
Prediction by Energy Phenomenology for

Harnessing Hydrokinetic Energy Using

Vortex-Induced Vibrations

by

Elizabeth Maloney-Hahn Garcia

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Naval Architecture and Marine Engineering)

in The University of Michigan
2008

Doctoral Committee:

Professor Michael M. Bernitsas, Chair
Professor J. David Allan
Professor Philip L. Roe
Professor Armin W. Troesch
Associate Research Scientist Okey Nwogu





c© Elizabeth Maloney-Hahn Garcia
All Rights Reserved 2008



I dedicate this dissertation to Igor Steven Garcia, my best friend, my husband, and my sunshine,
for never letting me give up on my dreams.

ii



ACKNOWLEDGEMENTS

Many people have contributed to my work, either providing guidance or support.

First, thanks to everyone in the VIVACE research group. Professor Michael M.

Bernitsas, thank you for inviting me to work with the VIVACE research group and

providing me with guidance and flexibility. Thank you, Kamal Raghavan, Yaron

Ben-Simon, Dimitri Marioulis, and Jim Chang, for helping me collect experimental

results. Kamal, thank you also for helping me get started with VIV. Thank you

to my committee, Professors Allan, Roe, and Troesch, and Doctor Nwogu, for your

time and input. Jamie L. Szwalek, thank you for being the best mentor and a great

friend. Thanks, Eleanor K. Nick, for bringing the office to life.

I never would have been able to tackle the doctoral degree without a solid ed-

ucational background. Thanks to the University of Rhode Island Department of

Ocean Engineering for a solid bachelors degree. Thanks to the University of Michi-

gan Department of Naval Architecture and Marine Engineering for the opportunity

to continue my education. I would not have been able to pursue the doctoral degree

without financial assistance. I was supported by the Rackham Engineering Award

through the University of Michigan Rackham Graduate School and the Department

of Naval Architecture and Marine Engineering and later by the National Defense

Science and Engineering Graduate Fellowship through the Office of Naval Research

in the Department of Defense. Thank you to these institutions for making my stud-

iii



ies possible. I completed the dissertation out-of-state, and as a result, relied heavily

on the services of the University of Michigan University Library 7-FAST Document

Delivery Service. This service was instrumental in my literature review, and I thank

them many times over. I also have to thank the U.S. Coast Guard Academy, my

current employer, for giving me the time to defend my dissertation and complete the

corrections.

My family has been instrumental in getting me to this point in my life. Igor

Steven Garcia, you inspired me in so many ways to pursue the doctoral degree and

to never give up, providing me with support and honesty. Dad and Mom, Dan and

Lisa Maloney Hahn, thank you for raising me to believe that I can do whatever

I want and letting me set out on my own path while still supporting me. Thank

you, Justin Maloney-Hahn, for being the big brother I aspired to equal, and to Reiko

Maloney-Hahn for being a great friend and good listener. Many thanks to Grecia and

Mercedes Damaso for being a very understanding and supportive extended family.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTER

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 VIVACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 General Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 VIV of a Single Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 VIV of Multiple Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 VIV Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.1 Kolmogorov Length Scale . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Extant VIV Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7.1 Linear Single Degree-of-Freedom . . . . . . . . . . . . . . . . . . . 20
1.7.2 Van der Pol Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7.3 Landau Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7.4 Billah’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7.5 Hamilton’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Relevant Water Ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2. VIV Features and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.1 Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.2 Natural Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Dimensionless Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1 Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 Damping Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.3 Mass Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.4 Mass-Damping Parameter . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.5 Strouhal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



2.2.6 Reduced Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 VIV Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Stagnation Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.2 Separation Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Formation Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.4 Boundary Layer & Shear Layer . . . . . . . . . . . . . . . . . . . . 48
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ABSTRACT

This dissertation studies harnessing of the hydrokinetic energy of water-currents

by utilizing single degree-of-freedom Vortex-Induced Vibrations (VIV) of a circular

cylinder. A mathematical model is developed based on a novel approach of energy

phenomenology supported by experimental measurements of harnessed energy. VIV

is a complex fluid-structure interaction. Computational fluid dynamics has limited

success due to the necessity to resolve the smallest scales. Phenomenological models

are based on linear, mass-spring-dashpot equations or van der Pol oscillators with

experimentally defined sinusoidal forcing missing the underlying physics of VIV. Van

der Pol oscillators do not model VIV, just classical flutter. In all models, the vortex-

shedding mode is limited to 2-Single vortices per cylinder cycle, while experiments

show broad variety of vortex structures. In this dissertation, a new math model is

developed through rigorous derivation of the energy of a cylinder, boundary layer,

shear layer, and attached vortices, allowing for small-scale variations to be smoothed

out, leaving the large-scale variations as the drivers for VIV. Due to the rigorous

derivation, all parameters are physically meaningful and experimentally measurable.

No curve-fitting is used to develop the model and there was no intended final form

of the equation. Hamilton’s principle is used to develop the force equation. The

developed model has high level of qualitative and quantitative success capturing:

(a) The phase-shift between the lift force and the cylinder displacement at synchro-

xx



nization lock-in.

(b) The cylinder frequency lock-in response around the natural frequency.

(c) The higher cylinder frequency response for very low mass ratio.

(d) Lock-out at desynchronization.

(e) The vortex-shedding frequency not locking in at synchronization. This allows

for the model to respond to various vortex shedding modes, with both the tra-

ditional 2-Single and 2-Pair modes documented, along with even higher modes

observed in the output.

(f) The amplitude response, qualitatively, in the representation of initial, upper, and

lower branches within the range of synchronization, followed by desynchroniza-

tion.

The model yet fails to capture the actual amplitudes, but small changes in energy

have nonlinearly large effects on the amplitude. In future research, the model will

be updated to capture all of the energy affecting the system.

xxi



CHAPTER 1

Introduction

“The renewable energy era has begun (Sims 2004).” In an innovative approach,

a concept for extracting energy from water was invented by Bernitsas and Ragha-

van in the Department of Naval Architecture and Marine Engineering and patented

through the University of Michigan (Bernitsas and Raghavan 2004; Bernitsas and

Raghavan 2005a; Bernitsas and Raghavan 2005b; Bernitsas and Raghavan 2005c).

The concept has been named VIVACE (Vortex-Induced Vibrations for Aquatic Clean

Energy), and in its simplest form consists of a single rigid cylinder mounted on elas-

tic supports. The cylinder is connected to a power take-off system and placed in

a steady, uni-directional current, causing excitation through VIV (Vortex-Induced

Vibrations) (Bernitsas, Raghavan, Ben-Simon, and Garcia 2006) (Figure 1.1). The

single cylinder can be expanded to an array of cylinders for optimal energy extraction

(Figure 1.2).

1.1 Thesis Problem

The essential problem of this thesis is to analytically predict vortex-induced vibra-

tions of a single degree-of-freedom cylinder in water currents in order to calculate the

energy that can be extracted. Due to the complex nature of the VIV phenomenon,

Navier-Stokes equations cannot be analytically solved, and extant VIV models fail
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to model the actual phenomenon when trying to seam desired characteristics with

known mathematical equations. Therefore, a mathematical model is developed using

a new model for the predictions. This model is required to be fairly robust with few

user-defined parameters, and all the parameters are to be physically meaningful and

experimentally measurable. The robustness of the model includes applicability to a

wide range of Reynolds numbers. Since energy extraction is of paramount impor-

tance in the problem at hand, the desired Reynolds number range is on the order of

105, placing the problem out of the realm of direct numerical simulation and requires

use of numerical turbulence models for computational fluid dynamics.

Traditional models tend either to not be robust over a wide range of flow veloci-

ties, or to not be physically meaningful. This is why a new model is developed, using

an energy phenomenological approach. The energy approach allows for small-scale

variations to be smoothed out, while focusing on the large-scale variations as the

drivers for VIV. Working at the integral level of energy, many errors are smoothed

out, and the cylinder and attached fluid becomes a single system with a single degree-

of-freedom for the motion of the cylinder. Hamilton’s principle is then applied to

derive the force equations. The model is then used in combination with available

experimental data and tests at the Marine Renewable Energy Laboratory at the Uni-

versity of Michigan (Bernitsas, Raghavan, Ben-Simon, and Garcia 2006; Bernitsas,

Ben-Simon, Raghavan, and Garcia 2006)to predict the energy extraction available for

one and then multiple cylinders. In addition, ecological impacts are also considered

based on the anticipated flow regime change.

The developed model predicts three key parameters: the synchronization of the

cylinder motion over a range of reduced velocities, the ability for the model to have

different vortex shedding modes, and the lock-in of the cylinder motion frequency
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with the natural frequency within the range of synchronization. With these three

criteria met, the model far exceeds any extant VIV model. Parameter inputs us-

ing physically meaningful quantities can then be used to allow the amplitudes of

oscillation to match experimental results.

1.2 VIVACE

In order for any device to be justified as effective at harnessing renewable energy

from water, six criteria must be met: there must be a high density of energy that

is captured; the device must be unobtrusive; the maintenance on the device must

be minimal; the device must be robust in the environment; the cost must be below

targets for the entire life-cycle; the lifetime of the device must be on the order of ten

to twenty years (Bernitsas, Raghavan, Ben-Simon, and Garcia 2006). Preliminary

calculations based on prototype model tests show that VIVACE is expected to reach

all of these criteria. In further detail, VIVACE extracts kinetic energy from the body

of water, either an ocean, river, or other moving water, through the low-pressure,

low-speed currents that are naturally occurring in the water with predictability. The

manner in which the kinetic energy is extracted is by VIV. VIV converts kinetic

energy from the current to transverse mechanical motion of the cylinder. The energy

can then be converted from mechanical to electrical through a variety of generator

types.

VIVACE has tested well in early experiments, with peak cross-sectional energy

extraction reaching 30.8% and integrated power extraction as high as 22%. An es-

timate of the upper limit for extraction of energy from currents by VIV has been

calculated at 36.63% (Bernitsas, Ben-Simon, Raghavan, and Garcia 2006). From

these early test results, it appears that VIVACE is efficient and cost-effective at

extracting energy from what can only be considered an abundant, predictable, and
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renewable alternative energy resource. From the early measurements, it can be spec-

ulated that the device may even be competitive with conventional energy generation

technologies in addition to alternative technologies (Bernitsas, Allan, Webb, and

Lyon 2006). Further work is needed to compute the energy extraction rates for any

flow regime, as each installation cannot be modeled experimentally. It is also spec-

ulated that VIVACE has the potential to generate clean renewable energy without

disrupting what can only be described as the fragile water environments.

As stated above and as the name indicates, VIVACE uses the extensively studied

phenomenon of VIV to extract energy from water currents. VIV is included in a

particular group of Fluid-Structure Interactions (FSI) in which the structure vibrates

with a certain number of degrees of freedom due to some relationship with the natural

frequency of the system. Other FSI include galloping, flutter, and buffeting. The

VIV phenomenon occurs over a wide range of flow speeds, defined by the Reynolds

number (Re) for a variety of bluff bodies, although the cylinder is the most commonly

studied. VIV has been shown to occur at Re as low as 400 and as large as 1010.

The complexity of VIV comes in the form that it is a highly nonlinear phenomenon.

The word highly is used because there are several manifestations of nonlinearity

involved. One nonlinearity results from the vortex shedding synchronization with

the bluff-body vibrations over a broad range of current velocities. Another is due

to the self-limiting amplitudes of oscillations. Other nonlinearities appear due to

the dynamic nature of the added mass, and the inherent nonlinearities in real-world

dampers and springs.

In order to further illustrate the importance of VIV in the scientific commu-

nity, the example of the Tacoma Narrow Bridge Disaster in Tacoma, Washington on

November 7, 1940 cannot go without mention. Just after completion, a particular
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wind velocity blew across the bridge, sending it into VIV, until the bridge collapsed.

This outlines a key difference in the approach to VIV between VIVACE and all

other applications. Typically, research attempts to inhibit or surpress VIV, so as to

avoid oscillations in the structure from the fluid. VIVACE, however, enhances the

vibrations in order to convert the motion to electricity (Bernitsas, Allan, Webb, and

Lyon 2006). The problem in VIVACE then becomes how to optimally dampen the

system for extracting energy while not over dampening to the point of surpressing

the vibrations.

There are two additional parameters that make a study of the VIVACE concept

unique from other VIV studies. They are the fact that the damping is much higher

than in other studies due to the harnessing of the kinetic energy for conversion to

electricity and that Re range of interest for maximum energy extraction is signifi-

cantly higher than past VIV studies. This range of Re is more realistic to operating

conditions, and it increases the lift forces, amplitude of oscillations, and the range

of synchronization on the cylinder. VIVACE is estimated to operate at an efficient

level for flow velocities as low as 0.25m/s, more than an order of magnitude lower

than what most hydrokinetic devices need for operation (Bernitsas, Raghavan, Ben-

Simon, and Garcia 2006). Currently, there is a plan for a VIVACE installation in

the Detroit River in Detroit, Michigan. In the proposed area of the installation, the

flow varies between 0.3m/s and 1m/s, with an average velocity of 0.75m/s. Other

hydrokinetic devices, such a turbines, require relatively high flow velocities (typically

around 3m/s for reasonable energy extraction rates).

This leads to the four principles of VIVACE that are all interconnected.

• The first is VIV itself, where the cylinder naturally oscillates perpendicular to

its axis and to the flow direction.
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• The second is the nonlinearity of the vibrations, as mentioned before, partly due

to the self-limiting amplitude of oscillations and the synchronization of vortex

shedding.

• The third principle is the correlation length. The correlation length is the

average length of a cell of in-phase vortex shedding. Turbulence or a large

aspect ratio of the cylinder length to diameter often lead to cells of vortices

with different phases, leading to opposite signs of lift forces. In order to keep the

correlation length equal to the length of the cylinder (one cell), recommendations

must be made for the aspect ratio, enhancing the lift force.

• The fourth principle of VIVACE is the generation of energy, which induces

mechanical damping on the structures. A careful balance must be found so as

to optimally extract energy without over damping.

The parameters to be considered for a single cylinder are the mass ratio of the mass

of the oscillating parts to the displaced fluid mass, the Re, the current flow velocity,

and the damping. The complexities of the problem are in the wake structures, the

range of synchronization, the appearance on initial, upper, and lower branches over

the range of synchronization when referring to the amplitude of oscillation, and the

distinct flow regimes both upstream and downstream of the cylinder. The problem

is further complicated when an array of cylinders is considered for maximizing the

energy extraction in a given volume. In fact, the variety of configurations of the array

is further indicative of the impossibility of experimental tests or Computational Fluid

Dynamic (CFD) simulations in all cases.

To date, no VIV work has addressed the area of high damping nor high Re, where

VIVACE will operate. Only low damping and subcritical Re have been studied,
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although extensively. The first publication dealing with high damping came from

the VIVACE group in 2006. The highest Re for experimental work reported in

literature as of 2004 was 40, 000, and the highest Re for numerical work was 3800 for

a two-dimensional model, and 1, 000 for a three-dimensional model (Williamson and

Govardhan 2004). Other works have reported singular points at higher Re (Ding,

Balasubramanian, Lokken, and Yung 2004), but no comprehensive data sets are

available.

In fact, there is literature as recent as the year 2008 supporting the idea the

VIV has no Re dependence. This assertion is unproven and unfounded. Early

VIVACE work strongly contradicts this idea, showing a high dependence on Re.

The Re range studied in this thesis is from 8 × 103 to 2 × 105. Another important

parameter incorporated into the mathematical model is the mass ratio (the mass

of the oscillating parts divided by the mass of the displaced fluid). The range of

synchronization of flow speed over which the cylinder oscillates largely depends on the

mass ratio. VIVACE prototypes have mass ratios in the range of 1.0 to 3.0, which is

considered high. The spring stiffness also largely affects the range of synchronization

as it defines the natural frequency. The free stream velocity is also important, not just

to Re, but also to define a reduced velocity for the range of synchronization. VIVACE

operates in free stream velocities as low as 0.25 meters per second. Finally, the

cylinder diameter is also important as a design parameter to normalize the amplitude

of oscillation and define Re.

A final component of the thesis will be to assess the environmental impact of

VIVACE on a water system. Incontrovertibly, the nature of a body of water is defined

by the flow. Any human invasion affects the flow, which in turn affects the marine

organisms. The initial mind set is that VIVACE can be considered a benign invasion,
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but evidence must be shown to support this in order to move forward with prototypes

and commercialization. Site specific, general guidelines and recommendations can be

drawn from flow regime change examination, indicating the impact on fish, sediment,

and other environmental components. An investigation of the proximity to the free

surface and the bottom can easily be performed. Conclusions can then be drawn

as to how far from the interfaces the cylinder must be in order to avoid disturbing

the nutrient film on the free surface integral to water life, and to avoid disturbing

contaminants in soft sediments on the bottom. An environmental assessment of

VIVACE will also improve the understanding of the impact of placing any man-

made objects in a body of water.

There are several major assumptions that will used to derive the mathematical

model in this thesis. The first and most important assumption is that the fluid-

structure interaction of VIV can be effectively modeled in two-dimensions for VI-

VACE. This enforces a correlation length equal to the length of the structure, where

the entire vortex sheet is in-phase. This also ignores the effects of the endplates of

the finite cylinder. The two-dimensionality also suppresses any three-dimensional

instabilities that may be occurring. Computational fluid dynamics has shown that,

not working on an integrated energy level, the small-scale instabilities are necessary

to properly model VIV. With the integration of the energy, many of these small

three-dimensional instabilities are integrated out, as the two-dimensional effects are

much larger, and the two-dimensional assumption holds.

1.3 General Literature Review

A search on Google.com online for “vortex induced vibrations” turns up over

43, 000 results. To say the least, the study of VIV is extensive, although not exhaus-

tive. With so many intrinsic complexities, VIV may never be fully understood. There
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has been documentation on the phenomenon beginning with the rabbinic records

from thousands of years ago, where King David hung a stringed instrument over his

bed at night and the wind would cause the strings to sound. Formally examining

vortices and the resulting vibrations, however, is much newer than this. Leonardo

da Vinci drew a sketch of the vortex street behind a piling in a river in 1513 (Figure

1.6). Strouhal in 1878, however, was the first to document the observation that the

frequency of vibration of a string was proportional to the wind speed divided by the

thickness of the string (Blevins 1990). This introduces the non-dimensional Strouhal

number, which is still the predominant characteristic of any vortex shedding flow, al-

though not to be labeled a “unique identifier” (Sarpkaya 2004). A series of scientists

soon followed Strouhal in studying VIV, with Lord Rayleigh in 1879 noting that the

vibrations were in fact in the transverse direction, Benard in 1908 noting that the

vortices were related to the periodicity of the wake, and finally, von Kármán in 1912

noting the stable street of alternating vortices in the wake (Blevins 1990).

Since early pioneers in the field like Strouhal and von Kármán, much more work

has been done in the field, with reviews appearing with increasing frequency, partic-

ularly as controversy in analyses arise (Bearman 1984; Williamson 1996; Williamson

and Govardhan 2004; Sarpkaya 2004). Several texts are entirely devoted to the sub-

ject of flow around cylinders (Zdravkovich 1997; Zdravkovich 2003), while there are

even texts devoted just to VIV (Blevins 1990; Chen 1987; Sumer and Fredsøe 1997).

The quantity of books available on the subject in a good indication of the complexity

of the phenomenon, and, as noted in the introduction, all work so far published is

for low Re and low damping. It is recommended that anyone seeking to understand

the basic phenomenon peruse any one of theses texts, as a brief description is all

that will be included below. For the case of water flow, which does have subtle,
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quantifiable differences from air flow, the text by Sumer and Fredsøe (1997) is rec-

ommended. One important factor that all should be aware of is that VIV occurs

not only near the natural frequency of the system, nor near the Strouhal frequency,

but over a wide range of flow velocities, including super-harmonics of the natural

frequency (Sarpkaya 2004).

In order to familiarize the reader with VIV, a very simple explanation will now be

presented. For a cylinder, when Re is greater than 40, vortex shedding occurs. The

vortices will shed with opposite orientation from opposite sides of the cylinder. This

is because flow separation occurs and the shear layer will roll up into a vortex. The

only stable arrangement is for the vortices to alternate as was shown mathematically

by von Kármán, making one larger than the other at all times. The actual mechanism

of vortex shedding is not known for certain. However, a generally accepted theory is

that the larger vortex draws the smaller vortex across the wake, causing the shear

layers to interact, which effectively cuts off the supply to the larger vortex and it is

then shed and carried downstream. The smaller vortex is now the larger one and

the process continues, as represented in Figure 1.7. This theory was first developed

because it was found when a splitter plate was placed on the downstream side of the

cylinder, the vortices remained attached to the cylinder, supposedly because they

did not interact as described. This is also shown in Figure 1.7.

Vortex shedding leads to periodic variations in the lift and drag forces. The

lift force has a period equal to the vortex shedding frequency. When a degree of

freedom is allowed in the cross-flow direction, these variations in the lift force induce

vibrations, or VIV. The preceding description of VIV is named the Gerrard model, as

outlined by Gerrard (1966). Two key instability regions have been identified in the

description: the vortex and the shear layer. Prasad and Williamson (1997) defined
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the vortex instability to be a Hopf bifurcation and to be of the order of the diameter

of the cylinder. The shear layer instability, they argued, is a Kelvin-Helmholtz type

instability of the order of the shear layer thickness. This argument of two distinct

instabilities can aid in the modeling of VIV.

1.4 VIV of a Single Cylinder

VIV can occur with any elastic bluff body. The area of interest here is for a rigid

circular cylinder with a single degree of freedom in the transverse direction resulting

from elastic mountings. This therefore excludes work done for any non-circular and

non-cylindrical structure, any elastic structure, and any rigid structure with more

than one degree of freedom. In general, literature on these excluded topics will be

avoided except where pertinent due to the large discrepancies and further complica-

tions in their fluid-structure interactions. It was noted by Sarpkaya (2004) that only

short cylinders eliminated two degree-of-freedom interaction, enabling single-mode

lock-in for vibrations. For this reason, VIVACE has a specified aspect ratio of finite

length.

The complexity of the problem begins with the numerous parameters needed to

define VIV. These parameters are fluid density, dynamic viscosity, free stream veloc-

ity, cylinder diameter, cylinder length, spring stiffness, cylinder roughness, structural

damping, mean shear stress, body mass, turbulence intensity, etc. (Sarpkaya 2004;

Sumer and Fredsøe 1997). In this work, VIVACE uses only smooth cylinders, so

roughness may be excluded, only slightly simplifying the problem. The Re was often

thought to be unimportant in a variety of variables (amplitude of oscillation, range

of synchronization). It was not until recently that the large effect of Re was in fact

substantial. Govardhan and Williamson (2006) published an entire paper on the

subject, although the experimental data is still incomplete to validate their conclu-
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sions of the exact Re effect. The Re effect was noted in the amplitude of oscillation,

where the amplitude was found to increase with increasing Re. A modified ampli-

tude in the Skop-Griffin plot, a plot often used to show the relationship between

a combined mass-damping parameter and the amplitude of oscillation (Williamson

and Govardhan 2004), shows preliminary results with all current experimental data

collapsing “beautifully” onto one line (Figure 2.7). VIVACE, however, has shown

to have results that still lay outside this line, indicating the Re effect on amplitude

is still not satisfied analytically. Raghavan, M., and Maroulis (2007) prove the Re

dependence of VIV for the first time.

Williamson (1996) outlined the three-dimensionality of VIV. The three-dimensional

aspects include cellular shedding, as discussed above in the correlation length, vor-

tex dislocations, oblique shedding, phase shocks and expansions, vortex loops, and

end boundary conditions influencing the flow inside the ends. These aspects can

be broken into extrinsic and intrinsic categories, where the end conditions would be

extrinsic, and the natural instabilities intrinsic. The actual effect of all the three-

dimensionality on the fluid forces on the cylinder, however, is still not known.

The emphasis on very low mass and very low damping in VIV work has been ac-

knowledged (Williamson and Govardhan 2004). As with any complex phenomenon,

the initial work was done in these ranges in order to further the information about

the simplest form of the phenomenon. The highest Re done in experimental work for

VIV on an single-degree-of-freedom, elastically-mounted rigid cylinder is 4×104, and

computational work has only gone as high as 3.8× 103 (Williamson and Govardhan

2004). The result is that most conclusions in recent works call for increased informa-

tion to be collected on VIV for Re greater than 2×104 (Sarpkaya 2004). It has been

acknowledged that general phenomenon of VIV at higher Re is still unknown, and
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different wake structures may exist. Also, the maximum amplitude possible, which

has been found to increase with Re, is still unknown, and there may be more general

characteristics of the flow that change with Re (Williamson and Govardhan 2004).

All of the complexities of VIV at higher Re are left open for questioning. Studying

VIVACE and simulating the flows will help answer these unknowns.

There are also several topics of debate within the VIV phenomenon. It has been

proposed that there is a critical mass ratio at which point the range of synchro-

nization would be infinite, or VIV would exist to infinite flow velocity (Williamson

and Govardhan 2004). Intuitively, this appears impossible and there is not yet any

data to substantiate this conclusion. Additional debate exists of the decomposition

of the forces on the body. Many have proposed that the added mass force can be

considered entirely inviscid, separating it from all other forces. However, Sarpkaya

(2004) points out that even Stokes in 1851 showed that the added mass has a viscous

component that changes in magnitude and position with time. An additional pa-

rameter, referred to as the Skop-Griffin parameter, is proportional to the mass ratio

multiplied by the damping. This parameter is also under dispute; where many now

use it to plot data, and others identify it as unsupported (Sarpkaya 2004).

Other debates also exist about the relevance of the simple single-degree-of-freedom

elastically-mounted rigid cylinder as a model for more complex systems. The rela-

tionship between forced and free vibrations has not been established, either, as much

work has been done to define the problem using forced, often linear, vibrations in

order to gather data otherwise difficult to obtain with free oscillations. The appli-

cation of forced oscillation data to the free vibration problem has not been entirely

substantiated.

The highly nonlinear nature of VIV is emphasized in most review papers. Sarp-
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kaya (2004) describes VIV in the following way: “It is an inherently nonlinear, self-

governed or self-regulated, multi-degree-of-freedom phenomenon. It presents un-

steady flow characteristics manifested by the existence of two unsteady shear layers

and large-scale structures.”

At this point, key data reporting plots will be identified. There are two main

plots for reference: the range of synchronization and the Griffin plot. The range of

synchronization plots the non-dimensional amplitude of oscillation as a function of

non-dimensional free-stream flow (Williamson and Roshko 1988). The new, modi-

fied Griffin plot is shown in Govardhan and Williamson (2006) and in Chapter 2.

This plots a mass-damping parameter against a modified non-dimensional amplitude.

Both plots are key because the VIVACE data sets to date are proving to be very

different in nature from these plots, and they will become a key comparison between

past data sets and the work done by VIVACE at high Re and high damping (Bernit-

sas, Raghavan, Ben-Simon, and Garcia 2006; Bernitsas, Ben-Simon, Raghavan, and

Garcia 2006).

The range of synchronization plot shows three branches: initial, upper, and lower,

with a discontinuity between the initial and upper, and a hysteresis between the up-

per and lower. The hysteresis indicates a memory effect on VIV, another source for

nonlinearity. With increasing Re, it has been found that the upper branch extends

while the lower branch is cut off. VIVACE is finding an even more prominent differ-

ence, with no lower branch, and a continually increasing upper branch. It has already

been suggested that the jump to the upper branch may be an effect of Re (Sarpkaya

2004), but VIVACE results are going beyond this concept (Bernitsas, Raghavan,

Ben-Simon, and Garcia 2006; Bernitsas, Ben-Simon, Raghavan, and Garcia 2006).

While on the topic of Reynolds number, it has been shown in the past that the
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phase angle between lifting and vortex shedding, and the lift coefficient both signifi-

cantly increase with increasing Re. The effect on increasing Re on the amplitude of

oscillation and the frequency of excitation was considered unknown (Sarpkaya 2004)

but was reported for the first time by Raghavan, M., and Maroulis (2007).

1.5 VIV of Multiple Cylinders

There has been a large quantity of work done for two or more cylinders coupled

by the fluid flow. This is due to the fact that VIV can occur in a wide range of

real world applications. It occurs for riser cables and structural supports of offshore

structures as well as for heat exchangers. Both of these applications involve multiple

bodies affected by the flow of their neighbors. Zdravkovich (1997, Zdravkovich (2003)

outlines the further complexities of multiple stationary cylinders, and Blevins (1990)

dedicates an entire chapter to introduce the complexities of multiple cylinders in

VIV. A common occurrence is that VIV is not the only vibratory Fluid Structures

Interaction present. Galloping, and sometimes flutter, enter into the problem for the

downstream cylinders.

For two cylinders in tandem, it has been shown that the upstream cylinder behaves

independent of the downstream cylinder, while the downstream cylinder has a high

dependence on the separation distance between the two cylinders. Coupling with the

second cylinder is caused by the fluid flow, and the turbulence intensity in the flow

greatly affects the response of the cylinders. The maximum amplitude of oscillation

and the synchronization region for the second cylinder is decreased with increasing

separation distance between the cylinders (Laneville and Brika 1999). However, if the

cylinders are placed one atop another rather than tandem, or even at an angle from

one another, neither cylinder can be considered independently. It is obvious from

a brief overview that the complexity is greatly increased by having more than one
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cylinder present in the fluid. Additionally, the literature review could become very

extensive if all cases were considered herein. For brevity, it will be concluded that the

FSI of multiple cylinders is highly dependent on the arrangement of the cylinders, and

no universal conclusions can be drawn as to what the effect of altering an arrangement

may be. For this reason, it is important to have experimental information available

for the simulations of a VIVACE array.

1.6 VIV Numerical Simulations

Numerical simulations have been used mostly only in the laminar flow regime. Nu-

merical simulations have always been measured against experimental visualization.

For VIV, it is particularly important to obtain measurements and flow visualization

with non-intrusive techniques, such as Particle Image Velocimetry (PIV). A variety

of flow simulation methods have already been applied to the VIV problem, includ-

ing Direct Numerical Simulation (DNS), Reynolds-Averaged Navier-Stokes (RANS),

Large-Eddy Simulation (LES), and Vortex Element Methods (VEM), all of which

involve some form of the Navier-Stokes equations (Sarpkaya 2004). DNS is typically

the preference, but due to exorbitant computational cost and unacceptable compu-

tational time, it is not even considered an option for flows with any complexities.

DNS has recently been applied to a stationary and forced rigid cylinder at a Re of

1 × 104. This is within the turbulent regime. Multilevel-type parallel algorithms

within a spectral element framework were used (Dong and Karniadakis 2005). This

work, however, did not allow for free vibrations of the cylinder.

1.6.1 Kolmogorov Length Scale

In determining the necessary resolution of DNS, the smallest scale present in a

simulation should be predicted. In 1941, the Russian mathematician Kolmogorov

developed an equation to accurately predict the smallest scale present in a fluid flow
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problem, L (White 1991).

L =

(
ν3δ

U3

)1/4

(1.1)

In this equation, δ is the shear layer thickness. In the case of the flow around a

cylinder, the shear layer thickness can be approximated from the Blasius equation

for a flat plate, assuming the boundary layer thickness is much smaller than the

radius of the cylinder, and substituting the length with the arc length (Schlichting

1968).

δ = 5

√
νRθ

U
(1.2)

Combining the two above equations and using the definition of the Reynolds number

for a cylinder, Re = UD/ν, where D = 2R, the following relationship between the

Kolmogorov length scale and the Reynolds number for flow around a cylinder is

found.

L = R

(
5
√

128θ1/2

Re7/2

)1/4

(1.3)

The boundary layer will reach it’s maximum around π/2, just around the separation

point (see Chapter 2 for discussion of separation point), and then the relationship

can be approximated as follows.

L ≈ 2.9
R

Re7/8
(1.4)

In order to determine the Kolmogorov length scale that would be typical for simu-

lating the results of VIVACE, numbers for the Reynolds number and radius of the

cylinder are taken from Bernitsas, Raghavan, Ben-Simon, and Garcia (2006). The

diameter of the cylinder in these published experiments was on the order of 0.1m

(R ≈ 0.05), and the Reynolds number was on the order of 1 × 105. This results

in a Kolmogorov length scale of approximately 6 × 10−6, while the thickness of the

boundary layer itself will be δ ≈ 1 × 10−3. The smallest scale is three orders of
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magnitude smaller than the boundary layer thickness. Now that the smallest scale is

known, estimates of the number of grid points for a direct numerical simulation can

be made. To solve the flow just within the boundary layer δ in three dimensions,

there will need to be 1000× 1000× 1000 = 1× 109 grid points in order to resolve the

smallest scales. The time scale follows the same argument, where it will take three

orders of magnitude smaller resolution in the time scale to resolve the time variation

of the smallest scales.

To solve the entire flow regime, there would need to be many cells of the size of

δ, on the order of 104, or 1013 total grid points. Most simulations require about 20

periods to pass, which would be order 104 total timesteps. For the entire simulation,

the total steps in time and space would be 1013× 104 = 1017 computations. Current

supercomputers require approximately 20µs per computation, so the total time to

compute this simulation on a supercomputer would take 2 × 1015s or over 6 × 107

years, which is obviously not reasonable nor attainable. Even if at some point in

the future computers can perform computations as the speed of light through a

hydrogen atom, which is theoretically the fastest possible, the computer would take

3× 10−19 per computation, so this simulation would take 20× 10−6s, and this is at

the minimum. Therefore, until the theoretical limits of computers can be obtained,

fully turbulent DNS is not possible for the problem at hand.

This is an extreme example, however, showing the requirements to show every

detail of the flow. The Kolmogorov scale resolves only unrepeatable events that are

only of statistical interest. In actuality, accurate results can be obtained within a

reasonable computation time, particularly with a turbulence model, as found from

RANS and LES. Although many turbulence models have been developed as a result,

it is preferred by the author to look for a simpler, more robust and meaningful
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analytical answer to the problem at hand, since the entire flow does not need to be

described in such detail, allowing for faster calculations from a mathematical model.

In an industrial application, Halkyard, Sirnivas, Holmes, Constantinides, Oakley,

and Thiagarajan (2005) found that a commercially available Computational Fluid

Dynamics (CFD) package showed potential for solving their VIV problem, but it

overestimated the magnitude of response, and difficulties arose from many intrinsic

and extrinsic properties of VIV. Kallinderis and Ahn (2005) found that the RANS

equations with a Spalart-Allmaras scheme for turbulent viscosity allowed larger time

steps with fairly accurate results, and Lam, Jiang, Liu, and So (2006) found that a

surface vorticity method (under the category of VEM) was in good agreement with

experimental data for a Re of 2.67 × 104. There is no agreement on one method to

be superior for application to the VIV problem, and work continues on these and

other flow models.

The author evaluated different available numerical simulators as an approach to

the thesis problem. Based on the Kolmogorov scale used to estimate the smallest

scale fluctuation in a flow, DNS would be computationally impossible at any reason-

ably high Reynolds number, where current supercomputers could not even handle

the number of flops needed to compute a single timestep of the flow field in a rea-

sonable timeframe, as was shown above. Although Dong and Karniadakis (2005,

Halkyard et al. (2005, Kallinderis and Ahn (2005) all found reasonable approxima-

tions through numerical simulation of the Navier-Stokes equations, all simulations

required calibration. These calibrations do not carry much physical meaning and

often require a large amount of effort through trial and error, increasing the compu-

tational cost. It was determined that VEM could serve as the most robust simulator

for a wide range of Re for VIV, particularly a mesh-free approach. However, as there
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are no commercially available codes of VEM at this time, it was found that analytical

modeling would create the best fast predictor of VIV for the VIVACE system.

1.7 Extant VIV Models

The extant models range from simple single degree-of-freedom models, typically

used in engineering practice for rough estimates, to multi degree-of-freedom models

that can only be examined using numerical methods. In fact, the numerical simu-

lations of the Vortex Element Method arose from what started as a simple mathe-

matical model. It is part of the nature of this problem to start simple and become

complex very quickly while trying to correctly model each of the flow characteristics.

1.7.1 Linear Single Degree-of-Freedom

As indicated above, there are many parameters which play into the VIV phe-

nomenon. For the case of the single degree-of-freedom cylinder, a simplified math-

ematical model has been presented in the literature. This linear, single degree-of-

freedom model does not truly model VIV, but for engineering purposes, it is consid-

ered acceptable at approximating the maximum response at resonance. We already

know that VIV has a range of synchronization extending well beyond the point of

resonance. Although acceptable for engineering practice, there is still the necessity

to calibrate the lifting force for each case (any variation of mass m, damping c, spring

stiffness k, or flow velocity U is a different case). Therefore, although acceptable in

engineering practice, it is not practical to rely upon such a model, especially when

there is no experimental data available at a specific point. Interpolation and extrap-

olation of data for VIV can lead to very incorrect approximations. In addition to the

limitations of the single degree-of-freedom model, even the nature of the terms in the

model are highly contentious. In particular, the splitting of terms into viscous and

inviscid contributions has led to wide-spread disagreement even by the most notable
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researchers in VIV for the last several decades, and no agreement on the handling of

the terms has been reached (Sarpkaya 2001). Bernitsas, Ben-Simon, Raghavan, and

Garcia (2006) provides an approach of a single degree-of-freedom model as follows.

The model is based on a simple mass-damper-spring equation.

mÿ + cẏ + ky = F (1.5)

mÿ + cẏ + ky = Fviscous + Finviscid (1.6)

Although the division of forces into viscous and inviscid is considered controversial,

in the simplest form of the mathematical model, it is appropriate since model tests

are required to estimate the hydrodynamic forces. The inviscid force is proportional

to the added mass of the accelerated fluid, and the viscous force is proportional to the

lift force. This modifies the equation to the following form (equation 1.7) where the

coefficient on the right-hand side is the lift coefficient, and the mass is the displaced

fluid mass. This equation then can be non-dimensionalized to the form given in

equation 1.8.

(m + ma) ÿ + cẏ + ky =
2

πD
cy(t)mdU

2 (1.7)

(m∗ + Ca)

(
ÿ∗

f 2
n

+
4πζẏ∗

fn

+ ky∗
)

=
2

π
cy(t)U

∗ 2 (1.8)

An assumed linear form for the amplitude of oscillation and lift coefficient can

then be written as in equations 1.9 and 1.10.

y∗ = y∗max sin (2πffluidt) (1.9)

cy(t) = Cy sin (2πffluidt + φ) (1.10)

Equations 1.9 and 1.10 allow for estimates of the power available in the water

(equation 1.11) and power available due to damping (equation 1.12). An upper limit

for the maximum rate of power harnessing can then be found, as given in equation
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1.13. The actual efficiency for the VIVACE converter is measured experimentally as

the power harnessed.

Pfluid =
1

2
ρπCyU

2fcylymaxDL sin(φ) (1.11)

Pmech = 8π3 (m + ma) ζ (ymaxfcyl)
2 fnwater (1.12)

ηUL =
Pfluid

Power in the fluid

=
1
2
ρπCyU

2fcylymaxDL sin(φ)
1
2
ρU3DL

(1.13)

This mathematical model is the simplest form for solving quantities for the forces

experienced by a cylinder in VIV. However, the hydrodynamic forces are not so

simply modeled.

1.7.2 Van der Pol Oscillator

The van der Pol oscillator has been used several times in VIV mathematical models

(Facchinetti, de Langre, and Biolley 2004; Sarpkaya 1979; Blevins 1974), particularly

in two degree-of-freedom models (one for the cylinder, and one for a wake parameter).

However, as clearly outlined in Billah (1989), the use of the van der Pol oscillator in

VIV originates from using a well-known mathematical equation to model something

with similar results, rather than the result of rigorous derivation. As a mathematical

equation, the van der Pol oscillator represents self-excited oscillations, introduced

through the nonlinearity of the damping term, as can be seen in the generalized

form of the equation as follows. As a result, the damping is negative in response

to certain motions. The resulting output is a limit cycle (Kelly 1993). The self-

excitation and limit cycling are two of the characteristics of the oscillator that lead

to it being selected to model VIV, despite no physical connection of the parameters,
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except for reverse reasoning after the equation has been implemented.

ÿ + 2ξẏ + y = aΩ2CL

C̈L − αΩĊL + γ
Ω
Ċ3

L + Ω2CL = bẏ

(1.14)

In fact, the forced van der Pol oscillator is very clearly defined to model a phe-

nomenon where two frequencies coalesce. In vibratory fluid-structures interactions,

this is known as classical flutter, a very different phenomenon from VIV. Therefore,

although it is known that the van der Pol oscillator has a similar “shape” to VIV, it

in fact models something quite different, and for that reason can never be expected

to align with VIV experimental results.

One of the more famous and semi-physical developments of a coupled van der

Pol oscillator system was done in the dissertation of Blevins (1974). However, when

Blevins developed the model, there was a leap away from the physics of a fluid

momentum approach when deriving the force through the control surface “correction

terms”. This forced the equation to look like the van der Pol oscillator, and it

was in this leap that the Blevins model became incorrect for modeling VIV. The

Blevins nondimensionalized model is written below with notation changed only for

consistency.

ÿ + 2ξT ωnẏ + ω2
ny = a′′3 z̈ + a′′4 ż

z̈K ′ ut

U
U◦
D

ω◦zz = (a′1 − a′4)
U
D

ż − a′2
ż3

UD
+ a′3ÿ + a′4

U
D

ẏ

(1.15)

The nomenclature of the above terms will not be outlined here. The purpose of seeing

the analytical model is to notice that in the second line on the right-hand side, there is

a nonphysical term with ż3, the result of forcing the momentum equation to look like

the van der Pol oscillator. In addition, all terms beginning with a are coefficients that

need to be determined experimentally. Not all of these coefficients have a straight

forward, measurable value, however, and a certain amount of calibration and trial
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and error must be used. Therefore, in addition to a departure from physics in the

derivation of the model, the requirement for rigorous model development of having

all coefficients being meaningful and measurable can not met by this model.

1.7.3 Landau Equation

Similar to the van der Pol oscillator is the Landau equation (Equation 1.16) ,

refined both by Stuart and by Ginzberg. Equation 1.17 shows a form of the Ginzberg-

Landau equation used in a numerical simulation of a long, flexible cylinder used in

Aranha et al. (2005). It is a simple exercise to show that with just one more

simplification of the Landau equation, the van der Pol oscillator is recovered. The

Landau equation is intriguing due to the fact that it is derived directly from the

Navier-Stokes equation, although it is derived for the onset of turbulent instability.

This is exciting, since it is the intention to always maintain some semblance of the

Navier-Stokes equations in modeling fluid flow. However, in this excitement, the

assumptions used to derive the Landau equation cannot be overlooked. In fact, the

assumptions very quickly diverge from what we know about VIV. The assumption

of the Landau equation is that there is only one frequency present, and only a short

period of time has passed since a disruption, close to a critical Re, or the onset of

instability, occurs in a steady flow. Additionally, the velocity of the disruption must

be considered small in comparison with the steady flow.

v1 = A(t)f(x, y, z)

A(t) = ceγ1te−iω1t

d|A|2
dt

= 2γ1|A|2 − α|A|4
(1.16)

∂A

∂t
+ σA− γR(1 + ic1)

∂2A

∂z2
+ µR(1 + ic2)|A|2A = 0 (1.17)

This leads to several inconsistencies with VIV. First, VIV models need to be

accurate particularly after a long period of time, violating the Landau equation.
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Second, the model must work for a wide variety of Re, where as the Landau equation

only works within a small region just above the critical value. Additionally, as Re is

increased above this critical value, additional equations must be added for additional

frequencies, going to infinity as Re goes to infinity, quickly making the Landau

equation impractical even if the assumptions were considered acceptable (Landau

and Lifshitz 1995). It was shown that the Landau equation was an inappropriate

choice for VIV more rigourously in Le Gal, Nadim, and Thompson (2001).

There has been a successful application of the Landau Equation to VIV, but

not coupled for the motion of the body. Williamson (1996) showed a reasonable

argument for using the Ginzburg-Landau equation to model the instability in the

third dimension for VIV, although rigorous development of such a model was again

a leap of known physical characteristics of the third dimesion instability and known

mathematical characteristics of the Ginzburg-Landau equation.

1.7.4 Billah’s Model

In 1989, Billah introduced a new model in his dissertation that took the approach

of developing the Hamilton energy equations, which could then be translated into

a nonlinearly coupled, two degree-of-freedom model. This is the only case where

energy was the starting point of the system of equations. However, Billah did not

include the physical information necessary to develop a complete VIV model. Billah

does not take into account the experiments of Williamson and Roshko (1988), and

therefore a large amount of information about vortex shedding modes and separation

points is not covered by the model.

Billah’s model is shown below, although notation has been changed in order to

ease the comparison to the current thesis model. Billah begins by arguing a devel-

opment of the system energy for use in Hamilton’s principle, but without rigorous
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development, particularly for the degree of freedom w. Dissipative forces like the

mechanical damping are added later.

L =
1

2
mẏ2 +

1

2
a0ẇ

2− 1

2
a1y

2ẇ2− 1

2
a2y

4ẇ2− 1

2
ky2− 1

2
c1y

2w− 1

2
c2y

4w− 1

2
γw2 (1.18)

The above Lagrangian equation then undergoes the Hamilton’s principle to de-

velop the two force equations. The result of the derivation is as follows. Billah

dropped the higher order wake parameter acceleration terms, slightly simplifying the

wake equation.

mÿ + ky + a1yẇ2 + 2a2y
3ẇ2 + c1yw + 2c2y

3w = Ξ1 (1.19)

a0ẅ + γw − 2a1yẏẇ − 4a2y
3ẏẇ +

1

2
c1y

2 +
1

2
c2y

4 = Ξ2 (1.20)

Billah uses a wake variable w, that at the point of developing the equation has

no meaning. Later, he connected the degree-of-freedom with the vortex formation

length. However, such connections formed after the model has been derived again

leads to a physically meaningless model as was done in Blevins (1974) and other

previous works. A single incorrect, all-encompassing assumption invalidates an entire

method.

1.7.5 Hamilton’s Principle

Others have taken notice of the work of Billah (1989), some only slightly reworking

it (Goswami, Scanlan, and Jones 1993b), and others using it to develop Navier-

Stokes-based equation that requires averaging of information on the entire control

volume at every instant in time (Benaroya and Wei 2000; Benaroya, Wei, Kuchnicki,

and Dong 2003).

Benaroya and Wei (2000) derived an extended Hamilton’s Principle for external

viscous flow in a fluid-structure interaction using McIver’s extension to show how
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Hamilton’s principle applies to fluid. Initial results with an application to a cylinder

pinned at one end in water experiencing VIV. First, a complete data set was collected

using Particle Image Velocimetry (PIV). The results were then averaged over the

control surface and volume, and averaged signal was then used as the input for the

equation derived from Hamilton’s principle. Benaroya, Wei, Kuchnicki, and Dong

(2003) summarized the work from the previous paper and showed further proof of it’s

applicability to a cylinder acting like a pendulum in water. This is a very significant

result, because it shows that Hamilton’s principle can be successfully applied to

the fluid-structure problem of VIV. It is safe to assume that an integral value of

the energy in the system can properly influence the body in order to produce the

phenomenon of VIV. This has been shown with these references. The below equation

comes from Benaroya, Wei, Kuchnicki, and Dong (2003), and shows the form of the

equation for the case of a translating cylinder with a stationary outer control volume.

No results are given for this equation since all their experimental work was for the

cylinder acting like a pendulum. However, this is the most relevant equation for this

thesis. The equations resulting from this reference are all in units of power, and are

therefore not identical to the force equations that are sought herein.

ẏ (mcylinderÿ + ky) + mfluidUU̇ =
∫

CSclosed
(−p−→n +−→τ c) · −→U ds

+
∫

CSopen

[
−ρ

2
U2−→U · −→n + (−p−→n +−→τ o) · −→U

]
ds

(1.21)

Although using a control-volume approach like that used by Benaroya and Wei is

in fact physically meaningful, it requires that there already be a complete data set

for the input, such as can only be gotten from PIV experiments. Therefore, it is in

fact a matter of performing the simulation twice: once experimentally and then once

numerically, thus defeating the purpose of numerical simulation. However, it does

indicate that using an energy method can lead to reasonable results. In fact, the
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validation of the theory comes from the same data set as the input for the analytical

result, as shown in Figure 1.8. This figure shows that the analytical output for the

displacement pendulum cylinder is very closely related to the experimental output,

being placed on the same sized axes. It is proposed that a simplified system approach

can be used in place of the fluid control volume approach with a high relative degree

of success without using Reynolds transport theorem as this example did. In this

sense, the system can be modeled as simply as possible, and the results should be

significant.

1.8 Relevant Water Ecology

When referring to water ecology, a particular phrase becomes integral: dynamic

equilibrium. “The concept that each individual river has a natural (flow) regime

on which its ecological integrity depends has become firmly established (Allan and

Castillo 2007).” Any change to the flow regime, discussed further in Chapter 7,

has a direct impact on the system ecology. The flow regime establishes the water

quality, food sources and habitat available to biota, and the interactions between

biota. Changing any of these features will further impact the ecological integrity as

well. These types of flow regime changes have been studied with the placement and

removal of dams in a river system, as well as for less-extreme cases such as log jams

(Allan and Castillo 2007).

It was put best by Pelc and Fujita (2002) when they stated: “Any energy tech-

nology has some environmental impact.” With renewable energy struggling to hold

onto a mere 2% of the global consumer energy market (Sims 2004), it is important

to identify the environmental impacts of an installation before deployment to avoid

barriers to technology development. It has been stated in many mainstream articles

recently the importance in investing in a wide variety of sustainable energy sources.
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It is hypothesized that VIVACE can be a contributor to the global energy market.

One important thing to note about environmental impact and ecology is that

the impacts are highly site specific and scale dependent. Therefore, sites must be

carefully chosen with the water environment held as a priority over the desire for

renewable energy (Pelc and Fujita 2002). Gill (2005) made a generalization as to

the selection device sites in order to minimize the impact on the biology in oceans,

stating that: “Soft sediment communities are typically low in diversity and have

species that are adapted to naturally unstable habitat conditions. However, lo-

cations that are used as a migratory or periodic habitat essential for life-history

completion should be avoided.” This statement does not take into account the fact

that soft sediments often contain contaminants that would then be released into the

environment, extending beyond the immediate area. Therefore, even general state-

ments have erroneous claims, further emphasizing the site specific impacts. As for

the river environment, “streams with more variable flows tended to support resource

generalists, and streams with more stable flows had a higher proportion of specialist

species (Allan and Castillo 2007).” A river that already has a highly variable flow is

more likely to be able to adapt to an installation that will cause flow variations.

When an environment is changed, the organisms present are tested for adaptability

and the ability to survive. In the river system, the dynamic equilibrium is sought

between the supplies of water and sediments. The quantification of this equilibrium

is in its infancy, but further work will deepen the understanding of the effect man

has on changing river ecology. It has already been found that large intrusions, such

as dams and channels, reduce the richness of the biology of the river. It is important

to “view the entire river basin as an integrated unit (Allan and Castillo 2007).”

With a system such as VIVACE, there will be both direct and indirect effects.
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The direct effects will arise from the fact that energy is being removed from the

ecosystem, reducing the net flow speed and changing the shear forces at the free

surface and bottom interfaces. This will result in eddy formation which in turn will

alter the energy distribution in the flow downstream of the device (Bernitsas, Allan,

Webb, and Lyon 2006).

While any water energy installation must consider the impact on the environment,

the impact could also be considered positive rather than negative in some cases. The

changes in a river bottom from new sediment deposits can increase local diversity, or

it could cause the bottom to become unsuitable for certain organisms. Additionally,

increasing the turbulence intensity in a river, such as will occur from the turbulent

wake structures of VIVACE, can either provide opportunities for station holding that

can attract fish or can cause fish to avoid the area (Bernitsas, Allan, Webb, and Lyon

2006). It is important to note, however, that “the flow of water in rivers generally

is turbulent (Allan and Castillo 2007).” The increased turbulence introduced by

VIVACE may therefore be negligible.

It is therefore very important to understand the flow in an area and its effects

on the physical, chemical, and biological conditions of rivers. Water ecosystems

naturally have a wide range of variability in quantity, quality, timing, and temporal

water flow. The flow rate of a river varies over all time scales, from hourly to annual

to geologic time. Rivers act both as a storage and a transfer mechanism for water

and are therefore important to not just the immediate biology but the global biology

(Allan and Castillo 2007).

Within the contiguous USA, ten distinctive flow regimes have been identified in

rivers, seven permanent and three intermittent. For every stream, the velocity varies

considerably throughout the cross-section. There is friction along the sides and bot-
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tom, and obstructions and meandering also contribute to the variation. Upon site

selection for a VIVACE installation, the first step will be to identify the ecological

current flow regime, therefore allowing ecologists to qualitatively and quantitatively

assess the flow regime change that will result. This provides both the information for

installation licensing as well as allowing VIVACE to be designed to be as environmen-

tally benign as possible, enhancing it’s “green” energy rating. A math model that

can provide large-scale flow information useful for the ecological impact assessment.

This is another motivation for the model, in addition to advancing the scientific

understanding of VIV for the entire science community and designing VIVACE for

optimum power extraction.
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Figure 1.1: A VIVACE single cylinder schematic, where the side struts contain the generator
(dampers) and springs (Bernitsas, Raghavan, Ben-Simon, and Garcia 2006).
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Figure 1.2: VIVACE cylinder array schematic. Cylinders are staggered in a hexagonal shape
(Bernitsas, Raghavan, Ben-Simon, and Garcia 2006).
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Table 1.2: Sketches of the characteristic flow regimes in the wake of a stationary circular cylinder,
taken from Sumer and Fredsøe (1997). Solid lines represent laminar flow and dashed
lines represent turbulent flow.

Sketch Range

Creeping

L1

L2

TrW1

TrW2

TrSL1, TrSL2, and TrSL3

TrBL0, TrBL1, TrBL2, TrBL3, TrBL4, and T
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Figure 1.3: Lift and drag coefficients as a function of Reynolds number (Zdravkovich 1997).
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Figure 1.4: Lift and drag coefficients as a function of Reynolds number for the Reynolds number
area of interest in the transition region (Zdravkovich 1997; Raghavan 2007).
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Figure 1.5: The destructive nature of VIV is best exemplified by the Tacoma Narrows Bridge Dis-
aster in Tacoma, Washington, 1940.
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Figure 1.6: Sketch by Leonardo da Vinci in 1513 showing the wake behind a piling in a river.
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Figure 1.7: A schematic of the Gerrard theory of vortex shedding, showing the vortex being drawn
across and cutting off the opposite vortex from the feeding sheet (Gerrard 1966).
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(a)

(b)
Figure 1.8: Experimental, (a), and analytical, (b), output for extended Hamilton’s principle for

fluid control-volume approach (Benaroya, Wei, Kuchnicki, and Dong 2003).
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CHAPTER 2

VIV Features and Parameters

The approach of this thesis will be a phenomenological model. Approximations to

the energy present in the body and the effecting fluid will be integrated to find the

energy present. The process of integrating to the energy level is believed to be very

advantageous as it reduces the effects of approximations and their errors, leading to

a more generalized model. Many of the physical parameters can either be measured

directly from experiments or approximated based on phenomenological observations.

Due to the complexity of the Navier-Stokes equations and the ability to solve them

only for a few potential flow and basic viscous flow problems, they will not be applied

here. Perhaps in the near future a full Navier-Stokes model can be used, but it is

of the opinion of the author that it would lead to a system of equations that are

impossible to model if applied here. Therefore, the effecting fluid will be modeled

part of a system with the body rather than a fluid continuum. It is considered a

reasonable approximation for VIV, particularly in order to not take the model to the

level of needing to carry out complete numerical simulations where computational

power becomes the limiting factor. Instead, it will be a single degree-of-freedom

system that can be stepped in time using simple methods.

In order to develop a new model that can accomplish what is necessary in this
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thesis, the important parameters must be identified, and some insight into their role

in the model must also be established. Certain parameters are important as input

variables, while others are the output necessary to validate and use the model. The

obvious parameters come from the traditional mass-spring-damper equation, where

we want to develop the most appropriate forcing. The model is an energy model

where the energy equation is first derived, and the single degree-of-freedom force

equation is then derived using properties of Hamilton’s principle.

2.1 Variables

Time is the independent variable for the final system of equations. The stag-

nation point, separation point, formation point, and the attached vortices are all

dependent upon time. However, there is only one dependent variable output in the

final equations, and this will be the degree-of-freedom given to the system: y for

the displacement of the body. Variable y is applied to the cylinder and the attached

fluid, where y is perpendicular to the axis of the cylinder and perpendicular to the

flow direction.

2.1.1 Circulation

The next quantity to be considered is the lifting force. The lifting force, defined

as perpendicular to the stream direction, is the main output in engineering studies

of VIV. As an output property, it is dependent on all the input quantities. For

inviscid theory, the Kutta-Joukowski theorem can be applied with great accuracy.

This would imply a Re = ∞, which is a good approximation for the fully turbulent

case, but not for practical applications. The Kutta-Joukowski theorem is as follows.

L = ρUΓ (2.1)

mÿ + cẏ + ky = L (2.2)
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2.1.2 Natural Frequency

As mentioned before, the traditional mass-spring-damper equation contains sev-

eral important parameters, namely the mass (m), damping (c), and spring stiffness

(k). Derived from these parameters, the natural frequency is found as follows.

ωn =

√
k

m
(2.3)

fn =
ωn

2π
(2.4)

The damped natural frequency can also be found. With the addition of damping,

the peak response frequency is shifted and the amplitude of response is decreased.

ωd =

√
k

m
−

( c

2m

)2

(2.5)

2.2 Dimensionless Parameters
2.2.1 Reynolds Number

The first important parameter, and perhaps the most important parameter for this

fluid-structures interaction is the Reynolds Number (Re), defined by the cylinder

diameter as shown below. The Re is an input parameter, implying the level of

turbulence in flow, the approximate location of the separation point, and the strength

of the stationary lift coefficient. By definition, we know it to be the ratio of the

inertial forces to the viscous forces.

Re =
UD

ν
(2.6)

2.2.2 Damping Ratio

Along the lines of the damped natural frequency is the damping ratio. When the

damping ratio, zeta, is within a certain range, characteristics of the unforced, or

free vibrations of a system can be known. When ζ = 0, the system is undamped,

and the response should not vary in amplitude or frequency, fn. When ζ < 1, the
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system is underdamped, and the amplitude undergoes a logarithmic decay with the

damped frequency. When ζ = 1, the system is critically damped, and there is a

particular solution to the spring-mass-dashpot equation. When ζ > 1, the system

is overdamped, and no oscillations can take place for free vibrations. The response

will just decay to zero without oscillating (Kelly 1993).

ζ =
c

2mωn

=
c

2
√

mk
(2.7)

To differentiate the damping from the structure from the damping that may result

from the fluid, the structural damping will often carry an ’s’ for a subscript, ζs.

2.2.3 Mass Ratio

Since this is a fluids-structure problem, often the mass has little meaning in dimen-

sional form. The meaning becomes more significant when divided by the displaced

fluid mass, relating to buoyancy. This division results in the mass ratio. There has

even been work suggesting that at a particular mass ratio of m∗ = 0.54, VIV oscil-

lations can occur “forever” (Govardhan and Williamson 2002), rather than desyn-

chronizing around the first superharmonic. For the case that is used throughout this

dissertation of a two-dimensional cylinder, the mass ratio is defined as follows.

m∗ =
m

πρR2
(2.8)

2.2.4 Mass-Damping Parameter

At this point, it is relevant to mention the mass-damping parameter. Although

unjustified, it has been found that multiplying the damping ratio with the mass

ratio plus added mass results in a very nice curve for the amplitude of oscillation

for each individual experimental data set. Although highly contested (Sarpkaya

2004), some success has been made plotting this mass-damping parameter against

the amplitude ratio (Govardhan and Williamson 2006). However, the success of any
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simplification of the parameters in order to collapse onto a single curve have been

unsuccessful, as was demonstrated by the VIVACE model at high Reynolds numbers

(Re ∝ 105) (Raghavan 2007). As a result, the mass-damping parameter will not be

used extensively here. The mass-damping parameter, denoted as α here, first arose

from the studies of Griffin and Skop in the 1970s (Skop and Griffin 1973; Griffin and

Koopmann 1977), and a similar parameter has been named Skop-Griffin as a result.

The Skop-Griffin parameter calls upon the Strouhal number, outlined next.

α = (m∗ + ca)ζ (2.9)

SG = 2π3St(m∗ζ) (2.10)

2.2.5 Strouhal Number

Another important frequency is the Strouhal frequency. This frequency is so

fundamental to VIV, it was defined in conjunction with research on VIV, even though

it applies to stationary bodies only. The nondimensional number that results is

called the Strouhal number. It incorporates the free-stream velocity and the cylinder

diameter, and has a heavy dependence on Re.

St =
fsD

U
(2.11)

Often, the Strouhal frequency can be approximated by a constant value. Unless

stated otherwise, the Strouhal frequency is given as St = 0.21, a good approximation

for a large range of Reynolds number for a cylinder.

The next few quantities that are considered important to the development of a

VIV mathematical model relate directly to the physical features of the flow over the

body. They are the stagnation point, separation point, formation point, boundary

layer, shear layer, and vortex shedding. The stagnation point and separation point

are denoted in radians with zero radians being the potential flow stagnation point.
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2.2.6 Reduced Velocity

The reduced velocity has sometimes been referred to as the velocity ratio, as it is

a non-dimensional quantity. In the past when it was believed that only one vortex

shed from each side during each cycle of motion of the body, the Strouhal Frequency

was used to normalize the freestream velocity. However, the most recent and more

proper trend in VIV data analysis has been to use the natural frequency of the system

instead. This parameter is often used as the x-axis on many plots since it properly

collapses many test cases onto the same plot.

U∗ =
U

fnD
(2.12)

2.3 VIV Geometry
2.3.1 Stagnation Point

The stagnation point, θst, from potential flow theory is the point of zero velocity

on the body, and the only place where a streamline diverges. In viscous fluid flow,

the stagnation point still exists, but is defined as the point of highest pressure. There

is no streamline intersection in viscous fluid flow, and the point is not directly on

the body. However, it is reasonable to assume that the stagnation point is directly

on the body for most cases, and is considered as such here. The stagnation point

moves with the motion of the body as well as with the growth and shedding of the

vortices during VIV (see Figure 2.1). This motion has been observed to be periodic,

and will be assumed to be periodic with the Strouhal frequency, fs. The amplitude of

the motion of the stagnation point will be denoted by Θst.

θst = Θstf(t) (2.13)

2.3.2 Separation Point

The separation point is defined as the point where the wall shear stress is exactly

zero, after which point there is flow reversal. In viscous fluid flow this can be difficult
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to define, particularly if the separation point experiences excursions towards the

stagnation point. In experimental fluid flow, the separation point is the point where

fluid particles leave the wall. This is still hard to identify, but easier than finding the

point of flow reversal. There is a separation point both on the top and the bottom of

the cylinder. The separation point mean position is very strongly dependent on Re.

For example, in laminar flow, the mean position of the separation point has been

measured to be around 82◦ from the potential-flow stagnation point, but is pushed

back to around 120◦ for turbulent flow, creating a much narrower wake (White 1994).

The separation point also moves (see Figure 2.1), and is also assumed to be periodic

with fs.

θsp = Θspf(t) (2.14)

2.3.3 Formation Point

The formation point, denoted xfp, is a point in the near wake at which the shear

layer saturates and begins to form the von Kármán vortex. It moves away from the

body during vortex growth and quickly snaps back towards the body at the moment

the vortex sheds (see Figure 2.1). There is a very large dependence on Re due to the

fact that this is an instability region, and the number of vortices within the formation

point has been measured experimentally (Prasad and Williamson 1997), proving the

Re dependence. Additionally, the formation point has a dependence on the motion

of the body as well. This is assumed to be due to the fact that the formation region

becomes exposed to the flow due to the motion of the body.

2.3.4 Boundary Layer & Shear Layer

The boundary layer exists between the stagnation point, θst, and each respective

separation point, θsp. It is highly dependent on Re since viscous forces dominate in

this region. Any term that is the result of the effect of the boundary layer on the
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system will have the subscript BL. The shear layer exists between the separation

point, θsp and the formation point, xfp, and has an Re dependence as stated above

in the formation point discussion. The shear layer is also known as the feeding layer

in the case of VIV since it feeds energy or vorticity into the vortex. Any term that

is the result of the effect of the shear layer on the system will have the subscript SL.

2.3.5 von Kármán Vortex

Finally, the von Kármán vortex shedding is an important parameter. Past defi-

nitions of VIV assumed that there was only one mode of vortex shedding, where a

single vortex sheds from each side of the cylinder during one cycle of motion. How-

ever, Williamson and Roshko (1988) thoroughly investigated the vortex shedding

modes and have shown that there is a multitude of modes involving not just single

vortices from each side of the cylinder (2S), but two (2P) and three (2T) vortices

from each side of the cylinder. In VIVACE preliminary visualizations, as many as

five vortices are shed from each side of the cylinder during one cycle. It would be

advantageous to have a model that could incorporate this. Based on the properties

of coupling the cylinder and the attached fluid, we believe that the coupling between

the body motion and the vortex parameter could potentially incorporate multiple

vortex shedding modes. Any term that is the result of the effect of the attached

vortex on the system will have the subscript KV .

2.4 Features
2.4.1 Synchronization

One of the most intriguing and significant features of VIV that separates it from

other fluid-structure interactions is the “range of synchronization” and the inherent

characteristics of the range of synchronization. This range of synchronization has

been extensively analyzed and described over several decades. Sumer and Fredsøe
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(1997) describe the range of synchronization. Plotting the amplitude of oscillation

divided by the diameter of the cylinder versus the reduced velocity is the most

common way to illustrate the range of synchronization.

Synchronization is comprised of three sections: (1) initial branch, (2) upper

branch, (3) lower branch. Figure 2.2 shows the approximate nature of these three

branches followed by desynchronization. The amplitudes A/D are typically around

the order of one. The three branches do vary in nature depending on the parameters

described above for a particular scenario. The initial branch will typically have the

lowest amplitude oscillations, while the upper branch will have the highest ampli-

tude. Depending on the mass ratio or the damping, the upper branch may not exist

over a range but only at a point, and the lower branch may lead directly to desyn-

chronization rather than existing over a large range as well, as was shown in Feng

(1968).

The effect of the Reynolds number must also be considered in addition to the mass

and damping ratios. Bernitsas, Raghavan, Ben-Simon, and Garcia (2006) showed

experiments in the critical Reynolds number range, where the upper branch seemed

to extend from U∗ ≈ 5 to U∗ ≈ 10, increasing in amplitude with increasing U∗,

and then directly into desynchronization. This could also be described as the lower

branch being raised up to the upper branch. Further experimentation in this range

is needed to determine what is causing the change in the range of synchronization in

the critical Re regime.

2.4.2 Lock-in

Another key feature unique to VIV is the frequency lock-in. This corresponds

to the vortex shedding frequency locking into the natural frequency of the cylinder,

where the cylinder is also responding at the natural frequency. Lock-in typically
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occurs over most of the range of synchronization. The frequency of vortex shedding

may not always be equal to the natural frequency, but the frequency of response of

the cylinder versus the frequency response of vortex shedding will be approximately

equal within the range of synchronization.

Figure 2.3 shows the different frequeny lock-on behaviors based on the mass ratio.

For most real-world applications, the mass ratio is above 1 and often above 10, so

the frequency ratios, fC/fn typically falls around unity.

There is a large amount of confusion presented in the literature for the frequency

lock-in plots. Although almost always written f/fn, it is not always clear what

frequency f represents. Sometimes the frequency is the frequency of vortex shedding,

while other times it represents the frequency of oscillation of the cylinder. The

frequency plot shown in Figure 2.3 shows the frequency of oscillation of the cylinder.

However, before U∗ ≈ 5 and after lock-out at desynchronization, it has been shown

in many experiments that the frequency of oscillation of the cylinder remains around

the natural frequency. The frequency of vortex shedding is what has been clearly

found to lock-in and then lock-out. It is important that attention be paid when

reading frequency lock-in plots and caution in interpreting the results. The vortex

shedding frequency and the cylinder oscillation frequency are not the same. This is

further emphasized in the discussion of vortex shedding modes.

2.4.3 Phase Shift

This phase refers to the phase difference between the forcing, or vortex shedding,

and the motion of the cylinder. The forcing always leads the displacement, as stated

in the cliché “the donkey leads the cart”. This is stated because in some equations

for the lifting and displacement of VIV, the phase has been attached to the lifting
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term. However, it should be attached to the displacement.

L = CL sin(ωt)

y = A sin(ωt + φ)

(2.15)

The phase shift or jump refers to the change in the phasing at the initiation of

lock-in, when the initial branch jumps to the upper branch. At reduced velocities

less than that at lock-in, the phase typically is around zero, while just after lock-in,

the phase typically jumps up. The actual value varies depending on the damping

and mass ratio, but can be as much or slightly more than a phase of 180◦, for a total

phase shift of 180◦.

This is a characteristic of the nonlinear, unforced nature of VIV; a further indi-

cation that a linear math model will not properly model the phenomenon.

2.4.4 Vortex Shedding Mode

It was originally thought that there was only one mode of vortex shedding. Since

the assertion by Bénard and von Kármán that vortices shed in an alternating pattern

from a stationary cylinder, this concept crossed over to VIV with the idea that a

single vortex sheds from the top and the bottom within one cycle of the cylinder

motion. However, this led to inconsistencies in the analysis of vortex shedding fre-

quency response versus cylinder frequency response. Later, with laser visualization

techniques, Williamson and Roshko (1988) were able to complete a map of vortex

shedding modes for forced oscillations of a cylinder. It was found that, for forced

oscillations, different vortex shedding modes resulted based on different reduced am-

plitudes and reduced velocities. It was later proposed by Bernitsas, Raghavan, and

Duchene (2007) that there may be even more vortex shedding modes based on the

Reynolds number as well, or a sort of three-dimensional mapping.

Unfortunately, the most extensive work on vortex shedding modes has been done
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for forced oscillations, and there are inherent problems with attempting to extrapo-

late the vortex shedding mode of natural oscillations from forced oscillations. How-

ever, it is important to note that the vortex shedding mode will not always be two

single vortices from each side, and that the frequency of vortex shedding is an im-

portant parameter to record.

Figure 2.5 shows a plot of the vortex patterns for a forced oscillating cylinder,

where several patterns have been identified unique to amplitude and flow speed.

These vortex shedding modes are described in Figure 2.6 It is important to note

that this is for forced oscillations, and many of the regions will never be crossed by

free vibrations. The switching between interfaces and the phasing with respect to

oscillations is not abrupt, but occurs over several cycles of oscillation.

One thing that has been found by the VIVACE group is the possible existence

of higher vortex shedding modes. VIV research has begun to refer to triple vortices

from each side, 2T . This could be interpreted as the same as what is referred to in

Figures 2.5 and 2.6 as 2P +2S, where a pair, P , and single S, from one side is a triple

T . VIVACE has initial visualizations suggesting quadruple and possibly quintuplet

vortices from each side for the higher Re. This corresponds to the proposal of more

vortex shedding modes based on Re from Bernitsas, Raghavan, and Duchene (2007).

2.4.5 Mass-Damping

Above, the mass-damping parameter was defined under the dimensionless param-

eters. The parameter, α = (m∗ + ca)ζ, has been shown to be useful under certain

contexts. In addition to introducing the parameter, Griffin (1978) found that when

the mass-damping parameter is used as the horizontal axis against the maximum

possible amplitude divided by diameter, A/D, many points fell into a smooth curve.

More recently, it has been shown that over certain ranges of Reynolds numbers,
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many points can be collapsed onto a single line with additional modifications to this

Skop-Griffin parameter, α (Govardhan and Williamson 2006). However, it has been

shown that this does not hold over all Reynolds numbers (Bernitsas, Raghavan, and

Duchene 2007). Figure 2.7 shows the modified Griffin plot, where most subcritical

Reynolds numbers collapse onto a single line. However, for higher subcritical and

critical Reynolds numbers, the current modified Griffin plot no longer holds and the

current state of the mass-damping behavior is questionable (Bernitsas, Raghavan,

and Duchene 2007).

It is proposed that the actual relationship is the result of the damping multiplied

by the natural frequency, as this does appear in the dimensionless version of the

mass-spring-damping equation. It would be interesting to see how the plots are

modified when the parameter is ωnζ rather than m∗ζ.
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Figure 2.6: The vortex patterns identified using a forced oscillating cylinder (Williamson and
Roshko 1988).
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CHAPTER 3

Development of a Mathematical Model of VIV

The model to be developed and used in this dissertation will be a nonlinear, single

degree-of-freedom equation developed from generalized energy equations using Hamil-

ton’s principle. To begin, we will define the degree-of-freedom. The obvious degree-

of-freedom is the motion of the cylinder perpendicular to the free-stream. This

degree-of-freedom will be denoted using the variable y, and is a function of time

(y(t)). The cylinder is only allowed one degree-of-freedom, as this is practical for

the VIVACE system. Often times, two degrees of freedom are present, where inline

motion is also affecting the cylinder, although not of the same order of magnitude.

However, in VIVACE, the second degree-of-freedom is restricted.

Once the variables have been declared, and their behavior based on the above

section’s physical features, the Lagrangian equation and Hamilton’s principle will

be applied. Hamilton’s principle is necessary because it allows for the presence of

non-conservative forces. Just based on the mass-spring-dashpot example, we already

know that there are non-conservative forces due to damping. Obviously, the viscosity

in the fluid also leads to a dissipation of energy when looking within a non-infinite

fluid mass. Therefore, Hamilton’s principle is the appropriate choice here.
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3.1 Hamilton’s Principle

William Rowen Hamilton developed the variational indicator for admissible mo-

tion of a dynamic system between specified configurations. By applying calculus of

variations to the variational indicator, Lagrange’s equations are recovered. Many ref-

erences cover the variational indicator for Hamilton’s Principle (Crandall, Karnopp,

Kurtz, and Pridmore-Brown 1968, Harrison and Nettleton 1997, Jordan and Smith

1999, Langhaar 1989). The explanation that follows most closely resembles that

outlined in Crandall, Karnopp, Kurtz, and Pridmore-Brown (1968).

The derivation of Hamilton’s principle begins with deriving the force-momentum

variational indicator, separating the potential energy from conservative forces, V (ξ1, ..., ξn)

and generalized, nonconservative forces, Ξj. This gives the following relationship for

n independent force-momentum relations. fi is the forcing terms, δRi is the vari-

ational distance of of the force terms, and the product is work energy. δV is the

variational potential energy, and δξj is the degree-of-freedom, which is y for the

given model.
N∑

i=1

fi · δRi = −δV +
n∑

j=1

Ξjδξj (3.1)

Integration by parts leads to a relationship for the variation of the kinetic coenergy,

T . Then, the entire expression is integrated over time, leading to the expression for

the variational indicator, V.I.

V.I. =

∫ t2

t1

[
δ (T − V ) +

n∑
j=1

Ξjδξj

]
dt (3.2)

The above equation already references the Lagrangian, L = T − V , where the

Lagrangian is a function of the degrees of freedom and time.

V = V (ξ1, ξ2, ..., ξn) (3.3)

T = T (ξ̇1, ξ̇2, ..., ξ̇n, ξ1, ξ2, ..., ξn, t) (3.4)
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L = T − V = L(ξ̇1, ξ̇2, ..., ξ̇n, ξ1, ξ2, ..., ξn, t) (3.5)

The variation of the Lagrangian is given as follows.

δL =
n∑

j=1

(
∂L
∂ξ̇j

δξ̇j +
∂L
∂ξj

δξj

)
(3.6)

The variational indicator, with application of commutativity for δ̇j = d(δξj)/dt,

then becomes the following integral.

V.I. =

∫ t2

t1

n∑
j=1

[
∂L
∂ξ̇j

d

dt
δξj +

∂L
∂ξj

δξj + Ξjδξj

]
dt (3.7)

Since this is variational calculus and all displacements in the model derivation

are artificial, δξj vanishes at t1 and t2, leaving behind the Lagrange’s equation with

the addition of the nonconservative forces, where all geometrical variables have been

expressed in terms of the generalized coordinates ξj.

∂

∂t

(
∂L
∂ξ̇j

)
− ∂L

∂ξj

= Ξj (3.8)

In the model developed in this thesis, it is important to express everything in

terms of energy before deriving Lagrange’s equations from Hamilton’s principle. This

includes the nonconservative, or dissipative, forces. For this reason, we will back step

to express these forces in terms of a variational work term. This only slightly changes

the final Lagrange’s equations.

δWj = Ξjδξj (3.9)

Ξj =
δW

δξ j

(3.10)

∂

∂t

(
∂L
∂ξ̇j

)
− ∂L

∂ξj

=
δW

δξ j

(3.11)

This is the equation that will be used to take the derived energies to a system

of force equations. Again, there is only going to be one generalized coordinate, the

64



single degree-of-freedom of the cylinder, y, so the above equation can be simplified

to a single equation where j = 1.

∂

∂t

(
∂L
∂ẏ

)
− ∂L

∂y
=

δW

δy
(3.12)

First, the kinetic coenergy, T , must be defined. This is the work required to

increase a body’s velocity from rest to some velocity v. It is a coenergy because of

the definition of the Lagrangian. The attached fluid is considered as an addition to

the cylinder, so there is kinetic coenergy for the cylinder and for the attached fluid,

separately defined but part of the same system. Second, the potential energy, V ,

must be defined. The potential energy is the work done to transfer the body from

one configuration to another. The obvious contributor to the potential energy is the

body spring.

In general terms, the kinetic coenergy and the potential energy can include any

combination of the body displacement, body velocity, wake parameter displacement,

and wake parameter velocity. A general definition for a such a single degree-of-

freedom system can be defined as follows.

T =
1

2
M(y, ẏ)ẏ2 (3.13)

V =
1

2
K(y, ẏ)y2 (3.14)

In the above equations, M represents the inertial coefficients, typically represent-

ing some sort of mass or added mass. K represents stiffness terms, such as spring

coefficients. They can all be a function, linear or nonlinear, of (y, ẏ) as stated above.

Now the only, but most important step, in the development of our own model, is to

determine how to properly represent all the energy in the system in order to derive

the force system of equations. We want to incorporate the behavior of the stagnation

65



point, separation point, formation point, and von Kármán vortex shedding. We want

to express all terms in terms of Re, St, m, c, and k.

3.2 First-Order Approximations for Energy

Expressions for the energy are now derived. The entire fluid cannot be considered,

as this would account for infinite energy. Therefore, the energy is found in the fluid

that appears to affect the cylinder, and their energy can be expressed using the

cylinder displacement y and velocity ẏ. As outlined in Chapter 2, certain parts of

the fluid can be considered attached, and the energy within any attached fluid is

derived with first-order approximations here.

The attached fluid can be divided into four parts: the boundary layer, the shear

layer, the attached von Kármán vortex, and dissipated energy, each segment being

present separately in the top layer and the bottom layer of the cylinder (see Figure

3.1). The top layer has one vorticity orientation (into the plane or clockwise), while

the bottom layer has the opposite vorticity orientation (out of the plane or counter-

clockwise). The flow of energy is as follows. Energy from the free-stream is captured

(advected) into the boundary layer (BL) while the fluid is in contact with the body.

This follows well from what is known about energy transfer and shear stress at a

solid-fluid boundary. The energy in the boundary layer is then transported down-

stream into the shear layer (SL). This will be represented by seaming the velocity

profile at the end of the boundary layer with the velocity profile at the beginning

of the shear layer. The energy continues downstream within the shear layer until

the shear layer ends. At the end of the shear layer, the energy now splits, where a

certain percentage, α, feeds into the attached von Kármán vortex (KV ), allowing it

to grow, and the rest, 1−α, is lost downstream through dissipation. The shear layer

energy output is seamed with the attached vortex growth through the mass flux. All
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energies determined in the following sections represent energy impacting the system,

where the system is the cylinder, top and bottom boundary layers, top and bottom

shear layers, and top and bottom attached vortices. All energies effect the body in

the system.

Later, the timing of the vortex shedding will be seamed with the timing of the

minimum values of the formation point, xfp, the separation point, θsp, and the stag-

nation point, θst, where the stagnation point is affected by both the top and the

bottom. Then, as the vortex grows, each of these values also reach its maximum

values.

3.3 Stationary Cylinder
3.3.1 Boundary Layer Energy

In order to determine what parameters play a role in the total energy and how

they affect the energy, a first order approximation can lead to great insight. For

the kinetic co-energy in the boundary layer, assuming that the velocity profile from

the surface of the cylinder to free-stream is linear with the radius, and the boundary

layer thickness is linearly increasing with the angle, the below approximations can

be made for the top boundary layer, denoted by the super-subscript t (see Figure

2.1). The bottom boundary layer (b) has a similar expression where boundary layer

thickness δ becomes a function of θspb
, which is negative, rather than θspt , which is

positive. The same expression can be used both for the top and bottom boundary

layer.

R < r < R + δ, 0 < θ < 2π (3.15)

ur(r, θ) = 0 (3.16)

uθ(r, θ) = αr + β (3.17)

uθ(R) = 0 (3.18)
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uθ(R + δ) = U (3.19)

uθ(r) =
U

δ
(r −R) (3.20)

uBLt =
√

u2
r + u2

θ =
U

δt

(r −R) (3.21)

δt(θ) = αθ + β (3.22)

δt(θst) = 0 (3.23)

δt(θspt) = ∆ (3.24)

δt(θ) =
∆

θspt − θst

(θ − θst) (3.25)

uBLb
(r) =

U

δb

(r −R) (3.26)

δb(θ) =
∆

θspb
− θst

(θ − θst) (3.27)

The kinetic co-energy within one side of the boundary layer can then be found by

integrating the velocity from the stagnation point to the separation point and from

the cylinder surface to the boundary layer thickness. The equation to be solved for

one side of the boundary layer is as follows.

TBLt =
1

2

∫ θsp

θst

∫ R+δt

R

ρu2
BLt

(r, θ)r dr dθ (3.28)

The above double integral can be carried out by hand. However, it is tedious, and

the final integration was performed using the Maple software (Maplesoft 2007). The

result of the boundary layer energy integral is as follows.

TBLt =
ρU2∆

24
(2R + ∆) (θspt − θst) (3.29)

As can be seen from the above equation, the kinetic co-energy in the boundary

layer is dependent upon all geometric inputs, particularly θst and θsp. Therefore, any

motion that the stagnation point and separation point may experience will definitely
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have an effect on the energy in the boundary layer. When θst and θsp become

functions of time for more advanced approximations, TBL will directly carry this

time dependence from the integrals.

3.3.2 Shear Layer Energy

Next, we will examine a crude approximation of the shear layer. Assuming that

the separation point θsp is around π
2
, the shear layer can be approximated as a thin

rectangular region leaving the top of the cylinder into the wake (see Figure 2.1). The

shear layer exists, as defined above, between the separation point and the formation

point. Therefore, assuming a linear velocity profile between the dead-fluid region

behind the cylinder and the free-stream, as given below, the shear layer kinetic co-

energy for one side of the cylinder can be represented as follows. The formation point

xfp is measured from the vertical axis of the center of the cylinder.

0 < ζ < xfp, 0 < ξ < ∆ (3.30)

uSLt(ξ) = αξ + β (3.31)

uSLt(0) = 0 (3.32)

uSLt(∆) = U (3.33)

uSLt(ξ) =
U

∆
ξ (3.34)

TSLt =
1

2

∫ ∆

0

∫ xfp

0

ρu2
SLt

(ζ, ξ) dζ dξ (3.35)

TSLt =
1

6
ρU2∆xfpt (3.36)

As can be seen from the above result, the shear layer has been greatly simplified,

and is only dependent on the formation point, xfp. If the separation point had not

been taken to be the top of the cylinder, the separation point θspt would also have

played an equally important role in the kinetic co-energy approximation. Adding in
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the effect of θspt to the above expression for the shear layer energy results in two

separate expressions for when the θspt is less than π
2

on the top (greater than −π
2

on

the bottom) and when the θspt is greater than π
2

on the top (less than −π
2

on the

bottom).

For the case of θspt less than π
2

on the top, the following result can be obtained.

uSLt1(r) =
U

∆
(r −R) θspt < θ <

π

2
(3.37)

uSLt2(ξ) =
U

∆
ξ θ >

π

2
(3.38)

TSLt =
1

2

∫ R+∆

R

∫ π
2

θspt

ρu2
SLt1

(r, θ)r dr dθ +
1

2

∫ ∆

0

∫ xfpt

0

ρu2
SLt2

(ζ, ξ) dζ dξ (3.39)

TSLt =
ρ∆U2

6

[(
3

4
∆ + R

) (π

2
− θspt

)
+ xfpt

]
(3.40)

For the case of θsp greater than π
2

on the top, the expression only has one ve-

locity equation and therefore only one integral. However, a new assumption has to

be made in order to have one integral. It is assumed that the perpendicular line

from the cylinder is relatively vertical so that the horizontal distance is negligible,

or ∆ sin
(
θsp − π

2

)
<< R sin

(
θsp − π

2

)
. This is simplified to ∆ << R, meaning the

boundary layer thickness is much smaller than the radius of the cylinder. This is

assumed to be true for the type of flow of interest.

uSLt(ξ) =
U

∆
ξ (3.41)

TSLt =
1

2

∫ ∆

0

∫ xfpt

R sin(θspt−π
2
)

ρu2
SLt

(ζ, ξ) dζ dξ (3.42)

TSLt =
ρ

6
∆U2

(
xfpt −R sin

(
θspt −

π

2

))
(3.43)

3.3.3 Attached von Kármán Vortex Energy

The energy within the vortex is assumed to effect the system as long as the vortex

is classified as attached. This follows logically from the Kutta-Joukowski Theorem,
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where the lift force results from the attached circulation, or the spinning of the

cylinder. By extension, it is argued that any vorticity affects the cylinder as long

as the vorticity can be considered attached to the cylinder. Therefore, a vortex

attached to the feeding shear layer is still attached to the cylinder. It is at the

instant it detaches and is carried downstream that the vortex is no longer attached.

Traditionally, it has been thought that there is a precise moment at which a vortex

sheds. However, after close examination of many experimental images of vortex

shedding, it is obvious that an attachment trail can be traced even after a vortex is

considered shed. For this reason, the moment of vortex shedding is not so clearly

defined, and caution should be used in defining the shedding criterion. In fact, the

shedding process may be more gradual than instantaneous in nature. This hypothesis

will be further tested in more advanced models.

For the linear model of the attached vortex, the Rankine vortex model is assumed

to be the best approximation of the real vortex. This is because the Rankine vortex is

already a linear model of a real vortex. It is a much better approximation of a real

vortex than the irrotational model because there is finite vorticity at the center of

the vortex for the Rankine vortex while the irrotational model has infinite vorticity

at the center, which is impossible in nature. See Figure 3.2.

The radius of the vortex must be defined for the Rankine model. If the energy

of the Rankine vortex was integrated to an infinite radius, the vortex would have

infinite energy. Therefore, it is important to define the radius to which the energy

of the vortex is to be integrated for affecting the cylinder. The parameter η will

be used to define the radius of the vortex, and only the energy within this radius

will be considered (see Figure 2.1). This is acceptable since the Rankine vortex has

a velocity outside of the radius that decays to a zero free-stream. However, here
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the free-stream is not zero and the vortex velocity does not need to be allowed to

decay. At present, η will be considered constant. In the final model, it will become a

function of time and a function of the mass flux from the shear layer. The Rankine

vortex velocity magnitude up to the radius η is now defined as follows.

0 < r < η, 0 < θ < 2π (3.44)

uθ = ωr (3.45)

ur = 0 (3.46)

If the free-stream velocity is assumed to follow the outside circumference of the

vortex, the rotational velocity can then easily be defined using the same free-stream

velocity as the boundary and shear layers. The kinetic co-energy is then found in

similar fashion as with the boundary layer and shear layer.

uKVt =
U

ηt

r (3.47)

TKVt =
1

2

∫ 2π

0

∫ ηt

0

ρu2
KVt

(r)r dr dθ (3.48)

TKVt =
1

2

∫ 2π

0

∫ ηt

0

ρ
U2r3

η2
t

dr dθ (3.49)

TKVt =
π

4
ρU2η2

t (3.50)

The total attached fluid energy using first-order approximations then results by

simply summing the kinetic co-energies of the boundary layer, shear layer, and at-

tached vortex. This will be our starting point upon which to build the energy model

to be placed into the Hamilton equation.

3.4 Cylinder with Single Degree-of-Freedom
3.4.1 Body Energy

The only degree of freedom is that of the body motion. The motion of the body

is linear and does not need to be simplified for a linear approximation. Therefore,
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the following linear equations for the energy of the body are the same equations that

will be used throughout. The body has two conservative energies: co-kinetic (from

the motion) and potential (from the spring). They are defined as follows.

Tbody =
1

2
mẏ2 (3.51)

Vbody =
1

2
ky2 (3.52)

In addition to these two conservative energies, there is also a known nonconserva-

tive energy acting on the body in the form of damping. This will be developed later

in this chapter, as nonconservative energy must be treated differently than conser-

vative energy in the development of Hamilton’s principle. There is also an unknown

nonconservative energy acting on the wake which prevents all energy flowing into the

von Kármán vortex. A mathematical representation of this nonconservative energy

will also be developed in this chapter.

With the body energy now defined, the total system energy is changed. It is not

a simple matter of summing the body energy with the attached fluid energy. The

motion of the body must now be taken into account and new linear approximations

of the system must be defined. It is assumed at this point that the entire attached

fluid experiences the body motion ẏ uniformly across the boundary layer, shear layer,

and von Kármán vortex. This is an obvious over-simplification of the affect the body

motion has on the attached fluid. However, it is a reasonable approximation as the

effect of the body motion will be experienced by the entire attached fluid, and is

estimated to be of the first order in influence. Future work could attempt to allow

for only part of the body motion to translate to the attached fluid, or for there to

be a delay between the body motion and the fluid motion.
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3.4.2 Boundary Layer Energy with Body Motion

R < r < R + δ, 0 < θ < 2π (3.53)

ur(r, θ) = ẏ sin(θ) (3.54)

uθ(r, θ) =
U

δt

(r −R) + ẏcos(θ) (3.55)

uBLt(r, θ) =
√

u2
r + u2

θ =

√
U2

δ2
t

(r −R)2 +
2U

δt

(r −R)ẏcos(θ) + ẏ2 (3.56)

From mathematical software Maple:

TBLt =
ρ∆U2

24
[(2R + ∆) (θspt − θst)] +

ρ∆Uẏ

3

[
−2∆ (sin(θspt)− sin(θst))

(θspt − θst)
2

]

+
ρ∆Uẏ

6

[
(4∆ + 3R) cos(θspt)− 3R sin(θst)

(θspt − θst)

]

+
ρ∆Uẏ

6
[2∆ sin(θspt) + 3Rcos(θspt)] +

ρ∆ẏ2

12
[(∆ + 3R) (θspt − θst)]

(3.57)

3.4.3 Shear Layer Energy with Body Motion

0 < ζ < xfp, 0 < ξ < ∆ (3.58)

θspt = π
2

u(ζ, ξ) =
U

∆
ξ (3.59)

v(ζ, ξ) = ẏ (3.60)

uSLt(ζ, ξ) =
√

u2 + v2 =

√
U2

∆2
ξ2 + ẏ2 (3.61)

From mathematical software Maple:

TSLt =
1

2
ρ∆xfpt

(
U2

3
+ ẏ2

)
(3.62)
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θspt
< π

2

uSLt1(r, θ) =

√
U2

∆2
(r −R)2 +

U

∆
(r −R)ẏcos(θ) + ẏ2 (3.63)

uSLt2(ξ) =

√
U2

∆2
ξ2 + ẏ2 (3.64)

TSLt =TSLt1 + TSLt2

=
ρ∆

24

[(
3U2∆ + 6ẏ2∆ + 4U2R + 12Rẏ2

) (π

2
− θspt

)]

+
ρ∆

12

[
(2Uẏ∆ + 3UẏR) (1− sin(θspt)) + 6xfpt

(
U2

3
+ ẏ2

)]
(3.65)

θspt > π
2

uSLt(ξ) =

√
U2

∆2
ξ2 + ẏ2 (3.66)

TSLt =
ρ∆

2

(
U2

3
+ ẏ2

) (
xfpt −R sin

(
θspt −

π

2

))
(3.67)

3.4.4 Attached von Kármán Vortex Energy with Body Motion

0 < r < η, 0 < θ < 2π (3.68)

uθ =
U

η
r + ẏcos(θ) (3.69)

ur = ẏ sin(θ) (3.70)

The above equations are implemented for both the top and bottom vortex. The

energy from the top vortex only is given as follows.

uKVt =

√
U2r2

η2
t

+ 2
Ur

ηt

ẏcos(θ) + ẏ2 (3.71)

TKVt =
πρη2

t

4

(
U2 + 2ẏ2

)
(3.72)
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3.5 Nonconservative Work

The most obvious example of a nonconservative work is the mechanical damping

that is always present in the mass-spring-dashpot example.

δWbody = −cyδy (3.73)

In addition, there are losses in the fluid. The nonconservative work in the fluid

will be the dissipation of flow from the shear layer that does not feed the vortex.

Since there is a set flow out of the shear layer, analytically defined for the linear

velocity profile, it is easy to represent the flow that goes into the vortex and the flow

that is dissipated directly into the wake and assumed to no longer have an effect on

the system.

QSLout = uout · A =
∆U

2
(3.74)

QSLout = QKVin
+ Qdissipated (3.75)

QKVin
= α

∆U

2
(3.76)

Qdissipate = (1− α)
∆U

2
(3.77)

From the dissipated flow Qdissipated, an expression for the work of this nonconser-

vative component must be derived.

δWdissipated = −ρQdissipateduavgδy (3.78)

uavg =
1

∆

∫ ∆

0

U

∆
ξ dξ =

U

2
(3.79)

δWdissipated = −(1− α)ρ
∆U2

4
δy (3.80)

3.6 Derivation of the Force Equations

The total conservative energy of the system can now be expressed summing the

updated first-order approximations for the fluid with the energy of the body. At
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this time, it is important to remember that there is a top and bottom shear layer,

boundary layer, and von Kármán vortex. The boundary layer thickness ∆ will be

considered the same on the top and bottom, while θsp, xfp, and η will all have separate

top and bottom values. There is only one θst. It is also important to understand the

sign that will be placed in front of terms from the top of the cylinder and the terms

from the bottom of the cylinder. In order to determine the appropriate sign, the

Kutta-Joukowski theorem is revisited. It is known that for clockwise rotation, the

lift is in the positive y-direction, while for counter-clockwise rotation, the lift is in

the negative y-direction. Understanding the basic rotational direction caused by

the shear stress leads to the conclusion that the terms on the top of the cylinder

create positive lift, and the terms on the bottom create negative lift. For this reason,

negative signs will be placed in front of the terms on the top (will become positive

when moved to the other side of the equal sign later).

L = T − V

= Tbody − (TBLt + TSLt + TKVt) + (TBLb
+ TSLb

+ TKVb
)− Vbody

(3.81)

∂

∂t

(
∂L
∂ẏ

)
− ∂L

∂y
= Ξ (3.82)

With so many terms within each energy equation, it will be useful here to do

the derivation separately in order to simplify and double check the terms before

combining them into one large equation. This is possible because the Lagrangian is

a linear operator.

3.6.1 Body Force

Lbody = Tbody − Vbody =
1

2
mẏ2 − 1

2
ky2 (3.83)

∂

∂t

(
∂Lbody

∂ẏ

)
− ∂Lbody

∂y
= Fbody = mÿ + ky (3.84)
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3.6.2 Boundary Layer Force

LBLt = TBLt =
ρ∆U2

24
[(2R + ∆) (θspt − θst)]

+
ρ∆Uẏ

3

[
−2∆ (sin(θspt)− sin(θst))

(θspt − θst)
2

]

+
ρ∆Uẏ

6

[
(4∆ + 3R) cos(θspt)− 3R sin(θst)

(θspt − θst)

]

+
ρ∆Uẏ

6
[2∆ sin(θspt) + 3Rcos(θspt)]

+
ρ∆ẏ2

12
[(∆ + 3R) (θspt − θst)]

(3.85)

FBLt =
ρ∆U

3


−2∆

(
2cos(θspt)θ̇spt − cos(θst)θ̇st

)

(θspt − θst)
2




+
ρ∆U

3


4∆ (sin(θspt)− sin(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
3




+
ρ∆U

6

[
−(4∆− 3R) sin(θspt)θ̇spt + 3R sin(θspt)θ̇st

(θspt − θst)

]

+
ρ∆U

2


R (cos(θspt) + cos(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
2




+
ρ∆U

6

[
2∆cos(θspt)θ̇spt − 3R sin(θspt)θ̇spt

]

+
ρ∆

6
(∆ + 3R)

[
ẏ

(
θ̇spt − θ̇st

)
+ ÿ (θspt − θst)

]

(3.86)

3.6.3 Shear Layer Force
θspt < π

2

LSLt = TSLt =
ρ∆

24

[(
3U2∆ + 6ẏ2∆ + 4U2R + 12Rẏ2

) (π

2
− θspt

)]

+
ρ∆

12

[
(2Uẏ∆ + 3UẏR) (1− sin(θspt)) + 6xfpt

(
U2

3
+ ẏ2

)] (3.87)

FSLt =
ρ∆

12

[
(6∆ + 12R) ÿ

(π

2
− θspt

)
− (2∆ + 3R)Ucos(θspt)θ̇spt

]

− ρ∆

2

[
(∆− 2R)ẏθ̇spt

]
+ ρ∆xfpt ÿ + ρ∆ẋfpt ẏ

(3.88)
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θspt
> π

2

LSLt = TSLt =
ρ∆

2

(
U2

3
+ ẏ2

) (
xfpt −R sin

(
θspt −

π

2

))
(3.89)

FSLt =ρ∆
[
ÿ

(
xfpt −R sin

(
θspt −

π

2

))
+ ẏ

(
ẋfpt −Rθ̇sptcos

(
θspt −

π

2

))]
(3.90)

3.6.4 Attached von Kármán Vortex Force

LKVt = TKVt =
πρη2

t

4

(
U2 + 2ẏ2

)
(3.91)

FKVt = πρ
(
2η̇tẏ + η2

t ÿ
)

(3.92)

3.6.5 Nonconservative Forces

δWbody = −cẏδy (3.93)

Ξbody =
δWbody

δy
= −cẏ (3.94)

δWdissipated = −(1− α)ρ
∆U2

4
δy (3.95)

Ξdissipated =
δWdissipated

δy
= −(1− α)ρ

∆U2

4
(3.96)

A preliminary application of the Hamiltonian gives some insight into the results of

the first-order approximation. Although everything to this point has been declared

as simply as possible, there are already many terms that result from the derivatives.

This is due to the fact that many parameters are a function of either t or ẏ, which

both serve as the base for derivatives. All of the assumptions taken to arrive at this

model to this point are summarized in Table 3.1.
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3.7 Full Force Equation

There are several ways to look at the entire equation. First, the typical mass-

spring-dashpot equation can be equated to the forcing terms as follows.

mÿ + cẏ + ky = Ξdisst + Ξdissb
+ FBLt + FSLt + FKVt − FBLb

− FSLb
− FKVb

(3.97)
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|θsp| < π
2

mÿ + cẏ + ky = −(1− α)ρ
∆U2

2
+

ρ∆2U

3


−2

(
2cos(θspt)θ̇spt − cos(θst)θ̇st

)

(θspt − θst)
2




+
ρ∆2U

3


4 (sin(θspt)− sin(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
3




+
ρ∆U

6

[
−(4∆− 3R) sin(θspt)θ̇spt + 3R sin(θspt)θ̇st

(θspt − θst)

]

+
ρ∆U

6

[
2∆cos(θspt)θ̇spt − 3R sin(θspt)θ̇spt

]

+
ρ∆U

2


R (cos(θspt) + cos(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
2




+
ρ∆

6
(∆ + 3R)

[
ẏ

(
θ̇spt − θ̇st

)
+ ÿ (θspt − θst)

]

+
ρ∆

12

[
(6∆ + 12R) ÿ

(π

2
− θspt

)
− (2∆ + 3R)Ucos(θspt)θ̇spt

]

− ρ∆

2

[
(∆− 2R)ẏθ̇spt

]
+ ρ∆ [xfpt ÿ + ẋfpt ẏ] + πρ

[
2η̇tẏ + η2

t ÿ
]

− ρ∆2U

3


2

(
2cos(θspb

)θ̇spb
− cos(θst)θ̇st

)

(θst − θspb
)2




− ρ∆2U

3


−4 (sin(θspb

)− sin(θst))
(
θ̇st − θ̇spb

)

(θst − θspb
)3




− ρ∆U

6

[
−(4∆− 3R) sin(θspb

)θ̇spb
+ 3R sin(θspb

)θ̇st

(θst − θspb
)

]

+
ρ∆U

6

[
2∆cos(θspb

)θ̇spb
+ 3R sin(θspb

)θ̇spb

]

− ρ∆U

2


R (cos(θspb

) + cos(θst))
(
θ̇st − θ̇spb

)

(θst − θspb
)2




− ρ∆

6
(∆ + 3R)

[
ẏ

(
θ̇st − θ̇spb

)
+ ÿ (θst − θspb

)
]

− ρ∆

12

[
(6∆ + 12R) ÿ

(π

2
+ θspb

)
+ (2∆ + 3R)Ucos(θspb

)θ̇spb

]

− ρ∆

2

[
(∆− 2R)ẏθ̇spb

]
− ρ∆ [xfpb

ÿ + ẋfpb
ẏ]− πρ

[
2η̇bẏ + η2

b ÿ
]

(3.98)
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|θsp| > π
2

mÿ + cẏ + ky = −(1− α)ρ
∆U2

2
+

ρ∆2U

3


−2

(
2cos(θspt)θ̇spt − cos(θst)θ̇st

)

(θspt − θst)
2




+
ρ∆2U

3


4 (sin(θspt)− sin(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
3




+
ρ∆U

6

[
−(4∆− 3R) sin(θspt)θ̇spt + 3R sin(θspt)θ̇st

(θspt − θst)

]

+
ρ∆U

6

[
2∆cos(θspt)θ̇spt − 3R sin(θspt)θ̇spt

]

+
ρ∆U

2


R (cos(θspt) + cos(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
2




+
ρ∆

6
(∆ + 3R)

[
ẏ

(
θ̇spt − θ̇st

)
+ ÿ (θspt − θst)

]

+ ρ∆
[
ÿ

(
xfpt −R sin

(
θspt −

π

2

))
+ ẏ

(
ẋfpt −Rθ̇sptcos

(
θspt −

π

2

))]

+ πρ
(
2η̇tẏ + η2

t ÿ
)

− ρ∆2U

3


2

(
2cos(θspb

)θ̇spb
− cos(θst)θ̇st

)

(θst − θspb
)2




− ρ∆2U

3


−4 (sin(θspb

)− sin(θst))
(
θ̇st − θ̇spb

)

(θst − θspb
)3




− ρ∆U

6

[
−(4∆− 3R) sin(θspb

)θ̇spb
+ 3R sin(θspb

)θ̇st

(θst − θspb
)

]

+
ρ∆U

6

[
2∆cos(θspb

)θ̇spb
+ 3R sin(θspb

)θ̇spb

]

− ρ∆U

2


R (cos(θspb

) + cos(θst))
(
θ̇st − θ̇spb

)

(θst − θspb
)2




− ρ∆

6
(∆ + 3R)

[
ẏ

(
θ̇st − θ̇spb

)
+ ÿ (θst − θspb

)
]

− ρ∆
[
ÿ

(
xfpb

−R sin
(
−θspb

− π

2

))
+ ẏ

(
ẋfpb

+ Rθ̇spb
cos

(
−θspb

− π

2

))]

− πρ
(
2η̇bẏ + η2

b ÿ
)

(3.99)
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However, it is obvious that many terms can be rearranged into added mass ma

and added fluid damping ca terms, leaving terms without a dependence on y on the

right hand side.

(m + ma)ÿ + (c + ca)ẏ + ky = F (3.100)
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|θsp| < π
2

mÿ + cẏ + ky

+ ρ

[
∆

(
θst

(
∆

3
+ R

)
+ (θspt + θspb

)

(
∆

3
+

R

2

)
+ (xfpb

− xfpt)

)
+ π

(
η2

b − η2
t

)]
ÿ

+ ρ

[
∆

(
θ̇st

(
∆

3
+ R

)
+

(
θ̇spt + θ̇spb

) (
∆

3
+

R

2

)
+ (ẋfpb

− ẋfpt)

)
+ 2π (η̇b − η̇t)

]
ẏ

= −(1− α)ρ
∆U2

2
+

ρ∆2U

3


−2

(
2cos(θspt)θ̇spt − cos(θst)θ̇st

)

(θspt − θst)
2




+
ρ∆2U

3


4 (sin(θspt)− sin(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
3




+
ρ∆U

6

[
−(4∆− 3R) sin(θspt)θ̇spt + 3R sin(θspt)θ̇st

(θspt − θst)

]

+
ρ∆U

6

[
2∆cos(θspt)θ̇spt − 3R sin(θspt)θ̇spt

]

+
ρ∆U

2


R (cos(θspt) + cos(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
2


− ρ∆

12
(2∆ + 3R)Ucos(θspt)θ̇spt

− ρ∆2U

3


−2

(
2cos(θspb

)θ̇spb
− cos(θst)θ̇st

)

(θst − θspb
)2




+
ρ∆2U

3


4 (sin(θspb

)− sin(θst))
(
θ̇st − θ̇spb

)

(θst − θspb
)3




− ρ∆U

6

[
−(4∆− 3R) sin(θspb

)θ̇spb
+ 3R sin(θspb

)θ̇sb

(θst − θspb
)

]

+
ρ∆U

6

[
2∆cos(θspb

)θ̇spb
+ 3R sin(θspb

)θ̇spb

]

− ρ∆U

2


R (cos(θspb

) + cos(θst))
(
θ̇st − θ̇spb

)

(θst − θspb
)2


− ρ∆

12
(2∆ + 3R)Ucos(θspb

)θ̇spb

(3.101)

84



|θsp| > π
2

mÿ + cẏ + ky

+ ρ

[
∆

(
θst

(
∆

3
+ R

)
+ (θspt + θspb

)

(
∆

3
+

R

2

)
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)
+ π
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η2

b − η2
t

)]
ÿ
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(
θ̇st
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∆

3
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)
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θ̇spt + θ̇spb
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∆

3
+
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2

)
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]
ẏ
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∆U2

2
+

ρ∆2U

3


−2
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


+
ρ∆2U

3
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3



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ρ∆U
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−(4∆− 3R) sin(θspt)θ̇spt + 3R sin(θspt)θ̇st

(θspt − θst)

]

+
ρ∆U

6
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2∆cos(θspt)θ̇spt − 3R sin(θspt)θ̇spt

]

+
ρ∆U

2


R (cos(θspt) + cos(θst))

(
θ̇spt − θ̇st

)

(θspt − θst)
2




− ρ∆2U

3


−2

(
2cos(θspb

)θ̇spb
− cos(θst)θ̇st

)

(θst − θspb
)2




+
ρ∆2U

3


4 (sin(θspb

)− sin(θst))
(
θ̇st − θ̇spb

)

(θst − θspb
)3




− ρ∆U

6

[
−(4∆− 3R) sin(θspb

)θ̇spb
+ 3R sin(θspb

)θ̇sb

(θst − θspb
)

]

+
ρ∆U

6

[
2∆cos(θspb

)θ̇spb
+ 3R sin(θspb
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]

− ρ∆U
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
R (cos(θspb

) + cos(θst))
(
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)
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


(3.102)
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Outer inviscid, irrotational fluid flow

Attached viscous, rotational fluid flow

Solid body

Energy into system

Energy out of system

Figure 3.1: Schematic of body and attached fluid region, showing area of energy into and out of
the system, including dissipation into the wake at the end of the shear layer.
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Figure 3.2: Rankine approximation compared to the nature of a real vortex.
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Table 3.1: Assumptions used in the development of the first-order approximations for inputs into
the derived energy model.

Assumptions for First-Order Approximations
1. the fluid-structure interaction of VIV can be effectively modeled in two-

dimensions for VIVACE
2. the model is a nonlinear, single degree-of-freedom equation developed from gen-

eralized energy equations using Hamilton’s principle
3. the velocity profile from the surface of the cylinder to free-stream is linear with

the radius
4. the boundary layer thickness is linearly increasing with the angle
5. a linear velocity profile between the dead-fluid region behind the cylinder and

the free-stream
6. the boundary layer thickness is much smaller than the radius of the cylinder
7. the energy within the vortex effects the system as long as the vortex is classified

as attached
8. the Rankine vortex model is the best approximation of the real vortex
9. the entire attached fluid experiences the body motion ẏ uniformly across the

shear layer, boundary layer, and von Kármán vortex
10. the boundary layer thickness ∆ will be considered the same on the top and

bottom
11. θsp, xfp, and η will all have separate top and bottom values
12. m, k, c, ρ, U , ∆, R, and α are constant in time
13. y, θst, θsp, xfp, and η are functions of time
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CHAPTER 4

Testing and Verifying Mathematical Model with Linear
Approximations

In order to examine the results produced from the mathematical model derived in

the previous model, several plots are created. These include a plot of the maximum

amplitude of oscillation of the cylinder divided by the diameter of the cylinder (A/D)

versus the velocity reduced by the natural frequency and the diameter of the cylinder

(U∗ = U/fnD), a plot of the phase difference between the maximum positive lift

and the maximum positive displacement (φ) versus the reduced velocity, and the

frequency of response with maximum energy (in some cases, there may be multiple

frequencies present in an energy spectrum, but only the one with maximum energy

will be taken in this case) normalized by the natural frequency of the cylinder (fr/fn)

versus the reduced velocity. In the A/D plot, the range of synchronization can be

observed. In the φ plot, a phase shift of 180◦ is expected at the point of resonance

(fn = fs). In the frequency plot, it is expected that the maximum frequency response

will lock-in to the natural frequency around fn = fs, and remain locked-in for higher

U∗ until a certain point at which it locks out. Later, a plot of the vortex shedding

mode can be created, where the number of vortices shed from each side during one

full cycle of cylinder motion can be counted. Empty plots with the above described
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axes are shown in Figure 4.1.

F = f sin(ωt)y = A sin(ωt + φ) (4.1)

4.1 Numerical Simulation

Numerical simulations are needed to discover how the system model responds

to periodic inputs. The Runge-Kutta Method of Order Four (RK4) is used to nu-

merically integrate this second-order derivative. The development of this method is

outlined here for those who are not familiar with it. The derivation and discussion

are taken from Mathews and Fink (2004), but many numerical method texts outline

this method. The Runge-Kutta Method was selected because it is derived from the

Taylor method with the same order of accuracy, but in Runge-Kutta there is no

need to compute higher derivatives. The result is an accurate and stable program.

The fourth-order method is most popular because increased accuracy beyond the or-

der four would increase the computational effort beyond worth for the case of most

simulations.

To derive RK4, the Taylor series is taken to order four.

yk+1 = yk + h
dy

dtk
+

h2

2

d2y

dt2k
+

h3

6

d3y

dt3k
+

h4

24

d4y

dt4k
+ O(hN+1) (4.2)

d(j)y

dt(j)
= f (j−1)(t, y(t)) (4.3)

It is then re-written in the desired form.

yk+1 = yk + w1k1 + w2k2 + w3k3 + w4k4 (4.4)

k1 = hf(tk, yk)

k2 = hf(tk + a1h, yk + b1k1)

k3 = hf(tk + a2h, yk + b2k1 + b3k2)

k4 = hf(tk + a3h, yk + b4k1 + b5k2 + b6 + k3)

(4.5)
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The terms in the above equations are then matched to the terms in the Taylor

series expansion, resulting in eleven equations for thirteen unknowns. It is then

convenient to assign values to two coefficients to solve the equations. The result is

RK4.

yk+1 = yk +
1

2
(f1 + 2f2 + 2f3 + f4) (4.6)

f1 = f(tk, yk)

f2 = f

(
tk +

h

2
, yk +

h

2
f1

)

f3 = f

(
tk +

h

2
, yk +

h

2
f2

)

f4 = f(tk + h, yk + hf3)

(4.7)

In the case of the derived model, it is a second-order differential equation to be

solved for y. Therefore, the model must be split into two equations where the highest

derivative of each equation is only first order. This is easily accomplished by denoting

the variables y and ẏ as two separate variables as follows.

x1(t) = y(t)

x2(t) = ẏ = ẋ1

ẋ2 = ÿ = ẍ1

(4.8)

Replacing all of the y, ẏ, and ÿ variables with x1 and x2 and adding in the equation

x2(t) = ẋ1 results in two first-order differential equations that can then be solved nu-

merically using RK4. The MATLAB program was then taken directly from Mathews

and Fink (2004), “Program 9.9 (Runge-Kutta Method of Order N = 4 for Systems),”

pages 533 to 534.

4.2 Sinusoidal Input

Several parameters must be defined as inputs for the system. As a first step, a

sinusoidal input is used as the simplest periodic input. Although lacking physical

91



meaning, it is a stepping stone to investigating the output.

ηt = ηo + δη sin (2πfst + φηt)

ηb = ηo + δη sin (2πfst + φηb
)

xfpt = xfpo + δx sin (2πfst + φfpt)

xfpb
= xfpo + δx sin (2πfst + φfpb

)

θspt = θspto
+ δθsp sin (2πfst + φspt)

θspb
= θspbo

+ δθsp sin (2πfst + φspb
)

θst = δθst sin (2πfst + φst)

(4.9)

ηo = R/2 δη = R/2 φηt = 0 φηb
= π

xfpo = 2R δx = R φfpt = 0 φfpb
= π

θspto
= 4π/9 δθsp = π/18 φspt = 0 θspbo

= −4π/9

φspb
= 0 δθst = π/18 φst = 0

(4.10)

Below are the physical inputs used for the sinusoidal input simulation. Although

the below values are dimensional, they are converted to non-dimensional form for

most computations, and can easily be entered non-dimensionally if desired. It is

merely the fact that this research group has performed numerous simulations, and

therefore reasonable dimensional inputs could easily be entered, where reasonable

refers to the appropriate order of magnitude. Also, recall that everything in this

body of work is in two dimensions. For this reason, certain values may be per unit

length.

0.01 ≤ U ≤ 2m/s m = 10kg/m k = 100N/m2

ρ = 1000kg/m3 D = 0.1m ∆ = D/100m

c = 5Ns/m2 ν = 1e− 6m2/s

(4.11)

The inputs are represented in a plot given Figure 4.2. The resulting range of
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synchronization, phase between forcing and displacement, and frequency of response

with maximum energy are then shown for the wide range of flow velocities in Figures

4.6 and 4.11. Already, indications of a range of synchronization with an upper and

lower branch are shown. In addition, lock-in for a certain range of values is also

shown, with lock-out at higher reduced velocities. The break in the amplitude of

response plot is due to the fact that the amplitudes in the region are much larger than

the rest of the range and not physically representative of the nature of the problem.

However, with further refinement of the model, it is seen that this inconsistency is

eliminated in the next section.

4.3 Flow-Based Input

It is apparent that this model is very promising even with a sinusoidal input.

However, none of the above inputs actually mimics the physical inputs a cylinder

with vortex shedding would experience. Vortex shedding is considered under the

category of relaxation oscillations, where there is slow build up followed by a sudden

discharge. The input, or the stagnation point, separation points, formation points,

and vortex radius, will not behave like a sine wave. In fact, based on the relationship

of the velocity flow into the vortex and the size of the vortex, it is found that instead

of behaving sinusoidally with time, the response should be proportional to the square

root of time, reaching a certain critical maximum for the vortex size or energy, and

then dropping back to zero (either instantaneously or over several time-steps). This

then turns the vortex radius η into a function of the incoming velocity profile, and

no longer a user defined input.

QSLout =

∫ ∆

0

uSLout dξ (4.12)

uSLout =
U

∆
ξ (4.13)
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QSLout =
U∆

2
(4.14)

The velocity exiting the shear layer is in fact only a function of the free-stream

velocity U as the entire system is moving with velocity ẏ, and therefore no fluid ever

exits the system from the cylinder motion. When defining the dissipated work for

the system, the amount of fluid entering the vortex was limited by the user input

constant α, making the input into the vortex equal to αQSLout rather than the entire

flow.

QKVin
= αQSLout = α

U∆

2
(4.15)

The mass flux for constant density is equal to the flow times density. From this

relationship, we can define how large the attached von Kármán vortex is, and define

the radius η from the flow in. Recall that everything is defined in two-dimensions,

so the mass and flow are per unit length.

ṁKV = ρQKVin
= αρ

U∆

2
(4.16)

mKV =

∫ t

0

ṁKV dt = αρ
U∆

2
t (4.17)

mKV = πρη2 = αρ
U∆

2
t (4.18)

η =

√
α

U∆

2π
t (4.19)

This statement will be true until a certain time Ts, at which time the vortex will

shed, possibly gradually, and then η will go back to zero and repeat the growth as

if from t = 0. When the vortex sheds, the formation point, separation point, and

stagnation point will also be effected and will be assumed to move to their minimum

values relative to the side (top or bottom) from which the vortex has shed as η goes to

zero. The resulting correlation between the vortex size, formation point, separation
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point, and stagnation point will lead to a time dependence proportional to the square

root of time, ∝ √
t, for each of these inputs.

ηt =
√

αU∆
2π

tt ηb =
√

αU∆
2π

tb

xfpt = xfpo +
√

δx2

Ts
tt xfpb

= xfpo +
√

δx2

Ts
tb

θspt = θspto
+

√
δθ2

Ts
tt θspb

= θspbo
−

√
δθ2

Ts
tb

θst =
√

δθ2

Ts
tt −

√
δθ2

Ts
tb

(4.20)

As stated above, the time input into the parameter goes from t = 0 to t = Ts

and back to t = 0. In the future, the time at which the vortex is shed can become a

physically based computation. For now, however, Ts will be input as 1/fs, which is

calculated from the Strouhal number St = 0.21. Also, the time input will be shifted

by half a period for the bottom parameters versus the top parameters.

tt = t− floor
(

t
Ts

)
Ts

tb = (t + Ts/2)− floor
(

(t+Ts/2)
Ts

)
Ts

(4.21)

In the above equations, floor “rounds the elements. . . to the nearest integers

towards minus infinity” and is a built in function of the computational software

(MathWorks 2006).

Figures 4.16 to 4.21 show the responses to the inputs shown in 4.12 with the

following values.

xfpo = 0 δx = 2R

θspto
= 4π/9 δθ = π/18 θspbo

= −4π/9

(4.22)

0.01 ≤ U ≤ 2m/s m = 10kg/m k = 100N/m2

ρ = 1000kg/m3 D = 0.1m ∆ = D/100m

c = 5Ns/m2 ν = 1e− 6m2/s α = 0.25

(4.23)
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Already, there is an increased complexity visible in Figures 4.16 to 4.18 over

Figures 4.6 to 4.8, especially in the maximum frequency of response. However, lock-

in and a range of synchronization are still present, and as long as there is lock-in,

the forced vortex shedding frequency is already allowing for distinct vortex shedding

modes to appear, i.e., if the cylinder is responding at fn, and the shedding frequency

is fs = 2fn, then the resulting vortex shedding mode would be two vortices per side

per cycle, named 2P.

An interesting and promising feature is the fact that although the input signal is a

periodic square-root of time signal, the response of the cylinder motion appears more

like a sinusoidal response. This indicates that the nonlinearity of the model promises

to allow for the body to respond in the nature found in experimental results.

4.4 Vortex Shedding Criteria
4.4.1 Critical Energy

Up to this point, the vortex shedding has been forced at the Strouhal period,

Ts. However, once the cylinder is moving, it no longer follows the Strouhal trend.

The vortices must be allowed to shed without forcing, and the model must react

accordingly. Therefore, any sort of forced periodic input is no longer useful. The

Strouhal period will not be used as a time input. Instead, a physical input will

be used. Based on what is known from experimental results and basic physical

intuition, two shedding criteria will be used: the influence of cylinder velocity ẏ and

the influence of the free-stream velocity U on the energy of the attached vortices.

First, knowing at what point a vortex will have shed without the motion of the

cylinder, a critical kinetic co-energy for the vortex at the moment that shedding

begins can be found. Preliminary estimates can be found using the linear velocity
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profile of the feeding shear layer. Critical energy will be denoted by Tcrit.

TKV =
πρη2U2

4
(4.24)

For the case of the stationary cylinder, it is known that the vortex sheds at time

Ts, and the growth of the vortex was given above. A critical vortex radius ηcrit can

then be given, and a critical energy can then be found.

ηcrit =

√
α

U∆

2π
Ts (4.25)

Tcrit =
π

4
ρU2η2

crit (4.26)

Tcrit =
α

8
ρ∆TsU

3 (4.27)

With the entire system moving with the cylinder velocity ẏ, the energy is a good

choice of shedding criteria. The non-dimensional critical energy, Tcrit/ (ρD2U2), be-

comes only a function of the Strouhal number. If the Strouhal number is given as

a function of the Reynolds number, then follows the critical energy as a function of

Reynolds number. This is a satisfying relationship, since it is known that Re defines

much of the VIV problem. The result of using this Tcrit as the shedding criteria is

shown in Figures 4.26 to 4.33. The most promising change in the results here is the

fact that there is no longer a gap around a reduced velocity of U∗ = 10 due to the

amplitude of oscillation heading towards infinity. These amplitudes, as a result of

critical shedding rather than forced shedding, have come down and are almost in line

with the other portions of the range of synchronization.

No matter what velocity profile is used, the critical values always have the same

proportionality.

ηcrit ∝
√

αU∆Ts (4.28)

Tcrit ∝ αρU3∆Ts (4.29)
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The energy of the vortex for the case of the moving cylinder for comparison against

the shedding criteria is given as follows. When TKV ≥ Tcrit, as given in Equation

5.27, the vortex sheds.

TKV =
π

4
ρη2


 U2︸︷︷︸

vorticity

+ 2ẏ2

︸︷︷︸
cylinder motion


 (4.30)

The current approximations force the wake to move with the same velocity as the

cylinder. As a first approximation, this is appropriate. However, from experimental

visualizations, it is known that the wake becomes exposed as its motion lags behind

that of the cylinder. As a result, vortices may also be shed prior to reaching the

critical energy due to the presence of the free-stream encountering the attached

vortices. The effect can also be approximated by an increase in energy due to the

position of the cylinder in its trajectory. The effective attached vortex energy can be

calculated from a weighted sum of that already found from the vortex moving with

the cylinder superimposed with a component that results from the vortex moving

with the free-stream velocity. This is the next step of the analysis.

4.5 Analysis of Results
4.5.1 Qualitative Discussion

It is easily recognizable that there are several key VIV components already present

even without a complete model. A range of synchronization is easily recognizable,

beginning just before the natural frequency and decaying in amplitude slowly above

the natural frequency. The range of synchronization response shows characteristics

of an upper branch and lower branch. It is hypothesized that further refinement of

the model will lead to more definable VIV features in the range of synchronization.

In addition to the synchronization, lock-in of the response frequency is obvious. In

addition, there is a visible over-reach at the beginning of lock-in, a characteristic of
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water and not air. This influences the idea that the model does account for influence

of the fluid, most likely the density of water since that is the most prolific term. In

addition, when the mass is varied, particularly at very low mass ratios, there are

obvious differences in the frequency of response of the cylinder at lock-in. This is

illustrated best by comparing Figure 4.33 with the experimentally-derived results of

Govardhan and Williamson (2000) shown in Figure 2.3. It becomes obvious that

the mathematical model incorporates this recently described feature of VIV, where

not only is the frequency at lock-in dependent on the mass ratio for very low mass

ratios m∗ < 1, but the slope approaching the frequency at lock-in also is varied based

on the mass ratio. These two features are showed in both the mathematical model

developed here and the experimental results of Govardhan and Williamson (2000)

With more refinement of the model, it is hypothesized that in addition to the range

of synchronization and lock-in, there is a further possibility of capturing distinct

vortex shedding modes. If this is possible, the model would establish itself as the

obvious best choice for VIV above all other models. At that point, quantitative

results would become most important, for all the major qualitative points would be

apparent.

4.5.2 Quantitative Discussion

Although the model can be assessed as a success when examining the qualitative

response, the quantitative response is lacking in several aspects. Moving through

the progression of the inputs from the sinusoidal to the square root of time to the

unforced shedding, the development of the upper and lower branches in the amplitude

of response can be seen. However, the magnitude of this amplitude with respect to

the diameter of the cylinder is several orders of magnitude off. The magnitude of

A/D is expected to be on the order of 1, or 100. However, all cases maintained
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maximum amplitudes of response normalized by the diameter on the order of 10−4,

four order of magnitude lower than what is expected, except for certain over-excited

responses often tending towards infinity around reduced velocity U∗ = 10. This is

a surprising result considering how well the qualitative features of the A/D were

met. It is believed that the energy is underestimated. However, it is not greatly

underestimated. Tests have been performed where the forcing terms were artificially

multiplied by a constant. It was observed that this artificial amplification in the

forcing lead to a nonlinear increase in the amplitude of response. For instance,

multiplying all forcing terms by 2 resulted in the amplitudes being multiplied by

over 3. Multiplying the forcing terms by 3 amplified the amplitudes by over 22

from the case of no artificial amplification, with some points becoming over-excited

and heading towards infinity. Finally, multiplying the forcing by 4 sent a sizable

portion of the points towards infinity, making it difficult to assess the magnitude

of the amplification of the amplitudes. Therefore, it is hypothesized that a small,

physically based increase in the energy of the system can result in larger amplitudes,

and achieving quantitative success with this model is possible.

For the phase shift between the forcing and the displacement, however, the quanti-

tative results came out exactly as measured in experiments once the vortex shedding

was unforced. This was not true for the cases of the sinusoidal and square-root of

time inputs, but once the vortex was allowed to shed at a critical energy, the phase

shift plot aligns perfectly with experimental results. This is very encouraging for sev-

eral reasons. First, it shows that the model has great potential to capture a variety of

VIV characteristics, already qualitatively demonstrating a range of synchronization

followed by desynchronization, and now quantitatively capturing the phase shift at

the region of lock-in. Second, with the development of a critical energy for vortex
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shedding, this specific feature was captured. This suggests that the vortex shed-

ding criteria is reasonable. In addition to leading to an appropriate phase shift plot,

the vortex shedding criteria also proved to eliminate the over-excited amplitudes

of response around a reduced velocity of 10, and in fact bring this region down to

something similar to what has been defined in VIV as the lower branch.

Lock-in is a quantitative feature. Therefore, the fact that it can be observed in the

plots already suggests quantitative success. For several cases, lock-in does not occur

until reduced velocities higher than 5, where 5 is the value around which lock-in is

expected to occur. However, it is obvious that damping and higher reduced mass

ratios both have an effect on increasing reduced velocity at the point of lock-in. It

is important at this point to revisit how the response frequency is determined. A

peak from the Fast-Fourier Transform (FFT) energy spectrum is selected from a line

plot for the frequency of response. For the cases in which the response frequency is

around a certain value rather than directly at a certain value, this can be misleading.

A better understanding of this can be found by studying the energy spectrum outputs

that are shown in Figures 4.4, 4.14, and 4.24 for the cases of sinusoidal, square-root

of time, and critical energy shedding, respectively. It is proposed that a bar graph

may be better at determining the frequency of response rather than a line graph,

therefore encapsulating the cases in which the response is around but not exactly at

one point. This will be examined further in future work. It is hypothesized that this

modification can lead to lock-out in cases in which lock-out is not currently observed.

Many modifications can therefore be made in order to better model the phe-

nomenon of VIV as well as to better analyze the output. The next chapter will

examine some of these modifications, many incorporating the Reynolds number de-

pendence of characteristics and variables, and determine which show improvement
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over the current unforced shedding model with linear velocity inputs. At this point,

the standard or base-line for comparison is this model, and all improvements will be

taken one at a time to determine if they are beneficial to the model or not.
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model.
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ζ = 1, fn = 1 D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.3: Cylinder displacement output from a sinusoidal time input for various reduced velocities,
where m∗ = 1, ζ = 1, fn = 1, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.4: Cylinder displacement frequency energy spectrum from a sinusoidal time input for var-
ious reduced velocities, where m∗ = 1, ζ = 1, fn = 1, D = 0.1m, and 2 × 103 < Re <
4× 105.
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Figure 4.5: Cylinder displacement versus velocity phase plots from a sinusoidal time input for var-
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Figure 4.6: Cylinder amplitude response from a sinusoidal time input with varying damping co-
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Figure 4.9: Cylinder amplitude response from a sinusoidal time input with varying damping coef-
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Figure 4.10: Cylinder phase-shift response from a sinusoidal time input with varying damping co-
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Figure 4.11: Cylinder peak-frequency response from a sinusoidal time input with varying damping
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113



0 1 2 3 4 5 6 7 8
−0.1

0

0.1

θ st
 (

ra
d)

Nondimensional Inputs

0 1 2 3 4 5 6 7 8
1.4

1.5

θ sp
t (

ra
d)

0 1 2 3 4 5 6 7 8

−1.5

−1.4

θ sp
b (

ra
d)

0 1 2 3 4 5 6 7 8
0

0.5

x fp
t/D

0 1 2 3 4 5 6 7 8

0.2
0.4
0.6
0.8

x fp
b/D

0 1 2 3 4 5 6 7 8
0

0.05

η t/D

0 1 2 3 4 5 6 7 8

0.02
0.04
0.06

η b/D

t f
s

Figure 4.12: Square-root of time inputs for the stagnation point, top and bottom separation points,
top and bottom formation points, and top and bottom attached vortex radii, where
m∗ = 1, ζ = 1, fn = 1, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.13: Cylinder displacement output from a square-root of time input for various reduced
velocities, where m∗ = 1, ζ = 1, fn = 1, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.14: Cylinder-displacement frequency-energy spectrum from a square-root of time input for
various reduced velocities, where m∗ = 1, ζ = 1, fn = 1, D = 0.1m, and 2 × 103 <
Re < 4× 105.
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Figure 4.15: Cylinder displacement versus velocity phase plots from a square-root of time input for
various reduced velocities, where m∗ = 1, ζ = 1, fn = 1, D = 0.1m, and 2 × 103 <
Re < 4× 105.
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Figure 4.16: Cylinder amplitude response from a square-root of time input with varying damping
coefficients for various reduced velocities, where m∗ = 1, fn = 1, D = 0.1m, and
2× 103 < Re < 4× 105.
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Figure 4.17: Cylinder phase-shift response from a square-root of time input with varying damping
coefficients for various reduced velocities, where m∗ = 1, fn = 1, D = 0.1m, and
2× 103 < Re < 4× 105.
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Figure 4.18: Cylinder peak-frequency response from a square-root of time input with varying damp-
ing coefficients for various reduced velocities, where m∗ = 1, fn = 1, D = 0.1m, and
2× 103 < Re < 4× 105.
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Figure 4.19: Cylinder amplitude response from a square-root of time input with varying damping
coefficients for various reduced velocities.
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Figure 4.20: Cylinder phase-shift response from a square-root of time input with varying damping
coefficients for various reduced velocities.
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Figure 4.21: Cylinder peak-frequency response from a square-root of time input with varying damp-
ing coefficients for various reduced velocities.
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Figure 4.22: Square-root of time with critical energy shedding inputs for the stagnation point, top
and bottom separation points, top and bottom formation points, and top and bottom
attached vortex radii, where m∗ = 1, ζ = 1, fn = 1, D = 0.1m, and 2 × 103 < Re <
4× 105.
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Figure 4.23: Cylinder displacement output from a square-root of time with critical energy shedding
input for various reduced velocities, where m∗ = 1, ζ = 1, fn = 1, D = 0.1m, and
2× 103 < Re < 4× 105.
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Figure 4.24: Cylinder-displacement frequency-energy spectrum from a square-root of time with
critical energy shedding input for various reduced velocities, where m∗ = 1, ζ = 1,
fn = 1, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.25: Cylinder displacement versus velocity phase plots from a square-root of time with
critical energy shedding input for various reduced velocities, where m∗ = 1, ζ = 1,
fn = 0, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.26: Cylinder amplitude response from a square-root of time with critical energy shedding
input with varying damping coefficients for various reduced velocities, where m∗ = 1,
fn = 1, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.27: Cylinder phase-shift response from a square-root of time with critical energy shedding
input with varying damping coefficients for various reduced velocities, where m∗ = 1,
fn = 1, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.28: Vortex-shedding peak-frequency response from a square-root of time with critical en-
ergy shedding input with varying damping coefficients for various reduced velocities,
where m∗ = 1, fn = 1, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.29: Cylinder peak-frequency response from a square-root of time with critical energy shed-
ding input with varying damping coefficients for various reduced velocities, where
m∗ = 1, fn = 1, D = 0.1m, and 2× 103 < Re < 4× 105.
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Figure 4.30: Cylinder amplitude response from a square-root of time with critical energy shedding
input with varying damping coefficients for various reduced velocities.

132



3 3.5 4 4.5 5 5.5 6 6.5 7

−3

−2

−1

0

1

2

3

φ

U*

m* = 0.5
m* = 1  
m* = 10 

Figure 4.31: Cylinder phase-shift response from a square-root of time with critical energy shedding
input with varying damping coefficients for various reduced velocities.
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Figure 4.32: Vortex-shedding peak-frequency response from a square-root of time with critical en-
ergy shedding input with varying damping coefficients for various reduced velocities.
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Figure 4.33: Cylinder peak-frequency response from a square-root of time with critical energy shed-
ding input with varying damping coefficients for various reduced velocities.
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CHAPTER 5

Mathematical Model Improvements

In the chapter, improvements to the math model are tested. Looking back at

the inputs used for the mathematical model in Chapter 4, rough order of magnitude

estimates for the zero and fluctuations of all inputs for the boundary layer and

shear layer were used. As a first approximation, this should indicate the proper

characteristics of the problem. However, when trying to improve upon the model

and capture the real physics behind the problem, order of magnitude estimates may

not capture all the characteristics of the problem. As was obvious in the result

analysis of Chapter 4, the energy fluctuations appear to be greatly underestimated,

resulting in an underestimate of the body response by 4 orders of magnitude. The

non-dimensional amplitude response is expected to be on the order of A/D ≈ 1,

however, the results from the previous section showed A/D ≈ 1 × 10−4. In this

chapter, we try to rectify this gross underestimate without losing the correct phase

shift between the displacement and the forcing, as well as lock-in and all the success

achieved by this model so far. In addition to attempting to increase the amplitude

of response by improving upon the physics of the model, an attempt is made to show

lock-out outside of the range of synchronization, where as results to this point show

lock-in with no lock-out phenomenon.
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5.1 Reynolds Number Based Inputs

Many of the inputs that were set to constants, such as the separation point zero

position, the boundary layer thickness, and the formation point zero position, are

in fact proven functions of Reynolds number. For the several of these inputs, the

information has been found through extensive experimentation of stationary circular

cylinders. The boundary layer thickness combines experimental data with a theo-

retically based formulation. Each input that can be improved upon using data sets

over Reynolds number will be done so here. Linear interpolation will be used for

points at which no data is available. Curve smoothing, rather than curve-fitting, will

be applied as has been done in the past due to the discontinuous characteristics of

many flow-field properties.

5.1.1 Strouhal Number

In Chapter 2, the Strouhal number was defined as an important characteristic of

the VIV phenomenon. The Strouhal number was in fact one of the first characteristics

defined for the problem, long before the von Kármán vortex street was defined.

There are extensive data sets available, from Re = 49 all the way up to Re =

7.1×106. Several curves have been fit to certain Reynolds number regimes as defined

by Zdravkovich (1997), and outlined in Table 1.1. Williamson and Brown (1998)

defined the curves for the entire laminar regime as well as for the TrW2 to TrSL1

regimes. Previously, it had been suggested that, for certain discrete portions of the

St − Re regime, a curve could be fit to an equation as a function of one over Re.

However, Williamson and Brown (1998) showed that a much better fit came from one

over the square-root of Re, and a theoretically-based argument for such a relationship

is outlined in the paper. Therefore, for certain low Re, equations rather than data
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sets are used at this point in the model.

St = A +
B√
Re

+
C

Re
+ . . . (5.1)

Figure 5.1 shows the entire range of the St−Re regime with curves predating the

work of Williamson and Brown (1998) for Re < 1200, but the general representation

of the St− Re regime is captured and for this reason included in this chapter. The

equations that will be used for Re < 1200 are as follows.

St = 0.2665− 1.018√
Re

49 < Re < 178

St = 0.2175− 6.66
Re

178 < Re < 260

St = 0.2234− 0.3490√
Re

260 < Re < 1200

(5.2)

The second equation above comes from the curve-fitting work of Ponta and Aref

(2004). For Re > 1200, the data collected by Schewe (1983) is used to interpolate the

Strouhal number. The above equations cover the Laminar regime, the TrW1, and the

TrW2 to TrSL1, respectively. From Re = 1200 to Re = 23000, linear interpolation is

used. Above Re = 23000, a fairly complete data set showing the effect of subcritical

and supercritical transition were obtained by Schewe (1983). These data points were

obtained by the author via private communication with Schewe.

5.1.2 Separation Point

Finding the actual separation point on a cylinder is a complicated process stem-

ming from the Navier-Stokes equations. Several attempts have been made over the

last two-hundred years to approximate the separation point on a cylinder. Some

of the results are within less than two percent of the experimental separation point

for a stationary cylinder (White 1991). Since the validation of each of these many

theories comes from experimental data, experimental data will be used as the input

of the separation point in the model developed here (Achenbach 1968; Achenbach

1971). It will be interpolated from 5.6.
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Throughout the laminar flow and subcritical flow regime, the mean separation

point remains fairly constant. Entering the transition regime, the mean separation

point greatly increases, effectively reducing the thickness of the wake. Then, once

transition to turbulence is complete, the separation point is again approximately

constant, and not as large an angle as during transition. This widens the wake once

again.

The data points were obtained by approximating the points in Achenbach (1968).

The smoothed curve was also obtained by approximating the curves from Achenbach

(1971). A plot of these data sets used as the input for the mathematical model is

shown in 5.6.

In addition to the mean position of the separation point, the motion or excursion

of the separation point is also an input parameter that can be taken from experimen-

tation. Sarpkaya (1992) states that “in steady flow, the position of the separation

point is nearly stationary, except for small excursions about ±3 degrees” on a circu-

lar cylinder. It is also important to point out that in the case of oscillatory flow, the

excursion of the separation point can be as much as 120 degrees (Sarpkaya 2001).

Since it can be considered that the cylinder is experiencing oscillatory flow when

undergoing oscillations due to VIV, larger excursions of the separation point may

be possible. A more advanced model could allow for the separation point to move

according to the motion of the cylinder. However, at this point, the separation point

motions remains an input parameter and will be taken for now to move ±3 degrees

around the mean separation point.

5.1.3 Formation Point

The first coining of the idea of the formation point comes from Gerrard (1966),

and this defining point of the geometry of a cylinder in VIV has remained a critical
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feature since. Norberg (1987a) did work to show the relationship of the formation

length, or formation point as referred to in this dissertation due to the fact that

it is measured from the center of the cylinder and not the separation point, to the

Reynolds number. The resulting experimental data show a smooth curve, starting

around three diameters at laminar flow, and peaking again just under 3 diameters

around Re = 103 before decaying once again and seemingly leveling off around Re =

105. The smoothed curve was obtained from Norberg via private communication and

is shown in Figure 5.11.

Although the data set for the smoothed curve begins at the lowest possible

Reynolds numbers for flow around a cylinder experiencing vortex shedding, the data

set concludes within the transition regime. At Re = 2 × 105, the flow is entering

transition of the boundary layer flow after completing transition in the shear layer.

This transition of the boundary layer has proven very important in the Strouhal

number as well as the separation point, where both change greatly at the beginning

and the end of this supercritical regime. It is proposed here, however, that for the

formation point, data up to Re = 2×105 is sufficient since this point appears to only

be affected by the shear layer itself. Therefore, since transition in the shear layer has

been completed by Re = 2× 105, the formation point will no longer greatly change.

This can be argued from the fact that for both the Strouhal number and separation

point from the previous two sections showed no noticeable transition in their values

over the transition of the shear layer (350 < Re < 2 × 105). However, this range is

precisely the area over which the formation point has it’s largest fluctuations after

beginning vortex shedding. It is assumed that the formation length slowly decays as

the Reynolds number goes to infinity above Re = 2× 105.

The effect of using this smoothed curve to determine the formation length of each
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simulation based on Re is tested and shown in Figures 5.12 to 5.15.

5.1.4 Boundary Layer Thickness

The Boundary layer thickness is known to be a function of Reynolds number

Re. Therefore, the linear approximation for the boundary layer thickness is an

oversimplification of boundary layer, and a better approximation should be used.

In Schlichting (1968), a relationship is developed between the frictional and inertial

forces in order to determine the thickness of the boundary layer. The following

relationship is then given.

δ ∝
√

νl

U
(5.3)

It is assume that the length l can be replaced by the arc length Rθ for the case of

a circular cylinder. In addition, Schlichting (1968) uses the Blasius coefficient of 5

for the case of a flat plate. Assuming that the boundary layer is much smaller than

the radius of the cylinder, the flat plate boundary layer is a close approximation of

the cylinder boundary layer.

δ = 5

√
νRθ

U
(5.4)

At this point, it is not desired to change the entire boundary layer profile. The

linear profile will be maintained for now, but the Blasius-type profile will be imple-

mented and assessed for value later in the chapter. For now, the end boundary layer

thickness parameter ∆ will be found using the above equation, and compared against

the constant value of ∆ used up to this point.

∆ = 5

√
νRθsp0

U
(5.5)

The resulting effect of allowing the boundary-layer maximum thickness ∆ is an in-

crease in the amplitude of response at synchronization, shown in Figure 5.16. In

fact, implementing the above Reynolds-number based input for ∆ nearly doubles the
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amplitude of response. This is a promising result since the amplitude of response is

quantitatively the furthest from the observed phenomenon. An increase of any kind

is very promising. Implementing Blasius-type functions throughout the attached

fluid becomes of great interest at this point.

Finally, since the inclusion of the Reynolds-number based Strouhal number, sepa-

ration point, formation point, and maximum boundary-layer thickness had a positive

or negligible effect, they are all combined for future input into the final mathematical

model. In this sense, any subtle differences due to the Reynolds number input have

the possibility of being captured with the model. The result of all four inputs is

shown in Figures 5.20 to 5.23.

5.2 Blasius-Type Functions

Up to this point, the geometry and velocity profiles have been selected to be

the simplest known functions to satisfy the most important conditions, such as no-

slip and no-penetration. However, the linear geometry and velocity profiles can be

easily improved upon by considering the Blasius-type functions, represented by the

equation below. This will allow for the energy to become more physically meaningful.

ηBlasisu = y

√
U

νx
(5.6)

Although Blasius first developed the similarity variable for a flat plate, it is appli-

cable to a wide variety of flows. The assumption that the boundary layer thickness

is much smaller than the radius of the cylinder allows this similarity variable to be

used in the geometry of the boundary layer. Blasius-type solutions have also been

found for mixing layers, which is the category under which the shear layer falls.

Finally, although the velocity profiles for the Blasius-type functions may not be ex-

plicitly found, there is a long list of profiles that can be used since they allow for flow
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separation to be represented. Assessing the value added to the model by incorporat-

ing Blasius-type functions into the boundary layer, shear layer, and velocity profile

follow.

5.2.1 Boundary Layer Geometry

Using the stagnation point θst as the zero point, and knowing that θt > 0 and

θb < 0, the following equations will be used to improve the energy approximation in

the boundary layer.

δt = 5

√
νR (θ − θst)

U
(5.7)

δt = 5

√
νR (θst − θ)

U
(5.8)

It is important to note that the boundary layer thickness is no longer a function

of the separation point, nor is there a specified maximum thickness. This change

reflects the real physics of the boundary layer problem. However, it also greatly

complicates the problem, since the boundary layer thickness at separation was used

as the thickness of the shear layer. A modification to defining the thickness must be

found, since constant variation will not fit with the simplified nature of the model.

In order to avoid such complications, the assumption that the variation in the

length of the boundary layer is minimal is put into place. This leads to the reasonable

estimate that boundary layer thickness at the point of separation is constant, and

therefore constant throughout the shear layer as well. This single assumption leads to

a major simplification of implementing the square-root relationship for the thickness

of the boundary layer.

∆ = 5

√
νRθsp0

U
(5.9)

δ = ∆

√
θ − θst

θsp − θst

(5.10)
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Inputting the above equation into the energy equations from Chapter 2 will only

change the boundary layer terms. Therefore, the modified energy equations for the

boundary layer are the only terms outlined below. There is a further complication due

to the integration with the square-root relationship of the boundary layer thickness.

The result is Fresnel integrals. However, the Fresnel integrals are well defined, and

the author was able to implement a table into the numerical simulations in order to

evaluate these expression.

The result of implementing these equations into the numerical simulator give the

results shown in Figures 5.24 to 5.27. As with allowing ∆ to become a function of

Re, there is again a promising increase in the amplitude of response of the cylinder

while not destroying the qualitative successes already noted in the outline of the

amplitude of response as well as the phase shift and the frequency of response of the

cylinder.

It is also important to compare the effect of the square-root geometry of the bound-

ary layer to the linear geometry previously used for the same ∆. The computation

time for the square-root geometry was over twice that for the linear geometry. Such

an increase in computation time should only be allowed if the result is a significant

improvement. This is much the same as selecting a numerical method. A higher-

order method may improve the numerical results, but at a cost on the computation

time. At some point it is found that, for a particular problem, the increased accuracy

is not worth the increased computation time. This is the same idea presented here.

Is the increased computation time of the square-root geometry worth the increased

accuracy of the same terminal boundary layer thickness with linear geometry?

Figures 5.28 to 5.31 show the comparison between the square-root and linear

geometries with the same terminal maximum boundary-layer thickness. They are
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fairly similar with almost the same amplitudes. The linear geometry seems to respond

stronger at U∗ ≈ 2.5, which at first glance is not very desirable, but increased

responses have been observed in several experimental ranges of synchronization. In

the end, it is determined that for this first attempt at a rigourously-derived VIV

mathematical model, the linear geometry will suffice to determine the validity of the

model.

5.2.2 Shear Layer Geometry

Up to this point, the shear layer has maintained a constant thickness. It is,

however, a free-shear layer between the free-stream fluid outside the wake, and the

unattached dead fluid. The dead fluid is so named because the velocity is zero

between the two shear layers. The fact that it is unattached is emphasized because

it has been traditionally found that the dead fluid does not effect the body. As

a result of the two different streams in viscous fluid, the shear layer expands with

distance based on a Blasius-type similarity variable. The expansion is both on the

top and the bottom of the of the shear layer, with an approximate similarity variable

for this case being around 7 (see White (1991), Figure 4-17). This results in the

following relationship.

η = δSL

√
U

2xν
≈ 7 (5.11)

δSL ≈ 10

√
νx

U
(5.12)

Since it was already determined above that the a linear growth is nearly as effective

of a model as a square-root growth in the case of the boundary layer, the same will

be applied for the shear layer. The force equations with the square-root growth was

found for the square-root growth and was observed to have the same asymptotitical

Fresnel integrals, therefore it is proposed that assuming the same for the linear versus

square root growth is substantial.
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The resulting modification of the shear layer is added to the results already found

for the Blasius-based boundary layer thickness. At the instant of separation, the fluid

is considered tripped. In this way, at any point after separation the fluid is assumed

to have an increased expansion despite any portion that may still be traveling over

the cylinder. Since the flow is considered tripped after separation and large increases

in the thickness are expected, this assumption is not so a large departure from the

physics of the problem. In addition, describing a flow after is has separated has not

yet been done analytically, so only general properties of the flow can be modeled.

This results in the following relationships for the distance to be used as the input

for the shear layer maximum thickness. Due to having to follow the curvature of the

body, separate expressions are used for the case of the separation point before versus

after 90 degrees.

θsp < π
2

d = R
(

π
2
− θsp

)
+ xfp

∆SL = 10
√

νd
U

(5.13)

δSL = ∆SL−∆BL

d
R (θ − θsp) + ∆BL θ < π

2

δSL = ∆SL−∆BL

d

[
R

(
π
2
− θsp

)
+ ζ

]
+ ∆BL 0 < ζ < xfp

(5.14)

θsp > π
2

d = xfp −R sin
(
θsp − π

2

)

∆SL = 10
√

νd
U

(5.15)

δSL = ∆SL−∆BL

d

[
ζ −R sin

(
θsp − π

2

)]
+ ∆BL R sin

(
θsp − π

2

)
< ζ < xfp

(5.16)

The same velocity profile is still used, where it is equal to zero at the bottom of

the shear layer, and linearly increases to the freestream velocity at the shear layer

thickness.

146



The energy and force equations that result from the above equation, particularly

for the case of separation less than 90 degrees, have an overwhelming number of

terms. The increase in the number of operations when input into the numerical

integrator is so much that it again becomes not worth the increased computation

power. A minor simplification to the shear layer can greatly reduce the number of

terms. If the starting point of the shear layer is always assumed to be at the y-axis

of the cylinder center, where x = 0, the only parameters that depend on time are the

formation point and the cylinder displacement. The resulting force equation should

give a good indication of the improvement in including a linearly growing shear layer

as opposed to a uniformly-thick shear layer. This is the core purpose of the derivation

of a new VIV model, and any observations that come from this simplified shear layer

model should provide significant insight into the applicability of the model and the

sensitivity to such things as the shear layer thickness variation.

TSL =
1

12
ρxfp

(
U2 + 3ẏ2

)
(∆SL −∆BL) (5.17)

FSL =
1

2
ρẋfpẏ (∆SL −∆BL) +

1

2
ρxfpÿ (∆SL −∆BL) (5.18)

The results are shown in Figures 5.32 through 5.35. It can be seen that there

is a substantial improvement once again in the amplitude of oscillation, increasing

the amplitude ratio up to 4 × 10−3, the highest amplitudes yet seen for the test

case of m∗ = 1, ζ = 0.1 and fn = 1. This is nearly a full order of magnitude

improvement over the constant shear layer thickness. This is promising, showing the

ease with which the amplitude may be increased with the addition of more physical

representations of the energy. It also shows, however, how delicate the balance

between the energy input and the vortex shedding criteria is. This is exemplified by

the increased number of points found on the zero horizontal axis for the frequency
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plots and by the loss of the phase shift at lock-in (Figure 5.33). Although the

amplitudes were significantly increased, the other characteristics that coincided well

with the phenomenon have been disturbed by the addition of energy. The highly

nonlinear nature of the model is the supposed culprit for this alteration, and it is of

the upmost importance to maintain the balance between energy and vortex shedding.

5.3 Velocity Profiles

In the previous chapters, a model was developed using assumptions for first-

order velocity profiles in the fluid to derive the system energy. However, the actual

velocity profiles are likely to be better approximated by higher-order profiles. The

differences between the results obtained in the previous chapter will now be compared

to results for higher-order profiles. The linear velocity profile implemented previously

underestimates the energy within the system. Although the actual velocity profile

cannot be solved since it comes from the Navier-Stokes equations, a more reasonable

approximation can be used. In textbooks, either a sinusoidal or cubic velocity profile

are common. It is assumed that a cubic velocity profile is best suited for the boundary

layer. The velocity profile is again matched at the interface of the boundary layer

and the shear layer. The interface profile is held constant throughout the shear layer,

and is used to determine the flow out of the shear layer to feed the attached vortex.

A fuller velocity profile can be assumed to model a more turbulent boundary and shear

layer.

White (1994) uses several velocity profiles to model the fuller velocity profile of

a boundary layer. Two of these are listed below. Each is implemented into the

energy equations, and the resulting force equations are numerically integrated. Both

the boundary layer and the shear layer equations change, but the attached vortex
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equation remains the same, with only the flow into the vortex changing as a result.

u = U sin
(πy

2δ

)
(5.19)

Additionally, from White (1994) there is the cubed relationship for a flat plate as

given below.

u =
U

2

(
3
y

δ
−

(y

δ

)3
)

(5.20)

For the boundary layer, equations 5.19 and 5.20 use the substitution y = r −R. As

they appear here, they model the shear layer.

It has often times been found experimentally that the actual velocity profile may

have a maximum higher than the free-stream velocity. When considering the effects

of viscosity and separation on the flow, this makes sense. Often, the maximum is

around 1.2 times greater than the free-stream. It may be of interest to incorporate

such a profile here.

The full force equations were derived using the above velocity profiles. However,

neither provided noticeable differences in the response plots. Therefore, it is asserted

that the linear velocity profile is the most appropriate due to the simplicity of working

with it and the closeness in approximation of viscous flow over a curved surface.

5.4 Parametric Variation
5.4.1 Energy Dissipation

In the model that has been developed in Chapter 3, there is only one undefined

parameter that can be examined within this section and that is the energy dissipation

variable α. Originally, it was argued that the dissipated energy from the shear layer

to the attached vortex is approximately around 50% of the energy (Bearman 1984).

Examining the results thus far in this dissertation shows that there is a need for

increased energy within the system as defined. Therefore, it can be argued that not
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all of the energy has been accounted for thus far. Following this argument, it can

be said that the dissipation factor, α can arguably be removed, or even used as an

amplification factor instead of dissipation. Therefore, this section will examine the

result of, first, placing the dissipation at the shear layer to attached vortex boundary

to zero by letting α = 1, and then to allow the parameter α to act as an amplification

factor by allowing it to be greater than one.

In the case of α > 1, the dissipation force term in the full equations must be

eliminated in order to avoid a physically meaningless parameter; α in this case only

represents an artificial amplification and should not factor into non-conservative work

terms previously derived.

The results are shown in Figures 5.36 to 5.39. The most interesting output is

the fact there there is now an observable point of lock-out, where the cylinder is no

longer responding near its natural frequency, in the area at the end of the range of

synchronization. This had not been previously observed with this math model. The

concept of lock-out is one observed experimentally and is documented in Sumer and

Fredsøe (1997). However, the concept of the cylinder always responding around its

natural frequency and never locking out has also been observed (Raghavan 2007).

Therefore, it is interesting to note that not only has lock-out now been observed, but

a desynchronization range has also been observed with the cylinder still responding

at its natural frequency.

With it’s capability of capturing lock-out, as well as a slightly increased amplitude

response, it is determined that α = 1 is the best choice for the model at this point

in time.
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5.5 Other Examined Factors

During the process of developing an improved math model, other ideas for improv-

ing the model were tested, even when not entirely physically meaningful or verifiable.

However, in order to demonstrate the extent to which ideas for improvement were

tested, several of the concepts are outlined here.

• One idea was to see if the dead-fluid region behind the cylinder and between

the shear layers may in fact have a beneficial affect on the model. It has been

traditionally argued that the dead-fluid region is not attached to the body, and

therefore should not be part of the system as defined here. However, the concept

was tested anyway. It was found that, since the dead fluid only acts in terms of

the motion of the cylinder (i.e., it is trapped between the shear layers and forced

to oscillate with the system in the y-direction), the result was purely an added

mass term. As expected, this only reduced the maximum amplitudes, while

leaving the other results (phase shift, frequency response) almost the same.

• As mentioned in the previous chapter, artificial amplification of the forcing terms

was also performed in order to determine how sensitive the model is to increases

in energy (or forcing). The result there was highly nonlinear, where a small

amplification of the forcing terms resulted in a relatively large amplification

of the cylinder displacement. This is a strong indication that not all energy

has been captured into the model, while maintaining its physically-meaningful

aspects. The artificial amplification was performed in two ways. First, all

forcing terms were multiplied by the amplification factor. Then, only forcing

terms from each portion of the system were multiplied. For instance, only the

boundary layer terms were amplified, followed by only the shear layer terms and

only the attached vortex terms. This lead to the conclusion that the attached
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vortex had the largest effect on the model, followed by the boundary layer and

then the shear layer.

• The concept that the attached vortex may have a larger effect on the model than

any other leads into the next idea is tested. With so many terms representing

each part of the system, it was of interest to see if any one part could properly

model the phenomenon of VIV. For instance, since the attached vortex seems

to affect the largest change on the system, what if it was the only term present,

thus eliminating the need to model the boundary layer and the shear layer.

Thus, each portion was modeled with the cylinder degree of freedom, and it was

found that no single part captured the phenomenological features seen when all

three are combined. Therefore, it is emphasized here that VIV is the result of

not just the boundary layer, and not just the attached vortices, nor just the

shear layer, but a combination of the three. This was a good test for better

understanding the phenomenon of VIV and what factors play a role.

• Following from the test of different velocity profiles, the idea of using the con-

stant free-stream velocity across the boundary layer and shear layer thickness

was also tested. The results showed the necessity of having a varying velocity

profile, where many of the observed VIV features where absent in the constant

velocity profile. The equations, though, did appear more simply, but there is

no advantage in this if VIV is not captured.

5.6 Final Force Equations

After examining the effects of the changes that have been considered, the final

force equations are now presented. These force equations represent what is believed

to be the best possible representation of VIV at this point in time. Due to the
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complexity of the phenomenology, there are perhaps many more improvements that

can be made that will provide better responses. However, the current list exhausts

those believed to be most important and have the most effect.

The final force equation begins with what was written at the end of Chapter

3, with the following additions. The Strouhal number, separation point, formation

point, and boundary layer final thickness all come from the Reynolds-based inputs

outlined in this chapter. The shear layer thickness is held constant at this point.

Although it seemed very promising to include a growth of the shear layer as outlined

above, there were more negative aspects than positive with the current method of

implementation. It is suggested that this be a point of further study, whereas simple

equations can be developed for use in the model without disturbing the delicate

balance of the nonlinear model. In addition to all of this, the dissipation parameter

α is set equal to one rather than one-half, with the argument that there is no need

to dissipate energy when not all the energy has yet been accounted for.

mÿ + cẏ + ky = Ξdisst + Ξdissb
+ FBLt + FSLt + FKVt − FBLb

− FSLb
− FKVb

(5.21)
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ẏ

(
θ̇st − θ̇spb

)
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(5.22)
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The above forcing equation is evaluated with the following inputs and conditions.

ηt =
√

αU∆SL

2π
tt ηb =

√
αU∆SL

2π
tb

xfpt = xfpo +
√

δx2

Ts
tt xfpb

= xfpo +
√

δx2

Ts
tb

θspt = θspto
+

√
δθ2

Ts
tt θspb

= θspbo
−

√
δθ2

Ts
tb

θst =
√

δθ2

Ts
tt −

√
δθ2

Ts
tb

(5.24)

xfpo = f(Re) δx = R

θspto
= f(Re) δθ = π/18

θspbo
= f(Re)

Ts = f(Re) α = 1

(5.25)

tt(i + 1) = {
tt(i) + ∆t TKV < Tcrit

0 TKV >= Tcrit

tb(i + 1) = {
tb(i) + ∆t TKV < Tcrit

0 TKV >= Tcrit

(5.26)

Tcrit =
α

8
ρ∆TsU

3 (5.27)

The quantitative and qualitative analysis of the above math model is performed

in the final chapter of the dissertation.
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Figure 5.1: The non-dimensional Strouhal number over Reynolds number for a stationary cylinder
(Sumer and Fredsøe 1997). Other experiments have not agreed with the smooth jump
shown during Boundary Layer Transition.
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Figure 5.2: Comparison of the amplitude response for the implementation of a Reynolds-number-
based Strouhal number to a constant Strouhal number.
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Figure 5.3: Comparison of the phase-shift response for the implementation a Reynolds-number-
based Strouhal number to a constant Strouhal number.
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Figure 5.4: Comparison of the vortex-shedding frequency response for the implementation of a
Reynolds-number-based Strouhal number to a constant Strouhal number.
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Figure 5.5: Comparison of the cylinder frequency response for the implementation of a Reynolds-
number-based Strouhal number to a constant Strouhal number.
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Figure 5.6: The position of the separation point over Reynolds number for a stationary cylinder
with points originally from Achenbach (1968) (Sumer and Fredsøe 1997).
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Figure 5.7: Comparison of the amplitude response for the implementation of a Reynolds-number-
based separation point to a constant separation point.

163



4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

−3

−2

−1

0

1

2

3

φ

U* = U/f
n
D

θ
sp

0

 = 4π/9 

Empirical θ
sp

0

Figure 5.8: Comparison of the phase-shift response for the implementation of a Reynolds-number-
based separation point to a constant separation point.
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Figure 5.9: Comparison of the vortex-shedding frequency response for the implementation of a
Reynolds-number-based separation point to a constant separation point.
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Figure 5.10: Comparison of the cylinder frequency response for the implementation of a Reynolds-
number-based separation point to a constant separation point.
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Figure 5.11: The formation length (formation point) from center of a stationary cylinder over
Reynolds number (Norberg 1987b).
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Figure 5.12: Comparison of the amplitude response for the implementation of a Reynolds-number-
based formation point to a constant formation point.
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Figure 5.13: Comparison of the phase-shift response for the implementation of a Reynolds-number-
based formation point to a constant formation point.
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Figure 5.14: Comparison of the vortex-shedding frequency response for the implementation of a
Reynolds-number-based formation point to a constant formation point.

170



0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f r/f
n

U* = U/f
n
D

x
fp

0

 =  R     

Empirical x
fp

0

Figure 5.15: Comparison of the cylinder frequency response for the implementation of a Reynolds-
number-based formation point to a constant formation point.
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Figure 5.16: Comparison of the amplitude response for the implementation of a Reynolds-number-
based maximum boundary-layer thickness to a constant maximum boundary-layer
thickness.
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Figure 5.17: Comparison of the phase-shift response for the implementation of a Reynolds-number-
based maximum boundary-layer thickness to a constant maximum boundary-layer
thickness.
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Figure 5.18: Comparison of the vortex-shedding frequency response for the implementation of a
Reynolds-number-based maximum boundary-layer thickness to a constant maximum
boundary-layer thickness.
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Figure 5.19: Comparison of the cylinder frequency response for the implementation of a Reynolds-
number-based maximum boundary-layer thickness to a constant maximum boundary-
layer thickness.
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Figure 5.20: Comparison of the amplitude response for the implementation of a Reynolds-number-
based Strouhal number, separation point, formation point, and maximum boundary-
layer thickness to constant inputs.
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Figure 5.21: Comparison of the phase-shift response for the implementation of a Reynolds-number-
based Strouhal number, separation point, formation point, and maximum boundary-
layer thickness to constant inputs.
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Figure 5.22: Comparison of the vortex-shedding frequency response for the implementation of a
Reynolds-number-based Strouhal number, separation point, formation point, and max-
imum boundary-layer thickness to constant inputs.
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Figure 5.23: Comparison of the cylinder frequency response for the implementation of a Reynolds-
number-based Strouhal number, separation point, formation point, and maximum
boundary-layer thickness to constant inputs.
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Figure 5.24: Comparison of the amplitude response for the implementation of a Reynolds-number-
based boundary-layer growth (square-root of arc-length) to a linear boundary-layer
growth.
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Figure 5.25: Comparison of the phase-shift response for the implementation of a Reynolds-number-
based boundary-layer growth (square-root of arc-length) to a linear boundary-layer
growth.
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Figure 5.26: Comparison of the vortex-shedding frequency response for the implementation of a
Reynolds-number-based boundary-layer growth (square-root of arc-length) to a linear
boundary-layer growth.
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Figure 5.27: Comparison of the cylinder frequency response for the implementation of a Reynolds-
number-based boundary-layer growth (square-root of arc-length) to a linear boundary-
layer growth.
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Figure 5.28: Comparison of the amplitude response for the implementation of a Reynolds-number-
based boundary-layer growth (square-root of arc-length) to a linear boundary-layer
growth with the same maximum boundary layer thickness.
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Figure 5.29: Comparison of the phase-shift response for the implementation of a Reynolds-number-
based boundary-layer growth (square-root of arc-length) to a linear boundary-layer
growth with the same maximum boundary layer thickness.
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Figure 5.30: Comparison of the vortex-shedding frequency response for the implementation of a
Reynolds-number-based boundary-layer growth (square-root of arc-length) to a linear
boundary-layer growth with the same maximum boundary layer thickness.
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Figure 5.31: Comparison of the cylinder frequency response for the implementation of a Reynolds-
number-based boundary-layer growth (square-root of arc-length) to a linear boundary-
layer growth with the same maximum boundary layer thickness.
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Figure 5.32: Comparison of the amplitude response for the implementation of a linear shear-layer
growth with Reynolds number based maximum shear layer thickness with a constant
shear layer thickness both with Reynolds number based maximum boundary layer
thickness. The gap around reduced velocity 10 is the result of the response amplitude
going to infinity.
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Figure 5.33: Comparison of the phase-shift response for the implementation of a linear shear-layer
growth with Reynolds number based maximum shear layer thickness with a constant
shear layer thickness both with Reynolds number based maximum boundary layer
thickness.
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Figure 5.34: Comparison of the vortex-shedding frequency response for the implementation of a
linear shear-layer growth with Reynolds number based maximum shear layer thickness
with a constant shear layer thickness both with Reynolds number based maximum
boundary layer thickness.
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Figure 5.35: Comparison of the cylinder frequency response for the implementation of a linear
shear-layer growth with Reynolds number based maximum shear layer thickness with
a constant shear layer thickness both with Reynolds number based maximum boundary
layer thickness. The frequency response points of zero correspond to infinite amplitude
response, an inaccuracy of the model.
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Figure 5.36: Comparison of the amplitude response for various values of the dissipa-
tion/amplification parameter α.
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Figure 5.37: Comparison of the phase-shift response for various values of the dissipation parameter
α, with testing for energy entrainment in place of dissipation.
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Figure 5.38: Comparison of the vortex-shedding frequency response for various values of the dissi-
pation/amplification parameter α.
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Figure 5.39: Comparison of the cylinder frequency response for various values of the dissipa-
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Table 5.1: Final math model inputs and outputs.
Inputs Outputs

User-defined Model-defined
U∗ St y(t)
m∗ θst φ
ζ θspt,b

fKV

fn xfpt,b
fC

Re ηt,b

D Tcrit

ρ
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CHAPTER 6

Comparison to Experimental Results and Extant Models

6.1 Comparison to Experimental Results

There is a seemingly limitless number of experimental data sets available for

vortex-induced vibrations. Three test cases with four data sets have been selected

for comparison here. A benchmark data set used in most any comprehensive dis-

cussion of VIV comes from Feng (1968). This case was one of the first complete

data sets on the phenomenon of VIV and is often used for comparison against new

experimental, analytical, and computational results. It is only natural, therefore,

to compare the present model to those results. Govardhan and Williamson (2000)

performed experiments for the same conditions and found slight variations in the

results. The present model is compared in the same plot to both of these data sets.

Both data sets were obtained by private communication with Williamson.

A third data set also obtained by private communication with Williamson also

was published in Govardhan and Williamson (2000). This case differs from that

used to compare against Feng (1968) since the mass ratio is referred to as “high” in

Feng (1968), while for this second data set from Govardhan and Williamson (2000)

represents a “low” mass ratio. Finally, a fourth data set was obtained by picking

points off of the plots presented in Anagnostopoulos and Bearman (1992), where the

Reynolds number range is much lower, and the mass ratio is moderate. The defining
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parameters of each case is given in Table 6.1. The Re regime definitions are taken

from Zdravkovich (1997) and were outlined in Chapter 1.

The mathematical model was run for each of the cases as defined in Table 6.1, and

the results are shown in Figures 6.1 to 6.10. The equations used come from the final

force equations presented in Chapter 5. The data for the cases taken from Feng (1968)

and Govardhan and Williamson (2000) were obtained via private communication with

Williamson. The data for the case from Anagnostopoulos and Bearman (1992) was

visually pulled from the plots by the author, allowing for greater error in the values.

It can be seen that overall, the math model is not yet up to standard for compar-

ison to experimental results. However, there is a great deal of success in the model.

In the case of the high mass-ratio experiments of Feng (1968) and Govardhan and

Williamson (2000), shown in Figures 6.1 to 6.4, the amplitudes are not on the same

order of magnitude, and the phase-shift is altered due to the inputs. However, lock-in

is still visible within an acceptable range for the simulation, and the vortex-shedding

frequency extrapolated from the experimental results of Feng (1968) seem to align

with what was found by the model.

In the case of the low mass ratio of Govardhan and Williamson (2000) and the low

damping ratio of Anagnostopoulos and Bearman (1992), the results of the model are

non-existent during lock-in for the first case and entirely for the second case because

the amplitudes went to infinity throughout the test range. It has been noted that

with low damping ratios, the model does tend to infinity, despite the vortex shedding

criterion built in. This is a point worth further examination.
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6.2 Comparison to Extant Models
6.2.1 Linear Single Degree-of-Freedom Equation

Although the single degree-of-freedom linear model, where the forcing term is

defined with an amplitude and sinusoidal signal, has been proposed as a legitimate

model of VIV, there is no need to compare the current model to it because it would

result in the same results as those from experiments. This is due to the fact that the

lift coefficients come directly from experiments, and the amplitudes are therefore a

direct result of this input.

6.2.2 van der Pol Oscillator

As outlined in Chapter 1, there are several types of models that have been de-

veloped over the years. Many had two degrees of freedom, with some type of wake

parameter. Sometimes that parameter represented lift while other times it repre-

sented the attached fluid in some way. However, one thing is in common with most

published VIV models: they attempted modeling VIV using a van der Pol Oscilla-

tor. This includes the models derived from the similar Landau equation as well as

the model proposed by Blevins (1974) and even the model derived using Hamilton’s

Principle in Billah (1989). Since they all have characteristics taken from the van

der Pol Oscillator, one of the more recent models will be selected for comparison.

It is argued that any previous models would have been equally or less successful

at modeling VIV in order for the more recent model to be published. The model

selected come from Facchinetti, de Langre, and Biolley (2004), and couples the van

der Pol Oscillator with the acceleration of the cylinder. The values of the parameters

used in the reference are also given below. Ca is the added mass coefficient, St is

the Strouhal number, γ is the stall parameter, CL0 is the reference lift coefficient

for a fixed cylinder,ε is the van der Pol coefficient, and A is also defined from the
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van der Pol system in combination with ε. For the selection of the values of these

parameters, it is recommended to review Facchinetti, de Langre, and Biolley (2004)

as this is a large part of the article.

(
m + 1

4
πCaρD2

)
ÿ + (c + γρfsD

2) ẏ + ky = 1
4
ρU2DCL0q

q̈ + εfs (q2 − 1) q̇ + f 2
s q = A

D
ÿ

(6.1)

Ca = 1 St = 0.2 γ = 0.8

CL0 = 0.3 ε = 0.3 A = 12

(6.2)

For the results comparing the current model to the model in Facchinetti, de Lan-

gre, and Biolley (2004), see Figures 6.11 to 6.14. Facchinetti, de Langre, and Biol-

ley (2004) tested coupling the wake variable to the cylinder displacement in three

ways: through cylinder displacement, through cylinder velocity, and through cylin-

der acceleration. It was concluded in the article that the best coupling comes from

acceleration, because of the wider range of synchronization that is observed with the

displacement versus reduced velocity. Although this amplitude of response is on the

same order of magnitude as experimental results, the Facchinetti, de Langre, and

Biolley (2004) model underestimates the amplitudes throughout the range of syn-

chronization. This underestimation of the amplitudes of response is a fairly common

occurrence in most all mathematical models used for VIV.

With what has been observed in the rigorous derivation of the present model, it

can be stated that the coupling between the fluid and the cylinder is most likely a

result of both the cylinder velocity and acceleration, as each term in the attached

fluid resulted in a cylinder velocity and acceleration term. It is suggested that,

although there is no physical justification for using the van der Pol oscillator, future

advocates of the model may find it useful to couple the equations using both the

velocity and acceleration. There is perhaps some physics in this argument based on

199



the derivation of the model derived in this dissertation.

In addition, non-zero initial conditions are necessary for the van der Pol oscillator

coupled equations. In the model derived here, however, zero initial conditions result

in the same response as non-zero initial conditions. This is due in part to the fact

that the current model has only one degree of freedom in the system, the cylinder

vertical motion. In addition, the implementation of the assumed character of the

wake replaces the need for initial conditions, as the vortices are started 180◦ out

of phase with each other in terms of the Strouhal period. However, this is very

beneficial because it shows the self-excitation of the system in terms of forcing the

cylinder to respond.

Although the current math model fails to match the relative success of the van der

Pol oscillator in terms of the amplitude of oscillation, the current model far exceeds

the results of the van der Pol oscillator for the other three features of phase-shift,

vortex-shedding frequency and cylinder frequency. The van der Pol oscillator has

never captured the phase-shift at lock-in. Also, the vortex-shedding frequency, or

in this case the lifting frequency, are also not captured in addition to the failure of

the van der Pol oscillator to capture frequency lock-in of the cylinder itself. This

indicates the lack of physics from forcing a van der Pol curve to fit VIV data. Yes,

most designs are done around the maximum amplitude response that can be forced

by the van der Pol coefficients, but to what degree can those values be trusted if the

phenomenon has not been captured.

6.3 Comparison to Baselines

In Chapter 2, certain features were shown in order to define the phenomenon

of VIV. These features were referred to in the quantitative and qualitative analysis

presented at the end of Chapter 4 for the development of the linear model. At this
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point, it is of interest to not just compare the model quantities and qualities, but

to actually overlay the results of the model with the actual figures from Chapter 2.

This helps further gage the success of this model.

In Chapter 2, the character of the phase-shift at lock-in was shown in a plot,

giving both a quantitative and qualitative baseline. In addition, the basic charac-

teristics of the range of synchronization were given with the initial, upper and lower

branches followed by desynchronization. Already, it has been asserted that the math

model shows characteristics of these branches, and it will be further outlined here.

The vortex-shedding patterns have been hinted at, and can be analyzed given the

frequency of vortex shedding versus the frequency of the cylinder motion for this

model. In addition, experimental results have shown higher frequencies at lock-in for

mass ratios below one, a characteristic already observed with this model but further

outlined here. Finally, the modified Griffin plot was brought up as an experimental

result of VIV, although the valididity of such a comparison is still controversial. All

of these are shown in plots below for some manner of comparison in Figures 6.15 to

6.20.

In comparison to the baselines, there are several features that appear in the math

model. The phase shift (Figure 6.15), for mass ratios of 10 and 1.05, is appropriate in

nature, although the phase shift for the lower mass ratios is not properly captured.

In general, the capturing of the phase shift has been the most robustly present

feature. For the range of synchronization (Figure 6.17), there are definitely signs

of the initial, upper, and lower branches being present in all of the models, and

the desynchronization can be attached to the range of reduced velocities where the

response steadily tapers off. The initial branch in all cases, however, seems to start

at a reduced velocity of zero rather than around 2. There is a jump in the amplitude
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response around U∗ = 2.5, which corresponds to the first sub-harmonic of the natural

frequency. From there, the upper branch sometimes begins before U∗ = 5, although

for m∗ = 10, it does appear around U∗ = 5. Afterwards, there are heightened

responses that could be associated with the lower branch. However, particularly

in the cases of the lower mass ratios of 0.54 and 0.61, there is a large gap around

U∗ = 10, corresponding to the first super-harmonic of the natural frequency. This

is where the model has seen the most problems with the amplitude of response, and

often times the amplitudes head to infinity around the first super-harmonic. It is

believed that with a better modeling of the vortex shedding criterion, this would

no longer be observed, since a vortex would shed before enough energy would be

captured in the system to force such high amplitude motions. In other words, an

infinite amplitude indicates that the model has accumulated infinite energy in order

to respond as such. VIV is a self-limiting phenomenon, and allowing the vortex to

shed before the amplitude response goes to infinity will avoid the divergence.

The vortex-shedding mode analysis is very encouraging (Figure 6.18). The plot

results from multiplying the vortex shedding frequency by two, so as to represent

the vortex from the top and the vortex from the bottom, and then divided by the

corresponding cylinder frequency response. The results show that, within the con-

sidered range of synchronization, there is a possibility for both the traditional 2S

mode, as well the 2P which has been extensively documented. Additionally, as the

plot extends to higher velocities, it can be seen that for the case where the cylinder

frequency locks in to the natural frequency, the number of vortices shed continues to

increase. The encouraging part of this is the fact that the math model can indeed

capture various vortex shedding modes, unlike other models where the the body

must be forced at the frequency at which it is expected to respond. The latter is how
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the linear-forcing model is operated. The ability to capture various vortex shedding

modes within a math model is very encouraging.

V ortices

Cycle
=

2 ∗ fKV

fC

(6.3)

The next comparison shows some promise, where low-mass-ratio cylinders have

experimentally been observed to lock in to higher frequencies than the natural fre-

quency. This characteristic was slightly better captured by the model presented in

Chapter 4. However, even with the addition of the Reynolds based parameters, the

concept is still visible. The frequency at which the lower mass ratios lock in is not

as close to unity as other test cases. For further evidence of the frequency response

for various mass ratios, it is recommended to review the results in Chapter 4.

Finally, an attempt is made to compare the math model to the modified Griffin

plot in Figure 6.20 (Govardhan and Williamson 2006). However, since it has already

been observed that the amplitudes are not on the order of magnitude of one as

expected for VIV, it is obvious that this attempt is not a success.
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Table 6.1: Selected experimental data sets for comparison against developed mathematical model.
Publication fn ζ m∗ m∗ζ Fluid Re Regime
Feng (1968) 320 0.250 water TrSL1Govardhan and Williamson (2000)
Govardhan and Williamson (2000) 0.00151 8.63 water TrSL2
Anagnostopoulos and Bearman (1992) 7.016 0.0012 17.78 water L2
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Figure 6.1: Comparison of the amplitude response of the developed math model to the high mass
ratio experimental data sets from Feng (1968) and Govardhan and Williamson (2000),
data received via private communication from Williamson.
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Figure 6.2: Comparison of the phase-shift response of the developed math model to the high mass
ratio experimental data sets from Feng (1968) and Govardhan and Williamson (2000),
data received via private communication from Williamson.
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Figure 6.3: Comparison of the vortex-shedding frequency response of the developed math model
to the high mass ratio experimental data sets from Feng (1968) and Govardhan and
Williamson (2000), data received via private communication from Williamson.
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Figure 6.4: Comparison of the cylinder frequency response of the developed math model to the high
mass ratio experimental data sets from Feng (1968) and Govardhan and Williamson
(2000), data received via private communication from Williamson.
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Figure 6.5: Comparison of the amplitude response of the developed math model to the low mass
ratio experimental data set from Govardhan and Williamson (2000), data received via
private communication from Williamson.
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Figure 6.6: Comparison of the phase-shift response of the developed math model to the low mass
ratio experimental data set from Govardhan and Williamson (2000), data received via
private communication from Williamson.

210



3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f C
/f

n

U*

Math Model                   
Govardhan & Williamson (2000)

Figure 6.7: Comparison of the cylinder frequency response of the developed math model to the low
mass ratio experimental data set from Govardhan and Williamson (2000), data received
via private communication from Williamson.
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Figure 6.8: Comparison of the amplitude response of the developed math model to the experimental
data set from Anagnostopoulos and Bearman (1992), data taken from points on plots.
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Figure 6.9: Comparison of the vortex-shedding frequency response of the developed math model to
the experimental data set from Anagnostopoulos and Bearman (1992), data taken from
points on plots.
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Figure 6.10: Comparison of the cylinder frequency response of the developed math model to the
experimental data set from Anagnostopoulos and Bearman (1992), data taken from
points on plots.
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Figure 6.11: Comparison of the amplitude response of the developed math model to the van der Pol
oscillator from Facchinetti, de Langre, and Biolley (2004) with acceleration coupling.
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Figure 6.12: Comparison of the phase-shift response of the developed math model to the van der Pol
oscillator from Facchinetti, de Langre, and Biolley (2004) with acceleration coupling.
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Figure 6.13: Comparison of the vortex-shedding frequency response of the developed math model
to the van der Pol oscillator from Facchinetti, de Langre, and Biolley (2004) with
acceleration coupling.
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Figure 6.14: Comparison of the cylinder frequency response of the developed math model to the
van der Pol oscillator from Facchinetti, de Langre, and Biolley (2004) with acceleration
coupling.
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Figure 6.15: Comparison of the phase-shift response of the developed math model to the empirically
based results as shown in Sumer and Fredsøe (1997).
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Figure 6.16: Comparison of the amplitude response of the developed math model for high mass
ratio to the empirically based range of synchronization as taken from Williamson and
Govardhan (2004).
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Figure 6.17: Comparison of the amplitude response of the developed math model for low mass
ratio to the empirically based range of synchronization as taken from Williamson and
Govardhan (2004).
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Figure 6.18: Comparison of the approximate number of vortices shed per cycle from the developed
math model to the empirically based vortex shedding modes as taken from Williamson
and Roshko (1988). Many experimental results show mode 2S present up to around
U∗ = 5 and then mode 2P takes over.
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Figure 6.19: Comparison of the cylinder frequency response of the developed math model to the
empirically based frequency response for low mass ratios as taken from Govardhan and
Williamson (2000).
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Figure 6.20: Comparison of the modified Griffin amplitude response of the developed math model to
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CHAPTER 7

VIVACE Design

This chapter will outline certain considerations that will need to be made once the

math model is improved to the level of acceptable error from experimental results.

The model can then be used to determine a great many details about the cross-

sectional arrangement of multiple cylinders in a given free-stream. This chapter

serves only as an outline and should not be taken as a final criterion for design.

Basic design constraints must be defined in order to determine the total energy take-

off in order to design for site-specific criteria as well as for comparison to other ocean

energy extraction devices.

7.1 Cylinder Spacing

Figure 1.2 showed a possible arrangement for multiple cylinders for energy ex-

traction. The spacing of these cylinders will be very important in optimizing the

energy take-off. Since the model is currently two-dimensional and assumes a uni-

form free-stream velocity, there are limitations in optimizing the cylinder spacing.

When placed in a body of water, the cylinder’s axis is oriented perpendicular to the

flow of water and perpendicular to gravity. There are two directions in which the

cylinders are spaced, and a third direction defined by the length of the cylinder. The

first direction is the downstream direction. The second is the direction of gravity.
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The third direction over the length of the cylinder is the axial direction of the cur-

rent two-dimensional model. See Figures 1.1 and 1.2 for a schematic of the cylinder

orientation. Figure 7.2 gives an overview of multiple cylinder arrangements.

It is inappropriate to attempt optimizing cylinder spacing in the downstream

direction because the downstream cylinders will be experiencing the wake of the up-

stream cylinders. This has been shown to result in a combination of the phenomenon

of VIV and galloping. A more advanced model could potentially be developed for

this purpose, or Computational Fluid Dynamics (CFD) could prove useful for this

model.

The cross-stream spacing could be examined with this model once the results are

within an acceptable error of observed experiments. For spacing of the cylinders in

the direction of gravity, estimates can be obtained for the maximum displacement of

each cylinder, and the cylinders can then be placed with spacing for this distance.

In the cylinder-axial direction, integration of the two-dimensional model can provide

estimates of the energy take-off for a given length cylinder. Optimal aspect ratios of

the length to diameter of a cylinder in VIV have already been reviewed in numerous

references and will be used as input here.

7.1.1 Length from Aspect Ratio

Raghavan (2007) discussed the importance of the aspect ratio on maximum lift for

the VIVACE system. He reviewed several works and concluded that for the VIVACE

system, the aspect ratio should be between 7 and 20, or the length of the cylinder

should be between 7 to 20 times the diameter of the cylinder. This was in order

to optimize the mechanical power extraction based on the correlation length. The

correlation length is the distance in the axial direction of the cylinder over which

the vortex shedding is in phase (Sumer and Fredsøe 1997). For longer cylinders,
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experiments have revealed that the vortices shed in cells rather than all shedding at

the same time. This leads to varying lift over the length of the cylinder. A correlation

length divided by the cylinder length equal to 1 would mean that there is only one

vortex sheet shedding at the same time. However, if the correlation length is less

than the length of the cylinder, vortices will be shedding at different times, canceling

some of the lift over the entire length. In the case of VIV, vortices shed over larger

correlation lengths due to VIV synchronization.

Since the model presented in this dissertation is two-dimensional and no conclu-

sions can be drawn about the third dimension, the conclusion of Raghavan (2007) is

used here. The aspect ratio is selected to be between 7 and 20.

7.1.2 Vertical Spacing

Once parameters such as the mass and the diameter have been determined in order

to be operating with maximum lift, a numerical simulation can be run to determine

the maximum displacement of the cylinder. If each cylinder is allowed to oscillate

freely without fixing it’s motion to it’s neighbor, then it is theoretically possible that

the top cylinder is in the trough of it’s cycle while the lower cylinder is in the peak

of it’s cylinder, bringing the cylinders the closest they would be expected to get. It

would be logical to assume that there is a stopper system to prevent two cylinder from

ever touching. However, limiting the stroke of a cylinder is equivalent to limiting the

energy the system can absorb. Therefore, the cylinders should be allowed to reach

their peak, albeit damped, amplitudes. Once the amplitude of response has been

found, each cylinder can be placed twice that amplitude from its neighbor on each

side. Figure 7.3 give an overview of the effects on the wakes of the proximity of two

cylinders.
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7.2 Energy Extraction

Bernitsas, Raghavan, Ben-Simon, and Garcia (2006) derived the relationship be-

tween the damping of a cylinder in VIV to the power that is taken off from that

damping. That relationship is followed herein. However, instead of using the linear,

single degree-of-freedom model developed in the reference, the current derived model

is used instead. To begin, the model will be written in the following form, where all

forcing terms are on the right-hand side and all cylinder motion terms are preserved

on the left-hand side of the equation.

mÿ + cẏ + ky = F (7.1)

In Bernitsas, Raghavan, Ben-Simon, and Garcia (2006), the force was divided

into viscid and inviscid terms. However, the rigorous derivation of the mathematical

model derived here cannot be divided this way. All force terms will remain on the

right hand side of the equation. The mechanical power within a single VIVACE

module can then be derived from the math model in the following way. First, the

instantaneous power is found by multiplying the entire left-hand side by the velocity

of the cylinder motion.

Pinstantaneous = ẏ (mÿ + cẏ + ky) (7.2)

The mechanical power over time can then be found by integrating over at least one

period of the cylinder motion, and then dividing by the period. This period can

be derived from the frequency that is found from the Fast-Fourier Transform of the

numerically-integrated output. Since there is often more than one period present in

the transform and the signal is not exactly periodic, it is best to integrate and divide

over several periods for the best average power.

P =
1

nTs

∫ nTs

0

ẏ (mÿ + cẏ + ky) dt (7.3)
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In the above equation, n represents the number of periods that are taken for the

particular integration. If the signal was hypothetically perfectly sinusoidal, the only

terms left for power extraction would be the damping term, since it is in phase with

the multiply factor ẏ. However, a comparison can easily be made for the numerical

integration of the entire equation and just the damping for power extraction.

Pdamping =
1

nTs

∫ nTs

0

cẏ2 dt (7.4)

The data sets taken from the previous simulations can be used as inputs for the

above integrations. This leads to a purely numerical integration. However, the time-

stepping was always set to have at least 20 time-steps per smallest time period, be

it the Stouhal or the natural. With 20 time-steps per period, an integration can be

performed with reasonable output. The output can also be compared to the output

had the displacement been perfectly sinusoidal in nature. Bernitsas, Raghavan, Ben-

Simon, and Garcia (2006) derived the following expression for the mechanical power

of VIVACE.

PV IV ACE = 8π3(m + ma)ζ(ymaxfC)2fnwater = 2π2c(ymaxfC)2 (7.5)

When selecting design criteria for a given sight, it has been shown experimentally

to be important to work within the TrSL3 regime as defined by Zdravkovich (1997),

since this will be where the lift coefficient is a maximum for the system. With

maximum lift should come maximum energy. Therefore, the diameter of the cylinder

can be selected so that the Reynolds number regime for a given free-stream velocity

coincides with the TrSL3 regime.

7.3 Ecological Implications of VIVACE

Many things can effect the ecology of a water system. The flow regime defines

the ecosystem. Figure 7.1 shows a flow chart representing how the flow regime
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defines the ecosystem. In addition to the large-scale variations that may result from

an obstruction in the water column, the smallest scale variations will also have an

effect. Rivers are typically turbulent environments (Hart and Finelli 1999). However,

the VIVACE converter will introduce a certain amount of turbulence itself on specific

scales that may or may not be natural to the flow stream. The scales of the turbulence

from VIVACE are defined in the same manner outlined for the argument for direct

numerical simulation in Chapter 1. The largest vortices will the be the von Kármán

type vortices that will shed at the Strouhal frequency. However, there will be vortices

of all sizes from this largest size down to the Kolmogorov length scale. As mentioned

in Chapter 1, the Kolmogorov length scale is a function of the Reynolds number, and

for the case of Re = 1× 105 for a diameter of about 0.1m, which was the criterion of

VIVACE laboratory experiments, the smallest length scales were then approximately

6× 10−6m.

L ≈ 2.9
R

Re7/8
(7.6)

(Biggs, Nikora, and Snelder 2005) proposed that organisms are affected by turbu-

lence that has a length scale of approximately the same order of magnitude. There-

fore, the range of sizes of organisms affected by the above example will be of the sizes

of 6 × 10−6m up to 0.1m. This type of analysis is a good first step when assessing

ecological implications of the installation of a VIVACE converter.

As for the temporal effects of a VIVACE installation, the period of oscillations

will be on the order of seconds, affecting the mass-transfer of the flow regime. Mass-

transfer effects can be expected to have an effect on the oxygen, nutrients, and food

uptake of the system, as well as affecting photosynthesis and respiration of the biota

(Biggs, Nikora, and Snelder 2005).
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7.3.1 General Ecological Review of VIVACE

Placing any obstruction within a water channel will have some sort of effect on

the system. This section will examine the possible effects on the ecology of the

water environment and quantify a few flow regime changes that can be expected

based on the length and vertical spacing of the VIVACE cylinders as outlined above.

A VIVACE converter array may be installed anywhere where there is a current of

substantial velocity (> 0.25m/s). This means that the environment in which a

converter may be found could be a stream or river, or it could be the open ocean.

Much of what is to follow will pertain to river flow regimes. However, the discussion

of flow regime change also applies to water motion such as the Gulf Stream, where

many of the same characteristics can be defined on a larger scale (Allan and Castillo

2007).

As shown in Figure 7.1, the energy in the water current is important for ecological

integrity. Any changes to the water flow regime can affect the water quality, energy

sources, physical habitat, and biotic interaction. The impact of taking energy and

velocity out of the system and adding turbulence into the system must be considered.

Vorticity near the cylinders can also change the flow, but further downstream, viscous

dissipation will reduce this effect. However, once the energy is taken out of the water,

there is an impact.

The impact of placing a VIVACE installation into a water channel, be it a river or

a ocean current or tidal stream, may not be entirely negative. It has been seen that

placing offshore installations in the ocean can often encourage biotic diversity in the

vicinity of the new structure. In addition, the effect of decreasing the flow velocity

while increasing the turbulence can also create a less diverse and less competitive

feeding environment for the fish, invertebrates and plants (Hart and Finelli 1999). In
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addition, a flow stream already experiences a wide range of natural variability spa-

tially and temporally. These variations define the physical, chemical, and biological

conditions of each site. Temporal variations can take place over minutes, hours, days

(from storms), seasons, years, decades, or even longer. Therefore, the area of the

installation may already be accustomed to the variations introduced or enhanced by

the fluid-structure interaction of VIVACE if the variability introduced falls within

the natural variability range.

Any stream flow regime can be defined by the following properties. The magnitude

of the flow, or the volume of water moving past a point per unit time, is one defining

element of stream flow. The frequency, or how often a given flow magnitude occurs,

is another defining element. In addition, there are the temporal elements of duration

of a given magnitude of flow, the timing of the magnitude, be it daily or seasonal or

other, and the rate of change of the flow, where often the magnitude may rise very

quickly after a rain storm, but to fall back to its mean flow may take much longer.

Each stream has a natural flow regime that defines its ecology. Every time the

flow regime changes, the stream will respond. There are several types of responses

that can be expected due to changes in the flow regime. The channel may adjust by

changing the geometry, defined by the depth and width at each cross-section. The

riparian plants may be disturbed, either from inundation or drought, spawning cues

for fish may be disturbed, the general habitat may change, and the water quality

may be effected. Overall, there is an alteration to the habitat. This may lead to

disruptions in the life processes of organisms. In addition, there may be a loss of

connectivity over lengths of the river, perhaps due to human structures or due to

lower water flows. Lastly, a flow modification can result in an increased susceptibility

to invasive species.
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If a stream has naturally widely variable flows, it has been found that the species

existing in such an ecological system tend to be generalists, able to adapt to the

frequent changes. However, if a stream is fairly stable or predictable, the species

in such a system are more specialists. Any variation in flow can alter the habitat,

disrupting the life processes of the biota, testing the adaptability of all species. A

specialist is less likely to adapt than a generalist. Therefore, determining the natural

variability in a flow will be important in determining the effect of an obstruction

such as VIVACE in the flow.

Nothing specific will be mentioned about the effects of the change on the flow

regime caused by VIVACE. This is partly due to the site-specific nature of the

problems, where a stream system must first be classified by it’s magnitude, frequency,

timing, duration, and rate of change and then looked at more specifically. It is also

partly due to the fact that it is difficult to quantify the effect of any changes to the

flow regime. The topic of water ecology is very heavily researched to this day, and

no universal guidelines can be set forth for installations that alter the flow.

In addition to the elements of the flow regime itself, there are characteristics of

the water channel. These include the slope, width, and depth of the channel, the

velocity profile of the channel, the grain size of sediment within the channel, the

roughness of the water bed, and the degree of the meandering of the flow. These

characteristics perform a balancing act between each other by mutually adjusting to

changes. Any perturbation to the flow will force the water channel system to seek

out a new dynamic equilibrium (Allan and Castillo 2007).

Any large structure affects this dynamic equilibrium. Natural structures like

boulders or large wood debris can lead to scouring, flow divergence, and sediment

accumulation (Allan and Castillo 2007). Scouring has also shown to be an effect of
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a cylinder close to the bottom of the water channel (Sumer and Fredsøe 1997), and

the hydrodynamics around cylindrical structures is very similar to the obstruction

of any large structure in the water channel. In addition to scouring, flow divergence

and sediment accumulation can be expected results of placing a VIVACE converter

array in the water column. The extent of these effects will depend on the distance

from the bottom surface and to total blockage of the water channel. No matter what

the blockage is, it will be far less than that of a dam. A dam in a river or tidal stream

is nearly a 100 % blockage, with regulating outflow. This regulated outflow results

in a decline in the number of species found in the area, as the natural variability of

the flow has been stopped.

7.3.2 Sediment transport

One major job of streams, both in rivers and oceans, is to transport sediment. As

a stream meanders, is collects sediment from erosion of the banks as well as from the

bottom surface. Sediment size and density determines the velocity that a particle

needs to experience to be lifted into the flow and carried downstream. A reduction

in the velocity, as may be experienced from the energy extraction of VIVACE, may

result in less sediment being transported downstream. The question then becomes

how much is the velocity reduction.

7.3.3 Distance from the free surface

It is beneficial both to the phenomenon of VIV and to the ecology of the envi-

ronment that the VIVACE system not disturb the free surface. The free surface

is often a delicate interface between the air and the water, carrying contaminants

over the surface of the water (Bernitsas, Allan, Webb, and Lyon 2006). From the

phenomenological standpoint, interaction with the free surface is an energy draw,

sucking away the energy the body could otherwise have absorbed. It also prohibits
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the alternating vortex shedding pattern, whereby the edge closest to the surface will

no longer experience vortex growth and shedding, and a recirculating bubble will

often take over (Raghavan 2007; Sumer and Fredsøe 1997).

In addition to the contaminants and the disruption of the VIV phenomenon,

proximity to the free surface can result in what is known as a hydraulic jump. This

was seen by the VIVACE research group in the lab on various occasions. The cylinder

was relatively close to the surface, based on the Froude number, and the water was

forced to rise in level just before the cylinder and then drastically drop downstream

of the cylinder. This resulted in a large amount of air becoming entrained into the

fluid. More air becoming entrained into an ecological system will affect the flow

regime integrity, although it is not expected to have a significant impact on the

system ecology. This alteration, although instinctively thought of as beneficial, is in

fact changing the environment in which the biological matter is used to surviving. If

this balance of air in the water is altered, either the original species will find it difficult

to survive, or new invasive species may find it a welcoming habitat and eventually

kill off the original species. Therefore, it is crucial to minimize air entrainment so as

to not alter the original habitat.

In Raghavan (2007), a literature review shows that for a Froude number based

on the gap ratio in the range of 0.40 to 0.54 begins to show a disruption of the free

surface by the cylinder. When the Froude number exceeds one, the phenomenon of

VIV is expected to stop. The Froude number based on the gap ratio is given in the

following equation.

Frh =
U√
gh

(7.7)

Therefore, it is recommended that the gap be maintained so that the Froude
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number is less than 0.4, and always away from 1.

h >
1

g

(
U

Fr

)2

(7.8)

7.3.4 Distance from the bottom

Like with the free surface, proximity to the rigid bottom boundary is also a con-

sideration. Again, there is in an issue of contaminants, as the bottom boundary often

acts as a natural barrier, collecting settled contaminants out of the water column

(Bernitsas, Allan, Webb, and Lyon 2006). Disturbing this bottom boundary could

then mix such contaminants back into the water column, disrupting the natural cycle.

Benthic biota will also be affected, by disturbance of the bottom boundary, creating

a ripple effect through the local biota with the significant role that benthic biota play

in the system ecology. The magnitude to which the benthic biota are affected should

be on the same order as the change in sediment transport. In addition, scouring of

the sediments can also be a problem. Many foundations of marine structures have

experienced failures due to the fact that the scouring of the local sediments was so

large, the structure itself was undermined. Therefore, ensuring that the motion of

the cylinders and the shed vortices do not greatly interfere with the bottom boundary

becomes a critical problem of both ecology and engineering once again.

7.3.5 Measures of Regime Change

There are several ways to examine the effect that an installation of cylinders in

VIV would have on the flow regime, thus changing the ecology of the system. One

measure is to look at the instantaneous and integral blocked area, knowing that,

when expressed as a percentage, an idea of just how large a cross-sectional area will

no longer be accessible can be extracted. Another measure is the change in the energy

from upstream to downstream of the cylinders. The change in energy also relates to

236



the change in the velocity from upstream to downstream sides of the cylinder. This

is one of the defining factors in the flow regime as shown in Figure 7.1.

With a more comprehensive math model, all of these values could be computed

as a percentage. The per cent blocked area (both instantaneous and total) would be

calculated as follows, were n is the number of cylinders in the vertical cross-section.

Ainstaneous = nD (7.9)

Atotal = 2nAD (7.10)

%A =
A

Acs

× 100 (7.11)

There is no downstream measure as this particular math model makes no attempt

to model the flow into or out of a cylinder downstream of the first row. Here, Acs is

the area of the cross-section of the stream assumed constant from the front to the

back of the system.

The per cent change in energy per unit length of the cross-sectional area can then

be found by calculating how much energy there is upstream of VIVACE versus the

energy extracted by VIVACE (total energy extracted).

Eout = Ein − EV IV ACE (7.12)

Ein =
1

2
ρAcsU

2 (7.13)

The energy taken out of the system by the VIVACE converter comes from the power

extraction calculations above. Power multiplied by unit time gives energy.

%E =
Ein − Eout

Ein

× 100 (7.14)

The per cent change in velocity can then also be examined once the energy is

known, since the energy is computed a purely kinetic at this point.

E =
1

2
ρAcsv

2
avg (7.15)

237



The energy out has already been computed for the above change in energy. Therefore,

the average velocity out the system for the same cross-stream in incompressible flow

can be found.

vavgout =
√

2Eout

ρAcs

vavgin
=

√
2Ein

ρAcs

(7.16)

%v =
vin − vout

vin

× 100 (7.17)
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Figure 7.1: Flow chart for the effect of flow regime on ecological integrity (Allan and Castillo 2007).

Figure 7.2: Definitions of basic multiple cylinder arrangements (Blevins 1990).
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Figure 7.3: Side-by-side and tandem cylinder wakes as a function of separation (Blevins 1990).
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CHAPTER 8

Conclusion

To complete the thesis, an overview of the problem and the results is provided

here along with recommendations for future research.

8.1 Math Model Overview

Already with this first attempt to rigourously derive a mathematical model based

on energy phenomenology information about VIV, several key features appear very

clearly in the results. With the inclusion of a critical vortex energy parameter, the

phase shift at lock-in between the displacement and the forcing was very clearly

captured. In addition, the lock-in frequency of the cylinder for very low mass ratios

showed the same trend observed in experiments where for mass ratios less than one,

the frequency of the cylinder normalized by the cylinder natural frequency rose far

above unity, and was shown to even lock in above two, just as shown by Govardhan

and Williamson (2000).

In addition, features of the initial, upper, and lower branches were observable from

the amplitude of response over the expected reduced velocity range. There was also a

clear delineation between the range of synchronization and desynchronization, where

desynchronization showed slowly decreasing response, in contrast to the irregular

and excitable trend observed at the neighboring lower branch velocities. The term
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excitable is used here because although the amplitudes around U∗ = 10 are lower

than those of the upper branch around resonance, the points that were observed to

head to infinity were most noticeable around 10.

It is asserted that the current math model is far superior to any other VIV model

yet derived. This is due to the fact that this model attempts to model VIV, and

not match VIV observed response to an existing, unrelated mathematical equation.

The terms of the model were unforced, unlike other models developed as outlined in

Chapter 1. It is further asserted that with a few modifications, it is expected that

the current math model will achieve the amplitude response expected in VIV, and

as such the other features are expected to align.

8.1.1 Qualitative Overview

The following discussion draws largely from the qualitative discussion at the end

of Chapter 4 as well as the baseline comparison at the end of Chapter 6. Qualita-

tively, the model has shown an appropriate phase-shift at lock-in for most test cases.

In addition, there are noticeable regions that can be associated with the initial, up-

per, and lower branches within the amplitude response range of synchronization.

The desynchronization range is obvious from the tapering off response typical above

reduce velocities of 15 or 20.

The vortex-shedding frequency has almost exclusively stayed within range of the

Strouhal frequency, even with the critical-energy based shedding criteria. The fact

that the vortex-shedding frequency remains around the Strouhal frequency while the

cylinder frequency locks in to the natural frequency indicates various vortex shedding

modes. This shows that the system does not have to respond at the frequency at

which it is excited. In addition, this allows for different vortex shedding modes, and

there was evidence of the 2P mode shown in Chapter 6. This has not been captured
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by other math models to the authors knowledge. Also within the cylinder frequency

response there is clear evidence of lock-in, where the cylinder begins to respond

around the natural frequency above U∗ = 5. In addition, lock-out was observed with

the improvements to the model in Chapter 5.

There has also been evidence in the model that for low mass ratios, the cylinder

frequency response does in fact lock in to higher frequencies than the natural fre-

quency, in agreement with the findings of Govardhan and Williamson (2000). The

model is not yet developed to the point of being ready for comparison to the modified

Griffin plot (Govardhan and Williamson 2006), because the Griffin plot relies on the

amplitude of response.

8.1.2 Quantitative Overview

Quantitative success has been achieved in the phase-shift and in the frequency

response. However, quantitative results for the amplitude response of the cylinder

are not yet on the proper order of magnitude. Evidence suggests, however, that

the development of this math model should arrive to the proper amplitude with

further improvements. Very small changes, as were done in Chapter 5, showed dis-

proportionately large changes in the response, where by the same test case was used

through-out and nearly two orders of magnitude improvement was achieved.

It is therefore asserted that, while working with this model, it has become evident

that this method is appropriate for the development of a VIV model. What is to take

place is a more thorough search for additional energy sources . While geometrically

simple, the model can quickly become too complex to handle and therefore has little

advantage over Computational Fluid Dynamics (CFD). However, with attention to

the complexity of the model, a single equation can be easily developed with physically

meaningful variables, and the result from a numerical integrator is expected to show

243



good agreement with VIV. The physically meaningful parameters along with the

simplicity to define the system show the properties of this model to capture more

VIV features than any other phenomenological model. With more effort, the model

is expected to be a proper predictor for VIV, with Reynolds number considerations

included.

8.2 VIVACE Overview

Based on what is already known about VIV and the implementation of the derived

math model, the cylinder length and cross-flow distribution can be proposed, with

a separation of two times the expected maximum amplitude of response. Other

characteristics for the design of the full VIVACE system can quickly be arrived

at once the math model is further improved and the amplitude response is within

the proper order of magnitude while still maintaining the phase-shift and frequency

accuracy.

8.3 Future Work

The model derived in this thesis has proved to be fairly successful in the fact

that all properties presented can be measured or estimated, making all quantities

physically meaningful. The result is a model that captures many basic characteristics

of VIV. The range of synchronization is very visible in most all simulations. Cylinder

frequency response lock-in to the natural frequency is also visible in simulations, with

the fact that higher mass ratios lead to lock-in far above the natural frequency as

well. This has been observed experimentally (Govardhan and Williamson 2000). This

is particularly promising since the lock-in of the response frequency to the natural

frequency is a defining feature of the phenomenon of VIV, and one that separates

it from other fluid-structure phenomena. The nonlinearity of the model helps to

244



exhibit the known phase shift between the forcing and displacement that shifts 180◦

.

There are several possibilities for improvement that the author recognizes at this

point in time.

• The concept of attached viscous fluid meeting an outer, potential flow fluid

indicates that the free-stream velocity is not necessarily the correct choice for

the outer velocity of the boundary layer. For potential flow around a cylinder,

the velocity is found to be 2U sin θ, so that a 90 degrees, the flow velocity is in

fact 2U . The boundary layer can be forced to merge with this velocity instead

of free-stream velocity U , and a large quantity of energy would be captured,

satisfying the goal of improving the model. In order to determine the outer

velocity beyond 90 degrees, a half-body panel method can be used. This is the

logical next step for the model.

• The separation point excursion should be a function of the oscillation of the

cylinder. Sarpkaya (1992) outlined the difference between a stationary cylinder

and a cylinder in oscillatory flow, where a stationary cylinder has a separation

point excursion of about 6 degrees, (±3) while a cylinder in oscillatory flow can

experience excursions up to 120 degrees. This large variation along with the

fact that the flow experienced by the cylinder will be oscillatory indicates that

a more dynamic input with feedback would be more physically meaningful.

• The velocity profile within the boundary layer and shear layer may not be prop-

erly capturing the energy present. As stated in Chapter 4, it has been observed

experimentally that the velocity within the boundary layer often exceeds the

free-stream velocity at a point, then decreasing towards the boundary layer
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thickness (White 1991). It is thought that using a velocity profile that exhibits

such a behavior may contribute to better results, in particular increasing the

amplitude of response.

• Separate equations should be derived for the case of the fully turbulent shear

layer and fully turbulent boundary layer. Blasius showed that in the case of

laminar flow, the boundary layer thickness for a flat plate could be modeled

relatively successfully with equation 8.1. However, in the case of turbulent flow,

the boundary layer thickness follows a very different profile best approximated

by equation 8.2. This would result in different energy and force equations for

the boundary layer, shear layer, and attached vortex radius.

δlaminar ≈ 5x

Re
1/2
x

(8.1)

δturbulent ≈ 0.16x

Re
1/7
x

(8.2)

• It has been observed through experimental visualization that the shear layer

contains vortices after a point called the shear layer transition point. At low

Reynolds numbers it starts with one small vortex and increases up to a very

large number. The best analysis of the vortices comes from a frequency anal-

ysis, comparing the shear layer vortices to the attached von Kármán vortex in

the frequency range. Prasad and Williamson (1997) found a phenomenological

relationship between the shear layer frequency and the Strouhal frequency.

fSL = fKV

(
Re

262

)0.67

(8.3)

The relationship is shown in Figure 8.2. Prasad and Williamson (1997) ex-

plained the variation in the frequency of the shear layer and the frequency of

the vortex based on the origin of the instability in each. They stated that the
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primary instability in the vortex comes from a Hopf bifurcation, and the wave-

length is on the order of the diameter of the cylinder, D. The primary instability

in the shear layer, however, is suggested to be a Kelvin-Helmholtz instability,

and is on the order of the shear layer thickness. Incorporating another frequency

can aide in creating a more full curve, where the response is not solely focused

around the point of resonance. However, the current model already shows a

response suggestive of a full VIV profile. Therefore the complications of adding

this new frequency response to the math model may not be worth the effort and

may prove to be a minimal addition to the model.

It goes without saying that with many more additions to the model, the force

equations quickly become very complicated and carry many operations per iteration

of the model. Even though the model remains conceptually easy, the mathematical

equations become complex. For this reason, it is stated that at a certain point, this

approach may have to be abandoned for a Computational Fluid Dynamics (CFD)

model that can capture some of the basic VIV features. This concept closely follows

the development of Vortex Element Methods (VEM). This CFD method was the

result of what started as a mathematical model using vortices in the boundary layer.

However, the complexity of the development of the VEM model grew so rapidly

that it soon became a full-blown CFD method. For this reason, the mathematical

model developed here is proposed to be an elegant back-of-the-envelope estimate

for the response of a cylinder in VIV, but for more details or to require less input

of experimental information, a CFD approach is recommended. A certain amount

of consideration must be made, though, for the complexity and time constraints of

problem solving. As outlined in Chapter 1, even working at the theoretical fastest

speed of computations, a VIV problem at high Reynolds numbers can take a long
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time, such as the example worked through in Chapter 1 of 60 million years to com-

plete a single VIV simulation. The fact that the rough estimates obtained in the

model each took about one minute suddenly seems more than reasonable despite the

imperfections of the model.
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Figure 8.1: Flow chart for derivation of the VIV energy math model.
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