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ABSTRACT 

FRACTIONAL-N SYNTHESIZER ARCHITECTURES 
WITH DIGITAL PHASE DETECTION 

 

by 

Mark A. Ferriss 

 
 

Chair: Michael Flynn 

 
 

During the last decade there has been unprecedented growth in the use of portable 

wireless communications devices for applications as diverse as medical implants, 

industrial inventory control, and consumer electronics. If these communication devices 

are to be low power, flexible, and reconfigurable, new radio architectures are needed 

which take advantage of the major strength of state-of-the-art digital manufacturing 

processes; that is the ability to build large, complex low power signal processing circuits, 

with extremely fast clocking speeds. However, traditional radio architectures rely on 

analog techniques which are ill suited for the use in modern highly integrated digital 

systems.  

A critical component of a radio system is the frequency synthesizer, a circuit 

which can accurately synthesize and modulate high frequency signals. Traditional 

 xi



synthesizers still utilize a significant amount of analog circuitry. In this work, techniques 

are developed to replace this analog circuitry with digital equivalents. To do this, a digital 

phase detection scheme for a Fractional-N Phase Lock Loop (FPLL) is presented. The 

all-digital phase detector can be used as an alternative to a conventional analog-intensive 

phase detector, charge pump and loop filter blocks.  

Another limitation of traditional synthesizers is the difficulty in modulating the 

frequency of the output signal at speeds larger the FPLL’s bandwidth.  A new technique 

is developed for modulating the output frequency of the FPLL at rates significantly faster 

than the loop bandwidth would typically allow. A digital sampling scheme that enables 

FSK modulation rates much larger than the loop bandwidth is demonstrated. The new 

scheme does not compromise on the frequency accuracy of the output signal. The key 

ideas presented have been proven in a proof of concept design. A prototype 2.2GHz 

fractional-N synthesizer, incorporating the digital phase detector and sampling scheme is 

presented as a proof of concept. Although the loop bandwidth is only 142kHz, an FSK 

modulation rate of 927.5kbs is achieved. The prototype is implemented in 0.13µm CMOS 

and consumes 14mW from a 1.4V supply. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

The wireless communication industry’s exponential expansion is fuelling a search 

for the next generation of circuit tools and techniques which will enable faster, lower 

power and cheaper wireless devices. The starting point of this research is to identify the 

limiting features of today’s technologies, and develop circuit concepts and architectures 

which address and overcome these short comings.  

Most modern wireless communications systems are in essence frequency 

multiplexed systems, which consist of the simultaneous transmission of independent 

signals in separate frequency channels. For example in the GSM 900MHz band the 

channels are spaced just 200kHz apart. The ability to select a single channel from the 

myriad of other signals is a crucial part of the design of a modern radio system. (This is 

in contrast with the first three decades of radio (1885-1916) when spark-gap generators 

transmitted pulses of wide band energy). A crucial part of channel selection is the task of 

synthesizing signals with the correct frequency. As communications devices become 

ubiquitous, there is continuous downward pressure on the size and cost of the devices 

needed to modulated and demodulate radio signals. This has consequences when 

considering architectures of the future. Firstly, techniques are needed to ensure that the 

 1



 

radio circuitry of tomorrow can coexist on the same substrate as the large DSP 

microprocessor cores. This is essential if the level of integration is to be maximized, and 

the costs reduced. If follows that the ability to implement Radio Frequency (RF) 

functions in standard Complementary Metal-Oxide-Semiconductor (CMOS) processes, 

and avoid more exotic and expensive manufacturing processes, is critical. It makes sense 

to implement as much of these systems as possible in the digital domain in order to take 

advantage of the fast clock speeds of fine line CMOS. In addition tomorrow’s circuits 

must be programmable and reconfigurable in order to support multiple standards. 

 This thesis focuses on the fractional-N Phase Locked Loop (FPLL). This 

circuit can fulfill many of the functions in the wireless devices of the future. Firstly, a 

critical function in all RF systems is the requirement to synthesis high frequency, low 

noise clocks. The FPLL can meet these needs and can be programmed to synthesize RF 

clocks with a wide range of frequencies, without gaps in the tuning range, as is the case 

for integer division PLLs. Much of the signal processing can be done in the digital 

domain, making it suitable for integration in a standard digital CMOS process. Another 

benefit of the FPLL is the ability to modulate the output signal using the same circuitry 

that is used to synthesis the LO signal in the first place.  

While much of the signal processing in a classical FPLL is done in the digital 

domain, there is still a significant amount of analog circuitry. The design of analog 

circuits in the deep sub-micron (DSM) age is challenging, and can often lead to excessive 

power dissipation, increased sensitivity to substrate/power supply noise, and sensitivity to 

process variation which can compromise performance or yield. Many of these problems 

are evident in fractional-PLL (FPLL) design. Charge pumps require good matching 
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between currents of opposite polarity. Low loop-time-constants are typically required, so 

the loop filter must be implemented using large area capacitors or expensive off chip 

components. Furthermore, these blocks do not take advantage of the major strength of 

DSM processes, which is the ability to build fast, complex, low power digital signal 

processing circuits. This thesis addresses two limitations of this architecture; the reliance 

on analog circuitry in deep sub-micron technology, and the trade off between low loop 

bandwidth for good Σ∆ noise rejection, and high loop bandwidth for fast modulation rates. 

The fractional-N frequency synthesizer is a key building block of wireless 

systems as it can both generate a high frequency signal with a well defined frequency and 

modulate that signal [1], [2]. An introduction to the use of Σ∆ modulator in frequency 

synthesis can be found in [4]. The popularity of this architecture is derived from its 

ability to do much of the signal processing required for control of the output frequency in 

the digital domain. Nevertheless, this architecture still relies on a significant amount of 

analog circuitry. In the remainder of this Chapter some of the uses of FPLLs are briefly 

reviewed, and some basic PLL concepts are introduced. 
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1.2 A brief overview of Radio Frequency transmission schemes 

Up-convert 
to Radio 

Frequency

Modulate 
with data PA

FPLL can do all of this.

 

Figure 1.1: An overview of a transmission scheme. A quartz based clock is up-converted 
to high frequencies and modulated with transmission data before the Power Amplifier. 

A conceptual overview of a typical radio transmitter is shown in Figure 1.1.  

There are two primary steps involved in generating the RF signal. Firstly a carrier signal, 

which is well defined, stable, and has low noise, must be synthesized. Typically, a low 

frequency clock source such as a quartz crystal is used as a reference, and a Phase Lock 

Loop (PLL) up-converts this source to the carrier frequency. The second task is to 

modulate the RF signal with the information to be transmitted. This task is typically 

accomplished with the use of a mixer. However, a Fractional-N synthesizer (or FPLL) 

can do both of these tasks. If an FPLL is described as a black box, then we could say that 

it has two inputs, and one output. The output is an RF signal of frequency equal to the 

product of its two inputs; the reference frequency and the digital input division ratio. As 

an FPLL can synthesize an RF signal of any frequency, it follows that it can also be used 

as modulator. 
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PA

Frac-N 
PLL

Frequency 
control

Reference 
frequency

Xin(t)=A.cos(Φ(t))

XLO(t)=sin(ωLOt)

Xout(t)=0.5*A.sin(ωLOt+Φ(t))

PA

Frac-N 
PLL

Frequency 
control + 
dΦ(t)/dt

Reference 
frequency

XLO(t)=sin(ωLOt+Φ(t))

Xout(t)=0.5*sin(ωLOt+Φ(t))

 

Figure 1.2: Possible uses of synthesizers in an RF transmission scheme. a) In a direct 
conversion transmitter. b) Using just the FPLL as a modulator. 

In Figure 1.2(a) an overview of a direct conversion transmitter architecture is 

shown. A low frequency signal is up-converted to RF by mixing it with a Local Oscillator 

(LO) signal. In this case a Fraction-N PLL (FPLL) can be used to generate the LO signal. 

The frequency of the LO signal is given by NrefLO ⋅= ωω  where ωLO is the frequency 

of the LO signal, ωref is the frequency of the reference and N is the Frequency control 

word that is fed into the synthesizer. If N is changed then the frequency of the LO 

changes, hence the synthesizer can be used to select the channel. 

If N can be changed to select the output frequency, then if N is slowly modulated 

then the frequency of the LO signal is slowly modulated. In other words, the original 

synthesizer can be used to modulate the signal, and no other circuitry is required. Figure 

1.2(b) shows a synthesizer being used in the transmission path. No other circuitry apart 

from the power amplifier is required. So what exactly does an FPLL consist of? To 

answer this question we first start with an introduction to some of basic PLL concepts. 
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1.3 Introduction to the PLL 

The earliest descriptions of the principles of PLLs date to the 1920’s [5], and 

1930’s [6]. In the 1970’s control theory was used to describe PLL’s for the use in motor 

speed control systems [7], and many of the earliest IC implementations of PLLs were 

used for servo-mechanics [8]-[16]. An introduction to some of the underlying concepts 

can be found in [17]. 

Broken down to its core function, a PLL is simply a feedback system acting on 

phase. The simplest configuration of a PLL is shown in Figure 1.3. The core components 

include a Voltage Controlled Oscillator (VCO) which produces a signal at its output 

which has a frequency proportional to the voltage at the VCO’s input. In the phase 

domain this is the equivalent to producing a phase change at the output proportional to 

the integration of the input. Next a phase detector measures the phase difference between 

the output of the VCO and a suitable reference clock. Finally a loop filter1 completes the 

loop.  

PFD F(s)

Loop 
Filter)( oidd Kv θθ −= dtvK

t
cvo ∫=

∞−
πθ 2

iθ

oθ

dv cv oθ

 

Figure 1.3: A simple PLL includes a Phase/Frequency detector, a Loop Filter, and a 
Voltage Controlled Oscillator. 

                                                 
1 In fact the description “Loop Filter” is somewhat misleading. The objective is not to filter the phase 
information, but to establish the dynamics of the feedback loop. However, in order to follow convention, 
the expression “Loop Filter” will be used in this work. 
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The VCO gain is Kv, and has units of Hz/Volt. (An occasionally used alternative 

notation is Ko which has units of Radians/Volt.) The phase detector gain is Kd, which has 

units of Volts/Radian. The loop filter typically includes an integrator and a proportional 

path, an example for a Type II2 system is given by Equation (1.1). 

s
KKsF 2

1)( +=  (1.1)   

The loop gain is typically defined as the gain around the proportional path of the 

loop, which is given by Equation (1.2). 

112 KKKKKKK dodv ⋅⋅=⋅⋅⋅= π  (1.2)   

 Finally, the system transfer function is given by Equation (1.3). 

)(2
)(2

)(
)()(

sFKKs
sFKK

s
ssH

dv

dv

i

o
⋅⋅⋅+

⋅⋅⋅
==

π
π

θ
θ  (1.3)   

 If a divider divides down the output frequency before the phase detector, then the 

PLL transfer function becomes: 

NsFKKs
sFKK

s
ssH

dv

dv

i

o
)(2
)(2

)(
)()(

⋅⋅⋅+
⋅⋅⋅

==
π
π

θ
θ  (1.4)   

Notice that at low frequencies (s→0) Equation (1.4) simplifies to H(s)≈ N. Hence 

when PLLs are used to up-converted a reference signal to a higher frequency, then low 

frequency phase changes at the input are multiplied by N before reaching the output.  

                                                 
2 In control theory the Type refers to the number of integrators in the loop. The VCO provides one 
integrator, so PLLs are always at least Type I, and typically Type II. 
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1.4 A practical example of a modern PLL 

PFD

Divided VCO

up

down

VCO 
controlReference 

clock

RF 
output

Analog intensive 
PFD/Charge pump/filter

Divider
N / N+1

Divider Ratio
 

Figure 1.4: A standard PLL. A charge pump is used to convert the output signals form the 
phase detector to a voltage. 

Shown in Figure 1.4 is a typical implementation of an integer-N PLL.  On the 

right of the figure an oscillator generates a high frequency signal. The oscillator output 

signal is then divided down using a digitally programmable divider. The divider works by 

counting out phases of the high frequency signal. The counter is digital, and can be made 

programmable. However the count value, and hence the division ratio is restricted to 

integer numbers, as a digital counter can only count out whole phases of the output. The 

divided-down signal is then compared in phase with the reference clock, and the loop is 

completed with a charge pump and a loop filter. This is a negative feedback loop, the 

phase and hence the frequency of the divided-down signal is forced to be identical to that 

of the reference, therefore the frequency of the output signal is given by Nrefout ⋅= ωω  

where N is the division ratio of the divider.  
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At this point some observations are in order. The frequency of the output can be 

changed by changing the division ratio, N. However, N is restricted to integer numbers, 

therefore the frequency-step size at the output is restricted to the frequency of the 

reference. In other words, if a small frequency step at the output is required then a small 

reference frequency should be used. However, it is impractical to use references whose 

frequency is close to the bandwidth of the PLL. This is because a PLL is a sampled 

system, it can only represent phase information at frequencies less than Fs/2, where Fs is 

the reference frequency (This should not be mixed up with the frequency of the output 

signal, which can be order of magnitude higher). If aliasing is to be avoided, a reference 

frequency should be used which is significantly faster than the loop bandwidth. On the 

other hand, the PLL bandwidth needs to be sufficiently wide (a typical value is 100kHz) 

if the low-frequency VCO phase noise is to be suppressed. For these reasons, when using 

practical values of reference frequency, changing the value of N by an integer usually 

leads to a frequency step at the output that is too large to be used to select a channel in a 

conventional RF communication system. A second observation is that the input reference 

is typically a digital clock, useful phase comparisons can only be made on the edges of 

the reference clock3. Therefore this type of system can be considered to be a sampled 

system, even though the output is a continuous time signal. 

1.5 A first attempt at non-integer based division 

If the division ratio is set to a fractional number, then the frequency of the output 

signal is no longer restricted to integer multiples of the reference frequency. A potential 

                                                 
3 If the reference clock is a sine wave, and if the divider is not a digital divider (i.e. it also produces sine 
waves as a mixer would) then information can be extracted from the phase detector at time points other 
than the clock rising edge. 
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solution to this problem is to switch the divide ratio between different integer values so as 

to get an average divide ratio which is a fractional number. One approach is to use the 

carry out bit of an accumulator to control the divide ratio, so that the average output of 

the accumulator is equal to the input, similar to a first order Σ∆ [18]. 

PFD F(s)

Loop 
Filter

iθ dv cv oθ

Divider
N / N+1

MSB+
z-1 n-1 LSB’s

nDivider 
Ratio

 

Figure 1.5: A first attempt at a Fractional-N Synthesizer [18]. The MSB from an 
accumulator controls the divider. The LSBs are recycled so there is no DC divider error. 

This method can provide fractional synthesis, but leads to a periodic phase error. 

For example, to achieve an average divide ratio of 8.9, the accumulator output becomes  a 

repeating pattern of {9,9,9,9,9,9,9,9,9,8}. This pattern is highly periodic, and results in 

fractional spurs. Bjerede, et al., introduced the idea of cancelling out the periodic phase 

error with a second path to the output of the phase detector [19]. Differences in the gain 

of the two paths can limit the effectiveness of this technique, however this idea remains 

popular to this day, where an alternative path is often used to cancel out Σ∆ noise [20].  

Riley, et al., recognized that the accumulator in Figure 1.5 is actually a first order 

Σ∆ modulator. If the modulator is replaced with a higher order modulator, then the 
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quantization noised can be shaped to high frequencies, and effectively filtered out 

without effecting the output signal [1],[20]. Miller, et al., independently cane to the same 

conclusion [22], [23]. Using these methods the frequency of the output signal can be 

changed indirectly, by change the division ratio within the loop, without adding low 

frequency noise to the output. 

1.6 A brief introduction to the Σ∆ modulator 

In this section a brief overview of a Σ∆ modulator is given.4  
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Figure 1.6: A second order digital Σ∆ modulator, which includes two integrators, and a 
quantizer. 

A Σ∆ modulator can switch its output between different quantization levels, while 

keeping the low-frequency average of the output equal to the input. For example, in 

Figure 1.6 the architecture of a standard 2nd order Σ∆ is shown. The forward path consists 

of two integrators and a quantizer. The feedback forces the average output signal to be 

equal to the average input signal, despite the fact that the output is a low resolution bus 

(3bits) and the input is a high resolution bus (20bit in this case). The second order nature 

of the feedback system means that the quantization noise is shaped to high frequencies 

                                                 
4 For a more in-depth analysis, there are some excellent texts on this subject [46] 
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according to Equation (1.5), where n is the order of the feedback loop, E(f) is the 

quantization noise and N(f) is the quantizer noise as seen at the output [46]. 

njfTefEfN π21)()( −−=  (1.5)   

 Using a higher order feedback system results in less noise at low 

frequencies at the expense of more noise at high frequencies (which can be filtered out by 

the PLL). As an example, Figure 1.7(a) shows the input and output, and Figure 1.7(b) 

shows the spectrum of these signals if the input of the Σ∆ is a sine wave. Although at first 

glance the quantized output might not look much like the input, at low frequencies they 

are the same, as can be seen in the output spectrum. A key point is that the quantization 

noise is pushed to high frequencies, so if the output is low-pass-filtered then it faithfully 

represents the low frequency content of the input. 

 12



 

(a)

(b)  

Figure 1.7 Waveforms at input and output of the Σ∆. (b) The spectrum of the input and 
output. 
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1.7 A  conventional Fractional-N PLL(FPLL) 
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Figure 1.8: A conventional fractional-N synthesizer. In this example a Σ∆ modulator 
controls the programmable divider. 

The Σ∆ can be used in the PLL to control the average divide ratio, as shown in 

Figure 1.8. The divider itself is restricted to integer numbers, but the Σ∆ modulator 

allows us to set the average divide ratio to a non-integer or fractional number. The PLL 

has an overall transfer function which is low pass in nature, therefore the Σ∆ noise, which 

is shaped to high frequencies, is filtered out. 

This architecture derives much of its popularity from the fact that the frequency 

and phase of the output signal can be controlled and modulated using digital blocks; the 

programmable divider and the Σ∆ modulator. 
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1.8 The  programmable frequency divider 

In this section a brief introduction to the programmable divider is given. The 

programmable divider, or pre-scalar, divides the RF signal by one of several possible 

integer divide ratios. Most implementations consists of asynchronous dividers in series 

where the first divider is programmable [24],[25],[26],[27], or where all of the dividers 

are programmable [28] which can used to achieve a wider division range. The basic idea 

is that one of the dividers can “swallow” a pulse, resulting in a higher count, and hence a 

larger divide ratio. Asynchronous designs are used so that only the first divider block is 

running at the full RF frequency. An example of a 2/3 divider is shown in Figure 1.9. 

D Q
clk

D Q
clk Q

in

out

CON

Reg A Reg B

 

Figure 1.9: A simple 2/3 Divider. 

If the CON signal is low then the output of Reg A is low, and hence Reg B simply 

acts as a divide-by-2 flip-flop. On the other hand, if CON briefly goes high, then the 

circuit “swallows” an extra pulse, resulting in a divide by 3. CON can be controlled by 

the divider so that it goes high only once per output cycle, as shown in Figure 1.10.  
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8/9
 

Figure 1.10: A 8/9 bit asynchronous divider. The additional control logic tells the %2/3 to 
divide by 3 once per output period. 

By using 2/3 divider cells for each of the dividers, this idea can be easily extended 

to implement a divider which can be programmed to divide by values from 8 to 15. The 

divider used in this work is slightly more complicated, and will be described in Section 

5.5. 

1.9 Chapter summary 

This chapter began with a discussion on the applications and background of PLLs. 

Next, we introduced some of the key ideas needed to understand the basic FPLL. 

Although only a brief introduction to these concepts is provided, hopefully it gives 

enough background so that some of the more novel concepts in later chapters can be 

understood. 

In this research work, techniques are proposed and demonstrated which address 

two limitations of the FPLL modulator architecture; the reliance on analog circuitry in 

deep sub-micron technology, and the trade off between low loop bandwidth for good Σ∆ 

noise rejection, and high loop bandwidth for fast modulation rates. Chapter 2 introduces 

an all-digital phase detector, which relies on a single flip-flop for phase quantization. 
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Chapter 3 focuses on the small signal analysis of the new architecture. Chapter 4 

introduces a digital dual-modulation scheme that alleviates the tradeoff between loop 

bandwidth and switching speed. Chapter 5 discusses the physical prototype, and Chapter 

6 discusses measurements from silicon. Finally, Chapter 7 presents conclusions. 

1.10 Thesis Contributions 

This thesis covers several aspects of digital Fractional-N Phase Lock Loops. The 

broad theme of this thesis is to implement an all digital phase detector, and to take 

advantage the digital nature of the system to increase the modulation rate. The key 

contributions are listed below: 

• Digital phase detection:  In a standard FPLL an analog intensive charge 

pump and loop filter is typically required. In this work a technique has 

been developed for implementing the phase detector in the digital domain. 

• High Speed Switching: In an FPLL the speed at which the output 

frequency can be switched is limited by the bandwidth of the loop. In this 

work we propose and demonstrate a technique which breaks this trade off 

for 2-FSK switching schemes.  

• Small signal modeling: A small signal model has been developed for the 

quantizer, which allows for the derivation of the loop dynamics and phase 

noise at the output. 

• Removal of jitter peaking: Analysis of the design reveals that the proposed 

architecture avoids jitter peaking. 
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CHAPTER 2  

DIGITAL PHASE DETECTION 

This chapter introduces the new phase detection technique, and compares it with 

prior art. The focus will be on qualitative explanations, with some of the more 

quantitative derivations presented in Chapter 3. 

2.1 Background 
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Figure 2.1: A conventional fractional-N synthesizer (Reproduced from Figure 1.8). 
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We start by taking a fresh look at the FPLL shown in Figure 2.1. An FPLL system 

can be considered to be a type of digital-to-analog or more specifically a digital-to-

frequency converter, with the phase of the input clock acting as the reference, the 

frequency of the input clock corresponding to the sampling rate, the divider control 

corresponding to the digital input, and finally, the frequency of the RF signal corresponds 

to the output. It should come as no surprise that many of the challenges associated with 

building these systems in deep sub micron (DSM) processes are similar to the challenges 

associated with ADC/DAC design. In fact a typical FPLL contains a mixture of analog 

and digital sub-blocks within the loop, with implicit conversion from digital to analog. 

For example the combination of the ∆Σ and the programmable divider are used to control 

the analog phase of the divider’s output which implies the presence of a DAC. However, 

much of the loop remains analog. 

In Figure 2.1 the information extracted by the phase detector is inherently analog 

in nature, since the phase information is not synchronized to either the reference clock or 

the divided down VCO clock, and is not quantized. Although conventional XOR and tri-

state phase detectors utilize digital building blocks, a charge pump and filter are still 

required to extract useful phase-difference information. If a phase-detector with a digital 

output were available then a digital loop filter could be used in place of the troublesome 

analog filter. 

In this chapter a new method of digital phase detection is introduced. First, some 

examples of digital phase detection from the literature are discussed. Next, a method of 

using a single flip-flop as a phase quantizer is introduced. This phase quantizer scheme 

requires an extra loop, which we call a phase minimization loop. 
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2.2 A Time to Digital Converter (TDC) 

REF

CLK Δt Δt Δt Δt Δt

Q(1) Q(2) Q(3) Q(4) Q(L)
01 1 1 0e.g.

PositiveEdge(REF)=PositiveEdge(CLK)+4*Δt (+Error)

Vin

Vref

(a)

(b)  

Figure 2.2: (a) A Flash analog-to-digital converter. (ADC) (b) A simplified time-to-
digital converter (TDC), which can be considered a flash converter acting on phase. 

An example of a digital phase detector is found in [33], where a time-to-digital 

converter (TDC) uses multiple flip-flops and unit delays (in practice inverters) to 

quantize the time difference between the edges of the reference clock and feedback clock, 

as shown in Figure 2.2(b). If each inverter has a unit delay of ∆t, then the phase detector 

has a minimum phase step size of 2π∆t/T. This architecture is analogous to a flash ADC, 

where a resistor ladder divides down a reference voltage, and a set of comparators 

compares the incoming signal with each of the references as shown in Figure 2.2(a). In a 

TDC the resistors are replaced with unit delay elements, and the comparators are replaced 

with flip-flops as shown in Figure 2.2(b). There are some interesting differences between 
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these ADC configurations. In a Flash ADC the two ends of the divider ladder are at well 

defined voltages, Vref and ground, therefore the largest Integrated Non-Linearites (INL) 

will occur at the mid point at the ladder. In contrast we cannot say that the end of a TDC 

is at a well defined phase. The effects of random jitter and inverter mismatches 

accumulate as the signal progresses down the inverter chain, therefore it makes sense to 

use as short a chain as is possible. 

While TDCs have been used successfully in all-digital PLLs [36], they have some 

limitations. Firstly, the resolution and linearity are dependant on the speed and matching 

of the unit delay elements, and hence are inherently process dependant. One of the key 

motivations for this work is to reduce process dependency, and to increase the accuracy 

of the phase detector. Secondly the gain of the TDC in [36] is a function of the inverter 

delays. While these delays could be controlled with a Delay Locked Loop (DLL), this 

would add significant additional analog processing. As will be shown, a new technique 

introduced in Section 2.4 addresses these limitations.  

Recently other more complex TDC architectures have been proposed [34], which 

use techniques developed for Multiplying Delay Locked loops (MDLL) [35]. In these 

systems a Gated Ring Oscillator (GRO) is used in the TDC, which has been shown to 

shape the quantization noise to high frequencies, like a first order Σ∆. 

2.3 A single bit phase quantizer as a phase detector 

If a conventional TDC is analogous to a flash ADC, with the unit delays setting 

the quantization steps, then the proposed phase detector is analogous to an over-sampling 

1bit ADC, with over-sampling and a phase integration loop used to improve the 

performance of a coarse single-bit phase quantizer. If only a single flip-flop is used as the 
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quantizer, then the problem of mismatch between unit delay elements is eliminated. 

There are some properties of a PLL which make this approach practical. First the 

bandwidth of the loop can be made to be a small fraction of the reference sampling rate. 

Secondly the Σ∆ controlled divider adds dither, which is an important requirement of any 

over-sampled quantizer.  
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D Q
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VCO clock with 
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Reference 
clock

Filtered 
output
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Figure 2.3: (a) Conceptual overview of a 1bit ADC. (b) Using a flip-flop as a phase 
quantizer. If dither is added to the input, the quantizer’s output can be filtered, to 

reproduce the input. 

The new phase detection technique uses a single flip-flop as a phase comparator, 

while an additional negative feedback loop around the programmable divider keeps the 

phases of the two clocks aligned to within a single quantization step. On the rising edge 

of the reference clock, the flip-flop samples the divided-down VCO signal, determining 

whether the divided clock is ahead or behind the reference clock. In this way, the flip-

flop effectively acts as a one-bit phase quantizer. In Figure 2.3(b) a single flip-flop is 

used to quantize the phase difference, ∆Ф, between the reference clock and the divided 

 22



 

down VCO clock. The quantization noise of the Σ∆ controlled divider is added to the 

divided down VCO clock and this acts as dither for the phase quantizer. If this dither 

were absent and for example if ∆Ф were positive, then the output of the flip-flop 

(quantizer) would always be one, irrespective of the magnitude of the phase difference 

between the divided down clock and reference clock. In the presence of the dither, the 

output of the flip-flop is sometimes one and sometimes zero. Similar to an over-sampled 

ADC, the low-pass-filtered output of the flip-flop can be proportional to ∆Ф, depending 

on the properties of the dither. An approximately linear relationship is achieved if the 

phase difference ∆Ф is small compared with the added dither. A more detailed discussion 

of the characteristics of the dither, and its effects on the quantizer gain takes place in 

Sections 3.2 and 3.3.  

While using a single flip-flop as a phase detector is conceptually possible, there 

are some limitations which would make this scheme difficult to use without some 

additions to the loop. Firstly, the quantizer gain is a function of the probability density 

function of the Σ∆ quantizer noise. If this pdf is non-uniform then the gain of the phase 

quantizer is non-linear, particularly for large phase deviations. For this reason a new 

technique is used to keep the phase difference at the input of the quantizer small. This is 

called a Phase-Minimization Loop (PML).   

2.4 Phase Minimization Loop (PML) 

In conjunction to the use of a sampling flip-flop, an additional feedback loop is 

introduced, as shown in Figure 2.4. The new feedback loop has two purposes. Firstly, the 

new loop keeps the phase difference between the two clocks small, i.e. minimizing ∆Ф. 

For this reason the new loop is called the phase minimization loop (PML). Secondly, the 
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PML desensitizes the overall transfer function to the small signal phase detector gain. 

(Although the overall PLL keeps the average of ∆Ф at zero, the instantaneous value of 

∆Ф is a function of the bandwidth of the PLL, which cannot be set arbitrarily large.) The 

bandwidth of the inner loop, however, can be set to be significantly larger than that of the 

overall PLL, hence can do a better job keeping the two clocks in close phase alignment. 

This is necessary in order for the phase detector to behave in an approximately linear 

fashion. If the phase deviation, ∆Ф, is too large then the quantizer output becomes stuck 

at 1 or -1, and the dither will not have the desired effect. 
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Figure 2.4: New Phase detector configuration with the Phase Minimization Loop (PML). 
The quantized phase information is fed back to the input of the Σ∆. 

The one-bit output of the flip-flop is passed through a linear scaling block Kpd, so 

that the output of the quantizer is +/- Kpd. This quantized information is then fed back to 

the input of the Σ∆ modulator that controls the programmable divider, forming the phase 

minimization loop. Kpd is used to set the bandwidth of the PML.  
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The only pseudo-analog component is the decision making flip-flop, everything 

else is synchronous digital circuitry. The flip-flop should be treated in a similar fashion to 

a comparator in an ADC, as its set-up and hold times are not necessarily respected, as 

would be the case in a truly digital synchronous system. Therefore attention must be paid 

to meta-stability, gain, and other characteristics as for a comparator in an ADC. Some 

techniques to build a suitable flip-flop are discussed in [33]. However, for our design a 

flip-flop from a standard digital cell library is adequate. This digital approach does not 

rely on component matching or on any process dependant parameters such as inverter 

delays. 

From a phase perspective, the PML incorporates an integrator in its feedback path. 

This is because the quantized phase information is fed back to the frequency control of 

the divider. As phase is the integral of frequency, this implies the presence of an 

integrator in the phase domain. Referring again to Figure 2.4, the presence of this 

integrator changes nature of the transfer function from the VCO output (Фvco) to the 

output of the quantization flip-flop, and also changes the transfer function from the 

modulator input to the output of the flip-flop. A phase-domain model of the divider is 

shown in Figure 2.5, the derivation of which is discussed in [37]. 
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Figure 2.5: The small signal phase domain model of the programmable divider. It 
includes an integrator in the control path.  

The phase transfer function from the VCO output (Фvco in Figure 2.4 and Figure 

2.5) to the output of the flip-flop is now high-pass instead of all-pass, because of the 

integrator in the feedback path.  

Similarly, the transfer function between the input to the modulator (“Divider 

ratio” in Figure 2.4) and the quantizer output becomes flat instead of low-pass. Without 

the PML, the transfer function between the input to the modulator and the phase detector 

output would be low-pass, because the frequency control signal passes through an 

integration associated with the conversion to phase. However, the integrator is now 

within the forward path of a feedback loop. As shown in Figure 2.4 a digital integrator 

placed at the output of the quantizer compensates for the change in transfer function that 

the PML has caused.  

2.5 Viewed from a Delta Modulator perspective 

The PML is similar to a delta modulator, a popular ADC technique. (Several 

standard text books deal with delta modulators, such as [38], [39], [40], and [41].) It is 

worthwhile reviewing the delta modulator architecture, in order to get a better 
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understanding of the PML. In a delta modulator the forward path consists of a quantizer, 

and the feedback path includes an integrator. (In this work the integration occurs because 

phase information is fedback to the frequency control of the divider.) A standard delta 

modulator architecture is shown in Figure 2.6.   
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Figure 2.6: A delta modulator is a commonly used precursor to a Σ∆ modulator. There 
are two types of errors; slope overload and quantization error. 

The modulator consists of a feedback system with a 1bit quantizer in the forward 

path and an integrator in the feedback path. The input signal (x(t) in Figure 2.6) minus the 

feedback signal is quantized to +/-∆. The feedback keeps the input to the quantizer 

smaller than one quantization step. The key advantage to this is that a single bit quantizer 

with a step size much smaller than the signal swing can be used.  If the feedback loop is 

not included then achieving the same input range would be challenging; either a multi-bit 
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quantizer with the same step size would be needed, or a single bit quantizer with a much 

bigger step size (resulting in a much greater amount of quantization noise.)  

There are two types of noise. Firstly there is regular quantization noise, which can 

be reduced by using a smaller quantizer step size. Secondly there can be slope overload, 

which occurs when the input signal changes two quickly with the feedback being unable 

to catch up. To prevent slope overload a sufficiently large quantization step and clocking 

rate needs to be used.  

The system shown in Figure 2.6 is similar in form to Figure 2.4, when the 

relationship between the VCO phase Фvco and the phase detector output is considered. 

Both of these systems have an integrator in the feedback path. In the PML, the integrator 

consists of the conversion from the frequency domain to the phase domain i.e. Quantized 

phase information is fedback to the frequency control of the divider. In addition the 

feedback path in the PML includes a Σ∆ modulator, which also injects noise into the loop. 

Therefore the PML is similar to a delta modulator but not identical. 

2.6 Comparison between the PML and a frequency discriminator 

A similar technique is presented as part of a frequency discriminator5 in [42], 

which can be used as an RF demodulator or as part of a Fractional-N PLL [43], [44]6, in 

which the quantized phase signal is fed directly back to the divider control, and no Σ∆ is 

used in the feedback path. The lack of the Σ∆ in the feedback path means that the 

quantization step must be set by the divider step, which results in very large amounts of 
                                                 
5 In this work Phase Minimization Loop is preferred to Frequency Discriminator, as the feedback is used to 
minimize the phase difference at the input of the quantizer. 
6 Also [42]- [44] include analog integrators with charge pumps in order to implement higher order noise 
shaping of the frequency error, a step that has been avoided in this work in order to maximize the digital 
nature of the system. 
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quantization noise. In this work, the use of the Σ∆ to control the divider means that the 

combination of divider and Σ∆ can be treated as one linear block, and hence the quantizer 

step size can be chosen independently of the divider. The Σ∆ allows the average 

frequency change at the output of the divider to be smaller than just the divider itself 

would allow.  

2.7 Desensitization to phase detector gain 

Consider the feedback system in Figure 2.7, which is intended as a simplified 

representation of the PML, for explanation purposes only. The digital integrators are 

replaced with analog integrators and all loop gain terms are lumped together into two 

constants K1 and K2.  
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Figure 2.7: A simplified continuous time version of the PML feedback system. K1 
includes the phase quantizer gain. 

The phase detector gain is included in the constant K1 and therefore it is desirable 

if the closed loop transfer function is not sensitive to this constant. Consider the 

relationship between the phase signal from the VCO (In1) and the output of the system 

(Out1). If Ref and In2 are set to zero, it is trivial to show 
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This can be rearranged to give Equation (2.2). 
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Out2 is simply Out1 integrated so the final output is given by Equation (2.3).   
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Notice that in Equation (2.3) at low frequencies (s<<K1K2) the gain simplifies to -

1/K2. Recall that it is K1 that contains the phase detector gain, while K2 is made of 

constants which are well defined and stable. Therefore the low frequency gain of the 

overall phase detector is desensitized to the absolute value of the phase detector gain. For 

this reason variations in the gain of the phase quantizer affect only the bandwidth of the 

inner loop, not the gain. This is a very useful and important property of the PML, which 

could well be used in many different digital phase detection schemes. For example, as the 

TDC’s gain is process dependant, the PML loop could be used to desensitize the gain to 

process variation. This also explains why a phase detector with a poorly defined gain can 

reliably be used in the system. 

Figure 2.8 shows an overview of the new architecture with the new phase detector 

configuration. The output of the integrator goes to a DAC, which drives the analog 

control of the VCO, so as to complete the loop. Klp is a digital gain that modifies the 

bandwidth of the overall loop, while gain block Kpd modifies the bandwidth of the inner 
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loop. Notice that almost everything in the loop is now digital apart from the DAC, VCO 

and output buffer. 
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Figure 2.8: The overall architecture of the proposed FPLL, including the new phase 
detection scheme. 
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CHAPTER 3  

PHASE NOISE AND SMALL SIGNAL MODELING 

3.1 Modeling assumptions 

A key task in the development of new circuit techniques and architectures is 

deriving the small signal models for the main components, in order estimate the loop 

dynamics, and subsequently to estimate the phase noise at the output. Before beginning 

with the derivation of the small signal model, it is worth discussing some of the 

assumptions which are typically made in PLL the PLL modeling process, so that the 

limitations of the model are understood. 

The eventual model is a linear model, and non-linear behavior is ignored. For 

locked or tracking behavior this approximation is reasonable [48], however for large 

signal behavior such as achieving lock, or for large disturbances, the model is not valid. 

An FPLL contains a mixture of continuous time and discrete time blocks. The 

phase noise at the output is a continuous time signal, therefore a technique known as 

pseudo-continuous analysis is used, which involves approximating discrete time blocks 

as continuous time blocks, relying on the fact the PLL has low pass characteristics and 

only the low frequency alias of the signal need be considered [49]. 

The spectrum density is defined as the Fourier transform of the autocorrelation 

function, which exists only if the autocorrelation function is stationary. However the 
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autocorrelation of an oscillator with frequency drift is non-stationary. Therefore when 

discussing the spectrum density of an open loop oscillator, this should be taken as an 

engineering approximation of the spectrum, not a strict mathematical formulation. 

One of the key modeling tasks is to derive the approximate small signal gain of 

the phase quantizer introduced in Chapter 2. First, we discuss the small signal gain of a 

conventional phase detector.  Then the model of a tri-state phase detector will be related 

to that of our quantizer based detector, while making note of all appropriate 

approximations. 

3.2 Phase detector modeling 

A standard tri-state phase detector produces a series of pulses which whose widths 

are proportional to the time difference between the reference clock and the divide down 

VCO clock. A common modeling approximation [37] is to substitute the time width 

modulation of the output of the phase detector with fixed width, amplitude modulated 

signals, as summarized in Figure 3.1. 
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Figure 3.1: Waveforms approximating the signals at the phase detector output. 
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This approximation allows us to model the phase detector’s output as a sequence 

of impulses whose area is proportional to the phase difference. The approximation has 

little effect on the loop provided that the loop bandwidth is significantly smaller than the 

reference frequency as discussed in [29]. A general time domain model for a (tri-state) 

phase detector is given in Equation (3.1): 

∑ −∂∆≈
∞=

−∞=

k

k
k kTtttE )()(  (3.1)   

Where the pulses ∆tk are given by Equation (3.2). Note that the phases of the 

reference and divided-down VCO signals are treated as sampled signals, as the phase 

difference information is only extracted on the rising edge of the reference clock. 

[ ] [ ]( )kkTt divrefk φφ
π

−=∆
2

 (3.2)   

 From this it can be shown that the small signal gain of the tristate phase detector 

is given by Equation (3.3) which has units of seconds/radians (typically a charge pump 

and loop filter are used to convert the phase difference to voltage): 

π2_
TK tristatepd =  (3.3)   

Our objective is to develop a model for the phase quantizer which is similar in 

form to (3.3). The gain of the phase detector presented in Chapter 2 needs to be 

approximated with a linear gain. Even though the output of the phase quantizer is one of 

two values, if the output is low pass filtered then gain of the quantizer can be 

approximated, as shown in Figure 3.2. 
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Figure 3.2: In this example VCO’s input, and hence the excess phase at the output, 
increases and then decreases. The output of the phase quantizer is either 1 or -1, but after 

being low pass filtered it resembles the required phase information.  

Calculating the gain involves two steps; calculating the appropriate phase detector 

small signal gain, K, and calculating the approximate amount of quantization noise. The 

starting point for this derivation is to look to ADC analysis for estimating quantizer gain 

and noise. We start by noting that the quantizer rounds the input phase offset to +Kpd or -

Kpd where Kpd is a digitally programmable quantization word. The phase-quantizer’s low-

frequency equivalent gain can be defined as the ratio of the average phase detector output 

to the input phase difference. Note that this is an over-sampled system, the gain term to 

be derived is based on an average of the output taken over many samples, and hence it is 

only valid at low frequencies. The average phase quantizer output can be approximated 
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with Equation (3.4) where p(1), p(-1) refers to the probability that the quantizer produces 

a 1 or -1respectively7.  

( ) ( )1)1(2)1()1( −⋅=−−⋅≅ pKppKOut pdpd  (3.4)   

And the phase detector gain, K, is given by Equation (3.5), where Out is the 

average output from Equation  (3.4), and Ф is the phase from the VCO, after it has been 

divided but the divider : 

( )
)(φδ

δ OutK =  (3.5)   

The next step is to discuss the chances of the quantizer producing a positive 

output, p(1) . The quantizer produces a positive output if the combination of the nominal 

phase difference Ф, and the Σ∆ quantization noise is positive. In other words the 

probability of the phase detector producing a 1 is given in Equation (3.6) and Equation 

(3.7), where nΣ∆ is the noise added by the sigma delta modulator and pdfΣ∆ is its 

probability density function at the quantizer input:  

( ) ( )01 >+= Σ∆npp φ  (3.6)   

or 

( ) ∫ ∂−=
−

∞−
Σ∆

φ
φφ ))((11 pdfpp  (3.7)   

Thus the small signal gain is complicated by the fact that it is a function of the 

quantization noise added by the Σ∆ modulator. The next step is to approximate the 

                                                 
7 Of course the flip-flops output is not literally a 1 or -1, its 1 or 0. However, when the flip-flop produces a 
0, this is treated as a -1, so the quantizer output is +/-Kpd. 
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probability density function of the noise generated by the Σ∆. The path from the sigma 

delta modulator to the quantizer is shown in Figure 3.3: 
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Figure 3.3: (a) The path from the Σ∆ to the quantizer input (b) The phase domain model, 
which includes an integrator in the divider’s control path. 

3.3 Estimating the amount of the Σ∆ noise at the quantizer input 

Unfortunately a closed form expression for the probability density function of the 

Σ∆ noise is not available; instead some approximations are made based on simulation 

experiments. Firstly, a few observations are in order. According to Equation (3.7) the 

probability of the quantizer producing a one is a function of the pdf of the Σ∆ noise. To 

produce linear behavior, the pdf should be continuous and preferably uniform. However 

the actual output of a Σ∆ is quantized to a small number of fixed levels, therefore for a 

constant input to the Σ∆ the error (or noise) at the output is restricted to quantized levels. 

For example if the input to the Σ∆ is 0.73, the output is 1 or 0. In this case the 

quantization error will always be -0.73 or 0.13. However, what is needed is a noise 

source with a continuous pdf. Luckily a solution to this problem comes from the 
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realization that the Σ∆ quantization noise passes through an integrator before reaching the 

phase quantizer, as shown in Figure 3.3(b). It is the pdf of the output of the integrator 

which is of interest. In order to approximate the pdf of the noise generated by the Σ∆ 

modulator a simulation experiment, shown in Figure 3.4, is performed. 

Σ∆Const +- 1

1

1 −

−

− z
z

Histogram
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Digital 
Integrator

 

Figure 3.4: Simulation experiment setup. The input is subtracted from the output of a Σ∆ 
modulator, leaving only the error. This is then integrated, and plotted on a histogram. 

In this experiment, the input to a Σ∆ modulator is set to a DC value. The DC 

value at the input is subtracted from the output, leaving just the error, or quantization 

noise. This noise is then passed through a digital integrator, which models the effects of 

the conversion from frequency control to phase control. The output of the integrator is 

sampled and the results are plotted in histogram form in Figure 3.5: 
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Figure 3.5 Histogram of samples from the integrator output.  

On the left y-axis of Figure 3.5 is the population per bin. On the right y-axis is the 

population per bin expressed as its equivalent pdf. As can be seen the shape of the 

histogram is approximately triangular, not uniform as would be preferred. However the 

pdf can be approximated as a uniform value for small phase deviations, as part of a small 

signal analysis. (The approximation is shown in Figure 3.5 as the dotted line.) Note that it 

is the probability when then input is close to zero that is of most interest. Thus the pdf of 

the noise is approximated as having a constant value of 1, according to the right hand y-

axis. As is the case in small signal analysis, this is a linear approximation of a non-linear 

transfer function, and is only valid for small phase deviations. According to Figure 3.3(b) 

in addition to the digital integration, the noise passes through a gain of 2π and is divided 

by Nnom before reaching the phase quantizer, and hence the pdf at the input to the 

quantizer has an approximate value of Nnom/2π, with a range of +/- π/Nnom (for any pdf the 
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total area must be 1, so for a uniform pdf with a magnitude of X, then the range must be 

from +/- 0.5/X.). This can be combined with Equation (3.7) to get Equation (3.8). 

( ) ∫ ∂−≈∫ ∂−=
−

−

−

∞−
Σ∆

φ

π

φ
φ

π
φφ

nomN

nomNppdfpp )
2

(1))((11  (3.8)   

This can be simplified to give Equation (3.9). 

( )
π

φ
2

5.01 nomNp ⋅+≈  (3.9)   

Combining this with Equations (3.4) and (3.5) results in the approximate small 

signal gain. 

π
nom

pd
NKK =  (3.10)   

At this point a few comments are appropriate. The expression for small signal 

gain is calculated using a combination of derivations and simulation results. Because of 

the approximation in calculating the pdf of the noise, this expression is only valid for 

small phase deviations. However, as discussed in 2.7, the quantizer is nested in a 

feedback loop which includes an integrator; therefore the overall phase detector gain is 

desensitized to the quantizer gain. This is advantageous, as the derived gain can only be 

used as an approximation. 

3.4 Transfer function of the other blocks 

Now that a model for the gain of the phase detector has been developed, we turn 

our attention to some of the other blocks. The phase at the output of the VCO can be 

summarized with Equation (3.11). 
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)(2)( ttft outnomvco φπφ +⋅=  (3.11)   

Where fnom is the nominal VCO frequency and Фout is the excess phase, given in 

Equation (3.12).  

( )∫ ∂=
t

invcoout ttVKt
0
2)( πφ  (3.12)   

The small signal model for the divider is shown in Figure 3.3. This can be 

summarized by observing that the phase at the output of the divider is given by Equation 

(3.13), which is derived in [37]. Here n[i] is the ith sample of the Σ∆, Фdiv[k] is the phase 

of the kth output of the divider, and Фout[k] is the excess phase of the VCO output. 

])[]1[2(1][
1

kmn
N

k out
k

mnom
div φπφ +∑ −−=

=

 (3.13)   

 The small signal models for the divider, the phase detector, the VCO and the 

divider are put together to give a complete small signal model, as shown in Figure 3.6. 

The two loops are labeled Loop 1 (which is the PML) and Loop 2. Loop 1 consists of the 

phase detector, divider and Σ∆, while Loop 2 consists of the digital integrator, the VCO, 

and Loop 2 also includes Loop 1. 
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Figure 3.6: An overview of the small signal model for the FPLL. 

As can be seen the model contains a mixture of continuous time and discrete time 

components. For simplicity, the poles at the output of the DAC are not included. These 

higher order poles are placed well outside the loop bandwidth, and hence have little effect 

on the loop settling characteristics (The effects of the poles are included in the numerical 

calculations in Chapter 6). To analyze Figure 3.6 pseudo-continuous analysis can be used, 

which involves modeling discrete time components as continuous time blocks. The 

relationship between the Fourier transform of a continuous time signal, Y(f), and its 

sampled equivalent, Ŷ(f), is given by Equation (3.14).   

∑ −=
∞

−∞=k T
kfY

T
fY )(1)(ˆ  (3.14)   
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The discrete time transform consists of the continuous time transform replicated 

in frequency, and scaled by the sampling frequency. However the bandwidth of the loop 

must be a small fraction of the sampling rate, hence all replicas of the transform are 

suppressed, except for the fundamental. Therefore the transform from continuous domain 

to the sampled domain can be approximated by scaling the signals by 1/T. An analog 

model needs to be developed for the digital integrators. It has been shown in [37] that a 

digital integrator can be approximated using Equation (3.15). 

T
ffor

Tfjz
z 1

2
1

1 1

1

<<≈
− −

−

π
 (3.15)   

Using this model the loop dynamics can be analyzed. 

3.5 The loop transfer functions 

In this section the transfer function of each loop will be derived. In Figure 3.6 the 

two loops are labeled Loop 1 and Loop 2. The open loop (A1(f)) and closed loop (G1(f)) 

transfer functions for Loop 1 are given by Equation (3.16) and Equation (3.17). 

Tfj
KKN

z
z

N
fA pdpdnom

nom ππ
π ≈

−
⋅= −

−

1

1

1 1
21)(  (3.16)   
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⎠

⎞
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⎝

⎛
<<≅

+
=

Tfj
K

ffor
fA

fAfG pd
π

1
)(1 1

1
1

 (3.17)   

The unity gain frequency of this loop can be controlled using Kpd as shown in 

Equation (3.18): 
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ffA pd
π

≈= @1)(1
 (3.18)   

 The next step is to focus on Loop 2, G2(f). For this, the inner loop is replaced 

with its transfer function, from the divider input to the quantizer output. This is given by 

Equation (3.19). 

jfTfG
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fG
inDivider

PDout )(

1
2

)(
_ 1
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1
1 ≅

−

=

−

−
π

 (3.19)   

A block diagram for Loop 2 is shown in Figure 3.7. Loop 1 has been replaced by 

its equivalent transfer function, from Equation (3.19). As will be explained in Section 3.9, 

the phase of the reference signal is gained by before being inserted into the loop.   
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Figure 3.7: Overview of small signal model for outer loop (Loop 2), with Loop 1 
replaced by its equivalent transfer function. 

Similar to the inner loop the open loop gain is given by Equation (3.20). 

( ) T
z

zKfjfTG
Tjf

KfA lp
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−
⋅⋅⋅= −

−

1

1

12 1
1)(  (3.20)   
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Using Equation (3.15) this can be simplified to the transfer function given by 

Equation (3.21). This results in the closed loop transfer function given in Equation (3.22). 

fj
KKfG

fA lpvco
π2

)(
)( 1

2 ≈  (3.21)   

 

( ) ( )
)(1 2

2
2 fA

fAfG
+

=  (3.22)   

Equations (3.16), (3.17), (3.21) and (3.22) can be combined to get the overall 

transfer function given by Equation (3.23). 

( )
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KKK
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ss

KKK
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22

2

2
2

++
=

 
(3.23)   

This can be put in a more traditional form, to give (3.24). 

( ) 22

2

2
2 nn

n

ss
sG

ωζω
ω

++
=  (3.24)   

where the natural frequency is given by Equation (3.25), and the damping factor 

is given in Equation (3.26). 

lpvcopdn KKK
T
2

=ω  (3.25)   

lpvco

pd
KTK

K
2

=ζ  (3.26)   
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Notice that Equation (3.24) contains no zeros, and hence it can be designed to be 

completely free of gain peaking, as long as ζ>0.707. This is an unusual property for a 

PLL, and will be discussed further in Section 3.6. 

3.6 Gain (and Jitter) peaking 

In Section 3.5 the closed loop response of the loop is derived, as given in 

Equation (3.24). Notice that this equation is all pole, and there are no zeros. This is in 

contrast to most second order PLLs, which typically have a closed loop response as given 

by Equation (3.27). 

( ) 22

2

2
2

nn

nn

ss
ssG

ωζω
ωζω
++

+
=  (3.27)   

In a Type II second order PLL the zero is required to stabilize the loop. In 

addition to stabilization, the zero also causes gain peaking [48].  
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Figure 3.8: A typical response for a second order system including gain peaking. 
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If gain peaking is present, then noise within a small bandwidth undergoes some 

amplification, which is undesirable in applications which require a number of PLLs to be 

placed in series, such as repeaters. (For this reason gain peaking is often referred to as 

jitter peaking) Gain peaking can be reduced by increasing the damping factor, ζ, but for a 

second order Type II system with a stabilizing zero the gain peaking can never be fully 

eliminated. In series repeaters jitter can grow exponentially due to jitter peaking [50]. In 

[51] and [53] a dual loop architecture is used to remove jitter peaking. While the 

architecture in [51] is very different to this work, analysis of the two transfer functions 

reveals the dual loop has the same effect on gain/jitter peaking. This architecture, 

summarized in Figure 3.9, uses two loops, and is named a Delay- and Phase-Locked 

Loop (D/PLL). The idea is that each of the loops performs a different function. The 

Delay Locked Loop (DLL) forces the phase of the fedback signal to be identical to that of 

the incoming signal, using a Voltage Controlled Phase Shifter (VCPS). As with any DLL, 

lock can only be achieved if the DLL clock has identical frequency to that of the 

incoming signal. The second loop is a PLL, which indeed forces the frequency of the 

feedback signal to be identical to that of the inner loop. 

In this type of PLL the incoming signal is a raw data stream, which in effect is a 

random stream of ones and zeros. Part of the motivation for this type of architecture is to 

break the link between jitter tolerance, the amount of allowable jitter on the input signal 

that the PLL can tolerate with out loosing lock, and jitter rejection, the amount of filtering 

the PLL can do. This type of dual loop architecture breaks this link. 
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Figure 3.9: Simplified architecture for a D/PLL. There are two feedback paths, one 
through the VCO, and the other through the Voltage Controlled Phase Shifter (VCPS). 

As shown in [51] the phase relationship between input and output is given by 

Equation (3.28). 

( )
KsKs

KsH
in

out
++

==
τφ

φ
2

 (3.28)   

Where K=KDKO and τ=KФ/KO in Figure 3.9. Typically if a feedback system 

contains two integrators, then there must also be a stabilizing zero. However, if the loop 

is analyzed in terms of the total feedback signal, then there would be a stabilizing zero, 

such as in Equation (3.29). 
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It is the relationship between input and output in Equation (3.28) which is of 

importance. 

Although this system appears to be very different to Figure 3.6, if Figure 3.6 is 

redrawn in Figure 3.10 it can be seen that the two systems have the same form, and hence 

should have the similar jitter transfer functions. In Figure 3.6 there are two different 

digital integrators. However both integrators have inputs connected to the output of the 

phase detector, therefore in Figure 3.10 these integrators can be drawn as one. The major 

difference between Figure 3.10 and Figure 3.9 is the 1/Nnom in the feedback path of 

Figure 3.10. This is because the frequency of the input and outputs are identical in [51], 

there is no divider.  

In [51] (and Figure 3.9) the VCO gain KO has the units Radians per Volts. In this 

work VCO gain, Kvco, is expressed in Hz per Volt, which explains the slightly different 

form of Figure 3.10. For more details on notation conventions see [48]. 
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Figure 3.10: Redrawn version of new architecture. The digital integrator represents both 
the integrator at the output of the flip-flop, and the integrator caused by the divider. 

3.7 Additional comments on PLL Type 

As discussed in Section 3.5, Loop 2 is a Type I feedback system (it contains a 

single net integrator), while most PLL’s are Type II or higher. The reason that most 

PLL’s must be Type II is because of a subtle DC range issue at the output of the phase 

detector [52], [48]. For example if the control voltage of a VCO needs to move from 0V 

to 1V to achieve lock, then in a Type I PLL this must mean the output of the loop filter 

must be able to reach 1V.  The maximum phase difference that can be tolerated at the 

input of a phase detector is +/-π/2, phase differences greater than this will case cycle slips. 

Therefore if the output of the loop filter is to reach 1V without cycle slipping, then the 

product of the loop filter and phase detector gain must be at least 2/π (Volts/radian). On 
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the other hand, the gain also sets the PLL bandwidth. For a Type I PLL, a high gain is 

required to achieve a reasonably wide tuning range, and a low gain is required to limit the 

loop bandwidth. For example, if the VCO tuning range is 100MHz/V, the division ratio is 

20, and the loop filter/phase detector gain is 2/π, then the loop bandwidth will be at least 

100e6/10*(2/π)=3.1847MHz, which is too large for many applications.  If a second 

integrator is used, as in a Type II system, then the net phase difference at the input of the 

phase detector will be forced to zero, and the bandwidth can be set independently of the 

phase detector range. 

In this work, the phase detector (or phase quantizer) is inside a local feedback 

loop (Loop 1). The feedback has the effect of differentiating the phase detector’s output, 

to recover the required phase difference information; a digital integrator is placed at the 

output of Loop 1, as seen in Figure 3.6. The local feedback loop (Loop 1) forces the 

average phase difference at the input of phase quantizer to zero, irrespective of the value 

of the output of the digital integrator. For this reason Loop 2 need only be Type I. 
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3.8 Methodology for calculating output phase noise 
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Figure 3.11: Small signal model incorporating all of the noise sources which are 
considered. 

In Figure 3.11 the small signal model is redrawn, with all of the noise sources 

added. Some of these noise sources are discrete time, and some of them are continuous. 

In this section a method of calculating the noise at the output will be discussed. [37] 

introduced a method for calculating the noise at the output based on the loop transfer 

function, G(f). The loop transfer function can be used as part of a compact formulation 

for any of the transfer functions, and hence is very useful. For example consider the 

feedback system shown in Figure 3.12. 
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Figure 3.12: A brief review of feedback systems with multiple inputs. (a) System 
overview with two inputs. (b) Representing each of the transfer functions in terms of G(f). 

First, we quickly review how to deal with feedback systems with multiple inputs, 

similar to [37]. In Figure 3.12 there are two inputs, Ф1 and Ф2 which both affect the 

output. Now suppose that the loop transfer function has already been calculated as G(s). 

By definition Фε/Ф1=G(s), and therefore Фout/Ф1=G(s)/B(s). It is also desirable to know 

the transfer function for Ф2 in terms of G(s). The transfer function for Ф1is used to help 

derive the transfer function for Ф2. We start by determining what signal could be added 

to Ф1 to have the same effect on the output as Ф2 has. The answer is Ф2 divided by the 

transfer function from Ф1 to Ф2. If follows that Фout/Ф2= G(s)/(B1(s)A1(s)). In this way 

the transfer function for a signal added to the loop at any point can be easily calculated in 

terms of G(s). In this example the transfer functions are straight forward to calculate, 

however this method can simplify the derivation for more complex loops with many 

inputs.  

Next consider the more complex scenario of using two loops, labeled Loop 1 and 

Loop 2 in Figure 3.13(a). Again there are two inputs Ф1 and Ф2. How should the transfer 

function from an insertion point in Loop 1 to the output be calculated? The derivation 

 53



 

takes place in two steps. Firstly we calculate the transfer function from an insertion point 

in Loop 1 to an insertion point in Loop 2. Secondly we calculate the transfer function to 

get from the insertion point in Loop 2 to the output. As can be seen in Figure 3.13(a), Ф1 

is added to the Loop 1. The transfer function between Ф1 and Ф2 can be calculated, so 

that both signals are inserted into the loop at the same point in Loop 2 as seen in Figure 

3.13(b). Next the transfer function from Loop 2 to the output can be calculated in terms 

of G2(s) as in Figure 4.3(c). 
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Figure 3.13: Calculating the output phase noise for a dual loop (a) System overview (b) 
Converted into a single loop (c) overall transfer function, simplified. 

To summarize, to calculate the noise at the output caused by a noise signal 

inserted into the inner loop, two steps are required. The first step is to calculate the 

transfer function from the insertion point to the output of the first loop. The second step is 

to calculate the transfer function from this point to the output. This method is used to 
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calculate the phase noise at the output due to each of the noise sources. The transfer 

functions G1(s) and G2(s) have been are calculated in Section 3.5. 

3.9 Reference transfer function 

In this section the loop gain equations are used to derive the gain between the 

reference input (Фref in Figure 3.11) and the output phase. This derivation takes place in 

two parts. First the transfer function (TF1) between the reference input and the output of 

the inner loop is calculated, followed by the transfer function between the output of the 

inner loop to the output of the outer loop (TF2). This can be summarized in Equation 

(3.30). 

][21)()( kTFTFf refrefout φφ ⋅⋅=  (3.30)   

Фout(ref)(f) is the phase change at the output due to Фref[k] (This is a discrete time 

source which can be approximated as a continuous time source with a value of T Фref[k]). 

It can be shown from Figure 3.11 that TF1 is given by Equation (3.31), and TF2 is given 

by Equation (3.32), where FBTF1 refers to the elements in the feedback path from the 

output of Loop 1 to the references, and FBTF2 refers to the feedback path from the output 

of Loop 2 to the output of Loop 1.  
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Equations (3.30), (3.31) and (3.32) can be combined to get 
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Or if TФref[k] is expressed as a continuous time source, Фref(f). 

nom
ref

refout NfG
f

f
)(

)(
)(

2
)( ≅

φ
φ  (3.34)   

As would be expected, the output phase is equal to the input phase multiplied by 

the nominal division ratio, and filtered by the outer loop transfer function G2(f).   

3.10 Divider Σ∆ quantization noise 

The same methodology can be used to calculate the relationship between the 

divider’s Σ∆ and the output. Although the methodology is the same as is used in Section 

3.9, in this case TF1 and TF2 have different values. 

][21)()( knTFTFfout Σ∆Σ∆ ⋅⋅=φ  (3.35)   

Фout(Σ∆)(f) is the phase change at the output due to the Σ∆ noise, nΣ∆[k]. The two 

new transfer functions are given in Equations (3.36) and (3.37). 

)(1 1 fGTF =  (3.36)   
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These can be put together get Equation (3.38). 

jfT
fG

knT
fout )(
][
)( 2)( =

⋅ Σ∆

Σ∆φ  (3.38)   

 56



 

This shows that the Σ∆ noise is integrated, and filtered by the loop G2(f). This 

result is typical for FPLLs. Because of this integration the order of the Σ∆ is typically 

chosen to be at least one more than the order of the FPLL, as the integration will subtract 

one from the order of the Σ∆ noise shape. 

3.11 Phase detector flip-flop quantization noise 

Once again, the same methodology is used. First calculate transfer function from 

the output of phase detector to the output of the first loop, and from there calculate the 

transfer function to the output. The noise at the output due to the phase detector is given 

by Equation (3.39).  

][21)()( kTFTFf quantquantout φφ ⋅⋅=  (3.39)   

Фout(quant)(f) is the phase change at the output due to Фquant[k]. Similar to before 

TF1 and TF2 are given by Equations (3.40) and (3.41). 

)(11 1 fGTF −=  (3.40)   

Reducing the bandwidth of the loop is an effective method of reducing phase 

quantizer noise. 
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Equation (3.39), (3.40) and (3.41) can be combined to show that the noise is 

filtered by the loop G2(f). 7 
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Reducing the bandwidth of the loop is an effective method of reducing phase 

quantizer noise. It also appears at first glance that increasing Kpd, will decrease the noise. 

However, changing Kpd affects both G2(f) and the amount of quantization noise that is 

produced. Also, notice that this transfer function is the same as for the reference input, 

but scaled by the gain of the phase quantizer as would be expected. 

3.12 VCO phase noise 

The VCO phase noise as seen at the output is given in Equation (3.43). At low 

frequencies the VCO noise will be suppressed by the PLL. At higher frequencies, well 

outside the loop bandwidth, the VCO noise will be unfiltered.   

( ))(1)()( 2)( fGtf VCOVCOout −⋅= φφ  (3.43)   

3.13 DAC Σ∆ noise 

Similarly it can be shown that the transfer function for the DAC quantization 

noise is given by Equation (3.44).  

)(
)(
)(2)( _

1

2
)_( f

fGK
fGf DAC

lp
DACout Σ∆Σ∆ ⋅= φπφ  (3.44)   

 

3.14 Summing the noise sources to get the total output phase noise 

The next step is to add these noise sources together. Some of the noise sources in 

the FPLL are continuous time sources and others are discrete time. The output noise 

caused by a continuous time noise source can be calculated using Equation (3.45), where 

Sin(f) is the input noise nose power, and H(f) is its transfer function from the input to the 

output. 

 58



 

)()()( 2 fSfHfS inout =  (3.45)   

The output noise caused by a discrete time noise source can be calculated using 

Equation (3.46). 

)()(1)( 22 fTj
inout eSfH

T
fS π=  (3.46)   

Next, the values of the actual noise sources are considered. The VCO noise is 

measured from the silicon prototype, with the PLL turned off. The divider’s Σ∆ noise is 

given by Equation (3.47), which is the shape for quantization noise [46], where m is the 

order of the Σ∆ (m=0 if there is no noise shaping). 

( ) 12/1)( 22
_ ∆⋅−= −
Σ∆

mfT
in efS π  (3.47)   

The noise at the output due to the divider’s Σ∆ this noise source is given by 

Equation (3.48).  

)()(1)( _

2
2

_ fS
f

fG
T

fS inout Σ∆Σ∆ =  (3.48)   

The same calculation can be done for the phase detector noise, with m=0, and 

∆=2Kpd. The noise from the DAC is similar to Equation (3.47), except the step size is 

equal to ∆=1/2bits, where “bits” refers to the resolution of the DAC, and m=1 as this Σ∆ is 

a first order system. The noise source powers can be summed to generate the total output 

noise power. 

)()()()()( ____ fSfSfSfSfS dacoutvcooutpdoutoutout +++= Σ∆  (3.49)   
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The calculated phase noise at the output is compared with the phase noise 

measured from a prototype in Chapter 6. 
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CHAPTER 4  

HIGH SPEED FREQUENCY MODULATION 

4.1 Introduction 

A limitation of the Fractional-N PLL architecture is the difficulty of achieving 

high-speed modulation of the RF output frequency/phase without widening the loop 

bandwidth. The Σ∆ modulator, used to control the divider, injects high-pass-shaped 

quantization noise into the loop, but the PLL itself has a low bandwidth, which naturally 

rejects the high frequency portion of the Σ∆ noise. Similarly, the PLL’s low bandwidth 

filters high frequency jitter on the reference clock. There are several other noise sources 

which can potentially benefit from a low bandwidth PLL, such as phase detector noise, 

divider noise, etc. If rejecting all of theses noise sources is critical, then a low bandwidth 

PLL is required. On the other hand, the average divide ratio should be modulated at a rate 

less that PLL bandwidth, otherwise the modulation signal is filtered by the PLL’s low 

pass characteristic. If the PLL bandwidth is widened to accommodate faster modulation, 

any reference jitter or Σ∆ quantization noise undergoes less filtering, and this can degrade 

the phase noise of the output signal. 
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Figure 4.1: A PLL is often used to filter noise sources. In particular, high frequency noise 
sources such as Σ∆ noise can be effectively filtered by the PLL’s low loop bandwidth. 

4.2 Comparison with other techniques 

Several techniques have been proposed to overcome these shortcomings; however 

all of these have limitations. In pre-emphasis, the frequency control signal is passed 

through a transfer function that is the inverse of the PLL’s, in order to compensate for the 

effects of the PLL filtering. This technique can compensate for the limited loop 

bandwidth [29],[30],[31] but requires knowledge of the loop’s frequency response. The 

pre-emphasis filter is implemented as a digital filter which represents the inverse of the 

analog filtering characteristics of the PLL. If the loop characteristics are not exactly 

known, then the information to be transmitted undergoes distortion. Typically PLLs 

contain a significant number of blocks that can vary significantly due to process, voltage 

and temperature variations (PVT) and therefore it is difficult to predict a priori exactly 

what the loop characteristics will be. 
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Figure 4.2: (a) Overview of pre-emphasis, where a digital filter is used to estimated the 
approximate inverse of the PLL characteristics. (b) Exact knowledge of the loop is 

needed, or the filters will mismatch. 

For example in Figure 4.2(a) an overview of the concept is shown. In this case the 

PLL is modeled as having a single pole. In practice, PLLs can have several poles and 

zeroes, which significantly complicates the cancellation scheme. As long as f1 is equal to 

f2 then there is no distortion of the modulation data. In Figure 4.2(b) the net transfer 

function is shown, this time with f1 mismatching with f2. As can be seen this results in a 

slight magnification of the signal at higher frequency. 

Another method is two-point modulation, where in addition to modifying the 

divide ratio, a modulation signal is added directly at the input of the VCO [32]. The 

concept overview is shown in Figure 4.3. If the frequency control word is changed then 

 63



 

this will eventually lead to a change in VCO control voltage. If the gain of the VCO is 

exactly known, then in addition to introducing a signal into the divide ratio control, a 

signal is added directly at the VCO input which will cause no net disturbance in the loop. 

This can be explained as follows. The signal added to the input VCO causes an increase 

in the frequency of the output signal. The same signal is added to the input of the divider, 

which causes the divider to divide by a larger number. If the gain of the two paths is 

matched, then the frequency and phase of the output of the divider does not change, the 

increase in the frequency of the VCO output is exactly matched by the increase in the 

division ratio. 

Σ∆

Divider
N / N+1

PFD
Ref RF

Filter +

DAC

+Channel 
Select

Transmit 
Data

 

Figure 4.3: Overview of two point modulation. The transmit data is added both to the 
input to the Σ∆ and to the input to the VCO. 

 However, this system suffers from similar problems to pre-emphasis. Unless the 

value of the injected signal exactly corresponds to the VCO gain, then the signal will 

undergo distortion. Least mean square (LMS) based calibration techniques show much 

promise, but these can also have very slow associated time constants [45]. 
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4.3 The proposed scheme 

As described above, the requirement for a wide fractional-N PLL loop-bandwidth 

for high-speed modulation, conflicts with the low loop bandwidth favored for suppression 

of Σ∆ noise, phase detector noise, and reference jitter. In this section, a new technique 

which breaks the link between loop-bandwidth and the modulation rate of a frequency-

shift-keying scheme is presented. In a standard FPLL, the output frequency is modified 

by changing the division ratio control, eventually leading to a change in the VCO control 

voltage. In the proposed scheme, knowledge of the exact loop dynamics is not required. 

Instead, using some simple signal processing, the required change at the input of VCO is 

learned from previous changes in VCO control in response to changes in the modulator 

input. In summary, this is a form of two point modulation with a simple calibration 

scheme. 
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Figure 4.4 (a): Simplified PLL. Input to VCO is analogous to the output frequency. (b): 
Plot of required output versus actual output. 

Consider the case where the loop is to switch between two different frequencies, 

A and B, such as for 2-FSK, and assume that the loop frequency is initially settled at the 

average of A and B. If the bandwidth of the loop is not large enough in a standard FPLL 
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then the frequency never settles correctly to A or B (Figure 4.4(b)). In Figure 4.4(a) a 

simplified version of the PLL is shown. The input to the VCO can be considered to be 

analogous to the frequency of the output signal, and if the output frequency is to switch 

instantaneously then the input to VCO must also switch instantaneously. For example if 

the output frequency is to change by a frequency ∆f, then the corresponding voltage 

change at the input of the VCO is given in equation (4.1). 

vcoK
fV ∆

=∆  (4.1)   

Therefore, if the correct step is to be added to the input of the VCO then the gain 

of the VCO must be known. In the proposed scheme, at the end of each bit period the 

digital value that determines the VCO input is sampled. When switching between the two 

desired frequencies, A and B, the most recently sampled values are subtracted from each 

other. 
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Figure 4.5 (a): PLL with Delta added. (b): Plot of output frequency. 

The result of this subtraction (“Delta” in Figure 4.5(a)) is added to the VCO 

control for frequency A, to give an initial digital VCO control value for frequency B. 
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To analyze the settling behavior consider the diagram in Figure 4.6. We start by 

breaking the frequency switching segments into pairs, the first segment in the pair is 

when the PLL attempts to switch to frequency A, and in the second segment the PLL 

attempts to switch to frequency B. The value of Delta is updated twice in each cycle, on 

the transition from A to B, and again on the transition from B to A. Therefore there are 

two values of delta in each cycle, Deltaa and Deltab. The two values within each cycle are 

given by Equations (4.2) and (4.3). 
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Figure 4.6: Detailed timing diagram of the settling characteristics of the loop. 

 

]1[][][ −−= iVBiVAiDeltaa  (4.2)   

 

][][][ iVBiVAiDeltab −=  (4.3)   
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 Where VA[i] corresponds to the VCO input when the transmitter attempts 

to switch from frequency A to B for the ith time index (i.e. at the end of a bit period for 

frequency A), and similarly VB[i] corresponds to the VCO input when the transmitter 

attempts to switch from frequency A to B for the ith time index. Also, X[i] refers to the 

amount that PLL has change the VCO input during the ith
 time that A is the required 

output frequency. In other words it is simply the results of the normal settling behavior of 

the loop, as shown on Figure 4.6. Similarly, Y[i] is the amount that the VCO input has 

changed when B is the required output frequency. The relationship between VA, VB, 

Deltaa and Deltab is given in Equations (4.4) and (4.5). 

][][][][ iYiDeltaiVAiVB a −−=  (4.4)   

  

][]1[]1[][ iXiDeltaiVBiVA b +−+−=  (4.5)   

We can combine Equations (4.2), (4.3), (4.4), and (4.5) to get Equations (4.6) and 

(4.7). 

][]1[][ iYiVBiVB −−=  (4.6)   

 

][]1[][ iXiVAiVA +−=  (4.7)   

As shown in Equation (4.7) , the current value of VA is equal to the previous value 

of VA plus X, as explained above, which is the amount the loop has changed the VCO 

input as the loop attempts to settle to frequency A. In other words X[i] is the loop’s 
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attempt to get from VA[i-1] to the value of the VCO input for frequency A. While the 

loop is not able to settle fully in one cycle, as long as X[i] has the correct polarity (i.e. the 

loop has moved in the right direction) then VA[i] will be closer to the correct value than 

VA[i-1] was. In practice it only takes a couple of cycles before the loop fully converges. 

Notice that Delta is only updated on the edges of data transition, therefore in the absence 

of data transitions, the new switching scheme has no effect on the loop. Furthermore the 

switching scheme does not effect the loop dynamics, and does not add extra poles or 

zeros, as LMS based schemes can.  

 

Figure 4.7: Behavioral simulation results. The top plot shows delta, which starts at zero 
and quickly grows to the required size. The bottom plot shows the ideal and the actual 

VCO input waveforms. 
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In Figure 4.7 some simulation waveforms are shown. The top plot shows Delta as 

it starts from zero and quickly grows. In the bottom plot the ideal and actual input voltage 

to the VCO is shown in the bottom plot. As can be seen, similar to Figure 4.6, the input 

voltage initially looks like a filtered version of the required signal but quickly converges 

to the correct value. In this case it only takes around 8 bit periods for Delta to converge to 

the correct value. 

4.4 Implementation details 
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Figure 4.8: Details of the sampling scheme. 

A more detailed block diagram of the sampling scheme is shown in Figure 4.8. 

The control path for the VCO is split into two paths, one path for each of the two 

frequencies, A and B. Each path contains a Σ∆ DAC, the output of which goes to an 

analog multiplexer. The two DAC control signals are sampled when the transmission data 

transitions from zero to one and from one to zero, which corresponds to the switching 

instants from frequency A to B and from frequency B to A respectively. The difference, 

Delta, is then added to the signal from the phase detector. 
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Multiplexing between the two DACs is done in the analog domain after the 

reconstruction filters. The filters contain two higher order RC poles to filter the DAC Σ∆ 

noise. As the input to the VCO is required to change instantaneously, the multiplexer is 

placed after these poles. The poles at the output of the DACs are placed well outside the 

bandwidth of the PLL so that these do not have much effect on the settling characteristics 

of the loop. The inputs to the sampling system shown in Figure 4.8 include a 16 bit 

unsigned word from the phase detector, and the raw data stream.  The output is the analog 

control voltage of the VCO. Each first order Σ∆ modulator converts the 16bit bus into a 

5bit bus, which controls a 5bit string DACs. 

The complete architecture including the digital phase detector and the new 

sampling scheme is shown in Figure 4.9. The frequency switching method allows fast 

frequency modulation within a low loop bandwidth, as the frequency switching is not 

limited by the bandwidth of the loop, provided that the loop needs only to switch between 

a small number of discrete frequencies. This also demonstrates the usefulness of having 

all of the relevant signals in the digital domain. An analog equivalent of the above 

scheme is possible in principle, however implementing the samplers, adders and 

subtractors as analog circuits would introduce debilitating additional complexity. Almost 

all of the additional circuitry can be included as part of the synthesized logic, the only 

additional analog circuitry required is the extra DAC and multiplexer. 
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CHAPTER 5  

DESCRIPTION OF PROTOTYPE 

Figure 4.9 shows the proposed architecture, this Chapter discusses the physical 

implementation of this architecture. While much of the system in  Figure 4.9 is digital, 

and can be implemented using synthesized verilog, there are several analog components 

such as the VCO, DAC, output buffer, etc which will be described in this Chapter. The 

design of the programmable divider will also be described. This is an asynchronous 

divider; it is not part of the synchronous logic. A commercially available 0.13µm mixed-

mode CMOS process was used to implement these blocks. A notable aspect of this design 

is that it is fully integrated, no external components are used. 

5.1 Overview 

A reference clock of 185.5MHz is used, with a nominal output frequency 

2.24GHz, which corresponds to a nominal division ratio of Nnom=12.075. Kpd is set to 

0.01, and the loop gain (Klp) is set at 0.025, resulting in a loop bandwidth of 142 kHz. 

The VCO analog gain is 25MHz/V, and an additional 500MHz tuning range is achieved 

using digital switches which add or remove VCO capacitance. The analog tuning range is 

deliberately made small in order to prevent DAC quantization noise from excessively 

contributing to the output phase noise. A relatively high reference frequency is required, 
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so that the phase quantizer is adequately over-sampled. Each doubling of over-sampling 

rate leads to a 3dB reduction in in-band quantization noise. 

5.2 A Σ∆ digital to analog Converter 

In order to get from the digital to the analog domain, a first order Σ∆ modulator 

controls a simple 5 bit string DAC.  If a higher frequency reference clock or a DAC 

quantizer with more bits is used, then the VCO analog tuning range can be increased 

without degrading output phase noise.8 A block diagram of the Σ∆ DAC is shown in 

Figure 5.1. The first block is a first order Σ∆ which converts a 16 bit digital word in into 

a 5 bit word. Next the 5 bit word is decoded to select one of 32 DAC control lines.  

Digital 
input

Analog 
Output

16 1st-order 
Σ∆ Decoder

5
DAC

32

185.5MHz

1.4V 
Reference

 

Figure 5.1: Overview of DAC scheme. Includes a Σ∆ modulator, a decoder and a resistor 
string DAC. 

The first order Σ∆ DAC uses a single feedback loop in order to increase the 

resolution within a limited bandwidth for a quantizer. The architecture of the Σ∆ 

modulator is shown in Figure 5.1. As can be seen the output is subtracted from the input 

and subsequently intergraded before being quantized.  

                                                 
8An alterative approach is to implement a fully digitally controlled oscillator, such as presented in [55]. The 
Σ∆ DAC was used in our design for implementation simplicity. 
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Figure 5.2: Overview of a first order Σ∆. 

Techniques needed to analyze a first order Σ∆ can be found in [46]. To analyze 

this circuit, we consider all the blocks to be linear, the quantizer simply adds a 

quantization error at the ith sampling time of e[i]. The input (x[i]), the output (y[i]) and the 

integrator output (w[i]) need to be related to the error. The output of the integrator is 

simply the input minus the previous output, plus the previous integrator value. 

]1[]1[]1[][ −+−−−= iwiyixiw  (5.1)   

Also, the output (y[i]) is simply the output of the integrator (w[i]) plus the 

quantization error (e[i]), as shown in Equation (5.2). 

][][][ ieiwiy +=  (5.2)   

Equations (5.1) and (5.2) can be combined to give Equation (5.3). 

]1[]1[][ −−−= ieixiw  (5.3)   

Or w[i] can be removed from  Equation (5.3), using (5.2) to get Equation (5.4). 

])1[][(]1[][ −−+−= ieieixiy  (5.4)   

This can also be expressed in the z domain: 

 75



 

)1( 11 −− −+⋅= zEzXY  (5.5)   

In other words the quantization error, E, is differentiated, while the input signal 

undergoes a time delay, with no frequency shaping. In order to evaluate the equivalent 

continuous time response, z is set to z=ej2πfT. From this the quantization noise at the 

output can be given by Equation (5.6). 

)sin(21)()( 2 fTTeefEfN rms
jfT ππ =−= −  (5.6)   

From this we can see that the quantization noise is shaped to high frequency by 

the sin function. At frequencies much smaller than the sampling frequencies the noise 

falls to zero (sin(0)=0). Analog filters at the output of the DAC effectively filter out the 

high frequency quantization noise.  
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Figure 5.3: An overview of the resistor string DAC with a reconstruction filter at the 
output. 

The analog part of the DAC consists of 32 100Ω N+ diffusion resistors, creating 

32 different potential connection points. The string DAC is shown in 5.3. A resistor 

ladder divides the reference latter into 32 different levels. Then a set of CMOS switches 

selects one of the 32 levels. The output of the switches goes to an RC filter, which 

eventually goes to the output multiplexer. The size of the resistors is carefully chosen so 

that the DAC is able to settle to its final value even with a 200MHz clock. Simulation 

experiments with the capacitance extracted from the layout were used to confirm this. 

5.3 The Voltage Controlled Oscillator (VCO) 
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Figure 5.4: VCO overview. 

An LC tank based VCO, shown in Figure 5.4, is used in this design. A PMOS 

current source drives current through a center tapped inductor, and an NMOS cross 

coupled pair provides the negative resistance. The varactors are implemented as NMOS 

varactors (NMOS in an n-well). The N+ source and drains for these devices are shorted 

together, and form one of the terminals, and the other terminal is the gate. The switching 

capacitors consist of a combination of NMOS varactors and metal-insulator-metal (MIM) 

capacitors. The analog tuning range for the VCO is approximately 25MHz. A current 

input mirrors a 50uA reference current into a 2mA current in the VCO core. The 

symmetrical inductor uses the thick top 2 metals of the CMOS process to give an 

estimated inductance of 6nH. 

The measured phase noise for the oscillator with the rest of the PLL turned off is 

shown in Figure 5.5. The reason for the spur close to 10MHz is unclear, however we 
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know that the spectrum analyzer uses an internal 10MHz clock. At low frequencies the 

phase noise of the oscillator appears to level out. This is thought to be due to the dynamic 

range of the spectrum analyzer (Agilent 4405B spectrum analyzer) measurement 

equipment, which was found to be the cause in a previous work [47]. In reality as 

frequency reduces, the noise power per Hertz should increases at a faster rate, it should 

not level out. 
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Figure 5.5: Measure VCO Phase noise. (a) The VCO is configured in open loop. i.e. with 
the rest of the PLL turned off. (b) The measured noise of the VCO by its self. 

5.4 The design of a low headroom Output Buffer 

The design of even simple output buffers in low headroom processes is not trivial. 

If a source follower is used, then enough headroom would be required for both the signal 

swing and the Vt of the MOS devices. In this work, a simple output buffer is proposed, 

which requires little headroom, and sets the DC value of the output node automatically, 

without requiring complex common mode feedback circuitry. The buffer is shown in 

Figure 5.6. At DC, the buffer acts a current source driving current into a diode connected 

load. In this way the DC point of the output is approximately Vdc=Vdsat + Vt, which is 
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close to Vdd/2 for this process. On the other hand at high frequencies, the buffer acts as a 

push-pull amplifier. The DC values at the input and output of the buffer are not important, 

as both input and output are AC coupled. 
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Figure 5.6: A push-pull Output buffer which automatically sets its output bias point 
without additional circuitry. 

When designing such circuits, special care must be taken to avoid excessive 

resistive loading of the VCO. The resistors shown in Figure 5.6 are separated from the 

VCO by decoupling capacitors. If these resistors are too small, then they can significantly 

reduce the effective quality factor of the VCO tank, and hence contribute to phase noise. 

In addition the buffer contains a feedback loop. The stability of this loop was carefully 

verified in simulation. 

5.5 A Pseudo-Random Bit Sequence (PRBS) generator 

The prototype also includes a Pseudo-Random Bit sequence (PRBS) Generator. 

Using a test mode this random data can be selected as the transmission data, reducing the 

amount of external test equipment required. The PRBS generator is a digital block, and is 
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embedded in the synthesized logic. A 16 bit Linear Feedback Shift Register (LFSR) in a 

Galois form (also known as a multiple-return shift register generator (MRSRG)) is used 

to generate the random numbers. The PRBS generator has a sequence length of 216-1. An 

introduction to this subject can be found in [56]. In this work the taps are at registers 16, 

15, 13, and 4. 

5.6 A high speed asynchronous divider 
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Figure 5.7: Programmable Divider; Architecture and logic. 

The programmable divider is based on the modular architecture presented in [57], 

where each of the 2/3 divider cells is identical. The divider division ratio can be set from 

8 to 15. The divider is shown in Figure 5.7. Each modular divider block consists of two 

parts; the prescaler logic, and the end-of-cycle logic. The prescaler logic divides the 
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input signal by either 2 or 3 depending on a signal which comes from the end-of-cycle 

logic. (Section 1.9 contains a description of a standard prescalar.) The end-of-cycle logic, 

determines whether to divide by 2 or 3, and outputs the modout signal for the next divider 

block in the chain. The modout signal goes high only once per output cycle. On the rising 

edge of modout the value of the input CON is checked, and if it is high then the prescaler 

swallows one extra period of the input signal, i.e. it briefly divides by 3 instead of 2.  

Regardless of the state of the input, the end-of-cycle logic reclocks the modout, and 

outputs it to the preceding cell in the chain signal.  

The operation of the divider can be explained as follows. Each divider cell 

produces a modout signal which is high for half the time that the divider cell’s modin is 

high. The modin signal for the last divider in the chain is tied to Vdd, and so it produces a 

modout signal which is high half the time. The second to last divider in the chain produces 

a modout signal which is high half the time that its modin signal is high, which means that 

its modout signal is high one quarter of the time. When a divider’s modin input is high, then 

it divides by 2 or 3 based on the CON input. When the divider’s modin signal is low then 

it ignores the CON input and divides by 2. If all of the control inputs are 0, then each of 

the divider blocks will divide by 2, leaving a net division rate of 8. If CON0 is high, then 

the left hand divider will divide by 3 only when its modin signal is high, which happens 

only once per total output period. Therefore only one extra pulse will be swallowed per 

output cycle, and net division ration will be 9. Similarly, if only CON1 is high, then one 

extra pulse of the input (which has already been divided in two) is swallowed, resulting in 

a divide ratio of 10. Similarly, CON2 can add an extra 4 to the net division ratio. The 

final division ratio is given in Equation (5.7). 
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241208 CONCONCONRatioDivision ⋅+⋅++=  (5.7)   

 

5.7 The Analog Multiplexer 

The analog multiplexer is placed at the output of DACs, and before the VCO 

input.  This is a straightforward analog switch. It is critical to ensure that both switches in 

the multiplexer are not on simultaneously, as this would short the outputs of the DAC RC 

filters. For this reason a break-before-make circuit is added to the block, as seen in Figure 

5.8. Two NAND gates with delay in their forward path are used in a cross-coupled 

configuration to guarantee that both switches are never on simultaneously. The make-

before-break includes an RC filter. Extra inverters could have been used to add delay, 

however it was found in simulation that the RC process variation is less than inverter 

process variation. For this reason an RC filter is used as a delay element.  
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Figure 5.8: Overview of the analog multiplexer 

5.8 Prototype layout    

The prototype transmitter is implemented on a 0.13µm mixed-mode CMOS, the 

layout is shown in Figure 5.9. The active design area is 0.7mm2, with a total area of 

2mm2 including pads. It is worth noting that even though many of the conventional 

analog components have been removed, the area is still dominated by the remaining 

analog blocks. The synthesized logic takes up around 0.075mm2
, which is a small fraction 

of the overall area, despite dominating the architecture shown in Figure 5.9. This 

demonstrates the area savings that can be achieved by going from an analog dominated 

architecture to a digital dominated architecture. The inductor in the VCO and the output 

buffer consume large amounts of area, which is typical for a PLL.  
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Figure 5.9: Micrograph of Prototype 
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CHAPTER 6  

MEASUREMENT RESULTS 

A 0.13µm CMOS process was used to fabricate 40 prototypes and custom printed 

circuit boards (PCBs) were designed in order to test the parts. Typical output spectrums 

measured from silicon are shown in Figure 6.1, for a pure synthesized tone and for 

random data with an FSK data modulation rate of 927.5kbits/s. 

 

Figure 6.1: The output spectrums, when modulation is turned on and off. 
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If the synthesizer is functioning correctly, then we expect the output frequency to 

always be equal to the reference frequency times the division ratio. For example, when 

using a reference frequency of 185.5MHz, and the division ratio is 12.075 (as is the case 

for Figure 6.1), then an output frequency of 2.2399GHz is produced. There are 16 

available division ratios programmed on the chip, and it was found that the output 

frequency is always correct (provided the output frequency is within the VCO’s tuning 

range), confirming basic functionality. The modulation scheme used in this work is 2-

FSK; the frequency switches between one of two difference frequencies. Simple 

modulation schemes similar to this are used in low power applications such as IEEE 

802.15.49. The modulation spectrum in Figure 6.1 has large side lobes, as would be 

expected for an IEEE 802.15.4 modulation scheme, an example of such a spectrum can 

be found in [58].  

The prototype consumes 14mW from a 1.4V supply10. A 185.5MHz reference 

clock is used, which allows the phase detector to be significantly over sampled. The VCO 

was originally intended to operate in the 2.4GHz ISM band. However, due to process 

variation, the maximum VCO frequency is 2.24GHz, even considering the digital tuning 

range. 

6.2 Phase noise measurements 

In this section some of the phase noise measurements are discussed. In the 

prototype the value of the loop constants are fixed. The various noise sources, and the 

                                                 
9 IEEE802.15.4 uses an OQPSK modulation scheme, with half sine pulse shaping on the I and Q channels. 
This form of modulation is spectrally identical to 2-FSK [59]. 
10 The recommended nominal supply voltage for this process was 1.2V, all measurements were done with a 
supply of 1.4V. This is due to the performance of the high speed programmable divider. 
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total calculated noise, and measured noise are plotted in Figure 6.2. For low and very 

high frequencies the phase noise is dominated by the VCO noise, while for frequencies 

close to the loop bandwidth the phase detector quantization noise (PD in Figure 6.2) is 

significant. The poor VCO phase noise performance is due in part to the low quality 

factor of available integrated inductors. The divider Σ∆ noise does not make a significant 

contribution to the output phase noise. This is because the reference clock frequency is 

large in comparison to the loop bandwidth, and hence most of the Σ∆ quantization noise 

is shaped to outside of the PLL loop bandwidth. 

 

Figure 6.2: Plot of measured and calculated noise sources. The noise is dominated at high 
frequencies by the VCO, at mid frequency ranges the phase quantizer noise is also 

significant. 

6.3 Frequency switching scheme 

Verifying the modulation techniques in silicon presents a challenge, as the only 

available signal is the RF output signal. (In contrast in behavioral simulations the input to 
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the VCO can be monitored.) A National Instruments (NI) RF Analyzer (NI1042) was 

used to evaluate the RF signal. The transmission data is generated using an on-chip PRBS 

generator. The output of the chip is connected to the NI equipment, which based on the 

expected average output frequency, measures phase changes at the output of the PLL. An 

overview of the test set up is shown in Figure 6.3. Different data patterns produce 

different phase changes at the output of the FPLL. The phase changes for different data 

patterns are overlaid, forming a phase trellis diagram. 
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Figure 6.3: Test setup for measuring the phase Trellis diagram at the output. 

As an example, consider the case of when the frequency switches between two 

different frequencies so that the resulting phase changes are shown in Figure 6.4. If we 

apply two different data patterns we get two different phase changes. 
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Figure 6.4: Expected phase changes for different data patterns. 

If we overlay these patterns on top of each other we get the results similar to those 

shown in Figure 6.5. 

 

Figure 6.5: Trellis diagram of the output phase, as measured from silicon. 
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Figure 6.5 shows a trellis diagram of the results measured from silicon. As can be 

seen, the phase changes direction instantaneously, which is the equivalent to the 

frequency changing instantaneously. Even with a loop bandwidth of 142kHz, a data rate 

of 927.5kb/s is still possible. In most FPLLs the data rate is restricted to a fraction of the 

loop bandwidth. When the experiment is repeated with the switching scheme turned off, 

the output phase is garbled, as the FPLL cannot switch frequencies fast enough. 

6.4 Comparisons with other works 

Performing like for like comparisons with other designs is problematic for a 

number of reasons. Some publications use external oscillators resulting in superior phase 

noise and lower power dissipations. Other works use external loop filters for loop 

stabilization. However there are some trends that are worth pointing out. Firstly, designs 

which are fully integrated, and include the loop filter on chip consume more area and 

power than this work as shown in Table 6.1. Furthermore, and examination of the layout 

in Figure 5.9 reveals that although the architecture is made of mostly digital components, 

the area is still dominated by the analog components such as the VCO, DAC, etc. This 

demonstrates the value of implementing the architecture the digital domain. For further 

power/area reductions the focus should be on reducing the use of analog circuitry even 

further. 

 [60] [61] [62] This Work 
([65]) 

Bandwidth 460kHz 700kHz 1MHz 142kHz 

Output Frequency 2.4GHz 2.1GHz 3.6GHz 2.2GHz 

Phase noise @10MHz -133dBc/Hz -135dBc/Hz -151dBc/Hz -133dBc/Hz 
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Includes Oscillator/Filter Yes/No Yes/Yes No/No Yes/Yes 

Area 6.7mm2 3.4mm2 7.3mm2 2mm2

Core Power 61mW 28mW 110mW 14mW 

 
Table 6.1: Performance comparison for different synthesizers. 

 

 92



 

CHAPTER 7  

CONCLUSION 

The primary contribution of this work is the development and demonstration of 

new techniques for implementing digital dominated Fractional-N synthesizers. In 

conventional synthesizers analog intensive charge pumps and capacitor based loop filters 

are used to extract the useful information from the phase detector and to stabilize the loop. 

When using the digital phase detector presented in this work, there are no analog 

components in the phase detector, and no analog loop filter is required. This saves area 

and power. In addition it results in an architecture which is more suitable for a fine line 

CMOS manufacturing process, which is an important consideration as transistor sizes 

continue their downward scaling. As well as proving the phase detector in prototype form, 

a small signal model for the architecture was developed. 

In addition a new method for modulating the output frequency of the FPLL has 

been developed. This technique can allow the frequency of the output to be modulated at 

a rate significantly faster than the loop bandwidth would otherwise allow. The key ideas 

have been proven in a prototype design.  
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7.1 Dissertation Summary 

The key ideas for a digital based phase quantizer are introduced in Chapter 2. 

Small signal models for the components including phase noise calculations are done in 

Chapter 3. Chapter 4 introduces a new method for high speed modulation for FSK type 

schemes. Chapter 5 discusses the implementation details for the prototype, and Chapter 7 

discusses the measurements from silicon. 

7.2 Key Contributions 

This work has made several important contributions to the field of RF synthesis. 

Firstly, an FPLL has been demonstrated which uses significantly less analog circuitry 

than a conventional FPLL. It does this by using a phase detection scheme which relies on 

over-sampling and phase quantization, as described in Section 2.1. Next, a method for 

modulating the FPLL is developed which overcomes the traditional trade-off between 

modulation speed and overall loop bandwidth in FSK modulation schemes, as described 

in Chapter 5. All of these ideas are implemented on a prototype IC incorporating digital, 

analog and RF signal processing. 

As transistor gate length continues to scale down, design of analog circuitry will 

become even more challenging, while the area and power costs of digital circuits 

continues to decrease. Techniques such as the ones presented here will become crucial in 

order to move from analog dominated circuitry to digital circuitry. As these types of 

systems are to be integrated on substrates with large DSP circuits, it is important to 

minimize amount of analog circuitry. 
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7.3 Ideas for future work 

As with any research project, each new development opens up many avenues of 

potential discovery, and this work is no different. There are some fascinating potential 

follow-on projects from this work. Here are just a few of them. 

The Phase detector can also be described as a frequency discriminator, as 

discussed in 2.6. This opens up the possibility of using the phase detector as an RF 

receiver for constant envelope communications. Although the frequency discriminator 

can derive no information about the amplitude of the incoming signal, it could be used to 

digitize an IF signal and extract frequency or phase information, similar to [42]. 

In Chapter 2, the single bit phase quantizer with the PML is described as a 

competing technology to a TDC, however these may in fact be complementary ideas, as 

the PML could be used to control the closed loop gain of a TDC. It would be fascinating 

to implement both techniques in the same PLL, the concept is shown in Figure 7.1. 
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Figure 7.1: Using a TDC with the PML. 
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This research would dove-tail with the development of a digitally controlled 

Oscillator.  In this way the architecture could be made even more digital in nature, further 

reducing the process dependency. 

Other potential uses for this project include using it as a clock repeater. If a ring is 

used oscillator instead of a LC tank oscillator, then the design could be made fully 

synthesizable, and consequently suitable for integration with clock repeaters. The 

architecture’s potential to be free of jitter peaking make it attractive for this application.  
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APPENDIX A 

DIRECT PHASE MODULATION 

This section discusses a technique which has been proven in simulation, but not 

verified in silicon. The development of an all digital phase detector opens up the 

possibility of using synthesizers in different ways to previously used. In a conventional 

FPLL the only digital way to change the output phase is to change the division ratio. 

However the conversion to an all digital architecture allows for a new method to be used, 

that is to add modulation data directly to the output of the phase detector.  

A.1 Phase control with a digital PLL 

The techniques introduced in Chapter 4 take advantage of the digital nature of the 

architecture to achieve very fast frequency switching for FSK type modulation schemes. 

However, it would be desirable to support a wider variety of phase modulation schemes.  

In addition, it would be desirable to utilize some of the unique benefits of the new digital 

architecture to demonstrate other methods of modulating the frequency and phase of the 

output signal. A good starting point is to go back to a standard PLL and consider other 

ways in which to modulate the output signal. Consider the diagram in Figure A.1. As 

mentioned above, the standard way to change phase/frequency at the output is to change 

the control word. However, there are two other possible ways to change the phase of the 

output signal. One possible method is to introduce a time delay ∆t into the reference path. 

This changes the phase of the output signal by ∆Фout, which is expanded in Equation 
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(A.1). The phase change at the output can either be expressed in terms of the time delay, 

∆t, or the equivalent phase delay, ∆Фin. 

nominoutout Nft ⋅∆=⋅∆⋅=∆ φπφ 2  (A.1)   

As a practical matter, synthesis of exact time delays involves complex analog 

circuitry and hence this technique should be avoided. However, there is a second 

approach which is equivalent to the time delay approach, but is easier to implement. 
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Figure A.1: Alternative phase variation techniques. 

If the gain of the phase detector is exactly known, then it is possible to add a 

current directly to the output of the charge pump. Since it takes a phase difference at the 

input to produce a net current from the charge pump, adding a DC current to the loop 

filter is the equivalent of adding a time delay to the reference. In other words, to produce 

a phase change of ∆Фout, a current of Iin (given in Equation (A.2)) is injected. K is the 

phase detector gain, and Nnom is the nominal divide ratio. 
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nominout NKI ⋅⋅=∆φ  (A.2)   

This technique is difficult to implement in a conventional PLL because the current 

needs to exactly match the gain of the charge pump, if an accurate phase change at the 

output of the phase detector is to be produced. There are two separate problems here, 

synthesizing the currents, and evaluating the phase detector gain. In the proposed digital 

dominated PLL a digital signal can be injected into the output of the phase detector, 

which solves the first problem. Also, in section 2.7 we discussed how the new feedback 

loop desensitizes the overall transfer function of the phase detector to the PD gain. 

Therefore with a digital phase detector, the gain of the phase detector is known, and this 

technique can be used to modulate the PLL. Notice that in this modulation scheme, the 

injected phase information passes through just the DAC and VCO before reaching the 

output. 
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Figure A.2: Digital Phase control technique 
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A.2 Pre-emphasis 

The final proposal is to use pre-emphasis to improve the modulation speed of any 

phase modulation technique. Pre-emphasis has been used in the division ratio control 

path to speed up the loop settling time [29]. However this technique could also be used in 

the new phase control path. The dynamics of the loop can be calculated, and the phase 

information is passed through a transfer function which is the inverse of the transfer 

function of the overall PLL, and in this way the pre-emphasis filter cancels out the 

filtering effects of the PLL itself. Pre-emphasis allows faster modulation of the output 

frequency.  

The advantage of the scheme mentioned above is that it can be used for any phase 

modulation scheme, not just for FSK. For example, in a simulation experiment QPSK 

data is injected into the loop. The bandwidth of the loop is only 140kHz, however the 

data inserted had a data rate of 500kbit/s. A scatter plot of the resulting output phase is 

shown in Figure A.3. As can be seen, without pre-emphasis the loop distorts the 

constellation diagram, because the bandwidth of the loop is not wide enough. On the 

other hand, when pre-emphasis is used, then the constellation diagram is significantly 

cleaner.  
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Figure A.3 (a) Direct phase modulation, (b) with pre-emphasis 
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APPENDIX B 

SIMULATION TECHNIQUES 

This section will discuss some of the practical problems involved in the simulated 

verification of PLLs. One of the challenges in the design of synthesizers involves 

developing successful simulation strategies. The simulation of any complex system can 

be problematic, but the design of fractional synthesizers provides a unique set of 

problems that takes quite an effort to overcome. 

B.1 An overview of simulation limitations 

The primary problems stems from the fact that the ratio of the frequency of the 

output signal is several orders of magnitude greater than the bandwidth of the system. For 

example, consider the case when the output frequency is 2GHz, which corresponds to a 

period of 500ps. If the simulator is to accurately measure the phase of the output signal, 

then the time step of the simulator must be set to a small fraction of this, typically less 

than 1% of the signal period, which in this case would be 5ps. On the other hand, the 

bandwidth of the PLL is typically of the order of 100s of kHz. To perform useful 

transient simulations the PLL must be simulated for many loop time constants. If the loop 

has a time constant of 10µs, and we need to simulate the loop for 10 time constants 

(which is close to the minimum time that useful information can be extracted from the 

simulation) with a 5ps time step then 2e7 (!) simulation steps are needed. If the 
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simulation contains many analog components, then solving for each time step can involve 

significant calculations. As a practical matter simulating the entire analog section at the 

transistor level is found to be close to impossible, just to get the loop to settle several 

weeks of simulation time are required. In addition, with that many simulation steps, the 

computer can quickly run out of memory, and the simulation results files eventually 

reaching the size of 10s to 100s of GBs.  

Using a combination of pre-existing tools, behavioral modeling and simulation 

tricks many of the most challenging aspects of these problems can be dealt with. The 

initial steps of the architectural investigation were done with CPPsim [58], a free 

behavioral simulator developed specifically to deal with PLL synthesizers. AHDL 

models were employed to help which speeding up transient simulations, and 

SpectreVerilog and AMS were used for mixed-signal simulation. Even with fully 

behavioral simulations (no transistors) some additional tricks were required to help get 

the simulations to be sufficiently timely. 

B.2 Avoiding large simulation files 

In behavioral simulations, even if the simulator only keeps the output nodes, the 

simulation output files can quickly grow to be too large, causing the simulator to crash, or 

producing output files that are too large to deal with using the standard plotting tools. 

Typically we are interested in the phase of the RF output signal, not the signal itself. In a 

typical transient simulation the simulator stores the high frequency output, and then we 

do post processing to extract the phase information. Unfortunately the simulation file 

sizes grow very quickly, hence this can be impractical. The simulator can strobe the 

output signal, that is it does not store every data point, but only stores a data point 
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periodically at a much slower rate than otherwise would be required. However, this 

under-sampling results in the loss of phase information from the RF signal.   
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Figure B.1: Simulation technique used to avoid keeping too many data points. 

If the high frequency signal is down converted by mixing it with the expected 

PLL frequency, then the I and Q information can be extracted. These signals can be low 

passed filtered, and strobed at a rate much slower then the frequency of the output of the 

PLL (but still significantly faster than the bandwidth of the loop), resulting in much 

smaller simulation files. The key point is that the signal processing associated with 

extracting the phase information from the simulation is done within the simulation itself. 

Behavioral models for the mixers and filters are included in the simulation, as shown in 

Figure B.1, and only the processed signals are stored, the output of the PLL itself is not 

stored.  
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B.3 Modeling the VCO and divider 

As part of a typical design phase, the PLL is iteratively simulated as part of a 

debugging process. The control voltage of the PLL can be monitored to check for settling 

behavior, there is no need to keep the RF output signal. However, because of the high 

frequency signals in the system, the simulator still needs to use a small time step. If 

simulation time is very long then this seriously undermines our ability to do architectural 

investigations and design iterations. However, there is a way to simulate most of the 

circuit without generating the high frequency signal. Consider the divider and VCO 

shown in Figure B.2(a). 
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Figure B.2: The VCO and divider. (a) The actual configuration. (b) The 
behavioral model. 
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In Figure B.2(a) the VCO and divider is shown, which outputs a RF signal of 

frequency given by (B.1) and a divided down frequency given by (B.2). Knom is the 

nominal frequency of the VCO, Kvco is its gain, and C0, C1, C2 are the divider controls. 

invconomfreq VKKRF ⋅+=  (B.1)   

 

210 428 CCC
VKKDIV invconom

freq ⋅+⋅++
⋅+

=  (B.2)   

Notice that the RF output signal is the high frequency signal that causes the 

simulation to slow down, while it is the divided down signal that is required to complete 

the loop. If the divided down signal can be produced without producing the high 

frequency signal then the simulation can be significantly speeded up. This can be 

achieved by moving the divider from the output of the VCO to the input, as shown in 

Figure B.2(b). Instead of dividing the output signal down in frequency, the input voltage 

is divided down in voltage. The control voltage is first multiplied by the gain of VCO, 

and the nominal frequency is added to this to produce a voltage which is proportional to 

the frequency of the output signal in Figure B.2(b). This signal is then divided by a 

behavioral programmable divider, to produce a voltage which is proportional to what the 

divided down frequency should be. This signal is then given to a VCO with a gain of 1 to 

produce the divided down signal. Notice that nowhere in this signal chain have we 

produced a signal with a frequency as high as the original output signal. Hence using this 

behavioral model for the VCO and divider the simulations speed can be significantly 

reduced. A similar technique can be found in [64]. 
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