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Hit-and-Run is a well-known class of Markov chain algo-
rithms for sampling from essentially arbitrary distribu-
tions over bounded regions of the Euclidean space. We
present a class of Small World network models con-
structed using Hit-and-Run in a Euclidean ball. We prove
that there is a unique scale invariant model in this class
that admits efficient search by a decentralized algo-
rithm. This research links two seemingly unrelated areas:
Markov chain sampling techniques and scale invariant
Small World networks, and may have interesting implica-
tions for stochastic search methods for continuous opti-
mization. © 2008 Wiley Periodicals, Inc. NETWORKS, Vol. 53(1),
67–78 2009
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1. INTRODUCTION

Hit-and-Run is a Markov chain technique originally pro-
posed by Smith [18] for generating approximately uniformly
distributed points on bounded, open subsets S of Rn, and later
extended by Belisle et al. [2] and Romeijn and Smith [17] to
arbitrary distributions. Its simplest version makes a one-step
transition from a point x ∈ S to another point y ∈ S by gener-
ating a direction vector uniformly distributed on the surface
of an n-dimensional unit hypersphere around x, followed by
generating a point y uniformly distributed on the line seg-
ments created by the intersection of the direction vector and S
(this is accomplished by employing a one-dimensional rejec-
tion method on the line segment intersected by an enclosing
box for the open region). The sequence of iterates generated in
this intuitive manner was shown to converge in total variation
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to the uniform distribution on S [18]. This version of Hit-and-
Run was shown to be the fastest known method for generating
an asymptotically uniform point from a convex body in �n

[9] assuming that the initial distribution of the Hit-and-Run
Markov chain was not far from uniform, i.e., a “warm start.”
This assumption was later relaxed [12] making Hit-and-Run
the only known random walk that converges efficiently to a
uniform distribution starting from any point inside a convex
body. Moreover, it was also shown [10] to be very efficient
for sampling from log-concave distributions over convex bod-
ies. The Hit-and-Run sampler has found many applications
including identifying non-redundant constraints [3], global
optimization [16, 17, 22], convex optimization [4, 5], and
computing the volume of convex bodies [11]. In this arti-
cle, we employ Hit-and-Run to accomplish a novel task; that
of growing Small World networks that admit efficient search
by a decentralized algorithm.

The Small World phenomenon gained fame due to the pio-
neering work of Stanley Milgram and his team in the 1960’s
[13, 19]. The phenomenon was observed through a series of
social experiments. Milgram’s team realized that we are all
linked by short chains of acquaintances. The social experi-
ment randomly identified a pair of people in the United States
unknown to each other; a source and a target. Basic informa-
tion such as address and occupation of the target was provided
to the source. A letter was handed to the source and the person
was told that the letter should be passed on to a person she
knows on a first name basis. The aim of the experiment was
to deliver the letter to the target in as few steps as possible.
Each intermediate person who received the letter also fol-
lowed the same rule: the letter should be passed on to one of
your acquaintances. The chain was continued until the target
received the letter. Over a large number of trials, the aver-
age number of steps in a successful chain was found to be
between five and six. This observation was popularized as
Six Degrees of Separation.

In recent years, researchers have extensively studied mod-
eling and algorithmic aspects of networks to characterize the
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Small World phenomenon mathematically [6, 7, 14, 20, 21].
The reader is referred to Albert and Barabasi [1], Newman
[15], and Kleinberg [8] for comprehensive surveys of liter-
ature in this area. For example, it was shown in [20] that
it is possible to construct networks in which any two nodes
are connected by short chains. This can be done by super-
imposing a small number of uniformly random “long-range
connections” on a lattice where each node originally has a
few “local contacts.” This approach resolved the issue of exis-
tence of short chains. However, the most striking component
of Milgram’s experiment is not that people are connected by
short chains, but that they are able to discover these chains by
employing a simple letter forwarding procedure. Existence of
short chains in a network where the long-range contacts are
chosen uniformly randomly does not imply that nodes acting
only on local information will be able to find them [6]. In
his seminal work, Kleinberg [7] showed that it is indeed pos-
sible to construct networks in which nodes can accomplish
this task using a decentralized algorithm, i.e., an algorithm
which uses only local information at the nodes it visits. This
approach goes beyond mere existence of short chains in that
it attempts to actually find them, and hence, is algorithmic. In
Kleinberg’s lattice network, the probability of a long range
connection between two nodes was allowed to decrease with
a power of the distance between them. In particular, he proved
that there is a unique power law exponent (equal to the lat-
tice dimension) for which a decentralized algorithm can find
short chains. Kleinberg argued that this is possible because of
a structural property of the power law network with exponent
equal to the lattice dimension...“it is the unique exponent at
which a node’s long range contacts are nearly uniformly dis-
tributed over all distance scales..”, in other words, the network
is scale invariant. It was evident from Kleinberg’s work that
employing some notion of “proximity” is essential to building
network models that admit efficient search by a decentralized
algorithm (also see Kleinberg [8] and Watts et al. [21]). We
generalize these ideas to Markov chain based network models
in Euclidean spaces.

More specifically, we introduce a class of network mod-
els within a unit ball (the world) in �2. As we shall see, a
point u in a typical network from this family is connected to
a finite number of points on the boundary of an ‘extremely
small’ ball of radius 1 � ε > 0 around that point. These
are u’s local contacts. In addition, u also has one long-range
contact in the world outside the small ball. This contact is
generated by a one-step transition of a Markov chain from
a Hit-and-Run family parameterized by a non-negative, real
number a. When a is zero, the probability density function of
long range contacts does not take geographic proximity into
account. On the other hand, as the value of a increases, it is
more likely that u’s long-range contact will be near u. The
balance of geographic cues provided by a and the size of the
world is delicate; we will show that a = 1 is the only value of
a for which the network model is scale invariant. In particular,
for this value of a, there exists a greedy decentralized algo-
rithm that finds a path of expected length O(poly(log(2/ε)))

connecting a “source” point s in the network to a point in

the network that is within distance ε of any other “target”
point t in the world. On the other hand, for 0 ≤ a < 1, every
decentralized algorithm finds it hard to close-in on the target
once it reaches near the target. Analogously, when a > 1,
every decentralized algorithm faces a bottleneck when it is
far away from the target. Mathematically, any decentralized
algorithm expends �(poly(2/ε)) expected number of steps
to find a path when a �= 1. We remark that while our results
also extend to arbitrary Euclidean spaces �n, our focus on
n = 2 is for notational simplicity and consistent with existing
literature on Small World networks.

2. A FAMILY OF NETWORK MODELS

In this section, we propose our basic model and make
preliminary observations that will be revisited repeatedly in
Sections 3 and 4. We pose our central question toward the end
of this section and answer it through three theorems. Detailed
proofs of these theorems are provided in Section 4.

Our model has three components : the world in which we
build our network, and local as well as long-range contacts
of a point in the network. These are illustrated in Figure 2
and explained in detail here.

The World: Let B denote the closed unit ball centered at
the origin (0, 0) in �2, i.e., B = {x ∈ �2 : ‖x‖ ≤ 1}, where
‖ · ‖ is the Euclidean norm. This is our world. Starting at any
arbitrary point in this world, the network is built by adding
points one-by-one. We describe this process by considering
a generic point u in the network.

Local Contacts: Let ε > 0 be a constant such that ε � 1,
Bε(u) the closed ball of radius ε around u, and ∂Bε(u) its
boundary {x ∈ �2 : ‖x − u‖ = ε}. Let Dε(u) = ∂Bε(u) ∩ B.
Let Pπ/4(Dε(u)) be a partition of Dε(u) into a finite number
of arcs where the central angle of every arc (at u) is at most
π/4. Point u has exactly one local contact in every arc in
Pπ/4(Dε(u)).

Long-Range Contacts: The long-range contact of u is
generated by employing a one-step transition of the Hit-
and-Run Markov chain parameterized by a non-negative real
number a on state space {B \ Bε(u)} as follows:

1. Choose a unit direction vector ξ emanating from u and
uniformly distributed on the boundary ∂B1(u) of the unit
ball centered at u. Let θ be the angle between ξ and −u
(see Fig. 1).

2. Let lu(θ) be the set of real numbers that characterize the
line segment of {B \ Bε(u)} passing through u parallel to
direction ξ , i.e., lu(θ) = {λ ∈ � : u+λξ ∈ {B\Bε(u)}}.
Independently choose a random number λ from lu(θ)

according to a probability distribution with density

1
|λ|a∫

µ∈lu(θ)
1

|µ|a d|µ| when lu(θ) �= ∅, a ≥ 0. (1)

Place the long-range contact v of u at u + λξ .

Remark 2.1. Notice that our local contact model essen-
tially “discretizes” Dε(u). The upper bound on the central

68 NETWORKS—2009—DOI 10.1002/net



FIG. 1. Directions ξ and −u are shown with dotted arrows and θ is
the angle between them. A chord of B \ Bε(u) parallel to direction ξ is
shown with a thick blue line. v is a point on this chord at distance λ from
u. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

angle controls fineness of the partition. The bound of π/4
is not necessary, and can be increased in some cases (see
Fig. 2a for example). However, it is sufficient to ensure that
for any point t ∈ B \ Bε(u), u will have at least one local
contact w such that t is closer to w than u (see Lemma A.1 in
Appendix).

Remark 2.2. Observe that the integral in the denominator
of Equation (1) is well-defined since |µ| > ε for all µ ∈ lu(θ).
We will use Cu,ε(θ) to denote this integral and write the
above density as 1

Cu,ε (θ)|λ|a . Cu,ε(θ) is evaluated in Appendix

A (Lemmas A.2 and A.3). Moreover, because lu(θ) is one-
dimensional, sampling according to density function (1) can
be easily done by employing the standard left-continuous
inverse method (see [2]).

We now compute the probability density for the distribu-
tion of long-range contacts. For u ∈ B and v ∈ {B \ Bε(u)},
let f (u, v) denote the probability density for the distribution
of u′s long-range contact v. We have

Proposition 2.3 (Power Law Probability Density). The
probability density function for the distribution of u’s long-
range contact v is given by

f (u, v) = 1

π

1

Cu,ε(θuv)‖u − v‖a+1
(2)

where θuv is the angle between (v − u) and −u.

Proof. Let Sw be an infinitesimally small square with
side w oriented along (v − u). f (u, v) = limA(Sw)→0

P(u,Sw)
A(Sw)

,
where A(Sw) is the area of Sw and P(u, ·) is the probability
that u’s long range contact is in Sw. Notice that ‖u − v‖ is
the same for all points in Sw when w is infinitesimally small.
For u’s long-range contact to be in Sw, the unit direction ξ

defined in step 1 of our long range contact model must pass
through Sw and the number λ sampled in step 2 must be such
that u + λξ ∈ Sw. Since ξ is chosen uniformly on ∂B1(u),
the probability of the former is 2 w

2π‖u−v‖ whereas the latter
is w

Cε (θuv)‖u−v‖a . We have,

f (u, v)= lim
w→0

2 w
2π‖u−v‖

w
Cε (θuv)‖u−v‖a

w2
= 1

π

1

Cε(θuv)‖u − v‖a+1
.

■

We refer to the probability density in Equation (2) as the
power law density.

FIG. 2. (a) Point u shown as a black dot is ε-deep inside B, i.e, Bε(u) ⊂ B. The four blue dots are u’s local
contacts on ∂Bε(u) shown as a dotted circle. Point v shown as a red dot is u’s long-range contact. (b) Point u is not
deep inside B. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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2.1. Milgram’s Experiment: Efficient Message Delivery

Following Kleinberg, we put our network model into the
context of Milgram’s social experiments. Suppose a network
with a countably infinite number of points is built by employ-
ing the above procedure starting at an arbitrary point s ∈ B.
Let t be any arbitrary point in B other than s. Our objective is
to deliver a message from s to a point in our network within
a distance ε of t using a decentralized algorithm, that is, a
procedure in which each message holder

1. knows the location of t.
2. knows its local and long-range contacts.

Most importantly, a message holder does not have any
information about the local and long-range contacts of other
points in the network, and hence, must forward the message to
one of its own contacts. We will say that the message has been
ε-delivered when it enters an ε ball around t. We consider the
following question.

Question: For what values of parameter a (if any) does
there exist a decentralized algorithm that ε-delivers the mes-
sage in O(poly(log(2/ε))) expected number of steps? We will
call any such algorithm efficient.

Remark 2.4. Although it is beneficial to think of an under-
lying countably infinite network in B that is built prior to the
implementation of a decentralized algorithm to relate our
work to Milgram’s experiments, this is not required for the
analysis. One can assume that the network is ‘built on the
fly’, i.e., starting with s, a point in B forms its contacts when
and only when the message is delivered to it. We will employ
this framework for our analysis.

Theorems 2.5, 2.6, and 2.7 answer the above question.

Theorem 2.5. When a = 1, there exists a decentralized
algorithm (in particular, the greedy algorithm G∗ defined in
Section 4) whose expected ε-delivery time for any (s, t) pair
in B × B is at most b(log 2

ε
)2, where b is a constant that does

not depend on ε.

Theorem 2.6. Let 0 ≤ a < 1. Then there exist (s, t) pairs in
B×B such that the expected ε-delivery time of any decentral-
ized algorithm is at least ca(

2
ε
)(1−a)/2, where ca is a constant

that depends only on a.

Theorem 2.7. Let a > 1. Then there exist (s, t) pairs in
B × B such that the expected ε-delivery time of any decentral-
ized algorithm is at least da(

2
ε
)(a−1)/a, where da is a constant

that depends only on a.

Remark 2.8. Note here that 2/ε is a measure of distance
in our world as the diameter of the unit ball is 2. When the
radius of our world is R, this distance measure is replaced
by 2R/ε in the above theorems whereas the constants remain
independent of both R and ε.

Proofs of these results are presented in Section 4. However,
we first investigate two properties of the power law density
in Section 3 below.

3. SCALE INVARIANCE AND STEADY
IMPROVEMENT

This section is devoted to establishing two important prop-
erties of the power law density: scale invariance and steady
improvement. We begin by introducing the notion of scale
invariance in B. See Kleinberg [6] for an informal description
of a similar idea in the discrete lattice context.

Definition 3.1. Let 0 < β < 1 be any positive fraction and
u be at the origin. For integers j ≥ 1 such that β j+1 > ε,
define Pβ

j (u) to be the probability that the distance of u’s

long-range contact from u is between β j+1 and β j . We will
say that the probability density function (2) is scale invariant
for generating long-range contacts from the origin if for any
β, Pβ

j (u) does not depend on j.

Theorem 3.2 (Scale Invariance). The power law density
function is scale invariant for generating long-range contacts
from the origin if and only if a = 1.

Proof. We use the spherical coordinate system (ruw, θuw)

centered at u. In particular, for any point w ∈ �2, ruw =
‖u − w‖, and θuw is the angle between (w − u) and −u. Note
that the infinitesimal area element in this system is given by
(ruwdruwdθuw).

Proof of scale invariance of a = 1. Note that because u
is at the origin, it is ε-deep, and moreover, ‖u‖ = 0. From
Lemma A.2 for a = 1, Cu,ε(θ) = 2 log( 1

ε
) for any angle θ .

Then for any 0 < β < 1 and integer j ≥ 1 with β j+1 > ε,

Pβ
j (u) =

∫ 2π

0

∫ β j

β j+1

1

π

1

2 log 1
ε

1

r2
uv

(ruvdruvdθuv)

= 1

2π

1

log 1
ε

∫ 2π

0
log

(
β j

β j+1

)
(dθuv) = log(1/β)

log 1
ε

,

which does not depend on j.
Proof of lack of scale invariance of a = 0. From Lemma

A.2 for a = 0, Cu,ε(θ) = 2(1 − ε) for any angle θ when u is
at the origin. Then for any 0 < β < 1 and integer j ≥ 1 with
β j+1 > ε,

Pβ
j (u) =

∫ 2π

0

∫ β j

β j+1

1

π

1

2(1 − ε)

1

ruv
(ruvdruvdθuv)

= β j(1 − β)

(1 − ε)
,

which obviously depends on j.
Proof of lack of scale invariance of 0 < a �= 1.
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FIG. 3. Illustration of the first part of the proof of Theorem 3.3.

From Lemma A.2 for 0 < a �= 1, Cu,ε(θ) = 2
(1−a)

(1 −
ε1−a) for any angle θ when u is at the origin. Hence,

Pβ
j (u) =

∫ 2π

0

∫ β j

β j+1

1

π

1
2

(1−a)
(1 − ε1−a)

1

ra+1
uv

(ruvdruvdθuv)

= β j(1−a){1 − β1−a}
(1 − ε1−a)

,

which again depends on j. ■

Another interesting property of the parameter a = 1 is
discussed in the remainder of this section. Informally, we say
that the power law density exhibits steady improvement if
the probability that a point u at distance r from a point t in
the world has a long-range contact within distance r/2 from
t is �(1/ log(2/ε)) (independent of r). Making this precise
requires some geometric and algebraic work as shown here.

Theorem 3.3 (Steady Improvement). Let u, t be any two
points in B such that ‖u − t‖ = r ≥ 2ε. Let Qr(u, t) be the
probability that u has a long-range contact within distance
r/2 from t. Then, when a = 1, there is a constant c (that is
independent of r and ε) such that

Qr(u, t) ≥ c

log 2
ε

. (3)

Proof. The boundary ∂Br/2(t) of disc Br/2(t) of radius
r/2 centered at t is shown in Figure 3 with a dotted line.
Qr(u, t) is the probability that u’s long-range contact lies in
Br/2(t) ∩ B (note that Br/2(t) may not entirely lie inside B).
Let uE and uF be the two tangents to ∂Br/2(t) from u. We first
show by contradiction that at least one of E and F is inside B.
Suppose not. Then let B and D be the points of intersection
of B with segment EF (these two points exist since E and F
are outside B and both u and t are inside B). Let A and C be
the end points of the chord of B that passes through u and t.
Consider triangles ABC and ADC. Note that ∠ABC > π/2
and ∠ADC > π/2. Therefore, the circumcenter of triangle
ABC lies outside that triangle and in particular, on the D side
of segment AC. Similarly, the circumcenter of triangle ADC
lies outside that triangle and in particular, on the B side of
segment of AC. However, this is a contradiction because the
circumcenters of these two triangles coincide and in particular

are at the center of B, i.e., the origin. Thus, at least one of E
and F (say E) is in B.

Now refer to Figure 4. We bound Qr(u, t) below by the
probability that u’s long-range contact is inside band EGHI
defined as follows. I is the point of intersection of the arc of
radius uE centered at u with segment ut. Note that segment
uE has length

√
3r/2 by Pythagoras theorem in triangle uEt;

H is the point of intersection of the arc of radius 3r/4 centered
at u with segment ut whereas G is where this arc intersects
∂Br/2(t). Applying the cosine rule to triangle uGt we get

(tG)2 = (uG)2 + (ut)2 − 2(uG)(ut) cos(∠tuG), i.e.,

(r/2)2 = (3r/4)2 + (r)2 − 2(3r/4)(r) cos(∠tuG), i.e.,

∠tuG = arccos(7/8).

Finally, Lemmas A.2 and A.3 imply that Cu,ε(θ) ≤
2 log(2/ε) for any angle θ . Hence,

Qr(u, t) ≥
∫ arccos(7/8)

0

∫ √
3r/2

3r/4

1

π

1

2 log(2/ε)

1

r2
uv

ruvdruvdθuv

≥
∫ π/12

0

∫ √
3r/2

3r/4

1

π

1

2 log(2/ε)

1

ruv
druvdθuv

= π/12

2π log(2/ε)
log(2/

√
3) =

log 2√
3

24 log 2
ε

.

■

Theorem 3.4. The power law density function for gen-
erating long-range contacts using one step of Hit-and-Run
exhibits steady improvements only if a = 1.

Proof. We consider three cases.
Proof for a = 0. It suffices to prove that the density in

Equation (2) fails to make significant improvements for a
specific choice of u and t. Let t be at the center of B, u be
ε-deep in B. Suppose r ≥ 2ε as in Theorem 3.3, and also that√

1 − r2 > 2ε. That is,

√
1 − 4ε2 > r ≥ 2ε. (4)

FIG. 4. Illustration of the second part of the proof of Theorem 3.3.
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We have,

Qr(u, t) = 2
∫ π/6

0

∫ r cos θuv+ r
2

√
1−4 sin2 θuv

r cos θuv− r
2

√
1−4 sin2 θuv

1

π

× 1

2(
√

1 − r2 sin2(θuv) − ε)

1

ruv
(ruvdruvdθuv)

= 1

π

∫ π/6

0

r
√

1 − 4 sin2 θuv

(
√

1 − r2 sin2(θuv) − ε)
(dθuv)

= 1

2π

∫ π/6

0

√
1 − 4 sin2 θuv

(

√
(1/r)2 − sin2(θuv) − (ε/r))

(dθuv)

≤ 1

π

∫ π/6

0

√
1 − 4 sin2 θuv(

1
2 (

√
(1/r)2 − sin2(θuv))

) (dθuv)

≤ 2

π

∫ π/6

0

2 cos(θuv)√
(1/r)2 − sin2(θuv)

(dθuv)

= 4

π

∫ r/2

0

dy√
1 − y2

= 4

π
arcsin

( r

2

)
.

Now suppose Qr(u, t) is �(1/ log(2/ε)), i.e., there
exists a constant c > 0 independent of ε such that
Qr(u, t) ≥ c/ log(2/ε) for all r as in (4). Specifically,
(4/π) arcsin(ε) ≥ Q2ε(u, t) ≥ c/ log(2/ε) implying that
c ≤ (4 log(2/ε)/π) arcsin(ε). But the right hand side has
limit 0 as ε → 0. Therefore the inequality contradicts
independence of c and ε.

Proof for 0 < a < 1. We will use the logic in the proof
for a = 0. However, this time, let u be at the center of B, and
t be such that Br/2(t) ⊂ B where r ≥ 2ε. Then,

Qr(u, t) = 2
∫ π/6

0

∫ r cos θuv+ r
2

√
1−4 sin2 θuv

r cos θuv− r
2

√
1−4 sin2 θuv

1

π

× 1
2

(1−a)

(
1 − 1

εa−1

) 1

ra
uv

(druvdθuv)

Let θ+
uv ≡ cos θuv + 1

2

√
1 − 4 sin2 θuv and θ−

uv ≡ cos θuv

− 1
2

√
1 − 4 sin2 θuv for brevity. Then we have,

Qr(u, t) = r1−a

π(1 − ε1−a)

∫ π/6

0

{
θ+1−a

uv − θ−1−a

uv

}
dθuv

≤ 2

π
r1−aA,

where A = ∫ π/6
0 {θ+1−a

uv − θ−1−a

uv }dθuv. Thus, as in the a = 0
case, suppose Qr(u, t) is �(1/ log(2/ε)), i.e., there exists
a constant c > 0 independent of ε such that Qr(u, t) ≥
c/ log(2/ε) for all r. That is, 2

π
r1−aA ≥ Qr(u, t) ≥

c/ log(2/ε) and specifically, 22−a

π
ε1−aA ≥ c/ log(2/ε). This

implies c ≤ A22−a

π
ε1−a log(2/ε). But the right hand side has

limit 0 when ε → 0 contradicting independence of c and ε.

Proof for a > 1. Let a−1 = b > 0, and let the positions
of u and t be as in the proof for 0 < a < 1. Then after some
algebraic simplifications we get,

Qr(u, t) =
(

4

3

)b 1

π

r−b

ε−b − 1

∫ π/6

0

((
θ+

uv

)b − (
θ−

uv

)b)
dθuv.

Now let
∫ π/6

0 ((θ+
uv)

b −(θ−
uv)

b)dθuv = B and consider the case
when r = 1/2. We get,

Q1/2(u, t) =
(

8

3

)b

B
1

π

1( 1
ε

)b − 1
≤

(
8

3

)b 2B

π
( 1

ε

)b
.

Suppose Qr(u, t) is �(1/ log(2/ε)), i.e., there exists a
constant c > 0 independent of ε such that Qr(u, t) ≥
c/ log(2/ε) for all r. Specifically, when r = 1/2 as above,
( 8

3 )b 2B
π( 1

ε
)b ≥ Q1/2(u, t) ≥ c/ log(2/ε). This implies that

c ≤ ( 8
3 )b 2Bεb

π
log(2/ε). Again, the right hand side has limit

0 as ε → 0 contradicting independence of c and ε. ■

4. EFFICIENT DECENTRALIZED SEARCH

We now return to the question posed in Section 2 and
prove Theorems 2.5, 2.6, and 2.7. In particular, we will show
that a = 1 is the only value of a for which there exists a
decentralized algorithm that delivers the message efficiently.
Consider the following greedy algorithm.

Algorithm G∗: When the message reaches a point u ∈ B,
u forwards the message to its contact that is closest to the
target point t.

Proof of Theorem 2.5. Suppose that the current mes-
sage holder is at a distance r, 2 ≥ r ≥ 2ε from t. The
probability that the distance between the message and t is
decreased by a factor of 2 (i.e., a significant improvement)
in one step of G∗ is at least Qr(u, t) ≥ c

log 2
ε

from Theorem

3.3. Therefore, the expected number of steps of G∗ before the

distance is decreased by a factor of 2 is at most
log 2

ε

c . Because
the initial distance of the message from t can be at most 2,
we need at most log2(2/2ε) such significant improvements
to bring the message within distance 2ε from t. Once the
message is within 2ε from t, we need at most 2 more steps to
bring it within ε from t even if the message is passed on to
local contacts in these steps. Thus, we need a total of at most
b(log(2/ε))2 expected steps of G∗ to deliver the message
within ε of t for some constant b. ■

Proof of Theorem 2.6. Let t be at the center of B and
s be such that ‖s − t‖ = 1. Let y ≡ (2ε)(1/ε)(1−a)/2 and
consider any decentralized algorithm. Let A be the event that
the algorithm delivers the message starting at s to a point
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that has a long-range contact within the ball By(t) in at most

T ≡ (31−a−1)
16×61−a (1/ε)(1−a)/2 steps. ■

Claim 1. P(A) ≤ (1/2).

Proof of Claim 1. We will first show that the probability
that a point u ∈ B has a long-range contact in By(t) is at most

8
61−a

(31−a − 1)

(
1

ε

)(a−1)/2

.

We use P(u, By(t)) to denote this probability and consider two
cases : Bε(u)∩By(t) = ∅ and Bε(u)∩By(t) �= ∅ illustrated in
Figure 5a and b, respectively. For both these cases, Lemmas
A.4 and A.5 imply that

P(u, By(t)) ≤ 61−a

π(31−a − 1)

∫ 2π

0

∫ y+

ε

1

ra+1
uv

(ruvdruvdθuv)

≤ 61−a

π(31−a − 1)

∫ 2π

0

∫ y+

ε

1

εa
(druvdθuv)

≤ 61−a

π(31−a − 1)εa

∫ 2π

0

∫ y+

ε

(druvdθuv)

≤ 61−a

π(31−a − 1)εa

∫ 2π

0

∫ ε+2y

ε

(druvdθuv)

= 4
61−ay

(31−a − 1)εa

= 8
61−a

(31−a − 1)

(
1

ε

) a−1
2

.

Let Ai be the event that the long-range contact of the mes-
sage holder in the ith step of the algorithm is in By(t). Note

that A = ⋃T
i=1 Ai. Therefore subadditivity implies that

P(A) ≤
T∑

i=1

P(Ai) ≤
T∑

i=1

8
61−a

(31−a − 1)

(
1

ε

)(a−1)/2

= 8T
61−a

(31−a − 1)

(
1

ε

)(a−1)/2

= 8
61−a

(31−a − 1)

(
1

ε

)(a−1)/2
(31−a − 1)

16 × 61−a

(
1

ε

)(1−a)/2

= 1

2
.

■

Now let B be the event that the message is ε-delivered to
t in at most T steps.

Claim 2. B cannot occur if A does not occur.

Proof of Claim 2. Suppose not, i.e., A does not occur
but the message is ε-delivered to t in at most T steps. Note that

T ≤ 1
16 ( 1

ε
)

(1−a)

2 ≤ (

√
1
ε
)(1−a) � ( 1

ε
). Therefore, a message

that is ε-delivered from s to t in at most T steps must be passed
to a long-range contact at least once. Moreover, the last time
this happens, the long-range contact must be in By(t) since
y
ε

= 2( 1
ε
)(1−a)/2 > T . This contradicts our hypothesis that A

does not occur. ■

Now let Xε(s, t) be the random number of steps required
for the decentralized algorithm to ε-deliver the message from
s to t. E[Xε(s, t)] = E[Xε(s, t)|A]P(A)+E[Xε(s, t)|Ac]P(Ac).
Hence, E[Xε(s, t)] ≥ E[Xε(s, t)|Ac]P(Ac) ≥ 1

2 E[Xε(s, t)|Ac],
where the last inequality follows from Claim 1. Claim 2

FIG. 5. Illustration of proof of Claim 1 in Theorem 2.6. (a) Bε(u) ∩ By(t) = ∅. (b) Bε(u) ∩ By(t) �= ∅.
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implies that E[Xε(s, t)|Ac] > T . Therefore we have,

E[Xε(s, t)] ≥ 1

2
T ≥ 1

2

(31−a − 1)

16 × 61−a

(
1

ε

)(1−a)/2

≥ 1

32

(31−a − 1)

121−a

(√
2

ε

)1−a

completing the proof of Theorem 2.6. ■

Proof of Theorem 2.7. Let s and t be such that ‖s− t‖ ≥
1. Let z ≡ ε(1/ε)1/a and consider any decentralized algo-
rithm. Let Ai be the event that the message holder in step i
(say u) has a long-range contact v such that ‖u − v‖ > z. Let
A be the event that this happens in at most T ≡ 1

8 (1/ε)(a−1)/a

steps, i.e., A = ⋃T
i=1 Ai.

Claim 1. P(A) ≤ (1/2).

Proof of Claim 1. We will first show that the probability
that a point u ∈ B has a long-range contact v with ‖u−v‖ ≥ z
is at most 4(ε)(a−1)/a. Denote this probability by P(u, Sz(u))

where Sz(u) = (Bz(u) ∩ B)c. We consider two cases : u is z-
deep in B, i.e., Bz(u) ⊂ B and u is not z-deep in B illustrated in

Figure 6a and b, respectively where z+ ≡
√

1 − ‖u‖2 sin2 θ+
‖u‖ cos θ . Lemmas A.6 and A.7 imply that in both these cases,

P(u, Sz(u)) ≤ 2(a − 1)ε(a−1)

π

∫ 2π

0

∫ z+

z

1

ra+1
uv

(ruvdruvdθuv)

= 2(a − 1)ε(a−1)

π

∫ 2π

0

∫ z+

z

1

ra
uv

(druvdθuv)

= 2ε(a−1)

π

∫ 2π

0

(
1

z(a−1)
− 1

z(a−1)
+

)
dθuv

≤ 2ε(a−1)

π

∫ 2π

0

(
1

z(a−1)

)
dθuv = 4

(
ε

z

)(a−1)

= 4(ε)(a−1)/a.

Now subadditivity implies that

P(A) ≤
T∑

i=1

P(Ai) ≤
T∑

i=1

4(ε)(a−1)/a = 4T(ε)(a−1)/a

= 4
1

8
(1/ε)(a−1)/a(ε)(a−1)/a = 1

2
.

■

Now let B be the event that the message is ε-delivered to
t in at most T steps.

Claim 2. B cannot occur if A does not occur.

Proof of Claim 2. Because A does not occur, the mes-
sage covers at most distance z = ε(1/ε)1/a in each of first
T = 1

8 (1/ε)(a−1)/a steps of the decentralized algorithm.
Thus, the total distance covered is at most

ε(1/ε)1/a 1

8
(1/ε)(a−1)/a = 1/8.

Thus, the message cannot be ε-delivered from s to t in at most
T steps since ‖s − t‖ = 1. ■

FIG. 6. Illustration of proof of Claim 1 in Theorem 2.7. (a) u is z-deep in B, i.e., Bz(u) ⊂ B. (b) u is not z-deep
in B.
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Now let Xε(s, t) be the random number of steps required
to ε-deliver the message from s to t. By calculations similar
to the proof of Theorem 2.6 we get,

E[Xε(s, t)] ≥ E[Xε(s, t)|Ac]P[Ac] ≥ T

2
≥ 1

16

(
1

ε

)(a−1)/a

= 1

16

(
1

2

) a−1
a

(
2

ε

) a−1
a

completing the proof of Theorem 2.7. ■

5. CONCLUSIONS

We constructed a family of Small World networks within
a ball in R2 using a Markov chain approach. In partic-
ular, we employed a family of Hit-and-Run algorithms
parameterized by a single non-negative real parameter a.
These network models were put in the context of Mil-
gram’s Small World experiments. Specifically, we argued
that a = 1 is the unique value of this parameter for which
there exists a decentralized algorithm that ε-delivers the mes-
sage efficiently from any point in the world to any other
point. The existence of an efficient decentralized algorithm
was shown to be equivalent to two fundamental proper-
ties of the network models: scale invariance and steady
improvement.

A. APPENDIX: PRELIMINARY LEMMAS

Lemma A.1. Let u ∈ B and the local contacts of u be as
defined in Section 2. Let t ∈ B \ Bε(u). Then there exists at
least one local contact of u, say w, such that ‖u−t‖ > ‖w−t‖.

Proof. If u has a local contact w on the segment joining
u and t then clearly ‖u − t‖ > ‖u − w‖. Therefore we focus
on the case where u does not have a local contact on segment
ut. See Figure 7. Let the line joining u and t intersect Dε(u)

in point x. Since P(Dε(u)) is a partition of Dε(u), there exists
some block V of the partition such that x ∈ V . Let w ∈ V be
a local contact of u. Also let y be the foot of the perpendicular
from w to segment ux. Consider triangles uwy and uwt. Notice
that since the geodesic diameter of V is at most π/4, and
w, x ∈ V , ∠wux ≤ π/4. Therefore, ‖u − y‖ ≥ ε/

√
2 and

‖w − y‖ ≤ ε/
√

2. We have,

‖u − t‖ = ‖u − y‖ + ‖y − t‖ ≥ (ε/
√

2)

+ ‖y − t‖ ≥ ||w − y|| + ‖y − t‖ > ‖w − t‖,

where the last inequality is the triangle inequality for the
Euclidean norm in Rn since w, y and t are not collinear. ■

We compute Cu,ε(θ), i.e., the integral in the denominator
of Equation (1) in the text here. Recall that point u ∈ B is
ε-deep inside B if Bε(u) ⊂ B.

FIG. 7. Illustration of proof of Lemma A.1. The line joining u and t inter-
sects Dε(u) at point x. ∠wux = θ ≤ π/4. The dotted lines show angle π/4
for comparison. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Lemma A.2. Let u be ε-deep in B. Then the values of
Cu,ε(θ) = ∫

µ∈lu(θ)
1

|µ|a d|µ| are as follows:

l+ + l− − 2ε for a = 0

2 log

(√
l+ × l−

ε

)
for a = 1

1

(1 − a)

([
1

la−1+
− 1

εa−1

]
+

[
1

la−1−
− 1

εa−1

])

for a > 0, a �=1,

where l+ ≡ (

√
1 − ‖u‖2 sin2(θ) + ‖u‖ cos(θ)) and l− ≡

(

√
1 − ‖u‖2 sin2(θ) − ‖u‖ cos(θ)) for brevity (see Fig. 8a).

Proof. Let a = 0. Observe that∫
µ∈lu(θ)

d|µ| =
∫ l+

ε

dµ +
∫ l−

ε

dµ = l+ + l− − 2ε

Let a = 1. Then,

∫
µ∈l(θ)

1

|µ|d|µ| =
∫ l+

ε

1

µ
dµ +

∫ l−

ε

1

µ
dµ

= log(l+) − log(ε) + log(l−) − log(ε)

= 2 log

(√
l+ × l−

ε

)
.

Let a > 0, a �= 1. We have,∫
µ∈l(θ)

1

|µ|a d|µ|

=
∫ l+

ε

1

µa
dµ +

∫ l−

ε

1

µa
dµ

= 1

(1 − a)

([
1

µa−1

]l+

ε

+
[

1

µa−1

]l−

ε

)

NETWORKS—2009—DOI 10.1002/net 75



FIG. 8. (a) Illustration of calculations in Lemma A.2. (b) Illustration of angle α when u is not ε deep in B as in
Lemma A.3.

= 1

(1 − a)

([
1

la−1+
− 1

εa−1

]
+

[
1

la−1−
− 1

εa−1

])
.

■

This lemma can be adapted to the case when u is not ε-deep
in B. The calculations become more complicated. Toward that
end, let y and z be the points of intersection of ∂Bε(u) and
B and let α be the angle between y − u and −u as well as
between z − u and −u. See Figure 8b.

Lemma A.3. Suppose that u is not ε-deep in B, i.e., 1−ε <

‖u‖ < 1 and let α be as defined above. (Notice that 0 < α ≤
π , and in fact, it is not hard to prove using the cosine rule
that α > π/2 if 1 − ε < ‖u‖ ≤ √

1 − ε2, and α ≤ π/2 if
‖u‖ >

√
1 − ε2). Let l+ and l− be as in Lemma A.2. Then

the values of Cu,ε(θ) = ∫
µ∈lu(θ)

1
|µ|a dµ are as follows:

For a = 0,

1. α ≤ π/2.

l+ − ε for 0 ≤ θ ≤ α

lu(θ) = ∅ for α < θ ≤ π − α

l− − ε for π − α < θ ≤ π + α

l(θ) = ∅ for π + α < θ ≤ 2π − α

l+ − ε for 2π − α < θ ≤ 2π

2. α > π/2.

l+ − ε for 0 ≤ θ ≤ π − α

l+ + l− − 2ε for π − α < θ ≤ α

l− − ε for α < θ ≤ 2π − α

l+ + l− − 2ε for 2π − α < θ ≤ π + α

l+ − ε for π + α < θ ≤ 2π

For a = 1,

1. α ≤ π/2.

log(l+/ε) for 0 ≤ θ ≤ α

lu(θ) = ∅ for α < θ ≤ π − α

log(l−/ε) for π − α < θ ≤ π + α

lu(θ) = ∅ for π + α < θ ≤ 2π − α

log(l+/ε) for 2π − α < θ ≤ 2π

2. α > π/2.

log(l+/ε) for 0 ≤ θ ≤ π − α

2 log(
√

(l+ × l−)/ε) for π − α < θ ≤ α

log(l−/ε) for α < θ ≤ 2π − α

2 log(
√

(l+ × l−)/ε) for 2π − α < θ ≤ π + α

log(l+/ε) for π + α < θ ≤ 2π

For a > 0, a �= 1.

1. α ≤ π/2.

1

(1 − a)

({
1

la−1+
− 1

εa−1

})
for 0 ≤ θ ≤ α

lu(θ) = ∅ for α < θ ≤ π − α

1

(1 − a)

({
1

la−1−
− 1

εa−1

})
for π − α < θ ≤ π + α

lu(θ) = ∅ for π + α < θ ≤ 2π − α

1

(1 − a)

({
1

la−1+
− 1

εa−1

})
for 2π − α < θ ≤ 2π
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FIG. 9. Illustration of proof of Lemma A.7. (a) Point u shown as a black dot is z-deep (hence ε-deep) in B. (b)
u is not z-deep in B.

1. α > π/2.

1

(1 − a)

({
1

la−1+
− 1

εa−1

})

for 0 ≤ θ ≤ π − α

1

(1 − a)

({
1

la−1+
− 1

εa−1

}
+

{
1

la−1−
− 1

εa−1

})

for π − α < θ ≤ α

1

(1 − a)

({
1

la−1−
− 1

εa−1

})

for α < θ ≤ 2π − α

1

(1 − a)

({
1

la−1+
− 1

εa−1

}
+

{
1

la−1−
− 1

εa−1

})

for 2π − α < θ ≤ π + α

1

(1 − a)

({
1

la−1+
− 1

εa−1

})

for π + α < θ ≤ 2π

Proof. Very similar to Lemma A.2 hence omitted. ■

Lemma A.4. Let 0 ≤ a < 1. Let y ≡ 2ε(1/ε)(1−a)/2. Let
u ∈ B be such that ru ≥ y. Then for 0 ≤ θ ≤ arcsin(y/ru),

Cu,ε(θ) ≥ (31−a − 1)

61−a
.

Proof. Without loss of generality we assume that ε is
small enough such that ε < (

√
3/16)1/(1+a) and ε < 1/6.

From Lemma A.2 and Lemma A.3,

Cu,ε(θ) ≥ 1

1 − a

(√
1 − ‖u‖2 sin2 θ

1−a

− ε1−a

)

≥
(√

1 − y2
1−a

− ε1−a
)

=
(√

1 − 4ε(ε)a
1−a − ε1−a

)
≥

(√
1 − 3/4

1−a − ε1−a
)

= ((1/2)1−a − ε1−a) ≥ ((1/2)1−a − (1/6)1−a)

= (31−a − 1)

61−a

■

Lemma A.5. Let 0 ≤ a < 1. Let y ≡ 2ε(1/ε)(1−a)/2 as
in Lemma A.4. Let u ∈ B be such that ru < y. Then for
0 ≤ θ ≤ 2π ,

Cu,ε(θ) ≥ (31−a − 1)

61−a
.

Proof. Very similar to Lemma A.4 hence omitted. ■

Lemma A.6. Let a > 1. Let z ≡ ε(1/ε)1/a. Then for
any u ∈ B with Bz(u) ⊆ B (i.e., u is z-deep), Cu,ε(θ) ≥

1
2(a−1)

1
ε(a−1) for 0 ≤ θ ≤ 2π .

Proof. See Figure 9a. Because u is z-deep, it is also ε-
deep since z > ε. From Lemma A.2 we have,

Cu,ε(θ) = 1

a − 1

(
2

ε(a−1)
−

(
1

l(a−1)
+

+ 1

l(a−1)
−

))

≥ 1

a − 1

(
2

ε(a−1)
− 2

za−1

)
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= 2

(a − 1)ε(a−1)

(
1 − 1

(1/ε)(a−1)/a

)

≥ 1

(a − 1)

1

ε(a−1)
,

where we have assumed without loss of generality that
(1/ε)(a−1)/a > 2 to get the last inequality. ■

Lemma A.7. Let a > 1 and z ≡ ε(1/ε)1/a as in Lemma
A.6. Suppose u ∈ B is not z-deep and angle β be as shown in
Figure 9b. Then Cu,ε(θ) ≥ 1

2(a−1)
1

ε(a−1) for 0 ≤ θ ≤ β, and
2π − β ≤ θ ≤ 2π .

Proof. Observe that since u is not z-deep, it may not be
ε-deep. Recall the definition of α in Lemma A.3 and note that
since z > ε, α ≥ β. For any θ that satisfies the range in the
hypothesis, we have,

Cu,ε(θ) ≥ 1

(a − 1)

(
1

ε(a−1)
− 1

z(a−1)

)
= 1

(a − 1)ε(a−1)

×
(

1 − 1

(1/ε)(a−1)/a

)
≥ 1

2(a − 1)

1

ε(a−1)
,

where we have assumed without loss of generality that
(1/ε)(a−1)/a > 2 as in Lemma A.6 to get the last
inequality. ■
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