
MOUNT SINAI JOURNAL OF MEDICINE 75:314–327, 2008 314

Immunology and Genetics of
Type 1 Diabetes

Michael P. Morran,1 Gilbert S. Omenn2 and Massimo Pietropaolo1

1 Laboratory of Immunogenetics, Brehm Center for Type 1 Diabetes Research and Analysis, Division of
Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical

School, Ann Arbor, MI
2 Center for Computational Medicine and Biology, Departments of Internal Medicine and Human Genetics,

University of Michigan, Ann Arbor, MI

ABSTRACT

Type 1 diabetes is one of the most well-characterized
autoimmune diseases. Type 1 diabetes compro-
mises an individual’s insulin production through
the autoimmune destruction of pancreatic β-cells.
Although much is understood about the mechanisms
of this disease, multiple potential contributing factors
are thought to play distinct parts in triggering type
1 diabetes. The immunological diagnosis of type 1
diabetes relies primarily on the detection of autoan-
tibodies against islet antigens in the serum of type 1
diabetes mellitus patients. Genetic analyses of type
1 diabetes have linked human leukocyte antigen,
specifically class II alleles, to susceptibility to dis-
ease onset. Environmental catalysts include various
possible factors, such as viral infections, although
the evidence linking infections with type 1 diabetes
remains inconclusive. Imbalances within the immune
system’s system of checks and balances may pro-
mote immune activation, while undermining immune
regulation. A lack of proper regulation and overac-
tive pathogenic responses provide a framework for
the development of autoimmune abnormalities. Type
1 diabetes is a predictable and potentially treat-
able disease that still requires much research to
fully understand and pinpoint the exact triggering
events leading to autoimmune activation. In silico
research can aid the comprehension of the etiol-
ogy of complex disease pathways, including Type I
diabetes, in order to and help predict the outcome
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IMMUNE SYSTEM REVIEW

The immune system is the body’s natural defense
system against invading pathogens. It protects the
body from infection and works to communicate an
individual’s well-being through a complex network
of interconnected cells and cytokines. This system
has the power to initiate a wide gamut of cellular
responses with the ability to directly attack an
invading organism or signal cells to begin the healing
process. Although this system is an associated host
defense, an uncontrolled immune system has the
potential to trigger negative complications in the host.
Therefore, well-controlled regulation of the immune
system is necessary in order to prevent autoimmune
responses from occurring.

In order to protect the body against for-
eign pathogens, the immune system has developed
throughout evolution to recognize the difference
between the self and nonself. The ability to become
self-tolerant toward the body’s own proteins and anti-
gens is critical to maintaining a properly functioning
immune system. An immune system that loses tol-
erance to the self loses the ability to differentiate
between friend and foe in immunological battles.
Loss of tolerance leads the immune system toward
autoimmune responses, in which the body attacks
itself, causing substantial damage to the self, even
inflicting irreversible damage.

The immune system is composed of 2 unique
branches, each with its own responsibilities. The
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Fig 1. T1D development. A discrete balancing act is performed by the
immune system in order to attack foreign pathogens while protecting against
the promotion of autoimmunity. Multiple contributing factors influence the
development of T1D, including genetics, the environment, and cellular signals.
In a normal individual the immune system is balanced, possessing the ability
to both promote and suppress cellular responses to pathogens. When an
immune system is unbalanced and favors inflammation or excessive cellular
responses, the system is unbalanced and favors excesive regulation of cellular
responses, the system is protected against the development of T1D and
autoimmunity. Abbreviations: T1D, type 1 diabetes. Adapted from Annual
Review of Immunology.102 [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.].

innate immune system is the body’s first line of
defense against invading pathogens. This system rec-
ognizes common structural components of pathogens
and elicits immune responses to signal the presence
of pathogens and infection.1 The adaptive immune
system is the body’s secondary line of defense and
specifically targets identified pathogens. This sys-
tem is antigen-specific and generates immunological
memory within the host, which allows for more effi-
cient pathogen clearance upon repeat exposure to
the same pathogen.1 Although these 2 systems are
termed different branches of the immune system,
they must work together as one unified system to
protect the body. The 2 branches of the immune
system rely on each other to help properly perform
their jobs. If either branch fails to perform its job,
the other branch suffers. Regulatory malfunctions in
either system can ultimately lead to the generation of
unwarranted or unregulated autoimmune responses.
Underlying an immune response lies a delicate net-
work of cell types and cytokines that communicate to
begin, generate, and end an immune response. If an
immune system becomes unbalanced, this delicate
network, responsible for preventing autoimmunity,
promotes it (Figure 1).

The immune system protects the host, but
it also possesses the power to harm the host
as well. Numerous autoimmune diseases have

been characterized over time. This article provides
an overview of how alterations in the immune
system, due to genetics, cellular malfunctions, or
cell signaling issues, lead to the development and
pathogenesis of autoimmune diseases, specifically
type 1 diabetes (T1D). Understanding mechanistically
how T1D and autoimmune responses are triggered
is essential in order to develop strategies to combat
these diseases.

TYPE 1 DIABETES OVERVIEW

Diabetes mellitus is a group of diseases characterized
by the body’s inability to accurately maintain normal
blood glucose levels, leading to multiple detrimental
effects. Insulin is an important hormone in glucose
metabolism. When released, it signals cells to take
up glucose. If the body is unable to produce
insulin, blood glucose levels remain elevated, and
this is termed hyperglycemia. T1D is an autoimmune
disease in which the immune system targets and
destroys the insulin-producing β-cells found in the
islets of Langerhans in the pancreas. Without insulin,
individuals develop the clinical syndrome of T1D.

T1D is characterized by autoantibody produc-
tion and progressive infiltration of immune cells into
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the islets of the pancreas, followed by the destruc-
tion of the islet cells.2 During the onset of T1D, cells
from both the innate and adaptive immune systems
infiltrate islet lesions to produce insulitis. Studies
using human and murine models of diabetes have
demonstrated that the autoimmune destructive pro-
cess in T1D occurs in a cell-mediated organ-specific
manner and requires both CD+4 and CD+8 T cells
as well as macrophages.3–13 These cells accumulate
in an islet lesion but are nondestructive.14–16 An
unknown triggering event occurs, which promotes
the autoimmune destruction of the β-cells.14–16 Clin-
ical manifestations of diabetes occur after 90% of an
individual’s β-cell mass is destroyed.14

The exact trigger for the onset of T1D is
still unknown, as discussed later, although the
mechanism by which the insulin-producing β-cells
are destroyed is well understood. The destructive
process is T cell–mediated. Once the islets have
become infiltrated and highly populated with T
cells and macrophages, a subsequent triggering
event occurs to activate these cells.14–16 T cells, B
cells, and macrophages communicate via antigen
presentation and can, in turn, activate each other
via cytokines and direct cell communication through
surface receptors.1 With such a high population of
immune cells centered in one distinct area, activation
signals can travel fast, initiating a destructive cascade
easily.

In general, macrophages play the role of antigen-
presenting cells (APCs), and so they can directly
pick up and present β-cell antigens. This leads
to the activation of β-cell–cytotoxic CD+8 T cells
and the generation of autoreactive CD+4 effector
T cells.15 Cytotoxic T cells can directly kill β-cells,
whereas effector T cells can initiate the activation of
B cells, thus prompting autoantibody production.15

Once the immune system is triggered or activated,
it begins to process and present self antigens to
T cells, generating the autoimmune process that
leads progressively to the clinical manifestations of
T1D.

T cells possess the ability to directly destroy β-
cells in a cytotoxic manner but also hold the power to
directly influence the induction of β-cell destruction
through the release of cytotoxic molecules, including
cytokines, granzyme B, and perforin.16,17 T cells can
also signal β-cell death through the Fas pathway.16,17

β-Cell apoptosis is promoted by activation of
the caspase pathway through multiple mechanistic
pathways, including Fas and Fas ligand interactions,
nitric oxide and oxygen-derived free radicals, and
membrane disruption due to perforin or granzyme
B.18 Cytokine production by activated T cells may be
a key factor in β-cell death, influential cytokines

released by T cells include: interleukin 1 (IL-1),
interferon γ (IFNγ ), and tumor necrosis factor
α (TNFα), all of which up-regulate Fas and the
production of Fas ligand, nitric oxide, and free-
radicals.18,19 Other notable cytokines are IL-2, IL-12,
IL-17, and IL-18, all of which seem to promote
an inflammatory state biased to T helper 1 type
responses.18,19

AUTOANTIGENS IN TYPE 1 DIABETES

During the progression of T1D, multiple autoimmune
processes occur. Human and murine studies of
T1D have illustrated that, as the severity of disease
increases, so does the number of autoantigens and
autoantibodies.20 Over the course of development,
β-cells go through multiple divisions and changes
in cell volume and increase in cell mass.21 During
this time, β-cells grow, develop, and eventually die;
these dead cells may be engulfed and processed by
APCs. In an insulitis lesion, these APCs presenting
processed β-cell components have the potential
to trigger the generation of β-cell autoreactive T
cells.14–16,21

Most well-known autoantigens are associated
with β-cell components, including insulin, glutamic
acid decarboxylase (GAD), and islet-cell antigen-2
(IA-2).20 Insulin is the first antigenic target detectable
during the early progression of diabetes,22 although
most autoantibodies are targeted against the β-
cells themselves and other β-cell–secreted proteins.20

Recently, ZnT-8, a pancreatic β-cell–specific zinc
transporter, has been identified as a candidate
autoantigen.23 Although research is limited on this
molecule, strong evidence already supports the
association of ZnT-8 autoantibodies with T1D.23

During the progression of T1D, a process of
autoantigen epitope spreading occurs.24 Epitope
spreading provides an explanation of how the
immune system is capable of recognizing increasing
numbers of autoantigens in correlation with increased
T1D disease severity.24 Epitope spreading begins with
the immune system recognizing and mounting an
immune response against a single antigen, which
is recognized via a single epitope. Over time,
new antigens can be recognized, and previously
recognized antigens can be differentially processed
by APCs to generate multiple epitopes for a single
antigen.

One can think of this process as similar to
a tree growing toward autoimmunity. In Figure 2,
the tree stem symbolizes an immune system at
birth that lacks autoimmunity. As this tree grows
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Fig 2. Autoantigen epitope spreading in T1D. As the severity of symptoms associated
with T1D increases over time, so does the number of autoantigens recognized by the
immune system. Epitope spreading begins once the immune system is triggered within
the pancreas, leading to the processing and presentation of self antigens. As β-cell
destruction takes place, multiple self antigens become targets of the immune system.
During this process, insulin is the first antigenic target,22 and it is followed by other
β-cell–associated components, such as GAD65 and IA−2.20 Over time, autoantigens are
processed differently, creating various recognition epitopes for a given antigen. In Figure 1,
the tree symbolizes an immune system at birth that lacks autoimmunity. As the tree grows
toward autoimmune T1D, its limbs represent targeted self antigens that develop. As T1D
progresses, multiple limbs grow off the tree, each from a different antigen. These growing
limbs next branch off, representing the unique epitopes recognized from differential
processing of similar self peptides. As T1D develops, the tree grows toward autoimmunity
by increasing both the number of limbs and the number of branches on a given limb,
representing the process of epitope spreading observed in T1D disease development.
Abbreviations: GAD65, glutamic acid decarboxylase 65; IA-2, islet-cell antigen-2; T1D,
type 1 diabetes.

toward autoimmune T1D, its limbs represent devel-
oping targeted self antigens. Next, multiple limbs
grow from the stem, each targeting different anti-
gens. These growing limbs branch off, representing
the unique epitopes recognized from differential
processing of similar peptides. It has been shown
that autoantibody production has been detected
up to 5 years prior to the development of hyper-
glycemic events, and this indicates that autoanti-
body production precedes the clinical manifesta-
tion of T1D.24 As T1D develops, the tree grows
toward autoimmunity by increasing both the num-
ber of limbs (targeted antigens) and the number
of branches on a given limb (recognized epitopes
for a particular antigen). Although the progres-
sion and mechanisms behind the development of
T1D are understood in general terms, many ques-
tions remain to be answered concerning how the
autoimmune disease state becomes triggered toward
autoreactivity.

We have provided evidence suggesting that a
subset of cytoplasmic islet-cell antibodies (ICAs)
is related to a more rapid progression to insulin-
requiring diabetes in glutamic acid decarboxylase
65 (GAD65) and IA-2 antibody–positive relatives
of proband patients versus relatives with GAD65
and IA-2 antibodies without ICAs (Figure 3).25

The precise nature of the antigen(s) detected
by the indirect immunofluorescence ICA assay

remains enigmatic, but its utility to predict future
development of diabetes mellitus in individuals
with other circulating ICAs has recently been
confirmed.

WHAT ARE THE GENES ASSOCIATED
WITH TYPE 1 DIABETES?

Although it has been suggested that multiple genes
play a role in disease susceptibility, there is strong
evidence for only 2 chromosomal regions that
are associated with T1D: the human leukocyte
antigen (HLA) region on chromosome 6p21 [insulin-
dependent diabetes mellitus 1 (IDDM1)] and the
insulin gene region on chromosome 11p15 [insulin-
dependent diabetes mellitus 2 (IDDM2)]. The
contributions of these 2 loci to familial inheritance are
approximately 42% for IDDM1 and 10% for IDDM2.
As a result of genome-wide searches, many other
putative loci have been proposed to be related to
T1D. These loci along with some potential candidate
genes are listed in Tables 1 and 2. The fact that in
humans the highest risk-conferring locus linked to
the disease is the HLA cluster and, in particular,
HLA genes encoding specific class II alleles strongly
indicates an important role of the immune cells
in both the development and activation of the
autoimmune response leading to disease onset.26
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Fig 3. The rate of progression to T1DM development in relatives carrying GAD65 AA, IA-2 AA, or
a combination of both AA in the (–) absence or (- - -) presence of ICA. (A) Progression to insulin-
requiring diabetes for relatives with GAD65 AA with respect to ICA positivity. (B) Progression to
insulin-requiring diabetes for relatives with IA-2 AA with respect to ICA positivity. (C) Progression
to insulin-requiring diabetes for relatives with either GAD65 or IA-2 AA with respect to ICA
positivity (log rank: P = 0.01). (D) Remarkably, the cumulative risk of developing an insulin
requirement was 80% at 6.7 years and 90% at 12.9 years of follow-up in ICA-positive relatives;
this is significantly higher than the cumulative risk of diabetes development in relatives who
were positive for GAD65 and IA-2 AA without ICA (log rank: P < 0.00001). Abbreviations: AA,
auto-antibodies GAD65, glutamic acid decarboxylase 65; IA-2, islet-cell antigen-2; ICA, islet-cell
antibody; T1DM, type 1 diabetes mellitus. Reprinted with permission from Pediatric Diabetes.25

Copyright 2005, International Society for Pediatric and Adolescent Diabetes.

Interestingly, the same HLA locus seems to have the
corresponding susceptibility influence in the primary
mouse model of T1D, the nonobese diabetic (NOD)
mouse (Table 3).27 The immune-mediated processes
of β-cell destruction are mainly T cell–dependent
and chronic in both mouse and rat models of T1D,
and this makes it more likely to be the same in
humans.27 Comparative mapping of human (IDDM)
and NOD mouse insulin-dependent diabetes (Idd)
genes are shown in Table 3.

Genetic factors have long been thought to
be linked to the development of T1D. Although
it has been hypothesized that in monozygotic
twins a discordance rate greater than 50% could
be explained by environmental factors of disease
development, studies using both monozygotic and
dizygotic twins have suggested that environmental

factors have few causative roles in the development
of islet autoimmunity, whereas genetic similarities in
dizygotic twins seem more important in determining
susceptibility to diabetes.28 T1D is a polygenic
disease29 in which there presumably exist a small
number of genes with large effects, HLA being the
main example, and a large number of genes with
small effects overall.30

THE HUMAN LEUKOCYTE ANTIGEN
COMPLEX

The short arm of human chromosome 6 (6p21)
accommodates a ∼ 3.5−megabase genetic segment
containing a group of immune response genes

DOI:10.1002/MSJ
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Table 1. Effect of Human Leukocyte Antigen Alleles on Type 1 Diabetes
Susceptibility.

DQ Alleles Effect Associated DR

B1∗ 0302, A1∗ 0301 Susceptible DR4
B1∗ 0201, A1∗ 0501 Susceptible DR3
B1∗ 0501, A1∗ 0101 Susceptible DR1
B1∗ 0201, A1∗ 0301 Susceptible (African Americans) DR7
B1∗ 0502, A1∗ 0102 Susceptible (Sardinia) DR2 (DR16)
B1∗ 0303, A1∗ 0301 Susceptible (Japanese) DR4
B1∗ 0303, A1∗ 0301 Susceptible (Japanese) DR9
B1∗ 0602, A1∗ 0102 Protective DR2 (DR15)
B1∗ 0301, A1∗ 0501 Protective DR5
B1∗ 0201, A1∗ 0201 Neutral DR7
B1∗ 0303, A1∗ 0301 Neutral DR4
B1∗ 0301, A1∗ 0301 Neutral DR4

Table 2. Genetic Risk Estimates for Human Leukocyte Antigen
Class II in T1D.

High-Risk Genotype

Risk in an
Individual
with This
Genotype

DQB1∗ 0302 (DQ3.2) 1 in 60
DQ3.2/DQ2 (DR3) 1 in 25
DQB1∗ 0302 and a family history of IDDM 1 in 10
DQ3.2/DQ2 (DR3) and a family history of T1D 1 in 4

NOTE: This table was adapted from Annual Review of
Medicine.26

Abbreviations: IDDM, insulin-dependent diabetes mellitus;
T1D, type 1 diabetes.

termed the major histocompatibility complex (MHC).
The principal genes located within the MHC code
for HLAs, 2 molecular classes of cell surface
glycoproteins differing in structure, function, and
tissue distribution.

The class I HLA molecule exists as a heterodimer,
consisting of a polymorphic 44-kDa MHC-encoded
α or heavy chain in noncovalent association with
β2-microglobulin, a 12-kDa protein encoded by a
nonpolymorphic gene on chromosome 15. The class
I molecule is anchored in the cell membrane only
by the heavy chain. This chain contains 338 amino
acids and, beginning from the amino terminus, is
functionally divided into 3 regions: an extracellular
hydrophilic region, a transmembrane hydrophobic
region, and an intracytoplasmic hydrophilic region.
The extracellular region is further subdivided into 3
domains, designated α1, α2, and α3, each of which
has approximately 90 amino acid residues. The α1

and α2 domains compose the peptide- or antigen-
binding region of the molecule.

Class II HLA molecules consist of 2 glycoprotein
chains, an α chain of approximately 34 kDa and
a βchain of approximately 29 kDa, both encoded

within the MHC. As with the class I heavy chain,
each class II chain can be divided into 3 regions
(extracellular, transmembrane, and intracytoplasmic),
but in contrast, both class II chains span the
cell membrane. Each extracellular region of the
class II α and βchains has been further divided
into 2 domains of approximately 90 amino acid
residues each, termed α1 and α2 and β1 and β2,
respectively. The α1 and β1 domains form the
peptide-binding region of class II HLA molecules.
Also of note, the class II α2 and β2 domains,
class I α3 domain, and β2-microglobulin all show
homology to the constant region of immunoglobulins
and are therefore classified as members of the
immunoglobulin superfamily.

The genes that encode class I MHC are located
at the HLA-A, HLA-B, and HLA-C loci, whereas
class II molecules are encoded by the DR, DQ,
and DP genes. Other genes in this cluster include
transporters associated with antigen processing31,32

and low-molecular-weight proteins, both of which
are involved in antigen processing.33 A third region of
the MHC, termed class III, encodes several molecules
having a variety of functions, such as complement

DOI:10.1002/MSJ
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Table 3. Comparative Mapping of Human (IDDM)and Murine (Idd) Genes.

Human Locus (Chromosome)
Marker/

Candidate Potential NOD ‘‘Idd’’ Homolog (Chromosome) Marker

IDDM1 (6p21) HLA ‘‘Idd1’’ (17) H2g7
IDDM2 (11p15.5) INS/VNTR ? NOD.DR-2 (chromosome 7 region from C57L) ? Ins2
IDDM3 (15q26) D15S107 ‘‘Idd2’’ (9) Cyp19
IDDM4 (11q13) FGF3 None yet identified (distal 7)
IDDM5 (6q25) ESR None yet identified (proximal 10)
IDDM6 (18q) D18S64 ? ‘‘Idd5’’ (1) Bcl2
IDDM7 (2q31-33) D2S326 ? ‘‘Idd5’’ (1) Il1r/Stat1
IDDM8 (6q25-27) D6S264 None yet identified (proximal 10 or 17)
IDDM9 (3q21-q25) D3S1303 None yet identified (middle 6)
IDDM10 (10p11.2-q11.2) GAD2 None yet identified (proximal 2)
IDDM11 (14q24.3-q31) D14S67 None yet identified (middle 12)
IDDM12 (2q31-33) ? ‘‘Idd5.1’’ (1) Ctla4
IDDM13 (2q34) IGFBP-2,5 ? ‘‘Idd5.2’’(1) Slc11a1 (Nramp)
GCK (7p) GCK None yet identified (proximal 11)
IDDM15 (6q21) D6S283 ? ‘‘Idd14’’ (13) D13Mit61
IDDM16 ? (1p36.1-p35) NHE1 ? ‘‘Idd11’’ (4) Slc9a1 (Nhe1)

NOTE: This table was adapted from Molecular Pathology of Insulin Dependent Diabetes Mellitus.27 Idd nomenclature
is placed in quotation marks because there are multiple Idd loci on mouse chromosome 1.
Abbreviations: GCK, glucokinase; HLA, human leukocyte antigen; Idd, insulin-dependent diabetes; IDDM,
insulin-dependent diabetes mellitus; NOD, nonobese diabetic.

components (C4A, C4B, factor B, and C2), tumor
necrosis factor α and tumor necrosis factor β, and
the 21-hydroxylase genes (CYP21P and CYP21).

Polymerase chain reaction studies34 have pro-
vided researchers with a rapid means of estimating
T1D susceptibility in comparison with serological
techniques. Polymerase chain reaction amplification
of individuals’ HLA alleles in a variety of racial and
ethnic groups has revealed that the presence of a
specific human DQβchain variant encoding a neutral
amino acid (alanine, valine, or serine), rather than
aspartic acid at position 57 (non-Asp-57), is strongly
associated with T1D. In contrast, negatively charged
aspartic acid at position 57 of the DQβchain (Asp-
57) appears to confer resistance to T1D progression.
This association is much stronger than the association
between HLA-DR3 and HLA-DR4 and the presence
of the disease (Tables 1 and 2).35–37

Susceptibility to T1D is mainly conferred by
specific polymorphic regions within the MHC com-
plex, such as HLA DR/DQ alleles.35,36 The genotype
associated with the highest risk for T1D is the DR3/4-
DQ8 (DQ8 is DQA1*0301, DQB1*0302) heterozygous
genotype. The HLA genotype DQB1*0602 confers
dominant protection against T1D.

There is evidence that risk for islet autoimmunity
increases in DR3/4-DQ8 siblings who share both HLA
haplotypes with their diabetic proband sibling (63%
by age 7 and 85% by age 15) in comparison with
siblings who do not share both HLA haplotypes
with their diabetic proband sibling.38 These findings
indicate that HLA genotyping at birth may identify

individuals at high risk of developing the disease
with no detectable signs of islet autoimmunity, who
could then be enrolled in intervention trials aimed at
preventing overt disease.

The mechanisms by which the class II genes can
influence susceptibility to or protection from T1D
are still the subject of discussion. Brown et al.39,40

characterized the structure of the crystallized HLA
class II molecule. One hypothesis is that effective
antigen binding depends on the conformation of
the antigen-binding site on the DQ dimer. The 2
critical residues, DQα Arg-52 and DQβAsp-57, are
located at opposite ends of the α-helices that form
the antigen-binding site of the DQ molecule. It has
been postulated that a substitution of an amino acid
residue at these positions of the DQ molecule leads
to conformational changes of the antigen-binding
site and consequently to a modification of the
affinity of the class II molecule for the diabetogenic
peptide(s).37 As support for this hypothesis, it is
known that Asp-57 is involved in hydrogen and salt
bonding with both the peptide main chain and the
DRα Arg-76 side chain. Theoretically, modifications
in the DRα Arg-76 residue would also alter the
antigen-binding site. It is noteworthy that studies
of the regulatory regions of the genes encoding
DQ α and DQ βchains have shown that the level
of transcription of these genes may influence the
amount of antigen binding. An increased level of
production of a class II chain may increase the
availability41 for dimerization.42 Studies by Demotz
et al.43 have suggested that relatively few class II

DOI:10.1002/MSJ
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heterodimers need to be present on the surface of an
APC to efficiently crosslink the T cell receptor (TCR)
and initiate a T cell response.

ENVIRONMENTAL FACTORS
INFLUENCING TYPE 1 DIABETES

Although T1D has long been considered to be
directly linked to genetic factors, researchers have
been searching for environmental factors capable
of triggering T1D progression. Epidemiologists have
examined trends for environmental triggers through
major geographical variations in T1D incidence, tem-
poral trends in the incidence of T1D, and migration
studies.44 The responsibility of environmental factors
for T1D is strongly supported by statistical evidence
showing that the incidence of newly diagnosed T1D
subjects with high-risk HLA genotypes has decreased
over the last decades, whereas newly diagnosed
T1D with low-risk or even protective HLA genotypes
has increased.45,46 Specific environmental factors that
have been investigated include dietary compounds,
including cow’s milk, wheat gluten, soy products,
fats, and even coffee or tea, along with vitamin defi-
ciencies, N -nitroso compounds and other toxins, and
viral infections.44 One specific hypothesis associates
the development of T1D in Finland with seasonal
changes in climate, it being more common during
the cold season.47,48 Although the genetic argument
has long been considered the main factor in trigger-
ing T1D, new studies are pointing to the importance
of the environment.

VIRAL TRIGGERS OF TYPE 1 DIABETES

Although multiple environmental factors have been
implicated as possible triggers of T1D, viral disease
induction has long been argued as one of the
main potential environmental triggers. Viruses in
general have been receiving much attention as
possible triggers in T1D because of their ability to
mechanistically generate an active immune response
when encountered in the host. In the case of T1D,
the host environment is primed with immune cells
poised to activate; all they need is an immunological
stimulus. Researchers in the aforementioned seasonal
pattern study on T1D induction even argue that the
primary culprit responsible for triggering induction
of disease during the winter season may actually
be viral infections.47,48 Several viruses have been
directly implicated as potential triggers of T1D,
including enterovirus, adenovirus, Coxsackie B virus,

cytomegalovirus, hepatitis C virus, mumps virus,
rotavirus, and rubella virus.49–56 The presence of
a viral infection can lead to immune cell activation
through various possible mechanisms. Viruses may
directly alter a host cell or tissue in such a
manner that the immune system identifies it as
an immunological target. Targeted host cells are
lysed, releasing self peptides and fragments of the
host cell into the circulation, where they may be
processed and presented via APCs.49,54 Viruses can
directly alter the immune system of the host by
inducing polyclonal B cell activation, the release of
lymphokines, the activation of immune cells, and
the disruption of the strict immune balance between
T helper 1 and T helper 2 type responses, thus
promoting unwarranted immune activation.54 It has
been hypothesized that antiviral antibodies also can
lead to the formation of anti-idiotypic antibodies,
which can become autoreactive if the first antibody
is generated against the part of the virus that interacts
with the host.54

Molecular mimicry is by far one of the most
well studied processes associated with viral triggering
mechanisms and T1D disease induction. Viruses
produce proteins similar to those of the host.
Although not all viral proteins share homology with
the host, certain viral components share a distinct
homology with identified β-cell antigens targeted
in an autoimmune response.44,54 Upon reacting to
a viral infection, the immune system may process
and present a homologous viral protein in such a
manner that the epitope targeted by the immune
system can interact with both self and viral proteins.
This process becomes especially important with
respect to T1D disease induction if the homologous
viral protein that is recognized and processed
shares a distinct homology with β-cell–associated
proteins. Unintentional activation of an immune
response geared toward β-cell–associated proteins
put together with epitope spreading of antigens is a
volatile combination for the host.

GAD is a well-defined example of an autoantigen
in T1D that shares homology with viral proteins.
Researchers have demonstrated that GAD peptides
share mimicry with the P2-C viral sequence of
the Coxsackie B virus and the major outer capsid
protein of rotavirus.55,56 Immunization studies of mice
using homologous Coxsackie viral sequences have
induced T cell immune responses that cross-react
with GAD peptides, showing that viral homology
may induce responses to self proteins.57 Furthermore,
researchers have linked rotavirus infection and
pancreatic islet autoimmunity in children on the
HLA-DR4 background, linking both viral induction
and genetic susceptibility.56 Researching molecular
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mimicry and viral induction of T1D provides a pivotal
bridge between an environmental factor and an
immunological system responsible for T1D. Whether
T1D is triggered environmentally, genetically, or in
combination, it is still not known how exactly to
prevent disease progression once it starts. Several
other unknown immunological factors may play a
role in triggering T1D.

INNATE IMMUNE SYSTEM

The innate immune system is the body’s first line of
defense against invading microbes and pathogens.
Although this system does not generate long-term
antigen-specific immunological memory, this system
does have a high degree of immunological specificity
when encountering potential pathogens.8 The innate
immune system is composed of macrophages,
dendritic cells, natural killer cells, neutrophils, and
epithelial cells, all of which have their own unique
role in the framework of an innate response. The
role of the innate immune system is to survey and
detect pathogens via host cell receptors that are able
to recognize common structural elements expressed
by pathogens. These pattern recognition receptors
(PRRs), though specific, are not clonal and lack the
ability for clonal expansion of cells, as seen in the
adaptive immune system.58–60

Cells of the innate immune system use several
types of PRRs to help initiate an immune response.
Toll-like receptors (TLRs) are an evolutionarily
conserved class of PRRs, which when activated cause
the activation of the immune system.58,60,61 These
receptors recognize specific microbial membrane
components, bacterial flagellin, and DNA and RNA
from bacteria and viruses.63 Upon recognition of
a ligand, TLR activation brings about a cascade
of proinflammatory cellular responses, including
up-regulated production of cytokines, chemokines,
and costimulatory molecules.58,62–65 TLRs recognize
numerous self-expressed mammalian molecules in
addition to the known nonself molecules.66 These self
antigens are usually indicators of stress and disease
or are molecules that are modified because of the
disease.66,67

Once the innate immune system becomes
activated, it in turn has the ability to promote
activation of the adaptive immune system.58,62–65

The activation of the innate immune system
is a prerequisite for the initiation of specific
adaptive immune responses, such as T-helper 1
type responses.59,67,68 It has been suggested that in
T1D and other autoimmune diseases, TLRs may be

priming an unwarranted adaptive immune response
because of autoreactive processes directed against
self antigens.69,70 Innate immune cells activated
against self antigens may be responsible for a break
in tolerance. Once tolerance is broken, the body may
promote autoreactive immune responses.

TLRs are not the only PRRs used by cells of
the innate immune system. Non-TLR PRRs include
Nod-like Receptors (NLRs), Triggering Receptors
Expressed on Myeloid Cells (TREMs), and C-type
Lectin Receptors (CLRs) have not been directly
linked to autoimmunity or T1D, but represent a
new class of receptors that may be responsible
for triggering autoimmune responses or autoimmune
initiation of the adaptive immune system.74–76

Any immunological trigger directed against self is
potentially dangerous. Innate immune cells triggered
via self ligand binding to TLRs or non-TLR PRRs could
in turn activate T cells and an adaptive immune
response because of the production of cytokines
and other inflammatory signals. Once the balance of
the immune system is flipped toward autoreactivity,
negative outcomes are sure to follow.

The innate immune system has been well studied
in the context of T1D development in both humans
and the NOD mouse. T1D disease progression has
been characterized in the 2 phase processes of
asymptomatic inflammation of the islets followed by
autoimmune destruction of the islets. During phase
1, macrophages infiltrate the pancreatic islets and
may be responsible for the asymptomatic inflam-
mation that takes place there.8–13 Once activated,
macrophages can secrete nitrogen and oxygen free
radicals, as well as inflammatory cytokines, into their
surrounding microenvironment.74 These molecules
can either directly damage surrounding cells or ini-
tiate cellular damage by in turn activating other cell
types to cause damage. It has even been illustrated
that without the presence of macrophages in NOD
mice, differentiation of β-cell–cytotoxic T cells does
not take place.75–77 Restoring macrophages in these
types of depletion experiments restores the ability of
β-cell–cytotoxic T cell generation,75–77 thus illustrat-
ing the importance of macrophages in T1D disease
progression. The innate and adaptive immune sys-
tems communicate using an intricate system of checks
and balances. Once one end of the system becomes
disrupted, the whole system can falter.

ADAPTIVE IMMUNE SYSTEM

The adaptive immune system is the body’s second
line of defense against pathogens and disease,
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activated by the innate immune system. This system
is antigen-specific, facilitating the generation of
immunological memory, which serves to eliminate
reoccurring pathogens more effectively upon repeat
exposure to a given pathogen. This highly specific
system uses receptor interaction between T cells
and APCs to determine self from nonself. The
hallmarks of an adaptive immune response are
the generation of long-term immunological memory,
peptide presentation in the context of MHCs, and the
production of antigen-specific antibodies.78

T lymphocytes and their specific TCRs are a
crucial part of the adaptive immune system. T
lymphocytes are generated in the thymus, each
having its own structurally diverse and unique
antigen-recognizing receptor known as the TCR.
The TCR recognizes processed antigenic peptides
presented in the context of MHC via APCs. Once
recognition of a peptide-bound MHC complex occurs
via the TCR, a cascade of signaling events takes
place, leading to either a CD4+ T cell or CD8+ T
cell response, depending on which class of MHC,
either MHC class I or MHC class II, was initially
recognized by the TCR. Ultimately, once a TCR
recognizes a processed peptide in the context of
an MHC, immunological events take place that bring
about either the direct targeted destruction of cells
presenting the peptide or the generation of an
antibody response and further T cell activation.

In phase 2 of T1D disease progression, both
T and B lymphocytes accumulate in an islet lesion,
where they can be activated against self antigens
to trigger an immunological response toward the
self. This autoreactive immune response then leads
to the destruction of the insulin-producing β-cell
within the pancreas. Both MHC class I and MHC
class II restricted T cells are necessary for T1D disease
progression in both humans and NOD mice.79,80 Anti-
insulin CD+4 T cell populations have been reported
in NOD mice. It is thought that interactions between
insulin peptides and MHC molecules can cause the
development of an autoimmune T cell repertoire.81

Although this process is not totally understood, it
is necessary to determine what exact factors are
causing the immune system to become unregulated
in such a manner as to promote an autoimmune
response.

REGULATION VIA T CELLS

Keeping the immune system tolerant is a strict
balancing act: excessive regulation restricts proper
immune function, whereas a lack of regulation

permits overt immune function with the potential to
target the self. Regulating when an immune response
begins, continues, and ends is a very important part of
the immune system’s checks and balances. Regulatory
T cells (T regs) and natural killer T (NKT) cells are
2 subtypes of T cells that are important regulators in
the progression of T1D and autoimmune diseases.

T regs are a unique population of T cells that
express the forkhead transcription factor forkhead
box P3 (FOXP3) and are CD+4 CD+25.91–93

T regs are well-known immunoregulators that
can suppress proliferation of effector cells by
shutting down IL-2 activation pathways.85 T regs
help the immune system maintain proper T cell
homeostasis by preventing T cell activation, and this
in turn leads to the development of inflammatory
responses.86,87 T regs work to shut off an active T
cell response and are thought to prevent autoimmune
development by regulating the expansion of T cell
populations, T cell differentiation, and effector T
cell function.88 Although individuals with T1D have
numbers of T regs equal to those of normal healthy
individuals,89–91 T regs from T1D individuals display
decreased suppressive characteristics, which suggest
a defect in T reg function in people suffering from
T1D.89,90 Adoptive transfer experiments using T regs
in NOD mice have effectively been demonstrated to
protect against the onset and progression of T1D.92

Although current use of T regs in NOD mice shows
promising therapeutic qualities, the potential use of
T regs in humans is not sufficiently understood.

NKT cells share similar characteristics with both
natural killer cells and T cells. These cells can cause
direct cell lysis due to Fas-ligand interactions and
induce cytotoxic damage of cells due to IFNg, like
Natural Killer cells102–104, but they are also similar
to T cells in that they are biased toward TCR usage
and produce IL-4.102–104 When activated, NKT cells
produce IL-4, which inhibits inflammatory T helper
1 type responses and promotes inhibitory T helper
2 type responses.96,97 Individuals suffering from T1D
show a decreased number of NKT cells along with
a decreased ability to produce and secrete IL−4.98

As seen with T regs, adoptive transfer experiments
with NKT cells effectively protect against the onset
and progression of T1D in NOD mice.99 Because of
these 2 types of T cells, individuals that cannot inhibit
or properly regulate T cell responses face increased
autoimmune problems.

CONCLUDING REMARKS

T1D results from autoimmune destruction/dysfunc-
tion of insulin-secreting cells. Under physiologic
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conditions, there is balance between pathogenic
T cells that mediate disease such as T cells with
marked conservation of their TCRs (eg, insulin) and
regulatory cells that control autoimmunity. In T1D
and other autoimmune disorders, there is an altered
balance between pathogenic and T regs.

Autoantibodies are some of the most potent risk
determinants for autoimmune diseases, with relative
risk exceeding 100 when all 4 autoantibodies are
present in an asymptomatic child. The archetypical
model for the application of autoantibodies is
T1D. Seminal studies have suggested that using
a combination of humoral immunological markers
gives a higher predictive value for T1D progression
and greater sensitivity without a significant loss of
specificity. There is a growing effort as well as a
large opportunity for exploring novel strategies alone
or in combination with immunomodulation with the
ultimate goal of finding the cure for T1D.

Emerging evidence indicates that in silico
research is complementary to current experimental
approaches in T1D research and has the potential
not only to assist researchers in designing labo-
ratory experimentation but also to build a frame-
work of data collection to predict the outcome
of therapeutic strategies aimed at halting the β-
cell–specific autoimmune process. With support from
the Juvenile Diabetes Research Foundation, the Insti-
tute for Systems Biology has generated a T1D
database (T1Dbase) with numerous data sets of
molecular signatures of T1D (http://t1dbase.org/cgi-
bin/dispatcher.cgi/welcome/display). Molecular sig-
natures have revealed remarkable differentiation
of organ-specific complications as reflected in the
work of the Kretzler laboratory on transcription
factor binding site patterns in nephropathy asso-
ciated with T2DM versus nephropathy due to
lupus erythematosus, glomerulonephritis, or other
causes.100,101 Similar studies on T1D-associated
neuropathy, are being completed by our group at
the National Center for Integrative Biomedical Infor-
matics (https://portal.ncibi.org/portal). Mathematical
modeling of the imbalance of T cell subsets in T1D,
in work led by Patrick Nelson, is expected to inform
our future work.
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