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SUMMARY

Classical methods for fitting a varying intercept logistic regression model to stratified data are based
on the conditional likelihood principle to eliminate the stratum-specific nuisance parameters. When the
outcome variable has multiple ordered categories, a natural choice for the outcome model is a stratified
proportional odds or cumulative logit model. However, classical conditioning techniques do not apply to
the general K -category cumulative logit model (K>2) with varying stratum-specific intercepts as there is
no reduction due to sufficiency; the nuisance parameters remain in the conditional likelihood. We propose
a methodology to fit stratified proportional odds model by amalgamating conditional likelihoods obtained
from all possible binary collapsings of the ordinal scale. The method allows for categorical and continuous
covariates in a general regression framework. We provide a robust sandwich estimate of the variance of the
proposed estimator. For binary exposures, we show equivalence of our approach to the estimators already
proposed in the literature. The proposed recipe can be implemented very easily in standard software.
We illustrate the methods via three real data examples related to biomedical research. Simulation results
comparing the proposed method with a random effects model on the stratification parameters are also
furnished. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Models for ordinal data started receiving attention in the 1960s and 1970s [1, 2]. However, the
most popular model for ordinal data was inspired by McCullagh [3] by modeling the log odds
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corresponding to the cumulative probabilities, called the cumulative logits. Stratified ordinal data
often arise in sociological and clinical studies, with the level of stratification depending on the
study design. An extreme degree of stratification occurs when one collects matched pair data
that frequently arise in ‘before and after’ experiments, in the context of Rasch’s item-response
model [4] with the object to describe ‘subject-specific’ rather than ‘population-averaged’ effects.
The individual or the matched set then acts as a stratum. On the other hand, modest degree of
stratification is seen to be present in frequency matched data and data from multi-center clinical
trials. In many instances, the outcomes are measured in ordered categories: such as degree of
seriousness of an injury, stages of progression of a disease, or the extent of relief due to treatments.
A proper statistical analysis should account for stratum heterogeneity in the ordinal outcome model
used for such studies in order to avoid the risk of biased and inconsistent estimation.

In inference with matched pair data with dichotomous responses, conditioning on the complete
sufficient statistics for the stratum-specific parameters eliminates these nuisance parameters from
the likelihood. The maximum likelihood estimates (MLEs) obtained from the resultant conditional
likelihood are consistent and efficient in the sense of [5, 6]. However, in a stratified proportional odds
model there is no such reduction due to sufficiency [7–9]. When the data are sparse, random effects
approach and Bayesian approach have problems with convergence [10, 11]. A naive inference
procedure that tries to estimate all parameters from directly maximizing the unconditional likelihood
produces biased and inconsistent estimates of the parameters of interest. On the other hand, ignoring
the stratification effects when they are present, e.g. using a constant intercept model across strata,
is also known to severely underestimate the cumulative odds ratios.

McCullagh [7, 8] and Agresti and Lang [9] (referred as AL from now on) propose a novel
strategy by simultaneously fitting conditional models to all possible binary collapsings of the
ordinal response. McCullagh [8] considers this approach for a binary covariate, whereas AL
consider a categorical covariate. The maximum likelihood (ML) estimation process in AL involves
an improved Newton–Raphson algorithm for a class of generalized log-linear models and is based
on the cell counts of the collapsed table. The purpose of this paper is to extend this idea to a
general ordinal regression setup with any set of covariates, categorical or continuous, and provide
an alternative simple fitting procedure for obtaining the parameter estimates and their standard
errors. For a binary exposure, we illustrate the equivalence of our approach to the one proposed
in AL and also to a Mantel–Haenszel-type estimator proposed in [12], although each of them
is conceived from different standpoints. We call our method amalgamated conditional logistic
regression (ACLR).

It is also natural to think about an alternative mixed effects approach with a random distribution
on the stratum-specific nuisance parameters while fitting a stratified proportional odds model [13].
The proposed ACLR method has certain advantages over the random effects approach. With
finely stratified data, misspecifying the random effects distribution may cause potential bias in the
parameter estimates. For a stratified logistic regression model with matched pair data, necessary and
sufficient conditions on the random effects distribution for consistency of the estimates from the
marginal likelihood are known [14]. However, an analogous result is not known for the cumulative
logit model for matched pair data. The ACLR method we propose is more robust in the sense that it
does not make any assumptions on the distribution of the nuisance parameters. Computationally, our
method is simpler than a random effects model (REM), which requires integration of the random
stratification parameters with respect to their stochastic nuisance distributions to obtain the marginal
likelihood of data. Since the integral involved is not in closed form, the integrated likelihood is
approximated by Gauss–Hermite quadrature and then optimized in terms of the unknown model
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parameters [15]. However, the mixed effects approach typically has better mean-squared-error
properties than ACLR and provides smaller standard errors for the parameter estimates.

We compare and contrast these plausible alternative strategies with the proposed ACLR method
through several data examples and a simulation study. The first example we consider is a multi-
center randomized clinical trial with center-specific heterogeneity. The outcome of interest is
doctor’s evaluation of asthma patients, ordered into four categories based on severity of the disease;
the goal is to characterize treatment effects after adjusting for covariates. The second example
is an item response data set, part of the clinical trial data used in the first example. Here each
individual has two responses: a self-evaluation score of asthma severity, and another score from a
medical practitioner, both ordered into four categories. The goal is to characterize the differences
in self-assessment and physician’s assessment. The third example shows the application of these
approaches to analyze pair-matched case–control data where the disease states have multiple
ordered categories.

The remainder of this paper is organized as follows. In Section 2 we present the model, notation,
and the proposed methods under random sampling of individuals. In Section 3 we consider the
special case of a single binary covariate and show the equivalence of our approach with alternative
approaches. We also discuss two special cases: (a) the generalized item response model as discussed
in AL and (b) matched case–control data with multiple disease states. Section 4 presents real data
examples, whereas Section 5 contains a small-scale simulation study under varying distribution of
the stratification parameters.

2. THE STRATIFIED PROPORTIONAL ODDS MODEL

One of the most popular models for ordinal data was proposed by McCullagh [3] by modeling
the log odds corresponding to the cumulative probabilities, called the cumulative logits described
as follows. Let us consider stratified data with an ordinal response. Let Yi j denote the response
for the j th observation in the i th stratum, where j =1, . . . ,Ni and i=1, . . . ,N . Also, let Yi j
be a K -category ordinal variable with categories scaled from 0,1, . . . ,K −1. Let Xi j denote
the observed vector of covariates for observation j in stratum i . The cumulative logit model is
given by

logit[P(Yi j�r |Xi j )]=�ri +bTXi j , j =1, . . . ,Ni , i=1, . . . ,N , r =1, . . . ,K −1 (1)

where �1i>�2i> · · ·>�K−1,i for all i=1, . . . ,N and P(Yi j�0)=1. The parameters {�ri } are usually
nuisance parameters of little interest. The total number of these nuisance parameters increases in
direct proportion with the sample size for the generalized Rasch model considered in AL. For other
types of stratified designs, such as the multi-center clinical trial data we consider in Example 1,
the number of nuisance parameters (centers) does not increase with sample size. However, the
sparsity of the observations in each stratum may cause potential problems in ML estimation.
The above model applies simultaneously to all K −1 cumulative probabilities, and it assumes an
identical effect b of the predictors for each cumulative probability. This particular type of stratified
cumulative logit model, with the p-dimensional exposure effect b the same for all r , is often
referred to as a stratified proportional odds model [3].

When K =2, the stratified proportional odds model (1) reduces to a stratified logistic regression
model. One can then eliminate the nuisance parameters �ri using conditional ML. However, as
mentioned in the Introduction, the conditional ML method cannot be applied to the proportional
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Table I. Example of a table showing that how a stratum with
five observations can be collapsed into three strata.

Strata Y X1

0 1.5
1 2.0

1 2 1.5
2 1.8
3 1.2

�⇒

Y�1 X1

0 1.5
1 2.0
1 1.5
1 1.8
1 1.2

Y�2 X1

0 1.5
0 2.0
1 1.5
1 1.8
1 1.2

Y�3 X1

0 1.5
0 2.0
0 1.5
0 1.8
1 1.2

odds model (1) with K>2, because there are no reduced sufficient statistics for the nuisance
parameters �ri . In many applications, �ri is modeled as an additive effect of the threshold param-
eters �r and the stratum-specific parameters �i , i.e. �ri =�r +�i . Note that this is an alternative
parametrization of the generalized Rasch model considered in AL.

For each r (=1, . . . ,K −1), the proportional odds model is a logistic regression model. If
we consider all possible collapsings of the ordinal response Yi j into a binary scale (�r , <r ),
each stratum has K −1 such collapsed versions that are dependent within strata. The estimator
obtained from each separate collapsing for a given r is unbiased for b, but not efficient. This paper
proposes a conditional approach by first naively treating the K −1 different collapsed versions
within a single stratum as independent. That is, the original stratified data set with N strata can
be extended into a larger stratified data set with N×(K −1) strata. The extended stratified data
set has only binary responses. Therefore, the usual conditional ML method can be used and the
conditional ML estimators for b for each collapsing, and for a given r , remain consistent. The
naive working independence assumption has been used in many problems including generalized
estimating equations (GEEs) [16], in forming the simple estimate of the ordinal odds ratio for
matched pairs [9], and the ordinal Mantel–Haenszel estimator [12]. Table I presents how a single
stratum with ordinal responses from 0 to 3 and a single continuous covariate can be collapsed into
three different strata, each with a binary response.

Let us now describe our notation and model structure. Let Mri be the number of observations
in stratum i having Yi j�r (i.e. Mri =∑Ni

j=1 I (Yi j�r)). The conditional likelihood for the r th
collapsing in stratum i is

Lri = exp(bTSri )∑
qi∈�ri

exp(bTqi )

where Sri =∑Ni
j=1Xi j I (Yi j�r) is the sum of covariate vectors over Mri observations, and �ri

is a collection of all possible sum vectors of the form Xil1 +·· ·+XilMri
, in which (l1, . . . , lMri )

is a subset of size Mri from (1, . . . ,Ni ) chosen without replacement. Therefore, the cardinality

of �ri is
(

Ni
Mri

)
. The conditional likelihood Lri is simply the probability of having the observed

data, given that there are exactly Mri observations having Yi j�r . In a finite population sampling
framework, Lri could also be interpreted as the probability that a random sample of size Mri is
selected from the finite population of size Ni with probability proportional to exp(b�qi ) where qi
is the sum of the Xi j ’s selected in the sample.
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Under the naive independence assumption for the extended data set, the conditional likelihood
over all strata and all collapsings is

L=
N∏
i=1

K−1∏
r=1

exp(bTSri )∑
qi∈�ri

exp(bTqi )
(2)

The pseudo-score function can thus be expressed as

U(b)=
(

� logL(b)

�b

)
p×1

=
N∑
i=1

K−1∑
r=1

(
Sri −

∑
qi∈�ri

qi exp(bTqi )∑
qi∈�ri

exp(bTqi )

)
=

N∑
i=1

K−1∑
r=1

Uri (b) (3)

where p denotes the length of b. Therefore, the estimates of b can be obtained by fitting condi-
tional logistic regression (CLR) to the extended stratified data set using any standard software
implementing CLR. It produces the asymptotic variance–covariance matrix I having the form

I=
(

�U(b)

�b

)−1

p×p
=
(

N∑
i=1

K−1∑
r=1

Dri

)−1

The (s, t)th element in Dri (a p× p matrix) is

−�2 log Lri (b)

��s��t
=
(∑

qi∈�ri
qisqit exp(bTqi )∑

qi∈�ri
exp(bTqi )

)

−
(∑

qi∈�ri
qis exp(bTqi )∑

qi∈�ri
exp(bTqi )

)(∑
qi∈�ri

qi t exp(bTqi )∑
qi∈�ri

exp(bTqi )

)
(4)

where qi =(qi1, . . . ,qip)T is a p×1 vector representing the sum of the observed covariate vectors
in stratum i . The estimate of the asymptotic variance–covariance matrix I furnished by any standard
CLR fitting program is based on the observed Hessian matrix(

N∑
i=1

K−1∑
r=1

D̂ri

)−1

with b̂ replacing b in (4), where b̂ is the solution to the pseudo-score equations obtained by setting
U(b)=0. Note that the ACLR estimate of b is consistent under sparse data situations as due to
the proportional odds structure each of the collapsed model is a stratified logistic model for which
conditional ML estimates are known to be consistent. For details of a similar argument, see [17].

The estimator of the asymptotic variance and covariance matrix produced by the above amal-
gamation of conditional ML method is not consistent, as the extended data set has strata that are
dependent across different collapsings. We propose a sandwich estimator of the variance–covariance
matrix based on the following well-known result widely used in the GEEs literature.

Suppose that ĥn is a solution to the estimating equation Gn(h)=(1/n)
∑n

i=1G(h,Yi )=0. Then

ĥn
p→h, and √

n(ĥn−h) d→Np(0,A−1B(AT)−1), where

A=A(h)=E

[
�
�h

G(h,Y )

]
and B=B(h)=E[G(h,Y )G(h,Y )T]=cov{G(h,Y )}
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Using the above result, an empirical estimate for the sandwich variance is obtained as

˜cov(b̂)=
(

N∑
i=1

K−1∑
r=1

D̂ri

)−1[
N∑
i=1

cov

(
K−1∑
r=1

Uri (b̂)

)](
N∑
i=1

K−1∑
r=1

D̂ri

)−1

where Uri (b) is defined in (3). Replacing cov(
∑K−1

r=1 Uri (b̂)) by the empirical covariance matrix
yields

˜cov(b̂)=
(

N∑
i=1

K−1∑
r=1

D̂ri

)−1
⎡
⎣ N∑
i=1

(
K−1∑
r=1

Uri (b̂)

)(
K−1∑
r=1

Uri (b̂)

)T
⎤
⎦( N∑

i=1

K−1∑
r=1

D̂ri

)−1

(5)

Remark 1
Note that, instead of ignoring the correlation of the collapsings within a stratum, we modify the
correction term in the middle of the usual sandwich estimator by considering the contribution to
the score function from the sums over the collapsings, the sums being independent across strata.

Remark 2
The pseudo-score equation (3) is evidently not the optimum estimating function for estimating b.
Following [8] it is conjectured that the efficient score function should be a weighted combination
of the CLR score functions corresponding to each collapsing of the data, namely

N∑
i=1

K−1∑
r=1

wri (b)Uri (b)

Obtaining the semi-parametric efficient score function in this problem is an interesting open
question in its own right.

We correct for possible small sample bias in the sandwich estimator following [18]. Note that
the score function in (3) can be expressed in the form

U (b)=
N∑
i=1

K−1∑
r=1

(Sri − pri (b))

where

pri (b)=
∑

qi∈�ri
qi exp(bTqi )∑

qi∈�ri
exp(bTqi )

On the basis of a second-order Taylor’s expansion of the score function about b̂, with details as
given in [18], we form a set of bias-corrected scores for each stratum, and for each collapsing as

U∗
ri (b̂)=Diag

⎧⎨
⎩Ip−D̂ri

(
N∑
i=1

K−1∑
r=1

D̂ri

)−1
⎫⎬
⎭

−1/2

(Sri − pri (b̂))
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Table II. Comparison of the variance approximation in (5) (uncorrected sandwich estimator of variance)
and (6) (bias-corrected sandwich estimator of variance) with actual sampling variance of the ACLR

estimator under three different simulation settings.

General Matched Item response
(i) (ii) (iii)

Type �1 �2 �1 �1

Simulation-based sample variance 0.34 0.14 0.25 0.28
Uncorrected sandwich estimator 0.32 0.13 0.25 0.29
Bias-corrected sandwich estimator 0.33 0.13 0.25 0.29

Setting (i) is stratified data with two covariates, one continuous, one binary with 50 strata each having five
observations, response on an ordinal scale of 1–4. Setting (ii) is matched case–control data with two sub-types
within cases and a single binary covariate for 200 matched pairs. Setting (iii) is item response data with two
repeated responses on 100 subjects. In each case we report the actual variance of the regression parameter
computed over 500 simulation runs, average value of uncorrected sandwich estimator of variance and average
value of bias-corrected sandwich estimator of variance.

The corrected empirical covariance, which now replaces the middle term in (5), is given by

N∑
i=1

(
K−1∑
r=1

U∗
ri (b̂)

)(
K−1∑
r=1

U∗
ri (b̂)

)T

(6)

A small-scale simulation study in Table II presents a comparison of the variance estimator in (5),
the bias-corrected version (6) and the actual observed variance of the estimators across many
replications under certain model settings. Since the bias correction seems to make very minor
differences in the variance approximation, we continue to use the variance estimator obtained
from (5). However, small sample bias in the sandwich estimator could be an important issue
if the simulation designs were ‘unbalanced’ in the sense of [19], that is, if different number
of clusters contribute to the estimation of the different parameters of interest, then one would
prefer to use the bias-corrected estimator. The Wald-type ratios �̂k/{se(�̂k)} are approximately
normally distributed test statistics for testing H0 :�k =0. Figure 1 provides a sampling distribu-
tion of this test statistic for four different simulation settings, which will be discussed later in
Section 5.

3. SPECIAL CASE: MATCHED PAIR DATA WITH ONE BINARY EXPOSURE

Consider the simple case of matched pair data with a single binary exposure and ordinal outcome.
Let Yi j , i=1, . . . ,N , j =1,2, denote the response category of j th observation in matched set i .
For a typical ‘before’ and ‘after’ experiment, the matched set will be the subject itself. Thus,
Yi j is a K -category ordinal variable with categories scaled from 0, . . . ,K −1, where the category 0
denotes the baseline response category. Let Xi j denote the binary exposure having value 0 or 1.
In Rasch’s item response model considered in AL, Yi j are repeated ordinal responses on the same
subject, whereas Xi j is the indicator variable corresponding to an item.

In our conditional likelihood formulation, only matched sets with discordant Y and X observa-
tions contribute to the likelihood; thus, we restrict attention to those sets only. To this end, without
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Figure 1. Sampling distribution for Wald statistic corresponding to ACLR estimator, where (i) corresponds
to �1 in the moderately stratified setting for 100 strata with five observations as described in Table VII.
True �1=−0.5. (ii) Corresponds to �2 for moderately stratified setting for 100 strata with five observations
as described in Table VII. True �1=1.0. (iii) Matched case–control data with 200 matched pairs and a
single binary response. True �=1. (iv) Item response data with 100 subjects with two repeated responses.

True �=0.5. The value of �i was taken as constant −3 in each simulation.

loss of generality, let Yi1 be the response corresponding to X =1, i.e. Xi1≡1 and Yi2 be the
response corresponding to X =0, i.e. Xi2≡0. For a particular stratum, let Yi1=s and Yi2= t with
s, t=0, . . . ,K −1,s 	= t . Then for the r th collapsing with the new binary response as I (Yi j�r),
and for s<t , the likelihood contribution of the i th strata can be expressed as

Lri = 1 for r�s and r�t+1

= 1

1+exp(�)
for s+1�r�t

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4950–4971
DOI: 10.1002/sim



4958 B. MUKHERJEE ET AL.

If s>t , the likelihood contribution of i th stratum in r th collapsing changes to

Lri = 1 for r�t and r�s+1

= exp(�)

1+exp(�)
for t+1�r�s

Thus, the entire likelihood in (2) can be represented as

L=∏
s<t

[
1

1+exp(�)

](t−s)nst ∏
s>t

[
1

1+exp(�)

](s−t)nst

where nst is the number of matched sets with Yi1=s and Yi2= t . Taking derivatives and solving
the score equations, the estimator reduces to

�= log

(∑
s>t (s− t)nst∑
s<t (t−s)nst

)
(7)

Agresti and Lang [9] derive an asymptotic variance of this estimator based on the multinomial
distribution of the counts nst , which coincides with our sandwich estimator in (5) upon simplifi-
cation, and is given by

ˆvar(�̂)=
∑

i< j ( j−i)2ni j

[∑i< j ( j−i)ni j ]2 +
∑

i> j (i− j)2ni j

[∑i> j (i− j)ni j ]2 (8)

Liu and Agresti [12] prove that an alternative Mantel–Haenszel approach to matched pair data
with ordinal response also provides the same estimator and estimated asymptotic variance. These
equivalences in special cases are reassuring. However, compared with the other methods, our
method provides the most flexible regression model, which can incorporate any number of discrete
and continuous covariates.

Remark 3
Another application of this method is for matched case–control data with multiple ordinal disease
states [10]. For a 1:1 matched data set, which has a very similar likelihood structure as Rasch’s
item response model, let, without loss of generality, Yi1 be the case observation, which could take
values in 1, . . . ,K −1 and Yi2≡0, denote the control observation. The conditional likelihood (2)
simplifies to

L=
N∏
i=1

{
exp(�Xi1)∑2
j=1 exp(�Xi j )

}Yi1

The pseudo-score function is derived as

U (�)=
N∑
i=1

Yi1

(
Xi1−

∑2
j=1 Xi j exp(�Xi j )∑2

j=1 exp(�Xi j )

)
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The expression within parentheses is identical to the score function for standard CLR with the
binary response. For ordinal response, these score functions are simply weighted by the ordinal
value for Yi1. The empirical sandwich variance estimate as in (5) becomes

⎛
⎝ N∑

i=1
Y 2
i1

[
Xi1−

∑2
j=1 Xi j exp(�Xi j )∑2

j=1 exp(�Xi j )

]2⎞⎠

×
(

N∑
i=1

Yi1
[∑2

j=1 Xi j exp(�Xi j )]2−[∑2
j=1 exp(�Xi j )][∑2

j=1 X
2
i j exp(�Xi j )]

[∑2
j=1 exp(�Xi j )]2

)−2

Again, for binary X ’s, upon simplification of the above two expressions, one retrieves the Agresti–
Lang and Liu–Agresti estimators of �.

4. EXAMPLES

In this section, we illustrate our methods for three data sets, representing common situations where
stratified ordinal data may arise in practice. We consider several possible analysis strategies, along

with the ACLR method. We consider a REM with �i
iid∼N(��,�

2
�) akin to the methods proposed

by Hedeker and Gibbons [15] and implemented by SAS procedure NLMIXED. We furnish the
unconditional MLE assuming distinct fixed effects �i for each stratum. The unconditional MLE
is subject to a classic Neyman–Scott phenomenon [20] in the presence of fine stratification and
often fails to converge. An analysis of the data ignoring the ordinal categories and running a usual
CLR analysis with a simple dichotomy of zero vs non-zero responses is also presented (labeled as
binary CLR).

Apart from these conditional models, one could alternatively fit a marginal response model
to stratified ordinal data using a GEEs approach. As pointed out in [21], the GEE approach
can account for the correlation between observations within a strata through robust variance
estimation, but the point estimate is exactly the same as that obtained in an unmatched analysis,
treating the observations independent. Indeed, using the polr option in R package VGAM, we
noted that fitting simple constant intercept proportional odds logistic regression model to the
data, ignoring stratification, produces identical point estimates as the GEE estimates with slightly
different standard errors. We include the GEE estimates from the marginal model for our data
analysis. However, we keep in mind that the GEE estimates reflect a population-averaged effect
of the covariate, whereas the random effects and the ACLR method describe the change in the
risk of outcome for a stratum when exposure status changes within the stratum. Thus, they are not
directly comparable.

Example 1 (Multi-center clinical trial on severity of Asthma)
We use a data set provided by Merck Research Laboratories for a double-blind, parallel-group,
preliminary clinical study conducted at 21 centers. Patients suffering from asthma were randomly
assigned to three different treatments (2mg active drug, 10mg active drug, and placebo). At the
end of the study, the doctors described the patients’ change in condition using an ordinal scale
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Table III. Data for Example 1: doctors’ evaluations of patients suffering from asthma on
a 1–4 scale in 21 clinical centers.

Response Response

Center Drug 1 2 3 4 Center Drug 1 2 3 4

1 2mg 0 1 2 1 2 2mg 0 0 1 1
10mg 0 2 0 2 10mg 0 0 1 2
Placebo 0 0 0 4 Placebo 0 1 1 1

3 2mg 0 0 2 2 4 2mg 0 2 3 1
10mg 0 0 1 0 10mg 0 2 2 2
Placebo 0 1 4 1 Placebo 0 0 1 1

5 2mg 0 1 1 0 6 2mg 0 2 0 0
10mg 1 0 0 2 10mg 0 1 0 0
Placebo 1 0 0 2 Placebo 0 0 0 2

7 2mg 0 0 2 2 8 2mg 1 0 0 1
10mg 0 0 2 1 10mg 0 3 0 0
Placebo 0 0 2 1 Placebo 0 0 1 1

9 2mg 0 0 2 1 10 2mg 0 2 1 1
10mg 1 0 2 0 10mg 0 1 0 0
Placebo 0 0 1 0 Placebo 0 1 0 1

11 2mg 0 1 1 0 12 2mg 1 0 0 0
10mg 0 1 1 1 10mg 1 1 0 0
Placebo 0 0 0 3 Placebo 0 2 0 0

13 2mg 0 1 1 2 14 2mg 1 1 3 0
10mg 0 1 0 1 10mg 1 0 1 0
Placebo 0 0 0 5 Placebo 0 0 1 0

15 2mg 0 0 3 2 16 2mg 0 2 2 1
10mg 0 2 3 0 10mg 2 1 2 0
Placebo 0 1 2 1 Placebo 1 1 1 1

17 2mg 0 1 0 0 18 2mg 1 1 1 1
10mg 1 1 1 2 10mg 0 1 0 0
Placebo 0 1 1 3 Placebo 1 0 1 3

19 2mg 0 3 0 0 20 2mg 0 0 2 1
10mg 0 1 3 0 10mg 0 1 0 3
Placebo 0 1 1 1 Placebo 0 1 1 0

21 2mg 0 1 1 2
10mg 1 1 0 1
Placebo 0 1 0 0

Note: Response is scaled from better (1) to worse (4).

from better to worse (1–4). Table III shows the results of the doctors’ evaluations associated with
the treatments and is presented as 21 separate 3×4 tables. Such a study might use many clinics
because of the time it takes each clinic center to recruit patients. Therefore, the three-way table
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might then have many strata but few observations per stratum, leading to a sparse data set with
ordinal outcomes. For this particular data set, each clinic has from 5 to 14 subjects, leading to a
total of 197 subjects in the study. We analyze the data set by different methods with treatment as
the factor of interest but with several other covariates such as age, height, weight, and sex in the
model. The results of this analysis are presented in Table IV. For this data set, although there are
certain minor numerical differences, all the methods provide very similar inference regarding the
treatment effect and suggest that higher drug doses tend to be negatively associated with worse
symptoms (higher end of the ordinal scale). Using the ACLR method, the 2mg dose has a log
cumulative OR of −0.72, whereas the 10mg dose has a log cumulative OR of −1.07. This suggests,
for each center, that the estimated odds when the evaluation score for the 2mg drug falls below
any fixed level is exp(0.72)=2.05 times the estimated odds of placebo, whereas the estimated
odds when the evaluation score for the 10mg dose falls below any fixed level is exp(1.07)=2.91
times the estimated odds of placebo. Thus, the 10mg dose has higher efficacy in providing relief
to asthma patients.

The estimates of the unknown parameters corresponding to the random effects distribution are
�̂� =4.8 and �̂� =0.43, suggesting a reasonably small center to center variability, which explains
why estimates from unmatched GEE analysis are similar to ACLR and REM. Note that a naive
dichotomization of data, ignoring the ordinal scale, provides quite imprecise point estimates. This
loss of efficiency due to ignoring the full ordinal scale is also noted in [22].
Example 2 (Item response data on asthma severity score)
In the same data set as described in Example 1, each of the 197 subjects had two measurements
on asthma severity scores. In addition to the assessment by a doctor, each patient provided a self-
evaluated asthma severity score. Treating each subject as a stratum in which two measurements
are available, we would like to examine the response differences, that is, the differences between
self-reported score and physician’s evaluation. For simplicity, we ignore the presence of other
covariates in the model and stratification effect due to centers, inclusion of which will lead to a
more complex random effects structure with subject effects nested within center effects. To this
end, we can fit the cumulative Rasch model in AL

logit[P(Yi j�r |Xi j )]=�r +�i +� j , r =1, . . . ,K −1, i=1, . . . ,N (9)

where j =1,2, and we use the constraint �1=�1≡0. There are 197 subject-specific nuisance
parameters in this situation. In our analysis, the first response is physician reported score and
the second response is individual reported score; thus, there is a single parameter of interest,
�2=�, say, to be estimated from data. This cumulative odds ratio � reflects the odds of having
scores on the higher end of the scale for self-reporting when compared with physician’s eval-
uation. For this situation, in Table V, we note that the estimate of � is 1.56 by our method,
which is close to the estimate provided by REM. This suggests that self-reported scores tend to
be reported toward the higher (worse) end of the scale. When compared with doctor’s evalua-
tion, self-reported responses have an odds of exp(1.56)=4.76 of being on the higher end of the
scale. However, note that the unmatched GEE analysis with constant stratum effect highly under-
estimates �, whereas the unconditional MLE fails to converge. The estimates of the parameters
corresponding to the random effects distribution turn out to be �̂� =3.74 and �̂� =3.42, reflecting
that there is substantial heterogeneity across subjects in this data set. The analysis with a naive
dichotomization of the scale using binary CLR again loses efficiency when compared with the
ordinal models.
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Table V. Analysis of item-response data as described in
Example 2, with two repeated responses per subject, one corre-
sponding to self-evaluation score, and the other corresponding

to physician’s evaluation score on severity of asthma.

Proportional odds Item-response data
model-based methods �

ACLR Estimate 1.56
SE 0.30
CI (0.97, 2.15)

(Bias corrected) SE 0.30
CI (0.97, 2.15)

GEE Estimate 0.61
SE 0.11
CI (0.40, 0.81)

REM Estimate 1.54
SE 0.32
CI (0.90, 2.18)

Naive dichotomization
Binary CLR Estimate 1.65

SE 0.49
CI (0.69, 2.61)

The coefficient � represents the relative cumulative log-odds ratio
of reporting higher values of severity scores for an individual
evaluation, when compared with physician’s evaluation. Uncon-
ditional MLE did not converge for this data set.

Example 3 (Matched case–control data with multiple ordered disease states)
We consider a matched case–control data set coming from a low birth-weight study conducted by
the Baystate Medical Center in Springfield, Massachusetts. The data set is discussed in [23] and
is used as an illustrative example in Chapter 7. Low birth weight, defined as birth weight less than
2500 g, is a cause of concern for a newborn as infant mortality and birth defect rates are very
high for low birth weight babies. The data were matched according to the age of the mother. A
woman’s behavior during pregnancy (smoking habits, diet, and prenatal care) can greatly alter the
chances of having a low birth-weight baby. The goal of the study was to determine whether these
variables were ‘risk factors’ in the clinical population served by Baystate Medical Center. Using
the actual birth-weight observations, we divided the cases, namely, the low birth-weight babies into
two categories, very low (weighing less than 2000 g) and low (weighing between 2000 and 2500 g)
and tried to assess the impact of smoking habits of mother (smoker vs non-smoker) on the chance
of falling in the two low birth-weight categories. We consider two data sets based on this low
birth-weight study with two different matching ratios: a 1:1 matched data set with 56 matched sets
and a 1:3 matched data set with 29 matched sets. Analysis of the 1:1 and 1:3 data sets are presented
in Table VI, where the parameter � represents the smoking effect for the model. In this situation,
we note that for the 1:1 data set, the estimates from our method and REM differ substantially,
with REM estimates being identical to the ones obtained by unmatched analysis of data. The
parameters of the random effects distribution were estimated as �̂� =−0.35 and �̂� =4.9×10−6.
The point estimates obtained by our method and binary CLR are higher than REM estimates. For
the 1:3 data set, both methods provide similar inference. This difference between REM and ACLR
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Table VI. Analysis of low birth-weight study, one is 1:1 matched data set, and the other
is 1:3 matched data set as described in Example 3.

�
Proportional odds
model-based methods 1:1 Matched 1:3 Matched

ACLR Estimate 0.97 0.87
SE 0.44 0.43
CI (0.11, 1.83) (0.02, 1.72)

(Bias corrected) SE 0.43 0.43
CI (0.12, 1.82) (0.04, 1.71)

GEE Estimate 0.82 0.90
SE 0.38 0.42
CI (0.07, 1.57) (0.07, 1.72)

Unconditional Estimate 1.99 1.27
MLE SE 0.57 0.51

CI (0.88, 3.11) (0.26, 2.27)
REM Estimate 0.82 0.90

SE 0.37 0.43
CI (0.10, 1.54) (0.01, 1.79)

Naive dichotomization
Binary CLR Estimate 1.01 0.96

SE 0.41 0.44
CI (0.20, 1.82) (0.10, 1.82)

The estimates correspond to the smoking effect of mother on low birth-weight babies.

from 1:1 to 1:3 matching is most likely due to the degree of stratification, as will be noted in our
simulation study. The effect of smoking is more pronounced in our method although all methods
suggest elevated odds of having low birth-weight baby for a smoker mother.

Figure 2 summarizes the 95 per cent Wald confidence interval (CI) of the regression parameter �
for all three examples. Note that the width of CI using GEE and REM is often slightly less than
ACLR as they use all observations, not only discordant observations in each stratum and thus gain
precision. The naive binary CLR produces much wider CI compared with the ordinal methods.

5. SIMULATION STUDY

In the above three data analysis examples, we saw similarities and differences between our method
and other approaches. Since in a real data situation, one is not certain about the truth regarding
parameter values, we designed a simulation study that explores, under different sample sizes, the
performance of our method over an array of distributions for the stratum effects. As pointed out
by a referee, the bias due to misspecification of the proportional odds structure should also be
evaluated since it is a restrictive modeling assumption. In a given real example, the validity of the
proportional odds assumption should first be verified by available diagnostic tools and goodness-
of-fit statistics [23, 24] before using the proposed methods. However, in the present simulation
study, we assume that the proportional odds model holds and only evaluate the variation across
distributions governing the nuisance parameters. In particular, we consider the following four

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4950–4971
DOI: 10.1002/sim



FITTING STRATIFIED PROPORTIONAL ODDS MODELS 4965

Figure 2. Results for the real data analysis: the left panel shows point estimates and 95 per cent Wald
CI corresponding to dose effects in Example 1 and the right panel shows the estimate and 95 per cent
Wald CI of the single cumulative log odds-ratio parameter in Examples 2 and 3 on item response and 1:1

matched case–control data set, respectively.

settings with (i) �i ≡�0=−3, (ii) �i
iid∼N(−3,22), (iii) �i

iid∼0.4N(−3.5,0.42)+0.6N(−2.5,0.42),
and (iv) �i following a mixture of discrete and continuous distribution, assuming a constant value
of −3.5 with probability 0.4 and following a N(−2.5,0.42) distribution with probability 0.6.
The true values of the category-specific threshold parameters �1, �2, and �3 were chosen as 2.5,
1.4, and 0.5, respectively, in each simulation setting. We consider two experimental scenarios,
reflecting different study designs. In Table VII we consider a moderately stratified data situation
with five observations in each strata, responses having four ordinal values and with two covariates,
one binary (p=0.4) and the other continuous, from a N(1,2) distribution. The corresponding
regression coefficients are set at �1=−0.5 and �2=1.0, respectively. In Table VIII, we generate
highly stratified item response data with two repeated responses per subject (each response having
four ordinal categories) with the cumulative log odds ratio on the ‘difficulty’ scale being �=0.5.

Tables VII and VIII present the results with bias, MSE, and the coverage probability of 95
per cent Wald-type CIs corresponding to the different estimates. Note that in the constant stratum
effect situation (i) all ordinal methods perform comparably, with REM and GEE being more precise
than ACLR. However, in the varying stratum effect situation, with a normal distribution on the
stratum effects as in (ii), our method and REM stand superior to GEE in terms of bias and coverage
probability. This is expected as GEE essentially provides an unmatched analysis of the data, which
attenuates the effect of the covariate toward the null value. REM appears to have a slight edge over
ours in terms of MSE for smaller number of strata. In spite of small MSE, the GEE method accrues
bias in simulation setting (ii) and has poor coverage probability, which is again as expected. With
a non-normal distribution as generated in (iii) and (iv), our method has less bias than REM for
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Table VIII. Table presenting MSE, bias (parenthesis), and coverage probability of 95 per cent Wald-type
CI based on 1000 simulations under four settings for distribution of �i as mentioned in Section 5 with

highly stratified item-response data set containing two item-specific responses per subject.

Distribution Method MSE (bias) 50 Strata with 100 Strata with 200 Strata with
for �i coverage 2 observations 2 observations 2 observations

ACLR 0.19 (0.04) 0.08 (0.00) 0.04 (0.01)
0.94 0.96 0.96

(i) Constant GEE 0.16 (0.03) 0.07 (0.00) 0.04 (0.01)
0.95 0.95 0.96

REM 0.28 (0.06) 0.10 (0.02) 0.05 (0.02)
0.95 0.96 0.96

Binary CLR 0.60 (0.05) 0.27 (0.01) 0.13 (0.03)
0.98 0.96 0.96

ACLR 0.24 (0.01) 0.12 (0.01) 0.05 (0.00)
0.94 0.95 0.96

(ii) Normal GEE 0.13 (−0.19) 0.08 (−0.19) 0.06 (−0.19)
0.86 0.85 0.85

REM 0.26 (0.00) 0.11 (0.01) 0.05 (0.00)
0.96 0.95 0.95

Binary CLR 0.55 (0.03) 0.25 (0.02) 0.11 (0.00)
0.97 0.95 0.95

ACLR 0.19 (0.02) 0.09 (0.00) 0.04 (0.00)
0.95 0.95 0.97

(iii) Mixture GEE 0.18 (0.12) 0.10 (0.11) 0.07 (0.10)
of normals 0.86 0.83 0.84

REM 0.30 (0.06) 0.13 (0.06) 0.05 (0.05)
0.97 0.97 0.98

Binary CLR 0.51 (0.03) 0.27 (0.01) 0.12 (0.02)
0.98 0.96 0.96

ACLR 0.17 (0.05) 0.09 (0.02) 0.05 (0.01)
0.96 0.95 0.95

(iv) Mixture GEE 0.13 (0.11) 0.08 (0.12) 0.04 (0.09)
of a normal and 0.94 0.92 0.93
constant REM 0.28 (0.10) 0.13 (0.11) 0.07 (0.11)

0.94 0.96 0.96
Binary CLR 0.61 (0.06) 0.59 (−0.02) 0.29 (0.03)

0.97 0.98 0.97

The response has four categories. True value of the log cumulative odds-ratio �=0.5. The number of strata is
varied from 50 to 200.

the highly stratified item response data set in Table VIII, and the bias in our method goes away
with the increase in the number of strata, whereas the bias due to model misspecification on {�i }
remains in REM estimates even for relatively large number of strata. With more observations per
stratum, the REM estimates become less biased under the non-normal distributions in (iii) and (iv)
as noted in Table VII. To summarize, our proposed ACLR method appears to be more robust to
variations in stratum-specific distributions in highly sparse data situations. This can be seen for the
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item response data especially with a large number of strata, leading to many nuisance parameters.
The proposed ACLR method also has reasonably good MSE properties for sparse data situations.

One can note the inadequacy of the GEE model or unmatched analysis for estimating � in the
simulation settings with �i truly varying. The lack of efficiency due to naive dichotomization in
binary CLR model is also evident when compared with the ordinal models. The GEE model and
REM use all the observations in each stratum, not only the discordant observations as in ACLR.
As a result, they often have higher precision. But when striking a compromise between robustness
and precision, the ACLR approach appears to be a reasonable choice under varying stratification
heterogeneity.

Remark 4
In simulation studies, the results of which are not included in the current text, we noted two
additional advantages of the ACLR method over the REM approach, which are worth mentioning.
If the intercept parameters �ri in equation (1) do not have the additive structure, �ri =�r +�i , but
have a multiplicative (or some other) structure, the REM method incurs bias, the ACLR methods
is not sensitive to this structure as the �ri parameters do not appear in the conditional likelihood
(2). In addition, if the stratum effects are generated from a distribution whose parameters depend
on the regression covariate X , the REM approach suffers appreciably compared with ACLR in
terms of bias.

6. DISCUSSION

In this paper, we present a regression method for estimating the parameters in a highly stratified
proportional odds model. The direct MLEs for this model are not consistent in sparse-strata
situations, that is, when the number of strata increases in direct proportion to sample size. The
proposed estimator is consistent for the two standard types of asymptotics: (a) when sample size
within each stratum increases and the number of strata is fixed (the large-strata case) and (b)
when the number of strata increases proportional to the overall sample size (the sparse-strata
case). We derive a sandwich estimate of the variance of the estimator and propose Wald-type
tests and CIs based on this approximation. We show the equivalence of our approach with a
Mantel–Haenszel estimator proposed by Liu and Agresti [12] and an alternative estimator proposed
by Agresti and Lang [9] for generalized Rasch’s item-response model. The above approaches
are limited in their applications as they can accommodate only a modest number of categorical
covariates while our method provides the flexibility of a general regression model. Compared
with a random effects approach, our method is more robust as it does not assume a specific
form of the stochastic distribution for the stratification parameters and is computationally much
simpler. The proposed method seems particularly suitable for pair-matched data, representing the
highest degree of stratification. Our simulation study also indicates the loss of efficiency by simple
dichotomization of response instead of using the full ordinal scale. One could possibly consider
a different model structure for the ordinal response, such as an adjacent category logit model or
a continuation-ratio logit model [25], that we have not considered. The major difference in those
cases is that the optimal solution, the conditional MLE, is available in both of those situations.

Admittedly, the proposed estimator is not fully efficient. For the large-strata situation as in (a)
above, Liu and Agresti show that the loss of efficiency is surprisingly less in using this type of
naive estimators when compared with the full ML estimators. For large-strata case, Clayton [26]
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derived a weighted estimator of � based on the separate collapsings. The weights were chosen so
as to minimize the variance of the estimator when �=0. It is unclear how this method could be
adapted to derive valid estimates under sparse data situation as the estimated weights are highly
unstable in such a case. Furthermore, the choice of weights is not critically important to the
efficiency for these types of estimators [17]. We also noted the same phenomena when we tried to
use weights suggested from the Bayesian model averaging perspective [27], where estimates from
each collapsing were weighted by the posterior probability of the collapsed model as approximated
by the Bayes information criterion. This weighting hardly made difference in terms of mean-
squared error performance of the estimator. However, from a theoretical perspective, it is indeed an
interesting open question to obtain the optimum weights. Techniques such as the ones developed
in [28] could potentially lead to the semiparametric efficient score function.

We have proposed a robust estimation strategy, which is relatively easy to implement, works
well for sparse data and is not sensitive to the choice of the random distribution, which
generates the nuisance parameters �ri and utilizes the full ordinal scale. We reiterate that
the proposed method relies on the proportional odds structure, which is a strong modeling
assumption in itself, and thus is subject to model misspecification. In a real example, the
validity of the proportional odds assumption should be carefully assessed. R code for imple-
menting the above method and SAS code for implementing REM and GEE are available at
http://www.sph.umich.edu/bhramar/public html/research.
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