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ABSTRACT 
 

 Using three genes specific to the vomeronasal system (VNS), I addressed three 

questions about the evolution of this vertebrate sensory system that were previously 

unanswerable with only morphological data.  (1) I investigated how the V1R 

vomeronasal receptor repertoire evolves in mammals.  (2)  I investigated how the patterns 

of evolution in VNS receptors compare to those of the main olfactory system (MOS).  (3)  

I investigated when the VNS originated in vertebrate evolution.  For the first question, I 

focused on three particular aspects of mammalian V1R evolution.  First, I investigated 

how species-specificity evolves between two closely related mammals, mouse and rat, 

revealing that a gene-sorting birth and death model of evolution results in many species-

specific duplication and loss of V1Rs and very few orthologous mouse-rat V1R pairs.  

Second, I investigated V1R repertoire size variation among five orders of mammals.  

Dramatic variation was observed with functional repertoire size varying over 20 times 

between dog and mouse.  This study showed a correlation between VNS morphological 

complexity and V1R repertoire size.  Finally, I examined V1R evolution in the platypus 

and found that it has the largest V1R repertoire thus far identified in vertebrates.  These 

studies revealed independent expansions in V1Rs in all three mammalian lineages.  To 

address my second question, I compared the proportion of genes resulting from lineage-

specific gene gain or loss events for nasal chemoreceptors from both vertebrate olfactory 

systems.  With this quantitative and functional comparative study, I revealed that a 

significantly higher proportion of VNS receptors evolved via lineage-specific events than 



 x 

did MOS receptors.  The evolutionary patterns observed are consistent with the 

differential tuning hypothesis with main olfactory receptors being broadly tuned 

generalists and the VNS receptors being narrowly tuned specialists.  Finally, to address 

my third question, I investigated the phylogenetic distribution of the VNS genetic 

components in early diverging lineages and determined that the VNS originated in the 

common ancestor of vertebrates.  My work highlights the utility of system-specific genes 

and comparative genomics in understanding the evolution of a physiological system, and 

presents a much richer evolutionary history of the VNS than was thought to exist by 

morphological data alone. 



  

INTRODUCTION 

 Being able to sense cues from the environment and from conspecifics is essential 

for an animal’s survival.  Such interactions are mediated by the animal’s chemosensory 

systems.  Understanding how these systems vary in animals that live in different 

environments and social structures is an interesting evolutionary question.  Most 

vertebrates have two nasal chemosensory systems, the main olfactory system (MOS) and 

the vomeronasal system (VNS).  The MOS is characterized morphologically by the main 

olfactory epithelium (MOE), sensory epithelium in the nasal cavity containing sensory 

neurons, and the main olfactory bulb (MOB), a region of the brain excited by the MOS 

sensory neurons.  The VNS is characterized morphologically by the vomeronasal organ 

(VNO), an organ in the nasal cavity with sensory epithelium containing sensory neurons, 

and the accessory olfactory bulb (AOB), a region of the brain excited by the VNS sensory 

neurons.  The MOS morphological components are found in almost all vertebrate 

lineages, except for some losses in marine mammals.  The VNS morphological 

components have a more limited distribution with both morphological components 

appearing only in tetrapod lineages and have been lost independently in many tetrapod 

lineages.  

Similar to their distinct morphological characters, the signal transduction 

pathways for the systems are also unique (Halpern and Martinez-Marcos 2003; 

Rodriguez 2003; Ma 2007).  For the MOS, the signal is initiated by the ligand binding to 
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one of two types of MOS-specific G protein coupled receptors (GPCRs), odorant 

receptors (ORs) (Buck and Axel 1991) or trace amine associated receptors (TAARs) 

(Liberles and Buck 2006).  This binding alters the conformation of the receptor, leading 

to the release of the G protein, which activates an MOS-specific adenylate cyclase, which 

generates an increase of cyclic AMP (cAMP) within the neuron.  The cAMP binds to a 

cyclic-nucloetide gated channel, which allows an influx of calcium. For the VNS, the 

signal is initiated by a ligand binding to one of two types of VNS-specific GPCRs, V1Rs 

or V2Rs.  This binding alters the conformation of the receptor, leading to the release of 

the G protein, which activates phospholipase C (PLC).  The activated PLC increases 

levels of two secondary messengers, diacylglycerol (DAG) and inositol 1,4,5-

triphosphate (IP3) (Minke and Cook 2002).  Both DAG and IP3 increase the intracellular 

calcium level; DAG by activating the Trpc2 channel allowing an inward calcium flux and 

IP3 by allowing the release of intracellular calcium stores.  While some of the signal 

transduction molecules are common to other signal transduction pathways, three types of 

VNS genes (V1Rs, V2Rs, and Trpc2) are known to function in the VNS-specific 

chemoreception.   

The MOS signal is transduced in ciliated neurons found in the MOE.  The axons 

of these neurons end at glomeruli in the MOB.  Besides the sensory neurons, the MOE is 

composed of microvillar sustentacular supporting cells and undifferentiated basal cells.  

A small fraction of the olfactory sensory neurons have microvilli rather than cilia, but 

these neurons do not use the standard MOS signal transduction pathway and could play a 

role in neuronal regeneration (Elsaesser et al. 2005; Montani et al. 2006).  In contrast, the 

VNS signal is transduced in microvillar sensory neurons in the VNO sensory epithelium.  
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The vomeronasal sensory neuron axons end at glomeruli in the AOB.  Besides the 

sensory neurons and basal undifferentiated cells, ciliated cells are found in the 

nonsensory epithelium of mammalian VNOs and ciliated sustentacular cells are found in 

the VNO sensory epithelium of some amphibians (Doving and Trotier 1998).  In fishes, 

which do not have a separate VNO, the MOE contains cells with three different sensory 

neuron morphologies: ciliated, microvillar, and crypt cells.  It is intriguing to think of the 

ciliated neurons as the equivalent of the tetrapod MOS while the microvillar sensory 

neurons are the equivalent of the tetrapod VNS (Eisthen 1992; Eisthen 2004).  As such, it 

would be predicted that the VNS genes are expressed exclusively in microvillar neurons.  

While this is generally the case, both goat and human V1Rs have expression in the MOE 

ciliated neurons (Rodriguez et al. 2000; Wakabayashi et al. 2002).  Additionally, frog 

V1R expression was reported in the MOE (Date-Ito et al. 2008).  However, the 

amphibian results are misleading in that the V1Rs were found to be expressed in the 

Xenopus olfactory chamber that is characteristically most like a teleost olfactory organ, 

containing both ciliated and microvillar sensory neurons.  Furthermore, it is unclear 

whether these frog V1Rs are expressed in the ciliated neurons or the microvillar neurons 

of this organ (K. Hagino-Yamagishi, personal communication).  Despite these potential 

exceptions, this example of finer scale sensory neuron morphology coupled to system-

specific gene expression allows for further investigations of system-specific evolution. 

Both the MOS and the VNS have distinct morphological and genetic components 

to help elucidate their distinct evolutionary histories. While many of these characters are 

found across vertebrates, some olfactory subsystems have been identified that are unique 

to certain mammalian lineages (reviewed in Breer et al 2006; Ma 2007).  For example, in 
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some mammals, two distinct clusters of olfactory neurons in the nasal cavity are found 

outside of the MOE and the VNO.  The first, the septal organ, (Ma et al. 2003) likely uses 

the same MOS signal transduction pathway to relay the signal of nine ORs that account 

for 95% of all septal organ OR expression (Ma 2007).  The second, the Grueneberg 

ganglion (Fleischer et al. 2006) also expresses ORs during embryonic stages, but the 

majority of its sensory neurons express a unique V2R2 receptor (Fleischer et al. 2006) or 

TAARs (Fleischer et al. 2007).  Besides these morphologically distinct subsystems, there 

are also molecularly distinct olfactory subsystems.  For example, a small number of the 

sensory neurons in the main olfactory epithelium use an alternative signal transduction 

pathway with type D guanylyl cyclase (GC-D), which is activated by cyclic GMP rather 

than cAMP (see refs. in Ma 2007).  The axons of these neurons project to specific regions 

of the main olfactory bulb known as the necklace glomeruli.  Interestingly, this olfactory 

system has been lost in some primates, including humans, due to the pseudogenization of 

GC-D (Young et al. 2007).  Additionally, rodent VNOs show segregated expression of 

vomeronasal neurons expressing either V1Rs or V2Rs.  The V1R-expressing neurons 

coupling with Gαi2 G proteins are spatially distinct from the V2R-expressing neurons 

which couple with Gα0 G proteins (Halpern and Martinez-Marcos 2003).  However, not 

all mammalian VNOs have this same segregated pattern (Takigami et al. 2004). 

Furthermore, rodent V2Rs selectively co-express with M10 and M1 families of MHC 

class 1b molecules, functioning as escort molecules in the V2R transport to the cell 

membranes (Ishii et al. 2003; Loconto et al. 2003).  More recently it was shown that not 

all rodent V2Rs coexpress with these MHC molecules, resulting in a third vomeronasal 

subsystem (Ishii and Mombaerts 2008).  Collectively, these results show the extreme 
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variability in vertebrate olfactory systems.  However, the consistent distinction between 

the core genetic components of the VNS and the MOS allow for studies of the evolution 

of these systems based on their system-specific genes. 

 The identification of the nasal chemoreceptors has allowed for a deeper 

investigation into the evolution of the VNS.  Following the discovery of ORs in the MOS 

(Buck and Axel 1991), two unrelated classes of GPCRs with exclusive expression in the 

VNS were identified, V1Rs and V2Rs (Dulac and Axel 1995; Herrada and Dulac 1997; 

Matsunami and Buck 1997; Ryba and Tirindelli 1997).  Sequence diversity within and 

between species makes these sequences difficult to amplify experimentally by PCR, and 

complete genome sequence is required for identification of the entire repertoire for either 

VNS receptor family.  The complete repertoire of V1Rs was available from mouse 

following the completion of the mouse genome sequence (Rodriguez et al. 2002), 

revealing a large family divided among 12 V1R subfamilies.  However, having a single 

species V1R repertoire did not reveal much about the evolution of species specificity of 

V1Rs.  A second mammalian V1R repertoire available, human, did not provide a useful 

comparison because humans do not have a VNO and likely do not have a functional VNS 

given that one of the major genetic components of the VNS signal transduction pathway 

is a pseudogene in humans (Liman and Innan 2003; Zhang and Webb 2003).  Although a 

few human V1Rs with a complete open reading frame were identified (Rodriguez and 

Mombaerts 2002), the majority of these are likely relics of an ongoing pseudogenization 

process (Zhang and Webb 2003).  Besides VNS expression, nine V1R genes were found 

to be expressed in the testis and hypothesized to play a role in sperm maturation or 

migration (Tatsura et al. 2001), but mice deficient for these V1Rs are fertile (Del Punta 
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et. al 2002).  Two V1R knockout studies (Boschat et al. 2002; Del Punta et al. 2002) 

demonstrate that at least some V1Rs are pheromone receptors, but they do not exclude 

the possibility that other V1Rs can detect non-pheromonal chemicals.  In any case, 

because the functions of V1R receptors are VNS-specific, the evolution of mammalian 

V1Rs can tell us the evolution of the mammalian VNS. 

In the first part of my thesis, I focus on the evolution of V1Rs in mammals.  In 

Chapter 1, I present a more meaningful comparison to understand the evolution of 

mammalian V1Rs by comparing the identified mouse V1Rs with V1Rs mined from the 

rat genome, as rats are known to have a functional VNS, V1Rs were originally described 

from rats (Dulac and Axel 1995), and mouse and rat are closely related species that share 

orthologs for the majority of their genes (Rat Genome Sequencing Consortium 2004).  I 

find that species-specificity is manifested through gene-sorting evolution of V1Rs 

whereby genes are randomly duplicated and lost.  Both ancient and recent duplication 

events and ancient gene loss have resulted in mouse and rat V1R repertoires with a 

surprisingly low number of orthologous gene pairs.  Based on the identification of the 

mouse, rat, and human V1R repertoires, it would be expected that all mammals have a 

large V1R repertoire; even humans, without a functional VNS, have a large repertoire of 

V1R pseudogenes.  To determine if the large V1R repertoire size is characteristic of all 

mammals, despite known variation in VNO morphology, in Chapter 2, I identified the 

V1R repertoire from cow, dog, and opossum and compare those to the already described 

mouse, rat, and human V1Rs.  Surprisingly, cow and dog have much smaller V1R 

repertoires, suggesting that there is similar variability between VNO complexity and V1R 

repertoire size.  Because platypus has the most complex type of mammalian VNO 
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(Wysocki 1979), in Chapter 3, I identified the platypus V1R repertoire to see if the 

correlation between VNO complexity and V1R repertoire size held even for this 

divergent mammalian lineage.  Platypus has the largest V1R repertoire size so far 

examined.  These results are viewed in light of other platypus sensory systems. 

In the second part of my thesis, I use available VNS receptors and MOS receptors 

to compare evolutionary patterns and potential functional differences between the two 

systems.  For a comparative analysis of the MOS and VNS, reciprocally unique genetic 

characters must also be known for both systems. In Chapter 4, I quantitatively compare 

the VNS receptors and MOS receptors from mouse, rat, dog, opossum, platypus, chicken, 

and frog.  The VNS receptors for mouse, rat, opossum, platypus, and frog have a 

significantly higher proportion of genes from lineage-specific gene gain/loss events than 

do the MOS receptors.  These results coupled to analysis of putative ligand binding sites 

in orthologous and paralogous ORs support the differential tuning hypothesis whereby 

MOS receptors are broadly tuned generalist receptors and the VNS receptors are 

narrowly tuned specialist receptors. 

In the final part of my thesis, I use VNS-specific genes to determine the origin of 

the VNS in vertebrates.  Based on the phylogenetic distribution of the morphological 

components, the VNS was thought to have evolved as a terrestrial adaptation (Bertmar 

1981).  However, further fine-scale examination, such as sensory neuron morphology, 

suggests that the VNS might exist in an unrecognized form in teleost fish (Eisthen 1992), 

but a different VNS marker was needed to determine the presence of a precursor to the 

VNS (Eisthen 2004).   Based on the phylogenetic distribution of the VNS-specific genetic 

components and their expression patterns in non-tetrapod lineages, the VNS transduction 
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pathway originated to before the common ancestor of teleost fish and tetrapods (Grus and 

Zhang 2006).  In Chapter 5, I investigate whether the three VNS-specific genes are 

present in early diverging vertebrate lineages, jawless fish and cartilaginous fish.  I find 

two and three VNS-specific genes in each of these lineages, respectively, suggesting that 

the VNS arose in the common ancestor of extant vertebrates. 
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CHAPTER 1 
 

RAPID TURNOVER AND SPECIES-SPECIFICITY OF VOMERONASAL 
RECEPTOR GENES IN MICE AND RATS 

 
1.1 ABSTRACT 
 

Pheromones are used by individuals of the same species to elicit behavioral or 

physiological changes, and they are perceived  by the vomeronasal organ (VNO) in some 

terrestrial vertebrates.  Vomeronasal receptors are encoded by the V1r and V2r gene 

superfamilies in mammals.  A comparison of the V1r and V2r repertoires between closely 

related species can provide significant insights into the evolutionary genetic mechanisms 

responsible for species-specific chemosensory communications.  137 putatively 

functional V1r genes of 12 families were previously identified from the mouse genome.  

We here report the identification of 95 putatively functional V1r genes from the draft rat 

genome sequence.  These genes map primarily to four blocks in two chromosomes.  The 

rat V1r genes can be phylogenetically grouped into 10 families that are shared with 

mouse and two new families that are rat-specific.  Even in many shared families gene 

numbers differ between the two species, apparently due to frequent gene duplication and 

pseudogenization after the separation of the two species.  Molecular dating suggests that 

most of the rat V1r families emerged before or during the radiation of mammalian orders, 

but many duplications within families occurred as recently as in the past 10 MY.  Our 

results show that the evolution of the V1r repertoire is characterized by exceptionally fast 
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gene turnover via gains and losses of individual genes, suggesting rapid and substantial 

changes in chemosensory communication between species.  

 

1.2  INTRODUCTION 

Pheromones are used by individuals of the same species to elicit behavioral or 

physiological changes such as male-male aggression, puberty, estrus, and induction of 

mating, and are perceived to varying degrees by the vomeronasal organ (VNO) in some 

mammals (reviewed in Keverne 1999).  Two superfamilies of vomeronasal receptors, 

V1r and V2r, are known in mammals and they differ in expression location and gene 

structure (Dulac and Axel 1995; Herrada and Dulac 1997; Matsunami and Buck 1997; 

Ryba and Tirindelli 1997).  While both types of receptors are seven-transmembrane G-

protein coupled receptors, V1rs are characterized by an intronless coding region, while 

V2rs are characterized by a long highly variable N-terminal domain.  V1rs are expressed 

in Gαi2 neurons and V2rs are expressed in Gα0 neurons (reviewed in Dulac and Torello, 

2003).  Targeted deletion of some V1r genes in mice show altered aggression and sexual 

behaviors (Del Punta et al., 2002).  Additionally, a third vomeronasal receptor 

superfamily, V3r, has been described (Pantages and Dulac 2000); however, V3rs were 

later found to be a family of V1rs (Rodriguez et al. 2002).  Because they lack introns in 

the coding region, V1r genes are more accessible than V2r genes to bioinformatic as well 

as experimental studies.  For example, the entire mouse V1r repertoire, including 137 

putatively functional members of 12 families has been described (Rodriguez et al. 2002), 

while the mouse V2r repertoire has yet to be described.   

12



The identification of V1r and V2r genes has opened the door to studies on the 

molecular mechanisms and origins of species-specific communications.  V1rs were 

originally discovered and described in rat (Dulac and Axel 1995).  The absence of highly 

conserved regions in V1r prohibits the design of degenerate primers that can amplify a 

large number of genes across wide taxonomic scale (Giorgi and Rouquier 2002).  

Therefore, the V1r superfamily was not extensively described in any species until the 

availability of the human and mouse genome sequences (Lane et al. 2002; Rodriguez et 

al. 2002; Rodriguez and Mombaerts 2002).  The comparison of V1rs between human and 

mouse is not informative because the two species are distantly related and because 

humans lack VNO sensitivity due to loss of important components of the VNO signal 

transduction pathway (Liman and Innan 2003; Zhang and Webb 2003).  Zhang et al. 

(2004) compared the V1r repertoires of two genome assemblies generated from different 

strains of inbred mice.  While this comparison is useful for identifying polymorphisms 

within species, it does not address interspecific differences, which are the hallmark of 

pheromone communication.  The availability of the draft rat genome sequence (Rat 

Genome Sequencing Consortium 2004) provides the opportunity to compare for the first 

time vomeronasal receptor repertoires of relatively closely related species, as mouse and 

rat diverged only 18±6 million years (MY) ago (Rat Genome Sequencing Consortium, 

2004).  

Divergence in the V1r repertoires between species can occur in three ways: 

functional divergence of orthologs, loss or gain of family members, and loss or gain of 

entire families.  Two recent studies compared a small number of V1r genes between 

mouse and rat (Lane et al., 2004; Emes et al., 2004) but did not provide a general picture 
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on the evolution of the V1r repertoire.  We here compare the entire V1r repertoires in an 

attempt to examine which of the three processes dominates the divergence of V1r genes 

between species. 

 

1.3 MATERIALS AND METHODS 

1.3.1 Database searches 

TBLASTN searches for rat V1r genes were done on the rat genome sequence 

available in the National Center for Biotechnology Information (NCBI) with the rat 

genome build 2 version 1 (http://www.ncbi.nlm.nih.gov/genome/guide/rat/index.html).  

The previously described 137 mouse V1r genes were used as query sequences.  V1r 

pseudogenes were identified by premature stop codons or incomplete sequence across the 

13 protein domains (7 transmembrane, 3 extracellular, and 3 intracellular) of the 15 

domains.  The N-terminal extracellular and C-terminal intracellular domains were not 

considered in our criterion because they are highly variable in sequence length.  The 

physical locations of the rat genes were determined by mapping the TBLASTN results to 

chromosomal contigs.  The rat genes were named by their family memberships (e.g., 

V1re5) and the numbers after the family designation are randomly chosen. 

   

1.3.2 Sequence alignment and phylogenetic analysis 

Gene sequences were aligned according to the protein sequence alignment made 

by ClustalX (Thompson et al. 1997) with manual adjustment.  Phylogenetic trees were 

constructed using the neighbor-joining method (Saitou and Nei 1987) with 2000 

bootstrap replications (Felsenstein 1985).  Synonymous (dS) and nonsynonymous (dN) 
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substitution rates were computed by the modified Nei-Gojobori method (Zhang et al. 

1998).  MEGA2 (Kumar et al., 2001) was used for these evolutionary analyses.   

 

1.3.3 Identifying putative rat-mouse orthologs 

 To find orthologous V1r genes, we identified clades in the phylogenetic tree that 

contain a single rat gene and a single mouse gene and then calculated the dS between the 

putative orthologs.  Those with estimated dS within the range of 0.063 to 0.317 were 

accepted as orthologs.  This range covers 95% of over 11,000 orthologous mouse-rat 

gene pairs (Rat Genome Sequencing Consortium, 2004).  In the present study, 19 

putative orthologous pairs were identified via the phylogenetic analysis and 18 of them 

passed the above dS criterion.  Our procedure is conservative in the sense that it is 

unlikely to generate false orthologous pairs but may miss some real pairs. 

 

1.3.4 Dating duplication events 

To determine the dates of duplication events within the rat V1r families, we 

calculated the pairwise dS for paralogous genes within families.  The average 

synonymous substitution rate in rodents is about 0.19/36=5.3×10-9 per site per year, 

estimated using the mean dS of 0.19 and the divergence time of 18±6 million years 

between the mouse and rat (Rat Genome Sequencing Consortium, 2004). 

To determine the time of duplication between gene families, we calculated the 

average dS between families and used the above calibration.  We assumed that the root of 

the tree in Fig. 1.1 is on the stem branch leading to V1rc, as suggested by Rodriguez et al. 

(2002) when taste receptor genes were used to root the mouse V1r tree.   
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1.4 RESULTS 

1.4.1 Composition of the rat V1r gene superfamily 

From the database searches with mouse V1r queries, we identified from the rat 

genome sequence 116 V1r genes.  Additional searches with human V1r-like genes 

(Rodriguez and Mombaerts, 2002) did not yield any additional sequences.  Since the rat 

genome is over 90% complete (Rat Genome Sequencing Consortium, 2004), the V1r 

repertoire we describe here is probably over 90% complete as well.  We examined the 

conceptually translated protein sequences encoded by the retrieved DNA sequences and 

found that 95 of them contain open reading frames (ORFs) that cover 13 internal 

domains.  These 95 ORFs are regarded as putatively functional genes.  It is possible that 

some of them may in fact be nonfunctional due to mutations in either protein-coding or 

regulatory regions.  The proportion of putatively functional V1r genes appears higher in 

rats (95/116=82%) than in mice (53%; Rodriguez et al., 2002; Zhang et al., 2004), 

although this may be caused by the bias of TBLASTN against pseudogene detection.   

A neighbor-joining tree of all putatively functional V1r genes from the mouse and 

rat was reconstructed using protein sequences (Fig. 1.1).  The 137 mouse V1r genes were 

previously classified into 12 families based on phylogenetic analysis as well as the 

criterion that genes with >40% protein sequence identity belong to the same family 

(Rodriguez et al., 2002).  These 12 families were recovered in our tree of mouse and rat 

genes, and most (10/12) of them have high bootstrap support (>90%).  In 10 (a, b, c, d, e, 

f, g, j, k, and l) of the 12 families, rat genes are also found (Table 1.1), and these are the 

shared V1r families between the two species.  Two mouse families (h and i) do not 
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contain any rat genes and are mouse-specific families.  In addition, two new families (m 

and n; defined by the same criterion as used in mouse) contain only rat genes (Table 1.1) 

and are referred to as rat-specific families.  Because the rat genome sequence was 

obtained from an inbred line (Rat Genome Sequencing Consortium, 2004) and the V1r 

genes were identified by their chromosomal location, it is unlikely that genes with high 

sequence identity are only allelic variants and not separate genes.  In fact, two of the rat 

V1rd genes (V1rd6 and V1rd7) are identical in DNA sequence, but located 1 Mb apart on 

chromosome 1.  Our evolutionary analysis provides further support that V3r (V1rd) genes 

(Pantages and Dulac, 2000) are not a separate vomeronasal receptor superfamily 

(Rodriguez et al., 2002) but are a family of V1r genes (Fig. 1.1).  In fact, only eight V1rd 

genes are present in the rat genome.   

 
1.4.2 Chromosomal organization of V1r genes 

The 95 putatively functional rat V1r genes map to 8 locations in chromosomes 1, 

4, and 7, although most of them are located in four major blocks in chromosomes 1 and 4 

(Fig. 1.2).  It is interesting to note that members of the same family tend to be located in 

the same chromosomal region, suggesting tandem gene duplication as the primary 

mechanism for family expansion.  

Using the mouse-rat homologous chromosome map (http://www.genboree.org), 

we found syntenic regions between the four major blocks of V1r genes in rat and four 

blocks in mouse (Fig. 1.2).  Both blocks on rat chromosome 4 map to mouse 

chromosome 6.  The two blocks on rat chromosome 1 are split mainly between mouse 

chromosomes 7 and 17.  Twenty-eight putatively functional mouse V1r genes identified 

by Rodriguez et al. (2002) have yet to be mapped. 
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From the phylogeny shown in Fig. 1.1 and estimates of synonymous distances, we 

identified 18 orthologous V1r gene pairs between mouse and rat.  These pairs are shown 

on the chromosomes as well (Fig. 1.2).  One V1rg pair (rat V1rg9 and mouse V1rg10) 

has a mouse gene in chromosome 5, not part of the large block in V1rg family in mouse 

(Fig. 1.2).  However, a comparative study of a different mouse strain did not identify any 

V1r genes on mouse chromosome 5 (Zhang et al., 2004), indicating that this is a recent 

translocation within the species Mus musculus. 

 

1.4.3 Comparison with mouse V1r genes 

The most notable difference between the V1r repertories of the mouse and rat is 

the presence of two mouse-specific and two rat-specific families.  The mouse-specific 

V1rh and V1ri families contain 23% of all mouse V1r genes.  We determined that the 

absence of rat V1rh and V1ri genes is not due to lack of sequencing in this region, as we 

can find rat orthologs of non-V1r genes that are located in the mouse V1rh and V1ri 

chromosomal regions and a V1ri pseudogene was found in this region in rat.  The rat-

specific V1rm and V1rn families contain 6% of all rat V1r genes.  No functional genes 

or pseudogenes that belong to these two families were found in mouse.   

Fig. 1.1 shows that in addition to the species-specific gene families, many shared 

families have different numbers of genes in the two species.  V1rc is the richest family in 

both species.  However, V1re contains 21 rat genes but only 13 mouse genes.  On the 

other hand, V1rd has 8 rat but 22 mouse genes.  These differences show that lineage-

specific contraction and/or expansion of certain V1r families must have occurred after the 

mouse-rat separation.  In some shared V1r families (e.g., V1ra), not a single one-to-one 
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ortholgous pair is found between the two species.  This implies that every gene in this 

family has been subject to either duplication or pseudogenization since the mouse-rat 

split.   

 

1.4.4 dN /dS ratio for orthologous genes and paralogous genes 

To examine whether positive selection has been operating during the divergence 

of orthologous V1r genes between species, we computed the number of synonymous 

substitution per synonymous site (dS) and the number of nonsynonymous substitution per 

nonsynonymous site (dN) for the 18 pairs of orthologous genes between mouse and rat.  A 

dN/dS ratio that significantly exceeds 1 provides the most convincing evidence for 

positive selection, whereas dN/dS<1 shows overall purifying selection on the gene, 

although positive selection at a small number of sites cannot be excluded. 

The dS values for the 18 V1r gene pairs range from 0.14 to 0.26 with a mean of 

0.19, identical to the mean dS from over 11,000 orthologous gene pairs between the 

mouse and rat (Rat Genome Sequencing Consortium, 2004).  All 18 dS values fall within 

the middle 67% of the dS distribution determined from this large set of orthologous genes 

(Rat Genome Sequencing Consortium, 2004), suggesting that our determination of 

orthology was correct.   

The overall dN/dS ratio across the entire gene sequence is less than 1 for each of 

the 18 pairs of orthologous genes (Fig. 1.3A), with an average dN/dS of 0.46.  This value 

is in the 2% upper tail of the distribution of dN/dS derived from the over 11,000 gene 

comparisons aforementioned (mean=0.11; Rat Genome Sequencing Consortium, 2004).  

As mean dS for the 11,000 genes and the mean dS for the V1r genes are virtually 
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identical, the difference in the ratio comes from a much higher dN in the V1r genes than 

in most other genes.  This may be due to relatively weak purifying selection on V1r genes 

or the presence of positive selection at some sites.  However, even when we examined 

dN/dS for separate domains, all show dN/dS <1 (Fig. 1.3B).   

We also compared members of the same V1r families in rats to test whether 

positive selection may be responsible for divergence of V1r duplicates within families.  

The overall dN/dS ratio averages 0.549.  The dN/dS ratios from the rat specific families 

(Fig. 1.4A) and the mouse-specific families (Fig. 1.4B) are similar to the dN/dS ratios 

from the families shared between both species (Fig. 1.4C, 1.4D).  We did not attempt to 

estimate dN/dS ratios between genes belonging to different V1r families because of the 

high sequence divergence and expected low reliability of estimation caused by multiple 

hits.  

 

1.4.5 Dates of V1r gene duplications 

It is important to know the approximate dates of gene duplication events that gave 

rise to the V1r genes.  Because dS increases over time relatively constantly, we estimated 

dS values between paralogous V1r genes of rats.  A calibration of dS=0.19 corresponding 

to a gene age of 18 MY was used and dates of the duplication events within and between 

rat V1r families were obtained (Fig. 1.5A, 1.5C).  Although many duplication events 

within gene families occurred after the mouse-rat split, about half of them also took place 

before this split.  Additionally, one-fourth of all the duplications that occurred within 

families are estimated to have taken place in the last 10 MY, including very recent 

duplications within V1rd, V1re, V1rf, and V1rm.  It appears that the number of 
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duplications that led to stably retained genes increased in the recent past, as indicated by 

a negative correlation (r2=0.75, P<0.003) between the number of duplications and 

evolutionary age (Fig. 1.5B).  However, this could be due to short lifespan for V1r genes, 

such that ancient duplicates are more likely to have been lost than young ones, rendering 

underestimation of duplication numbers in the ancient past.     

Molecular dating suggests that all of the rat V1r families were present at the time 

of split between rat and mouse (Fig. 1.5C).  Even the youngest rat V1r family, the one 

descended from the common ancestor of V1ra and V1rb, emerged ~62 MY ago.  These 

estimates are conservative because large dS values are likely to be underestimated due to 

the difficulty of correcting multiple hits at synonymous sites. 

 

1.5 DISCUSSION 

In this study, we identified 95 putatively functional V1r genes from the rat 

genome sequence, supporting the prediction of ~100 distinct genes in the original 

description of the rat V1r gene superfamily (Dulac and Axel, 1995).  This number is 

about two thirds of that in the mouse.  Wild mice and rats have different 

social/reproductive structures (Abbott 2004).  Mice live in groups with one highly 

aggressive alpha male monopolizing the females, whereas rats are promiscuous and less 

aggressive.  It is possible that the observed difference in the number of their V1r genes 

has biological significance.   

Our study localized the majority of the rat V1r genes to two blocks on 

chromosome 4 and two blocks on chromosome 1, which show synteny to four 

chromosomal regions in mouse.  While the families making up each region are the same, 
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there are few orthologous gene pairs within them.  The Rat Genome Sequencing Project 

Consortium (2004) estimated that 86-94% of rat genes have one-to-one mouse orthologs.  

However, only 19% of the rat V1r genes have one-to-one mouse orthologs, indicative of 

rapid gene turnover.  Indeed, many V1r families differ in size between the two species 

and each species has two families that are absent in the other species.  All these 

observations show frequent gains and losses of V1r genes during evolution.  Such a 

pattern of gene family evolution has often been observed in host-defense genes such as 

the Major-Histocompatibility-Complex, immunoglobulin, and eosinophil-associated 

RNase genes (Cadavid et al. 1997; Sitnikova and Su 1998; Zhang et al. 2000).  While the 

rapid turnover of host-defense genes is presumably a response to ever-changing 

pathogens that infect hosts, that of V1r genes could be due to rapid change in pheromone 

or odorant cues during evolution, which may be under intense sexual and/or natural 

selection.   

The gene family tree in Fig. 1.1 gives the impression that the V1r repertoire 

enlarges over evolutionary time.  This interpretation of the tree could be wrong.  It is 

quite possible that the V1r repertoire in the common ancestor of mice and rats was as 

complex as those of today’s mice and rats.  Since new genes gained in evolution show up 

in the tree whereas old genes that have been lost no longer appear, the tree looks as if 

there are more genes now than in the past.  In other words, one should not interpret the 

evolutionary pattern of V1r genes as gene family expansion (Lane et al. 2002) unless 

there is other evidence.  A more appropriate term is “gene sorting”, which describes 

unequal loss, retention, and amplification of ancestral genes between species (Zhang et 

al. 2000) and is consistent with the birth-and-death model of gene family evolution (Nei 
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et al., 1997).  For example, molecular dating suggests that the rat-specific V1rm and V1rn 

families were present in the common ancestor of the mouse and rat.  Thus, the absence of 

these two families in the mouse must be due to lineage-specific loss that occurred in the 

mouse lineage since it was separated from the rat lineage.  Similarly, the absence of the 

mouse-specific V1rh and V1ri families in rat must be due to the lineage-specific loss in 

rats.  In fact, a V1ri pseudogene is still present in the rat genome. 

In addition to the gains and losses of entire V1r families and gains and losses of 

V1r genes within families, divergence between mouse and rat V1r repertoires may also 

occur by functional divergence of orthologous genes.  At present, there is no direct 

evidence showing functional differences between mouse and rat orthologous V1r genes.  

If positive selection is found to act in the divergence of orthologous genes, one may infer 

that there is functional divergence.  This is because positive selection occurs only if there 

is a functional change that results in increased organismal fitness.  In our analysis, we did 

not find evidence for higher dN over dS for any of the 18 orthologous gene pairs 

compared.  However, the average dN/dS for the V1r genes is significantly higher than that 

for other mouse/rat genes, indicating that V1rs are subject to either weak purifying 

selection or positive selection that may act at only a few sites of the protein.  In this 

regard, it is interesting to note that a few earlier studies have suggested action of positive 

selection on V1rs.  Emes et al. (2004) analyzed 22 mouse and rat V1r genes by a 

likelihood method (Yang et al., 2000) and identified positive selection acting on 14 

codons.  Lane et al. (2004) used the same statistical method in an analysis of 14 mouse 

and rat V1r genes and identified positive selection at 5-10% of codons.  Since most of 

their sequences were paralogous, it is not possible to infer whether there has been 
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positive selection between orthologs.  Furthermore, the statistical method they used has 

been shown to be unreliable because it often detects positive selection when there is none 

(Suzuki and Nei 2001; 2002; 2004).  Recently Zhang et al. (2004) conducted a 

comprehensive comparison of V1r genes detected from two mouse genome assemblies.  

Since the two assemblies were derived from different inbred strains of mice, the 

orthologous differences observed reflect intraspecific polymorphisms.  These authors 

found a dN/dS ratio of 1.13 at the polymorphic sites.  Although this was presented as 

evidence for positive selection, we think that it should be interpreted with care for three 

reasons.  First, it has not been shown that the dN/dS ratio is significantly higher than 1, 

thus the observation does not reject the neutral hypothesis.  In fact, a relatively high dN/dS 

ratio within species could result from ineffective purifying selection if there has been 

recent population shrinking.  Second, the observed between-strain genetic differences 

were likely present in mouse populations before breeding, as the history of managed 

breeding is short.  However, because of intense artificial selection and/or extensive 

genetic drift during breeding, the differences between the two inbred strains may not 

accurately represent the polymorphic pattern in natural mouse populations.  Third, the 

evolutionary patterns of V1r genes may be different at the intra- and inter-specific levels 

because odorants potentially mediate species-specific communications.  Thus, even if 

positive selection is acting at the intra-specific level, it may not act at the the inter-

specific level.  Taken together, although it is quite likely that orthologous V1r genes 

between species have been under positive selection, no conclusive evidence is available.             

Previous studies of limited numbers of mouse and rat V1rs suggested that many 

V1r gene duplications occurred at the time of split between mouse and rat.  Our 
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comprehensive analysis of all rat V1rs do not show a particularly high number of 

duplication events around that time.  Instead, the number of successful duplications 

appears to be higher in recent times than in the past (Fig. 1.5).  This observation, if 

coupled with a constant number of gene loss per unit time, would suggest that the V1r 

repertoire is expanding.  It will be interesting to estimate the gene loss rate using 

pseudogene data as well as functional gene data from additional species that are closely 

related to the mouse and rat.  Our mapping data suggest that gains of V1r genes often 

occur by tandem gene duplication.  Lane and colleagues (2004) found that these 

duplications appear to be mediated by repetitive elements in the genome.   

Our molecular dating of the V1r gene families, although approximate, provides 

two interesting results.  First, the V1r families of the mouse and rat were established early 

in mammalian evolution.  The majority of the families observed in mouse and rat were 

likely present in the most recent common ancestor of extant rodents, which existed about 

75 MY ago (Springer et al., 2003).  The second observation is that many V1r families 

emerged between 90 and 140 MY ago.  This is the time shortly before and during the 

radiation of placental mammals (80-110 MY ago; Springer et al., 2003).  Although 

entirely speculative, it is tempting to hypothesize that the rapid diversification of V1r 

families enabled the development of advanced and intricate vomeronasal-mediated 

communications, which facilitated increased speciation and mammalian radiation.  

Characterizing V1r and V2r genes from more placental mammals as well as from 

marsupials would help test this idea.      
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Figure 1.1  Unrooted phylogenetic tree of 95 putatively functional V1r genes in rat 
and 137 in mouse.  Rat genes are identified with the suffix R.  Families V1ra-V1rl were 
previously defined by Rodriguez et al. (2002) and families V1rm and V1rn are newly 
identified here.  Bootstrap percentages supporting the monophyly of each family are 
given, except for V1ra, which is not monophyletic due to one sequence (V1ra9).  The tree 
was reconstructed using the neighbor-joining method with Poisson-corrected protein 
distances.  The scale bar shows 0.1 amino acid substitution per site.
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Table 1.1: V1r families in rat and mouse

Family Rat Mouse Rat Mouse
A 5 10 57-92 54-99
B 5 9 72-84 70-98
C 23 31 74-96 60-99
D 8 22 54-100 61-93
E 21 13 43-97 44-77
F 7 5 43-93 45-75
G 13 12 48-91 53-88
H 0 21 -- 61-93
I 0 10 -- 65-91
J 4 2 84-90 58
K 2 1 84 --
L 1 1 -- --
M 4 0 70-97 --
N 2 0 81 --

Total 95 137

No. of functional genes % identity (amino acid)
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CHAPTER 2 

 
DRAMATIC VARIATION OF THE V1R VOMERONASAL RECEPTOR 

REPERTOIRE AMONG FIVE ORDERS OF PLACENTAL AND MARSUPIAL 
MAMMALS 

 
 
2.1  ABSTRACT 
 
 Pheromones are chemicals emitted and sensed by conspecifics to elicit social and 

sexual responses, and are detected in terrestrial vertebrates by the vomeronasal organ 

(VNO).  Vomeronasal receptors are encoded by the V1R and V2R vomeronasal gene 

superfamilies.  The V1R superfamily contains 187 and 102 putatively functional genes in 

the mouse and rat, respectively.  To investigate whether this large repertoire size is 

typical among mammals with functional VNOs, we here describe the V1R repertoires of 

dog, cow, and opossum, based on their draft genome sequences.  The dog and cow have 

only 8 and 32 intact V1R genes, respectively.  Thus, the intact V1R repertoire size varies 

by at least 23 fold among placental mammals with functional VNOs.  To our knowledge, 

this size ratio represents the greatest among-species variation in gene family size of all 

mammalian gene families.  Phylogenetic analysis of placental V1R genes suggests 

multiple losses of ancestral genes in carnivores and artiodactyls and gains of many new 

genes by gene duplication in rodents, manifesting massive gene births and deaths.  We 

also identify 49 intact opossum V1R genes and discover independent expansions of the 

repertoire in placentals and marsupials.  We further show a concordance between the 

V1R repertoire size and the complexity of VNO 
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morphology, suggesting that the latter could indicate the sophistication of chemosensory 

communications within species.  In sum, our results demonstrate tremendous diversity 

and rapid evolution of mammalian V1R gene inventories and caution the generalization 

of VNO biology from rodents to all mammals. 

 

2.2 INTRODUCTION 

Pheromones provide conspecific chemical communications that elicit sexual and 

social changes in behavior and physiology (Keverne 1999).  For instance, pheromonal 

peptides found in mouse urine can mediate individual recognition, induce early puberty, 

or block pregnancy (Keverne 1999), and pheromones can control behaviors such as 

maternal aggression (Del Punta et al. 2002).  In mammals, some pheromones are sensed 

by the vomeronasal organ (VNO), which resides on the bottom of the nasal cavity and is 

anatomically and physiologically separated from the main olfactory system that detects 

odorants (Keverne 1999).  In rodents, two superfamilies of 7-transmembrane G protein-

coupled receptors, V1Rs and V2Rs, serve as vomeronasal receptors, some of which have 

pheromone receptor function (Dulac and Torello 2003).  Individual V1R genes are 

encoded by an intronless region of ~1000 nucleotides and are expressed in vomeronasal 

sensory neurons whose cell bodies are located in the apical part of the VNO epithelium 

(Dulac and Axel 1995).  These cells also express a G-protein subunit named Gαi2 (Dulac 

and Torello 2003).  In contrast, the multi-exon V2R genes are characterized by a long, 

highly variable N-terminal domain and are co-expressed with GαO in sensory neurons 

whose cell bodies are basally located (Herrada and Dulac 1997; Matsunami and Buck 

1997; Ryba and Tirindelli 1997).  Both receptor superfamilies were originally identified 
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in rat and each of them was estimated to contain ~100 genes (Dulac and Axel 1995; 

Herrada and Dulac 1997; Matsunami and Buck 1997; Ryba and Tirindelli 1997).  Due to 

the simpler gene structure, the complete repertoire of the V1R superfamily has been 

described in mice, rats, and humans (Grus and Zhang 2004; Rodriguez et al. 2002; 

Rodriguez and Mombaerts 2002; Shi et al. 2005; Zhang et al. 2004).  The superfamily has 

187 and 102 functional genes in the mouse and rat, respectively (Grus and Zhang 2004; 

Shi et al. 2005).  In humans, ~200 V1R sequences have been identified, although only 

four of them have intact open reading frames (ORFs) in the majority of individuals 

(Rodriguez and Mombaerts 2002; Zhang and Webb 2003).  The massive V1R 

pseudogenization observed in the human genome started shortly before the separation of 

hominoids (i.e., humans and apes) from Old World monkeys, apparently because of the 

reduced importance of vomeronasal-mediated communications, and the four human V1R 

ORFs are likely relics of this ongoing pseudogenization process (Zhang and Webb 2003).   

The morphological complexity of the VNO as well as the complexity of VNO-

mediated olfactory communications varies substantially among different mammals 

(Takami 2002).  These variations led to the hypothesis that the complexity of the V1R 

and V2R repertoires may also vary greatly among species.  However, this hypothesis has 

not been rigorously tested, because the absence of highly conserved regions in V1Rs 

makes it difficult to design degenerate primers to amplify a large number of genes across 

a wide taxonomic scale (Giorgi and Rouquier 2002; Mombaerts 2004).  Although a few 

limited studies in selected mammals suggested possible among-species variation in the 

numbers of V1R genes and pseudogenes (Giorgi and Rouquier 2002; Wakabayashi et al. 

2002), the extent of this variation and the exact numbers of genes and pseudogenes in 
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these species are unknown.  Furthermore, the long-term evolutionary pattern of V1R 

genes in mammals and other vertebrates remains largely uncharacterized.  With the 

recent availability of the draft genome sequences of dog, cow, and opossum, we now 

describe the complete V1R repertoires of this diverse array of species.  We report a 

variation in the size of the V1R repertoire among five orders of placental and marsupial 

mammals that is surprisingly large and unprecedented in any other mammalian gene 

family. 

 

2.3 METHODS 

2.3.1 Database searches  

TBLASTN searches for V1R genes were conducted on the dog (Canis familiaris), 

cow (Bos taurus), and opossum (Monodelphis domestica) genome sequences.  The 7.6X 

coverage dog genome sequence (http://www.ncbi.nlm.nih.gov/genome/guide/dog/) and 

3.3X coverage cow genome sequence (http://www.ncbi.nlm.nih.gov/genome/guide/cow/) 

are available in the National Center for Biotechnology Information (NCBI).  The 7.2X 

coverage opossum genome sequence is available at ENSEMBL 

(http://pre.ensembl.org/Monodelphis_domestica/).  Previously published mouse and rat 

V1R genes (Grus and Zhang 2004; Rodriguez et al. 2002; Shi et al. 2005) were used as 

query sequences.  Putative V1Rs were identified with an E-value cutoff of 10-5.  They 

were then used as queries to BLAST the nr database of GenBank.  A putative V1R gene 

was considered to be real if its best hit was a previously known V1R.  Use of human 

V1Rs (Rodriguez and Mombaerts 2002) as query sequences did not yield additional 

V1Rs.  V1Rs were considered pseudogenes if they contained premature stop codons or 
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were incomplete across the 13 internal domains (7 transmembrane, 3 extracellular, and 3 

intracellular).  The database searches were independently conducted by the first two 

authors, yielding identical results.  The sequences of newly identified intact V1Rs from 

the dog, cow, and opossum can be found online 

(http://www.pnas.org/cgi/data/0501589102/DC1/1). 

 

2.3.2 Sequence alignment and phylogenetic analysis 

Gene sequences were aligned per protein sequence alignment by Clustal_X 

(Thompson et al. 1997) with manual adjustment.  Phylogenetic trees were reconstructed 

using the neighbor-joining method (Saitou and Nei 1987) with protein-Poisson distances 

(Nei and Kumar 2000), and were evaluated by 1000 bootstrap replications (Felsenstein 

1985).  We also used protein-p distances (Nei and Kumar 2000) and found that the 

branching patterns with high bootstrap support in the Poisson-distance tree remained 

unchanged in the p-distance tree.  Following convention (Rodriguez et al. 2002), we 

defined gene families by a minimum of 40% amino acid identity between all family 

members and confirmed the monophyly of gene families by phylogenetic analysis.  We 

conceptually translated each pseudogene sequence according to its alignment with all 

functional V1R genes (mouse, rat, and dog or cow), and determined the phylogenetic 

position of each pseudogene by making a neighbor-joining tree with the protein sequence 

of the pseudogene and those of all functional genes.  The distribution of LINE repetitive 

elements was determined by the ReapeatMasker program 

(http://www.repeatmasker.org/).  For easy comparison, we used the same criterion (Lane 

et al. 2002) to calculate the L1 density.  More specifically, we estimated the L1 density in 
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the intergenic regions for tandem linked V1R genes and that in 10,000 nucleotides 

upstream and downstream of the coding regions for non-tandem linked V1R genes. 

 

2.4 RESULTS 

2.4.1 Dramatic variation in V1R repertoire size in placental mammals   

Placental mammals can be classified into four superorders (Murphy et al. 2004).  

Rodents and primates belong to the superorder Euarchontoglires, to which all previous 

V1R evolutionary analyses have been restricted.  Here we investigate the V1R repertoire 

in the dog and cow, which are members of the superorder Laurasiatheria, the sister clade 

to Euarchontoglires.  From the dog genome sequence, we identified 8 complete V1R 

ORFs, which are presumably functional genes.  In addition, 22 V1R pseudogenes were 

detected.  Because the dog genome sequence has a high (7.6X) coverage, it is likely that 

the majority, if not all dog V1R genes have been found.  Similarly, we detected 32 

functional V1R genes and 41 pseudogenes from the cow genome sequence.  However, 

since the cow sequence has a relatively low coverage (3.3X), it is possible that a few 

additional genes and pseudogenes may be discovered when a more complete genome 

sequence becomes available.  Even with this limitation, our observations clearly show 

that the V1R repertoires in cow and dog are substantially smaller than those in mouse and 

rat, which contain 187 and 102 putatively functional genes, respectively (Shi et al. 2005).  

Even when humans are disregarded, there is still a 23-fold variation in the size of 

functional V1R repertoire among rodents, artiodactyls, and carnivores (Fig. 2.1).  The 

proportion of putatively functional V1R genes is lower in dogs (27%) than in rodents 
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(49%, Rodriguez et al. 2002; Zhang et al. 2004), but the proportion in cows (44%) is 

similar to that in rodents. 

 

2.4.2 Phylogenetic relationships of placental V1R genes 

To understand the evolutionary relationships of the V1R genes from the four 

placental orders (rodents, primates, artiodactyls, and carnivores), we reconstructed a 

protein neighbor-joining tree with all putatively functional V1Rs from the mouse, rat, 

human, dog, and cow (Fig. 2.2).  We also included 4 human V1Rs with complete ORFs 

in the phylogenetic analysis, although these ORFs are likely relics of an ongoing 

pseudogenization process (Zhang and Webb 2003).  A fifth human V1R gene, hV1RL3, 

was not included because a previous study found this gene to be nearly fixed with a 

nonfunctional allele in human populations (allele frequency >98%) (Zhang and Webb 

2003).  Putatively functional non-human primate V1R sequences from (Mundy and Cook 

2003) were not included because only partial sequences were available.   

The dog and cow V1R genes cluster within the previously described rodent V1R 

superfamily (Grus and Zhang 2004).  The mouse and rat V1R genes were previously 

classified into 14 families (V1RA to V1RN) in (Grus and Zhang 2004).  A new family 

(V1RO) is found when the 7 recently described rat V1R genes (Shi et al. 2005) are added 

(see Fig. 2.2).  Since the families were originally described in rodents, some of the 

families could be rodent-specific, meaning that their origins postdated the origin of 

rodents (Grus and Zhang 2004; Murphy et al. 2004).  To classify other mammalian V1Rs, 

we clustered the families into family groups.  The family groups contain families, 

described in rodents, that split around the time of the most recent common ancestor of 
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rodents, cow, and dog.  The 15 rodent families may be grouped into 9 family groups 

based on phylogeny (Fig. 2.2, Table 2.1).  Based on the rodent synonymous substitution 

rate, we previously estimated that the V1R family groups appeared prior to 95 MY ago 

(Grus and Zhang 2004).  This suggests that the most recent common ancestor of primates, 

rodents, artiodactyls, and carnivores should have the V1R family groups that are 

currently observed in rodents, as this ancestor lived ~95 MY ago (Murphy et al. 2004; 

Springer et al. 2003).  Note that this estimate for the age of the V1R family groups is 

conservative because it is likely that the synonymous  substitution rate has been enhanced 

in rodents compared with that in other mammals (Li 1997; Rat Genome Sequencing 

Consortium 2004).  We found that all nine family groups contain putatively functional 

mouse genes and eight of nine (except V1RH/I) contain functional rat genes (Fig. 2.2, 

Table 2.1).  However, only five of the nine family groups include functional dog genes 

and five include functional cow genes (Fig. 2.2), suggesting that cows and dogs lost 

many ancestral V1R genes.  For instance, the family groups V1RC and V1RG each 

contain more than ten mouse genes and ten rat genes but neither contains functional dog 

or cow V1Rs.  Additionally, there are no functional dog V1RD or V1RE genes and there 

are no functional cow V1RH/I genes.  Surprisingly, the second largest V1R gene family 

in cows (V1RD) contains no functional dog genes.  We also identified two cow-specific 

families, V1RP and V1RQ, each containing a single gene.   

Interestingly, several family groups that do not contain functional cow or dog 

genes possess their pseudogenes.  We were able to classify 17 of the 22 dog V1R 

pseudogenes and 35 of 41 cow V1R pseudogenes by family group (Fig. 2.5, Table 2.1).  

The remaining pseudogenes have degenerated too much to be included.  Family groups 
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V1RC and V1RD each contain two dog pseudogenes, but no functional dog genes.  When 

both functional genes and pseudogenes are considered, only two family groups in dog 

(V1RE and V1RG) and two in cow (V1RC and V1RG) have been completely lost if the 

unclassified pseudogenes do not belong to these family groups.  These observations 

provide further evidence that the small sizes of the dog and the cow V1R repertoires can 

be partially explained by loss of ancestral genes.   

The second factor causing the repertoire-size variation among species is the 

lineage-specific expansion of families as occurred most prominently in rodents.  The 

phylogenetic analysis shows that most of the dog and cow V1Rs diverged from their 

closest rodent homologs before the expansions of rodent V1R families (Fig. 2.2).  This 

divergence pattern is consistent with our previous estimate that the earliest duplication 

events within rodent V1R families took place ~88 million years (MY) ago (Grus and 

Zhang 2004), postdating the separation of rodents, carnivores, and artiodactyls ~95 MY 

ago (Murphy et al. 2004; Springer et al. 2003).  Family expansions were virtually absent 

in the dog, but were evident in three V1R families of cow.  Only two dog families, V1RF 

and V1RJ/K, contain more than one V1R gene.  The other three dog V1Rs are single 

genes in V1RL/M/N, V1RH, and V1RA/B/O, respectively.  Six of the 22 dog 

pseudogenes were part of the two larger dog V1R families.  In contrast, three cow V1R 

families, V1RD, V1RE, and V1RF, exhibited the duplications characteristic of the rodent 

V1R gene families.  The remaining cow V1Rs are in V1RA/B/O, V1RJ/K, V1RL/M/N, 

V1RP, and V1RQ.  While some of these families contain more than one cow gene (Table 

2.1), the multiple genes are not the product of species-specific duplication events.  

Twenty-eight of the 41 cow pseudogenes were part of the three largest cow families.  The 
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dog-cow V1RF clade was similar to the rodent gene families with species-specific 

duplications (Fig. 2.2).   

Based solely on comparison with the mouse, Rodriguez and Mombaerts (2002) 

reported that human V1R genes do not belong to the reported V1R families.  Our analysis 

showed that three human V1Rs can be classified into V1RF and V1RL/M/N, and the 

fourth (hV1RL5) forms a new human-specific family (V1RR).  Giorgi and Rouquier 

(2002) identified several V1R sequences from the chimpanzee, gorilla, and orangutan.  

We found that these sequences cluster closely with the human sequences, although we 

did not present them in the phylogeny of Fig. 2.2 because they are not from complete 

V1R repertoires.  Thus, when all four placental orders are considered, there are 12 V1R 

family groups, 10 of which have moderate to high bootstrap support (Fig. 2.2).  In the 

case of V1RF, we maintained the family by at least 40% amino acid identity among all 

genes.  Fig. 2.2 also shows V1RF as paraphyletic; however, the bootstrap values for the 

deep branches defining V1RF are low, indicating that it could be monophyletic.   

 

2.4.3 Opossum V1R repertoire 

 We also identified 49 putatively functional V1R genes and 53 pseudogenes from 

the opossum genome sequence.  Because the opossum genome sequence has a high 

coverage (7.2X), we expect that almost all opossum V1R genes have been detected.  We 

reconstructed a phylogenetic tree of the 49 opossum V1Rs with all functional V1Rs of 

the mouse, rat, dog, and cow (Fig. 2.3).  The phylogeny shows that the opossum genes 

can be classified into eight opossum-specific families (oV1RA to oV1RH).  The families 

range in size from a single gene (oV1RH) to 15 genes (oV1RA and oV1RC), with 
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variable levels of bootstrap support.  The tree shows that the placental and marsupial 

genes do not form two separate monophyletic groups, suggesting that more than one V1R 

gene was present in the common ancestor of placentals and marsupials.  However, it is 

difficult to estimate the number of V1R genes in the common ancestor due to the low 

resolution of deep nodes in the tree.  Nevertheless, the presence of many well-supported 

opossum-specific and placental-specific gene clusters in the tree provides strong 

phylogenetic evidence that V1R families expanded independently in marsupials and 

placentals.   

 

2.5 DISCUSSION 

In this study, we described the vomeronasal receptor V1R gene superfamily from 

the dog, cow, and opossum, extended the study of the superfamily outside of rodents and 

primates, and revealed extremely high variation in the sizes of functional V1R repertoires 

among mammals.  The sizes of the dog and cow V1R repertoires are vastly smaller than 

those of rodents and primates.  We only found 8 putatively functional V1Rs in dog and 

32 in cow, compared with 102 in rat and 187 in mouse (Grus and Zhang 2004; Rodriguez 

et al. 2002; Shi et al. 2005; Zhang et al. 2004).  In humans, the functional V1R repertoire 

is also small with only 4 ORFs in most individuals (Rodriguez and Mombaerts 2002; 

Zhang and Webb 2003).  However, the entire human V1R repertoire, including both 

functional genes and pseudogenes, is quite large, with ~200 members.  In opossum, we 

identify 49 putatively functional V1Rs, intermediate among what we identify here for 

dog and cow and what had been previously identified for rodents.   
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Even when humans which have lost functional VNOs are disregarded, the size of 

the functional V1R repertoire varies by more than 23 fold among all mammals or among 

placental mammals (Table 2.2).  Several gene families, particularly those involved in 

sensory, immune, and reproductive functions, are known to vary substantially in size 

among mammalian species (Rat Genome Sequencing Consortium 2004).  For instance, 

the number of functional olfactory receptor genes in rat is ~4 times that in humans 

(Niimura and Nei 2003; Rat Genome Sequencing Consortium 2004).  The putatively anti-

parasitic eosinophil-associated RNase gene family is 6-17 times larger in rodents than in 

New World monkeys (Cho et al. 2005; Rosenberg et al. 1995; Zhang et al. 2000).  The 

human X-linked testis-expressed homeobox genes OTEX and PEPP2 have a total of 15 

orthologous genes in the mouse genome, due to multiple gene duplications that postdated 

the primate-rodent separation (Wang and Zhang 2004).  The human genome contains 

over 200 immunoglobulin heavy chain variable region (VH) genes and ~80 of them are 

functional (Lefranc 2001).  Rabbit also contains over 100 VH genes, but only one of 

them is predominantly used, resulting in very few functional genes (Su and Nei 1999).  

The exact number of functional rabbit VH genes is yet to be determined, although at least 

5 have been identified (Su and Nei 1999).  Thus, the number of functional VH genes may 

vary up to 16 fold among different mammals.  Table 2.2 lists additional gene families 

known to have wide variations of family size among mammalian species.  However, to 

our knowledge, the size variation in V1R repertoire among mammals exceeds that in any 

other mammalian gene family.  This high variation might be in part because V1Rs are 

involved in both sensory and reproductive functions.  Our phylogenetic analysis indicates 

that the dramatic size difference in the V1R repertoires of placental mammals is due to 
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two molecular evolutionary mechanisms.  First, some ancestral gene families that are still 

present in rodents have been lost in dogs and cows.  Second, species-specific duplication 

events characteristic of rodent V1R families were less frequent in cows and dogs.  Thus, 

massive gene deaths and births (Hughes and Nei 1989; Nei and Hughes 1992) in different 

lineages explain the observed size variation.  

Is it possible that the smaller V1R repertoire in dogs and cows indicates that the 

VNO is not functional in these organisms?  Pseudogenization of vomeronasal genes and 

loss of VNO function happened in catarrhine primates (i.e., humans, apes, and Old World 

monkeys), presumably following the acquisition of full trichromatic vision (Liman and 

Innan 2003; Webb et al. 2004; Zhang and Webb 2003).  It is possible that stereoscopic 

vision in both primates and carnivores (Kral 2003) compensates for reduced 

vomeronasal-mediated communication.  Complete loss of VNO function, however, is 

unlikely to be responsible for the small V1R repertoires of dog and cow, because Trp2, 

the ion channel necessary for VNO signal transduction (Leypold et al. 2002; Stowers et 

al. 2002) is apparently functional in cow (Wissenbach et al. 1998), and we were able to 

identify a complete ORF for dog Trp2 from the genome sequence.  Furthermore, there 

have been reports of bovine pheromones that induce estrus, which are possibly mediated 

by the VNO (Lane and Wathes 1998; Rekwot et al. 2001).  Is it possible that the V1R 

repertoires have shrunk during the domestications of dog and cow due to either artificial 

selection or genetic drift?  We think it is unlikely because the domestication started no 

earlier than 15,000 years ago for dogs and 10,000 years ago for cow (Bradley et al. 1996; 

Savolainen et al. 2002).  Even if a small number of functional genes have become 

nonfunctional during domestication, their relics should remain readily detectable as 
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pseudogenes.  We thus believe that the sizes of V1R repertoires in dog and cow should be 

very close to those in their wild ancestors.  Another possibility is that the small V1R 

repertoire could be compensated by a large V2R repertoire.  This explanation also seems 

unlikely, as all V2Rs we identified from dog and cow were pseudogenes (data not 

shown).  Furthermore, all V2R genes identified from the human and goat genomes are 

pseudogenes (Wakabayashi et al. 2002).  In fact, no functional V2Rs have been reported 

in non-rodent mammals.  If the estimated size of ~100 genes in the rodent V2R repertoire 

(Herrada and Dulac 1997) is accurate, the phylogenetic surveys suggest an even more 

dramatic variation in the V2R repertoire among placental mammals.  In this respect, it is 

interesting to note that a recent study found two types of vomeronasal systems in 

mammals, with rodents and opossums having both Gαi2- and GαO-expressing 

vomeronasal sensory neurons and all other species examined (goat, dog, horse, musk 

shrew, and marmoset) having only Gαi2-expressing vomeronasal sensory neurons (but 

see Dennis et al. 2003; Takigami et al. 2004).  Because V1Rs are expressed in Gαi2 

positive neurons and V2Rs are expressed in GαO positive neurons (Mombaerts 2004), it 

is possible that functional V2Rs only exist in rodents and opossums among mammals.  

Indeed, our preliminary search confirms the presence of V2R ORFs in the opossum 

genome (P. Shi and J. Zhang, unpublished results). 

It should be noted that not all VNO-mediated functions in rodents are VNO-

mediated in other mammals (Dennis et al. 2003) and it is possible that during the 

evolution of rodents some olfactory cues became detectable by the VNO.  In fact, a goat 

V1R gene is known to be expressed in the olfactory epithelium (Wakabayashi et al. 

2002).  Before we can determine the effects of gene loss in V1R superfamily evolution, 
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we must understand the functional difference between family groups.  Two studies have 

investigated the functions of V1Rs, one in a strain of mice mutant for V1Rb2 (Boschat et 

al. 2002) and one in a strain of mice which had 16 genes of the families V1RA and V1RB 

knocked out (Del Punta et al. 2002).  Both studies showed that the mutations resulted in 

physiological or behavioral changes in the mice.  But, no study has compared the 

phenotypic effects of eliminating different V1R families, and it remains unknown 

whether each family is necessary for a specific function.  Such information would allow 

us to reason why certain families are lost in some species.   

In addition to gene loss, our analysis clearly demonstrated V1R family expansions 

in some placental mammals.  However, it is unknown what factors have promoted the 

dramatic expansions in rodents but have only allowed limited expansion in cows and 

virtually no expansion in dogs.  Lane and colleagues (2002; 2004) suggested that the 

V1R gene duplications in rodents were mediated by L1 repetitive elements.  These 

elements, which are known to have been active in rodents around the time of the mouse-

rat divergence, densely populate the regions of the mouse and rat genomes where V1Rs 

are located.  L1 density differs between species, so it would be interesting to see how 

V1R repertoire size correlates with L1 density.  Following the procedure of Lane et al. 

(Lane et al. 2002), we found that 21% of the DNA sequences in the genomic regions 

harboring dog V1R genes are L1 elements, lower than the corresponding density (40%) 

in the mouse V1R loci (Lane et al. 2002) or the average density (25%) in the mouse 

genome (Smit 1999).  The L1 density of the genomic regions containing cow V1R genes 

is also 21%.  Thus, the low duplicability of both dog and cow V1R genes might be in part 

due to the low density of L1 elements in the genomic regions.  L1 density in cow V1R 
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genomic regions is similar to that in dog, but cow have four times as many V1Rs as do 

dogs.  Thus, L1 elements might not play as great a role in V1R duplications as originally 

thought, or the role of L1 elements in V1R duplication might be limited to rodents. 

The phylogenetic reconstruction of placental V1Rs with the opossum V1Rs (Fig. 

2.3) suggests that there was more than one V1R gene in the common ancestor of 

marsupials and placentals, and the mammalian V1R families are then at least 170 million 

years old (Murphy et al. 2004).  Many V1R families expanded in placentals and 

marsupials independently.  Sequencing another marsupial genome, which is currently 

under way for the tammar wallaby Macropus eugenii, will significantly broaden our 

understanding of V1R evolution in marsupials.  Because both primates and rodents have 

over 100 V1R genes (or pseudogenes in the case of humans) and because primates and 

rodents are more closely related to each other than either of them is to carnivores or 

artiodactyls (Murphy et al. 2004; Springer et al. 2003), one might infer that after the 

separation of the common ancestor of cows and dogs from the common ancestor of 

rodents and primates, there was a dramatic expansion of the V1R repertoires.  Thus, the 

large size of the V1R superfamily as observed in rodents might be restricted to organisms 

derived from the common ancestor of primates and rodents, including the five orders of 

Rodentia, Lagomorpha (e.g., rabbit), Dermoptera (e.g., flying lemur), Scandentia (e.g., 

tree shrew), and Primates (Springer et al. 2003).  However, our previous molecular dating 

indicates that rodent V1R families expanded after the primate-rodent split (Grus and 

Zhang 2004), suggesting independent expansions in rodents and primates.  (In the future, 

the independent expansions in primates and rodents could be tested by examining the 

phylogenetic positions of human pseudogenes when their sequences become available.)  
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This independence would further imply that some of the aforementioned mammalian 

orders might not contain expanded V1R families.  Even if expansion is characteristic of 

these five orders, it is also possible that a functional V1R repertoire subsequently shrank 

after expansion, as in catarrhine primates (Zhang and Webb 2003).  These considerations 

suggest that mouse and rat may be atypical mammals in terms of their vomeronasal 

receptor genes and vomeronasal-mediated olfactory sensitivities.  Of course, independent 

expansions would also imply great differences in V1R receptors and V1R-mediated 

olfaction sensitivities.  Thus, one should be cautious in applying to other mammals the 

V1R-related knowledge learned from the model organisms of mouse and rat.  

Furthermore, although a large variation in the V1R repertoire is described here, the 

species we have examined (human, mouse, rat, dog, cow, and opossum) represent only 

five of ~24 orders of placental and marsupial mammals.  A more thorough investigation 

of theV1R repertoires in other orders will give a better picture of the variation and 

evolution of V1Rs in mammals.   

Interestingly, the small repertoire of V1R receptor genes that we report in the dog 

may not be entirely unexpected and may be common to carnivores in general.  Although 

rodents have a complex VNO with a thick layer of vomeronasal sensory epithelium 

(VNSE), where vomeronasal receptors are found, carnivores have a different type of 

VNO with a much thinner VNSE (Takami 2002; Takigami et al. 2004).  Furthermore, the 

VNO of the ferret Mustela putorius, another carnivore, is rudimentary in size and 

development and does not change with respect to season, which is in contrast to the 

seasonal variation observed in other ferret organs involved in sexual reproduction and 

behavior and in rodent VNOs (Weiler et al. 1999).  Additionally, Woodley and Baum 
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(2004) found that the main olfactory system, but not the VNO, is necessary for mate 

identification in the ferret.  The findings in dog and ferret suggest a limited role of the 

VNO, which may predict a small V1R repertoire in all carnivores.  Among artiodactyls, 

cow is the only species with a fully sequenced genome.  However, a few studies have 

focused on the VNO of the goat, which belongs to the same family as the cow (Takigami 

et al. 2004; Wakabayashi et al. 2002), and a genomic Southern analysis suggested that the 

goat V1R repertoire is also significantly smaller than that in rodents (Wakabayashi et al. 

2002).   However, even between mouse and rat, there is a nearly two-fold difference in 

the number of functional V1R genes, indicating that ordinal generalizations of V1R 

repertoire sizes from one species should be drawn cautiously.  

As mentioned, the complexity of VNO morphology varies among vertebrates.  

Takami (2002) classified VNOs into five morphological types from the most complex 

(A) to the simplest (E).  Type A is found in ophidian species such as crotaline, garter, and 

water snakes.  Type B is found in rodents and lagomorphs; though marsupials such as 

opossum also have VNOs similar to type B.  Type C is found in ungulates (e.g., horse, 

cow, sheep), carnivores (e.g., dog, cat, ferret), prosimian primates, and New World 

monkeys.  Type D is found in amphibians and type E is found in human fetal VNO.  

Thus, there is a correlation between the morphological complexity of the VNO and the 

number of intact V1R genes (Fig. 2.4), providing genomic support for the notion that the 

morphological complexity of the VNO may be used as a proxy for the sophistication of 

olfactory communications within species, as has been assumed by many anatomists 

(Giorgi and Rouquier 2002; Wakabayashi et al. 2002). 
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Figure 2.1  Variation in the numbers of intact V1R genes (shaded bars) and 
pseudogenes (open bars) among mouse, rat, human, dog, cow, and opossum, with 
the phylogenetic relationships among the species shown by the tree.  Mouse has 187 
functional V1Rs and 168 pseudogenes (Shi et al. 2005; Zhang et al. 2004).  Rat has 102 
functional V1Rs and at least 50 pseudogenes (Shi et al. 2005, P. Shi unpublished data).  
Human has 4 V1R ORFs and ~200 pseudogenes (Rodriguez and Mombaerts 2002; Zhang 
and Webb 2003).  Cow has 32 functional V1Rs and 41 pseudogenes (this study).  Dog 
has 8 functional V1Rs and 22 pseudogenes (this study).  Opossum has 49 functional 
V1Rs and 53 pseudogenes (this study).  The number of pseudogenes in rat is likely an 
underestimate as there has been no comprehensive study of rat V1R pseudogenes. 
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Figure 2.2  Phylogeny of intact V1R genes: 8 in dog, 32 in cow, 4 in human, 102 in 
rat, and 187 in mouse.  Shaded regions group the genes into 18 placental mammalian 
V1R families previously described (Grus and Zhang 2004; Rodriguez et al. 2002; Shi et 
al. 2005) or described here (see text), with the family names indicated.  Black circles 
mark family groups that contain more than one family as shown in Table 1.  Dog 
branches are in red, cow branches are in black, human branches are in blue, mouse 
branches are in purple, and rat branches are in green.  Bootstrap percentages supporting 
the family groups are shown if higher than 50.  The tree was reconstructed using the 
neighbor-joining method with Poisson-corrected protein distances.  The arrow points to 
where the tree is rooted with putative V1Rs of the frog Xenopus tropicalis (W. Grus and 
J. Zhang, unpublished data).  The scale bar shows 0.2 amino acid substitutions per site. 
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Figure 2.3  Phylogeny of intact V1R genes from the opossum, mouse, rat, dog, and 
cow.  V1R families of placental mammals (V1RA-V1RQ) have been collapsed for better 
illustration, but all 49 V1Rs of the opossum are shown.  Opossum genes are divided into 
8 families (oV1RA-oV1RH).  The tree was reconstructed using the neighbor-joining 
method with Poisson-corrected protein distances.  Bootstrap percentages are shown if 
higher than 50.  The arrow points to where the tree is rooted with Xenopus tropicalis 
V1Rs.  The scale bar shows 0.2 amino acid substitutions per site. 
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Figure 2.4  Correlation between the morphological complexity of VNO and the 
number of intact V1R genes in the genome.  Morphological complexity follows 
(Takami 2002). 
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Figure 2.5  Phylogenetic positions of (A) 17 of 22 dog and (B) 35 of 41 cow V1R 
pseudogenes.  Shown here is the unrooted tree of Figure 2.1 with the families collapsed.  
The phylogenetic position of each pseudogene is determined by making a neighbor-
joining tree using the conceptually translated pseudogene sequence with the protein 
sequences of all intact genes.  White families indicate no intact V1R genes in that family 
group.  Gray families indicate a single intact gene in the family group.  Black families 
indicate more than one intact gene in the family group.  Pseudogenes are shown in dashed 
lines.  The scale bar shows 0.2 amino acid substitutions per site and is applicable only for 
branches leading to intact genes.  
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Table 2.1  V1R gene family groups in five placental mammals
Family group Mouse1 Rat1 Dog2 Cow2 Human3

A/B/O 19 15 1 (2) 1 (1) 0
C 32 23 0 (2) 0 (0) 0
D 56 8 0 (2) 9 (7) 0
E 16 22 0 (0) 4 (2) 0
F 5 8 3 (5) 10 (19) 2
G 21 13 0 (0) 0 (0) 0
H/I 35 0 1 (3) 0 (1) 0
J/K 2 6 2 (2) 3 (1) 0
L/M/N 1 7 1 (1) 3 (4) 1
P 0 0 0 (0) 1 (0) 0
Q 0 0 0 (0) 1 (0) 0
R 0 0 0 (0) 0 (0) 1

Total 187 102 8 (17) 35 (35) 4
1 (Grus and Zhang 2004; Shi et al 2005)
2 This study; numbers in parentheses are pseudogenes
   could be classified into family groups.  The remaining 
   pseudogenes were too degenerated to determine their
   family groups.
3  (Rodriguez and Mombaerts 2002; Zhang and Webb 2003)
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Table 2.2. Size variation of some gene families among mammalian species.
Size variation Smallest size Biggest size

Gene family(ref) Function (ratio) (organism) (organism)

V1R1,this study olfactory receptor 23.4 8 (dog)* 187 (mouse)

Morpheus2 nuclear pore complex interacting protein 21 1 (Old World monkeys) 21(chimpanzee)

EAR3,4 antiparasitic RNases 17 1 (New World monkeys) 17 (ricefield mouse)

Ly495 immunity 17 1 (baboon) 17 (rat)

OTEX/PEPP26 reproduction-related 7.5 2 (human) 15 (mouse)

Granzyme7 mast cell chymases 7 4 (human) 28 (rat)

KIR8,9 immunity 7 2 (mouse) 14 (human, macaque)

OR7,10 olfactory receptor 3.7 388 (human) 1430 (rat)

Keratin-associated protein7 epithelial cell function 3.3 3 (human) 10 (mouse)
Reverse transcriptase11

polymerase 2.6 25 (mouse) 65 (human)

Only functional genes are considered.  Species with at least one functional gene in the gene family are compared.  

Gene families with a size ratio >2 are presented.
*Human V1Rs are likely relics of an ongoing pseudogenization process (Zhang and Webb 2003).  Therefore, the dog has the smallest 

functional repertoire.
1 (Shi et al 2005)
2 (Johnson et al 2001)
3 (Zhang et al 2000)
4 (Cho et al 2005)
5 (Hao and Nei 2004)
6 (LeFranc 2001)
7 (Niimura and Nei 2003)
8 (Hughes 2002)
9 (Hao and Nei 2005)
10 (Rosenberg et al 1995)
11 (Mouse Genome Sequencing Consortium 2002)
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CHAPTER 3 
 

LARGEST VERTEBRATE VOMERONASAL TYPE 1 RECEPTOR (V1R) GENE 
REPERTOIRE IN THE SEMI-AQUATIC PLATYPUS 

 

3.1  ABSTRACT 

Vertebrate vomeronasal chemoreception plays important roles in many aspects of 

an organism’s daily life, such as mating, territoriality, and foraging.  V1Rs and V2Rs, 

two large families of G protein-coupled receptors, serve as vomeronasal receptors to bind 

to various pheromones and odorants.  Contrary to previous observations of reduced 

olfaction in aquatic and semi-aquatic mammals, we here report the surprising finding that 

the platypus, a semi-aquatic monotreme, has the largest V1R repertoire and nearly largest 

combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes 

and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, 

and 57 pseudogenes in the V2R family.  Phylogenetic analysis shows a remarkable 

expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in 

platypus since the separation of monotremes from placentals and marsupials.  Our results 

challenge the view that olfaction is unimportant to aquatic mammals and call for further 

study into the role of vomeronasal reception in platypus physiology and behavior. 

 

3.2 INTRODUCTION 

Vertebrates use olfaction to locate food, avoid predators, and identify mates, 

among other activities.  Most vertebrates have two olfactory systems: the main olfactory 
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system (MOS) and the vomeronasal system (VNS).  The MOS is traditionally thought to 

detect environmental odorants while the VNS recognizes intraspecific pheromonal cues, 

although this distinction has been blurred by recent reports that both systems can perceive 

both types of signals (Baxi et al. 2006; Restrepo et al. 2004).  Nonetheless, a distinct set 

of chemoreceptors is expressed in each system: odorant receptors (ORs) and trace amine 

associated receptors (TAARs) in the MOS and vomeronasal type 1 receptors (V1Rs) and 

type 2 receptors (V2Rs) in the VNS (Liberles and Buck 2006; Mombaerts 2004).  These 

receptors form four evolutionarily unrelated large families of seven-transmembrane G 

protein-coupled receptors.  Our previous study of five orders of placental and marsupial 

mammals showed that the among-species size variation of the V1R repertoire exceeds 

that of all other mammalian protein families (Grus et al. 2005).  Recently, the genome 

sequence of the platypus Ornithorhynchus anatinus, a semi-aquatic monotreme mammal, 

became available.  It is of significant interest to examine platypus V1Rs for two reasons.  

First, the platypus represents the final of the three major mammalian groups (placentals, 

marsupials, and monotremes) whose V1Rs have yet to be examined.  Second, olfaction is 

widely believed to be unimportant to aquatic mammals.  For example, morphological 

components of MOS and VNS are absent or highly degenerated in cetaceans (whales, 

porpoises, and dolphins) and sirenians (manatees and Dugongs) (Meisami and Bhatnagar 

1998; Oelschlager 1992).  The platypus data open the door for a genomic test of the 

(un)importance of olfaction to aquatic mammals, as all previously studied mammalian 

V1Rs were from terrestrials. 
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3.3 METHODS 

Platypus V1Rs were identified first using TBLASTN searches on the high quality 

platypus genome sequence (6X coverage) available from the Ensembl Database 

(http://www.ensembl.org/Ornithorhynchus_anatinus/index.html).  Previously described 

mammalian V1R genes were used as query sequences.  Next, BLASTN searches were 

done on the same platypus genome sequence with the platypus V1R nucleotide sequences 

from the previous step as query sequences.  A receptor having a complete open-reading 

frame across the middle 13 protein domains (7 transmembrane, 3 extracellular, and 3 

intracellular) was considered intact and is most likely functional.  V1R pseudogenes were 

identified by premature stop codons or incomplete sequence across the 13 middle protein 

domains of the 15 domains.  The N-terminal extracellular and C-terminal intracellular 

domains were not considered in our criterion because they are highly variable in 

sequence length.  A similar two-step procedure was used to identify ORs from platypus 

and TAAR genes from frog, chicken, platypus, opossum, cow, and dog.  Platypus V2Rs 

were identified using TBLASTN searches on the platypus genome sequences.  The more 

complex structure of the V2Rs requires a few additional steps in gene identification.  The 

computational pipeline for identifying V2Rs from genomic sequence has been outlined in 

a previous study (Yang et al. 2005).  To ensure that the sequences represented 

independent loci rather than allelic variation, we required that two sequences be at least 

2% different at the protein sequence level to be considered as two genes.  Protein 

sequences of the newly identified platypus V1Rs, V2Rs, ORs, and TAARs are available 

online (http://mbe.oxfordjournals.org/cgi/content/full/msm157/DC1) as Supplementary 

Datasets 1-4, respectively.  The V1Rs and V2Rs were aligned by ClustalX (Thompson et 
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al. 1997) with manual adjustment.  Phylogenetic trees were constructed using the 

neighbor-joining method (Saitou and Nei 1987) with Poisson corrected protein distances 

and 1000 bootstrap replications (Felsenstein 1985).  MEGA3.1 (Kumar et al. 2004) was 

used for these evolutionary analyses. 

 

3.4  RESULTS AND DISCUSSION 

Using TBLASTN searches with known mammalian V1Rs as query sequences, we 

identified from the platypus genome sequence 270 intact genes and 579 pseudogenes of 

the V1R family (Table 3.1).  To understand the evolution of platypus V1Rs, we 

reconstructed a gene tree containing all platypus intact V1Rs and 232 representative 

V1Rs of other vertebrates (Fig. 3.1A).  These representatives cover all major lineages in 

the vertebrate V1R tree (Shi and Zhang 2007).  The obtained gene tree shows that 

platypus V1Rs form three separate platypus-specific clades, two with high bootstrap 

support, revealing remarkable platypus-specific expansions of three V1R lineages after 

monotremes diverged from the common ancestor of placentals and marsupials (Fig. 

3.1A).  Because the draft platypus genome sequence is organized by contig rather than 

assembled into chromosomes, it is important to ensure that closely related V1Rs are not 

allelic variants.  To be conservative, V1Rs that are >98% identical in amino acid 

sequence are considered allelic variants (Zhang et al. 2004) and only one is considered in 

our study.  The lack of chromosomal assembly prevents us from detecting V1R genomic 

clusters that are prevalent in rodents (Grus and Zhang 2004; Lane et al. 2002; Lane et al. 

2004; Rodriguez et al. 2002; Zhang et al. 2004).  However, many sub-clades in Fig. 3.1A 

are comprised of V1R genes from a single contig, indicating that there is at least some 
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chromosomal clustering of closely-related V1R genes in the platypus genome and that 

tandem gene duplication was a primary mechanism underlying the platypus V1R 

repertoire expansion.  V1R expansions are thought to be correlated to repetitive element 

density in the V1R genomic regions (Grus et al. 2005; Lane et al. 2002; Lane et al. 2004).  

Future analyses based on a more accurate genome assembly will likely reveal if any type 

of repetitive element has a particularly high density in the platypus genomic regions 

containing V1Rs. 

The platypus V1R repertoire has 83 more intact genes than the largest previously 

identified mammalian V1R repertoire (187 in mouse, Shi et al. 2005).  Hence, the 

mammalian V1R repertoire has an even larger size variation (~34 fold difference between 

platypus and dog) than was previously reported (~23 fold between mouse and dog, Grus 

et al. 2005).  However, the enormous V1R repertoire in platypus is not entirely 

unexpected.  While previous studies showed the absence or degeneration of MOS and 

VNS morphological components in some aquatic mammals (Meisami and Bhatnagar 

1998), this loss is not observed in the platypus.  Instead, VNS morphology in platypus is 

among the most developed of all mammals, sharing some characteristics with highly 

complex reptilian VNOs (Wysocki 1979).  We previously showed a strong positive 

correlation between the morphological complexity of the vomeronasal organ (VNO) and 

the number of intact V1R genes across a diverse array of mammals (Grus et al. 2005).  

The large V1R repertoire in platypus is consistent with this correlation (Fig. 3.2).  

Although complete V1R repertoires are known for only 12 vertebrates (Shi and Zhang 

2007 and this study), we expect that the platypus repertoire will remain one of the largest 
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even when additional vertebrates are examined in the future, because of the strong 

correlation between VNO complexity and V1R repertoire size. 

Using an approach similar to Yang et al. (2005), we identified 15 intact genes, 55 

potentially intact genes, and 57 pseudogenes of the V2R family from the platypus 

genome sequence.  A potentially intact gene has a partial sequence owing to the 

incompleteness of the genome sequence, but has an open reading frame in the available 

sequence.  This “partial sequence” problem did not affect the V1Rs in part because they 

have a single coding exon.  Similarly, we reconstructed the phylogeny of the platypus 

intact V2Rs with 124 representative V2Rs from other vertebrates (Shi and Zhang 2007).  

Ten of the 15 platypus V2Rs cluster into a single platypus-specific clade, while four other 

V2Rs form two clusters and one V2R belongs to the V2R2 clade, which has 

representatives from all vertebrates that have V2Rs (Fig. 3.1B) (Shi and Zhang 2007; 

Yang et al. 2005; Young and Trask 2007).  Thus, at least one V2R lineage experienced a 

relatively large expansion in platypus after monotremes diverged from placentals and 

marsupials.  In contrast to V1Rs, functional V2R repertoire size is not correlated with 

VNO complexity (Fig. 3.3).  Based on morphology and immunohistochemistry, Takigami 

et al. (2004) classified mammalian VNOs into two types: segregated and uniform.  We 

recently showed a clear distinction in V2Rs between the two types of VNOs (Shi and 

Zhang 2007): species with segregated VNOs have functional V2Rs, whereas those with 

uniform VNOs do not.  The platypus VNO has not been characterized in this manner, but 

our result predicts that it belongs to the segregated type. 

Previous studies suggested that V1Rs detect airborne volatiles while V2Rs detect 

water-soluble molecules (Boschat et al. 2002; Emes et al. 2004; Kimoto et al. 2005; 
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Leinders-Zufall et al. 2004).  Indeed, comparative genomic analysis identified a shift of 

vomeronasal receptor types from V2Rs to V1Rs during the vertebrate transition from 

water to land (Shi and Zhang 2007).  Unlike most mammals which have a nasal VNO 

opening with a variable amount of oral input into the nasal cavity, the platypus’s complex 

VNO has an exclusively oral opening, similar to a reptilian VNO.  Despite this 

morphological difference, the platypus VNS likely uses the same VNS signal 

transduction pathway conserved throughout vertebrate evolution (Grus and Zhang 2006), 

as other components of the signal transduction pathway (e.g., the Trpc2 channel) are also 

found in the platypus genome sequence (data not shown).  With the eyes, ears, and 

nostrils closed while the platypus is underwater (Griffiths 1978), both types of 

vomeronasal receptors would be exposed to water-soluble molecules.  Thus, one may 

predict that platypus should have experienced a backward evolutionary change, having 

more V2Rs but fewer V1Rs compared with terrestrial mammals.  This, however, is not 

the case.  One potential reason is that the platypus still breaths air and its VNS must still 

play an important role in recognizing airborne molecules.  It is notable that although 

platypus’s V2R repertoire is not large, the total number of intact V1Rs and V2Rs in 

platypus is 285, nearly highest among all vertebrates surveyed (Table 3.1).  If at least half 

of the potentially intact platypus V2Rs are actually intact, which is quite likely given the 

current quality of the genome sequence and the length of each partial V2R sequence 

identified (≥234 nucleotides), the total number of platypus V1Rs and V2Rs becomes 

highest among all vertebrates (Table 3.1). 

Given the enormous repertoire size of platypus’s VNS receptors, it is interesting 

to examine whether the opposite is true for its MOS receptors.  We raise this possibility 
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for three related reasons.  First, previous studies showed that morphological and/or 

genetic components of the MOS have been lost or reduced independently in aquatic 

mammals such as cetaceans, manatees, and seals (Freitag et al. 1998; Meisami and 

Bhatnagar 1998; Oelschlager 1992).  Characterization of the monotreme brain also found 

that the platypus has a less complex olfactory bulb and olfactory tubercle than terrestrial 

monotremes (Ashwell 2006a; Ashwell 2006b).  Second, in most snakes, particularly 

marine snakes, the VNS is the dominant chemosensory system and the MOS is very 

reduced (Evans 2003).  In other words, the complex VNS might compensate for a 

reduced MOS.  Indeed, morphological characterization of the platypus brain shows that 

its accessory olfactory bulb, which is part of the VNS, is larger than its main olfactory 

bulb, part of the MOS (KW Ashwell, personal communication).  Third, while terrestrial 

monotremes rely on their MOS to detect food, platypuses forage for their food 

underwater with eyes, ears, and nostrils closed (Griffiths 1978).  In some aquatic 

mammals, the loss of olfactory ability is compensated by the enhancement of a different 

sense, such as audition.  Indeed, the monotreme sense of electroreception appears to be 

more defined in the platypus than in terrestrial monotremes (Pettigrew 1999), and 

platypuses are thought to use electroreception to locate prey underwater (Scheich et al. 

1986).   

Applying the same method used for identifying V1Rs, we detected 261 intact 

genes, 94 potentially intact genes, and 221 pseudogenes of the OR family from the 

platypus genome sequence.  The number of intact ORs in platypus is much smaller than 

that in human, mouse, rat, dog, and frog, although it is greater than that in chicken and 

fish (reviewed in Niimura and Nei 2006), suggesting that as a mammal, platypus has a 
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relatively small OR repertoire (Table 3.1).  It is notable that the proportion of intact genes 

in the platypus OR family (45%) is similar to that found in humans, which have a 

degenerating MOS, and much lower than that (75-80%) in mouse, rat, and dog (Niimura 

and Nei 2006).  While the human OR repertoire is thought to be degenerating due to 

acquisition of trichromatic vision in catarrhine primates ~23 million years ago (Gilad et 

al. 2004), fossil evidence suggests that platypuses are a specialized lineage of 

monotremes that have been semi-aquatic since the Mesozoic (Musser 2003), leaving at 

least 65 million years for platypus olfactory receptor genes to degenerate with increased 

aquatic specialization.  Furthermore, a fossil platypus from the Miocene shares the extant 

platypus’s reduced morphology of main olfactory brain regions (Macrini et al. 2006).  

Because the platypus lineage became aquatic a long time ago, many platypus OR 

pseudogenes may have degenerated beyond detection, leading to an overestimate of the 

proportion of intact OR genes.   

Previous studies of vertebrate ORs describe two classes of ORs: class I is more 

prevalent in aquatic vertebrates while class II is dominant in terrestrial vertebrates 

(Freitag et al. 1998; Shi and Zhang 2007).  Despite the return to an aquatic life by the 

platypus, only 11.5% (30 of 261) of the OR genes are the class I aquatic type, which is 

only slightly higher than that in mouse (11%, Niimura and Nei 2006).  This finding may 

not be unexpected because the platypus nostrils are closed in the water (Griffiths 1978) 

and the main olfactory epithelium is not exposed to the water.  We also examined 

TAARs, the second class of MOS chemoreceptors (Liberles and Buck 2006), and 

identified 4 intact genes and 1 pseudogene from the platypus genome.  The TAAR 

repertoire size is also smaller in platypus than in artiodactyls, rodents, and primates 
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(Table 3.1).  Since the platypus VNO opens into the oral cavity, the vomeronasal 

receptors might also compensate for taste receptors.  Preliminary screening of the 

platypus genome sequence for the T1R sweet and umami receptor family and T2R bitter 

receptor family reveals a substantively reduced T2R repertoire size in platypus 

(unpublished data) than in other mammals (Shi and Zhang 2006).   

 In sum, the investigation of the third major lineage of mammals identified an 

unexpectedly large repertoire of vomeronasal receptors in the semi-aquatic platypus.  

This finding challenges the current view that olfaction is unimportant to aquatic 

mammals and calls for study of the role of vomeronasal reception in platypus physiology 

and behavior as no study has investigated vomeronasal-mediated behavior in platypus.  

The surprising diversity of vomeronasal sensitivity across vertebrates provides an 

invaluable resource for us to learn how nature solves different types of sensory tasks in 

drastically different environments. 
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Figure 3.1.  Phylogenetic trees of vertebrate intact (A) V1Rs and (B) V2Rs.  The V1R 
tree includes all 270 platypus receptors and 232 representative receptors from the mouse, 
rat, dog, cow, opossum, frog, and zebrafish.  The V2R tree includes all 15 platypus 
receptors and 124 representative receptors from the mouse, rat, opossum, frog, and 
zebrafish, as the dog and cow do not have V2Rs.  Pink branches are platypus genes, 
orange are opossum genes, blue are placental mammal genes, and green are teleost fish 
and frog genes.  Scale bars indicate 0.1 amino acid substitution per site.  Bootstrap 
percentages for clades of platypus receptors are indicated. 
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Figure 3.2.  Positive correlation of vomeronasal organ complexity with V1R 
repertoire size.  The number of intact V1Rs is plotted for animals of increasing 
vomeronasal organ complexity (E-A) adapted from morphological categories described 
in (Takami 2002).  The 270 platypus V1Rs are described in this paper while the 
repertoire sizes for human (5), zebrafish (2), frog (21), dog (8), cow (40), opossum 
(98), rat (106), and mouse (187) were previously described (Shi and Zhang 2007).
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Figure 3.3  No correlation between VNO complexity and V2R repertoire size.  The 
number of intact V2Rs is plotted for animals of increasing vomeronasal organ 
complexity (E-A) based on morphological categories described by Takami (2002).  There 
is a clear distinction between those mammals with a known segregated VNO (red circles) 
and those mammals with uniform VNO (blue) based on the classification by Takigami et 
al. (2004).  Species represented by black dots are either not mammals or their VNO 
structures have not been classified.  The 15 platypus V2Rs are described in this paper 
while the repertoire sizes for zebrafish (44), frog (249), opossum (98), dog (0), cow (0), 
mouse (121), rat (79), and human (0) were previously described (Shi and Zhang 2007; 
Young and Trask 2007).
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Table 3.1. Sizes of nasal chemosensory receptor gene repertoires in
vertebrates.
Species V1Rs V2Rs ORs TAARs
Human 5 (115)a 0 (20)c 388 (414)d 6 (3)h

Mouse 187 (121)a 121 (158)c 1037 (354)d 15 (1)h

Rat 106 (66)a 79 (142)c 1201 (292)e 17 (2)h

Dog 8 (33)a 0 (9)c 876 (326)f 2 (2)b

Cow 40 (45)a 0 (16)c 970 (1159)g 17(9)b

Opossum 98 (30)a 86 (79)c 901 (618)f 22 (0)b

Platypus 270 (579)b 15 (112)b 261 (315)b 4 (1)b

Chicken 0 (0)a 0 (0)a 82 (476)d 3 (0)b

Frog 21 (2)a 249 (448)a 410 (478)d 2 (1)b

Zebrafish 2 (0)a 44 (8)a 102 (35)d 57 (40)i

Shown are the numbers of intact genes. The numbers of nonintact genes, 
including potentially intact genes and pseudogenes, are given in parentheses.
a Shi and Zhang (2007)
b This study
c Young and Trask (2007)
d Niimura and Nei (2006)
e Quignon et al (2005)
f Aloni et al (2006)
g Niimura and Nei (2007)
h Lindemann et al (2005)
i Gloriam et al (2005)
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CHAPTER 4 
 

DISTINCT EVOLUTIONARY PATTERNS BETWEEN CHEMORECPTORS OF 
TWO VERTEBRATE OLFACTORY SYSTEMS AND THE DIFFERENTIAL 

TUNING HYPOTHESIS  
 
4.1ABSTRACT 
 

Most tetrapod vertebrates have two olfactory systems, the main olfactory system 

(MOS) and the vomeronasal system (VNS).  According to the dual olfactory hypothesis, 

the MOS detects environmental odorants while the VNS recognizes intraspecific 

pheromonal cues.  However, this strict functional distinction has been blurred by recent 

reports that both systems can perceive both types of signals.  Studies of a limited number 

of receptors suggest that MOS receptors are broadly tuned generalists while VNS 

receptors are narrowly tuned specialists.  However, whether this distinction applies to all 

MOS and VNS receptors remains unknown.  The differential tuning hypothesis predicts 

that generalist MOS receptors detect an overlapping set of ligands and thus are more 

likely to be conserved over evolutionary time than specialist VNS receptors, which would 

evolve in a more lineage-specific manner.  Here we test this prediction for all olfactory 

chemoreceptors by examining the evolutionary patterns of MOS-expressed odorant 

receptors (ORs) and trace amine associated receptors (TAARs) and VNS-expressed 

vomeronasal type 1 receptors (V1Rs) and type 2 receptors (V2Rs) in seven tetrapods 

(mouse, rat, dog, opossum, platypus, chicken, and frog).  The phylogenies of V1Rs and 

V2Rs show abundant lineage-specific gene gains/losses and virtually no one-to-one 

orthologs between species.  Opposite patterns are found for ORs and TAARs.  Analysis 
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of functional data and ligand-binding sites of ORs confirms that paralogous 

chemoreceptors are more likely than orthologs to have different ligands and that 

functional divergence between paralogous chemoreceptors is established relatively 

quickly following gene duplication.  Together, these results strongly suggest that the 

functional profile of the VNS chemoreceptor repertoire evolves much faster than that of 

the MOS chemoreceptor repertoire and that the differential tuning hypothesis applies to 

the majority, if not all, of MOS and VNS receptors. 

 

4.2 INTRODUCTION 

Most tetrapod vertebrates have two olfactory systems with distinct morphologies 

and signal transduction pathways: the main olfactory system (MOS) and the vomeronasal 

system (VNS) (Grus and Zhang 2006).  According to the dual olfactory hypothesis 

(Scalia and Winans 1975), the two systems were thought to have two distinct functions: 

the MOS detects environmental odorants while the VNS detects intraspecific pheromonal 

cues.  However, exceptions to this distinction began appearing in the literature shortly 

after the dual olfactory hypothesis was published, and the overlapping functions of the 

two systems have been the subject of many recent reviews (Restrepo et al. 2004; Baxi, 

Dorries, and Eisthen 2006; Spehr et al. 2006b; Kelliher 2007).  It was found that the 

MOS sensory neurons can be activated by some pheromones in rabbits and pigs (Hudson 

and Distel 1983; Dorries, Adkins-Regan, and Halpern 1995) and that the disruption of the 

MOS signaling pathway affects mouse mating, parenting, and aggressive behaviors, 

which are widely thought to be mediated by pheromones (Belluscio et al. 1998; 

Mandiyan, Coats, and Shah 2005).  On the other hand, the VNS has been shown to be 
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important for foraging in some snakes, salamanders, and opossums (Schwenk 1993; 

Placyk and Graves 2002; Halpern, Daniels, and Zuri 2005).  Furthermore, some odorants 

and pheromones activate neurons in both systems (Sam et al. 2001; Xu et al. 2005; Spehr 

et al. 2006b; Chamero et al. 2007).  These data clearly demonstrate that neither of the two 

olfactory systems is used exclusively for perceiving one class of chemical cues.  Rather, 

it seems that the two systems are acting in concert to doubly process some chemosignals, 

albeit through distinct signal transduction pathways (Restrepo et al. 2004; Spehr et al. 

2006b). 

Despite the fact that the MOS and the VNS have overlapping functions and 

overlapping ligands, some empirical evidence suggests that VNS receptors may be 

narrowly tuned to specific ligands while MOS receptors may be broadly tuned to a 

complex combination of ligands (Leinders-Zufall et al. 2000; Katada et al. 2005).  

Because each MOS or VNS sensory neuron expresses only one allele of one 

chemoreceptor gene, the above differential tuning hypothesis applies equally to olfactory 

neurons and olfactory chemoreceptor proteins.  To avoid confusion, we use “receptor” to 

refer to both neuron and protein and use “chemoreceptor” to refer to protein.  It is known 

that both non-volatile MHC-peptides and the volatile urinary 2-heptanone activate 

sensory neurons in the MOS and VNS.  In the study of VNS activation by MHC-

peptides, it was found that important anchoring residues of the peptides were required for 

signal transduction, that activation was independent of peptide concentration, and that 

peptides mutated at any site other than the anchoring residues still activated the VNS 

neurons (Leinders-Zufall et al. 2004).  In contrast, changing these key residues had less 

effect on MOS activation, as some peptides with altered sequences still activated the 
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MOS neurons if concentration was increased (Spehr et al. 2006a).  Similarly, while the 

VNS response to 2-heptanone was independent of its concentration (Leinders-Zufall et al. 

2000), MOS neurons responding to 2-heptanone did so in a concentration dependent 

manner (Spehr et al. 2006b).   

However, it is unknown whether the above observations from a limited number of 

MOS and VNS responses can be generalized to most or all MOS and VNS receptors.  

Here we attempt an evolutionary genomic test of the hypothesis of differential tuning 

between MOS and VNS receptors, by examining the evolutionary patterns of 

chemoreceptors expressed in the MOS and VNS.  Our test is based on the idea that 

broadly-tuned generalist MOS chemoreceptors are detecting an overlapping set of ligands 

and should thus be more likely to be conserved over evolutionary time than narrowly-

tuned specialist VNS chemoreceptors, which would evolve in a more lineage-specific 

manner.  If an odorant or activating ligand is common to multiple species, the receptor 

for that odorant is likely to be shared by the multiple species.  In contrast, if the odorant 

yields responses only from a single species, only that species would have to have a 

receptor that recognizes it.  Our test is feasible because the two olfactory systems each 

express two superfamilies of chemoreceptors.  Sensory neurons in the MOS express 

either odorant receptors (ORs) or trace amine associated receptors (TAARs) (Mombaerts 

2004; Liberles and Buck 2006), while those in the VNS express vomeronasal type 1 

receptors (V1Rs) or type 2 receptors (V2Rs) (Mombaerts 2004).  This expressional 

distinction is so clear that when the VNS is lost in birds, all V1R and V2R genes were 

inactivated (Shi and Zhang 2007), whereas OR and TAAR genes are still preserved in the 

genome (Niimura and Nei 2005; Grus, Shi, and Zhang 2007).  The four types of receptors 
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are all seven-transmembrane G-protein-coupled receptors, but they do not have  any 

significant sequence similarity.  Although the four gene superfamilies have been subject 

to intense evolutionary analysis (Young et al. 2002; Grus and Zhang 2004; Grus et al. 

2005; Young et al. 2005; Aloni, Olender, and Lancet 2006; Hoppe et al. 2006; Grus, Shi, 

and Zhang 2007; Hashiguchi and Nishida 2007; Niimura and Nei 2007; Shi and Zhang 

2007; Young and Trask 2007), none of the previous studies has either quantitatively 

compared the evolutionary patterns of the four superfamilies or compared them in the 

context of determining their potential functional differences.  We show a clear-cut 

distinction in the evolutionary pattern between MOS and VNS chemoreceptors.  Coupled 

with an analysis of functional data and ligand-binding sites of chemoreceptors, our results 

provide strong support to the differential tuning hypothesis at the level of entire MOS and 

VNS chemoreceptor repertoires.  

 

4.3 MATERIALS AND METHODS 

4.3.1 Olfactory chemoreceptors from six tetrapods 

We compared the V1R, V2R, OR, and TAAR gene repertoires from six tetrapods 

that have publicly available high-quality genome sequences.  These species include frog 

(Xenopus tropicalis), chicken (Gallus gallus), platypus (Ornithorhynchus anatinus), 

opossum (Monodelphis domestica), dog (Canis familiaris), and mouse (Mus musculus).  

We analyzed all previously reported putatively functional olfactory chemoreceptors of 

these species.  The numbers of V1Rs compiled were 187 in mouse (Shi et al. 2005), 8 in 

dog (Grus et al. 2005; Young et al. 2005), 98 in opossum (Shi and Zhang 2007), 270 in 

platypus (Grus, Shi, and Zhang 2007), and 21 in frog (Shi and Zhang 2007).  Chicken 
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does not have functional V1Rs.  The numbers of V2Rs compiled were 70 in mouse (Yang 

et al. 2005), 79 in opossum (Shi and Zhang 2007), 249 in frog (Shi and Zhang 2007), and 

15 in platypus (Grus, Shi, and Zhang 2007).  Chicken and dog do not have functional 

V2Rs.  The numbers of ORs compiled were 1084 in mouse (Young et al. 2002; Zhang 

and Firestein 2002), 658 in dog (Aloni, Olender, and Lancet 2006), 871 in opossum 

(Aloni, Olender, and Lancet 2006), 261 in platypus (Grus, Shi, and Zhang 2007), 77 in 

chicken (Niimura and Nei 2005), and 405 in frog (Niimura and Nei 2005).  The numbers 

of TAARs compiled were 15 in mouse (Lindemann et al. 2005), two in dog (Grus, Shi, 

and Zhang 2007), 21 in opossum (Grus, Shi, and Zhang 2007), four in platypus (Grus, 

Shi, and Zhang 2007), three in chicken (Grus, Shi, and Zhang 2007), and three in frog 

(Grus, Shi, and Zhang 2007). 

 

4.3.2 Rat chemoreceptors 

To make the mouse-rat comparison, we obtained 1195 ORs (Rat Genome 

Sequencing Consortium 2004), 17 TAARs (Lindemann et al. 2005), 106 V1Rs (Shi and 

Zhang 2007), and 59 V2Rs (Shi and Zhang 2007) from the rat (Rattus norvegicus). 

 

4.3.3 Phylogenetic reconstruction 

For each of the four olfactory chemosensory receptor superfamilies, protein 

sequences were aligned by ClustalX (Thompson et al. 1997) with manual adjustment.  

Phylogenetic trees were reconstructed using the neighbor-joining method (Saitou and Nei 

1987) for OR, TAAR, V1R, and V2R superfamilies, respectively, using the six vertebrate 

species.  One thousand bootstrap replications (Felsenstein 1985) were used except in the 
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OR tree.  The comprehensive OR tree had only 400 bootstrap replications while the 

subtrees constructed for each OR family for better resolution had 1000 bootstrap 

replications.  Trees for the four receptor superfamilies were also reconstructed for the 

mouse and rat.  MEGA (Kumar, Tamura, and Nei 2004) was used for these evolutionary 

analyses. 

 

4.3.4 Proportion of genes belonging to lineage-specific clades 

 In the phylogeny for a chemoreceptor superfamily, a lineage-specific clade of n 

genes must have resulted from at least n-1 gene gains/losses since the species diverged 

from its closest relative in our set of six vertebrates.  The total proportion of genes 

belonging to lineage-specific clades is the sum of these n-1 genes for all lineage-specific 

clades divided by the total number of genes for that chemoreceptor superfamily in that 

species.  A lineage-specific clade is a monophyletic clade of chemoreceptors from a 

single species.  We also used a more stringent definition of lineage-specific clades by the 

additional requirement that the monophyletic clade should have a bootstrap support of at 

least 70%.  To determine the proportion of MOS chemoreceptors belonging to lineage-

specific clades, we summed the n-1 genes for a species for both ORs and TAARs and 

divided it by the total number of ORs and TAARs in that species.  A similar approach 

was used to determine the proportion of VNS chemoreceptors belonging to lineage-

specific clades.  In the mouse-rat gene tree, a mouse gene and a rat gene are considered to 

be one-to-one orthologs if they form a monophyletic clade that does not include any other 

genes.  Because orthologous gene pairs are rare for VNS chemoreceptors, to avoid 

88



 

missing any orthologs, we did not require bootstrap support in defining orthologs in any 

superfamily to ensure a fair comparison.   

 

4.3.5 Functional comparison of dog ORs 

 To investigate the relationship between OR sequence divergence and functional 

divergence, we analyzed a functional dataset of dog ORs (Benbernou et al. 2007).  These 

ORs were originally classified into subfamilies of OR family 6 (Benbernou et al. 2007).  

However, simple analysis showed that they do not all share the pairwise amino acid 

sequence identity > 40%, which is required for ORs to be classified in the same family 

(Glusman et al. 2000).  To determine their correct classification, we used these ORs to 

BLAST against the dog ORs in the HORDE database 

(http://bioportal.weizmann.ac.il/HORDE/).  Based on our analysis, these 38 dog ORs 

belong to two class II OR families, OR6 and OR11.  We were also able to further classify 

these ORs into subfamilies based on the criterion that subfamily members share > 60% 

identity in protein sequence (Glusman et al. 2000).  Benbernou et al. (2007) tested the 

responses of each of these 38 ORs to seven aliphatic aldehydes of C6-C12 at three 

different concentrations (10-6, 10-8, and 10-11 M).  We coded each OR’s responses by a 

vector containing the minimal concentration that elicited a response to each aliphatic 

aldehyde.  For no response or response at 10-6, 10-8, or 10-11 M, the response was coded 

as 0, 1, 2, or 3, respectively.  For each pair of ORs, we computed the Euclidean distance 

of their response vectors and compared this functional distance with the proportional 

difference (p-distance) of their amino acid sequences. 
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4.3.6 Analysis of the OR ligand binding pocket 

 For each of the 557 pairs of one-to-one mouse-rat orthologous ORs, we randomly 

picked 10 amino acid sites.  For each random set of ten sites, we determined id, the 

number of orthologous pairs that had an identical sequence at these ten sites.  We 

repeated this process 1,000 times for both the entire coding sequence and for only the 

transmembrane domains to get two distributions for id.  The simulated values were 

compared to the actual id for the 10 sites in the experimentally determined ligand-binding 

pocket (Katada et al. 2005).  We also conducted a similar analysis for 266 paralogous 

mouse ORs that belong to the 128 mouse-specific clades in the mouse-rat tree, involving 

192 pairwise OR comparisons. 

 

4.4  RESULTS 

4.4.1 Distinct phylogenetic patterns between MOS and VNS chemoreceptors 

We reconstructed the phylogenies of all putatively functional V1Rs, V2Rs, ORs, 

and TAARs, respectively, from frog, chicken, platypus, opossum, dog, and mouse (Fig. 

4.1).  The species were carefully chosen to represent major tetrapod lineages and to avoid 

overrepresentation of placental mammals, for which many genomes have been 

sequenced.  The difference between the phylogenies of VNS chemoreceptors and MOS 

chemoreceptors is striking.  V1Rs and V2Rs form almost exclusively lineage-specific 

clades in their trees (Figs. 1A-B), the exception being the V2R2 clade.  By contrast, MOS 

chemoreceptors show a common pattern of multi-taxa clades, although there are also 

some small lineage-specific clades (Figs. 1C-F).   
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To quantify the difference in phylogenetic pattern between VNS and MOS 

chemoreceptors, we calculated the proportion of genes in each chemoreceptor 

superfamily that arose from lineage-specific gene gains and losses.  Using this metric and 

considering relatively well supported lineage-specific clades (>70% bootstrap), we found 

a significantly higher proportion of lineage-specific chemoreceptors in the VNS than in 

the MOS for frog (χ2 = 11.89, P < 0.001), platypus (χ2 = 127.99, P <10-28), opossum (χ2 = 

120.76, P <10-27), and mouse (χ2 = 201.28, P <10-44) (Fig. 4.2A).  The pattern is less 

prominent for the frog than for the mammals, probably because the frog lineage is so long 

(Fig. 4.2A) that it has less power to differentiate frog-specific events from other lineage-

specific events.  Similar results were obtained when all lineage-specific clades were 

considered regardless of the bootstrap support (Fig. 4.5). 

In the above analyses, we used six distantly related species to represent major 

tetrapod lineages.  To examine if the distinct evolutionary patterns of VNS and MOS 

chemoreceptors observed at this large evolutionary distance also occurs between closely 

related taxa, we compared the mouse and rat, two species that diverged approximately 18 

million years ago (Murphy, Pevzner, and O'Brien 2004).  We constructed new trees using 

mouse and rat chemoreceptors (Fig. 4.6) and calculated the same metric for a comparison 

of the four chemoreceptor superfamilies in the two species.  Again, we found a higher 

proportion of genes from lineage-specific gains and losses in the VNS chemoreceptors 

than in the MOS chemoreceptors for both mouse (χ2 = 401.82, P <10-88) and rat (χ2 = 

52.48, P <10-12) (Fig. 4.2B).  We also determined the number (m) of potentially 

orthologous gene pairs between the two species in each chemoreceptor superfamily by 

counting the number of monophyletic clades consisting of one mouse gene and one rat 
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gene (Appendix A1).  We then calculated the fraction (f) of genes in each chemoreceptor 

superfamily that have one-to-one mouse-rat orthologs, using f = m/min(x, y), where x and 

y are the numbers of mouse and rat genes in the superfamily, respectively.  The f values 

for V1Rs (18/106=0.17) and V2Rs (4/59=0.07) are significantly lower than those for ORs 

(557/1084=0.51) and TAARs (7/15=0.47) (P<0.015 in each of the four comparisons, 

Fisher’s exact test).   

Although about half of mouse ORs and TAARs have potential orthologs in rat, 

these genes with orthologs are not distributed evenly among different ORs and TAARs.  

Tetrapod ORs have been classified into two classes: fish-like Class I ORs and terrestrial 

Class II ORs (Freitag et al. 1995; Mombaerts 2004).  The f value is 76/123=0.62 for Class 

I ORs, significantly greater than that (481/961=0.50) for Class II ORs (P<0.01, Fisher’s 

exact test).  Mammalian TAARs have also been classified into three families: TAAR1-4, 

TAAR5, and TAAR6-9 (Lindemann et al. 2005).  All mouse and rat TAARs in families 

TAAR1-4 and TAAR5 are part of potentially orthologous gene pairs.  In contrast, only 

four of the 22 mouse and rat TAARs in family TAAR6-9 are part of potentially 

orthologous gene pairs.  Interestingly, family TAAR6-9 also has had independent 

expansion in the opossum lineage (Grus, Shi, and Zhang 2007; Hashiguchi and Nishida 

2007). 

 

4.4.2 Functional divergence after chemoreceptor gene duplication 

It is generally believed that paralogous proteins are much more likely than one-to-

one orthologs to have divergent functions (Zhang 2003).  This hypothesis can be verified 

for the chemoreceptors.  Functional evidence based on site-directed mutagenesis studies 

92



 

and computational predictions suggests that the ligand-binding domain of ORs lies in a 

hydrophobic binding pocket created in the transmembrane domains (Baldwin 1994; Man, 

Gilad, and Lancet 2004; Zhang et al. 2004; Katada et al. 2005).  Specifically, ten residues 

in transmembranes 3, 5, and 6 in mouse OR 73 (in the OR5D subfamily) were identified 

to constitute its ligand binding pocket (Katada et al. 2005).  Site-directed mutagenesis at 

these residues altered the ligand binding profile of mouse OR 73 to eugenol and related 

ligands, suggesting that these residues play a role in OR recognition of ligands.  We 

found that, between mouse-rat orthologous ORs, the 10 ligand-binding sites are more 

conserved than randomly chosen 10 sites from the entire protein (P = 0.003) or from the 

transmembrane domains (P = 0.012) (Fig. 4.3).  For the ligand-binding sites, 78.1% 

(435/557) of orthologous mouse-rat OR pairs have identical sequences, while this 

fraction is on average 55.3% for 10 randomly chosen sites from the entire protein or 

60.3% for 10 randomly chosen sites from the transmembrane domains.  In contrast, when 

we examined ORs that belong to the mouse-specific clades in the mouse-rat OR tree (Fig. 

4.6C), the 10 ligand-binding sites are more variable than randomly chosen sites from the 

entire protein (P = 0.098) or the transmembrane domains (P = 0.128).  Thus, consistent 

with the expectation, this comparison suggests that one-to-one orthologous ORs tend to 

recognize the same ligands, whereas paralogous ORs tend to recognize different ligands. 

The above results, however, do not tell how quickly a newly duplicate OR 

establishes its function.  Here we compare the relationship between OR sequence 

divergence (proxy for time) and functional divergence using a functional dataset of 38 

paralogous ORs from the dog (Benbernou et al. 2007).  Each of these 38 ORs was 

previously examined for response to seven aliphatic aldehydes of C6-C12 at three 
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different concentrations (Benbernou et al. 2007).  For dog ORs belonging to the same 

subfamily, OR functional divergence was positively correlated with protein sequence 

divergence (R2 = 0.155; P < 0.01; Fig. 4.4).  In other words, more divergent ORs 

responded more differently to ligands.  However, for ORs belonging to different 

subfamilies or different families, no correlation was observed between sequence 

divergence and functional divergence (R2 = 0.000132; P =0.77; Fig. 4.4).  These 

observations suggest that functional changes may occur only in newly duplicated OR 

genes and that once the function is established in an OR, it is no longer altered.   

 

4.5  Discussion 

The two vertebrate olfactory systems, the VNS and the MOS, overlap in some of 

their activating ligands.  But our analysis showed that they differ greatly in the 

evolutionary patterns of their chemoreceptors.  While the phylogenies of VNS 

chemoreceptors exhibit almost exclusively lineage-specific clades, those of MOS 

chemoreceptors show both multi-species clades and lineage-specific clades.  One 

potential caveat is that each chemoreceptor gene superfamily studied here form one to 

multiple gene clusters in chromosomes and different chromosomal regions may have 

different intrinsic rates of gene duplication.  However, it seems unlikely that by chance 

the two VNS chemoreceptor superfamilies are both in high duplication regions while the 

two MOS chemoreceptor gene superfamilies are both in low duplication regions.  This 

possibility becomes even lower when we consider that V1R, V2R, and OR genes are 

actually scattered in multiple chromosomes (Young et al. 2002; Zhang and Firestein 

2002; Grus and Zhang 2004; Zhang et al. 2004; Yang et al. 2005).  Thus, the contrast 
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between the evolutionary patterns of MOS and VNS receptors reflects a difference at the 

selection level rather than the mutation level. 

Although all four chemoreceptor families we investigated are present in teleost 

genomes (Alioto and Ngai 2005; Niimura and Nei 2005; Alioto and Ngai 2006; 

Hashiguchi and Nishida 2007; Pfister et al. 2007; Shi and Zhang 2007), we focused our 

comparative analysis on tetrapod taxa.  In teleost fish, both the VNS and MOS are 

expressed in sensory neurons in the olfactory epithelium because teleost fish do not have 

a separate VNO.  It has already been shown that there were shifts in olfactory 

chemoreceptor prevalence following the vertebrate transition from aquatic habitats to 

terrestrial habitats with Class I ORs and V2Rs dominating primary aquatic vertebrates 

and Class II ORs and V1Rs dominating in terrestrial vertebrates (Shi and Zhang 2007).  

Functional changes of the chemoreceptors likely accompanied this evolutionary shift.  

For example, based on the comparative sequence analysis, teleost V2Rs are thought to be 

amino acid receptors while mammalian V2Rs do not contain the conserved residues 

necessary for amino acid binding (Alioto and Ngai 2006).  Additionally, In contrast to 

patterns observed in mammalian V1Rs, teleost V1Rs are highly conserved among 

distantly related taxa (Saraiva and Korsching 2007), suggesting a different role for these 

teleost chemoreceptors.  Furthermore, the difference in environment between aquatic and 

terrestrial vertebrates has altered the nature of the ligands, such that classes of common 

teleost odorants, such as bile acids, amino acids, steroids, and prostaglandins, are not all 

common classes of tetrapod odorants.   

The basis of our analysis is in recognizing lineage-specific clades.  We defined a 

lineage-specific clade as a monophyletic clade of multiple receptors, all from one species.  
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Such clades were formed by (1) gene duplication that occurred after the evolutionary 

separations of the species studied here, (2) loss of ancestral genes in specific lineages, or 

(3) a combination of the above two processes.  The majority of our focus lies in the first 

case, although all three are likely to occur.  The striking difference in the evolutionary 

pattern between VNS and MOS chemoreceptors indicates substantively faster changes of 

the VNS receptor repertoire than the MOS receptor repertoire during evolution.  The 

VNS chemoreceptor superfamilies acquired and lost genes with such a high rate that 

there are no one-to-one orthologous chemoreceptors among the initial six tetrapod 

species examined, except for the V2R2 clade, which has a different evolutionary origin 

(Yang et al. 2005; Shi and Zhang 2007), different expression pattern and transport 

mechanism (Martini et al. 2001; Silvotti, Giannini, and Tirindelli 2005), and possibly 

different function (Young and Trask 2007) from other V2Rs.  Even between the closely 

related mouse and rat, less than 11% of VNS chemoreceptors have one-to-one orthologs, 

compared to over 48% of MOS chemoreceptors.  These results are in stark contrast to 

other groups of GPCRs, which all have at least 84% one-to-one orthologs between mouse 

and rat (Gloriam, Fredriksson, and Schioth 2007).  Our analysis of OR functions and 

ligand-binding sites showed that paralogous chemoreceptors are much more likely than 

one-to-one orthologs to have divergent functions and that the functional divergence tends 

to be established shortly after gene duplication.  Taken together, our results suggest that 

the functional profile of the VNS receptor repertoire evolves much faster than that of the 

MOS receptor repertoire, which is consistent with the prediction of the differential tuning 

hypothesis that broadly-tuned generalist MOS receptors detect an overlapping set of 
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ligands and thus are more likely to be conserved over evolutionary time than narrowly-

tuned specialist VNS receptors, which would evolve in a more lineage-specific manner.   

There are additional lines of evidence for the differential tuning hypothesis.  In 

the study that identified the 10 ligand-binding pocket residues of mouse OR 73, Katada et 

al (2005) aimed to understand the molecular mechanism allowing for the identification of 

tens of thousands of potential ligands by ~1000 ORs.  The complex combinatorial 

mechanism of OR-ligand binding by which each OR can bind multiple ligands and each 

ligand can be bound by multiple ORs (Malnic et al. 1999) is much different from the 

highly specific receptor-ligand pairing for other GPCRs (Katada et al. 2005).  These 

authors showed that the majority of ligand-binding residues for ORs are nonpolar, and the 

majority of interactions between ORs and ligands are weak hydrophobic or van der 

Waals interactions (Katada et al. 2005).  In contrast, they note that the β2-adrenergic 

receptor has polar and charged residues in its ligand binding pocket, allowing for stronger 

ionic interactions between ligand and receptor and higher ligand affinities (Wieland et al. 

1996; Katada et al. 2005).  Although the ligand binding pocket has not been identified for 

either class of VNS chemoreceptor, we found that transmembranes 3, 5, and 6 have a 

significantly higher number of polar residues (ORs mean=34.2%, V1Rs mean=37.3%; 

Fisher’s exact test, P < 10-28) and charged residues (ORs means=6.6%, V1Rs 

mean=7.2%; Fisher’s exact test,  P < 10-4) in V1Rs (from mouse, dog, opossum, 

platypus, and frog) than in ORs (from the same species), suggesting that there is potential 

for stronger and more specific ligand-receptor interactions in V1Rs than in ORs, 

consistent with the differential tuning hypothesis. 
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A number of functional studies of ORs are consistent with the hypothesis of 

differential tuning in VNS and MOS chemoreceptors.  For instance, the same ligands can 

activate distantly related ORs (Malnic et al. 1999; Sanz et al. 2005; Benbernou et al. 

2007; Stary et al. 2007).  In contrast, only a few VNS receptors are activated by 2-

heptanone and ESP1 (Leinders-Zufall et al. 2000; Kimoto et al. 2005).  Additionally, all 

VNS neurons that respond to the same ligand have the same response profile, not 

responding to any of the other V1R ligands (Leinders-Zufall et al. 2000).  In contrast, 

ORs that respond to octanal had a wide-range of response profiles to related odorants  

(Araneda et al. 2004; Benbernou et al. 2007).  Furthermore, concordant birth-and-death 

evolutionary patterns between the V2R superfamily and the two V2R ligand families 

strongly suggest high ligand specificity of VNS chemoreceptors (Chamero et al. 2007; 

Shi and Zhang 2007).  We conclude that multiple lines of evidence, particularly the 

distinct evolutionary patterns of MOS and VNS chemoreceptors, strongly support 

differential tuning between MOS and VNS receptors at the level of entire receptor 

repertoires. 
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Figure 4.1  Unrooted phylogenetic trees of all putatively functional frog, chicken, 
platypus, opossum, dog, and mouse (A) V1Rs, (B) V2Rs, (C) ORs, (D) Class I ORs, 
(E) Class II ORs from families 5 and 8 as defined by the HORDE database, and (F) 
TAARs.  Because there are too many Class II ORs to show clearly, families 5 and 8 are 
randomly chosen to illustrate the phylogenetic pattern of Class II ORs.  Other families 
show a similar pattern.  The trees were reconstructed using the neighbor-joining method 
with Poisson-corrected protein distances.  The scale bars show 0.1 amino acid 
substitutions per site.  The phylogenetic patterns show that vomeronasal system (VNS) 
chemoreceptors tend to form species-specific clades, which are rarely found among MOS 
chemoreceptors. 
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Figure 4.2  Proportion of genes belonging to lineage-specific clades ± one standard 
error in MOS receptors (white bars) and VNS receptors (gray bars) in (A) the 
distantly related species frog, platypus, opossum, and mouse and (B) the closely 
related species mouse and rat.  Statistical significant differences are indicated by * 
for P <10  , ** for P<10  , and *** for P<10  .  Data from ORs and TAARs are 
combined for MOS chemoreceptors, and data from V1Rs and V2Rs are combined for 
VNS chemoreceptors.  Bolded lines on the trees indicate the lineages for which lineage-
specific clades are defined.  Dotted lines lead to taxa that are included in phylogenetic 
analysis (Fig. 4.1) but are not presented here because they lack functional members in 
one or more chemoreceptor families.  Scale bars indicate evolutionary times (million 
years ago, MYA) (Murphy et al. 2004).  Mouse in (A) represents the mouse lineage since 
its separation from the dog lineage.  Mouse in (B) represents the mouse lineage since its 
separation from the rat lineage.
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Figure 4.3  Ligand-binding sites are conserved in mouse-rat orthologous ORs, but 
not in lineage-specific paralogous mouse ORs.  (A) Frequency distribution of the 
number of orthologous mouse-rat ORs with identical sequence at 10 randomly chosen 
sites, derived from 1000 random samples of 10 sites.  A total of 557 mouse-rat 
orthologous OR pairs are compared.  The number of orthologous ORs with identical 
sequences at the 10 ligand-binding sites (435) is significantly higher than that at 10 
randomly chosen sites from the entire protein (mean=308; P = 0.003, one-tail test) or 
from the transmembrane domains (mean=336; P = 0.012, one-tail test).   (B)  Frequency 
distribution of the number of paralogous mouse ORs with identical sequence at 10 
randomly chosen sites, derived from 1000 random samples of 10 sites.  A total of 192 
pairwise comparisons involving 266 mouse ORs in 128 mouse-specific clades of the 
mouse-rat OR tree are conducted.  The number of paralogous ORs with identical 
sequences at the 10 ligand-binding sites (96) is smaller than that at 10 randomly chosen 
sites from the entire protein (mean=114; P = 0.098, one-tail test) or from the 
transmembrane domains (mean=114; P = 0.128, one-tail test). 
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data taken from (Benbernou et al. 2007).
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Figure 4.5  Proportion of genes belonging to lineage-specific clades ± one standard 
error in MOS chemoreceptors (white bars) and VNS chemoreceptors (gray bars) in 
(A) the distantly related species frog, platypus, opossum, and mouse and (B) the 
closely related species mouse and rat.  Statistical significant differences are indicated 
by * for P <10  , ** for P<10  , and *** for P<10  .  The significance level is 0.06 for 
the frog.  Data from ORs and TAARs are combined for MOS chemoreceptors, and data 
from V1Rs and V2Rs are combined for VNS chemoreceptors.  Bolded lines on the trees 
indicate the lineages for which lineage-specific clades are defined.  Dotted lines lead to 
taxa that are included in phylogenetic analysis (Fig. 4.1) but are not presented here 
because they lack functional members in one or more chemoreceptor families.  Scale bars 
indicate evolutionary times (million years ago, MYA) (Murphy et al. 2004).  Mouse in (A) 
represents the mouse lineage since its separation from the dog lineage.  Mouse in (B) 
represents the mouse lineage since its separation from the rat lineage.  These results 
differ slightly from Fig. 4.2 in that all species-specific clades, regardless of bootstrap 
support, are considered.
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Figure 4.6  Unrooted phylogenetic trees of all putatively functional mouse and rat 
(A) V1Rs, (B) V2Rs, (C) ORs (D) Class I ORs, (E) Class II ORs from families 5 and 
8 as defined by the HORDE database, and (F) TAARs.  The trees were reconstructed 
using the neighbor-joining method with Poisson-corrected protein distances.  The scale 
bars show 0.1 amino acid substitutions per site. 
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CHAPTER 5 
 

ORIGIN OF THE VOMERONASAL SYSTEM IN THE COMMON ANCESTOR 
OF ALL VERTEBRATES 

 
5.1 ABSTRACT 
 
 Comparative genomics provides a useful tool for inferring the evolutionary 

history and origin of physiological systems, particularly when this information is difficult 

to ascertain by morphological traits.  One such example is the vomeronasal system 

(VNS), a vertebrate nasal chemosensory system that is responsible for detecting 

intraspecific pheromonal cues as well as environmental odorants.  The morphological 

components of the VNS are found only in tetrapods, but the genetic components of the 

system have been found in teleost fish, in addition to tetrapods.  To determine when the 

VNS originated, we searched for the VNS-specific genes in the genomes of two early 

diverging vertebrate lineages: the sea lamprey from jawless fishes and the elephant shark 

from cartilaginous fishes.  Genes encoding V1Rs (vomeronasal type l receptors) and 

Trpc2 (transient receptor potential cation channel, subfamily C, member 2), two 

components of the vomeronasal signaling pathway, are present in the sea lamprey 

genome and both are expressed in the olfactory epithelium, suggesting the presence of a 

primordial VNS in the common ancestor of all extant vertebrates.  Additionally, all three 

VNS genes, Trpc2, V1Rs, and V2Rs (vomeronasal type 2 receptors), are found in the 

genome of the elephant shark.  Coupled with evolutionary analysis of the vertebrate main 
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olfactory system and taste system, our study reveals staggered origins within and between 

vertebrate sensory systems.  These results are important for understanding how vertebrate 

sensory systems originated and illustrate the utility of genome sequences of early 

diverging vertebrates for understanding the evolution of vertebrate-specific systems 

 

5.2 INTRODUCTION 

 Comparative genomics is a useful tool for understanding the evolution of 

physiological systems (Arendt 2003; Zhang and Webb 2003; Okabe and Graham 2004; 

Go et al. 2005; Serb and Oakley 2005; Grus and Zhang 2006), because it provides 

information about the phylogenetic distribution of system-specific genetic components 

(Wray and Abouheif 1998; Serb and Oakley 2005).  This approach allows a more 

complete understanding of the evolution of physiological systems than was previously 

available with only morphological characterization.  For example, this approach has been 

used to identify a common origin for the invertebrate and vertebrate visual systems, two 

systems that were thought to have distinct origins (Gehring 1996; Arendt et al. 2004), and 

to identify how lepidopteran scales and the tetrapod parathyroid gland evolved in their 

respective lineages (Galant et al. 1998; Okabe and Graham 2004).  Here, we use this 

approach to determine the origin of the vertebrate vomeronasal system (VNS), a nasal 

chemosensory system responsible for detecting intraspecific pheromonal cues as well as 

some environmental odorants.    

 The VNS is one of the two nasal chemosensory systems found in many 

vertebrates (the other being the main olfactory system) (Grus and Zhang 2006).  Prior to 

the identification of the VNS genetic components, the evolutionary history of the VNS 
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was based on the phylogenetic distribution of VNS morphological characteristics, the 

vomeronasal organ (VNO), an organ in the nasal cavity with sensory neurons expressing 

vomeronasal receptors, and the accessory olfactory bulb, which is the part of the brain 

excited by the VNO sensory neurons (Bertmar 1981; Eisthen 1992; Dulka 1993; Eisthen 

1997).  Because these morphological characters are found only in tetrapods, the VNS was 

thought to have evolved in the common ancestor of tetrapods as an adaptation to 

terrestrial living (Bertmar 1981).  However, finer-scale studies of the morphological 

components, such as sensory neuron morphology, gave hints that the VNS might exist in 

an unrecognized form in teleost fish (Eisthen 1992; Dulka 1993).  Furthermore, evidence 

of VNS development in larval amphibians and neotenic salamanders suggests that the 

VNS is not an adaptation to terrestrial life (Eisthen 2000; Jermakowicz et al. 2004).  

Therefore, an additional type of character became necessary to address the lingering 

possibility of the presence of the VNS in teleosts. 

 The solution came with the identification of VNS-specific genes, which are 

defined as the genetic components of the vomeronasal signal transduction pathway that 

are not used for other functions and include two receptor family genes and a channel 

protein gene.  The two families of VNS-specific receptors, V1Rs and V2Rs, were first 

identified from rodents (Dulac and Axel 1995; Herrada and Dulac 1997; Matsunami and 

Buck 1997; Ryba and Tirindelli 1997).  Both families are 7 transmembrane domain G 

protein-coupled receptors (GPCRs), but they are evolutionarily unrelated.  Each type of 

receptor couples to a unique G protein (Dulac and Axel 1995; Ryba and Tirindelli 1997), 

and are spatially segregated in expression in tetrapods (Hagino-Yamagishi et al. 2004; 

Takigami et al. 2004; Date-Ito et al. 2008).  It has been proposed that V1Rs and V2Rs are 
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specialized for binding to air-borne molecules and water-soluble peptides, respectively, 

although this functional separation may not be complete (Shi and Zhang 2007).  In 

addition to the receptors, a calcium channel protein, Trpc2, was identified with specific 

expression in the VNO (Liman, Corey, and Dulac 1999).  Its indispensable and sole 

function in the vomeronasal signal transduction pathway is supported by studies of 

Trpc2-deficient mice, which show altered intraspecific interactions such as sex 

discrimination and male-male aggression (Leypold et al. 2002; Stowers et al. 2002; 

Kimchi, Xu, and Dulac 2007) and by evolutionary studies that found catarrhine primates, 

which do not have a VNO, have a nonfunctional Trpc2 gene (Liman and Innan 2003; 

Zhang and Webb 2003). 

 Interestingly, despite that the morphological traits of the VNS are found only in 

tetrapods, VNS-specific genes are present in teleost fish and exhibit expression patterns 

consistent with their involvement in a distinct teleost olfactory system (Cao, Oh, and 

Stryer 1998; Naito et al. 1998; Dukes et al. 2004; Hansen, Anderson, and Finger 2004; 

Pfister and Rodriguez 2005; Sato, Miyasaka, and Yoshihara 2005).  These findings 

suggest that a primordial VNS existed in the common ancestor of teleosts and tetrapods 

(Grus and Zhang 2006).  Because earlier diverging vertebrates, such as jawless fish and 

cartilaginous fish, have a single olfactory organ as teleosts do, the VNS was not thought 

to be present in these lineages.  However, based on the findings that teleost fish have one 

organ but two distinct olfactory signaling pathways, it is possible that even earlier 

diverging vertebrates may possess the VNS.  Therefore, armed with the three types of 

VNS-specific genes and the new whole-genome sequences of a jawless fish (sea lamprey) 
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and a cartilaginous fish (elephant shark), we explore the evolutionary history of the VNS 

in the common ancestor of all vertebrates.  

 

5.3 MATERIALS AND METHODS 

5.3.1 Computational identification of sea lamprey, elephant shark, and tunicate 

olfaction genes 

 TBLASTN searches for V1R, V2R, and Trpc2 genes were conducted on the sea 

lamprey (Petromyzon marinus), elephant shark (Callorhinchus milii), tunicate (Ciona 

intestinalis), and amphioxus (Branchiostoma floridae) genomes.  The 5.9× coverage sea 

lamprey genome sequence is available from Ensembl 

(http://pre.ensembl.org/Petromyzon_marinus/index.html).  The 1.4× elephant shark 

genome sequence is available from the Institute of Molecular and Cellular Biology 

(http://esharkgenome.imcb.a-star.edu.sg/) (Venkatesh et al. 2007).  The 11× tunicate 

genome sequence is available from the Joint Genome Institute (http://genome.jgi-

psf.org/Cioin2/Cioin2.home.html).  The 8.1× amphioxus genome sequence is available 

from the Joint Genome Institute (http://genome.jgi-psf.org/Brafl1/Brafl1.home.html).  

Zebrafish V1Rs, V2Rs, and Trpc2 (Pfister and Rodriguez 2005; Sato, Miyasaka, and 

Yoshihara 2005; Shi and Zhang 2007) were used as query sequences.  Because these taxa 

are distantly related to zebrafish, we used an e-value cut-off of 10-1.  The hits were then 

used as queries to BLAST the nr database of GenBank.  A putative V1R gene was 

considered to be real if its best hit was a previously known V1R, and similar criteria were 

used for Trpc2 and V2Rs.   
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5.3.2 Sequence alignment and phylogenetic analysis 

Gene sequences were aligned per protein sequence alignment by Clustal_X 

(Thompson et al. 1997) with manual adjustment.  Phylogenetic trees were reconstructed 

using the neighbor-joining method (Saitou and Nei 1987) with Poisson-corrected 

distances (Nei and Kumar 2000), and were evaluated by 1000 bootstrap replications 

(Felsenstein 1985).   

 

5.3.3 Identification of expression pattern of sea lamprey olfaction genes 

Adult sea lampreys were obtained from Hammond Bay Biological Station 

(Millersberg, Michigan).  They were euthanized according to university animal care 

procedures (UCUCA #09470).  Genomic DNA was isolated from fresh tissue with a 

DNeasy Tissue Kit (Qiagen).  Sea lamprey tissues (testes, heart, tongue, olfactory organ) 

were dissected out and frozen in an ethanol/dry ice bath.  RNAqueous-4PCR (Ambion) 

was used to extract RNA from the tissues and RetroScript kit (Ambion) was used for 

cDNA synthesis.   

 Putative sea lamprey Trpc2 and V1R genes were amplified from both genomic 

DNA and cDNA.  Based on an alignment of Trpc2 from zebrafish, frog, mouse, and dog, 

nested degenerate primers for Trpc2 were designed using CODEHOP (Rose et al. 1998; 

Rose, Henikoff, and Henikoff 2003).  These primers amplify a portion corresponding to 

mammalian Trpc2 exons 13-15.  With primers 1315F1 and 1315R1 (Table 5), the 

following cycling conditions were used: 94°C for 3 minutes, followed by 35 cycles of 

94°C for 30 seconds, 50°C for 30 seconds, and 72°C for 1 minute, followed by a final 

elongation for 5 minutes at 72°C.  The nested PCR with primers 1315F2 and 1315R2 
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(Table 5) was conducted with the same cycling conditions except that the annealing 

temperature was increased to 53°C.  V1Rs have a single coding exon, making it difficult 

to distinguish true V1R expression from genomic contamination of the cDNA.  To 

investigate V1R expression patterns unambiguously, we performed 3’RACE with a 

FirstChoice RLM RACE kit (Ambion) with primers V1RRACEOUT and V1RRACEIN, 

following the manufacturers instructions. All PCRs were carried out in a 25 uL volume 

with the following final concentrations: 40nM of each primer, 200uM dNTPs, and 

1.5mM MgCl2.  PCR amplicons were confirmed on an agarose gel. 

 

5.4 RESULTS 

5.4.1 V1Rs from early diverging vertebrates 

 We were able to identify three and two putatively functional V1R genes from the 

sea lamprey and elephant shark genomes, respectively.  Given the relatively high 

coverage of the sea lamprey genome (5.9×), this likely represents the majority of the 

lamprey V1R repertoire.  However, given the extreme protein distance between the 

known teleost V1Rs and the putative lamprey V1Rs and the rapid evolution characteristic 

of this gene family in mammals (Grus and Zhang 2006), we cannot exclude the 

possibility that some lamprey V1Rs were too divergent to detect by our methods.  The 

low coverage of the elephant shark genome (1.4×) suggests that the V1R repertoire might 

be incomplete based on this search.  The small sea lamprey and elephant shark V1R 

repertoire size is similar to what is observed in teleost fish (Saraiva and Korsching 2007), 

but contrasts to that in most lineages of tetrapods (Shi and Zhang 2007). 
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To understand the evolution of the V1Rs in early diverging vertebrates, we 

reconstructed a protein-sequence-based V1R phylogeny with the 3 putatively functional 

sea lamprey V1Rs, 2 putatively functional elephant shark V1Rs, 6 putatively functional 

zebrafish V1Rs (Saraiva and Korsching 2007), 5 putatively functional Tetraodon 

(Tetraodon nigriviris) V1Rs (Saraiva and Korsching 2007), 21 putatively functional frog 

(Xenopus tropicalis) V1Rs (Shi and Zhang 2007), and 13 representative mammalian 

V1Rs (Shi et al. 2005) (Fig. 5.1A).  These 13 mammalian genes represent 13 V1R gene 

groups present in the mouse and rat genomes (Grus et al. 2005).  Although other 

placental mammal V1R families likely exist and marsupial and monotreme V1R families 

are unique to their lineages, previous studies of V1Rs from non-mammalian vertebrates 

have shown that all mammalian V1Rs will cluster together in relation to non-mammalian 

V1Rs (Grus et al. 2007; Saraiva and Korsching 2007).  One sea lamprey V1R and one 

elephant shark V1R cluster with a teleost V1R clade that was lost in mammals: teleost 

V1R3-4.  These teleost V1Rs are unique in that their coding regions contain introns 

(Saraiva and Korsching 2007).  However, according to the BLAST searches, the sea 

lamprey and elephant shark V1R3-4s contain a single coding exon, suggesting that these 

teleost V1Rs acquired the introns after the teleost-tetrapod separation.  The other elephant 

shark V1R clusters with teleost V1R2, which has orthologs in all teleost fish thus far 

studied (Pfister et al. 2007; Saraiva and Korsching 2007).  The remaining sea lamprey 

V1Rs do not cluster with other teleost V1Rs.  Neither elephant shark nor sea lamprey 

V1Rs cluster with the teleost-specific V1R5-6 genes or the V1R1 gene, which has 

homologs in tetrapods.  If we assume the V1R tree is rooted with T2Rs (bitter taste 

receptors), the phylogenetic reconstruction (Fig. 5.1A) strongly supports the clustering of 
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both sea lamprey and elephant shark genes with other.  The tree also presents strong 

evidence that the ancestral vertebrate genome had at least one V1R, while the ancestral 

jawed vertebrate genome likely had at least two V1Rs.  With 3’RACE, we confirmed that 

at least one of the sea lamprey V1Rs is expressed in the olfactory epithelium (Fig. 5.1B).  

Although there are 3’RACE V1R products from cDNA from testes and tongue, these 

tissues do not express Trpc2 (see below), so their expression does suggest the VNS 

pathway is acting in non-chemosensory tissue in early diverging vertebrates.   

 

5.4.2 V2Rs from early diverging vertebrates  

No V2R homologs were found in the sea lamprey genome.  However, V2Rs were 

present in the elephant shark genome.  Because of their complex multi-exon structure and 

because the elephant shark genome was not assembled, no complete V2Rs were 

identified.  However, both the 7 transmembrane domain and extracellular domain of the 

V2R have multiple hits, and two shark V2Rs contain multiple exons and cover over 600 

amino acids each.  To recover as many as possible unique shark V2Rs, we required that a 

hit be at least 200 amino acids long in the 7 transmembrane region and share no more 

than 1% sequence identity with another elephant shark V2R in this region.  Based on 

these criteria, we found 32 unique shark V2Rs, which is likely a conservative estimate for 

the total number of shark V2Rs.  To understand the evolutionary relationships of the 

shark V2Rs with other known vertebrate V2Rs, we analyzed the 25 V2Rs of these 32 

partial genes with the most complete sequence in the 7 transmembrane domain with 43 

zebrafish V2Rs, 18 fugu V2Rs, and 4 tetraodon V2Rs, 249 frog V2Rs, and 5 

representative mammalian V2Rs (Shi and Zhang 2007).  These mammalian V2R genes 

119



   

were chosen from diverse mammalian V2R clades including the V2R2 clade.  As in the 

V1Rs, teleost V2Rs form distinct clades from tetrapod V2Rs, aside from the V2R2 group 

(Shi and Zhang 2007).  The 25 shark V2Rs used range in length from 222 to 684 amino 

acids. Among these shark V2Rs was an ortholog to the V2R2 clade that was previously 

known to have distinct expression, function, and origin from other V2Rs (Shi and Zhang 

2007; Young and Trask 2007).  All of the remaining elephant shark V2Rs fall within the 

teleost fish V2R clade.  The majority of these shark V2Rs (16 of 25) cluster together with 

high bootstrap support in a shark-specific clade.  One of the remaining shark V2Rs 

appears to be orthologous to a Fugu V2R.  The remaining seven shark V2Rs are found 

within the teleost V2R clade, but cluster with high support with at most one other 

elephant shark V2R.   

 

5.4.3 Trpc2 from early diverging vertebrates 

 From the sea lamprey genome, we identified two copies of Trpc2 exons 14 and 

15.  One of these contigs has a nonsense mutation in exon 14 and appears to be a 

pseudogene.  The other contig has an open reading frame across this region.  

Additionally, we amplified a 554 nucleotide cDNA sequence corresponding to Trpc2 

exons 12-15.  The 3’ end of this sequence matched the genomic sequence containing 

exons 14 and 15 with the open reading frame.  In addition to the two copies of exons 14 

and 15, we identified a single copy of exon 7 from the genome sequence, corresponding 

to a 92 amino acid region unique to the longest exon in vertebrate Trpc2.  However, 

BLAST searches of the sea lamprey genome did not identify contigs with high sequence 
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similarity to exons 12 or 13, or any of the other exons.  From the elephant shark genome 

we identified one sequence that corresponded to vertebrate Trpc2 exon 8.   

To confirm that the sequences we identified are indeed the Trpc2 gene, we 

reconstructed a phylogeny including the sea lamprey Trpc2 exons 12-15 with the 

homologous regions from tetrapod and teleost Trpc2 protein sequences and other mouse 

members of the Trpc gene family (Fig. 5.3A).  The identified sea lamprey Trpc2 

sequence clusters with high bootstrap with the other vertebrate Trpc2 genes, strongly 

suggesting that this sequence comes from the sea lamprey ortholog of Trpc2.  We did not 

include the sea lamprey Trpc2 exon 7 sequence in the alignment for the phylogeny 

because we do not know which copy it belongs with.  Because we could not identify the 

same exons of Trpc2 from both the lamprey and shark genomes, we could not include 

both species in the same tree.  However, a separate phylogenetic reconstruction using 

exon 8 sequences confirms that the partial Trpc2 sequence of the elephant shark is indeed 

Trpc2 (Fig. 5.3B).  Note that the gene tree including the elephant shark Trpc2 exon 8 is 

not completely concordant with the known species tree, as the shark appears sister to the 

frog in the gene tree.  This discordance may have resulted from the use of a short 

sequence (67 amino acids) in a region that has high sequence identity between teleosts 

and tetrapods.  Regardless of cause of the discordance, the shark sequence clusters with 

the other vertebrate Trpc2 sequences, rather than with other Trpc sequences.  To 

determine if the sea lamprey Trpc2 functions in chemoreception, we examined the 

expression pattern of Trpc2 in sea lamprey using RT-PCR.  We found that the sea 

lamprey Trpc2 is expressed in the olfactory tissue and has low expression in the heart, but 

it is not expressed in the testes or tongue (Fig. 5.3C). 
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5.4.4 VNS-specific genes are absent from non-vertebrate chordate genomes 

 To investigate if these genes were also present in non-vertebrate chordates, we 

searched for them in two representative genomes from closely related non-vertebrate 

chordate lineages, urochordates and cephalochordates.  None of the three VNS-specific 

genes were found in either the tunicate or the amphioxus genomes.  The absence of the 

three VNS-specific genes from the genomes of representative species from two distinct 

non-vertebrate chordate lineages, although not definitive, strongly suggests that this 

signal transduction pathway originated in the most recent common ancestor of all extant 

vertebrates. 

   

5.5 DISCUSSION 

 Previous studies have established that the VNS likely existed in the common 

ancestor of bony vertebrates.  To examine if the system originated even earlier, we 

examined the elephant shark and sea lamprey, which represent cartilaginous fish and 

jawless vertebrates, respectively.  With both computational and experimental methods, 

we identified two of the three VNS-specific genes from the sea lamprey (V1Rs and 

Trpc2) and all three VNS-specific genes (V1Rs, V2Rs, and Trpc2) from the elephant 

shark.  In addition, we showed that lamprey V1Rs and Trpc2 are expressed exclusively in 

the olfactory epithelium, suggesting an ancestral role for these genes in chemoreception.  

Although V2Rs were identified from the elephant shark genome, they were not found in 

the sea lamprey genome.  Three scenarios could cause this result.  First, V2Rs might not 

be present in the sea lamprey genome, either because of gene loss in the lamprey lineage 
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or because this gene superfamily did not originate until after the divergence of jawed and 

jawless vertebrates.  Second, V2Rs might be present in the sea lamprey genome but 

absent in the genome assembly because the current assembly is incomplete.  Given that 

we could only identify three exons of Trpc2 from the genome sequence, this explanation 

seems plausible.  However, even if V2Rs are present in the sea lamprey genome, the gene 

family would be very small because the elephant shark genome sequence with much 

lower coverage has over 30 V2Rs.  Finally, V2Rs in the sea lamprey genome could be so 

divergent from the other vertebrate V2Rs that they are not hit in our BLAST search.  

Attempts to amplify V2Rs from the sea lamprey genomic DNA or olfactory cDNA with 

degenerate V2R primers (Cao, Oh, and Stryer 1998) were also unsuccessful.  However, 

the divergent sequence hypothesis cannot explain our BLAST results, as we were able to 

identify related non-V2R genes, such as calcium-sensing receptors (CaSRs) and 

metabotropic glutamate receptors.  Thus, our search was sensitive enough to identify 

distantly related sequences and should have been able to identify divergent V2Rs.  While 

we are unsure of the exact time of origin of the V2R superfamily, it arose at least before 

the divergence of cartilaginous fish and bony vertebrates.  Identifying these genes from 

the other jawless vertebrate lineage, the hagfishes, would reveal if this family was present 

in the ancestor of all extant vertebrates and was subsequently lost in the lamprey lineage. 

 Although the evolutionary history of V2Rs remains ambiguous, the two other 

VNS-specific genes, V1Rs and Trpc2, are clearly present in the sea lamprey genome and 

must have been present in the common ancestor of all extant vertebrates.  Additionally, 

the only sea lamprey tissue with expression of both V1Rs and Trpc2 is the olfactory 

epithelium suggesting an ancestral role for this system in chemoreception.  Further 
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support for the origin of the VNS in the ancestor of vertebrates would come from 

identifying the exact expression location within the sea lamprey olfactory epithelium.  

Like in teleost fish, olfactory sensory neurons of sea lamprey are polymorphic, with three 

morphologies: ciliated, microvillar, and crypt (Laframboise et al. 2007).  In teleost fish, 

the VNS-specific genes have been shown to be expressed in the apical layer of 

microvillar sensory neurons while the main olfactory system (MOS)-specific genes are 

expressed in a more basal layer of ciliated sensory neurons (Hansen, Anderson, and 

Finger 2004; Sato, Miyasaka, and Yoshihara 2005).  If the two olfactory systems are 

distinct in the sea lamprey, we would predict that such spatial distinction is seen in the 

expression of sea lamprey V1Rs and Trpc2 compared to main olfactory system genes, 

which will be interesting to confirm in the future. 

 While the expression patterns of the VNS-specific genes suggest a role in 

chemoreception, it is still unclear what the exact physiological function of the VNS was 

in early diverging vertebrates.  In tetrapods, the VNS was thought to be the olfactory 

system for detecting pheromones, while the main olfactory system detected general 

odorants (Scalia and Winans 1975).  However, experimental evidence suggests that there 

is not such a clear functional distinction (Restrepo et al. 2004; Baxi, Dorries, and Eisthen 

2006; Spehr et al. 2006; Kelliher 2007).  Sea lampreys produce unique bile acids which 

act as pheromones both in migration and mate finding (Li, Sorensen, and Gallaher 1995; 

Li et al. 2002; Siefkes and Li 2004).  However, bile acids in teleost fish are known to 

require components of the main olfactory signal transduction pathway (Hansen et al. 

2003), and interruption of the VNS signal transduction pathway had no effect on bile acid 

olfactory response (Hansen et al. 2003).  In contrast to the large V1R gene repertoire and 
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rapid gene turnover in mammals, the small repertoire size and strict orthologous 

relationships in this gene family across teleosts suggest that V1R chemoreception may 

play different physiological roles in teleosts than in mammals.  The evolutionary patterns 

observed in the early diverging vertebrate V1Rs are similar to what is seen in teleosts, 

suggesting that the sea lamprey and elephant shark V1Rs might have a function similar to 

those in teleosts.   

 Given that the VNS-specific genetic components arose in the ancestor of 

vertebrates, how did the system originate?  Because of their related functions, it was 

hypothesized that the VNS arose via duplication of the main olfactory system (Eisthen 

1992; Eisthen 1997).  While the two systems are morphologically similar and, in 

tetrapods, the two distinct organs both develop from the olfactory placode (Taniguchi et 

al. 1996; Taniguchi and Taniguchi 2008), the genetic components of their signaling 

pathways are distinct and non-homologous (Dulac and Axel 1995).  The two 

chemoreceptor families expressed in teleost and tetrapod main olfactory systems, odorant 

receptors (ORs) and trace amine-associated receptors (TAARs), are not closely related to 

the V1Rs and V2Rs.  In contrast, both vomeronasal receptor families have closely related 

homologs in the vertebrate taste system: V1Rs are closely related to T2R bitter taste 

receptors (Adler et al. 2000) and V2Rs are closely related to T1R sweet and umami taste 

receptors (Hoon et al. 1999).  Thus, it is possible that the VNS arose as a duplication of 

the taste system (or the converse).  However, BLAST searches of the sea lamprey 

genome with either T1Rs or T2Rs as query sequences reveal no taste receptors, 

suggesting that these genes are not present in the sea lamprey genome.  Additionally, the 

sea lamprey genome does not appear to have an ortholog for Trpm5, a channel protein 
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necessary for bitter, sweet, and umami taste signal transduction (Perez et al. 2002).  The 

taste receptors and Trpm5 are also absent from the tunicate genome.  Because jawless 

fish do not have a tongue that is homologous to the tetrapod tongue (Iwasaki 2002), it 

might be expected that these genes are absent.  However, this organ is also absent from 

jawed fish (Iwasaki 2002), while these animals have both T1Rs and T2Rs (Shi and Zhang 

2006).  Additionally, searches of the elephant shark genome reveal orthologs of T1Rs and 

Trpm5 (Fig. 5.4), but no T2R homologs. Since the VNS arose prior to the taste system, it 

does not appear that the VNS evolved as the result of a duplication of the taste system, 

although the converse remains a possibility.    

In contrast to the vertebrate-specific VNS and taste system, the vertebrate main 

olfactory system appears to be much older.  The two MOS-specific receptor families, 

ORs and TAARs, have been identified with olfactory epithelium expression in lamprey 

(Berghard and Dryer 1998; Freitag et al. 1999).  Additionally, a closely related receptor 

has been identified in the amphioxus genome and shows expression in amphioxus 

primary sensory neurons (Satoh 2005).  Further BLAST searches on the amphioxus 

genome sequence identify that this gene is part of a large receptor family that is 

homologous to vertebrate ORs (Grus and Zhang, unpublished data), suggesting that ORs 

originated in invertebrates.  Interestingly, this gene family is absent from the tunicate 

genome (Satoh 2005).  This combined analysis of vertebrate chemosensory receptors has 

unveiled a staggered pattern for the timing of vertebrate sensory system origins (Fig. 5.5).  

The two main olfactory system chemoreceptor families, ORs and TAARs, arose in the 

common ancestor of cephalochardates and vertebrates and in the ancestor of vertebrates, 

respectively.  The two VNS chemoreceptor families, V1Rs and V2Rs, evolved in the 
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ancestor of vertebrates and jawed vertebrates, respectively.  The two taste chemoreceptor 

families, T1Rs and T2Rs, evolved in the ancestor of jawed vertebrates and bony 

vertebrates, respectively.  Searching for T2Rs in non-teleost ray-finned fish, such as the 

sturgeon or the bichir, would give a clearer picture of T2R origin.  This staggered pattern 

could reflect changes in environment, social structure, ecological exploitations or 

alternative sensory systems, such as electroreception or the lateral line system, that 

appear in different lineages throughout vertebrate evolution.  

Recent comparative analysis of vertebrate and non-vertebrate genomes suggests 

that 22% of vertebrate genes have no homologs in non-vertebrates (Prachumwat and Li 

2008).  However, since this analysis includes only representative vertebrate genomes 

from tetrapods and teleosts, it does not tell us when in vertebrate evolution these 

vertebrate-specific genes arose.  Although the current sea lamprey genome assembly has 

limited coverage and the shark genome sequence has low coverage (Venkatesh et al. 

2007), we have shown that these genome sequences provide a more complete picture of 

vertebrate genome evolution.  The majority of identified vertebrate-specific genes were 

not part of large gene families, but an exception was observed for genes with a biological 

process of response to external biotic and abiotic stimuli and with cellular localization to 

extracellular space and plasma membrane (Prachumwat and Li 2008).  These 

characteristics exactly describe chemosensory receptors and immunity genes.  Along 

these lines, V2Rs and T1Rs are not the first identified gene families that have evolved 

early in vertebrate evolution but after the divergence of the jawless vertebrates.  In 

addition, the adaptive immune system found in tetrapods and teleosts evolved in the 

common ancestor of jawed vertebrates (Bartl et al. 1997), while jawless vertebrates have 
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independently evolved a different adaptive immune system (Alder et al. 2005; Pancer et 

al. 2005).   Thus, characteristics of vertebrate-specific genes suggest specific 

physiological functions whose evolutionary origins can be determined by focusing on 

early diverging vertebrate genomes such as those of jawless vertebrates and cartilaginous 

fish. 
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Figure 5.1 V1Rs are found in both the sea lamprey and elephant shark genomes and 
are expressed in the sea lamprey olfactory epithelium.  (A) Unrooted phylogenetic 
reconstruction of 3 sea lamprey, 2 elephant shark, 7 teleost fish from zebrafish and fugu, 
21 frog V1Rs, and 13 mammalian V1Rs.  If we assume T2R taste receptors (black) are 
the outgroup, all vertebrate V1Rs cluster together.  Bootstrap support for each of the four 
teleost V1R families is given.  Scale bar shows 0.2 amino acid substitutions per site.  
(B) Sea lamprey V1R expression in the olfactory epithelium. Presence of cDNA in all 
samples was verified by amplification of sea lamprey actin.
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Figure 5.2  V2Rs are present in the elephant shark genome.  An unrooted phylogenetic 
reconstruction of the 7 transmembrane domain from 5 mammalian V2Rs, 249 frog V2Rs, 
43 zebrafish V2Rs, 4 tetraodon V2Rs, 18 fugu V2rs, and 25 elephant shark V2Rs.  The 
scale bar shows 0.1 amino acid substitutions per site.  The unique subfamily V2R2 is 
shown and includes an elephant shark V2R.
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Figure 5.3  Trpc2 is present in the sea lamprey and elephant shark genomes.  
Phylogenetic reconstruction of (A) sea lamprey Trpc2 exons 7, 14, and 15 and (B) 
elephant shark Trpc2 exon 8 with Trpc2 from mouse, rat, tamarin, fugu, zebrafish, and 
frog.  The trees are rooted with Trpc1, Trpc3, Trpc4, Trpc5, Trpc6, and Trpc7 from mouse.  
The scale bar shows 0.1 amino acid substitutions per site.  (C) Trpc2 is expressed in the 
sea lamprey olfactory epithelium.  Presence of cDNA in all samples was verified by 
amplification of sea lamprey actin (Figure 5.1B).
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Figure 5.4  Genetic components of the taste system are present in the elephant shark 
genome.  (A) Trpm5 and (B and C) T1Rs are found in the genome.  A 342-amino-acid 
sequence from elephant shark Trpm5 is aligned with Trpm5 from mouse, rat, 
chimpanzee, dog, zebrafish, and tetraodon.  The tree is rooted with other members of the 
Trpm family from mouse.  Although no full length T1R was identified from the elephant 
shark genome, two elephant shark sequences hit the (B) N-terminal and (C) C-terminal 
ends of the T1R amino acid sequences.  The elephant shark T1Rs were aligned with T1Rs 
from (Shi and Zhang 2006). From the trees it is difficult to classify either the N-terminal 
or C-terminal elephant shark T1Rs into the predefined T1R1, T1R2, or T1R3 genes, and 
it is unclear whether the four elephant shark partial T1Rs represent two, three, or four 
genes.  The N-terminal tree (B) suggests at least one elephant shark T1R is homologous 
to T1R3, a member of the gene family that will heterodimerize with either T1R1 or T1R2 
for umami and sweet taste reception in mammals, respectively.  The C-terminal tree (C) 
suggests the duplication in the T1R family leading to T1R1 and T1R2 happened in the 
ancestor of bony vertebrates.  Both trees offer different relationships between the three 
types of T1Rs, but the N-terminal tree (C) is more consistent with previous studies of the 
evolution of T1Rs in teleosts and tetrapods (Shi and Zhang 2006).  Additionally, neither 
T1R tree contains a monophyletic T1R2 clade, as the mammalian T1R2s are distinct from 
the teleost fish T1R2s.  This finding is not grossly inconsistent with the previous 
evolutionary study, which showed only marginal support for a clade containing both 
mammalian and tetrapod T1R2s (Shi and Zhang 2006).  Given that the teleost fish 
T1R2/T1R3 complex responds to amino acids (Oike et al. 2007) rather than sweet 
tastants as in mammals (Mombaerts 2004), we do not know if the polyphyly and 
paraphyly of T1R2s in B and C, respectively, suggests divergent sequences or truly 
independent origins for teleost and mammalian T1R2s.  More complete sequence of these 
four partial elephant shark T1Rs would reveal more about the evolution of this family and 
the T1R1/T1R3 and T1R2/T1R3 complexes. The scale bars show 0.1 amino acid 
substitutions per site.  The T1R trees are rooted with vertebrate V2Rs.  Bootstrap support 
over 70% is shown. 
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Figure 5.5 Origins of vertebrate chemosensory systems are staggered throughout 
vertebrate evolution. 
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Table 5.1 Primers for sea lamprey VNS genes
Annealing 

Gene Primers Sequence (5' -> 3') Temperature (˚C)
V1R V1RRACEOUT CTGAGCGTCTTTCGCTTCTT 55

V1RRACEIN GTCACCAACAAGGCGTACCT 55
Trpc2 1315F1 TCATCGGGACCGCCTTYYTNTGYGG 50

1315F2 CCTGTGCGGCATCAACAAYRTNTAYGT 53
1315R1 TGGGGGTGGGGATGAYRTTRAANGG 50
1315R2 CGGGCATGGTCAGGCCYTCNCKRAA 53
1215F AAAGACGACCCCCAGATCAT 55
1215R GCAAACTTCCACTCCACGTC 55
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CONCLUSION 

 Using the genes specific to the vomeronasal system (VNS), I addressed three 

questions concerning the evolution of the VNS that were previously unanswerable 

without both knowledge of system-specific genes and full genome sequences.  First, I 

investigate how the V1R vomeronasal receptor family evolves in mammals and how the 

evolution of V1Rs reflects known variation in VNS morphological components.  Next, I 

addressed how the evolutionary patterns of VNS receptors compare to the evolutionary 

patterns of main olfactory system and evaluated the results in terms of the two systems’ 

potential functional differences.  Finally, I determined when during vertebrate evolution 

the VNS evolved. 

 In Chapter 1, I show that species-specificity of V1R vomeronasal repertoires in 

mouse and rat evolved via gene-sorting evolution following the birth-and-death model of 

gene family evolution.  As such, frequent gene gain and gene loss has characterized this 

gene family in these two species resulting in a very low frequency of V1R orthologous 

mouse-rat pairs.  Additionally, gene loss led to two mouse-specific and two rat-specific 

V1R subfamilies. 

 In Chapter 2, I further explore the evolution of the V1R family in a wider range of 

mammalian taxa with different levels of vomeronasal organ complexity.  Despite what 

had been shown previously for humans, mouse, and rat, we showed that not all 

mammalian taxa have a large V1R repertoire size.  Instead, we found that the V1R gene 
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family has the largest functional size ratio (from 187 in mouse to 8 in dog) of any 

mammalian gene family.  Furthermore, we find that repetitive element activity likely led 

to the larger gene family size in rodents compared to dog and cow.  Finally, we find that a 

representative marsupial, the opossum, has had independent expansions in the same V1R 

family.  We find that the functional V1R repertoire size across all these mammalian taxa 

is positively correlated to the complexity of the vomeronasal organ. 

 In Chapter 3, we examine the evolution of the V1Rs in the final of the three 

mammalian lineages, the monotremes.  In congruence with our previously identified 

positive correlation between vomeronasal organ complexity and V1R repertoire, we find 

that the platypus, which has the most complex type of vomeronasal organ, has the largest 

V1R repertoire size so far identified.  This larger V1R repertoire size is larger than the 

odorant receptor (OR) family in platypus, despite the OR family being the largest 

mammalian gene family in most species.  Thus, the platypus clearly relies heavily on 

vomeronasal-mediated olfaction despite its semi-aquatic lifestyle. 

 In Chapter 4, we show that the evolutionary patterns in the vomeronasal receptors 

(V1Rs and V2Rs) are clearly and quantitatively distinct from the evolutionary patterns of 

the main olfactory receptors (ORs and TAARs).  The patterns revealed by both types of 

receptors support the differential tuning hypothesis, which suggests that main olfactory 

receptors are broadly tuned generalists while vomeronasal receptors are narrowly tuned 

specialists.  We determined that ligand-receptor pairings are likely conserved in mouse-

rat orthologous pairs, while function changes soon after duplication in closely related 

paralogs. 
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 In Chapter 5, we use the VNS-specific genes to determine that the VNS was 

present in the common ancestor of vertebrates. Both V1Rs and Trpc2 were found in the 

genome of the sea lamprey, and all three VNS-specific genes, V1Rs, V2Rs, and Trpc2, 

were found in the genome of the elephant shark.  The sea lamprey VNS-specific genes 

are expressed in the olfactory epithelium, suggesting the ancestral chemosensory function 

for this system. 
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A1.1 Mouse and rat orthologous V1Rs.

MOUSE RAT
mV1rC28 rv1rC18
mV1rC30 rv1rC10
mV1rC5 rv1rC22
mV1rC6 rv1rC23
mV1rD6 rv1rD1
mV1rE1 rv1rE24
mV1rE13 rv1rE8
mV1rE2 rnew6
mV1rE3 rv1rE22
mV1rE4 rv1rE23
mV1rF2 rv1rF5
mV1rF3 rv1rF4
mV1rG1 rv1rG3
mV1rG11 rv1rG13
mV1rG6 rv1rG4
mV1rJ3 rv1rJ1
mV1rK1 rv1rK1
mV1rL1 rv1rL1

Mouse gene names and some rat gene names come from Shi, P., et al. (2005) Adaptive 
diversification of vomeronasal receptor 1 genes in rodents. J Mol Evol 60, 566-576 and the 
remaining rat gene names come from Shi, P., and Zhang, J. (2007) Comparative genomic 
analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the 
vertebrate transition from water to land. Genome Res 17, 166-174. 

APPENDIX 1

ORTHOLOGOUS MOUSE-RAT NASAL CHEMOSENSORY RECEPTOR 
PAIRS
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A1.2 Mouse and rat orthologous V2Rs.

MOUSE RAT
V2r49 V2r133
V2r55 V2r101
V2r63 V2r148
v2r93 V2r152

Gene names come from Yang, H., et al. (2005) Composition and evolution of the V2r 
vomeronasal receptor gene repertoire in mice and rats. Genomics 86, 306-315.
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A1.3 Orthologous ORs for mouse and rat.  

Mouse Rat
mouse1006 Olr450
mouse1008 Olr490
mouse1009 Olr453
mouse1010 Olr454
mouse1012 Olr455
mouse1013 Olr456
mouse1015 Olr458
mouse1016 Olr459
mouse1018 Olr461
mouse1019 Olr462
mouse1020 Olr463
mouse1022 Olr465
mouse1023 Olr466
mouse1026 Olr469
mouse103 Olr1734
mouse1030 Olr471
mouse1031 Olr472
mouse1032 Olr473
mouse1037 Olr476
mouse1038 Olr477
mouse1042 Olr480
mouse1043 Olr481
mouse1044 Olr482
mouse1045 Olr484
mouse1046 Olr485
mouse1047 Olr486
mouse1054 Olr491
mouse1056 Olr493
mouse1058 Olr496
mouse1065 Olr499
mouse1079 Olr507
mouse108 Olr1714
mouse1086 Olr510
mouse1089 Olr513
mouse1090 Olr514
mouse1093 Olr515
mouse1099 Olr529
mouse1101 Olr533
mouse1104 Olr536
mouse1105 Olr537
mouse1106 Olr539
mouse1109 Olr541

Mouse receptor names are from Young, J.M., et al. (2002) Different evolutionary processes 
shaped the mouse and human olfactory receptor gene families. Hum Mol Genet 11, 535-
546 and Zhang, X., and Firestein, S. (2002) The olfactory receptor gene superfamily of the 
mouse. Nat Neurosci 5, 124-133.  Rat gene names are from Rat Genome Sequencing 
Consortium (2004) Genome sequence of the Brown Norway rat yields insights into 
mammalian evolution. Nature 428, 493-521. 
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mouse1111 Olr544
mouse1112 Olr554
mouse1120 Olr558
mouse1121 Olr559
mouse1122 Olr560
mouse1123 Olr561
mouse1125 Olr562
mouse1126 Olr566
mouse1132 Olr576
mouse1134 Olr577
mouse1135 Olr578
mouse1136 Olr583
mouse1137 Olr581
mouse1138 Olr584
mouse1140 Olr586
mouse1141 Olr587
mouse1143 Olr590
mouse1145 Olr592
mouse1148 Olr595
mouse1151 Olr596
mouse1152 Olr597
mouse1153 Olr598
mouse1156 Olr601
mouse1157 Olr602
mouse1163 Olr607
mouse1164 Olr608
mouse1165 Olr609
mouse1170 Olr610
mouse1178 Olr619
mouse1180 Olr630
mouse1189 Olr646
mouse1195 Olr651
mouse1199 Olr657
mouse12 Olr1353
mouse1208 Olr661
mouse1209 Olr662
mouse1211 Olr663
mouse1212 Olr664
mouse1215 Olr670
mouse1216 Olr671
mouse1217 Olr672
mouse1218 Olr673
mouse122 Olr1696
mouse1220 Olr677
mouse1221 Olr678
mouse1222 Olr681
mouse1225 Olr686
mouse1226 Olr687
mouse1228 Olr689
mouse1229 Olr690
mouse123 Olr1695
mouse1230 Olr693
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mouse1231 Olr694
mouse1232 Olr695
mouse1233 Olr696
mouse1234 Olr697
mouse1238 Olr703
mouse1239 Olr701
mouse124 Olr1694
mouse1241 Olr704
mouse1242 Olr705
mouse1243 Olr684
mouse1245 Olr707
mouse1246 Olr709
mouse1247 Olr710
mouse125 Olr1693
mouse1250 Olr711
mouse1251 Olr712
mouse1254 Olr718
mouse1256 Olr720
mouse1257 Olr722
mouse1260 Olr725
mouse1262 Olr727
mouse1263 Olr728
mouse1264 Olr729
mouse1270 Olr741
mouse1275 Olr747
mouse1276 Olr748
mouse1277 Olr750
mouse1279 Olr752
mouse1280 Olr753
mouse1284 Olr757
mouse1288 Olr758
mouse129 Olr1687
mouse1290 Olr760
mouse1294 Olr766
mouse1295 Olr767
mouse1299 Olr770
mouse13 Olr818
mouse1301 Olr772
mouse1302 Olr773
mouse1305 Olr778
mouse1308 Olr781
mouse1309 Olr782
mouse1310 Olr783
mouse1311 Olr784
mouse1312 Olr785
mouse132 Olr1684
mouse1321 Olr1765
mouse1322 Olr1766
mouse1323 Olr1767
mouse1324 Olr1751
mouse1335 Olr862
mouse1336 Olr8
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mouse1339 Olr859
mouse1341 Olr858
mouse1342 Olr857
mouse1346 Olr7
mouse1347 Olr5
mouse1348 Olr4
mouse1349 Olr3
mouse1351 Olr1076
mouse1352 Olr1077
mouse1353 Olr1078
mouse1356 Olr1086
mouse1357 Olr1087
mouse1361 Olr1657
mouse1364 Olr1658
mouse1368 Olr1660
mouse137 Olr1671
mouse1370 Olr1664
mouse1377 Olr1405
mouse1378 Olr1404
mouse1383 Olr1398
mouse1384 Olr1397
mouse1387 Olr1393
mouse1388 Olr1392
mouse1389 Olr1391
mouse1391 Olr1389
mouse140 Olr731
mouse1402 Olr390
mouse1403 Olr1576
mouse1404 Olr1583
mouse1406 Olr1581
mouse1408 Olr1579
mouse1411 Olr1350
mouse1412 Olr1349
mouse1414 Olr1345
mouse1416 Olr1343
mouse1420 Olr319
mouse1423 Olr321
mouse1426 Olr323
mouse1427 Olr324
mouse1428 Olr325
mouse1431 Olr329
mouse1440 Olr336
mouse1441 Olr337
mouse1443 Olr338
mouse1444 Olr339
mouse1445 Olr340
mouse1448 Olr343
mouse1449 Olr344
mouse145 Olr1201
mouse1451 Olr346
mouse1454 Olr348
mouse1459 Olr360
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mouse1461 Olr361
mouse1462 Olr352
mouse1469 Olr363
mouse148 Olr1308
mouse1489 Olr371
mouse149 Olr1315
mouse1490 Olr372
mouse1494 Olr374
mouse1495 Olr375
mouse1496 Olr376
mouse1497 Olr377
mouse1499 Olr382
mouse15 Olr1356
mouse1500 Olr379
mouse151 Olr1195
mouse1510 Olr1642
mouse1511 Olr1641
mouse1512 Olr1640
mouse1514 Olr1638
mouse152 Olr588
mouse155 Olr840
mouse156 Olr838
mouse157 Olr839
mouse159 Olr836
mouse161 Olr1373
mouse164 Olr1570
mouse166 Olr1569
mouse167 Olr1568
mouse174 Olr1564
mouse178 Olr1560
mouse186 Olr1551
mouse195 Olr1542
mouse196 Olr1535
mouse20 Olr1466
mouse204 Olr1532
mouse205 Olr1530
mouse206 Olr1529
mouse211 Olr823
mouse214 Olr830
mouse222 Olr1462
mouse223 Olr1463
mouse24 Olr1121
mouse25 Olr1228
mouse266 Olr392
mouse267 Olr854
mouse270 Olr853
mouse272 Olr851
mouse273 Olr847
mouse275 Olr841
mouse281 Olr1108
mouse282 Olr1107
mouse283 Olr1106
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mouse284 Olr1105
mouse285 Olr1104
mouse299 Olr230
mouse3 Olr411
mouse30 Olr1413
mouse304 Olr160
mouse307 Olr140
mouse308 Olr1310
mouse309 Olr120
mouse31 Olr1606
mouse310 Olr200
mouse317 Olr1433
mouse32 Olr737
mouse323 Olr1432
mouse324 Olr1431
mouse328 Olr1425
mouse33 Olr62
mouse332 Olr1415
mouse338 Olr399
mouse341 Olr401
mouse342 Olr402
mouse344 Olr403
mouse345 Olr404
mouse348 Olr409
mouse350 Olr413
mouse351 Olr414
mouse352 Olr415
mouse353 Olr416
mouse354 Olr417
mouse355 Olr418
mouse356 Olr419
mouse357 Olr420
mouse358 Olr421
mouse361 Olr424
mouse362 Olr425
mouse365 Olr428
mouse366 Olr429
mouse368 Olr434
mouse370 Olr1667
mouse371 Olr1666
mouse376 Olr1467
mouse378 Olr1470
mouse38 Olr807
mouse382 Olr1485
mouse385 Olr1486
mouse39 Olr1186
mouse392 Olr1498
mouse393 Olr1499
mouse398 Olr1507
mouse399 Olr1509
mouse401 Olr1511
mouse41 Olr226
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mouse414 Olr1601
mouse419 Olr1597
mouse42 Olr1662
mouse420 Olr1596
mouse421 Olr1595
mouse424 Olr1593
mouse429 Olr1589
mouse435 Olr819
mouse438 Olr816
mouse44 Olr1302
mouse447 Olr813
mouse448 Olr812
mouse449 Olr811
mouse450 Olr810
mouse452 Olr808
mouse453 Olr806
mouse458 Olr801
mouse460 Olr799
mouse462 Olr1521
mouse464 Olr1523
mouse466 Olr1652
mouse469 Olr237
mouse474 Olr241
mouse478 Olr244
mouse479 Olr245
mouse48 Olr721
mouse481 Olr246
mouse483 Olr250
mouse49 Olr1646
mouse490 Olr259
mouse491 Olr260
mouse493 Olr262
mouse494 Olr270
mouse497 Olr263
mouse5 Olr6
mouse50 Olr410
mouse506 Olr268
mouse507 Olr272
mouse51 Olr1407
mouse510 Olr276
mouse514 Olr285
mouse516 Olr281
mouse517 Olr283
mouse518 Olr282
mouse52 Olr483
mouse522 Olr2861
mouse523 Olr287
mouse524 Olr288
mouse530 Olr297
mouse531 Olr298
mouse536 Olr303
mouse539 Olr312
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mouse544 Olr39
mouse545 Olr40
mouse547 Olr41
mouse550 Olr43
mouse551 Olr44
mouse552 Olr45
mouse553 Olr47
mouse554 Olr48
mouse558 Olr63
mouse56 Olr1386
mouse561 Olr57
mouse564 Olr56
mouse568 Olr51
mouse569 Olr50
mouse57 Olr1075
mouse571 Olr49
mouse577 Olr69
mouse578 Olr70
mouse584 Olr74
mouse589 Olr80
mouse591 Olr82
mouse593 Olr84
mouse594 Olr85
mouse599 Olr91
mouse60 Olr295
mouse600 Olr92
mouse601 Olr93
mouse604 Olr87
mouse605 Olr95
mouse606 Olr96
mouse609 Olr104
mouse61 Olr311
mouse610 Olr105
mouse611 Olr106
mouse614 Olr107
mouse615 Olr108
mouse616 Olr109
mouse617 Olr110
mouse618 Olr111
mouse619 Olr112
mouse62 Olr855
mouse620 Olr113
mouse623 Olr119
mouse624 Olr120
mouse627 Olr122
mouse629 Olr124
mouse630 Olr125
mouse633 Olr135
mouse639 Olr141
mouse64 Olr132
mouse640 Olr142
mouse641 Olr143
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mouse642 Olr144
mouse646 Olr148
mouse648 Olr149
mouse649 Olr150
mouse65 Olr131
mouse651 Olr152
mouse652 Olr153
mouse653 Olr154
mouse654 Olr155
mouse655 Olr156
mouse656 Olr157
mouse659 Olr160
mouse66 Olr130
mouse661 Olr161
mouse665 Olr171
mouse667 Olr175
mouse668 Olr176
mouse67 Olr128
mouse670 Olr178
mouse676 Olr185
mouse677 Olr188
mouse68 Olr127
mouse683 Olr192
mouse684 Olr193
mouse686 Olr197
mouse690 Olr201
mouse691 Olr202
mouse695 Olr203
mouse699 Olr209
mouse70 Olr833
mouse700 Olr208
mouse701 Olr210
mouse704 Olr215
mouse705 Olr217
mouse706 Olr218
mouse71 Olr834
mouse710 Olr222
mouse711 Olr224
mouse713 Olr227
mouse715 Olr233
mouse716 Olr234
mouse720 Olr1607
mouse722 Olr1624
mouse727 Olr1627
mouse728 Olr1629
mouse729 Olr1630
mouse730 Olr1608
mouse731 Olr1609
mouse732 Olr1610
mouse734 Olr1612
mouse736 Olr1614
mouse738 Olr1615
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mouse739 Olr1616
mouse74 Olr604
mouse744 Olr1620
mouse750 Olr1637
mouse76 Olr326
mouse768 Olr879
mouse769 Olr880
mouse77 Olr1163
mouse770 Olr881
mouse774 Olr906
mouse78 Olr59
mouse780 Olr1006
mouse786 Olr964
mouse790 Olr1014
mouse791 Olr892
mouse794 Olr889
mouse796 Olr1016
mouse801 Olr1020
mouse808 Olr947
mouse811 Olr1059
mouse812 Olr1055
mouse813 Olr932
mouse818 Olr1060
mouse821 Olr1064
mouse826 Olr1071
mouse827 Olr1072
mouse828 Olr1122
mouse829 Olr1118
mouse834 Olr1125
mouse835 Olr1128
mouse843 Olr1138
mouse845 Olr1126
mouse847 Olr1147
mouse850 Olr1144
mouse851 Olr1148
mouse855 Olr1156
mouse867 Olr1172
mouse868 Olr1179
mouse874 Olr1196
mouse876 Olr1199
mouse877 Olr1200
mouse878 Olr1202
mouse881 Olr1204
mouse888 Olr1213
mouse889 Olr1214
mouse891 Olr1219
mouse893 Olr1222
mouse894 Olr1223
mouse895 Olr1225
mouse898 Olr1230
mouse90 Olr1750
mouse901 Olr1236
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mouse904 Olr1240
mouse905 Olr1241
mouse906 Olr1242
mouse907 Olr1243
mouse908 Olr1244
mouse909 Olr1245
mouse91 Olr1749
mouse913 Olr1250
mouse914 Olr1251
mouse915 Olr1252
mouse916 Olr1253
mouse917 Olr1254
mouse92 Olr1746
mouse920 Olr1259
mouse922 Olr1264
mouse923 Olr1265
mouse93 Olr1748
mouse930 Olr1271
mouse934 Olr1273
mouse937 Olr1278
mouse938 Olr1279
mouse943 Olr1293
mouse945 Olr1295
mouse948 Olr1294
mouse95 Olr1744
mouse958 Olr1306
mouse959 Olr1307
mouse96 Olr1743
mouse960 Olr1309
mouse961 Olr1311
mouse963 Olr1313
mouse967 Olr1321
mouse97 Olr1742
mouse974 Olr1329
mouse975 Olr1330
mouse976 Olr1331
mouse979 Olr1334
mouse980 Olr1335
mouse982 Olr1337
mouse983 Olr1338
mouse984 Olr1339
mouse986 Olr1341
mouse992 Olr439
mouse993 Olr440
mouse994 Olr441
mouse995 Olr442
mouse998 Olr446
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A1.4 Mouse and rat orthologous TAARs.

MOUSE RAT
mTAAR1 rTAAR1
mTAAR2 rTAAR2
mTAAR3 rTAAR3
mTAAR4 rTAAR4
mTAAR5 rTAAR5
mTAAR6 rTAAR6
mTAAR9 rTAAR9

Gene names correspond to names from Lindemann, L., et al. (2005) Trace amine-associated 
receptors form structurally and functionally distinct subfamilies of novel G protein-coupled 
receptors. Genomics 85, 372-385.
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