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Abstract

We consider the presence of first-mover advantage or disadvantage in a duopoly
model of product positioning. Firms in our model are symmetric except for the order
of entry. We study a generalization of the Hotelling model, with a consumer’s utility
from a product depending on the location of product and consumer in product attribute
space, a random utility term that captures idiosyncratic preferences, and the price of the
product. Since the model is analytically intractable, we computationally study location
equilibria, with prices decided simultaneously after locations have been chosen.

As a benchmark, we consider the simultaneous location game, which admits only
symmetric equilibria. If product attribute preferences are weak and idiosyncratic pref-
erences are also weak, both firms locate in the interior of the feasible location space.
With strong product attribute preferences and weak idiosyncratic preferences, price
competition is at its most intense, leading to maximal differentiation. As idiosyncratic
preferences become more important, price competition is mitigated, leading to both
firms locating at the market center.

In the sequential game, we find that when product attribute preferences are strong
and idiosyncratic preferences are weak, the follower has a strong desire to avoid price
competition and the leader experiences a first-mover advantage. However, if idiosyn-
cratic preferences are also strong, price competition is somewhat weaker, and the leader
cedes a location and profit advantage to the follower. Thus, a first-mover disadvantage
exists even though the follower has no obvious advantage over the leader.

If product attribute preferences and idiosyncratic preferences are both weak, max-
imal differentiation results, and entry order is irrelevant. Finally, when idiosyncratic
preferences dominate, price competition is a non-issue, and both players locate at the
market center. Once again, the order of entry does not matter.
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†Ross School of Business, University of Michigan, Ann Arbor, MI 48109. amitabh@umich.edu



Electronic copy available at: http://ssrn.com/abstract=1158605

1 Introduction

Is there a first-mover advantage in a market for a new product? Golder and Tellis (1993) re-

port that two famous examples (among others) of this pioneer advantage are Coca Cola and

Crisco Shortening. However, they also point out that many markets have been characterized

by a first-mover disadvantage, rather than an advantage, such as disposable diapers (Pam-

pers over Chux) and chocolate (Hershey over Whitman’s). Boulding and Christen (2003)

report that, over the long term, there is typically a first-mover disadvantage in terms of

profit.

Previous explanations for a first-mover disadvantage have typically relied on dynamic

frictions that violate a notion of symmetry between a pioneer and a later entrant. For

example, a follower may use a leader’s experience to learn about the consumer distribution

(Gal-Or 1987, Fershtman et al. 1990), or gain a technological advantage by developing a

lower cost product (Tyagi 2000). There are countervailing forces as well: For example,

Schmalensee (1982) recognizes that consumer loyalty is a factor that typically benefits the

first mover in a dynamic setting. Chen and Xie (2007) show that, if a firm sells two products,

asymmetry in customer loyalty can be a source of first-mover advantage or disadvantage.

The existence or lack of a first-mover advantage can affect a pioneer’s incentives to enter a

market (Narasimhan and Zhang 2000).

In this paper, we consider the existence of first-mover advantage in a model in which

firms are symmetric, except for the order in which they enter the market. In particular, the

entrant or follower firm does not have a cost advantage and does not learn about demand

from the pioneer or leader firm. More generally, neither firm has a structural advantage or

disadvantage compared to its rival. Instead, we build upon the canonical Hotelling model,

with both firms symmetric in terms of how they are affected by their relative locations with

respect to consumer distribution and their prices. In such a situation, it is widely believed

that the first mover has an advantage, since it can locate at the market center. Nevertheless,

we demonstrate that a first-mover disadvantage may exist in this setting.

The main insight behind our result is that products have many attributes, and modeling

consumer preferences along a single dimension represents a stylized simplification that mod-

els only the most important attribute. For example, if the product is a soft drink such as

Coke or Pepsi, taste is arguably the most important attribute. Nevertheless, a consumer’s

preferences over other attributes, such as brand image or celebrity endorsements, may also
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influence her decision. One way to represent preferences over other unmodeled or unob-

served attributes is via a random utility for the product. The random utility term makes

a consumer’s choice across the two products probabilistic, rather than deterministic. As

mentioned by Anderson et al. (1992), it is common to model choice probabilities as coming

from a multinomial logit distribution.

We consider a generalization of the Hotelling duopoly model that allows for hetero-

geneous preferences over unmodeled attributes in this manner. For clarity, we refer to a

consumer’s preferences over location in the unit interval as “product attribute preferences”,

and to her preferences over unmodeled attributes as “idiosyncratic preferences.” By varying

parameter values in the model, we vary the importance of product attribute preferences and

idiosyncratic preferences in the consumer’s purchase decision.

The multinomial logit model does not admit closed-form solutions for prices or locations.

In fact, even the deterministic choice version of the Hotelling model with prices may be

intractable rendering a numerical analysis necessary (Eaton and Lipsey 1976, Prescott and

Visscher 1977). Nevertheless, we show analytically that, in equilibrium, the firm that is

closer to the market center has a higher price, greater expected demand, and a higher profit

than its competitor. To analyze equilibrium locations, we then turn to a computational

analysis of the model.

As a benchmark, we first consider simultaneous location choice by the two firms, followed

by simultaneous determination of prices. We find that when product attribute preferences

and idiosyncratic preferences are both weak, the firms locate in the interior of the location

space, symmetrically around the market center. If product attribute preferences are strong

while idiosyncratic preferences remain weak, the intensified price competition drives both

firms to differentiate maximally from each other (so they locate at opposite extremes of

the location space). As idiosyncratic preferences become dominant, price competition is

mitigated leading to both firms locating at the market center.

We then focus on sequential location choice: the leader firm picks a location, the follower

firm observes this choice and picks a location, and then both firms simultaneously choose

prices. Numerically, we show that the interplay between product attribute preferences and

idiosyncratic preferences critically affects whether there is a first-mover advantage:

• When product attribute preferences are strong, but idiosyncratic preferences are weak,

a follower’s desire to avoid price competition creates a distinct advantage for the
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first firm to enter the market. However, the leader also prefers to mitigate price

competition, and typically does not locate at the market center.

• With strong product attribute preferences, as idiosyncratic preferences become more

important, the onus gradually shifts on to the leader to mitigate price competition

by ceding locations close to the market center. Equilibrium is characterized first by

symmetric interior locations, so neither firm has an advantage, and then by a first-

mover disadvantage. That is, the follower is closer to the market center than the

leader, and has a higher profit.

• With weak product attribute preferences and strong idiosyncratic preferences, price

competition is relatively weak, and both firms locate at the market center.

• Finally, weak product attribute preferences and weak idiosyncratic preferences are

characterized by maximal differentiation, with firms locating at opposite ends of the

unit interval.

In the Hotelling model without prices, of course, both firms locate at the market center.

d’Aspremont et al. (1979) show that, when prices are introduced and transportation costs

are quadratic in distance, maximal differentiation in product position results. Maximal

differentiation also occurs under sequential entry if firms are restricted to locating in the

unit interval, as shown by Tabuchi and Thisse (1995).

There nevertheless appears to be a popular belief that symmetric location models dis-

plays a first-mover advantage, and that the leader will inevitably occupy the market center.

For example, Golder and Tellis (1993) suggest that firms which enter early and position

near the center of the market can receive higher profits. Similar suggestions about the

benefit (in terms of profit, market share, or both) of entering first and locating near the

center appear in Lieberman and Montgomery (1988), Lilien et al. (1992), and Bohlmann

et al. (2002). Theoretically, Tabuchi and Thisse (1995) show that if product positions are

unrestricted relative to the demand distribution (i.e., firms can locate anywhere on the real

line), a large first-mover advantage exists, with the leader occupying the market center. On

the practical side, Song et al. (1999) find that managers to a significant extent believe in a

first-mover advantage.

Some recent work, however, has found instances of a first-mover disadvantage, even in

games with symmetric payoffs. In pure location games without pricing, the first mover
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may experience a disadvantage when the product attribute space has two or more dimen-

sions (Chawla et al. (2006) and Wagener (2006)). The paper closest to ours in spirit is

Rhee (2006), which computationally demonstrates a first-mover disadvantage for a range

of parameter values in a Hotelling model with quadratic transportation costs and random

utility.

Our contribution to this literature is to highlight the relative importance of product

attribute preferences and idiosyncratic preferences in generating a first-mover advantage or

disadvantage in the Hotelling setting. When distance costs are large, product attribute pref-

erences are strong. In such a setting, weak idiosyncratic preferences (i.e., a low variance for

the random utility term) generate a first-mover advantage. However, as idiosyncratic prefer-

ences become more important (i.e., the variance of the random term increases), a first-mover

disadvantage occurs. Conversely, with weak product attribute preferences, equilibrium is

symmetric, with firms locating either at the market center or at opposite ends of the unit

interval.

The rest of this paper is organized as follows. We present the model in detail in Section

2. In Section 3, we provide some analytic results for the pricing subgame at stage 2. The

computational analysis of location equilibria and their features is provided in Section 4.

Section 5 contains some concluding remarks.

2 Model

We consider a generalization of the Hotelling location model. There are two firms, a pioneer

firm that is referred to as Leader (L) and an entrant called the Follower (F ), competing in a

market. There is a continuum of consumers distributed uniformly over [0, 1]. A point in [0, 1]

denotes a level of a product attribute, and the location of a consumer reflects her ideal level.

At stage 1 of the game, the two firms each position their product in the attribute space,

by choosing a location in [0, 1]. We consider both simultaneous and sequential location in

the first stage. In the sequential move game, firm L chooses its location first, and firm F

chooses its location after observing L’s location choice. At stage 2, after observing each

other’s locations, the firms simultaneously choose prices.1 At stage 3, each consumer buys

one unit of the product from either L or F .
1Some of the previous literature allows firms to locate outside the consumer space [0, 1]. See, for example,

d’Aspremont et al. (1979) and the references in Anderson et al. (1992), Chapter 8.
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Both firms are assumed to have zero marginal costs, allowing us to focus on the me-

chanics of the location and pricing game. In addition, we assume there are no fixed costs.

These assumptions simplify the analysis, but do not affect our results in any qualitative

manner. As described below, given the prices and locations of both firms, each consumer’s

decision is probabilistic. Both firms maximize expected profit, which is the product of their

price and overall expected demand.

Suppose a consumer located at y purchases the good at price pj from firm j located at

xj . The consumer suffers a disutility from purchasing a product that does not possess her

ideal attributes. This disutility is modeled as a distance cost |y−xj |α, where |y−xj | is the

distance between xj and y and α ≥ 1 is a parameter that affects the relative importance of

distance compared to price. For example, if α = 1, the distance cost is linear in distance,

whereas it is quadratic if α = 2. The restriction of α to be at least 1 ensures convexity of

the distance cost. The quantity pj + |y − xj |α may be interpreted as the full price paid by

the consumer at y. The consumption value of the good, assumed to be the same across the

two firms, is denoted by v0 > 0. Then, the consumer’s deterministic utility in this scenario

is

u(y, xj , pj) = v0 − |y − xj |α − pj . (1)

In addition, the utility of the consumer from good j is affected by unmodeled factors.

These unmodeled factors could include other attributes of the good, marketing consider-

ations such as branding, and purely idiosyncratic reactions of the consumer to the good.

Formally, the consumer at y obtains a random utility εyj from the good of each firm j,

which we refer to as the consumer’s “idiosyncratic preference.” Thus, overall utility of the

consumer located at y, if he buys good j at price pj , is

ũ(y, xj , pj) = v0 − |y − xj |α − pj + εyj . (2)

Each consumer purchases one unit of the good from the firm that provides him the highest

overall utility. We assume the consumer does not have an outside option, and must purchase

one of the two goods.2 Since v0 is common across the two goods, it does not affect the

relative choice between the goods. Hence, for the rest of the paper, we assume v0 = 0.

Following Anderson et al. (1992) (see Chapter 2 in particular), we consider a multinomial

logit model of random utility. That is, we assume that for each consumer location y ∈ [0, 1]
2It is straightforward to extend both the model and our numerical results to the case of an outside option,

which may be thought of as a third good that provides the consumer with a deterministic reservation utility.
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and each firm j, the random utility term εyj is independent and identically distributed

with distribution F (x) = ee
−x/µ+γ

, where µ > 0 is a parameter of the distribution and

γ ≈ 0.5772 is Euler’s constant. The distribution has mean zero and variance µ2π2/6, so

that µ is proportional to the standard deviation of the random utility terms.

For each consumer y and each firm j, let uj(y) = u(y, xj , pj) denote the deterministic

utility to the consumer from purchasing and consuming the good of firm j. Then, the

consumer buys the good from L if uL(y) + εL > uF (y) + εF , or εL − εF > uF (y) − uL(y).

Thus, the probability that the consumer at y buys from L is given by qL(y, xL, xF , pL, pF ) =

Prob(εL−εF > uF (y)−uL(y)), and the probability he buys from F is qF (y, xL, xF , pL, pF ) =

1 − qL(y, xL, xF , pL, pF ). Going forward, for brevity we often write these probabilities as

qL(y) and qF (y), suppressing the locations and prices. Since qL(y)+qF (y) = 1 by definition,

qj(y) may be interpreted as the market share of firm j from location y. We also refer to

qL(y) as the expected demand of the consumer at y for firm L.

The overall expected demand of each firm j is then given by dj =
∫ 1

0 qj(y)dy, since

the consumer density is uniform over [0, 1]. Note that dL + dF = 1, so that dj may be

interpreted as the overall market share of firm j. The expected profit of firm j is Πj = pjdj .

The first step to using the multinomial logit model in our analysis is determining the

expected demand of the consumer at y for each firm, given firm locations and prices. As

shown in Proposition 2.2 from Anderson et al. (1992) (on page 39; attributed to an unpub-

lished document by Holman and Marley) the expected demands at location y for L and F

are obtainable in closed form as follows:

qL(y) =
e(v0−|y−xL|α−pL)/µ

e(v0−|y−xL|α−pL)/µ + e(v0−|y−xF |α−pF )/µ
(3)

qF (y) =
e(v0−|y−xF |α−pF )/µ

e(v0−|y−xL|α−pL)/µ + e(v0−|y−xF |α−pF )/µ
(4)

Thus, in our model, α captures the importance of the modeled product attribute on

consumer choice, and µ the importance of idiosyncratic preferences. We first consider the

separate effects of each of these parameters on consumer behavior.

2.1 Effect of µ: Variation in idiosyncratic preferences

Recall that the standard deviation of the random utility term is µπ√
6
. Thus, as µ increases,

idiosyncratic preferences become more important, or stronger. When µ = 0, this standard

deviation is zero, so the model reduces to a deterministic choice model in which consumers’
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utilities are dictated entirely by locations and prices. Conversely, as µ → ∞, the random

utility term dominates (in magnitude) the effect of location and price. As can be seen from

equations (3) and (4), at each consumer location y, qL(y) and qF (y) each approach 1
2 as

µ → ∞. For intermediate values of µ, the relative magnitude of idiosyncratic tastes in

overall utility depends on the locations of consumer and firm, and on the price offered by

the firm.

As an illustration, suppose α = 1 (the linear distance cost model), firm L is located at

0.4 with a price of 1, and firm F is located at 0.9, with a price of 0.8. The deterministic

utility of a consumer at y for firm j’s product is uj(y) = −|y−xj |−pj , so that the expected

demand for L and F of consumer y are

qL(y) =
e(−|y−xL|−pL)/µ

e(−|y−xL|−pL)/µ + e(−|y−xF |−pF )/µ
; qF (y) =

e(−|y−xF |−pF )/µ

e(−|y−xL|−pL)/µ + e(−|y−xF |−pF )/µ

(5)
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Figure 1: Expected demands for firm L from consumers at different locations, with α = 1,
pF = 1, and pL = 0.8

Figure 1 shows the expected demands of consumers at different locations for firm L for

some different values of µ. The solid line shows the expected demand when µ = 0.001. The

expected demand at each location for such a low value of µ is close to the demand in a
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deterministic choice model. Suppose µ were zero, so there were no random term. While

the equations (3)–(4) cannot be used to determine the expected demand at each location,

it is straightforward to directly compute the demand. A consumer at y buys from firm L if

u(y, xL, pL) > u(y, xF , pF ), or −|y−0.4|−1 > −|y−0.9|−0.8. Thus, all consumers located

at y < 0.55 have a demand of 1 for firm L, and all consumers at y > 0.55 have a demand

of zero for firm L. The consumer at y = 0.55 is exactly indifferent between the two firms.

The dashed line corresponds to µ = 0.2, an intermediate value for the idiosyncratic

preferences. For this value of µ, all consumers located to the left of firm L buy from L with

probability approximately 0.82, so that with probability 0.18 they buy the good of firm F .

Conversely, all consumers located to the left of F buy from L with probability 0.03, and

from F with probability 0.97.

Finally, the dotted line indicates the expected demands for a high level of idiosyncratic

preferences, µ = 1. For each consumer location y, the expected demand for L is closer to

0.5, varying from 0.57 at locations to the left of L to 0.33 at locations to the right of F . In

general, as µ increases, at a given location y, the expected demands for each of leader and

follower qL(y), qF (y) approach 0.5.

2.2 Effect of α: Variation in product attribute preferences

For a fixed consumer at y and firm j at xj , let δj = |y−xj | denote the distance between them.

Then, the deterministic utility of consumer y for the good of firm j is uj(y) = −δαj − pj .

Thus, the parameter α affects only the impact of distance (along the product attribute) on

consumer utility, and changing α results in a change in the relative importance of product

attribute and price on consumer utility. Since δj is typically strictly less than 1, increasing

α results in a weakening of the importance of distance; i.e., a weakening of product attribute

preferences.

The sensitivity of the deterministic utility of consumer y with respect to distance is

determined as follows:
∂uj(y)
∂δj

= −αδα−1
j . (6)

Thus, as distance (δj) increase, the utility of the consumer at y decreases.

In the linear distance model, with α = 1, ∂uj(y)
∂δj

= −1, a constant, for all y ∈ [0, 1]. As

α increases, ∂uj(y)
∂δj

increases (i.e., becomes closer to zero) for low values of δj , but decreases

(i.e., becomes more negative) for high values of δj . That is, as product attribute preferences
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become weaker, consumers close to firm j become less sensitive to the effects of distance,

whereas consumers far from firm j become more sensitive to the effects of distance. In

the limit, as α → ∞, ∂uj(y)
∂δj

→ 0 as long as δj < 1, and product attribute preferences are

irrelevant to a consumer’s purchase decision.

2.3 Solving the Game

We solve the game by backward induction. Consumer demands at each location at stage

3 are given by equations (3) and (4). Consider stage 2, where firms choose their prices,

having chosen locations at stage 1. Given locations xL, xF and prices pL, pF , the expected

profit of firm j, for j = l, f , is

Πj(xL, xF , pL, pF ) = pj

∫ 1

0
qj(y)dy, (7)

where qj(y), given in equation (5), is a function of xL, xF , pL, pF , which are suppressed for

brevity.

The prices are chosen in a Nash equilibrium of the game at this stage. Each firm chooses

its price to maximize its expected profit, holding fixed the price of the other firm. The best

response function of firm j is given by the first-order condition ∂Πj
∂pj

= 0, or∫ 1

0
qj(y)

[
1− pj

µ

(
1− qj(y)

)]
dy = 0. (8)

For now, we assume that the second-order condition ∂2Πj
∂p2j

< 0 is satisfied. We show this

analytically when locations are symmetric about the market center in Proposition 2 below,

and confirm it computationally in our numeric analysis.

Noting that qF (y) + qL(y) = 1, the best response conditions can be equivalently written

as: ∫ 1

0
qj(y)dy − pj

µ

∫ 1

0
qL(y)qF (y)dy = 0, for j = l, f. (9)

The Nash equilibrium prices at stage 2, p∗L, p
∗
F , simultaneously satisfy equations (9).

Considering the expressions for qL(y) and qF (y) in equations (3)–(4), and noting that

uL(y) = −|y − xL|α − pL and uF (y) = −|y − xF |α − pF , it is immediate to see that,

in general, the best response conditions that determine prices at stage 2 do not admit a

closed-form solution.
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However, in the special case that firms co-locate (i.e., xL = xF ), equilibrium prices are

straightforwardly determined. In this case, the choice probability of any consumer depends

only on prices:

qL(y, x, x, pL, pF ) =
e(−|y−x|α−pL)/µ

e(−|y−x|α−pL)/µ + e(−|y−x|α−pF )/µ
=

e−pL/µ

e−pL/µ + e−pF /µ
.

Further, since firms have co-located, it must be that pL = pF , so that e−pL/µ

e−pL/µ+e−pF /µ
= 1

2 .

Thus, the equilibrium prices are determined to be p∗L = p∗F = 2µ.

Given equilibrium prices p∗L, p
∗
F at stage 2, we work back to stage 1. Let Π̂L(xL, xF ) =

ΠL(xL, xF , p∗L(xL, xF ), p∗F (xL, xF )). That is, Π̂L(xL, xF ) is the profit accruing to L if the

two firms locate at xL and xF respectively, and choose equilibrium prices as described above.

Let Π̂F (xL, xF ) be similarly defined.

2.3.1 Simultaneous move game

In the simultaneous move game, both firms simultaneously choose locations to maximize

their own profit. Again, the optimum for each player is described by a first-order condition.

In a pure strategy equilibrium, the equilibrium locations x∗L and x∗F simultaneously satisfy

the following equations:

∂

∂xL
Π̂L(x∗L, x

∗
F ) = 0;

∂

∂xF
Π̂F (x∗L, x

∗
F ) = 0 (10)

For the simultaneous move game, we restrict attention to pure-strategy equilibria that

are symmetric (that is, x∗L + x∗F = 1). Based on our numeric findings, we conjecture that

the only pure-strategy equilibria in the simultaneous move game are indeed symmetric.

2.3.2 Sequential move game

In the sequential move game, given a location xL selected by L, firm F chooses a location

xL which maximizes its profit once both firms set their equilibrium prices:

x∗F (xL) = arg max
xF∈[0,1]

Π̂F (xL, xF ) (11)

The corresponding first-order condition for F ’s maximization problem is ∂Π̂F (xL,xF )
∂xF

= 0.

Continuing backwards, L’s problem is to select a location x∗L that maximizes profit

ΠL assuming that F will respond with the optimal location choice x∗F = x∗F (x∗L), with

both firms choosing equilibrium prices, p∗L = p∗L(x∗L, x
∗
F ) and p∗F = p∗F (x∗L, x

∗
F ), at stage

10



2. Define ΠL(xL) = ΠL(xL, x∗F (xL), pL(xL, x∗F (xL)), pF (xL, x∗F (xL))). Since the consumer

distribution is uniform, and hence symmetric about the market center at 0.5, we can without

loss of generality restrict L to locating in the sub-interval [0, 0.5]. Then, L’s optimal location

satisfies:

x∗L = arg max
xL≤0.5

ΠL(xL), (12)

or alternatively, satisfies the first-order condition ∂ΠL(xL)
∂xL

= 0.

Since we do not have a closed-form expression for equilibrium prices at stage 2, we cannot

analytically solve for equilibrium locations in either the simultaneous or the sequential move

game. Instead, we numerically solve for equilibria. The results are presented in Section 4.

First, to obtain some insight into the tradeoffs faced by the firms, we consider a few special

cases of the pricing subgame at stage 2.

3 Analytic Results in the Pricing Subgame

Consider the pricing subgame at stage 2. Suppose each firm j = L,F has chosen its

location, xj . Assume that, for any pair of locations (xL, xF ) chosen at stage 1, there

exists a pure-strategy pricing equilibrium at stage 2. This assumption is borne out in our

numeric calculations. Through much of this section, we also assume that the solution to

the first-order conditions (9) does indeed constitute a pair of optimal prices for F and L.

In Proposition 2, we prove this when firms have symmetric locations. More broadly, we

confirm in our numeric solution that prices are optimal for each set of parameter values and

firm locations. That is, we verify numerically that prices found by solving equations (9) do

indeed maximize profits.

Location is critical to relative outcomes in the game. First, we consider asymmetric

locations, with one firm (say firm i) being closer to the market center than its rival (firm j).

We show that the firm that locates closest to the center will, in equilibrium, have a higher

price, market share, and profit than the other firm. The proof of this proposition, and all

other analytic results, is in the Appendix, Section 6.

Recall that the overall expected demand for firm i is di =
∫ 1

0 qi(y)dy, which is also the

market share of firm i in our model.

Proposition 1 In an equilibrium of the pricing subgame at stage 2, the firm closer to the

center has a higher price, a higher overall expected demand, and a higher profit than its
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rival. That is, if |xi − 0.5| < |xj − 0.5|, then p∗i > p∗j , d
∗
i > d∗j , and Π∗i > Π∗j .

In the next section, we show numerically that for a large region of parameter values,

equilibria in the simultaneous-move game are characterized by one firm being closer to the

market center than its rival. Given Proposition 1, in such equilibria, a first-mover advantage

will exist if and only if firm L is closer to the market center (i.e., the point 0.5) than firm

F . Equilibria with F closer to the market center will necessarily involve a first-mover

disadvantage.

Next, consider the special case in which firms have located symmetrically around the

market center (the point 0.5), i.e., when xL + xF = 1. We first show that in this case,

the equilibrium prices and profits of the two firms are equal. Further, it is reasonable

to conjecture that, as the distance between the firms increases in the location stage, the

equilibrium prices will increase in the pricing subgame. The absence of an outside option

then implies that overall profits will also go up. While this is hard to prove for the general

case (i.e., keeping one player’s location fixed while moving the other player further away), we

are able to prove this for the symmetric locations case. Finally, we show that, when locations

are symmetric about the market center, the solution to the best response equations (9)

indeed determines optimal prices; that is, a second-order condition for profit maximization

is satisfied.

Proposition 2 Suppose firms’ locations are symmetric about the market center (i.e., xi +

xj = 1). Then, in the pricing subgame at stage 2,

(i) equilibrium prices, market shares, and profits of the firms are equal. That is, p∗i = p∗j ,

d∗i = d∗j , and Π∗i = Π∗j ,

(ii) equilibrium prices increase as firms’ locations become more distant from the center, and

(iii) the solution to the first-order conditions (9) maximizes the profit of each firm j, keeping

fixed the price of the other firm, and therefore characterizes an equilibrium of the pricing

subgame.

Thus for any fixed µ, the firms would like to increase the distance from each other

in order to sustain higher prices and consequently higher profits. This impulse to move

away from each other provides a repulsive force. On the other hand, for any pair of firm

locations, if one firm moves closer, its expected demand increases if prices stay unchanged.

This provides an attractive force. In general, of course, the prices will change, and the
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interplay between the two forces will determine the outcomes. The equilibrium locations

are the points where the attractive and repulsive forces are in balance. Our numerical results

suggest that, in the simultaneous move game, this balance is only attained when locations

are symmetric around the market center, while in the sequential move game, locations need

not be symmetric.

4 Numerical analysis of location equilibria

We numerically determine equilibrium locations and prices for a range of (α, µ) parameters.

Determining the optimal location essentially requires determining the equilibrium prices

for each pair of feasible locations. However, as mentioned above, the equilibrium prices,

which satisfy equations (9) do not admit a closed-form solution in general. To determine

the equilibria of the overall game numerically, we trace the following steps:

1. Fix a finite location grid on [0, 1] for consumers. Let
[
0, 1

m ,
2
m , · · · , 1

]
represent this

grid. The mass at each point on this grid is 1
m+1 .

2. Fix finite location grids on [0, 1] for L and F . Let
[
0, 1

2n ,
2

2n , · · · ,
1
2

]
represent the

location grid for L, and let
[

1
2 ,

n+1
2n ,

n+2
2n , · · · , 1

]
represent the grid for F .

Notice that we restrict L to locating in [0, 0.5]. As mentioned earlier, given the

symmetry of the consumer distribution about the market center 0.5, this is without

loss of generality. We also restrict F to locating in [0.5, 1]. While it is intuitive that

F will want to locate on the other side of the market center as L, we first verified

numerically that this property holds. That is, for each pair (α, µ) of parameter values,

we allowed F to locate on a grid that spanned [0, 1], and found that in each case F

preferred to locate in the sub-interval [0.5, 1].

3. For each point on the location grid of L, determine F ’s best response. This is done

as follows:

(a) For each point on F ’s location grid, given L’s location, determine equilibrium

prices by finding a solution to equations (9). Verify that the second-order con-

dition for optimal prices holds.

(b) Determine F ’s profit at that point.
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(c) F ’s best response to L’s location is the point at which F attains maximum profit.3

4. Determine equilibrium in the simultaneous move game as follows. We search for all

symmetric equilibria of this game (since the simultaneous-move game is symmetric by

construction).

In any symmetric equilibrium, L is as far from the market center (at 0.5) as F .

Thus, 0.5− x∗L = x∗F − 0.5, or x∗L + x∗F = 1. Any point on F ’s best response function

at which xF = 1 − xL thus provides equilibrium locations in the simultaneous-move

game. Notice that our numerical procedure finds only pure strategy equilibria.

5. Determine equilibrium in the sequential move game as follows. For each point in L’s

location grid, determine the best response of F . Compute L’s profit at this location.

L’s optimal action is given by the location that maximizes its profit. Again, we find

pure strategy equilibria of the game.

In our numerical analysis, we set m = 400. That is, consumers are located at a set

of 401 equidistant points in the interval [0, 1], with a mass equal to 1/401 at each point.

Further, we set n = 200, so that the feasible location grid for L consists of 201 equidistant

points in [0, 0.5], and that for F consists of 201 equidistant points in [0.5, 1].

Finally, we consider values of µ in the range 0.2 to 2.0, with steps of 0.1, and values of

α in the range 0.125 to 3.0, with steps of 0.125. We explored larger values of µ and α, and

found qualitatively similar equilibrium patterns. Our results extrapolate to (α, µ) values

not explicitly displayed.

4.1 Linear distances model: Follower’s best response

Before we turn to equilibria, we first consider the best response of F for each location L

may choose. In the simultaneous-move game, L’s best response is exactly symmetric. In

the sequential move game, L takes F ’s best response into account in choosing its optimal

location.

In Figure 2, we exhibit F ’s best response for each location of L, in the linear distance

model (i.e., fixing α = 1). The best responses are shown for three different levels of µ.

Recall that the consumer distribution is symmetric around the market center at 0.5.

Thus, in the absence of price competition, firms would wish to be at the center, to minimize
3In the numerical computations, the best response of F was unique for each set of parameters and fixed

L location.
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Figure 2: F ’s best response given L’s location, for α = 1

their distance to the average consumer. However, price competition is at its most intense

when the firms co-locate, and provides a motive for a firm to locate far from its competitor.

Since demand at each consumer location is nonlinear in prices and in the idiosyncratic

preferences (i.e., µ), the tradeoff between these two effects is also nonlinear.

For low values of µ (in the figure, µ = 0.2), F ’s best response is mostly upward-sloping

as L approaches the center, starting with a location of 0. That is, the closer L is to the

market center, the further away from the center F wishes to be. This is because low values

of µ correspond to relatively unimportant idiosyncratic preferences, so the price competition

effect dominates. Thus, firms have a natural desire to separate out in location.

As µ increases from 0.2, idiosyncratic preferences become more important, mitigating

the effects of price competition. Though not shown in the figure, the nonlinear tradeoff

between the distance and price competition effects leads to F being further away from the

center if L locates at 0 (the left extreme of its location space), and closer to L if L locates

at 0.5, the market center.

Further increases in µ are characterized by further mitigation of price competition, so

that at µ = 0.95, F ’s best response is downward-sloping, and for yet higher values of µ, F
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comes in even closer to the market center at each L location. That is, as µ increases in this

range, F ’s entire best response curve falls toward 0.5. Notice also that F ’s best response

is most sensitive to changes in µ when L locates at the market center, and least sensitive

when L locates at 0.

4.1.1 Equilibria in the simultaneous-move game for α = 1

Now, consider equilibria of the simultaneous-move game. As mentioned earlier, in a sym-

metric equilibrium, xF = 1 − xL. This line is shown as the dashed “Symmetry line” in

Figure 2. All points where the best response functions intersect with this line represent

symmetric equilibria in the simultaneous move game (these points are the solid circles in

the figure). As may be seen, for low values of µ, the equilibrium is unique (in the class of

symmetric pure-strategy equilibria), and is characterized by both firms being in the interior

of their respective location spaces.

Initially, as µ increases, firms move further away from the center (not shown in the fig-

ure), and then move back in toward the center once idiosyncratic preferences are sufficiently

important. At µ = 0.95, there are two pure-strategy equilibria in the simultaneous-move

game: one with locations of L and F at (0.32,0.68), and the other with both firms at the

market center, (0.5, 0.5). When idiosyncratic preferences are even more important (in the

figure, at µ = 2), price competition is relatively weak, and the distance effect dominates.

As a result, both firms locate at the market center in equilibrium.

4.1.2 Equilibria in the sequential-move game for α = 1

Figure 2 also shows the location equilibria of the sequential-move game (the equilibrium

points are shown as solid diamonds). Low levels of idiosyncratic preferences (i.e., low values

of µ) are characterized by a first-mover advantage. That is, L is closer to the market center

than F (since the equilibrium point is above the symmetry line when µ = 0.2), and hence

by Proposition 1, has a higher profit. Conversely, high levels of idiosyncratic preferences

are characterized by a first-mover disadvantage: F is closer to the center than L.

Compare the sequential-move game equilibrium locations with those in the simultaneous-

move game. At low values of µ (e.g., µ = 0.2), F ’s best response function is upward-

sloping at the simultaneous-move game equilibrium. That is, by moving in closer to the

market center than in the simultaneous-move equilibrium, L can drive F further away from
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the center. This results in L being closer to the market center in the equilibrium of the

sequential-move game.

Conversely, at higher values of µ (µ = 0.95 and 2), F ’s best response function is

downward-sloping at the simultaneous-move game equilibrium locations. In this case, if

L were to come in closer to the center, F would respond by moving in as well, which would

exacerbate price competition between the firms. Thus, L chooses to move away from the

center, conceding a location advantage to F .

Therefore, as compared to the simultaneous-move game equilibrium locations, L’s choice

in the sequential-move game appears to be dominated by the price competition effect. When

L can come in towards the market center while still maintaining a distance between the

firms (which happens for low values of µ), it does so. When moving towards the center

would increase price competition, it moves further away from the center.

4.1.3 Complete equilibria for linear distances

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Equilibrium Locations

μ

 

 
Leader, sequential
Follower, sequential
Leader, simultaneous
Follower, simultaneous

Figure 3: Complete equilibrium locations for α = 1.

Figure 3 shows all equilibrium locations for different values of µ for α = 1. Consider

the simultaneous move game first. As discussed above, for extremely low values of µ, the

unique pure-strategy equilibria are characterized by players maintaining a sufficient distance

between them. As µ increases, not only do the players’ locations get closer to the market
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center, but both players locating at the center can also be sustained in equilibrium. For

some values of µ, the figure shows more than one non-central equilibrium pair. This is due

to the imprecision introduced by taking a finite location grid in the numerical analysis. As

the follower’s best response curve in Figure 2 becomes tangential to the symmetry line, the

numerical computation reports multiple equilibria in the region where the two curves are

close to coinciding.

As µ increases further, idiosyncratic factors dominate, mitigating price competition to

the extent that players are no longer reluctant to locate close to each other. Thus, the only

equilibrium sustained in the simultaneous move game is the one where both players locate

at the center.

Figure 3 also shows the equilibrium locations in the sequential move game. The overall

pattern is the same: initially, both players maintain some amount of distance between each

other; the distance initially increases with increasing µ, and then decreases as both players

move towards the market center. The reason for this overall pattern is the same as in the

simultaneous move game: increasing importance of the idiosyncratic factors (increasing µ)

reduces the benefits of maintaining inter-firm distance.

It is also straightforward from the figure to identify regions under which one of the

players dominates the other in terms of profit and market share. From Proposition 1, the

firm closer to the market center has a higher price, market share, and profit. Therefore, we

find that for low values of µ (approximately in the range [0.2,0.8]), the first mover maintains

an advantage, while for intermediate values of µ (in the approximate range [0.8, 2.2]), the

follower has the advantage. As in the simultaneous move game, once µ is sufficiently high

only the central equilibrium is obtained.

For µ in the range [1.8, 2.2], separation is maintained in the sequential move game, even

though the simultaneous move game has both players locating at the center. For an even

larger range of µ values, in equilibrium the distance between the firms in the sequential

move game is significantly greater than the distance in the simultaneous move game. Since

prices increase when the firms are further apart, in this range of µ the sequential move game

results in higher prices faced by consumers, and overall higher profits for the two firms.

A brief explanation of this phenomenon is as follows. For these values of µ, the idiosyn-

cratic factors matter somewhat, but there is still room for differentiation between firms.

Re-examining Figure 2, it may be noted that, at µ = 2, the best-response curve of Follower
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is downward-sloping at the point of intersection with the symmetry line. In the simultane-

ous move game, the strength of the idiosyncratic factors allows the two players to move in

closer to each other. However, in the sequential game, the downward-sloping best response

curve of F indicates that there are higher profits to be made if both players move away

from each other. Since the slope of the line is less than 45 degrees, the movement by F

away from the market center is slower than the movement of L. That is, in equilibrium F is

closer to the market center than L, and as a result earns a higher profit than L. However,

since L is maximizing her own profit rather than minimizing her relative disadvantage, it

is still in L’s best interest to sustain this asymmetric equilibrium.

4.2 Equilibria as α and µ vary

We now consider equilibria in the game for different values of α and µ. Thus, we allow

the attribute preferences to vary (by varying α), along with variation in the idiosyncratic

preferences. This allows us to study the relative impact of the attribute and idiosyncratic

preferences, and their impact on equilibrium locations and firm advantages.

4.2.1 Simultaneous-move game

The equilibria for the simultaneous move game are shown in Figure 4. We identify three

classes of equilibria in the simultaneous move game. All the equilibria we found are sym-

metric in location (so x∗L + x∗F = 1). Thus, by Proposition 2, the two firms have equal

prices and profits in each of these equilibria. As already seen in the case of α = 1, multiple

equilibria may exist in the simultaneous move game.

1. Maximal differentiation: The firms are at the extremes of the location space, with

x∗L = 0 and x∗F = 1. These equilibria are observed for α ≥ 1.7, with small values of µ.

2. Central location: Both firms are at the market center, with x∗L = x∗F = 0.5. For each

value of α, these equilibria are observed when µ is sufficiently high, with the threshold

value of µ falling as α increases.

3. Symmetric interior location: Firms are strictly in the interior of the location space,

with x∗L ∈ (0, 0.5), x∗F ∈ (0.5, 1), and x∗F = 1 − x∗L. These equilibria are observed for

all values of α, with a range of µ that declines as α increases.
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4.2.2 Elasticities of profit

To explain these equilibria, we consider the sensitivity of profit with respect to price and

distance. Since the level of profit changes with α and µ, we use elasticity as a scale-free

measure of sensitivity. Formally, the elasticity of the profit of firm i with respect to its own

price is defined as ηΠ
p = ∂Πi(xL,xF ,pL,pF )/∂pi

Πi(xL,xF ,pL,pF )/pi
. Thus, the elasticity varies with the locations

and prices of both firms. Further, although α and µ are suppressed as arguments of the

profit function, both profit and elasticity vary with α and µ as well.

To standardize our elasticity computation, we fix firm locations at xF = 0.25 and

xL = 0.75. We choose these locations because they are the center of the respective location

spaces for the two firms, and provide a notion of average elasticity (average taken over

all firm locations). Given these locations, we determine equilibrium prices p∗L(xL, xF ) and

p∗F (xL, xF ) for each (α, µ) pair (since the locations are symmetric, the equilibrium prices are

equal across the firms). Defining a change in price for L of ∆p = 0.0025, we then compute

the elasticity of profit of L with respect to its price for a given (α, µ) pair as follows:

ηΠ
p =

(ΠL(xL, xF , p∗(xL, xF ) + ∆p, p
∗(xL, xF ))−ΠL(xL, xF , p∗(xL, xF ), p∗(xL, xF )))/∆p

ΠL(xL, xF , p∗(xL, xF ), p∗(xL, xF ))/p∗(xL, xF )

In computing the elasticity of firm i’s profit with respect to its own location, we are

careful to ensure that firms choose optimal prices given the new location. As before, we

define xL = 0.25 and xF = 0.25. Define a change of location for L of ∆x = 0.0025. For a
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given (α, µ) pair, we compute the elasticity of L’s profit with respect to its own location as

follows:

ηΠ
x =

(ΠL(xL + ∆x, xF , p
∗
L(xL + ∆x, xF ), p∗F (xL + ∆x, xF ))−ΠL(xL, xF , p∗(xL, xF ), p∗(xL, xF )))/∆x

ΠL(xL, xF , p∗(xL, xF ), p∗(xL, xF ))/xL
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Figure 5: Elasticities of L’s profit with respect to (a) price, and (b) location.

Figure 5 displays the elasticities of L’s profit with respect to location and price (ηΠ
x and

ηΠ
p ), as α and µ vary. Consider first the elasticity of profit with respect to price (shown in

the left of Figure 5). Note that the elasticity is consistently negative; since the initial price

is optimal given the firm locations, any change in price leads to a smaller profit. For small

µ, the elasticity increases in magnitude as α increases. As α becomes high, distance cost

becomes less relevant (since the distance from any consumer to either firm is less than 1,

increasing α reduces the importance of distance in consumer utility). Thus, consumers are

more sensitive to price, resulting in an increased profit elasticity. For large µ, the elasticity

is more or less flat in α, and relatively small in magnitude: as idiosyncratic preferences

become more important, consumers are less sensitive to price.

Next, consider the elasticity with respect to location, ηΠ
x (shown on the right in Figure 5).

When µ is small, ηΠ
x is negative, with a large magnitude for α close to 1 (i.e., when distance

cost is more relevant to the consumer). At these values of (α, µ), there is a strong repellent

force on the firm. That is, fixing F at xF = 0.75, firm L would like to move further away

than 0.25, to locations closer to zero. For large µ, the elasticity ηΠ
x is positive, but small

in magnitude. Idiosyncratic preferences are more important when µ is large, so the impact

of location is small and firms are willing to locate closer together. Hence the positive ηΠ
x ,
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pointing to an attractive force between firms.

It is important to note that we measure elasticities at the fixed locations of xL = 0.25

and xF = 0.75. These elasticities vary across locations, especially when µ is small. Although

equilibrium locations themselves change as α and µ change, nevertheless the elasticities we

construct at fixed locations provide insight into the outcomes of the overall game.

First, consider the region with (approximately) µ ≥ 0.4 and α ≥ 3 − µ. For these

parameter values, idiosyncratic preferences are important (µ is large) and distance costs

relatively unimportant (α is also large). In this region, the location elasticity of profit,

ηΠ
x , is positive, so L would like to come in closer toward the center, when F is fixed at

xF = 0.75. Further, the price elasticity of profit, ηΠ
p , is small in magnitude, so profit is

relatively invariant to price. Thus, there is an attractive force between the firms, driving

them to locate towards each other. The most that they can get towards each other is the

center, resulting in the central equilibrium.

Next, consider the region with µ ≤ 0.4 and α ≥ 1.5. Here, idiosyncratic preferences

are relatively unimportant, as are distance costs. Thus, consumers are highly sensitive to

price. As a result, the price elasticity ηΠ
p is negative and has large magnitude. The desire

to avoid price competition results in the location elasticity, ηΠ
x , also being negative. There

is a strong repulsive force causing firms to differentiate in order to raise prices. Hence, the

equilibrium is characterized by maximal differentiation.

Finally, consider the remaining region: small-to-moderate values of both µ and α. Here,

distance costs are important, resulting in a negative location elasticity, ηΠ
x . Idiosyncratic

preferences are only moderately important, so ηΠ
p is small in magnitude. The negative

location elasticity points to gains from differentiation, whereas the small price elasticity

suggests the gains are limited. As a result, the equilibrium is characterized by symmetric

interior locations.

4.2.3 Sequential-move game

We now turn to the sequential game. The equilibria are depicted in Figure 6.

We find that there are five classes of equilibria. The first three of these correspond to

similar equilibria in the simultaneous move game, with firms having equal prices and profits.

The last two exhibit either a first-mover advantage or a first-mover disadvantage.

1. Maximal differentiation: The firms are at the extremes of the location space, with
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x∗L = 0 and x∗F = 1. The parameter region for which these equilibria are found

roughly corresponds to the maximal differentiation region of the simultaneous move

game.

2. Central equilibrium: Both firms are at the market center, with x∗L = x∗F = 0.5.

Again, the parameter region corresponds roughly to the central equilibrium region in

the simultaneous move game

3. Symmetric interior equilibrium: Firms are strictly in the interior of the location space,

with x∗L ∈ (0, 0.5), x∗F ∈ (0.5, 1), and x∗F = 1−x∗L. Observe that the parameter region

in which these equilibria hold is a small subset of the symmetric interior region of the

simultaneous move game. In other areas where the simultaneous move game has a

symmetric interior equilibrium, we find that one of the two firms has a profit advantage

in the sequential game.

4. Leader advantage: Firm L is closer to the center than the follower, with 0.5 − x∗L <

x∗F −0.5. Proposition 1 implies that L has a profit advantage in these equilibria, which

is confirmed in our numerical results. The parameter region in which these equilibria

obtain is roughly the triangle bounded by (µ = 0.2, α = 1.8) and (µ = 0.45, α = 1).
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The maximum Leader advantage we observe is when α = 1.5 and µ = 0.2. At

these values, we find x∗L = 0.2525, x∗F = 0.9775, p∗L = 0.9382 and p∗F = 0.8098. Thus,

L is approximately halfway between one end of the market and the market center,

while F is almost at the other end of the market. This locational advantage of L is

reflected in the higher profit observed: Π∗L = 0.5036, with Π∗F = 0.3751, so that the

leader has a profit advantage of 34.24%.

5. Follower advantage: Firm F is closer to the center (0.5 − x∗L > x∗F − 0.5), so, by

Proposition 1, has a profit advantage. As shown in Figure 6, the parameter region in

which these equilibria obtain consists of intermediate values of µ, for α ranging from

1 to approximately 2.5.

The maximum follower advantage is when α = 2.5 and µ = 0.6. At these

values, L locates at x∗L = 0 and F locates at x∗F = 0.7425, with prices p∗L = 1.2648

and p∗F = 1.3846. The resultant profits are Π∗L = 0.6038 and Π∗F = 0.7236 respectively,

translating to a 16.56% profit disadvantage for L.

In comparing the equilibria of the simultaneous and sequential move games, a striking

feature is the close overlap of the regions with central equilibrium and maximal differenti-

ation. This is no coincidence: we prove below that if the sequential-move game leads to a

symmetric equilibrium, then the same symmetric equilibrium must also be an outcome of

the simultaneous move game.

Proposition 3 Suppose that, for some (α, µ), the sequential location game has a symmetric

equilibrium. Then, the same set of locations and prices constitute an equilibrium of the

corresponding simultaneous move game.

Note that the converse is not true; in fact, if it were, there would be no asymmetry

in profits in the sequential move game. However, Proposition 3 indicates the following: if

(α, µ) are such that we are in the region of Maximal differentiation or Central equilibrium,

then entry order does not matter because whether the game is played with sequential entry

or simultaneous entry, the same equilibria will arise.

4.2.4 Asymmetric equilibria in sequential move game

Let us now examine the asymmetric equilibria, where one or the other firm has an advantage.

If we examine the elasticities of profit in Figure 5, we see that the asymmetric equilibria
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occur approximately in the regions where ηΠ
x is negative. At these values of µ and α, firms

prefer to be differentiated: if locations are fixed at 0.25 for L and 0.75 for F , firm L would

rather be further from the market center.

Consider first the case when ηΠ
x is negative, and large in magnitude. This means that

once L has chosen its location, F has a strong incentive to locate far away from the center

(and also far away from L) in order to try and maintain a sufficient distance to keep prices

high. An example of this is when α = 1 and µ = 0.2. This strong repellent force on F

is reflected in the best-response curve: an examination of Figure 2 shows that F ’s best-

response is upward-sloping in L’s location for small values of µ, meaning that a move close

to the market center by L results in F moving away from the market center. Note that

there is a limit to this effect as well; the slope of F ’s best-response is less than 45 degrees,

so that F ’s response to a move by L is relatively small in magnitude. Thus L does not

find it optimal to go to the extreme of locating at the market center. Indeed, equilibrium

locations are (x∗L = 0.2225, x∗F = 0.8275).

In general, if the repellent force is strong enough, F will move farther from the mar-

ket center as L moves a little closer, resulting in a profit advantage for L. This occurs

when product attribute preferences are strong (i.e., α is low, so price competition is a po-

tential issue) and idiosyncratic preferences are weak (i.e., µ is too low to mitigate price

competition).

In contrast, consider the case when ηΠ
x is negative but small in magnitude, such as when

α = 1 and µ = 0.95. For a fixed location of L, the repellent force on F is no longer as

strong, due to the importance of idiosyncratic preferences in consumer choice. However,

the fact that ηΠ
x is negative means that there are still gains to be made by differentiation.

How is L to realize this gain? Since price competition is weaker than when µ is low, L

rationally anticipates that F will not differentiate enough, and thus takes the initiative

of differentiation by locating further away from the market center. This phenomenon is

reflected in the best-response curve: Figure 2 shows that F ’s best response is now downward-

sloping with L’s location, but at an angle less than 45 degrees. In fact, this shows that

movement away from the market center by L results in F also moving away from the center,

but not by as much as L. Therefore, even if F ends up closer to the market center than L

(resulting in a profit advantage for F ), L is still better off compared to the simultaneous

move equilibrium.
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In effect, the first-mover disadvantage occurs when L takes action to “expand the pie,”

so that both firms earn a higher profit than in the simultaneous move equilibrium. That

is, even though L has conceded a profit advantage to F , it does increase its own profit

(compared to the equilibrium profit in the simultaneous-move game) in the process.

4.3 Implications on firm entry order

Whenever the sequential-move game results in a symmetric equilibrium, the same equilib-

rium holds in the simultaneous-move game. In such an event, entry order clearly does not

matter.

However, when asymmetric equilibria appear in the sequential-move game, the order

of entry matters. If product attribute preferences are strong and idiosyncratic preferences

are weak, we are in a region of first-mover advantage. There will therefore be a “rush to

market” to realize this advantage. Conversely, with strong product attribute preferences

and strong idiosyncratic preferences, we are in a region of first-mover disadvantage. Thus,

both firms would prefer that the other firm move first.

In reality, of course, several other factors may also affect the timing of entry timing,

including technology, entry barriers, evolving customer demand, and incomplete informa-

tion. These, in conjunction with the impact of location and pricing, will then determine

the optimal time to enter.

5 Conclusion

In this paper, we consider a duopoly location model with an allowance for idiosyncratic

preferences that may affect a consumer’s choice over the two products. We find that the

interplay between product attribute preferences and idiosyncratic preferences is critical

in determining whether there is a first-mover advantage or disadvantage in the model.

Strong product attribute preferences are associated with strong price competition, and lead

to a first-mover advantage. Idiosyncratic preferences mitigate price competition, and, in

conjunction with strong product attribute preferences, imply a first-mover disadvantage.

Importantly, the first-mover disadvantage exists even though, other than entry order,

firms are symmetric in our setting: the follower firm has neither a cost advantage nor any

extra information about demand over the leader. Despite this, we show that the leader

will concede the market center to mitigate price competition with the follower. Of course,
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our analysis leaves many open questions. Important extensions include consideration of

multiple product attributes and a larger number of firms.

While we explicitly consider a Hotelling setting in this paper, we have confirmed that

our insights into first-mover advantage do carry over more broadly to location models.

Two other popular location models are those of Lane (1980), and the Defender model of

Hauser and Shugan (1983). In Lane’s model, the leader again captures the market center

and commands a profit which is more than twice that of the follower. We performed a

numerical analysis similar to that in Section 4 in the Lane model (after adding the random

utility term), and obtained qualitatively similar results about the existence of a first-mover

advantage or disadvantage, depending on the strength of product attribute preferences and

idiosyncratic preferences. We are not aware of a sequential location analysis of the Defender

model.

6 Appendix: Proofs

Proof of Proposition 1

Suppose |xi− 0.5| < |xj − 0.5|. If xj < xi < 0.5, the result is immediate. Hence, assume

that xi < 0.5 < xj . Then, we have 0.5− xi < xj − 0.5, or xi + xj > 1.

Let (p∗i , p
∗
j ) denote the price equilibrium for these locations. Then, rewriting equations

(9) slightly, for each firm l, f , the following best response condition for optimal price must

be satisfied: ∫ 1

0
qj(y)dy =

pj
µ

∫ 1

0
qL(y)qF (y)dy. (13)

Suppose that p∗i ≤ p∗j . Then, it follows from (13) that
∫ 1

0 q
∗
i (y)dy ≤

∫ 1
0 q
∗
j (y)dy. We will

show instead that
∫ 1

0 q
∗
i (y)dy >

∫ 1
0 q
∗
j (y)dy, which provides a contradiction.

Let y0 = xi+xj−1, and y1 = xi+xj
2 = y0+1

2 . That is, the point y1 is the midpoint of the

interval [xi, xj ], and also the midpoint of the interval [y0, 1]. Since xi + xj > 1, it follows

that y0 > 0.

Let z be any point in the interval [y0, 1]. The symmetric image of z about the point y1

is given by z = 1 + y0 − z. Therefore, we have xi − z = z − xj , for any z ∈ [y0, 1]. Since

p∗i ≤ p∗j by assumption, it must be that qi(z) ≥ qj(z) for any z ∈ [y0, 1]. Therefore, the

expected demands of firm i over the interval [y0, 1] must be greater. That is,∫ 1

y0

q∗i (y)dy ≥
∫ 1

y0

q∗j (y)dy. (14)
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Now, consider the interval [0, y0]. By construction, for any point z ∈ [0, y0], we have

|xi−z| < |xj−z|. Further, we have assumed p∗i ≤ p∗j . Therefore, it follows that q∗i (z) > q∗j (z),

so that ∫ y0

0
q∗i (y)dy >

∫ y0

0
q∗j (y)dy. (15)

Now, for each firm k, the overall expected demand is
∫ 1

0 q
∗
k(y)dy =

∫ y0
0 q∗k(y)dy+

∫ 1
y0
q∗k(y)dy.

Thus, it follows that p∗i ≤ p∗j =⇒
∫ 1

0 q
∗
i (y)dy >

∫ 1
0 q
∗
j (y)dy. However, by inspection of the

best-response condition (13), it must be that
∫ 1

0 q
∗
i (y)dy >

∫ 1
0 q
∗
j (y)dy =⇒ p∗i > p∗j , which

is a contradiction.

Therefore, it cannot be that p∗i ≤ p∗j , so that we have p∗i > p∗j . Now, from equation (13),

it follows immediately that p∗i > p∗j =⇒ d∗i =
∫ 1

0 q
∗
i (y)dy > d∗j =

∫ 1
0 q
∗
j (y)dy. Since firm i

has a higher price and a higher market share than firm j, its profit is also higher.

Proof of Proposition 2

(i) Suppose xi + xj = 1. Then, the point z = 1
2 lies midway between xi and xj . Suppose

that p∗i < p∗j . Now, for every z ∈ [0, 1
2 ], consider the point z = 1− z ∈ [1

2 , 1]. Since p∗i < p∗j ,

it follows that q∗i (z) > q∗j (z). Hence, q∗j (z) = 1 − q∗i (z) < q∗i (z) = 1 − q∗j (z). Therefore, it

follows that ∫ 1

0
q∗i (y)dy >

∫ 1

0
q∗j (y)dy, (16)

or d∗i > d∗j . But, from the proof of Proposition 1, if p∗i < p∗j , it must be that d∗i < d∗j .

Therefore, it cannot be that p∗i < p∗j .

By the same argument, we can rule out the case that p∗i > p∗j . Hence, it must be that

p∗i = p∗j . Now, since locations are symmetric about the market center, and the prices are

equal, it must be that d∗i = d∗j , and hence Π∗i = Π∗j .

(ii) Because symmetric locations imply equal prices (as shown in part (i)), the market share

of each firm must be exactly 1/2. Using this, the best response condition for each firm j

(13) reduces to:

pj
µ

∫ 1

0
qL(y)qF (y)dy =

1
2
. (17)

Now consider two sets of locations, with (xL, xF ) given by (0.5 − h1, 0.5 + h1) and

(0.5−h2, 0.5+h2) respectively, where h2 > h1 ≥ 0. Since the firms’ locations are symmetric,
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the equilibrium prices must be equal. Let p1 denote the equilibrium price of each firm when

the firms locate at (0.5− h1, 0.5 + h1). Then, p1 satisfies equation (17).

Consider what happens when firms locate at (0.5 − h2, 0.5 + h2). Both firms must

still price equally; let p2 denote this price. Fix a consumer y < 1/2, and let δ(y, xji ) be

defined as |y − xji |, where i ∈ {l, f}, and j ∈ {1, 2} represents the first and second set

of locations respectively. Symmetric locations, equal prices, and h2 > h1 imply that for

any y < 1/2, we have δ(y, x2
L) − δ(y, x1

L) ≤ δ(y, x2
F ) − δ(y, x1

F ). That is, any consumer

at y < 1/2 sees their nominal distance δ(y, x) from L increase by an amount that is no

more than the increase in distance from F . Now recall that α ≥ 1, which ensures that the

deterministic consumer utility −|y − x|α − p is convex in distance. Resultantly, we have

qL(y, 0.5− h2, 0.5 + h2, p2, p2) > qL(y, 0.5− h1, 0.5 + h1, p1, p1). The product qL(y)qF (y) is

therefore smaller for every y 6= 1/2 under the second set of locations compared to the first.

For (17) to be satisfied, we therefore must have p2 > p1.

(iii) Consider the left-hand side of equation (9), which represents ∂Πj
∂pj

for firm j. For

convenience, let j = l in what follows. Differentiating once again with respect to pL and

collecting terms, we have

∂2ΠL

∂p2
L

= − 1
µ

[
2
∫ 1

0
qL(y)(1− qL(y))dy − pL

µ

∫ 1

0
qL(y)(1− qL(y))dy +

2pL
µ
q2
L(y)(1− qL(y))dy

]
.

Now, using the fact that qF (y) = 1− qL(y), so that qL(y) + qF (y) = 1, we can write the last

two terms in the parentheses as

−pL
µ

∫ 1

0
qL(y)qF (y)[qL(y) + qF (y)]dy + 2

pL
µ

∫ 1

0
q2
L(y)qF (y)dy

=
pL
µ

∫ 1

0
qL(y)qF (y)(qL(y)− qF (y))dy.

Define q̂(y) = qL(y)qF (y). Now, from part (i), symmetry implies that the solution to

the best response conditions (9) satisfies p∗L = p∗F . Since locations are symmetric about the

market center, and prices are equal, at any points y ∈ [0, 1] and z = 1 − y, it follows that

q̂(y)qL(y) = q̂(z)qF (z). Therefore,
∫ 1

0 q̂(y)qL(y) =
∫ 1

0 q̂(y)qF (y), so that

pL
µ

∫ 1

0
qL(y)qF (y)(qL(y)− qF (y))dy = 0.

Therefore, when locations are symmetric, evaluating the second partial derivative of
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profit with respect to price at the prices that satisfy the first-order conditions (9), we have

∂2ΠL

∂p2
L

= − 1
µ

[
2
∫ 1

0
qL(y)(1− qL(y))dy

]
< 0.

Hence, the second-order condition for profit maximization is satisfied for L. A similar

analysis shows that the condition is satisfied for F .

Proof of Proposition 3

Since symmetric locations imply equal prices by Proposition 2 part (i), let (x∗L, 1 −

x∗L, p
∗, p∗) denote the equilibrium locations and prices in the sequential game. Suppose for

contradiction that these locations and prices do not constitute an equilibrium in the simulta-

neous game. Then, given that firm L is located at x∗L, the best response of F in the simulta-

neous move game must be given by some x′F 6= x∗F . That is, ΠF (x∗L, x
′
F , p

∗
L(x∗L, x

′
F ), p∗F (x∗L, x

′
F ) >

ΠF (x∗L, x
∗
F , p

∗, p∗). But then, in the sequential game as well, when L locates at x∗L, firm F

should locate at xFx′ rather than at x∗L, contradicting the assumption that (x∗L, 1−x∗L, p∗, p∗)

constitutes an equilibrium outcome of the sequential game.

References

Anderson, S., B. de Palma, J.-F. Thisse. 1992. Discrete Choice Theory of Product Differ-

entiation. MIT Press.

Bohlmann, J.D., P.N. Golder, D. Mitra. 2002. Deconstructing the pioneer’s advantage:

Examining vintage effects and consumer valuations of quality and variety. Management

Science 48(9) 1175–1195.

Boulding, W., M. Christen. 2003. Sustainable pioneering advantage? Profit implications of

market entry order. Marketing Science 22(3) 371–392.

Chawla, S., U. Rajan, R. Ravi, A. Sinha. 2006. Min-max payoffs in a two-player location

game. Operations Research Letters 34(5) 499–507.

Chen, Y., J. Xie. 2007. Cross-market network effect with asymmetric customer loyalty:

Implications for competitive advantage. MktSci 26(1) 52–66.

d’Aspremont, C., J.J. Gabszewicz, J.-F. Thisse. 1979. On Hotelling’s ‘Stability in competi-

tion’. Econometrica 47 1145–1150.

Eaton, B.C., R.G. Lipsey. 1976. The nonuniqueness of equilibrium in the Löschian location
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