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CHAPTER 1 

Introduction and background 

The object of this research is to study a dual-planar silicon-based Compton 

imaging system and compare it to a conventional parallel-hole collimated Anger camera 

for tumor detection and treatment planning by statistical analysis of imaging 

performance. For this particular medical application, we are interested in tracers and 

therapeutic agents labeled with 131I that emits predominately 364.4keV energy photons.  

1.1 Motivation 

The Compton imaging system is a potentially effective medical imaging device 

that can obtain greatly improved performance in both detection efficiency and spatial 

resolution for detecting higher energy photons. In a Compton imaging system, the 

incident photon impinges on the first detector and Compton scatters from an electron in 

the detector. The scattered photon is then absorbed in the second detector. A Compton 

imaging system, therefore, decouples the tradeoff between spatial resolution and 

detection efficiency that characterizes a conventional collimated Anger camera. 

Furthermore, higher energy photons can be imaged at higher spatial resolution in 

Compton imaging system than mechanically collimated systems. 

Compared to the Compton imaging system, a conventional Anger camera system 

with parallel-hole high energy general purpose lead collimator imposes a tradeoff 

between resolution and sensitivity because of the physical constraints resulting from the 

mechanical collimation. As the imaged γ-ray photons exceed ~250keV, the collimator 

septal thickness must be increased to reduce the penetration and scattering of higher 

energy photons in the collimator material. Since collimator sensitivity for a fixed hole 

size is reduced as the square of septal thickness, resolution must be sacrificed by 

increasing hole size if sensitivity is to be maintained. 
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This dissertation describes practical methods for evaluating and comparing 

limiting system performance, speeding image reconstruction by distributed computation, 

and reducing problems caused by high count rates in the Compton imaging system. The 

modified uniform Cramer-Rao bound (M-UCRB)[1] is employed to evaluate and 

compare the imaging performance between the proposed Compton imaging system and a 

conventional collimated Anger camera for imaging 364.4keV photons emitted from 131I. 

To obtain the M-UCRB within reasonable time limits, the Fisher information matrix 

(FIM) is evaluated by Monte Carlo integration, and simulation based on the statistical 

models of both imaging systems. Next, the distributed and parallel Maximum Likelihood 

Maximization Expectation (MLEM) algorithm with chessboard data partition is evaluated 

for reconstructing images from the Compton imaging system in an acceptable time. A 

real time signal processing system employing state-of-the-art digital electronics is 

described for solving problems raised by high photon count rate in the second detector.  

1.2 Introduction to Nuclear Medical Imaging 

The general purpose of nuclear medical diagnostic imaging is to obtain the in vivo 

picture of the spatial and temporal distribution of radioactive tracers, i.e. radio nuclides or 

radioactively labeled pharmaceuticals, within the patient’s body after these substances 

have been taken orally or administered by intravenous injection[2]. The basic principle of 

radiotracers is that the radioactive compounds participate in the biochemical or 

physiologic processes in the body in the same way as the non-radioactive material. 

Because the emitted γ-rays from the radioactive material can be detected by an external 

camera, radiotracers may be used to track the flow or distribution of analogs of natural 

substances in the body. There are two major types of radioactive labels used: single 

photon emitters and positron emitters.  Single photon emitters may emit one principal 

gamma ray or a sequence of gamma-rays that are directionally uncorrelated.  In the case 

of positron emitters the emitted positron travels a short distance and annihilates with an 

electron. This annihilation generates two 511keV gamma rays, which travel in opposite 

directions.  The 3-dimensional imaging modes for these two types of radionuclides are 
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Single Photon Emission Computed Tomography (SPECT) and Positron Emission 

Tomography (PET).   

 

 
Figure 1.1 A planar collimated Anger gamma camera for detecting γ-ray photons from 
the radiotracer in whole body imaging.  
 
 

 
Figure 1.2 A commercial SPECT system with triple imaging heads at 60 degrees to each 
other. (Picker PRISM 3000). This system can have three times the sensitivity as the 
single head system in Figure 1.1 and also rotates around the patient to obtain full angular 
sampling. 
 

Currently, the planar collimated Anger gamma camera (Figure 1.1), the SPECT 

(Figure 1.2) is used to detect and image the γ rays emitted by the radiotracer concentrated 

in the organs or tissues. The PET (Figure 1.3) is used to image radio-nuclides that decay 

by positron emission. 

The positron combines with an electron resulting in emission of a pair of gamma-

rays traveling in opposite directions. For PET and SPECT, three dimensional images can 

be reconstructed that depict the relative or estimated absolute concentrations of these 
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tracers in various organs or tumors. In comparison, other medical imaging systems, such 

as X-ray computed tomography (CT), conventional ultrasound and Magnetic resonance 

imaging (MRI), with some exceptions, primarily provide high spatial resolution for 

anatomical imaging and detecting anatomic alterations.  

 

 
Figure 1.3 A PET system. (Philips Allegro). The detector forms a ring around the patient 
to obtain full angular sampling and detects the annihilation gamma ray pairs in 
coincidence. 

 

Because nuclear medicine imaging systems have the ability to provide 

information on the physiological or biochemical properties or function of organs non-

invasively, some malignant tumors or lesions can be identified before they exhibit 

detectable anatomic change. Depending upon the specific tracer used, tumors may have 

increased uptake or decreased uptake compared to normal tissue.  This may also 

distinguish between malignant and nonmalignant tumor types even though the tumors 

may have abnormal anatomic structure detected by other imaging systems. Functional 

magnetic resonance imaging (f-MRI) can also provide functional brain maps by 

measuring increased blood flow to different regions of brain by being able to distinguish 

oxygenated blood from deoxygenated blood by their different paramagnetic properties. 

There are efforts to develop paramagnetic tracer compounds for MRI and also functional 

contrast agents for ultrasound. Nuclear medicine imaging techniques can be much more 

sensitive and the radiotracers can be detected with 3-4 orders of magnitude lower 

concentration since the signal is directly emitted by the tracer rather than as merely a 

fraction of the input signal in MRI or ultrasound. There are numerous radiotracers that 
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have been developed for many different applications. However, the disadvantage of 

conventional nuclear medicine images is that spatial resolution must be sacrificed to 

obtain reasonable photon detection sensitivity.  

1.3 Applications of γ-ray Radioactive Tracers in Medical Imaging 

In this dissertation we will be mainly concerned with imaging higher energy 

photons. Efficient high resolution imaging for higher energy γ rays above 250keV such as 

emitted by 131I, 113mIn, 137Cs or 22Na could well become clinically useful for diagnosing 

cancer, studying physiological and chemical processes of various tumors, monitoring 

tumor therapy, and tracking metabolic activity of essential trace elements. These 

radionuclides and corresponding radiopharmaceuticals cannot be replaced by low energy 

radiotracers because they have unique chemical properties that make them organ and/or 

tumor specific, but also because their longer physical half-lives make it possible to image 

patients several days after the compound is administered. This permits clearance of non-

specific uptake from the human body and results in better organ or tumor contrast 

compared with background tissues. 

1.3.1 Typical Applications of Low Energy γ-ray Radiotracers 

Radio nuclides that emit low energy gamma-rays and corresponding 

radiopharmaceuticals are widely employed in the field of nuclear medical diagnostic 

imaging. This is because imaging gamma photons with energies less than 200keV by 

collimated Anger Cameras can achieve an acceptable tradeoff between spatial resolution 

and system sensitivity. 

The most widely used radioisotope for clinical single photon imaging is 99mTc. It 

is obtained from a 99Mo-99mTc generation system and has many favorable properties[3]. 

The 6 hour half-life (T1/2) is well suited for most of nuclear medicine diagnosis, and 

insignificant particulate emission during decay permits large activities to be injected into 

patients to obtain better quality images without exceeding radiation dose limits for the 

patient. The most important reason is the 140keV gamma-ray energy of 99mTc provides a 

good tradeoff between detection efficiency and spatial resolution for collimated Anger 
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gamma cameras. Currently, about 60% of radiopharmaceuticals and 90% of nuclear 

medicine imaging procedures use 99mTc. For example, the “blood-brain barrier” agent 

Tc99m-glucoheptonate is used for the diagnosis of brain tumors and lung tumors[4], and 
99mTc labeled pyrophosphate adheres to calcium deposits in damaged heart muscle and 

can help evaluate damage after a heart attack[5]. Another low energy radioisotope is 111In 

(Indium) that emits both low energy 171keV (90% branch ratio) and high energy 245keV 

(94%) gamma-rays.  It has a 2.8 day half life and is substituted for 99mTc in some 

nuclear medicine applications in cases of slow biological uptake. For instance, 111In 

labeled anti-myosin, a substitute for 99mTc labeled Pyrophosphate, is also an infarct 

localizing agent to evaluate heart kinetics, 111In labeled Satumomab Pendetide is used to 

detect colorectal cancer since it targets the tumor-associated glycoprotein-72, and 111In 

labeled Pentetate can map the impaired flow of cerebrospinal fluid in brain [6]. 

1.3.2 Typical Applications of 131I, a Higher Energy γ-ray Radiotracer 

Although a number of high energy gamma-ray radiotracers are being used or 

developed, currently, in the fields of radionuclide diagnostic imaging, 131I, or radiotracers 

labeled with it, can be used for both diagnostic imaging and internal radiotherapy. 131I 

primarily emits detectable gamma-rays at 284keV (6.05%), 364.4keV (81.2%), 636keV 

(7.26%) and 723keV (1.8%), and it also emits Beta particles for radio-therapy that have 

short range and lose their energy locally in the tissue or tumor. This isotope is generated 

from fission in nuclear reactors and decays by beta emission and associated gamma 

emission with a physical half-life of 8.04 days.  

Sodium iodide 131I was used originally to treat an overactive thyroid gland and 

certain kinds of thyroid cancer, because it is taken up mainly by the thyroid gland or 

thyroid tumor and has a biologic T1/2 of about 24 days. Larger doses of radioiodine are 

usually used after thyroid cancer surgery to destroy remaining diseased thyroid tissue or 

thyroid cancer that has spread to other tissues [7, 8]. Small doses, below 10mCi, of 131I 

are swallowed or injected to image and diagnose tumors in the thyroid gland.  

In addition to detecting thyroid tumors, 131I labeled radiopharmaceuticals are also 

used to treat and diagnose other cancers. 131I-MIBG with affinity for catecholamine-

secreting tissues and 131I-6β iodomethylnorcholesterol that concentrates in the adrenal 
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cortex are tracers for imaging the adrenal gland to detect adrenal tumors, adrenal 

medullary cancer, and diseases in adrenocortical tissue, respectively [9]. Currently, 

clinical trials of 131I radio-labeled tositumomab (an Anti-B1 antibody that produces 

significant anti-cancer activity), shows promise for the treatment of low grade, B-cell 

non-Hodgkin's-lymphoma and chronic lymphocytic leukemia [10]. Because 

tositumomab, a monoclonal antibody, is a protein that can bind to antigens on the surface 

of cancerous B-cells and 131I emits high energy beta particles and gamma rays that it can 

image and destroy these cells.  

Therefore, it is highly desirable to be able to perform quantitative in-vivo imaging 

of the radioisotope distribution during radiotherapy. The real-time information allows the 

doctor to accurately quantify the therapeutic dose and normal/abnormal tissue uptake, to 

assess changes in tumor size resulting from radiotherapy, and to make modifications to 

the treatment plan as necessary. However, accurate quantitative imaging of the high 

energy radio-nuclides maybe beyond the capability of conventional collimated gamma-

ray cameras. A new imaging tool is highly desirable. 

1.3.3 Additional Higher Energy Radiotracers and Gamma-Ray Emitters in 

Nuclear Medicine 

In addition to 131I, there are also a number of other higher energy single-photon 

emitters used in both diagnostic and therapeutic applications, which require good imaging 

performance with high resolution and high sensitivity. 

1.3.3.1 Applications in the field of Clinical Diagnosis and Study of Physiology 

Even though 99mTc is the most popular radioisotope for single photon imaging 

since it is readily available and easily collimated, there are several high energy single 

photon radiotracers listed in Table 1.1 with gamma-ray energies from 200keV to 511keV, 

that are employed to detect pathological change, diagnose the number and location of 

tumors, monitor the distribution of radiation dose during radionuclide therapy, and 

evaluate tumor response after therapeutic treatment [11, 12].  

Because of the high energy of the emitted photons, attenuation and scatter in the 

patient are reduced and the un-scattered flux increases about 70% compared to the lower 
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energy photons of 99mTc. Moreover, the longer half lives of high energy isotopes, such as 
131I and 111In(Indium) with 2.8 day half-life[13-15], are widely used for labeling tracers, 

such as, monoclonal antibodies, that may require up to several days to achieve high 

specific localization and maximum target-to-background contrast. In the clinic, 113mIn 

with photon emission at 392keV and a 1.7 hour half-life is generator produced from 113Sn 

(tin) with 119day half life [16-19]. It has similar properties to 99mTc and could replace 
99mTc in some clinical applications. Therefore, a nuclear medicine imaging system with 

both high resolution and high sensitivity for high energy gamma-rays is highly desirable. 

 

Table 1.1 Higher energy radio nuclides for diagnostic imaging 

Nuclide Physical 

Half-life 

Photon 

Energy(KeV) 

Application Example 

131I 8.04 days β-69.4(2.12%)   

96.6(7.36%) 

191.4(89.3%) 

γ-284(6.05%) 

364.4(81.2%) 

636(7.26%) 

723(1.8%) 

131I-sodium iodide: thyroid image, uptake, 

therapy 
131I-metaiodobenzyl-guanidine: imaging of 

pheochromocytomas and neuroblastomas 
131I labeled tositumomab: imaging and 

treatment of Non-Hodgkins Lymphoma 

111In 2.8 days 171(90%) 

245(94%) 

111In-oxyquinoline: labeling of leukocytes and 

platelets;for prostate imaging 
111In-satumomab pendetide: colorectal and 

ovarian tumor imaging 

67Ga 3.261 days 93(38%) 

184(24%) 

300(16%) 

67Ga-gallium citrate: imaging of inflammatory 

processes and soft tissue tumors 

 
113mIn 1.66 hrs 391.7(65%) Scan Lesions in Brain, Kidney, Liver, Lung 
11C 
18F 
13N 
15O 

20.3min 

110min 

10.0min 

2.07min 

511 keV 

positron 

Annihilation 

photon 

In the field of PET imaging, such as 
11C-thymidine : brain tumor 
18F-deoxyglucose: Lymphoma, neuroblastoma 
18F-FDG: abnormal glucose metabolism of 

tumor 
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Another potential application for efficient imaging of high energy gamma-

emitters, besides detection of disease, is to understand normal physiology and 

metabolism by measuring the bio-distribution of essential trace elements as a function of 

time using long-lived beta/gamma emitters such as listed in Table 1.2. For instance, 59Fe 

would be a very useful element to determine the distribution of functional bone marrow, 

the imaging of 28Mg is associated with the research of Mg distribution in the heart and 

changes in 24Na distribution is relative to the anti-hypertensive therapy [20, 21]. 

Efficiency for detecting gamma particles is particularly important since many of these 

isotopes emit a large number of beta particles, and the number of gamma particles is 

relatively small.  

 

Table 1.2 Isotopes of interest in the study of human metabolism[20, 21] 

Element Half-life Gamma Energy (MeV) 

(Abundance %) 

Beta Energy (MeV) 

(Abundance %) 

22Na 2.6 y 1.27 (99.9) 0.2 (90) 

24Na 15 h 2.75 (99.9) 0.55 (99.9) 

42K 12.36 h 1.5  (18) 1.56 (82) 

28Mg 20.9 h 1.34 (53) 0.16 (94) 

59Fe 44.5 d 1.29 (43) 0.15 (53) 

58Co 70.9 d 0.81  (99.5) 0.20 (15) 

65Zn 244 d 1.1  (51) 0.14 (1.4) 

47Ca 4.5 d 1.30 (74) 0.24 (81) 

 

1.3.3.2 Applications in the Field of Clinical Treatment and Therapy 

Radiotherapy involves the exposure of parts of the body to substantial doses of 

radiation in the form of beams of high-energy X-rays, gamma rays, α or β particles [22, 

23]. Because rapidly dividing cells, such as abnormal lesions and malignant tumors are 

particularly sensitive to damage by radiation, the growth of various forms of cancer can 

be controlled or eliminated by irradiating the area containing the growth. In contrast to 
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external X-ray beam based radiation therapy (EBRT), internal radiotherapy uses 

implanted radioactive sources or systemically administered tumor-specific radioactive 

compounds to irradiate tumors.  

Systemic or metabolic radionuclide therapy [8] relies on the metabolic function of 

various tumors to concentrate the administered radioactive compound. Each year about 

400,000 patients are treated with radiopharmaceuticals when the cancer is disseminated, 

mainly thyroid disorders (Grave’s disease: 250,000; thyroid cancer: 95,000), bone 

metastases: 13,000, synovitis: 13,000, and polycytemia vera: 7000[24]. As in the case of 

diagnostic procedures, the unsealed radioactive source is given either orally or by 

injection. The radionuclide used must be an α or β emitters because their mean free path 

is limited to a few millimeters and the energy is selectively deposited in the tumors.  

1.4 Anger Camera with Mechanical Collimators  

1.4.1 Basic Principle of Anger Cameras with Mechanical Collimators 

The Anger camera [25] with a mechanical collimator is the standard device used 

for imaging the distribution of radiotracers and is also the primary component of the 

SPECT head [26, 27]. The Anger camera (Figure 1.4) is a two dimensional position 

sensitive detector, which consists of a scintillating material such as a sodium iodide (NaI) 

crystal coupled to an array of photomultiplier tubes (PMT). A mechanical multi-hole 

collimator constructed of high Z materials, such as lead, tungsten, or gold, is placed in 

front of the scintillation crystal to determine the direction of the incoming γ-ray photons. 

Thus, each region of the scintillation crystal views only a small source area via the hole 

that defines the spatial resolution for the collimator. Most other photons not traveling in 

the proper direction are absorbed by collimator septa although some may penetrate the 

lead or be scattered by the lead and enter the scintillator. These undesirable events 

increase with increasing gamma-ray energy and reduce image resolution and contrast.  

The scintillation crystal hit by a gamma-ray emits a flash of light that is 

proportional to the deposited energy at the position of the interaction. The light is 

collected and converted to an amplified electric signal by an array of PMT. The 
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interaction position and energy of each incoming gamma-ray photon is estimated and 

calculated by the associated electronic position logic and summing matrix circuit. Finally 

a pattern of scintillation interactions for many gamma-ray photons is obtained and 

displayed to form the image of radioactivity distribution in the body projected onto the 

plane of the scintillation crystal.  

 

 
Figure 1.4 An Anger camera consists of a NaI scintillation crystal, an array of PMT, and 
a parallel hole lead collimator to limit the geometric acceptance angle of incident γ-ray 
photons. 
 

The scintillation crystal is a dense material with a high atomic number (Z) to 

increase the probability of photoelectric absorption. The thickness of NaI scintillation 

crystal is typically ¼″ to ½″ to achieve reasonable detection efficiency and try to 

completely absorb the incoming photons while minimizing the spread of light in the 

crystal in order to preserve spatial resolution. For example, the detection efficiency is 

about 90% for 10mm think NaI crystals for 140keV photons [28]. A thicker crystal is 

required for detecting higher energy photons to obtain no-changed mean number of 

photons N in scintillation.  

N
LSF

overall

2
2 σ

σ = .        (1-1) 

According to equation (1-1), however, since the width of the light spread function 
2
LSFσ become wider for the thicker crystal, the overall spatial resolution 2

overallσ  will be 

worse. Even though different types of collimators such as pinhole, converging, and 

diverging collimators are employed for different applications, parallel-hole collimators 
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with different hole diameters and thickness are specifically designed for γ-ray photons 

with different energies.  

Gamma ray emission is a Poisson process that introduces noise into the recorded 

image and detection sensitivity is crucial in order to obtain low noise images in a 

reasonable imaging time. However, because of the inversely coupled relationship of 

collimator resolution and collimator efficiency, increasing the hole size to achieve a two-

fold improvement of the detection sensitivity will decrease the spatial resolution a factor 

of 1.4.  

1.4.2 Resolution and Efficiency Tradeoff of Anger Camera for Imaging Higher 

Energy γ Rays 

The imaging performance of conventional collimated Anger camera systems is 

primarily determined by properties of the collimator. For imaging low energy γ-rays, i.e. 

140keV of 99mTc, with a low energy general purpose parallel hole lead collimator, the 

spatial resolution (FWHM) at 10cm from the surface of collimator is about 1.0cm and 

total detection efficiency is around 2x10-4.  

To image high energy gamma photons, however, the impact of penetration and 

scattering of radiation in the collimator material needs to be considered [29]. Thicker 

septa or higher Z material have to be employed. For the same collimator material, the 

septa of a high energy collimator for 364.4keV are 10 times as thick as the septa for a low 

energy collimator for 140keV. This causes a dramatic decrease of detection efficiency 

since the spatial resolution and detection efficiency of collimator have an inverse 

relationship [30, 31]. For example, to decrease penetration and keep the hole diameter 

constant, the septal thickness need to be doubled, then, the number of holes per unit 

crystal area drops a factor of 4. Thus, to maintain the detection sensitivity, the hole 

diameter must increase a factor of 2, and spatial resolution is also degraded 

correspondingly. This also increases collimator weight and introduces hole pattern 

artifacts since the hole spacing approaches the intrinsic spatial resolution of the Anger 

camera. 

Meanwhile, high energy gamma rays also add substantial background to 

collimated Anger camera images due to penetration of the collimator and shielding. For 
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example, the 364.4keV γ-rays are the primary photons emitted from 131I to be imaged 

clinically, but approximately 9% of the total gamma-rays emitted lie above 364.4keV. 

When a low energy collimator is used, a considerable number of 364.4keV γ-rays 

penetrate the thin collimator septa and deposit their full energy in the detector crystal. 

This results in low spatial resolution and reduced image contrast. A typical high-Energy 

(HE) collimator designed for 131I will have a sensitivity of 64.6 

Counts/sec/megabecquerel(cps/MBq) or 0.0064% efficiency, and a point source 

resolution around 17mm FWHM when the point source is located 15cm from the surface 

of the collimator. 43% of the detected events result from penetration and 29% from 

scattering in collimator material[32]. Therefore, an ultra-high-energy (UHE) collimator is 

required to reduce the penetration and obtain reasonable image contrast by reducing the 

long tail of the point spread response function (PSF).  Thus, the sensitivity degrades a 

factor of 4 to 15.1 cps/MBq (0.00004% to 0.00151% efficiency) compared to the HE 

collimator, with spatial resolution of only 15 mm FWHM at a distance of 15 cm from the 

collimator. Furthermore, the collimator hole pattern becomes visible and is a distracting 

artifact [33]. Consequently, it is impossible to design a high energy lead collimator that 

avoids both penetration effects and image artifacts [34], and it is difficult to design a 

collimator used for imaging gamma rays with energies greater than about 410kev without 

substantial penetration [31]. 

1.5 Compton Imaging System 

1.5.1 Basic Principles and Potential Advantages for Imaging High Energy γ-Rays  

As described above good imaging performance for high energy γ-ray photons is 

difficult to achieve using conventional collimated Anger camera systems. In contrast, an 

alternative imaging technique known as a Compton camera appears to be well suited for 

high energy gamma-ray imaging. This technique is based on measuring the interaction 

position and scattering angle of a Compton scattered photon in the Compton camera. 

The basic principle of Compton scattering is illustrated in the Figure 1.5. An 

incident γ-ray photon with energy E0 scatters from and transfers part of its energy E1 to a 
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bound electron. If the transferred energy exceeds the electron’s binding energy, the 

electron will be released from the atom. The photon with reduced energy E2 is scattered 

at an angle θ with respect to its initial direction. Assuming the initial electron is free and 

at rest, according to the conservation laws of energy of momentum, the relationship 

between the scattered photon energy E2 and the scattering angle θ is shown in equation 1-

2. [35]: 
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where 2
0cm  is the rest energy of the electron and equals to 511keV. 

 
Figure 1.5 Illustration of a γ-ray photon Compton scattered by an electron. 

 

 
Figure 1.6 The principle of a Compton camera. The Compton camera consists of a scatter 
detector and an absorption detector. The incident gamma ray photon is Compton 
scattered and transfers parts of energy to the electron in the first detector; the scattered 
photon is absorbed in the second detector. The direction of incident gamma ray photon is 
restricted to lie on the surface of a cone. The half angle is equal to the scatter angle 
determined by the incident photon energy and the energy deposited in the first detector by 
the scattered photon. The cone vertex is located at the interaction position on the first 
detector and the cone axis is the vector connecting the interaction positions in first 
detector and second detector. 
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The Compton camera uses “electronic collimation” instead of mechanical 

collimation, and has the potential to improve detection efficiency and spatial resolution 

simultaneously by eliminating the efficiency-resolution tradeoff imposed by the 

mechanical collimator. To acquire the information about the incident γ-ray photon 

direction, the Compton camera detects a sequential interaction within a time coincidence 

window in two position and energy sensitive detectors. The first detector is referred to as 

the scatter detector, in which the Compton scattering takes place; and the second detector 

is denoted as the absorbing detector, In summary, an incident photon emitted from the 

radioisotope is Compton scattered and imparts part of its energy to a recoil electron in the 

first detector; and subsequently deposits the remaining energy in the second detector. 

Three quantities describing the interaction in the first detector are recorded: the time of 

the interaction, position of the interaction and energy of the recoil electron. Likewise, 

these three data elements for the scattered electron interaction in the second detector are 

also measured. A time coincidence window determines whether the interactions in the 

two detectors belong to one event. 

 

 
Figure 1.7 Reconstruction of a source distribution by the Compton camera. One 
coincidence event determines a unique hollow cone. The original γ-ray source position 
can be estimated from the intersection of multiple cones generated by several events.  
The thickness of the conical volume is related to uncertainty in the energy measurement 
in the first detector and spatial resolution in both first and second detectors. 
 

On the basis of the acquired position and energy information from both detectors, 

the direction of the incoming γ-ray photon is determined within a conical ambiguity from 

Compton scatter equation (Eq.1-1) as illustrated in Figure 1.6 and 1.7, The cone axis is 
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determined by the vector connecting interaction positions in both first and second 

detectors. Cone vertex is on the interaction position on the first detector, and the open 

angle of the cone is equal to the scatter angle θ. Because one coincidence event 

determines a unique hollow cone, the original γ-ray source position can be estimated by 

the intersection of multiple cones generated by several events. Compared to a collimated 

Anger camera, the Compton camera overcomes the inverse tradeoff between spatial 

resolution and detection efficiency. However, the source location is only determined 

within a thin conical shell as opposed to small conical volume determined by the 

collimator hole dimensions, and a detailed analysis is required to quantify the net 

advantage of a Compton camera compared to a collimated Anger camera at the gamma-

ray energies of interest. 

In the real case, the electrons in the scattering detector are not free because they 

are bound to the atom in the first detector and have non-zero momentum. Therefore, the 

scattering angle is blurred for a given energy deposited in the first detector. This blurring 

is referred to as Doppler broadening. Therefore, due to the uncertainty in the recoil 

electron energy measurement and the effect of Doppler broadening in the first detector, 

combined with the intrinsic spatial resolution of the first and second detectors, the 

scattering angle is not precisely determined and the source location is known only within 

a conical surface with finite angular thickness. Thus, the spatial resolution is principally 

influenced by Doppler broadening and finite energy resolution of the scattering detector. 

A Compton camera also has problems as a result the reduced position information carried 

by each detected photon due to the conical ambiguity as illustrated in Figure 1.7. Because 

of this, the reduction in image noise will be less than that predicted just from the 

increased counting efficiency. Meanwhile, the advantage of Compton imaging system 

depends critically on the volume of the radioactive source distribution, as the source 

volume increases, the imaging performance degrades correspondingly.  

Nevertheless a Compton camera still offers the potential for a joint improvement 

in image noise and spatial resolution compared to mechanically collimated cameras 

because the greatly increased count rate can overcome the reduced information carried 

per detected photon. Imaging high energy γ-ray photons, as we propose, substantially 
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reduces the influence of Doppler broadening and detector noise.  This results in the 

potential to further improve the spatial resolution. 

1.5.2 History of Compton Camera Development for Medical Imaging 

The development of Compton scattering based coincidence imaging devices was 

started in 1973 by Schönfelder et al. for imaging in the relatively unexplored 1-10MeV 

energy range in the field of astrophysics [36]. The extension of this idea to the field of 

nuclear medical imaging was first proposed a year later by Todd et al. [37], in which a 

three dimensional structure of silicon cube arrays was suggested to track the first two 

events of a multiple Compton scatter of a γ-ray photon.  

In 1983, Singh et al. described the first prototype Compton camera, ECC, in 

which the conventional collimator was replaced by a High Purity Germanium (HPGe) 

detector in front of an Anger Camera for nuclear medical imaging application[38, 39]. By 

imaging a point source of 99mTc and 137Cs, this prototype Compton camera proved the 

photons could be electronically collimated. Later Singh reported an improved Compton 

camera using a 4×4 array of germanium detector elements backed by a scintillation 

camera as the second detector[40]. Images of a three-dimensional cylindrical phantom 

containing a γ-ray source were obtained. Compared to the image obtained using 

conventional SPECT for same phantom, the Compton camera displayed a higher 

sensitivity and slightly lower spatial resolution. Singh’s research also demonstrated that 

the advantage of Compton scatter imaging would increase with higher energy sources. 

However, some difficulties and limitations were also reported: a) Since the sodium iodide 

second detector directly viewed the source, the high count rates saturated the detector 

electronics and only weak sources could be used with an unrealistically long acquisition 

time; b) An expensive cryogenically-cooled HPGe detector was required to achieve good 

noise characteristics.  

After this first evaluation of the Compton camera for nuclear medicine, several 

groups experimented with different first detectors to improve performance. These 

included optical fibers[41], a gas scintillation proportional counter[42], high-pressure 

xenon detector[43], silicon strip detector and silicon pad detector[44-46], and cadmium 

zinc telluride (CZT) detector[47-49]. To decrease the impact of high second detector 
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count rate, a ring type NaI scintillation second detector was employed in the Ring 

Compton Camera (RCC) [50] and C-SPRINT [51] using an HPGe planar detector and 

silicon pad detector as the first scattering detector, respectively. The silicon detector 

became popular because it is relatively inexpensive, did not require cooling and the effect 

of Doppler broadening in silicon is smaller than for germanium because of its low atomic 

number. C-SPRINT is a prototype camera based on a 3cm × 3cm × 0.1 cm silicon pad 

detector as the first detector and the Michigan SPECT system (SPRINT) without its lead 

collimator as the second detector. As reported, for imaging a 140keV point source 10cm 

away from the silicon detector, C-SPRINT could achieve a sensitivity gain of about 20 

over the mechanically collimated SPRINT if enough silicon was used, but its spatial 

resolution was around 1.5cm, which is not better than the conventional gamma camera 

[51]. However, it was estimated, that C-SPRINT would outperform a mechanically 

collimated camera at higher energy. 

High energy gamma ray Compton imaging is currently used in astrophysics and 

industry and almost all prototype systems were evaluated for energies from 0.5MeV to 

100MeV. In this energy range, the impact of Doppler broadening is small. Therefore, 

CZT detectors are a potential alternative for imaging higher energy gamma rays[48, 52] 

in the field of industry due to the higher intrinsic Compton scattering cross section and 

increased thickness. However, at present, the price of CZT detectors is quite high. For 

clinical imaging of 131I 364.4keV photons, silicon is the best candidate for the scattering 

detector due to its small Doppler broadening, excellent energy and position resolution, 

room temperature operation, high Compton scattering to total cross section ratio, 

availability and price compared to germanium, neon and cadmium zinc telluride. 

1.6 Contribution and Significance of This Research 

The primary objective and contribution of this work is to evaluate and compare 

performance of the Compton scattering based gamma-ray camera with specific system 

geometry for higher energy γ-ray imaging to conventional mechanically collimated 

Anger camera using a modified uniform Cramer-Rao bound, system statistical model and 

Monte Carlo Simulation. The practical calculation studied uses approximations to 
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evaluate performance for 2D objects and any real system. In addition, theoretical analysis 

tools, image reconstruction software and improved system hardware were also developed 

during this research. For reconstruction of Compton camera images, a distributed and 

parallel MLEM algorithm was evaluated using a chessboard data partition to reduce 

computation time. Also, a real-time energy extraction and pileup prevention circuit for 

high count rate scintillation signals has been developed for an improved prototype 

Compton camera, in which the mechanical collimator of a commercial gamma ray 

camera will be replaced by a solid-state silicon pad detector as the “electronic 

collimator”.  

Imaging performance for 364.4keV γ-ray photons from 131I has been selected for 

Compton camera evaluation because: (1) the nuclide 131I is a commonly used high energy 

radioisotope for both nuclear imaging diagnosis and radionuclide therapy, (2) the 

364.4keV gamma-ray emitted from 131I is at the boundary between low energy and high 

energy in the field of nuclear medicine, and (3) the imaging performance of both 

Compton and mechanically collimated imaging systems can be compared at 364.4keV. 

Imaging of energies at 511keV and above is not practical for conventional gamma 

cameras with mechanical collimators. 

This research confirms the hypothesis that a Compton scattering based gamma ray 

camera has potential to substantially outperform collimated Anger camera systems for 

quantitative, high resolution imaging of gamma-rays with the energy equal to or above 

364.4keV. Further Compton imaging system development could then: 

1. Result in improved cancer treatment planning, studying physiological and 

chemical processes of various tumors, and monitoring of the therapeutic response in 

patients. 2. Enable use of higher energy tracers such as 131I or 111In for diagnosis of 

cancers of thyroid, adrenals, prostate and other organs. 3. Make it possible to study 

normal and abnormal physiology by tracking long-lived high energy metabolically active 

tracers. 4. Enable coincidence imaging of positron emitters and single photon emitters 

with the same instrument. 5. Enable the development of new physiological tracers for 

different diagnostic applications based on radioactive elements that have not been 

considered suitable currently because of their high energy radiation. 
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1.7 Dissertation Overview 

The basic background of radiotracers and introduction of the collimated Anger 

Camera and Compton imaging system have been introduced in the first chapter. The 

theoretical and qualitative analysis of the advantages and disadvantages of both imaging 

system are illustrated in Chapter 2. Next, in Chapter 3, the Monte Carlo Integration 

calculation of the Fisher information matrix and FFT based M-UCRB are introduced. The 

statistical system modeling and imaging performance analysis for both imaging systems 

are described in Chapters 4 and 5, respectively. In Chapter 6, a distributed parallel 

MLEM image reconstruction algorithm is evaluated; and, a real-time signal pattern 

match, energy extraction and pileup prevention circuit for high count rate scintillation 

signals is described and evaluated. Chapter 7 summarizes the results of this research and 

proposes topics for further research in this area. 
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CHAPTER 2 

Qualitative Analysis of a Silicon Compton Imaging System and Anger Camera with 

HEGP collimator 

This chapter illustrates the primary theoretical and qualitative analysis of both the 

Compton imaging system with silicon detector as scattering detector and the conventional 

Anger camera with high energy general purpose (HEGP) lead collimator for imaging the 

364.4keV photons emitted from I131. In the first section, a Compton imaging system now 

under development, and a commercial Anger Camera are described. Performance of the 

Anger Camera with HEGP collimator is analyzed by Monte Carlo simulation. Finally, the 

silicon based Compton imaging system is analyzed qualitatively. 

2.1 Description of a collimated Anger Camera and a Silicon Compton Imaging 

System. 

2.1.1 Anger Camera with Parallel Holes HEGP Lead Collimator 

The conventional Anger Camera used in this study is an existing commercial 

Anger camera head with high energy general purpose lead collimator [53], as shown in 

figure 2.1. The camera is part of the ARGUS imaging system manufactured by ADAC 

laboratories. 

Figure 2.2 illustrates a partial cross section view of the detector head and 

photomultiplier tube (PMT) location in the field of view. The detector consists of a 

thallium activated sodium iodide crystal, a glass optical window and 55 photomultiplier 

tubes. The NaI crystal is hermetically sealed in an aluminum housing with a glass 
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window. The PMT’s are placed in a close-packed array over the glass window. The 

detector includes 49 3″ PMT’s and 6 2″ PMT’s, which are arranged in a 50.8cm by 36.8 

cm field of view. The thin aluminum front layer is essentially transparent to γ-ray 

photons and blocks visible light. The glass window is employed as a light distribution 

element for mounting the PMTs through which the PMT’s view the scintillations.  The 

mu metal shields the phototubes from the earth’s magnetic field. 

 

     
      (A)                               (B) 

Figure 2.1 (A) The ADAC Lab ARGUS imaging system. (B) The simulated ARGUS 
camera head with parallel hole HEGP lead collimator.(white represents lead collimator, 
yellow represents NaI crystal, and gray represents phototube array) 
 

  
(A)                               (B)  

Figure 2.2 (A) Cross section of camera head-partial side view; (B) PMTs location and 
size of Field of View [53]. 

 

According to the ARGUS system specifications, the NaI crystal thickness is 

9.5mm designed for a maximum energy of 400 keV, the intrinsic spatial resolution is 
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4mm (FWHM), and intrinsic energy resolution is 10.6% (FWHM) for 364.4keV. For 

detecting the photons with 364.4keV from 131I, the hole size, septa and length of HEGP 

collimator is 3.81mm, 1.727mm and 60.0mm, respectively. The collimator spatial 

resolution is around 12.6mm as the 364.4keV point source at 10cm from the surface of 

the camera. As shown in figure 2.2 (B), the Anger Camera with collimator is simulated 

by GATE (Geant4 Application for Tomographic Emission) and GEANT4 Monte Carlo 

simulation system [54]. 

 

2.1.2 A Prototype “Silicon-NaI” Based Compton Imaging System 

The scatter detector studied in this dissertation consists of 32x16x10 silicon pad 

detector elements and each silicon pad is 1.4mm by 1.4mm by 1mm, therefore, the total 

sensitivity area is 44.8x22.4x10mm3. The absorption detector is a NaI Argus Anger 

camera imaging head, as described in the last section without a mechanical collimator. As 

demonstrated in Figure 2.3, the two planar detectors are parallel and centers of both 

detectors are aligned on axis. The distance between the two detectors can be adjusted to 

minimize angular uncertainty for a given photon energy. The geometry is symmetric, 

which simplifies performance simulation and image reconstruction. Silicon pad sensors 

can be stacked together to increase the scatter detector sensitivity. In this geometry, the 

NaI detector views the source directly. The resulting high count-rates make it necessary 

to design circuitry to reduce the effect of pulse pileup in the NaI detector. 

2.1.2.1 Scatter Detector – Silicon Detector 

Several scatter detectors designed specifically for Compton imaging systems, 

including the silicon pad sensors and associated hybrid readout electronics, were 

fabricated in the last decade by the Computer Imaging for Medical Applications 

collaboration between University of Michigan, Ohio State University, European 

Organization for Nuclear Research (CERN), Integrated Detector and Electronics (IDE), 

University of Ljubljana, and University of Valencia [55, 56]. Each generation of silicon 

detectors has improved energy resolution by reducing the leakage current using a superior 

fabrication process; constant spatial resolution by regulating the pad size; and improved 
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reliability and noise in the triggering by specially designed hybrid layout and power 

routing. The state-of-the-art silicon detector used in the current prototype Compton 

imaging system is shown in Figure 2.4. It is composed of a silicon pad sensor, and four 

VA/TAGP3 readout chips with signal readout lines. 

 

    
Figure 2.3 A parallel configured dual planar silicon-NaI Compton imaging system. 
 

  
Figure 2.4 The scatter detector (left) and sub-modules(right), containing the silicon pad 
sensor, four VATAGP3 chips and readout signal lines on a PCB hybrid. 
 

A cross section of the pad sensor, produced by SINTEF [57], is shown in Figure 

2.5. Each pad is 1.39mm by 1.39mm p+ implants on high resistivity (5 kΩ/cm) n- silicon, 

and a 20μm wide non-implanted region forms a isolating layer between pads. Double 

metal technology is used here: Metal-1 directly covers the pad and Metal-2 routes the 

signal line from the pads to the 4 readout chips beside the sensor. Between the two metal 

layers is a polyimide insulating layer. Polyimide provides reduced preamplifier input 

capacitance compared to SiO2. In order to reduce electric field at the edges, guard rings 

consisting of p implanted rings with aluminum metal separate the sensitive area from the 
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edges of the detector. An n+ implanted layer about 500nm thick covers the backplane of 

the whole sensor, to which a positive bias voltage is applied. 

The silicon sensor is read out by fast self-triggering VATAGP3 chips. Each chip 

contains 128 channels providing the front-end electronics for 128 detector elements. The 

VATAGP3 is designed and fabricated by IDEAS[58] using low noise very-large-scale 

integration(VLSI) complementary metal oxide semiconductor (CMOS) ASIC technology 

and 0.8µm AMI process. 

 

 
Figure 2.5 Schematic drawing of the cross section of p+nn+ doped silicon pad sensor with 
a double metal readout design [57]. 
 

In Figure 2.6, the functional blocks for one channel of the VATAGP3 are 

illustrated. In each channel, the output lead from one sensor pad is connected to a low 

noise, charge-sensitive preamplifier followed by VA and TA circuits. The VA module is 

for voltage readout and is composed of a slow semi-Gaussian shaper (3μs peaking time), 

sample and hold circuits and an analog multiplexer for outputing voltages of selected 

channels according to the controllable readout modes. The TA section consists of a fast 

semi-Gaussian shaper (200ns peaking time), a level discriminator and a monostable flip-

flop that generates a trigger signal if the shaped signal exceeds the discriminator 

reference level. The reference level can be set to a common threshold for all channels or a 

3 bit digital-to-analog converter (DAC) associated with each channel. The discriminator 

outputs of all 128 channels pass through an OR gate, and then generate a common signal 

to trigger the outside data acquisition unit to read the analog signals from the VA circuits. 
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The VATAGP3 can be disabled to prevent further triggering by another event until all 

analog signals are read out. 

 

 
Figure 2.6 Block diagram of one channel of VATAGP3 readout chip. 

 

 
Figure 2.7 Signal and timing diagram for SERIAL readout mode of the VATAGP3 
chip[58] 
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The VATAGP3 has three readout modes: SERIAL, SPARSE and SPARSE with 

adjacent channels. In the SPARSE mode, the chip only outputs the analog signals of the 

triggered channels for which the address is obtained from the data output. The readout 

speed of SPARSE is increased significantly. Another mode is SPARSE with adjacent 

channels. In addition to the SPARSE mode, this mode also outputs the analog signals of 

the channels around the triggered channels.  

The most general mode is SERIAL mode, in which all channels of the chip are 

read out in sequence following a common trigger.  The overall readout time for 128 

channels of one chip is about 120μs. In figure 2.7, the primary signals to initiate SERIAL 

mode readout are illustrated. When a γ-ray photon interacts with one silicon pad sensor, 

the preamplifier integrates the incoming charge. Output of preamplifier is sent to both 

slow shaper of VA part and fast shaper of TA part. When the semi-Gaussian signal from 

the fast shaper exceeds a pre-set threshold, a trigger signal is sent from the monostable 

flip-flop circuit. Then, the common trigger signal from OR logic starts the process of 

serial readout. After approximately a 3μs integration time, the sample/hold signal reaches 

high logic and the output of slow shaper reaches a maximum value which is held in the 

sample-and-hold (S/H) circuit. The shift bit (shift_in) accompanied by a clock signal are 

pushed to the shift register, which indicates analog value output for corresponding 

channel held in S/H circuit and A/D converter. When the readout of the channel is 

finished in the period of one clock, the shift bit is clocked to the next channel. After 

completing readout from all 128 channels, the shift_out trigger is sent to the next 

VATAGP3 as a shift_in signal to continue reading channels for all silicon pads. Finally, a 

reset signal is sent out to finish the readout process. 

Control and readout of the silicon sensor and VATAGP3 is controlled by the 

external data acquisition (DAQ) system, which is composed of four parts: the distribution 

board, the intermediate board, the VME ADC board and the computer. The distribution 

board is located functionally between the silicon detector and intermediate board, which 

reads out the multiple silicon sensor modules serially and distributes the control signal 

from the intermediate board to all silicon sensor modules. The intermediate board serves 

as the intermediate channel between the silicon detector modules and VME ADC board, 

and the intermediate board generates the necessary input voltages and currents for the 
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sensor and amplifies the acquired signals from detector to satisfy the VME requirement. 

The VME board controls the data acquisition. A 12 bit 10MHz analog-to-digital 

converter (ADC) is embedded in the VME board and control and readout sequence logic 

is pre-programmed in the FPGA on the board. The computer is employed as the master 

control and storage center, in which the developed DAQ software allows the user to 

change readout mode, threshold value and readout sequence. The digitized readout values 

are finally stored in the computer for off-line data analysis. The energy resolution of this 

silicon detector evaluated at the photo-peak energy 140.5 keV of 99mTc is about 1.3keV 

FWHM [59].  

2.1.2.2 Absorption Detector – NaI Anger Detector Head 

The second detector used in the prototype Compton camera is an existing 

commercial Anger camera head without its mechanical collimator [53].  The planar 

Anger camera head is part of an ARGUS imaging system manufactured by ADAC Lab., 

which was introduced in section 2.1.1.  

 

 
Figure 2.8 Photos of the ARGUS Anger camera head. 

 

A state-of-the-art electronic circuit shown in Figure 2.8 has been designed for the 

specific requirements of the Compton imaging system. Each PMT is assigned to an 

independent acquisition system that includes a fast pre-amplifier and front-end board, a 

constant fraction discriminator board, and a SIS3300 VME ADC board. Each analog 

PMT output is digitized to 12 bits by a 100MHz ADC. The sum of PMTs is fed into the 

constant fraction discriminator. If the voltage exceeds the pre-set threshold a readout 

trigger is sent out and a snapshot of the digital PME waveforms is taken. The final digital 
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values are stored in the computer for off-line photon energy and interaction position 

calculation. 

2.2  Properties and Limitations of Anger Camera with Parallel Hole HEGP Lead 

Collimator 

2.2.1 Inverse Tradeoff between the Efficiency and Resolution 

In Chapter 1, we introduced the collimator as an important component and 

performance factor of the conventional Anger camera system. As described in Chapter 1, 

the parallel hole collimator forms a projection image of the radioactive source 

distribution on the face of the Anger camera.  The acceptance angle for incident gamma-

rays (and thereby sensitivity and resolution) is determined by hole length and diameter.  

The thickness of the septa between holes affects sensitivity and also penetration and 

scatter of incident gamma rays that degrade resolution. That is: if greater efficiency is 

required, then the hole size needs to be increased or the hole length must be shortened. 

Either of these choices results in degrading the spatial resolution of images since if only 

photons with directions near to the ideal are selected by reducing the size of hole or 

increasing the length, then the efficiency is reduced and the counting statistics will be 

poor[29]. 

 
Figure 2.9 The parallel hole collimator with hexagonal hole pattern. l is the length of hole 
or thickness of collimator. d is the width of the hexagonal collimator holes. t is the septal 
thickness. b is the distance between a typical source and the front of the collimator. 
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A parallel hole collimator with hexagonal holes is displayed in Figure 2.9, in 

which l is the length of hole or thickness of collimator; d is the width of the hexagonal 

hole; t is the septal thickness; b is the distance between the source and the front of the 

collimator. 

Therefore, the collimator efficiency g, which is the fraction of γ-rays emitted by 

the no attenuation source in air that pass though the holes of the collimator, is given 

by[60], 
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Where K is a constant that depends on the hole shape equal to ~0.26 for hexagonal holes 

in a hexagonal array. The collimator resolution Rc is the Full Width at Half Maximum 

(FWHM) of the PSF, which is the radiation profile of a point source of radiation 

projected through the collimator onto the detector. It is defined as 
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From the equation (2-1) and (2-2), the collimator efficiency approximately equals 

to the square of the ratio of hole diameter to length. The thinner collimator with larger 

size hole could achieve higher collimator efficiency. Whereas, the collimator resolution 

decreases, i.e. FWHM increases, approximately as the ratio of hole diameter to length. 

Long, narrow holes provide better image resolution. Thus, for a given septal thickness, 

there is an approximately inverse relationship between the collimator efficiency and 

square of the FWHM resolution. 
2

cRg ∝           (2-3) 

The overall system resolution Rs is determined by both collimator resolution Rc 

and intrinsic resolution Ri, which is the spatial resolution of the detector and the 

electronics, and Rs is given approximately by 

22
ics RRR +=          (2-4) 

The intrinsic resolution Ri is primarily limited by two factors. The first is the 

multiple scattering of photons within the detector, and another is statistical fluctuation in 

the distribution of light photons from the scintillation events between photo multiplier 

tubes [60]. According to equation (1-1), the intrinsic resolution Ri becomes worse as the 



31 
 

crystal is thicker, and it also approximately constant for detecting a given energy γ-ray 

for a given detector design with unchanged crystal. Thus, optimization of overall system 

resolution is dominated by the selection of collimator. 

According to Eq. (2-2), for an Anger camera with a specified collimator, the 

overall system resolution strongly depends on the source-to-collimator distance b, and 

collimator resolution degrades by a factor of 2 as the source-to-collimator distance 

changes from 0cm to 5cm. Therefore, the best image quality is achieved when the 

radiation source is closest to the front surface of the collimator. 

2.2.2 Collimator Scatter and Septal Penetration for Higher Energy γ-rays 

As previously mentioned for the ideal situation, the incident γ-ray photons with 

undesired direction are all absorbed or rejected by the collimator septa. As illustrated in 

the Figure 2.10, however, the detected γ-ray photons not only include the photons with 

desired direction, (geometric photons), but also include the photons scattered in the 

collimator septa and the septal penetration photons, which pass through the collimator 

septa directly without interaction. Even though the last two types of photons will increase 

the overall collimator sensitivity, those photons contribute a foggy background image 

onto the desired image giving rise to long tails on the point spread function and 

consequently a degradation of image contract. 

 

 
Figure 2.10 Illustration of types of detected photons. Detected photons include the 
desired geometric photon, the undesired photon scattered in the collimator, and the 
undesired septal penetration photons. 

 

According to the Eq. (2-1), the collimator sensitivity is maximized by the thinnest 

possible septa. Unfortunately, the collimator with thin septa increases septal penetration. 



32 
 

Increasing the thickness of septa is necessary to control penetration. However, no 

thickness of collimator septa for a given material can entirely to stop all γ-ray photons 

based on the law of attenuation. Following common criteria, a small fraction of photons, 

i.e. ~5%, is allowed to penetrate to the septa[61]. 

 

 
Figure 2.11 Calculation of the minimum path length w allows one to estimate the 
maximum probability of a γ-ray photon penetrating through the collimator septa between 
the holes. l is the length of septa, t is the thickness of septa and d is the diameter of the 
collimator holes. 
 

Therefore, as illustrated in Figure 2.11, the minimum path length w for a γ-ray 

photon to pass through the septa between holes can be expressed as  

td
tlw
+

=
2

.           (2-5) 

If the fraction of acceptable penetration photons is 5%, based on the attenuation law, the 

percentage of photon transmission for the path w is approximately 

  05.0≤− we μ           (2-6) 

Where μ is the linear attenuation coefficient of the septal material for the energy of the 

incident photons, and thus the minimum thickness of septa for 5% penetration is 

  
)/3(

6

μ
μ

−
≥

l

d
t           (2-7) 

To obtain the maximum collimator efficiency, materials of high atomic number Z, high 

density ρ, with large value μ are selected to minimize septal thickness. Lead with Z=82 

and ρ=11.34 g/cm3 is the common choice, but both tungsten (Z=74 and ρ=19.25 g/cm3)  

and gold (Z=79 and ρ=19.3 g/cm3) have been used in special applications.  

The energy of γ-ray photon strongly determines the value of the linear attenuation 

coefficient μ of the collimator martial, which becomes much smaller for higher energy γ-
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rays. Compared to a collimator designed for 140keV γ-ray photons, the collimator septa 

for 364.4keV γ-ray photons is thicker to reduce the septal penetration. Therefore, the hole 

diameter must be enlarged to preserve reasonable collimator efficiency, with a 

corresponding degradation in collimator resolution. The specifications for collimators 

designed for different γ-ray energies are given in Table 2.1, in which the LEGP is a low 

energy general purpose collimator for 140keV photons; the MEGP is a medium energy 

general purpose collimator designed for photon energies from 200keV to 400keV; and 

the HEGP is a high energy general purpose collimator for photons with energy between 

300keV to 511keV. Comparing LEGP and MEGP collimators, the septa thickness 

increases about 6 fold and the hole diameter also increases about factor of 2 to maintain 

acceptable sensitivity. For the high energy γ-rays, the thicker septa reduces penetration, 

but also results in increased photon scattering in the collimator’s material[62-64]. 

 

Table 2.1 Collimator Specifications for Argus System 
Collimator Type Hole size 

diameter (mm) 

Septa Thickness 

(mm) 

Length 

(mm) 

Sensitivity Resolution @10cm 

LEGP 1.4 0.178 25.4 1.729E-4 8.8 mm 

MEGP 2.95 1.143 48.0 1.420E-4 11.4mm 

HEGP 3.81 1.727 60.0 1.382E-4 12.6mm 

 

For the case of imaging the γ-ray photons emitted by 131I, the effects of collimator 

scattering and septal penetration become worse and more complicated. Unlike 99mTc that 

emits single γ-ray energy at 140keV, 131I not only emits a γ-ray with the photo peak at 

364.4keV (82%), it also emits other two higher energy γ-ray photons at 637keV (7.2%) 

and 723keV (1.8%). Even though the photo-peak energy window is usually centered at 

364keV and γ-ray photons with 637keV and 723keV have low intensity, the scattering 

effect of these two γ-rays is significant since they have higher probability of scattering in 

the lead collimator septa rather than being absorbed. Increased collimator scattering and 

penetration of 637keV and 723keV photons will degrade image contrast and spatial 

resolution in the final image. 

To illustrate the effects of collimator scattering and septal penetration of multiple 

energy photons emitted from 131I, Monte Carlo simulation is used to track the un-
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scattered and scattered photons with different energies separately. In this work, GATE is 

employed, which is a Monte Carlo simulation platform designed for simulating SPECT 

and PET systems[65-67] based on the CERN Geant4 Code. Compared to other Monte 

Carlo simulation programs, GATE accounts for all kinds of interactions, including 

scattering and penetration in the collimator. 

To determine the significance of collimator interaction, a point source of 131I in air 

is located 1 mm from the front face of the collimator. The GATE platform simulates a 

point source in air detected by Argus Anger Camera Head with HEGP collimator and 

records the geometric, penetration and scatter photons for the three 131I photon energies, 

separately 
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Figure 2.12 Energy spectra of detected photons separated according to the emission 

energy by 364keV, 637keV and 723keV. 

  

Without any energy windows, the simulated energy spectra of detected photons 

for each of the three photon energies are shown in Figure 2.12. The 364keV photons that 

undergo scattering in the collimator and deposit partial energy in the detector are the 

primary component of the low energy parts. Within the 30% photo-peak energy windows 

at 364keV, the scatter and penetration spectra corresponding to 637keV and 723keV 

photons are relatively flat. 
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Figure 2.13 Energy spectra of detected geometric, penetration and scattered photons 
within the 30% photo-peak window at 364keV. 
 

The separated geometric, scatter and penetration energy spectra of detected 

photons are shown in Figure 2.13. Even within the 30% photo-peak window at 364keV, a 

large fraction of detected photons have undergone collimator scattering and septal 

penetration. The scattering spectrum is relatively flat and is primarily contributed by the 

637keV and 723keV γ-ray photons after losing energy due to Compton scattering within 

the collimator. The penetration spectrum shows a photo-peak the same the geometric 

spectrum which is primarily contributed by photons with 364keV energy passing through 

the septa without losing any energy. 

In summary, the percentage of geometric, septal penetration and scattered photons 

detected within a 30% energy window at 364keV for a point source of 131I in air are 

shown in Table 2.2. Only 42% of the detected photons are the desired geometric photons. 

The contribution of the 637keV and 723keV photons represents more than 28% of total 

detected photons within 30% windows. 

 

Table 2.2 Contribution of geometric, septal penetration and scattered photons within 30% 
window at 364 keV for a point source of 131I in air 
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As shown in Figure 2.14, therefore, the final image for a point source of 131I 

consists of the components from geometric, scattering and penetration photons. For the 

hexagonal hole pattern, the penetration photons forms a star-pattern in the direction in 

which the septa are thinnest. The scattered photons impose a foggy background on the 

desired image contributed by the geometric photons. Both star-pattern and foggy 

background degrade the image resolution and contrast since they introduce a long tail on 

the point source function and add a structured background. 

 

 
Figure 2.14 An image (D) of a point source of 131I placed at 1mm from the front face of 
collimator in a 30% energy window, and image components contributed by Geometric 
photons(A), Septal penetration photons (B) and Scattered photons(C). 

2.2.3 Sampling and Limited-Angle Problem for Tomography 

To obtain a correct reconstruction of emission or transmission images, the 

collection of projections over a full angular range from 0 to 180 degree is required. The 

projections must satisfy the requirements of appropriate linear and angular sampling 

intervals to avoid aliasing due to under-sampling.  
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According to the sampling theorem[68], if the maximum spatial frequency 

response of the system (that is half of Nyquist frequency) is Vmax, which depends on the 

detector resolution and on the cutoff frequency used for the reconstruction filter, required 

a linear sampling distance Δx is, 

max2
1
V

x
×

≤Δ               (2-8) 

 

 
Figure 2.15 Examples of effects of angular sampling range in tomographic transmission 
images obtained by sampling over A) 180 degrees B) 135 degrees C) 90 degrees C) 45 
degrees. 
 

Because sampling in angle is a sampling in the Fourier domain of the object and 

under-sampling in this domain will result in the aliasing of spatial information in the final 

image. Thus the angular sampling interval (angle between projections) should be 

FOVx ×Δ
≤Δ

2
1θ ,       (2-9) 
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where, the FOV is desired field of view. if the diameter of field of view is D, then 

number of angular views for an full range of angles from 0 to 180 degree is given as 

  
max2 θ
ππ

Δ
=

Δ
=

x
DN sprojection .       (2-10) 

 However, in some practical cases shown in Figure 2.15, the complete 

tomographic projection data collected over a full 180 degree cannot be achieved. In these 

cases, limited-angle views of the projection data are insufficient to correctly reconstruct 

the tomographic distribution of activity. Limited-angle tomography induces image 

artifacts and produce geometric distortions perpendicular to the direction of the missing 

projections. 

2.3 Theoretical Analysis for a Prototype Silicon based Compton Imaging System for 

Detecting 364.4keV 

In this section, the detailed principles and qualitative analysis for a dual planar 

Silicon-NaI Compton camera imaging system are investigated. As described in the 

previous section, this Compton camera consists of two types of detectors: the first 

detector is the scatter detector, which consists of several silicon pad detector; the second 

detector is the absorption detector, which is a commercial Anger camera head without a 

mechanical collimator and composed of a NaI scintillation crystal. Both detectors are 

planar detectors and parallel to each other. The theoretical analysis that predicts the 

Compton camera performance for higher energy γ-ray imaging includes the Compton 

scattering efficiency of the silicon detector, and its energy resolution, the effect of 

Doppler broadening for silicon and overall system geometry as well as the imaging 

characteristics of the Anger camera used for the absorption detector. 

2.3.1 Compton Scattering of Silicon Detector 

As introduced in Chapter 1 and illustrated in Figure 2.16, Compton scattering 

takes place between the incident γ-ray photons and an electron in the scatter detector 

material. During Compton scattering, the incoming γ-ray photon with energy E0 is 
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deflected at a scatter angle θ with respect to its original direction and transfers a fraction 

of its energy to a recoil electron. 

 
Figure 2.16 The basic principle of Compton scattering. 

 

 After a Compton scattering and detection of the scattered photon by the second 

detector, the direction of the incident γ-ray photon can ideally be localized on the surface 

of a cone. The cone apex is the interaction position in the first detector and the half angle 

of the cone is equals to the scatter angle θ, which can be determined as: 
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where m0c2 is the rest-mass energy of the electron (511 keV), E0 is the energy of the 

incident γ-ray photon, E2 is the energy of the scattered γ-ray photon and θ is the 

scattering angle. The difference between E0 and E2 is the energy deposited in the recoil 

electron in the scatter detector and denoted as E1. The location of incident γ-ray photons 

from a source point can be identified by intersection of multiple cones after a collection 

of many Compton scattering events as illustrated in Figure 1.7. 

 Therefore, the image quality depends on large numbers of γ-ray photons 

undergoing Compton scattering interactions in the scatter detector and subsequent 

detection in the second detector. The probability of Compton scattering per atom depends 

on the number of electrons available for scattering and the energy of incoming γ-ray 

photons. The probability for various types of interaction between a γ-ray photon and a 

specific material can be evaluated from the various interaction coefficients, which 

depends on the material atomic number Z and energy of incoming γ-ray photons E. The 

total linear attenuation coefficient μ is the probability of an interaction per unit distance in 
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a given material[69, 70]. It can be broken down into components due to the photoelectric 

effect, Compton scattering, Rayleigh scattering and pair production. The linear 

attenuation coefficient as a function of γ-ray energy for silicon is shown in Figure 2.17. 

Compton scattering is the dominant interaction type from 57keV to several MeV. When 

the γ-ray energy is below 57keV, photoelectric absorption is the most dominant 

interaction. When the γ-ray energy is above 15MeV, pair production is the principal 

interaction. The curve of linear attenuation for Compton scattering is fairly constant over 

the energy range for medical imaging. For the 364keV γ-ray, the linear attenuation 

coefficient for Compton scattering is about 0.22904 cm-1, and for photoelectric 

absorption is 0.00104 cm-1. 
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Figure2.17 Interaction coefficients for Gamma energy from 0.001MeV to 100MeV in 
Silicon. 
 
 After Compton scattering, the scattered γ-ray photon will be deflected an angle θ 

with respect to its original direction. Under the assumption that the interacting electron is 

free and at rest, the scattered photon angular distribution is predicted by the Klein-

Nishina (KN) Differential Cross Section (DCS) formula[71]: 
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where Z is the atomic number of the target atom, r0 is the classical electron radius and 

2
0

0

cm
E

=α [26]. The DCS formula for the differential of the in-plane scattering angle 

could expressed as  
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Figure 2.18 Klein-Nishina differential Cross Sections for Silicon as a function of 
scattering angle for incident γ-ray photons with energies of 140.4keV and 364.4keV. 

 

According to Eq. (2-13), the normalized Klein-Nishina differential cross section 

as a function of scattering angle for incident γ-ray energies of 364.4keV and 140.4keV is 

illustrated in Figure 2.18. The angular distribution exhibits preferred forward scattering. 

Compared to the angular distribution at 140.4keV, the Compton scattering at 364.4keV 

has higher probability from 0 to 64 degrees. 

2.3.2 Doppler Broadening for Silicon 

The classic Klein-Nishina cross section formula for Compton scattering is based 

on the assumption that the target electron is free and at rest. However, in the actual scatter 

detector, especially for material with higher atomic number or incoming γ-ray photons 

with lower energy, atomic electron binding decreases the Compton scattering cross 

section given by the classic Klein-Nishina DCS formula. Furthermore, the kinetic energy 

and randomly directed momentum of the bound electrons cause the scattered γ-ray 

photons with a given scattering angle to have a narrow distribution of energies around the 

predicted energy defined by the scattering angle. This effect is denoted as Doppler 

broadening, which is governed by the momentum distribution of the target electrons in 
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the scatter detector. Doppler broadening increases with both increasing atomic number of 

the scatter material and with the scattering angle[72]. 

A more accurate description of Compton scattering cross section taking account 

of both atomic binding effects and Doppler broadening is based on the relativistic 

impulse approximation(IA), in which it is assumed that the energy transfer is large 

enough that binding effects for the electrons may be neglected and that the final state of 

the excited electron may be approximated by a plane-wave state[73]. According to the 

above assumption, Ribberfors derived a double differential Compton scattering cross 

section for un-polarized photons colliding with bound atomic electrons[74].  

The Compton Double Differential Cross Section (DDCS) model can be expressed 

as 
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where σn represents the Compton scattering cross section at sub-shell n; r0 is the classical 

electron radius; E0 and E2 are energies of the incident and scattered γ-ray photons, 

respectively, and Ec is the Compton scattered photon energy for an electron at rest; m0c2 

is the electron rest mass and is equal to 511 keV; θ is the in-plane scattering angle; pz is 

normalized projection of the electron pre-collision momentum onto the photon scattering 

vector; Jn(pz) is the Compton profile of the n-th sub-shell. The electron momentum 

distribution is represented by the Compton profile, which depends on the element type, 

i.e. the atomic number, the sub-shell of the specified electron, and binding effects of 

neighboring atoms. The Compton profile of the n-th sub-shell electron is a function of pz 
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and may be calculated from Hartree-Fock Compton profiles[75], in which a sub-shell 

based Compton profile is tabulated for all atomic elements. To take account of the 

additional momentum due to the atomic binding in the crystalline lattice, the measured 

Compton profile for silicon, germanium and diamond crystals is tabulated by Reed and 

Eisenberger[76].    

 The Compton Double Differential Cross Section formula expressed in Eq. (2-14) 

is just for an individual sub-shell electron. The overall Double Differential Cross Section 

is obtained taking account of the overall Compton profile, which is calculated from a 

weighted summation of all individual profiles of the sub-shell and number of electrons in 

the sub-shell. For crystalline Silicon, the Compton profile is obtained from measurement, 

which includes the total contribution from outer-shell valence electrons and inner-shell 

core electrons. The DDCS formula in Eq. 2-14 is differential for the solid angle Ω, in 

terms of in-plane scatter angle θ, the double differential cross section, which is also 

referred to as the joint-pdf, can be expressed as 
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According to the Eq. 2-19, the Compton Double Differential Cross Section for a 

particular material for a given energy γ-ray photon can be discretized into a two-

dimensional matrix, which is indexed by both scattering angle and energy of the scattered 

γ-ray photon or deposited energy in the recoil electron. From this two-dimensional 

matrix, in which each item depicts the probability of Compton Scattering at a specified 

scattering angle and specified energy deposited in the recoil electron, the uncertainty of 

scattering angle around an expected angle θ due Doppler broadening can be illustrated by 

a profile along the specified energy row in the two-dimensional matrix and this one-

dimensional profile is indexed by angles. 

The two-dimensional discretized double-differential cross sections, i.e. joint pdf, 

for crystalline silicon indexed by the scattering angle (vertical axis) and deposited energy 

(horizontal axis) are illustrated in Figure 2.19(a) and (b), in which the intensity is related 

to probability of Compton scattering at the specified recoil energy and scattering angle. 

The bright spots in the image represent high probability and central trace of those spots is 

corresponds to the Compton scattering cross section without the effect of Doppler 
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Broadening, whereas the darker spots bordering the central trace describe the degree of 

Doppler Broadening. Figure 2.19(a) is the joint PDF map for incident γ-ray photons with 

energy of 140.4keV, and (b) is for the 364.4keV γ-ray. Comparing these two images, the 

blurring at 140.4keV is much wider than at 364.4keV. This demonstrates that Doppler 

Broadening is more significant for the lower energy incident γ-ray photons for the same 

scatter material.  
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(A) (B) 

Figure 2.19 (A) The discretized Double-differential cross section for incident γ-ray 
photons with energy of 140.4keV for crystalline silicon. (B) The discretized Double-
differential cross section for incident γ-ray photons with energy of 364.4keV for 
crystalline silicon. 
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(A)                                   (B) 

Figure 2.20 (A) Comparison of the normalized Doppler profiles of the joint pdf matrix 
for a deposited energy corresponding to the nominal scattering angle of 60° for 140.4keV 
and 364.4keV photons. (B) Comparison of the normalized Doppler profiles 
corresponding to nominal scattering angles at 30°, 90° and 150° for 364.4keV incident 
photons. 
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To further illustrate the angular uncertainty due to the effect of Doppler 

broadening for the 364.4keV and 140.4keV incident γ-ray photons, the normalized 

Doppler-broadening profiles corresponding to 60° scattering are displayed in Figure 

2.20(a). A horizontal cross section of the joint PDF map for a given scattering material 

and incident gamma-ray energy gives the distribution of scattering angles for the 

corresponding deposited energy.  A vertical cross section displays the probability 

distribution of deposited energy for the corresponding scattering angle. For the 60° 

scattering angle, the deposited recoil energies for 140.4keV and 364.4keV incident 

photons are 16.9keV and 95.8keV, respectively. For a silicon detector with perfect energy 

resolution, the angular uncertainty for 140.4keV incident photons is broader than for 

364.4keV energy photons. The reason for this difference is that the binding energy of the 

electrons in Silicon is comparatively smaller and the momentum distribution is 

comparatively smaller for the higher energy photons and the Doppler broadening is 

reduced compared to that for low energy gamma rays. From Figure 2.20(b), which 

displays the Doppler profile of 364.4keV for different scattering angles, the effect of 

Doppler broadening is substantially reduced at small scattering angles. 

2.3.3 Energy Resolution for Silicon Detector 

 In addition to Doppler broadening, another important factor impacting the energy 

uncertainty is the energy resolution of the scatter detector. According to the principle of 

Compton camera imaging, from the known incident γ-ray energy E0 and measured 

deposited energy E1, the scattering angle can be evaluated by Eq. 2-11. Thus, increasing 

energy uncertainty, due to both Doppler broadening and energy resolution, further 

increases uncertainty of scattering angle.  

In general, the detector response to a mono-energetic radiation source is a 

Gaussian-shaped pulse height distribution, referred to as the detector energy resolution 

function. The energy resolution is defined as the FWHM of the full energy peak divided 

by the energy of the central peak. Small values of FWHM correspond to good 

resolution[26]. 

To illustrate the angular uncertainty due to the intrinsic energy resolution of the 

semiconductor silicon detector, a simple model is deduced to describe the Gaussian shape 
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energy spectrum and associated energy resolution. Two kinds of noise are considered in 

the model: one is the statistical noise, which results from the uncertainty in the number of 

electron-hole pairs generated by the recoil electron after a γ-ray photon interaction with 

this electron in the silicon detector, the other is the electronic noise, which is dependent 

on the series resistance, that includes electrical contact resistance, capacitance of the 

detector and leakage currents. 

Assuming the actual deposited energy to the recoil electron is E1 (keV) and a 

silicon detector needs a average ionization energy 3.62eV to generates an electron-hole 

pair, the mean number of generated electrons is  

62.3/1000 1EN ×= .         (2-20) 

To derive the variance in N, the Fano factor, f, for silicon must be known. The Fano 

factor quantifies the departure of the observed statistical fluctuations in the number of 

charge carriers from pure Poisson statistics[26] and the Fano factor for silicon is 0.14. 

Therefore, statistical noise is given by,  
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14.01000 12 E
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==σ .       (2-21) 

 The electronic noise of the silicon detector is typically modeled as a zero-mean 

Gaussian distribution with variance σ2
electronic. If the detector energy resolution (FWHM) 

due to the electronic noise is ΔE, then σ2
electronic is given by 
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 Assuming that electronic noise and statistical noise are independent, the total 

variance in units of (electrons)2 is given as 
222
electroniclstatisticatotal σσσ += ,.        (2-23) 

Finally, the total variance with the units of (keV)2 is given by 
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Therefore, the measured energy Em for the case of deposited energy E1 to the 

recoil electron is a Gaussian distribution, which is expressed as conditional probability 

density function p(Em|E1) with mean at E1 and variance is σ2
total 
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Therefore, the total energy uncertainty due to both Doppler broadening and 

energy resolution can be obtained by convolution of the energy resolution blur function 

Eq. (2-25) and the Doppler broadening uncertainty. A two-dimensional matrix describing 

the relationship between the scattering angle and measured recoil energy is also obtained 

by multiplying the two-dimensional double-differential cross sections with the energy 

resolution matrix indexed by the actual deposited energy E1 and measured energy Em, in 

which the value of each element is defined by Eq. (2-25).  

Thus, the blurred joint-pdf considering both the detector energy resolution and 

Doppler broadening for the incident 364.4keV γ-ray photon is displayed in Figure 2.21, 

which is indexed by the scattering angle and measured recoil energy. The energy 

resolution of the crystalline silicon detector is 2keV (FWHM) for electronic noise. 

 

Scattering Angle (deg)

M
ea

su
re

d 
R

ec
oi

l E
ne

rg
y 

(k
eV

)

Blurred joint-pdf for Crystalline Silicon Detector with energy resoltuion of 2Kev(364.4Kev)

0 20 40 60 80 100 120 140 160 180

0

50

100

150

200

250

300

350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-5

 
Figure 2.21 Blurred joint-pdf describing the relationship between the scattering angle and 
measured recoil energy for an incident photon with 364.4keV energy detected by a 
crystalline silicon detector with energy resolution of 2keV (FWHM). 
  

A horizontal profile along a given measured energy from the blurred joint-pdf 

illustrates the angular uncertainty around that energy. For the incident photon with energy 

of 364.4keV, the angular uncertainty around a nominal scattering angle of 60° for the 



48 
 

crystalline silicon detector with energy resolution of 0keV, 1keV and 2keV (FWHM) for 

electronic noise is compared in Figure 2.22 (a). At this scattering angle, the angular 

uncertainty becomes worse with decreased energy resolution. In comparison to the 

angular uncertainty resulting from Doppler broadening, however, as the energy resolution 

is less than 1keV (FWHM), the angular uncertainty due to the energy resolution is not 

very significant. From Figure 2.23(b), which compares the angular uncertainties for the 

incident photons with energy of 364.4keV and 140.4keV around the scattering angle of 

60°, the angular distribution for detecting lower energy photon becomes broader for the 

crystalline silicon detector with the same energy resolution of 1keV (FWHM). 
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  (A)         (B) 

Figure 2.22 Comparison of Angular uncertainty around the nominal scattering angle of 
60° for a crystalline silicon detector (A) For a perfect detector and detectors with energy 
resolution of 1keV and 2keV for incident photon with energy of 364.4keV (B) For the 
same detector with 1keV (FWHM) energy resolution and incident photons with energy of 
140.4keV and 364.4keV. 
 

In Figure 2.23, the angular resolution is illustrated in terms of degrees FWHM for 

140keV (99mTc) and 364keV (131I) incident γ-ray photons over a range of scattering angle 

from 0° to 180°, The combined effect of finite detector noise and Doppler broadening of 

a crystalline silicon detector with energy resolution from 0keV to 1keV. For the perfect 

detector with energy resolution of 0keV (FWHM) for both low and higher energy 

photons, the angular uncertainty is primarily affected by the Doppler broadening, which 

is smaller at small scattering angles. Compared to the angular resolution for low energy 

γ-rays, the scattered higher energy γ-ray photon has smaller angular uncertainty for a 
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detector with identical energy resolution. In the range of forward scattering from 20° to 

90°, the effect of detector noise for detecting the higher energy photon (364.4keV) is 

small, and in this range, angular resolution is less than 2°.  

 
Figure 2.23 Angular resolutions (degrees FWHM) for 140keV (top) and 364keV (bottom) 
γ-ray photons scattered from crystalline silicon detector due to both Doppler broadening 
and energy uncertainty. The detector energy resolution is 0keV, 0.75keV and 1keV 
(FWHM).  
 

2.3.4 System Geometry and Spatial Resolution for Compton Imaging System with 

Dual Planar Detectors. 

 For the Compton image reconstruction, the open angle of the backprojection cone 

can be calculated from the measured deposited energy in the scatter detector, and the axis 

of the cone is determined by the interaction positions in both detectors. Therefore, the 

angular uncertainty not only results from the energy resolution and Doppler broadening 

of the scatter detector, evaluated in the previous section, but also depends on system 

geometry and spatial resolution of both detectors. As studied by Ordonez[77], the angular 

resolution Δθg due to system geometry and spatial resolution of detectors depends upon 

the lateral and depth of interaction resolution of the scattering detector, expressed as [Δxs, 

Δys, Δzs]; the lateral and depth of interaction resolution of the absorption detector, 

denoted as [Δxa, Δya, Δza]; the distance of the source from the interaction position in the 
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scatter detector R1; and, the distance between two interaction positions in the scatter and 

absorption detector R2.  

Therefore, the overall angular uncertainty Δθg for the Compton imaging system is 

given as 
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where θ is the polar scatter angle and φ is the azimuthal scatter angle in spherical 

coordinates.  

For the proposed Compton camera system, the first detector consists of one or 

more silicon pad detectors with a pixel size of 1.4mm×1.4mm×1mm. The second detector 

is an un-collimated NaI Anger camera head which has intrinsic lateral spatial resolution 

Δa=Δxa=Δya=4mm. Depth of interaction in the crystal is unknown so depth spatial 

resolution Δza is assumed as 10mm, the thickness of NaI crystal. The two detectors are 

parallel to each other with an adjustable separation distance, and their centers are aligned 

on axis. If the distance between the centers of two detector is Rc, then R2=Rc/cosθ. For 

this system, the formula of Δθg in Eq. 2-26,2-27 and 2-28 can be simplified as, 
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Therefore, from Eq. 2-31, the angular resolution Δθg due to the system geometric and 

spatial resolution has an inverse relationship with the distance between the scatter 
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detector and the absorption detector. As this distance increases the angular uncertainty, 

Δθg , decreases at the expense of sensitivity.  

Figure 2.24 illustrates the geometric angular uncertainty Δθg for the prototype 

Compton camera as a function of distance Rc between the two detectors. Described in 

Figure 5-10, the point source is 10cm from the pixel first detector, the centers of source 

and two detectors lie along the same axis. As can be seen, the peak of the angular 

uncertainties for all Rc is around a scattering angle of 40°. With decreasing Rc, the 

angular uncertainties become worse. For Rc greater than 200mm, geometric angular 

uncertainties become fairly uniform over scattering angles from 0° to 180° and are less 

than 0.3 degree FWHM. Comparing the angular uncertainties due to the energy resolution 

and effect of Doppler broadening in Figure 2.26, the angular uncertainty Δθg could be 

neglected for detector separation above 50cm. 

 

 
Figure 2.24 Angular uncertainty Δθg of the back-projected cone due to the system 
geometry of Compton system with parallel dual planar detectors. The distance between 
the sources to the scatter detector is 100mm and the separation between two detectors is 
50mm, 100mm, 200mm, 300mm and 500mm, respectively. 

 

Because the position uncertainty due to system geometry and detector spatial 

resolution may be expressed by 
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gg Rx θΔ=Δ ,                                  (2-32) 

for a fixed distance between two detectors, the position uncertainty is primarily 

determined by the distance R from the image plane to the first detector. From Figure 2.25, 

which displays the position uncertainty for various R1 and Rc equal to 150mm, as the 

distance of R1 is deceased, the position uncertainty Δxg become smaller. 

 

 
Figure 2.25 Position uncertainty of the back-projected cone due to the system geometry 
of the Compton system with parallel dual planar detectors. The distance between the 
scatter detector and absorption detector is 150 mm. the distance for the source or the real 
image plane to the scatter detector varies from 10mm to 200mm. 

 

 Theoretically, therefore, the image resolution due the system geometry and spatial 

resolution of both detectors can be improved. For the proposed Compton camera design, 

in which the spatial resolutions are fixed, when the object plane is close to the surface of 

the scatter detector and the absorption detector is located far away from the second 

detector, the uncertainty Δxg can be ignored at the cost of reduced detection sensitivity. In 

this case, the overall position uncertainty is primary determined by the energy uncertainty 

of the scatter detector due to the energy resolution and Doppler Broadening. 
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2.3.5 Detection Sensitivity 

The detection efficiency or sensitivity is defined as the ratio of the number of 

accepted detected events to the total number of emitted gamma-rays from the source. The 

sensitivity is determined by the energy of the photons, system geometry and detector 

martial. Interaction probabilities, energy measurements, intervals between emitted 

photons etc are random events, thus, it is very difficult to estimate by a simple 

calculation. Therefore, the estimated detection sensitivity is evaluated by the Geant4 

Monte Carlo Simulation. For the conventional Anger camera with HEGP collimator, the 

effective events are the detected events in the energy window from 320keV to 400keV. 

The effective Compton events are the detected coincidence events with only one scatter 

in the first detector. As displayed in Figure 5.17, the size of first detector is 

22.4x44.8x10mm and the size of second detector is 508x380x10mm. The point source is 

located 10cm from the surface of the detector, and for the Compton camera, the distance 

of two detectors is 10cm. As listed in Table 2.3, the Compton camera has higher 

sensitivity by a factor of ~28 for detecting 364.4.keV photons emitted from I131. 

 

Table 2.3  Sensitivity Comparison for 131I Detection 
 Anger camera with HEGP collimator 

Efficiency Total Emitted Particles Accepted Event 
1.02E-4 355229093 42374 
 Compton Imaging System with Si-NaI Dual Planar detectors 
3.4E-3 58235338 196226 

Efficiency Ratio 3.4E-3/1.22E-4=27 
 

Unlike the Anger camera with parallel hole collimation, for a given distance from 

source to detector, the sensitivity of Compton imaging system is not uniform. Using the 

system model of Compton imaging system presented in Section 2.2 and Chapter 4, the 

histogram of calculated sensitivities is displayed in Figure 2.26 for a 65x0.31cm by 

65x0.31cm object located at 10cm from the surface of the silicon detector. The maximum 

sensitivity for the center point is around 3.45E-3, and the average sensitivity is around 

2.34E-3. 
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Figure 2.26 Calculated detection sensitivity for the proposed Compton imaging system. 
The source plane is located at 10cm from the surface of the first detector. The object 
plane is divided into 65 by 65 pixels, and each pixel is 0.31 by 0.31 cm. 
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CHAPTER 3 

Practical Methods to Calculate Fisher Information and Estimate Modified Uniform 

Cramer-Rao Bound 

This chapter illustrates a statistical method, the modified uniform Cramer-Rao 

bound (M-UCRB), to evaluate and analyze the imaging performance of a Compton 

imaging system and an Anger Camera with HEGP collimator. To realize this method 

practically, algorithms are introduced for calculating the Fisher information matrix (FIM) 

by Monte Carlo Integration (MCI), and for estimating M-UCRB using the fast Fourier 

transform (FFT). Finally, Monte Carlo simulation system of a Compton imaging system 

and conventionally collimated Anger camera are studied. 

3.1 Introduction 

Beyond a qualitative analysis of an imaging system, powerful mathematical 

methods are required to quantitatively compare task-specific performance of different 

imaging systems. Tasks may include tumor detection, volume estimation of an organ or 

tumor, or quantification of tracer uptake in an organ or tumor. All these task-based 

evaluations can finally be related to physical characteristics of the images and imaging 

systems, such as achievable spatial resolution, signal to noise ratio or detection sensitivity 

and intrinsic spatial resolution. Thus, quantitative methods are required to determine 

whether and how much a new imaging system outperforms the existing system for which 

kinds of imaging tasks. 

Historically, several methods have been developed for performance evaluation of 

the lesion detection task. The structure accuracy measure[78] estimates image 

performance by calculating the differences of intensity between the reconstructed image 

and the imaged phantom. The mathematical human observer[79] evaluates the imaging 
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performance. However, most methods based on lesion detection tasks ineluctably depend 

on the image reconstruction algorithm.  

Another evaluation method is based on performance in a parameter estimation 

task in the absence of a well characterized clinical task. The precision of parameter 

estimation can be measured by the mean square error (MSE) which is the sum of the 

estimation variance and square of bias. Variance is fluctuation of estimated parameter 

due to noise, which depends on both imaging system and image reconstruction. Image 

bias is the error between the mean estimated image and the original object. Bias is 

strongly related to image resolution. To decrease the value of MSE, one can either reduce 

the variance or bias. A regularized image estimator enforces a tradeoff between the bias 

and variance. Decreasing noise will also reduce image spatial resolution. To separate the 

influence of a particular reconstruction algorithm from the limitations imposed by the 

imaging system on image resolution and variance, the family of Cramer-Rao lower 

bounds provide useful figure of merit for comparing performance among different 

imaging systems, in terms of a reconstruction-algorithm-independent theoretical limit on 

the variance and resolution tradeoff in reconstructed images. 

The classical Cramer-Rao lower bound (CRLB)[80, 81] shows that the total 

variance of any unbiased estimator is bounded by the inverse of the Fisher information. 

This bound is independent of the estimation or reconstruction method, and only relies on 

the likelihood function relating the measurements to the unknown parameters. As the 

measurements are independent identically distributed, the maximum likelihood estimator 

can asymptotically approach the CRLB. Since estimators with regularization methods are 

normally biased, the variance is bounded by the biased CRLB, which depends on the bias 

gradient vector, i.e., the derivative of bias, instead of bias. The drawback of this biased 

form of the bound is that it is only a lower-bound among estimators having the same bias-

gradient. 

Therefore, to evaluate biased estimation performance of an imaging system and 

quantify the tradeoff between bias and variance, the uniform Cramer-Rao bound (UCRB) 

proposed by Hero, Fessler and Usman[82] has been used. The UCRB defines the lowest 

achievable variance for a bias gradient whose length is less than a pre-specified constant 

tolerance δ. An important aspect is that the limiting performance defined by the bound 
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can be asymptotically achieved by an appropriate image reconstruction estimator with the 

selected bias-gradient length. According to the UCRB, the limiting standard deviation (σ) 

is plotted as a function of δ, on the “sigma-delta” plane to evaluate the tradeoff of noise 

and the “potential for bias”. The curve divides the plane into achievable and unachievable 

performance regions which bound the resolution-noise performance of any estimator. The 

performance evaluated is based on the intrinsic quality of the imaging system itself and 

not the reconstruction algorithm. To compare two different imaging systems using the 

“sigma-delta” plane, the system with the lower curve will have the better imaging 

performance with lower variance at a given bias gradient norm.  

Since the bias is the difference between the local impulse response function (LIR) 

and an ideal impulse response, a problem with the UCRB is that different shaped point 

response function with the same FWHM can have the same bias gradient norm. 

Therefore, the bias-gradient norm used in UCRB makes it difficult to compare 

performance of different imaging systems effectively by a measure of reconstructed 

image spatial resolution [83]. To rectify this issue, the M-UCRB was proposed to 

compare the minimum achievable variance in reconstructed images for a given target 

point spread function[1]. Compared with the original UCRB, which is based on the 

constraint on the bias gradient length, the modified UCRB is determined by pre-

specifying a desired shape response function and allows that response to be achieved 

within a specified tolerance rather than exactly. If the Euclidean norm is used to quantify 

this difference, the mean-estimator gradient is the same as the local impulse response in 

the reconstructed image. Therefore, it is more meaningful to use the M-UCRB to evaluate 

imaging performance of different imaging systems, such as the Compton camera and the 

conventional Anger Camera with collimator, by comparing the image variance at the 

same target spatial resolution. 

Calculation of M-UCRB by conventional algorithms is computationally expensive 

as it requires inversion of an n×n FIM, where n is the total number of image pixels. 

Direct inversion for bound calculation require O(n3) flops. Although an inversion 

algorithm based on conjugate gradient approaches may be exploited[84], but for a 

65×65×65 three dimensional image, the computation speed and memory requirements are 
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still intractable. Under the assumption of spatial shift-invariance, a one column FIM can 

be generated by MCI and the bound calculation speeded up by FFT. 

3.2 Modified Uniform Cramer-Rao Bound and Fisher Information Matrix 

3.2.1 Mean Square Error 

The image reconstruction for both a Compton scattering camera and conventional 

Anger camera with collimator are considered as a parameter estimation problem. The 

continuous object to be imaged is represented by discrete pixels. The pixel intensities are 

treated as unknown and non-random parameters and expressed by a column 

vector, T
p ],,,[ 21 θθθθ …= . The noisy measurement data Y is a vector of random 

variables and depends on a probability relationship with θ  expressed as a conditional 

density function )( θypY . The scalar estimate of the jth pixel intensity from Y  is 

represented as jθ̂ .  

One of the criteria for evaluating the precision of a given estimator is MSE, and is 

given by 
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where ( )jE θθ
ˆ  represents a mean value or an expectation value of the estimated 

parameter; ( )jb θθ
ˆ  is the bias in the estimation, which measures the error or mismatch 

between the mean of the estimated and true values; and, ( )jθσθ
ˆ2  represents the variance 

of the estimated value which reflects the degree of statistical fluctuation due to noise in 

the measured data Y .  

 A parameter estimation algorithm attempts to minimize the value of MSE by 

decreasing the variance and bias simultaneously. However, since image reconstruction is 

an ill-posed inverse problem; there is a trade-off between the variance and bias. For 

example, a low variance estimator or high spatial frequency filter will increase the overall 
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bias, i.e., degrades the reconstructed spatial resolution. The trade-off relationship is 

plotted as a curve in the variance-bias plane to evaluate the performance of each 

estimator. Given an object to be imaged and a defined imaging system, therefore, the best 

possible performance, independent of reconstruction algorithm, may be calculated by the 

various CRB techniques. The best algorithm is the one that has a bias-variance curve 

closest to the bound.  

3.2.2 The Classical and Biased Cramer-Rao Bound 

The classical Cramer-Rao Bound[85], or Cramer-Rao inequality is a method to 

determine the minimum achievable variance of an unbiased estimator jθ̂  of a 

deterministic parameter. Given the n×n positive definite FIM of the ( )θYF  of 

measurement Y , the variance of an unbiased estimator jθ̂  is bounded below by the jth 

diagonal element of ( )θ1−
YF , and given by, 

( ) ( ) ( ) jY
T
jjj eFeVar θθσθ θ

12 ˆˆ −≥= ,        (3-2) 

where, ( )θ1−
YF  is the inverse of the Fisher information matrix and 
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and je  is a p-element zero vector except for the one at jth  position T
j ]0,0,1,0,,0[ …… . 

However, since most image reconstruction estimation algorithms are biased, the 

classic Cramer-Rao bound is not applicable. For the biased estimator jθ̂ , the biased 

Cramer-Rao bound[80] is given as, 

( ) ( ) ( )]ˆ[]ˆ[ˆ 1
jY

T
jj mFmVar θθθ θθθθ ∇∇≥ − ,       (3-4) 

where the ( )jm θθθ
ˆ∇  is the gradient of the estimator mean-response function, also named 

as “mean-gradient”. Because the gradient of the estimator bias-response function 

( )jb θθθ
ˆ∇  can be expressed as ( ) ( )jjj bem θθ θθθθ

ˆˆ ∇+=∇ , the biased Cramer-Rao bound 

in terms of “bias-gradient” ( )jb θθθ
ˆ∇  is 
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( ) ( ) ( )]ˆ[]ˆ[ˆ 1
jjY

T
jjj beFbeVar θθθ θθθθ ∇+∇+≥ − .   (3-5) 

The above classic Cramer-Rao bound for a biased estimator only applies to 

estimators with a given bias-gradient. It cannot be used for different estimators unless 

they exhibit the same bias-gradient. Therefore, the norm or length of bias-gradient or 

mean-gradient, which is a measure of the overall bias or mean respectively, is introduced 

to the Cramer-Rao bound calculation. 

3.2.3 Uniform Cramer-Rao Bound 

 The bias gradient vector ( )jb θθθ
ˆ∇  describes sensitivity or fluctuant potential of 

the bias in the jth pixel estimate to perturbations in the true parameter values, which is 

defined by a vector of partial derivatives of overall bias: 
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Therefore, the bias gradient is the mean gradient, which is same as the local impulse 

response function under certain conditions[82], minus one at the jth position. A large 

value at the specific position m in the bias gradient vector indicates the estimator strongly 

coupled with perturbation of mθ . Thus, the norm or length of the bias gradient ( )jb θθθ
ˆ∇  

is a measure of the sensitivity of the estimator jθ̂  to the perturbation of all the 

remaining pixels. 

 Hero[82] introduces a UCRB on the variance of a given signal parameter 

estimator for a non-singular FIM ( )θYF , by which the restriction of a lower bound 

requiring a fixed bias gradient is removed and a lower bound on variance is calculated as 

a function of bias gradient norm, and this bias gradient norm is equal to or less than pre-

specified thresholds. Therefore, the uniform Cramer-Rao bound can compare 

performance of different imaging systems in terms of variance-bias gradient norm curves 

for all biased estimators whose norm of the bias gradient is less than a small pre-specified 

maximal tolerable constantδ : 

 ( ) 12
2ˆ <≤∇ δθθ θ jb ,      (3-7) 
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According to [86], the UCRB defined as: when an estimator 
jθ̂ with bias ( )jb θθ

ˆ  

and norm of its bias gradient vector is less than or equal to )1,0[∈δ , then the variance of 

jθ̂ satisfies the lower bound: 

),()ˆ(var δθθθ Bj ≥ ,          (3-8) 

where ),( δθB  is equal to 

][][),( min
1

min jY
T

j edFedB ++= −δθ ,        (3-9) 

where mind  is optimal bias-gradient vector that minimizes the biased Cramer-Rao bound 

on overall bias gradient vector and given as, 

[ ] jY eFId 1
min

−+−= λ .        (3-10) 

In the above equation, FY is Fisher information matrix and λ is the Lagrange multiplier 

given by the unique positive solution determined by the following equation involving the 

monotonically decreasing and convex function: 

0 and [0,1])g(      )( 2
minmin

≥∈== λλδλ ddg T .    (3-11) 

 Therefore, bias-variance tradeoff curves are located in “sigma-delta” plane. Each 

curve divides the plane into achievable and unachievable performance regions which 

bounds the resolution-noise performance of any estimation algorithms. The bound curve 

is based on the intrinsic quality of the imaging system itself and not on the specific 

estimation algorithms. The imaging system with lower curve has better performance than 

the system with the upper curve. However, the variance-bias tradeoff curve only 

describes the trend that the limiting variance decreases with the increase norm of bias 

gradient. The UCRB does not reflect the direct relationship between the limiting variance 

with the specific local impulse response. Systems with identical bias-gradient norm can 

have very different impulse response shapes, and different type of local impulse response 

shapes can have the same bound. 

3.2.4 Modified Uniform Cramer-Rao Bound 

The M-UCRB is proposed in [87] and was used to evaluate the multiple pinhole 

small animal SPECT by Meng and Clinthorne [1] by a list of desired or target point 
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response functions. The M-UCRB impose a constraint on the mean gradient of the 

estimator ( )jm θθθ
ˆ∇ , is given as:  
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The mean gradient describes the sensitivity of a single reconstructed pixel to the 

perturbations in true parameter values. Under the conditions[88], that the mean of the 

estimator is θθθ
ˆ]ˆ[ LE =  and the matrix L is approximately symmetric, the mean 

gradient of the jth estimator is close or equal to the local impulse response of the jth pixel. 

This specifies the influence of a perturbation of a single source pixel on all other true 

parameter values. 

By using the M-UCRB, the Euclidean norm of error vector between the desired 

mean gradient vector f, i.e. the target local impulse response and the actual mean gradient 

g is less than a small pre-specified small tolerance δ, is given as: 

δ≤−
c

fg  and [ ] fIF Y ⋅+= − 1λλδ ,    (3-13) 

From the biased Cramer-Rao bound, that is  
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Thus, the M-UCRB can be derived as 

[ ] [ ] fIFFIFfVar YYY
T

j
112)ˆ( −− +⋅⋅+⋅≥= λλσθ ,  (3-16) 

where FY is the Fisher information Matrix, λ is a small positive scalar and I is the identity 

matrix with same size as FY 

Therefore, the lower bound of variance imposed by the target response function 

with desired spatial resolution can be calculated. It is meaningful to use the M-UCRB to 

evaluate imaging performance of different imaging systems, such as the Compton 

scattering based gamma-ray camera and the conventional Anger Camera with HEGP 

collimator, by comparing the difference of variance in the image at the same LIR. 
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3.3 Monte Carlo Calculation of FIM and FFT estimation of M-UCRB 

Application of the M-UCRB suffers from the computation and memory 

requirements for calculating the Cramer-Rao bound and for calculating the FIM for high 

dimensional images. For both the Compton imaging system and the Anger Camera with 

collimator, the detection process is described by Poisson statistics. 

)APossion(~ θΛY ,        (3-17) 

where A is the D×P system response matrix, the element is denoted as ija or )( θypY , D 

is the total number of detector elements, P is the total number of image pixels, Λ is the 

mean total number of events in the measurement interval, Y =[Y1, … ,YD] is a vector of 

the projection measurements, and θ =[θ1, … , θP]T is the parameterized image space 

vector, and normalized as  

1
1 1

=∑∑
= =

D

i

P

j
jija θ ,        (3-18) 

Therefore, the Fisher information matrix has the following form[82]: 

A)]A([A)( 1T −Λ= θθ diagFY
,      (3-19) 

Obviously, for a high dimensional or complex medical imaging system with a 

huge system response matrix, directly calculating and inverting the non-sparse FIM by 

the above equations is impracticable in terms of both computation time and memory 

requirements. Therefore, an alternative method is required to reduce the computation 

complexity and size of memory required to calculate the FIM. 

The size of the system matrix for a conventional Anger camera does not present a 

problem. However, for the Compton camera, the total required memory space is around 

100 gigabytes if each element requires one byte of memory and this system matrix is not 

sparse in our application. Although, a symmetric system geometry, in which the center of 

the first and second detectors lie on the same axis, and diagonal interpolation is used will 

help to decrease the system matrix size by a factor of 20.[89] However, memory space 

requirement is also a serious issue for high dimensional images when attempting to 

calculate the Fisher information matrix using a non-parallel computation system. 

Furthermore, calculating the M-UCRB requires calculation of the inverse of the 

matrix [ ]IF Y λ+ . For a n2 pixel image, the size of the Fisher information matrix has n4 
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elements and the direct inversion of the above matrix would require about n6 floating 

point operations. Generally, a conjugate gradient algorithm [84] is employed to calculate 

inversion recursively. In the limit, it requires n2 ops to completely solve problem and 

obtain acceptable convergence. To further improve the computational efficiency, Monte 

Carlo integration and fast Fourier transform-based inversion have been used for these 

calculations. 

3.3.1 Monte Carlo Integration for Calculation of the Fisher Information Matrix  

According to the definition of the Fisher Information Matrix, given the observed 

random variable Y  and the conditional probability density function ( )θYpY , which is 

dependent on a column vector of unknown, nonrandom parameters θ  with p elements, 

the p×p standard Fisher information matrix YF  is defined in (3-3) 

To reduce the computational complexity and size of required memory to calculate 

the Fisher information matrix, an alternative method to evaluate every element in the 

Fisher information matrix is introduced [90]. Given Λ independent identical distributed 

list-mode measured samples of Y , the expectation of the observed Fisher information 

matrix  is defined as: 
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where 
θ

θθ
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∂ )(log2 is the mean of the function of 
ji

Yp
θθ

θ
∂∂

∂ )(log2  (3-21) 

According to the properties of the observed Fisher information matrix, 

ijij FF )()( 1 θθ ⋅Λ=Λ ,              (3-22) 

which means the value of the element in the Fisher information matrix for a sample of Λ 

independent identical distributed observations is equivalent to Λ times the value of this 

element in the Fisher information matrix for a single observation. 

 Therefore, the average value of one element in the observed Fisher information 

matrix may be calculated by a Monte Carlo Integration instead of using the 

multidimensional integration. This method has the considerable advantage that the exact 
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imaging geometries are straightforward to evaluate as long as (1) an appropriate Monte 

Carlo model exists, and (2) given an event in the measurement space, corresponding 

transition probabilities are available for “back-projection”. According to the basic 

theorem of Monte Carlo Integration[91], the mean value of a function f can be 

approximated by discrete integration and given as, 

∑
=

≈
N

i
iyf

N
f

1

)(1 ,            (3-23) 

where )1( Niy i …=  are actual measured or simulated sampled events for Monte 

Carlo calculation. 

 Benefiting from the Monte Carlo integration, therefore, if the FIM corresponds to 

a desired mean number of detected events Λ, the estimated value of the one element in 

the observed FIM from N detected or simulated events is defined as, 
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In the above equation, the conditional probability density )/( iYp l
is the probability 

that an event generated in source bin i leads to a measurement Yl by the imaging system; 

where nθ is the relative intensity for the nth source bin; M is the number of source bins; 

N is the number of sampled events for Monte Carlo integration; and, Λ is the number of 

actual events in the period of evaluation for the specific task. 

 Clearly, the calculation of the observed Fisher information Matrix by Monte Carlo 

Integration not only decreases the computational complexity, since only NM ×  

floating point calculations are required for computing the value of one element, but also 

reduces the memory space required to storage the entire system matrix and Fisher 

information matrix. Since Monte Carlo method also introduces noise, however, the 

number of samples determines the accuracy of estimated Fisher information; insufficient 

samples will induce large error and noise. 
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3.3.2 M-UCRB Calculation by Fast Fourier Transform. 

Another primary computational issue of the M-UCRB is the inversion of the 

matrix [ ]IF Y λ+ , and multiplication of several matrices which have the same size as 

the FIM YF . Fortunately, according to the Equation 3-19, as employing a source with 

uniform activities, the FIM can be expressed approximately as, 

AA Tα≈YF ,         (3-25) 

which is close to a locally spatial invariance, under this assumption, the matrices of 

both YF and [ ]IF Y λ+  are approximately a circulant-block-circulant (CBC) 

matrices[92].  

The matrix C, shown below, is called circulant or one dimensional shift invariant 

with wrap-around. It belongs to a special case of the Toeplitz matrix and the rows are 

circular right shifts of the elements of the preceding row. A block circulant matrix, such 

as the Fisher information matrix, is special block Toeplitz, the block rows are circular 

right shifts of the block elements of the preceding block row, and each block is a 

circulant matrix. 
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with a block circulant matrix, the inversion and multiplication of these matrices with a 

vector can be achieved quickly using the discrete Fourier transform (DFT) and it’s 

inverse (IDFT) [93], by which the computation complexity reduces from O(N3) to 

O(NlogN).  

 According to the Fourier transform, the DFT of an N-dimensional complex vector 

can be defined as matrix W, in which 
kn

N
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kn eW
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. Thus, with unitary 

normalization constants N/1 , the above DFT matrix is further defined by a unitary 

matrix: NWQ /= . A corresponding IDFT unitary matrix is its Hermitian 

transpose matrix *Q  and  1* =⋅ QQ .And, the circulant matrix C can be separated 

as  QQCdiagQC c )( 1
*= , where Cc is the first column of C. 
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Therefore, the calculation of modified uniform Cramer-Rao bound is given as, 
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Where “.*” and “./” are element-wise multiplication and division, respectively.  

3.4 The principle and development of Monte Carlo Simulation. 

As described in the last section, to solve the computation and memory issues 

required to directly calculate the M-UCRB, the MCI method is employed to calculate the 

FIM instead of a direct matrix multiplication. This method has the potential to evaluate 

very complex imaging systems and large three dimensional source objects with small size 

of image pixels, such as the Compton camera imaging system. 

To satisfy the requirements of the Monte Carlo method, a list of random variables 

or sampled events must be generated from a probability distribution function. For more 

complex imaging systems, for which a statistical relationship between the emitted 

photons from a source object and their detection is not a simple function or a simple 

random variable, a Monte Carlo or stochastic simulation system is required to generate 

the random variables or set of sampled events according to the statistical model of the 

specific imaging system [94].  

3.4.1 Introduction to Monte Carlo Simulation 

Monte Carlo numerical simulation methods have been widely used in radiation 

therapy as well as for research related to medical imaging system design. In radiation 

therapy, Monte Carlo simulation can estimate the radiation dose to tumors and normal 

tissue and help design the therapy plan before the actual treatment. For the design of a 

complex imaging system, Monte Carlo modeling of system performance can be predicted 

by generating random variables based on known system or physical process probability 

models. In this way, the designer can optimize the system design before actually 

manufacturing it.  

Historically, several Monte Carlo simulation systems have been tested and 

employed to simulate SPECT and PET imaging systems. Some of them are specially 

designed to make simulations quick using variance reduction techniques or simple 



68 
 

assumptions, such as SIMSET, SIMSPECT, and SIMIND simulation systems[95]. Others 

are coded and applied to an the all-purpose particle simulation system, such as Electron 

Gamma Shower code (EGS3), Monte Carlo N-Particle code (MCNP) and Geometry and 

Tracking code (GEANT4), which simulate the detailed physical processes of particle 

motion and interactions in the object and detector components. Three fundamental 

elements are required in every Monte Carlo simulation system; a random number 

generator, sampling techniques and a probability model for each physical process 

involved in the imaging system and the object to be imaged. 

3.4.1.1 The Random Number Generation 

The random number generator is a fundamental part of the Monte Carlo 

calculation, by which a sequence of numbers are generated such that each number has no 

relation with the previous numbers. One approach to obtain a true random number is by 

sampling a noisy process in nature, such as the electrical noise or thermal noise in the 

electronic components. However, acquisition of this kind of true random number is 

typically time consuming and impractical. Alternative methods use various computer 

programs to generated pseudo random number sequences[96], in which the generated 

number is approximately a true independent random number. 

Therefore, there are two criteria to evaluate the quality of a sequence of pseudo 

random numbers by computer calculation. One is a high randomness of random number 

lists, another is the pseudo random number sequence has a sufficiently long cycle period 

to avoid sequence repeat during the simulation. 

The basic pseudo random number generator is a linear congruent algorithm that 

generates uniformly distributed random numbers between zero and one[91, 97]. By this 

algorithm, one random number Ii+1 is calculated from its previous number Ii based on the 

following formula,  

)mod()(1 mbaII ii +=+
,      (3-28) 

Here a and b are positive integers called multiplier and the increment respectively, and 

m=2k is called the modulus, in which k is the bit length of the computer. The first number 

I0 is the pre-specified SEED in the random number sequence. Even though this 

fundamental algorithm can generate a 2k length random number sequence using little 
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memory and computing time, the risk of this algorithm is that the initial seed value can be 

re-generated in the calculation. To avoid this problem, a portable random number 

generator algorithm based on a shuffling procedure is employed. This generator uses  

three linear congruent generators [97], in which the first generator generates random 

numbers as the SEED of the second and third generator, the second generator calculates a 

vector of 97 random numbers, and the third generator calculates a random number 

pointing to a number in the list generated by first generator, which is the final random 

number generated Using this method, the period of the sequence of random number is 

almost infinite for general practical applications. 

3.4.1.2 Introduction of Sampling Techniques for Random Variable Generation and 

Variance Reduction 

According to the a-priori determined probability distribution function, which 

describes the statistical properties of the physics processes involved, three different 

sampling or random number generation methods are used in various Monte Carlo 

algorithms to generate random numbers which satisfy the a-priori distribution from a 

sequence of uniformly distributed random numbers. The three methods are: the 

distribution function or direct inverse transform method, the acceptance-rejection method 

and mixed method. 

 

1. The direct inverse transforms method. 

If the probability density function is pdf(x) on the range ],[ ∞−∞ , its cumulative 

distribution function CPDF(x) is found by integrating pdf(x) in the interval [a,x]  

∫=
x

a
dxxpdfxCPDF ')'()( ,       (3-29) 

If b is an upper bound of pdf(x), then the cumulative probability distribution function 

CPDF(b) is the integrated pdf(x) from a to b, and, the uniform CPDF(x) is distributed 

from 0 to 1. Assume the number from the uniform random number generator is u and is 

substituted into the inverse CPDF(x) function, then sampled random number y with 

distribution pdf(x) is )(1 uCPDFy −= . 

 In a simple case, CPDF(x) and its inverse function could be calculated by hand. 

However, for the case with a complex pdf(x) function, the integration of pdf(x) may be 
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obtained by numerical methods to generate a uniform CPDF histogram with values 

ranging from 0 to 1. This is known as discrete invertible cumulative distribution 

sampling. As shown in Figure. 3.1, by interpolated method, the required random number 

y with distribution pdf(x) is sampled from CPDF histogram, which satisfies 

)()( 1+≤< kk yCPDFuyCPDF  and 10 ≤< u . 
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Figure 3.1, The probability density function (pdf) curve (top) and its discrete normalized 
CPDF curve (bottom). A random number u generated from a uniform distribution (0,1) to 
sample a random number y from a CPDF distribution function. 
 

2. The Acceptance-Rejection Method. 

The direct inverse transform method is often hard to realize due to an unknown 

analytic form of CPDF(x) or it’s inversion is impractical. The acceptance-rejection 

method is an alternative method, in which a uniform distribution function updf(x) is 

generated from pdf(x), as given by 

)](max[
)()(

xpdf
xpdfxupdf = .        (3-30) 

Therefore, the acceptance-rejection method includes two other steps: 

Step 1. Generate two random number r1 and r2 uniformly distributed over [0,1]. From r1, 

a uniform distributed value x within the range [a,b] is sampled according to the equation  
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)(1 abrax −+= ,        (3-31) 

Step 2. Compare with r2 and updf(x), if )(2 xupdfr < , the x is accepted as the sampled 

random number. Otherwise, new x value needs to be re-sampled and step1 is repeated. 

Compared with the direct inverse transform method, this method will work for any 

kind of complex distribution at a price of very long computation time for the case of a 

probability distribution function with small range. 

 

3. The Mixed Method. 

To overcome potential problems and benefit from advantages of the direct inverse 

transform and acceptance-rejection methods, the mixed method combines both methods. 

The complex distribution function pdf(x) is separated as the product of two probability 

distribution functions pdf1(x), pdf2(x).  

 

4. Variance Reduction and Forced Detection. 

The purpose of Monte Carlo simulation is to obtain an accurate model of a real 

physical or statistical process. However, for the medical imaging system studied, a 

process such as Compton scattering, has very low probability, and most sampled events 

are wasted and discarded in the simulation history path. To avoid time consuming 

simulation, therefore, variance reduction techniques have been developed to increase the 

probabilities of sampling these unlikely but critical physical processes[95]. Therefore, to 

recover the original and true probability of the whole process, the weight (WHT) must be 

attached to each photon history. In our research, the forced detection [98] technique is 

employed to increase the probability of Compton scattering in the first detector, the 

probability of absorption in the second detector, and the probability of the emitted photon 

impinging on the first detector. 

 

3.4.2 Development of the Compton Imaging Random Variable Sampling System 

3.4.2.1 Introduction 

The Compton imaging system is difficult to simulate using the Monte Carlo 

system designed specifically for a conventional nuclear medical imaging system. This is 
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because some important physical interactions, such as Compton scattering, are not 

contained in the software package. Even for some general purpose Monte Carlo systems 

used to simulate particle transmission, such as GEANT4, the separate low energy 

Compton scattering (LECS) package[99] is required to correctly simulate Compton 

scattering with Doppler broadening. There are two remaining issues pertinent to our 

application. The first problem is that the package only provides Doppler broadening data 

for atomic elements, whereas the effect of Doppler broadening in crystalline silicon is 

required for our research. Another issue is the simulation time required. Since GEANT4 

simulates all of the physical processes involved and Compton scattering has low 

probability compared to other processes, the time needed to acquire enough sampled data 

for the Compton imaging system can be impractical. For these reasons, the Compton 

imaging random variables sampling system (CIRVS) has been designed for a special 

geometric configuration.  

 

    
Figure 3.2. Geometric configuration of the simulated Compton Camera with two planar 
detectors. The yellow rectangle is the silicon first detector, the green hollow rectangle 
surrounding the first detector is shielding, and the blue and pink rectangles represent the 
NaI crystal layer and PMT layer in the second detector, respectively. 
 

As shown in figure 3.2, the imaging system has two planar detectors which are 

placed parallel to each other. Except for the sides facing the source and the second 

detector, the first detector is surrounded by lead shielding to decrease the number of 

photons impinging on the second detector. CIRVS is written in the C++ language and 

consists of the following six subroutines shown in Figure 3.3. 
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Figure 3.3 The Subroutine structure of the Compton Scattering Random Number 
Sampling System. 
 

3.4.2.2 Overview of CIRVS system 

CIRVS was developed primarily to study the performance of a Compton 

scattering camera with two planar detectors using the M-UCRB. For this specific, the 

CIRVS did not consider the Rayleigh scattering and multiple Compton scattering. To 

resolve the long computation time issue, some assumptions and techniques of force 

detection[98] and variance reduction can be used. Therefore, in order to maintain the 

original probability of a sampled random number along the simulated sequence, 

theoretically, a WHT is required to be associated with each step of the photon history 

path.  

1. Generate the photons from the source 

In the subroutine for generating the photons from the source, the phantom used is 

defined as a volume matrix of cubic pixels. A attenuation, scatter and decay of the 

photons in the phantom are ignored under the assumption of the material of the phantom 

is in the air, i.e. a constant emission rate of gamma rays. The dimension of the matrix 

may be adjusted according to specific application. To improve the position resolution of 
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the emitted photon, one bin may be subdivided into a matrix of sub-bins. The minimum 

sub-bins size may be as small as 0.001mm. Consideration of simulation speed, limits the 

sub-bin size to around 1/20 of the bin. The origin of an emitted photon in each sub-bin is 

taken as the center of the sub-bin. For a phantom with non-uniform distribution of 

radioactivity, the number of emitted photons from one sub-bin is determined by the 

relative activity concentration of the source in the sub-bin.  

To generate a random variable sample of the photon from a sub-bin, the sub-bin 

matrix is tabulated as a one dimensional array Asource. The overall length of the array lmax 

is the sum of the sub-bins weighted by the relative activity concentration of the sub-bins. 

The entry of the array is the index of the sub-bins and the total number entries with the 

index of a specific sub-bin is the relative activity concentration. As an example shown in 

figure 3.4, the 2 by 2 sub-bins matrix, in which relative activity concentration of sub-bin 

A, B, C, D, is 1,2,3,4, respectively. Therefore, the non-uniform source becomes the 

uniformly sampled entries of the array Asource. This technique is clearly a variation of the 

discrete invertible cumulative distribution sampling method. 

 

 
Figure 3.4. An example of a sub-bin matrix and its sampling table Asource, in which each 
entry is the index of a sub-bin and number of entries for a sub-bin is the relative activity 
concentration in the simulated phantom. 
 

2. The photon direction and intersection point on the first detector. 

Given the position from which a single photon is emitted, the sampled direction of 

the photon is defined by the polar or elevation angle, ),0[ πθ ∈ , which is the angle 

between the direction vector of the photon and z axis. The azimuthal angle, )2,0[ π∈Φ , is 

the angle between the x axis and the projection of the direction vector on the x-y plane. In 
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spherical coordinates, the direction of the emitted photon is defined in terms of solid 

angle )4,0[ π∈Ω . The relationship among the Ω, θ, Φ is given as, 

Φ=Ω ddd θθsin .                                            (3-32) 

Because the direction vector is uniformly distributed in the unit sphere, the probability of 

the one direction vector is equal to, 

π4
1

=Ωd .         (3-33) 

Therefore, given a uniform random number ]1,0[∈R , the azimuthal angle Φ is uniformly 

sampled by  

R•=Φ π2 ,              (3-34) 

and the polar angle θ can be obtained from  

R−= 1cos θ .        (3-35) 

Since the solid angle subtended by the first detector is relatively small compared 

with the phantom size and distance from phantom to the first detector, conventional 

sampling methods would require a long time to generate the required number of photon 

interactions with the first detector. Therefore, variance reduction[100] and forced 

detection techniques [98]are employed here to reduce the time. To speed sampling for an 

emitted photon, the location of the corner of the front face of the first detector, and the 

maximum and minimum of the azimuthal angle minmax ,ΦΦ  and polar angle 
minmax ,θθ  

subtended by the first detector are calculated. Therefore, the probability of the direction 

of a sampled photon emitted at the angle θ within the range of minmax,θθ  is given by, 

∫
∫

=
max

min

min

sin

sin
)( θ

θ

θ

θθ
xdx

xdx
P .      (3-36) 

Thus, by sampling the above probability, the polar angle θ is determined by 

]cos[coscoscos maxminmin θθθθ −−= R .     (3-37) 

And, since the azimuthal angle Φ is uniformly distributed in the range of minmax,ΦΦ  

][ minmaxmin Φ−Φ+Φ=Φ R .      (3-38) 

Therefore, the photon history weight, WHT1 is the probability of the emission within 

minmax,θθ  and minmax,ΦΦ . That is the solid angle subtended by the first detector over 4π,  
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2
coscos minmax

1
θθ −

=WHT .       (3-39) 

 

3. Compton Process in the first detector 

When the photon reaches the front the surface of the first detector, it will continue 

into the first detector and interact with the detector material with a probability determined 

by the detector martial and photon energy. In the simulated Compton Imaging system, the 

Compton scattering process is the only process simulated in the first detector. However, 

since the probability of a Compton scattering event is quite small and the absorption 

probability at the energies of interest are even smaller, most photons pass though the first 

detector without any interaction. Therefore, a forced detection technique is used as 

described above so that every incoming photon undergoes Compton scattering. Three 

sub-routines generate the position of Compton scattering, the scattering angle and the 

energy deposited in the first detector. 

 

A. Photon path length in the first detector. 

Given the direction vector of the incoming photon and the geometric parameters 

describing the planar first detector, the maximum distance that the photon can travel in 

the first detector is given by, 

θcosmax
Thicknessld = ,        (3-40) 

The probability of the photon traveling a path length d, is given by, 

∫
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where comptonμ  is the linear attenuation coefficient for the Compton process and totalμ  is 

the linear attenuation coefficient for all processes including photoelectric interaction, pair 

production, Compton scattering and coherent scattering, respectively. Both of these 

coefficients are a function of the photon energy and the detector material atomic number. 

 Therefore, with a uniformly distributed random number R, the sampled photon 

path-length d is given as  
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,      (3-42) 

The spatial coordinates (X1’,Y1’,Z1’) relative to the original coordinates in the first 

detector are 
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Due to the forced detection process for Compton Scattering used here, the WHT2 of this 

step is equal to the true probability of Compton scattering, and given as, 

]1[ max
2

d

total

compt totaleWHT ⋅−−⋅= μ

μ
μ .      (3-44) 

 
Figure 3.5 Flow chart of the Scattering Angle Sampling Program. Cosθ1=CosTheta. 
 

A. Scattering angle of the scattered photon. 

The scattering angle θ1 is sampled by the Klein-Nishina cross-section equation and 

Mixed Kahn’s sampling method[101]. The flow chart of scattering angle sampling is 
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shown in Figure 3.5. The scattering angle Φ1 is a random sample for the uniform 

distribution with the range from 0 to 2π. 

 

 
(A)                                 (B) 

Figure 3.6 (A) The normalized probability profile for 364.4keV photon Compton 
scattering at 60° scattering angle in silicon detector. (B) The discrete cumulative 
distribution curve for energy sampling at 60° scattering angle. 
 

B. The energy deposited in the first detector. 

To determine the deposited energy in the first detector for a Compton scattering 

that includes the effect of the Doppler broadening, the Compton Double Differential 

Cross Section equation introduced in Chapter 2 combined with the discrete invertible 

cumulative distribution sampling technique is employed. For example, the normalized 

probability distribution as a function of absorbed energy for detecting a 364.4 keV photon 

in a silicon detector, given the scattering angle is 60 degree or π/3 is shown in Figure 

3.6(A). Its discrete normalized cumulative distribution function curve is shown in Figure 

3.6(B), in which the x axis is the uniform distribution ranging from 0 to 1, and y axis is 

the deposited energy. Therefore, for a random number R with uniform distribution [0,1] 

and given scattering angle, the curve gives the deposited energy sample. In the real 

calculation, a two dimensional table with entries of possible deposited energy is used as 

shown in figure 3.7, which is indexed by the [0, 1] uniform distribution and possible 

scattering angle in the range of [0,180] along the x axes and y axes, respectively. The 

final sampled deposited energy is calculated by a linear interpolation algorithm according 

to the given scattering angle and the generated random number. 
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Figure 3.7 The discrete cumulative distribution matrix of deposited energy after Compton 
scattering in the silicon detector for an incoming 364.4keV photon. The matrix indexed 
by the range of uniform random numbers from 0 to 1 and the range of cosine value of 
scattering angle from -1 to 1. 
 

4. Direction of the scattered photon  

The scattering polar angle θ1 and azimuthal angle Φ1 are both relative to the 

direction of incoming photon, thus, the direction vector of the scattered photon in the 

same Cartesian coordinates as the incoming photon needs to be calculated. Given the unit 

direction vector of an incoming photon [x,y,z]’, the unit direction vector of scattered 

photons [uxx,uyy,uzz]’ can be obtained by a compound rotation around z and x axes, 

which is given as 
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5. The interaction position on the second detector 

The scattered photon may then interact with the second detector. To increase the 

simulation speed, the CIRVS system assumes all of the scattered photons impinging on 
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the second detector are absorbed by the second detector by a forced detection technique 

and the depth position z of interaction location z is unknown since the current ARGUS 

Anger camera simulation does not provide any depth information. Therefore, the relative 

x and y position of interaction in the second detector can be calculated from the unit 

direction vector [uxx,uyy,uzz]’ and the distance d12 along the z axis between the second 

detector and Compton scattering location in the first detector. 

uzzduyyY

uzzduxxX

/

/

12
'

2

12
'

2

⋅=

⋅= ,       (3-46) 

The WHT3 of the step for a NaI detector with thickness of tmax can be estimated as  

]1[ /
3

max)( uzztnaItotaleWHT ⋅−−= μ ,     (3-47) 

 

6. Blurring the deposited energy and position. 

The simulated positions on the first and second detector and the deposited energy 

in the first detector are finally blurred by normal distributions with variances defined by 

the energy resolution and spatial resolution for different evaluation tasks. 
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CHAPTER 4 

System Modeling of Compton Imaging System and Collimated Anger Camera 

The statistical system models for both the Compton imaging system with parallel 

dual planar detectors and conventional Anger camera with parallel hole HEGP lead 

collimator for detecting photons emitted from 131I are described and evaluated in this 

chapter. The computational system models and derived detection sensitivity and list-

mode or bin-mode transition probabilities are required for calculating Fisher information 

by Monte Carlo integration or reconstructing images by MLEM algorithms. 

4.1 Introduction 

For the collimated Anger camera, assuming local shift invariance for source bins 

with identical distance to the surface of the detector, the system model can be obtained by 

measuring or simulating a series of point source response functions at different distance. 

However, for the relatively complex Compton imaging system, it is very difficult to 

obtain the transition probabilities by simulation or measurement due to the very large 

number of measurement elements. Instead, the system model must be derived by 

mathematical approximation for each physical process involved. 

Ideally, a rigorous statistical model should be used to describe all of the physical 

processes in the Compton imaging system including the estimation of position resolution, 

energy resolution and the effect of Doppler broadening. However, this model is 

impractical to calculate by straight-forward computation. This is because the sensitivities 

and transition probabilities require multi-dimensional numerical integration of the 

probabilities of deposited or scattering energy for multiple interaction positions over the 

areas of each pixel on the first detector and second detector.  
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Several simplified mathematical models based on several assumptions, therefore, 

have been developed by many researchers to calculate detection sensitivity and transition 

probability. The key requirements for a practical model are reducing the computational 

complexity and reasonably approximating the physical processes, especially, calculation 

of the Compton Differential Cross Section and evaluation of the Doppler broadening 

effect for our application.   

In [102], authors presented a method to calculate the transition matrix considering 

the Poisson nature of a prototype Compton camera. This method requires a very large 

memory to store the pre-computed transition probabilities and does not take account of 

Doppler broadening. Wilderman developed two efficient methods to calculate system 

matrix coefficients and relative sensitivities for a Compton camera with planar scattering 

detector. The first method[103, 104] cuts the number of matrix elements to be computed 

in half by assuming uniform sensitivity and perfect energy and spatial resolution on both 

detectors. Since Doppler broadening of the energy spectrum is also ignored and transition 

probabilities are estimated using a uniform sensitivity times the line integral of the conic 

intersection with each pixel, the computation is rapid. The updated method[105] takes 

into account the relative spatial variation of the sensitivity, which depends approximately 

on solid angle subtended by the scatter detector and interaction probability in this 

detector. The transition probabilities or measured probabilities are approximated by 

relative escape probabilities of the scattered photons in the first detector, Klein-Nishina 

differential Compton cross section, finite energy resolution and representing Doppler 

broadening by a sum of two Gaussian functions assuming the cone spread function is 

uniform for all energies. To evaluate the Doppler broadening, a Fisher Von-Mises Model 

is implemented instead of a Gaussian model in [106]. However, the parameters of the 

Von-Mises Width need to be pre-computed by fitting results of Monte Carlo simulation. 

Furthermore, the whole model is developed for specified hemispherical detector 

geometry and exploits the assumed symmetries. To consider the effect of the Doppler 

broadening and finite energy resolution, Kragh alternatively proposed the method[87] to 

calculate the probability of scattering at a particular angle and energy by interpolating a 

two dimensional matrix pre-calculated by jpdf, which is calculated by convolving the 

energy measurement error with the Compton scattering double differential cross section. 
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To get an approximate model, however, a thin planar first detector is assumed and the 

probability of transmission of a scattered photon is set equal to 1.  

In our application, we proposed a more accurate and reasonable Compton camera 

statistical model employing an interpolatable jpdf matrix, calculated using double 

differential cross section, blurred by both energy and spatial resolution to satisfy the 

requirements of our proposed Compton imaging system.  

4.2 System Modeling of Anger Camera with HEGP Collimator by Monte Carlo 

Simulation 

In order to analyze the performance of a conventional Anger camera equipped 

with an HEGP lead collimator for imaging the high energy gamma rays from 131I. A 

system model of an Anger Camera with HEGP collimator for 131I gamma rays that 

includes photon penetration and scattering in the collimator is required. The goal of this 

model is to find a relatively simple function to correctly describe the point-spread 

function at different distances from the image plane to the surface of the lead collimator. 

The model primarily considers the resolution properties of a parallel hole HEGP lead 

collimator and sodium iodide Anger camera.  

For this propose, An ADAC Argus Anger Camera with HEGP parallel-hole 

collimator as described in Chapter 2 is simulated by GATE to determine the  PSF for 
131I. As shown in Fig. 4.1, based on published system specifications[107] for the Argus 

system, five layers of material in the camera head are included in the simulation, the lead 

collimator, aluminum sheet, NaI(Tl) scintillation crystal, PMT compartment, and lead 

shielding.  

 
Figure 4.1 The simulated ARGUS Anger camera head with HEGP collimator. 
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Using the GATE simulation system, the point spread function images at source 

distances from 0cm to 50cm from the front face of the collimator are generated for a 

point 131I source in air, which emits photons at 364.4keV(82%),637keV(7.2%) and 

723keV (1.8%). The energy window is 20% around 364.4keV. The simulated 131I point 

spread function images and their profiles at distances of 10 and 35cm are shown in Fig. 

4.2. The simulated PSF is fit with a Gaussian combined with an exponential function that 

arises from collimator penetration and scattering using a non-linear least squares method. 

At a given distance x, this function is given as, 

)(
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)
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( 2

2

)( x
x

Gauss eAeAxPSF λσ −
−

+= ,    (4-1) 
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(c) 

Figure 4.2 The two-dimensional point spread images from an I131 point source at a 
distance of 10cm and 35cm shown in (a), (b), respectively. The bottom image (c) shows 
the horizontal profiles of point spread functions at different distances. One pixel=0.4mm. 
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In Fig. 4.3, the right half profiles of the simulated normalized point spread 

function and the fitted point spread function form equation 4.1 are displayed for the 131I 

point source at 10cm and 35 cm, respectively. There is a good match between the original 

simulated PSF and parameterized PSF. However, the smooth fit reduces the hole-pattern 

artifacts seen in Fig. 4.2 and 4.3, but Jaszczak has shown that the pattern can be removed 

and some improvement in resolution can be observed if the collimator is moved and the 

images shifted by the same amount as the collimator motion and superimposed.  
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Figure 4.3 Right half of simulated and parameterized point spread function from I131 at a 
distance of 10cm and 35cm on the left and right, respectively.  
 
 To derive the relationship of coefficients in the parameterized point spread 

function with point source to collimator distance, the simulated point spread images were 

obtained at 0cm, 1cm, 2cm, 3cm, 5cm, 7cm, 10cm, 15cm, 20cm, 25cm, 30cm, 35cm and 

40cm, respectively. The value of coefficients AGauss ,Aexp,σ and λ at different source to 

collimator distances and the curve obtained by non-linear curve fitting are displayed in 

Fig. 4.4. The final fitted functions for the four coefficients as a function of source to 

collimator distance d are: 

007193.01003645.0 )05967.0( +×= ×− d
GaussA ,    (4-2) 

454.22768.0 +×= dGaussσ ,      (4-3) 

0007339.0002876.0 )07266.0(
exp +×= ×− deA ,    (4-4) 

009312.01003877.0 )04374.0(
exp +×= ×− dλ ,    (4-5) 
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(c)                                (d) 

Figure 4.4 The discrete value and fitted curve for coefficients of the parameterized point 
spread function.(a)σ, (b)AGaussian, (c)λ and (d) Aexp. 
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Figure 4.5 Profiles of the parameterized point spread function of the simulated Anger 
Camera with HEGP collimator for detecting I131 point source at 1cm, 5cm, 10cm, 20cm 
and 40cm distance from the surface of the collimator. 
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Figure 4.6 The discrete simulated sensitivity value compared to a parameterized 
sensitivity curve for detecting a I131 point source by ARGUS Anger Camera with HEGP 
collimator. The overall sensitivity is less than 1.35×10-4 and almost a constant as the 
source to collimator distance exceeds 15 cm. The penetration induces the higher 
sensitivity as the source is moved closer to the collimator.  
 

The normalized curves of the parameterized point spread function for different 

source to collimator distances are shown in Figure 4.5. For the same maximum intensity, 

as the point source is positioned further from the collimator, the central Gaussian profile 

becomes wider and flatter, and the exponential tails that represent the collimator 

penetration and scattering also spread and flatten. The FWHMs of the PSF parameter at 

distances of 5cm and 10cm are 9.48mm and 12.74mm, and these values are pretty close 

to the system spatial resolution published in the specifications for the simulated ARGUS 

Anger camera, which are 9.2mm and 12.6mm, respectively. 

The parameterized point spread functions are finally normalized, so that the 

integral under the PSF is equal to one. To determine the correct detection efficiency or 

sensitivity for detecting a 131I point source by an ARGUS Anger Camera with HEGP lead 

collimator, a parameterized sensitivity function was generated by fitting the simulated 

discrete detection efficiency at different source to collimator distance. The function is 

given as, 

0001277.0100000068.0 )1326.0( +×= ×− dySensitivit ,            (4-6) 

As shown in Figure 4.6, the sensitivity curve is almost a flat line and less than 1.35×10-4, 

for the source to collimator distance larger than 10cm with sensitivity of 1.277×10-4 since 

septal penetration becomes much smaller and essentially constant as the angle of 

incidence to the camera face approaches 90 degrees. 
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4.3 System Modeling of Silicon based Compton Camera by Theoretical Analysis 

Accurate modeling of the Compton Camera System is necessary to correctly 

calculate the detection sensitivity js  and transition probabilities ija , which determine the 

estimated quality of image reconstruction and the accuracy of performance evaluation by 

the M-UCRB. A single valid Compton camera event consists of the following sequence: 

1. A scattering interaction in the first detector in which the interaction point x1, y1 and 

z1, and deposited energy are determined. 2. An absorption (or interaction) in the second 

detector that is essentially coincident with the first interaction and for which the position 

and deposited energy are determined. However, calculating the js  and ija  from a 

rigorous statistical model suffers from the computational complexity of the multi-

dimensional integration involved. The trade-off between a practical calculation and 

accurate estimation needs to be taken into account. In this section, we investigate an 

approximate statistical model for the configuration of the proposed Compton camera that 

accurately describes the sequence of physical processes. 

4.3.1 Detection Process of Compton Imaging System 

The sequence of physical processes involved in one detected event in a Compton 

imaging system is: 

1. A γ-ray photon is emitted from 0x  in the object with initial energy 0e  and 

direction 1Ω . 

2. The emitted photon escapes from the object. 

3. The escaped photon is directed toward the first (scatter) detector. 

4. At location 1z of the first detector, the photon Compton scatters from an 

electron and energy 1e  is deposited in the first detector and the scattered 

photon escapes from the first detector in direction of solid angle 2Ω . If the 

energy 1e  is larger than the detection threshold, the location 1z  and energy 

1e  are recorded. 

5. If the second detector lies within 2Ω , the scattered photon passes through an 

attenuating medium or air between the first detector and second detector. 
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6. The scattered photon with energy ( )10 ee −  strikes the second detector and 

may be absorbed in the second detector. The energy 2e  and position 2z  are 

measured by the second detector. The energy 2e  may or may not equal 

to ( )10 ee − . This depends on whether the scattered photon is fully absorbed by 

the second detector or perhaps scatters and escapes. 

 

From the system illustrated in Figure 4.7, the position ( )1,1,11 zyxz  and energy 

measurement 1e  of the Compton scattering interaction in the first detector, the position 

( )2,2,22 zyxz  and energy measurement 2e  deposited by the scattered photon in the 

second detector are recorded as },,,{ 2211 ezez . According to this measurement, the γ-ray 

incident direction, 01 xz − , may be determined to lie on the surface of cone. The apex of 

the cone is located at ( )1,1,11 zyxz , the cone axis is defined by the vector 12 zz −  and 

the scatter angle can be calculated from the known energy of the incident γ-ray and 

measured energy deposited in the first detector. However, the apex of the cone and 

scattering angle are not precisely known due to the uncertainty of Doppler broadening, 

detector energy resolution, and position resolution. The location of a source point can 

only be estimated by the intersections of multiple cones from a collection of 

measurements },,,{ 2211 ezez  of Compton scattered photons.  

 

 
Figure 4.7 Detection and physical process involved for an ideal Compton camera. The 
incident γ-ray emits from x0 with energy e0, scatters in the first detector at point z1 and 
the scattered photon is absorbed by second detector at location z2. 
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The above measurement vector A  represents actual coordinates of a detected 

event under the assumption of a perfect detector. However, due to finite energy and 

spatial resolution of both detectors, the noisy measurement vector is A ′ , a probability 

density function )|'( AAp , that describes the relation of the noisy measurement A ′  to 

the actual attribution A . )|'( AAp  is the product of the distribution of all the 

uncertainties mentioned above. Therefore, 

)|()|()|()|()|( 22
'

22
'

11
'

11
' eepzzpeepzzpAAp =′                   (4-7) 

4.3.2 Physical Events and Probabilities Involved in Photon Detection in the 

Compton Imaging System 

As exampled in Figure 2.26, the survival probability, )( 0xDP , is the detection 

probability of a single photon emitted from the point 0x . It is also referred to detection 

sensitivity is [108], i.e. the probability of a gamma ray emitted from source pixel i being 

detected anywhere can be evaluated by integrating over all detectable measurements, S. If 

we assume the source pixel is a point-like pixel where pixel i  is centered at 0x , then 

AdAdAApxApxADPxDPs Si ′== ∫∫ )()(),()( '
000

                     (4-8) 

For analytical purposes, we convert the reference frame from Cartesian 

coordinates to spherical coordinates. Thus, the measurement A  emitted from 0x is 

described as },,,,,{ 222111 erer ΩΩ , where 21, rr  are the vectors from 0x  to 1z  and 

from 1z to 2z , respectively, and unit vectors 
21 , ΩΩ  are the directions of the incident and 

scattered photon, respectively. Then, 

 
011 xzr −=  ，         (4-9) 

122 xzr −=  ，         (4-10) 
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To conveniently analyze probabilities involved in the detection sequence of a Compton 

camera, we assume a perfect detector at first, i.e. AA ′=  and )()|( AAAAp ′−=′ δ , 

then Equation (4-8) reduces to  

 AdxApxADPxDPs Si )(),()( 000 ∫== ,          (4-13) 

where S is the set including all the possible measurements. Hereby, )( 0xDP  may be 

derived from integrating all of the following probabilities associated with physical events 

in the process for all possible measurement elements. 

4.3.2.1 γ-ray Emission from 0x toward First Detector in the Direction 1Ω . 

Photons emitted from a point 0x  in the objects are isotropically distributed. A 

photon emitted in direction of 1Ω  to the first detector will passes through the surface of 

an imaginary unit sphere with surface area 4π. Therefore, the probability density of a 

photon emission from 0x in the direction of 1Ω  is, 

π4
1)( 01 =Ω xp         (4-14) 

4.3.2.2 Following the Direction 1Ω , γ-ray Transits the Attenuation Medium a Distance 

r01 in Direction 1Ω between 0x  and the First Detector. 

Figure 4.8, illustrates a parallel beam of γ-ray photons with energy e and initial 

intensity I0 (photons/cm2/sec) passing through a 3D attenuating medium following a path 

r. The total path may include different materials with different linear attenuation 

coefficients μi (1/cm). The value of linear attenuation coefficient μ(l,e) is dependent on 

the absorbing material at location l and the incident photon energy. The cumulative total 

attenuation coefficient is an integral of all attenuation process along the path r.  

The residual intensity I(r) is described by Beer’s Law[109], 

∫=
−

r
dlel

eIrI 0
),(

0)(
μ             (4-15) 

and the intensity decrease, (Ia), due to interaction in the material is, 

∫−=−=
−
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a eIIrIII 0
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μ      (4-16) 
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Therefore, for a given event, where the γ-ray passes through the attenuating 

medium between 0x  and the first detector for a distance of r01 along the direction 1Ω , 

the transition probability is, 

e dlelu
t

r

I
rIxrP )()),((

0
01

10
01

0 1)(),( ΩΩ− ∫==Ω             (4-17) 

And the probability of a γ-ray photon absorbed in the material is, 

e dlelua
a

r

I
IxrP )()),((

0
01

10
01

0 11),( ΩΩ− ∫−==Ω                (4-18) 

 

 
Figure 4.8 Transmission of a beam of photons with energy e through attenuating media 
with attenuation coefficients μ(l,e). The flux of photons with initial intensity I0 transmits 
through the object with thickness r and attenuation coefficients of μ(l,e) and exits with 
reduced intensity I(r). 

4.3.2.3 In the First Detector, the γ-ray Emitted from x0 in the Direction Ω1 Interacts 

with Electron via Compton Scattering 

To evaluate the probability of a Compton scattering event at the point r1 in the 

silicon detector after traversing a distance s in the first detector and assuming no 

attenuation between the source and first detector we require the total attenuation 

coefficient for silicon μt. μt is the sum of the attenuation coefficients for the different 

types of γ-ray interactions in silicon[60], namely, Compton Scattering μsc, Rayleigh-

Thompson Scattering μrt and Photoelectric Absorption μpa. Therefore, the total attenuation 

coefficient (1/cm) is expressed as, 

)()()()( eeee scpartt μμμμ ++=             (4-19) 

As illustrated in Figure 4.9, the total incident number of incident photons is N0. At 

depth x, the number of residual photons after absorption or scatter is Nx. The number of 

Compton scattered photons in the infinitesimal interval dx should be 
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dxNdxxN xcscs μ=)(        (4-20) 

 Where x
x

teNN μ−= 0  

The total number of Compton scattered photons that have occurred in the object at 

the depth of l is the integral of Ncs(x). 
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 For a single photon, the probability of Compton scattering is, 

)1()(
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N

NcslCP −−==
μ
μ .            (4-22) 

Therefore, the probability of Compton scattering of an incident photon at position 

of r1 in the first detector, conditioned on this photon being emitted from x0 in the 

direction Ω1 where the distance traveled by the photon in the first detector is r1in=r1-r01 

and given by 
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Figure 4.9 The number of N0 photons that are transmitted through the object consisting of 
a single material with attenuation coefficient μt. Nx is the number of remaining photons 
without any interaction at depth x. 
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4.3.2.4 After a Compton Scattering, the Incident Photon Deposits Energy E1 in the 

First Detector and Scatters in the Direction Of Ω2. 

As shown in Figure 4.10, the direction of scattered photon can be specified by the 

two scattering angles θ and φ. The angle φ is called out-of-plane scatter angle, which is 

uniformly distributed over [-π, π), and is independent of scattering angle θ and the 

energy deposited in the first detector. The angle ],0[ πθ ∈  is referred as in-plane 

scatter angle or Compton scatter angle, which may be represented by the scalar product 

of incoming photon and scattered photon direction vectors Ω1 and Ω2 as, 

  21cos Ω•Ω=θ ,      (4-24) 

 

 
Figure 4.10 Definition of Compton scatter angle ],0[ πθ ∈  and azimuthal scatter 
angle φ distributing uniformly over [-π, π). cos(θ) is the vector product of the unit 
vectors Ω1 and Ω2. 
 

Therefore, the differential probability involved in this step of the detection 

process is 1201112 ),,,,( dedxrCep ΩΩΩ , that is the probability of a γ-ray 

depositing energy e1 and scattering in the direction of Ω2 in the first detector given that 

the γ-ray is emitted from point x0 and Compton scatters at r1. Because the out-of-plane 

scatter angle or azimuthal scatter angle φ is distributed uniformly over [-π, π), the 

differential probability may be expressed in term of Compton scatter angle θ and 

deposited energy e1. That is   

10111

10111011

101111201112

),,,,(
2
1

),,,,(),,,(

),,,,,(),,,,(

dedxrCep

dedxrCepdxrCp

deddxrCepdedxrCep

θθ
π

θθϕϕ

θϕθϕ

Ω=

ΩΩ=

Ω=ΩΩΩ
.   (4-25) 
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The Compton scattering joint probability density of the scattering angle and 

energy of scattered photon, ),( 1ep θ is proportional to the Compton Double Differential 

Cross Section function[73, 110], i.e. ),( 10 eef −θ . 

θθθ sin),(),( 101 eeKfep −=         (4-26) 

Where K is a proportionality constant, that is
dedef

K
θθθ

π

∫ ∫
∞=

0 0
sin),(

1 . Through 

the adjustment of K, the integral of ),( 1ep θ  over ],0[  ],0[ πθ ∈∞∈ ande  is equal to 1, 

which implies that the probability that a Compton scatter event occurred is 1.  

4.3.2.5 The Scattered Photon Tranvels from the First Detector to the Second 

Detector 

The scattered photon with energy e2 escapes from the first detector from the point 

of Compton scattering passes through any attenuating material between the first and 

second detector and is absorbed by the second detector at location r2 in the direction of 

Ω2. We must compute the probability that the Compton scattered photon at point r1 with 

energy e2 in the direction of Ω2 will escape from the first detector and pass through any 

attenuation medium before being absorbed by the second detector at a certain location r2. 

Along the direction of Ω2, the path from r1 to r2 consists of three parts, those are outr1 , the 

transmission path in the first detector, 12r , the transmission path from the back face of 

the first detector to the front face of the second detector, and inr2  is absorption path in 

the second detector. 

As first, we assume the photon travels from point 0 to a, and ],0[ ∞∈a , and passes 

through point a0. Similarly to step 2, the transmission probability is, 

e dllu
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a
taP )(

0)( ∫= −        (4-27) 

The absorption probability of a scattered photon in this path is, 
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 The absorption density function of the interaction at position a  is the derivative 

of the above probability Pa   
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 Thus, the absorption probability of the photon being absorbed between a0 and a, 

after transmission between 0 and a0 is,   
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To determine the probability of photon absorption in the second detector after 

traveling a distance of inr2  after the photon was scattered in the first detector, the total 

attenuation probability of considering both the first detector and second detector 

attenuation is ut-1, ut-m and ut-2, respectively. 
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4.3.2.6 Absorbed photon deposits its energy in the second detector. 

Under the assumption of a planar second detector and photon absorption at 

location r2 without further scattering, the probability of depositng energy e2 at location 

r2 is 

))((),,,,,( 1022011222 eeedexrCrep −−=ΩΩ δ        (4-32) 

4.3.3 Detection Sensitivity and Simplification 

As mentioned in the last section, in order to acquire a single valid Compton 

camera event and calculate detection sensitivity, the whole process is broken down into a 

sequence of events and the detection sensitivity is the product of all the individual 
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probabilities. Therefore, according to the chain rule of the probability, equation (4-13) 

can be written as 
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The above formula assumes a perfect detector. Considering the measurement 

uncertainty, equation (4-7) should be combined with (4-33) to obtain the final detection 

sensitivity. This multiple integral is very computationally complex. It is essential to 

simplify the calculation to make it practical for system simulation. The following 

assumptions are made to simplify the calculation. 

1. The object, attenuation medium and detectors are uniform. Therefore, the 

linear attenuation coefficients depend only on the photon energy. As a result, 

)(eu ot−  is the total attenuation coefficient of the source object in front of the 

first detector, )(eu mt−  is the total attenuation coefficient of the medium 

between the first detector and the second detector,  )(1 eut−  is the total 

attenuation coefficient of the first detector, )(1 eucs−  is the Compton 

attenuation coefficient for the material of the first detector, and, )(2 eut−  is 

the linear attenuation coefficient of the second detector. 

2. The deposited energy of scattered photons is completely detected by the 

second detector. Since energy of incident photon is known, the deposited 

energy in the second detector is not required for image reconstruction or the 

uniform Cramer-Rao bound calculation. Therefore,  

1)|(),,,,,(
2

'
222

'
2011222 =ΩΩ∫ ∫

eS
dedeeepxrCrep     (4-34) 

where 22 eSe ∈ is the set of all possible detected energy.  

3. The spatial uncertainty is negligible since: 1) The pixel size of silicon detector 

can be very small compared to the spatial resolution of the second detector. 

For example the pixel size of silicon chip is mmmmmm 0.14.14.1 ×× ,while 

the intrinsic spatial resolution of the second detector, which is an Anger 

camera is about 4.1mm (FWHM) [107]. 2) The second detector can be placed 
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further from the first detector such that the effect of spatial resolution of the 

second detector is trivial. This is at the expense of detection sensitivity if 

detector size remains constant. Therefore, the conditional probability 

)|( and )|( 22
'

11
' zzpzzp is approximately a delta function, i.e. )( '

11 zz −δ .  

4. The energy measurement error of the first detector is a Gaussian distribution. 

5. The photons from 0x  are emitted uniformly over 4π steradians. 

According to the assumptions described above, the distribution of measurement 

uncertainty is simplified to just one term. This term illustrates the conditional probability 

density function (pdf) of the energy measurement error for the first detector and may be 

modeled as a zero-mean Gaussian-distribution. The variance, σ2
, of this distribution is 

determined by the energy resolution (FWHM) of the silicon detector, which includes two 

noise sources of silicon detector, ionization noise and electronics noise. Therefore,  

),0(~)|()|( 2
11

' σNeepAAp =′        (4-35) 

The Compton scattering joint probability density function 

),,,,( 0111 xrCep Ωθ just depends on the scattering angle θ and deposited energy e1 in 

the first detector. Hence, the noisy measurement based on the joint pdf ),( '
1ep θ  is the 

convolution of the ),( 1ep θ  with )|( 11
' eep . That is,  

111
''

1
'
1 )|(),(),( deeepepep θθ ∫=        (4-36) 

Meanwhile, the integral of the noise based joint pdf ),( '
1ep θ  over all energy 

measurements within the energy measurement threshold 
1
'e

S  is the marginal density of 

θ , i.e. )(θmp  

∫ ∫∈
=
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1111
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1 )|(),()(

Seem dedeeepepp θθ       (4-37) 

Therefore, both the noise based joint pdf ),( '
1ep θ  and un-normalized marginal 

density of )(θmp  can be calculated in advance to form a discrete table indexed by 

scatter angle θ  and measurement energy '
1e  using numerical integration and 

convolution and then evaluated by interpolation[87]. 

According to these assumptions, and combining with (4-37), the detection 

sensitivity (4-33) may be simplified as, 
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The detection sensitivity and corresponding individual probabilities are 

represented in a spherical coordinates. However, it is desirable that the final detection 

sensitivity be expressed in the Cartesian coordinates because the acquired experimental 

measurements are based on the block detectors composed of pixels arrays or voxels in the 

Cartesian coordinates.  

As illustrated in Figure 4.11, the differential area dA at an angle φ away from the z 

point, the distance from the z to the dA is r. The dA(proj) is differential projection area dA 

on the surface of sphere with radius is r. Therefore, the differential solid angle dΩ 

subtended by a differential area dA is equal to the projection of the area dA(proj) divided 

by the square of the distance r from the point z to the differential area dA. That is,  
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Combining equation (4-39) with (4-38), the detection sensitivity (4-40) is 

described in the Cartesian coordinates and integrated over all detectable area of the first 

detector and second detector. 
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Figure 4.11 The relationship of dΩ in the spherical coordinates and dA in Cartesian 
coordinates. dΩ represents the differential solid angle subtended by dA. dA(proj) is the 
projected area of dA onto the surface of a sphere with radius r. 
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4.3.4 Transition Probabilities  

 The definition of transition probabilities or measurement probabilities ija are 

illustrated by Parra [108] and Wilderman[111] for the PET system and Compton system, 

respectively. As described in equation (4-41), The term ija  is the combination of the 

probability that an emitted photon from bin i is detected, i.e. the detection sensitivity js , 

and the probability density of a detected event generated in bin i leads to a measurement 

jA ' . Detection sensitivity, js , is equal to the integral of ija  over all the possible 

measurements. 

iijij sDxApa ),( '=       (4-41) 
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Therefore, combining of (4-42),(4-40) and (4-36), the transition probabilities can 

be evaluated as. 
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where ),( '
1ep θ  is the Compton scattering based joint probability density function 

combined with energy and position measurement noise The density is evaluated by 

interpolation from the pre-calculated 2-D table indexed by Compton scatter angle θ and 

measured deposited energy e’
1 in the first detector. K is the product of pixel area of both 

detectors and the energy interval, which is constant under the assumption of fixed pixel 

size and fixed energy interval. The definition of some parameters in (4-43) is described in 

Figure 4.12. 

4.3.5 Interpolating joint probability density matrix blurred with energy and spatial 

resolution  

As illustrated in the equation (4-43), the kernel of derived transition probability 

function is a pre-calculated matrix, which is the joint probability density function 

including the effect of Doppler broadening convolved with probability due to energy 
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resolution and spatial resolution. The matrix indexed by the Compton scatters angle θ and 

deposited energy in the first detector, e1. 

 

 
Figure 4.12 Geometry of Compton Camera with two parallel block detectors. Φ1 is the 
zenith angle of source photon; Φ2 is the zenith angle of scattered photon; θ is the 
Compton scatter angle; r1=r01+rin; r2=r1out+r12+r2in 
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(a)                                  (b) 

Figure 4.13 The interpolation matrix for a crystalline silicon detector for 364.4keV 
incoming photons. (a) Joint probability density function. (b) blurred due to 2keV detector 
energy resolution. 

 

The joint probability density function matrix is calculated by equation (2-14), i.e. 

the DDCS model for the double-differential cross section. The matrix for crystalline 

silicon detecting 364.4keV photons is displayed in figure 4.13a, which is indexed by the 

scattering angle (horizontal axis) and deposited energy (vertical axis). The matrix is 
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further blurred by a Gaussian distribution function, i.e. equation (2-14) that describes the 

energy resolution, is displayed in figure 4.13b. 

To obtain the blurred interpolating matrix due to the spatial resolution of the first 

detector and second detector, the uncertainty due to spatial resolution is mapped to 

energy uncertainty by using the calculated Angular resolution Δθ. According to the 

Compton scattering equation (4-44), 
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The energy uncertainty ΔE1 of the first detector contributing to the angular uncertainty 

Δθenergy is given by  
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Therefore, from equation (4-44) and (4-45), the relationship between the ΔE1 and Δθ can 

be expressed as, 
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 According to the model expressed by Ordonez[77], the angular uncertainty 

depends upon the spatial resolution and geometry configuration of the two detectors. For 

our proposed Compton imaging system with 2 parallel planar detectors, the effects of first 

detector lateral position resolution, depth position resolution, and the second detector 

lateral position resolution are illustrated in Figure 4.14. The central distance between two 

planer detectors is d. 

The angular uncertainty introduced by the first detector lateral position resolution 

is displayed in Figure 4.14(a). For one pixel of the first detector, the lateral length of 

elements is W. For estimating the maximum error, the photon from the source interacts at 

the edge of the pixel of the first detector with Compton scatter angle θ. The scattered 

photon strikes the second detector at O2. In the back projection, the center position, O1, of 

the pixel in the first detector is used for calculation. Therefore, the pixel size introduces 

angular error, Δθ1, between the true source direction and back projected direction. From 

illustrated figure,  
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Since the distance from source point to the first detector is much larger than the pixel 

width, W1, then, Φ is may be ignored, i.e. θθ ≈Φ+ . And, )sin( 1θθ Δ+  and 

)cos( 1θθ Δ+  can also be approximated as 

11 )cos()sin()sin( θθθθθ Δ+=Δ+       (4-48)

 11 )sin()cos()cos( θθθθθ Δ−=Δ+       (4-49) 

From equation (4-47), therefore, the angular uncertainty introduced by the first detector 

lateral position resolution is given as, 
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From figure 4.14(b), the depth Z of the pixel in the first detector also contributes 

to the final angular uncertainty and can be expressed as, 
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And,  
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From figure 4.14(c), the second detector lateral position resolution R also 

contributes to final angular uncertainty, and can be approximated as 

θ
θ

cos/
2/

3 d
R

=Δ         (4-53) 

Therefore, combining equation (4-45) with (4-51),(4-52) and (4-53), the 

relationship between the position resolution of the two detectors and mapped energy 

resolution is derived. The interpolation matrix is finally blurred by the above mapped 

energy resolution by convolving the relative Gaussian function at each corresponding 

scatter angle θ.  

For the Compton imaging system in this example, the pixel size of the silicon 

detector is 1.4mm by 1.4mm by 1.4mm, the lateral position resolution of the second 

detector is 4mm, the energy resolution of the first detector is 2keV and the distance 

between the two detectors is 100mm. The matrix and profile of 30° scatter angle for the 

crystalline silicon detecting 364.4keV incoming photon blurred by the energy resolution 
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and the position resolution of the first detector and the position resolution of the second 

detector are displayed in Figure 4.15(a) and (b), respectively.  

In a real application, given the measured energy deposition in the first detector 

and the calculated Compton scatter angle, the relative probability can be determined by 

interpolation from the pre-calculated table. This method tremendously decreases the 

computation time required in image reconstruction or Fisher information evaluation, and 

the memory for storing the matrix depends on the required calculation resolution. 
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(a) Angular uncertainly due to the first detector lateral position resolution 
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(c) Angular uncertainty due to the second detector lateral position resolution 

Figure 4.14 Angular uncertainties introduced by the position resolution. The solid lines 
represent the true interaction path; the dashed lines show the back-projected path 
involving the uncertainties. 
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(a) 

 
(b) 

Figure 4.15 (a) The blurred joint pdf matrix for a crystalline silicon sensor detecting 
364.4keV incoming photons. The position resolution of the silicon detector is 1.4mm, 
energy resolution of silicon detector is 2keV. The position resolution of the second 
detector is 4mm, and the distance between the two detectors is 100mm.(b) normalized 
profile at 30° scatter angle for three cases of no blurring, energy blurring, energy and 
position blurring.
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CHAPTER 5 

Error Evaluation, Algorithms Validation and Imaging Performance Analysis Using 

the Modified Uniform Cramer-Rao Bound 

Using the algorithms introduced in Chapter 3 and system modeling derived in 

Chapter 4, in this chapter we will analyze the errors of the FIM and M-UCRB introduced 

by MCI and the limited numbers of sampled events in the Monte Carlo simulation. We 

also evaluate the validity and correctness of the system model for both proposed imaging 

systems and the Monte Carlo simulation. Finally, we discuss and compare system 

performance of both imaging systems.  

 

5.1 Analysis of Error Introduced by MCI for estimated FIM and M-UCRB 

As described in Chapter 3, the M-UCRB, obtained by inverting the FIM, provides 

a lower bound on the covariance matrix as a function of spatial resolution described by 

the FWHM of a Gaussian point spread function. The primary obstacles to practical 

application of the M-UCRB are excessive computer memory requirements and the 

computational complexity involved in inversion and multiplication of very large matrices 

for a high-dimensional measurement space. MCI and FFT are feasible mathematical 

methods to estimate the FIM and M-UCRB. The accuracy of M-UCRB is determined by 

errors in the calculated FIM that are introduced by the finite number of samples used for 

MCI. The validity of these feasible mathematical methods and the problem of error 

propagation due to the limited number of samples will be evaluated below. 

 

5.1.1 Methods and Algorithms for Analysis 
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5.1.1.1 The Issue of Errors and Error Propagation Introduced by MCI 

According to the basic theorem of MCI[91], if the N random independent identical 

distributed samples xi are uniformly distributed in a multidimensional volume V, the 

estimated integral of a function g over the multidimensional volume is, 
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where the denotation of  is the arithmetic mean of the N sample points, and  
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Therefore, the absolute error involved in MCI is  
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and the relative error is  
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In the case of the MCI calculated FIM, the absolute error ε involved for each 

entry of FIM can expressed as, 
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Therefore the error introduced by the MCI is decreases with the square root of the 

number of sampled events. The error due to the limited number of sampled events is 

further propagated to the results of M-UCRB illustrated in (3-27), in which the most 

critical part is the inversion of [ ]IFY λ+ . Therefore, the absolute value of propagated 

error for this inversion can expressed as, 
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Combining equation (5-6) and (3-27), the values of absolute errors of the 

estimated M-UCRB are controlled by the target PSF, the value of λ, source object, the 
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whole FIM and transition probabilities of the evaluated medical imaging system and 

specified imaging task. To estimate the range of errors, a special case may be evaluated, 

in which the FIM and error matrix is assumed to be a diagonal matrix that 

is ji  if 0 and 0 ij ≠== εijF . Therefore, the relative errors e of each element in estimated 

FIM and elements of the inverse [ ]IFY λ+  can be expressed by (5-7) and (5-8), 

respectively. 
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For the case where λ is far less than the value of iiF , the iiFIMinviiFIM ee )()( ≈ . 

Therefore, even though the error in M-UCRB introduced by the MCI is decreased 

by increasing the number of sampled events for MCI, it is difficult to derive a final 

formula to express the relationship between error and the number of samples. 

Empirically, confidence interval methods are used to find the number of sampled event 

for MCI to obtain an acceptable relative error in the calculation of FIM and M-UCRB. 

5.1.1.2 Method to Analyze Error and the Number of Samples in Real Applications 

In a real application, the relative error confidence interval methods from financial 

modeling [112, 113] are used here to analyze the error propagation introduced by MCI 

for FIM and M-UCRB calculation and determine the number of sampled events required 

for the desired accuracy. Because the MCI calculation of FIM or value of M-UCRB 

should approach a steady value asymptotically as the number of simulated events 

increases, for a given number of events, N, the error in the calculated FIM should be less 

than a desired small value in the pre-specified confidence value. 

According to the randomly sampled events xi with an identical independent 

distribution with a total number of events, N, the calculated entries of FIM or the value of 

the bound of variance is fi and )( ii xff = . According to the strong law of large numbers, 

the estimated value of the elements of the FIM Nŷ evaluated by ∑
=

N

i
ixf

N 1

)(1 , will 

approach the mean value ty  as the number of samples approaches infinity.  
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From the definition of the Chebyshev inequality for the finite mean and variance, the 

probability of the accurate estimation of yt  is defined as, 

2
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where the estimation of Nŷ is a Gaussian distribution with mean of ty  and with 

variance of 
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According to the central limit theorem,  

∞→⇒
− N as )1,0(

/

ˆ
2

N
N
yy tN

σ
,                (5-11) 

and the relative error 
t

tN

y
yye −

=
ˆ , therefore, the )%1(100 α− confidence interval for 

the relative error is defined as ,  

α
σ

α

−≈≤
− −

1)
ˆ

(
)

2
1(

2
z

N

yy
P tN

,                           (5-12) 

ασ
α

−≈≤
−

1)(
2

)
2

1(

Ny
zeP

t

.               (5-13) 

Therefore, for a given confidence interval (1-α) and maximum desired relative 

error 0≥de , and α−≈≤ 1)( deeP , the number of sampled events N required to achieve 

the desired relative error using MCI is  
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For example, for a 95% confidence interval, z-score associated with the probability of 

0.025 is 96.1)21( =− αz . 

In the real application, the sample mean Nŷ and variance )var( Nf  can be 

evaluated on the fly by 
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Therefore, in the calculation of elements in FIM, we specified 96.1)21( =− αz  and 

relative error 005.0≤de  to find the suitable number of Monte Carlo events N. 

5.1.2 Analysis and Results 

In this section, the correctness and validity of the FIM computed using MCI and 

the M-UCRB obtained by FFT is compared with the original direct calculation method 

for a low dimensional image space. The propagated errors introduced by MCI were 

further evaluated and analyzed. The medical imaging system illustrated here is the Argus 

NaI Anger Camera with HEGP parallel-hole lead collimator for imaging 364.4keV 

photons. The system spatial resolution at 10cm is 12.6mm, and then, point source 

response function is described as a two dimensional Gaussian function with the standard 

deviation of 5.3508mm. In this study, a thin disk source of I131 with given diameter is 

located 10cm from the surface of the collimator. The activity is uniformly distributed in 

the disk. The image pixel size is 0.4mm by 0.4mm, and the total number of pixels 

depends upon the diameter of the disk.  

5.1.2.1 Evaluation of Validity of MCI Calculated FIM 

A disk with diameter of 13.2cm is simulated and the corresponding image space is 

33×33 pixels. Thus, the full size of the Fisher information matrix is 1089×1089.  
Fisher Information Matrix (1089x1089) for (33x33)image
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   (A)                                     (B) 

Figure 5.1 (A) Full Fisher information matrix for 33×33 image. Size of FIM is 
1089×1089. (B) Center column of the Fisher information matrix reshaped as 2D matrix 
for the uniform source 13.2cm diameter disk imaged by the conventional Anger Camera 
with HEGP collimator. (12.6mm FWHM at 10cm) 
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In figure 5.1A, the normalized full Fisher information matrix calculated by 

equation (3-19) is displayed, and is clearly a block Toeplitz matrix or block diagonal-

constant matrix. The central column of the FIM is re-shaped as a two dimensional matrix 

and shown in figure 5.1B, which is denoted as 2D central column matrix. The central 

profiles of the 2D column matrices calculated by conventional methods (3-19) and Monte 

Carlo integration (3-24) with 2 million independent sampled events are displayed and 

compared in figure 5.2A. The relative error of two profiles is less than 0.5% illustrated in 

figure 5.2B, the maximum error is about 5x10-3. 
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Figure 5.2 (A) Central profiles of 2D central column matrix in the FIM calculated by 
direct method and Monte Carlo Integration, respectively. (disk with 13.2cm diameter). 
(B) The relative error of Monte Carlo calculated central profile of 2D column matrix in 
FIM with 2 million events. 
 

5.1.2.2 Evaluation of FFT Calculated M-UCRB 

To avoid the computational complexity of inverting the Fisher information 

matrix, the FFT method is used to calculate the M-UCRB. The FFT method is based on 

the assumption of local shift invariance. In this case, the full FIM is a block circulant 

matrix, as shown in figure 5.1A, whereas, the true FIM is a block Toeplitz matrix or 

block diagonal-constant matrix.  

It is necessary, therefore, to compare the calculated error of M-UCRB by FFT 

with the original direct method. For calculating the M-UCRB, the control parameter λ is 

pre-specified as 1e-20, which guarantees that the actual point spread function is close to 
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the target point spread function in our presented studies. The desired PSFs are two-

dimensional Gaussian functions with FWHM ranging from 0.5cm to 3cm.  
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(A)                               (B) 

Figure 5.3 (A)M-UCRB curves calculated by conventional direct matrix multiplication 
and FFT. The source is a thin uniform with diameter of 13.2cm and image matrix of 
33×33. (B) Relative error of M-UCRB curves calculated by conventional direct matrix 
multiplication and FFT. 
 

In Figure 5.3, the M-UCRB curves calculated by conventional direct matrix 

methods and FFT are compared. The max relative error is less than 0.5% as the FWHM 

of target PSF ranges from 0.5cm to 3cm. When the FWHM of target PSF is close to or 

larger than the system spatial resolution of 12.6mm, the two curves essentially overlap, 

and the relative errors decrease rapidly to about 0.005%.  

5.1.2.3 Estimated Errors Involved from Monte Carlo Simulation for a Diagonal FIM 

According to equations (5-7) and (5-8), the relative error can be estimated by 

assuming a diagonal FIM. The elements do not equal to zero is the diagonal elements in 

the FIM. The FIM and corresponding M-UCRB are estimated using 20000 samples. The 

central profile of this diagonal FIM for 500 independent trials and the variance of FIM 

are displayed in the figure 5.4A, 5.4B, respectively. The calculated relative error is about 

0.0026.  

The corresponding curves for the M-UCRB are displayed in Figure 5.5, which is 

calculated with λ = 1e-20. From this evaluation, the relative errors are almost identical for 

estimated FIM and M-UCRB. 
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(A)                               (B) 

Figure 5.4 (A) Central profiles of 2D central column matrices of estimated diagonal FIM 
by MCI for 500 trials, each trial has 20000 samples. (B) Variance of estimated diagonal 
FIM for 500 trials. The relative error is 0.0026. 
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Figure 5.5 (A) Estimated M-UCRB by diagonal FIM with λ =1e-20 for 500 trials, each 
trial has 20000 samples. (B) Variance of estimated M-UCRB for 500 trials. (C) The mean 
relative errors for estimated FM-UCRB for 500 trials. 
 

5.1.2.4 Error Propagation for FIM and M-UCRB due to Monte Carlo Calculation 

The central column of FIM and corresponding M-UCRB calculated using 20000 

samples were estimated. The central profile of 2D central column matrix of FIM for 500 

independent trials and the variance curve are displayed in Figure 5.6A and 5.6B, 

respectively. Figure 5.6C, shows that the mean relative errors are around 0.00275. 

The estimated M-UCRBs with λ =1e-20 for 500 independent trials are displayed in 

figure 5.7A. As shown in figure 5.7B and 5.7C, values of both variance and relative error 

are determined by the FWHM target PSF and the relative errors. For large FWHM of the 

target PSF the errors are small, whereas these propagated errors are amplified about a 
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factor of 4 when the FWHM of the target PSF is small, that is when the target PSF is less 

than the system response function. The minimum relative errors are around 0.008. 
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Figure 5.6 (A) Central profiles of 2D central column matrices of estimated central 
column FIM by MCI for 500 trials, each trial has 20000 samples. (B) Variance of the 2D 
central column Matrix of estimated diagonal FIM for 500 trials. (C) Relative Error of 
Estimated 2D central column Matrix of FIM, the relative error is less than 0.0026. 
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Figure 5.7 (A) Curves of Estimated M-UCRB with λ =1e-20 for 500 trials, each trial has 
20000 samples; red curve is the mean value (B) Variance of estimated M-UCRB for 500 
trials. (C) The mean relative errors for estimated FM-UCRB for 500 trials. 
 

5.1.2.5 Estimated Number of Samples for a Relative Error in the 95% Confidence 

Interval 

As illustrated above, the FIM estimated by MCI and the M-UCRB calculated by 

FFT under the spatially invariant approximation are close to the true FIM and M-UCRB 

calculated by conventional direct methods as the number of random sampled events 

becomes large enough. The estimated values and relative errors of the central pixel in the 

2D central column matrix of FIM changes with the number of the sampled events as 

shown in Figure 5.8A and 5.8B, respectively. In Figure 5.8C, the upper bound of relative 

error in the 95% confidence interval for this entry of FIM is displayed. This is calculated 
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by equation (5-13) and 96.1)2/1( =−αz . For the case, in which for 005.0≤de , the minimum 

number of samples required is 2.5 million. 

The calculated M-UCRBs based on the estimated FIMs with increasing number of 

sampled events are shown in Figure 5.9A. The FWHM of target PSF is 1.5cm and the λ is 

equal to 1e-20. The calculated value of M-UCRB approaches the true value gradually and 

the relative error can achieve 0.001 as shown in Figure 5.9B. From Figure 5.9C, for 

005.0≤de in the 95% confidence interval for M-UCRB, the minimum number of samples 

required is 4 million. Therefore, M-UCRB calculation increases the error and requires 

more samples than FIM estimation to obtain an acceptable relative error. 
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Figure 5.8 (A) Calculated values of central entry of FIM stabilize gradually with 
increasing number of sampled events for Monte Carlo integration. (B)The relative error 
decreases with the number of samples. (C) The bound of relative error for 95% 
confidence interval decreases with the number of samples. 
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Figure 5.9. (A)Calculated values of M-UCRB stabilize gradually with increasing number 
of sampled events for FIM obtained by MCI. (FWHM of target PSF is 1.5cm and λ is 1e-

20. (B)The relative error decreases with the number of samples. (C) The bound of relative 
error for 95% confidence interval varies with the number of samples. 
 



116 
 

5.1.3 Conclusion  

As presented above, use of Monte Carlo Integration to estimate the Fisher 

information matrix and employing a fast Fourier transform to calculate the modified 

uniform Cramer-Rao bound are shown to be efficient and useful tools to evaluate 

imaging system performance. Using MCI can calculate the FIM for a medical imaging 

system with a more complex or higher dimensional system matrix, such as a Compton 

Imaging system. Under the spatially invariant approximation and the properties of block 

circulant FIM, calculating M-UCRB using FFT requires only one column of the full FIM 

and obtains the similar results calculated by the original matrix algorithm. This decreases 

the computational complexity, and also requires much less memory compared to memory 

requirements for direct full FIM multiplication and inversion. For example, in the above 

study, the full FIM is 1089×1089, whereas, the required 2D central column matrix is just 

33×33. The calculated errors introduced by Monte Carlo Integration for FIM are 

propagated to the estimated M-UCRB. The final relative error of M-UCRB is controlled 

by many factors, such as the number of samples, the target PSF, source object, the size of 

reconstructed image, and the imaging system being evaluated. The relative error will 

decrease with increasing the number of samples for MCI, and the propagated errors are 

amplified when the FWHM of target PSF is small. In this case, more sample events for 

MCI will be required to achieve acceptable relative error. But the error become negligible 

as the FWHM of the target PSF increases, especially as the FWHM of target PSF become 

larger than the system point source response function. For specific applications, the 

suitable number of sampled events may be found using the confidence interval method 

for pre-specified and desired relative error. 

5.2 Validation and Verification for Monte Carlo Simulation and M-UCRB for 

Compton Imaging System 

5.2.1 Validation of Compton Imaging Random Variables Sampling System 

The proposed Compton Scattering random number sampling system is an 

independent Monte Carlo simulation system that focuses on the Compton scattering 

process of the photon interacting with the material in the first detector. To speed up the 
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random number sampling, most parts of the simulation are based on the technique of 

discrete cumulative distribution. Therefore, the CIRVS system described in Chapter 3 

needs to be validated before using it for calculating the Cramer-Rao bound. Since it is 

difficult to experimentally determine the various effects of the many different physical 

processes that affect detector system performance, the general purpose Monte Carlo 

simulation system Geant4 with LECS package (Low energy Compton Scattering), which 

embeds the codes to simulate the effect of Doppler broadening on Compton scattering, is 

selected to validate the CIRVS system under similar simulation conditions. Because of 

the limitations of Geant4 with the LECS package, the material of the simulated first 

detector is atomic silicon while the actual detectors are crystalline and the values of 

position and energy uncertainty will be different from the actual detector. The validation 

primarily focuses on the following three parts, the distribution of absorbed energy with 

the effect of Doppler Broadening, the conic intersection of the interaction of the scattered 

photon on the second detector, and the distribution of scattering angle.  

 
Figure 5.10 Illustration of geometrical configurations used to validate the Compton 
imaging random variables sampling system. 
 

The simulation setup and geometric configuration for validation is shown in 

figure 5.10. The first detector is 2mm by 2 mm by 2mm and constructed of atomic 

silicon. Its 4 edges are surrounded by lead shielding to prevent emitted photons from 

impinging directly on the second detector. The center position of the silicon detector is 

located 10cm from the source, and is located at the zero point in the x-y plane. The 

material of the second detector is NaI and it is 100cm by 100cm by 1cm thick and is 

parallel to the first detector. The coordinates of the center of the front face of the first 

detector are 0cm, 0cm, 20cm along the x,y,z axis, respectively. Three 364.4kkeV sources 
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are located on the x-y plane at z = 0. The sources are .002 mm square located at 

(0,0),(12.8cm,0), and (12.8cm,12.8cm). 

5.2.1.1 Validation of the Effect of Doppler Broadening 

To validate the effect of Doppler broadening, a total of 0.2 million scattering 

event distributed over scattering angles of 30°, 60° and 90° acquired from the CIRVS and 

GEANT4 (LECS) Monte Carlo simulations. The energy probability distributions of 

CIRVS are compared with distribution obtained from the theoretical calculation by the 

Compton Double Differential Cross Section formula (CDDCS) and GEANT4 (LECS) 

Monte Carlo simulation, respectively. According to the Compton scattering formula for 

364.4keV incident photons, the ideal value of energy absorbed by the silicon detector or 

the central energy of the distribution, for 30°, 60° and 90°, are 31.7keV, 95.6keV and 

115.4keV, respectively.  
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(b) 

Figure 5.11 Comparison of the probability distribution profiles (a) and errors(b) at 30° 
scattering angle for Geant4(LECS), CIRVS, and CDDCS calculation. 
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The validation and comparison results for 30°, 60° and 90° are illustrated in 

Figures 5.11, 5.12 and 5.13, repetitively. In each group of figures, the subplot (a) is a 

comparison of the deposited energy probability distributions at the given scattering angle 

obtained using CIRVS, GEANT4 (LECS) and CDDCS calculations. The area under each 

curve is normalized to one. Subplot (b) illustrates the differences between the 

probabilities of three datasets. The probability distributions, which illustrate the effect of 

Doppler Broadening, from CIRVS, GEANT4 (LECS) and CDDCS calculations at 

different scattering angles, are similar. The maximum error is around 6×10-3 at the center 

of the profile. Because the values of the CDDCS calculation are the mean value at each 

energy, the total mean square error (MSE) for GEANT4 (LECS) and CIRVS are 1.09e-6 

and 8.4e-7. 
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(b) 

Figure 5.12 The probability distribution profiles(a) and errors(b) at 60° scattering angle 
comparisons for Geant4(LECS), CIRVS, and CDDCS calculation. 
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(b) 

Figure 5.13 Comparisons of the probability distribution profiles (a) and errors(b) at 90° 
scattering angle for Geant4(LECS), CIRVS, and CDDCS calculation. 
 

5.2.1.2 Validation of the Distribution of Scattering Angle  

Theoretically, the scattering angle distribution could be obtained from the Klein-

Nishina Differential Cross Section (KNDCS). The 0.2M scattering angles values were 

sampled from Geant4 (LECS) and CIRVS system. The three curves of scattering angle 

probability distribution scattering angle were displayed on Figure 5.14(a), meanwhile, the 

square errors between Geant4 (LECS) and KNDCS, CIRVS and KNDCS; and errors 

between Geant4(LECS) and CIRVS are shown in Figure 5.14(b). Considering that 

calculated results from KNDCS is the mean value of the probability, the mean square 

errors of Geant4(LECS) and KNDCS are 5.81e-8 and 6.15e-8,respecitively. CIRVS is 

validated with Geant4(LECS) with a maximum error is 2.0e-3. 
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(b) 

Figure 5.14 (a)The silicon scattering angle probability profile for 364.4keV photons 
(b)left: square errors between CSRNS and Klein-Nishina DCS calculation; middle:  
square errors between Geant4(LECS) and Klein-Nishina DCS calculation; right: Error 
between Geant4(LECS) and (CIRVS) system. 

 

5.2.1.3 Validation of Location that Scattered Photons Impinge on the Second 

Detector 

In the Monte Carlo simulation, photons from a point source impinge on the 

second detector after scattering from the silicon detector. Ignoring the interaction depth in 

the second detector and assuming that the photons are scattered from a single small pixel 

in the silicon detector, the scattered photons will form a conic section on the second 

detector for a specific scattering angle. Doppler broadening only affects the energy 

distribution for a given scattering angle in the simulation. The thickness of the conic 

intersection is determined by the pixel size on the first detector, the distance between the 

source plane and the first detector and distance between the first detector and the second 

detector. The goal of this part of the validation is to prove the accuracy of the three 
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dimensional graphic rotations and intersection of the cone of scattered photons and the 

plane of the second detector. In both the GEANT4(LECS) and CIRVS simulation, the 

original photons are emitted from three different point source locations and scattering 

angle is fixed as 30°, 60° and 90°. In each of the nine groups of data, 1 millions scattered 

photons are detected by the second detector. 
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(a)                                    (b) 

Figure 5.15 The two dimensional histogram (a) and position map(b) of the scattered 
photons intercepting the second detector as simulated by GEANT4 (LECS). The point 
sources are located at (0,0),(128mm,0) and (128mm,128mm); and the scattering angles 
are 30°,60° and 90°. 
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  (a)                                  (b) 

Figure 5.16 The two dimensional histogram (a) and position map (b) of the scattered 
photons on the second detector simulated by CIRVS System. The point sources are 
located at (0,0),(128mm,0) and (128mm,128mm) and scattering angles are given as 
30°,60° and 90°. 
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As illustrated in Figure 5.10, the size of the second detector is 100cm by 100cm. 

In both the GEANT4 (LECS) and CIRVS simulation, the photons interacting in the 

second detector are mapped into a two dimensional histogram in which each pixel size is 

4mm by 4mm. The two-dimensional intensity histogram and interaction position map, in 

which pixel equals to one if the value of relative pixel in the histogram is larger than one, 

are shown in figure 5.15 (a),(b) and 5.16 (a),(b) for the dataset obtained from 

GEANT4(LECS) and CIRVS. From the comparison, the positions and shapes of the 

different conic sections from both systems match. The relative mean square error of the 

two histograms, which is the detection sensitivity error between two simulation systems, 

is around 3.2e-5. 

 

5.2.2 Analysis of the MCI Calculated FIM and FFT Based M-UCRB for the 

Compton Imaging System 

As described earlier, in order to solve the problems of computational complexity 

and very large memory requirements, the FIM is calculated by MCI; and the M-UCRB 

may be computed by FFT assuming that the Fisher information matrix is shift invariant 

and a block circulant matrix. Along with the statistical models of the imaging systems 

and random number sampling techniques, the accuracy of the MUCRB calculation 

depends on the number of simulated measurement events. An insufficient number of 

simulated events will introduce unacceptable error in final results while over sampling 

will increase computation time and storage requirements. 

In the next section we discuss the use of confidence intervals methods to 

determine the appropriate compromise between accuracy and computation time for these 

estimates. 

5.2.2.1 Output Analysis for Monte Carlo Integration based FIM 

Using the Chebyshev Inequality and confidence interval method as illustrated in 

section 5.1, the well suitable number of simulated measurement events was found. This 

number of random variable guarantees the probability of relative error of calculated FIM 

item is less than a given trivial value equals to the pre-specified confidence value.  
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(a)                                    (b) 

Figure 5.17 (a) Geometrical configuration of the Compton scatter camera simulation. (b) 
The thin disk source emitting 364.4keV photons. 
 
 As shown in the figure 5.17(a), the simulated Compton camera system has a 

similar geometrical configuration as Figure 5.10. The primary difference is that the 

simulated phantom, shown in figure 5.17(b), is a 13.2 cm diameter disk in a 65×65×1 

pixel field of view. The size of each pixel is 4mm×4mm×1mm. The source emits 

364.4keV photons, and there is no radioactivity outside of the disk. 
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(a)                                  (b) 

Figure 5.18 (a) Central column of Fisher information matrix expressed a two dimensional 
matrix/image (b) The central profile of the column matrix. 
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       (a) 

 
(b) 

 
(c) 

Figure 5.19 Calculated values of Fisher information matrix as a function of the number of 
the sampled events used for Monte Carlo integration.(a),(b) and (c) illustrates the curve 
for matrix elements (33,33),(49,49) and (65,65), respectively. 

 

According to the number of pixels in the phantom or reconstructed image, the 

FIM is a two dimensional positive definite symmetric matrix with 4225×4225 elements. 

Under the assumption of shift invariance, the center column is selected for the M-UCRB 

calculation. In fact, each entry of this column of the Fisher information matrix can be 

expressed as, 
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in which pixel number 2113 corresponds to the central pixel of the reconstructed image. 

The center column of the Fisher information matrix can also be expressed as a two 

dimensional matrix with 65 by 65 entries, referred to as ‘a column matrix’ and shown in 

Figure 5.18 (a), the central row profile of the column matrix is shown in Figure 5.18(b). 

 The Fisher information matrix displayed in figure 5.18 was obtained using Monte 

Carlo integration with 20 million independent samples, which is an adequate number of 

events to provide acceptable statistical error. To illustrate the effect of the number of 

sampled events on the value of an entry in the Fisher information matrix, calculated 

values of entry (33, 33),(49,49) and (65,65) corresponding to the number of sampled 

events are plotted in the Figure 5.19 (a), (b) and (c), respectively. Values fluctuate 

substantially when the number of events less than 2 million, but gradually stabilize as the 

number of samples increase. 

 
Figure 5.20 The values of ( )nz nn θσ

α ˆˆ )21(

⎥⎦
⎤

⎢⎣
⎡ −  for entries (33,33),(49,49) and (65,65) in 

the calculated Fisher information column matrix corresponding to the number of the 
sampled events for which the confidence interval is 95%. 

 

To obtain the sufficiently good estimates of all entries of the Fisher information 

matrix, the minimum number of events could be evaluated with approximately 95% 

confidence intervals with a relative error less than 0.001. 96.1)2/1( =−αz  and  001.0=ε . 

The values of ( )nz nn θσ
α ˆˆ )21(

⎥⎦
⎤

⎢⎣
⎡ − , i.e the upper bound of the relative error with a 

confidence interval of 95%, for the entries of (33,33),(49,49) and (65,65) in the Fisher 

information column matrix are plotted in Figure 5.20. As shown, the relative error 

decreases as the number of sampled events increases, and the minimum number of 

sampled events required for the worst case is 2 million. 
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5.2.2.2 Analysis of the value of parameter λ 

The variable λ in the M-UCRB must be positive in order for matrix inversion to 

be possible. According to the formula (3-15), which describes the relationship between 

the optimal actual PSF with the desired PSF, a relatively large value of λ will induce 

mismatch between the desired PSF and actual PSF. Figure 5.21 illustrate 4 examples of 

the relation between the actual PSF and the target PSF with different values of λ. Very 

small values of λ, such as le-18 are required to obtain a close match between target PSF 

and actual PSF. As the value of λ increases, the actual PSFs become broader than the 

desired one. To compare curves of error between the target PSF and actual PSF for 

different of FWHM target PSFs, curves of mean square error between the target PSF and 

actual PSF corresponding to the target PSF FWHM with range from 0.05cm to 20cm are 

displayed in the figure 5.22. From comparison, as the value of λ less than le-15, the mean 

square error between the target PSF and actual PSF is less than 1e-20. Therefore, in the 

following research, the value of λ is set to 1e-20, the error between the target PSF and 

actual PSF is negligible, and the two point source functions are essentially identical.  
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desired point source image fwhm=1cm pixel-size=0.4cm lambda=1e-18
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desired point source image fwhm=10cm pixel-size=0.4cm lambda=1e-5
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(d) 

Figure 5.21 Comparison of target and actual point source image and their profiles for 
different target FWHM and λ.(a) fwhm=1cm, λ=1e-5; (b) fwhm=1cm, λ=1e-18; (c) 
fwhm=10cm, λ=1e-5; (d) fwhm=10cm, λ=1e-18. 
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Figure 5.22 Comparison curves of mean square error between target PSF and actual PSF 
corresponding to the FHWM of target PSF from 0.05cm to 20cm with different value of 
λ. (i.e. 1, 1e-5, 1e-15, 1e-20). 
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5.3 Performance Analysis by Modified Uniform Cramer-Rao Bound 

In this section we use the performance evaluation and system modeling tools 

described in Chapters 3 and 4 to compare imaging performance of a Compton camera and 

a collimated Anger camera for imaging the 364.6keV gamma-rays from 131I. The 

computational methods include the various techniques employed to reduce computation 

time and memory requirements. Performance is quantified in terms of the M-UCRB for 2 

and 3-dimensional objects of varying size.  The bound was calculated for the central 

pixel to ensure that the assumption of shift invariance for the bound calculation was 

justified. 

5.3.1 Effects of Performance due to Objects Size 

The imaging performance of Compton imaging systems is highly objects 

dependent. Because of the multiplexing of information, larger objects will have noisier 

reconstructed images even though they have the same number of detected photons per 

unit object volume for a planar object. This will also be manifested by higher bounds on 

variance for a given desired FWHM. For evaluating the effects of object size, the 

simulated Compton camera is the same as that described in Chapter 2.  The Silicon 

detector has perfect resolution, that is, electronic noise and position blur are not 

considered. Therefore, detected energy is only blurred by the Doppler broadening. The 

NaI detector is also modeled with perfect spatial resolution and is located 10cm away 

from the first detector. The objects are uniform disks 26cm, 13.2cm and 6.8 cm diameter. 

The distance from the object to the first detector is 10cm. The center of object, first 

detector and second detector are aligned on the same axis. The calculated M-UCRB for 

three disk objects with identical FOV and image space are displayed in Figure 5.23. The 

pixel size in all three cases is 0.4cm×0.4cm, so the reconstructed image sizes are 65×65, 

33×33 and 17×17 pixels. 

As mentioned before, the M-UCRB shown in the figure 5.24 is calculated on a 

per-detected-photon basis. However, considering a real application, the count rate will 

increase approximately as the square of the disk diameter for the same tracer 

concentration. Using the 26cm disk as a reference, the relative number of detected events 

for the 13.2cm and 6.8cm diameter disks are 0.2578, 0.0684. Therefore, the M-UCRB for 
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the three discs normalized to the same detection period are shown in Figure 5.24. As 

demonstrated in Figures 5.23 and 5.24, for the same number of detected events and the 

same imaging time, the bigger object has the higher variance bound and worse 

performance comparing with the smaller object. 
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Figure 5.23 Mean MUCRB per detected photon for the three disk objects with diameters 
of 26cm, 13.2cm and 6.8cm and the matched FOV with sizes of 65×65, 33×33 and 17×17 
pixels, respectively. (Pixel size is 0.4×0.4cm2). 
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Figure 5.24 MUCRB for 26cm, 13.2cm and 6.8cm diameter disks normalized to the same 
imaging time for ideal detectors. 
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5.3.2 Effects of Silicon Detector Energy Resolution on Performance 

 The MUCRB curves for different energy resolution of the crystalline silicon 

detector for the incident photon energy of 364.4keV are displayed in Figure 5.25. The 

silicon detector energy resolution is an important factor in determining performance of a 

Compton imaging system. Low energy resolution, i.e. larger FWHM, severely degrades 

the quality of reconstructed images. This is especially true for low energy photons. As 

reported in [114], for an incident photon with 140.5keV energy, a silicon detector with 

perfect energy resolution and considering only the effect of Doppler broadening, a 

detector with 1keV FWHM energy resolution and perfect spatial resolution will further 

increase bound on variance of the reconstruct image about 240%. For the higher energy 

of 364.4keV incident photons, however, mean relative variance degradation in energy 

resolution of 1keV and 2kev FWHM are about 4.7%, 16%, respectively, compared to a 

perfect detector. 

0.5 1 1.5 2

10
3

10
4

Modified Uniform Cramer-Rao Bound (Silicon Detector Energy Resolution)

FWHM(cm)

V
ar

ia
nc

e

FWHM=0Kev
FWHM=1Kev
FWHM=2Kev

 
Figure 5.25 M-UCRB curve for the center pixel of the 26cm diameter uniform disk with 
different energy resolutions of crystalline silicon detectors. The incident photon energy is 
364.4keV. The bound curve with 0keV FWHM is the effect of Doppler broadening. 
 

5.3.3 Effects of Silicon Detector Spatial Resolution on Performance.  

The spatial resolution of the silicon detector is an important parameter that can 

contribute to the uncertainty in the scattering angle and further influence the 

reconstructed image quality. Since the silicon detector studied is a pixel-pad based silicon 
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sensor, the spatial resolution is determined by the pixel size. Even though small pixel size 

can improve spatial resolution significantly, a moderate size pixel is desired in this 

application to decrease the complexity of fabrication and probability of scattered 

electrons being detected in multiple pixels. For this research, the pixel sizes under 

consideration are 1.4mm, 2mm, and 3mm. thus the relative variance of spatial resolution 

are 0.1633mm, 0.333mm and 0.75mm, respectively. From Figure 5.26, the variance 

bound curves increase, i.e. imaging performance decreases, as silicon detector spatial 

resolution worsens. However, for the 1.4mm FWHM resolution of the silicon detector 

currently used, the variance bound is almost equal to the variance bound for a silicon 

detector with perfect spatial resolution, and the mean relative error is about 2.15%.  

 
Figure 5.26 M-UCRB curve for the center pixel of the 26cm diameter uniform disk with 
different spatial resolutions of crystalline silicon detectors. The incident photon energy is 
364.4keV. The bound curve with 0mm FWHM shows the effect of Doppler broadening 
only. Lower figure is expanded linear representation of upper curves from 1 to 1.5cm 
FWHM.  
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5.3.4 Performance Comparisons of Compton Imaging system and the Anger 

Camera with HEGP Collimator 

 In this section, the performance of the Compton imaging system and the Anger 

Camera with HEGP collimator for imaging 364.4keV photons are analyzed and 

compared using the M-UCRB. The simulated systems and system models of both 

imaging systems were introduced in chapter 2 and chapter 4, respectively. As given in 

Chapter 2, the average sensitivity of the studied Compton imaging system is around 23 

times that of the Anger Camera with HEGP collimator for imaging the 131I photons. 

5.3.4.1 Two Dimensional Thin Disk Object 

The object simulated is the 26cm diameter disk with uniform activity shown in 

Figure 5.17. The reconstruct image is 65×65 pixels with a pixel size of 0.4cm by 0.4cm. 

The disk faces the imaging system and the center of disk is aligned with center of the 

detector.  It is located 10 cm from the collimator of the Anger camera and 10 cm from 

the first detector of the Compton imager as same as illustrated in Chapter 2.  The center 

pixels of the disk are selected for evaluation.   

Three MUCRB curves and MUCRB ratio of one event for the Compton imaging 

system and Anger camera are displayed in figure 5.27 and figure 5.28, respectively, in 

which the Anger cameras with HEGP collimator is illustrated by two mathematical 

models. The Anger camera modeled with a pure Gaussian response according to the 

specification of Angus Anger Camera, its FWHM is 12.6mm[114], has better 

performance when the FWHM of the desired PSF is larger than 1cm, and the ratio of 

MUCRB on variance is around 9. This indicates that the sensitivity of the Compton 

Imaging system must be about 9 times greater than the Anger Camera to obtain similar 

performance. However, as previously mentioned, a pure Gaussian response cannot be 

achieved for higher energy photons that penetrate the septa and scatter in the collimator. 

Following the Equation 4-2,3,4 and 5, the coefficients AGauss,σGauss,Aexp and λexp of PSF 

function are 0.0164,5.22, 0.0021 and 0.0235, respectively. Therefore, as these figures 

illustrate, when the FWHM of the desired PSF is less than 1.3cm, the Compton imaging 

system significantly outperforms the collimated Anger camera. At the lowest 

reconstructed resolution, the MUCRB curves for the two systems with identical 
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sensitivity are close with a ratio are around 1.1. Therefore, considering the higher 

sensitivity, of the Compton Imaging system, its performance is about 20 times over the 

Anger Camera for detecting 364.4keV photons for the same imaging time. 
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Figure 5.27 M-UCRB curves of one event for a Compton imaging system and an Anger 
camera with HEGP for imaging 364.4keV photons. The variance in center pixel intensity 
of the 26cm diameter uniform source disk is evaluated. The Anger Camera with HEGP 
response is modeled as a pure Gaussian function (FWHM=12.6mm) and as a Gaussian 
plus exponential tails (AGauss=0.0164,σGauss=5.22,Aexp=0.0021,and λexp=0.0235) that more 
accurately represents the collimator response for 360keV photons. 
 

 
Figure 5.28 The variance ratio of M-UCRB of one event for a Compton imaging system 
over Anger Camera with 2 HEGP collimator models. 
 



136 
 

5.3.4.2 The Three Dimensional Cylindrical Object 

 The reconstruction domain for a 3D object study was 20cm×20cm×20cm 

segmented into 65×65×65 pixels. Each pixel is a 0.31cm cube. The simulated object was 

a uniform cylinder with diameter of 20cm. The central axis of the cylinder is parallel to 

the surface of the detector, and the distance between the axis and detector surface is 

14cm. The Object was rotated in steps of 1deg increments for calculating the 3D Fisher 

information matrix for a total of 360 degrees. 

 The central element in image is selected to calculate M-UCRB, and the number of 

event for calculating FIM is averaged to one. As shown in figure 5.29, for the 3D 

tomography case, the Compton imaging system achieves a substantially lower bound on 

variance than the collimated Anger camera with HEGP per detected photon. Compared 

with Anger camera with HEGP from curves, the minimum ratio between two bound 

curves is about 1.9 and around 1.4 cm (FWHM). Also benefiting from the higher 

sensitivity of Compton imaging system, Compton imaging system absolutely 

outperforms the Anger Camera.  For the 3D case, linear integral and conic integral are 

employed to reconstructing image and calculating FIM for Anger camera and Compton 

imaging system, respectively. Comparing with the M-UCRB in 2D case, the effects of 

these integrals induce more degradation on the performance of Anger Camera than that of 

Compton imaging system.   

 
Figure 5.29 M-UCRB curves of one event and central element for Compton imaging 
system and Anger camera with HEGP for detecting 364.4keV photons. The source object 
is 3D cylinder with diameter of 20cm and height of 20cm with same number of counts.  
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5.4 Performance Comparison Using Reconstructed Images  

Figure 5.30 illustrates a simulated two dimensional thin sheet phantom with 131I 

that was placed 10cm from the front surface of the two detectors. The diameters of hot 

spots on the phantom are 0.6cm, 0.8cm, 1cm, 1.5cm, 2.0cm and 2.4cm. The intensities of 

hot spots are uniform and the background activity is zero. 
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Figure 5.30 The simulated 2d thin sheet phantom. The diameters of hot spots are 0.6cm, 
0.8cm, 1.0cm, 1.5cm, 2.0cm and 2.4cm. The intensities of hot spots are uniform and a 
background activity is 0. 
 

The images with 65 by 65 0.308cm pixels were reconstructed using MLEM for 

both proposed Compton imaging system and the Anger camera with HEGP. The restored 

images by different number of iterations are compared in the appendix. The images 

restored using 100 iterations are analyzed in this section.As shown in Figure 5.31, the 

three million events were acquired for the Compton imaging system and its image was 

reconstructed by list-mode MLEM. Since the detection sensitivity of Compton imaging 

system is about 20 times of the Anger camera with HEGP, 200 thousand events were 

acquired and binned to a forward projection matrix of 520 by 520 for Anger Camera with 

HEGP and its reconstructed image was displayed in Figure 5.32. For comparison, the 

image for Anger Camera with HEGP with three million event was also shown in Figure 

5.33. Comparing Figure 5.31 with Figure 5.32 and 5.33, the Compton image system 

performance is clear better than the conventional Anger camera, even using the same 

number of events. In particular, hot spots less than 1.0cm diameter cannot be 

reconstructed by Anger camera with HEGP, since information provided by this imaging 
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system is not sufficient to recover such small hot spots. However, smaller hot spots 

detected Compton image system can be reconstructed effectively. 

 
Figure 5.31 The reconstructed image for Compton imaging system for 100 iterations of 
the list-mode MLEM algorithm with 3 million events. The diameters of hot spots are 
0.6cm, 0.8cm, 1.0cm, 1.5cm, 2.0cm and 2.4cm. 

 
Figure 5.32 The reconstructed image for Anger Camera with HEGP for 100 iterations of 
the bin-mode MLEM algorithm with 200 thousand events. The diameters of hot spots are 
0.6cm, 0.8cm, 1.0cm, 1.5cm, 2.0cm and 2.4cm. 
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Figure 5.33 The reconstructed image for Anger Camera with HEGP for 100 iterations of 
the bin-mode MLEM algorithm with 3 million events. The diameters of hot spots are 
0.6cm, 0.8cm, 1.0cm, 1.5cm, 2.0cm and 2.4cm. 

5.4 Conclusion  

For 364.4keV photon imaging, the performances of both systems were compared 

using M-UCRB for 2D disk, and also by reconstruction image for a disk object with 

different size of hotspots in this chapter. Given the same number of imaged events, both 

systems have similar performance as the FWHM of the desired PSFs is larger than 1.3cm. 

However, as the FWHM of desired PSFs or the diameter of hotpot is less than 1.3cm, the 

Compton imaging system has much better performance than conventional Anger Camera 

with HEGP collimator. From the M-UCRB comparison for the 3D cylinder object, the 

Compton imaging system has better performance than Anger Camera with HEGP even 

for desired PSF with larger FWHM. It is because that the linear integral for imaging on 

Anger Camera greatly degrades the overall performance than imaging 2D disk, even 

though the conic integral also degrades the performance of Compton imaging system. 
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CHAPTER 6 

Distributed Image Reconstruction and Real time Signal Processing for Pileup 

Correction at High Count Rates 

Previous chapters have demonstrated that a Compton camera medical imaging 

system can obtain improved performance compared to a conventional collimated Anger 

Camera for tumor imaging with radiotracers such as 131I that emit high energy photons. 

However, for actual clinical applications, two additional problems must be addressed: 

First, image reconstruction time for the MLEM algorithm must be reduced, and second, 

pulse pileup resulting from high count rates in the second detector need to be avoided for 

correct position and energy estimation. In section 6.1, a parallel MLEM algorithm based 

on a chess-board data partition is introduced to speed up image reconstruction for a 

Compton medical imaging system using a multiple CPU cluster with a message passing 

interface (MPI). In section 6.2, a digital real time signal processing design for energy 

extraction and pileup reduction for the scintillation detector in the prototype Compton 

system is described and evaluated. 

6.1 Parallel Image Reconstruction 

6.1.1 Introduction 

After the Compton scatter camera was first introduced by Todd [115], there were 

various image reconstruction methods developed for this imaging system.  

The direct or analytical approach includes simple back-projection and filtered 

back-projection (FBP). For a Compton imaging system, each measurement only 

determines the source location to lie within a back-projection cone of finite thickness. 

Multiple back-projection cones from different measured events corresponding to the 
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same source point intersect at the source position on the image plane. To identify the 

image pixels that intersect the back-projected cone, the source space tree algorithm was 

proposed in [116] and another, faster approach to determine the intersection from list-

mode measurements by solving a quadratic equation was presented by Wilderman [103]. 

Since a simple back-projection algorithm generates a very poor image, it is primarily 

used to estimate an initial image for an iterative image reconstruction. 

Filtered back-projection algorithms have been investigated for 2D and 3D 

Compton image reconstruction. Compared with the parallel projection imaging of 

original parallel line SPECT, which back-projections into the image space are groups of 

straight lines and are shift invariant, the back-projection of Compton events onto the 

source plane is a conic section and is spatially variant. The principle method for 

implementing FBP for Compton imaging is: to convert the conical integrals from the 

measured data into spherical coordinates using spherical harmonics, then, using known 

FBP reconstruction techniques, to synthesize the 2D or 3D source distribution from these 

projections. As illustrated in [117], however, the proposed reconstruction algorithm 

requires a complete set of conic projections collected over an infinite plane and the 

scattering direction is restricted to be perpendicular to the second detector. Basko et 

al.[118] first presented a method to convert the conic surface to spherical coordinates 

using spherical harmonics, however, this did not account for the scatter angle 

distribution. Parra [119] improved the above algorithm by considering the Klein-Nishina 

distribution, but this method requires a complete data set of all possible scattering angles. 

Gunter[120] applied a fast FBP algorithm based on a specially defined absorption 

detectors that would be sensitive to scattering angles from 0 to 180 degrees. However, 

sampling a complete data set with a full range of scattering angle is unpractical since it 

would require an infinitely long cylindrical second detector[121]. All of the above 

mentioned direct or analytical approaches are based on the mathematical assumption of 

spatially invariant and complete sampling. Furthermore, when imaging gamma rays with 

energy lower than 511keV in medical imaging, the scattering angular uncertainty due to 

Doppler broadening and finite spatial and energy resolution on both detectors needs to be 

concsidered in the image reconstruction algorithms.  
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Since no straight-forward mathematical method has been found to simply express 

the relationship from the original object to conic projections, iterative algorithms have 

been investigated for this application. The principle of iterative reconstruction algorithms 

is to estimate the original source distribution by consecutively revising the estimate, in 

which the new estimate is generated by adjusting the current estimate according to the 

difference between the measurements and a set of projections based on the current 

estimate. Although the computational cost of iterative algorithms is a concern and errors 

in the reconstructed image are sensitive to the accuracy of the system model and system 

sensitivity[122], the quality of reconstructed images is superior to the results of the direct 

approach.  

The Algebraic Reconstruction Technique (ART) and Simultaneous Iterative 

Reconstruction Technique (SIRT), which is a variation of the standard ART, were 

presented in [123, 124] to reconstruct images from Compton camera projection data. 

In[125], Shepp first applied Maximum Likelihood Estimation (MLE) and its 

corresponding iterative algorithms, i.e. expectation maximization (EM) algorithm to the 

field of emission tomography for estimating the incomplete data. The MLEM is an 

optimization method, by which the best solution is estimated by maximization of the 

likelihood of the reconstructed image. The maximum likelihood estimation (MLE) 

algorithm was first implemented for the Compton camera image reconstruction by 

Hebert, Leahy and Singh [102, 126], in which the physical and the Poisson nature of 

radioactive nuclear decay were taken into account. Because the number of measured 

events is far less than the total number of potential detector bins, List-mode Maximum 

Likelihood Reconstruction for Compton camera data was described by Wilderman [111] 

for C-SPRINT imaging. A Penalized MLEM algorithm[127] was also proposed to reduce 

the statistical noise as the number of iterations increased in the standard MLEM. 

There are two computational problems that must be solved in order for MLEM or 

List-mode MLEM to be considered practical for Compton Camera image reconstruction.  

First, since the MLEM algorithms converge slowly, many iterations are required to reach 

a satisfactory solution, and each iteration involves multiplication of large matrices.  

Second, a very large numerical memory is required to store the system matrix, acquired 

data, and reconstructed images. This computational issue also depends on the number of 
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measured events, around 710 ~ 810  events in a typical study. In [128], the authors 

investigated the space-alternating generalized EM algorithm to accelerate convergence by 

statistical considerations in which a sequence of small hidden data spaces are used 

instead of one large complete-data space which requires a much larger memory space.  

Parallel computation for MLEM algorithms for PET or SPECT requires specially 

designed hardware architecture. A parallelized EM algorithm was investigated in [129], 

in which the forward projection and back projection are approximated by profile 

convolution and calculated on a very large scale integration (VLSI) based systolic 

structure. In [130] a combination of parallel rotations and parallel generation of Gaussian 

convolutions were employed and the parallelization was realized on a mesh-connected 

single-instruction and multiple data system. To implement 3-D PET image reconstruction 

on an interconnected shared memory system, Chen and Lee [131] investigated the 

parallelized MLEM algorithm using 3 different data partitions: “partition-by-box”, in 

which all computation of one pixel is completed on one processing units (CPU) for both 

forward projection and back projection; “partition-by-tube”, where computation of a 

pixel vector is completed by one CPU for both forward projection and back projection; 

and “partition-by-box and tube” where the first two data partition scheme are used by 

forward projection and back projection, respectively. 

The above implementations are limited for practical application since they are 

based on special purpose parallel computation platforms. For this reason we have 

implemented parallel computation of MLEM on an MPI based, net-connected cluster. 

Forward and back projections inherent to all reconstruction methods can be easily 

partitioned among many processors. This type of parallel platform is easily implemented 

and widely used for many mathematical and engineering computations. Since message 

passing is slow relative to the CPU computation and the total running time is the sum of 

CPU execution time and message passing time, an efficient parallel algorithm depends on 

data partition to optimize the trade-off between execution time (ET) and message passing 

time (MPT). This implementation was based on one master node and multiple work 

nodes[132], which does not permit balancing execution and message passing time. 

Therefore, Parallel MLEM based on a chess-board data partition is presented for our 

application. 
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6.1.2 The List-mode Maximum Likelihood Expectation Maximization Algorithms 

Image reconstruction can be intrinsically regarded as a parameter estimation 

problem. The problem is to estimate the unknown distribution of the radiotracer from the 

measured noisy data. As mentioned above, MLE has been widely employed in emission 

image reconstruction. The benefit of this statistical reconstruction is that the Poisson 

nature of photon counting noise and the physical model of the detection system are 

represented in the likelihood function. In practice, an iterative method, i.e. the EM 

algorithms, is used to find the maximum of likelihood solution. For the Compton camera, 

since the measured data are much more sparse than the number of detection bins, the list-

mode MLEM algorithm exhibits a significant practical advantage over bin-mode MLEM 

algorithms. In this section, the MLEM algorithm is derived according to a statistical 

model that describes the photon noise characteristics involved in Compton camera 

detection. Then, the derivation of list-mode MLEM is described. 

 

6.1.2.1 Linear model for Emission Imaging Systems 

The goal of tomographic imaging is to estimate the 3-dimensional distribution of 

a radiotracer in a human subject by measuring the flux of gamma-rays reaching a detector 

that is generally external to the patient 

The photon-emission and detection process is assumed to be a linear process. 

Therefore, the image reconstruction problem is essentially a linear inverse problem[133] 

of the following form: 

∫=
R ii xdxxay )()( λ ,        (6-1) 

where iy  is the ith projection measurement, )(xai  is the PSF of the ith measurements 

for a source γ-ray emitted from x and )(xλ  is the radioactivity volume concentration at 

x in the object. 

 In practice, however, estimating a continuous distribution )(xλ  from a finite 

number of measurements iy  is an ill-posed problem. Furthermore, the reconstructed 

images are represented by a discrete-domain function. Therefore, the continuous quantity 

)(xλ  is represented by jλ .  
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 ∫=
R jj xdxbx )()(λλ          (6-2) 

In general, the pixel or voxel basis function )(xbj  is selected as piece-wise constant 

within a small, non-overlapping square or cube, respectively. The estimated number of 

emissions from one pixel per unit time is represented as the intensity of the pixel in the 

reconstructed image. Therefore, the discretized linear model of photon emission imaging 

process can be illustrated as,  

 λA=y          (6-3) 

T
Mi yyyyy ],,,,,[ 21 ……=  is a vector of measurements and each element iy  is the 

number of counts accumulated in the ith detector bin and the total number of detector 

bins is M. T
Nj ],,,,,[ 21 λλλλλ ……=  is the vector of the parameterized object, each 

item jλ  stands for the intensity in the voxel j, and total number of pixels is N. A is an 

M×N matrix called the system response matrix. Each element ija  in the matrix A is a 

weighting factor representing the mean contribution of voxel j in the object to the number 

of counts detected in detector bin j or the probability that a photon emitted from voxel j in 

the object is detected in bin j. To evaluate the source distribution directly requires 

inversion of A , that is y1−= Aλ . However, this direct method is not practical because 

1−A  may not exist or may have multiple solutions. Even though 1−A  may have unique 

solution, the direct inversion will amplify the statistical noise mostly due to the low count 

rates in photon-emission imaging. Furthermore, a direct solution is hardly achieved that 

takes into account the correct physical model of the Compton camera or even the 

collimated camera with collimator penetration whereas the iterative likelihood solution 

can. Because of these disadvantages of direct inversion, the MLEM algorithm is used to 

find the best estimate of a much less noisy solution by fitting a given criterion that is the 

maximization of the likelihood of the reconstructed image. 

6.1.2.2 The MLEM Algorithm for Emission Imaging Systems 

1. Maximum Likelihood Estimation 
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The Maximum Likelihood Expectation Maximization algorithm with Poisson 

statistical model was first introduced to the field of photon-emission image reconstruction 

by Shepp and Vardi[134] and by Lange and Carson[135]. This algorithm consists of two 

components: one is the ML criterion, by which the best estimate λ̂ of the unknown 

object λ  must have the greatest probability of producing the measurement y . This 

strategy can be written as follows: 

)(maxargˆ
0

λλ
λ

yp
≥

=           (6-4) 

The second component is using the EM algorithm[136] to find the solution that satisfies 

the ML criterion. 

During a fixed observation time, the total number of photons emitted from radio-

nuclei is a random variable with a Poisson distribution. Therefore, the total number of 

photons emitted from voxel j is also Poisson distributed with mean value of this random 

variable jλ . 

Because the detection process is also a Poisson process[109], in a fixed 

measurement time, the total number of measured photons in each detector bin i is also a 

Poisson random variable. Since jija λ  and jλ  are both independently Poisson 

distributed, the mean number of photons iy  detected in detector bin i is the sum of the 

mean number of photons emitted from all voxels times the transition probability aij, that 

is  

∑
=

=
N

j
iiji ay

1
λ ,                (6-5) 

where the N is the number of pixels and transition probabilities aij is an element in the 

system response matrix that describes the probability that a gamma ray emitted from 

voxel j is detected in the ith detector bin. 

Since the number of detected photons in detector bin i results from the photons 

emitted from all voxels it is also a Poisson random variable, and the probability of 

observing iy  events in the ith bin is given by 

Mie
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)()(~ ==⇒ −λ                 (6-6) 
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Assuming the number of detected photons in all detector bins are independent 

variables, the conditional probability )( λyP , the likelihood of observing measurement 

y  given the source distribution λ  is derived by multiplying all of the individual 

probabilities )( λiyP . Therefore, the likelihood function is 

∏∏
=

−

=

==
M

i

y

i

y
i

M

i
i

i
i

e
y

yyPyP
11 !
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Maximizing the likelihood function is equivalent to finding the maximum of the 

log-likelihood function, the log-likelihood function is used to simplify the calculation of 

maximization. From above equations, the log-likelihood function is expressed as follows, 
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Therefore, according to the maximum likelihood criterion, the estimate of the 

object λ̂ , which gives the highest probability of generating y , is also the estimate for 

which )( λyL  is a maximum. 

The straightforward way to find the local maximum of λ  is to set the derivative 

of )( λyL  equal to zero. 
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where ∑
=

=
M

i
jij sa

1

 is the detection sensitivity, which is the probability that a photon 

emitted from pixel j will be detected anywhere. 

2. Expectation Maximization Algorithm  

Finding the local maximum of positive λ  by direct solution of Eq. (6-9) is a 

complicated and difficult process since Eq. (6-9) is a nonlinear equation. The current 

approach is the EM algorithm[134-136], by which the MLE of λ  may be achieved 

asymptotically via an iterative method. In each iteration, the EM algorithm is 

decomposed into two-steps. The first step is the expectation step (E step). In this step, the 
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conditional expectation of the likelihood functions is obtained in terms of the complete 

data given the measurement y  and the estimation nλ̂  from the previous iteration. The 

second step is the maximization step (M step), in which the maximum estimation 1ˆ +n
λ  

of the current iteration can be obtained by solving the derivatives of the expectation 

function deduced from the E step. 

To satisfy the requirement for a complete data set for the EM algorithm, the 

random variable ijx  is involved, and is defined as the number of photons emitted from 

jth pixel in the object and detected in the ith detector bin. Each ijx  in the complete data 

set x remains an independent Poisson distribution. Clearly, the relationship of ijx  and 

iy  can be expressed as: 
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And, the log-likelihood in terms of x  is written as follow, 
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In the E step, therefore, the conditional expectation of above log-likelihood with 

respect to the measured data and the estimation nλ̂  from last iteration is,  
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 In the M step, the maximum estimate 1ˆ +nλ  can be calculated by solving the 

derivative of Eq.(3-12) and setting it to zero. 
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 is the detection sensitivity. 
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 Consequently, combining Eq. (3-14) and (3-13), the final MLEM algorithm for 

one iteration is, 

 ∑
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3. Properties of the MLEM algorithm  

When the number of observed data is large enough, the Maximum Likelihood 

estimator is asymptotically efficient as shown by H. V. Trees [137]. This means that ML 

estimators can achieve unbiased estimates with minimum variance in comparison to other 

unbiased estimators. However, in the real application of image reconstruction, this 

minimum variance is not acceptable since the image noise after reconstruction remains 

too high because the number of detected photons is too small. Several methods have been 

proposed to reduce image noise by introducing a certain amount of bias Methods, such as 

stopping the iterations in MLEM before convergence to the actual ML solution[138], 

adding a penalty term to the likelihood function[139], or post-smoothing the image[140]. 

Considering the properties of the MLEM algorithm described in Eq. (6-15), there 

are at least five advantages for the image reconstruction application: 1) This method is 

very simple to implement on a computer; 2) The total number of estimated photons in 

each iteration is not changed and remains equal to the total number of detected photons; 

3) The MLEM algorithm automatically constraints the estimates in each iteration to be 

non-negative; 4) Because the log-likelihood function with Poisson distribution is 

concave, the MLEM algorithm is guaranteed to converge to a global maximum point if 

the total number of measurements is not less than the total number of pixels. However, 

the convergence rate of the MLEM algorithm is slow. Generally, an acceptable solution 

requires 30-100 iterations[135]. 

6.1.2.3 The List-mode MLEM Algorithm. 

The MLEM algorithm illustrated in the last section is used for imaging systems 

with a bin-mode projection data set. For example, in a conventional Anger camera based 

SPECT, each measurement consists of a two dimensional matrix of projections of the 
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object distribution onto the detector plane at some angle, theta. Each element in the 

matrix is referred to as a detector bin. The intensity of a bin is the number of events 

recorded in this bin. In general, the number of measured events is substantially more than 

the number of detector bins. The memory size required to store the system response 

matrix, is equal to the product of number of detector bins and number of image pixels, is 

acceptable.  

However, for PET imaging systems and especially Compton camera imaging 

systems, the number of detected events is far less than the total number of system 

elements or detector bins. Consequently the required memory is far beyond that of a 

general purpose computer. For a typical study, the number of detected event is around 

107, significantly less than the total number of system elements. Therefore, instead of 

using an impractical and inefficient bin-mode MLEM algorithm for the Compton camera 

image reconstruction, the list-mode MLEM algorithm is an attractive alternative [108, 

111, 126, 141]. In the list-mode MLEM algorithm for a Compton camera system, the 

acquired events are indexed by the first detector position, second detector position, and 

are energy deposited in the first detector, are stored in a list. 

In the list-mode MLEM algorithm, the image reconstruction task is to find the 

best estimate, λ̂ , of a discrete source distribution according to the finite measurement 

data set 'A . The total number of discrete source elements (pixels or voxels) is N, denoted 

as },,,,{ 21 Nj xxxx …… . The unknown discrete source distribution λ  is denoted as 

},,,,{ 21 Nj λλλλ …… . The source element jx  has source activity is jλ . The survival 

probability or detection sensitivity, js , is the corresponding probability )|( jxDP  that a 

photon emitted from source elements jx  is detected. The measurement data set consists 

of M measured events },,,,,{ '''
2

'
1 Mi AAAA …… , and, each measurement has an independent 

identical distribution. 

 The likelihood function for the list measurements is  
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where )|( ' λiAp  is the conditional probability density of measuring a single event 

'
iA given that this event is generated in the objectλ . And 

 ∑
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'' )|,(),|()|( λλ       (6-17) 

where, the probability density ),|( ' DxAp ji  is a detected event generated from bin jx  

and leads to a measurement '
iA  in the detector. )|,( λDxP j  is the probability that the 

detected event originated in the source bin j given the source distribution λ , and is equal 

to 
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Therefore, the log-likelihood based on the list of measurements '
iA  is[142]: 
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Similar to the bin-mode ML estimation, estimating the unknown object distribution λ  

in list-mode requires finding the maximum of Eq. (6-19) with respect to λ  with a non-

negative constraint. That is,  

),,,(maxarg ''
2

'
10 λλ λ MAAALv …≥= .      (6-20) 

Consequently, the list-mode ML estimation can also be solved using the EM iterative 

algorithm. After combining the E step and M step, the estimate of 1+n
jλ  is 
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In the above, sj is the survival probability that a photon emitted from source element j 

would be detected anywhere; and aij is transition probability of the measured event '
iA  

given that it was emitted from the xj source element, which equals the probability density 
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function of measurement '
iA  given a detected photon emitted from xj combined with the 

survival probability[141]. 

In comparison to the bin-mode MLEM Eq. (6-15), each measured event in the 

list-mode MLEM may be considered as a unique and infinite small bin, thus 1→iy  for 

each detected photon and 0→iy  for the infinite number events not be detected in the 

current measurement. The value M is the total number of the detected measurements 

instead of the total number of detector bins. However, since the measurement A  does 

not span the space of all possible events, the survival probability ∑
=

≠
M

i
ijj as

1

, must be 

summed over the transition probabilities of all possible measurements originating in 

source element j, including the events for which 0→iy . 

6.1.3 Parallel MLEM algorithms 

As mentioned above, the bin-mode MLEM and list-mode MLEM algorithms are 

potential image reconstruction methods for both a conventional collimated Anger Camera 

and Compton Camera. However, the MLEM algorithm poses two problems to practical 

application using a single computer[143]. First, since convergence of the MLEM 

algorithm is slow and, as mentioned previously, the number of measured events will be 

on the order of 107. The computational burden is extremely high because of the resulting 

large matrix vector multiplication combined with the large number of iterations required 

to obtain a satisfactory estimate. The second limitation is that a very large memory space 

is required to store the matrix of transition probabilities plus the estimated image vector 

and data list. To solve this problem, historically, several parallel MLEM programming 

techniques have been applied for PET and SPECT image reconstruction. Unfortunately, 

most of these methods depend on a specially designed computational platform. For 

example, the convolution MLEM is calculated on a VLSI based systolic structure[129]; 

the MLEM parallelization is realized on a mesh-connected single instruction stream and 

multiple data stream system[130]; implementing parallelized MLEM 3-D PET image 

reconstruction on interconnection share memory system [131]; and, realizing the 
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parallelized MLEM algorithms on multiple instruction stream and multiple data stream 

based supercomputer[144, 145]. 

Another approach to parallel computation of MLEM solutions has employed a 

message passing interface (MPI) based network connected computer cluster. This MPI 

based computation platform is well suited to the intrinsically parallelizable characteristic 

of MLEM. The most important advantages of an MPI based cluster are[146]: 1) Separate 

nodes (processors or general computers) are readily connected by a high speed 

communication network; 2) The paralleled version of the algorithms can be easily ported 

to different parallel computation platforms of this type; 3) MPI supports the best way to 

manage the distributed memory and computation burden to obtain optimal performance. 

Even though MLEM inherently separates the algorithm into two steps, i.e. forward-

projection and back-projection, the computation of each step can be distributed to all 

nodes. The critical disadvantage of applying an MPI based cluster to the MLEM 

algorithm is that large amounts of data must be distributed among the nodes via the 

network between the two steps. Since the total running time is the sum of the CPU ET 

and MPT, and message passing [147] is slower than executing instructions on the CPU, 

an efficient parallelized MLEM algorithm depends on the data partition and message 

passing strategy to trade off execution time and message passing time. The optimization 

approach[132, 148] is based on the scheme of one master node with multiple slave nodes. 

This approach limits the ability to balance the execution time and message passing time.  

In this section, evaluation of the total performance based on a chess-board data 

partition is introduced first. To further reduce the total running time and utilize each node 

more efficiently, a technique of overlapping the execution and message communication is 

then described[149].  

6.1.3.1 Analysis of the Parallel MLEM Algorithm 

As illustrated in the previous section, the bin-mode (Eq. 6-15) and List-mode (Eq. 

6-21) MLEM formulas are very similar. The bin-mode MLEM formula can be considered 

as the general format. For the list mode, M is total number of measured events instead of 

the number of measurement bins, and also Yi equals 1 for each measured event. 

Therefore, the general format MLEM may be re-written as 
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where aij is the transition probability, which is an element of the system matrix P, 

describing the probability of detecting an event in the i-th detector bin given that it was 

emitted from the j-th source element. jλ is the intensity estimated in the j-th voxel, yi is 

the measured event number in the i-th detector bin or equal to 1 for the list-mode case. M 

is the number of detector bins or number of measured events in the list and N is the 

number of reconstructed image voxels. Detection sensitivity is sj.  

As described above, the serial MLEM algorithms running on a single CPU require 

unacceptable execution times and computer memory requirements. Parallel computing of 

the MLEM algorithm is necessary to enable sufficient iterations in an acceptable running 

time. Therefore, a parallel computing approach based on using a message passing 

interface on a network connected computer cluster has been investigated to solve these 

problems. 

For the MLEM reconstruction (Eq. 6-22), each iteration can be divided into four 

steps as an inherent sequence. The first two steps, the “forward projection”, map the 

image onto the detector. The following two steps perform the “back projection”. Because 

the four steps are “input after output dependent”, they must be executed serially, which 

limits execution of any two steps at the same time in parallel computing. Fortunately, 

calculation and data in each step, especially the first and third step, can be divided into 

sub-pieces and distributed to different computing nodes. The challenge of the parallel 

computation depends on the strategies of the data and task partition as well as the 

communication schemes to distribute the results among processor nodes. Parallel 

computation with the busiest CPU load and the minimum network communication time is 

regarded as the most successful and efficient procedure. This requires a tradeoff between 

the program execution time and the message passing time on the network. Therefore, a 

chessboard partition of both processor nodes and system matrix P or { }ija  has been 

evaluated to improve the whole performance of parallel ML-EM computation in the 

following section. 
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6.1.3.2 Parallel MLEM Algorithm Based on Chessboard Data Partition 

1. Master-slave based parallel MLEM algorithms 

Before presenting the chessboard data partition, execution of the parallel MLEM 

algorithm on a master-slave based platform is briefly introduced. The disadvantage of 

this method is it does not optimize the time for passing messages among the process 

nodes. 

The virtual topological master-slave architecture is shown in Figure 6.1. The 

processor consists of one master node to control the program flow, and a set of slave 

nodes to handle the tasks assigned by the master node. In the forward projection, the 

master node will partition and distribute the system matrix P or { }ija  and the previously 

estimated image vector 
n

λ to each slave-node. When this step is completed, the partial 

results on all slave nodes are transferred back to the master node which sums the partial 

results and computes )( if according to step2 in eq. 6-23. The f vector is then partitioned 

and each subset is assigned to slave nodes. Step3 of the back projection is then completed 

in each slave node. Step 4 is next executed in the master node after acquiring the partial 

results from the slave nodes to obtain a new estimation 
1+n

λ . 

During each iteration, this simple master-slave method needs to transfer the 

forward-projection results f and back-projection image results 
n

λ  between the master-

node and slave-nodes twice. Thus, the high cost of message passing will greatly influence 

the overall performance. The master node and slave nodes can not work simultaneously 

since they each must wait for the results before processing. Also, entries of the P matrix 

must be stored in each slave node for calculation of both forward and back projections. 
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Figure 6.1. The description of master-slave architecture for executing the parallel MLEM 
algorithm. The single master node and four slave nodes are interconnected by networks. 

2. Chessboard data partition based parallel MLEM algorithm 

 Clearly, the master-slave based parallel MLEM algorithm is not efficient. The key 

issue to realize a successful parallel MLEM algorithm depends on two critical factors: 

one is how to divide the system matrix P or transition probability data set { }ija  into each 

node with comparatively smaller memory capacity; another is how to reduce the 

communication time for message passing in order to decrease total running time. A 

parallel computing approach based on the chessboard data partition has been investigated 

here to optimize partition strategy. 

All computers are partitioned like a virtual chessboard with Nr rows and Mc 

columns. As shown in Figure 6.2, nodes in every row and every column are composed of 

the row group and the column group respectively to achieve efficient communication 

between the nodes in the group. The partial results are only transferred among nodes in 

the same group. The image space vector (L), measurement space vector (Y), and system 

probability matrix (P) containing all of aij are decomposed on the chessboard. For matrix 

P, the sub-matrices of P in nodes do not overlap each other, that , the assigned sub-matrix 

in one node is not changed during the whole calculation. Clearly, this kind of data 

partition is the most efficacious way to minimize local memory with minimal overlap. 

The partial results can be calculated from the assigned partial data in each node according 

to the ML-EM algorithm. By modifying the geometric shape of the chessboard, i.e. the 

number of rows and columns, according to the dimension of vector L and vector Y, 

optimal performance is obtained through the appropriate tradeoff between program 

running time and message passing time. 

The parallel MLEM algorithm flowchart is shown in Figure 6.3. For each 

iteration, the MLEM algorithm is split into two stages and four steps, which can be 
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decomposed into a partial job that can be completed in each node independently, and the 

partial results accumulated by master nodes in each row or column group. The first stage 

is the forward projection, in which the calculated vector [f(i)] is obtained from the 

previously estimated vector L and matrix P; the other is the back projection in which the 

image L is estimated from the measured data and calculated vector [f(i)].  

 

 
Figure 6.2 Illustration of Chessboard data partition for parallel MLEM algorithm. P 
matrix is the system matrix or data set of transition probabilities. The Y vector denotes 
the measured data set and the L vector is the estimated image. There are 6 processing 
nodes divided into 2 row groups and 3 column groups. 

 

At the middle of the forward-projection, in each column group, every node 

transmits the partial result to a master node; and then the final result is summed in this 

node and broadcast to all other nodes in the same group. Finally, the estimated image in 

this iteration is obtained by summing up the partial results from nodes of the same row 

group in the back projection. For example, in step 1, the nodes in the same column group 

only calculate t’(i), i.e. partial result of t(i) according to ∑
=

=
'

1

'' )(
N

k

n
kikait λ ; total 

∑= )()( ' itit  is the sum of all t’(i) of the nodes in the same column 

communication group ; and this final t(i) is transmitted from the master node to all other 

nodes in same group. Therefore, due to the structure of the EM algorithm, for the forward 

projection, the nodes only exchange results with others in the same column-group at the 

end of step1 and communication of back projection is constrained to the row group, 

which occurs at end of step3. 
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To evaluate results of the proposed parallel MLEM algorithm, the parallel 

program was executed on the parallel system located in the center for advanced 

computing at the University of Michigan with different data partitioning. The system 

consists of 128 32-bit AMD processors, and each processor has 2GB RAM. For a 

chessboard with Nr rows and Mc columns, the data for calculation are distributed into all 

computers. In each node, data with the size of L/Nr+Y/Mc+P/ (Nr+Mc) is allocated in the 

local memory space.  
 

 
Figure 6.3. Flowchart of the parallel MLEM algorithm based on the chessboard data 
partition using a message passing interface on a network connected computer cluster. 
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3. Performance evaluation for a square chessboard with different number of nodes. 

Performance of parallel MLEM algorithms for 10 iterations and a 1000×1000000 

P matrix with 1000 elements in the L vector and 1000000 measured events, is evaluated 

on the parallel platform with different numbers of processor nodes.  

The speedup rate formula is given in Eq. (6-24) 

pN

s
N T

TS = ,                       (6-24) 

N is the number of processor nodes for parallel computation, NS is the speed up, sT  is 

the total running time for serial algorithms, pNT  is total running time for parallel 

algorithm on a platform with N nodes. Another helpful criterion is speed up efficiency, 

which is  

N
Se N

N = .         (6-25) 
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Figure 6.4 Comparison of total running time for parallel MLEM algorithms on the square 
chessboard as a function of number of computer nodes from 1 to 128. The computation 
task is 10 iterations with a 1000×1000000 P matrix.  
 

The performance comparisons according to the total running time, speed up 

NS and efficiency e are illustrated in the Figures 6.4, 6.5 and 6.6, respectively. The 

parallel MLEM algorithm executing on the square chessboard data partition reduce the 

total running time as the total number of processor nodes increases. The speedup of 

parallel MLEM on 128 nodes is approximately 10 times compared to the serial MLEM 

running on a single processor. In theory, the efficiency should be proportional to the 

number of processor nodes. However, the efficiency gain is far less, especially for the as  

the number of processor node exceeds 16. This is because the communication time 
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increases with the number the number of processor nodes, and, when the node number is 

more than 32, further speedup is negligible. 
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Figure 6.5 Comparison of speedup time for parallel MLEM algorithms on a square 
chessboard as the number of computer nodes varies from 1 to 128. The computation task 
is 10 iterations for a 1000×1000000 P matrix.  
 

 
Figure 6.6 Comparison of efficiency for parallel MLEM algorithms on the square 
chessboard as the number of computer nodes increases from 1 to 128. The computation 
task is 10 iterations and 1000×1000000 P matrix.  
 
4. Performance evaluation for the different chessboard with same number of nodes. 

For chessboards with different shapes but an identical number of computer nodes, 

illustrated in Figure 6.7, the strip-shaped chessboard with one row achieves the minimum 

running time of 12s, compared to the chessboard with one column which requires 86s to 

finish execution. This is because that in the forward projection, 1000000 elements need to 

be transferred among nodes, whereas just 1000 elements need to be broadcast in the back 

projection. Therefore, the optimal data partition is 1×64, one row chessboard, for which 

the message passing time for the forward projection is trivial. 

Parallel computing for the ML-EM algorithm not only reduces the run time, but 

also decreases the local memory requirement for each computer node. In each node, data 
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with the size of L/Nr+Y/Mc+P/ (Nr+Mc) is allocated in the local memory space. If the 

dimension of the measurement vector is much larger than the dimension of the image 

vector, the chessboard with one row will obtain the best performance with the least 

communication time. 

 
Figure 6.7 Performance comparison of parallel MLEM algorithms for 10 iterations and 
1000×1000000 P matrix for different shape chessboards ranging from one column to one 
row. As the number of measured events become much greater than the number of 
estimated elements, a strip-shaped chessboard with one row achieves the minimum 
running time.  
 

6.1.3.3 Overlapping the Computation and Communication 

As described in the last section, when the number of measured events M is 

considerable more than the size of the estimated vector N, such as for Compton camera 

image reconstruction, the one row data partition achieves the minimum running time by 

eliminating the communication required between step 1 and step 2 in the forward 

projection. Thus, reducing the message passing time in the back projection between step 

3 and step 4 becomes the major issue to further decrease the total running time. 

The technique of overlapping computation and communication [150] has the 

potential to solve this problem since computation in processor nodes and communication 

among nodes can take place simultaneously because the processor for computation and 

hardware for communication are independent of each other. 

To realize the overlapping of computation and communication, in each node, step 

3 and step 4 in the original parallel MLEM algorithm, the associated data are split evenly 

into two small parts, that is: 
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Therefore, as illustrated in Figure 6.8, the communication of step 3a can overlap 

the computation of step 3b, and computation of step 4a can overlap with the 

communication of step 3b. The original total running time for the method without 

overlapping of computation and communication will be, 

bstepastepstepbcommacommcommbstepastepstepstepcommstep tttttt 444333333211 +=+=+= +++++ .  

And the total running time for the parallel MLEM with overlapping will decrease to 

bstepastepbcommacommbstepastepstepcommstep ttttttttt 443333211 )max()max( ++++++++  
Because a single row chessboard used here eliminates the communication for 

transporting the results of step 1, the 1commt  equals zero. 

 

 
Figure 6.8 Illustration and comparison of parallel MLEM without communication and 
computation overlapping and with communication and computation overlapping. 

 

The comparison of total running time and speed up of parallel MLEM algorithm 

with/ without overlapping of computation and communication is shown in the Figure 6.9 

and Figure 6.10, respectively. The program with 1000×1000000 P matrixes was executed 

for 10 iterations on the one row chessboard with different processor nodes. As 
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mentioned, for the one row chessboard, transporting 1000000 elements between the step 

1 and step2 does not occur. Therefore, the communication task is just transporting 500×2 

elements during the step3b and step 4a. Even though the load is not very heavy, the 

program with overlapping communication and computation further saves about 5%~10% 

of total running time compared to the process without overlapping. 
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Figure 6.9 Comparison of total running time of parallel MLEM algorithm with/ without 
overlapping of computation and communication. The task is 10 iterations and 
1000×1000000 P matrix on the one row chess board with different numbers of computer 
nodes.  
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Figure 6.10 Comparison of speed up for parallel MLEM algorithm with/ without 
overlapping of computation and communication. The task is 10 iterations and 
1000×1000000 P matrix on the one row chess board with different numbers of computer 
nodes. 
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6.2 A Full Digital Design of Real Time Signal Processing and Pattern Matching for 

Pileup High Count-Rate Pileup Detection 

6.2.1 Introduction 

As mentioned in Chapter 2, the scintillation detector such as an un-collimated 

NaI(TI) Anger camera is used as the second detector for the prototype Compton imaging 

system. When a gamma-ray interacts in NaI a light pulse is emitted with amplitude 

proportional to the deposited energy. The wavelength of this light is 4200 angstroms, and 

the conversion efficiency is about 40 photons per keV of deposited energy. In an Anger 

camera the light pulse is usually viewed by an array of PMT that produce a number of 

photoelectrons proportional to the light incident upon the photocathode located inside a 

vacuum envelope [151].As shown in figure 6.11, for NaI, without noise and pile-up,  the 

ideal electronic pulse acquired from a single PMT has a rise time of 5.3 ns and an 

exponential decay with a 230ns  time constant, (τ). The pulse shape is determined by the 

rise time and decay time of the NaI light output. If the phototube is a linear device, then 

the current out of the phototube will be proportional to the light output. The electronic 

pulse shape can be altered by integration or differentiation of the raw phototube output 

pulse.  The integral of this pulse is proportional to the total light output from the 

scintillation event. To measure deposited energy of the interacting photon, this signal is 

usually integrated until its amplitude has decayed to a trivial value. The method 

calculates the maximum information of the deposited energy. 

However, for the prototype Compton imaging system which has no mechanical 

collimator to limit the incoming photon flux, the second detector directly views the 

radioactive source and the scattered photons from the first detector. Depending on 

shielding and imaging geometry, The Anger camera may view the source directly with a 

resulting high count rate. As illustrated in figure 6.12, the resulting high count-rate makes 

it highly probable that the signal from two or more gamma-rays will overlap in time. If 

the pulse waveform is integrated for a fixed time period, which can be as long as 3τ, this 

conventional approach results in spectral distortions because the deposited energy of the 

piled up pulses is overestimated by considering several photons as a single one. Because 
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the position information of deposited photon on the detector need its correct deposit 

energy value, and determination of random Compton coincidence need accuracy start 

time of each pulse. Therefore, to accurately measure the photon energy and time 

deposited in the second detector at high count rates, signal pileup prevention techniques 

are required.  

 
Figure 6.11 Low count rate scintillation signals without pileup for conventional 
collimated NaI Anger camera. The scintillation time constant (τ) is 230ns. 

 
Figure 6.12 High count rate scintillation signals illustrating pulse pileup for the NaI 
absorption detector in the Compton imaging system. 
 

Table 6.1 Probabilities of No Pile-up and Multiple Event Pile-up for High Count Rate 

Integration 

time  

Count 

rate(cps) 

No event 

pileup 

2-events 

pileup 

3-events 

pileup 

4-events 

pileup 

5-events 

pileup 

6 or more events 

pileup 

80ns 0.5M 0.9608 0.0377 0.0012 0.0001 0 0 

1M 0.9231 0.0710 0.0055 0.0004 0.0001 0 

2M 0.8521 0.1260 0.0186 0.0028 0.0004 0.0001 

4M 0.7261 0.1989 0.0545 0.0149 0.0041 0.0011 

230ns 0.5M 0.8914 0.1025 0.0039 0.0002 0 0 

1M 0.7945 0.1827 0.0140 0.0016 0.0002 0.0069 

2M 0.6313 0.2904 0.0445 0.0102 0.0028 0.0207 

4M 0.3985 0.3666 0.1124 0.0517 0.0285 0.0421 

690ns 0.5M 0.7082 0.2443 0.0281 0.0048 0.001 0.0135 

1M 0.5016 0.3461 0.0796 0.0275 0.0114 0.0339 

2M 0.2516 0.3472 0.1597 0.1102 0.0912 0.0401 

4M 0.0633 0.1747 0.1607 0.2218 0.3673 0.0123 

To avoid or reduce the pulse height spectral distortions due to pulse pile-up, 

active pile-up rejection circuits can be combined in the linear amplifiers to preserve non 
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pile-up events and to detect and discard pulses that are estimated to be affected by pile-

up. Pile-up rejection is commonly used to eliminate piled-up pulses from low count rate 

signals. However, this technique is not suitable for the high count rate situation since the 

percentage of piled-up events may greatly exceed non piled-up events. Table 6.1 

illustrates the probabilities of no event pile-up and multiple event pile-up for 0.5 

Mcps(million counts per seconds), 1 Mcps, 2 Mcps and 4Mcps within a 80ns, 230ns(1τ) 

and 690ns(3τ) for the gamma-ray emission is random with a Poisson distribution. For 

example, for a 3τ integration time and 1Mcps count rate, only 50 percent of all events are 

non pile-up events. All other events will distort the pulse height spectrum if no pile-up 

rejection is used. 

Historically, for the high count rate situation, to reduce the influence of signal 

pileup and accurately measure the photon energy deposited in scintillation detectors, 

several signal pileup prevention techniques have been developed[26, 152-154]: (a) The 

delay-line pulse-clipping (DLC) technique avoids calculating the energy of the next 

overlapped pulse by cutting its tail and integrating the signal for a fixed short time; (b) 

The dynamic integration method terminates the integral of pulse signal as soon as the 

following event arrives, then the energy of the two overlapped pulses is compensated and 

adjusted by the estimated values; (c) The digital-analog hybrid active pileup prevention 

energy (PPE) method, is proposed to obtain an estimate of the actual photon energy, 

which can be carried out in three steps.  First, the present event is integrated 

dynamically until the arrival of the following event is detected.  Second, a weighted-

value is calculated to estimate the total energy in the scintillation detector which includes 

the energy from present event and the remnant energy from all the previous events. Third, 

the energy of the event is obtained by estimating the residual energy using a decay-

weighted sum of the previous total energy and subtracting it from the present total 

energy. 

The DLC technique is effective for events with relatively high count rates, as 

shown in table 6.1. When the integration time changing from 3τ to 1τ, the probability of 

no pile-up events at 1Mcps true event rate increases from 0.5 to 0.8. However, the energy 

resolution will be degraded and underestimated for the low count-rate situation and for 

non-overlapping pulses at high count rates. The dynamic integration is suitable for the 
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simple two event pileup case but becomes complicated for multiple-event pileup. The 

maximum count rate using this method is limited to under 400kcps for NaI gamma 

cameras[155]. In comparison, the active PPE method provides more accurate energy 

calculation results under all conditions since it “cancels the remnant signals from 

previous events and excludes the pile up of signals from following events”. However, 

performance of this HYPER method is significantly deteriorated due to its inflexibility 

and sensitivity to noise in the digital – analog hybrid circuit design. 

To overcome those restrictions, the analog circuit is replaced by an all digital 

architecture by using a high sample rate A/D converter to recover photon energy 

deposited in a NaI scintillation detector. At high count-rates, compared with digital-

analog hybrid implementation, this all digital solution offers more flexibility in 

accommodating different scintillator and higher noise immunity. The digital pileup 

prevention energy (D-PPE) algorithm is described here for a NaI scintillation detector 

with decay constant of 230ns and an A/D converter with sampling frequency of 

100Mcps, that is, with sampling period of 10ns.  The D-PPE Algorithm can be 

implemented by a high performance Field-programmable gate array (FPGA) or 

Application-Specific Integrated Circuit (ASIC) Design. To verify this algorithm a Very 

Large Scale Integration (VLSI) PPE processor is designed and simulated according to 

ASIC Design rules and up-to-date TSMC 0.18um technologies using a VLSI Cadence 

CAD platform. 

6.2.2 Methods and Algorithms 

The all digital implementation for estimating photon energy, when high count 

rates result in pulse pileup in a scintillation detector, is introduced here. This involves 

three steps:1) dynamically integrating a present event until the next event is detected; 2) 

estimating a weighted-value to indicate the total energy deposited in the scintillation 

detector which includes the energy from present event and the remnant energy from all 

the previous events;3) deriving the energy of the present event by subtracting the residual 

energy, i.e. a decay-weighted estimate of the previous total energy from the present total 

energy.  
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To obtain the deposited photon energy in the NaI scintillation detector with all 

digital circuits and speed up the binary calculations on the data acquired from the 

100Msps A/D converter, the entire PPE algorithm is discretized. To avoid time 

consuming steps including floating point multiplication and exponential calculation, 

some intermediate procedures are accomplished using fast digital calculation logic, such 

as a simple adder, shifter, inverter and look up table (LUT). 

The scintillation value of the jth photon event with energy E obtained by an A/D 

converter with sampling period Τs at sample n is 

[ ] ( / ) e x p [ ( ) / ]j se n E n n Tτ τ= − −        (6-29) 

Under high count-rate conditions, however, the following pulse is more likely to occur 

before the previous pulse has decayed to a trivial value. Within a sequence composed of 

three overlapped gamma rays as shown in figure 6.13, the jth gamma ray is detected by a 

scintillator at sample nj, which overlaps the tail of its preceding (j-1)th gamma ray.  The 

following (j+1)th gamma ray is also a pileup event which overlaps on the tails of the 

preceding two events. The scintillation signals from those three events, which start at 

sample nj-1, nj, and nj+1, respectively, are obtained from an external 100Msps A/D 

converter with the sampling period (Ts) of 10ns. 

 
Figure 6.13 Acquisition of NaI scintillation signals without noise from three simulated 
pileup events, The time constant τ is 230 ns and the sampling period is 10ns. Every 
vertical line expresses the sampled value by A/D converter. 
 

The acquired instantaneous value, qn, at sample n that falls in the interval between 

two dark vertical lines, i.e. nj ≤ n < nj+1, contains the energy from the jth and (j-1)th 

gamma rays is calculated according to Equation (6-29), where Ej denotes the energy of 

the jth gamma ray, Ts denotes the sampling period and equals 10ns, and τ denotes the time 

constant of the scintillator and equals 230ns for NaI. 

1 1[ ] ( / ) e x p [ ( ) / ] ( / ) e x p [ ( ) / ]j j s j j sq n E n n T E n n Tτ τ τ τ− −= − − + − − .  (6-30) 



169 
 

Under the assumption that there are (m+1) samples within the interval from the 

dark line (0) to another dark line (m), the sample nj is re-set as the zero index to derive 

more concise equations.  The discrete weighted sum Sj for the jth gamma ray is defined 

by Equation (6-31), where q[m] is the acquired signal at sample m (the point just before 

the arrival of the next event). 
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Similarly, the discrete weighted sum Sj-1 is expressed by Eq. (6-32).  

1 1j jS E− −=                                              (6-32) 

To achieve fast binary calculation of the discrete weighted sum with a digital 

circuit and avoid the time - consuming multiplication when Ts = 10 and τ = 230, another 

intermediate variable SEj, one-tenth of Sj, is introduced in Equation (6-33). The 

multiplication of q[m] with [(Ts + τ)/10], hence, is implemented by two binary left shifts 

of q[m], represented as the symbol <<. 
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                   (6-33) 

Following the above deductions, the total energy for the jth pileup gamma ray Ej 

could be obtained from Equation (6-34) by using the weighted sum of the current event 

and the decay-weighted sum of the previous event, in which the binary subtraction 

operation is transformed into 1 plus the result of its inverse operation, i.e. inv( ).  

1 1
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              (6-34) 

To achieve high calculation precision and avoid floating point exponential 

multiplication, a look-up table for the exponential multiplication is used, in which all the 

values of the amplified exponential terms are stored.  Therefore, the final deposited 
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energy can be obtained from Equation (6-35), where the value of 

1(8 0 e x p [ ( ) / 2 3])j jn n −⋅ − − and multiplication with SEj-1 can be obtained from the table. 

The symbols << and >> denotes the operation of shifting the binary left and right, 

respectively, to realize multiplication and division.  

1 1

( 3 ) ( 1 )

      ( { 8 0 e x p [ ( ) / 2 3 ] } 3 ) 1
j j j

j j j

E S E S E

i n v S E n n− −

= < < + < <

+ − − > > +
              (6-35) 

6.2.3 D-PPE Chip Architecture 

To realize and verify the D-PPE algorithm, the digital processor and several 

corresponding function units have been designed, synthesized, simulated and verified on 

a VLSI CAD platform that uses TSMC 0.18μm standard CMOS technology and follows 

the Application-Specific Integrated Circuit (ASIC) procedure.  The designed all digital 

PPE chip, inputs the 10 bit data from the 100Msps A/D converter and outputs the 

extracted event energy and the time stamp of event start point.  The main features and 

layout of function modules in the PPE-chip are displayed in figure 6.14 and 6.15, which 

includes (a) ROM Look-up table; (b) Pipelined Energy Extractor; (c) Event Start 

Arbitrator; (e) 3 byte Median Filter; (f) Controller; (g) High resolution Timer/counter; (h) 

FIFO output buffer; and (i) input/output pads.  

 

 
Figure 6.14 Main features and function modules of a D-PPE-chip 
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Figure 6.15 Left: internal architecture of the PPE-chip and its implementation details of 
data flow. Right: layout of a D-PPE-chip 
 

A. Input Interface 

The 10 bit input port is directly connected to the external A/D converter with 

sampling period of 10 ns, through which the analog events of the NaI scintillation 

detector are sampled and digitalized. 

B. Median Filter 

The obtained digital data from the A/D converter are pushed into shifter buffer 

which stores the latest three values in the shift registers. A three-value median filter is 

used here to remove noise spikes from the raw signal without significantly changing the 

pulse edge[156]. The filter compares the three values in the shifting registers and selects 

the median as the present value for the next function unit. 

C. Event Start Arbitrator 

Instead of using a fixed upper-threshold and lower-threshold to estimate the start 

point of the coming event, a dynamic threshold is introduced in the PPE-chip to identify 

start points of overlapped events because fixed thresholds will not work when severely 

overlapped pulses occur.  In this module, the median values are pushed into another 

shift buffer, which stores the latest median values in the sequence.  Whenever the 

difference between the newest median value and the oldest one in the buffer exceeds the 

predetermined threshold value, the Arbitrator generates a trigger to indicate the 

occurrence of a new event and starts the energy extractor at the same time to calculate the 

energy of the last photon event. 
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D. 24-bit High Resolution Timer/Counter 

Because the PPE-chip operates at 400MHz, the timer resolution can be as high as 

2.5ns. The start index of each event and the interval between two neighboring events are 

stored for use as indices in the look-up table. 

 

E. ROM Look- up Table 

The result of 1(80 exp[ ( ) / 23])j jn n −⋅ − −  are stored in the 1024×12 bits ROM in 

advance, which are indexed in a sequence by the combination of the lengths of all 

possible time-intervals between two neighboring events and the 4-bit partial weighted 

sum. 

 
Figure 6.16 An example of the exponential multiplication of 8-bit partial-weighted sum 
using two 4-bit segments by using a look-up table which is indexed according to the 10-
bit input, that is, using (nj-nj-1) and 4-bit partial-weighted sum as a multiplier 
 

As explained in figure 6.16, therefore, the complex 16-bit exponential 

multiplication is transformed into four times 4-bits operations by dividing the weighted 

sum into four segments, and the result of 4-bit exponential multiplication is stored in the 

ROM and could be obtained by the “LOOK-UP TABLE”. 

 

F. Pipeline Event Energy Extractor 

When the Event Start-Point Arbitrator generates a trigger just before the arrival of 

the next event, as shown in figure 6.17, the four-stage pipelined Event Energy Extractor 

calculates the recovered photon energy from the weighted sum of the current and its 

previous events, and the length of the time interval between these two events. By using 

the pipelined architecture, four look-up-tables for 16 bits exponential multiplication are 

replaced by one table, therefore, the size of PPE-chip is decreased greatly and the time of 

calculation in each stage could be reduced to 2.5ns. 
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Figure 6.17 Architecture of the four-stage pipelined Event Energy Extractor (CEA is 
Current Energy Accumulator and PER is previous Events Energy Register) 

 

G. FIFO Output Interface 

FIFO output buffer stores 25-bit values of the extracted current event energy 

together with its corresponding trigger time obtained from the 24-bit High Resolution 

Timer. The stored data can be read out by the off-chip system. 

6.2.4 Results and Data Analysis 

In this section, the digital PPE algorithm is compared with the original PPE 

algorithm. Performance of the digital PPE algorithm is evaluated by digitizing a 

photomultiplier signal from a NaI scintillator viewing  140keV gamma-rays from 99mTc 

using a 100 MHz A/D converter, and the digital data are input to the simulated PPE chip 

on the CAD platform.  

 

A. Evaluation of the Median filter 

The median filter is primarily employed in the image process to reduce the “salt 

and pepper noise”. The acquired NaI scintillation signal, ideal pulses and median filtered 

NaI signals using filters with windows size of 3 and 7 are compared in figure 6.18.The 

median filter not only decreases noise but also preserves the fast rise time of the signal 

for each pulse. The MSE of noise for original signal, median filtered signal with 3 

samples and 7 samples wide median filter is 399.7, 157.9 and 107.7, respectively. To 
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reduce the complexity of real time chip design, the median filter with windows size of 3 

is used in the D-PPE chips, which is realized by comparison units in chips.  
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Figure 6.18 Comparison of the acquired original signal and median filtered signals using 
median filter with size of windows of 3 and 7, respectively. (A) Original detected signal; 
(B) De-noised signal with 3 value median filter; (C) De-noised signal with 7 value of 
median filter.  
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B. Evaluation of the Performance of Dynamic Threshold Technique 

The dynamic threshold technique is used in the circuit to determine the start point 

of each pile-up event. Unlike conventional methods, which compare the current value 

with a fixed threshold, the dynamic technique compares the median value of the current 

three points with the median value of the previous three points. As shown in figure 6.19, 

the conventional fixed threshold method, implemented with analog circuits, cannot 

identify the start point of the piled up events within the circled regions. By contrast, the 

dynamic threshold technique, a digital algorithm, not only estimates the leading edge of 

every overlapped event, but also estimates the start point of isolated events. The designed 

circuits can identify two events when the interval between them is longer than 80ns. 

Thus, according to Table 6.1, for a count rate of 4 million events per send, almost 70% 

events can be identified correctly.. 

 

Figure 6.19 Comparison between dynamic threshold technique and fixed threshold 
method used to determined the start points of pile-up events. For the original signal 
shown at the top of the figure, the trigger signals determined by dynamic threshold and 
fixed threshold techniques are displayed in the middle and the bottom, respectively. The 
dynamic threshold method detects more piled up events than the fixed threshold method.  
 

C. Analysis of Exponential Multiplication using a Look-up Table 

To avoid the time-consuming exponential multiplication in calculating a decay-

weighted sum, a look-up table is constructed.  As a result, calculation errors will occur 

when transforming floating point numbers to integers, which have been stored in ROM in 

advance.  To reduce this error, the original decay terms are amplified by a factor of 80 

which results in 1(80 exp[ ( ) / 23])j jINT n n −⋅ − − . The final multiplicative results are recovered 

by a left shift operation. Integral results of the amplified decay terms are compared with 
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the floating point decay terms indexed by (nj-nj-1) in figure 6.20, which shows that the 

mean square error (MSE) and the max percentage error associated with the proposed 

look-up table method are 5.288x10-5 and 1.17%, respectively.  The decay terms may be 

amplified with an even larger number which will result in more accurate exponential 

multiplication results, but this will also increase the complexity of the chip. 

 

 

Figure 6.20 Comparison between the floating point exponential multiplications with the 
Look-up table method with amplified decay term. The upper blue curve is the exponential 
calculation by floating point multiplication and the bottom red curve is calculated by 
LUT method. 
 

D. Comparison of the results of original PPE method and all digital PPE method 

Compared to the theoretical PPE algorithm, the principal error of the digital PPE 

method comes from using the shifter and look up table to calculate floating point 

multiplication and exponential calculation using digital technology. The energy spectrum 

of 99mTc detected by NaI scintillator and calculated PPE and D-PPE algorithm are shown 

in the figure 6.21. The counting rate of γ-ray source is about 900 kcps. According to the 

calculation for that count rate the spectrum should contains about 50% piled-up pulses for 

standard 3τ integration. The FWHM of energy around 140keV for original PPE and 

digital PPE is 24.2keV (17.28% of 140keV) and 26.0keV (18.57% of 140keV), 

respectively. Therefore, the all digital PPE algorithm slightly increases the width of the 

energy spectrum around 140keV due to the approximations in the floating point 

multiplication. 
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Figure 6.21 Energy spectra (top) and normalized spectra slopes in which maximum value 
equals 1 (bottom) of 99mTC with 900kcps calculated by original PPE algorithm (24.2keV) 
and all digital PPE algorithms (26.0keV). 
 

E. Evaluation of Energy Spectra for D-PPE algorithm, DLC technique, and 3τ integration 

The energy spectra for 99mTc by a single PMT with NaI(TI) scintillator obtained at 

count rates of 1000kcps, 600kcps and 150kcps, are shown in the figure 6.22. The left 

column of the figure illustrates the spectra simulated by the all digital PPE algorithms; 

the right column shows the spectra obtained by using the 1τ delay-line pulse-clipping 

(DLC) technique, which avoids calculating the energy of overlapped pulses by cutting its 

tail and integrating the signal for a 230 ns. Final value is recovered by being divided by 

0.637, which is the estimated percentage of the 230ns integrated pulse over integration of 

whole pulse. The spectra of the middle column are the results calculated with the 

conventional integral method i.e. 3τ integration.  

The shapes of energy spectra at the three different count rates yielded by the D-

PPE algorithm are identical and all of these spectra are similar to the one obtained using 

conventional integral method at a low count rate which serves as a reference spectrum for 

comparison. This reference spectrum not only includes the peak around 140keV for 
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99mTc, but also contains lead X-rays peak around 84keV. The total number of counts is at 

different count rates is 16391,10490,8034 for 1Mcps, 0.6Mcps and 0.15Mcps, 

respectively. If we calculated the energy by 3τ integration, the percentages of piled-up 

pulses for the case of 1Mcps, 0.6Mcps and 0.15Mcps are 50.1%, 39.9% and 14.2%, 

respectively. The total counts per second changes for the different methods. The 

conventional integral method achieves a reasonable spectrum at low count rates.  

However, it results in a distorted spectrum that overestimates the number of high energy 

events at high count rates. The DLC technique does not produce as precise a spectrum as 

the PPE algorithm although the results are better than those obtained from the 

conventional integral method at higher count rates. The DLC technique needs extra 

correction to obtain reasonable spectra. Otherwise, spectra at three different count rates 

are shifted to lower energies than the other two methods since it only integrates for a 

short time and underestimates the energy in each event. Therefore, the two fixed 

integration time methods not only distort the spectra, but also lose good events that can 

be saved by the proposed D-PPE algorithm.   
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(C) 150kcps 

Figure 6.22 Comparisons of energy spectra (top) and normalized spectra slopes with 
same amplitude (bottom) for the three energy extraction methods at three different count 
rates. (A) 1M cps; (B) 0.6M cps; and, (C) 0.15M cps. In each group, the left column is for 
the full digital PPE chip, the middle column is for the conventional 3τ integral method 
and the right column is for the DLC technique (clipping at τ).
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CHAPTER 7 

Conclusions and Future Work 

In this chapter, we summarize the algorithms and analytical results presented in 

the previous chapters and suggest future work required to further speed image 

reconstruction and improve data acquisition.  

7.1 Conclusions 

This research was focused on a Compton imaging system for medical applications 

involving the imaging of emitting photon energies of 364.4 keV and higher. This work 

presented performance analysis of a Compton medical imaging system compared with a 

conventional collimated Anger camera, practical image reconstruction algorithms for list-

mode data, and development of a digital pattern matching algorithm and device for post-

signal processing to reduce the effects of pulse pile-up at high count rates in a 

scintillation camera. 

In Chapter 1, we described the medical applications of higher energy single 

photons emitters, 131I. Tracers labeled with iodine and other elements that emit even 

higher energies are important and irreplaceable for detecting and treating specific cancers 

and tracking essential bio-elements in studies of physiology and metabolism. However, 

the currently available imaging systems based on Anger cameras with a HEGP collimator 

cannot achieve the desired performance due to limitations imposed by the tradeoff 

between sensitivity and resolution for high energy photons because of the penetration 

through the collimator septa. After briefly reviewing and describing the general principles 

of Compton imaging systems, the supposition was presented that this system has the 



181 
 

potential for better performance for high energy photons than a collimated Anger 

Camera.  

In Chapter 2, we introduced two practical imaging systems for the 364.4 keV 

photons emitted from 131I: A NaI Anger Camera with HEGP lead collimator and a 

Compton imaging system with Si-NaI based dual planar detectors. The advantages and 

disadvantages of these imaging systems were analyzed qualitatively by Monte Carlo 

simulation and theoretical calculation. The problem with the parallel hole collimator is 

that spatial resolution is substantially decreased by septal penetration of the high energy 

gamma-rays, and this can only be reduced by increasing septal thickness which reduces 

sensitivity for directly transmitted photons as the square of the increase. The Compton 

imaging system avoids this tradeoff by using electronic collimation technique. However, 

the conical ambiguity, effect of Doppler broadening and energy resolution are issues that 

must be considered in any performance comparison since these factors affect the 

information per detected photon in the two systems.  

In Chapter 3, these issues were addressed by using the M-UCRB based on the 

Fisher Information of the imaging system. This bound compares performance of different 

imaging system by calculating image variance at each target point response function. To 

solve the issue of computation complexity, we developed practical algorithms to calculate 

Fisher information matrix by Monte Carlo method and estimate M-UCRB by FFT based 

on the assumption of shift invariance.  

The algorithm of calculating Fisher information matrix requires the value of 

transition probabilities that reflects the relation between each detection event and each 

emission. The system models and corresponding modeling methods to calculate transition 

probabilities were presented in Chapter 4. For the Anger Camera with HEGP collimator, 

a serial of point source response at different source to collimator distances were fitted to 

obtain a system model using a Gaussian plus an exponential function. The system model 

of Compton imaging system is more complex and requires knowledge of the statistical 

probabilities of all physical processes in the detection sequence. Meanwhile, the 

interpolation JPDF matrix is employed to accelerate calculation. 

In Chapter 5, the system performance and comparison were analyzed using the 

M-UCRB algorithms we developed and verified along with the Monte Carlo simulation 
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platform and effective system modeling. From the illustrated bound curves that compare 

the effect of Si detector energy resolution and system spatial resolution, the effect of 

Doppler broadening is the limiting factor for Compton camera performance for imaging 

360 keV photons. Performance of two systems was compared and analyzed by simulating 

a 2D disk with uniform activities. For the situation with the same number of detected 

events, the proposed Compton imaging system has better imaging performance than the 

Anger camera with HEGP, especially, as FWHM of desired point source response is less 

than 1.2 cm. This advantage was also proved by imaging and reconstructing a 2D hot 

spots phantom. 

Two useful advances in both imaging reconstruction and post-signal processing 

for future application of Compton imaging system were developed and presented in 

Chapter 6. The paralleled MLEM algorithms based on a chess board date partition 

strategy can effectively speed up reconstruction for list-mode detection data obtained 

from Compton system by factor of 10 in our evaluation. The proposed specific data 

partition balances the time used in computation and communication to achieve an optimal 

performance. The digital post signal processing algorithms and proposed hardware 

implementation for reducing pulse pile-up substantially reduces distortion of the energy 

spectrum from the NaI(TI) second detector at the count rates as high as 106/sec.  

7.2 Future work 

 As we described, the practical methods to calculate Fisher Information matrix and 

M-UCRB, system model, parallel MLEM, and digital algorithms for extracting energy 

from piled-up signals are useful in practical applications. Meanwhile, there are also some 

issues that need to be studied in the future. 

     The Monte Carlo simulation developed in our studies was speed up using force 

detection and variance reduction algorithm to enforce ingoing Compton process for every 

simulated photon. Therefore, Compared with Geant4(LECS) Monte Carlo system, the 

developed CSRNS only uses 5% computation time for the same simulation task. 

However, the resent CSRNS was developed focusing on the Compton imaging system 
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with the parallelized dual planer detectors. For other system geometries, the CSRNS need 

to be revised. 

     The Anger camera, in our research, was modeled with a Gaussian plus an 

Exponential function. Even though the model considered the effects of scattering and 

penetration photon in septa, this approximation of fitting the static point response 

function cannot evaluate the influence induced from hole pattern. Therefore, directly 

using a projection of a point source to avoid mathematic model is of worth to study and 

to compare the imaging performance of Anger Camera. 

 The list-mode MLEM is a promising algorithm for Compton image 

reconstruction. However, without parallel computing, the algorithm cannot be employed 

in actual clinical applications. For example, a list-mode MLEM program was executed on 

a dual core CPU with 2.8G Hz frequency, and an image with 65x65 pixels was 

reconstructed from 3 million photons. One iteration reconstruction required about 8 

hours. Whereas the bin-mode MLEM for Anger camera reconstruction just takes 20 

minutes for one iteration. Therefore, the parallel MLEM algorithm with chess board data 

partition provides a good method to speed up the reconstruction. In our studies, as the 

number of CPUs increased to 64, the efficiency of reconstruction increased 20 times. The 

primary obstacle to increasing speed is data communication latency due to insufficient 

network bandwidth. This issue can be solved using parallel shared memory systems. It is 

clearly necessary to optimize and revise our present algorithms on this platform for 

practical applications. 

 The digital post signal processing and pattern matching algorithm and designed 

circuit were useful and effective to extract energy information deposited in the pile-upped 

scintillation signal. Both correct energy information and starting-time of each event are of 

benefit to retrieve correct position information and coincidence pair for Compton 

imaging systems. In the future, the analog and digital combined chip is desired including 

the analogy signal acquisition circuit, high speed A/D converter and our designed digital 

processing unit. 
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APPENDIX 

In section 5.4, the images demonstrated were restored by 100 iteration using 

MLEM for both the Compton imaging system and the Anger camera with HEGP. Since 

the convergence rates are different for different imaging systems and number of acquired 

events, reconstructed images as a function of iteration are compared in this section.  
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