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Abstract: Defects in craniofacial tissues, resulting from trauma, congenital abnormalities,
oncologic resection or progressive deforming diseases, may result in aesthetic deformity, pain
and reduced function. Restoring the structure, function and aesthetics of craniofacial tissues
represents a substantial clinical problem in need of new solutions. More biologically-
interactive biomaterials could potentially improve the treatment of craniofacial defects, and an
understanding of developmental processes may help identify strategies and materials that can
be used in tissue engineering. One such strategy that can potentially advance tissue
engineering is cell–cell communication. Gap junction intercellular communication is the most
direct way of achieving such signaling. Gap junction communication through connexin-
mediated junctions, in particular connexin 43 (Cx43), plays a major role bone development.
Given the important role of Cx43 in controlling development and differentiation, especially in
bone cells, controlling the expression of Cx43 may provide control over cell-to-cell
communication and may help overcome some of the challenges in craniofacial tissue
engineering. Following a review of gap junctions in bone cells, the ability to enhance cell–cell
communication and osteogenic differentiation via control of gap junctions is discussed, as is
the potential utility of this approach in craniofacial tissue engineering. ' 2008 Wiley Periodicals,

Inc. J Biomed Mater Res Part B: Appl Biomater 88B: 509–518, 2009

Keywords: bone tissue engineering; gap junctions; connexin; cell–cell communication; bone
marrow stromal cells

INTRODUCTION

Defects in craniofacial tissues, resulting from trauma, con-

genital abnormalities, oncologic resection or progressive

deforming diseases, present a formidable surgical challenge,

and restoration of these tissues is a subject of active clinical

concern.1–3 In addition to leaving patients with aesthetic

deformities, craniofacial defects may be uncomfortable to

the patient and directly affect function. Thus, structure, func-

tion aesthetics and pain must all be managed effectively,

resulting in a formidable challenge. In addition to problems

associated with cranial and facial tissues, 15% of the US pop-

ulation has periodontal disease severe enough to warrant sur-

gery.1 It is further estimated that 9–15 million people in the

US experience temporomandibular joint (TMJ) disorders,4

and more than 10% of the US population experiences jaw or

facial pain due to TMJ disorders or osteoarthritis, with an av-

erage of 1–2 work days/month lost.4

In many cases, tissues of the TMJ also need to be repaired

or regenerated because of structural deficiencies.5 There is,

however, inadequate guidance regarding patient-selection

criteria for these procedures.6 For cases involving TMJ resto-

ration, there are several neural and vascular structures near

this joint that may become compromised, causing joint pa-

thology, and adding complexity and risk to the surgery. Sur-

gical treatment of TMJ, periodontal, and other craniofacial

defects is therefore not predictable and does not fully restore

function to the tissues in all cases.1 Collectively, therefore,

defects associated with orofacial tissues may result in aes-

thetic deformity, pain and reduced function, and represent a

substantial clinical problem in need of new solutions.

Techniques to repair orofacial skeletal defects parallel

the accepted surgical therapies for bone loss elsewhere in

the skeleton, and include autografts,3,7,8 allografts,7,8 and

synthetic materials.8–11 Each of these reconstructive and/or

regenerative strategies, however, has limitations and lacks

clinical predictability. Only a minimal amount of tissue can
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be harvested for autografts, the harvesting procedure may

lead to donor site discomfort and morbidity, and it may be

difficult to form this tissue into desired shapes, particularly

in the craniofacial region.12,13 Autografting, the current

‘‘gold standard’’ for bone regeneration, has failure rates as

high as 30%.12 Allografts have the potential of transferring

pathogens.3,14 Freeze-drying, demineralization, and irradia-

tion, which reduce immunogenic potential, can also reduce

structural integrity, leading to graft fracture.3 Other compli-

cations with autografts and allografts include unreliable

incorporation, resorption, and non-union of the graft/bone

interface.12–15 Induction of new bone by growth factors

requires large amounts of recombinant material, which may

not be realistic in cases of massive defects.16 Additionally,

successful use of growth factors relies on the presence of a

sufficient population of undifferentiated progenitor cells ca-

pable of responding to the inductive cues provided by the

growth factor.17 Synthetic materials are primarily designed

to be permanently implanted. Long-term complications

include stress shielding, leading to loosening, and mechani-

cal or chemical breakdown of the material itself.8–11 Com-

plications with synthetic materials are especially well

documented for TMJ prostheses.4 Demographics on total

joint replacements, such as TMJ replacements, indicate that

25% of the more than 200,000 procedures performed each

year are revisions.18 Many TMJ patients have had multiple

surgeries, and the greater the number of surgical procedures

performed on the TMJ, the less the chance for improvement.

Of particular importance with the use of synthetic materi-

als is that most problems manifest themselves at the biomate-

rial/tissue interface, in part because the tissue has the ability

to functionally adapt, whereas the synthetic material does

not. More biologically-interactive biomaterials could poten-

tially improve the clinical treatment of craniofacial defects.

A more biological alternative to the permanent implanta-

tion of synthetic materials is a cell transplantation approach

where a three-dimensional natural or synthetic construct

provides a temporary substrate for cells to organize, grow,

differentiate, and form a functional extracellular matrix and

new tissue.10,11,19,20 Bone regeneration is a complex pro-

cess that requires autocrine, paracrine, and endocrine sig-

nals, positional cues, cell–matrix interactions, mechanical

forces and cell–cell contacts to mediate the formation of a

complex 3D architecture and function. Therefore, an under-

standing of developmental processes may help identify

strategies that can be used in tissue engineering.

One aspect of developmental biology that could poten-

tially be controlled to advance the engineering or repair of

tissues is cell–cell communication. Cell-to-cell communica-

tion occurs via intercellular chemical and mechanical sig-

nals and is critical to maintain tissue homeostasis.21,22 Gap

junction intercellular communication (GJIC) is the most

direct way of achieving such signaling, and is particularly

important to maintain synchronized and cooperative behav-

ior of cells in three-dimensional tissue.23,24 Gap junction

communication through connexin-mediated junctions, in

particular connexin 43 (Cx43), plays major and diverse roles

bone development. Because of the ubiquitous nature of

Cx43 throughout vertebrate cell types, with the exception of

red blood cells, platelets, some neurons, and spermato-

zoids,25 this protein provides a signaling platform that ena-

bles communication between similar cell types and also

between different cell types.26 Such an attribute makes con-

nexins natural conduits for communication between osteo-

genic cells to enable proper bone modeling and re-modeling.

Controlling the expression of Cx43 may provide control

over cell-to-cell communication and may help overcome

some of the challenges in craniofacial tissue engineering.

This review examines the roles of gap junctions, in par-

ticular Cx43-mediated gap junctions, in the function of

osteoblasts, osteocytes, osteoclasts, and bone marrow stro-

mal cells (BMSCs), and the role of gap junctions in cell–cell

communication and bone formation. The ability to enhance

cell–cell communication and osteogenic differentiation via

control of gap junctions is discussed, as is the potential

utility of this approach in craniofacial tissue engineering.

GAP JUNCTIONS AND BONE

Gap junctions are present in all types of vertebrate cells,

with the few exceptions of red blood cells, platelets, and

some neurons noted above.25 This ubiquity makes it rea-

sonable to consider gap junctions as a fundamental struc-

ture necessary for normal cell function.27 As one example,

gap junction communication plays a critical role in osteo-

blast differentiation. During osteoblastic differentiation, the

expression of Cx43 increases and correlates with an

increase in GJIC.28 When GJIC is inhibited, delayed differ-

entiation is observed, as well as a reduced ability to form a

mineralized extracellular matrix.29

Composed of two juxtaposed hemichannels present on

the surfaces of adjacent cells, gap junctions form a trans-

cellular channel that permits the rapid and efficient propa-

gation of ions, metabolites, and second messengers

between adjoining cells. Each hemichannel, termed a con-

nexon, is composed of six transmembrane proteins, termed

connexins (Figure 1). Each connexin monomer is a poly-

peptide consisting of four transmembrane domains (two

extracellular loops, one intracellular loop, and intracellular

carboxylic and amino ends).25 Each intercellular channel

provides an aqueous pathway for the passage of intracellu-

lar ions and small molecules. Gap junction channels are

permeable to ions, fluorescent dyes, and physiologically

active molecules including amino acids, second messen-

gers, and small peptides.30,31 Twenty connexins encoded by

a multigene family have been identified.32 An interesting

aspect of the various gap junctions is their apparent differ-

ences in perm-selectivity (molecular permeability and ion

selectivity). Connexins play a major role in response to

many mechanical, electrical, chemical and hormonal stim-

uli, and help regulate cell homeostasis as well as calcium

signaling and differentiation.33–35
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Of the 20 known connexins, only Cx43, Cx45, and, to a

lesser extent, Cx46 exist in bone cells. The primary gap

junction in bone is Cx43.27,36,37 Cx45 gap junctions form

smaller pores, only allowing diffusion of molecules \ 0.3

kD in molecular mass (compared with\ 1.2 kD for Cx43),

and have poor transfer of solutes.27,38 Cx45 gap junction

channels possess relatively small and fixed conductances

for gap junction channels.38 It has therefore been suggested

that Cx45 plays a smaller role in GJIC, relative to Cx43.39

Cx46 is found in the cytoplasm of osteoblasts, but does not

incorporate into the membrane, and therefore does not form

gap junctions.40 Cx43 produced gap junctions exist between

osteoblasts as well as between osteocytes and osteoblasts.

The extensive network formed by osteocytes is also dic-

tated by their gap junctions.

Osteoblasts

Osteoblasts are the cells responsible for bone formation,

originating from mesenchymal multipotent stem cells resi-

dent in the bone marrow.41,42 Osteoblasts work in a coordi-

nated fashion to produce the lamellar structure of bone by

secreting collagen and non collagenous proteins such as

osteopontin, osteonectin, biglycan, decorin, and osteocalcin,

that serve as a template for controlled mineralization. Osteo-

calcin constitutes 10–20% of the noncollagenous matrix pro-

teins. It changes its conformation in the presence of calcium,

binds strongly to hydroxyapatite, and inhibits the formation

of hydroxyapatite from amorphous calcium phosphate.

Although the in vivo function of osteocalcin is unknown,42

its affinity for bone mineral constituents and correlation to

bone volume density implies a role in bone formation.43

Osteoblastic cells respond to many stimuli, including hor-

mones, growth factors and mechanical loading.42,44–46 Gap

junction communication also plays a prominent role in the

differentiation and function of these cells and their response

to stimuli. The most studied skeletal cells with regard to gap

junctions are osteoblasts. The role of gap junctions in osteo-

blasts has been demonstrated by electron microscopy,47,48

histology49,50 and dye transfer studies.51 During osteoblastic

differentiation, the expression of Cx43 increases and corre-

lates to an increase in GJIC.28 When GJIC is inhibited,

delayed differentiation is observed as well as a reduced abil-

ity to form a mineralized extracellular matrix.29

Osteocytes

An ostoecyte is formed when an osteoblast becomes

trapped in the matrix it secretes. Osteocytes form an exten-

sive network throughout bone and are connected in the

canaliculi via gap junctions.27,41,48 The main role of gap

junctions in osteocytes has long been hypothesized to be

the diffusion of signals, such as calcium, after the osteocyte

responds to mechanical perturbation. Both fluid flow and

mechanical perturbation elicit communication responses

through osteocyte gap junctions.52,53

Osteocytes are hypothesized to regulate bone anabolic

functions via coordinated signaling among bone cells. Such

signals originate from osteocytes, and are passed along to

other osteocytes, as well as to osteoblasts by gap junctions.

The mechano-sensing role of osteocytes plays a critical

role in remodeling,54 and fluid flow or mechanical perturba-

tion can induce the opening of Cx43 channels in osteo-

cytes.52,53

Osteoclasts

Osteoclasts are the cells responsible for bone resorption.

They originate from precursors within the monocyte/macro-

Figure 1. Schematic of gap junctions and connexins. Gap junctions

are aqueous conduits formed by the docking of two hemichannels

(connexons) in juxtaposed cells. Each hemichannel is composed of
six transmembrane proteins (connexins). Each connexin monomer

(inset) is composed of four transmembrane domains (two extracellu-

lar loops, one intracellular loop and intracellular carboxyl and amino
ends). [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]

Figure 2. Generalized mechanism for the role of GJIC. A primary
messenger in the form of a hormone, growth factor, or mechanical

stimulation elicits a response from the host cell. This response is

the production or influx of secondary messengers (e.g., Ca12,

cAMP, IP3,) that enable the activation of a signaling cascade (e.g.,
ERK). This cascade produces a transcriptional response in the host

cell. The secondary messengers can modulate the gap junctions to

either open or close. If open, these secondary messengers will go

through the gap junction channel and elicit the same response (as
in the host cell) in adjacent cells, without the need for a primary

messenger to stimulate that cell. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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phage system and arise from hematopoietic mononuclear

cells in bone marrow. Osteoclasts are multinuclear cells

and have a morphology highly specialized for bone resorp-

tion.55 The actively resorbing osteoclast has a specialized

area facing the bone surface. Bone resorption takes place

upon osteoclast activation following signals from osteo-

blasts and their precursors. The receptor activation of

RANKL is partly responsible for the differentiation of pro-

genitors into osteoclasts.55,56

Osteoclasts are the least studied bone cell type with

respect to gap junctions. Osteoclasts also express Cx43,50

with both the formation of these cells and communication

with other cell types dependent on this expression.57 A role

for Cx43 in the fusion of the monocyte like precursor cells

into (multinucleated) osteoclasts has been suggested.57

Treatment of osteoclasts with gap junction inhibitors reduces

the number of osteoclast-like cells,57–59 while increasing the

number of non-fused precursor cells. Furthermore, the osteo-

clasts that are formed show reduced ability to resorb bone.

The typical effect PTH and Vitamin D have on stimulat-

ing osteoclast activity is inhibited by blocking gap junc-

tions.57–59 PTH can have anabolic or catabolic effects on

bone. When administered intermittently, PTH leads to

increased bone formation.60 However, chronic administra-

tion of PTH stimulates the generation of new osteoclasts

(osteoclastogenesis) and leads to an increase in osteoclast

number and activity.61 Because of coupling between osteo-

clasts and osteoblasts, anabolic effects of PTH emerge

from a single action, the stimulation of osteoclastic bone

resorption. As examples of how blocking gap junctions

may potentially play a therapeutic role and affect bone

regeneration, an upregulation of Cx43 mRNA has been

detected in PTH-stimulated bone resorption, but when gap

junctions are blocked, PTH and 1,25-(OH)2D3 stimulated

osteoclast pit formation are inhibited.62 On the other hand,

a lack of Cx43 in osteoblasts leads to suboptimal acquisi-

tion of peak bone mass, and hinders the bone anabolic

effect of PTH.63

Bone Marrow Stromal Cells

Bone marrow is where hematopoiesis occurs in close con-

tact with the stromal microenvironment, which supports he-

matopoietic stem cell growth and differentiation. The bone

marrow stroma provides structural and functional support

for hematopoiesis and is composed of a variety of cell

types with stem cell like characteristics that can differenti-

ate into bone, cartilage, adipose tissue and hematopoietic

support tissue.64 These cells are self-renewing and highly

proliferative. The marrow cavity serves as a critical domain

for progenitor cells and interactions between bone and stem

cell populations.65 BMSCs, in particular, provide the essen-

tial support for hematopoiesis through both direct contact

with cell surfaces and stromal cell derived soluble media-

tors. BMSCs are essential for the maintenance of bone

turnover throughout life, as progenitors for endosteal osteo-

blasts. Bone has been generated in vivo following trans-

plantation of these cells.66–68

The maintenance of BMSC stem cell properties and the

possibility to reprogram their commitment is of primary in-

terest, given their potential use in regenerative medicine.

Gap junctions form between bone lining cells and BMSCs.48

Gap junctions also exist between BMSCs,69 although to a

lesser extent than other bone cell types. Gap junctions also

play a role in defining the hematopoietic environment.70

Connexin-mediated coupling in the stroma modulates the ra-

tio ratio of proliferation to differentiation in hematopoietic

precursors. In addition, connexins have been identified as

mediators in stromal cell-endothelial cell interactions.70 This

opens the possibility of translating this aspect of develop-

mental biology into regenerative medicine therapies since

bone marrow stroma can receive developmental cues via

gap junctions. For example, co-culture of endothelial cells

with BMSCs increases the expression of alkaline phospha-

tase and type I collagen, suggesting that the physical interac-

tion between osteogenic and angiogenic cells via gap

junctions supports osteogenesis.70 As another example of

the potential for the controlled use of gap junctions as a tis-

sue engineering approach, overexpression of Cx43 in

BMSCs leads to higher expression of alkaline phosphatase

and osteocalcin.71 The importance of GJIC in BMSC differ-

entiation is further supported by studies involving the trans-

fection of BMSCs with a Cx43 mutation gene (Cx43D7).
This gene possesses all of the structural properties of a con-

nexin hemichannel with the exception that once coupled it

does not permit GJIC.72 Transfected cells show reduced

GJIC compared to control BMSCs, resulting in lower

expression of the bone differentiation markers alkaline phos-

phatase and osteocalcin.71

GENETIC MODIFICATIONS

Genetic modifications have been made to stem cells, osteo-

progenitor cells and bone cell lines to elucidate the role of

connexin-mediated gap junctions in vitro, and genetically

modified mice have been created to evaluate the functional

role of gap junctions and connexins in vivo.73–77

Cx43 knockout mice exhibit osteoblast dysfunction,

delayed ossification and defects in shape and mineralization

of the appendicular and craniofacial skeletons.73 These

mice die prenatally due to defects in the heart leading to

swelling and blocking of right ventricle outflow.75 Cells

obtained from the cranium of these mice show delayed dif-

ferentiation and mineralization in culture.76 To understand

the role of communication through Cx43 in bone cells

in vitro, the osteosarcoma cell line UMR has been used as

a model.53,77 UMR cells do not express Cx43, but do

express Cx45. By transfecting UMR cells with the Cx43

protein, the cells then respond to calcium stimuli in a man-

ner similar to osteoblasts, supporting the significance of

Cx43 in osteoblast differentiation and the ability to increase

GJIC via genetic modification.

512 ROSSELLO AND KOHN

Journal of Biomedical Materials Research Part B: Applied Biomaterials



Given the important role of Cx43 in controlling develop-

ment and differentiation, this basic biological information

has the potential to be translated into regenerative medicine

applications. For example, significant increases in GJIC

and osteogenic differentiation in vitro occur following the

overexpression of Cx43 in BMSCs.71 The opposite is true

for cells expressing the deletion mutant Cx43D7, where

GJIC is similar to that of a negative control group with the

gap junction uncoupler 18a-glycyrrhetinic acid, suggesting

a dominant negative effect with non-mutant Cx43 struc-

tures. Transplantation of cells transfected with a CX43 len-

tivirus shows that overexpression of Cx43 also significantly

increases the volume fraction of regenerated bone relative

to bone regenerated from BMSCs.71 These results suggest a

prominent role of GJIC in bone formation in-vivo that can

be used as a strategy in bone tissue engineering.

MECHANISTIC ROLES OF GJIC IN
BONE BIOLOGY

Gap junctions have been implicated in many important

mechanisms in bone formation, including the regulation of

signaling molecules, such as ERK, response to growth fac-

tors, such as BMP-2, and diffusion of paracrine agents,

such as PTH.33,78–80 A generalized mechanism for the role

of connexin in mediating cell–cell communication in bone

cells can be developed (Figure 2). The gap junctions serve

mostly as a conduit to amplify the effect of a primary stim-

ulus, which can be mechanical, electrical, or biological.

Once this primary stimulation is sensed by cells, the

response will be a secondary messenger (e.g., Ca21,

cAMP, IP3) that is typically elicited by release or by excit-

ing channels that allow such secondary messengers to per-

meate into the cells.81,82 These secondary messengers then

evoke a response in the host cell, but can also permeate

through the gap junctions to elicit the same response in a

neighboring cell. Such a secondary messenger can also

modulate the transfer of signals (communication), usually

by phosphorylation of the connexin structure. An example

of this mechanism is the ERK signaling cascade with con-

nexin response elements (CxRE) of transcription.83,84 The

ERK cascade is activated by secondary messengers as part

of a response to some extracellular cue. In the presence of

gap junctions, these secondary messengers activate the cas-

cade in adjacent coupled cells. In this example, these mes-

sengers converge to recruit a transactivator (SP1) to

promote transcription of CxRE, which leads to production

of differentiation markers.84–87

There are also GJIC-independent roles of connexin in

bone formation, such as signaling through the ERK cascade

in osteoblasts, in which alendronate (which stimulates ERK

cascade) flows from the extracellular medium to the inside

of the cell through the connexin hemichannel.88 This

review will not go into detail on such signaling mecha-

nisms, as other reviews have been written about these

topics,27,36,37,88,89 but will examine some of the mecha-

nisms by which gap junctions modulate calcium signaling,

since calcium signaling may be controlled to enhance cell

based tissue engineering, and may also be a mechanism of

biological response to bioactive ceramics.

Calcium Signaling

Cells typically do not act in isolation, as they coordinate

their activities with surrounding cells. In addition to extrac-

ellular synaptic, mechanical and hormonal signaling, inter-

cellular communication through gap junctions, with

secondary messengers such as calcium, plays an important

role in cooperative cell activity.90 Intercellular calcium sig-

naling is the generalized mechanism by which cells can

coordinate activities within a cell population or control the

activity of other cells, and can be elicited in response to

many diverse stimuli, including electrical, mechanical and

hormonal.91,92 Transient and oscillatory elevations in extrac-

ellular calcium concentration initiate or modulate many

activities, such as cell growth, cell motility and secretion of

matrix producing proteins.92 The intercellular propagation of

calcium signals is common among many cell types, includ-

ing epithelial cells, chondrocytes, fibroblasts and cardiac

cells. Therefore, intercellular calcium is a mechanism uti-

lized by a variety of cells, including bone cells, to coordi-

nate activities based on some initial stimuli.92–94

Calcium Signaling in Bone

Although many investigations have examined the role of

calcium in bone formation,53,92,95,96 the mechanisms of

intercellular calcium signaling in bone cells are still

unknown. Several studies have examined time dependent

bursts of intercellular calcium by gap junctions and para-

crine mechanisms in different cell types.22,53,77,97,98 These

studies have shown a two prong mechanism to calcium sig-

naling in osteoblasts. As previously mentioned, UMR cells

do not express Cx43. Another osteosarcoma cell, ROS,

does express Cx43, but has no purinergic (PSY family)

receptors. The P2Y containing UMR cells produce a high

burst of calcium release at early time points following me-

chanical stimulation, whereas Cx43 containing cells had

lower, but longer lasting intercellular calcium flux. When

both cell types were transfected to express either Cx43 or

P2Y, the cells behaved as normal osteoblasts, suggesting

that Cx43 and P2Y signaling mechanisms are integral to

proper osteoblastic signaling, and also suggesting that the

time-dependence of calcium signaling could be employed

in the temporal control of delivering cues to cells in tissue

engineering.

Increased intracellular calcium concentration and faster

onset of osteogenic differentiation occur in BMSCs that

have higher GJIC due to overexpression of Cx43.71

Enhanced retention of intracellular calcium also occurs in

cells overexpressing Cx43, when excited with higher

extracellular calcium levels.71 BMSCs transfected with the
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connexin mutation (Cx43D7) exhibit the opposite effect; a

delayed onset of intracellular calcium elevation and more

rapid return to its basal level.71 Collectively, these studies

suggest that overexpressing Cx43 in BMSCs can be used to

enhance calcium signaling through higher GJIC. Figure 3

shows a potential mechanism for the role of calcium com-

munication through gap junctions in bone formation. The

finding that overexpression of Cx43 also modulates the cel-

lular response to extracellular calcium may have implica-

tions in tissue engineering since bioactive ceramics may

affect cell function via release of soluble factors (e.g., Ca

ions).99

CONTROLLING GAP JUNCTIONS: APPLICATIONS
IN TISSUE ENGINEERING

Having discussed some of the principles of gap junction

structure and function, we now discuss potential strategies

and examples of how controlling GJIC could be applied in

tissue engineering. Although the specific examples and

focus of this review are on bone regeneration, many of the

strategies could be extended to other cells, tissues and

organs.

The three classical tissue engineering approaches, con-

duction, induction and cell transplantation can all poten-

tially be exploited to improve cell–cell communication,

resulting in enhanced cell differentiation and tissue regener-

ation. Osteoblasts and their precursors respond to many

stimuli, including insoluble and soluble signals from bio-

materials (conductive tissue engineering strategy), growth

factors (inductive strategy), and mechanical load-

ing.10,11,20,42,44-46,99 Because GJIC also plays a prominent

role in the differentiation and function of osteoblasts and

their response to stimuli, it is possible to design materials

or present signals to cells that enhance GJIC.

One example of the potential for the controlled use of

gap junctions in tissue engineering involves a cell trans-

plantation approach, in which cells are transfected with a

Cx43 lentivirus.71 Overexpression of Cx43 in BMSCs leads

to significant increases in GJIC, and elevated expression of

alkaline phosphatase and osteocalcin in vitro, indicative of

enhanced osteogenic differentiation.71 Transplantation of

cells transfected with a Cx43 lentivirus also shows that

overexpression of Cx43 significantly increases the volume

fraction of regenerated bone relative to the amount of bone

regenerated from transplantation of control BMSCs.71

These in vitro and in-vivo results suggest that increasing

GJIC can be used as a strategy to enhance bone tissue en-

gineering.

In addition to the direct control of GJIC via endogenous

means, exogenous control may also be achieved. Exoge-

nous approaches include altering cell seeding and density,

and altering the chemistry and solubility of the biomaterial

onto which cells are seeded.71,100 Micromass and filtration

seeding of BMSCs onto 3D scaffolds also lead to increases

in GJIC and osteogenic differentiation in vitro, and an

increased amount of bone formation in vivo compared to

cells that are seeded statically.71

Gap junctions also modulate calcium signal-

ing.22,53,77,97,98 Control of calcium signaling may therefore

be another means of enhancing cell based tissue engineer-

ing. Such control could be achieved via direct manipulation

of cells, or indirectly via cell-biomaterial interactions. The

latter approach could exploit the solubility of calcium-con-

taining biomaterials, such as calcium-phosphate ceramics,

glasses and alginates, and capitalize on the fact that soluble

factors released from bioceramics can modulate osteoblast

differentiation.9,10,99 Intracellular calcium concentrations

are increased in BMSCs that have higher GJIC due to over-

expression of Cx43.71 Intracellular calcium also increases

in cells overexpressing Cx43 when excited with higher

extracellular calcium levels.71 These findings therefore sug-

gest that GJIC and intracellular calcium can be manipulated

by controlling the solubility of calcium-containing biomate-

rials which interact with cells.

Controlled GJIC can also be used in tandem with

another agent, such as bone morphogenetic proteins

(BMPs) to create a synergistic effect and enhance tissue

formation.71 In the case of BMP-7, the distribution of mes-

sengers generated by its binding to the type I receptor may

be transferred through the gap junctions to neighboring

cells that may have not been exposed to the stimuli, even

Figure 3. Schematic of gap junction interactions between three
types of bone cells: bone marrow stromal cells (BMSCs), osteo-

blasts, and osteocytes. First, BMSCs use gap junctions to commu-

nicate with one another. The expression of these junctions is less

than in differentiated osteoblasts. Osteoblasts and BMSCs can
communicate with each other, in which case BMSCs are likely to

receive differentiation cues from osteoblasts. Osteoblasts are also

able to communicate with osteocytes that are embedded in the
bone matrix through these junctions, enabling communication

between terminally differentiated cells in the mineralized matrix and

cells that are in the lining and outside of the matrix. Osteocytes also

communicate with one another via gap junctions. [Color figure can
be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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though Cx43 expression is not being modulated. This

dynamic allows transcription mechanisms to develop in

cells that prompt differentiation, which can lead to tissue

formation. Therefore, BMP-7 and gap junctions generated

by Cx43 work synergistically when BMP 7 prompts sec-

ondary messengers, such as calcium and other transcription

factors, that can be distributed through gap junctions.71

The mechano-sensing role of bone cells plays a critical

role in bone remodeling.35,54 Therefore, controlling fluid

flow or mechanical strain can also potentially induce the

opening of Cx43 hemichannels in osteocytes and other

bone cells.52,53 allowing for enhanced cell–cell communica-

tion and bone formation. A premise of functional tissue en-

gineering is to provide mechanical cues to cells as a means

of enhancing differentiation and tissue formation. Mechani-

cal stimulation of cells in monolayer enhances gap junction

function.35,54,101–103 Therefore, the mechanisms underlying

the enhanced tissue regeneration that occurs when cell-

seeded 3D scaffolds are subjected to mechanical stimula-

tion104 may also be gap junction mediated.

At the core of translating the developmental biology

insights about gap junctions into tissue engineering applica-

tions is balancing the ubiquitous nature of gap junctions

with the goal of orchestrating a bone-specific effect. The

desired effect of manipulating gap junctions in tissue engi-

neering is to control cell-to-cell communication. The local

microenvironment dictates what specific molecules propa-

gate, as well as which specific cells are involved in cell–

cell communication. To date, bone specific effects have

been orchestrated by the use of closed systems in vitro, in
which a well defined population of bone cells or their pre-

cursors have been directed in culture and cross-talk

between bone cells and adjacent populations of other cell

types has been avoided.22,53,71,77,97,98 Subsequent implanta-

tion into a more open system in vivo then capitalizes on

the ability of the already directed bone cells to enhance

regeneration. By the time of implantation, the transient

effects of enhancing GJIC may diminish, so potential unde-

sirable communication with the host can be avoided.71 A

second example of controlling gap junction manipulation is

in stromal-endothelial and bone-endothelial co-cultures, in

which communication between two cell types has been

achieved.70 Thus, in a controlled osteogenic microenviron-

ment, at least, enabling cell-to-cell communication through

control of gap junctions enables a greater degree of osteo-

genic differentiation.

SUMMARY

Gap junctions serve as conduits between cells that transfer

information to neighboring cells in the form of a secondary

messenger (such as calcium) following a primary stimulus.

Cx43 is almost completely ubiquitous in all cells, and is

the gap junction protein that is predominant in bone cells.

This protein is responsive to fluid shear, mechanical pertur-

bation, hormones, growth factors, and other secondary mes-

sengers. Furthermore, Cx43 serves both gap junction-

dependent and independent functions. Cx43 proteins play a

significant role in controlling bone formation, and therefore

have the potential to serve as a platform for regeneration of

craniofacial structures. Controlling the expression of Cx43

may provide control over cell-to-cell communication

which, in turn, can lead to larger and more uniform vol-

umes of regenerated tissue.
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