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CHAPTER I

Introduction

The main objects of study in this thesis are local cohomology modules. We write

H i
I(M) for the ith local cohomology of a module M with respect to some ideal I. In

this thesis we will look only at the local cohomology of finitely generated modules

unless otherwise stated. This cohomology theory gives invariants to help measure

many important properties in commutative algebra as well as algebraic geometry.

If we consider the spectrum of a ring as a scheme, or restrict attention to an

affine subscheme of something larger, it is often easier to define sections or functions

on an open subset then on the whole space. The local cohomology modules can

be viewed as sheaf cohomology on the complement of the closed set cut out by the

ideal involved. This means elements of the first local cohomology module represent

obstructions to extending sections across the whole space. In particular, having the

first local cohomology vanish means we can define sections on the open set away

from the zero set of our ideal and they always extend to the whole scheme.

One algebraic invariant measured by the local cohomology modules is the depth

of a ring or module on an ideal. The depth of M on I can be defined as the smallest

positive i for which H i
I(M) is nonzero. We can also measure depth with other

modules such as the Ext modules, but the local cohomology only depends on the
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radical of I, which gives more flexibility.

The two main problems with studying local cohomology are that it is very hard

to compute explicitly and that it is usually very large. There are various approaches

to computing these modules, but to give explicit elements is usually difficult. Even

giving a set of generators is difficult, because most local cohomology modules are

not finitely generated. However, even though they aren’t finitely generated modules,

local cohomology modules often exhibit finite-like properties.

One such property, finiteness of the sets of associated primes of local cohomology,

is the main focus of this thesis. For any R-module, we define the associated primes

as follows: P ∈ Spec(R) is called an associated prime of an R-module M if P is

the annihilator of some element u ∈ M . The set of all such primes is called the

assassinator in R of M , written AssRM .

For finitely generated R-modules, this set is always finite, but if M is not finitely

generated it is usually infinite. However even when they are not finitely generated,

it is possible for the local cohomology modules to have only finitely many associated

primes.

One of the major cases where the local cohomology modules are known to have

finite assasinators is for equal characteristic or unramified mixed characteristic reg-

ular local rings. This has been extended to regular domains finitely generated as

algebras over algebraically closed fields of characteristic zero, see [Lyu93, Remark

2.9], and to the completion of a polynomial ring over a mixed characteristic DVR

at a maximal ideal containing the maximal ideal of the DVR, see [Lyu00b, Theorem

2]. If our ideal, m, is maximal in Spec(R), it is also clear that AssRH i
m(M) is finite

since it is supported only at m.

In Chapter 2, we briefly review the background material needed to understand
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and prove the results of the later chapters.

Rings of Small Dimension

One way to control the behavior of local cohomology modules is to restrict atten-

tion to the case where the ring has small dimension. There, it is possible to prove

theorems not only about the local cohomology of the ring itself, but about the local

cohomology of its finitely generated modules as well. In [Mar01], Marley shows that

local rings of dimension three have only finitely many primes associated to the local

cohomology of any finitely generated module with respect to any ideal. He also gets

some results for local rings of dimensions 4 and 5 under various additional conditions.

Unfortunately, such results do not hold in rings of larger dimension as shown by

examples in a paper of Singh and Swanson. In Theorem 4.1 and Remark 4.2 of

[SS04], they show that the ring

R =
k[s, t, u, v, x, y]

(su2x2 + tuxvy + sv2y2)
,

has infinitely many primes associated to H2
(x,y)(R). This remains true after localizing

at the homogeneous maximal ideal (s, t, u, v, x, y) or specializing to the case where

s = 1, i.e. modulo s − 1. (Note that after setting s equal to 1 we are no longer in

a homogeneous situation so we cannot localize and preserve the associated primes.)

Since R has dimension 5, this gives examples of a five dimensional local ring and a four

dimensional non-local ring whose local cohomology has infinitely many associated

primes.

The open cases between Marley’s theorems and the Singh and Swanson examples

are thus local rings of dimension 4 and non-local rings of dimension 3.

The results of Chapter 3 were inspired by attempts to generalize some of Marley’s

results to these open cases. Specifically, in Theorem III.5 we prove that if a three
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dimensional ring has an S2-ification for every prime cyclic module then AssH i
I(M)

is finite for every finitely generated module M and ideal I of height at least two

modulo every minimal prime of M .

Adjoining Indeterminates

For rings of small dimension we know that the local cohomology of any finitely

generated module has only finitely many associated primes, so, in particular, we

know AssRH i
I(R) is always finite. If R is a regular local ring of equal characteristic

or unramified mixed characteristic, it is known that all local cohomology modules of

the ring itself have only finitely many associated primes. Since we can control the

local cohomology in these good cases, one obvious question is how to extend this good

behavior to related rings. Adjoining variables, either as polynomials or power series,

is such a well behaved process that it is reasonable to hope that if local cohomology

behaves well over the base ring it will also behave well over the new ring formed

by adjoining indeterminates. The case where the base ring has small dimension is

already quite interesting, because, while the base ring’s local cohomology is controlled

because the dimension of the ring is small, by adjoining variables we can make the

dimension of the polynomial ring and its singular locus both arbitrarily large.

In Chapter 4, we give some cases where adjoining indeterminates preserves the

finiteness of the assasinator of our local cohomology modules.

Our first class of base rings consists of those that have resolutions of singularities

which can be covered a small number of open affines. This allows us to link the

good behavior of the regular rings covering the smooth space resolving Spec(R) to

the behavior of our base ring.

More precisely, in Theorems IV.2 and IV.4 we take a base ring A which has a
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blowup, Y0, of A along an ideal of depth at least 2 where Y0 is covered by 2 (resp. 3)

affine patches and all cohomology of the structure sheaf OY0 has finite length over A.

We show that polynomial and power series rings, R, over such a base have finitely

many primes associated to each H i
I(R).

We also show that if one adjoins finitely many variables to an unramified regular

local ring of mixed characteristic, one still has that AssRH i
I(R) finite even though

the new ring is no longer local.

Calm Extensions

After thinking about polynomial and power series extensions, we were inspired

to ask what special properties of these extensions allow us to relate the behavior of

the local cohomology of our extension ring to that of the base ring. One interesting

property polynomial and power series extensions share is that both are flat. For

flat extensions R → S, we know that the associated primes of M ⊗R S are directly

controlled by the associated primes of M over R. In Chapter 5 we take a similar

statement as the definition of a new class of extensions which we call calm. Specifi-

cally, R → S is calm if for each prime P of R, we can find a set a(P ) ⊂ Spec(S) so

that for any R-module M

AssSS ⊗R M ⊆
⋃

P∈AssRM

a(P ).

If all extensions of a ring are calm we call the ring serene.

Chapter 5 explores some properties of these extensions, and gives some basic

classes of serene rings. It concludes by exhibiting examples which give some bounds

on how far the calm property extends.



CHAPTER II

Background

Before we jump into the body of this thesis, we will give some of the basic theory

of local cohomology which underlies our work, as well as some of the tools used to

control and understand it.

Unless otherwise specified, all rings are assumed to be commutative with identity

and Noetherian, and all modules are assumed to be unital.

2.1 The Local Cohomology Modules

If I ⊂ R is an ideal and M is an R-module, we let ΓI(M) be the set

{u ∈ M |uIa = 0 for some positive integer a}. These may be thought of as global

sections of the sheaf M̃ on Spec(R) corresponding to sections supported on V (I).

We define the ith local cohomology module of I on M , H i
I(M), to be the ith right

derived functor of ΓI applied to M . To compute this directly, apply ΓI to any

injective resolution of M and then take cohomology.

There are a number of alternate formulations of H i
I(M), including as the di-

rected limit of either Ext modules, lim−→a
Exti

R(R/Ia, M), or Koszul cohomology,

lim−→a
H i(fa

1 , . . . , fa
n ; M) where I = (f1, . . . , fn). To compute H i

I(M) one can also

use the Čech complex. If I = (f1, . . . , fn), then H i
I(M) is the cohomology at the ith

6
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spot of the complex

0 → M → ⊕Mfi
→ ⊕Mfifj

→ · · · → Mf1···fn → 0.

Below are some basic facts about these local cohomology modules. For proofs

we refer the reader to Brodmann and Sharp’s book [BS98] as well as Hartshorne’s

lecture notes on Grothendieck [Gro66].

One very nice property of local cohomology is that it has some flexibility in the

choice of ideal.

Proposition II.1. If
√

J =
√

I then H i
J(M) = H i

I(M) for any i and M .

Proposition II.2. For any ideal I ⊂ R and R-module M , we have H i
I(M) = 0 if

any of the following hold:

(1) i > dim(R)

(2) i > dim(M)

(3) i < depthI(M)

(4) i > least number of generators of some ideal J with
√

J =
√

I

Proposition II.3. Let R be Noetherian, M a finitely generated R-module, and

I ⊂ R an ideal. If d = depthIM , then AssRHd
I (M) = AssRExtdR(R/I,M). Since

ExtdR(R/I,M) is finitely generated, this shows AssRHd
I (M) is finite.

This means the first non-vanishing local cohomology module has a finite assassi-

nator. The next results of Marley give some information about the last non-vanishing

local cohomology modules.

Proposition II.4. [Mar01, Prop. 2.3] Let Suppi
R(M) := {P ∈ SuppR(M)|ht(P ) =

i}. For any finitely generated R-module M and ideal I ⊂ R, Suppi
R(H i

I(M)) is finite.

Since AssRH i
I(M) ⊆ SuppR(H i

I(M)), this means the ith local cohomology module has

only finitely many associated primes of height i.
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Since H i
I(M)P

∼= H i
PRP

(MP ), two immediate corollaries of this are:

Corollary II.5. [Mar01, Cor. 2.4] If dim(R) = n, then SuppR(Hn
I (M)), and hence

AssRHn
I (M), is finite for any ideal I.

Corollary II.6. [Mar01, Cor. 2.5] If dim(R) = n and R is local, then SuppR(Hn−1
I (M)),

and hence AssRHn−1
I (M), is finite for any ideal I.

Like other cohomology theories, local cohomology also has a number of long exact

sequences.

For any two ideals I, J ⊂ R and R-module M , we get a long exact sequence

0 → H0
I+J(M) → H0

I (M)⊕H0
J(M) → H0

I∩J(M) → H1
I+J(M) → · · ·

Any short exact sequence, 0 → N → M → M ′ → 0, induces a long exact sequence

0 → H0
I (N) → H0

I (M) → H0
I (M ′) → H1

I (N) → · · ·

Also for any element f ∈ R, we get another long exact sequence

0 → H0
I+(f)(M) → H0

I (M) → H0
I (M)f → H1

I+(f)(M) → · · ·

For any ring, since H0
I (M) ⊆ M , it is clear that the zeroth local cohomology of a

finitely generated module is always finitely generated and hence has finite assasinator.

From the previous proposition we can show that the first local cohomology module

always has finitely many associated primes as well.

Proposition II.7. H1
I (M) has finitely many associated primes for any ideal I and

finitely generated module M .

Proof. Let N = M/H0
I (M). Because H i(H0

I (M)) = 0 for i ≥ 1, the long exact

sequence arising from 0 → H0
I (M) → M → N → 0 forces H i

I(M) ∼= H i
I(N) for

i ≥ 1. But no element of I is a zero-divisor on N , so depthIN ≥ 1 and Proposition

II.3 finishes the proof.
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2.2 Double Complexes and Spectral Sequences

As in other situations dealing with homology or cohomology of complexes, it is

often helpful to form a double complex and use it to link two different computations,

as is done when proving TorR
i (M, N) ∼= TorR

i (N, M).

Given a double complex A••, we can filter its total complex by forming for each

p the double subcomplex 〈A••〉p which is our original double complex A•• where

the ith row is replaced by zeros if i ≤ p. The total complex of this subcomplex,

T •(〈A••〉p), is a subcomplex of the original total complex, T •(A••). The set of these

subcomplexes gives a filtration of the total complex which gives rise to a spectral

sequence as follows.

Let E•
0 be the associated graded complex of T •(A••) with respect to the filtration

given above. This means E0 is just the direct sum of the rows of the original double

complex. There is an obvious differential here induced by the row maps from A••

which we denote d0 : Ep,q
0 → Ep,q+1

0 . We take E•
1 to be the cohomology of E•

0 with

respect to this differential.

We have differentials on this complex induced by the column maps of A••, and

take E•
2 to be the cohomology of E•

1 .

In general, E•
r+1 is the cohomology of E•

r taken with respect to the differential

dr : Ep,q
r → Ep+r,p−r+1

r where En
r =

⊕
p+q=n Ep,q

r . One can think of this map as

going up r rows and left r − 1 columns in the double complex Ep,q
r . These do give

maps from En
r to En+1

r because they all map from one diagonal to the next since

(p + r) + (q − r + 1) = p + q + 1.

These E•
r ’s converge to an associated graded complex of T •(A••), usually denoted

E•
∞, and we can often compare its properties with those of T •(A••).
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It is also possible to start filtering the double complex A•• by setting some columns

equal to zero. In an analogous way, this gives another spectral sequence converging

to another associated graded complext of T •(A••), albeit with respect to a different

grading.

In this way it is often possible to compare the modules of our two filtrations by

comparison of their respective E•
∞ complexes.

2.3 D-Modules

Since one of the main problems with local cohomology modules is that they are

so large, one strategy is to introduce additional structures over which the local coho-

mology is “smaller”. In rings of characteristic 0, Lyubeznik has applied the theory of

D-modules in [Lyu93]. These D-modules are basically rings of differential operators

over R.

For this section we will be working only with rings of equal characteristic 0, hence

containing a field. (The case where the ring is of mixed characteristic is much harder

although we will prove a result there in Section 4.2.)

Let R be a k-algebra, where k ⊂ R is a field of characteristic 0. Then D = D(R, k)

is the ring of k-linear differential operators mapping R to R. Our main case is when

R = k[[x1 . . . xn]] or k[x1, . . . xn] is a power series or polynomial ring over k. For

these rings, D is a free left or right R module generated by all monomials in the

∂1 = ∂
∂x1

, . . . , ∂n = ∂
∂xn

. The ring D is generated over R by the ∂i’s and all relations

are spanned by those of the form ∂i∂j = ∂j∂i, ∂ixj = xj∂i if i 6= j, and ∂ixi−xi∂i = 1.

In fact, the associated graded ring of D is a polynomial ring in n variables over R.

These rings of differential operators are no longer commutative, but may retain

some good properties. Via the homomorphism R → D defined by sending r to the
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map on R which is multiplication by r, D has an R-algebra structure. Also, since

elements of D naturally act on R, we see that R has a D-module structure.

If we have an action of D on an R-module, M , we can extend that action to

the localization, MS, at any multiplicative system S in R via the quotient rule, and

localization maps respect the D-module structure.

Since R is a D-module and the Čech complex of R with respect to an ideal I is

composed solely of localizations and localization maps, the Čech complex is made

up of D-modules connected by D-module maps. Viewing the modules H i
I(R) as

cohomology of this complex gives makes them D-modules as well.

When using this structure to study local cohomology, there is a distinguished class

of D-modules to consider. To define them we introduce some notions of dimension

for D-modules.

In general if we have a ring A (not necessarily commutative or Noetherian) with a

filtration which makes the associated graded ring, gr(A), commutative and Noethe-

rian, then every finitely generated A-module, M , has some filtration for which gr(M)

a finite gr(A)-module. Let d(M) = dim(gr(M)).

If our associated graded ring is also regular, we can also define the weak global

dimension, wgd(A), as the smallest integer, a, where we have TorA
i (M, N) = 0 for

all M , N if i > a. (If A is itself regular, commutative and Noetherian, this is just

the usual dimension.)

Going back to our D-module setup, we see that the associated graded ring of D is

nice enough to permit the definitions above (at least in the cases we will be interested

in). Now we can define the following special class of D-modules.

Definition 1. A D-module, M , is called holonomic if it is finitely generated over D

and d(M) = wgd(gr(A))− wgd(A).
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In the case of a power series ring in n variables over a field, this means the

holonomic D-modules are those finitely generated modules with d(M) = n.

The next proposition lists some of the basic properties of holonomic D-modules.

For a more in depth discussion see [Lyu93] Remarks 2.2a through 2.2f and Remark

2.9.

Proposition II.8. Let R be a regular domain finitely generated over an algebraically

closed field of characteristic 0. Then we have the following:

(a) R is a holonomic D-module.

(b) If M is holonomic and f ∈ R, then Mf is holonomic.

(c) D-submodules, quotients and extensions by holonomic D-modules are again holo-

nomic.

(d) The local cohomology of a holonomic D-module with respect to any ideal is holo-

nomic.

(e) Holonomic modules have finite filtrations by simple (holonomic) D-modules.

(f) Simple holonomic D-modules have a single associated prime over R.

Because they are finitely generated over D, holonomic modules always have finite

assasinator over D, but properties (e) and (f) combine to tell us that holonomic

D-modules also have finite sets of associated primes over R. By property (d), this

means that to show AssRH i
I(M) is finite it is enough to show that the module M is

holonomic as a D-module.

Lyubeznik uses this fact to show the following, see [Lyu93] Theorem 3.4 (c).

Proposition II.9. If R is a regular k-algebra where char(k) = 0, then for each

maximal ideal, m, the set {P ⊆ m|P ∈ Ass(H i
I(R))} is finite for each i, I.

This of course means that AssRH i
I(R) must be finite whenever R is local or ap-
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propriately graded.

2.4 Algebraic Geometry

Although the results in this thesis make no reference to algebraic geometry, some

of the proofs in Chapter 4 rely heavily on geometric techniques and constructions.

Here we outline the material used there, although for a more thorough introduction

see Shafarevich [Sha94] or Hartshorne [Har77].

For any ring, R, we can view X = Spec(R) as an affine scheme via the Zariski

topology. Any ideal, I = (f1, . . . , fn) ⊂ R, then corresponds to a closed subscheme,

V (I), of X. The complementary open set U = X − V (I) is covered by the open sets

D(fi) each of which is an open affine subscheme when viewed as Spec(Rfi
). Select

any R-module, M , and form the corresponding quasicoherent sheaf M̃ . On each

D(fi) this sheaf restricts to Mfi
with restrictions to overlaps of the open cover given

by further localizations.

In this situation we can compute the sheaf cohomology of M̃ on U by taking

cohomology of the scheme-theoretic Čech complex with respect to our open cover of

U by the D(fi)’s from

0 → ⊕Mfi
→ ⊕Mfifj

→ · · · → Mf1···fn → 0.

This is just our usual Čech complex with the zeroth term omitted, which means we

have the exact sequence

0 → H0
I (M) → M → H0(U ; M̃) → H1

I (M) → 0

and

H i
I(M) ∼= H i−1(U ; M̃) for i ≥ 2.
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This link between sheaf cohomology and local cohomology gives us a way to apply

tools from algebraic geometry to the study of local cohomology modules.

The main technique from algebraic geometry that we use in this thesis is resolution

of singularities. Given a scheme, X, a resolution of singularities, Y , for X is a proper

birational morphism ϑ : Y → X where Y is nonsingular. We are interested in this

because Y can be covered by open affines which are the spectra of regular rings giving

us much better behavior of the sheaf (and hence the local) cohomology. Because of

the good properties of the map, we are sometimes able to relate the cohomology of

the smooth space to that of X.

One way to form a resolution of singularities, which we will use in Chapter 4, is

by blowing-up. Here one expands a closed set in X by replacing it with its space of

tangent directions. This can be used to remove nonsmooth points of X, particularly

in the case where X = Spec(R) and the closed set is defined by the prime ideals P

where RP is not regular.



CHAPTER III

Rings of Small Dimension

In this chapter we show that if a ring has small enough dimension, the local

cohomology of any finitely generated module with respect to many ideals has only

finitely many associated primes. These results were largely inspired by, and some

generalize parts of, Marley’s paper [Mar01].

The first section gives some results on the finiteness of associated primes when

local cohomology is taken with respect to an ideal of height at least 2. These theorems

cover the local cohomology of any finitely generated module. Since the counter-

examples of Singh and Swanson, [SS04], use ideals of height 1, there is hope that this

could hold for rings beyond dimension 4.

In the second section we look at the case where the ideal has height at most 1, and

show that the case of a local four-dimensional ring reduces to an extremely concrete

and special situation.

3.1 Ideals of height at least two

In this section, we consider local cohomology modules, H i
I(M), where ht(I) ≥ 2

modulo every associated prime of M . The main tool in these proofs is reducing to a

situation where I has depth at least two instead of just height at least two. Our main

tool is to find a bigger ring containing our ring R where ideals of height at least two

15
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automatically have depth at least two as well. Such a ring is called an S2-ification

for R.

If R is an excellent domain, let R? be the ring of all elements from Frac(R) which

are multiplied into R by an ideal of height at least two. This ring R? is an S2-ification

for R.

Proposition III.1. Let R be a Noetherian ring, I ⊂ R an ideal, and M a finitely

generated R-module. If there is a map of R-modules, θ : M → N , where depthIN ≥ 2

and dim(ker(θ)) ≤ 1 then AssRH2
I (M) is finite.

Proof. Let K = ker(θ), M ′ = M/K and C = N/M ′. We have a short exact sequence

0 → M ′ → N → C → 0, which induces the long exact sequence

· · · → H1
I (N) → H1

I (C) → H2
I (M ′) → H2

I (N) → · · ·

Since depthIN ≥ 2 we know H1
I (N) = 0, so this sequence becomes

0 → H1
I (C) → H2

I (M ′) → H2
I (N) → · · ·

By Proposition II.7 we know AssRH1
I (C) is finite, and AssRH2

I (N) is finite by Propo-

sition II.3, so AssRH2
I (M ′) ⊆ AssRH1

I (C) ∪ AssRH2
I (N) forces AssRH2

I (M ′) to be

finite as well.

Consider the short exact sequence 0 → K → M → M ′ → 0 which induces

· · · → H1
I (M ′) → H2

I (K) → H2
I (M) → H2

I (M ′) → · · ·

Since dim(K) < 2, we know H2
I (K) = 0. Thus H2

I (M) ⊆ H2
I (M ′) so AssRH2

I (M) is

finite.

Before we get to our first main result we need the following two lemmas.
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Lemma III.2. Let M be any finitely generated R-module and x, y ∈ R be non-

zerodivisors on M . Then x, y forms a possibly improper regular sequence on

M ′ = {u ∈ Mxy|xNu, yNu ∈ M for some N}.

Proof. Since x is a non-zerodivisor on M , it is clear that x is also a non-zerodivisor

on Mxy and hence on M ′. Suppose that we have ux = vy for some u, v ∈ M ′.

Let f = v
x

= u
y

in (M ′)xy. Then xf, yf ∈ M ′, so can find some N for which

xNxf, yNyf = xN+1f, yN+1f ∈ M . Thus f ∈ M ′, so v = f · x ∈ xM ′ which means

x, y is a regular sequence on M ′.

Lemma III.3. Let R be a ring which has an S2-ification for R/P whenever P ∈

AssRM , and pick x, y ∈ R so that ht(x, y)R/P = 2 for all P ∈ AssRM . Then M ′,

defined as in Lemma III.2, is finitely generated as an R-module.

Proof. We first claim that M ′/M ∼= H1
(x,y)(M), meaning it will be enough to show

that H1
(x,y)(M) is finitely generated.

To see this, consider the Čech complex

0 → M → Mx ⊕My → Mxy → 0.

For any element u ∈ M ′, we can write u = m1/x
N = m2/y

N for some m1, m2 ∈ M

and some N . We can therefore identify elements of M ′ with elements of Mx⊕My by

sending u to (m1/x
N , m2/y

N). Such elements are clearly in the kernel of the map to

Mxy. Any element ν = (m1/x
a, m2/y

b) in the kernel has m1/x
a = m2/y

b ∈ Mxy and ν

is multiplied into M by xmax{a,b} and ymax{a,b}. Therefore M ′ ∼= ker(Mx⊕My → Mxy).

Since both x and y are non-zerodivisors on M , we know M ⊆ Mx, My ⊆ Mxy.

This means M ↪→ Mx ⊕ My and the image of M is just the set of elements of the

form (m/1, m/1) ∈ Mx⊕My. Thus we have M ′/M ∼= H1
I (M) and will be done if we

can show this is a finitely generated module.
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We first show H1
(x,y)(M) is finitely generated when M = R/P for some prime

P ∈ AssRM .

Since P kills H1
(x,y)(R/P ), we can work over the domain R̄ = R/P . By hypothesis

we know that R̄ has an S2-ification, S, so we have 0 → R̄ → S → S/R̄ → 0 which

induces

· · · → H0
(x,y)(S/R̄) → H1

(x,y)(R̄) → H1
(x,y)(S) → · · ·

Because ht(x, y)R/P = 2 makes depth(x,y)S = 2, we know H1
(x,y)(S) = 0. Therefore

H1
(x,y)(R̄) is a quotient of H0

(x,y)(S/R̄) which is finitely generated, meaning H1
(x,y)(R̄)

is a finitely generated module.

In the general case, take a filtration of M , M0 ⊂ M1 ⊂ · · · ⊂ Mn = M , where

each Mi is a torsion-free module over R/Pi for some Pi ∈ AssRM . By induction

on the length of the filtration, it is enough to show that we have H1
(x,y)(Mi) finitely

generated for every i.

Because Mi is torsion-free over R/Pi, we have 0 → Mi → (R/Pi)
di → N → 0

which gives:

· · · → H0
(x,y)(N) → H1

(x,y)(Mi) → (H1
(x,y)(R/Pi))

di → · · ·

Since we already know H1
(x,y)(R/Pi) is finitely generated, we must have H1

(x,y)(Mi)

finitely generated as well. Therefore H1
(x,y)(M) is finitely generated as claimed.

Theorem III.4. Let R be a ring which has an S2-ification for every prime cyclic

module. Then AssRH2
I (M) is finite whenever AssRM ⊆ AssRR and ht(IR/P ) ≥ 2

for all P ∈ AssRM .

Proof. Because ht(IR/P ) ≥ 1 for all associated primes of M , we can pick x ∈ I so

that x is not in any associated prime of M , so x is a non-zerodivisor on M . Next
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pick y ∈ I − xR which is not in any associated prime of M(We can do this because

ht(IR/P ) ≥ 2.) This makes y also a non-zerodivisor on M .

Let M ′ be defined as in Lemma III.2. Since x, y are non-zerodivisors on M so

M ↪→ Mxy, we get a short exact sequence 0 → M → M ′ → M ′/M → 0 which

induces

· · · → H1
I (M ′) → H1

I (M ′/M) → H2
I (M) → H2

I (M ′) → · · ·

By Lemma III.2, x, y is a possibly improper regular sequence on M ′, so depthIM
′ ≥

2. This means our long exact sequence above is actually

0 → H1
I (M ′/M) → H2

I (M) → H2
I (M ′) → · · ·

We know AssH1
I (M ′/M) is finite by Proposition II.6 since M ′/M is finitely generated.

Also, because depthI(M
′) = 2, we have AssH2

I (M ′) is finite which implies that

AssH2
I (M) is finite as well.

If dim(R) ≤ 3, Proposition II.7 and Corollary II.5 show that the only local coho-

mology module which could have infinitely many associated primes is H2
I (M), which

gives our next Theorem as a corollary. First we require another lemma. We will call

a module skinny if each of its quotients has only finitely many associated primes.

Lemma III.5. Let R be a Noetherian ring, M any R-module. If M is finitely

supported, then M is skinny. In particular this is true of modules with finitely many

associated primes all of which are maximal in R.

Proof. If MP = 0 it is clearly impossible for any quotient, M̄ , of M to have M̄P 6= 0.

Thus the support of any quotient of M is again finite, and since the associated primes

of any module are contained in its support we are done.

Now we can proceed to our second main result.
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Theorem III.6. If R has an S2-ification for every prime cyclic module, dim(R) = 3

and ht(IR/P ) ≥ 2 for every P ∈ AssRM then AssRH i
I(M) is always finite.

Proof. We are only concerned about the associated primes of H2
I (M), so if we can

reduce to the case where M has pure dimension 3 we will have AssM ⊆ AssR, and

Theorem III.4 will finish this off.

If dim(M) < 3, then H2
I (M) has only finitely many associated primes by Corollary

II.5 since we may work mod the annihilator of M making dim(R) ≤ 2. Thus we may

assume dim(M) = 3.

We next reduce to the case where M has pure dimension. In doing so we may

choose M so that any proper quotient, M̄ , of M has AssH2
I (M̄) finite.

Let N ⊂ M be any nonzero submodule. Our goal is to show that dim(N) = 3.

The usual short exact sequence 0 → N → M → M/N → 0, induces

· · · → H2
I (N) → H2

I (M) → H2
I (M/N) → H3

I (N) → · · ·

From this it is immediately clear that if dim(N) < 2 we are done, because then

H2
I (N) = H3

I (N) = 0. This makes H2
I (M) ∼= H2

I (M/N) implying that H2
I (M) has

only finitely many associated primes.

Suppose dim(N) = 2. Here we only have H3
I (N) = 0, which gives us the short

exact sequence

0 → im(H2
I (N)) → H2

I (M) → H2
I (M/N) → 0.

Any homomorphic image of H2
I (N) is a quotient by some submodule, so what we

really need to know is that H2
I (N) is skinny. We may think over R/Ann(N), so

we may assume that dim(R) = 2. By Corollary II.5, we know that H2
I (N) has

only finitely many associated primes all of which must be of height 2 and thus
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maximal. Lemma III.6 now shows that H2
I (N) is skinny, so AssRim(H2

I (N)) is finite.

By hypothesis H2
I (M/N) has only finitely many associated primes, so AssH2

I (M)

is finite as well. This means that we can reduce to the case where M has pure

dimension 3, where by Theorem III.4 we are done.

3.2 Ideals of height less than two

In the last section we proved some results when ht(I) ≥ 2, but here we look at the

case where ht(I) ≤ 1. We show that if R is a local ring of dimension 4 the question

of whether AssH i
I(M) is finite reduces to a very concrete situation. Some parts of

the proof follow the proof of [Mar01, Proposition 2.8]. There is a counter-example

in dimension 4 with an ideal of height 1, see [SS04, Remark 4.2], but there the ring

is neither local nor graded suitably for localization.

We will call a ring R standard if R = V [[X1, X2, X3, Y ]]/(f) or k[[X1, . . . , X4, Y ]]/(f)

for some complete DVR V or field k, and f is a monic polynomial in Y with constant

term divisible by X1.

Proposition III.7. If for every standard ring, R, we have AssRH2
(X1,Y )(G) finite for

every finitely generated faithful module, G, of pure dimension 4, then AssRH i
I(M)

is finite for every four-dimensional local ring (R,m) and every finitely generated

R-module M .

Proof. Let (R,m) be local of dimension 4. Pick any ideal I ⊂ R and a finitely

generated R-module M . First note that by [Mar01] Proposition 2.8 we are done if

ht(I) ≥ 2, so we can focus on ht(I) ≤ 1. Since we can kill H0
I (M) ⊆ M without

affecting the problem, we may assume that depthIM ≥ 1. Thus ht(I) = 1. By

Proposition II.7 and Corollary II.6, our only possible problem with H i
I(M) is when

i = 2. Also note that we may assume that R = R̂ is complete. We will first reduce
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to the case where M has dimension 4.

We may choose a minimal counter-example with respect to quotients, i.e. assume

that H2
I (M/N) has only finitely many associated primes for any nonzero submodule

N ⊆ M . If dim(M) ≤ 3 we may work modulo Ann(M) where we are done by [Mar01,

Corollary 2.7], so dim(M) = 4. Next we reduce to the case of pure dimension.

Let N be any nonzero submodule of M , so 0 → N → M → M/N → 0 induces

· · · → H2
I (N) → H2

I (M) → H2
I (M/N) → H3

I (N) → · · ·

As in the proof of Theorem III.5, it is immediately clear that N cannot have

dimension 0 or 1 since dim(N) < 2 forces H2
I (N) = H3

I (N) = 0. This makes

H2
I (M) ∼= H2

I (M/N) implying that H2
I (M) has only finitely many associated primes.

Now suppose dim(N) = 2. As before we have H3
I (N) = 0, which gives us

0 → im(H2
I (N)) → H2

I (M) → H2
I (M/N) → 0,

and what we really need to know is that H2
I (N) is skinny. We may think over

R/Ann(N), so we may assume that dim(R) = 2. By Corollary II.5, we know that

H2
I (N) has only finitely many associated primes all of which must be of height 2 and

thus maximal. This makes H2
I (N) is skinny by Lemma III.6, so AssRim(H2

I (N)) is

finite. Since H2
I (M/N) has only finitely many associated primes by hypothesis, so

does H2
I (M).

If dim(N) = 3, we still get

0 → im(H2
I (N)) ↪→ H2

I (M) → H2
I (M/N)

exact. When thinking of H2
I (N), we may work over R/Ann(N) which is a local ring

of dimension 3. The support of H2
I (N) is a finite set of height 2 primes and possibly
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the image of m, so H2
I (N) is skinny which means that AssH2

I (M) is finite by our

previous argument.

We may therefore assume that M has pure dimension 4, and by killing the an-

nihilator of M in R we may also assume M is faithful. We now reduce to the case

where I is the intersection of primes with height 0 or 1.

Since H i
I(M) = H i√

I
(M), we may take I =

⋂
i Pi. Let A =

⋂
ht(P )≤1

P and

B =
⋂

ht(Q)≥2
Q, so that I = A ∩B. This gives us a long exact sequence

· · · → H1
A+B(M) → H2

I (M) → H2
A(M)⊕H2

B(M) → H2
A+B(M) → · · ·

The support of H i
A+B(M) is contained in V (A + B). But since ht(A + B) ≥ 3, we

know any prime Q ∈ V (A + B) is either one of finitely many minimal primes, ie

ht(Q) = 3, or Q = m. This means H i
A+B(M) is finitely supported and thus skinny.

Since ht(B) ≥ 2, [Mar01] Proposition 2.8 shows that AssH2
B(M) is finite. Thus to

show that H2
I (M) has finitely many associated primes it is enough to see AssH2

A(M)

is finite, so in considering this problem we may assume that every associated prime

of I has height at most 1.

Because M is faithful we have R ↪→ M⊕n for some n. Since depthIM ≥ 1 which

implies depthIR ≥ 1, we know that I cannot be contained in any associated prime

of R. Thus I is of pure height 1, i.e. I = ∩r
i=1Pi with ht(Pi) = 1.

Since R is complete, we can find a regular subring A of R with A ⊆ R module-

finite. Pick some non-zerodivisor, x ∈ I. Let I0 =
√

(xA)e be the radical of the

expansion of xA to R. Clearly I0 ⊆ I, so if we take a primary decomposition of I0 it

will be I0 = (∩r
i=1Pi)∩ (∩s

j=1Qj) for some additional primes Qj. We can pick another

non-zerodivisor, y ∈ I with y /∈ Qj for all j. (In particular this means that y /∈ xR.)

Let J =
√

I0 +
√

(yA)e = (∩r
i=1Pi) ∩ (∩t

j=1Q̃j). Since all these associated primes of

J must contain x and y, and the only height one primes containing x are associated
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to I0 while y /∈ Qj for every j, we must have ht(Q̃j) ≥ 2 for all j. By repeating the

proof that we have no primes of height 2 in the primary decomposition of
√

I with

A = ∩r
i=1Pi = I and B = ∩t

j=1Q̃j, we can see that if AssRH2
I (M) is infinite, so is

AssRH2
J(M). Thinking of M as a module over the ring A[x, y] ⊆ R, we can see that

primes in AssRH2
(x,y)(M) lie over primes of AssA[x,y]H

2
(x,y)(M). The extension of rings

is module-finite so if AssRH2
(x,y)(M) is infinite, AssA[x,y]H

2
(x,y)(M) is infinite as well.

As x ∈ I ⊆ R is a non-zerodivisor, we can extend x = x1 to a full system of

parameters, x
¯

= x1, x2, x3, x4 for R. Letting V be a coefficient ring (or possibly field)

for R, we can take A = V [[x
¯
]]. We can view A[x, y] = A[y] as a quotient of the

ring of formal power series V [[X1, X2, X3, X4, Y ]] by letting Xi 7→ xi and Y 7→ y.

The kernel of this map is clearly a height one prime which, as R, and hence A, has

pure dimension, is a prime of pure height one. Because the formal power series ring

is a UFD, our prime is principal which means A[y] ∼= V [[X1, X2, X3, X4, Y ]]/(f).

Because the X ′s form a system of parameters, some power of Y is in the ideal

generated by the X ′s, which forces f to have a term which is some unit of V or k

times a power of Y . By the Weierstrauss preperation theorem, we can replace f by

an associate which is monic in Y . Since X1, Y cannot be a regular sequence, we must

have some multiple of Y in the ideal generated by X1. There is only one relation

in A[y], so the constant term of our polynomial must be divisible by X1. Therefore

f = Y d − fd−1Y
d−1 − · · · − fd where x1|fd.

We have now reduced the problem to asking whether H2
(X1,Y )(G) has finitely many

associated primes where G is a faithful module of pure dimension 4 over a standard

ring as claimed.



CHAPTER IV

Adjoining Indeterminates

Our fourth chapter explores two cases where the finiteness of the set of associated

primes of local cohomology of the ring itself is inherited by the ring of polynomials

or the ring of formal power series. Here we look only at the local cohomology of the

ring itself since this work relies on similar results known for regular local rings.

In the first section we use some techniques from algebraic geometry to give a

relationship between our polynomial or power series ring and some regular rings.

The second section gives a result about polynomial rings in mixed characteristic p.

4.1 Rings with nice blowups

In this section we use the fact that our base ring has an easily controlled blowup

to show that adjoining any finite set of interminates, either as polynomials or power

series, preserves the finiteness of AssRH i
I(R). As a corollary we get that AssRH i

I(R)

is finite for polynomial and power series rings over a normal domain of dimension

two or three with an isolated singularity.

The proofs of our two main theorems are both done in the polynomial case, but

the same proofs work for power series. In both cases, we rely on the following lemma.

Lemma IV.1. Let R be a domain whose resolution of singularities, Y , is the blowup

of R along I. If depthIR ≥ 2 then H0(Y,OY ) ∼= R.

25
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Proof. Let X = Spec(R), U = Spec(R)−V (I) and Ũ be its preimage in Y . We have

a long exact sequence

0 → H0
I (R) → H0(X,OX) → H0(U,OX) → H1

I (R) → · · ·

and depthIR ≥ 2 forces H0
I (R) = H1

I (R) = 0, so we have

R = H0(X,OX) ∼= H0(U,OX).

The map from Y to X is an isomorphism when we restrict to Ũ → U , so we know

that

H0(U,OX) ∼= H0(Ũ ,OY ).

But OY has no torsion since Y is the blowup of a domain, which means H0(Y,OY ) =

H0(Ũ ,OY ).

Combining these equalities we see that R ∼= H0(Y,OY ) as claimed.

The next two theorems show that if our base ring has a blowup covered by a small

number of affine patches then the local cohomology of a polynomial or power series

extension has only finitely many associated primes.

Theorem IV.2. Let A be a domain finitely generated as an algebra over a field, k,

of characteristic 0 and R = A[t1, . . . , tn] or A[[t1, . . . , tn]]. If A has a resolution of

singularities, Y0, which is the blowup of A along an ideal of depth at least two, with

an affine open cover by only U1 and U2 where H1(Y0,OY0) has finite length over A,

then AssRH i
I(R) is finite for any i and any ideal I ⊂ R.

Proof. Take generators so that I = (f1, . . . , fn).

Let A••
0 be the double complex formed by tensoring the complex used to compute

the sheaf cohomology of OY ,

0 → S1 ⊕ S2 → S12 → 0,
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with the complex used to compute local cohomology of R,

0 → R → ⊕Rfi
→ ⊕Rfifj

→ · · · → Rf1···fn → 0.

Thus

Ai0
0 =

⊕
(S1 ⊕ S2)fk1

···fki

and

Ai1
0 =

⊕
(S12)fk1

···fki
,

so that A••
0 is the complex given below.

0 0x x
0 −−−→ (S1 ⊕ S2)f1···fn −−−→ (S12)f1···fn −−−→ 0x x

x x
0 −−−→

⊕
(S1 ⊕ S2)fk

−−−→
⊕

(S12)fk
−−−→ 0x x

0 −−−→ S1 ⊕ S2 −−−→ S12 −−−→ 0x x
0 0

We can filter this complex by subcomplexes A••
0 〈`〉 which are simply A••

0 with the

first ` rows replaced by zeros. Let E0 be the associated graded complex with respect

to this filtration, which is just the direct sum of the rows. As described in 2.2, E1 is

just the total complex of A••
1 where

Ai0
1 =

⊕
H0(Y,OY )fk1

···fki
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and

Ai1
1 =

⊕
H1(Y,OY )fk1

···fki
.

Thus A••
1 is the double complex below where all horizontal maps are 0 and all vertical

maps are those induced by the vertical maps of A••
0 .

0 0x x
0 −−−→ H0(Y,OY )f1···fn

0−−−→ H1(Y,OY )f1···fn −−−→ 0x x
x x

0 −−−→
⊕

H0(Y,OY )fk

0−−−→
⊕

H1(Y,OY )fk
−−−→ 0x x

0 −−−→ H0(Y,OY )
0−−−→ H1(Y,OY ) −−−→ 0x x

0 0

Here d1 : Ep,q
1 → Ep+1,q

1 , so we are simply taking cohomology along each column.

This means that E2 is the total complex of A••
2 where

Ai0
2 = H i

I(H
0(Y,OY ))

and

Ai1
2 = H i

I(H
1(Y,OY )).

Since d2 : Ep,q
2 → Ep+2,q−1

2 , or equivalently d2 : Ai,j
2 → Ai+2,j−1

2 , we are just

mapping up two rows and over one column. With that in mind, we show the relevant

three rows of A••
2 below.
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x x
0 −−−→ H i+2

I (H0(Y,OY )) −−−→ H i+2
I (H1(Y,OY )) −−−→ 0x x

0 −−−→ H i+1
I (H0(Y,OY )) −−−→ H i+1

I (H1(Y,OY )) −−−→ 0x x
0 −−−→ H i

I(H
0(Y,OY )) −−−→ H i

I(H
1(Y,OY )) −−−→ 0x x

We know that d2(Ai,0
2 ) = 0 for any i since there are no nonzero rows to the left

of the 0th row. Thus the only nontrivial instance of this map is d2 : Ai,1
2 → Ai+2,0

2 .

Its kernel is Ei,1
3 since d2(Ai−2,2

2 ) ⊆ Ai,1
2 is clearly zero. Similarly, the cokernel of this

map is Ei+2,0
3 = Ai+2,0

2 /d2(Ai,1
2 ) since all of d2 ≡ 0.

It is worth noting that since dr corresponds to going up r rows and left r − 1

columns, we will have dr ≡ 0 for all r ≥ 3 meaning that E3 = E∞.

Piecing all this together, for every i we get an exact sequence

0 → Ei,1
∞ → Ai,1

2 → Ai+2,0
2 → Ei+2,0

∞ → 0.

However, letting T • denote the total complex E∞, we know that T i = Ei,0
∞⊕Ei−1,1

∞ .

This is because any element, z, of Ei,0
∞ comes from an element of the row homology

of our original double complex which is killed by the column map in A••
1 . Thus we

can form an element (z, 0) in T i since elements of T i are pairs (x, y) ∈ Ai,0
2 ⊕ Ai−1,1

2

where x maps to zero in Ai+1,0
2 and x and y map to the same thing in Ai,1

2 . Since the

cokernel is then clearly Ei−1,1
∞ , we get a short exact sequence

0 → Ei,0
∞ → T i → Ei−1,1

∞ → 0.
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Combining these two exact sequences we get a long exact sequence

· · · → Ai−1,0
2 → T i−1 → Ai−2,1

2 → Ai,0
2 → T i → Ai−1,1

2 → · · ·

which in our case is the long exact sequence

· · · → T i−1 → H i−2
I (H1(Y,OY )) → H i

I(H
0(Y,OY )) → T i → · · ·

We are interested in the associated primes of H i
I(H

0(Y,OY )), since by Lemma

IV.1 we know H i
I(H

0(Y,OY )) ∼= H i
I(R).

To understand the behavior of T i, we go back to our original double complex

B••
0 := A••

0 and filter the other way, i.e. so that B••
0 〈k〉 is just B••

0 with the first

k columns replaced by zeros. As before, the associated graded complex, E0, with

respect to this filtration is the direct sum of the columns. This makes E1 the total

complex of B••
1 where Bi0

1 = H i
I(S1⊕S2) and Bi1

1 = H i
I(S12). Thus B••

1 is the double

complex below where the vertical maps are 0 and horizontal maps induced by the

corresponding maps in B••
0 .

0 0x x
0 −−−→ Hn

I (S1 ⊕ S2) −−−→ Hn
I (S12) −−−→ 0

0

x 0

x
0

x 0

x
0 −−−→ H1

I (S1 ⊕ S2) −−−→ H1
I (S12) −−−→ 0

0

x 0

x
0 −−−→ H0

I (S1 ⊕ S2) −−−→ H0
I (S12) −−−→ 0x x

0 0
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Here d1 : Ep,q
1 → Ep,q+1

1 , so to get E2 we are taking cohomology along each

row. The ith row is the Čech complex which computes cohomology of the sheaf

Hi
I(OY ) with respect to the cover of Y by U1 and U2. Thus E2 is the total complex

of B••
2 where Bi0

2 = H0(Y,Hi
I(OY )) and Bi1

2 = H1(Y,Hi
I(OY )). Here the map is

d2 : Ep,q
2 → Ep−1,q+2

2 , or down one row and right two columns. Since there are

only two nonzero columns, this map is the zero map on all of B2, which means that

E∞ = E2.

Again letting T • be the total complex E∞, we have T i = Bi,0
2 ⊕ Bi−1,1

2 . Any

element, z, of Bi,0
2 is a column cycle of the original complex, so it maps to zero in

Bi+1,0
2 , and is also a row cycle in the column homology, so there is an element, w, of

Bi−1,0
2 which maps to the image of z in Bi,1

2 . This means we can exactly match such

z’s with elements (z, w) of T i. As before, it is clear the cokernel of this injection is

Bi−1,1
2 so we get

0 → Bi,0
2 → T i → Bi−1,1

2 → 0,

which in our case is just

0 → H0(Y,Hi
I(OY )) → T i → H1(Y,Hi−1

I (OY )) → 0.

Both H i
I(H

0(Y,OY )) and H0(Y,Hi
I(OY )) map to T i; the first map coming from

the long exact sequence involving Ai,j
2 ’s and the second, which is an injection, coming

from one of the short exact sequences involving Bi,j
2 ’s.

Lemma IV.3. The map, σ, from H i
I(H

0(Y,OY )) to T i has σ : H i
I(H

0(Y,OY )) →

H0(Y,Hi
I(OY )) ⊂ T i.

Proof. The module H0(Y,Hi
I(OY )) is the row cohomology of the column cohomology

of our original complex. This means its elements are represented by elements z ∈ Ai,0
0

where z 7→ 0 ∈ Ai+1,0
0 (here we look at the class of z modulo the image of Ai−1,0

0 ) so
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that z is an element of the column cohomology. We also have [z] 7→ im(Ai−1,1
0 ) ⊆ Ai,1

0

so it is in the row cohomology of the column cohomology. In the last step we don’t

need to worry about taking further equivalence classes because Ai,−1
0 , and hence its

image, is zero.

Thus elements of H0(Y,Hi
I(OY )) can be viewed as the classes z + im(Ai−1,0

0 ) for

elements z ∈ Ai,0
0 where z 7→ 0 ∈ Ai+1,0

0 and z 7→ im(Ai−1,1
0 ) ⊂ Ai,1

0 . These sit inside

T i as pairs ([z], [w]) where w ∈ Ai−1,1
0 and z have the same image in Ai,1

0 .

On the other hand, the module H i
I(H

0(Y,OY )) is column cohomology of the row

cohomology of A••
0 . Its elements can be thought of as coming from elements z ∈ Ai,0

0

for which z 7→ 0 ∈ Ai,1
0 (here we need not take classes since Ai,−1

0 = 0) and where

z 7→ 0 in the row cohomology of the (i + 1, 0)th spot. Since Ai+1,−1
0 = 0, this just

means z 7→ 0 ∈ Ai+1,0
0 . Here the equivalence classes are with respect to the image of

the row cohomology at the (i−1, 0)th spot inside the row cohomology at the (i, 0)th

spot, i.e. im(ker(Ai−1,0
0 → Ai−1,1

0 )).

Thus elements of H i
I(H

0(Y,OY )) are just classes z+im(ker(Ai−1,0
0 → Ai−1,1

0 )) with

z ∈ Ai,0
0 chosen so that z 7→ 0 ∈ Ai,1

0 and z 7→ 0 ∈ Ai+1,0
0 . These sit inside T i as

elements of the type ([z], 0).

Since we clearly have 0 ∈ im(Ai−1,1
0 ) ⊆ Ai,1

0 , every element which represents a class

of H i
I(H

0(Y,OY )) is also representative of a class in H0(Y,Hi
I(OY )). Furthermore,

since

im(ker(Ai−1,0
0 → Ai−1,1

0 )) ⊆ im(Ai−1,0
0 ) ⊆ Ai,0

0

the map is well-defined. Therefore

σ(H i
I(H

0(Y,OY ))) ⊆ H0(Y,Hi
I(OY )) ⊆ T i.
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Because of this lemma, we may replace T i by H0(Y,Hi
I(OY )) in our long exact

sequence to get the exact sequence

T i−1 → H i−2
I (H1(Y,OY )) → H i

I(H
0(Y,OY )) → H0(Y,Hi

I(OY )).

The last module, H0(Y,Hi
I(OY )), is the cohomology of the sequence

0 → H i
I(S1)⊕H i

I(S2) → H i
I(S12) → 0

at the 0th spot. This means

H0(Y,Hi
I(OY )) ⊆ H i

I(S1)⊕H i
I(S2).

Since both S1 and S2 are regular, each is a finite direct sum of regular domains.

Cohomology commutes with direct sums, and by II.8 (a) and (d) we know regular

domains finitely generated over a field of characteristic 0 have only finitely many

primes associated to any local cohomology module of the ring. Thus AssSj
H i

I(Sj) is

finite for both our regular rings. However, the associated primes of H i
I(Sj) over R will

be restrictions of the associated primes over Sj so we know that AssRH0(Y,Hi
I(OY ))

is finite.

This means that we only need to control the associated primes of

im(H i−2
I (H1(Y,OY )) ⊆ H i

I(H
0(Y,OY ))

and we will be done.

To do this we will use D-module methods. We take D = k[t1, . . . , tm, ∂1, . . . , ∂m]

where ∂i is differentiation with respect to ti. Clearly k[t1, . . . , tm] has an action on

R, and we can extend this to an action of D on R by setting ∂i(a) = 0 for all a ∈ A.

S1 and S2 are generated over R by finitely many fractions of elements from R, so

we can define an action of D on them by letting

∂i

(r

s

)
=

s∂i(r)− r∂i(s)

s2
.
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Since this D action extends to all localizations and is compatible with localization

maps every module in A••
0 is a D-module and all its maps are D-module maps. In fact,

all the modules and maps in both spectral sequences will have a D-module structure,

which means that the image of T i−1 inside H i−2
I (H1(Y,OY )) is a D-submodule.

Because H1(Y0,OY0) has finite length over A, when we view it as a module over

k it becomes just a finite dimensional vector space, ka, for some a. Thus

H1(Y,OY ) ∼= H1(Y0,OY0)⊗k k[t1, . . . , tm]

is just a direct sum of a copies of k[t1, . . . , tm], which is holonomic by Property 2.2(a)

and Remark 2.9 from [Lyu93]. Proposition II.8 (d) shows that H i−2
I (H1(Y,OY )) is

holonomic, and since im(T i−1) is holonomic by II.8 (c)

im(H i−2
I (H1(Y,OY ))) = H i−2

I (H1(Y,OY ))/im(T i−1)

is holonomic. Therefore, by II.8 (e) and (f), im(H i−2
I (H1(Y,OY ))) has finitely many

associated primes both over k[t1, . . . , tm] and over R. This makes

AssRH i
I(H

0(Y,OY )) = AssRH i
I(R)

finite and finishes the proof.

The proof of the case where Y is covered by three open sets is similar in spirit,

but the fact that the spectral sequences converge one step later creates an extra level

of complexity.

Theorem IV.4. Let A is a domain finitely generated as an algebra over a field, k,

of characteristic 0 and R = A[t1, . . . , tm] or A[[t1, . . . , tm]]. If A has a resolution of

singularities, Y0, which is the blowup of A along an ideal of depth at least two, which
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has an open cover by only U1, U2, and U3 where H1(Y0,OY0) and H2(Y0,OY0) have

finite length over A, then AssRH i
I(R) is finite for any i and any ideal I ⊂ R.

Proof. Again, choose generators so that I = (f1, . . . , fn) ⊂ R.

Let A••
0 be the double complex formed by tensoring the complex used to compute

the sheaf cohomology of OY ,

0 → S1 ⊕ S2 ⊕ S3 → S12 ⊕ S13 ⊕ S23 → S123 → 0,

with the complex used to compute local cohomology of R

0 → R → ⊕Rfi
→ ⊕Rfifj

→ · · · → Rf1···fn → 0.

Thus we have

Ai0
0 =

⊕
(S1 ⊕ S2 ⊕ S3)fk1

···fki
,

Ai1
0 =

⊕
(S12 ⊕ S13 ⊕ S23)fk1

···fki
,

and

A12
0 =

⊕
(S123)fk1

···fki

so that A••
0 is the complex given below.

0 0 0x x x
0 −−−→ (S1 ⊕ S2 ⊕ S3)f1···fn −−−→ (S12 ⊕ S13 ⊕ S23)f1···fn −−−→ (S123)f1···fn −−−→ 0x x x

x x x
0 −−−→

⊕
(S1 ⊕ S2 ⊕ S3)fk

−−−→
⊕

(S12 ⊕ S13 ⊕ S23)fk
−−−→ (S123)fk

−−−→ 0x x
0 −−−→ S1 ⊕ S2 ⊕ S3 −−−→ S12 ⊕ S13 ⊕ S23 −−−→ S123 −−−→ 0x x x

0 0 0
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As in the case with two patches, we first filter this complex by subcomplexes

A••
0 〈`〉 which are simply A••

0 with the first ` rows replaced by zeros. Let E0 be

the associated graded complex with respect to this filtration so that E1 is the total

complex of A••
1 where

Ai0
1 =

⊕
H0(Y,OY )fk1

···fki
,

Ai1
1 =

⊕
H1(Y,OY )fk1

···fki
,

and

Ai2
1 =

⊕
H2(Y,OY )fk1

···fki
.

Thus A••
1 is the double complex below where all horizontal maps are 0 and all vertical

maps are those induced by the vertical maps of A••
0 .

0 0 0x x x
0 −−−→ H0(Y,OY )f1···fn

0−−−→ H1(Y,OY )f1···fn −−−→ H2(Y,OY )f1···fn −−−→ 0x x x
x x x

0 −−−→
⊕

H0(Y,OY )fk

0−−−→
⊕

H1(Y,OY )fk
−−−→

⊕
H2(Y,OY )fk

−−−→ 0x x x
0 −−−→ H0(Y,OY )

0−−−→ H1(Y,OY ) −−−→ H1(Y,OY ) −−−→ 0x x x
0 0 0

Here d1 : Ep,q
1 → Ep+1,q

1 , so we are simply taking cohomology along each column.
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This means that E2 is the total complex of A••
2 where

Ai0
2 = H i

I(H
0(Y,OY )),

Ai1
2 = H i

I(H
1(Y,OY )),

and

Ai2
2 = H i

I(H
2(Y,OY )).

Since d2 : Ep,q
2 → Ep+2,q−1

2 , or equivalently d2 : Ai,j
2 → Ai+2,j−1

2 , we are just

mapping up two rows and over one column. With that in mind, we show the relevant

three rows of A••
2 below.

x x x
0 −−−→ H i+2

I (H0(Y,OY )) −−−→ H i+2
I (H1(Y,OY )) −−−→ H i+2

I (H2(Y,OY )) −−−→ 0x x x
0 −−−→ H i+1

I (H0(Y,OY )) −−−→ H i+1
I (H1(Y,OY )) −−−→ H i+1

I (H2(Y,OY )) −−−→ 0x x x
0 −−−→ H i

I(H
0(Y,OY )) −−−→ H i

I(H
1(Y,OY )) −−−→ H i

I(H
2(Y,OY )) −−−→ 0x x x

This means that E3 is the total complex of A••
3 where

Aij
3 =

ker(d2 : Aij
2 → Ai+2,j−1

2 )

d2(Ai−2,j+1
2 )

.

Since we have only three nonzero columns, this gives us

Ai0
3 =

Ai0
2

d2(Ai−2,1
2 )

=
H i

I(H
0(Y,OY ))

d2(H i−2
I (H1(Y,OY )))

,

Ai1
3 =

ker(d2 : Ai1
2 → Ai+2,0

2 )

d2(Ai−2,2
2 )

=
ker(H i

I(H
1(Y,OY )) → H i+2

I (H0(Y,OY )))

d2(H i−2
I (H2(Y,OY )))

,
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and

Ai2
3 = ker(d2 : Ai2

2 → Ai+2,1
2 ) = ker(H i

I(H
2(Y,OY )) → H i+2

I (H1(Y,OY ))).

The map d3 : Ep,q
3 → Ep+3,q−2

3 or d3 : Aij
3 → Ai+3,j−2

3 is just up three rows and left

two columns. Since we only have three nonzero columns, this map is only nontrivial

if j = 2 so d3 : Ai2
3 → Ai+3,0

3 . This means that

Ei0
4 =

Ai0
3

d3(Ai−3,2
3 )

,

Ei1
4 = Ai1

3 ,

and

Ei2
4 = ker(d3 : Ai2

3 → Ai+3,0
3 ).

Since dr corresponds to going up r rows and left r − 1 columns, we have dr ≡ 0

for all r ≥ 4 meaning that E4 = E∞.

From this we can construct an exact sequence

0 → Ei−3,2
∞ → Ai−3,2

3 → Ai,0
3 → Ei,0

∞ → 0

for every i where the middle map is d3.

Letting T • denote the total complex E∞, we know that T i = Ei,0
∞ ⊕Ei−1,1

∞ ⊕Ei−2,2
∞ .

This gives us an exact sequence

T i−1 → Ai−3,2
3 → Ai,0

3 → T i

where the first map is projection onto Ei−3,2
∞ , the middle map is d3 and the last map

comes from the injection Ei,0
∞ ↪→ T i.

In our case, this is actually

T i−1 → ker(d2 : H i−3
I (H2(Y,OY )) → H i−1

I (H1(Y,OY ))) → H i
I(H

0(Y,OY ))

d2(H i−2
I (H1(Y,OY )))

→ T i
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Our ring, R, satisfies the hypotheses of Lemma IV.1, so

H i
I(H

0(Y,OY ))) ∼= H i
I(R)

which means we are interested in controlling the associated primes of the second to

last module in our exact sequence.

As in the proof of Theorem IV.2, we let D = k[t1, . . . , tm, ∂1, . . . , ∂m] where ∂i

is differentiation with respect to ti. By letting ∂i(a) = 0 for all a ∈ A, we have an

action of D on R and hence on each Si. This action extends to all localizations, so all

modules in A••
3 are D-modules and all maps are D-module maps. Since H2(Y0,OY0)

is finite length over A, it is a finite vector space over k. This makes H2(Y,OY ) ∼=

H2(Y0,OY0)⊗kk[t1, . . . , tm] a direct sum of copies of k[t1, . . . , tm] which is a holonomic

D-module. As before, by Proposition II.8 (a), we know H i
I(H

2(Y,OY )) is holonomic.

This means ker(d2 : H i−2
I (H2(Y,OY )) → H i

I(H
1(Y,OY ))), and thus the image of

T i−1 inside this kernel, is also holonomic. Therefore

im(d3) ⊆ H i
I(H

0(Y,OY ))

d2(H i−2
I (H1(Y,OY )))

has a finite set of associated primes over k![t1, . . . , tm] and over R.

To control the image of Ai,0
3 inside T i, we go back to our original double complex

B••
0 := A••

0 and filter the other way, i.e. so that B••
0 〈k〉 is just B••

0 with the first

k columns replaced by zeros. As before, the associated graded complex, E0, with

respect to this filtration is the direct sum of the columns. This makes E1 the total

complex of B••
1 where Bi0

1 = H i
I(S1 ⊕ S2 ⊕ S3), Bi1

1 = H i
I(S12 ⊕ S13 ⊕ S23) and

Bi2
1 = H i

I(S123). Thus B••
1 is the double complex below where the vertical maps are

0 and horizontal maps induced by the corresponding maps in B••
0 .
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0 0 0x x x
0 −−−→ Hn

I (S1 ⊕ S2 ⊕ S3) −−−→ Hn
I (S12 ⊕ S13 ⊕ S23) −−−→ Hn

I (S123) −−−→ 0

0

x 0

x 0

x
0

x 0

x 0

x
0 −−−→ H1

I (S1 ⊕ S2 ⊕ S3) −−−→ H1
I (S12 ⊕ S13 ⊕ S23) −−−→ H1

I (S123) −−−→ 0

0

x 0

x 0

x
0 −−−→ H0

I (S1 ⊕ S2 ⊕ S3) −−−→ H0
I (S12 ⊕ S13 ⊕ S23) −−−→ H0

I (S123) −−−→ 0x x x
0 0 0

Here d1 : Ep,q
1 → Ep,q+1

1 , so to get E2 we are taking cohomology along each row.

The ith row is the Čech complex which computes cohomology of the sheaf Hi
I(OY )

with respect to the cover of Y by U1, U2 and U3. Thus E2 is the total complex of

B••
2 where Bi0

2 = H0(Y,Hi
I(OY )), Bi1

2 = H1(Y,Hi
I(OY )) and Bi2

2 = H2(Y,Hi
I(OY )).

The differential here is d2 : Ep,q
2 → Ep−1,q+2

2 , or down one row and right two columns.

Since there are only three nonzero columns, this map is the zero except for d2 : Bi0
2 →

Bi−1,2
2 .

This means we have E3 the total complex of B••
3 where

Bi0
3 = ker(Bi0

2 → Bi−1,2
2 ),

Bi1
3 = Bi,2

2

and

Bi2
3 =

Bi2
2

d2(Bi+1,0
2 )

.
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Because there are only three nonzero columns and d3 maps down two rows and

over three columns, d3 ≡ 0 which means Eij
∞ = Eij

3 . For each i this gives us a short

exact sequence

0 → Ei0
∞ → Bi0

2 → Bi−1,2
2 → Ei−1,2

∞ → 0

where the middle map is d2.

Again letting T • be the total complex E∞, we have T i = Bi,0
3 ⊕ Bi−1,1

3 ⊕ Bi−2,2
3 .

Putting this together with the exact sequence we from our other filtration of A••
0 we

have

Bi−1,1
2 ⊕Bi−2,2

2 → T i → Bi,0
2 → Bi−1,2

2

which in our case is just

H1(Y,Hi−1
I (OY ))⊕H2(Y,Hi−2

I (OY )) → T i → H0(Y,Hi
I(OY )) → H2(Y,Hi−1

I (OY )).

Here the first map is the direct sum of the inclusion of Bi−1,1
2 into T i and the map

of Bi−2,2
2 onto Ei−1,2

∞ , the second is killing Ei−1,1
∞ ⊕Ei−2,2

∞ inside T i and mapping Ei,0
∞

into Bi,0
2 , while the last map is just d2.

Notice that the image of T i is a submodule of H0(Y,Hi
I(OY )) which is in turn

contained in H i
I(S1)⊕H i

I(S2)⊕H i
I(S3).

Since S1, S2 and S3 are all regular, AssSj
H i

I(Sj) is finite for each of our regular

rings. Because the associated primes of H i
I(Sj) over R will be restrictions of the

associated primes over Sj, we conclude that AssRH0(Y,Hi
I(OY )) is finite. From this

we see AssRim(T i) is finite as well.

The image of Ai0
3 in T i also maps to Bi,0

2 and the kernel is the intersection of

im(Ai0
3 ) and the image in T i of Bi−1,1

0 ⊕Bi−2,2
0 .

Lemma IV.5. The image of Ai,0
3 in T i has trivial intersection with the image of

Bi−1,1
2 ⊕Bi−2,2

2 .
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Proof. The module Ai,0
3 comes from our filtration by setting rows equal to zero.

Its elements can be thought of as coming from elements z ∈ Ai,0
0 for which z 7→

0 ∈ Ai,1
0 (here we need not take classes since Ai,−1

0 = 0) and where z 7→ 0 in

the row cohomology of the (i + 1, 0)th spot. Since Ai+1,−1
0 = 0, this just means

z 7→ 0 ∈ Ai+1,0
0 . Here the equivalence classes are with respect to the image of the row

cohomology at the (i − 1, 0)th spot inside the row cohomology at the (i, 0)th spot,

i.e. im(ker(Ai−1,0
0 → Ai−1,1

0 )). This puts [z] ∈ Ai,0
2 .

Since d2 maps up two rows and left one column, it kills all of Ai,0
2 . This means z

represents an element of Ai,0
3 although we are now working mod d2(Ai−2,1

2 ). Elements

of Ai−2,1
2 are classes of elements in Ai−2,1

0 which map to zero in Ai−2,2
0 and map to

im(Ai−1,0
0 ) ⊆ Ai−1,1

0 . The map d2 works by taking such an element, w, to im(y) ∈ Ai,0
0

where the element y ∈ Ai−1,0
0 has im(y) = im(w) ∈ Ai−1,1

0 .

Thus Ai,0
3 is classes of elements from Ai,0

0 which map to zero in both Ai+1,0
0 and

Ai,1
0 mod the image of any element of Ai−1,0

0 which maps to im(Ai−2,1
0 ) ⊆ Ai−1,1

0 .

Elements of T i are classes of triples (z, w, v) in Ai,0
0 ⊕Ai−1,1

0 ⊕Ai−2,2
0 where z 7→ 0 ∈

Ai+1,0
0 , im(z) = im(w) ∈ Ai,1

0 and im(w) = im(v) ∈ Ai−1,2
0 . Therefore our elements of

Ai,0
3 map to T i by [z] 7→ [(z, 0, 0)].

Similarly, Bi−2,2
2 comes from the filtration where we set columns equal to zero.

This means its elements are represented by elements v ∈ Ai−2,2
0 where v 7→ 0 ∈ Ai−1,2

0

(here we look at the class of v modulo the image of Ai−3,2
0 ) so that [v] is an element

of the column cohomology. Since Bi−2,3
0 = 0, v automatically represents an element

of the row cohomology of the column cohomology. However, we work mod the image

of the column cohomology at the (i− 2, 1)th spot.

Thus elements of Bi−2,2
2 are classes of v ∈ Bi−2,2

0 where we work mod both

im(Bi−3,2
0 ) and im(ker(Bi−2,1

0 → Bi−1,1
0 )) inside Bi−2,2

0 . This means that our map
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Bi−2,2
2 → T i is by sending [v] 7→ [(0, 0, v)].

Our last module, Bi−1,1
2 , comes from the same filtration as Bi−1,1

0 . This means

it is classes of elements w ∈ Bi−1,1
0 where w 7→ 0 ∈ Bi,1

0 working mod the image of

Bi−2,1
0 in Bi−1,1

0 . We also need that w 7→ im(Bi−2,2
0 ) ⊆ Bi−1,2

0 , and we work mod

im(ker(Bi−1,0
0 → Bi,0

0 )) ⊆ Bi−1,1
0 .

Therefore elements of Bi−1,1
2 are classes of elements w ∈ Bi−1,1

0 where w 7→ 0 ∈ Bi,1
0

and we have an element v ∈ Bi−2,2
0 with im(w) = im(v) ∈ Bi−1,2

0 . Here we work

modulo im(Bi−2,1
0 ) and im(ker(Bi−1,0

0 → Bi,0
0 )) inside Bi−1,1

0 . Thus Bi−1,1
0 → T i is

just [w] 7→ [(0, w, v)].

Since im(Ai,0
3 ) has entries only in the first component while the images of the other

two modules have entries only in the last two components, it is clear that images

intersect only in the zero triple.

This lemma tells us that im(Ai,0
3 ) ⊆ T i actually injects into im(T i) ⊆ H0(Y,Hi

I(OY ))

which means that AssRim(Ai,0
3 ) is finite. Therefore AssRAi,0

3 is finite as well.

Since we are really interested in H i
I(H

0(Y,OY )) ∼= H i
I(R), and

Ai,0
3 =

H i
I(H

0(Y,OY ))

d2(H i−2
I (H1(Y,OY )))

,

we consider the exact sequence

0 → d2(H i−2
I (H1(Y,OY ))) → H i

I(H
0(Y,OY )) → Ai,0

3 .

We only need to show that AssRd2(H i−2
I (H1(Y,OY ))) is finite and we are done.

Using D-modules as we did with H2(Y,OY ), we can show H1(Y0,OY0) is holo-

nomic. This makes H i−2
I (H1(Y,OY )) and hence its image under d2 holonomic, which

means d2(H i−2
I (H1(Y,OY ))) has finitely many associated primes over R.
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Thus AssRH i
I(R) is finite for any i and any I ⊂ R.

The following corollary is a special case of these two theorems whose assumptions

are perhaps more familiar.

Corollary IV.6. Let A be a two or three dimensional normal domain finitely gener-

ated as an algebra over a field of characteristic 0, and R = A[t1, . . . , tn] or A[[t1, . . . , tn]].

If A has an isolated singularity, then AssRH i
I(R) is finite for any ideal in R.

Proof. Let m ⊂ A be the maximal ideal, which defines the non-singular locus of A.

Since dim(A) ≤ 3, we know m is generated, up to radical, by at most three elements.

Let Y0 be the blow-up of A along m. It is clear that Y0 is covered by at most three

affine patches corresponding to the generators of m, and also that depthmR ≥ 2 since

ht(m) ≥ 2 and R is normal. Finally, we know that the higher cohomology of the

structure sheaf of any desingularization of A will be finitely generated A-modules

supported only on the singular locus of A. Since Sing(A) = {m}, this means all

higher cohomology of Y0 is killed by some power of m and hence is of finite length

over A. Theorems IV.2 and IV.4 now imply AssRH i
I(R) is finite. ure sheaf of X

consists of finitely generated R-modules. This is point number one. Second, if X is

a desingularization of Spec(R), the higher cohomology of the structure sheaf of X is

supported only on the singular locus of R. In the case of an isolated singularity, this

means that the higher cohomology modules are finitely generated R-modules that

are supported only at one point (corresponding to the singular maximal ideal) of R,

and such a module has finite length: the set of primes containing its annihilator is

just m, which implies that its annihilator contais a power of m.
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The only part of the proofs of Theorems IV.2 and IV.4 which uses the fact that

we are in characteristic 0 is the D-module theory. In equal characteristic p > 0,

Lyubeznik has successfully used his theory of “F -modules” to control the local co-

homology of regular local rings in a way analogous to his use of D-modules in char-

acteristic 0. I feel it should be possible to use those F -module techniques to adapt

these proofs to the characteristic p case.

4.2 Over unramified rings of mixed characteristic

In this section we work with rings of mixed characteristic p > 0, i.e. where

char(R) = 0 while the maximal ideals each contain some prime number p > 0. We

can ask whether, if a maximal ideal m contains p, we have p ∈ m2. Here we will

study rings where this does not happen, called unramified rings. This result shows

that adjoining variables to an unramified regular local ring of mixed characteristic

preserves the property that AssR(H i
I(R)) is finite for every i. The initial part of the

proof follows the first half of Lyubeznik’s proof of Theorem 3.2 in [Lyu97].

Theorem IV.7. Let A be an unramified regular local ring of mixed characteristic

p > 0. If R = A[x1, . . . , xn] is a polynomial ring over A for some n, then AssRH i
I(R)

is finite for every integer i and ideal I ⊂ R.

Proof. Let R′ = A[T0, . . . , Tn] be another polynomial ring over A in the new variables

T0, . . . , Tn. We get an A-algebra map f : R → R′
T0

by xi 7→ Ti/T0. Set W to be

the multiplicative system R′−P where P is the maximal ideal mAR′ + (T0, . . . , Tn).

There is a natural localization map ` : R′
T0
→ W−1(R′

T0
) = (W−1R′)T0 . To simplify

notation, we will let B = (W−1R′)T0 and S = W−1R′.

By composition, we have a map h : R → B by h = ` ◦ f . Clearly h is R-flat, since

it is the composition of two localization maps. We want to see that it is faithfully
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flat.

Pick any nonzero R-module, M . If we grade R′
T0

over Z by setting deg(Ti) = 1 and

deg(a) = 0 for all a ∈ A, then R′
T0
⊗R M =

⊕
j∈Z T j

0 M is a Z-graded R′
T0

-module

where deg(u) = 0 for every u ∈ M . Every element of our multiplicative system

W is a polynomial in T0, . . . , Tn whose constant term is a unit in A. Therefore

it cannot kill any homogeneous element of
⊕

j∈Z T j
0 M , so localizing at W we see

W−1(R′
T0

)⊗R M = B ⊗R M is nonzero. Thus B is faithfully flat over R.

Since B is faithfully flat over R, if we have AssRH i
I(R) infinite then by tensoring

with B we will have AssBH i
IB(B) infinite as well. But B = ST0 , so every associated

prime of H i
IB(B) corresponds to an associated prime of H i

IB∩S(S) which does not

contain T0.

Thus AssRH i
I(R) infinite forces AssSH i

IB∩S(S) to be infinite as well. However

S is again an unramified regular local ring, so by [Lyu00b, Theorem 1], we know

AssSHj
J(S) is always finite, and therefore AssRH i

I(R) must be finite.

This same proof works for any class of rings where the finiteness of the associated

primes of local cohomology is preserved by adjoining variables and then localizing at

an ideal which contains all the variables plus a maximal ideal of the base ring.



CHAPTER V

Calm Extensions

In this chapter, we investigate properties of the special class of ring extensions

defined below.

Definition 2. We call an extension R → S calm if for every P ∈ Spec(R) we have

a finite set of attached primes, a(P ) ⊆ Spec(S), so that for every finitely generated

R-module M we have

AssSS ⊗M ⊆
⋃

P∈AssRM

a(P ).

We are interested in such extensions because if R → S is calm then whenever an

R-module, M , has only finitely many associated primes, so does its extension S⊗M .

Our first section shows that calm extensions have many nice properties. The

second gives some classes of rings which have only calm extensions, while the third

investigates when module-finite extensions are calm. The fourth section shows that

the results from sections two and three cannot be extended much farther by exhibiting

examples of extensions which are not calm.

5.1 Properties of calm extensions

This section lists some of the basic properties of calm extensions as well as a few

criteria for when an extension is calm.

47
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The definition of a calm extension is motivated by the desire to generalize the

following theorem about flat extensions.

Theorem V.1. Let R → S be a flat extension of rings, and M any R module. Then

AssSS ⊗M =
⋃

P∈AssRM

AssS(S ⊗R/P ).

This means that all flat extensions are automatically calm. In fact R → S is calm

whenever the non-flat locus of S over R is finite, i.e. whenever SP is flat over RP for

all but finitely many primes P ∈ Spec(R).

These next theorems show that calm extensions persist under some basic algebraic

operations.

Theorem V.2. If R → S is calm and I ⊂ R is any ideal, then R/I → S/IS is

calm.

Proof. Every prime P̄ ∈ Spec(R/I) corresponds to a prime P ∈ Spec(R) which

contains I. Similarly primes Q̄ of S/IS correspond to primes Q of S which contain

IS.

Since R → S is calm, let a(P ) ⊆ Spec(S) be the set of attached primes for

P ∈ Spec(R). Given P̄ ∈ Spec(R/I) corresponding to P ∈ Spec(R), let ā(P̄ ) be the

set of primes in S/IS which correspond to the primes of S in a(P ).

Any module, M , over R/I can be viewed as a module over R with I ⊆ AnnRM

so (S/IS) ⊗R/I M ∼= S ⊗R M. Since I kills M , and thus any associated prime of

S ⊗R M must contain IS, it is clear that

AssSS ⊗R M ⊆
⋃

P∈AssRM

a(P )

immediately implies

AssS/IS(S/IS)⊗R/I M ⊆
⋃

P̄∈AssR/IM

ā(P̄ ).
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Theorem V.3. If R → S is calm and W ⊂ R is any multiplicative system, then

W−1R → W−1S is calm.

Proof. Because the associated primes of a module after localization at W are just the

original associated primes which avoid W , it is clear that we can find sets of attached

primes which work for any W−1R module of the form W−1M for some R-module M .

Let N be any module finitely generated over the localized ring. We can represent

N as the cokernel of a finite matrix with entries in W−1R. This means we can find a

single element, w, so that wN is the cokernel of a matrix with entries in R, meaning

wN is an R-module. This makes N = W−1(wN) so we are done.

Theorem V.4. If R → S and S → T are calm, then the composition R → T is

calm.

Proof. Since R → S and S → T are calm, we have sets a(P ) ⊆ Spec(S) for each

P ∈ Spec(R) and b(Q) ⊆ Spec(T ) for each Q ∈ Spec(S) as in Definition 2. Let

c(P ) =
⋃

Q∈a(P )

b(Q).

Then if M is any R-module we have

AssT T ⊗R M = AssT T ⊗S (S ⊗R M) ⊆
⋃

Q∈AssSS⊗RM

b(Q)

But

AssSS ⊗R M ⊆
⋃

P∈AssRM

a(P ),

so we have

⋃
Q∈AssSS⊗RM

b(Q) ⊆
⋃

P∈AssRM

 ⋃
Q∈a(P )

b(Q)

 =
⋃

P∈AssRM

c(P )
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and R → T is calm.

The next theorems give two ways to check if an extension is calm. The second

gives a partial converse to Theorem V.3, and says calmness can be checked locally

on affine open covers of Spec(R).

Theorem V.5. If R′ is faithfully flat over R and R′ → R′⊗R S is calm, then R → S

is calm.

Proof. Let S ′ = R′ ⊗R S. Because R → R′ is flat, we know

AssR′R′ ⊗R M =
⋃

P∈AssRM

AssR′R′/PR′.

Since R′ → S ′ is calm, we have a set b(P ′) ⊆ Spec(S ′) for each P ′ ∈ Spec(R′) so

AssS′S ′ ⊗R′ (R′ ⊗R M) ⊆
⋃

P ′∈AssR′R′⊗RM

b(P ′) =
⋃

P∈AssRM

 ⋃
P ′∈AssR′R′/PR′

b(P ′)

 ,

where S ′ ⊗R′ (R′ ⊗R M) ∼= S ′ ⊗R M . Now let

a(P ) =
⋃

P ′∈AssR′R′/PR′

{Q ∈ Spec(S)|Q = Q′ ∩ S for some Q′ ∈ b(P ′)}.

Then it is clear that

{Q ∈ Spec(S)|Q = Q′ ∩ S for some Q′ ∈ AssS′S ′ ⊗R M} ⊆
⋃

P∈AssRM

a(P ).

Because S → S ′ is flat (by flat base change) and S ′ ⊗S (S ⊗R M) = S ′ ⊗R M , we

know that

AssS′S ′ ⊗R M =
⋃

Q∈AssSS⊗RM

AssS′S ′/QS ′.

Flatness also tells us that for each Q ∈ AssSS ⊗R M there is some minimal prime of

QS ′ which contracts to Q in S. Thus we have

AssSS ⊗R M ⊆
⋃

P∈AssRM

a(P )

so R → S is calm.
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Theorem V.6. Let f1, . . . , fn ∈ R generate the unit ideal. If Rfi
→ Sfi

is calm for

every i then R → S is calm.

Proof. First note that the associated primes of a module over Rfi
correspond to its

associated primes over R which do not contain fi and similarly for S. Since Rfi
→ Sfi

is calm for each i, we get sets bi(P ) for each P ∈ Spec(Rfi
) so that

AssSfi
Sfi

⊗Rfi
N ⊆

⋃
P∈AssRfi

N

bi(P )

for every Rfi
-module N . Now set

a(P ) =
⋃

fi /∈P

{Q ∈ Spec(S)|QSfi
∈ bi(PRfi

)}.

Let M be any R-module, and pick Q ∈ AssSS ⊗R M . There is some i for which

fi /∈ Q, so

QRfi
∈ AssRfi

(S ⊗R M)fi
= AssRfi

Sfi
⊗Rfi

Mfi
.

Thus QRfi
∈ bi(PRfi

) for some P ∈ AssRM which means Q ∈ a(P ). Thus

AssSS ⊗R M ⊆
⋃

P∈AssRM

a(P )

and we are done.

5.2 Serene rings

In this section we investigate rings which have only calm extensions.

Definition 3. We will call a ring R serene if R → S is calm for any ring S.

Theorem V.7. If R1 and R2 are serene, then R = R1xR2 is serene.

Proof. Pick any map R → S and let M be any R-module. We know M has the form

M1xM2 where M1 is an R1-module and M2 is an R2-module. This decomposition of

M also gives a decomposition AssRM = AssRM1 ∪ AssRM2.



52

From the map R → S we get maps R1 → S and R2 → S. Since both R1 and R2

are serene, we have sets b(P ) and c(Q) in Spec(S) so that

AssSS ⊗R1 M1 ⊆
⋃

P∈AssR1
M1

b(P ) and

AssSS ⊗R2 M2 ⊆
⋃

Q∈AssR2
M2

c(Q).

Primes of R have the form P xR2 for P ∈ Spec(R1) or R1xQ for Q ∈ Spec(R2).

Set a(P xR2) = b(P ) and a(R1xQ) = c(Q). Since all associated primes of M of the

first type come from M1 and all of the second type from M2, we are done.

The next two results in this section give classes of rings which are serene.

Theorem V.8. Dedekind domains are serene.

Proof. Let R be a Dedekind domain and R → S a ring homomorphism. We can take

a(0) = AssSS, and a(p) = ∪mAssSS/pmS for each nonzero prime element p ∈ R. I

claim the latter is a finite set of primes as follows: Filter each S/pmS by modules of

the form pnS/pn+1S so that

⋃
m

AssSS/pmS ⊆
⋃
n

AssSpnS/pn+1S.

There is a system of surjections

S/pS � pS/p2S � p2S/p3S � · · · � pnS/pn+1S � · · ·

where each map is multiplication by p. Look at the kernel, Qn, of the composition

map S/pS � pnS/pn+1S. Since any element killed by mapping n steps will be zero

after any further mapping, we have

Q1 ⊆ Q2 ⊆ · · · ⊆ Qn ⊆ · · · ⊂ S/pS.
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This chain must stabilize since S/pS is Noetherian, and thus the modules pnS/pn+1S ∼=

(S/pS)/Qn stabilize as well making our union of assassinators really a finite union.

As AssSpnS/pn+1S is finite for every n, this means that ∪mAssSS/pmS is finite as

well.

Now let M be any finitely generated R-module. Because R is a Dedekind domain,

we can decompose M as

M ∼= R⊕h ⊕ I ⊕R/P ai
i ⊕ · · · ⊕R/P an

n

for some ideal I ⊆ R and nonzero primes P1, . . . , Pn ∈ Spec(R). When we tensor

with S we get

S ⊗M ∼= S⊕h ⊕ IS ⊕ S/P a1
1 S ⊕ · · · ⊕ S/P an

n S.

Since AssRR/Pm
i = {Pi}, it is clear that AssRM = {P1, . . . , Pn} plus {(0)} if h > 0.

This makes it clear that

AssSS ⊗M =
⋃

P∈AssRM

a(P )

as required.

Theorem V.9. Regular rings of dimension 1 are serene.

Proof. Since every regular ring of dimension 1 is a finite product of Dedekind do-

mains, we are immediately done by combining Theorems V.7 and V.8.

5.3 Module-finite extensions

In this section we investigate which module-finite extensions are calm. For small

rings, we are able to relax the conditions which made a ring serene and still have all

module-finite extensions be calm.
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Theorem V.10. If R → S is module-finite, dim(R) ≤ 1, R is reduced and the

singular locus of R is closed then R → S is calm.

Proof. If dim(R) = 0 this is trivial, because dim(R) = 0 and R → S module-finite

means that dim(S) = 0. Since Spec(S) is finite, we can make R → S calm by letting

a(P ) = Spec(S) for every prime of R.

If dim(R) = 1, we first tackle the domain case. If R is a domain with closed

singular locus, we can find some nonzero element a ∈ R so that Ra is regular.

Since Ra is regular of dimension 1, Theorem V.9 makes Ra → Sa calm. This

means we need only worry about finding sets of attached primes for primes of R that

contain a.

Since ht(aR) = 1, these are the minimal primes of aR and hence there are only

finitely many. Because R → S is module-finite, there are only finitely many primes

of S lying over each of these primes in R which contain a. This means we can attach

all these primes to every prime of R which contains a. Since every prime of S that

contains a must lie over a prime of R which also contains a, we are done.

If R is not a domain but merely reduced, we will use induction on the number

of minimal primes. If R has only one minimal prime it is a domain and we are

done. If not, let a1, . . . , an be a minimal set of elements of R which contains a

generating set for every minimal prime. Since Rai
has fewer minimal primes than R

(because we have lost all primes which had ai as a generator), the map Rai
→ Sai

is

calm by hypothesis. Thus we need only find attached sets of primes for all primes

Q ∈ Spec(R) which contain every minimal prime of R.

The sum of all the minimal primes (which is contained in each of these Q’s) has

height 1, so the Q’s are really its minimal primes. This means there are only finitely

many of them, so by the argument used in the domain case we can just attach all
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primes of S lying over all of them to each Q. Thus R → S is calm.

Theorem V.11. If R is local, reduced, and dim(R) = 2, then R → S module-finite

implies that R → S is calm.

Proof. The flat locus of S over R is just the free locus, which is open in the module-

finite case. Let I ⊂ R define the non-flat locus. If ht(I) = 0 and we localize

at a minimal prime containing I we get a field. Thus ht(I) ≥ 1. The primes of S

containing IS lie over the finitely many minimal primes of I and possibly the maximal

ideal of R meaning the non-flat locus is finite. By our remark at the beginning of

Section 5.1, this means R → S is calm.

5.4 Counter-examples

In this section we give several examples of extensions that are not calm even

though some are module-finite. They show that the results of the last two sections

cannot be pushed much farther.

The first example shows that rings of dimension 0 that are not reduced need not

be serene.

Proposition V.12. The ring R = k[x, y]/(x2, xy, y2) is not serene.

Proof. To begin, we will describe the structure of any finitely generated R module,

M . Let m = (x, y). First we can divide M into it’s submodule mM and quotient

M/mM . Since m2 = 0, both are k-vector spaces and we can view M as a k-vector

space. Here M splits up as M = V ⊕W where V is the submodule mM and W is

its vector space complement.

The actions of x and y on M are then the actions of two matrices, A and B, over

k where A, B : W → V and both kill V . Choosing bases v1, . . . , v` and w1, . . . , wh
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for V and W respectively, we then have

A =

0 A

0 0

 and B =

0 B

0 0


which map V ⊕W to itself, and clearly satisfy the requirements that A2, AB, BA,

and B2 are zero. Thinking of M in this way, we can map a free module of rank `+h

onto M by mapping each free module generator onto the vi’s and wj’s. From this

we get the following representation of M :

0 → N(A, B) → R` ⊕Rh → M → 0

where

N(A, B) = Spani{xvi, yvi, xwi − ai1v1 − · · · − aikvk, ywi − bi1v1 − · · · − bikvk}

and the aij and bij are the nonzero entries of the matrices A and B. Thus to describe

any finitely generated R-module it is only necessary to choose a pair of matrices A

and B which correspond to the module

M ∼=
R` ⊕Rh

N(A, B)
.

Similarly an R-algebra, S, is simply a k-algebra with two elements x, y ∈ S

satisfying x2 = xy = y2 = 0.

From the short exact sequence 0 → V → M → W → 0 we get

· · · → S ⊗ V → S ⊗M → S ⊗W → 0, which means

AssS
S ⊗ V

ker(S ⊗ V → S ⊗M)
⊆ AssSS⊗M ⊆ AssSS⊗W

⋃
AssS

S ⊗ V

ker(S ⊗ V → S ⊗M)
.

Since W = M/V ,

S ⊗W ∼=
S ⊗ (R`+h/N(A, B))

Spani{vi}
∼= Sh/Spani{xwi, ywi} ∼= (S/mS)h
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so we would like to have AssSS/mS ⊆ a(m). Since this set is finite, that is not a

problem.

We can think of M as R`+h/N(A, B), so S ⊗ M ∼= S`+h/N(A, B)S. As with

S⊗W , we can see S⊗V ∼= Spani{vi}S/Spani{xvi, yvi}. This means that the kernel

of the map S⊗V → S⊗M , is precisely the nontrivial (meaning not over R) S-linear

combinations of the αi = xwi−ai1v1−· · ·−aikvk and βi = ywi−bi1v1−· · ·−bikvk which

are in the span of the vi’s. Thus we are really looking for pairs of elements s, t ∈ S

where sx + ty = 0. (Even for flat maps this will include the pairs (x, 0), (y, 0), (0, x)

and (0, y).) Each such pair gives a set of elements (s, t) · (α1, β1), . . . (s, t) · (αh, βh)

in the kernel. This means S ⊗ V is isomorphic to (S/mS)k modulo all the relations

described above.

For a fixed algebra S, we can take a finite basis (s1, ti) . . . , (sd, td) for the relations

on x and y, but we can have any module, M , which means literally any choice of the

a’s and b’s. This means that our set of primes attached to m will have to include

the set

AssS
(S/mS)`

{(sj, tj) · (αi, βi)}

for every choice of `, α and β.

We will conclude the proof by exhibiting an example, S, where this set of primes

is infinite, meaning we cannot construct any suitable finite a(m) showing R is not

serene.

Let S = k[x, y, u, v]/(x2, xy, y2, ux + vy), so our only new relation on x and y in

S is (u, v). If we let ` = 1 and consider the set above, we are looking at

AssS
S/mS

{(u, v) · (a, b)}
= Assk[u,v]k[u, v]/(au + bv)

over all choices of a and b in k. But now observe that (u + bv) ⊂ k[u, v] is prime for
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every b ∈ k and furthermore that each such prime is distinct for different choices of

b. This means R → S is not calm and therefore R is not serene.

The next example shows that rings of dimension 1 which are not reduced can have

module-finite extensions which are not calm.

Proposition V.13. The ring R = k[x, y]/(y2) has a module-finite R-algebra, S,

where R → S is not calm.

Proof. Given an R-module, M , we can think of M by thinking of M/yM and yM .

Since y2 = 0, both these module are killed by y making them effectively modules

over R/(y) = k[x]. This ring is a PID, so we can decompose as follows

yM ∼= k[x]n ⊕ k[x]/(fα1
1 )⊕ · · · ⊕ k[x]/(fαa

a ),

M/yM ∼= k[x]m ⊕ k[x]/(gβ1

1 )⊕ · · · ⊕ k[x]/(gβb

b )

where the fi’s and gi’s are prime elements of k[x].

This means that AssR(M) ⊆ {(y)} ∪ {(y, fi)} ∪ {(y, gi)} so we will be looking

for the sets of attached primes of S for these primes of R. (Note that Spec(R) =

{(y)} ∪ {(y, f(x))|(f) ∈ Spec(k[x]}.)

We label the generators of these modules by choosing free bases u1, . . . , un and

v1, . . . , vm for k[x]n and k[x]m respectively and letting wi (respectively zi) be a gen-

erator of k[x]/(fαi
i ) (respectively k[x]/(gβi

i )) over k[x]. These two bases for yM and

M/yM together give a generating set for M over k[x].

To describe the R-module structure of M , we must now understand the action of

y. Certainly any generator which came from yM is killed by y. Any generator for

the part of M which maps to M/yM will be mapped to some k[x]-linear combination

of the generators for yM . This means we can think of y as a matrix with entries in
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k[x]. If we list the generators of M as u’s, w’s, v’s, z’s, then this matrix has the form

A =



0 0 A1 A2

0 0 A3 A4

0 0 0 0

0 0 0 0


.

We need to understand the associated primes of S ⊗M for various module-finite

R-algebras S. From the short exact sequence 0 → yM → M → M/yM → 0 we get

· · · → yM ⊗ S → M ⊗ S → (M/yM)⊗ S → 0.

From this we see that

AssS
S ⊗ yM

ker(yM ⊗ S → M ⊗ S)
⊆ AssSM ⊗ S

⊆ AssSM/yM ⊗ S ∪ AssS
S ⊗ yM

ker(yM ⊗ S → M ⊗ S)

which means we need to understand these two additional modules and their associ-

ated primes over S.

From our previous decomposition of

M/yM ∼= (R/yR)m ⊕R/(y, gβ1

1 )⊕ · · · ⊕R/(y, gβb

b )

we see that

S ⊗ (M/yM) ∼= (S/yS)m ⊕ S/(y, gβ1

1 )S ⊕ · · · ⊕ S/(y, gβb

b )S.

We can take care of these associated primes by including AssSS/yS in a((y)) and⋃
t AssSS/(y, gt

i)S in a((y, gi)). (This latter set is finite by the argument in the proof

of Theorem V.8.)

To get at the kernel module, we will use our previously selected generating set for

M along with the matrix A giving the action of y on M .
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Mapping a free module onto M by sending each generator to one of our generators

for M , we get that M ∼= Rn+a+m+b/{relations} where the set of relations is the span

of things of the form

wif
αi
i , zig

βi

i , yui, ywi, yvi − γi, yzi − δi where

γi := a1
1iu1 + · · ·+ a1

niun + a3
1iw1 + · · ·+ a3

aiwa, and

δi := a2
1iu1 + · · ·+ a2

niun + a4
1iw1 + · · ·+ a4

aiwa.

From this point of view, yM is the R-span of the ui’s and wi’s modulo the span

of the relations yui, ywi and wif
αi
i . Tensoring with S, we see that S⊗ yM is has the

same form, where the spans are taken over S instead of R. From this interpretation

it is clear that the kernel of the map S⊗ yM → S⊗M is the set of all S-linear (but

not R-linear) combinations of the yvi−γi’s, yzi−δi’s and zig
βi

i ’s which are contained

in the S-span of the ui’s and wi’s. Putting yvi− γi into the span of the ui’s and wi’s

means finding elements s of S which kill y since there are no other relations involving

vi. Putting yzi − δi into the span of the ui’s and wi’s means finding elements t and

t′ of S so that ty− t′gβi

i = 0. (Putting zig
βi

i into yM means finding s′ which kills gβi

i

so these do not give any new relations on the ui’s and vi’s.) From such s and t, t′ we

get kernel elements sγi and tδi.

We are assuming here that S is fixed, so there will be a finite set of generators for

the s’s and t’s. However, as M is allowed to vary over all R-modules, n, m, a, b and

the γi and δi (really the entries of A) are not fixed in any way.

To exhibit our counterexample, we will pick n and a along with a ring S so that

various choices of γi will yield an infinite set of distinct associated primes. It will

be clear that all the primes produced belong in the set a((y)) meaning that the map

R → S cannot be calm.
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Let S = k[x, y, h]/(h2, y2, hy). This ring is generated over R by 1 and h. Here

Ann(y) = (y, h) so for our set of elements s we will take (h). Consider modules

where n = 1 and a = 0 so our matrix A has only one entry f which we can take to

be any element of k[x]. We will let f run through the set of x− c’s where c ∈ k. The

module whose associated primes we are considering is then

(S/yS)/(hf) ∼= (k[x, h]/(h2))/(h(x− c)) ∼= k[x, h]/(h2, h(x− c)).

Since
√

(h2, h(x− c)) = (h, h(x− c)) = (h) ∩ (h, x− c), we see that (h, x− c) is an

associated prime. Since such primes are distinct for different values of c, this means

over an infinite field the set is infinite. Since the only associated prime of this M is

(y), we must include all these primes in a(y) which is clearly impossible. Thus the

extension cannot be calm.

Our next examples show that even a module-finite extension of domains need not

be calm if our ring has dimension bigger than one.

Proposition V.14. Let R = k[x2, x3, y] and S = k[x, y]. The obvious injection

R ↪→ S is not calm.

Proof.

Let Mλ =
Re1 + Re2

(x3e2, x2e1, x3e1, (y − λ)e1 − x2e2)

for some λ ∈ k. This gives us a short exact sequence

0 → Re1 → Mλ → Re2/(x
3e2, x

2e2) → 0.

Clearly the last module in the sequence, Mλ/Re1, is isomorphic to R/(x2, x3). To

understand the first module, Re1, we need to compute AnnR(e1). It is clear that
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(x2, x3) ⊂ AnnR(e1), so any other generator will have the form g(y) ∈ k[y]. Suppose

that we have g(y)e1 = 0 ∈ Mλ, i.e.

g(y)e1 = r1x
2e1 + r2x

3e1 + r3x
3e2 + r4((y − λ)e1 − x2e2)

for some r1, r2, r3, r4 ∈ R. Since the left hand side has no e2 term we must have

r3x
3 − r4x

2 = 0, but all relations on x2 and x3 in R are spanned by x2(x3)− x3(x2)

and x3(x3) − x4(x2). Thus r3 = ax2 + bx3 and r4 = ax3 + bx4 for some a, b ∈ R.

Putting this back into the equation above we get

g(y)e1 = r1x
2e1 + r2x

3e1 + (ax3 + bx4)(y − λ)e1.

Since every term of the right hand side is divisible by x, this should mean x|g(y) which

is a contradiction unless g(y) = 0. Thus AnnR(e1) = (x2, x3), and Re1
∼= R/(x2, x3).

Putting this together with our short exact sequence for Mλ we see that AssRMλ =

{(x2, x3)} which does not depend at all on our choice of λ. This means that if our

extension is calm the modules S⊗Mλ can have only finitely many associated primes

as they will all have to live in a((x2, x3)).

Tensoring our exact sequence with S we get

· · · → S ⊗Re1 → S ⊗Mλ → S ⊗Re2/(x
3e2, x

2e2) → 0, which means

AssS
Se1

ker(Se1 → S ⊗Mλ)
⊆ AssSS ⊗Mλ.

The kernel of the map from Se1 to S ⊗Mλ consists of all relations on e1 which exist

in S ⊗Mλ, i.e. all relations on e1 in the span over S (but not R) of x2e1, x3e1, x3e2

and (y − λ)e1 − x2e2. Since x2 and x3 already kill e1 over R we discard anything

in (x2, x3)S = x2S. We do have x((y − λ)e1 − x2e2) + x3e2 = x(y − λ)e1 in the

S-span of our relations, so x(y − λ)e1 is in the kernel, and it is clear that this is the



63

whole kernel. This means that ker(Se1 → S ⊗ Mλ) = x(y − λ)e1S ⊂ Se1. Since

Se1
∼= S/(x2), this gives

AssSS/(x2, x(y − λ)) ⊆ AssSS ⊗Mλ.

But

(x2, x(y − λ)) = (x) ∩ (x, y − λ)2, so

AssSS/(x2, x(y − λ)) = {(x), (x, y − λ)}.

Since the various (x, y − λ)’s are distinct for distinct values of λ, if k is infinite this

gives a contradiction to the necessary finiteness of the attached sets of primes. (This

is reasonable since the primes collected by varying λ are precisely the primes of S

which lie over the non-flat locus of S in R.)

Proposition V.15. Let R = k[x3, x4, y] and S = k[x2, x3, y]. R ↪→ S is module-

finite but not calm.

Proof. The obstacle to flatness here is the relation x3(x3) = x2(x4) ∈ S but this

cannot hold in R as x2 /∈ R. Also there are infinitely many maximal ideals of R

which contain the two elements x3 and x4 which are involved in this relation. We

will make use of that to construct our class of modules.

Let Mλ =
Re1 + Re2

(x3e2, x3e1, x4e1, (y − λ)e1 − x4e2)

for some λ ∈ k. This gives us a short exact sequence

0 → Re1 → Mλ → Re2/(x
3e2, x

4e2) → 0.

Clearly the last module in the sequence, Mλ/Re1, is isomorphic to R/(x3, x4). To

understand the first module, Re1, we need to compute AnnR(e1). It is clear that
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(x3, x4) ⊂ AnnR(e1), so any other generator will have the form g(y) ∈ k[y]. But

since every relation on x3 and x4 is generated by relations involving only x’s, the

same argument as in the previous example shows that e1 is not killed by any element

of k[y]. Thus AnnR(e1) = (x3, x4), and Re1
∼= R/(x3, x4).

Putting this together with our short exact sequence for Mλ, we can see that

AssRMλ = {(x3, x4)} which is independent of our choice of λ. This means that for

this extension to be calm the modules S⊗Mλ can have only finitely many associated

primes as they will all have to live in a((x3, x4)).

Tensoring our exact sequence with S we get

· · · → S ⊗Re1 → S ⊗Mλ → S ⊗Re2/(x
3e2, x

4e2) → 0, which means

AssS
Se1

ker(Se1 → S ⊗Mλ)
⊆ AssSS ⊗Mλ.

The kernel of the map from Se1 to S ⊗Mλ consists of all relations on e1 which exist

in S ⊗ Mλ, i.e. all relations on e1 in the span over S (but not R) of x3e1, x4e1,

x3e2 and fe1 − x4e2. Since x3 and x4 already kill e1 over R we discard anything in

(x3, x4)S. We do have x2((y − λ)e1 − x4e2) + x3(x3e2) = x2(y − λ)e1 in the S-span

of our relations, so x2(y − λ)e1 is in the kernel. It is then clear that

ker(Se1 → S ⊗Mλ) = x2(y − λ)e1S ⊂ Se1.

Since Se1
∼= S/(x3, x4), this gives

AssSS/(x3, x4, x2(y − λ)) ⊆ AssSS ⊗Mλ.

But

(x3, x4, x2(y − λ)) = (x2, x3) ∩ (x3, x4, y − λ), so

Ass(S/(x3, x4, x(y − λ))) = {(x2, x3), (x2, x3, y − λ)}.
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Since the various (x2, x3, y − λ)’s are distinct for distinct values of λ, if k is infinite

this gives a contradiction to the necessary finiteness of the attached sets of primes.

(Again these primes collected by varying λ are precisely the primes of S which lie

over the non-flat locus of S in R.)



CHAPTER VI

Open Questions

In this chapter we list some open questions remaining for future study.

Question VI.1. Assume that S is flat over R with regular fibers, S is excellent, and

R has an isolated singularity. Is AssSH i
I(S) finite for all ideals I of S?

This is a generalization of Corollary IV.6 in two ways. First we have dropped the

dimension restriction on the base ring, and second we have replaced the polynomial

or power series extension with one which is merely flat with regular fibers.

Question VI.2. Is Ass(X1,Y )H
2
I (M) always finite for any finitely generated module,

M , of pure dimension 4 over a ring of the form

V [[X1, X2, X3, Y ]]

(f)
or

k[[X1, X2, X3, X4, Y ]]

(f)

where f is monic in Y and has a constant term divisible by X1?

By Proposition III.7, this would show that AssRH i
I(M) is always finite for local

rings of dimension 4.

Question VI.3. Is AssRH i
I(M) always finite where R is a non-local ring of dimen-

sion 3 and ht(I) ≤ 1?

66



67

Question VI.4. Can we force AssRH i
I(M) to be finite if the height of I is large

compared to the dimension of R? Specifically can we do this if our ideal, I, has

ht(I) ≥ dim(R)− 2?

The second question would generalize Marley’s result for ideals of height at least

2 in a local ring of dimension 4: see [Mar01, Proposition 2.8].
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