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Abstract 

Small Molecule Transcriptional Activation Domains 

By 

Sara J. Buhrlage 

 

Chair: Anna K. Mapp 

Transcriptional activators are essential for high fidelity transcription, responsible 

for seeking out particular genes and up-regulating them to precise levels in a signal 

responsive fashion.  Indeed the altered transcription patterns observed in disease states 

can often be attributed to malfunctioning and/or misregulated transcriptional activators. 

Thus, molecules that can reconstitute the function of transcriptional activators, artificial 

transcription activators, are highly desirable commodities as mechanistic tools and 

transcription-targeted therapeutics. Transcriptional activators control the specificity and 

extent of gene upregulation through two domains: the DNA binding domain (DBD) is 

responsible for the former and the transcriptional activation domain (TAD) dictates the 

level of gene expression.  It has proven quite challenging to identify TAD replacements 

with functional properties comparable to the natural system despite their likely 

advantages in terms of stability, delivery, and and/or immunogenic properties. This is 
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likely due to the many open questions surrounding how natural transcriptional activation 

domains function.  

To address the need for the development and characterization of small molecule 

TADs we have employed a combination of organic chemistry, NMR spectroscopy, and 

biological evaluations to a class of isoxazolidines that functionally mimic natural TADs.  

We prepared five stereochemically pure isoxazolidine isomers, each of which contained 

identical functional groups (benzyl, isobutyl and hydroxyl) arranged in different positions 

around the isoxazolidine ring. All of these amphipathic isoxazolidines functioned as 

TADs in a cell-free assay, revealing that analogous to endogenous TADs, a particular 

positioning of functional groups is not required for transcription function. Similar 

functional trends were observed in a cellular assay. We further demonstrated that the 

small molecule TADs interact with at least a subset of the same coactivator proteins as do 

natural TADs. In particular, interaction with the KIX domain of Creb Binding Protein is 

correlated with transcription function, although binding interactions with Tra1, Med15 

and Med23 are also observed. These molecules are thus anticipated to be an excellent 

starting point for the design of more potent small molecule regulators of transcription.   
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Chapter I 

Introduction to Small Molecule Control of Transcription Initiation 

 

A. Project Focus 

 Transcriptional activators are essential for high fidelity transcription, responsible 

for seeking out particular genes and up-regulating them to precise levels in a signal 

responsive fashion.1  Indeed, malfunctioning transcriptional activators are correlated with 

altered transcription patterns in disease states.1-3  There is thus tremendous interest in the 

development of artificial transcriptional activators as potential transcription-targeted 

therapeutics and mechanistic probes of disease.  Transcriptional activators carry out their 

gene targeting and up-regulating functions through two different domains: the DNA 

binding domain (DBD) performs the former and the transcriptional activation domain 

(TAD) controls the extent of gene expression.1-3  Of these two domains it has proven 

significantly more challenging to identify TAD replacements with functional properties 

comparable to the natural system despite their likely advantages in terms of stability, 

delivery, and and/or  immunogenic properties.  In fact, at the outset of my thesis work 

there was only a single example of a small molecule TAD.4  Thus the focus of my thesis 

project was to design, synthesize and evaluate novel analogs of that molecule to probe its 

mode of action and yield future generations of small molecule TADs.   

 

B. Introduction to Transcription  

Transcription, the process by which DNA is transcribed to mRNA, is the first step 

in the ultimate production of protein product from the information encoded in DNA.  

RNA polymerase II is the key enzyme in transcribing mRNA from DNA but this enzyme 

requires a large number of accessory proteins to function.1-3  A general schematic of the 

process of transcription is shown in Figure I-1a.  Transcriptional activator proteins, in 

response to intra- or extra-cellular signals, seek out a specific sequence of DNA within 
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the nucleus of a cell and recruit chromatin remodeling enzymes to alter the chromatin 

structure.  The same transcriptional activator proteins then recruit RNA polymerase II 

(RNA Pol II) to the gene of interest through direct binding interaction with proteins 

termed coactivators that serve as a bridge between the transcriptional activators and RNA 

Pol II.  The complex of RNA Pol II, associated factors and enzymes, and coactivators are 

collectively referred to as the transcriptional machinery.  The availability of 

transcriptional activators to regulate transcription is controlled in part by masking 

proteins (Figure I-1b) that prevent proteolysis and aggregation of activators until signals 

are received indicating appropriate timing for gene upregulation.1, 3, 5        

 
Figure I-1.  General schematic of transcription initiation. a) In the nucleus activators 

localize to a specific sequence of genomic DNA and recruit chromatin remodeling 
enzymes, coactivators such as Mediator, Med, and RNA polymerase II, RNA Pol II. b) 

Masking proteins control, in part, the concentration of activators available in the 
nucleus.1-3  

 

C. Transcriptional Activators 

 The interactions that transcriptional activators participate in with DNA and with 

enzyme and coactivator proteins in the transcriptional machinery result in the activators 

having a significant role in controlling both the specificity and extent of gene 

a) 

b) 
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upregulation.  The proteins can minimally accomplish this using two domains, the DNA 

binding domain and transcriptional activation domain.1  The DNA binding domain 

(DBD), as the name insinuates, confers gene-targeting specificity to the activator by 

localizing to a specific sequence of genomic DNA.  The transcriptional activation 

domain, or TAD, recruits the transcriptional machinery through direct binding 

interactions with coactivator proteins.  Transcriptional activators often have additional 

protein interaction and signaling domains, but they are not required for function.1  The 

two essential modules, the DBD and TAD, can be linked either covalently or 

noncovalently and typically function independently.1  For example, chimeric molecules 

composed of a DBD from one transcriptional activator protein and a TAD from another 

can be fused together and function to activate transcription (Figure I-2b).1, 6, 7  

Importantly, this enables the study of each module individually.   
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Figure I-2.  Transcriptional activators contain two critical modules for function. a) 

Architecture of a transcriptional activator.  b) Domain swapping experiments 
demonstrated the DBD and TAD modules function independently.1, 6, 7 

 

D. Misregulated Transcription, Disease, and Protein-Based Therapeutics 

 Due to the important role that transcriptional activators play in controlling gene 

expression it is not surprising that malfunctioning or miscued transcriptional activators 

are correlated with a wide range of consequences including several leukemias, diabetes, 

and medulloblastoma.8-10 Artificial transcriptional activators, nonnatural replacements of 

these powerful proteins, are thus highly sought after commodities as potential 

transcription-targeted therapeutics.1 An ideal artificial transcriptional activator would 

reconstitute all aspects of natural transcriptional activator function: signal responsive up-

regulation of selected genes to predetermined levels in a tissue-specific and time-

sensitive manner.1  This of course requires an artificial activator be effectively delivered 

a) 

b) 
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to a specific tissue, localize to the nucleus, and upregulate transcription of a specific gene 

to the appropriate level in response to a natural signal.  Achieving this is quite 

challenging due to the complex network of events involved in upregulating a single gene.  

The current state of the art in artificial transcriptional activator based therapeutics is 

protein-based artificial transcriptional activators containing the minimal DBD and TAD 

modules.  Examples of the successful utilization of protein-based artificial transcriptional 

activators are presented below.           

 In the case of medulloblastoma, the most malignant pediatric brain tumor, the 

disease is caused by the overexpression of the transcriptional repressor REST/NSRF.8  

This repressor causes suppression of genes critical for proper differentiation of neuronal 

cells that when down-regulated result in tumor formation.  The therapeutic potential of 

artificial transcriptional activators has been demonstrated for this disease. An artificial 

transcriptional activator that swapped the repression domain of REST for the activation 

domain of VP16 competed for DNA binding with the REST/NSRF repressor and restored 

expression at the neuronal promoters ultimately leading to apoptosis of the cancer cells.11, 

12 

 In a second example, a zinc finger artificial transcriptional activator that up-

regulates the VEGF-A gene is in Phase II clinical trials as a treatment for diabetic 

peripheral sensory motor neuropathy.13  Diabetic neuropathy is one of the most common 

complications of diabetes and has symptoms ranging from numbness and tingling  in 

mild cases to loss of feeling and motor function as nerve damage progresses.  This loss of 

sensation often leads to untreated injuries and infections resulting in the high number of 

leg amputations obtained among the diabetic population.14 VEGF-A possesses potent 

neurotrophic and neuroprotective properties and upregulation of expression of this 

protein by the artificial activator has been effective in protecting motor and sensory nerve 

function in a diabetic rat model.13 The same company, Sangamo BioSciences, Inc., also 

has ongoing Phase I clinical trials for another zinc finger artificial transcriptional 

activator as a therapeutic for peripheral artery disease. 
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E. Small Molecule Artificial Transcriptional Activators 

 The above examples highlight the power of artificial transcriptional activators, but 

there are significant challenges facing protein variants, including delivery, cellular 

stability and immunogenicity concerns. Small molecule artificial transcriptional 

activators are thus an attractive alternative as they are likely to address many of these 

issues. Ideally, a small molecule transcriptional activator would consist of a low 

molecular weight small molecule that sequence specifically binds DNA and a second low 

molecular weight small molecule that functions as a TAD, recruiting the transcriptional 

machinery through direct binding interactions.  Towards this, significant progress has 

been achieved in the development of synthetic DNA binding domains that can be used in 

cell-free, cellular, and, in some cases, in vivo settings.15, 16 However, the development of 

small molecule transcriptional activation domains that can reconstitute the function of 

their endogenous counterparts has proven to be quite challenging, likely due to the lack 

of detailed information regarding the mechanism by which natural TADs function.   

As alluded to above, transcriptional activation domains have multiple binding 

partners in the transcriptional machinery.1, 17  Thus the challenge is to identify a single 

small molecule that can interact with multiple proteins in the transcriptional machinery 

while maintaining specificity for coactivator proteins over nonproductive interactions 

with other cellular proteins.  Further complicating this task is the fact that the identities of 

all coactivator proteins have not been elucidated, making binding-based screens for small 

molecule TADs difficult to implement. There is also little structural data for either TADs 

alone or TADs in complex with coactivators, and there is not enough data for true 

structure-based design of small molecule TADs.1 The following section focuses on what 

is known about transcriptional activation domains, coactivators, how the two protein 

classes interact, and concludes with how this information influenced the design of the 

first small molecule transcriptional activation domain. 
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F. TADs and Their Protein Binding Partners 

1) Transcriptional Activation Domains 

 The most well studied class of transcriptional activation domains, amphipathic 

TADs, contain interspersed hydrophobic and polar residues, but there is little sequence 

homology within the class.1, 18, 19  Mutagenesis experiments have revealed that the 

hydrophobic groups are particularly important for binding with loss of interaction of a 

hydrophobic residue with a coactivator binding site abrogating binding and function more 

significantly than mutagenesis of a polar group.20, 21  Examples of TADs that bind 

coactivator proteins are shown in Figure I-3a.22-25  These particular examples also 

highlight the observation that relatively short peptide sequences are capable of activating 

transcription.  In fact, several groups have utilized peptide sequences of only 8 amino 

acids to construct TADs.1, 18, 19, 26 The amphipathic sequences of transcriptional activation 

domains have been shown to be unstructured in solution but to adopt a defined 

conformation, most commonly an amphipathic helix, upon binding coactivator targets 

(Figure I-3b)27, 28, although there is some evidence for alternate secondary structure.29, 30  

In an early example Verdine and coworkers utilized NMR spectroscopy to show that in 

the case of the C-terminal VP16 TAD  12 of the TAD residues (472-483) undergo a 

transition from random coil to helix upon binding the coactivator protein TAFII31.28  The 

mode by which folding is coupled to binding for these intrinsically disordered proteins 

has gained significant interest and recently the mechanism of folding for the pKID 

peptide of the activator Creb to the KIX domain of the coactivator protein CBP was 

described.31  pKID forms an ensemble of transient encounter complexes upon binding 

KIX and evolves by way of an intermediate to the fully bound α-helical state without 

dissociation from KIX.  Interestingly, the encounter complexes are also formed with a 

second binding site contained in the KIX domain but do not evolve to the fully bound 

state.  
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MLL               2847    DIMDFVLKNT  
Myb                295     IKELELLL 
SREBP1a        26      LTDIEDML 
KBP 2.20         47      SWAVYELLFGS 

 

 
 

Figure I-3.  Natural TADs. a) Sequences are comprised of interspersed hydrophobic and 
polar residues. b) Amphipathic helix is the most common secondary structure of 

amphipathic TADs. MLL is shown here and hydrophobic residues are colored red.32 
Figure adapted from 2agh. 

 

2) Transcriptional Activation Domain Binding Partners 

Two key classes of proteins that TADs interact with are masking proteins and 

transcriptional coactivator proteins.  The structure and function of co-complexes of TADs 

and masking proteins are well-characterized compared to the complexes formed between 

TADs and transcriptional machinery proteins.   

 

a) Masking Proteins 

 The role of masking proteins is to regulate the function, aggregation, and 

proteolysis of TADs until signals are received indicating appropriate timing for 

upregulation of a particular gene.1  The interactions between TADs and masking proteins 

occur with high affinity and specificity compared to interactions with coactivators. It has 

thus been relatively straightforward to utilize screens, for example, to discover small 

molecules that bind masking proteins.  For example, the complex formation of Gal4 with 

its masking protein Gal80 occurs with a KD of 2 nM,33 whereas Gal4 binds several 

coactivator proteins in the low micromolar range.17, 34, 35  In a second example, p53 binds 

its masking protein MDM2 (Figure I-4a) with a KD of 420 nM and the coactivator protein 

CBP with a KD of 40 μM.36, 37  A subset of the small molecules that bind MDM2 are 

a) 

b) 

MLL 
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shown in Figure I-4b.38  Interestingly, evidence suggests masking proteins and 

coactivators may sample TAD sequences differently.  For example, certain point 

mutations in the Gal4 TAD negatively impacted the ability of the TAD to bind its 

masking protein Gal80 but did not affect the ability of the TAD to activate target genes in 

vivo.39  Thus, inhibitors such as I-1-I-3 which are more straightforward to discover than 

small molecules that bind coactivator proteins may serve as excellent starting points for 

the generation of small molecule TADs.  

 

 

 

Figure I-4. p53•MDM2 complex and inhibitors. a) Cocrystal structure of p53•MDM2.36 
b) Inhibitors of the p53•MDM2 interaction.38 Figure adapted from 1ycr. 

   

b) Coactivators 

 To initiate transcription, the TAD must facilitate assembly of the transcriptional 

machinery through direct binding interactions with one or more coactivators.  The 

a) 

b) 
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identity, however, of the binding partners remains a source of debate, and additional 

binding partners are still being elucidated.  Further, particular coactivators at a given 

promoter vary based on factors such as tissue-type and the timing of the transcription 

cycle.  This needs references 

 Transcriptional machinery proteins and protein complexes that have been 

identified as targets of transcriptional activators include CBP, Mediator, SAGA, NuA4, 

Swi/Snf and TBP-associated factors (TAFs).40-46  Individual coactivator proteins can 

reside in multiple complexes and a single complex may fulfill multiple roles.  For 

example, the SAGA complex functions both in chromatin remodeling and as a 

coactivator and contains overlapping protein components with Mediator.   The protein 

complexes within the transcriptional machinery range from large, approximately 25 

proteins comprise Mediator, to small and easier to study.47  CBP, for example is currently 

believed to function independently or in complex with 1-2 other coactivator proteins.42, 48   

             The prevailing evidence suggests that transcriptional activators interact with 

several coactivators, between 3 and 10, in order to recruit the transcriptional machinery to 

DNA.1  Particularly compelling evidence arises from in vitro crosslinking experiments 

conducted by Hahn and co-workers with DNA-bound transcriptional activators.  Two 

well-characterized amphipathic activators, Gal4 and GCN4, were exposed to nuclear 

extracts, and under these conditions both activators were found to directly interact with 

three coactivators proteins, Tra1, Med15, and Taf12.40, 41 Tra1 and Taf12 are components 

of the SAGA chromatin remodeling complex and Med15 is a component of the Mediator 

complex.45, 49  In another recent example of the necessity of recruitment of multiple 

coactivators, activator by-pass experiments found that minimally two complexes, SAGA 

and Mediator, must be recruited to DNA for gene expression to occur.50  In activator by-

pass experiments, the coactivator is directly attached to a DBD and the ability of the 

chimeric protein to function as a transcriptional activator is evaluated.  Significant in 

vitro binding data has also been collected as evidence for a multipartner binding profile.  

For example more than five binding partners have been identified each for activators p53 

and VP16 using a variety of techniques.51   
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 Along similar lines, a single transcriptional machinery protein often interacts with 

multiple TADs.  For example, the four transcriptional activation domains shown in 

Figure I-4 are all binding partners of CBP and all interact with the same motif within 

CBP, the KIX domain.24, 52, 53  Similarly, natural TADs GCN4, Gal4 and VP16 as well as 

the non-natural TAD XLY are believed to all function, in part, through interaction with 

the Mediator protein Med15.19, 54-58  This implies that individual binding sites are 

permissive and recognize a variety of presentations of amphipathic functionality.  At least 

in the case of the KIX domain of CBP, sufficient structural data has been collected to 

show that in fact a single binding site recognizes multiple activators.32, 52, 53, 59-62       

 

3) Structural Details of TAD•Coactivator Interactions 

 The number of structural studies of TAD•coactivator co-complexes is small.  

Nonetheless, the available studies have been valuable in providing insight in to design 

criteria for nonnatural transcriptional activation domains.  Perhaps the most well-

characterized TAD•coactivator complexes are between the KIX domain of CBP and 

activators Creb, Myb, and MLL and the Tfb1 domain of TFIIH in complex with 

activators VP16 and p53.27, 32, 51, 52, 58, 60, 63  The CBP KIX domain is comprised of five 

helices and interacts with greater than 10 transcriptional activations; the solution 

structures have been solved for three of these in complex with the KIX domain.27  The 

solution structures of the Tfb1 domain of TFIIH in complex with two different activators 

p53 and VP16 have also been solved.51, 63 The Tfb1 protein is comprised of one α-helix 

and 7 β-sheets.  In all cases the TADs were bound as amphipathic helices with the 

hydrophobic face contacting the coactivator binding site; the length of the helices ranged 

from 9-15 amino acids.  The solution structures suggest that a precise arrangement of 

functional groups is not necessary for binding.  For example, the hydrophobic faces of 

p53 and VP16 that bind the same site on the Tfb1 domain consist of different residues. In 

the case of p53 the three residues are Ile, Phe, and Trp,63 whereas for VP16 it is a Met 

and two Phe.51  Although the hydrophobic face of the helix inserts into the binding 

surface in all cases at least one polar residue, either a serine or threonine, makes an 

important hydrogen bonding or ionic interaction with the protein.  The solution structure 
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of VP16•Tfb1 is shown in Figure I-5a and the MLL•KIX•Myb ternary complex is shown 

in Figure I-5b.32, 51   

Figure I-5.  TAD•coactivator complexes. a) VP16•Tfb1, Tfb1 is in yellow and VP16 is 
shown in red.51 Figure adapted from 2k2u. b) Myb•KIX•MLL, KIX is shown in yellow, 

Myb is in green and MLL is in red.32 Figure adapted from 2agh. 

 

G. Design of the First Small Molecule TAD 

 The multi-partner, moderate affinity binding profile of TADs with coactivator 

proteins suggested that screening methods would be unsuccessful in identifying small 

molecule TADs.  Indeed, screens against a single transcriptional machinery protein have 

typically yielded TADs that do not function as well as natural TADs.29, 57 However, the 

permissiveness of coactivator binding sites, which recognize multiple presentations of 

amphipathic functionality, led to the idea that perhaps designing a small molecule TAD 

could be straightforward. The hypothesis was that a small molecule that mimics the 

general characteristics of endgenous TADs would be able to interact with at least a subset 

of the permissive binding sites for TADs within the transcriptional machinery and by 

doing so activate transcription.  Thus, relatively simple criteria based on what is known 

about endogenous TADs were outlined as design guidelines for a small molecule TAD.  

The design criteria included that the small molecule contain a rigid core to adequately 
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project functionality into the binding site similarly to a helix.  Secondly, the rigid core 

would need to be appended with both hydrophobic and polar sidechains that mimic the 

functionality commonly contained in endogenous TADs.   

 Former coworkers identified isoxazolidine I-4 as a small molecule that fit the 

above criteria (Figure I-6).  The five-membered heterocycle imparts the desired rigidity, 

and further, the synthetic methods to access this scaffold allow for dense 

functionalization of the core with a variety of sidechains.  Amphipathic isoxazolidine I-4 

was thus prepared and covalently linked to a DNA binding functionality for evaluation as 

were analogs that were either significantly more hydrophobic (I-5) or more polar (I-6).4  

This ‘top-down’ approach proved successful, with I-4 being the first reported small 

molecule transcriptional activation domain.  This molecule activated transcription 5-7 

fold in a cell-free transcription assay.  Analogous to the endogenous system 

isoxazolidines I-5 and I-6 that do not maintain an appropriate balance of amphipathic 

character did not activate transcription.         

 
Figure I-6.  Isoxazolidines evaluated as TADs.  Amphipathic isoxazolidine I-4 activated 

transcription, whereas I-5 and I-6 do not.4 

 

 This first example of a small molecule TAD, referred to as iTAD for 

isoxazolidine transcriptional activation domain, had been a long sought after milestone in 

the artificial control of gene expression and thus there was tremendous interest in 

elucidating the mode of action of iTAD I-5 as well as investigating the ability of the 

molecule to function in cells; answering these questions was the focus of my thesis work.   
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H.  Thesis Outline  

 To expand our understanding of small molecule TADs the key questions my 

research efforts sought to answer were do iTADs function by a similar mode of action as 

endogenous TADs and will the molecules function in cells.  Towards the former the 

particular comparisons I investigated were whether iTADs target the same coactivator 

binding sites as endogenous amphipathic TADs and do they mimic the functional profile 

in that a precise presentation of functionality is not a critical determinant of function. 

 In Chapter II the ability of amphipathic isoxazolidines differing in placement of 

amphipathic side chains were evaluated for ability to upregulate transcription.  A facile 

synthetic approach for the generation of chiral isoxazolidines was established and utilized 

for the rapid generation of target molecules.  Analogous behavior to natural amphipathic 

TADs, in which there is not a strict requirement for functional group placement, was 

observed for iTADs suggesting that the small molecule TADs function by a similar 

mechanism.  Consistent with this, the small molecules were evaluated in cells and 

potently activated transcription.  

 In Chapter III the coactivator binding partners of iTADs were investigated and 

four binding partners of iTAD I-4 were identified supporting that iTADs exhibit a 

multipartner, low KD binding profile analogous to their endogenous counterparts.  Of 

particular note, iTAD I-4 binds CBP, a ubiquitously expressed histone acetyltransferase 

and coactivator that is an important node in many signaling networks, interacting in fact 

with greater than 300 TADs.  Thus I-5 should be a valuable commodity for elucidating 

the functional role of particular CBP molecular recognition events.  The ability of 

additional isoxazolidines to interact with the same motif within CBP was evaluated using 

NMR spectroscopy and it was observed that small structural changes alter the binding 

profile of the small molecules suggesting that some degree of specificity for a given 

activator or activator class may indeed be achievable within this framework. 

 Surreptitious repeats are often encountered in TADs and the repeated sequences 

have been shown to synergistically activate transcription compared to the minimal 

domain.  Thus an iterative synthetic approach to bis-isoxazolidines was designed and 

implemented in an effort to produce small molecules with enhanced potency compared to 
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monomeric iTADs.  In Chapter IV the synthesis of a variety of bis-isoxazolidines is 

presented; the molecules bind the CBP KIX domain with enhanced affinity but this did 

not translate to synergistic levels of function, likely attributable to attenuated cellular 

permeability.   

 Together, the investigation of the monomeric and dimer isoxazolidines for ability 

to bind coactivator proteins yielded evidence that the ability of iTADs to stimulate 

transcription is linked to a binding interaction with CBP.  Characterization of the iTAD 

binding site within CBP via NMR spectroscopy revealed a remarkable similarity to 

endogenous activators such as MLL that utilize this site.   

 In sum, the preponderance of evidence suggests that iTADs are similar to 

endogenous counterparts in terms of function and shared binding sites within the 

transcriptional machinery.  Consistent with this iTADs function in cells and when 

attached to a variety of DBDs suggesting the molecules should be able to activate 

endogenous genes.  Further these molecules should serve as an excellent starting point for 

the generation of small molecule inhibitors of transcription, long a challenging endeavor.      
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Chapter II 

 

Stereochemical Promiscuity of iTADsa  

 

A.  Abstract 

 Small molecule replacements of transcriptional activation domains are highly 

desirable targets due to their utility as mechanistic tools and their long-term therapeutic 

potential for a variety of human diseases. Here we examine the ability of amphipathic 

isoxazolidines differing only in the placement of constituent side chains to function as 

transcriptional activation domains in a cell-free system. The results reveal that precise 

positioning of functional groups within a conformationally constrained small molecule 

scaffold is not required for transcription function; rather, the balance of polarity and 

hydrophobicity within the scaffold is the more important determinant of transcription 

function. This is analogous to the natural amphipathic TADs the small molecules were 

designed to mimic, suggesting that the small molecule TADs function via a similar 

mechanism. Consistent with this model, the small molecules also function as 

transcriptional activation domains in cell culture.  

 

B.  Introduction 

 According to the prevailing model, transcriptional activators initiate transcription 

by assembling the large, multicomponent transcriptional machinery complex through the 

interaction of their transcriptional activation domains (TADs) and several distinct binding 

partners.1 In vitro crosslinking studies with a labeled version of the yeast activator Gal4, 

for example, showed that its TAD contacts at least three coactivator proteins during 

transcription initiation: Med15(Gal11), a component of the Mediator complex, and two 

proteins in the SAGA chromatin remodeling complex, Tra1 and Taf12.2 It is a single 
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peptide sequence that mediates these different binding interactions, suggesting that there 

are somewhat conserved TAD binding motifs present in different transcriptional 

machinery proteins. Remarkably, an amphipathic TAD with no sequence homology to 

Gal4, GCN4, interacts with the same set of coactivators as the Gal4 TAD, suggesting that 

the TAD binding sites within coactivators are also somewhat permissive, not requiring a 

single placement of particular side chains.3 In another example of this phenomenon, the 

KIX domain of the coactivator CBP (Creb binding protein) interacts with at least 10 

amphipathic TADs with little sequence homology.4  

The first small molecule TAD, isoxazolidine TAD (iTAD) II-1,5 was designed as 

a generic mimic of natural amphipathic TADs, with the hypothesis being that a 

conformationally constrained amphipathic small molecule should be able to interact with 

at least a subset of the permissive binding sites for TADs within the transcriptional 

machinery and by doing so activate transcription. Consistent with this hypothesis, the 

amphipathic isoxazolidines functioned as TADs in a standard cell-free transcription assay 

whereas more hydrophobic or more polar isoxazolidines did not.5 Here we describe 

positional ‘mutagenesis’ experiments in which we evaluated analogs of II-1 bearing 

identical side chains in various locations within the isoxazolidine scaffold.6 The results 

reveal that the iTADs mimic the functional profile of natural TADs in that precise 

positioning of the amphipathic side chains is not a critical determinant for  function. 

Further, we demonstrate that the function in a cell-free environment can be translated to 

cellular activity, yielding the first small molecule TADs with function in living cells.7  

 

 
Figure II-1.  Isoxazolidine TAD (iTAD) II-1.5 
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C. Design and Synthesis of Isomeric Isoxazolidines 

 To assess whether isoxazolidine TADs mimic the functional profile of natural 

TADs in that precise positioning of the amphipathic side chains is not a critical 

determinant for function,1 we performed stereochemical and positional “mutagenesis” 

experiments in which stereochemical isomers of II-1 and analogs bearing identical 

sidechains in various locations within the isoxazolidine scaffold were evaluated.  In the 

original experiments, all isoxazolidines were prepared as racemates and were tested as 

stereoisomeric mixtures.5  We thus targeted each enantiomer of the original isoxazolidine 

(II-2 and II-3) as well as a diastereomer (II-4) and three positional isomers (II-5, II-6, 

and II-7) for this study (Figure II-2).  The compounds contain the same functional 

groups found in the original active compound but in varying three-dimensional 

orientations.   

 

 
Figure II-2. Isomeric iTAD mimics. DBD = DNA Binding Domain.  

 

The first step towards the target molecules was a 1,3-dipolar cycloaddition 

between a nitrile oxide generated from an oxime and an allylic alcohol to produce an 

isoxazoline.8-10  The starting oxime II-8 was generated in a single step from 3-

methylbutyraldehyde11, 12 and the starting allylic alcohol was generated as a single 

enantiomer in two steps from (R)-glycidol using established protocols.13, 14 Towards 

isoxazoline II-10, oxime II-8 was treated with tBuOCl to afford generation of the 

hydroximinoyl chloride.  The hydroximinoyl chloride was then combined with the allylic 

N O
DBD

N O
DBD

N O
DBD

N O
DBD

N O
O N O

OH

HO HO HO

DBD DBD

HOHO

H H

HHH

H

II-2 II-3 II-4

II-5 II-6 II-7



23 

 

alcohol and the components underwent a 1,3-dipolar cycloaddition to give isoxazoline II-

10 in 88% yield as a single regioisomer and diastereomer, as determined by analysis of 

the crude material by 1H NMR spectroscopy.  Isoxazoline II-10 is a common 

intermediate towards four of the target molecules, II-2, II-4, II-5 and II-6.  Towards 

three of these, nucleophilic addition to the C=N bond of isoxazoline II-10 was afforded 

by treatment of II-10 with the Grignard reagent allylmagnesium chloride in the presence 

of the strong Lewis acid, BF3•OEt2.  This reaction yielded a 5:1 mixture of 

diastereomeric products II-11 and II-12 in a combined 71% yield.  Analogous to 

previously reported isoxazolidines the major diastereomer obtained resulted from 

approach of the nucleophile to the face opposite the bulky C5 sidechain as confirmed by 

NOE analysis.10 Isoxazolidine II-11 is an intermediate towards II-2 and II-6 and the 

details of the synthesis of these two compounds is shown in Scheme II-2.   

 

 
Scheme II-1. Synthetic strategy for the generation of isomeric iTAD mimics. 

 

The first step in the functionalization of II-11 towards II-2 was alkylation of the 

isoxazolidine ring nitrogen with benzyl bromide.  This reaction proceeded in 89% yield 

using microwave-accelerated conditions.5  The conditions were utilized as the alkylation 

of the isoxazolidine ring nitrogen does not proceed or proceeds in only low yields under 

standard conditions. One concern was competitive alkylation of the secondary alcohol 

under these conditions, but it was not detected, although small quantities of material were 

obtained in which the silyl group had transferred to the secondary alcohol (≥5%).  

Following alkylation, the double bond moiety on C3 of isoxazolidine II-13 was 
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oxidatively cleaved to yield the desired alcohol at that position.  This functional group 

conversion was afforded by an initial dihydroxylation of the olefin by treatment with a 

catalytic amount of OsO4 and a stoichiometric amount of the oxidant NMO. The crude 

diol was subsequently cleaved to the aldehyde by treatment with NaIO4 and in the final 

step of the oxidative cleavage, the crude aldehyde was reduced to the desired primary 

alcohol by treatment with NaBH4.  The oxidative cleavage sequence proceeded in 81% 

yield to give isoxazolidine II-14 that contains the three desired sidechains, benzyl, 

isobutyl, and hydroxyl.  The functionality on C5 of II-14 served as the point of 

attachment of the densely functionalized isoxazolidine to methotrexate, necessary as part 

of the DNA binding strategy.15  Treatment of II-14 with TBAF afforded deprotection of 

the C5 silyl ether to reveal a diol.  Treatment of the diol with NaIO4 yielded an aldehyde 

that was combined with methotrexate hydrazide to produce isoxazolidine conjugate II-2 

in which the isoxazolidine is tethered to methotrexate through a hydrazone linkage. 

Also shown in Scheme II-2 is the generation of positional isomer II-6 from 

isoxazolidine II-11.  In that direction the C5 sidechain was manipulated first.  The silyl 

ether protecting group was removed from II-11 by treatment with TBAF.  The resultant 

diol was cleaved to the aldehyde by treatment with NaIO4 and the crude aldehyde was 

reduced to the primary alcohol by treatment with NaBH4.  The primary alcohol was then 

selectively alkylated with benzyl bromide over the secondary amine using non-

microwave conditions.  The reaction sequence from II-11 to II-15 proceeded in 55% 

yield.  The ring nitrogen was then alkylated with methyl bromoacetate using microwave 

accelerated conditions and subsequently, the methyl ester was reduced to the primary 

alcohol by treatment with DIBAL to produce II-16 in 72% yield.  Isoxazolidine II-16 

was then tethered to methotrexate at the C3 olefin moiety.  For this, the olefin was 

dihydroxylated and the resultant diol was cleaved to the aldehyde using the same reaction 

conditions described above.  The aldehyde was then combined with methotrexate 

functionalized with a hydrazide to yield target II-6.   
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Scheme II-2.  Synthesis of isoxazolidine targets II-2 and II-6.  

 

The preparation of isoxazolidine-DBD conjugate II-5 from isoxazoline II-10 is 

depicted in Scheme II-3.  In that direction the secondary alcohol of isoxazoline II-10 was 

protected as the silyl ether in 85% yield.  Subsequently nucleophilic addition to the C=N 

bond was afforded by treatment with benzylmagnesium chloride in the presence of a 

strong Lewis acid to produce II-18 in 80% yield as a single stereoisomer.  Alkylation of 

the ring nitrogen with allylbromide using microwave accelerated conditions yielded II-19 

and the newly introduced double bond was oxidatively cleaved by dihydroxylation, 

cleavage to the aldehyde, and finally reduction to the primary alcohol. The silyl ethers 

were unmasked, the resultant diol was cleaved to the aldehyde and the aldehyde was 

condensed with methotrexate hydrazide to produce the final target II-5.  Isoxazolidine-

DBD conjugate II-4 was prepared analogously to II-2 from II-12 and II-3 was prepared 

analogously to II-2 using the chiral allylic alcohol derived from (S)-glycidol in the 

cycloaddition. Each isoxazolidine-methotrexate conjugate was purified to homogeneity 

by reverse-phase HPLC prior to functional evaluation. 
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Scheme II-3. Synthesis of II-5. 

 

D. In Vitro Assessment of iTAD Activity  

 My colleague Dr. Brian Brennan evaluated the function of isoxazolidines II-2-II-

7 in a standard two-hybrid in vitro transcription assay (Figure II-3).  In this assay the 

fusion protein LexA-DHFR served as the DNA binding domain, localizing isoxazolidines 

to the promoter via the specific and high affinity interaction of methotrexate with 

DHFR.15  The construct placed a reporter gene under control of two LexA binding sites 

75 bp upstream of the start site.  The assay employed HeLa nuclear extracts and 

methotrexate was utilized as the negative control with the natural activation domain 

ATF14 as the positive control.  

 
Figure II-3. Two hybrid in-vitro transcription assay. 

 
 
 Figure II-4 shows the activation observed for each compound reported as percent 

activation relative to the positive control ATF14; for reference, the maximal activation in 

this assay corresponds to 5-7-fold above DNA binding domain alone.6, 16  The first set of 

compounds that were evaluated for ability to activate transcription were II-2 and II-3, 

each isoxazolidine enantiomer.  The activity of the two compounds was indistinguishable 
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from that of iTAD II-1 containing both enantiomers of the isoxazolidine ring.  This 

parallels the functional behavior of the d- and l-peptide versions of ATF29.17  

Isoxazolidines II-4-II-7 more significantly differ in the presentation of the amphipathic 

functional groups due to stereochemical or positional changes within the ring.  

Nonetheless, all functioned well as iTADs.  Isoxazolidine II-5 for example, swaps the 

positioning of the alcohol and benzyl moieties compared to the initial compound II-1 and 

again the activity of the two molecules is indistinguishable.  The isoxazolidine portion of 

II-4 is a diastereomer of the original compound; similar activity was observed for the two 

compounds further supporting that the permissiveness of binding sites within the 

transcriptional machinery towards endogenous activators extends to iTADs.  

Isoxazolidine conjugates II-6 and II-7 differ from the others in that the isoxazolidine is 

attached to the DNA binding moiety at the C3 rather than C5 position.   An approximate 

40% attenuation in activity was observed for one of these compounds, II-7, while II-6 

exhibited activation levels essentially the same as the others tested.  A significant 

difference between II-7 and the other compounds tested is reduced projection of the 

benzyl moiety away from the DBD; if the benzyl functionality of iTADs makes 

particularly important binding interactions with at least of subset of iTAD co-activator 

targets the reduced availability of the benzyl group would impact function.  This would 

be consistent with mutagenesis studies of natural activators that show the disruption of an 

interaction between a hydrophobic sidechain of a TAD and co-activator usually more 

significantly impacts activation levels compared to elimination of an interaction with a 

polar sidechain.18   
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  ATF14 = CGSDALDDFDLDML 
 

Figure II-4. Results from in vitro transcription assays. The DBD is the fusion protein 
LexA-DHFR; the high affinity interaction between DHFR and methotrexate localizes the 
Mtx-tagged small molecules (50 nM) to DNA.11 Each activity is the average of at least 3 
independent experiments with the indicated error (SDOM). The maximal activation is 7-

fold relative to background. 
 

 The conserved activity across amphipathic, isomeric isoxazolidines, including 

both enantiomers, parallels the functional behavior of endogenous amphipathic TADs 

that this molecular class was originally designed to mimic.  These data support the 

original hypothesis that drove the design of the first iTAD (II-1): that precise positioning 

of functional groups is not necessary for function, but rather general mimics of 

endogenous TADs should be able to reconstitute their function.  Thus, other 

conformationally constrained small molecule scaffolds containing an amphipathic mix of 

sidechains should also function as TADs.   

     

E.  Ability of iTADs to Function in Cells 

 We have shown that isoxazolidines reconstitute the function of endogenous TADs 

in cell-free systems.  In the cell-free assay, however, cellular permeability, nuclear 

localization, and cellular stability are not assessed.  In addition, there is a much more 

limited range of potential protein binding partners relative to the cellular environment.  

This latter issue is particularly important since natural and nonnatural TADs have been 

shown to exhibit promiscuous binding profiles, interacting with many different 
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hydrophobic surfaces.1  A small molecule that can activate transcription in cells would be 

a significant step forward in the development of transcription-targeted therapeutics and 

thus we evaluated iTAD II-21 as well as isoxazolidine II-22 (Figure II-5), a molecule 

that does not activate transcription in the cell free system, to activate transcription in 

HeLa cells.5  Isoxazolidines II-21 and II-22 differ only in the DBD portion compared to 

the molecules discussed above.  The DBD localizing moiety is oxidized dexamethosone, 

OxDex, a steroid utilized to localize the molecules to DNA in a 2-hybrid system.   

 

 
Figure II-5.  Isoxazolidine targets for evaluating iTAD activity in cells. 

 

1) Synthesis of Isoxazolidine-DBD Targets  

The synthesis of II-21 is shown in Scheme II-4.  Isoxazolidine intermediate II-23 

was generated from II-13 by a silyl deprotection, cleavage of the resultant diol to an 

aldehyde and reduction of the crude aldehyde to the primary alcohol.5 Treatment of 

compound II-23 with methane sulfonylchloride transformed the primary alcohol into the 

mesylate which was subsequently displaced by sodium azide.  The two steps proceeded 

in high yield (89%).  The C3 olefin moiety was then oxidatively cleaved to the primary 

alcohol using the reaction sequence described previously with product obtained in 76% 

yield.  The appropriately functionalized isoxazolidine was then tethered to OxDex using 

the C5 functionality.  The azide was reduced to an amine by treatment with PPh3 and the 

crude amine was coupled to a short PEG linker using standard peptide coupling 

conditions.  The other terminus of the linker contained an Fmoc protected amine that was 

unmasked by treatment with 20% piperidine in DMF.  The OxDex moiety was then 

coupled to the linker through an amide bond linkage, again using standard amide bond 

formation conditions.  The hydrophobic isoxazolidine-OxDex conjugate II-22 was 
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synthesized by my colleague Ryan Casey and both molecules were purified by reverse 

phase HPLC prior to evaluation in cells.  

 

 

 

Scheme II-4. Synthesis of II-21. 

 

2) Function of iTADs: Ability to Upregulate Transcription in a Cellular System 

To test the small molecules in cells we used a system developed in the Kodadek 

lab in which a fusion protein consisting of a Gal4 DBD and the minimal ligand binding 

domain of the glucocorticoid receptor is constitutively expressed (Figure II-6).19  The 

HeLa cells were transiently transfected with a plasmid containing five Gal4 binding sites 

located upstream of a firefly luciferase reporter gene.  The isoxazolidines were attached 

to oxidized dexamethasone (OxDex), which binds the glucocorticoid ligand binding 

domain localizing the transcriptional activator to DNA.  The assays evaluating the small 

molecules were carried out by Dr. Steve Rowe and Dr. Brian Brennan.   
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Figure II-6.  2-hybrid cell based transcription assay. 

 

As illustrated in Figure II-7, amphipathic isoxazolidine II-21 exhibited a 

remarkable 80-fold level of activation at 1 μM and was active even at low nanomolar 

concentrations (5 fold at 5 nM).7  The EC50 of isoxazolidine II-21 is 33 ± 6 nM.  

Analogous to the cell free results, hydrophobic isoxazolidine II-22 did not activate over 

the concentration range investigated.   
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Figure II-7. iTAD function in cell culture.  
 
 This first reported small molecule TAD to function in cells was an important 

demonstration towards the long-term goal of developing transcription-targeted 

therapeutics.  Prior to this example only one nonnatural TAD, peptoid II-28 (Figure II-8), 

had been reported to activate transcription in cells and this molecule does not fit a drug-

like profile.19  It has a molecular weight of >1000 g/mol and a high EC50 value (10 μM).  

In contrast, iTAD II-21 is low molecular weight (<300 g/mol) and is potent at low 

concentrations (EC50 = 33 nM).   
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Figure II-8. Peptoid TAD. 

 

3) Portability of iTADs  

One characteristic of natural transcriptional activators is that the DBD and TAD 

function independently.1  To evaluate if that holds true in the iTAD system, two key 

experiments were conducted.  First, a competitive inhibition or ‘squelching’ experiment 

of the TAD was carried out.  Increasing concentrations of isoxazolidine II-25 (free TAD) 

was added to a constant concentration of isoxazolidine activator II-21.  Depicted in 

Figure II-9 is that II-21 showed a dose dependent decrease in activation with 

approximately 70% inhibition upon addition of 100 μM II-25.7  This is consistent with 

the DBD being a functionality inert DNA localizing scaffold.  In a second experiment, 

‘squelching’ of DNA localization was performed (data not shown).7  Increasing 

concentrations of an inactive transcriptional activator, II-22, were added to a constant 

concentration of isoxazolidine activator II-21.  The inactive conjugate II-22 occupied a 

portion of the OxDex binding sites resulting in a dose dependent reduction in 

transcription.  It is important to note that the isoxazolidine portion alone of II-22 does not 

squelch transcription by II-21.  Together, these experiments suggested that the TAD is 

portable and should function when attached to alternative DNA localizing moieties.  Thus 

we evaluated iTADs attached to a synthetic DBD resulting in the generation of the first 

entirely small molecule based transcriptional activator.    
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Figure II-9. ‘Squelching’ of II-21. The transcriptional function of II-21 is inhibited by 
increasing concentrations of II-25.  Experiment conducted by former colleague Dr. Brian 

Brennan. 
 

F.  An Entirely Synthetic Transcriptional Activator 

The isoxazolidine-polyamide conjugate II-29 shown in Figure II-10 was 

synthesized.  This molecule consists of an amphipathic isoxazolidine with activation 

function in human HeLa cells and a polyamide that binds the sequence WGWWWW, 

where W = A or T.   Dr. Brian Brennan constructed a reporter plasmid with the firefly 

luciferase gene under control of six sites containing the appropriate binding sequence.  

Compound II-29 showed approximately 4 -old activation at a concentration of 3 μM.  

This was a very exciting initial result as it represents the first entirely non-biopolymer 

based transcriptional activator to upregulate gene expression in cells.  The Dervan group 

had previously reported a small molecule-polyamide conjugate that activated in cell-free 

assays, but the molecule was not cell permeable.20  In another related example the 

Kodadek lab prepared a peptoid-polyamide conjugate that activated 5 fold at 3 μM in 

cells.21, 22  Similar to iTADs, this was a significant attenuation in activity compared to 

evaluations in a 2-hybrid assay.  We are hopeful, however, that modifications to our 

construction of II-29 that improve cellular uptake and reduce binding of cognate DNA 

sequences can result in a boost in activity.  There have been reports in the literature since 

our evaluation of II-29 that suggest modes for accomplishing this.  Recently, Dervan and 

co-workers reported that introduction of an amino group to the diamino-butyric acid 

linking the two polyamide strands can increase affinity of the polyamide construct for 
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DNA 15 fold.23  In another study, the group showed that modification of the linker region 

between the polyamide and TAD led to improved cellular uptake and nuclear localization 

of polyamides.24  Currently, another graduate student, Ryan Casey is collaborating with 

Professor Peter Dervan’s lab to obtain a polyamide-isoxazolidine conjugate with high 

specificity for endogenous binding sites.  

 

Figure II-10. An entirely small molecule based transcriptional activator. 

 

G.  Conclusions 

A facile synthetic approach for generation of chiral isoxazolidines was utilized to 

enable the rapid generation of isomeric isoxazolidines for evaluation as TADs.6  All 

stereochemical and positional isomers of the original iTAD, II-1, functioned well as 

TADs supporting that the molecule recognition profile of iTADs and the natural 

counterparts they were designed to mimic are similar.  For both class of TADs precise 

positioning of the amphipathic sidechains is not a critical determinant of function.  An 

implication of this data is that isoxazolidines are unlikely to be the only suitable scaffold 

for the construction of small molecule transcriptional activation domains.  Rather, a 

variety of appropriately functionalized conformationally constrained small molecules 

should also function well, a prediction for which preliminary results obtained in lab 

suggest to be true.  This strategy obviates the need to identify high affinity ligands for 

single protein targets and takes advantage of the remarkable functional flexibility of the 

endogenous transcriptional regulatory system.     
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iTAD II-21 was the first small molecule to function as a TAD in cell culture.  

This molecule elicits a maximal activation of 80-fold and exhibits measurable activity 

even at low nanomolar concentrations in human HeLa cells.7  Upon conjugation of the 

iTAD to a DNA binding hairpin polyamide cellular activation was retained, although 

attenuated, suggesting that entirely small molecule based transcriptional activators can be 

utilized to upregulate endogenous genes.  In support of this a peptoid-polyamide 

conjugate activated the expression of 45 genes upon addition to HeLa cells.21   

In sum, these experiments demonstrate that artificial transcriptional activators can 

be generated, using relatively simple criteria, that mimic the function and mode of action 

of endogenous transcriptional activators.  Such molecules are important both as 

transcription-targeted therapeutics and as probes for deciphering mechanistic details of 

disease as altered transcription patterns are associated with nearly every disease state as 

either a cause or an effect.1   

 

H. Experimental 

General.   

Unless otherwise noted, starting materials were obtained from commercial 

suppliers and used without further purification. CH2Cl2, THF, CH3CN and toluene were 

dried by passage through activated alumina columns and degassed by stirring under a dry 

N2 atmosphere.25  BF3•OEt2 and Et3N were distilled from CaH2, MeOH was distilled 

from sodium metal, and t-BuOH was distilled from MgSO4.  All reactions involving air- 

or moisture-sensitive reagents were performed under a dry N2 atmosphere.  Purification 

by column chromatography was carried out with E. Merck Silica Gel 60 (230-400 mesh) 

according to the procedure of Still, Kahn, and Mitra.26  1H and 13C NMR spectra were 

recorded in CDCl3 at 500 MHz and 125 MHz, respectively, unless otherwise specified.  

IR spectra were measured as thin films on NaCl plates.  Reverse-phase HPLC 

purification was performed on a Varian ProStar 210 equipped with Rainin Dynamax UV-

D II detector using a C18 (8 x 100 mm) Radial-PakTM cartridge using a gradient mixture 

of 20 mM NH4OAc (pH = 6.9) and MeOH (λ = 254 nm) unless otherwise specified.27 

UV-vis spectra were measured in MeOH.  In order to determine the concentration of all 

methotrexate conjugates (II-2-II-7), the characteristic UV-vis absorptions of 
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methotrexate at λmax = 257, 302, and 370 nm with extinction coefficients of 23,000, 

22,000, and 7,100 M-1cm-1, respectively, was used.  Once the concentration was 

determined, the sample was aliquoted, lyophilized, and stored at –78 °C.  The in vitro 

transcription assays were carried out as previously described.  The buffer used for 

transcription assays contains 5 mM MgCl2, 400 mM of each NTP, 10 μg of salmon sperm 

carrier DNA, 10 mM HEPES (pH 7.9), 50 mM KCl, 0.1 mM EDTA, 0.25 mM DTT, and 

10% glycerol.  Full fluorescence spectra were run on all methotrexate conjugates to 

insure no spectral overlap with the molecular beacon fluorophores.  Compounds that do 

not appear in the text are numbered S1-S9. 

3-Methylbutyraldehyde oxime (II-8) was prepared in accordance with standard 

protocols  from 3-methyl-butyraldehyde.11  Allylic alcohols II-9 and ent-II-9 were 

prepared in two steps from (R)-glycidol or (S)-glycidol, respectively.13, 14  Methotrexate 

hydrazide was prepared according to literature procedures.  Compound II-7 was prepared 

as previously described.4  Spectroscopic data on the purified products was consistent with 

reported values for those compounds. 

 

2-(tert-Butyl-dimethyl-silanyloxy)-(1R)-1-[(5R)-3-isobutyl-4,5-dihydro-isoxazol-5-yl]-

ethanol (II-10): To a solution of oxime II-8 (780 mg, 7.6 mmol, 1.0 eq) in toluene (38 

mL), cooled in a dry ice-acetone bath was added t-BuOCl (0.90 mL, 7.6 mmol, 1.0 eq) 

over 20 min.  The resulting mixture was stirred 2 h with continued cooling at which time 

TLC analysis indicated complete conversion to the hydroximinoyl chloride.  In a separate 

flask, chiral allylic alcohol II-9 (2.0 g, 9.9 mmol, 1.3 eq) was dissolved in toluene (99 

mL) and cooled in an ice-H2O bath.  To this solution was added t-BuOH (25 mmol, 3.3 

eq) followed by dropwise addition of EtMgBr (7.6 mL of a 2.0 M solution in Et2O, 23 

mmol, 3.0 eq) and the solution stirred 1 h with continued cooling.  The solution of 

hydroximinoyl chloride was then transferred via canula to the allylic alcohol solution and 

the mixture allowed to slowly warm to ambient temperature and stirred for 15 h.  Sat. aq. 

NH4Cl (10 mL) was added to the reaction mixture followed by further dilution with H2O.  

The organic and aqueous layers were separated and the aqueous extracted with CH2Cl2 (3 
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x 20 mL).  The combined organic extracts were washed with brine (1 x 20 mL), dried 

over MgSO4, filtered, and concentrated.  Purification by flash chromatrography (1:1 

hexanes/EtOAc) yielded 2.0 g of isoxazoline II-10 as a clear solid in 88% yield as a 

single stereoisomer.  IR: 3400, 2955, 2858, 1463, 1255 cm-1; 1H NMR: δ -5.26, (s, 6H), 

0.90 (s, 9H), 0.96 (d, 3H, J = 6.6), 0.97 (d, 3H, J = 6.8), 1.90-1.93 (m, 1H), 2.23 (d, 2H, J 

= 7.3), 2.97 (d, 2H, J = 8.8), 3.58-3.62 (m, 1H), 3.65-3.73 (m, 2H), 4.62-4.67 (m, 1H); 
13C NMR (100 MHz): δ -5.26, 18.44, 22.54, 22.74, 26.04, 26.43, 36.66, 39.56, 64.19, 

73.26, 79.22, 159.14; HRMS (ESI) calcd for [C15H31NO3Si + Na]+: 324.1971, found: 

324.1985; [α]D
25 = -56.17 (c 0.84, CHCl3). 

 

II-11 and II-12:  To a solution of isoxazoline II-10 (1.5 g, 5.0 mmol, 1.0 eq) in 50 mL 

toluene cooled in a dry ice-acetone bath was added distilled BF3•OEt2 (1.9 mL, 15 mmol, 

3.0 eq) and the resultant mixture was stirred with continued cooling for 30 min.  

Allylmagnesium chloride (15 mL of a 2.0 M solution in THF, 30 mmol, 6.0 eq) was 

added dropwise over 10 min.  The reaction mixture was allowed to stir with continued 

cooling until the reaction was complete by TLC analysis (6 h).  H2O (5 mL) was added 

and the mixture stirred for 20 min.  H2O (20 mL) was added and the aqueous and organic 

layers were separated.  The aqueous layer was extracted with EtOAc (3 x 20 mL) and the 

combined organic extracts were washed with H2O (1 x 20 mL) and brine (1 x 20 mL), 

dried over MgSO4, filtered and concentrated in vacuo.  A diastereomeric ratio of 5:1 was 

determined by crude 1H NMR.  The major diastereomer (II-11) (1.0 g) and the minor 

diastereomer (II-12) (200 mg) were each isolated (both as colorless oils) following 

purification by flash chromatography (1:4 hexanes/EtOAc).  The combined yield of 

diastereomers was 71%.  

(1R)-1-[(3S, 5R)-3-Allyl-3-isobutyl-isoxazolidin-5-yl]-2-(tert-butyl-dimethyl-

silanyloxy)-ethanol (II-11): IR: 3362, 2917, 2849, 1812, 1700, 1076 cm-1; 1H NMR: δ 

0.050 (s, 3H), 0.054 (s, 3H) 0.88 (s, 9H), 0.92 (d, 3H, J = 2.9), 0.93 (d, 3H, J = 2.9), 1.40 

(dd, 1H, J = 6.8, 14.2), 1.46 (dd, 1H, J = 6.3, 14.2), 1.77-1.86 (m, 1H), 1.93 (dd, 1H, J = 

6.8, 12.2), 2.19 (dd, 2H, J = 7.8, 14.2), 2.33 (dd, 1H, J = 6.8, 14.2), 2.51 (bs, 1H), 3.57-
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3.63 (m, 2H), 3.66-3.72 (m, 1H), 4.02 (bs, 1H), 5.06-5.12 (m, 2H), 5.34 (bs, 1H), 5.80-

5.88 (m, 1H); 13C NMR (100 MHz): δ -5.52, -5.51, 18.12, 23.91, 24.18, 25.76, 39.98, 

40.24, 42.63, 64.25, 64.66, 67.06, 74.13, 117.4, 134.5; HRMS (ESI) calcd for 

[C18H37NO3Si + Na]+: 366.2440, found: 366.2435; [α]D
24 = -22.03 (c 0.81, CHCl3). 

(1R)-1-[(3S, 5R)-3-Allyl-3-isobutyl-isoxazolidin-5-yl]-2-(tert-butyl-dimethyl-

silanyloxy)-ethanol (II-12): IR: 3400, 2929, 147, 1253, 1113, 836 cm-1; 1H NMR (400 

MHz): δ 0.05 (s, 6H), 0.88 (s, 9H), 0.93 (d, 3H, J = 6.8), 0.96 (d, 3H, J = 6.4), 1.39 (dd, 

1H, J = 5.9, 14.2), 1.47 (dd, 1H, J = 6.1, 14.4), 1.76-1.84 (m, 1H), 1.99-2.07 (m, 2H), 

2.24 (dd, 1H, J = 7.8, 14.2), 2.44 (dd, 1H, J = 6.8, 14.2), 2.49 (bs, 1H), 3.60-3.69 (m, 3H), 

4.02-4.06 (m, 1H), 5.10-5.13 (m, 2H), 5.78-5.87 (m, 1H); 13C NMR (100 MHz): δ -5.43, 

18.24, 24.33, 24.40, 25.85, 39.20, 40.22, 41.89, 44.49, 63.94, 64.61, 73.40, 118.8, 133.6; 

HRMS (ESI) calcd for [C18H37NO3Si + Na]+: 366.2440, found: 366.2446. 

 

(1R)-[(3S, 5R)-3-Allyl-2-benzyl-3-isobutyl-isoxazolidin-5-yl]-2-(tert-butyl-dimethyl-

silanyloxy)-ethanol (II-13): To a solution of isoxazolidine II-11 (210 mg, 0.61 mmol, 

1.0 eq) in DMF (3.0 mL) was added iPr2NEt (0.31 mL, 1.8 mmol, 3.0 eq) and BnBr (0.48 

mL, 3.7 mmol, 6.0 eq).  The reaction mixture was irradiated in a 1000 W microwave (6 x 

20 s) @ 20% power with mixing between each interval.  Upon cooling to ambient 

temperature the solution was diluted with H2O (3 mL) and extracted with Et2O (3 x 5 

mL).  The combined organic extracts were washed with H2O (1 x 5 mL) and brine (1 x 5 

mL), dried over Na2SO4, filtered, and concentrated in vacuo.  Purification of the crude 

mixture by flash chromatography (95:5 hexanes/EtOAc) yielded 200 mg of II-13 in 77% 

yield as a clear oil.  IR: 3326, 2917, 1803, 1720, 1457, 1081 cm-1; 1H NMR: δ -0.01 (s, 

3H), -0.02 (s, 3H), 0.85 (s, 9H), 0.96 (d, 3H, J = 2.9), 0.98 (d, 3H, J = 2.9), 1.39 (dd, 1H, 

J = 7.3, 14.6), 1.63 (dd, 1H, J = 4.6, 14.4), 1.87-1.95 (m, 1H), 2.26 (m, 2H), 2.32 (dd, 1H, 

8.8, 12.2), 2.44 (dd, 1H, J = 7.1, 13.9), 3.13 (bs, 1H), 3.41 (dd, 1H, J = 6.3, 8.8), 3.46-

3.53 (m, 2H), 3.80 (d, 1H, J = 14.2), 3.85 (d, 1H, J = 14.2), 4.03-4.06 (m, 1H), 5.09-5.12 
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(m, 2H), 5.91-5.99 (m, 1H), 7.21-7.24 (m, 1H), 7.28-7.34 (m, 4H); 13C NMR (100 MHz): 

δ -5.42, 18.31, 24.10, 24.33, 25.33, 25.91, 38.53, 39.56, 44.08, 53.67, 64.34, 68.62, 

74.92, 117.62, 126.93, 128.27, 128.28, 135.19, 138.61; HRMS (ESI) calcd for 

[C25H43NO3Si]+: 434.3090, found: 434.3089; [α]D
24 = -15.61 (c 1.95, CHCl3).  

 

(1R)-1-[(3S, 5R)-2-Benzyl-3-(2-hydroxy-ethyl)-3-isobutyl-isoxazolidin-5-yl]-ethane-

1,2-diol (II-S1): To a solution of isoxazolidine II-13 (0.15 g, 0.34 mmol, 1.0 eq) in t-

BuOH (2.5 mL), THF (0.67  mL), and H2O (0.17 mL) was added NMO (47 mg, 0.40 

mmol, 1.2 eq) followed by OsO4 (0.34 ml of a 2.5 wt% solution in t-BuOH, 0.03 mmol, 

0.10 eq).  The reaction mixture was stirred at ambient temperature until complete by TLC 

analysis (5 h).  The mixture was cooled in an ice-H2O bath, Na2SO3 (20 mg) was added, 

and the mixture stirred 1 h.  The mixture was diluted with H2O (10 mL) and extracted 

with EtOAc (3 x 10 mL).  The combined organic extracts were dried over Na2SO4, 

filtered and concentrated in vacuo.  The crude diol was taken up in 1.9 mL CH3CN and 

1.9 mL H2O and cooled in an ice-H2O bath.  Sodium periodate (0.10 g, .45 mmol, 1.2 eq) 

was added and the reaction mixture stirred at ambient temperature until complete by TLC 

analysis (2 h).  The reaction mixture was diluted with H2O (10 mL) and extracted with 

Et2O (3 x 10 mL).  The combined organic extracts were washed with H2O (1 x 10 mL) 

and brine (1 x 10 mL), dried over Na2SO4, filtered and concentrated in vacuo.  The crude 

aldehyde thus obtained was dissolved in 3.7 mL MeOH and cooled in an ice-H2O bath 

prior to addition of NaBH4 (21 mg, 0.56 mmol, 1.5 eq).  Upon completion as noted by 

TLC analysis (1h), H2O (5 mL) was added and the reaction extracted with EtOAc (3 x 10 

mL).  The combined organic extracts were dried over Na2SO4, filtered and concentrated 

in vacuo.  The crude material was passed through a plug of SiO2 to remove baseline 

impurities (7:3 hexanes/EtOAc).  To a portion of the product (0.20 mmol, 1.0 eq) in THF 

(1.0 mL) cooled in an ice-H2O bath was added TBAF (0.41 mL of a 1 M solution in THF, 

0.41 mmol, 2.0 eq).  The reaction mixture was allowed to stir at ambient temperature 
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until complete by TLC analysis (2 h).  The mixture was then diluted with H2O (10 mL) 

and extracted with EtOAc (5 x 15 mL).  The combined organic extracts were dried over 

Na2SO4, filtered, and concentrated in vacuo.  Purification by flash chromatography (93:7 

CH2Cl2: MeOH) provided 83 mg of II-S1 in 59% yield from compound II-13 as a 

colorless oil. IR: 3349, 2952, 1453, 1063 cm-1; 1H NMR (400 MHz): δ 0.99 (d, 3H, J = 

6.6), 1.01 (d, 3H, J = 6.6), 1.44 (dd, 1H, J = 8.1, 13.9), 1.71-1.82 (m, 2H), 1.83-2.00 (m, 

2H), 2.22-2.34 (m, 2H), 3.50-3.61 (m, 3H), 3.77-3.85 (m, 3H), 4.01 (d, 1H, J – 13.6), 

4.10-4.19 (m, 1H), 7.11-7.38 (m, 5H); 13C NMR (100 MHz): δ 23.55, 24.77, 25.16, 

35.30, 39.93, 42.82, 54.79, 59.61, 63.98, 64.94, 70.45, 73.53, 127.31, 128.44, 128.56, 

137.63; HRMS (ESI) calcd for [C18H29NO4 + Na]+: 346.1994, found: 346.1993; [α]D
27 = 

+ 0.09 (c 0.29, CHCl3). 

 

4-[(3S, 5R)-2-Benxyl-3-(2-hydroxy-ethyl)-3-isobutyl-isoxazolidin-5-ylmethylene-

hydrazinocarbonyl]-2-{4-[(2,4-diamino-pteridin-6-ylmethyl)-methyl-amino]-

benzoylamino}-(S)-butyric acid (II-2): To a solution of diol II-S1 (9.7 mg, 0.03 mmol, 

1.0 eq) in CH3CN (0.15 mL) and H2O (0.15 mL) cooled in an ice-H2O bath was added 

NaIO4 (5.3 mg, 0.02, 0.80 eq).  The solution was slowly warmed to ambient temperature 

and the formation of aldehyde was monitored by TLC analysis.  After 2 h the mixture 

was diluted with H2O (2 mL), extracted with Et2O (3 x 3 mL), and the combined organic 

extracts washed with brine (2 x 2 mL), dried over Na2SO4, filtered, and concentrated in 

vacuo.  The crude aldehyde (0.003 mmol, 1.0 eq) in THF (0.16 mL) was added to 

methotrexate hydrazide (0.003 mmol, 1.0 eq) in DMF (0.16 mL).  The reaction was 

stirred at ambient temperature, shielded from light for 24 h.  The mixture was then 

concentrated to half-volume under high pressure (0.05 mm Hg) and purified by reverse-

phase HPLC.  Following purification by reverse-phase HPLC, the compound was stored 

at –78 °C, shielded from light.  The purity of II-2 was confirmed by analytical reverse-

phase HPLC immediately after isolation and again prior to use in any in vitro 
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transcription assays.  The identity was verified by mass spectral and UV analysis of the 

isolated conjugate.  UV (λmax nm): 257, 297, 373; HRMS (ESI) calcd for [C37H47N11O6 + 

Na]+: 764.3608, found: 764.3605. 

 

(3S,5R)-3-allyl-5-(benzyloxymethyl)-3-isobutylisoxazolidine (II-15):  The silyl ether 

deprotection, cleavage of the diol to the aldehyde and reduction to the primary alcohol 

was carried out analogously to the C5 diol of II-11. To a stirring solution of that 

intermediate (200 mg, 1.0 mmol, 1.0 eq) in THF (10 mL) cooled in an ice-H2O bath was 

added NaH (80 mg of a 60% dispersion in mineral oil, 2.0 mmol, 2.0 eq).  The resulting 

mixture was stirred for 20 minutes at which point BnBr (130 μl, 1.0 mmol, 1.0 eq) was 

added dropwise and the solution was allowed to slowly warm to rt.  TLC analysis 

indicated completion of the reaction after 12 hours and the mixture was cooled in an ice-

H2O bath and excess reagent was quenched with NH4Cl (5 mL).  Upon warming to rt, the 

solution was further diluted with H2O (10 mL) and extracted with EtOAc (3 x 10 mL).  

The combined organic extracts were washed with brine (1 x 10 mL), dried over Na2SO4, 

filtered, and concentrated in vacuo.  Purification by flash chromatography (90:10 

hexanes/EtOAc) yielded 180 mg of product as a colorless oil in 64% yield.  1H NMR: δ 

0.88 (d, 3H, J = 6.3), 0.90 (d, 3H, J = 6.8), 1.38 (dd, 1H, J = 6.3, 14.2), 1.43 (dd, 1H, J = 

6.3, 14.2), 1.73-1.83 (m, 2H), 2.18-2.25 (m, 2H), 2.35 (dd, 1H, J = 6.8, 14.2), 3.49 (dd, 

1H, J = 4.4, 10.2), 3.62, (dd, 1H, J = 3.4, 10.2), 4.27 (bs, 1H), 4.51-4.58 (m, 2H), 5.07-

5.13 (m, 2H), 5.80-5.88 (m, 1H), 7.25-7.36 (m, 5H).      

 

2-((3S,5R)-3-allyl-5-(benzyloxymethyl)-3-isobutylisoxazolidin-2-yl)ethanol (II-16):  

To a solution of II-15 (180 mg, 0.62 mmol, 1.0 eq) in DMF (3.1 mL) was added methyl 

bromoacetate (470 μl, 5.0 mmol, 8.0 eq) and iPr2NEt (330 μl, 1.9 mmol, 3.0 eq).  The 
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mixture was irradiated in a 1000W microwave for 20 sec at 10% power, cooled to rt, and 

the irradiation repeated.  After 10 rounds TLC analysis indicated completion of the 

reaction.  Following cooling to rt the mixture was diluted with H2O (5 mL) and extracted 

with Et2O (3 x 5 mL).  The combined organic extracts were washed with H2O (2 x 5 mL) 

and brine (1 x 5 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  The 

product was passed through a short plug of silica gel (80:20 hexanes/EtOAc) and utilized 

in the subsequent reduction of the methyl ester to the primary alcohol.  To a solution of 

DIBAL (340 μl of a 1.5 M solution in tol, 0.51 mmol, 2.1 eq) in tol (170 μl) cooled in an 

ice-H2O bath was added the methyl ester (90 mg, 0.25 mmol, 1.0 eq) and the solution was 

stirred for 30 min at which point TLC analysis indicated complete consumption of 

starting material.  MeOH (350 μl) followed by 750 μl 1N HCl was added to the reaction 

mixture and the precipitate was immediately filtered away.  The filtrate was diluted with 

H2O (5 mL) and extracted with EtOAc (3 x 5 mL).  The combined organic extracts were 

washed with brine (1 x 10 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  

Purification by flash chromatography (80:20 hexanes/EtOAc) yielded 67 mg of a 

colorless oil in 80% yield.  1H NMR: δ 0.92 (“apparent triplet,” 6H, J = 6.6), 1.31 (dd, 

1H, J = 6.6, 13.6), 1.54 (dd, 1H, J = 5.5, 14.5), 1.75-1.81 (m, 1H), 1.88 (bs, 1H), 2.24-

2.37 (m, 2H), 2.87 (bs, 1H), 3.47-3.50 (m, 2H), 3.55 (d, 1H, J = 6.6), 3.58 (d, 1H, J = 

6.6), 3.67-3.74 (m, 2H), 4.23 (bs, 1H), 4.56 (s, 2H), 5.07-5.12 (m, 2H), 5.84-5.95 (m, 

1H), 7.27-7.35 (m, 5H). 

 

(2S)-5-((E)-2-(((3R)-5-(benzyloxymethyl)-2-(2-hydroxyethyl)-3-isobutylisoxazolidin-

3-yl)methylene)hydrazinyl)-2-(4-(((2,4-diaminopteridin-6-

yl)methyl)(methyl)amino)benzamido)-5-oxopentanoic acid (II-6): Following 

dihydroxylation of the C3 olefin of III-X, the preparation, purification, storage, and purity 

occurred analogously to 3.  The identity was verified by mass spectral and UV analysis of 

the isolated conjugate. UV (λmax nm): 258, 291, 370.    
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2-(tert-Butyl-dimethyl-silanyloxy)-(1R)-1-[(5R)-(3-isobutyl-4,5-dihydro-isoxazol-5-

yl)-ethanol] (II-17): To a solution of isoxazoline II-10 (360 mg, 1.3 mmol, 1.0 eq) in 

THF (6.5 mL) cooled in an ice-H2O bath was added DMAP (16 mg, 0.13 mmol, 0.l0 eq) 

and Et3N (0.35 mL, 2.9 mmol, 2.2 eq).  TBSOTf (0.67 mL, 2.9 mmol, 2.2 eq) was then 

added dropwise and the solution slowly warmed to ambient temperature.  The reaction 

was complete in 2 h as indicated by TLC analysis.  The mixture was again cooled in an 

ice-H2O bath, diluted with sat. NH4Cl (3 mL), and extracted with Et2O (3 x 5 mL).  The 

combined organic extracts were washed with brine (1 x 10 mL), dried over Na2SO4, 

filtered, and concentrated in vacuo.  Purification of the crude product by flash 

chromatography (95:5 hexanes/EtOAc) yielded 460 mg of isoxazoline II-17 in 85% yield 

as a clear oil.  IR: 3400, 2955, 2858, 1594, 1463, 1255, 1124 cm-1; 1H NMR: δ 0.01 (s, 

3H), 0.02 (s, 3H), 0.04 (s, 3H), 0.05 (s, 3H), 0.83 (s, 9H), 0.84 (s, 9H), 0.90 (d, 3H, J = 

6.6), 0.91 (d, 3H, J = 6.6), 1.84-1.87 (m, 1H), 2.13-2.16 (m, 2H), 2.81-2.84 (m, 2H), 

3.53-3.56 (m, 1H), 3.61-3.66 (m, 2H), 4.52-4.58 (m, 1H); 13C (100 MHz): δ -5.27, -4.54, 

-4.20, 18.31, 18.50, 22.64, 22.80, 25.99, 26.11, 26.26, 36.90, 38.78, 64.61, 74.30, 80.52, 

158.12; HRMS (ESI) calcd for [C21H45NO3Si2 + Na]+: 438.2836, found: 438.2839; [α]D
25 

= -62.28 (c 0.50, CHCl3). 

 

(3S, 5R)-3-Benzyl-5-[(1R)-1,2-bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-3-isobutyl-

isoxazolidine (II-18): Benzylmagnesium chloride (4.5 mL of a 2.0 M solution in THF, 

9.0 mmol, 10 eq) was added to 370 mg of isoxazoline II-17 (9.0 mmol, 1.0 eq) in 8.9 ml 

THF in the presence of BF3•OEt2 (0.34 mL, 2.7 mmol, 3.0 eq) by using a procedure 

analogous to that used for the preparation of II-11.  A diastereomeric ratio of 10:1 was 

determined by crude 1H NMR.  Purification by flash chromatography (9:1 

hexanes/EtOAc) yielded 320 mg of the major diastereomer in 80% yield as a colorless 
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oil.  IR: 2954, 2929, 2858, 1472, 1255 cm-1; 1H NMR: δ 0.03 (s, 3H), 0.03 (s, 3H), 0.05 

(s, 3H), 0.06 (s, 3H), 0.85 (s, 9H), 0.87 (s, 9H), 0.91 (d, 3H, J = 6.6), 0.96 (d, 3H, J = 

6.6), 1.26 (m, 2H), 1.79-1.84 (m, 1H), 2.02 (m, 1H), 2.18-2.23 (m, 1H), 2.66 (d, 1H, J = 

13.9), 2.92 (d, 1H, J = 13.5), 3.53-3.59 (m, 2H), 3.72 (bs, 1H), 4.30 (bs, 1H), 5.20 (bs, 

1H), 7.14-7.19 (m, 1H), 7.22-7.24 (m, 4H); 13C NMR: δ -5.17, -4.29, -4.12, 18.18, 18.57, 

24.18, 24.62, 24.85, 25.18, 26.13, 40.69, 42.27, 42.98, 64.61, 68.79, 72.31, 78.96, 

126.300, 128.04, 130.91, 138.69; HRMS (ESI) calcd for [C28H53NO3Si2 + Na]+: 

530.3462, found: 530.3464; [α]D
25 = -64.98 (c 0.26, MeOH). 

 

(5R, 3S)-2-Allyl-3-benzyl-5-[(1R)-1,2-bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-3-

isobutyl-isoxazolidine (II-19): To a solution of 150 mg of isoxazolidine II-18 (0.29 

mmol, 1.0 eq) in DMF (1.4 mL) was added iPr2NEt (110 mg, 0.86 mmol, 3.0 eq) and 

allylBr (0.20 mL, 2.3 mmol, 8.0 eq).  The reaction mixture was irradiated in a 1000 W 

microwave (6 x 20 s) @ 20 % power with mixing between each interval.  A second 

portion of allylBr was added (.20 mL, 2.3 mmol, 8.0 eq) and the mixture was irradiated in 

a 1000 W microwave (6 x 20 s) @ 20 % power with mixing between each interval.  The 

solution was diluted with H2O (3 mL) and extracted with Et2O (3 x 5 mL).  The 

combined organic extracts were washed with H2O (1 x 5 mL) and brine (1 x 5 mL), dried 

over Na2SO4, filtered, and concentrated in vacuo.  Product was isolated as a colorless oil 

in 65% yield (100 mg) following purification by flash chromatography (97:3 

hexanes/EtOAc).  IR: 3349, 2929, 1761, 1456, 1255, 1081 cm-1; 1H NMR (400 MHz): δ 

0.01 (s, 3H), 0.02 (s, 3H), 0.07 (s, 6H), 0.84 (d, 3H, J = 7.3), 0.86 (s, 9H), 0.87 (s, 9H), 

0.94 (d, 3H, J = 6.6), 1.21-1.26 (m, 2H), 1.47-1.52 (m, 1H), 1.77-1.86 (m, 1H), 1.90-2.02 

(m, 2H), 2.66 (d, 1H, J = 12.5), 2.86 (d, 1H, J = 13.2), 3.27 (dd, 1H, J = 6.6, 13.9), 3.37 

(dd, 1H, J = 5.9, 13.9), 3.54 (dd, 1H, J = 6.6, 11.7), 3.66-3.70 (m, 2H), 4.09 (dt, 1H, J = 

5.1, 8.1), 5.06 (dd, 1H, J = 1.5, 10.3), 5.19 (dd, 1H, J = 1.5, 16.8), 5.89-5.99 (m, 1H), 

7.17-7.26 (m, 5H); 13C (100 MHz): δ -5.40, -4.58, -4.48, 18.25, 18.36, 23.79, 24.52, 

25.27, 25.97, 36.87, 39.57, 42.11, 52.90, 65.39, 69.24, 75.26, 116.03, 125.99, 127.89, 
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130.76, 136.22, 138.81; HRMS (ESI) calcd for [C31H57NO3Si]+: 548.3955, found: 

548.3953; [α]D
25 = -33.17 (c 1.19, MeOH). 

OTBS

N O

OTBSH

II-20

HO

 

2-{(3S, 5R)-3-Benzyl-5-[(1R)-1,2-bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-3-

isobuty-isoxazolidin-2-yl}-ethanol (II-20):  Oxidative cleavage of the allyl group on II-

19 to form isoxazolidine II-20 was carried out using a procedure analogous to that used 

for the preparation of II-14 starting with 95 mg of II-19 (0.17 mmol) except that the 

product was purified and isolated prior to silyl deprotection.  Purification by flash 

chromatography yielded 45 mg of II-20 in 47% yield as a colorless oil.  IR: 3369, 2849, 

1772, 1472, 1258, 1078 cm-1; 1H NMR (400 MHz): δ 0.02 (s, 3H), 0.04 (s, 3H), 0.07 (s, 

6H), 0.86-0.88 (m, 21H), 0.93 (d, 3H, J = 6.6), 1.21 (dd, 1H, J = 5.9, 13.9), 1.48 (dd, 1H, 

J = 3.7, 13.9), 1.80-1.89 (m, 1H), 1.97 (dd, 1H, J = 8.8, 12.5), 2.05 (dd, 1H, J = 7.7, 12.1), 

2.68 (d, 1H, J = 13.2), 2.74 (t, 1H, J = 5.86), 2.78-2.92 (m, 2H), 3.55 (dd, 1H, J = 7.3, 

11.7), 3.62 (dd, 2H, J = 5.1, 11.7), 3.74 (m, 2H), 4.12-4.19 (m, 1H), 7.16-7.27 (m, 5H); 
13C NMR: δ -5.46, -5.43, -4.65, -4.48, 18.15, 18.34, 24.52, 25.26, 25.87, 25.93, 37.46, 

39.67, 42.13, 51.09, 60.87, 65.224, 69.28, 44.63, 126.18, 127.96, 130.69, 138.37; HRMS 

(ESI) calcd for [C30H57NO4Si2]+: 552.3904, found: 552.3912; [α]D
25 = -13.51 (c 0.70, 

MeOH). 

OH

N O

OHH

II-S2

HO

 

(1R)-1-[(3S, 5R)-3-Benzyl-2-(2-hydroxy-ethyl)-3-isobutyl-isoxazolidin-5-yl]-ethane-

1,2-diol (II-S2): Treatment of 44 mg of isoxazolidine II-20 (0.08 mmol, 1.0 eq) in THF 

(0.80 mL) cooled in an ice-H2O bath with TBAF (0.32 mL of a 1 M solution in THF, 

0.32 mmol, 4.0 eq) afforded removal of both silyl protecting groups in 2 h by TLC 

analysis.  The solution was diluted with H2O (5 mL), extracted with EtOAc (3 x 5 mL), 
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dried over Na2SO4, filtered, and concentrated in vacuo.  Purification by flash 

chromatography (92:8 CH2Cl2:MeOH) yielded 25 mg of product in 98% yield as an oil.   

IR: 3369, 2954, 1456, 1056 cm-1; 1H NMR: δ 0.87 (d, 3H, J = 6.8), 0.95 (d, 3H, J = 6.3), 

1.30 (dd, 1H, J = 6.3, 14.6), 1.58 (dd, 1H, J = 4.4, 14.6), 1.83-1.91 (m, 1H), 2.02-2.07 (m, 

1H), 2.17-2.26 (m, 2H), 2.63 (d, 1H, J = 12.7), 2.87 (d, 1H, J = 13.2), 2.93 (m, 2H), 3.59-

3.63 (m, 2H), 3.67-3.69 (m, 1H), 3.78-3.86 (m, 2H), 4.09 (td, 1H, J = 3.7, 7.6), 7.15-7.17 

(m, 2H), 7.20-7.23 (m, 1H), 7.26-7.29 (m, 2H); 13C NMR (100 MHz): δ 23.55, 24.57, 

25.38, 37.42, 39.38, 42.27, 51.09, 61.37, 64.38, 69.77, 74.10, 126.36, 128.14, 130.77, 

138.02; HRMS (ESI) calcd for [C18H29NO4 + Na]+: 346.1994, found: 346.1991; [α]D
25 = 

-19.47 (c 0.19, MeOH). 

 

4-[(3S, 5R)-3-Benxyl-2-(2-hydroxy-ethyl)-3-isobutyl-isoxazolidin-5-ylmethylene-

hydrazinocarbonyl]-2-{4-[(2,4-diamino-pteridin-6-ylmethyl)-methyl-amino]-

benzoylamino}-(S)-butyric acid (II-5): Purification, storage, and purity confirmation 

was carried out analogously to II-2.  The identity was verified by mass spectral and UV 

analysis of the isolated conjugate.  UV (λmax nm): 258, 295, 373; LRMS (ESI) calcd for 

[C37H47N11O6 + H]+: 742.8, found: 742.6. 

 

Characterization of II-4 and appropriate intermediates from II-12. 

 

(1R)-[(3R, 5R)-3-Allyl-2-benzyl-3-isobutyl-isoxazolidin-5-yl]-2-(tert-butyl-dimethyl-

silanyloxy)-ethanol (II-S3): Isoxazolidine II-S3 was prepared using the procedure for 

the preparation of II-14 from 200 mg (0.58 mmol) of II-12.  Purification by flash 
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chromatography (95:5 hexanes/EtOAc) gave II-S3 in 81% yield (200 mg) as an oil.  IR: 

3430, 2928, 1463, 1253, 1115, 837 cm-1; 1H NMR: δ -0.02 (s, 6H), 0.84 (s, 9H), 0.98 (d, 

3H, J = 8.3), 1.00 (d, 3H, J = 8.3), 1.46 (dd, 1H, J = 4.4, 13.2), 1.78-1.86 (m, 1H), 2.21-

2.36 (m, 3H), 2.47 (dd, 1H, J = 6.8, 13.7), 3.42 (dd, 1H, J = 8.3, 11.7), 3.49-3.53 (m, 2H), 

3.72 (d, 1H, J = 13.2), 3.84 (d, 1H, J = 13.2), 4.08 (bs, 1H), 5.10-5.13 (m, 2H), 5.89-5.98 

(m, 1H), 7.20-7.23 (m, 1H), 7.27-7.33 (m, 4H); 13C NMR: δ -5.46, 18.28, 24.61, 24.94, 

25.03, 25.90, 39.20, 40.17, 40.25, 41.54, 53.60, 64.34, 74.34, 117.87, 117.92, 126.92, 

128.24, 128.48, 134.35; HRMS (ESI) calcd for [C25H43NO3Si]+: 434.3090, found: 

434.3086; [α]D
25 = -1.50 (c 0.20, MeOH). 

 

(1R)-1-[(3R, 5R)-2-Benzyl-3-(2-hydroxy-ethyl)-3-isobutyl-isoxazolidin-5-yl]-ethane-

1,2-diol (II-S4): Oxidative cleavage of the allyl functionality on isoxazolidine II-S4 was 

carried out on 200 mg (0.48 mmol) of II-S3 using a procedure analogous to the one used 

for the oxidative cleavage of II-13.  The final TBS deprotection was carried out on 100 

mg (0.23 mmol) of the intermediate alcohol following passage of the crude product 

through a plug of silica (7:3 hexanes/EtOAc).  Purification of the crude oil by flash 

chromatography (92:8 CH2Cl2: MeOH) gave 47 mg of II-S4 in 64% yield as a clear oil.  

IR: 3334, 2954, 1456, 1067 cm-1; 1H NMR: δ 0.99 (d, 3H, J = 6.3), 1.01 (d, 3H, J = 6.3), 

1.57 (dd, 2H, J = 6.8, 13.7), 1.66-1.79 (m, 2H), 2.10 (m, 1H), 2.28 (dd, 1H, J = 5.9, 12.7), 

2.38 (dd, 1H, J = 8.8, 12.7), 3.52 (dd, 1H, J = 5.1, 11.5), 3.61 (dd, 1H, J = 3.9, 11.7), 3.67 

(m, 1H), 3.75 (d, 1H, J = 13.7), 3.82-3.91 (m, 2H), 4.01 (d, 1H, J = 13.2), 4.27-4.31 (m, 

1H), 7.25-7.35 (m, 5H); 13C NMR (100 MHz): 24.23, 25.06, 25.00, 35.74, 38.76, 41.40, 

53.30, 59.32, 63.90, 72.97, 127.74, 128.62, 128.82, 137.21; HRMS (ESI) calcd for 

[C18H29NO4 + Na]+: 346.1994, found: 346.1999; [α]D
25 = +3.21 (c 0.20, MeOH). 
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4-[(3R, 5R)-2-Benxyl-3-(2-hydroxy-ethyl)-3-isobutyl-isoxazolidin-5-ylmethylene-

hydrazinocarbonyl]-2-{4-[(2,4-diamino-pteridin-6-ylmethyl)-methyl-amino]-

benzoylamino}-(S)-butyric acid (II-4): II-4 was prepared, purified, and stored by the 

same methods as II-2.  The identity was verified by mass spectral and UV analysis of the 

isolated conjugate.  UV (λmax nm): 258, 298, 378; HRMS (ESI) calcd for [C37H47N11O6 + 

Na]+: 764.3608, found: 764.3599. 

 

Characterization of II-3 and appropriate intermediates from II-S5. 

 

2-(tert-Butyl-dimethyl-silanyloxy)-(1S)-1-[(5S)-3-isobutyl-4,5-dihydro-isoxazol-5-yl]-

ethanol (II-S5):  Isoxazoline II-S5 was prepared using a procedure analogous to that 

used for the preparation of II-10 except 190 mg (1.9 mmol) of II-8 and 500 mg (2.5 

mmol) of ent-II-9 were used.  Purification by flash chromatography (2:3 hexanes/EtOAc) 

yielded 410 mg of isoxazoline II-S5 as a colorless oil in 79% yield.  Spectral data was 

identical to that of 10. [α]D
25 = +59.50 (c 0.87, CHCl3). 

 

(1S)-1-[(3R, 5S)-3-Allyl-3-isobutyl-isoxazolidin-5-yl]-2-(tert-butyl-dimethyl-

silanyloxy)-ethanol (II-S6): Isoxazolidine II-S6 was prepared by the same procedure 

used for the preparation of II-11 except 390 mg (1.4 mmol) of isoxazoline II-S5 was 

used as the starting material.  Purification of the crude oil by flash chromatography (1:4 

hexanes/EtOAc) yielded 300 mg of II-S6 as a colorless oil.  Spectroscopic data was 

identical to that obtained for 11; [α]D
24 = +25.70 (c 1.42, CHCl3). 
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(1S)-[(3R, 5S)-3-Allyl-2-benzyl-3-isobutyl-isoxazolidin-5-yl]-2-(tert-butyl-dimethyl-

silanyloxy)-ethanol (II-S7): Isoxazolidine II-S7 was prepared by the procedure used for 

the preparation of II-13 except 460 mg (1.3 mmol) of isoxazolidine II-S6 was used as the 

starting material.  Purification by flash chromatography (95:5 hexanes/EtOAc) gave 470 

mg (80% yield) of product isolated as a clear oil.  Spectroscopic data was identical to the 

enantiomer II-13.  [α]D
24 = +11.32 (c 1.12, CHCl3).  

OH

N O

OH
HO

II-S8

H

 
(1S)-1-[(3R, 5S)-2-Benzyl-3-(2-hydroxy-ethyl)-3-isobutyl-isoxazoldin-5-yl]-ethane-

1,2-diol (II-S8): Experimental conditions for the conversion of II-S7 (150 mg, 0.34 

mmol) to II-S8 followed the procedure used for the conversion of II-13 to II-S1.  

Purification by flash chromatography (93:7 CH2Cl2:MeOH) provided 81 mg of II-S8 in 

75% yield as  a colorless oil.  Spectroscopic data was identical to that obtained for II-S1.  

[α]D
27 = -0.08 (c 0.29, CHCl3). 

 

4-[(3R, 5S)-2-Benxyl-3-(2-hydroxy-ethyl)-3-isobutyl-isoxazolidin-5-ylmethylene-

hydrazinocarbonyl]-2-{4-[(2,4-diamino-pteridin-6-ylmethyl)-methyl-amino]-

benzoylamino}-(S)-butyric acid (II-3): II-3 was prepared, purified, and stored by the 

same methods as II-2.  The identity was verified by mass spectral and UV analysis of the 
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isolated conjugate.  UV (λmax nm): 259, 299, 375; HRMS (ESI) calcd for [C37H47N11O6 + 

Na]+: 764.3608, found: 764.3608. 

 

(3S,5R)-3-allyl-5-(azidomethyl)-2-benzyl-3-isobutylisoxazolidine (II-24):  To a 

solution of isoxazolidine II-23 (35 mg, 0.12 mmol, 1.0 eq) in CH2Cl2 (1.2 mL) cooled in 

an ice-H2O bath was added Et3N (18 μl, 0.13 mmol, 1.1 eq) and methane 

sulfonylchloride (10 μl, 0.13 mmol, 1.1 eq).  The mixture was stirred for 20 min at which 

point TLC analysis indicated completion of the reaction.  The mixture was diluted with 

H2O (5 mL) and Et2O (5 mL) and the layers separated.  The aqueous was extracted with 

Et2O (3 x 5 mL) and the combined organic extracts were washed with brine (5 mL), dried 

over Na2SO4, filtered, and concentrated in vacuo.  The crude product was dissolved in 

DMSO (1.2 mL) and NaN3 (78 mg, 1.2 mmol, 10 eq) was added.  The flask was fitted 

with a reflux condenser and heated at 100 °C for 12 h at which point mass spectral 

analysis indicated completion of the reaction.  The reaction mixture was diluted with H2O 

(5 mL) and Et2O (5 mL) and the organic and aqueous separated.  The aqueous was 

extracted with Et2O (3 x 5 mL) and the combined organic extracts were washed with H2O 

(2 x 5 mL) and brine (5 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  

Purification by flash chromatography (95:5 hexanes/EtOAc) yielded 34 mg of product as 

a colorless oil in 89 % yield.  IR: 2955, 2869, 2099, 1454, 1278, 916, 732 cm-1; 1H NMR: 

δ 0.96 (d, 3H, J = 6.6), 0.98 (d, 3H, J = 6.6), 1.37 (dd, 1H, J = 6.6, 14.7), 1.59 (dd, 1H, J 

= 5.5, 14.5), 1.80-1.91 (m, 2H), 2.26 (dd, 1H, J = 7.4, 13.9), 2.31 (dd, 1H, J = 8.6, 12.7), 

2.44 (dd, 1H, J = 7.0, 13.7), 3.06 (dd, 1H, J = 3.3, 12.3), 3.44 (dd, 1H, J = 7.3, 12.7), 3.87 

(m, 1H), 3.89 (m, 1H), 4.10-4.15 (m, 1H), 5.06-5.15 (m, 2H), 5.85-5.98 (m, 1H), 7.19-

7.41 (m, 5H); 13C NMR: δ 24.09, 24.60, 25.21, 38.65, 40.19, 43.54, 53.26, 54.37, 68.28, 

74.47, 117.8, 126.7, 128.0, 128.1, 134.9, 138.6; HRMS (ESI) calcd for [C18H26N4O + 

H]+: 315.2185, found 315.2171. 
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2-((3S,5R)-5-(azidomethyl)-2-benzyl-3-isobutylisoxazolidin-3-yl)ethanol (II-25): 

Oxidative cleavage of the allyl group on II-24 to form isoxazolidine II-25 was carried out 

using a procedure analogous to that used for the preparation of II-14 starting with 34 mg 

of 13 (0.11 mmol).  Purification by flash chromatography yielded 25 mg of II-25 in 76% 

yield as a colorless oil.  IR: 3358, 2955, 2870, 2100, 1455, 1280, 1045, 733, 697 cm-1: 1H 

NMR: δ 0.99 (s, 3H), 1.00 (s, 3H), 1.50-1.60 (m, 1H), 1.65-1.95 (m, 5H), 2.07 (dd, 1H, J 

= 8.1, 12.7), 2.36 (dd, 1H, J = 8.0, 12.7), 3.41 (d, 2H, J = 4.7), 3.78-3.92 (m, 3H), 3.99 (d, 

1H, J = 13.9), 4.19-4.27 (m, 1H), 7.22-7.37 (m, 5H); 13C NMR: δ24.31, 24.89, 25.24, 

35.61, 40.82, 43.00, 53.69, 54.49, 59.67, 70.43, 127.2, 128.4, 128.6, 137.6; HRMS (ESI) 

calcd for [C17H26N4O2 + H]+: 319.2134, found: 319.2122.       
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(8R,9S,10R,11R,13R,14R,16S,17S)-N-(2-(2-(2-(((3S,5R)-2-benzyl-3-(2-hydroxyethyl)-

3-isobutylisoxazolidin-5-yl)methylamino)-2-oxoethoxy)ethoxy)ethyl)-9-fluoro-11,17-

dihydroxy-10,13,16-trimethyl-3-oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-

3H-cyclopenta[a]phenanthrene-17-carboxamide (II-21):  To a solution of II-25 (25 

mg, 0.07 mmol, 1.0 eq) in THF (700 μl) was added PPh3 (37 mg, 0.14 mmol, 2.0 eq) and 

H2O (13 μl, 0.7 mmol, 10 eq) and the flask was fitted with a reflux condenser and the 

mixture heated at 100 °C for 2 h at which point TLC analysis indicated completion of the 

reaction.  An acid, base work-up yielded the crude amine which was immediately 

coupled to a short PEG linker, 8-amino-3,6,-dioxaoctanoic acid (AEEA).  Towards this 

AEEA (32 mg, 0.08 mmol, 1.2 eq) in DMF (4.6 mL) was stirred with HOBT (11 mg. 
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0.08 mmol, 1.2 eq) and HBTU (34 mg, 0.08 mmol, 1.2 eq) for 1 h at which point a 

solution of the crude amine and Et3N (10 μl, 0.07 mmol, 1.0 eq) in DMF (2.4 mL) was 

added dropwise and the solution stirred for 12 h.  At this point mass spectral analysis 

indicated production and 1.8 mL of piperidine was added to generate an overall 20% 

piperidine in DMF solution to afford deprotection of the Fmoc.  After 5 min mass 

spectral analysis indicated product formation and the mixture was thus concentrated in 

vacuo.  The crude product was purified by reverse-phase HPLC using a 0.1% TFA in 

H2O/CH3CN gradient.  The product was subsequently coupled to OxDex.  Towards this 

OxDex (8 mg, 0.02 mmol, 1.2 eq) in DMF (1.0 mL) was stirred with HOBT (3 mg. 0.02 

mmol, 1.2 eq) and HBTU (8 mg, 0.02 mmol, 1.2 eq) for 1 h at which point a solution of 

the amine (5 mg, 0.017 mmol, 1.0 eq) and Et3N (2 μl, 0.017 mmol, 1.0 eq) in DMF (0.54 

mL) was added dropwise and the solution stirred for 12 h.  At this point mass spectral 

analysis indicated product formation and the mixture was concentrated in vacuo and 

purified using reverse-phase HPLC (0.1% TFA in H2O/CH3CN gradient).  The identity 

was confirmed by mass spectral analysis UV analysis and the purity was assessed by 

analytical HPLC.  HRMS (ESI) calcd for [C44H64FN3O9 + H]+: 798.4705, found: 798: 

4692.          

 

4-(((3S,5R)-2-benzyl-3-(2-(tert-butyldimethylsilyloxy)ethyl)-3-isobutylisoxazolidin-5-

yl)methylamino)-4-oxobutanoic acid (II-S9):  To a solution of II-25 (55 mg, 0.17 

mmol, 1.0 eq) in THF (1.7 mL) cooled in an ice-H2O bath was added DMAP (2 mg, 0.02 

mmol, 0.1 eq), Et3N (26 μl, 0.19 mmol, 1.1 eq) and TBSOTf (44 μl, 0.19 mmol, 1.1 eq) 

and the mixture stirred 1 h with continued cooling at which TLC analysis indicated 

complete consumption of starting material.  The mixture was diluted with sat. NH4Cl (5 

mL) and extracted with Et2O (3 x 5 mL).  The combined organic extracts were washed 

with brine (5 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  Purification 

by flash chromtogarphy (elution in 80:20 hexanes/EtOAc) yielded 60 mg of product as 
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colorless oil in 82% yield.  A portion of the product (39 mg, 0.09 mmol) was reduced to 

the amine using identical conditions utilized for the reduction of II-25 to yield 34 mg of 

product in 92% yield.  To the amine in 800 μl DMF was added DMAP (1 mg, 0.01 

mmol, 0.1 eq) and Et3N (11 μl, 0.08 mmol, 1.0 eq) and succinic anhydride (8 mg, 0.08 

mmol, 1.0 eq) and the resulting solution was stirred for 12 hours at which point TLC 

analysis indicated complete consumption of starting material.  The mixture was diluted 

with H2O (5 mL) and extracted with EtOAc (3 x 5 mL) and the combined organic 

extracts were washed with brine (5 mL), dried over Na2SO4, filtered, and concentrated in 

vacuo.  Purification (elution in 90:10 benzene/MeOH) produced 30 mg of product in 75% 

yield. 1H NMR: δ 0.08 (s, 6H), 0.91 (s, 9H), 0.97 (d, 3H, J = 6.8), 1.0 (d, 3H, J = 6.8), 

1.39 (dd, 1H, J = 6.1, 14.4), 1.62 (dd, 1H, J = 5.4, 14.2), 1.80-1.90 (m, 2H), 1.95 (dd, 1H, 

J = 6.3, 12.6), 2.38-2.41 (m, 1H), 2.44 (dd, 1H, J = 8.8, 12.7), 2.51-2.57 (m, 2H), 2.85 

(singlet, 2H), 2.98 (singlet, 2H), 3.28 (dd, 1H, J = 6.3, 13.7), 3.33 (dd, 1H, J = 4.9, 13.7), 

3.80-3.90 (m, 3H)< 4.09-4.15 (m, 1H), 7.18-7.21 (m, 1H), 7.26-7.29 (m, 2H), 7.35 -7.36 

(m, 2H); LRMS calcd for [C27H46N2O5Si + H]+: 507.3, found 507.3.       
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N1-(((3S,5R)-2-benzyl-3-(2-hydroxyethyl)-3-isobutylisoxazolidin-5-yl)methyl)-N4-(3-

(methyl(3-(3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(4-(1-methyl-4-(1-

methyl-4-(1-methyl-4-(1-methyl-1H-imidazole-2-carboxamido)-1H-pyrrole-2-

carboxamido)-1H-pyrrole-2-carboxamido)-1H-pyrrole-2-

carboxamido)butanamido)-1H-pyrrole-2-carboxamido)-1H-pyrrole-2-

carboxamido)-1H-pyrrole-2-carboxamido)-1H-pyrrole-2-

carboxamido)propanamido)propyl)amino)propyl)succinamide (II-29): To a solution 

of II-S9 (5 mg, 0.01 mmol, 1.0 eq) in DMF (250 μl) was added HOBT (1.5 mg, 0.01 
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mmol, 1.0 eq) and HBTU (4 mg, 0.01 mmol, 1.0 eq) and the solution was stirred 1 h.  At 

this point a solution of polyamide containing a free amine (4 mg, 0.12 mmol, 1.2 eq) and 

Et3N (2 μl, 0.012 mmol, 1.2 eq) in DMF (250 μl) was added to the II-S9 solution 

dropwise and the resultant solution stirred for 12 h at which point mass spectral analysis 

indicated product formation.  The solution was diluted with 1N HCl (500 μl) and stirred 

30 min to afford removal of the silyl ether protecting group.  The crude product was 

concentrated in vacuo and purified by reverse phase HPLC (0.1% TFA in H2O/CH3CN 

gradient).  LRMS (ESI) calcd for [C82H107N23O14 + H]+: 1638.9, found 1639.3.      
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I. Appendix of Selected 1H NMR Spectra and HPLC traces 
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HPLC traces of compounds II-3-II-5.  Compounds II-4 and II-5 are present as a mixture 
of E/Z isomers as confirmed by 1H NMR.  II-25 is a mixture of diastereomers as 
confirmed by 1H NMR. 

 

 

 

  II‐2        II‐3 II‐4 II‐5 
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Chapter III 

 

Binding Partners of iTADs 

 

A. Abstract 

Prevailing evidence suggests that transcriptional activators interact with several 

coactivators in the transcriptional machinery to initiate transcription.  This presents a 

challenging molecular recognition profile to mimic with a small molecule with only a 

single class of molecules, iTADs, having been reported to reconstitute this function in 

cells.  Here we show that iTADs interact with several coactivator targets of endogenous 

activators.  Of particular note, the small molecules are the first reported to bind the KIX 

domain within CBP at a site that is utilized by endogenous transcriptional activators. 

Further there is evidence for a link between the ability of iTADs to bind CBP and activate 

transcription.  Thus these compounds should be valuable tools for elucidating the 

functional role of particular CBP molecular recognition events.  

 

B. Introduction 

 We recently reported the first example of a small molecule transcriptional 

activation domain (TAD), III-1 (Figure III-1a).1  When localized to a promoter the 

isoxazolidine TAD (iTAD) III-1 activated transcription both in cell-free assays and in 

cells (Chapter 2), with up to 80-fold upregulation observed.1, 2  This molecule and related 

iTADs were designed to mimic the composition and structural commonalities among 

endogenous TADs (Figure III-1b) with hydrophobic and polar functional groups 

displayed on a conformationally constrained scaffold similar to a helix.3-5  In the previous 

chapter several key aspects of the function of iTADs were shown to be analogous to their 

endogenous counterparts.  It was shown, for example, that analogous to endogenous 

TADs, iTADs with multiple presentations of amphipathic functionality activate 
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transcription and that  iTADs function when attached to different DBDs.4  Here we show 

additional key characteristics are conserved, that iTADs interact with overlapping 

transcriptional machinery binding sites utilized by endogenous TADs and, further, that 

iTADs have multiple coactivator binding partners.   Using NMR spectroscopy and 

fluorescence polarization experiments binding partners of iTADs were identified and 

include CBP, Tra1, Med15, and Med23, all of which are also binding partners of 

endogenous amphipathic TADs.  Similar evaluations of additional isoxazolidines, both 

active (III-2) and inactive (III-3 and III-4), yielded evidence that the ability of iTADs to 

stimulate transcription is linked to a binding interaction with the coactivator and histone 

acetyltransferase CBP (Creb Binding Protein). Characterization of the iTAD binding site 

within CBP via NMR spectroscopy revealed a remarkable similarity to endogenous 

transcriptional activators such as the mixed lineage leukemia (MLL) factor that utilize the 

same site.6  CBP is a node in many cellular signaling networks and iTADs should thus be 

valuable tools for elucidating the functional role of particular CBP molecular recognition 

events.7, 8   

 
 
MLL               2847    DIMDFVLKNT  
Myb                295     IKELELLL 
SREBP1a        26      LTDIEDML 
KBP 2.20         47      SWAVYELLFGS 

 

 
Figure III-1.  TADs are composed of interspersed hydrophobic and polar residues. a) 
Amphipathic isoxazolidines III-1 and III-2 functions as TADs, whereas hydrophobic 

analogs III-2 and III-3 do not.1, 4 DBD = DNA binding domain.  b) Natural TAD 
sequences. 

a) 

b) 
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1) Identification of Binding Partners of iTADs 

 To identify potential coactivator targets of iTAD III-1 crosslinking and 

competitive inhibition experiments were conducted by colleagues in the Mapp lab.  The 

crosslinking experiments were conducted by Caleb Bates.  A variant of iTAD III-1 (III-

1-Bpa-biotin) was prepared that contains a photoactivatable crosslinking group, 

benzophenone alanine (Bpa), at the C5 position as well as a biotin tag.  Upon irradiation 

with 365 nm light, the benzophenone moiety is converted to a diradical species that 

undergoes C-H insertion with nearby amino acid residues.9  Isoxazolidine III-1-Bpa-

biotin was combined with HeLa nuclear extracts and following irradiation, the mixture 

was purified on avidin beads.  Western blot analysis of the resulting mixture revealed that 

one interaction partner of isoxazolidine TADs is CBP (Figure III-2).  The six other bands 

revealed upon probing with strepavidin are still under investigation.      

 

III‐1‐Bpa‐fluorescein

 

 
 

Figure III-2.  Crosslinking identified CBP as a binding partner of iTADs. Isoxazolidine III-1-
Bpa-biotin crosslinks to CBP upon incubation with nuclear extracts (NE) and irradiation with 

UV light. 
    

 The competitive inhibition or ‘squelching’ experiments were conducted by former 

coworkers, Dr. Brian Brennan and Dr. Steve Rowe.  Well-characterized transcriptional 

activation domains were expressed as Gal4 DBD fusion proteins in HeLa cells and the 

ability of iTAD III-1b to inhibit gene upregulation by the activators was assessed over a 

concentration range of 0-100 μM.  Of particular note, III-1b produced dose-dependent 

inhibition of two different activators (Figure III-3), a VP16-derived TAD and KBP 2.20, 

both of which are thought to function at least in part through interaction with CBP.10, 11  
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VP-16 derived transcriptional activation domains have been used extensively in 

mechanistic studies of transcription and as a component of activator ATFs.  KBP 2.20 

was originally identified in a ‘bottom-up’ experiment as a ligand for the KIX domain of 

CBP.11  Taken together, these results suggested that CBP and, more specifically the KIX 

domain of CBP as at least one cellular interaction partner of III-1.   
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Figure III-3.  III-1b inhibits activation by TADs VP2 and KBP 2.20. 

 

2) Focus on the CBP KIX Domain 

Of the two CBP-targeting transcriptional activators that iTAD III-1b inhibits the 

function of, the interaction domain of one of these, KBP 2.20, is the KIX domain;11 this 

suggested the KIX domain is the motif iTAD III-1 interacts with as well.  The KIX 

domain was originally identified in CBP and has since been found in several eukaryotic 

coactivators in mammals, plants, and fungi,12-15  and it is  hypothesized to be a conserved 

TAD binding motif.  In support of this, the KIX domain of the mammalian coactivator 

protein Arc105 and the CBP KIX domain both interact with Srebp-1a, a transcriptional 

activator responsible for controlling cholesterol and lipid homeostasis.14, 16    

The KIX domain of CBP is an 87 amino acid module comprised of three α-

helices and two 310 helices, the solution structure for which was solved by Professor Peter 

Wright’s research group in 1997.17  The KIX domain interacts with greater than 15 

transcriptional activators through two distinct hydrophobic binding sites.6, 13, 18, 19  A 
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larger, more shallow binding site, shown bound by Myb on the left in Figure III-4a is 

formed at the interface of α1 (L599, H602, L603, K606, L607, and A610) and α3 (Y650, 

L653, A654, I657, Y658, Q661, and K662).17, 20  A smaller but deeper binding site on the 

opposite and top face of the protein is formed by the sidechains of the C-terminus of α1 

(I611), L12 (F612), the N-terminal half of α2 (R624, L628, and Y631) and the C-terminus 

of α3 (L664) and is shown bound by MLL in the diagram on the right in Figure III-4a.6, 21  

Examples of other transcriptional activation domains that bind each site are listed and 

their sequences are shown in Figure III-4b.  The factors that lead to a TAD utilizing one 

site over another have not been elucidated.  Thus, in addition to confirming that iTAD 

III-1 interacts with the KIX domain, there was an additional query of binding site 

specificity.   

180 °

KIX•Myb•MLL

KIX

Myb
Creb
KBP 2.20

MLL
Jun
Tat
Tax

 
Larger binding site: 
Myb        291  KEKRIKELELLLMSTENELKGQQAL 315 
Creb       119  TDSQKRREILSRRPSYRKILNDLSSDAPG 147 

 
Smaller binding site: 
MLL 2840   DCGNILPSDIMDFVLKNTP 2858  
cJun   47    GSLKPHLRAKNSDLLTSPDVGLLKLASPELERLIIQSS 

                                          NGHIT 89 
Tat      1      MEPVDPRLEPWKHPGSQPKTACTN 24 
Tax     59    IDGRVIGSALQFLIPRLPSFPTQRTSKTLKVLTPPIT 95  

 

Figure III-4.  CBP KIX domain and its TAD binding partners. a) The CBP KIX domain 
contains two binding sites.  Each interacts with multiple TADs.6 Figure adapted from 

2agh. b) TADs that interact with the same binding site within the KIX domain have little 
sequence homology.  

 

a) 

b) 
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C.  iTAD III-1 Interaction With the CBP KIX Domain 

1) Initial Assessment 

 To assess whether III-1 interacts with the KIX domain, one-dimensional 13C, 1H-

HSQC experiments were carried out with a variant of III-1 (III-5), in which a 13C label 

was installed at the benzylic position, in the absence and presence of a hexahistidine-

tagged murine KIX domain [CBP(586-672)] with a polar linker (His6KIX), Figure III-5a. 

The 13C labeled small molecule was synthesized with minor modification to the route 

utilized to access II-25 (page 30). The spectrum of the small molecule in the absence of 

protein contained two resonances, one for each benzylic proton.  In the presence of 

protein, with the small molecule in excess, a second set of peaks appeared corresponding 

to the small molecule in the bound form. The dual set of peaks is consistent with a slow 

exchange process.  To assess the affinity of the co-complex of iTAD III-1•KIX a 

fluorescence polarization experiment was conducted by my colleague Dr. Steve Rowe 

with III-1-fluorescein and His6KIX and yielded a KD of 38 μM ± 4 μM (Figure III-5b). 

This is consistent with dissociation constants for endogenous KIX ligands (KDs ranging 

from 300 nM to 40 μM).17, 19-22  From this point, NMR spectroscopy was used to identify 

the binding site(s) and further characterize the interaction.   
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Figure III-5.  iTAD III-1 binds the CBP KIX domain. a)  1D 13C, 1H-HSQC of III-5 in 
the absence and presence of His6KIX. b) The interaction occurs with a KD of 38 μM ± 4 

μM. 

  

2)  Binding Site Identification 

 To identify the binding site(s) of iTAD III-1, His6KIX uniformly labeled with 15N 

was overexpressed and purified and a 15N, 1H-HSQC spectrum of the protein in the 

absence and presence of III-1b was recorded.  NMR samples consisted of 400 μM 15N-

His6KIX in 90% H2O/10% D2O 10 mM phosphate buffer with 150 mM NaCl and 1% 

(vol/vol) CD3OD at pH 7.2 and varying concentration of ligand as indicated.  Spectra 

were recorded at 27 °C. The spectrum of this fragment of CBP without a tag has been 

fully assigned by the research group of Professor Peter Wright and facilitated assignment 
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of this His-tagged variant.17  Approximately 90% of the 87 KIX residues assignments 

could be transferred to the spectrum of our protein; not all residues could be assigned at 

this pH due to chemical shift degeneracy and line broadening effects.  The full spectrum 

with resonances labeled is shown in Figure III-6.  Resonances not visible at the contour 

level shown, but visible at higher contours are shown in purple.  Resonances originating 

from a polar linker between the histidine-tag and KIX protein are indicated by red boxes 

and stars.         
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Figure III-6.  2D 15N, 1H-HSQC of 15N-His6KIX. Resonances from amino acids that 
comprise a linker between the histidine-tag and protein are indicated by red boxes and 

stars.  Purple resonances are not observed at the countour level shown here, but are 
visible at higher contours. 
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A titration experiment was conducted in which increasing concentrations of III-

1b were added to 15N-His6KIX; this induced progressive changes in the 1H and 15N 

chemical shifts, indicating that complex formation is occurring in the fast exchange 

regime.  Similar evaluations for three endogenous TADs that bind the KIX domain have 

been conducted by the Wright and Lumb research groups.  These show that two, Jun and 

Tax,19, 22 also interact with the KIX domain on the fast exchange timescale and one, 

MLL,6 binds in the slow exchange regime as indicated by concomitant disappearance and 

reappearance of peaks.  Thus, by this evaluation iTAD III-1 exhibits similar kinetic 

behavior as at least a subset of the endogenous activators that function through binding 

interactions with CBP.  Interestingly, the small molecule exhibits slow exchange and the 

protein exhibits fast exchange.  While not commonly reported, this is possible and in fact 

has been observed for the CREB transcriptional activation domain (Kid)  in complex with 

KIX.17, 23      

 A region of the spectrum of His6KIX upon addition of saturating quantities of III-

1b is shown in red overlayed on the spectrum of the free protein in black in Figure III-7a 

and residues that shifted are labeled.  To facilitate binding site identification by chemical 

shift perturbation mapping, the chemical shifts were quantitated, 

δΔ = [(δΔΗΝ)2 + 0.1(δΔΝ)2]1/2, and plotted against residue number (Figure III-7b).  

Chemical shift perturbation mapping has proven to be a reliable method for binding site 

identification with the KIX domain.19, 22, 24  The average chemical shift was 0.016 ppm 

and the largest shift was 0.066 ppm for R623.  The black line in Figure III-7b indicates 

the average shift.  The magnitude of the shifts observed upon binding iTAD III-1 is 

comparable to endogenous ligands; for example the average chemical shift observed for 

KIX residues upon binding Tax or Jun is 0.02 ppm with the largest shift for those ligands 

just over 0.1 ppm.19, 25  In the case of III-1, the plot of chemical shifts revealed that the 

shifts are not uniform across the sequence, but clustered, indicative of specific binding.  

Residues that experienced chemical shifts greater than two standard deviations above the 

average are V608, A618, L620, K621, and R623.  Residues that experienced shifts one 

standard deviation above the average are I611, T614, R624, and E665.  The shifts map 

onto the C-terminus of α1, L12, G2, and the N-terminus of α2, corresponding to the 

MLL/Tax/Jun/Tat binding site.19, 21, 24, 25  As a visualization of the shared binding site, the 
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residues that experience the largest chemical shift perturbation upon binding iTAD III-1, 

MLL, and Jun are highlighted in red in the space filling diagrams of the KIX domain in 

Figure III-7c.19, 21          
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Figure III-7. iTAD III-1 binds the MLL/Jun/Tat/Tax site. a) 15N, 1H-HSQC spectrum of 
15N-His6KIX in the presence of five-fold excess iTAD III-1b (red) is overlayed on the 
spectrum on the free 15N-His6KIX (black).  b) Chemical shift perturbation map of KIX 
upon binding III-1. c) III-1, MLL, and Jun share a binding site.  The residues in red in 
the space filling diagrams experience that largest chemical shift upon binding the 
respective ligand.  Figures were adapted from 1kdx. 
 

These experiments demonstrated that, in fact, iTADs function as intended by 

binding at least a subset of the same coactivator binding sites as their endogenous 
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counterparts.  Further, similarities between iTAD III-1 and endogenous TADs extend to 

both thermodynamic and kinetic parameters.  Importantly, this is also the first example of 

a small molecule to selectively bind one of the KIX domain binding sites utilized by 

endogenous TADs and thus III-1 should be a valuable tool for elucidating the functional 

role of particular CBP molecular recognition events.  CBP is a large 250 kD protein that 

is an important node in many signaling networks and suggested to be present in limiting 

quantities in cells.7, 8, 26, 27  Deletion of CBP is embryonic lethal and loss of a single CBP 

allele leads to severe development defects.28-30  Additionally, CBP is involved in 

mediating the function of several viral transcriptional activators including those 

associated with HIV and the adult T-cell leukemia virus as well transcriptional activators 

involved in angiogenesis, lipid homeostasis and myeloid leukemias.31-35 Reflective of the 

importance of CBP in mediating transcription, CBP interacts with >300 transcriptional 

activators through 5 protein binding motifs.36     

 

D. Additional iTADs Interact with CBP  

As outlined above, the KIX domain of CBP interacts with ≥15 amphipathic TADs 

despite differences in sequence and significant changes in the identity and spacing of the 

hydrophobic side chains do not preclude binding to this domain.  Thus it might be 

predicted that iTADs with different side chains and/or side chain arrangement would 

maintain KIX binding ability.  To test this, we examined the interaction of three 

additional isoxazolidines with CBP (Figure III-8).  Isoxazolidine III-2 has the same 

functional groups as III-1 but in a different orientation.  Hydrophobic isoxazolidine III-3 

maintains the two key hydrophobic functional groups present in III-1 (benzyl, isobutyl) 

but lacks the C3 hydroxyl moiety.  In the case of III-4, the C3 substituents are identical 

to III-1 but the N2 substituent is now a larger, biphenyl sidechain.   
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Figure III-8. Additional isoxazolidines evaluated for KIX binding. 

 

 To assess binding of iTAD III-2 to the CBP KIX domain a 15N, 1H-HSQC of 15N-

His6KIX was collected in the presence of ligand and compared to the spectrum of the free 

protein.  Figure III-9 shows the spectrum of 15N-His6KIX bound by III-2 (cyan) 

overlayed on the protein bound by III-1 (red) and free protein (black).  The residues that 

shift upon addition of III-2 to 15N-His6KIX are nearly identical to those observed for III-

1 as was the direction and magnitude of the shifts.  A subset of these residues is labeled 

in Figure III-9a.  

Subsequently the two isoxazolidines (III-3 and III-4) with increased hydrophobic 

surface area for binding protein surfaces, surface area that would presumably enhance the 

interaction with coactivator binding surfaces, were evaluated analogously for binding the 

CBP KIX domain.  This revealed there is not an interaction between the KIX domain and 

either III-3 or III-4.   The spectra of the CBP KIX domain in the presence of III-3 

(green) and III-4 (purple) are overlayed on the spectrum of free protein (black) in Figure 

III-9b.  A portion of the residues that experienced chemical shift perturbation upon 

binding III-1 are labeled.  These results are unlikely due to compromised solubility or 

aggregation.  The 1H NMR spectrum of III-3b alone in NMR buffer showed a sharp, 

well-defined spectrum (Figure III-9c) analogous to that obtained in organic solvents.  

However upon combination with 15N-His6KIX, III-2b did not bind either of the protein’s 

binding sites.  The resonances of R600 and F612 are the only two that experienced a 

significant chemical shift perturbation in the presence of III-3 and III-4 perhaps 

attributable to hydrophobic or ∏-stacking interactions with the small molecules.     
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Figure III-9. Evaluation of KIX binding of III-2, III-3 and III-4.  a) Overlay of the 15N, 
1H-HSQC of 15N-His6KIX in the presence of III-2b (cyan), III-1b (red) and no ligand 
(black). b) Overlay of the 15N, 1H-HSQC of 15N-His6KIX in the presence of III-3b 
(green), III-4b (purple) and no ligand (black). c) 1H spectrum of III-3 in NMR buffer.  

 

This result suggests that although coactivator binding sites are large hydrophobic 

grooves the presence and positioning of polar functionality is important in the molecular 

recognition of at least a subset of binding sites.17, 37  One possible hypothesis is that while 

polar groups of TADs typically make minimal contributions in terms of binding affinity 

the interactions of these sidechains may be important in controlling specificity.  As a 

probe of this and the ability of iTADs to bind multiple coactivator proteins the ability of 

III-1, III-3 and III-4 to interact with other coactivators was evaluated.  
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E. Interaction of Isoxazolidines III-1, III-3 and III-4 with Other Coactivators 

 Mediator proteins Med15 and Med23, and Tra1, a component of the SAGA and 

NuA4 complexes, all common targets of endogenous TADs, were evaluated as binding 

partners of III-1, III-3, and III-4 using binding assays (Table III-1).  The fluorescein-

tagged variant, III-1-fluorescein, of iTAD III-1 described above (Figure III-5) interacted 

with all three coactivators: Tra1 with a KD = 9 μM (Chinmay Majmudar), Med15 with a 

low μM KD (Steve Winter) and Med23 with a KD =  6 μM (JP Desaulnier).   

 A fluroescein-tagged variant of III-3 was also prepared for assessment of binding 

Tra1, Med15 and Med23 using fluorescence polarization experiments.  The single 

experiment conducted thus far determined that III-3 binds Med23 with a KD = 500 nM.  

Dr. J. P. Desauliner showed that III-4 binds Sur2 and Med23, both in the low μM range.   

 Overall, these experiments yielded two important results.  First, analogous to 

endogenous TADs, iTAD III-1 exhibits a low KD, multipartner binding profile with 

transcriptional machinery proteins.  Second, these experiments unexpectedly revealed 

that one distinguishing feature of iTADs is the ability to interact with the CBP KIX 

domain.  During the course of this work, the solution structure of the KIX domain in 

complex with MLL was published and based upon comparison to that structure a binding 

model for III-1 is put forth.6  Further examination of the KIX•MLL structure provides a 

rational for the inability of III-3 and III-4 to interact with the KIX domain.     
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Table III-1. Summary of identified isoxazolidine coactivator binding partners. 

 

F.  iTAD III-1•KIX Binding Model 

 Of the many endogenous TADs that bind the same site on the CBP KIX domain 

as iTAD III-1, only in the case of MLL has a structure of a TAD in complex with the 

KIX domain been solved, enabling a more detailed comparison with the small molecules.  

Of the human MLL fragment 2842-2869 that was utilized by the Wright group to solve 

the solution structure only 2847-2857 (Figure III-10a) adopt an amphipathic helical 

structure upon binding the protein; for clarity only these residues are utilized in the 

picture of MLL•KIX in Figure III-10b.6  Of these residues, the side chains of five, one 

polar (T2857) and four hydrophobic (I2849, F2852, V2853, and L2854), make extensive 

contacts with the KIX binding groove contributing to a KD of 3 μM.21  In the view of the 

KIX domain shown bound by MLL in  Figure III-10b, looking down the top of the 

protein, three of the five critical residues for binding can be seen, a phenylalanine, 

leucine, and threonine.  Remarkably, the side chains of these residues are nearly identical 

to the three functional groups of iTAD III-1, one polar (C3 hydroxyl) and two 
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hydrophobic (N2 benzyl and C3 isobutyl), for interacting with the KIX domain; the 

substituent at C5 (the point of attachment for DNA binding functionality in the context of 

activation) does not contribute significantly to binding as an analog of III-1 containing 

the larger and more polar dimethoxyacetal substituent at the C5 position exhibits nearly 

identical binding behavior.  Further, the relative spacing of the three substituents is also 

comparable suggesting a binding orientation in which each of the iTAD substituents 

projects into the same subsite as the analogous MLL sidechain.  While the iTAD core is 

smaller than the helix of MLL, the binding site on the KIX domain that recognizes these 

ligands has been shown to undergo significant structural rearrangement upon binding 

MLL and this flexible nature may enable the binding site to adapt to recognize the 

smaller ligand.6, 18 Consistent with this hypothesis several residues in or near the binding 

pocket are line broadened in our experiments (for example, V608, K621, R624, and 

K621) suggesting flexibility of that region.   

             

F2852

L2854

T2857

MLL   DIMDFVLKNTa)

b)

 
Figure III-10. MLL•KIX solution structure. a) I2849, F2852, V2853, L2854, and T2857 
of MLL make extensive hydrophobic contacts with the KIX domain upon binding.  Only 
the MLL residues shown form an amphipathic helice upon binding.  b) The position of 
MLL residues F2852, L2854, and T2857 can be seen viewing the protein from the top.6 
Figure adapted from 2agh. 
 
 
 The recognition of III-2, a positional isomer of III-1, by the KIX domain 

supports that as it does to bind endogenous TADs, the binding site can tailor itself to 

recognize iTADs with different functional group orientation.  The observation that III-3, 

which lacks the C3 hydroxyl but otherwise mimics III-1, does not bind the KIX domain 
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is consistent with a polar group mimicking the binding interaction of the threonine side 

chain and both hydrophobic groups being required for interaction.  In the case of III-4, 

which contains the larger biphenyl moiety, an examination of the TADs that interact with 

this KIX site revealed that only a single large hydrophobic amino acid (W at residue 11 

of Tat) that would be similar in size to the biphenyl moiety.19, 21, 24, 25  Further, a F2852Y 

mutation within the MLL TAD abrogates binding to KIX and concomitantly reduces 

MLL-mediated transcription by 60%.38  Thus, at least in the case of this TAD-binding 

site, large hydrophobic groups do not appear to be well-tolerated.        

 

G. Conclusions  

 The NMR and fluorescence polarization experiments evaluating complex 

formation between iTAD III-1 and coactivators demonstrate that analogous to its 

endogenous counterpart iTAD III-1 interacts with multiple transcriptional machinery 

proteins, including CBP, Med15, Med23, and Tra1.  Of these, the interaction with CBP 

was investigated in detail resulting in the discovery of the first small molecule to target a 

site on the CBP KIX domain utilized by endogenous TADs.  Further, isoxazolidine III-1 

forms a complex with this binding partner with similar thermodynamic parameters as 

endogenous TADs that use the same site.  In fact, iTAD III-1 shows remarkable 

similarity to the endogenous transcriptional activators such as MLL in terms of functional 

group content and structure.   

The activity of the isoxazolidines evaluated parallels their ability to bind the CBP 

KIX domain suggesting that CBP binding is an essential component of iTAD function.  

An initial assessment of this suggests that screening for molecules that bind either of the 

binding sites on the KIX domain should produce small molecules that function as TADs.  

This strategy has been pursued and proven unsuccessful, however.  The Montminy lab 

conducted an NMR screen of 762 small molecules for binding to the KIX domain and 

only two hits were obtained and neither molecule bound a KIX site utilized by 

endogenous activators.39  Consistent with this small structural changes within the 

isoxazolidine scaffold significantly altered the binding profile with the KIX domain.  

This ultimately suggests that some degree of specificity for a given coactivator or 

coactivator class may indeed be achievable within this framework. 
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H. Experimental          

General. 

Unless otherwise noted, starting materials were obtained from commercial 

suppliers and used without further purification. CH2Cl2, THF, CH3CN and toluene were 

dried by passage through activated alumina columns and degassed by stirring under a dry 

N2 atmosphere.  BF3•OEt2 and Et3N were distilled from CaH2.  All reactions involving 

air- or moisture-sensitive reagents were performed under a dry N2 atmosphere.40  

Purification by column chromatography was carried out with E. Merck Silica Gel 60 

(230-400 mesh) according to the procedure of Still, Kahn, and Mitra.41  1H and 13C NMR 

spectra were recorded in CDCl3 at 500 MHz and 125 MHz, respectively, unless otherwise 

specified.  IR spectra were measured as thin films on NaCl plates.  The synthesis of III-

1b and, III-3b were reported in Chapter II.  III-4 was prepared by JP Desaulnier. III-2 is 

reported here, compounds that do not appear in the text are numbered S1-S3.     

 

Hexa-histidine tagged CBP (586-672) with polar linker, His6KIX, sequence. 

Lower case corresponds to the linker, upper case corresponds to KIX residues 586-672: 

mrgshhhhhhgmasmtggqqmgrdlyddddkdpssrsGVRKGWHEHVTQDLRSHLVHKLVQAI
FPTPDPA ALKDRRMENLVAYAKKVEGDMYESANSRDEYYHLLAEKIYKI QKEL 
EEKRRSRL 
 
15N-His6KIX overexpression and purification. 

 The His6KIX plasmid, prepared by Dr. Steve Rowe as reported in his PhD thesis, 

was transformed into freshly grown Rosetta pLysS cells.  The transformed cells were 

grown on an LB agar plate supplemented with 0.1 mg/mL ampicillin and 0.034 mg/mL 

chloramphenicol.  The cells were grown for approximately 18 hours at 37 °C.  Single 

colonies were selected from the plate and used to inoculate 50-mL cultures of LB 

supplemented with 0.1 mg/mL ampicillin and 0.034 mg/mL chloramphenicol.  The 

cultures were grown for 12 h at 37 °C with shaking at 250 rpm.  25 mL of the starter 

culture were then used to inoculate 1 L M9 minimal media (recipe below) supplemented 

with 0.1 mg/mL ampicillin.  The 1 L cultures were grown until the OD600 reached 0.4, 

typically 12 hours.  The temperature on the incubator was lowered to 25 °C and 
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expression of the protein was induced with 0.5 mM IPTG for 12 hours.  The cells were 

then centrifuged for 20 min at 6,000 rpm and the pellets were stored at -80 °C overnight.   

 For protein isolation the cells were resuspended in 25 mL lysis buffer (100 mM 

PBS, pH 7.2) per 2L culture volume and lysed using a sonic dismembrator (120 s total 

with 30 s on, 30 s off intervals).  The cells were kept on ice throughout the sonication.  

The crude lysis solution was centrifuged at 9500 rpm for 30 min at 4 °C.  The resultant 

supernatant was batch bound to 1 mL (per L culture volume) of Ni-NTA beads (Qiagen) 

for 1 h at 4 °C.  The solution was centrifuged at 2500 rpm for 2 min at 4 °C and the 

supernatant discarded.  The resin was washed six times with 2 mL aliquots of wash buffer 

(100 mM PBS, 30 mM imidazole, pH 7.2) and the protein was then eluted from the beads 

with 3-5 mL elutions with elution buffer (100 mM PBS, 300 mM imidazole, pH 7.2).  

The first elution occurred for 1 h and the subsequent two for 30 min each.  The combined 

eluted fractions were lyophilized to a powder.  The powder, including imidazole and 

phosphate salts, was resuspended in 50/50 CH3CN/H2O and centrifuged at 2500 rpm for 

30 sec to pellet the insoluble fraction.  The supernatant was loaded onto PD-10 desalting 

columns (GE Healthcare) and eluted with 50/50 CH3CN/H2O.  The solution was 

lyophilized to a powder and immediately utilized in NMR experiments.  

 
15N-His6KIX NMR experiments.  

The uniformly 15N-labelled His6KIX protein was prepared as a 300-400 μM 

solution in 90% H2O/10% D2O 10 mM phosphate buffer with 150 mM NaCl and 1% v/v 

CD3OD at pH 7.2.  Protein concentration was determined by Bradford assay.  Samples 

containing small molecule ligands were prepared by adding 0.25-5.0 equivalents of the 

small molecule as a solution in CD3OD to achieve a final CD3OD concentration of 1%.  
15N, 1H-heteronuclear single quantum coherence experiments were recorded at 27 °C on 

an Avance Bruker 600 MHz NMR spectrometer equipped with a triple-resonance 5 mm 

cryogenic probe.  Typical experiments consisted of 256 complex increments defined by 

40 or 56 transients and 1024 complex points.  Data was processed using NMRPIPE and 

analyzed using Sparky.   
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Small molecule synthesis and characterization. 

 
2-((3S,5R)-2-13C-benzyl-5-(dimethoxymethyl)-3-isobutylisoxazolidin-3-yl)ethanol 

(III-5):  Isoxazolidine III-5 was prepared analogously to the previously reported 

unlabelled version;1 all spectroscopy data was identical and incorporation of the 13C-label 

was confirmed by mass spectrometry. HRMS calcd for [C20H31NO4 + Na]+: 361.2184, 

found 361.2180.          

     

     

    

 

 

 

2-((3S,5R)-5-(azidomethyl)-2-benzyl-3-isobutylisoxazolidin-3-yl)ethanol 5-(3-

(((3S,5R)-2-benzyl-3-(2-hydroxyethyl)-3-isobutylisoxazolidin-5-

yl)methyl)thioureido)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoate (III-1-

fluorescein): To a solution of II-26  (5 mg, 0.02 mmol, 1.0 eq) in 200 μl DMF was added 

Et3N (2.8 μl, 0.02 mmol, 1.0 eq) and FITC (7.8 mg, 0.02 mmol, 1.0 eq).  The mixture 

was shielded from light and stirred at rt for 12 h at which point product formation was 

observed by ESI-MS.  The solution was diluted with 1.8 mL of a 50/50 CH3CN/0.1% 

TFA in H2O mixture and purified by reverse phase HPLC using a 0.1% TFA in 

H2O/CH3CN gradient.  The purity of compound SI was confirmed by analytical reverse-

phase HPLC and product identify confirmed by mass spectral analysis.  LRMS calcd for 

[C38H39N3O7S + H]+: 682.9, found 682.3.     

 

 

 

III-1-fluorescein

H
N

H
N

N O
HO

S

fluorescein
H
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Characterization of III-2b and appropriate intermediates from III-S1. 

 
 

HN O

H
OTBS

III-S2  
(3S,5R)-3-benzyl-5-((tert-butyldimethylsilyloxy)methyl)-3-isobutylisoxazolidine (III-

S2):  To a solution of III-S1 (500 mg, 1.8 mmol, 1.0 eq) in tol (12 mL) cooled in a dry 

ice-acetone bath was added BF3•OEt2 (670 μl, 5.4 mmol, 3.0 eq) over 15 min then the 

mixture was stirred an additional 30 min with continued cooling.  Benzylmagnesium 

chloride (5.5 mL of a 2.0 M solution in THF, 11 mmol, 6.0 eq) was then added dropwise 

over 30 min.  The reaction mixture stirred with continued cooling for 6h at which point 

TLC analysis indicated consumption of starting material.  The mixture was diluted with 

saturated NH4Cl (10 mL) and transferred to an ice-H2O bath.  After slowly warming to rt 

the mixture was diluted with H2O (10 mL) and Et2O (20 mL) and the aqueous and 

organic layers were separated.  The aqueous was extracted with Et2O (3 x 15 mL), and 

the combined organic extracts were washed with H2O (15 mL) and brine (15 mL), dried 

over Na2SO4, filtered, and concentrated in vacuo.  Purification by flash chromatography 

(elution in 95:5 hexanes/EtOAc) yielded 570 mg of a single diastereomer of  product as a 

colorless oil in 87% yield. IR: 2927, 2858, 1603, 1494, 1452, 1254, 1118, 833 cm-1;  1H 

NMR: δ 0.04 (s, 3H), 0.05 (s, 3H), 0.88 (s, 9H), 0.96 (s, 3H), 0.97 (s, 3H), 1.29-1.40 (m, 

2H), 1.87 (dd, 1H, J = 12.2, 6.4), 1.97-2.04 (m, 1H), 2.20 (dd, 1H, J = 12.0, 8.6), 2.69 (d, 

1H, J = 13.2), 2.92 (d, 1H, J = 13.7), 3.56 (dd, 1H, J = 10.7, 2.4), 3.82 (bs, 1H), 4.18 (bs, 

1H), 5.32 (bs, 1H), 7.18-7.28 (m, 5H); 13C NMR: δ -5.54, -5.50, 18.20, 24.10, 24.36, 

24.46, 25.85, 41.05, 41.22, 42.93, 65.83, 68.58, 80.03, 126.1, 127.8, 130.6, 138.3; HRMS 

(ESI) calcd for [C21H37NO2Si + H]+: 364.2672, found: 364.2666.  
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((3S,5R)-2-allyl-3-benzyl-3-isobutylisoxazolidin-5-yl)methanol (III-S3): To  a solution 

of III-S2 (320 mg, 0.88 mmol, 1.0 eq) in 4.4 mL DMF was added allylbromide (460 μl, 

5.3 mmol, 6.0 eq) and iPr2NEt (450 μl, 2.6 mmol, 3.0 eq).  The mixture was irradiated in 

a 1000W microwave for 15 seconds at 20% power.  The solution was cooled and 

irradiated 8 additional times, each time for 15 seconds at 20% power, with cooling 

between each interval.  Upon completion of the reaction, as indicated my TLC analysis, 

the mixture was diluted with H2O and Et2O, the layers separated, and the aqueous layer 

extracted with Et2O (3 x 10 mL).  The combined organic extracts were washed with H2O 

(2 x 10 mL) and brine (1 x 10 mL), dried over Na2SO4, filtered, and concentrated in 

vacuo.  The crude product was dissolved in 4.4 mL THF and cooled in an ice-H2O bath.  

TBAF (2.6 mL of a 1M solution in THF, 2.6 mmol, 3.0 eq) was added and the mixture 

was allowed to slowly warm to rt.  The reaction was stirred 3h, at which point TLC 

analysis indicated complete consumption of the starting material.  The reaction mixture 

was diluted with H2O and Et2O and the layers separated.  The aqueous layer was 

extracted with Et2O (3 x 10 mL) and the combined organic extracts were washed with 

brine (1 x 10 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  The crude 

product was purified by flash chromatography (elution in 80:20 hexanes/EtOAc) to yield 

170 mg of III-S3 as a colorless oil in 68% yield.  IR: 3428, 2954, 1645, 1453, 1031, 702 

cm-1; 1H NMR: δ 0.86 (d, 3H, J = 6.35), 0.94 (d, 3H, J = 6.8), 1.30 (dd, 1H, J = 6.8, 14.7), 

1.59 (dd, 1H, J = 3.9, 14.7), 1.82-1.89 (m, 1H), 1.89 (dd, 1H, J = 6.8, 12.7), 2.18 (dd, 1H, 

J = 8.3, 12.7), 2.40 (bs, 1H), 2.61 (d, 1H, J = 13.2), 2.91 (d, 1H, J = 13.2), 3.37 (m, 2H), 

3.55 (m, 1H), 3.69 (ddd, 1H, J = 3.2, 5.4, 11.5), 4.10-4.14 (m, 1H), 5.14 (dd, 1H, J = 1.5, 

10.3), 5.25 (dd, 1H, J = 1.5, 17.1), 5.93-6.01 (m, 1H), 7.16-7.17 (m, 2H), 7.19-7.22 (m, 

1H), 7.26-7.29 (m, 2H); 13C NMR: δ 24.52, 25.33, 36.57, 39.21, 42.40, 52.18, 53.36, 

65.54, 69.28, 75.55, 116.3, 126.1, 128.0, 130.7, 135.4, 138.4; HRMS (ESI) for 

[C18H27NO2 + Na]+: 312.1939; found: 312.1946. 
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2-((3S,5R)-5-(azidomethyl)-3-benzyl-3-isobutylisoxazolidin-2-yl)ethanol (III-2b): To 

a solution of III-S3 (150 mg, 0.52 mmol, 1.0 eq) in CH2Cl2 (5.2 mL) cooled in an ice-

H2O bath was added Et3N (80 μl, 0.57 mmol, 1.1 eq) followed methanesulfonyl chloride 

(44 μl, 0.57 mmol, 1.1 eq).  TLC analysis indicated complete conversion to the mesylate 

after 30 min and the reaction mixture was diluted with 5 mL H2O.  The organic and 

aqueous layers were separated and the aqueous was extracted with CH2Cl2 (3 x 5 mL).  

The combined organic extracts were washed with brine (1 x 10 mL), dried over Na2SO4, 

filtered, and concentrated in vacuo.  The crude mixture was dissolved in DMF (5.2 mL) 

and NaN3 (340 mg, 5.2 mmol, 10 eq) was added to the solution.  The flask was fitted with 

a reflux condenser and heated for 12 h at reflux at which point TLC analysis indicated 

complete consumption of starting material.  The mixture was diluted with H2O (10 mL) 

and extracted with Et2O (3 x 10 mL).  The combined organic extracts were washed with 

H2O (2 x 10 mL) and brine (10 mL), dried over Na2SO4, filtered, and concentrated in 

vacuo.  The crude product was passed through a plug of silica gel to remove polar 

impurities and utilized in subsequent oxidative cleavage of the olefin. To a solution of the 

product (120 mg, 0.38 mmol, 1.0 eq) in tBuOH (2.85 mL), THF (760 μl) and H2O (190 

μl) was added NMO (54 mg, 0.46 mmol, 1.2 eq) followed by OsO4 (410 μl of a 2.5 wt% 

solution in tBuOH, 0.04 mmol, 0.1 eq).  The reaction mixture was stirred for 6h at which 

time TLC indicated completion of the reaction.  Na2SO3 (100 mg) was added to quench 

excess reagents and the mixture was stirred for 1h.  The mixture was then diluted with 

EtOAc (5 mL) and H2O (5 mL) and the layers separated.  The aqueous layer was 

extracted with EtOAc (3 x 5 mL).  The combined organic extracts were washed with 

brine (1 x 10 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  The crude diol 

product was dissolved in CH3CN (1.9 mL) and H2O (1.9 mL) and NaIO4 (98 mg, 0.46 

mmol, 1.2 eq) was added.  TLC analysis indicated complete consumption of the starting 

material after stirring at rt for 1h.  The reaction mixture was diluted with H2O (5 mL) and 

Et2O (5 mL) and the aqueous and organic layers separated.  The aqueous layer was 
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extracted with Et2O (3 x 5 mL) and the combined organic extracts were washed with H2O 

(10 mL) and brine (10 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  To 

the crude mixture dissolved in MeOH (3.8 mL) cooled in an ice-H2O bath was added 

NaBH4 (41 mg, 1.1 mmol, 3.0 eq) and the reaction was stirred for 30 min at which time 

TLC analysis indicated complete consumption of the starting material.  The reaction 

mixture was diluted with H2O (5 mL) to quench excess reagent and allowed to slowly 

warm to rt.  Et2O (10 mL) was added to the mixture and the organic and aqueous layers 

separated.  The aqueous layer was extracted with Et2O (3 x 10 mL) and the combined 

organic extracts were washed with brine (15 mL), dried over Na2SO4, filtered, and 

concentrated in vacuo.  The crude product was purified by flash chromatography (elution 

in 30:70 hexanes/EtOAc) to yield 130 mg of product in 78% yield as a colorless oil. IR: 

3440, 2954, 2098, 1453, 1278, 1057 cm-1; 1H NMR: δ 0.89 (d, 3H, J = 6.8), 0.97 (d, 3H, J 

= 6.8), 0.97 (d, 3H, J = 6.8), 1.33 (dd, 1H, J = 5.9, 14.7), 1.56 (dd, 1H, J = 4.9, 14.7), 

1.77-1.84 (m, 2H), 2.20 (dd, 1H, J = 8.3, 12.7), 2.49 (t, 1H, J = 5.9), 2.61 (d, 1H, J = 

13.2), 2.87 (d, 1H, J = 13.2), 2.92 (m, 2H), 3.21 (dd, 1H, J = 3.7, 12.9), 3.34 (dd, 1H, J = 

6.8, 12.7), 3.75-3.85 (m, 2H), 4.16-4.21 (m, 1H), 7.14-7.15 (m, 2H), 7.20-7.23 (m, 1H), 

7.26-7.29 (m, 2H); 13C NMR: δ 24.72, 25.36, 38.05, 39.38, 42.17, 51.09, 54.45, 60.98, 

69.34, 74.97, 126.4, 128.2, 130.8, 138.0; HRMS (ESI) calcd for [C17H26N4O2 + Na]+: 

341.1953; found: 341.1958. 
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I. Appendix of Select 1H NMR spectra and HPLC traces.    
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Chapter IV 

 

Synthesis, Coactivator Binding and Activator Function of Bis-isoxazolidines 

 

A. Abstract 

 Monomeric isoxazolidines are the first reported class of small molecule 

transcriptional activation domains, molecules capable of initiating gene upregulation 

when localized to a promoter.  Many characteristics of the molecules parallel their 

endogenous counterparts, such as permissive binding and a low micromolar multipartner 

binding profile with the same coactivator targets of endogenous TADS.  An additional 

characteristic of endogenous transcriptional activation domains is that the function of 

short peptidic TADs is enhanced upon multimerization and thus we hypothesized that 

multimers of isoxazolidines would show enhanced activity relative to their monomeric 

counterparts.  Here we show the design and synthesis of short isoxazolidine oligomers.  

Initial evaluations indicate that the molecules have enhanced binding to coactivators but 

this did not translate to enhanced potency as a TAD. 

 

B. Introduction 

In 2004 the first small molecule to function as a transcriptional activation domain 

was reported, isoxazolidine IV-1.1  Since that initial report significant evidence has been 

collected to support that iTADs possess similar features and mode of action as their 

endogenous counterparts.  Both require amphipathic character and a rigid conformation, 

but neither have a strict requirement for specific placement of functionality on the helices 

of endogenous TADs or the isoxazolidine ring of iTADs.2-4  For example, Figure IV-1 

shows the helical region of four TADs and all contain different arrangements of 

interspersed hydrophobic and polar functionality.4, 5  Similarly, several amphipathic 

isoxazolidines including both enantiomers as well as positional isomers (such as IV-2) of 
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the original racemic iTAD IV-1 all activate to similar levels.2  It also has been shown 

endogenous TADs and iTADs containing different orientations of amphipathic 

functionality have multiple protein binding partners in the transcriptional machinery and 

at least a subset of the protein targets are overlapped for the two classes.4  For example, 

the four TADs shown in Figure IV-1a all bind the same motif, the KIX domain,6-9 within 

the coactivator protein Creb Binding Protein (CBP), as do iTADs IV-1 and IV-2.   

 
MLL               2847    DIMDFVLKNT  
Myb                295     IKELELLL 
SREBP1a         26      LTDIEDML 
KBP 2.20         47      SWAVYELLFGS 

 

 

 

 

 

 

 
Figure IV-1. Endogenous TADs and iTADs do not require a specific arrangement of 
functionality.  a)  The TADs of MLL, Myb, SREBP1a and KBP 2.20 contain amphipathic 
character, but no sequence homology and all interact with the CBP KIX domain.  b) 
Isoxazolidines IV-1 and IV-2 both activate transcription and bind the CBP KIX domain. 
 
 

The similarities between iTADs and their endogenous counterparts suggested to 

us that small molecules with more significant modifications including changes not only in 

position of functionality but also functional group content likely will be tolerated by 

coactivator proteins and function as iTADs.  In particular a modification predicted to be 

advantageous in term of activation is increased hydrophobic surface area.  The typical 

binding sites on coactivator proteins are shallow, hydrophobic and quite large.  For 

example, binding of the coactivator CBP through its KIX domain by the transcriptional 

activator c-Myb buries 1480 Å2 of predominantly hydrophobic surface area.10  Thus is it 

somewhat surprising that the only example of a small molecule TAD to function in cells 

has a molecular weight of <300 g/mol.  In fact, the only other nonnatural molecule that 

functions as an TAD in cells is a 800 g/mol peptoid (Figure II-8, page 31).11  It was thus 

a) 

N O
N3HO

H

N O
N3

HO

H

IV-1 IV-2

b) 
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hypothesized that organic molecules larger than the minimal isoxazolidine domain will 

perform the same function, perhaps even more potently.  The first approach the lab 

utilized towards this goal was to increase the hydrophobic surface area of the monomeric 

compounds by appending larger hydrophobic functional groups to the ring.12  This 

strategy unfortunately was unsuccessful as all analogs evaluated showed attenuated 

activity and hence we adopted a new framework, short isoxazolidine oligomers (such as 

IV-3-IV-5).  More specific evidence for the isoxazolidine oligomer approach comes from 

a study published by Tanaka showing that a dimer of the TAD of VP2 activates 

approximately three times more potently than the parent compound.13  Further, 

surreptitious repeats of 6-14 amino acids are often contained in natural TADs.3, 14, 15     

 
Figure IV-2.  Bis-isoxazolidine targets. 

 

1) Diastereomeric Targets 

Diastereomeric bis-isoxazolidines such as IV-3 and IV-4 were both chosen as 

targets as these bis-isoxazolidines are predicted to populate a preferred conformation 

dictated by stereochemistry along the backbone.  This hypothesis is based on analogy to 

bis-pyrollinones (IV-6, Figure IV-3) investigated by Hirschmann, Smith, and 

coworkers.16-18  They have shown that both in the solid state and in solution dimeric 

pyrrolinones populate a preferred conformation with a dihedral angle of 168-177° due to 

restricted rotation around the C-C ring connecting bond.  The preferred conformation 

does not vary with substitution along the backbone, suggesting that stereochemistry is the 

primary dictator of conformation.  Bis-isoxazolidines such as IV-3-IV-5 link the 

monomer units together in a fashion similar to IV-6 and the substitution pattern is also 

similar suggesting the molecules will also adopt a defined conformation dictated by 
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stereochemistry.  Coordinate driving (MMFF94) molecular modeling experiments 

supported that bis-isoxazolidines have a high barrier to rotation around the C-C ring 

connecting bond and this was experimentally confirmed by variable temperature NMR 

experiments.19  

 
Figure IV-3.  Dimeric pyrollinones populate defined conformations.16-18 

 

2) Targets with Different Polarity  

Bis-isoxazolidine targets IV-3 and IV-5 contain the same hydrophobic face by 

having identical substitution of hydrophobic groups and stereochemical relationships 

along the backbone, but IV-5 is overall more polar due to the presence of diol moieties 

rather than mono-alcohols at C3 of each ring.  Both IV-3 and IV-5 were chosen as targets 

as limited solubility of the more hydrophobic IV-3 is a concern, however the drawback to 

IV-5 is that stereochemical complexity is introduced at both diols.    

 

3) Bis-isoxazolidines and the iTAD•KIX Binding Model 

 While investigation of the larger bis-isoxazolidine ligands as iTADs can be 

argued as rational based simply on the surface area of coactivator binding sties, more 

specific support was provided by considering the binding model for monomeric iTADs 

with the KIX domain.  In Chapter III it was shown using NMR spectroscopy that iTADs 

IV-1 and IV-2 bind the CBP KIX domain and a binding model for IV-1 was proposed 

based on comparison to the solution structure of MLL in complex with the KIX 

domain.20  Briefly, five MLL resides, one polar and four hydrophobic, make extensive 

contacts with the KIX domain and the three sidechains of IV-1, benzyl, isobutyl, and 

hydroxyl are predicted to project into the same subsites as three of these, F2852, L2854, 

and T2857, respectively (Figure IV-4).  Indicative of the reduced surface area for binding 

the KD for IV-1 is 38 μM compared to 3 μM for MLL.21  A fourth of the five residues, 

I2849 is located one helical turn from F2852 and thus if ring A of a bis-isoxazolidine 



115 
 

binds in the same orientation as IV-1, one of the sidechains on ring B should be poised to 

project into the subsite targeted by I2849 (Figure IV-4).  Based on this model bis-

isoxazolidines will have a total of four groups interacting with the KIX domain, likely 

leading to a higher affinity complex.    

 

Figure IV-4.  Solution structure of MLL•KIX.20, 21 Figure adapted from 2agh. 

 

4) Synthetic Strategy to Bis-isoxazolidines 

The synthetic strategy envisioned to access bis-isoxazolidines targets is an 

iterative approach in which successive 1,3-dipolar cycloaddition reactions are employed 

to install the two rings (Figure IV-5).  The first cycloaddition yields an isoxazoline that 

can be functionalized using reactions discussed in Chapter II to yield a densely 

functionalized mono-isoxazolidine.2, 22  The C5 masked diol can then be manipulated to 

yield an oxime at that position which is utilized in the second cycloaddition to yield an 

isoxazoline that can be functionalized repeating the same reactions, with the same or 

varied nucleophiles and alkylating agents, used to functionalize the first isoxazoline ring.       
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Figure IV-5. Synthetic strategy towards bis-isoxazolidines. 

 

5) Strategy for Studying Bis-isoxazolidines 

 Several variables, including stereochemistry and overall polarity, are anticipated 

to significantly impact the function of bis-isoxazolidines.  In this chapter the synthesis of 

molecules to probe these variables, several series of diastereomers of bis-isoxazolidines 

with varied polarity are presented.  The major diastereomer has been utilized in initial 

binding and functional evaluations and the results and implications of these experiments 

are presented 

 

C. Synthesis of Bis-isoxazolidine Diastereomers 

The goal was to develop a synthetic route to bis-isoxazolidines that enables access 

to all possible diastereomeric combinations of ring B.  Based on the synthetic strategy 

discussed above, the first step towards dimeric isoxazolidines from previously reported 

mono-isoxazolidines was installation of an oxime moiety at the C5 position.  Formation 

of the oxime was afforded from IV-7 in 87% yield by a Parikh-Doering oxidation of the 

alcohol to an aldehyde followed by condensation of the aldehyde with hydroxylamine 

hydrochloride (Scheme IV-1).  With the oxime in hand, the feasibility and selectivity of 

the second cycloaddition and nucleophile addition to the newly formed ring was 

evaluated.   
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Scheme IV-1.  Synthesis of oxime IV-8. 

 

 Towards the synthesis of multiple diastereomers of the final amphipathic targets 

we wanted to access both diastereomers of the isoxazoline ring following the second 

cycloaddition and initially considered two synthetic approaches to do so.  The first option 

shown in Scheme IV-2a was to utilize the same selective cycloaddition conditions 

utilized for generation of the first ring and to conduct two separate reactions, each with 

one enantiomer of the allylic alcohol.23, 24  The second option we considered depicted in 

Scheme IV-2b was to utilize non-selective reaction conditions to obtain a mixture of 

diastereomers that could subsequently be separated.  Each set of reaction conditions 

produced three products: the desired product, a byproduct resulting from dimerization of 

the nitrile oxide generated in situ, and a byproduct resulting from intermolecular 

cycloaddition between the nitrile oxide and the C3 olefin moiety.  Using the selective 

reaction conditions, in which magnesium coordination with the nitrile oxide and allylic 

alcohol controls the selectivity, the desired product was obtained in only trace quantities 

whereas the undesired byproducts were the major products.  In contrast, using the non-

selective cycloaddition conditions the desired product was obtained in 63% yield with 

isolation of each byproduct in less than 10% yield.  Consistent with these results, 

Kanemasa and coworkers have previously observed in a similar system that dimerization 

of the nitrile oxide was favored over cycloaddition with less reaction allylic alcohols and 

hydrophobic oximes.23  The desired product IV-11 from the non-selective conditions was 

obtained as a 1:1 mixture of diastereomers, that were readily separated by preparative 

scale HPLC.   
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Scheme IV-2. Isoxazoline ring B formation. 

 

 The feasibility and selectivity of nucleophile addition to the C=N bond of the two 

diastereomeric products, IV-12 and IV-13 (Scheme IV-3) from the non-selective 

cycloaddition reaction were evaluated next.  Each diastereomer was treated with the 

Grignard reagents allylmagnesium chloride and benzylmagnesium chloride in the 

presence of the strong Lewis acid, BF3•OEt2 (Scheme IV-3).  Grignard addition to 

compound IV-12 proceeded with high selectivity to give IV-14 as the major product in 

high yield.  In contrast, nucleophilic addition to ring B of compound IV-13 proceeded in 

excellent yield to produce both possible diastereomers IV-16 and IV-17.  All 

diastereomers were individually isolated upon preparative scale HPLC and the four 

a) 

b) 
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diastereomers resulting from addition of allylmagnesium chloride to diastereomers IV-12 

and IV-13 were peracetylated and stereochemistry was assigned using 1D NOE and 2D 

NOESY (Figure IV-6).  Stereochemical assignments by through space interactions are 

appropriate for these compounds because the molecules populate a defined conformation 

in solution at room temperature as confirmed by molecular modeling and variable 

temperature NMR experiments.19 
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Scheme IV-3. Grignard addition to ring B of bis-isoxazolidines. 
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Figure IV-6. Key through space interactions that facilitated bis-isoxazolidine 

stereochemical assignments. 
 

 
Bis-isoxazolidine IV-21 was utilized to investigate the remaining steps to the 

fully functionalized targets IV-3 and IV-5 (Scheme IV-4).  Installation of the benzyl 

moiety on N2 of ring B of IV-21 required first protection of the primary alcohol and this 

was masked as the tert-butyldimethy silyl ether.  Alkylation of the secondary nitrogen 

was then accomplished using microwave-accelerated conditions and the crude product 

was immediately treated with TBAF to afford deprotection of the primary alcohol. The 

overall yield for this sequence was 77%.  Subsequently the alcohol moiety was treated 

with methanesulfonlyl chloride and the resultant mesylate was displaced with sodium 

azide to yield IV-23.  The azide served as an amine handle for tethering the bis-

isoxazolidines to a DBD.   

The remaining functional group transformation to IV-5 was dihydroxylation of 

the two double bonds and subsequent conversion of the two diols into primary alcohols to 

yield IV-3.  The typical conditions employed for this transformation on the 

corresponding mono-isoxazolidine structures described in Chapter II are dihydroxylation, 

cleavage to the aldehyde, and reduction to the alcohol.   The dihydroxylation proceeded 

as expected in 93% yield to yield IV-5.  However, with the bis-isoxazolidine substrate, 

only one of the diols (presumably, the one on ring A) could be cleaved to the aldehyde.  

A variety of reagents, including NaIO4, Pb(OAc)4 and MnO2, and reaction conditions, 

including microwave irradiation with NaIO4, were evaluated, but all proved unsuccessful 

in cleavage of both diols.  This is presumably due to steric hindrance of the substituent at 

C3 of ring B.  Generation of bis-isoxazolidine IV-3 from IV-23 by ozonoylsis of the two 

double bonds resulted in decomposition, and hydroboration was also unsuccessful. Thus, 
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as outlined below, an alternative strategy was explored. The other two synthetically 

accessible diastereomers of IV-5 were prepared analogously to IV-5.   

 

 
Scheme IV-4. Synthesis of bis-isoxazolidine IV-5. 

 

Access to IV-3 was afforded by adopting fa modified synthetic route.  For this 

oxime IV-24, Scheme IV-5, that replaced the C3 olefin moiety with a protected alcohol 

sidechain was prepared and utilized in the cycloaddition reaction. The cycloaddition 

between the nitrile oxide of IV-24 generated in situ and allyl alcohol proceeded in 75% to 

give a 1.5:1 mixture of diastereomeric products at C5 of ring B.  The formation of by-

products resulting from dimerization of the nitrile oxides or intermolecular cycloaddition 

between two isoxazolidines was suppressed, presumably due to the increased polarity of 

the oxime.23 The mixture of diastereomers was treated with TBSOTf to afford protection 

of the primary alcohols at which stage the two diastereomers could be separated by 

column chromatography.  The two diastereomeric products IV-25 and IV-26 were treated 

individually with allylmagnesium chloride in the presence of the Lewis acid BF3•OEt2.  

Similar selectivities were observed as had been obtained for the substrate containing a C3 

double bond moiety on ring A.  Compound IV-27 was isolated as a single diastereomer 

from IV-25 in good yield.  Nucleophilic addition to the cycloaddition product with the 

two C5 protons on opposite faces of the molecule (IV-26) again proceeded non-
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selectively.  In this example the ratio of diastereomers was 2:1 as compared to 1:1 with 

substrate IV-13.  The three diastereomers were carried on the fully functionalized bis-

isoxazolidines.  Scheme IV-5 shows the synthetic details for the major diastereomer.  The 

same reaction sequences as employed for the preparation of IV-5 were utilized; with this 

substrate, however, the ring B C3 double bond was successfully cleaved to the aldehyde 

with NaIO4 and NaBH4 reduction afforded the primary alcohol (IV-32).  In the final step 

the MOM ether protecting group was removed by treatment with 50% HCl/iPrOH to 

yield IV-3.   
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Scheme IV-5.  Synthesis of bis-isoxazolidine IV-3. 
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With the synthetic methods established for access to three of the four possible 

diastereomeric combinations of ring B, the major diastereomer of each was evaluated for 

ability to upregulate transcription and to bind the CBP KIX domain.  For the former, IV-

3 and IV-5 were tethered to a DNA localizing moiety (OxDex), at the C5 position of the 

second ring (ring B).  The synthetic details for the transformation of IV-3 are shown in 

Scheme IV-6.  The azide was reduced to an amine by treatment with PPh3 and the crude 

amine was coupled to a short PEG linker-OxDex conjugate using standard peptide 

coupling conditions.  IV-5-DBD was prepared using a slightly modified route in which 

the azide of IV-5 was reduced to an amine, coupled to the PEG linker that contained a 

protected amine functionality which upon unmasking was coupled to OxDex.  Final 

products were purified by reverse phase HPLC prior to evaluation in cells.       

  
                      Scheme IV-6. Synthesis of bis-isoxazolidine IV-3-DBD. 

    

D. Assessment of Bis-isoxazolidines IV-3 and IV-5 

 Analogous to monomeric isoxazolidines discussed in Chapters II and III, bis-

isoxazolidines IV-3 and IV-5 were evaluated for ability to upregulate transcription in a 2-

hybrid transcription assay in HeLa cells and for ability to bind the CBP KIX domain 

using NMR spectroscopy.   

 

1) Ability to Upregulate Transcription in a Cellular System 

The same system was utilized to evaluate bis-isoxazolidines as was used to 

evaluate monomeric iTAD IV-1 in cells, as described previously.11  Briefly, HeLa cells 

were transfected with a plasmid expressing a Gal4-GR LBD fusion protein, a second 
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plasmid bearing five Gal4-binding sites upstream of a firefly luciferase reporter gene, and 

a transfection control.  OxDex binds the GR LBD localizing the isoxazolidine to DNA.  

The activation assays were carried out by colleagues Jonas Hojfeldt and Dr. Steve Rowe.   

Bis-isoxazolidine IV-3, the more hydrophobic of the two molecules, did not 

activate transcription over the concentration range evaluated (10 nM to 10 μM).  

However, bis-isoxazolidine IV-5, a more polar variant of IV-3 with an analogous 

hydrophobic face was a potent TAD with a maximal 50-fold activation observed at 1 μM 

(Figure IV-7).  This was an initial encouraging result as it demonstrated bis-

isoxazolidines are cell permeable and do interact with transcriptional machinery proteins.  

While the activity of IV-5 is not enhanced but comparable to the most potent monomeric 

iTADs the bis-isoxazolidine scaffold offers many possibilities for optimization toward 

potent activators or perhaps inhibitors of transcription.  The other synthetically accessible 

diastereomers may present functionality to coactivator subsites in a more optimal 

arrangement.  Further, changes in functional group position or composition (for ring B) 

can be evaluated.  Thus, this will be an active area of investigation in the future. 
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Figure IV-7.  Transcription upregulation by IV-5-DBD. 

 

2) Binding the CBP KIX Domain 

 The second evaluation of IV-3 and IV-5 to interact with coactivator proteins was 

a direct evaluation of binding the CBP KIX domain using NMR spectroscopy.  The 

ability of each molecule to bind the KIX domain was assessed using two-dimensional 
15N, 1H-HSQCs in which spectrum of the protein was collected in the absence and 
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presence of ligand.  NMR samples consisted of 400 μM 15N-His6KIX in 90% H2O/10% 

D2O 10 mM phosphate buffer with 150 mM NaCl and 1% (vol/vol) CD3OD at pH 7.2 

and varying concentration of ligand as indicated.  Experiments were conducted at 27 °C.   

In the case of bis-isoxazolidine IV-3 an accurate evaluation of binding was 

hindered by limited solubility of the molecule in aqueous buffer.  A 15N, 1H-HSQC 

spectrum was recorded (purple) in the presence of low concentrations of bis-

isoxaozlidine IV-3 and is shown overlayed on a spectrum of free protein (black) in Figure 

IV-8.  No resonances exhibited a significant chemical shift perturbation.  There were 

several amide resonances however that exhibited small chemical shift perturbations 

(A618, L620, and R624) that are consistent with a ligand binding the same site as 

monomeric iTADs, MLL, Jun, and others.  In contrast, several amide resonances that 

shift upon binding of ligands to this site, such as V608, E626, and E665, did not 

detectably shift.   
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Figure IV-8.  Two-dimensional 15N, 1H-HSQC of 15N-His6KIX in the absence 
(black) and presence (red) of IV-3. KIX bound by iTAD IV-1 is in red.   

 
 

Two-dimensional 15N, 1H-HSQC spectrum of His6KIX recorded in the absence 

and presence of bis-isoxazolidine IV-5 showed that there is an interaction between the 

protein and small molecule as indicated by chemical shift perturbation of a portion of 

amide residues upon addition of IV-5.  Figure IV-9a shows the spectrum of IV-5 (blue) 
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overlayed on the spectrum of unbound protein (black); for comparison the spectrum of 

iTAD 1V-1 (red) is also overlayed.  Evaluation of the three spectra revealed that nearly 

all the residues that shift upon binding iTAD IV-1 also shift upon binding iTAD IV-5, 

with the shifts being of larger magnitude for iTAD IV-5.  Reflective of the larger surface 

area of IV-5 compared to IV-1 additional shifts are also observed upon binding the larger 

ligand.  The chemical shifts observed for the KIX domain upon binding by IV-5 were 

quantitated, Δδ=[Δδ(1H)2 + 0.1Δδ(15N)2]1/2, and plotted against residue number (Figure 

IV-9b).  The average chemical shift was 0.04 ppm and the largest shift is 0.25 ppm for 

L620.  The black line on the chemical shift perturbation map indicates the average shift.  

The average chemical shift upon binding this site by endogenous ligands range from 0.02 

ppm to 0.20 ppm with the largest shifts ranging from slightly larger than 0.1 ppm to 2.0 

ppm; bis-isoxazolidines exhibit behavior in the same range suggesting similar kinetic 

behavior.  Figure IV-9c highlights (in red) the KIX residues that experience significant 

chemical shift perturbation upon binding iTAD IV-5 and MLL.  These pictures 

demonstrate that that bis-isoxazolidine IV-5 does bind the same site on KIX as iTAD IV-

1 and MLL.20, 21   

In addition to the residues that shift upon addition of iTAD IV-1 shifts obtained 

with small molecule IV-5 also extend along α2 and additional shifts are observed in the 

C-terminus of α3, analogous to MLL.  Interestingly, the additional shifts along α2 

(Figure IV-10b) are located in the same region that the side chain of MLL residue I2849 

contacts.  The proposed binding model of bis-isoxazolidines discussed in the Introduction 

suggested that functionality on ring B would be poised to project into the same KIX 

subsite as I2849.  This is consistent with the experimental evidence, although further 

experiments will be needed to confirm a mode of binding. Malathy Krisnamurthy is 

currently attempted to obtain a crystal structure of the protein in complex with iTADs 

such as IV-1 and IV-5.         
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Figure IV-9.  iTAD IV-5 binds the CBP KIX domain.  a) Overlay of the 15N,1H-HSQC 
of 15N-His6KIX bound by iTAD IV-5 (blue) and IV-1 (red) on unbound protein (black). 
b) Chemical shift perturbation map of 15N-His6KIX upon binding iTAD IV-5.  c) Space 
filling diagrams of the KIX domain have the residues that experience the largest chemical 
shift perturbation upon binding iTAD IV-5 and MLL colored in red.  Figures adapted 
from 1kdx.   
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Figure IV-10.  Comparison of bis-isoxazolidines to MLL•KIX. a) MLL•KIX solution 
structure.  b) Residues that shift upon binding dimeric iTAD IV-5, but not monomeric 
iTAD IV-1, are highlighted in red.  Figures are adapted from 2agh.    
 

E. Conclusions 

 The synthetic methods to access multiple diastereomers of densely functionalized 

bis-isoxazolidines were established and utilized to prepare molecules for evaluation as 

small molecule regulators of transcription.  It was determined that the more polar and 

stereochemically complex analog IV-5, compared to IV-3, possessed the preferable 

features for functioning as a TAD.  The evaluation of IV-5 in complex with the KIX 

domain via NMR suggested that, in fact, bis-isoxazolidine IV-5 does project functionality 

such that four sidechains interact with the CBP KIX domain compared to three for iTAD 

IV-1.  The ability of bis-isoxazolidines to interact with a large surface area within the 

KIX domain binding site suggests these molecules should be excellent starting points for 

the design of inhibitors of TADs that target this same site.   

 

F. Experimental 

General. 

Unless otherwise noted, starting materials were obtained from commercial 

suppliers and used without further purification. CH2Cl2, THF, CH3CN and toluene were 

dried by passage through activated alumina columns and degassed by stirring under a dry 

N2 atmosphere.25  BF3•OEt2 and Et3N were distilled from CaH2, MeOH was distilled 
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from sodium metal, and t-BuOH was distilled from MgSO4.  All reactions involving air- 

or moisture-sensitive reagents were performed under a dry N2 atmosphere.  Purification 

by column chromatography was carried out with E. Merck Silica Gel 60 (230-400 mesh) 

according to the procedure of Still, Kahn, and Mitra.26  1H and 13C NMR spectra were 

recorded in CDCl3 at 500 MHz and 125 MHz, respectively, unless otherwise specified.  

IR spectra were measured as thin films on NaCl plates.  Compounds that do not appear in 

the text are numbered S1-S3.  The synthesis of III-1b and, III-3b, small molecules 

utilized in NMR experiments in this chapter, were reported in Chapter II.  III-4 was 

prepared by JP Desaulnier.   

 

 
(5R)-3-allyl-2-benzyl-3-isobutylisoxazolidine-5-carbaldehyde oxime (IV-8): NaIO4 

(1.1 g, 5.3 mmol, 1.2 eq) was added to a stirring solution of IV-7 (1.4 g, 4.4 mmol, 1.0 

eq) in 22 ml CH3CN and 22 ml H2O cooled in an ice-H2O bath.  Complete consumption 

of the starting material was afforded after stirring 1h with continued cooling, as indicated 

by TLC analysis.  The mixture is diluted with H2O (10 ml) and extracted with Et2O (3 x 

15 ml).  The combined organic extracts were washed with H2O (1 x 15 ml) and brine (1 x 

15 ml), dried over Na2SO4, filtered, and concentrated in vacuo.  The crude aldehyde was 

dissolved in 44 ml MeOH and cooled in an ice-H2O bath.  To the solution was added 

H2NOH•HCl (610 mg, 8.8 mmol, 2.0 eq) and Na2CO3 (930 mg, 8.8 mmol, 2.0 eq) and 

the resultant mixture was slowly warmed to rt.  Upon stirring 5h TLC analysis indicated 

complete consumption of starting material.  The reaction mixture was diluted with sat. 

NH4Cl (20 ml), extracted with Et2O (3 x 30 ml), and the combined organic extracts were 

washed with brine (1 x 30 ml), dried over Na2SO4, filtered, and concentrated in vacuo. 

The crude mixture was purified by flash chromatography (70:30 hexanes:EtOAc) to yield 

1.2 g of product as of a colorless oil in 93% yield.  IR: 3203, 2954, 1653, 1454 cm-1; 1H 

NMR (approximate 1:1 E/Z mixture): δ 0.96-1.12 (m, 6H), 1.39 (dd, 1H, J = 14.7, 6.6), 
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1.44 (dd, 1H, J = 14.3, 6.3), 1.63 (dd, 1H, J = 13.2, 5.1), 1.66 (dd, 1H, J = 12.8, 5.1), 

1.81-1.96 (m, 1H), 2.07 (dd, 1H, J = 12.8, 5.9), 2.21 (dd, 1H, J = 12.8, 7.0), 2.31-2.53 (m, 

3H), 2.69 (dd, 1H, J = 12.8, 9.2), 3.85-3.95 (m, 2H), 4.54 (dd, 1H, J = 15.4, 7.0), 4.87-

4.99 (m, 1H), 5.10-5.16 (m, 2H), 5.90-6.01 (m, 1H), 6.79-6.81 (m, 2H), 7.19-7.41 (m, 

5H); 13C NMR (Carbon resonances for which both E and Z isomers of the oxime are 

observed are paired together in parentheses): δ (24.16, 24. 25), (24.56, 24.67), 25.06, 

(38.95, 39.03), 41.74, 42.78, (43.60, 43.84), (53.44, 53.95), 69.80, 72.91, 118.0, (126.87, 

126.95), (128.06, 128.11), (128.26, 128.30), (134.79, 134.91), 138.7, 152.6, 156.0; 

HRMS (ESI) calcd for [C18H26N2O2 + H]+: 303.2073, found: 303.2080. 

 

 
IV-12 and IV-13:  To a stirred solution of IV-8 (1.1 g, 3.6 mmol, 1.0 eq) and allyl 

alcohol (250 μl, 3.6 mmol, 1.0 eq) in CH2Cl2 (36 ml) cooled in an ice-H2O was added 

NaOCl (13 ml of a 705 mM solution, 9.0 mmol, 2.5 eq) dropwise over 30 min.  The 

biphasic reaction mixture was allowed to slowly warm to rt and TLC analysis indicated 

completion consumption of the starting material after 3h.  The mixture was diluted with 

H2O (20 ml) and extracted with CH2Cl2 (3 x 30 ml).  The combined organic extracts were 

washed with brine (1 x 30ml), dried over Na2SO4, filtered, and concentrated in vacuo.  

Flash chromatography (70:30 hexanes/EtOAc) of the crude product yielded 810 mg 

(colorless oil) of product in 63% yield as a 1:1 diastereomeric mixture at C5 of ring B.  

The diastereomers were separated by HPLC (70:30 hexanes:EtOAc).   

((S)-3-((3S,5R)-3-allyl-2-benzyl-3-isobutylisoxazolidin-5-yl)-4,5-dihydroisoxazol-5-

yl)methanol (IV-12): IR: 3409, 2954, 1455, 1048, 871 cm-1; 1H NMR: δ 0.97 (s, 3H), 

0.98 (s, 3H), 1.38 (dd, 1H, J = 6.8, 14.6), 1.64 (dd, 1H, J = 4.9, 14.6), 1.69 (dd, 1H, J = 

6.8, 6.8 “apparent triplet”), 1.85-1.93 (m, 1H), 4.60 (dd, 1H, J = 7.3, 13.7), 2.40-2.45 (m, 

2H), 2.48 (dd, 1H, J = 8.3, 12.7), 2.62 (dd, 1H, J = 7.3, 17.6), 2.84 (dd, 1H, J = 10.7, 

17.6), 3.40-3.45 (m, 1H), 3.56 (ddd, 1H, J = 3.4, 6.8, 12.2), 3.84 (s, 2H), 4.57-4.63 (m, 
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1H), 4.67 (dd, 1H, J = 6.8, 7.8 “apparent triplet”), 5.10-5.13 (m, 2H), 5.89-5.97 (m, 1H), 

7.21-7.24 (m, 1H), 7.27-7.30 (m, 2H), 7.32-7.34 (m, 2H); 13C NMR (100 MHz): δ 24.04, 

24.36, 25.10, 35.94, 38.76, 40.72, 43.50, 53.69, 63.56, 68.78, 70.77, 80.66, 117.92, 

126.91, 128.06, 128.28, 134.77, 138.58, 161.20; HRMS (ESI) calcd for [C21H30N2O3 + 

Na]+: 381.2154, found: 381.2148. 

((R)-3-((3S,5R)-3-allyl-2-benzyl-3-isobutylisoxazolidin-5-yl)-4,5-dihydroisoxazol-5-

yl)methanol (IV-13): IR: 3409, 2954, 1455, 1048, 876, 735 cm-1; 1H NMR: δ 0.97 (d, 

1H, J = 2.0), 0.98 (d, 1H, J = 2.0), 1.37 (dd, 1H, J = 6.8, 14.6), 1.63 (dd, 1H, J = 4.9, 

14.6), 1.73-1.77 (m, 1H), 1.85-1.93 (m, 1H), 2.28 (dd, 1H, J = 7.3, 13.7), 2.41-2.46 (m, 

2H), 2.49 (dd, 1H, J = 8.8, 17.3), 2.66 (dd, 1H, J = 7.1, 17.3), 2.81 (dd, 1H, J = 10.7, 

17.6), 3.45-3.50 (m, 1H), 3.60 (ddd, 1H, J = 3.4, 6.8, 12.2), 3.82 (d, 1H, J = 14.2), 3.86 

(d, 1H, J = 14.2), 4.54-4.59 (m, 1H), 5.10-5.14 (m, 2H), 5.88-5.97 (m, 1H), 7.21-7.24 (m, 

1H), 7.28-7.31 (m, 2H), 7.34-7.35 (m, 2H); 13C NMR (100 MHz): δ 24.00, 24.41, 25.12, 

35.70, 38.62, 41.05, 43.72, 53.50, 63.65, 68.39, 70.58, 80.54, 117.94, 126.89, 128.09, 

128.31, 134.75, 138.57, 161.42; HRMS (ESI) calcd for [C21H30N2O3 + Na]+: 381.2154, 

found: 381.2147. 

 

 
((3R,3'S,5S,5'R)-2-acetyl-3,3'-diallyl-2'-benzyl-3'-isobutyl-3,5'-biisoxazolidin-5-

yl)methyl acetate (IV-18): A solution of compound IV-12 (210 mg, 0.59 mmol, 1.0 eq) 

in toluene (3.9 mL) was cooled in a dry ice-acetone bath.  BF3•OEt2 (230 ul, 1.8 mmol, 

3.0 eq) was added dropwise to the solution over 15 min and the mixture was stirred with 

continued cooling for 30 min.  Allylmagnesium chloride (1.8 mL of a 2.0M solution in 

THF, 3.5 mmol, 6.0 eq) was then added dropwise over 30 min.  The reaction mixture was 

stirred for 4 hours with continued cooling at which point TLC analysis indicated 

complete consumption of the starting material.  Saturated NH4Cl (5 mL) was added to the 
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reaction and the resultant solution was transferred to an ice-H2O bath.  After slowly 

warming to rt the mixture was diluted with H2O (5 mL) and Et2O (5 mL) and the organic 

and aqueous layers separated.  The aqueous layer was extracted with Et2O (3 x 5 mL).  

The combined organic extracts were washed with brine (5 mL), dried over Na2SO4, 

filtered, and concentrated in vacuo.  The crude product was purified by flash 

chromatography (elution in 60:40 hexanes/EtOAc) to yield 210 mg of a ~20:1 mixture of 

diastereomers as a clear oil in 90% yield.  The diastereomers were separated by 

preparative scale HPLC; a portion of the major diastereomer (IV-14) was peracetylated to 

reduce line broadening for characterization and stereochemical assignments.  To a 

solution of S13 (50 mg, 0.12 mmol, 1.0 eq) in DMF (600 μl) was added acetic anhydride 

(91 ul, 0.96 mmol, 8.0 eq) and iPr2NEt (84 μl, 0.48 mmol, 4.0 eq).  The solution was 

irradiated in a 1000W microwave at 20% power for 20 sec.  Upon cooling the irradiation 

was repeated and this was repeated 8 times until TLC and mass spectrometry analysis 

indicated formation of product.  The mixture was diluted with H2O (5 mL) and extracted 

with Et2O (3 x 5 mL). The combined organic extracts were washed with H2O (3 x 5 mL), 

washed with brine (5 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The 

crude product was purified by flash chromatography (elution in 70:30 hexanes/EtOAc) to 

yield 55 mg of product as a colorless oil in 95% yield. IR:  2918, 1744, 1648, 1442, 1234, 

1043 cm-1;  1H NMR: δ 0.96 (d, 3H, J = 6.3), 0.99 (d, 3H, J = 6.8), 1.31 (dd, 1H, J = 6.3, 

14.6), 1.64 (dd, 1H, J = 4.9, 14.6), 1.81-1.91 (m, 2H), 1.96-2.00 (m, 2H), 1.99 (s, 3H), 

2.01 (s, 3H), 2.18 (dd, 1H, J = 7.3, 14.2), 2.22 (dd, 1H, J = 7.8, 12.2), 2.47 (dd, 1H, J = 

7.6, 13.9), 2.59 (dd, 1H, J = 8.1, 12.0), 3.00 (dd, 1H, J = 6.3, 13.7), 3.29 (dd, 1H, J = 8.8, 

12.7), 3.58 (dd, 1H, J = 2.4, 12.2), 3.70 (d, 1H, J = 14.2), 3.77 (d, 1H, J = 14.2), 4.01-4.06 

(m, 1H), 4.88 (“apparent triplet,” 1H, J = 8.3), 5.07-5.14 (m, 4H), 5.63-5.71 (m, 1H), 

5.80-5.89 (m, 1H), 7.15-7.19 (m, 1H), 7.25-7.28 (m, 2H), 7.31-7.33 (m, 2H); 13C NMR: δ 

20.73, 22.33, 23.47, 23.1, 24.73, 25.39, 29.63, 35.86, 37.06, 37.48, 39.74, 43.32, 53.85, 

63.54, 71.27, 74.31, 76.29, 118.5, 119.4, 126.9, 128.1, 129.3, 132.4, 134.6, 16.9, 170.5; 

HRMS (ESI) calcd for[C28H40N2O5 + Na+]: 507.2835; found: 507.2835. 
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((3R,3'S,5R,5'R)-2-acetyl-3,3'-diallyl-2'-benzyl-3'-isobutyl-3,5'-biisoxazolidin-5-

yl)methyl acetate (IV-19): 1H NMR: δ 0.96 (d, 3H, J = 4.9), 0.97 (d, 3H, J = 5.4), 1.30 

(dd, 1H, J = 6.9, 14.6), 1.62 (dd, 1H, J = 4.9, 15.6), 1.86-1.91 (m, 1H), 1.98 (dd, 1H, J = 

6.4, 13.2), 2.03 (s, 3H), 2.08 (s, 3H), 2.11 (dd, 1H, J = 7.8, 12.7), 2.19-2.24 (m, 2H), 2.37 

(dd, 1H, J = 8.3, 12.7), 2.43 (dd, 1H, J = 7.1, 13.9), 2.74 (dd, 1H, J = 10.7, 13.2), 2.97 

(dd, 1H, J = 6.6, 13.9); 4.76 (d, 1H, J = 14.2), 3.84 (d, 1H, J = 14.2), 3.98 (dd, 1H, J = 

6.8, 11.7), 4.16-4.2 (m, 1H), 4.59-4.62 (m, 1H), 5.01-5.13 (m, 4H), 5.63-5.71 (m, 1H), 

5.83-5.91 (m, 1H), 7.19-7.31 (m, 5). 

N O

N

IV-20

H O
O

H

O

 
((3S,3'S,5R,5'R)-2-acetyl-3,3'-diallyl-2'-benzyl-3'-isobutyl-3,5'-biisoxazolidin-5-

yl)methyl acetate (IV-20): 1H NMR: δ 0.99 (d, 3H, J = 6.8), 1.07 (d, 3H, J =  6.8), 1.34 

(dd, 1H, J = 6.3, 14.7), 1.68 (dd, 1H, J = 4.9, 14.7), 1.75-1.79 (m, 1H), 1.84-1.95 (m, 2H), 

1.97 (s, 3H), 2.03 (s, 3H), 2.18-2.25 (m, 3H), 2.18-2.25 (m, 3H), 2.46 (dd, 1H, J = 7.6, 

13.9), 2.71 (dd, 1H, J = 5.6, 11.5), 2.92 (dd, 1H, J = 6.3, 13.7), 3.28-3.33 (m, 1H), 3.64 

(d, 1H, J = 13.7), 3.70 (dd, 1H, J – 5.4, 12.7), 3.81 (d, 1H, J = 13.7), 3.88 (dd, 1H, J = 2.4, 

12.2), 4.89-4.92 (m, 1H), 5.04-5.14 (m, 4H), 5.5205.60 (m, 1H), 5.81-5.90 (m, 1H), 7.18-

7.29 (m, 5H). 
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((3R,3'S,5S,5'R)-3,3'-diallyl-2,2'-dibenzyl-3'-isobutyl-3,5'-biisoxazolidin-5-

yl)methanol (IV-22): To a stirring solution of bisisoxazolidine IV-21 (170 mg, 0.43 

mmol) in THF (2.1 ml) cooled in an ice-H2O bath was added DMAP (5 mg, 0.04 mmol) 

and Et3N (64 μl, 0.46 mmol, 1.1 eq) follwed by TBSOTf (110 μl, 0.46 mmol, 1.1 eq).  

The reaction mixture is stirred with continued cooling for 2h at which point TLC analysis 

indicates completion of the reaction.  The solution was diluted with sat. aq. NH4Cl (5 ml), 

extracted with Et2O (3 x 5 ml), and the combined organic extracts were washed with 

brine (1 x 5 ml), dried over Na2SO4, filtered, and concentrated in vacuo.  The crude 

product was purified by flash chromatography (80:20 hexanes:EtOAc) to yield 210 mg of 

the TBS ether product in 98% yield.  This product was dissolved in DMF (2.1 ml), BnBr 

(320 μl, 2.5 mmol, 6.0 eq) and iPr2NEt (210 μl, 1.2 mmol, 3.0 eq) was added, and the 

solution irradiated in a 1000 W microwave at 20% power (4 x 20s) with cooling and 

stirring between each interval.  Upon cooling to ambient temperature, the mixture was 

diluted with H2O (5 ml) and extracted with Et2O (3 x 5 ml).  The combined organic 

extracts were washed with H2O (2 x 5 ml) and brine (1 x 5 ml), dried over Na2SO4, 

filtered, and concentrated in vacuo.  The crude product was immediately subjected to 

silyl ether deprotection.  To a stirring solution of the crude product in THF (2.2 ml) 

cooled in an ice-H2O bath was added TBAF (820 μl of a 1M solution in THF, 0.82 mmol, 

2.0 eq).  The solution was stirred 1h and at this point TLC analysis showed that no 

starting material remained.  The solution was diluted with sat. aq. NH4Cl, extracted with 

Et2O (3 x 5 ml), and the combined organic extracts were washed with brine (1 x 5 ml), 

dried over Na2SO4, filtered, and concentrated.  The crude product was purified by flash 

chromatography (80:20 hexanes:EtOAc) to yield 160 mg of bisisoxazolidine IV-22 as a 

colorless oil in 77% yield.  IR:  1H NMR: δ 0.82 (d, 3H, J = 6.8), 0.92 (d, 3H, J = 6.4), 

1.00 (dd, 1H, J = 2.0, 6.4), 1.34 (dd, 1H, J = 5.9, 14.7), 1.55 (dd, 1H, J = 5.1, 14.4), 1.72 
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(dd, 1H, J = 4.9, 12.2), 1.79-1.87 (m, 1H), 2.10-2.14 (m, 2H), 2.18-2.25 (m, 2H), 2.36 

(dd, 1H, J = 7.3, 15.6), 2.41 (dd, 1H, J = 7.3, 13.7), 2.61 (t, 1H, J = 10.3), 3.41-3.46 (m, 

1H), 3.47-3.57 (m, 2H), 3.69 (d, 1H, J = 13.7), 3.74 (d, 1H, J = 13.7), 3.93-3.99 (m, 1H), 

4.09-4.17 (m, 2H), 5.00-5.13 (m, 4H), 5.83-5.96 (m, 2H), 7.17-7.25 (m, 10H); 13C NMR: 

δ 23.57, 24.75, 25.31, 35.04, 36.63, 37.01, 38.04, 43.48, 53.76, 54.49, 65.10, 67.68, 

68.27, 69.15, 75.09, 76.12, 117.7, 118.3, 126.3, 126.7, 127.3, 127.9, 128.0, 128.9, 134.7, 

135.1, 138.7, 139.5; HRMS (ESI) calcd for [C31H42N2O3 + Na]+: 513.3093; found: 

513.3099. 

  

 
(3R,3'S,5S,5'R)-3,3'-diallyl-5-(azidomethyl)-2,2'-dibenzyl-3'-isobutyl-3,5'-

biisoxazolidine (IV-23): To a solution of isoxazolidine IV-22 (110 mg, 0.22 mmol, 1.0 

eq) in 2.2 ml anhydrous CH2Cl2 was added Et3N (61 μl, 0.44 mmol, 2.0 eq) and 

methanesulfonyl chloride (34 μl, 0.44 mmol, 2.0 eq).  The solution was stirred at ambient 

temperature for 30 min, at which time TLC analysis indicated completion of the reaction.  

The reaction mixture was diluted with H2O (5 ml) and CH2Cl2 (5 ml), the layers were 

separated, and the aqueous layer was extracted with CH2Cl2 (3 x 5 ml).  The combined 

organic extracts were washed with brine, dried over Na2SO4, filtered, and concentrated in 

vacuo.  The crude product was dissolved in DMSO (2.2 ml) and sodium azide was added 

(140 mg, 2.2 mmol).  The flask was fitted with a condenser and the reaction heated at 100 

°C for 3 h.  At that time TLC analysis indicated completion of the reaction.  The cooled 

reaction mixture was diluted with water and extracted with Et2O (3 x 5 ml).  The 

combined organic extracts were washed with H2O (2 x 5 ml) and brine (1 x 5 ml), dried 

over Na2SO4, filtered, and concentrated in vacuo.  The crude product was purifed by flash 

chromatography (95:5 hexanes/EtOAc) to yield 76 mg of product as a colorless oil in 

67% yield.  IR: 2925, 2099, 1494, 1262, 1049, 824 cm-1;  1H NMR: δ 0.84 (d, 3H, J = 
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6.8), 0.93 (d, 1H, J = 6.8), 1.00 (d, 1H, J = 6.8), 1.33 (dd, 1H, J = 14.2, 5.9), 1.57 (dd, 1H, 

J = 14.7, 4.9), 1.72 (dd, 1H, J = 12.7, 5.9), 1.81-1.89 (m, 1H), 2.11 (dd, 1H, J = 11.7, 7.8), 

2.18-2.24 (m, 2H), 2.29-2.37 (m, 2H), 2.42 (dd, 1H, J = 13.7, 7.3), 2.51 (dd, 1H, J = 11.2, 

9.3), 2.80, dd, 1H, J = 12.7, 4.4), 3.26 (dd, 1H, J = 12.7, 7.8), 3.64 (d, 1H, J = 15.1), 3.69 

(d, 1H, J = 13.7), 3.75 (d, 1H, J = 13.7), 3.75 (d, 1H, J = 15.1), 3.95-4.00 (m, 1H), 4.06-

4.11 (m, 1H), 5.03-5.13 (m, 4H), 5.84-5.95 (m, 2H), 7.15-7.39 (m, 10H): 13C NMR: δ 

23.60, 24.73, 25.39, 35.47, 37.65, 37.90, 38.36, 43.54, 53.85, 54.30, 68.25, 69.51, 74.20, 

75.75, 117.8, 118.2, 126.3, 126.9, 127.6, 127.8, 128.0, 129.1, 134.7, 135.1, 138.8, 139.1; 

HRMS (ESI) calcd for [C31H41N5O2 + Na]+: 538.3158, found: 538.3162. 

 
3,3'-((3R,3'S,5S,5'R)-5-(azidomethyl)-2,2'-dibenzyl-3'-isobutyl-3,5'-biisoxazolidine-

3,3'-diyl)dipropane-1,2-diol (IV-5): To a solution of bis-isoxazolidine S16 (20 mg, 0.04 

mmol, 1.0 eq) in tBuOH (300 μl), THF (80 μl) and H2O (20 μl) was added NMO (25 mg, 

0.10 mmol, 2.4 eq) followed by OsO4 (100 μl of a 2.5 wt% solution in tBuOH, 0.01 

mmol, 0.2 eq).  The reaction mixture was stirred for 5h at which time TLC and mass 

spectrometry indicated completion of the reaction.  Na2SO3 (20 mg) was added to quench 

excess reagent and the mixture was stirred 1 h.  The mixture was then diluted with EtOAc 

(5 mL) and H2O (5 mL) and the layers separated.  The aqueous layer was extracted with 

EtOAc (3 x 5 mL).  The combined organic extracts were washed with brine (1 x 10 mL), 

dried over Na2SO4, filtered, and concentrated in vacuo.  The crude product was purified 

by flash chromatography (elution in 90:10 EtOAc/MeOH) to yield 22 mg of product as a 

colorless oil in 93% yield.  1H NMR (400 MHz): δ 0.95-1.00 (m, 6H), 1.37-1.95 (m, 8H), 

1.99-2.53 (m, 4H), 3.03-3.39 (m, 2H), 3.42-3.52 (m, 2H), 3.84-3.91 (m, 3H), 3.97-4.56 

(m, 3H), 7.13-7.38 (m, 10H); HRMS (ESI) calcd for [C31H45N5O6 + H]+: 584.3448, 

found: 584.3461. 
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IV-25 and IV-26: To a solution of IV-24 (1.8 g, 5.1 mmol, 1.0 eq) in tol (51 mL) was 

added allyl alcohol (3.5 mL, 51 mmol, 10 eq) followed by dropwise addition of NaOCl 

(18 mL of a 705 mM solution in H2O, 13 mmol, 2.5 eq). Upon stirring 3 h TLC analysis 

indicated completion of the reaction.  The aqueous and organic layers were separted and 

the aqueous extracted with EtOAc (3 x 25 mL).  The combined organic extracts were 

washed with brine (2 x 20 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  

Analysis of the crude 1H NMR mixture indicated a 1.5:1 mixture of diastereomers.  

Purification by flash chromatography (elution in 40/60 hexanes:EtOAc) yielded 1.66 g of 

product as a colorless oil in 80% yield.  To the product (1.66 g, 4.1 mmol, 1.0 eq), as a 

mixture of diastereomers, in THF (41 mL) cooled in an ice-H2O bath was added DMAP 

(50 mg, 0.41 mmol, 0.1 eq) and Et3N (1.3 mL, 9.0 mmol, 2.2 eq) followed by TBSOTf 

(2.1 mL, 9.0 mmol, 2.2 eq).  Upon stirring with continued cooling for 1 h TLC analysis 

indicated complete consumption of starting material.  The reaction mixture was diluted 

with sat. NH4Cl (20 mL) and CH2Cl2 (20 mL) and the layers separated.  The combined 

aqueous was extracted with CH2Cl2 (3 x 20 mL) and the combined organic extracts were 

washed with brine (25 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  

Following TBS protection of the primary alcohols the two diastereomers were purified 

and separated by flash chromatography (20:80 hexanes/EtOAc) to give a 95% combined 

yield of IV-25 and IV-26.   

 (S)-3-((3S,5R)-2-benzyl-3-isobutyl-3-(2-(methoxymethoxy)ethyl)isoxazolidin-5-yl)-5-

((tert-butyldimethylsilyloxy)methyl)-4,5-dihydroisoxazole (IV-25): 1H NMR: δ -0.01 

(s, 3H), 0.00 (s, 3H), 0.82 (s, 9H), 0.97 (d, 3H, J = 5.1), 0.99 (d, 3H, J = 5.1), 1.37 (dd, 

1H, J = 7.0, 14.5), 1.61 (dd, 1H, J – 5.1, 14.1), 1.82-1.89 (m, 2H), 1.91-1.94 (m, 2H), 

2.50 (dd, 1H, J = 8.6, 12.9), 2.59 (dd, 1H, J = 6.6, 12.9), 2.67 (dd, 1H, J = 7.6, 17.4), 2.79 

(dd, 1H, J = 10.4, 17.8), 3.36 (s, 3H), 3.54-3.57 (m ,1H), 3.70-3.74 (m, 1H), 3.82 (s, 2H), 

4.52-4.60 (m, 1H), 4.62 (s, 2H), 4.66-4.70 (m, 1H), 7.19-7.33 (m, 5H). 
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(R)-3-((3S,5R)-2-benzyl-3-isobutyl-3-(2-(methoxymethoxy)ethyl)isoxazolidin-5-yl)-5-

((tert-butyldimethylsilyloxy)methyl)-4,5-dihydroisoxazole (IV-26): 1H NMR: δ 0.04 

(s, 3H), 0.06 (s, 3H), 0.87 (s, 9H), 0.97-1.00 (m, 6H), 1.37 (dd, 1H, J = 6.6, 14.0), 1.76 

(dd, 1H, J = 5.1, 14.5), 1.82-1.99 (m, 3H), 2.41 (dd, 1H, J = 6.4, 12.7), 2.52 (dd, 1H, J = 

8.8, 12.7), 2.81 (d, 2H, J = 9.0), 3.36 (s, 3H), 3.56 (dd, 1H, J = 4.7, 10.9), 3.63 (dd, 1H, J 

= 4.7, 10.9), 3.71 (dd, 1H, J = 14.3, 17.1), 4.56-4.99 (m, 1H), 4.62 (s, 2H), 4.75-4.78 (m, 

1H), 7.22-7.34 (m, 5H). 

 
(3R,3'S,5S,5'R)-3-allyl-2'-benzyl-5-((tert-butyldimethylsilyloxy)methyl)-3'-isobutyl-

3'-(2-(methoxymethoxy)ethyl)-3,5'-biisoxazolidine (IV-27):  A solution of compound 

IV-25 (520 mg, 1.0 mmol, 1.0 eq) in toluene (6.7 mL) was cooled in a dry ice-acetone 

bath.  BF3•OEt2 (380 ul, 3.0 mmol, 3.0 eq) was added dropwise to the solution over 15 

min and the mixture was stirred with continued cooling for 30 min.  Allylmagnesium 

chloride (3.0 mL of a 2.0M solution in THF, 6.0 mmol, 6.0 eq) was then added dropwise 

over 30 min.  The reaction mixture was stirred for 5 hours with continued cooling at 

which point TLC analysis indicated complete consumption of the starting material.  

Saturated NH4Cl (10 mL) was added to the reaction and the resultant solution was 

transferred to an ice-H2O bath.  After slowly warming to rt the mixture was diluted with 

H2O (10 mL) and Et2O (10 mL) and the organic and aqueous layers separated.  The 

aqueous layer was extracted with Et2O (3 x 5 mL).  The combined organic extracts were 

washed with brine (5 mL), dried over Na2SO4, filtered, and concentrated in vacuo.  The 

crude product was purified by flash chromatography to yield 480 mg of a >20:1 mixture 

of diastereomers as a colorless oil in 86% yield.   1H NMR: δ -0.02 (s, 3H), -0.01 (s, 3H), 

0.84 (s, 9H)., 0.98 (s, 3H), 1.00 (s, 3H), 1.37-1.40 (m, 1H), 1.53-1.55 (m, 1H), 1.58-1.63 

(m, 1H), 1.81-1.87 (m, 3H), 1.93-2.02 (m, 3H), 2.25-2.32 (m, 1H), 2.34-2.38 (m, 1H), 

3.35 (s, 3H), 3.67-3.71 (m, 2H), 3.84-3.88 (m, 1H), 3.94-2.99 (m, 1H), 4.07 (bs, 1H), 

4.60 (s, 2H), 5.00-5.04 (m 2H), 5.36 (bs, 1H), 5.90 (bs, 1H), 7.21-7.31 (m, 5H). 
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IV-28 and IV-29:  A solution of compound IV-25 (350 mg, 0.67 mmol, 1.0 eq) in toluene 

(4.5 mL) was cooled in a dry ice-acetone bath.  BF3•OEt2 (260 ul, 2.0 mmol, 3.0 eq) was 

added dropwise to the solution over 15 min and the mixture was stirred with continued 

cooling for 30 min.  Allylmagnesium chloride (2.0 mL of a 2.0M solution in THF, 4.0 

mmol, 6.0 eq) was then added dropwise over 30 min.  The reaction mixture was stirred 

for 5 hours with continued cooling at which point TLC analysis indicated complete 

consumption of the starting material.  Saturated NH4Cl (10 mL) was added to the reaction 

and the resultant solution was transferred to an ice-H2O bath.  After slowly warming to rt 

the mixture was diluted with H2O (10 mL) and Et2O (10 mL) and the organic and 

aqueous layers separated.  The aqueous layer was extracted with Et2O (3 x 5 mL).  The 

combined organic extracts were washed with brine (5 mL), dried over Na2SO4, filtered, 

and concentrated in vacuo.  The crude product was purified by flash chromatography to 

yield 240 mg of a 2:1 mixture of diastereomers as a colorless oil in a combined 63% 

yield.   The stereochemistry has not been verified for these compounds.  

 
(5R)-3-allyl-2'-benzyl-5-((tert-butyldimethylsilyloxy)methyl)-3'-isobutyl-3'-(2-

(methoxymethoxy)ethyl)-3,5'-biisoxazolidine:  

Less polar diastereomer: 1H NMR: δ -0.06 (s, 3H), -0.05 (s, 3H), 0.83 (s, 9H), 0.97 (d, 

3H, J = 2.4), 0.98 (d, 3H, J = 2.4), 1.20-12.5 (m, 1H), 1.37 (dd, 1H, J = 6.4, 14.2), 1.55 

(dd, 1H, J = 4.4, 14.2), 1.77-1.83 (, 1H), 1.86-1.90 (m, 1H), 1.93-1.99 (m, 1H), 2.00-2.05 

(m, 2H), 2.22 (dd, 1H, J = 8.8, 12.7), 2.38 (m, 2H), 3.36 (s, 3H), 3.61-3.76 (m, 3H), 3.82 

(d, 1H, J = 14.2), 3.99-4.00 (m, 1H), 4.61 (s, 2H), 5.04-5.08 (m, 2H), 5.72-5.80 (m,1H), 

7.22-7.33 (m, 5H). 

More polar diastereomer: 1H NMR: δ 0.04 (s, 6H), 0.88 (s, 9H), 0.98 (d, 3H, J = 14.9), 

0.99 (d, 3H, J = 14.9), 1.30 (m, 1H), 1.38 (dd, 1H, J = 6.1, 14.4), 1.61 (dd, 1H, J = 5.1, 

14.4), 1.79-1.89 (m, 3H), 1.93-2.01 (m, 3H), 2.27-2.32 (m, 1H), 2.41 (dd, 1H, J = 5.6, 
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13.9), 3.36 (s, 3H), 3.58 (dd, 1H, J = 3.7, 10.0), 3.64-3.71 (m, 3H), 3.85 (d, 1H, J = 14.2), 

4.60 (s, 2H), 4.99-5.02 (m, 2H), 5.33 (bs, 1H), 5.89 (bs, 1H), 7.20-7.32 (m, 5H). 

 
((3R,3'S,5S,5'R)-3-allyl-2,2'-dibenzyl-3'-isobutyl-3'-(2-(methoxymethoxy)ethyl)-3,5'-

biisoxazolidin-5-yl)methanol (IV-30): To a solution of IV-27 (160 mg, 0.28 mmol, 1.0 

eq) was in DMF (1.4 ml), BnBr (220 μl, 1.7 mmol, 6.0 eq) and iPr2NEt (150 μl, 0.9 

mmol, 3.0 eq) was added, and the solution irradiated in a 1000 W microwave at 20% 

power (4 x 20s) with cooling and stirring between each interval.  Upon cooling to 

ambient temperature, the mixture was diluted with H2O (5 ml) and extracted with Et2O (3 

x 5 ml).  The combined organic extracts were washed with H2O (2 x 5 ml) and brine (1 x 

5 ml), dried over Na2SO4, filtered, and concentrated in vacuo.  The crude product was 

immediately subjected to silyl ether deprotection.  To a stirring solution of the crude 

product in THF (1.4 ml) cooled in an ice-H2O bath was added TBAF (850 μl of a 1M 

solution in THF, 0.82 mmol, 3.0 eq).  The solution was stirred 2 h and at this point TLC 

analysis showed that no starting material remained.  The solution was diluted with sat. aq. 

NH4Cl, extracted with Et2O (3 x 5 ml), and the combined organic extracts were washed 

with brine (1 x 5 ml), dried over Na2SO4, filtered, and concentrated.  The crude product 

was purified by flash chromatography (80:20 hexanes:EtOAc) to yield 90 mg of 

bisisoxazolidine IV-30 as a colorless oil in 60% yield. 1H NMR: δ 0.83 (d, 3H, J = 6.8), 

0.93 (d, 3H, J = 6.8), 1.38 (dd, 1H, J = 5.4, 14.2), 1.51 (dd, 1H, J = 5.4, 14.2), 1.61-1.63 

(m, 1H), 1.75-1.94 (m, 3H), 2.18 (dd, 1H, J = 7.8, 12.2), 2.23 (dd, 1H, J = 8.5, 12.5), 2.33 

(dd, 1H, J = 7.0, 13.4), 2.39 (dd, 1H, J = 7.3, 13.2), 2.59-2.63 (m, 1H), 3.36 (s, 3H), 3.44-

3.54 (m, 2H), 3.61 (d, 1H, J  =15.1), 3.68 (d, 1H, J = 14.2), 3.68-3.72 (m, 1H), 3.75 (d, 

1H, J = 14.2), 3.96-4.00 (m, 1H), 4.08-4.19 (m, 3H), 4.62 (s, 2H), 4.68 (d, 1H, J = 5.9), 

5.05 (dd, 1H, J = .15, 16.6), 5.08 (dd, 1H, J = 1.5, 10.3), 5.82-5.90 (m, 1H), 7.18-7.35 (m, 

10H). 
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(3R,3'S,5S,5'R)-3-allyl-5-(azidomethyl)-2,2'-dibenzyl-3'-isobutyl-3'-(2-

(methoxymethoxy)ethyl)-3,5'-biisoxazolidine (IV-31): To a solution of isoxazolidine 

IV-30 (80 mg, 0.15 mmol, 1.0 eq) in 1.5 ml anhydrous CH2Cl2 cooled in an ice-H2O bath 

was added Et3N (24 μl, 0.17 mmol, 1.1 eq) and methanesulfonyl chloride (13 μl, 0.17 

mmol, 1.1 eq).  The solution was stirred with continued cooling for 15 min, at which time 

TLC analysis indicated completion of the reaction.  The reaction mixture was diluted 

with H2O (5 ml) and CH2Cl2 (5 ml), the layers were separated, and the aqueous layer was 

extracted with CH2Cl2 (3 x 5 ml).  The combined organic extracts were washed with 

brine, dried over Na2SO4, filtered, and concentrated in vacuo.  The crude product was 

dissolved in DMSO (1.5 ml) and sodium azide was added (98 mg, 1.5 mmol, 1.5 eq).  

The flask was fitted with a condenser and the reaction heated at 100 °C for 6 h.  At that 

time TLC analysis indicated completion of the reaction.  The cooled reaction mixture was 

diluted with water and extracted with Et2O (3 x 5 ml).  The combined organic extracts 

were washed with H2O (2 x 5 ml) and brine (1 x 5 ml), dried over Na2SO4, filtered, and 

concentrated in vacuo.  The crude product was purifed by flash chromatography (70:30 

hexanes/EtOAc) to yield 69 mg of product as a colorless oil in 72% yield.  1H NMR: δ 

0.84 (d, 3H, J = 6.8), 0.93 (d, 3H, J = 6.4), 1.35 (dd, 1H, J = 5.6, 14.4), 1.53 (dd, 1H, J = 

5.4, 14.2), 1.71 (dd, 1H, J = 5.4, 12.2), 1.78-1.88 (m, 2H), 1.91-1.97 (m, 1H), 2.17 (dd, 

1H, J = 7.6, 12.0), 2.24 (dd, 1H, J = 8.6, 12.5), 2.31 (dd, 1H, J = 7.8, 13.7), 2.38 (dd, 1H, 

J = 6.8, 13.7), 2.54 (m, 1H), 2.87 (dd, 1H, J = 4.4, 12.7), 3.30 (dd, 1H, J = 7.6, 12.5), 3.36 

(s, 3H), 3.67 (d, 1H, J = 14.2) 3.66-3.71 (m, 2H), 3.75 (d, 1H, J = 13.7), 3.98-4.03 (m, 

1H), 4.08 -4.15 (m 2H), 4.62 (s, 2H), 5.04 (dd, 1H, J = 2.0, 17.1), 5.07 (dd, 1H, J = 2.2, 

10.0), 5.82 *m, 1H), 7.16-7.26 (m, 10H). 
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2,2'-((3R,3'S,5S,5'R)-5-(azidomethyl)-2,2'-dibenzyl-3'-isobutyl-3,5'-biisoxazolidine-

3,3'-diyl)diethanol (IV-3): To a solution of IV-31 (42 mg, 0.07 mmol, 1.0 eq) in CH3CN 

(750 μl) and H2O (750 μl) was added NaIO4 (18 mg, 0.08 mmol, 1.2 eq) and the mixture 

was stirred 2 h at rt at which point TLC analysis indicated complete consumption of 

starting material.  The reaction mixture was diluted with H2O and Et2O and the layers 

separated.  The aqueous was extracted with Et2O (3 x 5 mL) and the combined organic 

extracts were washed with brine (10 mL), dried over Na2SO4, filtered and concentrated in 

vacuo.  The crude aldehyde was dissolved in MeOH (700 μl) and NaBH4 (8 mg, 0.2 

mmol, 3.0 eq) was added to the solution.  The reaction was stirred 30 min at which point 

TLC analysis indicated consumption of starting material.  The reaction mixture was 

diluted with H2O (5 mL) and Et2O (5 mL) and the layers separated.  The combined 

organic extracts were washed with brine (10 mL), dried over Na2SO4, filtered and 

concentrated in vacuo.  The crude product was placed on ice and 1 mL of a 50% 

iPrOH/MeOH mixture added.  After stirring 1 h ESI-MS analysis conversion to product.  

The product was purified by flash chromatography (elution in 70:30 hexanes/EtOAc) to 

yield 5 mg of IV-3 as a colorless oil in 14% yield.  0.98 (‘apparent triple’, 6H, J = 7.3), 

1.53-1.59, m, 1H), 1.64-1.70 (m, 3H), 1.82-1.95 (m, 2H), 2.12-2.25 (m, 2H), 2.31 (dd, 

1H, J = 7.3, 12.2), 3.11 (bs, 1H), 3.30 Ibs, 1H). 3.71-3.79 (m, 3H), 3.83-3.96 (m, 5H), 

4.08-4.11 (27m, 1H), 4.15-4.18 (m, 1H), 7.21-7.36 (m, 10H). 
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G. Appendix of Select 1H NMR spectra and HPLC traces 
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Chapter V 

 

Conclusions and Future Directions 

 

A. Conclusions  

My thesis work focused on the successful design, synthesis, and evaluation of 

small molecule transcriptional activation domains.  At the outset of my PhD work there 

was a single example of a small molecule TAD (iTAD V-1) shown to activate 

transcription in a cell-free assay.  In collaboration with several colleagues we showed that 

iTAD V-I also  up-regulates transcription in cells.  Consistent with this, a preponderance 

of evidence supporting that the molecules function by a similar mode of action as their 

endogenous counterparts was collected using a combination of organic chemistry, NMR 

spectroscopy, and biological evaluations.  Further an interaction with a single coactivator 

protein, CBP, contained in the transcriptional machinery was correlated with iTAD 

function (Figure V-1b).   

 

 

Figure V-1. iTADs are potent TADs that interact with endogenous coactivators. a) 
Monomeric and dimeric iTADs are potent TADS. b) iTAD V-1b bound to the CBP KIX 

domain.  
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B. Future Directions 

1) Small Molecule TADs Based on Other Scaffolds 

 TAD binding sites within coactivators appear to be somewhat permissive, not 

requiring a single placement of particular sidechains.1  In Chapter II it was shown that 

analogous to the endogenous system a variety of stereochemical and position iTAD V-1 

isomers all potently activated transcription suggesting the small molecules function via a 

similar mechanism.2 An important implication of these experiments is that isoxazolidines 

are unlikely to be the only suitable scaffold for the construction of small molecule 

transcriptional activation domains, but rather a variety of conformationally constrained 

scaffolds should also functional well.  As an initial evaluation of this prediction, 

amphipathic spiro-oxindoles (V-3-V-5) have been synthesized and preliminary evaluated 

in a cell-free assay.  Spiro-oxindole V-3b binds masking protein MDM2 and inhibits the 

p53•MDM2 interaction.3  Evidence suggests that masking proteins and coactivators may 

sample TAD sequences differently;4 thus small molecule inhibitors are predicted to serve 

as an excellent starting point for the design of small molecule TADs.  Thus, spiro-

oxindoles V-4 and V-5 were designed to incorporate polar functionality generating small 

molecules that mimic the amphipathic character of endogenous TADs and iTADs.  In a 

cell-free assay V-3 did not activate transcription but amphipathic analogs V-4 and V-5 

both activated transcription; V-4 activated to a level comparable to the positive control 

ATF14 and the maximal activation by V-5 was approximately half that of ATF14.  This 

data supports that a variety of appropriately functionalized amphipathic scaffolds 

function as TADs.  

 
Figure V-2. Spiro-oxindoles evaluated as TADs.  V-3 does not activate transcription 

whereas V-4 and V-5 activate in a cell-free assay. 
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2) Cooperative Recruitment of CBP 

 Prevailing evidence suggests that transcriptional activators initiate transcription 

by assembling the large, multicomponent transcriptional machinery complex through 

interaction with several distinct binding partners with some evidence suggesting that each 

interaction contributes differentially to function.  In Chapter III it was shown that iTADs 

exhibit a similar molecular recognition profile with the ability of isoxazolidines to 

activate transcription being linked to the ability to bind a particular coactivator, CBP 

(Creb Binding Protein).  In fact, characterization of iTADs in complex with the KIX 

domain of CBP revealed a remarkable similarity to endogenous TADs that utilize the 

same site.   

 Based on the binding site selection of iTADs, these molecules may synergize with 

Creb, a TAD that binds a second site on the KIX domain of CBP, to activate transcription 

(Figure V-3).  In vitro evidence shows that the two sites are bound cooperatively and 

emerging evidence suggests that some promoters require two KIX-binding activators for 

function.5-10  For example, it has been found that binding of the KIX domain by either 

MLL or Tax, activators that bind the same KIX site as iTADs, facilitates binding of Creb 

to the second site. In one study Creb activation was only achieved in the presence of two 

KIX binding proteins.  In fact NMR experiments have revealed a small but perhaps 

significant allosteric change in the Creb binding site upon binding of the protein domain 

by MLL.5    

 To investigate this possibility we are collaborating with Professor Thomas 

Kodadek.  The Kodadek research group has reported an example of a peptoid based TAD 

that binds the same site within the CBP KIX domain as Creb.11  iTADs and peptoid 

TADs will be attached to polyamides that target different sequences in the minor groove 

of DNA.  A reporter plasmid containing the two appropriate binding sequences will be 

constructed and utilized to investigate the ability of the two KIX binding ligands to 

cooperatively activate transcription.  
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Figure V-3. Cooperative recruitment of CBP. 

 

3) Small Molecule Inhibitors of Transcription 

The fact that iTADs bind a site within CBP targeted by endogenous TADs and the 

observation that small structural changes alter the binding profile for this site suggests 

some degree of specificity for a small molecule inhibitor of TADs that bind this site may 

be possible. This will likely require, however, molecules that bind more tightly than V-1. 

Based upon the binding model of iTAD V-1 presented in Chapter III structure based 

design of isoxazolidines with enhanced affinity for the KIX domain is predicted to be 

possible.  A general schematic depicting the inhibition of transcription is shown in Figure 

V-4.    
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Figure V-4. Schematic of small molecule inhibition of transcription.  

 

The binding model for iTADs with the KIX domain is based upon the reported 

MLL•KIX solution structure.  Five MLL residues, one polar (T2857) and four 

hydrophobic (I2849, F2852, V2853 and L2854), make extensive contacts with KIX upon 

binding (Figure V-5a and V-5b).5  The benzyl, isobutyl and alcohol sidechains of iTAD 

V-1 are predicted to project into the same subsites as F2852, L2854, and T2857, 
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Pol II

Med

iTAD Creb



167 

 

respectively.  Figure V-5c shows V-1 placed in the KIX domain binding pocket.  The 

particular picture simply removed MLL and inserted V-1 thus the structural 

reorganization of the protein upon binding the small molecule is not accounted for; 

nonetheless the picture is sufficient to suggest that a C4 substituent on the ring of the 

isoxazolidine may project into the same local binding pocket as V2853.  Thus, 

isoxazolidines such as V-6 containing a C4 alkyl substituent are predicted to have 

enhanced affinity for the KIX domain as a result of this additional interaction.  C4 

substituents on molecules such as V-5 can be installed by either utilization of a 

substituted allylic alcohol in the cycloaddition forming the isoxazoline ring or by 

alkylation of the isoxazoline ring following the cycloaddition reaction.  V-6 and related 

analogs are currently being prepared for evaluation as inhibitors of KIX targeting TADs. 

The larger bis-isoxazolidines (such as V-2) presented in Chapter IV interact with 

a large surface area of KIX than monomeric iTAD V-1 resulting in an overall greater 

affinity for the protein and thus also offer an excellent starting point for the design of 

inhibitors. The binding model for bis-isoxazolidines, such as V-2, is that ring A projects 

functionality into the same subsites as V-1 with a ring B substituent positioned analogous 

to MLL residue I2849.  Further enhancement of binding affinity and complex lifetime for 

bis-isoxazolidine is predicted to be achieved by identifying a perhaps more optimal 

placement of sidechains on ring B, perhaps with analogs such as V-7 and V-8 (Figure V-

5d) which closely mimic the functionality of MLL.  Combination of this strategy with 

addition of a C4 substituent on ring A, as illustrated with compound V-9 (Figure V-5d), 

as discussed above has potential to yield perhaps the most potent inhibitors.  Beyond 

CBP these molecules should be an excellent starting points for designing inhibitors of 

other TAD•coactivator complexes as a wide variety of functional groups can be 

appended and displayed similarly to a helix.    
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Figure V-5. Design of small molecule CBP inhibitors. 

 

4) Realization of Small Molecule Transcriptional Activators as Therapeutics 

The advances we have made in the field of small molecule transcriptional 

activators bring us closer to being able to construct an ideal small molecule based 

artificial transcriptional activator, but there remains much work to be done.  An ideal 

small molecule based artificial transcriptional activator was defined in Chapter I as a 

molecule that can be delivered to a specific tissue, localize to the nucleus, and upregulate 

transcription of a specific gene to the appropriate level in a signal responsive fashion.  

Such tools are highly sought after due to the implication of misregulated or miscued 

transcriptional activators in disease.  For example, the onset of nearly 40 different cancers 

is implicated with malfunctioning transcriptional activators.1  The work here 

demonstrated that small molecules can upregulate transcription in cells by a mode of 

action that mimics their endogenous counterparts.  A minimal transcriptional activator, 

consisting of only DBD and TAD function, can now be constructed and paves the way 

for addressing issues such as delivery and signal responsiveness.     

d) 



169 

 

C. References 

1. Mapp, A. K.; Ansari, A. Z., ACS Chem Biol 2007, 2 (1), 62-75. 

2. Buhrlage, S. J.; Brennan, B. B.; Minter, A. R.; Mapp, A. K., J Am Chem Soc 2005, 
127 (36), 12456-7. 

3. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; 
Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S., 
J Am Chem Soc 2005, 127 (29), 10130-1. 

4. Ansari, A. Z.; Reece, R. J.; Ptashne, M., Proc Natl Acad Sci U S A 1998, 95 (23), 
13543-8. 

5. De Guzman, R. N.; Goto, N. K.; Dyson, H. J.; Wright, P. E., Journal of Molecular 
Biology 2006, 355 (5), 1005-1013. 

6. Campbell, K. M.; Lumb, K. J., Biochemistry 2002, 41 (47), 13956-64. 

7. Ernst, P.; Wang, J.; Huang, M.; Goodman, R. H.; Korsmeyer, S. J., Molecular and 
Cellular Biology 2001, 21 (7), 2249-2258. 

8. Geiger, T. R.; Sharma, N.; Kim, Y. M.; Nyborg, J. K., Mol Cell Biol 2008, 28 (4), 
1383-92. 

9. Ramirez, J. A.; Nyborg, J. K., J Mol Biol 2007, 372 (4), 958-69. 

10. Ghee, M.; Baker, H.; Miller, J. C.; Ziff, E. B., Brain Res Mol Brain Res 1998, 55 (1), 
101-14. 

11. Liu, B.; Alluri, P. G.; Yu, P.; Kodadek, T., J Am Chem Soc 2005, 127 (23), 8254-5. 
 
 

 



170 

 

Appendix 

 

A Flexible and Selective Route to β-proline Analogs 

 

A. Introduction 

Nonnatural molecules that mimic key protein structural motifs such as helices and 

β-turns have found application as catalysts, sensors, materials and as inhibitors of 

protein-protein interactions. A key advantage of these so-called ‘foldamers’ compared to 

proteins is their often enhanced structural and proteolytic stability relative to their natural 

counterparts. Foldamers composed of β-amino acids, for example (Figure 1), can adopt 

stable and predictable secondary structures, are resistant to proteolytic degradation and 

can be more densely functionalized than their natural α-amino acid counterparts.1, 2 

Further, it was recently demonstrated that β-amino acid foldamers can assemble into 

higher order structures, a critical step towards proteomimetics that mimic the structure 

and function of natural proteins.3  

One class of β-peptides that has been less studied includes oligomers composed of 

β-prolines, in particular the analogs containing the nitrogen moiety within the ring, 

although the monomeric units have been utilized in a number of applications.4, 5 Early 

solution studies of unfunctionalized β-proline oligomers (4 or more subunits) suggested 

the existence of multiple rotameric states, precluding thorough structural 

characterization.6 However, the introduction of two substituents at C2 of the beta proline 

(3) leads to a strong preference for the Z-amide bond isomer.7 Indeed, CD analysis of the 

homooligomers of disubstituted β-prolines indicated the adoption of regular structure for 

the pentameric and hexameric species. Although an exciting advance, a major roadblock 

for further implementing these more substituted β-proline oligomers is the synthetic 

difficulties associated with selectively installing a range of functional groups adjacent to 

the nitrogen and along the backbone.   
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Figure 1. Structural classes of β-amino acids. 1: basic β-amino acid; 2: β-proline 

monomer; oligomers of 2 populate multiple rotomer states; 3: disubstituted β-proline; 
oligomers of 3 adopt regular structure; 4: trisubstituted isoxazolidine β-proline. 

 

Several former colleagues have previously reported a general synthetic strategy 

for densely functionalized β3,3-amino acids, β2,3,3-amino acids, and cyclic β-amino acids 

using a chiral isoxazoline as the key intermediate.8, 9 We hypothesized that a similar 

strategy could be developed for β-proline analogs in which one carbon has been replaced 

by an oxygen, a substitution that should confer advantageous aqueous solubility 

properties while minimally perturbing the amide bond in the context of oligomers. In this 

approach, a 1,3-dipolar cycloaddition using the conditions of Kanemasa and Carreira 

establishes the stereochemistry at C5 (7) and introduces the first substituent adjacent to 

the nitrogen (Figure 2).10, 11 Additional substitution at C4 of the isoxazoline ring of 7 can 

be incorporated by using a disubstituted double bond in the cycloaddition and/or through 

a separate alkylation step post-cycloaddition.8, 9 Selective nucleophilic attack at the C=N 

bond then provides the additional C3 substituent in 8. Finally, oxidative cleavage of the 

C5 diol moiety would provide the requisite carboxylic acid at this position (9). Here we 

describe the development and implementation of this synthetic strategy for a range of β-

proline analogs, including those with substitution patterns not accessible by previous 

methodologies.  
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Figure 2. Isoxazoline strategy for the synthesis of di- and tri-substituted β-prolines. 

 

B. Disubstituted Isoxazolidine β- prolines 

 The first step in the synthesis of disubstituted isoxazolidine β-prolines is a 1,3-

dipolar cycloaddition between a nitrile oxide and a chiral allylic alcohol to yield a single 

detectable diastereomer of isoxazoline 7 (Scheme 1). The allylic alcohol 6 is readily 

generated as either stereoisomer from (R)- or (S)-glycidol,12, 13 enabling access to either 

enantiomer of the isoxazoline cycloaddition product; for this study only the (S)-isomer of 

the allylic alcohol was used as it provided β-proline analogs with stereochemistry 

analogous to L-proline. Consistent with previous reports, the cycloaddition proceeds in 

excellent yield with either an isobutyl (5a) or ethyl (5b) R1 substituent.8, 9 Subsequent 

protection of the secondary alcohol as a silyl ether produced isoxazoline 10 in excellent 

yield.  Protection of the secondary alcohol was necessary for the introduction of 

carbamate  protecting groups utilized in solid phase synthesis (Boc, Fmoc, Cbz).  

Although alkyl groups can be added to N2 without protection of the secondary alcohol, 

carbonate formation was a significant side reaction during carbamate formation.  

 

 

Scheme 1. Synthesis of the key isoxazoline intermediates. 

 

Installation of the second functional group at C3 was accomplished by the 

combination of isoxazoline 10 with either a stabilized Grignard reagent (11, 13 and 16) or 
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HN O
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14b
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R110

H
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aDiastereomeric ratios determined due to 1H 
NMR spectral integration. bPrepared by Bin 
Chen. 

an organolithium reagent (12, 14, 15) in the presence of BF3•Et2O (Table 1). In all 

examples, the major diastereomer isolated results from addition to the re face of the C=N 

bond, with good (7:1) to excellent (>20:1) diastereomeric ratios observed.  In this way, 

alkyl, aryl and heteroaryl functional groups can be positioned at C3. Protection of the 

secondary alcohol prior to this reaction is not a requirement, but the isolation and 

purification of the product is facilitated with the protection.  

 

 

 

 

 

 

 

 

 

 

 

Table 1. Nucleophile addition to isoxazoline 10. 

 

Conversion of isoxazolidines 11-16 to the β-proline analogs required only 

protection at N2 followed by unmasking of the C5 diol moiety and oxidative cleavage to 

the carboxylic acid (Figure 3). Protection of the ring nitrogen with a solid phase synthesis 

compatibility group was anticipated to be a challenging step.  Due to significant steric 

hindrance and concomitant nucleophilicity of the nitrogen, we have previously found that 

alkyl groups can only be added to that position using microwave-accelerated conditions.  

Despite significant large steric profile of the protecting groups, it was possible to protect 

the nitrogen with a BOC, FMOC or Cbz group, all commonly used in solid-phase peptide 

synthesis. Although installation of the Cbz group consistently provided the highest yields, 

likely due to its smaller steric profile. The TBS groups were then removed in situ by 

addition of TBAF. The resulting diols were oxidatively cleaved in a 2-step procedure in 

which a NaIO4 cleavage produced an intermediate aldehyde; due to instability of the 
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aldehyde, this intermediate was immediately oxidized to the more stable carboxylic acid 

without purification. This was accomplished by treatment with sodium perchlorate to 

cleanly produce the desired isoxazolidine β-proline analogs shown (17-22) in good 

overall yields (over the four steps shown) and with no detectable epimerization.  Despite 

the polarity of 17-22 the molecules were readily purified using standard flash 

chromatography.  

 

 
Figure 3. Conversion of isoxazolidines 11-16 to β-prolines.  Isoxazolidine β-

prolines 17-20 were prepared by Bin Chen. 

 

 A key feature of this synthetic approach to β-prolines is that diverse functionality 

can be introduced at multiple stages from choice of oxime in the first step to late-stage 

modification of sidechains of densely functionalized analogs.  For example, we prepared 

an amphipathic isoxazoldine β-proline, 26, bearing a hydrophobic (isobutyl) and polar 

(hydroxyl) functional group at the carbon adjacent to the nitrogen. From 13, the nitrogen 

was protected with an Fmoc group in 92% yield.  The double bond of isoxazolidine 23 

was oxidatively cleaved and protected as the MOM ether.  Subsequently the silyl ethers 
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were selectively removed by treatment wth 20% HCl in MeOH.  In the final step the 

pendant diol of 25 was oxidatively cleaved to yield isoxazolidine β-proline 26.  

 

 

Scheme 2. Synthesis of amphipathic isoxazolidine β-proline 26. 

 

C. Synthesis of Trisubstituted Isoxazolidine β-prolines 

As described earlier, we envisioned that one advantage of our synthetic strategy 

would be that it could be used to access trisubstituted β-proline analogs. Although not 

expected to strongly impact the conformational preferences of oligomers, functional 

groups at C4 of the isoxazolidine ring could be useful for inter-oligomer interactions, 

facilitating the formation of higher order assemblies. A C4 substituent can be introduced 

at the cycloaddition stage through the use of allylic alcohols containing disubstituted 

double bonds or via an alkylation reaction with the isoxazolidine. We have elected for the 

alkylation strategy has it offers a more convergent synthesis.  Deprotonation of 

isoxazolidine 10b (Figure 4) with LDA and the addition of benzyl bromide proceeded in 

good yield (62%) to provide 27 as a single stereoisomer. Nucleophilic attack at the C=N 

bond proceeded with either an organolithium reagent (28) or a stabilized Grignard (29, 

30) reagent. The C4 and C5 substituents exert opposing steric effects in this reaction. In 

the case of 28, the additional steric hindrance lead to an attenuated yield (55%) relative to 
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the earlier example (Table 1: 15), although only a single stereoisomer was observed. In 

the second example, a better overall yield was obtained of a 1.2:1 mixture of 

diastereomers. In all cases, the relative stereochemistry was verified by NOESY with the 

indicated enhancements. 

 

Figure 4. Nucleophile addition to C4 substituted isoxazolidines.  NOE 
assignments were conducted on derivates containing a N2 CBz functionality. 

 

 Conversion of isoxazolidines 28-30 to β-proline analogs occurred using the same 

conditions as outlined in Figure 3. Despite the additional steric hindrance in these 

isoxazolidines, Cbz protection proceeded without incident as did the 

deprotection/oxidative cleavage sequence to produce the protected amino acids in good 

overall yield. Although only three examples are presented here, these results suggest that 

the strategy should be utilizable for a wider range of substrates by variation of both the 

initiation oxime substituent in the initial cycloaddition, alternative alkylating agents and 

the organometallic reagents used in Table 1.   
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Figure 5. Generation of tri-substituted β-amino acids. 

 

D. Conclusions 

In conclusion we have reported flexible synthetic methods to yield β(3,3)- and 

β(3,3,4)-proline peptidomimetic building blocks.  In the case of β(3,3)-prolines the 

substitution pattern should confer conformational preferences analogous to the 

disubstituted analogs previously reported by Gellman and co-workers.6, 7  Either way we 

predict these densely functionalized molecules will possess interesting properties for a 

variety of applications.  The synthetic advantages of the approach we present here 

compared to the methods utilized by Gellman and co-workers include control of 

stereochemistry at every step, access to either enantiomers of product, and access to 

greater side chain diversity.  For example, in Figure 4 we show incorporation of a 

hydroxyl side chain, although one can envision straight forward manipulation for 

incorporation of a wider range of functional groups including amines, secondary alcohol, 

ketones, aldehydes, amides, and others.  β(3,3,4)-prolines may adopt similar folds due to 

avoidance of the same steric interaction between the 3-position substitutents and the 

amide or exhibit new secondary structure.  Given our success with generating bis-

isoxazolidines that bind protein surfaces we anticipate similar functionalization of β-

prolines will yield molecules that can also bind with transcriptional coactivator proteins 

and a library of more diversely substituted β-proline dimers and oligomers will be found 

to interact with a wide range of protein partners.  
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E. Experimentals 

Unless otherwise noted, starting materials were obtained from commercial 

suppliers and used without further purification.  THF, benzene, and toluene were dried by 

passage through activated alumina columns and degassed by stirring under a dry N2 

atmosphere. All reactions involving air- or moisture-sensitive compounds were 

performed under a dry N2 atmosphere. BF3•OEt2, Et3N, iPr2NH,  MeOH and furan were 

distilled from CaH2.  Ac2O was distilled from K2CO3.  Purification by flash column 

chromatography was carried out with E. Merck Silica Gel 60 (230-400 mesh) according 

to the procedure of Still, Kahn, and Mitra. 1H and 13C NMR spectra were recorded in 

CDCl3 at 500 MHz and 125 MHz, respectively, unless otherwise specified.  IR spectra 

were measured as thin films on NaCl plates.  Compounds 7a and 10a have been reported 

previously. NOE experiments determining the relative stereochemistry of compounds 28-

30 were performed on CBz protected compounds.        

General.  

Unless otherwise noted, starting materials were obtained from commercial 

suppliers and used without further purification.  THF, benzene, and toluene were dried by 

passage through activated alumina columns and degassed by stirring under a dry N2 

atmosphere. All reactions involving air- or moisture-sensitive compounds were 

performed under a dry N2 atmosphere. BF3•OEt2, Et3N, iPr2NH,  MeOH and furan were 

distilled from CaH2.  Ac2O was distilled from K2CO3.  Purification by flash column 

chromatography was carried out with E. Merck Silica Gel 60 (230-400 mesh) according 

to the procedure of Still, Kahn, and Mitra. 1H and 13C NMR spectra were recorded in 

CDCl3 at 500 MHz and 125 MHz, respectively, unless otherwise specified.  IR spectra 

were measured as thin films on NaCl plates.  Compounds 7a and 10a have been reported 

previously. 

General procedure for nucleophile addition to isoxazolines.  

To a solution of isoxazoline 7b or 10b (0.8 mmol, 1 eq) in toluene (5 mL) cooled 

in a dry ice-acetone bath was added BF3•OEt2 (0.31 mL, 2.5 mmol, 3.1 eq), and the 

resulting mixture was stirred with continued cooling for 30 min.  A solution of 

organolithium reagent or Grignard reagent (5.8 mmol, 7.2 eq) was then added dropwise 
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over 15 min.  The reaction mixture was allowed to stir with continued cooling until the 

starting material had been consumed as ascertained by TLC analysis, typically within 4 h.  

Saturated NaHCO3 (15 mL) was added slowly to consume any remaining organolithium 

reagent or Grignard reagent and the mixture was diluted with EtOAC (12 mL).  The 

mixture was then extracted with EtOAc (3 x 20 mL).  The organic extracts were 

combined, washed with H2O (3 x 15 mL) and brine (1 x 30 mL), dried over Na2SO4, and 

concentrated.  The major and minor diastereomers were separated and the major 

diasteromer was carried on to subsequent steps.  In one case, nucleophilic addition 

provided a 1.2:1 mixture of diastereomers and both were individually carried on to 

subsequent steps.   

General procedure for Cbz protection and TBS deprotection of isoxazolidines.   

A solution of isoxazolidine (0.3 mmol, 1 eq) in THF (1.0 mL) was cooled in an 

ice-H2O bath.  To the stirring solution was added CbzCl (125 μl, 0.9 mmol, 3 eq).  Sat. 

aq. Na2CO3 was added to adjust the pH to 10 and the biphasic reaction mixture was 

stirred at rt for 12 h.  The reaction mixture was then partitioned between 5 mL each H2O 

and EtOAc, and the aqueous layer was extracted with EtOAc (3 x 5 mL).  The combined 

organic extracts were dried over Na2SO4 and concentrated in vacuo. The crude mixture 

was passed through a short plug of SiO2 (15:1 hexanes/EtOAc) and concentrated.  The 

residue was dissolved in THF, cooled in an ice-H2O bath, and 4 eq TBAF (1 M in THF) 

or HF•Pyr (3.0 eq) was added dropwise.  HF•pyr was used for the deprotection of 

isoxazolidines containing a C4 substituent as the deprotection with TBAF proceeded very 

slowly.  After 1 h, the ice-H2O bath was removed and the progress of the reaction was 

monitored by TLC analysis. The reaction was then diluted with H2O (10 mL) and 

extracted with Et2O or EtOAc (3 x 5 mL).  The organic extracts were combined, washed 

with H2O (3 x 5 mL) and brine (1 x 10 mL), dried over Na2SO4, filtered, and 

concentrated in vacuo. The diol was then used in the subsequent oxidative cleavage 

reactions after passing through a plug of silica to eliminate the nonpolar impurities (1:9 

MeOH/CH2Cl2).  

General procedure for the oxidative cleavage of diols.  

To a stirring solution of crude amine diol (0.1 mmol, 1.0 eq) dissolved in 2 ml t-

BuOH /THF/H2O (10:3:1) or CH3CN (500 μl) and H2O (500 μl) was added NaIO4 (21 



180 

 

mg, 0.1 mmol, 1.2 eq).  The reaction mixture was stirred at rt until the starting material 

was fully consumed as ascertained by TLC analysis.  The mixture was worked-up one of 

two ways.  In the first method, the reaction mixture was diluted with 5 ml CHCl3 and 

filtered through a layer of Celite using CHCl3 for extra washing. Alternatively, the 

mixture was diluted with H2O (5 ml) and extracted with Et2O (3 x 5 ml), the combined 

organic extracts were washed with brine (1 x 5 ml), dried over MgSO4, and filtered.  

Concentration in vacuo of the combined filtrate from either procedure then provided a 

crude oil that was immediately dissolved in t-BuOH (1 mL) and 2-methyl-2-butene (4.7 

mmol, 47 eq).  A solution of NaClO2 (0.9 mmol, 9.2 eq) and KH2PO4 (7 eq) in H2O was 

added dropwise to give a pale yellow reaction mixture.  The reaction was stirred at rt 

until TLC analysis indicated completion of the oxidation, typically within 3 h.  The 

mixture was diluted with 10 mL sat. aq. NaHCO3 and EtOAc.  The aqueous layer was 

then extracted 3 x 5 mL with EtOAc and the combined organic extracts were dried over 

Na2SO4, filtered, and concentrated to provide the crude product mixture.  Compounds 

containing a substituent at the C4 position were isolated as the methyl ester.  The methyl 

ester was generated by treatment of the crude acid (30 mg, 0.07 mmol, 1.0 eq) in benzene 

(1.4 ml) and MeOH (470 μl) with TMSCHN2 (350 μl of a 2M solution in Et2O, 0.70 

mmol, 10 eq.).  The resulting mixture was stirred for 10 min, at which time TLC analysis 

indicated complete conversion to the methyl ester.  The solvent was removed by rotary 

evaporation and the product purified by flash chromatography.     

 
2-(tert-Butyl-dimethyl-silanyloxy)-(1R)-1-[(5R)-3-ethyl-4,5-dihydro-isoxazol-5-yl]-

ethanol (7b): To a solution of oxime derived from 3-methylbutyraldehyde (480 mg, 6.6 

mmol, 1.0 eq) in toluene (33 mL) cooled in a dry ice-acetone bath shielded from light 

was added t-BuOCl (790 μl, 6.6 mmol, 1.0 eq) over 20 min.  The resulting mixture was 

stirred 2 h with continued cooling at which time TLC analysis indicated complete 

conversion to the hydroximinoyl chloride.  In a separate flask, chiral allylic alcoholrefs 

(1.7 g, 1.7 mmol, 1.3 eq) was dissolved in toluene (66 mL) and cooled in an ice-H2O 
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bath.  To this solution was added t-BuOH (2.1 mL, 22 mmol, 3.3 eq) followed by 

dropwise addition of EtMgBr (6.6 mL of a 2.0 M solution in Et2O, 20 mmol, 3.0 eq) and 

the solution stirred 1 h with continued cooling.  The solution of hydroximinoyl chloride 

was then transferred via canula to the allylic alcohol solution and the mixture allowed to 

slowly warm to ambient temperature and stirred 15 h.  Sat aq. NH4Cl (10 mL) was added 

to the reaction mixture followed by further dilution with H2O (40 mL).  The organic and 

aqueous layers were separated and the aqueous extracted with CH2Cl2 (3 x 40 mL).  The 

combined organic extracts were washed with brine (1 x 30 mL), dried over MgSO4, 

filtered, and concentrated.  Purification by flash chromatography yielded 1.4 g of 

isoxazoline 7b as a clear oil in 79% yield as a single stereoisomer.  IR: 3365, 2929, 2857, 

1115, 1059, 837 cm-1; 1H NMR: δ 0.06 (s, 6H), 0.88 (s, 9H), 1.15 (t, 3H, J = 7.33), 2.32-

2.57 (m, 2H), 2.95-2.98 (m, 2H), 3.56-3.73 (m, 3H), 4.62 (ddd, 1H, J = 11.4, 7.7, 2.6); 
13C NMR: δ -5.48, -5.47, 10.82, 18.22, 21.17, 25.82, 38.91, 63.93, 72.98, 79.15, 160.59; 

HRMS (ESI) calcd for [C13H27NO3Si + Na]+: 296.1658, found: 296.1655.  

 
(5R)-5-[(1R)-1,2-Bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-3-ethyl-4,5-dihydro-

isoxazole (10b): To a solution of isoxazoline 7b (1.4 g, 5.1 mmol, 1.0 eq) in THF (26 

mL) cooled in an ice-H2O bath was added DMAP (63 mg, 0.51 mmol, 0.10 eq) and Et3N 

(1.6 mL, 11 mmol, 2.2 eq).  TBSOTf (2.6 mL, 11 mmol, 2.2 eq) was added dropwise and 

the solution slowly warmed to ambient temperature.  The reaction was complete in 2 h as 

indicated by TLC analysis.  The mixture was again cooled in an ice-H2O bath, diluted 

with sat. aq. NH4Cl (15 mL) and extracted with Et2O (3 x 15 mL).  The combined organic 

extracts were washed with brine (1 x 20 mL), dried over MgSO4, filtered, and 

concentrated in vacuo.  Purification of the crude product by flash chromatography (95:5 

hexanes/EtOAc) yielded 1.9 g of isoxazoline 10b in 95% yield as a clear oil.  IR: 2929, 

2856, 1462, 1254, 1090, 835 cm-1; 1H NMR: δ 0.04 (s, 3H), 0.04 (s, 3H), 0.06 (s, 3H), 

0.07 (s, 3H), 0.85 (s, 9H), 0.87 (s, 9H), 1.14 (t, 3H, J = 7.3), 2.25-2.37 (m, 2H), 2.88 (d, 

2H, J = 9.3), 3.56 (dd, 1H, J = 9.0, 1.7), 3.62-3.69 (m, 2H), 4.59-4.63 (m, 1H); 13C NMR: 
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δ -5.52, -4.86, -4.36, 10.73, 18.01, 18.24, 21.25, 25.69, 25.83, 38.24, 64.19, 74.24, 80.05, 

159.43; HRMS (ESI) calcd for [C19H41NO3Si2 + Na]+: 410.2523, found: 410.2517. 

 

(5R)-5-[(1R)-1,2-Bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-(3S)-3-ethyl-3-(2-methyl-

allyl)-isoxazolidine (16): Compound 16 was prepared following the general procedure 

using isoxazoline 10b (800 mg, 2.1 mmol, 1.0 eq) and the nucleophile 2-

methylallylmagnesium chloride (30 mL of a 0.5 M solution in THF, 15 mmol, 7.2 eq).  

Purification of the crude product by flash chromatography (95:5 hexanes/EtOAc) yielded 

730 mg of the major diastereomer (d.r. 8:1) as a clear oil in 79% yield.  13C NMR: δ -

5.44, -5.42, -4.58, -4.43, 9.47, 18.00, 18.31, 24.44, 25.56, 25.88, 41.64, 41.3, 42.19, 

64.61, 67.18, 68.06, 75.43, 113.90, 114.72; HRMS (ESI) calcd for [C23H49NO3Si2 + 

Na]+: 466.3149, found: 466.3145. 

N O
OH

O

CBz

H

22  

(3S, 5R)-3-Ethyl-3-(2-methyl-allyl)-isoxazolidine-2,5-dicarboxylic acid 2-benzyl ester 

(22):  Compound 22 was prepared according to the general procedure from isoxazolidine 

10a  (44 mg, 0.10 mmol, 1.0 eq).  Purification by flash chromatography (95:5 

CH2Cl2:MeOH + 2% acetic acid) of the crude product yielded 14 mg of 18 as a clear oil 

in 42% yield.  IR: 2927, 2363, 1696, 1559, 1456 cm-1;  1H NMR: δ 0.39 (t, 3H, J = 7.3), 

1.78-1.85 (m, 1H), 1.97-2.04 (m, 1H), 2.37 (d, 1H, J = 13.7), 2.50 (dd, 1H, J = 12.7, 7.3), 

2.69 (d, 1H, J = 13.7), 2.82 (dd, 1H, J = 12.9, 8.1), 4.53-4.56 (m, 1H), 4.82 (s, 1H), 4.95 

(s, 1H), 5.22 (s, 2H), 7.33-7.41 (m, 3H), 7.43-7.45 (m 2H); 13C NMR: δ 8.63, 24.24, 

31.97, 42.30, 45.67, 68.46, 69.50, 85.70, 117.16, 129.51, 129.63, 129.69, 143.17, 166.67; 

HRMS (ESI) calcd for [C18H23NO5 + Na]+: 356.1474, found: 356.1472. 



183 

 

 

(4R, 5R)-4-Benzyl-5-[(1R)-1,2-bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-3-ethyl-4,5-

dihydro-isoxazole (23): Distilled diisopropylamine (760 μl, 5.4 mmol, 1.5 eq) was added 

to 25 mL THF and the solution was cooled in an ice-H2O bath.  To the solution was 

added n-BuLi (3.4 mL of a 1.7 M solution in hexanes, 5.6 mmol, 1.6 eq).  The mixture 

was stirred for 10 min and transferred to a dry ice/acetone bath.  A solution of isoxazoline 

10b (1.4 g, 3.6 mmol, 1.0 eq) in 5 mL THF was added over 15 min and the mixture was 

stirred 1 h with continued cooling.  BnBr (1.4 mL, 11 mmol, 3.0 eq) in 5 mL THF was 

subsequently added and the mixture continued to stir while being cooled until complete 

by TLC analysis (3 h).   The mixture was diluted with sat. aq. NH4Cl (10 mL), extracted 

with Et2O (3 x 20 mL), washed with brine (20 mL), dried over MgSO4, filtered, and 

concentrated in vacuo.  The crude product was purified by flash chromatography (98:2 

hexanes:EtOAc) to yield 1.1 g of isoxazoline 23 as a clear oil in 62% yield.  IR: 2929, 

2856, 1462, 1254, 1090, 835 cm-1; 1H NMR: δ -0.04 (s, 6H), -0.02 (s, 3H), -0.02 (s, 3H), 

0.82 (s, 9H), 0.83 (s, 9H), 1.14 (t, 3H, J = 7.3), 2.10-2.20 (, 1H), 2.34-2.43 (m, 1H), 2.65 

(dd, 1H, J = 9.9, 13.6), 3.01 (dd, 1H, J = 5.5, 13.6), 3.17-3.21 (m, 1H), 3.35-3.45 (m, 2H), 

3.52 (dd, 1H, J = 6.9, 9.9), 4.33 (dd, 1H, J = 2.9, 5.9), 7.13-7.15 (m, 2H), 7.19-7.30 (m, 

3H); 13C NMR: δ -5.51, -5.46, -4.80, -4.27, 10.67, 18.04, 18.25, 20.14, 25.78, 25.92, 

37.60, 52.05, 63.73, 74.20, 76.69, 77.01, 77.33, 84.59, 126.71, 128.74, 128.90, 138.14, 

161.51; HRMS (ESI) calcd for [C26H47NO3Si2 + Na]+: 500.2992, found: 500.2999. 

 

HN O

H
H

S
OTBS

OTBS

28  
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(4R, 5R)-4-Benzyl-5-[(1R)-1,2-bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-(3R)-3-

ethyl-3-thiophen-2-yl-isoxazolidine (28):  Prepared following the general procedure by 

additional of 2-thienyllithium (3.9 mL of a 1 M solution, 3.9 mmol, 7.2 eq) to isoxazoline 

27 (260 mg, 0.54 mmol, 1.0 eq).  Purification of the crude product by flash 

chromatography (98:2 hexanes:EtOAc) gave 170 mg of 28 as a clear oil in 55 % yield as 

a single diastereomer. 1H NMR: δ -0.08 (s, 3H), -0.02 (s, 3H), 0.00 (s, 3H), 0.04 (s, 3H), 

0.89 (s, 9H), 0.89 (s, 9H), 0.96 (t, 3H, J = 6.8), 1.82 (bs, 1H), 1.96 (t, 1H, J = 12.0), 2.54 

(bs, 1H), 2.62-2.66 (m, 1H), 2.78-2.80 (m, 2H), 3.44 (dd, 1H, J = 9.8, 5.4), 3.59 (t, 1H, J 

= 9.0), 4.16 (d, 1H, J = 7.3), 7.01-7.03 (m, 1H), 7.05-7.06 (m, 3H), 7.16-7.19 (m, 1H), 

7.22-7.25 (m, 2H), 7.36 (d, 1H, J = 4.9); 13C NMR: δ -5.49, -5.43, -4.55, -4.52, 9.52, 

17.94, 18.28, 25.91, 25.93, 30.82, 37.14, 56.73, 64.04, 72.04, 75.20, 84.15, 124.52, 

124.65, 125.69, 126.26, 128.51, 128.89, 139.68, 144.52; HRMS (ESI) calcd for 

[C30H51NO3SSi2 + Na]+: 584.3026, found: 584.3032. 

29 and 30: Prepared according to the general procedure by addition of 2-

methylallylmagnesium chloride (12 mL of a 0.5 M solution in THF, 6.0 mmol, 7.2 eq) to 

isoxazoline 27 (400 mg, 0.83 mmol, 1.0 eq).  A 1.2:1 diastereomeric ratio of products 

was determined by crude 1H NMR.  Purification by flash chromatography (98:2 

hexanes:EtOAc) yielded 190 mg of diastereomer 29 and 160 mg of diastereomer 30, both 

as colorless oils, for a combined yield of 81 %. 

HN O

H
H

OTBS
OTBS

29  

(4R, 5R)-4-Benzyl-5-[(1R)-1,2-bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-(3S)-3-

ethyl-3-(2-methyl-allyl)-isoxazolidine (29): IR: 2928, 2857, 1471, 1254, 1093, 836 cm-

1; 1H NMR: δ -0.17 (s, 3H), -0.13 (s, 3H), -0.06 (s, 3H), -0.04 (s, 3H), 0.81 (s, 9H), 0.84 

(s, 9H), 1.08 (t, 3H, J = 7.7), 1.28-1.36 (m, 1H), 1.70-1.79 (m, 1H), 1.91 (s, 3H), 2.18 (d, 

1H, J = 13.2), 2.36 (d, 1H, J = 13.2), 2.47-2.53 (m, 1H), 2.56-2.64 (m, 2H), 2.97 (dd, 1H, 

J = 12.5, 2.9), 3.34 (dd, 1H, J = 9.5, 5.1), 3.58 (dd, 1H, J = 9.5, 8.1), 4.06 (d, 1H, J = 6.6), 
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4.75 (s, 1H), 4.87-4.88 (m, 1H), 5.34 (bs, 1H), 7.12-7.27 (m, 5H); 13C NMR: δ -5.51, -

5.39, -4.82, -4.43, 9.14, 17.91, 18.31, 24.94, 25.86, 25.95, 26.05, 36.67, 37.55, 53.71, 

64.06, 68.48, 75.70, 76.70, 77.01, 77.33, 85.03, 11.93, 126.32, 128.63, 128.86, 140.25, 

143.92; HRMS (ESI) calcd for [C30H55NO3Si2 + Na]+: 556.3618, found: 556.3615. 

HN O

H
H

OTBS
OTBS

30  

(4R, 5R)-4-Benzyl-5-[(1R)-1,2-bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-(3R)-3-

ethyl-3-(2-methyl-allyl)-isoxazolidine (30): IR: 2953, 2928, 2857, 1471, 1254, 1093, 

836 cm-1; 1H NMR: δ -0.15 (s, 3H), -0.07 (s, 3H), -0.01 (s, 3H), 0.84 (s, 9H), 0.89 (s, 

9H), 1.03 (t, 3H, J = 7.7), 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 1.89 (s, 3H), 2.28 (d, 

1H, J = 13.2), 2.33 (d, 1H, J = 13.3), 2.51-2.68 (m, 3H), 3.02 (dd, 1H, J = 12.5, 2.2), 3.37 

(dd, 1H, J = 9.5, 5.1), 3.49-3.53 (m, 1H), 4.12 (d, 1H, J = 6.59), 4.91 (s, 1H), 5.02 (s, 1H), 

7.16-7.22 (m, 3H), 7.25-7.28 (m, 2H); 13C NMR: δ -5.54, -5.43, -4.73, -4.37, 8.13, 17.90, 

18.27, 24.31, 24.90, 25.91, 25.93, 35.34, 40.54, 53.56, 64.00, 67.81, 75.11, 84.15, 115.89, 

126.24, 128.56, 128.94, 140.26, 141.49; HRMS (ESI) calcd for [C30H55NO3Si2 + Na]+: 

556.3618, found: 556.3615. 

N O
O

H
H

S

31

O

CBz

 

(3R, 4R, 5R)-4-Benzyl-3-ethyl-3-thiophen-2-yl-isoxazolidine-2,5-dicarboxylic acid 2-

benzyl ester 5-methyl ester (31): Isoxazolidine 28 (67 mg, 0.12 mmol, 1.0 eq) was 

treated according to the general procedure to yield 34 mg of 27 as a clear oil in 61% 

yield.  IR: 2950, 1710, 1454, 1327, 697 cm-1; 1H NMR: δ 0.93 (t, 3H, J = 7.2), 2.09 (d, 

1H, J = 14.3, 9.6), 2.14 (dd, 1H, J = 14.1, 7.0), 2.40-2.49 (m, 1H), 2.54 (dd, 1H, J = 14.5, 
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5.5), 3.26-3.33 (m, 4H), 4.41 (d, 1H, J = 9.4), 6.91 (dd, 1H, J = 3.9, 1.2), 6.93-6.96 (m, 

3H), 7.00-7.02 (m, 2H), 7.07-7.09 (m, 1H), 7.11-7.14 (m, 2H), 7.15-7.18 (m, 3H), 7.31 

(dd, 1H, J = 5.1, 1.2);  13C NMR: δ 7.66, 29.18, 34.14, 52.34, 53.73, 67.51, 71.17, 78.94, 

124.84, 125.04, 126.69, 126.77, 127.96, 128.03, 128.34, 128.39, 128.82, 137.38, 145.18, 

169.53; HRMS (ESI) calcd for [C26H27NO5S + Na]+: 488.1508, found: 488.1507. 

N O
O

H
H

32

O

CBz

 

(3S, 4R, 5R)-4-Benzyl-3-ethyl-3-(2-methyl-allyl)-isoxazolidine-2,5-dicarboxylic acid 

2-benzyl ester 5-methyl ester (32): Isoxazolidine 29 (43 mg, 0.08 mmol, 1.0 eq) was 

treated according to the general procedure to yield 19 mg of 32 as a clear oil in 54% 

yield.  IR:  3468, 2923, 2852, 1695, 1455, 1348, 1115cm-1; 1H NMR: δ 0.93 (t, 3H, J = 

7.3), 1.65-1.72 (m, 1H), 1.76 (s, 3H), 2.31-2.38 (m, 1H), 2.41 (d, 1H, J = 14.2), 2.66 (d, 

1H, J = 13.7), 2.93 (dd, 1H, J = 13.9, 10.0), 3.02 (dd, 1H, J = 13.7, 5.4), 3.19-3.23 (m, H), 

3.40 (s, 3H), 4.44 (d, 1H, J = 9.3), 5.11 (d, 1H, J = 12.2), 5.19 (d, 1H, J = 12.2), 7.22-7.25 

(m, 3H), 7.30-7.43 (m, 7H); HRMS (ESI) calcd for [C26H31NO5 + Na]+: 460.2100, found: 

460.2093. 

 

(3R, 4R, 5R)-4-Benzyl-3-ethyl-3-(2-methyl-allyl)-isoxazolidine-2,5-dicarboxylic acid 

2-benzyl ester 5-methyl ester (33): Isoxazolidine 30 (37 mg, 0.07 mmol, 1.0 eq) was 

treated according to the general procedure to yield 17 mg of 33 as a clear oil in 56% 

yield.  IR:  3469, 2924, 2852, 1695, 1455, 1348, 1115 cm-1; 1H NMR: δ 0.95 (t, 3H, J = 

7.6), 1.67-1.74 (m, 4H), 2.02-2.09 (m, 1H), 2.24 (d, 1H, J = 14.6), 2.67 (dd, 1H, J = 13.7, 
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10.7), 2.93 (dd, 1H, J = 13.7, 4.9), 3.03 (d, 1H, J = 14.6), 3.26 (s, 3H), 3.31-3.36 (m, 1H), 

4.28 (d, 1H, J = 9.8), 4.72 (s, 1H), 4.95 (s, 1H), 5.21 (s, 2H), 7.11-7.38 (m, 10H); 13C 

NMR: δ 10.05, 22.53, 23.20, 29.00, 33.67, 36.97, 44.89, 54.50, 6.52, 70.74, 81.20, 

117.13, 17.91, 129.67, 129.72, 130.32, 141.94, 163.91; HRMS (ESI) calcd for 

[C26H31NO5 + Na]+: 460.2100, found: 460.2098. 
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F. Selected 1H NMR spectra 
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