
Multiattribute Call Markets

by

Kevin M. Lochner

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2008

Doctoral Committee:
Professor Michael P. Wellman, Chair
Professor Jeffrey K. MacKie-Mason
Professor Scott E. Page
Associate Professor Satinder Singh Baveja

c© Kevin M. Lochner

All Rights Reserved

2008

To my parents, Lesly Williams Racine and Kenneth Murray Lochner.

ii

Acknowledgments

This thesis could not have been completed without the support of a number of individuals.

I’d first like to thank my thesis committee—Michael Wellman, Jeffrey MacKie-Mason,

Scott Page, and Satinder Singh Baveja—for contributing their exceptional talents in ensur-

ing the quality of my dissertation.

Certainly the biggest influence on my academic career came from my research advisor,

Michael Wellman. He adeptly filled all the formal roles of an advisor, bringing me into

existing research projects and guiding me through my own research, while teaching me

critical analysis and instilling in me a healthy skepticism. It is perhaps in less expected

ways that Mike stands apart as a truly exceptional academic advisor. Through example,

Mike teaches qualities that are often grouped together and given the broad label of “pro-

fessionalism,” including respect, patience, fairness, diligence, and integrity. It has been an

honor and a privilege to work with Mike while I’ve been at Michigan.

I’d like to thank Cindy Watts and Kelly Cormier for tackling all the administrative

headaches I managed to introduce over the years.

A number of people contributed to the development of AB3D, including Kevin

O’Malley, Shih-Fen Cheng, Julian Schvartzman, and Thede Loder.

I owe a big thanks to Yagil Engel. Although he tries to avoid taking credit, many con-

tributions of my thesis derive from the bid expressiveness paper on which he took the lead.

Daniel Reeves also deserves special mention, as he has been an indispensable resource

throughout my graduate career, playing the role of student mentor from the time that I

joined Mike’s group.

Many friends and family members have helped me along the way, including Lisa, Sarah,

and Eric Lochner, Eliza Dick, Tom Racine, David Dolby, Patrick Jordan, Rahul Suri, Chris

Kiekintveld, Yevgeniy Vorobeychik, Yaacov Rubin, and Andrew McHenry. I’d like to

specifically thank my brother, Eric Lochner, as I doubt I would have made it to graduate

school if not for his support during my undergraduate studies.

Finally, I’d like to thank my mother, Lesly Racine, for eight years of home-cooked

Sunday meals and matinee horror movies.

iii

Table of Contents

Dedication . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Abstract . x

Chapter 1 Introduction . 1
1.1 Auction Notation . 5
1.2 Auction Efficiency . 7
1.3 Valuations. 9
1.4 Auction Design. 10
1.5 Auction Specification and Implementation. 11
1.6 Summary and Motivation. 12
1.7 Overview of Thesis. 13

Chapter 2 AB3D: A Market Game Platform based on Flexible Specification
of Auction Mechanisms . 15
2.1 Architecture. 16
2.2 Auction Specification Framework. 18
2.3 The AB3D Scripting Language. 19

2.3.1 Parameters. 19
2.3.2 Rules . 20
2.3.3 User-Defined Variables. 22
2.3.4 Bid Rules. 23

2.4 Auction Engine Architecture. 23
2.5 Bidding Languages. 26

2.5.1 Divisible Price-Quantity Bids. 26
2.5.2 Indivisible Bids. 26
2.5.3 Multiattribute Bids . 27

2.6 Market Game Specification. 29

iv

2.6.1 AB3D Game Description Language. 30
2.6.2 GDL Operation. 31
2.6.3 Variable Substitution. 31
2.6.4 Value Generation. 32
2.6.5 Iterative Content Generation. 33
2.6.6 Dynamic Game Information. 34
2.6.7 Externally Generated Content. 34

2.7 AB3D-Supported Research. 35
2.8 Conclusion . 36

Chapter 3 Iterative Multiattribute Call Market Algorithms 37
3.1 Bidding Language. 38
3.2 Clearing. 39
3.3 Information Feedback. 41

3.3.1 Example . 42
3.3.2 Information Feedback under theMMP-GMAPDecomposition . . . 43
3.3.3 Link Quote Algorithms for theMMP-GMAPDecomposition. . . . 46

3.4 Conclusion . 55

Chapter 4 Complement-Free Valuations in Multiattribute Auctions 57
4.1 Bidder Valuations. 58

4.1.1 Complement-Free Valuations. 59
4.1.2 Submodular Valuations. 60
4.1.3 Gross Substitutes. 60
4.1.4 Syntactic Valuation Classes. 61
4.1.5 Valuation Hierarchy . 63
4.1.6 Valuations for Multiattribute Auctions. 64

4.2 Allocation with Complement-Free Valuations. 65
4.2.1 Hardness Results. 65
4.2.2 Market-Based Algorithms. 66

4.3 A New Valuation Metric . 67
4.3.1 Gross Substitutes Revisited. 68
4.3.2 Gross Substitutes Violations. 68

4.4 Testing theEGSV-Efficiency Relationship. 70
4.4.1 Valuation Generation. 70
4.4.2 Market Simulation. 71

4.5 Simulation Results. 72
4.6 Conclusion . 74

Chapter 5 Multiattribute Supply Chain Simulation 76
5.1 The Trading Agent Competition Supply Chain Management Game. 78

5.1.1 The Goods. 79
5.1.2 Component Market. 80
5.1.3 PC Market . 81

5.2 Gross Substitutes Violations. 82

v

5.3 TAC SCM Market Efficiency. 83
5.4 Multiattribute Simulation Implementation. 86

5.4.1 Scenario Modifications. 86
5.4.2 AB3D Auction Implementation. 87

5.5 Baseline Manufacturing Agent. 90
5.5.1 Component Procurement. 90
5.5.2 Manufacturing Scheduling and Shipping. 90
5.5.3 Customer RFQ Bidding. 91

5.6 Bidding Strategies. 92
5.6.1 GoBlueOval Random. 93
5.6.2 GoBlueOval Cost. 93
5.6.3 Multiattribute Direct . 93
5.6.4 Iterative Multiattribute Bidding 94

5.7 Simulation Results. 94
5.8 Market-Based Algorithm Convergence. 99

5.8.1 Tatonnement Processes. 100
5.8.2 Bidding Optimization Quantity Limits. 103

5.9 Conclusion . 105

Chapter 6 Summary of Contributions . 108

Bibliography . 111

vi

List of Tables

Table

4.1 Known efficiency approximation factors formgoods achievable in polyno-
mial time, fromDobzinski et al.(2005). 66

5.1 List of TAC SCM components.. 80
5.2 TAC SCM bill of materials.. 80
5.3 Average market efficiency for quarterfinals, semifinals, and finals of TAC

SCM competition, years 2003–2005.. 85

vii

List of Figures

Figure

2.1 AB3D functional architecture.. 17
2.2 A two-phase auction: ascending followed by CDA aftermarket.. 22
2.3 Auction engine architecture.. 24
2.4 The Message Queue sequences bids and potential auction trigger events.. . 25

3.1 GMAPnetwork flow formulation forOXRbids. 41
3.2 Network flow clear time as a function of the number ofXR units using

CPLEX solver. 42
3.3 GMAPformulation with 3 buy offers and 3 sell offers. The optimal solution

is indicated in bold.. 44
3.4 GMAPformulation of Figure3.3with dummy node added for computing a

link quote. 45
3.5 Link quotes computed for a bid quote given theGMAPformulation of Fig-

ure3.3. 46
3.6 GMAPsolution for Figure3.3with a new sell offer at the quoted price.. . . 46
3.7 Network for Example2. Adding a unit of flow fromXRD violates the node

balance constraint ofXR2. 49
3.8 Network for Example3. Adding a unit of flow fromXRD does not induce

any node balance constraints.. 49
3.9 Network for Example4. Adding a unit of flow fromXRD violates the node

balance constraint ofXR3. XR1 andXR2 are both absorbing nodes, with the
minimum-cost path terminating atXR2. 50

3.10 GMAPformulation for Example5. 51
3.11 Optimal flows for Example5. 52
3.12 Residual network for Example5, bid quote formulation. Absorbing nodes

are colored black.. 53
3.13 Residual network for Example5, ask quote formulation. Absorbing nodes

are colored black.. 53
3.14 CPLEX clear time and shortest path quote time for all link quotes.. 54
3.15 Clear and quote times, all methods.. 55

4.1 Relationship of mean efficiency and aGSV for different mechanisms.. . . . 72

viii

4.2 Relationship of mean efficiency and expected aGSV for different mecha-
nisms. 74

5.1 Diagram of TAC SCM supply chain, with suppliers shown at left, manu-
facturing agents in the middle, and customer at right.. 77

5.2 CDF ofEGSVvalues for the TAC SCM bill of materials, using 400 valua-
tions generated with random inventory and costs.. 83

5.3 Relationship between efficiency andEGSVfor the TAC SCM bill of ma-
terials with 95% confidence intervals. Each problem instance used 10
contiguous valuations from those depicted in Figure5.2. 84

5.4 Customer RFQ translated into a multiattribute offer.. 88
5.5 Multiattribute manufacturer offer.. 88
5.6 Example trigger message to clear the AB3D auction.. 89
5.7 CDF of realized efficiencies ofGoBlueOval strategies for baseline (gbo),

randomized (gbor), and cost-bidding (gboc) implementations.. 95
5.8 Mean realized efficiencies with 95% confidence intervals ofGoBlueOval

strategies for baseline (gbo), randomized (gbor), and cost-bidding (gboc)
implementations. Average efficiency achieved in the final round of the
2005 TAC SCM competition is depicted by the dashed horizontal line.. . . 96

5.9 CDF of realized efficiencies for randomizedGoBlueOval (gbor), sealed-
bid multiattribute(mad), and iterative multiattribute (mai) implementations. 97

5.10 Mean realized efficiencies with 95% confidence intervals for randomized
GoBlueOval (gbor), sealed-bid multiattribute(mad), and iterative mul-
tiattribute (mai) implementations. Average efficiency achieved in the final
round of 2005 TAC SCM competition is depicted by the dashed horizontal
line. 98

5.11 Mean efficiency as a function of bidding iteration for various maximum
quantity restrictions on the iterative multiattribute agent bidding optimization.105

5.12 CDF of realized efficiencies for randomizedGoBlueOval (gbor), itera-
tive multiattribute(mai), and optimal subproblem strategy

(
maopt

i

)
. 106

5.13 Mean realized efficiencies with 95% confidence intervals for randomized
GoBlueOval (gbor), iterative multiattribute(mai), and optimal subprob-
lem strategy

(
maopt

i

)
. Average efficiency for final round of 2005 TAC SCM

competition is depicted by the dashed horizontal line.. 107

ix

Abstract

Multiattribute auctionssupport automated negotiation in settings where buyers and sell-

ers have valuations for alternateconfigurationsof a good, as defined by configuration

attributes. Bidders express offers to buy or sell alternate configurations by specifying

configuration-dependent reserve prices, and the auction determines both the traded goods

and transaction prices based on these offers.

While multiattribute auctions have been deployed in single-buyer procurement settings,

the development of double-sided multiattribute auctions—allowing the free participation

of both buyers and sellers—has received little attention from academia or industry. In this

work I develop a multiattributecall market, a specific type of double auction in which bids

accumulate over an extended period of time, before the auction determines trades based

on the aggregate collection of bids. Building on a polynomial-time clearing algorithm, I

contribute an efficient algorithm for information feedback. Supporting the implementation

of market-based algorithms, information feedback support extends the range of settings for

which multiattribute call markets achieve efficiency.

Multiattribute auctions are only one of many auction variants introduced in recent years.

The rapidly growing space of alternative auctions and trading scenarios calls for both a

standardized language with which to specify auctions, as well as a computational test en-

vironment in which to evaluate alternate designs. I present a novel auction description

language and deployment environment that supports the specification of a broad class of

auctions, improving on prior approaches through a scripting language that employs both

static parameter settings and rule-based behavior invocation. The market game platform,

AB3D, can execute these auction scripts to implement multi-auction and multi-agent trad-

ing scenarios.

The efficiency of multiattribute call markets depends crucially on the underlying valu-

ations of participants. I analyze the expected performance limitations of multiattribute call

markets, using existing analytical results where applicable. Addressing a lack of theoretical

guidance in many natural settings, I introduce a computational metric on bidder valuations,

and show a correlation between this metric and the expected efficiency of multiattribute

x

call markets. As further validation, I integrate multiattribute markets into an existing sup-

ply chain simulation, demonstrating efficiency gains over a more conventional negotiation

procedure.

xi

Chapter 1

Introduction

From the millions of daily eBay auctions, promoted with colorful television advertisements,

to the multi-million dollar art auctions, terminating with the oft-heard phrase “going once,

going twice, . . . sold!”, most people have been exposed at one time or another to the Eng-

lish ascending auction. In this variety of auction, participants placebids to buy a good,

sequentially offering to buy a good at a price above the currently highest bid. Aprice quote

is provided in the form of anask price, which guides bidding by informing participants of

the minimum offer at which they would become the highest bidder. The auction terminates

when no participants wish to submit additional bids, at which point the ultimate highest

bidder wins the good, paying his offered price. One can understand from this process

a primary purpose of auctions: to dynamically negotiate the transaction price of a good,

resulting in atradebetween buyer and seller.

This simple auction is only one of myriad varieties found both in practice and in acad-

emic literature. One such variety, which helps to motivate this work, is areverseauction.

In a reverse auction, a single buyer uses an auction to negotiate thepurchaseof a good

from among a group of interested sellers. For example, a buyer interested in purchasing

a new computer could hold an auction, letting participants place bids tosell to him.1 The

“winner” of such an auction would be the seller with the lowest price, who would provide

the buyer with a computer at a price determined by the auction process.

Now consider the case of a buyer who does not have one specific model in mind, but

instead haspreferencesas to which models she favors. In this case, an auction could allow

sellers to bid both a price as well as aconfigurationof the model they could provide at

that price. A single seller may offer several such configurations, each at a configuration-

dependent reserve price. For example, a computer defined by processor speed, memory,

and hard disk capacity would have configurations such as:

{100MHz Processor,1GB of Memory,100GB Hard Disk Drive},
1I attempted to do this in an ad hoc manner on eBay, with mixed results.

1

or

{100MHz Processor,2GB of Memory,200GB Hard Disk Drive}.

The buyer would select the winning seller based on who offers the combination of

both price and configuration that best suits her preferences. Auctions allowing bidders

to specify configuration-dependent prices are designatedmultiattribute auctions, reflecting

the fact that configurations are defined by the underlyingattributesof the goods. The goods

traded in such auctions are therefore designatedmultiattribute goods, in contrast to theho-

mogeneous goodstraded instandardauctions. Multiattribute reverse auctions, as in this

computer example, have been studied in academia (Che, 1997; Branco, 1997; Parkes and

Kalagnanam, 2005; Bichler, 2001; Sunderam and Parkes, 2003; Shachat and Swarthout,

2003; Engel and Wellman, 2007), and have been deployed in industry and government for

procurement purposes.

For goods that are traded in large quantity,double auctionspresent a natural progression

in market structure. Double auctions provide a centralized location (although usually no

longer a singlephysicallocation) where buyers and sellers can meet to trade. Traders may

submit buy or sell bids indicating their desired prices and quantities, while the auction rules

mediate trades among all participants. As in the English auction, double auctions typically

provide anask price, indicating the minimum price of a new successful buy offer given

the current set of submitted bids. To aid in the submission of successful sell bids, double

auctions additionally provide abid price, designating the maximum price for a successful

sell offer. Organizations hosting a group of such auctions are referred to asexchanges. The

stock market presents the most salient example of a double auction, where investors can

offer to buy or sell shares during market hours, or obtain a price quote indicating the prices

at which buy and sell trades could be executed.

In contrast tosingle-sided auctions(i.e., one seller per auction), double auctions present

traders with a simplified bidding process, as they no longer have to manage a set of bids

across independent auctions. Double auctions also offer efficiency advantages by aggre-

gating trade into a single marketplace, determining an optimal set of matches given the the

bids of all traders. Additionally, the price information provided by centralized markets pro-

vides market participants with useful signals to direct purchasing and production decisions.

The prevalence of such organized markets for the exchange of securities and commodities

attests to their accompanying benefits, including the provision of tradeliquidity, i.e., con-

sistent access to a ready group of buyers and sellers during market operation. If a trader

needs to quickly buy or sell a stock in large quantity, she can simply go to the centralized

exchange and be fairly certain of finding a willing trade partner.

In the spirit of financial exchanges, double auction markets for multiattribute goods

2

offer the opportunity for enhanced efficiency, price dissemination, and trade liquidity. Tak-

ing our computer model as an example, it is easy to see why exchanges are not employed

for the trade of multiattribute goods: given that the standard double auction arbitrates only

based on price and quantity, the deployment of an exchange for our simple computer model

would require a separate market for each possible combination of (cpu, memory, hard disk

drive). Assuming only 10 options for each component type, we would need1000active

auctions to support trade in all computer configurations. Lacking sufficient trade volume to

support a double auction for each configuration, trade in multiattribute goods is currently

conducted using one-sided auctions and posted-price markets.

Alternatively, a double auction could admit bids that specify configuration-dependent

reserve prices, i.e.,multiattribute bids, thus unifying all trade into a single auction. Previ-

ous research on such auctions includes work byFink et al.(2004), Gimpel et al.(2005), and

Gong(2002), all of whom consider the matching problem forcontinuousdouble auctions

(CDAs), where deals are struck whenever a pair of compatible bids is identified. Clearing

a multiattribute CDA is much like clearing a one-sided multiattribute auction. Since any

transacting bids are immediately matched and removed from the auction, the problem is to

match a given new bid (say, an offer to buy) with the existing bids on the other (sell) side.

In a call market, in contrast, bids accumulate until designated times (e.g., on a peri-

odic or scheduled basis) at which the auction clears, determining a comprehensive match

over the entire set of bids that best balances buy and sell offers. Because the optimization

is performed over an aggregated scope, call markets often enjoy liquidity and efficiency

advantages over CDAs (Economides and Schwartz, 1995).

For homogeneous goods, a commonly employed and computationally simple type of

call market is theuniform pricedouble auction withdivisible bids, meaning that a single

price is applied to all transactions generated by a market clearing, and bidders must ac-

cept any quantity up to their offered quantity (at a unit price not exceeding their offered

price). For this type of auction, there will exist a range of prices that best balance supply

with demand. Specifically, there will exist a range of prices for which there may be excess

supply (i.e., non-transacting sell bids offered at a price weakly greater than the clearing

price), or excess demand (i.e., non-transacting buy bids offered at a price weakly less than

the clearing price), but not both simultaneously.

For this type of call market the market-balancing price range,[p, p], can be identified

with little more effort than simply sorting the bids based on price (Wurman et al., 2001),

after which the market may be cleared in constant time (or as much time as required to

provide transaction information to bidders). Information feedback in this case is typically

provided as[p, p], as these prices constitute the limiting prices for the sale/purchase of a

3

single unit of the good.

The combination of bid aggregation with multiattribute bidding introduces an algo-

rithmic challenge in designing an auction. With the introduction of multiattribute goods

and bids, simply determining the most efficient trade between any two market participants

becomes a task requiring non-trivial effort, while computing the most efficient trades in

clearing a call market requires solving NP-hard optimization problems for certain classes

of bidding languages (Kalagnanam et al., 2001).

Work on multiattribute call markets with Engel and Wellman (Engel et al., 2006) de-

veloped a polynomial clearing algorithm for a restricted class of multiattribute bidding

languages. Our algorithm supports market operation in asealed bidregime, where agents

submit their bids without receiving any information as to the expected transaction prices

of different configurations. The constraints we impose on the bidding language restrict the

form of expressible multi-unit offers. For example, a participant may have value for up to

10 computers, either Macintosh or PC, but require that they all be of the same type. We

allow participants to bid for 10 computers of a specific type, e.g., 10 Macintoshes, and we

allow bids specifying 10 computers of any type, where the mix of computers is dictated by

the auction, but do not allow bids to express alternative sets, e.g., “10 Macintoshes,$500

each or 10 PCs,$600each.”

Constraints imposed on a bidding language generally restrict the range of biddervalu-

ationsfor which an auction can yield efficiency. In a sealed-bid auction, the hypothetical

bidder in the example above would likely end up choosing between bidding on Macintoshes

or bidding on PCs. Lacking any information as to the market price of computers (given the

current set of bids), the bidder may bid on a computer variety that does not best suit her

combined performance and cost preferences.

Given a bidding language that is insufficiently expressive to accurately reflect under-

lying agent valuations, information feedback may improve the overall efficiency of an

auction. Again, in our simple example, price quotes on Macintosh and PC computer mod-

els could allow our bidder to submit a bid which yields an outcome as efficient as if she

had been able to express her full preferences to the auction.

In this thesis, I extend the aforementioned work on clearing algorithms with polynomial-

time information feedback algorithms, presenting an implemented market design support-

ing clearing and information feedback operations for multiattribute bids. Using both known

theoretical results and simulation-based analysis, I characterize the efficiency limitations of

my market design with respect to bidder valuation classes, exploring the extent to which

information feedback is able to overcome expressive deficiencies of the bidding language.

I also present theAB3D market game platform, developed in support of my empiri-

4

cal evaluation. While motivated to develop this system to support my own research, this

system makes a valuable contribution in its own right, supporting the description, imple-

mentation, and evaluation of a wide variety of auction types through a novel rule-based

auction description language.

Before defining the contributions of this thesis more precisely, in the following sections

I present formal definitions from auction theory that will be used throughout this thesis,

and I frame the auction design and evaluation problem that is central to this work.

1.1 Auction Notation

Auctions mediate the trade of goods among a set of self-interested participants, oragents,

as a function of agent messages, orbids. The goods can be anything from used cars to

service contracts, and often an auction will mediate the trade of multiple goods simultane-

ously. I usex to denote a uniquetypeof good, andX to denote the set of all types of goods.

An allocation, g∈G, is a multiset of such goods, i.e., a set possibly containing more than

one of each type. A multiset of goods can be formally defined as a pairing of an underlying

setof goods, and afunctionmapping that set to the positive integers:

g = (A,Q)|A⊆ X∧Q : A 7→ Z+,

where for anyx∈ A, Q(x) designates thequantityof x in g. I useQg(x) to denote the quan-

tity of goodx in allocationg. For example, given multisetg1 = {x1,x1,x1,x2}, Qg1(x1) = 3

andQg1(x2) = 1.

Bids define one or moreoffersto buy or sell goods. An offer pairs an allocation and a

reserve price, (g, p), whereg∈G andp∈ℜ+. For a buy offer, the reserve price indicates

the maximum payment a buyer is willing to make in exchange for the set of goods compris-

ing allocationg. Similarly, the reserve price of a sell offer defines the minimum payment a

seller is willing to receive to provide allocationg.

A bid, b ∈ B, defines a set of offers (often implicitly) which collectively define an

agent’s reserve price over the space of allocations. Since bids define reserve prices over the

entire space of allocations, it is without loss of generality to assume a single bid for each

bidder. I use the termvaluationto designate any mapping from the space of allocations to

the nonnegative real numbers:v : G 7→ ℜ+, hence a bid defines a valuation. For ease of

explication, I use the functionr : G×B 7→ ℜ+ to indicate the reserve price of a bid for a

given allocation. Thebidding languageof an auction defines the syntax of allowable bids,

thereby defining the spaceB of expressible bids.

5

The majority of formal auction analysis assumes a fixed set of agents. With only

slight loss of generality, I further divide agents into buyersC = {1, . . . , i, . . . ,c} and sellers

S= {c+1, . . . , j, . . . ,c+s}.2
Each bidder has a single bid,bi for buyeri andb j for seller j. Upon receiving a new or

revised bid, the auction determines whether the bid isadmissiblegiven the current auction

state. If admissible, the bid is added to theorder bookof the auction,Ω, comprising the

collection of all active buy and sell bids:

Ω = {Ωb,Ωs}= {{b1,b2, . . . ,bc},{bc+1, . . . ,bc+s}}.

When an auction determines the allocations and payments of participants, the process

is referred to asclearing. In a clear operation, the auction computes aglobal allocation

{Θb,Θs} comprising an assignment of individual allocations and associated payments:

{{θ b
1 ,θ b

2 , . . . ,θ b
c },{θ s

c+1, . . . ,θ
s
c+s}},

whereθ b
i = (gi , pi) defines an allocationgi supplied to buyeri in exchange for paymentpi ,

andθ s
j = (g j , p j) defines an allocation ofg j supplied by sellerj, who receives paymentp j .

A global allocation isfeasibleif the set of goods allocated to buyers is contained in the

set of goods supplied by sellers, and the net payments are non-negative.

feasible(Θb,Θs) ⇐⇒



∀x∈ X, ∑i∈C Qgi(x)≤ ∑ j∈SQg j (x),

∑(gi ,pi)∈Θb pi−∑(g j ,p j)∈Θs p j ≥ 0.

A global allocation isacceptableif individual payments meet the reserve price con-

straints expressed in the bids of buyers and sellers.

acceptable(Θb,Θs|Ω) ⇐⇒



∀(gi , pi) ∈Θb, r(gi ,bi)≥ pi ,

∀(g j , p j) ∈Θs, r(g j ,b j)≤ p j .

We can now formalize the clear operation as computing a feasible and acceptable global

allocation based on the order book. There typically will be multiple global allocations that

are both feasible and acceptable. The auction selects one such allocation based on itsclear-

ing policy, which defines the timing and implementation of the clear operation as a function

of the auction state.
2This assumption precludes settings in which agents wish to simultaneously buy and sell goods. Chap-

ter 2 is agnostic in this respect, allowing for agents to both buy and sell, while other chapters hold to this
assumption. This does allow for agents to both buy and sell if modeled as a separate “buyer” and “seller,” but
does not allow agents to express a reserve price that is simultaneously contingent on both selling and buying.

6

In adirect revelationmechanism, each agent submits at most a single bid, in the form of

a valuation, without receiving any information about the bids of other agents. In contrast,

iterative auctions, such as the English ascending variety, allow agents to revise their bids

over time based on summary information provided by the auction about the current auction

state. Theinformation revelation policyof an auction defines how and when summary in-

formation is provided to agents, possibly depending on the auction state, the sequence of

bid submissions, and the agent identities. Summary information is typically derived from

the clearing algorithm given the current auction state, informing agents of their current hy-

pothetical allocations as well asprice quotesindicating the minimum or maximum prices

to buy or sell allocations (Wurman et al., 2001).

1.2 Auction Efficiency

In selecting an auction type, one typically has a set of specific objectives in mind. For

example, a private individual may try to generate the greatest possible revenue in selling

an item. Alternatively, in allocating public resources, the government may want to put

goods in the hands of those who most value them. Before delving into the issues of auction

design, we first need to formally define the problem.

In formulating the auction design problem, I assume agents have preferences over alter-

native allocation and payment outcomes which can be represented withquasilinearutility

functions, meaning that utility is linear in payments. Buyeri then has quasilinear utility

function ui(g, p) = vi(g) + m, where valuationvi defines the net change in buyer utility

when supplied with a given allocation, andm defines the net payments made to the buyer.

Similarly, seller j has utility functionu j(g, p) = −v j(g)+ m, where valuationv j is inter-

preted as a cost function for supplying allocations.

Given agent bids, the auction determines who gets what (theallocations), and who

pays what (thepayments). The allocations and payments determine the realized utilities

of all agents, and the goal of the auction designer is often to maximize some function of

these utilities. In the case of our private seller looking to maximize revenue, the objective

function is the sum of all payments made to the seller. For the government trying to “put

goods in the hands of those who most value them,” the objective function is the sum of

all realized agent utilities, also calledglobal surplus. Maximization of global surplus is a

common goal in auction design, which in many settings has the added benefit of simulta-

neously maximizing payments. If an auction terminates with maximal global surplus, we

call the auctionefficient.

7

Formally, the global surplus is the sum over all realized buyer and seller utilities. Since

utilities are quasilinear in money, any transfer payments leave global surplus unaffected.

The global surplus can therefore be computed directly from buyer and seller valuations, as

the sum of realized buyer valuations, less the sum of seller costs:

σ∗(Θb,Θs) = ∑
(gi ,pi)∈Θb

vi(gi)− ∑
(g j ,p j)∈Θs

v j(g j).

One obstacle in determining an efficient global allocation is that the auction must com-

pute agent allocations without direct observation of the agent valuations. An intermediate

goal of the auction process is therefore to elicit agent preference information. The auction

elicits agent preference information through bids. In signifying willing deals, bids place

bounds on the agent valuations. To the extent that bids accurately reflect valuations, an auc-

tion can use bids as proxies for underlying valuations, and maximize the objective function

for the valuations expressed through bids. In the case of global surplus maximization, the

auction would instead maximize thetrade surplusof a global allocation, which is the sum

of the buyer reserve prices (expressed through agent bids) for all buyer allocations, less the

sum of the seller reserve prices for all seller allocations:

σ(Θb,Θs|Ω) = ∑
(gi ,pi)∈Θb

r(gi ,bi)− ∑
(g j ,p j)∈Θs

r(g j ,b j).

An auction intended to maximize global surplus will therefore be efficient if the max-

imization of trade surplus simultaneously maximizes the global surplus. The most simple

way to guarantee this equivalence is if agent bids accurately reflect underlying agent val-

uations. In anincentive compatibleauction, the auction rules are designed explicitly such

that agents find it in their best interests to truthfully and fully reveal their valuations through

bids. In the case of quasilinear utility functions, monetary transfers leave global utility un-

changed, so the allocation of goods is chosen to optimize the desired objective function,

while monetary transfers are used as incentives to induce truthful valuation revelation from

agents.

Incentive compatibility is not prerequisite for an efficient outcome. In some settings, for

example, despite inducing bids strictly lower than agent valuations, the first-price sealed-

bid auction produces an efficient outcome equivalent to the incentive-compatibleVickrey

auction (Myerson, 1981; Riley and Samuelson, 1981). Furthermore, iterative auctions

are often implemented such that a minimal amount of preference information is conveyed

through bids to achieve efficiency. An analog of incentive compatibility often applied to it-

erative mechanisms isex-post incentive compatibilitywith straightforward bidding(Parkes

8

and Ungar, 2000; Ausubel and Milgrom, 2002). This translates into ensuring that agents

behave optimally by bidding truthfully at each iteration on the set of goods which maximize

their own utility given the current price quotes.

1.3 Valuations

An important consideration in selecting an auction mechanism is the class of valuations

from which participants’ preferences are drawn. If bidders have valuations defined over

combinationsof different goods, mechanisms that allocate efficiently with respect to such

combinatorialvaluations must be considered.

Combinatorial valuations include preferences exhibitingcomplementarityandsubsti-

tutability. For example, a bidder with complementary preferences may have value for

owning a unit of gooda in conjunction with one unit of goodb, but have no value for

owning a single unit of either good in isolation. The most common example used for

complementary preferences is that of a left shoe and a right shoe—a person typically has

significantly higher value for the pair than for either shoe individually. Substitute prefer-

ences dictate that raising the price of one good does not lower demand for other goods. For

example, consider two different brands of shoes: raising the price of Nike shoes should

not reduce a person’s desired quantity of Adidas shoes, indicating that most people have

substitute preferences for these shoe brands.

The exponentially sized offer specifications induced by combinatorial valuations

present a particularly hard allocation problem, both in the expression of agent valuations

(Segal, 2005) and in the algorithmic problem of computing optimal allocations (Sandholm,

2005; Sandholm et al., 2002). For certain subclasses of multi-unit valuations, however,

the computation of efficient outcomes is made tractable. Notably, for valuations satisfying

thegross substitutescondition, it is well known that a Walrasian equilibrium exists, and a

market-based algorithm admitting offers only on individual goods, in response to dynam-

ically updated price quotes, can provide a fully polynomial approximation scheme for the

computation of efficient allocations (Lehmann et al., 2006).

Since a configuration in multiattribute negotiation corresponds to a unique type of good,

the class of multi-unit valuations for multiattribute goods is equivalent to the class of com-

binatorial valuations. The problem of multi-unit multiattribute allocation therefore inherits

the hardness results derived for combinatorial auctions, but moreover applied to a cardi-

nality of goods that is itself exponential in the number of attributes. The adaptation of

combinatorial auction algorithms to multiattribute domains thus presents a new and chal-

9

lenging problem, as such algorithms typically assume (at least for practical purposes) a

predefined and modest-sized set of goods.

1.4 Auction Design

In its earliest incarnation, auction design was practiced exclusively through analytical

means, while laboratory testing with human subjects verified (or possibly refuted) ana-

lytical results. Early work in auction design produced many important theoretical results,

perhaps most notably therevelation principle(Myerson, 1981, 1979) and the family of

Vickrey-Clark-Groves(VCG) mechanisms (Vickrey, 1961; Clarke, 1971; Groves, 1973).

The revelation principle states that the outcome of any mechanism can be implemented

using an incentive compatible direct revelation mechanism. This result equivalently states

that in designing an auction for a specific setting, one can restrict attention to direct revela-

tion mechanisms in which agents are truthful. VCG mechanisms operate on the principle

that agents can be induced to truthfully reveal their valuations if their payments are inde-

pendent of their reported values. This powerful result has led to a large class of auction

mechanisms which can be shown to terminate with what is designated theVCG outcome.

As the complexity of goods and trading situations has increased, the powerful game-

theoretic tools used in the design of auction mechanisms have increasingly been supple-

mented with empirical and often agent-based simulation when applied to complex mecha-

nisms (Rust et al., 1994; Neumann et al., 2002; Walsh et al., 2002; Phelps et al., 2002; Fasli

and Michalakopoulos, 2008; Jordan et al., 2007). Where human testing has historically

been used to empirically validate analytical results, the increasing complexity of auctions

has rendered human experimentation impossible in many settings.

Recently, VCG-based approaches have drawn criticism in academic literature. For ex-

ample, VCG mechanisms have been challenged by questions of realism in agent modeling

assumptions (Rothkopf, 2007), as well as by questions of robustness to bidder collusion or

deception (Yokoo et al., 2004; Conitzer and Sandholm, 2004a). Additionally, the revela-

tion principle has drawn criticism in settings where agents are unable to easily determine

and reveal preference information (Larson and Sandholm, 2001), and in settings where

the clearing task is intractable given direct preference revelation (Conitzer and Sandholm,

2004b).

Citing the importance of implementation details, problem complexity, and context,

recent work byReeves(2005) andMacKie-Mason and Wellman(2006) advocates a com-

putational approach to mechanism analysis, whereby a game is induced by a restricted (and

10

possibly parametrized) set of agent strategies, after which the game may be approximated

through simulation and subsequently solved. This approach has been applied to settings

in which the complexity of the mechanism precludes purely analytical results (Wellman

et al., 2005), and has been developed into an algorithmic process for mechanism design

(Vorobeychik et al., 2006).

1.5 Auction Specification and Implementation

Prerequisite for computational testing are both an implemented candidate mechanism and

implemented models of agent behavior, often consisting of a class of agent valuations and

beliefs (Porter et al., 2003). A mechanism may then be tested on various problem instances

to derive performance results. Many practitioners of computational economics design what

amount to single-scenario simulation environments tailored specifically to their research

needs (Reeves et al., 2005; Jordan et al., 2007; Rust and Miller, 1993; Arunachalam and

Sadeh, 2005). If able to meet the needs of a diverse group of practitioners and research

agendas, a general-purpose modeling environment would mitigate a significant barrier to

computational approaches by reducing software development time. Several such economic

modeling platforms have been introduced in literature, typically employing parameter-

driven auction implementations in achieving varying levels of generality (Collins et al.,

2002; Wurman et al., 2001; Sandholm, 2004).

With the growing complexity of auction mechanisms, formally expressing the rules

of an auction has become a challenging task. Detailed bidder eligibility rules, time-

dependent auction procedures, as well as highly complex clearing rules have generated

auction specifications of great length and complexity. For example, the most recent doc-

umentation of procedures for FCC spectrum auctions comprises over 100 pages (FCC,

2007). Special-purpose auction description languages may facilitate the communication of

complex mechanisms (Lomuscio et al., 2000; Reeves et al., 2002; Rodriguez-Aguilar et al.,

1998; Wurman et al., 2001). Specifying an auction mechanism in a high-level, special-

purpose language promotes a standardization of interfaces and transparency of encoding.

As Rolli et al. (2006) point out, a machine-readable auction language could ultimately

enable automated trading agents to reason about their strategies. If executable, auction

description languages facilitate the rapid deployment and testing of mechanisms, while

also enabling automated search and analysis of the design space (Cliff , 2003; Phelps et al.,

2002).

11

1.6 Summary and Motivation

The overarching goal of this thesis is largely practical: to design and implement multi-

attribute call markets which have performance characteristics making them suitable for

general use. In approaching this goal, I make several contributions to the more general

field of auction design.

Underlying any iterative auction are algorithms for computing allocations and providing

quote information. For an auction to be practical, these algorithms must be computationally

efficient on problem sizes likely to be encountered in practice. I present a polynomial-time

clearing algorithm from joint work with Engel and Wellman, and provide empirical com-

plexity results from randomly generated problem instances. I additionally present a novel

information feedback algorithm that can produce price quotes with polynomial complexity,

again presenting empirical complexity from randomly generated problem instances. This

pairing of clearing and information feedback algorithms is able to support the first known

polynomial-time multiattribute call market.

I have implemented these call market algorithms into a functional auction server, along

with support for two distinct methods of multiattribute bidding. This work therefore

presents the firstimplementedmultiattribute call market. The auction server on which I

implemented these algorithms, theAB3D market game platform, also serves as a contribu-

tion to the field of auction design. Designed to support game-theoretic auction research, the

AB3D market game platform is capable of implementing a broad range of auctions, while

additionally providing facilities for the description and implementation of multi-auction

market games. This includes facilities for distributed execution of multi-auction markets,

invocation of user-defined agents for simulation, dynamic agent valuation generation, and

evaluation of market outcomes for game-theoretic mechanism analysis.

The AB3D market game platform encompasses another contribution of this thesis: an

executable auction description language, theAB3D scripting language(AB3DSL). Scripts

written in AB3DSL define auctions through a combination of static parameter settings and

dynamic rule-based behavior invocation. For example, a parameter may specify the bidding

language for an auction, while a rule may dictate that the auction will clear after any bid

submission. This novel approach supports a compactness of representation that is superior

to most specification efforts of comparable scope.

In addition to designing and implementing multiattribute call markets, I make contribu-

tions in assessing the applicability of this auction design. As noted, auctions are typically

chosen based on expected bidder valuations, with performance degradation often resulting

when the bidding language is insufficiently expressive to fully convey agent valuations. I

12

investigate the extent to which the information feedback algorithms I develop are able to

compensate for the lack of expressive power of our multiattribute bidding language. In the

course of my analysis, I present a new metric on bidder valuations, based on the degree

to which valuations violate technical conditions for efficiency. I present evidence that this

metric is indeed correlated with the expected efficiency loss of multiattribute markets, and

that this efficiency loss is successfully mitigated through the use of information feedback.

Finally I present results from integrating multiattribute markets into an existing sup-

ply chain simulation. These results provide evidence for the applicability of multiattribute

markets in real-world domains, while also serving as a demonstration of the flexibility

of the AB3D system. After presenting mediocre performance using the myopic bidding

strategies of standard market-based algorithms, I explore how my iterative implementa-

tion deviates from provably convergent market-based algorithmic approaches. I use a

stylized subproblem to find bidding strategies yielding improved efficiency given my it-

erative implementation. I then use one such strategy in the full supply chain simulation in

demonstrating an efficiency advantage of multiattribute markets over a more conventional

negotiation procedure.

1.7 Overview of Thesis

In Chapter2, I begin with a presentation of the AB3D market game platform and AB3D

scripting language. In presenting AB3D, I describe the more general auction design space,

which will provide perspective for ensuing chapters. I discuss limitations of strict para-

meter or strict rule-based approaches, giving examples of how my novel combination of

parameters and rule-based behavior allows for the specification and implementation of a

very broad range of auction mechanisms.

In Chapter3, I define the algorithms supporting multiattribute call markets in AB3D. I

outline work withEngel et al.(2006) that developed polynomial-time network flow clear-

ing algorithms for call markets by placing restrictions on the form of expressible offers. I

present those results in the context of the specific form of bidding language incorporated

into AB3D, describing the clearing algorithm and presenting empirically derived complex-

ity results. I then build on that work with a framework for information feedback algorithms

based on the same network flow structure of the clearing algorithm. I present a procedural

example demonstrating how quote information is computed given a solution to the clearing

algorithm, and give both theoretical and empirically measured complexity results.

Chapter4 takes the call markets developed in Chapter3 and quantifies their efficiency

13

limitations with respect to bidder valuations. Since multi-unit multiattribute markets are a

generalization of both standard double auctions and combinatorial auctions, I first review

existing analytically derived efficiency limitations for combinatorial settings. I then focus

on the use of information feedback for the implementation of market-based algorithms in

reaching favorable allocations. I review the existing literature on market-based algorithms,

including the technical condition of gross substitutes under which such algorithms have

been shown to obtain efficient outcomes.

I next present results from an agent-based simulation, using a model of valuations

inspired by an existing supply chain simulation, the Trading Agent Competition Supply

Chain Management game (TAC SCM) (Arunachalam and Sadeh, 2005). I show that in

TAC SCM, the induced agent valuations naturally violate the substitutes condition, ren-

dering inapplicable the efficiency results for market-based algorithms. Lacking analytical

efficiency results given violations of the substitutes condition, I present a new metric for

bidder valuations based on the severity with which agent valuations violate this condition.

I provide experimental evidence from an agent-based simulation suggesting a correlation

between this metric and expected efficiency loss, and also demonstrate that this efficiency

loss is mitigated through the provision of information feedback.

In Chapter5, I evaluate multiattribute markets in the context of the full TAC SCM

game. This analysis is intended to demonstrate the benefit of a multiattribute market over

an existing alternative protocol, given bidder valuations derived from a grounded simula-

tion environment. Whereas the goal of participants in TAC SCM is to maximize profit over

the course of each game, one can measure the success of the market itself in efficiently

allocating resources in meeting final demand. I first describe my methods in adding AB3D

to the TAC SCM simulation environment, replacing the existing customer negotiation pro-

tocol with a multiattribute call market. I describe the baseline agent used for simulations,

GoBlueOval , my entry in the 2005 TAC SCM competition. Using a tool developed to

measure market efficiency for the TAC SCM 2005 tournament (Jordan et al., 2006), I show

that the introduction of a multiattribute auction into TAC SCM increases market efficiency

both over that achieved by my baseline agents, and over that achieved in the 2005 TAC

SCM competition.

14

Chapter 2

AB3D: A Market Game Platform based
on Flexible Specification of Auction

Mechanisms

This chapter presents the AB3D market game platform and AB3D scripting language.

The design of AB3D builds on lessons learned from the Michigan Internet AuctionBot

(Wurman et al., 1998b), which supported a large variety of auction types through apara-

metrizationof the auction design space (Wurman et al., 2001). In attempting to extend

this parametric specification to a wider variety of designs, I experienced a decreasing or-

thogonality as I introduced parameters. In other words, it became increasingly necessary

to introduce parameters switching on and off whole areas of the design space, thus dilut-

ing the benefit of previous specification effort. Parameters defining the auctioncontrol

structure—the temporal pattern of auction events—seem particularly ill-suited to paramet-

ric description. In general, the timing of a particular action within an auction may depend

on arbitrary features of the auction history. For specification of such functional depen-

dence, control structures reminiscent of programming languages may be more effective

than simple parameter settings.

To support the wider design space, I introduce a simple and extensible rule-based lan-

guage for the specification of auction mechanisms. The language combines parameter

specification with rule-based invocation of auction behaviors, providing sufficient flexi-

bility to capture a wide range of known and conceivable auctions, using a natural and

transparent encoding.

Given the ability to express increasingly complex market mechanisms, the need remains

to evaluate alternative designs. Standard game-theoretic tools used in the evaluation of

simple auction mechanisms have increasingly been supplemented with empirical and often

agent-based simulation when applied to complex mechanisms (Rust et al., 1994; Neumann

et al., 2002; Walsh et al., 2002; Phelps et al., 2002; Fasli and Michalakopoulos, 2008; Jor-

dan et al., 2007). Agent-based simulation requires embedding the markets in a particular

15

scenario or context. Operating markets in a specified scenario can achieve tasks such as

testing, training, or actual trading.

To support these tasks, I have integrated my auction description language and execu-

tion system into a more general market game description and simulation system. I call this

platformAB3D, in reference to the two previous generations of AuctionBot (“AB”), and a

three-dimensional characterization of auction policy space (“3D”) (Wurman et al., 2001).

A game description language (GDL) supports the simulation of complex Bayesian

games with probabilistic and programmatic agent preference generation, as well as dy-

namic agent preference modification. Designed with a view toward extensibility, GDL

interacts with my auction description language to describe and implement higher-level

multi-market games, including information about objectives needed for the AB3D system

to automate the scoring of game outcomes.

Following description of the high-level AB3D architecture, I describe my auction de-

scription language and execution environment, as well as the game description language. I

provide some simple examples demonstrating the generation of diverse auction and game

behaviors. I conclude with examples of current and prior AB3D-supported research.

2.1 Architecture

The high-level architecture of AB3D is shown in Figure2.1. From the point of view of a

trading agent, the AB3D system is a black box with two socket-based access points: the

Game Schedulerand theAgent Manager; other components of the system are internal, and

not visible to the agent. Using an XML-based protocol, users access the Game Scheduler

to instantiate a new game, using the Agent Manager to communicate with AB3D during a

game. AB3D supports the use of any trading entity which interacts with the system during

a game (obtaining preference information, submitting bids, requesting quote and transac-

tional data) via a socket-based XML protocol. For Java-based trading agents, moreover,

the system supports automatic invocation based on market events. Independent graphical

interfaces for human traders can similarly access the AB3D system via its socket-based

protocol. Chenghas implemented one such interface, for a commodity-trading scenario

discussed below (Cheng, 2007).

From an architectural point of view, the AB3D system is divided into a centralSystem

Manager, and a set of one or moreAuction Supervisors, which instantiate and terminate

individual auctions. Auction Supervisors run independently (and often on a separate host)

from the System Manager, and may be distributed across multiple host computers. This

16

Figure 2.1:AB3D functional architecture.

distributed architecture supports multi-auction games that would be computationally in-

feasible on a single machine, while the Agent Manager provides a central communication

point for agents to access all active auctions.

The System Manager is the main coordinator of the AB3D system. It is responsible

for most of the components that handle agent interaction, game creation, storage of game

information, and game scheduling. Within the System Manager, theGame Creatoris re-

sponsible for all operations required to instantiate a game. This includes creating auctions,

generating agent-specific information, running internal system agents (if any), and invok-

ing the scorer at the end of the game. ASystem Cacheprovides a system-wide location for

holding a game’s runtime data, including bids, quotes, transactions, and agent preference

information.

Auction Supervisors provide an environment for the management and execution of indi-

vidual auctions. The System Manager (and its components) send communication messages

to the Auction Supervisors to invoke and tear down individual auctions, which are them-

selves divided into anAuction Engineand anAuction Proxy. The purpose of the proxy

is to read and forward the messages to the Auction Engine. This design enables auction

developers to concentrate on auction-specific code, thus relieving them of some implemen-

tation details. I describe the Auction Engine further below in my presentation of the AB3D

scripting language.

To compute post-game scoring information, the system solves each agent’sallocation

problem(Boyan and Greenwald, 2001): assigning final holdings of goods to their possi-

ble tasks (or other uses) in order to maximize its designated objective. The user specifies

the objective in terms of a standard mathematical modeling language (e.g., AMPL (Fourer

17

et al., 2002)), and the AB3D system employs a generic scorer which only requires a defined

mapping between task preferences and data used in the mathematical model.

2.2 Auction Specification Framework

The general class ofauctionscomprises all mediated mechanisms that determine market-

based allocations (i.e., exchanges of goods and services for money) as a function of agent

messages. These messages, orbids, are typically composed ofoffersspecifying deals in

which the agent is willing to engage. Although the form and content of bids, along with

the auction’s behavior given such bids, can vary widely among auction mechanisms, there

are several common constructs that can be defined across the entire space (Wurman et al.,

2001).

Upon receiving a new or revised bid, the auction determines whether the bid isad-

missiblegiven its current state. If so, the bid is admitted to theorder book, a repository

representing the current collection of active offers. At some point (depending on the auc-

tion rules, of course), the marketclears, producing a set of exchanges matching compatible

offers in the order book according to the auction’sclearing policy. Along the way, the

auction may send messages to participants providing information about auction state (of-

ten in highly summarized form), according to itsinformation revelation policy. Since this

information often—though not invariably—includes currentprice quotes(i.e., indications

of what the hypothetical clearing prices would be in the current state), I refer to both the

action and revealed information as aquote.

Following Wurman et al.(2001), I maintain that the substantial differences among

auction mechanisms can be characterized by their policies for the three major activities de-

scribed above: processing bids, clearing, and revealing information. I further decompose

the specification of these policies into
1. their functional implementation (i.e., thehow), and
2. their timing (thewhen).

My decomposition strikes a middle ground among approaches to auction specification,

where thehowis specified primarily through parameter settings, and thewhenthrough rule

condition patterns. Alternative approaches have tended either toward strict use of parame-

ters (Wurman et al., 1998b), or strict avoidance of parameters (Rolli et al., 2006). I have

found that while the temporal characteristics of an auction can be characterized by a rule-

based language without computational penalty, many clearing and information feedback

policies are impractical without specialized algorithms. For example, implementing clear-

18

ing algorithms for the bidding languages described in Section2.5 with a general auction

description language would likely render the mechanisms unusable.

2.3 The AB3D Scripting Language

An AB3D auction script comprises a sequence of statements, of four types:
1. initialization of auction parameters,
2. rulesthat trigger auction events and parameter changes,
3. declarationsof user variables, and
4. bid rulesdefining additional bid admissibility requirements.

The language also supports the organization of statements into distinct phases orrounds,

denoting named regimes of auction control.

2.3.1 Parameters

Static auction policies are characterized by predefinedparameters, conditioning the criteria

for admitting bids, matching offers, and summarizing state information in quotes.

For example, one commonly adopted element of bidding policy is a “beat-the-quote”

(btq) rule, which requires that any new or revised offer meet or exceed the standing offer

(as represented by the quote), in some well-defined way (which might further depend on

the bidding format).Wurman et al.(2001) describe this policy element, as well as many

others straightforwardly encoded as AB3D parameters.

In the AB3D scripting language, parameter values are initialized and revised through

assignmentstatements, expressed using thesetkeyword. The statement

set param expr

dictates that the parameterparambe (re)assigned the value of expressionexpr. For exam-

ple, the statement

set bid btq 1

activates the beat-the-quote requirement, thus instructing the auction that bids must com-

pare favorably with the price quote to be admitted to the order book.

Assignments may appear unconditionally as initializations or reassignments as part of a

control structure, or conditionally as part of rules. The latter facility provides for qualitative

modification of auction policy while the auction is active.

19

2.3.2 Rules

Whereas the static features of auction policy may be best characterized parametrically, such

an approach is quite limited for specifying the dynamic control of auction events. For this

purpose we employ a simple rule language, allowing that auction events be conditioned

on arbitrary functions of auction state. These functions may also be parametrized, thus

providing the benefits of both constructs.

An AB3D rule takes the form:

when| while (conditions) {actions}

In this rule,conditionsis a conjunction of boolean-valued predicate expressions, written as

a sequence of such expressions separated byand keywords, enclosed by parentheses. An

individual predicate expression evaluates totrue or falsedepending on the current auction

state. If all are true, the rule is triggered, andactionsare executed. Each action on the

actionslist (delimited by semicolons, enclosed in curly braces) corresponds to an auction

activity, such as quoting or clearing, or an internal event such as assigning a parameter. The

keywordwhenor while designates whether a rule is to be invoked only on becoming true

(when), or continually until the condition no longer holds (while).

Multiple rules with the same actions essentially represent a disjunction of their cor-

responding conditions.1 Arbitrary boolean combinations can thus be expressed in this

manner.

Condition expressions referencestate variables—either predefined auction state vari-

ables or user-defined script variables. Auction state variables represent summary measures

significant to auction operation, designated by auction developers for exposure to the auc-

tion script interpreter. Examples of state variables routinely provided by AB3D auctions

include the current time (time), the last time a clear was executed (lastClearTime),

and the number of bidders currently eligible to bid (numBuyers andnumSellers). A

typical condition expression using such variables would be to compare the current time

with some other state variable. For example, an auction can specify a predefined duration

(say, 500 seconds) with a rule of the form:

when (time ≥ auctionStartTime + 500)

{close }

1Multiple rules with the same action differ from a disjunction in that if they happen to hold simultaneously,
the action would executed once for each rule.

20

Though the previous rule may be slightly more intuitive than a parametrized represen-

tation, it could certainly be captured under parametrization without difficulty. Consider an

auction that requires a clear to be performed whenever a bid is admitted (causing the state

variablevalidBid to becometrue), but only before a predefined period of time:

when (validBid and

time ≤ auctionStartTime + 500)

{clear }
If this pattern of conditions is sufficiently common, then it too could be captured in

a dedicated parameter. However, as we consider further state variables, the number of

boolean combinations grows exponentially, as would the number of parameters required to

capture the policy possibilities. The rule language enables this expressiveness without the

associated blowup in primitives.

Periodic events are a common feature of auction mechanisms. In the AB3D scripting

language, internal state variables referencing the last execution time of any given action

provide a natural way to specify periodic events. For example, an auction that performs a

clear every 100 seconds would include the following rule:

when (time ≥ lastClearTime + 100)

{clear }
Assignment within a rule action is a powerful construct, enabling dynamic modification

of auction behavior. For example, the US Treasury auctions its “T-bills” in a uniform-price

auction, after which winning bidders may trade the bills in a secondary market (Bikhchan-

dani and Huang, 1993). The script listed in Figure2.2defines such a two-phase mechanism,

comprised of an ascending auction for the first 1000 seconds, followed by a continuous

double auction (CDA) (Friedman and Rust, 1993) for the second 1000.

This two-phase example employs several parameters controlling the clearing policy for

a multi-unit auction. Thepricing fn parameter identifies the criterion to be used for

determining prices. A value ofchronologicalindicates that price is determined according

to the relative submission times of the matching bids comprising an exchange. Letp0 be

the price of the earlier bid, andp1 the price of the later (by the fact that they match, we

know the buy price is at least as great as the sell, but either could be earlier). The value

k ∈ [0,1] of thepricing k parameter dictates how the transaction price,p∗, is selected

from the compatible range:

p∗ = p0 +k(p1− p0).

For CDAs, a new bid transacts with a standing bid in the order book at the price specified

by the standing bid. Thus, the CDA policy has chronological pricing withk = 0.

21

defAuction twoPhase {
set bid btq 1
set pricing fn uniform
set pricing k 0
when (time = auctionStartTime + 1000)
{clear; quote;
set pricing fn chronological;
set bid btq 0 }

when (time ≥ auctionStartTime + 1000
and validBid)

{clear; quote }
when (time = auctionStartTime + 2000)
{close }

}

Figure 2.2:A two-phase auction: ascending followed by CDA aftermarket.

A uniformpricing function produces a single price governing a collection of simulta-

neous exchanges. In general (for a multi-unit auction with divisible offers) there will be

a range of possible clearing prices (Wurman et al., 1998a), delimited by thebid andask

quotes. Designating the bid byp0 and the ask byp1, thek-double auction (Satterthwaite

and Williams, 1989) selects within this range according to the linear interpolation above.

Note that I economize on parameters by reusing the interpolation parameterk for both the

uniform (for which it was named) and chronological cases.

2.3.3 User-Defined Variables

User-defined variables add a degree of flexibility to the language, allowing for more general

forms of auction control structures such as counters or looping constructs. Such a construct

can be used to specify a predefined number of periods comprising the auction. The follow-

ing set of declarations and rules would generate seven rounds of 60 seconds.

declare userTime auctionStartTime

declare counter 0

when (time ≥ userTime + 60)

{ set userTime time;

set counter counter + 1; }
when (counter=7) {close }

22

Often an auction will have variables that are defined for each bidder, for example a

user-specific credit limit. For this special case of user-defined variables, AB3D provides a

bidder-indexed array construct, created (and optionally initialized to a value) with a state-

ment of the form:

bidderAttribute ATTRIBUTENAME [val]

Bidder attributes can be referenced either by the bidder ID:

ATTRIBUTENAME(ID) ,

or if the rule is associated with a bid submission by the keywordbidder :

ATTRIBUTENAME(bidder) .

2.3.4 Bid Rules

In the same way that I found rule-based methods necessary to reduce the complexity

of parametrization in the case of auction control logic, I have found instances where it

makes sense to allow rule-based definition of bid admissibility requirements. In addition

to the parametrized bid rules provided by the AB3D scripting language, users may use the

bidRule statement as a functional method of defining bidding requirements. For example

an auction may allow only a single bid per user in a given round. To achieve this, a script

may include the bidder attributehasbid which is set to 1 on valid bid submission, along

with the following bid rule:bidRule(hasbid(bidder)=0) .

2.4 Auction Engine Architecture

Figure 2.3 depicts the main functional components of the Auction Engine, along with

the information flows among them. The Auction Engine interprets the auction script,

modifying the behavior of the Message Processor and Order Book according to specified

parameters and rules. The Message Queue serves to synchronize bids and auction events (as

well as information queries in some domains), ensuring that bids are processed in the order

received, and in the correct temporal relation to scheduled actions such as price quotes and

clears. Information passes to agents through the system cache, designed to conserve com-

munication bandwidth at the primary message processor by routinely pushing commonly

needed data. For domains where the pushing of all quote information would be prohibitive

(either due to computational or bandwidth limitations), queries allow agents to request that

some subset of the auction quote information be calculated and sent to the system cache.
On launch of an auction script, the Order Book and Message Processor are initialized

23

Queries

Order
Book

Conditions
Inactivity

Time−

Independent

Conditions

Active
Bids

Bidding Agents

System Cache

Auction Script

Auction Engine

Message Processor

Transactions
Bid Status

Quotes

Auction Status

Rules

Bid Submissions/Queries

T
im

e C
o

n
d
itio

n
s

Message
 Queue

Conditions

Bids

Figure 2.3:Auction engine architecture.

according to parameter settings. The interpreter parses the rules, generating data struc-
tures employed by the condition matching process. To ensure timely triggering of rules
when their conditions become satisfied, I provide special recognition procedures for three
categories of conditions:

1. temporalpredicates,
2. inactivityproperties, and
3. nontemporalconditions.

Each category requires its own methods for detection based on the ways in which its con-

ditions can become satisfied.

Conditions involving temporal predicates are organized in the same queue employed to

process bids and queries. On initial reading of the auction script, the interpreter calculates

the earliest time that each such condition may become true. A corresponding message ob-

ject timestamped with this time is inserted into the queue, as illustrated in Figure2.4. The

Message Processor continually monitors the queue, processing the earliest-timestamped

message in turn, with ties broken arbitrarily, as long as this timestamp precedes the absolute

clock time.

To process a bid message, the AB3D engine verifies that the agent’s bid is admissible

according to current policies (specified in parameters and bid rules), and if so, updates ob-

jects representing the agent’s bid in the active order book. Outcomes of bid processing (i.e.,

admittance or rejection notices) are transmitted to the bidder through the system cache.

To process a rule-condition message, the engine evaluates whether the associated con-

24

time lastClearTime + 20

Message Queue

123

120

100

80

98

11

Bid

Bid

Bid

close

Rule

clear

quote

Rule

time = gameStartTime + 100

time = gameStartTime + 120

Figure 2.4:The Message Queue sequences bids and potential auction trigger events.

dition is currently true. If so, it checks the status of other conditions of the rule (if any), and

if all hold, executes the associated rule actions. Otherwise, it recalculates the earliest time

at which each unsatisfied condition may become true, and inserts corresponding messages

with the respective timestamps.

Conditions dependent on inactivity (e.g., the length of time since the last admitted bid)

are maintained in separate queues within the Message Queue, one for each inactivity prop-

erty, with predicates ordered in ascending values of inactivity. A pointer in each queue

tracks the condition with shortest inactivity that has not expired. The inactivity period of

the next unexpired inactivity condition is added to the timestamp of the last activity time

(e.g., the time of the last admitted bid), producing a scheduled processing time. The entire

rule associated with an inactivity condition will be delivered to the Message Processor if

this timestamp precedes the timstamp of the next message with absolute timestamp. For

example, in Figure2.4the predicate

time ≥ lastClearTime +20

is scheduled to be processed at time 80, indicating that the last clear operation was per-

formed at time 60.

To handle nontemporal conditions, the system maintains an index of referenced non-

temporal state variables, and checks associated rule conditions whenever these are modi-

fied.

25

2.5 Bidding Languages

The extension of AB3D to support a new bidding language requires the implementation

of new clearing and information feedback algorithms, bid processing rules, as well as a

standardized XML representation for communication with the system. To date three such

bidding languages have been implemented for the AB3D system.

2.5.1 Divisible Price-Quantity Bids

The first language allows offers expressing price-quantity correspondences for a single

homogeneous good. The unit prices must be monotone in quantity, which is assumed

divisible. For example, expressed as a sequence of (price, quantity) pairs, the buy offer

(2,2),(3,2)(5,1)

represents an offer to buy 1 unit at a price of 5, up to 3 units at a price of 3, and up to 5

units at a price of 2.

The information feedback and clearing functions supporting this language employ the

4-heapalgorithm originally developed for AuctionBot (Wurman et al., 1998a), which

supports bid insertion and deletion operations with complexity that is logarithmic in the

number of offers. Clearing and information feedback require constant time with this algo-

rithm, as the computation is amortized over bid insertions.

2.5.2 Indivisible Bids

The second language supportsindivisible offers, meaning that bidders only accept the trades

of quantity equal to their offered quantity. Bids express a schedule of (quantity, payment)

pairs, where the quantity is indivisible, and the payment signifies a total payment for the

offer. For example, the buy offer

(4,2)(3,1)

represents an offer to buy exactly 1 unit for a total payment of 3, or exactly 2 units for

a total payment of 4. This bidding language is fully expressive with respect to multi-unit

valuations for a single homogenous good.

Clearing and information feedback for this bidding language is enabled by an incre-

mental knapsack algorithm (Schvartzman and Wellman, 2007). If information feedback is

26

not enabled, bid insertion with this algorithm has complexityO(C2 log(N)), whereC is the

maximum quantity an offer may express, andN is the number of bids. With information

feedback enabled, bid insertion has complexityO(C2N log(N)). In both cases, clearing and

quote computation take constant time, as the computation is amortized over bid insertions.

2.5.3 Multiattribute Bids

My multiattribute bidding language extension was designed around the polynomial clearing

algorithm that I present in Section3.2, which separates the clearing problem into bilateral

matching and subsequent global optimization (Engel et al., 2006). The critical feature of

this algorithm is that the form of the bids affect the complexity only of the bilateral match-

ing. The global match assembles these bilateral matches into an overall optimal set of

exchanges. I refer to the matching step applied to a single buyer-seller pair as theMultiat-

tribute Matching Problem(MMP), the result of which is amatch, designating the surplus

and quantity of the best bilateral trade between these bidders.

More specifically, separation of the clearing process requires that bids comprise a

bounded number of independent offers, each defining a mapping between attribute vec-

tors (i.e., configurations) and reserve prices, with a single maximum quantity for each

offer. Each offer then consists of a unit pricing function defined over configurations and a

maximum quantity of units.

Information feedback for multiattribute auctions in AB3D is provided by the infor-

mation feedback algorithm presented in Section3.3.2. This algorithm requires an initial

computation of complexityO(N3), whereN is the number of independent offers in the

order book, and subsequently can compute a quote for any single configuration with com-

plexity linear in the number of offers. This complexity result naturally precludes computing

quotes for all configurations when goods have large or continuous attribute domains. AB3D

therefore features a query-based information feedback system, by which the quotes for

single configurations are computed on-demand in response to bidder requests.

Acknowledging the potential for many different forms of unit pricing functions within

the context of this clearing algorithm, I designed the multiattribute order book to admit the

general class of offers supporting theMMP operation. I refer to that implementation as an

MMPable interface. To qualify asMMPable, I require that a single quantity be defined

for each offer, and that calling themmpoperation of one offer on another will produce

a match defining the surplus, quantity, and configuration of the maximum surplus bilat-

eral trade. The multiattribute order book will thus support any new class of multiattribute

offer implementing theMMPable interface. I have implemented two such classes of of-

27

fers, one associating each configuration with a unique ID, and one allowing for a factored

multiattribute representation.

Enumerated Multiattribute Bid

The enumerated bidding language associates a unique ID with each configuration, making

the assumption that goods are defined by a single integer-valued attribute. This formulation

supports a fast bilateral matching procedure, as the reserve price for each configuration can

be found with a hash table lookup. The optimal bilateral match can be performed in time

linear in the number of configurations, by computing the bilateral surplus of matching on

each configuration.

Factored Multiattribute Bid

The factored representation sacrifices matching simplicity for a richer multiattribute bid-

ding language. In this bidding language, a configuration is specified by an XML element

with tagCFG, having multiple child elements which define attribute values (each with tag

A). Attributes must be defined as one of several types by setting aT parameter within the

attribute element. The supported types are integer (T = "I"), string (T = "S"), and

float (T = "F").

In order to map each attribute back to some real feature of a good, each attribute element

must define a unique attribute ID. These attribute IDs must be defined and communicated

to bidders, so that their offers carry a shared semantics. Each attribute element may specify

one or more acceptable values (where these values comprise an indifference set). Attribute

values are specified in point form with aV tag:

<V>2</V>

.

An upper and lower value may be used to specify an indifference range when enclosed

with anR tag:

<R>

<V>9.1</V>

<V>21.0</V>

</R>

.

28

Values may also be enumerated if enclosed with anE tag:

<E>

<V>Red</V>

<V>Green</V>

<V>Blue</V>

</E>

In the following XML fragment, I present an offer to buy used cars, taking a simpli-

fied example where the buyer is concerned only with the make and the year of the car. I

assume that attribute ID 1 specifies the manufacturer, and attribute ID 2 specifies the pro-

duction year. The following XML constitutes an offer to buy up to 2 cars, paying$1758for

Ford models manufactured between 1996 and 2007, and paying$2156for Chevy models

manufactured between 2002 and 2007:

<OS>

<Q>2</Q>

<O>

<P>1758.0</P>

<CFG>

<V>Ford</V>

<R><V>1996</V><V>2007</V></R>

</CFG>

</O>

<O><P>2156.0 </P>

<CFG>

<V>Chevy</V>

<R><V>2002</V><V>2007</V></R>

</CFG>

</O>

</OS>

The factored multiattribute bid representation induces a bilateral matching procedure

that has complexityO(C1C2), whereC1 andC2 designate the number of offers contained in

each offer set.

2.6 Market Game Specification

A gameis a description of strategic interaction among self-interested agents, defining al-

lowable agent actions, as well as payoffs as a function of those actions. Amarket game

29

is simply a game in which interaction among agents is mediated by one or more auction

mechanisms. Many market games areBayesiangames in which agent preferences are

specifiedprobabilistically, that is, agent preferences are unknown ex ante and drawn from

a known distribution for each game instance.

In a market game, each participating agent seeks to maximize an objective, such as

trading profits. In more complex games, agents may have objective functions that depend

on the time-dependent completion oftasks, which require the acquisition of goods through

trading. Task dependencies, dynamically arriving task assignments, and nontrivial resource

consumption needs may add further complexity to agent objective functions.

2.6.1 AB3D Game Description Language

To facilitate the potentially complex task of defining and simulating a market game, the

AB3D system includes a higher-levelgame description language(GDL), which supports

the definition of complex preference information, including simple probabilistic constructs

for the specification of Bayesian games.

GDL also supports the specification of auctions operating as part of a game. Many

games feature sets of similar auctions with only minor parametric differences (e.g., clos-

ing times or clearing intervals). Similarly, common auction types occur in many different

games with only minor variation (e.g., periodic call markets). To avoid the repeated spec-

ification of nearly identical auctions, AB3D supports the use of auctiontemplates, which

designate some parameters by keyword. These auction parameters may then be defined

independently with GDL. The use of GDL for parameter specification also allows for the

dynamic generation of auction parameters, allowing for probabilistic parameter settings

(e.g., random closing times).

To help ground the presentation of GDL, in the following sections I provide exam-

ples from a task allocation scenario developed byCheng et al.(2004) originally for an

information-collection domain. In this scenario, agents accrue value by performing tasks,

some of which are assigned at the start of the game, and some of which arrive dynami-

cally throughout the game. Each task requires the acquisition of heterogeneous resources

from a set of independent auctions, which are identical in structure to the two-phase auc-

tion presented in Figure2.2. A set of simultaneous ascending auctions (SAAs) (Cramton,

1998; Ausubel and Milgrom, 2002) provides the initial allocation of resources, while a

CDA aftermarket handles reallocation as dynamically assigned tasks modify agent objec-

tive functions.

30

2.6.2 GDL Operation

In the AB3D system, auction scripts and agent preference information are represented inter-

nally as XML documents. The XML-based auction definitions are provided to the auction

engines at runtime to implement specific auction types. Similarly, the XML representations

of agent preference information are sent to agents during the game (possibly throughout the

game) so that they know their respective objective functions.

The AB3D game description language builds upon the simple syntax of XML, adding

special processing commands which allow for the programmatic specification of iterative

and hierarchical preference structures, the dynamic generation of probabilistic auction and

preference data, as well as pattern-based value generation for string composition and simple

arithmetic operations.

Absent anycommandsor definedvariables, the GDL parser will simply reproduce its

XML input for delivery to agents or auction engines. The use of commands and variables

will cause the GDL parser to apply a transformation to the XML input in producing auction

scripts and agent preferences. GDL commands are invoked by the use of the attributecmd

within an XML element, where required commandparametersare either specified through

additional attributes or via child elements. Variable substitution is invoked through the use

of a defined variable, either within element content or as a command parameter.

2.6.3 Variable Substitution

The parser maintains both a global and a local variablehashwhich are used for variable

substitution during processing. The scope of the global hash is universal, meaning that it

is available throughout the game generation process, whereas the scope of the local hash is

limited to a single agent or auction.

Variables are placed in the local hash with thedeclarecommand. Command parame-

ters (presented as child elements) must define theNAMEandVALUEof the entry. Note that

the content of theNAMEandVALUEelements can also be generated by GDL commands.

If element content contains text matching a variable in the global hash, the text will be

replaced by the value of the variable. For convenience, some commonly used values are

inserted into the global hash by the parser, including the game ID, path to game data, and

the start and end times of the game. In addition to these common values, all parameters

specified in a main game definition file will be inserted into the global hash.

Variable substitution for command parameters is part of a specialized processing se-

quence for non-numeric parameter data. When evaluating a command parameter, the parser

31

first searches the local and global hashes, respectively, using the parameter text as a key.

If no matching variable is found, the parser attempts to process the content as an arith-

metic expression and return the value, ultimately returning an error value if no conversion

is possible.

2.6.4 Value Generation

In addition to thedeclarecommand, GDL includes commands for numeric and string value

generation, which can be used both to generate element text content and to define the names

or values of local variables.

Thepattern command is based on Java-style string formatting, used to compose a com-

posite expression or string by inserting various values into a pattern. Aformat attribute

specifies the string format. Atype attribute dictates whether the string itself is outputted as

is (if defined asstring), or evaluated and the result outputted (if defined asvalue). For

example, the following rule for the task allocation scenario employs the pattern command

with thestring attribute:

<trigger>

<when cmd="pattern" format="time >= {0} AND validBid" type="string">

<arg index="0">phaseOneEndTime</arg>

</when>

<action>clear</action>

<action>quote</action>

</trigger>

The above GDL code will generate awhen clause for the auction script, dictating that

afterphaseOneEndTime (a variable stored in the local hash) the auction will clear and

quote on any new bid, effectively implementing a CDA aftermarket.

Random values can be generated with thedistribution command. A “distribution”

attribute is additionally required to specify the name of the distribution. Currently only

the uniform distribution is implemented, which requires a lower and upper bound as

parameters. In the following example I set the local variablephaseOneEndTime to a

random value, using thepattern command with avalue attribute to specify an absolute

time relative to the game start time:

<CMD cmd="declare">

<NAME>phaseOneEndTime</NAME>

<VALUE cmd="distribution" distribution="UNIFORM">

32

<params>

<param index="1">GameStartTime</param>

<param index="2" cmd="pattern" format="{0}+100" type="value">

<arg index="0">GameStartTime</arg>

</param>

</params>

</VALUE>

</CMD>

The above script would have inserted a value forphaseOneEndTime into the local

variable hash, with the value taken from the discrete uniform distribution

[GameStartTime,GameStartTime+100]. Note that I use the reservedCMDtag in the above

example, for which the tag itself will not be reproduced as output.

2.6.5 Iterative Content Generation

To facilitate the definition of sets of variables, goods, or markets that vary parametrically,

the GDL parser includes a looping construct, invoked with thefor command. Thefor com-

mand takes avar attribute to name a looping variable (which is inserted into the local

hash), and will iterate over an integer range defined byfrom andto attributes. All child

content within afor command is processed once for each loop iteration.

In the following example, thefor command is used to define the auctions for 2 unique

resources, which are defined by atypeandsubtype. These resources need to be linked to

their respective auction IDs so that agents know where to submit their bids. In this example,

thepattern command is used to generate an auction ID for each good that is a function of

both the local variableTYPEand the loop variableX.

<AuctionTuple cmd = "for" from="1" to="2" var="X">

<Type>TYPE</Type>

<subtype>X</subtype>

<AuctionID cmd = "pattern" format="{0} * 6+{1}" type="value">

<arg index="0">TYPE</arg>

<arg index="1">X</arg>

</AuctionID>

</AuctionTuple>

Assuming a value of 3 for theTYPEvariable, the XML output from the above GDL
will be:

<AuctionTuple>

<Type>3</Type>

33

<subtype>1</subtype>

<AuctionID>19</AuctionID>

</AuctionTuple>

<AuctionTuple>

<Type>3</Type>

<subtype>2</subtype>

<AuctionID>20</AuctionID>

</AuctionTuple>

2.6.6 Dynamic Game Information

In dynamic Bayesian games, the “moves” of nature are often revealed to agents throughout

the course of the game. GDL supports the dynamic provision of data to agents through

the use of a dynamic preference file. Preference information specified in this file with an

additionaltime element (with text content specifying an absolute time) will not be made

available to agents until the specified time.

In the following example from the task allocation scenario, the time parameter is used

to assign agent tasks dynamically at one of several predefined slots after the start of the

game, each spacedmsPerSlot milliseconds apart:

<task>

<agentID>AGENTID-CONTENT</agentID>

<resources>RESOURCE-CONTENT</resources>

<value>VALUE-CONTENT</value>

<time cmd = "pattern" format="{0}+{1} * {2}" type="value">

<arg index="0">GAME_START_TIME</arg>

<arg index="1">taskArrivalSlot</arg>

<arg index="2">msPerSlot</arg>

</time>

</task>

2.6.7 Externally Generated Content

To support the generation of content by means outside of the currently implemented GDL

command constructs, theextern command will invoke a user-supplied Java class (defined

by a “type” parameter) and include all output under the invoking element. The following

example uses an external PoissonDistribution class for value generation:

<AuctionCloseTime cmd="extern" type="MyPoissonDistribution" />

34

2.7 AB3D-Supported Research

As testament to the utility of the AB3D platform, members of my research group have

employed AB3D in support of a diverse set of market-based research efforts. Past research

topics include the evaluation of alternative information feedback policies in a manufactur-

ing domain with nonconvex preferences (Schvartzman and Wellman, 2007), as well as the

task allocation scenario used to present GDL above (Cheng et al., 2004).

The AB3D system also supports the multiattribute simulations of Chapters4 and5. In

Section5.4 I describe the integration AB3D into the Trading Agent Competition Supply

Management Game. As I describe in greater detail in Section5.4, I replaced the existing

negotiation protocol of the simulation environment with a multiattribute market. Integrat-

ing AB3D into TAC SCM required a simple proxy to translate and route offers from the

simulation through the AB3D system. The AB3D system computes transactions based on

the submitted offers, which are subsequently sent back to the simulation environment.

Integration of AB3D into TAC SCM required the use of one additional AB3D feature

not previously discussed: an agent authenticated as an administrator (with the appropri-

ate password) is permitted to send rule-messages to an auction via the Agent Manager

interface. The TAC SCM game simulates a period of 220 days (with a wall-clock time

of 15 seconds per day), where the manufacturer/customer negotiation must be performed

each day. The synchronization of AB3D clear operations with the TAC SCM simulation

is handled by the use of clearing rules, sent dynamically from the SCM simulation and

conditioned on absolute time.

AB3D is also currently being used to simulate commodity markets for the training of

human traders at Singapore Management University, using a domain-specific user interface.

The goal of this research is twofold: train a group of humans to be successful commod-

ity traders, and study their behavior for the development of automated commodity trading

agents.

In contrast to financial trading simulations which link simulations to real-world mar-

kets, this simulation environment controls the evolution of trading scenarios in an event-

driven way. In this domain, AB3D support for the dynamic provision of preference

information allows for the rapid setup of a variety of experiment scenarios, by which it is

possible to collect a wide range of information on human traders’ responses and behaviors.

While still in early stages of experimentation, the initial results from this project are

already quite encouraging. The first iteration of experiments shows that traders who have

better qualitative understanding of disseminated information, and who can react swiftly to

market events, indeed outperform those who are slower and less acute (Cheng, 2007).

35

2.8 Conclusion

The AB3D system provides a flexible platform for operating market games, combining

a rule-based scripting language for the specification of auction mechanisms, and a struc-

tured game description language for the specification and implementation of multi-auction

market games.

The increasing sophistication of auction mechanisms, coupled with further develop-

ment in automated bidding agents, demands a structured method of auction representation.

The AB3D scripting language provides a flexible medium for specifying a broad range of

auction mechanisms. Its main innovation is rule-based invocation of auction events and

policy revisions, supporting dynamically flexible auction behavior, while achieving many

advantages of formal auction specification in an expressively convenient environment.

36

Chapter 3

Iterative Multiattribute Call Market
Algorithms

The previous chapter introduced the AB3D market game platform, and described AB3D

support for multiattribute auctions. This chapter details the algorithms which underlie my

implementation of multiattribute auctions in AB3D.

I first present results from joint work with Engel and Wellman that identified restric-

tions on the form of multiattribute offers that reduce the complexity of clearing. These

restrictions allow the clearing process to be decomposed into two discrete steps: bilateral

matching, i.e., finding optimal pairwise trades, and subsequent network optimization based

on the bilateral surpluses of these trades. I outline the operation of this algorithm for a form

of multiattribute offer consistent with the multiattribute bidding languages implemented in

AB3D. I give simulation results for this algorithm demonstrating its scalability with respect

to bids and offers.

My main contribution in this chapter is a novel approach for computing quote infor-

mation, which employs the same decomposition result as our clearing algorithm. I first

present an example demonstrating the complexities of computing quote information given

multiattribute bids. I then describe how the decomposition result used by our clearing al-

gorithm may be employed to simplify the task of computing quotes. My approach operates

in somewhat reverse fashion with respect to the clearing algorithm, first introducing a hy-

pothetical new offer, and computing bilateral surplus values that would include this new

offer in the optimal match. I present a polynomial algorithm for computing bilateral sur-

plus values for quotes, and show that given these values, I can compute the quote for any

single configuration with complexity linear in the number of offers.

37

3.1 Bidding Language

In this section I present a multiattribute bidding language admitting polynomial-time clear

and quote operations. As discussed, the goods are assumed to be defined by a set ofat-

tributes, where a given assignment of attributes defines aconfiguration. The most simple

multiattribute bidding unit expresses a maximum/minimum price at which to trade a given

quantity of a single configuration.

Definition 1 (Multiattribute Point) A multiattribute pointof the form(x, p,q) indicates a

willingness to buy up to a total quantityq of configurationx at a unit price no greater than

p (for q > 0). Similarly, negative quantity (q < 0) would indicate a willingness to sell up

to q units at a price no less thanp.

Participants in multiattribute auctions often wish to buy or sell one of several alternative

configurations. This would happen, for example, if a buyer wishes to procure computers,

and is willing to accept multiple alternatives with respect to attributes such as processor

type/speed, memory type/size/speed, etc., but has configuration-dependent reserve prices.

Conversely, sellers may be able to supply one of multiple PC alternatives at varying reserve

prices. The following bid type supports the expression of this type of preference.

Definition 2 (Multiattribute XRUnit) A multiattribute XR unit is a triple

(configurations,prices,quantity) of the form: ((x1,x2, . . . ,xN),(p1, p2, . . . , pN),q) indicat-

ing a willingness to trade any combination of configurations(x1,x2, . . . ,xN) at respective

unit prices(p1, p2, . . . , pN) up to total quantity|q|, whereq > 0 indicates a buy offer, and

q < 0 indicates a sell offer.

Defining the price of configurations not enumerated in the offer to be zero for buy offers

and infinite for sell offers, theXR unit with positive (negative) quantity expresses a will-

ingness to accept (provide) any allocation of total quantity not greater than|q|, given that

the total payment is not greater than (less than) the sum of the unit prices expressed in the

XRunit. For example, givenXRunit ((x1,x2,x3),(p1, p2, p3),4) the allocation{x1,x1,x2}
would be acceptable at total payment not greater thanp1 + p1 + p2. The nameXRderives

from the fact that anXR unit with quantity 1 expresses an exclusive-or preference over a

set of acceptable configurations.

In a slight abuse of notation, I define ther operator over anXRunit and a configuration

to denote the reserve price for the given configuration in theXR unit, i.e., r(XR,x) = p

selects the unit reserve price for configurationx in theXRunit. Note that a multiattribute

point is equivalent to anXR unit with 1-tuple configurations and prices. To simplify the

38

syntax of my examples, I use the multiattribute point notation when anXRunit defines a

reserve price for only a single configuration.

I use a slightly more expressive bidding language in the multiattribute call market im-

plemented here, which is anORextension of theXRunit.

Definition 3 (Multiattribute OXRBid) A multiattributeOXRbid is a set of multiattribute

XR units,{XR1,XR2, . . . ,XRM} indicating a willingness to trade any combination of con-

figurations such that the aggregate allocation and payments to the bidder can be divided

among the XR units such that each(g, p) pair is consistent with its respective XR unit.

3.2 Clearing

Clearing the auction requires finding the global allocation that maximizes the total trade

surplus, which is theGlobal Multiattribute Allocation Problem(GMAP). For a certain

class of bids, which includesOXR bids, GMAP can be divided into two discrete steps:

identifying optimal bilateral matches, i.e., theMultiattribute Matching Problem(MMP),

and then maximizing total surplus as a function of the optimal bilateral matches.

Joint work with Engel and Wellman (Engel et al., 2006) explored the connection

between bidding languages and clearing algorithms for this domain, identifying theMMP-

GMAPdecomposition result under slightly more general conditions. For this result, each

offer has to exhibitconfiguration parity, meaning that each offer expresses a single quan-

tity limit that can be met with an arbitrary set of configurations (subject to reserve price

constraints). Offers additionally must adhere to one of the following two conditions:
1. no aggregation, meaning that the aggregation of quantity across multiple trading

partners is disallowed in matching the offer.
2. divisibility and linear pricing, meaning the offer will allow any quantity up to the

offered quantity, with a reserve price that is linear in quantities.

OXR bids meet the latter of these conditions, as each offer defines a divisible total

quantity as well as unit prices for individual configurations, allowing quantity aggrega-

tion across alternate configurations and trading partners. In the case ofOXR bids, the

multiattribute matching problem determines the optimal configurationx to trade between

each pair of buy and sellXRunits, which is a function of the configuration-dependent re-

serve prices of the offers. For buyXR unit XRb = (configsb,pricesb,qb) and sellXR unit

XRs = (configss,pricess,qs) let MMPx(XRb,XRs) denote the configuration that maximizes

39

bilateral trade surplus:

MMPx(XRb,XRs) = argmax
x∈X

(r(XRb,x)− r(XRs,x)).

TheMMP surplus, MMPs, represents the value for trading a single unit of the optimal

configuration:

MMPs(XRb,XRs) = max
x∈X

(r(XRb,x)− r(XRs,x)).

DefineBX as the set of allXRunits contained in the buyers’OXRbids, andSXas the set

of all XRunits in the sellers’OXRbids. Forbi = {XRi,1,XRi,2, . . . ,XRi,M} for buyeri ∈C

andb j = {XRj,1,XRj,2, . . . ,XRj,M} for seller j ∈ S,

BX =
⋃

i∈C

⋃

XRi,k∈bi

XRi,k,

SX=
⋃

j∈S

⋃

XRj,k∈b j

XRj,k.

Given the solution toMMPs between each element inBX×SX, GMAPcan be formu-

lated as a network flow algorithm, specifically thetransportation problem(Ahuja et al.,

1993), with source nodesSX, sink nodesBX, and link surplus (equivalently, negative link

costs) equal to the values ofMMPs on BX×SX. The network flow formulation ofGMAP

is depicted in Figure3.1.

Once the clearing problem has been formulated as an instance of the transportation

problem, the set of trades that maximize trade surplus can be found by solving for the

optimal network flow. The solution flow along a given link designates a quantity traded

between two agents (whose bids contain the respectiveXRunits), and the configuration to

be traded is the surplus-maximizing configuration between theXRunits.

The transportation problem can be solved inO(n3) time, wheren is the number of

nodes in the graph (Ahuja et al., 1993). Figure3.2 plots the clear time in milliseconds as

a function of the number ofXR units submitted by traders, with the units evenly divided

between buy and sell offers.1 The computations were performed with an Intel Pentium 4

CPU 3.40GHz, with Java heap set to initial/max size of 512MB. As the number ofXRunits

approaches 3000, the total clear time remains below 15 seconds.

1These offers can be arbitrarily divided among traders’ bids. For example, if traders were restricted to bids
comprising a singleXRunit, Figure3.2would depict the clear time as a function of the number of traders.

40

Figure 3.1:GMAPnetwork flow formulation forOXRbids.

3.3 Information Feedback

Call market implementations in non-multiattribute settings typically provide information

feedback in the form of single-unit price quotes. Provided in the form of ask and bid prices,

these quotes constitute the limiting prices, respectively, at which a trader could place a win-

ning buy or sell bid for a single unit, given the current state of the order book. These quotes

are typically alsoanonymous(Wurman et al., 2001), meaning that the same price quotes

are reported to all bidders.

More general approaches to information feedback may provide price quotes on arbitrary

allocations, or may provide quotes that arenon-anonymous(Schvartzman and Wellman,

2007), meaning that a bidder’s current standing bid is taken into consideration when com-

puting price quotes. I do not pursue that degree of generalization here, and instead focus

on the computation of single-unit configuration-dependent price quotes.2 For example, for

all configurationsx, I support the computation of the ask quote forx, defining the limiting

price at which a buy offer for 1 unit of configurationx would be included in the hypothetical

clear. The equivalent definition holds for sell offers given the bid quote forx.

2Anonymous quotes can be computed with the algorithms presented here by iteratively removing each
agent’s bid from the order book and subsequently computing price quotes. This approach would multiply the
algorithmic complexity by the number of bidders.

41

 0

 5000

 10000

 15000

 20000

 0 500 1000 1500 2000 2500 3000

T
im

e
(m

s)

Number of Offers

cplex clear time

Figure 3.2:Network flow clear time as a function of the number ofXRunits using CPLEX
solver.

3.3.1 Example

The following example illustrates how these quotes are calculated, and introduces some

of the complexities of calculating quotes. I use/0 to indicate that the quote for a given

configuration is undefined.

Example 1 Consider the following sequence of independent bids:

t agent bid bid quote(x1,x2,x3,x4) ask quote(x1,x2,x3,x4) trade set

1 1 ((x1,x2),(5,5),−1) (/0, /0, /0, /0) (5,5, /0, /0) {}
2 2 ((x2,x3),(6,6),1) (/0,5−δ ,5−δ , /0) (6+δ ,6+δ , /0, /0) {(1↔ 2)}
3 3 ((x3,x4),(4,4),−1) (/0,4−δ ,4−δ , /0) (5,5,5+δ ,5+δ) {(2↔ 3)}
• Round 1The only bid is bid1: a sell offer forx1 or x2, which dictates ask prices for

these configurations. Quotes are undefined for all configurations with no outstanding
bids.

42

• Round 2Bid 2 is submitted, a buy offer forx2 or x3, and matches the sell offer on
configurationx2. With the inclusion of bid2, a new successful buy offer must provide
more than1 unit of surplus on configurationsx1 or x2, meaning an ask quote of6+δ
for those configurations, whereδ is the minimum bid increment. Similarly, a new
successful sell offer must offer to trade at a price of5− δ or less on configurations
x2 or x3.

• Round 3Another sell offer comes in below the bid quote on configurationx3, placing
it in the new matching set. A new sell offer must beat the surplus of the current trade
for the lone buy offer, resulting in a bid price of4−δ for x3 andx4. A buy offer for
configurationx1 or x2 must only equal the price of the no longer matching sell offer.
For configurationsx3 or x4, a new buy offer does not need to exceed the surplus of
the existing trade (which would imply an ask price of6+δ) because bid2 may also
be matched with bid1. The total surplus lost from displacing the current trade is
decreased by re-matching the trade with the remaining offers. In this case, a bid of
5+δ would be sufficient to increase the total surplus.

3.3.2 Information Feedback under theMMP-GMAP Decomposition

Just as it reduces the complexity of clearing, the decomposition ofGMAP into MMP

and subsequent network optimization can also reduce the complexity of computing quote

information. Recall that the single-unit quote defines a limit on the price at which a single-

unit offer for a specific configuration will be included in the maximally efficient set of

trades.MMP computes bilateral surpluses with offers in the order book as a function of the

configuration-specific offer prices, and it is the bilateral surpluses which determine whether

the trade is included in the maximally efficient set.

A quote for a given configuration can be found by first finding the required bilateral

surplus (i.e., solution toMMPs) for each existing offer such that a bilateral trade with that

offer is included in the efficient set. The configuration-specific price at which a bilateral

trade (with a specific offer) would be included in the efficient set can then be computed

from the required bilateral trade surplus and the configuration-specific offer price. The

computed price will be the quote for a(configuration, trader) pair; taking the min/max

over all sellers/buyers yields the ask/bid quote for a configuration.

This process is best described through example. Figure3.3depicts theGMAPformula-

tion for a set of 3 sell offers (shown at left) and 3 buy offers (shown at right). The solutions

to MMPs are indicated on the links connecting pairs ofXRunits. The solution toGMAP is

indicated by the bold links (with trade quantity of 1 on each bold link), where the optimal

solution hasXR5 andXR2 trading 1 unit ofx2, andXR3 andXR6 trading 1 unit ofx2.

Now consider calculating the bid quote forx2 given the set of bids from Figure3.3.

As depicted in Figure3.4, we first add a dummy node (XRD) to the graph and connect that

43

Figure 3.3:GMAP formulation with 3 buy offers and 3 sell offers. The optimal solution is
indicated in bold.

node to one of the buy nodes (nodeXR6 in Figure3.4). We now calculate the minimum link

surplus on the new edge that would increase the value of the optimal network flow. The

computed link quote,LQ6, is the trade surplus (i.e., solution toMMPs(XR6,XRD)) required

for a new bid to trade with nodeXR6. The link quote for each buy node must be calculated,

producing a link quote for eachXRk ∈ BX.

The bid quote for a given configurationx is then:

max
k

(r(XRk,x)−LQk).

Continuing with the example, Figure3.5 depicts the computed link quotes as well as

the buyXR units. I present algorithms for computing these link quotes in Section3.3.3,

but for now take as given that these link quotes have been computed. In this instance, the

bid quote for configurationx2 with XR6 would be the offered price of 10, less the required

link surplus of4, producing a quote of6 to transactwith that unit. The bid quote for the

configuration is the maximum over all the units, which is also6. An offer price of 6 forx2

would be sufficient to trade with eitherXR6 or XR5, as the quoted price forXR5 would also

be6 (with a reserve price of8 and required link surplus of2).

Finally, as confirmation that this process has produced a valid quote, we can consider

the outcome of a new sell offer for a unit ofx2 at the quoted price. Figure3.6depicts this

situation for the case that the new bid transacts withXR5 (the algorithm will break the tie

randomly) and shows that inclusion of the new bid increases the trade surplus by 1 to a

44

Figure 3.4:GMAPformulation of Figure3.3with dummy node added for computing a link
quote.

total of 7.

It should be apparent from themaxoperation that once all link values have been deter-

mined, configuration quotes can be computed with complexity on the order of the number

of XRunits. This implies that the complexity of computing a single quote is invariant to the

size of attribute space for a fixed number ofXRunits when theMMP-GMAPdecomposition

is applicable.

There may be instances where the number of configurations is large enough to preclude

computing and pushing all configuration quotes. For example, in the case of continuous

attributes, or even large numbers of attributes (which induce an exponential number of

configurations), a full push of quote information is infeasible. In these instances it may

become necessary to limit the number of configurations for which traders have access to

price quote information. A query-based system is implemented in AB3D, whereby agents

poll the system for quotes on specific configurations, thus limiting the computational and

bandwidth usage of information feedback.

45

Figure 3.5: Link quotes computed for a bid quote given theGMAP formulation of Fig-
ure3.3.

Figure 3.6:GMAPsolution for Figure3.3with a new sell offer at the quoted price.

3.3.3 Link Quote Algorithms for the MMP-GMAP Decomposition

In Section3.3.2, I showed that theMMP-GMAPdecomposition can be used to decompose

the process of computing quote information into computation of link quotes for allXRunits,

and subsequent computation of a specific configuration quote based on the computed link

quotes. In this section, I present algorithms for computing link quotes, as well as empirical

run time results for the algorithms presented.

Iteration of the Clearing Algorithm

To compute quote information, it is necessary to find an offer price for a new bid that would

increase either the surplus or trading volume of the optimal allocation. For example, the

46

ask quote for a configuration is the pricep at which the optimal surplus or trading volume

is increased with the inclusion of a bid of(x, p,1). This description can be translated into

an algorithmic procedure, whereby the clearing algorithm is applied once for eachXRunit

in the graph, with a dummy node connected to the respectiveXRunit. The quantity along

the link from the dummy node is forced equal to1, and the surplus of the link is set to

zero. Applying the clearing algorithm to this new graph will produce a new trade surplus

that is weakly less than the trade surplus of the original graph (given that the new solution

includes a zero-surplus flow of one unit). The non-negative reduction in trade surplus with

the addition of this zero-surplus link is the desired link quote for thatXRunit.

Computing all such link quotes requires one iteration of the clearing algorithm for each

XR unit in the order book, yielding total complexity ofO(n4), wheren is the number of

XR units. The running time of this approach (which I designate asbrute force, given the

fairly näıve implementation) is presented in Figure3.15. Run times are presented using

both CPLEX (cplex brute) and QSopt (qs brute) linear programming packages.

Sensitivity Analysis

Another approach I investigated for information feedback is based on the use ofsensitivity

analysisof the linear program used for clearing. Once a solution to a linear program has

been computed, sensitivity results provide an upper and lower bound on the values of vari-

ables for which the current linear-programming basis remains optimal (Ahuja et al., 1993).

Quote information can be computed by adding a dummy buy/sell node to the graph along

with a link to each seller/buyer before solving the linear program, where the surplus of the

link is set to zero. The upper bounds of the link values computed by sensitivity analysis are

equal to the link values necessary (i.e., requiredMMPs values between the dummy nodes

and the respectiveXRunits) to change the basis of the optimal solution.

The values computed by this approach are only an approximation, because the basis

may change without affecting the solution to the linear program, i.e., matching the com-

puted link value is a necessary but not sufficient condition for inclusion in the optimal

global allocation. Although not carrying as clear of a semantics for bidders, this quote does

convey information as to the true quote price, and could therefore have merit if it provides

significant computational savings. Unfortunately, the computational savings were meager,

as shown by the data labeled “cplex sensitivity” in Figure3.15.

47

Shortest Path Approach

A more specialized technique I developed for computing link quotes takes the optimal flow

computed by the clearing algorithm, and applies a shortest path algorithm to theresidual

graph (Ahuja et al., 1993). Given an optimal flow, the residual graph contains links in-

dicating feasible augmenting flows. For example, assume aGMAP network flow graph

contains a single buy and sell offer. TheseXRunits,XR1 andXR2, respectively, each offer

a quantity of 5. Further suppose that the link betweenXR1 andXR2 carries 3 units of flow

in the optimal solution. The residual graph would have a directed arc with capacity of 3

from XR2 to XR1, indicating feasible flow that couldnegatethe optimal flow. The residual

graph would additionally have a directed arc with capacity2 from XR1 to XR2, indicating

additional positive flow that could be sent along this link.

The shortest path approach starts with the observation that in adding a unit of flow from

the dummy node to an existingXRnode, the optimal flow must now be augmented if any

node balance constraints are violated (i.e., the quantity constraint of theXR unit is vio-

lated). There may be several paths by which flow can be augmented through the residual

graph such that all node balance constraints are satisfied, each of which is a connected path

starting from the quote node. I denote the terminal nodes of all such paths asabsorbing

nodes. The desired link quote is defined by the cost of the minimum-cost augmenting path.

If the minimum-cost augmenting path adds a unit of quantity, the desired link quote for the

XRnode is equal to the efficiency loss from the augmenting flow (as the augmented solu-

tion would have equal trade surplus and increased trade volume, with respect to the optimal

solution). If the augmenting path does not change the total quantity, the desired link quote

is equal to the efficiency loss plus the minimum bid increment (as the augmented solution

would have equal trade volume with the optimal solution, and therefore the new link would

need toincreasethe trade surplus).

The following examples demonstrate how to compute link quote values for a bid quote

using the shortest path approach. In these examples, I define the bilateral trade quantity

betweenXRj andXRk to be the total quantity of flow betweenXRj andXRk in the optimal

solution, which I denote byTQj,k. I similarly define the total trade quantity of nodeXRk,

to be the total quantity of flow throughXRk in the optimal solution, i.e.,TQk = ∑ j TQj,k.

Example 2 Figure3.7depicts an optimal flow for a single trade of quantity 2 between the

only buy and sell XR nodes in the graph, for total surplus of 4. After adding flow of quantity

1 from the dummy node XRD to buy node XR2, the quantity constraint of XR2 is violated, so

the quantity traded between XR1 and XR2 must be reduced by 1, i.e., an augmenting flow

of 1 is sent from XR2 to XR1, reducing the flow along that link. Node XR1 is an absorbing

48

node, as augmenting a unit of flow to XR1 does not induce a new node balance constraint

violation. The maximum-surplus flow in the augmented graph has surplus of 2, resulting in

a surplus loss of 2 with the inclusion of unit flow from the dummy node, giving link quote

LQ2 = 2.

Figure 3.7:Network for Example2. Adding a unit of flow fromXRD violates the node
balance constraint ofXR2.

Example 3 In the network flow graph of Figure3.8, the quantity constraint of XR3 is

non-binding at the optimal solution. In this case, node XR3 is an absorbing node, since

augmenting a unit of flow into XR3 does not violate node balance constraints. Any non-

negative link value will therefore be sufficient to include a trade between the dummy node

and XR3, yielding link quote LQ3 = 0.

Figure 3.8:Network for Example3. Adding a unit of flow fromXRD does not induce any
node balance constraints.

Example 4 Figure 3.9depicts the optimal solution for three XR units, with a non-binding

quantity constraint for XR2, but binding quantity constraints for XR1 and XR3. Adding a

49

unit of flow into XR3 will violate its node balance constraint, so flow must be sent along the

augmenting path from XR3 to XR1 for surplus loss of 2. Again, unit XR1 is an absorbing

node, but so too is node XR2. In this case, 1 unit of flow can be augmented from XR1 to

XR2, increasing surplus by 1 for a total efficiency loss of only 1 along the full augmenting

path. In this case, the link quote would be 1, as this is theminimum cost augmenting path

to an absorbing node.

Figure 3.9:Network for Example4. Adding a unit of flow fromXRD violates the node
balance constraint ofXR3. XR1 andXR2 are both absorbing nodes, with the minimum-cost
path terminating atXR2.

In computing link quoteLQ j for XRj , (which isXR6 in Figure3.4), a single unit of flow

must be augmented through the residual graph fromXRD until all node balance constraints

are satisfied, i.e., until we reach an absorbing node. The link quoteLQ j is equal to the

minimum-cost augmenting path which satisfies node balance constraints, where positive

augmenting flows have negative cost, while negative augmenting flows have positive cost.

Computing all link quotes then simply requires computing the shortest path from each

node to an absorbing node, which can be done with the Floyd-Warshall all-pairs shortest

path algorithm inO(n3) time (Ahuja et al., 1993). The computation time for the shortest

path approach is plotted as a function of the number ofXRunits in Figure3.14, along with

the CPLEX clear time for reference. The total time to clear and compute link quotes would

be the sum of the two plotted times in Figure3.14. Again, computations were performed

on an Intel Pentium 4 CPU 3.40GHz, with Java heap set to initial/max size of 512MB. The

quote time remains manageable at 10 seconds for up to 1000XR units, and then quickly

begins to escalate, reaching 70 seconds for 2000XRunits. The shortest path technique is

compared against alternative information feedback techniques in Figure3.15. The follow-

ing example demonstrates how to construct the residual graph and identify absorbing nodes

50

for a larger problem instance.

Example 5 The network flow graph shown in Figure3.10depicts aGMAP network flow

formulation, with link values designating the pairwise values ofMMPs. The optimal flows

for this formulation are shown in Figure3.11.

Figure 3.10:GMAPformulation for Example5.

Bid Quote Formulation

If computingLQ j for XRj ∈ BX, the augmenting path will reduce trade quantity when tra-

versing from a node inBX to a node inSX, and add trade quantity when traversing from a

node inSXto a node inBX. The residual graph therefore has a link from nodeXRj ∈ BX to

nodeXRk ∈ SX if TQjk > 0, with link cost equal toMMPs(XRj ,XRk). The residual graph

will have a link from nodeXRk ∈SXto nodeXRj ∈BX if TQjk < min(q j ,qk), with negative

link cost ofMMPs(XRj ,XRk).
If XRq∈BX, node balance constraints will be satisfied if the augmenting path fromXRq

terminates on a buy nodeXRk with TQk < qk or on a sell nodeXRk with TQk > 0.

Figure3.12depicts the residual network for computing bid quotes from Figure3.11,

with absorbing nodes shaded black. In this case, the link quote forXR6 is 0, as it is an ab-

51

Figure 3.11:Optimal flows for Example5.

sorbing node. The link quotes forXR4 andXR5 are both equal to6, with nearest absorbing

nodes ofXR1 andXR2, respectively.

Ask Quote Formulation

If XRq ∈ SX, the augmenting path will reduce trade quantity when traversing from a node

in SX to a node inBX, and add trade quantity when traversing from a node inBX to a

node inSX. The residual graph therefore has links which are equal in magnitude but op-

posite in direction to those for the bid quote formulation. The residual graph has a link

from nodeXRj ∈ BX to nodeXRk ∈ SXif TQjk < min(q j ,qk), with negative link cost equal

to MMPs(XRj ,XRk). The residual graph will have a link from nodeXRk ∈ SX to node

XRj ∈ BX if TQjk > 0, with link cost equal toMMPs(XRj ,XRk).
If XRq∈SX, node balance constraints will be satisfied if the augmenting path fromXRq

terminates on a sell node withTQk < qk, or on a buy node withTQk > 0.

Figure3.13depicts the residual network for computing ask quotes from Figure3.11,

with absorbing nodes shaded black. Here the link quote forXR2 is zero, as it is an absorb-

ing node. The link quotes forXR1 andXR3 are6 and2, respectively, with nearest absorbing

nodes ofXR4 andXR2, respectively.

52

Figure 3.12:Residual network for Example5, bid quote formulation. Absorbing nodes are
colored black.

Figure 3.13:Residual network for Example5, ask quote formulation. Absorbing nodes are
colored black.

Run Time Comparisons

Figures3.14and3.15compare alternate algorithms/implementations for computing clear-

ing and quote information in multiattribute markets based on the transportation problem.

53

I used the following linear optimization packages:
• QSopt Java package
• CPLEX 10.2 using the ILOG Java interface

The clearing problem was formulated as the transportation problem for both QSopt and

CPLEX implementations, where theNETWORKalgorithm was selected for the latter.
The quote information was computed in 3 separate ways:
1. brute force one iteration of the clearing algorithm for each node in the graph
2. sensitivity using the sensitivity analysis functionality of CPLEX
3. shortest pathcomputing shortest path information between all nodes in the graph

All computations were performed on an Intel Pentium 4 CPU 3.40GHz, with Java heap

set to initial/max size of 512MB.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(m

s)

Number of XR Units

cplex clear time
sp quote time

Figure 3.14:CPLEX clear time and shortest path quote time for all link quotes.

54

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Number of XR Units

qs brute
cplex clear

qs clear
cplex brute

cplex sensitivity
shortest path

Figure 3.15:Clear and quote times, all methods.

3.4 Conclusion

For any auction design, efficient algorithms supporting clearing and information feedback

are necessary for the auction to be of practical use. In this chapter I presented the algorithms

which underlie multiattribute markets within the AB3D system. Although I outline and give

complexity results for our multiattribute clearing algorithm, my main contribution in this

chapter is in the development of a highly efficient information feedback procedure. This

algorithm represents a significant contribution in that it provides the only known means

of efficiently computing quote information for multiattribute call markets. As such, this

algorithm is a crucial component supporting multiattribute call markets in AB3D.

I first described conditions on multiattribute bidding languages under which the clearing

process may be separated into discrete steps of bilateral matching (MMP) and subsequent

network optimization (GMAP). This approach was developed in joint work with Engel

and Wellman. For a specific form of bids adhering to these conditions, I outlined the op-

55

eration of our clearing algorithm, and gave simulation results demonstrating algorithmic

performance as a function of problem size.

Next, on a high level I described my novel approach to computing quote information. I

described how the separation result employed by our clearing algorithm can be used to re-

duce the complexity of computing quote information. My approach starts with a solution to

theGMAPnetwork flow formulation, and computes link quote values which would admit

new nodes to the optimal solution. Given these link quotes, I am then able to compute the

quote for any single configuration with complexity linear in the number of offers. I present

an example demonstrating how this method can be applied.

Next I turned to the problem of computing link quotes. I defined link quotes as the

minimum solution toMMPs with a given offer which increases either the trade surplus or

the trade volume of the optimal solution. I introduced a naı̈ve approach employing multiple

iterations of the clearing algorithm. I also described how sensitivity analysis of the linear

program could be used to approximate link quotes, and demonstrated that this approach

does not provide sufficient computational savings to justify its use.

Finally, I introduced my shortest path algorithm, which can compute all link quotes with

complexity that is polynomial in the number of offers. I presented several small examples

giving the intuition behind this algorithm, as well as one larger example demonstrating

the full algorithmic operation. I presented run time analysis showing that my shortest

path approach achieves significant computational savings over both alternative approaches,

demonstrating that this algorithm can compute link quotes for up to 1000 offers in under

10 seconds, using an inexpensive off-the-shelf processor.

56

Chapter 4

Complement-Free Valuations in
Multiattribute Auctions

In Chapter3 I introduced a multiattribute auction admitting polynomial-time clearing

and information feedback operations. The polynomial-time guarantee for this mechanism

comes at the expense of the expressiveness of the bidding language. That constraint im-

posed on the bidding language in turn places restrictions on the range of bidder valuations

for which the mechanism is a suitable choice. In this chapter I attempt to characterize the

relationship between bidder valuation classes and market efficiency for the multiattribute

call market from Chapter3.

I first present a hierarchy of bidder valuation classes derived byLehmann et al.(2006),

and use that hierarchy to characterize the bidding language from Section3.1. Next I present

known maximal polynomial-time-achievable efficiency ratios for several valuation classes,

which I use to place the full iterative mechanism of Chapter3 within the context of an-

alytically derived efficiency results. I focus on the use of information feedback for the

implementation of market-based algorithms in reaching favorable allocations. I review the

existing literature on market-based algorithms, including the technical condition of gross

substitutes under which such algorithms have been shown to obtain efficient outcomes.

I next present results from an agent-based simulation, using a model of valuations

inspired by an existing supply chain simulation, the Trading Agent Competition Supply

Chain Management game (TAC SCM) (Arunachalam and Sadeh, 2005). I show that in

TAC SCM, the induced agent valuations naturally violate the substitutes condition, ren-

dering inapplicable the efficiency results for market-based algorithms. Lacking analytical

efficiency results given violations of the substitutes condition, I present a new metric for

bidder valuations based on the severity with which agent valuations violate this condition.

I provide experimental evidence from an agent-based simulation suggesting a correlation

between this metric and expected efficiency loss, and also demonstrate that this efficiency

loss is mitigated through the provision of information feedback.

57

4.1 Bidder Valuations

In this chapter I focus on the class ofcomplement-freebidder valuations. A buyer exhibit-

ing a complement-free valuation does not value a group of goods higher than the sum of the

goods individually. For example, baseball card collectors often derive extra value from ob-

taining a complete set for a given year or team. Such a valuation would be complementary

rather than complement-free. Non-complementarity assumptions are common in economic

modeling. For example, consumers are typically assumed to havediminishing marginal

utilities (Mas-Colell et al., 1995), meaning that consumers derive lower additional value

from each additional unit of a good. I think of rich desserts as an example of a good with

rapidly diminishing marginal utility, given that I usually start feeling ill before finishing my

dessert.

For sellers, the notion of a complement-free valuation is amended slightly, as a seller

valuation is for supplying rather than for consuming goods. A complement-free seller val-

uation does not exhibit a decreasing cost for supplying goods. Again, we can observe this

assumption in economic modeling, as producers may be assumed to have increasing mar-

ginal costs (over some range of their production curve) ordecreasing returns to scale. A

common example for this type of valuation is a farmer, who in expanding his production

is forced to use land which is decreasingly suitable for agriculture. His cost of producing

each additional unit then increases as he needs to use more fertilizer or irrigation in utilizing

lower quality land.

Multiattribute auctions typically assume agents have valuations exhibiting some degree

of non-complementarity. For example, work on procurement auctions typically addresses

the single-good setting (Che, 1997; Branco, 1997; Parkes and Kalagnanam, 2005), which

imposes an extreme form of non-complementarity in defining goods asperfect substitutes

(Mas-Colell et al., 1995).

As defined in Section1.1, clearing an auction requires maximizing the trade surplus

over all feasible and acceptable allocations. As valuations, bids constrain the set of accept-

able global allocations, while also defining the objective function maximized in clearing.

The extent to which bids do not accurately reflect agent valuations may induce suboptimal

(but still acceptable) global allocations, as the optimization procedure is performed over

an inaccurate objective function. A bidding language that is syntactically unable to fully

convey agent valuations may therefore induce natural efficiency limitations in an auction.

This effect may most easily be seen when agents have complementary valuations.

Example 6 Consider the case of a baseball card collector who values a complete set of

10 baseball cards at a price$1000, but values each individual card at only$10. Further

58

assume there is a competitor who does not care about the set, but values each individual

card at$11. Efficiency dictates that an auction for these cards would allocate all 10 cards

to the collector who values the complete set, as this maximizes the sum of utilities. If the

cards are sold at auction and bidders are restricted to bidding on individual cards, our

collector faces what is called anexposure problem(Greenwald and Boyan, 2001). If he

bids$100 on each card (i.e.,$1000/10) he risks not completing his set and ending up with

a net loss in utility from participating. If he is conservative in his bidding, he likely will just

bid $10 on each card and end up winning none of them. This problem would be resolved

if the auction allowed bidders to place bids on combinations of cards, as in a combinato-

rial auction (Cramton et al., 2005). The collector could then place a bid on the full set,

indicating his willingness to pay$1000, but only if allocated the entire set.

In Example6, the bidding language was not expressive enough to allow the collector

to provide his full valuation to the auction. This example demonstrates how an auction

may yield suboptimal allocations if the bidding language is not sufficiently expressive with

respect to the underlying bidder valuations.

Importantly, the computational complexity of computing an optimal global allocation

increases with the expressiveness of the bidding language. This creates a natural tension

between computational complexity and auction efficiency, even given the assumption of

complement-free bidder valuations. As I show in the following sections, bidding languages

that are appropriate from a computational standpoint are not sufficiently expressive for

agent valuations likely to be encountered in multiattribute domains.

4.1.1 Complement-Free Valuations

The class of complement-free buyer valuations contains all valuations that are notsuper-

additiveover allocations.

Definition 4 A buyer valuation is complement-free if for any two allocationsga andgb,

v(ga)+v(gb)≥ v(ga∪gb).

A seller valuation (cost function) is complement-free if it is not sub-additive over con-

figurations. This condition precludes volume pricing discounts and minimum quantity

preferences.

Definition 5 A seller valuation is complement-free if for any two allocationsga andgb,

v(ga)+v(gb)≤ v(ga∪gb).

59

It is known that no polynomial clearing algorithm can guarantee better than a 2-

approximation for the general class of complement-free valuations (Dobzinski et al., 2005).

In the following subsections, I present subclasses of the class of complement-free valua-

tions, providing known efficiency bounds for polynomial-time allocation.1 Some of the

valuation classes are defined by constraints on the relative valuations of alternate alloca-

tions, while others are defined by constraints on the syntax of representations. Valuation

classes are typically provided from the context of a buyer; I provide both buyer and seller

definitions where appropriate.

4.1.2 Submodular Valuations

For buyers, the condition of submodularity additionally imposes decreasingmarginal val-

uations. Defining the marginal valuation ofx with respect to allocationg as v(x|g) =
v(g∪ x)− v(g), submodularity requires that forga ⊆ gb,v(x|ga) ≥ v(x|gb). The following

alternate definition more clearly shows that submodular valuations are also complement-

free.

Definition 6 A buyer valuationv is submodular if for any two allocationsga,gb,

v(ga)+v(gb)≥ v(ga∪gb)+v(ga∩gb).

Again, the direction of the inequality is simply reversed for seller valuations, implying

non-decreasing marginal cost.

4.1.3 Gross Substitutes

Gross substitutes valuations are defined with respect to the goods an agent demands when

facing a set of prices. To define valuations exhibiting gross substitutability, I first define

an agent demand correspondence with respect to valuations and prices. The following

definitions are with respect to buyers.

Definition 7 Given valuationv and vector of configuration prices~p = (px1, px2, . . . , pxn),
the demand correspondenced(v|~p) maps to the set of allocations which maximizev(g)−
∑x∈g px.

1In the multiattribute setting, unique goods correspond to the configurations. I borrow both notation and
analytical complexity results fromLehmann et al.(2006) in this section, with notation amended slightly for
multiattribute domains.

60

The demand correspondence simply identifies the agentdemand set, comprising the set

of goods which maximize an agent valuation given a vector of good prices. Now, I can

define the gross substitutes condition based on how the agent demand set changes with

respect to prices.

Definition 8 A valuationv is of the class gross substitutes (GS) if for any price vectors~p

and~q with pi ≤ qi ∀i andg1∈ d(v|~p), there existsg2∈ d(v|~q) such that{x∈ g1|px = qx} ⊂
g2.

Informally, the gross substitutes condition for buyers states that the demand for a given

configuration is nondecreasing in the price of any other configuration. For sellers, the con-

dition changes so that the supply of a given configuration is nonincreasing in the prices of

other configurations. To give some intuition for this condition, we can consider two differ-

ent goods which have a common purpose, e.g., two alternate camera models. Assume that

given the market prices of all cameras, a buyer had selected an ideal model to purchase.

If the buyer’s valuation for cameras satisfies the gross substitutes condition, then a price

increase for one or more competitor models should not make him decide against buying his

initial selection.

4.1.4 Syntactic Valuation Classes

Syntactic valuations are built fromatomic valuationsand operators on those valuations.

Definition 9 The atomic valuation(x, p) gives the valuep to any allocation containing a

unit of configurationx, and value zero to all other allocations.

Next, I define the operatorsORandXORover valuations as follows:

Definition 10 Let v1 andv2 be two valuations defined on the spaceG of allocations. The

valuationsv1 +v2 (OR) andv1⊕v2 (XOR) are defined by:

(v1 +v2)(g) = max
x⊆g

(v1(x)+v2(g\x)),

(v1⊕v2)(g) = max(v1(g),v2(g)).

Informally, the valuation(v1 +v2)(g) divides up allocationg among valuationsv1 and

v2 such that the sum of the resulting valuations is maximized. The valuation(v1⊕ v2)(g)
gives the entire allocation tov1 or v2, depending on which valuesg higher.

61

Subclasses of complement-free valuations are derived by placing restrictions on how

theORandXORoperators may be combined. ClassOSvaluations are created using only

theORoperator over atomic valuations, and allow for the expression of additive valuations.

ClassXSvaluations are created by applying theXORoperator over atomic valuations, and

allow for the expression of substitute valuations.

Any valuation composed ofORandXOR(applied in an arbitrary order) is expressible

by applying theXORoperator overOSvaluations.

Definition 11 A valuation is XOS if expressible through a sequence of applications of OR

and XOR operators over atomic valuations.

For example, as a buy bid, theXOSvaluation

(x1, p1)⊕ ((x2, p2)+(x3, p3))

expresses a willingness to accept any one of the following (allocation,payment) pairs:

{(x1, p1),(x2, p2),(x3, p3),({x2,x3}, p2 + p3)}.

For clearing a combinatorial auction givenXOSvaluations, the best approximation fac-

tor that can be guaranteed in polynomial time is known to be bounded above by 2, and

bounded below by43 (Dobzinski et al., 2005).

Applying theORoperator overXSvaluations yields valuations of classOXS, a subclass

of XOS.

Definition 12 A valuation is OXS if expressible through the application of OR operators

over XS valuations.

For example, as a buy bid, the valuation

(x1, p1)+((x2, p2)⊕ (x3, p3))

expresses the willingness to buyx1 at a price ofp1, and independently expresses a will-

ingness to buy eitherx2 at a price ofp2, or x3 at a price ofp3 (but not both), giving the

following acceptable allocations:

{(x1, p1),(x2, p2),(x3, p3),({x1,x3}, p1 + p3),({x1,x2}, p1 + p2)}.

62

If all valuations are of classOXS, valuations can be directly expressed throughOXR

bids, and the clearing algorithm presented in Section3.2 will produce polynomial-time

efficiency.

The bidding language constructs from Section3.1can be classified within this syntactic

framework. The multiattribute point(x, p,q) expresses the valuation equivalent to anOR

expression over|q| atomic(x, p) valuations:

(x, p)+(x, p)+ · · ·︸ ︷︷ ︸
total of |q| elements

.

The additional quantity designation in a multiattribute point provides compactness over

the equivalentORexpression when valuations are linear in quantity.

The multiattributeXR unit with quantityq defines the valuation equivalent to the fol-

lowing expression over atomic valuations:

((x1, p1)⊕·· ·⊕ (xN, pN))+((x1, p1)⊕·· ·⊕ (xN, pN))+ · · ·︸ ︷︷ ︸
total of |q| elements

.

The multiattributeXR unit is less expressive than the general classOXSbecause it

defines anOR over a set of identicalXOR expressions, thus imposing a constraint that

valuations be linear in quantity, andconfiguration parity, i.e., the quantity offered by a

bid is configuration-independent (Engel et al., 2006). The multiattributeOXR bid pro-

vides full expressiveness with respect to classOXS, where the multiattributeOXR bid

{XR1,XR2, . . . ,XRM} is equivalent to the followingORexpression overXRunits:

(XR1 +XR2 + . . .+XRM).

4.1.5 Valuation Hierarchy

I have now defined the following valuation classes:
• OXS- valuations admitting anOR-of-XORexpression
• GS- gross substitute valuations
• SM - submodular valuations
• XOS- valuations admitting anXOR-of-ORexpression
• CF - complement-free valuations

Lehmann et al.(2006) showed that the following hierarchy holds over the above classes,

where the containment is strict in each case:

OXS⊂GS⊂ SM⊂ XOS⊂ CF.

63

4.1.6 Valuations for Multiattribute Auctions

The call market presented in Chapter3 supports the direct expression ofOXSvaluations,

with information feedback supporting the implementation of market-based algorithms for

efficiency underGSvaluations. Unfortunately, many valuations which are natural to multi-

attribute domains fall outside of classOXS. For example,Bichler and Kalagnanam(2005)

cite the common need to enforcehomogeneityof allocations, meaning that all configura-

tions in an allocation must have identical values for one or more attributes. Valuations

which place higher values on homogeneous allocations, or conversely, heterogeneous al-

locations, are expressible with anXOSbidding language but not with a language of class

OXS.

My motivation in studying allocation with valuations of increasing complexity arose

when applying the auction from Chapter3 to TAC SCM. In TAC SCM, manufacturers

assemble finished goods from a limited inventory of available components. As Example7

makes clear, the induced seller valuations fall outside of classOXS, and may violate the

gross substitutes condition.

Example 7 Consider the case of a PC built from two components: cpu and memory. As-
sume that a seller has one unit of cpu= fast, one unit of cpu= slow, one unit each for
memory∈ {large,medium,small}, and the configurations are assembled in the following
manner:

1. configurationx1: {fast, large}
2. configurationx2: {fast,medium}
3. configurationx3: {slow,small}
4. configurationx4: {slow,medium}
The production possibilities are then:

{x1,x4},{x1,x3},{x2,x3}.

The induced seller valuation is not expressible using an OXS language. Designating the

unit cost ofxi by pi , the nearest OXS approximations require the seller to either overstate

(bid 4.1) or understate (bids4.2and4.3) his production capabilities:

((x1, p1)⊕ (x2, p2))+((x3, p3)⊕ (x4, p4)) (4.1)

(x1, p1)+((x3, p3)⊕ (x4, p4)) (4.2)

((x1, p1)⊕ (x2, p2))+(x3, p3) (4.3)

While reserve prices over these allocations are not expressible using an OXS language, an

64

XOS-based language is sufficient:

((x1, p1)+(x4, p4))⊕ ((x1, p1)+(x3, p3))⊕ ((x2, p2)+(x3, p3)).

Furthermore, the valuations from Example7 are also not in classGS. Assume that

within the above production possibilities, the seller has a unit cost of 3 for all configura-

tions, with total cost additive in unit cost. The equivalentXOSvaluation would be:

((x1,3)+(x4,3))⊕ ((x1,3)+(x3,3))⊕ ((x2,3)+(x3,3)).

Prices for configurations are also necessary to evaluate the gross substitutes condition. As-

sume the following configuration prices:

p(x1) = 5; p(x2) = 4; p(x3) = 4; p(x4) = 5.

At these prices, the optimal production bundle is(x1,x4) which yields a surplus of 4. If

the price ofx1 drops to zero, the optimal production bundle becomes(x2,x3), yielding a

surplus of 2. Hence, the supply ofx4 decreases with a decrease in the price ofx1, which

violates the gross substitutes condition for sellers.

4.2 Allocation with Complement-Free Valuations

In this section, I summarize hardness results for allocation with subclasses of complement-

free valuations, and explain the theory underlying market-based algorithms.

4.2.1 Hardness Results

When underlying agent valuations are in the classOXS, valuations may be directly ex-

pressed withOXRbids, and the polynomial algorithm from Section3.2 can obtain effi-

ciency with a direct-revelation mechanism (presuming an adequate incentive structure).

The existence of efficient mechanisms when agent valuations fall somewhere between

GSandCF is an open problem. For the classGS, a Walrasian equilibrium exists and a

market-based algorithm can provide a fully polynomial approximation scheme (polynomial

in the number of goods and traders) for efficient global allocation (Kelso and Crawford,

1982). An important caveat for multiattribute domains is that the number of goods is expo-

nential in the number of discrete attributes, while continuous attributes induce an infinite

65

number of goods.

Treating a unit of a given configuration as a unique good, we can look to the combina-

torial auction literature for results. These results tend to fall into two categories: hardness

results for exact solutions, and efficiency guarantees for polynomial-time algorithms. Hard-

ness results show that even with two valuations which are additive with a budget limit,

optimal allocation is NP-hard (Lehmann et al., 2006). On the other hand, existing poly-

nomial (greedy) algorithms for complement-free valuations guarantee only50%efficiency

(Lehmann et al., 2006). A further drawback is that the transformation of these algorithms to

multiattribute domains (which lack a pre-defined set of goods) is not always trivial. These

approximation algorithms are also intended for a single seller setting with no reserve price.

The following table fromDobzinski et al.(2005) gives known bounds for approxima-

tion factors achievable in polynomial time for several complement-free valuation classes:

Valuation Class Value Demand General Comm.

General O(m
logm) O(m

1
2) Ω(m

1
2−ε)

CF O(m
1
2) O(logm) ≥ 2

XOS
≤ 2
≥ 4

3

SM
≤ 2 ≥ 1+ 1

2m≥ 1.02
GS 1

Table 4.1:Known efficiency approximation factors form goods achievable in polynomial
time, fromDobzinski et al.(2005).

4.2.2 Market-Based Algorithms

Valuations satisfying the gross substitutes condition admit efficiency throughmarket-based

algorithms.Market-based algorithms derive from the ideas ofgeneral equilibrium theory

(Arrow et al., 1959), under which markets simultaneously maximize efficiency and achieve

a perfect balance of supply and demand, given profit-maximizing behavior of market par-

ticipants. The condition of gross substitutes has been identified in a number of settings as

sufficient to guarantee existence of a Walrasian equilibrium (Arrow et al., 1959; Kelso and

Crawford, 1982; Gul and Stacchetti, 1999; Milgrom and Strulovici, 2006).

Market-based algorithms operate by iteratively providing agents with price quotes, re-

quiring that agents express demand sets reflecting their optimal consumption or production

choices at the given prices. Demand sets are expressible in any bidding language of com-

66

plexity equal to or greater than classOS. Prices are adjusted at each iteration based on

the relative supply and demand of each type of good, until the market reaches equilib-

rium. Computationally, market-based algorithms provide a fully polynomial approximation

scheme, with complexity that is polynomial in the number of bidders, goods, and the in-

verse of the approximation factor (Lehmann et al., 2006).

In market-based algorithms, market participants respond to price quotes by submitting

supply and demand sets which maximize their respective utilities given prices, dynamically

adjusting their supply and demand in response to market price adjustments. At equilibrium,

the collective market demand equals the collective market supply, at which point the mar-

ket maximizes efficiency, i.e., maximizes true surplus across all global allocations.Arrow

et al. (1959) showed that gross substitutes is sufficient to guarantee existence of such an

equilibrium.

The ideas of general equilibrium theory have subsequently been extended to show that

the gross substitutes condition is sufficient to guarantee equilibrium with discrete hetero-

geneous goods and thin markets (Kelso and Crawford, 1982), and that gross substitutes is

both sufficient and necessary to ensure equilibrium existence in discrete domains (Gul and

Stacchetti, 1999).

Although the multiattribute bidding language presented in Section3.1supports the ex-

pression of demand sets, and the algorithm from Section3.3supports the provision of price

quotes on all items, the full mechanism does not implement a provably convergent market-

based algorithm (assuming myopic best response bidding). This is due to the form of the

price adjustment process, which must be made proportional to the excess market demand

to guarantee convergence. I explore the consequences of this distinction in Section5.8.

For the remainder of this chapter, I evaluate the induced efficiency of myopic best-response

bidding given this alternate form of market-based algorithm.

4.3 A New Valuation Metric

Given the ability to implement a form of market-based algorithm, the question remains as

to the efficiency limitations of my market design when valuations are not contained inGS.

To better characterize the valuations for which market-based algorithms are appropriate, in

this section I define a new metric which classifies valuations not contained inGS.

67

4.3.1 Gross Substitutes Revisited

As defined in Section4.1.3, the gross substitutes condition requires that the demand for

goods be nondecreasing in the prices of other goods. The motivation behind this condition

is that a price adjustment process will ultimately reach equilibrium if a price perturbation

intended to reduce the demand of over-demanded goods does not reduce the demand for

other under-demanded goods. Similarly, a price decrease intended to increase demand for

under-demanded goods should not increase demand for over-demanded goods.

For valuationv satisfying the gross substitutes condition, the demand correspondence

condition holds for all price vectors and perturbations. Formally, given demand cor-

respondenced(v|~p) as defined previously, the set of allocations maximizing the sum

v(g)−∑x∈g px, for all vectors of configuration prices~p = (px1, px2, . . . , pxn) ∈ ℜn
+, and

all single price perturbations
−→
dp∈ ℜn

+, for anyg1 ∈ d(v|~p) there existsg2 ∈ d(v|~q) such

that{x∈ g1|px = qx} ⊂ g2, where~q = ~p+
−→
dp.

4.3.2 Gross Substitutes Violations

I hypothesize that thedegreeto which the gross substitutes condition is violated will pro-

vide a metric on valuations which correlates with the efficiency of market-based algorithms.

I first formulate the substitutes violation with respect to any single price vector and price

perturbation, and subsequently define the substitutes violation for a valuation with respect

to the full space of prices and single-price perturbations.

For non-negative vectors~p and
−→
dp, again define~q = ~p+

−→
dp. For eachgi ∈ d(v|~p), I

define thegross substitutes violationas the aggregate decrease in demand for items with

px = qx. Sinced(v|~q) may map to multiple demand sets, I take the minimum over all such

sets.

GSV(v,~p,~q,gi) =

min
g∈d(v|~q)

| {x∈ gi |px = qx}\{x∈ g|px = qx} | .

Intuitively, this measure counts thenumberof violations of the gross substitutes con-

dition for a specific initial price vector and price change. Valuations satisfying the gross

substitutes condition will have a violation count of zero for all initial prices, demand sets,

and perturbations. Valuations which do not satisfy the gross substitutes condition will have

positive values ofGSVfor one or more combinations of(~p,
−→
dp).

68

To simplify the exposition, I assumed(v|~p) maps to a singleg for any ~p, and use

x∈ d(v|~p) to indicate a good from that demand set.

From any single price vector~p, define the gross substitutes violation of a valuation

for that price vector as the averageGSVover all minimal single-price perturbations which

ensure a new demand set:

GSV(v,~p) =

1
n

n

∑
i=1

| {x∈ d(v|~p)|px = qx}\{x∈ d(v|~q)|px = qx} | .

where:

~q = (p1, p2, . . . , pi +dpi , . . . , pn)

and

dpi = min
dp

s.t. d(v|~p) 6= d(v|(p1, p2, . . . , pi +dp, . . . , pn)).

Next, define theexpectedgross substitutes violation for a valuation as the expected

value ofGSVfor random~p:

EGSV(v) = E[GSV(v,~p)],

where

∀i pi ∼U [0, p̄].

My hypothesis is that for a set of bidders with valuations drawn from a small range

of EGSVvalues, market-based algorithms will reach a similar degree of efficiency, where

the realized efficiency is decreasing in the averageEGSVvalue. This result would ex-

tend naturally to the case of gross substitutes (equivalently, anEGSVvalue of zero), where

market-based algorithms achieve full efficiency. The intuition behind theEGSVmetric,

specifically for using the expectedGSVof a valuation (the average, rather than the maxi-

mum or minimum) is that since the price trajectory of a market-based algorithm covers only

a subset of the full price space, the average violation factors in the probability of seeing any

specific violation.

69

4.4 Testing theEGSV-Efficiency Relationship

To evaluate the relationship betweenEGSVvalues and market efficiency, I employed a

component-based model of configurations like that presented in Example7, where valu-

ation complexity is determined by the constitution of the configurations, i.e., theconfig-

uration structure, as well as by the respective inventory levels and component costs of

sellers.

For example, a valuation defined on a configuration structure with three alternate con-

figurations will violateGSto the extent that swapping production from one configuration to

another requires additional components that are allocated to the third configuration. Treat-

ing configurations{x1,x2,x3} as sets of components, assume that switching production

from x1 to x2 requires additional componentsx2 \ x1. If an agent has no additional inven-

tory of the components(x2 \ x1)∩ x3 then the induced valuation will have aGSVof 1 for

some price levels.

In this way, variation both in the composition of configurations and the inventory levels

of agents induces different levels of substitutability in agent valuations. In the example

above, ifx2 \ x1 included 2 distinct components in use by 2 different configurations, then

the bidder valuation would have aGSVof 2 for some price vectors and a non-zeroEGSV

value. Conversely, if an agent had excess inventory ofx2 \ x1, then the induced valuation

would have aGSVof zero for all prices, and therefore the valuation would have anEGSV

value of zero.

4.4.1 Valuation Generation

My experimental approach to generating a configuration structure is to generate random

configurations until a total of20unique configurations is produced. For each configuration,

I probabilistically include any one of eight unique components in the configuration (i.e.,

configurations may have variable numbers of components), while additionally requiring

that any single configuration have at least three components.

Once I have generated a set of 20 configurations, I randomly sample costs and inventory

to generate a seller valuation, where component inventories and costs are each independent

and identically distributed. Seller inventory for each component is drawn from the discrete

uniform distribution[0,3], while seller costs per component are drawn from the discrete

uniform distribution[30,80].
I then test the induced valuation with respect to the same price distribution from which

agent valuations are drawn. I sample prices, and for each price sample~p, I compute

70

GSV(v,~p). To computeGSV(v,~p), I first compute the optimal production setg∗ = d(v|~p),
and sum the gross substitutes violations over all minimal single prices changes which en-

sure a new optimal production set.

I iterate the above process with random price samples until the standard error of the

expected gross substitutes violation is below.05, producing a single valuation. I generated

a set of 100 valuations for each configuration structure, recording the costs and inventory,

along with theEGSVvalue for each such valuation. I generated and tested seller valuations

for 277 configuration structures, yielding a total of 27700 seller valuations.

4.4.2 Market Simulation

Each problem instance comprises a set of 10 buyers and 10 sellers. For each configuration

structure, I first sort the set of 100 generated seller valuations byEGSVvalues. I define

a unique problem instance for each contiguous set of 10 seller valuations, using the pre-

viously generated inventories and costs for each valuation, and taking the averageEGSV

value of the 10 sellers to classify the problem instance. I denote this averageEGSVby

aGSV. I thus generate 90 problem instances for each configuration structure.

I randomly generate buyer valuations for each problem instance. Each buyer has

demand for two units, with full substitutability among the goods (i.e., each will accept

any combination of two goods at probabilistically generated configuration reserve prices).

Buyer reserve prices are drawn from the discrete uniform distribution[400,500] for each

configuration.

For each problem instance, I first formulate the allocation problem as a linear program

to determine the maximum achievable efficiency. I then simulate bidding until quiescence,

computing the fraction of maximal efficiency at quiescence. To identify the benefit of

information feedback, I took the first iteration of bidding as the direct-revelation outcome.

Although I believe that the direct expression of substitutes—as in theOXR bidding

language—is indispensable for large or continuous attribute domains, I conducted the

same bidding simulation with a classOSbidding language to determine whether the ex-

pression of substitutes provides efficiency advantages in domains with small numbers of

configurations. Each problem instance thus produces four data points (one for each of

(direct, iterative)× (OS,OXR)).
I simulated myopic best response bidding for buyers and sellers, having buyers and

sellers bid their true values at each iteration on a profit-maximizing set of goods. Given

that the bidding language is not sufficiently expressive to directly reveal seller valuations,

sellers are forced to approximate their valuations with bids. To generate anOSbid, sellers

71

find the feasible production bundle that maximizes surplus at current prices (assuming a

uniform price for all configurations when quotes are not available). To generate an optimal

OXRbid, sellers start with the optimalOSbid, subsequently expanding the bid to a feasible

OXRbid.

4.5 Simulation Results

I aggregated the simulation results over all configuration structures and sorted the data by

aGSV value into 10 bins, computing the sample mean of the achieved fraction of total effi-

ciency. Figure4.1plots the achieved fraction of maximal efficiency as a function of aGSV

value (with aGSV value averaged over all samples within a bin), for both direct-revelation

and iterative mechanisms, for both theOSandOXRbidding languages.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
F

ra
ct

io
n

of
 M

ax
 E

ffi
ci

en
cy

Average Agent EGSV

osdirect
osbidding
oxsdirect

oxsbidding

Figure 4.1:Relationship of mean efficiency and aGSV for different mechanisms.

For aGSV values close to zero, the substitutes condition is nearly satisfied for all

valuations, indicating that prices inducing violations of the substitutes condition occur

72

infrequently. For such problem instances, I would expect iterative mechanisms to reach

nearly maximal efficiency. Figure4.1 confirms this hypothesis, as both iterative mecha-

nisms average more than97%efficiency for low aGSV values.

I note that while the directOSmechanism suffers from relatively lower efficiency across

all aGSV values (∼ 90%), the directOXRmechanism achieves a high fraction of efficiency

for low aGSV values (∼ 97%). I conjecture that the majority of lowEGSVvaluations were

also in classOXS, and that givenOXSvaluations, the ability to express substitutability

through bids provides a significant efficiency advantage in direct-revelation mechanisms.

Notable in Figure4.1 is that the iterative mechanisms relatively outperform the direct

OXRmechanism, by a margin that is increasing in aGSV value. I suspect this reflects bidder

valuations which increasingly deviate from classOXSwith higherEGSVvalues. Despite

this increasing valuation complexity, the iterative mechanisms hold to a high level of effi-

ciency, falling only to approximately95%as aGSV values reach1.4. From this I conclude

that information feedback is able to compensate for the lack of expressive power of a class

OXSbidding language.

I observe that the iterativeOXRmechanism outperforms theOSmechanism over all

aGSV values. I hypothesize that the direct expression of substitutes allows the market-

based algorithm to escape local maxima, as this mechanism does not implement a provably

convergent market-based algorithm forOSbids.

In my motivating problem, the TAC SCM game, seller costs and inventory levels are

not static, but rather change throughout the course of a game. In seeking to better define

market efficiency for a specific configuration structure given stochastic inventory levels

and costs, I also averaged theEGSVvalues across all valuations from a given inventory

structure, to produce an expectedEGSVvalue for the configuration structure itself. The

plot in Figure4.2 presents the data for efficiency as a function of the expectedEGSV

of the configuration structures, where each data point averages data over 5 configuration

structures.

In Figure4.2 I observe a noisier relationship between averageEGSVand efficiency,

but note a fairly linear relationship between averageEGSVof a configuration structure and

efficiency of the iterativeOXRmechanism. I infer from this plot that the expectedEGSV

for a given configuration structure provides a useful metric in predicting the performance

of my mechanism for a given problem instance, most accurately for the higher-efficiency

iterativeOXRmechanism.

73

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

M
ea

n
F

ra
ct

io
n

of
 M

ax
 E

ffi
ci

en
cy

Expected Agent Valuation aGSV (for configuration structure)

osdirect
osbidding
oxsdirect

oxsbidding

Figure 4.2:Relationship of mean efficiency and expected aGSV for different mechanisms.

4.6 Conclusion

In this chapter I characterized the expected efficiency of multiattribute call markets given

various assumptions on bidder valuations. I discussed the expected efficiency of my mech-

anism from the perspective of known hardness results derived for combinatorial auction

settings, given complement-free bidder valuations. I described the operation of market-

based algorithms and the technical condition of gross substitutes. I demonstrated that the

information-feedback functionality of my market design supports efficient allocations given

valuations satisfying the gross substitutes condition.

Importantly, I demonstrated that the addition of information feedback functionality to

an OXS-based multiattribute call market design successfully compensates for the expres-

sive deficiencies imposed by a restricted bidding language. The addition of information

feedback support to our previously developed clearing algorithm thus extends the range of

bidder valuations for which this market design is able to support efficiency.

74

Inspired by a multiattribute supply chain setting, I presented natural ways in which

multiattribute valuations may violate the gross substitutes condition. Lacking theoretical

results as to the expected efficiency of my market design for valuations likely to be en-

countered in practice, I presented a new metric on bidder valuations, derived from the ways

in which valuations violate the substitutes condition. I then presented evidence that this

metric correlates with the expected efficiency of market-based algorithms. Also to my

knowledge, this is the first such experiment presenting evidence of a correlation between

the efficiency of market-based algorithms and the measured gross substitutes violation of

bidder valuations.

75

Chapter 5

Multiattribute Supply Chain Simulation

The component-based valuation model of Chapter4 was inspired by the Trading Agent

Competition Supply Chain Management Game (TAC SCM) (Arunachalam and Sadeh,

2005), a multi-agent trading competition designed to foster research in agent design, specif-

ically in the domain of supply chain automation. In this chapter I employ the full TAC SCM

simulation environment in devising a benchmark for multiattribute auctions. Scoring game

outcomes with an existing tool for calculating market efficiency of a game instance, I eval-

uate alternative market designs and corresponding bidder strategies within the simulation

environment.

The term supply chain refers to the multiple levels within the economy at which goods

are manufactured and used as inputs for the production of other goods, which may in turn

be used as inputs once again in the next link of the chain. Traditionally, negotiations among

supply chain participants take place in face-to-face settings, with supply contracts renego-

tiated on an infrequent basis.

Given the global volume of business-to-business transactions, the automation of sup-

ply chain negotiation presents an opportunity to realize substantial economic gains. The

details, or attributes, inherent in most procurement contracts preclude the use of price-only

auction formats for negotiation in many supply chain settings. The use of multiattribute

reverse auctions, as described in Section1, as well as electronicrequest for quote(RFQ)

negotiations constitute two main thrusts of technology-based approaches to increasing sup-

ply chain efficiency (Kaufmann and Carter, 2004). In a request for quote, buyers solicit

supplier bids to provide a specific product or service. RFQ-based negotiations function

much like reverse auctions, but lack formal rules for selecting winning bids.

TAC SCM simulates one link of a supply chain in a computer manufacturing domain,

where suppliers provide inputs in the form of computer parts, while customers provide fi-

nal demand for finished computer products. In the middle stand manufacturing agents, who

procure parts, assemble them into finished products, and ultimately sell the manufactured

PCs to customers. The game aspect of TAC SCM comes from the fact that while suppliers

76

and customers are part of the simulation environment (with stochastically determined be-

havior), the manufacturers are designed by contestants, who compete to generate the most

profit over the course of a game. All negotiation within TAC SCM is conducted through

a request-for-quote process, whereby manufacturing agents solicit bids from suppliers

through RFQs, in turn bidding on customer RFQs to win PC supply contracts. Figure5.1

depicts the high-level interaction among agents in TAC SCM.

Figure 5.1:Diagram of TAC SCM supply chain, with suppliers shown at left, manufactur-
ing agents in the middle, and customer at right.

TAC SCM presents an existing simulation environment approximating a real-world

potential application domain for multiattribute call markets. The PCs traded between cus-

tomers and manufacturers are inherently multiattribute goods, with attributes providing

contract details of SKU, delivery date, and penalty. By replacing the existing RFQ-based

customer negotiation mechanism with a multiattribute market, I can measure efficiency in

the context of a broad operational scenario.

Whereas in Section4.4.1I defined agent costs, and inventories as exogenous variables

for each problem instance, in this chapter these variables become time-dependent endoge-

nous variables which evolve with the outcome of game play. In using the full TAC SCM

simulation, I obtain problem instances with bidder valuations that are grounded in a higher

degree of realism, while the use of an existing simulation environment provides a more

objective benchmark for mechanism evaluation. Additionally, measuring the market ef-

ficiency across a multi-period simulation changes the notion of mechanism to one which

may more accurately model real-world domains.

77

After describing TAC SCM game as implemented for the 2005 TAC SCM competi-

tion,1 I present an efficiency metric developed byJordan et al.(2006) which was used to

evaluate the 2005 competition. I describe the basic assumptions that underlie this efficiency

calculation, and present a brief sketch of the calculation itself.

Next, I describe the integration of multiattribute markets into the TAC SCM simulation,

denoting this modified simulation environment asTACSCM-MA. I describe the adapta-

tion of the simulation software to support AB3D, as well as the AB3D implementation.

I present the AB3D auction rules and bidding language for this domain, as well as some

specialized AB3D features which economize somewhat on the computational complexity

of the simulations.

I present my own entry in the 2005 TAC SCM competition,GoBlueOval , which

I use as a baseline agent strategy for simulations. After describing the implementation

of GoBlueOval in the existing TAC SCM environment, I present multiattribute bidding

strategies developed for the modified simulation environment.

After presenting preliminary results which are somewhat negative (i.e., the multiat-

tribute markets yieldlower efficiency than the existing RFQ-based mechanism), I revisit

the fundamentals of market-based algorithms and the technical assumptions on bidding

behavior and price adjustments which underlie the efficiency guarantees for market-based

algorithms. In analyzing the subtleties of employing market-based algorithms, I present a

new stylized subproblem which is more faithful to the daily allocation problem found in

TAC SCM. I show that the higher quantities of agent demand found in the daily TAC SCM

PC market introduce new complexities absent from the model of Section4.4.1. After find-

ing bidding strategies for this subproblem which generate improved efficiency given my

information feedback policy, I apply the optimal subproblem strategy to the full simulation

and demonstrate an efficiency advantage over the existing TAC SCM market design.

5.1 The Trading Agent Competition Supply Chain Man-
agement Game

To participate in TAC SCM, competitors submit entries in the form oftrading agents, au-

tonomous software entities which compete in a game by making procurement, production,

and selling decisions over the course of220 simulated days. Agents compete with each

other in procuring from a limited supply of components and securing a limited number of

customer sales contracts.
1The TAC SCM rules often change slightly from year to year.

78

Each day of a TAC SCM simulation lasts 15 seconds, during which time the manufac-
turing agents must make choices for the following activities:

• bidding on customer RFQs
• sending RFQs to suppliers
• accepting supplier offers
• manufacturing PCs from existing component inventory
• completing orders by shipping from inventory of manufactured PCs

Each day, customers issue requests for quotes for finished PCs and select winning bids

from among the prior day’s set of submitted manufacturer bids. Manufacturers are free to

bid on any or all of a given day’s customer RFQs, by submitting a price at which they will

provide the given order. Manufacturing agents are limited in production by a fixed daily

assembly line capacity and available component inventory. Available component inventory

is maintained by procuring components from a set of eight simulated suppliers.

The following sections describe specifics of TAC SCM that are relevant to my analy-

sis, but I do not provide a full game description. For a complete specification of the TAC

SCM rules and simulation environment, see the description provided byArunachalam et al.

(2004).

5.1.1 The Goods

Each PC requires four unique components: memory, hard disk, CPU, and motherboard.

The CPUs come in two different “families” (Pintel andIMD), each family with two dif-

ferent speeds, for a total of four different CPU types. Motherboards are available in each

family type, and are incompatible with CPUs of the alternate family type (i.e., the CPU

and Motherboard in a PC must be of the same family). Memory and hard disks are each

available in two sizes, compatible with both family types. The complete list of PC parts is

presented in Table5.1.

Constraining the CPU and motherboard to agree on family but otherwise allowing for

arbitrary combinations of components yields 16 unique “builds.” Each build additionally

requires a specific quantity of production cycles to manufacture. The TAC SCM bill of

materials shown in Table5.2 specifies the complete set of builds, including required pro-

duction cycles for each build. Table5.2 additionally identifies themarket segmentfor

each SKU, which identifies one of three underlying stochastic processes from which the

customer demand is drawn each day.

79

Component Base price Supplier(s) Description
100 1000 Pintel Pintel CPU, 2.0 GHz
101 1500 Pintel Pintel CPU, 5.0 GHz
110 1000 IMD IMD CPU, 2.0 GHz
111 1500 IMD IMD CPU, 5.0 GHz
200 250 Basus, Macrostar Pintel motherboard
210 250 Basus, Macrostar IMD motherboard
300 100 MEC, Queenmax Memory, 1GB
301 200 MEC, Queenmax Memory, 2GB
400 300 Watergate, Mintor Hard disk, 300GB
401 400 Watergate, Mintor Hard disk, 500GB

Table 5.1:List of TAC SCM components.

SKU Components Cycles Market segment
1 100,200,300,400 4 Low
2 100,200,300,401 5 Low
3 100,200,301,400 5 Mid
4 100,200,301,401 6 Mid
5 101,200,300,400 5 Mid
6 101,200,300,401 6 High
7 101,200,301,401 6 High
8 101,200,301,401 7 High
9 110,210,300,401 4 Low
10 110,210,300,401 5 Low
11 110,210,301,401 5 Low
12 110,210,301,401 6 Mid
13 111,210,300,401 5 Mid
14 111,210,300,401 6 Mid
15 111,210,301,401 6 High
16 111,210,301,401 7 High

Table 5.2:TAC SCM bill of materials.

5.1.2 Component Market

Agents procure components by issuing RFQs to one of eight suppliers. The two CPU sup-

pliers specialize in one CPU family, while other suppliers provide both types of a single

component.

Each day, each agent may send up to five RFQs to each supplier for each of the products

offered by that supplier, for a total of ten RFQs per supplier. Each RFQ represents a request

for a specified quantity of a particular component type to be delivered on a specific date,

80

but only if the quoted price is no higher than a reserve price. Once the supplier computes

prices, a bid will be generated for each RFQ, having a possibly reduced quantity. If the

reserve price cannot be met, then the quoted quantity will be 0. On the following day, the

supplier sends back to each agent an offer for each RFQ, containing the price, adjusted

quantity, and due date. The manufacturing agents may then choose to accept any subset of

supplier offers.

Suppliers determine offer prices based on the ratio of free capacity to expected total

production capacity. Roughly,2 the offered price is computed as:

Pbase

(
1−δ (

Cavail

Ctotal
)
)

wherePbase is a constant baseline component price (defined for each component),Cavail

is the expected value of uncommitted production capacity (up to the requested due date),

andCtotal is the expected value of total production capacity (up to the requested due date).

Both expectations are derived using the current day’s capacity as the expected future daily

capacity. While suppliers are not perfectly rational in their offer pricing, the crude capacity

signals conveyed through component prices provide agents with some idea of the relative

availabilities of alternate components. Agents use some of their allotted supplier RFQs to

query the state of suppliers by sendingprice probes. Price probes are RFQs requesting

zero quantity for a specific date. Suppliers will respond to price probes with a price for the

requested offer date for an order of zero quantity.

5.1.3 PC Market

Customer demand is expressed as requests for quotes (customer RFQs), each of which

specifies a product type, quantity, due date, reserve price, and penalty for late delivery. The

specific instantiation of values for a given RFQ is determined stochastically. The prod-

uct type is randomly chosen from the available types, quantity is chosen uniformly from

[1,20], and the due date is chosen uniformly from[3,12] days in the future. The reserve

price ranges from between[75,125] as a percentage of the baseline component prices, and

late delivery penalty is a percentage of the reserve price, chosen uniformly from[5,15].
The customer will submitN RFQs on dayd, whereN is distributed according to the

poisson distribution,Poisson(Qd), with Qd defined by a random-walk-following trend. The

more highly competitive agents in recent TAC SCM tournaments reason with respect to the

2This captures the idea behind supplier pricing. See the full game description for the exact supplier pricing
calculation.

81

expectation ofQd in anticipating future customer demand trends (Kiekintveld et al., 2007).

At the start of each day, each manufacturing agent is sent the complete set of customer

RFQs for that day. Agents may then submit bids for any of the RFQs for that day by send-

ing a bid amount that is weakly less than the customer reserve price, thereby committing to

supply the entire requested quantity on the specified delivery date if awarded the contract,

or incur the specified late penalties. Each customer collects the set of bids submitted by

all agents, selecting the agent with the lowest bid for each RFQ to be the chosen supplier,

with ties broken at random. This allocation process is equivalent to a set of independent

sealed-bid auctions, one for each RFQ.

5.2 Gross Substitutes Violations

Recall that in Section4.4.1, I generated bidder valuations from a given configuration struc-

ture (i.e., bill of materials) by sampling costs and inventories, and classified the induced

valuations according toEGSVvalue. I then simulated bidding with a set of such valuations,

and presented a plot demonstrating a correlation between efficiency and averageEGSV

value of a problem instance, aggregating data across multiple configuration structures.

Taking random samples of inventory, and omitting consideration of production cycles,

due dates, and penalties for the time being, we can classify this bill of materials within the

same framework introduced in Section4.4. Figure5.2 depicts the cumulative distribution

function ofEGSVvalues for 400 randomly generated valuations induced by the TAC SCM

bill of materials, taking component costs and inventory samples as defined in Section4.4.1.

We can also perform the same market efficiency simulation as that from Section4.4.2,

computing the expected efficiency as a function of the averageEGSVvalue, but using only

the TAC SCM bill of materials. Results from 390 bidding simulations are depicted in

Figure5.3, where each simulation takes a contiguous set of 10EGSVvalues from those

depicted in Figure5.3.

The addition of cycle constraints, due dates, and penalties, complicates the bidding

problem, and has an effect on agent valuations, but should not affect theEGSVof the agent

valuations. While different production cycle requirements preclude configurations from

beingperfect substitutes, i.e., they are not exchangeable on a 1-to-1 basis, cycle constraints

do not impose new violations of the gross substitutability of the configurations. The cycle

constraints do have an impact on the effectiveness of sealed-bid multiattribute mechanisms,

as I demonstrate in Example8 of Section5.7.

82

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

EGSV

Figure 5.2:CDF of EGSVvalues for the TAC SCM bill of materials, using 400 valuations
generated with random inventory and costs.

5.3 TAC SCM Market Efficiency

To evaluate the efficiency of the TAC SCM market, the entire supply chain from supplier

to customer is treated as a centralized optimization problem, where the objective is to max-

imize the sum of realized agent utilities. As discussed in Section1.2, transfer payments

leave global utility unaffected, so the objective is then to maximize the sum of the realized

agent valuations. The prices paid for goods and any profits generated by manufacturers net

out to zero, and the market efficiency is a measure of the fraction of the maximal true sur-

plus achieved during the simulation. Loosely, this measures how well the limited resources

of the system are allocated in meeting customer demand.

In formulating the objective function, we then need to consider the valuations of all the

agents involved. In measuring the overall efficiency of the TAC SCM market, I employ

a software tool developed byJordan et al.(2006). I borrow their model in making the

following assumptions about agent valuations:

83

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

M
ea

n
F

ra
ct

io
n

of
 M

ax
 E

ffi
ci

en
cy

 (
w

ith
 9

5%
 c

.i.
)

Average Agent Valuation GSV

osdirect
oxsdirect

osbidding
oxsbidding

Figure 5.3:Relationship between efficiency andEGSVfor the TAC SCM bill of materials
with 95% confidence intervals. Each problem instance used 10 contiguous valuations from
those depicted in Figure5.2.

• suppliers Suppliers are assumed to incur linear component costs equal to the dis-
counted base price per component,Pbase

c (1− δ), up to their realized production
capacities.

• customersCustomers derive value for satisfied orders equal to the face value of
RFQs, less the costs of any penalties incurred. This assumption is equivalent to
assuming that customers are truthful in submitting RFQ reserve prices.

• manufacturers Manufacturers are assumed to incur only storage costs, but are lim-
ited in their production capacities at 2000 cycles per day.3

The optimization can be framed from the standpoint of the optimal set of filled RFQs,

A, where the filled RFQs on any dayd is Ad, which must be a subset of the customer RFQs

3In the simulation, manufacturers “supply” production capacity, inventory storage, and computation di-
rected toward decision making. While all of these resources would have value in a real-world environment
(likely equal to the variable cost of operation), within the simulation environment manufacturers incur only
storage costs.

84

for that day,RFQd. The value ofAd, V (Ad), is simply the sum of unit reserve prices of the

individual RFQs, multiplied by the respective RFQ quantities. The cost ofAd is the sum

of the costs of required components, with each component valued at half its base price. I

further defineFactory(Ad) andComponents(Ad), respectively, as factory cycles and com-

ponents required to manufacture the PCs forAd. Denoting the aggregate set of components

(across all suppliers) that can be produced on dayd by Cd, and the aggregate production

capacity (across all manufacturers) on dayd by Fd, the maximization of global surplus was

formulated as the following integer program:

maxAd|Ad⊂RFQd ∑d∈daysV (Ad)−C (Ad)

s.t. ∀d ∈ days





⋃d
i=0Components(Ai)⊆

⋃d
i=0Ci

⋃d
i=0Factory(Ai)⊆

⋃d
i=0Fi

This formulation depicts the algorithm as implemented byJordan et al.. This formu-

lation yields only a close approximation to the true optimal surplus, as it does not require

production capacity used for a given RFQ to be available on the same day as the parts re-

quired for that RFQ. That is to say, it allows for production capacity available on dayd to

be used in assembling PCs with components that are not available until dayd′ > d, so long

as the cycle and inventory constraints are independently satisfied.

Jordan et al.(2006) applied their efficiency tool to the TAC SCM competition for years

2003-2005, finding a general trend toward higher efficiency across years, as well as higher

efficiency in advanced tournament rounds. The efficiencies for each year are presented in

Table5.3, segregated into the quarterfinals (QF), semifinals (SF) and final (F) rounds.4

QF SF F
2003 59.8% 59.1% 62.9%
2004 67.4% 75.9% 57.1%
2005 86.9% 87.6% 90.5%

Table 5.3:Average market efficiency for quarterfinals, semifinals, and finals of TAC SCM
competition, years 2003–2005.

Citing the increasing trend in market efficiency,Jordan et al. hypothesized a posi-

tive correlation between efficiency and agent competence, but as noted byWellman et al.

(2003), not all advances in agent competence lend themselves to increases in market ef-

ficiency. A broad distinction is made in much of economic theory betweencompetitive

4The efficiency values reported byJordan et al.(2006) are∼ 3% lower than those reported here, as their
algorithm for calculating the maximal surplus mistakenly defined several configurations as not requiring a
motherboard.

85

andstrategicbehavior (Mas-Colell et al., 1995). Competitive behavior, also calledprice-

taking behavior, implies that agents observe market prices and optimize with respect to

those prices. We can observe price-taking behavior behind the implementation of market-

based algorithms, as agents myopically optimize with respect to prices. In contrast, when

engaging in strategic behavior, agents account for their own effects on prices as well as

their effects on other agents when formulating strategies.

Given that finding an optimal allocation for a game instance is NP-hard, it should be

expected that finding strategies that maximize efficiency will be a challenging problem,

even when dictating all agent strategies (i.e., even when including non-equilibrium strategy

profiles). A goal in formulating a market design for any environment is that competitive

behavior (i.e., optimal agent strategies) should lead to efficient outcomes while also being

robust to strategic behavior.

In observing the increasing efficiency trend in successive years of the TAC SCM com-

petition, we can argue that the RFQ-based negotiation process is a good mechanism—as

agents have become more competent, the market efficiency has increased. The question I

address here is whether a multiattribute market is able to improve on this mechanism.

5.4 Multiattribute Simulation Implementation

I modified the TAC SCM simulation environment to support the negotiation of customer

orders through a single multiattribute market. In the modified environment, the AB3D

system is invoked at the beginning of each simulation, and runs in parallel throughout the

simulation. Each day, rather than sending RFQs to the manufacturing agents, customers

translate each RFQ into an equivalent multiattribute offer (the set of all RFQs collectively

comprising a classOSbid, in the framework from Section4.1.4) and send the aggregate

set of offers to the AB3D system. Manufacturers likewise send multiattribute bids to the

AB3D system. At the end of each simulation day, the SCM simulation sends aclear trig-

ger message to the AB3D system, subsequently downloading any transactions generated in

the clear operation. The transactions are then translated back into orders, which are sent to

the respective trade parties of the transaction.

5.4.1 Scenario Modifications

To enable a fair comparison between the original game formulation and my multiattribute

implementation, I kept all exogenous variables intact, and replaced only the manufacturer-

86

customer negotiation process. As the clearing algorithm requires that bids be divisible, I

similarly had to require that RFQs be divisible in the multiattribute implementation, mean-

ing that a single RFQ may be partially filled, or filled by multiple agents. Although this is a

possible source of bias in favor of the multiattribute implementation, the effect is relatively

minor, as the quantity of each RFQ is small in relation to the aggregate quantity of PCs

requested per day.

In order for the simulation environment to properly credit a shipment made in fulfill-

ment of an order, messages designating an RFQ, bid, and order must all have been sent

between the trade parties. Therefore, as a matter of bookkeeping, a set of RFQs is retroac-

tively generated which is equivalent in aggregate to the initial set of customer RFQs, but

with quantities amended so that quantity from a single RFQ is not split among multiple or-

ders. A set of manufacturer bids is then generated which correspond with the transactions

and orders generated by the AB3D system.

For the iterative implementation, at the end of each day, subsequent to each bid sub-

mission, the AB3D system computes quotes for each(SKU,day). The simulation invokes

manufacturing agents serially during a bidding round, allowing them to submit bids based

on quote information incorporating all prior bids.

5.4.2 AB3D Auction Implementation

The following sections describe the three dimensions of the AB3D auction specification:

bidding language, clearing policy, and information revelation policy.

Bids

Multiattribute bids specify the SKU, due date, penalty, quantity, and reserve price. I used

the following mapping to attribute ID numbers:

due date 1

penalty 2

SKU 3

RFQ ID 4

The RFQ ID is necessary for the bookkeeping within the SCM simulation, as the sim-

ulation requires an existing RFQ which corresponds with each order. Manufacturers omit

the RFQ ID, allowing for a match on any RFQ ID value.

87

For customer bids, each RFQ is directly translated into a single offer set, where the set

of all RFQs for a given day are aggregated into a single bid. The clearing algorithm does

not support indivisible bids, so each equivalent multiattribute offer must be made divisible.

To support this, penalties are translated from an aggregate penalty (for the entire RFQ) into

a unit penalty (penalty per unit quantity). Figure5.4 depicts a single RFQ translated into

an offer set of quantity 8, with due date of 115, penalty of 119 (originally119·8 = 952in

the RFQ), SKU 10, RFQ ID of 480, and reserve price of 2397.0.
<OS>

<Q>8</Q>
<O>

<P>2397.0</P>
<FCS>

<V>115</V>
<V>119</V>
<V>10</V>
<V>480</V>

</FCS>
</O>

</OS>

Figure 5.4:Customer RFQ translated into a multiattribute offer.

Manufacturer offers may specify a range of possible values for due dates, and may spec-

ify multiple offers within an offer set. The following offer set of quantity 8 specifies two

alternate configurations, either configuration 2 at a price of 995, valid over the date range

of [108,120], or configuration 10 at a price of 1130.0, also valid over dates[108,120].
<OS>

<Q>-8</Q>
<O>

<P>995.0</P>
<FCS>

<R><V>108</V><V>120</V></R>
<V>2</V>

</FCS>
</O>
<O>

<P>1330.0</P>
<FCS>

<R><V>108</V><V>120</V></R>
<V>10</V>

</FCS>
</O>

</OS>

Figure 5.5:Multiattribute manufacturer offer.

88

The above manufacturer and customer bids would match on configuration 10 and due

date 115. Since the manufacturer bid omitted the RFQ ID and the penalty amount, the bid

will match against any values for those attributes. The resulting match between the two

offer sets would have unit penalty of 119 and RFQ ID of 480. The surplus of this match

(i.e., the solution toMMPs which would be used in the optimization problem of the clear

operation) would be2397.0−995.0 = 1067.

Clearing

The timing of the clear is left undefined within the AB3D auction script, as all clears are

generated by trigger messages sent from the simulation. Figure5.6provides an example of

a clear message, which instructs the AB3D system to clear at unix time of 1204779620000

(equivalently, 2008-03-06 00:00:20), and to subsequently clear all bids from the order book.

In order to send such trigger messages, the simulation authenticated with the AB3D system

at the start of the game using an administrator password, receiving an agent ID of 0.

<Trigger>
<auctionID>1</auctionID>
<agentID>0</agentID>
<TimeStamp>1204779620000</TimeStamp>
<action>clear</action>
<action>flushBids</action>

</Trigger>

Figure 5.6:Example trigger message to clear the AB3D auction.

Information Feedback

The general purpose multiattribute order book supports only query-based information feed-

back, as the complexity of computing quotes for all configurations is prohibitive in the

general case. In the case of the SCM simulation, the quote-based bidding algorithm used

by agents employs all available quote information, i.e., all quotes for (SKU,day) pairs. To

economize somewhat on communication between AB3D and agents, I extended the exist-

ing order book with a quote operation that computes bid quotes for all (SKU,day) pairs,

ultimately computing a total of 160 bid quotes per quote operation. The AB3D auction

script for the SCM simulation includes a rule to quote on any successful bid submission,

computing bid quotes for all (SKU,day) pairs and sending the aggregate quote to the cache.

The SCM simulation then polls for an updated quote after each agent’s bidding round, pro-

viding the updated quote to the next bidder. Agents thus are able to reason based on quote

89

information that incorporates all previously submitted bids.

5.5 Baseline Manufacturing Agent

The baseline manufacturing agent is derived from my entry in the 2005 TAC SCM com-

petition, GoBlueOval .5 On a high levelGoBlueOval behaves in an approximately

price-taking manner, purchasing components for any price less than their estimated mar-

ginal cost, and selling computers at prices greater than estimated sum of component costs.

The bidsGoBlueOval places for customer RFQs are determined by available inventory

and production capacity, in conjunction with empirical distributions which model the prob-

ability of winning an order. Although the PC market bidding is the primary focus in this

chapter (as well as the only modification across the standard and multiattribute treatments),

for completeness I give a sketch of the fullGoBlueOval behavior in the following sec-

tions.

5.5.1 Component Procurement

GoBlueOval employs a very simple heuristic in maintaining its component inventory.

GoBlueOval uses static target levels of inventory as a function of the time into the fu-

ture. At the end of each day,GoBlueOval computes an expected inventory for the next

30 days, taking into account open supplier orders and open customer orders. In deciding

which RFQs to send to suppliers,GoBlueOval scans over the next 30 days in increments

of 3 days, sending an RFQ with quantity set to the expected inventory deficit, up to a max-

imum quantity of 300. The reserve price for each supplier RFQ is set to the approximated

marginal value of the component, averaged over all PCs that contain the component.

5.5.2 Manufacturing Scheduling and Shipping

Each day,GoBlueOval builds and ships PCs for as many open customer orders as possi-

ble, subject to inventory and production capacity constraints. In selecting orders to build,

GoBlueOval first produces PCs for any orders that are due in two days (i.e., they will be

delivered on time if produced today, but will be late if produced tomorrow). Next, any late

5GoBlueOval was the 2nd place agent in the seeding round, but fared poorly in the quarterfinal round due
to a bug arising only in the presence of specific opponent strategies.GoBlueOval was developed with the
help of Yagil Engel, Daniel Kuo, and Maurice Solomon, and also with the support of Ford Motor Company.

90

orders that can still be delivered before cancelation are produced. Finally, any open orders

due later than two days in the future are produced.

Orders can be shipped if the agent has adequate inventory of built PCs. Order shipping

is performed in the same sequence, where orders due in two days with sufficient PC inven-

tory will be shipped first, followed by late orders, followed by orders due more than two

days in the future.

5.5.3 Customer RFQ Bidding

Without the uncertainty inherent in customer bidding, the daily customer bidding problem

reduces to a knapsack problem: bid on the set of RFQs generating the most profit, subject

to inventory and capacity constraints.GoBlueOval simplifies the problem by ignoring

inventory constraints and relaxing integrality constraints, thus solving the relaxed (frac-

tional) knapsack problem of maximizing profit subject to cycle constraints. Computing the

solution to a fractional knapsack problem is fairly simple: starting with the highest density

item, add items of decreasing density until the capacity has been reached. In the case of

maximizing profit subject to production capacity constraints, the “density” is the profit per

cycle (which I denote bysurplus per cycleor SPC) of any given RFQ. For example, an

RFQ with an estimated cost of $500, requiring 5 production cycles per unit, would have a

surplus per cycle ofp−500
5 per unit as a function of the bid price,p. The estimated cost for

each PC is estimated as the sum of component costs, where the cost for each component is

estimated by sending a single price probe11days in the future.

This problem is complicated by the uncertainty of winning any single RFQ. Both the

probability of winning and the surplus per cycle are bid-dependent.GoBlueOval ap-

proaches the problem probabilistically and finds the profit-maximizingSPCto bid for all

RFQs subject to production capacity constraints. Denoting theSPC-dependent probability

of winning a customer order byΠw(SPC), GoBlueOval solves the following optimiza-

tion:

maxSPC ∑rfq∈RFQsΠw(SPC) ·SPC·cycles(rfq)
s.t. ∑rfq∈RFQsΠw(SPC) ·cycles(r f q) < capacity

Bid Win Distribution

GoBlueOval models the probability of winning a given RFQ through empirically updated

distributions, which map fromSPCto the probability of winning. A unique distribution is

91

maintained for each lead time, yielding10 such distributions: 1 each for lead times of 3

through 12. The distributions are updated each day based on the observed win probabilities

of the prior day’s bids.

Customer Bidding Optimization

Given empirical distributions,GoBlueOval calculates a profit-maximizing surplus to bid

on each lead time, given(lead−3) additional days for which to bid in satisfying a given

day’s production capacity. Taking the current day’s set of customer RFQs as the expected

set of RFQs that will be observed in future days,GoBlueOval finds the single level of

SPCwhich would maximize profits, subject to capacity constraints.

Bidding

GoBlueOval then processes all of the day’s RFQs in decreasing order of maximum pos-

sibleSPC(i.e., reserve−cost
cycles , where cost is estimated through supplier price probes), placing

a bid with unit price of(cost+SPC·cycles), until the inventory and manufacturing capacity

constraints are met probabilistically (using the bid win distribution to estimate probabili-

ties).

To maintain better accuracy in the bid distributions, theSPCused for any given bid

is perturbed stochastically between[SPC− 20,SPC+ 20]. Given the perturbedSPC for

an RFQ,GoBlueOval computes a bid asb∗ = cost+SPC·cycles, submitting a bid if the

computed bid value is below the RFQ reserve price. The final bid amount is again perturbed

stochastically between[b∗−5,b∗+5], to avoid predictability in bidding behavior.

5.6 Bidding Strategies

As discussed in Section5.3, the market efficiency of a TAC SCM game depends critically

on agent strategies. The work byJordan et al.(2006) showed that not just the overall com-

petence of agents, but also the mix of agents in a given game has an influence on market

efficiency.

Efficiency results from the annual TAC SCM competition provide an indication of the

expected efficiency of TAC SCM under maximally competitive agents, given that signifi-

cant efforts are devoted to agent design, with those efforts coming from a diverse group of

sophisticated competitors. The creation of a multiattribute TAC SCM competition would

92

present a valuable measure of multiattribute market efficiency in this domain. Lacking

such a competition to spur agent strategy design, I employ variations ofGoBlueOval ,

an agent that was a top competitor in early 2005 TAC SCM rounds. Using the existing

GoBlueOval implementation as a second RFQ-based efficiency benchmark, I modify the

customer bidding algorithm with myopic multiattribute bidding strategies. While results

from such a restricted space of bidding strategies will not provide conclusive evidence for

the relative efficiency of multiattribute markets, I argue that the use of naı̈ve multiattribute

bidding strategies provides evidence for the expected efficiency given agents that are more

strategic in nature.

The following sections describe various bidding strategies for both the standard and

multiattribute bidding simulations. For all of the following bidding strategies, the com-

ponent ordering, manufacturing, and shipping algorithms are identical, with variation in

customer bidding strategies. For multiattribute bidding strategies, all agents bid their esti-

mated cost on all SKUs, i.e., only the set of goods on which to bid varies across the different

implementations.

5.6.1 GoBlueOval Random

This strategy simply bids a random value between cost and the reserve price of the RFQ,

where the RFQs are processed in decreasing order of maximum possibleSPC. This strat-

egy uses the bidding distribution, but only to determine when to stop bidding on RFQs (i.e.,

when inventory or cycle capacity has been exhausted in expectation).

5.6.2 GoBlueOval Cost

This strategy uses an inventory-dependent cost in determining the bid level, subsequently

computing the probability of winning the RFQ based on the cost as defined in the baseline

customer bidding algorithm (i.e., the cost as estimated through supplier price probes). This

strategy uses the bidding distribution, but only to determine when to stop bidding on RFQs

(i.e., when inventory or cycle capacity has been exhausted in expectation).

5.6.3 Multiattribute Direct

In the direct multiattribute implementation, agents formulate bids without receiving any

quote information. Agents use a simple heuristic in formulating direct multiattribute bids.

93

Starting with lead time 3, the agents generate up to 2 offer sets for each lead time, iterating

over all lead times up to 12. For each lead time, the agents first generate an offer set by

iterating over all SKUs, including all SKUs to the offer set for which the maximum pos-

sible production of the SKU is within 100 of the maximal production of any SKU on that

day. This offer set is added to the bid, inventory is debited, and a second pass is made for

the same lead time. This process is iterated for each subsequent lead time, thus generating

a multiattribute bid with up to 20 offer sets. For each offer set, the penalty is not specified

in the bid (allowing a match on any penalty amount), while the price is set to the estimated

sum of component costs for each SKU.

5.6.4 Iterative Multiattribute Bidding

In the iterative implementation, each agent receives updated quote information at the be-

ginning of its allotted bidding round. The agent takes this quote information and computes

an optimal feasible production set. The following linear program computes the optimal

feasible production set given bid quotes (denoted bybq) by maximizing surplus subject to

inventory and capacity constraints:

max ∑d ∑SKU(bqSKU,day−costSKU))qSKU,day

s.t. ∀d ∈ days





∑SKU∑day
d=0cycles(SKU)qSKU,d ≤ ∑day

d=0cyclesavail
d

∀comp∑SKU|comp∈SKU∑day
d=0qSKU,d ≤ ∑day

d=0 inventorycomp,d

The production quantities which solve the above linear program constitute a feasible

production set, which can be formulated as a feasibleOSbid. The agent takes this feasible

OSbid and expands it to a feasibleOXSbid by iterating over each SKU in theOSbid, and

adding all other SKUs with sufficient inventory and equivalent production cycles.

5.7 Simulation Results

I first present results for the alternativeGoBlueOval strategies. The CDF and mean ef-

ficiencies are plotted in Figure5.7 and Figure5.8, respectively, with sample sizes of 188

for GoBlueOval (depicted as gbo), 69 for randomizedGoBlueOval (depicted asgbor),

and 54 for cost-biddingGoBlueOval (depicted asgboc).

The version ofGoBlueOval submitting random bids (above cost, and probabilisti-

94

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Efficiency

gbor

gbo

gboc

Figure 5.7: CDF of realized efficiencies ofGoBlueOval strategies for baseline (gbo),
randomized (gbor), and cost-bidding (gboc) implementations.

cally filling inventory) yielded higher efficiency than the baselineGoBlueOval , while

the version ofGoBlueOval submitting bids of true cost fared the worst. A possible

explanation for the superior performance of the randomized implementation is that the

baseline implementation implements strategic demand reduction to a certain degree, in that

the profit-maximizingSPCmay not fully utilize production capacity or inventory (at a price

above cost). Although the randomized strategy is far from an equilibrium strategy, I will

take the randomized version as the “best” RFQ-based implementation, and use that as my

comparison benchmark for the multiattribute implementations.

Next, I compare efficiency for the randomizedGoBlueOval implementation against

the multiattribute implementations. Figure5.9 plots the CDF of efficiency for each strat-

egy, and 5.10the mean efficiency with 95% confidence intervals. Sample sizes were 55

for iterative multiattribute (depicted asmai), 186 for sealed-bid multiattribute (depicted as

(mad)) and 188 for randomizedGoBlueOval (depicted asgbor).

95

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 gboc gbo gborr

E
ffi

ci
en

cy

Strategy

TAC 2005 Finals

Figure 5.8: Mean realized efficiencies with 95% confidence intervals ofGoBlueOval
strategies for baseline (gbo), randomized (gbor), and cost-bidding (gboc) implementations.
Average efficiency achieved in the final round of the 2005 TAC SCM competition is de-
picted by the dashed horizontal line.

The initial simulation results were somewhat surprising, in that both the direct and it-

erative multiattribute implementations fared poorly in comparison to the baseline agent.

While both gave reasonable performance, yielding higher efficiency than the early rounds

of the 2005 TAC SCM tournament, my hypothesis was that multiattribute bidding would

lead to higher measures of efficiency when holding other agent behaviors (e.g., supplier

ordering) constant.

We must bear in mind the different market information available in the multiattribute

and standard settings. For the standard setting, the entire set of customer RFQs is made

available to all agents, essentially disclosing the entire preference structure of the customer

agent. In contrast, agents had no information about customer bids in the sealed-bid multi-

attribute setting,6 whereas in the iterative setting agents had only limited knowledge of the

6Agents could potentially reason about the expected customer bid based on the customer demand process

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.75 0.8 0.85 0.9 0.95 1

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Efficiency

gbor

mad

mai

Figure 5.9:CDF of realized efficiencies for randomizedGoBlueOval (gbor), sealed-bid
multiattribute(mad), and iterative multiattribute (mai) implementations.

full set customer bids through price quotes. The direct multiattribute implementation could

be considered a viable alternative to the existing protocol in that comparable efficiency

obtains with improved information disclosure policies.

The difficulty for the direct revelation was presaged in the results from Section4.5.

Although the expected gross substitutes violation at the margin would be expected to be

consistent for varying levels of inventory, the induced agent valuations become increas-

ingly difficult to express in anOXSbidding language. The following example demonstrates

how differing manufacturing cycle requirements across configurations prevents the direct

expression of valuations with classOXSbids.

Example 8 Consider a producer who can manufacture two unique goods, each requiring

two unique parts, assembled in the following manner:

given prior customer bids, but no such reasoning was implemented in these test agents.

97

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 mai mad gbor

E
ffi

ci
en

cy

Strategy

TAC 2005 Finals

Figure 5.10: Mean realized efficiencies with 95% confidence intervals for randomized
GoBlueOval (gbor), sealed-bid multiattribute(mad), and iterative multiattribute (mai)
implementations. Average efficiency achieved in the final round of 2005 TAC SCM com-
petition is depicted by the dashed horizontal line.

good components cycles

A {1} 1

B {1} 2

The goods require the same component, but different numbers of cycles. With two cycles

available, the producer could produce two units of good A, or 1 unit of good B. These sets

are not expressible in an OXR bid, because such a bid does not allow for the expression of

alternate configurations of varying quantity, e.g., “2 of good A or 1 of good B.”

Now consider what happens when the producer has 8 production cycles. He now has

the following cycle-constrained maximized production sets:

• {(A,8)}
• {(A,6),(B,1)}
• {(A,4),(B,2)}

98

• {(A,2),(B,3)}
• {(B,4)}
If trying to maximally express production capabilities, the agent can then select among

the following OXR bids:
• {(A, pA,8)}
• {(A, pA,6),((A,B),(pA, pB),1)}
• {(A, pA,4),((A,B),(pA, pB),2)}
• {(A, pA,2),((A,B),(pA, pB),3)}
• {(A,B),(pA, pB),4)}
In this example the number of feasible and unique OXR bids grows linearly with the

number of production cycles. The optimal bid will depend on the submitted bids of other

bidders, meaning that the bidding problem is made more difficult, as the probability of

randomly submitting the optimal bid is decreasing in the number of available production

cycles.

In Example8, the difficulty of submitting an optimal sealedOXR bid increases de-

spite not violating the gross substitutes condition. One would then expect a decrease in

the efficiency of the sealed-bid (i.e., one-shot) implementation with respect to the expected

efficiency implied by the prior sub-problem test.

The relative under-performance of the iterative multiattribute mechanism was more un-

expected, as the test results from Section4.5indicated a high expected degree of efficiency,

given the CDF ofEGSVvalues presented in Figure5.2and the efficiency plot of Figure5.3.

To investigate the cause of this under-performance, in the following section I revisit the the-

ory underlying market-based algorithms and address the extent to which my market design

adheres to theoretical conditions.

5.8 Market-Based Algorithm Convergence

As discussed in Section4.2.2, the gross substitutes condition is sufficient to guarantee the

existence of a unique efficiency-maximizing price equilibrium, and also guarantees the

equilibrium to be stable under atatonnementprice adjustment process. In this section I ex-

plain that the multiattribute information feedback process as presented in Section3.3does

not implement a provably convergent price adjustment process.

99

5.8.1 Tatonnement Processes

The original conception of the tatonnement process is attributed to Leon Walras, who envi-

sioned an iterative process whereby agents adjust their respective demand sets in response

to market prices, while market prices adjust to balance supply and demand. Arguing that a

change in a good’s own price affects the agent’s demand for that good to a greater extent

than it affects the agent’s demand for other goods, Walras concluded that the process would

ultimately reach a market-clearing equilibrium.

Walras’ original conception of equilibrium and tatonnement received more rigorous

analysis fromSamuelson(1947), who formulated a price adjustment process which ensures

stability of equilibrium, and also fromArrow et al.(1959), who identified the condition of

gross substitutes as sufficient to guarantee the existence of equilibrium. To enable the use

of calculus-based proof methods, these early treatments make the assumption that goods

and money are perfectly divisible.

Applying the gross substitutes condition to discrete settings,Kelso and Crawford(1982)

consider a job-matching scenario in which firms make offers to workers in discrete periods,

while workers accept the highest offer received in any given period.Kelso and Crawford

show that the iterative process reaches a core allocation which coincides with a price equi-

librium in salaries. They require that offers accepted in any given period remain in force

in the subsequent period, i.e., firms cannot renege on accepted offers, although workers are

free to switch firms upon receipt of a better offer.

Building on the work ofKelso and Crawford, Gul and Stacchetti(1999) show that gross

substitutes is both sufficient and necessary for a Walrasian equilibrium in discrete settings,

and show that the iterative upward perturbation of prices for all goods in excess converges

to the smallest Walrasian price vector (Gul and Stacchetti, 2000).

In more recent work,Milgrom and Strulovici(2006) refine the concept of gross substi-

tutes for settings in which agents have utility for multiple units of each good (alternatively,

settings in which multiple copies of the same good are not priced uniquely).Milgrom and

Strulovici show that when distinct units of the same goods are substitutes for each other

(i.e., class substitutes), a monotonic price adjustment process with linear good prices will

converge to a Walrasian equilibrium.

These above tatonnement formulations assume proportional price adjustment processes

in which prices are perturbed proportionately to the current levels of excess demand.

In intermediate stages of these tatonnement processes, prices generally do not reflect

market-clearing conditions given agent demand sets. The WALRAS algorithm (Cheng and

Wellman, 1998) implements a market-based algorithm more closely resembling my own.

WALRAS is a distributed implementation of the tatonnement process, where agents submit

100

price-quantity demand schedules for each good, given current prices of other goods. The

WALRAS algorithm, to my knowledge, is the only example of a tatonnement procedure in

which market-clearing prices are computed at each iteration of the process, as opposed to a

proportional price adjustment process.Cheng and Wellmanalso demonstrate convergence

of a approach making more modest demands on agent behavior, in which agents incremen-

tally adjust bids by adding or deleting a single point. This incremental approach comes at

the expense of requiring approximately 70 more bidding cycles to reach equilibrium. In a

spirit similar to the WALRAS algorithm,Schvartzman and Wellman(2007) apply an in-

cremental model of bidding to a multi-unit double-auction market with indivisibilities, also

finding high degrees of efficiency with the approach.

In the models of Chapter4 and in the iterative multiattribute algorithm defined above,

agents reason with respect to market clearing prices, i.e., the price adjustment process is not

proportional to relative levels of excess demand. Hence, the convergence results derived for

proportional price adjustment processes do not hold. Given market-clearing prices, agents

in my model do not submit a price-dependent demand schedule for each market (i.e., each

configuration), nor do these models feature an incremental approach to bidding. Rather,

agents submit a single coherent demand set, given current prices, and submit own costs

as their offer prices for all units. At each bidding iteration, agents calculate new preferred

demand sets, disregarding their hypothetical transactions or individual effects on current

prices (given prior bids).

The penalty for deviating from established tatonnement methods is that the guaranteed

convergence found in prior work does not translate to the specific form of market-based

algorithm that I employ. The lack of a convergence guarantee weakens the rationale for

myopic best response bidding. Furthermore, as the following example demonstrates, the

form of myopic best response implemented in the iterative multiattribute simulation is often

suboptimal when agents have multi-unit demand for a given configuration.

Example 9 Assume two goods, good B and good B, both offered at a price of 1. For

simplicity, assume a single buyer, with the following valuation:

v(A) = 8

v(B) = 3

v(A,A) = 12

v(B,B) = 4

v(A,B) = 10

101

The optimal allocation has the buyer purchasing both units. Next, I outline the bidding

and price trajectories in classical (discrete) tatonnement, the WALRAS algorithm, and my

own formulation.

Classical Tatonnement: In classical tatonnement, the price of A is iteratively perturbed

upward until it reaches 4, at which point the agent responds with{A,B} (for surplus of

10−4−1 = 6 > 12−4−4 = 4, and the market has reached equilibrium.

(p(A), p(B)) (d(A),d(B))

(1,1) (2,0)

(2,1) (2,0)

(3,1) (2,0)

(4,1) (1,1)

WALRAS: In the WALRAS formulation, goods are equilibrated independently, with agents

submitting a price-quantity schedule for a given good, taking the prices of other goods as

given. I present these price-quantity schedules as (price,quantity) pairs. I use “—” to in-

dicate that the WALRAS algorithm does not solicit a bid for the good during a particular

iteration. In the following sequence, I assume the algorithm begins with the market for

goodB, and that prices begin at(1,1). Note that at these initial prices, there is no price at

which the agent has demand for goodB.

(p(A), p(B)) d(A) d(B))

(1,1) — (0,0)

(1,1) (3,1)(7,1) —

(4,1) — (3,1)

Multiattribute Call Market ImplementationIn the multiattribute formulation, agents bid

for only those items in their optimal demand sets as in classical tatonnement, but specify

prices for all units in the demand set. Bids are again expressed as (price,quantity) pairs.

The following bidding sequence, terminates in a cycle, never reaching equilibrium.

(p(A), p(B)) d(A) d(B)

(1,1) (4,1),(8,1)

(1,9) (1,1),(3,1)

(2,1) (4,1),(8,1)

(1,9) (1,1),(3,1)

102

Note that in bidding(4,1),(8,1) in the first iteration, the bid values deviate from the

first iteration of bidding on goodA in the WALRAS algorithm. This is because in the WAL-

RAS algorithm, the agent is computing marginal values with respect to the best alternative

bundle, under the assumption that it will be able to secure the additional units in subse-

quent bidding rounds. In contrast, my bidding algorithm, agents are focused on winning

the desired bundle, and bid the prices at which they are willing to buy that bundle.

One may characterize the deficiency of my implementation as a problem of bidder irra-

tionality, in that agents are assuming an infinite supply at the quoted prices. In Example9,

the agent cycles endlessly between bidding on 2 units of A and then 2 units of B when fac-

ing market-clearing price quotes. This effect was not apparent in the simulations presented

in Section4.5, because the problem is most acute when agents are able to supply many

copies of alternate configurations. Section4.4.1defined seller valuations which supported

the production of at most 3 units of any given configuration, and fewer units in expectation.

In contrast, this effect is readily apparent in the TAC SCM simulation. I observed

that agents typically computed optimal bids, i.e., optimal demand sets, which devoted all

production to only a few (SKU,day) pairs, offering as many as 200 units for those pairs

maximizing the difference between quoted price and cost. In the TAC SCM game, no sin-

gle RFQ has quantity greater than 20, so it is inherently irrational for an agent to bid for

and expect to transact quantity greater than 20 units at the quoted price. The following

section imbues agents with a very simplistic heuristic to account for the non-linearity of

good prices (equivalently, to account for the limited quantity offered at the quoted prices).

5.8.2 Bidding Optimization Quantity Limits

In seeking to understand and address the relative inefficiency of the iterative multiattribute

mechanism in the TAC SCM simulation, I implemented a simplified model simulating a

single day instance of the TAC SCM customer market auction. This model takes a single

customer bid (from a prior TAC SCM simulation) for a problem instance, and generates

agent state by randomly assigning component costs, capacities, and inventories in the fol-

lowing manner:

• inventories given a 10-day scope of target inventory levels,Io, Io + δ , Io + 2δ , . . .
agents are assigned 10 days of random supplier deliveries, each distributed∼U [0,δ]

• costsEach agent is given a unique cost for each component as a percentage of the
component’s base price, where the percentage is taken from the discrete uniform
distribution[70,100].

• manufacturing capacitiesagents were each assigned 10 days of manufacturing ca-
pacity, each day distributed uniformly on[0,200].

103

Agents then formulate bids as in the full TAC SCM simulation, bidding with respect to

updated quote information at each iteration. I applied the same bidding optimization as de-

fined in Section5.6.4, but introduced an additionalqmax parameter limiting the maximum

quantity that agents apply to any single (RFQ,day) combination. The modified bidding

optimization is then:

max ∑d ∑SKU(bqSKU,day−costSKU)) ·qSKU,day

s.t. ∀d ∈ days





∑SKU∑day
d=0cycles(SKU) ·qSKU,d ≤ ∑day

d=0cyclesavail
d

∀comp∑SKU|comp∈SKU∑day
d=0qSKU,d ≤ ∑day

d=0 inventorycomp,d

∀SKU,qSKU,day < qmax

I ran 50 simulations with 6 bidders for eachqmax value depicted in the graph, averag-

ing the efficiency as a function of bidding iteration (so iteration 6 is the point at which all

agents have submitted a bid). I additionally ran 50 simulations with the sealed-bid multiat-

tribute bidding strategy. The results depicted in Figure5.11show that limiting the quantity

produced higher realized efficiency, with a maximum efficiency atqmax= 8. The efficiency

of direct multiattribute bidding is depicted by the horizontal line at .779.

I next introduced best performingqmax-based strategy back into the full TAC SCM

simulation. Figures5.12 and5.13 depict the CDF of efficiencies and mean efficiencies,

respectively, for the optimum subproblem strategy, the original iterative multiattribute strat-

egy andGoBlueOval . Sample sizes were 55 for iterative multiattribute (depicted asmai),

56 for the best performing multiattribute subproblem strategy (depicted as
(
maopt

i

)
) and 188

for randomizedGoBlueOval (depicted asgbor)

As can be seen in Figures5.12 and 5.13, a profile of multiattribute agents with a

quantity-limited bidding optimization outperformed all other profiles with respect to market

efficiency. This profile additionally yielded higher average efficiency than the that achieved

in any round of the TAC SCM tournament in years 2003–2005.

While one may argue that searching for an optimally efficient strategy profile may bias

the experiment in favor of the multiattribute market, restricting the search space to a sin-

gle quantity parameter limits the extent of any such bias. Furthermore, it should be kept

in mind that the multiattribute agents are fairly unsophisticated with respect to those of

the 2005 TAC SCM finals. These agents do not implement customer demand forecasting

or supplier capacity modeling, which are both behaviors which should increase aggregate

market efficiency.

104

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 6 12 18 24 30

M
ea

n
A

ch
ie

ve
d

E
ffi

ci
en

cy

Bidding Iteration

4
8

16
32

1000
direct

Figure 5.11:Mean efficiency as a function of bidding iteration for various maximum quan-
tity restrictions on the iterative multiattribute agent bidding optimization.

5.9 Conclusion

In this chapter I evaluated my multiattribute call market design within the context of the

Trading Agent Competition Supply Chain Management Game. As an existing simula-

tion environment, TAC SCM provides a more objective evaluation domain, in that I do

not have control over how problem instances are formulated. TAC SCM also provides a

more realistic evaluation domain, in that agent valuations are derived from repeated mar-

ket interactions, with other agents and with stochastically driven supply chain participants.

To the extent that TAC SCM faithfully models a real supply chain, this domain also pro-

vides a benchmark for the potential benefit of replacing existing real-world supply chain

negotiation procedures with multiattribute double auctions.

I described the TAC SCM game as operated in the 2005 TAC SCM competition, and

presented an efficiency metric developed to measure the efficiency of a game instance. Af-

ter showing an equivalence between customer RFQs and multiattribute offers, I outlined

105

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.75 0.8 0.85 0.9 0.95 1

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Efficiency

gbor

mai
opt

mai

Figure 5.12:CDF of realized efficiencies for randomizedGoBlueOval (gbor), iterative
multiattribute(mai), and optimal subproblem strategy

(
maopt

i

)
.

my procedure in integrating multiattribute markets into the TAC SCM simulation environ-

ment. This integration included modification of the existing simulation software, as well as

definition of AB3D auction rules and bidding policies. In describing the integration of TAC

SCM and AB3D, I provided a demonstration of the ease with which the AB3D system can

be leveraged for market-based research.

I presentedGoBlueOval , my entry in the 2005 TAC SCM competition, which served

as a baseline agent strategy for simulations. I described the behavior ofGoBlueOval

in the existing TAC SCM environment, and presented alternative customer bidding algo-

rithms for this environment. I showed that a randomized customer bidding strategy yielded

higher efficiency than the strategic bidding algorithm employed in the 2005 competition,

and subsequently used this randomized strategy as a baseline for comparison.

I presented sealed-bid and iterative multiattribute bidding strategies for the modified

simulation environment, TACSCM-MA. After finding decreased market efficiency in

106

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 mai gbor mai
opt

E
ffi

ci
en

cy

Strategy

TAC 2005 Finals

Figure 5.13: Mean realized efficiencies with 95% confidence intervals for randomized
GoBlueOval (gbor), iterative multiattribute(mai), and optimal subproblem strategy(
maopt

i

)
. Average efficiency for final round of 2005 TAC SCM competition is depicted

by the dashed horizontal line.

TACSCM-MA with respect to the RFQ-based implementation, I described how the market-

based algorithm implemented by my call market design violated technical convergence

results.

I addressed the lack of convergence by exploring alternative bidding strategies on a

stylized subproblem approximating the daily PC market in TAC SCM. Using a simple

maximum quantity parameter within the manufacturer bidding optimization, I found alter-

native bidding strategies yielding significantly higher efficiency on the stylized subproblem.

Using the best such bidding strategy, I presented new simulation results for TACSCM-MA,

demonstrating higher levels of efficiency than that previously achieved by any profile of

agents in the standard TAC SCM environment. In so doing, I presented evidence for the

likely benefit of using multiattribute call markets in real-world domains.

107

Chapter 6

Summary of Contributions

In Chapter1, I introduced and defined multiattribute goods, and suggested ways in which

multiattribute double auctions offer potential efficiency benefits over standard negotiation

practices for such goods. Specifically, in supporting centralized clearing exchanges for

multiattribute goods, double auctions could translate the negotiation of multiattribute trade

from a large set of disjoint markets into a small set of aggregated markets, mediating trade

among a significantly greater set of traders. In doing so, they offer the potential for vast

economic savings in many negotiation domains, by providing a constant source of trade

liquidity.

I then stated my primary objective as facilitating the deployment of multiattribute dou-

ble auctions by developing multiattribute call markets that are computationally tractable.

This thesis meets that objective, in presenting and evaluating what is to my knowledge the

first implemented multiattribute call market. In achieving my goal, I have made several

contributions.

I presented an approach to information feedback that separates the algorithmic task

into first finding configuration-free bilateral trade surpluses required to transact with any

specific offer in the order book, and subsequently computing the quote for a specific config-

uration based on the set of all such surpluses. Given these bilateral surpluses, my approach

allows specific configuration quotes to be generated only as needed, with time linear in the

number of offers. My separation-based approach to information feedback thus partially ad-

dresses the computational challenge posed by the potentially huge space of configurations

in a multiattribute auction.

My approach would still remain infeasible for all but the smallest problem sizes with-

out an efficient method for calculating the required bilateral trade surpluses. I addressed

this problem by devising a shortest path algorithm which can tackle the entire problem

with complexity that is polynomial in the number of offers. I outlined the operation of

this algorithm, presented examples demonstrating its use, and presented empirical results

demonstrating its running time for various problem sizes.

108

I then combined my algorithm for information feedback with our polynomial-time

clearing algorithm, and implemented these algorithms, along with supporting bidding lan-

guages, into a useable auction system. This work therefore presents an implemented

multiattribute call market which supports clearing and information feedback with poly-

nomial complexity.

Underlying my multiattribute call market implementation are two other contributions

of this thesis, the AB3D market game platform, and the AB3D scripting language. The

AB3D market game platform is capable of implementing a broad range of auctions, facil-

itating diverse market-game research agendas. The AB3D scripting language enables the

concise specification of complex auction mechanisms. As these auction specifications are

executable on the AB3D system, AB3DSL additionally enables the rapid deployment of

complex auction mechanisms. I introduced my unique approach to auction specification,

which employs a novel combination of static parameter settings and rule-based invocation

of auction processes. Static parameter settings select among bidding language families

and algorithmic implementations of auction processes that elude concise specification in a

general-purpose language. Rule-based constructs support the specification of temporally

complex mechanisms with a clear and simple syntax, allowing for qualitative modifica-

tion of auction behavior through rule-based parameter modification. I discussed how my

approach to auction specification addresses the relative weaknesses inherent in the strict

use or strict avoidance of parameter-based specification. As evidence of the contribution

of AB3D, I documented several research agendas which employ AB3D for market-based

simulation, including my own evaluation of multiattribute call markets.

In assessing the efficiency of my market design in alternative problem domains, I pre-

sented a model of multi-unit multiattribute valuations derived from a component-based

model of production. I demonstrated a natural way in which multiattribute valuations may

elude direct expression given our required restrictions on multiattribute offers. I inves-

tigated the extent to which information feedback is able to compensate for the lack of

expressive power of bids, exploring the extent to which the information feedback function-

ality of my design is able to support market-based algorithms. In so doing, I developed

a metric on bidder valuations which correlates with the expected efficiency of my mar-

ket design. To my knowledge, this valuation metric is the first attempt to characterize the

relationship between bidder valuations and the efficiency of market-based algorithms for

valuations which violate technical conditions for equilibrium.

Finally, I provided evidence for the applicability of multiattribute markets in real-world

domains by integrating them into an existing supply chain simulation. I showed that the

myopic bidding strategies assumed in provably convergent market-based algorithms are in-

109

compatible with the price-adjustment process inherent in my market design. I introduced

a parametrized family of bidder strategies designed to reason more soundly with respect to

market-clearing price quotes. Using a simplified model of the full supply chain simulation,

I evaluated expected market efficiency for this family of strategies. I then integrated the

strategy yielding maximal efficiency on this simplified model back into the full simulation,

demonstrating an efficiency improvement over a more conventional negotiation procedure.

110

Bibliography

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin.Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

Kenneth J. Arrow, H. D. Block, and Leonid Hurwicz. On the stability of competitive
equilibrium, II. Econometrica, 27:82–109, 1959.

Raghu Arunachalam and Norman M. Sadeh. The supply chain trading agent competition.
Electronic Commerce Research and Applications, 4:63–81, 2005.

Raghu Arunachalam, Joakim Eriksson, Niclas Finne, Sverker Janson, and Norman Sadeh.
The Supply Chain Management Game for the Trading Agent Competition 2004. Tech-
nical Report T2004-09, Swedish Institute of Computer Science, 2004.

Lawrence Ausubel and Paul Milgrom. Ascending auctions with package bidding.Frontiers
of Theoretical Economics, 1(1):1–45, 2002.

Martin Bichler. The Future of e-Markets: Multi-Dimensional Market Mechanisms. Cam-
bridge University Press, New York, NY, USA, 2001.

Martin Bichler and Jayant Kalagnanam. Configurable offers and winner determination
in multi-attribute auctions.European Journal of Operational Research, 160:380–394,
2005.

Sushil Bikhchandani and Chi-Fu Huang. The economics of Treasury securities markets.
Journal of Economic Perspectives, 7:117–134, 1993.

Justin Boyan and Amy Greenwald. Bid determination in simultaneous auctions: An agent
architecture. InThird ACM Conference on Electronic Commerce, pages 210–212, 2001.

Fernando Branco. The design of multidimensional auctions.RAND Journal of Economics,
28:63–81, 1997.

Yeon-Koo Che. Design competition through multidimensional auctions.RAND Journal of
Economics, 24:668–680, 1997.

John Q. Cheng and Michael P Wellman. The WALRAS algorithm: A convergent distrib-
uted implementation of general equilibrium outcomes.Computational Economics, 12
(1):1–24, August 1998.

111

Shih-Fen Cheng. Designing the market game for a commodity trading simulation. In
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages 445–
449, 2007.

Shih-Fen Cheng, Michael P. Wellman, and Dennis G. Perry. Market-based resource allo-
cation for information-collection scenarios. In Koichi Kurumatani, Shu-Heng Chen, and
Azuma Ohuchi, editors,Multiagent for Mass User Support (MAMUS-03), pages 33–47.
Springer-Verlag, 2004.

E. H. Clarke. Multipart pricing of public goods.Public Choice, 11:17–33, 1971.

Dave Cliff. Explorations in evolutionary design of online auction market mechanisms.
Electronic Commerce Research and Applications, 2:162–175, 2003.

John Collins, Wolfgang Ketter, and Maria Gini. A multi-agent negotiation testbed for
contracting tasks with temporal and precedence constraints.International Journal of
Electronic Commerce, 7(1):35–57, 2002.

Vincent Conitzer and Tuomas Sandholm. Revenue failures and collusion in combinatorial
auctions and exchanges with VCG payments. InFifth ACM conference on Electronic
commerce, pages 266–267, 2004a.

Vincent Conitzer and Tuomas Sandholm. Computational criticisms of the revelation prin-
ciple. InFifth ACM Conference on Electronic Commerce, pages 262–263, 2004b.

Peter Cramton. Ascending auctions.European Economic Review, 42(3-5):745–756, 1998.

Peter Cramton, Yoav Shoham, and Richard Steinberg, editors.Combinatorial Auctions.
MIT Press, 2005.

Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for
combinatorial auctions with complement-free bidders. InThirty-Seventh Annual ACM
Symposium on Theory of Computing, pages 610–618, 2005.

Nicholas Economides and Robert A. Schwartz. Electronic call market trading.Journal of
Portfolio Management, 21(3):10–18, 1995.

Yagil Engel and Michael P. Wellman. Generalized value decomposition and structured
multiattribute auctions. InEighth ACM Conference on Electronic Commerce, pages
227–236, 2007.

Yagil Engel, Michael P. Wellman, and Kevin M Lochner. Bid expressiveness and clearing
algorithms in multiattribute double auctions. InSeventh ACM Conference on Electronic
Commerce, pages 110–119, 2006.

Maria Fasli and Michael Michalakopoulos. e-Game: A platform for developing auction-
based market simulations.Decision Support Systems, 44(2):469–481, 2008.

112

FCC. Federal Communications Commission notice and filing requirements, minimum
opening bids, reserve prices, upfront payments, and other procedures for auctions
73 and 76. http://hraunfoss.fcc.gov/edocs public/attachmatch/
DA-07-4171A1.pdf , 2007.

Eugene Fink, Josh Johnson, and Jenny Hu. Exchange market for complex goods: Theory
and experiments.Netnomics, 6(1):21–42, 2004.

Robert Fourer, David M. Gay, and Brian W. Kernighan.AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, 2002.

Daniel Friedman and John Rust, editors.The Double Auction Market. Addison-Wesley,
1993.

Henner Gimpel, Juho Makio, and Christof Weinhardt. Multi-attribute double auctions in fi-
nancial trading. InSeventh IEEE International Conference on E-Commerce Technology,
pages 366–369, 2005.

Jianli Gong. Exchanges for Complex Commodities: Search for Optimal Matches. PhD
thesis, University of South Florida, 2002.

Amy Greenwald and Justin Boyan. Bidding algorithms for simultaneous auctions. InThird
ACM Conference on Electronic Commerce, pages 115–124, 2001.

Theodore Groves. Incentives in teams.Econometrica, pages 617–631, 1973.

Faruk Gul and Ennio Stacchetti. The English auction with differentiated commodities.
Journal of Economic Theory, 92(1):66–95, May 2000.

Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes.Journal of
Economic Theory, 87(1):95–124, July 1999.

Patrick R. Jordan, Christopher Kiekintveld, Jason Miller, and Michael P. Wellman. Market
efficiency, sales competition, and the bullwhip effect in the TAC SCM tournaments. In
AAMAS-06 Workshop on Trading Agent Design and Analysis, pages 62–74, 2006.

Patrick R. Jordan, Christopher Kiekintveld, and Michael P. Wellman. Empirical game-
theoretic analysis of the TAC supply chain game. InSixth International Joint Conference
on Autonomous Agents and Multi-Agent Systems, pages 1188–1195, 2007.

Jayant R. Kalagnanam, Andrew J. Davenport, and Ho S. Lee. Computational aspects of
clearing continuous call double auctions with assignment constraints and indivisible de-
mand.Electronic Commerce Research, 1(3):221–238, 2001.

Lutz Kaufmann and Craig R. Carter. Deciding on the mode of negotiation: To auction or
not to auction electronically.Journal of Supply Chain Management, 40(2), 2004.

A. S. Kelso and V. P. Crawford. Job matching, coalition formation, and gross substitutes.
Econometrica, 50:1483–1504, 1982.

113

http://hraunfoss.fcc.gov/edocs_public/attachmatch/DA-07-4171A1.pdf�
http://hraunfoss.fcc.gov/edocs_public/attachmatch/DA-07-4171A1.pdf�

Christopher Kiekintveld, Jason Miller, Patrick R. Jordan, and Michael P. Wellman. Fore-
casting market prices in a supply chain game. InSixth International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pages 1–8, 2007.

Kate Larson and Tuomas Sandholm. Costly valuation computation in auctions. InEighth
Conference on Theoretical Aspects of Rationality and Knowledge, pages 169–182, 2001.

Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreas-
ing marginal utilities.Games and Economic Behavior, 55(2):270–296, 2006.

A. R. Lomuscio, M. Wooldridge, and N. R. Jennings. A classification scheme for nego-
tiation in electronic commerce. In F. Dignum and C. Sierra, editors,Agent Mediated
Electronic Commerce: A European Perspective, pages 19–33. Springer-Verlag, 2000.

Jeffrey K. MacKie-Mason and Michael P. Wellman. Automated markets and trading agents.
In Leigh Tesfatsion and Kenneth L. Judd, editors,Handbook of Agent-Based Computa-
tional Economics. Elsevier, 2006.

Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green.Microeconomic Theory.
Oxford University Press, New York, 1995.

Paul Milgrom and Bruno Strulovici. Concepts and properties of substitute goods. Technical
report, Economics Group, Nuffield College, University of Oxford, May 2006.

Roger B Myerson. Incentive compatibility and the bargaining problem.Econometrica, 47
(1):61–73, 1979.

Roger B. Myerson. Optimal auction design.Mathematics of Operations Research, 6(1):
58–73, 1981.

D. Neumann, C. Holtmann, H. Weltzien, C. Lattemann, and Ch. Weinhardt. Towards a
generic e-market design. In J. Monteiro, P. M. C. Swatman, and L. V. Tavares, editors,
Towards the Knowledge Society: e-Commerce, e-Business and e-Government, pages
289–305. Kluwer Academic Publishers, 2002.

David C. Parkes and Jayant Kalagnanam. Models for iterative multiattribute Vickrey auc-
tions. Management Science, 51:435–451, 2005.

David C. Parkes and Lyle H. Ungar. Iterative combinatorial auctions: Theory and practice.
In Seventeenth National Conference on Artificial Intelligence, pages 74–81, 2000.

Steve Phelps, Simon Parsons, Peter McBurney, and Elizabeth Sklar. Co-evolution of auc-
tion mechanisms and trading strategies: Towards a novel approach to microeconomic
design. InGECCO-02 Workshop on Evolutionary Computation in Multi-Agent Systems,
pages 65–72, 2002.

David Porter, Stephen Rassenti, Anil Roopnarine, and Vernon Smith. Combinatorial auc-
tion design. Proceedings of the National Academy of Sciences of the United States of
America, 100(19):11153–11157, 2003.

114

Daniel M. Reeves.Generating Trading Agent Strategies. PhD thesis, University of Michi-
gan, 2005.

Daniel M. Reeves, Michael P. Wellman, and Benjamin N. Grosof. Automated negotiation
from declarative contract descriptions.Computational Intelligence, 18:482–500, 2002.

Daniel M. Reeves, Michael P. Wellman, Jeffrey K. MacKie-Mason, and Anna Osepa-
yshvili. Exploring bidding strategies for market-based scheduling.Decision Support
Systems, 39:67–85, 2005.

John G. Riley and William F. Samuelson. Optimal auctions.American Economic Review,
71(3):381–392, June 1981.

Juan A. Rodriguez-Aguilar, Francisco J. Martin, Pere Garcia, and Carles Sierra. Competi-
tive scenarios for heterogeneous trading agents. InSecond International Conference on
Autonomous Agents, pages 293–300, 1998.

Daniel Rolli, Stefan Luckner, Henner Gimpel, and Christof Weinhardt. A descriptive auc-
tion language.Electronic Markets, 16(1):51–62, 2006.

Michael H. Rothkopf. Thirteen reasons why the Vickrey-Clarke-Groves process is not
practical.Operations Research, 45(2):191–197, 2007.

J. Rust, J. H. Miller, and R. Palmer. Characterizing effective trading strategies.Journal of
Economic Dynamics and Control, 18:61–96, 1994.

John Rust and John H. Miller. Behavior of trading automata in a computerized double
auction market. InFriedman and Rust(1993), chapter 6, pages 155–198.

Paul A. Samuelson.Foundations of Economic Analysis. Harvard University Press, 1947.

Tuomas Sandholm. The winner determination problem. InCramton et al.(2005).

Tuomas Sandholm. eMediator: A next generation electronic commerce server.Computa-
tional Intelligence, 18(4):656–676, 2004.

Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. Winner determina-
tion in combinatorial auction generalizations. InFirst International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 69–76, 2002.

Mark A. Satterthwaite and Steven R. Williams. Bilateral trade with the sealed bidk-double
auction: Existence and efficiency.Journal of Economic Theory, 48:107–133, 1989.

L. Julian Schvartzman and Michael P. Wellman. Market-based allocation with indivisible
bids. Production and Operations Management, 16:495–509, 2007.

Ilya Segal. The communication requirements of combinatorial allocation problems. In
Cramton et al.(2005).

115

Jason Shachat and J. Todd Swarthout. Procurement auctions for differentiated goods. Tech-
nical Report 0310004, Economics Working Paper Archive at WUSTL, October 2003.

Aditya V. Sunderam and David C. Parkes. Preference elicitation in proxied multiattribute
auctions. InFourth ACM Conference on Electronic Commerce, pages 214–215, 2003.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.Journal of
Finance, 16(1):8–37, 1961.

Yevgeniy Vorobeychik, Christopher Kiekintveld, and Michael P. Wellman. Empirical
mechanism design: Methods, with application to a supply-chain scenario. InSeventh
ACM Conference on Electronic Commerce, pages 306–315, 2006.

William E. Walsh, Rajarshi Das, Gerald Tesauro, and Jeffrey O. Kephart. Analyzing
complex strategic interactions in multi-agent games. InAAAI-02 Workshop on Game-
Theoretic and Decision-Theoretic Agents, 2002.

Michael P. Wellman, Shih-Fen Cheng, Daniel M. Reeves, and Kevin M. Lochner. Trading
agents competing: Performance, progress, and market effectiveness.IEEE Intelligent
Systems, 18(6):48–53, 2003.

Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, Shih-Fen Cheng, and Rahul
Suri. Approximate strategic reasoning through hierarchical reduction of large symmet-
ric games. InTwentieth National Conference on Artificial Intelligence, pages 502–508,
2005.

Peter R. Wurman, William E. Walsh, and Michael P. Wellman. Flexible double auctions
for electronic commerce: Theory and implementation.Decision Support Systems, 24:
17–27, 1998a.

Peter R. Wurman, Michael P. Wellman, and William E. Walsh. The Michigan Internet
AuctionBot: A configurable auction server for human and software agents. InSecond
International Conference on Autonomous Agents, pages 301–308, 1998b.

Peter R. Wurman, Michael P. Wellman, and William E. Walsh. A parametrization of the
auction design space.Games and Economic Behavior, 35:304–338, 2001.

Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. The effect of false-name bids in
combinatorial auctions: New fraud in Internet auctions.Games and Economic Behavior,
46(1):174–188, 2004.

116

