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CHAPTER I

Introduction

The goal of this thesis is to find time- and space- efficient algorithms for massive

data sets. In recent years, input sizes in many problems have grown to the point

where “polynomial computational overhead” is too coarse a measure.

For streaming data, we need to build data summaries in sub-linear time and

space, with constant update time, and support queries with guaranteed quality in

constant time. In this thesis, we focus on building a specific class of data summary—

histograms. In a streaming data model, the underlying data distribution is too large

to be stored, and we do not have access to previous data entries. We discuss two

different models. In the first one, there is a corresponding weight vector associated

with the input streaming data vector, which is motivated by the fact that people

can be more interested in some data entries than the others. In the second one, each

data entry is a density function instead of a deterministic value, which is motivated

by the uncertainty in the real life.

For data summaries built on data from more than one party, we need to minimize

both computation and communication. For example, we may require a bound on

communication that is polylogarithmic in input length in some application with

large inputs. In this thesis, privacy and result quality are also addressed. In this

1
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model, every party p can communicate via a private channel with any other in the

system directly. All information p gets from other parties during the computation,

including p’s coin flips, is called p’s view. We want p’s view to be uncorrelated with

others’ inputs for every party p in the system to enforce privacy.

1.1 Motivation

In this thesis, we focus on summarization of massive data sets, whose underlying

distribution are often too large to be stored precisely.

A histogram is one kind of summary, used as a small-space, approximate synopsis.

A histogram is a piecewise-constant approximation of an observed data distribution.

Histograms have found many applications in database management systems, per-

haps most commonly for query selectivity estimation in query optimizers [28]; that

is, given a query P , we need to estimate the fraction of records in the database that

satisfy P [40]. Many commercial database systems maintain histograms to summa-

rize the contents of relations and permit efficient estimation of query result sizes

and access plan costs, especially for multiple-relation queries [47], [45]. In [19], au-

thors discussed the histogram application about selectivity estimation in probabilistic

graphical models.

It also found applications in approximate query answering [2], load balancing

in parallel join execution [44], mining time-series data [33], partition-based tem-

poral join execution, query profiling for user feedback, etc. Ioannidis has a nice

overview of the history of histograms, their applications, and their use in commercial

DBMSs [27]. Also, Poosala’s thesis provides a systematic treatment of different types

of histograms [44]. Formally:

Definition 1.1. A B-bucket histogram h of length N is a partition of [0, N) into



3

intervals [b0, b1) ∪ [b1, b2) ∪ · · · ∪ [bB−1, bB), where b0 = 0 and bB = N , together with

a collection of B heights hj, for 0 ≤ j < B, one for each bucket. A point query ci to

h returns the estimate hj where bj ≤ i < bj+1.

In building a B-bucket histogram, we want to choose B − 1 boundaries bj and

B heights hj, dependent on the data vector c. A number of different criteria are

known [44] for choosing bj’s and hj’s; a popular and effective one is the V-Opt

histogram [29], where bj’s and hj’s are chosen to minimize the total square error, taken

uniformly over the set of all point queries, or, equivalently, ‖c−h‖2 =∑i(ci−hj(i))2.

(Once we have chosen the boundaries, the best bucket height on an interval I is the

average of c over I.)

Section 4.2 provides an example of our motivation. In a network, one server

gets continuous web log data from its clients. It needs to keep track of the field

“number of bytes” in each log data to detect abnormal behavior, allocate resources,

or simply understand its clients’ requirements better. In this specific application,

the underlaying log data is too large to be stored, so we need to store a summary

like a histogram. Also, the log data comes continuously and no backtracking is

allowed, so the server can only read each item once and should act quickly. In

the above application, we say that the log data is streamed. Formally, we consider

a vector c given either as a stream c0, c1, · · · of aggregate values, or in the more

general dynamic maintenance model, as a stream (i0, x0), (i1, x1), · · · of updates,

where (ij, xj) is interpreted as a request to update cij to cij + xj. When processing

cj or (ij, xj), the algorithm has no access to the data seen before. We want to build

histogram over c.

Our motivation for Chapter III lies in the applications, where the workload of

queries should be take into account for which the V -Opt histogram is optimized. In
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particular, when some of the point queries are more frequent than the others, the

histogram needs to be better at approximating answers to the frequent queries rather

than the infrequent ones. In other words, the metric to minimize is not the sum of

squared errors uniformly over all point queries, but that obtained by weighting the

error on each point query by the workload of how frequently each point query is

posed. Formally:

Definition 1.2. Given an input signal c0 · · · cN−1 and workload w0 · · ·wN−1, 0 ≤ wi,

the workload-optimal B-bucket histogram hopt is the choice of bj’s and hj’s that

minimize ‖c− h‖2w =
∑

i wi(ci − hj(i))2.

We consider the problem of finding hopt with respect to workload on streamed

signals, as well as stored or streamed workloads. Formally, we consider a vector c

and the corresponding workload w in one of the following two forms:

• c comes as a stream c0, c1, · · · , or in the dynamic maintenance model, and the

algorithm has access only to the current data. The weight vector w is stored and

the algorithm has access to every wi at any time. In practice, many different

c’s may follow the same workload w. Storing only w is reasonable in such

applications.

• c and w come as a stream (c0, w0), (c1, w1), · · · , and the algorithm has access

only to the current data. We call this lockstep model.

Heavy hitters is another kind of summarization. For example, the most searched

words is a useful summary of daily search words for search engines. Finding heavy

hitters or most frequent items is a basic statistic on a database relationship. It

provides a useful measurement of the data distribution and can help improve perfor-

mance of selectivity estimation. It finds application in other areas like data mining
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and networking management as well. For example, keeping track of the heaviest traf-

fic can help a server better know about its clients’ demand and improve its service.

It can also be used in anomaly detection by keeping track of the most dramatically

changed workload in a network.

In many of the motivating applications above, the underlying data are distributed

over two or more parties, each of which is reluctant to reveal its own data to other

parts unless necessary. In such cases, we require secure and private multiparty com-

putation. This has been studied for several decades, starting with [50, 7]. Any

protocol for computing a function of several inputs can be converted, gate-by-gate,

to a private protocol, in which no party learns anything from the protocol messages

other than what can be deduced from the function’s input/output relation. The

computational overhead is at most polynomial in the size of the inputs.

As input sizes grow, however, we need to minimize both communication and

computation overhead. For example, absent privacy concerns, applications may re-

quire that a protocol uses at most polylogarithmic communication. General-purpose

secure multiparty computation may blow up communication exponentially, so addi-

tional techniques are needed. In one theoretical approach, individual protocols are

designed for functions of interest such as database lookup (the private information

retrieval problem [12, 37, 8]) and building decision trees [38]. Another approach, the

breakthrough [42], converts any protocol into a private one with little communication

blowup. But unfortunately, approach [42] imposes a computational blowup that may

be exponential.

The approach we follow, which was introduced in [15], is to substitute an ap-

proximate function for the desired function. Many functions of interest have good

approximations that can be computed efficiently both in terms of computation and
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communication. A caveat is that the traditional definition of privacy is no longer

appropriate. Instead, a protocol π computing an approximation f̃ to a function f is

a private approximation protocol [15] for f if

• π is a private protocol for f̃ in the traditional sense that the messages of π leak

nothing beyond what is implied by inputs and f̃ , and,

• the output f̃ leaks nothing beyond what is implied by inputs and f .

Several examples were given in [15] and more details will be presented in Chapter II.

In Chapter V, we build a private protocol, finding heavy hitters on two parties.

1.2 Related Work

1.2.1 Workload-aware algorithms

The database community has proposed methods to synopsize data distributions,

taking workload into account. Query feedback from the execution engine of a DBMS

was used in [11] to modify the synopsis. Histogram boundaries are refined adaptively

in [34, 1, 46] based on a dynamically evolving workload that is continuously updated

based on feedback from the query engine; they differ in how they approximate values

within buckets, how they weight the workload etc. Still, these methods do not give

any provable results on approximating hopt. There has been some work on other

synopses that are workload-aware. For example, [18] proposed sampling methods

that adapt to recent workload. IBM’s LEO optimizer [49] uses workload information

for a variety of synopses. In [41], a O(N 2B/ logB) time algorithm is presented for

determining the optimal choice of B Haar wavelet terms; this has recently been im-

proved to O(N 2) time [22]. The Haar basis is modified in [39] with the knowledge of

the workload and algorithms for obtaining B-term synopses are designed for this new

basis; while this algorithm works in linear time, it does not provide a near-optimal
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B-term Haar wavelet synopsis. For special workloads, [41] presented a near-linear

algorithm for finding the optimal B-term Haar wavelet synopsis. All of these results

for Haar and related bases [41, 22, 39] work only when both the signal and workload

are available in a stored form without any loss of information, and not streamed

with polylogarithmic space. However, when both the signal and workload are stored

explicitly without loss of information, the dynamic programming from [30] immedi-

ately gives an O(N 2B) time algorithm for finding the optimal hopt, so the challenge

in [41, 22] arises from working with the Haar wavelet basis and does not reflect on

the difficulty in constructing hopt. In [24], there are many results of the same flavor

as our result—indeed, the expanded version of [24] contains many generalizations not

considered here—but the results of [24] do not address directly our time- and space-

bounded, workload-aware problem with the bounds we give. To summarize, the sig-

nificant open problem with finding hopt is when either the signal or the workload is

streamed or both are streamed, with space polylogarithmic in N .

The result given in [23] is crucial to our work in Chapter III. It approximates

hopt in sub-linear computation time and space, with constant update time per item.

Details will be presented in Chapter III.

There are many papers that address the Heavy Hitters problem and sketching in

general, in a variety of contexts. Many of the needed ideas can be seen in [35] and

other important papers include [5, 4, 20, 14]. We will talk about this in more detail

in section 2.1.

1.2.2 Private Approximations

As to private communication-efficient protocols, there is work for specific functions

including the Private Information Retrieval problem [12, 37, 8], building decision

trees [38], set intersection and matching [16], and k’th-ranked element [3].
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The breakthrough [42] gives a general technique for converting any protocol into

a private protocol with little communication overhead. It is not the end of the story,

however, because the computation may increase exponentially.

Work in private approximations include [15] that introduced the notion as a con-

ference paper in 2001 and gave several protocols. Some negative results were given

in [25] for approximations to NP-Hard functions; more on NP-hard search problems

appears in [6]. Recently, [26] gives a private approximation to the Euclidean norm

that is central to our paper, which will be introduced in Chapter V.

Statistical work such as [10] also addresses the privacy of algorithms on massive

data sets, but the goals are significantly different than ours.

1.3 Specific Contributions

1.3.1 Workload-aware histograms

Our contributions on histograms are as follows. Suppose the data items are inte-

gers, and the weights are positive integers between the minimum weight, wmin, and

the maximum weight, wmax. Let M = max{||A||2, wmax

wmin
} be a bound on the range of

data and weights. U =
∑N−1

i=0 wi and let c1 and c2 denote constants.

Workload w is stored without loss of information. We present anO(N+poly(B, logN,

logM, 1/ε))-time algorithm to compute a B-bucket histogram h with ‖c − h‖2w ≤

(1 + ε)‖c− hopt‖2w where hopt is the workload-optimal B-bucket histogram, with re-

spect to arbitrary w. This is the first near-linear1 time algorithm for approximating

hopt under non-uniform workloads. The above algorithm can be run in the time series

model taking only O(1) time per new item and using poly(B, logN, logM, 1/ε) space

and post-processing time to construct the (1+ ε)-approximate histogram. Under the

1Note that, for moderate values of the parameters other than N , the run time is dominated by O(N). In this
dissertation, we use the term “near-linear” for this type of cost.
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dynamic maintenance model, the above algorithm can be modified using previously

known techniques so that the time per update, total space used, and postprocessing

time are all poly(B, logN, logM, 1/ε). This is the first known set of algorithms that

use sublinear—polynomial in B, 1/ε and polylogarithmic in N,M—space for dealing

with data stream signals and yet yields (1 + ε) approximate hopt histograms for any

w. It matches the previously known bounds for the special case when the workload

is uniform [20].

Workload w is streamed. In the lockstep model, we are given a stream (c0, w0), (c1,

w1), . . . of data items, together with their associated workload weights, in order. An

algorithm is run in the lockstep model taking c1N logU +
(
B logU logM

ε

)c2
time, and

using
(
B logU logM

ε

)O(1)
space to construct the (1 + ε)-approximate histogram, where

U =
∑N−1

i=0 wi.

1.3.2 Implementation

Our contributions on implementation are as follows.

• We built the first non-trivial statistical tool for declarative data description

language PADS . Basically, PADS takes structured or semi-structured streamed

data as input, and first converts them into PADS types. Then, users can get

statistics over interesting fields by using our tools. More details can be found

in Chapter IV.

• We built a uniform interface, so that further statistical tools can be incorporated

into the system by specifying only a high-level algorithm.
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1.3.3 Private Protocols

Our contributions to private protocols are as follows. Suppose there are two

parties, each holding a vector, a and b. They want a summary for the vector sum

c = a+ b.

Euclidean approximate heavy hitters problem. First, we consider the problem in

which there is a parameter, B, and the players ideally want copt, the B largest terms

in c, i.e., the B biggest values together with the corresponding indices. Unfortu-

nately, finding copt exactly requires linear communication. Instead, the players use

polylogarithmic communication (and polynomial work and O(1) rounds) to output a

vector c̃ with ‖c̃− c‖2 ≤ (1+ε)‖copt − c‖2. In our protocol, the players learn nothing

more than what can be deduced from copt and ‖c‖2.

Leaking the Euclidean norm represents a weaker result than not leaking the Eu-

clidean norm, but (i) leaking ‖c‖2 is necessary in some circumstances and (ii) com-

puting or approximating ‖c‖2 is desirable in some circumstances. First, we give a

straightforward lower bound showing that, for some (reasonable) values of parame-

ters M,N, . . ., computing c̃ leaking only copt requires Ω(N) communication. In fact,

for some (artificial) classes of inputs, Ω(N) communication is needed unless ‖c‖2

itself is not only potentially leaked, but actually computed exactly. On the other

hand, one can regard the Euclidean norm as semantically interesting, so that we can

regard the top B terms together with the Euclidean norm as a compound, extended

summary. In particular, since c̃ is computed, leaking ‖c‖2 is equivalent to leaking

‖c‖22 − ‖c̃‖
2
2 = ‖c̃− c‖

2
2, i.e., the error in our representation, which is a useful and

common thing to compute. Our protocol indeed can be modified to output an ap-

proximation ‖c̃− c‖∼ with ‖c̃− c‖2 ≤ ‖c̃− c‖∼ ≤ (1 + ε)‖c̃− c‖2, so we can regard
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the protocol as solving two cascaded approximation problems: find a near-best repre-

sentation c̃, then find an approximation ‖c̃− c‖∼ to ‖c̃− c‖2. It is natural to expect

a protocol for c̃ to leak copt and a protocol for ‖c̃− c‖∼ to leak ‖c̃− c‖2; while lower

bounds prevent that, we can compute c̃ and ‖c̃− c‖∼ simultaneously and guarantee

that, overall, we leak only copt and ‖c̃− c‖2.

Extension of basic result. We can immediately use our basic result as black box

for approximate sparse representations over any orthonormal basis such as wavelet

or Fourier, with little additional algorithmic or privacy work. The result says that

we provide an at-most-B term Fourier representation that is almost as good (in the

Euclidean sense) as the best B-term Fourier representation and leaks no more than

the best B-term representation and the Euclidean norm. The Fourier basis may be

substituted by any orthonormal basis, such as Hadamard or Wavelet. It demonstrates

that the basic result can be applied in a variety of interesting applications.

We can also use the result as a black box for taxicab approximate heavy hitters,

i.e., finding c̃ with ‖c̃− c‖1 ≤ (1+ ε)‖copt − c‖1, leaking copt and ‖c‖2. Thus we have

shown that the private Euclidean norm approximation can be used for non-Euclidean

problems.

1.4 Overview

In Chapter II, we review sketch algorithms. The idea is to compress the original

data into a much smaller data structure, while preserving some important properties.

The compressed data structure can be used to evaluate functions over the original

data approximately (with quality guarantee). We use this idea in Chapters III–

V. We also review several different private protocols: We will review fundamental

theories in protocol privacy, which are used widely in Chapter V. Our contribution
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is mainly in providing a protocol that supports functional privacy, of which we will

review the definitions.

In Chapter III, we describe the problem of building an optimal histogram with re-

spect to a workload, and present two different algorithms—both finding near-optimal

histogram with quality guarantees. The first one is less time efficient, but works with

streamed workload; the second one requires to store all the weights, but only uses

near-linear time. The chapter ends with proof of lower bounds and some comments

on compressed workload.

In Chapter IV, we implement some algorithms working on streaming data. We

first do experiments to compare histograms optimized for the uniform workload and

for the true non-uniform workload, as well as compare our results to optimal results

in real environment. Then we incorporate our histogram result into PADS system.

We also build an interface for the system, so that more “streaming algorithms” can

be added easily.

In Chapter V, we describe the problem of finding Euclidean heavy hitters pri-

vately. We first present a protocol, analyze its efficiency, correctness and privacy.

Then we extend it to some other cases—with different measurement and/or different

orthogonal bases. At the end of Chapter V, we will give some lower bounds which

are met by our protocol.

In Chapter VI, we first introduce the definition of probabilistic data streams.

Then we present an efficient algorithm to compute near-optimal histograms with a

quality guarantee under L2 norm. For histograms under L1 norm, we give a heuristic

algorithm and show some properties of it. We also give a direction to give guarantees

for our heuristic.



CHAPTER II

Background

In this chapter, we introduce some background knowledge. We first review the

idea of “sketching”, which we present as maintaining projections of a vector on

various randomized subspaces. Sketch-based methods have been studied in many

environments, for example in [9, 14, 20], and are used to build statistics for massive

datasets in sublinear time and space. Section 2.1 covers the main ideas of these

methods, which will be used in following chapters. We then review several private

protocol definitions in Section 2.2. Protocol privacy is fundamental and has been

studied for decades; our result in Chapter V is a protocol supporting functional

privacy. We will close this section by introducing the definition of k-anonymity in

database privacy as well as comparing previous approaches.

2.1 Sketch-Based Methods

A dyadic interval (formal definition in Chapter III) is of the form [i2j, · · · , (i +

1)2j), for integers i and j. Let π(c, I) be the projection of c on a dyadic interval

I. Sketch based methods maintain projections of the vector on various randomized

sets. The authors of [20] present a sketch technique supporting several properties,

including the following two which will be used in our work.

• Quick update of the sketch on processing a new data.

13
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• Pre-Identification on c with parameter θ: find a compact list that contains all

dyadic intervals I for which ‖π(c, I)‖ ≥ θ‖c‖.

The sketch given in [20] takes space poly(logN, 1/θ, 1/ε). The idea is that for lp

norm, it chose a random vector V according to a symmetric p-stable distribution.

Then it projected c onto random sets decided by V .

In Chapter V we need a sketch which can identify all heavy hitters (and probably

some other items) and takes similar space. The idea is to use a 0/1 random sketch

matrix to project the vector c onto random subspace as follows.

Definition 2.1. (Sketch of a vector.) Given a vector c, a linear sketch of c is Rc,

where R is a random matrix generated from a prescribed distribution, called the

measurement matrix.

In our case, as is typical, the matrix R will be a pseudorandom matrix, that can

be generated from a short pseudorandom seed.

As in [20], one can except with small probability, estimate ci by c̃i from Rc, where

R is a ±1-valued matrix with poly(log(N), B, 1/ε) independent rows, each of which

is a pairwise independent family. By repeating O(k) times and taking a median,

one can drive down the failure probability to 2−k. By adjusting parameters, we can

estimate such ci well enough as c̃i so that |c̃i − ci|2 ≤ (ε/B)‖c‖22. As in [20], we can

use R to estimate the sum of items in a specific group and bound the oracle in time

poly(log(N), log(M), B, k, 1/ε).

Theorem 2.2. ( [20]) Fix parameters N,M,B, k, ε as above. Fix θ ≥ poly(log(N),

log(M), B, k, 1/ε)−1. There is a distribution on sketch matrices R and a correspond-

ing algorithm that, from R and sketch Rc of a vector c, outputs a set that includes

all terms with magnitude at least θ‖c‖2 (and possible other terms).
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2.2 Privacy

2.2.1 Protocol Privacy

Secure and private computation on two or more parties have been studied for

several decades, starting with [50, 7]. In a private protocol, no party learns anything

from the protocol messages other than what can be deduced from the function’s

input/output relation. Intuitively, there is a polynomial time algorithm, which takes

an instance of the function’s input/output relation as input, and outputs all the

messages each party has learned during the computation in protocol. Formally,

A two-party computation task is specified by a (possibly randomized) mapping

g from a pair of inputs (a, b) ∈ {0, 1}∗ × {0, 1}∗ to a pair of outputs (c, d) ∈

{0, 1}∗ × {0, 1}∗. Let π = (πA, πB) be a two-party protocol computing g. Consider

the probability space induced by the execution of π on input x = (a, b) (induced by

the independent choices of random inputs rA, rB). Let viewπ
A(x) (resp., viewπ

B(x))

denote the entire view of Alice (resp., Bob) in this execution, including her input,

random input, and all messages she has received. Let outputπA(x) (resp., outputπB(x))

denote Alice’s (resp., Bob’s) output. Note that the above four random variables are

defined over the same probability space. Two distributions (or ensembles) D1 and D2

are said to be computationally indistinguishable with security parameter k, D1
c≡ D2,

if, whenever X1 ∼ D1 and X2 ∼ D2 and for any function C having a circuit of size

at most 2k, we have then |Pr(C(X1) = 1)− Pr(C(X2) = 1)| ≤ 2−k.

Definition 2.3. Let X be the set of all valid inputs x = (a, b). A protocol π is a

private protocol computing g if the following properties hold:

Correctness. The joint outputs of the protocol are distributed according to g(a, b).
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Formally,

{(outputπA(x), outputπB(x))}x∈X ≡ {(gA(x), gB(x))}x∈X ,

where (gA(x), gB(x)) is the joint distribution of the outputs of g(x).

Privacy. There exist probabilistic polynomial-time algorithms SA, SB, called simu-

lators, such that:

{(SA(a, gA(x)), gB(x))}x=(a,b)∈X
c≡ {(viewπ

A(x), outputπB(x))}x∈X

{(gA(x), SB(b, gB(x))}x=(a,b)∈X
c≡ {(outputπA(x), view

π
B(x))}x∈X

Any protocol for computing a function of several inputs can be converted, gate-

by-gate, to a private protocol. An efficient general result is as follows.

Proposition 2.4. (General-Purpose Secure Multiparty Computation (SMC) [50])

Two parties holding inputs x and y can privately compute any circuit C with com-

munication and computation O(k(|C|+ |x|+ |y|)), where k is a security parameter,

in O(1) rounds.

This secure multiparty computation result is equivalent to the oblivious transfer

result, which both rely on the feasibility of secret key exchange and in turn the

existence of one-way function and finally the most fundamental assumption that

NP is not equal to P .

2.2.2 Functional Privacy

As the input sizes grow in some multiparty computation tasks, even linear time

communication and/or computation overhead is too much to afford. In such cases,

approximate computation instead of exact computation is necessary to achieve sub-

linear overhead. The motivation of specifying functional privacy is to define privacy
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of an approximate result in terms of the exact result. Intuitively, an approximate

result is private with respect to the exact result, if there is a probabilistic polyno-

mial time algorithm, which takes the exact result as input and outputs the final

approximate result. Formally,

Definition 2.5 (Private Approximation Protocol [15]). A two-party protocol

π is a private approximation protocol for a deterministic, common-output function g

on inputs a and b if π computes a (possibly randomized) approximation g̃ to g such

that

• g̃ is a good approximation to g (in the appropriate sense)

• π is a private protocol for g̃ in the traditional sense.

• (Functional Privacy.) There exists a probabilistic polynomial-time simulator S

such that:

{S(g(x))}
x=(a,b)∈X

c≡ g̃(x).

In our case of a deterministic function to be output to both Alice and Bob, a

(weakly) equivalent definition is as follows, known as the “liberal” definition in [15]:

Definition 2.6. A two-party protocol π is a private approximation protocol for a

deterministic, common-output function g on inputs a and b in the liberal sense if π

computes a (possibly randomized) approximation g̃w to g such that

• g̃w is a good approximation to g (in the appropriate sense)

• There exists a probabilistic polynomial-time simulators SA and SB such that:

{SA(a, g(x))}x=(a,b)∈X
c≡ {viewπ

A(x)}x∈X

{SB(b, g(x))}x=(a,b)∈X
c≡ {viewπ

B(x)}x∈X
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Roughly speaking, the equivalence is as follows. Suppose there are simulators in

the standard definition. Then, putting g̃w = g̃, a simulator for the liberal defintion

can be constructed by simulating g̃w(a, b) = g̃(a, b) from g(a, b) using the hypothe-

sized simulator for functional privacy, then simulating Alice’s view from g̃w(a, b) and

a using the hypothesized traditional simulator for the protocol that computes g̃. In

the other direction, suppose there is a simulator in the liberal definition. Let τ be

a transcript of Alice’s view except for input a. (As it turns out, it is not necessary

to include a in τ . If a is much longer than τ—as in our situation—we want to avoid

including a in τ in order to keep τ short.) Define g̃ = g̃w.τ to be g̃w with τ encoded

into its low-order bits. We assume that this kind of encoding into approximations

can be accomplished without significantly affecting the goodness of approximation;

in fact, we will assume that the value represented does not change at all, even if the

“approximate” value is zero—that is, τ is auxiliary data rather than an actual part

of the value of g̃. Note that a protocol for g̃w also serves as a protocol for g̃. It is

trivial to simulate the messages of the protocol given a and g̃. Use the hypothesized

simulator in the liberal definition to show functional privacy.



CHAPTER III

Workload-aware Optimal Histograms

3.1 Problem Statement

In this section, we address the problem of computing optimal histograms on data

streams. Our primary question is, do the powerful theoretical results known for

uniform histogram construction on data streams [20, 23, 24] hold for the workload-

aware case as well?

Definition 3.1. Given an input signal c0 · · · cN−1 and workload w0 · · ·wN−1, 0 ≤ wi,

the workload-optimal B-bucket histogram hopt is the choice of bj’s and hj’s that

minimize ‖c− h‖2w =
∑

i wi(ci − hj(i))2.

The problem of finding hopt is interesting on streamed signals and both stored

and streamed workloads. We will present a near-linear time algorithm for stored

workloads and an O(N logU) time algorithm for streamed workloads.

3.2 Preliminaries

Our algorithm under non-uniform workload uses and extends the following defi-

nitions and lemmas from [23], which presents a linear time algorithm under uniform

workload:

19
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3.2.1 Definitions from previous work

Definition 3.2. Inner Product with Weight: For any two signals A and B with

length N respectively and the same length N weight vector w, define 〈A,B〉w =
∑N

i=1AiBiwi and ‖A‖2w = 〈A,A〉w where wi is a non-negative weight at index i.

We continue to write 〈A,B〉 and ‖A‖2 for the dot product and norm under uniform

workload.

Definition 3.3. Bucket Robust Representation [21, 23]. Fix a signal c. A rep-

resentation hr is called a (B, ε)-bucket-robust approximation to c if (i) ‖hr − c‖ ≤

ε‖hopt − c‖, or, (ii) for any representation h on the boundaries of hr and any other

B − 1 boundaries, with optimal parameters, we have (1− ε)‖c− hr‖2 ≤ ‖c− h‖2.

Intuitively, a bucket-robust representation is a representation that either is very

close to hopt, or can’t be improved much by refinement by B more buckets.

We consider signals indexed on {0, 1, · · · , N − 1}, where N is a power of 2. A

dyadic interval is an interval of the form [k2j, (k+1)2j), where j and k are integers.

The function that equals 1 on set S and zero elsewhere is denoted χS. We define

Haar wavelets as following:

Definition 3.4. Wavelet: A wavelet is a function ψ on [0, N) of one of the following

forms:

1√
N
χ[0,N)

2−j/2(−χ[k2j−1,(k+1)2j−1) + χ[(k+2)2j−1,(k+3)2j−1)).

Definition 3.5. Support of Wavelet: The support of a vector v is defined as supp(v)=

{t : v(t) 6= 0}.

The support of a wavelet vector of the first type is the entire interval [0, N). Each
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Figure 3.1: Illustration of Haar wavelets

wavelet of the second type is constant on the left half and right half of its support,

and takes values on its left and right halves that are negatives of each other.

Definition 3.6. Level of Wavelet: Wavelets with length of support 2i are defined to

be on the ith. level. A wavelet of the first type is defined to be on the 0th. level.

Dynamic intervals and Haar wavelets can be represented in a tree. Figure 3.1 is

an illustration. Each node in this tree represents one wavelet vector, and there are N

nodes in total. For i = 1 · · · logN , level i contains all wavelet vectors with support

length 2N/2i. The supports of wavelet vectors in the same level are disjoint. The

support of each wavelet vector is the union of the supports of its children.

3.2.2 A Previous Uniform-Workload Algorithm

The algorithm in [23] proceeds as follows.

(i). (Selection of large wavelet terms.) Read in a length-N stream c of time-series

data and output a list L of the B ′ ≤ poly(B, logN, 1/ε) wavelet terms with

largest coefficients.

(ii). (Construction of bucket-robust representation.) Select the largest B ′′ = poly(B,

logN, logM, 1/ε) terms from L, greedily, using a particular 2-part stopping rule
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(described in detail below). Call the result hr, a bucket-robust histogram of

O(B′′) buckets.

(iii). (Construction of output.) Find a best B-bucket histogram h to hr, and output

h as a (1 + ε)-approximate histogram to c.

Note that the first step is performed on the stream, but the last two steps are

full-space, polynomial-time post-processing algorithms on small input, that is, input

of polylogarithmic size. In [23], the authors showed that the computational cost of

each step meets the claim.

We now consider in more detail the relevant parts of the [23] algorithm. In

Step (ii), we need an additional parameter εr. We take terms from L, from biggest

to smallest, 4B log(N) at a time, and add them to hr, which is initially the zero

histogram. Let h′r denote the next value of hr, i.e., hr plus the next 4B log(N) terms

to be taken. We stop when either of the following conditions is met:

• (No Progress.) (1− εr)‖c− hr‖22 ≥ ‖c− h′r‖
2
2.

• (Many Terms.) We have accumulated T terms, for some T which is at most

O(ε2r log(1/εr)B log(N)).

Using a case analysis, the output h is shown to be correct whichever stopping

rule is used. The conditions in bucket-robustness (Definition 3.3) correspond to the

Many Terms and No Progress stopping rules, respectively.

In Step (iii), dynamic programming similar to that in [30] is used. In particular,

the dynamic programming algorithm accesses hr only by making the following query.

Given interval [`, r), what is the best height a of a 1-bucket histogram aχ[`,r) and

what is the resulting error
∑

`≤i<r(hri − a)2 on that interval? This query must be

answered in time to meet the post-processing bound.
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The following is the main result from [23]:

Lemma 3.7. Given B,N , and ε, there exists εr ≥ (ε/B)O(1) such that a nearly-

optimal representation h to a (B, εr)-bucket-robust representation hr is also (1 + ε)-

nearly optimal to c.

3.3 Algorithm in lockstep model

At a high level, our algorithm proceeds as following. Firstly, we define an expanded-

workload domain from the original domain, and an equivalent transformation of vec-

tors between these two domains, which preserves norms and dot products. Then, we

compute the near-optimal representation under uniform workload for the equivalent

signal in the expanded-workload domain as in [23]. Finally, we lift the near-optimal

representation back to the original domain, which is also a near-optimal representa-

tion in the original domain with respect to the specified workload.

3.3.1 Notation and Basics

Definition 3.8. Original Domain: Consider a signal c indexed on {0, 1, · · · , N −1}.

The domain {0, 1, · · · , N − 1} is called the original domain of c.

Definition 3.9. Expanded-workload Domain: For each signal c with weight vector

w, define U =
∑N−1

i=0 wi. The domain {0, 1, · · · , U − 1} is called the expanded-

workload domain of c.

For any signal c in the original domain, we define an equivalent signal c′ in the

expanded-workload domain as following: ∀i ∈ {0, 1, · · · , N − 1}, let s =
∑i−1

j=0wi.

We define c′s, c
′
s+1 . . . c

′
s+wi−1 to be ci.

Figure 3.2 is an illustration. Each entry ci in the original domain has wi copies in

the expanded-workload domain. An example of c and the equivalent c′ is:
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Figure 3.2: Transformation between original and expanded domain

c: 〈1, 2, 3〉 in the original domain with weight 〈5, 2, 1〉, where N = 3.

c′: 〈1, 1, 1, 1, 1, 2, 2, 3〉 in the expanded-workload domain, where U = 8.

Lemma 3.10. For any N-dimensional vectors A and B in the original domain,

and so-defined equivalent U-dimensional vectors A′ and B′ in the expanded-workload

domain, norms and dot products are preserved by transformation, i.e.

(i). ‖A‖2w = ‖A′‖2

(ii). 〈A,B〉w = 〈A′,B′〉

Proof.

〈A,B〉w =
N−1∑

i=0

AiBiwi =
N−1∑

i=0

wi∑

j=1

AiBi =
U−1∑

k=0

A′
kB

′
k = 〈A′,B′〉.

Set B = A, we can get 1 from 2.

Definition 3.11. Natural Boundary: For all i in {0, 1, · · · , N − 1}, s =
∑i−1

j=0wi is

defined to be a natural boundary in the expanded-workload domain.

From the above definition, there are altogether N natural boundaries in the

expanded-workload domain. We say that, an index x in the expanded-workload

domain meets a wavelet w, if and only if x falls in the support of w.

3.3.2 Representation in Expanded-Workload Domain

According to the definition of wavelet vectors, it is easy to see that given an index

x ∈ [0, U) and a level i ∈ [0, logU ], one can compute in constant time the specific
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wavelet vector w on the ith. level that meets x. In addition let supp(w) = [w1, w2), one

can compute the local index x′ = x− w1 + 1 with respect to w in constant time.

Note that the coefficient of a wavelet w in the expanded-workload domain can be

non-zero only if there is at least one natural boundary that meets w. If not, all the

data at indices meeting w will be the same. The left half and right half of w will then

compensate each other, so the coefficient of w will vanish. Since there are N natural

boundaries in total, and the expanded-workload domain is of dimension U , there are

at most N logU non-zero coefficients in total.

We find these N logU non-zero coefficients in the expanded-workload domain in

a way similar to that described in [23] and we set the following lemma:

Lemma 3.12. There is an algorithm that reads in a stream (c0, w0), (c1, w1) · · · and

outputs the N logU non-zero wavelet coefficients (in arbitrary order), using per-item

time O(logU) and space O(logU).

Proof. Given wavelet w and natural boundary x ∈ [0, U), if x meets w, we say w

is active with respect to x. For each x, there are logU + 1 active wavelets, one

for each level. We use a (logU + 1) × 4 table R to keep information about all

these active wavelets. After processing an index x ∈ [0, U), cell R[i][0] specifies the

wavelet w on the ith. level that is currently active; cells R[i][1] and R[i][2] store current

accumulative sums for the left and right halves of w respectively; cell R[i][3] stores

the local index x′ with respect to the current active w.

For coming (cj, wj), we first get the index x of its last copy in expanded-workload

domain. This can be done in constant time by accumulating over all past items.

Then for each i ∈ [0, logU ], suppose wi is the current active wavelet on the ith. level,

we check:
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• If wi is NOT the wavelet stored in R[i][0], we need to clean up and report the

coefficient of last active wavelet on ith. level. This can be done in constant time,

using information in R and cj. Also we need to update all cells on the i
th. row

of R.

• If wi is the wavelet stored in R[i][0] and x meets its left half, we need to update

(accumulate) R[i][1] and R[i][3]. This can be done in constant time.

• If wi is the wavelet stored in R[i][0] and x meets its right half, we need to

update (accumulate) R[i][2] and R[i][3], and probably R[i][1]. This can be done

in constant time.

For each coming (cj, wj) we need to update O(logU) cells, each in constant time.

So the algorithm uses per-item time O(logU) and O(logU) space.

We use the method mentioned in [23] to get the B ′ largest coefficients. Thus:

Lemma 3.13. There is an algorithm that takes B ′ as input, reads in a stream

(c0, w0), (c1, w1) · · · and outputs the top B ′ wavelet coefficients, using per-item time

O(logU) and using space O(max(B ′, logU)).

Note that we have at most N logU non-zero wavelet coefficients, so the part of

computing top B′ coefficients will run in O(N logU) time in total.

As in [23], we have:

Lemma 3.14. There exists an algorithm that, given B, U , and ε, on input the N

values of an integer-valued signal c and a non-negative integer-valued weight vector

〈w0, w1, · · ·wN−1〉, with ‖c‖w ≤M , outputs a B-bucket histogram h′∗ with

‖c′ − h′∗‖2 ≤ (1 +O(ε))‖c′ − h′opt‖2
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where c′ is the expanded domain transform of c and h′opt is the optimal B-bucket

histogram representation to c′, both in the expanded-workload domain. The algorithm

uses space B(log(U) log(M)/ε)O(1) and time c1N logU+(B log(M) log(U)/ε)
c2, where

c1 and c2 are constants.

3.3.3 Histogram in Original Domain

Lemma 3.15. There is a B bucket representation h′b satisfying: all of its boundaries

are natural boundaries in the expanded-workload domain, and

‖c′ − h′b‖2 ≤ ‖c′ − h′∗‖2

Proof. We adjust h′∗ to get h′b in the following way: For every boundary c of h
′∗,

falling between two adjacent natural boundaries a and b, suppose the signal c′ has

value s between a and b, and the representation h′∗ has value s1 between a and c,

and value s2 between c and b. If |s− s1| ≤ |s− s2|, move c to b, so that h′b has value

s1 between a and b. Otherwise, move c to a. [see figure 3.3].

Suppose |s− s1| ≤ |s− s2|, we have:

‖c′ − h′b‖2 = ‖c′ − h′∗‖2 − [(s− s2)2 − (s− s1)2] ∗ (b− c)

≤ ‖c′ − h′∗‖2

The proof is similar when |s− s1| > |s− s2|.

Lemma 3.16. ‖c − h‖2w ≤ (1 + O(ε))‖c − hopt‖2w, where h is the original-domain

transform of h′b.

Proof. Define h′b opt to be the expanded domain transform of hopt. Clearly, it has B
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Figure 3.3: Illustration of histograms in Lemma 3.15

buckets. We have:

‖c− h‖2w = ‖c′ − h′b‖2, By equivalence

≤ ‖c′ − h′∗‖2, By lemma 3.15

≤ (1 +O(ε))‖c′ − h′opt‖2, By lemma 16

≤ (1 +O(ε))‖c′ − h′b opt‖2, By definition

= (1 +O(ε))‖c− hopt‖2w, By equivalence.

Note that to adjust h′∗ to h′b, we only need to store all the natural boundaries

that are adjacent to boundaries of wavelet vectors with top B ′ coefficients. So this

step can be run in O(B) time and O(B ′) space.

3.3.4 Main Results, Streamed Weights

Combining the above results, we have:

Theorem 3.17. There is an algorithm that, given parameters B, N , M , ε, weight

vector w, and data c in time series with ‖c‖2w ≤M , outputs a B-bucket histogram h

with

‖c− h‖2w ≤ (1 +O(ε))‖c− hopt‖2w

where hopt is the best possible B-bucket histogram representation to c under weight
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w. The algorithm uses space B(log(U) log(M)/ε)O(1), and runs in time c1N logU +

(
B logU logM

ε

)c2
, where c1 and c2 are two constants.

3.4 Near-Linear Time Algorithm

In Section 3.3, we present an algorithm running in time O(N logU), where U =

∑N−1
i=0 wi. However, U may go up to O(2

N) or even worse in practice and even when

U = O(N), running time O(N logN) could be too expensive for some application. In

this section, we will remove the factor logU and present a near-linear time algorithm

in a model where w is stored.

At a high level, our algorithm proceeds as follows. We will regard the weights as

rounded to a power of (1+ε); there is a small number p = log1+ε(M) of these classes.

We split the incoming streaming data into p new substreams of data, according to the

associated weight. For each sub-stream, we create a bucket-robust representation,

as in [23]. Combining the bucket-robust representations gives a linearly-robust rep-

resentation hr, that we define below. Lemma 3.25-3.26 and Lemma 3.27 guarantee

that hr is correct and can be computed in desired time. Finally, a near-best B-bucket

representation h to hr will be constructed. Lemma 3.28- 3.30 show how to compute

h efficiently by dynamic programming similar to that in [30], and Lemma 3.31 proves

its approximation quality to complete the proof.

3.4.1 Notation and Basics

We consider signals of length N , with weights w1, · · · , wN , and such that ‖c2‖ ≤

M . We will assume that data items are integers, and that weights are positive

integers in the range wmin = 1 to some wmax ≤M .

Definition 3.18. Rounded weights w.r.t. original weights: Let p = (log1+εM) + 1.

Define p numbers w1, w2, · · · , wp, where wi = (1 + ε)i−1. Round all the original
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weights w1, · · · , wN down to w
1, w2, · · · , wp, denoted as w′1, · · · , w′N respectively, i.e.,

∀i ∈ {1, · · · , N},∃j ∈ {1, · · · , p} such that wj = w′i and wi ≤ (1 + ε)w′i ≤ (1 + ε)wi.

We use w′ = (w′1 · · ·w′N) to represent the length-N rounded weight vector.

Lemma 3.19. (Close relationship between original weights and rounded weights:)

Fix a single c of dimension N . Then ‖c − h′opt‖2w ≤ (1 + ε)‖c − hopt‖2w , where hopt

is the optimal B bucket representation to c under weight w, and h′opt is the optimal

B-bucket representation to c under weight w′.

Proof.

‖c− h′opt‖2w =
N∑

i=1

[ci − h′opt(i)]2wi

≤ (1 + ε)
N∑

i=1

[ci − h′opt(i)]2w′i

≤ (1 + ε)
N∑

i=1

[ci − hopt(i)]2w′i

≤ (1 + ε)
N∑

i=1

[ci − hopt(i)]2wi

= (1 + ε)‖c− hopt‖2w

Next we describe how to build a data structure R in time O(N) and one pass,

that answers all the following queries in specified time.

• For all j < N , recover w′j in constant time.

• For all j < N , recover the number of k < j such that w′k = w′j in constant time.

• For all j < N and i ≤ p, get the index k, if any, such that j ≤ k < N , w′j = wi,

and ∀j ≤ t < k, w′t 6= wi in O(logN) time. In other words, we want to find the

smallest index k greater than j and with the same rounded weight as j.
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• For all j < N and i ≤ p, get the index k, if any, such that 0 ≤ k ≤ j, w′j = wi,

and ∀k < t ≤ j, w′t 6= wi in O(logN) time. In other words, we want to find the

greatest index k smaller than j and with the same rounded weight as j.

One of such data structures works as follows: We have an array R1 of length N ,

and a list R2 of p queues, which takes in total O(N) space. For every index i, if

w′i = wj, we set R1i = j, push i to the end of queue R2j, and accumulate the total

number of elements in that queue. The first two queries can be answered directly

from R. For the last two queries, we can use binary search to locate wj in its queue

in O(logN) time and answer the query directly from that queue.

3.4.2 Weakly Robust Representations

Definition 3.20. (Partition and combination of representations:) Given a stream c

and a partition P of [0, N), cPi is a sub-stream under partition P , for i ∈ {1, · · ·m}.

Define #i∈{1···m}c
P
i as the combination of all the sub-streams. We use #c

P
i for short

in what follows. So c = #cPi .

Definition 3.21. Given a weight vector w, define the partition P as following:

For each i ∈ {1, · · ·N}, if w′i = wj, put i into the jth. group. Let hi be the

(Br, εr)-bucket-robust representation for c
P
i , where Br and εr are in the order of

(1/ε, B, logM, logN). Define hr to be #h
i.

Reference [23] gives the definition of bucket-robust representation under uniform

workload. Unfortunately, that definition fails in our framework of separate sub-

streams based on weight classes. We give a brief illustration why. Suppose there

are just two weight classes, that partition [0, N) precisely into the even and odd

indices. Suppose h′ and h′′ are two bucket-robust histograms, defined on the even

and odd indices, respectively, and each has a small number of buckets. Suppose that
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all heights represented in h′ and h′′ are distinct. Suppose that h′ and h′′ have about

equal shares of the error. Finally, suppose that the reason for bucket-robustness is

only that they are not much improved by refinement by B more buckets; that is,

suppose ‖c− h′‖2 and ‖c− h′′‖2 are each approximately 1
2
‖c− hopt‖2 > 0, which can

happen if c − hopt is noisy. We use the following example to show that all of these

assumptions are consistent.

Example 3.22. We simulate a signal c of dimension 300, where each ci ∈ (0, 1)

is generated randomly by rand() with seed 10000 in C. The optimal one-bucket

histogram of c has square error 24.9414 and the optimal five-bucket histogram has

square error 23.1963, which means for any ε ∈ [0.07, 1), the optimal one-bucket his-

togram itself is a (5, ε)-bucket-robust representation only that it is not move improved

by refinement of 4 more buckets.

Now, let h be the combination of h′ and h′′; we will show that h is not bucket-

robust. Note that, because of the even/odd partition induced by the given weights,

h has N buckets, each of size 1. Then one of the bucket-robust conditions says that if

we further refine h and then optimize the heights, we do not get much improvement,

multiplicatively. Clearly, by optimizing the heights, we can get error zero! The other

condition says that ‖c− h‖2 ≈ ε2‖c− hopt‖2. But ‖c− h‖2 = ‖c− h′‖2+‖c− h′′‖2 ≈

‖c− hopt‖2 À ε2‖c− hopt‖2. It follows that neither condition of bucket-robustness is

satisfied. Therefore, we need to weaken the definition of bucket-robustness somewhat.

We also need to expand it to non-uniform workload.

Definition 3.23. Fix a signal c and rounded weight vector w′. Given parameters B

and ε, let hopt denote an optimal B-bucket histogram for c under w
′. A representation

hr is called a (B, ε)-linearly-robust (or just (B, ε)-robust henceforth) approximation
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to c under weight w′, if, for any B-bucket histogram hB and any scalars a and b,

either ‖c− hr‖2 ≤ ε2‖c− hopt‖2 or (1− ε)‖c− hr‖2w ≤ ‖c− (ahr + bhB)‖2w.

The first condition is similar to the corresponding condition in bucket-robustness:

the error ‖c− hr‖2 is already tiny compared with ‖c− hopt‖2. The second condition

is implied by the corresponding condition in bucket-robustness. Hence, linearly-

robustness is a weaker notion than bucket-robustness. We also need to modify Defi-

nition 3.21 as follows.

Definition 3.24. Given a weight vector w, define the partition P as following: For

each i ∈ {1, · · ·N}, if w′i = wj, put i into the jth. group. Let hi be the (Br, εr)-

bucket-robust representation for cPi , and I be the set of all index i’s satisfying h
i is

linear-robust only because it is much better than the optimal histogram. Define hr1

to be #i∈Ih
i, and hr2 to be #i∈{1,2,··· ,p}−Ih

i. Define hc to be the combination of hr1

and hr2 .

Next we show that both I and {1, 2, · · · , p}− I can be non-empty. Namely, there

is a hi, which is linear-robust:

• only because it is much better than the optimal. Consider a signal with ex-

ponentially distributed data. Given a histogram, adding one more bucket can

improve a lot since the data changes dramatically. So it is possible to find some

histogram which improves the optimal a lot but still has room to improve by

combining with some Br-bucket histogram.

• only because it can not be much improved by combination of any Br-bucket

histogram. Example 3.22 works here too, since the optimal five bucket histogram

can be viewed as a combination of one bucket histogram and some five bucket

histogram.
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Lemma 3.25. Histograms hr1 and hr2 are (Br, εr)-robust representations to the cor-

responding parts c̃1 and c̃2 of c, under weight w
′.

Proof. As in Definition 3.24, for each i ∈ 1, · · · ,m, hi is a (Br, εr)-robust representa-

tion for cPi because it is much better than the optimal or it is not much improved by

combination of any Br-bucket histogram. Since hr1 and hr2 can be viewed as linear

combinations of all hi, taking corresponding rounded weight wi as coefficient, they

are (Br, εr)-robust representations to c̃1 and c̃2, under weight w
′.

Now we claim that the combination of hr1 and hr2 is (Br, εr)-robust to c under

machine precision.

Fact 3.26. Under weight w′, histogram hc is not necessarily a (Br, εr)-robust rep-

resentation to c literally, but is a (Br, εr)-robust representation to c under machine

precision in practice.

Proof. In the case that both I and {1, 2, · · · , p} − I are non-empty, it is possible

to make up a hc that fails in both conditions of linear-robustness by setting proper

error tolerance ε and workload w.

Next we show that hr2 = c̃2 to machine precision. As reviewed in Section 3.2.2,

hr2 is the combination of robust histograms which are computed by accumulating

(1/ε, logM)O(1) terms. Since each accumulation reduces the error by a factor of

O(1/ε, logM), the maximal errorM will be reduced by a factor of Ω((logM)logM ) =

Ω(M log logM ) and becomes o( 1
M log logM ). The assumption that o(

1
M log logM ) is equal to

0 under machine precision is reasonable.

Fact 3.26 shows that hc is robust under reasonable assumption. We will use hr

instead of hc as the combination of hr1 and hr2 from now on.
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Lemma 3.27. There are two constants c1 and c2 such that hr can be computed in

c1N +
(
B logN logM

ε

)c2
time.

Proof. Note that we need constant time per item to split each data in the original

stream into the corresponding substream, according to P . We then run an algorithm

on each substream that takes time linear plus
(
B logN logM

ε

)c2
(see [23]). Since the

substreams’ total length is N , the result follows.

We use an array to store each hi in the form (wi : hi1, l
i
1, h

i
2, l

i
2 · · · , hiB′ , liB′), where

hii is the height and l
i
i is the left boundary. Using a result from [23], we have:

Lemma 3.28. For j = 1, 2, · · · , N , each hr,j can be computed in O(logB ′) time,

with B′ ≤
(
B logN logM

ε

)O(1)
, given ‖c‖ ≤ M , where hr,j is the value at the j

th. index

in hr.

Proof. Using the data structure R as specified before, for every j we can recover

w′j and the number of k < j such that w′k = w′j defined as Prej in constant time.

Suppose w′j = wi. Using binary search, we can find Prej ∈ [lit, lit+1) in time O(logB ′),

and hr,j = hit.

Lemma 3.29. Given hr, there is an algorithm that takes as input parameters B,

N , M , and ε and histogram hr with ‖hr‖ ≤ M , and computes the best height

h to hr,i · · ·hr,j along with the associated error in time O(pB ′ logB′), where B′ ≤
(
B logN logM

ε

)O(1)
, and p = O(logM), ∀i, j ∈ {1, · · ·N}.

Proof. Let wsum =
∑j

k=iw
′
k. Define a random variable X such that X = hr,k with

probability
w′
k

wsum
, for i ≤ k ≤ j. Then E[X] = h is the height of the optimal one-

bucket representation to hr between i and j. Therefore, h =
∑j

k=i
w′
k
hr,k∑j

k=i
(w′

k
)
=

∑j
k=i

w′
k
hr,k

wsum
.

Note that all the data in one bucket of a robust representation in each stream

have the same rounded weight and the same height in hr. So it will take constant
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time to compute the sum of weights and the sum of the product of data and weights

for each bucket. Since there are B ′ buckets in each robust representation, and p

robust representations in total, and we need O(logB ′) time to decide the index of

each hr,i in its corresponding substream, the height and error can be computed in

O(pB′ logB′) time.

3.4.3 Histogram extracted from robust representation

We use dynamic programming to get a B-bucket representation h to hr. First

assume that we know an approximation E to the optimal error Eopt, satisfying Eopt ≤

E ≤ 2Eopt, where Eopt = ‖hr− ĥ‖2w′ , and ĥ is the optimal representation to hr under

weight w′. Define Far[j, l] to be a position x such that some j-bucket histogram on

[0, x) has error at most (` + j + 1) ε
2B
E but no j-bucket histogram on [0, x + 1) has

error at most `ε
2B
E. We build a O(B2/ε)-sized table T to store the information, for

each j ≤ B and each l ≤ O(B/ε). For each entry of T , we compute:

T [j][l] = Far[j, l] = max
l1+l2=l+1

x : cost(Far[j − 1, l1], x) ≤ l2

where cost(l, r) is the difference of hr and the optimal one-bucket representation

between index l and index r to it under weight w′.

Lemma 3.30. Given B, w′, ε, and robust representations h1, · · · , hp, with ‖c‖ ≤

M , by using O(B2) additional space, we can output a B-bucket representation h in

(
B logN logM

ε

)O(1)
time, with

‖hr − h‖2w′ ≤ (1 + ε)‖hr − ĥ‖2w′

where ĥ is the best B-bucket representation to hr.

Proof. Assume we know the proper E as specified. For some optimal histogram, let

ej be the error in the j
th. bucket, and let mj = dej × 2B/(εE)e. Then, inductively,
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h will do at least as well as using error bound mj
ε
2B
E for the jth. bucket, which

means the boundaries it finds will all be equal to or to the right of the corresponding

boundaries in the optimal histogram. The overall error is sub-optimal by ε
2B
E per

bucket, which is at most εEopt overall. Thus the overall error is (1 + ε)Eopt, as

desired.

We can find a proper E as follows. Since the zero histogram has error at most

M , we have 1 ≤ Eopt ≤ M . So there is a proper E ∈ S = {M, M
2
, · · · , 1}. We

use binary search to find an i such that, for E = M
2i
, T [B][B/ε] = N , and for

E = M
2i+1 , T [B][B/ε] < N . Then M

2i
is a proper E satisfying Eopt ≤ E ≤ 2Eopt. Since

|S| = O(logM), this can be done in time O(log logM).

3.4.4 Main Results, Stored Weights

Lemma 3.31. Fix a signal c with rounded weight w′, and let hr be a (B, ε)-robust

approximation to c under weight w′. Let h be a B-bucket approximation got from hr

by the algorithm specified above. Then

‖c− h‖2w′ ≤ (1 +O(ε))‖c− h′opt‖2w′

where h′opt is the optimal B-bucket representation to c̃1 under weight w
′.

Proof. Extend the proof from [23] under uniform weight to weight w′. Notice that,

the proof under uniform weight uses robustness, the triangle inequality and the

Pythagorean theorem. We will check that all these properties are hold under weight

w′.

1. Robustness is preserved under weight w′ by Lemma 3.25.

2. Triangle inequality: For any two N -dimensional signals X and Y with weight

w, define another two N -dimensional signals S and T , satisfying Si =
√
wiXi and
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Figure 3.4: Illustration of histograms in Lemma 3.31. By optimality of hr, there are near right
angles as indicated.

Ti =
√
wiYi for all i. We have:

‖X − Y ‖w =

[
N∑

i=1

wi|Xi + Yi|2
] 1

2

=

[
N∑

i=1

|Si + Ti|2
] 1

2

≤
[

N∑

i=1

|Si|2
] 1

2

+

[
N∑

i=1

|Ti|2
] 1

2

=

[
N∑

i=1

wi|Xi|2
] 1

2

+

[
N∑

i=1

wi|Yi|2
] 1

2

= ‖X‖w + ‖Y ‖w

3. Pythagorean theorem: For any three N -dimensional signals A, B and C with

weight w, if 〈A− C,B − C〉w = 0, we have

‖A−B‖2w = ‖A− C + C −B‖2w

= 〈A− C + C −B,A− C + C −B〉w

= ‖A− C‖2w + ‖C −B‖2w + 2〈A− C,C −B〉w

= ‖A− C‖2w + ‖C −B‖2w

Roughly speaking, the weak robustness property insures that there are near-right
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angles at c-hr-hopt and c-hr-h. Since the leg c-hr is the same in the two triangles and

since h-hr is shorter than hopt-hr, it follows that h-c is not much longer than hopt-c.

See Figure 3.4.

Combining Lemma 3.19 and Lemma 3.31, we can go from the rounded weights to

the original weights, and have:

Theorem 3.32. There is an algorithm that, given parameters B, N , M , ε, weight

vector w, and data c in time series with ‖c‖2w ≤M , outputs a B-bucket histogram h

with

‖c− h‖2w ≤ (1 +O(ε))‖c− hopt‖2w

where hopt is the best possible B-bucket histogram representation to c under weight w.

The algorithm uses space
(
B logN logM

ε

)O(1)
in addition to the space associated with w

(independent of the input). The algorithm uses time in c1N +
(
B logN logM

ε

)c2
, where

c1 and c2 are two constants.

3.5 Lower Bounds

It is easy to see that a histogram algorithm that first reads the data and then is

given a workload must store all the data, since the choice of workload and histogram

approximation criterion can force the algorithm to recover any data item exactly.

This immediately gives

Theorem 3.33. Suppose data and workload values are interleaved arbitrarily. For

any B ≥ 3, any algorithm that outputs a nearly optimal B-bucket histogram uses

space Ω(N log(M)) bits (enough to store all the data) up to a constant factor.

While Theorem 3.33 is the strongest possible statement about interleaving data

and workload values, it says nothing about compressing the workload. Above we
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showed that, to get a (1+ ε)-factor approximation, one can round weights to a power

of (1+ ε) (i.e., discard low-order bits). We now show that, in a sense, this is the only

kind of lossy compression that is possible.

Lemma 3.34. Suppose an algorithm reads and processes a workload of length N

and bound M into an object s of size |s|, then discards everything about the work-

load except s, then reads time series data. If, for any workload, any data, and any

sufficiently small ε > 0, the algorithm produces, with probability À 1/2, a (1 + ε)-

approximation to the best 3-bucket histogram, then the algorithm can be used as a

subroutine to store all values from a vector of positive integer entries bounded by

M/4, of length ≥ N −O(log(M)/ε), up to the factor (1 +O(ε)).

Proof. Suppose we are given a vector v of entries bounded by M/4, of length N −

log(M)/ε. Construct a workload as follows. The first O(log(M)/ε) values are all the

powers of (1 + ε), in order, called “reference values.” The next value is equal to M .

Finally, the last N − log(M)/ε values are the original vector. Run the first part of

the algorithm on this workload, producing s.

Our goal now is to recover any vj from s and j. To do this, consider the data that

is all zeros except for a 1 at a position corresponding to a reference workload value

of (1 + ε)k and another 1 at position corresponding to vj. If vj > (1 + ε)k+1, then

the best 3-bucket histogram gets vj right and is zero everywhere else (getting the 1

at reference position (1 + ε)k wrong). Similarly, if vj < (1 + ε)
k−1 the best 3-bucket

histogram gets vj wrong and (1 + ε)
k right. It follows that we can learn vj up to the

factor (1 + ε)2 = (1 +O(ε)).

In particular, the lemma above implies:

Theorem 3.35. For any B ≥ 3 and any sufficiently small ε > 0, if an algorithm
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represents in space |s| a workload w of length N and bound M and finds (1 + ε)-

near-best B-bucket histograms with respect to w, then |s| is at least the space needed

to store (N −O(log(M)/ε)) counters of Ω(log(M)/ε) states.



CHAPTER IV

Experiment and Application

In section 4.1, we will show how the workload affects the final result, and compare

the result of our algorithm in section 3.4 to optimal. In section 4.2, we will briefly

introduce a tool, “PADS”, which processes ad-hoc data streams, and show, in detail,

how to build and customize histograms (under uniform workload only) using our

tool. We also unify the interface between generated library on system level (specified

below) and user code on application level (specified below), so that future statistical

profiling tools can be added into the system more easily.

4.1 Experiment Results

4.1.1 Environment

The experiment data is based on a trace containing one day’s worth of all HTTP

requests to the ClarkNet WWW server, which is a full Internet access provider for

the Metro Baltimore - Washington DC area. Each tuple has five attributes as follows:

host name — time — request — return code — bytes transfered,

so {haus.efn.org – [05/Sep/1995:00:00:00 -0400] “GET /pub/atomicbk/catalog/erotica

.html HTTP/1.0” 200 11362} is an example tuple. All the tuples come in a stream.

We consider each second as an index in the stream, and aggregate the total number

42
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of bytes transferred in that second as the data. We carry out two experiments as

follows.

• In the first experiment, we design some typical non-uniform workloads. We

will compare the errors of optimal histograms oblivious to and aware of these

workloads, to show the importance of taking workloads into account.

• In the second experiment, we aggregate the number of successful requests (with

return code beginning with 2) in each second as the weight. This is the workload

we would get for our data indexed by second if queries are initially generated

uniformly by 5-tuples. Thus we derive a workload from the data rather than

synthesize a workload. We will compare the error under our algorithm and

the error under optimal representations, both oblivious to and aware of the

workload. We test the near-linear algorithm only.

We define the following parameters in both experiments:

parameter description value

DIMEN Length of the input stream. 1024

BLOCKNUM Number of buckets allowed in the final representation. Varies

ERROR Error ε allowed in the final representation. Varies

The program uses Visual C++ 6.0 as compiler, and runs under Windows XP.

4.1.2 Results from first experiment

In each table, the first row shows the errors of optimal histograms aware of work-

load and the second row shows the error ratios of optimal histograms oblivious to

workload compared to the errors in first row and in the same column.

• wi =
1
i+1
:
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BLOCKNUM 1 2 4 8 16 32

Error of hopt aware of w 41.2 35.4 33.2 29.3 24.0 17.7

Error ratio of hopt oblivious to w 1.01 2.01 2.12 2.20 3.04 3.57

• wi = ri, with w0 = 1 and wN−1 = 500:

BLOCKNUM 1 2 4 8 16 32

Error of hopt aware of w (×105) 7.08 7.01 5.81 4.99 4.09 3.06

Error ratio of hopt oblivious to w 1.00 1.07 1.21 1.36 1.94 2.72

• wi = ri, with w0 = 1 and wN−1 = 100:

BLOCKNUM 1 2 4 8 16 32

Error of hopt aware of w (×105) 1.95 1.93 1.67 1.44 1.21 0.94

Error ratio of hopt oblivious to w 1.00 1.10 1.19 1.29 2.01 2.44

• wi = i:

BLOCKNUM 1 2 4 8 16 32

Error of hopt aware of w (×106) 4.92 4.89 4.34 3.88 3.32 2.65

Error ratio of hopt oblivious to w 1.00 1.22 1.28 1.22 2.20 2.07

In general, the error ratio of the workload-oblivious optimal representation to the

workload-aware optimal representation will first increase as the number of buckets

goes up, then decrease sharply since both optimal histograms can get zero error when

the number of buckets is as large as the dimension. From the above experiment

results, we notice that: 1. The error ratio can go up to 3 or even higher under

these typical workloads, while the BLOCKNUM ¿ N . 2. The more dramatically

the workload fluctuates, the bigger error ratio we can get. Considering that the

real world workload can be much more irregular than the distributions we used in
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these experiments, an algorithm aimed at finding representation aware of workload

is necessary.

4.1.3 Result from second experiment
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Figure 4.1: Distribution of Weight

In this experiment, we aggregate the number of successful requests in each second

as the weight. We have the weight distribution shown in figure 4.1. The x-axis

represents the weight, and the y-axis represents the number of indices having this

weight.

Here are the results from our experiment:

BLOCKNUM 1 2 4 8 16

Error of hopt a.o. w (×104) 3.82 3.78 3.01 2.49 2.06

Ratio of hopt o.t. w 1.13 1.14 1.17 1.40 2.31

Ratio of h a.o. w (ε = 2) 1.00 (1) 1.01 (1) 1.27 (1) 1.53 (1) 1.85 (1)

Ratio of h a.o. w (ε = 1) 1.00 (1) 1.01 (1) 1.27 (1) 1.46 (3) 1.73 (3)

Ratio of h a.o. w (ε = 0.1) 1.00 (1) 1.01 (1) 1.27 (1) 1.45 (3) 1.53 (6)

Ratio of h a.o. w (ε = 0.01) 1.00 (1) 1.00 (2) 1.21 (3) 1.42 (3) 1.52 (8)

For each number B of buckets, the number in the first row is the actual error of B-
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bucket optimal workload-aware histogram. Numbers from the second row to the last

are error ratios of optimal workload-oblivious histogram and approximate workload-

aware histograms with user defined error tolerance ε compared to the error of optimal

workload-aware histogram. In our experiment, some approximate histograms use

fewer than B buckets. Numbers in brackets show the number of buckets actually

used in the result representation.

From the above result, we have some observations as follows.

• When we cut the parameter ERROR from 2 to 1, there are some relatively

big improvements in some columns, while the improvements made by cutting

ERROR from 0.1 to 0.01 are relatively small in those columns. So we may say,

0.1 is a good value for the parameter ERROR, and cutting it further may make

little contribution to the final result representation.

• In many cases, the number of buckets actually used in the result representation

is much smaller than the parameter BLOCKNUM. We may use the following

technique to improve our algorithm in practice: Let Bmax be the dimension, and

Bmin be the parameter BLOCKNUM set by the user. There is some B between

Bmax and Bmin, which leads to a result representation having BLOCKNUM

buckets. We do binary search over all Bmin ≤ B ≤ Bmax = N to find this B,

which will put additional O(logN) iterations.

For example. In our second experiment, when users ask for a 8-bucket histogram

with error tolerance ε = 0.01, they will actually get a 3-bucket histogram. To

improve this, we set Bmin = 8, and search in the range B ∈ [8, N). Finally,

we can get a 8-bucket histogram when we set BLOCKNUM = 16 as the table

shows.
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4.2 Histogram Application in PADS

4.2.1 PADS Introduction

For the complete information about PADS, including documentation and down-

loads, see [43].

PADS is a declarative data description language that allows data analysts to de-

scribe both the physical layout of ad-hoc data sources and semantic properties of that

data. Figure 4.2 is an illustration of its architecture. From such descriptions, the

PADS compiler processes input data and produces basic libraries (Generated Library)

automatically. High level applications for manipulating the data are provided in the

PADS library, to which user has access. A possible application is to build statistical

profiling tools over streaming data. As each data item comes, the tool accumulates

it with previous result and gets updated statistics result like minimal item, maximal

item, histogram, heavy hitters, etc. We call such tools as accumulators. The PADS

system initially had only trivial accumulators, such as for computing the minimal or

maximal item.

Figure 4.2: PADS Architecture
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4.2.2 Example Histogram Result

Figure 4.3 is an example report for the length field of a web server log data.

*** Histogram Result ***
From 0 to 397, with height 4016.
From 398 to 398, with height 36122.
From 399 to 423, with height 5584.
From 424 to 424, with height 33250.
From 425 to 499, with height 3126.
*** Histogram Result ***
From 0 to 196, with height 3286.
From 197 to 197, with height 30430.
From 198 to 313, with height 3233.
From 314 to 314, with height 30430.
From 315 to 499, with height 3655.
*** Histogram Result ***
From 0 to 242, with height 3686.
From 243 to 243, with height 36122.
From 244 to 441, with height 3720.
From 442 to 442, with height 26074.
From 443 to 499, with height 7035.
*** Histogram Result ***
From 0 to 93, with height 4204.
From 94 to 94, with height 36122.
From 95 to 206, with height 3000.
From 207 to 210, with height 21496.
From 211 to 499, with height 3890.
. . . . . . . . . . . . . . . . . . . . . . .

Figure 4.3: Portion of histogram report for length field of web server log data

In this particular run, an optimal 5-bucket histogram is built for every 500 values

seen in the data source. From the result, we have some interesting observations.

In the first three histograms, two spikes are detected for each. It means that there

are at least two transactions with bytes-transferred ten times more than the average.

In the last histogram, though there is only one spike detected, we also have four

consecutive transactions with notably larger number of bytes transferred compared

to the average. By adjusting number of buckets used, a network monitor may find

this tool useful.
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4.2.3 Customization

The histogram accumulator is the first nontrivial accumulator built for PADS. We

now describe various customizations we provide to PADS users. Users are allowed

to customize various aspects of histogram by setting the appropriate field in the

histogram data structure. There are two kinds of customization. The fields INIT N

to INIT e are related to building histograms itself. Users can choose to build optimal,

approximate or equal-width histograms under L1 or L2 norm. The fields INIT scale

to entry t fromFloat are designed to help the algorithm fit the system better.

Specifically,

• INIT N is an unsigned integer denoting the number of values for histogram

to summarize. If the number of values in the data source exceeds INIT N,

histograms will be built on each INIT N data values respectively, until the end

of data source is reached.

• INIT B is an unsigned integer denoting the number of buckets in final histogram.

As INIT B increases, accuracy of final histogram approximation is increased,

while more time and space is consumed.

• INIT M is an unsigned integer denoting an upper bound of data values in data

source. Time consumed increases polylogarithmically in INIT M, so INIT M can

be set very large if little about data values in data source is known.

• INIT ISE denotes whether buckets in the final histogram are required to be of

the same width. If INIT ISE is set to be non-zero, all buckets have equal width.

In this case, the time needed is linear in INIT N, and only constant space will be

used. However, the resulting histogram will have less accuracy than histogram

with near-optimal bucket boundaries.
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• INIT ISO denotes whether final histogram is required to be optimal or not. This

parameter is valid only when INIT ISE is zero. If INIT ISO is set to be non-

zero, the resulting histogram will be the most accurate one among all INIT B

bucket histograms. However, the time needed is cubic in INIT N, which could be

extremely large, and the space needed is linear in INIT N, since all data values

in each INIT N section are required to be stored.

• INIT n denotes whether the L1 or the L2 is used to measure the accuracy of

final histogram. Currently, the L1 measurement is supported only when all the

data values are stored. In other words, it is supported only when INIT ISE is

zero, and INIT ISO is non-zero.

• INIT e denotes error tolerance of the final histogram. This parameter is valid

only when non-optimal result is allowed, namely both INIT ISE and INIT ISO

are zeroes. The final histogram will be guaranteed to be no worse than (1+INIT e)

times of the optimal one, but the time and space needed increase as the error

tolerance decreases.

• INIT scale specifies a number of least significant bits to drop in integer-valued

data. The algorithm uses INIT scale to avoid overflow. On reading data,

it divides each data item by INIT scale and rounds it up. On outputting

histogram, it multiplies the height of each histogram bucket by INIT scale.

• INIT maxPortion specifies the size of an internal buffer. While the algorithm

is running, there is a limited number of histograms that can be stored in the

memory. Users are expected to either clear and print those histograms or store

them into hard disk during the process. If a new histogram is required to be

built while the number of stored histograms is already INIT maxPortion, all
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histograms in the memory will be cleared and a warning will be reported.

• entry t toFloat is a function pointer, converting any data type into a real

number, which can be handled by the algorithm. Only types with well-defined

conversion functions to real number are considered as meaningful types, and

can be summarized correctly by histograms. Users are allowed to overload their

own conversion function for each field.

• entry t fromFloat is a function pointer, converting real number back into

its original data type. Only types with well-defined conversion functions from

real number can be printed correctly. Users are allowed to overload their own

conversion functions for each field.

Follows is an example of the use of entry t toFloat and entry t fromFloat.

PADS provides a basic data type PIP as a structure of four real numbers I0, · · · , I3

to store ”IP address”. Users need to overload the above two converting functions to

get statistics over PIP correctly. A possible way to convert PIP type p into a real

number r is:

r = p.I0 × 2553 + p.I1 × 2552 + p.I2 × 255 + p.I3

To report, users can recover every field of p exactly from r. In some application,

users may care about network ID only and overload the converting function as r =

p.I0 × 255 + p.I1. The last two hosts ID will be hidden in the reported result in this

case.

4.2.4 Operations

There are three kinds of histogram functions. Functions entry t hist init to

entry t hist cleanup are related to setting up and cleaning up the running en-

vironment – including allocating space, setting proper parameters at the beginning
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and deallocating space at the end. Function entry t hist add updates current

statistics each time a new item arrives. Functions entry t hist reportFull2io

to entry t hist reportAll are used to print the resulting histograms either to

screen or to an IO stream. All functions return a success indicator of type Perror t.

Their behaviors declared for a PADS type are as follows:

• Perror t entry t hist init (P t *pads,entry t hist *h): Initializes a his-

togram data structure. This function must be called before any data can be

added to a histogram.

• Perror t entry t hist setPara (P t *pads,entry t hist *h,P hist *d hist):

Customizes histogram data structure. This function must be called to make any

customization effective.

• Perror t entry t hist reset (P t *pads,entry t hist *h): Reinitializes the

histogram data structure. This function can be used to set any point of the

data source as the start point of a new run. But it can not be used to reset any

previously-defined parameters.

• Perror t entry t hist cleanup (P t *pads,entry t hist *h): Deallocates

all memory associated with histogram.

• Perror t entry t hist add (P t *pads,entry t hist *h,Pbase pd *pd,entry t

*rep,Puint32 *isFull): Inserts a data value. This function is called once for each

new record. Any data type with an associated mapping function to Pfloat64 is

considered as a meaningful type. This function tracks fields with meaningful

type and legal values only. The output parameter isFull will be set nonzero, if

the current data is the last one of a portion.
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• Perror t entry t hist reportFull2io (P t *pads,Sfio t *outstr,const char

*prefix, const char *what, int nst,entry t hist *h): Writes summary report for

finished histograms to *outstr. In most cases, when this function is called, all

stored histograms will be reported and the space will be released, while the

current one won’t.

• Perror t entry t hist reportAll2io (P t *pads,Sfio t *outstr,const char

*prefix, const char *what, int nst,entry t hist *h): Writes summary report for

all histograms to *outstr. When this function is called, all histograms will be

reported and the space will be released.

• Perror t entry t hist reportFull (P t *pads,const char *prefix,const

char *what,int nst,entry t hist *h): Writes summary report for finished his-

tograms to screen.

• Perror t entry t hist reportAll (P t *pads,const char *prefix,const char

*what,int nst,entry t hist *h): Writes summary report for all histograms to

screen.

4.2.5 Unified interface for future accumulators

PADS provides a unified interface for all statistical profiling tools. Users are people

who will use the following functions. For them, once they get familiar with one tool,

they know how to use all others. Coders are people who provide the following

functions. They can implement future tools more easily, focusing on the high-level

algorithm only.

The statistical profiling tool function interface declared for a PADS type is as

follows. Coders need to supply the body of each function, and replace SPT (statistical

profiling tool) by meaningful tool names.



54

• entry t SPT init (P t *pads,entry t SPT *h): Initializes.

• entry t SPT setPara (P t *pads,entry t SPT *h,P SPT *d SPT): Customizes.

• entry t SPT reset (P t *pads,entry t SPT *h): Reinitializes.

• entry t SPT cleanup (P t *pads,entry t SPT *h): Deallocates all memory

associated.

• entry t SPT add (P t *pads,entry t SPT *h,Pbase pd *pd,entry t *rep,Puint32

*isFull): Inserts a data value.

• entry t SPT report2io (P t *pads,Sfio t *outstr,const char *prefix, const

char *what, int nst,entry t SPT *h): Writes summary report to *outstr.

• entry t SPT report (P t *pads,const char *prefix,const char *what,int nst,

entry t SPT *h): Writes summary report to screen.

Some of the above input parameters are defined and supplied by PADS system.

Coders need to supply the following two:

• entry t SPT *h: h is a structure containing all inherent parameters needed

to build the tool. Users don’t have access to h.

• P SPT *d SPT: d SPT is a structure containing all parameters, that are al-

lowed to be modified by users. As in the histogram example, users can customize

various aspects of the tool by setting the appropriate field of d SPT, and calling

entry t SPT setPara.

Figure 4.4 illustrates a sample use of the above functions to print a summary. This

template consists of four parts. In declaration part, users are responsible for supply-

ing a structure that contains all customization. The initialization part prepares the
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system for running accumulators and remains the same for all accumulators. The

high-level algorithm part is the core of this template program. Users first initialize

its accumulator and set all customization, then use a loop to read and process each

data item in order, and finally print out the result. In the clean up part, users should

clean up all the memory used by both accumulator and PADS system.

We now show how to use the above interface to build a clustering tool. All func-

tions specified above are similar to those fulfilled for building histogram, except the

update function entry t SPT add which carries the main part of the algorithm.

We provide a naive way to supply its body as follows since our purpose is to test the

interface. Users are allowed to set two customizations. Parameter INIT CTYPE is the

underlying distribution of each cluster, which can be fully characterized by distribu-

tion function. Parameter INIT K is the maximal number of clusters allowed. These

two parameters decide the underlying model of the data source. When processing a

new data item:

• If the total number of processed data items is less than a user-specified threshold

INIT MAX, we use traditional K-means Algorithm to get INIT K clusters. For

each cluster, we also compute its mean and variance based on user-specified

distribution function.

• If not we compute, for each cluster, the probability of this new data item based

on its own distribution function. We will add this item to the cluster where it

has the highest probability.

Besides reporting the mean and variance of each cluster, we also report: 1. All

elements in a cluster, if the number of elements in that cluster is less than a user-

defined threshold. 2. An element, if the probability it falls in its own cluster based
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#include “wsl.h”
#define DEF INPUT FILE“data/wsl”
int main(int argc, char** argv) {
—————————————————————————————————–
% Declarations
—————————————————————————————————–

P t *pads;
Pio disc t *io disc;
P SPT default SPT;
entry t rep;
entry t pd pd;
entry t m mask;
entry t SPT c;
Puint32 isFull;

—————————————————————————————————–
% Initialization

—————————————————————————————————–
char *fname = DEF INPUT FILE;
io disc = P nlrec noseek make(0);
P open(&pads, 0, io disc);
entry t init(pads, &rep);
entry t pd init(pads, &pd);
entry t m init(pads, &mask, P CheckAndSet);
if (P ERR == P io fopen(pads, fname)) {
error(2, “*** P io fopen failed ***”);
return -1;
}

—————————————————————————————————–
% Coders supplied high-level algorithm

—————————————————————————————————–
entry t SPT init(pads, &h);
entry t SPT setPara(pads, h, default SPT);
while (!P io at eof(pads)) {
entry t read(pads, &mask, &pd, &rep);
entry t SPT add(pads, &h, &pd, &rep), &isFull);
}
entry t SPT report(pads, “”, 0, 0, &h);

—————————————————————————————————–
% Clean up

—————————————————————————————————–
P io close(pads);
entry t cleanup(pads, &rep);
entry t pd cleanup(pads, &pd);
entry t SPT cleanup(pads, &h);
P close(pads);
return 0;

}

Figure 4.4: Sample use of a statistical profiling tool
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on the distribution function is less than a user-specified threshold. We call any item

satisfying either of the above two measurements a possible abnormality, and others

normal items. Note that, to minimize the use of memory, after processing INIT MAX

data items we will delete all normal items and keep the mean and variance for each

cluster only.

Figure 4.5 is an example report for a web server log data. In this particular run,

a maximal number of three clusters are built for all the data values seen in the data

source. This particular run finds some possible abnormalities. Users can modify

the underlying data model easily by customization, so this tool is good for research

purpose.
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[Describing each tag arm of <top>.host]
==================================================
<top>.host.resolved : array nIP of Puint8
==================================================
Array lengths:
Clustering based distribution: User defined distribution.
mean 4, and variance 0, containing 4 elements.
==================================================
Possible abnormality based on probability 0.010000:
Possible abnormality based on clustering elements number 0.100000:
—————————————————————————————————–
allArrayElts : uint8
—————————————————————————————————–
Clustering based distribution: User defined distribution.
mean 128, and variance 77, containing 8 elements.
mean 136, and variance 0, containing 4 elements.
mean 97, and variance 0, containing 4 elements.
==================================================
Possible abnormality based on probability 0.010000:
Data (around): 49
Data (around): 207
Data (around): 49
Data (around): 207
Data (around): 50
Data (around): 207
Data (around): 50
Possible abnormality based on clustering elements number 0.100000:
==================================================
<top>.host.symbolic : array sIP of Pstring SE
==================================================
Array lengths:
Clustering based distribution: User defined distribution.
mean 4, and variance 0, containing 7 elements.
==================================================
Possible abnormality based on probability 0.010000:
Possible abnormality based on clustering elements number 0.100000:
—————————————————————————————————–
allArrayElts : string
—————————————————————————————————–
Clustering based distribution: User defined distribution.
mean non defined., and variance non defined., containing 28 elements.
==================================================
Possible abnormality based on probability 0.010000:
Possible abnormality based on clustering elements number 0.100000:
. . . . . . . . . . . . . . . . . . . . . .

Figure 4.5: Portion of clustering report for web server log data



CHAPTER V

Private Approximate Heavy Hitters

5.1 Problem Statement

In this section, we address certain privacy issues that arise in processing massive

data sets. Alice and Bob have two vectors a and b, and they want a summary for the

vector sum c = a + b privately in a precise sense we give below. First, we consider

the Euclidean approximate heavy hitters problem, in which there is a parameter, B,

and the players ideally want copt, the B largest terms in c. Approximate results with

quality guarantees are allowable, if the techniques satisfy the privacy requirements

in section 2.2.2. Then we extend our results to the problem of finding heavy hitters

under L1 norm and under L2 after a transformation to another orthogonal basis.

5.2 Preliminaries

5.2.1 Parameters and Notation

Fix parameters N,M,B, k, ε. We will consider two players, Alice and Bob, who

will have inputs, a and b respectively, that are vectors of length N taking integer

values in the range −M to +M . Throughout, we will be interested in summaries of

size B for the vector c = a + b. For example, in the main result, we are interested

ideally in the largest B terms of c. A vector c is written c = (c0, c1, c2, . . . , cN−1) =

∑
cjδj, where j is an index, cj is a value, δj is the vector that is 1 at index j and 0

59



60

elsewhere, and cjδj, which can be implemented compactly and equivalently written

as the pair (j, cj), is a term, in which cj is the coefficient.

We compare terms by the magnitudes of their coefficients, braking ties by the

indices. That is, we will say that (j, cj) < (k, ck) if |cj| < |ck| or both |cj| = |ck|

and j < k. Thus all terms are strictly comparable. A heavy hitter summary is an

expression of the form
∑

i∈Λ ηiδi. If |Λ| must be at most B, then the best heavy

hitter summary copt for a vector c occurs where {(i, ηi) : i ∈ Λ} consists of the B

largest terms.

The Euclidean norm of c is ‖a‖2 =
√∑

i a
2
i and the taxicab norm is ‖a‖1 =

∑
i |ai|.

The support supp(a) of a vector a is the set of indices where a is non-zero, {i : ai 6= 0}.

The parameter ε is a distortion parameter. We will guarantee summaries whose

error is at most the factor (1 + ε) times the error of the best possible summary.

The parameter k is a security and failure probability parameter. Algorithms will

be expected to succeed except with probability 2−k and 2−k will serve as an upper

bound for the allowable statistical distance between indistinguishable distributions.

We will be interested in protocols that use communication poly(B, log(N), k,

log(M), 1/ε), local computation poly(B,N, k, log(M), 1/ε), and number of rounds

that is constant.

5.2.2 Approximate Data Summaries

In the heavy hitters problem, we are given parameters B and N and the goal is to

find theB largest terms in a vector c of lengthN . We will be interested in two approx-

imate versions, parametrized also by ε. In the approximate heavy hitters problem,

we want a summary c̃ =
∑

i∈Λ ηiδi such that ‖c̃− c‖ ≤ (1 + ε)‖copt − c‖, where the

norms are, respectively, 2-norms (in the Euclidean approximate heavy hitters

problem) and 1-norms (in the taxicab approximate heavy hitters problem).
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In order to describe previous algorithms that are relevant to us, we first need

some definitions. Fix a vector c = (c0, c1, c2, . . . , cN−1) =
∑

0≤i<N ciδi, whose terms

are t0 = (0, c0), t1 = (1, c1), . . . , tN−1 = (N−1, cN−1). Suppose the sequence i′0, i′1, . . .

is a decreasing rearrangement of c, i.e., ti′0 > ti′1 > · · · > ti′
N−1
.

Definition 5.1. (Significant index.) Let I ⊆ [0, N) be a set of indices. Then i is a

(I, θ)-significant index for c if and only if c2i ≥ θ
∑

j∈I |cj|2.

That is, an index is significant if the corresponding value is large compared with

all the values in some set. In some of the algorithms below, we will find the largest

term (if it is sufficiently large), subtract it off, then recurse on the residual signal.

This motivates the following definitions.

Definition 5.2. (Qualified index set.) Fix parameters ` and θ. The set Q =

{i′0, i′1, . . . , i′m−1} is a (`, θ)-qualified index set for c if and only if

• m ≤ `,

• ∀j ∈ [0,m− 1], i′j is a ({i′j, i′j+1, . . . , i′N−1}, θ)-significant index, and

• i′m is NOT a ({i′m, i′m+1, . . . , i′N−1}, θ)-significant index.

That is, a qualified index set consists of the largest possible lengthm for a prefix of

i′0, i
′
1, . . . , i

′
m−1 such that, for each j < m, we have c2i′j

≥ θ(c2i′j
+c2i′j+1

+c2i′j+2
+· · ·+c2i′

N−1
).

In particular, if the terms happen to be in decreasing order to begin with, i.e., if

|c0| > |c1| > · · · , then a qualified index set is {0, 1, 2, . . . ,m − 1} for the largest m

such that, for each j < m, we have c2j ≥ θ(c2j + c
2
j+1 + c

2
j+2 + · · · c2N−1).

Note that for each `, θ, and vector c, there is only one (`, θ)-qualified index set for

c. We use Qc,`,θ to denote it. We sometimes write Q`,θ when c is understood.

The following are straightforward.
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Proposition 5.3. For any θ1 < θ2, Q`,θ2 set is a subset of Q`,θ1 .

Proposition 5.4. Fix parameters N,M,B, k, ε and vector c as above. If c̃ =

∑
i∈Qc,B, ε

B(1+ε)

ciδi, then ‖c̃− c‖22 ≤ (1 + ε)‖copt − c‖
2
2.

Proof. Assume without loss of generality that |c0| > |c1| > · · · and let q = |Qc,B, ε
B(1+ε)

|.

If q = B, then c̃ = copt and we are done. Otherwise we have

‖c̃− c‖22 =
∑

q≤i<B
|ci|2 + ‖copt − c‖22

≤ B|cq|2 + ‖copt − c‖22

≤ ε

1 + ε
‖c̃− c‖22 + ‖copt − c‖

2
2,

whence
(
1− ε

1 + ε

)
‖c̃− c‖22 ≤ ‖copt − c‖

2
2.

The result follows.

We also need a modified version of Theorem 2.2 (sketch):

Theorem 5.5. Fix parameters N,M,B, k, ε as above. Fix θ ≥ poly(log(N), log(M),

B, k, 1/ε)−1. There is a pseudorandom matrix R with description of size poly(log(N),

log(M), B, k, 1/ε), and a corresponding algorithm that, from R and sketch Rc of a

vector c, outputs a superset of Qc,B,θ, in time poly(log(N), log(M), B, k, 1/ε).

In particular, the number or rows in R and the size of the output is bounded by the

expression poly(log(N), log(M), B, k, 1/ε) in accordance with the time bound on the

algorithm. The algorithm admits efficient SFE protocols from inputs a and b, as de-

scribed in section 2.2.2, and can be modified to run privately in poly(log(N), log(M),

B, k, 1/ε) time.

Note that the algorithm returns a superset of Qc,B,θ but that even Qc,B,θ itself

suffices for a good approximation.
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Proof. As in theorem 2.2, we can get a set D that includes all terms with magnitude

at least θ‖c‖22 in poly(log(N), log(M), B, k, 1/ε) time. To get a superset of a qualified

set, we subtract off D and repeat as long as new ci are found that are large compared

with the residual vector (i.e., as long as D is not empty). At most O(log(MN))

repetitions are needed since, after O(log(MN)) repetitions, we have reduced ‖c‖22

from its initial value of at most M 2N to its least possible positive value of 1.

non private Quelified Set

• Inputs: N , M , B, k, ε, sketch matrix R and Rc.

• Output: A superset of Qc,B,θ, containing poly(log(N), log(M), B, k, 1/ε) items.

(i). c̃ = c.

(ii). Repeat

• D =finding heavy hitters(c̃, θ).

• c̃ = c̃−
∑

c̃i∈D
ciδi

• Output D.

Until D is empty.

Figure 5.1: Non-private algorithm finding a Qualified Set

5.2.3 Privacy

In this section, we show that our result admits privacy requirement specified in

section 2.2.2.

Consider definition 2.5. In our case, g(a, b) will formally be the pair (copt, ‖c‖2) and

g̃(a, b) will be c̃. We will informally say that we “approximate copt leaking only copt

and ‖c‖2,” since there is a simulator that takes copt and ‖c‖2 as input and simulates

the approximate output c̃ and the protocol messages. In Section 5.5, we will show

that leaking ‖c‖2 is in some sense unavoidable for this problem. Equivalently, one

could define g(a, b) to be the pair (copt, ‖copt − c‖) and define g̃(a, b) to be the pair
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(c̃, ‖c̃− c‖∼), where ‖·‖∼ is an approximation to the Euclidean norm (see below).

For this result, we need the following standard definitions and previous results.

Definition 5.6 (Additive Secret Sharing). An intermediate value x of a joint

computation is said to be secret shared between Alice and Bob if Alice holds r and

Bob holds x − r, modulo some fixed large prime, where r is a random number

independent of all inputs and outputs.

The Private Sample Sum problem is as follows.

Definition 5.7 (Private Sample Sum). At the start, Alice holds a vector a of

length N and Bob holds a vector b. Alice and Bob also hold a secret sharing of an

index i. At the end, Alice and Bob hold a secret sharing of ai + bi.

That is, neither the index i nor the value ai + bi becomes known to the parties.

Efficient protocols for this can be found (or can be constructed immediately from

related results) in [42, 15], under various assumptions about the existence of Private

Information Retrieval, such as in [8].

Proposition 5.8. There is a protocol private-sample-sum for the Private Sam-

ple Sum problem that requires poly(N, k) computation, poly(log(N), k) communi-

cation, and O(1) rounds.

Our results also rely on the following protocol from [26], that privately approxi-

mates the Euclidean norm of the vector sum.

Proposition 5.9. (Private l2 approximation, [26]) Suppose Alice and Bob have

integer-valued vectors a and b in [−M,M ]N and let c = a + b. Fix distortion ε and

security parameter k. There is a protocol private norm estimation that computes

an approximation ‖c‖∼ to ‖c‖2 such that
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• 1
1+ε
‖a+ b‖2 ≤ ‖a+ b‖∼ ≤ ‖a+ b‖2.

• The protocol requires poly(k log(M)N/ε) local computation, poly(k log(M)

log(N)/ε) communication, and O(1) rounds.

• The protocol is a private approximation protocol for ‖c‖ in the sense of Defini-

tion 2.6.

Furthermore, the protocol’s only access to a and b is through the matrix-vector

products Ra and Rb, where R is a pseudorandom matrix known to both players.

5.3 Private Euclidean Heavy Hitters

5.3.1 Algorithm

We consider the setting in which Alice has signal a of dimension N , and Bob

has signal b of the same dimension. Let c = a + b. Both parties want to learn a

representation c̃ =
∑

t∈Tout
t such that ‖c− c̃‖22 ≤ (1 + ε)‖c− copt‖

2
2 and such that at

most copt and ‖c‖2 is revealed. A protocol is given in Figure 5.2.

First, to gain intuition, we consider some easy special cases of the protocol’s

operation. For our analysis, assume that the terms in c are already positive and in

decreasing order, c0 > c1 > · · · > cN−1 > 0. We will be able to find the coefficient

value of any desired term, so we focus on the set of indices. Let Iopt = {0, 1, 2, . . . , B−

1} denote the set of indices for the optimal B terms, and I denote the set of indices

the algorithm has recovered. Thus Qc,B,θ ⊆ Qc,B, θ
1+ε
⊆ Iopt and Qc,B, θ

1+ε
⊆ I.

The ideal output is Iopt, though any superset of Qc,B,θ suffices to get an approx-

imation with error at most (1 + ε) times optimal. This includes the set I ⊇ Qc,B,θ.

The set IB of the largest B terms indexed by I contains Qc,B,θ, so IB is a set of

at most B terms with error at most (1 + ε) times optimal. If |Qc,B,θ| = B, then

IB = Qc,B,θ = Iopt, and IB is a private and correct output.
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private Euclidean heavy hitters

• Known structural parameters: N,M,B, ε, k, which determine θ = ε
B(1+ε)

and B′

• Individual inputs: vectors a and b, of length N , with integer values in the range [−M,M ].

• Output: With probability at least 1 − 2−k, a set Tout of at most B terms, such that∥∥∥c−
∑

t∈Tout
t
∥∥∥

2

2
≤ (1 + ε)

∥∥∥c−
∑

t∈Topt
t
∥∥∥

2

2
.

(i). Exchange pseudorandom seeds (in the clear). Generate measurement matrices R1 and
R2. Alice locally constructs sketches R1a and R2a = (R0

2a,R
1
2a, . . . R

B−1
2 a), where

the measurement matrix R1 is used for a non-private Euclidean Heavy Hitters and the
measurement matrix R2 = (R0

2, R
1
2, . . . , R

B−1
2 ) is used for B independent repetitions of

private norm estimation. Bob similarly constructs R1b and R2b.

(ii). Using general-purpose SFE, do

• Use an existing (non-private) Euclidean Heavy Hitters protocol to get, from R1a
and R1b, a secret-sharing of a superset I of Q

c,B, θ
1+ε

, in which I has exactly B′ ≤

poly(log(N), log(M), B, k, 1/ε) indices. (Pad with arbitrary indices, if necessary.)

(iii). Use private-sample-sum to compute, from I, a, and b, secret-shared values for each index
in I. Let T denote the corresponding set of secret-shared terms. (Both the index and value
of each term in T is secret shared.) Enumerate I as I = {i0, i1, . . .} with ti0 > ti1 > · · · .

(iv). Using SFE, do

• for j = 0 to B − 1

(a) From Rj
2, R

j
2a,R

j
2b, t0, t1, . . . , tij−1

, sketch rj = c − (ti0 + ti1 + · · · + tij−1
) as

Rj
2rj = (Rj

2a+Rj
2b−Rj

2(ti0 + ti1 + · · ·+ tij−1
)).

(b) use private norm estimation to estimate ‖rj‖
2
2 as ‖rj‖

2
∼
, satisfying 1

1+ε
‖rj‖

2
2 ≤

‖rj‖
2
∼
≤ ‖rj‖

2
2.

(c) If |cij |
2 < θ‖rj‖

2
∼
, break (out of for-loop)

(d) Output tj

(v). For technical reasons, encode the pseudorandom seeds for R1 and R2 into the low-order
bits of the output or (as we assume here) provide R1 and R2 as auxiliary output.

Figure 5.2: Protocol for the Euclidean Heavy Hitters problem
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The difficulty arises when |Qc,B,θ| < B, in which case some of IB may be arbitrary

and should not be allowed to leak. So the algorithm needs to find a private set Iout

of the largest |Iout| terms with Qc,B,θ ⊆ Iout ⊆ IB. The challenge is subtle. Let s

denote |Qc,B,θ|. If the algorithm knew s, the algorithm could easily output Qc,B,θ,

which is the indices of the top s terms, a correct and private output. Unfortunately,

determining Qc,B,θ or s = |Qc,B,θ| requires Ω(N) communication (see Section 5.5),

so we cannot hope to find Qc,B,θ exactly. Non-private norm estimation can be used

to find a subset Iout with Qc,B,θ ⊆ Iout ⊆ Qc,B, θ
1+ε
⊆ Iopt, which is correct, but not

quite private. Given |Iout|, the contents of Iout ⊆ Iopt are indeed private, but the size

of Iout is, generally, non-private. Fortunately, if we use a private protocol for norm

estimation, |Iout| remains private. We now proceed to a formal analysis.

5.3.2 Correctness and Cost

Theorem 5.10. Protocol private Euclidean heavy hitters requires poly(N,

log(M), B, k, 1/ε) local computation, poly(log(N), log(M), B, k, 1/ε) communication,

and O(1) rounds.

Proof. By existing work, all costs of Steps (i) to (iii) are as claimed. Now consider

Step (iv). Observe that the function being computed in Step (iv) has inputs and

outputs of size bounded by poly(log(N), log(M), B, k, 1/ε) and takes time polynomial

in the size of its inputs. In particular, the instances of private norm estimation

do not start from scratch with a reference to a or b; rather, they pick up from

the precomputed short sketches R2a and R2b. It follows that this function can be

wrapped with SFE, preserving the computation and communication up to polynomial

blowup in the size of the input and keeping the round complexity to O(1).

We now turn to correctness and privacy. Let Iout denote the set of indices corre-
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sponding to the set Tout of output terms.

Theorem 5.11. Protocol private Euclidean heavy hitters is correct.

Proof. The correctness of Steps (ii) and (iii) follows from previous work. In Step (iv),

we first show that QB, ε
B(1+ε)

⊆ Iout.

We assume that 1
1+ε
‖rj‖22 ≤ ‖rj‖ 2∼ ≤ ‖rj‖

2
2 always holds; by Proposition 5.9,

this happens with high probability. Thus, if |cij |2 ≥ ε
B(1+ε)

‖rj‖22, then |cij |2 ≥
ε

B(1+ε)
‖rj‖22 ≥ ε

B(1+ε)
‖ri‖ 2∼.

By construction, QB, ε
B(1+ε)

⊆ I. A straightforward induction shows that, if j ∈

QB, ε
B(1+ε)

, then iteration j outputs tij and the previous iterations output exactly the

set of the j larger terms in I.

By Proposition 5.4, since Iout is a superset of QB, ε
B(1+ε)

, if c̃ =
∑

j∈Iout
cijδij , then

‖c̃− c‖22 ≤ (1 + ε)‖copt − c‖
2
2, as desired.

Before giving the complete privacy argument, we give a lemma, similar to the

above. Suppose a set P of indices is a subset of another set Q of indices. We will

say that P is a prefix of Q if i ∈ P, tj > ti, and j ∈ Q imply j ∈ P .

5.3.3 Privacy

Lemma 5.12. The output set Iout is a prefix of QB, ε

B(1+ε)2
except with probability

2−k.

Proof. Note that QB, ε

B(1+ε)2
is a subset of I and QB, ε

B(1+ε)2
is a prefix of the universe,

so QB, ε

B(1+ε)2
is a prefix of I. The set Iout is also a prefix of I. It follows that, of the

sets Iout and QB, ε

B(1+ε)2
, one is a prefix of the other (or they are equal). The relations

among these sets are illustrated in figure 5.3.

So suppose, toward a contradiction, that QB, ε

B(1+ε)2
is a proper prefix of Iout. Let

q =
∣∣∣QB, ε

B(1+ε)2

∣∣∣, so q is the least number such that iq is not in QB, ε

B(1+ε)2
. If the
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Figure 5.3: Illustration of the relations among sets

protocol halts before considering q, then Iout ⊆ QB, ε

B(1+ε)2
, a contradiction. So, in

particular, we may assume that q < B (so the for-loop doesn’t terminate early).

Then, by definition of QB, ε

B(1+ε)2
, we have |ciq |2 < ε

B(1+ε)2

∑
j≥q |cij |2. It follows that

|ciq |2 <
ε

B(1 + ε)2

∑

i≥q
|ci|2

=
ε

B(1 + ε)2
‖rq‖22

≤ ε

B(1 + ε)
‖rq‖ 2∼.

Thus the protocol halts without outputting tq, after outputting exactly the elements

in QB, ε

B(1+ε)2
.

Finally, we turn to privacy.

Theorem 5.13. Protocol private Euclidean heavy hitters leaks no more than

‖c‖22 and copt.

Proof. With the random inputs R1 and R2 encoded into the output, it is straightfor-

ward to show that Protocol private Euclidean heavy hitters is a private protocol

in the traditional sense that the protocol messages leak no more than the inputs and

outputs. This is done by composing simulators for private-sample-sum and SFE.

It remains only to show that we can simulate the joint distribution on (c̃, R1, R2)
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given as simulator-input copt and ‖c‖. We will show that R1 is indistinguishable

from independent of the joint distribution of (c̃, R2), which we will simulate directly.

First, we show that R1 is independent. Except with probability 2
−Ω(k), the in-

termediate set I is a superset of QB, ε

B(1+ε)2
and the norm estimation is correct. In

that case, the protocol outputs a prefix of QB, ε

B(1+ε)2
and we get identical output if

I is replaced by QB, ε

B(1+ε)2
. Also, QB, ε

B(1+ε)2
can be constructed from copt and ‖c‖2.

Since the protocol proceeds without further reference to R1, we have shown that the

pair (c̃, R2) is indistinguishable from being independent of R1. It remains only to

simulate (c̃, R2).

Note that the output c̃ does depend non-negligibly on R2. If |cij |2 is very close to

θ‖rj‖22, then the test |cij |2 < θ‖rj‖ 2∼ in the protocol may succeed with probability

non-negligibly far from 0 and from 1, depending on R2, since the distortion guarantee

on ‖rj‖ 2∼ is only the factor (1± ε).

The simulator is as follows. Assume that the terms in copt are t0, t1, . . . , tB−1

in decreasing order, t0 > t1 > · · · > tB−1. For each j ≤ B, compute Ej =

‖c− (t0 + · · ·+ tj−1)‖22 = ‖c‖
2
2 − ‖t0 + · · ·+ tj−1‖

2
2 and then run the private norm

estimation simulator on input Ej and ε to get a sample from the joint distribution

(Ẽj, R̃2), where Ẽj is a good estimate to Ej and R̃2 is distributed indistinguishably

from R2. Note that R̃2 is used in the private norm estimation protocol and is part

of the view in that. Our simulator then outputs tij if |cij |2 ≥ ε
B(1+ε)

Ẽj, and halts,

otherwise, following the final for-loop of the protocol. It also outputs R̃2. Call the

output of the simulator s̃ =
∑

j tijδij .

Again using the fact that a prefix of QB, ε

B(1+ε)2
is output, if j ∈ QB, ε

B(1+ε)2
, then

ij = j; i.e., the j’th largest output term is the j’th largest overall, so that, if

j is output, we have Ej = ‖rj‖22. Thus (Ẽj, R̃2) is distributed indistinguishably



71

from (‖rj‖ 2∼, R2). The protocol finishes deterministically using I and (‖rj‖ 2∼)’s and

the simulator finishes deterministically using QB, ε

B(1+ε)2
and (Ẽj)’s, but, since the

protocol output is identical if I is replaced by QB, ε

B(1+ε)2
, the distributions on output

(c̃, R2) of the protocol and (s̃, R̃2) of the simulator are indistinguishable.

5.3.4 Conclusion

In summary,

Theorem 5.14. Suppose Alice and Bob hold integer-valued vectors a and b in [−M,

M ]N , respectively. Let B, k and ε be user-defined parameters. Let c = a + b. Let

Topt be the set of the largest B terms in c. There is an protocol, taking a, b, B k and

ε as input, that computes a representation c̃ of at most B terms such that:

• ‖c̃− c‖2 ≤ (1 + ε)‖copt − c‖2.

• The algorithm uses poly(N, log(M), B, k,

1/ε) time, poly(log(N), log(M), B, k, 1/ε) communication, and O(1) rounds.

• The protocol succeeds with probability 1− 2−k and leaks only copt and ‖c‖2 with

security parameter k.

Corollary 5.15. With the same hyptotheses and resource bounds, there is a protocol

that computes c̃ and an approximation ‖c̃− c‖∼ to ‖c̃− c‖2 such that 1
1+ε
‖c̃− c‖2 ≤

‖c̃− c‖∼ ≤ ‖c̃− c‖2 and the protocol leaks only copt and ‖c̃− c‖2.

Proof. Run the main protocol and output also ‖c̃− c‖∼, which is computed in the

course of the main protocol. The main simulator can compute the joint distribution

on (c̃, R1, R2) given copt and ‖c‖, so it remains only to show that we can simulate

‖c‖ given copt and the distribution on ‖c̃− c‖2.

Note that ‖c‖22 = ‖c̃− c‖
2
2 + ‖c̃‖

2
2. Our simulator outputs ‖c‖ 2∼ = ‖c̃− c‖

2
2 + ‖s̃‖

2
2

as an estimation of ‖c‖22, where s̃ is the output of the main simulator. Since c̃ is
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distributed indistinguishably from s̃, ‖c‖22 and ‖c‖ 2∼ are computationally indistin-

guishable.

5.4 Extensions

5.4.1 Extension to Manhattan Heavy Hitters

In this section, we show that our result of Euclidean approximation can be ex-

tended to approximate manhattan heavy hitters.

Lemma 5.16. Let c̃ be the output of private Euclidean heavy hitters. If ‖c −

c̃‖2 ≤ (1 + ε)‖c− copt‖2, then ‖c− c̃‖1 ≤ (1 +
√
Bε)‖c− copt‖1.

Proof. Let (i, ci) be the largest term which is not in QB, ε
B(1+ε)

. From Theorem 5.14

we know (
∑

i≤j<B c
2
j)

1
2 <

√
ε(
∑

B≤j<N c
2
j)

1
2 . Using the fact that 1√

| supp(x)|
‖x‖1 ≤

‖x‖2 ≤ ‖x‖1 for any signal x, we get

1√
B

∑

i≤j<B
|cj| ≤

(
∑

i≤j<B
c2j

) 1
2

≤
√
ε

(
∑

B≤j<N
c2j

) 1
2

≤
√
ε
∑

B≤j<N
|cj|.

Thus we have

‖c− c̃‖1 ≤
∑

i≤j<N
|cj|

=
∑

i≤j<B
cj +

∑

B≤j<N
|cj|

= (
√
εB + 1)

∑

B≤j<N
|cj|

= (
√
εB + 1)‖c− copt‖1.

Theorem 5.17 follows directly:
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Theorem 5.17. Suppose Alice and Bob hold integer-valued vectors a and b in [−M,

M ]N , respectively. Let B, k and ε be user-defined parameters. Let c = a+b. Let Topt

be the set of the largest B terms in c. There is an protocol, taking a, b, M,N,B, k

and ε as input, and computes a representation c̃ of at most B terms such that:

• ‖c̃− c‖1 ≤ (1 + ε)‖copt − c‖1.

• The algorithm uses poly(N, log(M), B, k, 1/ε) time, poly(log(N), log(M), B, k,

1/ε) communication, and O(1) rounds.

• The protocol succeeds with probability 1− 2−k and leaks only copt and ‖c‖2 with

security parameter k.

5.4.2 Extension to other Orthonormal Bases

In this section, we consider other orthonormal bases, such as the Fourier basis.

Alice and Bob hold vectors a and b as before, and want the B largest Fourier terms—

frequencies and corresponding coefficient values. The exact problem requires Ω(N)

communication, so they settle for an approximation, namely, they want a B-term

Fourier representation c̃ such that ‖c̃− c‖2 ≤ (1 + ε)‖copt − c‖2, where copt is the

best possible B-term Fourier representation.

We note that a straightforward generalization of our main result solves this prob-

lem privately and efficiently. Alice and Bob locally compute the inverse Fourier

transform F−1a and F−1b of their vectors a and b. Because the Fourier transform

and its inverse are linear, x = F−1c = F−1a + F−1b. Alice and Bob now want to

compute an approximation to the ordinary heavy hitters for the vector x. Suppose

the result is x̃. Then x̃ is the compact collection of Fourier terms and c̃ = Fx̃ is the

corresponding approximate representation of c. By the Parseval equality, since the

Fourier basis is orthogonal, for any y, we have ‖y‖2 = ‖Fy‖2 = ‖F−1y‖2. It follows
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that ‖c̃− c‖2 ≤ (1 + ε)‖copt − c‖2 if and only if ‖x̃− x‖2 ≤ (1 + ε)‖xopt − x‖2, so

the algorithm is correct when transformed to the Fourier domain. It also follows

that leaking ‖c‖2 is equivalent to leaking ‖Fc‖2, so the algorithm is private when

transformed to the Fourier domain. Alice and Bob require the additional overhead

of computing a Fourier transform locally, which fits within the overall budget.

5.5 Lower Bounds

In this Section, we show some lower bounds for problems related to our main

problem, such as computing an approximation to copt without leaking ‖c‖2. The

results are straightforward, but we include them to motivate the approximation and

leakage of the protocols we present.

Theorem 5.18. There is an infinite family of settings of parameters M,N,B, k

such that any protocol that computes the Euclidean norm exactly on the sum c of

individually-held inputs a and b uses communication Ω(N). Similarly, any protocol

that computes the exact Heavy Hitters or computes the qualified set Qc,1,1 exactly uses

communication Ω(N).

Proof. Consider the set disjointness problem, which requires Ω(N) communication [36].

Alice and Bob hold {0, 1}-valued vectors a and b of length N such that each of a and

b has exactly (N/4) 1’s and the supports are either disjoint or intersect in exactly

one index. The task is to determine the intersection size. Then, if c = a + b, we

have ‖c‖22 = N/2 or ‖c‖22 = N/2 + 3, depending on the size of the intersection, so a

protocol for ‖c‖2 can be used to solve the set disjointness problem. Similarly, finding

the one largest heavy hitter solves the set disjointness problem.

Now consider vectors of length N + 1 in which indices 0 to N − 1 directly code

an instance of set disjointness as above and index N has a value that is always
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√
N/2 + 2. Then |Qc,1,1| = 1 or |Qc,1,1| = 0 depending on the norm over indices 0 to

N − 1, which requires communication Ω(N) to determine.

The above theorem motivates our study of approximate heavy hitters, for which

there are protocols with exponentially better communication cost than the exact

heavy hitters problem. The next theorem motivates leaking the Euclidean norm, by

showing that any efficient protocol for the approximate heavy hitters problem leaks

the Euclidean norm on all instances within a class.

Theorem 5.19. There is an infinite family of settings of parameters M,N,B, k, ε

such that any protocol that solves the Euclidean Heavy Hitters problem on the sum

c of individually-held inputs a and b, leaking only copt, uses communication Ω(N).

Furthermore, for an infinite class of inputs in which ‖c‖2 is not constant, any such

protocol either computes ‖c‖2 or uses communication Ω(N).

Proof. Consider vectors c of one of two cases, given by random permutations of the

following vectors:




(2N,

N/2−1︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, . . . , 0), (case 1)

(2N,

N/2−1︷ ︸︸ ︷
N,N, . . . , N, 0, 0, . . . , 0), (case 2).

Fix B = 1 and εÀ 1/N . A correct protocol finds the top term in case 1. In case 2, it

turns out that the correctness requirement is vacuous, but, fortunately, the privacy

requirement is useful. A protocol leaking only copt must behave indistinguishably

in cases 1 and 2 since copt is the same, so a private protocol reliably finds the the

top coefficient in case 2. Since a protocol for case 2 can be used to solve the set

disjointness problem, such a protocol uses Ω(N) bits of communication. In particular,

any protocol either behaves differently on the two cases—thereby computing ‖c‖2 for

inputs in the union of the two cases—or uses communication Ω(N).
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Note that a correct protocol also finds the top term under Manhattan measure-

ment in case 1. So the above theorem also shows that it is impossible in some cases to

solve the approximate Manhattan heavy hitters problem efficiently without leaking

the Euclidean norm.

Although the class of inputs above is contrived, the (implied) parameter settings

are natural, i.e., log(M), log(N), B, k, 1/ε can be made to be polynomially related,

etc.



CHAPTER VI

Optimal Histograms on Probabilistic Data Streams

6.1 Statement of Problems

In this section, we introduce problems regarding probabilistic data streams [31], [48].

We focus on the primary question: can the algorithms used for deterministic data

streams be applied to build optimal histograms in the probabilistic case? The authors

in [32] gave algorithms over probabilistic data streams to estimate aggregations such

as MEDIAN, DISTINCT and REPEAT-RATE by instantiation. In [13], by using

modified streaming sketch synopses, the authors managed to estimate DISTINCT

and extend it to approximate ”join sizes” over a static probabilistic database.

Definition 6.1. (Uncertain Domain. [31]) Let B denote a discrete base domain, and

let ⊥ denote a special symbol that does not belong to B. An uncertain domain U

over B is the set of all probability distribution functions, or pdfs, over B ∪ {⊥}.

In contrast with traditional data streams, in which each value v is a real number,

each v in a probabilistic data stream is a pdf encoding the belief of each b in the

domain B. In this section, let B = [1, R] so that each pdf can be described in the

following three ways:

• (Enumeration [31]) Each v is described as a series of pairs {〈i1, p1〉, · · · , 〈il, pl〉},

where Prv[is] = ps for s = 1, · · · , l, and Prv[⊥] = 1 −
∑

s ps. This model is an

77
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extension of the probabilistic database model. The authors in [31] give some

motivation.

• (Function) Each v is described as a probability density function pv(x) for x ∈ B.

We define Prv[x] = pv(x). This model can find applications as well. For example,

a marketer may know that each week’s sales follow the Gaussian distribution

with certain parameters. He is interested in computing aggregations over these

distributions like: What are the average sales for Tuesday?

• (Series of samples) Each v is described as a series of samples {iv1, · · · , ivl }, where

ivs ∈ B for s = 1, · · · , l. We define Prv[x] = |s:ivs=x|
l

for s = 1, · · · , l. The motiva-

tion comes from cascaded queries. For example, computing the median exactly

requires linear space, but space-efficient algorithms may output an approximate

result. Running these algorithms repeatedly will give a series of sample approx-

imate medians. We may want to compute aggregations over these samples like:

What is the median of these sample medians?

In this section, we modify the existing algorithms which are applied to traditional

data streams to the above three models of probabilistic data stream, and get some

preliminary results.

6.2 Summary Structure

Authors in [31] use possible streams to define aggregation query semantics over

probabilistic data streams. Following their definition, we define the frequency of an

item x ∈ B for a probabilistic data stream v1, · · · , vn as Q(x) =
∑n

s=1 Prvs [x]. For

each x, we are interested in Q(x) and we call this a point query.

There are many structures and corresponding algorithms to efficiently approxi-

mate point queries over traditional data streams. Authors in [17] summarized some
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of them and introduced a CR-precis structure in detail. They also described how

to use the result of point queries to approximate other statistics, like heavy hitters.

Definition 6.2. CR-precis: In [17], the authors proposed the structure as follows:

the structure is parameterized by height k and width t. They chose t consecutive

prime numbers k ≤ p1 < p2 < · · · < pt and keep a collection of t tables Tj, for

j = 1, · · · , t where Tj has pj integer counters. To answer point query, for each x ∈ B,

they updated for each table:

for j = 1 to t do {Tj[x mod pj] = Tj[x mod pj] + 1}

and computed minj∈[1,N ]{Tj[x mod pj]} as the approximation f̃x. For any x 6= y, if

Tj[x mod pj] = Tj[y mod pj], we say that x and y are conflicting items with respect

to j.

We will modify their CR-precis structure in this section. Let n be length of the

stream.

Proposition 6.3. Using a CR-precis structure with height k ≥ 12 and width t ≥ 1,

there is an algorithm estimating the frequency of x ∈ B as f̂x in O(t(t+ k
ln k
) log(t+

k
ln k
)(log n)) bits, satisfying:

0 ≤ f̂x − fx ≤
(logk |B| − 1)

t
(n− fx)

Proof. In a probabilistic data stream, each item v contains information about more

than one x ∈ B. For each cell in the jth table, if v is in the form of “sample”, we

update it with the sum of all frequencies. Otherwise, we update it with the maximal

frequency of all conflicting items with respect to j. We still output the minimal value

of all cells containing x as the approximation f̂x. We analyze the update time for

each v in all three forms as follows.
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• Enumeration: We maintain a temporary structure T ′ of the same size as T . For

each 〈is, ps〉 pair, for j = 1 to t : {T ′j [is mod primej] = max(ps, T ′j [is mod primej

])}. We keep track of all cells in T ′ that have been updated by an array. After

reading the entire v, we add all updated cells of T ′ into T , and clear T ′ to 0.

The update time is O(t|v|).

• Function: Let Tj[c] be the cth cell in the jth table. Let x = arg maxpv(s)(s mod

primej = c), we update Tj[c] = +x. The update time for each v depends on the

nature of the function, but, for widely-used probability density functions, each

x can be computed in constant time. Therefore, the update time for each v is

bounded by the size of the table, which is O(t(t+ k
ln k
) log(t+ k

ln k
)).

• Series of samples: We maintain the same structure T ′ as in “enumeration” case,

but update for each ivs for j = 1 to t: {T ′j [ivs mod primej] = +1}. We keep track

of |v| by an integer and all updated cells by an array. After reading the entire

v, we divide all updated cells in T ′ by |v| and add them back to T . Then we

clear T ′ to 0. The update time is O(t|v|).

We use f̃x as the the approximation given by Definition 6.2. From the construc-

tion, it is easy to see that f̂x = f̃x in the “sample” case and fx ≤ f̂x ≤ f̃x in the

other two cases. Note that the length of the stream n =
∑

i∈B fi. Our result follows

the result given in [17] directly.

6.3 Histogram

In this section, we consider building histograms h = 〈h1, · · · , hn〉 over probabilistic

data streams.
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Definition 6.4. (Error Of A Histogram [31]) The error of a deterministic histogram

h over a probabilistic data stream P = 〈v1, · · · , vn〉 is defined to be the expected

value of difference between h and the stream with respect to distribution on the

possible streams.

We rewrite the above definition concretely:

Definition 6.5. The error of h over P is ∑n
i=1

∑
x∈B{Prvi [x](hi− x)2} for L2 norm

and
∑n

i=1

∑
x∈B{Prvi [x]|hi − x|} for L1 norm.

Notice that, for every given x ∈ B in vi, the sum of probabilities over all possible

streams containing that x is Prvi [x]. Simple calculation shows that definition 6.4

and 6.5 are equivalent.

6.3.1 Histograms Under L2 Norm

According to definition 6.5, let hopt with minimal
∑n

i=1

∑
x∈B{Prvi [x](hi − x)2}

be the optimal B-bucket histogram over P under L2 norm. To show that hopt is also

an optimal histogram over P ′ under L2 norm, where P ′ = 〈mean(v1) · · ·mean(vn)〉,

we need the following lemma, which describes the relationship between the errors of

mean and a specific height over certain distribution:

Lemma 6.6. Let e = mean(vi) =
∑l

s=1 isps and h be a height, we have:

(h− e)2 +
l∑

s=1

{ps(e− is)2} =
l∑

s=1

{ps(h− is)2}

Proof. Note that (h− e)2 = (h− e)2∑l
s=1 ps, so the left side can be reduced to:

l∑

s=1

ps[(e− is)2 + (h− e)2] =
l∑

s=1

ps[2e
2 + i2s + h

2 − 2eis − 2he]

The right side is:
l∑

s=1

ps[i
2
s + h

2 − 2his]
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Comparing these, it remains to show
∑l

s=1 ps[2e
2+i2s+h

2−2eis−2he] =
∑l

s=1 ps[i
2
s+

h2− 2his], which is equivalent to showing
∑l

s=1 ps[e
2+ his− eis− he] = 0. We have:

∑l
s=1 ps[e

2] = e2;
∑l

s=1 ps[his] = he;
∑l

s=1 ps[eis] = e2 and
∑l

s=1 ps[he] = he. So the

original equation holds.

Though we only show that the property holds under enumeration form, it can be

shown under function and sample forms using similar proofs. Lemma 6.6 tells us to

find the optimal hopt, we need to minimize
∑N

i=1[hi − mean(vi)]2. So the optimal

b-bucket histogram over P ′ is also an optimal b-bucket histogram over P .

Lemma 6.7. A near-optimal B-bucket histogram h′ over P ′ is also a near optimal

B-bucket histogram over P.

By using “near-optimal”, we mean the error under this histogram is within (1+ε)

factor of the error under the corresponding optimal histogram.

Proof. Let A =
∑N

i=1

∑
x∈B{Prvi [x](mean(vi) − x)2}. Let h and hopt be the near

optimal and optimal B-bucket histograms over P ′. Let e and eopt be the errors of h

and hopt over P respectively. From lemma 6.6, we have:

e =
N∑

i=1

[hi −mean(vi)]2 + A

≤ (1 + ε)
N∑

i=1

[hopt,i −mean(vi)]2 + A

< (1 + ε)
N∑

i=1

[hopt,i −mean(vi)]2 + (1 + ε)A

= (1 + ε)eopt.

We can now extend the algorithm described in [23] to compute near-optimal B-

bucket histograms over P . The only additional work is to compute the mean for each
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data item online. It requires O(|v|) time per item in the forms of “Enumeration”

and “Sample”. Update time for each item in the form of “Function” depends on

the property of the density function. But for widely-used functions, constant time is

enough.

Proposition 6.8. There is an algorithm that, given parameters B, N , M , ε, and

probabilistic data stream P with ‖P‖2w ≤M , outputs a B-bucket histogram h with

‖P − h‖2 ≤ (1 +O(ε))‖P − hopt‖2,

where hopt is the best possible B-bucket histogram representation to P. The algorithm

uses space
(
B logN logM

ε

)O(1)
and time c1N |v| +

(
B logN logM

ε

)c2
, where c1 and c2 are

two constants.

6.3.2 Histograms Under L1 Norm

In this section, let hopt with minimal
∑N

i=1

∑
x∈B{Prvi [x]|hi − x|} be the optimal

B-bucket histogram for P under L1 norm. A straightforward heuristic to get a near-

optimal h is to summarize P ′′ = 〈median(v1) · · ·median(vn)〉 and get an approximate

B-bucket histogram over P ′′ as we did in last section under L2 norm. However, this

heuristic does not work under L1 norm. We will give a counterexample as follows.

Example 6.9. We want to build a 2-bucket histogram over the following probabilis-

tic stream: P = 〈{〈5, 1
5
〉, 〈25, 1

5
〉, 〈45, 1

5
〉, 〈65, 1

5
〉, 〈85, 1

5
〉}, {〈155, 1〉}, {〈47, 1〉}〉. As a

summarization, P ′′ = 〈45, 155, 47〉. The optimal histogram over P ′′ has its boundary

between the first two items (e.g. 〈45, 101, 101〉) while the optimal histogram over P

has its boundary between the last two items (e.g. 〈100, 100, 47〉). By modifying the

item which is misclassified, the difference between the above two histograms can be

arbitrarily large. Any algorithm based on P ′′ only can not get a quality guaranteed

approximation over P .
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To solve the problem, we need, for each distribution, more information than

the median. Let x ∈ B be a value in the domain of the ith item, and fi(x) =

∑
x∈B{Prvi [x]|hi−x|} be the L1 difference between the ith distribution and the height

x, i.e., if we use x as the estimation of the ith distribution, f(x) will be the error

under L1 norm. Obviously, fi(x) has its minimal value when x = median(vi).

Lemma 6.10. There is an algorithm, which takes a distribution vi and a value

x ∈ B as input, first outputs a structure in linear time and
(
1
ε

)O(1)
space, and then

estimates f ′i(x) from the structure in
(
1
ε

)O(1)
time with (1− ε)fi(x) ≤ f ′i(x) ≤ fi(x).

Proof. Figure 6.1 shows the shape of a possible fi function. We observe the following

properties of fi:

• The function fi has its minimal value when x = median(vi). That is, fi(median(vi))

= minhi
∑

x∈B{Prvi [x] |hi − x|}.

• Suppose distribution vi contains m values with non-zero probability, then its

corresponding fi(x) consists of m+ 1 segments, while each value with non-zero

probability is a connector of two adjacent segments.

• Suppose x falls in the segment with slope k. Then we have |k| =
∣∣∣−
∑x

y=−∞ Prvi [vi]

(y) +
∑∞

y=x Prvi [vi](y)
∣∣∣. Notice that |k| ∈ [0, 1].

• The function fi is convex.

We build the structure in the following way: Let f ′i(x) = k(x − xmin) + min as

shown in figure 6.1. For the segments on the right of xmin, we:

• Record xmin = median(vi) and record corresponding fi(xmin).

• Record the slope k′ and the leftmost point of the rightmost segment.
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Figure 6.1: The L1 difference between vi and a height, as function of the height

• Check segments from right to left until we reach xmin. If the current slope

k < (1− ε)k′, record k, the leftmost point of this segment and set k′ = k.

The above process can be done in linear time. Since |k| ∈ [0, 1] for all segments,

we record information for ( 1
ε
)O(1) segments.

To estimate x, suppose the slope of the segment containing x is k and x0 ≤ x

with slope k0, error y0 and x1 > x are two adjacent points recorded in the structure.

We estimate fi(x) by f
′
i(x) = k0(x− x0) + y0. We have:

f ′i(x) = k0(x− x0) + y0

≥ (1− ε)k(x− x0) + y0

≥ (1− ε)k0(x− x0) + (1− ε)y0

≥ (1− ε)fi(x)

Similar for segments on the the left of xmin.

Suppose the structure for each distribution vi is si, we have the following property:

Lemma 6.11. Let emin be the distance between optimal height and vj · · · vk under

L1 norm. There is an algorithm, which takes sj · · · sk as input, and outputs an

approximation height h in amortized O(si) time per item, satisfying (1 − ε)emin ≤

e′ ≤ emin, where e
′ is the distance between h and vj · · · vk under L1 norm.
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Proof. We compute h as the height minimizing
∑k

i=j f
′
i(h). Notice that, the minimum

can only appear at positions that are recorded in sj · · · sk, since each f ′i is a convex

function. Our complexity result follows.

Let hmin be the optimal height, e
′
min =

∑k
i=j f

′
i(hmin), and e =

∑k
i=j fi(h). From

lemma 6.10, we have:

(1− ε)emin ≤ (1− ε)e ≤ e′ ≤ e′min ≤ emin

Now we give a heuristic algorithm as follows:

(i). We build a bucket robust histogram hr as defined in Definition 3.3 over P ′′, i.e.,

the median of each item.

(ii). In the same run, we also record the structure si for each distribution.

(iii). Use any polynomial-time algorithm to compute the optimal histogram to hr.

Building structures requires pre-processing time only. Since computing the opti-

mal 1-bucket histogram requires amortized O(si) time instead of constant time, we

will have an extra ( 1
ε
)O(1) factor to the original

(
B logN logM

ε

)c2
time. Also, to record

each structure, we again have an extra ( 1
ε
)O(1) factor to the space we used.

To make this algorithm from a heuristic one to a (1+ ε)- approximation, the only

thing left is to show a robust histogram over P ′′ is also a robust histogram over P .

We will leave it as an open question for now.



CHAPTER VII

Conclusion

In this thesis, we gave results for three problems and explained an implementation

we have done on one of the results.

We built a near-optimal B-bucket histogram, admitting non-uniform workload,

in polylogarithmic post-processing time and space on streaming data. We gave

deterministic algorithms to build a B-bucket histogram, in polylogarithmic post-

processing time and space on probabilistic data streams. We also showed how to

compute quality-guaranteed heavy hitters of the sum of two vectors in a private way

and in polylogarithmic communication. We applied our histogram results in the

implementation part.

There is one open question: how to give guarantees to our heuristic histogram

result on probabilistic data streams under L1 measurement.
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