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ABSTRACT

In this dissertation, we study the impact of uncertainty associated with potential

delays on the operational performance of the airline plans, considering different stages

of the airline planning process. In the first part of this dissertation, we investigate

the potential for flight delays to propagate throughout a passenger airline network.

We also define metrics to quantify delay propagation by analyzing the connections

in a flight network. As the computational results demonstrate, delays can sometimes

propagate substantially and have a major impact on network efficiency. Therefore, in

the second part, we develop a linear programming approach to strategically use slack

in the network in order to mitigate the impact of disruption without increasing cost.

In these models we allow flight departure times to change within a given time window

while keeping the original connections feasible but re-allocating slack where it can

best be utilized. The motivation for the third part of this dissertation stems from the

fact that re-timing the schedule per se cannot fully capture all the opportunities for

improved robustness. Instead, it may also be necessary to change the fleet assignment

and crew schedule. Thus, in a robust planning tool, it is necessary to schedule flights

across all fleet-types simultaneously. This, in turn, increases the number of flights

to be considered which dramatically impacts tractability. Therefore, it is essential

to generate crew pairings (sequences of flights that can be covered by a single crew)

on larger flight networks. In the third part, we present a new, integer programming-

based approach to supplement the existing techniques for generating crew pairings.

xi



To demonstrate the performance of this approach, computational experiments based

on data from a major U.S. carrier are presented.

xii



CHAPTER I

Introduction

For the past decade, the US passenger airlines industry has gone through a severe

economic crisis. Factors such as competition, increasing fuel costs in addition to

delays and disruptions have resulted in a total of $35 billion net loss over the period

of 2001-2005 (on average $7 billion per year, see Figure 1.1). Airlines have been

trying to cover this loss partly by tightening their flight schedules which in turn has

caused congestion of airports as well as the airspace. This, in turn, has made flight

schedules more vulnerable to disruptions.
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Figure 1.1: Major U.S. airlines net profit (loss)[23].

Consequently, airline delays have increased substantially over the past five years

(see Figure 1.2). It has been estimated that in 2006, 116.5 million delay minutes (up

1
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five percent from 2005) drove $7.7 billion in direct operating costs (up 11 percent

from 2005) for the major U.S. airlines. On average, extra fuel consumption and

crew time are estimated to have cost $42.55 per minute. A detailed breakdown of

direct cost impacts of delays on major U.S. airlines is given in Table 1.1. Moreover,

delays can also impose additional “indirect” or “invisible” costs to airlines such as

lost productivity, accommodation for passengers with lost itineraries and potential

lost profit due to the loss of good image. These additional costs are not easy to

quantify but potentially have an even more destructive impact on airlines profit.
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Figure 1.2: The increasing trend in delayed flights [24].

Clearly, some airline delays are due to independent, random events such as bad

weather or mechanical failures. However, a considerable fraction (roughly one-third,

see Figure 1.3) of total delay minutes are caused by late arriving aircraft. Delays of

this nature are not independent. Instead they are a consequence of another delay in

an upstream flight. More specifically, due to sharing of the same resources (aircraft

or crews) an independently occurring delay can propagate to downstream flights.

The main objective of this dissertation is to analyze the impact of uncertainty

caused by delays on different stages of the airline planning process and to develop
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Direct Operating $ Per Minute Annual Delay Costs
Costs (2006) ($ millions)
Fuel 28.31 3,296
Crew 14.25 1,659
Maintenance 10.97 1,277
Aircraft Ownership 9.18 1,069
Other 3.1 361
Total 65.80 7,663

Table 1.1: Direct costs of delays in the U.S. airline industry. Costs based on data reported by U.S.
passenger and cargo airlines with annual revenues of at least $100 million [23].
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Figure 1.3: Delay causes among all major US airports in Dec 2007 [24].
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procedures to reduce their disruptive impacts.

This dissertation is organized as follows: In Chapter II we discuss the airline plan-

ning process and briefly explain different sub-problems solved at each stage of this

process. Then we present the new planning challenges facing the airline industry. In

Chapter III we present an approach to investigate the potential for airline delays to

propagate. We also discuss different metrics to evaluate delay propagation in airline

plans. We then present the results of an empirical study performed on two major

U.S. airlines. In Chapter IV we present a linear programming-based approach to

mitigate the expected delay propagation by re-allocating the slack in a flight net-

work. In the presented models we allow flight departure times to change marginally

while keeping the original connections feasible. We discuss the effectiveness of this

approach by presenting computational results using data from a major U.S. carrier.

The motivation for the Chapter V of this dissertation stems from the fact that re-

timing the schedule per se cannot fully capture all the opportunities for improved

robustness. Instead, it may also be necessary to change the fleet assignment and

crew schedule. Therefore in order to increase robustness in the airline plans it is of-

ten necessary to schedule flights across all fleet-types simultaneously. This, in turn,

needs simultaneous consideration of fleet-types and results in larger flight sets. This

increase in the number of flights to be considered has a dramatic impact on the size

and tractability of corresponding crew pairing problems. In Chapter V, we present

a new, integer programming-based approach to supplement the existing techniques

for generating crew pairings. The final conclusion and future research are presented

in Chapter VI.

Here are the main contributions of this dissertation:

Chapter III of this dissertation makes an important contribution towards under-
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standing the relationship between planned airline schedules and their operational

performance by introducing the idea of propagation trees as a visual and quanti-

tative tool for assessing the ramifications of individual flight delays throughout the

network. It also proposes several new metrics for quantifying the impact of delays

as they propagate through the network which, in turn, are useful in conducting a

quantitative analysis of planned airline schedules and lays the groundwork for fu-

ture research on incorporating measures of potential delay propagation in the airline

schedule planning process.

The primary contribution of Chapter IV is in developing models that can diminish

delay propagation by re-timing the flight schedule. These models can take into

account delay propagations caused by aircraft, crew members, connecting passengers,

as well as other shared resources.

The contribution of Chapter V is in presenting a new way of modeling complex

non-linear constraints and cost functions in a scheduling context. This approach also

enables researchers to develop a crew pairing generator that can facilitate research in

challenging research areas such as integrated airline planning, robust planning, and

automated recovery.



CHAPTER II

Background and Literature Survey

2.1 Airline Planning Process

Airline operations are highly complicated processes, concerned with the control

of many expensive, tightly-constrained, and interdependent resources such as crews,

aircrafts, airports, and maintenance facilities. From very early on, the OR com-

munity has been actively involved in seeking ways to develop more efficient plans

[3].

The airline planning process is classically decomposed into four sub-problems

which are typically solved sequentially: schedule generation, fleet assignment, main-

tenance routing, and crew scheduling (see Figure 2.1). Here is a brief description of

each of these sub-problems:

2.1.1 Schedule Generation

The objective of the schedule generation problem is to determine what markets

(i.e., origin-destination itineraries), frequencies, and times to fly in a given period of

time, taking into account both projected demand data and available resources. This

problem has received the least attention from the OR community, largely because

it involves so many factors that are hard to quantify, such as competition, market

penetration and revenue management strategies. Nonetheless, some attempts have

6
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Schedule Generation

Fleet Assignment

Maintenance Routing

Crew Pairing

Crew Scheduling

Crew 
Assignment

Rostering

Figure 2.1: Airline planning sub-problems.

been made to model and solve this problem using optimization models. See Berge

[9] and Teodorovic and Krcmar-Nozic [54] for a more detailed literature survey of

these approaches.

2.1.2 Fleet Assignment

The fleet assignment problem determines which type of aircraft (for example,

Boeing 757 or Airbus 300) should be assigned to each flight. The goal is to match

demand and capacity as closely as possible, while still addressing the limitations

imposed by the network structure. These limitations include the conservation of

aircraft at each point in time and space, as well as limits on the number of aircrafts

available in each fleet. Examples from the literature include Abara [2] and Rexing

et al [43].
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2.1.3 Maintenance Routing

The maintenance routing problem is primarily a feasibility problem which assigns

specific aircraft to flights so as to ensure adequate opportunities for required mainte-

nance checks. I.e, the assignment of individual aircraft to flights occurs in this stage.

The objective of the maintenance routing problem is to find routings, or rotations,

for each aircraft in a fleet. A rotation is a sequence of flights so that it starts and

ends at the same location. The rotation assigned to each individual aircraft should

meet certain maintenance stations at pre-planned intervals. Barnhart and Talluri [7]

studied the solution methods for this problem in detail.

2.1.4 Crew Scheduling

The objective of the crew scheduling problem is to find the most cost-effective

assignment of the crew (cockpit or cabin) to the flights. This is typically done in

two major steps. The first step, the crew pairing problem, partitions the flights into

pairings – strings of flights that start and end at a crewbase and can be flown by

a single crew. The second step is the assignment of specific crews to each of these

the pairings. This is known as either the crew assignment problem, in which crews

bid for pairings (typical in the U.S.) or the rostering problem (common in Europe),

which is posed as an optimization problem [31]. The crew pairing problem is studied

in detail in Chapter V.

2.2 New Challenges in the Airline Planning Process

Two key obstacles have provided significant challenges in the development of

tractable planning tools for the airline industry. The first is the sheer size and com-

plexity of the networks. For example, a major U.S. airline company might have on

the order of five hundred aircraft and offer over two thousand flights daily, in a flight
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network of approximately 400,000 origin-destination pairs. Several hundred million

passengers fly across such networks each year on U.S. domestic flights alone. The

vast number of decisions to be made, and the complex interactions between different

resources (crews, aircraft, airports, etc.), make the planning process a challenging

task [23].

The second obstacle is the dynamic and stochastic nature of the system. Plans are

typically developed under the assumption that the system will have the same char-

acteristics every day of the planning horizon, which is often several weeks or months

in length. In reality, there is significant variation in demand by day, and demand is

a key driver of many planning decisions. Furthermore, even were a distinct plan to

be built for each day (or were each day in the planning horizon assumed to have the

same characteristics), many aspects of the system would still be subject to pertur-

bations, both major and minor. For example, a flight’s travel time depends on the

day’s wind speeds, its taxi time depends on congestion at the airport, maintenance

issues can delay take-off, and so forth.

In order to deal with these obstacles, researchers have typically ignored the vari-

ability of the system, instead developing strictly deterministic models to ensure

tractability. Furthermore, because airline planning models seek to maximize re-

source utilization, ignoring variability may lead to solutions with very little slack

time. In such cases, the optimal plan may perform very poorly under disruptions

because delays cannot be absorbed and instead propagate through the system.

In recent years, the already intense pressure on the airline industry has dra-

matically increased as a result of rising fuel costs, competitive pricing, increased

congestion, and security concerns. It is therefore even more important to find high-

quality plans that will perform well in practice. Improvements in both computer
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speeds and OR algorithms [26] now make it possible to at least partially address

these issues through integrated planning, robust planning, and the development of

optimization-based recovery tools. Here is a brief review of these approaches:

2.2.1 Integrated Planning

Solving the airline planning sub-problems sequentially will not necessarily result

in an optimal (or even feasible) solution to the overall problem. Therefore in inte-

grated planning multiple sub-problems are simultaneously considered in an attempt

to improve overall solution quality and feasibility while maintaining tractability. Ex-

amples of integrated planning literature include Cohn and Barnhart [13] , Cordeau

et al [14], and Klabjan et al [27], who partially integrate crew scheduling and aircraft

routing, and Rexing et al [43] and Lohateponant and Barnhart [38], who permit some

schedule generation decisions within the fleet assignment problem. Stojković et al

[53] considered integrating the flight and pilot scheduling problems. A more detailed

survey on integrated airline models can be found in Sandhu and Klabjan [48].

2.2.2 Robust Planning

Airline operations are subject to significant uncertainties. Disruptions often oc-

cur as a result of weather conditions, unplanned maintenance issues, safety checks,

security concerns, and more. The goal of robust planning is to generate schedules

that are less sensitive to disruptions. This is a demanding task, given both the size

and the uncertainty of the networks. There have been two major types of approaches

to robust airline planning in the literature. In the first approach, a stochastic pro-

gramming model is used to capture uncertainties. For instance, Yen and Birge [59]

developed a stochastic programming model for the airline crew scheduling problem

and adopted a delay branching algorithm to solve the resulting problem. Alterna-
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tively, Rosenberger et al [45] used a simulation model to implement a stochastic

model for the crew scheduling problem and also to evaluate recovery policies. The

second approach to modeling disruptions is to define surrogate problems that inherit

the stochastic nature of the problem. For example, Rosenberger et al [44] showed

that fleet assignments with less hub connectivity and more short cycles perform bet-

ter operationally. Schaefer et al [49] modeled the crew scheduling problem under

uncertainty using approximated expected pairing costs. Klabjan et al [28] defined a

regularity measure as one way to capture robustness and considered maximizing this

measure in addition to minimizing the total cost. A more detailed literature survey

on robust airline planning is provided in Chapter IV.

2.2.3 Recovery Models

While robust planning models try to avoid disruptions proactively, recovery mod-

els seek the best way of reacting when disruptions do occur, so as to minimize their

impact on the system and prevent propagation. Therefore, recovery models are often

studied within the robust planning context [45]. Clarke et al [12] explained the role

of an airline’s operations control center in mitigating the impact of irregularities on

operations. Yan and Yang [58] developed a framework to handle schedule pertur-

bations caused by aircraft breakdowns. Abdelghany et al [2] developed a decision

support tool to automate crew recovery during irregular operations. Lettovský et al

[36] developed a real-time recovery plan to restore a disrupted crew schedule. Yu and

Qi [60] have studied the recovery models used by United Airlines in the context of

disruption management. More extensive surveys of the literature on recovery models

can be found in Kohl et al [32] and Bratu and Barnhart [10].



CHAPTER III

Analyzing Airline Delay Propagation

3.1 Introduction

The operation of a passenger airline requires the allocation of resources and de-

velopment of schedule plans over complex networks. A large airline can operate over

a thousand flight departures per day with several hundred aircraft and thousands of

cockpit and cabin crew employees. These resources are costly – the direct operating

cost of a 183-seat Boeing 757 aircraft was over $4300 per hour in 2006. The effi-

cient utilization of costly resources is thus one of the key challenges faced by airlines

hoping to control operating expenses in order to generate profits in an increasingly

competitive fare environmen [24].

The operations research community has played a significant role in developing

airline planning tools with the aim of optimizing the utilization of these costly re-

sources ([5], [7]). In these optimization tools, which typically assume deterministic

flight times and other parameters, it is desirable to generate schedules that have little

if any slack between flights – by turning crews and aircraft quickly, (i.e., having them

connect from one flight to another with minimal time in between) greater utilization

of these resources can be achieved and unit operating costs can be minimized.

In practice, however, flight times are not deterministic. Departure delays arise due

12
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to mechanical problems, weather delays, ground holds, and other sources. Flights

that depart on time can still be delayed in arrival due to causes such as air traffic

control issues or re-routings to avoid inclement weather. In isolation, these delays

are themselves costly. In a network structure, they can have an even greater impact

– without adequate slack to absorb an initial root delay, subsequent flights may also

be delayed as they await aircraft and crews from the initially delayed flight. We refer

to this as delay propagation.

In fact, one would expect to see an inverse relationship between the planned level

of resource utilization in a schedule and that schedule’s operational robustness. In

a planned schedule with high resource utilization, there is limited slack. This in

turn limits the opportunity to absorb flight delays, which must instead propagate to

subsequent flights. But what is the nature of this relationship? How can it be incor-

porated in the planning process to produce “better” schedules? And what constitutes

“better” – how should the deterministic costs of an airline plan be traded off against

the potential and much more uncertain costs of delay? These are all important and

challenging questions that are beginning to receive significant attention from both

the airline industry and the academic community.

To assist in these efforts, we have undertaken an empirical study of passenger

airline flight networks and their potential for delay propagation as a function of their

planned schedule. This study is based on flight data from two U.S. carriers, one

traditional “legacy” hub-and-spoke carrier and one “low-fare” carrier operating a

predominantly point-to-point network. Using the idea of propagation trees as our

foundation, we examine how any single given flight delay, in the absence of other

flight delays, can propagate through the network (the structure is a tree because one

flight uses multiple resources, such as cockpit crews and aircraft, and therefore each
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flight delay can directly cause multiple subsequent delays, which in turn can continue

to branch further). We analyze these trees for all flights in a given time period in

order to gain insight into the distribution of slack throughout the system and the

implications of this on delay propagation. We then use this analysis to address

commonly-held assumptions about how delays propagate, provide insights into the

relationship between planned resource utilization and operational robustness, and

raise questions for further study.

This chapter of the dissertation makes several important contributions towards

understanding the relationship between planned airline schedules and the operational

performance of these schedules, a requisite precursor to developing more robust plans.

First, we introduce the use of propagation trees as a visual and quantitative tool for

assessing the ramifications of individual flight delays throughout the network. Sec-

ond, we propose several new metrics for quantifying the impact of these initial delays

as they propagate through the network. Third, we use these metrics to conduct a

quantitative analysis of planned airline schedules, gaining insights into the relation-

ship between scheduled slack and delay propagation. Fourth, we extend this analysis

to substantiate (in some cases) and disprove (in other cases) commonly-held assump-

tions about delay propagation. Finally, we lay the groundwork for future research on

incorporating measures of potential delay propagation in the airline schedule plan-

ning process.

The chapter is organized as follows. In Section 3.2, we outline the details of the

study. We present our analysis in Section 3.3. Section 3.4 contains our conclusions

and suggested areas for future research.
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3.2 Analytical Framework

3.2.1 Motivation

Consider a (hypothetical) airline plan that maximizes resource utilization in the

sense that, for every crew and for every aircraft, the time between two consecutive

flight assignments is as short as possible. [Depending on the context, this time is

referred to as connection time, turn time, sit time, or ground time.] There is of course

some minimum time between any pair of flight assignments that must observed – for

example, an aircraft cannot be assigned to two subsequent flights unless there is

adequate time between them for passengers from the first flight to de-plane, catering

and cleaning tasks to be completed, and new passengers to board. We begin by

assuming, in this hypothetical plan, that all crew and aircraft assignments exactly

satisfy the minimum time between assignments. Such a planned schedule is ideal

from the perspective that aircraft are being fully utilized and crews are not being

paid for any excess time between flights

Suppose further that this schedule is implemented, and that an arbitrary flight is

delayed in departure by thirty minutes (for example, due to a mechanical problem

that must be fixed before take-off). Assuming that this delay is not compensated

for by increasing the travel speed, the flight will have a thirty minute arrival delay

as well. Because the cockpit crew does not have any extra slack time before their

next flight, this thirty minute delay will propagate to that flight as well, causing

it to also be delayed in take-off by thirty minutes. If the crew and the aircraft

do not stay together, then the aircraft’s next flight will also experience a thirty-

minute flight delay. The cabin crew could cause a third thirty-minute flight delay

if they separate from the aircraft and cockpit crew. Likewise, if flights are held for

connecting passengers from this flight, then these flights will be delayed as well.



16

Now consider this set of flights that have been delayed as a result of the initial

flight delay. [We will refer to the initial flight delay as the the root delay ; it is also

sometimes referred to as the independent delay in the literature (Lan et al [33]).]

These flights will also arrive late at their destinations, resulting in a second layer of

subsequent flight delays. In fact, a delayed aircraft will continue to propagate delay

to all of its subsequent flights until the aircraft goes off-rotation (i.e., is removed

from the flight network to undergo maintenance) or enters an overnight phase where

there are no longer flights to be covered. Similarly, a crew (cockpit or cabin) will

propagate delay to all of its subsequent flights until they go off-duty (i.e., their day’s

schedule is completed). If the original crews and aircraft do not stay together for

subsequent flights, then each of these resources will ultimately cause other resources

(i.e., other crews and aircraft) to enter this stream of delays as well.

The situation we present here considers two improbable extremes – on one hand,

a schedule without any slack at all and on the other hand a delay cycle that prop-

agates indefinitely. In reality, other factors prevent schedules from fully utilizing

all resources to their maximum levels (for example, the market demands that in-

fluence flight times and frequencies). Furthermore, recovery alternatives (canceling

flights, calling in reserve crews, etc.) frequently prevent delays from propagating

fully. Nonetheless, taking into account both objectives – maximizing the profitabil-

ity of a schedule under ideal conditions; minimizing the propagation of delays in

operation – presents an important challenge for airline planners.

It is also a difficult challenge, not only because the planning problems are them-

selves so complex and because the real-world environment is highly stochastic, but

also because measures for quantifying robustness (and the value of this robustness)

are not well-defined. In this study, we take an important first step in developing
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metrics and tools for understanding passenger airline networks and the role of their

structures in propagating flight delays.

3.2.2 Literature Survey

Within the literature, our research is most closely related to the work of Beatty

et al [8], who also consider the impact of individual flight delays as they propagate

across the network. Their research, which focuses on the relationship between time of

day and delay propagation, simulates the movement of delayed cockpit crews, flight

attendants, and aircraft through the network. In particular, they use the metric of

“delay multiplier”to track the ratio of propagated delay minutes to the length of the

initial delay.

More generally, several people have conducted empirical studies to better un-

derstand the causes and effects of flight delays. For example, Wang et al [56] use

queuing models to examine how the response to propagated delays varies by airport.

Queueing models are also used by Janic [25] to quantify the economic consequences

of flight delays. Hsiao and Hansen [22] use a statistical model to investigate the im-

pact of different factors such as time of day, congestion, and weather conditions on

delay propagation. Tu et al [55] focus specifically on the long-term seasonal behavior

of flight delays, while also taking into account additional short-term factors such as

time of day. Rupp [46] considers factors such as weather condition, station type (hub

vs. spoke), and seasonality to identify the most significant causes of delay.

Efforts to improve the robustness of airline schedules, so as to reduce the potential

impacts of disruption, are also beginning to appear in the literature. Ehrgott and

Ryan [16] focus on crew scheduling, considering the bi-criteria optimization prob-

lem of minimizing cost and maximizing robustness. Their measure of robustness

considers the two options of keeping crew and aircraft together or increasing slack
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between flights when a change of aircraft is scheduled, so as to minimize propagation.

Shebalov and Klabjan [50] also consider a bi-criteria crew scheduling problem. In

their case, the objectives are minimizing cost and maximizing the number of move-up

crews (the number of flights for which there exists an alternate crew scheduled for a

later departure that could be “moved up” to cover this flight if its scheduled crew is

delayed). Schaefer et al [49] instead use an approximation of the expected operational

cost of a crew pairing in solving the crew scheduling problem as a single-objective

optimization problem. Yen and Birge [59] formulate the crew scheduling problem as

a stochastic integer program in order to incorporate the impact of delays.

In Rosenberger et al [44], the focus is on incorporating robustness in the fleet

assignment problem. By constructing fleet assignments and aircraft rotations with

many short cycles that could be canceled without violating flow balance, they seek

to provide greater opportunity for canceling a limited number of flights without

significant network impact. Smith and Johnson [51] also seek to improve robustness

in the fleet assignment by imposing station purity, a limitation on the number of

fleet types that land at/depart from each airport, which in turn provides greater

flexibility in recovery operations.

Finally, the work of Lan et al [33] presents an integrated model that simultaneously

assigns fleet types and flight departure times, with an emphasis on minimizing the

impact of delays on passengers.

We extend this literature by conducting a detailed investigation of the relationship

between scheduled plans and the potential for delays to propagate in operations, a

requisite precursor to developing tools for building more robust plans.
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Figure 3.1: An example of a propagation tree.

3.2.3 Propagation Trees

A propagation tree is a simple but powerful visual and quantitative device that

enables us to better understand how a root delay can, in the absence of other disrup-

tions or schedule modifications, propagate through the network. Figure 3.1 provides

an example of such a tree.

In this example Flight 1 is the root flight, which we suppose is delayed by 180

minutes. Note that this is an “independent” delay, caused by a mechanical prob-

lem, weather conditions, etc rather than because of an upstream flight delay. After

landing, the cockpit crew of Flight 1 is scheduled to fly Flight 2 and the aircraft is

scheduled to fly Flight 3. This is shown in Figure 3.1 by two arcs coming out of

Flight 1. Assuming a minimum of 35 minutes between any two consecutive flight

assignments, the cockpit crew has ten minutes of slack between Flights 1 and 2 in
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the original schedule. Thus, if Flight 1 is 180 minutes late in arriving, then 170

minutes of delay will propagate via the cockpit crew to Flight 2. The cockpit crew

from Flights 1 and 2 goes off duty after Flight 2 and thus does not propagate further.

However, the aircraft used on Flight 2 continues on to Flight 5. Because this con-

nection initially had 50 minutes of slack and now the aircraft is 170 minutes late in

arriving, 120 minutes of delay will propagate to Flight 5. Given that both the crew

and the aircraft of Flight 5 connect to Flight 7, only one downstream flight can be

affected. In this case, because the connection had 5 minutes of slack in the original

schedule, 45 minutes of delay will propagate. Finally, the crew and the aircraft again

stay together to connect from Flight 7 to Flight 8. Because there is 75 minutes of

slack in the schedule for this connection, the remaining 45 minutes of delay will be

absorbed and there will be no further propagation of delay from this flight.

Similarly, the aircraft assigned to Flight 1 next connects to Flight 3. Because

there is 15 minutes of slack scheduled in this connection, 165 minutes of delay will

propagate to Flight 3. The crew from Flight 3 next goes off-duty and therefore does

not propagate any further delay. The aircraft continues on, connecting to Flight 6.

This connection has sufficient slack (215 minutes), however, and thus the remaining

delay from this branch of the tree is also absorbed and there is no further propagation.

By examining this propagation tree in its entirety, we observe that the original

delay of 180 minutes to Flight 1 also leads to an additional 430 minutes of downstream

delay, collectively impacting four other flights.

Note that we have only considered the impact of delay on two resources – the

aircraft and the cockpit crews. We do this for a number of reasons. The first is

data availability – these are the two resources reported in the data provided by

the supporting carriers in our preliminary study. The second is importance – these
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are the two most costly resources, with cabin crews and passenger delays having

less significant impact. The third is complexity – we felt that initially limiting our

study to only two resources would enable us to develop an understanding of some of

the critical drivers of delay propagation without being overwhelmed by the network

interactions. We hope that the results of this first study will facilitate a second

study that incorporates additional network resources (particularly, cabin crews and

connecting passengers) as well.

We construct a distinct propagation tree for each scheduled flight and for a range of

initial lengths of delay, to help develop an understanding of the relationship between

the schedule and the potential for delays to propagate. But how can we process this

collection of trees and their corresponding data? What information is of relevance?

We have developed several metrics that we suggest are of value in understanding

how delays propagate:

• Total propagated delay:The sum of the delays (in minutes) imposed on down-

stream flights by an initial root delay in a propagation tree; note that the root

delay is not included in this total. In Figure 3.1, the total propagated delay is

430 minutes.

• Magnitude: The ratio of total propagated delay to root delay. In Figure

3.1, the magnitude is 2.388. [This measure has also been referred to as delay

multiplier (Beatty et al [8]).]

• Severity: The total number of disrupted flights, excluding the root flight itself.

In Figure 3.1, the severity is 4.

• Depth: The number of nodes in the longest path in a propagation tree (not

counting the root delay). In Figure 3.1, the depth is 3.
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• Depth ratio: The ratio of depth to severity in a propagation tree. In Figure

3.1, the depth ratio is 0.75.

• Stay: The total number of nodes (disrupted flights) in which both the crew

and the aircraft are the same as in the preceding node. In Figure 3.1, the stay

is 1 (Flight 7).

• Crew-out: The total number of nodes (disrupted flights) in which the crew is

not the same as the preceding node, because the crew in the preceding node has

ended their pairing. In Figure 3.1, the crew-out is 1 (Flight 5).

• Split: The total number of nodes (disrupted flights) in which either the crew or

the aircraft is not the same as the preceding flight, because these resources split

to serve two different subsequent flights. In Figure 3.1, the split is 2 (Flights 2

and 3).

• Split ratio: The ratio of split to severity in a propagation tree. In Figure 3.1,

the split ratio is 0.5.

In the remainder of this chapter, we limit our focus primarily to the first five

metrics for the sake of brevity. We introduce the remaining four metrics as well,

however, because they are valuable in further understanding the impact of keeping

crews and aircraft together in the schedule.

Through the use of these metrics, we are able to quantitatively evaluate the rela-

tionship between an individual root delay and the rest of the network. This provides

insights into the relationship between airline schedules and their robustness. In

particular, we use these metrics to address “conventional wisdom” from the airline

and academic communities about these relationships. For example, we consider the

following commonly-held beliefs:
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• Propagated delays create significantly more impact than the original root delays

themselves.

• A single delay can “snowball” through the entire network, affecting a large

number of subsequent flights.

• Scheduling aircraft and crews to stay together can help to mitigate the impact

of disruption.

• Delays that occur early in the day cause greater propagation than delays later

in the day.

• It is most important to prevent delay propagation early in the day (in other

words, slack should be more pronounced in the early parts of the schedule).

We will revisit these claims in Section 3.3.2.

3.2.4 Study Parameters

In this study, we conduct analysis on data sets provided by two very different

U.S. passenger airlines. The first is a traditional hub-and-spoke carrier that provides

virtually full coverage of the U.S.; their daily flight schedule for the time period that

we consider contains approximately 1700 flights. The second carrier is a point-to-

point, “low-fare”carrier that focuses primarily on a specific and limited set of markets,

many of them targeting leisure passengers. This carrier offers approximately 400

daily flights in the schedule that we consider.

For both carriers, we look at a single one-day “snapshot”of the schedule. Specif-

ically, the carriers provided us with their complete schedule for a given day. This

snapshot contains the complete set of domestic flights (international flights were not

considered) scheduled to be operated on that day. For each flight, we were given the
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origin and destination, scheduled departure and scheduled arrival times, scheduled

tail number (i.e., unique identifier for a specific airplane), and scheduled cockpit

crew. This information allows us to in turn identify all pairs of sequential flights

sharing a common aircraft, a common crew, or both.

For each flight in these networks, and for several different potential root delay

lengths, we construct a distinct propagation tree. Recall that a propagation tree

looks at a single root delay in isolation, assuming no other concurrent delays in the

network. It also assumes that all delays propagate until they are absorbed – we do

not consider recovery options such as canceling flights or calling in backup (reserve)

crews. In constructing these trees, we assume a minimum of 35 minutes between

all pairs of sequential flight assignments. We also assume a constant minimum rest

period of 9.5 hours for all crews between one day’s duty and the next. In addition

to computing the individual metrics (as defined in Section 3.2.1) for each of these

propagation trees, we also compile aggregate statistics, looking at flights grouped

by origin and by time of day. The sub-routine we use in order to generate the

propagation trees is shown in Table 3.1.

We analyze these results and discuss their implications in Section 3.3. Before doing

so, we conclude this section by noting limitations of our study. First, we only take

into account aircraft and cockpit crews. Other resources (in particular, cabin crews

and connecting passengers) can cause additional delay propagation. Second, we do

not take into account interactions between delays. In reality, there is often correlation

between delays (in particular, due to weather conditions) and thus propagation trees

will impact one another. Third, we do not consider recovery options (canceling

flights, calling in reserve crews, etc.). One of the challenges of doing so is that

these decisions are rarely codified by the airlines, but instead are typically made in
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for each value of root delay
for each flight
{

initialize the propagation tree
initialize the list of nodes
create the root node and add it to the list
while there is a node in the list
{

calculate the slack between the flight in the current node and the succeeding flights
if there is not enough slack
{

create a new node and add it to the list
update the propagation tree statistics

}
delete the current node

}
}

Table 3.1: the sub-routine for constructing propagation trees

an ad hoc manner by System Operations Control (SOC) personnel, based on their

experience and intuition. Fourth, we do not weight the probability of root delays.

In our aggregate data, all root delays are treated equally. Finally, our data sets

are restricted to only two carriers, and one specific day in each carrier’s schedule.

As a result, the analysis is by no means intended to make generalizable conclusions

but rather to gain preliminary insights and to develop metrics and tools for further

analysis.

3.3 Empirical Analysis

3.3.1 Case Study

In our case study, we consider flight data from two carriers, one hub-and-spoke

legacy carrier and one point-to-point low-fare carrier. We look at all scheduled

flights for a single day. The first network has approximately 1700 flights, the other

approximately 400 flights.

For each of these flights, and for each potential delay, ranging from 15 minutes
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to 180 minutes in increments of 15, we construct the propagation tree. [We do not

consider delays longer than 180 minutes because such delays would typically lead to

cancelation or other recovery methods, rather than delaying subsequent flights.] In

our analysis, we examine both individual trees and the aggregation of their metrics.

Highest-Impact Root Delays

We begin our analysis by first seeking to identify the maximum impact that any

one individual root delay can have on the planned schedule. Specifically, we identify

the maximum severity, depth, and magnitude that can be achieved as a result of a

single root delay. [Of course, these levels will be achieved under the maximum root

delay length, which is 180 minutes in our study.]

Maximum Severity Recall that severity refers to the number of downstream

flights that are impacted as a result of a root flight delay. In the hub-and-spoke

network that we consider, in the worst case a single flight delay can impact seven

other flights (maximum severity). This occurs only in four cases, i.e., there are only

four flights for which a 180 minute root delay can lead to seven other subsequent

flight delays. The corresponding propagation tree for one of these cases is illustrated

in Figure 3.2(a). Observe that this root delay leads to 1029 total propagated delay

minutes, and thus a magnitude of 5.716. The depth of this tree is five.

We observe similar results in the point-to-point network (Figure 3.2(b)). In this

case, there is a single flight that, in response to a 180 minute delay, impacts 10 other

flights (maximum severity); the depth is also ten. This tree has a magnitude of 6.056,

associated with 1090 total propagated delay minutes.

There are two interesting observations that stem from these results. First, it

seems logical that those root delays leading to the highest severity would come as
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Figure 3.2: Propagation trees corresponding to the maximum severity.
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a function of the most frequent splitting of resources – for example, each delayed

flight in the propagation tree leading to two subsequent flight delays (one due to the

aircraft and a second due to the crew), which in turn each lead to two subsequent

delays, etc. However, the propagation trees that exhibit the greatest severity do not

in fact show this sort of exponential growth. Instead, these trees have only one or

two branches.

hub-and-spoke point-to-point
severity number of flights percent of flights number of flights percent of flights

10 0 0.00% 1 0.24%
9 0 0.00% 1 0.24%
8 0 0.00% 3 0.73%
7 4 0.23% 4 0.98%
6 6 0.35% 5 1.22%
5 20 1.16% 14 3.41%
4 68 3.96% 18 4.39%
3 201 11.69% 36 8.78%
2 303 17.63% 65 15.85%
1 460 26.76% 99 24.15%
0 657 38.22% 164 40.00%

sum 1719 100.00% 410 100.00%

Table 3.2: Severity breakdown for root delays of 180 minutes.

The second observation is that these extreme severity cases are quite rare. Al-

though the maximum severity levels are 7 and 10, respectively, for the two networks,

the vast majority of flights have severities that are significantly smaller. Table 3.2

provides the breakdown of severity values for the complete set of flights. Specifically,

for each severity value from zero (no delay propagation) to ten (the maximum sever-

ity), this table provides the number and percentage of flights achieving that severity

given a 180 minute root delay. It is interesting to note that, even with a root delay

as large as 180 minutes, more than 38% (40%) of the root flights do not propagate at

all, and almost 98% (93%) of the root flights propagate to four or fewer downstream

flights.
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Maximum Depth “Depth” refers to the longest path in a propagation tree. In

the hub-and-spoke network, the maximum depth of any propagation tree is six; this

is achieved by two flights, one of which is depicted in Figure 3. In the point-to-point

network, the maximum depth is ten. This is associated with the same flight (Figure

3.2(b)) that leads to the propagation tree of maximum severity for that carrier. Table

3.3 demonstrates that these extreme cases are again quite rare, and that the typical

propagation tree has much lower depth.
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Figure 3.3: Propagation trees corresponding to the maximum depth.

It is interesting to note that there is not a dramatic difference between depth and

severity – that is, a large number of the propagation trees are really propagation

chains. In some cases, this is because the crew and the aircraft are scheduled to

remain together. In those cases where the resources do separate, one resource may

have enough to slack to absorb the disruption while the other propagates the delay.

Alternatively, the crew may go off duty or the aircraft may go out of rotation and
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thus not propagate the delay. Finally, we note that because our data sets do not

include international flights, some resources terminate prematurely in our analysis.

hub-and-spoke point-to-point
depth number of flights percent of flights number of flights percent of flights

10 0 0.00% 1 0.24%
9 0 0.00% 1 0.24%
8 0 0.00% 2 0.49%
7 4 0.23% 3 0.73%
6 2 0.12% 4 0.98%
5 20 1.16% 13 3.17%
4 68 3.96% 19 4.63%
3 202 11.75% 37 9.02%
2 302 17.57% 64 15.61%
1 468 27.23% 102 24.88%
0 657 38.22% 164 40.00%

sum 1719 100.00% 410 100.00%

Table 3.3: Depth breakdown for root delays of 180 minutes.

We further investigate the relationship between depth and severity in Table 3.4.

Although it is commonly assumed that a major source of delay propagation in airline

networks is the splitting of resources, we observe in this table that for many trees,

such splitting does not occur. In fact, in fewer than 3% of the root delays is there a

depth ratio strictly between zero (i.e., no propagation at all) and one (severity equals

depth and hence no splitting).

hub-and-spoke point-to-point
depth ratio number of flights percent of flights number of flights percent of flights

1 1033 60.09% 235 57.32%
(0,1) 29 1.69% 11 2.68%

0 657 38.22% 164 40.00%
sum 1719 100.00% 410 100.00%

Table 3.4: Depth ratio breakdown for root delay of 180 minute.

Maximum Magnitude We next consider the maximum magnitude, i.e., the ratio

of propagated delay minutes to root delay minutes. In the point-to-point network,

the maximum magnitude is 6.16, which corresponds to 1110 additional minutes of

propagated delay as a result of the original root delay. In this tree (Figure 3.4(b)),
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both the severity and depth are 9 (close to the maximum value for both of these

metrics as well).
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Figure 3.4: Propagation trees corresponding to the maximum magnitude.

In the hub-and-spoke network, however, the propagation tree with highest mag-

nitude – 5.78, corresponding to 1041 additional minutes of propagated delay – looks

quite different (see Figure 3.4(a)). In this case, the tree does in fact split, and has a

depth ratio of about 0.70. In general, one would expect higher magnitude to occur



32

Flight A

Flight B

Flight C

cockpit crew

aircraft

Root delay = 15

Slack = 5
Propagated delay = 10

Root Flight = flight E
Root Delay = 15

Total propagated delay = 15
Severity = 2
Magnitude = 15/15 = 1
Depth of the tree = 2
Depth ratio = 1
Split = 0
Stay = 2
Split ratio = 0

Slack = 5
Propagated delay = 10

Flight E Flight Fcockpit crew
aircraft

Slack = 5
Propagated delay = 10

Flight G

Slack = 5
Propagated delay = 5

cockpit crew
aircraft

Root Flight = flight A
Root Delay = 15

Total propagated delay = 20
Severity = 2
Magnitude = 20/15 = 1.33
Depth of the tree = 1
Depth ratio = ½
Split = 2
Stay = 0
Split ratio = 1

Root delay = 15

Figure 3.5: The effect of higher depth ratios on increasing magnitude.

in trees with more splitting. At each new level of the tree, the propagated delay is

dampened by any slack between the connecting flights, and thus propagation trees

with lower depth-to-severity ratios (i.e., more splitting) will tend to have higher

magnitude.

This idea is demonstrated more clearly in Figure 3.5. In this figure, we have

two different flights with root delays of fifteen minutes each. Both root delays lead

to a severity of two, and all flights have a slack of five minutes. However, Flight

A splits (depth equals one-half severity) whereas the crew and aircraft of flight E

remain together for the next two flights (depth equals severity). As a result, Flight

A yields 33% more propagated delay. More generally, assuming equal severity, we

would expect to see greater magnitude values for propagation trees with lower depth

ratios.

We conclude this section by providing a summary of magnitude values across the

complete set of flights in Table 3.5.
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hub-and-spoke point-to-point
magnitude number of flights percent of flights number of flights percent of flights

(6,7] 0 0.00% 2 0.49%
(5,6] 3 0.17% 3 0.73%
(4,5] 12 0.70% 9 2.20%
(3,4] 62 3.61% 14 3.41%
(2,3] 198 11.52% 42 10.24%
(1,2] 316 18.38% 73 17.80%
(0,1] 471 27.40% 103 25.12%

0 657 38.22% 164 40.00%
sum 1719 100.00% 410 100.00%

Table 3.5: Magnitude breakdown for root delays of 180 minutes.

Range of Propagation Tree Characteristics

In the previous section, we identified the most extreme impacts of root delays,

in terms of magnitude, depth, and severity. We also observed that these extreme

cases were quite rare. Furthermore, they all occurred as a result of the most lengthy

root delay (180 minutes). In this section, we present the complete set of root delays,

including not only the full set of flights but also the full range (15 minutes to 180

minutes) of potential lengths of delay.

In Table 3.6 and Figures 3.6(a) and 3.6(b), we present system-wide statistics on

propagation severity. Table 3.6 lists the range of root delay lengths (from 15 minutes

to 180 minutes), the maximum severity achieved by any flight for that length of root

delay, and the average severity across all flights given that length of root delay.

Observe that the maximum severity level quickly jumps in the initial increases

in flight delay, but then remains constant (for the hub-and-spoke carrier) or grows

much more slowly (for the point-to-point carrier) as the amount of delay increases.

The average severity grows a little more steadily but nonetheless also quickly reaches

near-maximum levels, then shows very little growth beyond this point. This fact

is even more evident in Figures 3.6(a) and 3.6(b), which show the percentage of

flights achieving each given severity level for each value of the root delay. Again, we
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see a sharp change in the graph at a relatively low length of root delay, and then

the graph remains nearly constant beyond this point. [Tables 3.7 and 3.8, and the

corresponding Figure 3.7(a), 3.7(b), 3.8(a), and 3.8(b) demonstrate similar behavior

for depth and magnitude as well.]

In other words, the network appears to reach a saturation point, and increasing

the length of the root delay beyond this point does not dramatically change the

corresponding severity. Why is this? Consider, for a given root flight, constructing

the exhaustive connection tree – this is like a propagation tree, but at each flight in

the tree, one or two new arcs are automatically created to represent the next flight

(or flights) of the crew and aircraft (there is no notion of delay in this tree). Thus,

the tree continues to grow until the resources leave the network (crews going off duty,

aircraft going out of rotation), or the connection time exceeds 180 minutes and thus

no delay would ever propagate.

hub-and-spoke point-to-point
max average average max average average

root delay (all) (only nonzero) (all) (only nonzero)
15 1 0.12 1.00 1 0.19 1.00
30 4 0.73 1.41 4 0.54 1.37
45 6 0.98 1.70 5 0.78 1.51
60 6 1.08 1.82 5 0.95 1.74
75 7 1.13 1.88 5 1.06 1.91
90 7 1.15 1.91 6 1.16 2.03
105 7 1.17 1.92 7 1.22 2.11
120 7 1.18 1.93 8 1.29 2.21
135 7 1.19 1.94 8 1.32 2.26
150 7 1.21 1.96 9 1.36 2.31
165 7 1.21 1.97 10 1.40 2.34
180 7 1.22 1.98 10 1.41 2.36

Table 3.6: System-wide statistics on delay propagation: severity

This exhaustive connection tree is a superset of all possible propagation trees for

that root flight (i.e., the tree for each root length of delay). Different propagation

trees from the same exhaustive connection tree can vary in two ways. First, they can
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hub-and-spoke point-to-point
max average average max average average

root delay (all) (only nonzero) (all) (only nonzero)
15 1 0.12 1.00 1 0.19 1.00
30 3 0.72 1.40 4 0.54 1.37
45 4 0.97 1.68 5 0.78 1.51
60 5 1.07 1.81 5 0.95 1.74
75 5 1.11 1.86 5 1.05 1.89
90 5 1.14 1.88 6 1.15 2.01
105 5 1.15 1.89 7 1.20 2.08
120 5 1.16 1.90 8 1.26 2.16
135 5 1.17 1.91 8 1.29 2.21
150 5 1.18 1.92 9 1.32 2.25
165 6 1.19 1.93 10 1.36 2.28
180 6 1.20 1.94 10 1.37 2.28

Table 3.7: System-wide statistics on delay propagation: depth

hub-and-spoke point-to-point
max average average max average average

root delay (all) (only nonzero) (all) (only nonzero)
15 1.00 0.15 0.53 1.00 0.17 0.77
30 2.10 0.41 0.78 2.50 0.34 0.85
45 3.29 0.59 1.02 3.33 0.49 0.95
60 3.97 0.71 1.19 3.75 0.60 1.11
75 4.37 0.79 1.31 4.00 0.69 1.25
90 4.64 0.85 1.40 4.17 0.77 1.35
105 4.91 0.89 1.47 4.48 0.83 1.44
120 5.18 0.93 1.52 4.83 0.89 1.53
135 5.38 0.96 1.56 5.22 0.94 1.60
150 5.54 0.98 1.60 5.60 0.98 1.67
165 5.67 1.00 1.63 5.91 1.02 1.71
180 5.78 1.02 1.66 6.17 1.05 1.75

Table 3.8: System-wide statistics on delay propagation: magnitude
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(a) Hub-and-Spoke Carrier (b) point-to-point Carrier

Figure 3.6: The overall trend corresponding to the severity of the propagation trees.
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Figure 3.7: The overall trend corresponding to the depth of the propagation trees.

have different nodes (i.e., flights). Depending on the length of the root delay, one

propagation tree may contain fewer nodes than another because the shorter delay

is absorbed in one tree but the longer delay continues to propagate in another. A

second way that propagation trees for the same root flight can vary is in the lengths

of the arcs – that is the actual departure times of the delayed flights. If there is 30

minutes of slack between two connecting flights and the first flight experiences a 60

minute root delay, then 30 minutes will propagate across this connection, whereas in

a second propagation tree corresponding to a 90 minute root delay, 60 minutes will

instead propagate.

With this in mind, it is clear that at some point, as the length of root delay
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Figure 3.8: The overall trend corresponding to the magnitude of the propagation trees.

increases, the resulting propagation tree will eventually contain all of the nodes of

the exhaustive connection tree. This in turn defines the severity and depth. As

the length of root delay grows even longer, neither the severity nor the depth can

increase – all flights that could be delayed are in fact being delayed. The total

accumulated delay, however, does in fact continue to grow – this can be thought of

as “stretching” the tree, with every flight (i.e., node) moving further forward in time.

This is observed in Table 3.9 and Figures 3.9(a) and 3.9(b), which demonstrate that

the total number of propagated delay minutes grows much more sharply across the

shorter lengths of root delay, then becomes roughly linear (but certainly continues

to increase) at this saturation point.

Range of Characteristics by Flight Category

In the previous section, we observed that many root delays do not propagate;

those that do range significantly in the impact of their propagation. In this section,

we question whether there are groups of flights that exhibit common behaviors in

their propagation patterns. More specifically, we consider two factors: departure

time of the flights (time of day) and origin station.
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hub-and-spoke point-to-point
max average average max average average

root delay (all) (only nonzero) (all) (only nonzero)
15 15 2.24 7.93 15 2.52 11.58
30 63 12.25 23.51 75 10.33 25.47
45 148 26.44 45.83 150 21.91 42.60
60 238 42.43 71.65 225 36.11 66.37
75 328 59.20 98.60 300 51.91 93.71
90 418 76.45 126.24 375 69.23 121.28
105 516 93.97 154.14 470 87.63 150.96
120 621 111.68 182.26 580 106.91 183.40
135 726 129.56 211.09 705 126.74 216.50
150 831 147.61 239.83 840 147.14 250.26
165 936 165.79 269.12 975 168.02 282.32
180 1041 184.13 298.04 1110 189.21 315.35

Table 3.9: System-wide statistics on delay propagation: total propagated delay minutes
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Figure 3.9: Average total propagated minutes of the propagation trees.

Time of Day In this section we examine whether time of day impacts the

characteristics of the propagation trees. We start by dividing the flights into three

categories based on their departure time:

1. departures between midnight and 8 AM.

2. departures between 8 AM and 4 PM.

3. departures between 4 PM and midnight.

We continue, as in our earlier analysis, to focus on individual root delays (i.e., we

are not looking at interactions between flights, such as those occurring during peak
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Figure 3.10: Trends in the propagation measures categorized based on the departure time of the
flights.
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periods of congestion or times of severe weather disruption at a station). In this

analysis, we are instead interested in whether the departure time of day, in and of

itself, influences the structure of the propagation tree.

Although many carriers operate a limited number of “red-eye” flights overnight,

the majority of flights typically occur between early morning (e.g. 6 AM) and late

evening (e.g. 10 PM). In addition, crew members are frequently assigned to duties

that start in the morning and end in the evening, with their rest periods occur-

ring overnight, and scheduled aircraft maintenance is typically planned during the

overnight period as well. Therefore, this introduces a natural “down time” in the

system, in which any remaining delay propagations would typically be absorbed. As

a result, it is reasonable to suspect that flights originating early in the day would

have greater opportunity to propagate than flights originating later in the day. We

consider this hypothesis in Figures 3.10(a) and 3.10(b).

In this figure, the top graphs show the trends in severity, depth, and magnitude

of propagation trees for flights in the first time window (midnight to 8 AM); there

are 266 (69) flights in this category. Similarly, the graphs in the middle row show the

propagation tree characteristics for the flights in the second time window (8 AM to 4

PM); there are 908 (186) of these. Finally, the bottom row shows the characteristics

of flights which depart during the third time window (8 PM to midnight); there are

545 (155) of these. Clearly, these figures demonstrate a strong relationship between

the time of the original (root) delay and the degree to which that delay propagates.

Of course, there are exceptions. The most prevalent of these are propagation

trees that include red-eye flights spanning the overnight lull which typically absorbs

residual delay. Nonetheless, the opportunities for delay propagation decrease signifi-

cantly as departure time moves later in the day. For example, in the hub-and-spoke
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network, if you look at the impact of a 180 minute root delay on the flights with the

100 latest departures, the average severity is 0.48 and the average number of propa-

gated delay minutes is 35.08, whereas for the flights with the 100 earliest departures,

the average severity is 2.48 and the average number of propagated delay minutes is

368.35.

Similarly, in the point-to-point network, if you look at the impact of a 180 minute

root delay on the flights with the 25 latest departures, the average severity is one

and the average number of propagated delay minutes is 114, whereas for the flights

with the 25 earliest departures, the average severity is 2.36 and the average number

of propagated delay minutes is 304.88.

Hub vs. Spoke Another key characteristic of a flight, in addition to its depar-

ture time, is its origin airport. In particular, we question whether flights originating

from hub vs spoke stations (or, in the case of the point-to-point carrier, the two

highest-volume stations, which serve the majority of flights, vs the remaining sta-

tions) demonstrate different behaviors in their propagation trees. As demonstrated

in Figures 3.11(a) and 3.11(b), this does in fact seem to be the case. Specifically, the

layers of severity, depth, and magnitude are on average lower for the hub airports

than for the other stations.

We theorize that this occurs as a combination of four factors. First, the majority

of flights originate at a hub station, terminate at a hub station, or both. Second,

as observed earlier, most propagation “trees” are in fact actually chains, with very

limited splitting. As a result, the propagation tree associated with one flight might

be virtually identical to the tree associated with its connecting flight, except for the

addition of the original flight itself. Third, crews often start and end their pairings
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(a) Hub-and-Spoke Carrier
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Figure 3.11: Trends in the propagation measures categorized based on the departure station size.
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at hubs; similarly, aircraft often go out of rotation at hubs as well. Finally, there is

often more slack between flights at the hubs (both to allow for connecting passengers

and also because of the larger number of connecting opportunities), whereas sparse

spokes often turn aircraft (and crews) as soon as possible.

As a result, if a flight from a hub to a spoke experiences a root delay, it will

often experience a propagated delay at the spoke as well; in the more general sense,

we commonly see even numbers of arcs in the tree. Conversely, delays to a flight

originating at a spoke typically are either absorbed at the hub or else propagate for

at least two more flights (hub to spoke and then spoke back to hub).

3.3.2 Observations

In the previous sections, we presented empirical results concerning the potential

for root flight delays to propagate downstream in an airline network. In this section,

we re-visit five commonly held viewpoints about delay propagation, and discuss these

viewpoints in the context of our observations.

1. Propagated delays create significantly more impact than the original

root delays themselves. Because of the interconnected use of multiple con-

strained resources, it is commonly assumed that the propagation of a delay in a

flight network has greater impact than the root delay itself. On the one hand,

our observations suggest that many flights do not, in fact, propagate root de-

lays. Even with root delays of up to 180 minutes (and taking into account the

caveats of Section 3.3.1), nearly 40% of the flights have no propagating effect.

Furthermore, many flights that do propagate do so to a limited degree, impact-

ing only one or two additional flights. On the other hand, this does not mean

that flight delays do not propagate, nor that the impact is not of significance. In
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particular, we note that for flights which do show delay propagation, for all but

the briefest of root delay lengths (e.g. of less than 30 minutes), the magnitude

for roughly half the flights is more than one, i.e., the propagated delay more

than doubles the initial root delay, substantiating the importance of addressing

delay propagation in network planning efforts.

2. A single delay can “snowball” through the entire network. The notion

of a single flight delay propagating rampantly across the network, progressively

expanding in its impact, is not in fact seen in our empirical observations. This

may be partially attributed to the fact that we are not considering cabin crews

and connecting passengers. [On the other hand, we are also not considering

recovery decisions, instead assuming all delays propagate until absorbed.] More

likely, the key “buffers” that have the greatest impact on limiting the propaga-

tion of delays are:

• crews going off-duty,

• crews and aircraft remaining together (and thus preventing one delay from

causing two subsequent downstream delays),

and

• periods of decreased activity in the network (particularly in late evening,

but also during lulls throughout the day).

Again, this does not suggest that delay propagation is not an important con-

cern, but that these propagations are fairly localized and should be addressed

correspondingly.

3. Keeping aircraft and crews together can help to mitigate the impact
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of disruption. As suggested in the previous section, keeping aircraft and crews

together appears to have tremendous benefit in reducing delay propagation. In

particular, it implies that any one flight delay can lead to at most one subse-

quent delay, whereas splitting the crew and aircraft can potentially result in

two downstream delays. It is interesting to note, however, that keeping crews

and aircraft together is not sufficient to avoid delay propagation, and in fact,

some of the flight delays with the maximum severity actually correspond to a

propagation tree in which most flight connections do keep the crew and aircraft

together. What is not clear from the data, and merits further study, is whether

or not efforts to keep crews and aircraft together have any negative impact on

delay propagation (i.e., lead to reduced amounts of slack between connecting

flight pairs).

4. Delays that occur early in the day can cause greater propagation than

delays later in the day. It seems logical that root flight delays early in the

day will lead to greater propagation than root delays later in the day, because

there are more opportunities for delay. This logic is premised on the notion,

however, that there is a natural “break” at the end of the day which serves as

a guaranteed buffer for any delays still propagating, and furthermore that such

breaks do not occur at other times of the day. In the data that we considered

this is predominantly, but not completely, true. For example, some flight delays

do in fact propagate overnight, because the crews have short overnight rest

periods - beginning their rest period late may force them to delay their first

flight the subsequent day. In addition, there are times during the day where

flight volumes decrease and thus early morning flight disruptions are absorbed

into the system, rather than propagating through the day and into the evening
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slack period. Nonetheless, we see a significant difference in delay propagation

from one flight to another when factoring by departure time of day, with all

three metrics (severity, depth, and magnitude) decreasing as the origin time of

the root flight increases later into the day. Similar results have been reported

in the literature by Beatty et al [8], Hsiao and Hansen [22] and Tu et al [55].

5. It is most important to prevent delay propagation early in the day.

The previous paragraph seems to support the conventional wisdom that it is

most important to prevent delay propagations early in the day, i.e., given a

fixed amount of slack in the system, that slack yields greater benefit when

added to early morning flight connections. This logic, however, is premised on

the notion that the disruption will actually occur. All other things being equal,

a disrupted flight early in the day will in fact benefit more substantially from

increased slack to absorb disruption than will a flight disrupted later in the day.

On the other hand, slack early in the day also has less probability of being used.

Consider, for example, the simple case where a crew and aircraft stay together

for n consecutive flights, with zero slack between each flight pair. Suppose

that we delay the first flight in the chain by five minutes. Then this delay will

propagate until the end of the chain, resulting in an additional 5 ∗ (n− 1) extra

minutes of delay. This propagated delay could be eliminated by adding five

minutes of slack after the first flight.

At the other extreme, consider a five minute delay to the second-to-last flight

in the chain. This root delay would only lead to five minutes of additional

propagated delay (associated with the final flight in the chain). Adding five

minutes of slack to this connection would only save five minutes of propagated
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delay, rather than 5 ∗ (n− 1), again suggesting that adding slack earlier in the

day is more beneficial than later in the day.

Now consider, however, the case where we add five minutes of slack to the first

connection, but the first flight is not delayed. Then this slack would provide no

benefit, and any subsequent root delay in the chain would propagate fully. On

the other hand, putting the slack between the last pair of flights would save five

minutes of propagated delay for any root delay in the chain. In fact, all other

characteristics (and, in particular, the probability of a root delay) being equal,

it can be shown that the optimal location for the slack is actually in the middle

of the chain. This is the trade-off point where the expected delay is minimized,

trading off the length of the propagation and the probability of the root delay.

Of course, actual networks are much more complex. Thus, the question of where

slack can most greatly benefit the network becomes a more challenging issue.

This topic is further explored in Chapter IV.

3.4 Conclusions and Future Research

In this chapter, we have investigated the relationship between planned aircraft and

crew schedules and the potential for delay propagation as these schedules are imple-

mented. This research makes several important contributions towards understanding

this relationship, a requisite precursor to developing more robust plans. First, we in-

troduce the use of propagation trees as a visual and quantitative tool for assessing the

ramifications of individual flight delays throughout the network. Second, we propose

several metrics for quantifying the impact of these initial delays as they propagate

through the network. Third, we use these metrics to conduct a quantitative analysis

of planned airline schedules, gaining insights into the relationship between scheduled
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slack and delay propagation. Fourth, we extend this analysis to substantiate (in

some cases) and disprove (in other cases) commonly-held assumptions about delay

propagation. Finally, we lay the groundwork for future research on incorporating

measures of potential delay propagation in the airline schedule planning process.

This future research includes the following four topics:

First, we see value in extending the complexity of this analysis – taking into

account the probabilities of the occurrence of different root delays, recognizing cor-

relations (for example, weather-based) between groups of root delays, adding in the

propagation due to cabin crews and connecting passengers, and incorporating recov-

ery decisions, such as crew swaps and flight cancelations.

Second, our research can be useful in helping to identify mechanisms for strategi-

cally using slack in the system to mitigate the impact of disruption, by recognizing

where this slack can provide the greatest benefit. This idea is explored in Chapter IV.

Third, there is important work left to be done in quantifying the value of increased

robustness – what is the trade-off between improved robustness (i.e., decreasing the

likelihood of delay propagation) and increased scheduled costs (i.e., the cost of a plan

if it operates without disruption)?

Finally, once the value of robustness can be quantified, it is possible to begin

incorporating metrics of robustness within the planning process itself.



CHAPTER IV

Decreasing Airline Delay Propagation By Re-Allocating
Scheduled Slack

4.1 Introduction

Airline plans are made up of several costly and constrained resources such as

aircraft and crews. These resources link flights across the network, with each resource

flowing from one flight to another. Adding to this complexity is the fact that although

each flight needs each type of resource, individual resources do not necessarily stay

linked throughout the network. For example, an aircraft and crew might be assigned

to a common flight at a particular point in the schedule, but assigned to separate

flights at a later point.

One ramification of this linkage is the potential for delays to propagate. If one

flight is delayed (for example, because of a mechanical problem with the aircraft

assigned to that flight), then a subsequent flight might also be delayed because it is

awaiting that inbound aircraft. The fact that resources can “split” compounds this.

In Chapter III, we discussed how a single flight delay can spread to delay several

other flights as well.

There are many sources for flight delays, such as mechanical problems, weather

delays, ground-hold programs, and air traffic congestion. But the secondary delays

that propagate from such root delays are also quite substantial. For example, in

49
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December 2007, more than one-third of the delays at major U.S. airports were the

result of a late-arriving aircraft (Figure 1.3). Furthermore, there is a natural conflict

stemming from the fact that slack is typically viewed as negative from the planning

perspective (i.e., a waste of resources), but as positive from the operational perspec-

tive (i.e., an opportunity to absorb disruption rather than allowing it to propagate).

The focus of our research is therefore on determining how to incorporate the opera-

tional issues associated with delay propagation into the airline planning process.

A key challenge in this research is the difficulty in trading off between planned

costs (the cost of an airline plan under the assumption that all flights occur as

scheduled and without disruption) and operational costs (the realized cost associated

with the modified plan that is implemented in response to disruptions). Given two

different plans with varying planned costs, it is difficult to determine which of the two

plans will perform better operationally. Furthermore, it is also difficult to determine

whether improvements in operational performance outweigh increases in planned

costs, given that the plan will be operated several times (often, daily) over the

planning horizon, and that potential disruptions may or may not occur during any

given day. Thus, even determining metrics for “robustness”, and then quantifying

the value of these metrics (i.e., how much planned cost a carrier should be willing to

incur to improve these metrics), are challenging research topics themselves that have

yet to be adequately solved. The fact that the planning and operations processes are

functionally separate within most carriers, with each group’s incentives aligned with

different objectives, only serves to exacerbate the problem.

We therefore propose, as an interim step, to develop an approach that does not

increase planned costs, but can nonetheless improve operational performance. Specif-

ically, we propose to modify flight departure times so as to re-allocate the existing
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slack in the network. By re-timing flights, slack can be re-distributed to those flight

connections that are most sensitive to disruption and thus delay propagation. We

limit the time windows in which flights can be re-timed, so as to maintain existing

revenue projections. Furthermore, we restrict flight re-timings such that crew pair-

ings remain feasible and do not change in cost. Finally, we require that the same

aircraft rotations be maintained. Our computational results, based on data from a

major U.S. carrier, demonstrate that this approach leads to significant improvements

in expected delay propagation without any associated increase in planned cost.

The primary contribution of this chapter is in developing models that can diminish

delay propagation in operations, without any increase in planned costs. Our proposed

models can take into account delay propagations caused by aircraft, crew members,

connecting passengers, as well as other shared resources. By demonstrating that

the integrality of these models can be relaxed (i.e., that the models can be solved

as linear, rather than integer, programs), we are able to consider all down-stream

impacts without sacrificing tractability. The chapter is outlined as follows: In Section

4.2 we review the related literature. We present models for re-allocating slack in

Section 4.3, as well as a simulation model to help validate the results. Computational

experiments are presented and analyzed in Section 4.4. Finally, Section 4.5 offers

conclusions and suggested areas for future research.

4.2 Literature Survey

In this section, we first briefly review the different steps in the airline planning

process. Then we focus on different approaches to addressing airline delays and

present related literature.
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4.2.1 Airline Planning Problems

The airline planning process is classically decomposed into four sub-problems:

schedule generation, fleet assignment, maintenance routing, and crew scheduling.

The objective of the schedule generation problem is to determine what markets,

frequencies, and times to fly in a given period of time, taking into account both

forecasted demand data and available resources (Berge [9]). The fleet assignment

problem determines which type of aircraft should be assigned to each flight, consid-

ering the demand and capacity constraints (Abara [1]). The maintenance routing

problem is primarily a feasibility problem that assigns specific aircraft to flights to

ensure adequate opportunities for required maintenance checks (Barnhart and Talluri

[7]). The objective of the crew scheduling problem is to find the most cost-effective

assignment of cockpit or cabin crews to flights (Barnhart et al [5]).

These airline planning problems are complex and large-scale by nature. Therefore,

they are often treated as deterministic in order to achieve tractability, not taking into

account the impact of delays and disruptions. In the following subsection, we high-

light some of the approaches taken to incorporate disruptions in the airline planning

process.

4.2.2 Robust Planning

Airline operations are subject to significant uncertainties. Disruptions often oc-

cur as a result of weather conditions, unplanned maintenance issues, safety checks,

security concerns, and more. The goal of robust planning is to generate schedules

that are less sensitive to these disruptions. This is a demanding task, given both

the size and the uncertainty of the networks. There have been two major types of

approaches to robust airline planning in the literature.
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In the first approach, a stochastic programming model is used to capture un-

certainties. Yen and Birge [59] developed a stochastic model for the airline crew

scheduling problem and adopted a delay branching algorithm to solve the resulting

problem. Alternatively, Rosenberger et al [45] used a simulation model to implement

a stochastic approach for the crew scheduling problem and to evaluate recovery poli-

cies. Fuhr [18] developed a stochastic model to evaluate the on-time performance of

a given schedule.

The second approach to modeling disruptions is to define surrogate problems that

inherit the stochastic nature of the original problem. For example, Rosenberger et al

[44] showed that fleet assignments with less hub connectivity and more short cycles

perform better in operational circumstances. Schaefer et al [49] modeled the crew

scheduling problem under uncertainty using approximated expected pairing costs.

They also defined a lower bound on the expected cost of the pairings. Klabjan et

al [28] defined a regularity measure as a way to capture robustness and considered

maximizing this measure in addition to minimizing total cost.

4.2.3 Flight Re-timing Models

Perhaps the most closely related work to our research is that of Stojković et al

[52] and Lan et al [33], both of whom also consider the use of flight re-timings to

improve schedule performance.

In [52], the primary focus is on day-of-operations recovery activities. In particular,

they focus on how to modify an existing plan in order to recover from a set of minor

disruptions. They require that crew connections, rest requirements, aircraft con-

nections, maintenance requirements, passenger connections, etc. all be maintained.

They permit not only changes to flight departure times (specifically, increases), but

also allow activities to be expedited. For example, the amount of time required to
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off- and on-load passengers might be relaxed. The objective function then seeks to

minimize the costs associated with extra resource utilization (for example, as needed

when expediting activities) and passenger inconveniences.

Lan et al [33] consider two problems, both related to our research. First, they

consider how changes in aircraft routings can be used to reduce the potential for

delays to propagate via connecting aircraft. In this case, they hold flight departure

times constant but allow the assignment of aircraft (i.e., tail numbers) to flights

to change so as to better utilize the slack in the system to absorb disruption. In

a separate problem, they keep the aircraft routings fixed but allow flight times to

vary within a limited time window. The objective in this problem is to decrease the

impact of delay on passengers’ ability to make flight connections.

Both of these papers serve to demonstrate how even minor schedule modifica-

tions can have significant impact on system performance under disruptions, and help

motivate our research.

The idea of using time windows in the airline planning context was first intro-

duced by Levin [37]. Rexing et al [43] allowed scheduled flight departure times to

vary within a given time window to improve flight connection opportunities and

the cost-effectiveness of the fleet assignment. Stojković and Soumis [53] considered

the problem of simultaneously modifying the existing flight departure schedule and

planning individual work days (duties) while keeping planned aircraft itineraries un-

changed. Mercier and Soumis [41] considered an integrated aircraft routing and crew

scheduling model which allows the departure time of the flights to vary within a given

time window. Burke et al [11] constructed a multi-objective optimization model to

improve schedule reliability as well as schedule feasibility by re-timing flights and

permitting minor changes in aircraft rotations while keeping the fleet assignments
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fixed.

We seek to extend this research by developing a flight re-timing model that fo-

cuses on minimizing the propagation of root flight delays. Our approach permits

the simultaneous consideration of interactions between multiple resources (aircraft,

crews, passengers, etc.) and follows the downstream propagation of delays until ab-

sorbed. In particular, we are able to do so in a linear (rather than integer) program,

which has significant benefits in terms of computational performance. Because our

model relies on a surrogate objective function to approximate delay propagation, we

also develop a simulation-based approach to mimic the propagation of delays opera-

tionally. This simulation assists us in assessing the quality of our surrogate objective

function.

4.3 Models for Re-Allocating Planned Slack

4.3.1 Main Idea

Our goal is to improve the expected operational performance of a planned airline

schedule without increasing its planned cost. In particular, we want to re-time flight

departures so as to re-distribute existing slack (the scheduled connection time be-

tween two flights sharing a common resource minus the minimum turn time between

these flights) in the network, to make this slack available where it is most needed

operationally. Note that by moving a flight’s departure earlier, we increase the slack

in its outbound connections, but decrease the slack in its inbound connections (see

Figure 4.1). Therefore, given a fixed amount of slack in the schedule, we want to

re-distribute this slack to where it can best be utilized, taking into account both

the current connection times (e.g. adding slack to a long connection is unlikely to

provide significant benefit) and also the likelihood of root delays, which determine

how frequently the slack will be needed.
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We limit the extent to which each flight can be re-timed in three ways. First, we

maintain the feasibility of the existing crew and aircraft assignments. Second, we

protect connecting passenger itineraries. Third, we do not permit flight times to be

modified so substantially that the projected demand levels would change. Although

these restrictions limit the extent to which the schedule can be improved, we are

nonetheless able to provide an interim level of improvement (which we show to be

non-trivial) that can be achieved immediately, while researchers continue to study

the broader challenges of how to quantify, value, and increase schedule robustness

through more drastic changes.

The decisions in our model are how much earlier or how much later to re-time

each flight’s departure. The constraints needed to enforce the limitations on how

flights can be re-timed (so as to meet the three restrictions outlined previously)

are fairly straightforward, as is seen in the following sections. The challenge lies in

determining how to represent the objective function, so as to maintain tractability

while providing a solution that does in fact reduce delay propagation.

To explain our objective function (which is a surrogate for “robustness”), first

consider a single flight f . For this flight, we also have a set of relevant connections.

For example, the aircraft assigned to flight f might next connect to flight g, while

the cockpit crew connects to flight h. In addition, the cabin crew might connect

to flight i, and flights j and k may represent key passenger connections. Each of

these connections has some (non-negative but possibly zero) scheduled slack. In our

constraints, we enforce that the change in departure time for flight f does not violate

the minimum turn times for these connections – in other words, this scheduled slack

must remain non-negative.

But what happens if flight f is delayed in operations? For example, suppose its
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assigned aircraft has a mechanical problem that takes 35 minutes to repair. In the

absence of a recovery intervention, any available slack will be used to absorb this

delay, with the residual delay (the delay beyond the available slack) propagating to

the connecting flights. In our example, if the slack between flights f and g is 40

minutes, then flight g will not be delayed, but if the slack between flights f and h is

only 20 minutes, then h will experience a 15 minute departure delay. If we move the

departure time of flight f to be 15 minutes earlier, then a 35 minute root delay to

flight f will no longer propagate to impact flight h.

As a surrogate objective function, we propose to consider the sum of the impacts

of each individual root delay as it propagates downstream, weighting these delays by

their relative probabilities. There are of course limitations to this approach. First,

we are not considering recovery decisions, which can impact how delays propagate.

Incorporating recovery is a sizeable challenge, largely due to the fact that recovery

decisions are not pre-defined but rather based on individual personnel’s prior expe-

rience and intuition. We nonetheless suggest that incorporating some baseline rules

for recovery interventions would be an important extension of our model to consider.

Second, we do not consider the interactions of root delays and, as a result, we over-

count propagation. For example suppose that the aircraft of flight f connects to

flight g, while the crew of flight h also connects to flight g. When we consider the

impact of a root delay to flight f , we may capture a downstream impact on flight

g. The same will occur when we consider the impact of a root delay to flight h. In

reality, should these two root delays occur concurrently, then their effect on flight g

will typically not be additive. Of course, this over-counting will occur in both the

original schedule and our proposed alternative.

While these limitations will impact the quality of our results, we nonetheless
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suggest that our surrogate function can improve over the existing schedule without

increasing planned costs, enabling carriers to see immediate improvements in their

operational performance while the research community continues to seek ways to

provide further benefits. To support this hypothesis, we have developed a discrete-

event simulation model (presented in Section 4.3.4) to help assess the quality of our

proposed solutions.

4.3.2 Single-Layer Model

We begin by presenting a single-layer model (SLM) for redistributing slack. This

model only considers the impact of disruptions one layer “downstream” - that is, on

flights directly connected to the flight experiencing the root disruption.

We present this model for two reasons. First, it provides a simple framework

that will facilitate understanding of the more complex multi-layer model. Second, as

demonstrated in Section 4.4, even this simple model can yield non-trivial benefits.

Notation

Sets

F set of flights

A set of all considered connections

M set of possible delay values (minutes)

- here we assume that M is a discrete set

Parameters

k+
f ≥ 0 ∀f ∈ F the amount by which the departure time of flight

f can be moved later

k−f ≥ 0 ∀f ∈ F the amount by which the departure time of flight
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f can be moved earlier

0 ≤ pm
f ≤ 1 ∀m ∈M , ∀f ∈ F the probability that flight f experiences a root

delay of m minutes

sf1,f2 ≥ 0 ∀(f1, f2) ∈ A the slack between flights f1 and f2 in the

original schedule.

Decision Variables

− k−f ≤ xf ≤ k+
f ∀f ∈ F

yf1,f2 ≥ 0 ∀(f1, f2) ∈ A

dm
f1,f2

≥ 0 ∀(f1, f2) ∈ A, ∀m ∈M

xf is the change in the departure time of flight f . This change is restricted to

the specified range [−k−f , k+
f ]. Note that a negative value for x means the flight is

shifted earlier and a positive value for x means that the flight is shifted later.

yf1,f2 corresponds to the new slack between flights f1 and f2, according to the

modified schedule.

dm
f1,f2

corresponds to the delay that will propagate from flight f1 to flight f2 in the

new schedule if there is a root delay of m minutes imposed on flight f1.
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Formulation

(SLM) min
∑

m∈M

∑
(f1,f2)∈A

pm
f1

dm
f1,f2

(4.1)

s.t.

yf1,f2 = sf1,f2 − xf1 + xf2 ∀(f1, f2) ∈ A(4.2)

dm
f1,f2

≥ m− yf1,f2 ∀(f1, f2) ∈ A, ∀m ∈M(4.3)

dm
f1,f2

≥ 0 ∀(f1, f2) ∈ A, ∀m ∈M(4.4)

− k−f ≤ xf ≤ k+
f ∀f ∈ F(4.5)

yf1,f2 ≥ 0 ∀(f1, f2) ∈ A(4.6)

The objective function (4.1) of SLM minimizes the expected value of the delay

propagation by weighting the probability of an m-minute delay on flight f1 times its

propagation to f2, summed over all flight connections (f1, f2) and delay lengths m.

[Recall that, in this objective function, we consider only one layer of propagation.]

Constraints (4.2) calculate the new slack (yf1,f2) between two flights. This is the

old slack (sf1,f2) minus the change in the departure of the first flight (xf1), plus the

change in the departure of the second flight (xf2). Note, as illustrated in Figure 4.1,

that if flight f1 is moved earlier, then xf1 will have a negative value and the slack

yf1,f2 will therefore increase because we are subtracting this value. As a result, the

new slack (yf1,f2) equals the old slack (sf1,f2) minus xf1 plus xf2 . In the example

given in Figure 4.1, the departure of the first flight is shifted earlier by xf1 (which is

negative) and the departure time of the second flight is pushed forward by xf2 (which

is positive). Constraint set (4.6) ensure that the connection stays feasible, i.e., that

the slack remains non-negative.
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Linear Programming Formulation

• Constraints:

212121 ,, ffffff xxsy +−=

f1 f2
min turn original slack

original schedule

f1 f2
min turn original slack

modified schedule

0
1
<fx 0

2
>fx

new slack original slack

changes in departure times

Introduction Analysis approach Optimization model ResultsPart I Figure 4.1: Visualizing constraint (2).

Constraint sets (4.3) and (4.4) calculate how much delay would propagate from

flight f1 to its outbound connection f2 if f1 were to experience a root delay of m

minutes. Specifically, the propagated delay is m minus yf1,f2 (the root delay minus

the new slack between the flights) unless this is negative, in which case the delay is

zero.

Finally, constraints (4.5) limit the amount by which flight times can be changed.

Note that this is flight-specific and can be used not only to restrict changes so that

market share is not impacted, but also to recognize gate limitations, slot restrictions,

hourly departures (in which case the time window would be zero), etc. Key passenger

itineraries could be protected as well, by placing a lower value on the slack time (y)

between two connecting flights.

Claim: The solution to (4.2)-(4.6) will yield integer values of x.

Proof. In order to prove the claim, we need to show that the coefficient matrix

presented by (4.2)-(4.6) is totally unimodular. In that case, given that all elements

in the right-hand-side vector of (4.2)-(4.6) are integer, all the extreme points of

(4.2)-(4.6) will be integer [42].

In order to show that the coefficient matrix defined by (4.2)-(4.6) is totally uni-

modular, it is sufficient to prove that the coefficient matrix corresponding to con-

straints (4.2) and (4.3) – or equivalently, its transpose – is totally unimodular. The
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constraints (4.4)-(4.6) are upper and lower bounds, which do not impact the claim.

We can re-write constraint (4.3) substituting (4.2), which yields:

(4.7) dm
f1,f2

≥ m− sf1,f2 + xf1 − xf2 ∀(f1, f2) ∈ A, ∀m ∈M

By transferring the variables to the left-hand-side we get:

(4.8) dm
f1,f2

− xf1 + xf2 ≥ m− sf1,f2 ∀(f1, f2) ∈ A, ∀m ∈M

Here we can see that the coefficient matrix (A) corresponding to constraint (4.8)

has entries (aij) of only -1, 0 and 1. Furthermore, we can partition the columns of

this matrix into two sets: C1 includes the columns corresponding to the d variables

and C2 the columns corresponding to the x variables. We see that for each row of

this matrix, the summation of all the coefficients in C1 equals 1 and the summation

of all the coefficients in C2 equals 0. Therefore:

(4.9) |
∑
j∈C1

aij −
∑
j∈C2

aij| ≤ 1 ∀i

Therefore, A′ (the transpose of A) is totally unimodular, and thus A itself is also

totally unimodular.

This claim tells us that it is sufficient to solve SLM as an LP, rather than an

IP, while still yielding integer departure times. This has significant implications not

only for the tractability of the model, but also for our ability to extend it to include

indirect downstream effects, as we see in the next section.

4.3.3 Multi-Layer Model

The model presented in Section 4.3.2 only considers the impact of a root delay on

the flight’s immediate connections. Of course, these delayed connections can in turn
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delay their outbound connections as well if there is not enough slack to fully absorb

the disruption. In this section, we present a multi-layer model (MLM) in which the

downstream propagation of delays continues until they are fully absorbed.

To formulate this model, we must formalize the notion of a worst-case propagation

tree. Note that in Chapter III, we formally defined propagation trees as the set of

flights which can be delayed as a result of an m-minute delay in root flight f0. Here,

because we construct these trees before re-timing the flights, we do not know for sure

which flights will receive propagated downstream delays. Therefore the propagation

tree considers the “worst-case” scenario. For each root flight f0 and each delay value

m, the worst-case propagation tree represents the set of all downstream flights that

could potentially be delayed as a result of the root delay propagating. Note that

in the remainder of this section, the term “propagation tree” corresponds to the

worst-case propagation trees.

To construct a worst-case propagation tree for root flight f0 and delay value m, we

look at each of its outbound connections. For example, let f1 be the flight awaiting

flight f0’s aircraft. We assume that f0 is moved to its latest permitted departure time

and f1 is moved to its earliest departure time – this creates the minimum possible

slack between each flight pair. Clearly, if a delay of length m does not propagate

across this slack, then it will not propagate across any re-timing of the flight pair. On

the other hand, if it does, then the connecting flight is added to the propagation tree.

For each outbound connection that is added to the propagation tree, we then look at

all of its outbound connections, again assuming the minimum amount of slack in the

connection. Observe that for a given root flight f0, the propagation tree for a delay

of length m1 will be a subset of the propagation tree for the delay of length m2 > m1.

Figure 4.2 presents two such propagation trees, where the potential propagation from
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fi to fj is calculated as fi’s root delay minus the slack between fi and fj plus the

maximum amount by which the departure time of fi can be moved later (k+
fi
) plus

the maximum amount by which the departure time of fj can be moved earlier (k−fj
).

In this figure, the propagation tree with root flight f1 and root delay 30 (T 30
f1

, above)

has fewer nodes compared to the propagation tree with root flight f1 and root delay

60 (T 60
f1

, below).

Nodes with no propagation

Nodes with propagated 
delay (disrupted flights)

Root node

Legend

f1

f2

f3

f4
cockpit crew
slack = 30

aircraft
slack = 30

cockpit crew
aircraft

slack = 45
f5

cockpit crew
aircraft

slack = 45

f1

f2

f3

f4
cockpit crew
slack = 30

aircraft
slack =30

cockpit crew
aircraft

slack = 45
f5

cockpit crew
aircraft

slack = 45
f6

cockpit crew
aircraft

slack = 60

f8

aircraft
slack = 60

f7cockpit crew
slack = 60

cockpit crew
aircraft

slack = 60
f9

f8

aircraft
slack = 60

f7cockpit crew
slack = 60Root delay: 

30 minutes

Root delay: 
60 minutes

potential propagation from f1 to f2:
30-30+15+15 = 30

potential propagation from f2 to f4:
30-45+15+15 = 15

potential propagation from f4 to f5:
15-45+15+15 = 0

potential propagation from f1 to f3:
30-30+15+15 = 30

potential propagation from f3 to f7 or f8:
30-60+15+15 = 0

potential propagation from f1 to f2:
60-30+15+15 = 60

potential propagation from f1 to f3:
60-30+15+15 = 60

potential propagation from f2 to f4:
60-45+15+15 = 45

potential propagation from f4 to f5:
45-45+15+15 = 30

potential propagation from f5 to f6:
30-60+15+15 = 0

potential propagation from f3 to f7:
60-60+15+15 = 30

potential propagation from f3 to f8:
60-60+15+15 = 30

potential propagation from f7 to f9:
30-60+15+15 = 0

Figure 4.2: Visualizing worst-case propagation trees.

We define the following notation:

T m
f0

set of flights in the worst-case propagation tree associated with root flight

f0 and root delay m (excluding f0)

rm
f0

(f) the parent node of flight f in T m
f0

.
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Based on this notation, we extend the single-layer model to the multi-layer model:

(MLM) min
∑

m∈M

∑
(f0∈F,f∈Tm

f0
)

pm
f0dm

f0,f(4.10)

s.t.

yf1,f2 = sf1,f2 − xf1 + xf2 ∀(f1, f2) ∈ A(4.11)

dm
f0,f ≥ m− yf0,f ∀(f0 ∈ F , f ∈ T m

f0 : rm
f0(f) = f0), ∀m ∈M(4.12)

dm
f0,f ≥ dm

f0,rm
f0

(f) − yrm
f0

(f),f ∀(f0 ∈ F , f ∈ T m
f0 : rm

f0(f) 6= f0), ∀m ∈M(4.13)

dm
f0,f ≥ 0 ∀(f0 ∈ F , f ∈ T m

f0 ), ∀m ∈M(4.14)

− k−f ≤ xf ≤ k+
f ∀f ∈ F(4.15)

yf1,f2 ≥ 0 ∀(f1, f2) ∈ A(4.16)

There are two key differences between the single-layer model presented in Section

4.3.2 and this model. First, in the objective (4.10), we include not only the delay

minutes that a root delay of m minutes on flight f0 imposes on f0’s immediate

outbound connections, but also the propagated impact on all subsequent flights in

f0’s propagation tree.

Second, constraints (4.13) enforce the fact that the delay propagated to a flight

downstream from the root delay will be the amount of delay propagated to its parent

minus the amount of slack between these flights.

This model is structurally quite similar to the single-layer model and exhibits the

same integrality property. The main difference is in size. For each flight in any given

propagation tree, we have to add both a new variable and a new constraint. As we

observe in Section 4.4, however, the modified formulation remains highly tractable

for networks of a realistic size.

Claim: The solution to (4.11)-(4.16) will yield integer values of x.

Proof. The proof is similar to the one presented in 4.3.2. Here we argue that the

coefficient matrix presented by (4.11)-(4.13) is totally unimodular. (The constraints

(4.14)-(4.16) again do not affect the integrality of the x variables.)
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As in the earlier proof, we can re-write constraints (4.12) by substituting in con-

straints (4.11), yielding:

dm
f0,f − xf0 + xf ≥ m− sf0,f ∀(f0 ∈ F , f ∈ T m

f0
: rm

f0
(f) = f0), ∀m ∈M(4.17)

Note that this constraint, which captures the relationship between the root flight

and each of its “children”, includes one d variable, with coefficient of 1, and two x

variables, one with coefficient 1 and one with coefficient -1.

Next we consider constraint set (4.13). First, suppose that f is a “grandchild” of

f0 – in other words, its inbound connection is f0’s outbound connection. Then by

substituting (4.11) we get:

dm
f0,f ≥ dm

f0,rm
f0

(f) − srm
f0

(f),f + xrm
f0

(f) − xf(4.18)

and then by substituting (4.12) we get:

dm
f0,f ≥ m− sf0,rm

f0
(f) + xf0 − xrm

f0
(f) − srm

f0
(f),f + xrm

f0
(f) − xf(4.19)

Canceling and moving the variables to the left hand side of the constraint yields:

dm
f0,f − xf0 + xf ≥ m− sf0,rm

f0
(f) − srm

f0
(f),f(4.20)

which again has one d variable with coefficient one and two x variables, one with

coefficient 1 and one with coefficient -1.

More generally, when f is a descendant of f0 in the propagation tree, substitution

as above will yield:
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dm
f0,f − xf0 + xf ≥ m−

∑
(f1,f2)∈Pm

f0
(f)

sf1,f2(4.21)

as all the intermediate x variables cancel, with each intermediate flight on the

path from f0 to f playing the role of both parent and child. [In equation 4.21,

Pm
f0

(f) is the set of all arcs (f1, f2) that form the path from the root node f0 to f in

the propagation tree T m
f0

.] Again, we see one d variable with coefficient 1 and two x

variables, one with coefficient 1 and one with coefficient -1.

Thus, using the same partitioning of the columns of the A matrix as the earlier

proof, the sufficient condition for total unimodularity follows directly.

4.3.4 Simultaneous Delays Model

The models presented in Sections 4.3.2 and 4.3.3 rely on the use of a surrogate

objective function to achieve robustness. In particular, objective functions (4.1) and

(4.10) attempt to minimize the total amount of propagated delay in the flight network

by looking at how each individual flight propagates delay. The primary limitation

of this approach is that it does not take into account the fact that multiple flight

delays may occur in the network simultaneously. As a result, propagated delay will

in some cases be estimated inaccurately. Figure 4.3 presents one such situation.

f0

f1

f2

aircraft

cockpit crew

Root delay: 
25 minutes

Root delay: 
30 minutes

Individual delays in f0 and f1 each can impact f2

Figure 4.3: An example of simultaneous root delays where the surrogate objective function overes-
timates the delay propagations.

Given flights f0 and f1, both of which are parent (preceding) flights of f2, the
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objective function includes the sum of the delays propagated from both f0 and f1.

In scenarios where both f0 and f1 experience a root delay simultaneously, however,

f2’s delay should be the maximum of the two upstream delays, rather than their

sum.

Conversely, there are occasions where the surrogate objective function underesti-

mates delay. For example, as illustrated in Figure 4.4, when simultaneous root delays

happen consecutively, their overall results can be more disruptive than what the ob-

jective functions in (4.1) or (4.10) can estimate. In this figure, individual root delays

in f0 or f1 are not enough to delay f2. However, when f0 and f1 both experience a

thirty-minute delay, their delays can propagate to cause a ten-minute delay in f2.

f0 f1 f2aircraft
slack = 20

cockpit crew
slack = 30

Root delay: 
30 minutes

Root delay: 
30 minutes

Individual delays in f0 and f1 do not affect f2, but simultaneous 
delays in both f0 and f1 will delay f2 by 10 minutes

Figure 4.4: An example of simultaneous root delays where the surrogate objective function under-
estimates the delay propagations.

Given that both the original and the re-timed schedules suffer from these inac-

curacies, it is not clear how the overall reduction in delay propagation is affected.

Therefore, we have developed a discrete-event simulation model to provide further

analysis into the overall effects of this approximation. This enables us to compare

how both the original and the optimized schedules perform when multiple flights in

the network incur root delays concurrently.

Note that we assume root delays to be additive, meaning that if a flight has

previously incurred a propagated delay, but additionally incurs a root delay, the total

departure time is pushed back by the sum of these values. For example, consider the
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case when a flight is delayed because it is awaiting its (delayed) inbound aircraft.

A weather delay or mechanical delay (i.e., a root delay) at the second flight would

typically not arise until after the incoming aircraft arrived, making these delays

additive. On the other hand, when two different upstream delays simultaneously

affect a flight (e.g. its crew is delayed on one inbound flight and its aircraft delayed

on another), then the propagation will be the maximum of the two propagated delays,

rather than their sum.

To accurately simulate a given flight network using a discrete-event simulation,

we require a source of randomness that will be used to determine the amount of root

delays incurred by each flight. To model these delays, we have generated empirical

distributions based on the origin airport of the departing flight, using actual delay

data spanning a 12-month period. Specifically, we filtered out all delays that were

propagated from an upstream root disruption. We then clustered the remaining

delays by origin station and length of disruption. The corresponding probability

mass functions were used in both the simulation, to randomly generate the initial

root delays, and as coefficients in the objective functions of SLM and MLM.

Note that in a given flight schedule, there is no obvious “first flight” – because

the schedule is repeating, any particular flight can appear as both the root of one

propagation tree and a downstream flight in another. To address this complication,

our simulation algorithm employs a recursive strategy that explores all flights in a

given network without requiring a sequential ordering [34].

The delay that a flight experiences consists of two parts – propagated delay (re-

sulting from the need to wait for delayed upstream resources such as cockpit crews,

cabin crews and aircraft) and root delay (associated with the flight itself, such as a

weather delay). The propagated delay is computed by taking the maximum delay
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across all of the inbound resources, then adding this to the root delay.

To compute the total propagated delay in the network, we first initialize all flights

in the network to have a propagated delay of zero and a root delay of zero. After this

initialization stage, the propagation algorithm proceeds by executing the following

steps for each flight in the network.

We pick an arbitrary flight in the network to process and call upon the random

delay generator to provide a root delay for this particular flight. If this root delay

is non-zero, we update the departure time of the current flight to be the sum of

the (current value of the) propagated delay and this additional root delay. We then

consider all outbound connections from this particular flight. For each connection,

we determine how much (if any) of the current flight’s delay would propagate to this

child. We then check whether this propagated delay is larger than the connecting

flight’s current propagated delay. If it is, we update the connecting flight’s propa-

gated delay. Next, we add this to the connecting flight’s root delay (which will be

zero if that flight hasn’t been processed yet) to determine its new departure time.

Finally, we recursively use this new departure time to update the propagated delay

of its outbound connections, repeating until a flight delay does not propagate.

This process repeats until all flights in the network have been processed and there-

fore exposed to the possibility of incurring a root delay. Through the recursive nature

of the algorithm, we are guaranteed to explore every flight and every propagation

tree, updating them with the appropriate amount of propagated delay.

4.4 Computational Experiments

The objectives of our computational experiments were three-fold. First, we wanted

to assess the run-time performance of our models and determine their tractability.
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Second, we wanted to evaluate the extent to which minor changes in flight times

could impact the potential for delays to propagate – would the optimized sched-

ule have significantly less delay propagation than the original schedule? Third, we

wanted to use simulation to assess the accuracy of our surrogate objective function,

i.e., our metric for delay propagation. When multiple delays are allowed to occur si-

multaneously, as is the case in reality, does the our new schedule still show improved

performance over the original schedule?

Our computational experiments were conducted using data provided by a major

U.S. carrier offering over 500 flights per day. We considered two different dates

in 2007. For each of these dates, we were given the flight schedule, cockpit crew

schedules, and aircraft rotations. Thus, we were able to consider propagation of

delays associated with incoming aircraft and cockpit crews. [We did not include

delays associated with cabin crews or connecting passengers, due to lack of data.]

As a default, we assumed that each flight was allowed to be moved up to fifteen

minutes earlier or fifteen minutes later than its original departure time. Note that,

in theory, this could impact crew costs and feasibility. For example, if a duty were

currently at its maximum allowed elapsed time and we moved the departure time of

the first flight of the duty earlier and/or moved the departure time of the last flight

of the duty later, then we would violate the elapsed time limit.

To account for this, we considered four different variations. In the first and most

restrictive case, we assumed that the first flight of any duty could not be moved

earlier and the last flight of any duty could not be moved later. This greatly limits

the flexibility of the network. In both of the data sets considered, most of the flights

are either the first or last flights of their duty, and thus only about twenty-five

percent of the flights were allowed to move freely. Furthermore, this overly restricts
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the system: in a duty whose cost is dominated by flying time, increasing the elapsed

time by stretching the first and last flights slightly may have no impact on cost, and

the feasibility of the duty may be unchanged as well.

Therefore, we considered three additional instances, each progressively less re-

strictive. In these, the first and last flights of the duty were only allowed to change

by five minutes, by ten minutes, or by the same fifteen minutes as all other flights in

the network.

All code was implemented and run on an Intelr Pentiumr D 3.20 GHz CPU

architecture using the C++ programming language. The optimization models were

developed using CPLEX/Concert Technology and solved using CPLEX 11.0 solver.

4.4.1 Goal 1 – Tractability

Table 4.1 shows the size and run time of each problem instance solved. The first

column of this table indicates which of the two data sets is being considered. The

second column indicates the restriction on first and last flights in a duty (note that

all other flights have a ± fifteen minute time window in all instances). The third

column indicates whether the single-layer or multi-layer model is being used. The

fourth, fifth, and sixth columns give the size of the model (in number of constraints,

number of variables and number of nonzero elements) and the final column gives the

run time (in seconds).

Note that all run times are less than 10 seconds, suggesting that there is no compu-

tational limitation on either model. Although the model size increases substantially

when moving from the single-layer model to the multi-layer model, the fact that the

problem can be solved as an LP implies that tractability is not sacrificed when using

the more accurate model.

Finally, these results suggest that even if a significant number of additional con-
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Data Duty No. of No. of No. of Run
Set Restriction Model Constraints Variables Nonzeros Time
1 0 SLM 1,319 1,592 2,869 4
1 5 SLM 2,278 2,724 4,938 3
1 10 SLM 2,498 2,975 5,420 4
1 15 SLM 2,701 3,217 5,867 4
1 0 MLM 4,745 5,048 12,328 7
1 5 MLM 5,874 6,356 15,626 7
1 10 MLM 5,995 6,494 15,853 7
1 15 MLM 6,108 6,636 16,080 8
2 0 SLM 1,041 1,251 2,245 3
2 5 SLM 2,081 2,505 4,509 3
2 10 SLM 2,269 2,714 4,906 3
2 15 SLM 2,444 2,923 5,289 2
2 0 MLM 3,932 4,178 10,035 6
2 5 MLM 5,131 5,573 13,526 7
2 10 MLM 5,273 5,733 13,835 6
2 15 MLM 5,376 5,865 14,081 6

Table 4.1: Size of the instances and their corresponding run times.

nections were considered (e.g. incorporating cabin crews, key passenger itineraries,

etc), run times would remain tractable.

4.4.2 Goal 2 – Impact

Our second goal was to evaluate the potential improvements in delay propagation

to be gained by re-timing flights slightly. First, we began by computing two estimates

of the propagated delay of the original schedules – one using the objective function

from the single-layer model and one using the more accurate objective function from

the multi-layer model. We then optimized the original schedules twice, once using

each of the two objective functions. Again, for each of these solutions, we computed

both the SLM and MLM objective estimates of delay propagation.

Tables 4.2 and 4.3 presents these results. The first column specifies which of the

two data sets is being analyzed. The second column indicates how many minutes the

first/last flights of a duty are allowed to change. The next three columns present the

objective function value of the original, single-layer optimal, and multi-layer optimal

schedules relative to the single-layer objective function. For the optimized schedules,
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(n%) indicates the percent improvement over the original schedule, relative to the

single-layer objective function. Likewise, the last three columns in Table 4.3 represent

the multi-layer objective function applied to the three schedules.

Data Duty Evaluated w/ SLM Obj. Function
Set Restr. Orig. Sch. SLM Opt. Sol. MLM Opt.Sol.
1 0 1,294.24 1212.89 (6.3%) 1231.07 (4.9%)
1 5 996.102 (23.0%) 1018.69 (21.3%)
1 10 859.65 (33.6%) 882.99 (31.8%)
1 15 756.49 (41.5%) 771.08 (40.4%)
2 0 1,192.81 1129.54 (5.3%) 1139.59 (4.5%)
2 5 912.88 (23.5%) 929.98 (22.0%)
2 10 782.05 (34.4%) 800.21 (32.9%)
2 15 678.61 (43.1%) 691.48 (42.0%)

Table 4.2: Reduction in the expected delay propagation – comparing the original schedule schedules
with SLM.

Data Duty Evaluated w/ MLM Obj. Function
Set Restr. Orig. Sch. SLM Opt.Sol. MLM Opt. Sol.
1 0 2,268.55 2156.22 (5.0%) 2104.95 (7.2%)
1 5 1694.16 (25.3%) 1647.24 (27.4%)
1 10 1380.14 (39.2%) 1340.32 (40.9%)
1 15 1152.08 (49.2%) 1112.17 (51.0%)
2 0 2,037.05 1944.77 (4.5%) 1919.01 (5.8%)
2 5 1518.1 (25.5%) 1481.76 (27.3%)
2 10 1224.79 (39.9%) 1192.33 (41.5%)
2 15 1008.55 (50.5%) 973.816 (52.2%)

Table 4.3: Reduction in the expected delay propagation – comparing the original schedule schedules
with MLM.

Observe that, as expected, the amount of propagation is larger for all scenarios

when multiple layers of propagation are taken into account. In addition, the single-

layer optimal solution of course performs better under the single-layer objective, while

the multi-layer optimal solution performs better under the multi-layer optimization.

It is interesting to note that there is not a dramatic difference between the single-

and the multi- layer schedules in their performance under the multi-layer objective

function. This is presumably due to the fact that the delays dissipate fairly quickly as

observed Chapter III and thus the immediate outbound connection plays a dominant

role. Therefore, minimizing the first layer of delays will capture much of the possible
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benefits.

Another interesting observation here is to verify the presumption made in Sec-

tion 3.3.2 about the distribution of the slacks in a chain of flights. In Section 3.3.2

we hypothesized that it is most beneficial to add the slack to the “middle” of a chain

of flights in a propagation tree – under the implicit assumption that root delays

are equally likely to occur in each flight. Based on the computational results, we

observed that this assumption is in fact true. More specifically, wherever there is a

chain of flights with “approximately the same” probabilities for root delays, the slack

on the arcs closer to the beginning and the end of the chain is reduced and added to

the arcs closer to the middle of the chain. However, in cases where the probabilities

for the root delays are “radically different” we observe different patterns.

Finally, we observe that flight re-timing can have substantial improvements on

the delay propagation, ranging from approximately 5 percent for the most tightly

restricted instances to approximately 50 percent for the least restricted instances.

Of course, there are several caveats that must accompany these results. First, we

did not take into account the delay propagation associated with cabin crews or any

passenger itineraries for which the second flight of the itinerary would be “held” for

connecting passengers (these could easily be incorporated, given available data, and

would have little impact on run times). It is not clear what impact these additions

would have on the quality of the optimal solutions, as the changes would impact both

the original and the modified schedules. Second, we have not taken into account

recovery decisions, which again will affect propagation within both the original and

the optimized schedules. Finally, we re-iterate that our surrogate objective function

over-counts propagation because it considers each delay one at a time. We address

this limitation through the use of a discrete-event simulation model in the next
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section.

4.4.3 Goal 3 – Validity

In order to better assess the impact of the fact that the surrogate objective func-

tion does not incorporate the concurrency of delays in our optimization model, we

simulated each of the schedules (the original schedule and the re-timed schedules

based on the single-layer and multi-layer models) using the same probability distri-

bution functions for the root delays as in the optimization models.

The results are summarized in Table 4.4. The first two columns describe the

instance. The next three columns give the ratio of the expected amount of delay

propagation (in minutes), as estimated by 2000 replications of the simulation model,

divided by the value of the surrogate objective function under the original or re-timed

schedule.

Data Duty Simulation / Surrogate
Set Restriction Orig. Sch. SLM MLM
1 0 1.187 1.224 1.180
1 5 1.261 1.200
1 10 1.275 1.203
1 15 1.288 1.202
2 0 1.168 1.193 1.166
2 5 1.224 1.170
2 10 1.238 1.170
2 15 1.252 1.158

Table 4.4: Comparing the simulation results with the surrogate objective function value.

Data Duty Orig. Sch. SLM MLM
Set Restrictions Average Average Average
1 0 2692.1 2576.3 (4.3%) 2543.9 (5.5%)
1 5 2076.6 (22.8%) 2033.7 (24.4%)
1 10 1708.6 (36.5%) 1660.1 (38.3%)
1 15 1432.1 (46.8%) 1384.8 (48.6%)
2 0 2378.6 2289.0 (3.8%) 2266.7 (4.7%)
2 5 1813.9 (23.7%) 1776.4 (25.3%)
2 10 1476.6 (37.9%) 1433.0 (39.7%)
2 15 1219.3 (48.7%) 1167.8 (50.9%)

Table 4.5: Reduction in delay propagations (simulation results) – comparing different schedules.
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As expected, the simulated values differ from the surrogate values. However, the

ratio is fairly consistent, suggesting that the impact of ignoring concurrent delays

has comparable impact on both the original and the re-timed schedules. Thus, it is

not surprising that the simulated value of the re-timed schedules still demonstrates

a significant improvement over the simulated value of the original schedule. Table

4.5 demonstrates this. The first two columns describe the instance. The next three

columns give the expected amount of delay propagation (in minutes), as estimated

by the simulation model, for each of the three schedules. Columns four and five also

provide the relative improvement over the original schedule. Although these improve-

ments are lower than the surrogate objective values, they nonetheless demonstrate

a substantial opportunity for reduction in delay propagation through minor flight

re-timings.

Data Duty SLM MLM
Set Restrictions 95% C.I. 95% C.I.
1 0 (3.2%, 5.4%) (4.4%, 6.6%)
1 5 (21.8%, 23.9%) (23.4%, 25.5%)
1 10 (35.6%, 37.5%) (37.5%, 39.2%)
1 15 (46.0%, 47.6%) (47.8%, 49.3%)
2 0 (2.6%, 5.0%) (3.5%, 5.9%)
2 5 (22.7%, 24.8%) (24.3%, 26.3%)
2 10 (37.0%, 38.8%) (38.9%, 40.6%)
2 15 (47.9%, 49.5%) (50.1%, 51.7%)

Table 4.6: 95% confidence intervals on estimated reductions in delay propagation.

Based on simulation results, we also constructed 95% confidence intervals on the

reductions in delay propagations. We used common random numbers in order to

decrease the estimation error and used paired-t statistic to find the values provided

in Table 4.6.

4.4.4 Discussion

We conclude this section with a few final observations.
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First, we note that changing flight times can make key passenger itineraries infea-

sible by decreasing the connection time between them beyond that which is feasible

for a passenger to connect. Such itineraries can be protected by adding constraints

of the form:

yf1,f2 = sf1,f2 − xf1 + xf2(4.22)

yf1,f2 ≥ 0(4.23)

which says that, for a protected itinerary (f1, f2), the time between the scheduled

arrival of flight f1 and the scheduled departure of flight f2 must not decrease below

the minimum passenger connection time. Observe, however, that we do not include

delay propagation from flight f1 to flight f2 in the model, because we do not assume

that flights are delayed to await connecting passengers.

Second, we observe that – as with any model – the re-timing solutions that result

from our models will only be starting points, which will need to be fine-tuned before

implementation. In particular, although the 0-minute model may be overly restrictive

in terms of maintaining the current crew costs and feasibility, the 15-minute model

may result in some crew violations. These violations would have to be corrected

manually, but we suggest that substantial benefits can still remain even after these

modifications.

Third, to partially reduce this post-processing, we suggest that one way to reduce

crew infeasibilities would be to identify the largest amount by which the length of

the duty could increase without violating elapsed time limits and/or changing cost

the dominant cost from the flight time to the elapsed time. Then, for each duty, a

constraint of form:
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(4.24) −xf ′ + xf ′′ ≤ emax − e

could be used to ensure that the length of the duty not increase beyond this

limit. In the above constraint, f ′ and f ′′ are the first and the last flights of a duty

respectively, e is the elapsed time of that particular duty, and emax is the maximum

elapsed time in a duty.

Finally, we can consider a hypothetical case (for example, see Figure 4.5) where the

tree structure is violated. In this particular example, the root flight, f0 is connected

to two flights, f2 and f1 due to the sharing of the cockpit crew and the aircraft,

respectively. Subsequently, flight f2 shares the same cockpit crew with flight f3

while the same aircraft that is assigned to f1, flies f3 as well. In this case, delay

propagations form a directed acyclic graph (DAG) instead of a tree. Therefore, each

node in the corresponding worst-case “propagation DAG” may have more than one

parent.

f0

f2

f1
aircraft

cockpit crew

f3

aircraft

cockpit crew

Figure 4.5: An example of a directed acyclic graph. In this case, flight f3 has more than one parent.

Under such assumption, we can define the following notation:

Dm
f0

set of flights in the worst-case propagation DAG associated with root flight

f0 and root delay m (excluding f0)
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Rm
f0

(f) the set of parent nodes associated with flight f in Dm
f0

rm
f0

(f) an element of the set of parent nodes associated with flight f in Dm
f0

Consequently, we need to substitute the constraints (4.12) and (4.13) in MLM

with:

dm
f0,f ≥ m− yf0,f ∀(f0 ∈ F , f ∈ Dm

f0 : rm
f0(f) = f0), ∀m ∈M, ∀rm

f0(f) ∈ Rm
f0(4.25)

dm
f0,f ≥ dm

f0,rm
f0

(f) − yrm
f0

(f),f ∀(f0 ∈ F , f ∈ Dm
f0 : rm

f0(f) 6= f0), ∀m ∈M, ∀rm
f0(f) ∈ Rm

f0(4.26)

Here we should note that we did not observe such case in the data sets mentioned

in Section 4.4.1.

4.5 Conclusions and Future Research

Airline delays have significant negative impact on airline costs, passenger con-

venience and productivity, and the environment. One major cause of delay is the

down-stream propagation of initial delays to subsequent flights. This issue is exacer-

bated by the fact that slack is undesirable from a planning perspective, as it “wastes”

costly resources, but is critical from an operational perspective, as it can be used to

absorb disruptions and prevent their propagation.

Addressing operational concerns in the planning process can be quite challenging,

however. First, metrics for evaluating the operational performance of a planned

schedule must be developed. Second, cost functions must be developed to trade-

off planned and (anticipated) operational costs. Finally, these cost functions must

be incorporated in an already-challenging planning process. In particular, because

delay propagation spans across multiple resources, schedule design, fleeting, crew

scheduling, and maintenance routing must all be considered concurrently.

As an intermediate measure to partially decrease the propagation of delay while
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these other challenging topics are studied by the research community, we propose to

modify flight departure times within the framework of an existing airline plan. By re-

allocating the existing slack to those flight connections that are most prone to delay

propagation, we can reduce downstream impacts without changing planned crew or

fleeting costs and without changing revenue projections. Our computational results

show significant opportunities for improvement without any increase in planned costs.

Future research in this area of course includes the three issues raised above – met-

rics for evaluating the robustness of a planned schedule, cost functions for computing

the trade-off between planned costs and anticipated operational costs, and methods

for incorporating these cost functions in the planning process. In the shorter time

horizon, our research could be expanded by more explicitly addressing correlations

between different root delays. Finally, we are interested in including recovery deci-

sions (e.g. canceling flights, swapping aircraft, and calling in reserve crews) in our

model to capture their impacts on the operational performance of a planned schedule

under disruptions.



CHAPTER V

An Integer Programming Approach to Generating Airline
Crew Pairings

5.1 Introduction

Generating crew pairings – sequences of flights that can be flown by a single

crew – is a critical task not only for solving the airline crew scheduling problem,

but for the broader problems of integrated airline planning, robust planning, and

automated recovery as well. A significant challenge that must be overcome when

solving these problems is the large number of potential pairings – a reasonably-sized

flight network can have on the order of millions or even billions of feasible pairings.

Candidate pairings are therefore typically identified via column generation, rather

than explicitly enumerated (see Lavoie et al [35]).

Column generation leads to additional challenges, however, due to the non-linear

cost function and complex feasibility rules associated with assigning crews to flight

sequences. As a result, there has been a broad body of research devoted to methods

for generating promising crew pairings. This research (summarized in Section 5.2)

has typically focused on the development of highly-customized algorithms for solving

the airline crew scheduling problem, and several commercial software packages have

successfully implemented these algorithms. On the other hand, these customized

crew pairing generators require significant implementation efforts. This serves as a

82
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major impediment to researchers seeking to solve larger and more challenging prob-

lems (such as integrated planning, robust planning, and automated recovery) for

which crew pairing generation is only one small part. The efforts required to imple-

ment customized crew pairing algorithms and embed them in a broader framework

(for example, in a model that integrates crew scheduling with other stages of the

planning process) greatly reduce the number of new ideas that researchers can test

and develop, serving as a significant barrier-to-entry in this field of research.

On the other hand, an integer programming approach to generating crew pairings

can greatly facilitate the prototyping and evaluation of new research efforts, by en-

abling the use of traditional solution techniques such as branch-and-bound which are

commonly found in off-the-shelf commercial solvers. Although the non-linear cost

function and feasibility rules of crew pairings pose challenges for integer program-

ming, we present a novel modeling approach, based on both connection variables and

marker variables, that overcomes these obstacles. The resulting model can be solved

using standard IP techniques and solvers, and thus can more easily be embedded in

a larger problem framework.

This provides two benefits to researchers by enabling them to more quickly pro-

totype new ideas. First, the potential value to be provided by a new approach can

be evaluated. For example, test instances might be solved to estimate the potential

savings associated with integrating two problems, relative to solving them sequen-

tially. Second, if the idea shows promise, then the computational performance of the

proposed model and/or algorithm can be evaluated, using the run times associated

with using the IP-based crew pairing generator as an upper bound. Of course, a

more sophisticated (but challenging-to-implement) mechanism for generating pair-

ings could then be used to further improve run time. By benchmarking the run time
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of the IP-based pairing generator against other pairing generators, more accurate

estimates of the potential performance could be achieved.

The contributions of this research are thus two-fold. First, we present a new

way of modeling complex non-linear constraints and cost functions in a scheduling

context. Second, we show how this approach enables us to develop a crew pairing

generator that can facilitate research in an important and emerging research area –

that of integrated airline planning, robust planning, and automated recovery.

The outline of this chapter is as follows. In Section 5.2 we describe the crew

pairing problem and review the related literature. Our approach is presented in

Section 5.3, followed by computational results in Section 5.4. Finally, conclusions

and future research are discussed in Section 5.6.

5.2 The Crew Pairing Problem

In this section we formally present the crew pairing problem and review the related

literature.

5.2.1 Problem Statement

The objective of the airline crew scheduling problem is to find a least-cost assign-

ment of crews (cockpit or cabin) to flights. This is typically done in two major steps.

The first step, the crew pairing (CP) problem, partitions the flights into pairings.

Three separate versions of this problem are typically solved – one for the flights which

are flown each day, one for the flights that are only flown a few times per week, and

one for the transition between the end of one scheduling period and the start of the

next. The second step, known as either the crew assignment problem or rostering

problem, assigns specific crews to these pairings. We refer the reader to Barnhart et

al [5] for a more detailed discussion of the crew scheduling problem while we focus
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on the crew pairing problem.

A pairing is a multi-day sequence of flights that begins and ends at a crew base

and can feasibly be flown by a single crew. Pairings are made up of individual duties

(one-day work schedules), which are interspersed with periods of rest. The duties

are in turn sequences of individual flights with brief periods between them to allow

for connecting between flights.

Pairings and duties are both subject to a lengthy list of feasibility rules, stemming

from government regulations as well as labor negotiations. These include:

• The total flying time within a duty period must not exceed an upper bound;

the total elapsed time is limited as well.

• There is a minimum and maximum amount of time permitted between two

consecutive flights within a duty.

• There is a minimum amount of time permitted between two consecutive duties

within a pairing.

• There is a maximum number of duties permitted within a pairing.

In addition to the complexity caused by enforcing these feasibility rules, pairings

also suffer from a non-linear pay structure. The cost of a pairing is the maximum

of two terms – the sum of the costs of the individual duties, and a fixed percentage

of the elapsed time of the pairing (also known as time away from base, or TAFB).

The cost corresponding to an individual duty period is itself the maximum of three

terms – the total flying time in the duty, a fixed percentage of the elapsed time of
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the duty, and a minimum guaranteed payment per duty. These can be written as :

cd = max{flyd , β ed, γ}(5.1)

cp = max{(
∑

d

cd) , α Tp}(5.2)

where:

cd = cost of duty d

flyd = total flying time of duty d

β = percentage of elapsed time of a duty applied to duty cost function

(0 < β < 1)

ed = elapsed time of duty d

γ = minimum guaranteed duty payment

cp = cost of pairing p

α = percentage of elapsed time of a pairing applied to pairing cost

function (0 < α < 1)

Tp = elapsed time of pairing p.

5.2.2 Formulation

Because of its non-linear cost function and complicating feasibility rules, the crew

pairing problem is commonly modeled as a set partitioning (SP) problem (see Balas

and Padberg [4] for a broad survey of the set partitioning problem and Ryan and

Falkner [47] for a discussion of the properties of SP models as applied specifically to

scheduling problems). Although approaches other than SP (for example, Hoffman

and Padberg [21] and Yan and Tu [57]) have sometimes been successful in solving the

crew pairing problem, especially on small instances or under less complicated regu-

lations, SP-based approaches are typically used because they enable the embedding



87

of many complex rules within the variable definition.

The set-partitioning formulation of the crew pairing problem is:

(5.3) min
∑
p∈P

cpxp

subject to

∑
p∈P

δfpxp = 1 ∀ f ∈ F(5.4)

(5.5) xp ∈ {0, 1} ∀p ∈ P

Where:

F = set of all flights

P = set of all feasible pairings

cp = cost of pairing p

δfp = 1 if flight f is included in pairing p and 0 otherwise.

and:

xp =

 1 if pairing p is chosen

0 otherwise

∀p ∈ P

The objective (5.3) minimizes the cost of the chosen pairings. The cover con-

straints (5.4) and integrality constraints (5.5) require that for each flight f , exactly

one pairing is chosen containing that flight.
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5.2.3 Solution Techniques

Although the SP formulation captures the complex feasibility rules and non-linear

cost function of the crew pairing problem implicitly in the variable definitions, it re-

sults in an exponential number of decision variables, making it intractable to solve

explicitly for all but the smallest of flight networks. Instead, it is typically solved

using branch-and-price (Barnhart et al [5]). In this approach, a large-scale integer

program is solved with the branch-and-bound algorithm, but with the individual lin-

ear programs solved using column generation. Column generation was originally used

by Gilmore and Gomory [20] to solve large-scale linear programming problems such

as the cutting stock problem. In this approach, first a minimal subset of variables

is chosen and a restricted master (RM ) problem is constructed from them. RM is

solved to optimality and then an optimization problem called the sub-problem or the

pricing problem uses the resulting dual information to find a new non-basic variable

with negative reduced cost. This variable is pivoted into RM and the process repeats.

Such an approach eliminates the need to explicitly enumerate all of the variables (in

this case, pairings).

When using branch-and-price to solve the crew pairing problem, the sub-problem

is to find a feasible pairing with negative reduced cost. However, within this sub-

problem, all of the complex feasibility rules, as well as the non-linear cost func-

tion, must be addressed. Therefore much of the crew scheduling literature is ded-

icated to finding efficient methods to solve this sub-problem, which is also known

as pairing generation. The most common approaches to solving the pricing problem

are enumeration-based methods, heuristic methods, and the multi-label-shortest-path

(MLSP) algorithm.

Enumeration-based approaches, in which the variables are not all explicitly stored
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in the restricted master but are all enumerated iteratively within the pricing problem,

have been successfully used in some set partitioning problems (see Garfinkel and

Nemhauser [19] and Marsten [40]). The benefits of such an approach are primarily

in memory-management, as the full set of feasible variables must still be visited.

Clearly, the success of such approaches is greatly dependent on the size of the problem

instance, and is therefore problematic for solving crew scheduling across a large set of

flights. Nonetheless, enumeration-based approaches have seen some limited success

in the crew pairing problem with the addition of some basic forms of bounding as is

seen in Klabjan and Schwan [30] and Makri and Klabjan [39].

Randomized heuristics have also been used in order to generate promising pair-

ings. Such approaches do not guarantee an optimal solution to the pricing problem

(i.e., the variable with the most negative reduced cost), and therefore cannot provide

a certificate of optimality for RM. Nonetheless, these approaches can be useful in

generating promising columns and, in particular, can be successfully mixed with ex-

act techniques to form an efficient hybrid algorithm (see Klabjan et al [29]). Another

heuristic approach that has been successful in generating crew pairings is constraint

programming, as is seen in Fahle et al [17]. Again, such an approach can also be

combined with exact approaches.

The multi-label shortest-path algorithm, originally adapted to the crew pairing

problem by Desrochers and Soumis [15] and Lavoie et al [35], is perhaps the most

well-known approach to generating crew pairings. In this algorithm, each pairing

corresponds to a path in a flight network, with the cost of each path defined to be

the cost of the corresponding pairing minus the sum of the dual values associated

with the flights in that path. A collection of labels is used to capture the feasi-

bility criteria and to compute the path cost. Dominance is used to avoid explicit
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enumeration by pruning portions of the dynamic programming tree. However, in

this specific application, the notion of pruning by dominance may also rule out the

optimal solution.

The fact that flights cannot be repeated within a pairing can lead to invalid

pruning in the multi-label shortest path algorithm, because no one pairing fragment

can fully dominate another. Here, we provide a simplistic example to demonstrate

how this can happen. Consider the set of eight flights presented in Table 5.1.

Flight Origin Destination Departure Arrival Fly Time
A 1 2 9 11 2
B 2 3 13 15 2
C 3 2 6 12 6
D 2 4 16 18 2
E 4 1 10 12 2
F 1 2 13 15 2
G 2 3 14 17 3
H 3 1 22 26 4

Table 5.1: A counter example for dominance in MLSP

Assume that the minimum guaranteed duty pay (γ) is four, the fraction of the

elapsed duty time (β) is 0.6, the maximum flying time in a duty (ϕ) is eight, the

maximum duty elapsed time (δ) is twelve, the maximum number of duties (D) is

three, the minimum turn time (τ) is 0.5, and the only crew base is station 1.

This problem instance has four feasible solutions:

• Pairings {AG|CB|H} and {FD|E}, with cost 25 (where | delineates two duties)

• Pairings {AB|C|GH} and {FD|E}, with cost 25.2

• Pairings {AB|CD|E} and {F |GH}, with cost 27.2

and

• Pairings {AG|CD|E} and {F |B|H}, with cost 29.
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The first of these solutions is uniquely optimal and requires pairing {AG|CB|H}.

Suppose that the restricted master at some intermediate stage contains all feasible

pairings except this one. This pairing should be identified by the pricing problem

as having negative reduced cost and then be pivoted into RM. However, given the

dual values for the current solution to RM, the fragment {AB|C...} dominates the

fragment {AG|C...} – it has lower cost, lower dual component, less flying time, and

the same start/end flights. Thus, the fragment {AG|C...} would be pruned in MLSP.

However, the fragment {AB|C...} does not lead to a negative reduced cost pairing

(because it cannot repeat flight B), whereas {AG|C...} would. Thus, MLSP will

return a false certificate of optimality.

5.3 An Integer Programming Approach to Generating Pairings

5.3.1 Motivation

All of the solution techniques outlined in Section 5.2.3 require the implementa-

tion of sophisticated, customized data structures and algorithms. Although these

implementations exist within commercial solvers used by the airlines, they are ei-

ther unavailable to academic researchers, or when they are available, they often

require substantial effort to understand, modify, and integrate into the framework of

a broader research question.

We therefore present a novel approach, in which the crew pairing generation prob-

lem is defined as an integer program within a network flow framework. A feasible

solution, i.e., feasible pairing, is a path or a sequence of flights and the objective is

to find the most negative reduced-cost pairing. This approach can be implemented

without any sophisticated computer coding required. Moreover, as IP commercial

solvers become faster and more capable, these benefits are gained without additional

work by the researchers. The user can also exploit several possible environmental
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settings in commercial solvers (e.g. optimality tolerance, branching strategies, num-

ber of feasible solutions found, hot starts, etc.) in order to obtain desirable solution

quality in appropriate time.

5.3.2 Mathematical Model

The proposed mixed-integer programming (MIP) model is based on a set of bi-

nary decision variables (connection variables) that determine whether two flights

immediately follow each other. These variables also capture the added information

of whether the two flights follow each other in the same duty or span the overnight

between two duties. A second set of marker variables indicating placement informa-

tion such as flights which begin and end the pairing. A solution to this MIP is a

sequence of flights that forms a feasible pairing. Balance constraints guarantee that

the connections form a path while side constraints and auxiliary variables capture

the cost structure and feasibility rules. The objective function minimizes the reduced

cost of the path, which is the true cost of the pairing minus the sum of the dual values

of the flights that appear in that pairing. The mathematical model is presented here

for the daily problem, in which each flight is assumed to repeat daily. We revise the

model for the weekly and transition problems in Section 5.3.3.

1. Parameters Defined Over the Set of Flights (F)

Note: All time units are in hours.

πf ∈ R+ ∀f ∈ F dual value of flight f

tf ∈ [0, 24] ∀f ∈ F departure (takeoff) time of flight f

lf ∈ [0, 24] ∀f ∈ F arrival (landing) time of flight f

bf > 0 ∀f ∈ F total flying (block) time of flight f

of ∀f ∈ F origin of flight f
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df ∀f ∈ F destination of flight f

2. Parameters Corresponding to Regulations

D ∈ Z+ maximum number of duties in the pairing

α ∈ (0, 1) percentage of elapsed time of a pairing applied to the pairing

cost function

β ∈ (0, 1) percentage of elapsed time of a duty applied to the duty cost

function

ω home location or crew base (airport)

τ ∈ R+ minimum required time between two consecutive flights in a duty

σ ∈ R+ maximum permitted time between two consecutive flights in a duty

γ ∈ R+ minimum guaranteed duty payment

ϕ ∈ R+ maximum duty flying time

δ ∈ R+ maximum duty elapsed time

ρ ∈ R+ minimum rest time between consecutive duties

Note: γ < ϕ < δ

3. Sets

D = {1, ..., D} the set of all possible duty indices

(i.e., first duty, second duty, etc.)

D′ = {1, ..., D − 1} the set of all possible duty indices except the last

D′′ = {2, ..., D} the set of all possible duty indices except the first

D′′′ = {2, ..., D − 1} the set of all possible duty indices except the first and last
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S = {(f1, f2) ∈ F s.t. df1 = of2 , bf1 + bf2 ≤ ϕ and
tf2 − lf1 ≥ τ

tf2 − lf1 ≤ σ

lf2 − tf1 ≤ δ


or



lf1 > tf2

tf2 + 24− lf1 ≥ τ

tf2 + 24− lf1 ≤ σ

lf2 + 24− tf1 ≤ δ


}

O = {(f1, f2) ∈ F s.t. df1 = of2}

B = {f ∈ F s.t. of1 = ω}

E = {f ∈ F s.t. df1 = ω}

In other words:

• S: Set of all flight pairs that can be sequential in the same duty. The

destination of the first flight must match the origin of the second, the total

flying time of the two cannot exceed the total permitted flying time of

a duty, the time interval between the first flight’s arrival and the second

flight’s departure must be within the minimum required and maximum

permitted times, and the total elapsed time spanned by the two flights

cannot exceed the elapsed time limit of a duty. Note that when the two

flights “cross midnight” (e.g. the first flight has an 11 p.m. arrival and the

second flight has a 1 a.m. departure), then we need to shift the takeoff of

the second flight 24 hours to recognize that it is the subsequent day’s flight.

• O: Set of all flight pairs that can “span” a duty, i.e., one flight ends a duty

and the second flight starts the next duty (after an adequate period of rest).

This set includes all flight pairs where the destination of the first matches

the origin of the second – if the time between them is inadequate for the

rest period, then the second flight can be shifted a day later and the rest
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period increased by 24 hours.

• B: Set of all flights that originate at the crew base and thus can begin the

pairing.

• E : Set of all flights that terminate at the crew base and thus can end the

pairing.

4. Other Parameters

The following parameters capture the overnight rest (r) and sit (s) times be-

tween two consecutive flights.

r(f1,f2)∈F =



tf2 − lf1 if tf2 − lf1 ≥ ρ

tf2 + 24− lf1 if tf2 > lf1 and tf2 − lf1 < ρ

tf2 + 24− lf1 if lf1 > tf2 and tf2 + 24− lf1 ≥ ρ

tf2 + 48− lf1 if lf1 > tf2 and tf2 + 24− lf1 < ρ

s(f1,f2)∈S =

 tf2 − lf1 if tf2 > lf1

tf2 + 24− lf1 if tf2 < lf1

Where:

• rf1,f2 is the rest period between two flights that follow each other in two

consecutive duties. This is the departure time of the second flight minus

the arrival time of the first flight. If this rest period is less than the mini-

mum then the second flight must be shifted a day later and the rest period

increased by 24 hours. If the arrival of the first flight is later than the de-

parture of the second flight, then the second flight must also be shifted by a

day. Finally, it may be necessary to shift a flight two days both to account

for time of day (i.e., second flight precedes the first) and if the length of
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the rest period resulting from the initial shift of one day is less than the

minimum rest requirement.

• sf1,f2 is the time between two flights that follow each other in the same duty

(sit time), where 24 hours must be added to the second flight if it must be

shifted a day later.

5. Decision Variables

vf ∈ {0, 1} ∀f ∈ B whether f is the first flight of the pairing

wf,d ∈ {0, 1} ∀f ∈ E , d ∈ D whether f is the last flight of the pairing

and the pairing is d duties in length

xf1,f2,d ∈ {0, 1} ∀(f1, f2) ∈ S, d ∈ D whether f1 is followed by f2 within

the dth duty

yf1,f2,d ∈ {0, 1} ∀(f1, f2) ∈ O, d ∈ D′ whether f1 ends the dth duty and is

followed by f2 starting the d + 1st duty

zf,d ∈ {0, 1} ∀f ∈ F , d ∈ D whether f appears in the dth duty

ud ∈ {0, 1} ∀d ∈ D whether the pairing contains at least d

duties

C ∈ R+ cost of the pairing

T ∈ R+ elapsed time of the pairing (TAFB)

cd ∈ R+ d ∈ D cost of the dth duty

ed ∈ R+ d ∈ D elapsed time of the dth duty

6. Objective Function

(5.6) min C −
∑
f∈F

∑
d∈D

πf zf,d
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The objective function (5.6) minimizes the reduced cost of the pairing – the

true cost of the pairing minus the sum of the dual contributions of each flight

included in the pairing.

7. Constraints

(a) Cost Constraints

cd ≥ γ ud ∀d ∈ D(5.7)

cd ≥
∑
f∈F

bf zf,d ∀d ∈ D(5.8)

cd ≥ β ed ∀d ∈ D(5.9)

T =
∑
d∈D

ed +
∑

(f1,f2)∈O

∑
d∈D′

rf1,f2 yf1,f2,d(5.10)

C ≥
∑
d∈D

cd(5.11)

C ≥ α T(5.12)

Constraints (5.7) through (5.12) are used to compute the cost of the pairing,

as defined in Section 5.2.1. Constraints (5.7), (5.8), and (5.9) define the

cost of each duty as the maximum of: the minimum guaranteed payment,

the total flying time of the duty, and a fraction of the total elapsed time

of the duty. [Note that if the pairing contains fewer than D duties, the

right-hand side of these constraints will be zero for the appropriate values

of d]. Constraints (5.11) and (5.12) define the cost of the pairing as the

maximum of the total cost of the duties in the pairing and a fraction of the

total elapsed time of the pairing, which is defined in constraint (5.10) as

the sum of the elapsed time of the duties in the pairing plus the sum of the
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rest periods between duties.

(b) Constraints Defining Auxiliary Variables

Constraints (5.13) through (5.20) enforce the relationship between the aux-

iliary variables, u and z, and the main decision variables (x, y, v and w).

u1 = 1(5.13)

ud =
∑

(f1,f2)∈O

yf1,f2,d−1 ∀d ∈ D′′(5.14)

zf,1 =
∑

(f1,f)∈S

xf1,f,1 ∀f ∈ F\B(5.15)

zf,1 = vf +
∑

(f1,f)∈S

xf1,f,1 ∀f ∈ B(5.16)

zf,d =
∑

(f,f1)∈O

yf,f1,d +
∑

(f,f1)∈S

xf,f1,d ∀f ∈ F\E , ∀d ∈ D′′′(5.17)

zf,d = wf,d +
∑

(f,f1)∈O

yf,f1,d +
∑

(f,f1)∈S

xf,f1,d ∀f ∈ E , ∀d ∈ D′′′(5.18)

zf,D =
∑

(f,f1)∈S

xf,f1,D ∀f ∈ F\E(5.19)

zf,D = wf,D +
∑

(f,f1)∈S

xf,f1,D ∀f ∈ E(5.20)

Constraint (5.13) ensures that the pairing contains at least one duty. For

all d > 1, constraint (5.14) states that the dth duty exists if it contains

an overnight connection from the preceding duty. Constraints (5.15) state

that a flight exists in the first duty if it is preceded by another flight in

that duty; if the flight originates at the crew base, then it can also be the

first flight of the pairing (constraints (5.16)). If a flight appears in any duty

other than the first, then it must either be the last flight of that duty (and

thus precede a rest period) or be followed by another flight in that duty

(5.17). If the flight ends at the crew base then it may also be the last flight
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in the pairing (constraints (5.18)). Constraints (5.19) and (5.20) address

the special case where there can be no subsequent duty and thus a flight

cannot precede a rest period.

(c) Duty Constraints

∑
f∈F

bf zf,d ≤ ϕ ∀d ∈ D(5.21)

ed =
∑
f∈F

bf zf,d +
∑

(f,f1)∈S

sf,f1 xf,f1,d ∀d ∈ D(5.22)

ed ≤ δ ∀d ∈ D(5.23)

Constraints (5.21) through (5.23) guaranty the feasibility of the duties.

Constraint (5.21) ensures that the total flying time in the dth duty does not

exceed the maximum permitted flying time. Constraint (5.22) defines the

elapsed time of the dth duty as the sum of all flying times in the duty plus

the sum of all sit times in it. Constraint (5.23) prevents the dth duty from

violating the maximum elapsed time.

(d) Pairing Constraint

∑
d∈D

zf,d ≤ 1 ∀f ∈ F(5.24)

Constraint set (5.24) states that each flight f can appear at most once in

the pairing.

(e) Balance Constraints

Constraints (5.25) through (5.32) are analogous to “balance constraints”

in a network flow problem, forcing the chosen flights to form a sequential

path.



100

∑
f∈F

vf = 1(5.25)

∑
f1∈F,(f1,f)∈S

xf1,f,1 =
∑

f1∈F,(f,f1)∈S

xf,f1,1 +
∑

f1∈F,(f,f1)∈O

yf,f1,1 ∀f ∈ F\B ∪ E(5.26)

vf +
∑

f1∈F,(f1,f)∈S

xf1,f,1 =
∑

f1∈F,(f,f1)∈S

xf,f1,1 +
∑

f1∈F,(f,f1)∈O

yf,f1,1 ∀f ∈ B(5.27)

∑
f1∈F,(f1,f)∈S

xf1,f,1 =
∑

f1∈F,(f,f1)∈S

xf,f1,1 +
∑

f1∈F,(f,f1)∈O

yf,f1,1 + wf,1 ∀f ∈ E(5.28)

∑
f1∈F,(f1,f)∈S

xf1,f,d +
∑

f1∈F,(f1,f)∈O

yf1,f,d−1 =
∑

f1∈F,(f,f1)∈S

xf,f1,d(5.29)

+
∑

f1∈F,(f,f1)∈O

yf,f1,d ∀f ∈ F\E , ∀d ∈ D′′′

∑
f1∈F,(f1,f)∈S

xf1,f,d +
∑

f1∈F,(f1,f)∈O

yf1,f,d−1 =
∑

f1∈F,(f,f1)∈S

xf,f1,d(5.30)

+
∑

f1∈F,(f,f1)∈O

yf,f1,d + wf,d ∀f ∈ E , ∀d ∈ D′′′

∑
f1∈F,(f1,f)∈S

xf1,f,D +
∑

f1∈F,(f1,f)∈O

yf1,f,D−1 =
∑

f1∈F,(f,f1)∈S

xf,f1,D + wf,D ∀f ∈ E(5.31)

∑
f1∈F,(f1,f)∈S

xf1,f,D +
∑

f1∈F,(f1,f)∈O

yf1,f,D−1 =
∑

f1∈F,(f,f1)∈S

xf,f1,D ∀f ∈ E(5.32)

Constraint (5.25) ensures the existence of a first flight for the pairing. Con-

straints (5.26) state that if a flight appears in the first duty (and hence

is preceded by a flight in the first duty), then it must either be followed

by another flight in the first duty or precede a rest period leading into the

second duty. If the flight originates at the crew base, then it can also be

the first flight of the pairing (and hence the additional term in the left-hand

side of constraints (5.27). If the flight terminates at the crew base, then it

can also be the last flight of the pairing (leading to the additional term in

the right-hand side of constraints(5.28)).

For d > 1, a flight appears in the dth duty if it is either preceded by another

flight in the duty or follows a rest period. If a flight appears in the dth

duty, then it must be followed by a flight within the dth duty or precede a

rest period leading into the d + 1st duty (constraints (5.29)). If the flight
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terminates at the crew base, then it may also end the pairing (and hence

the additional term in the right-hand side of constraint (5.30)).

Finally, if the flight appears in the Dth duty, then it cannot precede a rest

period, as there can be no subsequent duties (and hence the removal of the

corresponding term from constraints (5.31) and (5.32)).

5.3.3 Discussion

In this section we make some brief observations about this model.

1. Weekly and Transition Problems

In Section 5.3.2, we formulated the integer programming-based approach for the

crew pairing problem, focusing on the daily version. In the daily problem, each

flight is assumed to operate every day of the week. Each pairing in turn is flown

by a different crew starting each day of the week. Thus, a flight cannot appear

more than once in a pairing. Furthermore, a flight on one day can connect

to another flight the following day, due to the assumption that every flight is

flown every day. In the weekly problem, we consider flights that do not occur

every day of the week, as well as those flights from broken pairings – pairings

which include a flight that is not actually part of the schedule. In this case

the model remains the same. What changes is the parameters of this model –

specifically, the set S of flight connections. In this case, it is necessary to think

of flights as corresponding to not only locations and time of day, but also to a

specific day of week. The connections in set S must accommodate these days of

week. For example, a Tuesday flight can connect to a Wednesday flight and thus

this connection will appear in S, but this flight cannot connect to a Monday

version of the same flight. This approach is also valid for the transition problem,
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where flights at the end of one schedule must be combined with flights from the

beginning of another schedule to create pairings. Finally, it is not uncommon in

the weekly and transition problems for deadheads to be used. These are flights

where the crew flies as a passenger solely for the purpose of repositioning. In

order to accommodate this, deadhead flight opportunities would be included

in the input flight set for the model (see [6] for a discussion of how to choose

promising deadhead flights). Furthermore, these deadhead flights would not

necessarily be restricted to a single use (i.e., constraint set (5.24) would not be

applied).

2. Reusability

Recall that crew pairings will typically be generated many times when solving

the crew pairing problem – not just to find an optimal solution to the LP

relaxation, but then again at each node of the branch-and-bound tree. One

advantage of the IP-based approach to generating pairings is that this pricing

problem requires little modification from iteration to iteration. Specifically, the

only place in the model where the dual information appears is in the objective

function. Therefore, the feasible region (i.e., the set of feasible pairings) does

not vary. This provides two benefits. First, the effort required to set up the

IP must only occur once, rather than at each iteration of the pricing problem.

Second, the information learned in solving the IP under one objective function

(i.e., for one set of dual values) can be used as an initial feasible solution, and

thus an upper bound for subsequent instances.

3. Relaxing Variable Integrality

We conjecture that it is sufficient to restrict only the z variables to be integer
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and to relax the integrality requirements of all other variables; when z is integer,

all other variables will automatically be integer as well. As a result, the number

of integer variables in the problem reduces from O(|F|2 ∗D) to O(|F| ∗D).

The logic behind this conjecture is that an integer vector z, in conjunction with

the balance constraints, yields either a single path or a convex combination of

paths. Furthermore, each of these paths contains the same set of flights and thus

the only difference between the paths is the order in which the flights appear.

We consider three cases with regards to these paths. In the first case, if there is

only a single path, then this path must also satisfy all of the duty and pairing

constraints and thus is a valid solution. In the second case, if there are multiple

paths and all of them satisfy the duty and pairing constraints, then they are

all feasible and all have the same cost (otherwise a lower-cost solution could

be found by choosing only the lowest-cost path). This cannot occur, because

different orderings of the flights will lead to different costs. Thus, in the third

case where there are multiple paths, some of the paths must be infeasible and the

feasible paths must have higher cost than the infeasible paths. We conjecture

that a rearrangement of flights which leads to a feasibility violation will also

lead to an increase in cost, thus ruling out the third case.

Below, we prove the conjecture for any instance where the maximum elapsed

time in a duty is at most twelve hours.

Definitions:

• IP1 is the original IP formulation for generating crew pairings.

• LP1 is the LP relaxation of IP1.

• IP2 is the semi-relaxed model given by relaxing all binary variables in IP1
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except for the z variables.

Lemma V.1. If the optimal solution of LP1 is fractional then it can be de-

composed into separate fractional paths. [Note that this decomposition is not

necessarily unique.]

Proof by construction. Start with a variable vfi
with the optimal value of 0 <

λi ≤ 1. From the balance constraints (5.25-5.32), there must exist some xfi,fj ,1

or yfi,fi,1with value 0 < λj ≤ 1. Preceding in this fashion, ultimately some last

flight wf,d with non-zero value must be reached. Take the minimum λ̂ of all

the values λ over all these variables. Clearly, this defines a path with fractional

value λ̂. Decrease all variables making up this path by λ̂ and repeat. At each

iteration, at least one variable with non-zero value will be removed from the

solution and thus the procedure will terminate in a finite number of steps.

Lemma V.2. At most one of the fractional paths constructed according to V.1

can be feasible (or the solution can be trivially converted to such an alternative

solution).

Proof by contradiction. Suppose LP1 leads to multiple feasible, fractional paths.

Consider two such paths, X1 and X2.

Case I . Suppose the paths have different costs. Without loss of generality

assume that the cost of path X1 is greater than the cost of path X2, i.e.,

C(X1) > C(X2).The optimal solution value of LP1 can be written as

λ1C(X1) + λ2C(X2) + ... + λnC(Xn),

which is strictly greater than than

(λ1 + λ2)C(X2) + ... + λnC(Xn),
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in contradiction of the optimality of the original solution.

Case II . Suppose the paths have the same cost, i.e., C(X1) = C(X2). In this

case, the solution

(λ1 + λ2)X
2 + ... + λnX

n

is a feasible alternative with equivalent cost.

Lemma V.3. A flight will be allocated to at most one duty in any optimal

solution to LP1.

Proof. This follows directly from constraint 5.24 and the integrality of z vari-

ables.

Lemma V.4. Changing the order of flights within a feasible duty leads to an

infeasible duty.

Proof by contradiction. Suppose reordering the flights in duty d1 leads to a fea-

sible duty d2. d1 is feasible so ed1 ≤ δ. In order to change the order of flights

in d1 we need to break the link between at least one pair of consecutive flights

f1 and f2 (with sit time sf1,f2) and reorder the resulting flight sequences, with

flight f2 now appearing earlier (and non-sequentially) in the duty than flight f2

and thus “shifting backwards” by twenty-four hours. If we write ed1 as B+sf1,f2 ,

where B is the elapsed time of duty d1 minus the sit time between flights f1 and

f2, then we have:

ed1 = B + sf1,f2 ≤ δ

and so

δ ≥ ed2 ≥ B + 24− sf1,f2 .
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Therefore

(B + sf1,f2) + (B + 24− sf1,f2) =

2B + 24 ≤ 2δ

and thus

B + 12 ≤ δ.

If

δ ≤ 12

then this is a contradiction.

Theorem V.5. Solving IP2 either leads to an integral solution for IP1 or leads

to a fractional solution which can trivially be converted to an integer solution

with equivalent cost.

Proof by contradiction. Suppose solving IP2 yields a fractional solution. By V.1

this can be decomposed to at least two fractional paths, X1 andX2. V.2 implies

that only one of these can be feasible. Without loss of generality assume that

X1 is feasible and X2 is infeasible. Note that these paths consist of the same

flights according to V.3. However, the flights within some duties must be re-

ordered given that the paths are distinct. By the optimality of the solution, X2

must have lower cost than X1.

Case I . The dominant element of the cost function is the total cost of the

duties. Therefore ∑
i

edi
2 <

∑
i

edi
1,

which contradicts V.4.
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Case II . The dominant element of the total cost is the TAFB. Therefore

∑
i

edi
2 =

∑
i

edi
1

and

TX2 < TX1 .

However, because X2 is infeasible, it must violate the maximum elapsed time

of some duty and thus
∑

i edi
2 6=

∑
i edi

1 , a contradiction.

4. Optimality-Recognizing Cut

In the basic model, the objective function (5.6) minimizes the reduced cost of

the pairing. In the column generation context, this means that the sub-problem

finds the pairing with “the most negative” reduced cost. Therefore, the optimal-

ity of the master problem is established when the sub-problem returns a pairing

with non-negative reduced cost. However, there are two potential drawbacks

here: first, in the final iteration, the sub-problem may invest substantial time in

finding the best solution (i.e., pairing with the minimum reduced cost) when all

we need to know is that there is no negative reduced-cost solution. Second, due

to precision issues, the sub-problem may generate a number of pairings with

“practically zero” reduced cost before the master problem terminates. In order

to avoid these drawbacks, we can use the following inequality in the sub-problem

to manually enforce the negativity of the reduced cost:

(5.33) C −
∑
f∈F

∑
d∈D

πf zf,d ≤ −ε

In (5.33), the left hand side computes the reduced cost corresponding to the new

pairing, where the right hand side is the actual tolerance for zero used in the
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computer code. As a result, the optimality of the master problem is established

when the sub-problem is infeasible; i.e., no negative reduced-cost pairing can be

found.

Moreover, this constraint will restrict the search for the new pairing only to the

“promising” portion of the feasible region. As the reduced cost is constrained

to be negative, any feasible pairing generated in the process of finding the

optimal pairing can also be used in order to improve the master problem’s

objective function. Furthermore, in cases where finding the optimal pairing is

not necessary, we can stop the sub-problem as soon as a feasible solution is

found. As shown in Section 5.4.2, this can potentially speed up the column

generation procedure.

5. Generating Multiple Columns

It is often observed that generating multiple columns at each iteration of the

pricing problem can result in faster convergence. When solving an integer pro-

gram with branch-and-bound, it is often the case that multiple integer-feasible

solutions are encountered before the optimal solution is found. As is the case

with other approaches to generating crew pairings, we can potentially improve

performance by adding all of these columns (rather than only the optimal one)

to the restricted master.

Of course, a strong branching strategy may restrict the number of intermedi-

ate solutions that are encountered in the branch-and-bound tree. This can be

overcome by using a cut generation-based approach. In such an approach, after

the optimal solution is found, a cut is added prohibiting this optimal pairing

without excluding any other pairings from the feasible region. The problem is
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then re-solved to find another viable pairing, and the process can be repeated

until a sufficient number of pairings are generated. This cut could be defined

as follows. Let Vk be the set of v, w, x, and y variables that take value one in

the optimal solution (i.e., pairing) at iteration k. Then the sum of all variables

in set Vk must be less than or equal to the cardinality of this set minus one.

Because the variables form a unique sequence, this will eliminate the current

pairing but will not rule out any other pairings.

5.4 Initial Computational Experiments

In the previous section, we presented a mixed integer programming formulation

for generating crew pairings. This MIP facilitates the implementation of crew pairing

for proto-typing new ideas in important research areas such as integrated planning,

robust planning, and automated recovery. In order for this approach to be of value,

however, it must not only be easy to implement, but also tractable in run time. The

purpose of this section is to assess the tractability of the individual sub-problems,

i.e., the generation of pairings. Therefore, we only solved the LP-relaxation of the

master problem. Furthermore, we do not emphasize the performance characteristics

of the master problem (e.g. tailing effects) because they are independent of the

mechanism used to generate pairings.

5.4.1 Generating Initial Columns

In all of our computational experiments, the restricted master was initially seeded

with a heuristically-generated set of columns. Specifically, we used a forward recur-

sion to begin enumerating pairings exhaustively. However, whenever a flight had

been encountered in n pairings, this flight was removed from consideration. This

resulted in a diverse collection of columns. [Based on computational experiments,
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we found n = 6 to provide a good trade-off in terms of number of columns generated

versus time spent.] Finally, we also added a set of artificial columns, one per flight,

to guarantee that an initial feasible solution to the restricted master could be found.

5.4.2 143-Flight Network

Generating Optimal Columns

In the first set of experiments, we considered a network of 143 flights and four crew

bases, provided by a major U.S. hub-and-spoke carrier. We solved the LP relaxation

of the master problem to optimality, i.e., until none of pricing problems associated

with the four crew bases yielded a negative reduced-cost column.

Although a “provably optimal” solution cannot be guaranteed unless all columns

with reduced cost strictly less than zero are considered, computer precision issues

make this impractical. We therefore evaluated three parameters – 1, 0.1, and 0.01 –

to define what constitutes a negative reduced-cost column. This parameter (ε) was

introduced in Section 5.3.3.

The restricted master was initially seeded with a set of heuristically-generated

columns and solved for the first set of dual values. We then used these dual values

as input to the pricing problems – one per crew base. In subsequent iterations, if a

particular crew base failed to yield a negative column, then we temporarily removed

that crew base from consideration for subsequent iterations. Once all crew bases had

been removed from consideration, we simultaneously reconsidered them all until no

new columns could be identified (i.e., all four crew bases failed to yield a negative

column for the current set of dual values).

The LP relaxation of the restricted master problem was solved using CPLEX

version 10.2 with default settings. A 16 thread solver was used on a sun x4600-

M2 with 8 dual core 8218 AMD Opteron cpus and 64 GB of ram with Red Hat
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Precision Objective Total Run Number of Number of Number of
(ε) Value Time (seconds) Iterations Initial Cols Generated Cols
1 45567.2 194 160 320 401

0.1 45567.2 247 180 320 442
0.01 45567.2 252 166 320 396

Table 5.2: Generating optimal columns for 143 flight network.

Enterprise Linux version 4 as the operating system. Table 5.2 provides information

about each of the three runs. Observe that the pricing problem calls on average took

less than one second apiece (taking into account setup time to solve the restricted

master problem at each iteration, etc.), and that the choice of precision did not

substantially impact performance.

Generating Feasible Columns

The next set of experiments was motivated by the fact that it is not necessary

to find the most negative reduced-cost variable in column generation – any variable

with negative reduced cost is sufficient. Therefore, we ran the same data set, this

time stopping when the first negative reduced-cost column was found (again, using

three different parameters to define “negative”). The results are displayed in Table

5.3.

Precision Objective Total Run Number of Number of Number of
(ε) Value Time (seconds) Iterations Initial Cols Generated Cols
1 45567.2 186 175 320 435

0.1 45567.2 129 155 320 388
0.01 45567.2 158 160 320 388

Table 5.3: Generating feasible columns for 143 flight network.

Here it should be noted that we did not drop the objective function for the fea-

sibility runs; instead, we set the solver parameters so that each iteration terminates

as soon as a feasible solution is found. Observe that all three runs found the optimal

solution (again, without substantial difference relative to the precision values).
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5.4.3 329-Flight Network

The second data set that we considered (from the same U.S. carrier) consisted

of 329 flights and four crew bases. Given the results of the experiments outlined in

the previous section, we only conducted those experiments in which the first (rather

than best) negative reduced-cost column was sought for each iteration. Table 5.4

shows the results of these experiments.

Precision Objective Total Run Number of Number of Number of
(ε) Value Time (seconds) Iterations Initial Cols Generated Cols
1 95102 5167 669 772 1904

0.1 95102 6694 688 772 1857
0.01 95102 7880 749 772 1543

Table 5.4: Generating feasible columns for 329 flight network.

The crew pairing problem (and set partitioning problems in general) frequently

suffers from tailing effects – long periods required to prove optimality with little

if any improvement in objective value – as a function of degeneracy in the master

problem. That was true in our experience as well. Tables 5.5 and 5.6 show the

total run times not only required to prove optimality, but also to find the optimal

solution, to be within 1% of the optimal objective value, within 5%, and within 10%

(in both absolute and relative terms). These results are consistent with what has

been observed in the literature – high-quality solutions are found early, and then

substantial time is spent on proving optimality.

Precision Time to Time to Find Time to 1% Time to 5% Time to 10%
(ε) Prove Opt. the Opt. Sol. Opt. Gap Opt. Gap Opt. Gap
1 5167 5054 2969 1854 1467

0.1 6694 6304 2365 1549 1252
0.01 7880 7255 2189 1322 918

Table 5.5: Details of the computation for 329 flight network (time units are seconds).

It is interesting to note that we see similar performance in the individual pricing

problems themselves. Table 5.7 shows the average run time per iteration for each
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Precision Time to Time to Find Time to 1% Time to 5% Time to 10%
(ε) Prove Opt. the Opt. Sol. Opt. Gap Opt. Gap Opt. Gap
1 100% 98% 57% 36% 28%

0.1 100% 94% 35% 23% 19%
0.01 100% 92% 28% 17% 12%

Table 5.6: Details of the computation for 329 flight network (time units are percents).

Precision Ave. Time/Iter. Ave. Time/Iter. Ave. Time/ Ave. Time/ Ave. Time/
(ε) to Prove Opt. to Find Opt. Iter. to 1% Iter. to 5% Iter. to 10%
1 7.70 7.35 6.82 7.90 8.86

0.1 9.71 9.27 5.53 6.13 6.52
0.01 10.51 9.85 4.84 5.17 4.93

Table 5.7: Average run times for 329 flight network.

of the same stages of progress. (The reason that there is an increase in time per

iteration from 1% to 5% and 5% to 10% is because there are more crew bases to be

investigated per iteration in the earlier iterations.)

We illustrate this further with Figure 5.1, which plots the time and optimality

gap in the master problem for each iteration (using a precision value (ε) of 1) as well

as time to solve each iteration of the sub-problem.Sheet1 Chart 1
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Figure 5.1: The convergence trend in the master problem for 329 flight network.
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5.5 Enhanced Computational Experiments

As the size of the problem instance increases, we see significant impact on per-

formance. This is primarily because of the growth both in number of variables and

number of constraints. Table 5.8 demonstrates the differences in size between our

two test instances.

Size of the IP
Instance no. of flights no. of rows no. of columns no. of nonzeros

1 143 424 1,406 6,104
2 329 1,312 10,633 46,417

Table 5.8: Size of the IP-based sub-problems

Note, however, that most pairings (and thus solutions to the sub-problem) contain

at most ten to twenty flights, and thus the vast majority of the flights in any instance

of the sub-problem will not be chosen. Furthermore, those flights with very negative

dual values are unlikely to appear in promising pairings. These facts can be exploited

to further improve performance. We define a flight potential as:

(5.34) pf = bf − πf

In other words, the potential of a flight is its flying time minus its dual value. Note

that any flight f added to a pairing will increase its cost by approximately bf and

thus will impact the reduced cost by approximately pf . Therefore, flights with more

negative potentials are more likely to appear in negative reduced cost columns. We

can leverage this in our approach by limiting the flight set that we consider in a

single instance to only those with suitably negative potentials. More specifically, we

can restrict the flights included in the IP to only a fraction of all the flights and

then gradually increase the number of flights in the model if no negative-reduced

cost pairing is found.
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We implemented this idea in the model by updating the flight potentials at each

call to the sub-problem, based on the new dual values, and adding the constraint:

(5.35)
∑

f :pf >P s

zf = 0

In the above constraint, P s is the threshold value for the potential of the acceptable

flights in the sth step of solving the pairing generation subroutine at each call to the

sub-problem. In other words, constraint (5.35) excludes flight f from consideration

in the sth step of solving the sub-problem if the potential of that flight is greater

than the threshold value, P s. At each call to the sub-problem, the IP is initialized

in the first step with only 10% of the flights. The pairing generation will continue

until no negative-reduced cost pairing is found. Then in the next step, the threshold

value (P s) is adjusted so that 20% of the flights are allowed in the IP. The process

of adjusting the threshold value continues until 100% of the flights are included in

the IP.

This approach not only decreases the time to generate each pairing, but also

reduces the solution time of the master problem significantly. Table 5.9 compares

the performance of the original implementation of the pairing generator with the

enhanced potential-based model.

Implementation Objective Total Run Number of Number of
Value Time (seconds) Iterations Generated Cols

Original 95102 7880 749 2043
Potential-Based 95102 2065 714 1503

Table 5.9: Comparing the performance of the original and the enhanced IP for the 329-flight net-
work.

Although this acceleration technique has dramatic impact on performance, we

suggest that it can be even further improved through more sophisticated design of

the algorithm with regards to issues such as the potential threshold selection and the

function governing how this threshold is modified. This is a topic for future research.
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Finally, we conclude by noting that this approach of limiting flights to only those

with the most negative potential values does not depend on the use of IP-based

approach. It could be used to improve the performance of other pairing generators

as well.

5.6 Conclusions and Future Research

In this chapter, we presented a new IP-based approach to generate airline crew

pairings. The main benefit of this technique is its relative ease of implementation

which can be combined with the efficiency of off-the-shelf commercial solvers. This

can enable researchers in the airline planning field to prototype and evaluate new

ideas. The modeling ideas used in this research, such as connection and marker

variables, can also be extended to other scheduling problems of similar complex

structure.

Within the IP-based formulation, we have only addressed the most common rules

governing feasible crew pairings. As a general rule, with regards to rules not in-

corporated, we have erred on the side of over-constraining. In other words, not all

feasible pairings will be valid solutions to the proposed formulation. For example,

U.S. airlines under FAA regulations can exceed the limit on total flying time in a

duty under certain circumstances (“the 8-in-24 rule”). Specifically, if a crew flies

more than eight hours in a 24 hour time window then the next rest period, called a

compensatory rest, is required to exceed a specified lower bound that is longer than

the normal limit. Thus, certain pairings that are deemed infeasible by the IP-based

approach would actually be valid under these exceptions. An alternative approach,

which could be used in conjunction with the existing formulation, would be to also

solve the pricing problem under the less restricted conditions, then add a check to
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determine whether the resulting solution was in fact a valid pairing. If not, a cut

could be added to rule out this pairing and the process repeated. Evaluating this

approach and identifying ways to incorporate additional levels of detail is an area for

future research.

Finally, as stated, this research provides a practical component that is beneficial

for the development of research in broader airline planning problems such as robust

planning, integrated planning and automated recovery.



CHAPTER VI

Conclusion and Future Research

In this dissertation we proposed an analytical framework to measure and min-

imize the disruptive impacts of airline delays. We also introduced a new integer

programming-based approach to generate crew pairings which can in turn facilitate

research in the area of airline robust planning.

In Chapter III, we investigated the relationship between planned schedules and

their performance when they are subject to delays. We analyzed the potential for

delay propagations and defined proper metrics to quantify them. The main contri-

bution of this section is to formalize the airline delay propagation trees and their

corresponding measures. This idea, as seen in Chapter IV lays the framework for

incorporating delay propagations in the airline planning process.

To make the analysis of delay propagations in Chapter III more realistic, we

suggest the extension of the analysis to consider propagations due to the sharing of

other common resources such as the cabin crew or connecting passengers. It is also

important to develop a framework for estimating the cost of delays so that a more

precise trade-off between decreased likelihood of delay propagations and increased

operational costs can be performed. This, in turn, will help researchers to better

incorporate robustness in the other stages of the airline planning process.

118
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The idea of propagation trees can also be used to model disruptions that occur in

other problems with an underlying networks structure. This approach can be used

to define new metrics for measuring robustness of infrastructure networks such as

roads, energy or water supply networks. Of course further research is needed in order

to capture the subtleties of each network structure or to obtain a clear definition of

“disruption” and “robustness” in each application.

In Chapter IV we introduced an optimization-based framework to minimize the

potential for delays to propagate by re-allocating the slack in the flight networks.

This approach can improve the operational performance of a given schedule (and

subsequently, passenger convenience and productivity) by considering the effects of

each delay on down-stream flights.

This model can be improved by incorporating a more realistic objective function

which takes into account factors such as the planned costs and anticipated operational

costs. Other factors such as the size of the aircraft (and subsequently, number of

passengers on each flight) or number of passengers with lost itineraries can also be

considered in the objective function to represent a more realistic interpretation of

delays. However, as mentioned before, quantifying the indirect (and often invisible)

costs associated with disrupted passengers is not trivial.

Another possible extension of this model is to consider recovery decisions (such as

canceling flights, swapping aircraft, and calling in reserve crews) and their impacts on

the operational performance of a planned schedule under disruptions. These actions

can be considered as the “second-stage” decisions in addition to the “first-stage”

decisions (slack re-allocation). This approach will result in a two-stage stochastic (or

robust) planning problem that can integrate the scheduling and recovery decisions.

Further research in this area is another possible extension to the models introduced
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in Chapter IV.

In Chapter V, we presented a new IP-based approach to generate airline crew

pairings. This model can facilitate research in the area of robust airline planning by

helping researchers to implement the crew pairing module.

The model presented in Chapter V considers only the most basic rules governing

feasible crew pairings. Incorporating more sophisticated regulations (such as “8-in-

24” rule) can be a possible future extension of this model.

It is also important to explore the possibility of using “connection” and “marker”

variables defined in Chapter V in other scheduling applications.
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