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When you make a mistake, don’t look back at it long. Take the

reason of the thing into your mind, and then look forward.

Mistakes are lessons of wisdom. The past cannot be changed.

The future is yet in your power.

— Phyllis Bottome



to my grandfather, Donald G. Smoke, whose patience and encouragement have resonated

with me throughout my life
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Abstract

In the design of artifacts it is important to realize that designs are judged according to

functional as well as subjective measures. This is especially true in markets where the

technology behind the particular artifact is well established, and the costs of production

are uniform across the market. In such cases, users are faced with a decision: the selection

of one item from amongst a broad range of similar offerings. The shape of an object, its

geometric features, can be one element of the artifact that may elevate it above the competi-

tion in user choice. The preference that users have for artifact shape is not a scientifically

understood field. Such studies and pursuits are generally the province of artists and industrial

designers, who are quite adept at applying their intuition and skills to assess markets and

design products to fit them. However, the shape of an object can also have an important

impact on its performance. If this is the case, then engineers must be involved in analyzing

the design to ensure that it meets performance and safety criteria. This intersection between

the form and the function of an artifact lacks tools and applied methods that can allow

designers and producers to make scientifically informed decisions to understand the impact

of shape preference on performance and vice versa. This dissertation explores how current

preference tools can be applied to the understanding of shape preference, as it relates to a

specific artifact. It is shown here that a meaningful quantification of both shape preference

and performance can be obtained and used in decision making. It is also shown here that

interactive genetic algorithms are a tool capable of understanding shape preference. Further,

the capacity for interactive genetic algorithms to enhance creativity is also shown.
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Chapter 1

Introduction

An artifact’s shape affects its performance, that shape also impacts the preference that users

have for it. An obvious relationship exists between shape and aesthetics. Understanding

aesthetics is a goal often associated with art and industrial design. It is difficult to extract an

objective metric from aesthetics, but shape preference is a metric that can be quantified. The

artifacts that people interact with everyday, the chair, the pen, the light fixture or the cellular

phone, are all engineered products whose shapes are important to both their function and

preference to users. Thus, there may be a relationship between an artifact’s engineered and

shape preference qualities. The artifact’s shape has an impact on the artifact’s perceived

functionality, its preference, and its value to people. In the engineering discipline, mathe-

matical models are devised which relate variables to performance. Similarly, in marketing,

product attributes are related to user utility or preference. These techniques allow designers,

engineers and planners to have a qualitative and quantitative insight into how they ought to

design a product to best meet intended goals.

Aesthetics, is defined by Webster’s dictionary as “a particular theory or conception

of beauty or art: a particular taste for or approach to what is pleasing to the senses and

especially sight” (23). Within this work, the aesthetic quality of an artifact is limited to

its geometric properties. This neglects aesthetic qualities like color, texture, sheen and the

many visual qualities of an artifact that comprise aesthetics. Thus, aesthetics is a broad

conceptual field that this dissertation does not address except as a source to understand what
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is already known about shape preference.

The field of industrial design has a variety of heuristics that suggest how to design

artifacts that will be aesthetically pleasing, or meet a desired aesthetic quality (45; 62; 69).

These heuristics point to balance, symmetry, rhythm and proportionality in order to describe

the shape of the design. These rules suggest a means of mathematically identifying preferred

shapes. We can use these ideas to further postulate that it is possible to identify combinations

of shape attributes that yield an optimally preferred design for a particular artifact within a

particular context, subject to the physical constraints dictated by an engineering analysis.

Understanding shape preference and relating it to the engineering discipline requires the

examination and synthesis of many topics including art, computer science, industrial design,

engineering, psychology, and marketing. The following text will provide a motivation for

the study of shape preference in engineering design and describe several fields of study that

are relevant in its examination.

This dissertation examines the use of preference assessment tools and applies them to

the design of artifact shapes, and explores how those preferences relate to technical metrics

of that design. This synthesis is believed to be the first of its kind. Further, this dissertation

uses Interactive Evolutionary Systems (IES) to examine preference. IES use evolutionary

principles to improve a design based upon the interaction between a computer system and

a human user. The preference aspect of IES has only been implicitly assumed before, in

this dissertation we present evidence to confirm that assumption. Finally, this dissertation

explores the use of IES in enhancing creativity. This work spawns directly from the divergent

properties of mistuned, and convergent properties of well tuned IES, and the analogy that

such divergent and convergent processes are also important to creativity.
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1.1 Motivation

In a competitive marketplace, products must be developed with great attention to the wants

and needs of users. Assessing the subjective tastes of users and utilizing that information

within the product design process should ultimately lead to better product designs. Conse-

quently, many investigations have been undertaken to understand how subjective product

qualities impact user perception and preference in product design. Kansei engineering, ini-

tially developed in the 1970s and often referred to synonymously as Emotional Engineering

and Emotional Design, utilizes semantic information to match user wants and expectations

in product design (59; 58). Kansei engineering has been successfully applied by Mazda in

the development of the world’s best selling roadster, the Miata (or Eunos Roadster). The

field of engineering has acknowledged the impact that these subjective qualities have on

product design, and recent technical conferences (ASME IDETC 2007) have been entirely

devoted to its investigation. Further, Liu has suggested the idea of engineering aesthetics in

order to seek methods that help designers make better decisions regarding the subjective

aesthetic qualities of a product (47; 46). These ideas are well received within the engi-

neering community, and there has been a focused effort to address the subjective qualities

of a product in a rigorous manner. A first step in this process is assessing preference and

perception of subjective qualities. Assessing and employing preference information is a key

element of product design (49; 68; 67). This dissertation examines tools for understanding

shape preference and applying that preference information to improve product design. It

also explores methods of augmenting creativity to further improve artifact design.

Consumer products within mature markets that garner intense competition are increas-

ingly selected by users based on aesthetic attributes because the technical attributes across

product offerings are well met by producers. Thus, given a choice between several products

that all meet certain technical expectations, a user may make choices based upon the visual

appearance of the products. A scientific understanding of user preference with respect to

product shape can provide designers with valuable insights. It can be difficult to understand
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the reasons why one design appeals to a user while another does not. But, if all other

properties of an artifact (its performance, color, finish, materials, brand, etc.) are held

constant while only allowing the shape of that object to change, then we should be able to

learn valuable information regarding the appeal of that shape to a user. In this dissertation,

we limit the notion of shape preference to say nothing about the inherent ‘beauty’ of a

product. In the provided work, shape preference simply means that one product’s shape is

more well liked than others in the given context of how the product will be used, and subject

to the geometric qualities of the product that are permitted to vary. Portions of this work

use preference examinations that are insensitive to the possibility of multiple preferences.

However, multiple preferences are highly possible in relation to shape preference. Extending

the findings of shape preference from this work to suggest a universal shape preference is

inappropriate and unjustified.

Utilizing preference to guide the design of products is highly associated with the field

of marketing. One drawback of simply applying marketing demands directly to the design

of products is that marketing often fails to recognize the engineering realities of product

design. For instance, the market research department of a firm may suggest that users desire

chair designs that are infeasibly thin and light based on the physical mechanics of materials.

This then requires iteration with the engineering department of the firm and can lead to

suboptimal design solutions. It is therefore valuable to integrate the demand-based models

developed within marketing to the physics-based models developed within engineering. This

has been examined to explicitly show that the optimal designs from engineering and mar-

keting can be, not only, dislocated, but also infeasible (55). In this dissertation, preference

information is related to a product’s shape. The goal is to develop designs that integrate this

preference information with the physics-based engineering models that are associated with

that product’s performance. Thus, a study of shape preference that also examines technical

functionality is a study of form vs. function, a classic argument (or trade-off) in design.

Like shape preference, creativity is a critical element of good design. Whether this
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creativity is related to the appearance or the performance of the product, it is important

in development. Psychologists have employed methods to examine and assess creativity,

but methods of enhancing creativity are less structured and considered to be intuitive and

immersive. However, consistent and routine creativity is not an anomaly. Many people,

firms and companies have attained consistent creativity. Enhancing individual creativity,

specifically for the design of artifacts, should lead to designs that are new, exciting, and

unique. While enhancing creativity may not equate to preference, it should be noted that

preference does not exist in a vacuum. The creative designs of the past are often judged

against their counterparts of the present, and what was once highly preferred may currently

be blasé. Likewise, what may today be considered unique may someday become the pre-

ferred aesthetic standard. Thus, in this dissertation we study creativity and develop a means

of enhancing it because doing so can benefit designers and add value to designs.

1.2 Shape preference in engineering design

Engineering design ensures that designed goods meet technical specifications while being

safe, efficient, and reliable. For this reason engineering design is not always concerned

with the aesthetic appeal of a product. That task is left to industrial designers who are

tasked with interpreting the requests of marketers and deploying their own creativity in the

creation of a product. There are two typical extremes of design that are often experienced

by practitioners: in one, the engineers design a product that meets the requirements posed to

them and then the design is handed to industrial designers that attempt to create an appealing

enclosure for the engineered product; at the other extreme, industrial designers compose

a form that captures the desired aesthetic that is then provided as a bound for engineers to

design the product within. These examples represent two ends of a spectrum that assumes

no communication or iteration. The true situation has both communication and iteration.

However, there are a lack of tools that explain the impacts of either discipline on the other,
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this leaves designers, engineers and producers to rely on intuition and heuristics. Further, in

many products, the shape of the design has direct implications on engineering performance.

1.2.1 Aesthetics

It is acknowledged that aesthetics can encompass a much greater set of visual and stylistic

properties of an artifact than just its exterior shape. But, this narrow definition allows for the

specific examination of this one aspect of aesthetics. The work examines how variations in

these geometric properties of an artifact can impact preference for and perception of that

artifact. Understanding these issues can lead to better product designs. A brief review of

aesthetics is appropriate here to understand what has already been learned about shape and

preference.

Humans’ aesthetic preference is very important in many of their judgments and decisions,

well beyond just the selection of an artifact. In the biological sense, humans often assess

another person’s qualities based upon appearance. For instance, people tend to judge more

attractive people as being more intelligent, and it is well documented that people perceived

as more physically attractive amass substantial economic gains throughout their lifetime

versus those perceived as less attractive (57). The means of judging a person’s attractiveness

are based on three primary traits: visual, vocal and chemical attributes. While tending to

adhere to some general rules, such as symmetry and commonality, aesthetic standards vary

between cultures and times (26). Reber et al. suggest, from the perspective of psychology,

that aesthetic pleasure is related to processing fluency (71). Processing fluency is defined

as the ease with which one recognizes the stimulus that is presented to them, and greater

pleasure is associated with greater preference. Thus, aesthetics represent an important aspect

that influences many human decisions, but specific rules for pleasing or preferred shapes

seem heuristic at best.

The variability of a beauty standard is not unique to the judgment of human beauty. This

trait holds for the aesthetic valuation of art as well. The art historian Eco recognized this,
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and stated that “...what is considered beautiful depends on the various historical periods and

cultures” (17). Eco’s work examined the existence of themes, such as an ‘Adonis’ or the

attractive youthful male, which exist as different instantiations within different cultures and

times but lack specific visual congruency between them. While rules for assessing beauty

may exist in humans, understanding those rules, especially across culture and time, and

providing a measure of beauty is difficult. Therefore, it is important to find a means of

assessing shape preference in order to effectively design around user wants regardless of

geographical or temporal location.

An artifact’s appearance is an important aspect in a person’s overall assessment of that

artifact (39). Jordan has determined that usability, which is a discipline within human

factors engineering that defines how efficiently a user can accomplish a specified task with

a product, was one important component used in determining the amount of pleasure that

a user receives from a particular product (39). But, while users rated usability as the most

important characteristic of a product’s design, aesthetics was the second most important

aspect. He also discovered that people tended to use pleasurable items more often than those

items that were not pleasurable. Thus, since shape is an aspect of aesthetics we can infer

that it has a relationship to how pleasurable a product is perceived.

Liu has asserted that while “...designers and decision-makers deal with aesthetic and

ethical issues constantly in their practice, they often make aesthetic and ethical decisions on

the basis of their gut-feelings and intuitive judgments” (46). He proposed that “engineering

aesthetics” should be a new division of ergonomics that applies scientific, engineering and

mathematical methods to help make design decisions regarding the aesthetic qualities of a

product. He noted that the industrial design community has developed an impressive arsenal

of heuristics that aid them in designing the aesthetic qualities of a product (46). But, stated

further that, while these heuristics may provide fertile grounds in which to understand the

concept of engineering aesthetics, they are not scientific.

Designers have successfully applied design rules, or heuristics, to consumer products
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(industrial design) and media layout (graphic design) for years. The application of these

heuristics does not inherently dictate a product’s appeal; heuristics provide designers with a

structure around the creative process of design (79). Liu has noted that, while unscientific,

these design heuristics “offer important insights into aesthetic questions and provide useful

perspectives from which we can examine aesthetic concepts” (47). The work of Bauerly, in

collaboration with Liu, has taken steps toward the scientific investigation of design rules.

Their investigations have been specifically focused on the graphical layout of displays and

web pages. Bauerly “develop[ed] quantitative methods that match[ed] the perceptual and

mental processes of [2D interface] users” (2). His work specifically provided a numerical

quantification of the effects of symmetry, balance and compositional blocking, which he

identified as three compositional elements of aesthetic judgment. Formulae that he devised

to account for each of these compositional elements for 2D interfaces were validated through

human experimentation, providing a direct link between human preference and quantifiable

design characteristics.

However, preference for compositional characteristics may be context dependent. More

specifically, the form of an object may be evaluated by a user based on that object’s function.

In this case, the applicability of design rules becomes tenuous. In 2D layout design, as in-

vestigated by Bauerly, there is less need to consider function. But when designing an object,

a vacuum cleaner for instance, form and function are intertwined, and specific components

may be dictated by physical laws to have a form that deviates from design rules. The oft

cited ‘form follows function’ axiom may also apply to the perception of the form’s beauty.

Some argue that universal rules that govern aesthetics exist, can be quantified, and are

capable of being applied to the design (or analysis) of artifacts. Much of this work has

focused on the ‘golden section’. The golden section is the ratio of two line segments a and

b, such that the ratio of a to b is equal to the ratio of a+b to a. This is the famous ratio of 1
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to approximately 1.618, when a = 1 (Figure 1.1). Mathematically this is,

a+b
a

=
a
b
≈ 1+

√
5

2
. (1.1)

This ratio has been extensively studied and found to be relevant to many mathematical

and biological phenomena, such as the golden rectangle, golden triangle and ratio limit of

consecutive numbers in the Fibonacci series (27). It has been extensively studied by psy-

chologists; in fact some of the first psychophysical tests were based on this ratio (19). Green

notes that many of the psychological studies of the golden section were methodologically

flawed, but asserts, despite this, that there may be a real aesthetic effect associated with the

golden ratio, though a fragile one at best (27).

Figure 1.1 The Golden Rectangle incorporates the Golden Section, where a = 1, and a+b ≈ 1.618.

The golden section is a specific subset of a larger body of knowledge known as pro-

portionality, which stems from rules of geometric association described by Euclid, and has

been used by designers and architects (51). Proportionality is concerned with eleven specific

proportions (or relations of two ratios) which some believe to be directly linked to aesthetic

significance (33; 66). A necessary step that has not been addressed is whether or not these

proportionalities are actually preferred by people regardless of the artifact under question,

thus making the link between proportionality and preference.

Aesthetics are important to artifact appreciation, perception, use, and preference. But,
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we must stress that aesthetic appreciation is highly subject to user tastes and appreciations

that are built upon years of cultural exposure that are influenced by political and moral

beliefs. The universality of beauty can be considered in a biological sense, and has been

researched as it relates to mate selection, and disgust responses. The beauty of one culture

is often at odds with that of another. The judgement of one type of art within the context of

another culture will likely lead to critical reviews, but we should not believe that this implies

that such art lacks value. Thus, aesthetics is culturally, and temporally relative, and tools

to investigate the particular shape preferences of the time must be general, and capable of

operating outside of this bias.

1.2.2 Preference

Preference describes the relationship between a person and their affinity for anything, be it

art, food, shoes, weather, leisure activities, etc. When one prefers A to B, it means that the

person would rather possess or experience A than B. Several methods exist to understand

preference. Of interest here are those that focus on a mathematical relationship between

variables and preference. The primary concern of this dissertation is the understanding and

application of shape preference in engineering design. Thus, we are explicitly interested

in the geometric qualities of an artifact. This geometry can be decomposed into a set of

variables that define artifact shape. By examining one’s affinity for a particular combination

of these artifact variables we can understand shape preference.

The principles of preference have been investigated by psychologists and effectively

applied by marketers. Preference, and perception, have been exploited for years to influence

the visual, auditory, olfactory, gustatory and tactile properties of designed goods. However,

the application of these preference tools to the examination of shape preference has been of

limited utility. The psychologist, Fechner, for instance, conducted studies to determine the

best liked ratio of length to width for rectangles (19). His results suggested a high affinity

for the golden section, a specific ratio which will be discussed in the next chapter. Yet, that

10



work, showing preference for a specific ratio, is difficult to generalize across disciplines.

1.2.3 Design

Design is a general term referring to the creation of essentially anything. Writers, artists,

engineers, web-developers, architects, coaches and urban-planners are all concerned with

this general concept of design. In this dissertation, we restrict design to specifically examine

artifacts. Further, we are concerned with both the technical design of that artifact as well as

its shape design. This means that we want to understand how to develop artifacts that meet

both the physical demands required by the environments that they are used in as well as the

aesthetic expectations of those individuals that interact with them.

When designing an artifact, a set of functional needs must be interpreted and targeted

by engineers. Industrial designers must develop a product shape that will appeal to users

and tell the proper ‘story’ of the artifact. This story suggests a context for use, and an

appropriateness of the particular artifact to meet the expectations of users. If the design fails

to meet the technical requirements or to convey the proper message, then the artifact can be

considered suboptimal. An optimal design will meet both of these expectations. Therefore,

we must be able to evaluate both the technical qualities of an artifact and its shape preference

in a predictive manner to assess how well it suits its given task.

Engineering design has a vast set of tools for conducting this type of analysis for many

disciplines. Further, optimization techniques have been developed that allow for the de-

velopment of products that optimally meet technical goals while respecting physical and

practical constraints. The fields of industrial design and especially art lack any similar form

of evaluation. Their form of evaluation is more intuitive and guttural, thus the assessments

lack quantitative analysis of the artifact in question. Again, this work does not presume

to say anything about the inherent beauty of any artifact, it attempts to understand how

a design’s shape can be interpreted for its preference and perception to users. This then

provides a means of valuing one design versus another subject to the constraints of the
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design’s variables. So, we do not claim that shape preference implies aesthetic value.

1.2.4 Creativity

Creativity is often an assumed role of artists. However, creativity is much broader and

expansive. In fact, creativity is merely the development of novel ideas, or the synthesis

of disparate ideas in the creation of a new solution or idea. In this dissertation, we are

concerned with creativity as it relates to the shape of artifacts. We are specifically interested

in the development of tools and techniques that can enhance creativity. Doing so allows

creative design to be generally accessible and not simply the province of a select few. In

much the same way that tools have been developed to assist in mathematical calculation, a

tool for enhancing creativity would not make a virtuoso of everyone, just as mathematical

tools do not make mathematical geniuses of their users. The tool would, however, promote

improved competency and ability of those that use it. The tool would be intended to help

inspire and allow refinement of a design’s shape.

This work examines the use of Interactive Evolutionary Systems (IES) as a means of

providing individuals with the capacity to increase their creativity. The intent of this tool is

to provide users with an easy to use intuitive tool that allows them to both explore potential

designs while also allowing design refinement. Many means of enhancing creativity can

be postulated, and many software based tools could be developed. This work explores

one means of applying IES principles to address creativity enhancement. The theory and

application of this tool will be presented.

1.3 Research objectives and contributions
This research attempts to answer several related questions. All of these questions are
specifically focused on the concept of shape preference and how it relates to the design of
artifacts.

• What methods are available for capturing shape preference?
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• What methods can be developed to quickly understand shape preference at the indi-
vidual level?
• How can shape preference be related to engineering design in a quantitative manner?
• Can an optimization framework be developed that facilitates a greater understanding

of product design that accounts for shape preference?
• Can the creativity of designers be systematically enhanced in regards to artifact shape?

Examining the above questions will add a greater level of analytical capability to the

aesthetic design of products. Doing so can more appropriately align the design with user

wants and expectations. This provides tools for producers to make more informed decisions

in the creation of their products and increase the likelihood of market success.

This work has several contributions:

• Application of current preference assessment techniques to understand shape prefer-
ence.
• Incorporation of shape preference information and technical requirements within an

engineering design context.
• Methodology for including shape preference information within engineering design.
• Validation of interactive genetic algorithms for preference assessment capability.
• Identification of vehicle shapes perceived as having good fuel economy along with an

associated engineering analysis to understand the related drag coefficient.
• Establishment of interactive genetic algorithms as a tool for enhancing creativity in

shape design.

1.4 Dissertation outline

This dissertation first examines important literature from several fields including engineer-

ing design, preference, and computer science. This is done to understand each discipline

better and provide a justification for many of the techniques and ideas employed in the

experimental portion of this work. Second, we will explore the assessment of preference

using tools that are currently available within the marketing community, these tools are then

combined with engineering analysis to describe methods for improving decision making in

product development. This will be explored with a case study. Third, a tool using evolu-

tionary algorithms will be described and validated as a means of understanding individual

preference. This will be shown both theoretically and experimentally. A case study will be
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used to validate this theory. Fourth, the interactive evolutionary algorithm will be applied

to examine users’ vehicle shape expectations associated with good fuel economy. Fifth,

the evolutionary algorithm developed in the third portion will be examined as a method for

enhancing creativity. Finally, conclusions will be drawn regarding the results of this work,

and its contributions will be explained along with questions that can be addressed in future

work.
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Chapter 2

Background

When people select an artifact, they are making a multifaceted decision. They are usually

unconsciously performing an internal analysis of their options, evaluating each of the options

within some framework and then selecting one based upon that analysis. A product’s shape

may be one dimension upon which a user evaluates an artifact. This aesthetic dimension,

defined in this dissertation as an artifact’s geometric appearance, often has important en-

gineering ramifications, such as necessitating specific manufacturing processes that may

influence the product’s technical performance, such as limiting the loads that the artifact can

be subjected to, or restricting the size of the components which could be housed within the

structure.

Aesthetics is an important aspect of product design widely recognized as a means of

adding value to a product (3). Yet, a product’s aesthetic is typically left to the best judgment

of industrial designers and their interpretation of the current market wants (47). While this

approach is often successful, here we seek to understand more deeply the impact that artifact

shape has both on user selection and on an artifact’s technical performance. Research within

the field of Kansei engineering, which attempts to account for human emotions within

design, has been directed toward the development of tools that examine these emotional

qualities. One factor influencing these emotional qualities is a product’s visual appearance

(85; 78). According to some, the aesthetic properties (beyond just visual characteristics) are

as important as the technical aspects of a product’s design in influencing user choice (68).
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This issue of aesthetic-based design has even prompted a collective of European universities

and businesses to devote their efforts toward the development of tools that aid designers in

the creation of aesthetically ‘correct’ designs (21). This chapter will provide an examination

of several fields of study that are important in establishing the foundation upon which the

proposed research will build; this includes engineering design, preference, computer science,

and automated design generation.

2.1 Engineering design

Creating a well-designed product is no guarantee that it will be successful in the marketplace.

There are many aspects, such as marketing, brand identification, market trends and intense

competition that can all serve to erode a well-designed product’s market share. However,

products that do sell well and gain large market shares are typically very well designed. As

described already, a product’s aesthetics importantly influence how users will perceive it.

Thus, many within academia and industry claim that it is essential to develop and employ

techniques for designing appealing products. We have already examined some tools for the

assessment of preference, but we will now turn our focus toward the field of engineering

design to understand better the tools and techniques used within that field for addressing the

wants of the user.

Yannou and Petiot broadly examined the design literature, focusing on suggested and

utilized design processes in order to find the commonality among the various methods

(84). From this study, they suggested that there are four spaces in which design occurs:

stakeholders’ needs space, perceptual space, functional space, and physical space. A product

can be developed using these four different spaces by viewing each space as a unique phase

of the design process influenced by different agents with different requirements. This design

process need not be linear, and it is suggested that good design must exist at some point in all

four spaces. They suggest that examining stakeholders’ needs in the perceptual design space
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can result in drastically different results from those obtained if those same stakeholders’

needs were examined in the functional design space. This suggests that it is important to

view the product from many angles, not just the technical side, nor just the aesthetic side.

By following this methodology, they suggested that designers could develop products with

technical savvy and mass market appeal, both of which are important in successful product

development.

Hsiao and Liu stated that product design is a critical activity for firms that wish to

succeed in today’s competitive marketplace. In fact, they stated that some regard design as

the only remaining area of industrial competition (36). They stated that the main difficulties

in product design are: 1) translating market information (user preference) into quantitative

design goals; 2) identifying those design parameters that meet customer requirements; and

3) generating and evaluating design alternatives. These ideas ring true with the fundamentals

that apply to the Quality Function Deployment (QFD) design process, which basically states

that designers must ascertain user wants (What’s), define concrete product attributes that

aide in meeting those wants (How’s), and define levels for each of these attributes (How

Much’s) (24). QFD, used extensively within industry, has been applied to the development

of many consumer products that have been successful. Govers stated that within the QFD

process (24):

Of all the steps in the total production development process, none deserves
more and receives less attention than the definition of the right product for the
right customer.

Thus we should note that, according to QFD fundamentals, a well designed product is not

just one that performs well, but also one that suits the wants and needs of the user well.

Through the House of Quality in QFD, engineers and designers can use information

gathered from consumer focus groups or surveys in order to rank the importance of, and

levels for, design characteristics, thus incorporating the voice of the user. While this type

of level setting is certainly an improvement over design methodologies that simply rely on

designer intuition, it does not typically incorporate metrics for the aesthetics of the product.
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QFD relates customer wants through technical design characteristics, thus an ‘aesthetic’

want becomes coded through a design characteristic, the importance, and levels of which

are not directly ascertained from the user. Based on its prevalent use within industry, it is

apparent that QFD is a useful tool. However, the QFD methodology could be improved by

incorporating shape preference as a metric for design.

Hossoy discussed product craftsmanship as a means of determining whether or not a

product is well-designed (35). Craftsmanship is the characteristic of a product that makes a

user perceive it as being well made during their initial interactions with the product. This

differs from what is typically known as product quality, which is the integrity of a product’s

ability to function over time. Thus, one measure of a well designed product could be

its craftsmanship rating. The tools developed by Hossoy have the ability to map product

characteristics to user perceptions, so that engineers can manipulate design characteristics

to more appropriately match user wants. Thus, engineers can directly apply these tools to

develop well designed products from a craftsmanship perspective. These tools have never

been used for the direct investigation of shape preference, and it is unclear whether or not

they could be employed for such an assessment since this is not their intent.

One method of learning about user preference is through the use of the Semantic Differ-

ential (SD). The SD has been effectively used in the practice of Kansei engineering in an

effort to design products that are well suited to user feelings (59). The SD was developed

by Osgood to evaluate concepts on a bipolar adjective-based scale (64). In doing so, it

was hoped that given a set of bipolar adjectives (‘good’-‘bad’, ‘weak’-‘strong’), a subject

could rank a concept, such as classical music, within that framework, typically using a seven

point scale. Thus, researchers could obtain some qualitative measure regarding a subjective

feature. As mentioned, this SD approach has been crucial to Kansei engineering, which

utilizes it to understand how a user feels about a particular attribute of a product. Kansei

engineering has been applied to a number of product development activities, including auto-

motive applications (78), robotics (85), home appliance (58) and construction equipment
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(60). Most notable among the products developed using the Kansei engineering idea was

the Mazda Miata. The Miata was designed from the ground up using this technique, with

the targeted audience being young drivers. The resulting automobile (also known as the

MX-5, or Eunos Roadster) has become the best selling sports car in the world. This lends

credence to the capacity of Kansei engineering, and to the use of the semantic differential as

a method of determining user preference for concepts or objects.

However, the author’s investigations into the Kansei literature have failed to show that a

consistent and reliable methodology exists within the field. While aspects of Kansei remain

consistent between studies (the use of the SD, subject queries, translation of subject data to

some type of mathematical model), it appears that no methodology exists for the foundation

of the mathematical models that ultimately drive design decisions. For example, one study

on robotic arms uses purely monotonic models to describe user preference (86). This study

conducted optimization based upon these preference models and some models of producer

cost to ultimately discover an optimal design point which does not lie at the bounds of the

preference models. Yet, we know that the optimal point of a monotonic function lies at one

of its bounds (if we simply wish to find that dimension’s optimal point), and this result,

just like the linear models of preference discussed earlier, is unsatisfactory and nonintuitive.

Thus within this work, the only thing preventing the ideal point from being one of the

designer-defined bounds is the cost of producing the product. One would hope, instead, that

the bounds of the designer simply provide a design space within which an optimal point

could be found, and if the optimal point is found to exist on one of those bounds then those

bounds should be expanded (unless physical limitations prevent them from moving) until an

ideal point is found inside those bounds.

Otto and Wood have written extensively on the design process and focused some atten-

tion on current techniques of assessing user wants (65). They stated that “typically, [the]

understanding [of what consumer needs are] is conveyed by showing the current product

model to a customer and asking for preference information about its features”. They also
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stated that the major drawback of this technique is that customers typically only discuss the

failings of a product, thus a significant amount of effort must be exerted by the questioner to

elicit what the user actually expects or wants from a product. They suggest, as does, that the

primary tools used for “Needs Gathering” are: one-on-one interviews; questionnaires which

ask respondents to rank a list of product criteria; focus groups; and role playing, where

the design team acts as though they are the intended customer Baxter (3). While valuable

information can certainly be gathered from these techniques, none truly lends itself to the

rigorous investigation of user wants in regards to visual characteristics of a designed product,

or to the development of a model that describes those wants within the design space.

2.2 Preference

In order to design products well, it is imperative that designers understand the users they

intend to design for. This knowledge can take many shapes. Often, we see that outstanding

designs come from those that are intimately associated with the field for which they design.

For instance, Gary Klein is a passionate cyclist with deep knowledge of engineering. He

used his technical and experiential knowledge in the development of many innovations

for his Klein bicycles. His deep involvement within the cycling community allowed him

to understand the wants of his customers and translate that information into innovative

designs desired by users (and ultimately copied by the competition). This method of un-

derstanding preference is highly subject to error though, and we know that a person’s self

proclaimed ‘great’ idea often falls flat when placed in the market. Thus, marketers use other

techniques for preference assessment ranging from focus groups to scientifically developed

mathematical models of consumer choice. Due to the nature of this present research, the

most interesting type of preference assessment techniques are those scientifically developed

methods that yield mathematical models of preference.

There are several techniques within the marketing and psychology communities that
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attempt to understand what users want. In the following sections we will examine conjoint

analysis, MultiDimensional Scaling (MDS), MultiDimensional analysis of PREFerence data

(MDPREF), the PREFerence MAPping (PREFMAP) preference mapping algorithm, as well

as some new preference modeling techniques.

2.2.1 Conjoint analysis

Conjoint analysis is a means of assessing preference that has been used extensively within

the social science and marketing communities. The goal of conjoint analysis is to determine

the ideal combination of feature attributes based on the preference responses of a test subject

or group. It has been frequently used within industry in order to determine information

related to product design, concept evaluation, product positioning, and market segmentation

(28). This method is based on the principles of utility, and the notion that consumers attempt

to maximize their utility when they make choices.

In order to collect data for a conjoint analysis, respondents are shown several potential

products, or images of products. Each product is of a similar nature, but the levels of the

product attributes are varied. Respondents are then asked to evaluate the products in some

fashion; a popular form of evaluation is through selection of one product amongst a set.

This type of conjoint analysis is known as discrete choice analysis. Michalek presented a

review of the foundations of discrete choice analysis, primarily with reference to the use

of the Logit model (54). When using discrete choice analysis for the assessment of utility

functions we assume that utility, uiq, is comprised of a deterministic term, viq, and an error

term, εiq, where i and q are the individual and product respectively

uiq = viq + εiq. (2.1)

The Logit model assumes that the unobserved error term has a double exponential proba-

bility distribution. This assumption, while not being based on theoretical grounds, has been
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shown in studies to agree well with the results of a normally distributed probability function,

which has more theoretical validity (54). We presume that this deterministic component of

utility can be predicted through regression of observed choice data to mathematical models

of utility.

A no-choice alternative is included as well. The error term is assumed randomly

distributed and of double-exponential form (48; 31),

f (ε) = exp(−e−ε) (2.2)

to yield the mathematically tractable MultiNomial Logit (MNL) model. Further, the Maxi-

mum Likelihood Estimation (MLE) is used to estimate the choice parameters in the utility

model:

Piq =
eViq

∑
J
j=1 eV jq

(2.3)

viq =
K

∑
k=1

β jkX jkq. (2.4)

Here Piq is the probability that individual q chooses alternative i; Vjq is the utility of the

jth alternative to individual q composed of attributes X jkq with an associated part-worth,

or alternate-specific constant, β jk, where k is the level of attribute j; see Louviere for a

thorough and accessible treatment (48). Care must be taken to avoid violating the MNL

model assumptions when using conjoint analysis

It can be difficult to conduct conjoint analysis as the number of attributes and their

associated levels increase because the number of responses required of a subject becomes

very high. Conjoint analysis can be done at the individual level, or it can be conducted on

groups. Some suggest that conjoint analysis on groups does not provide good predictive

ability due to the among-person variation in preference (28). Still, conjoint analyses are

often conducted on groups in order to obtain generalized information regarding preference
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for various attribute levels for use in designing products.

2.2.2 MDS

MultiDimensional scaling (MDS) can be used to understand user perception, and can be

extended to user preference through the use of MultiDimensional analysis of PREFerence

data (MDPREF), which is described in the next section. MDS is a method used to analyze

the similarity (or dissimilarity) of data regarding a set of ideas or objects (5). It is often

employed to understand the relationship between objects which are unlinked by an explicit

theory, such as the flavor of foods. In MDS, a subject is asked to compare one object against

another by selecting a value for how similar or dissimilar the two objects are. This value is

taken as a distance between the objects. When this process is used to determine the distance

between all objects within a population then a mapping can be created that shows how each

object is related to each other in an m-dimensional space. Within this m-dimensional space

there are three typical ways of interpreting solution data: first is the manifold way, which

maps the data into a meaningful curve or surface in space; second is the dimensional way,

which associates data to substantive features of the represented objects; finally, regional

interpretation clusters the data into meaningful groups of associated commonality (5).

A good way to explain MDS is with an example of a simple geographical map of the

United States. If we create a fully ordered matrix of distances between several cities in the

USA and then develop a two-dimensional map such that each city is the appropriate distance

from every other city (according to the matrix), then we will have an accurate map of those

cities in terms of distance. However, the orientation of this map may not be correct, and

may require both reflection and rotation in order to be aligned with our expected version

of a map of the USA. We could even consider that the cities could be grouped into states

through the use of clustering.

In Table 2.1, we present the distance, in miles, between several major cities within the

United States. Given these distances a map can be created that indicates each cities location
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relative to the others, Figure 2.1. However, in this map we see that nothing orients the data

in a universal way. It is therefore necessary to apply both a rotation and mirroring of this

map to obtain a map of these cities that we would typically expect, Figure 2.2.

Table 2.1 Distance, in miles, between US cities.
Boston Chicago Dallas Denver Detroit LA Miami NYC

Boston 0 852 1550 1767 614 2595 1261 187
Chicago - 0 802 917 237 1744 1190 714
Dallas - - 0 664 998 1240 1107 1373
Denver - - - 0 1153 832 1725 1630
Detroit - - - - 0 1981 1159 484
LA - - - - - 0 2335 2451
Miami - - - - - - 0 1097
NYC - - - - - - - 0

Figure 2.1 Map showing the distance between US cities, in miles, as developed via MDS.

The methods of MDS can be used in an effort to understand a person’s or a group’s

preferences for a particular object’s attributes. In fact, preference modeling using MDS as a

foundation has been shown as a way to determine the ideal points for subjects in several case

studies. An ideal point is the set of values, or characteristics, of a design, or situation, that

maximizes that design’s preference. One study attempted to determine the most preferred

number of children, and gender combinations, that coupes would like to have (14). In this

type of MDS, subjects were presented with a set of potential solutions and asked to rank how

well they liked each solution. These data could then be analyzed with MDS to determine the
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Figure 2.2 Map showing the distance between US cities, in miles, developed by MDS then rotated,
mirrored and shown in context.

ideal point for an individual based on the selections and the attributes of the solutions.

2.2.3 MDPREF

MultiDimensional analysis of PREFerence data (MDPREF) is an analysis tool that uses data

regarding the evaluation of proposed stimuli, obtained through a survey tool, to generate

an internal mapping of preference. It was developed by Chang and Carroll at the Bell

Laboratories in the 1960s and 70s (8). In an internal preference analysis only information

collected in the MDPREF query is used for interpretation, thus there are no inherent scales

on which the data can be explicitly analyzed, but the configuration and segmentation of the

data can be useful (13) (87).

The input data for MDPREF consists of an average attribute-by-objects matrix. These

average preference evaluations are obtained through the compilation of several surveys re-

garding the proposed attributes and objects (8). The resulting map of an MDPREF analysis

(which is rooted in MDS) contains information for each attribute and each object. Each

attribute is represented as a vector, and each object is plotted as a point on a map in an
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m-dimensional space. The resulting figure contains descriptive perceptual axes (the attribute

vectors) and is populated with points (objects), appropriately positioned within the vector

space. By relating each object to each vector we can get a sense of how preferential that

object is in regard to each particular attribute. MDPREF is based on a linearized model such

that preference increases along each attribute vector towards infinity. Thus, the further away

an object’s projection onto an attributes vector is from the origin, the better its preference is.

MDPREF can be a useful tool in gaining preference information related to product design. In

fact, it does provide rank order information for products, and it can be beneficial in gaining

qualitative information for design work. However, it does not provide enough information

to create a model of the design space that could be used for engineering design because

it is based on linearized models, thus indicating that the ideal point of any design always

proceeds monotonically to positive or negative infinity, which is an erroneous conclusion

because individuals are unlikely to prefer a design attribute at its infinite bound. For instance,

an individual may prefer large vehicles, but it is unlikely that they would prefer to operate a

vehicle that is as large as it could possibly be made. The MDPREF analysis can only be

considered valid within the bounds of the examined design space. The primary benefit of

MDPREF is that it is informative; it can show us how one product is perceived to relate to

another with respect to a variety of attributes.

Another way that MDPREF is often used is by considering the attributes as subjects and

the objects as stimuli. Thus, the preference matrix consists of subject-by-stimuli data, and

the representation is such that the subjects are vectors and the stimuli are points. This type

of preference mapping is useful for understanding how people respond to different product

scenarios (stimuli). Examination of an MDPREF mapping of this type can provide insight

into the clustering of people types with how they respond to products. For example, if

several vectors are clustered together in one area of a map, while several others are clustered

elsewhere on that map, then by examining the products that project preferably onto those

vectors a producer may be able to determine a set of products (potentially very different)
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that could each garner positive market shares based on their product features. Figure 2.3

indicates how such a plot would look, showing a cluster of an individual’s preference (vec-

tors) for specific products (points) (11). These specific clusters of people would provide the

motivation toward the production of the preferred products that align with them. While this

type of an MDPREF analysis is useful in understanding a market’s preferences for certain

product offerings, it lacks the desired fidelity for creating a model of shape preference

because of its linear assumptions (13).

Figure 2.3 This plot of MDPREF data from (11) indicates how people’s preferences (vectors) align
with products (points).

2.2.4 PREFMAP

PREFerence MAPping (PREFMAP) is an analysis tool which relates a stimulus space to

preference data in order to generate an external mapping of preference. It was also developed

by Chang and Carroll at the Bell Laboratories in the 1960s and 70s (9). In an external

mapping of preference, the stimulus space is based on data obtained independently to the

preference assessment (9)(13). For instance, if several examples of light were shown to

subjects and the subjects rated their preference for each sample, then we could determine

brightness preference by mapping the light samples’ preference onto a stimulus space of

27



lumens as the external map.

The evaluated data that are input to PREFMAP is a subjective ranking by a subject

of his/her preferences for certain stimuli (variations on a particular design, for example).

PREFMAP has four different phases of analysis associated with four different types of

mapping. Three of these mappings, Phases I through III, are based on an ideal point of

preference model, while Phase IV is a vector model of preference. The basic idea behind

PREFMAP is that each individual has an ideal point of maximum preference and is capable

of ranking different stimuli in such a way that the ideal point is revealed (13). The dis-

tances relating an individual’s rank to the ideal point are different for each of the phases of

PREFMAP. The ideal point assumption appears to be axiomatic. But, it is likely that several

‘ideal points’ could exist in different regions of a potential design space. For instance, a

person may like small sports cars, and large SUVs, but dislike luxury sedans. Thus two

distinct ideal points, not one, would exist if vehicles were evaluated in a stimulus space that

consisted of size and price as variables.

We can think of each of the first three phases as elliptical paraboloid models of prefer-

ence with varying levels of complexity where the maximum (or minimum) point is the ideal

point. Phase I presents the most general level of preference and describes the preference

space as an elliptical paraboloid that can be rotated within the plane (thus the variables are

coupled). Phase II is like Phase I, except the paraboloid is not rotated (thus the variables are

decoupled). Phase III is simpler yet, as the paraboloid is circular. Phase IV is a vector model

where the vector can be thought of as pointing in a direction of ever increasing preference

for the given design attributes associated with the stimulus space. Basically, for Phase IV

we can imagine that the ideal point predicted in Phase III is very far away from the actual

stimuli tested, thus the iso-preference curves of the circular map are nearly parallel and

suggest a gradient of ascent toward the ideal point. Figure 2.4 visually shows the difference

between the four phases.

Phase IV, being linear and suggesting that the ideal point is infinitely far along some
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Figure 2.4 The different phases of PREFMAP are suited to different situations.

vector, is uninteresting in this current research for the same reasons as discussed with

MDPREF. However, Phases I through III of PREFMAP are of interest to this preference

investigation because it allows a mathematical model of preference that is nonlinear. In

particular, Phase I is the most general form of model development and can serve as the basic

equation for both Phases II and III.

Phase I fits user response data (typically averaged over a sample population) to a

paraboloid defined by

Pmodel(x1,x2) =
(x1−b0)2

b1
+

(x1−b2)2

b3
+b4x1x2 +b5 (2.5)

where Pmodel(x1,x2) is the model of preference, x1 and x2 are design variables, and

B = {b0,b1, ...,b5} are constants determined by minimizing the distance between observed

user response data, Pavg(x1,x2), and Pmodel(x1,x2), namely:

min F(B) =
√

∑
i

∑
j
(Pmodel(i, j)−Pavg(i, j))2. (2.6)

From this formulation the maximum preference point of the user is determinable. In this

case, the external stimulus space is simply the two design variables weighted on a linear

basis.

29



Some recent investigations into a user’s aesthetic preference for a table glass shape are

founded upon PREFMAP, but vary slightly in implementation (67). This will be discussed

next.

2.2.5 Quadratic preference model

As mentioned, work by Petiot and Chablat has investigated how visual preference can be

mapped using a technique similar to that of PREFMAP (67). In independent discussions

with the author, Petiot has termed his proposed technique the “quadratic preference model”

(QPM), so this is the term we adopt here. Much of Petiot’s work is related to the investi-

gation of preference and perception, and relating these notions to the domain of product

characteristics that engineers can affect. In his study of QPM, which was based on the

subjective evaluation of table glasses, he queried a subject in several ways in order to: first,

develop a perceptual space; second, assess preference for different table glass shapes; finally,

examine how variation of specific design parameters influenced the subject’s preference in

order to find “appeal derivatives”.

Petiot first used a perceptual space mapping (an external map) to determine how subjects

perceive the difference between 18 different glasses. This information was then used, along

with an implementation of metric MDS, to create the perceptual coordinate system for the

table glasses. Metric MDS attempts to preserve the stated distances between objects during

mapping, while non-metric MDS attempts to maintain the rank-order among the objects.

With this perceptual coordinate system available, the preference data, which was gathered

through a hedonic evaluation of 18 table glasses on a scale from 0 to 10, was evaluated using

an algorithm similar to PREFMAP. A hedonic evaluation simply means that an object is

evaluated based on how well it is liked. The evaluation was a multiple regression of the

preference data onto the perceptual axes and it generated a preference vector within the

perceptual axes. Thus, it was similar to phase IV of PREFMAP. This plot, shown in Figure

2.5, is interesting because it illustrates how the table glasses project onto the preference
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vector from the independently generated perceptual mapping, and it shows how well order is

maintained on this preference vector. The preference scores for the 18 glasses (in descending

order) were [10, 4, 16, 11, 5, 1, 13, 7, 17, 3, 6, 9, 15, 12, 18, 8, 14, 2]. However, it does not

provide insight into the physical characteristics of the table glasses that drive preference.

Figure 2.5 This vector model of appeal within the perceptual space, from (67), indicates how well
this vector model can predict preference. By looking at the projection of each point onto the vector,
we can see that it represents the reported preference order quite well.

Petiot attempted to understand how the physical characteristics of the table glass influ-

enced preference using a modified formulation of PREFMAP Phase I and mapping the data

to the design parameter space of the table glasses, so that the ordinal axis is one design

variable of the glass, and the abscissa is the other design variable (again, this is an external
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mapping of the data). Figure 2.6 shows the physical meaning of the design variables. The

primary difference between this formulation and that of PREFMAP is the introduction of

the appeal derivative data. However, independent analysis and discussions with the author

have revealed that such information does not actually provide a better data fit. In fact, using

a coupled quadratic formulation for the predicted preference and minimizing its variation

from the stated preference (in a least squared sense), in order to find the predicted preference

coefficients, yields a more accurate predication model than when the appeal derivates are

included.

Figure 2.6 In their study, Petiot and Chablat allowed table glasses to vary in dimension, d2 and d3
as shown.

The results shown in Petiot’s article (and reproduced here in Figure 2.7) suggest a final

mapping of preference within the design space that is once again vectorial. Thus, we are

provided with a preference space that is monotonic and suggests that preference will simply

increase as we modify the design parameters towards positive or negative infinity as long

as they follow the ideal vector. This however, makes little sense in actual design. Perhaps,

the primary lesson of this work is that we can only hope to optimize the design towards

the bounds imposed in the investigation (or dictated by the designer). This still begs the

question: what lies beyond the bounds?
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Figure 2.7 This vector model of appeal within the design parameter space, from (67), shows how
preference data could be used to improve design.

2.2.6 Vector field preference model

Recently, Petiot and Grognet investigated techniques for modeling customer preference

through the use of vector fields (68). This approach uses some of the techniques mentioned

previously regarding Petiot’s QPM, and is capable of providing much more detailed infor-

mation regarding consumer preference between product offerings. This vector field model

compares product offerings within an externally developed stimulus space. Examples given

within their article show that this stimulus space can be represented as a perceptual space, or

as a product characteristic space. This work shows how a perceptual space can be developed

using MDS to understand how a user perceives the similarity of products, and then how a

semantic axis can be placed within the MDS space based on user rankings of items on those

semantic dimensions. In this way, we can understand user perceptions of a product. The

researchers also showed that a product’s characteristic space can be used as the stimulus
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space, thus we can examine how manipulation of those product characteristics can affect

user preference.

The data for the vector field preference model is obtained through the use of pair-wise

comparisons to evaluate items. Claiming that hedonic scales used in other preference as-

sessment tools may not be intuitive (thus yielding data of questionable validity), Petiot

suggested that pair-wise comparisons are much more intuitive for subjects and yield more

accurate data. However, he went on to say that calculation of predictive models from this

pair-wise data is problematic, primarily due to intransitivity and inconsistent evaluation. An

intransitive evaluation would be one where a subject would prefer item A to B, and item B

to C, but then prefer item C to A. Such evaluations could be encountered within decision

theory, but in developing many utility theory models decision theorists assume that decision

makers are rational and express transitive preference (68). An inconsistent evaluation would

be one where, for instance, a subject greatly prefers item A to B, greatly prefers item B to C,

but only slightly prefers A to C, when it would be logically expected that they would greatly

prefer A to C. The vector field model proposed by Petiot and Grognet can account for both

intransitivity and inconsistency.

This model maps the stimulus space with vectors that indicate, from any point on the

map, the direction of increasing preference. It can also be used to develop actual surfaces of

preference. However, these surfaces will often be relative surfaces because, if a rotational

vector field exists for preference then an absolute mapping of preference is impossible for

this technique, only irrotational vector fields are capable of yielding absolute preference

maps. In one of their examples, they showed how these relative preferences can be used

by producers, Figure 2.8. Here they showed that preference, relative to vehicle 5, can be

locally increased by increasing that vehicle’s capacity, and sportiveness, while decreasing

its commonality. While this does not provide explicit design characteristic information it

does provide an indication of ways to improve design. It would also be possible to project

this information directly onto a more specific design characteristics space to understand how
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relative preference changes due to changes in specific vehicle design decisions. This work

is very promising and could be employed for the creation of a map of shape preference. It

is more interesting than some of the previously noted methods because it does not break

preference down into a simple linear model, but allows for ideal points and polarized regions

of preference.

Figure 2.8 A map of relative preference for several vehicles as they relate to vehicle 5 (Clio) reveals
the iso-preference lines within a perceptual space. Using this information one could determine that
increasing sportiveness and capacity simultaneously would increase the vehicles preference. Figure
from (68)

2.2.7 Summary

Assessing user preference can be difficult. The methods mentioned here all take a scientific

approach to translating user preference into some type of quantifiable information. The

difficulties associated with preference assessment are outweighed by the prospect of gaining

valuable information which could lead to more informed design choices. These choices

could, in turn, provide people with products that are better suited to their wants.
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Little work has been published on the application of these tools to the assessment of

shape preferences for use in the product design process. This presents the opportunity to

apply these techniques to product design in order to understand shape preference and relate

it to engineering design.

2.3 Computer science

The field of computer science explores methods and algorithms that can be used to exploit

the computational power of computer hardware. The development of computer science

has precipitated a movement of analysis and discovery that is of Renaissance proportions.

Computational power has allowed scientists and researchers to mathematically explore and

simulate scenarios with precision and accuracy beyond the capabilities of former generations

of mankind. This has allowed the exploration of hugely important topics, such as meteoro-

logical phenomena, which require complex and computationally expensive mathematical

models, and the identification of the human genetic makeup. Fast working algorithms have

been used by justice systems in order to identify fingerprints of criminals, locate potentially

threatening individuals through facial recognition software, and forensically examine a

crime scene given a limited amount of a input data.

Computer science has also given rise to artificial intelligence, a promising means of

studying and designing intelligent agents. These agents, at their root are capable of ‘simple’

things such as competing against humans in video games, but they are also capable of very

complex tasks such as learning languages, synthesizing data and simulating population

growth and organization. The field of artificial intelligence (AI) arose in the 1950s under

heavy funding from the Department of Defense. Following rapid success, the field met

several difficult challenges and has endured several periods of unpopularity. However, the

practical capacity of AI methods in deduction, reasoning, problem solving, planning, learn-

ing and perception have made them critically important in the fields of logistics, medical
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diagnostics and data mining. These learning systems can be a true boon for the examination

of complex problem such as creativity, preference assessment and complex systems design.

An important branch of computer science that will be discussed further is the develop-

ment of evolutionary systems. Built upon the notions of biological evolution, these systems

provide a competitive environment in which designs can be tested and modified such that

better solutions can be found for problems which can present a number of difficulties such as

noisy design spaces, computationally expensive analysis, discrete problems, and unknown

underlying mathematical functions.

2.3.1 Genetic algorithms

Genetic Algorithms (GAs) are useful tools for solving both optimization and search prob-

lems. They are based upon the principles of biological genetics. In nature, populations

grow and change based on the ability of population members to survive. This survival of

the fittest leads to a population that is well tuned to its environment. This concept can be

used with optimization or search problems in the same way. By describing a potential set

of solutions to a problem in terms of a genetic code, an evolutionary process can occur

in which subsequent populations of solutions can be propagated based on the ‘fitness’ of

the previous population. This evolution should eventually lead to a population that is well

tuned to its environment. GAs have been used successfully for many applications: from

optimizing the strength to weight ratio of a bridge, to determining the least wasteful way

to fold a box. GAs were first introduced by Holland (34), and there have since been many

improvements in their application and implementation. The basic genetic algorithm can be

described as follows:

1. A problem is defined.
2. A genetic code describing the solution space of that problem is defined.
3. A fitness function is related to the genetic code.
4. An initial population is created.
5. Each member of the population is evaluated for its fitness.
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6. Highly fit individuals are allowed to ‘mate’ in a process called crossover. This allows
a new population of ’children’ with potentially fit characteristics from each ‘parent’
to be created.

7. A new population is generated from the crossover process.
8. A mutation potential is applied to each member of the population. It is important

to note that mutation can be highly beneficial to finding new solutions because an
unexplored area of the design space may be exposed.

9. The new population is sent back to Step 5, and Steps 5 through 9 are repeated until
some convergence criterion (e.g., a specific number of iterations) has been met.

10. The fittest individual in the final population is the solution to the problem.

GAs are often successful because they give primacy to those individuals that are fit,

and represent good solutions. This primacy allows for the creation of offspring that have

a similar degree of fitness, and populations typically converge. However, the breadth of

the initial population and the potential for mutations allow for a broad search of the design

space, thus enabling the potential for finding the very best solution. It should be noted that

GAs do not guarantee the optimal solution. However, they are often effective at finding very

good solutions.

To start a GA, it must be assumed that a problem can be parameterized, so that a potential

solution can be represented by these parameters. In terms of genetics, each parameter is

considered a gene. When several genes are joined together a chromosome is created. Each

singular representation of the chromosome within a population is termed a genotype. An in-

dividual’s fitness is calculated through decoding its genotype, but it will ultimately be limited

by the breadth of the chromosome. This means that GAs are very capable of optimization

within a prescribed parametric space. However, they cannot create new parameters (genes).

In GAs, a gene can be represented in several ways, but the classical form of representation

is through binary numbers.

Given the parameterized problem, a fitness evaluation is used to determine the perfor-

mance of each potential solution. The better an individual’s performance, the better its

fitness score, and thus the greater its likelihood of being able to reproduce.

In order to generate a new population a reproduction process must be undertaken. This

reproduction combines the fit individuals in one population in order to create the new in-
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dividuals for the next population. When two fit individuals are selected from an original

population they are submitted to crossover. In the simplest form of crossover (single-point

crossover), a crossover point is selected within the genotype of the individuals and then one

complementary segment from each parent is applied in the creation of a new individual as

shown in Figure 2.9.

Figure 2.9 Single-point cross over traditionally consists of creating two children from the compli-
mentary genetic material of two parents. The cross over point is randomly determined.

It is assumed that these crossover functions will be useful in creating a fitter population

in the next generation as it is likely that the good portions of each parent will be propagated

to the children. For example, if a fitness function can be represented as

f (x) = (x1−2)2 +(x2−3)2 (2.7)

and we seek to minimize that function while the variables x1 and x2 can be described by

the set of integer values, I, then we are faced with a set of potential solutions of the form

{x1,x2} where x ∈ I.

If the crossover function for this problem is simply to take one variable from one parent

and the other variable from the other, and the two parents are represented as {2,4} and {3,3},

then the resulting children of the cross over will be {2,3} and {3,4}. The child {2,3} has a

fitness value of zero, which is the minimum possible for this problem. This shows how two

fit individuals can be combined to create an even better child.

To introduce more diversity, and potentially find drastically new solutions, mutation is

utilized. Each individual is subject to a mutation potential (typically this potential is low),
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and if a mutation is allowed to occur then one point of the individual’s genotype is modified

(or mutated) as shown in Figure 2.10. For binary-based GAs, we see that mutation can be

randomly applied in order to alter a single point within the genetic code. We also know that

a change of one bit in a binary string can have a drastic impact on the representation of a

variable within the design space in which it exists. For example, let us assume that a four-bit

binary string has an integer representation in the design space, and that the decoding of those

integers is that typically associated with binary to integer conversion. Then, if a mutation is

applied to a binary string of 0000 the alteration could create the string 1000. Thus a single

bit change in the binary space changed the design space variable from 0 to 8. We also know

that it is impossible for a single bit mutation to change the binary representation of 7 (0111)

to 8 (1000). Thus, in some instances we see that while mutations can help us find new

designs there can be ‘wells’ that exist due to the nature of encoding.

Figure 2.10 Binary mutation typically involves the alteration of a single bit within the binary string
of an individual.

Sometimes Gray codes have been employed within GAs due to their Hamming distance

properties. Gray coding is a means of structuring a binary code such that the Hamming

distance between two consecutive numbers in integer space is only one. The Hamming

distance between two binary numbers is the number of differences between the bits within

those binary numbers. So, the Hamming distance between 000 and 001 is 1, while the

Hamming distance between 111 and 000 is 3. Gray coding can be useful in GAs because,

while most mutations will allow only incremental changes, some mutations will allow drastic

changes. Studies indicate that, while both coding schemes work, in most problems Gray
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codes perform better than binary codes, but the programming overhead for Gray codes can

be slightly more cumbersome than traditional binary codes (82).

There are many other optimization and search algorithms available. Often, these other

algorithms are faster than GAs, because GA calculation can be computationally very expen-

sive. However, GAs are very useful when the proposed design space is not smooth, or when

discrete design variables are available. The basis for much of the preceding review comes

from (4) and (22), which serve as excellent introductory resources for the topic.

2.3.2 Interactive genetic algorithms

From the perspective of product design it is difficult to query meaningfully a person regard-

ing his or her shape preferences. One potential way of alleviating this difficulty is through

the use of an interactive genetic algorithm (IGA). IGAs are based upon the idea of involving

a human as an evaluator in an evolutionary process. In IGAs the fitness function of the GA is

replaced with a user evaluation of the problem. This idea was first enumerated by Dawkins

in the representation of treelike graphical structures which he termed “bimorphs” (15). This

led directly to work within the computer art community that basically allowed artists to

make aesthetic judgments about a piece of computer generated art, and then alter the art

through the aforementioned evolutionary process. This allowed the artwork to be guided by

the implicit preferences of the artist. One example of evolutionary art is the “Galapagos”

exhibit by Karl Sims, which ran at the NTT InterCommunication Center in Tokyo from

1997 to 2000. It allowed patrons to interact with a population of three-dimensional virtual

organisms in order to evolve the population toward the discovery of new and interesting

figures (20).

Beyond this, the idea of interactive evolution has been used by several researchers,

artists and engineers for a variety of purposes. The commonality between all of this work

is centered around the concept that human interaction with potential designs can be useful

when the traditional fitness evaluation used within normal GAs is difficult (or impossible) to
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describe within a mathematical framework. The human interaction essentially serves as a

‘black-box’ analysis of the likelihood of success for each individual within a population.

Graf and Banzhaf proposed a system for the evolution of two-dimensional pixel im-

ages and three-dimensional voxel images with user interaction (25). Specifically, these

researchers applied the IGA methodology to the creation of new design concepts for automo-

biles in two-dimensions by using bitmap images of current vehicles. They then associated

tie-points to specific identifying points of the vehicle. These points were then used, along

with user selection, to generate a new population of vehicles. These same ideas were applied

to three-dimensional voxel space for the evaluation and alteration of tea pots.

Further, Banzhaf discussed the potential, the limitations and the important issues that

surround IGAs (1). One of the potential application areas cited is the field of product design,

specifically the assessment of user aesthetic preference for a design through the implicit

means of the IGA. He also mentioned the important influence that fatigue could have on a

subject during testing, and the potential for a subject to become overwhelmed by the number

of available choices that they have to choose from. Finally, Banzhaf alluded to the potential

for IGAs to be integrated within the consumer market:

With the advent of interactive media in the consumer market, production-on-
demand systems might one day include an interactive evolutionary design device
that allows the user not only to customize a product design before it goes into
production, but also to generate his or her own original design that has never
been realized before and usually will never be produced again. This would open
up the possibility of evolutionary product design by companies which track
their customers’ activities and then distribute the best designs they discover.

Banzhaf highlighted some of the very items being investigated in this dissertation, and his

mention of respondent fatigue points to one of the critical barriers that could keep IGA tech-

niques from being effectively utilized. Other issues surrounding the validity of IGAs are: the

ability to accurately partition an artifact into important components for variation; providing

enough perceptual tiling for each component such that respondents can visually perceive

component variance between individuals and generations; coding the genetic structure such
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that irregularity is reduced during the mutation process.

More visually advanced systems that employ the IGA techniques have been developed

by Cho, et al. Their work has utilized highly refined computer imaging for the development

of unique designs. Specific applications have been within fashion design, bottle design

and the generation of a realistic green pepper (61; 10). All of these examples use IGA.

However, some of the testing methods used may violate human perception constraints. For

instance, they suggested that a subject can evolve a green pepper in 30 to 50 generations,

requiring 30 to 50 minutes of testing. Yet, other researchers have suggested that subjects

tire easily from IGAs and suggest that better information can be gained by reducing the

number of evaluations (40). Cho and his colleagues asked subjects to rank each item, within

a population of 20, on a scale of 1 to 5. While other researchers used simple ‘survive’ or

‘die’ rules governing whether or not an individual design proceeds on to the next generation

(7; 40).

Hsiao and Liu leverage fuzzy theory and back propagating neural networks in conjunc-

tion with IGAs as tools to generate and evaluate populations of potential design solutions.

This work was utilized in an attempt to design quartz alarm clocks and rolling office chairs

(36).

Not all IGA work has been focused on visual stimuli. Work by Wakefield has utilized

IGAs in order to address the field of psychoacoustics (16) (75). Here a user’s evaluation

of an audio sample is used within the GA process in order to tune a system such that it

achieves a preferred auditory response. Their specific applications have included hearing

aides and automobile interior design. IGAs have also been used to assess an expert’s opinion

regarding the feasibility of complex systems (7). These researchers used experts in the fields

of aeroelasticity and manufacturing to assess the ‘fitness’ of a particular design within these

two domains and to eliminate those designs that were unlikely to be successful. The use of

experts saved on computational resources, and increased the speed of the evaluation.

One important thing to note regarding this branch of research is that, while its preference
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assessing capabilities have been assumed, they have never been rigorously tested or verified

using another tool. This means that, while we can identify their benefits, we cannot say with

anything more than speculation that IGAs can help us identify user preference. All other

forms of these algorithms have been used to help tune systems, or toward the development

of a design with a defined goal.

2.4 Automated design generation

As opposed to determining aesthetic rules, or even determining the wants of the user, several

researchers have examined the idea of enhancing the creativity of the designer through

the automatic generation of potential designs. These automated design schemes allow the

designer to effectively “encode” a particular design into elements that can be automatically

altered. These alterations generate new design ideas, some infeasible, some impractical, but

all with the intent of augmenting the abilities of the designer toward the generation of new,

exciting, attractive and, ultimately, desirable artifact designs. While demanding more in

upfront effort to the designer, from the standpoint of parameterizing the design and defining

elements that will be allowed to vary (and often defining some constraints to the variance),

this approach of automated design offers an interesting avenue for both design research and

application.

One system proposed for automated design, developed by Wallace and Jakiela, operated

under the constraints of aesthetic, ergonomic and manufacturing rules (81). The aesthetic

rules for this system were based on the design principles of stability, rhythm, organization,

and balance, which they based on the “gestalt laws of organization and industrial design

guidelines” (81). But, these rules do not have the rigorous scientific validation achieved in

the work of Bauerly (2).

Wallace and Jakiela composed a software tool because, in their assessment, the sep-

aration of form and function, which they claimed are often at odds due to the differing
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design focus of industrial designers and engineers, often leads to unappealing or difficult

to manufacture products (81). Their software is general and capable of creating designs

for many products, however its database must be informed by catalogs of components that

could be part of the design, rules that govern aesthetics, ergonomics and manufacturing,

and style elements that affect the appearance of product features, such as corners. They

applied the tool to the development of a stereo system. The software was then able to

develop several design alternatives that could be used by a designer to enhance their design

creativity. The aesthetic rules applied in this work are based primarily on the “weight” of

a proposed design’s element placement. This weight is used to provide the software with

a context to place components within a defined matrix of three-dimensional space. The

manufacturing and ergonomic rules also assist in defining the final form of the product, but

as with aesthetics, the specific mathematical formulation and implementation of these rules

is not transparent.

Following this idea of providing the designer with tools that allow them to expand their

horizon, Smyth and Wallace developed a design tool based on the concept of evolutionary

design (74). In their work, a designer initiates the evolution process by defining a “skeleton”,

or representative design form, based on existing product geometries. This skeleton is then

utilized in the generation of several new design forms which the designer can interact

with by selecting the designs that appeal to them. These designs are then combined and

mutated (in the traditional sense of genetic algorithms) in order to create new designs. The

researchers cite shape grammars, expert systems (design rules), and semantic transformation

all as methods for automated design, but note that these ideas are all limited in their ability

to generate new and unique ideas. They claim that the coding of a product in a genetic

fashion supports this uniqueness and allows the designer the ability to control the evolution

of new products, without the need to understand the mathematical structures that provide

the backbone of that product generation. The researchers claimed that an interesting aspect

of this work is use of the skeletal system to define the initial design, but it seems that this
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skeletal structure is nothing more than the definition of the artifact’s chromosome (which

is a standard practice in all forms of genetic algorithms). Despite this, the work has been

interestingly applied to the creation of car door designs. Again, this design tool is intended

to aide the designer in realizing new ideas, thus giving the final say in the design to the

decisions of the designer, which could be drastically different than the actual wants of the

user.

While other methods of automated design exist, most of these systems are focused on

techniques for the solution of a problem. For example, given that a specific task must be

completed in a specific location, and provided with a variety of constraints, a design is

automatically generated from selecting a variety of components from a catalog (72). While

this work is interesting, it rarely focuses on the aesthetic aspects of the resulting design, thus

it will not be explored in detail here.
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Chapter 3

Shape preference in engineering design

The question of form versus function has long been pondered by philosophers, artists,

designers and art historians. However, this study seeks to examine the form versus function

question using mathematical tools. Doing so promotes an understanding of how form im-

pacts both design functionality and shape preference. This facilitates an analytical method in

decision making. The purpose of this study is to first highlight the capacity of different tools

in understanding shape preference and then show that combining them with engineering

design allows meaningful objective decisions to be made regarding shape preference.

3.1 Introduction

To investigate the interplay between shape preference and engineering objectives, we formu-

lated two case studies that focus on the design of plastic bottles. We used conjoint analysis

and PREFMAP to obtain the shape preference information of a sample population. From

the engineering standpoint, the bottle was analyzed using finite element analysis (FEA) to

reduce the mass of material used while respecting its stress constraints. We then used the

resulting models to examine the tradeoffs that existed between maximizing shape preference

and minimizing material volume in the bottle design, two possibly competing objectives.

In doing this we hoped to show that, despite the difficult nature of understanding shape

preference, tools exist that allow us to understand shape preference and inform an overall
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design process that accounts for functional engineering realities.

3.1.1 Study goals

This study has several goals.

• Explore modeling differences between conjoint analysis and PREFMAP.
• Examine shape preference for two design case studies: cola bottle, and bottled water

designs.
• Relate engineering analyses to preference information to observe design tradeoffs.
• Devise a generalized methodology for applying shape preference information in

product design.

3.1.2 Course of investigation

To examine the alignment of shape preference and engineering, a broadly focused study

of preference was conducted. In this study, the differences between conjoint analysis and

PREFMAP were examined to both identify the differences between these methods and to

show how these differences can affect what is known about a preference space, especially

when compared to an analytical representation of that space mathematically. To do this both

PREFMAP and discrete choice analysis were used to develop a mathematical representation

of both a predefined unimodal and bimodal mathematical function.

Following that, two studies will be described that attempt to understand preference as it

relates to bottle design. In the first study, conjoint analysis was used to examine the design

tradeoffs between aesthetic preference and engineering functionality in the design of cola

bottles. In the second study, both conjoint analysis and PREFMAP were used to determine

the same design tradeoffs in the case of bottled water designs. This second study was done to

reduce the impact that currently dominant shapes in the cola bottle sector have on the results.

Subjects for both studies were university aged students from the Ecole Centrale de Nantes,

in France. A software program was used to collect data from the subjects, and the data was

analyzed using both commercial and newly developed software. The chapter will conclude
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with a proposed methodology for collecting and using shape preference information in

product design.

3.2 Preference tool examination

To illuminate potential differences between the PREFMAP and conjoint analysis modeling

techniques, we used a test function representing the ‘real’ preference. The two analysis

models were then tested in their ability to reproduce this function using only information

requested by the querying tool of each technique and subject to that model’s own constraints.

The goal was not necessarily to ascertain which method was better, but to show that these

two techniques yield different results and must be applied judiciously to design problems.

We know that PREFMAP is only capable of yielding a single best solution, so its use-

fulness in spaces that are multimodal is of questionable value. In fact, to get proper results

one would have to either assume the regions of modal interest and then test these locations

separately. On the other hand, the data collected in a single course of investigation could

be analyzed to identify the disparity between a unimodal solution and the data, and if a

threshold of accuracy was unacceptable then a method of identifying an appropriate model

could be formulated. However, this method would require a significant amount of data to

obtain a model of valuable fidelity. Recall that the equation describing the most general

PREFMAP model, phase I, is:

Pmodel(x1,x2) =
(x1−b0)2

b1
+

(x2−b2)2

b3
+b4x1x2 +b5. (3.1)

An important assumption must be placed upon this development of PREFMAP. We

require that the mathematical model be an elliptical paraboloid. This then requires that the

curvatures of Pmodel with respect to x1 and x2 be of the same sign. In our studies, we will

require that they are both negative; implying that the model has a single maxima point. Fur-

ther, we must ensure that a saddle point does not exist. Therefore, the following conditions
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must be met:

(
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∂x2
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2
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−
(

∂ 2 f
∂x1∂x2

)
> 0, (3.2)(
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< 0, (3.3)(
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∂x2

2

)
< 0. (3.4)

If we expand and simplify Equation 3.1, we arrive at:

b1b3Pmodel(x1,x2) = b3x2
1 +b1x2

2 +b1b3b4x1x2−2b0b3x1−2b1b2x2 +b1b3b5. (3.5)

Taking the partials derivatives and simplifying yields:

(
∂ 2 f

∂x1∂x2

)
= b4, (3.6)(

∂ 2 f
∂x2

1

)
=

2
b1

, (3.7)(
∂ 2 f
∂x2

2

)
=

2
b3

. (3.8)

If we use these within Equation 3.3 we obtain:

(
2
b1

)(
2
b3

)
−b2

4 > 0. (3.9)
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min F(B) =
√

∑i ∑ j(Pmodel(i, j)−Pavg(i, j))2

s.t. −
(

2
b1

)(
2
b3

)
+(b4)

2 ≤ 0 (3.10)

b1 < 0

b3 < 0

By devising the above form of the PREFMAP model we can guarantee that the b-value

solutions will be appropriate for the type of output required to model the example functions

proposed next.

Discrete choice analysis can be used to collect data that can be used in a MultiNomial

Logit (MNL) model. This modeling technique can identify important relationships between

design attributes. This type of model can account for both main effects and interaction

effects under the right circumstances (63). This increased flexibility comes at a significant

cost. The amount of information that must be gathered in a discrete choice study is signifi-

cantly greater than that associated with PREFMAP. Further, it is common practice that this

information only be assessed at the aggregate level, while PREFMAP can be used at both

the aggregate and individual levels. Other techniques of examining conjoint analysis, such

as hierarchical Bayesian conjoint, can be useful in reducing the required amount of data

collected, but this method is not addressed within this work.

A more detailed development of the discrete choice models developed within this work

will follow.

3.2.1 Unimodal examination

We defined an example unimodal ‘goal’ preference function as:

f (x1,x2) = [(x1−2.5)(x1 +3)(x1 +2)]2 +[(x2−2.5)(x2 +3)(x2 +2)]2. (3.11)
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This polynomial surface (see also Figure 3.1) has ridges and a single maximum (x1,x2) =

(0.86,0.86) within the intervals [-2, 2] for x1 and [-2, 2] for x2. To provide preference

information the design space was discretized into a 5-by-5 grid of equally spaced points. We

used this model and the discretized decision space as a way to inform both the PREFMAP

and discrete choice query tools.

Figure 3.1 Goal model in unimodal comparison of preference tools.

PREFMAP

For the PREFMAP query we ranked the 25 design points by scaling the function values at

the discrete points to be integers between one and nine, as shown in Table 3.5. This scale

is typical of actual PREFMAP surveys, where one corresponds to least liked and nine to

most liked. This information was then used in Equation 3.10 to create a predicted model of

preference. Table 3.5 shows the values that were provided to the PREFMAP query for each

design point. This information was then regressed to the characteristic PREFMAP equation.

PREFMAP yielded an elliptical paraboloid centered at (x1,x2) = (1.03,1.03), Figure

3.2. The b-values associated with Equation 3.1 are shown in Table 3.2. Clearly, it would
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Table 3.1 Values used to answer PREFMAP survey
HH

HHHHx1
x2

-2 -1 0 1 2

-2 1 2 4 5 2
-1 2 2 4 6 3
0 4 4 7 8 5
1 5 6 8 9 6
2 2 3 5 6 3

be impossible for a paraboloid model to identify the ridges associated with Equation 3.11.

However, we do notice that these results provide a solution that identifies the appropriate

quadrant of the design map for further investigation and it identifies the general trends well.

Table 3.2 PREFMAP solution b-values
b0 b1 b2 b3 b4 b5

0.9439 -1.7470 0.9439 -1.7471 0.0940 5.3882

Figure 3.2 PREFMAP interpretation of proposed unimodal preference model.

Using the results of this PREFMAP study could allow a producer to properly identify

an area of interest in the design space. Its optimal point indicates that it would provide the

producer with a design point that closely matches the actual optimal design point. This
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shows us that the generality of this model to certain unimodal design situations may yield

results that are desirable by the market of interest. Thus, it can be used to determine some

valuable information about the market data.

Conjoint analysis

The discrete choice analysis query was formed using Sawtooth Software’s Choice Based

Conjoint module (63). Forty ‘subjects’, modeled by computer agents, were used to answer

the survey with their preferences defined by the function in Equation 3.11. Each unique

survey consisted of sixteen questions; each question had five options: four were designs

selected from the discrete set, and one was a no-choice option. To highlight one assumption

of the MNL model, we used Equation 3.11 to answer these questions in two different

ways. First, the agents answered each question using Equation 3.11, such that the option

presented in the set with the greatest functional value was chosen from the set. Second,

each question was answered using Equation 3.11 along with an error term having a double

exponential distribution. These data were then analyzed with Sawtooth’s SMRT module,

and the resulting part-worths for each attribute level were analyzed in a MNL model, thus

creating an interpretation of the full-factorial marketplace (50). This describes how each

design option is preferred relative to every other option. We then fit natural cubic splines to

this data to obtain a continuous and differentiable model of preference.

The MNL model derived from the first set of answers mentioned above is shown in

Figure 3.3 with part-worth values in Table 3.3. The model is polarized at an optimal value

of (x1,x2) = (1.06,1.06) and appears relatively insensitive to the ridges of Equation 3.11.

The optimal point is located near the discrete choice (x1,x2) = (1,1) available in the survey.

Table 3.3 MNL model part-worths for data without error distribution term
β0 β11 β12 β13 β14 β15

-36.05 -45.75 -28.31 25.52 60.04 -11.50
β21 β22 β23 β24 β25

-45.50 -28.50 25.63 59.90 -11.53
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Figure 3.3 MNL model interpretation of proposed unimodal preference model without error
distribution term.

Table 3.4 MNL model part-worths for data with error distribution term
β0 β11 β12 β13 β14 β15

-17.14 -1.59 -0.82 0.85 1.86 -0.31
β21 β22 β23 β24 β25

-1.32 -1.037 0.90 1.82 -0.36

Figure 3.4 presents the MNL model results using the second set of answers that included

the random error term, with part-worth values in Table 3.4. This model, while not fully able

to recreate the original model, is much more successful than that shown without the error

distribution accounted for. The ideal point coincides with the ideal design option available

in the discrete set. However, the contours are less polarized toward that point and more

gradient information is available to understand the preference space.

Indeed, the error term is an important assumption of discrete choice analysis. Using

‘perfect’ preference data without an error term, the MNL model quickly identifies the most

preferred option and defines the design space so that the most preferred option takes out-

standing preference over all other options. At the extreme, using survey information from a
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Figure 3.4 MNL model interpretation of proposed unimodal preference model with error distribu-
tion term.

large number of respondents answering perfectly according to a specified preference model,

the MNL model would specify precisely the most preferred option, but would obscure

the slopes and curvatures of the surrounding design space. Thus, if the most preferred

design was technically infeasible, which might occur in a marketing survey, then identifying

acceptable alternative designs would be very difficult.

A marketing survey will never have perfect data, it will always contain human error,

and this is accounted for in the mathematical model with the inclusion of simulated error.

Thus, in the exercise of exploring a predefined preference model and comparing it to another

preference model we must account for this modeling assumption.
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3.2.2 Bimodal examination

To further explore the differences between PREFMAP and conjoint analysis we defined an

example bimodal ‘goal’ preference function as:

f (x1,x2) =
1

e((x1−1)2+(x2−1.2)2)
+

1
e((x1+1.3)2+(x2+1.2)2)

. (3.12)

This mathematical model has two points that represent locations of highest preference,

one at (x1,x2) = (1,1.2) and the other at (x1,x2) = (−1.3,−1.2). These two points have

the same value, thus neither dominates the other. We would therefore hope that a model of

preference would be capable of understanding such a bimodal response of users to such an

incident, and further, be able to accurately identify those two optimal locations.

This model, shown in Figure 3.5, was examined within the intervals [-2, 2] for x1 and

[-2, 2] for x2. Therefore, the design space was again discretized into a 5-by-5 grid of equally

spaced points, as was done in the unimodal case. We used this model and the discretized

decision space as a way to inform both the PREFMAP and discrete choice query tools.

Figure 3.5 Goal model in bimodal comparison of preference tools.
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PREFMAP

For the PREFMAP query we ranked the 25 design points by scaling the function values at

the discrete points to be integers between one and nine, as shown in Table 3.5. This scale is

typical of actual PREFMAP surveys, where one corresponds to least liked and nine to most

liked. This information was then used in Equation 3.10 to create a ‘predicted’ model of

preference. Table 3.5 shows the values that were provided to the PREFMAP query for each

design point. This information was then regressed to the characteristic PREFMAP equation.

Table 3.5 Values used to answer PREFMAP survey
HHH

HHHx1
x2

-2 -1 0 1 2

-2 4 5 2 1 1
-1 6 8 3 1 1
0 2 3 2 3 2
1 1 1 4 9 4
2 1 1 3 5 3

PREFMAP yielded an elliptical paraboloid centered at (x1,x2) = (−0.11,−.05), Figure

3.2. The b-values associated with Equation 3.1 are shown in Table 3.6. Clearly, it would be

impossible for a paraboloid model to appropriately model the proposed bimodal function.

Table 3.6 PREFMAP solution b-values for bimodal problem
b0 b1 b2 b3 b4 b5

-0.0848 -1.6953 0.0000 -1.8264 0.5403 5.3191

This bimodal function examination shows an important limitation of PREFMAP that

should not be discounted: it will, by nature, be insensitive to the identification of multiple

preference locations, both local and global. Further, as seen in the example it has the effect

of distorting a bimodal model into a unimodal model that may predict optimality in regions

having poor functional values.
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Figure 3.6 PREFMAP interpretation of proposed bimodal preference model.

Conjoint analysis

The previous formulation of the MNL model could only account for main effects and not

interaction effects. The main effects are influenced by each attribute independent of each

other attribute. Equation 3.13 accounts for interaction terms, which link one attribute to

another. Due to the nature of the bimodal design space in our example it is appropriate to

use this formulation of the MNL model, because interaction effects should be significant.

vi = ∑
j
∑
k

(β jkδi jk +∑
l

∑
m

β jklmδi jklm). (3.13)

This discrete model of preference was then made continuous by fitting a cubic spline through

the design points (55). Doing this allows us to model the example design space. Note that

in this analysis we again include an error term having a double exponential distribution to

meet the requirements of MNL models.

The main effects coefficients are presented in Table 3.7 and the interaction effects are

shown in Table 3.8. Using cubic splines to fit this data, the resulting model was developed,
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Table 3.7 MNL model part-worths for proposed bimodal model, main effects
β11 β12 β13 β14 β15

-0.10 0.09 -0.07 0.20 -0.12
β21 β22 β23 β24 β25

-0.10 0.20 -0.16 0.19 -0.12

Table 3.8 MNL model part-worths for proposed bimodal model, interaction terms
β jk11 β jk12 β jk13 β jk14 β jk15

β11lm 0.21 0.29 0.18 -0.32 -0.36
β12lm 0.74 1.03 -0.33 -1.03 -0.41
β13lm -0.29 -0.06 -0.07 0.28 0.13
β14lm -0.34 -1.02 -0.14 1.20 0.29
β15lm -0.33 -0.24 0.36 -0.14 0.34

see Figure 3.7. In this figure we see that the model predicts two points of local optimality,

as we would hope based upon the example function. The location of these two locally

optimal points are (x1,x2) = (−1.08,−1.16) and (x1,x2) = (1.02,1.08). These points are

in good agreement with the actual optimal points on the real bimodal surface. This model

also provides a great deal of gradient data that can be used in instances where the optimal

points are infeasible in a larger design problem.

In general it is tempting to conclude that using discrete choice analysis to develop a

MNL model will provide us with a better model of the design space. On the surface, such

a statement is true. However, this statement neglects an important issue: data collection.

Given unlimited resources in time, money and available respondents from a particular market

segment, we would employ discrete choice analysis to obtain data. However, given practical

realities, it may be beneficial to employ PREFMAP as a means of identifying a coarse

understanding of the design space.

Yet, if we really want to understand the design space, both the points of optimality and

the related effects of perturbations within that design space, then it would be beneficial to

use discrete choice analysis with a MNL model. This does provide a practical constraint

on data collection as the number of responses needed increases dramatically as both the

attributes and levels of design space increase.
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Figure 3.7 MNL model interpretation of proposed bimodal preference model with interaction
terms.

3.3 Linking preference to engineering

Now that we have described some techniques to collect preference data, we will attempt to

use them to explore shape preference for bottle designs. In the first study, we look at cola

bottle design using only conjoint analysis. In the second study, we look at the design of

bottled water bottles using both PREFMAP and conjoint analysis

3.3.1 Cola bottle case study

Branding through shape is important to the beverage industry. Much effort is put forth in

creating unique and appealing bottle designs (43; 80; 29). The bottle shape used for this

study was defined by a spline fit through five points, and subjected to prescribed end condi-

tions. Two of the five points were considered variable, points R2 and R4 in Figure 3.8, and
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Figure 3.8 Parameterized bottle shape.

provided sufficient shape differentiation. Values for R2 and R4 were constrained between

25 mm and 50 mm. The other three points were fixed parameters during optimization. Point

R1 was set for a perfectly vertical end condition, while R5 was set with an end condition

to create an angle of 20 with the horizontal. In the engineering analysis the variables were

continuous. In the conjoint analysis we discretized the design space with five possible values

for R2 and R4, spaced at an increment of 6.25 mm, thus creating a design space with 25

different designs.

Preference assessment

The conjoint analysis survey was administered to 39 college-age individuals from the Ecole

Centrale de Nantes, France. Each respondent answered a survey consisting of sixteen

questions, and each question offered the respondent four shapes and the no-choice option to

choose from, as shown in Figure 3.9. Each individual received a unique survey, thus creating
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an efficient survey design. The data were analyzed using Sawtooth Software to obtain

part-worths for each variable and level of the two design variables. Equations 3.14 and 3.15

below are simplifications of Equations 2.3 and 2.4. Equation 3.14 states that each individual

bottle design, i, has a particular probability of being selected based upon the summation of

its variable (or attribute) part-worths compared against all other design offerings:

Pi =
eVi

∑
J
j=1 eV j

, (3.14)

vi = ∑
j
∑
k

β jkδi jk. (3.15)

Note that Vi is a linear combination of part-worth coefficients, β jk, and a binary dummy

variable, δi jk, such that δi jk = 1 when alternative i possesses attribute j at level k. This

formulation can only account for main effects and not interaction effects. The main effects

are influenced by each attribute independent of each other attribute. Equation 3.16 accounts

for interaction terms, which link one attribute to another:

vi = ∑
j
∑
k

(β jkδi jk +∑
l

∑
m

β jklmδi jklm). (3.16)

Now, δi jklm = 1 when alternative i possesses attributes j and l at levels k and m, respec-

tively. Their inclusion in an analysis is warranted in situations, such as shape preference,

where it is likely that one attribute is not independent of the other. We therefore used the

MNL model that accounted for interaction. This discrete model of preference was then

made continuous by fitting a cubic spline through the design points (55). Doing this allowed

us to use the design space to locate an optimally shaped bottle design.
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Figure 3.9 Screenshot of survey tool.

Engineering model

From an engineering viewpoint, we desired the bottle shape that used the least amount of

material to hold the desired amount of fluid and resisted the internal pressure without plastic

deformation. The internal gauge pressure for this experiment was chosen to be 300 kPa

(60 psi). The analysis model was built using the finite element package ANSYS (56). An

axisymmetric solid model was created with a spline shape as previously described. This

spline shape was given a uniform wall thickness treated as a design variable. The cap section

was given a double wall thickness to prevent a high level of stress in that area (52). The

bottle’s bottom section was designed according to an available patent since this is typically

the critically stressed location of bottle designs (70); the wall thickness here was also in-

creased slightly to accommodate increased stress. While this bottom section of the bottle

is not flat, it is axisymmetric, so it appears flat to the user in a side view and is therefore

consistent with the figures shown to respondents in the conjoint survey. The maximum von
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Table 3.9 Material properties of PET cola bottle
Youngs Modulus Tensile Strength Poisons Ratio

1.25 GPa 25 MPa .3

Mises stress within the bottle was calculated to ensure that the bottle would avoid exceeding

the materials tensile strength. Cola bottles are typically blow molded from polyethylene

(PET), therefore, PET was selected in this design problem. Its material properties are shown

in Table 3.9. A simple, linear multi-objective formulation was used.

min f (R2,R4) = w1 f1(R2,R4)+(1−w1) f2(R2,R4)

subject to g1(R2,R4)−σmax ≤ 0

Here w1 is an objective weighting, f1 is the shape preference function (scaled by 500),

f2 is the material volume calculation (scaled by 106), g1 is the maximum von Mises stress in

the bottle, and R2 and R4 are the shape variables. In this problem, wall thickness was fixed

at 1 mm to simplify the calculation and to make the trade-offs between the two objective

functions clearer. The convex hull of the Pareto frontier set was calculated by varying w1

between zero and one.

Combining the data

The preference model, obtained through survey data, is presented in Figure 3.10 along with

the optimal shape. A MNL model that included interaction effects was used, along with

splines fit to a discrete set of potential bottle designs, to generate this contour plot. The

values of the main effect and interaction effect part-worths are in Tables 3.10 and 3.11.

Interaction terms were considered significant according to the ‘2 log likelihood test’ and

included in the model (63). The optimal design was (R2,R4) = (32.16,31.61).

The shape is similar to that of cola and other soda bottles in the market. The results of
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Table 3.10 MNL model part-worths for preference survey, main effects
β0 β11 β12 β13 β14 β15

-0.82 -0.15 0.47 0.44 -0.04 -0.73
β21 β22 β23 β24 β25
0.11 0.51 0.28 -0.14 -0.76

Table 3.11 MNL model part-worths for preference survey, interaction effects
β jk11 β jk12 β jk13 β jk14 β jk15

β11lm 0.66 0.84 0.41 -0.43 -1.48
β12lm -0.07 0.44 0.15 -0.34 -0.19
β13lm -0.43 0.23 0.32 -0.02 -0.11
β14lm -0.27 -0.78 -0.06 0.24 0.86
β15lm 0.11 -0.74 -0.82 0.54 0.91

the conjoint study suggest that individuals gravitate toward a shape that they are familiar

with. In fact, from the stand point of semantics (i.e., the message conveyed by the shape),

the result suggests that subjects may prefer this particular shape for a cola bottle specifically

because they have encountered it as a cola bottle shape so often previously: This shape

means cola bottle to these respondents. This supports the notion that we tend to prefer what

we are familiar with.

Of course, the empirical evidence here is quite flimsy. Given a greater level of context

for this particular bottle it is possible that a different shape would be preferred. For instance,

if we tasked users with selecting the shape that would pour a fluid most easily or if we could

find users unfamiliar with cola bottles (arguably difficult), then we may have gotten different

results. The goal here was to examine a notion of raw preference, but shape preference was

possibly based on familiarity: A cola bottle ‘should’ look like that.

From the engineering perspective the wall thickness should be as small as possible to

reduce material volume, subject to the stress constraint. Further, the values of R2 and R4 will

be minimized to further reduce the amount of material used to make the bottle. This is shown

in Figure 3.11, which shows monotonic decrease toward (R2,R4) = (25,25). Note that this

figure is presented with a wall thickness of 1 mm to show the general trend. The optimal

bottle design has (R2,R4) = (25,25), and a wall thickness of 0.98 mm. The maximum von
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Figure 3.10 MNL model describing preference for cola bottle shape, and most preferred shape.

Mises stress for the bottles occurred in roughly the same place on the bottles bottom. More

importantly, no bottle design will fail with a wall thickness of 1 mm. Therefore, the constant

wall thickness assumption is reasonable.

The Pareto solutions are shown in Figure 3.12 and are also plotted on the individual

objective surfaces in Figure 3.13 to visualize the trade-off between maximizing preference

and minimizing material volume. These two objectives are shown to compete. One may

argue that constraints restricting the interior volume of acceptable bottle designs may change

the optimal design. This is true; however, the simplified model exposes the asserted quantifi-

cation of design trade-offs between shape preference and engineering functionality. More

refined engineering models are certainly possible.

3.3.2 Bottled water case study

In the examination of cola bottles we encountered issues that confounded our study. Namely,

users appeared to have a distinct notion of what cola bottles should look like based upon

market saturation with cola bottles whose shapes are similar to that of Coca ColaTMbottles.

This result helped us identify that the MNL model can be useful in determining shape
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Figure 3.11 Monotonic surface representing bottle weight.

expectations of consumers. That is to say, given a specific context, users were quite adept

at identifying a preference for a known shape. This was captured by the MNL model and

gives us some confidence that such a model is valuable for understanding shape preference

in other contextual instances.

In an attempt to limit a preconceived notion of an appropriate shape we again conducted

a bottle study. However, in this instance we provided users with a different context for

their evaluations. We asked them to express their preference for the shapes of bottled water

designs. We believed that such an alteration of the experiment would help identify a different

preference space that would not be so predictable.

Preference assessment

For the water bottle study 40 college age students for Ecole Centrale de Nantes were

queried about their preferred shape for a water bottle using both a discrete choice survey

and PREFMAP survey.

68



Figure 3.12 Pareto frontier of solutions in the cola bottle design MOO problem.

Figure 3.13 Pareto optimal solutions of cola bottle design plotted on preference and engineering
models.

The discrete choice data was analyzed, as before, using a multinomial logit model with

interaction effects. The results of this study indicate that, once again, subjects had an affinity

for the bottle shape often associated with Coca ColaTM. This may indicate that, beyond a

particular visual attraction, this shape may connotate a level of functionality. For instance,

the ‘waist’ of the bottle may be taken to indicate the proper location to place ones hand. The

‘weight’ of the top versus the bottom of the bottle may assure users that the bottle will not
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Table 3.12 MNL model part-worths for bottle water preference survey, main effects
β0 β11 β12 β13 β14 β15

-0.28 -0.20 0.47 0.54 0.35 -1.16
β21 β22 β23 β24 β25

-0.17 0.90 0.74 -0.61 -0.85

Table 3.13 MNL model part-worths for bottled water preference survey, interaction effects
β jk11 β jk12 β jk13 β jk14 β jk15

β11lm 1.36 1.31 0.02 -2.07 -0.62
β12lm 0.81 1.15 -0.14 -0.65 -1.15
β13lm -0.42 0.26 0.55 0.28 -0.67
β14lm -1.56 -1.04 0.20 1.53 0.87
β15lm -0.19 -1.68 -0.63 0.90 1.59

tip over easily, i.e. its center of gravity is low. Tables 3.12-3.13 show the associated beta

values and Figure 3.14 shows how the preference model varies with R2 and R4.

Figure 3.14 MNL model describing preference for bottled water shape, and most preferred shape.

We also queried users with the PREFMAP evaluation tool. Using this data we can see

how the two models, PREFMAP and MNL, relate to each other in regards to this bottle

design. The PREFMAP space of shape preference is shown in Figure 3.15 and the b-values
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are shown in Table 3.14. It is interesting to note that both the MNL and PREFMAP models

suggest a rotated preference space, thus an inherent interaction between the R2 and R4

variables is found. Whats more, this trend indicates, in both cases that there is a nearly 1:1

ratio of preference between R2 and R4. Thus, people appear to prefer R2 and R4 that are of

equal proportions.

Figure 3.15 MNL model describing preference for bottled water shape, and most preferred shape.

Table 3.14 PREFMAP solution b-values for bottled water study
b0 b1 b2 b3 b4 b5

10.00 -1.57 10.00 -1.57 0.79 -20.00

Combining the data

The engineering analysis for this bottle is exactly the same as the cola bottle design. Thus,

we are not surprised to notice that the Pareto curve associated with the design provides

information that is quite similar to that of the cola bottle, Figure 3.16. We notice that there

is not a colocation of the optimally preferred and engineering optimal design and we can tell
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by looking at the preference space, and engineering space figures that distinctly different

shapes will be produced by the two differing objectives. In Figure 3.17 we present the

preference space, and engineering space with Pareto optimal design points shown on them

to understand how varying R2 and R4 will affect the design.

Figure 3.16 Pareto frontier of solutions in the bottled water design MOO problem using conjoint
analysis for preference.

Figure 3.17 Pareto optimal solutions of bottle water design, using conjoint analysis, plotted on
preference and engineering models.

We again present the Pareto curve (Figure 3.18) and the associated Pareto points (Figure

3.19) on the models of preference and engineering to understand the tradeoffs between the
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design choices. These figures show how the PREFMAP interpretation of shape preference

impacts design decisions. In this case, we notice a linear path between the engineering and

preference optimality points. This indicates the preference gradients impact on the Pareto

figure.

Figure 3.18 Pareto frontier of solutions in the bottled water design MOO problem using PREFMAP
for preference.

Figure 3.19 Pareto optimal solutions of bottle water design, using PREFMAP, plotted on preference
and engineering models.

73



3.3.3 Discussion

This study indicates that users may have a particular preference for the shape of water bottles

based on an association with historically well-marketed bottle shapes. Further, the shape

may actually provide an affordance for the user, or a suggestion of how to use the object. We

also note that this study limited users to a selection between two variables, R2 and R4. If the

bottle were parameterized in a different manner then it is likely that different results would

be found. This study can only speak to the impact of these two variables on shape preference,

subject to the constraints imposed by the bottle’s architecture as explained previously in

the chapter. However, this study does indicate that we can discover distinct relationships

between the variables R2 and R4 and how they are related to shape preference by using both

PREFMAP and discrete choice analysis. Further, we can use that information along with an

engineering model to learn about the tradeoffs between the goals of minimizing material

used, and maximizing shape preference.

Meaningful quantification of a product’s shape preference is possible using standard

methods from psychology and marketing. The methods have limitations and experiments to

elicit preference must be conducted carefully. In the presented study we used two variables

(or attributes) to define the variations in a particular product offering. Doing so allowed easy

generation and interpretation of results. A more complex design model may describe the

product with more variables. In this case, the amount of data needed for statistical validity

of the MNL model would increase significantly.

A quantification of shape preference allows it to be included along with engineering

attributes to explore products that are optimal in a multidisciplinary design sense, specifically

exploring trade-offs between form and function. In the study presented, form and function

have distinct trade-offs that meaningfully affect each other. Balancing these trade-offs is

still a decision that the designer must ultimately make, presumably of quality higher than

without the trade-offs quantification.
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3.4 Methodology

Here we describe a general methodology that can be applied to understanding shape prefer-

ence of any product. We further describe how the combination of an engineering model can

be used in an effort to obtain information regarding the decision space associated with the

product in a holistic fashion that accounts for shape preference and engineering design.

3.4.1 Attribute identification

Identifying the characteristic attributes of a product that affect a user’s shape preference

for that product is very important. Doing this requires some pre-processing of a particular

design architecture. One could use Principle Component Analysis (PCA) to help identify

which aspects of the design’s architecture have the greatest impact on the shape preference

of the artifact (38).

For instance, consider a potential design architecture for a pen, as shown in Figure

3.20. Here we have identified nine variables for the design architecture. This is only one

way of parameterizing the space. In fact, we could examine ratios, spline points or other

basic geometric dimensions. But, via PCA, we can obtain a good understanding of which

variables have the greatest impact on the users’ perception of the design. We can then use

those high-impact variables as the design variables in shape preference assessment, while

leaving the other parameters of the architecture fixed.

Figure 3.20 Design architecture for a particular pen design.

Let us assume that we conducted a PCA study to identify the three most important
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variables related to pen preference. Further, assume that we found that r, t and l2 were the

variables of most importance. We could then use these variables over a defined range to

obtain shape preference information within the design space. We could obtain this infor-

mation by using PREFMAP or discrete choice analysis as described earlier in this chapter.

Such information could yield a mathematical model of preference and help us in decision

making. The goals of this type of analysis are to define an artifact in a parameterized way

and develop an understanding of how parameter variation affects the shape preference that

users have for that artifact.

3.4.2 Engineering analysis

Based upon the parameterized design space we could use engineering principles to identify

the impact of design decisions on the performance or cost of the the design options. Identi-

fying which metrics of the design are most important (i.e. identifying the design objective)

is a decision that must be made by the design engineers and management. But, given an

objective function and set of design constraints, the design could then be examined for

an objective analysis of the engineering and shape preference goals. Thus, we now have

an engineering model and a shape preference model which we could use cooperatively in

decision making.

3.4.3 Optimal design formulation

As we have shown in the two case studies, this form versus function question is a multi-

objective optimization problem. Multi-objective optimization problems can be formulated

in a number of a ways. One way is to minimize a weighted sum of several objectives. For a

given functional weight, αi, associated with function, fi(x), this means,
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min
n

∑
i=1

αi fi(x), α > 0, i = 1,2, ...,n. (3.17)

Selection of αi for the different functions is not a trivial task. In this dissertation, we chose

to represent the Pareto frontier of the multi-objective optimizations considered. To do this,

we chose α1 = ω , and α2 = 1−ω , where 0≤ ω ≤ 1. This developed the convex hull of the

Pareto frontier. The convex hull only represents those Pareto points that are on the convex

boundary, therefore, when sampling data for this type of optimization it is possible to neglect

Pareto points that are not on that convex hull, hence the representation of the frontier may

not be completely accurate.

Multi-objective optimization is a well established field and sources of information per-

taining to it can be easily located, but it is beyond the scope of this dissertation to provide

a detailed overview or commentary on which methods are appropriate for which cases.

We chose the weighted sum method for its relative simplicity, but other techniques could

certainly have been considered.

3.4.4 Use in decision making

The primary benefit of conducting this sort of an investigation is its ability to transform ideas

regarding shape preference beyond the level of intuition and into the field of mathematical

modeling. Doing this allows shape preference to be a quantifiably meaningful consideration

in the design process. This extends from the impact that the artifact’s shape would have on

preference on to the physical implications of such a shape.
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Chapter 4

Interactive evolutionary algorithms in
preference assessment

4.1 Introduction

Incorporating subjective preference in design has become increasingly important in product

development (24; 9; 48; 58; 67; 41; 68; 55). Efforts to understand such preferences include

use of interactive evolutionary systems (IES) (77; 7; 16; 10; 30). IES have proven effective

in locating goal-based stimuli, such as the clearest sound, or the color red. However, their

ability to locate a user’s most preferred design within a set has only been implicitly assumed.

This investigation provides evidence that supports this assumption for shape preferences.

In the following, we motivate the IES investigation for preference, describe their po-

tential, their known problems, and suggest means of solving some of these problems. We

then focus on IES as a method for understanding a user’s most preferred design. We in-

troduce an interactive genetic algorithm (IGA) implemented in our experimental studies,

and explain how the IGA parameters were tuned using Monte Carlo simulation. We apply

our experimental design to explore two questions. First, to what extent can users find a

predefined shape using the IGA? This shows how effective the IGA is at allowing subjects

to seek out a specific goal, and is a question examined by other researchers. Secondly, we

ask to what extent can users find their most preferred design among a set? This is the critical
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aspect of this work and we employ an independent means of assessing user preference

via pairwise-comparison to validate the results. Doing this allows us to make statements

regarding the IGA’s abilities as a preference assessment tool, something that previous studies

cannot claim. We conclude with observations about the value of this approach.

4.2 Background

Research in engineering, marketing and psychology has resulted in methods that help de-

signers understand user preferences for both objective and subjective product attributes

(24; 9; 48; 58; 67), including shape preference (67; 41). Objective attributes, such as tech-

nical performance metrics, are typically measurable and easier to explore in terms of user

preferences. Subjective attributes, such as the appeal of a product’s shape, have generally

not been measured and have thus been more difficult to incorporate into a quantitative

design process. Researchers have recognized this problem and have increasingly tried to

incorporate preference information in quantitative engineering design methods (41; 68; 55).

Michalek shows that improved designs result when marketing, engineering, economic and

user viewpoints can be expressed and analyzed in a comprehensive optimization framework

(55).

Users have difficulty expressing explicit shape preferences because they often need

context and visual examples to discern what appeals to them. Therefore, researchers have

proposed and implemented interactive tools that attempt to elicit individual preferences

from users (77; 7; 16; 10; 30; 83). However, recent research has examined shape preference

information alongside engineering analysis in a form vs. function study and showed that, for

some designs, form and function optimality are not collocated (41). It also raised questions

about how well current preference assessment tools could function in deciphering shape

preference. That work motivates examination of other techniques for obtaining preference

information. There is implicit acceptance that IES can be used for eliciting preference
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information (10; 30; 83), but there has not been substantive evidence that this is indeed the

case. In this chapter we present evidence to suggest that IES are truly capable of helping us

understand user preference, at least for shapes.

4.2.1 Interactive evolutionary systems

Several researchers have employed IES in a wide range of applications, all using human

interaction to affect the evolution of a design. Takagi offers a detailed survey of this literature

(77). With IES, researchers involve a human to speed up the design process or improve the

design. In some cases, it is simply more efficient to consult experts in a field and show them

potential designs than to use a computationally expensive computer simulation (for example,

aeroelastic analysis) to determine good designs (7; 40). Many researchers have attempted to

understand user wants using IES. There have been numerous IES developed that use similar

methods, but they all serve the same purpose: based on a current set of design options and

user decisions the IES attempts to improve future designs.

One type of IES is the IGA, a subset of genetic algorithms (GAs). GAs are used to solve

optimization and search problems by emulating principles of biological evolution (34). By

genetically encoding potential design options a solution can be found through survival of

the fittest. IGAs are similar to GAs, except the fitness function of the GA is replaced by

a user evaluation of solution options. In some cases, the user entirely replaces the fitness

function, and in other cases the user is consulted to augment some analytical function.

Dawkins proposed this idea first in the representation of treelike graphical structures (15).

The concept has been applied to several fields where fitness functions are not apparent,

such as visual design systems (10), psychoacoustics (16), and complex systems (7; 40).

Interactive genetic algorithms have also been used to understand preference at the individual

level (30; 83).

Much of the IGA work implies that the evolutionary process will yield a user’s preferred

design. In the present study we look for evidence that supports this assumption for product
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shape preferences. Some researchers have investigated IGAs’ preference capability by

giving subjects a ‘goal-seeking’ task, such as finding a specific shape or color (10; 30). The

use of experts to find viable solutions is a goal-seeking task where the goal is a perceived

functionality. Understanding preference is uniquely different from finding a shape, color,

or design solution that meets a specific criterion. Preference may have little to do with

performance criteria, or even oppose them. So, while IES have been shown to work for goal-

seeking tasks, the assertion that they also work for assessing preference, while compelling,

has not been substantiated.

4.2.2 Application of Webber’s law to vision

Research in the field of vision has yielded a wealth of understanding related to the mech-

anisms that control the eye, and methods to correct a number of visual deficiencies and

diseases. Some of the earliest research in psychophysics was conducted by Fechner in 1860

in the work Elemente der Psychophysik (18). The most important aspect of vision for the

present study is the ability of subjects to discern differences between design options. Thus,

a knowledge of visual sensitivity and acuity are of great importance. In general, Weber’s

Law, first described in 1834 and later quantitatively formulated by Fechner, stated that a

‘just noticeable difference’ (JND), δu, of sound and light is universally influenced by the

background stimulus of comparison, u (73). The law claims that the fraction relating the

difference in perception and the background stimuli is equal to some constant, k. More

information regarding psychophysics can be found in (76).

δu
u

= k (4.1)

There are also relevant physics related to the human eye as a sensor. The JND is a

by-product of the performance of the eye’s sensory capacity. There are several components

of vision that can be explored. Visual acuity is one way to describe the eye as a sensor.
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Normal visual acuity is characterized by the ability to resolve a spatial pattern separated by

a visual angle of one minute of arc. One minute of arc is 1
60 of a degree. Thus, the visual

angle subtended by a spatial pattern can be determined through geometry. Figure 4.1 shows

an illustration of the eye and will be referenced in defining the variance required to ensure

that the increments of visual stimuli respect this definition of visual acuity.

Figure 4.1 Diagram of the human eye with angles to geometrically calculate the length associated
with a desired degree of visual acuity.

If we extend rays from bc through the point n and extend them onto the retina, then we

form two similar triangles, ∆b′c′n and ∆bcn. θ = θ ′ because of these similar triangles, so

we can determine the angle perceived by the retina. Thus, using geometry we find that:

tan(θ1) =
|ba|

d
, (4.2)

θ1 = arctan
(
|ba|

d

)
, (4.3)

θ = 2×arctan
(
|ba|

d

)
. (4.4)

Consequently, we can determine the distance |bc| that should be of perceptible change to

the human eye based on the definition of visual acuity:
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|ba| = tan(θ1)×d, (4.5)

|ba| = tan
(

θ

2

)
×d, (4.6)

|bc| = 2×|ba|, (4.7)

|bc| = 2×
(

tan
(

θ

2

)
×d
)

. (4.8)

Since normal visual acuity is one minute, or 1
3600 radians, this means that over a distance

of one meter the human eye can discern two objects that are distanced by 0.28 mm. We

have used this distance as a our JND limit in all of our visual experiments in an effort to

allow subjects to notice differences between visual stimuli. This is certainly not taken as an

exhaustive study of the human eye’s perceptual ability. Each person has their own distinct

visual acuity, but we can confidently apply this rule as a means of justifying JND choices

for human subjects.

4.3 Specification of an interactive genetic algorithm

In this study we use a generational IGA to query users about their preference for specific

shapes. We present the mechanics of this IGA and describe parameter tuning.

4.3.1 Algorithm mechanics

The IGA creates an initial population of designs from a defined chromosome and presents

them to a user, who then selects a subset of these individuals based on preference, see Figure

4.2. The IGA uses this information to select individuals for genetic mating, thus creating

new individuals with genotypes determined by the parents. The new individuals mutate

based on a random process. The IGA presents this new set of individuals to users again, and

the process is repeated for several generations. In the final generation, the user selects the
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preferred design from the available set and this is taken as the user’s ideal shape.

Figure 4.2 IGA process for acquiring user evaluation information

For this study, we used a two-variable, 8-bit (4 per variable) binary coded chromosome

yielding 256 design options. This is a small design space by most standards in both the de-

sign and GA communities. This chromosome dictates the shape of visual designs presented

to users by defining the location of points through which splines are fit. Some researchers

have proposed IGA systems in which users must rank each design within each set of a

generation, while others have argued that such ranking causes user fatigue (7; 10; 40).

Instead, they propose that users should identify their most and least preferred among a set

because these are easier to identify than a whole ranking. This consequently reduces fatigue

and provides a wealth of information. In our experiment, users evaluated shapes within a

generational population of 16 and selected their four favorite choices for each generation,

except for the final generation, when the user selected his/her single favorite design from that

population. We believe this process is manageable cognitively because visual processing is

fast and the images are static.

Roulette wheel selection facilitated the mating process. The four dominant individuals

were given large, but equal, percentages of the roulette wheel, while the other individuals
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were given small, but also equal, wheel percentages. Roulette percentage was a design

parameter examined through Monte Carlo simulation. Mating was based on single-point

crossover. The crossover point was randomly determined. Under crossover with roulette

selection, it was likely that user-selected designs were chosen as parents for the next genera-

tion. Allowing the other designs to be parents permitted design diversity. In the proposed

crossover scheme, each set of parents produced one offspring. No parents were ever removed

from the mating pool. Thus, a single parent was allowed to spawn many children and could

even mate with itself.

Mutation increased diversity in the population and potentially exposed a more preferred

design. Initial studies showed that simple binary mutation methods were insufficient for this

IGA. Thus, a design-space mutation operator was developed that allowed design variables

to be incremented by one discrete unit in the design space. The proposed mutation operator

allows local search within a preferred area. Figure 4.3 shows how mutation affects the

design. We see that the design only changes in one dimension of the design space, and at

only a single increment. This mutation operator functions gradually on the design options,

but it also serves to change the binary structure of the individuals in a larger way than

bit-space mutation operators.

Figure 4.3 Design space mutation operator
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4.3.2 Experimental design

Tuning parameters for the IGA were determined using Monte Carlo simulation with a

computer agent. Four selections were made in each generation, except the final generation

when the agent selected only one. The computer agent made selections similar to a human

user, except the agent evaluated each individual to find those with the shortest Euclidean

distance between themselves and a ‘goal’ design. This goal design was a random string of

eight bits, thus no preference was given to any particular schema. The tuning parameters

were the percentage of the roulette wheel allocated to selected individuals and the mutation

rate.

We examined the percentage of ideal solutions achieved and population convergence.

The average and standard deviation of the Euclidean distance of the population at each

generation were calculated. We averaged these results over 10,000 trials for each parameter

combination. The initial design population spanned the design space with 16 equally-spaced

designs. However, the encoding associated with this population raised fixed schema issues

in the binary variable domain. Fixed schema refers to the tendency of repeated groups of

bits to propagate through a population, if too many of them exist initially then they can

cause premature convergence based on their specific bit sequence, and this sequence may

not actually be the best option. In our case, the initial set of designs has a very limited

number of schema due to the manner in which the designs are incremented in the design

space. The effect of the design-space mutation operator on bit-space genes reduced this

problem, because instead of changing a single bit, it changes multiple bits for an incremental

design space change.

4.3.3 Experimental results

Figure 4.4(left) and Figure 4.4(right) show the effect of roulette percentage and mutation

rate, respectively, on the mean and standard deviation of the distance from the ideal design

86



for the agent-based search. Mean information is shown as a line, and standard deviation is

shown as an error bar. Mutation rate had little effect on the mean and standard deviations

of the IGA populations. The mean in Figure 4.4(right) shows that the IGA improved as

generations increased. The standard deviation describes the amount of coherency between

individuals within the population. These values converged toward a small number showing

that the IGA could find an optimal design. Increasing the roulette percentage decreased the

mean and standard deviation, see Figure 4.4(left), thus increasing the agent’s likelihood of

finding the goal design.

Figure 4.4 Generational convergence properties of IGA with differing roulette percentages (left),
and mutations rates (right).

We examined the IGA parameters’ effects on the agent’s ability to achieve the actual goal

design. The impact of increasing mutation rate from 0% to 50% caused the percentage of

goal solutions achieved to rise from 20% to 93%. The impact of the roulette percentage was

negligible between the range of 60% and 100%, while below 60% the unselected individuals

greatly impacted the following populations and caused lower likelihood of goal design

achievement within the generational constraint. This shows that increasing mutation rate

increased the likelihood of achieving the precise goal design in the final generation. The
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difference between this result and that shown in Figure 4.4(right) is that a high mutation

rate improved the agent’s ability to locate precisely a specified goal design instead of simply

being near it.

We used this information to make decisions regarding IGA parameters. We chose to set

mutation rate at 50%, which is high in comparison with the published standards, but proved

to yield the best performance in our setting. The roulette wheel percentage was set at 90%

to allow population diversity through crossover with non-user-selected designs.

4.4 IGA Measure of preference with human respondents

Validation with human subjects is important since we cannot assume that users will find their

preferred design simply because the GA is effective. To validate the IGA as an effective

tool in assessing shape preference two aspects of the IGA were experimentally investigated:

first, was the user’s ability to find a predefined shape, termed ‘goal-seeking’ ability; second,

was a user’s ability to find a preferred (and unknown to the testers) shape for a bottle design.

The first study was validated by comparing the dimensions of a user’s final shape with those

of the predefined shape. The second study was validated with a paired-comparison study

where several foils were placed against the user’s preferred shape as described later.

Thirty-four subjects participated in the validation study. No demographic information

was collected on the subjects, but they were mainly college students. They were presented

with a survey containing four separate parts.

1. First, they completed an example task to familiarize themselves with the IGA.
2. Second, they selected their favorite shape for a cola bottle design using the IGA.
3. Third, they used the IGA to ‘evolve’ a circle; this task was a distraction between the

previous task and the next one.
4. Finally, subjects completed a pairwise-comparison study indicating their preference

for different bottle shapes; this task was used to validate the subjects’ preference for
their favorite bottle design in the second task.
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4.4.1 Training task

In a training task, subjects were informed about the adaptive nature of the survey, and given

instructions on completing it. They used the IGA to ‘find’ (evolve) a rectangle from an initial

set of shapes that did not contain a rectangle. This task allowed users to interact with the

interface, become familiar with the process, and ask questions before proceeding to the main

tasks. Figures were presented in a four-by-four grid. In the first four generations, subjects

selected four figures they thought looked most like rectangles. In the final generation, they

selected only one.

4.4.2 Experimental design: goal-seeking task

The goal-seeking task was presented as the third task for users. In this task, respondents used

the population to evolve a circle. Figure 4.5 shows the initial survey population presented to

subjects. The x- and y-position of one point defined the variance in shape. Only a single

design option created a circle. We assumed that subjects could discern a circle from the

other shapes.

The goal-seeking task served two purposes: First, to validate the IGA’s ability to allow

user evolvement of a predefined shape; second, to distract the user from the preferred shape

task. It required subjects to focus cognitively on something other than bottle shapes. Doing

so reduced their capacity to remember the ‘ideal’ shape they chose in the preference task,

which was important for the pairwise-comparison task (12).

4.4.3 Results and discussion: goal-seeking task

In the goal-seeking task, users attempted to evolve a circle shape. Of the 34 subjects, 91%

stated that they had found the objective in a self-report question. In actuality, 68% of subjects

found the circle, while the other 32% were less than 1.5 discrete design points (or roughly

6%) away from the circle shape, on average. This is an encouraging result and is similar
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Figure 4.5 Layout of IGA goal-seeking survey tool.

to the agent-based search in its ability to find the random goal design. The disagreement

between the stated and actual ability of subjects to find the goal shape leads us to believe

that self report is not a reliable measure of the IGA’s ability to achieve the goal design. This

may be due to the subject’s inability to perceive differences between the goal shape and

their final shape, especially given the small difference between the goal shape and average

error distance of 1.5 discrete units. We used Webers Law, as described in the Background

chapter, to design the shape variable increments, but it still may have been a problem (44).

We also examined how the population of available designs converged during the course

of the IGA goal task trials. Figure 4.6 presents the mean and standard deviation of the popu-

lation of designs that were available for selection. The trend shows a distinct convergence

of the population toward the intended goal design. This supports the hypothesis that users
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Figure 4.6 Mean and standard deviation of the population of designs for the 34 subjects over 8
generations.

can employ the IGA to seek out predefined shapes. Figure 4.7 shows the mean and standard

deviation of the four selected individuals during the course of the trials, obviously the final

selection is only a single data point, so it is not included.

Figure 4.7 Mean and standard deviation of the selected designs for the 34 subjects over 7 genera-
tions.

Figures 4.8 and 4.9 show the raw data regarding the number of times the ideal shape, the

circle, was presented to the users along with the number of times that shape was selected.

Figure 4.8 shows the entire number of the times the ideal was shown per generation, however,

Figure 4.9 presents only the ideal shapes that could potentially be selected; a maximum of

91



four per generation. Thus, if eight of the ideal solutions were presented, then, at best, half of

those would go unselected. The trend shows that as generations increase the likelihood of

having an ideal solution to select from increases. It also shows that the total number of ideal

selections chosen increases.

Figure 4.8 Number of ideal options available to the 34 subjects and the number of times the ideals
were selected.

Figure 4.9 Number of ideal options available to the 34 subjects, that have the potential to be
selected, and the number of times the ideals were selected.

One interesting thing to notice is that not 100% of the available ideal designs are selected
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in Figure 4.9. This likely indicates a few problems: first, subjects may not have been able to

discern the differences between shapes well enough; second, the fatigue effect may have

caused subjects to rush their decisions and make erroneous choices; third, users may have

become tired of the task and actually were trying to seek some variety. The first and second

problems likely account for the bulk of the error, but this highlights the fact that, unlike

a decision model, human users may make incorrect choices. However, this data strongly

suggests that the IGA is sensitive to the requests of the user and can be used to located a

predefined goal.

4.4.4 Experimental design: preference task

In IGA-based preference experiment, subjects used a population of bottle shapes to identify

their most preferred cola bottle shape. Two experiments were performed to evaluate this

question. First, we employed the IGA to obtain the user’s most preferred design. Second,

we compared this most preferred design against a group of foils in a pairwise-comparison

task.

Before beginning the task, users were provided the following context. Consider that a

soda company wants to sell a cola. What bottle shape would you like for that cola? The

bottle shape was defined by a spline fit through five points, and subjected to prescribed

end conditions, see Figure 4.10 (repeated from Figure 3.8). Two of the five points were

considered radialy variable, points R2 and R4. The other three points, R1, R3, and R5, were

radially fixed. All points were vertically fixed. Point R1 had a vertical end condition, while

R5’s end condition forced an angle of 20◦ with the horizontal.

For the preference experiment, users were asked to select the four shapes they liked most

for a cola bottle. Shapes were presented in a four-by-four grid (Figure 4.11). Users selected

four shapes in the first seven generations and one shape in the final; this was their IGA-ideal

design.

Following identification of the IGA-ideal design, a pairwise-comparison study was
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Figure 4.10 Parameterized bottle shape.

conducted in which subjects were shown 15 pairs of bottle shapes. They selected their

most preferred shape among the two, Figure 4.12. Seven of the 15 sets contained the

subject’s IGA-ideal design. These seven instances of the IGA-ideal were randomly placed

in the set of 15. The IGA-ideal was also randomly placed on either the left or right. This

experimental setup was designed to control for several effects: right/left preference, early

versus late exposure preference and the ability of the user to recognize the reappearance of

their IGA-ideal design.

4.4.5 Results and discussion: preference task

We quantified user satisfaction with their IGA-ideal design through choice proportion. The

choice proportion measure indicates the number of times the IGA-ideal design was chosen

in the pairwise-comparison task. Respondents selected their IGA-ideal design versus other

design options in 91% of the pairwise-comparisons. This suggests that the respondents
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Figure 4.11 Layout of IGA preference survey tool.

Figure 4.12 Pairwise-comparison survey tool.

did prefer their IGA-ideal over foil options, thus providing evidence to support the IGA’s

ability to assess preference. Figure 4.13 shows the IGA-ideal designs of the 34 subjects

plotted within the R2xR4 design space. We notice that there are some clusters in an area

that suggests a preference for the highly recognizable Coca ColaTMbottle shape. However,
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examining this figure more closely shows that there exists numerous outliers from the typical

cola bottle shape. So, while some users were highly influenced by the marketing associated

with the cola industry, and chose their preferred designs accordingly, we can postulate that

other users were truly more interested in finding a shape that they uniquely liked. This can

be seen by observing the upper left corner of Figure 4.13. Those bottles have a ‘tear drop’

shape that varies a great deal from most cola bottle shapes currently on the market. Thus,

this suggests that a subset of cola drinkers might be quite attracted to this tear drop shape

and choose it over the classic Coca ColaTMshape.

Figure 4.13 Ideal bottles selected by subjects, shown in the design space.

We examined how the population of available bottle designs converged during the course

of the IGA. Figure 4.14 presents the mean and standard deviation of the population of

designs that were available for selection. The ordinate shows the Euclidean distance of the

population from the goal design. In this case, the goal design was the final selection of each

user. So, all of the measurements are relative to some individual favorite design. But, the

trends show that there is a definite convergence over the generations towards the preferred
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Figure 4.14 Mean and standard deviation of the population of designs for the 34 subjects over 8
generations.

design. Figure 4.15 shows the mean and standard deviation of the four selected individuals

during the course of the trials. Again, the final selection is only a single data point, so it is

not included.

Figure 4.15 Mean and standard deviation of the selected designs for the 34 subjects over 7
generations.

Figures 4.16 and 4.17 show the raw data regarding the number of times the IGA-ideal

bottle shape was presented to the users during the course of the IGA, along with the number

of times it was selected over the generations. Figure 4.16 shows the entire number of times

the ideal was shown per generation, however, Figure 4.17 presents only the ideal shapes that
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could potentially be selected; a maximum of four per generation. We notice an increase in

the user’s ability to identify and select their preferred design over the number of generations,

but it also points out that the user does not make perfect choices and is likely seeking variety

in the selected choices. This does not mean that the user does not necessarily like the

preferred design, but that they are curious about what else is available, and because they

gained an understanding of how the tool worked, they attempted to find potentially new and

interesting designs.

Figure 4.16 Number of ideal bottle designs available to the 34 subjects and the number of times
the ideals were selected.

Figure 4.18 illustrates the selection process by presenting the bottles shown to a single

user on the R2xR4 design space for 8 generations. Filled shapes represent bottle designs

selected by the user, while unfilled ones went unselected. The population converges to a

specific area as generations increase (generations are noted in the bottom right corner of

each plot). Not every generation shows 16 design options, or 4 selections. This is due to

repeated bottle shapes, both shown and selected. The figure shows how user selections,

prompted by the IGA, refine the population toward the most preferred design.
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Figure 4.17 Number of ideal bottle designs available to the 34 subjects, that have the potential to
be selected, and the number of times the ideals were selected.

4.5 Differences between goal-seeking and preference

We have mentioned here that there is some distinction between goal-seeking and preference

elicitation. This differentiation stems from the idea that when one expresses preference

they may not have an inherent understanding of what they like prior to observation of their

options. Thus, the options that they observe can impact their preferences and may cause

those preferences to change. But, we would like to see if there is any truth to this notion.

We believe that, in goal-seeking tasks, users will know the precise design that is their

intended goal. Hence, they ought to have a predictable generational convergence. This

convergence can be observed by examining the standard deviation of the data collected in

the IGA-based goal-seeking task. Because this data consists of two variables, we calculate

the Euclidean norm of that data to see the combined effect on standard deviation. Figure

4.19 shows that as generations proceed each individual has a systematic and consistent

decrease in standard deviation of the population. This indicates that users are aware of a

design which they are seeking and they are making choices that lead them toward a single

solution.
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Figure 4.18 Generation path of one subject showing available set and selected bottle designs.

In the situation of preference elicitation we expect that users may not know exactly

what they prefer until they are presented with several options. Thus, we expect to observe

a different pattern of standard deviation compared to that of the goal-seeking task. We
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Figure 4.19 Generational presentation of standard deviation in goal-seeking task.

observed two distinct trends in examining the data. We found that a portion of the population

had a good idea of what they preferred, this is represented by their standard deviation’s

generational pattern, shown in Figure 4.20. We also show four of these plots individually,

so that the trends can be seen more clearly, Figure 4.21. We see that these plots are very

similar to those seen in the goal-seeking task, indicating that users quickly identify a goal

design and make selections in an attempt to produce that preferred goal.

Another portion of the population seemed to take a longer period of time to converge toward

a single design, this likely indicates that they were seeking variety, or that they had a multi-

modal preference space, Figure 4.22. Again, we present four of the individuals’ plots for

greater clarity, Figure 4.23. In this case, we see that subjects take longer to converge toward

a single design, but we note that convergence is generally observed.

What we see from these figures is that the idea of preference seems to differ in an

important way from goal-seeking for some people. Given the context of the posed question,

it is possible that users were seeking out the cola bottle shape often associated with Coca

ColaTM. But, we cannot know exactly what users were thinking as they responded. It is

apparent, though, that some users maintained a great deal of variety in their populations
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Figure 4.20 Generational presentation of standard deviation in preference task suggesting rapid
convergence, or goal-seeking.

Figure 4.21 Generational presentation of standard deviation of several subjects in the preference
task that demonstrate goal-seeking.

before converging on a single preferred design. This supports the idea that users may be

influenced in their choices by the options that are presented to them.
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Figure 4.22 Generational presentation of standard deviation in preference task suggesting variety-
seeking.

Figure 4.23 Generational presentation of standard deviation of several subjects in the preference
task that demonstrate variety-seeking.

4.6 Proposed methodology

Here we outline the methodology we followed in this study and propose it as a validated

approach that others can use when employing IES for assessing preference, both visual and
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otherwise. If the results of the pairwise-comparison task and the preference task do not align

well then it may suggest that the IGA was mistuned, or the just noticeable difference of the

stimuli were not taken into account.

1. Conduct a Monte Carlo simulation or similar tuning method to obtain efficient param-
eters for an IES type of algorithm.

2. Present questions to users in a contextualized manner.
3. Allow a group of users to employ the IES to determine a preferred design.
4. Employ a distraction task to reduce the users ability to recall their most preferred

design.
5. Conduct a pairwise-comparison study between the most preferred design and other

design options to validate results from Step 3.

4.7 Conclusions

The shape preference capacity of the IGA is an often made but not substantiated assumption.

We provided confirmatory evidence in support of the IGA’s ability to allow users to evolve a

population first towards obtaining a predefined shape, and second towards expressing shape

preference. We tested the expression of preference using pairwise-comparisons. Both the

goal seeking and preference assessment abilities of the IGA were positively confirmed. This

confirmation is necessary for further research with this IGA, particularly in exploring the

differences between it and other preference elicitation techniques. In the specific study, a

possible bias may exist due to user familiarity with a cola bottle shape from a leading brand.

A bias may also exist to the specific user population. Allowances for these possible biases

would be useful in future studies. However, it does not diminish the result that the IGA can

be used to identify that preference.

The proposed IGA elicits user shape preference. These preferences may be based on

aesthetics, perceived usability, functionality, or a combination. No effort to distinguish

among them was made in this study. An early Monte Carlo study allowed effective and

efficient IGA tuning for convergence to a preferred design, thereby reducing user fatigue.

Further, the IGA used a cognitively inexpensive selection process for user evaluation of
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design options.

This IGA implementation yielded an ideal design point, but it does not relate a mathe-

matical model of preference to the entire design space. This limits the use of the current

IGA within a broader product optimization scheme because it lacks gradient information.

Future studies may examine the sensitivity of the ideal design, thus allowing us to gain more

information about the acceptable design space.

The results of this research suggest that IES can fulfill two different needs within design.

First, an IES can be used to understand a population’s aggregate preference for a design. This

provides designers and engineers with more information as they conduct detailed design.

Second, for highly customizable designs, an IES could quickly and effectively identify a

preferred design for a singular user. These practical benefits should improve a producer’s

ability to understand their users and develop products that suit their wants.
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Chapter 5

Interactive evolutionary algorithms in
identifying contextual shapes

We have found that IGAs can be used to understand user preference and they can also

be used to identify predefined shapes. We further suggest that, given these capabilities,

IGAs are capable of allowing people to identify suggested shapes that match a particular

contextual notion. Because of this, we are interested in using the IGA to determine if there

is a vehicle shape that users identify as having good fuel economy.

5.1 Introduction

People understand luxury. There is a visual characteristic of luxury that extends beyond

brand and price tag. Without those brand and price prompts, what is it that suggests luxury to

people? It is likely some quality of an artifact’s aesthetic that is enticing and communicates

the messages of luxury, perhaps its shape. We wondered then, if there might also be some

aspect of vehicle shape that people may associate with a design that achieves good fuel

economy. We sought to find if there was a particular vehicle shape that communicated this

idea in a consistent way. We used the IGA ideas developed in Chapter 4 as a means to

understand the answer to this question.

If we could identify a vehicle shape that is associated with good fuel economy, then we

could use that shape as a way to communicate such a message to users. In doing this, we
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could provide them with a proper understanding of the vehicle’s message without having to

rely on explicit marketing or a user’s knowledge. The vehicle would convey this message

itself through its shape.

Further, we wanted to understand if users could consistently identify a vehicle shape that

truly had a minimizing impact on fuel economy. To support this we used data regarding the

coefficient of drag associated with various vehicle shapes in order to identify whether or not

the findings of this study were in agreement with the associated physics. Is is assumed that,

all other factors held equal, a vehicle with a better coefficient of drag will obtain better fuel

economy.

5.1.1 Course of investigation

For this study, we used the previously developed IGA in a web-deployable format to rapidly

collect data from users regarding the shapes of vehicle silhouettes that they associated with

good fuel economy. We analyzed the results in an individual and aggregate manner to

identify how well both individuals and populations understood the impact of a vehicle’s

shape on fuel use. We also conducted studies regarding the drag coefficient of vehicle

designs. In this way we had a scientific basis that could support or contrast the findings from

the shape study.

We expected that users would generally have an understanding of what vehicle shapes

provide the best fuel economy. We expected vehicles with lower lower drag coefficients to

have better fuel economy. We expected users to select shapes that were very streamlined

with very few surfaces that would increase drag, such as a vertical or frontward sloping

surface. We parameterized the vehicle silhouette and provided users with a known direction

for its forward movement, in an effort to provide them with a proper orientation. We

assumed that doing so would provide them with enough information to make decisions

regarding the vehicles fuel economy. The parameterized vehicle shape was also analyzed

using Computational Fluid Dynamics (CFD) to understand its drag characteristics. At no
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point did we inform users that drag was of interest in this study. We hoped to find that users

would intuitively minimize drag to improve fuel economy.

5.2 Survey design

We conducted a vehicle shape study to determine the number of points needed to describe

typical vehicle shapes. Numerous vehicle silhouettes were examined and transparently

overlaid. This allowed experimentation with points and splines to determine the minimum

number of points needed to capture a wide range of vehicle shapes. Twelve points were

selected and shapes were generated by allowing the vertical and horizontal location of eight

control points to vary, see Figure 5.1. Thus, there were a total of sixteen variables. To

examine the impact of vehicle shape on the user’s perception of fuel economy we allowed

these design points to vary and used an IGA to query them regarding their perceptions. We

further posed a question for users to consider while they were taking the survey. We primed

users with this text. Today you will be presented with several vehicle designs. We would like

to know which ones you think look like they would go farthest on a single tank of fuel.

Figure 5.1 Vehicle silhouette defined by 12 points with 8 point locations variable in the vertical
and the horizontal plane.

To understand the effect of different shapes on users’ perception of fuel economy, we

allowed them to evolve a population of shapes. During the evolution, we asked users to

select 4 from amongst a set of 16 potential design options based upon how far they felt the

shape would travel on a single tank of fuel. Because the number of design points was large

in comparison to our previous studies we expected that it would take users more generations

to evolve a vehicle shape that they believed was green, than to evolve an aesthetically
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preferred bottle shape, as was done in the previous chapter. Having subjects conduct more

generational selections raised concerns regarding user fatigue. Going beyond 15 generations

was generally deemed fatiguing by members in a pilot study. Thus, we capped the required

number of generations at 15 to prevent users from becoming bored and distracted during

their tests.

This IGA was composed of real-valued variables, as opposed to discrete-valued variables.

This meant that a different means of crossover and mutation were required compared to

those examined in the previously examined discrete case. For crossover, an interpolating

mating procedure was used. If we consider that the real-valued genetic variables of each

parent represent points on a line within the variable space, then we describe the interpolating

mating procedure as selecting a random point along that line, between the two parental

points, and assigning that point to the child. This form of mating is required, as opposed to

simple replacement because it allows blending and averaging to occur within the population,

something that cannot be achieved with real-valued replacement. To explain further, consider

that parent, p1, and parent, p2, mate. Then all of their variables will be a linear combination

of their parents, such that:

ci = p1i +α(p2i− p1i) (5.1)

Where ci is the ith variable in the child, c, composed of a linear combination of the parents’,

p1 and p2, ith variable. This was done for each variable, i, within the genome where α is a

random value between null and unity. The mutation was a random application of mutation

pressure to each variable value. Thus, this mutation acted at each variable within a set, not

simply each individual, this provided more variety than mutation of each individual alone.

Mutation rate was set to 10%, and was applied to each variable. Thus, this mutation operator

applied a 10% likelihood of mutation to each variable of each individual. This lead to a

great deal of design variety. Increased design variety was hoped to help reduce user fatigue.

The roulette percentage for this IGA was specified at 80%, to be consistent with previous
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findings.

5.2.1 GUI development

For user studies we developed a web-based survey that interfaced Adobe Flash with a

MySQL database through PHP scripting. The IGA functions of this survey were developed

in PHP. We used Adobe Flash as a GUI front-end to provide smooth and visually appealing

figures to users that could be generated quickly and parametrically. One idea for developing

figures was to generate a detailed solid model, parametrically vary that model at discrete

units within the design space, and then save those images in a database for quick access

by the GUI. This approach would require a large picture database to account for the 12

variables at many levels. Instead, we developed a spline function within Flash based upon

the built-in curveTo() function. The curveTo() function is based on a quadratic Bezier spline,

but cubic Bezier splines allow greater control. Thus, we developed an approximate cubic

Bezier spline using two quadratic Bezier splines via midpoint interpolation.

The database was created in MySQL and all calculations were conducted in PHP. Using

MySQL we tracked variable values and user selections, a capability not native to Flash.

Therefore, we communicated to the MySQL database through PHP and back to Flash via

PHP and XML code. While this code has been specifically defined for vehicle silhouettes it

can be applied more generally to investigate any shape.

Figure 5.2 shows a typical screen that users saw. Figures were randomly placed through-

out the 4-by-4 matrix grid, and a black screen was briefly shown between generations in

order to reduce the user’s ability to clearly identify shape changes from one generation to

the next.

Following the user’s interaction with the IGA survey, they were asked a few follow up

questions to understand more about their selections. Users were given the three following

open ended questions:

• Do you believe that the final car you selected is environmentally friendly? Why or
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Figure 5.2 Screen capture of IGA GUI developed in Flash, MySQL and PHP.

Why not?
• In what situations would you want to drive the car that you chose? When would you

not want to drive the car that you chose?
• Do you like the way your final car design looked? Why did it, or why did it not appeal

to you?

After these questions we also asked for the user’s age, gender, level of education, and make

and model of their current car, if they had one.

5.3 Engineering design

For the engineering design of this vehicle, we focused on developing an aerodynamic model

that could inform us about the coefficient of drag, Cd , associated with the design variables.

To do this, we employed CFD software to analyze air flow around the shape of the vehicle,

defined by Non-Uniform Bezier Splines (NURBS) curves and straight lines. NURBS are

a generalization of Bezier splines. These shapes differ slightly from the shapes that were

viewed by the subjects, because the viewed shapes were based on a modified cubic Bezier

spline. While the NURBS shapes were slightly different, the intent of this study was not for

absolute accuracy of the CFD model, but for trend identification.

A Latin-Hypercube design of experiments method was used to develop a surrogate model

of the coefficient of drag space in relation to the design variables. To do this, the NURBS

curves, associated with differing variable combinations were submitted to the CFD package

Fluent, which used Gambit as a preprocessor for mesh generation and then calculated the Cd .
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The design space for this simulation was quite large, 16 variables, and the computational

runtime of any CFD program was quite high. The surrogate model allowed us to understand

how the coefficient of drag changed with respect to the design variables, but we caution

that the results of this computation should be viewed as trends and not absolutes. Therefore,

while we cannot say with confidence that a particular design has a Cd = .3, we can say that

design A with a Cd = .3, is likely better than design B with a Cd = .5, with a high level of

confidence. We only use this to examine trends.

In the engineering analysis of vehicle body shapes a simple 2D model was used. This

model did not account for issues associated with more complex models, such as vortex

shedding. But, it does offer a valuable insight into the impact of shape on Cd . In fact,

such a model, in neglecting some of the more complex fluid flow phenomena, may actually

represent a model of drag that is consistent with a layman understanding of the association

between shape and drag. Figure 5.3 shows how the CFD software, Fluent, and its visualiza-

tion tool, Gambit, were used to examine airflow around the vehicle. In reference to Figure

5.3, air would impinge upon the vehicle from the right, i.e. the vehicle is driving to the right.

The mesh indicates the discretization of the fluid space, and provides an understanding of

how detailed the results can be. This figure does not show fluid flow vectors passing around

the shape, just the discrete mesh.

Figure 5.3 Screen capture of Cd study mesh from Fluent via Gambit.

Using the data from 900 CFD simulations, conducted using a Latin-Hypercube sampling,

a neural network was trained using a 60%, 20%, 20% partitioning of the data for training,
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validation and testing, respectively. The neural network consisted of a single layer of 50

neurons. The developed model had acceptable accuracy for the purposes of this experiment.

A greater number of simulations would lead to even better predictions, however, the simu-

lations were computationally time consuming and some integration problems between the

CFD and DOE sampling program, LMS Optimus, caused a great deal of manual iterations.

The results of the neural network models training are presented in Figure 5.4. We can see

that the R-values associated with training, validation and testing are all within an acceptable

range. They were 0.98, 0.85 and 0.91, for the training, validation and testing, respectively.

This gives us reasonable confidence that we can use this surrogate model to obtain Cd values

for a given set of input variables. Remember, that there are 16 design variables associated

with the vehicle’s shape.

Figure 5.4 Regression plots and R-values for neural network training with Cd data.

5.4 Data collection

Using the IGA to query subjects regarding their associations between fuel economy and

vehicle shape led to some interesting observations. First, it should be noted that many of the

16 subjects in this study were engineering students, so their understanding of drag may be

greater than most people. However, using this IGA subjects were able to consistently select

vehicle shapes that had better Cd values than the other options offered within the population
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presented to them. Subjects were presented with 15 generations of evolutionary designs.

5.5 Data analysis

Figure 5.5, shows that the mean Cd of the selected vehicles was consistently lower than the

population of offered vehicles. It also shows that, in the final generation, users selected

shapes that were much better than the average of their previously selected shapes. This

observation was noted by some subjects in the follow up questioning. Some indicated that

they didnt always think that four vehicles were well suited candidates in each generation,

but the nature of the algorithm required them to make four selections. Thus, if they could

have self-selected the number of individuals which they selected there may have been a

decrease in the Cd over generations. As shown, we do not notice a consistent decrease in

either the population or selected Cd with respect to generation, excepting the final selection

generation.

Figure 5.5 Average Cd values of IGA population and user selected designs over generations.

One very intriguing aspect of this study was an examination of the final shapes that were

selected by users. These shapes are presented in Figure 5.6 . All of the final selections of

the users are presented in an overlay, represented as the thin lines. The thick black line

indicates an averaged fit based on a mathematical averaging of these points. We note that
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user selected shapes are shown here with straight lines but not Bezier curves, as was the

condition on a few points shown to users. This caveat does not lessen the value that these

final shapes have on understanding user choice. The averaged shape included the Bezier

curve by including a manual manipulation of the lines.

Figure 5.6 Visual overlay of user selected final shapes and mathematical average of the shapes.

5.6 Discussion

From this study, we find that individuals have some association between vehicle shape and

fuel economy. Further, they can use the IGA to select shapes that consistently perform better

than the average of their offered shapes. We do not propose that the shapes selected by

users indicate preference, only an indication that they recognize some relationship between

vehicle shape and fuel economy. Whats more, we can make no claims that they associate

shape with drag, they may simply have sought shapes that were associated with vehicles

that they already knew achieve good fuel economy. However, from user comments we know

that several users expressed that they sought shapes based on perceived drag coefficient,

therefore we know that, for some individuals, this IGA facilitated a rudimentary expression

of aerodynamic understanding. And, that understanding was consistent with the findings of

the engineering study, indicating that given this contextual basis, users can make selections

that lead them toward good solutions.

One confounding aspect of this study lies in the phrasing of the task posed to users. By

stating “...on a single tank of fuel”, several users believed that boxier vehicles, similar to
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SUVs, would be larger and thus have larger tanks of fuel that could serve to weigh them

down. Thus, by not stating that all vehicles had the same fuel capacity, we allowed users to

make improper inferences. However, we note that the final shapes selected, and especially

the average, resemble those of compact sedans, which generally do have good fuel economy.

So, with that particular context in mind, users were able to evolve shapes that fit their idea

of good fuel economy.

116



Chapter 6

Interactive evolutionary algorithms and
creativity

This study proposes that creativity can be enhanced through the use of Interactive Genetic

Algorithms (IGAs). Divergent and convergent thinking are important processes in creativity.

We recognize that an analogy exists between the divergent and convergent processes of the

mind and the divergent and convergent capacity of genetic algorithms (GAs). We use GAs

as a way to try to understand how IGAs could be employed as creativity tools. In the context

of design processes, a convergent process hones in on specific designs, while a divergent

process explores design possibilities through brainstorming. This study uses Monte Carlo

simulation to explore the effect of merging two GA populations, developed by the divergent

and convergent methods, within a single population to allow selection. The results suggest

that population diversity benefits from these population combinations while not adversely

affecting the ability of the IGA to find a goal design.

6.1 Introduction

IGAs are powerful tools that have been used in several ways in the design community,

e.g., for the identification of preference, and for the generation of new ideas (16; 10). The

generation of new ideas is particularly important to the notion of creativity. By using IGAs

we hope to allow designers to enhance their creativity through design space exploration.
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Similarly, by engaging product users in the creative design process, we believe that the

desires of the user can be more effectively met. Thus, moving the user to the ground level of

the creative process may be a means of improving design. We believe that by exploiting the

evolutionary nature of IGAs, we can explore a vast design space in an intelligent manner

that allows designers and users to identify new and creative designs that appeal to them.

In Guilford’s summary of creative abilities in the arts he stated that, “creative artistic

talent is not a unitary or uniform commodity but is to be accounted for in terms of a large

number of factors or primary mental abilities” (32). He went on to state that fluency, flexi-

bility and originality are known factors that are of obvious relation to creative ability. “All

of them come under a general class of factors known as productive-thinking abilities and

in a subclass of divergent thinking abilities.” Mednick offered this definition of creativity:

“The forming of associative elements into new combinations which either meet specified

requirements or are in some way useful. The more mutually remote the elements of the new

combination, the more creative the process or solution” (53). He identified serendipity, simi-

larity and mediation as three ways of achieving a creative solution. Serendipity is essentially

the accidental discovery of a creative solution from an unintended source. Similarity is the

recognition of patterns between the elements of different ideas. Mediation is the ability to

notice the commonality between two associative elements and bring them into contiguity.

One way to consider the process of creativity is through the notion of convergent and

divergent thinking (6). Convergent thinking is characterized by analyzing and refining one’s

ideas toward a single, best solution, while divergent thinking is characterized by developing

new ideas that build towards new solutions that differ from each other. Thus, to be creative

one must use divergent thinking to develop a number of potential ideas, but they must also

use convergent thinking in order to narrow down their ideas into a few viable solutions.

Tests of creativity draw on these divergent and convergent process notions. The “Un-

usual Uses Test” (UUT) asks people to think of as many different functions for an object as

possible (32). This can be taken as a metric for divergent thinking. Tests of creativity like
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the “Remote Associates Test” (RAT) require people to generate a single ‘creative’ answer

for each presented problem (53). Thus, it is linked to convergent thinking.

We can also see this divergent and convergent process in the field of product design.

Many product design processes suggest that the creative process has a period of broad

idea generation followed by a period of selecting concepts (65). Generally, this process is

represented sequentially and often refereed to as brainstorming, and down-seleciton, for

divergence and convergence, respectively. However, simply suggesting that convergence

must follow divergence ignores the reality of the way that people think. Humans do not

simply turn on and off their creativity. People are creative at different times for different

reasons.

We recognize a similarity between these concepts of creativity and the processes that

are associated with GAs from Chapter 2. A well tuned GA, one that is good at finding the

desired solution in a reasonable amount of time, has the property of convergence. Over

time, this GA will refine and improve its designs such that it explores regions of local and

global optimality. However, tuning GAs is actually an important aspect which must be

considered when using them for problem solution. This is because a mistuned GA is capable

of large degrees of divergence. This divergence, while not necessarily prohibiting location

of optimality, slows the process down and often develops populations that are highly diverse.

While divergence should be avoided when using GAs for search and optimization problems,

we believe that it might be a very effective means of assisting people in the creative process

if used interactively.

It is important to state that the creative potential involved in a study that has predefined

bounds and a parameterized space is a point of legitimate argument. We do not suggest that

an IGA will be capable of defining any brand new idea that lies outside the predefined archi-

tecture of the design space it is provided with. However, the claim that such a framework

cannot represent creativity seems false. Consider, for example, three chefs given the exact

same ingredients to create a dish. Certainly, these chefs would have different ideas about
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how much of each ingredient to use in their recipe. In fact, by varying the quantities enough

it is likely that their recipes would in no way resemble each others. It is contended here

that such a task requires creativity, and by extension the work using the proposed IGA also

requires that same concept of creativity.

This study provides a framework for how IGAs can be synthesized to enhance creativity.

It also describes the design of an IGA that is tailored for use in creativity enhancement.

Next, we test that IGA using Monte Carlo simulation to examine the effectiveness of it in

aiding creativity. We will finish with a discussion of the findings and conclusions.

6.2 Interactive genetic algorithm design

IGAs can help enhance creativity because they can operate in both divergent and convergent

ways. In IGAs the evaluation function is based on input from a user. Their input regarding

a previous population of design options influences the makeup of a new population. To

enhance creativity, we wanted to expose users to new and interesting design concepts while

retaining some of the characteristics that the user already identified as well-liked. The only

metric that was used to understand what a user liked was the selection of a design concept. If

the user selected a concept, then that indicated the user believed that concept was creative. A

concept that was not selected was presumed to be less creative. We recognize that favoring

these selected individuals too highly can quickly limit the range of the design space. So, we

wished to retain design characteristics that are well-liked, while allowing other aspects of the

design to change, thereby exposing the user to new design concepts that may be unexpected,

and interesting.

Real-valued variables were used for this IGA. This was done, in opposition to binary

numbers, for several reasons. First, real-valued versions of genetic algorithms can be just as

reliable in problem solution as binary-formed GAs. Second, real-valued variables can avoid

difficulties associated with hamming distances that can often be an issue in binary GAs (37).
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Finally, using real-valued variables reduced the size and complexity of the database needed

to collect information during Monte Carlo simulation while still allowing the IGA to be

investigated for metrics of creativity enhancement.

This IGA was designed to explore the effect that divergent and convergent operations

could have on the creative capacity of human users. To model convergence, we employed

typical practices from the GA community. We applied high rates of probability that ‘fit’

designs would become ‘parents’ to the designs of the following generation. We then sub-

mitted the newly created designs to a relatively low mutation pressure. This aspect of the

IGA represents design refinement; it is the part of the process where the user can focus

attention on specific characteristics of appealing designs and cause positive change towards

a goal design. While the users’ goal design is not known a priori, this process allows them

to converge upon designs that appeal to them.

Mistuned GAs have a unique property wherein they may drastically diverge from their

intended goal. Further, they also develop populations that diverge, thus the standard de-

viation of the population tends to increase, rather than decrease. Modeling divergence

using IGAs can be thought of in several ways. One possible thought would be to apply

very high mutation rates that could function on one individual at several variables. This

type of divergence can be thought of as extreme random mutation. Such divergence is not

systematic; it relies on very little information from the previous design set and its primary

mode of exploration is the proverbial ‘shot in the dark’. While mutation is critical for

the algorithm it is not systematic. Therefore, in an effort to broadly explore the design

space using information about the previous population, we provide high rates of parental

probability to those individuals from the population that go unselected by the user. In doing

so we retain portions of the design space that were deemed unfavorable by the user. Through

combinations with other portions of the design space, and through typical mutation we hope

to expose portions of the design space that are unexpected, inspiring, and unique.
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6.2.1 Roulette wheel selection

In order to combine these two forms of parental selection, convergent and divergent, we

partitioned the new population into two sets: one set developed by convergence and one set

developed by divergence. User selection of four creative individuals from a population of

sixteen individuals gave those designs a high probability of parental selection in the conver-

gent process. On the other hand, in the divergent process the twelve unselected individuals

had higher probabilities of selection. In both the convergent and divergent processes we

used roulette wheel selection to determine parents. The difference in the process was the

allocation of the roulette wheel to the individuals (22). Earlier, in Chapter 4, we determined

that supplying 80% of the roulette wheel to the selected individuals, such that each selected

individual garnered 20% of the wheel while the remaining twelve individuals had 1.66%

of the roulette wheel, showed good results in preference identification (42). Therefore, we

used that scheme in our convergent process. For the divergent process, we used a similar

wheel allocation, only we provided 80% of the wheel to the unselected twelve individuals

and 20% to the four selected individuals, resulting in roulette percentages of 6.66% and 5%

for the unselected and selected individuals, respectively.

Thus, we broke the parental process into two pieces: convergent population creation and

divergent population creation. For convergent population creation, well-liked individuals

had a high likelihood of becoming parents of the next generation. For divergent population

creation, there was an increased likelihood that the unselected individuals would be parents

for the following generation. We believed that this allowed synthesis of the two types of

thinking used in creativity. It should be noted that this process allows convergence and

divergence to occur simultaneously. This differs from design processes that advocate a

period of pure divergent thought sequentially proceeded by a period of convergent thought.

We examined this sequential method as well. In this process, the first four generations of

selection were considered divergent, and then a final set of 21 generations were considered

convergent. The 5th generation of individuals was composed of the 16 selected individuals
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from the previous 4 generations. We hoped that this would seed the convergent process with

a good set of initial designs. In the divergent process 100% of the population was developed

using the divergent crossover method, and in the convergent process 100% of the population

was created using the convergent process. We varied the roulette percentages associated

with both the divergent and convergent parental populations. Further, we restricted the

mutation in divergence to be 5% applied at each variable, and in convergence to be 1% at

each variable.

During parental selection no parents were ever eliminated from the parental pool during

their generation. This allowed a parent to mate several times in populating the new gen-

eration. Further, parents were allowed to mate with themselves. Also, each set of parents

produced only one offspring.

6.2.2 Crossover

In this study we explored two types of mating procedures. The first mating technique used

in this IGA was a simple single-point crossover. In this scenario the genetic material, design

variables, from one parent was shared with those from another parent. Specifically, a random

value assigned which string of variables would be shared from each parent, with one parent

providing all data up to and including the index number provided by the random value,

and the other parent provided all complementary information to complete the new design’s

chromosome. Thus, whole values were shared between the two parents. Therefore, unlike

in binary crossover, it is impossible for a new design variable value to be generated in this

type of crossover.

This initial crossover procedure was quickly identified as inadequate because it limited

the introduction of new variable values. This meant that only mutation would change the

actual value of a variable. This, essentially, provided fixed schema that dominated the popu-

lation. Therefore, we addressed this issue by using a second mating procedure that utilized

interpolation. If we consider that the genetic variables of each parent represent points on
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a line within the variable space, then we describe the interpolating mating procedure as

selecting a random point along that line, between the two parental points, and assign that

point to the child. This form of mating is suggested, as opposed to simple replacement,

because it allows blending and averaging to occur within the population, something that

cannot be achieved with real-valued replacement. To explain further, consider that parent,

p1, and parent, p2, mate. Then all of their variables will be a linear combination of their

parents, such that:

ci = p1i +α(p2i− p1i) (6.1)

Where, ci, is the ith variable in the child, c, composed of a linear combination of the parents’,

p1 and p2, ith variable. This is done for each variable, i, within the genome and α is a

random value between null and unity.

6.2.3 Mutation

Mutation enhances the search of genetic algorithms by providing new and unique designs

that may be well suited to a particular problem. In this IGA, we needed mutation as a

way of introducing new variable values into the population, as well as exposing potentially

exciting design spaces. We explored two forms of mutation: First, mutation of a single

variable within a given individual; second, mutation of each variable within each individual.

Applying mutation pressure to each individual and then causing mutation of a single variable

causes less variety than applying a consistent mutation pressure to each variable. The key is

to find the balance between too little and too much mutation. Too little would cause a high

degree of similarity amongst design options, while too much would cause random mutation

to dominate population development. Mutation was simply a random generation of a new

real-valued number within the feasible design domain for that variable.
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6.2.4 Definition of investigated algorithms

The first algorithm that was used in this study had the aspects mentioned above: real-valued

chromosomes, divergent and convergent roulette selection, single point crossover, single

child generation from a set of parents, and single variable mutation. The roulette wheel

percentages for the selected individuals were 20% and 5% for the convergent and divergent

roulette scenarios, respectively. Likewise, the roulette wheel percentages for the unselected

individuals were 1.66% and 6.66%, respectively. Finally, a mutation rate of 5%. was

investigated. The flow diagram shown in Figure 6.1 outlines the general procedure followed

in this IGA and Table 6.1 provides a review of the IGAs specifications.

Table 6.1 IGA Settings: Initial algorithm
Chromosome type Real valued
Number of variables 8
Mating scheme Single point crossover
Convergent parental population
—Selected individual roulette % 20%
—Unselected individual roulette % 1.66%
Divergent parental population
—Selected individual roulette % 5%
—Unselected individual roulette % 6.66%
Mutation type Single variable
Mutation rate 5%

Due to results of this first study, shown in the next section, we developed the modified

mating procedure that used an interpolating crossover method, and multipoint mutation

potential. In a second study we examined the effect of these new crossover and mutation

operators. The settings for that study are shown in Table 6.2. We again assigned roulette

wheel percentages for the selected individuals at 20% and 5% for the convergent and di-

vergent roulette scenarios, respectively. Likewise, the roulette wheel percentages for the

unselected individuals were 1.66% and 6.66%, respectively. But, in these studies we allowed

the mutation rate to vary between 0% and 50% to examine the effect on the population

convergence and diversity.
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Figure 6.1 Flow diagram showing IGA process containing both convergent and divergent parental
selection.

Table 6.2 IGA Settings: Expanded study
Chromosome type Real valued
Number of variables 8
Mating scheme Variable interpolation
Convergent parental population
—Selected individual roulette % 20%
—Unselected individual roulette % 1.66%
Divergent parental population
—Selected individual roulette % 5%
—Unselected individual roulette % 6.66%
Mutation type Multivariable variable
Mutation rate 0 to 50%

Finally, in a third study, we explored the possibility of using a sequential divergent-

to-convergent process. The mechanisms for that study were interpolating crossover and

variable mutation rates, depending upon whether the algorithm was in its divergent or

convergent state. The settings for this study, summarized in Table 6.3, were as follows: real
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valued chromosomes with eight variables; divergent crossover and mutation in the first 4

generations; presentation of the 16 selected individuals from generations 1 through 4 in

generation 5; 21 generations of convergent crossover and mutation. It is a different process

than in the first and second studies, but the intent is the same: find the goal design while

facilitating overall population convergence and range maintenance.

Table 6.3 IGA Settings: Sequential study
Chromosome type Real valued
Number of variables 8
Mating scheme Variable interpolation
Convergent parental population
—Selected individual roulette % variable%
—Unselected individual roulette % variable%
Divergent parental population
—Selected individual roulette % variable%
—Unselected individual roulette % variable%
Mutation type Multivariable variable
—Divergent process % 5%
—Convergent process % 1%

6.3 Monte Carlo simulation studies

6.3.1 Initial study

To understand the effect of splitting the parental populations between convergent and diver-

gent processes in the first two studies we employed a Monte Carlo simulation of a guided

search using Matlab. For these studies the settings of the IGA were as described above. The

variables of interest were the amount of the new population that was developed from the two

different parental populations, and the mutation rate. We allowed the population mixing to

vary from a population that was fully comprised of the divergent parental population to one

that was fully comprised of the convergent population. We allowed mixing of the different

populations at ten percent intervals, and in each case we conducted 10,000 trials. Similarly,

we varied mutation rate at 10% intervals an again ran 10,000 trials.
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The test chromosome was eight variables long consisting of real-valued numbers, and

each variable had a range from 0 to 10. Mutated variables were random numbers restricted

within these bounds. To test the IGA, we used a randomly-defined goal design as the

desired ‘creative’ design. While this may seem restrictive and counterintuitive to the intent

of creativity this was done to test the ability of the IGA to find a goal design while still

preserving a large range of available options to the user. Identifying this predefined goal

design provides an understanding of the best case scenario for the IGA. We also defined

the initial population as a randomly-generated set from the eight variable design space. The

goal of this study was to show that the IGA allowed convergent thinking to occur while still

maintaining the varied design space associated with divergent thinking.

The fitness of each individual was its Euclidean distance from the goal design. The

four individuals closest to the goal design were the selected individuals and garnered their

appropriate share of the roulette percentage as described in the section on roulette wheel

selection. The twelve remaining individuals were unselected and treated likewise. Each of

the 10,000 trials ran for 50 generations before conclusion. While this is a small number for

a GA, it is a large one for an IGA. Reducing the number of generations helps avoid user

fatigue.

Figure 6.2 Effect of generation and percent of convergent parental population on the mean of the
IGA population from the goal design.

Figure 6.2 presents the effect that varying parental population has on the IGA pop-

ulation’s mean distance from the desired goal design over the course of 50 generations.
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This uses the IGA settings for the initial study, so replacement is used in crossover. We

see that as percent convergent parental population varies from 0% (entirely divergent) to

100% (entirely convergent) the average value of the population’s Euclidean distance to the

goal design generally improves over the generational process. However, we see that a fully

divergent process actually increases the average of the population’s distance from the goal.

A similar pattern exists in the standard deviation of the population (figure not shown), both

generationally and in relation to the parental process. This suggested that this form of IGA

may be useful in identifying predefined goals, and hence facilitate convergent thinking. This

dissertation has already shown that this correlates well to an individual’s ability to identify

their preferences using the IGA.

Figure 6.3 Effect of generation and percent of convergent parental population on the range of the
IGA population from the goal design.

Figure 6.4 Effect of generation and percent of convergent parental population on the mean of the
distance of best individual in the IGA population from the goal design.
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Figure 6.3 shows how the range of the population’s distance to the goal design was

affected by the two types of parental populations for this initial study. As generations

increased, there was a reduction in the range of the population. But, with a more divergent

parental process, this effect is lessened. Thus, while the diversity of the population is

decreasing over generations, this effect can be reduced by using a more divergent process.

Maintaining diversity is tantamount to the notion of creativity in this work, but converging

toward a specified goal indicates the ability to appropriately refine a design, which is another

aspect of creativity. Therefore, we must balance these two goals. Figure 6.4 shows the

parental and generational impact on the average of the best individual in the population

over the 10,000 trials. We see that a fully divergent parental population has a detrimental

effect on the ability to find the goal design. But, as a portion of the population becomes

convergent, we notice a marked and systematic improvement of the IGAs ability to get near

the goal design.

6.3.2 Expanded study

Synthesizing the data from the Monte Carlo studies allows us to make an informed decision

about these initial settings for the IGA. We wished to maintain diversity amongst the pop-

ulation to promote the discovery of interesting designs while still allowing users to refine

those designs so that they are appropriate for the intended application. Thus, we can see

from Figures 6.2 - 6.4 that diversity is not well maintained using this form of the algorithm.

We therefore investigated another proposed algorithmic form, but we simulated only 25

generations as opposed to 50. The results of those simulations can be seen in Figures 6.5 -

6.10. The figures suggest that convergent populations are more likey to reach goal designs,

and the best available design in the population is improved by convergent populations. We

also see that increasing mutation rate has a detrimental effect on the ability of the goal

design to be obtained. We also notice a somewhat discouraging result that opposes the

theory posed here. In the figures indicating range, Figures 6.9 and 6.10, we can see that the
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inclusion of the divergent population does very little to impact diversity. The primary intent

of incorporating the divergent population was precisely so that it could do this.

Figure 6.5 Effect of generation and percent
of convergent parental population on the mean
of the IGA population from the goal design at
10% mutation.

Figure 6.6 Effect of generation and percent
of convergent parental population on the mean
of the IGA population from the goal design at
40% mutation.

Figure 6.7 Effect of generation and percent
of convergent parental population on the mean
of the best of the IGA population from the goal
design at 10% mutation.

Figure 6.8 Effect of generation and percent
of convergent parental population on the mean
of the best of the IGA population from the goal
design at 40% mutation.

We believed that a population that maintained a diverse range of individuals would

improve the IGA’s capacity to enhance creativity. The Monte Carlo studies in the second

study suggested that the proposed method allowed this to happen. However, it did not

suggest that incorporating a divergent process alongside a convergent process provided

any benefit. It should be noted that there are still numerous combinations of divergent and
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Figure 6.9 Effect of generation and percent
of convergent parental population on the range
of the IGA population from the goal design at
10% mutation.

Figure 6.10 Effect of generation and percent
of convergent parental population on the range
of the IGA population from the goal design at
40% mutation.

convergent populations that could be explored. The percent of the parental population that

is favored has not been adjusted in this study, so, an investigation of that may yield better

results.

Despite the finding, that the divergent and convergent populations did not seem to blend

in a beneficial fashion based on these current studies, the primary goal of this study was

to facilitate convergence and goal attainment while maintaining diversity. The results do

suggest that this is possible with a fully convergent population that has a mutation rate of

10% applied to each variable.

6.3.3 Sequential study

In this final examination of the synthesis of divergent and convergent parental processes

we used a sequential approach wherein the first four generations of the GA were generated

using divergent procedures and the final 21 generations were developed using convergent

procedures. In Figures 6.11 through 6.13 we present sets of 6 plots that illustrate the impact

that roulette wheel percentage allocated to selected individuals has on the population’s

mean, best and range of values. The sets are composed of figures that have axes relating the

number of generations and divergent roulette wheel percentage to the Euclidean distance
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of the population from the goal design. Each separate figure in the set indicates a different

allocation of the convergent roulette wheel percentage between 0 % and 100 %.

Figure 6.11 Effect of sequentially applied divergence and convergence on mean of population

Figure 6.11 shows how the Euclidean distance of the population mean is affected by the

previously mentioned variables. We see that as more of the roulette wheel is allocated to the

selected individuals in the convergent process we observe an improvement in convergence,

indicating an ability to get near the desired goal design. Figure 6.12 shows how the Eu-

clidean distance of the best individual in the populations is affected. As more of the roulette

wheel is allocated to the selected individuals in the convergent process we also observe an
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improvement in convergence. This indicates an ability to get to the exact desired solution,

and not just near it. We notice in both the population mean and the best of the population

that increasing the convergent roulette percentage beyond 60% yields diminishing returns.

Further, we also notice that the divergent roulette percentage has very little impact on the

population beyond 10 generations.

Figure 6.12 Effect of sequentially applied divergence and convergence on best of population

Finally, in Figure 6.13 we observe the range of the Euclidean distance from the goal

design. We notice that the range of the population is not well maintained over the course of

25 generations for any of the differing convergent roulette percentages. However, the more
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important characteristic in this case is how the divergent roulette percentage impacts the first

5 generations. In this case, we observe that a peak exists in the 5th generation, this is due to

the reintroduction of previously selected designs. This peak is strongest when divergence is

at 0%, and it tends to have less prominence as divergence increases. These trends indicate

that the divergent roulette percentage facilitates variety, and improves selection. In this

scenario, the goal is a known design. In a creative situation this goal design may not be

known a priori, so a high rate of divergence improves the possibility that a creative design

might be found.

These sequentially applied form of the IGA may be a significant improvement over the

simultaneous concepts of the other two studies. This sequential process allows systematic

development of new ideas and refinement of those ideas toward a favorite. It does not

maintain a large range throughout the process, but it does keep a large range during is first

several generations. This early range increases the likelihood that a unique concept will be

found early and the convergent process seems to facilitate design refinement, as indicated by

an improvement in the mean of the population and best individual in the population.

6.4 Conclusions

In this study we have described the development of an IGA-based tool that is proposed to

enhance creativity. The basis for this creativity enhancement is founded upon the principles

of divergent and convergent thinking. We discovered through this study that including the

notion of divergence through a separate population developed from unselected individuals

did not improve diversity while it advesrely affected convergence towards a goal design.

The results of this simultaneous approach lead to the investigation of a sequential approach.

The sequential approach to creativity appears to have merit in the notion of creativity. It

facilitates the idea of brainstorming at an early stage of the design process, and it then

contains the refinement stage that improves the likelihood of achieving some desired goal.
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Figure 6.13 Effect of sequentially applied divergence and convergence on range of population

The notion of creativity lends itself to several types of investigation. The one chosen here

sought to improve a users ability to develop many different ideas while also permitting them

to refine those ideas toward a well liked design. The methods presented here represent only

a few ways that researchers could explore methods of systematically improving creativity

with an enhancement tool. This field seems very well suited to further investigation, because

the shear volume of computation, ideation and generation that is allowed by the computer,
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but it requires human inspiration and insight to yield truly creative ideas.
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Chapter 7

Summary, contributions, and future
work

7.1 Summary

This dissertation has examined the use of shape preference information within engineer-

ing design. It has shown that currently available tools for determining preference can be

used to gain an understanding of shape preference. Further, this knowledge of preference

information has been shown to make a valuable contribution to the product design process.

Interactive Genetic Algorithms (IGAs) were explored for their ability to ascertain preference

information as well. These IGAs offer fertile ground for understanding preference and

adaptively offering users with new options that will likely appeal to them. The IGA was

used to determine preference for bottle shapes, and it was used to identify whether or not a

green vehicle silhouette can be readily identified by users. Finally, the IGA was examined

as a tool that could systematically induce creativity.

Aesthetics play an important role in product design. It distinguishes one product from

another and account for stylistic differences that can be functionally relevant to the product’s

performance. In Chapter 3 we proposed and implemented a procedure to not only collect

information regarding shape preference, but also incorporate that data within a physics

based modeling optimization of functionality. Our findings showed that, in the case of bottle
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design, there is a dislocation between what is most appealing to users and what is most

technically sound. We then proposed the use of weighted sum multi-objective optimization

to develop a Pareto frontier that could be used by designers and managers to understand the

tradeoffs that exist when attempting to design a product toward a technical goal, and toward

a preferred shape. This study showed that the intuition of industrial designers need not be

the only informative evidence to support a particular stylistic desire, further, we have shown

that strictly meeting a particular shape preference can have a detrimental effect on product

performance.

IGAs offered an interesting avenue of pursuit into the field of shape preference. While

IGAs had previously been used as a means to assist computationally expensive problem

solving, and they had been used in some forms of goal based audio and visual design, they

had not been shown to be capable of interpreting shape preference from a user. The study in

Chapter 4 used a case study of bottle shapes to show that user preference could be captured

using the IGA, and this was independently validated using pairwise comparison. We further

confirmed previous results that the IGA could be quite effective in goal-seeking tasks. Then,

in Chapter 5 we used the IGA to identify vehicle silhouettes that were associated with good

fuel economy. This subjective data was correlated against a model of the coefficient of drag

for the same set of vehicle shapes. We were thus able to see how perception agreed with

reality on one metric of greenness. We found that users generally had a good understanding

of how vehicle shape impacts aerodynamic drag, and how drag effects fuel economy.

Finally, in Chapter 6 we explored how the IGA could be used as a tool to assist creativity.

Using the analogy between design, creativity and genetic algorithms regarding convergence

and divergence, we developed an IGA that could assist in the creative design process. We

used Monte Carlo simulations to provide evidence for using both convergent and divergent

processes at the same time to facilitate the identification of the best design while still main-

taining a great deal of design diversity. We also conducted user studies that examined how

the tool impacted the creativity of individuals.
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7.2 Contributions

This dissertation embodies several contributions to the field of engineering design. These

contributions provide a foundation that future researchers and practitioners may use to

improve both product designs, and the product design process. The contributions of this

work are as follows:

• This dissertation developed a procedure for examining shape preference informa-
tion within the design process. We proposed methods using conjoint analysis and
PREFMAP to understand preference, and combined that with fundamental engi-
neering analyses. We showed that doing so could have an important impact on the
decisions that designers must make when conducting design. We found that there
were distinct tradeoffs between developing designs that met preference criteria and
those that met engineering criteria.
• This dissertation validated the IGA as a preference assessment tool. The IGA had

been previously assumed as a tool that could understand preference, but no research
existed that confirmed this evidence. This dissertation confirmed it, and in doing so,
has opened the door for others to use the IGA as a method for rapidly understanding
the preference characteristics of design artifacts. We can also say, based on our results,
that users are quite capable of using the IGA to answer a question that is posed to
them. We cannot state with certainty the required number of generations, the specific
settings for mutation, or the settings for crossover that will be well suited for all
situations. We believe that increasing variables will require an increased number of
required generations, but we do not have any rules for this associated, yet.
• Finally, this dissertation has shown that IGAs offer fertile ground for further investiga-

tion as creativity enhancement tools. The studies here do not support the claim that
divergence and convergence, when synthesized, can facilitate creativity. However, the
study did show that convergence, goal attainment and diversity could all be attained
using the IGA developed, and user studies suggest that this does improve creativity.

7.3 Future work

This dissertation has laid the groundwork for future endeavors into the quantification and

implementation of shape preference information within the design process. Numerous case

studies could be conducted to further confirm the usefulness of the methodology that was

proposed and implemented in Chapter 3. One important idea that should be examined further

is whether or not there is a best way to decompose a particular design architecture. In this
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dissertation, only points along splines were considered as design variables. However, the

ratios of design elements, and their absolute dimensions have not been rigorously explored.

Nor has the aspect of absolute size. Further, due to the tactile nature many artifacts, we

propose that the creation of numerous prototypes, through rapid prototyping technologies,

could further improve a user’s understanding and appreciation for an artifact. Thus, they

could make a more accurate judgement regarding their preference.

A major limiting factor in the development in the IGA used in this dissertation is that it

provides no systematic method for understanding the true preference space for a design. It

is currently limited to the simple understanding of an ideal point. This ideal point, while

useful and intuitive in its method of identification, cannot provide enough information for

designers to make strong claims about aesthetic design decisions when the technically opti-

mal design does not align well with the most preferred aesthetic point. Therefore, the data

that is collected during the IGA should serve as a basis upon which a more fundamentally

mathematical model of preference can be built.

One benefit of the IGA is its ability to quickly obtain information related to preference.

To further enhance this we developed a web-based application to present, manipulate and

database the decisions of users. One drawback of this software is its drawing function.

Initially, Adobe Flash was used due to its perceived ease of use. However, in retrospect, this

program, while user friendly on many levels, lacks some of the detailed functionality that

we had hoped for in its graphical presentation of shapes. Therefore, we believe that a Java

based interface may actually provide better functionality and drawing capabilities. While

this is not a fundamental question of research, it does highlight an area of this work that

could use improvement.

Finally, as a means of improving the IGA’s capacity to interpret user preference, and as

a way of enhancing creativity several methods from the Artificial Intelligence (AI) should

be investigated for their application to the GA process. Several learning algorithms show

promise, but a method like reinforcement learning suffers from the need for repeated failures
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to guarantee future success. The field of creativity within AI may represent a place of fertile

ground, where the ideas posed in this dissertation could be improved by the insights and

practices of the AI community.

The fundamental role that shape plays in the preferences that people have for artifacts

indicates that this field of study will be of growing importance over the coming years. This

is because the costs and technology associated with product design are becoming very even

across the marketplace. This is not to say that technical advances cannot give firms a signif-

icant advantage over their competition, it simply recognizes that an ad hoc methodology

relying purely on intuition and heuristics can be augmented by a scientific methodology to

increase the likelihood of developing aesthetically preferred artifacts that will likely benefit

both the user and the producer.
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