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 Chapter 1  

 

Introduction to proteomics and protein microarrays for post translational 
modification analysis and humoral response studies 

 

1.1. Emergence of proteomics 

The deciphering of the human genome has provided valuable information about 

the numbers of genes and proteins present in human cells. DNA expression differences 

between normal vs. diseased cells has shown that such studies can provide key 

information about the pathways that are altered upon disease progression. However with 

the knowledge about the human genome also came evidence that DNA expression does 

not necessarily show the true picture when it comes to understanding the state of a cell at 

any particular time. Studies have shown that DNA and mRNA levels do not necessarily 

positively correlate.[1] Furthermore mRNA expression levels are not the true indicators 

of protein expression.[2, 3] Proteins are the product of DNA transcription and RNA 

translation and are therefore the functional units of cellular processes. After a protein is 

translated it can also go through considerable post translational modifications. It is 

believed that there are 50,000 to a million proteins in a cell from a higher organism and 

these proteins have a dynamic range higher than 1010 orders of magnitude.[4-7] 

Furthermore protein expression levels in all human cells are not the same. Studying 

protein expression in cells at a global scale has become a major challenge for scientists 

today due to inherent nature of proteins in a cell as well as available techniques for 
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studying different types of proteins. Another obstacle to protein analysis is the fact that it 

can not be cloned into larger quantities in a similar fashion as DNA. 

Over the years since global protein expression profiling has become possible, 

two-dimensional gel electrophoresis (2D-GE) has emerged as a popular technique.[8] In 

this technique proteins from a cellular lysate (be it from a cell line, tissue or bodily fluids 

such as serum, plasma or urine) are separated initially by isoelectric focusing according 

to the protein isoelectric point (pI) using a thin gel strip and subsequently by their 

molecular weight using a polyacrylamide gel electrophoresis (PAGE). 2D-PAGE 

methods are robust and have low detection limits in the picomole (and even lower) range 

but suffer from multiple drawbacks. Proteins with extremely high or low pIs tend to 

precipitate in a PAGE gel and are therefore out of the realm of this technique.[9] 

Frequently 2D-GE is coupled offline with electrospray ionization (ESI) and matrix 

assisted laser desorption ionization (MALDI) forms of mass spectrometry to determine 

thousands of proteins that are manually or robotically excised from the spots.[10, 11] 

Because such excision steps are pre-dominantly done by hand or a robot, contamination 

due to keratins from skin and hair often pose a problem. Comparison of the same gel run 

in different labs or on different days has also shown significant variation making 

cataloging of multiple experiments for comparison quite difficult. Proteins have a large 

dynamic range in terms of their molecular weight. Because the gel separations are 

restricted to a physical gel surface, separation of both the very high and low molecular 

weight proteins is difficult. In order to separate very high molecular weight proteins the 

gel needs to be run for a long time where this could result in lower molecular weight 

proteins running off the gel and not being analyzed.  
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1.2. All-liquid proteomics platforms 

Due to the number of problems associated with gel electrophoresis discussed 

earlier, there has been increased interest in alternate techniques for protein expression 

profiling particularly methods that are all-liquid based. All liquid based techniques are 

favorable because they can be made almost completely hands-free and integrated with 

mass spectrometry without too much sample preparation. All liquid techniques have also 

divided protein expression profiling research and proteomics research into two parts: 

Bottom-up and Top-down proteomics. In bottom-up proteomics all proteins in a lysate 

are first digested and then using multiple dimensions of separations they are analyzed and 

finally identified by mass spectrometry. The most popular bottom-up technique currently 

is MudPiT originally developed by John Yates 3rd.[12] This Multi-Dimensional Protein 

Identification Technique first separates all digested peptides by strong cation exchange 

chromatography and then by reversed-phase HPLC. The resulting fractionated peptides 

are immediately transferred to a mass spectrometer for identification. Sophisticated 

software has been developed that is able to analyze many storage servers worth of data 

that can be obtained by such experiments. Such software is able to determine the 

identification of the protein from each of the peptide identified and sequenced. Bottom-

up techniques are high throughput in nature but have some drawbacks. By digesting 

proteins in the first stages of the experiment critical information about the proteins is lost 

i.e. its intact molecular weight which could give information about potential post 

translational modifications or isoform information. In addition, MuDPiT experiments can 
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also result in high false positive identifications due to the homology that exists in 

multiple different proteins.  

Top down methods currently being developed eliminate some of the drawbacks 

presented by bottom-up methods. In top-down methods, all proteins in a lysate are first 

separated (by chromatographic techniques or by high resolution mass spectrometry such 

as the FTICR) and then analyzed individually for identification and structural information. 

In earlier work isoelectric focusing using devices divided into chambers were created to 

separate and isolate proteins within a certain pI range in specific chamber.[13-15] The 

proteins in each chamber were then removed and further separated using other liquid base 

techniques such as RP-HPLC. Problems with these techniques include sample loss due to 

protein adhering to membrane surface separating chambers as well as poor resolution 

leading to the same protein appearing in multiple adjacent chambers. Alternately weak 

anion exchange based techniques have proved to be a good 1st dimension of separation. 

Chromatofocusing is a weak anion based technique where proteins are separated by their 

isoelectric points.[16] A unique feature of this technique involves the titration of a start 

buffer with an elution buffer which results in a gradual change in the pH of the column. 

The result is the elution of proteins bound to the column from the proteins with the 

highest pI to the proteins with the lowest pI. Column resolution has been shown to be 

within 0.2 pH units. Collecting intact proteins according to their pI can provide 

interesting information about potential protein modifications because it has been shown 

that modification can result in a change in the protein’s pI. Such information would be 

destroyed by protein digestion in bottom-up methods. The column-based nature of CF 
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enables the direct coupling of this technique with a second dimension of separation such 

as RP-HPLC.  

In fact CF and RP-HPLC based systems have been commercialized by Beckman 

Coulter as the PF2D system.[17] In such a system proteins are fractionated and collected 

by pI in the first dimension. They are then transferred automatically to a non-porous 

silica reversed phase column for separation in the second dimension. Fractions from the 

second dimension can be collected by time or by peak depending on user preferences. 

Non-porous silica is particularly favorable because it increases the number of times the 

column can be used since clogging of the pores by large proteins is eliminated. It also 

demonstrates better peak characteristics enhancing the peak capacity and resolution of the 

separation.   

1.3. Post-translational modifications in proteomics 

Protein expression profiling work provides relevant information about proteins 

that change as a function of time, disease or other variables being studied. However other 

studies have shown that even more important than the protein expression levels in a cell 

are the modifications present on proteins involved in cellular pathways. Proteins can be 

modified with a variety of chemical groups ranging from phosphates, glycans, ubiquitin, 

oxides, methyl, nitrate and sulfates. Protein phosphorylation and glycosylation have been 

implicated in a variety of signaling pathways and changes in these modifications have 

been shown to be involved in disease progression. However studying these two 

modifications presents a great challenge due to reasons described herein. 

Reversible phosphorylation is a key and important mechanism that is involved in 

a range of cellular processes such as cell growth, differentiation and apoptosis via a 
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variety of signaling pathways. One phosphorylation can trigger a domino effect where a 

signal travels via multiple phosphorylation events to affect a certain outcome. At any 

point in time at least one-third of all proteins are thought to be phosphorylated at a serine, 

threonine or tyrosine residue. It has been estimated that there at roughly 100,000 potential 

phosphorylation sites in the human proteome.[18] However as of now only a few 

thousand have been found. One reason for this lack of well-characterized phosphorylation 

site information is the presence of signaling molecules in very low abundance in the cells. 

In addition, the stoichiometry in which these molecules are phosphorylated is even lower. 

Therefore, while phosphorylated proteins, when digested, can be identified, the 

identification of phosphorylation sites is very difficult. Phosphopeptides do not ionize 

well because their signal is suppressed by non-phosphorylated peptides. To bypass this 

problem, research is ongoing in developing methods to isolate and enrich the 

phosphorylated peptides. Immobilized metal affinity chromatography (IMAC) has been 

popularly used to enrich phosphopeptides.[19, 20] In this method activated metal 

chelators bind phosphate groups on phosphopeptides while other peptides can be washed 

away. The phosphopeptides bound to the chelators can then be eluted out for further 

analysis. IMAC technologies have been commercialized into easy use ziptip formats. 

However coenrichment of other acidic peptides containing aspartic and glutamic acid 

groups hinders phosphorylation site analysis. Current work on amphoteric oxide-based 

solid phases for phosphopeptide enrichment appear promising.[21, 22] In these methods 

titanium or zirconium dioxide based solid phases are utilized to enrich phosphate 

containing peptides. Coenrichment of other acidic peptides is said to be reduced by using 

competitor acid group containing compounds such as hydroxyl-cinnamic acid. However 
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these competitor compounds are platform friends in the case of MALDI based 

instruments but often results in significant precipitation in HPLC based systems and 

therefore cannot be used.  

Glycosylation, which is the attachment of sugar moieties to a protein, is the most 

complex type of protein post translational modification. Over 50% of all proteins have 

been estimated to be phosphorylated at any one time.[23] Glycosylation can change a 

protein’s conformation significantly thereby affecting the proteins’ activity. 

Glycoproteins are known to be involved in a variety of cellular and intercellular 

processes such as molecular recognition, fertilization and embryonic development, 

inflammation, cell adhesion, immune defense and inter- and intra-cellular signaling. 

There are two main types of protein glycosylations: N-glycosylation occurs when a 

glycan is attached by an N-acetylglucosamine to the amide group of an asparagine within 

a Asn-X-Ser/Thr consensus motif where X can be any amino acid but proline.[24] The 

other type of glycosylation is the O-linked type where a glycan is attached to the protein 

via an N-acetylgalactosamine to serine or threonine residues.[25] Glycoproteins are also 

difficult to study but for very different reasons. Glycoproteins that play a key role in 

signaling are often very high molecular weight proteins that are not easily isolated for 

further studies. Glycopeptides are not easily detectable by mass spectrometry because of 

their lower ionization efficiency compared to non-glycosylated peptides. Furthermore, 

glycopeptide signal intensities are often suppressed by non-glycosylated peptides 

particularly when the glycan structure on the peptide ends with negatively charged sialic 

acid residues.[26] Glycan heterogeneity is also another challenge when studying 

glycoproteins as one protein could have multiple different glycan structures associated to 
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it. This has led to development of techniques such as lectin affinity chromatography for 

selective enrichment of glycopeptides.[27] In addition, glycosylation sites can be easily 

determined by cleaving glycans from the protein using enzymatic means such as PNGAse 

F.[28] Cleavage results in addition of a hydrogen on the glycopeptide which can easily be 

monitored by mass spectrometry. Determination of the glycan structure on the other hand 

presents a very complicated problem. Glycan structures can be simple to very complex 

with various forms of branching possible. In order to study these structural complexities 

cleaved glycans need to be analyzed individually using multiple stages of mass 

spectrometry.[29, 30] This requires higher quantities of glycans than may be available in 

samples from natural sources.  

At the bioinformatics end mass spectrometry data needs to be extensively 

analyzed to ensure that any results being obtained are confident protein identifications 

due to the nature of homology between many proteins. The large amounts of data 

obtained in proteomic experiments need huge amounts of server space and lots of 

computer analysis time. Many advances in the field of proteomics informatics have been 

made over the last 5 years.[31] However, because of the need for extensive sample 

preparation and individual experiments to study glycans or phosphorylations in different 

proteins, as well as the large amount of time needed for analysis of data obtained, the 

currently available strategies are becoming less and less high throughput in their real 

sense. 

1.4. High-throughput protein microarrays 

With the advent of microarray technology there is hope for reinstating the high 

throughput nature of protein profiling. Microarray technology was initially used to profile 
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DNA expression and interaction. However recent work has focused on applying this 

microarray technology to complex protein samples. Arrays can be made by fixing a 

membrane on a glass slide surface. The most popular membranes used include 

nitrocellulose and polyvinylidene diflouride membranes. Chemical derivatization of glass 

slide surfaces is also popular such as epoxy, aldehyde, poly-L-lysine and amine surfaces. 

Proteins can be arrayed on these surfaces using contact or non-contact mechanisms. 

While contact printing mechanisms are robust and cheaper, non-contact printers are much 

more reproducible and reliable in scientific studies. A typical microarray is the size of a 

microscopic slide and it can accommodate up to 10000 spots depending on the array 

format and protein spots diameter being arrayed. A protein array contains immobilized 

protein spots. Each spot can contain a set of “bait” molecules.[32, 33] These baits can 

range from a variety of molecules such as antibodies [34, 35], a cell or phage lysate [36, 

37], a recombinant protein or peptide [38-40], a drug [41, 42], or a nucleic acid.[43, 44] 

The array is hybridized with either a probe (labeled antibody or ligand), or an unknown 

biological sample such as a cell lysate or serum sample. If the probe or biological 

samples are tagged with a signal-generating molecule such as a flourophore then positive 

and negative spots whose intensity corresponds to the extent of binding between the 

arrayed spot and probe result. An image of the resulting array can be captured by 

commercially available scanners and can be analyzed and interpreted using supporting 

software.    

Currently protein microarrays have been used in a range of different applications. 

They can be divided into forward and reverse phase microarrays depending on whether 

the analyte is in the solution phase or immobilized on the surface. In forward phase arrays 
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the surface is arrayed with capture molecules, typically antibodies. Each array is 

processed with one test sample. Multiple antibodies can therefore be arrayed on one slide 

to see if a test sample has proteins reactive with all the arrayed antibodies. As a result, 

multiple analytes are measured at once. Such an approach has been used to identify 

mouse monoclonal antibodies that demonstrate the highest sensitivity for recombinant 

interleukin-4 detection.[45] Another very sophisticated example of an approach where 

forward phase arrays are used is a study where multiple antibodies involved in signaling 

pathways were probed with serum from various patient groups.[35, 46-48] Differential 

responses when signals from each individual group were compared highlighted key 

signaling proteins that demonstrated alterations in expression as a function of disease. 

While such studies are critical in highlighting potential markers of disease, it is important 

to note that only proteins whose antibodies are arrayed on slides can be probed for 

differential expression. Novel proteins that may be good markers of disease but that have 

previously not been implicated in diseases may therefore go unquestioned in these studies.  

In a reverse phase array individual test samples are arrayed in each spot such that 

multiple samples are analyzed at the same time. Each array is then processed with a 

detection molecule such as an antibody resulting in a specific measurement being taken 

across hundreds if not thousands of samples. Reverse phase arrays have been used to 

generate SH2 binding profiles for phosphopeptides, recombinant proteins and entire 

proteomes.[49] Tissue microarrays are another kind of reverse phase arrays where tissue 

samples preferably from laser capture micro-dissection experiments are arrayed on slides 

and probed for proteins of interest. One such study assessed levels of cell survival and 

apoptotic proteins in breast cancer tissue.[50] Another approach that has been developed 
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over the last few years is a modified reverse-phase array approach where proteins from a 

biological medium (cell line, tissue, serum) are initially separated by a chromatographic 

technique. These proteins are then arrayed on slides after which they are probed for 

qualities of interest such as post translational modifications of various type [51] as well as 

immune response from the arrayed proteins particularly if the proteins originate from a 

diseased sample. [52, 53] 

1.5. Dissertation outline 

This dissertation attempts to integrate the positive attributes of liquid separations, 

protein microarrays and mass spectrometry to study disease progression. 

Chromatofocusing and non-porous reversed-phase HPLC are used to sufficiently isolate 

proteins into distinct fractions before subjecting them to microarray analysis for assessing 

protein phosphorylation levels in cellular proteins and humoral response in cellular 

proteins and tissue proteins. In addition other liquid separation methodologies, 

particularly protein enrichment by reduction of complexity using affinity chromatography 

and lectin enrichment chromatography are used to study glycosylated proteins in human 

serum samples.  

The first four chapters detail the development of an all liquid separations 

techniques, protein microarray and mass spectrometry strategy that can be used to 

highlight post translational modification changes as a function of cancer. Chapter 2 

explains the utility of combining CF and NPS-RP-HPLC to protein microarrays to study 

phosphorylation changes in breast cancer. The technique is applied to two breast cancer 

cell lines AT1 and CA1a from the xenograft model of breast cancer resulting in the 

identification of proteins from key cellular processes expressing differential 
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phosphorylation. Chapters 3, 4 and 5 are an overview of how such a technique can be 

modified to study glycosylation changes in pancreatic and colon cancers respectively. 

Instead of the CF/NPS-RP-HPLC platform, affinity chromatography for removal of the 

top 12 abundant proteins from serum is coupled to lectin enrichment and NPS-RP-HPLC 

after which proteins are arrayed on microarrays to assess changes in glycosylation states 

as a function of cancer. Statistical analysis illustrates that such a methodology is 

successful in distinguishing between normal and disease groups. Chapter 6 is a story of 

how this 2D-liquid separations-protein microarray-MS/MS integrated technique can be 

used to exploit the naturally present humoral response to disease in order to highlight 

potential panels of biomarkers for pancreatic cancer. Using this approach a panel of 9 

proteins is shown to distinguish between normal and cancer serum with good sensitivity 

and specificity. This chapter illustrates the importance of choice of statistical method to 

the nature of results obtained. Chapter 7 is an overview of a modification of the humoral 

response measuring technique that enhances the sensitivity of humoral response 

measurements.  

Viewed together these chapters can be considered as a complete overview of how 

separation technologies together with protein microarrays can be utilized to study 

complex biological problems using a range of biological materials (cell lines, tissues, 

serum) with particular focus on cancers. 
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Chapter 2 

 

A novel analysis scheme for assessing phosphorylation changes of high and medium 
abundant proteins in pre-malignant and malignant breast cell lines using 2D liquid 

separations, protein microarrays and tandem mass spectrometry 
 

 

2.1. Introduction 

 

Breast cancer is the most frequently diagnosed cancer in women. More than 

200,000 new cases of breast cancer, with over 41,000 deaths, were expected in the United 

States in 2006.[1] Breast cancer related deaths have declined by approximately 2.3% 

from 1990 to 2002 primarily due to earlier detection awareness as well as improved 

treatment. While the five-year survival rate has increased to 98% for local-regional 

disease, it is only 26% for women with distant metastases.[1] Understanding the 

molecular mechanisms that underlie breast cancer development and progression to 

malignancy may uncover better therapeutic targets with potential utility to further 

decrease breast cancer mortality. 

Aberrations in cellular signaling pathways have been associated with cancer 

development and progression, as cancer cell survival and proliferation rates increase, and 

as cancer cells become increasingly evasive to the immune system.[2-4] Growth factor 

signals are propagated from the cell surface intracellular milieu by signaling pathways, 
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involving a variety of kinases such as membrane receptor kinases (EGFR, VEGF) and 

cytoplasmic kinases (ERK, MEK, Ras, PI3-K and mTOR).[5] In cancer, these signaling 

pathways are often dysregulated, resulting in a phenotype characterized by unfettered cell 

growth and increased invasive potential. Cellular signaling is largely controlled by 

transient, post-translational modifications of signaling proteins, which alter their ability to 

bind and interact with downstream effectors.[4-6] Protein phosphorylation is one such 

modification that primarily acts as a molecular switch to activate or deactivate cellular 

signaling cascades.[4, 7, 8] A recent review by Krueger et al. lists several phosphorylated 

proteins that are known to contribute to oncogenesis or are used in the context of a cancer 

biomarker.[9] Proteins from all cellular compartments are represented in this list 

including histones, HDACs, MAP kinases, Akt, PTEN, EGFRs and ILK. 

A variety of techniques have been used to study phosphorylation expression on a 

large scale.[10] One such technique involves incubation of cells with radioactive 32P 

followed by 2D gel electrophoresis.[11] Although able to detect a wide dynamic range of 

phosphoproteins, this method requires handling of radioactive orthophosphate which 

makes it less favorable. In addition, the dependence on turnover rates at which the 

orthophosphate is incorporated into proteins may reduce sensitivity of this technique. The 

use of monoclonal and polyclonal antibodies specific to phosphorylated proteins to detect 

global phosphoprotein patterns on gels[12] circumvents the use of radiolabels. However, 

current available phosphoserine-specific and phosphothreonine-specific antibodies are 

not always reliable and cannot detect phosphoproteins where steric hindrance prevents 

antibody binding. More recently, a novel small molecule phosphosensor dye has been 

reported for detecting phosphoproteins on both gel and microarray platforms.[13-16] This 
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dye is able to detect phosphotyrosine, serine and threonine residues and can discriminate 

between thiophosphorylation and sulfation.  

Gel-based methods have been considered the method of choice in studying global 

protein expression, but more recently developed techniques have focused on liquid-based 

methods due to the ease of coupling to mass spectrometers for protein identification. The 

liquid-based method most frequently used for phosphoprotein analysis in complex 

samples involves shotgun proteomics where a complex protein mixture is first digested 

and enriched for phosphopeptides.[17-19] An enrichment step is often necessary since 

phosphopeptide ionization is typically suppressed in the presence of many non-

phosphorylated peptides present in a complex sample. The enriched peptides are then 

analyzed by LC-MS/MS with comprehensive database searching to confirm identity and 

elucidate the phosphorylation site. A variety of enrichment methods have been developed 

ranging from immobilized metal affinity chromatography[20, 21] to amphoteric oxide 

based enrichment, frequently using titanium or zirconium dioxide,[22, 23] as well as 

antibody based enrichment. While shotgun proteomics is a high throughput method at the 

experimental front, it is very time-consuming at the analysis end since data must be 

closely examined for possible false positives and negatives. 

Quantitation of differentially expressed proteins by mass spectrometry is a further 

challenge because in addition to the inefficient ionization and suppression of 

phosphopeptide ions, efficient labeling methodologies are needed in order to make 

quantitation possible. Currently available methodologies such as SILAC[24, 25], 

ICAT[26] or iTRAQ[27, 28] can be used. SILAC involves stable isotope labeling of 

proteins as they are produced in cultures therefore introducing problems of turnover rate 

 19



differences between proteins. Furthermore, ICAT may not be successful because it 

requires the presence of a cystein residue for labeling and the frequency of occurrence of 

a phosphopeptide with a cystein residue can be considered very low. In addition, 

completeness of this labeling reaction is difficult to monitor especially when multiple 

samples are being processed at the same time. Labeling at the peptide level also 

eliminates intact protein information making quantitation ambiguous especially for 

phosphoproteins that may exist as multiple isoforms or that have homology with other 

cellular proteins because a peptide could belong to more than one protein. Furthermore, 

in clinically relevant samples, even labeling may not be sufficient to detect very low 

levels of phosphoproteins. Label free approaches where mass spectrometric signals are 

directly compared to obtain quantitative information are also being developed.[29] 

However such approaches require mass spectrometers with very high mass accuracy and 

experiments with very precise and high reproducibility in order to ensure that the 

quantitative information is accurate. 

To overcome some of these limitations, we have been developing the coupling of 

comprehensive 2D-liquid separation methods to protein microarray technology. We have 

used this strategy previously to assess the phosphorylation status of all proteins in a cell 

line that was treated with a specific protein kinase inhibitor.[30] While that study was 

successful in highlighting phosphorylation changes caused by experimentally perturbing 

a specific biological pathway, there are currently no reports investigating such changes in 

naturally occurring disease states. A study comparing phosphorylation status in disease 

states may have utility in elucidation of pathways that play a role in the progression of 

disease. 
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A xenograft model of human breast disease progression has been developed from 

the MCF10A breast epithelial cell lines. Selected cell lines within the series are 

representative of normal, pre-malignant and malignant phenotypes.[31-33] T24 c-Ha-ras 

oncogene-transfected MCF10A cells (MCF10AneoT) form small, flat nodules in 

Nude/Beige mice which persist for the life span of the host and sporadically progress to 

carcinomas. A variant cell line (MCF10AT1), derived from one xenograft, not only forms 

simple differentiated ducts which persist in xenografts and sporadically progress to 

carcinoma, but also forms intermediate proliferative lesions resembling proliferative 

disease without atypia, atypical hyperplasia, and carcinoma in situ. By establishing cells 

in culture representing different stages in progression of MCF10AT through atypical 

hyperplasia to carcinoma, interruption of progression has been made possible. These cell 

lines continue to progress when reimplanted in vivo in immune deficient mice but are 

sufficiently stable in vitro to provide the tools essential for the genetic analysis of 

progression. MCF10AT cells express estrogen receptor (ER) and estradiol (E2) 

accelerates progression of the premalignant xenograft lesions.  Fully malignant variants 

(MCF10CA lines), some of which are metastatic have also been recently derived. 

Although many cancers are ER- negative and E2 independent, the early stages of disease 

may have been E2 responsive. It is hypothesized that E2 independent carcinomas 

(represented by the MCF10CA lines in the model) may constitutively express proteins 

that are altered by E2 in earlier premalignant stages (such as MCF10AT1). Attempting to 

identify genes expressed constitutively in malignant MCF10CA variants that are also 

induced by E2 in premalignant MCF10AT1 cells are currently in progress.  
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In this study we compared the phosphoproteome of pre-malignant (MCF10AT1) 

and malignant (MCF10CA1a c11) cell lines using a 2-dimensional liquid-phase 

separation method coupled to protein microarray technology. These two particular cell 

lines were chosen because they are both ER positive and therefore similar to each other 

despite the different phenotype they present. The naturally occurring, arrayed proteins 

were probed with the small-molecule phosphosensor dye, ProQ Diamond and anti-

phosphotyrosine antibodies. The strategy enabled us to detect and identify differentially 

expressed phosphoproteins and to determine specific changes associated with the 

premalignant and malignant phenotypes.  

 

2.2. Experimental Section 

Sample Preparation/Cell lines: The premalignant AT1 cell line (MCF10AT1) and 

malignant CA1a cell line (MCF10CA1a c11) were both derived from the MCF10A 

human breast cell line and were maintained and prepared as previously described [31, 

33]. 

Cell lysis, buffer exchange and protein quantitation: Cells were mixed with lysis 

buffer containing 7 M urea, 2 M thiourea, 100 mM dithiothreitol (DTT), 2% n-octyl G-D-

glucopyranoside (OG), 10% glycerol, 10 mM sodium orthovanadate, 10 mM sodium 

fluoride (all from Sigma, St. Louis, MO), 0.5% Biolyte ampholyte (Bio-Rad, Hercules, 

CA), and protease inhibitor cocktail (Roche Diagnostics, GmBH, Mannheim, Germany) 

with vortexing at room temperature for 1 hr. Cellular debris and other insoluble materials 

were removed by centrifuging the mixture at 80000 x g for 1 hr 15 min. The supernatant 

was subjected to buffer exchange in order to replace the lysis buffer with start buffer 
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(composition described later) for chromatofocusing using a PD-10 G-25 column 

(Amersham Biosciences, Piscataway, NJ). The protein concentration was determined 

using the Bradford Protein Assay kit with bovine serum albumin (BSA, Bio-Rad) 

standard. 

Chromatofocusing (CF): The CF experiment was performed using a Beckman System 

Gold model 127 pump and 166 UV detector module (Beckman Coulter, Fullerton, CA) 

with a HPCF-1D prep column (250 mm L x 4.6 mm ID, Eprogen, Darien, IL). A linear 

pH gradient was generated using a combination of start buffer (SB) composed of 6 M 

urea, 25 mM BisTris, and 0.2% OG and elution buffer (EB) containing 6 M urea, 0.2% 

OG, and 10% polybuffer 74 (Amersham Biosciences). Saturated iminodiacetic acid 

(Sigma) was used to adjust the pH of SB at 7.2 and EB at 3.9. The column was first 

equilibrated in SB until the pH of the column was the same as start buffer by monitoring 

with a post detector online assembly of a pH-flow cell (Lazar Research Laboratories, Los 

Angeles, CA). After equilibration, ~10 mg of sample was loaded onto the column at a 

low flow rate to allow for interactions of the proteins with the binding sites. Once a 

baseline was achieved, solvent flow was switched to EB and the flow rate was set to 1 

mL/min for CF fraction collection at the intervals of 0.2 pH units along the linear 

gradient, where the elution profile was recorded at 280 nm. At the end of the gradient, the 

column was flushed with 1 M sodium chloride (Sigma) to remove any proteins still 

bound to the column. All collected samples were stored at -80oC until further analysis. 

Non-porous silica reversed-phase HPLC: Each CF fraction was loaded onto a non-

porous silica reversed-phase (NPS-RP) HPLC column for further separation. An ODSIII-

E (8 x 33mm) column (Eprogen, Inc., Darien, IL) packed with 1.5 um non-porous silica 
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was used to achieve high separation efficiency. The separation was performed at a flow 

rate of 1 mL/min using a water/acetonitrile solvent system (A was 0.1% TFA in 

deionized water and B was acetonitrile and 0.1% TFA) and the gradient used was: 5-15% 

B in 1 min, 15-25% B in 2 min, 25-31% B in 3 min, 31-41% B in 10 min, 41-47% B in 3 

min, 47-67% B in 4 min, 67-100% B in 1 min, followed by maintaining the system at 

100% B for 3 min. Separation was monitored at 214 nm using a Beckman 166 model UV 

detector (Beckman-Coulter). Purified protein peaks were collected in deep-well 96 well 

plates using an automated fraction collector (model SC 100; Beckman-Coulter), 

controlled by in-house-designed DOS-based software. The column was maintained at 

60oC during separation to enhance reproducibility, speed and resolution. Following 

protein fractionation, the samples were stored at -80oC until further use. 

Protein microarrays: 

1. Array spotting: 

All fractions were transferred to shallow-well print plates (Bio-Rad) and were lyophilized 

to dryness. The samples were resuspended in printing buffer, consisting of 62.5 mM Tris-

HCl (pH6.8), 1% w/v sodium dodecyl sulfate (SDS), 5% w/v dithiothreitol (DTT) and 

1% glycerol in 1X PBS, and were left agitating on an orbital shaker overnight. Printing 

was accomplished by depositing 5 droplets of ~500 pL each per fraction using a 

piezoelectric dispenser (Nanoplotter 2, GeSiM). Distance between spots was maintained 

at 600 µm and spot sizes were found to be ~450 µm. Prior to processing all slides were 

kept sealed in a dessicator. 

2. Array processing with ProQ Diamond dye: 
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Slides were blocked overnight in 1% BSA (Roche) in 1X PBS-T (0.1% Tween 20). They 

were then incubated for 1 hr in ProQ Diamond phosphoprotein gel stain (Invitrogen). The 

slides were then washed in destaining solution (Invitrogen) 3 times for 10 min each, then 

rinsed with nuclease free water and dried by centrifugation. The slides were scanned in 

the green channel using an Axon 4000A scanner, and GenePix Pro 6.0 software 

(Molecular Devices, Sunnyvale, CA) was used for data acquisition and analysis. Spots 

were considered to be positively fluorescent if background subtracted intensity of the spot 

was >X2 the local background intensity around the spot. 

3. Array processing with anti-tyrosine antibodies: 

Slides processed and scanned with ProQ diamond dye were rehydrated and then 

incubated in mouse monoclonal antiphosphotyrosine, 4G10 clone antibody (Upstate, 

Charlottesville, VA) diluted to 2 ug/mL in probe buffer (5 mM magnesium chloride, 0.5 

mM DTT, 0.05% TritonX 100 and 5% glycerol in 1X PBS). After primary incubation the 

slides were washed (5 times, 5 min each) in probe buffer. Secondary incubation was 

performed for 1hr using donkey anti-mouse antibody conjugated to fluorescent cy5 at a 

concentration of 1 ug/mL in probe buffer. The slides were finally washed (5 times, 5 min 

each) in probe buffer and scanned in the red channel. Once again, spots were considered 

to be positively fluorescent if background subtracted intensity of the spot was >X2 the 

local background intensity around the spot. 

 

Removal of SDS from samples: Prior to digestion and protein identification by mass 

spectrometry samples were cleaned using Detergent-OUT SDS-300 spin columns (G-

Biosciences, St Louis, MO) to remove residual sodium dodecyl sulfoxide (SDS) that was 
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present during reconstitution into print buffer as per the user guide. In short, spin columns 

were inverted to re-suspend resin and liquid was drained off by spinning at 1000xg for 10 

s. Columns were then equilibrated with 1.5 mL deionized water which was collected in a 

centrifuge tube and discarded. Sample was then applied to the spin columns and was let 

to stand for 5 minutes. After the columns were loaded they were centrifuged at 1000xg 

for 30 s and the SDS-free sample was collected in a centrifuge tube. 

Trypsin digestion: The samples were dried down to 10 µL, and then 40 uL of 100 mM 

ammonium bicarbonate and 10 µL of 10 mM DTT were added to sample. The samples 

were incubated at 60oC for 20 min to allow for reduction of disulfide bonds. 0.5 uL of 

TPCK modified sequence grade trypsin (Promega) was added and the samples were 

incubated at 37oC overnight. Digestion was stopped by adding 1 uL of TFA to the 

digestion mixture. 

Peptide sequencing by LC-MS/MS: Digested samples were separated by a capillary RP 

column (MagicAQ C18, 0.1 × 150 mm) (Michrom Biosciences, Auburn, CA) on a 

Paradigm MG4 micropump (Michrom Biosciences) with a flow rate of 300 nL/min. The 

gradient was started at 3% ACN, ramped to 35% ACN in 25 min, 60% ACN in 15 min, 

90% in 1 min, maintained at 90% ACN for 1 min and finally ramped back down to 3% in 

another 1 min. Both solvents A (water) and B (ACN) contained 0.1% formic acid. The 

resolved peptides were analyzed on an LTQ mass spectrometer (Thermo, San Jose, CA) 

with an NANO-ESI platform (Michrom Biosciences). The capillary temperature was set 

at 200oC, the spray voltage was 2.5 kV, and the capillary voltage was 20 V. The 

normalized collision energy was set at 35% for MS/MS. The top 5 peaks were selected 

for CID. Precursor selection was based upon a normalized threshold of 30 counts/s. 
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MS/MS spectra were searched using the SEQUEST algorithm incorporated in Bioworks 

software (Thermo) against the Swiss-Prot human protein database with Trypsin as the 

enzyme. Additional search parameters were as follows: (2) allowing two missed 

cleavages; (3) possible modifications, oxidation of M and phosphorylation of S, T and Y; 

(4) peptide ion mass tolerance 1.50 Da; (5) fragment ion mass tolerance 0.0 Da; (6) 

peptide charges +1, +2, and +3. The filter function in Bioworks browser was applied to 

set a single threshold to consider peptides assigned with Xcorr values as follows: 1.5 for 

singly charged ions, 2.5 for doubly charged ions, and 3.5 for triply charged ions. 

 

2.3. Results and Discussion 

The overall strategy we used for the large scale analysis of cellular protein 

phosphorylation status is outlined in Figure 2.1. Fractionation of the sample to reduce 

complexity, was achieved by separation in two dimensions, initially by chromatofocusing 

(according to the protein pI), and then by RP-HPLC, according to their hydrophobicity. 

Fractions were manually collected by peaks and each cell line resulted in approximately 

1200 fractions after the complete 2-dimensional separation. The fractionated proteins 

were then printed onto microarrays and analyzed by hybridization with a universal 

phosphoprotein stain, and with antibodies specific to phosphorylated tyrosine residues. 

140 spots were found to exhibit a positive response to the ProQ dye. Sequence analysis of 

specific phosphoproteins for confident identification was achieved by peptide sequencing 

using tandem MS/MS. This combinatorial approach overcomes many of the limitations 

inherent in single-method analyses. Phosphorylation sites have proved difficult to 

identify by mass spectrometry alone due to poor ionization efficiency and low abundance 
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of phosphopeptides. Additionally, mass spectrometric methods are not reliable for 

assessing global phosphorylation in a time-efficient manner. The proposed strategy is 

high-throughput in nature and a method of choice in initial screening to find differentially 

expressed proteins over the whole proteome in a sample of interest. 

 

2D liquid separation and microarray reproducibility: A comparison of the 2-

dimensional liquid separation (pH 4.0-7.2) is illustrated in Figure 2.2. On the left is a 2D 

UV map of the pre-malignant AT1 cell line, while on the right is the same for the 

malignant CA1a cell line. In the center is the comparison of the two maps. It can be seen 

that while the overall 2D maps are very similar for both cell lines, several differences are 

revealed. In particular, many proteins are more highly expressed in the malignant cell 

line, CA1a in the pH range 6.6-7.0 (corresponding to lanes 13 and 14 in Figure 2). Most 

of these proteins elute during the 1st half of the HPLC run. Sixty nine proteins were 

detected in the pH range 6.6-7.0 based upon LC-MS/MS experiments in the malignant 

CA1a cell line. 

Comparative screening of the protein microarrays was achieved using the global 

phosphoprotein stain ProQ Diamond and antibodies specific to phosphorylated tyrosine 

residues. To investigate the binding properties of ProQ phosphor-stain and antibodies, 

protein and peptide standards were printed on SuperAmine slides. The slides were then 

probed initially with the phosphoprotein stain, ProQ Diamond, followed by a monoclonal 

anti-phosphotyrosine antibody (Figure 2.3a). While ovalbumin and β-Casein solely 

contain phosphoserine and phosphothreonine residues and therefore fluoresce green as a 

result of staining, the phosphotyrosine peptide (pY) mixture appears red. This occurs 
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because the antibody for phosphotyrosine displaces the ProQ and binds to the 

phosphotyrosine residues present in that spot. Subsequently, a red fluorescently tagged 

secondary antibody (in this case, an anti-anti-phosphotyrosine antibody conjugated to 

cy5) binds to the primary anti-phosphotyrosine antibody resulting in a red spot. A section 

of microarray generated by spotting of pre-malignant AT1 and malignant CA1a is also 

shown in Figure 2.3b. It can be seen that several fluorescing protein spots indicate the 

presence of phosphorylation. More importantly, figure 2.3b shows that the protein 

contents that were being used in the 2-dimensional separation were sufficient for 

microarray analysis. 

Given the dynamic nature of cellular phosphorylation, we undertook a reproducibility 

study in order to better indicate the biological relevance of our phospho-profile findings. 

3 separately grown CA1a cell line batches and 2 separately grown AT1 cell line batches 

were independently subjected to the entire analytical strategy, including 2D liquid 

separations, protein microarray and mass spectrometry. Several pH ranges were selected 

to assess reproducibility for all samples.  

Figure 2.4 illustrates the results obtained. When looking at the chromatofocusing result 

(Figure 2.4a.), where pH fractions as collected could be monitored online for pH via a pH 

electrode assembly, it can be seen that for all separations a reproducible pH gradient was 

obtained. Furthermore, it can be seen for the CA1a cell line that all separated samples 

resulted in very similar and reproducible separation profiles. Similar separation profiles 

were also observed for the 2 batches of AT1 cell lines run. However, although the peak 

patterns were very similar they were not identical as in the case of CA1a. This difference 

was explained by the fact that while all other samples were loaded at a total protein 

 29



content of 4.5 mg, one of the AT1 samples had a lower total protein content of only 3 mg 

which resulted in an overall lower signal during the acquisition of the chromatogram. A 

comparison of the two batches of chromatograms suggests some subtle differences 

between CA1a and AT1 particularly in the higher pH range of about 7.0-6.2 and in the 

lower pH range around 5.6-5.2. 

In order to further assess these subtle differences, selected pH ranges were subjected to 

NPS-RP-HPLC. Example chromatograms illustrating these separations are shown in 

Figure 2.4b. A high level of reproducibility is seen in both the independently grown 

batches of CA1a and AT1 samples analyzed. Furthermore, the subtle differences that 

were seen in the CF profiles are better visualized in the 2nd dimension. It can be seen that 

the malignant CA1a cells contains more hydrophilic protein peaks relative to the pre-

malignant AT1 cells.  

Fractionated samples from the 2nd dimension were arrayed on glass slides and probed 

with ProQ diamond dye to assess the phosphorylation status of the proteins. It is possible 

that while the chromatograms appear reproducible, the phosphorylation status of the 

protein may not be the same, making it necessary to assess reproducibility at the 

microarray level. Five slides were printed and probed with ProQ dye to assess the 

reproducibility of the printing and hybridization process. Figure 2.4c shows slide images 

of spots that were arrayed from selected pH ranges. It can be seen that all spots show 

consistently similar size and shape indicating that the printing process is consistent and 

reproducible. Slight variation in background intensities between the slides can be 

attributed to variation in slide surfaces and experimental variation during hybridization. 

However, these variations do not alter the number of positive spots of the array and 
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therefore do not affect the results significantly. Figure 2.4d illustrates sample biological 

reproducibility data obtained using the 3 CA1a and the 2 AT1 batches. It can be seen that 

for the pH range 6.4-6.2 there is a phosphorylated protein that elutes around retention 

time 26 min for all samples of CA1a and AT1 that were analyzed. However, for the pH 

range 5.2-5.0 there is a phosphoprotein (retention time 28 min) that is present only in 

CA1a samples. The reproducibility experiment revealed that consistent, differential 

phosphoprotein expressions were achievable across samples and batches.  

It was also important to verify that the proteins present in consistently detected spots on 

the microarray were in fact the same proteins across samples. To this end, SDS was 

removed from selected sample fractions to be printed on arrays (as outlined in the 

methods section), proteins were trypsinized and then analyzed by tandem MS. Table 2.1 

shows the protein IDs of the two spots that appeared positive for the CA1a samples in the 

pH range 6.4-6.2. In all cases, the proteins present in specific microarray spots were the 

same proteins. These analyses show that the strategy and the techniques are highly 

reproducible and confirm that the differential expression of specific phosphoproteins is 

maintained in the MCF10A tumor progression model. 

 

Cell-Associated phosphoprotein profiles: All spots representing the same region of the 

2D UV map from the two cell lines were compared to identify differential 

phosphorylation profiles. Pre-malignant and malignant samples were printed on 

microscopic glass slides with a chemically modified amine surface for studies with ProQ 

and antiphosphotyrosine antibodies. For each comparison, at least 5 replicate slides were 

processed. Of the phosphoproteins whose modification sites were identified, 11 proteins 
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were seen to be phosphorylated in the pre-malignant cell line but not the malignant cell 

line, and 16 proteins were seen to be phosphorylated in the malignant cell line but not the 

pre-malignant cell line. Examples of the differences observed, together with the identity 

of the protein as determined by tandem mass spectrometry, are illustrated in Figure 2.5. 

In some cases a protein eluted over multiple peaks due to diffusional broadening during 

sample collection. These proteins appear in multiple spots in the figures. Furthermore, 

there were instances where more than one phosphoprotein eluted at almost the same 

retention time. In these cases both protein identities are shown in the figure. Overall, 51 

phosphorylation sites from a total of 27 proteins were identified. In addition, 47 

previously reported phosphoproteins were also identified, but no phosphorylation site 

verification was obtained through the MS/MS data. Although dynamic exclusion was 

used to ensure that peptides eluting over a longer time were not continuously selected for 

tandem MS/MS analysis, it is possible that more sites were not identified due to the low 

signal intensities of phosphopeptides which rendered them undetectable using the top 5 

ion peak selection used during our tandem MS runs. Furthermore, 3 phosphoproteins 

were shown to not be differentially expressed in the two cell lines. All phosphoproteins 

identified with site validation are listed in Table 2.2, along with information about the 

number of peptides and protein coverage pertinent to protein identification. Table 2.3 also 

lists all phosphoproteins identified without site validation. Site verification was not 

possible for these peptides due to low sample amounts. We did investigate 

phosphopeptide enrichment using titanium dioxide tips to improve yield, but without 

improvement. The results presented herein correlate well with previous work where 

approximately 155 spots in a 2D gel stained positive for phosphorylation using the ProQ 
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Diamond dye.[34] In another study about 100 proteins showed a change in 

phosphorylation upon stimulation of fibroblast cells where detection on 2D gels was 

facilitated by using antiphosphotyrosine and antiphosphoserine antibodies.[35] Our 

proposed strategy bypasses the problems associated with 2 dimensional gel 

electrophoresis but provides equivalent and complementary information about protein 

phosphorylation at the intact protein level which can be useful especially when site 

verification from mass spectrometric data presents a difficulty due to poor 

phosphopeptide spectra, which is often the case.  

The pie chart in Figure 2.6 shows the cellular distribution of proteins whose modification 

sites were verified regardless of whether the phosphorylation was found in the pre-

malignant or malignant cell line. Interestingly, of the 27 differentially phosphorylated 

proteins whose modified sites could be verified by tandem mass spectrometry, 18 were 

nuclear proteins (about 67% of all proteins identified). This trend of differential 

phosphoprotein expression in the nuclear region was also observed for those proteins 

whose sites were not verified. Closer examination of the proteins showed that the 

malignant CA1a cell line exhibited increased phosphorylation of nuclear proteins 

compared to the pre-malignant AT1 cell line. 

It should be noted that a majority of the proteins that were detected and identified as 

being differentially phosphorylated in this work are of high to medium abundance. In this 

work we observed 85 differentially expressed spots (corresponding to a total of 75 

phosphoproteins of which we were able to identify phosphorylation sites from 27 

proteins) although we observed a total of 140 protein spots that responded to ProQ 

Diamond dye. The information that can be found from this work can therefore shed light 
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on the downstream effects of phosphorylation signaling cascades. However information 

about the very first changes that occur in a pathway were not detected since these occur 

on molecules with very low copy numbers in the cell which are generally below the 

detection limit of the ProQ dye.  

An interesting phenomenon that we observed in our experiments was the shifts in pI due 

to phosphorylation. For example, in table 2.2 it can be seen the protein Lamin A/C 

appears multiple times. This protein was seen over more than one pH range. In addition it 

was found that the phosphorylation sites on the protein that were detectable using the 

unenriched samples were different for each pH range where the protein was observed. 

This phenomenon illustrates an important aspect about the effect of post translational 

modifications on protein pI. Previous work from our lab has shown that addition of a post 

translational modification on a protein changes the protein pI[36]  and microarray data 

from this study further support these findings.  

 

Functional grouping of phenotype-associated phosphoprotein profiles: Many of the 

differentially expressed phosphoproteins identified in this study fall under distinct 

categories with respect to the biological processes in which they are involved. Figure 2.7 

summarizes these proteins according to their functional role in cellular processes. The 

majority of differentially phosphorylated proteins were found to be upregulated in the 

malignant CA1a cell line. A few key proteins that were found to be more phosphorylated 

in the non-malignant AT1 appear in a box with broken lines in the same figure. 

Transcriptional and translational proteins were in the majority, while mitotic and 

apoptosis-related proteins were also represented. In addition, a separate class of enzymes 
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as well as proteins that maintain cytoskeletal integrity were observed to change in their 

phosphorylation state as a function of malignant cellular phenotype. A discussion of 

some of the known roles of the phosphoproteins identified in this study is given below.  

• Apoptotic signaling: 

Proteins involved in the regulation of apoptosis are important determinants of cell 

proliferation and survival in malignant phenotypes. Stimulatory growth factor signaling 

and inhibitory stress factors initiate signal transduction pathways that regulate apoptosis 

via altering the phosphorylation of key regulating proteins. Three proteins important in 

the regulation of apoptosis, Bad, Bax and Acinus were differentially phosphorylated in 

AT1 and CA1a cells. While phosphorylated acinus was only found in CA1a, Bad and 

Bax phosphorylated forms were uniquely seen in AT1.  

Growth factor induced phosphorylation of BAD protects cells from apoptotic stimuli. 

PI3K/Akt, Ras/MAPK/Rak, and PKA pathways all phosphorylate BAD. When serines at 

112, 136, and 155 are phosphorylated, BAD is bound to an inactive complex.[37] In 

LNCaP human prostate cancer cells, phosphorylated sites necessary for activity varied 

with the survival signaling pathway.[38] Because malignant cells would be expected to 

have diminished sensitivity to apoptotic signals, phosphorylation of BAD in AT1 relative 

to CA1a suggests that additional sites other than the previously reported critical three 

serines are phosphorylated in AT1 cells. 

The consequence of phosphorylated threonines at 135 and 140 in Bax in AT1 cells is 

unknown. Both apoptotic and anti-apoptotic activities have been associated with 

phosphorylation at different sites in other cells. Phosphorylation of serine 184 inhibits 

pro-apoptotic function of Bax in A549 human lung cancer cells[39] whereas 
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phosphorylation of threonine 167 in Bax activates apoptotic activity in HepG2 human 

hepatoma cells.[40] 

Acinus, apoptotic chromatin condensation inducer in the nucleus protein (Accesion 

number Q9UKV3), is also a direct target of Akt and phosphorylation on serines 422 and 

573 inhibits apoptosis in HEK293 cells, possibly by preventing caspase-mediated 

cleavage to a form that is necessary for chromatin condensation and apoptosis.[41] 

Acinus was uniquely seen to be phosphorylated in only the malignant CA1a cells, 

according to both the microarray and mass spectrometry data. The phosphorylation site 

that was identified was located on S1004, as shown in Figure 2.8a. Multiple peptides 

from the protein were sequenced, some of which were in the a.a 800-900 region of the 

protein. Interestingly it is known that the active form of the protein is a caspase-cleaved 

isoform, p17 which consists of the sequence a.a 987-1093. It was thus confirmed that the 

unprocessed, and therefore inactive, isoform was present in the cell line suggesting the 

absence of apoptotic chromatin condensation. Suppression of apoptosis may be 

instrumental to the malignant nature of the cell line. 

• Transcriptional regulation: 

This study showed that several proteins involved in transcriptional regulation were 

differentially phosphorylated in the two cell lines. Several histones were more 

phosphorylated in CA1a. Histones are typically positively charged to hold the negatively 

charged DNA in its condensed form. Phosphorylation of histones imparts negative charge 

so that DNA is less tightly bound and is thus available for manipulation. Zfp-36 and 

nucleolar phosphoprotein p130 are transcriptional regulatory proteins that were seen to be 

more phosphorylated in the malignant CA1a. SAF-B is a scaffold attachment factor that 
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regulates the formation of the transcriptosomal complex and is also thought to be a 

corepressor of the estrogen receptor, a pivotal factor in breast cancer phenotypes. SAF-B 

is known to decrease cell proliferation by reducing transcription of HSP-27. Interestingly 

this protein was phosphorylated in the pre-malignant AT1.  

• Protein synthesis: 

In addition to an increase in transcription-related phosphorylation, a parallel increase was 

seen in translational proteins in the malignant CA1a cell line compared to the pre-

malignant AT1. Protein identifications as confirmed by tandem mass spectrometry 

showed the expression of large numbers of ribosomal proteins in malignant CA1a 

compared to AT1. These protein IDs are listed in table 2.4. The higher level of expression 

of ribosome related proteins suggests increased translational activity in the malignant 

breast cancer cell line. One of these proteins, 60S ribosomal protein L14, was confirmed 

to be phosphorylated on serine residue 138. No phosphorylation sites on this protein have 

previously been reported. When comparing the region of the reverse phase chromatogram 

where this protein eluted (Fig 2.8B.), it can be seen that distinct and unique peak patterns 

are evident in both the CA1a and AT1 cell lines. L14 ribosomal protein was only 

identified in the CA1a cell line.  

• Mitosis: 

Malignant cells tend to have increased rates of mitosis due to their proliferative nature. 

Proteins involved in mitotic spindle formation appeared to be differentially 

phosphorylated between the two cell lines. One such protein, Stathmin (Op18) was 

uniquely phosphorylated in only the pre-malignant AT1. This protein regulates the 

microtubule filament system by destabilizing microtubule assembly.  
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Nuclear migration protein (NudC) and microtubule associated protein (MAP4) are 

involved in correct formation of mitotic spindle. NudC is also involved in cytokinesis and 

cell proliferation. A higher expression of phosphorylated NudC could be indicative of the 

malignant nature of the CA1a cell line.  

Heat Shock protein beta-1 is a stress related protein which is found in the cytoplasm but 

which colocalizes with mitotic spindles and migrates to the nucleus during stress. 

Increased phosphorylation of this protein in the malignant cell line could act as a signal 

for localization to a particular part of the cell.  

Nuclear envelope disintegration is an integral component of mitosis. Lamins provide a 

framework for the nuclear envelope and may also indirectly interact with chromatin. In 

both cell lines, different forms of Lamin were confirmed to be phosphorylated by tandem 

mass spectrometry. Lamins are known to be extensively phosphorylated prior to nuclear 

disintegration during the mitosis process. Six phosphorylation sites were found on Lamin 

A/C in the CA1a malignant cell line, of which 2 had not been previously reported (S17 

and S18). In addition, 7 sites were found on Lamin A/C in the pre-malignant AT1 cell 

line. Three of these sites were the same as the ones found in the CA1a cell line, while 4 

were unique, of which 1 was predicted to be phosphorylated although no experimental 

evidence has been previously reported. Lamin phosphorylation is involved in regulation 

of Lamin interactions making the differential phosphorylation of this protein between the 

two cell lines particularly noteworthy. 

• Enzymes: 

Few proteins involved in anabolic or catabolic enzymatic processes showed 

phosphorylation differences between AT1 and CA1a cells. However, 2 examples with 
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relevance to cancer progression were aromatase and alpha enolase. Alpha enolase 

(MBP1) is a multifunctional enzyme playing a role in many processes, including 

glycolysis and growth control. When MPB1 binds to the c-myc promoter, it acts as a 

transcriptional repressor. Alpha-enolase has been implicated as a potential diagnostic 

marker for many cancers. In this study, MPB1 was identified in a phosphorylated form in 

only the AT1 cell line. Aromatase catalyzes the conversion of testosterone to estradiol. It 

has been reported that a kinase activity may be involved in the regulation of this catalytic 

process.[42] In this study, a phosphorylated form of aromatase was uniquely found in the 

pre-malignant AT1 cell line. It is plausible that phosphorylation of this enzyme renders it 

inactive. Consequently, the absence of estradiol in the pre-malignant AT1 may reduce the 

proliferative capability of the cell line.  

Differential expression of proteins in pI range 7.0-6.6: Both the first and second 

dimension chromatograms suggested an increased level of protein in the higher pH 

separation range in the malignant CA1a cell line as compared to the pre-malignant AT1 

cell line. Proteins from the range 7.0-6.6 in the malignant, CA1a cell line were analyzed 

and identified by tandem MS to see if this increase was specific to any particular class of 

proteins. Figure 2.9 shows a chromatogram of the 2nd dimension separation in the 7.0-6.8 

pH range. Interestingly, most identified proteins were ribosomal proteins and other 

proteins that regulate ribosomal function and genesis as shown in table 2.4. A majority of 

the proteins identified are known to be phosphorylated and often times the presence or 

absence of phosphorylation determines their location or activation status in the cell. 

Furthermore, a large number of positive spots in the microarray (which suggested that the 

protein in the spot was phosphorylated) corresponded to the fractions analyzed in this 
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high pH region as mentioned earlier. We were unable to locate the phosphorylation sites 

on all of these proteins, partly due to the low sequence coverage as most ribosomal 

proteins have low molecular weights. The theoretical iso-electric points of these 

ribosomal proteins are beyond the detection and separation capabilities of CF (between 

pH 8 and 11). It is likely that there appeared to be a higher expression of these proteins in 

the malignant CA1a because in fact these proteins were phosphorylated in the malignant 

cell line and therefore acquired a lower pI that made them detectable using the separation 

scheme used in these experiments. 

2.4. Conclusion 

We have presented a protein microarray approach coupled to 2D liquid separations for 

studying phosphorylation differences in a model of breast cancer progression. A 

comparison of pre-malignant versus malignant breast cells has not been previously 

reported using the strategy described here. A total of 51 phosphorylation sites in 27 

different proteins were confirmed using tandem mass spectrometry and the status of these 

proteins was found to be specifically associated with the cellular phenotype. 48 additional 

previously known phosphoproteins were identified without site confirmation. The 

ontological association of the differentially expressed phosphoproteins included mitosis, 

apoptosis suppression and translational control. The research presented here illustrates 

the use of protein microarrays together with mass spectrometry as complementary tools 

to study phosphoproteins in complex samples. The microarray is often able to detect the 

presence of phosphorylation not detected by mass spectrometry without using enrichment 

techniques. When sample amounts are too low to permit enrichment the inability to detect 

phosphorylation by mass spectrometry becomes a critical issue, making the protein 
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microarray strategy a valuable alternative means of detecting high to medium abundance 

phosphoproteins which play a pivotal role in cellular phenotype. Site mapping by mass 

spectrometry would subsequently be needed for complete characterization; however the 

strategy outlined above can be used as an effective and rapid initial screen.  
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Table 2.1: Protein IDs and peptides identified for selected microarray spots that were 
reproducibly positive from pH range 5.4-5.3 (as shown in figure 2.4c). 
 

 Sample Protein ID Score
Peptides 

sequences Coverage 
     
Ca1a_spot1 Lamin-A/C 400 15 25 
Ca1a_spot2 Lamin-A/C 410 19 33 
 Protein disulfide-isomerase A3 precursor 370 15 31 
Ca1a_spot1 Lamin-A/C 450 20 33 
Ca1a_spot2 Protein disulfide-isomerase A3 precursor 380 15 29 
 Lamin-A/C 340 17 30 
Ca1a_spot1 Lamin-A/C 410 18 33 
Ca1a_spot2 Lamin-A/C 480 20 34 
 Protein disulfide-isomerase A3 precursor 360 14 30 
AT1_spot1 Lamin-A/C 410 19 32 
AT1_spot2 Protein disulfide-isomerase A3 precursor 240 11 21 
 Lamin-A/C 180 8 14 

 42



Table 2.2: Phosphoproteins identified with confirmation of phosphorylation sites. 
Additional information was obtained from the Swissprot database. 
 

Accesion number, 
Phosphoprotein 

pH 
range  

Pep. 
ident
ified 

% 
covera

ge 
peptide + site previously 

reported site AT1 CA1
A 

cellular 
location 

P50914 60S ribosomal 
protein L14  7.0-6.8 4 18 S138             

(AALLKApSPK) none  X nucleus 

Q14978 Nucleolar 
phosphoprotein p130  7.0-6.8 2 3 S303             

(pSLGTQPPK) 

pT607, pT610, 
pS623, pS643, 

pS698 
 X nucleus 

P83731  60S ribosomal 
protein L24 7.0-6.8 2 13 

T24             
(pTDGKVFQFLN

AK) 
pT83, pS86  X  

Q9BQ48 39S 
ribosomal protein L34 7.0-6.8 3 26 S89              

(pSLSH)    X mitochondr
ia 

Q9Y3U8 60S 
ribosomal protein L36 7.0-6.8 4 27 T17              

(VpTKNVSK)   X  

P62318 Small nuclear 
ribonucleoprotein Sm 
D3 

7.0-6.8 1 7 
S93              

(NQGpSGAGRG
K) 

  X nucleus 

Q13428 Treacle 
protein 7.0-6.8 4 4 

S959, S964 
(IAPKApSMAGA

pSSSK) 

pT173, pS890, 
pS1034, pS1151, 
pS1299, pS1301, 

pS1394 

 X nucleus 

Q9Y6Q3 Zinc finger 
protein 37 homolog 6.8-6.6 2 4 

T234             
(QDKIQpTGEKH

EK) 
none  X nucleus 

P02545 Lamin A/C  5.4-5.2 39 55 

S17, S18 
(SGAQApSpSTP
LSPTR), S390, 

T394 
(LRLpSPSPpTS

QR) 

S22, S390, S392, 
S652. By similarity 
S407, S496, T505, 

S507, T510,  

 X nucleus 

Q09666 Neuroblast 
differentiation 
associated protein 
AHNAK  

5.2-4.8 2 4 T2727            
(VpTFPKMKIPK) S264, S312 X  nucleus 

P07355 Annexin A2  5.2-5.0 3 7 S84              
(ELApSALK) S18, Y24, S26 X  plasma 

membrane 

P11511 Cytochrome 
P450 19A1  5.2-5.0 1 2 T391             

(KGpTNIILNIGR) none X  membrane 

Q14562 ATP-
dependent helicase 
DHX8  

5.2-5.0 2 5 
T914, T915 

(DEMLpTpTNVP
EIQR) 

none  X nucleus 

Q02539 Histone H1.1. 5.2-5.0 2 6 

T151   
(KSVKpTPK),      

T203    
(pTAKPK) 

none X  nucleus 
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Q03252 Lamin B2. 5.2-5.0 13 20 

S402, S401, 
S400 

(ATSpSpSpSGS
LSATGR) 

similarity S427 X  nucleus 

P02545 Lamin A/C 5.2-5.0 36 56 

S390, S392,  
T394  

(LRLpSPpSPpTS
QR)              

S403, S404, 
S406, S407 

(ApSpSHpSpSQ
TQGGGSVTK) 

S22, S390, S392, 
S652. By similarity 
S407, S496, T505, 

S507, T510,  

X  nucleus 

P02545 Lamin A/C  5.2-5.0 32 48 

S390, S390, 
T394, 

(LRLpSPpSPpTS
QR) 

S22, S390, S392, 
S652. By similarity 
S407, S496, T505, 

S507, T510,  

 X nucleus 

P84103 Splicing factor, 
arginine/serine-rich 3  5.2-4.8 6 32 

S108    
(RRpSPPPR),      
S126, S128, 

S130  
(pSRpSLpSR) 

Extensively 
phosphorylated on 
serine residues in 

the RS domain 

X  nucleus 

Q09666 Neuroblast 
differentiation 
associated protein 
AHNAK  

5.0-4.8 11 9 T2727            
(VpTFPKMKIPK) 

experimental S264, 
S312  X nucleus 

Q07812 Apoptosis 
regulator BAX, 
membrane isoform 
alpha. 

5.0-4.8 2 6 
T135, T140      

(pTIMGWpTLDF
LR) 

none X  membrane 

P16403 Histone H1.2  5.0-4.8 3 18 S112            
(KAApSGEAK) similarity S36  X nucleus 

P08779 Cytokeratin 16 5.0-4.6 3 8 Y249             
(EELApYLR) none X  cytoskeleto

n 

P05787 Cytokeratin 8 5.0-4.8 20 41 S43              
(VGSpSNFR) 

S24, S74, S432, 
S451. By Similarity 
S9, S13, S22, T26, 

S27, S34, S37, S43, 
S417, S424, S475, 

S478  

X  cutoskeleto
n 

Q15424 Scaffold 
attachment factor B  5.0-4.8 2 1 

S383, S384, 
S389 

(MpSpSPEDDpS
DTK) 

by similarity S344 X  nucleus 

P28001 Histone H2A.a  4.8-4.6 3 27 T120             
(pTESHHK) S2, T121  X nucleus 

O14929 Histone 
acetyltransferase type 
B catalytic subunit  

4.8-4.6 2 5 S350, Y351        
(pSpYRLDIKR) none X  

nuclear in 
S Phase 
otherwise 
cytoplasmi

c 

P08621 U1 small 
nuclear 
ribonucleoprotein 70 
kDa 

4.8-4.6 12 26 
S226         

(YDERPGPpSPL
PHR) 

S226  X nucleus 
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P08670 Vimentin. 4.8-4.6 25 56 

S54, S55 
(SLYApSpSPGG
VYATR),      S28, 

Y29              
(pSpYVTTSTR) 

S5, S7, S8, S9, 
S10, S39, S42, S56, 

S72, S73, Y117, 
S420, S430, T458, 
S459. By similarity 

S25, S26, S34, S47, 
S51, S66, S83 

 X  

Q9UKV3 Apoptotic 
chromatin 
condensation inducer 
in the nucleus  

4.6-4.4 8 6 S1004            
(TAQVPpSPPR) 

S240, S243, S365, 
S386, S388, S657, 
S661, S676, S1004, 

T414, T682. By 
similarity S384 

 X nucleus 

P20700 Lamin B1. 4.2-4.0 12 23 
S395 

(LSPSPSpSRVT
VSRASSSR) 

T20, S23, S391  X nucleus 

P02545 Lamin A/C  4.2-4.0 32 47 

S17, S18 
(SGAQApSpSTP

LSPTR), S94 
(KTLDpSVAK), 
S390 , S392, 

T394 
(LRLpSPpSPpTS

QR) 

S22, S390, S392, 
S652. By similarity 
S407, S496, T505, 

S507, T510,  

 X nucleus 
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Table 2.3: Previously known phosphoproteins also identified as differentially expressed 
in this study without confirmation of phosphorylation site(s). All additional information 
provided was obtained from the Swissprot database. 
 

  Protein found in   

Accesion #, Phosphoprotein pH 
range  

# Peptides 
identified 

previously 
reported site AT1 CA1A cellular 

location 

P16989 DNA-binding protein A (Cold shock 
domain protein A) (Single-strand DNA 
binding protein NF-GMB). 

7.0-6.8 3 experimental S34  X nucleus, 
cytoplasm 

P83731 60S ribosomal protein L24 
(Ribosomal protein L30). 7.0-6.8 1 by similarity T83, 

S86  X  

P67809 Nuclease sensitive element binding 
protein 1 (Y-box binding protein 1) (Y-box 
transcription factor) (YB-1) (CCAAT-binding 
transcription factor I subunit A) (CBF-A)  

7.0-6.8 3 
expermental S102, 
Y162; by similarity 
S314 

 X 
cytoplasm, 

nucleus 
(during stress) 

P68104 Elongation factor 1-alpha 1 (EF-1-
alpha-1) (Elongation factor 1 A-1) (eEF1A-1) 
(Elongation factor Tu) (EF-Tu). 

6.8-6.6 4 experimetal Y29  X 
cytoplasm, 

nucleus 
(during stress) 

P04406 Glyceraldehyde-3-phosphate 
dehydrogenase, liver (EC 1.2.1.12) 
(GAPDH). 

6.8-6.6 4 experimental Y42  X cytoplasm 

P13647 Keratin, type II cytoskeletal 5 
(Cytokeratin 5) (K5) (CK 5) (58 kDa 
cytokeratin). 

6.8-6.6 2 by similarity S64  X cytoskeleton 

P39023 60S ribosomal protein L3 (HIV-1 
TAR RNA binding protein B) (TARBP-B). 6.8-6.6 3 experimental Y307  X cytoplasm 

P09651 Heterogeneous nuclear 
ribonucleoprotein A1 (Helix-destabilizing 
protein) (Single-strand binding protein) 
(hnRNP core protein A1). 

6.8-6.6 2 T138, Y347. By 
similarity S6, 311.   X nucleus, 

cytoplasm 

P51991 Heterogeneous nuclear 
ribonucleoprotein A3 (hnRNP A3). 6.8-6.6 2 by similarity S355, 

375  X nucleus 

P62753 40S ribosomal protein S6 
(Phosphoprotein NP33). 6.8-6.6 2 by similarity S235, 

236, 240, 244, 247  X  

P16403 Histone H1.2 (Histone H1d). 6.4-6.0 10 by similarity S35 X  nucleus 

P62807 Histone H2B.a/g/h/k/l (H2B.1 A) 
(H2B/a) (H2B/g) (H2B/h) (H2B/k) (H2B/l). 6.4-6.2 8 experimental S14 

(by STK4) X  nucleus 

P61604 10 kDa heat shock protein, 
mitochondrial (Hsp10) (10 kDa chaperonin) 
(CPN10) (Early-pregnancy factor) (EPF). 

6.2-6.0 2  X  mitochondria 

P23246 Splicing factor, proline-and 
glutamine-rich (Polypyrimidine tract- binding 
protein-associated splicing factor) (PTB-
associated splicing factor) (PSF)  

6.0-5.6 21 

phosphorylated on 
multiple serine and 
threonine residues 
during apoptpsis 

X  nucleus 

P00441 Superoxide dismutase [Cu-Zn] (EC 
1.15.1.1). 5.8-5.6 5  X X cytoplasm 

P30101 Protein disulfide-isomerase A3 
precursor (EC 5.3.4.1) (Disulfide isomerase 
ER-60) (ERp60) (58 kDa microsomal 
protein) (p58) (ERp57) (58 kDa glucose 
regulated protein). 

5.4-5.2 18   X endoplasmic 
reticulum 

P04083 Annexin A1 (Annexin I) (Lipocortin I) 
(Calpactin II) (Chromobindin-9) (p35) 
(Phospholipase A2 inhibitory protein). 

5.4-5.2 8 
experimental S5, 
Y21, T24, S27, 
Y207 

X X cytoplasm 
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P07355 Annexin A2 (Annexin II) (Lipocortin 
II) (Calpactin I heavy chain) (Chromobindin-
8) (p36) (Protein I) (Placental anticoagulant 
protein IV) (PAP-IV). 

5.4-5.2 8 experimental S18, 
Y24, S26  X extracellular 

matrix 

Q12906 Interleukin enhancer-binding factor 
3 (Nuclear factor of activated T- cells 90 
kDa) (NF-AT-90) (Double-stranded RNA-
binding protein 76) (DRBP76) (Translational 
control protein 80) 

5.4-5.2 8 experimental S62, 
T592  X nucleus 

P05783 Keratin, type I cytoskeletal 18 
(Cytokeratin 18) (K18) (CK 18). 5.4-5.2 2 

by similarity S7, T8, 
S18, S31, S34, Y36, 
S42 

 X cytoskeleton 

P13647 Keratin, type II cytoskeletal 5 
(Cytokeratin 5) (K5) (CK 5) (58 kDa 
cytokeratin). 

5.4-5.2 8 by similarity S64  X cytoskeleton 

P02538 Keratin, type II cytoskeletal 6A 
(Cytokeratin 6A) (CK 6A) (K6a keratin). 5.4-5.2 11 by similarity S60  X cytoskeleton 

P05787 Keratin, type II cytoskeletal 8 
(Cytokeratin 8) (K8) (CK 8). 5.4-5.2 9 

Similarity S9, S13, 
S22, T26, S27, S34, 
S37, S43, S417, 
S424, S475, S478 ; 
experimental S24, 
S74, S432, S451 

 X cytoskeleton 

P10599 Thioredoxin (ATL-derived factor) 
(ADF) (Surface associated sulphydryl 
protein) (SASP). 

5.4-5.2 3 experimental T100  X cytoplasm 

Q92934 Bcl2-antagonist of cell death (BAD) 
(Bcl-2 binding component 6) (Bcl- XL/Bcl-2 
associated death promoter) (Bcl-2-like 8 
protein). 

5.2-5.0 4 by similarity S75, 
S99, S118, S134 X  

mitochondria, 
cytoplasm 

after 
phosphorylati

on 

P50402 Emerin. 5.2-5.0 4 
experimental Y59, 
Y74, Y85, Y95, Y99, 
Y161, Y163, Y167,  

X  nucleus 

P06733 Alpha enolase (EC 4.2.1.11) (2-
phospho-D-glycerate hydro-lyase) (Non- 
neural enolase) (NNE) (Enolase 1) 
(Phosphopyruvate hydratase) (C-myc 
promoter-binding protein) (MBP-1) (MPB-1)  

5.2-5.0 3 experimental Y44, 
Y287 X  cytoplasm, 

ncleus 

P29966 Myristoylated alanine-rich C-kinase 
substrate (MARCKS) (Protein kinase C 
substrate, 80 kDa protein, light chain) 
(PKCSL) (80K-L protein). 

5.2-4.8 5 

Experimental S159, 
S163, S167, S170 ; 
S46, S118, S135, 
S262 by similarity 

X X cytoskeleton 

Q02543 60S ribosomal protein L18a. 5.2-5.0 1 experimental Y63 X  cytoplasm 

P09651 Heterogeneous nuclear 
ribonucleoprotein A1 (Helix-destabilizing 
protein) (Single-strand binding protein) 
(hnRNP core protein A1). 

5.2-5.0 5 
similarity S6, S311 ; 
experimental T138, 
Y347 

X  nucleus, 
cytoplasm 

P08579 U2 small nuclear ribonucleoprotein 
B". 5.2-5.0 12 experimental Y151 X  nucleus 

Q13242 Splicing factor, arginine/serine-rich 
9 (Pre-mRNA splicing factor SRp30C). 5.2-5.0 4 

experimental S189 ; 
by similarity S204, 
211, 216 

X  nucleus 

P16949 Stathmin (Phosphoprotein p19) 
(pp19) (Oncoprotein 18) (Op18) (Leukemia-
associated phosphoprotein p18) (pp17) 
(Prosolin) (Metablastin) (Pr22 protein). 

5.2-4.8 6 experimental S16, 25, 
38, 63 X  cytoplasm 

O60506 Heterogeneous nuclear 
ribonucleoprotein Q (hnRNP Q) (hnRNP-Q) 
(Synaptotagmin binding, cytoplasmic RNA 
interacting protein) (Glycine- and tyrosine-
rich RNA binding protein) (GRY-RBP) 

5.0-4.8 4 experimental Y373 X  nucleus, 
cytoplasm 

P05783 Keratin, type I cytoskeletal 18 
(Cytokeratin 18) (K18) (CK 18). 5.0-4.8 15 

by similarity S7, T8, 
S18, S31, S34, Y36, 
S42 

X  cytoskeleton 

P08729 Keratin, type II cytoskeletal 7 
(Cytokeratin 7) (K7) (CK 7) (Sarcolectin). 5.0-4.8 18 similarity S14 X  cytoskeleton 
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Q02543 60S ribosomal protein L18a. 5.0-4.8 1 experimental Y63  X cytoplasm 

Q12906 Interleukin enhancer-binding factor 
3 (Nuclear factor of activated T- cells 90 
kDa) (NF-AT-90) (Double-stranded RNA-
binding protein 76) (DRBP76) (Translational 
control protein 80) 

5.0-4.6 7 experimental S62, 
T592 X  nucleus 

P13647 Keratin, type II cytoskeletal 5 
(Cytokeratin 5) (K5) (CK 5) (58 kDa 
cytokeratin). 

5.0-4.6 17 by similarity S64 X  cytoskeleton 

P15924 Desmoplakin (DP) (250/210 kDa 
paraneoplastic pemphigus antigen). 4.8-4.6 4 

experimental S22, 
176, 2024, 2209, 
2815, 2820, 2825; 
probable S2849 

X  cytoskeleton 

P68104 Elongation factor 1-alpha 1 (EF-1-
alpha-1) (Elongation factor 1 A-1) (eEF1A-1) 
(Elongation factor Tu) (EF-Tu). 

4.8-4.6 6 experimental Y29  X 
cytoplasm, 

nucleus 
(during stress) 

Q9NZM5 Glioma tumor suppressor 
candidate region gene 2 protein (p60). 4.8-4.6 3 none  X nucleus 

P28001 Histone H2A.a (H2A/a) (H2A.2). 4.8-4.6 3 experimental S2, by 
similarity T121 X X nucleus 

P61978 Heterogeneous nuclear 
ribonucleoprotein K (hnRNP K) 
(Transformation up-regulated nuclear 
protein) (TUNP). 

4.8-4.6 7 experimental T3, 
S116, S284 X  nucleus, 

cytoplasm 

P02538 Keratin, type II cytoskeletal 6A 
(Cytokeratin 6A) (CK 6A) (K6a keratin). 4.8-4.6 9 similarity S60 X  cytoskeleton 

P08729 Keratin, type II cytoskeletal 7 
(Cytokeratin 7) (K7) (CK 7) (Sarcolectin). 4.8-4.6 17 similarity S14 X  cytoskeleton 

P27816 Microtubule-associated protein 4 
(MAP 4). 4.8-4.6 3 

by similary S253, 
S643 ; experimental 
S280, S507, T521, 
S696, S787, S825 

 X nucleus 

Q9Y266 Nuclear migration protein nudC 
(Nuclear distribution protein C homolog). 4.8-4.6 8 experimental S274, 

S326  X nucleus, 
cytoplasm 

P22626 Heterogeneous nuclear 
ribonucleoproteins A2/B1 (hnRNP A2 / 
hnRNP B1). 

4.8-4.6 4 experimental S344  X nucleus 

Q13242 Splicing factor, arginine/serine-rich 
9 (Pre-mRNA splicing factor SRp30C). 4.8-4.6 4 

experimental S189 ; 
similarity S204, 
S211, S216 

 X nucleus 

Q14134 Tripartite motif protein 29 (Ataxia-
telangiectasia group D-associated protein). 4.8-4.6 8 

Constitutively 
phosphorylated by 
PKC on 
serine/threonine in 
A431 cells 

X  cytoplasm 

P30050 60S ribosomal protein L12. 4.6-4.4 2 experimental Y14  X  

P68104 Elongation factor 1-alpha 1 (EF-1-
alpha-1) (Elongation factor 1 A-1) (eEF1A-1) 
(Elongation factor Tu) (EF-Tu). 

4.2-4.0 6 experimental Y29  X 
cytoplasm, 

nucleus 
(during stress) 

P04792 Heat-shock protein beta-1 (HspB1) 
(Heat shock 27 kDa protein) (HSP 27) 
(Stress-responsive protein 27) (SRP27) 
(Estrogen-regulated 24 kDa protein) (28 kDa 
heat shock protein). 

4.2-4.0 1 
by similarity S26; 
experimental S15, 
82, 83 

 X 

cytoplasm 
(interphase), 
nucleus (heat 

shock) 

P31948 Stress-induced-phosphoprotein 1 
(STI1) (Hsc70/Hsp90-organizing protein) 
(Hop) (Transformation-sensitive protein IEF 
SSP 3521). 

4.2-4.0 4 experimental Y354  X nucleus, 
cytoplasm 

P06753 Tropomyosin alpha 3 chain 
(Tropomyosin 3) (Tropomyosin gamma) 
(hTM5). 

4.2-4.0 6 experimental T252  X cytoskeleton 
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Table 2.4: Early eluting proteins from pH 7.0-6.6 identified from the malignant CA1a cell 
line. Any non-experimental information was obtained from the Swissprot database. 
 

Protein Acc # Peps 
seqd 

Phospho sites 
identified Function Known 

phosphos 

Nucleolar RNA helicase II (Nucleolar 
RNA helicase Gu) (RH II/Gu) (DEAD-box 
protein 21). 

Q9NR30 6  
cofactor for c-Jun-

activated 
transcription 

pS71, pS89, 
pS121, pS171 

Proliferating-cell nucleolar antigen p120  P46087 6  regulation of the cell 
cycle 

pS58, pS181, 
pT195, pT603, 

pS732 

Ribosome biogenesis regulatory protein 
homolog Q15050 4  

Involved in 
ribosome 

biogenesis 
 

60S ribosomal protein L38 P63173 1    

60S ribosomal protein L36a-like Q969Q0 2    

60S ribosomal protein L36a P83881 4    

Nucleolar phosphoprotein p130  Q14978 2 S303           
(pSLGTQPPK) 

Related to 
nucleologenesis 

pT607, pT610, 
pS623, pS643, 

pS698 

 60S ribosomal protein L29 P47914 1    

Protein CGI-117 Q9Y3C1 2  
May play a role in 
the regulation of 
mRNA stability 

pS25, pS234, 
pS391 

Plasminogen activator inhibitor 1 RNA-
binding protein Q8NC51 2    

60S ribosomal protein L26-like 1 Q9UNX3 8    

60S ribosomal protein L24 P83731 2 
T24  

(pTDGKVFQFLN
AK) 

 pT83, pS86 

39S ribosomal protein L34 Q9BQ48 3 S89    (pSLSH)   

DNA-binding protein A P16989 4  

Binds to the GM-
CSF promoter. 

Seems to act as a 
repressor 

pS34 

Nuclease sensitive element binding 
protein 1  P67809 5  

Contributes to the 
regulation of 
translation by 

modulating the 
interaction between 

the mRNA and 
eukaryotic initiation 

factors 

pS101, pY161, 
pS313 

60S ribosomal protein L28 P46779 3    

40S ribosomal protein S6 
(Phosphoprotein NP33) P62753 1  

controlling cell 
growth and 

proliferation through 
the selective 
translation of 

particular classes of 
mRNA 

pS235, pS236, 
pS240, pS244, 

pS247 

60S ribosomal protein L21 P46778 3    

60S ribosomal protein L13 (Breast basic 
conserved protein 1) P26373 2    
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H/ACA ribonucleoprotein complex subunit 
3  Q9NPE3 1  

Required for 
ribosome 

biogenesis and 
telomere 

maintenance 

 

 60S ribosomal protein L27 P61353 3    

Histone H1.0  P07305 4  

necessary for the 
condensation of 

nucleosome chains 
into higher order 

structures 

 

60S ribosomal protein L34 P49207 2    

60S ribosomal protein L38 P63173 3    

60S ribosomal protein L35a P18077 6  
bind to both initiator 

and elongator 
tRNAs 

 

60S ribosomal protein L36 Q9Y3U8 4 T17              
(VpTKNVSK)   

Protein HT031 Q9Y3Y2 2    

60S ribosomal protein L31 P62899 6   pY103, pY108 

NADH-ubiquinone oxidoreductase 
subunit B14.5a O95182 3  

Transfer of 
electrons from 
NADH to the 

respiratory chain 

 

Probable ribosome biogenesis protein 
RLP24 Q9UHA3 2  

Involved in the 
biogenesis of the 

60S ribosomal 
subunit 

 

40S ribosomal protein S11 P62280 6    

40S ribosomal protein S23 P62266 4    

Probable U3 small nucleolar RNA-
associated protein 11  Q9Y3A2 7  

Involved in nucleolar 
processing of pre-

18S ribosomal RNA 
 

60S ribosomal protein L8 P62917 6   pY132 

Histone H1x Q92522  3  

Histones H1 are 
necessary for the 
condensation of 

nucleosome chains 
into higher order 

structures 

pS31 

Cytochrome c oxidase polypeptide Vb, 
mitochondrial precursor P10606 3  mitochondrial 

electron transport.  

40S ribosomal protein S24 P62847 4    

Mitochondrial 28S ribosomal protein S14 O60783 4    

Cytochrome c P99999 4  

Suppression of the 
anti-apoptotic 
members or 

activation of the pro-
apoptotic members 
of the Bcl-2 family  

 

40S ribosomal protein S27-like protein Q71UM5 2    

60S ribosomal protein L17 P18621 5    

60S ribosomal protein L35 P42766 3    

40S ribosomal protein S26 P62854 2    
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Histone H1.1 Q02539  1  

Histones H1 are 
necessary for the 
condensation of 

nucleosome chains 
into higher order 

structures 

 

60S ribosomal protein L23a P62750 2  
This protein binds to 
a specific region on 

the 26S rRNA 
 

Heterogeneous nuclear ribonucleoprotein 
A3 P51991 7  

Plays a role in 
cytoplasmic 

trafficking of RNA 
pS355, pS375 

Heterogeneous nuclear ribonucleoprotein 
A1 P09651 10  

Involved in the 
packaging of pre-

mRNA into hnRNP 
particles 

pS5, pT137, 
pY346 

Histone H1.2 P16403 2  

Histones H1 are 
necessary for the 
condensation of 

nucleosome chains 
into higher order 

structures 

pS35 

40S ribosomal protein S19. P39019 3    

Signal recognition particle 14 kDa protein P37108 2  

crucial role in 
targeting secretory 

proteins to the 
rough endoplasmic 

reticulum membrane 

 

Heterogeneous nuclear ribonucleoprotein 
G P38159 7  

RNA-binding protein 
which may be 

involved in pre-
mRNA splicing 

pS58, S165, 
pS208 

60S ribosomal protein L14 P50914 4 S138        
(AALLKApSPK)   

THO complex subunit 4 Q86V81 4  

Acts as chaperone 
and promotes the 

dimerization of 
transcription factors 

 

60S ribosomal protein L23 P62829 4    

Heterogeneous nuclear 
ribonucleoproteins A2/B1 P22626 11  Involved with pre-

mRNA processing pS259, pS344 

60S ribosomal protein L30 P62888 3   pS9 

ATP synthase coupling factor 6, 
mitochondrial precursor P18859 3  

one of the chains of 
the nonenzymatic 
component (CF(0) 

subunit) of the 
mitochondrial 

ATPase complex 

 

40S ribosomal protein S25 P62851 4    

60S ribosomal protein L10-like Q96L21 4  

May play a role in 
compensating for 
the inactivated X-
linked gene during 
spermatogenesis 

 

Mitochondrial 39S ribosomal protein L27 Q9P0M9 2    

40S ribosomal protein S20 P60866 3   pT9 

60S ribosomal protein L32 P62910 7    

40S ribosomal protein S15 P62841 3    

60S ribosomal protein L10 P27635 2    

40S ribosomal protein S8 P62241 5    
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Heterogeneous nuclear ribonucleoprotein 
C-like dJ845O24.4 O60812 4  

nucleosome 
assembly by 

neutralizing basic 
proteins such as A 

and B core hnRNPs 

 

Heterogeneous nuclear 
ribonucleoproteins C1/C2 P07910 2  

Binds pre-mRNA 
and nucleates the 
assembly of 40S 
hnRNP particles 

pS253, pS260, 
pS299 

Small nuclear ribonucleoprotein Sm D3 P62318 1 
S93      

(NQGpSGAGRG
K) 

  

Treacle protein Q13428 4 
S959, S964 

(IAPKApSMAGA
pSSSK) 

May be involved in 
nucleolar-

cytoplasmic 
transport 

pT173, pS890, 
pS1034, pS1151, 
pS1299, pS1301, 

pS1394 
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Figure 2.1: Microarray strategy for global evaluation of phosphorylation changes as a 
function of disease 
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Figure 2.2: 2D liquid separation of pre-malignant AT1 and malignant CA1a cell lines. 
Each lane represents a pH fraction different by 0.2 units. Vertical axis refers to the 
retention time during the separation. Intensity of the bands corresponds to peak heights 
which ranged from a value of 100 mV to 990 mV. Difference between premalignant and 
malignant sample appears in the middle panel 
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pY

pY + 
pS or pT

Ovalbumin pS + pT only

B-Casein pS and pT only

pY protein mixture pY only

b) pY
pY + 

pS or pT pY
pY + 

pS or pT

Ovalbumin pS + pT only

B-Casein pS and pT only

pY protein mixture pY only

 a)a) b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Detecting phosphoproteins on microarrays using ProQ Diamond dye and anti-
phosphotyrosine antibodies. (a) A study done with standards where ovalbumin, B-casein 
and a mixture of tyrosine phosphorylated proteins were used. Notice that when probed 
with both ProQ and anti pY antibody, solely pY proteins appear red, mixture of pY and 
pS or pT appear yellow and solely pS or pT appear green. (b) An image of a section of a 
protein microarray containing fractionated proteins from a malignant breast whole cell 
lysate. 
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d)   

igur ss reproducibility of the method. (a) CF 
hromatograms of 3 ca1a separations are shown on the left and of 2 AT1 separations are 
own on the right. In all cases 4.5 mg of sample was loaded (one AT1 separation was 

erformed with only 3 mg of total protein). Co-plotted with the chromatograms are pH 
rofiles to illustrate that the pH gradient was consistent in all separations. (b) 2nd 
imension chromatograms of all batches of cell lines for pH ranges 6.4-6.2 and 7.2-7.0. 
rrows along the chromatogram illustrate peaks that are shown in subsequent microarray 
ata. (c) Array images of samples from pH fractions 7.2-7.0, 6.4-6.2 and 5.4-5.2 to 
lustrate reproducibility throughout the separation space. (d) Sections of microarray data 
owing an example of reproducible positive spots that are unique to ca1a (pH 5.4-5.2, 

pH 5.4-5.2 retention time 28 min

1             2           3

CA1a

AT1

1                     2                   3

CA1a

AT1

pH 6.4-6.2 retention time 26 min

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F e 2.4: Comprehensive study to asse
c
sh
p
p
d
A
d
il
sh
retention time 28 min) and that are found in all cell lines (pH 6.4-6.2, retention time 26 
min). Peaks corresponding to the positive spots found in all cell lines are indicated by 
arrows in fig 2.2b. 
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Figure 2.5: Selected microarray images showing comparison of spots where differential 
phosphorylation was observed between pre-malignant and malignant breast cell lines 
over different pH regions. Protein IDs as determined by tandem mass spectrometry are 
shown beside the image. For some proteins, multiple consecutive spots light up due to 
diffusional broadening during peak collection. In some cases more than one 
phosphoprotein was identified in the same collected fraction. In such cases, both 
phosphoproteins are listed. 
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Cellular disributions of phosphoproteins with confirmed 

phopshorylation sites in both premalignant AT1 and 
malignant CA1a

Nucleus

plasma membrane

cytoskeleton + unknown

mitochondrial

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Pie chart illustrating subcellular location of phosphoproteins whose 
phosphorylation sites were confirmed by mass spectrometry in both the AT1 and CA1a 
cell line combined. Closer examination showed a majority of these phosphoproteins to be 
present in the CA1a cell line (see table 2.2). 
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Figure 2.7: Functional classification of proteins differentially phosphorylated in the pre-
malignant and malignant breast cell lines. Majority of phosphoproteins were found in the 
malignant, CA1a. In cases where a phosphoprotein was found in AT1 and not CA1a, it 
appears in a box with broken lines.  
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Figure 2.8: (a) Tandem mass spectrum (with +1 ion series highlighted) of selected 
phosphopeptide from apoptotic condensation inducing factor with inset showing 
phosphorylation difference between AT1 (boxed in red) and CA1a (boxed in blue) as 
seen on the microarray. (b) Microarray image together with complementary portion of 
reverse phase chromatogram where 60S ribosomal protein L14 was found to be 
phosphorylated in only CA1a. 
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Figure 2.9: Reverse phase chromatogram of pH fraction 7.0-6.8 from malignant cancer 
cell line, CA1a and pre-malignant cell line AT1. IDs as determined by tandem mass 
spectrometry are shown for each peak in CA1a 
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Chapter 3 

 

Screening of glycosylation patterns in serum using natural glycoprotein microarrays 
and multi-lectin fluorescence detection 

 

 

3.1. Introduction 

Glycoproteins are the most heterogeneous group of modifications known in proteins. 

Glycans show a high structural diversity reflecting inherent functional diversity. N- and 

O-oligosaccharide variants on glycoproteins (glycoforms) can lead to alterations in 

protein activity or function that may manifest itself as overt disease.[1, 2] Many clinical 

biomarkers and therapeutic targets in cancer are glycoproteins,[3-5] such as CA125 in 

ovarian cancer, Her2/neu in breast cancer and prostate-specific antigen (PSA) in prostate 

cancer. In addition, the alteration in protein glycosylation which occurs through varying 

the heterogeneity of glycosylation sites or changing glycan structure of proteins on the 

cell surface and in body fluids have been shown to correlate with the development and/or 

progression of cancer and other disease states.[6] Identification of glycoprotein isoforms 

is becoming increasingly important to the diagnosis and management of human diseases 

as more diseases are found to result from glycan structural alterations such as I-cell 

disease, and congenital disorders of glycosylation leukocyte adhesion deficiency type 

II.[7]  
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There are approximately 100 human glycan-binding proteins i.e. lectins according to 

genomic analysis.[8] In addition, the variety of lectin protein folds suggests that there 

may be additional lectin groups not yet discovered.[8, 9] A high throughput technique 

that can assess a diverse range of glycosylation states would facilitate research in this 

area. Furthermore, global screening of glycoprotein profiles in varied biological states 

can also potentially provide valuable information regarding key pathways that make that 

state unique.[10, 11]  

Protein microarrays have proven to be useful as a high throughput screening method for 

whole cell lysates, fractionated proteomes, tissues and antigen-antibody reactions.[12-15] 

Increased interest in glycoproteomes has also sparked related research in the microarray 

field. A majority of current efforts have focused on carbohydrate microarrays.[8, 11, 16] 

In this approach various glycan-type structures are arrayed on a range of surface 

chemistries such as nitrocellulose, glass and dextran-type surfaces after which they are 

screened in parallel for binding. Such studies are critical in assessing antibody specificity 

to glycans and determining currently uncharacterized glycosylation structures that elicit 

responses in cells.[8, 11, 17] However oligosaccharides are difficult to synthesize due to 

varied stereochemistries, limited availability of enzymes for alternate synthesis strategies, 

and due to problems with purification when isolating naturally occurring 

oligosaccharides. Furthermore, the low mass and hydrophilic nature of most 

oligosaccharides makes non-covalent immobilization difficult for some glycans.[11] This 

problem has been overcome by successful covalent attachment of glycans to solid 

surfaces using film-coated photoactivable surfaces[18] and array coupling via flexible 

linker molecules.[19] Although carbohydrate arrays provide valuable information about 
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carbohydrate-interacting proteins, they do not allow us to directly study changes in 

glycosylation in real biological systems. 

Current technologies for glycan analysis such as mass spectrometry[20], lectin affinity 

chromatography[21, 22] and western blotting are time consuming and some, such as mass 

spectrometry, require expertise and are technically difficult.[23] Lectin arrays can be 

used for rapid profiling of glycan expression patterns of various glycoproteins. Current 

studies using lectin arrays have focused on assessing specificity of arrayed lectins[24, 25] 

as well as changes in lectin binding of whole cell E. coli lysates that have undergone a 

treatment with sialyllactose to see changes in bacterial adhesion to cells.[18] Data from 

lectin arrays can be useful in determining the most appropriate lectins for glycoprotein 

enrichment as well as removal of undesirable glycoproteins. However the lectin array 

platform does not allow one to screen whole glycoproteomes in a way that can enable one 

to study both changes in overall glycoprotein patterns as well as changes in an individual 

protein’s glycan expression within that glycoproteome. 

A novel strategy presented here involves modifying the lectin array approach, making it 

more useful as a method that can study the total, as well as individual glycoprotein 

profiles of naturally produced glycoproteins. The strategy employs a liquid fractionated 

protein microarray approach to screen all glycoproteins in a complex sample on a single 

array. Glycoproteins are first enriched on a general lectin column and then separated by 

reverse-phase HPLC. The separated proteins are then arrayed on nitrocellulose slides and 

probed with lectins with a wide range of binding specificities. The glycoprotein-lectin 

interaction is assessed using a biotin-streptavidin system. As an example, we demonstrate 

the potential utility of this approach to identify serum biomarkers in pancreatic diseases. 
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This method allows us to profile the distribution of glycans in the human glycoproteome 

and also to study the changes in glycan expression on a global scale and on individual 

glycoproteins since each glycoprotein sample is a unique spot on the array. 

 

3.2. Experimental Section 

 Standard preparation: Fetuin from fetal calf serum, asialofetuin from fetal calf serum, 

porcine thyroglobulin, bovine ribonuclease B, α-acid glycoprotein and human transferrin 

were purchased from Sigma. A stock solution of 20 mg/mL was made by dissolving 

standards in de-ionized water. A dilution series was made for each of the standard 

glycoproteins with the following final concentrations: 2, 1.6, 1.2, 1, 0.8, 0.6, 0.5, 0.4, 0.2, 

0.1, 0.05, and 0.025 mg/mL. The dilutions were made directly into printing buffer 

(composition described in 2.5) to avoid drying and reconstitution in order to minimize 

sample loss. 

Serum Samples: Serum was obtained at the time of diagnosis following informed 

consent using IRB-approved guidelines. Human normal serum was collected at 

University of Michigan under the auspices of the Early Detection Network (EDRN). 

Pancreatitis serum was obtained from patients with chronic pancreatitis who were seen in 

the Gastroenterology Clinic at University of Michigan Medical Center. Pancreatic cancer 

serum was obtained from patients with a confirmed diagnosis of pancreatic 

adenocarcinoma who were seen in the Multidisciplinary Pancreatic Tumor Clinic at the 

University of Michigan Comprehensive Cancer Center.  40 cc of blood was provided by 

each patient. The samples were permitted to sit at room temperature for a minimum of 30 

minutes (and a maximum of 60 minutes) to allow the clot to form in the red top tubes and 
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then centrifuged at 1,300 x g at 4 oC for 20 minutes. The serum was removed, transferred 

to a polypropylene capped tube and frozen. The frozen samples were stored at -70 oC 

until assayed. All serum samples were labeled with a unique identifier to protect 

confidentiality of the patient. None of the samples were thawed more than twice before 

analysis. Samples were matched for age and sex to remove this variable from the 

analysis. 

Lectin affinity glycoprotein extraction: An agarose bound lectin, Wheat Germ 

Agglutinin,(WGA) was purchased from Vector Laboratories (Burlingame, CA, USA). 

Agarose bound WGA was packed into a disposable screw end-cap spin column with 

filters at both ends. The column was first washed with 500 µl binding buffer (20 mM 

Tris, 0.15 M NaCl, pH 7.4) by centrifuging the spin column at 500 rpm for 2 min. 

Protease inhibitor stock solution was prepared by dissolving one complete EDTA-free 

Protease inhibitor cocktail tablet (Roche, Indianapolis, IN) in 1 ml H2O. The stock 

solution was added to binding buffer and elution buffer at a ratio of (v/v) 1:50. 50 µl 

serum sample diluted with 500 µl binding buffer was loaded onto the column and 

incubated for 15 min. The column was centrifuged for 2 min at 500 rpm to remove the 

non-binding fraction. The column was washed with 600 µl binding buffer twice to wash 

off the non-specific binding. The captured glycoproteins were released with 150 µl 

elution buffer (0.5 M N-acetyl-glucosamine in 20 mM Tris and 0.5 M NaCl, pH 7.0) and 

the eluted fraction was collected by centrifugation at 500 rpm for 2 min. This step was 

repeated twice and the eluted fractions were pooled.  

RP-HPLC separation of lectin-bound glycoproteins: The enriched glycoprotein 

fraction was loaded onto a nonporous silica reverse phase high-performance liquid 
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chromatography (NPS-RP-HPLC) column for separation. High separation efficiency was 

achieved by using an ODSIII-E (4.6x33 mm) column (Eprogen, Inc., Darien, IL) packed 

with 1.5 µm non-porous silica. To collect purified proteins from NPS-RP-HPLC, the 

reversed-phase separation was performed at 0.5 mL/min and monitored at 214 nm using a 

Beckman 166 Model UV detector (Beckman-Coulter). Proteins eluting from the column 

were collected by an automated fraction collector (Model SC 100; Beckman-coulter), 

controlled by an in-house designed DOS-based software program. To enhance the speed, 

resolution and reproducibility of the separation, the reversed phase column was heated to 

60 
oC by a column heater (Jones Chromatography, Model 7971). Both mobile phase A 

(water) and B (ACN) contained 0.1% v/v TFA. The gradient profile used was as follows: 

5% to 15% B in 1 min, 15% to 25% B in 2 min, 25% to 30% B in 3 min, 30% to 41% B 

in 15 min, 41% to 47% B in 4 min, 47% to 67% B in 5 min and 67% to 100% B in 2 min. 

De-ionized water was purified using a Millipore RG system (Bedford, MA).  

Glycoprotein microarray: Purified and separated glycoproteins, or glycoprotein 

standards (from 2.1), were printed on nitrocellulose slides (Whatman Schleicher & 

Schuell BioScience, Keene, NH) using a non-contact printer, Nanoplotter 2.0 (GeSiM, 

Germany). Prior to printing, the proteins were dried down in a 96-well plate and 

resuspended in 15 µL of printing buffer with stirring overnight at 4 oC. The printing 

buffer contained 65 mM Tris-HCl, 1% SDS, 5% dithiothreitol (DTT) and 1% glycerol. 

Each spotting event resulted in approximately 500 pL of sample being deposited by a 

piezoelectric mechanism. The event was programmed to occur 5 times per spot to ensure 

that approximately 2.5 nL were being spotted per sample. Each sample was further 

spotted as 9 replicates. The resulting spots were ~450 µm in diameter and the spacing 
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between spots was maintained at 600 µm. After printing the slides were allowed to dry 

for 24 hours. Blocking was achieved by incubation with 1% Bovine serum albumin 

(BSA) and 0.1% Tween-20 in 1X phosphate buffered saline (PBS) overnight. Blocked 

slides were probed with biotinylated lectin in a solution of PBS-T (0.1% Tween 20 in 1X 

PBS ). The lectins used in the study were biotinylated Peanut Agglutinin (PNA), 

Sambucus Nigra bark lectin (SNA), Aleuria Aurentia (AAL), Concanavalin A (ConA) 

and Maackia Amurensis lectin II (MAL), all purchased from Vector Laboratories 

(Burlingame, CA, USA). The working concentration of all lectins used was 5 µg/mL 

except for SNA, which was used at 10 µg/mL as per vendor recommendation. After 

primary incubation all slides were washed with PBS-T 5 times for 5 minutes each. 

Secondary incubation was achieved with a streptavidin-AlexaFluor555 conjugate 

(Invitrogen, Carlsbad, CA) in a working concentration of 1 µg/mL containing 0.5% BSA, 

0.1% Tween-20 in 1X PBS. After secondary incubation the slides are washed 5 times for 

5 minutes each in PBS-T and completely dried using a high-speed centrifuge (Thermo 

Electron Corp., Milford, MA). The dried slides were scanned using an Axon 4000A 

scanner in the green channel and GenePix Pro 3.0 software (Molecular Devices, 

Sunnyvale, CA) was used for data acquisition and analysis. 

Protein digestion by trypsin: Fractions obtained from NPS-RP-HPLC were 

concentrated down to ~20 µL using a SpeedVac concentrator (Thermo, Milford, MA) 

operating at 45 oC. 20 µl of 100 mM ammonium bicarbonate (Sigma) was then mixed 

with each concentrated sample to obtain a pH value of ~7.8. 0.5 µl of TPCK modified 

sequencing grade porcine trypsin (Promega, Madison, WI) was added and vortexed prior 

to a 12-16 hour incubation at 37 oC on an agitator. 
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Glycan cleavage by PNGase F and glycan purification: For glycan cleavage and 

purification, glycoproteins were dried down completely and redissolved in 40 µl 0.1% 

(w/v) RapiGest solution (Waters, Milford, MA) prepared in 50 mM NH4HCO3 buffer, pH 

7.9 to denature the protein. Protein samples were reduced with 5 mM DTT for 45 min at 

56 oC and alkylated with 15 mM iodoacetamide in the dark for 1 h at room temperature. 2 

µl enzyme PNGase F (QA-Bio, Palm Desert, CA) was added to the samples and the 

solutions were incubated for 14 h at 37 oC. The glycans released were purified using SPE 

micro-elution plates (Waters) packed with HILIC sorbent (5 mg). The micro-elution SPE 

device was operated using a centrifuge with a plate adaptor (Thermo). Protein and 

detergent were removed during this step. Glycans were further cleaned by a graphitized 

carbon cartridge (Alltech, DeerWeld, IL) to remove salt. 25 % ACN with 0.05 % TFA 

was used to elute the carbohydrates.  

Mass spectrometry 

Protein identification by LC-MS/MS: Digested peptide mixtures from NPS RP HPLC 

collection were separated by a capillary RP column (C18, 0.3 x 150 mm) (Michrom 

Biosciences, Auburn, CA) on a Paradigm MG4 micro-pump (Michrom Biosciences) with 

a flow rate of 5 µl/min. The gradient started at 5% ACN, was ramped to 60% ACN in 25 

min and finally ramped to 90% in another 5 min. Both solvent A (water) and B (ACN) 

contain 0.1% formic acid. The resolved peptides were analyzed on an LTQ mass 

spectrometer with an ESI ion source (Thermo, San Jose, CA). The capillary temperature 

was set at 175 oC, spray voltage was 4.2 kV and capillary voltage was 30 V. The 

normalized collision energy was set at 35% for MS/MS. MS/MS spectra were searched 

using the SEQUEST algorithm incorporated in Bioworks software (Thermo) against the 
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Swiss-Prot human protein database. One mis-cleavage is allowed during the database 

search. Protein identification was considered positive for a peptide with Xcorr of greater 

than or equal to 3.0 for triply-, 2.5 for doubly- and 1.9 for singly charged ions.  

Glycan structure analysis: MS and MS2 spectra of glycan samples were acquired on a 

Shimadzu Axima QIT MALDI quadrupole ion trap-ToF (MALDI-QIT)(Manchester, 

UK). Acquisition and data processing were controlled by Launch-pad software (Karatos, 

Manchester, UK). A pulsed N2 laser light (337 nm) with a pulse rate of 5 Hz was used for 

ionization. Each profile resulted from 2 laser shots. Argon was used as the collision gas 

for CID and helium was used for cooling the trapped ions. The TOF was externally 

calibrated using 500 fmol/ul of bradykinin fragment 1-7 (757.40 m/z), angiotensin II 

(1046.54 m/z), P14R(1533.86 m/z), and ACTH( 2465.20 m/z) (sigma). 25 mg/ml 2,5-

dihydroxybenzonic acid (DHB) (LaserBio Labs, France) was prepared in 50% ACN with 

0.1% TFA. 0.5 µl glycan sample was spotted on the stainless-steel target and 0.5 µl 

matrix solution was added followed by air drying. 

 

3.3. Results and Discussion 

The glycoprotein microarray strategy: The methodology presented here and illustrated 

in figure 3.1, is a potential approach that can be used to study differences in glycans 

expressed on unique glycoproteins in complex biological samples.  Following the 

strategy, serum is first purified and enriched for glycoproteins using a general lectin 

column. The enriched glycoproteins are further separated on a reverse-phase HPLC 

column. The resolved glycoproteins are then arrayed on nitrocellulose slides as unique 

protein spots after which they are screened for different glycan structures using five 
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different lectins. The lectin-binding event is visualized using a scanner by employing a 

biotin-streptavidin-alexafluor555 scheme. Differential glycosylation patterns can 

consequently be observed using image analysis software. 

Standard glycoprotein microarrays: To determine the feasibility of using a 

glycoprotein microarray to study separated pre-purified glycoproteins, initial studies were 

done using standards with known glycan structures in order to assess the specificities of 

the lectins used, the quality of the processed arrays as well as to determine the range in 

which a linear response was observed for the concerned standard proteins. 

Five standard glycoproteins were used to assess the feasibility of a glycoprotein 

microarray strategy. A dilution series of each glycoprotein was made using 

concentrations ranging from a blank with no sample to 2 mg/mL. Each dilution was 

printed in 9 replicates to assess the variability of spots from the same sample during a 

print run. Each sample spot on the array was achieved by depositing 5 droplets of 

approximately 500 pL each resulting in a total volume of 2.5 nL per spot by a 

piezoelectric mechanism. Consequently the standards spotted ranged from 0-2.5 ng. 

Table 3.1 describes the binding specificities of the biotinylated lectins used for glycan 

detection. Five separate lectins were used for the analysis. ConA recognizes α-linked 

mannose including high mannose-type and mannose core structures. Both MAL and SNA 

recognize sialic acid on the terminal branches, while SNA binds preferentially to sialic 

acid attached to terminal galactose in an (α-2,6) and to a lesser degree, an (α-2,3) 

linkage.[26] MAL could detect glycans containing NeuAc-Gal-GlcNac with sialic acid at 

the 3 position of galactose.[27] In contrast, PNA binds de-sialylated exposed galactosyl 

(β-1,3) N-acetylgalactosamine. In fact, sialic acid in close proximity to the PNA receptor 
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sequence will inhibit its binding. AAL recognizes fucose linked (α-1,6) to N-

acetylglucosamine or to fucose linked (α-1,3) to N-acetyllactosamine. Use of the 

combination of these five lectins should be highly successful in covering a majority of N-

glycan types reported and differentiating them according to their specific structures. 

Lectin specificity studies: The specificity of purchased lectins was assessed to ensure 

that they did not bind non-specifically. Five standard glycoproteins were used for this 

study, fetuin, asialofetuin, thyroglobulin, ribonuclease B and transferrin. The printed 

glycoprotein standards were incubated with biotinylated lectins for binding. The bound 

biotinylated lectins were subsequently detected with streptavidin conjugated to 

AlexaFluor555. This sandwich-type detection scheme was employed because the very 

specific biotin-streptavidin interaction should improve signal to noise ratio significantly. 

Figure 3.2 shows the images obtained when slides were probed with each of the lectins. 

Background fluorescence was at a minimum with the processing conditions used. Data 

illustrated in Fig. 3.3A supports previously reported glycan structures corresponding to 

the glycoproteins used in this study. It is known that the abundant glycan structures of 

bovine fetuin are sialylated, bi- and tri-antennary complex-type N-glycans (core non-

fucosylated). The sialic acid residues are found in both (α-2,3) and (α-2,6) linkages.[28] 

Abundant glycans in asialofetuin include asialo-bi and asialo-tri antennary N-linked 

oligosaccharides. Dominant porcine thyroglobulin glycans include disialylated 

biantennary N-linked oligosaccharides with core fucose[29] and oligomannose N-linked 

oligosaccharide with 5-9 mannosyl residues.[30] The glycan of ribonuclease B is high 

mannose type i.e. Man5-9GlcNac2.[31] The dominant glycan in transferrin is sialylated, 

biantennary complex-type N-glycan.[32] 
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As shown in Fig. 3.3A, Con A binds strongly to thyroglobulin and ribonuclease B since 

both of their glycans contain oligomannose N-linked oligosaccharide with 5-9 mannosyl 

residues. Transferrin, fetuin and asialofetuin bind weakly to Con A as mannose residues 

are only present in their core structure and not in the exposed branches. SNA binds 

fetuin, thyroglobulin and transferrin, which have all been reported to possess sialic acid 

moieties on their glycans, while MAL only bound to Fetuin and porcine thyroglobulin, 

which have sialic acid attached in an (α-2,6) position. These two lectins can therefore be 

used to discriminate between sialic acid residues in an (α-2,3) vs (α-2,6) linkage due to 

the more specific interaction of MAL. 2-3 vs 2-6 sialylation of Lea antigens has been 

implicated in pancreatic cancer[33], supporting the use of multiple lectin detection 

schemes in microarray formats for explicit differentiation of glycan structures. This 

further shows the importance of using multiple lectin detection schemes in microarray 

formats for explicit differentiation of glycan structures. PNA bound to only asialofetuin 

since it is the only standard used that has de-sialylated, exposed galactosyl (β-1,3) N-

acetylgalactosamine residues in its glycan structure. This lectin was also found to be the 

most specific lectin used. As shown in Fig 3.2. and Fig. 3.3A, AAL binds strongly to 

porcine thyroglobulin which is the only standard used whose main structure consists of 

disialylate, biantennary N-linked oligosaccharide with core fucose. There might be very 

low abundant fucosylated glycan attached to transferrin as reported in previous data[32] 

where only 2% of tranferrin glycans are reported to be fucosylated. The abundance might 

be below the detection limit of this lectin since the highest concentration of transferrin 

spotted on the slide in this work was only 2 mg/mL, which corresponds to 0.12 fmols 

absolute amount of the fucosylated transferrin based on previously reported data.  
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Linearity of response and detection limits of lectins: In all cases where standard 

proteins elicited response, the limit of detection was found to be between a concentration 

of 0.05-0.1 mg/mL. This corresponds to an absolute protein content of between 125 pg to 

250 pg. On average, glycoproteins fall in the molecular weight range of about 50 kDa. 

Consequently, 125-250 pg translates into a 2.5 to 5 fmols detection limit. Mass 

spectrometric glycan structure determination often requires higher amounts of sample due 

to the need for multiple sample handling steps as well as MSn fragmentation requirements 

for complete structural information. In the case of MAL where only fetuin was found to 

bind, the limit of detection was much higher at almost 1mg/mL protein concentration 

corresponding to 2.5 ng or 50 fmol total protein content. In this study all protein spots 

were measured to be approximately 450 µm in diameter. If the printing buffer 

composition is changed so that spots spread out to a lesser degree across the array 

surface, the density of sample per spot area could be increased possibly resulting in lower 

limits of detection. 

To determine the linearity of response to individual lectins for each of the standard 

proteins, curves were generated based on the fluorescence response of all printed spots 

and their replicates. In addition to the 9 replicates on each slide, data points were 

collected from two processed slides for each lectin in order to assess the variability 

between slide images processed in the same manner and on the same day.  We found that 

all proteins showed a linear response to each of the lectins within a 0.025 - 1 mg/mL 

concentration range. However linearity of response was optimal in a range of 0.025 - 0.5 

mg/mL. Figure 3.3 shows some of the standard curves that were obtained. It was noticed 

that all standard curves were unique to the standard protein that was being used to 
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generate it. This is not surprising since a lectin does not measure quantity of a protein 

spotted but reflects the extent to which a particular glycan structure is expressed on that 

protein. To illustrate this we determined the dominant glycan structures on Ribonuclease 

B and Transferrin by tandem mass spectrometry. Figure 3.4 shows glycan structures and 

their corresponding mass spectra. Based on the mass spectra it is evident that 

ribonuclease B has a mannose-rich glycan structure not present in transferrin. This 

explains our findings in Fig. 3.3A, where even at the same concentration of standards, 

ribonuclease B responds to ConA to a much greater degree than transferrin. 

Although some of the standards used contained sialic acid residues on their respective 

glycans, MALDI-based tandem mass spectrometry was often not sufficient to determine 

their presence (Transferrin in figures 3.3 and 3.4). The inability to detect sialic acid 

moieties on glycans due to in-source decay as ions transit from the MALDI target to the 

ion-trap has previously been reported.[34] In order to stabilize the fragile sialic acid 

moiety, modifications need to be made on the carboxyl group such as esterification[35] 

and permethylation[36] which require large amounts of sample and are often not feasible 

for biological, clinically relevant samples due to poor recovery for samples of low 

abundance. Using a glycoprotein microarray strategy together with mass spectrometry 

therefore appears to be a more complete means to characterize glycan structures on 

proteins. 

Variation between spots and slides: Fluorescence values for all spots were used to 

assess the spot variability and reproducibility. We found standard deviations for all 

proteins and their binding to lectins to be within 10% of the mean value, all replicates 

considered. Standard deviation values were within 5% of mean when only replicates on 
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the same slides were taken into consideration. Our data suggests that printing occurs 

reproducibly and the variation between slides is most likely due to slight heterogeneity 

between slide surfaces and small differences in sample handling during slide processing. 

We have found that this small variation in handling is not significant enough to be 

problematic. PNA was the only lectin that showed much higher standard deviation 

(almost 20-25% from the mean). However upon closer examination we concluded that 

there was a great degree of difference between the spots in the two slides and when each 

slide was analyzed separately the standard deviation values again fell within 5-10% of the 

mean for all standards that showed a response to PNA (data not shown). 

From the study with standards we have been able to show that glycoprotein microarrays 

can potentially be used to study differences in glycosylation states of individual proteins 

in more complex biological samples. 

Studies with serum samples: Since studies with standards were successful in terms of 

reproducibility and sensitivity, we attempted to enrich and pre-fractionate glycoproteins 

from human serum and make a glycoprotein microarray to see if differences were evident 

in sera from biologically distinct states. In this case, we examined sera samples from 

patients who were not diagnosed with pancreatic disease or were diagnosed with chronic 

pancreatitis or pancreatic cancer. Such a strategy could be used with a wide range of 

biological samples following appropriate sample preparation protocols. 

As illustrated in figure 3.1, serum was first purified for glycoproteins using Wheat Germ 

Agglutinin (WGA). WGA can bind oligosaccharides containing terminal N-

acetylglucosamine or chitobiose as well as sialic acid residues, structures that are 

common to many serum and membrane glycoproteins. The purified and enriched 
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glycoproteins were then separated in a second dimension by non-porous reverse phase 

HPLC. This separation resolved the enriched glycoproteins into approximately 30 

fractions.  When 2.5 mg (~50 µL raw serum) serum proteins were enriched, 

approximately 100 µg of glycoproteins were typically recovered. Only half of this sample 

was run in the second dimension. After considering recovery from the reverse phase 

column and the number of fractions collected in the second dimension, it can be 

estimated that each fraction contained an average of 1-2 µg of protein (this amount is 

proportional to the height of relative peaks). All collected fractions were dried down and 

resuspended in 15 µL of printing buffer so that the working concentrations of the 

glycoproteins printed were in the range of 0.07-0.13 mg/mL. This range falls between the 

concentrations that were used for the standard glycoproteins ensuring similarity in 

parameters used in both studies. 

To see if there were any changes in glycosylation patterns between sera from different 

biological states WGA enriched glycoproteins from normal and pancreatitis serum were 

fractionated and spotted on nitrocellulose slides. The reverse-phase chromatogram of 

enriched glycoproteins from the two sera samples showed some differences in peak 

heights. In addition to confirming the concentration difference shown by the different 

peak heights, the glycoprotein microarray also indicated a different glycosylation pattern 

for the observed differences. Fig. 3.5A shows the reverse phase chromatogram 

highlighting differences between the two samples. 

Based on the peak heights alone it seemed that the peak highlighted in red is 2 to 3 times 

overexpressed in normal serum compared to pancreatitis serum. However microarray 

data in Fig. 3.5B indicated that response to some of the lectins for the same peak was 

 82



often more than 2 to 3 times in the normal serum compared to pancreatitis. To verify that 

this trend was due to change in glycan expression and not protein concentration, all data 

was normalized using integrated peak areas. After normalization it was found that the 

peak concerned expressed almost twice as much mannosylation and fucosylation while 

all other glycan structures assessed did not change significantly. µLC-MS/MS analysis 

identified the peak as a complement factor H precursor.  

Additionally, the peak highlighted in orange showed another interesting trend. Although 

the peak height was less than two times higher in the pancreatitis serum compared to the 

normal serum, normalized response to AAL was more than 6 times higher in the normal 

sample as shown in Fig. 3.5C. This suggests that the protein concerned is much less 

fucosylated in chronic pancreatitis. Furthermore, the protein showed almost 4-fold higher 

expression of mannose on its glycans in normal vs. pancreatitis serum as seen by the 

normalized fluorescence intensities with Con A. Response to SNA, MAL and PNA was 

not significantly different for the same protein between the two samples. We found that 

normalization was necessary for a more accurate picture of differential glycan expression 

and in order to subtract any differences caused by overall protein abundance. 

The glycoprotein shown in Fig. 3.5C was identified by tandem mass spectrometry and 

found to be α1-acid glycoprotein precursors 1 and 2. This protein and changes in its 

glycosylation state have been implicated in various disease pathologies including 

pancreatitis where higher levels of the protein was seen in severe pancreatitis.[37, 38] 

Although our study as presented in this report, cannot claim that α1-acid glycoprotein is a 

significant marker of pancreatitis, it does show that our novel strategy has the potential as 

a method that can identify such important markers.  
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Another separate study was done to see if any difference was apparent in enriched 

glycoproteins from normal versus pancreatic cancer sera. Pancreatic cancer is currently 

difficult to diagnose at an early stage due to lack of early diagnostic markers, and in some 

patients may be difficult to differentiate from chronic pancreatitis.[39, 40] We observed 

more differences between normal and cancer serum than we did between normal and 

pancreatitis. Figure 3.6 shows sections of arrays comparing normal and pancreatic cancer 

serum glycoproteins. In all data shown, reverse-phase chromatograms indicated similar 

protein amounts since peak heights and widths were comparable. Furthermore all data 

was normalized by peak area to nullify effects due to concentration difference.  It can be 

seen from the bar graphs that sialic acid was more abundant in selected cancer serum 

glycoproteins compared to normal serum glycoproteins (Fig. 3.6A and 3.6B). 

Specifically, antithrombin-III precursor showed a 2.3 fold higher expression of α-2,6 

linked sialic acid (as shown by SNA data in Fig. 3.6A) while all other glycans assessed 

did not change between normal and cancer sera. Also, a leucine-rich alpha-2-glycoprotein 

precursor showed a 3-fold higher expression of mannose and a 2.5-fold higher expression 

of fucose in addition to a 6.5-fold higher expression of α-2,6 linked sialic acid (Fig. 

3.6B). Conversely some peaks showed higher mannosylation and sialylation in normal 

serum compared to cancer serum (Fig. 3.6C and 3.6D). An alpha-2-macroglobulin 

precursor had 37-fold more mannosylation and 28-fold more sialylation (Fig. 3.6C) while 

complement precursors showed 6-fold higher mannosylation and 5-fold higher sialylation 

in normal compared to cancer sera (Fig. 3.6D). Table 3.2 summarizes lectin and mass 

spectrometry data for all analyzed proteins from serum samples that are discussed in Fig. 

3.5 and 3.6. Details about MS/MS data and peptides identified are Table 3.3.  
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While a particular glycosylation was more abundant in cancer versus normal for some 

proteins, for example α(2,6) sialylation in Antithrombin III, the trend was reversed for 

other proteins, such as α(2,6) sialylation in complement precursors . If all the proteins 

were studied together without prefractionation, such differences would not be highlighted 

because equal but opposite responses would cancel each other out. Our two step strategy 

involving fractionation prior to array production addresses this potential problem.

Although currently a proof of concept experiment, the strategy presented in this report 

can be used to identify changes in glycosylation in serum proteins that represent different 

biological states, and may serve as a novel approach to the identification of clinically 

useful serum biomarkers. At present, we are investigating global changes in glycosylation 

profiles in sera from multiple patients with various stages of pancreatic diseases to see if 

significant differences are evident, particularly to identify glycosylation  changes unique 

to patients with pancreatic cancer. 

 

3.4. Conclusion 

We have presented a novel strategy that can be used to profile glycosylation patterns in 

complex biological samples. Unlike previous methods that can only assay known 

glycoproteins by using antibody microarrays or unfractionated complex mixtures that 

make it difficult to distinguish between the glycoproteins that may be causing a different 

response, our strategy starts with an enrichment step followed by a separation, allowing 

us to assess glycosylation patterns of individual proteins. This gives us the capability to 

monitor global glycosylation pattern changes as well as identify potential new proteins 

whose glycosylation changes are essential in biologically important states since each 
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glycoprotein is a unique spot on the array. The data presented here provides an example 

of how our approach can be used to identify different glycosylation patterns in sera from 

patients with different diseases of the pancreas. The study also showed that glycoprotein 

microarray data can provide information that reverse-phase UV data cannot. Particularly, 

we showed that proteins with the same retention time and similar peak heights showed an 

altered glycan structure distribution after normalization using integrated peak areas. The 

strategy can be used in large scale on biological samples to determine critical differences 

for diagnostics as well as large-scale glycoproteome screening. 
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Table 3.1: Biotinylated lectins used for glycan detection and their specificities 

 

                 Biotinylated Lectin Glycan structure detected 
 
Concanavilin A (ConA) 
 

α-linked mannose 

Maackia Amurensis II (MAL) 
 sialic acid in an (α-2,3) linkage 

Aleuria Aurantia (AAL) 
fucose linked (α -1,6) to N-
acetylglucosamine or to fucose linked 
(α -1,3) to N-acetyllactosamine 

Sambucus Nigra (Elderberry) bark 
(SNA) 

sialic acid attached to terminal 
galactose in (α-2,6), and to a lesser 
degree, (α-2,3), linkage 

Peanut Agglutinin (PNA) galactosyl (β-1,3) N-
acetylgalactosamine 
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 Table 3.2: Protein IDs of data shown in Fig.3.5 and 3.6 as identified by µ-LC-MS/MS 
with change in glycan expression based on microarray data. All data was background 
subtracted and normalized based on UV peak areas. N: Normal, P: Pancreatitis, C: 
Cancer. 
 

Fig. Protein ID % 
Cov MW Con A 

 AAL SNA MAL PNA 

5B 

P08603 
Complement 
factor H 
precursor (H 
factor 1) 

21 139034 2x in N 2x in N No 
change 

No 
change 

No 
change 

5C 

P02763 and 
P19652 
Alpha-1-acid 
glycoprotein 1 
and 2 
precursors 

 
55 
27 

23497 
23588 4x in P 4x in N No 

change 
No 

change 
No 

change 

6A 

P01008 
Antithrombin-
III precursor 
(ATIII). 

 

 
31 52569 No 

change 
No 

change 
2.3x in 

C  
No 

change 

No 
bindin

g 

6B 

P02750 
Leucine-rich 
alpha-2-
glycoprotein 
precursor 
(LRG). 

 

34 38155 3x in C 2.5x in 
C  

6.5x in 
C  

No 
bindin

g 

No 
bindin

g 

6C 

P01023 
Alpha-2-
macroglobulin 
precursor 
(Alpha-2-M). 

 

41 163175 37x in 
N  

Only 
in N 

28x in 
N  

Only 
in N 

Only 
in N 

6D 

CO3_HUMA
N P01024 

Complement 
C3 precursor 

61 187046 6x in N 3x in N 5x in N  
No 

bindin
g 

No 
bindin

g 

  
 

 88



Table 3.3: Detailed results from tandem mass spectrometry experiments done on proteins 
discussed. Information about peptides detected, Xcorr and coverage are included. 
 
 
  Protein ID % Cov Theoretical MW

  Sequence MH+ Charge XC 
Ion series 

hit

Fig. 
6A 

ANT3_HUMAN P01008 Antithrombin-
III precursor (ATIII) 31.25 52569.9 

  K.FDTISEK.T 839.42 1 1.73 10/12
  K.ATEDEGSEQKIPEATNR.R 1874.87 2 2.64 19/32
  R.KELFYK.A 827.47 1 1.63 8/10
  K.SKLPGIVAEGR.D 1126.66 1 1.42 11/20
  K.LPGIVAEGR.D 911.53 1 2.45 11/16
  K.ELFYK.A 699.37 1 1.86 6/8
  R.DDLYVSDAFHK.A 1309.61 1 2.53 13/20
  K.LQPLDFK.E 860.49 1 1.50 8/12
  R.FATTFYQHLADSK.N 1528.74 2 3.23 19/24
  R.FRIEDGFSLK.E 1211.64 1 1.50 11/18
  K.GDDITM*VLILPKPEK.S 1684.92 2 2.40 16/28
  K.EQLQDMGLVDLFSPEK.S 1848.91 2 4.56 23/30
  K.NDNDNIFLSPLSISTAFAM*TK.L 2315.12 2 2.10 14/40
            

Fig. 
6B 

A2GL_HUMAN P02750 Leucine-rich 
alpha-2-glycoprotein precursor (LRG). 33.72 38155.10 

  R.WLQAQK.D 773.43 1 1.65 8/10
  K.LQVLGK.D 657.43 1 1.72 8/10
  R.GPLQLER.L 812.46 1 1.79 8/12
  K.ALGHLDLSGNR.L 1152.61 1 2.11 12/20
  R.VAAGAFQGLR.Q 989.55 1 1.85 12/18
  R.YLFLNGNK.L 968.52 1 1.86 10/14
  R.TLDLGENQLETLPPDLLR.G 2037.09 2 3.62 22/34
  K.ENQLEVLEVSWLHGLK.A 1894.01 2 4.58 21/30
            

  

HEP2_HUMAN P05546 Heparin 
cofactor II precursor (HC-II) (Protease 
inhibitor leuserpin 2) (HLS2). 

18.04 57035.20 

  K.VSMMQTK.G 824.40 1 1.59 9/12
  R.EVLLPK.F 698.45 1 1.89 8/10
  R.SVNDLYIQK.Q 1079.57 1 1.48 9/16
  K.GPLDQLEK.G 899.48 1 1.86 11/14
  R.MLFDK.N 653.33 1 1.62 6/8
  R.LNILNAK.F 785.49 1 1.63 9/12
  R.NFGYTLR.S 870.45 1 1.69 9/12
  K.NYNLVESLK.L 1079.57 1 2.38 12/16
  R.IAIDLFK.H 819.50 1 1.61 8/12
  R.EYYFAEAQIADFSDPAFISK.T 2312.08 2 4.19 23/38
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Fig. 
6C 

A2MG_HUMAN P01023 Alpha-2-
macroglobulin precursor (Alpha-2-M). 

40.77  163175.90 

  K.AFTNSK.I 667.34 1 1.41 8/10
  K.TFAQAR.A 693.37 1 1.69 8/10
  K.SLNEEAVKK.D 1017.56 1 2.01 12/16
  R.TTVMVK.N 678.39 1 1.47 8/10
  K.SLNEEAVK.K 889.46 1 1.46 10/14
  K.SIYKPGQTVK.F 1120.64 1 2.13 11/18
  K.GVPIPNK.V 724.44 1 1.51 8/12
  R.TGTHGLLVK.Q 925.55 1 1.47 10/16
  R.LVHVEEPHTETVR.K 1545.80 1 2.31 14/24
  R.DLKPAIVK.V 883.56 1 1.44 8/14
  K.DNSVHWER.P 1042.47 1 1.68 9/14
  K.HYDGSYSTFGER.Y 1418.60 1 1.77 11/22
  K.LPPNVVEESAR.A 1210.64 1 2.60 13/20
  R.GEAFTLK.A 765.41 1 1.47 8/12
  K.YNILPEK.E 876.48 1 2.17 10/12
  K.AIGYLNTGYQR.Q 1255.64 1 1.83 11/20
  R.SASNMAIVDVK.M 1134.58 1 2.17 14/20
  R.QTVSWAVTPK.S 1116.61 1 2.06 12/18
  K.VDLSFSPSQSLPASHAHLR.V 2049.05 2 4.54 22/36
  R.HNVYINGITYTPVSSTNEK.D 2137.06 2 4.29 28/36
  K.LHTEAQIQEEGTVVELTGR.Q 2110.08 2 6.52 29/36
  K.NEDSLVFVQTDK.S 1394.68 1 2.57 16/22
  R.VGFYESDVMGR.G 1259.57 1 2.30 15/20
  K.GHFSISIPVK.S 1084.62 1 1.86 13/18
  R.TEVSSNHVLIYLDK.V 1617.85 2 5.29 22/26
  K.MVSGFIPLKPTVK.M 1416.83 2 2.91 17/24
  K.QQNAQGGFSSTQDTVVALHALSK.Y 2387.20 2 3.97 22/44
  K.DTVIKPLLVEPEGLEK.E 1780.01 2 4.77 21/30
  R.IAQWQSFQLEGGLK.Q 1604.84 1 2.59 14/26
  R.TEHPFTVEEFVLPK.F 1672.86 2 4.31 19/26
  R.VSVQLEASPAFLAVPVEK.E 1884.05 2 3.37 21/34
  R.LLIYAVLPTGDVIGDSAK.Y 1845.04 2 4.70 27/34
  K.ALLAYAFALAGNQDK.R 1565.83 2 3.61 22/28
            

Fig. 
6D 

CO3_HUMAN P01024 Complement C3 
precursor 

 60.61 187046.90 

  R.AEDLVGK.S 731.39 1 1.62 7/12
  R.FYHPEKEDGK.L 1249.59 2 2.83 16/18
  K.GPLLNK.F 641.40 1 1.42 6/10
  R.WEDPGK.Q 731.34 1 1.50 7/10
  R.SVQLTEK.R 804.45 1 1.77 8/12
  K.SGSDEVQVGQQR.T 1289.61 2 3.77 18/22
  K.YELDK.A 667.33 1 1.73 6/8
  R.ASHLGLAR.S 824.47 1 1.95 10/14
  K.YELDK.A 667.33 1 1.41 6/8
  K.KLVLSSEK.T 903.55 1 2.28 10/14
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  R.ASHLGLAR.S 824.47 1 1.62 7/14
  K.VTIKPAPETEK.R 1212.68 1 1.70 14/20
  R.TKKQELSEAEQATR.T 1618.84 2 3.24 21/26
  R.FYHPEKEDGKLNK.L 1604.81 2 3.09 17/24
  R.IFTVNHK.L 858.48 1 1.45 8/12
  R.NEQVEIR.A 887.46 1 1.98 8/12
  K.KQELSEAEQATR.T 1389.70 2 3.72 20/22
  K.SDDKVTLEER.L 1191.59 1 1.44 11/18
  R.HQQTVTIPPK.S 1148.64 1 1.58 12/18
  K.LVLSSEK.T 775.46 1 1.62 9/12
  R.EALKLEEK.K 959.54 1 2.83 11/14
  K.QELSEAEQATR.T 1261.60 1 2.25 15/20
  R.EALKLEEK.K 959.54 1 2.10 10/14
  R.LKGPLLNK.F 882.58 1 1.76 9/14
  R.YISKYELDK.A 1158.60 1 1.95 10/16
  R.SEETKENEGFTVTAEGK.G 1855.86 2 5.19 25/32
  R.FLYGK.K 627.35 1 1.56 6/8
  K.SGQSEDRQPVPGQQMTLK.I 1985.97 2 4.80 25/34
  K.AAVYHHFISDGVR.K 1471.74 2 3.95 19/24
  K.TGLQEVEVK.A 1002.55 1 1.59 10/16
  R.HQQTVTIPPK.S 1148.64 1 1.73 11/18
  K.KGYTQQLAFR.Q 1211.65 1 1.98 12/18
  K.GQGTLSVVTM*YHAK.A 1507.76 2 3.64 17/26
  K.RQGALELIK.K 1027.63 1 1.74 10/16
  R.VVLVAVDK.G 842.54 1 1.48 8/14
  K.LSINTHPSQKPLSITVR.T 1891.08 2 3.86 18/32
  R.EGVQKEDIPPADLSDQVPDTESETR.I 2755.29 2 4.48 24/48
  K.RIPIEDGSGEVVLSR.K 1626.88 2 5.09 23/28
  K.EDIPPADLSDQVPDTESETR.I 2214.01 2 5.62 26/38
  K.GVFVLNK.K 776.47 1 2.18 8/12
  K.GQGTLSVVTMYHAK.A 1491.76 2 3.88 18/26
  K.GYTQQLAFR.Q 1083.56 1 1.98 12/16
  R.TFISPIK.C 805.48 1 1.82 10/12
  R.IPIEDGSGEVVLSR.K 1470.78 2 3.77 23/26
  R.QGALELIK.K 871.53 1 1.64 11/14
  R.EGVQKEDIPPADLSDQVPDTESETR.I 2755.29 2 4.05 23/48
  R.YYTYLIM*NK.G 1224.60 1 1.87 10/16
  K.FYYIYNEK.G 1139.54 1 2.33 10/14
  K.TIYTPGSTVLYR.I 1370.73 2 2.86 18/22
  R.TVM*VNIENPEGIPVK.Q 1655.87 2 4.46 21/28
  K.EDIPPADLSDQVPDTESETR.I 2214.01 2 4.40 23/38

  
R.LESEETM*VLEAHDAQGDVPVTVTVHDFPG
K.K 3266.55 2 2.59 13/58

  R.IHWESASLLR.S 1211.65 1 2.13 14/18
  R.TVMVNIENPEGIPVK.Q 1639.87 1 1.94 13/28
  R.VPVAVQGEDTVQSLTQGDGVAK.L 2198.13 2 5.45 29/42
  R.ILLQGTPVAQM*TEDAVDAER.L 2173.08 2 5.12 26/38
  K.QKPDGVFQEDAPVIHQEM*IGGLR.N 2580.29 2 2.69 13/44
  R.QPSSAFAAFVK.R 1152.61 1 1.75 14/20
  R.EVVADSVWVDVK.D 1345.70 2 4.06 18/22
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  K.VHQYFNVELIQPGAVK.V 1841.99 2 5.01 21/30
  R.NTLIIYLDK.V 1092.63 1 2.01 12/16
  R.SGIPIVTSPYQIHFTK.T 1787.97 1 1.83 10/30
  K.WLILEK.Q 801.49 1 1.43 8/10
  R.LVAYYTLIGASGQR.E 1511.82 2 4.35 22/26
  R.VPVAVQGEDTVQSLTQGDGVAK.L 2198.13 2 5.40 25/42
  K.AGDFLEANYMNLQR.S 1641.77 2 4.18 17/26
  R.SNLDEDIIAEENIVSR.S 1816.89 1 3.02 16/30
  K.LMNIFLK.D 878.52 1 1.94 9/12
  R.AYYENSPQQVFSTEFEVK.E 2166.00 2 5.13 23/34
  K.DYAGVFSDAGLTFTSSSGQQTAQR.A 2494.15 2 4.81 25/46
  K.KVEGTAFVIFGIQDGEQR.I 1994.03 2 5.91 29/34
  R.SNLDEDIIAEENIVSR.S 1816.89 2 4.15 24/30
  R.TELRPGETLNVNFLLR.M 1872.03 2 2.36 15/30
  R.TMQALPYSTVGNSNNYLHLSVLR.T 2578.31 2 3.83 24/44
  K.DFDFVPPVVR.W 1190.62 1 1.66 10/18
  R.APSTWLTAYVVK.V 1335.73 2 3.58 18/22
  R.AYYENSPQQVFSTEFEVK.E 2166.00 2 4.09 17/34
  K.SSLSVPYVIVPLK.T 1401.84 2 2.90 19/24
  K.DYAGVFSDAGLTFTSSSGQQTAQR.A 2494.15 2 6.54 28/46
  K.SLYVSATVILHSGSDMVQAER.S 2263.14 2 2.83 20/40
  R.VPVAVQGEDTVQSLTQGDGVAK.L 2198.13 2 4.81 23/42
  K.DYAGVFSDAGLTFTSSSGQQTAQR.A 2494.15 2 5.52 30/46
  R.IHWESASLLR.S 1211.65 1 1.40 11/18
  R.ILLQGTPVAQMTEDAVDAER.L 2157.09 2 5.28 29/38
  R.SNLDEDIIAEENIVSR.S 1816.89 2 2.47 19/30
  R.SEFPESWLWNVEDLKEPPK.N 2330.13 2 3.89 22/36
  K.EYVLPSFEVIVEPTEK.F 1878.97 2 5.16 25/30
  K.VFLDCCNYITELR.R 1588.75 1 1.48 10/24
  K.DYAGVFSDAGLTFTSSSGQQTAQR.A 2494.15 2 5.44 25/46
  R.SEFPESWLWNVEDLKEPPK.N 2330.13 2 3.61 22/36
  K.DSITTWEILAVSMSDKK.G 1923.97 2 4.22 23/32
  R.VPVAVQGEDTVQSLTQGDGVAK.L 2198.13 2 4.48 20/42
  R.VPVAVQGEDTVQSLTQGDGVAK.L 2198.13 2 4.05 21/42
  K.YFKPGM*PFDLMVFVTNPDGSPAYR.V 2765.31 2 3.46 17/46
  R.YYGGGYGSTQATFMVFQALAQYQK.D 2679.26 2 5.09 25/46
  K.DYAGVFSDAGLTFTSSSGQQTAQR.A 2494.15 2 4.62 22/46
  K.VQLSNDFDEYIMAIEQTIK.S 2257.11 2 4.00 23/36
  K.SLYVSATVILHSGSDMVQAER.S 2263.14 2 2.61 16/40
  K.VQLSNDFDEYIMAIEQTIK.S 2257.11 2 5.22 23/36

  
K.QDSLSSQNQLGVLPLSWDIPELVNMGQWK
.I 3282.65 2 2.87 18/56

  K.QLYNVEATSYALLALLQLK.D 2151.21 2 6.07 27/36
  R.SNLDEDIIAEENIVSR.S 1816.89 2 4.18 20/30
  R.VPVAVQGEDTVQSLTQGDGVAK.L 2198.13 2 4.00 22/42
  R.ILLQGTPVAQMTEDAVDAER.L 2157.09 2 2.51 21/38
  R.SNLDEDIIAEENIVSR.S 1816.89 2 3.09 16/30
            

  
CO4_HUMAN P01028 Complement C4 
precursor 

20.30  192651.50 

 92



  K.SHKPLNMGK.V 1011.54 1 2.20 9/16
  R.VEASISK.A 733.41 1 1.59 8/12
  R.NVNFQK.A 749.39 1 1.99 8/10
  R.LFETK.I 637.36 1 1.71 6/8
  K.SHALQLNNR.Q 1052.56 1 1.96 11/16
  K.LGQYASPTAK.R 1035.55 1 1.72 11/18
  R.GLQDEDGYR.M 1052.46 1 1.66 12/16
  K.VLQIEK.E 729.45 1 2.06 8/10
  K.DHAVDLIQK.G 1038.56 1 2.33 12/16
  R.LPMSVR.R 702.40 1 1.47 7/10
  K.ANSFLGEK.A 865.44 1 1.47 8/14
  R.VFALDQK.M 820.46 1 1.84 10/12
  K.LELSVDGAK.Q 931.51 1 1.63 11/16
  R.NFLVR.A 648.38 1 1.46 6/8
  K.ITQVLHFTK.D 1086.63 1 1.72 12/16
  R.VEYGFQVK.V 969.50 1 1.68 10/14
  K.VDFTLSSER.D 1053.52 1 1.40 9/16
  R.TYNVLDMK.N 983.49 1 2.21 10/14
  R.VGDTLNLNLR.A 1114.62 1 1.55 8/18
  R.LTVAAPPSGGPGFLSIERPDSRPPR.V 2574.38 2 2.31 14/48
  R.GSFEFPVGDAVSK.V 1339.65 2 3.84 17/24
  R.GPEVQLVAHSPWLK.D 1560.85 2 4.43 19/26
  K.YVLPNFEVK.I 1108.60 1 2.05 12/16
  R.TLEIPGNSDPNMIPDGDFNSYVR.V 2551.18 2 2.99 20/44
  R.ALEILQEEDLIDEDDIPVR.S 2225.12 2 4.63 24/36
  R.VTASDPLDTLGSEGALSPGGVASLLR.L 2483.30 2 2.75 17/50
  K.EVYMPSSIFQDDFVIPDISEPGTWK.I 2900.37 2 3.28 18/48
            

Fig. 
5B 

CFAH_HUMAN P08603 Complement 
factor H precursor (H factor 1) 

21.12 139034.80 

  K.IVSSAMEPDR.E 1104.54 1 1.71 13/18
  R.EYHFGQAVR.F 1106.54 1 2.85 12/16
  R.NGFYPATR.G 925.45 1 1.84 9/14
  K.SPDVINGSPISQK.I 1341.70 1 2.59 15/24
  K.IDVHLVPDR.K 1063.59 1 2.35 12/16
  K.IVSSAMEPDREYHFGQAVR.F 2192.06 2 2.57 17/36
  R.RPYFPVAVGK.Y 1133.65 1 2.00 11/18
  R.KGEWVALNPLRK.C 1410.82 2 3.33 17/22
  R.EIM*ENYNIALR.W 1381.68 2 2.98 16/20
  R.TKNDFTWFK.L 1186.59 1 1.56 10/16
  K.SSNLIILEEHLK.N 1395.78 1 2.64 13/22
  K.CYFPYLENGYNQNHGR.K 1974.86 2 2.48 15/30
  R.NTEILTGSWSDQTYPEGTQAIYK.C 2602.23 2 5.04 25/44
  K.GEWVALNPLR.K 1154.63 1 2.46 13/18
  K.NDFTWFK.L 957.45 1 1.91 9/12
  K.SSIDIENGFISESQYTYALK.E 2265.09 2 5.43 27/38
  K.SPPEISHGVVAHMSDSYQYGEEVTYK.C 2910.33 2 2.84 16/50
  K.SSNLIILEEHLK.N 1395.78 2 2.06 11/22
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  K.SIDVACHPGYALPK.A 1470.74 2 1.11 13/26
  K.SSIDIENGFISESQYTYALK.E 2265.09 2 2.81 14/38
  K.SSIDIENGFISESQYTYALK.E 2265.09 2 4.25 22/38
  R.NTEILTGSWSDQTYPEGTQAIYK.C 2602.23 2 3.66 14/44
  R.NTEILTGSWSDQTYPEGTQAIYK.C 2602.23 2 3.10 19/44
  K.SSIDIENGFISESQYTYALK.E 2265.09 2 4.57 21/38
  R.NTEILTGSWSDQTYPEGTQAIYK.C 2602.23 2 2.37 17/44
  K.SSIDIENGFISESQYTYALK.E 2265.09 2 4.97 22/38
            

Fig. 
5C 

A1AG1_HUMAN P02763 Alpha-1-acid 
glycoprotein 1 precursor (AGP1) 

54.73 23497.80 

  K.DKCEPLEK.Q 961.47 1 2.14 9/14
  K.SDVVYTDWKK.D 1240.62 2 3.03 15/18
  K.NWGLSVYADKPETTK.E 1708.85 2 5.16 22/28
  K.TEDTIFLR.E 994.52 1 1.58 9/14
  R.YVGGQEHFAHLLILR.D 1752.95 2 5.20 21/28
  K.TYMLAFDVNDEK.N 1445.66 1 3.21 15/22

  K.TYMLAFDVNDEKNWGLSVYADKPETTK.E 3135.50 2 4.38 20/52
  K.EQLGEFYEALDCLR.I 1685.78 2 3.60 19/26
  R.YVGGQEHFAHLLILR.D 1752.95 2 4.71 21/28
  K.SDVVYTDWK.K 1112.53 1 2.53 11/16
  K.WFYIASAFR.N 1160.59 1 2.04 12/16
            

  
A1AG2_HUMAN P19652 Alpha-1-acid 
glycoprotein 2 precursor (AGP2) 

27.36 23588.60 

  R.SDVMYTDWKK.D 1272.59 1 2.36 11/18
  R.SDVM*YTDWKK.D 1288.59 2 2.90 13/18
  R.SDVMYTDWKK.D 1272.59 2 3.31 16/18
  R.SDVM*YTDWK.K 1160.49 1 1.57 9/16
  R.EHVAHLLFLRDTK.T 1578.88 2 3.10 19/24
  R.YEGGREHVAHLLFLR.D 1796.96 2 3.15 17/28
  R.EHVAHLLFLR.D 1234.71 1 2.60 13/18
  R.SDVMYTDWK.K 1144.50 1 2.68 11/16
  K.TLM*FGSYLDDEK.N 1434.65 2 4.05 19/22
  K.TLMFGSYLDDEK.N 1418.65 1 1.68 9/22
  K.TLMFGSYLDDEK.N 1418.65 2 3.37 19/22
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Figure 3.1: Experimental strategy for studying serum glycoproteins. 1) Lectin purification 
2) Non-porous reverse phase HPLC separation and fraction collection 3) Microarray 
production 4) Lectin detection using biotin-streptavidin-Alexafluor555 detection 4) 
Image acquisition and analysis 
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Figure 3.2: Scanned images of printed standard glycoproteins probed with different 
lectins. Each block bracketed on the right represents a dilution series of indicated 
standard from 2mg/mL to 0.025mg/mL. Each dilution has been printed as 9 replicates in 
a 3x3 block. 
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Figure 3.3: Linearity of response in standards  a) Glycan distribution on standards printed 
at 1mg/mL concentration. Standard curve of  b) Ribonuclease B in response to ConA         
c) Thyroglobulin in response to AAL  d) Transferrin in response to SNA  e) Fetuin in 
response to MAL  f) Asialofetuin in response to PNA using lectin concentration of 
5ug/mL 
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Figure 3.4: Tandem mass spectra of dominant glycan structure in a) Ribonuclease B 
(precursor ion m/z 1257) b) Transferrin (precursor ion m/z 1663)     
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Figure 3.5: Identifying differences in glycosylation from sera of different biological 
states. a) Reverse phase chromatogram of enriched glycopoteins from normal and 
pancreatitis sera with differences highlighted. Bar graph showing integrated fluorescence 
values of spots shown in array images after background subtraction and normalization 
based on UV peak area for peak shown with b) red arrow,  c) orange arrow. 
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Figure 3.6:  Comparison of differential glycosylation patterns in normal vs. cancer serum. 
All comparisons shown below had approximately the same peak area between cancer and 
normal sera but glycosylation patterns were different. Each illustration shows sections of 
microarray images of a protein’s binding to the lectins indicated. Bar graphs show 
integrated fluorescence values of spots shown in the array images after background 
subtraction and normalization based on UV peak area.  
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Chapter 4 

 

 

Using unique lectin binding patterns of glycoprotein microarrays as a tool for 
classifying normal, chronic pancreatitis and pancreatic cancer sera 

 

 

4.1. Introduction 
 
 Pancreatic cancer, is the fourth most frequent cause of cancer-related death in the 

USA. It is generally incurable by available treatments and has a 5-year survival rate of 

<4%.[1] The biologically aggressive nature of this disease, with rapid metastasis, 

combined with the late clinical presentation of the malignancy has resulted in poor 

prognosis. Existing markers for pancreatic cancer are not reliable for early diagnosis, 

distinguishing between pancreatic cancer and chronic pancreatitis, and for the efficient 

targeting of therapeutics.[2, 3] CA19-9 has been tested for its utility as an early detection 

marker in pancreatic cancer.[2-4] However, the sensitivity and specificity of this marker 

is not high, and serum levels are also significantly increased in inflammatory diseases of 

the pancreas and biliary tract.  Therefore, CA 19-9 is not useful for early diagnosis, mass 

screening, or for distinguishing between pancreatic cancer and chronic pancreatitis.  

Protein-based serum markers for the early detection of cancer have become an area of 

increased interest. The glyco-proteome is one of the major sub-proteomes of human 
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serum. Both N-linked and O-linked glycan variants of glycoproteins on the cell surface 

and in plasma have been demonstrated to correlate with the progression of cancer and 

other diseases.[5-9] Changes in glycosylation patterns have been associated with prostate 

cancer[10, 11], colorectal cancer [12, 13] and breast cancer.[14] The glycosylation of 

prostate-specific antigen (PSA) secreted by the prostate tumor cell line LNCaP differs 

significantly from that found in seminal plasma (normal).[10]  As glycan differences can 

distinguish PSA from normal and tumor origins, these differences may have utility for 

early diagnosis of prostate cancer.  Glycosylation changes in a tumor-secreted protein 

could reflect fundamental changes in enzyme levels (or enzyme activities) involved in the 

glycosylation pathway. The ability to efficiently profile protein glycosylation variation 

may ultimately lead to the identification of disease-associated glycan alterations and new 

diagnostic markers in pancreatic cancer and in other types of cancer. 

 Protein microarrays are becoming slowly becoming a method of choice in high 

throughput proteomic analysis due to their ability to screen large numbers of arrayed 

samples for a property/moiety of interest.[15-17] Current research in this area has 

focused on a variety of applications ranging from functional analysis to diagnostic-type 

approaches. Functional approaches typically focus on studying interactions of proteins 

with a variety of other molecules such as other proteins, lipids, drugs and DNA.[18, 19] 

Diagnostic applications involve immobilization of antibodies on high density arrays 

which can be probed with biological fluids or cell lysates to monitor antigen-antibody 

interactions.[20] In addition, protein microarrays arrayed with naturally produced 

proteins have been developed to assist in finding novel disease-associated proteins [21, 

22] using multi-dimensional liquid-based separation of a proteome, followed by the 
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arraying of all proteins found in the individual fractions. The resulting microarrays can 

subsequently be probed with a variety of detection agents, including lectins for 

glycoprotein detection. 

 Lectins specifically and reversibly bind glycans with different structural moieties 

and, thus, have utility in screening glycosylation differences between various samples. 

Lectin glycoarrays can be used for the rapid profiling of glycan expression patterns of 

various glycoproteins as illustrated in chapter 3.[23] We have utilized glycoarrays to 

discern differences in the glycosylation structural patterns of serum glycoproteins specific 

for pancreatic cancer and chronic pancreatitis. Following immunodepletion to remove 

high abundance proteins from serum (and to facilitate our ability to detect low abundance 

glycoproteins), the remaining N-linked glycoproteins were enriched using a general 

multi-lectin column. These enriched glycoproteins were then separated using non-porous 

silica reverse phase high performance liquid chromatography (NPS-RP-HPLC). The 

resolved glycoproteins were then arrayed on nitrocellulose-coated slides and probed with 

a variety of lectins to screen the glycosylation structures of the serum glycoproteins. The 

glycoprotein-lectin interaction was assessed using a biotin-streptavidin system that had 

low femtomole limits of detection.   

 All data was subjected to bioinformatics analysis to handle and display efficiently 

the large datasets generated. To compare the overall pattern of glycan expression and not 

the protein abundance in the samples, each sample was normalized and aligned with the 

corresponding UV peak area from the RP-HPLC chromatograms. A correlation matrix 

was obtained by calculating the Pearson correlations among the samples. These 

correlation matrices were then visualized, using either Principal Components Analysis 
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(PCA) or Hierarchical Clustering (HC) techniques, allowing multivariate relationships to 

be explored in order to highlight relationships present in the sample sets.  Quantitative 

measurements were also facilitated, since normalization based on UV peak areas 

eliminated any concentration dependent variability that existed in the fractionated 

glycoproteins. Differential glycan expression was calculated by interrogating Z-value 

information. The individual glycoproteins with altered glycan structures were then 

identified by mass spectrometry. These glycan structural alterations may have utility for 

the early detection of pancreatic cancer and for the differential diagnosis of pancreatic 

cancer and chronic pancreatitis. 

 

4.2. Experimental Section 

Serum Samples: Serum was obtained at the time of diagnosis following informed 

consent using IRB-approved guidelines. Sera were obtained from 6 patients with a 

confirmed diagnosis of pancreatic adenocarcinoma in the Multidisciplinary Pancreatic 

Tumor Clinic at The University of Michigan Hospital.  These sera were randomly 

selected from a clinic population that sees, on average, at the time of initial diagnosis, 

15% of pancreatic adenocarcinoma patients presenting with early stage (i.e., stage 1/2) 

disease and 85% presenting with advanced stage (i.e., stage 3/4).  Inclusion criteria for 

the study included patients with a confirmed diagnosis of pancreatic cancer, the ability to 

provide written, informed consent, and the ability to provide 40 ml of blood. Exclusion 

criteria included inability to provide informed consent, patient’s actively undergoing 

chemotherapy or radiation therapy for pancreatic cancer, and patients with other 

malignancies diagnosed or treated within the last 5 years. Sera were also obtained from 8 
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patients with chronic pancreatitis who were seen in the Gastroenterology Clinic at 

University of Michigan Medical Center, and from 10 control healthy individuals 

collected at University of Michigan under the auspices of the Early Detection Research 

Network (EDRN). The mean age of the tumor group was 65.4 years (range 54-74 years) 

and from the chronic pancreatitis group was 54 years (range 45-65). The sera from the 

normal subject group was age and sex-matched to the tumor group. All of the chronic 

pancreatitis sera were collected in an elective setting in the clinic in the absence of an 

acute flare.  All sera were processed using identical procedures. The samples were 

permitted to sit at room temperature for a minimum of 30 minutes (and a maximum of 60 

minutes) to allow the clot to form in the red top tubes, and then centrifuged at 1,300 x g 

at 4oC for 20 minutes. The serum was removed, transferred to a polypropylene, capped 

tube in 1 ml aliquots, and frozen. The frozen samples were stored at -70oC until assayed. 

All serum samples were labeled with a unique identifier to protect the confidentiality of 

the patient. The handling of all serum samples was similar in that none of the samples 

were thawed more than twice before analysis in order to minimize protein degradation 

and precipitation.  

Immunodepletion of high abundance proteins: 125 µL of each serum sample was 

depleted using the ProteomeLabTM IgY-12 proteome partitioning kit (Beckman Coulter, 

Fullerton, CA), following centrifugation using a 0.45 µm spin filter for 1 min at 9200 x g, 

according to manufacturer’s protocols. This column facilitates removal of albumin, IgG, 

α1-antitrypsin, IgA, IgM, transferrin, haptoglobin, α1-acid glycoprotein, α2-macroglobin, 

apolipoprotein A-I, apolipoprotein A-II and fibrinogen in a single step. The final volume 

of each serum sample following immunodepletion was concentrated to 500 µl using 15 
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ml 10kDa Amicon filters (Millipore, Billerica, MA). Protein assays were carried out in a 

250 µL transparent 96 well plate (Fisher, Barrington, IL) according to the Bradford assay. 

Lectin affinity glycoprotein extraction: Agarose-bound Wheat Germ Agglutinin (WGA) 

and agarose-bound Concanavalin A (ConA) were purchased from Vector Laboratories 

(Burlingame, CA, USA). 350 µl agarose-bound WGA and 250 µl agarose-bound ConA 

were packed into disposable screw end-cap spin column with filters at both ends. The 

binding and elution process has been described elsewhere.[6] The binding buffer 

contained 20 mM Tris, 1 mM MnCl2, 1 mM CaCl2, 0.15 M NaCl, pH 7.4. The 

immunodepleted serum proteins were resuspended in binding buffer, and then passed 

through the lectin affinity column.  The captured serum glycoproteins were released with 

250 µL elution buffer (0.3 M N-acetyl-glucosamine and 0.3 M Methyl-α-D- 

mannopyroside in 20 mM Tris and 0.5 M NaCl, pH 7.0). This step was repeated twice 

and the eluted fractions were pooled.  

RP-HPLC separation of lectin-bound glycoproteins:  The lectin-enriched 

glycoprotein fraction was concentrated to ~100 µl with a 10k MW centrifugal filter 

(Millipore) and re-diluted with de-ionized water.  Approximately 30 µg of protein sample 

was loaded in 800 µl water onto a nonporous silica reverse phase high-performance 

liquid chromatography (NPS-RP-HPLC) column (ODSII (4.6x33 mm) column (Eprogen, 

Inc., Darien, IL) packed with 1.5 µm non-porous silica) for separation. The reverse-phase 

separation was performed at 0.5 mL/min and monitored at 214 nm using a Beckman 166 

Model UV detector (Beckman-Coulter). Proteins eluting from the column were collected 

by an automated fraction collector (Model SC 100; Beckman-Coulter), controlled by an 

in-house designed DOS-based software program. The reversed phase column was heated 
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to 60oC by a column heater (Jones Chromatography, Model 7971). Both mobile phase A 

(water) and B (ACN) contained 0.1% v/v TFA. The gradient profile used was as follows: 

5% to 15% B in 1 min, 15% to 25% B in 2 min, 25% to 30% B in 3 min, 30% to 41% B 

in 15 min, 41% to 47% B in 4 min, 47% to 67% B in 5 min and 67% to 100% B in 2 min. 

Glycoprotein microarrays: Purified and separated glycoproteins were printed on 

nitrocellulose slides (Whatman, Keene, NH) using a non-contact printer, Nanoplotter 2.0 

(GeSIM, Germany). Prior to printing, the proteins were dried down in a 96-well plate and 

resuspended in 15 µL of printing buffer with stirring overnight at 4oC. The printing buffer 

contained 65 mM Tris-HCl, 1% SDS, 5% dithiothreitol (DTT) and 1% glycerol. Each 

spotting event resulted in approximately 500 pL of sample being deposited by a 

piezoelectric mechanism. The event was programmed to occur 5 times per spot to ensure 

that approximately 2.5 nL were being spotted per sample. The resulting spots were 

approximately 450 µm in diameter, with the spacing between spots being maintained at 

600 µm. After printing, the slides were allowed to dry for 24 hrs. Blocking was achieved 

by incubation with 1% Bovine serum albumin (BSA) and 0.1% Tween-20 in 1X 

phosphate buffered saline (PBS) overnight. Blocked slides were probed with biotinylated 

lectin in a solution of PBS-T (0.1% Tween 20 in 1X PBS). The lectins used in the study 

were biotinylated Peanut Agglutinin (PNA), Sambucus Nigra bark lectin (SNA), Aleuria 

Aurentia (AAL), Concanavalin A (ConA) and Maackia Amurensis lectin II (MAL), all 

purchased from Vector Laboratories (Burlingame, CA, USA). The working concentration 

of all lectins was 5 µg/mL, with the exception of SNA (10 µg/mL, as per manufacturer’s 

protocols). After primary incubation, all slides were washed with PBS-T 5 times for 5 

min each. Detection was achieved using a streptavidin-AlexaFluor555 conjugate 
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(Invitrogen, Carlsbad, CA) at 1 µg/mL in PBS containing 0.5% BSA and 0.1% Tween-20. 

The slides were washed 5 times for 5 min each in PBS-T, and then completely dried by 

centrifugation. The dried slides were scanned using an Axon 4000A scanner in the green 

channel.  GenePix Pro 6.0 software (Molecular Devices, Sunnyvale, CA) was used for 

data acquisition and analysis. 

Data analysis and clustering: All the microarray spot intensities were normalized with 

corresponding UV peak area. For data visualization, average linkage hierarchical 

clustering (HC) and principal component analysis (PCA) were used to provide graphical 

representations of the relationships among the samples.  In these unsupervised 

approaches, 48 serum samples (10 normal, 8 chronic pancreatitis and 6 pancreatic cancer, 

all processed in duplicate) and the replicate averages of the 24 distinct biological 

specimens were placed either in a hierarchical relationship (HC) or as points in a 2-

dimensional scatterplot (PCA) based on similarities in normalized glycoform 

abundances. For differential abundance analysis, Z-statistics and Wilcoxon rank sum 

statistics for each protein detected by each lectin were calculated. Comparisons were 

made of cancer versus chronic pancreatitis and normal combined, and of chronic 

pancreatitis and cancer combined versus normal. 

Protein digestion by trypsin: Fractions obtained from NPS-RP-HPLC were 

concentrated down to approximately 20 µL using a SpeedVac concentrator (Thermo, 

Milford, MA) operating at 45oC. 20 µl of 100 mM ammonium bicarbonate (Sigma) was 

then mixed with each concentrated sample to obtain pH 7.8. 0.5 µl of TPCK modified 

sequencing grade porcine trypsin (Promega, Madison, WI) was added and briefly 

vortexed prior to a 12-16 hour incubation at 37oC on an agitator. 
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Mass spectrometry 

Protein identification by LC-MS/MS: Digested peptide mixtures from NPS-RP-HPLC 

collection were separated using a reverse phase column attached to a Paradigm HPLC 

pump (Michrom Bio Resources Inc, Auburn, CA). For nano-LC-ESI-MS/MS 

experiments, a nanotrap platform (Michrom) was set up prior to the electrospray source. 

It included a peptide nanotrap (0.2 x 50 mm, Michrom) and a separation column (0.1 mm 

x 150 mm, C18, Michrom). Peptide sample was injected and first desalted on the trap 

column with 5 % solvent B (0.3% formic acid in 98% ACN) at 50 µL/min for 5 min. The 

peptides were then eluted using a 45 min gradient from 5% to 95% B at a flow rate of 

0.25 µL /min where solvent A was 0.3 % formic acid in HPLC grade water.  

 A Finnigan LTQ mass spectrometer (Thermo) was used to acquire spectra. A 75 

µm metal spray tip (Michrom) was used and spray voltage was set at 2.5 kV. The 

instrument was operated in data-dependent mode with dynamic exclusion enabled. The 

MS/MS spectra on the five most abundant peptide ions in full MS scan were obtained. 

All MS/MS spectra were searched against the human protein database from SwissProt 

using SEQUEST algorithm incorporated in Bioworks software (Thermo). Oxidized 

methionine and N-acetylation were used as variable modifications during the database 

search. Trypsin was used as a specific protease with two missed cleavages allowed. 

Positive protein identification was accepted for a peptide with Xcorr of greater than or 

equal to 3.0 for triply-, 2.5 for doubly- and 1.9 for singly charged ions. ∆Cn cutoff was 

set as 0.1. Positive protein identification was validated by Trans-Proteomics pipeline. 

This software includes both the PeptideProphet and ProteinProphet programs that were 

 112



developed by Keller et al. (http://peptideprophet.sourceforge.net/).[24] All the reported 

proteins have an identification probability higher than 95%. 

Glycopeptide mapping: Digested peptide mixtures from target glycoproteins were 

separated by a capillary RP column (C18, 0.2 x 150mm) (Michrom, Auburn, CA) on a 

capillary pump (Ultra-Plus II MD, Micro-Tech Scientific, Vista, CA). The capillary 

column was directly mounted to a micro-injector with a 500 nL internal sample loop 

(Valco Instruments, Houston, TX). The flow from the solvent delivery pump was split 

pre-column to generate a flow rate of approximately 4 µL/min. The gradient started at 5% 

ACN, was ramped to 60% ACN in 25 min and finally ramped to 90% in another 5 min. 

Both solvent A (water) and B (ACN) contain 0.3 % formic acid. The resolved peptides 

were detected by an ESI-TOF spectrometer (LCT premier, Micromass/Waters, Milford, 

MA). The capillary voltage for electrospray was set at 3200 V, and for the sample cone at 

45 V. Desolvation was accelerated by maintaining the desolvation temperature at 200oC 

and source temperature at 100oC. The desolvation gas flow was 250 L/h.  The data was 

acquired in “V” mode and the TOF was externally calibrated using a Sodium Iodide and 

Cesium Iodide mixture. The instrument was controlled by MassLynx 4.0 software. The 

experimental masses were matched with theoretical glycopeptide masses of target 

glycoproteins using GlyMod tool (http://www.expasy.ch/tools/glycomod/). 

SDS-PAGE and Lectin blotting of separated fractions: The fractions collected from 

RP-HPLC were further separated by 1-D SDS-PAGE, run in a Mini-Protean cell (Bio-

Rad, Hercules, CA) at 80 V.  The resolved proteins were transferred onto a PVDF 

membrane (Bio-Rad).  The PVDF membrane was rehydrated in methanol, rinsed, and 

then blocked in PBS, containing 1% BSA (Roche, Indianapolis, IN) and 0.1% Tween20. 
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The membrane was then washed in PBS-T 3 times for 1 min, and then incubated with 

biotinylated Aleuria aurentia lectin (5 µg/mL in PBS-T containing 1% BSA) for 1 hr at 

room temp. Following incubation with the lectin, the membrane was washed 3 times for 2 

min each in PBS-T. Detection was with a 200 ng/mL streptavidin-HRP in PBS-T 

containing 1% BSA. The membrane was washed in PBS-T 5 times for 5 min each 

followed by one wash with PBS for 5 min.  Chemiluminescence was accomplished using 

an ECL analysis system (Amersham, Piscataway, NJ), and detected on XAR-5 x-ray film 

(Kodak).  The film was digitized using a high resolution digital camera. 

 

4.3. Results and Discussion 

Glycoprotein enrichment, depletion and separation: The analytical work flow is 

illustrated in Fig. 4.1. 10 normal, 8 chronic pancreatitis and 6 pancreatic cancer serum 

samples were evaluated using glycoprotein extraction followed by liquid separation and 

microarray spotting of the separated glycoprotein fractions. 125 µl of each serum sample 

was first reduced in complexity by immunodepletion prior to the lectin extraction step to 

facilitate detection of lower abundance proteins. The immunodepletion was performed 

using the IgY-12 column (Beckman-Coulter). This column removes the twelve most 

abundant serum proteins (albumin, IgG, α1-antitrypsin, IgA, IgM, transferrin, 

haptoglobin, α1-acid glycoprotein, α2-macroglobin, apolipoprotein A-I and A-II and 

fibrinogen). Fig 4.2a shows the UV chromatogram of the depletion process where the 

immunodepleted fraction elutes at around 8 min. Following immunodepletion typically 

about 8% of total serum proteins are retained in the immunodepleted serum fraction. 
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 Glycoproteins retained in the immunodepleted serum were subsequently enriched 

using a multi-lectin affinity column composed of WGA and ConA. ConA recognizes α-

linked mannose, including high mannose-type and mannose core structures which are 

common to N-linked glycosylated proteins. WGA can interact with some glycoproteins 

via sialic acid residues and it also binds oligosaccharides containing terminal N-

acetylglucosamine.[25] Thus, a majority of the complex type glycans can interact with 

WGA. Combining these two lectins facilitated the extraction of most of the N-linked 

glycoproteins in serum. We estimate that approximately 70% protein recovery was 

achieved from each immunodepleted serum using this lectin affinity column.  

 Thirty µg of protein from each sample of lectin-enriched glycoproteins were 

further separated on a non-porous reversed-phase HPLC (NPS-RP-HPLC) C18 column, 

and the eluting proteins were detected by UV absorption at 214 nm. Fig. 4.2b shows the 

UV map consisting of the chromatograms of three selected samples. A high level of 

reproducibility in the UV traces among the different samples in the same group was 

observed, although slight retention time shifts were observed. These shifts can be 

associated with the manual nature of peak collection used in the experiments. The time 

between data collection and beginning of sample run could have varied by 2-3 sec since 

this was done manually. The UV peak area varied within 10% for serum samples from 

different individuals. Protein fractions were collected by peak thereby making the 

collected UV peaks relatively pure compared to the non-immunodepleted sample 

(especially since sample has already been simplified by immunodepletion). Although 

occasionally more than one protein per UV peak was observed, it was generally found 
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that the dominant protein was responsible for the UV absorption or glycan expression 

change.[6] 

Lectin Glycoarrays for Differential Detection of Changes in Glycan Structure: The 

intact glycoproteins were separated and collected and the peaks were spotted on 

nitrocellulose slides using a non-contact microarray spotter. The microarrays were then 

hybridized against various lectins for differential glycan expression analysis. Five lectins 

(AAL, MAL, SNA, PNA and ConA) were used to detect different glycan moieties. AAL 

recognizes fucose linked (α-1,6) to N-acetylglucosamine or to fucose linked (α-1,3) to N-

acetyllactosamine. MAL can detect glycans containing NeuAc-Gal-GlcNAc with sialic 

acid at the 3 position of galactose whereas SNA binds preferentially to sialic acid 

attached to terminal galactose in an (α-2,6) and to a lesser degree, an (α-2,3) linkage.[26, 

27] In contrast, PNA binds de-sialylated exposed galactosyl (β-1,3) N-

acetylgalactosamine. In fact, sialic acid in close proximity to the PNA binding site will 

inhibit PNA binding. ConA was also used to detect high mannose structures. Greater than 

95% of N-glycan types can be covered using these five lectins. The glycoproteins were 

hybridized with lectins to probe differences in glycan content between normal, chronic 

pancreatitis and pancreatic cancer sera and the binding was visualized using a biotin-

streptavidin-AlexaFluor555 interaction.[23]  

Figure 4.3 shows sections of 5 microarrays probed with five different lectins. The 

left 5 lanes contain normal samples, the middle three lanes contain cancer samples and 

the right 4 lanes contain the chronic pancreatitis samples. The array data suggests that 

this particular fraction contains glycan structures consisting primarily of mannose and 

fucose residues as reaction with ConA and AAL were significant. Further, it appears that 
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the overall levels of mannosylation and fucosylation are higher in cancer samples 

compared to normal. However, the raw microarray data in this figure was not normalized 

and should be analyzed with caution. 

 As only changes induced by variations in glycan expression are of interest, all 

array spot intensities were normalized with respect to their corresponding UV peak areas 

from the chromatograms to mitigate protein abundance differences. The normalized data 

was used for cluster analysis. 

Bioinformatics analysis of the glycoprotein patterns: Bioinformatics analysis of the 

glycoprotein arrays was performed to determine if there were any lectin response patterns 

that grouped different disease states together. For data visualization, average linkage 

hierarchical clustering (HC) and principal component analysis (PCA) were used to 

provide graphical representations of the relationships among the samples. In these 

unsupervised approaches, the samples were placed either in a hierarchical relationship or 

as points in a 2-dimensional scatterplot (PCA) based on similarities in normalized 

glycoform abundances. All 24 sera (8 chronic pancreatitis, 6 pancreatic cancer and 10 

normal), each assayed in duplicate, were analyzed using unsupervised visualization 

approaches and supervised differential abundance analyses. Separate PCA and HC results 

were generated for all 48 samples, and for the replicate averages of the 24 distinct 

biological specimens. The normalized abundances were log transformed, then their pair-

wise correlations were used to carry out HC, and their pairwise co-variances were used 

for PCA.  Because results on the set of 48 samples clearly showed good reproducibility 

between replicates from the same biological source (see Fig. 4.4a-e), for biological 

inferences the results for the 24 specimen-wise averages were used. The scatter plots 
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where the duplicate averaged samples tend to cluster separately are illustrated in Figure 

4.5 a-e. The pancreatic cancer samples clustered further away from the normal sample 

than the chronic pancreatitis sample pool especially in response to AAL, ConA and SNA. 

There were some outliers in the cancer pool that fell into the chronic pancreatitis pool. 

However, it was seen that this behavior always occurred with sera from the same 3 

patients, indicating that the outliers were likely due to individual patient heterogeneity.  It 

was also observed that the glycan expression of chronic pancreatitis serum glycoproteins 

were more similar to glycoproteins from the normal sera than to glycoproteins from the 

cancer sera, as shown in the fucosylated (Fig. 4.5a) and high mannose glycan expression 

(Fig. 4.5b). The hierarchical clustering results of average samples detected by ConA and 

MAL are shown in Fig.4.5f and 4.5g. The clustering results for fucosylated and sialylated 

glycan expression patterns generally distinguished the three clinical groups and correlated 

well with the PCA results. Results with some lectins more clearly distinguished cancer 

from chronic pancreatitis/normal, while other lectins more clearly distinguished normal 

from cancer/chronic pancreatitis (shown in Fig.4.5 h-j).   

Proteins with altered glycan structures in pancreatic cancer serum:  For 

differential abundance analysis, Z-statistics and Wilcoxon rank-sum statistics were 

calculated for the normalized array spot intensities from each LC fraction, as detected by 

each lectin. Comparisons were made of pancreatic cancer versus chronic pancreatitis and 

normal combined and normal versus chronic pancreatitis and cancer combined.  Only Z 

value higher than 2 or lower than -2 (meaning only <5% would be expected by chance) 

were considered significant. Positive Z value indicates over-expression and negative Z 
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value indicates under-expression. The data suggests that all of the lectins have substantial 

power for identifying cancer samples relative to control or normal samples.  

 Proteins with significant changes (P<0.05) in chronic pancreatitis or pancreatic 

cancer serum were identified by peptide sequencing using nano LC-MS/MS. Positive 

protein identification was further validated by the Trans-Proteomics pipeline which 

includes both PeptideProphet and ProteinProphet software.[24] PeptideProphet 

automatically validates peptide assignment to MS/MS spectra made by a database search 

program such as SEQUEST. For each dataset, it calculates the distribution of search 

scores and peptide properties among correct and incorrect peptides, and uses those 

distributions to compute for each obtained peptide sequence a probability that it is correct. 

Only identifications with a TPP protein probability of >95% was considered a true hit. 

ProteinProphet takes the peptides and search results and statistically validates the 

identifications at the protein level. The altered protein IDs together with their Z-statistics 

(Z>2 or Z<-2) are summarized in Table 4.1. The positive Z score in “cancer” is indicative 

that this glycosylation is specifically over-expressed in cancer compared to normal and 

pancreatitis combined. The negative Z score in “normal” is indicative that this 

glycosylation is under-expressed in the normal sample compared to pancreatitis and 

cancer combined. Thus, the differences shown are cancer specific.   

In certain fractions, more than one protein was identified due to co-elution during 

LC separation. These fractions were further separated by SDS-PAGE and analyzed by 

lectin blots to determine which of the co-eluting proteins was responsible for the 

differential lectin response.  
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 Increased fucosylation and sialylation in pancreatic cancer sera were detected on a 

majority of the differentially glycosylated proteins, including Hemopexin, Beta-2-

glycoprotein 1, serum amyloid P-component, Antithrombin-III and Haptoglobin-related 

protein. Decreased sialylation was detected on plasma protease C1 inhibitor. This 

phenomenon has also been previously shown.[6] The immunodepletion of the abundant 

serum proteins in combination with further separation and lectin detection enabled the 

observation of glycosylation alteration in less-abundant proteins which had previously 

been difficult to detect. Some proteins have been suggested to be potential marker 

proteins in cancer. Beta-2-glycoprotein has been observed to be over-expressed in breast 

cancer serum [28] and serum amyloid P-component has been found down-regulated in 

stomach cancer tissue.[29] However, the glycosylation pattern alteration of these proteins 

has not been widely studied in sera from other cancer types.  

 Increased sialylation and fucosylation of these proteins in cancer serum lends 

support to the theory that glycosylation changes may have clinical utility for the 

identification of markers for early cancer detection. In order to verify the glycosylation 

changes that we observed, lectin immunoblotting and glycopeptide mapping experiments 

were also performed on selected LC fractions. AAL lectin was used to examine the 

fucosylation expression level of target proteins. Fig. 4.6a shows the lectin blot results of 

fucosylated Antithrombin-III. It was observed to be up-regulated in cancer serum 

compared to normal and chronic pancreatitis serum. Peptide mapping experiments were 

performed on the tryptic peptides from the LC fractions using µLC-ESI TOF. As shown 

in Fig. 4.7a, very similar patterns were observed for the unmodified peptides for cancer 

versus normal samples from Antithrombin-III. However, an over-expressed fucosylated 
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mono-sialylated glycopeptide was detected in cancer serum (Fig. 4.7b). This is consistent 

with the up-regulation of fucosylation and sialylation on Antithrombin-III observed in the 

microarray experiment (Table 4.1).  These results highlight the potential utility of using 

altered glycosylation patterns, rather than absolute protein levels, as markers for early 

cancer detection. 

 Haptoglobin-related protein epitope expression is a clinically important predictor 

of the recurrence of cancer in patients with early breast cancer, especially in combination 

with progesterone-receptor status.[30] In our study, the over-expression of fucosylated 

haptoglobin-related protein in pancreatic cancer serum was also verified by both 

glycoprotein microarrays and lectin blot experiments. (See Fig. 4.6b and Table 4.1) The 

up-regulation of fucosylated haptoglobin in pancreatic cancer serum has been reported 

previously[31], although this protein was removed during the immunodepletion step, thus 

its glycosylation changes were not analyzed in this study. In a peptide mapping 

experiment, similar levels of a desialylated glycan structure and a mono-sialylated glycan 

structure were observed on the peptide NLFLNHSENATAK from haptoglobin-related 

protein in cancer and normal samples (Fig. 4.8a and 4.8b), where the fully sialylated 

glycan structure on this peptide was found to be up-regulated in cancer sample as shown 

in Fig. 4.8c. These results confirmed the increased response of SNA lectin and unaltered 

response of PNA lectin on this protein (Table 4.1). 

 The over-expression of fucosylation in hemopexin in hepatocellular carcinoma 

has been previously reported.[32] In pancreatic cancer serum, significant up-regulation 

with a Z-score of 6.15 was observed on fucosylated Hemopexin. The lectin blotting 

experiment verified this alteration where an increased response to AAL was observed as 
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compared to chronic pancreatitis and normal serum (Fig.4.6c). Over-expressed 

desialylated and partially sialylated glycopeptides were also observed on Kininogen-1 in 

pancreatic cancer sera (shown in Fig.4.9). This is consistent with the result from 

glycoprotein microarrays where an increased response of this protein to SNA, MAL and 

PNA was detected in cancer samples. 

 In some cases the glycan moieties that were detected by the five lectins including 

sialylation, fucosylation, galactosylation and mannosylation were all up-regulated in 

pancreatic cancer. For instance, the glycosylation of both Serum amyloid P-component 

and Beta-2-glycoprotein 1 were found to be up-regulated as detected by all five lectins. 

This may be due to the increased branching of glycans that has been associated with 

metastasis and has been correlated with tumor progression in human cancers of pancreas, 

breast, colon and melanomas.[8, 11, 33, 34] Fucosyltransferase 3 has been shown to be 

over-expressed, and several isoforms of mannosidase have been shown to have decreased 

expression in pancreatic cancer (as compared to chronic pancreatitis and normal 

pancreata).[35] Fucosyltransferases increase fucosylation in selected proteins. The over-

expression of highly branched glycosylation either implicates increased activity of certain 

glycosyltransferases (which may lead to increased expression of certain terminal glycans 

such as sialic acid and fucosyl residues) or  to decreased mannosidase activity (leading to 

decreased trimming of high mannose structures, with corresponding increased branching 

of the high mannose core) in cancer. However, all that being said, no pancreatic proteins 

were found to show large glycosylation changes in the present study.  In fact, the 

majority of interesting proteins are secreted by the liver. It is well established that 

pancreatic cancer is a highly inflammatory neoplasm and, as such, may elicit 
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inflammatory cytokine production with an associated acute phase response from the liver.  

This acute phase response may, in fact, contribute to the synthesis of altered glycan 

moieties on the secreted liver glycoproteins.   

 
4.4. Conclusion 

 

 We have demonstrated the utility of glycoprotein microarrays as a tool to 

differentiate serum samples from patients with pancreatic cancer, chronic pancreatitis or 

normal subjects. Analysis of multiple normal, chronic pancreatitis and pancreatic cancer 

sera showed distinct segregation of each state following PCA and HC analysis. Normal 

and chronic pancreatitis sera were closer in similarity to each other, whereas pancreatic 

cancer sera were distinct from the other two groups. Sialylation and fucosylation were the 

dominant glycosylation differences seen to change with progression of pancreatic cancer. 

Both an increase and decrease in glycosylation levels of different proteins were observed 

as a function of disease. Many proteins whose glycosylation patterns changed as a 

function of disease have been previously implicated in cancer. The results from this study 

confirm previously implicated changes [8, 11] in that not only do protein abundances 

change as a function of cancer, but more importantly, modifications such as changes in 

glycosylation patterns of a serum glycoproteome may indicate presence or absence of a 

disease. This change in disease specific glycosylation was further confirmed for selected 

proteins by glycopeptide mapping experiments using a µLC-ESI-MS platform that were 

able to show distinct glycopeptide differences between different sample types. The ability 

to screen serum glycosylation patterns for sample classification and detect the location of 
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the altered glycosylations by further mass spectrometric validation may have utility for 

the early detection of cancer. 
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Table 4.1: Z values of the altered glycosylations detected by five lectins.(Z>2 or Z<-2 
corresponds to P<0.05) 
 

 AAL  MAL  SNA  ConA  PNA  
Protein ID / 
acc # Normal Cancer Normal Cancer Normal Cancer Normal Cancer Normal Cancer 
Beta-2-
glycoprotein 
1 (P02749)  2.49  3.3  2.08  2.07 -2.47 2.13 
Hemopexin 
(P02790)  6.15  2.85  3.24  3.01   
Haptoglobin-
related 
protein 
(P00739) -3.6 2.82 -2.49  -3.71 2.41 -3.08  -3.63  
Serum 
amyloid P-
component 
(P02743) -4.96 4.02 -4.96 2.85 -5.28 4.11 -5.31 3.59 -5.96 3.12 
Clusterin 
(P10909) -2.22 2.92 -2.52   2.22   -2.08  
Antithrombin
-III (P01008) -3.5 3.18 -2.9 3.28 -2.93 2.58 -3.24 2.63 -3.44 2.56 
Kininogen-1 
(P01042) -2.69 4.31  2.39 -2.64 3.98 -3.06 3.95 -2.1 2.14 
Plasma 
protease C1 
inhibitor 
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Figure 4.1: Strategy used to screen the glycosylation patterns and characterize the target 
glycoproteins using samples of normal, chronic pancreatitis, and pancreatic cancer sera. 
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Figure 4.2: (a) UV Chromatogram of 125 µl serum depletion by IgY antibody column to 
remove the 12 high abundance proteins. During the binding process, the fraction flowing 
through was collected as the immunodepleted serum fraction, with the abundant protein 
fraction collected during elution. The absorption was set at 280nm. (b) WGA and ConA 
selected glycoproteins from three depleted serum samples were separated by NPS-RP 
C18 column. The UV absorption was at 214nm. 
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Figure 4.3: Sections of glycoprotein microarray showing comparison of one fraction from 
NPS-RP-HPLC across all 24 samples. Each panel is a section of identical arrays probed 
with lectin indicated on the left side of the panel. It was observed that this fraction 
contained proteins that were predominantly mannosylated and fucosylated. It was also 
observed that the level of glycosylation (based on raw microarray data) was higher in 
cancer samples compared to the controls. 
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Figure 4.4: 
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(d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(e)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4: The normalized glycoprotein microarray responses to lectins (a) AAL (b) 
ConCA (c) MAL (d) SNA (e)PNA were visualized by principal component analysis 
(PCA). 24 serum samples (10normal, 8 pancreatitis and 6 pancreatic cancers), assayed in 
duplicate, were analyzed without replicate averaging. 
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Figure 4.5: 
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Figure 4.5: The normalized glycoprotein microarray responses to lectins (a) AAL, (b) 
ConA, (c) MAL, (d) SNA, and (e) PNA were visualized by principal component analysis 
(PCA). Twenty-four serum samples (10 normal, 8 chronic pancreatitis, and 6 pancreatic 
cancers) were studied. Average linkage hierarchical clustering (HC) of the array 
responses to (f) AAL, (g) MAL, (h) ConA, (i) PNA and (j) SNA were shown to provide 
graphical representations of the relationships among the samples. The figure shows the 
clustering of serum samples obtained from patients with pancreatic cancer, chronic 
pancreatitis, or from normal subjects. 
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Figure 4.6: AAL lectin blot analysis of (a) Antithrombin-III, (b) Haptoglobin-related 
protein, (c) Hemopexin in N (normal), P (chronic pancreatitis), and C (pancreatic cancer) 
serum. 
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Figure 4.7: Peptide mapping of Antithrombin-III. (a) Very similar patterns of unmodified 
peptides and (b) altered glycopeptide LGACNDTLQQLMEVFK (124-139) + (Hex)1 

(HexNAc)2 (Deoxyhexose)1 (NeuAc)1 + (Man)3(GlcNAc)2 were detected by µLC-
ESITOF in normal and pancreatic cancer serum. 
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Figure 4.8: Peptide mapping of Haptoglobin-related protein. (a) Glycopeptide NLFL 
NHSE NATAK(145-157) + (Hex)2(HexNAc)2 + (Man)3(GlcNAc)2, (b) glycopeptides 
NLFL NHSE NATAK(145-157) + (Hex)2(HexNAc)2(NeuAc)1 + (Man)3(GlcNAc)2, 
and (c) glycopeptides NLFLNHSENATAK(145-157) + (Hex)2 (HexNAc)2(NeuAc)2 + 
Man)3(GlcNAc)2 were detected as multiple charged peaks in normal and pancreatic 
cancer serum. 
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Figure 4.9: Peptide mapping of Kininogen-1 (P01042). Glycopeptide LNAEN 
NATFYFK(289-300) + Hex)3(HexNAc)3 + (Man)3(GlcNAc)2, 
LNAENNATFYFK(289-300) + (Hex)3(HexNAc)3(NeuAc)1 + (Man)3(GlcNAc)2, and 
LNAENNATFYFK(289-300) + (Hex)3(HexNAc)3(NeuAc)2 + (Man)3(GlcNAc)2 were 
detected as doubly charged peaks. 
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Chapter 5 

 

Glycoprotein profiling in plasma samples to elucidate glycoprotein biomarkers of 
colorectal cancer: An application of natural glycoprotein microarrays and lectin 

blots 
 

 

5.1. Introduction 

Colorectal cancer is the third most common cancer in the world. It is estimated 

that one million new cases and half a million new deaths occur due to this disease every 

year.[1] Colorectal cancer related deaths amount to only 14% of all deaths due to cancer. 

The five year survival rate in colon cancer can be increased to 90% if the tumor is 

detected when it is still localized (not malignant and metastatic).[2] Current screening 

methods for colorectal cancer include fecal testing, sigmoidoscopies, barium enemas and 

colonoscopies.[3-5] Because some of these methods are invasive or not pleasant, patients 

are often resistant to these tests. Blood based (serum or plasma) tests are considerably 

less invasive and therefore a method of choice for colorectal cancer screening possibly 

increasing the number of patients screened for the disease and therefore diagnosed at a 

stage early enough for successful intervention. 

A large amount of serum based proteomics studies are currently being pursued for 

elucidation of cancer biomarkers for early detection as well as monitoring the 

effectiveness of therapy.[6] Plasma and serum typically contain proteins native to this 
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biological fluid as well as proteins released from diseased cells.[7] Glycoproteins within 

plasma comprise the most abundant post translationally modified sub-proteome.[8-12]  

Currently known cancer markers that are glycoproteins include Her2/Neu in breast cancer, 

prostate-specific antigen (PSA) in prostate cancer, CA125 in ovarian cancer, 

carcinoembryonic antigen (CEA) in colon, breast, bladder, lung and pancreatic cancers. 

CEA presents poor sensitivity specificity and therefore cannot be effectively used for 

early detection.[13] CA19-9, CA242, CA195, CA50, CA74-2 and TIMP-1 have also been 

proposed as potential markers of colorectal cancer but their sensitivities and specificities 

are also too low for diagnostic purpose.[14-21]   

Changes in abundance and glycan structure have been previously implicated in 

multiple events during cancer progression ranging from cell growth and differentiation, 

adhesion, metastasis and immune surveillance.[22-24] Invasiveness and metastatic ability 

have been linked to changes in sialylation of cancer cells. Increase in sialylation could be 

due to multiple factors some of which include increased activity of sialyl transferases and 

increase in the numbers of potential sialylation sites on N-linked glycans.[25] Aberrant 

fucosylation has also been shown in pancreatic cancer progression.[26, 27] Plasma 

glycoproteins are therefore important targets because their identity and glycan structure 

changes could provide insightful information about critical transformations due to cancer 

progression and because they can be used as potential diagnostic markers of cancers.  In 

this study, multidimensional liquid separation was utilized on immunodepleted plasma 

followed by natural glycoprotein microarray production with the goal to screen plasma 

samples for glycan pattern changes as a function of colorectal cancer. Statistical analysis 

of the data provided a reliable means to identify plasma glycoproteins possessing altered 
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glycosylation. Statistically significant altered glycoproteins were further validated on a 

second independent group of plasma samples. These proposed glycoproteins may have 

utility in the detection of colorectal cancer. 

 

5.2. Experimental Section 

Plasma samples 

 Human plasma samples were collected through a four institutional consortium 

(Dana Farber Cancer Institute, MD Anderson Cancer Center, St. Michael Hospital, 

Toronto, Ont, Canada, and University of Michigan Medical Center) of the Early 

Detection Research Network (EDRN). Human subjects were identified prior to 

endoscopy and informed consent obtained prior to sample collection procedures specified 

in a protocol approved by Institutional Review Boards at all collaborating Institutions. 

The samples were collected, handled, shipped, stored, and managed according to standard 

operating procedures as specified in the protocol document. Samples were labeled with 

bar coded subject identification number and tracked from collection through assay via a 

relational database containing de-identified demographic and clinical data located at the 

Bioinformatics Unit at Dartmouth Medical College. The samples were stored in a 

professional repository facility at -80°C until use. The plasma was obtained from 6 

patients with colorectal cancer (two stage II, two stage III and two stage IV), 5 samples 

from patients with colonic adenomas (polyp size with 0.3-1.3 cm), and 9 samples from 

patients with normal colonoscopies for use in a blinded set to screen N-linked 

glycosylation pattern changes on plasma glycoproteins and 30 plasma samples (10 of 

each) for use in a testing set.  All subjects that donated plasma for this study were 
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between 50-76 years of age with 16 Caucasians and 4 African Americans.  The plasma 

was aliquoted into 0.5 ml aliquots, frozen, and then stored at -80°C until assayed.  

Preparation of glycoprotein samples for lectin glycoarrays or lectin blot 

Delipidation and immunodepletion of the plasma samples 

 The plasma samples were delipidated by centrifugation for 15 min at 20,000 × g, 

and the lipid containing upper layer was removed before depletion. 250 µL of the 

delipidated plasma was depleted using the ProteomeLab IgY-12 LC10 proteome 

partitioning kit (Beckman Coulter, Fullerton, CA). This procedure enables simultaneous 

removal of twelve highly abundant proteins from human plasma, including albumin, IgG, 

α1- antitrypsin, IgA, IgM, transferrin, haptoglobin, α1-acid glycoprotein, α2-

macroglobin, apolipoprotein A-I, apolipoprotein A-II, and fibrinogen. Using optimized 

buffers for sample loading, washing, eluting, and regeneration, the resulting flow-through 

(unbound) fraction and the eluted (bound) fraction were collected separately during a 

total of 75 min IgY affinity separation cycle.  The final depleted fraction was buffer 

exchanged into 2 mL Concanavalin A (Con A) binding buffer (20 mM Tris, 0.15 M NaCl, 

1 mM Mn2+, and 1mM Ca2+, pH 7.4) with a 10,000 Da molecular weight limit Amicon 

Ultra-15 centrifugal filter (Millipore, Billerica, MA). The protein concentration of the 

final concentrated fraction was determined using a Bradford protein assay (Bio-Rad, 

Hercules, CA) with BSA as a standard. The concentrations of the immunodepleted 

plasma samples were approximately 1.5-2.0 mg/mL. 

N-Glycoprotein enrichment with ConA affinity capture 

 ConA columns were prepared by adding 1.5 mL of the agarose-bound lectin 

(Vector Labs, Burlingame, CA) into 5 mL polypropylene columns (Pierce Biotechnology, 
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Rockford, IL). The columns were first equilibrated with 5 mL of the binding buffer 

before use. A total of 500 µL of the immunodepleted plasma was loaded onto an 

equilibrated column. After incubating for 30 min, the unbound proteins were washed out 

with 6 mL of the binding buffer, and the captured proteins were eluted with 4 mL of the 

elution buffer (20 mM Tris, 0.5 M NaCl, 0.5 M methyl-R-D-mannopyranoside pH 7.4). 

The protein recovery of the lectin column was determined based on the Bradford protein 

assay, using BSA as the standard. 

HPLC separation of glycoproteins 

 25 µg of the enriched N-glycoproteins (corresponding to around 60 µL original 

plasma) was separated by NPS-RP-HPLC at a flow rate of 0.5 mL/min on a 33 × 4.6 mm 

ODS III column (Eprogen, Darien, IL, USA) using a ProteomeLab PF2D system 

(Beckman Coulter, Fullerton, CA, USA). The separation was performed using a water 

(solvent A) and acetonitrile (solvent B) gradient as follows: (1) 5 to 25% B in 1 min; (2) 

25 to 31% B in 2min; (3) 31 to 37% B in 7 min; (4) 37 to 41% B in 8 min; (5) 41 to 48% 

B in 7 min; (6) 48 to 58% B in 3 min; (7) 58-75% B in 1 min; (8) 75 to 100% B in 1 min. 

Proteins eluted from the column were collected by an automated fraction collector (FC 

204 BE, Beckman-Coulter) controlled by an in-house-designed DOS-based software 

program and 32 Karat software (Beckman-Coulter). The 32 Karat software was also used 

to calculate the peak area of each protein fraction. 

Lectin glycoarrays 

 After completely drying, the protein fractions were resuspended with 15 µL 

printing buffer (65 mM Tris-HCl, 1% SDS, 5% DTT, and 1% glycerol) in 96 well plates, 

and then arrayed on nitrocellulose slides (Whatman, Keene, NH) using a non-contact 
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piezoelectric printing device (Nanoplotter 2.0, GeSiM, Germany).  2.5 nL of each 

fraction were arrayed on the nitrocellulose slides in spots that were 450 µm in diameter 

and 600 µm apart.  The printed slides were dried for one day after being blocked 

overnight with 1% BSA in phosphate buffered saline with 0.1% Tween 20 (PBS-T).  The 

blocked slides were first incubated with biotinylated lectin for 2 hrs and then with 1 

µg/mL streptavidin conjugated to Alexaflor555 fluorescent dye (Invitrogen, Carlsbad, 

CA).  After being washed and dried, slides were scanned in the green channel using an 

Axon 4000A scanner.  Image analysis was performed using the GenePix 6.0 software 

(Molecular Devices, Sunnyvale, CA). 

Statistical analysis of lectin glycoarray data 

Principal components analysis (PCA)  

 Principal components analysis (PCA) was performed for data visualization, which 

was carried out using log-transformed and normalized array spot intensities. The leading 

two eigenvectors of the sample covariance matrix were used for visualization.  In this 

study, 20 plasma samples (processed in duplicate when using ConA, AAL, PNA and 

triplicate when using SNA and MAL) were placed in a two dimensional scatter plot using 

PCA.  Sample pairs falling close together in the scatter plot are more similar in terms of 

their overall patterns of normalized glycoform abundances. The PCA was based on all 

microarray measurements without selection or weighting. All samples were included in 

the analysis without selection. 

Hierarchical clustering  

 An unsupervised hierarchical clustering (HC) procedure was used without any 

prior knowledge of grouping to find criteria appropriate for classifying the cases 
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according to the glycosylation pattern from glycoarrays. To do this, the normalized array 

spot intensities were log transformed, and the pair-wise Pearson correlations were used to 

carry out HC in which more closely correlated pairs of samples were joined at a lower 

point on the dendrogram. The scale on the dendrograms was 100 -100 × r, where r is the 

Pearson correlation coefficient. In the HC analysis, the replicate averages of the 20 

distinct biological specimens were used.  

Z-statistics 

 For differential abundance analysis, Z-statistics for each protein 

detected by each lectin were calculated. The Z-statistic is the difference in mean levels 

between two groups being compared (based on log_2 data) divided by an estimate of its 

standard error. For single comparisons, Z-statistics greater than approximately 2 in 

magnitude correspond to p-values smaller than 0.05. The Z-statistics of differentially 

glycosylated proteins detected by lectins together with fold changes both in log 2 and 

non-log 2 forms are shown in supplementary Table 1. Comparisons were made of normal 

versus adenoma, normal versus cancer as well as adenoma versus cancer.  Based on the 

Bonferroni correction for two-sided testing of 36 peaks, Z values of ≥ 3.2 or ≤ -3.2 could 

be deemed to have significantly different glycosylation levels at a 95% significance level. 

SDS-PAGE and lectin blot 

 To identify and validate the glycoproteins of interest, protein fractions from NPS-

RP-HPLC were divided into two aliquots and further separated by 1-D SDS-PAGE using 

the Mini-Protean cell (Bio-Rad, Hercules, CA) at 80V. The resolved proteins were 

stained with colloidal Coomassie (Invitrogen) or transferred onto a polyvinylidene 

fluoride (PVDF) membranes (Bio-Rad). The PVDF membranes were blocked with 5% 
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w/v BSA (Roche, Indianapolis, IN) in PBS-T overnight at 4°C and then incubated with 

either  biotinylated AAL or SNA (2 µg/mL in PBS-T containing 3% BSA) for 1 hr at 

room temperature. The membranes were then washed and incubated with a 100 ng/ml 

streptavidin-HRP in PBS-T containing 3% BSA. After washing, the signal was visualized 

using a chemiluminescence detection system (ECL, Pierce) and detected on blue sensitive 

autoradiography film (Marsh Bio Products, Rochester, NY). Corresponding colloidal blue 

stained bands of proteins of interest were identified by nano-LC MS/MS.  

Protein digestion 

Tryptic digestion and N-deglycosylation of NPS-RP-HPLC fractions  

The NPS-RP-HPLC fractions with significantly different glycosylation were dried 

completely, denatured in 40µL of 100 mM NH4HCO3 buffer (pH 7.8), then reduced with 

1 mM dithiothreitol (DTT) for 45 min at 56°C and alkalized with 15mM iodoacetamide 

(IAA) for 1 h at room temperature in the dark. The proteins were then digested with 1-2 

µg of TPCK-treated trypsin (Promega, Madison, WI, USA) for 18 h at 37°C. The 

reaction mixture was then heated for 10 min at 95°C to stop trypsin activity. 1-2 µL of 

PNGase F (New England BioLabs, Ipswich, MA) were added to half of the tryptic digest 

mixture from each fraction to start the N-deglycosylation at 37°C for 12 h. The other half 

was stored at -80° for later use.  

Tryptic digestion and N-deglycosylation of SDS gel bands 

 The glycoprotein bands from the colloidal Coomassie blue-stained SDS-PAGE 

gel were carefully excised. The gel pieces were placed in siliconized Eppendorf tubes 

(Sigma) and destained 3 times with 200 µl 200 mM ammonium bicarbonate and 40% 

acetonitrile at 37°C for 30 min each and lyophilized completely in a SpeedVac (Thermo). 
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The dried gel pieces were first deglycosylated by incubating with 10 µL of the PNGase F 

solution (Sigma) overnight at 37°C followed by trypsin digestion overnight at 37°C. The 

liquid from the gel piece was transferred to a new tube for nano-LC MS/MS analysis. 

Mass spectrometry for protein identification and glycosylation site determination  

 A Paradigm pump system (Michrom Bioresources, Auburn, CA) interfaced with a 

linear ion trap mass spectrometer (LTQ, Thermo, San Jose, CA) was used to analyze the 

tryptic digests from SDS-PAGE gel bands. The injected peptide sample was first desalted 

on a trap column (150 µm × 50 mm, Michrom Bioresources Inc, Auburn, CA) with 3% 

solvent B (0.3 % formic acid in acetonitrile) at 50 µl/min for 5 min and then released and 

separated on a nano column (150 µm × 150 mm, Michrom) using a 45 min gradient from 

3% B to 95% B at 0.3 µl/min. The resolved peptides were directly introduced into a 

nano-ESI ion source with the spray voltage set at 2.6 kV.  

 To sequence the eluted peptides, data dependent MS/MS analysis (m/z 400-2000) 

was performed using MS acquisition software (Xcalibur 1.4, Thermo Finnigan), in which 

a full MS scan was followed by seven MS/MS scans of the seven most intense precursor 

ions. All MS/MS spectra were compared against the Swiss-Prot FASTA human protein 

database using the SEQUEST algorithm incorporated into the TurboSequest feature of 

Bioworks 3.1 SR1.4 (Thermo Finnigan). Two missed cleavages were allowed. Protein 

identification was accepted as positive for a peptide with Xcorr of greater than or equal to 

3.5 for triply-, 2.5 for doubly- and 1.9 for singly charged ions, and all with ∆Cn ≥0.1. The 

sequence database search was set to accept the following modifications: 

carboxymethylated cysteines due to treatment with iodoacetamide, oxidized methionines, 

and an enzyme-catalyzed conversion of asparagines to aspartic acids (0.984Da shift) at an 
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N-glycosylation site.  Accuracy of the SEQUEST assignment of MS/MS spectra to 

peptide sequences was determined by the TransProteomics Pipeline which includes both 

PeptideProphet and ProteinProphet software. In this study, peptides were identified with 

a probability cut-off of p ≥ 0.99 and protein identifications were confirmed with 

probability scores of at least 0.9.  

 

5.3. Results and Discussion 

Immunoaffinity depletion and lectin affinity enrichment 

 Determination of alterations in glycan structure presents a challenge when the 

sample containing the glycoproteins is a complex biological medium. Human serum or 

plasma contains proteins over a wide dynamic range of approximately 22 orders of 

magnitude.[28] In addition about 95% of serum comprises of less than 10 high abundance 

proteins. Signals from glycoproteins of clinical relevance are therefore often beyond the 

detection limit due to suppression by the high abundance proteins. To facilitate the 

analysis of glycoproteins expressed in the mid to low level abundance range, the most 

abundant proteins were depleted from the sample using immunoaffinity chromatography, 

as shown in the flowchart of the proposed method (Fig. 5.1).  250 µl of each plasma 

sample was first delipidated and then immunodepleted to remove lipids and the 12 most 

abundant plasma proteins based on an avian antibody (IgY)-antigen interaction.  

Following the immunodepletion step, approximately 7% of the total protein mass in the 

plasma samples remained as shown in table 5.1.  Figure 5.2A shows representative 

chromatograms that demonstrate the reproducibility of the immunodepletion step using 2 

normal, 2 adenoma and 2 colorectal cancer samples.  
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 Proteins that did not bind to the solid phase on the immunodepletion column (and 

were therefore free of the top 12 abundant proteins) were subjected to ConA affinity 

chromatography. The resulting fraction contained an enriched concentration of N-

glycosylated proteins. ConA has a broad specificity due to its binding preference to 

oligomannosidic, hybrid, and bi-antennary N-glycans, either unconjugated or attached to 

proteins or peptides [29]. O-glycopeptides or glycoproteins that contain exclusively O-

glycosylation sites were not bound by this lectin. Approximately 70% of the 

immunodepleted plasma protein content was recovered by ConA affinity chromatography 

suggesting that the majority of the immunodepleted fraction comprised of glycoproteins. 

The two-step enrichment procedure achieved a significant reduction in analyte 

complexity because the immunodepletion of the 12 most abundant proteins significantly 

increased the dynamic range of detection and reduced sample heterogeneity due to the 

removal of the highly variable IgG, IgA and IgM proteins. In addition, the subsequent N-

glycoprotein enrichment step afforded another effective means of reducing plasma 

sample complexity. 

 25 µg of the enriched N-glycoprotein mixtures were further separated by NPS-

RP-HPLC into 36 fractions for lectin glycoarray or lectin blot analysis. Figure 5.2B 

shows the reverse phase chromatograms of the plasma samples from different plasma 

samples (9 normals, 5 adenomas, and 6 colorectal cancers). The reproducibility of these 

chromatograms indicates that the samples from the plasma from normal subjects, from 

adenoma patients, and from colorectal cancer patients were very similar at the protein 

expression level. Slight peak height differences are evident but the overall peak profiles 

are almost identical in all cases. These results suggest that the analysis of glycoprotein 
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expression alone may not provide valuable information to differentiate the clinical status 

of plasma samples. A more detailed analysis of possible glycan structure differences may 

prove to be more successful for classification.   

Lectin glycoarrays for visualizing of N-glycosylation pattern across plasma samples  

 To analyze the plasma glycosylation patterns, all fractions from the NPS-RP-

HPLC separation of the plasma samples were arrayed on nitrocellulose slides as unique 

spots. The slides were then screened in duplicate using five different lectins to analyze 

the different glycan structures: Aleuria aurentia lectin (AAL), Sambucus nigra bark 

lectin (SNA), Maackia amurensis lectin II (MAL), peanut agglutinin (PNA), and 

Concanavalin A (ConA). The binding affinities of these lectins are detailed in the 

previous two chapters. The utilization of these five lectins has been highly successful in 

covering >95% of the reported N-glycan types and in differentiating them according to 

their specific structures [30].  Images of sections of slides showing response of all 

fractions from all samples are illustrated in figure 5.3. It can be seen that just by array 

spot intensities themselves, control and disease samples can not be easily distinguished 

necessitating normalization procedures. Because only variations in glycan expression 

were desired, all array spot intensities were normalized by dividing the corresponding 

UV peak area to eliminate protein abundance differences since this method proved to 

work in the studies with pancreatic cancer sera.  The normalized array data showed that 

the levels of protein fucosylation and sialylation were higher in colorectal cancer and 

adenoma plasma samples as compared to the plasma controls i.e. normal plasma samples.  

Statistical analysis of N-glycosylation pattern changes 

 153



 Principal components analysis (PCA) and hierarchical clustering (HC) of the 

normalized glycoprotein spot intensities were performed to see if the plasma samples 

could be differentiated and grouped based on their overall N-glycosylation pattern 

differences into their clinical state.  For PCA, all 20 plasma samples assayed were 

analyzed separately for each lectin.  The scores of the first two principal components of 

the normal, adenoma, and colorectal cancer samples are illustrated in a 2-dimensional 

scatter plot in which each sample was plotted as an individual point (Fig. 5.4A).  The 

closer the spots in the PCA space, the greater the similarity in their glycan profiles over 

all 36 fractions.  In the case of ConA and SNA, the normal controls (red) were grouped 

separately from cancer (blue) and adenoma samples (green), while most cancer and 

adenoma samples were clustered together.  This suggests that the mannose and certain 

sialic acid structures show a differential expression in normal samples combined 

compared to the adenoma and cancer samples together. In the case of AAL and MAL, the 

normal and cancer samples generally segregated from each other, whereas the adenoma 

samples overlapped with both the normal and cancer sample groups.  The PNA 

microarray data did not provide high fluorescence intensities for most protein spots but 

showed similar results to AAL and MAL arrays.  The results of the PCA analysis suggest 

that lectin glycoarrays may have utility as a diagnostic tool to discriminate the diseased 

states from the non-diseased states in cancer detection. However the overlap of adenoma 

samples with cancer samples may hinder the use of such arrays as the sole technique for 

plasma state classification. The good reproducibility between the replicates from the 

same sample (Fig. 5.4B) in PCA plots indicates that the lectin glycoarray is a robust 

strategy for screening N-glycosylation changes among the plasma samples from different 
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disease states since two different slides when processed with the same lectin do not show 

severe variation due to manual handling and therefore if differences are seen they could 

confidently be assigned to biological differences in the sample.  Similar results were 

observed in HC by using the Pearson correlation coefficient for distance metrics (Fig. 

5.5).  The clustering results for fucosylated, sialylated and mannosylated glycan 

expression generally distinguished the normal plasma samples from the cancer and 

adenoma samples.  The results from the different lectins indicate the effectiveness of 

using multi-lection detection to differentiate plasma samples of the different clinical 

states based on N-glycosylation pattern changes. 

 Z-statistics of each array spot were also calculated. While the PCA and HC 

analysis focused on overall glycan pattern difference between samples, Z-statistics 

analysis enabled the comparison of individual fractions across samples to see if specific 

peaks in the reverse phase chromatograms showed differential glycan expression across 

all samples. Such an analysis can allow for identification of signature peaks and therefore 

proteins that might differentiate the plasma samples of the different clinical states (Table 

5.1A).  Comparisons were made for normal versus adenoma (N/A), normal versus cancer 

(N/C), and adenoma versus cancer (A/C).  Z values of ≥ 3.2 or ≤ -3.2 were selected as 

differential glycosylation at a 95% significance level.  A positive Z value indicates 

elevated glycosylation and a negative Z value suggests reduced glycosylation.  

Mass spectrometric analysis of potential biomarkers that showed altered N-linked 

glycosylation patterns 

 Initial attempts at identifying the protein with altered glycosylation in a peak 

presented a problem. It was found at each fraction from the NPS-RP-HPLC fractionation 
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contained more than one protein. In some cases this number was as high as even 10 to 15 

proteins. Since the only separation used for resolving proteins after glycoprotein 

enrichment was HPLC, this problem was expected. In order to determine which protein 

from the co-eluting proteins was responsible for the differential responses in the 

glycoarrays that were processed with lectins, all fractions that demonstrated altered 

glycosylation were further separated by 1-D SDS-PAGE and then further analyzed by 

lectin blotting experiments. To that affect, 1D separated proteins on the gel were 

transferred onto PVDF membranes which were then probed with lectins of interest. The 

glycoprotein-lectin interaction was visualized by the biotin-streptavidin system where the 

streptavidin was conjugated to horse radish peroxidase facilitating imaging of the lectin 

blots. Because elevated fucosylation and sialylation levels in colorectal cancer plasma 

were detected in the majority of the differentially glycosylated proteins, we chose AAL 

and SNA in the lectin blot analysis to determine which protein corresponded to the 

differential fucosylation and sialylation pattern.  

 Bands that corresponded to the protein showing differential glycosylation in the 

lectin blots were excised from their corresponding SDS gels, and digested with PNGase F 

and trypsin. Protein identity and the possible glycosylation sites were determined by 

nano-ESI-LC-MS/MS coupled to the SEQUEST database search.  Positive identifications 

were validated by the Trans-Proteomics pipeline (PeptideProphet and ProteinProphet) 

software.  PeptideProphet software was used to confidently identify correct peptide 

assignments and ProteinProphet was used to validate the protein identifications obtained 

through SEQUEST database searches.  Peptides were identified as truly positive if they 

had a probability score of at least 0.99 and a false positive error rate of 0.0007 and 
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proteins were identified with a probability cut-off of p ≥ 0.9 which corresponds to a 0.7% 

error rate.[31, 32]  Figure 5.6A shows a representative nano-LC-ESI-MS/MS spectrum of 

the deglycosylated glycopeptide [(M+2H) 2+ at m/z 553.20] from complement C4.  The 

localization of the N-glycosylation site was determined by a mass increase of 1 Da on the 

N-X-(S/T) sequence that occurs upon deamidation of asparagine residue into aspartic 

acid.[33]  The b- and y- series of product ions clearly showed a mass shift indicative of 

conversion of asparagine to aspartic acid at the original site of N-glycosylation.  In this 

case, the mass difference of 115 Da for aspartic acid found for both the b3-b2 and y9-y8 

product ion pairs suggests the N-glycosylation at residue 3.  Figure 5.6B is a tandem MS 

spectrum of another peptide [(M+2H) 2+ at m/z 716.82] from kininogen-1. Without 

tandem MS/MS data the location of the exact glycosylation site would be ambiguous 

since this particular peptide possesses two asparagine residues. However, because the 115 

Da shift is only seen for the b6-b7 and y7-y6 ions but not for the b5-b4 and y8-y7 ions 

(which show a shift of 114 Da) it could be concluded that the Asn at position 5 was not 

N-glycosylated and that in fact it was the Asn residue at position 6 that was glycosylated.  

Glycosylated proteins that showed a significant difference in their glycan expression 

across sample groups together with their Z statistical scores are summarized in Table 

5.2A. The corresponding detected glycosylation sites for these proteins are shown in 

Table 5.2B. Out of the 10 proteins where differential glycosylation between sample 

groups was observed, 3 of these proteins showed elevated glycosylation in the case of 

cancer compared to normal and adenoma combined and seven had higher glycosylation 

levels in cancer and adenoma combined compared to normal. A majority of the proteins 

identified did not appear to be specific to colon cancer but are likely due to systemic 
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changes and may be acute phase proteins or proteins from the liver or pancreas. This 

observation was particularly interesting since the same trend was seen with the potential 

glycoprotein markers from pancreatic cancer too (see previous chapter). It is possible that 

changes in liver protein glycosylation are a characteristic of cancers of the GI tract. 

Nevertheless, the data suggests that Z-statistical analysis of lectin glycoarrays has 

potential to identify specific proteins that can distinguish cancer samples from adenoma 

or normal controls. Specifically, the potential markers that distinguish colorectal cancer 

from adenoma and normal controls that were identified in this study include elevated 

sialylation and fucosylation in complement C3, histidine-rich glycoprotein, and 

kininogen-1. 

Lectin blot analysis on a separate set of normal, adenoma and colorectal cancer 

plasma samples for validation of results obtained from arrays 

 The diagnostic potential of 2 of the glycoprotein biomarkers identified above was 

validated using an independent set of 30 plasma samples (10 colorectal cancers, 10 

adenomas, and 10 normals). The plasma samples were treated in a similar manner to the 

training set (depleted, enriched and separated by multi-dimensional HPLC separation as 

described previously) and then analyzed by 1-D SDS-PAGE and lectin blot analysis. 

Figure 5.7 shows the protein bands of markers of interest after lectin blot experiments. It 

can be observed that complement C3 showed minimal reactivity to AAL and SNA in all 

of the normal and adenoma samples, but significantly elevated reactivity in the colorectal 

cancer samples suggesting higher levels of AAL and SNA in cancers compared to 

controls. These results from the lectin blot analysis were consistent with that obtained 

from the Z-statistic analysis in which complement C3 was significantly elevated in its 
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response to both AAL and SNA in cancer samples compared to adenoma and normal 

samples. In order to ensure that the lectin blot intensities were a truly due to more 

abundant glycan expression on the glycoprotein and not the protein abundance itself the 

peak areas of complement C3 in each plasma sample were compared. As shown in figure 

6 approximately equal amounts of protein were loaded on the SDS gel suggesting that 

increased glycan abundance was in fact the reason for the differential lectin blot 

responses seen. Similarly, histidine-rich protein displayed significant differential glycan 

abundances but similar protein expression. In this case, fucosylation was significantly 

elevated in colorectal cancer samples compared to both adenoma and normal samples. 

However, similar sialylation was observed in cancer and adenoma combined compared to 

normal samples. These differences were consistent with the Z-statistical scores observed 

in the training set. The results from this study highlight the potential utility of monitoring 

the altered glycosylation patterns instead of absolute protein expression for cancer 

detection.  

 

5.4. Conclusion 

 A glycoproteomic strategy for the identification of potential plasma biomarkers 

with a potential utility in the detection of colorectal cancer has been described in this 

chapter.  Potential serological markers of colorectal cancer were identified by first 

reducing plasma complexity using immunodepletion and glycoprotein enrichment. 

Subsequent RP-HPLC separation followed by array generation and lectin hybridization 

provided a means of statistical monitoring of glycan pattern changes as a function of 

disease.  Because peak intensities from NPS-RP-HPLC separations reflected similar 
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protein abundances across plasma samples the plasma glycoproteome alone could not be 

used to differentiate the clinical status of individuals i.e. control samples form diseased 

samples.  However, by utilizing the glycoprotein microarray strategy outlined in chapter 

3, normal, adenoma, and colorectal cancer plasma showed distinct clustering according to 

clinical status.  Glycoprotein fractions that were statistically proven to be different 

between sample groups were identified using SDS-PAGE and lectin blotting experiments 

coupled to nano-ESI-LC MS/MS. A validation experiment using an independent set of 

plasma samples confirmed the results obtained for two of the proteins that were identified. 

In was concluded that patients diagnosed with colorectal cancer and adenomas 

demonstrate higher levels of sialylation and fucosylation compared to the normal controls 

in general. In this study colorectal cancer could be distinguished from adenoma and 

normal plasma based on elevated sialylation and fucosylation in complement C3, 

histidine-rich glycoprotein, and kininogen-1.  These results demonstrated that N-linked 

glycan patterns can be successfully used to distinguish plasma samples originating from 

different clinical states. In future work further analysis of sialyl- and fucosyl- glycans 

needs to be done with greater emphasis on structure elucidation of the glycans. Because 

higher order mass spectrometry analysis required significantly higher amounts of samples, 

this attempt will be particularly challenging due to the limited availability of plasma 

samples. 
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Table 5.1. The amount of protein processed through the IgY antibody column and 
recovered in the flow-through fraction from 250 µL plasma samples. 
 

Protein Amount 
(mg) Original Plasma Flow-through 

Fraction 
Cancer (n=6)    23.67 ± 3.52 1.68 ± 0.22 
Adenoma (n=5) 22.98 ± 3.58 1.61 ± 0.23 
Normal (n=9) 21.52 ± 3.81 1.52 ± 0.29 
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Table 5.2A. Z-statistics of differentially glycosylated proteins detected by lectins.  
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a, b: N: normal; A: adenoma; C: cancer.  The highlighted (Z ≥ 3.2 or Z ≤ -3.2) correspond 
to 95% significant level with multiple testing correction. 

 



Table 5.2B. Differentially glycosylated proteins identified with the glycosylation sites. 
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Figure 5.1: Flowchart of overall strategy using high throughput analysis of plasma N-
glycosylation pattern changes in colorectal cancer. 
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Figure 5.2: (A) Chromatographic profiles of immunoaffinity depletion of plasma from 6 
normal, adenoma, and colorectal cancer patients using ProteomeLab IgY-12 kit. The 12 
most abundant proteins are contained in the “bound” fraction and the less abundant 
proteins in plasma or serum remained in the “flow-through” fraction. (B). UV 
chromatograms of all plasma samples from colorectal cancer, adenoma, and normal 
controls.  
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Figure 5.3: Microarray images of lectin response across all collected fractions from all 
sample groups 

166 



Figure 5.4: 
 
a)  
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b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Figure 5.4: (A) Principal components analysis (PCA) plot for normalized glycoprotein 
microarray data derived from the replicate analysis of healthy individuals, adenoma, and 
colorectal cancer patient plasma. Circles indicate the areas where the data points of the 
three groups are clustered. (B)- Reproducibility demonstration of Principal components 
analysis (PCA) for normalized glycoprotein microarray data derived from the replicates 
of healthy individuals, adenoma, and colorectal cancer patients.  
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Figure 5.5: Unsupervised hierarchical clustering of glycoprotein microarray data for 
colorectal cancer (c1-c6) from adenoma (a1-a5) and normal controls (n1-n9).  Average 
linkage was used, and the dissimilarity was obtained from the Pearson correlation 
coefficient. 
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a) 

 

 
 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

Figure 5.6: Nano LC-MS/MS spectra of (A) doubly charged N-glycosylated peptide 
GLN*VTLSSGH (m/z = 553.28) from complement 4 and (B) doubly charged N-
glycosylated peptide LANENN*ATFYFK from kininogen-1. The asterisk (*) denotes the 
site of N-glycosylation determined from the tandem mass spectrum. Theoretical location 
of b ions is indicated by red lines. In most cases these peak intensities were not high 
enough for detection. 
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a) 

 

 
b) 

 
 
 
c) 

 

 
d) 

 

Figure 5.7: Validation study using 30 independent plasma sample to assess fucosylation 
and sialylation levels using AAL and SNA lectin blot analysis in complement C3 (A) and 
histidine-rich glycoprotein (C). The corresponding protein expression levels based on 
chromatogram peak areas are shown in (B) for complement C3 and (D) for histidine-rich 
glycoprotein. 
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Chapter 6 

 

A protein microarray approach exploiting the naturally occurring humoral 
response to identify a potential panel of biomarkers for pancreatic cancer 

 

 

6.1. Introduction 

 Major advances in cancer control will be greatly aided by early detection so as to 

diagnose and treat cancer while it is in an early, curable state. Unfortunately, for 

pancreatic adenocarcinoma (PDAC), the fourth leading cause of cancer death in the 

United States[1], effective early detection and screening are not currently available and 

tumors are typically diagnosed at a late stage, frequently after metastasis. PDAC is 

generally considered to be largely incurable by available treatment modalities, with a 5-

year survival rate of less than 4 percent. Existing biomarkers for this disease are 

inadequate.[2] CA19-9 has been tested for its utility as an early detection marker in 

PDAC,[2-5] however, the sensitivity and specificity of this biomarker are not high, and 

serum levels are significantly increased in inflammatory diseases of the pancreas and 

biliary tract. Therefore, CA19-9 is not useful for early diagnosis, mass screening, 

distinguishing between PDAC and chronic pancreatitis, or the targeting of therapeutics. 

Thus, there is a great need for new biomarkers for PDAC. In the absence of good 

biomarkers, 80% to 90% of PDAC cases are diagnosed too late in the disease process for 
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surgical resection to be an effective option.  Even among the 10% to 20% of PDAC cases 

where surgical resection is an option, most patients ultimately die of recurrent or 

metastatic disease.[6] Identification of novel biomarkers for pancreatic adenocarcinoma 

may have utility for the detection of this malignancy. 

 A humoral response to cancer in humans has been well demonstrated by 

identification of autoantibodies to a number of different intracellular and surface antigens 

in patients with various tumor types[7-13].  Tumor-specific humoral responses directed 

against oncoproteins[14, 15], mutated proteins such as p53[16, 17] or other aberrantly 

expressed proteins have all been described.  While it is currently unknown whether the 

occurrence of such antibodies is beneficial to the patient, knowledge of potential tumor 

antigens that can evoke tumor-specific immune responses may have utility in cancer 

diagnosis, in establishing prognosis and in targeted immunotherapy against the disease.  

In PDAC, autoimmunity has been shown against a number of cellular proteins (or protein 

isoforms), including MUC1,[18, 19] p53,[17] Rad51,[20] DEAD-box protein 48,[21] two 

distinct isoforms of calreticulin[22] and one isoform of vimentin.[23] However, in most 

cases, autoantibodies to specific proteins occur in less than 50% of patient’s sera. 

Therefore, they may not be effective individually for the early detection of PDAC, but 

rather may have utility as part of a panel.[24] 

 The strategy of using liquid-based multi-dimensional procedures to separate 

proteins allows distinct protein containing fractions to be arrayed and interrogated using 

various types of probes. We have utilized methodology that first employs separation of 

cell and/or tissue lysates by chromatofocusing, followed by liquid phase separation by 

nonporous silica reversed phase HPLC (according to hydrophobicity). Thus, a large 
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number of proteins can be resolved using a liquid-based system. Importantly, liquid-

based protein separations are well suited for fractionation of lysates into individual 

protein fractions, or for purification of individual proteins. Additionally, the separated 

proteins are maintained in solution, thus facilitating intact protein identification by mass 

spectrometry and the spotting of individual fractions on protein microarrays with a 

robotic arrayer. Protein microarrays have been utilized to assess the binding 

characteristics of multiple samples (probes) simultaneously.[25, 26]  

In particular, protein microarrays consisting of arrayed proteins derived from cell 

line or tumor lysates can be utilized to identify those that have elicited a humoral 

response.[26] In this study proteins from a pancreatic adenocarcinoma cell line 

(MIAPACA) were resolved by two-dimensional liquid-based separations, and were then 

arrayed on nitrocellulose slides. The slides were probed individually with sera from 15 

patients diagnosed with pancreatic cancer and 15 normal subjects. The resulting data 

were analyzed using a rank-based non-parametric test and a z-score to determine humoral 

response signatures of pancreatic cancer. The PAM (Prediction Analysis for Microarrays) 

classification algorithm [27] was used to explore the classificatory power of the proteins 

found to be differential between control and cancer sera. The generalization error of our 

classification analysis was estimated using leave-one-out cross-validation. From this it 

was found that if generalized to a new population the classification analysis should 

predict the serum diagnosis with 86.7% accuracy (4 misclassified samples). Among the 4 

misclassified samples, 3 were false positives and only 1 was a false negative resulting in 

an expected sensitivity of 93.3% and an expected specificity of 80%.  Furthermore, 

recombinant proteins were used to conduct a validation study on some of the proteins 
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identified and with a separate set of serum samples. The proteins highlighted in this study 

may have utility as candidate markers of pancreatic cancer. 

Protein microarrays for humoral response present analysis issues not present in 

other microarray platforms. In particular, typically only a subset of patients with a 

particular tumor type develops a humoral response to a particular antigen, thus resulting 

in a great amount of variability in the multiple cancer samples analyzed within an 

experiment. A simple two-sample t-test assesses differences between the average 

response of the normal and diseased states. However, this will only detect differences 

resulting from an immune response in a majority of diseased state samples and almost no 

response in control samples or vice versa. Thus, we used a rank-based test to compare the 

response between normal and diseased sera. Rank-based tests look for differences in the 

shape of the distributions which will help identify proteins that are changed in only a few 

samples. Additionally, in microarray studies the utility of background subtraction has 

been questioned.[28] In the following, differences in results when using foreground 

measures alone compared to using local background subtracted measures are also 

discussed. 

 

6.2. Experimental Section 

Sample preparation 

Sera- 

Fifteen serum samples were obtained from patients with a confirmed diagnosis of 

pancreatic adenocarcinoma who were seen in the Multidisciplinary Pancreatic Tumor 

Clinic at the University of Michigan Comprehensive Cancer Center.  Sera from the 
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pancreatic cancer patients were randomly selected from a clinic population that sees, on 

average, at the time of initial diagnosis, 15% of pancreatic adenocarcinoma patients 

presenting with early stage (i.e., stage I/II) disease and 85% presenting with advanced 

stage (i.e., stage III/IV). All sera samples selected for this study were stages III/IV. 

Inclusion criteria for the study included patients with a confirmed diagnosis of pancreatic 

cancer, the ability to provide written, informed consent, and the ability to provide 40 ml 

of blood. Exclusion criteria included inability to provide informed consent, patients’ 

actively undergoing chemotherapy or radiation therapy for pancreatic cancer, and patients 

with other malignancies diagnosed or treated within the last 5 years. The mean age of the 

tumor group was 65.4 years (range 54-74 years). The sera from the normal subject group 

was age and sex-matched to the tumor group. All sera were processed using identical 

procedures. The samples were permitted to sit at room temperature for a minimum of 30 

minutes (and a maximum of 60 minutes) to allow the clot to form in the red top tubes, 

and then centrifuged at 1,300 x g at 4oC for 20 minutes. The serum was removed, 

transferred to a polypropylene, capped tube in 1 ml aliquots, and frozen. The frozen 

samples were stored at -70oC until assayed. All serum samples were labeled with a 

unique identifier to protect the confidentiality of the patient. None of the samples were 

thawed more than twice before analysis. 

Cell culture and lysis + tissue lysis- 

The cells used in this work were from the pancreatic cancer cell line, MIAPACA. The 

cells were cultured at 37oC in a 5% CO2-humidified incubator in DMEM growth medium 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin 

(Invitrogen, Carlsbad, CA). When the cells reached ~90% confluence, they were 
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harvested with a cell scraper and lysed in lysis buffer containing 7 M urea, 2 M thiourea, 

100 mM DTT, 2% n-octyl-D-glucopyranoside (OG), 10% glycerol, 10 mM sodium 

orthovanadate, 10 mM sodium fluoride (all from Sigma, St. Louis, MO), 0.5% Biolyte 

ampholyte (Bio-Rad, Hercules, CA), and protease inhibitor cocktail (Roche Diagnostics, 

GmBH, Mannheim, Germany). The lysed cells were  centrifuged at 35,000 rpm for 1 hr 

and were then buffer exchanged into start buffer (6 M urea, 25 mM Bis-Tris, and 0.2% 

OG) using a PD-10 G-25 column (Amersham Biosciences, Piscataway, NJ) and stored at 

-80oC until further use. Tissue lysis followed the same protocol as the cell lysis. However 

the tissue was first cut into many small pieces using a razor blade and it was vortexed 

vigorously using a bead beater. The beads and resulting tissue mixture were centrifuged 

and supernatant containing tissue proteins and cellular debris was removed and 

transferred into another centrifuge tube which was further centrifuged at 35,000 rpm for 

1hr at 4oC. The resulting supernatant was buffer exchanged into start buffer and stored 

for further analysis. 

Chromatofocusing (CF)- 

Prior to chromatofocusing the extracted protein content from the cell line or tissue sample 

were assayed using a Bradford protein assay kit, using bovine serum albumin (Bio-Rad) 

as the standard protein. Chromatofocusing was performed using a Beckman System Gold 

model 127 pump and 166 UV detector module (Beckman Coulter, Fullerton, CA). A start 

and elution buffer combination was used to separate lysate proteins according to their pI 

by generating a linear pH gradient. The start buffer (SB) was composed of 6 M urea, 25 

mM Bis-Tris and 0.2% OG (pH 9.0). The elution buffer (EB) contained 6 M urea, 0.2% 

OG, and 10% combination of Polybuffer 74 and 96 (pH 3.9; Amersham Biosciences). 

 180



Saturated iminodiacetic acid (Sigma) was used to adjust the pH of both buffers. A weak 

anion exchange HPCF-1D prep column (250 mm L x  4.6 mm ID, Eprogen, Darien, IL) 

was initially equilibrated with start buffer (at 1 mL/min) until a stable baseline was 

observed. The sample was injected with multiple injections at a low flow rate of 0.5 

mL/min to ensure maximum interaction of protein with ion exchange resin. Once a stable 

baseline was achieved, the solvent flow was increased to 1 mL/min and the mobile phase 

was switched to EB. Fractions were collected at 0.2 or 0.3 pH unit intervals. The CF 

profile was monitored at 280 nm wavelength. The pH was monitored with a post detector 

online pH-flow cell (Lazar Research Laboratories, Los Angeles, CA). After the CF 

gradient run was completed, the column was flushed with a 1M NaCl solution, followed 

by deionized water. Finally, the column was flushed with isopropanol and stored in the 

same until further use. The collected fractions were stored at -80oC until further use. In 

the case of the tissue proteins the separation pH range was 7.2-4.0 instead of 9.0-4.0. 

Non-porous reversed-phase high performance liquid chromatography (NPS-RP-

HPLC)- 

Each fraction from the first dimension chromatofocusing was further separated in the 

second dimension by NPS-RP-HPLC, according to protein hydrophobicity. An ODSIII-E 

(8 x 33mm) column (Eprogen, Inc., Darien, IL) packed with 1.5 µm non-porous silica 

was used to achieve high separation efficiency. A 0.1% TFA with water (A) and 0.08% 

TFA with acetonitrile (B) gradient was used in the separation. The following gradient 

was applied at a flow rate of 1 mL/min and fractions were collected by peak using an 

automated fraction collector (model SC 100; Beckman-Coulter) in 96-well plates: 5-15% 

B in 1 min, 15-25% B in 2 min, 25-31% B in 3 min, 31-41% B in 10 min, 41-47% B in 3 
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min, 47-67% B in 4 min, 67-100% B in 1 min, followed by maintaining the system at 

100% B for 3 min. All separations were performed at 60oC and were monitored at 214 

nm. All 2D fractions were stored at -80oC until further use. 

Microarray printing- 

Approximately 30% of the fractionated proteins were transferred to 96-well printing 

plates (Bio-Rad) and were completely dried using a speedvac concentrator at 60oC. The 

fractions were then resuspended in printing buffer (62.5 mM Tris-HCl (pH6.8), 1% w/v 

sodium dodecyl sulfate (SDS), 5% w/v dithiothreitol (DTT) and 1% glycerol in 1X PBS) 

and were left to shake overnight at 4oC. Slides were printed by transferring each fraction 

from the plate onto nitrocellulose slides using a non-contact piezoelectric printer 

(Nanoplotter 2, GeSiM). Each spot resulted from deposition of 5 spotting events of 500 

pL each, such that a total volume of 2.5 nL of each fraction was spotted. Each spot was 

found to be ~450 µm in diameter, with the distance between spots maintained at 600 µm. 

Printed slides were left on the printer deck overnight to dry and were then stored in a 

desiccator at 4oC until further use. 

Hybridization of slides- 

The printed arrays were rehydrated in 1X PBS with 0.1% Tween-20 (PBS-T), and were 

then blocked overnight in a solution of 1% BSA in PBS-T.  Each serum sample was 

diluted 1:400 in probe buffer (5 mM magnesium chloride, 0.5 mM DTT, 0.05% Triton X-

100, 5% glycerol and 1% BSA in 1X PBS) to make a total solution of 4 mL and kept on 

ice. The slides were hybridized in diluted serum for 2 hrs (1 serum sample per slide). 

Hybridization was done at 4oC in heat-sealable pouches with agitation, using a mini-

rotator. The slides were then washed five times with probe buffer (5 min each), and were 
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then hybridized with 4 mL goat anti-human IgG conjugated with Alexafluor647 

(Invitrogen, Carlsbad, CA) (at 1 µg/mL in probe buffer), for 1 hr at 4oC. After secondary 

incubation all slides were washed in probe buffer five times, for 5 min each, and were 

then dried by centrifugation for 10 min. All processed slides were immediately scanned 

using an Axon 4000B microarray scanner (Axon Instruments Inc., Foster City, CA). 

Data acquisition and analysis- 

GenePix 6.0 software was used to grid all spots, to determine the median Cy5 

single-channel intensities and median local background intensities for each spot. A spot 

was considered positive if the foreground measure was at least 2X the background 

intensity measure. Both the foreground data alone as well as the background-subtracted 

data were considered for analysis. To account for variation between arrays, each array 

was median-centered and scaled by its interquartile range. After standardization the 

replicate arrays were averaged. To assess differences between humoral response in cancer 

and normal sera, the non-parametric Wilcoxon rank-sum test was employed and results 

patterns were visually assessed to determine if background subtraction was beneficial for 

this data analysis. Additionally z-score statistics were used on the foreground data to look 

for subtle differences between the two sera groups. Finally, a classifier was built from the 

differential proteins found by these methods. 

Non-parametric method- A two-sample Wilcoxon rank sum test between cancer 

and benign sera was run for each spot on the array. Each pH/fraction combination was 

tested and the p-values were visualized in a grid plot to highlight regions of spots that 

exhibited differential response between normal and cancer sera. A p-value threshold of 

0.05 was used to determine differential proteins for further study. 
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Z-score method- The standardized data was log transformed after adding a small 

value to each point to eliminate negative values. Z-score measures were constructed for 

each spot by subtracting the mean and dividing by the standard deviation of only the 

control serum samples for that spot. Resulting z-scores were then on the scale of standard 

deviations from the mean of the control samples. Proteins that had Z-scores of >2 (or < -2 

) in 20% of the cancer serum samples were determined to be differential and considered 

for further study. 

Prediction Analysis for Microarrays (PAM) classification algorithm and 

Leave One Out Cross Validation (LOOCV)- The PAM classification algorithm [27], as 

implemented in R, was used to explore the classificatory power of the proteins found to 

be differential between control and cancer sera using either the Wilcoxon rank-sum test 

or the z-score method. From PAM the smallest subset of proteins that gave the lowest 

error rate were chosen to be used as a classifier. An ROC curve was drawn to illustrate 

the selection of this 'best' subset of proteins and the area under the curve (AUC) was 

estimated.  

The generalizability of the PAM analysis was estimated using leave-one-out 

cross-validation (LOOCV) in which each sample was left out of the data set in turn and 

classified using the remaining samples. Specifically, using only the 29 remaining 

samples, the same analysis scheme as done above for the full set of 30 samples was 

repeated, including reselection of differential proteins using Wilcoxon tests and z-scores 

from the 29 samples1 and classifier selection using PAM. The resulting classifier was 

then used to predict the diagnosis of the excluded sample. Each of the 30 samples were 

predicted in this way and error rates were estimated. ROC curves were drawn to illustrate 
                                                 
1 The median number of differential proteins across the 30 leave-one-out datasets was 96 (range=[65,109]). 
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the selection of the 'best' protein subset for classification in each of the 30 leave-one-out 

cycles and the AUC was estimated. 

Heatmaps- Heatmaps were drawn using Cluster and TreeView software.[29] 

Spots were median-centered across samples and average linkage clustering was used.  

Protein identification – nanoLC-ESI-MS/MS- 

Individual protein fractions were first dried down to ~10 µL, and then mixed with 

40 µL 100 mM ammonium bicarbonate, 10 µL 20mM DTT and 0.5 µL of sequence grade 

modified trypsin (Promega). The mixture was allowed to incubate at 37oC overnight with 

agitation after which the digest was stopped by addition of 1 µL TFA (Baker and Baker). 

The digested sample was loaded on a paradigm desalting column (C18, 5mm x 300 um, 

Michrom), and was washed at a flow of 50 µL/min using HPLC grade water containing 

0.3% formic acid. The desalted peptides were directly eluted onto an analytical column 

(100 µm x 15cm, C18, Michrom) using a flow rate of 300 nL/min and the following 

gradient profile, where solvent A was water/0.3% formic acid and solvent B was 

acetonitrile/0.3% formic acid. The gradient was started at 3% B, ramped to 35% B in 25 

min, 60% B in 15 min, 90% in 1 min, maintained at 90% B for 1 min and finally ramped 

back down to 3% in another 1 min. The eluting peptides were analyzed on a linear ion-

trap based mass spectrometer (LTQ, Thermo, San Jose, CA) with an NANO-ESI 

platform (Michrom Biosciences). The capillary temperature was set at 200oC, the spray 

voltage was 2.6 kV, and the capillary voltage was 20 V. The normalized collision energy 

was set at 35% for MS/MS. The top 5 peaks were selected for collision induced 

dissociation (CID). MS/MS spectra were interrogated using the SEQUEST algorithm in 

Bioworks software (Thermo) against the SwissProt human protein database. Two missed 
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cleavages were allowed during the database search. The search threshold was set to 1000 

and tolerances were set at 1.4 and 0.00 for peptide and fragment ion tolerances 

respectively. Protein identification was considered positive when a peptide showed an 

Xcorr of greater than or equal to 3.0, 2.5 and 1.9 for triply, doubly and singly charged ions 

respectively. Only proteins with greater than 10% coverage were considered in the 

analysis and a minimum of 3 good-scoring peptides were required for positive 

identification. In the event that more than one protein was found in a fraction, the data 

was filtered. If the spot of interest was unique and did not lie between adjacent reactive 

spots then only the highest scoring protein that was not found in adjacent fractions in the 

separation profile were considered true hits, since the adjacent fractions did not elicit a 

humoral response. On the other hand if the spot of interest was part of a group of spots 

eliciting a positive response within a separation profile, the common protein identified in 

all these spots was considered a true hit. 

 

6.3. Results and Discussion 

Experimental Scheme 

We spotted native proteins derived from the MIAPACA pancreatic cancer cell 

line or pancreatic cancer tissue on protein microarrays to characterize a pancreatic 

cancer-specific humoral response. Such a study has potential utility in identification of 

novel potential candidate markers of pancreatic cancer. Figure 6.1 illustrates 

schematically the methodology employed within this study. Proteins from the MIAPACA 

pancreatic adenocarcinoma cell line or pancreatic cancer tissue were first solubilized, and 

then separated using two-dimensional liquid-based separation that employs 
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chromatofocusing (separation according to protein pI) in the first dimension and non-

porous reversed-phase HPLC (separation according to protein hydrophobicity) in the 

second dimension. The MIAPACA cell line was used because it was readily available. 

Pancreatic cancer tissue was run in order to see if results with the MIAPACA cell line 

would correlate with the clinically relevant tissue sample. The separated proteins were 

then arrayed on nitrocellulose slides using non-contact piezoelectric printing. Following 

printing, slides were hybridized with serum from patients diagnosed with pancreatic 

cancer or normal subjects. Spots on the slides were statistically evaluated using non-

parametric statistical methods to identify proteins that elicit a pancreatic cancer-specific 

humoral response. It was found that the omission of background subtraction during data 

acquisition is critical in the identification of a differential humoral response. Furthermore 

it was seen that tissue samples did not provide results as clear as the MIAPACA cell 

lines. Reasons for this will be discussed shortly. Proteins that elicited a statistically 

significant humoral response difference were subjected to classification analysis to obtain 

a panel of classifiers which were subsequently identified by nano-LC-linear ion trap mass 

spectrometry. For select identified proteins, a validation study using a separate set of 

serum samples was attempted where the recombinant protein was arrayed on 

nitrocellulose slides and probed with serum from a separate cohort of normal and 

pancreatic cancer patients. 

2-dimensional liquid separation 

MIAPACA proteins were separated by CF from pH 9.2-3.9, and each CF fraction 

was subsequently further separated by NPS-RP-HPLC. In the case of the tissue samples 

separation in the first dimension was restricted to 7.2-4.0 only. Figure 6.2 represents the 
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2D UV chromatogram from these separations. Along the horizontal axis are all fractions 

from the first dimension from lower pI to higher pI. The vertical axis represents retention 

times from the 2nd dimension separations and going up the axis corresponds to increased 

hydrophobicity. A typical 2D separation across the pH range above results in about 1300 

total fractions in the MIAPACA cell line. A majority of these fractions are relatively pure 

since manual collection by peak is performed. However there are instances when more 

than one protein is present in the peak particularly for more highly abundant proteins that 

elute over a longer time. Furthermore it can be seen that the signal intensities of fractions 

in the MIAPACA separation is considerably higher compared to the tissue samples. This 

is because the cell line could be easily obtained but tissue samples were more limited in 

nature and therefore a smaller amount of total protein was available for the 2D 

separation.  

Microarray printing and processing 

The separated proteins were printed on nitrocellulose slides and probed with 

serum from normal individuals and patients diagnosed with pancreatic cancer. The 

immune response in the sera was visualized using an antihuman-IgG –Alexaflor647 

conjugate. Figure 6.3 illustrates portions of the arrays from the MIAPACA cell line 

printed on nitrocellulose slides to indicate the typical appearance of slides and spot 

quality, with specific examples of differential humoral response. Tandem mass spectra 

are also shown to indicate the protein identity present in the spot of interest. It can be 

seen that spot intensities appear homogenous throughout the spot. However, it was found 

that some fractions from the separated MIAPACA lysates were not printed on all the 

nitrocellulose pads due to incorrect calibration of the printing surface and printing errors 
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that occurred during the print run for the lower pH fractions. Thus, all subsequent data 

representations indicate these missed spots which were not considered further in the 

statistical analysis. 

Statistical analysis of immune response in MIAPACA cell lines  

While looking at the humoral response from one normal and one cancer serum 

sample may indicate a difference as shown in Figure 6.3, it is critical to assess this 

response in an adequately sized set of normal and cancer sera to see if the difference is 

indeed statistically significant. Two analysis approaches were used to analyze the 

humoral response differences in 15 control and 15 pancreatic cancer sera. The first 

approach utilized a non-parametric Wilcoxon rank sum test which was repeated using 

both the locally-derived background-subtracted median spot intensities as well as 

foreground median intensities without background-subtraction. Results showed that while 

background subtraction reduced batch effects between slides, a large amount of signal is 

washed away by background correction. Figures 6.4a and 6.4b show the grid of p-values 

from the per spot Wilcoxon rank-sum tests between cancer and normal sera. The grid is 

arranged according to the two dimensional fractionation of the whole cell lysate and 

colored according to the level of significance and the direction of the difference between 

cancer and normal sera. Figure 6.4a is the p-value grid from the foreground only analysis 

and the background subtracted p-value grid is shown in Figure 6.4b. Given the method of 

fractionation it was expected that in some cases neighboring fractions containing higher 

abundant reactive proteins would be correlated, thus producing hot (cold) regions. These 

hot-spots (cold-spots), seen in the foreground-only p-value grid, are missing in the 
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background-subtracted p-value grid. Thus, it was found that the uncorrected measures 

were preferable.  

In the pancreatic cancer data set, uniform increases or decreases across all cancer 

samples were not expected. We sought to identify those proteins that elicited a pancreatic 

cancer-specific humoral response in as few as 20% of the samples or greater. For an 

alternate view of the changes in the immune response between healthy and cancer 

diagnosed patients, Z-score plots of each studied pH range were also generated in which 

z-scores were calculated, per spot, using the mean and standard deviation of only the 

normal samples. Resulting z-scores were thus on a scale of standard deviations from the 

mean of the normal samples. Thus, if a fraction had a high z-score it had well above the 

average normal reactivity at that spot. Likewise, a low z-score indicated that the fraction 

had well below the normal reactivity. When plotted in grids of spot by sample, patterns 

could be easily discerned in cancer samples. An example of such a z-score grid is 

illustrated in Fig 6.4c, where the multiple orange/red fractions across the cancer samples 

but not control samples is indicative of a protein of interest. Increases or decreases that 

persist across at least 20% of the cancer samples were pursued for further study.  

Comparing statistical analysis results from cell line to tissue samples 

Figure 6.4d illustrates the wilcoxon rank sum data for humoral response differences 

between the normal and pancreatic cancer sera across all printed fractions from the 

pancreatic cancer tissue samples using the foreground only measures for spot intensities. 

When comparing this grid diagram to that obtained for the humoral response differences 

in the MIAPACA cell line fractions (Fig 6.4a) it can be seen that almost no difference of 

significance is observed with tissue sample data.  
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This lack of successful results can be attributed to multiple factors. The tissue samples 

that were analyzed may not have been homogeneous. i.e. all the cells in the tissue sample 

may not necessarily been cancerous. It is therefore very likely that from the total proteins 

extracted and separated, only a small percentage were actual cancerous tissue proteins. 

These proteins could have therefore been below the detection limits of microarray 

experiments. Such a problem can be alleviated by utilizing a more sophisticated approach 

toward cancer tissue collection. Laser Capture Micro-dissection (LCM) is capable of 

extracting very thin layers of cells from tissue samples. If such a technique is utilized to 

carefully select only cancer cells from available tissue samples a more concentrated batch 

of cancer-only cells could be obtained to facilitated a more focused humoral response 

analysis. However such a study would require pooling of multiple samples of cancer cells 

from different tissue samples to reach the amount of sample that is needed to perform a 

complete humoral response experiment as outlined in this chapter. Because results with 

pancreatic cancer tissue were not successful, all subsequent cross validation and 

classification algorithms were performed on data from the MIAPACA cell line. 

Classification and Cross Validation for MIAPACA fractions 

The PAM (Prediction Analysis for Microarrays) classification algorithm [27] was 

used to explore the classificatory power of the proteins from the MIAPACA cell line 

found to be differential between control and cancer sera. Differential proteins were 

selected as having (1) a Wilcoxon p-value of 0.05 or less or (2) having over 20% of the 

cancer samples with a z-score >2 (or <-2). The PAM algorithm selects the most 

predictive subset of proteins for classification. The best classifier, resulting in the 

smallest error using the fewest proteins, used 9 proteins, chosen from 98 differential 
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proteins, and only misclassified 4 samples. The ROC curve shown in figure 6.5a shows 

the true positive and false positive classification rates associated with this fit. The red 

points indicate the 30 threshold values considered by PAM, corresponding to 30 subsets 

of the proteins. The blue circle highlights the chosen threshold which uses only 9 proteins 

for classification. The area under the curve (AUC) for this ROC curve was estimated to 

be 0.85. 

In an effort to estimate the generalizability of the classification analysis, leave-

one-out cross-validation (LOOCV) was used. For the 30 leave-one-out cycles, the median 

size of the of protein subset chosen for the classifier was 12 proteins (range=[4,83]) 

which resulted in a median error rate of 4 (range=[2,6]) and an average AUC of 0.82 

(range=[0.63,0.96]) for classifier selection. This is comparable to what we found when 

using all 30 samples. 

From predictions of the left out sample, it was found that if generalized to a new 

population our classification analysis should predict the serum diagnosis with 86.7% 

accuracy (4 misclassified samples). Among these 4 misclassified samples, 3 were false 

positives and only 1 was a false negative. This gives an expected sensitivity of 93.3% and 

an expected specificity of 80%.  

We examined how frequently each protein was selected as an important predictor 

across the 30 LOOCV classifiers built. Two proteins (PH 6.6-6.4, fraction 44 and PH 8.1-

7.8, fraction 56) were selected in all 30 LOOCV classifiers. Four other proteins were 

selected 22 times (PH 6.6-6.4, fraction 38; PH 6.6-6.4, fraction 43; PH 6.6-6.4, fraction 

46; PH 7.8-7.5, fraction 42). It is interesting to note that the 9 protein spots selected 
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initially  are among the most common proteins used in the LOOCV classifiers; see table 

6.1. Figure 6.5b illustrates the response of all serum groups to these nine proteins. 

Figure 6.6 shows the scaled humoral response distribution across all serum 

samples considered to be differential on a scale of green to red (lowest response to 

highest response), based upon data from the Wilcoxon tests and z-score plots combined. 

The 9 proteins spots that comprised the best classifier are indicated by arrows. 

Identification and implications of statistically significant proteins identified from 

MIAPACA cell line 

Studying the humoral response to pancreatic cancer has utility to identify 

potential tumor antigens. These tumor antigens appear as reactive spots on the protein 

microarray since they bind autoantibodies present in the serum against which the array 

was hybridized.  Since these spots have been identified as specific proteins, important 

pathway changes as well as key players involved in these changes might be highlighted. 

Microarrays printed with fractionated lysates from the MIAPACA cell lines were 

probed with 15 normal sera and 15 sera from patients diagnosed with pancreatic cancer. 

Statistical treatment using the Wilcoxon rank-sum statistics, z-score plots and 

classification analysis of the humoral response to pancreatic cancer cells yielded a panel 

of 9 spots that showed best specificity and sensitivity in their ability to identify normal 

and cancer sera correctly. The protein IDs of these are detailed in Table 6.1. In addition, 

the percentage of cancer samples in which the panel was able distinguish from normal 

sera is also indicated. 

Higher Reactivity in Normal Sera 
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We found that the humoral response to proteins that are known to be involved in 

stress was lower in cancer patient sera compared to normal sera. Heat Shock protein beta 

1 is a 27 kDa heat shock protein that is expressed in response to environmental stresses or 

estrogen stimulation. The protein colocalizes with mitotic spindles in dividing cells and is 

also known to migrate to the nucleus during heat shock. It is also known to be a 

chaperone protein that inhibits apoptosis and prevents aggregation of actin intermediate 

filaments.[30] In pancreatic cancer, often characterized by a large amount of 

inflammation, we found that serum humoral response to HSPB1 was significantly lower 

than was found in normal sera. While the decreased HSPB1-specific humoral response in 

pancreatic cancer has not been reported previously, we hypothesize that HSPB1 

autoantibodies are detectable in normal serum due to the presence of some naturally 

occurring process that is disrupted in pancreatic cancer. 

Two variants of histone H2, H2A type 1-B and H2A.a, both showed a higher 

humoral response in normal sera than was apparent in pancreatic cancer sera. A variant of 

histone has previously been implicated in DNA break repair mechanisms.[31] Such 

breaks are often caused by external stimuli such as radiation or internal events such as 

oxidative damage that cause breaks in double-strand DNA. Lack of a humoral response to 

such proteins in pancreatic cancer suggests that pancreatic cancer patients may be unable 

to form autoantibodies to proteins that are potentially involved in stress relief 

mechanisms.  

Finally, a key protein, pyruvate kinase, involved in glycolysis was found to elicit 

higher humoral responses in normal sera as compared to cancer sera. Expression of 

glycolytic enzymes has been shown to be increased in a variety of cancers, including 

 194



pancreatic cancer tissues.[32] However, a humoral response to this enzyme has not been 

previously reported. Regulator of chromatin condensation and ubiquitin were also more 

reactive with normal sera compared to cancer sera. Both proteins have been implicated in 

stress response although the exact mechanism of action is still not understood. 

Higher Reactivity in Cancer Sera 

A panel of 3 proteins was found to discriminate pancreatic cancer sera with high 

sensitivity and specificity from normal sera by generating a higher response in cancer 

samples. Our efforts identified two of these 3 proteins. Phosphoglycerate kinase 1 is a 

glycolytic enzyme but is also known to be active as a primer recognition protein. PGK1 is 

known to show antigen activity in other types of cancers[33]. Histone H4 is a nuclear 

protein that maintains DNA in its proper configuration. As mentioned earlier, certain 

variants of histones have been implicated in the DNA repair process. Presence of 

antibodies against histone H4 in cancer sera but not in normal sera may serve as an 

important indicator of improper DNA regulatory mechanisms in cancer patients. 

While none of the proteins discussed were individually able to discriminate 

clearly between the two clinical groups, used together, as a 9 protein panel, they showed 

high specificity, sensitivity and selectivity, and may have potential diagnostic utility in 

the identification of patients with pancreatic cancer. Further validation studies using 

adequately sized test and trial sets of patient sera with pancreatic cancer would be 

required for this determination.  

Validation using recombinant proteins 

For some of the proteins identified as eliciting differential humoral response in 

pancreatic cancer, we were able to obtain recombinant proteins for further validation 
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studies using a separate set of 18 normal and 18 cancer sera. Four proteins were used, 

Phosphoglycerate Kinase (PGK-1), Histone H4, Heat Shock Protein (HSP27) and Pterin-

4-alpha-carbinolamine dehydratase. Recombinant proteins were arrayed on nitrocellulose 

slides and the slides were then probed with samples of 18 normal and 18 cancer sera. In 

the case of PGK-1 and Histone H4 a differential response similar to that observed in the 

test set was seen where cancer sera showed an overall higher humoral response compared 

to the normal sera (Fig. 6.7). On the other hand the Pterin carbinolamine dehydratase and 

HSP27 did not show a differential humoral response similar to the test set. One possible 

reason for this lack of differential response could be the nature of the recombinant 

proteins that were arrayed. It is quite possible that the recombinant protein synthesized in 

bacteria did not posses key modifications responsible for the antigenicity of the 

endogenous proteins. 

The validation studies showed that PGK-1 and Histone H4 do in fact differentiate 

normal and cancer sera. However, because the response is not “absent in normal and 

present in cancer” and there is some overlap with each individual marker, these proteins 

are not suitable as single biomarkers for diagnostic purposes. However their ability to 

distinguish normal vs. cancer sera provides important information about possible 

mechanisms of pancreatic cancer progression and can potentially be used to monitor 

therapeutic response to the disease.  

 

6.4. Conclusion 

A humoral response to tumor proteins may have utility for the detection of the 

pancreatic cancer. We have used 2-D liquid separation and protein microarrays to study 
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the humoral response in pancreatic cancer. Several different statistical treatments of 

results were used to highlight proteins that elicited a differential humoral response pattern 

between the different clinical groups. It was found that subtraction of background signal 

from microarray data often eliminated key signals that were able to distinguish between 

clinical groups, thus foreground measures without background subtraction were used 

instead for all statistical analyses. Rank-based statistics (Wilcoxon rank-sum tests) 

highlighted differences between the two clinical groups. Significant variability existed 

between the measurements obtained with the cancer sera, and z-score statistics were 

utilized as a complementary statistical tool to further analyze the differences between the 

cancer and control samples.  

The PAM classification algorithm and leave-one-out cross-validation (LOOCV) 

highlighted a panel of 9 spots that was able to classify groups with high sensitivity and 

specificity. Furthermore, a separate validation study using available human recombinant 

proteins was able to substantiate results obtained with LOOCV for phosphoglycerate 

kinase-1 and histone H4. It is possible that all recombinant proteins used did not provide 

optimal results because they were not in their active form i.e. the correct isoform or post 

translational modification was absent. A study comparing the printed protein in the initial 

study vs. the recombinant protein to verify this hypothesis could not be performed 

because of insufficient sample from the initial study. Microarray results showed a 

significantly higher humoral response to a range of proteins in healthy subject sera 

compared to cancer sera. These proteins are primarily known to be involved in stress 

response and glycolysis. It was hypothesized that these differences were not due to 

sample variability (since data was globally normalized to eliminate systemic variations in 
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slide processing) but rather due to distinct mechanisms that renders these proteins less 

detectable in pancreatic cancer sera. In addition, proteins that have been previously 

implicated in cancer progression as well as other novel proteins such as a variety of 

ribosomal proteins showed higher humoral response in sera from cancer patients 

compared to healthy subjects.  

However, further work using a larger panel of antibody and recombinant protein 

arrays containing active forms of proteins highlighted in this study together with a much 

larger sample set of normal and pancreatic cancer sera are necessary in order to validate 

these proteins as candidate markers of pancreatic cancer. Such work would also require 

one to assess reactivity to these proteins of sera from other types of cancers in order to 

ensure that the panel is pancreatic cancer specific. 
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Table 6.1: Protein identifications of spots that elicited a differential response from normal 
and cancer sera and were significant according to LOOCV results. All identifications 
were performed using a nanospray linear ion trap instrument (Thermo, LTQ) and 
SEQUEST browser. Only proteins that showed at least two high scoring peptides were 
considered true hits. If the protein was less than 15 kDA one high scoring peptide was 
considered acceptable. 
 

% 
times 

selecte
d 

pH 
fraction 

HPLC 
fraction 

Protein 
Acc # Protein ID 

upregulated/
down 

regulated 
Sequest 

total Score 
% 

coverage 

        Peptide Identified Charge Xcorr   

100 6.6-6.4 44 P14618  
Pyruvate kinase isozymes 
M1/M2 Down 1978 44.82 

    IENHEGVR 2 2.656  
    GSGTAEVELKK 2 3.285  
    PGSGFTNTMR 2 3.539  
    MQHLIAR 2 2.561  
    LNFSHGTHEYHAETIK 2 5.02  
    VFLAQK 1 2.053  
    VNFAMNVGK 2 2.846  
    APIIAVTR 2 2.852  
    ITLDNAYMEK 2 3.36  
    LDIDSPPITAR 2 4.081  
    GDLGIEIPAEK 2 3.867  
    KGVNLPGAAVDLPAVSEK 2 4.454  
    RFDEILEASDGIMVAR 3 5.095  
    GADFLVTEVENGGSLGSK 2 4.037  
    IYVDDGLISLQVK 2 5.089  
    EAEAAIYHLQLFEELR 2 5.399  
    FGVEQDVDMVFASFIR 2 5.737  

100 8.1-7.8 56 P00558 Phosphoglycerate kinase 1 Up 359 32.69 
    NNQITNNQR 2 3.235  
    VDFNVPMK 2 2.855  
    IQLINNMLDK 2 3.348  
    VSHVSTGGGASLELLEGK 3 3.681  
    YSLEPVAVELK 2 3.182  
    VLNNMEIGTSLFDEEGAK 2 5.062  
    DVLFLK 1 1.937  
    ITLPVDFVTADK 2 2.7  
    VNEMIIGGGMAFTFLK 2 4.029  
    VLPGVDALSNI 2 2.718  
    ALESPERPFLAILGGAK 3 4.558  

73.3 6.6-6.4 38 Q8NBJ7 Sulfatase-modifying factor 2 Down 320 22 
    FLMGTNSPDSR 2 4.252  
    EATVKPFAIDIFPVTNK 3 3.606  
    SVLWWLPVEK 2 3.456  
    LPTEEEWEFAAR 2 3.245  
    MGNTPDSASDNLGFR 2 4.717  

73.3 6.6-6.4 43 P14618  Same as 6.6-6.4 fr 44 Down   
73.3 6.6-6.4 46 P18124 60S ribosomal protein L7 Down 804 37.5 
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    TTHFVEGGDAGNR 3 4.142  
    ASINMLR 2 2.589  
    NFAELK 1 2.213  
    SVNELIYK 2 3.209  
    KVLQLLR 2 2.687  
    AGNFYVPAEPK 2 3.519  
    IALTDNALIAR 2 4.012  
    LAFVIR 1 1.674  
    IVEPYIAWGYPNLK 2 4.17  
    EANNFLWPFK 2 2.89  

73.3 7.8-7.5 42 Q96A08 Histone H2B type 1-A Up 180 25.98 
    HAVSEGTKAVTKYTSSK 3 4.708  
    EIQTAVRLLLPGELAK 2 2.873  

66.7 7.8-7.5 38 P62937 
Peptidyl-prolyl cis-trans 
isomerase A Down 168 17.68 

    FEDENFILK 2 3.333  
    EGMNIVEAMER 2 3.116  
    VSFELFADK 2 2.898  

63.3 6.4-6.1 6  Insufficient sample for ID Up   
53.3 6.4-6.1 4   Insufficient sample for ID Down     
46.7 9.2-9.1 24 P46783 40S ribosomal protein S10 Up 70 12 

    HPELADK 2 2.621  
    AEAGAGSATEFQFR 2 4.335  

40 5.1-4.9 10  Insufficient sample for ID Up   
40 8.1-7.8 4 P28001 Histone H2A.a Down 200 10.85 

    SGRGK 2 2.751  
    AGLQFPVGR 2 3.126  

36.7 6.4-6.1 26 P04792 Heat-shock protein beta-1 Down 1500 41.46 
    TKDGVVEITGK 2 3.809  
    AQLGGPEAAK 2 3.352  
    QLSSGVSEIR 2 2.665  
    DGVVEITGK 2 3.031  
    PLPPAAIESPAVAAPAYSR 3 5.349  
    RVPFSLLR 2 2.803  
    LATQSNEITIPVTFESR 2 2.754  
    LFDQAFGLPR 2 4.311  

36.7 6.9-6.6 9 Q9UNX3 
60S ribosomal protein L26-like 
1 Up 130 12.41 

    KDDEVQVVR 2 3.139  
    FNPFVTSDR 2 3.049  

36.7 8.7-8.4 49 P62805 Histone H4 Up 130 28.16 
    DAVTYTEHAK 2 2.841  
    DNIQGITKPAIR 2 3.627  
    TLYGFGG 1 2.055  

33.3 6.4-6.1 28 P18754 
Regulator of chromosome 
condensation Down 420 20.67 

    DTSVEGSEMVPGK 2 3.98  
    SPPADAIPK 2 2.828  
    VVQVSAGDSHTAALTDDGR 3 5.181  
    LGLGEGAEEK 2 3.063  
    VPELFANR 2 2.94  
    SMVPVQVQLDVPVVK 2 4.8  
    DNNGVIGLLEPMK 2 3.769  
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33.3 6.4-6.1 32 P61457 
Pterin-4-alpha-carbinolamine 
dehydratase Down 210 13.59 

    LSAEERDQLLPNLR 2 3.566  
    LSAEERDQLLPNLR 3 4.371  

33.3 6.4-6.1 34 P02545 Lamin-A/C Down 760 22.74 
    LLEGEEER 2 3.018  
    ITESEEVVSR 2 3.681  
    SGAQASSTPLSPTR 2 4.6  
    LEAALGEAK 2 3.097  
    SLETENAGLR 2 3.271  
    EGDLIAAQAR 2 3.601  
    LQEKEDLQELNDR 3 4.182  
    AAYEAELGDAR 2 3.925  
    LQTMKEELDFQK 3 3.511  
    EAALSTALSEK 2 3.284  
    TLEGELHDLR 2 3.225  
    LADALQELR 2 4.007  
    IDSLSAQLSQLQK 2 4.206  
    LKDLEALLNSK 2 4.318  
    DLEALLNSK 2 2.892  

30 5.3-5.1 15  Insufficient sample for ID Up   
26.7 5.1-4.9 9 Q9UK76 Androgen-regulated protein 2 Up 130 21.43 

    SSGGREDLESSGLQRR 3 3.735  
    SAGAKSSGGREDLESSGLQR 3 4.369  
    EDLESSGLQR 2 3.076  
    NPPGGKSSLVLG 2 2.971  

26.7 5.3-5.1 20 P46109 Crk-like protein Up 470 27.72 
    HGMFLVR 2 2.54  
    IFDPQNPDENE 2 2.766  
    VSHYIINSLPNR 3 3.872  
    VGMIPVPYVEK 2 2.832  
    IHYLDTTTLIEPAPR 2 4.652  
    TALALEVGDIVK 2 4.454  
    TLYDFPGNDAEDLPFK 2 4.177  

26.7 9.1-8.7 15  Insufficient sample for ID Down   
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Lysis: MIAPACA cell line or pancreatic cancer tissue 

Chromatofocusing 

Non-Porous Reversed-phase HPLC (NPS-RP-HPLC) 

 

 
 
 
 

Figure 6.1: Humoral response experimental overview. Proteins are first extracted from 
cell line and separated in two orthogonal dimensions. Separated fractions are spotted by 
non-contact means on nitrocellulose slides which are then probed with serum from 
normal or cancer sera. Antibody-antigen response in detected using anti-human IgG 
conjugated to a florophore. Following non-parametric analysis proteins of interest are 
identified by tandem mass spectrometry. 
 

Nano-LC-ESI-MS/MS 
for confirming protein 

identification 

Non-contact microarray 

Array processing with normal and 
cancer serum 

Array scanning of humoral 
response 

Statistical analysis of 
response 

Validation 
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Figure 6.2: 2D UV chromatogram of separated (a) MIAPACA cell lysate and (b) 
pancreatic cancer tissue. On the horizontal axis are fractions from chromatofocusing 
starting from the lowest pH going to the highest pH. On the vertical axis is increasing 
retention time or hydrophobicity of the separated protein. 
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Figure 6.3: Selected microarray shots of differential humoral response as well as selected 
tandem mass spectrum for sequence confirmation of  (a) Fibrillarin and (b) Cathepsin D. 
Theoretical location of b ions is indicated by red lines. In most cases these peak 
intensities were not high enough for detection. 
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c)         (d) 

 

 

 

 

 

 

 

 

Figure 6.4: All separated fractions showing result with non-parametric Wilcoxon tests (a) 
without background subtraction and (b) with background subtraction for the MIAPACA 
cell line. Red and Orange blocks mean significantly higher humoral response in cancer 
samples compared to normal (p<0.05 and p<0.1 respectively) and darker and lighter 
shades of Blue represent higher humoral response in normal compared to cancer (p<0.05 
and p<0.1 respectively). Yellow and green blocks mean 0.1<p<0.25. (c) z-score plot for 
proteins separated from pH fraction 5.1-4.9. On the vertical axis are all fraction by 
increasing retention time and on the horizontal axis are each of the serum samples with 
which samples were probed. Red and Yellow blocks represents responses significantly 
higher than the mean of the normal sample (4<Z<25 and 2<Z<4 respectively) while Blue 
and Green blocks represent responses significantly lower than the mean of the normal 
sample (-25<Z<-4 and -4<Z<-2 respectively). (d) All separated fractions from pancreatic 
cancer tissue showing results with non-parametric Wilcoxon tests. Color codes are the 
same as for figure 6.4 a and b. 
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a)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
b) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5: (a) ROC curve of 9 protein panel from PAM analysis showing an area under 
the curve of 0.85. (b) Boxplots of the 9 protein panel classifier built using all 30 samples. 
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Figure 6.6: Heatmap showing median centered responses of all serum samples to selected 
proteins of interest. The scale from green to red represents lower response to higher 
response on a scale of -2 to 2. The arrows in the figure indicate the protein spots that 
formed the panel of 9 potential markers with highest sensitivity and specificity. 
 

 208



a) 

 

Validation study w ith PGK1

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

0 1 2

H
um

or
al

 r
es

po
n

3

s

Normal Cancer

Validation study w ith PGK1

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

0 1 2

H
um

or
al

 r
es

po
ns

Normal Cancer
3

 

b) 

 

Validation study with Histone H4

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

0 1 2

H
um

or
al

 r
es

po
ns

e

Normal Cancer 3

Validation study with Histone H4

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

0 1 2

H
um

or
al

 r
es

po
ns

e

Normal Cancer 3

 

Figure 6.7: Scatterplot illustrating the differential humoral response in recombinant 
human PGK-1 used for validating initial experimental results. 
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Chapter 7 

Enhanced Detection of Autoantibodies on Protein Micorarrays Using a Modified 
Protein Digestion Technique 

 
 
 

7.1. Introduction 
 

Proteome profiling has become a field of increasing interest since protein 

expression profiles may be a more relevant biological readout of cell systems than 

transcriptional profiles.  The use of protein microarrays facilitates high throughput 

screening of such protein expression profiles.[1-3] Multiple antibody or antigen probes 

are located at fixed and unique positions on a microarray chip facilitating interrogation of 

several thousand sample components simultaneously.  Protein chips have emerged in a 

variety of different formats the most common of which is the antibody microarray where 

antibodies are immobilized on an array surface to capture proteins of interest.[3-10] Such 

studies are important when assessing binding properties of already known target proteins, 

but novel proteins involved in disease progression may be overlooked. Furthermore well-

characterized antibodies with high specificities to proteins of interest are difficult to 

develop and relatively expensive for routine use. 

Autoantibody (humoral) response studies can provide critical information about a 

body’s response to disease antigens. In such studies, potential antigens are arrayed on a 

slide and probed with serum from various classes of patients i.e. normal vs. disease. It is 
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assumed that there will be antibodies in the serum sample of disease patients produced as 

a reaction to some of the antigens printed on the arrays. Previous reports have shown the 

presence of such antigen-antibody reactions as a result of disease .[11-18] In recent work, 

a novel approach has been demonstrated where natural proteins from a cancer cell or 

tissue are first resolved by a two-dimensional liquid separation and are then arrayed on 

thin nitrocellulose microarray slides.[19, 20] All proteins from the cell line are then 

simultaneously probed with a large number of serum samples to highlight immune 

responses that can differentiate between normal and disease sera. 

One area of difficulty in these types of humoral response experiments is the low 

signal intensity that is often present in the arrays. While differential responses are 

observed for certain potential cancer protein markers the response overall is not 

remarkably high. It is our hypothesis that this weak response could be a result of protein 

immobilization on the slide which renders the protein unable to move about such that 

binding sites are blocked from reagent molecules. We propose that reducing the protein 

size by chemical means may facilitate exposure of these binding sites thereby enhancing 

the overall sensitivity of the humoral response experiments. It should be noted that pre-

treatment with chemical digestion would allow measurement of epitope-sensitive 

interactions that only requires a certain amino acid sequence and no specific protein 

confirmation since the protein confirmation will be compromised. 

Reduction of the protein size can easily be accomplished by protein digestion. A 

variety of techniques for protein digestion are currently available, however digestion into 

very small fragments may completely destroy epitopes where antibody/antigen binding 

occur, making it important to select enzymes or reagents with care. An ideal digestion 
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protocol would reduce the protein into a few long peptide fragments rather than many 

small fragments. 

 In this report a comparison of two digestion methods vs. undigested proteins is 

performed after protein fractionation but before printing to assess the improvement in 

humoral response data (Figure 7.1). A pancreatic cancer cell line (Panc1) was lysed and 

the extracted proteins were separated in two dimensions. The separated proteins were 

then either directly arrayed on nitrocellulose slides or were first digested either 

enzymatically using GluC or chemically using cyanogen bromide (CNBr) and then 

arrayed on the same slides. The arrays were then processed with serum samples from 10 

normal individuals, 10 chronic pancreatitis and 10 pancreatic cancer patients. Humoral 

response to digested vs. undigested proteins was then compared to evaluate if digestion 

improved response. Furthermore differences seen between the different serum classes 

was further interrogated by identification of the protein eliciting the humoral response 

using LC-MS/MS methodologies. 

 

7.2. Experimental Section 

Cell Culture and Sample Preparation and serum collection 

Sample Preparation. (a) Cell Culture 

Studies were performed using the Panc-1 pancreatic adenocarcinoma cell line 

(obtained by ATCC). The cells were cultured in Dulbecco’s modified Eagle medium 

supplemented with 10% fetal bovine serum, 100 units/ml penicillin and 100 units/ml 

streptomycin (Invitrogen, Carlsbad, CA). When the cells reached ~90% confluence, the 

cells were harvested with a cell scraper.  

(b) Cell Lysis 
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Cell pellets were reconstituted in lysis buffer consisting of 7.5 M urea, 2.5 M 

thiourea, 4% n-octyl-β-D-glucopyranoside (n-OG), 10 mM tris(2-carboxyethyl) 

phosphine (TCEP), 12.5% v/v glycerol, and 1% v/v protease inhibitor cocktail (Sigma, St. 

Louis, MO). The cell pellets were lysed at room temperature for 1 h, followed by 

centrifugation at 35 000 rpm at 4 °C for 1 h. The supernatant was buffer exchanged into 

start buffer (6 M urea, 25 mM Bis-Tris, and 0.2% OG) using a PD-10 G-25 column 

(Amersham Biosciences, Piscataway, NJ) and stored at -80oC until further use. 

( c ) Serum collection 

Serum was obtained at the time of diagnosis following informed consent using IRB-

approved guidelines. Sera were obtained from 10 patients with a confirmed diagnosis of 

pancreatic adenocarcinoma in the Multidisciplinary Pancreatic Tumor Clinic at The 

University of Michigan Hospital.  These sera were randomly selected from a clinic 

population that sees, on average, at the time of initial diagnosis, 15% of pancreatic 

adenocarcinoma patients presenting with early stage (i.e., stage 1/2) disease and 85% 

presenting with advanced stage (i.e., stage 3/4).  Inclusion criteria for the study included 

patients with a confirmed diagnosis of pancreatic cancer, the ability to provide written, 

informed consent, and the ability to provide 40 ml of blood. Exclusion criteria included 

inability to provide informed consent, patient’s actively undergoing chemotherapy or 

radiation therapy for pancreatic cancer, and patients with other malignancies diagnosed or 

treated within the last 5 years. Sera were also obtained from 10 patients with chronic 

pancreatitis who were seen in the Gastroenterology Clinic at University of Michigan 

Medical Center, and from 10 control healthy individuals collected at University of 

Michigan under the auspices of the Early Detection Research Network (EDRN). The 
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mean age of the tumor group was 65.4 years (range 54-74 years) and from the chronic 

pancreatitis group was 54 years (range 45-65). The sera from the normal subject group 

was age and sex-matched to the tumor group. All of the chronic pancreatitis sera were 

collected in an elective setting in the clinic in the absence of an acute flare.  All sera were 

processed using identical procedures. The samples were permitted to sit at room 

temperature for a minimum of 30 minutes (and a maximum of 60 minutes) to allow the 

clot to form in the red top tubes, and then centrifuged at 1,300 x g at 4oC for 20 minutes. 

The serum was removed, transferred to a polypropylene, capped tube in 1 ml aliquots, 

and frozen. The frozen samples were stored at -70oC until assayed. All serum samples 

were labeled with a unique identifier to protect the confidentiality of the patient. The 

handling of all serum samples was similar in that none of the samples were thawed more 

than twice before analysis in order to minimize protein degradation and precipitation. 

Separation 

Chromatofocusing (CF) 

CF separation was performed on an HPCF-1D column (250 × 2.1 mm) 

(Beckman-Coulter, Fullerton, CA) using the ProteomeLab™ PF2D protein fractionation 

system (Beckman-Coulter), as described previously.[21, 22]  Two buffers were used to 

generate the pH gradient on the column. The start buffer (SB) solution was composed of 

6M urea and 25mM Bis-Tris (pH 7.4). The elution buffer (EB) solution was composed of 

6M urea and 10% polybuffer74 (pH 4.0). Both buffer solutions were brought to pH by 

addition of a saturated solution of iminodiacetic acid. The CF column was pre-

equilibrated with SB.  After equilibration, 4.5 mg of proteins were loaded onto the CF 

column and the column was washed with 100% SB to remove material that did not bind 
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to the column at pH 7.4. Elution was achieved by applying a pH 4.0 elution buffer at a 

flow rate of 0.2 mL/min. The pH gradient was monitored on-line by a flow-through pH 

probe (Beckman-Coulter). The UV absorbance of the eluent was monitored on-line at 

280nm. The flow rate was 0.2ml/min, with 16 fractions in total being collected in 0.2 pH 

units in the range of pH 7.0 - 4.0. Each fraction was stored at -80°C until further use.   

Non-Porous Silica Reversed-Phase (NPS-RP)-HPLC with sample collection  

When the first-dimension separation was completed, the pI fractions collected 

from the first dimension were separated by NPS-RP-HPLC using an ODSIII (4.6 × 33 

mm) NPS column (Eprogen) at a flow rate of 0.5 mL/min and detected by absorbance at 

214 nm using a Beckman model 166 UV absorption detector. Proteins eluting from the 

column were collected by an automated fraction collector (Model SC 100, Beckman), 

controlled by an in-house designed DOS-based software program. To enhance the speed, 

resolution, and reproducibility of the separation, the RP column was heated to 65ºC by a 

column heater (Jones Chromatography, Model 7971, Resolution Systems, Holland, MI). 

Both mobile phase A: MilliQ® water (Millipore, Billerica, MA), and solvent B: 

acetonitrile (ACN) (Sigma) contains 0.1% v/v and 0.08% v/v respectively, trifluoroacetic 

acid (TFA). The gradient was run from 5% to 15% in 1 min, 15% B to 25% in 2 min, 

25% to 31% in 2 min, 31% to 41% in 10 min, 41% to 47% in 6 min, 47% to 67% in 4 

min, then up to 100% B in 3 min where it was held for 1 min, and then reduced to 5% in 

1 min. After the gradient, the column was washed by two fast gradients from 5% B to 

100% B in 5 min, 100% B back to 5% B in 1 min. Fractions from the HPLC eluent were 

collected using a semi-automated in-house program using a Model SC-100 fraction 

collector. Collected peak fractions were stored at -80ºC for further use. 
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Protein Digestion by CNBr or GluC 

 For digestion with CNBr, collected fractions were then dried down and 

resuspended in 5µL deionized water, 15µL TFA and 5µL 5M CNBr in ACN. The tubes 

were wrapped in aluminum foil and left overnight at 4 ºC.  

For digestion with GluC, collected fractions were dried down to ~10 µL. 40 µL of 

100 mM ammonium bicarbonate and 0.1 µg of GluC were added to the same and the 

mixture was left at room temperature overnight. 

Microarray Printing 

Fractionated proteins were transferred to 96-well printing plates (Bio-Rad) and 

were lyophilized to dryness. The fractions were then resuspended in printing buffer (62.5 

mM Tris-HCl (pH6.8), 1% w/v sodium dodecyl sulfate (SDS), 5% w/v dithiothreitol 

(DTT) and 1% glycerol in 1X PBS) and were left to shake overnight at 4oC. Slides were 

printed by transferring each fraction from the plate onto nitrocellulose slides using a non-

contact piezoelectric printer (Nanoplotter 2, GeSiM). Each spot resulted from deposition 

of 5 spotting events of 500 pL each, such that a total volume of 2.5 nL of each fraction 

was spotted. Each spot was found to be ~450 µm in diameter, with the distance between 

spots maintained at 600 µm. Printed slides were left on the printer deck overnight to dry 

and were then stored, desiccated at 4oC until further use.  

Hybridization of slides 

The printed arrays were rehydrated in 1X PBS with 0.1% Tween-20 (PBS-T), and 

were then blocked overnight in a solution of 1% BSA in PBS-T.  Each serum sample was 

diluted 1:400 in probe buffer (5 mM magnesium chloride, 0.5 mM DTT, 0.05% Triton X-

100, 5% glycerol and 1% BSA in 1X PBS) to make a total solution of 4 mL and kept on 
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ice. Each diluted serum sample was used to hybridize a slide for 2 hrs. Hybridization was 

done at 4oC in heat-sealable pouches with agitation, using a mini-rotator. The slides were 

then washed five times with probe buffer (5 min each), and were then hybridized with 4 

mL anti-human IgG conjugated with Alexaflour647 (Invitrogen, Carlsbad, CA) (at 1 

µg/mL), for 1 hr at 4oC. After secondary incubation all slides were washed in probe 

buffer five times, for 5 min each, and were then dried by centrifugation for 10 min. All 

processed slides were immediately scanned using an Axon 4000B microarray scanner 

(Axon Instruments Inc., Foster City, CA) and GenePix Pro 6.0 software (Molecular 

Devices, Sunnyvale, CA) was used for data acquisition and analysis. 

Protein Identification 

Proteins were trypsinized in a solution of 100 mM ammonium bicarbonate and 1 

mM DTT. The samples digested by trypsin were separated by a capillary RP column 

(C18, 0.3 × 150 mm) (Michrom Biosciences, Auburn, CA) on a Paradigm MG4 

micropump (Michrom Biosciences) with a flow rate of 300 nL/min. The gradient, started 

at 5% ACN, was ramped to 60% ACN in 25 min and finally ramped to 95% in another 5 

min. Both solvents A (water) and B (ACN) contained 0.3% formic acid. The resolved 

peptides were analyzed on a Finnigan LTQ mass spectrometer (Thermo Electron Corp., 

San Jose, CA) with a nanoESI ion source (Thermo). The capillary temperature was set at 

190°C, spray voltage was 2.6 kV, and capillary voltage was 30 V. The normalized 

collision energy was set at 35% for MS/MS. The top 5 peaks were selected for CID. 

Precursor selection was based upon a normalized threshold of 30 counts/s. MS/MS 

spectra were searched using the SEQUEST algorithm incorporated in Bioworks software 

(Thermo) against the Swiss-Prot human protein database. The search was performed 
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using the following parameters: two miscleavages were allowed during the database 

search; peptide ion mass tolerance 1.50 Da; fragment ion mass tolerance 0.0 Da; Protein 

identification was considered positive for a peptide with Xcorr of greater than or equal to 

3.5 for triply, 2.5 for doubly, and 1.9 for singly charged ions. 

 

7.3. Results and Discussion 

Protein separation methods 

In this study, proteins extracted from the Panc1 pancreatic cancer cell line were 

separated in two relatively orthogonal dimensions for maximum peak capacity. In the 

first dimension the proteins were separated according to their isoelectric points by a 

liquid phase separation technique, chromatofocusing. It has been shown that such a 

technique is able to separate proteins whose isoelectric points are as low as 0.2 pH units 

apart or less. In the second dimension each fraction from chromatofocusing was further 

separated by non-porous reversed phase HPLC. Non-porous particles eliminated column 

clogging problems associated with separation of large proteins using porous columns. 

Separation times and quality were also optimized due to the short column length of 

33mm and separation temperature of 65oC which reduced diffusional broadening. 

Figure 7.2 illustrates the separation quality and reproducibility of each dimension 

of separation. Figure 7.2A shows three independent CF runs together with the pH profile 

of each run. It is evident that the pH profiles of all runs are very similar as are the peak 

profiles. It can also be seen that the peaks and valleys in the profiles correspond to the pH 

changes and not the retention times so that even if there is a slight change in the pH 

profile, the proteins eluting over each pH interval will always be the same. Figure 7.2B 
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illustrates similar reproducibility data generated for the second dimension separations. 

Separations done on two distinct pH lanes (5.2-5.0 and 6.6-6.4) from CF are shown. 

Again it was observed that peak profiles were almost identical in all four cases. For the 

second dimension profile of pH fraction 5.2-5.0 the bottom-most chromatogram has one 

peak missing which was due to a pressure drop that occurred in the instrument for a short 

period of time. The reproducibility data suggests that the two-dimensional liquid 

separation used in this study was robust, reliable and reproducible for further studies. 

Digestion protocols: 

In humoral response experiments using undigested proteins we separated cellular 

cancer proteins and printed them on nitrocellulose slides in their intact form. However the 

overall response of these arrays to serum remained low in most experiments. While some 

differences in response were statistically different between normal and cancer sera the 

overall fold differences were not very high. We hypothesized that the low response 

correlated with the lack of access to binding sites as illustrated in figure 7.3. When the 

protein is intact the binding site which would potentially react with serum proteins, could 

be in a sterically unfavorable position, resulting in low binding. If this protein was 

cleaved into a few pieces it is possible that the autoantibody binding site would be more 

favorably located during the array hybridization process.  

The digestion method chosen to study this hypothesis is critical. A protocol that 

would cleave the proteins into too many fragments may not be appropriate because this 

would potentially destroy the binding site. Trypsin is a popular enzyme of choice in 

attempts at protein identification. However the very property of trypsin that is favorable 

for PMF experiments (two cleavage sites that lead to many peptide fragments) is not 

 222



favorable for the purpose of our study. We have therefore utilized two alternative 

methods to assess the effect of digestion on the humoral response. Enzymatic digestion 

using GluC was performed since this enzyme cleaves only after glutamic acid. Chemical 

digestion using cyanogen bromide (CNBr) was also used. CNBr cleaves after methionine 

residues and because the occurance of methionine in proteins is very low, cleavage by 

CNBr should result in very few, long peptides, possibly conserving the binding site for 

humoral response experiments. Peptides resulting from CNBr and GluC digestion could 

consequently be up to 4 or more times larger than peptides resulting from trypsin 

digestion. 

Array hybridization 

The separated proteins were first divided into 4 fractions and each fraction was 

used as follows: fraction 1=intact for microarray, fraction 2=digested with GluC for 

microarray, fraction 3=digested with CNBr for microarray and fraction 4=digested with 

trypsin for identification. All fractions for microarray analysis were arrayed using a non-

contact arrayer, Nanoplotter 2.0E (GeSiM, Germany). The arrays were then probed with 

serum samples from 10 normal subjects, 10 patients with chronic pancreatitis and 10 

patients with pancreatic cancer. 

Figure 7.4 illustrates sections of microarray slides probed with serum to compare 

the three different array-hybridization protocols. The top panel reflects the humoral 

response to intact proteins arrayed onto nitrocellulose slides. It can be seen that the 

response is very weak for the fractions from the pH range shown. The middle panel 

shows the response of GluC digested fractions to serum. In this case all spots showed a 

positive response. The digestion protocol for GluC involved the addition of 0.1 ug of 
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gluC into the fraction that was being digested. In printing the arrays of GluC digested 

fraction, the GluC was also being printed. We concluded that all spots were positive most 

probably due to non-specific binding to the GluC that was present in the digested sample. 

The problem could be alleviated by having GluC immobilized on beads prior to digestion 

so that it can be removed from the sample prior to arraying. Interestingly, the bottom 

panel shows the humoral response to CNBr digested protein fractions where at least 1 

spot shows significantly higher response to serum when digested by CNBr compared to 

when arrayed as an intact protein. In addition 3 other spots show a slightly higher 

response when digested compared to when arrayed as intact proteins.  

When comparing the 62 fractions that were printed from the proteins from 2 

separate pH lanes of the first dimensional separation, it was observed that 10 spots 

showed a very distinct response to serum when arrayed after CNBr digestion (a >10% 

improvement). These same spots did not show any response to serum when arrayed as 

intact proteins. By performing a simultaneous humoral response experiment with both a 

control (intact proteins) and test (digested with CNBr) set it was confirmed that digestion 

by CNBr prior to arraying facilitates an improved response making it possible to identify 

changes in humoral response that may be present between two different classes of sera. 

We believe that digestion with CNBr shows an enhanced humoral response that is 

clinically relevant and not just due to non-specific binding because only specific spots 

showed an enhanced response with this digestion strategy. If the response were non-

specific we should have seen an enhancement with all fractions that were printed as was 

the case with GluC. 
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Initial study toward differential humoral response in pancreatic cancer using CNBr 

digested proteins 

After confirming that CNBr digestion increases the sensitivity of the humoral 

response results, 10 normal, 10 chronic pancreatitis and 10 pancreatic cancer sera were 

hybridized with arrays printed with intact proteins and CNBr digested proteins to see if 

there was a group specific trend in the humoral response that resulted in improved 

detection with CNBr digested arrays. To that effect proteins from pH lanes 5.2-5.0 and 

6.6-6.4 were fractionated by NPS-RP-HPLC. They were then divided into two parts, one 

of which was directly arrayed on nitrocellulose slides as intact proteins. The other divided 

fraction was subjected to CNBr digestion after which it was arrayed on the same 

nitrocellulose slides as the intact proteins. 30 slides were printed and each was hybridized 

with serum from the 10 normal, 10 chronic pancreatitis and 10 pancreatic cancer sera.  

The arrays were scanned in the red channel to detect a humoral response. 

Background subtracted data from both sets of experiments i.e. intact protein results for all 

three sera classes and digested protein results for all three sera classes were then 

compared to see if there was any differential response between the classes that was more 

visible in the CNBr digested sample data. A spot intensity of > 2 fold than the 

background intensity was required for the spot to be considered positive. At least 50% of 

the cancer and pancreatitis spots needed to show a higher response than the 2nd highest 

normal spot response in order for the response to be considered significantly different in 

the groups. 

5 spots showed a differential humoral response when the spots were digested with 

CNBr but not when they were arrayed in an intact state. A comparison of some of these 
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humoral responses is shown in figure 7.5.  On the left are all sera responses to intact spots 

while on the right are sera responses to spots that were digested with CNBr. On the plots 

1 refers to normal sera group, 2 refers to the chronic pancreatitis sera group and 3 refers 

to the pancreatic cancer sera group. For the digested spot responses a broken line is 

shown to indicate the number of cancer samples that showed a higher response than the 

second highest normal serum response. It can be seen that in all cases at least 50 % (5/10) 

of the chronic pancreatitis and pancreatic cancer samples showed higher reactivity in the 

studied fractions when digested with CNBr compared to when arrayed as intact proteins. 

Interestingly in figure 7.5 b, c and d the response to the intact spots was generally very 

low (almost at background fluorescence level) while the same response in the case of the 

spots digested with CNBr was significantly higher. On the contrary, as shown in figure 

7.5 a and e, it was observed that while the overall signal intensities were not very low 

when intact protein spots were probed with sera from different groups, there was no 

indication of differential humoral response between the normal and disease sample group. 

However when digested with CNBr a differential humoral response became very evident 

despite the slightly lower overall signal intensity.  

The 5 spots that were identified as eliciting a differential humoral response were further 

interrogated by mass spectrometry to determine the proteins present in the spots. Table 

7.1 shows the identity of the proteins and relevant information with respect to the protein 

identification. Out of the 5 spots of interest identification was only possible for three 

spots. In the other two cases the sample amount was insufficient for conclusive 

identification. 
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Two of the three proteins identified were mitochondrial proteins not previously 

implicated in pancreatic cancer. The third identified protein was ubiquitin-conjugating 

enzyme E2 variant 1. While this particular protein has not been previously associated 

with pancreatic cancer, another variant of the ubiquitin-conjugating enzyme has been 

previously implicated in pancreatic cancer and has been linked to a T-cell mediated 

recognition of pancreatic cancer cell.[23] An immune response to this class of protein has 

therefore been shown previously suggesting that the body is responding to the cancer via 

the ubiquitin pathway. Such a protein could be a potential target of interest both for 

diagnostics and therapeutic purposes. However due to the small sample numbers used as 

a proof of concept set for the digested array strategy further experimentation with much 

larger sample pools is necessary in order to draw more biologically relevant conclusions 

about pancreatic cancer progression. 

 

7.4. Conclusion 

Studies designed to enhance our understanding of the host response to cancer i.e. 

humoral response can provide key information regarding potential markers of the cancer 

as well as important pathways critical to the development of the disease. However current 

efforts at understanding this response using microarray approaches are hampered by low 

response of cancer proteins on the array surface to serum samples that are used to probe 

the arrays. Here we present a possible explanation for this weak response and a potential 

strategy to overcome the problem.  

It is possible that upon immobilization to a solid surface the protein on the array is unable 

to bind to potential binding partners in serum because the binding site on the protein is 
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sterically hindered. To overcome this problem, we have developed a strategy where 

protein is first digested using CNBr resulting in a few large fragments that are 

subsequently arrayed on the microarray surface. Depending on the size of the protein 

such a digestion could result in 2 to up to 6 fragments. Digestion into large fragments is 

likely critical to allow fragments to still possess the binding sites in their intact form 

whereas if digestion into many smaller fragments was performed, the binding site may be 

destroyed. Preliminary results show that digestion prior to arrays facilitates increased 

detection sensitivity of the overall humoral response. In addition, when the experiment 

was repeated with 10 normal, 10 chronic pancreatitis and 10 pancreatic cancer sera, it 

was observed that out of 62 spots that were arrayed, 10 spots showed stronger signals 

when arrayed after digestion. Out of these 10 spots, 5 showed a response that was 

different between normal sera and diseased sera (chronic pancreatitis and pancreatic 

cancer). In this study a response unique to chronic pancreatitis and pancreatic cancer was 

observed. This response could be indicative of inflammation rather than cancer since it 

was seen in both the chronic pancreatitis and pancreatic cancer sera. Regardless, it is very 

likely that a similar trend will be seen if all pH lanes from the first dimension are 

interrogated resulting in a larger number of potential proteins that can be validated for 

diagnostic capabilities. In addition the results from this study are used as a proof of 

concept for the digested array strategy, but further work with larger sample pools will be 

needed before any biologically relevant conclusions can be drawn. 

 

 228



Table 7.1: Protein identifications of spots that demonstrated a differential humoral 
response between the three sera sample groups used with additional information about 
peptides identified and coverages observed. 
 

pH_fraction 
number 

from HPLC 
run 

Spot loci 
(block, 

column, 
row on 
array) Acc # Protein ID 

Protein 
Score 

Theoretical 
MW 

      Peptide identified Charge Xcorr 

      

5.2-5.0_23 861 O60220 
Mitochondrial import inner membrane 
translocase subunit Tim8 A  100 10992 

   SKPVFSESLSD 2 3.7 
      

5.2-5.0_36 762 Q13404 
Ubiquitin-conjugating enzyme E2 variant 1 (UEV-
1)  120 25781 

   LLEELEEGQK 2 3.4 
   YPEAPPFVR 2 2.7 
      
5.2-5.0_47 812  Insufficient sample for IDs   
      
5.2-5.0_52 862  Insufficient sample for IDs   
      
6.6-6.4_73 637 Q13011  Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase 336 35794 
   YQETFNVIER 2 3.2 
   EVDVGLAADVGTLQR 2 5.1 
   VIGNQSLVNELAFTAR 2 5.1 
   MMADEALGSGLVSR 2 5.4 
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Figure 7.1: Overall workflow of the modified protein microarray strategy. Proteins from a 
cell line/ tissue are first extracted and separated in two dimensions (chromatofocusing 
separated the proteins according to their pI and NPS-RP-HPLC separated them according 
to their hydrophobicity). Separated fractions are split into three parts. One part is digested 
with trypsin, 1 with CNBr and 1 is left intact. Intact proteins and CNBr digested proteins 
are arrayed on nitrocellulose slides and probed with serum from different stages of 
disease (in this case normal, chronic pancreatitis and pancreatic cancer) to visualize 
humoral response. Tryptic digests of the spots that showed a differential humoral 
response were then subjected to protein identification using LC-MS/MS. 
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Figure 7.2: Reproducibility of separation methods used. (a) 3 chromatofocusing runs 
using 4.5 mg of protein lysate from Panc1 cell lines. (b) 4 reversed phase HPLC runs 
from two distinct pH fractions from the first dimension. Red arrows indicated 
fractions/peaks that responded to serum when digested by CNBr and Blue arrows 
indicated fractions/peaks that responded to serum when arrayed in its intact state. 
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Figure 7.3: Hypothesis about why intact protein microarrays may not show high response 
signal. Binding site on protein is sterically hindered from serum proteins when the 
arrayed protein is intact. After digestion with CNBr, fragments with conserved binding 
sites are more exposed to serum proteins enhancing the signal due to humoral response. 
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Figure 7.4: Microarray slide section illustrating differences in humoral response using 3 
separate arraying methods. The top panel is intact proteins from Panc1 cell lines probed 
with serum resulting in very low overall response. The middle panel is GluC digested 
proteins from the same Panc1 cell line probed with serum resulting in a positive response 
to all arrayed fractions. This binding was non-specific to the GluC present in digested 
sample. The lower panel shows humoral response to tryptically digested proteins from 
the same Panc1 cell line. While the overall background is maintained at a low level, spots 
inside the yellow square illustrate a humoral response that was not present when the same 
protein in its intact state was probed with serum. 
 

 233



 
a) (812 and 316) 
 
 

0

1000

2000

3000

4000

5000

6000

0 1 2 3

hu
m

or
al

 re
sp

on
se

4
0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

n=6

N     P       C N               P                C

0

1000

2000

3000

4000

5000

6000

0 1 2 3

hu
m

or
al

 re
sp

on
se

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

n=6

N     P       C N               P                C
4

 
 
 
 
 
 
 
 
 
b) (762 and 166) 
 
 

0

2000

4000

6000

8000

10000

12000

0 1 2 3

hu
m

or
al

 re
sp

on
se

4

n=7

0

50

100

150

200

250

300

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

N     P       C N     P       C
0

2000

4000

6000

8000

10000

12000

0 1 2 3

hu
m

or
al

 re
sp

on
se

n=7

0

50

100

150

200

250

300

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

N     P       C N     P       C 4

 
 
 
 
 
 
 
 
 
c) (637 and 533) 
 

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3

hu
m

or
al

 re
sp

on
se

N     P       C N     P       C
4

n=5

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3

hu
m

or
al

 re
sp

on
se

N     P       C N     P       C

n=5

4

 
 
 
 
 
 
 
 
 
 
d) (861 and 365) 
 
 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

0

2000

4000

6000

8000

10000

12000

0 1 2 3

hu
m

or
al

 re
sp

on
se

N     P       CN     P       C 4

n=6

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

0

2000

4000

6000

8000

10000

12000

0 1 2 3

hu
m

or
al

 re
sp

on
se

N     P       CN     P       C

n=6

4

 
 
 
 
 
 

 234



 
 
 
e) (862 and 356)  
 
 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

n=5

N     P       C N     P       C
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4

hu
m

or
al

 re
sp

on
se

n=5

N     P       C N     P       C

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5: Scatter plots illustrating change in humoral response upon protein digestion 
with CNBr. (a) – (e) show the five spots that demonstrated differential humoral response 
between normal sera and pancreatitis and pancreatic cancer sera. On the left are scatter 
plots of all serum sample reactions to the intact spot while on the right are scatter plots of 
all serum sample responses to the CNBr digested spots. In all plots 1 = normal sera 
responses, 2 = chronic pancreatitis responses and 3 = pancreatic cancer responses. 
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Chapter 8 

 

Conclusion 

 

This dissertation has described the development and application of an integrated 

liquid separation, protein microarray and tandem mass spectrometry strategy for global 

screening of post translational modifications and humoral response changes that occur 

due to disease progression. Liquid separation techniques are used as an alternative to gel 

electrophoresis where dynamic range of separation is limited and where manual handling 

makes protein identification difficult due to introduction of contaminants such as keratins. 

Fractions collected by liquid separation are then arrayed on a solid surface resulting in a 

protein microarray. By arraying all fractions on a small surface they can all be probed 

simultaneously with a reagent that can highlight a property of interest. This makes our 

proposed strategies robust and high throughput.  

The protein microarray can be used to provide information very similar to a 2D 

gel. However while gels are delicate and can easily break, the microarray is more rugged 

and not susceptible to the same problems as a gel. Furthermore in order to detect specific 

proteins on gels using antibodies the proteins on the gels first need to be 

electrotransferred onto a membrane surface since antibodies cannot permeate the pores in 

the gel. This step is completely bypassed in microarray experiments making the 

technique less time consuming and more efficient. In-gel digestion is also avoided in our 
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proposed strategy because part of the fraction from the liquid separation platforms can 

directly be coupled to mass spectrometry with minimal sample preparation steps for 

protein identification.  

The strategy presented was successfully applied to study phosphorylation changes 

in pre-malignant and malignant breast cancer cell lines. Proteins from a premalignant 

breast cancer cell line AT1 and a malignant breast cancer cell line CA1a were first 

separated by a 2 dimensional liquid separation technique involving chromatofocusing and 

non-porous silica reversed phase HPLC. In the 1st dimension proteins were separated 

according to their iso-electric points and in the 2nd dimension they were separated by their 

hydrophobicities. The collected fractions (~1200 per cell line) were arrayed on amine and 

nitrocellulose slides and probed with the universal phosphoprotein binding dye, Pro-Q 

Diamond followed by antiphosphotyrosine antibodies to highlight phosphoproteins in the 

separated lysate. Out of the 140 spots that were positive for phosphorylation, 85 showed 

differential phosphorylation and these spots corresponded to 75 distinct proteins, a 

majority of which were high to medium abundant proteins. These differentially 

phosphorylated proteins were identified by tandem mass spectrometry. A total of 51 

phosphorylation sites in 27 unique proteins were identified during this process. A 

majority of the proteins exhibiting differential phosphorylation are known to be involved 

in transcriptional and translational regulation as well as cytoskeletal integrity and 

apoptosis. Interestingly these processes are known to change considerably as a function 

of cancer progression. A study of a much larger scale is warranted to further probe the 

results obtained in this study. In particular such a study would need to focus on whether 
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such changes are specific to the cell lines studies or if they are a general characteristic of 

all types of cancers. 

A slightly different liquid separation strategy was applied to study glycosylation 

patterns across multiple proteins in serum samples. Such patterns in normal vs. cancer 

sera and plasma were compared to see if classification of a sample based on its 

glycosylation pattern is possible. The developmental phase of this strategy involved 

assessing the specificity and sensitivity of lectins and their binding to glycoproteins. 

After successful attempts at utilizing biotinylated lectin followed by streptavidin 

conjugated to a fluorescent tag to detect sugar groups on proteins, the strategy was 

applied to clinically relevant serum and plasma samples from pancreatic and colorectal 

cancer patients respectively. Samples were depleted by an immunoaffinity column and 

then enriched for N-linked glycoproteins by a general lectin affinity chromatography step. 

Enriched glycoproteins were then separated and arrayed on nitrocellulose slides which 

were subsequently probed with 5 different lectins to assess levels of mannosylation, 

sialylation, fucosylation and galactosylation in the arrayed spots. Array data was 

statistically analyzed by principal component analysis (PCA) and hierarchical clustering 

(HC) and showed distinct and unique grouping of normal, chronic pancreatitis and 

pancreatic cancer samples with all lectins. In the case of colorectal cancer, normal 

samples clustered away from diseased samples but adenoma’s and cancer plasma samples 

could not be distinguished from each other based on data from all arrayed samples. 

Wilcoxon rank sum tests were also performed to determine if individual fractions could 

be used to uniquely identify sample groups. These tests highlighted potential glycoprotein 

biomarkers for both pancreatic and colorectal cancer. Potential markers were identified 

 240



by mass spectrometry. Interestingly a majority of the proteins identified were liver 

proteins. A correlation between disease progression and changes in liver protein activity 

is expected in cancers. Some markers from the colorectal cancer study were validated in 

an independent set of plasma samples. A similar independent validation is still needed for 

more pancreatic cancer samples. In addition further studies that utilize antibodies to pull 

out potential glycoprotein markers from large amounts and numbers of serum samples 

would be essential to determine if the changes seen are present across a much larger 

sample pool. More specific glycan changes that are occurring due to disease progression 

also need to be studied by multiple stages of mass spectrometry in order to assess the 

linkages in the glycan structures that change due to disease.  

Immune response to disease related proteins can also be detected using the 

integrated approach utilized in this dissertation. When proteins from a diseased cell are 

arrayed on a solid surface and subsequently probed with serum from normal or diseased 

patients there is a probability that antibodies against some of the disease proteins that are 

present in the patient serum will bind the protein against which they were formed if that 

protein is on the array. Such interactions can be visualized using a secondary anti-human 

IGg antibody. In order to analyze this immune response in pancreatic cancer, a 

representative cell line, MIAPACA, was fractionated in 2 dimensions (CF in the 1st and 

NPS-RP-HPLC in the 2nd dimension). The resulting fractions were arrayed and probed 

with multiple serum samples from controls and patients diagnosed with cancer. All spots 

that exhibited a humoral response were statistically analyzed. It was found that non-

parametric analysis on foreground only spot intensities resulted in the best result. A panel 

of 9 potential biomarkers was identified. This panel had an accuracy of ~87%. Sensitivity 
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and specificity of the panel were found to be 93% and 80% respectively. Validation 

experiments were also performed on phosphoglycerate kinase and histone H4 and 

showed results that correlated well with initial experiments. Results with tissue samples 

were not as promising as those obtained with the cell line. This is likely due to the 

heterogeneous nature of the tissue samples used where the net amount of protein from 

cancer cells was probably below the sensitivity of the microarray hybridization method. 

Future work in this area could be more productive if laser capture micro-dissection is 

utilized to obtain a concentrated amount of purely cancer cells from multiple tissue 

samples. Initial work was also done to explore the utility of protein digestion prior to 

array generation. We hypothesized that arrayed whole proteins may be subject to some 

steric hinderance. Digesting them prior to arraying has the potential of exposing critical 

binding sites for humoral response. It was found that by digesting the whole protein by 

CNBr prior to arraying, humoral response detection sensitivity was significantly 

improved and overall background was reduced. However further studies across the entire 

pH range need to be conducted to see if the overall number of proteins eliciting a 

differential humoral response is increased significantly by this approach.  

The strategies described herein can be successfully utilized to study a variety of 

sample types (cell lines, serum, plasma and tissues) in order to assess modifications and 

immune responses to disease associated proteins. Consequently it is a robust technique 

applicable to a diverse set of biological questions that can provide new and 

complementary information to that obtained using other platforms. However further work 

needs to be done to stretch the limits of detection and sensitivity of the microarray 

platform in order to be able to detect significantly lower levels of proteins. In addition, 
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large scale studies at the clinical level (utilizing a much larger sample pool) are warranted 

in order to assess the quality of the markers highlighted in the studies described in this 

dissertation.  
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