first Type II Assumption
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is satisfied through careful construction of a forecast extension. Moreover, because of

the bound on feasible lifetimes and the freedom to purchase machines at any time,

the second Type II Assumption is met. Finally, since it is optimal to have only one

piece of equipment on hand at any given time, and replacement decisions are limited

to the lifetime of the next piece of equipment, the third Type II Assumption is met.

With the Type II Assumptions satisfied, Corollary 5.6 holds and problems are well-

posed if and only if they are coalescent. Additionally, since the feasible state and

decision sets are always known, an implementation of Algorithm 5.3 will stop finitely

if and only the problem is well-posed, as established by Theorem 5.7. As with the pro-

duction planning example in Chapter 2, these claims were proven for the equipment

replacement problem in Chapter 3.

5.5.3 Capacitated Inventory Planning

Because of limited inventory capacity S̄, both the set of potentially optimal decisions

and the set of feasible states are finite in each period. Thus, the third Type I Assump-

tion is satisfied. The only reason why the third Type II Assumption is not satisfied

is that the sets of feasible decisions are not finite. However, the sets of potentially

optimal decisions are finite and known since it is never optimal to replenish inventory

above the capacity level, so in effect, the third Type II Assumption is satisfied for

this problem.

We know from Remarks 4.2 and 4.3 that the second Type II Assumption is satis-

fied, and by Remark 4.5, the first Type II Assumption is also satisfied. With the

Type II Assumptions satisfied, it follows from Corollary 5.6 that p is well-posed if

and only if it is coalescent. Since the sets of potentially optimal states and decisions

are known in all periods for any given problem, Assumption 5.4 is satisfied. Thus,

from Theorem 5.7, an implementation of Algorithm 5.3 stops finitely if and only if
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p is well-posed. As with the previous two examples, these claims were previously

established in Chapter 4.

5.6 Conclusions

We have studied a general class of deterministic, nonstationary, infinite horizon op-

timization problems. We defined a condition called coalescence for these problems,

and showed that it is equivalent to the property that an infinite horizon optimal ini-

tial decision can be found by knowing only finitely many periods’ worth of problem

parameters, regardless of future parameters. This relationship between coalescence

and solvability was shown to hold for two different sets of assumptions: a weaker

one in which potentially optimal states are finite in each time period and satisfy a

reachability property, and a stronger one in which feasible states are finite in each

time period and satisfy a similar reachability property.

We also gave solution procedures for these two sets of assumptions, and included

a general method originating from [24] to construct the sets of potentially feasible

states. Finally, we showed that the two sets of assumptions are, in fact, satisfied by

some meaningful applications.
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Chapter 6

Solvability in a Stochastic
Environment: An Infinite Horizon

Asset Selling Problem

6.1 Introduction

The asset selling problem is a well-known optimal stopping problem. An asset owner,

faced with a sequence of nonnegative random offers, must choose in real time whether

to accept or reject each offer. One offer arrives per period, and if that offer is not

accepted, the owner incurs a penalty for continuing to hold the asset. Moreover, the

capital invested in the asset could accrue interest at a rate r ≥ 0, so it is appropriate

to discount future rewards by a factor α = 1
1+r

. Once an offer is accepted, no further

offers may be accepted. Thus, the problem is to determine, a priori, a decision rule

for each period that indicates which offers should be accepted and which should be

rejected.

We assume that the asset owner can forecast the penalty costs and the probability dis-

tributions of offers in each period arbitrarily far into the future. Unlike Bertsekas [7]

and Hayes [27], we do not assume that the offers are identically distributed. Derman

et al [20] assume that the offers are stationary, but that they come from one of k ≥ 2

underlying probability distributions, and that that distribution is unknown when the

problem is initialized. In that work, observing a finite sequence of offers provides some
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learning about their underlying distribution. Rosenfield et al [36] generalize upon

that by assuming that the family of distributions is unknown and learning about the

distribution occurs over time, although the offers all come from the same distribution.

In all of these works mentioned above, it is shown that the optimal policy for a

sequence of offer distributions (whether finite or infinite) is to set a threshold cn in

each period n such that offers below cn are rejected, the owner is indifferent between

acceptance and rejection for offers of value cn, and offers exceeding cn are accepted.

All the aforementioned approaches to the asset selling problem have placed the set

of possible offers on an interval (possibly infinite) in R. Breaking from tradition, we

will follow the approach of Cheevaprawatdomrong et al [16], who cast the infinite

horizon asset selling problem within a larger class of nonhomogeneous MDPs on a

bounded, discrete state space. In this formulation, all reward and transition func-

tions can vary arbitrarily with time, so that no two periods need necessarily have

the same parameters. As we shall show, this approach complicates the analysis in

that two or more thresholds may be optimal for a given period, and it precludes

the possibility of knowing the entire forecast simultaneously, but it also facilitates the

construction of a forecast horizon and encompasses a large class of potential problems.

This chapter will proceed as follows. In section 6.2, we formally present the infi-

nite horizon asset selling problem, as well as its finite horizon truncation. Under

discounting and a finite upper bound on the offer distributions and penalty costs in

each period, we show in section 6.3 that optimal thresholds in each period of the

N -horizon truncation are monotone nondecreasing in N . Moreover, we show that

uniqueness of the optimal initial threshold is sufficient to guarantee that there exists

a forecast horizon, and comment on the likelihood that this condition is met.

In section 6.4, we give a deterministic reformulation of the asset selling problem and
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analyze the properties of optimal state sequences in the deterministic formulation to

give both necessary and sufficient conditions for the existence of a forecast horizon.

As in Chapters 2-5, this necessary and sufficient condition is coalescence. However,

coalescence in the context of asset selling problems is easier to verify and has a richer

meaning than in the other applications in this thesis. In section 6.5, we present an

algorithm that will find a forecast horizon any time one exists, and therefore, that can

solve for all optimal decisions for any forecast in which, looking forward from each

period, there exists a forecast horizon for that period’s optimal threshold. We also

show the results of simulations designed to test the performance of the algorithm.

Finally, in section 6.6, we give some concluding remarks.

6.2 Model, Assumptions, and the Form of an

Optimal Policy

We begin by formulating the infinite horizon, nonstationary asset selling problem as

a Markov Decision Process, and characterize the form of its optimal solutions.

6.2.1 General Model Definition and Description

An asset owner, faced with a sequence of nonnegative random offers, must choose in

real time whether to accept or reject each offer for the asset. One offer arrives per

period, and if that offer is not accepted, the owner incurs a deterministic penalty,

possibly zero, for continuing to hold the asset. Future offers are discounted at a

single-period rate α. Offers are assumed to come from the set of integers {l, . . . , u},

where l ≥ 0. We will use the convention that offers arrive at the beginning of each

period and decisions are made at the end of the same period. The penalty immedi-

ately follows a decision to retain the asset and is not discounted to the next period.

More formally, the infinite horizon asset selling problem can be expressed as a Markov

Decision Process, which we now proceed to do, following the development in [16].
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In each period n, the state i is an element of the set {l, . . . , u + 1} for some inte-

gers 0 ≤ l < u. When l ≤ i ≤ u, i represents the random offer received in period

n, while the state u + 1 represents the state of the system after the sale of the asset.

We thus denote the state space S = {l, . . . , u + 1}. We assume that the offer in

period n follows the probability mass function qn, so that for each n,
∑u

i=l qn(i) = 1

and qn(u+1) = 0. Let Fn be the cumulative distribution function corresponding to qn.

Corresponding to each state i ∈ S, the decision set Di is given by

Di =

{
{0, 1}, if l ≤ i ≤ u,
{1}, if i = u + 1,

where the decision k = 0 represents rejection and the decision k = 1 represents

acceptance. We define the transition structure as

pn(i, j; k) =


qn(j), if l ≤ j ≤ u, k = 0
0, if j = u + 1, k = 0; or l ≤ j ≤ u, k = 1
1, if j = u + 1, k = 1.

Furthermore, for each period n, let the reward function be

ρn(i, k) =


−hn, if l ≤ i ≤ u k = 0,
i, if l ≤ i ≤ u, k = 1,
0, if i = u + 1, k = 1,

where hn ≥ 0 is the holding cost in period n.

With the transition and reward functions defined, we now define the forecast or prob-

lem as φ = (φn)∞n=1 = (pn, ρn)∞n=1. Let Φ be the collection of all forecasts. We will

assume that for all φ ∈ Φ and all periods n, 0 ≤ hn ≤ αu. Let µn(φ) ≡
∑u

i=l i · qn(i)

be the expected value of the offer in period n under forecast φ.

Because of the impossibility of capturing an entire infinite horizon forecast at once,

solution methods for the infinite horizon asset selling problem must rely upon incre-

mentally longer finite horizon problems. To that end, let φN represent the N -horizon
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truncation of φ, and let ΦN(φ) be the class of all forecasts that are equivalent to φ

through period N .

By definition of the decision sets Di, i ∈ S, it is clear that a strategy π specifies,

for each state i in each period n, some k ∈ Di ⊆ {0, 1}. Let Π denote the set of all

feasible strategies, and let

βn(π; φ) =
n−1∏
k=1

∑
i:πk(i)=0

qk(i)

for n ≥ 2, where β1(π; φ) = 1. Thus, βn(π; φ) is the probability of rejecting the offers

in periods 1 through n− 1 under forecast φ and strategy π. Then

Rn(π; φ) =
∞∑

k=n

αk−n βk(π; φ)

βn(π; φ)

 ∑
i:πk(i)=1

i · qk(i)−
∑

i:πk(i)=0

hk · qk(i)


represents the total expected discounted rewards beginning period n under forecast

φ and strategy π. The optimization problem can be expressed as

〈φ〉 ≡ max
π∈Π

R1(π; φ).

Let Vn(φ) = maxπ∈Π Rn(π; φ) be the maximum total expected discounted rewards

beginning period n under forecast φ.

6.2.2 Form of an Optimal Policy

Cheevaprawatdomrong et al show that one can optimally restrict consideration of

strategies to those for which in each period n, a value cn is chosen such that for

i < cn, the decision for state i is 0, while for i ≥ cn, the decision for state i is 1

(including, of course, state u + 1). In particular, the value for cn can be determined

from the forecast φ as the function

cn(φ) = αVn+1(φ)− hn.
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That is, cn is the maximum total expected discounted rewards incurred when the

period n offer is rejected. Clearly, if the offer received in period n meets or exceeds

cn(φ), then it should be accepted. Let

S∗
n(φ) = {i ∈ S : i ≥ cn(φ), qn(i) > 0}

and let i∗n(φ) be the smallest element of S∗
n(φ). Then i∗n(φ) is called the optimal

period n threshold under φ. From this point forward, we will characterize a policy π

as a sequence of thresholds, i.e., π = (in)∞n=1. Note that we have restricted optimal

thresholds to take on offer levels that have positive probability.

6.3 Problem Solvability

In solving an asset selling problem, the objective is to determine the optimal thresh-

olds prior to observing the offers so that one can act optimally when faced with offers.

Again, however, because of the impossibility of capturing an entire infinite horizon

forecast at once, one must rely upon the convergence of the optimal first period

threshold of increasingly longer finite horizon problems to determine the optimal first

period threshold of the infinite horizon problem. This section will give conditions

under which an infinite horizon asset selling problem can be solved by finite horizon

techniques. We begin by establishing the monotonicity of the optimal initial thresh-

old with respect to the problem horizon.

We note that a policy monotonicity result was already obtained in [16], section 3,

for optimal policies in all periods, in a more general class of Markov Decision Pro-

cesses. This problem fits within that class of problems, so the monotonicity results we

obtain are not novel. However, they will be used at subsequent points in this chapter

in a way particular to the asset selling problem, so the derivation here is necessary

for our use.
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6.3.1 Monotonicity of the Optimal Thresholds

In this section, we will discuss the monotonicity of the initial optimal threshold.

However, the results for the initial threshold do, in fact, hold for the thresholds in all

periods. Please refer to E.1 for further analysis on this matter.

Let φN represent the N -horizon truncation of the infinite horizon forecast φ, so that

only N offers are available and 〈φ〉 is an N -period optimization problem. Then

f(i1, φ
N) =

[
αV2(φ

N)− h1

] i1−1∑
i=l

q1(i) +
u∑

i=i1

i · q1(i) (6.1)

is the maximum expected discounted revenue for the N -period problem φN when

setting the initial threshold to i1. We wish to analyze the behavior of f(i1, φ
N) with

respect to changes in both i1 and N . Let

δ(i1, φ
N) = f(i1 + 1, φN)− f(i1, φ

N), (6.2)

so that δ(i1, φ
N) represents the marginal value of increasing the initial threshold from

i1 to i1 + 1 and continuing optimally in the N -period problem φN . The next result

shows that δ(i1, φ
N) is monotonic with respect to N . This is important because for

fixed N and φ, zeroes of δ(i1, φ
N) can identify maximizing values of i1, which are the

optimal initial thresholds for the N -period problems.

Lemma 6.1. δ(i1, φ
N+1) ≥ δ(i1, φ

N).

Proof. We first note that, for any φ ∈ Φ,

V2(φ
N+1) ≥ V2(φ

N) (6.3)

because all rewards are nonnegative (we will discuss this in more detail in section
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6.3.2). Then

δ(i1, φ
N) = f(i1 + 1, φN)− f(i1, φ

N) (6.4)

=
[
αV2(φ

N)− h1

] i1∑
i=l

q1(i) +
u∑

i=i1+1

i · q1(i)

−
[
αV2(φ

N)− h1

] i1−1∑
i=l

q1(i)−
u∑

i=i1

i · q1(i) (6.5)

=
[
αV2(φ

N)− h1 − i1
]
· q1(i1). (6.6)

Similarly, we obtain δ(i1, φ
N+1) =

[
αV2(φ

N+1)− h1 − i1
]
· q1(i1). Applying (6.3), the

desired result follows.

Lemma 6.2. For l ≤ i1 < i∗1(φ
N), δ(i1, φ

N) ≥ 0.

Proof. Choose any l ≤ i1 < i∗1(φ
N). Then

δ(i1, φ
N) = f(i1 + 1, φN)− f(i1, φ

N)

= q1(i1)
[
αV2(φ

N)− h1 − i1
]

≥ 0

since αV2(φ
N) − h1 > i1. Otherwise, there would be no loss of optimality in setting

i∗1(φ
N) = i1.

Clearly, if δ(i∗1(φ
N), φN) > 0, then one could increase the expected total revenue by

increasing i1 by one unit. Thus, we state the following.

Lemma 6.3. For fixed N and φ, the marginal value of increasing the initial threshold

by one from its optimal value is nonpositive, i.e. δ(i∗1(φ
N), φN) ≤ 0.

From Lemmas 6.2 and 6.3, we can draw the following useful corollary.

Corollary 6.4. If there are multiple values of i1 that maximize f(i, φN) (i.e. multiple

optimal initial thresholds for problem φN), then they are all consecutive integers.
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In the event that there are multiple maximizers of f(i1, φ
N), we say that i∗1(φ

N) is

not unique. This property becomes important when investigating the solvability of

a forecast, as we shall see in the next section. We are now prepared to present the

most important result of this section.

Theorem 6.5 (Initial Threshold Monotonicity). i∗1(φ
N+1) ≥ i∗1(φ

N) for all φ ∈ Φ

and for all periods N .

Proof. By Lemma 6.3, in order for i1 < i∗1(φ
N) to be a maximizer of f(i, φN+1), it

must satisfy δ(i∗1(φ
N), φN) ≤ 0. However, for all i1 < i∗1(φ

N)

δ(i1, φ
N+1) ≥ δ(i1, φ

N)

≥ 0,

where the first inequality is from Lemma 6.1 and the second is from Lemma 6.2. So

consider the case where δ(i1, φ
N+1) = 0. Then clearly, δ(i1, φ

N) = 0, but i1 was not

a maximizer of f(i, φN). Therefore, ∃i′1, i1 < i′1 < i∗1(φ
N) such that δ(i′1, φ

N) > 0.

Moreover, δ(i′1, φ
N+1) ≥ δ(i′1, φ

N), so that f(i1, φ
N+1) < f(i∗1(φ

N+1), φN+1), and i1 is

not an optimal initial threshold for φN+1. Having chosen i1 arbitrarily, we conclude

that i∗1(φ
N+1) ≥ i∗1(φ

N) and the proof is complete.

Figure 6.1 shows the properties of i∗1(φ
N) and δ(i1, φ

N) that we have just proved.

For fixed values of i1, δ(i1, φ
N) is monotone nondecreasing in N , and therefore, so is

i∗1(φ
N).

We note that an elegant alternate proof of Theorem 6.5 follows from the applica-

tion of Theorem 6.1 of Topkis [41]. See E.2 for details. Again, Theorem 6.5 follows

from Corollary 3.1 of [16]; we have simply recast it in the context of asset selling and

obtained insight and useful results in the process.
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so that δ∗(x1, F,N) represents the marginal value for incrementing the initial acceptance
threshold from x1 to x1 +1 and continuing optimally in the N -period problem FN . The
next result deals with the behavior of δ∗(x1, F,N) with respect to N .

Lemma 2. δ∗(x1, F,N + 1) ≥ δ∗(x1, F,N).

Proof. We first note that, for any F ∈ F ,

V2(F, N + 1) ≥ V2(F, N) (7)

because all rewards are nonnegative (we will discuss this in more detail in section 3.2).
Then

δ∗(x1, F,N) = f(x1 + 1, F,N)− f(x1, F,N) (8)

= αV2(F, N)
x1∑

i=l

p0(i) +
u+1∑

i=x1+1

i · p0(i)

−V2(F, N)
x1−1∑

i=l

p0(i)−
u+1∑

i=x1

i · p0(i) (9)

= [V2(F, N)− x1] · p0(x1). (10)

Similarly, we obtain δ∗(x1, N + 1) = [V2(F, N + 1)− x1] · p0(x1). Applying (7), the
desired result follows.

Lemma 3. Let a1(F, N) be the (minimum) optimal initial threshold to problem FN .
Then δ∗(x1, FN) ≥ 0,∀0 ≤ x1 < a1(F, N).

Proof. Choose any 0 ≤ x1 < a1(F, N). Then

δ∗(x1, F
N) = f(x1 + 1, FN)− f(x1, F

N)

= p0(x1) [V2(F, N)− x1]

≥ 0

since V2(F, N) > x1. Otherwise, there’d be no loss of optimality in setting a1(F, N) =
x1.

Remark 4. A necessary condition for a1(F, N) is that δ∗(a1(F, N), FN) ≤ 0.

Clearly, if δ∗(a1(F, N), FN) > 0, then one could increase the expected total revenue by
increasing x1 by one unit.

Theorem 5 (Initial Threshold Monotonicity). a1(F, N + 1) ≥ a1(F, N) for all F ∈ F .

Proof. By Remark 4, in order for x1 < a1(F, N) to be a maximizer of f(x, FN+1), it
must satisfy δ∗(a1(F, N), FN) ≤ 0. However, for all x1 < a1(F, N)

δ∗(x1, F
N+1) ≥ δ∗(x1, F

N)

≥ 0,

where the first inequality is from (2) and the second is from Lemma 3. So consider the
case where δ∗(x1, FN+1) = 0. Then clearly, δ∗(x1, FN) = 0, but x1 was not a maximizer
of f(x, FN). Therefore, ∃x′

1, x1 < x′
1 < a1(F, N) such that δ∗(x′

1, F
N) > 0. Moreover,

δ∗(x′
1, F

N+1) ≥ δ∗(x′
1, F

N), so that f(x1, FN+1) < f(a1(F, N +1), N +1), and x1 is not
an optimal initial threshold for FN+1. Having chosen x1 arbitrarily, we conclude that
a1(F, N + 1) ≥ a1(F, N) and the proof is complete.
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Because the marginals are nonincreasing in x1, if there exists a maximizer x∗
1 among the

values l + 1, . . . , u, then the marginals at the values less than x∗
1 must be nonnegative.

Lemma 3.2. For l ≤ x1 < c1(φN), δ∗(x1, φN) ≥ 0.

Proof. Choose any l ≤ x1 < c1(φN). Then

δ∗(x1, φ
N) = f(x1 + 1, φN)− f(x1, φ

N)

= p1(x1)
[
αV2(φ

N)− h1 − x1

]

≥ 0

since αV2(φN) > x1. Otherwise, there would be no loss of optimality in setting c1(φN) =
x1.

Remark 3.3. For fixed N and φ, the marginal value of increasing the initial threshold
by one from its optimal value is nonpositive, i.e. δ∗(c1(φN), φN) ≤ 0.

Clearly, if δ∗(c1(φN), φN) > 0, then one could increase the expected total revenue by
increasing x1 by one unit.
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δ∗(x1, φ
N+1) ≥ δ∗(x1, φ

N)

≥ 0,

where the first inequality is from (3.1) and the second is from Lemma 3.2. So consider
the case where δ∗(x1, φN+1) = 0. Then clearly, δ∗(x1, φN) = 0, but x1 was not a
maximizer of f(x, φN). Therefore, ∃x′

1, x1 < x′
1 < c1(φN) such that δ∗(x′

1, φ
N) > 0.

Moreover, δ∗(x′
1, φ

N+1) ≥ δ∗(x′
1, φ

N), so that f(x1, φN+1) < f(c1(φN+1), φN+1), and x1

is not an optimal initial threshold for HN+1. Having chosen x1 arbitrarily, we conclude
that c1(φN+1) ≥ c1(φN) and the proof is complete.

Figure 1 shows the properties of c1(φN) and δ∗(x1, φN) that we have just proved. We
note that an elegant alternate proof of Theorem 3.4 follows from the application of
Theorem 6.1 of Topkis [6]. See the Appendix for details. From the proof of Theorem
3.4, we can draw the following useful corollary.

Corollary 3.5. If there are multiple values of x1 that maximize f(x1, φN) (i.e. multiple
optimal initial thresholds for problem φN), then they are all consecutive integers.

In the event that there are multiple maximizers of f(x1, φN), we say that c1(φN) is
not unique. This property becomes important when investigating the solvability of a
forecast, as we shall see in the next section.
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Then

δ∗(x1, φ
N) = f(x1 + 1, φN)− f(x1, φ

N) (4)

=
[
αV2(φ

N)− h1

] x1∑

i=l

q1(i) +
u∑

i=x1+1

i · q1(i)

−
[
αV2(φ

N)− h1
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i=l
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Figure 6.1: Monotonicity of Optimal Initial Thresholds

6.3.2 Characterizing Solvability of the Infinite Horizon
Asset Selling Problem

We now direct our attention to conditions under which the infinite horizon problem

φ has a common optimal initial threshold with every problem in agreement with at

least the first N periods of φ. First, we define well-posed and forecast horizon as they

pertain to the asset selling problem.

Definition 6.1. Forecast φ ∈ Φ is called well-posed (with respect to Φ) if, for

some period N∗, ∃i∗1(φN∗
) such that i∗1(φ

N∗
) is an optimal initial threshold for all

φ′ ∈ ΦN∗
(φ).

Definition 6.2. Period N∗ is called a forecast horizon (for forecast φ in problem class

Φ) if ∃i∗1(φN∗
) such that i∗1(φ

N∗
) is an optimal initial threshold for all φ′ ∈ ΦN∗

(φ).

The next result follows immediately from the two preceding definitions and the results

in the previous section. Recall that Fn represents the cumulative distribution function

of the offers in period n under the forecast φ.

Remark 6.6. Suppose that FN ′ (bαuc) = 0. Then N ′ is a forecast horizon for any

problem φ having offer distribution forecast qN ′ in period N ′.

Proof. FN ′ (bαuc) = 0 implies that the offer arriving in period N ′ will certainly

exceed the discounted value of any future offer, no matter the sequence of future
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offer distributions. Thus, any offer in period N ′ will be accepted under any φ′ ∈

ΦN ′
(φ), thereby terminating the optimal stopping problem. Thus, any optimal initial

threshold for problem φN ′
is optimal for any φ′ ∈ ΦN ′

(φ), and N ′ is a forecast horizon

for problem φ with respect to Φ.

We cannot expect in general that an unbeatable offer will arrive with certainty. Thus,

it is desirable to have more general conditions under which a forecast horizon exists

for forecast φ ∈ Φ. In [16], the authors present an instance of an asset selling problem

in which there are two values of i1 that maximize f(i1, φ). They then show that by

making a slight perturbation in the holding penalty arbitrarily many periods into

the future, one can render one of the two infinite horizon optimal initial thresholds

non-optimal. Because this perturbation can be done at any time in the future and

still have the effect of changing the set of optimal initial thresholds, they conclude

that the given instance is not well-posed. It would seem, then, that if φ has a unique

infinite horizon optimal initial threshold, then one might be able to avoid these types

of issues. The second result below confirms the truth of this observation. The first

result is a technical lemma used in the proof of the second.

Lemma 6.7.

V1(φ
N+1) ≤ V1(φ

N)− αN−1hN + αNµN+1(φ),

and

V1(φ) ≤ V1(φ
N)− αN−1hN + αNu.

If hN ≥ αµN+1(φ), remove the −αN−1hN +αNµN+1(φ) from the first claim and change

its inequality to equality.

Proof. We begin by noting that i∗N(φN) = l. If i∗N(φN+1) = i∗N(φN) (which is the case

if αN−1hN ≥ αNµN+1(φ)), then no offer will be accepted in period N + 1 and hence,

V (φN+1) = V (φN) and the result holds trivially. So suppose that i∗N(φN+1) > i∗N(φN).

Since the i∗k(φ
N), k = 1, . . . , N were chosen to maximize expected revenue for φN , it

must be the case that the expected revenue over the first N periods of φN+1 is at most
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V (φN). Also, i∗N+1(φ
N+1) = l, giving the result that the (undiscounted) expected rev-

enue in period N+1 of φN+1, conditional upon rejecting all previous offers, is µN+1(φ).

However, one incurs a penalty of αN−1hN when rejecting the offer in period N in order

to accept the offer in period N +1. Thus, V (φN+1) ≤ V (φN)−αN−1hN +αNµN+1(φ),

as desired.

To prove the second claim, it suffices to note that the total rewards incurred over

periods N + 1 onward, for any forecast, are at most αNu.

If one wished to give a bound on the increase in the rewards to go from the second

period (V2(φ
N+1) vs. V2(φ

N)), Lemma 6.7 could be slightly modified by changing the

V1(·) terms to V2(·) and multiplying the latter by α. We now give the main result of

this section. This same result is established for a more general class of problems by

Theorems 6.6-6.7 of [16]. The hope in recasting it here is to make the result more

intuitive and transparent for asset selling problems in particular.

Theorem 6.8. φ ∈ Φ is well-posed if i∗1(φ) is unique.

Proof. Suppose that i∗1(φ) is unique. Then i∗1(φ
N) → i∗1(φ) monotonically in N by

Theorem 6.5. Since i∗1(φ
N) is integer-valued, it must attain i∗1(φ) by some finite time;

call this time N ′. Then, for all N > N ′, i∗1(φ
N) = i∗1(φ

N ′
). To see that i∗1(φ

′N) =

i∗1(φ
N ′

) = i∗1(φ) for all φ′ ∈ ΦN ′
(φ) and N ≥ N ′ (implying that φ is well-posed), let

N∗(φ) = min
[
N |i∗1(φN) > αV2(φ)− h1 − αN−1hN + αNu

]
. (6.7)

Since i∗1(φ) is unique, αV2(φ)− h1 is not integer-valued, and therefore N∗(φ) is finite.

By Lemma 6.7, for any φ′ ∈ ΦN∗(φ)(φ), we have that

αV2(φ
′) ≤ αV2(φ

N)− αN−1hN + αNu,

and therefore

αV2(φ
′)− h1 ≤ αV2(φ

N)− h1 − αN−1hN + αNu.
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However, for all N ≥ N∗(φ),

αV2(φ
′N)− h1 ≤ αV2(φ

′)− h1

≤ αV2(φ
N)− h1 − αN−1hN + αNu

≤ αV2(φ)− h1 − αN−1hN + αNu

< i∗1(φ
N)

= i∗1(φ)

But i∗1(φ
′N) is the minimum integer which is at least αV2(φ

′N) − h1 and i∗1(φ
′N) is

nondecreasing in N , so we see that i∗1(φ
′N) = i∗1(φ) for all N ≥ N∗(φ). This completes

the proof.

It would be very desirable to be able to place a bound on N∗(φ) independent of φ,

for this would limit the number of periods of parameters to forecast in order to find

an optimal initial threshold. However, since αV2(φ) − h1 can approach an integer

arbitrarily close from below depending upon φ, this is not possible. We will give in

§6.5 a solution procedure that will solve for the optimal threshold for any problem in

which it is possible to do so.

6.3.3 Examples

First, a well-posed asset selling forecast with multiple optimal initial thresholds. Let

l = 1, u = 2, and qn(i) represents the probability of receiving an offer of value i in

period n. Let α, 0 < α < 1 be the discount factor. Suppose that h1 = 0.9, and the

first two periods have offer distribution forecasts as follows.

q1(1) = a

q1(2) = 1− a

q2(1) = 0 (6.8)

q2(2) = 1

88



That is, an offer of value 2 arrives with probability 1 in period 2. Clearly, no offer

after period 2 can have a present worth greater than 2α, the present worth of accept-

ing the offer of value 2 in period 2. By Remark 6.6, an optimal policy over the first

two periods is optimal for any longer horizon problem.

There are three possible thresholds in period 1: 1 (accept any offer), 2 (accept only

an offer of value 2), and 3 (don’t accept any offers). Let V (1), V (2) and V (3) be the

expected discounted total revenue of using initial thresholds 1, 2, and 3, respectively.

Then

V (1) = a + 2(1− a) = 2− a

V (2) = 2− 2a + a(2α− 0.9) = 2aα + 2− 2.9a

V (3) = 2α− 0.9

In order to have multiple optimal initial thresholds, we must have V (1) = V (2) >

V (3), V (1) = V (3) > V (2), or V (2) = V (3) > V (1). Choosing the first of the three

options, we must satisfy 2aα + 2− 2.9a = 2− a, or α = 0.95. Substituting α = 0.95

into the equation for V (3), we find that V (3) = 1. Now, V (1) = 2 − a > 1 for any

0 < a < 1, and since V (1) = V (2) by design, we conclude that V (1) and V (2) are

both optimal initial thresholds for any asset selling forecast with the first two periods

satisfying (6.8) when α = 0.95. Thus, any φ with q1, q2, h1, and α as given above is

well-posed with multiple initial optimal thresholds.

Now we present a non-well-posed asset selling forecast that will appear similar to

the example in section 1 of [16]. As before, let l = 1, u = 2, and fix α. To simplify

the analysis, suppose that there are no holding penalties. For all periods n, let the

offer distribution forecast be

qn(1) = a,

qn(2) = 1− a.
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Thus, φ is a stationary forecast. The two stationary policies are to set the threshold

equal to 1 and to 2 in all periods (the third policy, setting the threshold equal to 3,

has zero expected revenue and need not be considered). Denote the total expected

revenue of these two policies by V (1) and V (2), respectively. We can express these

two quantities as

V (1) = a + 2(1− a)

= 2− a,

V (2) = aαV (2) + 2(1− a),

so that V (2) = 2−2a
1−aα

. We can make the total expected revenue the same under the

two policies by setting V (1) = V (2) and finding that a must satisfy

a =
2α− 1

α
. (6.9)

Note that V (1) depends only upon the period 1 forecast, whereas V (2) depends upon

all forecasts. Further, it can be shown that for all 0 < a, α < 1, V (2) is increasing

in a. Thus, if at some period n ≥ 1, qn(1) = a + ε and qn(2) = 1 − a − ε, the

total expected revenue from period n forward increases from that under the original

stationary forecast. The opposite effect can be achieved by decreasing qn(1) by ε.

By performing this perturbation on future probabilities, the tie between V (1) and

V (2) can be broken. Moreover, because we can perform the perturbation for any n

and achieve the desired result (i.e. breaking the tie), thus rendering one of the two

initial thresholds non-optimal, we conclude that φ is not well-posed with respect to

Φ. Note that we could achieve a similar result by introducing a holding penalty at

some point in the future, which would have the effect of encouraging the asset owner

to lower (as compared to the thresholds under the forecast without any penalties)

the acceptance thresholds prior to the appearance of the penalty. The fundamental

source of the unsolvability of this problem instance is the fact that Φ consists of,

in general, nonstationary forecasts, so that it can never be known if the observed

forecast is truly stationary.
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6.3.4 Likelihood That the Optimal Initial Threshold is Not
Unique

We shall show that the conditions under which the infinite horizon optimal initial

threshold is not unique are quite rare. By Corollary 6.4, multiple infinite horizon

optimal initial thresholds are consecutive integers. If i∗1(φ) and i∗1(φ) + 1 are both

optimal initial thresholds for φ, then they result in the same total expected discounted

revenue, i.e.

i∗1(φ)−1∑
i=1

[αV2(φ)− h1] q1(i) +
u∑

i=i∗1(φ)

i · q1(i) =

i∗1(φ)∑
i=1

[αV2(φ)− h1] q1(i)

+
u∑

i=i∗1(φ)+1

i · q1(i)

i∗1(φ) · q1(i
∗
1(φ)) = [αV2(φ)− h1] q1(i

∗
1(φ))

i∗1(φ) = αV2(φ)− h1 (6.10)

In order for (6.10) to occur, there must be a careful balancing of the offer distributions

and the discount factor, which is difficult to achieve except by intentional construction.

Lemma 6.9. For fixed φ, αV2(φ)− h1 is strictly increasing in α.

Proof. Observe that

V2(φ) =
∞∑

n=2

αn−2

∏n−1
m=1 Fm(i∗m(φ)− 1)

F1(i∗1(φ)− 1)

−Fn(i∗n(φ)− 1) · hn +
u∑

i=i∗k(φ)

qn(i) · i

 .

If the i∗n(φ) are fixed in α for each n, then the proof follows immediately. However,

the i∗n(φ) are chosen to maximize V2(φ), so that increasing α can only increase V2(φ)

and therefore αV2(φ)− h1 is strictly increasing in α.

Lemma 6.10. For fixed φ, there exists at most one αi ∈ [0, 1] such that αiV2(φ)−h1 =

i, for i ∈ {l, . . . , u}.

Proof. This follows immediately from Lemma 6.9.
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The following theorem unifies our discussion of this section and shows that practically

all asset-selling instances can be solved exactly using finite horizon methods.

Theorem 6.11. Each φ ∈ Φ is well-posed for almost every discount factor.

Proof. Choose φ ∈ Φ. By Lemma 6.10, there are at most u−l+1 values of α, call them

αl, . . . , αu, such that αV2(φ)− h1 = i is integer-valued, resulting in multiple optimal

initial thresholds. Since α is continuous on the interval (0, 1), the set {αl, . . . , αu} has

(Lebesgue) measure zero, so that φ has a unique optimal initial threshold is therefore

well-posed for almost every discount factor.

6.4 Analyzing Solvability Via a Deterministic

Reformulation

In this section, we present the asset selling problem as a deterministic dynamic pro-

gram and show that its optimal solutions are the probability distributions over the

stochastic states generated by choosing a sequence of optimal thresholds. With the

characterization of optimal deterministic state sequences, we can more easily deter-

mine necessary and sufficient conditions for well-posedness of an asset selling forecast.

6.4.1 The Deterministic Formulation of an Asset Selling
Forecast

Any asset selling forecast φ ∈ Φ can be recast as a deterministic dynamic program.

The states, rather than representing the current offer value or the position of having

already sold the asset, become distribution functions over the possible offer levels and

the position of having already sold the asset. The decision tree has, for each node

(state), u − l + 1 arcs emanating from it, one for each possible threshold level. The

distribution functions are determined by the sequence of thresholds lying along its

path from the root node, which is null, along with the offer distribution of the current

period. We note that the sum of the probabilities over offer levels l through u in each

node is, in general, strictly less than one, due to the increasing probability over time of
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having already sold the asset (this probability is included in the distribution function).

More precisely, states are determined as follows. Let t be a node in the deci-

sion tree, with the period of t denoted by T (t) and the predecessor node of t by

A(t). Let the thresholds that generate the state sequence leading to t be given by

i∗1(t), i
∗
2(t), . . . , i

∗
T (t)(t). Define β(t) =

∏T (t)−1
n=1 Fn(i∗n(t)−1), so that β(t) represents the

probability of rejecting the offers in periods 1 through T (t) − 1 given the threshold

sequence on the path to t. For any node t such that T (t) = 1, let β(t) = 1. The

reward associated with node t is

R(t) = αT (t)−1β(t)

 u∑
j=i∗

T (t)
(t)

qT (t)(j) · j − FT (t)(i
∗
T (t)(t)− 1) · hT (t)

 . (6.11)

Thus, R(t) accounts for the effects of monetary discounting, as well as the diminishing

probability of holding the asset until time T (t), so that R(t) approaches zero as

T (t) increases. Moreover, if at any node along the path to t, a threshold is set

so low that any offer is accepted, β(t) = 0 and no rewards are incurred in node

t. Aside from the effects of β(t) and αT (t)−1, the expected rewards in node t are

the scalar product of the vector of offer levels that are at least i∗T (t)(t) with their

corresponding vector of probabilities in period T (t), minus the probability of rejecting

the offer times the value of the holding penalty in period T (t). With a concise

description of the period, predecessor node, previous threshold sequence, survival

probability, and rewards associated with each node in the decision tree, we now give

a graphical illustration of the state of the node. As each node has a single entering arc,

these parameters are unique for each t. Again, the state is a distribution function.

Notice that the probability of not being in u + 1 when exiting node t decreases

by a factor of 1
FT (t)(i

∗
T (t)

(t)−1)
from the same probability when exiting node A(t), as

the conditional probability of rejecting the asset in node t given rejection in all of

node t’s predecessors is FT (t)(i
∗
T (t)(t)− 1). In general, the state description for node t

approaches a distribution with zero probability in all of the offer levels and probability
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Value Probability

l β(t)qT (t)(l)

l + 1 β(t)qT (t)(l + 1)

...
...

i∗T (t)(t)− 1 β(t)qT (t)(i
∗
T (t)(t)− 1)

i∗T (t)(t) 0

...
...

u 0

u + 1 1− β(t)FT (t)(i
∗
T (t)(t)− 1)

Table 6.1: Generating a Deterministic State from a Threshold Sequence

one in u+1 as T (t) grows large. See Appendix E.3 for a sketch of a tree of deterministic

states generated by setting threshold levels for a given asset selling forecast.

Proposition 6.12. Choose any forecast φ ∈ Φ and any sequence of thresholds {i∗n},

and let {tn} be the corresponding sequence of nodes in the deterministic formulation.

Then

1

β(tN)

∞∑
n=N

R(tn)

is the total expected discounted reward beginning period N of choosing threshold se-

quence {i∗n} for φ, conditional upon rejecting the offers in periods 1 through N − 1.

Proof. Proof by induction. Conditional upon rejecting the offers in periods 1 through

N − 1 for φ, one expects to incur a reward of

αN−1

 u∑
j=i∗N

qN(j) · j − FN(i∗N − 1) · hN

 =
R(tN)

β(tN)

in period N . The probability of rejecting the period N offer is FN(i∗N − 1). Then

the expected discounted reward in period N + 1 conditional upon rejecting the first
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N − 1 offers is

αNFN(i∗N − 1)

 u∑
j=i∗N+1

qN+1(j) · j − FN+1(i
∗
N+1 − 1) · hN+1

 =
R(tN+1)

β(tN)
.

So the total expected discounted rewards in periods N and N + 1 conditional upon

rejecting the first N−1 offers is 1
β(tN )

[R(tN) + R(tN+1)]. Now suppose that the result

is true for periods N through some M > N . The probability of rejecting the offers in

periods N through M is β(M+1)
β(N)

, so the expected discounted reward in period M + 1

is

αM β(tM+1)

β(tN)

 u∑
j=i∗M+1

qM+1(j) · j − FM+1(i
∗
M+1 − 1) · hM+1

 =
R(tM+1)

β(tN)
.

Thus, for any M > N , the total expected rewards in periods N through M is given

by 1
β(tN )

∑M
n=N R(tn). Since total expected rewards are bounded and converge as

M →∞, they are equal to 1
β(tN )

∑∞
n=N R(tn).

We can immediately draw the two following useful corollaries.

Corollary 6.13. Choose any forecast φ ∈ Φ and any sequence of thresholds {i∗n},

and let {tn} be the corresponding sequence of nodes in the deterministic formulation.

Then
∞∑

n=1

R(tn)

is the total expected discounted reward of choosing threshold sequence {i∗n} for φ.

Proof. Apply Proposition 6.12 with N = 1. Since β(t1) = 1, the result follows.

Corollary 6.14. For a given forecast φ ∈ Φ, a sequence of thresholds is optimal in

the stochastic formulation if and only if its corresponding node sequence is optimal in

the deterministic formulation.

Proof. We have already shown that the total discounted expected rewards of a thresh-

old sequence in the stochastic formulation is equivalent to the total rewards of the

node sequence generated by the threshold sequence in the deterministic formulation.
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Furthermore, any threshold sequence can be represented by a node sequence in the

deterministic formulation, so the maximum expected discounted total rewards in the

stochastic formulation forms a lower bound on the maximum reward node sequence in

the deterministic formulation. It remains only to show that there is no node sequence

that is not generated by some threshold sequence. But this is implied by the decision

tree structure, wherein each node bears the cumulative effects of all thresholds that

generated its predecessors.

6.4.2 Characterizing Solvable Asset Selling Forecasts Using
the Deterministic Formulation

We would like to know when to expect to find an optimal initial threshold in finite

time. Having shown that the total rewards of optimal paths in the decision tree are

equal to the total expected rewards of optimal threshold sequence, we can now exploit

the structure of the deterministic formulation to characterize problems whose optimal

initial threshold can be solved in finite time.

Definition 6.3. An optimal path {tk} in the decision tree of the deterministic for-

mulation of φ ∈ Φ is said to be optimally reachable from an optimal path {t′k} if there

exists an optimal path {t̂k} such that t̂m = tm and t̂n = t′n for some periods m and n,

n ≥ m.

Although the decision tree structure forbids the intersection of any two paths whose

initial arcs are distinct, two such paths could intersect after a state aggregation pro-

cess, transforming the decision tree into a dynamic programming network. This is

possible because the entire pertinent history - the survival probability after N − 1

periods - of a threshold sequence is contained in β(tN). No information about past re-

wards and costs is necessary because only one reward can be incurred, and each cost is

a one-time expense. Alternatively, this can be seen by recalling that the asset selling

problem is a Markov decision process, so the problem is inherently forward-looking

and there exist Markovian optimal policies.
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Definition 6.4. φ ∈ Φ is coalescent if, in the decision tree of its deterministic

formulation, there exists an optimal path {t∗k} such that any other optimal path is

optimally reachable from {t∗k}.

We now explicitly identify coalescence as a structural property of an asset selling

problem.

Lemma 6.15. φ ∈ Φ is coalescent if and only if one or both of the following is true.

(a) αV2(φ)− h1 is not integer-valued; i.e. the optimal initial threshold is unique.

(b) For some period N ′, FN ′(i∗N ′(φ)− 1) = 0 and αVN ′+1(φ)− hN ′ < i∗N ′(φ); i.e. it

is strictly optimal to accept an offer with probability one in period N ′.

Proof. If the optimal initial threshold is unique, then there is a unique optimal first-

period node in the decision tree. Thus, any optimal path has the same first-period

node, and φ is coalescent. If it is strictly optimal to accept an offer with probability

one in some period N ′, then any optimal path has β(tN) = 0 for all N > N ′. Thus,

all optimal paths have the same state for all periods beyond N ′, which has zero prob-

ability for all offer levels l through u and probability one for u + 1. In this case, any

of the optimal paths can optimally reach any other one in period N ′ + 1, and again,

φ is coalescent.

Now suppose that neither condition (a) nor condition (b) holds. Then the optimal ini-

tial threshold is not unique, and for any optimal node sequence {tn}, β(tn) > 0 for all

k. For ease of exposition, we assume that “multiple optimal thresholds” means there

are two optimal thresholds, although the argument to follow can easily be shown

to hold for higher numbers of thresholds. If no other period has multiple optimal

thresholds, then there are just two optimal node sequences {t1n} and {t2n}, and since

β(t12) 6= β(t22), β(t1n) 6= β(t2n) for all n ≥ 2, so t1n 6= t2n for all n ≥ 1 and φ is not

coalescent.
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Value State t1N ′ State t2N ′ State t3N ′ State t4N ′

l β(t1
N′ )qN′ (l) β(t1

N′ )qN′ (l) β(t2
N′ )qN′ (l) β(t2

N′ )qN′ (l)

...
...

...
...

...

i∗1
N′ − 1 β(t1

N′ )qN′ (i∗1
N′ − 1) β(t1

N′ )qN′ (i∗1
N′ − 1) β(t2

N′ )qN′ (i∗1
N′ − 1) β(t2

N′ )qN′ (i∗1
N′ − 1)

i∗1
N′ 0 β(t1

N′ )qN′ (i∗1
N′ ) 0 β(t2

N′ )qN′ (i∗1
N′ )

i∗1
N′ + 1 0 0 0 0

...
...

...
...

...

u 0 0 0 0

u + 1 1− β(t1
N′ )FN′ (i∗1

N′ − 1) 1− β(t1
N′ )FN′ (i∗1

N′ ) 1− β(t2
N′ )FN′ (i∗1

N′ − 1) 1− β(t2
N′ )FN′ (i∗1

N′ )

Table 6.2: Multiple Optimal States for Non-Coalescent Asset Selling Forecast

On the other hand, suppose there exists some period N ′ with multiple optimal thresh-

olds i∗1N ′ and i∗2N ′ = c1
N ′ + 1. Then there are four optimal period N ′ nodes, displayed

in Table 6.2 in their tabular form.

Since β(t1N ′) 6= β(t2N ′), it can easily be seen that none of the four states are identical.

Furthermore, any optimal state tN , N > N ′ must have one of these four states along

its path from the root node. If all optimal thresholds beyond period N ′ are unique,

then there are four optimal paths, and four optimal states in period N ′ + 1, say

t1N ′+1, . . . , t
4
N ′+1. Let t1N ′+1 and t2N ′+1 have first-period state t11 in their paths and let

the other two have first period state t21. Even though t1N ′+1 and t2N ′+1 have the same

state in period 1, the fact that one arises from using threshold i∗1N ′ and the other from

threshold i∗2N ′ = i∗1N ′ + 1 in period N ′ means that β(t1N ′+1) 6= β(t2N ′+1). A similar argu-

ment shows that β(t3N ′+1) 6= β(t4N ′+1). While it may be true that β(t2N ′+1) = β(t3N ′+1)

(if, for example, F1(i
∗
1 − 1) = FN ′(i∗N ′ − 1) and F1(i

∗
1) = FN ′(i∗N ′)), it is not true

that β(t1N ′+1) = β(t4N ′+1); in fact, β(t1N ′+1) < β(t4N ′+1). Thus, if {t1n} and {t4n} are

the optimal node sequences passing through states t1N ′+1 and t4N ′+1, respectively, we

see that there is no optimal node sequence that optimally reaches both {t1n} and {t4n}.
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Applying the same argument to any quadruplets of optimal states in any future

period, or even to higher numbers of optimal states if there are other periods with

multiple optimal thresholds, we can construct at least one pair of optimal state se-

quences, neither of which can be optimally reached by a common optimal path. We

conclude that φ is not coalescent.

We now present the main result of this section.

Theorem 6.16. φ ∈ Φ is well-posed if and only if it is coalescent.

Proof. First, suppose that φ is coalescent. Then, by Lemma 6.15, either the optimal

initial threshold is unique or it is strictly optimal to accept an offer with probability

one in some period N ′ (or both). We will show that either of these conditions estab-

lishes well-posedness of φ.

Case 1: i∗1(φ) is unique. That uniqueness of the optimal initial threshold implies well-

posedness was already established in Theorem 6.8.

Case 2: FN ′(i∗N ′(φ)− 1) = 0. In this case, we can determine N∗ such that i∗1(φ) is

also an optimal initial threshold for any φ′ ∈ ΦN∗
(φ). Define

M∗(φ) = min
[
N |i∗N ′(φN) > αVN ′+1(φ)− hN ′ − αN−1hN + αNu

]
. (6.12)

Observe that M∗(φ) is finite since, by hypothesis, αVN ′+1(φ) − hN ′ < i∗N ′(φ). Then,

following the same idea used in the proof of Theorem 6.8, for all φ′ ∈ ΦN ′+M∗(φ)(φ),

i∗N ′(φ′) = i∗N ′(φ). Thus, for each φ′ ∈ ΦN ′+M∗(φ)(φ), it is strictly optimal to accept

any offer in period N ′. Since problem φN ′
also optimally accepts any offer in period

N ′, the optimal initial threshold for φN ′
is also optimal for any φ′ ∈ ΦN ′+M∗(φ)(φ),

and φ is well-posed.
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Now suppose that φ is well-posed but not coalescent. Then there exists a period

N∗ and an initial threshold i∗1 such that i∗1 is also an optimal initial threshold for any

φ′ ∈ ΦN∗
(φ). Since φ is not coalescent, it must have multiple optimal initial thresh-

olds, and in no period is it strictly optimal to accept every offer. Due to this latter

fact, for any optimal path {tn} in the decision tree of the deterministic formulation

(and there must be at least two such paths since there are multiple optimal initial

thresholds), β(tn) > 0 for all n, i.e., the probability of survival to an arbitrary future

state is always strictly positive.

It must also be true that for all n, Fn (bαu− hnc) > 0; i.e. no period guarantees

an unbeatable offer. Consider the two forecasts nφ̄,n φ ∈ Φn(φ), with the distinction

that N φ̄ satisfies qN+1(u) = 1 and for Nφ, qn(l) = 1 for all n > N . Also, let the

holding penalty in period n of both N φ̄ and Nφ be identical to that under φ, in all

periods n > N , so that N φ̄ and Nφ constitute best- and worst-case forecasts, respec-

tively, among all those in agreement with φ through period N . Then, for each N , the

maximum expected rewards beginning period N + 1 under forecast N φ̄ are strictly

greater than those under forecast φ, and the maximum expected rewards beginning

period N + 1 under forecast Nφ are strictly less than those under forecast φ. We

conclude that

αV2(
Nφ) < αV2(φ) < αV2(

N φ̄),

and since i∗1(φ) = αV2(φ) − h1, it is true that i∗1(
Nφ) < i∗1(

N φ̄), so that there is

no optimal initial threshold that is optimal for all φ′ ∈ ΦN(φ). Having chosen N

arbitrarily, we see that φ is not well-posed. We have achieved a contradiction and

this completes the proof.
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6.5 Solving the Infinite Horizon Asset Selling

Problem

In [16], §6, the authors give a solution procedure for a general class of MDPs, including

the asset selling problem formulated in this chapter, which will find a forecast horizon

any time one exists for a given forecast with respect to its class of potential forecasts.

The solution procedure suggested in 6.5.1, while differing in nomenclature, operates

in much the same manner. It is also shown that the forecast horizon calculated by the

solution procedure is, in fact, the minimum forecast horizon. Section 6.5.2 discusses

the average forecast horizon, as well as factors that contribute to the variability in the

forecast horizon. Section 6.5.3 analyzes the performance of the solution procedure in

a series of randomly generated asset selling forecasts.

6.5.1 Solution Procedure

As in [16], §6, we first define the finite horizon best- and worst-case problems φ̄N

and φN (similar to N φ̄ and Nφ in the proof of Theorem 6.16 of [16]). Let φ̄N be

equivalent to the finite horizon problem φN , with the only difference being that the

reward associated with rejecting an offer in period N is αu− hN rather than simply

−hN . The quantity αu − hN represents the maximum possible rewards beginning

period N , discounted to period N , conditional upon rejecting the offers in periods 1

through N , over all φ′ ∈ ΦN(φ). On the other hand, let φN = φN , since the maximum

total expected reward of φ is at least that of φN . Then 〈φ̄N〉 and 〈φN〉 represent the

problems
〈
φN

〉
and

〈
φ̄N

〉
, respectively, in the Iterate step of the Forecast Horizon

Algorithm in [16].

The Forecast Horizon Algorithm looks for policy convergence in the optimal poli-

cies to the increasingly longer best- and worst-case problems. Because we know that

optimal policies to the asset selling problem take the form of thresholds, we can sim-
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plify the Terminate phase of the algorithm. To do this, we need only to keep track of

V2(φ̄
N) and V2(φ

N) since the optimal initial thresholds to φ̄N and φN depend solely

upon these quantities and on their first-period parameters (φ1).

Algorithm 6.1.

1. Set N = 2.

2. Solve 〈φ̄N〉 and 〈φN〉 to get V2(φ̄
N) and V2(φ

N).

3. If one of the following is satisfied, stop and go to step 4. Otherwise, increment

N by 1 and return to step 2.

(a) For some l ≤ k ≤ u−1, k < αV2(φ
N)−h1 < k+1 and k < αV2(φ̄

N)−h1 ≤

k + 1.

(b) For some l ≤ k ≤ u−1, k ≤ αV2(φ
N)−h1 < k+1 and k < αV2(φ̄

N)−h1 <

k + 1.

4. Return i∗1(φ) = i∗1(φ
N).

Theorem 6.17. Algorithm 6.1 will stop in finite time if and only if φ is well-posed.

Proof. Suppose first that φ is well-posed. Then by Theorem 6.16, either k < αV2(φ)−

h1 < k + 1 for some l ≤ k ≤ u − 1 or FN ′(i∗N ′(φ) − 1) = 0 for some N ′ ≥ 1. If the

first condition is true, then since V2(φ
N) ≤ V2(φ) ≤ V2(φ̄

N) for all N , and V2(φ
N) and

V2(φ̄
N) converge monotonically to V2(φ) from below and above, respectively, there

necessarily exists some period N∗ such that either

k < αV2(φ
N∗

)− h1 ≤ αV2(φ)− h1 ≤ αV2(φ̄
N∗

)− h1 ≤ k + 1

or

k ≤ αV2(H
N∗

, N∗)− h1 ≤ αV2(φ)− h1 ≤ αV2(φ̄
N∗

)− h1 < k + 1.

Thus, either condition (a) or condition (b) of Algorithm 6.1 will be satisfied at period

N∗ and the algorithm will stop.
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If the second condition above is true, i.e. FN ′(i∗N ′(φ) − 1) = 0 for some N ′ ≥ 1,

then V2(φ
N) = V2(φ

N ′
) for all N ≥ N ′. This is true because i∗N ′(φN ′

) = l and

i∗N ′(φN) is nondecreasing in N , so that there is always zero probability of optimally

rejecting the offer in period N ′ under problem φN . If k < αV2(φ
N ′

) − h1 < k + 1

for some l ≤ k ≤ u − 1, then there exists some period M∗(φ) > N ′ such that

αV2(φ
N ′

) + αM∗(φ)u − h1 < k + 1, and thus both condition (a) and condition (b)

will be satisfied at period M∗(φ) and the algorithm will stop. On the other hand, if

k = V2(φ
N ′

)−h1 for some l ≤ k ≤ u−1, then after M∗∗(φ) = N ′+logαd 1
u
e periods, it

is true that αV2(φ
N ′

)+αM∗∗(φ)u−h1 < k +1, and condition (b) of the algorithm will

cause it to stop. We see that any well-posed problem will be detected by the algorithm.

Now suppose that the algorithm stops at some time M . Our investigation will proceed

casewise, depending on whether condition (a) or condition (b) caused the algorithm

to stop.

Case 1: Condition (a). For some l ≤ k ≤ u − 1, k < αV2(φ
M) − h1 < k + 1 and

k < αV2(φ̄
M)− h1 ≤ k + 1. If the last inequality is strict, i.e. αV2(φ̄

M)− h1 < k + 1,

then k < αV2(φ
M)− h1 ≤ αV2(φ)− h1 ≤ αV2(φ̄

M)− h1 < k + 1, so that the infinite

horizon optimal initial threshold is unique and φ is well-posd. If the inequality is not

strict, it is still possible that the infinite horizon optimal initial threshold is unique.

The other possibility is that αV2(φ)− h1 ≤ αV2(φ̄
M)− h1 = k + 1. But this implies

that an offer of value u arrives with probability one in period M + 1, so that offer is

always optimally accepted with probability one and φ is well-posed.

Case 2: Condition (b). For some l ≤ k ≤ u − 1, k ≤ αV2(φ
M) − h1 < k + 1 and

k < αV2(φ̄
M)−h1 < k + 1. Similar to Case 1, if the first inequality is strict, then the

infinite horizon optimal initial threshold is unique and φ is well-posed. If, on the other
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hand, k = αV2(φ
M)− h1 and αV2(φ̄

M)− h1 < k + 1, then k ≤ αV2(φ)− h1 < k + 1,

so that k + 1 is an infinite horizon optimal initial threshold for any φ′ ∈ ΦM(φ), and

φ is well-posed.

We have just shown that Algorithm 6.1 will solve any well-posed problem. In other

words, if a forecast horizon exists, Algorithm 6.1 will detect it in finite time. Keeping

in mind that a primary consideration in solving the infinite horizon asset selling

problem is to minimize the required number of periods’ worth of forecast, Algorithm

6.1 would ideally stop at the minimum forecast horizon, which is defined as follows.

Definition 6.5. Period N∗∗(φ) is called the minimum forecast horizon for problem φ

if it is a forecast horizon for φ and, for any n < N∗∗(φ), there exists some φ′ ∈ Φn(φ)

such that i∗1(φ
′) > i∗1(φ).

Theorem 6.18. For any well-posed φ ∈ Φ, Algorithm 6.1 will stop after exactly

N∗∗(φ) periods.

Proof. For any n < N∗∗(φ), it must be that i∗1(φ̄
n) > i∗1(φ

n) since 〈φn〉 and 〈φ̄n〉 must

possess the minimum and maximum optimal initial thresholds over all φ′ ∈ Φn(φ).

But under this condition, Algorithm 6.1 will not stop at period n.

On the other hand, since N∗∗(φ) is a forecast horizon for φ, for every φ′ ∈ ΦN∗∗(φ)(φ),

i∗1(φ) must be an optimal initial threshold for φ′. The forecasts that achieve the min-

imum and maximum values of the V2(·) function in this set are φN∗∗(φ) and φ̄N∗∗(φ).

But since these both have i∗1(φ) as a common optimal initial threshold, Algorithm 6.1

will surely stop at period N∗∗(φ).

6.5.2 Algorithm Performance

We are interested in predicting the performance of Algorithm 6.1 with respect to the

problem class Φ. In particular, to avoid placing any restrictions on the offer distribu-

tions or holding penalties, we will analyze the algorithm’s performance as a function
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of u. Implicitly, we will assume that l = 0, though the results here will hold no matter

the value of l. Indeed, it is the magnitude of u which will be seen to primarily dictate

the algorithm’s performance.

We begin by introducing the problem-dependent quantities

d(φ) = i∗1(φ)− (αV2(φ)− h1) (6.13)

g(φ) = min
[
N : i∗1(φ)− 1 < αV2(φ̄

N)− h1 ≤ i∗1(φ)
]

(6.14)

h(φ) = min
[
N : i∗1(φ)− 1 < αV2(φ

N)− h1 ≤ i∗1(φ)
]

(6.15)

For ease of exposition, we will momentarily assume that αV2(φ) − h1 is not integer-

valued. Under this assumption, N∗∗(φ) = max[g(φ), h(φ)]. Thus, by Theorem 6.18,

Algorithm 6.1 will solve problem φ after max[g(φ), h(φ)] periods. In general, because

g(φ) is explicitly dependent upon the magnitude of u due to the maximum terminal

reward applied in φ̄N , we can expect that g(φ) > h(φ). Of course, in a minority

of problems, this may not be true. In those problems, αV2(φ
N) − h1 approaches

i∗1(φ) − 1 from below more slowly than αV2(φ̄
N) − h1 approaches i∗1(φ) from above.

It is not immediately clear what role u plays, if any, in delaying the convergence of

αV2(φ
N) − h1 (this is difficult to investigate without imposing some structure upon

the offer distributions). However, the following is true for the majority of problems.

Proposition 6.19. For all φ such that g(φ) > h(φ), the average minimum forecast

horizon is proportional to log(u).

Proof. Since V2(φ
N) ≤ V2(φ) ≤ V2(φ̄

N) for all N , and by the definition of d(φ), we

see that for φ such that g(φ) > h(φ),

g(φ) ≤ min[N : αV2(φ̄
N)− αV2(φ

N) ≤ d(φ)]

≤ min[N : αNu ≤ d(φ)]
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Taking the log (with base > 1) of both sides, we see that

N log(α) + log(u) ≤ log(d(φ))

N ≤ log(d(φ))− log(u)

log(α)

Now, d(φ) is an unknown constant that varies as a function of φ, for fixed u, between

zero and one. Thus, the average value of log(d(φ))
log(α)

is some positive constant, and since

log(α) < 0, − log(u)
log(α)

is also a positive constant, dependent upon u. We conclude that

the average minimum forecast horizon, for all problems φ in which g(φ) > h(φ), is

proportional to log(u).

6.5.3 Numerical Studies

Although we know that for the majority of problems, the minimum forecast horizon

is, on average, proportional to log u, it is not clear what the magnitudes of forecast

horizons are. Also, since we have seen that the forecast horizon for well-posed prob-

lem φ ∈ Φ is dependent upon the unknown quantities g(φ) and h(φ), we cannot yet

say anything about the distribution of the forecast horizon for a given u, where φ

is chosen randomly. To better approximate the distribution of the forecast horizon,

we ran a series of numerical experiments where asset selling forecasts were randomly

generated and the minimum forecast horizon was computed for each, for a variety of

values of u: 10, 30, 50, 70, 90, 100, 200, 400, 600, 800, and 1000.

For simplicity, the asset selling forecasts consisted solely of the offer distributions,

i.e., there were no holding penalties. The offer distributions were discrete, triangular

distributions on the interval [0, u]. The peak of the triangle shifted randomly from

period to period, with a 50% chance of increasing and a 50% chance of decreasing,

and was permitted to shift at most 80% of the distance to u (if increasing) or to 0 (if

decreasing).
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Figure 6.2: Plots of Forecast Horizon Versus i∗1(φ)− αV2(φ
N∗∗(φ))

For each value of u, 1000 streams of offer distributions were generated, and each

was stopped as soon as the stopping rule in the algorithm was satisfied. Thus, for

each value of u, the study found 1000 forecast horizons, and also calculated (for each

φ) the quantity i∗1(φ)− αV2(φ
N∗∗(φ)). Plots of N∗∗(φ) versus i∗1(φ)− αV2(φ

N∗∗(φ)) are

shown in Figure 6.2 for u = 10 (top left), u = 100 (top right), and u = 1000 (bottom).

Confirming Proposition 6.19, the average forecast horizon increased logarithmically

in u. The results were also encouraging in that the maximum forecast horizon (out

of 1000 trials) and the standard deviation also increased logarithmically in u, and

the standard deviation even appeared to asymptotically approach a constant. These

trends can be seen in Figure 6.3, where the maximum is represented by triangles,

the average by diamonds, and the standard deviation by squares, for 1000 randomly
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Figure 6.3: Plots of Performance Statistics for Algorithm 6.1

generated problems for each value of u. Values of u are on the x-axis.

We also see that as i∗1(φ) − αV2(φ
N∗∗(φ)) approaches 0 (implying that g(φ) � h(φ)

probably) or 1 (h(φ) � g(φ) probably), forecast horizons are longer in general. It

appears, in fact, that for larger values of u, there are relatively fewer forecasts which

result in d(φ) is close to zero, so that it is more likely that a given problem will have

a minimum forecast horizon proportional to log(u). Lastly, it should be noted that

none of the 11,000 forecasts (as well as several thousand additional trial runs) failed

to be solved, which supports the claim in Theorem 6.11.

6.6 Conclusions

Optimal solutions to the discrete-valued, infinite horizon asset selling problem are

characterized by a threshold acceptance policy in each period. The thresholds in

each period of the finite horizon truncations of any asset selling problem are mono-

tonically increasing in the length of the truncation. Using a rigorous definition of

solvability called well-posedness, we showed that any problem whose infinite horizon

optimal initial threshold is unique is well-posed. Practically all problem instances

satisfy the uniqueness condition, so that practically all problems are well-posed.
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Under a deterministic reformulation of the asset selling problem, it can be seen that

a forecast is well-posed if and only if either the optimal initial threshold is unique

or it is optimal to accept any offer in some period. Although it may not be possible

to bound a priori the number of periods worth of forecast required to solve for an

optimal initial threshold, we provided a solution procedure which will detect in finite

time an optimal initial threshold for any well-posed problem. Moreover, the solu-

tion procedure can be applied recursively to find in finite time each of the optimal

thresholds for a given infinite horizon forecast.
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Chapter 7

Conclusions

This thesis approached the topic of solving discrete, nonstationary, infinite horizon

optimization problems - problems that are in general unsolvable unless (i) the deci-

sion maker is content to make at most a few decisions at a time, and (ii) the dynamic

programming formulation of the problem possesses some key characteristics. We have

assumed the first condition and have given a characteristic which is both necessary

and sufficient in support of the second condition. This characteristic is called coales-

cence, and it roughly implies that there exists an optimal sequence of states for the

given problem (called a source path) such that any other optimal sequence of states

can be optimally reached from some leading segment of the source path. Naturally,

when the problem possesses a unique optimal solution, it is coalescent, but we have

expressly avoided assuming uniqueness of any optimal decisions. Indeed, coalescence

can be satisfied even in the presence of multiple optima.

Coalescence is shown to be necessary and sufficient for finite solvability of an infinite

horizon nonstationary version of the following problems: uncapacitated production

planning without backlogging, single equipment replacement, and capacitated inven-

tory planning with revenues and lost sales. The common problem characteristics that

allowed coalescence to be equivalent to solvable were
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• the possibility that each feasible (alternatively, potentially optimal) state in

each period for each problem is strictly optimal for some problem in agreement

with the given problem through the given period;

• the existence of a partial feasible decision sequence to connect any pair of feasible

(potentially optimal) states for any problem within a uniformly bounded number

of periods;

• the finiteness of the feasible (potentially optimal) states in each period for each

problem.

Using these common problem properties as assumptions, we showed that coalescence

is equivalent to finite solvability for more generic classes of deterministic optimization

problems. Interestingly, the same relationship holds for a simple stochastic optimiza-

tion problem - the asset selling problem. Moreover, coalescence has a straightforward

meaning in the context of that problem - either the optimal solution is unique (almost

surely met) or an unbeatable offer is forecast to arrive with certainty in some period

(trivializing the problem). Thus, the solvability of an infinite horizon nonstationary

asset selling problem is all but assured.

Future work could include establishing that other well-known or significant appli-

cations fall within the generic classes of optimization problems defined in Chapter 5.

In general, the most difficult part of making these establishments is likely to be show-

ing that the first Type I or Type II Assumption - that each potentially optimal (or

finite) state in each period for each problem is the unique optimal state in that period

for some other problem. Another major complication that has posed difficulties in the

development of stopping rule algorithms for the dynamic lot size model (among other

applications) in the literature is determining the minimal sets of potentially optimal

states in each period for each problem. Discussions on this topic can be found in [32],

[23], and [24].
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Another area of fruitful work could be determining a more general class of stochastic

problems for which coalescence is equivalent to finite solvability. A difficulty here

becomes the state space, as a deterministic reformulation may be required in order

to describe the state of the system after invoking a strategy over a finite number of

periods.
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Appendix A

An Infinite Horizon Concave Cost
Production Planning Problem

A.1 Justification of Zero-Inventory Ordering

Policy (Equation (2.2))

If there were an optimal production plan for the infinite horizon problem that did

not satisfy (2.2), a unit of inventory would be carried over either an infinite or a

finite interval in which there is at least one production point. If the former case

(carried over an infinite horizon) is true, then clearly the extra unit of inventory is

never used to satisfy demand. By Assumption 2.1, total cost remains the same or

decreases by dropping the extra unit of inventory and hence not paying production

or holding costs for it. In the latter case, there is some interval {a, a + 1, . . . , b}

such that a and b are both production points and c ∈ {a + 1, a + 2, . . . , b − 1} is

also a production point, but ic, the inventory level beginning period c, is strictly

positive. By the Principle of Optimality, with optimal production points occurring in

periods a and b, the decisions made in periods {a, a + 1, . . . , b− 1} should be optimal

for the subproblem on that interval. However, as noted in Denardo [19], any finite

horizon concave cost production planning problem has at least one optimal solution

satisfying the zero-inventory ordering policy. Thus, there exists an optimal solution

to the subproblem (and hence the infinite horizon problem) such that ic = 0.
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A.2 A DLSM Instance With Non-Monotonic

Last Production Points

Let p be a stationary problem with dn = 2 for all n, hn(x) = x
4

for all n, and

cn(x) =


1 + x, n = 1

5, n = 2
x, n ≥ 3

.

Then for the first six periods, for any .77 ≤ α ≤ 1.0, the optimal finite horizon pro-

duction plans are unique, and the last optimal production point is non-monotonic. As

can be seen in the table below, the optimal last production point actually decreases

from period 3 to period 2 when going to the 5-period problem from the 4-period prob-

lem. Moreover, note that all of the stopping rules based on monotonicity in the last

production point given by the authors referenced in this chapter would have stopped

after three periods because an optimal production point occurred in the terminal pe-

riod of that problem. We see here that those stopping rules do not hold when costs

are general concave, or even when the DLSM is given in its general form.

Period Optimal setups

1 1
2 1
3 1,3
4 1,3
5 1,2
6 1,2

A.3 Proof of Lemma 2.1

Lemma 2.1. Let p ∈ P and choose any subsequence of integers {nj} with associated

forecasts {p(nj)}, p(nj) ∈ Pnj(p) ∀n. Then there exist a further subsequence {njk
} ⊆

{nj} with associated optimal production plans {x̃∗(njk
)}, x̃∗(njk

) ∈ X ∗ (p(njk
)) ∀n

and some x̃∗ ∈ X ∗(p) such that x̃∗(njk
) → x̃∗, where convergence is componentwise.

Proof. It will suffice to show the following:
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1. Some subsequence {p(njk
)} of {p(nj)} must have optimal production plans

{x̃∗(njk
)} converge to a limit point x̃∗ which is feasible for p.

2. x̃∗ is optimal for p.

We now proceed with the proof, claim by claim.

1. Let {x̃∗(nj)} be any subsequence of optimal production plans corresponding

to the forecast subsequence {p(nj)}. By Assumption 2.2 and the definition of

d̄, there are at most Ld̄ + 1 potentially optimal production decisions in each

period when solving any p′ ∈ P . Thus, each period’s potentially optimal deci-

sion space Y = {0, 1, 2, . . . , Ld̄} is finite and therefore compact. The Tychonoff

Theorem gives that
∏∞

n=1 Y is compact in the product topology of componen-

twise convergence. Thus, we can construct subsequences {njk
} ⊆ {nj} and

{p(njk
)} ⊆ {p(nj)} of periods and associated forecasts, respectively, such that

the optimal production plans {x̃∗(njk
)} over the forecasts must converge to a

limit point x̃∗, as claimed. To see that x̃∗ is feasible for p, we note that the first

njk
decisions of x̃∗(njk

) are feasible for p, for each k.

2. Now we will show that x̃∗ ∈ X ∗(p). Let y∗ be an infinite horizon optimal

production plan for p, with corresponding inventory plan i∗. Let ĩ∗ and ĩ∗(njk
)

be the optimal inventory plans resulting from the optimal production plans x̃∗

and x̃∗(njk
), respectively. Also, let d(njk

) be the demand forecast belonging to

p(njk
). We first make the observation that for any k, the production plan

y(njk
) ≡ (y∗1, . . . , y

∗
njk

, dnjk
+1(njk

), dnjk
+2(njk

), . . .)

is feasible (although not necessarily optimal) for p(njk
). Then, for all k,

V (p(njk
), y(njk

)) ≥ V (p(njk
), x̃∗(njk

)). (A.1)

We are now in a position to show that x̃∗ is infinite horizon optimal for p. Since

p(njk
) → p and y(njk

) → y∗, finiteness and continuity of V (·, ·) gives us that
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V (p(njk
), y(njk

))→ V (p, y∗). A similar argument shows that V (p(njk
), x̃∗(njk

))→

V (p, x̃∗). Thus, by (A.1), V (p, x̃∗) ≤ V (p, y∗). But x̃∗ is feasible for p and y∗ is

optimal for p, so that x̃∗ must also be optimal for p, as desired.

117



Appendix B

An Infinite Horizon Equipment
Replacement Problem

B.1 Proof of Lemma 3.4

Lemma 3.4. Consider a forecast c and a sequence of forecasts {c(n)}∞n=1 where

c(n) ∈ Cn(c) ∀n. Then there is some subsequence {nk}∞k=1, a corresponding sequence

of optimal replacement strategies {x̂∗(k) ∈ X ∗(c(nk))}∞k=1, and x∗ ∈ X ∗(c) such that

x̂∗(k) → x∗.

Proof. It will suffice to show the following:

1. Some subsequence {c(njk
)} of {c(nj)} must have optimal replacement strategies

{x̃∗(njk
)} converging to a limit point x̃∗ which is feasible for c.

2. x̃∗ is optimal for c.

We now proceed with the proof, claim by claim.

1. Let {x̃∗(nj)} be any subsequence of optimal replacement strategies correspond-

ing to the forecast subsequence {c(nj)}. By definition of the maximum feasible

lifetime L, there are at most L potentially optimal replacement decisions in each

period when solving any c′ ∈ C. Thus, each period’s potentially optimal deci-

sion space Y = {0, 1, 2, . . . , L} is finite and therefore compact. The Tychonoff

Theorem gives that
∏∞

n=1 Y is compact in the product topology of componen-

twise convergence. Thus, we can construct subsequences {njk
} ⊆ {nj} and
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{c(njk
)} ⊆ {c(nj)} of periods and associated forecasts, respectively, such that

the optimal replacement strategies {x̃∗(njk
)} over the forecasts must converge

to a limit point x̃∗, as claimed. To see that x̃∗ is feasible for c, we note that the

first njk
decisions of x̃∗(njk

) are feasible for c, for each k, and a new piece of

equipment can be purchased for any lifetime up to L at any point in the future.

2. Now we will show that x̃∗ ∈ X ∗(c). Let y∗ be an infinite horizon optimal replace-

ment strategy for c. Let b(njk
) be the business requirement forecast belonging to

c(njk
). We first make the observation that for any k, the replacement strategy

y(njk
) ≡ (y∗1, . . . , y

∗
njk

, b(njk
)njk

+1, b(njk
)njk

+2, . . .)

is feasible (although not necessarily optimal) for c(njk
). Then, for all k,

V (p(njk
), y(njk

)) ≥ V (p(njk
), x̃∗(njk

)). (B.1)

We are now in a position to show that x̃∗ is infinite horizon optimal for c. Since

c(njk
) → c and y(njk

) → y∗, finiteness and continuity of V (·, ·) gives us that

V (c(njk
), y(njk

))→ V (c, y∗). A similar argument shows that V (c(njk
), x̃∗(njk

))→

V (c, x̃∗). Thus, by (B.1), V (c, x̃∗) ≤ V (c, y∗). But x̃∗ is feasible for c and y∗ is

optimal for c, so that x̃∗ must also be optimal for c, as desired.
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Appendix C

An Infinite Horizon Capacitated
Inventory Planning Problem

C.1 Proof of Lemma 4.4

Lemma 4.4. Let φ ∈ Φ and choose any subsequence of integers {nj} with asso-

ciated forecasts {φ(nj)}, φ(nj) ∈ Φnj(φ) for all n. Then there exist a further sub-

sequence {njk
} ⊆ {nj} with associated optimal fulfillment strategies {x̃∗(njk

)} opti-

mal for φ(njk
) for each k and some optimal fulfillment strategy x̃∗ for φ such that

x̃∗(njk
) → x̃∗, where convergence is componentwise.

Proof. It will suffice to show the following:

1. Some subsequence {φ(njk
)} of {φ(nj)} must have optimal fulfillment strategies

{x̃∗(njk
)} converge to a limit point x̃∗ which is feasible for φ.

2. x̃∗ is optimal for φ.

We now proceed with the proof, claim by claim.

1. Let {x̃∗(nj)} be any subsequence of optimal fulfillment strategies corresponding

to the forecast subsequence {φ(nj)}. By the definition of S̄, there are at most

(S̄ +1)2 (the product of the maximum number of feasible fulfillment and inven-

tory quantities) potentially optimal fulfillment decisions in each period when

solving any φ′ ∈ Φ. Thus, each period’s potentially optimal decision space Y
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is finite and therefore compact. The Tychonoff Theorem gives that
∏∞

n=1 Y is

compact in the product topology of componentwise convergence. Thus, we can

construct subsequences {njk
} ⊆ {nj} and {p(njk

)} ⊆ {p(nj)} of periods and

associated forecasts, respectively, such that the optimal fulfillment strategies

{x̃∗(njk
)} over the forecasts must converge to a limit point x̃∗, as claimed. To

see that x̃∗ is feasible for φ, we note that the first njk
decisions of x̃∗(njk

) are

feasible for φ, for each k, and by Remarks 4.2 and 4.3, one can feasibly connect

any pair of feasible states for any problem in a uniformly bounded amount of

time.

2. Now we will show that x̃∗ is optimal for φ. Let x∗ = (y∗, z∗) be an infinite

horizon optimal fulfillment strategy for φ. Let ỹ∗ and ỹ∗(njk
) be the optimal

inventory quantities resulting from the optimal fulfillment strategies x̃∗ and

x̃∗(njk
), respectively. Also, let d(njk

) be the demand forecast belonging to

φ(njk
). We first make the observation that for any k, the fulfillment strategy

x(njk
) ≡ ((y∗1, z

∗
1), . . . , (y

∗
njk

, z∗njk
), ((y∗njk

− dnjk
+1(njk

))+, min(dnjk
+1(njk

), S̄),

((y∗njk
− dnjk

+1(njk
)− dnjk

+2(njk
))+, min(dnjk

+2(njk
), S̄), . . .)

is feasible (although not necessarily optimal) for φ(njk
). Then, for all k, the

total profit of using fulfillment strategy x(njk
) under forecast φ(njk

) is no more

than that of using fulfillment strategy x̃∗(njk
) for forecast φ(njk

). We are now

in a position to show that x̃∗ is infinite horizon optimal for φ. Since φ(njk
)→ φ

and x(njk
) → x∗, by Assumption 4.2, the total profit of fulfillment strategy

x(njk
) for forecast φ(njk

) must converge in k to the total profit of fulfillment

strategy x∗ for forecast φ. A similar argument shows that the total profit of

fulfillment strategy x̃∗(njk
) for forecast φ(njk

) must converge in k to the total

profit of fulfillment strategy x̃∗ for forecast φ. Thus, the total profit of fulfillment

strategy x̃∗ for forecast φ is at least that of fulfillment strategy x∗ for foercast φ.

But x̃∗ is feasible for φ and y∗ is optimal for φ, so that x̃∗ must also be optimal
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for φ, as desired.
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Appendix D

General Deterministic Infinite
Horizon Optimization

D.1 Proof of Lemma 5.1

Lemma 5.1. Let p ∈ P and choose any increasing subsequence of positive integers

{nj} with associated forecasts {p(nj)}, where p(nj) ∈ Pnj(p) ∀n. Then, under the

Type I Assumptions, there exist a further subsequence {njk
} ⊆ {nj} with associated

optimal decision sequences {x̃∗(njk
)}, x̃∗(njk

) ∈ X ∗ (p(njk
)) ∀n, and some x̃∗ ∈ X∗(p)

such that x̃∗(njk
) → x̃∗, where convergence is componentwise.

Proof. It will suffice to show the following:

1. Some subsequence {p(njk
)} of {p(nj)} must have optimal decision sequences

{x̃∗(njk
)} converging to a limit point x̃∗ ∈ X(p).

2. x̃∗ ∈ X∗(p).

We now proceed with the proof, claim by claim.

1. Let {x̃∗(nj)} be any subsequence of optimal decision sequences corresponding

to the forecast subsequence {p(nj)}. By the third Type I Assumption, there are

finitely many potentially optimal decisions in each period for any p′ ∈ P , so that

X∗∗
N (p) compact. The Tychonoff Theorem gives that

∏∞
N=1 X∗∗

N (p) is compact

in the product topology of componentwise convergence. Thus, we can construct
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subsequences {njk
} ⊆ {nj} and {p(njk

)} ⊆ {p(nj)} of periods and associated

forecasts, respectively, such that the optimal decision sequences {x̃∗(njk
)} over

the forecasts must converge to a limit point x̃∗, as claimed. To see that x̃∗

is feasible for p, we note that the first njk
decisions of x̃∗(njk

) are potentially

optimal and therefore feasible for p, for each k.

2. Now we will show that x̃∗ ∈ X∗(p). Let y∗ be an infinite horizon optimal decision

sequence for p, with corresponding state sequence s∗. Let s̃∗ and s̃∗(njk
) be the

optimal state sequences resulting from the optimal decision sequences x̃∗ and

x̃∗(njk
), respectively. We first make the observation that for any k, by the second

Type I Assumption, since s∗njk
−L and s̃∗njk

(njk
) are both potentially optimal for

p(njk
) there exists a decision sequence ỹ(njk

) such that

ỹ(njk
) ≡ (y∗1, . . . , y

∗
njk

−L, ỹnjk
−L+1(njk

), ỹnjk
−L+2(njk

), . . .)

is feasible (although not necessarily optimal) for p(njk
), and

snjk
(p(njk

), ỹ(njk
)) = s̃∗njk

(njk
).

Then, for all k,

V (p(njk
), ỹ(njk

)) ≥ V (p(njk
), x̃∗(njk

)). (D.1)

We are now in a position to show that x̃∗ is infinite horizon optimal for p. Since

p(njk
) → p and y(njk

) → y∗, finiteness and continuity of V (·, ·) gives us that

V (p(njk
), y(njk

))→ V (p, y∗). A similar argument shows that V (p(njk
), x̃∗(njk

))→

V (p, x̃∗). Thus, by (D.1), V (p, x̃∗) ≤ V (p, y∗). But x̃∗ is feasible for p and y∗ is

optimal for p, so that x̃∗ must also be optimal for p, as desired.
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D.2 Justification for Setting T ∗∗n (p) = {0, . . . , Ld̄}
for Production Planning

For any period n and any production planning problem p, it is straightforward to

show that T ∗∗
n (p) = {0, . . . , Ld̄}. Clearly, for the forecast pn in PN(p), it is opti-

mal to have zero inventory ending period n. Now suppose that demand in period

n + 1 is dn+1 ∈ {1, . . . , d̄}. If, for example, cn+1(dn+1) = 1
α

(cn(dn+1) + hn(dn+1) + ε)

for some ε > 0, then cn+1(dn+1) ≥ 1
α

(cn(x)− cn(x− dn+1) + hn(dn+1) + ε) for any

x ∈ {0, . . . , d̄}, so that no matter what the amount produced in period n to satisfy

demand in period n, it would be strictly optimal to carry inventory forward to satisfy

demand in period n + 1 as well.

Similarly, let dn+m be the demand in period n + m for 2 ≤ m ≤ L. By setting

cn+m(dn+m) = 1
αm (cn(dn+m) + hn(dn+m) + ε) for some ε > 0, then cn+1(dn+m) ≥

1
α

(cn(x)− cn(x− dn+m) + hn(dn+m) + ε) for any x ∈ {0, . . . ,md̄}, so that no mat-

ter what the amount produced in period n to satisfy demand in periods n through

n + m− 1, it would be strictly optimal to carry inventory forward to satisfy demand

in period n + m as well. In this way, it can be strictly optimal to have any inventory

level in the set {1, . . . , Ld̄} ending period n.

Since L is a bound on the time between optimal production periods and d̄ is a bound

on feasible demands, it is never optimal to have more than Ld̄ units of inventory on

hand at the end of period n. Thus, T ∗∗
n (p) is precisely the set of inventory levels

{0, . . . , Ld̄}.

To verify that the production cost functions over periods n + 1 through n + L as

generated above are concave, we note the following. If, for 1 ≤ m ≤ L, we define

cn+m(d) = 1
αm (cn(x)− cn(x− d) + hn(x) + ε) for some 0 ≤ x ≤ (L − 1)d̄ and ε > 0,
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then

cn+m(d + 2)− cn+m(d + 1)

− (cn+m(d + 1)− cn+m(d)) = cn+m(d + 2)− 2cn+m(d + 1) + cn+m(d)

= cn(x− d− 2)− 2cn(x− d− 1) + cn(x− d)

= cn(x− d− 2)− cn(x− d− 1)

− (cn(x− d− 1)− cn(x− d))

≤ 0

since cn(·) is a concave function. Thus, cn+m(·) as defined is concave.
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Appendix E

An Infinite Horizon Asset Selling
Problem

E.1 Monotonicity of the Optimal Thresholds for

All Periods

Let fj(x, φN) represent the maximum expected discounted (to period j) rewards be-

ginning period j with incoming state x under problem φN , and δj(x, φN) = fj(x +

1, φN) − fj(x, φN) for j ≤ N and l ≤ x ≤ u. Also, let Vj(φ
N), j ≤ N be the max-

imum expected discounted revenue over periods j through N under problem φN ,

given that the offers in periods 1 through j − 1 were rejected. Using the fact that

Vj(φ
N+1) ≥ Vj(φ

N) by non-negativity of the offers, it is straightforward to show

that results analogous to Lemmas 6.1 and 6.2, and Lemma 6.3 hold for all optimal

thresholds, i.e.

δj(x, φN+1) ≥ δ∗j (x, φN) (E.1)

for all 1 ≤ j ≤ N and φ ∈ Φ,

δj(x, φN) ≥ 0 (E.2)

for l ≤ x ≤ i∗j(φ
N), and

δj(i
∗
j(φ

N)φN) ≤ 0. (E.3)

This gives us all we need to prove the following result.
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Theorem E.1 (Threshold Monotonicity). For all φ ∈ Φ, N and 1 ≤ k ≤ N ,

i∗k(φ
N+1) ≥ i∗k(φ

N).

The proof would proceed similarly to that of Theorem 6.5.

E.2 Alternate Proof of Theorem 6.5

An elegant proof of Theorem 6.5 follows by an application of the following theorem

from Topkis. That main question in that paper concerns the collection of optimization

problems

min g(x, t), x ∈ St, (E.4)

where the variable is x and both the constraint set St and the objective function

g(x, t) depend upon the parameter t, with T being a member of the parameter set T .

Let S∗
t be the set of optimal solutions for (E.4) given t in T .

Theorem E.2 (Theorem 6.1, Topkis). If S is a lattice, T is a poset, St ⊆ S is

ascending in t on T , g(x, t) is submodular in x on S for each t ∈ T , and g(x, t) has

antitone differences in (x, t) on S × T , then S∗
t is ascending in t on T ∗.

Here, for a fixed forecast φ ∈ Φ, we wish to minimize −f(x, φN). We let t = N so that

T = Z+. Also, S1 = S2 = · · · = S = {l, . . . , u}. Clearly, S is a lattice, T is a poset,

and St ⊆ S is ascending in t on T . To see that g(x, t) = −f(x, H, t) is submodular

in x for each t ∈ T , note that for any x, y ∈ S, x ≤ y implies that x ∨ y = y and

x ∧ y = x, and x > y implies that x ∨ y = x and x ∧ y = y. Then for any t,

g(x ∨ y, t) + g(x ∧ y, t) = −f(x, H, t)− f(y, H, t) = g(x, t) + g(y, t),

so that g(x, t) is submodular in x for each t ∈ T .

To show that g(x, t) has antitone differences in (x, t), by Lemma 6.1, δ∗(x, φN) ≤

δ∗(x, φN+1). Expanding the terms and rearranging, we obtain

−f(x + 1, φN+1) + f(x + 1, φN) ≤ −f(x, φN+1) + f(x, φN), (E.5)

128



which can be simplified to g(x + 1, t + 1) − g(x + 1, t) ≤ g(x, t + 1) − g(x, t). Thus,

g(x, t) has antitone differences in (x, t), and we have satisfied all the hypotheses of

Topkis’ theorem. The result should be interpreted here as meaning that the minimiz-

ing arguments (in x) of −f(x, φN) (and consequently, the maximizing arguments of

f(x, φN)) are monotonically increasing in N , which is precisely what we claimed in

Theorem 6.5.

E.3 Deterministic Decision Tree for Asset Selling

Problem
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Figure E.1: Deterministic Decision Tree for Asset Selling Problem
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