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ABSTRACT 
 
 

Optical interconnects, the chip-scale integration of optoelectronic devices with com-

plementary-metal-oxide-semiconductor (CMOS) silicon circuits, provide a promising ap-

proach for the realization of the next-generation high-speed computing and communica-

tion systems. Unfortunately, optoelectronics lacks an obvious platform for monolithic 

integration. One of the practical solutions is the hybrid integration, through heteroepi-

taxial growth, of compound semiconductor optoelectronic components with silicon tech-

nology. This thesis is devoted to developing high-performance GaAs-based quantum dot 

lasers directly grown on silicon substrates and their monolithic integration with 

waveguides and electroabsorption modulators. The investigation of 1.5 µm silicon-based 

high-Q random photonic crystal microcavity light emitters utilizing PbSe colloidal quan-

tum dots has also been conducted. 

High-performance quantum dot lasers directly-grown on silicon substrates have been 

achieved in this study. The performance of III-V-based lasers on silicon can be degraded 

by the inherent high-density propagating dislocations. To enhance device performance, a 

novel quantum dot dislocation filter has been developed. The best lasers exhibit relatively 

low threshold current density (Jth = 900 A/cm2), large small-signal modulation bandwidth 

of 5.5 GHz, and a high characteristic temperature (T0 = 278 K).  

The monolithic integration of InGaAs QD lasers with waveguides and quantum well 

(QW) electroabsorption modulators has been achieved through molecular beam epitaxy 



xvii 

(MBE) growth and regrowth. Focused-ion-beam milling is utilized to create high-quality 

etched GaAs facets with a reflectivity of 0.28 and coupling groove with coupling coeffi-

cient greater than 20%.  Quantum-dot lasers with focused-ion-beam-etched facets exhibit 

comparable performance to those with cleaved facets. The integrated modulator exhibits 

a modulation depth ~100% at 5 V reverse bias. In addition, the monolithic integration of 

the amorphous silicon waveguide with quantum dot laser has also been demonstrated by 

using plasma-enhanced-chemical-vapor deposition (PECVD). 

Finally, enhanced photoluminescence at 1.5 µm wavelength has been observed from 

PbSe colloidal quantum dots embedded in a silicon-based random photonic crystal mi-

crocavity. Such microscale light sources on silicon can also be fabricated or integrated on 

silicon CMOS chips, which may provide a viable route for inter- and intrachip optical 

communications. 
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CHAPTER 1 

 

INTRODUCTION 

 
 

During the past decades, the microelectronics industry has been pursuing high-speed 

computers by shrinking transistor size and increasing integration density. This develop-

ment trend is described by Moore’s law which predicts that the number of transistors that 

can be placed on a computer chip, at proportionate decrease in cost, would double ap-

proximately every two years [1]. However, the progress is gradually slowing down due to 

effects related to the (small) transistor size and due to transmission delay and heat dissi-

pation issues in high-density integration architectures. A detailed discussion on the limi-

tations we have to face at present and in the future can be found in the book “Future 

trends in Microelectronics” [2]. As a result, microprocessor developers are currently in 

favor of multiple core processors instead of merely increasing the core-clock speed. 

However, even the emerging 3-D circuits based on vertical interconnects are measures 

which eventually cannot satisfy the ever-increasing demands on high speed information 

switching and communications. So what is the solution? The next-generation computers 

based on quantum computing [3] or bio-technology [4] are still elusive. Considering their 

feasibility and reliability, optical interconnect systems which require chip-scale integra-

tion of optical and electronic components are prevailing as promising substitutes for cur-

rent microelectronic chips [5] [6]. Optical interconnects can not only provide higher 
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bandwidth for computing and switching, but also provide advantages such as inherent 

parallel processing without crosstalk and lower power dissipation. In fact, discrete optical 

components such as optics fibers and their links have been employed in communication 

network since 1980’s. 

 

1.1.  Emission, Modulation, and Guiding of Light in Silicon 

Conventional photonic devices such as lasers/amplifiers, waveguides, modulators 

and filters are fabricated using various materials including III-V semiconductors, glass 

and LiNbO3, etc. For discrete components, these materials are preferred due to their ex-

cellent optical properties and optoelectronic capabilities in specific applications. However, 

high-speed optical interconnect systems require chip-scale integration of optical and elec-

trical devices. In order to achieve lower cost and compatibility with mature microelec-

tronics manufacturing, the use of silicon as a fundamental building material for integrated 

optoelectronics can be traced back to the 1980’s [7]. However, silicon-based photonics 

has several challenges such as poor light emission, low linear electro-optic effect, and 

high waveguide-propagation loss in the wavelength range of 1.3-1.55 µm. To overcome 

these limitations, extensive research efforts have been made during the past decades [8] 

[9] [10]. 

 As an indirect-bandgap semiconductor, silicon is a poor light emitter. While elec-

troluminescence from silicon is still possible, enhanced light emission, caused by quan-

tum confinement effects, has been observed in nano-structured or nano-crystaline silicon 

[11] [12] [13]. However, their low efficiency makes them far from practical. Recently, 

the silicon Raman laser using optical pumping was demonstrated [14] [15] and this tech-
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nology has been widely viewed as a milestone in the development of silicon-based lasers. 

However, in the long run, a silicon laser using electrical injection rather than optical 

pumping is more desirable for chip-scale integration. An alternative scheme involves a 

hybrid electrically-driven III-V laser on silicon by using wafer bonding or heteroepitaxial 

growth. The bonding technique has evolved from simple bonding of the whole III-V laser 

structure onto a silicon wafer [16] to the more state-of-the-art bonding of III-V gain me-

dia onto an evanescent-coupled silicon waveguide cavity [17]. The latter is more practical 

in achieving monolithic integration with other silicon-based guided-wave devices. The 

direct growth of III-V laser heterostructures on silicon has also been extensively investi-

gated by using a variety of buffer layers such as 2-D strained superlattice [18] [19], 

graded SiGe buffer layers [20], and quantum dot dislocation filters [21]. However, the 

reliability of such hybrid electrically-driven devices is still a challenging issue due to in-

compatibility of III-V semiconductors with Si. The demonstration of an electrically-

pumped silicon laser remains a major goal in this field, despite the fact that laser-on-chip 

is not an ideal architecture due to serious heat dissipation problems [9]. 

Electrooptical (EO) modulation is indispensable in high-speed systems. Unfortu-

nately, unstrained silicon does not exhibit the Pockels effect ⎯ the linear electrooptic ef-

fect due to a centro-symmetric crystal structure. The refractive index change induced in 

silicon by the Kerr effect ⎯ the second-order electrooptic effect and the quantum-

confined Stark effect (QCSE) are only ∆n~ 2×10-8 and ~ 2×10-5, respectively, under a 

breakdown electric field of 105 V/m. Therefore the most common electrooptic effects, 

such as the Pockels effect in LiNbO3 crystal, Kerr effect in polar liquids including nitro-

toluene (C7H7NO2) and nitrobenzene (C6H5NO2), and the QCSE effect in III-V com-
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pound semiconductors, have very low efficiency in silicon. An alternative mechanism of 

achieving electro-optic modulation in silicon is the so-called free-carrier plasma disper-

sion effect (FCPDE) [22], which is the linear dependence of refractive index and absorp-

tion coefficient on injection carrier density. The FCPDE effect can induce refractive 

changes of ∆n~ 2×10-3 at a wavelength of 1.55 µm with 1018 carriers/cm3. Pioneering 

work on this approach was done by Soref et al.[22] [24] and then followed by others [25]. 

Unfortunately, their reported modulator speed is still quite low. Researchers at Intel Corp. 

recently utilized a metal-oxide-semiconductor (MOS) capacitor to achieve a Mach-

Zehnder type modulator with speeds up to 1 Gb/s [26], and soon after demonstrated a 

higher speed of 10 Gb/s [27]. Another research group extended the above design to 

achieve a more compact modulator by using a microring resonator instead of a Mach-

Zehnder interferometer [28]. On the other hand, strained silicon exhibits significant elec-

troabsorption modulation. It has been reported that efficient electroabsorption modulation 

can be achieved by using the electrical-field induced delocalization of the electron wave-

function in strained Si/Ge shallow quantum wells [29]. Recently, enhanced QCSE in 

strained Si/Ge quantum well was observed [30], which could lead to electroabsorption 

modulators with efficiency comparable to III-V devices.  

The propagation loss in silicon arises mainly from the waveguide surface roughness 

and intrinsic material absorption, where the former is usually dominant [10]. To date, 

with the development of microfabrication and silicon-on-insulator (SOI) technologies, 

silicon direct waveguides can exhibit acceptable propagation loss, below 3 dB/cm, in the 

wavelength range of 1.3-1.55 µm depending on the waveguide dimension and processing 

conditions [10] [32]. Another loss in waveguides, especially for high-density integration 
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on a chip, is the radiation loss due to waveguide bending which induces light leakage 

from guided modes to radiation modes. Compared to glass/polymer waveguides, silicon 

waveguides have the advantage of much less bending radius due to high refractive-index 

contrast. Using a modified structure with more material in the inner part of the bend, re-

searchers have demonstrated a 90°-bend with 0.7 µm radius and losses of less than 1% 

[33]. Alternatively, low-loss bends with a submicrometer radius in photonic-crystal wa-

veguide structures has been demonstrated [34]. 

While the above developments have been achieved with crystalline Si and SOI tech-

nology, hydrogenated amorphous Si (a:Si-H) may offer benefits in terms of lower cost, 

low temperature processing, as well as other unique characteristics in photonics applica-

tions [35]. These include acceptable low loss in the wavelength range of >1 µm due to 

dangling bonds saturated by H, refractive index and bandgap tunability dependent on H 

composition, and a desirable thermo-optic effect specifically useful for low-power and 

low-frequency switching. A Si waveguide/modulator technology realized by plasma-

enhanced-chemical-vapor deposition (PECVD), or similar techniques, will introduce 

flexibility in design and fabrication that is important for the development of silicon pho-

tonics. One study has demonstrated a:Si-H waveguides with a propagation loss less than 

2.0 dB/cm for 1.55 µm and 5 dB/cm for 1.3 µm [36], comparable to crystalline Si wave-

guides. The band gap engineering of amorphous silicon quantum dots for light-emitting 

diodes has also been investigated [37]. Since the a:Si-H thermo-optic modulation has 

been demonstrated and well characterized, it is believed that SOI-based waveguide ther-

mo-optic modulators with a variety of geometries [38], including Fabry-Parot cavity, mi-

croring resonator, and photonic-crystals, can also be achieved with comparable perform-
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ance by using a:Si-H waveguides. 

 

1.2.  Metamorphic Growth of III-V Semiconductors on Silicon 

As discussed above, the metamorphic growth of III-V semiconductors on silicon can 

lead to a realistic approach of monolithically integrating III-V-based optoelectronic de-

vices with mature silicon CMOS circuits for the realization of optical interconnects.  The 

most difficult challenges in the growth of III-V on Si are the large lattice mismatch (> 

4%), large thermo-expansion-coefficient difference, and incompatibility of polar-on-

nonpolar materials. Some material properties of Si, GaAs, and InP are listed in Table 1.1. 

 

Table 1.1: Material properties of Si, GaAs, GaSb, GaN, and InP 
 

Properties Si GaAs GaSb GaN InP 

Crystal symmetry 

Lattice constant (Å) 

Therm. Expan. Coeff.(10-6 K-1) 

Therm. Conduct. (W·cm-1·K-1) 

Youngs modulus (GPa) 

Diamond 

5.43 

2.6  

1.3 

130 

Zinc Blende 

5.65 (4%) 

5.7 

0.55 

85.9 

Zinc Blende 

6.09 (12%) 

7.75 

0.32 

63.1 

wurzite 

3.19(a)/5.189(c) 

5.59(a)/3.17(c) 

1.3 

181 

Zinc Blende 

5.87 (7%) 

4.60 

0.68 

61.1 

* data from “semiconductors on NSM” via http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ 

 

During epitaxial growth of III-V semiconductors on Si, the group III and group V at-

oms experience randomness in choosing lattice sites due to the nonpolarity of Si. If 

growth starts with simultaneous nucleation of group III and group V atoms, both species 

randomly nucleate on different sites and form many small regions. Inside each region 

there are regular III-V bonds while III-III and V-V bonds form at the boundary between 

different regions. These small regions are called anti-phase domains (APDs), and the 
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boundaries are called anti-phase boundaries (APBs). If growth is initiated with alternate 

exposure to group III and group V atoms, such as migration enhanced epitaxy (MEE), 

APD-free crystals can be achieved. However, practical growth condition control, initial 

surface cleanliness, and especially, naturally occurring atomic steps on the silicon surface 

always make APD-free growth difficult. The odd atomic steps on silicon steps will en-

hance the formation of APDs, while the even atomic steps will have an opposite effect 

under MEE growth mode, as shown in Fig. 1.1. III-III bonds serve as acceptors and V-V 

bonds as donors. Therefore, the epitaxial layer of a III-V semiconductor on silicon con-

tains a high density of highly-compensated doping regions, which can also act as non-

radiative recombination centers. To date, the most effective approach to suppress the 

formation of APDs is utilizing 2-6º mis-oriented (100) silicon substrates which have 

high-density double atomic steps. Growth is initiated with MEE at low growth rate and 

low temperature, followed by a higher temperature annealing and subsequent continued 

growth. A detailed study of epitaxial growth of GaAs and other III-V compound semi-

conductors on silicon, with device applications, can be found in Ref [39]. 

 

 

 

     

                (a)                                          (b)                                        (c)  

Figure 1.1: Schematic of anti-phase domain (APD) and boundary (APB) formation: (a) on ideal 

surfaces (no steps) by starting with random nucleation; (b) on single-atomic-step 

surfaces by starting with MEE; (c) on double-atomic-step surfaces by starting with 

MEE.  

APB APB APB-free 
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Another serious problem associated with the epitaxial growth of III-V semiconduc-

tors on silicon is the generation of a high density of dislocations due to the large differ-

ence in lattice constants and thermal expansion coefficients. The built-in strain due to lat-

tice mismatch will create misfit dislocations if the thickness of the epitaxial layer is above 

a critical value. The typical dislocations in III-V (zinc-blende structure) on silicon are ei-

ther edge dislocations or 60°-mixed dislocations. The dislocations degrade the epilayer 

quality and act as non-radiative centers. The dislocations can also climb up from the 

mismatched interface and propagate into device active regions due to applied stress, cur-

rent injection, etc. Applied stress can be induced by internal misfit strain, thermal strain, 

or external mechanical strain. Device-quality III-V epitaxial layers on silicon requires the 

dislocation density to be smaller than 106-107 cm-2. In reality, the dislocation density is 

usually much higher near the III-V-Si interface. A number of dislocation reduction tech-

nologies have been proposed and demonstrated, including strained-layer superlattices 

(SLS)[18] [19] [40] [41], thermal cycle annealing [42], selective area or patterned 

growth[43] [44], SiGe graded layers [20], AlSb buffer layer [45], and compliant sub-

strates [46]. Based on these technologies, a variety of devices such as lasers (both edge 

emitting and VCSEL), modulators, photodetectors, solar cells, HBTs, and MESFETs 

have been achieved. However, despite extensive research efforts and some promising test 

results on device lifetime, the reliability of these hybrid III-V devices on silicon is still a 

big concern and bottleneck for practical applications. Dislocation propagation is consid-

ered to be the main factor to degrade device performance. In other words, a device-

quality epitaxial layer will be degraded due to dislocation glide/climb and the dislocation 

density in the active region increases with time. For dislocation glide motion under stress, 
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the motion velocity (Vd) is determined by the applied shear stress (σa) and dislocation 

mobility (µd), namely, Vd=σaµd [47][48].  Here µd ~exp (-Ed/kT), and Ed is the activation 

energy of dislocation motion, which is dominated by the bond strength. For simplicity, 

materials with wider bandgap and larger Youngs modulus exhibit slower dislocation mo-

tion. A detailed comparison of the dislocation velocity of GaAs, InP, and GaSb on silicon 

and GaN on sapphire is given in Appendix A, and listed in Table 1.2. 

 

Table 1.2: Comparison of dislocation glide-motion velocity of GaAs, InP, GaSb on Si, and GaN 
on sapphire at 300K. 

 

Material  
system Lattice mismatch 

Youngs 
modulus 
(GPa) 

Band 
gap 
(eV) 

Poisson 
ratio 
(v) 

Ed 
(eV) 

τ 
(GPa) 

Vd 
(µm/Year) 

GaAs/Si 

InP/Si 

GaSb/Si 

GaN/Sapphire 

4% 

8%  

12% 

16% (30°-rotation) 

85.9  

61.1 

63.1 

181 

1.424 

1.344 

0.726 

3.2 

0.31 

0.36 

0.31 

0.35 

~1.25 

~1.2 

~1.2 

~2.1 

2.5 

3.8 

5.5 

44.6 

1~5 

10 

15 

1×10-13 

 
 

 
1.3. Quantum Dot Lasers: History and Current Trends  

 An electrically-driven silicon laser currently remains the vital missing piece in sili-

con photonics. If directly grown III-V lasers on silicon become a practical solution, quan-

tum dots (QD) will provide the opportunity to achieve improved performance of such de-

vices. As an introduction, this section discusses the development history and current 

trends of QD lasers. 

 In contrast with conventional atomic lasers, semiconductor lasers have an energy 

band structure with high density of states (DOS) and carrier-dependent refractive index . 
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High DOS enables high gain in semiconductor lasers with gain coefficient on the order of 

magnitude of 103 cm-1 in near infrared range, while atomic lasers such as HeNe and 

Nd:YAG have gain coefficient on the order of magnitude of 10-3~10-1 cm-1. As a result, a 

semiconductor laser with small volume (typically 1 mm in length and 10-4 mm2 in cross 

section area) can emit several watts of CW light. On the other hand, band structure with 

high DOS enhances carrier interactions and causes problems including spectral broaden-

ing and thermal effects which lead to the degradation of laser performance. The depend-

ence of refractive index on carrier injection induces spectral linewidth broadening and 

lasing wavelength shifting, i.e. frequency chirping, a serious problem for semiconductor 

lasers. Many applications, from optical communications to pump sources, require semi-

conductor lasers having low threshold current, high output power and efficiency, large 

modulation bandwidth, little or no temperature-dependence of the threshold current, and 

negligible chirp. The goal of semiconductor lasers with low-dimensional heterostructures, 

including quantum well, quantum wire, and quantum dots in the active region, is to real-

ize the desired performance.  In what follows, the basic concept, growth, fabrication and 

characteristics of quantum dot lasers are reviewed. Sec.1.3.1 introduces optical and elec-

tric properties of quantum dots. Sec.1.3.2 addresses the growth of self-organized quantum 

dots. Sec.1.3.3 discusses the development of self-organized quantum dot lasers and their 

performance.  

 

1.3.1. Optical and Electric Properties of Quantum Dots 

Semiconductor lasers of low-dimensional quantum confined heterostructures as the 

gain media have higher gain and differential gain due to the increase in DOS. The success 
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of two-dimensional quantum well lasers [50] [51] inspires interest in lower-dimensional 

heterostructures, i.e., quantum wires and quantum dots. Figure 1.2 illustrates the energy 

level of atoms, bulk semiconductors and quantum dots. In bulk semiconductor material, 

broad energy bands with allowed states, via lattice vibration (phonon), enable the transi-

tion/or scattering of carriers in the energy range comparable to the lattice temperature (~ 

26 meV at 300 K). The tails of the carrier distribution near the conduction and valence 

band edges collapse and elongate markedly with temperature. Consequently, the concen-

tration of carriers per unit energy interval near the band edges drops, which decreases 

gain and degrades laser performance. In addition, hot-carrier effects such as Auger re-

combination, temperature dependence of the threshold current, and frequency chirp are 

also direct consequences of the presence of energy bands. In quantum dots, the energy 

spectra exhibit discrete levels instead of bands. It is similar to the electron energy quanti-

zation in atoms. Therefore, quantum dots are referred as artificial atoms. Using a simpli-

fied model of the infinite square well (particle in a box), we can estimate the energy 

quantization ( ) *2 2~ mLnE hπ , where n=1, 2, … and m* is the effective mass of carriers 

(for example, m*~ 0.063me for electrons and m*~ 0.51me for heavy holes in GaAs). Thus, 

a GaAs-based QD of L ~10 nm can yield an energy separation ∆E ~ 100 meV for elec-

trons and ~10 meV for holes, respectively. The former is much larger than the room-

temperature phonon energy of ~26 meV. 
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Figure 1.2:  Comparison of the energy level of atoms, bulk semiconductors and quantum dots 

(modified from Ref.[49]).  

  

 

       
                          (a)                                                             (b) 

           
                           (c)                                                             (d) 

 
Figure 1.3:  Density of states (DOS) and ρ(E) versus energy with respect to the conduction band 

edge for different dimensional structures: (a) bulk (3-D), (b) quantum well (2-D), (c) 

quantum wire (1-D), and (d) quantum dot (0-D). The shade areas denote carrier den-

sities with identical quasi-Fermi levels.  
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As illustrated in Fig.1.3, the DOS would remarkably increase and become less tem-

perature-dependent with dimensionality reduction. QDs provide the most desirable char-

acteristics of atom-like discrete energy levels with delta-function DOS and efficient over-

lap of electron-hole wavefunctions [52] [53] [54]. These advantages provide QD opto-

electronic devices significant performance advantages and unique characteristics:  

1) High DOS and efficient overlap of carrier wavefunctions give rise to high gain and 

high differential gain in QD lasers; 

2) Large gain and differential gain enable low threshold current density Jth and large out-

put power; 

3) Large differential gain also allows higher modulation frequency for extremely high 

speed operation, low linewidth enhancement factor α, and  low/no dynamic chirp; 

4) Discrete energy spectrum reduces phonon coupling for high temperature stability; 

5) Higher tolerance for defects and radiation due to electron and holes localization; 

6) Tunable wavelength of emission and absorption by changing QD size reduces de-

pendence on materials (heterostructure bandgaps). 

A detailed discussion on large modulation bandwidth, low chirp, and small α-

parameter in QD lasers due to high differential gain is included in Appendix B. The mod-

ulation of QD lasers is determined by carrier dynamics in QDs that can be studied with 

the femtosecond pump-probe differential transmission (DT) spectroscopy [55] [56]. In 

principle, the differential transmission signal is proportional to the carrier population of 

the level probed, and therefore reflects the temporal and spectral carrier population. Tem-

perature-dependent DT spectroscopy reveals that the relaxation of electrons from excited 

states to the ground state takes 5-6 ps at 10 K but >100 ps above 100 K. There exist 
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mainly two competing processes: electron-hole scattering and phonon bottle effect [57]. 

Electron-hole scattering gives rise to the fast decay, which is dominant at low tempera-

tures. The carrier scattering rate is strongly temperature dependent and rapidly decreases 

as the temperature increases due to a marked reduction of the hole population in the 

ground states by thermal-broadening. On the other hand, the slow decay is governed by 

the phonon bottleneck, which originates from nongeminate capture of electrons and holes 

amongst the dots when the number of injected carriers is smaller than the number of ac-

cessible dots. The slow decay process enhances with increasing temperature. Additionally, 

the presence of wetting layer states and barrier states also significantly affects carrier cap-

ture and relaxation into QD ground states. It is evident that at room temperature injected 

electrons preferably occupy excited states in the dots and states in the wetting/barriers 

layers. The relaxation time of these carriers to the dot ground state is about 100 ps. This 

leads to large gain compression in QD lasers and limits the attainable small-signal modu-

lation bandwidth to 5-7 GHz. In the same devices small-signal modulation bandwidth up 

to 30 GHz is observed at cryogenic temperature because the hot carrier distribution is 

minimized and carriers relax via efficient electron-hole scattering at low temperature [58]. 

The problem can be alleviated by tunneling “cold” electrons directly into the lasing states 

of the dots from an adjoining quantum well layer―the “tunneling-injection” [58]. 

 

1.3.2. Growth of Self-Organized Quantum Dots 

As the superiority of QDs in optoelectronic device applications was recognized in 

the 1980’s [52] [53] [54], extensive research on fabrication and growth of quantum dots, 

including e-beam lithography, focused-ion-beam (FIB) etching, and self-organized epi-
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taxial growth [59] [60] [61], has been carried out. The lithography and etching related 

techniques suffer from the generation of surface defects. Self-organized epitaxy, on the 

other hand, enables the coherent growth of defect-free nanostructures and has become the 

dominant technique to achieve high-quality quantum dots with desirable performance. 

Depending on the lattice mismatch between the epitaxial layer and substrate, epitaxial 

growth usually occurs in three modes: Frank-van der Merwe (FM) [62], Stranski-

Krastanow (SK) [63], and Volmer-Weber (VW) [64], as shown in Fig. 1.4. FM mode oc-

curs in lattice-matched system with two-dimensional layer-by-layer growth. In the case of 

large lattice mismatch (>12%), VW mode occurs with three-dimensional (3-D) island 

growth. SK growth mode occurs in the case of moderate lattice mismatch (>1.8%) start-

ing with a few monolayers of layer-by-layer growth (wetting layer) followed by the for-

mation of 3-D islands (QDs). The driving force for the self-organized 3-D island (QDs) is 

the elastic relaxation on the island facet edges, minimization of the surface energy of fac-

ets and the interaction between neighboring islands via the substrate.  

 

                                                          

                                 (a)                                   (b)                                 (c) 

 

Figure 1.4:  Schematic illustration of three epitaxial-growth modes: (a) Frank-van der Merwe 

(FM), (b) Stranski-Krastanow (SK), and (c) Volmer-Weber (VW). 

 
 

Typically, the temperature for molecular beam epitaxial (MBE) growth of In(Ga)As-

GaAs quantum dots via SK mode is around 460~520 °C. The formation of InAs QDs is 

initiated at 1.5-1.7 monolayers (ML) and ends at ~2.5-3 ML (~50% overgrowth), while 
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In0.5Ga0.5As QD starts at 5-6 ML and ends at ~7 ML (10~30% overgrowth). They are 

next followed by the growth of In(Ga)As capping/barrier. We know multiple layer quan-

tum dots are very useful in QD lasers and photodetectors to enhance the gain and absorp-

tion, respectively. If the capping/barrier is thin (usually ~20 Å), the dots in the second 

layer can be formed exactly on top of the dots in the first layer. This trend continues, re-

sulting in a 3-D array of vertically aligned and electronically coupled dots. Usually, a 

thinner layer of InGaAs QDs needs to be deposited for subsequent quantum dot layers 

depending on the GaAs barrier thickness. For example, in the case of InGaAs/GaAs 

quantum dots, 7 monolayers (ML’s) of InGaAs need to be deposited for the first dot layer 

and subsequent dot layers are formed with 4 ML’s of InGaAs. For a thicker barrier layer 

(≥ 150 Å), the formation of adjacent QD layers are no longer correlated. The QD shape, 

size and density can be tailored through engineering growth rate, time, temperature, ma-

terial composition, and substrate orientation. A rule of thumb is that faster rate, lower 

temperature, and shorter time lead to smaller and higher-density QDs. Table 1.3 lists typ-

ical parameters of In(Ga, Al)As/GaAs quantum dots grown in our laboratory.   

 

 

Table 1.3: Parameters of In0.6Al0.4As, In0.5Ga0.5As and InAs quantum dots 
 

Dot density base width Height Quantum 
dots Capping Photoluminescence 

wavelength (cm-2) (nm) (nm) 

In0.6Al0.4As 

In0.5Ga0.5As 

InAs 

GaAs 

GaAs 

~45Å In0.15Ga0.85As 

 

1.1 µm 

1.3 µm 

1~2×1011 

5~6×1010 

2~3×1010 

9-14 

16-22 

20-30 

3-4 

5-6 

7-8 
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1.3.3. Development of Self-Organized Quantum Dot Lasers and Their Performance 
 
 
 
                

 

 

 

(a)     

                               

    

                          

                                

 

(b) 

Figure 1.5:  Schematic of a tunneling injection (TI) quantum dot. When cold electrons are intro-

duced into the quantum dot ground states by phonon-assisted tunneling, and the tun-

neling rate is comparable to the stimulated emission rate, the carrier distribution will 

be maintained close to a quasi-Fermi distribution even at high injection levels. 

 

 
 

The first QD laser was developed in 1994 by using e-beam lithography/etching fab-

ricated QDs [65]. However, its threshold current density of 7.6 KA/cm2 was quite high 

even at 77 K due to high-density interface defects surrounding the QDs. Soon after, a 

self-organized QD laser was reported with lower threshold current density of 120 A/cm2 

Quantum dot 
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at 77 K  [66], and was followed by the demonstration of room-temperature operation [67] 

[68].  A typical InGaAs-GaAs quantum dot laser is basically the same as conventional 

multi-quantum well separate-confinement heterostructure (SCH) lasers except replacing 

QWs with QDs. Some tips for the design of typical SCH lasers can be found in Appendix 

C. The structure consists of an AlGaAs outer cladding, a GaAs inner waveguide, and a 

single or multiple layers of InGaAs self-organized quantum dots as the active region. 

Such QD SCH lasers exhibit threshold current density as low as 13 A/cm2 [69], large dif-

ferential gain [70] [71], low chirp [72] and reduced linewidth enhancement factor (α-

factor) [73]. However, as discussed Sec.1.3.1, QDs have an intrinsic phonon bottleneck, 

which limits the high-speed operation of lasers. In addition, a relatively small energy-

level separation for holes makes lasers susceptible to thermal effects which can degrade 

gain and induce temperature-dependent operation. The solutions to these problems are 

introducing tunneling injection (TI) and acceptor (p)-doping technologies to quantum dot 

laser design and fabrication.   

The concept of using tunneling injection in semiconductor lasers to alleviate hot-

carrier problem and enhance modulation speed was proposed by Bhattacharya et al. and 

demonstrated for the first time in quantum well lasers [74]. In a conventional SCH semi-

conductor laser, carriers injected into quantum well/dots will not only fill the ground state, 

but also create thermal heating which forces more carriers to stay at higher energy and 

eventually leak to adjacent layers. Hot carrier effects deform the quasi-Fermi distribution 

of carriers, and consequently decrease carrier density near the band-edge, induce gain 

compression and degrade high-speed performance. This problem can be alleviated by 

tunneling “cold” electrons into the lasing states of quantum-well/dots from an adjacent 
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injector layer, as shown in Fig. 1.5. The only requirement is that the tunneling rate should 

be less than/or comparable to the lasing emission rate. DT spectroscopy measurements 

confirm the tunnel injection time to be <2 ps in TI-QD/QW laser heterostructures with 

temperature-insensitivity. Enhanced modulation bandwidth, reduced Auger recombina-

tion and chirp were demonstrated in TI-quantum well lasers [75] [76]. When TI scheme 

was used in quantum dot lasers, the most significant improvement is in high-speed per-

formance because TI scheme offered much shorter tunneling time of <2 ps in comparison 

to the room-temperature carrier relaxation time of 50-100 ps from higher states to ground 

state. Experiments showed QD TI lasers exhibit small-signal-modulation frequency up to 

30GHz, chirp < 0.1 Å, and nearly-zero α-factor, etc.  

 

 

 

 

 

 
 
 

                                     Figure 1.6:  Schematic of p-doped quantum dot. 

 
 

The energy separation of the hole states in QDs is less than the phonon energy, 

which induces thermal broadening of the hole distribution and temperature-sensitive op-

eration. P-doping of the quantum dots [77] can provide excess holes to fill the ground 

state at high temperatures as illustrated in Fig. 1.6. Consequently, both the gain and dif-
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ferential gain will remain high, and deleterious effects such as gain compression due to 

hot carriers and carrier leakage associated with the thermal broadening of injected holes 

are reduced. P-doped QD lasers with remarkably improved performance such as large 

modulation frequency and high T0 has been demonstrated [78] [79] [80]. P-doping in QDs 

is achieved either by direct doping or modulation doping. Considering the relatively-low 

dot density and the discrete energy levels in QDs, the optimum p-doping levels are ~ 

5.0×1011 cm-2. The excess holes provided by p-doping can occupy the wetting layer states, 

which can severely limit the potential benefits of this technique [81]. Additionally, p-

doping enhances Auger recombination in QDs [80], which increases the threshold current. 

In conclusion, TI and p-doping enable QD lasers with significantly improved per-

formance compared to conventional SCH QD lasers. The current status of self-organized 

QD lasers with figures of merit is listed in Table 1.4. 

Table 1.4: The current status of self-organized QD lasers 
 

Figure 
of merit 

Representative Value References 

Jth 
 

13 A/cm2 (1.2 µm broad-area) 
1.4 mA (1.3 µm, single mode) 

Eliseev et al., IEEE JSTQE 7, 135 (2001) 
Livshits et al., Tech. Phys. Lett. 30, 9 (2004) 

 
T0 

232 K (0-80°C, p-doping) 
363 K (5-60°C TI) 
~∞    (5-65°C, P-doping) 

Shchekin et al., Elec. Lett. 38, 712 (2002) 
Pradhan et al., Elec. Lett. 38, 1449 (2002) 
Mi et al., APL  86, 153109 (2005) 

 
f-3db 

12 GHz (1.3 µm, InGaP cladding) 
22 GHz (tunnel injection) 
25 GHz (1.1 µm p-doping TI) 
11 GHz (1.3 µm p-doping TI) 

Kim et al., IEEE PTL 16, 377 (2004) 
Ghosh et al., APL 81, 305 (2002) 
Fathpour et al., J.Phys.D 38, 2103 (2005) 
Mi et al., APL  86, 153109 (2005) 

 
α-factor 

0.1-0.7 
<0.7 (TI) 
0.15 (TI) 
~0 (p-doped TI) 

Newell et al., IEEE PTL 11, 1527 (1999) 
Fathpour et al., Elec. Lett. 39, 1443 (2003) 
Kondratko et al., APL 83, 4818 (2003) 
Fathpour et al., J. Phys. D 38, 2103 (2005) 

Chirp 
0.1 Å (1.6µm, 2.5GHz modulation) 
<0.2 Å (p-doped TI, 1.3 µm, 2-10 
GHz modulation) 

Saito et al., Elec. Lett. 37, 1293 (2001) 
Fathpour et al., J. Phys. D 38, 2103 (2005) 
 

λ 
0.707 µm  (InAlAs dots) 
1.45 µm    (metamorphic) 
2 µm         (InP based)  

Fafard et al., Science 274, 1350 (1996) 
Mi et al, APL 89, 153109, (2006) 
Qiu et al., APL 84, 263 (2004)  
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1.4.  Overview  

With the goal of achieving on-chip integration of lasers and guided-wave devices on 

silicon substrates for optical interconnects, this thesis work represents one of the first at-

tempts to develop InGaAs/GaAs QD lasers directly grown on silicon and their monolithic 

integration with waveguides and modulators, using MBE metamorphic growth and re-

growth, focused-ion-beam milling, plasma-enhanced-chemical-vapor-deposition 

(PECVD), and silicon membrane transfer technologies. Additionally, as an alternative 

approach, a novel silicon-based random photonic-crystal microcavity light emitter, which 

exhibits enhanced spontaneous emission, has also been explored by using PbSe colloidal 

quantum dots.   

High performance quantum dot lasers directly grown on silicon substrates are de-

scribed in Chapter 2. The use of multiple layers of self-organized InAs/GaAs quantum 

dots as a three-dimensional (3-D) dislocation filter is proposed, and the effectiveness of 

this technique is analyzed by a quasi 3-D model of strain-dislocation interaction. The 

benefits are verified experimentally by cross-section transmission electron microscopy, 

photoluminescence and characterization of In0.5Ga0.5As/GaAs quantum dot SCH lasers on 

silicon. These lasers exhibit improved performance with low threshold current density of 

Jth~900 A/cm2 at 273K, large characteristic temperature (T0 = 278 K) in the temperature 

range of 5 to 85 °C and temperature independency of the output slope efficiency (~ 0.4 

W/A) in the range of 5 to 50 °C. 

Chapter 3 describes the monolithic integration of InGaAs QD lasers with waveguides 

and quantum well (QW) electroabsorption modulators through MBE growth and re-

growth. FIB milling is utilized to create high-quality etched GaAs facets with a reflectiv-
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ity of 28% and coupling groove with coupling coefficient greater than 20%. The inte-

grated modulator exhibits a modulation depth ~100% at 5 V reverse bias.  

Chapter 4 presents the monolithic integration of quantum dot lasers with amorphous 

silicon waveguides fabricated by PECVD. 

A silicon-based random photonic crystal microcavity light emitter with PbSe colloi-

dal quantum dots is described in Chapter 5. Emission with a minimum linewidth of 4 nm 

at 1.5 µm wavelength is observed. Such microscale light sources on silicon can also be 

fabricated or integrated on silicon CMOS chips, which may provide a viable route for 

inter- and intrachip optical interconnects. 

Finally, Chapter 6 concludes this study, and gives suggestions for future work. 
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CHAPTER 2 

 

HIGH-PERFORMANCE InGaAs/GaAs QUANTUM-DOT LASERS ON SILICON 

 
 
 

Compound-semiconductor-based lasers grown directly on silicon substrates will be-

come an important technology option for the realization of on-chip optical interconnects. 

The performance of GaAs- or InP-based devices on silicon can be degraded by the large 

density of propagating dislocations resulting from the large lattice mismatch (>4%). The 

use of multiple layers of self-organized In(Ga,Al)As/GaAs quantum dots as a three-

dimensional dislocation filter to impede the propagation of dislocations and reduce dislo-

cation density in GaAs/Si lattice-mismatched heterostructures has been investigated. The 

effectiveness of this technique and its dependency on quantum dot composition, size, 

areal density and number of dot layers, has been analyzed with a quasi three-dimensional 

model of strain-dislocation interaction. It is found that 10 layers of InAs quantum dots of 

size ~20-30 nm constitute the most effective dislocation filter. This has been verified ex-

perimentally by cross-section transmission electron microscopy, photoluminescence and 

performance characterization of In0.5Ga0.5As/GaAs quantum dot separate confinement 

heterostructure lasers on Si. The lasers exhibit Jth~900 A/cm2 at 273K, large characteris-

tic temperature (T0 = 278 K) in the temperature range of 5–85 °C and their output slope 

efficiency (~ 0.4 W/A) is independent of temperature in the range of 5 to 50 °C. 
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2.1. Introduction 

Most optical components such as waveguides and modulators have been achieved 

using silicon, but the silicon laser is the final frontier. Schemes for optically-pumped sili-

con lasers with Raman amplification [14] [15] and nanostructures [13] have been demon-

strated, but the realization of an electrically injected laser on silicon is still elusive. The 

directly-grown III-V compound-semiconductor laser on silicon is one of promising ap-

proaches. However, III-V compound semiconductors have a large lattice mismatch with 

silicon (> 4%). Additionally, the epitaxial growth of polar material on a non-polar sub-

strate is a challenge. Due to the large lattice mismatch, high-density misfit dislocations 

are formed at the substrate-epitaxial layer interface. These defects eventually propagate 

upward and into the active regions as growth proceeds. Various devices have been dem-

onstrated with such metamorphic layers in heterostructure systems, by using different dis-

location reduction techniques such as strained-layer superlattices (SLS)[40] [41], thermal 

cycle annealing [42], selective area or patterned growth[43] [44], SiGe graded layers [20], 

AlSb buffer layer [45], and compliant substrates [46], and selective evaporation of dislo-

cated region [82].  

In principle, a strained layer is capable of bending the propagation of dislocations 

[83]. Such bending increases the chance of annihilation of the threading dislocation, or 

their transport to the sample edge, therefore resulting in a reduction of the dislocation 

density [84]. Strain-driven self-organized quantum dots [59] [60] [61], formed in the 

Stranski-Krastanow growth mode, have been very successfully incorporated in the active 

region of devices such as lasers, amplifiers, infrared detectors, and single photon sources. 

The strain field surrounding the three-dimensional islands is much larger than that pro-
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duced by two-dimensional strained layer superlattices. Consequently, dislocations propa-

gating near and under the islands will experience stronger Peach-Koehler forces [85], and 

are expected to be bent more easily. Reduction in defect density due to the presence of 

quantum dots in the GaN material system has been observed and investigated experimen-

tally using etching techniques [86]. However, the mechanism of dislocation filtering by 

the islands has not been elucidated and its effectiveness has not yet been demonstrated in 

real devices. 

The performance characteristics of InGaAs/GaAs quantum dot lasers grown directly 

on silicon without any special dislocation filtering was previously reported by us [87].  In 

the present research, multiple layers of In(Ga, Al)As/GaAs self-organized quantum dots 

as a dislocation filter, in the growth of GaAs-based InGaAs QD lasers on silicon sub-

strates, has been proposed and studied in detail. The QD composition, size, areal density 

and the number of dot layers were optimized with a quasi three-dimensional model based 

on the strain relaxation in mismatched heterostructures. Dislocation bending was con-

firmed by cross-sectional transmission electron microscopy (XTEM) and the effective-

ness of the QD dislocation filters was confirmed by photoluminescence (PL) and per-

formance characterization of the lasers on silicon. The lasers demonstrated substantially 

improved luminescence and vastly reduced threshold currents. Their dynamic characteris-

tics were also comparable to those of QD lasers on GaAs. In what follows, the effective-

ness of dislocation bending is theoretically calculated in Sec 2.2. The experiments, in-

cluding epitaxial growth of the QD laser heterostructures with multiple-layer QD disloca-

tion filters, and their characterization by cross-sectional transmission electron microscopy 
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(XTEM), photoluminescence and performance characteristics are described in Sec.2.3. 

Finally, conclusions are made in Sec.2.4. 

     

2.2.  Quantum Dot Dislocation Filters: Modeling 

 From energy minimization considerations in a unit cell of the growing layer, it can 

be shown that for misfits ~2%, the island mode of growth is preferred [59]. Elastic re-

laxation on the facet edges, renormalization of the surface energy of the facets and inter-

action between neighboring islands via the substrate are the driving forces for self-

organized growth. In general, the islands are coherently strained and dislocation-free, but 

can be partly relaxed. If the islands continue to grow, coherent growth degrades to inco-

herent growth beyond a critical size, with the generation of misfit dislocations. In our 

model and experiment we have considered coherently strained islands smaller than the 

critical size. 

 

     

 
Figure 2.1: Cross-sectional schematic description of the bending of a 60° dislocation by a quan-

tum dot. 
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As shown schematically in Fig. 2.1, we assume that the self-organized islands are 

pyramidal in shape and that a dislocation generated at the lattice mismatched interface 

propagates towards the base of the island. The bending of this dislocation will generate a 

segment of misfit dislocation, which glides below the island. Bending will occur when 

the strain energy released due to the generation of the misfit dislocation, ∆Erel, is equal to 

or greater than  the dislocation self energy, ∆Edis [88] [89], where ∆Erel and ∆Edis are de-

scribed by:        
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Here, L is the length of the misfit dislocation, Gdot (Gbuff) is the shear modulus of dots 

(buffer layer), v is the Poisson ratio (≅ 0.3 for GaAs and related alloys), effb  is the Bur-

ger’s vector component parallel to dot-buffer layer interface, and h(x) is the quantum dot 

height as a function of x. β is the angle between the Burgers vector and the dislocation 

line. r(x) represents an outer cut-off radius of the dislocation strain field, which is usually 

assessed either by the distance to the nearest free space or by the averaged mutual half 

dislocation distance. )/exp(1 pffeff κ−−=  is the effective lattice mismatch between 

the quantum dot and the underlying buffer layer (where 09.0≅κ  from the simulation of 

three dimensional strain-fields with the valence force field model [90]). We assume that 
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the pyramidal quantum dot has a base width W and height H=pW, where p is a geometri-

cal factor. L is assumed to be comparable to W.  

Calculations were done for InAs, In0.5Ga0.5As and In0.6Al0.4As quantum dots on 

GaAs buffer layers. The properties of the different materials used in the calculations are 

listed in Table 1. From the XTEM data, to be shown later, it is evident that pure misfit 

dislocations with line vector 2]011[=l
v

 and Burgers vector a/2[101] are produced 

when dislocation bending takes place. Using Eqs. (2-1) and (2-2), we calculate the bend-

ing area underlying the quantum dot within which a propagating dislocation can be bent, 

i.e., when ∆Erel ≥ ∆Edis. Table 2 lists the bending area ratio for the three types of quantum 

dots, together with the actual sizes and density of these dots when grown under optimal 

conditions of temperature and growth rate by molecular beam epitaxy (MBE). Here, the 

bending area ratio of a single quantum dot is defined as the bending area divided by the 

area of the quantum dot base. Consequently, the bending area ratio of a single layer is 

obtained by taking into account the quantum dot density. The results are also plotted in 

Fig. 2.2. It is apparent that larger dots with a higher dot density are the most suitable as 

dislocation filters.  

 

Table 2.1: Material properties of In0.5Ga0.5As, In0.6Al0.4As and InAs 
 

Parameter GaAs In0.5Ga0.5As In0.6Al0.4As InAs 

a (Å) 

f (%) 

G (GPa) 

5.653 

0 

48.62 

5.856 

3.47 

39.93 

5.896 

4.12 

37.94 

6.058 

6.69 

31.24 
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Figure 2.2: Bending area ratio versus quantum dot base width for InAs, In0.5Ga0.5As, and 

In0.6Al0.4As dots.  

 
 
 

Table 2.2: Bending area ratio of In0.6Al0.4As, In0.5Ga0.5As and InAs quantum dots 
 

Dot density Size Height 

 

p Bending area ratio of 

a single QD 

Bending area ratio of 

a single layer 

Quantum dots 

(cm-2) (nm) (nm)    

In0.6Al0.4As 

In0.5Ga0.5As 

InAs 

2x1011 

5x1010 

2x1010 

9-14 

16-22 

20-30 

3-4 

5-6 

6-7 

1/3 

1/ 3.5 

1/ 4 

~0 

<1% 

80% 

~0 

~0 

10% 

 

As in the case of the multiple strained-layer superlattice, it is expected that a multiple 

quantum dot layer stack will be a more efficient dislocation filter and will enhance the 

bending of propagating dislocations. However, the cumulative strain can become exces-

sive for a large number of dot layers, in which case it will be released by generating sin-

gle-kink and double-kink misfit dislocation loops. The former depends on the depth of 

the buried dot layers and will preferentially occur first due to a lower energy barrier. Us-

ing the excess stress model developed by Tsao and Dodson [91], one can estimate the 
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critical number of quantum dot layers before single-kink dislocations are generated. Ac-

cordingly, the maximum number of dot layers that can be grown is given by [91]:   
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is the accumulated strain. Here, z is the thickness of multiple QD layers, h=H/3 is the ef-

fective height of pyramidal-shaped QD, and hs is the thickness of GaAs spacer layers. In 

calculating the accumulated strain, for simplicity, the quantum dot is assumed equivalent 

to a two-dimensional uniformly strained layer with thickness of h=H/3 and equal strain 

energy per area. The parameter favg is defined as the average misfit between the GaAs 

barrier layer and the quantum dot layer. Since the strain energy per unit area of quantum 

dot layer is 
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while the coherent strain energy of a uniformly strained film is 

2)1()1(2 avgdotela fvvGE −+= , one can express the average misfit favg as 

 ( )1/22/1 )/exp(1 pfWf dotavg κρ −−= , (2-6)

where ρdot is the areal dot density. 

The calculations show that the critical layer number depending on real dot size are 

10~15 for InAs dots, 20~30 for In0.5Ga0.5As dots and 15~35 for In0.6Al0.4As dots, respec-

tively, with 50nm GaAs barrier layers in between [see Fig. 2.3]. 
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Figure 2.3: Calculated critical layer number corresponding to single-kink dislocation loop for 

InAs, In0.5Ga0.5As and In0.6Al0.4As quantum dot multilayers. 
 

 
2.3.  Experiments 

2.3.1.  Molecular Beam Epitaxial Growth and Device Fabrication 

The laser heterostructure, shown in Fig. 2.4, was grown on (001)-oriented Si sub-

strates misoriented 4° toward <111>. A thin (≤2 µm) GaAs buffer layer is first grown by 

metal-organic vapor phase epitaxy (MOVPE). This layer is almost free of anti-phase do-

mains and the dislocation density at its surface is estimated to be (2-5)×107 cm-2. The 

GaAs/AlGaAs/In0.5Ga0.5As QD separate confinement heterostructure laser, with or with-

out p-doping of the quantum dots and incorporating InAs, In0.5Ga0.5As or In0.6Al0.4As 

quantum dot buffer layers for dislocation filtering is grown by MBE. It has been estab-

lished that p-doping of the active quantum dots improves the gain and differential gain 

and reduces the temperature dependence of quantum dot lasers [78][79][80]. The active 

region quantum dot layers, the GaAs layers and the Al0.7Ga0.3As layers were grown at 
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500 °C, 580 °C and 620 °C, respectively. P- and n-type doping were accomplished with 

Be and Si, respectively. The dislocation filter is made up of 10 quantum dot layers sepa-

rated by 500 Å GaAs layers. The growth rate was maintained at 2 Å/s throughout the la-

ser heterostructure. For comparison purposes, identical laser heterostructures were also 

grown on Si and (001) GaAs substrates without the QD buffer layer. The growth condi-

tions for the QD buffer layers are listed in Table 2.3.  In both InGaAs quantum dot active 

layers and quantum dot buffer layers, the GaAs spacer layers are grown at 580 °C. This 

high-temperature spacer layer can minimize the generation of dislocations in quantum dot 

layers [87][92]. Some tips for the design of typical SCH lasers can be found in Appendix 

C. 

      

Figure 2.4: Schematic of self-organized In0.5Ga0.5As quantum dot laser heterostructures grown 

on Si substrates with the dislocation filter consisting of N quantum dot layers (N=0, 

5, 10 and 15).  

QD dislocation 
filter 

Active  
region 

GaAs 

Si substrate 

GaAs:Si 0.8 µm 

Al 0.7Ga 0.3 As:Si  1.0  µm 

× 3 

GaAs 500 Å 

GaAs 800 Å 

Al 0.7 Ga 0.3 As:Be 1.0  µm 
GaAs 450 Å 

GaAs:Be 0.2 µm 

GaAs 18 Å 

GaAs 18 Å 

GaAs 350 Å 

× N 

2 µm  
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Table 2.3: Quantum dot lasers on Si with different growth conditions and structures 
 

Laser InAs QD buffer Active region 

1 

2 

3 

4 

5 

w/o 

10-layers, grown @460°C 

10-layers, grown @510°C 

15-layers, grown @510°C 

10-layers, grown @510°C 

SCH 

SCH 

SCH 

SCH 

SCH with p-doping 

 

 

2.3.2.  Cross-Sectional Transmission Electron Microscopy (XTEM) 

Transmission electron microscopy (TEM) could be the most convincing evidence to 

investigate the effectiveness of dislocation filters. XTEM measurements were made to 

study the propagation of dislocations in the 10-layer InAs QD buffer region of the laser 

heterostructure on Si. Images of dislocations were recorded under various diffraction 

conditions along the (110) axis, specifically for g = ( 022 ), ( 111 ), ( 111 ), ( 004 ), and 

( 311 ) (see Fig. 2.5). According to the g·b=0 invisibility criterion (see Table 2.4), 

GaAs/Si heteroepitaxy generally creates two types of threading dislocations: pure edge 

dislocations with Burger’s vector b=±( 101 ) (labeled as C in Fig. 2.5) and 60° mixed dis-

locations with b=±( 101 ) or ±(101) (labeled as A and B in Fig. 2.5). It is apparent that 

InAs QD buffer layers can efficiently bend 60° mixed dislocations (labeled as B). More 

significantly, pure-edge dislocations (labeled as C), which cannot be blocked by SLS due 

to zero shear force [84], can terminate at the surface of QDs. This is probably because of 

either the formation of a dislocation loop at the QD surface due to stronger and anisot-

ropic stress surrounding the nano-island, or the formation of a dislocation of reverse Bur-
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ger’s vector which annihilates the preexisting dislocation. The detailed termination me-

chanism is not yet well understood. In addition, point defects with tensile (compressive) 

strain tend to be trapped in a localized compressive (tensile) strain region beneath the 

quantum dot due to minimization of the local strain energy. This also improves the qual-

ity of subsequent epitaxial layers.  

 

Table 2.4: Dislocation type and g·b value 
 

        b 
   g 110  101  011  101  101 110  

111  0 1 1 0 0 -1 
004  0 0 1 -1 1 -1 

311  0 -1 1 -1 1 -1 
111  0 -1 0 -1 1 0 
133  0 -1 -1 -1 1 1 
022  0 -1 -1 -1 1 1 

 
Note: Dislocation A and B with b=±( 101 ) or ±(101) are mixed dislocation; Dislocation 
C with b=±( 101 ) is edge dislocation. 
 
 

The significant suppress of dislocation propagation by the QD dislocation filters and 

GaAs buffer can be clearly shown in the XTEM image of dislocations near the GaAs-Si in-

terface and the active region, as shown in Fig. 2.6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



35 

 
 

 
 
 
 
 
 
 

 
 
 
 

                                                                      

 
 
 
 
 
 
 
 
 
 
 
                                                                                               
 
 
 
 

 

 

 

                                                                                                 

Figure 2.5: Electron diffraction pattern (a), and cross-sectional transmission electron micros-

copy image of dislocation propagation in the 10-layer InAs quantum dots buffer 

layer with various diffraction conditions: (b) g=( 022 ), (c) g=( 111 ), (d) g=( 111 ), 

(e) g=( 004 )  and (f) g=( 311 ). The zone axis is (110). 
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                                    (b)                                                                 (c)          

Figure 2.6: Cross-sectional transmission electron microscopy image of dislocation near the 

GaAs-Si interface (a), and the active region (b) and (c).  
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2.3.3.  Photoluminescence Spectra 

Room temperature photoluminescence from the laser active region quantum dots was 

measured in a small piece of the grown wafers in which the top GaAs p-contact layer and 

most p-cladding were removed by wet etching. Photoluminescence spectra were recorded 

with an argon ion laser, a 0.75 m scanning spectrometer and a liquid nitrogen cooled Ge 

photodiode.  

Figure 2.7(a) depicts room temperature photoluminescence (PL) spectra from the ac-

tive In0.5Ga0.5As QDs in laser heterostructures grown on Si with 10 layers of InAs, 

In0.5Ga0.5As and In0.6Al0.4As quantum dots as the dislocation filters. The highest lumines-

cence intensity is observed in the sample with the InAs quantum dot buffer layer. The 

linewidth (full width at half maximum) is 60 meV, which is comparable to that measured 

in laser heterostructures grown on GaAs substrates. Figure 2.7(b) compares the PLs 

measured in QD laser heterostructures grown on GaAs and Si substrates, and on Si with a 

buffer layer consisting of 10 InAs QD layers. There is a difference of only a factor of 2 in 

the peak PL intensity of the heterostructures grown on GaAs and that on Si with InAs QD 

buffer layer. Figure 2.7(c) shows the optimum PL spectra obtained from a heterostructure 

grown on Si, with 10 QD layers of InAs as the buffer with these QDs grown at a higher 

temperature of 510 °C. In addition to PL from the active In0.5Ga0.5As QDs, PL from the 

InAs QD buffer layer is also clearly observed, in spite of the defects around this layer. It 

is evident that InAs QDs are most effective in improving the luminescent properties of 

the active quantum dot region, suggesting that they might bend propagating dislocations 

more efficiently, because of their large size and higher strain. We next examine the effect 

of varying the number of InAs QD layers in the buffer region. The PL data is also shown 
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in Fig. 2.7(c). It appears that 10 QD layers are optimum. These results are in agreement 

with the calculated results presented earlier.  

 

 

 

 

 

                                                   

 

 

 

                                                                   

              

                                

                                                                   

Figure 2.7: Photoluminescence spectra measured at 300 K from In0.5Ga0.5As quantum dots 

grown on Si: (a) with different quantum dot buffer layers grown at 460°C; (b) with 

and without InAs quantum dot buffer layers, and on GaAs; and (c) by using 5, 10 

and 15-layer InAs quantum dots in the buffer layer grown at 510°C. 
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2.3.4. Laser Characteristics 

Both broad area and ridge waveguide lasers were fabricated by standard photolitho-

graphy, wet and dry etching and contact metallization techniques. Finally, the laser wa-

fers were lapped down to ~80 µm for cleaving along the (110) direction.  

The characteristics of In0.5Ga0.5As/GaAs QD lasers on Si substrate, with and without 

a dislocation filter consisting of multiple quantum dot layers, are next described. Only the 

lasers with InAs QD buffer layers have been characterized, since it is evident that InAlAs 

or InGaAs QD buffer layers do not yield the highest PL intensity from the active 

In0.5Ga0.5As QDs. Our objective is to confirm the optimal number of QD layers in the dis-

location filters that yields the best laser performance. The description of the different la-

sers is listed in Table 2.3.  

The light-current (L-I) characteristics of laser 1, without any QD buffer but imple-

mentation with similar thickness GaAs, shows the threshold current density greater than 

1500 A/cm2. The threshold current density of laser 2, by using 10-layer InAs QDs grown 

on 460 °C, decreases to 1100 A/cm2  [shown in Fig. 2.8(a)].  The measured threshold cur-

rent densities of lasers 3 and 4, with 10 and 15 InAs QD layers in the buffer, are shown in 

Fig. 2.8(b). There is an increase in threshold current beyond 10 QD layers in the buffer, 

in agreement with calculated results. The lowest threshold current density of 900 A/cm2 

is measured in laser 3, in which the 10-layer QD buffer is grown at 510 °C to enhance the 

dot size. The temperature dependence of the threshold current and the slope efficiency of 

laser 1(no QD buffer) and laser 5 (10 QD layer buffer and p-doping of dots) are shown in 

Figs. 2.9(a) and (b), respectively. The temperature dependence of Jth is characterized by 

the empirical equation )/exp()0()( 0TTJTJ thth = . As expected, p-doping increases T0, 
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but also increase the threshold current because of increased Auger recombination [80]. 

On the other hand, T0 is extremely high in the temperature range of 5–85 °C and the out-

put slope efficiency (~ 0.4 W/A) is independent of temperature in the range of 5–50 °C. 

These are extremely desirable attributes for practical applications. 
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Figure 2.8: Light-current characteristics under pulsed mode (1% duty cycle of 100 µs) of: (a) 

laser 2 (spectrum in inset), and (b) lasers 3 and 4.  
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Figure 2.9: Threshold current and slope efficiency versus temperature under pulsed mode (1% 

duty cycle of 100 µs) of: (a) laser 1 and (b) laser 5.  
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2.4.  Conclusion 

 In conclusion, we have demonstrated that multiple layers of self-organized quantum 

dots can act as an effective dislocation filter at the Si/GaAs interface and can substan-

tially improve the performance characteristics of GaAs-based In(Ga)As QD lasers. Re-

sults obtained from analysis with a quasi three-dimensional model of strain-dislocation 

interaction and from measured characteristics of In0.5Ga0.5As/GaAs quantum dot lasers 

grown on the GaAs/Si interface with In(Ga,Al)As/GaAs quantum dot dislocation filters 

confirmed the effectiveness of this technique. It is possible that similar quantum dot dis-

location filters will be equally effective in the growth of devices on other mismatched 

heterostructure systems such as the wide-bandgap nitrides on sapphire and the narrow 

gap HgCdTe on silicon. The technique of using quantum dots to block or terminate dislo-

cation propagation could be extended to other self-organized nanostructures. For example, 

nanovoids [93], formed in-situ during the quantum dot overgrowth process, may serve as 

efficient terminators of dislocations.  
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CHAPTER 3 

 

MONOLITHIC INTEGRATION OF GaAs-BASED LASERS AND MODULA-

TORS ON SILICON SUBSTRATES 

 
 
 

Monolithic integration of the GaAs-based laser, waveguide, and electroabsorption 

modulator on silicon has been demonstrated with InGaAs/GaAs quantum dot and quan-

tum well heterostructures directly grown on silicon by molecular beam epitaxy growth 

and regrowth. Focused-ion-beam etching is utilized to form high quality laser mirrors for 

feedback and grooves for coupling as well as electrical isolation. Based on a transmission 

matrix and generalized beam propagation approach in terms of intensity moments and 

Gouy phase shifts, a self-consistent model has been developed to estimate the reflectivity 

and coupling coefficient of etched grooves and optimize these parameters for real devices. 

High quality focused-ion-beam etched facets with a reflectivity R~0.28 and efficient cou-

pling with coupling coefficients up to 30% for well-defined grooves have been achieved.  

Moreover, monolithic integration of an In0.5Ga0.5As/GaAs quantum dot laser and an 

In0.2Ga0.8As/GaAs quantum well electroabsorption modulator on silicon has been demon-

strated for the first time. The laser-modulator coupling coefficient is larger than 20% and 

the depth of modulation is 45% and 100% at 3V and 5V reverse bias, respectively. 
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3.1.  Introduction  

To achieve information switching and transmission in optoelectronic integrated cir-

cuits on silicon, it is important to develop the monolithic integration of the electrically-

injected laser, waveguide, and modulator. It is envisaged that most of these integrations 

will involve coupled waveguides to guide laser light into guided-wave devices such as 

modulators and amplifiers.  Therefore, it is important to develop a monolithically inte-

grated laser/waveguide coupling system on silicon substrates to achieve high perform-

ance lasing with electrical injection as well as efficient coupling between the laser and 

waveguide. Unfortunately, silicon-based light emitters and electroabsorption modulators 

exhibit very low efficiency due to the indirect energy band structure of silicon. One at-

tractive alternative is the integration of silicon with III-V semiconductors such as GaAs 

and InP and their alloys, with which high-performance lasing as well as efficient elec-

troabsorption modulation based on the quantum-confined Stark effect (QCSE) in quan-

tum well (QW) structures can be realized [23] [94]. Reasonably high-performance In-

GaAs/GaAs QD lasers grown directly on silicon have also been demonstrated [21], as 

discussed in Chapter 2. Although strong QCSE can be ideally realized in QDs [95], the 

low density of In(Ga)As/GaAs self-organized QDs and non-uniformity of dot size make 

such quantum dots inferior to quantum wells for the application in electroabsorption 

modulators.  

This thesis work first conducted theoretical examination and experimental investiga-

tion of a monolithically integrated laser-waveguide device fabricated with the same In-

GaAs/GaAs quantum dot (QD) heterostructures grown on silicon by solid-source molecu-

lar beam epitaxy (MBE). Focused-ion-beam (FIB) etching was utilized to form high qual-
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ity facets for laser cavity feedback and grooves for coupling as well as electrical isolation 

between the laser and waveguide. A theoretical model, based on the transmission matrix 

and generalized laser beam propagation approach, has been developed to analyze the de-

pendence of laser-waveguide coupling on etched facet reflectivity, groove width and laser 

beam quality, and was applied to optimize the device design. The model, which is not 

limited to a Gaussian beam, more accurately describes the coupling behavior of an edge- 

emitting laser groove-coupled with another guided-wave section. In the development of 

this novel coupling model for coupled-cavities, the physical origin of Gouy phase shifts 

has been revisited (see Appendix D). The dependence of laser-waveguide coupling on the 

etched groove width and injection current has been characterized and compared to simu-

lations. It is observed that high-quality FIB etched facets has reflectivity R~0.28 (compa-

rable to R~0.31 for cleaved GaAs facets), which produce laser performance comparable 

to those with cleaved facets. Efficient coupling with coefficients up to 30% for well de-

fined grooves has been achieved in our integrated laser/waveguide on silicon. 

Next, the monolithic integration of an InGaAs/GaAs QD laser and a QCSE-based 

QW electroabsorption modulator directly on silicon, by using molecular beam epitaxial 

(MBE) growth and regrowth and focused-ion-beam (FIB) etching techniques, was im-

plemented and characterized. The scheme allows independent design of the laser and 

modulator active regions and accurate alignment of the absorption band edge of QWs 

with respect to the lasing wavelength of QDs. Such alignment is achieved through opti-

mization of the QD growth conditions and QW thickness and composition, which are 

characterized by photoluminescence (PL) and lasing spectra measurements. The groove-
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coupled laser/modulator on silicon exhibits a coupling coefficient greater than 20% and a 

modulation depth of ~100% at a bias of -5V. 

In what follows, the generalized coupling model is discussed in Sec 3.2. Sec. 3.3 dis-

cusses high-performance FIB-etched-facet QD lasers. The integrated QD laser-

waveguide on silicon is described in Sec.3.4.  The monolithic integration of QD lasers 

and QW electroabsorption modulators on silicon is addressed in Sec.3.5. Finally, Sec.3.6 

gives a conclusion. 

 

3.2.  Groove-Coupled Cavity: Modeling  

A critical issue of the monolithic integration of the edge-emitting laser and planar 

guided-wave devices is the optimization of the optical coupling between both devices in-

volving etched facet quality and groove dimension in a groove-coupling scheme [96]. A 

simplified coupling mode, suitable for Gaussian beams, was presented in terms of trans-

mission matrices [96] [96]. However, the planar edge-emitting laser beam is usually far 

from a Gaussian shape [98]. Here, a novel coupling model based on transmission matri-

ces, generalized beam propagation theory and Gouy phase shifts has been developed. 

This model requires information concerning facet reflectivity, waveguide cavity loss, 

Gouy phase shift, and beam quality characteristics such as waist width w0 and beam-

quality factor M2 [99]. The facet reflectivity and waveguide cavity loss are obtained from 

evaluating the dependence of threshold current density and slope efficiency of light-

current characteristics on laser cavity length, respectively. The beam quality characteris-

tics are obtained from images of the laser near/far field patterns. As we know, Gouy 

phase shift is the additional axial phase shift for any focused or transversely-confined 
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light wave [100] [101] [102]. However, the discussion on physical origin of Gouy phase 

shift is ongoing [103] [104] [105]. In fact, even though this basic phenomenon was ob-

served over 100 years ago, a quantitative characterization of Gouy phase shifts for a gen-

eral beam is still not available until a recent work by Yang and Winful [106]. A detailed 

discussion of this work is included in Appendix D.  

 

 

Figure 3.1:  Schematic description of a laser-waveguide coupled system. 

The schematic of the coupled-cavity integrated laser-waveguide system is shown in 

Fig. 3.1.  Compared to a single cavity in which the facet reflectivity is constant for a cer-

tain wavelength, the effective reflectivity in a coupled cavity also depends on the dimen-

sions of etched grooves, which is determined by the Fabry-Perot cavity modes formed 

inside grooves.  Here we have developed a model based on the transmission matrix and 

generalized beam propagation theory to describe the reflectivities and coupling coeffi-

cients in such groove-coupled structures. Referring to Fig. 3.1 and using transmission 

matrices [96] [97], the optical fields E in the coupled cavity are related by: 
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where r1,2 are the amplitude reflectivities of each etched facets. Amplitude transmission 

functions t(d) and t(2d) account for the phase shift and loss experienced by optical fields 

for a single pass and roundtrip inside the groove, respectively ( d is the groove width 

shown in Fig. 1). These losses arise mainly from beam diffraction and have been esti-

mated using a Gaussian beam propagation method [96]. Here we utilize the generalized 

beam propagation approach, with intensity-moment based beam parameters such as beam 

width and beam quality factor M2, to estimate the diffraction loss. In addition, the phase 

contribution from Gouy phase shifts is taken into account in this generalized model.  

Transmission functions t(d) and t(2d) are given by  

( ) )()(exp)2or  ,( zTziikzddzt GΦ+== ,                                      (3-3) 
 
where k=2π/λ (λ is the wavelength in vacuum). The phase shifts include not only the 

plane wave phase shift kz but also the Gouy phase shift ΦG defined in Eq. (D-20b).   

( ) ( )∑
=

−−=Φ
yxr

rrG zzM
,

12 tan2  

The Gouy phase shift is an extra axial phase shift due to the transverse spatial con-

finement of finite beams, and becomes significant when the groove width is comparable 

to or larger than the Raleigh range. Note that the Raleigh range is typically around the 

order of micrometer for edge-emitting semiconductor lasers due to their small beam-
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waist width perpendicular to the diode junction plane [98]. Unfortunately, the Gouy 

phase shift was omitted in previous analyses for coupled cavities. The function T(z) 

represents the diffraction losses. It can be expressed as the overlap integration of ampli-

tude profiles of a beam at facets experiencing a single pass or a roundtrip in the groove, 

namely 
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In the above derivation, we use for simplicity an equivalent Gaussian amplitude pro-

file for the real beam with the equal beam width wξ(z), which is defined by intensity mo-

ments through  

∫∫
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= ξξξξξξ dEdEzw 2222 )()(4)(                                      (3-5)   

 
and is governed by the following propagation law  [107][108] 

     ( )[ ] 2/12
000 /)(1)( ξξξξξ Rzzzwzzw −+=− .                                           (3-6) 

 
Here z0ξ is the position of beam waist along the x- or y-axis (ξ=x, y). 

This approach, which applies to a general beam (not limited to a Gaussian beam) and 

includes Gouy phase shifts, more accurately describes the behavior of an edge-emitting 

semiconductor laser beam in coupled cavities.  

 

3.2.  QD Lasers with Focused-Ion-Beam Etched Facets 

Facet cleaving provides almost perfect mirrors; however, it tends to be incompatible 

with monolithic integration. An alternative approach is to form Fabry-Perot cavity mir-
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rors by etching facets with reactive ion etching (RIE) [96] [109] and FIB etching [110] 

[111] techniques.  RIE etched facets usually suffer from sidewall roughness and non-

perfectly parallel mirrors. FIB etching has the advantages of direct milling to form fine 

patterns with a high aspect ratio. Here, the FIB etching tool we use is the FEI Nova nano-

lab dualbeam FIB workstation, in the University of Michigan Electron Microbeam Anal-

ysis Laboratory (EMAL). This tool uses gallium as etching source and Pt as protection 

coating source, and is associated with a high-resolution scanning electron microscope 

(SEM). 

 

Figure 3.2: Schematic of self-organized In0.5Ga0.5As quantum dot laser heterostructures grown 

by MBE on Si substrates with GaAs buffer and a dislocation filter consisting of 10-

layer InAs quantum dots. 
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First, the GaAs/AlGaAs/In0.5Ga0.5As QD separate confinement heterostructure, 

shown in Fig. 3.2, is grown by MBE on GaAs and on (001)-oriented Si substrates misori-

ented 4° toward <111>, respectively. For lasers on silicon, as discussed in Chapter 1, a 

thin (≤2 µm) GaAs buffer layer was first grown by metal-organic vapor phase epitaxy 

(MOVPE), and ten layers of InAs QDs are incorporated as an additional dislocation filter 

[21]. The In(Ga)As QD layers, GaAs layers and Al0.7Ga0.3As cladding layers were grown 

at 500°C, 580°C and 620°C, respectively. Then, ridge waveguide lasers were fabricated 

by standard photolithography, wet/dry etching, contact metallization and facet cleaving 

techniques. 

 

 

 

 
 
 

Figure 3.3: Scanning electron microscopy image of the cross-section of an InGaAs/GaAs quan-

tum dot laser with a focused-ion-beam etched facet. 

 
 

We initially used FIB to create facets of InGaAs/GaAs QD lasers grown on GaAs 

substrates. The scanning-electron-microscopy (SEM) image of FIB-etched facets is 

shown in Fig. 3.3.  The measured output light-current characteristics for a laser with 

Cleaved facet Cleaved facet FIB-etched facet
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cleaved facets and a laser with one cleaved and one FIB-etched facet are shown in Fig. 

3.4(a).  The reflectivity of the etched facets can be estimated from a plot of the threshold 

current density Jth versus the reciprocal cavity length L, as shown in Fig. 3.4(b). This re-

lationship is [112] 

( ) ( )2ln)/( −+∞= rLCJJ thth ,                                                (3-7) 

where r is the reflectivity of the cavity facets and the constants Jth(∞) and C are extracted 

from the cleaved facet data shown in Fig. 3.4(b). Then, according to the threshold current 

for a laser with one cleaved and one FIB-etched facet [shown in Fig. 3.4(a)] and Eq. (3-7), 

we can get the reflectivity of the etched facets r~0.53 (R=r2~0.28), which is comparable 

to r=0.556 (R=r2~0.31) for cleaved GaAs facets. 

FIB etching was extended to create facets of the InGaAs/GaAs QD laser grown on Si. 

A SEM image of the FIB-etched facet is shown in Fig. 3.5(a). Figure 3.5(b) displays the 

output light-current (L-I) relation for QD lasers on Si with cleaved facets and FIB-etched 

facets. The performance of both cleaved and FIB-etched facets are comparable, indicat-

ing that FIB etching can provide high quality etched facets for integrated QD la-

ser/waveguide on Si. 
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Figure 3.4: (a) Light-current characteristics of InGaAs quantum dot laser on GaAs with cleaved 

facets, and with one cleaved and one focused-ion-beam etched facet; (b) threshold 

current versus the reciprocal cavity length.  
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Figure 3.5: Scanning electron microscopy image of focused-ion-beam etched facet of an In-

GaAs quantum dot laser on Si; (b) light-current characteristics of lasers with cleaved 

facets and focus-ion-beam etched facets. 
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3.3.  Groove-Coupled Laser/Waveguide on Silicon 

The beam quality, which determines the coupling coefficient as mentioned in the 

model above, is a critical parameter in laser-waveguide coupled systems. From Eq. (3-6), 

the beam quality characteristics such as waist width w0 and beam-quality factor M2 can be 

estimated from near/far field patterns on different planes along the propagation direction. 

The field patterns of QD lasers were captured with an Electrophysics 7290A Micron-

viewer infrared camera and one of which is shown in Fig. 3.6(a). The output beam was 

imaged by a lens and attenuated by neutral density filters to avoid signal saturation in the 

CCD camera. For an elliptic laser beam shape, the beam quality factor M2, beam width w0 

and Rayleigh range zR  have to be determined separately for the x- or y- axis. The meas-

ured beam characteristics are listed in Table 3.1 under a bias current I=1.5Ith (Ith― laser 

threshold current). The ridge waveguide edge-emitting QD laser on silicon exhibits an 

elliptic beam shape with M2~2.2, w0~4.5 µm and zR~28 µm along the x-axis (the direction 

parallel to diode junction plane) and M2~1.5, w0~0.65 µm and zR~1 µm along the y-axis 

(the direction perpendicular to diode junction plane). The Rayleigh range along the y-axis 

is much shorter than that along the x-axis because the former has a smaller beam waist. 

This finding indicates that the beam properties perpendicular to the diode junction plane 

play a dominant role in determining the coupling characteristics. Additionally, it is found 

that the beam quality degrades and becomes more divergent under higher current bias, as 

shown in Figs. 3.6(b) and (c). This phenomenon has been observed by other researchers 

as well [113]. 

 



56 

 
 
 

-200 -100 0 100 200
0

50

100

150

200

250

Y-axis (µm)

Fi
el

d 
in

te
ns

ity
 (a

.u
.)

 

 

1.25Ith
1.5Ith

T=288K

 
 

-200 -100 0 100 200
0

100

200

300

X-axis (µm)

Fi
el

d 
In

te
ns

ity
 (a

.u
.)

 

 

1.25I
th

1.5Ith

T=288K

 
 
 

Figure 3.6: (a) Two-dimensional field pattern of the quantum dot laser beam at injection current 

I=1.5Ith; field intensity along the x-axis (b) and the y-axis (c) under different bias 

conditions.  

(a) 
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(c) 
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Table 3.1: Beam quality characteristics along x-and y-axis with I=1.5Ith 

 
Parameter Parallel (x-axis) Perpendicular (y-axis) 

M2 

W0 (µm) 

zR(µm) 

2.2 

4.5 

28 

1.5 

0.65 

1 

 

FIB is used to etch grooves with different dimensions for electrical isolation and op-

tical coupling between the laser and waveguide. The length of lasers and waveguides are 

400 µm and 250 um, respectively. Additionally, the output facet of the waveguide is anti-

reflection-coated with λ/4-thick Al2O3 film deposited by using e-beam evaporation. The 

refractive index of the film is measured to be 1.578, which yields transmission up to 97% 

by using following relation 
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where, nsub, nair, and nc are the reflective index of substrates, air and anti-reflection coat-

ing.   

The coupling grooves are FIB-etched through the whole QD heterostructures to 

achieve complete electrical isolation between the laser and waveguide. By using the 

model above with measured reflectivity of etched facets as well as measured beam char-

acteristics such as waist width w0 and quality factor M2, we plotted the groove reflectivity 

|S11|2 and coupling coefficient |S12|2 versus groove width d in Fig. 3.7. From the depend-

ence of |S11|2 and |S12|2 on d, we chose the value of d for which a cavity reflectivity |S11|2 

comparable to a single cleaved facet and an acceptable value |S12|2 are obtained simulta-

neously. In our experiments, we etched grooves with d of 1.25 µm, 3.3 µm and 8.9 µm. A 
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SEM image of the QD heterostructure laser/waveguide on Si with a FIB-etched groove 

with d=3.3 µm is shown in Fig. 3.8(a). We measured the L-I light-current characteristics 

from both the laser and coupled waveguide ends, as shown in Fig. 3.8(b). Measurements 

are made under pulsed bias conditions (1% duty cycle of 100 µs). Care is taken to prevent 

scattered light from the coupling groove to reach the detector.  
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Figure 3.7: Reflectivity (|S11|2), calculated and measured coupling coefficient (|S12|2) versus the 

groove width of a laser beam with w0~4.5µm, M2~2.2 along the x-axis, and 

w0~0.65µm, M2~1.5 along the y-axis. 

 

  

Using the experimental data and referring to Fig. 3.1, the coupling coefficient is cal-
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Here P1 is the output power from the laser end, P2 the output power from the waveguide 

end. t1 is the transmittance of cleave facet, t3 is the transmittance of AR coating.     

t2=exp[(ik-α/2)Lw], and Lw is the waveguide length. α~10±2 cm-1 is the cavity loss of QD 

heterostructure waveguides. This value is estimated from the dependence of the slope ef-

ficiency ∆P/∆I of the L-I characteristics on laser cavity length L [112], namely, 

( ) 12 )/1ln( −+∝∆∆ rLIP α  where r=0.556 is the reflectivity of GaAs facets. The experimental 

coupling coefficients |S12|2 measured for different current bias and groove width are listed 

in Table 3.2. These results are consistent with the simulated results as shown in Fig. 3.7. 

It is observed that the coupling effect degrades with higher bias and wider groove. As 

mentioned above, since the beam quality degrades under higher current bias, more light 

spreads out off the groove, which becomes more influential for wider grooves. 

 

Table 3.2: Coupling coefficients with different current bias and groove width 
 

Coupling coefficients |S12|2 (with variation ×10%) Injection current 

I d=1.25µm d=3.3µm d=8.9µm 

1.25Ith 

1.5Ith 

2Ith 

35% 

31% 

27% 

25% 

20% 

17% 

13% 

11% 

9% 
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Figure 3.8: (a) Scanning electron microscopy image of an integrated quantum dot la-

ser/waveguide on silicon; (b) light-current characteristics of an InGaAs quantum dot 

laser and coupled waveguide under pulsed bias mode (1% duty cycle of 100 µs), 

showing output from cleaved facet and from waveguide.  

 

waveguide 
on Si 

QD Laser 
on Si 

groove 
width=3.3µm  

(a) 

(b) 



61 

 
3.4.  Monolithic Integration of Quantum Dot Lasers and Quantum Well Electroab-

sorption Modulators on Silicon 

 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
Figure 3.9: Schematic of an integrated quantum dot laser and quantum well modulator on sili-

con with a GaAs buffer layer and a dislocation filter consisting of 10-layers of InAs 

quantum dots: (a) groove-coupled cavities and (b) heterostructure, grown by mo-

lecular beam epitaxy (drawing is not to scale).  
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The groove coupled laser-modulator heterostructure is schematically shown in Fig. 

3.9. The laser heterostructure is grown by MBE following the same procedure as dis-

cussed in Chap.1. Then, the wafer consisting of the laser heterostructure is patterned and 

etched to create trench where the modulator heterostructure is to be regrown. Most mate-

rial within defined regions is etched by Cl2/Ar inductively coupled plasma (ICP) dry 

etching which can get vertical profile of trenches. Then, BHF wet etching is use to selec-

tively remove the rest thin layer of Al0.7Ga0.3As n-cladding (~0.1-0.2 µm), and stop at the 

top surface of GaAs n-contact layer. Before MBE regrowth, 0.2 µm-thick SiOx is depos-

ited, by PECVD, as a protection layer, and then is repattern and etch to open the defined 

trenches. The p-i(MQW)-n QCSE modulator heterostructure with seven  

In0.2Ga0.8As/GaAs QWs in the active region is regrown by MBE in the patterned grooves. 

It is important to note that the depth of the grooves and the total thickness of the modula-

tor heterostructure are carefully adjusted such that the QD and QW active regions of the 

laser and modulator, respectively, are closely aligned. For an ideal QCSE modulator, the 

best modulation results are obtained when the incident photon energy is ~15-20 meV be-

low the excitonic absorption peak of the QWs at zero applied bias. With the application 

of an appropriate transverse bias, the absorption edge is red shifted, resulting in strong 

absorption [23]. In our experiments, the QW thickness and composition are tuned by 

measuring the PL emission of the QD and QW materials shown in Fig. 3.10(a), noting 

that the excitonic absorption edge and PL peak of the QW are very close for negligible 

Stokes shift. It may also be noted that QD lasers on silicon generally lase from the first 

excited states of the dots due to a relative large cavity loss [see Fig. 3.10(b)]. A 15 meV 
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energy difference between QW and QD (first excited state) emission is achieved by 85 Å 

In0.2Ga0.8As QWs with 150 Å GaAs barriers. 

After regrowth of the QW heterostructures, processing of the ridge waveguide cou-

pled laser-modulator is done using standard optical photolithography, wet/dry etching 

and contact metallization techniques. The wafers are thinned down to ~90 µm and the 

laser facet is cleaved in the (110) direction. An anti-reflection (AR) coating consisting of 

λ/4-thick Al2O3 is deposited on the modulator facet by electron beam evaporation. The 

refractive index of the film is measured to be 1.578, which yields a transmission upto 

97%.  Finally, FIB etching is used to create the coupling groove between the laser and 

modulator. The groove also electrically isolates the two devices. In our experiments the 

length of the laser and modulator sections are 400µm and 250um, respectively. A SEM 

image of the fabricated laser-modulator is shown in Fig. 3.11. Taking into account lateral 

growth that takes place during the ~2 µm modulator regrowth step, the groove width 

needs to be ~ 5 µm. Coupling grooves of 5.25 µm width and 5-7 µm deep were etched in 

the devices, which provide a reflectivity comparable to cleaved facets and an acceptable 

value of coupling coefficient simultaneously [referring to Fig. 3.12].  The more detailed 

processing flow and recipe is described in Appendix E. 

The measured light-current characteristics for output from the laser end and the cou-

pled modulator end at zero bias are shown in Fig. 3.14(a). The modulated output, for la-

ser injection current J=2Jth, versus reverse bias is plotted in Fig. 3.14(b). Care is taken to 

prevent scattered light from the coupling groove to reach the detector. The coupling coef-

ficient |S12|2 is greater than 20%. The modulation depth is ~45% for an applied bias of -3 

V and increases to ~100% at a bias of -5 V. We attribute the large bias in the latter case to 
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the quality of the regrowth interface, which may contain interfacial defects. A deeper 

etching and regrowth on the GaAs buffer layer, instead of on the n-contact layer, would 

help to improve the material quality and performance of regrown modulators. 
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Figure 3.10: (a) Room-temperature photoluminescence spectra for the In0.5Ga0.5As quantum dot 

active region, InAs quantum dot buffer layer and multiple In0.2Ga0.8As quantum 

wells on silicon; (b) lasing spectrum for the In0.5Ga0.5As quantum dot laser section of 

a coupled laser-modulator on silicon.  

(a) 

(b) 
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Figure 3.11: A scanning electron microscopy image of the groove-coupled quantum-dot laser and 

quantum-well electroabsorption modulator on silicon.  
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Figure 3.12: Calculated coupling coefficient versus groove width for a laser beam with the beam 

width 0.65 µm and beam quality factor M2~1.5 perpendicular to the junction plane. 

The measured coupling coefficient is for a groove width of 5.25 µm under a laser in-

jection current J=2Jth. 
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Figure 3.13: (a) Light-current characteristics for output from the laser end and the coupled modu-

lator end at zero bias; (b) modulator output versus reverse bias under laser injection 

current J=2Jth. The dimensions of the laser and modulator sections are 400×8 µm2 

and 250×8 µm2, respectively. 

 
 

(a) 

(b) 
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3.5. Conclusion 

In conclusion, a groove-coupled laser/waveguide on silicon implemented with MBE 

grown In(Ga)As/GaAs quantum dot heterostructures and focused-ion-beam etched facets 

has been demonstrated. The efficient coupling between the two devices was verified with 

a model based on transmission matrix, generalized beam propagation theory in terms of 

intensity moments and Gouy phase shifts, and measured characteristics of devices. A 

coupling coefficient up to 30% has been achieved for well-defined grooves.  A mono-

lithically integrated laser and modulator grown and fabricated directly on Si substrate has 

been demonstrated. The laser and modulator have quantum dot and quantum well active 

regions, respectively. Efficient coupling between the laser and modulator sections ≥ 20% 

and a modulation depth of ~100% with a bias of -5 V applied to the modulator section 

has been measured.   
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CHAPTER 4 

 

QUANTUM DOT LASER INTEGRATED WITH HYDROGENATED AMOR-

PHOUS SILICON WAVEGUIDE ON SILICON 

 
 
 

The monolithic integration of epitaxially-grown InGaAs/GaAs self-organized quan-

tum dot lasers with hydrogenated amorphous silicon (a:Si-H) waveguides on silicon sub-

strates is demonstrated. Hydrogenated amorphous silicon waveguides, formed by plasma-

enhanced-chemical-vapor deposition (PECVD), exhibit a propagation loss of ~10 dB/cm 

at the wavelength of 1.05 µm. The laser-waveguide coupling, with coupling coefficient of 

22%, has been achieved through a 3.2 µm-wide groove etched by focused-ion-beam 

(FIB) milling which creates high-quality etched GaAs facets.  

 
4.1.  Introduction 

An important component of silicon photonics is the light guide and associated 

guided-wave devices such as modulators and switches. With the development of micro-

fabrication and silicon-on-insulator (SOI) technologies, reasonably low loss (≤ 3 dB/cm) 

silicon waveguides operating in the wavelength range of 1.3-1.55 µm have been devel-

oped [10] [31] [32]. Similarly, silicon-based modulators, based on quantum-confined 

Stark effect (QCSE) [23], and free-carrier plasma dispersion effect (FCPDE) [22] with 

various geometries such as Mach-Zehnder interferometer [26] [27] and microring resona-

tor [28], have also been developed.  
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While the above developments have been achieved with crystalline silicon and SOI 

technology, hydrogenated amorphous silicon (a:Si-H) may offer benefits in terms of low-

er cost, low temperature processing, as well as other unique characteristics in photonics 

applications [35]. These include refractive index and bandgap tunability dependent on H 

composition, and a desirable thermo-optic effect specifically for low-power and low-

frequency switching. Different from crystalline silicon, amorphous silicon does not have 

a clearly defined band structure and an abrupt band edge. In addition, the dangling bonds 

in a:Si-H can be saturated by H. As a result, a:Si-H exhibits an acceptable absorption loss 

in the wavelength range of 0.95-1.15 µm (while crystalline silicon has much higher loss 

in this range), and certainly a lower absorption loss at longer wavelengths [35]. Moreover, 

a silicon waveguide/modulator technology realized by plasma-enhanced-chemical-vapor 

deposition (PECVD), or similar techniques, will introduce flexibility in design and fabri-

cation that is important for the development of silicon photonics. With this in mind, we 

have investigated the integration of light sources with a:Si-H waveguides, both formed on 

silicon substrates. This thesis work has demonstrated the on-chip integration of In-

GaAs/GaAs self-organized quantum dot (QD) lasers grown directly on silicon with a:Si-

H waveguides formed by PECVD. The waveguides exhibit a propagation loss of ~10 

dB/cm for λ=1.05 µm. The laser-waveguide coupling is achieved through a groove 

etched by focused-ion-beam (FIB) milling. A coupling coefficient is measured to be 22%.  

 

4.2.  Device Growth, Fabrication, and Characteristics 

The groove-coupled edge-emitting QD laser/a:Si-H waveguide is schematically 

shown in Fig. 4.1. The GaAs-AlGaAs-In0.5Ga0.5As QD separate confinement laser het-
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erostructure was grown by molecular beam epitaxy with incorporation of ten layers of 

InAs QDs as a dislocation filter in the GaAs buffer layer [21]. The wafer was patterned 

and then dry etched, using Cl2/Ar inductively coupled plasma (ICP), to delineate the re-

gions where the waveguide is to be deposited. The SiOx/a:Si-H/SiOx multimode 

waveguide was deposited by PECVD at 380 °C. The PECVD processing parameters are 

listed in Table 4.1. Before the deposition of the SiOx upper cladding layer, the transverse 

dimension of the a:Si-H waveguide was defined by ICP dry etching. It is important that 

the depth of the etched trench and the thickness of the waveguide core/cladding are care-

fully adjusted such that the laser active region and waveguide core are closely aligned. 

The groove-coupled laser/waveguide was fabricated by using standard photolithography, 

wet and dry etching, and contact metallization techniques. The wafer substrates were 

lapped down to ~80 µm for optimized cleaving and the integrated laser-waveguide seg-

ments were cleaved along the <110> direction. An antireflection (AR) coating consisting 

of λ/4-thick Al2O3 was deposited on the a:Si-H waveguide output facet by e-beam  

evaporation. The coating has the refractive index of 1.58, which is measured using ellip-

sometry and yields a calculated transmission of 97%.  

 
Table 4.1: PECVD processing parameters for SiOx and a:Si-H 

 
Conditions SiOx a:Si-H 

Temperature (°C) 

Gas and flow (sccm) 

Pressure (Torr) 

Power (W) 

380 

SiH4 : N2O : He=45:1980:250 

2.6 

300 @RF 13.56MHz 

380 

SiH4 : He=45:495 

2.4 

250 @RF 13.56MHz 
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GaAs 450 Å

Groove
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Figure 4.1: Schematic of an integrated quantum dot laser and a:Si-H waveguide on silicon with 

a dislocation filter consisting of 10-layers of InAs quantum dots. 

 
 
 
 

Laser

Waveguide
Coupling 
groove

Laser

Waveguide

 
 
Figure 4.2:  Scanning electron microscopy image of an integrated InGaAs quantum dot la-

ser/a:Si-H waveguide on silicon with the focused-ion-beam etched coupling groove. 
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As discussed in Chapter 3, a critical issue in the groove-coupled edge-emitting laser 

and planar waveguide is optimization of the optical coupling between the two devices, 

which is dependent on the etched facet quality and groove dimension. In comparison with 

other dry etching techniques such as reactive ion etching (RIE) and ICP, FIB has the ad-

vantage of maskless etching and produces smoother surfaces and vertical sidewalls. We 

have utilized FIB to etch GaAs facets with a reflectivity of R~0.28 [114], which is com-

parable to that of a cleaved GaAs facet. In addition to high-quality etched facets, the di-

mension of the etched groove is critical for optimum coupling. We have calculated this 

coupling using a generalized transmission matrix model [114]. The model, which is not 

limited to a Gaussian beam, more accurately describes the coupling behavior of an edge- 

emitting laser groove-coupled with another guided-wave section. In our experiment, the 

length of the laser and a:Si-H waveguide segment are 400 µm and 250 µm, respectively, 

separated by a FIB-etched groove with a width of  3.20 µm. SEM images of the groove-

coupled laser/waveguide are shown in Fig. 4.2. 

The InGaAs/GaAs QD lasers on silicon emit at a wavelength of 1.02 µm [inset of 

Fig. 4(a)]. To determine the propagation loss of the PECVD a:Si-H waveguides at this 

wavelength range, light from a 1.05 µm Nd:glass laser was coupled into and out of the 

waveguide segments using single mode fibers. The output power was measured for wa-

veguide segments of varying length, with λ/4-thick Al2O3 AR coating deposited on the 

facets. From these measurements, the waveguide propagation loss is estimated to be 10 

dB/cm. The light-current (L-I) characteristics from the QD laser and coupled a:Si-H wa-

veguide ends have been measured under pulsed bias (500 µs pulses with 1% duty cycle) 

and the results are shown in Fig. 4(a) and 4(b), respectively. With the measured wave-
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guide loss and L-I characteristics, we have estimated the laser-waveguide coupling using 

the generalized matrix transmission model through the Eq. (3-29) 
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Here, P1 and P2 are the output power from the laser and waveguide ends, respectively. t1 

(t1
2~0.69) is the transmittance of the cleaved GaAs facet and t3 (t3

2~0.97) is the transmit-

tance of the waveguide output facet with AR coating. t2=exp[(ik-α/2)Lw], where α~10 

dB/cm is the a:Si-H waveguide loss and Lw is the waveguide length. The coupling coeffi-

cient |S12|2 measured for the groove width of 3.20 µm is 22% at an injection current of 

J=1.5Jth, which is in good agreement with calculated values.  

Laser-waveguide integration is an important aspect of integrated photonics and has 

been extensively investigated. The main point of this study was to demonstrate laser-

waveguide integration on silicon, for potential application in optical interconnects, with a 

lower cost and CMOS-compatible a:Si-H waveguide technology. In addition, it should be 

noted that the loss of a:Si-H at longer wavelengths is smaller [35] [36], which will gener-

ate interest in the integration of these waveguides with 1.3-1.55 µm QD lasers. Such la-

sers have been demonstrated on GaAs substrates [115], and we are currently in the proc-

ess of realizing them on silicon. 
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 (a) 
 

              
  (b) 

 
 

Figure 4.3:  Light-current characteristics for output from the InGaAs quantum dot laser end (a) 

and the coupled a:Si-H waveguide (b). The inset in (a) is the lasing spectrum. 
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4.3.  Conclusion 

The monolithic integration of an epitaxially-grown quantum dot laser with a 

PECVD-formed a:Si-H waveguide on silicon substrates has been demonstrated for the 

first time. The two devices are coupled by a FIB-etched groove and the coupling coeffi-

cient is estimated to be 22%. Waveguide loss could be decreased by optimizing PECVD 

processing and waveguide fabrication. This technology can be extended to integrate the 

laser with other passive or quasi-active a:Si-H guided-wave devices on silicon.  
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CHAPTER 5 

 

ENHANCED PHOTOLUMINESCENCE FROM PbSe COLLOIDAL QUANTUM 

DOTS IN SILICON RANDOM PHOTONIC CRYSTAL MICROCAVITIES  

 

 
The experimental observation of coherent emission from high-Q silicon-based ran-

dom photonic crystal microcavities embedded with PbSe colloidal quantum dots has been 

investigated. The emission is optically excited at room temperature by a continuous-wave 

Ti-Sapphire laser and exhibits randomly-distributed localized modes with a minimum 

spectral linewidth of 4 nm at 1.5 µm wavelength. 

 
 

5.1.  Introduction 

 There have been a host of attempts to extract light from silicon and to demonstrate 

lasing with radiative host materials embedded within or deposited on top of silicon. Na-

nostructured silicon emitters with various degrees of quantum confinement have also 

been investigated for light emission, with limited success [12] [13]. The two essential re-

quirements for coherent emission are a gain medium with a high quantum efficiency and 

a resonant cavity with a high quality factor. A promising approach is to use chemically 

synthesized nanocrystals, such as Pb(S, Se) and CdSe colloidal quantum dots (QDs) as 

gain media, embedded in a high-Q silicon-based microcavity. Enhanced luminescence 
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has been demonstrated with Pb(S, Se) QDs embedded in Si photonic crystal (PC) cavities 

[116] [117]. The colloidal QDs, which exhibit size-tunable luminescence with high effi-

ciency (> 80%) in the near-infrared (IR) range, represent a technologically interesting 

choice of gain medium for potential applications in silicon photonics [118] [119].  

Photonic crystals are periodic dielectric structures, usually two-dimensional (2D) ar-

rays of air-holes in high-refractive-index membranes, that selectively inhibit light propa-

gation in certain bands of frequencies [120]. Destroying the periodicity of the lattice in-

troduces small defects which act as optical cavities with high Qs wherein light can be lo-

calized by total internal and Bragg reflections. Q-factors of the order of 106 have been 

measured in engineered microcavities in 2D PCs [121]. On the other hand, Topolancik et 

al. have recently investigated and reported a different approach to photon localization in 

PCs, which relies on random structural perturbations introduced uniformly throughout the 

crystal by deliberately changing the shapes and orientations of the lattice elements (air 

holes) [122]. Such random disorder superimposed onto the crystal causes backscattering 

which impedes propagation of Bloch-waves along line-defects defined in the 2D lattice. 

Extended modes that propagate with a low-group-velocity at frequencies approaching the 

mode-edge become spatially confined in sections of the disordered waveguide. This sub-

tle interplay of order and disorder was predicted to give rise to Anderson localization in 

disordered lattices [123]. Incorporation of suitable gain media into these structures could 

enable self-optimized lasing from random nanocavities operating around the guided 

mode’s cutoff ⎯ similar to what has been observed at the photonic band-edge in cres-

cent-deviation disordered PCs [124]. It is worth noting that disordered waveguide struc-
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tures could support self-optimized nanocavity lasers with significantly smaller modal vo-

lumes and lower thresholds than the large-area, disordered PC band-edge lasers [124].  

 This chapter reports an experimental observation of coherent emission from PbSe 

QDs embedded in silicon-based random PC microcavities.  

 

5.2.  Device Fabrication 

  The fabrication of the devices uses a simple scheme of incorporating colloidal PbSe 

QDs into the random PC microcavities. The disordered PCs were fabricated on silicon-

on-insulator substrates using standard electron-beam lithography and reactive ion etching. 

A line-defect waveguide is formed by equally spaced circular holes defined in a hexago-

nal lattice of randomly rotated squares. The top image of the fabricated structure is shown 

in the scanning electron micrograph (SEM) in Fig. 5.1(a). The thickness of the silicon 

slab (h=220 nm), the radius of the defect holes (r=105 nm), and the lattice constant 

(a=470 nm) and the fill factor (~30%) of the bulk PC were chosen so that the cutoff of 

the guided mode aligns spectrally with the photoluminescence (PL) peak of colloidal 

PbSe QDs at 1510 nm. The dispersion of the waveguide in the underlying periodic crystal 

calculated by plane-wave expansion method and the room temperature PL spectrum of 

the dots are shown in Fig. 5.1(b). The superimposed random scatterers which trigger 

mode-edge localization can be viewed as the difference between circles in the underlying 

(ideal) crystal and randomly oriented squares in the disordered crystal.  
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(a) 
                                        

 
  (b)   

 
Figure 5.1: (a) Scanning electron micrograph of the fabricated Si-based two-dimensional mem-

brane disordered photonic crystal nanocavity, (b) calculated dispersion of the defect 

waveguide in ideal crystal  shown in the inset (hollow circles denote odd modes and 

solid circles denote even modes). 
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Figure 5.2: Process and flow chart for colloidal synthesis of PbSe semiconductor nanocrystal 

quantum dots (Courtesy of Jian Xu, Pennsylvania State University). 

 

 PbSe PbO + oleic acide 
   TBPSe 

140-170 °C

Process Flow: 

• Dissolving PbO in hot stearic acid ( 150°C) under argon flow;    

• Addition of coordinating ligands, oleic acid and trioctylphosphine oxide (TOPO), 

at elevated temperature to produce Pb2+ ions in the reaction solution; 

• Initializing nanocrystal nucleation by rapidly injecting Selenide-TBP-dioctylamine 

reagents into the reaction solution;  

• Raising solution temperature (~280-300°C) to promote the growth of highly crys-

talline nanoparticles; 

• Growth is monitored through UV/visible absorption spectroscopy in order to reach 

the desired NQD size; 

• Final NQD products are separated by centrifugation and decantation. 
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Figure 5.3:  (a) Contour plot of the spatially-resolved spectra of a 150 µm-long disordered wave-

guide. (b) Example of a well-localized, high-Q resonance in the passive random 

photonic crystal microcavities. The probing and collection directions are indicated in 

the inset. 

(a) 

(b) 
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PbSe quantum dots were synthesized using a noncoordinating solvent technique [118] 

[119]. As shown in Fig. 5.2, the synthesis procedure starts with the preparation of a solu-

tion of PbO and oleic aid and the subsequent heating of the solution up to an elevated 

temperature of 160 °C. Rapid injection of selenium-trioctylphosphine reagents (TBPSe) 

into the hot solution induces the nucleation of PbSe and subsequently cooling down the 

reaction temperature to 135 °C allows the nuclei to grow into highly crystalline nanopar-

ticles. The size of PbSe quantum dots can be tailored by carefully controlling the growth 

conditions. The QD growth was monitored using visible/near infrared absorption spec-

troscopy to achieve the desired wavelength emission wavelength around 1.55 µm.  

 

5.3. Measurements and Results 

  The width of the localization band and the positions of random resonators before 

QD deposition were measured with a 1475-1580 nm broadly-tunable laser source which 

was coupled laterally into the waveguide. The vertically scattered light emitted from ran-

dom cavities was collected with a high-resolution objective lens and recorded with either 

a photodiode to obtain vertically-scattered spectra from small sections of the waveguide 

or with an infrared (IR) camera to obtain 2D spatially resolved spectra shown in Fig. 5.3 

(a). The plot shows an approximately 40 nm-broad band filled with confined fields with 

various localization lengths. Note that these are random patterns, i.e. every device has a 

unique spectral signature and both Q-factor and localization position may vary across the 

pattern and from pattern to pattern. Figure 5.3 (b) shows a resolved projected spectrum 

collected from a 5 µm-long section of the disordered PC waveguide. The spectrum exhib-

its a high Q (~ 55,000) resonance near 1512 nm. Such randomly-distributed and localized 
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high-Q resonances are typical for random cavities based on multiple scattering feedbacks 

[125] [126] [127], which will be reflected in the following characterization of active de-

vices as well. 

 

  

 
 
Figure 5.4: A cross section of the photonic crystal showing PbSe quantum dots embedded into 

photonic crystal microcavities. 

 
 

To characterize active devices, colloidal PbSe quantum dots were embedded in the 

nanoscale air-holes comprising the line defects in disordered PCs. To maximize the den-

sity of QDs coupling with the microcavities, the samples were soaked in the PbSe QD 

solution for several hours. The SEM image in Fig. 5.4 shows a cross-section of the PCs 

embedded with PbSe quantum dots. The devices were optically excited at room tempera-

ture with a continuous wave (CW) Ti:sapphire laser operating at 810 nm. Emission from 

the QDs in the microcavities was focused with a high-resolution objective lens with nu-

merical aperture of 0.7. The output spectrum was analyzed with a 0.75 m high-resolution 
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spectrometer and detected with an InGaAs photomultiplier tube using phase lock-in am-

plification. The pump light is blocked by a bandpass filter placed in front of the spec-

trometer. Unlike emission from the conventional, engineered PC microcavities the exact 

position of which is known, the output spectral characteristics for the random microcavi-

ties are sensitive to the location of the excitation. The disordered waveguides were 

probed systematically by scanning the focused pump-beam along the waveguide axis (x) 

as shown schematically in Fig. 5.5 (a).  A strong dependence of excited modes’ spectral 

characteristics on the excitation position was observed. Figure 5.5(b) shows a typical 

emission spectrum collected from a single excitation spot for varying excitation intensi-

ties. At lower pump intensity, the spectrum exhibits a broad spontaneous emission peak. 

Once the pump intensity exceeds a certain threshold, a much narrower emission peak 

emerges (~ 4 nm linewidth). There is a visible shoulder to the peak and hence the line-

width of the main peak might be smaller. It is also possible that multiple random reso-

nances are being excited. The plot of the peak emission intensity versus the pump inten-

sity (L-L), shown in Fig. 5.5(c), exhibits a threshold at ~ 100 µW. Figure 5.5(d) depicts 

the measured abrupt narrowing of the emission linewidth above the pump threshold. The 

data shown in Fig. 5.5 do not indicate lasing, but suggest the onset of coherent emission 

with the existence of strong feedback from random PC microcavities. Such feedback en-

ables photon intensity around the resonance peak to quickly build up over that of the 

spontaneous emission.  
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                        (c)                                                                       (d) 

 

Figure 5.5: (a) Schematic of the active cavity characterization scheme, (b) emission spectra of a 

silicon random photonic crystal microcavity with PbSe quantum dots measured at 

300K at different pump powers, (c) L-L characteristics, and (d) emission peak 

linewidth versus pump powers. 
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The observation of lasing could also be prevented by the low fill factor of the QDs in 

the microcavity and the resulting low modal gain in our experiment. Techniques to en-

hance the QD density are currently being investigated. Another important issue is the lu-

minescence efficiency of the colloidal PbSe dots. It is observed that the efficiency is re-

duced, possibly due to surface contamination and oxidation, when the QDs are dried on 

the silicon PC microcavities. The luminescence efficiency is the highest in a sol-gel form 

or in a polymer matrix solution. It has also been recently demonstrated that PbS/PbSe 

core–shell nanocrystals are immune to degradation during the drying process [119]. The 

use of such dots will significantly enhance the radiative efficiency and the output inten-

sity of the microcavity light sources. These aspects are also being undertaken. 

 

5.4.  Conclusion 

  A silicon-based light emitter has been demonstrated based on high-Q random cavi-

ties in disordered photonic crystal waveguides with embedded colloidal PbSe quantum 

dots. Emission with a minimum linewidth of 4 nm is observed. Such nanoscale light 

sources on silicon, with potential compatibility with complementary metal oxide semi-

conductor chips, could be of interest as optical interconnects in silicon photonics. It is 

possible, by immersing the quantum dots in a conducting polymer matrix, to eventually 

realize electrically injected devices. 
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CHAPTER 6 

 

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 

 

 
 
 
6.1.  Summary of Present Work 

 
The research described in this thesis involved a detailed study of self-organized In-

GaAs/GaAs quantum dot lasers directly grown on silicon substrates and their monolithic 

integration with guided-wave devices such as waveguides and modulators, with potential 

applications in chip-level optical interconnects. 

Quantum dot lasers directly grown on silicon have been demonstrated for the first 

time. A novel dislocation reduction technique using self-organized quantum dots as a dis-

location filter was proposed and its efficiency was analyzed with simulation of quasi-

three-dimensional strain-dislocation interaction and with experiments including transmis-

sion electron microscopy and photoluminescence. Compared to two-dimensional strained 

layer superlattices, the quantum dot dislocation filter demonstrates a higher efficiency of 

blocking both threading dislocations and edge dislocations due to a stronger and anisot-

ropic strain field in and around the nano-sized islands. By incorporating the optimized 

InAs quantum dot dislocation filter in a buffer layer, we have achieved high performance 

quantum dot lasers on silicon with low threshold current density (Jth ~ 900 A/cm2), large 
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small-signal modulation bandwidth of 5.5 GHz at room temperature, a large characteris-

tic temperature (T0 = 278 K) and output slope efficiency of 0.4 W/A in the temperature 

range of 5-50 °C. 

Next, the monolithic integration of the GaAs-based quantum dot laser, waveguide 

and the quantum well electroabsorption modulator on silicon has been demonstrated. Fo-

cused-ion-beam milling has been utilized to produce high-quality etched GaAs facets and 

coupling grooves. The etched facets have the reflectivity of 0.28. It is comparable to the 

reflectivity of 0.31 for cleaved facets, which enables quantum-dot laser comparable per-

formance to those with cleaved facets. The laser-modulator coupling coefficient is greater 

than 20 % depending on the coupling-groove dimension, and the integrated quantum-well 

electroabsorption modulator on silicon exhibits a modulation depth of ~ 100% at 5 V re-

verse bias. In addition, a generalized coupling model taking into account the laser beam 

quality characteristics and Gouy phase shift has been developed. This model is not lim-

ited to a Gaussian light beam and more accurately describes the coupling behavior of an 

edge-emitting laser with a coupled waveguide. It is worthy noting that a quantitative ex-

planation of the physical origin of Gouy phase shifts arising from diffraction effect for a 

general light beam has been deducted for the first time.   

Additionally, the present study has demonstrated laser-waveguide integration on sili-

con using a lower-cost a:Si-H waveguides fabricated by plasma-enhanced-chemical-

vapor deposition (PECVD).  The a:Si-H waveguides exhibit a propagation loss of ~10 

dB/cm for λ=1.05 µm and are expected to have much lower loss in the wavelength range 

of 1.3-1.55 µm. This on-chip integration approach will introduce flexibility in design and 

fabrication, which is important for the development of silicon photonics.  
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Finally, enhanced emission with a minimum linewidth of 4 nm at 1.5 µm wavelength 

has been observed from PbSe colloidal quantum dots embedded in a silicon-based ran-

dom photonic crystal microcavity. Such microscale light sources can also be fabricated or 

integrated on silicon CMOS chips, and will be of interest in the application of optical in-

terconnects.  

 
 
6.2. Suggestions for Future Work 

6.2.1.  Integrated Quantum Dot Light Emitting Devices with Crystalline Silicon Wa-

veguides 

  
As discussed in Chapter 4, a:Si-H waveguides provide more flexibility in design and 

fabrication compared to SOI-based waveguides. However, SOI-based waveguides have 

lower propagation loss, especially in the wavelength range of 1.3~1.55 µm, and they are 

more suitable for electro-optic modulation. Crystalline Si membranes with active devices 

and circuits can be transferred onto other substrates by a lift-off process [128]. This tech-

nology can be extended to achieve low-loss waveguides and electro-optic modulators. 

Such transferred Si membrane waveguides could have the properties of SOI-based wave-

guides in addition to providing more flexibility in chip-scale integration.  
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Figure 6.1:  Light-current characteristics for output from (a) the InGaAs quantum dot LED, and 

(b) the coupled silicon waveguide, the inset is the electroluminescence spectrum. 
 
 

A preliminary experimental study of a QD light emitting device (LED) integrated 

with a transferred Si membrane waveguide has been conducted. Si membranes with a 

thickness of 0.27 µm were detached from commercial SOI substrates and transferred onto 

specified regions of a wafer consisting of InGaAs/GaAs QD laser heterostructures. The 

waveguide cladding is PECVD SiOx. The device fabrication is almost the same as de-

(a) 

(b) 
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scribed above for the integrated laser/waveguide/modulator. Efficient optical coupling 

between the LED and transferred Si waveguide has been achieved, as shown in Fig. 6.1.  

Unfortunately, we did not achieve lasing due to oxygen contamination during MBE 

growth, which was detected later.     

 
 

6.2.2.  Integration of Quantum Dot Lasers with Silicon CMOS Transistors 

The integration of III-V lasers with silicon CMOS transistors is a critical issue in sil-

icon photonics, in terms of compatibility. To date, all III-V lasers directly grown on Si 

utilize offcut Si substrates in order to minimize anti-phase-domain defects resulting from 

the incompatibility of polar-on-nonpolar materials. So the question is whether offcut sili-

con can be accepted by the mature microelectronics industry. A preliminary experiment 

has been conducted to compare the characteristics of MOSEFET fabricated on Si and 

offcut Si substrates. Experiments show that the difference in MOSFET key parameters, 

such as mobility and transconductance, between regular Si (100) and offcut Si diminishes 

when the gate length is less than 1 µm as in Fig.6.2. This is because that the terrain steps 

on the surface of offcut silicon will not affect the device performance if the transistor gate 

size goes down micrometers. Therefore, offcut Si can be used for deep submicron and 

nanometer scale CMOS transistors, facilitating on-chip integration with QD-lasers. An-

other challenge in the processing of integrated III-V/silicon chips is the incompatibility in 

processing temperatures. For example, traditional CMOS process requires 900-1000 ºC 

thermoxidation for SiO2 gate insulator and 600-650 ºC LPCVD for polysilicon gate depo-

sition, which is much higher for GaAs or InP. Therefore, the scheme of “laser-after-gate” 

is preferred for the integration III-V laser and silicon CMOS chips. To introduce more 
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flexibility and better reliability in processing, we are currently investigating the mono-

lithic integration of QD lasers with silicon CMOS transistors on off-cut Si substrates by 

using low-temperature processing with high-k dielectric materials for gate insulators. Re-

cently, semiconductor industries such as Intel and IBM have made breakthroughs in high-

k dielectric materials including HfO2 as gate material, which makes our approach more 

promising. 

 

         

                            (a)                                                                 (b) 
 

Figure 6.2: The measured (a) mobility and (b) transconductance of MOSFETs, with different 

gate length, fabricated on regular Si (100) and offcut Si. (Courtesy of Zhenqiang Ma, 

University of Wisconsin, Madison) 

 
 
 

6.2.3.  WDM Array of GaAs-Based Quantum Dot Lasers 

An optical transmitter based on a WDM laser array with gigabit to terabit capacity 

will play an important role in future optical interconnects for high-speed I/O data trans-
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mission. To our knowledge, such an array has not been demonstrated with QD lasers. 

Quantum dot gain media have several advantages such as high gain and high differential 

gain which yield ultra-low threshold current and support higher modulation bandwidth 

with less chirp effects. Quantum dots also provide the opportunity of tuning the emission 

wavelength by varying the dot size and/or alloy composition during epitaxy of the het-

erostructure. Unfortunately, temperature stability may be a problem.  The intrinsic non-

uniformity of dot size can yield inhomogeneous gain broadening and support multi-

wavelength lasing in a single laser with dramatically-reduced intensity nonuniformity 

[130]. This effect would provide QD lasers another unique application in WDM optical 

communications. Here, A WDM array of QD lasers, with λ~1.3-1.55 µm, low-bias, high 

modulation index, and chirp-free high frequency modulation, is proposed. For this appli-

cation we need single-frequency tunable lasers with emission wavelength ∆λ apart. There 

are several promising ways of achieving this.  

 

 6.2.3.1. Single-Frequency DFB Quantum Dot Laser 

 The distributed feedback (DFB) laser provides a relatively simple technique of real-

izing a single-frequency laser. By varying the grating parameters, the emission wave-

length can be tuned with good precision. To fabricate the WDM array, two steps of epi-

taxy are involved. The first-step MBE growth of the QD laser heterostructure forms the 

lower cladding layer, the active region and a certain thickness of the upper cladding layer. 

The gratings for the multiple lasers of the WDM array will then be defined by e-beam 

writing/UV interference lithography and etching. The grating pitch should be varied cor-

responding to the required ∆λ between different lasers in the array. The remaining upper 
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cladding layer and the p-contact layer of the laser will then be re-grown by MBE.  Stan-

dard fabrication including optical lithography, contact metallization, wet- and dry-etching 

and end-facet AR coating will be used to realize the array.  The processing steps are 

schematically shown in Fig. 6.3. 

 

            
 
    

                           (a)                                                                                  (b) 
 

Figure 6.3: (a) Illustration of DFB laser structure; (b) DFB laser growth and fabrication steps.  
 
 
 
 6.2.3.2. Widely Tunable Laser Arrays 

 The DFB lasers described above are fixed in frequency. It may be desirable that the 

elements of the WDM array are tunable. Wide tunability (50-60 nm tuning range) is 

achievable by active electronic tuning, an example of which is the sampled-grating dis-

tributed Bragg reflector (SGDBR) laser [131]. The proposed laser heterostructure and 

design are schematically shown in Fig. 6.4. The laser operates on the vernier mirror tun-
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ing concept.  The sampled-grating design uses two different multi-element mirrors to cre-

ate two reflection combs with different wavelength spacings.  The laser operates at a 

wavelength where the reflection peak from each mirror coincides.  For electronic tuning, 

one mirror is tuned (by current) with respect to the other.  A fourth phase section is some-

times included to fine-tune the mode location to access exact wavelength values. Tunable 

lasers using QD active regions will provide additional advantages of large and spectrally 

wide gain.   

 
 

     
 
 

Figure 6.4: Illustration of sampled-grating DBR (SGDBR) with integrated SOA. 
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A. DISLOCATION GLIDE VELOCITY IN LATTICE-MISMATCHED SYSTEMS 

The light-emitting device degradation related to dislocation motion is discussed. For 

comparison, we estimate dislocation glide velocities in typical lattice-mismatched mate-

rial systems including GaAs/Si, GaSb/Si, InP/Si, and GaN/sapphire.  

The dislocation glide motion in semiconductors is dominated by the Peierls mecha-

nism. Thus, the dislocation glide velocity Vd  is determined by the applied shear stress 

Γ=τ /τ0  and  the dislocation mobility µ [47], namely, 

                       µΓ=dV ,      where ( )kTEV d−= exp0µ .                                    (C-1) 

Here, Ed is the activation energy of dislocation motion, T is the temperature, V0 ~106 cm/s 

and τ0 ~ 1MPa. In this study, only the order magnitudes of dislocation mobility and ve-

locity are estimated. The Ed of several III-V compounds have been measured by many 

researches, as listed in Table A.1. The applied shear stress (τ ) can be caused by misfit 

strain, thermal strain, and external mechanic strain. Here, we only consider the affect of 

misfit strain, which is determined by Peach-Koehler force equation as follow: 

( ) lb ˆˆ ×⋅= στ tr ,                                                              (C-2) 

where                                    
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

000
00
00

||

||

σ
σ

σt   

is the stress tensor,  and |||| 1
εσ

v
Y
−

=  is the in-plane stress related to Youngs modulus of 

elasticity (Y), Poisson ratio (ν), and in-plane strain (ε||). b̂  and l̂  is the unit vector for 

Burgers vector and dislocation line, respectively. For zinc-blende-structure material such 

as GaAs, GaSb and InP, the 60°-misfit dislocations are the most common. Assume Bur-
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gers vector 2]011[ˆ =b  and line direction 2]110[ˆ =l , the magnitude of misfit stress 

is  

( ) |||| )1(2
2/ˆˆ εσστ

v
Ylb
−

==×⋅= t .                                  (C-3) 

For wurzite-structure GaN, for simplicity, the worst case that the dislocations are in-plane 

(parallel to the interface) is assumed. Thus the magnitude of misfit stress  

|||| )1(
εστ

v
Y
−

==                                                            (C-4) 

According to Eqs.(C-1), (C-3), and (C-4), misfit stress and dislocation glide velocity can 

be estimated, the results are listed in Table C.1 

 

Table C.1: Comparison of dislocation glide velocity of GaAs, InP, GaSb on Si, and GaN on sap-
phire at 300K. 

 

Material  
system Lattice mismatch 

Youngs 
modulus 
(GPa) 

Band 
gap 
(eV) 

Poisson 
ratio 
(v) 

Ed 
(eV) 

τ 
(GPa) 

Vd 
(µm/Year) 

GaAs/Si 

InP/Si 

GaSb/Si 

GaN/Sapphire 

4% 

8%  

12% 

16% (30°-rotation) 

85.9  

61.1 

63.1 

181 

1.424 

1.344 

0.726 

3.2 

0.31 

0.36 

0.31 

0.35 

~1.25 

~1.2 

~1.2 

~2.1 

2.5 

3.8 

5.5 

44.6 

1~5 

10 

15 

1×10-13 

* part of data from “semiconductors on NSM” via http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ 

 

From the calculations, we found the material with wider bandgap and larger Youngs 

modulus prefer to slower dislocation motion. It is note that dislocation/defect glide veloc-

ity in GaAs (GaSb, InP) will be dramatically enhanced by a factor of 108-1010 under cur-

rent injection, for example of 100 A/cm2, due to the recombination enhancement effect of 

dislocation motions. However, such effect is not dominant in GaN-based materials. These 
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can explain why the hybrid GaAs(GaSb, InP)-on-Si light emitting devices (LEDs) suffer 

from fast degradation, while GaN-on-sapphire LEDs has little degradation in spite of 

high densities of dislocations (>108 cm-2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



100 

 
B. CHIRP AND α-PARAMETER IN QUANTUM DOT LASERS 

The main difference of semiconductor lasers from conventional atomic lasers is the 

former has high density of state and refractive index modified by injection carriers.  The 

dependence of refractive index on injection carriers makes semiconductor laser have far 

broader linewidth than atomic laser does.  The linewidth ∆ν of a single longitudinal laser 

mode with output power Pmode from a single facet is given by [112] 

)1(
8

2

mod
0 α

π
νγυ

νν ++∆=∆
e

caspmg

P
VRh

                                          (B-1) 

where 0ν∆  is the power-independent linewidth, gυ  is the group velocity of photons, mγ  

the mirror loss, spR is  the spontaneous emission rate, caV  is the active region volume, and 

the linewidth enhancement factor α  is given by [112] 

ng
nnr

∂∂
∂∂

−=
λ
πα 4  .                                                                   (B-2) 

Here rn  is the the refractive index, n is the injection carrier density, ng ∂∂  is the differ-

ential gain. 

The effect of refractive index modified by injection carriers also induces lasing wa-

velength shifting, i.e. frequency chirping, during the direct modulation of semiconductor 

laser. QD laser has very high differential gain ng ∂∂ , which results in α -parameter of 

nearly zero. These are strongly related to the direct modulation characteristics, and chirp 

effect should be dramatically suppressed in quantum dot lasers. 

Under small signal conditions, the modulation-resonance frequency is [112] 
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where c is the velocity of light, ϕ  is the average photon density,  Γ  is the modal con-

finement factor , and pτ  is the photon cavity lifetime. So high differenetial gain yields 

large modulation-resonance frequency. 
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C. SEMICONDUCTOR LASER DESIGN 

A typical bipolar semiconductor laser is a p-i-n diode. Under forward bias, electrons 

in the conduction band and holes in the valence band are injected into the intrinsic region, 

namely, active region, from the n-doped and p-doped regions, respectively. Then elec-

trons and holes recombine in the active region to convert to photons.  With an optical 

cavity, laser action takes place under the balance between gain and loss. In bulk semicon-

ductor lasers, a double heterostructure (DH) is usually used to confine carriers and pho-

tons in the same region to enhance the interaction of carriers and photons. An important 

performance characteristics of semiconductor lasers is the threshold current which is de-

scribed by Jth=eNthd/τc according to the two-level system approximation [112][132], 

where e is the electron charge, d is the active region thickness, τc is the carrier lifetime, 

and Nth is the threshold density of injected carriers. Therefore, Minimization of the thre-

shold current can be realized by reducing active region dimension and threshold carrier 

density, or increasing carrier lifetime. First, these can be realized through the develop-

ment of quantum-confined heterostructures including quantum wells (QW), quantum 

wires (QWire), and quantum dots (QD) with higher density of state (DOS) and separate 

energy levels, which significantly reduce the threshold carrier density as well as active 

region dimension. Next, especially in QW lasers, the development of band engineering 

reduces effective mass of holes by using strained heterostructures to decouple light holes 

and heavy holes, which enhances gain and differential gain. Also, the development of mi-

crocavity with high Q-factor produces small modal volume and less cavity loss as well as 

squeezes the total spontaneous recombination (increase τc), which even yields threshold-

less lasing. Moreover, the development of various novel laser structures such as the tun-
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neling-injection scheme increases injection efficiency (increase τc) by minimizing non-

radiation loss such as leakage current and thermal effect related to hot carrier effect and 

Auger recombination. It is worthy noting that, in QW and QD lasers, a separate confine-

ment heterostructure (SCH) instead of DH is usually used to efficiently confine both pho-

tons and carriers. In a SCH structure, carriers are confined in a quantum-sized active re-

gion (QW or QD), while photons are confined within a wavelength-scale waveguide re-

gion.  

In addition to threshold current, the improvement of other important performance 

characteristics including modulation bandwidth and output power have also been exten-

sively investigated. Some design schemes are discussed as follows. 

High-speed laser design ⎯⎯ To design a high-speed laser with low chirp, a number 

of parameters have to be optimized. It requires high differential gain and photon density 

(see Appendix B), short carrier transport time, less gain compression, and small device 

size and parasitics, etc [112][132]. The use of lower-dimension quantum-confined het-

erostructures such as QWs, QWires, and especially QDs as active regions will signifi-

cantly enhance differential gain. The introducing of strain in QWs can further increase 

differential gain due to the removal of degeneracy of light and heavy holes. The use of p-

doping has also been demonstrated to enhance differential gain, which is discussed in 

Section 1.3.3. A narrower SCH will enhance the modulation bandwidth due to shorter 

carrier-transport time [132]. On the other hand, hot carrier effect can induce gain com-

pression and consequently degrade the differential gain. In addition, carriers captured or 

preferably occupying in barriers, wetting layer and non-lasing excited states, especially in 

QDs with unique phonon bottleneck effect, can drastically limit the high-speed operation 
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of lasers. These problems can be significantly alleviated by using the tunneling-injection 

scheme, which is discussed in detailed in Section 1.3.3.  

High-power laser design ⎯⎯ The output power of a semiconductor laser is typi-

cally limited by several factors such as multimode operation, catastrophic optical degra-

dation (COD), thermal rollover, and temperature-dependent operation. Multimode-

operation, the onset of higher-order spatial modes, will degrade wall efficiency of the 

output power. It exhibits discontinuities or kinks in light-current characteristics. Multi-

mode operation can also degrade beam quality and enhance the formation of filamenta-

tion under high-level injection. Maintaining single mode in vertical direction can be real-

ized by careful design of ridge-waveguide cavities, while single mode in lateral direction 

can be achieved by using tapered or curved ridge-waveguides [133]. The second limita-

tion, COD, mainly refers to cavity facet damage due to high-optical-power-caused heat-

ing. The critical COD power density is ~1-5 MW/cm2 for an uncoated AlGaAs facet. 

Facet coating and passivation techniques can increase the value to ~10-20 MW/cm2 [132]. 

Broad aperture design is a typical technique to increase output power under a specific 

COD limit. In addition, an Al-free waveguide region is helpful to increase this critical 

COD power density [134]. The third limitation, thermal rollover, is caused by drastic gain 

compression due to thermal heating, current leakage, and hot carrier effects [112][132]. 

The light-current characteristic curve shows that under high injection current the wall ef-

ficiency decreases and eventually the output power saturates and even decreases. Such 

heating effect can be minimized by using uniformly-distributed bonding of contact wires, 

and p-side-down mounting with special thermal-conducting solders such as AuSn, Cu-W, 

or Cu-diamond [135]. The fourth limitation can be described by the dependence of 
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threshold current on temperature, which is characterized by T0 through the relation 

Jth(T)=Jth(0)exp(T/T0). T0 can be significantly increased by using the QD heterostructures 

as active region and p-doping technique.   
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D. REVISITING PHYSICAL ORIGIN OF GOUY PHASE SHIFT 

 In this section, a generalized refractive index that includes diffraction effects has 

been used to show that the Gouy phase shift can be seen as an intensity-averaged optical 

path difference between the generalized eikonal and the geometrical eikonal. This ap-

proach generalizes previous treatments to include the effects of phase distortion and con-

firms the role of transverse spatial confinement in the Gouy shift. In particular, for the 

first time a quantitative formula directly from wave equation has been derived for evalu-

ating the evolution of Gouy phase shift for a general light beam. This formula, under the 

paraxial approximation, provides the estimation of Gouy phase shift from the beam qual-

ity M2 factor, beam size and transmission matrices.  

In 1890 Gouy observed an optical beam passing through its focus experiences an ad-

ditional axial phase shift with respect to a plane wave [100], and further showed this 

phase anomaly exists for acoustic waves as well [101], and in fact, for all waves with 

transverse spatial confinement. The Gouy phase shift plays a significant role in wave 

phenomena, especially in optics. It accounts for the existence of phase advance for Huy-

gens wavelets, the dependence of the resonator frequency on transverse modes in laser 

resonator [102], the formation of trapping force in laser tweezers technology [136]. In 

nonlinear optics the efficiency of high-order harmonic generation with focused beams is 

affected by the Gouy phase shift as well [137]. Recently, it was shown that the Gouy 

phase shift strongly affects the temporal-spatial evolution of focused few-cycle electro-

magnetic pulses [138] [139] [140]. Such phenomena have also been observed in acoustic 

pulses [141]. Because of the importance of the Gouy phase shift, many efforts have been 

made to try to give a clear physical explanation of it based on diffraction theory and topo-
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logical Berry phase, etc.. The complexity of these theories makes explanation far from 

the nature of Gouy phase shift. More detailed comments can be found in Refs. [103] and 

[104]. More intuitive explanations of physical origin of Gouy phase shifts were given in 

terms of the geometrical properties of Gaussian beams [103], the transverse momentum 

spreading [104], and the geometrical quantum effect via the uncertainty principle [105]. 

The latter two propose that the Gouy phase shift arise as a wave is transversely confined. 

Unfortunately, Boyd’s model [103] only yields approximate predictions and fail to prop-

erly describe the Gouy phase shift for cylindrical focusing. Quantum explanation [105] 

appears unconvincing for classical waves, e.g. acoustic waves. Feng and Winful’s work is 

mainly based on a priori definition (see Eq.(3) in Ref.[104]) verified with Hermite-

Gaussian beams, which will be shown here valid only for distortion-free paraxial beams. 

        Here an intrinsic explanation of the origin of Gouy phase shift is given on the basis 

of a generalized eikonal equation and the intensity moments theory. We start with the 

wave equation in ABCD system and strictly prove a general expression of the Gouy 

phase shift for paraxial beams and extend to non-paraxial cases. We have shown the total 

axial phase shift, including the Gouy phase shift and the intensity-averaged phase distor-

tion with respect to the effective spherical wavefront, is determined by the intensity-

averaged optical path difference between the generalized eikonal and the classical geo-

metrical eikonal, owing to the spatial transverse confinement of finite beam itself. We 

have developed an intuitive geometrical picture for the origin of Gouy phase shifts which 

combines diffraction effects and geometrical properties of beams, and clarified the nature 

of Gouy phase shifts with exact quantitative derivations. 
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Consider a monochromatic wave field ),( zrE
v

 with frequency ω , which  satisfies 

vector wave equation [142] 

0222 =+⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅∇+∇ EknEE

vvv

ε
ε .                                                (D-1) 

Here wave number ck ω= , c is the speed of light in free space. 0εε=n  is the refrac-

tive index, and ε (ε0) is the dielectric permittivity (in free space). For most interesting 

cases in which the change of ε over the distance of one wavelength is much less than ε 

itself, the second term in Eq. (D-1) can be ignored and wave equation Eq. (D-1) reduces 

to scalar Helmholtz equation 

0222 =+∇ EknE                                                            (D-2) 

Take ( )),(~exp),(~),( zrLikzrEzrE vvv = , where the amplitude E~  and the eikonal L~  are real. 

By substituting it into Eq. (D-2) and separating the real and imaginary parts, one gets 

[143][144] 
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E
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nL ≡∇+=∇ ,                                                      (D-3) 

( ) 0~~2 =∇∇ ⋅ LE .                                                        (D-4) 

Eq. (D-3) is the generalized-eikonal equation involved both in geometry and wave, which 

reduces into the classical geometrical eikonal equation ( ) 22~ nL =∇  by taking the limit 

∞→k  ( 0→λ ). So Gn  can be viewed as the generalized refractive index for spatial-

confinement optical wave [143] [144]. It is easily found that the Poynting vector 

cLEHES 2~~2][Re 2∇=×= ∗vvv
 (assume permeability 1=µ ) [145], so the direction of 

rays defined as L~∇  follows the energy flow everywhere. Consequently, Eq. (D-4) be-
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comes the continuity equation for stationary electromagnetic field, i.e. 0=⋅∇ S
v

 which 

indicates the conservation of energy flow. Gn  is the effective refractive index that local 

optical field of a finite beam can experience and then follow the familiar laws of ray op-

tics, while the conventional definition of the refractive index holds only for infinite 

beams such as plane wave and spherical wave. Thus we can still trace rays for finite 

beams. These rays do follow the trajectories determined by the eikonal Eq. (D-3) not by 

the classical geometrical eikonal.  

Many practical applications involve paraxial optical systems with the refractive in-

dex )( 22
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Writing field as ( )kzinzrEzrE 00 exp),(),( vv =  and following slowly varying envelope and 

paraxial approximation zEknEzE ∂∂∇<<∂∂ ⊥ 000
22

0
2 2  , [102], we get paraxial wave 

equation 
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2 =−+∂∂+∇⊥ EnnkzEiknE .                                    (D-6) 

And taking the slowly varying amplitude ( )),(exp),(),(0 zrikLzrzrE vvv ψ= , we separate the 

real and imaginary parts to get the eikonal equation and continuity equation, similar as 

Eqs. (D-3) and (D-4) but in the paraxial approximation, namely 
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        A general beam (not necessarily Gaussian) can be characterized in terms of certain 

average quantities with respect to its intensity distribution.  These beam parameters are 

intensity moments of the form dxdyaa ∫= 2ψ   (assuming the field has been normalized) 

and include the beam size 22
, 4 rW yxr == and the effective radius of curvature  

rLrrR yxr ∂∂==
2

,  [107] [108]. Another quantity is the beam quality factor 

rryxr kWM θ0
2

, ==  where 0rW  is the beam size on the waist plane and rθ  is the beam far-

field divergence. To see how the Gouy shift arises for this general beam we take an inten-

sity-average over all the terms in Eq. (D-7), and then use the following relation which is a 

generalization of an invariance proven by Belanger [107] 
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With this relation Eq. (D-7) reduces to 
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For general paraxial beams, we can expand the phase L in a Taylor’s series 
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Here, the zero-order term ( )zGΦ is independent of the transverse variables and the higher-

order terms ( ) ( )∑ ++=Φ n
n

qp
pq

m
ma ycyxcxczyx ,,  can be viewed as phase distortion 

with respect to effective spherical wavefront. Following intensity moments transforma-

tion [107] [108], we have 
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Substituting Eq.(D-11) into (D-10) and using Eq. (D-12), we get 
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Combination of Eqs. (D-13) with (D-9) leads to 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∇−∇=

∂
Φ∂+

∂
Φ∂

⊥
⊥

2

2
2

0

2

0 4
1

r

raG

R
WL

n
k

knzz ψ
ψ .                (D-14) 

Using the continuity equation (D-8) and the intensity moments, we can obtain an equa-

tion of motion for the moment yLyqxxLypxnzyx qpqpqp ∂∂+∂∂=∂∂ −−− 111
0   (p, q 

are integers). Thus Eq. (D-14) reduces to   
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Integrating and using properties of the Fourier transform, we get 
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where xk , yk  are the wave vector components of real amplitude along x, y axes. We see 

that there are two contributions to the axial phase shift.  The first is the Gouy shift and the 

second is an intensity-averaged phase distortion with respect to the effective spherical 

wavefront.  Both shifts are induced by diffraction owing to the transverse spatial con-

finement of finite beams. The transverse Laplacian on the nonuniform field ψψ2⊥∇  in 

the wave equation represents the effect of diffraction which indicates transverse momen-

tum spreading 2
xk , 2

yk . The relation of the Laplacian to the Gouy phase shift has been 

mentioned qualitatively by Siegman [102].  
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By using Eq. (D-7), Eq. (D-16) becomes  
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which reminds one of an expression for optical path difference. Inasmuch as the diffrac-

tion effect induces the phase shift, it is the point to figure out the optical path difference 

between the real trajectory and the geometrical ray trajectory in terms of ndsdSnG − , as 

shown in Fig. D.1. Here dS  is the real path (energy flow) the ray follows as it experi-

ences the refractive index Gn , and ds  is the geometrical optics path the ray follows with-

out consideration of diffraction when the beam propagates a distance of dz . Using ray 

equation under the paraxial approximation and the fact that nk <<∇⊥ ψψ 22 , we 

have ( ) ( )dznnndzknndsdSn GG   221
0

2
0

2 −=∇≈− −
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( ) ( ) dzdzdYdzdXdS ]2/2/1[ 22 ++≈ , ( ) ( ) dzdzdydzdxds ]2/2/1[ 22 ++≈ . As a con-

sequence, Eq. (D-17) is just the paraxial approximation of the following relation  
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The result reveals that the total axial phase shift is just the intensity-averaged optical 

path difference between dSnG  and nds . As shown in Fig. D.1, at a point P, if a ray will 

follow different paths dS and ds  when the beam propagates a distance of dz , there exists 

an optical path difference between the two trajectories. Consider a bundle of rays filling 

the whole beam with the intensity weight, we get the total phase shift 

( )∫ ∫ −
+∞

∞−
ndsdSnyxdxdyk G),(2ψ  within z and dzz + . As mentioned above, the optical 

path difference is a consequence of the diffraction effect of finite beam, which causes 

Gouy phase shift and intensity-averaged phase distortion.  Without distortion, such phase 
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shift appears solely as the Gouy phase shift.  In principle, the Gouy phase shift developed 

by the beam exhibits the propagation behavior of light as a wave phenomenon rather than 

geometrical rays. Far from the focus or aperture, the beam looks more like rays and the 

Gouy phase shift is trivial; while close to focus or aperture, strong transverse confinement 

makes wave effect and Gouy phase shift significant. Such expression in terms of optical 

path difference gives an intuitive picture of the Gouy phase shift as a correction of wave 

propagation to geometrical optics rays.   

 

           

 
Figure D.1: A focused light beam with wavefront and path at point P, where dS is the real ray 

path with the generalized refractive index nG and ds the imaginary geometrical path 

with the classical refractive index n. 

 

 

For distortion-free beam, an analytical expression for Gouy phase shifts in ABCD 

systems is derived from Eq. (D-13) 
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where rW1  and rR1  are the beam size and the radius of the effective wavefront on the in-

put plane, respectively. If the input plane lies on the waist plane, we have 

dS 

ds 

L(z+dz)L(z)

dz

P 
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12 tan2      (in free space),                         (D-20b) 

where the Rayleigh range is 22
0 rrr MWz λπ= .  

In conclusion, from wave equation via the generalized eikonal and intensity mo-

ments, it is confirmed that the physical origin of the Gouy phase shift is the spatial con-

finement of finite beams. The Gouy phase shift can be expressed as the intensity-

averaged optical path difference caused by diffraction effect. Moreover, it can be shown 

that the expression of the phase shift in terms of the optical path difference [Eq. (D-18)] 

is valid or extended for spatial solitons and non-paraxial beams such as stable Gaussian 

modes. Such a geometrical picture based on the wave equation makes it clear that the re-

sult we derived applies not only to electromagnetic waves but also to acoustic wave prop-

agation. 
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E. PROCESS OF QUANTUM DOT LASERS AND THEIR INTEGRATION WITH 
ELECTROABSORPTION MODULATORS ON SILCION 

 

 

               
                                                            (a) 

          
(b) 

Figure E.1 (a) Scematic and (b) processing flow for the integrated quantum dot laser and quantum 

well electroabsorption modulator on silicon 
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Schematic and process flow of the groove-coupled integrated QD laser and QW elec-

troabsorption modulator are illustrated in Fig. E. 1. The following is the recipe for device 

growth and fabrication. 

------------------------------------------------------------------------------------------------------- 

I. Quantum Dot Laser Growth and Quantum Well Modulator Regrowth 

       -------------------------------------------------------------------------------------------------- 

      1. Quantum Dot Laser MBE Growth 

    1.1. Oxide dissolve: 2×1 RHEED pattern occurs at 600 °C  

    1.2. GaAs, n-cladding AlGaAs, and p-cladding AlGaAs growth at 600 °C, 625 °C,        
           610 °C, respectively, growth rate 2 Å/sec 

    1.3. InGaAs QD grown at 500 °C, growth rate ~0.6-0.7 A/sec 
           InAs QD grown at 510 °C, growth rate ~0.15-0.2 A/sec, cover by  
           50 Å In0.15Ga0.85As 

-------------------------------------------------------------------------------------------------- 

2. Trench Patterning and Etching 

     2.1. Lithography 
       Solvent clean: warm Acetone, IPA 
       Dehydrate bake: 2 min @ 130 °C hotplate 
       Resist coating: HMDS, SC1827 @ 4 krpm, 30 sec 
       Pre-bake: 1 min @ 105 °C hotplate 
       Exposure: 12~12.5 sec (vacuum/or hard contact) 
       Resist development:  AZ 351 : DI H2O = 1 : 5, 45 sec;  
                                          DI H2O rinse 3 min 
       De-scum (plasma ashier): 1 min, 80 W, 250mTorr, 17% O2 

      
     2.2. Etching: 

       ICP dry etching (LAM): Cl2 : Ar=2.6 : 11.6 sccm, 2 mTorr,   
                                               TCP power=300 W, Bias power=36 W 
       Wet etching of AlGaAs:  BHF 

    2.3 SiOx protection layer deposition 

            PECVD: 200 °C, PECVD, 0.15-0.2 µm 

    2.4 Open trenches: 
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       Solvent clean: warm Acetone, IPA 
       Dehydrate bake: 2 min @ 130 °C hotplate 
       Resist coating: HMDS, SC1813 @ 4 krpm, 30 sec 
       Pre-bake: 1 min @ 105 °C hotplate 
       Exposure: 6-6.5 sec (vacuum/or hard contact) 
       Resist development: AZ 319, 25-35 sec;  
                                         DI H2O rinse 3 min 
       De-scum (plasma ashier): 1 min, 80 W, 250mTorr, 17% O2 

            Wet etch: BHF, etch rate~100 Å/sec 

-------------------------------------------------------------------------------------------------- 

3. MBE Regrowth of Quantum Well Modulator 

    3.1. Oxide dissolve: 2×1 RHEED pattern occurs at 600 °C  

    3.2. GaAs, n-cladding AlGaAs, and p-cladding AlGaAs growth at 600 °C, 625 °C,        
           610 °C, respectively, growth rate 2 Å/sec 

    3.3. InGaAs QW grown at 500 °C, thickness~70-80 Å 

-------------------------------------------------------------------------------------------------- 

4. Indium Removal 

      4.1. Indium removal:  

             HgCl2/dimethlyformamide solution with ultrasound 

      4.2. Lapping:  

             Backside planarization using 9 µm alumina grit 

4.3. Solvent clean: 

       Xylenes (hot solution ready): >30 min 105 °C hotplate 
       Acetone: 10 min, warm 
       IPA: 10 min 

-------------------------------------------------------------------------------------------------- 

5. Removal of Overgrown GaAs/AlGaAs on the Laser Region Surface 

     5.1. Lithography 
       Solvent clean: warm Acetone, IPA 
       Dehydrate bake: 2 min @ 130 °C hotplate 
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       Resist coating: HMDS, SC1827 @ 4 krpm, 30 sec 
       Pre-bake: 1 min @ 105 °C hotplate 
       Exposure: 12~12.5 sec (vacuum/or hard contact) 
       Resist development: AZ 351 : DI H2O= 1 : 5, 45 sec;  
                                         DI H2O rinse 3 min 
       De-scum (plasma ashier): 1 min, 80 W, 250mTorr, 17% O2 

     5.2. Etching: 

       ICP dry etching (LAM):  Cl2 : Ar=2.6 : 11.6 sccm, 2 mTorr,   
                                                TCP power=300 W, Bias power=36 W 
       Wet etching: H3PO4 : H2O2 : DI H2O= 1 : 1 : 3, etch rate~1000 Å/sec 

------------------------------------------------------------------------------------------------------- 

II. Ridge Wave-Guide Edge-Emitting Laser and Modulator Fabrication 

-------------------------------------------------------------------------------------------------- 

        6. P-Ohmic Metallization: 
            6.1. Oxide removal: BHF 30-60 sec. 

      6.2. Solvent clean: 

       Xylenes > 15 min @ 105 °C hotplate 
       Acetone 10 min, clean with Q-tip 
       IPA 10 min 

      6.3. Lithography 

       Dehydrate bake: 2 min, 130 °C hotplate 
       Resist coating: HMDS, AZ5214 @ 4.0 krpm, 30 sec 
       Pre-bake: 1 min @ 105 °C hotplate 
       Edge removal:  
                    Exposure: 60 sec,  
                    Resist development: MF319, 60 sec; DI H2O rinse 3 min 
       Exposure: 4 sec, vacuum contact. 
       Post-bake: 1 min @ 110~115 °C 
       Image reversal exposure: 90 sec 
       Resist development: MF319, 25~35 sec; DI H2O 3 min 

6.4. De-scum (plasma ashier): 1 min, 80 W, 250mTorr, 17% O2 

 6.5. Oxide removal: BHF 20~30 sec; DI H2O rinse 3 min 

      6.6. Deposition (E-beam evaporator): Pd/Zn/Pd/Au = 100/200/200/3000 Å. 

QD  Active Region

GaAs Buffer 
AlGaAs:Si 
AlGaAs:Be 

GaAs:Si 

GaAs:Be 

Si Substrate 

p-metal 
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      6.7. Lift-off:  

              PRS1000 (hot solution ready): 105 °C hotplate  
              Acetone: 10 min, warm 
              IPA: 10 min 

      6.8. Dektak: measure metal thickness 

--------------------------------------------------------------------------------------------------  

        7. Ridge Mesa Formation: Self Aligned Etching Using P-Metal. 

      7.1. RIE:  

             BCl3/Ar = 11/21 sccm,  

             15 mT, 50W, 75 min (rate ~ 100 Å/min) 

7.2. Dektak: Measure etch-depth 

      7.3. Wet-etching:  

             H3PO4  : H2O2 : DI  water= 1 : 1 : 10 

7.4. Dektak: Stop etching ~ 0.1 µm above the quantum dot active region. 

* Note: This etch step is very critical and can significantly affect the performance; 
typically, etching stop at leaving 0.1 µm up-cladding layer. The dry etch-
ing and wet etching is alternate by repeating 2-3 circles. 

--------------------------------------------------------------------------------------------------  

        8. N-Contact Mesa Formation and N-Ohmic Metallization: 

      8.1. Lithography: 

       Solvent clean: warm Acetone, IPA. 
       Dehydrate bake: 2 min @ 130 °C hotplate 
       Resist coating: HMDS, SC1827 @ 4 krpm, 30 sec. 
       Pre-bake: 1 min @ 105 °C hotplate 
       Exposure: 12~12.5 sec (hard contact). 
       Resist development: AZ 351 : DI = 1 : 5, 45 sec; 
                                         DI H2O rinse 3 min 
       De-scum (plasma ashier): 1 min, 80 W, 250mTorr, 17% O2 

QD  Active Region

GaAs Buffer

AlGaAs:Si 
GaAs:Si 

Si Substrate

p-metal 

GaAs Buffer
Si Substrate

p-metal 
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      8.2. Dektak: 

      8.3. Etching: 

             RIE: BCl3 : Ar = 11 : 21 sccm, 10-15mT, 50 W, 60 min (rate ~ 100 Å/min) 
             Wet-etching: H3PO4 : H2O2 : DI H2O=1 : 1 : 3 (rate ~ 1000 Å/sec) 

       Dektak 
       * Note: Too much dry etch will rough the surface; 
                    Wet etch will create undercut for easy lift-off.  

      8.4. Oxide removal: BHF 25 sec. 

8.5. Deposition: Ni/Ge/Au/Ti/Au = 250/325/650/200/3000 Å  

      8.6. Lift-off:  

              PRS1000 (hot solution ready): 105 °C hotplate  
              Acetone: 10 min, warm 
              IPA: 10 min 

--------------------------------------------------------------------------------------------------  

         9. Contact Annealing: 

       250/410/250 °C: 45/90/45 sec. 
 * Note: Or two-step annealing (to avoid N-metal pill off):  
             P-metal annealing (after p-metal formation): 250/410/250 °C, 45/90/45 

sec; N-metal annealing (after n-metal formation): 250/390/250 °C, 
45/90/45 sec 

--------------------------------------------------------------------------------------------------  

        10. Passivation: 

          10.1. Solvent clean: warm Acetone, IPA 
    10.2. PECVD: SiOx deposition, 1 µm, 200 °C 
      
 * Note: Step 5 (annealing) and step 6 (passivation)  
              can switch in sequence. 

---------------------------------------------------------------------------------------------------  

11. Via Hole (Open Hole for Interconnect): 
 

11.1. Lithography 

GaAs Buffer
Si Substrate

p-metal 

n-metaln-metal 

GaAs Buffer
Si Substrate

p-metal 

n-metaln-metal SiOx 
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       Solvent clean: warm Acetone, IPA. 
       Dehydrate bake: 2 min @ 130 °C hotplate 
       Resist coating: HMDS, SC1827 @ 4 krpm, 30 sec. 
       Pre-bake: 1 min @ 105 °C hotplate 
       Edge removal:  
                    Exposure: 60 sec,  
                    Resist development:  
                    AZ 351 : DI H2O = 1 : 5, 60 sec; DI water 3 min 
       Exposure: 12~12.5 sec (vacuum/or hard contact). 
       Resist development: AZ 351 : DI = 1:5, 45 sec; DI H2O rinse 3 min 
       De-scum (plasma ashier): 1 min, 80 W, 250mT, 17% O2 
  

11.2. Reactive-Ion-Etching (RIE):  
       Semigroup RIE: CF4 : CHF3 = 25 : 25 sccm, 40 mTorr, 180W,  
                          etch rate ~300 Å/min.  
       Etch 15 minutes to obtain etch rate (or using a Dummy sample as a monitor) 
       Over etch 30 % 

          11.3. Strip resist: 
       Hot PRS1000 > 20 min, warm Acetone, IPA 
      Descum: 3 min @ 150W;  
      Or using RIE O2 plasma etching: 100mT, 150W, 3~5 min 

-------------------------------------------------------------------------  

12. Interconnect Metallization: 

    12.1. Lithography: 

       Solvent clean: warm Acetone, IPA. 
       Dehydrate bake: 2 min @ 130 °C hotplate 
       Resist coating: HMDS, SC1827 @ 3.5 krpm, 30 sec. 
       Pre-bake: 1 min @ 105 °C hotplate 
       Chlorobenzene soak: 5 min. 
       Exposure: 13~13.5 sec (vacuum/or hard contact). 
       Resist development: AZ 351 : DI = 1:5, 50 sec; DI H2O rinse 3 min 
       De-scum (plasma ashier): 1 min, 80 W, 250mT, 17% O2 

 
12.2. Metal Deposition: Ti/Al/Ti/Au = 500/8000/500/3000 Å. 
12.3. Liftoff: Hot PRS 1000 overnight, warm Acetone, IPA. 

 --------------------------------------------------------------------------------------------------  
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n-metaln-metal SiOx 

GaAs Buffer 
Si Substrate 

p-metal 

n-metaln-metal SiOx 
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      13. Scribing: 

       Make 2000 µm long, 400~1200 µm wide, 100 µm deep scribe. 

 --------------------------------------------------------------------------------------------------  

14. Lapping 

           14.1. Mounting the sample on a glass plate with Paraffin wax (140~150 °C) 

           14.2. Lap down sample to ~ 120 µm and 80 µm for quantum dot lasers on GaAs 
and Si, respectively.  

     14.3. Solvent clean: 

        Xylenes > 15 min @ 105 °C hotplate 
        Acetone 10 min, clean with Q-tip 
        IPA 10 min 

--------------------------------------------------------------------------------------------------  

    15. Cleaving 

     15.1. Mounting the sample on a metal strip with black wax (150~160 °C) 

     15.2. Bending the strip on the sharp edge 

     15.3. Solvent clean: 

        Xylenes > 30 min @ 105 °C hotplate 
        Acetone 10 min, clean with Q-tip 
        IPA 10 min 

--------------------------------------------------------------------------------------------------  

16. HR/AR coating: 

     16.1. Laser-bar Mounting: 

        Resist coating: HMDS, SC1827 @ 1 krpm, 10 sec  
        Rapidly mount laser bars with facet up 
        Bake 105 °C, 30~60 sec  

     16.2. Dielectric layer coating: 

               HR coating:    MgF2 : ZnSe=λ/4 : λ/4, 3-5 pairs; n MgF~1.37, n ZnSe~2.47 
               AR coating:    Al2O3= λ/4, n Al2O3~1.6   
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     16.3. Resist removal: 

        Acetone 10 min, warm 
        IPA 10 min 
* Note: The bar surface was also coated with a very thin dielectric layer, which 

form a residue line close to mounting facet. 

---------------------------------------------------------------------------------------------------  

17. Focused-Ion-beam (FIB) Etching: 

     17.1. Mounting: silver paint 

     17.2. Focusing: get clear SEM and FIB image 

     17.3. Etching:  

              Initially etching with large power (20 KV, ~2 nA); 
              Polishing the etched facets with small power (20 KV, ~100 pA)                 

     17.4. Solvent clean: 

        Acetone 10 min, warm 
        IPA 10 min 

---------------------------------------------------------------------------------------------------  
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