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Chapter 1
Introduction

Exposure to ambient air pollutants has been associated with both morbidityl’2 and
mortality.>® Many studies have shown that ambient air pollutants, at concentrations well
below U.S. EPA and WHO guidelines, can adversely affect fetal growth and
development as well as contribute to acute childhood respiratory-related illness.>>°

The research in this dissertation investigates the effects of criteria and toxic
ambient air pollutants on adverse birth outcomes and childhood respiratory-related
illness, respectively. The research examines the following topics: (1) the effects of
criteria air pollutants on adverse birth outcomes, as adjusted for race, smoking and social
economic status (SES) and long-term trends in pollutant concentrations; (2) the effects of
multiple pollutants, modeled as source classes, on acute respiratory-related illness among
children; (3) the evaluation of the reproducibility of air toxic data and different methods
to handle missing air quality data for health effects studies; and (4) the use of receptor

modeling for deriving source class contributions as pollutant exposure indicators for

health effect studies.

1.1 Dissertation organization

This dissertation is organized into five chapters and two appendices. This chapter
(Chapter 1) summarizes the current literature for the main topics of the research, and
presents the objectives and hypotheses. Chapters 2 through 4, the research chapters, and
Appendix 1 have been written as stand-alone sections, in anticipation of submission to

journals as article manuscripts.* Chapter 2 investigates the association

" Chapter two has been submitted, and chapter four has been published.



between exposures to criteria air pollutants and adverse birth outcomes. Chapter 3
investigates associations between exposures to air toxics, identified as different source
classes, and emergency department (ED) visits for respiratory problems among children.
Chapter 4 examines the reproducibility of air toxics data and evaluates two imputation
methods in handling missing air quality data. Chapter 5 summarizes the findings of all of
the research questions. Appendix 1 identifies source classes of air toxics data using
receptor modeling. The apportionment results are used as exposure estimates in the third
objective described in Chapter 3. Finally, Appendix 2 is the published paper based on
Chapter 4.

1.2 Background

1.2.1 Ambient air pollutants

The 1990 Clean Air Act Amendments focused attention on two classes of air
pollutants: criteria pollutants and hazardous or “toxic” air pollutants (HAPs). Criteria
pollutants, which have been routinely monitored and regulated for many years, include
particulate matter (PM), sulfur dioxide (SO,), nitrogen dioxide (NO,), ozone (O3), carbon
monoxide (CO) and lead (Pb). In contrast, monitoring and regulation of HAPs are still in
their infancy. Although there are an estimated 189 HAPs, U.S. EPA (1998) focuses on a
subset of 33 pollutants called urban air toxics (UATs).7 UATs include several classes of
pollutants: volatile organic compounds (VOCs), very volatile compounds, semivolatile
organic compounds, metals, and mixtures. Monitoring of UATsS is relatively uncommon
and typically only a few pollutants are measured on an intermittent basis. This study
focuses on selected short term health effects of the UATS, specifically acute respiratory-
related illness among children, and several long term health effects, specifically adverse

birth outcomes, of the criteria air pollutants.

1.2.2 Air pollution and adverse birth outcomes

Many studies have examined the relationship between air pollutants and adverse
birth outcomes (Table 1). Associations between criteria air pollutants and low birth
weight (LBW; birth weight < 2500g) have been studied more extensively than other birth

outcomes, such as small-for-gestational-age (SGA; birth weight <10™ percentiles by



gestational age and sex) and preterm (PTB; birth < 37 gestational weeks) births. Only

three studies examined SGA directly® '

, although five other studies have examined intra
uterine growth restriction (IUGR), in which SGA is a measure of IUGR.''" Tn the U.S.,
the only studies on SGA or IUGR measures were conducted in California, and they
obtained inconsistent results.'"> For the sample taken across the entire California
population, exposure to PM; 5 was positively associated with SGA, and exposure to CO
was negatively associated with SGA." However, in the southern California sample,
exposures to CO, NO,, O3, and PM,( were not associated with [UGR (a SGA measure).15
For PTB, associations with SO, and PM, are fairly well established, while results are
inconsistent for CO and N02.8’“’13’15 22

The strength of these relationships differs dramatically between studies, which
constitutes a major weakness in the current literature. For example, three California
studies examined the association between CO and LBW and obtained varying results: the
early study (1975-1987) with 24-hr inter-quartile range exposures between 1.2 to 1.4 ppm
reported no effect for all trimesters of pregnancyls; a later study (1989-1993) with
relatively high CO exposures (3-hr trimester average >5.5 ppm versus <2.2 ppm) showed
increased risk of LBW among mothers residing within 3.2 km of air quality monitors in
single pollutant models>; and the latest study (1994-2000) in the same area showed
effects with much lower CO exposures (third trimester mean of 1.4 ppm).21 Positive CO-
LBW associations have been shown in studies conducted in the northeast U.S.** and
South Korea® ’26, but not in Taiwan”, Nevada, U.S. 2 and Vancouver, Canada."® The
literature examining LBW with respect to NO, and PM( exposure is also inconsistent.
Two Korean studies*** found positive NO,-LBW associations, but this was not seen in
studies from southern Califomials, Taiwan®’ and Vancouver."> Positive PM,o-LBW
associations were found in one southern California study®' and in a South Korea study”,
but not in another southern California study15 , northeast U.S.24, and Taiwan.”’

There are several possible reasons for these mixed results. First, the studies
differed with respect to exposure concentrations of air pollutants, periods over which
measurements were averaged, and cut-off concentrations. As examples: the northeast
U.S. study compared CO exposures above and below 1.46 ppm; the Korean studies

examined 0.5 and 4.2 ppm changes in 24-hr exposures; the Nevada study used tertiles of



8-hr exposures (<0.6, 0.6-1.4, and >1.4 ppm); and the Taiwan study used three
categorical 24-hr exposures that reached very high levels (<1.3, 1.3-15, >15 ppm). Given
that CO-LBW associations have been found at both low and high concentrations, other
factors may better explain study outcomes. A second inconsistency among the studies is
the control of covariates and potential confounders. Among the nine CO-LBW studies,

only three'>**?*

controlled for maternal smoking, a well-known risk factor. Only three of
the ten SO,-LBW studies”****" adjusted for maternal smoking status. A third difference
between the studies is the control of long term trends in pollutant exposures. In the single
study examining long term trendszg, the SO,-LBW and PMo-LBW associations lost
significance when adjusted for trend in the models. A fourth difference is the varying
exposure windows used by different studies. For example, exposures to SO, in all three
trimesters were associated with increased risks of LBW reported in the Czech Republic
and South Korea studies“’%; however, such risks were found only the first month of
pregnancy in Vancouver'”, the first trimester in South Korea®, the second trimester in
northeast U.S.*, and the third trimester in Beijing, China.”!

Yet another problem arises from the ways in which multiple pollutant models,
which are key to understanding the effects of simultaneous exposure to several pollutants,
are constructed across studies. A recent California study found a positive CO-LBW
association in a single pollutant model but a positive PM;(o-LBW association in a multi-
pollutant model (CO, NO,, O3 and PMlo).21 A final problem arises from temporal and
geographic variability of the studies. Not only can pollutant compositions and
concentrations differ geographically, decreases in SO, and CO over the past few decades
mean that findings from earlier studies with higher pollution levels may not represent the
health effects for current levels of exposure. Similarly, rates of LBW, PTB and term
SGA births have declined in the U.S., possibly due to trends in ambient pollutant levels
or individual risk factors.*"*>*3%%

In summary, the inconsistent strength of associations across studies may reflect
methodological differences including exposure misclassification (e.g., distance to air
monitoring site), and biases related to study duration (e.g., long-term trend), model

structure (e.g., single versus multiple pollutant models), and the measurement and control

of confounding factors (e.g., smoking, SES). Additional research on adverse birth



outcomes at recent and current levels of air pollutant exposures for different populations,

including minority populations, is needed to address these gaps in the literature.

1.2.3 Air pollution and acute childhood respiratory-related illness

Associations between criteria air pollutants and exacerbation of childhood asthma
are fairly well established.>** Given the lack of data, associations concerning HAPs,
however, have received minimal attention. There are even fewer studies investigating
associations between air toxics and acute respiratory-related illness among children and
minority populations.®

Those studies that have examined linkages between HAPs and respiratory-related
illness have been conducted mainly in occupational settings where exposure levels are
much higher than ambient levels.***° A review found that although solvent-mediated
respiratory toxicity was biologically plausible, occupational epidemiologic studies were
unable to demonstrate respiratory symptoms or changes in pulmonary function associated
with organic solvent exposure.*' This was due to the nature of cross sectional study
designs, the failure to adequately account for mixed exposures, potential response biases
(i.e., past exposures) and the absence of exposure data.

Among the few non-occupational studies of children’s exposure to HAPs, the
focus has been primarily on single pollutant analyses, although most exposures occur as
mixtures. For example, in Germany, exposure to benzene estimated within 50 m radius
of a child’s home was associated with asthma, wheezing and coughing, even after the
adjustment for environmental tobacco smoke (ETS) at the child’s residence.*? Another
study of German children also found an increased prevalence of morning cough and
bronchitis associated with a 1 pg/m’ increase in benzene exposure.” Furthermore, a
study in Belfast (Northern Ireland) concluded that benzene was the only pollutant
associated with emergency-department asthma admissions.** The study considered
benzene and other criteria pollutants (SO,, PM;o, O3, NOy, NO, NO, and CO) but did so
only in two-pollutant Poisson regression models. These models may have failed to
capture exposure of mixtures which then lead to the inability to determine the

independent association between benzene exposure and asthma admission.



In the U.S., few studies have examined toxic exposures and respiratory-related
problems among children. In West Virginia, a 10 pg/m’ increase in petroleum-related
compounds (toluene, m,p-xylene, benzene, o-xylene, decane) was associated with
bronchitis, persistent wheezing, asthma, lower respiratory symptoms, and chronic lower
respiratory response.”> The same study found that a 2 pg/m’ increase in process-related
compounds (1,1,1-trichloroethane, carbon tetrachloride, 1-butantol, chloroform,
perchloroethylene, methyl isobutyl ketone, etc) was associated with lower respiratory
symptoms and chronic lower respiratory response in fifth grade children. In a more
recent study, exposures to outdoor polar VOCs in the previous two days were associated
with hospital/emergency-room visits due to asthma among Atlanta children 18 years and
under.*® In Los Angeles, ambient petroleum-related VOCs (toluene, m,p-xylene, o-
xylene, and benzene) measured on the same person-day as breath VOCs were associated
with mild asthma symptoms in Hispanic children.*” However, the study concluded that
only ambient benzene was associated with asthma symptom episodes; therefore, ambient
measurements may serve as better indicators of true causal air pollutants in ambient air
than breath VOCs, which may less accurately reflect pulmonary doses during the time
frame relevant to acute responses.

All of these U.S. studies attempted to identify the source classes of air toxics in
their study designs; however, using total concentrations and grouping compounds (i.e.
sum of related compounds) as one single source class might not be representative of the
actual sources. Individual compounds can be emitted from different sources. For
example, ambient formaldehyde is formed from multiple sources, including
photochemical oxidation of VOCs present in vehicle exhaust, incomplete combustion of
gasoline and diesel fuels, and other combustion processes (e.g. burning of forests,
cigarettes, and coal).*® Source-resolved exposure estimates, in which the major sources
are identified and quantified, are needed to address this gap. Recent panel studies have
shown that the use of source apportionment methods for particulate matter can yield

robust results in epidemiological alnallyses‘m'51

, suggesting that there is significant
potential in using apportionment results as exposure measures in epidemiological

investigations. (Information regarding source apportionment is described in Section 1.2.5



and Appendix 1.) Currently, only a few studies have investigated associations between

source contributions of air pollutants and health effects.”' >

1.2.4 Quality of ambient air quality data

Quality assurance (QA) issues are frequently encountered in ambient air quality
datasets. These issues tend to be especially important for UATs, more so than for criteria
air pollutants, for several reasons. First, air toxic measurements may reflect low
concentrations that fall below method detection limits (MDLs). For some species,
concentrations may rarely, if ever, exceed the MDLs. Such ‘sparse’ data patterns can
occur because a specific toxic pollutant simply may not be present or because the MDL is
too high to allow frequent detection.”® This situation rarely occurs for criteria pollutants,
both because these pollutants are ubiquitous due to emissions from numerous sources,
and because monitoring instruments have been highly refined and are very sensitive.

Second, high concentration values may be encountered on occasion, even for
rarely detected pollutants. These detections (or “hits””) may be real and significant, or
they may be false positives due to contamination, chemical reactions forming artifacts on
the sampling adsorbent, interferences, chromatographic shifts, laboratory errors, or some
other reason. Third, it is difficult to characterize the measurement precision and accuracy
for commonly-detected toxic pollutants, and exceedingly difficult for rarely detected
pollutants. Compared to criteria pollutants where relative precisions and accuracies are
well-characterized and in the 10% range (or lower), the few available estimates for air
toxic suggest much greater variability.”

Historically, air monitoring data have been collected for compliance and
regulatory purposes, but with the growing importance of environmental epidemiology,
such data now serve multiple purposes. Given that quality assurances checks (instrument
flow, zero and span checks) and calibrations require that instruments must be taken off-
line, another issue concerning air quality data is missing data due to these planned events.
Further, other pollutants are monitored intermittently, e.g., many particulate matter and
toxics measurements are collected only every third or sixth day. Missing data can cause
problems in environmental epidemiological studies that attempt to link air pollution and

health effects as models in these studies generally require complete data sets.



A range of methods for handling missing data are available but their application
to air pollution applications remains limited. Most applications have been in models
aimed at pollutant forecasts and often for compliance purposes. For example, forecasting
ground level O3 is motivated by numerous studies reporting increased in mortality rates™"
>% Juring episodes of high ground level ozone concentrations as well as associations
between acute respiratory symptoms in children and summer air pollution.” This type of
forecasting information is aimed at warning the public to avoid exposure to unhealthy air
and to encourage people to voluntarily reduce activities (e.g., driving cars to work) that
emit precursor substances (e.g., Oxides of nitrogen; NOy). While epidemiological studies
require year-round and continuous measurements of air pollutants, forecasting focuses
only on specific seasonal periods with high level of pollutants (e.g., summer smog). In
the U.S., monitoring of Os is required during “high” ozone season (April to September);
therefore, O3 data is not available for the other half of the year.

The most common approach to handle missing data and values below MDLs is
the use of ad hoc single-imputation (SI) method.® This method replaces the fully
missing values with a single value, such as a sample mean of the fully observed data for
that variable. SIis simple and allows the use of the standard analysis methods for
complete data. However, SI methods do not account for imputation uncertainty,
representing a significant disadvantage.®’ Thus, standard errors estimated from imputed
data are systematically underestimated, and statistical inference is biased by erroneously
small p-values and narrow confidence intervals.”'

Another technique in handling missing data is multiple imputation (MI)
technique, first proposed by Rubin (1987).2 MI has been shown to yield valid statistical

L5 Here,

inferences, shares the advantages of SI, and corrects for the disadvantages of S
each missing value is replaced with a vector of m > 2 plausible values resulting in m
datasets, each of which is analyzed using standard complete-data software to yield
“complete-data” statistics.®® Although MI methods were first developed for social
science studies to minimize the bias in the study inference, its application in other
research areas, specifically air pollution epidemiology, is growing.

Evaluations of the above techniques have been very limited. A summary of

techniques to deal with missing data (as well as forecasting) in air pollution research is



shown in Table 2. For example, one study evaluated imputation methods, including SI
and MI methods, for criteria air pollutions (NOy, NO,, O3, PMj, SO,, and CO) in
Helsinki and Belfast for the year 1998.% The study suggested that SI methods
underestimated the error variance of missing data while MI methods considerably
improved accuracy. Better performance was obtained using the MI procedure which
accounts for the uncertainty associated with the missing data. In contrast, SI procedures
do not account for this uncertainty.61 Currently, few studies have addressed the problems
of quality assurance and missing air toxics data, a prerequisite for obtaining unbiased

results in health effect studies.

1.2.5 Receptor modeling

Receptor modeling (RM) utilizes monitoring information to identify and quantify
the contributions of emission sources (or classes of emission sources) that are responsible
for observed pollutant levels monitored at the “receptor.” While receptor models have
been widely used for particulate matter, relatively few applications have been reported
for VOCs and carbonyls.®”® Fewer still have used receptor models in epidemiological
investigations, in which the derived source contributions or composite scores from the
receptor model are used as exposure measures in the same or similar statistical
framework used to associate exposure measures with health outcomes.*’

Epidemiologic studies using source-apportioned exposure measures from RM are
potentially attractive for several reasons: they offer increased statistical power since the
exposure measures may be more strongly associated with health impacts; the correlation
in the larger data set is used to derive a smaller number of robust exposure measures; and
they offer enhanced biological plausibility and relevance of the exposure measure. Most
air pollutants originate or are derived from many emission sources and most sources emit
multiple pollutants. Thus the toxicity of the exposure mixture can vary. Focusing on
source types rather than simply selected pollutants may lead to better assessments of
impacts as well as enhance the ability to implement effective interventions. These

outcomes are advantageous to both regulatory and health service agencies.



1.3 Research hypotheses

This research evaluates several methods to improve exposure estimates of air
pollution epidemiological studies. The methods are then applied to exposures in the
Detroit metropolitan area to determine adverse effects on birth outcomes and acute
respiratory illness in children. This research addresses the following topics. First,
associations between criteria air pollutants and the frequency of several adverse birth
outcomes are examined. Second, multivariate receptor models are used to derive source
apportionments as exposure estimates to investigate associations with respiratory illness
in children. Third, statistical approaches to handling missing air quality data as well as
the reproducibility of air toxics are evaluated.

The research tests the following three hypotheses:

1. Exposure to ambient air pollutants, including CO, NO;, PMy and SO, is
associated with low birth weight (LBW), small-for-gestational-age (SGA) and preterm
birth (PTB) in Detroit, Michigan. As mentioned, recent epidemiological studies that
have attempted to link adverse birth outcomes and criteria air pollutants have yielded
inconsistent results. This research helps to address this gap in the literature as well as to
investigate several key topics, including the effects of long term trends, maternal race,
smoking and SES on the associations of air pollutants and adverse birth outcomes.

2. Exposures to ambient air toxics, identified from different source classes, are
associated with emergency department visits for respiratory-related illness among
Medicaid children in Dearborn, Michigan. As noted, most ambient air pollutant health
effect studies have focused on single pollutant models, although two or three pollutant
models have been used to help account for mixtures of air pollutants. The work in this
hypothesis is aimed at deriving exposure estimates that can potentially represent many
related compounds and their sources.

3. Methods to evaluate, clean, impute and otherwise enhance the reproducibility
of air toxics data are essential prior to its use in apportionment, exposure and health
effect studies. This hypothesis is aimed at evaluating two imputation approaches, SI
(optimal linear estimation; OLE) and MI using a comprehensive set of performance

indicators. In addition, the reproducibility of air toxics data is examined.

10



1.4 Importance and novelty

This research addresses several important gaps in the current literature regarding
the adverse health effects of ambient air pollutants, including reproductive health and
acute respiratory related illness. This study is one of the few studies in the U.S. that
examines the relationship between all three adverse indicators of reproductive health
(LBW, PTB and SGA) and ambient air pollutants using both single and multiple pollutant
models, and accounting for the effects of race, long-term trends, smoking and SES
simultaneously. Previous studies rarely focus on SGA and very little on PTB in
comparison to LBW. In addition, only one study (from Nova Scotia, Canada®) has
evaluated effects of long-term trends in associating criteria pollutants with adverse birth
outcomes. There is a need for this type of evaluation given that both levels of outdoor air
concentrations and rates of adverse birth outcomes have been declining, due to stricter
regulations, better health care, and possibly other reasons. Further, effects of race,
smoking and SES on the associations between air pollutants and adverse birth outcomes
have not been examined extensively in currently literature due to the homogeneity of the
studied population and lacking of individual level information in the previous studies.

As noted earlier, much of the research on air toxics and adverse health outcomes
has been based on occupational settings that might not reflect actual exposures of the
general population, especially for children. Furthermore, there are few if any
epidemiological studies that have focused on air toxics, much less apportionments
derived using air toxics data, despite considerable promise and advantage of this
approach. Linking exposures to air toxics in terms of source classes derived from
receptor models can help to improve the effectiveness of both public health interventions
and policy implementations. This study is novel in that not only does it examine
associations between UATSs exposures and acute respiratory-related illnesses in children,
but it does so using apportionments, source classes, and receptor modeling.

Finally, issues associated with quality assurance and missing air pollutant
exposure data have been only rarely addressed. Such issues can influence both the design
and interpretation of air pollution exposure and epidemiological studies. Inadequate

treatment of missing values may bias inferences in epidemiological studies. It is believed
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that research findings evaluating the reproducibility of air toxics data and the

performance of imputation methods will have numerous applications in the field.
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Table 1-1. Summary of the literature on adverse birth outcomes

First Year Study design Outcomes Pollutants Exposure Exposure Covariates Findings
author (duration, windows categories
site)
Xu 1995 Prospective PTB SO,, TSP  Entire Quartiles; 100 Quntiles of weather covariates Increased odds of PTB for SO, and TSP exposures
cohort (1988, pregnancy ug/m3 1 TSP; In (temperature, humidity), day of the week, (continous exposure measures)
Beijing) u g/m3 180, season, residential area, maternal age,
and infant sex
Wang 1997 Ecological Term TSP, SO, Trimesters Quintile; 100 gestational age, season, residential area, Increased odds of LBW for highest quintiles and for
(1988-1991,  LBW (37- pg/m3 1 TSP and maternal age, infant gender each 100 pg/m3 1 in TSP or SO, exposures; and for
Beijing) 44 wk) SO, 4th quintile of SO, exposure
Bobak 1999 Ecological LBW NO,, SO,, Trimesters IQR Births outside marriage, abortions, Increased odds of LBW for SO, exposure in both
(1986-1988, TSP divorces, mean income, mean savings,  single and 3 pollutant models; No effects found for
Czech people per car NO, and TSP
Republic)
Dejmek 1999 Ecological IUGR PM;,, Months Tertiles Maternal height, prepregnancy weight,  Increased odds of IUGR for PM,, (2nd and 3rd
(1994-1996, PM, 5 completed high school, currently married, tertiles) and PM, 5 (highest tertiles) exposures
Teplice Dist, month-specific smoking habits, year, and
N. Bohemia ) season
Ritz 1999 Ecological Term CO Trimesters <2.2,2.2-5.5, Gestational age, maternal age, race, Increased odds of LBW for CO (>5.5 vs. <2.2 ppm;
(1989-1993, S. LBW (37- >5.5 ppm CO education, parity, interval before previous last trimester) exposures among subjects living
California) 44 wk) birth, prenatal care, infant sex within 2-5 miles radius of air monitoring sites
Bobak 2000 Ecological LBW, NOy, SO,, Trimesters 50 u g/mST NO,, maternal age, education, marital status,  Increased odds of LBW for SO, (all trimesters) and
(1990-1991,  PTB, TSP SO, and TSP;  race/ethnicity, parity and birth month TSP (1st & 2nd trimesters) exposures; and of PTB
Czech IUGR for SO, (all trimesters) & TSP (1st trimester)
Republic) exposures; [IUGR was not associated with any
pollutants; No effects found for Nox; Significant
effects for LBW were removed after adjustment for
gestational age
Ritz 2000 Ecological PTB (26- CO,NO,, Istmonth, Quartiles Maternal age, race, education, parity, Increased odds of PTB for CO (1st month and last
(1989-1993, S. 44 wk) 05, PM,, last 6th interval since previous birth, prenatal 6th week) and PM,, (last 6th week) exposures.
California) week care, infant sex, previous low weight or ~ Results were site dependent
preterm births, and tobacco smoke during
pregnancy
Rogers 2000 Case-control VLBW TSP+SO, Annual Percentiles (50, Race, Toxemia, smoking status, maternal Increased odds of VLBW for SO,+TSP (>95 vs. 50)

(1986-1988,
Georgia)

50-75, 75-95,
>95)

weight gain, maternal age, prenatal care, exposures
income, mother's education, father's

education, drug use, infant sex, alcohol

use. stress.
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Table 1-1 (Cont.)

First Year Study design Outcomes Pollutants Exposure Exposure Covariates Findings
author (duration, windows categories
site)
Ha 2001 Ecological Term CO, NO,, Trimesters IQR Gestational age, maternal age, parental  Increased odds of LBW for CO (1st trimester), NO,
(1996-1997, S. LBW (=37 04, SO,, education level, parity, gender (1st trimester), O5 (3rd trimester) and SO, (1st
Korea) wk) TSP trimester) exposures; No effects found for TSP
Maisonet 2001 Ecological Term CO, SO,, Trimesters 1ppmf CO; 10 Gestational age, gender, birth order, Increased odds of LBW for CO (1 ppm 1, 3rd
(1994-1996, LBW (37- PM,, pg/m3 1 PM,,; 10 maternal age, race, yrs of education, trimester), PM;, (=95 vs. <25, 1st & 2nd trimesters)
N.E. US) 44 wk) ppm 1 SOy; marital status, prenatal care, previous and SO, (25-50, 50-75, 75-95 vs. <25, 2nd
Percentiles (<25, abortions, weight gain during pregnancy, trimester) exposures; LBW was inversersly
25-50, 50-75, 75- maternal prenatal smoking, and alcohol  associated with SO, exposure (295 vs. <25, 2nd
95,>95) consumption. trimester)
Chen 2002 Ecological Term PM,y, CO, Trimester, Percentiles (<10, infant sex, maternal residential, LBW was not associated with any pollutants
(1991-1999, LBW (37- O, entire 10-90, >90) education, medical risk factors, tobacco
Nevada) 44 wk) pregnancy use, drug use, alcohol use, prenatal care,
mother's age, race, and weight gain of
mothers
Lee 2003 Ecological Term CO, NO,, Trimesters, IQR change Infant sex, birth order, maternal age, Increased odds of LBW for CO (1st trimester &
(1995-1998, S. LBW (37- SO,, PM,, entire parental education, time trend and entire pregnancy), NO2 (2nd trimester), SO2 (2nd
Korea) 44 wk) pregnancy gestational age trimester & entire pregnancy), and PM10 (entire
pregnancy) exposures
Liu 2003 Ecological Term (37- CO, NO,, months & 1ppm 1 CO; 10 Maternal age, parity, infant sex, birth Increased odds of LBW for SO, exposure during 1st
(1985-1998,  42) LBW, 04, SO, trimesters  ppb 1 NO,; 5 ppb weight, and season of birth month, of PTB for SO, and CO exposures during
Vancouver,  IUGR, 1 S0, last month, and of IUGR for SO,, CO and NO,
Canada) PTB exposures during 1st month
Gouveia 2004 Cross sectional Term SO,, PM,, Trimesters Quartiles; 1 ppm infant sex, gestaional age, maternal age, Increased odds of LBW for PM,, (highest quartile)
(1997, Brazil) LBW NO,, O,, 1 CO; 10 pg/m’ 1 education, antenatal care, parity, type of ~exposure during 2nd trimester; Inverse associations
(=37wk) Co in PM,, and SO, deliveries were found for 2nd quartile of SO, (1st trimester)
and O; (3rd trimester) exposures
Lin 2004 Ecological Term CO, NO,, Trimesters; Categorical: low, Gestational age, gender, birth order, Increased odds of LBW for SO, (high & med vs.
(1995-1997, LBW (37- 04, SO,, entire medium, high maternal age, educational level, birth low, entire preg.), for SO, (high vs. low, 3rd
Taiwan) 44 wk) PM,, pregnancy season, concentrations of other air trimester); Inverse association between LBW and
pollutants; (1.4 to 3.3 km radius around  CO (high vs. low, entire preg.)
air monitoring sites)
Salam 2005 Ecological Term 0;,NO,, Months, CO:1.4ppm1{; Maternal age, months since last live birth, Increased odds of LBW for O; exposures during 3rd
(1975-1987,  LBW (37- CO,PM,, trimesters, Oj: 16-33 ppm ?; parity, maternal smoking status, SES, trimester; No associations found for IUGR with any
Southern 44 wk), entire PM,,: 20 I-lg/m3 1 marital status, gestational diabetes, infant pollutants.
California) IUGR pregancy sex, race/ethnicity, and schoold grades,

seasonal terms (6) with b-spline.
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Table 1-1. (Cont.)

First Year Study design Outcomes Pollutants Exposure Exposure Covariates Findings
author (duration, windows categories
site)
Mannes 2005 Ecological SGA CO, NO,, Last Continuous (1 Maternal age, smoking, indigenous status, Increased odds for SGA ( (>2 SD below the mean
(1998-2000, O,, PM, s, month, unit increase) SES, gestational age, parity and season of birth weight) for NO, and PM, 5 exposures during
Sydney, PM,, trimesters birth 2nd trimester
Australia)
Parker 2005 Ecological SGA (40 CO,PM,s Trimesters Quartile Maternal race, education, marital status, Increased odds of SGA for PM, 5 exposures during
(California) ~ wk) age, parity, and season of delivery all trimesters; CO was inverserly associated with
SGA.
Sagiv 2005 Time series PTB (20- SO,, PM,, Last6th  Quartile Long-term trends in PTB and weather Increased odds of PTB (<36 wk) for PM,, and SO,
analysis (1997- 44 wk) weeks exposures
2001,
Pennsylvania)
Wilhelm 2005 Ecological Term CO, NO,, Trimesters Quartile; 1 ppm T Maternal age, infant sex, maternal Increased odds of LBW for CO (d<I mi, >75th vs.
(1994-2000) LBW (=37 0,4, PM,, CO; 10 pg/m3 1 race/ethnicity, prenatal care information, <25th), CO (2<d<4 mi, 1 ppm 1), CO (0<d<2 mi, 1
wk) PM,; 0< maternal education, birth season, ppm?), CO (0<d<2 mi, 50th-75th vs <25th), CO
Distance (d) <4 Previous LBW, interval since previous  (0<d<2 mi, >75th vs <25th) and PM;, (d<1 mi)
mi live birth exposures; In 3-pollutant models (PM,,, CO, Oy),
only PM;, (d<1 mi) was associated with LBW
Dugandzic 2006 Ecological Term 03, S0,, Trimesters Quartile; IQR Maternal age, parity, prior fetal death, Increased odds of LBW for highest quartile of SO,
(1988-2000, LBW (=37 PM,, neonatal death, prior LBW, smoking and PM,, exposures during 1st trimester; Significant
NovaScotia,  wk) status, income, infant sex, gestational age, effects were removed after adjustment for birth year.
Canada) weight change, birth year
Hansen 2006 Ecological Term SGA bsp, NO,, Trimester IQR Gestational age (with quadratic term), No strong evidence suggesting associations between
(2000-03, 0;, PM,, neonate gender, mother's age, parity, SGA and any of these pollutants.
Brisbane, indigenous status, member of antenatal
Australia) visits, marital status, previous
abortions/miscarriages, type of delivery,
index of SEX, season of birth
Hansen 2006 Ecological PTB (>22 bsp, NO,, Trimester IQR (with quadratic term), neonate gender, Increased odds of PTB for PM,, and O; exposures
(2000-03, wk) 0,;,PM, mother's age, parity, indigenous status,  during 1st trimester
Brisbane, member of antenatal visits, marital status,
Australia) previous abortions/miscarriages, type of

delivery, index of SEX, season of birth
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Table 1-1. (Cont.)

First Year Study design Outcomes Pollutants Exposure Exposure Covariates Findings
author (duration, windows categories
site)
Huynh 2006 Matched case- PTB (24- CO, PM,s First Quartiles; 1 ppm maternal age, race/ethnicity, education, Odds of PTB increased for PM, 5 exposures (all
control (1999- 44 wk) month, last 1CO;10p g/m3 marital status and parity exposure windows and measures) but not for CO
2000, S. 2 weeks, 1 PM, 5 exposures.
California) entire
gestation
Leem 2006 Ecological PTB CO,NO,, First& Quartiles maternal age, parity, sex, season of birth, Increased in odds of PTB for CO, NO,, SO,, and
(2001-02, SO,, PM,, third education level of both parents PM,, exposures during 1st trimester, and of PTB for
Incheon, trimesters CO and NO, exposures during 3rd trimester
Korea)
Bell 2007 Ecological LBW (32- CO,NO,, Trimesters IQR, county Gestational length, prenatal care, type of Increased odds of LBW for CO (1st & 3rd
(1999-2002) 44 wk) SO,, PM,,, averages delivery, child's sex, birth order, weather, trimesters), NO, (1st trimester), SO, (1st trimester),
PM, 5 year, and mother's race, education, PM,, (3rd trimester) and PM, 5 (2nd & 3rd
marital status, age and tobacco use trimesters) exposures; Effect estimates for PM2.5
were higher for infants of balck mothers than those
of white mothers
Liu 2007 Ecological IUGR CO, NO,, Months, 1 ppb 1 CO;20 Maternal age, parity, infant sex, season of Increased odds of IUGR for CO, NO, and PM, 5
(1985-2000, SO,, O;, trimesters ppb T NO,; 3 ppb birth, residence of city exposures during all trimester in single pollutant
Calgary, PM, 5 1 S0,; 15 ppb 1 models; In 3-pollutant models (CO, NO, and
Edmonton and 03,10 g/m3 PM, 5), only CO exposures were associated with
Montreal) PM, IUGR
Ritz 2007 Case-control PTB CO, NO,, st Categorical: 5 Birth season, parity, mother's age, race, Increased odds of PTB for CO (1st trimester & last
(2003, S. O;, PM, trimester, even spaced education, and covariates from 6th month) and PM, 5 (1st trimester) exposures
California) last 6th intervals environment and pregnancy outcomes
weeks, survey (active and passive smoking,
entire marital status and alcohol use during
pregnancy pregnancy)

Abbreviations and symbols: bsp, visibility reducing particles; 7, increase; |, decrease; IQR, inter-quartile range; LBW, low birth

weight; [UGR, intra uterine growth restriction; SGA, small-for-gestational-age; PTB, preterm birth; ppm, part per million; ppb, part

per billion; wk, week.



Table 1-2. Summary of methods for estimating and forecasting ozone

Ti Dat:
Input data scl:ll:s b:siz Modelling approach Reference
Daily 8hr trati S . . . .
aily 8hr max OZ(.me COH(?CI.I ration, . Hourly, ummer Hierarchical Bayesian McMillan et
temperature, relative humidity, pressure, wind dail season modelin al. 2005
speed, wind direction y (1999) & ”
8hr (.)mee’ I\.IO’ NOZ’. temp.eratu.re, r.elatlve Generalize additive model  Schlink et al.,
humidity, wind velocity, wind direction, solar ~ Hourly 4 years (GAM) 2005
radiation, day of the week, day length
Multiple imputation, linear,
spline and univariate
nearest neighbour
int lati ion-
Ozone concentration, wind speed, wind Hourl One year Lr;se;g(i)ri lszli’i;igressmn Junninen et
direction, temperature, relative humidity y (1998) . _p ’ al., 2004
multivariate nearest
neighbor, self-organizing
maps, multilayer back-
propagation nets
8hr Ozone concentration, nonlinear term, . Several
. . Daily . .
atmospheric transmittance, trend term (year), max 8-hr years Non-linear regression Cobourn and
relative humidity, daily min. temperature av (1998- model Lin, 2004
departure, wind speed, cloud cover & 2001)
July-
. . K t al.,
Ozone concentration Hourly  March ARIMA modeling umareta
2004
1999
Ozone concentration, CO, NO2, SO2, surface
an_d upper wind direction, surface and upper Hourly 19891999 Fuzzy expert and neural Heo and Kim,
wind speed, surface and upper temperature, network systems 2004
relative humidity, solar radiation,
Ozone concentration Hourl Summer Non-linear dynamical Chen et al.,
y season systems 1998, 2000
o trati Hourl Summer  Grey-box and component  Schlink and
zone concentration ourty season models Volta, 2000
Ozone concentration Hourly Several Attractor embedding Kocaketal,
years 2000
. . Linear regression, Gardner and
Ozone concentration, wind, temperature, Summer . . .
o .. Hourly regression tree, multilayer  Dorling,
pressure, humidity, global solar radiation season
perceptron neural networks 2000a
Dail Tust lysi .
Ozone concentration, wind, temperature, aty Several Clus er_ana ySle . Davies et al.,
ressure, humidity, global solar radiation max., years generalized additive models 1998, 1999
p : . daily avg. (GAM) .
trati 1 t total dail Dail .
OZOHE.: concentra 19n, e?mpera ure, fotal daty aty Several =~ Multilayer perceptron Gardner and
sunshine, mean daily wind speed, vapour max., .
. years neural network Dorling, 1999
pressure, total cloud cover daily avg.
Ozone concentration Hourly Several Neural networks Arena et al.,
years 1998
Ozone concentration, wind, temperature, Hourl Summer  Grey-box stochastic model, Finzi et al.,
pressure, humidity, global solar radiation y season neural network model 1998

17



Table 1-2 (Cont.)

Time Data
Input dat . Modelli h Ref
nput data scales basis odelling approac eference
Ozone concentration, wind, temperature, Hourl Summer  Grey-box stochastic model, Nunnari et al.,
pressure, humidity, global solar radiation Y season neural network model 1998
Ozone concentration, length of the day, day of Daily . . . Hubbard and
. . Summer  Multiple-linear regression
the week, UV-index, previous day Ozone, max., Cobourn,
. . season model
meteorological data daily avg. 1998
Daily Linear time series, artificial
. Several Jorquera et al.,
Pollutants and meteorological data max., neural network, fuzzy
. years 1998
daily avg. models
Ozone concentration, wind, temperature, Hourl Summer Cluster analysis, regression Bel et al.,
pressure, humidity, global solar radiation Y season models 1997
Daily
Ozone concentration, wind, temperature, max. of Summer Neural networks, multiple Comrie. 1997
pressure, humidity, global solar radiation hourly  season regression ’
avg.
Dail L d d
Ozone concentration, wind, temperature, atly Several ong range depen en'ce, Anh et al.,
. L. max., fractional autoregressive,
pressure, humidity, global solar radiation . years . . . 1996
daily avg. fractional co-integration
Ozone concentration, wind, temperature, Daily Several Cluster .analysm? . Anh et al.,
ressure, humidity, global solar radiation max. ears generalized additive models 1996
p : Y-8 daily ave, ¥ (GAM)
Case study . . . .
Pollutants and meteorological data Hourly  for May Egg;c hemical dispersion ISVLTLSISIOII;%I;IO
25th 1990 h
Ozone concentration, conc. of NO and NO2 Hourly  Two years Vector autoregressive Hsu, 1992
1-4
Hourly & months, Batterman
O3 and TSP i i i ’
3 an 24hr high Optimal estimators 1992
ozone
season

Ozone, max. daily temp.

Maximum likelihood,

Davison, 1987
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Chapter 2

Air Pollutant Exposure and Low Birth Weight, Preterm and
Small-for-Gestational-Age Births in Detroit, Michigan: Long-
term Trends and Associations

2.1 Abstract

A growing number of studies have reported associations between ambient air
pollutants and adverse birth outcomes such as low birth weight (LBW), preterm birth
(PTB) and, to a lesser extent, small for gestational age (SGA). These studies have
limitations, including incomplete control of temporal trends in exposure and maternal

smoking and their results are often inconsistent.

The relationship between ambient air pollutants and LBW, SGA and PTB
outcomes among 155,000 singleton births in Detroit, Michigan between 1990 and 2001
was investigated. SO,, CO, NO, and PM( exposures were estimated using
measurements from three air monitoring sites in Detroit and used in single and multiple
pollutant logistic regression models to estimate odds ratios (OR) for these outcomes,
adjusting for the infant’s sex and gestational age; the mother’s race, age group, education
level, smoking status and prenatal care; the birth season; site of residence; and long-term

exposure trends.

SGA was associated with NO, (OR=1.10, 95% confidence interval=1.01-1.19)
and CO (1.14, 1.02-1.27) exposures in the first month and with PM( exposures in the
third trimester (1.22, 1.04-1.44). Maternal exposure to SO, was associated with PTB
(1.07, 1.01-1.14) in the last month and LBW (1.16, 1.04-1.30) in the first month.
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This appears to be the first U.S. study to associate SGA with air pollutant
exposures, and effects were observed at concentrations below current air quality
standards. The study design addresses many of the limitations in the earlier studies, and
it highlights the importance of accounting for long-term trends and individual risk

factors.

2.2 Introduction

Low birth weight (LBW), small for gestational age (SGA) and preterm birth
(PTB) are important indicators of fetal health during pregnancy, as well as predictors of
infant mortality and morbidity.'” Animal studies have shown that exposure to air
pollutant can adversely affect fetal development, and epidemiological studies have
associated air pollutant exposure with adverse birth outcomes, especially LBW. +'2
However, few studies have investigated the relationship between air pollution exposure
and preterm birth (live birth at <37 weeks gestation), and none have examined growth
restriction as indicated by SGA status (birth weights <10" percentile for the same
gestational age).

The literature relating air pollution to birth outcomes has a number of
inconsistencies, which may reflect differences across populations, exposure
misclassification, statistical power issues, confounding, and biases related to study
duration, design, and model structure. Pollutant compositions and concentrations differ
geographically, which can cause study results to differ. Further, given the decreases in
sulfur dioxide (SO,) and carbon monoxide (CO) concentrations over the past few
decades, findings from earlier studies with higher pollution levels may no longer
represent current health impacts. Rates of PTB and term SGA also have declined in the
U.S., possibly due to trends in ambient pollutant levels or individual risk factors,'®11
and these trends must be carefully controlled. Additional research is needed on the health
effects of pollutants at recent exposure levels and to identify critical exposure windows
during pregnancy. '

This study evaluates effects of four ambient air pollutants on adverse birth

outcomes in three industrialized and urban areas in metropolitan Detroit, Michigan. We

use a long study period (1990 to 2001), multiple exposure periods during pregnancy, and
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both SGA and PTB as indicators of adverse birth outcomes. (A parallel analysis for

LBW in the same population is reported in the supplemental materials.)

2.3 Method

2.3.1 Study group, health outcomes, and covariates

The study group consisted of all live, singleton births for mothers living in three
areas (Allen Park, East 7 Mile and Linwood) of Detroit occurring between January 1,
1990 and December 31, 2001. Birth certificate data, obtained from the Michigan
Department of Community Health, were used to determine gestational age, infant sex,
date of birth, maternal age, race, smoking status, education level, and level of prenatal
care, all used as individual-level covariates. Eligible residences were in ZIP codes that
were wholly or partially contained within a 4 km radius surrounding an air quality
monitoring station, based on previous investigations that have shown stronger risk
estimates for subjects living within this distance.'>" The study was restricted to birth
weights 750-4000 g, gestational ages 22-42 weeks, and mothers 16-45 years of age.
Teenage mothers less than 16 years of age are more likely to deliver preterm and to have
cesarean deliveries than mothers 16-19 years of age and adult mothers aged 20 years and
older.” For women 45 years and older, the rate of spontaneous conception is low and the
risk of hypertension is high; and hypertension can complicate pregnancies by restricting
fetal growth and may trigger premature delivery.”’ Births >4000 g that may have resulted
from poorly controlled maternal diabetes,*” and births <750 g that are rarely viable” and
unlikely to be affected by air pollutant exposure were excluded. Gestational age was
based on the date of the last menstrual period (LMP) if available, or the clinically
estimated weeks of gestation. These criteria excluded 21,055 births out of 185,960.

For the study outcomes, a term SGA birth was defined as an infant whose birth
weight fell below the 10™ percentile by sex and gestational week, based on the
distribution of the study population and restricted to gestational ages between 37 and 42
weeks, and a PTB was defined as a birth with <37 weeks gestation. Assessing only term

SGA can avoid the colinearity of multiple outcomes between SGA and PTB.
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2.3.2 [Exposure assessment

We selected three monitoring sites located in densely populated areas that
measured multiple air pollutants over extended periods. These sites are approximately 20
km apart (Figure 2.1). Monitoring was consistent with federal reference methods and
Michigan Department of Environmental Quality protocols.”* CO measurements were
available at the Allen Park and Linwood sites for the entire study period; however, due to
vandalism in July 1997 and quality assurance (QA) issues, CO data at Linwood were
restricted to 1990-1996. SO, measurements were available at each site but only through
1997 at Allen Park. Nitrogen dioxide (NO,) was available for the entire study period at
the East Seven Mile site and at Linwood; however, several periods were omitted due to
QA issues (September 1996 at Linwood, March, April, and September through
November 1997 at East Seven Mile). Hourly measurements falling below method
detection limits (MDL) were replaced by one-half the MDL. Daily (24-hr) averages were
computed from hourly data, and monthly and trimester (3 month) averages were
computed from daily averages. Running monthly and trimester averages were computed
from the every—6th—day PM; measurements at Allen Park. Because ozone (O3) was
monitored only during the high O3 season (April to September), and PM; 5 measurements
(collected every-3"-day) were only available from May 1999 forward, these pollutants
were not used as exposure variables. Daily, monthly, and trimester averages each
required the availability of >75% of all possible measurements, e.g., daily averages
required at least 18 (of 24 possible) hourly values. The gestational period and LMP were
used to estimate exposures for each pregnancy in five time windows: the first and last
months of gestation, and each trimester (using divisions of 1-13 weeks, 14-26 weeks, and

27 weeks to birth).”>
2.3.3 Statistical methods

Adjusted odds ratios (AORs) and 95% confidence intervals (Cls) were estimated
for each outcome and exposure window using logistic regression models. In the case of
PTB, only the first and last months' exposures were examined.>’ Although exposure to
air pollutants for the entire pregnancy have been associated with PTB but stronger

associations were found for the earlier (e.g. first month or first trimester) and the later
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period of pregnancy (e.g. last two weeks or six weeks).”**® SGA and PTB outcomes
were dichotomous variables and pollutant concentrations were expressed in quartiles.
The AORs represent associations for the second, third and fourth quartiles of exposure
relative to the first quartile.

Covariates included infant sex (for PTB), maternal race (Black, White, other),
maternal education level (<12, 12, >12 years), maternal smoking status during pregnancy
(yes/no), use of prenatal care (yes/no), late prenatal care (starting after the fourth month
of pregnancy; yes/no) and residence location (Allen Park, Linwood, East Seven Mile).
To adjust for seasonality, models included variables for birth season, defined as spring
(March-May), summer (June-Aug.), fall (Sept.-Nov.), and winter (Dec.-Feb.). To
examine long-term trends in pollutant levels, a locally-weighted regression smoother was
applied to air pollutant concentrations. To control for potential biases associated with
temporal changes in the study population and environment, models were adjusted for
birth year using consecutive 4-year periods (1990-1993, 1994-1997 and 1998-2001).
Single pollutant models were constructed by pooling data across all sites, with analytic
control for site in the models, and multiple pollutant models were restricted to Linwood
where CO, SO, and NO, were measured. PM;, measured at Allen Park was assigned to
Linwood mothers since PM, concentration gradients in the region are modest.”>*"
Additional analyses stratified by race and maternal smoking status were conducted to
help discern effects arising from both exposures and covariates. ("Other" races were

excluded due to small sample sizes.)

2.4 Results

2.4.1 Study population

The study population included 164,905 eligible births between 1990 and 2001.
Due to missing exposure data, the final sample size was 155,094 (94% of all eligible
births). Infant and maternal characteristics by birth outcome and race are shown in Table
1. Both SGA and PTB outcomes were slightly more common among male births. Race
was associated with many risk factors and outcomes. Whites had fewer births to teenage
mothers (16-19 yrs), fewer mothers who had not completed high school, and more

mothers who had obtained prenatal care. Infants born to Black mothers had an
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approximately 2-fold increased risk of SGA and PTB compared to White mothers.
Maternal smoking was associated with large effects on all the birth outcomes, and White
mothers were more likely to be smokers than Black mothers. Additional results, as well
as the parallel analyses for LBW, are shown in Supplemental Tables S2-1 to S2-17.
Several long-term trends were observed. First, the overall birth rate and rates of
adverse birth outcomes declined, with the greatest change occurring between the 1990-3
and 1994-7 periods (Table 2.1). Second, most but not all risk factors also showed a
downward trend, with some differences by race (Table S2-1). For example, the rate of
teenage mothers declined from 19% in 1990 to 15% in 2001, largely due to decreases
among Black mothers (from 25 to 18%) rather than among White mothers, which were
relatively stable (11.2 to 11.4%). Many of these patterns, e.g., teenage pregnancies and

smoking during pregnancy, followed national trends.”'*

2.4.2 Air pollutant exposures

Exposures for 3-hr CO, 24-hr, first month and first trimester averaging periods are
shown in Table 2.2. (Other periods had similar statistics.) Concentrations were below
the U.S. National Ambient Air Quality Standards (NAAQS), although maximum 3-hr CO
levels (8.8 ppm) approached the 8-hr NAAQS (9 ppm). For SO,, 24-hr levels reached 50
ppb, far below the 24-hr standard (140 ppb). 24-hr and annual NO, levels reached 77 and
26 ppb, respectively, compared to the annual standard of 53 ppb. 24-hr PM; levels
reached 131 pg m™, slightly below the (former) 24-hr standard (150 pg m™).

Over the study period, average concentrations as well as the amplitude of
concentration fluctuations declined for CO and SO, (Figures 2.2a, b), trends not seen for
NO; and PM (Figures 2.2c, d). Considering the monthly pollutant averages used in the
birth outcomes models, we found SO, had low-to-moderate correlation with CO (r=0.35)
and NO; (r=0.27); CO and NO; had low correlation (r<0.27); and PM;( had negligible
correlation with both CO and SO, (r<0.11). The correlation coefficients varied little
across different pregnancy windows (Table S2-2). These correlations are lower than
those reported in other studies, and although they capture only pair-wise relations, they

suggest that colinearity would not be a problem in multi-pollutant models.
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2.4.3 Single pollutant models

Associations between air pollutants and birth outcomes in single pollutant models
are shown in Table 2.3. Multiple adverse birth outcomes, exposure windows and
pollutants were examined. The presentation focused on results that were consistent, e.g.,
associations in which all three quartiles of exposures (2", 3 and 4™) were in the same
direction, either negative or positive, compared to the first quartile of exposure.
Association at the 4™ quartile (highest) of exposure that were statistically significant were
also considered.

CO was positively associated with SGA for all exposure windows, and odds of a
SGA birth increased by 5-20% for women with higher CO levels (>0.56 ppm; 2™ through
4t quartiles). (Table S2-3 shows associations with covariates; Table S2-4 shows air
pollutant concentrations by window and quartile of exposures.) After adjusting for long-
term trends, the statistical significance of CO-SGA associations persisted only for
exposures in the first month at a=0.05. Women in the top quartile of first-month CO
exposures (>0.75 ppm) showed the greatest odds of a SGA birth (AOR=1.14; 95% CI:
1.02-1.27). In analyses stratified by race, the CO-SGA associations in the first month
were stronger for infants of Black mothers compared to that of White mothers (Table S2-
5). In analyses stratified by smoking, the positive CO-SGA associations in the first
month were consistent with the pooled results, although AORs obtained for smokers were
attenuated (Table S2-5).

For SO,, only first trimester exposures showed consistent patterns in increasing
odds of SGA births both with and without trend-adjustments, however, AORs obtained
from trend-adjusted models were attenuated (Table S2-6). The largest AOR of 1.09
(1.00-1.18) was seen for top quartile of first trimester exposure (SO,>6.63 ppb). NO,
was positively associated with SGA for first-month and first trimester exposures and
results did not change after trend adjustment. Odds of SGA births increased by 2-10%
for women with higher NO; levels (>18.7 ppb; o through 4 quartiles). Women with
highest quartile first-month NO, exposures (>23.6 ppb) had the highest AOR of 1.10
(1.01-1.19). Similar NO,-SGA associations were found among infants of Black mothers

and mothers who smoked (Table S2-7).
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Maternal exposure to PM( during all three trimesters was positively associated
with SGA, and the results were unaffected by the trend adjustment. Odds of SGA birth
increased by 1-22% for women with higher PM; levels (>22.8 ug m; 2™ through 4
quartiles). Women with highest quartile third trimester PM, exposures (>35.8 pg m™)
had the strongest increase in odds for SGA birth (AOR=1.22; 1.04-1.44). Similar PM,y-
SGA associations were found among infants of White mothers and non-smoking mothers
(Table 2S-8).

For PTB, SO, exposure only during the last month was positively associated with
PTB, both with and without adjustment of long-term trends. Odds of PTB birth increased
by 7-11% for women with SO, levels >4.5 ppb (2" through 4™ quartiles). These positive
SO,-PTB associations were consistent with those for infants of Black and non-smoking

mothers (Table S2-6). No associations were seen for PTB with CO, NO, and PMj.
2.4.4 Multiple pollutant models

Table 2.4 summarizes the results for the four-pollutant models (CO, SO,, NO,
and PM ;o) for SGA and PTB outcomes. (Detailed results are in Tables S2-9 to S2-12.)
All models were adjusted for long-term trends and are restricted to Linwood mothers.
The multi-pollutant models showed consistent patterns of increased odds of SGA births
for CO (first and second trimester), SO, (all trimesters), NO, (first month and all
trimesters), and PM; (first month and first trimester), and increased odds of PTB births
for first-month SO, and NO; exposures. Overall, these results did not differ from those
obtained using single-pollutant models. Furthermore, the patterns of associations among
infants of Linwood mothers did not differ appreciably from associations among mothers
from Allen Park and East Seven Mile, suggesting that the multi-pollutant model results
may be representative of the entire study population. However, the multi-pollutant
models yielded wider confidence intervals due to the decreased sample size (n=67,577)
compared to the single pollutant models that used all three sites (n=155,094) and

colinearity among pollutants.

2.5 Discussion

This study highlights the importance of individual risk factors as well as temporal

changes in air pollutant concentrations on associations with adverse birth outcomes.
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After controlling for trends and covariates, we observed consistent patterns of increase in
the odds of SGA with CO, NO, and PM exposures, and of PTB and LBW with SO,

exposures.
2.5.1 Possible mechanisms

The biological pathways linking pollutant exposure to SGA and PTB are not well
understood.***** SGA may be triggered by an abnormal reaction between trophoblast
and uterine tissues in the first few weeks of pregnancy™, which is consistent with the
timing of the CO-SGA and NO,-SGA associations found in this study. CO reduces the
oxygen-carrying capacity of maternal hemoglobin, which decreases oxygen delivery to
the fetus. Further, CO can cross the placental barrier and interfere with oxygen binding
to fetal hemoglobin, which has a higher affinity for CO than adult hemoglobin.”>® Both
effects may induce tissue hypoxia and reduce fetal growth. Alternatively, CO may be a
proxy for particles emitted by vehicles and other sources that contain polycyclic aromatic
hydrocarbons (PAHs) that can induce DNA adducts, which have been associated with
increased risks of LBW.*7’ Exposure to NO; increases lipid peroxidation in both
maternal and cord blood, which could interfere with normal intrauterine growth
development via oxidative stress.”” PM, is a complex toxicant. It includes mixtures of
different substances, including fine particles, metals and organic matter (e.g., PAHs), and
compositions are source—specific.33 Several mechanisms have been proposed for PM,
one of which is the DNA adducts pathway discussed above. Alveolar inflammation or
systemic infection associated with air pollutants may play a role in PTB.'”*! Other
possible mechanisms include oxidative stress, reactive nitrogen or sulfur species,
bacterial infections, and unfavorable metabolic processes that result in growth-arrested
cells during early embryogenesis.** The first two months of pregnancy have been
identified as the critical period for PTBs associated with exposures to coal combustion
toxics. However, we found that only the last month’s SO, exposure was associated

with PTB births.
2.5.2 Comparison with previous studies

The current literature on air pollution and SGA is limited. SGA has been linked

to PM, 5 in California® and to PM 10, PM> 5 and NO; in Sydney, Australia.¥ These
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studies did not find associations between CO exposures and SGA. Higher risk of
intrauterine growth restriction (IUGR; for which SGA is a measure) has been shown for
CO, NO, and PM, 5 exposures in Vancouver,® in a second Canadian study in Calgary,
Edmonton, and Montreal,44 and for PM o exposure in the Czech Republic.3 > No
associations were seen between IUGR and CO, NO, or PMy exposures in a southern
California study.” These divergent results could arise for several reasons. First, the
studies differed with respect to exposures, averaging periods, and cut-off concentrations.
For example, the Vancouver study examined 1 ppm and 10 ppb increases in CO and NO,
exposures, respectively, while the southern California study used inter-quartile ranges of
1.2 ppm and 25 ppb of monthly average CO and NO,, respectively.*** A second
difference is the control of covariates and potential confounders. The southern California
study45 controlled for both SES and maternal smoking, a well-known risk factor; the
Canadian studies®** controlled for neither. A third difference is the control of long-term
trends in pollutant exposures. We demonstrated that this is critical for CO and SO,.
Fourth, the studies differed in their ability to construct multi-pollutant models, essential
in understanding effects of simultaneous exposure to several pollutants. Only the recent
Canadian study used multi-pollutant models (NO,, CO and PM2.5).44 Finally, the studies
differed significantly with respect to sample size, model structure, and geographic
location.

For PTB, SO, increased risks in five studies,g’3 44648 a5 did PM, in four

11.26:4648 and total suspended particulates in two studies.***’ PTB associations

11,12,26

studies,
with CO and NO, exposures are inconsistent. Studies in southern California,
Vancouver,® and South Korea*® found positive associations between CO exposure and
PTB, but another southern California study27 found an inverse association. Positive NO,-
PTB associations were found in studies in Korea®® and southern California,28 but not in
Vancouver® or Australia.*®

In this study, increased odds of SGA birth found for CO and NO; are consistent
with the Canadian studies.>** SO, was associated with increased risk of PTB which is
also consistent with most of the previous studies. Unlike many of the earlier studies, this

study controlled for many individual risk factors, including maternal smoking and SES,
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both important confounders for adverse birth outcomes.*”° This study also controlled

for temporal trends, which had a large effect, as discussed below.
2.5.3 Effects of temporal trend

With a few exceptions, the previous adverse birth effect studies have been short in
duration, and effects of long-term temporal trends were not examined extensively. A 13-
yr Canadian study (in Nova Scotia) found that birth year confounded the association
between SO, and PM,, and LBW.'* In this study, after accounting for long-term trends,
specifically the declines in CO and SO, concentrations, the CO-SGA and SO,-SGA
associations were attenuated, probably due to declining rates of both adverse birth
outcomes and associated risk factors, e.g. smoking. This study also examined CO-LBW
associations using trend-adjusted (Tables S2-13 to S2-15) and de-trended CO data (data
not shown). In both cases, the CO-LBW associations were also attenuated. Based on
these results, time trend adjustments seem justified when analyzing long time periods.
Associations for NO, and PMy, which did not show such patterns, were insensitive to

this adjustment.
2.5.4 Race and social economic status

In southern California, traffic-related pollution exposure (indicated by distance-
weighted traffic density) in winter was associated with PTB among the low SES
population,51 suggesting that SES might modify exposure or interact with air pollutants.
The effect estimates did not differ by maternal education levels (Table S2-16), however,
odds of SGA birth increased for CO exposures among mothers with <12 years of
education; and decreased for CO exposures among mothers with >12 years of education.
On the other hand, the odds of PTB birth for SO, exposures increased among mothers
with different education levels. These results suggest maternal education may be an
inadequate proxy for SES if there is true heterogeneity in the effects caused by maternal
SES.

In analyses stratified by race, CO-SGA, NO,-SGA and SO,-PTB associations
were statistically significant for infants of Black mothers, but not White mothers. This
may reflect effects of neighborhood: Linwood (measured CO,, NO; and SO,) and East
Seven Mile (NO, and SO,) sites are predominantly Black areas; Allen Park (CO and SO,)
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is a predominantly White area. Over the past several decades, Detroit has experienced
increased race-based residential segregation,’” which has been associated with higher
rates of LBW, prematurity and fetal growth restriction. Such outcomes might result from
exposures as well as many other neighborhood-level factors, e.g., lack of access to health

care and intra-group diffusion of harmful health behaviors.”
2.5.5 Smoking

Studies have long associated cigarette smoking and environmental tobacco smoke
exposure with adverse birth outcomes.”**® Smoking was a very strong risk factor for all
outcomes. The odds of SGA were both consistent and statistically significant for all
quartiles of first month NO, exposures among smokers, and for third trimester PM ;g
exposures among non-smokers. A possible speculation is that smoking mothers were
already getting large pollutant doses, diminishing the significance of the ambient
contribution; additionally that smoking may have increased the variability of the
response. In models accounting for trend but not controlling for smoking (Table S2-17),
odds of SGA increased for SO, exposures in the second trimester, which was not seen in
models that controlled for smoking. This is consistent with smoking confounding SO,-
SGA associations. In a recent analysis examining traffic-related pollutants (CO and
PM, s) and PTB in southern California, maternal smoking apparently did not confound
the odds ratios, however, this conclusion was restricted to a subsample of the study with a
low response rate (40%) from the survey, and it applied to only the second exposure
quartile.”® We believe that maternal smoking should be considered as a possible effect

modifier of the associations between air pollutants and adverse birth outcomes.
2.5.6 Strengths and limitations of this study

Specific strengths of this study included a large sample size (n=155,094), a long
duration (7-12 years), and individual-level information on residence location, race,
smoking status, pregnancy and SES indicators. This study accounted for time trends in
pollutant concentrations, which apparently affected SO, and CO results, and we
examined exposures to several pollutants simultaneously. A large Black population in

our study sample allowed us to examine possible heterogeneity by race. Finally, we
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examined births of mothers residing quite close (<4 km) to air monitors, potentially
minimizing exposure measurement error.' >

There are a number of study weaknesses. Geocoding of individual residences was
unavailable, thus residences (and subjects) were selected if their ZIP code area was either
within or partially within 4 km of an air quality monitor. In the worst case, a residence
could have been as far as 12 km from the monitor, which could have led to exposure
misclassification and attenuation of our estimates, however, most homes were much
closer since most of the studied areas were densely populated. Further, air pollution
exposures at the ZIP code level can yield reasonable exposure estimates.”’ Pollutant
levels in Detroit generally fell below those in other studies, and low exposures may be
subject to greater exposure measurement error. Exposure misclassification is possible for
subjects living near major traffic routes (more likely near Linwood and East Seven Mile
sites), which could increase exposures above levels measured at the monitoring sites,
which were located in residential areas at least several blocks from major roads. Limiting
the study area to a relatively small radius around the monitor should minimize such
errors.

Because this study examined multiple health outcome and multiple exposure
windows, Type I error rates might have inflated; however, minimal effect was
anticipated. The main health outcomes were term LBW, term SGA and PTB. (Since
SGA and LBW are overlapping by definition, LBW is included for only discussion
purposes.) By definition, term SGA and PTB are not correlated; therefore, the effects of
multiple health outcomes comparison should be irrelevant. On the other hand, the
multiple exposure windows examined in this study might have inflated the Type I error
rate. There are two options to address this issue: (1) select a single exposure window;
and (2) apply the Bonferroni correction. The first option is not desirable because the
actual mechanism and exposure window with the highest risk were still unclear. The
Bonferroni correction (method to adjust for the smallest p-value for significant tests on
multiple comparisons.’®) only works reasonably well for moderately correlated variables
because the conservatism of Bonferroni increases when the correlation between variables
increases.”® The exposure windows examined in this study were highly correlated (e.g.,

first trimester exposure included first month exposure); therefore, the correction approach
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was not applied. Besides, the overall patterns of associations strongly suggested effects
of pollutant exposures on adverse birth outcomes, e.g., the positive associations were
found for CO exposure and SGA for three out of five exposure windows in models with
trend-adjusted (Table 2-3). (The effects were found at a=0.05 for only the first month
exposure.)

The time-trend adjustment used might have resulted in overly adjusted models
because other covariates in the models also captured the time-trend effects (e.g., the
decline of smoking rate among mothers). However, this should not be a concern because
the effects were substantial, especially in the case of CO-SGA association in which
AORs reduced from 1.20 to 1.14 (or 5%) after adjustment for time-trend (Table 2-3),
indicating there were other effects associated with time-trend that were not captured by
the covariates included in the models.

Missing pollutant data may have influenced results, although the results using a
single monitor (Linwood) were consistent with those using all three sites, suggesting any
bias was minimal. Additional information on potential covariates and confounders not
contained in the birth certificate database may have been helpful, e.g., alcohol
consumption, although we suspect that effects of many such factors would likely be
correlated with other individual-level risk factors that were available, thus minimizing
confounding. Finally, measurements of personal or indoor exposures were unavailable, a

59-61
96! Rurther research

limitation of all studies that rely on ambient measures of exposure.
using individual-level exposure monitoring would help to quantify the relative
contribution of ambient versus localized exposures to the occurrence of adverse birth

outcomes.

2.6 Conclusions

CO, NO; and PM; exposures were associated with increased risk of SGA, and
SO, exposure was associated with increased risk of LBW and PTB. This study highlights
the importance of the early period of pregnancy for the CO-SGA, NO,-SGA and SO;-
LBW associations, and the late pregnancy period for SO,-PTB and PM,,-SGA
associations. Our results suggest that air pollution may have more harmful effects on

infants of Black mothers, as compared with infants of White mothers. This study
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highlights the importance of accounting for long-term trends and maternal smoking status

in evaluating the relations between air pollutant exposures and adverse birth outcomes.
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Figure 2-1. Map of the Detroit area showing the three air quality monitoring sites, 4 km

radius and intersecting Zip codes.
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Figure 2-2. Trends of monthly averages of pollutant concentrations. Results of LOESS smoother shown as dashed line for trend.
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Table 2-1. Infant and maternal characteristics by birth outcomes and ethnicity, 1990-

2001.

All births*  SGA PTB Term Black  White
births
Characteristics N=164905 N=13754 N=24954 . 00c, | N=93078 N=68164
(%) (%) (%) (%) (%) (%)
Infant sex Female 49.1 49.1 47.8 49.3 49.3 48.8
Male 50.9 51.0 52.2 50.7 50.6 51.2
Race Black 56.4 69.1 71.1 53.8 - -
White 41.3 28.6 27.1 43.9 - ;
Other 22 2.3 1.8 2.3 - ;
Age (yrs) 16-19 17.4 19.8 19.8 17.0 22.0 11.6
20-29 58.1 55.4 54.0 58.8 57.4 59.1
>30 24.5 24.8 26.2 242 20.6 293
g‘i‘;)ca“on 0-11 329 40.5 39.5 317 36.2 28.4
12 40.0 38.5 38.9 40.2 39.0 41.9
>13 27.1 21.0 21.7 28.1 24.8 29.7
Tobacco use  Smoker 21.8 35.7 27.0 20.9 19.3 26.0
Prenatal None 3.4 5.4 75 2.7 4.8 1.7
care
Late (after 4th 26.0 31.8 35.9 243 32.7 172
month)
Birth scason  OP'1ng (Mar- 25.2 24.8 25.1 25.3 25.0 25.7
May)
Summer (Jun- 26.1 262 25.7 262 26.0 263
Aug)
Fall (Sept- 241 237 238 242 238 245
Nov)
Winter (Dec- 246 253 25.5 244 252 236
Feb)
Birth period ~ 1990-1993 39.5 43.4 40.6 393 41.1 377
1994-1997 313 29.7 31.0 313 31.0 31.5
1998-2001 293 26.9 28.5 29.4 28.0 30.8

Abbreviations: SGA, small for gestational age; PTB, preterm births; (*) All births
included Blacks, Whites and others.
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Table 2-2. Statistics of air pollutant concentrations.

Pollutants Average time Site N Mean SD Min 25" 50" 75" Max
CO 3-hr All 6674 0.84 0.72 0.05 040 0.63 1.03 8.77
(ppm) AP 4266 0.80 0.69 0.05 040 0.60 097 8.77
LW 2408 091 0.76 0.05 043 0.70 1.13 7.23

24-hr All 6695 0.62 0.38 0.05 0.37 053 0.77 5.18

AP 4278 0.56 033 0.05 035 049 0.70 4.01
LW 2417 0.72 044 0.05 043 062 090 5.18

Month* All 66182 0.66 0.15 026 0.57 067 076 1.18
Trimester™ All 66905 0.66 0.12 028 0.61 0.67 073 0.93
SO, 24-hr All 11194 5.6 48 05 22 41 74 495
(ppb) AP 2826 54 41 05 24 43 72 317

E7M 4108 4.9 41 05 20 37 65 314
LW 4260 6.3 57 05 22 45 87 495

Month* All 140092 5.8 1.8 1.0 45 55 68 125

Trimester* All 141016 5.8 1.5 22 47 55 66 110

NO, 24-hr All 7169 212 93 05 147 20.1 263 76.7
(ppb) E7TM 3418 192 85 05 132 18.1 240 76.7
Lw 3751 23.0 96 05 164 219 279 765

Annual All 12 213 12 196 206 21.0 219 235

ETM 12 191 1.1 176 186 189 194 21.6

Lw 12 230 1.6 209 216 232 24.0 26.1

Month* All 99442 213 41 82 187 21.0 23.6 417

Trimester™ All 100163 212 3.1 141 19.1 21.0 232 30.8

PM;, 24-hr AP 661 299 161 4.0 190 27.0 37.0 131.0
(ug/m’) Month* AP 27178 30,0 93 128 23.0 29.0 358 634

Trimester* AP 27376 30,0 64 175 243 30.1 352 46.0

Abbreviations: AP, Allen Park; E7M, East Seven Mile; LW, Linwood; SD, standard
deviation; 25th, SOth, 75" are percentiles; (*) Month and trimester averages are subjects’

exposure estimates.
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Table 2-3. Adjusted odds ratio and 95% confident interval (95% CI) for each window of exposure to air pollutants for small for
gestational age (SGA) and preterm birth (PTB).

Statistically significant estimates are in bold.

Windows and CO SO, NO, PM;o
quartiles of Adjusted” Time trend” Adjusted” Time trend” Adjusted” Time trend” Adjusted” Time trend”
exposures OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)
SGA

1* month

o 1.17 (1.06-1.29) 1.11(1.00-1.24)  0.98 (0.92-1.04) 0.96 (0.90-1.03)  1.06 (0.99-1.14) 1.07 (0.99-1.14)  1.06 (0.91-1.24) 1.07 (0.92-1.25)
31 1.07 (0.97-1.18) 1.00(0.89-1.12)  1.03 (0.97-1.10) 1.00 (0.94-1.07)  1.06 (0.98-1.14) 1.06 (0.98-1.14) 0.9 (0.84-1.16) 1.01 (0.85-1.20)

4" 1.20 (1.09-1.33) 1.14 (1.02-1.27) 1.11 (1.04-1.18) 1.04 (0.97-1.13)  1.10 (1.01-1.19) 1.11 (1.03-1.21)  1.15(0.98-1.36) 1.16 (0.98-1.38)
Last month

ond 1.06 (0.97-1.17) 1.00 (0.90-1.11)  1.03 (0.97-1.09) 1.01 (0.95-1.07)  1.00 (0.93-1.07) 1.00(0.93-1.07)  0.99 (0.85-1.15) 1.00 (0.86-1.17)

3¢ 1.10 (1.00-1.20) 1.02 (0.91-1.13)  0.98 (0.92-1.04) 0.94 (0.88-1.01)  1.00 (0.93-1.07) 1.00(0.93-1.07) 1.07 (0.92-1.25) 1.09 (0.93-1.28)

4" 1.05(0.96-1.16) 0.98 (0.88-1.09)  1.07 (1.00-1.14) 0.98 (0.91-1.05) 0.93 (0.86-1.01) 0.95 (0.88-1.03)  1.08 (0.92-1.26) 1.07 (0.91-1.26)
1™ trimester

o 1.15 (1.04-1.27) 1.11(0.98-1.25) 1.04 (0.98-1.11) 1.02 (0.96-1.09)  1.02 (0.95-1.10) 1.03 (0.96-1.11)  1.02 (0.87-1.19) 1.06 (0.90-1.25)

3¢ 1.17 (1.06-1.29) 1.10(0.98-1.24)  1.04 (0.97-1.11) 1.01 (0.94-1.09)  1.04 (0.95-1.12) 1.05(0.97-1.14) 1.01 (0.86-1.20) 1.06 (0.89-1.27)

4" 1.16 (1.04-1.28) 1.10(0.97-1.25) 1.15(1.08-1.23) 1.09 (1.00-1.18)  1.02 (0.93-1.12) 1.06 (0.97-1.16)  1.11(0.94-1.32) 1.14(0.95-1.36)
2™ trimester

2 1.07(0.97-1.18) 1.01 (0.90-1.13)  1.00 (0.94-1.06) 0.98 (0.92-1.05) 0.98 (0.91-1.05) 0.98 (0.91-1.06)  1.16 (0.99-1.37) 1.23 (1.04-1.45)

3¢ 1.10 (1.00-1.21) 1.01 (0.90-1.14)  0.97 (0.91-1.03) 0.94 (0.88-1.01)  0.97 (0.90-1.06) 0.99 (0.91-1.08) 1.17 (0.99-1.38) 1.22 (1.02-1.45)

4" 1.10 (0.99-1.23) 1.02 (0.90-1.15)  1.12 (1.05-1.20) 1.05(0.96-1.14)  0.96 (0.88-1.05) 1.01 (0.92-1.11)  1.04 (0.88-1.23) 1.05 (0.87-1.26)
3™ trimester

o 1.08 (0.98-1.19) 1.00 (0.90-1.11)  1.07 (1.01-1.13) 1.04 (0.98-1.11)  0.93 (0.87-1.00) 0.94 (0.88-1.01)  1.03 (0.88-1.22) 1.05 (0.89-1.25)

3¢ 1.05 (0.95-1.15) 0.96 (0.86-1.07)  1.02 (0.95-1.08) 0.98 (0.92-1.05) 0.98 (0.91-1.06) 0.99 (0.92-1.07)  1.20 (1.02-1.42) 1.25 (1.05-1.49)

4" 1.06 (0.96-1.17) 0.97 (0.87-1.09)  1.12 (1.05-1.20) 1.03 (0.96-1.12)  0.98 (0.90-1.06) 1.01 (0.93-1.09)  1.22 (1.04-1.44) 1.22 (1.03-1.46)
PTB

1* month
ond 0.90 (0.84-0.97) 0.96 (0.88-1.04)  1.00 (0.96-1.05) 0.99 (0.94-1.04) 1.03 (0.97-1.08) 1.03 (0.97-1.09) 0.99 (0.87-1.12) 0.97 (0.86-1.10)
3¢ 0.92 (0.86-0.99) 0.98 (0.90-1.07)  1.00 (0.95-1.05) 0.97 (0.93-1.02)  1.03 (0.97-1.09) 1.03 (0.97-1.09) 1.10(0.97-1.24) 1.07 (0.94-1.22)

4" 0.89 (0.83-0.97) 0.95(0.87-1.03)  1.03 (0.98-1.09) 0.98 (0.92-1.04)  1.00 (0.95-1.07) 1.02(0.96-1.08)  1.06 (0.93-1.20) 1.05 (0.92-1.20)
Last month

2" 0.97(0.91-1.04) 1.04 (0.96-1.13)  1.08 (1.03-1.13) 1.08 (1.03-1.13)  0.98 (0.93-1.04) 0.98 (0.93-1.03)  0.98 (0.87-1.10) 0.96 (0.85-1.08)
34 0.89 (0.83-0.96) 0.96 (0.89-1.04)  1.11 (1.05-1.16) 1.11 (1.05-1.16)  0.99 (0.94-1.05) 0.99 (0.94-1.05)  0.91 (0.80-1.02) 0.88 (0.78-1.00)
4" 0.96 (0.89-1.04) 1.04 (0.95-1.13)  1.07 (1.02-1.13) 1.07 (1.01-1.14)  0.98 (0.92-1.04) 0.98 (0.92-1.04)  0.95 (0.84-1.07) 0.95 (0.84-1.08)

(*) Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco use, prenatal care, birth seasons and site of
residency; (°) Adjusted for variables in a and birth periods.



Table 2-4. Results of the multipollutant models (including CO, SO,, NO; and

PM,) for the Linwood area.

Otherwise as Table 2.3.

Windows and quartiles of
exposures

cO

SO,

NO;

PM,

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA 1* month

Last month

1% trimester

2" trimester

3" trimester

PTB 1 month

Last month

2nd

4(h
2nd
3rd
4(h
2nd

4(h
2nd

4(h
2nd
3rd

4(h

2nd

4(h

1.04 (0.89-1.21)
0.90 (0.77-1.05)
1.02 (0.87-1.19)
0.93 (0.80-1.08)
1.03 (0.89-1.20)
0.98 (0.84-1.14)
1.22 (1.02-1.46)
1.20 (1.00-1.45)
1.16 (0.96-1.41)
1.14 (0.95-1.36)
1.19 (0.98-1.44)
1.22 (1.01-1.47)
0.97 (0.83-1.14)
0.98 (0.83-1.16)
0.99 (0.84-1.17)

0.94 (0.84-1.06)
1.00 (0.90-1.13)
0.95 (0.85-1.06)
1.01 (0.90-1.13)
0.94 (0.84-1.05)
1.03 (0.92-1.16)

1.00 (0.83-1.20)
0.99 (0.83-1.17)
0.93 (0.78-1.11)
0.99 (0.83-1.18)
0.97 (0.82-1.15)
1.03 (0.86-1.23)
1.18 (0.92-1.51)
1.01 (0.83-1.23)
1.05 (0.87-1.28)
1.30 (1.01-1.69)
1.12 (0.91-1.37)
1.11 (0.90-1.36)
1.17 (0.94-1.45)
1.24 (1.02-1.50)
1.31 (1.06-1.60)

1.27 (1.11-1.47)
1.14 (0.99-1.30)
1.13 (0.98-1.30)
1.04 (0.91-1.19)
1.06 (0.93-1.21)
0.99 (0.86-1.14)

1.14 (0.97-1.33)
1.12 (0.97-1.31)
1.28 (1.09-1.49)
1.09 (0.93-1.26)
1.04 (0.90-1.20)
0.99 (0.85-1.16)
1.04 (0.83-1.31)
1.04 (0.83-1.31)
1.14 (0.91-1.44)
1.06 (0.81-1.40)
1.03 (0.78-1.35)
1.12 (0.85-1.48)
1.10 (0.92-1.33)
1.07 (0.88-1.29)
1.04 (0.85-1.26)

1.06 (0.94-1.19)
1.08 (0.97-1.21)
1.05 (0.94-1.18)
0.92 (0.82-1.03)
0.99 (0.89-1.11)
1.01 (0.90-1.14)

1.02 (0.87-1.19)
1.07 (0.90-1.28)
1.08 (0.90-1.30)
1.00 (0.86-1.15)
0.98 (0.83-1.16)
0.88 (0.75-1.04)
1.11 (0.92-1.33)
1.16 (0.95-1.42)
1.16 (0.95-1.41)
1.15 (0.94-1.42)
0.97 (0.79-1.19)
1.13 (0.92-1.40)
0.89 (0.74-1.07)
0.87 (0.72-1.05)
0.82 (0.69-0.98)

1.00 (0.92-1.09)
1.01 (0.91-1.11)
1.08 (0.98-1.19)
1.06 (0.97-1.15)
0.98 (0.89-1.08)
0.92 (0.84-1.01)

Adjusted for infant sex, maternal race, age groups, education levels, tobacco use,

prenatal care, birth seasons, site of residency and birth periods. (Note: SGA

models do not include infant sex.)
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Table S2- 1. Annual descriptive statistics for covariates for all eligible births

16-19 yrs >30 yrs <High school High school >High school Smoker No prenatal care

Year All  Black White All  Black White All Black White All Black White All Black White All Black White All Black White

(%) (%) (%) (F) (%) (%) () (%) (%) () (%) (%) (%) (%) (%) () (%) (%) () (%) (%)
1990 194 252 112 223 186 27.5 337 383 26.6 428 403 473 235 213 26.1 263 242 302 4.1 5.6 2.0
1991 194 247 119 224 190 272 348 390 285 41.6 393 455 236 217 26.1 262 230 315 42 5.7 22
1992 189 242 11.3 230 194 28.0 344 386 283 408 392 436 248 223 28.1 246 216 295 42 5.6 23
1993 18.1  23.1 1.1 236 19.1 30.1 356 403 283 392 370 43.0 253 227 287 232 20.1 285 45 6.5 1.8
1994 183 225 126 241 20.0 297 333 371 27.6  40.0 382 432 268 277 293 221 189 275 3.7 52 1.7
1995 174 221 11.6 252  20.6 307 324 368 266 390 372 421 28.6  26.0 313 208 180 252 37 53 1.8
1996 17.3 220 1.6~ 255 209 309 316 353 27.1 38,6 377 405 298 270 325 212 18.0 262 23 33 1.3
1997 16.8 20.8 121 256 220 298 312 337 28.0 395 384 412 294 279 308 199 173 243 21 2.9 1.2
1998 162 19.7 120 253 218 294 307 325 283  39.1 391 399 302 284 31.8 188 167 223 29 4.1 1.6
1999 157 194 114 258 222 29.6 306 321 287 39.6 408 390 297 272 323 180 159 214 3.1 44 1.7
2000 144 177 106 262 227 298 324 331 315 387 400 379 289 269 306 184 164 215 1.9 2.9 0.9
2001 148 18.0 114 272 243 301 318 316 321 389 41.1 368 293 273 31,1 169 152 19.6 24 34 1.3




Table S2- 2. Pearson correlation coefficients by window of exposure to pollutants, 1990-2001

1" Month Last Month 1* Trimester 2™ Trimester 3™ Trimester
Pollutants
co SO, NO, pPM, CO SO, NO, PM, CO SO, NO, PM;;, CO SO, NO, PM;;, CO SO, NO, PM)
CO 1.00 1.00 1.00 1.00 1.00
SO, 0.35 1.00 0.32 1.00 0.36 1.00 0.37 1.00 0.33 1.00
NO, 0.27 0.35 1.00 - 0.27 0.37 1.00 - 0.19 0.39 1.00 - 0.17 041 1.00 - 0.19 0.39 1.00 -
PM,, 0.07 0.03 - 1.00 0.11 0.04 - 1.00 0.07 0.08 1.00 0.08 001 1.00 0.05 0.08 1.00

81

Abbreviations: CO, carbon monoxide; SO,, sulfur dioxide; NO», nitrogen dioxide; PM o, particulate matter aerodynamic diameter

<10 um



Table S2- 3. Associations between covariates and birth outcomes.

Model included all covariates. Statistical significant estimates are in bold.

SGA (N=122494) PTB (N=145296)
Covariates
ORs 95% CI ORs 95% CI

Male - - - 1.07 (1.03- 1.10)

Black 2.10 (2.00- 2.21) 1.94 (1.87- 2.02)
Race

Other 1.86 (1.63- 2.13) 1.29 (1.15- 1.44)
A 16-19 yrs 1.13 (1.07- 1.19) 1.04 (1.00- 1.08)

ge
>30 yrs 1.16 (1.11- 1.22) 1.27 (1.22- 1.31)
. <12 yrs 1.33 (1.26- 1.41) 1.34 (1.28- 1.40)

Education

12 yrs 1.18 (1.12- 1.25) 1.19 (1.14- 1.29)
Smoker 2.39 (2.29- 2.49) 1.36 (1.31- 1.41)
No perinatal care 1.49 (1.35- 1.64) 1.87 (1.75- 2.00)
Late perinatal care 1.12 (1.07- 1.17) 1.31 (1.27- 1.36)

Fall 0.98 (0.93- 1.03) 1.01 (0.97- 1.06)
Birth .
seasor Winter 1.01 (0.95- 1.06) 1.04 (1.00- 1.09)

Spring 0.96 (0.91- 1.02) 1.03 (0.99- 1.07)

Linwood 1.23 (1.15- 1.32) 1.21 (1.14- 1.27)
Site East Seven

Mile 1.15 (1.08- 1.23) 1.14 (1.08- 1.20)
Birth 1990-1993 1.12 (1.07- 1.18) 1.01 (0.97- 1.04)
period

1994-1997 1.01 (0.96- 1.07) 1.00 (0.96- 1.04)

Abbreviations: SGA, small for gestational age; PTB, preterm birth; ORs, odds ratio.
Reference groups: Female, White, age group 20-29, >12 yrs of education, non-smoker,
summer, Allen Park, and birth period 1998-2001.
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Table S2- 4. Air pollutant concentrations by window and quartile of exposures

Window of exposure/ Co SO; NO, PM;
Quartile of exposure (ppm)  (ppb) (ppb) (ng/m)

™ <0.56 <4.53 <18.65 <22.80
18 2 0.57-0.66  4.54-553  18.66-20.98  22.81-28.80
month 31 0.67-0.75  5.54-6.80  20.99-23.56  28.81-35.75

4 >0.75 >6.80 >23.56 >35.8

1* <0.56 <4.47 <18.57 <23.00
Last 2 0.57-0.66  4.48-5.47  18.58-20.94  23.01-29.20
month 31 0.67-0.75  5.48-6.76  20.96-23.46  29.21-35.75

4t >0.75 >6.76 >23.46 >35.75

1* <0.61 <4.67 <19.06 <2421
sca U o 0.62-0.67 4.68-5.49  19.07-21.03  24.22-30.06
trimester  3rd 0.68-0.73  5.50-6.62  21.04-232  30.07-35.19

4 >0.73 >6.63 >23.2 >35.19

1™ <0.61 <4.67 <19.02 <24.54
ond 2 0.62-0.67  4.68-5.50  19.03-21.01  24.55-30.29
trimester ~ 3rd 0.68-0.73  5.51-6.56  21.03-23.12  30.30-34.59

4" >0.73 >6.56 >23.12 >34.59

™ <0.59 <4.57 <18.79 <24.00
3rd 2 0.60-0.67  4.58-5.48  18.80-21.01  24.01-29.54
trimester ~ 3rd 0.68-0.74  5.49-6.66 21.03-23.12  29.55-35.23

4" >0.74 >6.66 >23.12 >35.23

1™ <0.57 <4.54 <18.67 <22.80
It 2 0.58-0.67  4.55-5.55  18.68-21.00  22.81-28.80
month  3rd 0.68-0.76  5.56-6.83  21.01-23.56  28.81-35.75

PTB 4‘% >0.76 >6.83 >23.56 >35.76

1* <0.56 <4.49 <18.59 <23.00
Last 2 0.57-0.66  4.50-5.49  18.61-20.96  23.01-29.20
month 31 0.67-0.75  5.50-6.79  20.97-23.47  29.21-35.60

4t >0.75 >6.79 >23.47 >35.61

Abbreviations: SGA, small for gestational age; PTB, preterm birth; ppm, part per

million; ppb, part per billion.
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Table S2- 5. Adjusted odds ratio and their 95% confident interval (95% CI) at each

window of exposure to CO for small for gestational age (SGA) and preterm birth (PTB).

Statistical significant estimates are in bold.

Windows and

quartiles of
exposures

All Subjects

Maternal race

Maternal smoking status

Trend-adjusted

Black

White

Smoker

Non-smoker

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA

1 Month

Last
Month

1 st
Trimester

2nd
Trimester

3 rd
Trimester

PTB

1% Month

Last
Month

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

2nd
3rd
4th
2nd
3rd
4th

1.11 (1.00-1.24)
1.00 (0.89-1.12)
1.14 (1.02-1.27)
1.00 (0.90-1.11)
1.02 (0.91-1.13)
0.98 (0.88-1.09)
1.11 (0.98-1.25)
1.10 (0.98-1.24)
1.10 (0.97-1.25)
1.01 (0.90-1.13)
1.01 (0.90-1.14)
1.02 (0.90-1.15)
1.00 (0.90-1.11)
0.96 (0.86-1.07)
0.97 (0.87-1.09)

0.96 (0.88-1.04)
0.98 (0.90-1.07)
0.95 (0.87-1.03)
1.04 (0.96-1.13)
0.96 (0.89-1.04)
1.04 (0.95-1.13)

1.15 (0.98-1.36)
1.08 (0.92-1.26)
1.20 (1.03-1.41)
0.92 (0.79-1.07)
0.98 (0.85-1.14)
0.96 (0.83-1.11)
1.30 (1.09-1.55)
1.19 (1.00-1.41)
1.24 (1.05-1.47)
1.11 (0.93-1.32)
1.07 (0.90-1.27)
1.13 (0.96-1.34)
1.11 (0.94-1.30)
1.12 (0.96-1.31)
1.07 (0.91-1.25)

0.93 (0.83-1.04)
0.98 (0.88-1.10)
0.93 (0.83-1.04)
1.03 (0.92-1.15)
0.97 (0.87-1.09)
1.04 (0.93-1.16)

1.08 (0.93-1.27)
0.93 (0.78-1.11)
1.08 (0.90-1.30)
1.10 (0.95-1.28)
1.03 (0.88-1.21)
0.97 (0.81-1.16)
0.95 (0.80-1.13)
1.08 (0.90-1.29)
0.95 (0.77-1.17)
0.98 (0.83-1.15)
1.02 (0.85-1.21)
0.90 (0.73-1.11)
0.94 (0.80-1.09)
0.82 (0.70-0.97)
0.93 (0.77-1.11)

0.93 (0.84-1.03)
0.91 (0.81-1.02)
0.89 (0.78-1.01)
0.98 (0.88-1.08)
0.87 (0.78-0.98)
0.93 (0.82-1.05)

1.23 (1.05-1.45)
1.08 (0.91-1.28)
1.15 (0.97-1.38)
1.07 (0.91-1.25)
1.14 (0.97-1.34)
1.12 (0.94-1.32)
1.19 (1.01-1.40)
1.17 (0.99-1.39)
1.07 (0.89-1.28)
0.97 (0.83-1.14)
0.98 (0.83-1.16)
0.96 (0.80-1.15)
1.05 (0.90-1.23)
0.97 (0.82-1.14)
1.03 (0.87-1.22)

0.90 (0.78-1.04)
0.99 (0.86-1.15)
0.91 (0.79-1.06)
1.03 (0.90-1.18)
0.92 (0.80-1.06)
0.99 (0.85-1.14)

1.07 (0.94-1.21)
0.98 (0.86-1.11)
1.16 (1.02-1.32)
1.00 (0.88-1.12)
0.98 (0.87-1.11)
0.94 (0.83-1.07)
1.06 (0.94-1.21)
1.08 (0.94-1.23)
1.13 (0.99-1.30)
1.10 (0.97-1.24)
1.09 (0.95-1.24)
1.11 (0.97-1.28)
1.03 (0.91-1.17)
1.00 (0.89-1.14)
0.99 (0.87-1.13)

0.91 (0.83-0.99)
0.90 (0.82-0.99)
0.89 (0.81-0.98)
0.97 (0.89-1.05)
0.90 (0.83-0.99)
0.98 (0.89-1.07)

Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco

use, prenatal care, birth seasons, site of residency and birth periods.
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Table S2- 6. Adjusted odds ratio and their 95% confident interval (95% CI) at each

window of exposure to SO, for small for gestational age (SGA) and preterm birth (PTB).

Otherwise as Table S2-5.

Windows and

quartiles of
exposures

All Subjects

Maternal race

Maternal smoking status

Trend-adjusted

Black

White

Smoker

Non-smoker

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA

1 Month

Last
Month

1 st
Trimester

2nd
Trimester

3 rd
Trimester

PTB

1% Month

Last
Month

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

2nd
3rd
4th
2nd
3rd
4th

0.96 (0.90-1.03)
1.00 (0.94-1.07)
1.04 (0.97-1.13)
1.01 (0.95-1.07)
0.94 (0.88-1.01)
0.98 (0.91-1.05)
1.02 (0.96-1.09)
1.01 (0.94-1.09)
1.09 (1.00-1.18)
0.98 (0.92-1.05)
0.94 (0.88-1.01)
1.05 (0.96-1.14)
1.04 (0.98-1.11)
0.98 (0.92-1.05)
1.03 (0.96-1.12)

0.99 (0.94-1.04)
0.97 (0.93-1.02)
0.98 (0.92-1.04)
1.08 (1.03-1.13)
1.11 (1.05-1.16)
1.07 (1.01-1.14)

0.92 (0.85-1.00)
0.98 (0.90-1.06)
0.99 (0.90-1.09)
1.00 (0.93-1.08)
0.95 (0.88-1.03)
0.96 (0.88-1.05)
1.04 (0.96-1.13)
1.03 (0.94-1.12)
1.13 (1.01-1.26)
0.96 (0.89-1.04)
0.91 (0.83-0.99)
1.01 (0.91-1.13)
1.03 (0.96-1.12)
0.98 (0.90-1.06)
1.02 (0.92-1.12)

0.98 (0.92-1.04)
0.97 (0.91-1.03)
0.98 (0.91-1.05)
1.12 (1.06-1.19)
1.16 (1.09-1.23)
1.11 (1.03-1.19)

1.04 (0.94-1.16)
1.05 (0.94-1.19)
1.12 (0.98-1.29)
1.01 (0.91-1.13)
0.95 (0.85-1.07)
1.01 (0.88-1.15)
1.01 (0.90-1.12)
1.00 (0.88-1.13)
1.00 (0.86-1.15)
1.00 (0.90-1.12)
1.00 (0.89-1.13)
1.08 (0.93-1.25)
1.06 (0.96-1.18)
1.00 (0.88-1.12)
1.06 (0.92-1.22)

1.01 (0.93-1.10)
1.00 (0.91-1.09)
0.96 (0.86-1.07)
1.02 (0.94-1.11)
1.01 (0.92-1.10)
1.02 (0.92-1.13)

0.93 (0.83-1.04)
0.97 (0.86-1.09)
1.06 (0.93-1.22)
1.03 (0.93-1.15)
0.94 (0.84-1.06)
1.06 (0.94-1.21)
0.99 (0.88-1.11)
1.00 (0.88-1.13)
1.03 (0.89-1.20)
0.93 (0.83-1.04)
0.90 (0.80-1.02)
0.99 (0.86-1.15)
0.97 (0.87-1.08)
0.95 (0.85-1.07)
1.06 (0.93-1.22)

0.99 (0.89-1.09)
1.00 (0.90-1.11)
0.95 (0.84-1.06)
1.07 (0.98-1.18)
1.12 (1.01-1.23)
1.06 (0.95-1.19)

0.98 (0.91-1.06)
1.02 (0.94-1.11)
1.03 (0.94-1.14)
1.00 (0.93-1.07)
0.94 (0.87-1.02)
0.94 (0.86-1.03)
1.04 (0.96-1.13)
1.02 (0.94-1.11)
1.12 (1.00-1.24)
1.01 (0.93-1.09)
0.95 (0.88-1.04)
1.07 (0.97-1.19)
1.08 (1.00-1.16)
1.00 (0.92-1.08)
1.02 (0.92-1.12)

0.99 (0.94-1.05)
0.97 (0.91-1.03)
0.99 (0.93-1.06)
1.08 (1.03-1.14)
1.10 (1.04-1.17)
1.08 (1.01-1.15)

Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco

use, prenatal care, birth seasons, site of residency and birth periods.
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Table S2- 7. Adjusted odds ratio and their 95% confident interval (95% CI) at each

window of exposure to NO, for small for gestational age (SGA) and preterm birth (PTB).

Otherwise as Table S2-5.

Windows and

quartiles of
exposures

All Subjects

Maternal race

Maternal smoking status

Trend-adjusted

Black

White

Smoker

Non-smoker

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA

1 Month

Last
Month

1 st
Trimester

2nd
Trimester

3 rd
Trimester

PTB

1% Month

Last
Month

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

2nd
3rd
4th
2nd
3rd
4th

1.07 (0.99-1.14)
1.06 (0.98-1.14)
1.11 (1.03-1.21)
1.00 (0.93-1.07)
1.00 (0.93-1.07)
0.95 (0.88-1.03)
1.03 (0.96-1.11)
1.05 (0.97-1.14)
1.06 (0.97-1.16)
0.98 (0.91-1.06)
0.99 (0.91-1.08)
1.01 (0.92-1.11)
0.94 (0.88-1.01)
0.99 (0.92-1.07)
1.01 (0.93-1.09)

1.03 (0.97-1.09)
1.03 (0.97-1.09)
1.02 (0.96-1.08)
0.98 (0.93-1.03)
0.99 (0.94-1.05)
0.98 (0.92-1.04)

1.09 (1.01-1.19)
1.10 (1.01-1.20)
1.17 (1.06-1.28)
1.01 (0.93-1.09)
1.00 (0.92-1.09)
0.96 (0.88-1.04)
1.03 (0.95-1.13)
1.07 (0.97-1.18)
1.10 (0.99-1.22)
1.00 (0.92-1.09)
1.00 (0.91-1.11)
1.06 (0.95-1.18)
0.95 (0.87-1.02)
0.99 (0.91-1.08)
0.99 (0.90-1.09)

1.03 (0.97-1.09)
1.03 (0.96-1.10)
1.03 (0.96-1.10)
0.97 (0.91-1.03)
1.00 (0.93-1.06)
1.00 (0.93-1.07)

1.01 (0.87-1.17)
0.97 (0.82-1.14)
0.99 (0.84-1.18)
0.99 (0.86-1.14)
0.97 (0.83-1.14)
0.93 (0.79-1.10)
1.00 (0.86-1.17)
1.01 (0.85-1.21)
0.90 (0.74-1.09)
0.97 (0.84-1.13)
1.00 (0.83-1.19)
0.86 (0.70-1.05)
0.90 (0.78-1.04)
0.97 (0.83-1.14)
1.06 (0.89-1.26)

1.02 (0.91-1.15)
1.08 (0.95-1.22)
0.97 (0.85-1.11)
1.03 (0.92-1.15)
0.98 (0.87-1.11)
0.94 (0.82-1.07)

1.17 (1.03-1.33)
1.22 (1.06-1.39)
1.25 (1.08-1.44)
0.96 (0.85-1.08)
0.96 (0.85-1.10)
0.94 (0.82-1.07)
1.09 (0.95-1.24)
1.06 (0.91-1.23)
1.10 (0.94-1.30)
0.97 (0.85-1.11)
0.89 (0.77-1.04)
0.99 (0.84-1.17)
0.95 (0.84-1.08)
1.03 (0.90-1.17)
1.02 (0.88-1.18)

0.99 (0.89-1.11)
0.99 (0.89-1.11)
1.03 (0.92-1.17)
1.00 (0.90-1.11)
0.96 (0.86-1.08)
0.94 (0.84-1.06)

1.02 (0.94-1.11)
0.99 (0.91-1.09)
1.06 (0.96-1.16)
1.02 (0.94-1.11)
1.01 (0.92-1.11)
0.96 (0.87-1.05)
1.01 (0.92-1.10)
1.05 (0.95-1.16)
1.03 (0.92-1.15)
0.98 (0.90-1.08)
1.04 (0.94-1.15)
1.02 (0.91-1.14)
0.93 (0.86-1.01)
0.98 (0.90-1.07)
1.00 (0.91-1.11)

1.04 (0.97-1.10)
1.05 (0.98-1.12)
1.01 (0.95-1.09)
0.98 (0.92-1.04)
1.00 (0.93-1.06)
0.99 (0.93-1.06)

Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco

use, prenatal care, birth seasons, site of residency and birth periods.
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Table S2- 8. Adjusted odds ratio and their 95% confident interval (95% CI) at each

window of exposure to PM for small for gestational age (SGA) and preterm birth

(PTB).

Otherwise as Table S2-5.

Windows and

quartiles of
exposures

All Subjects

Maternal race

Maternal smoking status

Trend-adjusted

Black

White

Smoker

Non-smoker

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA

1 Month

Last
Month

1 st
Trimester

2nd
Trimester

3 rd
Trimester

PTB

1 Month

Last
Month

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

2nd
3rd
4th
2nd
3rd
4th

1.06 (0.91-1.24)
0.99 (0.84-1.16)
1.15 (0.98-1.36)
0.99 (0.85-1.15)
1.07 (0.92-1.25)
1.08 (0.92-1.26)
1.02 (0.87-1.19)
1.01 (0.86-1.20)
1.11 (0.94-1.32)
1.16 (0.99-1.37)
1.17 (0.99-1.38)
1.04 (0.88-1.23)
1.03 (0.88-1.22)
1.20 (1.02-1.42)
1.22 (1.04-1.44)

0.99 (0.87-1.12)
1.10 (0.97-1.24)
1.06 (0.93-1.20)
0.98 (0.87-1.10)
0.91 (0.80-1.02)
0.95 (0.84-1.07)

1.05 (0.62-1.78)
0.87 (0.49-1.54)
0.77 (0.42-1.40)
1.35 (0.79-2.33)
1.07 (0.59-1.95)
1.41 (0.77-2.59)
0.92 (0.52-1.64)
0.88 (0.48-1.62)
0.87 (0.46-1.64)
1.20 (0.65-2.20)
1.38 (0.75-2.53)
1.43 (0.76-2.70)
0.79 (0.44-1.41)
1.16 (0.64-2.10)
0.93 (0.50-1.73)

0.69 (0.43-1.10)
0.98 (0.62-1.55)
1.04 (0.66-1.66)
0.87 (0.57-1.33)
0.64 (0.40-1.03)
0.99 (0.63-1.56)

1.06 (0.90-1.26)
1.02 (0.85-1.22)
1.17 (0.98-1.40)
0.96 (0.82-1.13)
1.11 (0.94-1.31)
1.03 (0.87-1.23)
1.09 (0.91-1.30)
1.08 (0.89-1.30)
1.14 (0.94-1.39)
1.23 (1.03-1.47)
1.19 (0.98-1.43)
0.99 (0.81-1.21)
1.05 (0.88-1.25)
1.22 (1.01-1.47)
1.23 (1.02-1.48)

1.01 (0.88-1.15)
1.10 (0.96-1.26)
1.07 (0.93-1.23)
0.97 (0.86-1.10)
0.92 (0.80-1.05)
0.96 (0.84-1.09)

0.99 (0.78-1.26)
0.90 (0.69-1.18)
1.12 (0.87-1.45)
1.02 (0.81-1.29)
1.05 (0.82-1.35)
1.12 (0.88-1.43)
0.93 (0.71-1.20)
0.97 (0.74-1.27)
1.06 (0.80-1.39)
1.08 (0.83-1.41)
1.19 (0.91-1.56)
0.84 (0.63-1.12)
0.95 (0.73-1.24)
1.15 (0.88-1.50)
1.14 (0.87-1.49)

1.01 (0.80-1.27)
1.07 (0.84-1.36)
1.04 (0.81-1.32)
0.97 (0.79-1.19)
0.82 (0.65-1.03)
0.81 (0.64-1.02)

1.13 (0.92-1.39)
1.10 (0.88-1.38)
1.22 (0.97-1.52)
0.99 (0.81-1.21)
1.12 (0.91-1.38)
1.04 (0.84-1.29)
1.20 (0.96-1.49)
1.17 (0.92-1.48)
1.22 (0.96-1.56)
1.35 (1.08-1.68)
1.23 (0.97-1.56)
1.22 (0.96-1.56)
1.13 (0.91-1.42)
1.33 (1.05-1.68)
1.31 (1.03-1.65)

0.95 (0.82-1.11)
1.07 (0.91-1.24)
1.06 (0.90-1.24)
0.96 (0.83-1.10)
0.92 (0.79-1.07)
1.02 (0.88-1.19)

Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco

use, prenatal care, birth seasons, site of residency and birth periods.
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Table S2- 9. Adjusted odds ratio and their 95% ClIs at each window of exposure to CO

and adverse birth outcomes for Linwood from single and multiple pollutant models

including CO, SO,, NO; and PM ¢ in the model.

Otherwise as Table S2-5.

Windows and

quartiles of
exposures

CO

CO and SO,

CO and NO,

CO and PM;

All pollutants

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA

1% Month

Last
Month

1 st
Trimester

2nd
Trimester

3 rd
Trimester

PTB

1 Month

Last
Month

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

2nd
3rd
4th
2nd
3rd
4th

1.07 (0.92-1.24)
0.98 (0.85-1.13)
1.11 (0.96-1.27)
0.95 (0.82-1.09)
1.01 (0.88-1.16)
0.98 (0.85-1.12)
1.22 (1.04-1.44)
1.18 (1.01-1.39)
1.19 (1.02-1.39)
1.17 (0.98-1.38)
1.15 (0.98-1.35)
1.17 (0.99-1.37)
1.02 (0.87-1.18)
1.02 (0.88-1.18)
1.00 (0.86-1.15)

0.97 (0.87-1.08)
1.03 (0.93-1.15)
0.96 (0.86-1.06)
1.04 (0.93-1.16)
0.97 (0.87-1.08)
1.04 (0.93-1.16)

1.07 (0.92-1.24)
0.98 (0.85-1.14)
1.10 (0.95-1.27)
0.95 (0.82-1.10)
1.02 (0.88-1.17)
0.98 (0.85-1.13)
1.22 (1.03-1.44)
1.19 (1.01-1.40)
1.19 (1.01-1.39)
1.16 (0.98-1.38)
1.16 (0.98-1.37)
1.17 (1.00-1.38)
1.02 (0.87-1.18)
1.02 (0.88-1.19)
1.02 (0.88-1.18)

0.96 (0.86-1.07)
1.03 (0.92-1.14)
0.95 (0.86-1.06)
1.04 (0.93-1.15)
0.97 (0.87-1.08)
1.04 (0.94-1.16)

1.04 (0.89-1.21)
0.92 (0.78-1.07)
1.04 (0.89-1.21)
0.93 (0.80-1.07)
1.03 (0.89-1.19)
0.98 (0.84-1.14)
1.19 (1.00-1.42)
1.14 (0.95-1.35)
1.13 (0.94-1.35)
1.14 (0.95-1.36)
1.11 (0.93-1.32)
1.12 (0.94-1.34)
1.01 (0.87-1.18)
1.01 (0.86-1.17)
0.99 (0.85-1.15)

0.94 (0.84-1.05)
1.00 (0.89-1.12)
0.95 (0.85-1.06)
1.04 (0.93-1.16)
0.95 (0.85-1.06)
1.03 (0.92-1.16)

1.07 (0.92-1.25)
0.96 (0.83-1.11)
1.08 (0.94-1.25)
0.95 (0.82-1.10)
1.02 (0.88-1.17)
0.98 (0.85-1.13)
1.25 (1.05-1.47)
1.23 (1.04-1.46)
1.20 (1.02-1.42)
1.16 (0.97-1.38)
1.19 (1.00-1.42)
1.23 (1.04-1.46)
0.99 (0.84-1.16)
1.00 (0.85-1.17)
0.98 (0.84-1.15)

0.98 (0.88-1.10)
1.04 (0.93-1.16)
0.95 (0.86-1.06)
1.02 (0.91-1.13)
0.97 (0.87-1.08)
1.05 (0.94-1.17)

1.04 (0.89-1.21)
0.90 (0.77-1.05)
1.02 (0.87-1.19)
0.93 (0.80-1.08)
1.03 (0.89-1.20)
0.98 (0.84-1.14)
1.22 (1.02-1.46)
1.20 (1.00-1.45)
1.16 (0.96-1.41)
1.14 (0.95-1.36)
1.19 (0.98-1.44)
1.22 (1.01-1.47)
0.97 (0.83-1.14)
0.98 (0.83-1.16)
0.99 (0.84-1.17)

0.94 (0.84-1.06)
1.00 (0.90-1.13)
0.95 (0.85-1.06)
1.01 (0.90-1.13)
0.94 (0.84-1.05)
1.03 (0.92-1.16)
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Table S2- 10. Adjusted odds ratio and their 95% Cls at each window of exposure to SO,

and adverse birth outcomes for Linwood from single and multiple pollutant models

including CO, SO,, NO; and PM ¢ in the model.

Otherwise as Table S2-5.

Windows and

quartiles of
exposures

SO,

SO, and CO

SO, and NO,

SO, and PM,

All pollutants

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA

1 Month

Last
Month

1 st
Trimester

2nd
Trimester

3 rd
Trimester

PTB
1% Month

Last
Month

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

2nd
3rd
4th
2nd
3rd
4th

0.91 (0.81-1.03)
0.96 (0.86-1.07)
0.94 (0.84-1.05)
1.01 (0.90-1.13)
0.94 (0.85-1.05)
0.98 (0.87-1.10)
1.11 (0.97-1.28)
1.06 (0.93-1.21)
1.10 (0.95-1.27)
1.20 (1.03-1.39)
1.06 (0.91-1.22)
1.09 (0.94-1.28)
1.10 (0.97-1.25)
1.05 (0.93-1.19)
1.11 (0.97-1.27)

1.06 (0.97-1.16)
1.04 (0.96-1.13)
1.06 (0.97-1.16)
1.03 (0.94-1.12)
1.06 (0.98-1.15)
1.06 (0.97-1.15)

0.98 (0.81-1.17)
0.97 (0.82-1.15)
0.98 (0.83-1.15)
0.99 (0.83-1.17)
0.96 (0.82-1.12)
0.99 (0.85-1.17)
1.16 (0.91-1.47)
1.02 (0.85-1.23)
1.11 (0.91-1.34)
1.23 (0.96-1.59)
1.11 (0.91-1.34)
1.14 (0.94-1.39)
1.13 (0.92-1.38)
1.21 (1.00-1.46)
1.24 (1.02-1.51)

1.26 (1.10-1.45)
1.12 (0.99-1.28)
1.14 (1.00-1.30)
1.06 (0.93-1.21)
1.07 (0.95-1.21)
1.02 (0.90-1.16)

0.92 (0.81-1.04)
0.95 (0.84-1.07)
0.89 (0.78-1.01)
1.03 (0.91-1.16)
0.95 (0.84-1.07)
1.01 (0.89-1.15)
1.13 (0.97-1.31)
1.08 (0.94-1.24)
1.13 (0.97-1.32)
1.22 (1.04-1.44)
1.07 (0.92-1.24)
1.11 (0.94-1.31)
1.10 (0.96-1.26)
1.05 (0.92-1.19)
1.11 (0.96-1.28)

1.07 (0.98-1.18)
1.04 (0.95-1.14)
1.06 (0.96-1.17)
1.03 (0.93-1.13)
1.05 (0.95-1.14)
1.00 (0.91-1.11)

0.92 (0.82-1.03)
0.97 (0.87-1.08)
0.93 (0.82-1.05)
1.01 (0.90-1.13)
0.96 (0.86-1.07)
0.99 (0.88-1.12)
1.13 (0.98-1.30)
1.08 (0.95-1.24)
1.12 (0.96-1.31)
1.21 (1.04-1.41)
1.08 (0.93-1.25)
1.10 (0.94-1.30)
1.10 (0.97-1.25)
1.07 (0.95-1.21)
1.15 (1.00-1.32)

1.05 (0.96-1.15)
1.05 (0.96-1.14)
1.05 (0.96-1.15)
1.03 (0.95-1.13)
1.08 (0.99-1.17)
1.05 (0.95-1.15)

1.00 (0.83-1.20)
0.99 (0.83-1.17)
0.93 (0.78-1.11)
0.99 (0.83-1.18)
0.97 (0.82-1.15)
1.03 (0.86-1.23)
1.18 (0.92-1.51)
1.01 (0.83-1.23)
1.05 (0.87-1.28)
1.30 (1.01-1.69)
1.12 (0.91-1.37)
1.11 (0.90-1.36)
1.17 (0.94-1.45)
1.24 (1.02-1.50)
1.31 (1.06-1.60)

1.27 (1.11-1.47)
1.14 (0.99-1.30)
1.13 (0.98-1.30)
1.04 (0.91-1.19)
1.06 (0.93-1.21)
0.99 (0.86-1.14)
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Table S2- 11. Adjusted odds ratio and their 95% Cls at each window of exposure to NO,

and adverse birth outcomes for Linwood from single and multiple pollutant models

including CO, SO,, NO; and PM ¢ in the model.

Otherwise as Table S2-5.

Windows and

quartiles of
exposures

NO,

NO, and CO

NO, and SO,

NO, and PM;,

All pollutants

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA

1 Month

Last
Month

1 st
Trimester

2nd
Trimester

3 rd
Trimester

PTB

1% Month

Last
Month

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

2nd
3rd
4th
2nd
3rd
4th

1.19 (1.05-1.36)
1.13 (1.00-1.28)
1.23 (1.09-1.39)
1.06 (0.93-1.19)
1.04 (0.93-1.17)
0.99 (0.88-1.11)
1.17 (0.98-1.40)
1.22 (1.02-1.45)
1.26 (1.06-1.49)
1.29 (1.05-1.59)
1.27 (1.03-1.55)
1.31 (1.07-1.61)
1.09 (0.93-1.26)
1.07 (0.93-1.24)
1.11 (0.96-1.28)

1.05 (0.95-1.16)
1.03 (0.95-1.13)
1.07 (0.98-1.17)
0.92 (0.83-1.01)
0.96 (0.88-1.04)
0.96 (0.88-1.05)

1.14 (0.98-1.33)
1.11 (0.96-1.29)
1.24 (1.07-1.45)
1.08 (0.93-1.25)
1.05 (0.91-1.21)
1.00 (0.86-1.16)
1.07 (0.85-1.34)
1.06 (0.85-1.33)
1.18 (0.94-1.48)
1.15 (0.88-1.49)
1.12 (0.86-1.46)
1.17 (0.90-1.54)
1.10 (0.92-1.32)
1.07 (0.89-1.28)
1.11 (0.92-1.33)

1.05 (0.93-1.17)
1.08 (0.97-1.21)
1.07 (0.95-1.20)
0.92 (0.82-1.03)
0.98 (0.88-1.10)
0.98 (0.87-1.09)

1.18 (1.04-1.35)
1.13 (1.00-1.28)
1.25 (1.11-1.41)
1.05 (0.93-1.19)
1.04 (0.93-1.17)
0.99 (0.88-1.11)
1.17 (0.98-1.41)
1.22 (1.03-1.45)
1.26 (1.06-1.49)
1.29 (1.05-1.59)
1.26 (1.03-1.55)
1.31 (1.07-1.61)
1.09 (0.94-1.27)
1.07 (0.92-1.24)
1.10 (0.95-1.27)

1.05 (0.95-1.16)
1.03 (0.94-1.13)
1.07 (0.98-1.17)
0.92 (0.83-1.01)
0.96 (0.88-1.04)
0.96 (0.88-1.05)

1.20 (1.05-1.36)
1.14 (1.01-1.29)
1.24 (1.10-1.40)
1.07 (0.94-1.21)
1.04 (0.93-1.17)
1.00 (0.89-1.12)
1.17 (0.97-1.40)
1.23 (1.03-1.47)
1.25 (1.05-1.49)
1.30 (1.06-1.60)
1.26 (1.03-1.55)
1.31 (1.07-1.61)
1.09 (0.94-1.27)
1.09 (0.94-1.27)
1.10 (0.95-1.28)

1.06 (0.96-1.16)
1.04 (0.95-1.14)
1.07 (0.98-1.17)
0.92 (0.83-1.01)
0.95 (0.87-1.04)
0.97 (0.89-1.06)

1.14 (0.97-1.33)
1.12 (0.97-1.31)
1.28 (1.09-1.49)
1.09 (0.93-1.26)
1.04 (0.90-1.20)
0.99 (0.85-1.16)
1.04 (0.83-1.31)
1.04 (0.83-1.31)
1.14 (0.91-1.44)
1.06 (0.81-1.40)
1.03 (0.78-1.35)
1.12 (0.85-1.48)
1.10 (0.92-1.33)
1.07 (0.88-1.29)
1.04 (0.85-1.26)

1.06 (0.94-1.19)
1.08 (0.97-1.21)
1.05 (0.94-1.18)
0.92 (0.82-1.03)
0.99 (0.89-1.11)
1.01 (0.90-1.14)
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Table S2- 12. Adjusted odds ratio and their 95% ClIs at each window of exposure to PMy

and adverse birth outcomes for Linwood from single and multiple pollutant models

including CO, SO,, NO; and PM ¢ in the model.

Otherwise as Table S2-5.

Windows and

quartiles of
exposures

PM;o

PMIU and CO

PMIU and S02

PM 10 and N02

All pollutants

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

SGA

1 Month

Last
Month

1 st
Trimester

2nd
Trimester

3 rd
Trimester

PTB

1% Month

Last
Month

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

2nd
3rd
4th
2nd
3rd
4th

1.02 (0.90-1.15)
1.01 (0.88-1.15)
1.05 (0.92-1.21)
1.01 (0.90-1.13)
0.97 (0.86-1.11)
0.95 (0.83-1.07)
1.06 (0.93-1.21)
1.13 (0.98-1.30)
1.16 (1.01-1.34)
1.08 (0.94-1.23)
0.97 (0.84-1.11)
1.25 (1.09-1.44)
0.98 (0.87-1.12)
0.95 (0.82-1.09)
0.92 (0.80-1.05)

0.98 (0.91-1.04)
0.98 (0.92-1.05)
1.02 (0.95-1.10)
1.06 (0.99-1.13)
1.03 (0.96-1.10)
1.00 (0.94-1.07)

0.98 (0.84-1.14)
1.05 (0.88-1.24)
1.12 (0.95-1.32)
0.99 (0.87-1.14)
0.95 (0.81-1.11)
0.88 (0.75-1.02)
1.14 (0.96-1.36)
1.25 (1.04-1.50)
1.25 (1.04-1.49)
1.12 (0.93-1.35)
0.99 (0.82-1.19)
1.23 (1.03-1.47)
0.90 (0.76-1.07)
0.89 (0.75-1.07)
0.87 (0.74-1.02)

0.99 (0.91-1.07)
1.01 (0.92-1.11)
1.07 (0.98-1.17)
1.05 (0.97-1.14)
0.99 (0.91-1.08)
0.93 (0.85-1.01)

1.01 (0.89-1.15)
1.00 (0.87-1.15)
1.04 (0.91-1.20)
1.00 (0.89-1.13)
0.97 (0.86-1.11)
0.94 (0.83-1.08)
1.03 (0.90-1.18)
1.07 (0.92-1.25)
1.11 (0.95-1.30)
1.07 (0.93-1.23)
0.96 (0.83-1.12)
1.24 (1.06-1.45)
0.98 (0.86-1.11)
0.92 (0.80-1.07)
0.90 (0.78-1.04)

0.97 (0.91-1.04)
0.97 (0.91-1.04)
1.02 (0.95-1.10)
1.05 (0.98-1.12)
1.01 (0.94-1.08)
0.98 (0.91-1.05)

1.04 (0.91-1.18)
1.01 (0.87-1.16)
1.06 (0.91-1.22)
1.03 (0.91-1.17)
0.99 (0.86-1.14)
0.96 (0.84-1.10)
1.09 (0.95-1.25)
1.16 (1.00-1.35)
1.15 (0.99-1.34)
1.10 (0.96-1.27)
0.98 (0.85-1.14)
1.23 (1.06-1.43)
0.98 (0.86-1.12)
0.95 (0.82-1.10)
0.89 (0.77-1.04)

0.97 (0.91-1.04)
0.97 (0.90-1.04)
1.01 (0.93-1.09)
1.06 (0.99-1.13)
1.00 (0.93-1.08)
0.96 (0.89-1.04)

1.02 (0.87-1.19)
1.07 (0.90-1.28)
1.08 (0.90-1.30)
1.00 (0.86-1.15)
0.98 (0.83-1.16)
0.88 (0.75-1.04)
1.11 (0.92-1.33)
1.16 (0.95-1.42)
1.16 (0.95-1.41)
1.15 (0.94-1.42)
0.97 (0.79-1.19)
1.13 (0.92-1.40)
0.89 (0.74-1.07)
0.87 (0.72-1.05)
0.82 (0.69-0.98)

1.00 (0.92-1.09)
1.01 (0.91-1.11)
1.08 (0.98-1.19)
1.06 (0.97-1.15)
0.98 (0.89-1.08)
0.92 (0.84-1.01)
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Table S2- 13. Adjusted odds ratio (ORs) for SGA and PTB at each window of exposure

to air pollutants by maternal education levels.

Otherwise as Table S2-5.

‘Windows and
quartiles of
exposures

SGA

PTB

<12 yrs

12 yrs

>12 yrs

<12 yrs

12 yrs

>12 yrs

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

CO (ppm)
2nd
1*Month  3rd

4th
2nd

Last

Month 3rd
4th
2nd

lS(

Trimester 3rd
4th
2nd

2nd

Trimester 3rd
4th
2nd

3rd

Trimester 3rd
4th

SO: (ppb)
2nd

1*Month  3rd

4th
2nd

Last

Month 3rd
4th
2nd

lS(

Trimester 3rd
4th
2nd

2nd

Trimester 3rd
4th
2nd

3rd

Trimester 3rd
4th

1.24 (1.03-1.49)
1.11 (0.92-1.34)
1.19 (0.99-1.44)
0.99 (0.83-1.17)
1.03 (0.86-1.22)
1.03 (0.86-1.23)
1.46 (1.19-1.80)
1.42 (1.15-1.75)
1.31 (1.06-1.62)
1.07 (0.88-1.31)
1.10 (0.90-1.34)
1.14 (0.93-1.39)
1.05 (0.87-1.26)
1.17 (0.97-1.40)
1.06 (0.88-1.28)

0.97 (0.87-1.07)
0.98 (0.88-1.09)
1.06 (0.94-1.19)
1.01 (0.92-1.11)
0.86 (0.78-0.96)
0.96 (0.86-1.08)
1.01 (0.90-1.12)
1.00 (0.89-1.11)
1.10 (0.95-1.26)
0.95 (0.86-1.06)
0.90 (0.81-1.01)
0.98 (0.86-1.13)
1.01 (0.91-1.11)
0.95 (0.86-1.06)
1.02 (0.90-1.16)

1.13 (0.95-1.34)
1.03 (0.86-1.23)
1.22 (1.02-1.47)
0.97 (0.83-1.14)
1.00 (0.84-1.17)
0.97 (0.81-1.15)
0.97 (0.80-1.17)
1.01 (0.84-1.22)
1.03 (0.85-1.26)
1.10 (0.91-1.32)
1.06 (0.88-1.28)
1.04 (0.85-1.27)
0.95 (0.80-1.12)
0.80 (0.68-0.96)
0.96 (0.81-1.15)

1.02 (0.92-1.13)
1.06 (0.95-1.18)
1.10 (0.97-1.24)
0.98 (0.89-1.08)
0.98 (0.89-1.09)
1.00 (0.89-1.12)
1.05 (0.95-1.17)
1.02 (0.91-1.15)
1.10 (0.95-1.26)
0.97 (0.88-1.08)
0.94 (0.84-1.05)
1.08 (0.95-1.24)
1.05 (0.95-1.15)
0.97 (0.87-1.08)
1.02 (0.90-1.16)

0.94 (0.76-1.17)
0.82 (0.65-1.03)
0.95 (0.75-1.20)
1.06 (0.87-1.31)
1.02 (0.82-1.27)
0.90 (0.72-1.14)
0.94 (0.74-1.20)
0.90 (0.70-1.15)
0.99 (0.77-1.28)
0.80 (0.63-1.00)
0.83 (0.65-1.05)
0.84 (0.65-1.08)
1.03 (0.84-1.28)
0.92 (0.74-1.16)
0.87 (0.69-1.10)

0.87 (0.76-0.99)
0.95 (0.83-1.09)
0.94 (0.79-1.10)
1.04 (0.92-1.18)
1.02 (0.89-1.17)
0.97 (0.82-1.13)
1.01 (0.88-1.16)
1.02 (0.88-1.19)
1.05 (0.88-1.26)
1.04 (0.91-1.19)
1.01 (0.87-1.17)
1.09 (0.91-1.31)
1.09 (0.96-1.24)
1.06 (0.92-1.21)
1.08 (0.91-1.28)
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0.98 (0.86-1.12)
1.03 (0.90-1.17)
0.94 (0.83-1.08)
0.97 (0.85-1.10)
0.93 (0.81-1.05)
1.01 (0.88-1.15)

0.97 (0.89-1.05)
1.05 (0.96-1.14)
1.02 (0.93-1.12)
1.10 (1.02-1.19)
1.13 (1.05-1.23)
1.12 (1.02-1.23)

0.97 (0.87-1.10)
0.95 (0.84-1.08)
0.94 (0.83-1.06)
1.03 (0.92-1.15)
0.91 (0.81-1.03)
1.05 (0.92-1.18)

1.02 (0.95-1.11)
0.96 (0.89-1.04)
0.97 (0.88-1.07)
1.05 (0.98-1.13)
1.08 (1.00-1.17)
1.02 (0.93-1.12)

0.74 (0.64-0.85)
0.78 (0.67-0.91)
0.80 (0.69-0.94)
0.94 (0.82-1.08)
0.87 (0.75-1.01)
0.83 (0.71-0.97)

0.97 (0.88-1.07)
0.88 (0.79-0.98)
0.93 (0.82-1.05)
1.11 (1.01-1.22)
1.12 (1.00-1.24)
1.09 (0.96-1.23)



Table S2-13 (Cont.)

Windows and
quartiles of
exposures

SGA

PTB

<12 yrs

12 yrs

>12 yrs

<12 yrs

12 yrs

>12 yrs

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

NO:; (ppb)
2nd
1" Month  3rd

4th
2nd

Last

Month 3rd
4th
2nd

15[

Trimester 3rd
4th
2nd

2nd

Trimester 3rd
4th
2nd

3rd

Trimester 3rd
4th

PM (ug/m’)

1" Month  2nd

3rd
4th

Last 2nd

Month
3rd
4th
2nd

15[

Trimester 3rd
4th
2nd

2nd

Trimester 3rd
4th
2nd

3rd

Trimester 3rd
4th

1.05 (0.94-1.17)
1.10 (0.98-1.24)
1.08 (0.96-1.22)
1.00 (0.90-1.11)
0.93 (0.83-1.04)
0.95 (0.84-1.07)
1.06 (0.94-1.19)
1.10 (0.96-1.25)
1.10 (0.95-1.26)
0.96 (0.85-1.08)
0.94 (0.82-1.07)
0.94 (0.82-1.09)
0.91 (0.82-1.02)
0.97 (0.86-1.09)
0.97 (0.86-1.10)

1.12 (0.81-1.54)
1.12 (0.79-1.59)
1.34 (0.95-1.90)
1.23 (0.91-1.67)
1.20 (0.87-1.67)
1.21 (0.87-1.68)
0.92 (0.66-1.29)
0.87 (0.61-1.25)
0.98 (0.68-1.39)
0.94 (0.67-1.33)
0.98 (0.68-1.40)
0.97 (0.67-1.41)
0.97 (0.69-1.36)
1.23 (0.87-1.74)
1.06 (0.74-1.50)

1.10 (0.97-1.23)
1.09 (0.96-1.23)
1.13 (0.99-1.29)
1.01 (0.90-1.13)
0.99 (0.88-1.11)
0.90 (0.79-1.02)
1.03 (0.92-1.17)
0.99 (0.87-1.13)
1.02 (0.88-1.18)
1.04 (0.92-1.17)
1.04 (0.90-1.19)
1.04 (0.90-1.21)
0.97 (0.87-1.08)
0.98 (0.87-1.11)
1.00 (0.88-1.14)

0.96 (0.76-1.22)
0.96 (0.75-1.23)
1.16 (0.91-1.49)
1.00 (0.79-1.25)
1.25 (0.99-1.59)
1.10 (0.86-1.40)
0.92 (0.71-1.18)
1.12 (0.86-1.45)
1.10 (0.84-1.44)
1.27 (0.98-1.64)
1.40 (1.08-1.82)
0.99 (0.75-1.31)
1.16 (0.90-1.49)
1.36 (1.04-1.76)
1.34 (1.03-1.75)

1.04 (0.89-1.22)
0.93 (0.78-1.10)
1.16 (0.97-1.38)
0.97 (0.83-1.13)
1.16 (0.99-1.37)
1.05 (0.88-1.24)
0.98 (0.83-1.16)
1.08 (0.90-1.30)
1.05 (0.86-1.29)
0.92 (0.78-1.09)
1.03 (0.86-1.25)
1.09 (0.89-1.34)
0.93 (0.80-1.09)
1.06 (0.90-1.25)
1.07 (0.90-1.28)

1.18 (0.89-1.56)
1.01 (0.74-1.38)
1.04 (0.76-1.42)
0.85 (0.65-1.12)
0.83 (0.62-1.11)
0.96 (0.72-1.28)
1.57 (1.15-2.14)
1.25 (0.89-1.74)
1.44 (1.02-2.04)
1.44 (1.06-1.96)
1.18 (0.85-1.64)
1.19 (0.85-1.67)
1.00 (0.73-1.35)
1.13 (0.82-1.56)
1.23 (0.89-1.69)
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1.00 (0.92-1.09)
1.04 (0.95-1.14)
1.08 (0.98-1.18)
1.05 (0.96-1.14)
1.05 (0.96-1.15)
1.05 (0.96-1.15)

1.17 (0.90-1.52)
1.28 (0.97-1.69)
1.12 (0.84-1.50)
0.81 (0.64-1.03)
0.74 (0.56-0.96)
0.89 (0.68-1.16)

1.06 (0.97-1.16)
1.03 (0.94-1.13)
1.01 (0.91-1.11)
0.92 (0.85-1.01)
0.93 (0.84-1.01)
0.90 (0.82-1.00)

0.96 (0.79-1.15)
0.99 (0.82-1.21)
1.02 (0.84-1.25)
1.00 (0.84-1.19)
0.83 (0.68-1.00)
0.97 (0.80-1.17)

1.02 (0.90-1.14)
1.01 (0.89-1.14)
0.93 (0.81-1.06)
0.97 (0.87-1.09)
1.00 (0.89-1.14)
0.99 (0.88-1.13)

0.86 (0.69-1.08)
1.04 (0.83-1.31)
1.04 (0.83-1.32)
1.02 (0.83-1.25)
1.09 (0.87-1.35)
0.97 (0.77-1.22)



Table S2- 14. Infant and maternal characteristics by birth outcomes and ethnicity, 1990-

2001.
All births*  LBW SGA PTB Term Black White
births
Characteristics N=164905 N=6106 N=13754 N=24954 ., .o0.. | N=93078 N=68164
(%) (%) (%) (%) (%) (%)
(%)
Female 49.1 58.8 49.1 478 493 493 488
Infant sex
Male 50.9 413 51.0 522 50.7 50.6 512
Black 56.4 714 69.1 71.1 53.8 - -
Race White 413 26.7 28.6 27.1 439 - -
Other 22 1.9 2.3 1.8 2.3 - .
16-19 17.4 19.2 19.8 19.8 17.0 220 11.6
Age (yrs) 20-29 58.1 529 55.4 54.0 58.8 57.4 59.1
>30 24.5 27.9 24.8 26.2 242 20.6 29.3
0-11 32.9 412 40.5 39.5 31.7 36.2 28.4
](Ey‘i‘sl)ca“"“ 12 40.0 38.4 38.5 38.9 40.2 39.0 419
>13 27.1 20.4 21.0 21.7 28.1 24.8 29.7
Tobacco use  Smoker 21.8 38.3 35.7 27.0 20.9 19.3 26.0
None 34 6.9 5.4 75 2.7 4.8 1.7
Prenatal ;
Late (after
care
4th month) 26.0 32.8 31.8 35.9 24.3 32.7 172
Spring (Mar- 252 252 24.8 25.1 25.3 25.0 25.7
May)
Summer 26.1 26.0 262 25.7 26.2 26.0 26.3
(Jun-Aug)
Birth season
Fall (Sept- 24.1 232 23.7 238 242 238 24.5
Nov)
Winter 24.6 25.6 253 25.5 24.4 252 23.6
(Doc-Feb) . . . . . . .
1990-1993 39.5 43.7 434 406 39.3 41.1 37.7
Birth period ~ 1994-1997 31.3 29.2 29.7 31.0 31.3 31.0 315
1998-2001 29.3 27.1 26.9 28.5 29.4 28.0 30.8

Abbreviations: LBW, low birth weight; SGA, small for gestational age; PTB, preterm
births; (*) All births included Blacks, Whites and others.

61



a9

Table S2- 15. Adjusted odds ratio and 95% confident interval (95% CI) for each window of exposure to air pollutants for low birth

weight (LBW).

Windows and

quartiles of
exposures

1°" month

Last

month

1 st
trimester

2nd
trimester

3rd
trimester

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th

SO,

NO,

PM,,

Adjusted®

Trend-adjusted®

Adjusted®

Trend-adjusted®

Adjusted®

Trend-adjusted”

Adjusted®

Trend-adjusted®

1.23 (1.07-1.43)
1.15 (0.99-1.33)
1.20 (1.03-1.39)
1.06 (0.92-1.21)
1.13 (0.99-1.30)
1.11 (0.96-1.29)
1.21 (1.05-1.41)
1.20 (1.03-1.39)
1.10 (0.94-1.29)
1.15 (0.99-1.34)
1.18 (1.02-1.37)
1.24 (1.06-1.45)
1.05 (0.91-1.21)
1.07 (0.93-1.23)
1.07 (0.92-1.24)

1.11 (0.94-1.31)
1.01 (0.85-1.19)
1.07 (0.90-1.26)
0.96 (0.82-1.11)
1.01 (0.86-1.17)
0.99 (0.85-1.16)
1.12 (0.94-1.34)
1.07 (0.90-1.28)
1.00 (0.84-1.20)
1.06 (0.89-1.26)
1.06 (0.89-1.26)
1.12 (0.93-1.34)
0.93 (0.80-1.08)
0.93 (0.80-1.08)
0.94 (0.80-1.10)

1.03 (0.94-1.13)
1.12 (1.02-1.23)
1.24 (1.13-1.37)
1.06 (0.97-1.15)
1.00 (0.92-1.10)
1.11 (1.01-1.22)
1.10 (1.00-1.21)
1.06 (0.96-1.17)
1.29 (1.17-1.42)
0.93 (0.85-1.02)
0.93 (0.85-1.03)
1.16 (1.05-1.28)
1.09 (1.00-1.19)
1.04 (0.95-1.14)
1.21 (1.10-1.33)

1.01 (0.92-1.11)
1.09 (0.99-1.20)
1.16 (1.04-1.30)
1.02 (0.94-1.12)
0.95 (0.86-1.04)
0.98 (0.88-1.09)
1.08 (0.98-1.19)
1.03 (0.93-1.15)
1.23 (1.08-1.39)
0.91 (0.83-1.00)
0.89 (0.81-0.99)
1.05 (0.93-1.19)
1.06 (0.97-1.16)
0.99 (0.90-1.09)
1.08 (0.96-1.21)

1.05 (0.95-1.17)
1.14 (1.02-1.27)
1.09 (0.97-1.22)
0.98 (0.89-1.09)
0.95 (0.85-1.05)
0.88 (0.79-0.99)
0.99 (0.89-1.10)
1.06 (0.94-1.19)
0.95 (0.83-1.08)
0.94 (0.84-1.04)
0.97 (0.86-1.10)
0.97 (0.85-1.10)
0.90 (0.81-0.99)
0.87 (0.78-0.97)
0.90 (0.80-1.01)

1.06 (0.95-1.17)
1.14 (1.03-1.28)
1.12 (1.00-1.26)
0.99 (0.89-1.09)
0.95 (0.85-1.05)
0.91 (0.81-1.01)
1.00 (0.90-1.12)
1.08 (0.96-1.22)
1.01 (0.88-1.15)
0.94 (0.84-1.05)
1.00 (0.88-1.13)
1.04 (0.91-1.19)
0.91 (0.82-1.00)
0.88 (0.79-0.98)
0.94 (0.84-1.06)

0.89 (0.69-1.15)
1.07 (0.83-1.38)
1.19 (0.92-1.54)
1.28 (1.01-1.62)
1.14 (0.89-1.47)
1.22 (0.95-1.58)
1.02 (0.79-1.32)
0.91 (0.69-1.20)
1.21 (0.93-1.57)
1.17 (0.90-1.51)
1.12 (0.85-1.47)
1.09 (0.84-1.42)
0.95 (0.74-1.23)
0.96 (0.74-1.26)
1.17 (0.91-1.50)

0.91 (0.70-1.17)
1.08 (0.83-1.40)
1.17 (0.90-1.52)
1.28 (1.00-1.62)
1.12 (0.86-1.45)
1.15 (0.89-1.50)
1.00 (0.76-1.32)
0.90 (0.67-1.20)
1.11 (0.83-1.47)
1.17 (0.89-1.54)
1.10 (0.83-1.47)
0.97 (0.73-1.30)
0.91 (0.70-1.18)
0.92 (0.69-1.21)
1.03 (0.79-1.36)

“Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco use, prenatal care, birth seasons and site of

residency.

bAdjusted for variables above and birth periods.



Table S2- 16. Results of the multipollutant model (including CO, SO,, NO; and PM,j)
for LBW at the Linwood area.

Otherwise as Table 2S-14.

Window of

exposure/ Quartile

of exposure

Cco

SO,

NO,

PM;,

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

1*" month

Last
month

1 st
trimester

2nd
trimester

3rd
trimester

2nd
3rd
4th
2nd
3rd
4th
2nd
3rd
4th
2nd

1.05 (0.84-1.31)
0.91 (0.72-1.14)
0.93 (0.75-1.16)
0.96 (0.78-1.19)
1.05 (0.85-1.30)
1.01 (0.82-1.25)
1.35 (1.04-1.76)
1.32 (1.01-1.73)
1.17 (0.89-1.54)
1.20 (0.92-1.55)
1.14 (0.87-1.50)
1.22 (0.93-1.59)
0.96 (0.76-1.20)
1.01 (0.81-1.27)
0.99 (0.79-1.24)

1.05 (0.80-1.39)
1.16 (0.89-1.50)
1.16 (0.89-1.52)
1.17 (0.90-1.51)
1.04 (0.81-1.33)
1.09 (0.84-1.41)
1.30 (0.91-1.87)
1.02 (0.77-1.36)
1.25 (0.94-1.66)
0.98 (0.67-1.44)
0.99 (0.74-1.33)
1.00 (0.75-1.34)
1.11 (0.82-1.52)
1.17 (0.88-1.54)
1.24 (0.92-1.66)

1.14 (0.91-1.44)
1.21 (0.97-1.50)
1.30 (1.04-1.63)
1.04 (0.84-1.28)
1.01 (0.82-1.23)
1.05 (0.85-1.30)
0.92 (0.67-1.28)
0.95 (0.69-1.30)
0.94 (0.68-1.30)
1.22 (0.82-1.81)
1.29 (0.87-1.91)
1.49 (1.00-2.24)
1.19 (0.93-1.53)
1.03 (0.80-1.34)
1.12 (0.86-1.46)

1.02 (0.87-1.19)
1.07 (0.90-1.28)
1.08 (0.90-1.30)
1.00 (0.86-1.15)
0.98 (0.83-1.16)
0.88 (0.75-1.04)
1.11 (0.92-1.33)
1.16 (0.95-1.42)
1.16 (0.95-1.41)
1.15 (0.94-1.42)
0.97 (0.79-1.19)
1.13 (0.92-1.40)
0.89 (0.74-1.07)
0.87 (0.72-1.05)
0.82 (0.69-0.98)
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Table S2- 17. Adjusted odds ratio and 95% confidence interval (95% CI) for each

window of exposure to air pollutants for small for gestational age (SGA) and preterm

birth (PTB). No adjustment for maternal smoking.

Windows and quartiles of

exposures

Cco

SO,

NO,

PM,,

OR (95% CI)

OR (95% CI)

OR (95% CI)

OR (95% CI)

1*" month

Last
month

181

SGA .
trimester

2nd
trimester

3rd
trimester

1*" month

PTB

Last
month

1.13 (1.01-1.25)
1.01 (0.90-1.13)
1.15 (1.02-1.28)
1.02 (0.92-1.13)
1.03 (0.93-1.15)
1.00 (0.90-1.12)
1.11 (0.99-1.25)
1.11 (0.98-1.25)
1.11 (0.98-1.26)
1.02 (0.91-1.14)
1.03 (0.91-1.15)
1.04 (0.92-1.18)
1.02 (0.92-1.13)
0.98 (0.88-1.09)
1.01 (0.91-1.13)
0.97 (0.90-1.06)
1.00 (0.92-1.09)
0.96 (0.88-1.05)
1.05 (0.97-1.13)
0.97 (0.89-1.05)
1.04 (0.96-1.13)

0.96 (0.90-1.02)
1.00 (0.94-1.07)
1.06 (0.98-1.14)
1.01 (0.95-1.07)
0.94 (0.88-1.00)
0.99 (0.92-1.07)
1.03 (0.96-1.09)
1.02 (0.95-1.09)
1.11 (1.02-1.21)
0.98 (0.92-1.04)
0.93 (0.87-1.00)
1.05 (0.97-1.14)
1.05 (0.98-1.11)
0.98 (0.92-1.05)
1.05 (0.97-1.14)
0.99 (0.94-1.04)
0.97 (0.93-1.03)
0.99 (0.93-1.05)
1.08 (1.03-1.13)
1.11 (1.05-1.16)
1.08 (1.02-1.15)

1.06 (0.99-1.14)
1.06 (0.99-1.15)
1.11 (1.02-1.20)
0.99 (0.93-1.06)
1.01 (0.94-1.08)
0.95 (0.88-1.03)
1.02 (0.95-1.10)
1.05 (0.96-1.14)
1.05 (0.96-1.15)
0.97 (0.91-1.05)
1.00 (0.92-1.08)
1.00 (0.92-1.10)
0.93 (0.87-1.00)
0.99 (0.92-1.07)
1.01 (0.93-1.09)
1.02 (0.97-1.08)
1.03 (0.98-1.10)
1.02 (0.96-1.08)
0.98 (0.93-1.03)
0.99 (0.94-1.05)
0.98 (0.92-1.04)

1.09 (0.93-1.27)
1.02 (0.87-1.21)
1.18 (1.00-1.40)
1.00 (0.86-1.16)
1.07 (0.92-1.26)
1.09 (0.93-1.28)
1.06 (0.90-1.25)
1.07 (0.90-1.28)
1.15 (0.96-1.37)
1.25 (1.06-1.48)
1.24 (1.04-1.48)
1.07 (0.89-1.28)
1.05 (0.89-1.24)
1.24 (1.05-1.48)
1.22 (1.03-1.45)
0.97 (0.86-1.10)
1.06 (0.93-1.21)
1.05 (0.92-1.20)
0.95 (0.85-1.07)
0.87 (0.77-0.99)
0.94 (0.83-1.06)

Adjusted for sex, gestational age, race, maternal age groups, education levels, prenatal

care, birth season, site of residency and birth periods.
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Chapter 3

Apportionment of Air Toxics and Emergency Department
Visits for Respiratory Illness among Dearborn, Michigan
Children

3.1 Abstract

Asthma morbidity has been associated with exposure to a number of ambient air
pollutants; however, effects of exposure to urban air toxics (UATSs) remain poorly
understood. Monitoring for this class of pollutants has been limited, and available data
are generally inadequate to support epidemiological studies. This study uses exposure
measures for UATs, derived using source apportionment techniques, to evaluate acute
effects of UATSs on health care utilization of children living near an ambient air quality

monitoring site in the Dearborn, Michigan area.

Health outcomes investigated included emergency department (ED) visits for
asthma and respiratory problems of 7,863 children living within 10 km of the Dearborn
monitoring site and enrolled in Medicaid for the one year study period. After an analysis
of quality assurance issues of the daily UAT data, based largely on 122 pairs of replicate
samples, missing data were imputed, and exposures were expressed as concentrations of
individual pollutants as well as scores derived from factor analysis and positive matrix
factorization (PMF) models that represented contributions from source classes. Rate
ratios (RR) of ED visits for exposures to source-specific UATs for the current and
previous 1, 2, 3 and 4 days were estimated using Poisson regression models adjusted for

temperature, pressure, relative humidity, season, day-of-week, and PM; 5 concentration.

Of the 71 UAT compounds measured, only 23 were frequently detected or had at

least fair reproducibility. These measurements were distilled to five source classes using
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PMF. The rate of ED visits for respiratory problems increased among those children in
the highest exposure quartile for fuel combustion sources (RR=1.44 and 95% confidence
interval=1.03-2.01), photochemical pollutants (1.48, 1.15-1.90), and gasoline
exhaust/evaporated gasoline (1.35, 1.05-1.74) compared to those in the lowest exposure
quartile. Effects were stronger for subjects living closer (within 4 km) of the air
monitoring site. No statistically significant associations were found between exposures
to criteria pollutants, or between UAT exposures and injury, an outcome used as a
control. This study suggests that respiratory health effects are caused by exposure to
pollutants associated with several common sources, and that the use of exposure
measures based on source apportionments can provide a powerful technique for

investigating health effects of toxic air pollutants.
3.2 Introduction

Many studies have linked exacerbations of asthma to exposures of “criteria” air
pollutants, including particulate matter (PM, s and PM ), ozone (O3), carbon monoxide
(CO), sulfur dioxide (SO,), and nitrogen dioxide (NOz).l'6 In contrast, very few studies
have examined or linked asthma (and respiratory health in general) with exposure to a
group of pollutants known as urban air toxics (UAT),” which include carbonyls, volatile
organic compounds (VOC), semivolatile organic compounds, metals, and several
pollutant mixtures. Exposures to several UATs have been estimated to increase risks of
adverse respiratory system effects for nearly all (92%) of the U.S. population.® Most of
our understanding of the health impacts of UATs is based on occupational studies, which
likely have limited applicability to environmental exposures for several reasons, e.g., the

high concentrations, simple exposures (i.e., single pollutant) and healthy worker effect.

UAT monitoring is uncommon, and typically integrated 24-hour measurements
are taken on a periodic basis, e.g., every 6™ day. Hourly measurements of UAT are rarely
available. Further, each type or class of air toxics requires a different sampling and

analysis approach.

The lack of continuous UAT data makes it difficult for epidemiological studies to
investigate these pollutants in relation to health risks. Current occupational and

community-based studies are limited by the accuracy of self-reported information about
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exposures (i.e. job-exposure matrices) and inability to capture mixed pollutant exposure.’

For most individuals, UAT exposures occur as mixtures at low concentrations.
Given the importance of mixtures, exposure indicators for UATs might utilize source
class contributions derived using receptor models which utilize a mass balance analysis to
identify and apportion sources of ambient air pollutants. In comparison to the use of one
or possibly several pollutants, such indicators may provide greater ability to ascertain
impacts as well as enhance the ability to implement effective interventions, advantageous
to both regulatory and health service agencies. For example, exposures to benzene, a
common and well-known toxicant and carcinogen, may be reduced by controlling
automobile exhaust. It is possible that indicators of automobile exhaust may be more

strongly correlated with health impacts than benzene alone..

This chapter presents a study of the relationship between UAT exposures and
utilization of urgent care facilities for asthma and respiratory disease. A time-series
analysis is used to link daily health care utilization to both source-apportioned exposure
measures and individual pollutant concentrations. Information regarding quality
assurance, reproducibility and imputation of missing UAT data is discussed in Chapter 4
and in a published paper (Appendix 2)."° Detailed information regarding receptor

modeling and the source apportionments used in this chapter is discussed in Appendix 1.
3.3 Background

3.3.1 Sources, characteristics, and types of urban air toxics

The 1990 Clean Air Act Amendments listed 188 hazardous air pollutants (HAPs),
also known as “air toxics,” which include several classes of pollutants.7 UATsS, one of
these classes defined by the U.S. Environmental Protection Agency, include volatile
organic compounds (VOCs), very volatile organic compounds, semivolatile organic
compounds, aldehydes, metals, and several mixtures including diesel exhaust. Ambient
air quality monitoring for UATs is relatively uncommon, and typically only a few species
are measured on an intermittent basis, e.g., every sixth day.

The origin, transport, and behavior of UATSs in the atmosphere can be complex.
UATS originate from both natural (e.g., volcano, ocean spray, wind erosion, biogenic

activity) and anthropogenic (industrial, domestic, agricultural) processes.11 Most UATs
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originate from man-made sources, which include mobile (e.g., cars, trucks, aircraft) and
stationary sources (e.g., power plants, refineries, factories). In cases, natural sources
(e.g., volcanic eruption, forest fires) can be important. In the U.S., about 4.7 million tons
of HAPs were emitted in 1996, with 51% from mobile sources, 25% from area sources,
and 24% from industrial sources.'> Since most sources emit multiple pollutants,
exposures nearly always represent mixture of pollutants. As noted below, the toxicity of
UATSs and UAT mixtures vary, depending on the concentration and the chemical and

physical composition.
3.3.2 Urban air toxics and respiratory health effects

Respiratory health effects due to environmental exposures of air toxics have not
been extensively studied, especially in children. In large part, this is due to the lack of

UAT data at appropriate spatial and temporal scales for epidemiological studies.

Most of the existing studies examining respiratory health effects and UATSs have
focused on VOCs. Among a representative U.S. adult population studied in the National
Health and Nutrition Examination Survey (1999-2000), personal exposures to aromatic
VOCs were associated with physician-diagnosed asthma and wheezing attacks.” In their
review, Schenker and Jacobs (1996) concluded that exposures to organic solvents may
cause respiratory symptoms or impaired pulmonary function in the general population,
and that exposure to formaldehyde above 5 ppm in occupational settings was associated
with asthma.’ In a randomized, crossover-design study of controlled adult human
exposures to VOCs mixtures (including 21 compounds) similar to those found indoors,
Pappas et al. (2000) found that 4 hr exposures to concentrations >25 mg/m’ increased
both lower and upper respiratory syrnptoms.14 Ambient VOC exposures were associated
with respiratory health effects in school age children (third to fifth grade) in Kanawha
County, West Virginia."”” This study found that a 10 ug/m’ increase in petroleum-related
compounds (toluene, m,p-xylene, benzene, o-xylene and decane) was associated with
bronchitis, persistent wheezing, physician’s diagnosis of asthma, lower respiratory
symptoms, and chronic lower respiratory response, while a 2 pg/rn3 increase in process-
related compounds (1,1,1-trichloroethane, carbon tetrachloride, 1-butanol, chloroform,

perchloroethylene, methyl isobutyl ketone, etc.) was associated with lower respiratory
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symptoms and chronic lower respiratory response. In a more recent study among
children between 10 to 15 yrs of age with mild asthma in a Los Angeles community,
petroleum-related VOCs (toluene, m,p-xylene, o-xylene and benzene) were associated
with self-reported asthma symptoms (peak expiratory flow rate was also measured by the
children).'® Although this study found that VOCs monitored in breath were weakly
correlated to ambient levels, ambient VOCs can be used to indicate exposure to
combustion-related compounds. Using a survey instrument, a study in Anchorage,
Alaska, young children (5-7 yrs) exposed to traffic-related air pollutants (VOCs and
coarse fraction particulate matter) showed increased risk of asthma.'” In Atlanta,
Georgia, children less than 18 yrs of age with diagnosed asthma made more frequent
visits to an ambulatory care setting after earlier (past 2 days) exposures to outdoor polar
VOCs.'® In Belfast, Northern Ireland, ambient benzene levels were associated with ED
admissions for children with asthma, after controlling for exposures to criteria air
pollutants (SO», NO,, NO, CO, O3), temperature and rainfall."” This study did not
account for exposure to other air toxics. In a case-control study in Perth, Australia,
young children (1/2 — 3 years of age) experiencing indoor VOC at concentrations above
60 pg/m’ were four times more likely to have asthma compared to children with lower

exposures.”

Most of the exposure measures used in the literature, including the studies just
mentioned, have utilized individual pollutant species, groups of related pollutants, or total
concentrations of all pollutants in the class. Such measures may not adequately reflect
the actual health effects of mixed pollutant exposures. For example, the West Virginia
study identified two source indicators for VOC exposure, namely, petroleum-related and
process-related compounds, by grouping together a small number of pollutants from
similar sources.”” This approach may have the advantage of utilizing a priori
information, but it may not be efficient because collinearity is not accounted for and the
source(s) must be known. Another limitation in using a priori source identification are
the inconsistencies that result between studies. For example, traffic-related exposures
were defined in the Los Angeles study'® using a few VOCs, while the Alaskan study'’
included both VOCs and coarse particulate matter. Another problem is the varying

composition of toxic pollutants emitted from different sources types, which may alter the
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toxicity of the mixture.

UAT exposures also occur due to indoor sources, and the types and
concentrations of pollutants can vary between indoor and outdoor microenvironments.*'
For example, in inner-city New York City, formaldehyde and acetaldehyde indoor
(home) levels exceeded outdoors, but vehicle-related VOCs (benzene, toluene,

ethylbenzene, xylenes, and tert-butyl ether) were consistent in both environments.

Health effects studies could benefit from exposure assessment approaches that
identify the sources of UATSs and help capture exposures to mixtures. The use of receptor

model-based apportionments, described next, provides a promising approach for this task.
3.3.3 Receptor modeling

The fundamental principle of receptor modeling (RM) is that a mass balance
analysis can be used to identify and apportion sources of ambient air pollutalnts.23 This
allows source-specific contributions to be identified and quantified on the basis of
matching ambient concentrations with the chemical (and sometimes physical)
characteristics of source emissions. While RMs have been widely used for apportioning
ambient particulate matter, there are relatively few applications for VOCs and carbonyls,

and fewer still using RM results in epidemiological investigations.

There are two types of receptor models, chemical mass balance (CMB) and
multivariate. In CMB models, information of the composition of emissions, the source
“profile,” from all contributing source types is required. This need for complete (and
accurate) profiles is a limitation associated with CMB models.** Additionally, CMB
models do not treat profiles that change between source and receptor.”> Sometimes,
CMB models are viewed as complementing rather than replacing other analysis and
modeling methods. So called “multivariate” models provide an alternative to CMB
models. These models estimate the number and composition of sources, as well as their
contributions to measured concentrations of air pollutants. Multivariate models utilize
factor analysis, eigenvector analysis and related methods. A popular technique, called
positive matrix factorization (PMF), ensures that derived source profiles are non-
negative, which is required for physical interpretation.’®*’ PMF also allows the use of

weights or uncertainties for individual data points. PMF has been used successfully to
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apportion particulate matter and VOCs.**** Further information regarding this method is

presented in Appendix 1.
3.3.4 Receptor modeling and epidemiology

Very few epidemiological studies have used source apportionment techniques,
although it has been suggested that these methods can provide insight into those sources
that affect health.”*>* The use of source-apportioned exposures is attractive for several
reasons: increased statistical power since the exposure measures may be more strongly
associated with health impacts; the correlation in the larger pollutant data set is used to
derive a smaller number of potentially more robust exposure measures; and the enhanced
biological plausibility and relevance of the exposure measure since most toxic exposures

occur as mixtures from a variety of sources.
3.3.5 Case study area

Asthma is the number one reason for preventable hospitalizations among
Michigan children,” and it has an even greater impact on the city of Detroit.*®”’ The
overall pediatric hospitalization rate in Detroit (70/10,000) was three times higher than
the state rate (23/10,000) in 2001, and over four times higher than the Healthy People
2010 target (17/10,000). Also in 2001, the rate of emergency department visits for
asthma among Medicaid-only beneficiaries less than 14 years of age in Wayne County
was 352/10,000 and the rate of hospital admissions for asthma was 96/10,000. Detroit
experiences a greater burden of asthma than the state as a whole in part due to its
demographic and socioeconomic composition, since low socioeconomic status and
minority race are risk factors for asthma. A recent pilot study at an inner-city children’s
hospital in Detroit reported 61,443 and 71,044 visits by children to the ED in 2001 and
2002, respectively, representing 50.83%, 9.43% and 39.74% of the children enrolled in
Medicaid, children who were uninsured, and children with other insurance.”® Detroit’s
population is 81.6% African American, over 21% of families with children <18 years live
in poverty, and over 30% of the population aged 25 and older have not received their

high school diploma.

The Detroit area contains major industries, e.g., the 1,100 acre Ford Rouge

facility (one of the world’s largest industrial complexes with foundries, casting,
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machining, coating, and fabrication plants), and numerous other industries, e.g.,
chemical, refinery, plastics production, specialty steel production, waste disposal,
chemicals, trucking, meat packing, etc. Due to high pollutant levels (based on 2004-2006
measurements), the area was designated as non-attainment for the annual PM;, and
annual PM, 5 National Ambient Air Quality Standards (NAAQS).”’40 The Toxic Release
Inventory System shows that Michigan ranks ninth among states for air emissions of
benzene. In Wayne County, the ten facilities with the largest toxic releases are located
within a single zip code (48121) in the “South End” of Dearborn, in which total
emissions of toxic air pollutants exceeded 1.5 M lbs in 1995. The study area also
includes sizable train and truck traffic, including intermodal activities, and, in the last
several years, its proximity to the international border and additional security checks have
caused considerable concern regarding emissions from the large number of diesel trucks
idling on freeways ramps near the bridge and tunnels to Canada. Based on EPA's 1999
National Air Toxics Assessment (NATA), Wayne County and the greater Detroit area
were ranked in the highest 5% of counties in the country with regard to risks from air

toxics and diesel particulate matter.

3.4 Methods

3.4.1 Health outcomes data

In-patient hospital admissions and emergency department/urgent care (ED) visits
for asthma and respiratory problems between 4/19/2001 and 4/18/2002 for children
residing near the Dearborn monitoring site were identified from the Medicaid beneficiary
database using an adaptation of the Healthcare Effectiveness Data and Information Set
(HEDIS) case definition for persistent asthma.*' HEDIS is widely used by Medicaid and
commercial health plans as well as health outcomes studies to measure performance on
important dimensions of care and service.*** ED visits for injury, representing claims
believed to be unrelated to air pollutants, were identified and used as a control case. Out-
patient visits, which include both unscheduled/urgent care visits and scheduled check-
ups/well-child visits, were excluded because the purpose of these visits could not be

distinguished.
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Claims were classified using the primary diagnosis into two categories:
respiratory disease, including symptoms involving the respiratory system (ICD-9 codes
460-519 and 786.x); and injury (ICD-9 codes 800-999). Additional claimant information
available in and obtained from the Medicaid files included an encrypted identifier for the
child, child age, sex, race/ethnicity, date of service, residence location (street address and

geocoded coordinates), and provider information (e.g., address).

ZIP codes in which 60% of the population fell within a 10 km radius of the
Dearborn air monitor were determined using a geographic information system. This
monitor was selected for this study because a special year-long study took daily
measurements — daily measurements of air toxics are highly unusual. Duplicates were
removed and data was collapsed into a SAS file. Place of residence was mapped within
ZIP codes to remove records that fell outside the study area. Urgent care visits that
occurred within 7 days of the initial visit were removed to obtain a set of independent
urgent events. Visits that occurred within 7 days for the same individual could be related

to the same trigger and were regarded as possible “treatment failures”.

Criteria for eligibility in the study included living within 10 km of the Dearborn
monitoring site (using the geocoded home location) during the study period, being less
than or equal 18 years of age, and having medical insurance provided solely by Medicaid.
(Children having health insurance in addition to Medicaid were excluded.) To
investigate effects of residential proximity to the air-monitoring site, a second analysis
was restricted to children residing within 4 km of the monitoring site. Eligible claims
were further processed to exclude services received at out-of-state locations (based upon
provider location), and to remove duplicate claims. Counts of the daily number of

hospital admission and ED visits were then determined for each diagnosis category.

Health care data utilization for the year following the main study period (April
2002 — April 2003) were also collected and processed as described above in order to
determine whether the study year was representative, i.e., whether counts were typical on

an annual and seasonal level.
3.4.2 Exposure assessment

Dearborn, Detroit is a diverse airshed that contains many types of point and
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mobile emission sources. The area also experiences highly variable meteorology
patterns, strong shifts in seasonal heating and cooling requirements, and a high
population density.44 These features tend to increase concentrations of toxic pollutants,
and also produce substantial temporal variation in daily exposures. Many of these
features are paralleled at other sites in the U.S. and elsewhere, although the density of the

interspersed industry and population is somewhat unusual.

Daily air quality data were obtained from the Dearborn, Michigan monitoring site
(Site ID: 261630033), which was operated by Michigan Department of Environmental
Quality (MDEQ), for the period from 4/19/2001 to 4/18/2002. The site is located in a
residential neighborhood near an elementary school and industrial area of automobile and
steel manufacturing. The site also lies within approximately 2 km of 1-75 and I-94
interstate highways, two of the largest commuter and trucking routes in the region, and it

formed part of the Detroit Air Toxics Pilot Project.”’

Volatile organic compounds (VOCs) were collected in canisters following EPA
method TO-15,* and carbonyl compounds were collected using DNPH cartridges and
analyzed by HPLC following EPA method TO-11A.*® Most samples were shipped to the
Eastern Research Group (ERG, Research Triangle Park, NC, USA) for analysis. The
monitoring program included extensive quality assurance (QA) activities, including the
collection of co-located samples every third day during the sampling period, with

analysis by the MDEQ laboratory (Lansing, MI, USA).

Our previous analysis indicated several issues regarding QA and intra- and inter-
laboratory reproducibility for many of the compounds measured at Dearborn.'® In brief,
we saw good agreement for only one compound (benzene), moderate agreement for
several other VOCs (e.g., trimethylbenzene, xylenes, ethylbenzene,
dichlorodifluoromethane, tetrachloroethylene, and toluene), and poor-to-fair agreement
for the remaining VOCs and all carbonyls (Appendix 1). To help ensure that the
measurements used in the present study were meaningful, we selected 16 of the 59 VOCs
and 7 of the 13 carbonyls measured using four screens: (1) overall detection frequency
>20%; (2) identification and elimination of outliers using the maximum Gumbell

distribution; (3) intra-laboratory agreement demonstrated by a Spearman rank correlation
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coefficient >0.2; and (4) inter-laboratory reproducibility demonstrated by a Spearman
rank correlation coefficient >0.2. Duplicate samples were averaged, and measurements
falling below the method detection limit (MDL) were set to ¥2 MDL. Table 3-1 lists

descriptive statistics of the toxics dataset used in this study.

To help evaluate the receptor modeling, we also obtained ambient metals data
(arsenic, beryllium, cadmium, chromium, lead, manganese and nickel), which were
monitored every 6" day at the Dearborn site. Due to sampling schedule and relatively

small sample size, these data were not used in the final health models.

Because exposures to criteria air pollutants have been linked to respiratory
problems among children and adults,'® parallel analyses were conducted using criteria
pollutants as exposure measures and both single and multiple pollutant models. Criteria
air pollutant data were obtained for three nearby sites (within 20 km): Allen Park (CO, Os
and PM, 5), East Seven Mile (NO», O; and SO,), and Linwood (CO, NO,, O3, PM, 5 and
SO,). These pollutants are monitored by MDEQ using federal reference methods. In
Michigan, O3 is monitored for only 6 months (the so-called O3 season from April to
September). Therefore, hourly Oz data from downtown Windsor, Canada (within 20 km
of the Dearborn site), which is monitored year-round, were obtained. The annual health
models for O3 used the Windsor data. Daily (24-hr) averages were computed for hourly
CO, NO; and SO, data, and 8-hr moving averages were computed for hourly O3, if >75%
of hourly observations were available and considered valid. PM; 5 is measured in 24-hr
increments and does not require 24-hr average calculations. In addition, daily
meteorological data (temperature, relative humidity, barometric pressure) at Detroit
Metro Airport were obtained from the National Oceanic and Atmospheric Administration

through online electronic sources.*’
3.4.3 Receptor modeling

Source apportionments of the toxics dataset used positive matrix factorization
(PMF) version 1.1.%% (Complete modeling details are provided in Appendix 1.) Based
on previous work apportioning PM; 5, a pollutant species was considered as “bad,”
“weak” or “good” if its signal/noise (S/N) ratio was <0.2, between 0.2 and 2, or >2,

respectively.*>! Bad species were excluded from analysis, and weak species were
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down-weighted. A total of 20 random starting points were performed to determine the
global minimum. The optimum run was selected by examining the robust Q values of all
the random runs. (The Q value is the sum of square measures used to quantify model fit.)
The final number of sources was selected using PMF, principal component
analysis (PCA), annual and seasonal modeling, and modeling incorporating the additional
metals information. Initially, the number of eigenvalues exceeding one obtained from
PCA was used as a guideline to determine the number of sources. The final number of
sources was based on the overall model fit (measured by the root mean square error
[RMSE] and the coefficient of determination [RZ]). For example, if the R? and RMSE
values of the five- and six-source models were similar, then the five-source model was

considered as the final model.

Daily contributions estimated for each source class in the PMF model were
expressed in quartiles for the health models. Five exposure windows were used to
account for possible time lags between exposure and health response: (1) no lag (same
day as the health outcome); (2) prior day; (3) average of the two prior days, called
average 2-day lag; (4) average 3-day lag; and (5) average 4-day lag. Each of the lagged

exposure estimates required at least one valid exposure score during the lag period.
3.4.4 Statistical analyses

After merging the daily source class-specific exposure scores and the daily counts
of health outcomes for children residing near the Dearborn site, adjusted rate ratios
(ARRs) and 95% confidence intervals (CIs) for each outcome were estimated using
Poisson regression models. Each ARR represents the effect of a source-specific UAT
exposure in the second, third and fourth (highest) exposure quartiles relative to the first

(lowest) exposure quartile.

To control for covariates and possible confounding, models were adjusted for
day-of-week, calendar month, and daily meteorology (ambient temperature, relative
humidity and pressure). Day-of-week may influence the caregiver’s decision to bring
their children to the emergency room if the condition is not life threatening. Due to the
study’s short duration (one year) and relatively small sample size, control for calendar

month was intended to control for seasonal adjustments. Daily meteorological variables
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were detrended by subtracting the monthly mean from the daily values.

Initially, single source/pollutant models were constructed. Next, PM; s data (from
Allen Park) were included in the model, since this is a recognized risk factor for
respiratory outcomes.> PM, 5 and meteorological variables used the same five exposure
windows as the UAT exposure scores to account for possible lag times, with a separate
analysis for each exposure window. These windows were used separately. Multiple

source models were constructed using all source classes, again using five time windows.

The Poisson distribution assumes that the mean and variance are equal, however,
this is rarely found in real data.’> A higher incidence of zero counts in the data will
increase the variance, which is considered as “overdispersed” data.>® To examine
whether the health outcome data in this study was not Poisson distributed, the final health
models was analyzed using negative binomial regression, a standard method to model
overdispersed Poisson data, which can also be viewed as an extension to the Poisson-

gamma mixture model.”?

As part of a sensitivity analysis, associations between selected pollutants
(formaldehyde, MEK, benzene, CO, NO,, Oz, PM, 5, PM;( and SO,) and ED visits for
respiratory problems were examined using both single and multiple pollutant models and
the same exposure windows (lag structures) described previously. Additionally, single
and multiple source models were constructed using imputed data, obtained from single
imputation as suggested by Polissar et al. (1998). For imputed data, replicates from the
two laboratories were averaged. Finally, all models were repeated using ED visits for
injury as the outcome, a control case that was not expected to show associations with

pollutant variables.

SAS version 9 was used to format and aggregate Medicaid claims data, and SAS
PROC GENMOD was used for the health models.” Institutional review boards at both
Michigan Department of Community Health (MDCH) and the University of Michigan

reviewed and approved study protocols.
3.5 Results

Results are presented by main tables (Tables 3-1 to 3-10) and figure (Figure 3-1)
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followed by supplemental tables (Tables S3-1 to S3-10).
3.5.1 Source apportionment

Five source classes were identified using PMF with the UAT dataset (Figure 3-1):
(1) Fuel combustion, suggested by aldehyde, benzaldehyde, hexaldehyde, iso-
butyraldehyde, propionaldehyde and tolualdehyde (mass of species apportioned to
sources: 40-100%); (2) photochemical pollutants by formaldehyde (>90%); (3) gasoline
exhaust/evaporated gasoline by benzene, 1,3-butadiene, ethylbenzene, m,p-xylene, o-
xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and toluene (40-70%); (4)
combined industrial sources by acetylene, n-octane, propylene, dichlorodifluoromethane,
tetrachloroethylene, trichlorofluoromethane and trichlorotrifluoroethane (30-65%); and
(5) industrial solvents by methyl ethyl ketone (>80%). (Detailed receptor modeling
results, using PMF as well as PCA, are presented in Appendix 1.) The overall fit for the
5-source model was reasonable for most compounds, e.g., aromatic and carbonyl
compounds had R? values above 0.7 in both seasonal and annual analyses. Lower R*
values (<0.4) were obtained for chlorinated and fluorinated VOCs and for propylene,
most likely due to reproducibility problems and the small variation in the concentrations
of these compounds.

Compared to individual pollutants, which were highly correlated among carbonyls
(0.64 <r< 0.89) and among aromatic VOCs (0.68 <r< (.77), the correlation between
source classes was generally lower (-0.61 <r<0.43) (Tables S3-1 and S3-2). The
correlation coefficients between source classes and criteria pollutants were low-to-
moderate (Table S3-3). All pollutants were moderately correlated with industrial solvent
(-0.42 <r< 0.51). Other noticeable correlations occurred between CO and gasoline
exhaust (r=0.47), NO, and photochemical pollutants (r=0.36), and O3 (Windsor) and fuel
combustion (r=0.38). These correlations help to affirm that the 5-source apportionment
results reflected actual sources in the Detroit area.

Season differences were modest. Source classes for spring and winter seasons
were unchanged. Variability during the summer and fall seasons affected only a few
sources. For example, MEK, which is the key species of industrial solvent sources in the
annual model, was apportioned together with key species of combined industrial sources,

and hexaldehyde was a key species for a new source (fraction of species apportioned to
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sources: >97%) in summer models. The change in summer results might be due to a
reduction in MEK emissions caused by shutdowns in nearby automobile assembly
facilities. Higher rates of photochemical reactions and the consumption of reactive
compounds during the summer season also might contribute to this variability.

The 6-source models only marginally improved fit. Thus, results from the 5-
source annual model (using observed data) are used in subsequent analyses. Analyses

using imputed data are also presented as part of sensitivity analyses.
3.5.2 Characteristics of the study population

Daily counts of ED visits for asthma, respiratory problems and injury for subjects
in the study area are shown in Table 3-2. An unusually large number (n=23) of ED visits
for asthma occurred on July 11, 2001 among subjects living within the 10 km buffer. On
this same day, there were no unusual number of ED visits for respiratory problem (n=20)
and injury (n=20) nor hospital admission for asthma (n=1) and injury (n=1). No unusual
circumstances were noted in the air pollution and meteorological data around that time.
High concentrations of several trace metals were detected on the July 4, 2001 due to
fireworks; however, this was a full week earlier and is unlikely to be connected to the ED
visits. The health outcome model was run both with and without the July 11, 2001 data.

For the 10 km radius, the numbers of ED visits for asthma, respiratory and injury
reasons (1166, 4042 and 4617, respectively) were sufficient for analysis. However, the
number of hospital admissions for the three outcomes (328, 251 and 356, respectively)
was too small to obtain adequate statistical power. For the 4 km radius, the number of
ED visits for asthma (192) was also too small for analysis. The numbers of ED visits for
respiratory (853) and injury (773) reasons were considered marginal for analysis. Given

these sample sizes, the analyses were focused on ED visits for respiratory effects.

Due to the study design for air toxics, about 22% of the possible exposure
measurements were missing. This has the potential to influence the study results;
however, chi-square and Fisher’s exact tests comparing counts of ED visits of all three
health outcomes (asthma, respiratory problems and injury) on days with and without air
toxics exposure data were not statistically different (p-value>0.05).

Health care utilization data for the year following the study period (April 2002—
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April 2003) is shown in Table S3-4. Both periods showed similar counts; therefore, the

data obtained for the study period appears to be representative.
3.5.3 Single source models
ED visits for respiratory problems

Adjusted risk ratios of ED visits for respiratory problems for each of the five
source class contributions (using a separate analysis for each source class) are shown in
Table 3-3. For the 4 km buffer, exposures to photochemical pollutants lagged 2 to 4 days
increased the rate of ED visits, and a dose-response relationship was seen for the 3-day
lag. Rate of ED visits increased by 16 to 48% for exposure in the 2™, 3™ and 4™ quartiles
compared to the lowest quartile. Results for the fuel combustion source class were
similar, and again, there was some evidence of a dose-response relationship for the 3-day
lag. The ARR of ED visits with fuel combustion exposure increased by 36 to 44%. For
the gasoline exhaust/evaporated gasoline source class, 3 and 4 day lagged exposures
consistently increased odds of ED visits. Some evidence of a dose-response relationship
for the 4-day lag was seen, and the ARR of ED visits increased by 7 to 35% at higher
exposures. For the combined industrial/industrial solvent source class, the ARRs were
either statistically insignificant or weakly negative.

Results for children living within the larger (10 km) buffer tended to follow a
pattern similar to that seen for the 4 km buffer, although many associations were
attenuated toward the null, statistically insignificant, or weakly negative (Table 3-3). The
only exception was the photochemical source class in which the ARR of ED visits

increased by 6 to 19% for the 1-day lag, an association not seen for the 4 km radius.
ED visits for asthma

Results for ED visits for asthma in the 10 km radius are shown in Table 3-4. Only
exposures to the combined industrial source class, lagged 4 days, showed a consistent
pattern and increased odds. While statistically significant, this result appears to be an
artifact of the anomalously large number of ED visits on July 11, 2001. After this
observation was removed, this association became statistically insignificant (Table 3-5).
Outcomes for ED visits for respiratory problems were unaffected by this observation;

therefore, only the asthma count was removed.
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Exposure to pollutants identified as fuel combustion lagged 4 days showed
negative associations with ED visits, however, the confidence interval approached the

null value, suggesting spurious associations.
Single pollutant models

Results of analyses using selected pollutants are shown in Tables 3-6 and 3-7 for
ED visits for respiratory problems in 4 and 10 km radius buffers, respectively. The
analyses used data from the Linwood site, which measured most of the criteria pollutants.
O3 analyses used data from both Linwood (April to September) and downtown Windsor
(annual). Three UATSs were selected for the single pollutant models (formaldehyde,
benzene and MEK), in order to reflect the key species of the source classes identified by
PMF.

For children residing in the 4 km buffer, exposures to CO lagged 4 days and NO,
lagged 3 and 4 days increased the odds of ED visits for respiratory problems (Table 3-6).
However, the CO association was considered to be spurious because statistically
significant associations were not found at the highest exposure quartile. NO; results
resembled those found for photochemical pollutant sources, which might reflect the
formation of photochemical pollutants.” For air toxics, only exposures to formaldehyde,
lagged 1 to 4 days, showed an increased risk of ED visits for respiratory problems. These
results resembled those for the photochemical source in which formaldehyde is the key
species. No statistically significant associations were found for the other criteria air
pollutants, benzene or MEK. Results for the 10 km radius were similar. While several
associations were negative, these appeared spurious because they occurred in only the
lower exposure quartiles.

For the 10 km buffer, only exposures to PM; 5, CO and SO, showed an increase in
the risk of ED asthma visits (Table 3-7). However, the CO and SO, associations were
considered to be spurious because significant associations occurred only at the 2™
exposure quartile. For PM; s, the odds of ED asthma visits increased by 25% for the

same day exposure.
3.5.4 Multiple source models

Results of the multiple source models for ED visits for respiratory problems and
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asthma are shown in Tables 3-8 and 3-9, respectively. The patterns of associations were
similar to those seen earlier in the single source models (Tables 3-3 and 3-4), however,
associations were attenuated and confidence intervals were broader. Only exposure to
pollutants identified as fuel combustion lagged 3 and 4 days showed an increase in odds
of ED visits for respiratory effects (7 to 27%) among children in the 10 km buffer. This
suggests that models using multiple source factors encounter the same problems as
“conventional” multi-pollutant health models, namely, multicollinearity that tends to
reduce statistical significance of the estimated coefficients. It may be possible to
simultaneously use two or possibly three factors without detrimental effects; however,

five source profiles are too many.
3.5.5 Sensitivity analyses

Tests using the control outcome, ED visits for injury, showed no statistically
significant associations for exposures to any of the source classes for both 4 and 10 km
buffers, and for single and multiple source class models (Tables S3-5 to S3-7). Results
from the negative binomial regression models were similar to those from the Poisson
regression models (Tables S3-9 to S3-10), indicating that any possible deviations from
the Poisson distribution assumption did not cause biases.

For receptor modeling, results using observed and imputed data were similar for
four of the five source classes. The photochemical pollutant source class was replaced by
petrochemical pollutant source, indicated by propylene. Formaldehyde, the key species
of the former photochemical pollutant source, merged together with other carbonyls
identified as fuel combustion source. These results indicate that the PMF method can be
sensitive to the use of imputed data. Analyses re-run using the single imputation dataset
are shown in Table S3-8. The results did not differ significantly between observed and
imputed data. The major difference was that the petrochemical pollutant source class
lagged 4 days (with propylene as the key species) increased the ARR of ED visits for
respiratory effects in the 10 km buffer. Since propylene was not highly correlated with
any other compound (r<0.32) (Table S3-2), this might be an artifact or spurious result,

e.g., aresult of a small sample size.
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3.6 Discussion

This work used receptor modeling (RM) to derive an exposure indicator which
was then used in an epidemiological analysis examining exacerbation of asthma and other
respiratory diseases in Dearborn, Michigan. Using PMF, five source classes were
identified, primarily on the basis of carbonyl and volatile organic compounds.
Unsurprisingly, traffic-related emission sources were dominant, consistent with a
previous study.”® The results suggest that exposures to traffic-related air toxics, emission
sources identified as secondary pollutants, fuel combustion, and gasoline
exhaust/evaporated gasoline increased the rate of ED visits for respiratory problems
among children living within a 4 km radius of the Dearborn air monitor. Risks were
attenuated for children living in the larger (10 km) buffer as compared to the smaller (4

km) region nearer the monitor.
3.6.1 Mechanisms

Volatile organic compounds are irritants that can affect the airways and induce

57,58 59,60

inflammation and airway obstruction, and can have chronic effects such as cancer.
Two examples of acute effects are provided. First, formaldehyde causes inflammation
and the release of cytokines, which leads to the up-regulation of induced nitric oxide
(NO), itself a marker for lower airway inflammation.®"®® Second, human respiratory
epithelial cells exposed in vitro to 1,3-butadiene and its photochemical-generated
products (acrolein, acetaldehyde, formaldehyde, furan and Os) induced significant
increases in cytotoxicity, however, the equivalent levels of O3 exposure did not induce

the same level of inflammatory cytokine release,’* also suggesting that respiratory health

effects occur via the inflammatory pathway from 1,3-butadiene exposure.
3.6.2 Comparison to previous studies

As noted, few studies have focused on UAT exposure and respiratory illness in
children. Petroleum- and process-related VOCs were associated with bronchitis,
persistent wheezing, physician’s diagnostic of asthma, lower respiratory symptoms, and
chronic lower respiratory response in school age children in Kanawha County, West
Virginia."” Traffic-related VOCs were associated with asthma symptoms in children with

mild asthma in Los Angeleslé, and exposures to outdoor (polar) VOCs lagged 2 days
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were associated with acute visits to an ambulatory care setting for asthma among children
in Atlanta.'® In Germany, benzene exposure was associated with asthma, wheeze and
cough in children.®’ In Belfast, Northern Ireland, benzene exposures were associated
with ED visits for acute asthma among children." This Belfast study is interesting in that
in the two pollutant Poisson regression models (using benzene and SO,, PM;, O3z, NOx,
NO, NO,, or CO), benzene was the only variable independently associated with ED
asthma admissions, suggesting that benzene might be a more reliable indicator of vehicle
exhaust than the criteria pollutants.

In the present study, associations between benzene and ED visits for respiratory
effects were not found (Table 3-6). Notably, benzene levels were relatively low
(geometric mean of 0.55 ppbv; maximum of 2.20 ppbv), suggesting small impacts from
traffic and other sources even though the Dearborn site is located in a heavily
industrialized area. Low benzene levels might be influenced by other traffic-related
pollutants (including many VOCs) which have sharp spatial gradient.°® For an example,
benzene is highly correlated with acetylene (r=0.69, Table S3-1), which is also emitted by
gasoline combustion. Thus, benzene (or some other VOCs) by themselves may not be a
strong or sufficient indicator of vehicular emissions, as suggested by the Belfast study."

Only a few studies have examined formaldehyde and asthma in nonoccupational
settings.67 Indoor exposure has been linked to physician-diagnosed asthma, however,
these studies were likely confounded by unmeasured factors (i.e., environmental tobacco
smoke) and by the parents’ history of asthma and allergy.®®® In this study, exposures to
formaldehyde, but not MEK, increased ED visits for respiratory problems (Table 3-6).
Additionally, the risks estimated using the PMF exposure scores were smaller and had
narrower ClIs compared to those estimated for formaldehyde, suggesting improved
precision of the estimate as well as adjustment for other pollutants.

Criteria air pollutants have been associated with respiratory illness in many
epidemiological studies.”® In Dearborn, ED visits for respiratory problems were linked
to concentrations of several criteria pollutants (Table 3-6). The pattern of results was
quite consistent for CO and NO; in the single pollutant models. However, in two-
pollutant models (CO and NO,) and for the 4 km radius, the statistically significant

associations between NO; and ED visits diminished (Table 3-10). In five-pollutant
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models (CO, NO,, SO,, O; and PM, 5) and for the 10 km radius, associations between
NO; and ED visits for respiratory problems remained statistically significant, however,
the Cls were wider, suggesting some loss in precision. There is a greater chance of
exposure misclassification for analyses involving the criteria air pollutants since these
pollutants were measured at a different site, which tends to complicate interpretation of
results.

In summary, this study found exposures to source contributions from
photochemical pollutants, fuel combustion, and gasoline exhaust/evaporated gasoline

source classes were associated with ED visits for respiratory problems among children.
3.6.3 Study strengths

One key strength of this study lies in its exposure assessment, which is unique in
its use of source-apportioned exposure measures. In brief, the derived source
contributions or scores from the RM are used as exposure measures in the same or similar
statistical framework used to associate conventional exposure measures and health
outcomes. As noted above, this approach is attractive because these exposure measures
may be more strongly associated with health impacts (thus increasing statistical power),
and because the correlation in the exposure dataset is used to derive a smaller number of
exposure measures that may be more robust than any single pollutant. Additionally, the
approach may be more realistic as people experience exposures to most air pollutants as
mixtures, not as individual pollutants. Finally, exposures using source classes may be

biologically more plausible and relevant.

While current epidemiological studies examining toxics have focused on VOC
exposures, our study examined both VOCs and carbonyls, important since carbonyls
appear to be stronger indicators of vehicle-related sources. Dose-response relationships
were obtained for the associations between exposure to carbonyls identified as
photochemical pollutants and fuel combustion source classes and ED visits for

respiratory problems, suggesting strong associations.

The use of geo-coded Medicaid data also has several advantages. First, families
of lower social economic status (SES) more commonly utilize urgent care facilities for

asthma as compared to families of higher SES.” By examining only the Medicaid
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pediatric population, results from the current study should not be confounded by SES.
Second, the approach potentially could encompass a very large sample size, especially if
pollutants are measured at multiple sites. As discussed below, sample size was an issue

in Dearborn, in part because daily UAT data were available at a single site.
3.6.4 Limitations

As further discussed in the following chapter, due to detection frequency and
reproducibility issues, many of the 71 measured air toxics did not appear usable. Ideally,
each source class (or factor) would represent a single and correctly identified source class
that is uncorrelated with other source classes. However, in complicated systems, these
classes may consist of features from several sources.”” Combined source factors are also
more likely in samples using longer averaging periods, e.g., the 24-hr samples collected
at Dearborn (as compared to 1-hr data)* since winds from multiple directions are likely
and may transport pollutants from several source types to the monitor site. In such
situations, separate sources in effect become correlated. A further complication arises as
several aldehydes (e.g., formaldehyde, acetaldehyde) and VOCs (e.g., 1,3-butadiene) can
be chemically reactive, and their concentration and lifetime will be affected by
photochemistry, temperature, sunlight, and the other reactive species present. Thus,
measurements of these compounds can reflect both primary emissions (directly from the
source) and secondary production. Such effects will “blur” profiles and can create new
profiles that primarily reflect secondary sources, as suggested for formaldehyde which
formed its own profile in several seasons. This problem is not present in PM, 5 or PMj
apportionments that utilize (unreactive) elemental concentration data. While the
breakdown into source factors by receptor models is imperfect and may not isolate single
sources or source types, the use of source factors is a valid approach for representing the
pattern of exposures, and its use in epidemiological analyses can help to identify those
pollutants and pollutant mixtures associated with adverse health effects.

An important limitation was the relatively small size of the study population,
which did not permit assessment of certain exposure-outcome relationships, including
asthma exacerbation (ED visits) among children in the smaller (4 km) buffer around the
monitoring site. Also, daily air toxics data were available for only one year, which also

affected sample size, as well as the ability to investigate long-term trends.
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Effects of exposure misclassification can be seen as the buffer’s radius increased
from 4 to 10 km, which tended to force risk ratios towards the null. We had no personal
or indoor exposure data, despite known indoor sources, e.g., formaldehyde concentrations
in residences may exceed outdoor concentrations.’" However, contributions from indoor
sources are likely uncorrelated with outdoor formaldehyde levels, thus only non-
differential bias in exposure classification is expected. Finally, there was the potential
that the exposure scores were affected by unmeasured confounding variables and
unknown uncertainties, given that these scores were derived from daily measurements
using receptor modeling, neither of which were accounted for in this study. Future study
might address these issues using several approaches, e.g., instrumental variable
regression.”” While measurement uncertainties were incorporated in the PMF method,

further analysis is recommended to determine the sensitivity of results to these effects.
3.7 Conclusions

This study appears to be the first to utilize source-apportioned exposure measures
of urban air toxics (UATSs), specifically VOCs and carbonyls, to investigate the
relationship of exposure to respiratory illness in children. The children in the study
population making respiratory-related Medicaid claims and living within 10 km of the
Dearborn, Michigan air quality monitor made 1,166 and 4,617 emergency department
(ED) visits for asthma and respiratory problems, respectively, during the study year.
Exposures to UAT source classes identified as fuel combustion, photochemical
pollutants, and gasoline exhaust/evaporated gasoline were associated with increased the
rate of ED visits for respiratory problems. Effects were stronger for subjects living closer
(within 4 km) to the air monitoring site. Due to the limitations and uncertainties in the
ambient air toxics data and model predictions, as well as the novelty of this study, follow-

up studies to help confirm results are suggested.
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Table 3- 1. Summary of the species measurements

(BDL, below detection measurements; Ms, missing values; S/N, ratio of signal to noise;
GM, geometric mean; ppb, part per billion)

Ms BDL S/N GM

Compounds %) (%) (ppb)

Carbonyls
Acetaldehyde 22 0 4470 0.73
Benzaldehyde 222 039 0.04
Formaldehyde 22 0 46.81 147
Hexaldehyde 22 1 1.99 0.05
iso-Butyraldehyde 22 1 293 0.14
Propionaldehyde 22 10 3.19 0.08
Tolualdehyde 22 7 031 0.03

VOCs
Acetylene 17 1 774 1.52
Benzene 17 0 408 0.55
1,3-Butadiene 17 73 0.73 0.05
Dichlorodifluoromethane 17 0  3.68 0.63
Ethylbenzene 18 2 252 0.15
Methyl ethyl ketone 17 26 7.68 0.39
m,p-Xylene 18 0 3.07 043
n-Octane 18 66 047 0.04
o0-Xylene 18 3 518 0.18
Propylene 17 0 348 0.82
Tetrachloroethylene 17 66 246 0.05

Trichlorofluoromethane 17 0 3.57 0.31
Trichlorotrifluoroethane 17 0 012 0.11
1,2,4-Trimethylbenzene 17 9 1.03 0.17
1,3,5-Trimethylbenzene 18 61 045 0.05
Toluene 18 0 14.73 0.88
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Table 3- 2. Study population size and number of Medicaid visits, 4/19/2001-4/18/2002

Study Hospital admission Emergency department visit Outpatient visit
Variable population Asthma Respiratory Injury Asthma Respiratory Injury Asthma Respiratory Injury
N (%) n n n n n n n n n
4 km buffer
N 4733 50 76 46 192 853 773 617 9638 1076
Gender
Female 2310 (49) 13 42 34 69 390 341 257 4800 449
Male 2423 (51) 37 34 12 123 463 432 360 4838 627
Race
Black 698 (15) 5 6 8 43 125 128 85 406 92
White 2240 (47) 19 33 27 82 467 443 312 6559 732
Others 1795 (38) 26 37 11 67 261 202 220 2673 252
Age group (yrs)
Oto4 1697 (36) 29 43 16 93 516 284 302 4956 296
5t09 1407 (30) 11 17 16 57 204 234 186 2840 305
10 to 14 1052 (22) 4 5 4 30 94 176 102 1365 339
15t0 18 577 (12) 6 11 10 12 39 79 27 477 136
10 km buffer
N 7863 328 251 356 1166 4042 4617 2483 3966 27345
Gender
Female 3850 (49) 140 112 162 504 1701 2225 1021 1632 13515
Male 4013 (51) 188 139 194 662 2341 2392 1462 2334 13830
Race
Black 2685 (34) 247 158 225 864 2458 3003 1374 1813 7107
White 2595 (33) 41 70 67 176 1207 1140 764 1734 16167
Others 2583 (33) 40 23 64 126 377 474 345 419 4071
Age group (yrs)
Oto4 2458 (31) 158 89 211 550 1326 2600 1076 1082 13416
5t09 2195 (28) 71 76 60 340 1166 1097 744 1098 7987
10 to 14 1894 (24) 57 49 54 214 1069 645 541 1316 4552
15to 18 1316 (17) 36 37 31 62 481 275 122 470 1390
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Table 3- 3. Single source models - Associations between exposures to pollutants

identified as 5 source classes and ED visits for respiratory problems (observed data).

Statistical significant estimates are in bold. RR, relative risk; covariates: day of week,

calendar month, PM, 5, ambient temperature, relative humidity and pressure; reference

groups: st quartile exposure, Friday and April.

Photochemical

Fuel Combustion

Combined industrial

Gasoline exhaust

Industrial solvent

Exposures RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI)
4 km buffer
Current day
4th quartile 0.85 (0.64- 1.12)  0.76 (0.52- 1.12) 1.17 (0.83-1.66) 0.89 (0.67- 1.18)  1.12 (0.77- 1.64)
3rd quartile 0.85 (0.66- 1.09) 1.07 (0.82- 1.40) 1.21 (0.86- 1.70)  1.05 (0.82- 1.35) 1.07 (0.77- 1.49)
2nd quartile 1.00 (0.79- 1.26)  1.00 (0.79- 1.27) 1.27 (0.94- 1.70)  0.75 (0.58- 0.96) 1.11 (0.87- 1.41)
1 day lag
4th quartile 1.41 (1.08- 1.84) 1.19 (0.82- 1.73) 0.87 (0.61- 1.24)  1.09 (0.82- 1.44) 0.69 (0.46- 1.02)
3rd quartile 0.96 (0.74- 1.23) 1.34 (1.03- 1.73) 1.16 (0.83-1.62) 1.08 (0.84- 1.39) 0.70 (0.51- 0.98)
2nd quartile 1.05 (0.83- 1.33)  0.92 (0.72- 1.17) 1.24 (0.92- 1.66) 0.88 (0.69- 1.13) 0.95 (0.75- 1.20)
2-day-lag average
4th quartile 1.39 (1.08-1.79) 1.34 (0.96- 1.87) 0.76 (0.55- 1.04) 1.16 (0.91- 1.47)  0.92 (0.64- 1.32)
3rd quartile 1.19 (0.95- 1.49) 1.28 (1.00- 1.65) 0.89 (0.66- 1.20)  1.19 (0.95- 1.51) 0.75 (0.55- 1.02)
2nd quartile 1.02 (0.82- 1.27) 1.10 (0.89- 1.37) 0.80 (0.61- 1.04) 0.91 (0.73- 1.14)  0.93 (0.74- 1.15)
3-day-lag average
4th quartile 1.48 (1.15-1.90) 1.44 (1.03- 2.01) 0.85 (0.60- 1.21)  1.28 (0.99- 1.65) 0.74 (0.51- 1.08)
3rd quartile 1.31 (1.04- 1.66) 1.42 (1.08- 1.86) 0.90 (0.65- 1.25) 1.45 (1.15- 1.83) 0.69 (0.50- 0.95)
2nd quartile 1.16 (0.93- 1.44) 1.36 (1.10- 1.68) 1.01 (0.77- 1.32)  1.12 (0.90- 1.38)  0.93 (0.75- 1.16)
4-day-lag average
4th quartile 1.33 (1.04- 1.71) 1.74 (1.19- 2.54) 0.73 (0.50- 1.07)  1.35 (1.05- 1.74)  0.83 (0.55- 1.24)
3rd quartile 1.09 (0.86- 1.38) 1.28 (0.98- 1.68) 0.90 (0.64- 1.26) 1.29 (1.00- 1.66)  0.75 (0.54- 1.04)
2nd quartile 1.15 (0.92- 1.42) 1.15 (0.93- 1.42) 0.95 (0.72- 1.25)  1.07 (0.86- 1.33)  0.82 (0.65- 1.04)
10 km buffer
Current day
4th quartile 1.02 (0.90- 1.15)  1.03 (0.87- 1.21) 0.98 (0.84- 1.15) 1.03 (0.91- 1.16) 1.08 (0.91- 1.27)
3rd quartile 0.93 (0.84- 1.04) 1.14 (1.01- 1.28) 1.02 (0.87-1.18)  1.17 (1.05- 1.30) 1.02 (0.88- 1.17)
2nd quartile 1.02 (0.92- 1.13)  1.04 (0.94- 1.15) 1.00 (0.88-1.14) 1.01 (0.91- 1.12) 1.08 (0.97- 1.19)
1 day lag
4th quartile 1.19 (1.05-1.34) 1.07 (0.91- 1.26) 1.00 (0.86- 1.17)  1.03 (0.91- 1.16) 0.99 (0.84- 1.17)
3rd quartile 1.06 (0.95- 1.18) 1.13 (1.01- 1.27) 1.03 (0.89-1.19) 1.00 (0.90- 1.12) 0.94 (0.82- 1.08)
2nd quartile 1.13 (1.02- 1.26) 1.07 (0.97- 1.19) 1.05 (0.93-1.20) 0.96 (0.86- 1.07) 1.02 (0.93- 1.13)
2-day-lag average
4th quartile 1.10 (0.98- 1.23) 1.12 (0.97- 1.29) 0.92 (0.80- 1.05) 1.01 (0.91- 1.12)  0.91 (0.77- 1.06)
3rd quartile 1.11 (1.01- 1.23) 1.09 (0.98- 1.21) 0.99 (0.86- 1.12)  1.06 (0.96- 1.17)  0.93 (0.82- 1.06)
2nd quartile 1.00 (0.91- 1.10)  1.08 (0.99- 1.18) 0.98 (0.87- 1.10)  0.97 (0.89- 1.06) 0.95 (0.87- 1.05)
3-day-lag average
4th quartile 1.08 (0.97- 1.20) 1.13 (0.98- 1.30) 1.04 (0.89-1.21) 1.00 (0.89- 1.11)  0.84 (0.71- 0.98)
3rd quartile 1.12 (1.02- 1.24) 1.09 (0.97- 1.22) 1.05 (0.91-1.21) 1.03 (0.93- 1.14)  0.86 (0.76- 0.99)
2nd quartile 1.06 (0.97- 1.17) 111 (1.02- 1.22) 1.00 (0.89- 1.13)  0.99 (0.91- 1.08) 0.95 (0.86- 1.04)
4-day-lag average
4th quartile 1.07 (0.96- 1.19)  1.17 (1.00- 1.38) 1.00 (0.85-1.18) 1.03 (0.93- 1.15)  0.82 (0.69- 0.98)
3rd quartile 1.06 (0.96- 1.17) 1.04 (0.92- 1.16) 1.02 (0.88-1.19) 1.02 (0.92- 1.14)  0.81 (0.70- 0.93)
2nd quartile 1.01 (0.92- 1.10)  1.09 (1.00- 1.19) 1.03 (0.92- 1.16)  1.04 (0.95- 1.14)  0.88 (0.79- 0.97)
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Table 3- 4. Single source models - Associations between exposures to pollutants

identified as 5 source classes and ED visits for asthma among children living within 10

km buffer (observed data).

Otherwise as Table 3-3.

E Photochemical  Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent
HPOSHTES RR 95%CI) __RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI)

Current day

4th quartile 1.09 (0.86- 1.38) 0.89 (0.65- 1.21) 1.30 (0.96- 1.76) 0.92 (0.73- 1.16) 0.99 (0.71- 1.38)

3rd quartile 1.06 (0.85- 1.31) 0.98 (0.78- 1.24) 1.14 (0.85- 1.53) 0.77 (0.62- 0.97) 1.12 (0.84- 1.49)

2nd quartile 0.93 (0.75- 1.16) 1.01 (0.81- 1.26) 1.18 (0.93- 1.51) 0.97 (0.78-1.19) 1.06 (0.85- 1.32)
1day lag

4th quartile 1.15 (0.91- 1.47) 0.99 (0.73- 1.34) 1.00 (0.74- 1.34) 1.13 (0.89- 1.43) 0.99 (0.71- 1.38)

3rd quartile 1.12 (0.89- 1.39) 1.13 (0.89- 1.43) 0.93 (0.71- 1.23) 0.98 (0.78- 1.24) 1.02 (0.77- 1.36)

2nd quartile 1.12 (0.90- 1.40) 1.26 (1.01- 1.57) 1.07 (0.85- 1.36) 1.28 (1.03- 1.58) 1.00 (0.80- 1.25)
2-day-lag average

4th quartile 0.84 (0.67- 1.05) 0.91 (0.69- 1.19) 1.01 (0.77- 1.33) 1.11 (0.90- 1.37) 0.99 (0.72- 1.35)

3rd quartile 0.95 (0.78- 1.16) 0.94 (0.75- 1.17) 1.03 (0.80- 1.32) 1.04 (0.84- 1.27) 0.88 (0.67- 1.14)

2nd quartile 0.84 (0.69- 1.02) 0.96 (0.79- 1.16) 0.98 (0.79- 1.21) 1.15 (0.95- 1.39) 0.93 (0.75- 1.15)
3-day-lag average

4th quartile 0.89 (0.71- 1.12) 1.00 (0.76- 1.30) 1.11 (0.82- 1.49) 0.97 (0.78- 1.19) 1.05 (0.77- 1.43)

3rd quartile 1.11 (0.90- 1.37) 0.91 (0.72- 1.14) 0.98 (0.74- 1.28) 1.05 (0.86- 1.29) 0.94 (0.72- 1.24)

2nd quartile 1.07 (0.88- 1.30) 0.93 (0.76- 1.13) 0.99 (0.81- 1.22) 1.01 (0.84- 1.22) 0.90 (0.73- 1.11)
4-day-lag average

4th quartile 0.86 (0.68- 1.07) 0.73 (0.55- 0.99) 1.43 (1.03- 1.97) 0.83 (0.67- 1.03) 1.14 (0.82- 1.60)

3rd quartile 1.01 (0.82- 1.24) 0.87 (0.69- 1.09) 1.30 (0.98- 1.73) 0.95 (0.77- 1.17)  0.98 (0.74- 1.30)

2nd quartile 0.94 (0.78- 1.14) 0.87 (0.72- 1.06) 1.36 (1.11- 1.68) 0.95 (0.79- 1.14)  0.95 (0.76- 1.19)
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Table 3- 5. Single source models - Associations between exposures to pollutants

identified as 5 source classes and ED visits for respiratory problems and asthma with

exclusion of health events on July 11, 2001.

Otherwise as Table 3-3.

Health Photochemical Fuel Combustion Combined industrial _Gasoline exhaust Industrial solvent
outcomes/Exposures  RR (95%CI) RR (95% CI) RR (95%CI) RR (95%CI) RR (95%CI)
Respiratory
Current day
4th quartile 1.02 (0.90- 1.15) 1.03 (0.87-1.21) 098 (0.84- 1.15) 1.03 (0.91- 1.16) 1.08 (0.91- 1.27)
3rd quartile 093 (0.84- 1.04) 1.14 (1.01- 1.28) 1.02 (0.87-1.18) 1.17 (1.05- 1.30) 1.02 (0.88- 1.17)
2nd quartile 1.02 (0.92- 1.13) 1.04 (0.94- 1.15) 1.00 (0.88- 1.14) 1.01 (0.91- 1.12) 1.08 (0.97- 1.19)
1 day lag
4th quartile 1.19 (1.05- 1.34) 1.07 (0.91- 1.26) 1.00 (0.86- 1.17)  1.03 (0.91- 1.16) 0.99 (0.84- 1.17)
3rd quartile 1.06 (0.95- 1.18) 1.13 (1.01- 1.27) 1.03 (0.89- 1.19) 1.00 (0.90- 1.12) 0.94 (0.82- 1.08)
2nd quartile 1.13 (1.02- 1.26) 1.07 (0.97- 1.19) 1.05 (0.93-1.20) 0.96 (0.86- 1.07) 1.02 (0.93- 1.13)
2-day lag average
4th quartile 1.10 (0.98- 1.23) 1.12 (0.97-1.29) 0.92 (0.80- 1.05) 1.0l (0.91- 1.12) 091 (0.77- 1.06)
3rd quartile 1.11 (1.01- 1.23) 1.09 (0.98- 1.21) 0.99 (0.86- 1.12)  1.06 (0.96- 1.17) 0.93 (0.82- 1.06)
2nd quartile 1.00 (0.91- 1.10) 1.08 (0.99- 1.18) 0.98 (0.87- 1.10)  0.97 (0.89- 1.06) 0.95 (0.87- 1.05)
3-day lag average
4th quartile 1.07 (0.96- 1.19) 1.08 (0.93-1.24) 1.05 (091-1.23) 0.99 (0.89- 1.10) 0.83 (0.70- 0.97)
3rd quartile 1.12 (1.01- 1.23) 1.08 (0.97- 1.22) 1.06 (0.92-1.22) 1.01 (0.92- 1.12) 0.87 (0.76- 1.00)
2nd quartile 1.05 (0.95- 1.15) 1.11 (1.02- 1.22) 1.03 (0.92- 1.16) 0.99 (0.91- 1.08) 0.94 (0.86- 1.04)
4-day lag average
4th quartile 1.07 (0.96- 1.19) 1.18 (1.00- 1.38) 0.98 (0.83- 1.15) 1.03 (0.93- 1.15) 0.81 (0.68- 0.96)
3rd quartile 1.06 (0.96- 1.17) 1.02 (0.91- 1.14) 1.00 (0.86- 1.16) 1.03 (0.92- 1.14) 0.81 (0.71- 0.94)
2nd quartile 1.00 (0.91- 1.09) 1.09 (1.00- 1.19) 1.01 (0.89- 1.14) 1.03 (0.94- 1.13) 0.87 (0.79- 0.97)
Asthma
Current day
4th quartile 1.09 (0.86- 1.38) 0.89 (0.65- 1.21) 130 (0.96- 1.76)  0.92 (0.73- 1.16) 0.99 (0.71- 1.38)
3rd quartile 1.06 (0.85- 1.31) 0.98 (0.78-1.24) 1.14 (0.85- 1.53)  0.77 (0.62- 0.97) 1.12 (0.84- 1.49)
2nd quartile 0.93 (0.75- 1.16) 1.01 (0.81- 1.26) 1.18 (0.93-1.51) 0.97 (0.78- 1.19) 1.06 (0.85- 1.32)
1 day lag
4th quartile 1.15 (0.91- 1.47) 099 (0.73- 1.34) 1.00 (0.74- 1.34)  1.13 (0.89- 1.43) 0.99 (0.72- 1.35)
3rd quartile 1.12 (0.89- 1.39) 1.13 (0.89- 1.43) 093 (0.71- 1.23) 0.98 (0.78- 1.24) 0.88 (0.67- 1.14)
2nd quartile 1.12 (0.90- 1.40) 1.26 (1.01- 1.57) 1.07 (0.85- 1.36) 1.28 (1.03- 1.58) 0.93 (0.75- 1.15)
2-day lag average
4th quartile 0.84 (0.67- 1.05) 091 (0.69-1.19) 1.01 (0.77- 1.33) 1.1l (0.90- 1.37) 0.99 (0.72- 1.35)
3rd quartile 0.95 (0.78- 1.16) 0.94 (0.75- 1.17) 1.03 (0.80- 1.32)  1.04 (0.84- 1.27) 0.88 (0.67- 1.14)
2nd quartile 0.84 (0.69- 1.02) 096 (0.79- 1.16) 098 (0.79- 1.21)  1.15 (0.95- 1.39) 0.93 (0.75- 1.15)
3-day lag average
4th quartile 0.85 (0.68- 1.07) 0.80 (0.61- 1.05) 1.16 (0.86- 1.56) 0.94 (0.76- 1.16) 1.01 (0.74- 1.39)
3rd quartile 1.06 (0.86- 1.30) 0.90 (0.71- 1.13) 1.02 (0.78- 1.34)  0.96 (0.78- 1.18) 0.99 (0.75- 1.29)
2nd quartile 0.97 (0.79- 1.18) 0.93 (0.76- 1.13) 1.12 (0.90- 1.38)  1.01 (0.84- 1.22) 0.88 (0.71- 1.09)
4-day lag average
4th quartile 0.83 (0.66- 1.04) 0.75 (0.56- 1.00) 1.29 (0.94- 1.78) 0.84 (0.68- 1.04) 1.05 (0.74- 1.47)
3rd quartile 0.97 (0.79- 1.19) 0.80 (0.63- 1.00) 1.17 (0.89- 1.55) 0.97 (0.78- 1.20) 1.00 (0.75- 1.33)
2nd quartile 0.87 (0.71- 1.05) 0.86 (0.71- 1.05) 1.24 (1.00- 1.53)  0.87 (0.72- 1.05) 0.93 (0.74- 1.16)

99
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Table 3- 6. Single pollutant models - Associations between exposures to selected pollutants (criteria and air toxics) and ED visits for

respiratory problems (observed data).

Criteria pollutants monitored at Linwood otherwise indicate by site name; (#), restricted to April to September months. Otherwise as
Table 3-3.

PM2.5 CO NO2 SO2 O3# 03 (Windsor) Formaldehyde Benzene MEK
RR  (95%CI) RR  (95%CI) RR  (95%CI) RR _ (95%CI) RR  (95%CI) RR  (95%CI) RR  (95%CI) RR  (95%CI) RR  (95%CI)

Sources

4 km buffer
Current day
4th quartile 1.03 (0.80- 1.33) 095 (0.77- 1.19) 1.06 (0.83-1.35) 1.18 (0.94- 1.49) 127 (0.78-2.06) 1.13 (0.77- 1.68) 0.79 (0.58- 1.08) 1.10 (0.86- 1.40) 0.58 (0.27- 1.29)
3rd quartile 1.I1 (0.89- 1.40) 0.83 (0.67- 1.03) 098 (0.77- 1.24) 1.13 (0.91- 1.40) 1.06 (0.70- 1.59) 1.19 (0.87- 1.61) 0.99 (0.77- 1.28) 0.95 (0.75- 1.21) 1.01 (0.52- 1.94)
2nd quartile 1.03 (0.83-129) 0.89 (0.73-1.09) 0.93 (0.75- 1.16) 1.07 (0.86- 1.34) 0.88 (0.60- 1.29) 1.05 (0.83- 1.32) 0.92 (0.73- 1.16) 0.81 (0.64- 1.02) 0.74 (0.42- 1.29)
1 day lag
4th quartile 092 (0.72- 1.18) 1.03 (0.82- 1.28) 1.09 (0.86- 1.39) 0.87 (0.69- 1.10) 1.1l (0.67- 1.82) 0.92 (0.68- 1.24) 1.50 (1.12-2.02) 1.03 (0.80- 1.32) 0.66 (0.31- 1.42)
3rd quartile 0.89 (0.71- 1.12) 091 (0.74- 1.12) 1.01 (0.79- 1.28) 0.88 (0.71- 1.09) 1.36 (0.90-2.05) 0.97 (0.77- 1.21) 1.06 (0.82- 1.37) 0.99 (0.78- 1.25) 0.50 (0.26- 0.98)
2nd quartile 0.88 (0.71- 1.09) 0.86 (0.70- 1.05) 092 (0.73- 1.14) 0.85 (0.68- 1.07) 1.21 (0.83-1.76) 0.94 (0.71- 1.26) 095 (0.75- 1.20) 0.88 (0.70- 1.10) 0.90 (0.53- 1.55)
2-day-lag average
4th quartile 1.01 (0.78- 1.30) 1.05 (0.83- 1.33) 1.11 (0.86- 1.42) 0.80 (0.63- 1.02) 1.12 (0.67- 1.89) 1.01 (0.80- 1.29) 1.37 (1.04- 1.81) 1.04 (0.81- 1.33) 1.11 (0.53- 2.31)
3rd quartile 1.05 (0.83-1.32) 092 (0.74- 1.14) 090 (0.71- 1.15) 0.94 (0.76- 1.16) 1.02 (0.67- 1.54) 0.96 (0.72- 1.28) 1.14 (0.89- 1.46) 1.06 (0.85- 1.32) 0.64 (0.33- 1.24)
2nd quartile 1.03 (0.83-1.29) 090 (0.73- 1.10) 097 (0.77- 1.21) 0.83 (0.67- 1.03) 125 (0.88-1.78) 1.09 (0.83- 1.45) 1.09 (0.88- 1.34) 1.09 (0.89- 1.34) 0.96 (0.58- 1.59)
3-day-lag average
4th quartile 1.09 (0.85-1.38) 1.16 (0.90- 1.50) 1.37 (1.05- 1.78) 0.88 (0.69- 1.13) 1.00 (0.57- 1.74) 095 (0.71- 1.26) 1.64 (1.25- 2.16) 0.93 (0.73- 1.20) 1.12 (0.50- 2.47)
3rd quartile 1.10 (0.88-1.39) 1.12 (0.90- 1.40) 1.03 (0.80- 1.32) 1.02 (0.81- 1.27) 125 (0.81-1.92) 1.09 (0.83- 1.44) 125 (0.98-1.60) 1.15 (0.93- 1.43) 0.98 (0.50- 1.92)
2nd quartile 1.09 (0.88-1.35) 1.06 (0.86- 1.31) 1.17 (0.93- 1.47) 1.00 (0.80- 1.24) 0.97 (0.67- 1.39) 0.99 (0.75- 1.31) 135 (1.09- 1.67) 0.97 (0.79- 1.20) 0.86 (0.51- 1.44)
4-day-lag average
4th quartile 1.10 (0.86- 1.41) 1.28 (0.98-1.67) 146 (1.11-1.93) 0.90 (0.70- 1.15) 0.77 (0.44- 1.36) 1.08 (0.82- 1.42) 1.36 (1.03- 1.80) 1.15 (0.89- 1.49) 1.59 (0.71- 3.55)
3rd quartile 099 (0.79- 1.26) 1.29 (1.02- 1.62) 1.14 (0.88- 1.48) 0.94 (0.75- 1.18) 0.90 (0.58- 1.38) 0.98 (0.75- 1.30) 1.07 (0.83-1.38) 1.04 (0.83- 1.30) 1.15 (0.57-2.31)
2nd quartile 1.06 (0.85-1.32) 1.30 (1.05- 1.61) 142 (1.13-1.79) 0.89 (0.71- 1.10) 091 (0.64-1.29) 0.92 (0.69- 1.22) 1.11 (0.90- 1.37) 1.13 (0.92- 1.39) 1.10 (0.64- 1.89)
10 km buffer
Current day
4th quartile 1.04 (0.93-1.16) 1.03 (0.94- 1.14) 1.02 (0.92- 1.13) 1.05 (0.95- 1.16) 0.96 (0.78- 1.19) 0.89 (0.75- 1.05) 0.98 (0.85-1.12) 1.11 (0.99- 1.24) 0.98 (0.84- 1.15)
3rd quartile 1.02 (0.93-1.13) 0.94 (0.85-1.03) 1.03 (0.93-1.14) 1.05 (0.95- 1.15) 0.95 (0.80- 1.13) 0.94 (0.83-1.07) 1.00 (0.90-1.12) 1.13 (1.01- 1.25) 0.98 (0.86- 1.11)
2nd quartile 1.02 (0.93- 1.12) 1.00 (0.92- 1.09) 0.94 (0.86- 1.04) 1.05 (0.96- 1.16) 0.93 (0.79- 1.09) 1.03 (0.94- 1.14) 1.02 (0.92- 1.13) 0.97 (0.87- 1.07) 1.05 (0.95- 1.16)
1 day lag
4th quartile 1.05 (0.94-1.17) 1.08 (0.98- 1.19) 1.04 (0.94-1.16) 1.04 (0.94- 1.15) 1.20 (0.97- 1.49) 0.93 (0.81- 1.06) 1.12 (0.98-1.28) 1.10 (0.98- 1.23) 0.99 (0.84- 1.15)
3rd quartile 1.08 (0.98-1.20) 1.00 (0.91-1.09) 1.04 (0.94-1.15) 1.00 (0.91-1.09) 1.26 (1.06- 1.51) 1.02 (0.93- 1.13) 1.10 (0.99- 1.23) 1.04 (0.93- 1.15) 0.90 (0.79- 1.02)
2nd quartile 1.03 (0.93- 1.13) 1.02 (0.94- 1.11) 093 (0.84- 1.02) 0.94 (0.85-1.03) 1.12 (0.95- 1.32) 1.13 (1.00- 1.27) 1.05 (0.95- 1.16) 1.00 (0.90- 1.10) 1.09 (0.98- 1.20)
2-day-lag average
4th quartile 1.07 (0.96- 1.19) 1.10 (0.99- 1.21) 115 (1.04- 1.29) 0.97 (0.87- 1.07) 1.19 (0.96- 1.49) 1.01 (0.91- 1.12) 1.I1 (0.98- 1.25) 1.05 (0.95- 1.17) 0.90 (0.77- 1.05)
3rd quartile 1.10 (0.99- 121) 1.00 (0.91-1.10) 1.01 (0.91-1.12) 0.98 (0.89- 1.07) 0.99 (0.83-1.19) 1.14 (1.01- 1.28) 1.04 (0.94- 1.16) 1.04 (0.95- 1.14) 0.92 (0.82- 1.04)
2nd quartile 1.07 (0.98- 1.18) 098 (0.90- 1.07) 1.01 (0.92- 1.11) 0.86 (0.78- 0.94) 1.10 (0.95-1.28) 1.12 (0.99- 1.26) 1.06 (0.97- 1.15) 1.02 (0.93- 1.11) 0.94 (0.86- 1.03)
3-day-lag average
4th quartile 1.04 (0.94-1.15) 1.10 (0.98- 1.23) 1.18 (1.05- 1.32) 1.03 (0.93- 1.14) 1.00 (0.78-1.27) 1.12 (1.00- 1.27) 1.08 (0.96- 1.21) 1.01 (0.91- 1.13) 0.85 (0.72- 1.00)
3rd quartile 1.06 (0.96- 1.17) 1.06 (0.96- 1.16) 1.10 (0.99- 1.22) 0.99 (0.90- 1.09) 0.94 (0.78- 1.14) 1.11 (0.98- 1.25) 1.07 (0.97- 1.19) 1.03 (0.93- 1.13) 0.89 (0.78- 1.01)
2nd quartile 1.04 (0.95- 1.14) 1.0l (0.92- 1.11) 1.05 (0.95- 1.16) 0.99 (0.90- 1.09) 0.96 (0.82-1.12) 1.06 (0.94- 1.19) 1.06 (0.97- 1.17) 1.04 (0.96- 1.14) 0.91 (0.83- 0.99)
4-day-lag average
4th quartile 1.10 (0.99- 1.23) 1.10 (0.98- 1.23) 126 (1.12-142) 0.96 (0.87- 1.07) 0.92 (0.72- 1.17) 1.08 (0.96- 1.22) 1.03 (0.91- 1.16) 1.01 (0.90- 1.12) 0.85 (0.72- 1.00)
3rd quartile 1.14 (1.03- 1.26) 1.14 (1.03- 1.25) 1.11 (1.00- 1.24) 1.02 (0.93- 1.13) 0.87 (0.72- 1.05) 1.03 (0.92- 1.16) 1.05 (0.95- 1.17) 1.02 (0.93- 1.12) 0.84 (0.74- 0.96)
2nd quartile 1.14 (1.04-1.26) 1.11 (1.01-1.22) 1.16 (1.05-1.28) 0.89 (0.81-0.98) 0.96 (0.82-1.12) 1.02 (0.91-1.15 0.99 (0.91-1.08) 0.98 (0.90-1.07) 0.93 (0.85- 1.03)




101

Table 3- 7. Single pollutant models - Associations between exposures to selected pollutants (criteria and air toxics) and ED visits for

asthma among children residing within 10 km radius of the air monitoring site (observed data).

Otherwise as Table 3-6.

Exposures PM2.5 CcO NO2 S02 O3# 03 (Windsor) Formaldehyde Benzene MEK
RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI)
10 km buffer
Current day
4th quartile 1.25 (1.01- 1.56) 0.89 (0.73- 1.07) 0.86 (0.69- 1.08) 0.88 (0.72- 1.08) 0.83 (0.57- 1.22) 0.79 (0.57- 1.11) 1.02 (0.78- 1.32) 1.13 (0.92- 1.40) 1.04 (0.76- 1.42)
3rd quartile 1.05 (0.85-1.29) 0.96 (0.80- 1.16) 1.07 (0.87- 1.31) 0.97 (0.80- 1.17) 0.75 (0.53- 1.05) 1.17 (0.90- 1.52) 0.98 (0.78- 1.22) 1.05 (0.84- 1.30) 1.12 (0.86- 1.47)
2nd quartile 1.21 (1.00- 1.46) 1.06 (0.89- 1.26) 0.98 (0.81- 1.19) 1.00 (0.82- 1.22) 0.91 (0.68- 1.21) 1.01 (0.83- 1.24) 0.91 (0.73- 1.12) 0.98 (0.80- 1.20) 1.04 (0.84- 1.30)
1 day lag
4th quartile 1.10 (0.89- 1.37) 1.05 (0.87-1.28) 0.96 (0.77- 1.19) 1.22 (0.99- 1.49) 0.99 (0.67- 1.45) 0.87 (0.67- 1.14) 0.98 (0.76- 1.28) 1.16 (0.94- 1.44) 1.01 (0.74- 1.39)
3rd quartile 1.00 (0.82- 1.22) 1.07 (0.89- 1.29) 1.06 (0.86- 1.30) 1.05 (0.86- 1.29) 0.99 (0.71- 1.38) 1.12 (0.92- 1.37) 1.04 (0.83- 1.30) 1.11 (0.90- 1.37) 1.04 (0.80- 1.36)

2nd quartile 1.00 (0.83-1.21) 1.24 (1.04- 1.48) 1.06 (0.87-1.29) 1.31 (1.07- 1.60) 0.94 (0.70- 1.26) 1.11 (0.87- 1.41) 1.14 (0.92- 1.41) 0.97 (0.79- 1.19) 1.09 (0.87- 1.36)
2-day-lag average

4th quartile 095 (0.77-1.17)  1.07 (0.87- 1.31) 1.10 (0.89- 1.38) 1.17 (0.95- 1.44) 1.04 (0.69- 1.56) 0.97 (0.79- 1.21) 0.95 (0.74- 1.20) 1.04 (0.85- 1.28) 1.03 (0.76- 1.39)

3rd quartile 094 (0.77- 1.15)  1.19 (0.99- 1.44) 1.07 (0.87- 1.33) 1.02 (0.84- 1.24) 0.84 (0.60- 1.17) 1.13 (0.89- 1.45) 0.92 (0.74- 1.15) 1.00 (0.83- 1.21) 0.96 (0.74- 1.24)

2nd quartile 0.86 (0.71- 1.04) 1.08 (0.90- 1.30) 1.05 (0.86- 1.28) 1.21 (1.00- 1.46) 0.96 (0.73- 1.28) 1.08 (0.85- 1.38) 0.99 (0.81- 1.20) 1.04 (0.87- 1.26) 1.05 (0.86- 1.29)
3-day-lag average

4th quartile 096 (0.78-1.19) 1.02 (0.83-1.27) 1.13 (0.89-1.42) 0.96 (0.78-1.19) 1.03 (0.66- 1.62) 1.12 (0.88- 1.43) 0.87 (0.68- 1.10) 1.00 (0.81- 1.23) 0.95 (0.69- 1.31)

3rd quartile 094 (0.77- 1.14) 099 (0.81-1.20) 1.02 (0.83- 1.27) 1.03 (0.84- 1.25) 0.96 (0.67- 1.37) 1.06 (0.83- 1.36) 1.01 (0.81- 1.25) 1.06 (0.87- 1.28) 0.91 (0.69- 1.19)

2nd quartile 0.88 (0.73- 1.06) 1.01 (0.84- 1.21) 1.10 (0.90- 1.35) 0.96 (0.79- 1.17) 1.04 (0.78- 1.39) 1.10 (0.86- 1.40) 0.97 (0.80- 1.18) 1.06 (0.88- 1.27) 0.85 (0.69- 1.05)
4-day-lag average

4th quartile 1.01 (0.82- 1.26) 0.94 (0.76- 1.17) 091 (0.72- 1.14) 0.98 (0.79- 1.21) 1.04 (0.66- 1.64) 1.00 (0.79- 1.27) 0.86 (0.67- 1.09) 0.89 (0.72- 1.11) 1.06 (0.76- 1.47)

3rd quartile 0.87 (0.71- 1.06)  0.96 (0.79- 1.16) 0.93 (0.75- 1.14) 1.05 (0.86- 1.28) 0.92 (0.64- 1.33) 1.04 (0.82- 1.31) 0.98 (0.78- 1.22) 0.91 (0.75- 1.10) 0.94 (0.71- 1.25)

2nd quartile 1.02 (0.85- 1.23) 0.94 (0.78-1.13) 0.82 (0.67- 1.01) 0.94 (0.77- 1.14) 1.06 (0.79- 1.41) 0.97 (0.76- 1.23) 0.87 (0.72- 1.06) 1.03 (0.86- 1.24) 0.84 (0.67- 1.05)




Table 3- 8. Multiple source models - Associations between exposures to pollutants

identified as 5 source classes and ED visits for respiratory problems (observed data).

Otherwise as Table 3-3.

Current day

1-day-lag avg

2-day-lag avg

3-day-lag avg

4-day-lag avg

Sources/Exposures R ©5%CD _ RR__ (95%C _ RR_ (5%CD _ RR__ (95%CD__ RR__ (95%CI)
4 km buffer
Photochemical
4th quartile 0.76 (0.52- 1.10) 1.23 (0.85-1.78) 1.21 (0.86- 1.70) 1.19 (0.84- 1.67) 1.09 (0.77- 1.54)
3rd quartile 0.76 (0.53-1.07) 086 (0.61-1.22) 1.06 (0.79- 1.42) 1.11 (0.83-1.48) 0.98 (0.74- 1.30)
2nd quartile 0.85 (0.62-1.15) 1.02 (0.75- 1.39) 092 (0.69- 1.22) 1.03 (0.79- 1.35) 1.10 (0.85- 1.43)
Fuel combustion
4th quartile 094 (0.57-1.54) 1.30 (0.79- 2.16) 1.06 (0.67- 1.66) 1.20 (0.75- 1.91) 1.52 (0.90- 2.58)
3rd quartile 1.22 (0.84- 1.77) 1.28 (0.89-1.86) 1.29 (0.92- 1.81) 1.37 (0.95-1.98) 1.21 (0.84- 1.74)
2nd quartile 1.14 (0.83-1.57) 097 (0.70- 1.33) 1.17 (0.89- 1.55) 1.35 (1.02- 1.77) 1.13 (0.87- 1.48)
Combined industrial
4th quartile 1.06 (0.70- 1.62) 1.10 (0.72- 1.67) 0.85 (0.58- 1.24) 0.90 (0.59- 1.36)  0.92 (0.60- 1.42)
3rd quartile 1.10 (0.73- 1.66)  1.47 (0.97-2.22) 092 (0.65- 1.31) 0.85 (0.58-1.25) 1.08 (0.73- 1.59)
2nd quartile 1.15 (0.80- 1.67) 135 (0.93-1.95) 0.81 (0.59-1.10) 1.02 (0.75- 1.40) 1.14 (0.83- 1.57)
Gasoline exhaust
4th quartile 0.99 (0.73-1.35) 1.05 (0.78-1.42) 1.02 (0.79- 1.33) 1.24 (0.94- 1.64) 1.27 (0.96- 1.67)
3rd quartile 1.11 (0.85-1.46) 1.04 (0.79- 1.36) 1.09 (0.86- 1.39) 1.35 (1.05- 1.73) 1.16 (0.88- 1.54)
2nd quartile 0.79 (0.60- 1.03) 093 (0.72- 1.21) 0.86 (0.69- 1.08) 1.04 (0.83- 1.30) 0.98 (0.77- 1.24)
Industrial solvent
4th quartile 1.28 (0.85-1.92) 0.71 (0.46-1.08) 0.82 (0.56- 1.21) 0.68 (0.45- 1.03) 0.72 (0.47- 1.10)
3rd quartile 1.04 (0.73- 1.48) 0.67 (0.47- 0.95) 0.66 (0.47- 0.91) 0.64 (0.45- 0.90) 0.69 (0.49- 0.98)
2nd quartile 1.09 (0.85-1.41) 0.86 (0.67-1.10) 0.86 (0.68- 1.08) 0.87 (0.69- 1.10)  0.76 (0.59- 0.97)
10 km buffer
Photochemical
4th quartile 0.85 (0.73- 1.01) 1.17 (0.99- 1.37) 1.02 (0.88- 1.19) 0.99 (0.85- 1.15) 0.99 (0.85- 1.15)
3rd quartile 0.77 (0.66- 0.90) 1.02 (0.88- 1.19) 1.05 (0.93- 1.19) 1.06 (0.94- 1.20) 1.01 (0.90- 1.14)
2nd quartile 0.87 (0.76- 0.99) 1.12 (0.98- 1.28) 094 (0.84- 1.06) 1.03 (0.92- 1.15) 0.97 (0.87- 1.08)
Fuel combustion
4th quartile 1.10 (0.89- 1.37) 1.01 (0.81- 1.25) 1.08 (0.89- 1.31) 1.24 (1.02- 1.52) 1.27 (1.02- 1.59)
3rd quartile 1.28 (1.09- 1.51) 1.07 (0.91- 1.26) 1.09 (0.94- 1.26) 1.15 (0.98- 1.34) 1.07 (0.92- 1.25)
2nd quartile 1.18 (1.03- 1.36) 1.03 (0.90- 1.18) 1.09 (0.97- 1.23) 1.12 (0.99- 1.25) 1.12 (1.00- 1.25)
Combined industrial
4th quartile 1.00 (0.83- 1.20) 1.07 (0.89- 1.28) 0.94 (0.80- 1.11) 1.07 (0.90- 1.29) 1.04 (0.87- 1.26)
3rd quartile 1.05 (0.88- 1.26) 1.09 (0.91- 1.30) 0.99 (0.85- 1.16) 1.07 (0.90- 1.26) 1.06 (0.89- 1.26)
2nd quartile 098 (0.84- 1.16) 1.05 (0.89- 1.23) 0.97 (0.85- 1.11) 1.02 (0.89- 1.16) 1.10 (0.96- 1.26)
Gasoline exhaust
4th quartile 1.07 (0.94- 1.23) 1.03 (0.90- 1.18) 0.97 (0.87- 1.09) 098 (0.87- 1.10) 1.00 (0.89- 1.13)
3rd quartile 1.21 (1.07- 1.36) 0.97 (0.86- 1.09) 1.03 (0.93- 1.14) 0.98 (0.88- 1.09) 0.96 (0.85- 1.08)
2nd quartile 1.07 (0.95- 1.19) 0.96 (0.86- 1.08) 0.95 (0.87- 1.05) 0.95 (0.87- 1.04) 0.99 (0.90- 1.09)
Industrial solvent
4th quartile 1.16 (0.97- 1.38) 1.00 (0.84- 1.19) 0.88 (0.74- 1.03) 0.78 (0.65- 0.93) 0.81 (0.67- 0.97)
3rd quartile 1.02 (0.88- 1.18) 0.92 (0.79- 1.06) 0.89 (0.78- 1.02) 0.82 (0.71- 0.95) 0.80 (0.69- 0.92)
2nd quartile 1.08 (0.97- 1.20) 0.99 (0.89- 1.10) 0.94 (0.85- 1.03) 0.91 (0.83- 1.01) 0.87 (0.78- 0.97)
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Table 3- 9. Multiple source models - Associations between exposures to pollutants
identified as 5 source classes and ED visits for asthma among children living within 10
km radius (observed data).

Events on July 11, 2001 were excluded. Otherwise as Table 3-3.

Current day 1-day-lag avg 2-day-lag avg 3-day-lag avg 4-day-lag avg

Sources/Exposures ™ 05%,C) | RR__ (95%CD __ _RR__(95%CD__ RR__(95%CD__RR__ (95%CD
Photochemical

4th quartile 1.30 (0.95- 1.79) 1.08 (0.79- 1.48) 0.80 (0.59- 1.07) 0.94 (0.70- 1.27) 0.92 (0.69- 1.22)

3rd quartile 1.22 (0.91- 1.63) 095 (0.70- 1.27)  0.87 (0.68- 1.13) 1.18 (0.92- 1.52) 1.07 (0.84- 1.35)

2nd quartile 1.02 (0.78- 1.34) 1.04 (0.79- 1.36) 0.78 (0.61- 1.00) 1.15 (0.91- 1.45) 0.98 (0.79- 1.22)
Fuel combustion

4th quartile 0.87 (0.58- 1.30) 0.88 (0.59- 1.31)  1.02 (0.70- 1.47) 1.08 (0.74- 1.57) 0.96 (0.64- 1.43)

3rd quartile 0.86 (0.62- 1.18) 1.13 (0.83-1.56) 1.11 (0.83-1.49) 0.93 (0.69- 1.25) 0.94 (0.71- 1.26)

2nd quartile 0.92 (0.70- 1.21) 1.27 (0.96- 1.69) 1.10 (0.86- 1.42) 0.89 (0.70- 1.14) 0.91 (0.72- 1.15)
Combined industrial

4th quartile 1.33 (0.94- 1.88) 0.96 (0.68-1.36) 0.98 (0.70- 1.35) 1.15 (0.81- 1.62) 1.34 (0.94- 1.91)

3rd quartile 1.10 (0.78- 1.55) 091 (0.65- 1.27) 1.03 (0.76- 1.38) 1.03 (0.75- 1.41) 1.26 (0.92- 1.73)

2nd quartile 1.19 (0.89- 1.60) 0.98 (0.74- 1.31) 0.98 (0.76- 1.26) 1.05 (0.83- 1.34) 1.35 (1.06- 1.73)
Gasoline exhaust

4th quartile 0.94 (0.72- 1.21) 1.22 (0.93-1.59) 1.09 (0.87- 1.37) 0.96 (0.76- 1.21) 0.90 (0.71- 1.13)

3rd quartile 0.80 (0.63- 1.01) 097 (0.76- 1.25) 1.04 (0.84- 1.29) 1.05 (0.85- 1.30) 0.98 (0.78- 1.24)

2nd quartile 0.96 (0.77- 1.20) 1.33 (1.06- 1.67) 1.15 (0.94- 1.40) 1.01 (0.83- 1.22) 0.98 (0.80- 1.19)
Industrial solvent

4th quartile 1.01 (0.71- 1.44) 1.00 (0.70- 1.43) 0.97 (0.70- 1.36) 1.06 (0.75- 1.50) 1.29 (0.91- 1.85)

3rd quartile 1.12 (0.83- 1.52) 098 (0.72- 1.33) 0.87 (0.65- 1.16) 0.96 (0.71- 1.29) 1.05 (0.78- 1.42)

2nd quartile 1.08 (0.86- 1.36) 0.98 (0.77- 1.25) 0.93 (0.74- 1.16) 0.93 (0.74- 1.17) 0.97 (0.76- 1.23)
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Table 3- 10. Multiple pollutant models - Associations between exposures to selected

criteria pollutants and ED visits for respiratory problems (observed data).

Otherwise as Table 3-6.

Sources CO NO2 S02 03 (Windsor) PM2.5
are RR (95%CI) RR (95%CI) RR (95%CI) RR  (95%CI) RR (95%CI)
4 km buffer
Current day
4th quartile 0.93 (0.68-1.27) 1.15 (0.83- 1.60) - - - - - - - - -
3rd quartile 0.81 (0.62- 1.07) 1.04 (0.80- 1.35) - - - - - - - - -
2nd quartile 0.90 (0.72- 1.13) 0.98 (0.77- 1.24) - - - - - - - - -
1 day lag
4th quartile 1.14 (0.83- 1.56) 0.01 (0.91- 0.00) - - - - - - - - -
3rd quartile 0.92 (0.70- 1.21) 0.04 (0.85- 0.00) - - - - - - - - -
2nd quartile 0.90 (0.72- 1.13) 0.56 (0.45- 0.00) - - - - - - - - -
2-day-lag average
4th quartile 0.95 (0.69-1.32) 1.10 (0.80- 1.51) - - - - - - - - -
3rd quartile 0.92 (0.70- 1.19) 0.92 (0.70- 1.21) - - - - - - - - -
2nd quartile 0.88 (0.70- 1.11)  0.99 (0.78- 1.26) - - - - - - - - -
3-day-lag average
4th quartile 1.08 (0.77- 1.53) 1.28 (0.94- 1.76) - - - - - - - - -
3rd quartile 1.11 (0.85-1.44) 098 (0.74- 1.29) - - - - - - - - -
2nd quartile 1.08 (0.86- 1.36) 1.12 (0.89- 1.43) - - - - - - - - -
4-day-lag average
4th quartile 1.29 (0.89- 1.86) 1.27 (0.92- 1.76) - - - - - - - - -
3rd quartile 1.34 (1.01- 1.78) 1.03 (0.78- 1.36) - - - - - - - - -
2nd quartile 1.31 (1.02- 1.67) 1.29 (1.01- 1.65) - - - - - - - - -
10 km buffer
Current day
4th quartile 0.93 (0.79- 1.10) 1.10 (0.89- 1.36) 1.09 (0.93-1.29) 0.81 (0.65- 0.99) 1.00 (0.83- 1.20)
3rd quartile 0.87 (0.75- 1.00) 1.09 (0.93-1.28) 1.09 (0.95- 1.25) 0.84 (0.72- 0.99) 0.97 (0.83- 1.13)
2nd quartile 0.94 (0.84- 1.06) 0.96 (0.84- 1.09) 1.10 (0.96- 1.25) 0.96 (0.85- 1.08) 0.99 (0.87- 1.13)
1 day lag
4th quartile 1.08 (0.92- 1.28) 0.97 (0.79- 1.20) 1.06 (0.91-1.25) 091 (0.74- 1.13) 1.03 (0.86- 1.25)
3rd quartile 0.96 (0.83-1.10) 0.99 (0.85-1.16) 0.99 (0.87-1.13) 0.87 (0.74- 1.03) 1.02 (0.87- 1.19)
2nd quartile 1.07 (0.95- 1.20) 0.94 (0.82- 1.07) 0.92 (0.81- 1.05) 0.96 (0.85-1.08) 1.03 (0.90- 1.18)
2-day-lag average
4th quartile 1.08 (0.91-1.28) 1.15 (0.96- 1.39) 0.86 (0.72- 1.02) 0.83 (0.66- 1.06) 1.00 (0.85- 1.17)
3rd quartile 1.02 (0.89- 1.18) 1.00 (0.87- 1.16) 0.89 (0.78- 1.02) 0.86 (0.71- 1.04) 1.05 (0.91- 1.20)
2nd quartile 0.99 (0.88-1.13) 1.02 (0.90- 1.16) 0.81 (0.72-0.92) 0.97 (0.85- 1.10) 1.04 (0.93- 1.18)
3-day-lag average
4th quartile 1.03 (0.87-1.21) 1.23 (1.02- 1.47) 1.06 (0.90- 1.25) 0.94 (0.74- 1.19) 0.94 (0.80- 1.11)
3rd quartile 1.02 (0.89- 1.16) 1.11 (0.96- 1.28) 1.03 (0.89- 1.20) 0.91 (0.75- 1.10) 1.00 (0.86- 1.15)
2nd quartile 1.00 (0.89- 1.12) 1.10 (0.98- 1.25) 1.02 (0.90- 1.16) 0.98 (0.86- 1.12) 1.01 (0.90- 1.13)
4-day-lag average
4th quartile 1.02 (0.86- 1.21) 1.23 (1.02- 1.49) 091 (0.78-1.07) 1.01 (0.77- 1.31) 1.04 (0.88- 1.24)
3rd quartile 1.08 (0.94- 1.23) 1.12 (0.97- 1.30) 1.01 (0.88-1.16) 0.92 (0.74- 1.14) 1.05 (0.91- 1.22)
2nd quartile 1.10 (0.97- 1.24) 1.13 (1.00- 1.28) 0.86 (0.76- 0.98) 1.08 (0.92- 1.26) 1.12 (0.99- 1.27)
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co1

Table S3- 1. Pearson correlation coefficients between air toxics and criteria air pollutants.

Criteria air pollutants were measured at Linwood otherwise stated by site name.

E g oz gz ¢
[} ] Q § % ] o % 5} % E g % E E g = =
2 s 5% 2 2 £ 2 2 « L, 5 5 & 2 2z 4 4 o 7 & & 2 2 , 2 )
§ 5§ 5 3 £ = & 5§ & § ¥ § & » =2 5 5 B B g 2 ®B 2 § % &9 g o %
El = = =2 3 g 3 = = X s 2 8 £ X 5 = = s S = 3 3 2 &4 £ 8 9 9 & £
= s § § 3§ g &£ : 5 £ & 5 7 2 4 ¢ % 5§ 2 % § £ £ g 3 & zZ 2 <2
= 8 5 5 ) A = 3 < = b <] = = g = =] & S g ] & & = - o
< @ £ £ e g2 F - £ @ 3 & = =BT = o ©
5 s e 2 2 g 4 =
a = o=~

N 284 284 283 284 284 284 283 302 302 302 302 300 302 300 301 301 300 302 302 302 302 301 300 361 324 357 298 334 180 320

Acetaldehyde 1.00

Benzaldehyde 0.64 1.00

Formaldehyde 0.80 0.77 1.00

Hexaldehyde 0.69 0.62 0.54 1.00

iso-Butyraldehyde 0.89 0.60 0.68 0.68 1.00

Propionaldehyde 0.84 0.74 081 0.66 0.79 1.00

Tolualdehyde 0.64 0.68 0.58 0.69 0.61 0.73 1.00

Acetylene 0.31 025 0.27 007 0.19 023 0.16 1.00

Benzene 045 039 031 028 031 032 027 0.69 1.00

1,3-Butadiene 035 028 031 0.13 023 024 0.18 073 0.63 1.00

Dichlorodifluoromethane  0.44 0.21 031 035 0.37 032 026 029 034 034 1.00

Ethylbenzene 042 034 035 030 030 029 031 063 068 0.71 038 1.00

Methyl ethyl ketone 043 044 035 046 038 035 037 022 050 026 038 045 1.00

m,p-Xylene 043 035 037 031 031 029 032 063 069 071 040 0.99 045 1.00

n-Octane 0.29 020 021 0.19 0.20 021 020 034 037 048 024 037 030 035 1.00

o0-Xylene 042 037 036 030 0.29 029 033 067 073 075 041 096 045 097 040 1.00

Propylene 0.28 0.12 023 0.11 021 0.18 0.11 032 026 032 0.17 023 0.17 023 022 0.24 1.00

Tetrachloroethylene 0.08 0.05 0.06 0.10 0.07 007 o0.11 0.19 021 020 003 020 0.16 020 0.10 020 -0.01 1.00

Trichlorofluoromethane 0.26 0.08 0.14 023 0.23 0.18 0.15 0.12 0.16 0.17 054 0.19 0.15 022 0.15 024 0.09 -0.03 1.00

Trichlorotrifluoroethane 0.13 -0.12 0.03 -0.03 0.16 0.08 0.01 0.04 -0.02 0.14 0.14 0.03 -0.05 0.01 0.17 0.00 020 -0.06 0.01 1.00

1,2,4-Trimethylbenzene 046 037 036 035 035 034 037 0.67 075 078 044 094 049 095 041 093 025 024 024 0.02 1.00

1,3,5-Trimethylbenzene 043 035 033 030 031 031 036 067 072 079 040 0.89 044 090 041 090 022 025 021 000 095 1.00

Toluene 040 038 031 032 028 027 030 062 077 065 034 082 051 081 034 084 021 020 016 -0.07 0.85 0.82 1.00

PM10 (Dearborn) 0.14 0.14 020 0.11 0.09 013 0.16 0.03 0.07 -0.07 001 0.04 025 004 0.08 0.02 015 -0.09 -0.03 -0.03 0.03 0.04 0.02 1.00

PM2.5 0.18 0.19 0.15 0.19 0.14 016 0.18 0.15 032 -0.05 003 0.14 037 0.13 001 0.13 025 -0.02 -0.01 -0.02 0.15 0.11 0.17 0.56 1.00

CcO 020 0.16 020 009 0.15 017 0.13 048 043 042 008 046 027 045 0.19 044 044 006 006 000 045 042 041 029 030 1.00

NO2 025 021 029 0.16 0.18 026 024 037 033 0.16 003 027 026 026 0.11 027 039 002 -0.04 002 029 023 021 047 051 0.64 1.00

SO2 0.16 0.10 0.12 0.14 o0.11 015 0.16 022 026 0.10 007 0.08 022 007 009 0.12 044 -0.03 0.01 0.08 0.16 0.11 0.14 027 046 033 0.58 1.00

O3 (Apr-Sept) 0.09 0.16 0.15 036 0.03 005 026 -0.04 0.18 -0.18 0.11 0.10 037 0.10 -0.02 0.09 -0.07 -0.02 006 -030 0.03 0.02 0.13 055 053 021 0.15 0.15 1.00

O3 (Windsor) 036 042 031 060 035 039 047 -0.16 0.14 -0.12 030 0.09 050 0.10 002 0.11 -0.08 005 006 -0.17 0.14 0.10 0.17 0.34 0.35 -0.06 0.15 0.19 0.96 1.00
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Table S3- 2. Pearson correlation coefficients between 5 source classes and air toxics.

2 ] v Q © Q
g = _ o E ° » § 5§ § B
s = 5 7 s 3 5 < = § B
-~ 2 2 5 2 £ ¥ 5 £ = 2 £ & § g §:t = 2 5 5 5 3 g 2 =z =z
Sources/Pollutants 8 g 9 e B E 3 % % E Té = % ST § % < g :? z £ E e;i s £ ;5,
S 2 £ 5 2 : P E iz:2e22 @332 3517 & 358 §EECF
s 2 £ 2 8 £ & £ = 7 g £ Z 5@ £ F 2 £ £ =
s £ & & £ 3 & = 5 5 5 E <+ 4
S] @) - S = g g o o
é 5 = = — —
N 265 265 265 265 265 284 284 283 284 284 284 283 302 302 302 302 300 302 300 301 301 300 302 302 302 302 301 300
Photochemical pollutants  1.00
Fuel combustion 0.43 1.00
Combined industrial -0.48 -0.61 1.00
Gasoline exhaust 0.24 0.22 -0.36 1.00
Industrial solvent 0.19 0.38 -0.54 0.15 1.00
Acetaldehyde 0.56 0.98 -0.64 0.29 0.39 1.00
Benzaldehyde 0.66 0.67 -0.69 0.38 0.50 0.64 1.00
Formaldehyde 0.93 0.73 -0.61 0.26 0.31 0.80 0.77 1.00
Hexaldehyde 0.29 0.72 -0.56 0.14 0.47 0.69 0.62 0.54 1.00
iso-Butyraldehyde 0.38 0.92 -0.54 0.17 0.36 0.89 0.60 0.68 0.68 1.00
Propionaldehyde 0.60 091 -0.60 0.24 0.37 0.84 0.74 0.81 0.66 0.79 1.00
Tolualdehyde 0.42 0.65 -0.56 0.22 0.40 0.64 0.68 0.58 0.69 0.61 0.73 1.00
Acetylene 0.30 0.18 -0.06 0.80 0.17 0.31 0.25 0.27 0.07 0.19 0.23 0.16 1.00
Benzene 0.20 0.36 -0.38 0.77 0.46 0.45 0.39 0.31 0.28 0.31 0.32 0.27 0.69 1.00
1,3-Butadiene 0.30 0.23 -0.24 0.81 0.20 0.35 0.28 0.31 0.13 0.23 0.24 0.18 0.73 0.63 1.00
Dichlorodifluoromethane ~ 0.19 0.43 -0.06 0.27 0.37 0.44 0.21 0.31 0.35 0.37 0.32 0.26 0.29 0.34 0.34 1.00
Ethylbenzene 0.30 0.37 -0.52 0.88 0.43 0.42 0.34 0.35 0.30 0.30 0.29 0.31 0.63 0.68 0.71 0.38 1.00
Methyl ethyl ketone 0.23 0.39 -0.52 0.17 1.00 0.43 0.44 0.35 0.46 0.38 0.35 0.37 0.22 0.50 0.26 0.38 0.45 1.00
m,p-Xylene 0.31 0.38 -0.53 0.88 0.43 0.43 0.35 0.37 0.31 0.31 0.29 0.32 0.63 0.69 0.71 0.40 0.99 0.45 1.00
n-Octane 0.17 0.23 -0.17 0.36 0.32 0.29 0.20 0.21 0.19 0.20 0.21 0.20 0.34 0.37 0.48 0.24 0.37 0.30 0.35 1.00
o-Xylene 0.32 0.37 -0.53 0.92 0.45 0.42 0.37 0.36 0.30 0.29 0.29 0.33 0.67 0.73 0.75 0.41 0.96 0.45 0.97 0.40 1.00
Propylene 0.19 0.24 -0.06 0.24 0.15 0.28 0.12 0.23 0.11 0.21 0.18 0.11 0.32 0.26 0.32 0.17 0.23 0.17 0.23 0.22 0.24 1.00
Tetrachloroethylene 0.06 0.05 -0.17 0.19 0.14 0.08 0.05 0.06 0.10 0.07 0.07 0.11 0.19 0.21 0.20 0.03 0.20 0.16 0.20 0.10 0.20 -0.01 1.00

Trichlorofluoromethane 0.03 0.25 0.03 0.13 0.14 0.26 0.08 0.14 0.23 0.23 0.18 0.15 0.12 0.16 0.17 0.54 0.19 0.15 0.22 0.15 0.24 0.09 -0.03 1.00
Trichlorotrifluoroethane ~ -0.02 0.14 0.21 -0.04 -0.04 0.13 -0.12 0.03 -0.03 0.16 0.08 0.01 0.04 -0.02 0.14 0.14 0.03 -0.05 0.01 0.17 0.00 0.20 -0.06 0.01 1.00
1,2,4-Trimethylbenzene 0.30 0.37 -0.52 0.89 0.45 0.46 0.37 0.36 0.35 0.35 0.34 0.37 0.67 0.75 0.78 0.44 0.94 0.49 0.95 0.41 0.93 0.25 0.24 0.24 0.02 1.00
1,3,5-Trimethylbenzene 0.29 0.33 -0.47 0.88 0.40 0.43 0.35 0.33 0.30 0.31 0.31 0.36 0.67 0.72 0.79 0.40 0.89 0.44 0.90 0.41 0.90 0.22 0.25 0.21 0.00 0.95 1.00
Toluene 0.24 0.36_-0.54 0.84 0.50 0.40 0.38 0.31 0.32 0.28 0.27 0.30 0.62 0.77 0.65 0.34 0.82 0.51 0.81 0.34 0.84 0.21 0.20 0.16 -0.07 0.85 0.82 1.00




Table S3- 3. Pearson correlation coefficients between 5 source classes and criteria air
pollutants.

g = -
= 5 % %% ¢ 2 3
TC: é) é % E % p o 8 9« 2 %
Sources/Pollutants g E 3 2 22 a2 S O % 2 = =

s 2 £ 5 2 *® c oz
K

N 265 265 265 265 265 361 324 357 298 334 180 320

Photochemical pollutants  1.00

Fuel combustion 0.43 1.00

Combined industrial -0.48 -0.61 1.00

Gasoline exhaust 0.24 0.22 -0.36 1.00

Industrial solvent 0.19 0.38 -0.54 0.15 1.00

PM10 (Dearborn) 0.22 0.15 -0.14 -0.08 0.23 1.00

PM2.5 0.09 0.18 -0.12 0.05 0.34 0.56 1.00

CcoO 0.23 0.15 -0.21 0.47 0.26 0.29 0.30 1.00

NO2 0.36 0.18 -0.24 0.25 0.29 0.47 0.51 0.64 1.00

SO2 0.11 0.12 -0.08 0.10 0.23 0.27 0.46 0.33 0.58 1.00

O3 (Apr-Sept) 0.10 0.13 -0.20 0.01 0.41 0.55 0.53 0.21 0.15 0.15 1.00

03 (Windsor) 0.17 0.38 -0.42 -0.07 0.51 0.34 0.35 -0.06 0.15 0.19 0.96 1.00
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Table S3- 4. Study population size and number of Medicaid visits, 4/19/2002-4/18/2003

Study Hospital admission Emergency department visit Outpatient visit
Variable population Asthma Respiratory Injury Asthma Respiratory Injury Asthma Respiratory Injury
N (%) n n n n n n n n n
4 km buffer
N 4731 49 33 41 156 826 597 536 1213 9067
Gender
Female 2287 (48) 16 15 26 57 330 281 218 452 4536
Male 2444 (52) 33 18 15 99 496 316 318 761 4531
Race
Black 642 (14) 8 8 5 28 116 80 57 125 344
White 2312 (49) 19 12 16 72 491 306 301 802 6234
Others 1777 (38) 22 13 20 56 219 211 178 286 2489
Age group (yrs)
Oto4 1562 (33) 22 8 20 67 283 289 243 285 4178
5t09 1418 (30) 14 13 10 52 237 173 167 355 2945
10to 14 1134 (24) 6 10 8 25 204 96 90 417 1437
15t0 18 617 (13) 7 2 3 12 102 39 36 156 507
10 km buffer
N 8129 289 188 235 1016 4021 3321 2448 4201 24341
Gender
Female 3988 (49) 133 75 101 479 1630 1704 1048 1742 12267
Male 4141 (51) 156 113 134 537 2391 1617 1400 2459 12074
Race
Black 2803 (34) 211 121 143 763 2495 2169 1461 1923 5793
White 2748 (34) 45 42 44 154 1196 810 690 1859 14831
Others 2578 (32) 33 25 48 99 330 342 297 419 3717
Age group (yrs)
Oto4 2385 (30) 109 48 118 391 1139 1485 865 936 10564
5to9 2233 (28) 83 55 38 319 1082 901 787 1180 7801
10to 14 1945 (24) 46 47 37 200 1195 608 609 1486 4432
15to 18 1411 (18) 48 34 36 101 568 299 168 586 1485
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Table S3- 5. Single source models - Associations between exposures to pollutants

identified as 5 source classes and ED visits for injury.

Otherwise as Table 3-3.

Exposures Photochemical  Fuel Combustion Combined industrial Gasoline exhaust Industrial
RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI)
4 km buffer
Current day
4th quartile 0.87 (0.67- 1.13) 1.04 (0.75- 1.46) 0.86 (0.60- 1.23) 1.00 (0.76- 1.32) 1.29 (0.86- 1.94)
3rd quartile 0.99 (0.78- 1.27) 0.86 (0.64- 1.15) 0.70 (0.50- 0.99)  0.98 (0.75- 1.29) 1.05 (0.72- 1.54)
2nd quartile 0.85 (0.66- 1.10) 0.88 (0.66- 1.17) 0.82 (0.63- 1.06)  0.87 (0.66- 1.15) 1.08 (0.79- 1.47)
1 day lag
4th quartile 0.90 (0.67- 1.20) 1.06 (0.75- 1.50) 0.90 (0.63- 1.30)  0.91 (0.69- 1.21) 0.75 (0.50- 1.14)
3rd quartile 0.94 (0.71- 1.25) 1.06 (0.79- 1.43) 0.78 (0.56- 1.09)  0.91 (0.69- 1.21) 0.79 (0.55- 1.15)
2nd quartile 1.02 (0.77- 1.34) 096 (0.71- 1.29) 091 (0.70- 1.18)  0.86 (0.65- 1.14) 0.79 (0.57- 1.08)
2-day-lag average
4th quartile 0.91 (0.70- 1.19) 0.94 (0.69- 1.27) 091 (0.65- 1.27)  0.90 (0.70- 1.16) 1.08 (0.74- 1.57)
3rd quartile 0.91 (0.70- 1.17)  0.89 (0.68- 1.17) 0.89 (0.65- 1.21)  0.83 (0.65- 1.07) 1.02 (0.72- 1.43)
2nd quartile 0.88 (0.69- 1.13) 0.80 (0.62- 1.03) 1.02 (0.81-1.28)  0.95 (0.75- 1.20) 1.03 (0.77- 1.38)
3-day-lag average
4th quartile 1.05 (0.80- 1.37) 1.01 (0.74- 1.37) 0.89 (0.61- 1.29) 1.01 (0.78- 1.29) 0.90 (0.61- 1.33)
3rd quartile 0.95 (0.73- 1.24) 091 (0.69- 1.20) 0.99 (0.71- 1.37)  0.94 (0.73- 1.21) 1.00 (0.71- 1.42)
2nd quartile 0.98 (0.76- 1.26) 0.81 (0.62- 1.05) 0.92 (0.73- 1.15) 1.03 (0.82- 1.30) 0.86 (0.64- 1.15)
4-day-lag average
4th quartile 0.96 (0.73- 1.26) 1.02 (0.74- 1.41) 0.82 (0.55- 1.21) 1.05 (0.81- 1.35) 1.11 (0.74- 1.67)
3rd quartile 0.99 (0.77- 1.29) 1.01 (0.76- 1.33) 0.87 (0.62- 1.22)  0.96 (0.74- 1.25) 1.10 (0.76- 1.59)
2nd quartile 1.07 (0.84- 1.38) 0.93 (0.71- 1.20) 0.85 (0.68- 1.07)  0.97 (0.77- 1.23) 0.97 (0.72- 1.32)
10 km buffer
Current day
4th quartile 1.06 (0.93- 1.21) 1.15 (0.98-1.33) 0.87 (0.75- 1.02) 1.01 (0.90- 1.15) 0.95 (0.79- 1.14)
3rd quartile 1.07 (0.94- 1.20) 1.00 (0.88- 1.14) 0.79 (0.68- 0.91) 1.11 (0.99- 1.25) 0.96 (0.81- 1.13)
2nd quartile 1.08 (0.95- 1.22) 1.04 (0.91- 1.18) 0.93 (0.83- 1.05) 1.03 (0.91- 1.16) 1.00 (0.87- 1.15)
1 day lag
4th quartile 0.98 (0.86- 1.11) 0.95 (0.81- 1.10) 0.90 (0.76- 1.05) 1.03 (0.91- 1.16) 0.93 (0.78- 1.12)
3rd quartile 1.01 (0.90- 1.14) 0.94 (0.82- 1.06) 0.90 (0.78- 1.04) 1.00 (0.89- 1.13) 0.93 (0.79- 1.10)
2nd quartile 1.02 (0.90- 1.15) 0.95 (0.84-1.08) 1.02 (091-1.14) 098 (0.87- 1.11) 0.94 (0.82- 1.07)
2-day-lag average
4th quartile 0.97 (0.86- 1.09) 0.98 (0.86- 1.13) 0.90 (0.78- 1.04)  0.96 (0.86- 1.07) 1.05 (0.89- 1.24)
3rd quartile 0.97 (0.87- 1.08) 0.92 (0.81- 1.03) 091 (0.79- 1.04)  0.96 (0.87- 1.07) 1.02 (0.88- 1.19)
2nd quartile 0.91 (0.81- 1.01) 0.90 (0.80- 1.00) 0.98 (0.89- 1.09) 1.01 (0.91- 1.12) 0.94 (0.83- 1.06)
3-day-lag average
4th quartile 1.01 (0.89- 1.13) 1.04 (0.91- 1.19) 0.80 (0.68- 0.94) 1.00 (0.89- 1.11) 1.09 (0.92- 1.29)
3rd quartile 1.00 (0.90- 1.12) 0.94 (0.84- 1.07) 0.89 (0.78-1.03)  0.99 (0.89- 1.10) 1.09 (0.94- 1.27)
2nd quartile 0.94 (0.84- 1.05) 0.89 (0.80- 1.00) 0.92 (0.84- 1.02) 1.01 (0.91- 1.11) 0.95 (0.83- 1.07)
4-day-lag average
4th quartile 0.99 (0.88- 1.11) 1.09 (0.94- 1.26) 0.84 (0.71- 1.00) 1.04 (0.93- 1.16) 1.11 (0.93- 1.33)
3rd quartile 0.98 (0.88-1.10) 0.95 (0.84- 1.07) 0.89 (0.77- 1.03)  0.99 (0.88- 1.10) 1.02 (0.87- 1.20)
2nd quartile 0.99 (0.89- 1.10) 0.89 (0.79- 0.99) 0.89 (0.81- 0.99) 1.03 (0.93- 1.14) 0.93 (0.81- 1.06)
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Table S3- 6. Single pollutant models - Associations between exposures to air pollutants (criteria and air toxics) and ED visits for

injury. Otherwise as Table 3-6.

E PM2.5 CcO NO2 S02 O3# 03 (Windsor) Formaldehyde Benzene MEK
XposSures RR (95%CD) RR (95%C) RR (95%CD) _ RR (95%CI) RR (95%C) RR (95%CI) _RR (95%CI) _RR (95%CI) _RR (95%CI)
4 km buffer
Current day
4th quartile 112 (0.86- 145) 142 (L13- 1.80) 116 (0.91- 149) 1.35 (L.07- L71) 1.03 (0.68 1.56) 1.63 (L06-249) 1.11 (0.82-149) 1.02 (0.80-1.32) 088 (0.6 1.27)
3rd quartile 116 (091- 149) 121 (0.97- 1.51) 115 (091- 146) 1.10 (0.86- 139) 1.19 (0.83 1.70) 1.66 (L15-2.40) 095 (0.72- 1.25) 077 (0.59- 1.00) 094 (0.70- 1.27)
ond quartile 091 (0.72-1.16) 116 (0.93- 1.44) 086 (0.67- 1.10) 118 (0.93- 1.50) 128 (093 1.78) 126 (0.94-1.69) 0.88 (0.67- 1.15) 091 (0.71- 1.16) 099 (0.78- 1.26)
1 day lag
4th quartile 108 (0.83- 141) 099 (0.78-125) 1.02 (0.79- 132) 1.00 (0.79- 126) 0.86 (0.58- 1.28) 093 (0.64- 1.34) 0.88 (0.65- 1.19) 086 (0.67- 1.11) 080 (0.56- 1.16)
3rd quartile 106 (0.82-1.37) 100 (0.80- 1.25) 101 (0.78- 1.29) 0.84 (0.66- 1.05) 0.74 (0.51- 1.06) 1.08 (0.81- 143) 097 (0.73- 1.27) 079 (0.61- 1.02) 073 (0.54- 0.99)

2nd quartile 1.27 (1.01- 1.61) 1.17 (0.95- 1.44) 1.23 (0.97- 1.55) 0.89 (0.71- 1.12) 0.81 (0.59- 1.11) 1.10 (0.84- 1.45) 1.00 (0.76- 1.31) 0.98 (0.77- 1.25) 0.99 (0.78- 1.25)
2-day-lag average

4th quartile 096 (0.74- 1.25) 0.90 (0.71- 1.15) 1.04 (0.81- 1.34) 0.98 (0.77- 1.26) 0.87 (0.58- 1.30) 0.96 (0.71- 1.31) 0.94 (0.71- 1.25) 0.88 (0.70- 1.12) 0.91 (0.64- 1.29)
3rd quartile 1.11 (0.87- 1.41)  0.99 (0.79- 1.23) 0.94 (0.73- 1.21) 1.01 (0.80- 1.27) 0.78 (0.55- 1.10) 1.09 (0.83- 1.44) 0.90 (0.69- 1.17) 0.79 (0.63- 1.00) 0.71 (0.52- 0.95)
2nd quartile 1.01 (0.80- 1.27) 0.98 (0.79- 1.22) 1.06 (0.84- 1.35) 0.89 (0.70- 1.12) 0.78 (0.57- 1.06) 0.90 (0.68- 1.20) 0.87 (0.68- 1.12)  0.77 (0.62- 0.97) 0.89 (0.72- 1.11)
3-day-lag average
4th quartile 097 (0.75- 1.25) 0.94 (0.73- 1.22) 1.08 (0.83- 1.40) 1.08 (0.85- 1.39) 1.01 (0.64- 1.59) 1.10 (0.83- 1.44) 091 (0.68- 1.21) 0.90 (0.70- 1.15) 0.89 (0.61- 1.30)
3rd quartile 1.15 (0.90- 1.45) 0.96 (0.77- 1.20) 1.05 (0.81- 1.36) 1.13 (0.89- 1.42) 092 (0.62- 1.34) 0.90 (0.68- 1.20) 0.99 (0.76- 1.30) 0.87 (0.69- 1.09) 0.81 (0.59- 1.10)
2nd quartile 1.03 (0.82- 1.29) 0.89 (0.71- 1.11)  0.89 (0.70- 1.15) 0.94 (0.75- 1.20) 0.98 (0.71- 1.34)  0.82 (0.61- 1.09) 0.92 (0.71- 1.18)  0.80 (0.64- 0.99) 0.89 (0.72- 1.11)
4-day-lag average
4th quartile 0.99 (0.76- 1.27) 1.00 (0.77- 1.29) 1.14 (0.87- 1.49) 1.07 (0.83- 1.38) 1.17 (0.73- 1.87) 0.91 (0.69- 1.20) 0.95 (0.71- 1.27) 0.93 (0.72- 1.20) 1.00 (0.68- 1.47)
3rd quartile 1.00 (0.79- 1.28) 0.93 (0.74- 1.17) 1.05 (0.80- 1.37) 0.98 (0.78- 1.25) 1.26 (0.86- 1.85) 0.83 (0.62- 1.11) 0.92 (0.70- 1.23)  0.89 (0.71- 1.13)  0.81 (0.59- 1.12)
2nd quartile 1.01 (0.80- 1.28) 1.04 (0.84- 1.29) 1.12 (0.88- 1.43) 0.99 (0.79- 1.25) 0.92 (0.66- 1.29) 0.86 (0.65- 1.14) 1.07 (0.84- 1.37) 0.83 (0.66- 1.03) 0.93 (0.74- 1.16)
10 km buffer
Current day
4th quartile 099 (0.88- 1.11) 1.13 (1.02- 1.25) 1.00 (0.90- 1.12) 1.12 (1.01- 1.24) 1.00 (0.84- 1.19) 1.16 (0.97- 1.40) 1.03 (0.90- 1.18) 1.06 (0.95- 1.19) 0.94 (0.80- 1.12)
3rd quartile 1.03 (0.92- 1.15) 1.03 (0.93- 1.13) 1.00 (0.90- 1.11) 1.07 (0.97- 1.19) 0.98 (0.84- 1.14) 1.20 (1.03- 1.40) 1.04 (0.92- 1.18) 0.99 (0.88- 1.11) 0.92 (0.79- 1.07)
2nd quartile 0.95 (0.85-1.05) 1.06 (0.96- 1.16) 0.97 (0.87- 1.07) 1.10 (0.99- 1.22) 1.07 (0.94- 1.23) 115 (1.01- 1.29) 1.02 (0.90- 1.15) 1.11 (1.00- 1.24) 0.95 (0.83- 1.09)
1 day lag
4th quartile 095 (0.84- 1.06) 1.04 (0.94- 1.15) 1.00 (0.90- 1.12) 1.04 (0.93- 1.15) 1.04 (0.87- 1.24) 1.00 (0.86- 1.17) 0.99 (0.86- 1.13) 0.97 (0.87- 1.09) 0.95 (0.80- 1.12)
3rd quartile 0.96 (0.86- 1.08) 1.04 (0.94- 1.14) 0.99 (0.89- 1.10) 0.97 (0.87- 1.07) 1.14 (0.98- 1.33) 0.96 (0.85-1.09) 0.99 (0.88- 1.12) 0.94 (0.83- 1.05) 0.99 (0.86- 1.15)

2nd quartile 0.98 (0.89-1.09) 1.06 (0.97- 1.17) 1.02 (0.92- 1.13) 1.03 (0.93- 1.14) 1.05 (0.91- 1.21) 1.01 (0.89-1.14) 1.03 (091- 1.16) 1.03 (0.92- 1.14) 0.97 (0.85- 1.11)
2-day-lag average

4th quartile 0.90 (0.80- 1.01) 0.96 (0.87-1.07) 1.02 (0.91- 1.13) 1.01 (0.90- 1.12) 0.96 (0.80- 1.14) 0.92 (0.80- 1.05) 0.97 (0.85- 1.09) 0.94 (0.84- 1.05) 1.06 (0.90- 1.24)

3rd quartile 0.95 (0.85-1.05) 1.03 (0.94- 1.14) 097 (0.87- 1.09) 1.01 (0.92- 1.12) 1.07 (0.92- 1.25) 1.02 (0.90- 1.16) 0.95 (0.84- 1.06) 0.89 (0.81- 0.99) 1.08 (0.94- 1.25)

2nd quartile 0.99 (0.90- 1.10) 1.05 (0.96- 1.16) 1.03 (0.93- 1.14) 1.00 (0.91- 1.11) 1.04 (0.90- 1.19) 1.04 (0.92- 1.18) 0.96 (0.86- 1.07) 0.95 (0.86- 1.05) 0.99 (0.87- 1.11)
3-day-lag average

4th quartile 0.95 (0.85- 1.06) 0.97 (0.86- 1.09) 1.04 (0.92- 1.16) 1.02 (0.91- 1.14) 093 (0.76- 1.13) 1.04 (0.92- 1.18) 0.99 (0.87- 1.12) 0.99 (0.89- 1.10) 0.99 (0.84- 1.18)

3rd quartile 0.99 (0.89-1.10) 0.99 (0.90- 1.09) 1.00 (0.89- 1.11) 1.02 (0.92- 1.13) 1.01 (0.85- 1.19) 1.07 (0.94- 1.21) 0.96 (0.85- 1.08) 0.91 (0.82- 1.01) 1.00 (0.86- 1.16)

2nd quartile 1.01 (0.92- 1.11) 0.97 (0.89- 1.07) 0.95 (0.85- 1.05) 0.97 (0.87- 1.07) 1.06 (0.92- 1.21) 1.02 (0.90- 1.15) 0.95 (0.85- 1.06) 0.94 (0.86- 1.04) 0.96 (0.85- 1.08)
4-day-lag average

4th quartile 0.94 (0.84-1.05) 0.93 (0.83- 1.05) 1.04 (0.93-1.17) 1.05 (0.94- 1.17) 098 (0.80- 1.21) 1.06 (0.94- 1.20) 0.96 (0.85- 1.09) 1.01 (0.90- 1.13) 1.08 (0.91- 1.28)

3rd quartile 0.98 (0.89- 1.09) 0.97 (0.87- 1.07) 0.99 (0.89- 1.11) 1.04 (0.93- 1.15) 1.12 (0.95- 1.32) 1.02 (0.90- 1.15) 0.85 (0.75- 0.97) 0.95 (0.85- 1.05) 1.01 (0.87- 1.17)

2nd quartile 1.00 (0.91- 1.11)  0.99 (0.90- 1.08) 1.02 (0.92- 1.13) 1.08 (0.97-1.19) 1.01 (0.88-1.17) 0.99 (0.87- 1.11) 0.98 (0.88- 1.09) 0.94 (0.86- 1.04) 0.97 (0.86- 1.11)




Table S3- 7. Multiple pollutant models - Associations between exposures to criteria air

pollutants and ED visits for injury.

Otherwise as Table 3-6.

(6{0) NO2 SO2 03 (Windsor) PM2.5

Exposures
RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI)
4 km buffer
Current day
4th quartile 1.53 (1.10- 2.14) 0.92 (0.66- 1.29) - - - - - - - - R
3rd quartile 1.26 (0.94- 1.69) 0.98 (0.73- 1.30) - - - - - - - - R
2nd quartile 1.16 (0.90- 1.49) 0.79 (0.61- 1.04) - - - - - - - - R
1 day lag
4th quartile 0.99 (0.71- 1.39) 1.02 (0.72- 1.44) - - - - - - - - R
3rd quartile 0.97 (0.72- 1.29) 0.98 (0.73- 1.31) - - - - - - - - R
2nd quartile 1.10 (0.87- 1.40) 1.19 (0.93- 1.53) - - - - - - - - R
2-day-lag average
4th quartile 0.88 (0.63- 1.22) 1.07 (0.78- 1.47) - - - - - - - - R
3rd quartile 0.97 (0.74- 1.27) 095 (0.72- 1.27) - - - - - - - - R
2nd quartile 1.02 (0.80- 1.29) 1.07 (0.83- 1.38) - - - - - - - - R
3-day-lag average
4th quartile 0.83 (0.59- 1.17) 1.13 (0.82- 1.56) - - - - - - - - R
3rd quartile 0.94 (0.72- 1.23) 1.11 (0.83- 1.48) - - - - - - - - R

2nd quartile 0.86 (0.67- 1.10) 0.92 (0.70- 1.19) - - - - - - - - -
4-day-lag average

4th quartile 091 (0.64-1.28) 1.16 (0.84- 1.59) - - - - - - - - -
3rd quartile 0.92 (0.70- 1.21) 1.04 (0.79- 1.39) - - - - - - - - -
2nd quartile 0.99 (0.78-1.26) 1.11 (0.87- 1.43) - - - - - - - - -
10 km buffer
Current day
4th quartile 1.23 (1.04- 1.46) 0.88 (0.71- 1.08) 1.06 (0.90- 1.25) 1.08 (0.86- 1.35) 0.96 (0.79- 1.17)
3rd quartile 1.08 (0.93-1.25) 0.87 (0.74- 1.02) 1.06 (0.92-1.22) 1.17 (0.96- 1.42) 1.07 (0.91- 1.26)

2nd quartile 1.11 (0.98-1.26) 091 (0.80- 1.04) 1.04 (0.91-1.19) 1.13 (0.96- 1.32) 0.94 (0.82- 1.08)
1 day lag

4th quartile 1.16 (0.98-1.39) 0.88 (0.71- 1.09) 1.08 (0.92- 1.27) 091 (0.72- 1.14) 0.95 (0.78- 1.16)

3rd quartile 1.13 (0.97- 1.31) 091 (0.77- 1.07) 0.99 (0.86- 1.14) 0.94 (0.78- 1.14) 0.97 (0.82- 1.14)

2nd quartile 1.13 (0.99- 1.28) 0.93 (0.82- 1.07) 1.01 (0.88-1.16) 0.88 (0.76- 1.03) 0.97 (0.85- 1.11)
2-day-lag average

4th quartile 0.87 (0.74- 1.03) 1.12 (0.94- 1.33) 1.06 (0.89-1.26) 1.15 (0.89- 1.49) 0.84 (0.70- 1.00)

3rd quartile 0.99 (0.86- 1.13) 098 (0.85- 1.13) 1.05 (0.91- 1.21) 1.05 (0.84- 1.31) 0.90 (0.78- 1.04)

2nd quartile 1.00 (0.88- 1.13) 1.04 (0.92-1.18) 1.04 (0.91-1.18) 0.96 (0.81- 1.13) 0.94 (0.82- 1.07)
3-day-lag average

4th quartile 091 (0.77- 1.08) 1.07 (0.90- 1.28) 1.02 (0.87- 1.19) 0.98 (0.75- 1.28) 0.92 (0.78- 1.10)

3rd quartile 0.92 (0.81- 1.06) 1.01 (0.87-1.18) 1.04 (0.90- 1.20) 0.96 (0.76- 1.20) 0.97 (0.83- 1.13)

2nd quartile 0.93 (0.82-1.05) 0.95 (0.84-1.08) 098 (0.87-1.11) 0.91 (0.77- 1.08) 1.04 (0.92- 1.17)
4-day-lag average

4th quartile 0.84 (0.71- 0.99) 1.09 (0.90- 1.33) 1.00 (0.85-1.18) 1.32 (0.98- 1.78) 0.98 (0.82- 1.17)

3rd quartile 0.86 (0.76- 0.99) 1.01 (0.87-1.18) 1.03 (0.89- 1.19) 1.21 (0.94- 1.56) 1.01 (0.87- 1.18)

2nd quartile 0.95 (0.84-1.07) 1.02 (0.90- 1.15) 1.05 (0.93- 1.19) 1.08 (0.88- 1.32) 1.00 (0.87- 1.14)
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Table S3- 8. Single source models using single imputation data - Associations between

exposures to pollutants identified as 5 source classes and ED visits for respiratory

problems using imputed data.

Otherwise as Table 3-3.

E Petrochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent
rpostres RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI)
4 km buffer
Current day
4th quartile 0.94 (0.75- 1.19) 0.83 (0.60- 1.14) 126 (0.95- 1.67) 1.08 (0.85- 1.37) 0.95 (0.75- 1.21)
3rd quartile 1.0l (0.81- 1.25) 0.85 (0.68-1.07) 139 (1.08- 1.80) 1.02 (0.81- 1.27) 0.93 (0.73- 1.18)
2nd quartile 1.00 (0.81- 1.24) 0.98 (0.81-1.19) 1.06 (0.81- 1.38) 1.01 (0.82- 1.23) 0.90 (0.74- 1.11)
1 day lag
4th quartile 0.80 (0.63- 1.00) 1.40 (1.02-1.91) 1.02 (0.78-1.33) 1.14 (0.90- 1.45) 0.73 (0.57- 0.94)
3rd quartile 0.95 (0.76- 1.18) 1.18 (0.94-1.49) 097 (0.76- 1.25) 1.28 (1.03- 1.59) 0.81 (0.64- 1.03)
2nd quartile 0.99 (0.80- 1.22) 1.21 (1.00- 1.47) 1.04 (0.82-1.34) 1.00 (0.81- 1.23) 0.90 (0.74- 1.10)
2-day-lag average
4th quartile 0.76 (0.60- 0.97) 1.39 (0.99-195) 096 (0.71-1.30) 1.25 (0.98- 1.61) 0.93 (0.69- 1.24)
3rd quartile 0.99 (0.80- 1.22) 1.21 (0.93-1.58) 1.01 (0.77- 1.32) 1.30 (1.04- 1.63) 0.72 (0.56- 0.93)
2nd quartile 0.93 (0.75- 1.15) 1.19 (0.98- 1.44) 098 (0.77- 1.27) 1.04 (0.85- 1.28) 0.90 (0.75- 1.10)
3-day-lag average
4th quartile 0.82 (0.64- 1.05) 1.86 (1.28-2.70) 0.88 (0.63- 1.23) 1.26 (0.97- 1.64) 0.78 (0.57- 1.07)
3rd quartile 1.00 (0.80- 1.24) 1.43 (1.08-1.90) 0.79 (0.59- 1.06) 1.32 (1.04- 1.67) 0.77 (0.60- 1.01)
2nd quartile 1.15 (0.93-1.41) 1.10 (0.91-1.34) 091 (0.71- 1.18) 1.03 (0.84- 1.28) 0.82 (0.67- 1.02)
4-day-lag average
4th quartile 0.92 (0.71- 1.18) 2.11 (1.39-3.19) 088 (0.59-1.30) 1.28 (0.98-1.68) 1.11 (0.79- 1.56)
3rd quartile 1.04 (0.83-1.31) 1.26 (0.92-1.73) 0.78 (0.55- 1.09) 1.38 (1.07- 1.77) 0.79 (0.60- 1.04)
2nd quartile 1.23 (1.01- 1.51) 1.24 (1.01-1.52) 0.76 (0.58- 0.98) 1.14 (0.92- 1.42) 091 (0.73- 1.12)
10 km buffer
Current day
4th quartile 1.05 (0.96- 1.16) 0.94 (0.82- 1.07) 1.04 (0.93- 1.17) 1.05 (0.95- 1.17) 0.95 (0.86- 1.06)
3rd quartile 1.04 (0.95- 1.15) 0.93 (0.84- 1.03) 1.07 (0.96- 1.20) 1.10 (1.00- 1.21) 0.93 (0.84- 1.03)
2nd quartile 1.00 (0.91- 1.10) 0.99 (0.92- 1.08) 098 (0.88-1.10) 1.06 (0.97- 1.15) 0.98 (0.90- 1.07)
1 day lag
4th quartile 1.04 (0.94- 1.14) 1.15 (1.01-1.32) 096 (0.86- 1.08) 0.98 (0.89- 1.09) 0.99 (0.89- 1.09)
3rd quartile 1.03 (0.94- 1.14) 1.04 (0.95-1.15) 097 (0.87- 1.08) 1.10 (1.01- 1.21) 0.96 (0.87- 1.07)
2nd quartile 1.03 (0.94- 1.12) 1.06 (0.98-1.15) 1.00 (0.90- 1.11) 0.98 (0.90- 1.06) 0.98 (0.90- 1.07)
2-day-lag average
4th quartile 1.07 (0.97-1.19) 117 (1.02- 1.35) 097 (0.85- 1.10) 1.00 (0.89- 1.11) 091 (0.80- 1.03)
3rd quartile 1.07 (0.98-1.17) 1.02 (0.91- 1.14) 096 (0.85- 1.08) 1.06 (0.96- 1.16) 1.00 (0.90- 1.11)
2nd quartile 1.03 (0.94- 1.13) 1.06 (0.98- 1.15) 1.03 (0.92- 1.14) 0.97 (0.89- 1.06) 0.98 (0.90- 1.07)
3-day-lag average
4th quartile 1.06 (0.96- 1.18) 1.21 (1.04- 1.42) 094 (0.81- 1.09) 1.02 (0.91- 1.14) 0.80 (0.70- 0.92)
3rd quartile 1.13 (1.03- 1.24) 1.11 (0.99- 1.26) 0.92 (0.81- 1.04) 1.09 (0.98- 1.20) 0.88 (0.78- 0.98)
2nd quartile 1.06 (0.97- 1.16) 1.03 (0.95-1.12) 091 (0.81- 1.02) 1.05 (0.96- 1.14) 0.92 (0.84- 1.00)
4-day-lag average
4th quartile 1.15 (1.04- 1.28) 1.23 (1.03-1.48) 1.00 (0.85-1.19) 1.01 (0.90- 1.14) 0.86 (0.74- 1.00)
3rd quartile 1.12 (1.01- 1.23) 1.00 (0.87- 1.14) 096 (0.83- 1.11) 1.10 (0.99- 1.22) 0.85 (0.76- 0.95)
2nd quartile 1.16 (1.06- 1.27) 1.07 (0.98- 1.16) 0.92  (0.82- 1.03) 1.09 (0.99- 1.19)  0.89 (0.81- 0.97)
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Table S3- 9. Single source models - Associations between exposures to pollutants

identified as 5 source classes and ED visits for respiratory problems (observed data)

using negative binomial regression.

Otherwise as Table 3-3.

Exposures Photochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent
RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI)
4 km radius
Current day
4th quartile 0.85 (0.63- 1.15) 0.77 (0.52- 1.15) 1.17 (0.81- 1.70)  0.88 (0.66- 1.19) 1.12 (0.75- 1.69)
3rd quartile 0.85 (0.65- 1.11)  1.07 (0.80- 1.42) 1.21 (0.84- 1.75) 1.05 (0.81- 1.36)  1.07 (0.75- 1.52)
2nd quartile 1.01 (0.78- 1.30) 1.00 (0.78- 1.30) 1.26 (0.92- 1.72)  0.74 (0.57- 0.97) 1.11 (0.85- 1.43)
1 day lag
4th quartile 1.40 (1.06- 1.85) 1.18 (0.80- 1.73)  0.88 (0.61- 1.25) 1.09 (0.81- 1.45) 0.69 (0.46- 1.03)
3rd quartile 0.95 (0.74- 1.24) 1.34 (1.03- 1.75) 1.17 (0.83- 1.65) 1.08 (0.83- 1.41) 0.70 (0.50- 0.99)
2nd quartile 1.05 (0.82- 1.34) 0.92 (0.72- 1.18) 1.24 (0.92- 1.69)  0.89 (0.69- 1.15) 0.95 (0.74- 1.21)
2-day-lag average
4th quartile 1.39 (1.07- 1.81) 1.33 (0.94- 1.88) 0.76 (0.55- 1.06) 1.16 (0.90- 1.49) 091 (0.63- 1.33)
3rd quartile 1.19 (0.94- 1.50) 1.28 (0.99- 1.65)  0.89 (0.66- 1.22) 1.19 (0.94- 1.51) 0.75 (0.55- 1.03)
2nd quartile 1.02 (0.81- 1.28) 1.10 (0.88-1.38)  0.81 (0.61- 1.06)  0.92 (0.73- 1.15) 0.93 (0.74- 1.17)
3-day-lag average
4th quartile 148 (1.14- 1.92) 143 (1.01- 2.02) 0.85 (0.59- 1.23) 1.28 (0.98- 1.66) 0.74 (0.50- 1.10)
3rd quartile 1.32 (1.03- 1.68) 1.42 (1.07- 1.87) 0.90 (0.64- 1.27) 1.44 (1.13- 1.84) 0.69 (0.50- 0.96)
2nd quartile 1.16 (0.92- 1.46) 1.36 (1.09- 1.70) 1.01 (0.77- 1.34) .11 (0.89- 1.39) 0.94 (0.75- 1.18)
4-day-lag average
4th quartile 1.33 (1.03- 1.72) 1.73 (1.17-2.54)  0.73 (0.50- 1.08) 1.35 (1.04- 1.76) 0.83 (0.54- 1.26)
3rd quartile 1.09 (0.85- 1.39) 1.27 (0.96- 1.69)  0.90 (0.63- 1.28) 1.29 (0.99- 1.67) 0.75 (0.53- 1.05)
2nd quartile 1.14 (0.91- 1.43) 1.15 (0.92- 1.43) 095 (0.72- 1.26) 1.07 (0.85- 1.34)  0.82 (0.64- 1.05)
10 km radius
Current day
4th quartile 1.02 (0.89- 1.16) 1.03 (0.86- 1.23)  0.98 (0.83- 1.16) 1.02 (0.89- 1.17)  1.08 (0.90- 1.30)
3rd quartile 0.93 (0.82- 1.04) 1.13 (0.99- 1.28) 1.01 (0.86- 1.20) 1.16 (1.03-1.31) 1.02 (0.87- 1.19)
2nd quartile 1.02 (0.91- 1.15) 1.04 (0.92- 1.17) 099 (0.86- 1.15) 1.00 (0.89- 1.13)  1.07 (0.96- 1.20)
1 day lag
4th quartile 1.19 (1.05- 1.34) 1.07 (0.91- 1.27) 1.00 (0.86- 1.18) 1.03 (0.90- 1.17)  0.99 (0.83- 1.18)
3rd quartile 1.06 (0.94- 1.18) 1.13 (1.00- 1.27) 1.03 (0.88- 1.20)  0.99 (0.88-1.12) 0.94 (0.81- 1.09)
2nd quartile 1.13 (1.01- 1.26) 1.07 (0.96- 1.20) 1.05 (0.92- 1.21)  0.96 (0.85-1.07) 1.03 (0.92- 1.14)
2-day-lag average
4th quartile 1.10 (0.98- 1.23) 1.12 (0.97- 1.30)  0.92 (0.79- 1.06) 1.00 (0.90- 1.12) 091 (0.77- 1.07)
3rd quartile 1.11 (1.01- 1.23) 1.08 (0.97- 1.22)  0.98 (0.86- 1.13) 1.06 (0.95-1.18) 0.93 (0.82- 1.07)
2nd quartile 1.00 (0.91- 1.10) 1.08 (0.98- 1.19) 098 (0.87- 1.10)  0.97 (0.88-1.07) 0.95 (0.86- 1.05)
3-day-lag average
4th quartile 1.08 (0.96- 1.21) 1.14 (0.98- 1.33) 1.04 (0.88- 1.22)  0.99 (0.88-1.12) 0.84 (0.70- 1.00)
3rd quartile 1.12 (1.01- 1.25) 1.08 (0.96- 1.22) 1.05 (0.90- 1.22) 1.03 (0.92- 1.15) 0.86 (0.75- 1.00)
2nd quartile 1.06 (0.96- 1.18) 1.11 (1.01- 1.22) 1.00 (0.89- 1.14)  0.99 (0.90- 1.09) 0.95 (0.86- 1.05)
4-day-lag average
4th quartile 1.07 (0.96- 1.21) 1.18 (0.99- 1.39) 1.00 (0.84- 1.19) 1.03 (0.92- 1.16) 0.82 (0.68- 0.99)
3rd quartile 1.06 (0.95- 1.18) 1.04 (0.92- 1.17) 1.02 (0.87- 1.20) 1.02 (0.91- 1.14)  0.81 (0.70- 0.94)
2nd quartile 1.01 (0.91- 1.11)  1.09 (0.99- 1.20) 1.03  (0.91- 1.17) 1.04 (0.94- 1.15)  0.88 (0.79- 0.98)
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Table S3- 10. Single source models - Associations between exposures to pollutants

identified as 5 source classes and ED visits for asthma (observed data) among children

living within 10 km radius using negative binomial regression.

Otherwise as Table 3-3.

Expos Photochemical  Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent
NPOSHTES RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI) RR (95%CI)

Current day

4th quartile 1.09 (0.87- 1.36) 0.89 (0.67- 1.19) 1.31 (0.99- 1.74)  0.92 (0.75- 1.14) 0.98 (0.72- 1.34)

3rd quartile 1.06 (0.87- 1.29) 0.98 (0.79- 1.22) 1.15 (0.88- 1.51)  0.78 (0.63- 0.96) 1.12 (0.86- 1.46)

2nd quartile 0.93 (0.76- 1.14) 1.02 (0.83- 1.24) 1.19 (0.95- 1.49) 097 (0.80- 1.17) 1.06 (0.87- 1.29)
1day lag

4th quartile 1.15 (0.91- 1.45) 0.98 (0.74- 1.31) 1.00 (0.75- 1.34) 1.13 (0.90- 1.41) 0.99 (0.72- 1.36)

3rd quartile 1.12 (0.90- 1.38) 1.12 (0.89- 1.40) 0.94 (0.72- 1.23)  0.98 (0.78- 1.23) 1.01 (0.77- 1.34)

2nd quartile 1.12 (0.91- 1.39) 1.26 (1.01- 1.56) 1.07 (0.86- 1.35)  1.28 (1.04- 1.57) 1.00 (0.80- 1.24)
2-day-lag average

4th quartile 0.84 (0.68- 1.05) 0.90 (0.70- 1.17) 1.01  (0.77- 1.32) 1.11 (0.91- 1.36) 0.97 (0.72- 1.32)

3rd quartile 0.95 (0.78- 1.16) 0.93 (0.75- 1.16) 1.03 (0.81- 1.32) 1.04 (0.85- 1.27) 0.87 (0.67- 1.12)

2nd quartile 0.85 (0.70- 1.03) 0.95 (0.79- 1.15) 0.98 (0.80- 1.20) 1.16 (0.97- 1.40) 0.92 (0.74- 1.12)
3-day-lag average

4th quartile 0.84 (0.68- 1.05) 0.81 (0.62- 1.05) 1.16 (0.87- 1.55) 094 (0.76- 1.15) 1.01 (0.74- 1.39)

3rd quartile 1.06 (0.86- 1.29) 0.89 (0.71- 1.12) 1.02 (0.78- 1.32)  0.96 (0.78- 1.17) 0.99 (0.76- 1.29)

2nd quartile 0.96 (0.79- 1.17)  0.92 (0.76- 1.12) 1.11  (0.90- 1.36) 1.02 (0.85- 1.22) 0.87 (0.70- 1.07)
4-day-lag average

4th quartile 0.82 (0.66- 1.02) 0.76 (0.58- 1.01) 1.32 (0.96- 1.80)  0.82 (0.67- 1.01) 1.00 (0.72- 1.39)

3rd quartile 0.97 (0.79- 1.18) 0.84 (0.67- 1.05) 1.17 (0.90- 1.54)  0.95 (0.78- 1.17)  1.00 (0.76- 1.32)

2nd quartile 0.87 (0.72- 1.05) 0.85 (0.70- 1.03) 1.24 (1.01- 1.53)  0.87 (0.72- 1.04) 0.91 (0.73- 1.13)
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Chapter 4
Reproducibility and Imputation of Air Toxics Data

4.1 Abstract

Ambient air quality datasets include missing data, values below method detection
limits and outliers, and the precision and accuracy of the measurements themselves are
often unknown. At the same time, many analyses require continuous data sequences and
assume that measurements are error-free. While a variety of data imputation and
cleaning techniques are available, the evaluation of such techniques remains limited.
This study evaluates the performance of these techniques for ambient air toxics
measurements, a particularly challenging application, and includes the analysis of intra-

and inter-laboratory precision.

The analysis uses an unusually complete data set, consisting of daily
measurements of over 70 species carbonyls and volatile organic compounds (VOCs)
collected over a one year period in Dearborn, Michigan, including 122 pairs of replicates.
Analysis was restricted to compounds found above detection limits in >20% of the
samples. Outliers were detected using the Gumbell extreme value distribution. Error
models for inter- and intra-laboratory reproducibility were derived from replicate
samples. Imputation variables were selected using a generalized additive model, and the
performance of two techniques, multiple imputation and optimal linear estimation, was

evaluated for three missingness patterns (random, random block and row-wise).

Many species were rarely detected or had very poor reproducibility. Error models
developed for seven carbonyls showed median intra- and inter-laboratory errors of 22%
and 25%, respectively. Better reproducibility was seen for the 16 VOCs meeting
detection and reproducibility criteria. Imputation performance depended on the

compound and missingness pattern. Data missing at random could be adequately
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imputed but imputations for row-wise deletions (measurements for all compounds were
missing on the same day), the most common type of missingness pattern encountered,
were not informative. The analysis shows that air toxics data require significant efforts to
identify and mitigate errors, outliers and missing observations, and that these quality
assurance steps are essential and should be performed prior to using these data in

receptor, exposure, health and other applications.

4.2 Introduction

Most air quality data have been collected for regulatory purposes, such as
determining compliance with ambient air quality standards. The use of the same data for
other purposes, including epidemiological studies, while convenient and inexpensive, can
place different and often more stringent demands on data quality and completeness since
most statistical methods assume that observations are error-free and complete, i.e., data
sets are fully populated. Data quality is an important and often unappreciated issue,
especially for toxic air pollutants where measurement uncertainties can be large. In
general, monitoring methods for toxics have been only partially automated, samples must
be transported from the monitoring site to the laboratory for analysis, and analyses tend
to be complex and intensive. These steps increase the likelihood of errors from a variety
of sources, e.g., sample contamination. Further, logistical and cost issues generally
prohibit air toxics sampling programs from incorporating many duplicate measurements

and other analyses that are necessary to quantify accuracy and precision.

Missing air quality data, another common problem, results from both random and
planned events. Random events include power and equipment failures, lost samples or
logs, other quality assurance problems, measurement and calibration errors, and faults in
data acquisitionl. Planned events include quality assurance checks (instrument flow, zero
and span checks) and calibrations that require that the monitoring instruments be taken
off-line. In some cases, pollutants are monitored intermittently, i.e., particulate matter
measurements often are collected only every third or sixth day, while ozone may be
measured only during the summer “ozone” season. Evaluations of the several approaches

that have been used to address problems of missing data have been very limited.
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Problems of both missingness and quality assurance must be addressed to obtain

complete and reliable datasets.

This chapter evaluates the performance of two imputation methods, optimal linear
estimation and multiple imputation, for handling missing air quality data. Performance is
tested using an unusually complete urban air toxics dataset containing ambient
measurements of volatile organic compounds (VOCs) and carbonyl species. As
described below, the imputation of toxics data is particularly challenging, but at the same
time highly relevant for epidemiology, source apportionment, risk assessment and other
applications that use ambient air quality data. We also demonstrate several quality
assurance (QA) filters and reproducibility/uncertainty models that may be generalizable

to other measurements.
4.3 Background

4.3.1 Quality assurance issues
Several problems are frequently encountered in ambient air quality datasets,

which are grouped together here as QA issues. These issues tend to be especially
important for urban air toxics (UATSs), more so than for conventional air pollutants for
several reasons. First, toxic measurements of trace metals, VOCs, carbonyls, semi-
volatiles and other pollutants may reflect low concentrations that fall below method
detection limits (MDLs). For some species, concentrations may rarely, if ever, exceed
MDLs. Such ‘sparse’ data patterns can occur because a specific toxic pollutant simply
may not be present, or because the MDL is too high to allow frequent detection. This
situation rarely occurs for conventional pollutants, both because these pollutants are
ubiquitous due to emissions from numerous sources, and because monitoring instruments

have been highly refined and are very sensitive.

Second, high concentration values may be encountered on occasion, even for
rarely detected pollutants. These detections (or “hits”) may be real and significant, or
they may be false positives due to contamination, chemical reactions forming artifacts on
the sampling adsorbent, interferences, chromatographic shifts, laboratory errors, or some

other reason. Without duplicate samples or additional information, it is difficult or

124



impossible to determine whether a rarely detected compound is a true detection and thus
meaningful. High values can be characterized as statistical outliers, e.g., using the
Gumbell extreme value distribution originally developed for hydrologic systemsz'4 and
applied to air quality data,”® and which we later demonstrate in this paper. However, the
designation of a measurement as a statistical outlier does not indicate whether or not the

concentration was actually experienced.

Third, it is difficult to characterize the measurement precision and accuracy for
commonly-detected toxic pollutants, and exceedingly difficult for rarely detected
pollutants. Compared to conventional (so-called criteria) pollutants where relative
precisions and accuracies are well-characterized and in the 10% range (or lower), the few
available estimates suggest much greater variability’. In the (unusually complete)
Dearborn study described later, for example, duplicate samples were available on 120
days, and a compound detected on say 5% of days would be expected to have only ~6
duplicate pairs available, too small a sample to construct meaningful statistics. Due to
the lack of reference methods and standards, co-located replicate samples and intra- and
inter-laboratory comparisons are used to indicate agreement, but in practice such
exercises are infrequent and are limited to largely analytical uncertainties, and thus would

not necessarily indicate contamination or improper sampling techniques.

4.3.2 Data imputation methods

Missing data have been characterized into three general patterns: missing
completely at random (MCAR); missing at random (MAR); and not missing at random
(NMAR)®. For MCAR, the missing data mechanism is independent from the values of
any variables, whether missing or observed.! On the other hand, MAR means the
missing data mechanism is independent with reference to the values of the missing
components of the data but may be depend on the values of the observed components.1
Like most other data sets, missing air quality data can be expected to be neither MCAR
nor MNAR, but a mixture of these patternsl’g.

The most common approaches to deal with missing data are deletion and
imputation methods. The former includes case deletion, pair-wise deletion and list-wise

deletion, all standard methods in statistical packages such as SAS'". Imputation methods
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include single imputation (SI) techniques, which replace each missing one with a single
value, and multiple imputation (MI) techniques, which impute multiple plausible values.
The most common SI method is ad hoc replacement with a specific value, which is most
frequently seen when measurements below the MDL that are replaced with one-half of
the MDL. MI has been shown to yield valid statistical inferences without the
disadvantages of SI techniques, namely, the inability to account for uncertainties attached

o 8,11
to the missing values™

. In MI, each missing value is replaced with a vector of m>2
values resulting in m datasets, each of which is analyzed separately using standard
complete-data software to yield “complete-data” statistics'>. The multiple analyses are

then combined yielding composite statistics.

The following summarizes two SI and MI methods that are later evaluated (in the
Results section). First, as presented by Batterman ', optimal linear estimation (OLE) is a
SI method based on a Bayesian framework in which observations Z; are assumed to

contain error Vi

Z=X+V, ey
where X = true pollutant level. Error covariance matrix R is:

R.=E[V: V] 2)

Errors V; and covariance R; must be assumed or estimated. For example, errors might be
determined empirically using replicate samples. Alternately, Batterman (1992) estimated
the total error by propagating component errors, and estimated a relative error of 30% for
24-hr measurements of fine and coarse fraction particulate matter (PM; s, PM»s.19) and

hourly measurements of 0313. Assuming unbiased (E[V]=0) and uncorrelated errors

(E[X; V{]=0), the best linear, unbiased and minimum variance estimate X of the missing

observations is:

X, =M+PP+R)"(Z,-M) (3)

where M = mean vector and P = covariance matrix, both estimated from available data,

and T = number of observations used to estimate M and P:

M=T")" X, 4)
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P=T"% [(X,~M)X, ~M)] (5)

Unlike most SI methods, the OLE approach estimates the uncertainty of imputed values.
However, the use of imputed datasets derived from OLE, as well as any other SI method,
will lead to standard errors that are systematically underestimated, biasing statistical

inference tests and giving erroneously small p-values and confidence intervals®.

The MI procedure, also derived from a Bayesian perspective, uses m independent
random draws from the posterior predictive distribution'*. The theory behind MI is
detailed elsewhere (Rubin 1987, 1996)'""'>. In brief, for a dataset Y = (Yops, Ymis), Where

Yns = observed values and Y ;s = missing values, the basic result is:

P(Yest

Yobs ’ les )P(les

Yobs ) = IP(Yest Yobs )dels (6)

where P(YeslYobs) = complete data posterior distribution of Yeg, the estimate of the
missing data conditioned on the observed data; and P(Y sl Yons) = predicted posterior
distribution of the missing data, also conditioned on the observed data. The final estimate

is the average of repeated complete-data posterior means of Yeg:

E(Y

Y,..)=E[E(Y

Yobs ’ les )

Yobs ] (7)

est est

and the final variance of Yes, V(Yest!Yobs), 1S:

V(Y

Y,..)=E[V(Y

Yobs ’ les )

Y., ]+ VIE(Y

est

Yobs > les )

Yobs ] (8)

est est

which represents the sum of the average of repeated complete-data variances of Y.y and
the variance of repeated complete-data posterior means. Five imputations provide an
efficiency of ~94% for MI estimation when up to 30% of the data is missing'>. The
essential features of MI inferences are that predicted distribution of missing values are
conditioned on observed values, and that multiple imputations reflect both within- and
between-imputation variances®. Hopke et al. (2001) suggests that MI in air quality
applications may be beneficial since imperfect imputation models make mistakes for only
a fraction of missing information, whereas the complete-dataset is being relied upon for
the final inference, and since imperfect models yield large within- and between-

imputation variability and consequently will lead to conservative inferences'®.
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4.4 Experimental

4.4.1 Data acquisition

Toxics data were obtained from the Michigan Department of Environmental
Quality (MDEQ) and included daily measurements for the period 4/19/2001 to 4/18/2002
collected at a permanent monitoring site in Dearborn, Michigan. Samples were shipped
to and analyzed by laboratories at the Eastern Research Group (ERG, Research Triangle
Park, NC) and the MDEQ (Lansing, MI). VOCs were collected in canisters and analyzed
by GC-MS following the TO-15 method. The ERG and MDEQ laboratories reported 59
and 53 VOC species, respectively. Carbonyls were collected on DNPH cartridges and
analyzed by HPLC following the TO-11A method, with the ERG and MDEQ laboratories
reporting 12 and 13 species, respectively. (Tables S4-1 and S4-2 show the VOC and

carbonyl species analyzed by each of the laboratories.)

Reproducibility determinations, intra-laboratory and inter-laboratory comparisons
were derived from duplicate sample pairs collected on 122 days (every third day). To
determine intra-laboratory reproducibility, both duplicates were sent to ERG on 40 days
and to MDEQ on 41 days. To determine inter-laboratory reproducibility, duplicates were
sent to both ERG and MDEQ on 41 days. There were 282 and 41 days when a single
sample was analyzed by ERG and MDEQ, respectively, and the total possible number of
days that ERG and MDEQ analyzed samples were 302 and 83 days, respectively. VOC

and carbonyl sampling followed the same schedule.

For imputation purposes, daily or hourly measurements of conventional pollutants
were obtained from four nearby (within 20 km) MDEQ sites: Dearborn (daily PM),
Allen Park (CO and PM; 5), East Seven Mile (NO, and SO5), and Linwood (CO, NO»,
PM,; s and SO;). In Michigan, O3 is monitored for only 6 months of the year (April to
September); therefore, O3 was not considered for this study. Daily (24-hr) values were
computed from hourly data if >75% of hourly data (>18 hr) were available and

considered valid. These pollutants are collected using federal reference methods.

Hourly and daily meteorological data, obtained from the MDEQ and the National

Oceanic and Atmospheric Administration (NOAA), included temperature, dew point,
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minimum and maximum relative humidity, precipitation, wind speed, wind direction,
barometric pressure and mixing height. Except for wind direction, daily values were
computed from hourly data, again if >75% of hourly data were considered valid. For
wind direction, eight new variables were defined as the number of hours the wind was in

each of eight 45° sectors. These variables were also used for imputation purposes.

4.4.2 Data filters

Several filters were used to select pollutant variables for analysis and provide QA
checks. First, to include a toxic pollutant in the analysis, >20% of the observations were
required to exceed the MDL. This detection frequency is conservative with respect to
other studies, i.e., Xie et al. (2005)"” required >63% of the data to be present and above
MDLs. Second, following convention, measurements below the MDL were set to %2
MDL. Next, potential statistical outliers were identified by pooling all samples
(including replicates analyzed by either laboratory), fitting the top decile of detected
concentrations to the Gumbell extreme value distribution, and determining those
measurements that departed from the fitted distribution. If the potential outlier had a
replicate that disagreed (i.e., near the MDL), then the high value was considered to be
erroneous and removed. If the replicate was similar (i.e., considerably above the MDL),
then the two replicates were averaged. If a replicate was unavailable, then the
observation was removed. After completing the MDL, reproducibility and outlier

screens, duplicate measurements at a laboratory, if available, were averaged.

4.4.3 Intra- and inter-laboratory reproducibility

Intra-laboratory reproducibility for each pollutant and laboratory was
characterized by examining duplicate samples using both statistical measures, e.g.,
paired-t tests for means, errors, distributions, and correlations (both parametric Pearson
and non-parametric Spearman), and graphical analyses, e.g., scatter plots. Intra-

laboratory reproducibility was also quantified by the coefficient of variation, COV (%):’

%COV =100- | =
2:n

€))
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where p; and s; = primary and secondary replicates, respectively, and n = number of
replicate pairs. We identified those species with COVs <15%, an acceptability criterion
used by US EPA’. If intra-laboratory agreement was minimal, e.g., as indicated by r<0.2
or not statistically significant at a=0.05, then that pollutant was removed from further

consideration.

Error models for intra-laboratory reproducibility were constructed following an
approach used previously for VOCs'®. Observations from all carbonyl species that met
the minimum detection frequency (20%, discussed above) were pooled together.
Replicate pairs were averaged, and measurements below MDLs and statistical outliers
were excluded. Then, plots were constructed showing decile concentrations (using the
decile average) versus the absolute residuals of replicate pairs in each concentration
decile. Finally, the 25" 50", 75" and 90" percentile errors in each decile were regressed
against the 10" to 100" or 10" to 90" decile concentrations, the latter to address
additional outliers observed in the top decile of ERG’s carbonyl measurements. This
analysis was performed separately for EGR and MDEQ laboratories. The identical
procedure was used for VOCs. The resulting intra-laboratory error models are used in

the OLE estimator (described below).

Inter-laboratory reproducibility was characterized by examining the replicate
samples analyzed by the two laboratories using statistical and graphical analyses as
described for the intra-laboratory analyses. If the inter-laboratory agreement was poor
(r<0.2) or not statistically significant (at a=0.05) and the correlation coefficient from
ERG intra-laboratory comparison was also poor, then that pollutant was removed from
the analysis. Differences in mean concentrations reported by the two laboratories were
examined using paired t—tests and the non-parametric Wilcoxon signed rank (WSR) tests
for two related samples, considering only cases where both laboratories made

measurements above MDLs, thus avoid possible biases since MDLs differed.

4.4.4 Optimal linear estimation

The OLE method was implemented in Excel using the XNUMBERS" for high
precision matrix operations (e.g., inversion in eq. 3), necessary for imputations using a

large number of predictor variables. Error covariance matrix R; and covariance matrix P
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(egs. 1 and 2) utilized the median intra-laboratory error model (described above). Errors
were assumed to be independent and time invariant. Four OLE models were constructed
for each pollutant that differed with respect to the treatment of autocorrelation: (1) use of
only contemporaneous observations (lag0); (2) contemporaneous plus 1-day lagging
observations (lagl); (3) contemporaneous plus 1-day leading observations (leadl); and
(4) contemporaneous plus lag and lead (LL1). The inclusion of leading and/or lagging

observations incorporates autocorrelation information.

A very large number of possible predictor variables were available. Variables for
each imputation model were selected using GLMSELECT, a new procedure utilizing the
general linear model framework and available as a test trial in SAS 9.1'%%°. A forward
step-wise procedure was used along with several selection criteria, including the general

21.22 . . . . . 2
“*, the corrected Akaike information criterion 3, the Schwarz

21,24

information criterion
Bayesian information criterion”™ ", the average square error (ASE), and the average
residual sum of squares. The predictor variables identified using GLMSELECT were
introduced into the model simultaneously. Each model was examined individually with
the goal of developing powerful but parsimonious and robust models. We examined the
performance of the OLE estimator using both nominal and log-transformed
concentrations, in part to account for the expected log-normal distribution of pollutant

concentrations.

4.4.5 Multiple imputation

MI models were constructed using the same data and predictor selection
procedures described above and the MI procedure in SAS, a Markov chain Monte Carlo
(MCMC) implementation with the multiple chain option'®. A separate MC chain was
used for each imputation. This implementation assumes multivariate normality. As with
OLE, we evaluated performance of the same estimator using both the nominal and the
log-transformed data. As described for the OLE method, four MI models were
constructed for each pollutant using different combinations of leading and lagging

observations. Five imputed data sets (m=5) were generated for each pollutant.
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4.4.6 Performance evaluation

Imputations from OLE and MI methods were evaluated using the same approach
and the same datasets. Initially, performance was evaluated by random deletions,
imputing the deleted data, and then comparing actual and imputed measurements using
several indicators, e.g., Willmott’s index of agreement (d;), coefficient of determination
(Rz), mean absolute error (MAE), distribution analyses (percentiles and box plots), and
scatter plots of imputed versus observed values. Among these indicators, d, addresses
outliers and is a robust measure with a similar interpretation as RZ, e.g., 0 and 1 denote
random and perfect fits, respectivelyZS. The MI scatter plots used the average of 5

imputed values.

To test different causes of missing values in air pollution data sets, three deletion
patterns were used: random deletion, random block deletions of 5, and random row-wise
deletions. For each deletion pattern, ~25% of the data were removed following Junninen
et al. (2004)*® and to give a sufficient sample size for imputations (about 79) for robust
statistics. Each deletion pattern represents a different situation. Random deletions
portray missing data due to data entry problems, outlier removal, and other events that
affect single observations. Random block deletions most commonly arise from
equipment failures which are not fixed for a period of time (e.g., 5 days in our
simulation). Row-rise deletions, which tested model performance using exclusively lag
and lead measurements of toxics (but contemporaneous measurements of conventional
and meteorology variables were permitted) often reflect missingness pattern for air toxics
since multiple pollutants are measured in a single sample, and any day that sample is
unavailable results in missing values for all of the toxics in the group. In practice,
missingness patterns for air toxics data represent a mixture of these three missing
patterns, though row-wise deletions are the most common. Missing at random and
random block patterns are dominant in other types of air quality data, e.g., conventional
pollutants. The separate analyses of each of these three missingness patterns provide a
sensitivity analysis that gives insight regarding how the imputation methods will perform
for different types of air quality data. Also, it should be noted that the performance is

largely independent of the amount of data that is removed and then imputed, as long as
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the sample size is sufficient to give valid statistics. This was verified with 10 and 25%

deletions, which gave comparable results.

The evaluation used the ERG dataset, which was the most complete. Replicates,
if available, were averaged. Predictor variables were selected after data were deleted,
simulating an actual dataset. The present paper presents evaluations for three carbonyl
and three VOC species. The selected compounds had different detection frequencies
and/or represented different and important types or compounds. For carbonyls, detection
frequencies did not differ, so the selection included both very volatile and aromatic
carbonyls (acetaldehyde, benzaldehyde and formaldehyde). For VOCs, aromatic and
chlorinated VOCs were selected (benzene and tetrachloroethylene); butadiene was also
included due to its low detection frequency. (Evaluations for other species are provided

in Tables S4-9 and S4-10.)

4.5 Results

4.5.1 Detection frequency, outliers, precision and accuracy

The original data set contained 12 carbonyls (n=266) and 59 VOCs (n=282)
measured by the ERG laboratory, and 13 carbonyls (n=54) and 53 VOCs (n=57)
measured by the MDEQ laboratory. (Tables S4-1 and S4-2 give statistics of all measured
toxics.) Considering the sampling design, missing observations in one year of air
monitor data comprised ~6.4% and ~35% of the possible ERG and MDEQ data points,

respectively. Data were processed using four QA screens, discussed below.

First, over half of the air toxics species were rarely detected above MDLs. With
the 20% (minimum) detection frequency criterion, the first screen eliminated 38 of 59
VOC species and 1 of 12 carbonyl species measured by ERG, and 35 of 53 VOCs and 3
of 13 carbonyls measured by MDEQ. The eliminated compounds, which included many
chlorinated VOC:s, are not discussed further. Table 4-1 identifies the remaining 13

carbonyls and 24 VOCs.

The second data screen identified outliers. Probability distribution plots for the
top decile concentrations of all compounds approximated straight lines, indicating that

the Gumbell distribution was appropriate. After reviewing replicates, we considered that
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11 compounds had outliers: formaldehyde (n=1), hexaldehyde (n=1), tolualdehyde (n=1),
propylene (n=2), n-octane (n=1), methylene chloride (n=5), m,p-xylene (n=2),
ethylbenzene (n=2), o-xylene (n=1), 1,3,5-trimethylbenzene (n=1) and toluene (n=2).
Several outliers occurred on the same dates, i.e., n-octane, m,p-xylene, and ethylbenzene
on 3/11/2002. (Table S4-3 gives information on the outliers; Figures S4-1 and S4-2 show
log-normal distribution plots). Methylene chloride had the largest number of outliers and
reached very high concentrations, e.g., MDEQ showed 199 ppb on 7/17/2001, and ERG
showed 148 ppb on 3/3/2002. This compound is frequently used as a laboratory solvent
and thus these outliers might be a result of inadvertent contamination. These 19 points
were removed from the dataset and were considered missing. These outliers represent a

very small percentage of the measurements.

Intra-laboratory reproducibility. Intra-laboratory agreement depended on the

species and, to a lesser extent, on the laboratory. In many cases, non-parametric statistics
(e.g., Spearman rank correlation coefficients) and parametric (e.g., Pearson correlation
coefficients) gave similar results (Table 4-2), but the former is emphasized since
concentrations of many toxics were not normally distributed and the Pearson statistic is
sensitive to extreme values. For the ERG laboratory, dimethylbenzaldehyde and acetone
had nil reproducibility (r<0.2); crotonaldehyde, valeraldehyde, and carbon tetrachloride
showed marginal reproducibility (0.2<r<0.3), as did acetone measurements by MDEQ.
For the 10 carbonyls measured by the ERG surviving this screen, the average correlation
between replicate samples was 0.43+0.15; the 20 VOCs obtained higher correlation,
0.62+0.14. The MDEQ laboratory obtained marginally higher performance for carbonyls
(average r=0.51%+0.10) and comparable performance for VOCs (average r=0.65+0.18).
Both laboratories had high detection frequencies but poor reproducibilities for acetone
and methylene chloride, suggesting possible contamination problems for these widely-

used solvents.

Intra-laboratory agreement as indicated by COVs often but not always followed
results given by correlations. Reasonably low COVs (<50%) were attained by most
VOC:s but only one carbonyl (tolualdehyde). For the ERG measurements (limited to
compounds with r>0.2), COVs averaged 62+16% for the carbonyls and 35+23% for the

VOCs. Contrary to results using the intra-laboratory correlations, the ERG laboratory
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attained slightly higher reproducibility for carbonyls than MDEQ laboratory (79+13%);
for VOCs, the MDEQ laboratory was again comparable (38£18%). The strict 15% COV
limit used by US EPA was met by only four compounds measured by ERG
(chloromethane, dichlorodifluoromethane, trichlorofluoromethane and
trichlorotrifluroethane), and none from MDEQ. In contrast to most other toxic species,
these four compounds show a very limited concentration range (Table 4-1). Such
constant measurements can “reward” the COV indicator but will “penalize” correlations,
e.g., chloromethane’s good COV (12%) is not matched by its fair intra-laboratory

correlation (r=0.45).

Inter-laboratory reproducibility. Six of the 23 compounds where comparisons

were possible showed negligible inter-laboratory correlation (Spearman r<0.2),
specifically, crotonaldehyde, iso-valeraldehyde, valeraldehyde, acetone, acetonitrile and
carbon tetrachloride (Table 4-2). Inter-laboratory agreement was only marginally better
(0.2<r<0.32) for propionaldehyde, chloromethane, and methylene chloride. These nine
compounds previously had shown negligible-to-fair intra-laboratory agreement

(0.0<r<0.5).

Higher mean concentrations were reported by the ERG laboratory compared to
the DEQ laboratory for 8 VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, carbon
tetrachloride, dichlorodifluoromethane, ethylbenzene, m,p-xylene, o-xylene,
trichlorofluoromethane), based on paired t-tests (Table 4-2). The same VOCs were
identified by the non-parametric Wilcoxon signed rank test, along with toluene and two
carbonyls (benzaldehyde and acetonitrile). However, only ethylbenzene, m,p-xylene and
o-xylene showed sizable concentration differences (nearly factor of two), differences that
were maintained across the measured concentration range. Other compounds showed
much smaller differences. These results cannot be explained by MDLs, but appear to

result from calibration discrepancies.

Final dataset. Carbonyls and VOC species were selected for further analysis by
considering data availability, detection frequency, outliers, intra-laboratory
reproducibility, and inter-laboratory agreement. Five compounds measured only by the

MDEQ laboratory (m,p-tolualdehyde, n-butyraldehyde, 1,1,2-trichloro- 1,2,2-
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trifluoroethane, 2,2,4-trimethylpentane and hexane) were excluded to avoid having to
impute an excessive fraction (>65%) of missing data. The 39 species with low detection
frequencies (<20%) were omitted, as were the 19 outliers detected using the Gumbell
distribution in the second data screen. Pollutants with poor intra- and inter-laboratory
agreement were considered on a case-by-case basis. Crotonaldehyde, valeraldehyde,
acetone and carbon tetrachloride were eliminated as they showed little agreement in both
intra- and intra-laboratory comparisons. Iso-valeraldehyde and acetonitrile showed fair
intra-laboratory agreement (r=0.49 and 0.42, respectively) but nil inter-laboratory
agreement (r=-0.38 and -0.20, respectively) and high COVs (both were 102%), so these
compounds were eliminated. For 2,5-dimethylbenzaldehyde, only ERG measurements
were available, but these showed little reproducibility (r=0.19, COV=96%), thus this
compound was eliminated. Methylene chloride showed fair intra-and inter-laboratory
agreement (r=0.44 and 0.31, respectively), a poor COV (71%), a number of outliers or
erroneous observations apparent in scatter plots, and low Pearson correlations (after
removing 5 observations in the second QA screen). Even when restricted to low
concentrations, both intra- and inter-laboratory scatter plots showed little evidence of
trend. Because of the strong possibility of laboratory contamination and the mediocre
reproducibility, methylene chloride was eliminated. Finally, chloromethane also showed
fair intra-and inter-laboratory agreement (r=0.45 and 0.32, respectively), but a very good
COV (12%). Scatter plots displaying intra- and inter-laboratory comparisons showed a
number of outlying points not detected in the second QA data screen (e.g., 1.43 ppb
measured on 4/22/01 by MDEQ, and 1.19 ppb on 1/29/02 measured by ERG). Other than
such points, chloromethane concentrations appeared nearly constant, e.g., the inter-
quartile range was only 0.56 — 0.64 ppb and the 5" to 95™ percentile range was only 0.50
- 0.74 ppb. Because these concentration changes seem attributable largely to laboratory

errors rather than to local sources, we omitted chloromethane.

The final data set contained 23 compounds (7 carbonyls, 16 VOCs) measured by
the ERG laboratory and 15 compounds (5 carbonyls and 10 VOCs) measured by the DEQ
laboratory (Table 4-2). For the ERG measurements, intra-laboratory reproducibility
measured as the (Spearman rank) correlation coefficient averaged 0.49+0.12 across the

carbonyls and 0.67£0.08 across the VOCs, while COVs averaged 55+8% for carbonyls
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and 31+15% for VOCs. Inter-laboratory performance was slightly worse, e.g., the
correlation was 0.46+0.12 for carbonyls and 0.62+0.08 for VOCs. Benzene was the only
species for which both intra- and inter-laboratory correlations exceeded 0.7. Eight other
VOCs demonstrated fair-to-good performance (intra- and inter-laboratory correlations
exceeding 0.6). Overall, the precision and inferred accuracy (based on inter-laboratory
comparisons) for many VOC and most aldehyde measurements appear mixed at best and
often poor. This is surprising given that the samples were measured in an
urban/industrial setting where concentrations were not particularly low, sample collection
procedures followed rigorous protocols and QA procedures, and analyses were conducted
by experienced personnel and respected laboratories utilizing similar methods.
Measurement performance might be acceptable for a slightly larger number of the toxics

using more relaxed criteria, e.g., means within a factor of two.

4.5.2 Uncertainty models

Models showing intra-laboratory precisions based on the final data set show that
differences between replicates increase with concentration (Figure 4-1, a-d). For
example, carbonyl measurements from the ERG laboratory have median absolute errors
that increase to 0.9 ppb as concentrations increase to 6.0 ppb (Figure 4-1a), and the
corresponding regression model incorporates both constant and proportional terms:
absolute error (ppb) = 0.07 + 0.15 X concentration (ppb). Relative errors tend to be
higher for carbonyls as compared to VOCs, and somewhat higher for the MDEQ
laboratory compared to the ERG laboratory. While the 50™ percentile error model show
good fits (0.76<R’<0.88), additional observations and perhaps wider bins (e.g., quintiles
compared to deciles) might improve fits. Models for errors at higher percentiles give

much larger errors, but attain comparable fits.

Models for inter-laboratory differences (Figure 4-1, e-f) are similar to the intra-
laboratory differences, but predicted errors are generally larger. Using the ERG carbonyl
measurements as an example (Figure 4-1e): the median absolute error (ppb) =0.11 + 0.13
X concentration (ppb). As seen earlier, the carbonyls had higher relative errors than the

VOCs. All of the inter-laboratory error models showed good fits (0.73<R*< 0.85).

137



4.5.3 Predictor variable selection for OLE and MI models

For the random deletions, selected predictor variables for carbonyls included
other carbonyl species (current, lead and lag observations), pollutants CO and PM, s, and
several meteorological variables (temperature, pressure, precipitation, wind speed, wind
sectors and mixing height). Predictors varied by species and models, i.e., the LL.1 model
for acetaldehyde included current and lead observations of other carbonyls as well as
wind sectors, while the LL1 model for benzaldehyde only included current, lag and lead
observations of other carbonyls as well as its own lag and lead values. These results
follow from the correlations seen between the variables (Tables S4-4 to S4-6). Predictor
variables for VOCs were similar with the addition of pollutant SO,. The most frequently
selected meteorological variables were resultant wind speed and SE and NW wind

sectors. Similar predictor variables were obtained for the random block deletions.

For row-wise deletions, predictor variables for the three carbonyls included lead
and lag observations of other carbonyl species, meteorological variables (most commonly
temperature, precipitation and wind speed and occasionally E and SE wind sectors and
relative humidity), and criteria air pollutants (CO but only for the LL1 acetaldehyde
model). The predictor variables for the three VOCs included lead and lag observations of
other VOC:s, pollutants CO, PM; s and SO, (but only for benzene and 1,3-butadiene), and
meteorological variables in a few instances. Predictors for tetrachloroethylene included
only one VOC (leading dichlorodifluoromethane) for the LL.1 model and a few
meteorological variables for the other tetrachloroethylene models. The GLMSELECT
procedure did not select any predictors for the lead] tetrachloroethylene model because
the corrected information criterion was not met. Lag0 models for both carbonyls and

VOC:s included only meteorological variables.

4.5.4 Evaluation of OLE

Summary statistics describing the OLE performance for the three carbonyls and
three VOCs are shown in Table 4-3. Because random block and random deletions
obtained similar performance, only the former is shown. (Performance statistics for all
carbonyls and VOCs and the three data patterns are shown in Tables S4-7 and S4-8.)

Also, because nominal concentrations gave comparable or slightly better performance
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than log-transformed data, performance statistics show results for only the former. (Table
S4-9 gives results for log-transformed data.) Performance indicators d,, R” and mean
absolute error (MAE) yielded similar rankings. Performance depended strongly on the

deletion pattern, as discussed below.

The OLE imputations for random deletions, which utilized both contemporaneous
co-pollutant and autocorrelative information, were quite successful for carbonyls.
Acetaldehyde, benzaldehyde and formaldehyde obtained d, values of 0.89, 0.88 and 0.86
(corresponding R? values of 0.72, 0.62 and 0.63), respectively, using lagl and lag0 OLE
estimates. Scatter plots of imputed versus measured values showed linear trends, but a
tendency to under-predict the highest values (Figure 4-2, a-c). OLE performance for
VOCs was mixed: benzene had high agreement (0.79<d,<0.89, 0.52<R*<0.71, Figure 4-
2g); 1,3-butadiene showed lower performance (0.63<d,<0.78, 0.52§R2§0.68), a strong
tendency to underestimate concentrations, and a large fraction of measurements below
MDLs (Figure 4-2h); while tetrachloroethylene imputations had little correspondence to
observations (0.23<d,<0.27, 0.00§R2§0.03; Figure 4-2i). Occasionally, the OLE

imputations yielded small negative estimates.

OLE imputations for the row-wise deletions of the three carbonyls showed at best
modest performance. Imputation values were compressed towards the mean (Figure 4-2,
d-f), suggesting that the estimated errors (R;) may have been too large. For row-wise
deletions of VOCs, performance was poor, especially for 1,3-butadiene and
tetrachloroethylene (Figure 4-2, k-1). Performance was essentially unchanged for

tetrachloroethane, but this VOC had essentially nil agreement for all deletion patterns.

OLE performance was considered good if d,>0.9 or R*>0.7; fair if either
0.7<d»<0.9 or 0.5§R2<0.7; and poor if either d,<0.7 or R%<0.5. With these guidelines and
considering random and random block deletions: performance was good for
acetaldehyde, isobutyraldehyde, propionaldehyde, benzene, ethylbenzene, m,p-xylene, o-
xylene, 1,2,4-trimethylbenzene, and toluene; fair for benzaldehyde, formaldehyde,
hexaldehyde, acetylene, 1,3-butadiene, methyl ethyl ketone and 1,3,5-trimethylbenzene;
and poor for tolualdehyde, dichlorodifluoromethane, n-octane, propylene,

tetrachloroethylene, trichlorofluoromethane and trichlorotrifluoromethane. Row-wise
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deletions resulted in poor performance for all 23 toxic compounds (Tables S4-7 and S4-

8).

These results clearly demonstrate the importance of the missingness pattern. All
estimates depended strongly on contemporaneous co-pollutant information. If this
information was unavailable (as simulated using row-wise deletions) then performance
was significantly degraded. This also explains why random and random block deletions
obtained comparable performance: leading and lagging measurements provided
relatively little information, and essentially only contemporaneous measurements were

utilized in the imputations.

4.5.5 Evaluation of MI

The performance attained by MI was similar to that of OLE. For random
deletions, d, values ranged from 0.83 to 0.95 (0.54§R2§0.83) for the three carbonyls, and
from 0.33 to 0.89 (0.01<R?<0.65) for the three VOCs (Table 4-3). Again, performance
for tetrachloroethylene was particularly poor. With the exception of tetrachloroethylene,
the MI scatter plots showed linear relationships, somewhat less tendency to underestimate
high concentrations, slightly better performance for acetaldehyde and 1,3-butadiene, but
greater scatter (Figure 4-3, a-c, g-1). In all cases, the MI estimates had higher mean
absolute errors (MAE), reflecting the increased scatter, a result of the variance
contributed by the 5 imputations. Like OLE, MI occasionally yielded small negative
estimates. Row-wise deletions again yielded substantially poorer performance (Table 4-
3) and nonlinearities for formaldehyde, 1,3-butadiene and tetrachloroethylene (Figures 4-

3, f, k, 1). The highest observations were often under-predicted.

Results obtained using log-transformed data (Table S4-10) showed slightly poorer
performance and larger standard deviations than imputations obtained using
untransformed data. Some of this is a result of evaluating performance using the
untransformed data, which tended to emphasize higher values. When log-transformed,
imputations were more constrained, and often did not reflect the higher values that are of
most interest and significance. Examination of scatter plots using untransformed data
(e.g., Figure 4-3) do not show strong evidence of distributional problems, and in fact

suggest largely normally-distributed residuals, which was seen in residual plots. Thus,
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for the toxics dataset (as well as a better-behaved ozone dataset using 24-hr averages), M1
(and OLE) performance was largely insensitive to log transformations. An advantage of

using log-transformed data in the imputation model is negative estimates can be avoided.

Overall, MI performance for random and random block deletions was considered
good for most aromatic compounds, fair-to-good for all carbonyl compounds, and poor
for all chlorinated and fluorinated compounds. Like OLE, MI performance was poor for

row-wise deletions for all of the toxics (Tables S4-7 and S4-8).
4.6 Discussion

4.6.1 Quality assurance and reproducibility of toxics data

Fewer than a third of the measured VOC and carbonyl species in the Dearborn
data set had detection frequencies above 20% and was felt to provide useful information
for time series-types of investigations. Further, the reproducibility of the 23 compounds
remaining in the final data set varied considerably. Only benzene was considered highly
reproducible, based on intra- and inter-laboratory comparisons, though several other
aromatic VOCs (e.g., trimethylbenzenes and xylenes) came close. Several VOCs showed
little or no reproducibility, e.g., acetone and methylene chloride, although nearly all
observations exceeded MDLs. For carbonyls, reproducibility was only fair. As
anticipated, between-laboratory variability exceeded within-laboratory variability,
although the difference was not dramatic. While these findings are based on a dataset
that is considerably more complete than those available in most air toxic measurement
campaigns, the analysis depends upon data collected at only one monitoring site and
analytical work performed by only two laboratories. However, both laboratories are
known for their adherence to strict QA/QC protocols, and they likely attain performance

that is typical of current analyses.

The most recent national study shows that the reproducibility of carbonyl and
VOC measurements varies widely’. Across the National Air Toxics Trends Stations
(NATTS) reporting precision data for 2004, COVs ranged from 0 to 126%, but most
(73%) sites and pollutants were reported to meet the 15% COV criterion. In an

assessment of the RIOPA study, indoor, outdoor and personal sampling using a large
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number (86-171) of replicate passive samples yielded COVs from 19 to 30% for carbonyl
compounds and from 6 to 42% for VOCs; active carbonyl measurements had lower
COVs (9-19%, excepting glyoxyl not measured here)”’. While these studies suggest
better reproducibility than obtained for most of the toxic species measured at Dearborn,
we believe that reproducibility determinations at Dearborn are typical of ambient
monitoring, and in particular, routine contract monitoring for several reasons. First, the
NATTS sample is very limited and unbalanced, e.g., benzene, which had the largest
number of replicate measurements available, showed COVs from 0% (Mayville W1, 1
sample pair) to 59% (Northbrook IL, 59 sample pairs). Our benzene statistics (e.g.,
COV=19% for ERG) are in the center of this range. Second, contract monitoring is at
several disadvantages in comparison to research studies (like RIOPA) where sample
storage/hold times are minimized, a larger number of QA/QC measures (e.g., blanks,
spiked samples, replicates) are utilized, and there is generally more flexibility to
undertake corrective measures if problems are noted. In our research studies, for
example, we typically obtain VOC precisions better than 10% (at concentrations
exceeding ~0.5 pg m™)'®. Third, the Dearborn dataset contained up to 122 replicate
sample pairs taken across a full year, and the reproducibility estimates obtained from this
large sample likely represent the a full range of ambient sampling conditions, e.g., very

hot and humid weather, when performance may suffer.

Reproducibility of toxic measurements is determined by many factors, e.g.,
system cleanliness, sampling/uptake stability, adsorbent breakthrough, loss/artifacts in
sample storage, sample recovery, and analytical performance. Some problems can affect
only certain toxic species, e.g., crotonaldehyde is known to disappear much more rapidly
on DNPH cartridges/extracts than most other aldehydes, and recovery of polar VOCs in
canisters may be problematic®®. Other problems can affect the entire sample, e.g., a
poorly cleaned canister or miscalibrated pump. While a full discussion is beyond the
present scope, we note that QA/QC programs should be structured to identify (and

ultimately rectify) such problems.

This study also shows differences among reproducibility indicators. Often, but
not always, indicators such as correlations, COVs, and slopes will yield similar

inferences. Both parametric and non-parametric measures should be used since outliers
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can be difficult to detect and can strongly influence parametric measures. Multiple
measures are needed as examination of a slope (and confidence interval) alone, for
example, may miss a possible intercept. The distribution of concentrations will affect the
indicators, e.g., COVs may be misleading for compounds that show little variation, which
include stable and globally-distributed pollutants such as chloromethane,
dichlorodifluoromethane, trichlorofluoromethane, carbon tetrachloride,
trichlorotrifluroethane, and tetrachloroethylene29. Relative errors are likely to increase
for measurements near MDLs. These statistics may also perform poorly for pollutants
with low detection frequencies (e.g., 1,3-butadiene). Finally, while cost and logistic
issues are recognized, probably at least 15 or 20 replicate samples per site and pollutant
are needed to determine performance with a reasonable degree of confidence. If
temperature or humidity extremes can influence measurements, then replicates should be

taken under the widest possible range of weather conditions.

Uncertainty models. Many of the issues with the reproducibility indicators are

addressed by the semi-parametric uncertainty models that incorporate both constant and
proportional terms, and that show range of likely errors, e.g., by percentiles. These
models provided stable estimates using residuals pooled across the carbonyl and VOC
groups. Had sample size permitted, better performance and more insight would be
attained using separate models for each compound. Within-laboratory analyses showed
median absolute errors from 5 to 15% for VOCs, and about 20% for carbonyls.
However, much larger errors were not uncommon, e.g., 9ot percentile errors were 40 to

60% for both groups of toxics.

4.6.2 Performance of imputation methods

In most respects, OLE and MI methods gave comparable results. For random and
random block deletion patterns, both methods achieved good performance. The OLE
method utilized an exogenous estimate of measurement uncertainty for observed results,
and as this value was increased, the OLE predictions became more conservative and
approached the mean, which was especially noticeable at high concentrations of

carbonyls. As expected, MI imputations provided greater dispersion.
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Imputations are more accurate for pollutants that are strongly correlated to other
pollutants or other measured variables. For random missingness patterns, imputations
depended largely on contemporaneous measurements of other toxics. Thus, the best
performance was seen for traffic-related VOCs (e.g., BTEX) and for certain combustion-
related carbonyls (e.g., acetaldehyde, isobutyraldehyde, propionaldehyde), both of which
form highly correlated groups of compounds. Potentially, the inclusion of other predictor
variables can help to represent the influence of local sources (e.g., conventional
pollutants as surrogates, and wind direction for nearby sources), reactions with other
pollutants (temperature and Os3), rainout or washout mechanisms (precipitation), and
general atmospheric ventilation (possibly conventional pollutants like CO, mixing height,
and atmospheric stability). Interestingly, imputation performance did not suffer for 1,3-
butadiene, which had only 26% of its values above MDL but which is also traffic-related;
however, performance was poor for tetrachloroethylene, with a similar detection
frequency of 33%. Imputations tend to be poor for compounds that are emitted alone or
formed independently, e.g., chlorinated solvents and formaldehyde, although inclusion of
meteorological information may improve performance. Pollutants that are globally
distributed and present at relatively constant levels generally are not highly correlated
with other pollutants or meteorological variables, and thus are imputed poorly (in terms
of correlations, though COVs may be very small). Such pollutants will provide little

information in time-series studies.

Imputation performance was very poor for row-wise deletions, indicating that the
serial correlation in the data was insufficient to provide informative estimates. The row-
wise imputations also utilized (contemporaneous, leading and lagging) conventional air
pollutants and meteorological variables. In comparison to very high contemporaneous
inter-pollutant correlations (e.g., 0.6<r<0.9 for BTEX), correlations between toxics and
contemporaneous daily measurements of conventional pollutants were lower (0.0<r<0.5),
as were correlations with contemporaneous daily measurements of meteorological
variables (-0.6<r<0.7). Thus, imputations for row-wise deletions did not obtain the
performance of the random deletions. In the Dearborn dataset, the dominant missingness

pattern was row-wise, thus further attention to this class of problems is warranted.
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4.6.3 Other imputation studies of air quality data

There are few evaluations of SI and MI procedures for air quality purposes. The
OLE method was used to simultaneously estimate missing data, predict extrema, and
check the validity of observations for particulate matter (PM) concentrations in
Philadelphia and St. Louis, and missing O3 data in Houston"®. The method performed
well based on correlation coefficients and bias statistics comparing predicted and
observed values. Another SI method, called the site-dependent effect method (SDEM),
imputed missing hourly PMj in Italy using additive terms for site, day-of-week, and
week-of-year”’. This method outperformed other SI methods tested (e.g., hourly mean)
as well as a model-based MI method. Several SI and MI methods were tested using NOx,
NO,, O3, PM;j, SO, and CO measurements in Helsinki and Belfast’’. This evaluation
showed that performance decreased with increasing complexity of the missing data
patterns, SI methods underestimated the error variance of missing data, and MI methods
improved accuracy substantially. Self-organizing map and multi-layer back-propagation
nets performed well especially when incorporated into a hybrid approach that used linear
interpolations for short missing gaps and multivariate methods for longer gaps, however,
this study was limited by the short study period. In another study, three MI models that
accounted for between-variable correlations, between- and within-variable
autocorrelations over time, and random seasonal effects, were used to impute pollutant
measurements in the Arctic that were missing or below MDLs'®. The most complete
models produced the most realistic imputations, and MI models outperformed ad hoc S1

methods that ignored both the autocorrelation and seasonal structure of the data.

There are two notable differences in comparing our results for urban air toxics
with the studies mentioned above. First, data quality and reproducibility are very
significant issues for air toxics, and even a perfect imputation model would not yield
perfect performance scores since the underlying measurements contain errors. That said,
we obtained at least comparable performance for most carbonyls and VOCs as obtained
for conventional pollutants by Junninen et al. (2004)*°, and better performance than the
single imputations of PM,( by Plaia and Bondi (2006)30. Second, the temporal and
spatial concentration patterns for urban pollutants can be more complex and dynamic

(variable) than the long-lived species monitored at remote sites, which likely show much
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stronger autocorrelation. For this reason, our results are not directly comparable to the

imputations at Arctic sites'®.

4.6.4 Applications and limitations

This study highlights the importance of characterizing the reproducibility of
ambient air toxics data prior to its use. It is important to identify variables that are
informative and thus useful for applications such as regulatory determinations of risk,
receptor modeling studies of source apportionments, and epidemiological assessments of
health impacts®'*. The uncertainty models and quality assurance steps presented here
can help to describe and validate ambient data, as well as provide uncertainty estimates

for OLE imputations and receptor modeling.

This QA assessment examined only a single monitoring site, only two
laboratories, and what must be considered a modest sample size. Thus, generalizations
should be made cautiously. Further, the intra-laboratory comparisons focused on
analytical uncertainties, which may not dominate actual uncertainties™”. Many other
factors can influence sampling and analysis performance, and there is a clear need to
increase the amount of precision and accuracy data for air toxics to better understand

these factors.

Many methods are available for imputing missing data and obtaining complete
datasets, and for estimating uncertain values''®. For the Dearborn data, OLE and MI
attained good performance for random deletions but poor performance for the row-wise
deletion pattern that dominated observations at Dearborn. Imputations for especially
row-wise missingness patterns might be improved in several ways. First, the variable
selection criteria may have been too stringent, i.e., only very parsimonious models were
generated by GLMSELECT, a procedure which assumes linear models and which does
not incorporate a priori information. Imputations might be improved by relaxing these
criteria and using more complex models. At times, however, we found that very large
(and possibly over-determined) models deteriorated performance. Second, imputations
might use many other variables (e.g., season, day-of-week, traffic counts) and other
model structures (e.g., auto-regressive integrated moving average models). A third

possibility is to derive predictor variables from a combination of meteorological

146



parameters that reflect dispersion potential or local source impacts better than additive
models. Fourth, models might be constructed that account for long term trends and
seasonality. Fifth, uncertainty models might be further refined and potentially can

improve performance of OLE estimates.

Finally, this study did not examine the performance of imputation methods in
health effect studies, or the performance of other imputation methods. The MI method is
designed to recover as much missing information as possible without biases results.
Missing air quality data is an important problem in air pollution epidemiology, and a
proper imputation scheme can help to remedy the situation. The limited evaluation
exercises conducted in this study were primarily intended as an exploration of statistical

approaches for exposure assessment purposes.

4.7 Conclusions

A total 323 daily air toxics samples were collected at Dearborn, M1, including 122
pairs of replicate samples. Samples were analyzed by two laboratories for 71 carbonyls
and volatile organic compounds (VOCs). Data cleaning including eliminating species
with low detection frequency (<20%) and detecting outliers using the Gumbell extreme
value distribution. Of the 23 toxics remaining in the final dataset, intra- and inter-
laboratory comparisons showed good agreement for only one compound (benzene),
moderate agreement for several other VOCs (e.g., trimethylbenzenes, xylenes,
ethylbenzene, dichlorodifluoromethane, tetrachloroethylene, and toluene), and poor-to-
fair agreement for the remaining VOCs and all carbonyls. Error models, constructed by
pooling residuals across the intra- and intra-laboratory analyses, provided a
comprehensive description of errors. These results show the need to evaluate air toxics

data prior to use in apportionment, exposure, and health studies.

Two methods were tested for their ability to impute missing data for the 23 toxics
and for three missingness patterns. Optimal linear estimation (OLE) and multiple
imputation (MI) methods obtained comparable performance for random deletions, with
results depending on the compound, concentration distribution, and other factors. For the

dominant row-wise deletion pattern observed in the air toxics dataset, the performance of
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both methods deteriorated. A number of steps are suggested to recover information and

improve these imputations.

148



Figure 4- 1. Absolute relative error models for carbonyls (left) and VOCs (right) from

intra-laboratory and inter-laboratory comparisons.

Only concentrations above MDLs were included. Maximum decile concentrations were

excluded for VOCs (figures b, d and f).
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Figure 4- 2. Scatter plots for observed versus imputed data using OLE method for

random and row-wise deletions of six toxics.

Only best models of each group are plotted for each compound.
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Figure 4- 3. Scatter plots for observed versus imputed data using MI method.

Otherwise as Figure 4-2.
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Figure S4- 1. Log-normal distribution plots for carbonyls and VOCs concentrations with
detection frequencies above 20% from Eastern Research Group laboratory.
Duplicates were averaged; Outliers were excluded.
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Figure S4-1 (Cont.)
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Figure S4-1 (Cont.)
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Figure S4-1 (Cont.)
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Figure S4-1 (Cont.)
Methyl ethyl ketone
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Figure S4-1 (Cont.)
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Figure S4- 2. Log-normal distribution plots for carbonyls and VOCs concentrations with

detection frequencies above 20% from Michigan Department of Environmental Quality

laboratory.

Duplicates were averaged; Outliers were excluded.
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Figure S4-2 (Cont.)
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Figure S4-2 (Cont.)
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Figure S4-2 (Cont.)
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Figure S4-2 (Cont.)
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Table 4- 1. Statistics of toxic concentrations measured at Dearborn, Michigan for those
VOCs and carbonyls with detection frequencies above 20%.
Duplicates were averaged and outliers excluded. TFE=trifluoroethane; DF=detection

frequency; MDL=method detection limit;

(1324

1s not measured or DF<20%.

ERG laboratory MDEQ laboratory
Compound N DF Mean 50th 75th Max MDL N DF Mean 50th 75th Max MDL
(%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)

Carbonyls
2,5-Dimethylbenzaldehyde 284 32 0.009 0.003 0.008 0.280 0.005 - - - - - - -
Acetaldehyde 284 100 1.166 0914 1.519 4406 0.014 74 97 0.860 0.760 1.030 5.085 0.009
Benzaldehyde 284 98 0.050 0.040 0.063 0422 0.004 75 69 0.032 0.012 0.038 0.360 0.004
Crotonaldehyde 284 81 0.027 0.012 0.018 0.309 0.006 75 21 0.011 0.004 0.004 0.094 0.008
Formaldehyde 283 100 2.317 2.089 3.094 10.486 0.016 75 97 2139 2.055 2.603 7.873 0.008
Hexaldehyde 284 99 0.119 0.041 0.110 0.683 0.004 75 75 0.065 0.027 0.072 0.653 0.005
iso-Butyraldehyde 284 99 0.199 0.144 0235 0.801 0.005 - - - - - - -
iso-Valeraldehyde 284 21 0.020 0.002 0.002 0377 0.004 75 60 0.055 0.033 0.073 0.390 0.012
m,p-Tolualdehyde - - - - - - - 75 35 0.016 0.001 0.019 0.157 0.002
n-Butyraldehyde - - - - - - - 75 88 0.094 0.058 0.100 0.929 0.007
Propionaldehyde 284 90 0.143 0.103 0.180 1.440 0.007 75 69 0.175 0.115 0.220 0.810 0.083
Tolualdehydes 283 93 0.043 0.031 0.053 0.281 0.008 - - - - - - -
Valeraldehyde 284 91 0.058 0.037 0.065 0377 0.003 75 33 0.038 0.011 0.035 0.343 0.022

VOCs
1,1,2-Trichloro-1,2,2-TFE - - - - - - - 83 95 0.094 0.089 0.109 0.178 0.034
1,2,4-Trimethylbenzene 302 90 0.210 0.179 0.267 1.029 0.070 83 86 0.171 0.135 0210 0.629 0.062
1,3,5-Trimethylbenzene 301 38 0.065 0.035 0.088 0312 0.070 83 29 0.050 0.029 0.063 0.191 0.057
1,3-Butadiene 302 26 0.057 0.035 0.071 0.292 0070 - - - - - - -
2,2 4-Trimethylpentane - - - - - - - 83 99 0.126 0.099 0.148 0.537 0.017
Acetone 284 100 1.422 1.138 1.771 5770 0.008 75 99 0982 0.856 1.115 3.513 0.011
Acetonitrile 302 36 1.804 0.125 1.642 102.600 0.250 83 73 1.561 0991 1.711 12.552 0.520
Acetylene 302 99 1.684 1520 1983 6480 0.130 - - - - - - -
Benzene 302 100 0.614 0.537 0.697 2.173 0.040 83 100 0.564 0.434 0.654 2.494 0.070
Carbon tetrachloride 302 90 0.099 0.100 0.110 0.170 0.080 83 95 0.089 0.090 0.099 0.125 0.038
Chloromethane 302 100 0.607 0.594 0.644 0988 0.060 83 100 0.583 0.570 0.623 1.426 0.062
Dichlorodifluoromethane 302 100 0.634 0.625 0.663 1.079 0.040 83 100 0.560 0.576 0.620 0.846 0.048
Ethylbenzene 300 98 0.181 0.155 0.230 0.647 0.040 83 55 0.115 0.092 0.144 0.390 0.083
Hexane - - - - - - - 83 27 0435 0.250 0.531 3.318 0.500
m,p-Xylene 300 100 0.517 0.445 0.661 1957 0.050 83 61 0311 0.240 0.383 1.055 0.200
Methyl ethyl ketone 302 74 0.613 0570 0.878 2920 0.150 - - - - - - -
Methylene chloride 298 96 2468 0.647 1.731 34270 0.060 81 79 1480 0.401 1302 11.222 0.230
n-Octane 301 33 0.055 0.030 0.072 0.280 0.060 - - - - - - -
o-Xylene 301 97 0.211 0.180 0262 0.899 0.050 83 90 0.140 0.110 0.169 0.519 0.043
Propylene 300 100 1.116 0.761 1339 7.599 0.050 - - - - - - -
Tetrachloroethylene 302 33 0.064 0.030 0.074 0.670 0.060 83 34 0.061 0.036 0.080 0.343 0.071
Toluene 300 100 1.049 0.850 1.293 6.431 0.060 83 100 0.998 0.763 1.185 4.718 0.070
Trichlorofluoromethane 302 100 0.319 0.295 0.333 1.540 0.040 83 100 0.274 0.279 0.297 0.500 0.048
Trichlorotrifluroethane 302 100 0.111 0.106 0.130 0.194 0.070 - - - - - - -
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Table 4- 2. Intra- and inter-laboratory reproducibility. Based on only detected values.

Significant values (p-value<0.05) indicated in bold.

Correl coeff=correlation coefficient; COV=coefficient of variation; WSR=Wilcoxon

signed rank; TFE=trifluoroethane;

is not measured or detection frequency<20%.

Intra-laboratory reproducibility

Inter-laboratory reproducibility

Compound Correl coeff-ERG  Correl coeff-MDEQ % COV Correl coeff Paired t-test WSR test Retained
Pearson Spearman  Pearson Spearman ERG MDEQ Pearson Spearman (p-value) (p-value) (y=yes)

Carbonyls
2,5-Dimethylbenzaldehyde ~ 0.02 0.19 - - 96 - - - - -
Acetaldehyde 0.38 0.39 0.45 0.45 61 70 0.37 0.52 0.33 0.07 y
Benzaldehyde 0.54 0.61 0.23 0.65 51 78 0.28 0.46 1.00 0.04 y
Crotonaldehyde 0.32 0.22 0.31 0.48 61 97 -0.06 -0.07 0.83 -
Formaldehyde 0.45 0.48 0.51 0.58 58 64 0.73 0.61 0.95 0.93 y
Hexaldehyde 0.50 0.64 0.32 0.51 62 83 0.40 0.44 0.41 0.29 y
iso-Butyraldehyde 0.19 0.40 - - 52 - - - - - y
iso-Valeraldehyde -0.05 0.49 0.52 0.34 102 93 -0.18 -0.28 - -
m,p-Tolualdehyde - - 0.26 0.64 - 85 - - - -
n-Butyraldehyde - - 0.40 045 - 71 - - - -
Propionaldehyde 0.34 0.33 0.87 0.49 61 59 0.25 0.28 0.07 0.11 y
Tolualdehydes 0.71 0.56 - - 42 - - - - - y
Valeraldehyde 0.06 0.22 0.55 0.56 69 88 0.04 0.13 0.86 0.91

VOCs
1,1,2-Trichloro-1,2,2-TFE - - 0.30 0.38 - 29 - - - -
1,2,4-Trimethylbenzene 0.68 0.67 091 0.79 39 35 0.71 0.63 <0.01 <0.01 y
1,3,5-Trimethylbenzene 0.71 0.70 0.89 0.64 31 16 0.71 0.59 <0.01 <0.01 y
1,3-Butadiene 0.60 0.59 - - 49 - - - - - y
2,2,4-Trimethylpentane - - 0.89 0.66 - 37 - - - -
Acetone 0.04 -0.01 0.15 0.26 67 73 -0.06 0.14 - 0.17
Acetonitrile 0.01 0.42 0.40 0.49 102 65 -0.17 -0.20 0.23 0.01
Acetylene 0.54 0.63 - - 26 - - - - - y
Benzene 0.83 0.73 0.82 0.66 19 36 0.81 0.71 0.07 <0.01 y
Carbon tetrachloride 0.02 0.27 0.78 0.84 23 19 0.23 0.17 0.01 <0.01
Chloromethane -0.02 0.45 0.44 0.42 12 27 0.32 0.32 0.98 0.47
Dichlorodifluoromethane 0.75 0.75 0.70 0.68 4 29 0.47 0.61 <0.01 <0.01 y
Ethylbenzene 0.69 0.65 0.92 0.88 44 16 0.78 0.66 <0.01 <0.01 y
Hexane - - 0.48 0.60 - 63 - - - -
m,p-Xylene 0.60 0.71 0.92 0.88 35 24 0.80 0.67 <0.01 <0.01 y
Methyl ethyl ketone 0.66 0.65 - - 50 - - - - - y
Methylene chloride 0.05 0.44 0.10 0.71 71 62 0.14 0.31 0.14 0.36
n-Octane 0.28 0.56 - - 53 - - - - - y
0-Xylene 0.63 0.79 0.93 0.83 39 30 0.79 0.67 <0.01 <0.01 y
Propylene 0.90 0.70 - - 33 - - - - - y
Tetrachloroethylene 0.82 0.77 0.39 0.53 28 63 0.64 0.61 0.65 0.73 y
Toluene 0.82 0.73 0.93 0.82 28 37 0.50 0.62 1.00 0.04 y
Trichlorofluoromethane 0.66 0.57 0.57 0.60 10 28 0.33 0.42 0.04 0.02 y
Trichlorotrifluroethane 0.76 0.52 - - 10 - - - - - y
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Table 4- 3. Performance indicators for MI and OLE estimates.

Bold values show highest performing model in group. Abbreviations: lag0=current day
observation; lagl=current and previous day observations; lead1=current and next day
observations; LL1=current, previous and next day observations; SD=standard deviation;
d2=Willmot’s index of agreement; R2=coefficient of determination; MAE=mean
absolute error.

Performance Multiple imputation Optimal estimation
indicators lag0(SD) lag1(SD) lead1(SD) LL1(SD) lag0 lagl leadl LL1
Acetaldehyde
Random  d, 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.00)0 0.86 0.89 0.74 0.88
R’ 0.83 (0.02) 0.80 (0.02) 0.83 (0.02) 0.83 (0.01) 0.69 0.72 0.51 0.70
MAE 0.29 (0.03) 0.30 (0.03) 0.30 (0.02) 0.30 (0.01) 030 0.26 0.46 0.28
Row-wise d, 0.58 (0.05) 0.67 (0.04) 0.51 (0.05) 0.63 (0.06) 0.67 0.63 0.47 0.46
R’ 0.11 (0.05) 0.20 (0.06) 0.04 (0.02) 0.14 (0.08) 032 0.26 0.09 0.11
MAE 0.87 (0.08) 0.85 (0.12) 0.91 (0.04) 0.87 (0.06) 0.62 0.66 0.83 0.79
Benzaldehyde
Random  d, 0.80 (0.03) 0.83 (0.02) 0.76 (0.05) 0.76 (0.01) 0.88 0.82 0.77 0.83
R’ 0.46 (0.07) 0.55 (0.03) 0.38 (0.10) 0.38 (0.03) 0.62 0.48 0.44 0.51
MAE 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Row-wise d, 0.48 (0.06) 0.54 (0.03) 0.35(0.05) 0.38 (0.05) 0.50 0.57 0.25 0.31
R’ 0.05 (0.05) 0.09 (0.02) 0.01 (0.01) 0.00 (0.01) 0.07 0.13 0.02 0.00
MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.05(0.00) 0.00 0.00 0.00 0.00
Formaldehyde
Random  d, 0.84 (0.02) 0.80 (0.04) 0.85(0.01) 0.81(0.04) 086 0.82 0.84 0.83
R’ 0.53 (0.05) 0.44 (0.07) 0.54 (0.03) 0.45(0.09) 0.63 0.62 0.69 0.63
MAE 0.80 (0.03) 0.90 (0.10) 0.81 (0.03) 0.86 (0.05) 0.72 0.78 0.69 0.77
Row-wise d, 0.51 (0.06) 0.53 (0.03) 0.40 (0.06) 0.40 (0.06) 0.52 0.54 033 0.33
R’ 0.05 (0.04) 0.06 (0.03) 0.01 (0.01) 0.01 (0.01) 0.09 0.11 0.00 0.00
MAE 1.49 (0.14) 1.58 (0.12) 1.79 (0.14) 1.79 (0.14) 2.37 231 2.65 2.65
Benzene
Random  d, 0.87 (0.03) 0.84 (0.01) 0.87 (0.02) 0.84 (0.02) 0.89 0.85 0.84 0.79
R’ 0.61 (0.08) 0.52 (0.03) 0.59 (0.06) 0.52 (0.05) 0.71 0.63 0.63 0.52
MAE 0.17 (0.02) 0.18 (0.01) 0.17 (0.01) 0.18 (0.01) 0.03 0.04 0.04 0.04
Row-wise d, 0.64 (0.04) 0.63 (0.03) 0.58 (0.06) 0.57 (0.06) 0.63 0.65 0.64 0.53
R’ 0.20 (0.05) 0.18 (0.03) 0.13 (0.05) 0.12 (0.05) 0.22 0.25 0.24 0.17

MAE 0.26 (0.02) 0.28 (0.02) 0.28 (0.03) 0.27 (0.01) 0.07 0.07 0.07 0.08
1,3-Butadiene

Random  d, 0.89 (0.02) 0.89 (0.01) 0.87 (0.01) 0.87 (0.02) 0.78 0.74 0.62 0.63
R’ 0.65 (0.06) 0.65 (0.03) 0.58 (0.03) 0.58 (0.04) 0.68 0.67 0.52 0.52
MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Row-wise d, 0.58 (0.04) 0.50 (0.03) 0.52 (0.08) 0.46 (0.05) 049 043 041 0.30
R’ 0.09 (0.03) 0.05(0.03) 0.07 (0.05) 0.03 (0.03) 0.13 0.08 0.07 0.03
MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00

Tetrachloroethylene

Random  d, 0.30 (0.07) 0.27 (0.03) 0.31 (0.06) 0.33 (0.06) 0.22 0.27 0.26 0.23
R’ 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 0.03 0.03 0.00
MAE 0.08 (0.01) 0.08 (0.00) 0.08 (0.00) 0.07 (0.000 0.01 0.01 0.01 0.01

Row-wise d, 0.41 (0.11) 0.38 (0.10) - - 0.32 (0.06) 037 030 - 0.27
R’ 0.03 (0.02) 0.02 (0.01) - - 0.01 (0.00) 0.15 009 - 0.08
MAE 0.07 (0.01) 0.08 (0.01) - - 0.07 (0.01)  0.01 0.01 - 0.01
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Table S4- 1. Statistics of concentrations at Dearborn, Michigan for VOCs and carbonyls
analyzed by Eastern Research Group (ERG) laboratory.
DF=detection frequency; MDL=method detection limit.

ERG laboratory-Sample 1 ERG laboratory-Sample 2
Compound N DF Min Mean SD Max N DF Min Mean SD Max MDL
(%) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)
Carbonyls
2,5-Dimethylbenzaldehyde 266 31 0.003 0.009 0.020 0.280 54 31 0.003 0.010 0.022 0.147 0.005
Acetaldehyde 266 100 0.007 1.203 0.998 4.406 54 100 0.024 0.972 0.604 3.056 0.014
Acetone 266 100 0.017 1474 1.247 5770 54 100 0.025 1.198 0.875 4.611 0.008
Benzaldehyde 266 98 0.002 0.050 0.043 0.422 54 98 0.002 0.048 0.035 0.152 0.004
Crotonaldehyde 266 79 0.003 0.027 0.051 0309 54 80 0.003 0.021 0.044 0.307 0.006
Formaldehyde 266 100 0.008 2.406 1.972 20.980 54 100 0.019 2373 1.512 7.061 0.016
Hexaldehyde 266 100 0.002 0.123 0.167 0.722 54 96 0.002 0.091 0.123 0.583 0.004
iso-Butyraldehyde 266 99 0.003 0206 0.175 0.801 54 98 0.003 0.158 0.099 0.601 0.005
iso-Valeraldehyde 266 22 0.002 0.020 0.058 0377 54 17 0.002 0.024 0.076 0.380 0.004
Propionaldehyde 266 89 0.004 0.147 0.153 1.440 54 93 0.004 0.124 0.082 0.377 0.007
Tolualdehydes 266 92 0.004 0.045 0.051 0.591 54 96 0.004 0.045 0.038 0.193 0.008
Valeraldehyde 266 90 0.002 0.061 0.067 0377 54 94 0.002 0.040 0.034 0.213 0.003
VOCs
1,1,1-Trichloroethane 282 5 0.030 0.033 0.014 0.167 52 4 0.030 0.032 0.008 0.072 0.060
1,1,2,2-Tetrachloroethane 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060
1,1,2-Trichloroethane 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060
1,1-Dichloroethane 282 0 0.040 0.040 0.000 0.040 52 0 0.040 0.040 0.000 0.040 0.080
1,1-Dichloroethene 282 0 0.050 0.050 0.000 0.050 52 0 0.050 0.050 0.000 0.050 0.100
1,2,4-Trichlorobenzene 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

1,2,4-Trimethylbenzene 282 91 0.035 0212 0.138 1.029 52 85 0.035 0.195 0.146 0.854 0.070

1,2-Dibromoethane 282 0 0.040 0.040 0.000 0.040 52 0 0.040 0.040 0.000 0.040 0.080
1,2-Dichlorobenzene 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060
1,2-Dichloroethane 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060
1,2-Dichloropropane 282 0 0.035 0.035 0.000 0.035 52 0 0.035 0.035 0.000 0.035 0.070
1,3,5-Trimethylbenzene 282 39 0.035 0.065 0.046 0312 52 38 0.035 0.081 0.125 0.900 0.070
1,3-Butadiene 282 26 0.035 0.057 0.045 0292 52 27 0.035 0.060 0.045 0.209 0.070
1,3-Dichlorobenzene 282 0 0.025 0.025 0.000 0.025 52 0 0.025 0.025 0.000 0.025 0.050
1,4-Dichlorobenzene 282 1 0.045 0.046 0.008 0.142 52 6 0.045 0.049 0.016 0.130 0.090
2-Chloro-1,3-Butadiene 282 0 0.050 0.050 0.000 0.050 52 0 0.050 0.050 0.000 0.050 0.100
Acetonitrile 282 35 0.125 1.790 6.893 102.600 52 38 0.125 2.093 3.671 14.080 0.250
Acetylene 282 99 0.065 1.675 0.781 6.480 52 100 0.690 1.767 0.892 4.460 0.130
Acrylonitrile 282 0 0.105 0.105 0.000 0.105 52 0 0.105 0.105 0.000 0.105 0.210
Benzene 282 100 0.231 0.615 0.316 2.173 52 100 0.240 0.600 0.306 1.713 0.040
Benzyl chloride 282 0 0.035 0.035 0.000 0.035 52 0 0.035 0.035 0.000 0.035 0.070
Bromochloromethane 282 0 0.060 0.060 0.000 0.060 52 0 0.060 0.060 0.000 0.060 0.120
Bromodichloromethane 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060
Bromoform 282 0 0.040 0.040 0.000 0.040 52 2 0.040 0.054 0.101 0.770 0.080
Bromomethane 282 0 0.045 0.045 0.000 0.045 52 0 0.045 0.045 0.000 0.045 0.090

Carbon tetrachloride 282 91 0.040 0.100 0.024 0.170 52 88 0.040 0.096 0.024 0.140 0.080
Chlorobenzene 282 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060
Chloroethane 282 0.040 0.044 0.041 0.626 52 0.040 0.044 0.017 0.120 0.080
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Table S4-1. (Cont.)

ERG laboratory-Sample 1 ERG laboratory-Sample 2
Compound N DF Min Mean SD Max N DF Min Mean SD Max MDL
(%) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)
Chloroform 282 2 0.025 0.026 0.004 0.065 52 0 0.025 0.025 0.000 0.025 0.050
Chloromethane 282 100 0.408 0.608 0.082 0.988 52 100 0.480 0.600 0.098 1.190 0.060

2-Chloro-1,3-Butadiene 282 0 0.050 0.050 0.000 0.050 52 0 0.050 0.050 0.000 0.050 0.100
cis-1,2-Dichloroethylene 282 0.050 0.051 0.019 0.370 52 0.050 0.050 0.000 0.050 0.100
cis-1,3-Dichloroprene 282 0 0.050 0.050 0.000 0.050 52 0 0.050 0.050 0.000 0.050 0.100
Dibromochloromethane 282 0 0.040 0.040 0.000 0.040 52 0 0.040 0.040 0.000 0.040 0.080
Dichlorodifluoromethane 282 100 0.460 0.634 0.079 1.079 52 100 0.520 0.619 0.043 0.712 0.040
Dichlorotetrafluoroethane 282 0 0.025 0.025 0.000 0.025 52 0 0.025 0.025 0.000 0.025 0.050

(=]
(=]

Ethyl acrylate 282 0 0.080 0.080 0.000 0.080 52 0 0.080 0.080 0.000 0.080 0.160
Ethylbenzene 282 98 0.020 0.192 0.157 1.894 52 90 0.020 0.168 0.122 0.647 0.040
Ethyl-tert-butyl-ether 282 0 0.075 0.075 0.000 0.075 52 0 0.075 0.075 0.000 0.075 0.150
Hexachloro-1,3-Butadiene 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060
m,p-Xylene 282 100 0.100 0.551 0.482 6.082 52 98 0.025 0489 0375 1.893 0.050
Methyl ethyl ketone 282 72 0.075 0.604 0.510 2920 52 73 0.075 0.601 0446 1.761 0.150
Methyl isobutyl ketone 282 9 0.075 0.102 0.098 0.736 52 12 0.075 0.102 0.086 0.585 0.150
Methyl methacrylate 282 0 0.090 0.090 0.000 0.090 52 0 0.090 0.090 0.000 0.090 0.180
Methylene chloride 282 96 0.030 3.720 11.711 147.770 52 98 0.030 1.488 3.006 16.990 0.060
Methyl-tert-butyl-ether 282 6 0.090 0.102 0.056 0.585 52 8 0.090 0.109 0.073 0.484 0.180
n-Octane 282 32 0.030 0.055 0.058 0.750 52 46 0.030 0.072 0.064 0.310 0.060
0-Xylene 282 98 0.025 0.220 0.188 2502 52 90 0.025 0.204 0.166 0.899 0.050
Propylene 282 100 0.110 1.210 1.474 14.137 52 100 0.180 1.248 1.842 11.490 0.050
Styrene 282 7 0.035 0.039 0.017 0173 52 4 0.035 0.037 0.011 0.093 0.070
Tert-amyl-methyl-ether 282 0 0.060 0.060 0.000 0.060 52 0 0.060 0.060 0.000 0.060 0.120
Tertrachloroethylene 282 34 0.030 0.064 0.080 0.670 52 35 0.030 0.053 0.037 0.160 0.060
Toluene 282 100 0.250 1.112 1.099 13.428 52 100 0.210 1.057 0.929 6.431 0.060

trans-1,2-Dichloroethylene 282 0 0.030 0.030 0.004 0.090 52 0 0.030 0.030 0.000 0.030 0.060
trans-1,3-Dichloropropene 282 0 0.055 0.055 0.000 0.055 52 0.055 0.055 0.000 0.055 0.110
Trichloroethylene 282 1 0.035 0.043 0.085 1.268 52 4 0.035 0329 2.099 15.172 0.070
Trichlorofluoromethane 282 100 0.020 0.321 0.120 1.540 52 100 0.190 0.299 0.052 0.497 0.040
Trichlorotrifluroethane 282 100 0.035 0.111 0.024 0.194 52 100 0.080 0.108 0.021 0.150 0.070
Vinyl chloride 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

(=]
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Table S4- 2. Statistics of concentrations at Dearborn, Michigan for VOCs and carbonyls

analyzed by Michigan Department of Environmental Quality (MDEQ) laboratory.

TFE=trifluoroethane; TTFE=tetrafluoroethane; DF=detection frequency; MDL=method

detection limit.

MDEQ laboratory-Sample 1

MDEQ laboratory-Sample 2

Compound N DF Min Mean SD Max N DF Min Mean SD Max MDL
(%) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)
Carbonyls
2,5-Dimethylbenzaldehyde 54 2 0.002 0.005 0.028 0.210 59 2 0.002 0.005 0.028 0.210 0.003
Acetaldehyde 54 89 0.005 1.005 1.207 6.721 59 98 0.005 1.005 1.207 6.721 0.009
Acetone 54 94 0.005 1.150 1.164 5204 59 98 0.005 1.150 1.164 5.204 0.011
Benzaldehyde 54 72 0.002 0.042 0.085 0.509 59 56 0.002 0.042 0.085 0.509 0.004
Crotonaldehyde 54 24 0.004 0.016 0.030 0.139 59 14 0.004 0.016 0.030 0.139 0.008
Formaldehyde 54 91 0.004 2.046 1.689 8735 59 97 0.004 2.046 1.689 8.735 0.008
Hexaldehyde 54 69 0.003 0.098 0.205 1.191 59 71 0.003 0.098 0.205 1.191 0.005
iso-Valeraldehyde 54 46 0.006 0.064 0.105 0525 59 61 0.006 0.064 0.105 0.525 0.012
m,p-Tolualdehyde 54 31 0.001 0.017 0.033 0.161 59 29 0.001 0.017 0.033 0.161 0.002
n-Butyraldehyde 54 81 0.003 0.127 0.228 1.274 59 88 0.003 0.127 0.228 1.274 0.007
o-Tolualdehyde 54 4 0.001 0.002 0.003 0.020 59 0 0.001 0.002 0.003 0.020 0.002
Propionaldehyde 54 63 0.041 0.207 0.246 1.056 59 75 0.041 0.207 0.246 1.056 0.083
Valeraldehyde 54 31 0.011 0.053 0.096 0519 59 34 0.011 0.053 0.096 0.519 0.022
VOCs
1,1,1-Trichloroethane 57 5 0.024 0.026 0.007 0.057 58 2 0.024 0.026 0.007 0.057 0.048
1,1,2,2-Tetrachloroethane 57 0 0.041 0.041 0.000 0.041 58 0 0.041 0.041 0.000 0.041 0.081
1,1,2-Trichloro-1,2,2-TFE 57 95 0.017 0.083 0.023 0.178 58 95 0.017 0.083 0.023 0.178 0.034
1,1,2-Trichloroethane 57 0 0.024 0.024 0.000 0.024 58 0 0.024 0.024 0.000 0.024 0.048
1,1-Dichloroethane 57 0 0.045 0.045 0.000 0.045 58 0 0.045 0.045 0.000 0.045 0.089
1,1-Dichloroethene 57 0 0.023 0.023 0.000 0.023 58 2 0.023 0.023 0.000 0.023 0.046
1,2,4-Trichlorobenzene 57 2 0.041 0.042 0.009 0.110 58 0 0.041 0.042 0.009 0.110 0.081
1,2,4-Trimethylbenzene 57 86 0.031 0.174 0.122 0.589 58 83 0.031 0.174 0.122 0.589 0.062
1,2-Dibromoethane 57 0 0.027 0.027 0.000 0.027 58 0 0.027 0.027 0.000 0.027 0.054
1,2-Dichloro-1,1,2,2-TTFE 57 0 0.021 0.021 0.000 0.021 58 0 0.021 0.021 0.000 0.021 0.042
1,2-Dichlorobenzene 57 2 0.033 0.034 0.007 0.085 58 0 0.033 0.034 0.007 0.085 0.066
1,2-Dichloroethane 57 0 0.043 0.043 0.000 0.043 58 0 0.043 0.043 0.000 0.043 0.086
1,2-Dichloropropane 57 0 0.030 0.030 0.000 0.030 58 0 0.030 0.030 0.000 0.030 0.059
1,3,5-Trimethylbenzene 57 30 0.029 0.047 0.034 0.161 58 28 0.029 0.047 0.034 0.161 0.057
1,3-Butadiene 57 0 0.020 0.020 0.000 0.020 58 2 0.020 0.020 0.000 0.020 0.040
1,3-Dichlorobenzene 57 2 0.027 0.027 0.007 0.079 58 0 0.027 0.027 0.007 0.079 0.053
1,4-Dichlorobenzene 57 7 0.027 0.030 0.015 0.106 58 7 0.027 0.030 0.015 0.106 0.053
2,2, 4-Trimethylpentane 57 96 0.009 0.118 0.085 0.523 58 98 0.009 0.118 0.085 0.523 0.017
2-Chloro-1,3-Butadiene 57 0 0.015 0.015 0.000 0.015 58 0 0.015 0.015 0.000 0.015 0.030
Acetonitrile 57 70 0.260 1.563 2.773 15.530 58 74 0.260 1.563 2.773 15.530 0.520
Acrylonitrile 57 0 0.195 0.195 0.000 0.195 58 0 0.195 0.195 0.000 0.195 0.390
Benzene 57 96 0.035 0.546 0.397 2494 58 100 0.035 0.546 0.397 2.494 0.070
Benzyl chloride 57 0 0.038 0.038 0.000 0.038 58 0 0.038 0.038 0.000 0.038 0.076
Bromodichloromethane 57 0 0.037 0.037 0.000 0.037 58 0 0.037 0.037 0.000 0.037 0.073
Bromoform 57 0 0.030 0.030 0.000 0.030 58 0 0.030 0.030 0.000 0.030 0.059
Bromomethane 57 4 0.020 0.022 0.010 0.092 58 0 0.020 0.022 0.010 0.092 0.040
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Table S4-2. (Cont.)

MDEQ laboratory-Sample 1 MDEQ laboratory-Sample 2

Compound N DF Min Mean SD  Max N DF Min Mean SD Max MDL
(%) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)

Carbon tetrachloride 57 95 0.019 0.090 0.020 0.125 58 95 0.019 0.090 0.020 0.125 0.038
Chlorobenzene 57 2 0.020 0.021 0.004 0.049 58 2 0.020 0.021 0.004 0.049 0.040
Chloroethane 57 0 0.020 0.020 0.000 0.020 58 17 0.020 0.020 0.000 0.020 0.040
Chloroform 57 0 0.034 0.034 0.000 0.034 58 0 0.034 0.034 0.000 0.034 0.068
Chloromethane 57 98 0.031 0.568 0.169 1426 58 100 0.031 0.568 0.169 1.426 0.062

2-Chloro-1,3-Butadiene 57 0 0.015 0.015 0.000 0015 58 0 0.015 0.015 0.000 0.015 0.030
cis-1,2-Dichloroethylene 57 0 0.029 0.029 0.000 0.029 58 0.029 0.029 0.000 0.029 0.057
cis-1,3-Dichloroprene 57 0 0.027 0.027 0.000 0.027 58 0.027 0.027 0.000 0.027 0.054
Dibromochloromethane 57 0 0.030 0.030 0.000 0.030 58 0 0.030 0.030 0.000 0.030 0.059
Dichlorodifluoromethane 57 98 0.024 0.554 0.129 0.846 58 100 0.024 0.554 0.129 0.846 0.048

(=i}

Ethylbenzene 57 68 0.042 0.118 0.086 0.413 58 48 0.042 0.118 0.086 0.413 0.083
Hexachloro-1,3-Butadiene 57 0 0.032 0.032 0.000 0.032 58 0 0.032 0.032 0.000 0.032 0.063
Hexane 57 21 0250 0427 0482 3.318 58 22 0250 0427 0482 3.318 0.500
m,p-Xylene 57 70 0.100 0.319 0.244 1.198 58 53 0.100 0.319 0.244 1.198 0.200
Methyl ethyl ketone 57 0 0.850 0.850 0.000 0.850 58 0O 0.850 0.850 0.000 0.850 1.700
Methyl isobutyl ketone 57 0 0420 0.420 0.000 0420 58 0 0420 0.420 0.000 0.420 0.840
Methylene chloride 57 82 0.115 1.621 3.545 22.196 58 81 0.115 1.621 3.545 22.196 0.230
Methyl-tert-butyl-ether 57 5 0031 0.040 0.044 0.292 58 3 0.031 0.040 0.044 0.292 0.061
0-Xylene 57 89 0.022 0.139 0.098 0.487 58 88 0.022 0.139 0.098 0.487 0.043
Styrene 57 7 0.027 0.031 0.016 0.132 58 5 0.027 0.031 0.016 0.132 0.054
Tertrachloroethylene 57 33 0.036 0.064 0.053 0.343 58 22 0.036 0.064 0.053 0.343 0.071
Toluene 57 98 0.035 0.932 0.685 3473 58 100 0.035 0.932 0.685 3.473 0.070

trans-1,2-Dichloroethylene 57 0 0.043 0.043 0.000 0.043 58 0 0.043 0.043 0.000 0.043 0.087

trans-1,3-Dichloropropene 57 0 0.031 0.031 0.000 0.031 58 0 0.031 0.031 0.000 0.031 0.062
Trichloroethylene 57 7 0019 0.022 0.012 0.084 58 3 0.019 0.022 0.012 0.084 0.038
Trichlorofluoromethane 57 96 0.024 0.273 0.073 0.500 58 100 0.024 0.273 0.073 0.500 0.048
Vinyl chloride 57 0 0.022 0.022 0.000 0.022 58 0 0.022 0.022 0.000 0.022 0.044
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Table S4- 3. Outlier analysis using Gumbel distribution (type I).

ERG= Eastern Research Group; MDEQ= Michigan Department of Environmental
Quality.

Compound Date Concentration Laboratory Sample
(ppbv)
Carbonyls
Formaldehyde 4/12/2002 20.98 ERG 1
Hexaldehyde 8/5/2001 1.19 MDEQ 1
Tolualdehyde 7/29/2001 0.59 ERG 1
VOCs
Propylene 10/10/2001 14.14 ERG 1
10/31/2001 11.49 ERG 1
n-Octane 3/11/2002 0.75 ERG 1
Methylene chloride 7/2/2001 61.71 ERG 1
7/13/2001 61.41 ERG 1
7/18/2001 199.27 MDEQ 2
2/25/2002 51.19 ERG 1
3/3/2002 147.77 ERG 1
m,p-Xylene 9/17/2001 6.08 ERG 1
3/11/2002 3.49 ERG 1
Ethylbenzene 9/17/2001 1.89 ERG 1
3/11/2002 1.26 ERG 1
o0-Xylene 9/17/2001 2.50 ERG 1
1,3,5-Trimethylbenzene  8/20/2001 0.90 ERG 2
Toluene 5/20/2001 13.43 ERG 1
9/17/2001 8.70 ERG 1
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Table S4- 4. Spearman rank correlation coefficients between air toxics and criteria pollutants and meteorological variables.

Variable dictionary is shown in Table S4-8.
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= &= & = = A = O = =2 ¥ ©° O 8 =B 4
e S & 2 =z 2 g g = z & ® S g T F 5 2 =58
> < = = g = = z E g F
Criteria pollutants
APCO_24HR 0.30 0.25 030 0.11 0.21 026 0.12 0.60 0.57 043 0.15 049 0.18 048 0.21 0.50 048 0.20 0.12 -0.01 0.49 0.46 0.53
AP_PM25 041 043 039 040 031 038 034 0.25 045 0.12 0.17 039 0.56 039 022 041 038 0.16 028 -0.05 041 036 0.47
DB_pml0 0.19 0.22 0.15 0.06 0.09 0.18 0.15 0.09 0.10 -0.03 0.02 0.07 0.26 0.06 0.09 0.05 0.20 -0.09 -0.02 -0.06 0.03 0.08 0.05
E7MNO2 _24HR 0.19 0.14 0.19 -0.03 0.15 0.17 -0.01 0.54 038 0.29 0.08 030 0.10 028 0.16 0.28 0.52 0.05 -0.02 0.10 0.27 0.20 0.28
E7MSO2_24HR 0.21 0.18 0.14 0.17 0.13 022 0.11 0.23 0.31 0.06 0.05 0.06 0.28 0.05 0.09 0.11 0.38 0.07 -0.02 -0.02 0.10 0.08 0.21
LWCO_24HR 0.30 0.30 0.31 0.09 0.21 027 0.16 0.54 049 038 0.09 047 022 046 021 047 0.58 0.13 0.11 0.04 042 0.39 047
LWNO2_24HR  0.27 0.30 030 0.15 0.23 0.24 0.18 047 048 0.19 0.03 035 0.20 0.33 0.16 0.35 048 0.09 -0.07 0.03 0.31 0.24 0.36
LWSO02_24HR 0.17 0.17 0.14 0.12 0.08 0.16 0.11 033 0.38 0.09 -0.05 0.15 0.21 0.15 0.15 020 047 0.09 -0.01 -0.02 0.18 0.13 0.26
LW_PM25 0.23 0.21 0.18 0.14 0.09 021 0.15 0.27 0.37 -0.03 0.00 0.19 0.33 0.17 0.11 0.19 035 0.06 0.03 -0.05 0.18 0.13 0.27
Meteorology
DPTP_DTW 0.54 0.61 0.51 0.70 045 053 0.54 -0.10 0.24 0.05 036 036 0.71 039 0.18 040 021 0.16 043 -0.11 039 0.31 045
MIX_HT 0.12 0.25 0.16 031 0.09 0.17 0.24 -0.30 -0.20 -0.18 0.14 -0.09 0.16 -0.08 -0.02 -0.09 -0.19 -0.06 0.00 -0.11 -0.09 -0.09 -0.10
MNRH_DTW -0.12 -0.17 -0.12 -0.18 -0.14 -0.15 -0.14 0.05 0.03 0.00 -0.12 -0.01 -0.11 -0.01 -0.05 -0.01 0.14 0.05 0.03 0.13 -0.04 -0.01 -0.06
MNTP_DTW 0.54 0.62 0.51 0.71 046 054 0.54 -0.12 0.20 0.02 037 0.34 0.72 037 0.18 0.38 0.16 0.13 041 -0.16 038 0.29 0.44
MXRH_DTW 0.19 0.13 0.17 0.17 0.15 0.13 0.12 0.10 0.19 0.16 0.04 0.23 0.17 023 0.06 0.22 025 0.13 0.18 0.09 021 0.16 0.21
PRCP_DTW -0.08 -0.10 -0.07 -0.01 -0.07 -0.10 -0.11 -0.14 -0.07 -0.14 -0.12 -0.08 -0.04 -0.08 -0.14 -0.09 0.04 -0.04 -0.09 0.05 -0.08 -0.13 -0.11
PRES_DTW 0.03 0.04 0.05 0.00 0.10 0.02 -0.03 0.23 0.21 024 0.05 0.18 0.01 0.17 0.10 0.21 0.05 0.04 0.06 -0.01 021 0.15 0.24
RWND_DTW -0.37 -0.44 -0.36 -0.43 -0.32 -0.34 -0.29 -0.38 -0.59 -0.41 -0.26 -0.52 -0.44 -0.53 -0.24 -0.57 -0.25 -0.36 -0.28 0.17 -0.60 -0.54 -0.65
SLVP_DTW 0.00 0.00 0.01 -0.05 0.07 -0.01 -0.07 0.24 0.19 024 0.03 0.15 -0.04 0.14 0.09 0.18 0.04 0.02 0.04 0.01 0.18 0.13 0.20
WDIR_S1 0.14 0.16 0.16 023 0.16 0.15 0.11 0.18 0.22 025 0.24 026 0.15 0.28 0.14 0.32 -0.03 0.09 0.27 -0.06 036 0.31 0.37
WDIR_S2 0.12 0.09 0.15 0.17 0.15 0.08 0.08 0.13 0.28 0.11 0.08 0.15 0.13 0.15 0.09 0.19 0.02 0.14 0.08 -0.09 0.21 0.13 0.27
WDIR_S3 0.13 0.13 0.11 0.20 0.12 0.09 0.08 0.09 042 0.12 0.10 0.14 0.27 0.13 0.09 0.17 0.07 0.21 0.09 -0.09 0.20 0.14 0.27
WDIR_S4 023 0.21 0.17 020 0.18 0.19 0.09 0.13 0.36 0.07 0.09 0.11 032 0.10 0.17 0.15 042 0.06 0.11 0.03 0.11 0.08 0.21
WDIR_S5 0.07 -0.02 -0.02 -0.12 -0.01 0.05 -0.08 0.03 -0.08 -0.10 -0.16 -0.12 -0.03 -0.13 0.03 -0.14 0.30 -0.30 -0.11 0.11 -0.18 -0.15 -0.15
WDIR_S6 -0.16 -0.12 -0.12 -0.21 -0.16 -0.14 -0.10 -0.19 -0.35 -0.20 -0.16 -0.13 -0.21 -0.13 -0.18 -0.22 -0.26 -0.19 -0.16 -0.04 -0.23 -0.14 -0.33
WDIR_S7 -0.15 -0.06 -0.07 -0.07 -0.09 -0.11 0.03 -0.14 -0.24 -0.01 0.03 0.09 -0.14 0.10 -0.13 0.03 -0.23 0.14 -0.04 -0.15 0.05 0.07 -0.08
WDIR_S8 -0.01 0.03 0.00 0.11 0.10 0.01 0.08 -0.02 -0.05 0.16 0.10 0.07 -0.03 0.08 0.01 0.11 -0.19 0.16 0.06 -0.08 0.15 0.13 0.14
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Table S4- 5. Spearman rank correlation coefficients between selected carbonyls and VOC:s.

Variable dictionary is shown in Table S4-8.
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Carbonyls

ACETALD 1.00

BNZALD 0.80 1.00

FORMALD  0.90 0.79 1.00

HEXALD 0.77 0.87 0.75 1.00

IBUTYRAL  0.85 0.69 0.80 0.72 1.00

PROPIONALD 0.95 0.80 0.87 0.79 0.80 1.00

TOLUALD  0.66 0.71 0.63 0.76 0.57 0.69 1.00

VOCs

ACETYL 0.30 0.24 0.30 0.11 0.20 0.28 0.14 1.00

BNZ 0.41 0.41 0.38 0.31 0.29 0.37 0.27 0.69 1.00

BUTADNE  0.40 0.36 0.41 0.24 0.35 0.36 0.21 0.54 0.52 1.00

DCDFM 0.38 0.33 0.36 0.40 0.39 0.39 0.31 0.22 0.24 0.26 1.00

EBNZ 0.44 0.44 0.45 0.34 0.37 0.38 0.32 0.51 0.67 0.55 0.37 1.00

MEK 0.51 0.59 0.48 0.58 0.47 0.50 0.42 0.16 0.45 0.25 0.40 0.47 1.00

MPX 0.45 0.46 0.47 0.38 0.39 0.40 0.36 0.49 0.66 0.55 0.39 0.99 0.48 1.00

NOCTANE 036 0.30 0.31 0.26 0.27 0.34 0.26 0.32 0.44 0.52 0.24 0.44 0.32 0.43 1.00

OXY 0.49 0.50 0.49 0.42 0.40 0.44 0.38 0.53 0.72 0.57 0.40 0.97 0.51 0.97 0.47 1.00

PROPYL 0.47 0.34 0.42 0.24 0.35 0.42 0.25 0.58 0.57 0.47 0.24 0.47 0.27 0.47 0.39 0.50 1.00

TCEL 0.10 0.19 0.15 0.15 0.05 0.08 0.12 0.33 0.43 0.35 0.11 0.40 0.27 0.40 0.30 0.43 0.17 1.00

TCFM 042 0.34 0.39 0.42 0.37 041 0.35 0.16 0.24 0.28 0.69 0.39 0.35 0.42 0.28 0.43 0.31 0.06 1.00

TCTFE 0.12 -0.12 0.08 -0.04 0.15 0.07 -0.04 0.05 0.01 0.17 0.09 0.02 -0.01 0.00 0.16 -0.02 0.17 -0.11 0.06 1.00

TMBNZ_124 0.46 0.47 0.47 0.40 0.38 0.40 0.35 0.53 0.70 0.59 0.40 0.94 0.52 0.94 0.45 0.94 0.44 0.44 0.41 -0.03 1.00
TMBNZ_135 0.40 0.45 0.40 0.35 0.31 0.36 0.36 0.52 0.63 0.60 0.35 0.81 0.43 0.81 0.45 0.82 0.40 0.45 0.38 -0.04 0.86 1.00
TOLUENE 0.52 0.55 0.52 0.48 0.43 0.47 0.36 0.57 0.80 0.55 0.37 0.84 0.56 0.84 0.43 0.88 0.51 0.45 0.42 -0.06 0.86 0.75 1.00




Table S4- 6. Variable dictionary

Variables Descriptions

Carbonyls
ACETALD Acetaldehyde
BNZALD Benzaldehyde
FORMALD Formaldehyde
HEXALD Hexaldehyde
IBUTYRAL iso-Butyraldehyde
PROPIONALD  Propionaldehyde
TOLUALD Tolualdehyde

VOCs
ACETYL Acetylene
BNZ Benzene
BUTADNE 1,3-Butadiene
CHLOMET Chloromethane
DCDFM Dichlorodifluoromethane
EBNZ Ethylbenzene
MEK Methyl ethyl ketone
MPX m,p-Xylene
NOCTANE n-Octane
0):4°4 o-Xylene
PROPYL Propylene
TCEL Tetrachloroethylene
TCFM Trichlorofluoromethane
TCTFE Trichlorotrifluoroethane
TMBNZ_124 1,2,4-Trimethylbenzene
TMBNZ_135 1,3,5-Trimethylbenzene
TOLUENE Toluene

Criteria pollutants
APCO_24HR Allen Park-24H CO
AP_PM25 Allen Park-PM2.5
DB_pml10 PM10 at Dearborn

E7MNO2_24HR
E7MSO2_24HR
LWCO_24HR
LWNO2_24HR
LWSO02_24HR
LW_PM25
Meteorology
AWND_DTW
DPTP_DTW
MIX_HT
MNRH_DTW
MNTP_DTW
MXRH_DTW
PRCP_DTW
PRES_DTW
RDIR_DTW
RWND_DTW
SLVP_DTW

East Seven Mile-24H NO2
East Seven Mile-24H SO2
Linwood-24H CO
Linwood-24H NO2
Linwood-24H SO2
Linwood-PM2.5

Detroit metro airport avg wind speed
Detroit metro airport dewpoint

Mixing height

Detroit metro airport min relative humidity
Detroit metro airport temperature

Detroit metro airport max relative humidity
Detroit metro airport precipitation

Detroit metro airport pressure

Detroit metro airport resultant wind direction
Detroit metro airport resultant wind speed
Detroit metro airport sea level pressure
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Table S4- 7. Performance indicators for MI and OLE estimates for carbonyls.

Bold values show highest performing model in group. Abbreviations: lag0=current day
observation; lagl=current and previous day observations; lead1=current and next day
observations; LL1=current, previous and next day observations; SD=standard deviation;

d,=Willmot’s index of agreement; R’=coefficient of determination; MAE=mean absolute

€Iror.
Performance Multiple imputation Optimal estimation
indicators lag0(SD) lagl(SD) lead1(SD) LL1(SD) lag0 lagl leadl LL1
Acetaldehyde
Random  d, 0.95 (0.01) 0.95 (0.01) 0.95(0.01) 0.95 (0.00) 0.86 0.89 0.74 0.88
R’ 0.83 (0.02) 0.80 (0.02) 0.83 (0.02) 0.83 (0.01) 0.69 0.72 0.51 0.70
MAE  0.29 (0.03) 0.30 (0.03) 0.30 (0.02) 0.30 (0.01) 030 0.26 0.46 0.28
Block 5 d, 0.95 (0.01) 0.95 (0.01) 0.95(0.01) 0.94 (0.00) 0.79 0.81 0.71 0.86
R’ 0.84 (0.03) 0.83 (0.02) 0.84 (0.03) 0.82 (0.01) 0.73 0.73 0.69 0.79
MAE  0.30 (0.03) 0.31 (0.01) 0.30(0.04) 0.31 (0.01) 043 042 0.57 032
Row-wise d, 0.58 (0.05) 0.67 (0.04) 0.51 (0.05) 0.63 (0.06) 0.67 0.63 0.47 0.46
R’ 0.11 (0.05) 0.20 (0.06) 0.04 (0.02) 0.14 (0.08) 032 0.26 0.09 0.11

MAE  0.87 (0.08) 0.85 (0.12) 0.91 (0.04) 0.87 (0.06) 0.62 0.66 0.83 0.79
Benzaldehyde

Random 4, 0.80 (0.03) 0.83 (0.02) 0.76 (0.05) 0.76 (0.01) 0.88 0.82 0.77 0.83

R’ 0.46 (0.07) 0.55 (0.03) 0.38 (0.10) 0.38 (0.03) 0.62 0.48 0.44 0.51
MAE 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Block 5 d, 0.77 (0.03) 0.72 (0.01) 0.63 (0.07) 0.73 (0.03) 0.55 0.50 0.36 0.51
R’ 0.49 (0.06) 0.43 (0.06) 0.29 (0.11) 0.46 (0.07) 041 030 0.09 0.32
MAE  0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Row-wise d, 0.48 (0.06) 0.54 (0.03) 0.35(0.05) 0.38 (0.05) 0.50 0.57 0.25 0.31
R’ 0.05 (0.05) 0.09 (0.02) 0.01 (0.01) 0.00 (0.01) 0.07 0.13 0.02 0.00

MAE  0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.05(0.00) 0.00 0.00 0.00 0.00
Formaldehyde

Random  d, 0.84 (0.02) 0.80 (0.04) 0.85 (0.01) 0.81 (0.04) 0.86 0.82 0.84 0.83
R 0.53 (0.05) 0.44 (0.07) 0.54 (0.03) 0.45 (0.09) 0.63 0.62 0.69 0.63
MAE  0.80 (0.03) 0.90 (0.10) 0.81 (0.03) 0.86 (0.05) 072 0.78 0.69 0.77
Block5 d, 0.88 (0.03) 0.85 (0.03) 0.86 (0.01) 0.87 (0.04) 0.78 0.79 0.79 0.80
R’ 0.63 (0.09) 0.56 (0.08) 0.58 (0.04) 0.60 (0.10) 055 0.65 0.66 0.66
MAE  0.84 (0.11) 0.84 (0.11) 0.87 (0.04) 0.83 (0.12) 1.12 0.99 1.00 0.97
Row-wise d, 0.51 (0.06) 0.53 (0.03) 0.40 (0.06) 0.40 (0.06) 052 0.54 033 0.33
R’ 0.05 (0.04) 0.06 (0.03) 0.01 (0.01) 0.01 (0.01) 0.09 0.11 0.00 0.00

MAE 1.49 (0.14) 1.58 (0.12) 1.79 (0.14) 1.79 (0.14) 2.37 231 2.65 2.65
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Table S4-7. (Cont.)

Performance Multiple imputation Optimal estimation
indicators lag0(SD) lag1(SD) lead1(SD) LL1(SD) lag0 lagl leadl LIL1
Hexaldehyde
Random 4, 0.70 (0.04) 0.82 (0.03) 0.83 (0.02) 0.85(0.04) 0.69 0.69 0.52 0.81
R’ 0.26 (0.05) 0.46 (0.07) 0.50 (0.04) 0.55(0.09) 0.29 041 0.13 0.54
MAE  0.12 (0.01) 0.09 (0.00) 0.10 (0.01) 0.07 (0.00) 0.02 0.01 0.02 0.01
Block 5 d, 0.71 (0.04) 0.68 (0.03) 0.70 (0.03) 0.76 (0.03) 0.62 0.54 0.56 0.66
R’ 0.32 (0.07) 0.23 (0.07) 0.29 (0.05) 0.37 (0.05) 0.39 0.22 0.24 0.44
MAE  0.12 (0.01) 0.13 (0.01) 0.12 (0.01) 0.12 (0.01) 0.02 0.03 0.03 0.02
Row-wise d, 0.64 (0.03) 0.76 (0.05) 0.64 (0.04) 0.75(0.03) 0.71 0.74 0.73 0.73
R’ 0.18 (0.04) 0.34 (0.09) 0.17 (0.05) 0.33 (0.06) 0.39 045 043 042
MAE  0.14 (0.01) 0.12 (0.01) 0.14 (0.00) 0.12 (0.01) 0.02 0.02 0.02 0.02
iso-Butyraldehyde
Random 4, 0.90 (0.01) 0.90 (0.01) 0.90 (0.01) 0.89 (0.03) 0.79 0.79 0.79 0.79
R’ 0.68 (0.03) 0.68 (0.03) 0.68 (0.03) 0.65 (0.09) 0.74 0.74 0.74 0.67
MAE  0.08 (0.00) 0.08 (0.00) 0.08 (0.00) 0.09 (0.01) 0.02 0.02 0.02 0.02
Block 5 d, 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.85 (0.02) 0.74 0.74 0.74 0.81
R’ 0.52 (0.03) 0.52 (0.03) 0.52 (0.03) 0.58 (0.05) 047 047 047 0.3
MAE 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.09 (0.01) 0.02 0.02 0.02 0.01
Row-wise d, 0.56 (0.10) 0.56 (0.03) 0.37 (0.05) 0.58 (0.08) 0.64 0.44 0.27 040
R’ 0.12 (0.08) 0.09 (0.04) 0.01 (0.01) 0.11 (0.05) 0.24 0.06 0.01 0.05
MAE  0.15(0.02) 0.17 (0.01) 0.18 (0.00) 0.15 (0.01) 0.02 0.02 0.02 0.02
Propionaldehyde
Random 4, 0.93 (0.01) 093 (0.01) 0.93 (0.00) 093 (0.01) 0.84 0.86 0.86 0.87
R’ 0.77 (0.04) 0.78 (0.02) 0.75 (0.02) 0.77 (0.04) 0.72 0.75 0.75 0.76
MAE  0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.01) 0.01 0.01 0.01 0.01
Block 5 d, 0.93 (0.01) 0.93 (0.01) 0.92 (0.01) 0.93 (0.01) 0.75 0.79 0.77 0.83
R’ 0.78 (0.03) 0.76 (0.02) 0.74 (0.04) 0.76 (0.02) 0.65 0.71 0.67 0.76
MAE  0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.000 0.01 0.01 0.01 0.01
Row-wise d, - - 0.62 (0.04) 0.56 (0.16) 0.68 (0.02) 0.59 0.41 0.27 0.32
R’ - - 0.16 (0.06) 0.13 (0.14) 0.22 (0.04) 0.22 0.06 0.00 0.01
MAE - - 0.11 (0.01) 0.05 (0.01) 0.11 (0.01) 0.01 0.02 0.02 0.02
Tolualdehyde
Random 4, 0.72 (0.04) 0.60 (0.07) 0.54 (0.09) 0.54 (0.09) 0.58 0.54 0.36 0.36
R’ 0.30 (0.07) 0.15 (0.08) 0.10 (0.05) 0.10 (0.05) 0.25 0.23 0.05 0.05
MAE  0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Block 5 d, 0.66 (0.05) 0.59 (0.06) 0.50 (0.03) 0.50 (0.03) 0.55 0.50 0.39 0.39
R’ 0.22 (0.06) 0.13 (0.06) 0.06 (0.03) 0.06 (0.03) 0.20 0.15 0.05 0.05
MAE  0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Row-wise d, 0.56 (0.08) 0.51 (0.11) 0.46 (0.13) 0.53 (0.09) 0.64 0.52 0.45 0.52
R’ 0.10 (0.07) 0.06 (0.05) 0.05(0.09) 0.08 (0.07) 0.26 0.12 0.07 0.12
MAE  0.04 (0.00) 0.04 (0.00) 0.04 (0.01) 0.03 (0.00)0 0.00 0.00 0.00 0.00
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Table S4- 8. Performance indicators for MI and OLE estimates for VOCs.

Otherwise as Table S4-9.

Performance Multiple imputation Optimal estimation
indicators lag0(SD) lag1(SD) lead1(SD) LL1(SD) lag0) lagl leadl LIL1
Acetylene
Random d, 0.84 (0.04) 0.72 (0.02) 0.76 (0.04) 0.66 (0.03) 0.73 0.65 0.59 0.46
R’ 0.52 (0.08) 0.30 (0.04) 0.37 (0.08) 0.19 (0.04) 0.57 0.44 0.39 0.23
MAE  0.51 (0.05) 0.66 (0.04) 0.60 (0.06) 0.71 (0.02) 0.46 0.55 0.60 0.68
Block 5 d, 0.86 (0.02) 0.76 (0.03) 0.81 (0.04) 0.70 (0.03) 0.69 0.60 0.58 0.52
R’ 0.57 (0.05) 0.37 (0.04) 0.44 (0.08) 0.28 (0.04) 046 036 0.35 0.21
MAE 046 (0.02) 0.57 (0.03) 0.59 (0.02) 0.62 (0.03) 0.47 0.55 0.56 0.66
Row-wise d, 0.65 (0.06) 0.65 (0.03) 0.63 (0.07) 0.62 (0.05) 045 038 046 0.37
R’ 0.19 (0.08) 0.18 (0.04) 0.16 (0.08) 0.15 (0.05) 0.09 0.06 0.11 0.04
MAE 0.63 (0.05) 0.67 (0.06) 0.69 (0.06) 0.72 (0.05) 0.60 0.61 0.58 0.63
Benzene
Random 4, 0.87 (0.03) 0.84 (0.01) 0.87 (0.02) 0.84 (0.02) 0.89 0.85 0.84 0.79
R’ 0.61 (0.08) 0.52 (0.03) 0.59 (0.06) 0.52 (0.05) 0.71 0.63 0.63 0.52
MAE 0.17 (0.02) 0.18 (0.01) 0.17 (0.01) 0.18 (0.01) 0.03 0.04 0.04 0.04
Block 5 d, 0.85 (0.02) 0.85 (0.04) 0.84 (0.04) 0.83 (0.02) 0.88 0.85 0.84 0.88
R’ 0.55 (0.05) 0.56 (0.09) 0.54 (0.10) 0.49 (0.03) 0.68 0.62 0.60 0.65
MAE 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.20 (0.02) 0.03 0.04 0.04 0.04
Row-wise d, 0.64 (0.04) 0.63 (0.03) 0.58 (0.06) 0.57 (0.06) 0.63 0.65 0.64 0.53
R’ 0.20 (0.05) 0.18 (0.03) 0.13 (0.05) 0.12 (0.05) 022 0.25 0.24 0.17
MAE 0.26 (0.02) 0.28 (0.02) 0.28 (0.03) 0.27 (0.01) 0.07 0.07 0.07 0.08
1,3-Butadiene
Random d, 0.89 (0.02) 0.89 (0.01) 0.87 (0.01) 0.87 (0.02) 0.78 0.74 0.62 0.63
R’ 0.65 (0.06) 0.65 (0.03) 0.58 (0.03) 0.58 (0.04) 0.68 0.67 0.52 0.52
MAE  0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Block 5 d, 0.88 (0.02) 0.86 (0.03) 0.88 (0.02) 0.88 (0.01) 0.76 0.75 0.77 0.78
R’ 0.61 (0.06) 0.56 (0.08) 0.59 (0.05) 0.61 (0.04) 0.50 0.49 0.53 0.56
MAE  0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Row-wise d, 0.58 (0.04) 0.50 (0.03) 0.52 (0.08) 0.46 (0.05) 049 043 041 0.30
R’ 0.09 (0.03) 0.05 (0.03) 0.07 (0.05) 0.03 (0.03) 0.13 0.08 0.07 0.03
MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00
Dichlorodifluoromethane
Random d, 0.62 (0.06) 0.58 (0.07) 0.63 (0.05) 0.64 (0.04) 0.52 0.33 041 0.52
R’ 0.15 (0.06) 0.12 (0.07) 0.17 (0.04) 0.18 (0.06) 0.12 0.04 0.12 0.25
MAE 0.06 (0.01) 0.06 (0.01) 0.06 (0.00) 0.06 (0.01) 0.01 0.01 0.00 0.00
Block 5 d, 0.59 (0.03) 0.57 (0.06) 0.59 (0.02) 0.58 (0.07) 0.35 034 0.37 0.44
R’ 0.16 (0.02) 0.14 (0.07) 0.17 (0.03) 0.15 (0.07) 0.09 0.03 0.11 0.18
MAE 0.06 (0.00) 0.07 (0.00) 0.07 (0.01) 0.07 (0.01) 0.01 0.01 0.01 0.01
Row-wise d, 0.44 (0.12) 0.44 (0.07) 0.45 (0.05) 0.38 (0.09) 0.29 046 0.22 0.29
R’ 0.04 (0.05) 0.03 (0.04) 0.03 (0.03) 0.02 (0.02) 0.03 0.16 0.00 0.03
MAE 0.08 (0.01) 0.08 (0.00) 0.09 (0.01) 0.09 (0.01) 0.01 0.01 0.01 0.01
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Table S4-8. (Cont.)

Performance Multiple imputation Optimal estimation
indicators lag0(SD) lagl(SD) lead1(SD) LL1(SD) lag0 lagl leadl LIL1
Ethylbenzene
Random d, 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.88 0.89 0.88 0.87
R’ 0.96 (0.01) 0.96 (0.00) 0.95 (0.01) 096 (0.01) 0.76 0.76 0.75 0.74
MAE  0.02 (0.00) 0.01 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00
Block 5 d, 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.90 0.89 0.85 0.79
R’ 0.97 (0.00) 0.97 (0.00) 0.97 (0.00) 0.97 (0.00) 0.90 0.87 0.86 0.71
MAE  0.02 (0.00) 0.02 (0.00) 0.01 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.01
Row-wise d, 0.58 (0.09) 0.58 (0.05) 0.54 (0.10) 0.60 (0.08) 0.51 0.62 0.51 0.61
R’ 0.12 (0.07) 0.10 (0.05) 0.08 (0.07) 0.13 (0.08) 0.06 0.18 0.07 0.15
MAE 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.01 0.01 0.01 0.01
Methyl ethyl ketone
Random d, 0.74 (0.04) 0.75 (0.05) 0.71 (0.02) 0.75 (0.05) 0.70 0.70 0.57 0.70
R’ 0.32 (0.06) 0.34 (0.08) 0.25 (0.04) 0.33 (0.08) 0.36 0.38 0.183 0.40
MAE  0.38 (0.04) 0.38 (0.02) 0.40 (0.02) 0.39 (0.02) 0.18 0.18 0.23 0.17
Block 5 d, 0.65 (0.05) 0.64 (0.06) 0.63 (0.05) 0.62 (0.07) 0.74 0.75 0.73 0.73
R’ 0.20 (0.06) 0.18 (0.07) 0.19 (0.06) 0.16 (0.07) 0.36 0.38 0.34 0.35
MAE 040 (0.03) 0.40 (0.03) 045 (0.05) 041 (0.03) 0.12 0.12 0.14 0.12
Row-wise d, 0.71 (0.02) 0.69 (0.06) 0.65 (0.03) 0.68 (0.07) 0.82 0.80 0.81 0.80
R’ 0.28 (0.03) 0.25 (0.10) 0.18 (0.05) 0.25 (0.10) 049 046 048 045
MAE 0.37 (0.02) 0.38 (0.03) 0.38 (0.04) 0.39 (0.03) 0.10 0.10 0.10 0.11
m,p-Xylene
Random d, 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.88 0.88 0.88 0.88
R’ 0.97 (0.01) 0.97 (0.00) 0.97 (0.00) 0.97 (0.00) 0.77 0.78 0.78 0.78
MAE  0.04 (0.01) 0.04 (0.01) 0.04 (0.00) 0.04 (0.01) 0.03 0.03 0.03 0.03
Block 5 d, 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.87 0.87 0.86 0.87
R’ 0.97 (0.01) 0.97 (0.00) 0.97 (0.00) 097 (0.01) 0.74 0.74 0.74 0.75
MAE  0.04 (0.01) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.03 0.03 0.03 0.03
Row-wise d, 0.50 (0.05) 0.56 (0.05) 0.52 (0.05) 0.60 (0.04) 0.50 0.55 0.52 045
R’ 0.05 (0.03) 0.08 (0.03) 0.06 (0.03) 0.13 (0.04) 0.06 0.12 0.08 0.06
MAE 0.31 (0.02) 0.32 (0.03) 0.31 (0.02) 0.28 (0.02) 0.11 0.10 0.10 0.10
n-Octane
Random 4, 0.52 (0.04) 0.52 (0.04) 0.53 (0.09) 047 (0.06) 0.32 032 042 048
R’ 0.06 (0.03) 0.06 (0.03) 0.07 (0.07) 0.04 (0.05) 0.01 0.01 0.01 0.04
MAE  0.04 (0.00) 0.04 (0.00) 0.04 (0.01) 0.04 (0.00) 0.00 0.00 0.00 0.00
Block 5 d, 0.53 (0.05) 0.53 (0.05) 0.57 (0.05) 0.44 (0.06) 0.34 0.34 0.38 0.39
R’ 0.06 (0.05) 0.06 (0.05) 0.10 (0.05) 0.02 (0.01) 0.01 0.01 0.02 0.01
MAE  0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.00 0.00 0.00 0.00
Row-wise d, 0.40 (0.06) 0.38 (0.08) 0.35(0.10) 0.37 (0.12) 026 031 026 0.26
R’ 0.01 (0.01) 0.01 (0.02) 0.01 (0.01) 0.03 (0.03) 0.01 0.00 0.01 0.01
MAE 0.05 (0.00) 0.05 (0.00) 0.02 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00
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Table S4-8. (Cont.)

Performance Multiple imputation Optimal estimation
indicators lag0(SD) lag1(SD) lead1(SD) LL1(SD) lag0 lagl leadl LL1
0-Xylene
Random  d, 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.86 0.86 0.83 0.94
R’ 0.94 (0.01) 0.94 (0.01) 0.92 (0.01) 093 (0.01) 0.89 0.89 0.85 0.92
MAE  0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.01 0.01 0.01 0.00
Block 5 d, 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.87 0.88 0.84 0.93
R’ 0.94 (0.02) 0.93 (0.01) 093 (0.01) 092 (0.01) 090 0.90 0.87 0.89
MAE  0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.01 0.01 0.01 0.00
Row-wise d, 0.60 (0.08) 0.63 (0.05) 0.59 (0.06) 0.63 (0.08) 0.60 0.63 0.55 0.64
R’ 0.15 (0.08) 0.17 (0.06) 0.12 (0.06) 0.17 (0.09) 0.22 0.21 0.13 0.24
MAE 0.13 (0.01) 0.12 (0.01) 0.12 (0.01) 0.12 (0.01) 0.02 0.02 0.02 0.02
Propylene
Random 4, 045 (0.04) 0.41 (0.11) 0.42 (0.06) 045 (0.06) 0.66 0.56 0.61 0.65
R’ 0.07 (0.03) 0.06 (0.08) 0.04 (0.04) 0.07 (0.05) 0.23 0.10 0.15 0.19
MAE 1.28 (0.15) 1.30 (0.10) 1.30 (0.15) 1.24 (0.16) 0.76 0.86 0.65 0.59
Block 5 d, 0.47 (0.11) 044 (0.11) 0.29 (0.05) 0.32 (0.04) 049 0.36 0.28 0.27
R’ 0.09 (0.06) 0.07 (0.05) 0.01 (0.01) 0.01 (0.01) 0.24 0.12 0.05 0.04
MAE 1.14 (0.07) 1.21 (0.05) 1.33 (0.10) 1.27 (0.11) 248 2.79 3.04 3.09
Row-wise d, 0.58 (0.05) 0.51 (0.02) 0.54 (0.05) 0.44 (0.06) 0.65 0.53 0.66 0.57
R’ 0.14 (0.05) 0.07 (0.02) 0.10 (0.04) 0.02 (0.02) 0.25 0.14 0.27 0.19
MAE 1.26 (0.15) 1.30 (0.11) 1.23 (0.13) 1.30 (0.05) 1.08 1.25 1.04 1.15
Tetrachloroethylene
Random  d, 0.30 (0.07) 0.27 (0.03) 0.31 (0.06) 0.33 (0.06) 0.22 0.27 0.26 0.23
R’ 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 0.03 0.03 0.00
MAE  0.08 (0.01) 0.08 (0.00) 0.08 (0.00) 0.07 (0.00) 0.01 0.01 0.01 0.01
Block 5 d, 0.39 (0.04) 0.41 (0.12) 0.34 (0.04) 0.32 (0.09) 0.27 0.33 0.39 0.26
R’ 0.01 (0.02) 0.04 (0.06) 0.01 (0.00) 0.02 (0.02) 0.02 0.05 0.11 0.05
MAE  0.07 (0.01) 0.08 (0.01) 0.07 (0.01) 0.08 (0.00) 0.01 0.01 0.01 0.01
Row-wise d, 0.41 (0.11) 0.38 (0.10) - - 0.32 (0.06) 037 030 - 027
R’ 0.03 (0.02) 0.02 (0.01) - - 0.01 (0.00) 0.15 0.09 - 0.08
MAE 0.07 (0.01) 0.08 (0.01) - - 0.07 (0.01) 0.01 0.01 - 001
Trichlorofluoromethane
Random 4, 0.61 (0.08) 0.62 (0.08) 0.61 (0.08) 0.57 (0.05) 0.23 0.31 023 0.51
R’ 0.17 (0.10)  0.17 (0.09) 0.17 (0.10) 0.12 (0.05) 0.02 0.01 0.02 0.17
MAE 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.11 (0.01) 0.01 0.01 0.01 0.01
Block 5 d, 0.47 (0.11) 0.51 (0.05) 0.47 (0.11) 0.29 (0.09) 0.39 047 039 043
R’ 0.10 (0.07) 0.10 (0.04) 0.10 (0.07) 0.03 (0.04) 0.04 0.10 0.04 0.08
MAE 0.10 (0.02) 0.09 (0.01) 0.10 (0.02) 0.12 (0.02) 0.00 0.00 0.00 0.00
Row-wise d, - - 0.30 (0.08) - - 0.34 (0.10) - 034 - 038
R’ - - 0.01 (0.01) - - 0.03 (0.04) - 000 - 0.01
MAE - - 0.12 (0.02) - - 0.12 (0.01) - 0.01 - 0.01
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Table S4-8. (Cont.)

Performance Multiple imputation Optimal estimation
indicators lag0(SD) lag1(SD) lead1(SD) LL1(SD) lag0 lagl leadl LL1
Trichlorotrifluoromethane
Random  d, 0.42 (0.09) 0.58 (0.02) 0.49 (0.06) 0.67 (0.04) 0.19 0.20 0.18 0.18
R’ 0.02 (0.04) 0.09 (0.02) 0.03 (0.04) 0.19 (0.07) 0.01 0.01 0.02 0.01
MAE  0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00
Block 5 d, 0.44 (0.05) 0.39 (0.04) 0.39 (0.06) 0.45 (0.04) 0.21 0.18 0.20 0.20
R’ 0.01 (0.02) 0.00 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 0.03 0.01 0.01
MAE  0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Row-wise d, 0.42 (0.07) 0.56 (0.03) 0.49 (0.03) 0.59 (0.03) 0.18 0.18 0.20 0.19
R’ 0.01 (0.01) 0.07 (0.02) 0.02 (0.01) 0.10 (0.03) 0.07 0.06 0.03 0.04
MAE 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00
1,2,4-Trimethylbenzene
Random  d, 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.65 0.86 0.60 0.63
R’ 0.92 (0.01) 092 (0.02) 091 (0.02) 091 (0.02) 0.52 0.69 0.44 047
MAE  0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.02 0.01 0.02 0.02
Block 5 d, 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.63 0.88 0.72 0.62
R’ 0.92 (0.01) 0.93 (0.01) 0.93 (0.01) 0.92 (0.01) 042 0.79 0.54 041
MAE  0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.02 0.01 0.02 0.02
Row-wise d, 0.66 (0.07) 0.66 (0.03) 0.54 (0.04) 0.69 (0.04) 0.63 0.70 0.58 0.67
R’ 0.21 (0.07) 0.20 (0.03) 0.07 (0.03) 0.25 (0.06) 0.24 033 0.17 0.26
MAE 0.12 (0.01) 0.12 (0.01) 0.14 (0.01) 0.12 (0.01) 0.02 0.02 0.02 0.02
1,3,5-Trimethylbenzene
Random  d, 0.90 (0.01) 091 (0.01) 0.90 (0.02) 090 (0.01) 0.81 0.81 0.80 0.85
R’ 0.66 (0.03) 0.68 (0.03) 0.68 (0.06) 0.65 (0.03) 0.51 0.51 048 0.55
MAE  0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00
Block 5 d, 0.90 (0.01) 0.92 (0.01) 091 (0.01) 092 (0.01) 0.85 0.84 0.84 0.88
R’ 0.67 (0.02) 0.73 (0.03) 0.70 (0.04) 0.72 (0.02) 0.65 0.63 0.63 0.61
MAE  0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00
Row-wise d, 0.58 (0.08) 0.57 (0.07) 0.59 (0.12) 0.56 (0.03) 046 048 0.65 0.58
R’ 0.10 (0.06) 0.10 (0.07) 0.14 (0.12) 0.09 (0.03) 0.07 0.09 0.24 0.17
MAE 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00
Toluene
Random  d, 0.90 (0.02) 0.88 (0.02) 0.89 (0.02) 091 (0.01) 0.84 0.75 0.90 0.95
R’ 0.68 (0.06) 0.64 (0.05) 0.67 (0.05) 0.72 (0.04) 0.61 044 0.74 0.83
MAE  0.35 (0.04) 0.38 (0.04) 0.38 (0.04) 0.36 (0.03) 0.19 0.26 0.13 0.08
Block 5 d, 0.91 (0.01) 0.87 (0.01) 0.90 (0.02) 0.89 (0.03) 0.60 0.51 0.81 0.81
R’ 0.70 (0.03) 0.60 (0.04) 0.67 (0.05) 0.66 (0.07) 0.38 0.19 0.63 0.59
MAE  0.38 (0.02) 0.40 (0.03) 0.36 (0.01) 0.36 (0.05) 0.56 0.69 0.35 0.36
Row-wise d, 0.56 (0.05) 0.52 (0.11) 0.55 (0.10) 0.51 (0.06) 0.50 0.46 0.50 0.50
R’ 0.11 (0.04) 0.08 (0.09) 0.10 (0.09) 0.08 (0.04) 0.09 0.07 0.12 0.12
MAE 0.61 (0.04) 0.69 (0.09) 0.68 (0.07) 0.67 (0.04) 0.68 0.69 0.64 0.64
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Table S4- 9. Performance indicators for OLE using both un-transformed and log-
transformed data.

Otherwise as Table S4-7.

Performance Untransformed Log-transformed
indicators lag0 lagl leadl LL1 lag0 lagl leadl LL1
Acetaldehyde
Random  d2 0.86 0.89 0.74 0.88 0.78 0.80 0.78 0.83
R2 0.69 0.72 051 070 0.62 0.66 0.62 0.69
MAE 030 0.26 046 0.28 0.01 0.00 0.00 0.00
Row-wise d2 0.67 0.63 047 046 042 035 035 0.36
R2 0.32 0.26 0.09 0.11 0.06 0.02 0.01 0.03
MAE 0.62 0.66 083 0.79 0.00 0.00 0.00 0.00
Benzaldehyde
Random  d2 0.88 0.82 0.77 0.83 0.65 0.55 0.76 0.59
R2 0.62 048 044 051 034 0.19 042 0.35
MAE  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Row-wise d2 0.50 0.57 0.25 031 0.55 053 029 0.32
R2 0.07 0.13 0.02 0.00 0.14 0.12 0.00 0.00
MAE  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Formaldehyde
Random  d2 0.86 0.82 0.84 0.83 0.69 0.57 0.65 0.70
R2 0.63 0.62 0.69 063 048 030 045 0.37
MAE 0.72 0.78 0.69 0.77 0.00 0.00 0.00 0.00
Row-wise d2 0.52 0.54 033 033 041 036 0.19 0.19
R2 0.09 0.11 0.00 0.00 0.09 0.02 0.02 0.02
MAE 237 231 265 265 0.58 0.00 0.00 0.00
Benzene
Random  d2 0.89 085 084 0.79 0.61 043 045 041
R2 0.71 0.63 0.63 052 0.22 0.08 0.10 0.07
MAE  0.03 0.04 0.04 0.04 0.00 0.00 0.00 0.00
Row-wise d2 0.63 0.65 0.64 053 0.70 0.71 0.70 0.69
R2 0.22 0.25 024 0.17 0.30 032 030 0.29

MAE 0.07 0.07 0.07 0.08 0.00 0.00 0.00 0.00
1,3-Butadiene

Random  d2 0.78 0.74 0.62 063 0.53 030 029 0.29
R2 0.68 0.67 0.52 052 0.16 0.03 0.02 0.02
MAE  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Row-wise d2 0.49 043 041 030 056 049 048 045
R2 0.13 0.08 0.07 0.03 0.6 0.13 0.09 0.06
MAE  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tetrachloroethylene
Random  d2 0.22 0.27 026 023 0.32 038 055 0.34
R2 0.01 0.03 0.03 0.00 0.04 0.17 030 0.09
MAE 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
Row-wise d2 037 030 - 027 048 037 - 037
R2 0.15 0.09 - 008 0.17 007 - 0.08
MAE  0.01 0.01 - 001 0.00 0,00 - 0.00
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Table S4- 10. Performance indicators for MI using both untransformed and log-

transformed data.

Otherwise as Table S4-7.

Performance Un-transformed Log-transformed
indicators lag0(SD) lag1(SD) lead1(SD) LL1(SD) lag0(SD) lag1(SD) lead1(SD) LL1(SD)
Acetaldehyde
Random d, 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.00) 0.93 (0.01) 0.92 (0.02) 0.92 (0.03) 0.93 (0.01)
R? 0.83 (0.02) 0.80 (0.02) 0.83 (0.02) 0.83 (0.01) 0.79 (0.04) 0.75 (0.06) 0.76 (0.07) 0.77 (0.03)
MAE 0.29 (0.03) 0.30 (0.03) 0.30 (0.02) 0.30 (0.01) 0.31 (0.03) 0.31 (0.04) 0.32 (0.05) 0.30 (0.02)
Row-wise  d, 0.58 (0.05) 0.67 (0.04) 0.51 (0.05) 0.63 (0.06) 0.29 (0.19) 0.31 (0.17) 0.33 (0.13) 0.34 (0.09)
R? 0.11 (0.05) 0.20 (0.06) 0.04 (0.02) 0.14 (0.08) 0.04 (0.06) 0.10 (0.08) 0.02 (0.03) 0.04 (0.03)
MAE 0.87 (0.08) 0.85 (0.12) 091 (0.04) 0.87 (0.06) 1.56 (0.48) 1.53 (0.51) 1.32 (0.25) 1.34 (0.15)
Benzaldehyde
Random d, 0.80 (0.03) 0.83 (0.02) 0.76 (0.05) 0.76 (0.01) 0.85 (0.05) 0.78 (0.04) 0.67 (0.08) 0.69 (0.12)
R? 0.46 (0.07) 0.55 (0.03) 0.38 (0.10) 0.38 (0.03) 0.57 (0.10) 0.41 (0.07) 0.27 (0.08) 0.28 (0.11)
MAE 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00)
Row-wise  d, 0.48 (0.06) 0.54 (0.03) 0.35 (0.05) 0.38 (0.05) 0.41 (0.09) 043 (0.12) 0.26 (0.06) 0.33 (0.06)
R? 0.05 (0.05) 0.09 (0.02) 0.01 (0.01) 0.00 (0.01) 0.04 (0.05) 0.08 (0.04) 0.01 (0.01) 0.00 (0.00)
MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.05 (0.00) 0.04 (0.00) 0.04 (0.02) 0.05 (0.00) 0.04 (0.01)
Formaldehyde
Random d, 0.84 (0.02) 0.80 (0.04) 0.85 (0.01) 0.81 (0.04) 0.74 (0.05) 0.66 (0.08) 0.76 (0.03) 0.75 (0.04)
R’ 0.53 (0.05) 0.44 (0.07) 0.54 (0.03) 0.45 (0.09) 0.48 (0.05) 0.39 (0.08) 0.52 (0.08) 0.45 (0.09)
MAE 0.80 (0.03) 0.90 (0.10) 0.81 (0.03) 0.86 (0.05) 1.13 (0.10) 1.27 (0.22) 1.05 (0.04) 1.09 (0.11)
Row-wise  d, 0.51 (0.06) 0.53 (0.03) 0.40 (0.06) 0.40 (0.06) 0.16 (0.12) 0.23 (0.14) 0.16 (0.10) 0.16 (0.10)
R? 0.05 (0.04) 0.06 (0.03) 0.01 (0.01) 0.01 (0.01) 0.02 (0.02) 0.03 (0.02) 0.02 (0.02) 0.02 (0.02)
MAE 149 (0.14) 1.58 (0.12) 1.79 (0.14) 1.79 (0.14) 3.92 (1.37) 3.98 (1.84) 3.79 (0.95) 3.79 (0.95)
Benzene
Random d, 0.87 (0.03) 0.84 (0.01) 0.87 (0.02) 0.84 (0.02) 0.88 (0.04) 0.78 (0.03) 0.83 (0.05) 0.81 (0.02)
R? 0.61 (0.08) 0.52 (0.03) 0.59 (0.06) 0.52 (0.05) 0.62 (0.11) 0.41 (0.06) 0.51 (0.11) 0.46 (0.05)
MAE 0.17 (0.02) 0.18 (0.01) 0.17 (0.01) 0.18 (0.01) 0.14 (0.02) 0.17 (0.02) 0.17 (0.01) 0.17 (0.01)
Row-wise  d, 0.64 (0.04) 0.63 (0.03) 0.58 (0.06) 0.57 (0.06) 0.64 (0.07) 0.63 (0.04) 0.59 (0.07) 0.58 (0.07)
R® 0.20 (0.05) 0.18 (0.03) 0.13 (0.05) 0.12 (0.05) 0.20 (0.07) 0.18 (0.04) 0.14 (0.08) 0.13 (0.06)
MAE  0.26 (0.02) 0.28 (0.02) 0.28 (0.03) 0.27 (0.01) 0.21 (0.02) 0.22 (0.02) 0.22 (0.02) 0.23 (0.01)
1,3-Butadiene
Random d, 0.89 (0.02) 0.89 (0.01) 0.87 (0.01) 0.87 (0.02) 0.81 (0.07) 0.79 (0.04) 0.78 (0.05) 0.76 (0.07)
R? 0.65 (0.06) 0.65 (0.03) 0.58 (0.03) 0.58 (0.04) 0.54 (0.11) 0.52 (0.05) 0.44 (0.09) 0.42 (0.13)
MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)
Row-wise  d, 0.58 (0.04) 0.50 (0.03) 0.52 (0.08) 0.46 (0.05) 0.57 (0.07) 0.48 (0.04) 0.51 (0.10) 0.42 (0.03)
R? 0.09 (0.03) 0.05 (0.03) 0.07 (0.05) 0.03 (0.03) 0.14 (0.07) 0.05 (0.03) 0.10 (0.07) 0.02 (0.01)
MAE  0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.04 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)
Tetrachloroethylene
Random d, 0.30 (0.07) 0.27 (0.03) 0.31 (0.06) 0.33 (0.06) 0.29 (0.06) 0.21 (0.04) 0.28 (0.04) 0.27 (0.04)
R? 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.02 (0.02) 0.00 (0.00) 0.01 (0.01) 0.02 (0.03)
MAE 0.08 (0.01) 0.08 (0.00) 0.08 (0.00) 0.07 (0.00) 0.06 (0.00) 0.06 (0.00) 0.06 (0.00) 0.06 (0.00)
Row-wise  d, 0.41 (0.11) 038 (0.10) - - 0.32 (0.06) 0.40 (0.14) 0.33 (0.11) 0.31 (0.12) 0.25 (0.05)
R? 0.03 (0.02) 0.02 (0.01) - - 0.01 (0.00) 0.07 (0.07) 0.03 (0.04) 0.02 (0.04) 0.01 (0.01)
MAE 0.07 (0.01) 0.08 (0.01) - - 0.07 (0.01) 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.01)
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Chapter 5
Conclusions

In this dissertation, both acute and long-term health effects of ambient air
pollutants were investigated. Chapter 3 focused on adverse birth outcomes, while
Chapter 4 examined childhood respiratory-related illness in the Detroit, Michigan
metropolitan area. The research also evaluated statistical approaches to handle missing
air quality data and used multivariate receptor models to derive source apportionments
from an air toxics dataset. Exposure scores obtained from the multivariate receptor
models were used as exposure measures in health models to examine associations with
acute respiratory-related illness in children.

This concluding chapter highlights the key findings, implications and significance
of this research. The study’s strength and limitations are summarized, and

recommendations for further research are suggested.
5.1 Key findings

5.1.1 Air pollution and adverse birth outcomes

Chapter 2 investigated whether ambient air pollutants, including CO, NO,, PM;
and SO,, were associated with low birth weight (LBW), small for gestational age (SGA)
and preterm birth (PTB) outcomes in a cohort of 155,000 singleton births in Detroit,
Michigan between 1990 and 2001. These outcomes were based on birth certificate data
of mothers living within a 4 km radius of three air quality monitors located in Allen Park,
East 7 Mile, and Linwood. Using logistic regression models with control of key
covariates, including infant sex, gestational age, maternal age, education levels, smoking

status, prenatal care, birth season and site of residency, CO,
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NO; and PM exposures were associated with increased risk of SGA births, and SO,
exposure was associated with increased risk of LBW and PTB births. In testing various
time windows of exposure, the early pregnancy period was most important for the CO-
SGA, NO,-SGA and SO,-LBW associations, and the late pregnancy period for SO,-PTB
and PMo-SGA associations. Except for PM;, exposures to other pollutants appear to
have stronger effects on infants of Black mothers for all three adverse birth outcomes, as
compared with infants of White mothers. Additionally, the analysis highlights the
importance of accounting for long-term trends and maternal smoking status in evaluating

relationships between pollutant exposures and adverse birth outcomes.

This study is one of the few studies in the U.S. that had a large African American
population and allowed examination of effects due to race/ethnicity. This study also
permitted investigation into the effects of maternal smoking status, which, while a well-
recognized risk factor for adverse birth outcomes, has often not been available in other
adverse birth outcome studies. In addition, most of the recent U.S. studies have come
mainly from southern California and the East Coast, areas that are generally less
industrialized than Detroit. Furthermore, portions of Detroit are considered air pollution
“hot spots” by U.S. EPA for failing to meet National Ambient Air Quality Standards
(NAAQS) for PM2.51, and the Detroit area has distinct summer and winter climates that
may affect how individuals are exposed to various air pollutalnts.2 Due primarily to local
and regional emissions from industrial sources, the concentrations, composition and
toxicity of ambient air pollutants in the study area may differ from those in the earlier
studies. Thus, the present study informs the birth outcome literature by explicitly

examining effects of race/ethnicity, smoking status, and geographic location.

5.1.2 Air pollution and acute childhood respiratory-related illness

Chapter 3 had the objective of determining whether exposure to ambient air toxic
pollutants, broken down into different source classes that emitted these pollutants, was
associated with respiratory-related illness among children. This chapter described an
epidemiological investigation of children enrolled in Medicaid and living in Dearborn,
Michigan within 4 and 10 km of the Dearborn air quality monitor during a one year study

period (April 2001 to April 2002). During this period, these children made a total of
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1,166 and 4,617 emergency department (ED) visits for asthma and respiratory problems,
respectively. As part of the Detroit Pilot Project, daily measurements of urban air toxics
(UAT), including carbonyls and volatile organic compounds (VOCs), were made,
including a large number of duplicate samples. Using positive matrix factorization
(PMF) receptor modeling, the air toxics dataset was reduced to a set of five source classes
which explained from 44 to 100% and 74 to 92% of the variation in the carbonyl and
aromatic VOC data, respectively. Exposures to three source classes, identified as fuel
combustion, photochemical pollutants, and gasoline exhaust/evaporated gasoline
increased the odds of ED visits for respiratory problems. Although the sample size was
smaller, effects were stronger for subjects living within 4 km of the monitor, as compared
to a 10 km distance. No statistically significant associations were found between injury,
the control case, and the air pollutant measures.

The analysis described above represents one of the first studies to use source-
apportioned exposure measures in order to link toxic pollutant exposures and respiratory-
related illness. Perhaps the most significant feature of this approach is that it inherently
accounts for exposure to mixtures of multiple pollutants and multiple emission sources,

an important limitation of most of the current air pollution epidemiological studies.

5.1.3 Reproducibility and imputation of air toxics data

Chapter 4 described analyses of the air toxics data used in the epidemiological
investigation reported in Chapter 3. It evaluated whether imputation offered a useful
approach for recovering missing values of ambient air pollutant data, and investigated
several quality assurance issues. The study used a total of 323 daily air toxics samples
collected at the Dearborn monitoring site, which included 122 pairs of replicate samples.
These samples were analyzed by two laboratories for 12 carbonyl and 59 VOC species.
After data cleaning, including eliminating species with low detection frequency (<20%)
and detecting outliers using the Gumbell extreme value distribution, 23 compounds were
selected for the final dataset. Of these, intra- and inter-laboratory comparisons showed
good agreement for only one compound (benzene), moderate agreement for several other
VOC:s (e.g., trimethylbenzenes, xylenes, ethylbenzene, dichlorodifluoromethane,

tetrachloroethylene, and toluene), and poor-to-fair agreement for the remaining VOCs
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and all carbonyls. Uncertainty models, which were constructed by pooling residuals
across the intra- and intra-laboratory analyses, provided a comprehensive description of
analytical uncertainties, and the median intra- and inter-laboratory relative uncertainties
were 22% and 25%, respectively, across the final 23 compounds (7 carbonyls and 16

VOCs).

Two methods were evaluated for their ability to impute missing data for the 23
selected compounds and for three missingness patterns. Optimal linear estimation (OLE)
and multiple imputation (MI) methods obtained comparable performance for random
deletions, with results depending on the compound, concentration distribution, and other
factors. For the dominant row-wise deletion pattern observed in the air toxics dataset,

however, the performance of both methods deteriorated.

The analysis highlighted the critical importance of characterizing the
reproducibility of ambient air toxics dataset prior to its use. It is essential to identify
variables that are informative and thus useful in applications such as regulatory
determinations of risk, receptor modeling studies of source apportionments, and
epidemiological assessments of health impacts. The uncertainty models and quality
assurance steps presented in Chapter 4 can help to describe and validate ambient data, as

well as provide uncertainty estimates useful in imputation and other applications.

5.1.4 Receptor modeling

Appendix 1 provides a detailed description of the receptor modeling used in
Chapter 3. The principal approach used, positive matrix factorization (PMF), indicated
that concentrations of ambient air toxics measured at the Dearborn site in the Detroit Air
Toxics Initiative Project could be explained by five source classes: (1) gasoline
exhaust/evaporated gasoline, (2) fuel combustion, (3) combined industrial sources, (4)
photochemical pollutants, and (5) industrial solvents. The results indicate that even in the
highly industrialized study area, concentrations were dominated by vehicular emission
sources. PMF yield “cleaner” and more realistic source profiles than those obtained from
principal component analysis.

The distinction between the receptor models used in this study and those in earlier

studies is the incorporation of different compound groups of UATS, including carbonyls,
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VOCs and metals, in the same model, thereby providing a more comprehensive
assessment. In addition, the analysis incorporated site-specific uncertainty estimates,
based on replicate samples as described in Chapter 4, thus reflecting a more realistic

situation than the fixed uncertainty values commonly used in PMF analyses.
5.2  Study strengths and limitations

5.2.1 Air pollution and adverse birth outcomes

The specific strengths of the analyses in Chapter 2 included a large sample size
(n=155,094), a long study duration (7-12 years), and good representation of individual-
level information on residence location, race, smoking status, pregnancy and educational
attainment. Temporal trends in pollutant concentrations, which affected SO, and CO
results, and multiple pollutant models were examined. A large African American
population in the study sample allowed us to examine possible heterogeneity by race.
Finally, restricting births to mothers residing quite close (<4 km) to air monitors in the
analysis potentially minimized exposure measurement error.’

There are several weaknesses of the study. Geocoding of individual residences
was unavailable, thus residences (and subjects) were selected if their ZIP code area was
within 4 km of an air quality monitor. Pollutant levels in Detroit generally fell below
those in other studies, and lower exposures may have been subject to greater exposure
measurement error. Exposure misclassification was possible for subjects living near
major traffic routes (more likely near Linwood and East Seven Mile sites), which could
have increased exposures above levels measured at the monitoring sites. By comparison,
monitoring sites were located in residential areas at least several blocks from major roads.
However, limiting participants to a relatively small radius around the monitor should
have minimized such errors. Missing pollutant data may have influenced results,
although results using a single monitor (Linwood) were consistent with those using all
three sites, suggesting that any bias was minimal. Additional information on potential
covariates and confounders not available in the birth certificate database may have been
helpful, e.g., alcohol consumption, although the effects of any such factors are suspected

to be likely correlated with other individual-level risk factors that were available, thus
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minimizing confounding. Finally, measurements of personal or indoor exposures were

unavailable, a limitation of all studies that rely on ambient measures of exposure.*®

5.2.2 Acute childhood respiratory-related illness

The major strength of the study lies in its exposure assessment. The use of
receptor models to derive source-apportioned exposure measures is attractive in that such
measures may be more strongly associated with health impacts, improving statistical
power. Other strengths include the use of source-apportioned exposures derived from
measurements of VOCs and carbonyls together, and sensitivity analyses that incorporated
metals measurements. In contrast, the current receptor modeling literature analyses these
groups separately, and mainly focuses on VOCs. The stronger associations were found
between source-apportioned exposure measures, with carbonyls as key species, and ED
visits for respiratory problems. In addition, by examining only children enrolled in
Medicaid, confounding by social economic status (SES), a known indicator of utilization
of urgent care for asthma,7 1s minimized.

There are several limitations. First of all, the sample size was not large enough to
adequately assess certain relationships between exposures and health outcomes,
specifically ED visits for asthma. Also, by examining only the Medicaid population and
a single site, results are not generalizable to the general population. The study’s duration
was only one year which, of course, affected sample size and missing exposure data
might have influenced the results. Some exposure misclassification was inherent in the
study design, which could be seen in results for the 10 km radius where risk ratios were
forced toward the null. Finally, personal exposure data were unavailable, and indoor

sources of toxics, especially VOCs,® might have affected results.

5.2.3 Reproducibility and imputation of air toxics data

This study enjoyed the advantage of a relatively large dataset with daily
measurements of several types of air toxics for a full year. Due to expense and logistical
issues, air toxics generally are measured only every 3" or 6™ day. Also, because
carbonyls, VOCs and other toxic pollutants require different sampling and analytical
methods, simultaneous measurement of different classes of air toxics is relatively

uncommon. In addition, this study was able to examine the reproducibility of air toxics
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measurements, including both within and between laboratories variability, due to the
availability of replicate samples. The uncertainty models developed in Chapter 4
(developed for each decile of concentrations) provide analytical uncertainties over a wide
range of concentrations, and should be generally applicable to air pollution research.
Several limitations are recognized in Chapter 4’s analysis. Only a single
monitoring site was analyzed, and only two laboratories were involved. While the
sample size was relatively large for air toxics monitoring programs, the analysis used
what must be considered a modest sample size in statistical terms. The intra-laboratory
comparisons focused on analytical uncertainties, which may not dominate actual
uncertainties.” Many factors can influence sampling and analysis performance, and the
true accuracy of the data was not established. Due to these factors, generalizations
should be made cautiously, although the data and results are believed to be generally
representative of current monitoring practice. The analysis investigated only a subset of

the many methods that can be used to impute missing data and estimate uncertainties.'*'"

Finally, this study did not evaluate the performance of imputation methods as
applied to health effect studies. The MI approach was developed to minimize the bias
caused by the missing information in health effect studies. Therefore, performance
evaluations should examine risk estimates with and without imputed data. In the early
stage of this research, MI was used to investigate associations between O3 exposures and
low birth weight (data not shown) because Oz data were not available for six months of
the year. However, due to concerns that half of the data required imputation, Oz was
excluded from the analysis. Air toxics posed different issues. Due to the low
reproducibility of the data and the novelty of using the receptor modeling approach,
constructing the health models and interpreting the results using imputed data was

beyond the scope of this research.

5.2.4 Receptor modeling

There are a number of strengths in the receptor modeling study. First, VOCs and
carbonyls were simultaneously modeled, and carbonyls showed comparable or stronger
indicators of vehicular emission sources than VOCs alone, suggesting that groupings of

12,13

VOC:s alone in the previous studies might not have adequately described this source
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class. Second, this study was able to examine seasonal effects. Other studies have used
shorter study periods, e.g., a single summer (ozone) season.'*'® Third, measurement
uncertainty was estimated using site-specific uncertainty models, instead of a fixed value,
thereby increasing the realism of the source classes and the other receptor model results.
The receptor modeling analysis has several limitations. Ideally, each PMF factor
represents a single source category, confirmed by a unique and known chemical profile,
and uncorrelated with other source categories. More realistically, in complicated systems
a PMF factor consists of features from several sources,' especially when longer
averaging periods (e.g., 24 hr at Dearborn) are used, emissions from several or many
source classes have similar compositions, compounds are chemically reactive (which
includes several of the aldehyde and VOC species used), and local estimates of source
compositions are not available. These reasons advise caution in the interpretation of the

results.

5.3 Recommendations for future studies

The topics investigated in this dissertation have spanned a wide range of areas in
the epidemiological and exposure analysis fields. This section makes several
recommendations for future studies in the major areas covered, namely: (1) exposure
assessment; (2) statistical treatment and imputation of air quality data; and (3) adverse

birth outcomes and acute respiratory effect-related studies.

5.3.1 Exposure assessment

In the area of exposure assessment, there is a need for complete, continuous, and
high resolution (i.e., daily or perhaps hourly) air quality data, especially in areas that are
considered to be pollution “hot spots.” With the growth of the environmental
epidemiology field, air quality data increasingly is being used for many applications
besides compliance purposes, therefore, there is a demand for complete datasets,
especially for air toxics, O3, PMjpand PM;s.

Additional research is needed to improve receptor modeling for air toxics,
especially with the emphasis on health effects studies. Models using additional

information, potentially meteorology, criteria air pollutants, and traffic data, might help
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to obtain “cleaner” source contributions with minimal collinearity between sources. This

would also help to improve the robustness of exposure measures used in health studies.

5.3.2 Statistical treatment and imputation of air quality data

Regarding statistical treatment and imputation of air quality data, research is
needed to improve imputations, especially for row-wise missingness patterns. The
variable selection criteria used in Chapter 4 may have been too stringent and a priori
information was not incorporated. A sensitivity analysis of these criteria and more
complex models using other variables (e.g., season, day-of-week, traffic counts) and
other model structures (e.g., auto-regressive integrated moving average models) could be
evaluated. Predictor variables might also be derived that combine meteorological
parameters that reflect dispersion potential and local source impacts, and models might
be used to account for long term trends and seasonality. There is also a need to refine the
uncertainty models that may improve OLE estimates. The performance of other
imputation methods should be examined, and other datasets should be used to ensure that
results are representative. Finally, the performance of imputation methods should be

evaluated in health effects studies of air pollution.

5.3.3 Health effects studies

Further research using individual-level exposure monitoring would help to
quantify the relative contribution of ambient versus localized exposures to the occurrence
of adverse birth outcomes and respiratory-related illness in children. In addition,
incorporating information regarding the proximity of residences to major traffic routes
and human activity patterns in health models would help to minimize exposure
misclassification.

For adverse birth outcome studies, few studies have used PM; s and O3, in part
because PM; s has only been measured relatively recently and often intermittently.
Although ozone has been measured for many years, however, in Michigan, O
measurements are conducted only in the high O3 season (April to September); therefore,
this pollutant has not been investigated extensively, especially in longitudinal study
designs where continuous and all year round measurements are required. In addition,

associations between exposures to air toxics (i.e. carbonyls, VOCs and metals) and birth
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outcomes have not been investigated. There is a need to include these pollutants in future
research. The biological pathways linking air pollutant exposures to adverse birth
outcomes are not well understood, future studies using additional biomonitoring
indicators such as biomarkers of traffic-related pollutants that can reflect the actual
exposures and the toxicity pathways targeting the reproductive system would help to
support the plausibility of the associations. The utilization of birth certificate data is
common in birth outcome studies; however, this type of data does not capture
information regarding other factors that may affect pregnant women and their fetus, e.g.,
genetic make-up, bacterial infections, or exposures to other waterborne or food-borne
pollutants that could lead to the likelihood of having adverse birth outcomes.
Modification in the study designs of future studies to incorporate this additional
information (i.e., two-levels logistic models)'” would help to clarify the associations.

For acute respiratory-related illness among children, studies using larger sample
sizes, longer durations, and multiple monitoring sites would help to investigate health
outcomes that involve ED visits and would likely strengthen associations. Expanding the
study population beyond those enrolled in Medicaid, would also help to generalize study

results.
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1.1 Abstract

Ambient air toxics data from the Detroit Air Toxics Initiative Pilot Project,
including daily measurements of 12 carbonyls and 59 volatile organic compounds
(VOCs) measured from April 2001 through April 2002 at Dearborn, Michigan, were
analyzed using positive matrix factorization (PMF) to identify and apportion emission
sources contributing to the ambient measurements. The monitoring site, located at an
elementary school, was near residential and industrial facilities in an area of historically
high toxics emissions. Based on detection frequency, reproducibility and quality
assurance criteria, the original data set was reduced to 23 compounds. On an annual
basis, PMF apportioned the toxics measurements into five source categories: gasoline
exhaust/evaporated gasoline, 28% contribution; fuel combustion, 24%; combined
industrial sources, 22%; photochemical pollutants, 13%; and industrial solvents, 13%.
These results suggest that vehicle source contributions exceeded industrial emissions in
the study area. The paper discusses these findings and the implications of using receptor

modeling results as exposure measures in health effects studies.

1.2 Introduction

Receptor models (RM) utilize ambient pollutant data to identify and quantify
contributions of the emission sources, or classes of emission sources, that are responsible
for observed pollutant levels monitored at a “receptor,” i.e., a monitoring location.
Receptor models have been widely used for particulate matter, but relatively few
applications have been reported for VOCs and carbonyls.l'9 A recent expert panel has
concluded that source apportionment results obtained using RMs are sufficiently robust
for application to particulate matter with aerodynamic less than 2.5 microns (PM;s5) and

health effects assessment.'%!?

To date, however, there are very few examples of
exposure indicators derived from source apportionments that have been used in
epidemiological studies. There are several advantages of such indicators in
epidemiological investigations. First, because source contributions are derived in a
manner to be mutually orthogonal, health models can simultaneously incorporate

multiple sources (and pollutants) with fewer of the complications that arise from
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collinearity as seen in other multi-pollutant models. Second, because RM utilizes
essentially all the data, it may yield results that are more robust.

This appendix describes the application of two receptor modeling methods,
positive matrix factorization (PMF) and principal component analysis (PCA), that are
employed to apportion daily carbonyl and VOC measurements at the Dearborn, Michigan
monitoring site for the period from April 2001 to April 2002. The identified source
classes are then used to derive daily exposure scores for the health effects study described
in Chapter 3 of this dissertation (entitled “Ambient air toxics source apportionment and
daily emergency department visits for respiratory-related illness among pediatric
Medicaid population in Dearborn, Michigan”).

This appendix is written as a stand alone manuscript with the anticipation of

submission for publication.
1.3 Background

1.3.1 Receptor modeling

The fundamental principle underlying receptor modeling is that a chemical mass
balance analysis can be used to identify and apportion sources of ambient air pollutants.13
Only the general framework of receptor modeling will be discussed here. Details can be

found elsewhere.'> " The mass balance can be written as:

p
X ;= 2 i (1)
k=1

where X is the concentration of the it component (i.e., chemical species) measured in
the j"™ sample, i.e., the “measurement” (ppb); fix is the fractional composition of the i"
component in emissions from the k™ source, i.e., the “source profile”; and gy is the
airborne concentration of the chemical species from the k™ source contributing to the jth
sample (ppb).

To obtain valid results, RMs must meet several fundamental constraints: (1) the
original data must be reproduced by the model, thus the model must explain the
observation; (2) the predicted source compositions fj xy must be non-negative; (3) the

predicted source contributions g; to the aerosol must all be non-negative (a source
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cannot emit negative mass); (4) the sum of the predicted contributions of each source
must be less than or equal to total measured mass for each chemical species.*’

To solve equation (1), k sources must be identified and compositions measured or
estimated. In most cases, however, sources are unknown and compositions of the local
sources have not been measured.'® Thus, compositions of sources measured elsewhere
are typically used.

There are several different RM approaches. Chemical mass balance (CMB)
models utilize regression approaches to solve eq. (1) and require a priori estimates of
source profiles for all contributing source types. This need for accurate profiles is a key
limitation associated with CMB models.?! According to Watson et al. (2001), CMB
models complement rather than replace other data analysis and modeling methods."” In
addition, CMB models do not account for physical and chemical processes in the
atmosphere that may alter compositions as pollutants travel from source to receptor.

Multivariate RMs estimate the number and compositions of the sources, as well as
their contributions to measured concentrations. These models utilize factor analysis,
eigenvector analysis, principal component analysis (PCA), and related methods. For
example, in PCA, the most commonly-used method, the new variables necessary to
reproduce the measured concentrations are determined using an eigenvector analysis of
the correlation matrix."> There are several problems with multivariate approaches: (1) a
large number of measurements are needed; (2) interpretation of results can be
problematic and although the results are statistically sound, they may be physically
invalid;*"* (3) PCA often requires a transformation or rotation to produce factors that
appear to resemble physically meaningful source profiles; however, “true” profiles
cannot be fully determined without additional information;'® (4) scaling of the data by
column or by row in PCA will lead to distortions in the analysis;'® and (5) results are not
unique, but dependent on the number of source profiles, rotations and other parameters.

In view of PCA limitations, positive matrix factorization (PMF) was developed
with the advantage that results are guaranteed to be non-negative. PMF has used in many
PM and VOC source apportionment studies.'”>*1%** Studies by Zhao et al. (2004) and

Xie et al. (2005) demonstrated the feasibility of PMF models in identifying sources of
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VOCs in Houston, Texas which involved meteorological measurements and other factors
(e.g. wind speed, wind direction, temperature, and weekend/weekday).”*

An alternative to PMF, which provides more flexibility as well as additional
constraints, is called the multilinear engine (ME). ME has not been widely used.”
Another receptor method that has the closest performance to PMF is UNMIX, a linear
mixture multivariate receptor models developed by Henry.”> However, the current
version of UNMIX software only reports the minimum R* and signal to noise ratio (S/N)
values for the worst-fit compound included in the model whereas PMF provides values
for all compounds.® In addition, Jorquera et al.(2004) reported that source profile for
VOCs obtained from PMF method were more credible than of that UNMIX.! Using
simulated personal exposure data for VOCs, Miller et al.(2002) reported that source
profiles from PMF more closely resembled the original sources than CMB, PCA and
UNMIX results.’ For PM, s, a recent inter-comparison of different multivariate RMs
found that PM, s apportionment results were consistent across users and methods. '’

RMs have several disadvantages. The estimated source class contributions contain
errors. The classifications into source types may be uncertain. The numbers of source
profiles and contributing sources are unknown. Measurement errors may be unknown.
Finally, the physical meaning of results differs from that typically reported in as exposure
measures in epidemiological analyses. While the use of RM-based apportionments as
exposure indicators in environmental epidemiology holds great promise, the current
application of such indicators must be viewed as experimental.

Among the various RM approaches available, we selected PMF due to several
advantages, specifically, because profiles are guaranteed be non-negative (required for
physical interpretation), and because weights (uncertainties) can be incorporated for
individual data points. The mathematical basis of PMF is described below. Detailed

information can be found elsewhere.'®!”

1.3.2 Positive matrix factorization (PMF)
The X matrix in equation (1) can be decomposed as:

X=USV =USV +E 2)

204



where U and V matrices are calculated from eigenvalue-eigenvector analyses of the X X’

and X’ X matrices, respectively; U and V are the first p columns of the U and V

matrices; and the “residual matrix” E is defined as:

2
m n m n p

2= ZZ(XLJ - Zgi,pfp,jj )
i=l j=1 i=l j=1 p=1

Different from PCA, which is an implicit least-squares analysis in that it minimizes the
sum of squared residuals for the models (eq. 3), PMF takes the approach of an explicit

least-squares approach in which minimizes the objective function Q:

n m Xi,j_igi,pfp,j
QB)=2 > ——— @)

=1 =l Sij

2

where s;; s an estimate of the uncertainty in the jth variable measured in the i"™ sample.
The objective function Q is to be minimized with respect to G and F with the constraint
that each of the elements of G and F are non-negative through the use of a penalty
function. Details of penalty function are presented elsewhere.'®'%

As mentioned, one advantages of PMF is that the uncertainty of each observation
or missing value can be incorporated into the analysis by weights. " PMEF shares the
same disadvantages as other multivariate RM approaches, including the difficulty of

determining the correct number of factors or sources that should be used.'®
1.4 Methods

1.4.1 Data acquisition and cleaning

This study used a dataset that has been previously evaluated for quality assurance
and reproducibility, as described in Chapter 4.” In brief, daily air samples were collected
from 4/19/2001 to 4/18/2002 at Dearborn, Michigan (Figure A1-1) and analyzed by
Eastern Research Group (ERG) for 12 carbonyl and 59 VOC species. This dataset
included duplicate sampling on 122 days, with analyses by the same ERG laboratory on
40 days, and the same Michigan Department of Environmental Quality (MDEQ)

laboratory on 41 days, permitting intra-laboratory analyses, as well as both laboratories
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on 41 days, permitting inter-laboratory comparisons. Duplicate samples were averaged
and outliers were excluded. Measurements that fell below the compound-specific method
detection limit (MDL) were set to Y2 MDL. Carbonyl and VOC species were selected
after excluding compounds with detection frequencies below 20% and correlation
between duplicate measurements below 0.2. The final cleaned dataset included 16 VOC
and 7 carbonyl species, and a total of 302 and 283 observations (days of measurements),
respectively.

Uncertainties associated with each measurement were estimated using uncertainty
models derived from an analysis of duplicate measurements (intra-laboratory
comparison), which were pooled together (VOCs and carbonyls separately).?
Uncertainties for VOCs and carbonyls were estimated as:

ovoc = 0.060 Cyoc + 0.009 (R*=0.76) (5)

ocar = 0.152 Cear + 0.067 (R*=0.87) (6)
where ovoc and ocar are the median absolute errors; Cyoc and Ccar are concentrations
for VOCs and carbonyls, respectively (ppbv); and the coefficients are the results of
regression analyses using the medians in each decile of the aggregated VOC and carbonyl
data. For example, eq. (2) shows that carbonyl measurements have a median absolute
error of 0.22 ppbv at a concentration of 1 ppb. For values below the MDL, uncertainties
were set to 5/6 MDL.>” Due to the sampling design, observations (all species) were
missing on roughly 6.4% of the possible sampling days. These missing values were
replaced using the geometric mean (GM), and the corresponding uncertainty was set to 4
GM.”

Additional data were obtained from the Michigan Department of Environmental
Quality (MDEQ) to investigate the sensitivity of the PMF results, specifically, the
identification of sources. MDEQ collected particulate samples every 6™ day at the
Dearborn site which were analyzed for arsenic, beryllium, cadmium, chromium, lead,
manganese and nickel. A total 60 observations were available for the study period.
Replicate samples for these metals measurements were unavailable at Dearborn;
therefore, replicate samples from a nearby site (Southwest High School) were used to
estimate uncertainties. (MDEQ uses the same data to estimate the precision of the metal

measurements for the Detroit area.) Uncertainty models were constructed following the
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approach described previously (results shown later).

1.4.2 Positive Matrix Factorization

EPA’s PMF version 1.1 software package was used for this study.”’ Initially, the
number of sources was based on a principal component analysis (PCA) using varimax
rotation and selected on the basis of the number of eigenvalues exceeding one. However,
we also selected other cut-offs to gauge the sensitivity of PMF results to a larger number
of source factors. In the PMF analysis, a species was considered as uninformative (bad),
modestly informative (weak) and good if its signal/noise (S/N) ratio <0.2, 0.2<S/N<2,
and S/N>2, respectively, cut-offs that have been successfully applied in PM

. 0-33
apportionments.

Bad species were excluded from further analyses, and weak species
were down-weighted by increasing their associated uncertainties by a factor of three prior
to modeling.

The PMF analysis used 20 random starting points to determine the global
minimum. The optimum random run was selected by examining the robust Q value of all
the random run output. Robust Q value is preferred over true Q value because no
observation is allowed to have extreme influence in the fitting of the model, thereby
preventing over-fitting of these extreme values. As shown in eq. (4), the Q value is the
sum of square measures that is used to quantify model fit.

PCA analyses were also conducted and results compared to those from PMF.
PMF and PCA models were run on both annual and seasonal levels. (Spring was defined
as March to May, summer as June to August, fall as September to November, and winter
as December to February.) Models were tested using observed data only, as well as

imputed data. Models incorporating the metals data used only observed data and were

conducted at only the annual level due to sample size limitations in the metals data.

1.5 Results

1.5.1 Overview of the data set

The quality assurance and filtering procedures, described previously,28 showed
good agreement in intra- and inter-laboratory comparisons for only one compound

(benzene), moderate agreement for several other VOCs (e.g., trimethylbenzene, xylenes,
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ethylbenzene, dichlorodifluoromethane, tetrachloroethylene, and toluene), and poor-to-
fair agreement for the remaining VOCs and all carbonyls (Table SA1-1). The final data
set used in the RM analyses included 7 carbonyls and 16 VOCs (Table Al-1). Daily
measurements were missing for 17% of the VOCs measurements (n=300) and 22% of the
carbonyl measurements (n=283). Together, measurements of all 23 compounds were
available on 265 days (of a possible 365). With the exception of chlorinated and
fluorinated VOCs, most species had moderate-to-high correlation with other species, e.g.,
aromatic VOCs were highly correlated (0.66 <r < 0.99), as were most carbonyls (0.55<r
<0.86) (Table SA1-2).

With the exception of cadmium and nickel, the metals measurements had
moderate correlation with each other (0.19 <r <0.74; Table A1-1), and with PM;, (0.35
<r<0.68) and PM;5(0.39 <r <0.62; Table SA1-2). These high correlation coefficients
suggest that most metals occur in fine fraction particulate matter. Measurements of both
air toxics and metals were available for only 35 days. Overall, the correlation between
air toxics and metals was low to fair. Among the seven metals, manganese and nickel
showed significant correlation with air toxics (r < 0.38). For example, 1,2,4-
trimethylbenzene was negatively correlated with manganese (r = -0.30) and positively
correlated with nickel (r = -0.38).

Differences between replicate metals measurements increased with concentration
(Figure SA1-1), and the uncertainty model of decile concentration incorporated both
constant and proportional terms,

Ometal = 0.07 Cpeta + 0.09 (R*=0.95) (7)
where Gperar 1S €stimated median absolute error (ng/m3), and Cjyear 1S the measured metals
concentration (ng/m>). For example, metal measurements have a median absolute error
of 0.16 ng/m’ at a concentration of 1 ng/m>. Most of the uncertainty models for other
percentiles also showed good fits (0.94 < R*<0.98). As expected, models for the higher

percentiles gave larger uncertainties.

1.5.2 PMF analyses

For the observed data, trichlorotrifluoroethane was identified as an uninformative

species, while 1,3-butadiene, n-octane, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene,
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benzaldehyde, tolualdehyde, beryllium were considered only modestly informative.
Since the inclusion of these species only slightly affected results, these species were
neither removed nor down-weighted (Figures SA1-2 and SA1-3).

Five source classes were identified, as described below and in Figure A1-2:

1) The fuel combustion source class included key species of acetaldehyde,
hexaldehyde, iso-butyraldehyde, propionaldehyde and tolualdehyde. Fuel combustion is
a well-known direct source of these carbonyls, a result of incomplete combustion.™
Acetaldehyde is emitted by vehicles as a primary emission. It is also a secondary
pollutant, also related to combustion. The carbonyls have relatively short half-lives in the
atmosphere. There are some indications that diesel vehicles may have high emissions of
selected carbonyls (i.e. acetaldehyde, formaldehyde), but improvement in diesel fuel and
in diesel engines over the years have reduced diesel emissions and many of its
components.*>~°

2) Photochemical pollutants are indicated by formaldehyde, most of which is
formed by reactions with isoprene and other pollutants (as opposed to emissions from
road traffic and other sources.”’) However, formaldehyde also has been strongly
associated with traffic emissions and acetaldehyde in a number of studies.

3) Gasoline exhaust/evaporated gasoline is indicated by 1,2,4-trimethylbenzene,
1,3,5-trimethylbenzene, 1,3-butadiene, benzene, ethylbenzene, m,p-xylene, o-xylene and
toluene. The VOCs comprising this source class remain quite stable across seasons.
These also tend to be the VOCs measured at the higher concentrations.

4) Combined industrial sources are suggested by acetylene, propylene,
dichlorodifluoromethane, n-octane, tetrachloroethylene, trichlorofluoromethane, and
trichlorotrifluoroethane. Tetrachloroethylene releases are known to occur at airports and
waste handling facilities, although the estimated releases total only several hundreds of
Ibs/yr, based on U.S. EPA toxic inventory report (TRI) for Wayne County which contains
Dearborn (382 Ibs and 633 Ibs for 2001 and 2002, respectively).”® Much larger emissions
(23,000 1b/yr) occur in Midland, Michigan, but this is too distant to affect monitoring
observations at the Dearborn site. As noted above, acetylene also is a constituent of
vehicle exhaust.

5) Industrial solvents are suggested by methyl ethyl ketone (MEK). Annually,
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95% of the MEK was assigned to this profile. No other compound was associated with
this source class. Known sources of air releases (from the TRI inventory) for MEK
include GM’s assembly facilities in Detroit, Visteon in Ypsilanti, among others, although
2002 releases are relatively modest (<20,000 1bs/yr per facility). MEK is also a common
laboratory solvent and could represent an artifact.

Except for n-octane and propylene, other constituents had >40% of their mass
apportioned to each of the identified source classes. Contributions of n-octane and
propylene were approximately equally split (>30% each) to the fuel combustion and
combined industrial source classes. Sources of n-octane may come from fuel evaporation
as well as emissions from industry, solvents and paints. Propylene is often a marker of
petrochemical sources,”’ although the single refinery in Detroit (Marathon) is some
distance from the Dearborn monitoring site. Propylene is also a product of incomplete
combustion.

Diagnostic statistics for the PMF models indicated that most of the variation in
the VOC and carbonyl concentrations was explained by the five source classes (Table
A1-2). This applied to the aromatic VOCs (0.74 < R*< 0.92), MEK (R*= 1.00),
acetylene (R2 =0.80), 1,3-butadiene (R2 = 0.62), and most of the carbonyls including
acetaldehyde, benzaldehyde, formaldehyde, hexaldehyde, isobutylaldehyde,
proprionaldehyde and tolualdehyde (0.44 < R*< 1.00). However, it did not apply to other
chlorinated and fluorinated VOCs (0.03 < R*< 0.21), n-octane (R* = 0.10), and propylene
(R2 =0.08). While the low R? values for these VOCs may be due to several reasons, the
most likely explanations are reproducibility problems and the generally small amount of
variation observed in concentrations of these VOCs, as noted previously.28

Figure A1-3 shows the annual contributions of the five source classes. Vehicle-
related source classes dominated these results. The annual source apportionments were:
gasoline exhaust and evaporated gasoline, 28%; fuel combustion, 24%; combined
industrial sources, 22%; photochemical pollutants (13%); and industrial solvents, 13%.

The seasonal models using five source classes obtained similar results (Figures
SA1-6 to SA1-8). Source classes for spring and winter seasons were unchanged. For the
summer models (Figure SA1-7), MEK and few VOCs (1,2,4-trimethylbenzene, 1,3,5-

trimethylbenzene, 1,3-butadiene, benzene, m,p-xylene and o-xylene) were assigned
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together with constituents identified as combined industrial sources, and hexaldehyde had
97% of its mass apportioned to a new source class. Automobile assembly facilities in the
Detroit area are often shutdown during the summer time, which might reduce MEK
emissions. In addition, somewhat different patterns of traffic during the summer season
and higher rates of photochemical reactions and the consumption of reactive compounds
and production of secondary species might contribute to the variability in some of the
VOCs and hexaldehyde. For the fall models (Figure SA1-8), propylene had 96% of its
mass apportioned to a new source class (petroleum pollutants), while chlorinated and
fluorinated VOCs were assigned together with formaldehyde in the photochemical
pollutant source class. These results suggest that variability due to seasonality affects
only a few of the source classes and only during summer and fall seasons.

Analyses using six source classes did not significantly change results (Figure
SA1-4). The 6™ source class had hexaldehyde as the main constituent with 81% of its
mass assigned to this source; the five other source classes were almost unchanged. In
addition, the R? value did not improve as compared to the 5-source class models (Figure
SA1-5); therefore, the 5-source models appear to be adequate.

Source classes and annual apportionments obtained using imputed data were
similar to those obtained using observed data (Figures SA1-10 to SA1-12). Similar
estimated annual source apportionments were also obtained: gasoline exhaust and
evaporated gasoline, 27%; fuel combustion, 25%; combined industrial sources, 22%;

industrial solvents, 14%; and photochemical pollutants, 12%.

1.5.3 Source classes with additional metals information

Results obtained using five source classes along with additional metals
information are shown in Figure A1-4. The additional information provided by the
metals data did not change the source classes identified previously. The metals resolved
in their own source class included cadmium, arsenic, lead, chromium and manganese, and
likely represented diesel and industrial sources. Formaldehyde, previously identified as a
photochemical pollutants source class, merged with the rest of the carbonyls of the fuel
combustion source class and distributed a small part of its mass among other source

classes. Beryllium was apportioned to the industrial solvent source class along with
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MEK, however, this might be an artifact since the variance explained by this element is
only 0.06 ng/m’ (Table A1-2). Among the seven metals, only chromium (R*=0.72) and
manganese (R’=0.92) explained most of the variability of the models that contained

metals (Table A1-2). Due to small sample size (n=35), the interpretation of the models

that included metals must be limited.

1.5.4 PCA analyses

Results from the principal component analyses for annual and seasonal models
are shown in Figures SA1-13 to SA1-S20. Using an eigenvalue of approximately one as
a minimal cut-off, we identified five or six source classes (Table SA1-3). Overall, the
PCA models yielded similar patterns of source profiles as those obtained from PMF.
However, the PCA factor loadings included negative values, which limit their physical
interpretation. In addition, source profiles obtained from PCA were more mixed in
composition, i.e., in the six source class models, two profiles resembled a combined
industrial source, and two others resembled industrial solvents.

Compared to PMF analyses, the PCA models explained a slightly higher fraction
of variance of each species (0.48 < R*< 0.96), especially for the chlorinated VOCs,
possibly a result of not using weights in the PCA modeling that account for measurement
uncertainties. There were no significantly differences in results obtained using observed
and imputed data (Figures SA1-21 to SA1-23), and the PCA models with metals data
gave similar results as those obtained from the PMF models (Figure SA1-24).

1.6 Discussion

The PMF models using combined VOC and carbonyl measurements identified
five source classes identified as gasoline exhaust/evaporated gasoline, fuel combustion,
combined industrial sources, photochemical pollutants, and industrial solvents. Ideally,
each PMF factor represents a single identified source category that is uncorrelated with
other source categories. However, in complicated systems, a PMF factor may consist of
features from several sources.” Combined source factors are also more likely in longer
samples, e.g., 24-hr samples collected at Dearborn (as compared to 1-hr samples
collected in Houston, for example®) since winds from a number of directions are likely

and may bring contaminants from several source types to the monitor site, and thus
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separate sources in effect become correlated. A further complication arises as several
aldehydes (e.g., formaldehyde, acetaldehyde) and VOCs (e.g., 1,3-butadiene) in the
dataset are chemically reactive, and their concentration and lifetime will be affected by
photochemistry, temperature, sunlight, and other reactive species and precursors (e.g.,
isoprene) that may be present. Such effects will likely vary seasonally. Thus,
measurements of these compounds will reflect both primary emissions (directly from the
source) and secondary production. Moreover, measured levels from primary emissions
will reflect the portion remaining after any consumption from atmospheric reactions. All
of these effects will tend to “blur” profiles for sources that include reactive components,
and may create new profiles that primarily reflect secondary pollutants. In comparison,
this is not a problem for PM, 5 or PM( apportionments that utilize elemental
composition.

While the breakdown into factors using receptor models may not isolate single
sources or source types, the use of source factors remains a valid way to represent the
pattern of concentrations to which individuals are exposed, and its use in health models
can thus identify those pollutants and pollutant mixtures that are associated with adverse

health effects.

1.6.1 Other receptor modeling studies of air toxics

Overall, results from this study are consistent with the source apportionment
analyses by Hafner et al. (2004) which also used air toxics data collected at Dearborn in
2001 and the PMF model.** This study identified a total of 7 factors representing
aldehydes/secondary, unknown, three types of industrial, motor vehicle and combined
diesel and industrial sources using carbonyls, VOCs, semi VOCs, metals and PAHs data.
The key species for the unknown source factor is propene (also known as propylene). In
this study, propylene was apportioned to both fuel combustion and photochemical
pollutant sources.

Results from this study also resemble a recent Dearborn study in which factor
analysis was used to identify sources of ambient VOCs collected outside 85 residence
homes during fall and spring seasons.*' Carbonyls were not measured in this study, but a

wider range of VOCs were successfully quantified. This study identified four factors: (1)
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gasoline-related composite (key species: aromatic and aliphatic VOCs); (2) biogenic
emissions (solvents, cleaners and fragrances related VOCs); (3) industrial sources
(styrene and chlorinated VOCs); and (4) gasoline evaporation (alkanes). These results
together with those from the current study suggest that community ambient air toxics
monitoring is representative in identifying the sources of the community exposures to
ambient air.

A wider range of measured species will generally help to resolve sources. In
comparison to recent work using urban air toxics, this study retained a relatively small
number (23) of compounds, specifically the compounds that met minimum detection
frequencies and that showed at least fair reproducibility among replicates. In
comparison, Xie and Berkowitz (2005) in apportioning VOCs used 55 compounds (all
VOCs).? Many of the common VOC:s, for example, are emitted by many source
categories. For example, Baldosano (1998) showed that benzene, toluene, ethybenzene,
xylenes and other compounds are all emitted from traffic (diesel and gasoline combined),
gasoline vapor, architectural coatings, waste water treatment, graphic arts, automotive
painting, solvent use, and wood combustion. Additional compounds can help resolve

such sources.*?

1.6.2 Contributions of carbonyls

To our knowledge, the current study is one of the few studies that utilized both
carbonyls and VOCs in receptor modeling, probably due to the cost of sampling and
analysis (these classes of pollutants require different sampling and analytical
approaches). Source identification has focused on VOCs, possibly because these
constitute well known tracers of many sources, and because carbonyl sources lack unique
tracers. Carbonyls are emitted by many mobile and stationary sources, and they are also
stable intermediate products of the photochemical oxidation of virtually all hydrocarbons
and precursors to free radicals, ozone and peroxyacyl nitrates.**

Consistent with previous studies, this study found that acetaldehyde and
formaldehyde are the most abundant carbonyls in the ambient air with geometric mean

concentrations of 0.73 and 1.47 ppbv, respectively (Table Al1-1).“* The PMF analysis

indicates that formaldehyde is a key species for photochemical pollutants sources, while
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acetaldehyde together with other carbonyls are key species for fuel combustion sources.
Studies from Rio de Janeiro (Brazil) and Santiago (Chile) also reported photochemical
oxidations are the main sources of formaldehyde.46’47’49 Similar to formaldehyde,
acetaldehyde is also responsible for O3 formation*® and is detected in automobile
exhaust.*-"

Although results from this study indicated that the presence of carbonyls in the
models did not greatly influence other sources profiles revolved by VOC:s, the inclusion
of carbonyls in receptor modeling can help derive exposure scores for health effects
studies. Carbonyls also are important because of their irritant and toxic properties,
mutagenicity and carcinogenicity.”'* Finally, with the growth of biofuels, it is
important to quantify both emissions and health risks of fuel-related emissions. In
particular, a recent study predicted an increase in carbonyl concentrations (with the
exception of benzaldehyde) in Brazil where 4.5 million m’ of ethanol were consumed in
2005 (compared with 22.5 millions m® of gasoline in the same period).”> The combustion
of ethanol produces acetaldehyde as a major product, and ethanol-gasoline blends

produce more acetaldehyde than gasoline alone.*®

1.6.3 Contributions of metals

Generally, RM results were insensitive to the addition of metals on the subset of
days when these data were available (n=35). Due to the small sample size, however, the
metals data did not provide much information regarding the identification of sources or

the reliability of the apportionment.

1.6.4  Utilization of uncertainty models in receptor modeling

This study utilized uncertainty models to obtain daily uncertainties for several
groups of air toxics and metals, rather than the error estimates recommended by Polissar
et al. (1998). Often, uncertainties are estimated empirically using trial and error or other

methods.>?’ Commonly, uncertainties are estimated as:>18

kK _ ..k k
o, =u;;+d;;/3
where ¢, u’. and dilf ; are the error estimate, analytical uncertainty and method

i,j° i,j

detection limit, respectively. This approach was not used in part because the analytical
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uncertainty was not readily available, and because an alternate, site-specific method was
available. Since analytical methods are not independent (i.e. the analytical calibration
and hardware are shared), the analyses represent random errors (or method precisions)
rather than fixed errors.”* The uncertainty models used here have the advantages of
capturing the precision measures from replicated samples, thereby reflecting random
error component. In addition, the uncertainty models also capture a wide range of
concentrations, which is common in air toxics concentrations. The approach used may
not be conservative since higher percentile absolute relative error models (i.e. 75™ or 90"

percentiles models) might well represent the actual errors.

1.6.5 Recommendations for future studies

Future analyses might utilize additional meteorological variables, e.g., wind
direction and wind speed, which affect the transport path and which may lead to
variations observed at the receptor. This study was limited to 24-hr samples, however,
Paatero et al. (2002) demonstrated that high-resolution weather data (1-hr) may enhance
the usefulness of 24-hr concentration data.”> For example, variations in wind speed cause
variations in the transport path which lead to variation at the receptor. Wind speed is also
influenced by seasonal factors, therefore, incorporating wind speed in the receptor
models can help to explain seasonal variation of source strength. Utilizing
meteorological data such as wind speed in receptor model required more advanced and
flexible software, e.g., the multilinear engine, which is beyond the scope of this study.

Most of the issues discussed above regarding the derivation and identification of
PMF profiles are broadly applicable, i.e., not limited to the Dearborn dataset. Similarly,
other recommendations are also generalizable. In particular, PMF results might be
enhanced by the use of shorter sampling periods (possibly separate day and night
measurements to separate photochemistry), improved sensitivity of the measurements,
better reproducibility, routine use of replicates (allowing better detection of outliers), and
the measurement of a wider set of pollutant species. There may also be some gain in
exploring the effects of different error models, further evaluating outliers in the dataset,

and utilizing a smaller set of profiles in the health models.
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1.6.6 Implication for epidemiological studies

To date, very few studies have used source apportionments in epidemiological
studies.’*® Guo et al. (1999)°7 separated traffic and fossil fuel sources in examining
asthma prevalence, Laden et al. (2000)5 ¥ found that mobile and coal combustion sources
explained a portion of daily mortality, and Mar et al. (2006)'? found that combustion-
related pollutants and secondary aerosols (sulfates) were associated with daily changes in
cardiovascular mortality. The current investigators (and others) have used wind-direction
specific exposure metrics to examine daily fluctuations in asthma aggravations.” A
comparison across multiple apportionment approaches gave consistent results in
explaining daily cardiovascular and total mortality, suggesting that these methods provide
reliable insights into those source components that contribute to health effects.'"'*%*

Epidemiologic studies using source-apportioned exposure measures are
potentially attractive for several reasons: (1) increased statistical power since the
exposure measures may be more strongly associated with health impacts; (2) the
correlation in the larger data set is used to derive a smaller number of robust exposure
measures; and (3) the enhanced biological plausibility and relevance of the exposure
measure. In essence, the derived source contributions or composite scores from the
receptor models are used as exposure measures in the same or similar statistical
framework used to associate conventional exposure measures, e.g., PM, with health

outcomes.

1.7 Conclusion

The receptor model apportionments suggest that ambient air toxics measured at
Dearborn, Michigan arise largely due to five sources: gasoline exhaust/evaporated
gasoline, fuel combustion, combined industrial sources, photochemical pollutants and
industrial solvents. Vehicular emissions account for the dominant contribution, larger
than the many industrial sources that are present in the area. In this study, PMF yield
“cleaner” and more realistic source profiles than those obtained from PCA. Finally, the
RM results can be used in health models to assess the effects of mixtures and health

impacts, especially the high incidence of asthma among children in the area.
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Table Al- 1. Summary of VOC, carbonyl and metals concentrations with detection
frequencies above 20%.
Duplicates were averaged, and outliers were excluded. Ms = missing measurements;

BDL = below detection limit measurements; S/N = ratio of signal to noise; GM =

geometric mean.

Ms BDL S/N GM
Compounds

(%) (%)
Carbonyls (ppbv)
Acetaldehyde 220 447 073
Benzaldehyde 22 2 04 0.04
Formaldehyde 22 0 46.8 147
Hexaldehyde 22 1 2.0 0.05
iso-Butyraldehyde 22 1 29 0.14
Propionaldehyde 22 10 32 0.08
Tolualdehyde 22 7 0.3 0.03
VOCs (ppbv)
Acetylene 17 1 7.7 152
Benzene 17 0 41 0.55
1,3-Butadiene 17 73 0.7 0.05
Dichlorodifluoromethane 17 0 3.7 0.63
Ethylbenzene 18 2 25 0.15
Methyl ethyl ketone 17 26 7.7 0.39
m,p-Xylene 18 0 3.1 043
n-Octane 18 66 05 0.04
o-Xylene 18 3 52 0.18
Propylene 17 0 35 0.82
Tetrachloroethylene 17 66 2.5 0.05

Trichlorofluoromethane 17 0 3.6 0.31
Trichlorotrifluoroethane 17 0 0.1 0.11
1,2,4-Trimethylbenzene 17 9 1.0 0.17
1,3,5-Trimethylbenzene 18 61 0.5 0.05

Toluene 18 0 14.7 0.88
Metals (ng/m I )
Arsenic 84 0 56 2.5
Beryllium 84 18 0.6 0.06
Cadmium 84 0 24 0.55
Chromium 84 2 6.6 5.27
Lead 84 0 7.9 150.14
Manganese 84 0 83 2.5
Nickel 84 0 5.6 22.06

218



Table Al- 2. Diagnostic statistics for 5 source class models for observed carbonyls,
VOCs and metals.

VOC, volatile organic compounds; ppbv, part per billion volume; RMSE, root mean
square error; R2, coefficients of determinant.

Air toxics (N=265) Air toxics and metals (N=35)

Pollutants 2 2
RMSE R RMSE R
Carbonyls (ppbv)
Acetaldehyde 0.01 1.00 0.01 1.00
Formaldehyde 0.01 1.00 0.01 1.00
Propionaldehyde 0.04 0.89 0.02 0.94
iso-Butyraldehyde 0.06 0.78 0.06 0.49
Benzaldehyde 0.02 0.62 0.01 0.67
Hexaldehyde 0.07 0.52 0.04 0.63
Tolualdehyde 0.02 0.44 0.01 0.65
VOCs (ppbv)
Methyl ethyl ketone 0.02 1.00 0.24 0.81
Toluene 0.19 0.92 0.09 0.99
o-Xylene 0.04 0.91 0.04 0.92
1,2,4-Trimethylbenzene  0.05 0.85 0.04 0.90
m,p-Xylene 0.12 0.84 0.15 0.80
Ethylbenzene 0.04 0.83 0.05 0.78
Acetylene 0.24 0.80 0.34 0.80
1,3,5-Trimethylbenzene  0.02 0.78 0.02 0.84
Benzene 0.13 0.74 0.16 0.77
1,3-Butadiene 0.02 0.62 0.02 0.70
Dichlorodifluoromethan  0.14 0.21 0.15 0.26
n-Octane 0.02 0.10 0.02 0.42
Propylene 0.36 0.08 0.42 0.01
Trichlorofluoromethane  0.08 0.05 0.07 0.37
Tetrachloroethylene 0.02 0.04 0.03 0.41
Trichlorotrifluoroethane  0.03 0.03 0.05 0.00
Metals (ng/m I )
Manganese - - 37.47 0.92
Chromium - - 1.42 0.72
Lead - - 5.95 0.61
Arsenic - - 0.67 0.20
Nickel - - 0.78 0.09
Beryllium - - 0.02 0.01
Cadmium - - 0.16 0.00
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Table SA1- 1. Intra- and inter-laboratory reproducibility.

COV=coefficient of variation; WSR=Wilcoxon signed rank; All analyses used only detected values; Significant values (p <0.05)

indicated in bold.
Intra-laboratory reproducibility Inter-laboratory reproducibility Retained
Compound Correl coeff-ERG  Correl coeff-MDEQ % COV Correl coeff Paired t-test WSR test _
Pearson Spearman Pearson Spearman ERG MDEQ Pearson Spearman (p-value)  (p-value) (y=yes)
Carbonyls

Acetaldehyde 0.38 0.39 0.45 0.45 61 70 0.37 0.52 0.33 0.07 y
Benzaldehyde 0.54 0.61 0.23 0.65 51 78 0.28 0.46 1.00 0.04 y
Formaldehyde 0.45 0.48 0.51 0.58 58 64 0.73 0.61 0.95 0.93 y
Hexaldehyde 0.50 0.64 0.32 0.51 62 83 0.40 0.44 0.41 0.29 y
iso-Butyraldehyde 0.19 0.40 - - 52 - - - - - y
Propionaldehyde 0.34 0.33 0.87 0.49 61 59 0.25 0.28 0.07 0.11 y
Tolualdehydes 0.71 0.56 - - 42 - - - - - y

. VOCs

2 1,2,4-Trimethylbenzene 0.68 0.67 0.91 0.79 39 35 0.71 0.63 <0.01 <0.01 y
1,3,5-Trimethylbenzene 0.71 0.70 0.89 0.64 31 16 0.71 0.59 <0.01 <0.01 y
1,3-Butadiene 0.60 0.59 - - 49 - - - - - y
Acetylene 0.54 0.63 - - 26 - - - - - y
Benzene 0.83 0.73 0.82 0.66 19 36 0.81 0.71 0.07 <0.01 y
Chloromethane -0.02 0.45 0.44 0.42 12 27 0.32 0.32 0.98 0.47 y
Dichlorodifluoromethane 0.75 0.75 0.70 0.68 4 29 0.47 0.61 <0.01 <0.01 y
Ethylbenzene 0.69 0.65 0.92 0.88 44 16 0.78 0.66 <0.01 <0.01 y
m,p-Xylene 0.60 0.71 0.92 0.88 35 24 0.80 0.67 <0.01 <0.01 y
Methyl ethyl ketone 0.66 0.65 - - 50 - - - - - y
n-Octane 0.28 0.56 - - 53 - - - - - y
o-Xylene 0.63 0.79 0.93 0.83 39 30 0.79 0.67 <0.01 <0.01 y
Propylene 0.90 0.70 - - 33 - - - - - y
Tetrachloroethylene 0.82 0.77 0.39 0.53 28 63 0.64 0.61 0.65 0.73 y
Toluene 0.82 0.73 0.93 0.82 28 37 0.50 0.62 1.00 0.04 y
Trichlorofluoromethane 0.66 0.57 0.57 0.60 10 28 0.33 0.42 0.04 0.02 y
Trichlorotrifluroethane 0.76 0.52 - - 10 - - - - - y




Table SA1- 2. Pearson correlation coefficient for carbonyls, volatile organic compounds, metals and particulate matters

1T¢

. g g € % g 5§ o 2 2 2 2 % 8 B g 3 3 "

E 2 ¢ 2 3 £ £ £ % £ X § 2 2 » £ E E 2 2 % 2 %2 % 3 S 2 OEE R o5 o2

5 e 5§ A ? - £ =2 £ B & 2 £ ® % £ £ & E £ & g &8 B2 K B £ 83 R E g Zz

g & < & 5 B 5 S 8 B g £ ° 5 & a 5 § & & § 3 mC o =

- s 3 5 3 % = 203 s = ¢ £ = °
= = = ) = o 2! A
= = a — —

N 300 302 345 301 345 345 345 302 345 343 345 343 343 344 344 345 284 329 330 330 329 330 283 361 114 60 60 60 60 60 59 60
Propylene 1.00
Acetylene 0.32 1.00
1,3-Butadiene 0.32 0.68 1.00
n-Octane 022 0.34 047 1.00
Methyl ethyl ketone 0.17 022 021 031 1.00
Trichlorofluoromethane  0.08 0.11 0.21 0.15 0.10 1.00
Tetrachloroethylene -0.01 0.18 0.18 0.10 0.15 -0.01 1.00
Trichlorotrifluoroethane  0.20 0.04 0.15 0.17 -0.05 0.00 -0.06 1.00
Dichlorodifluoromethanc 0.16 0.27 0.35 0.24 022 0.57 0.06 0.13 1.00
m,p-Xylene 023 0.61 0.69 035 037 026 022 0.01 044 1.00
Benzene 026 0.68 0.54 0.37 042 0.18 027 -0.02 035 0.66 1.00
Toluene 020 0.61 0.56 0.34 045 0.18 023 -0.06 033 0.80 0.76 1.00
Ethylbenzene 023 0.62 0.68 036 037 024 022 0.03 043 099 0.67 0.81 1.00
o-Xylene 024 0.65 0.71 040 037 029 022 0.00 044 097 0.71 0.83 096 1.00
1,3,5-Trimethylbenzene 0.22 0.66 0.74 041 0.39 0.24 027 0.00 040 0.89 0.70 0.82 0.89 0.90 1.00
1,2,4-Trimethylbenzene 0.25 0.67 0.73 042 043 0.28 026 0.02 045 094 0.74 0.85 094 093 0.95 1.00
iso-Butyraldehyde 021 0.19 024 020 0.38 0.23 008 0.16 036 031 030 027 030 0.29 0.31 035 1.00
Formaldehyde 021 0.28 028 0.24 031 0.15 0.08 0.03 030 038 034 034 037 039 035 039 0.67 1.00
Acetaldehyde 026 0.30 033 0.29 037 027 0.10 0.13 041 045 045 042 045 045 045 049 086 0.82 1.00
Propionaldehyde 0.16 0.20 0.17 0.18 0.32 0.16 0.06 0.06 026 0.26 029 0.26 025 0.27 028 0.32 075 0.77 0.79 1.00
Hexaldehyde 0.10 0.07 0.16 0.18 040 0.25 0.11 -0.02 035 033 028 031 032 032 032 036 065 055 0.70 0.61 1.00
Benzaldehyde 0.10 0.22 024 0.16 035 0.11 005 -0.11 025 033 036 035 033 035 032 035 057 070 059 0.70 0.59 1.00
Tolualdehyde 0.11 0.16 0.18 0.20 0.38 0.14 0.12 0.01 026 0.32 028 030 031 033 037 038 061 058 0.65 072 0.70 0.64 1.00
PM10 0.15 0.03 -0.06 0.08 0.23 -0.03 -0.08 -0.03 0.01 0.04 0.07 0.03 0.05 0.01 0.04 0.02 0.09 0.19 0.14 0.14 0.10 0.11 0.16 1.00
PM2.5 0.24 0.14 -0.04 -0.10 0.11 -0.02 -0.08 -0.13 -0.04 -0.01 0.16 0.02 0.01 -0.03 -0.02 -0.03 -0.08 0.03 0.01 0.13 0.02 0.12 0.04 0.66 1.00
Arsenic 0.14 0.19 0.11 0.00 -0.12 0.22 -0.06 0.03 0.09 0.14 0.15 0.13 0.16 0.15 0.10 0.08 0.20 -0.03 0.08 0.24 0.03 0.05 0.06 0.35 0.54 1.00
Beryllium 025 0.19 0.07 0.12 -0.12 -0.09 0.01 0.01 -0.03 0.02 0.09 0.15 0.03 0.03 0.11 0.04 -0.33 0.09 0.07 -0.11 -0.06 -0.03 -0.10 0.50 0.39 0.19 1.00
Cadmium -0.12  0.09 -0.01 0.06 0.01 -0.12 020 0.08 -0.13 0.01 0.11 0.01 0.02 0.02 0.09 0.03 -0.11 0.01 0.03 -0.03 -0.02 -0.05 -0.16 0.07 0.21 0.25 0.02 1.00
Chromium 0.07 0.00 -0.09 0.04 -0.15 0.00 -0.06 0.12 -0.02 -0.08 -0.08 -0.06 -0.08 -0.12 -0.05 -0.10 -0.44 -0.15 -0.14 -0.16 -0.12 -0.17 -0.11 0.63 0.41 0.29 0.30 0.14 1.00
Lead -0.13 0.13 -0.09 0.11 -0.19 -0.10 -0.03 -0.06 -0.06 -0.13 0.02 0.03 -0.12 -0.12 0.01 -0.11 -0.31 -0.17 -0.09 -0.11 -0.13 -0.09 -0.19 0.62 0.62 0.50 0.51 0.35 0.59 1.00
Manganese 0.00 -0.14 -0.19 -0.01 -0.25 -0.21 -0.30 0.06 -0.20 -0.25 -0.25 -0.17 -0.24 -0.30 -0.23 -0.30 -0.44 -0.26 -0.25 -0.30 -0.25 -0.31 -0.34 0.68 0.48 0.22 0.58 0.02 0.74 0.68 1.00
Nickel -0.11 _0.09 0.01 0.01 023 0.25 024 -0.31 032 031 021 033 030 0.34 033 0.38 -0.12 0.28 0.29 0.19 0.06 0.23 0.28 0.13 -0.04 0.06 0.11 0.17 0.19 0.14 -0.07 1.00




Table SA1- 3. Eigenvalues explained by each factor from PCA.

Replicates were averaged from both laboratories for observed and single imputation.

Factor Observed Imputed (SI)
All Spring Summer Fall Winter All Spring Summer Fall Winter
1 10.13 1282 895 1045 954 946 11.06 841 10.64 8.84
2 347 2.62 379 470 5.03 3.46 3.49 3.60 420 4.87
3 1.65 1.75 228 1.82 205 1.63 1.71 224 180 224
4 1.29 1.19 147 129 149 135 1.11 .33 129 132
5
6

1.07 1.04 1.10  1.11  0.95 1.00 1.06 1.19  1.03 1.08
0.88 0.74 1.03 099 091 0.88 0.98 1.03 094 0.96
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Figure A1- 3. Annual PMF factor contributions for total mass concentrations of observed

carbonyls and VOCs
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Figure SA1- 1. Absolute relative error models for metals from inter-laboratory
comparison.
Only concentrations above MDLs were included. Maximum decile concentrations were

excluded.
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Figure SA1- 2. Annual percentage concentration of each species apportioned to 5 source
classes using observed urban air toxics (UATs). Weak species were down-weighted and

bad species were excluded.
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Figure SA1- 4. Annual percentage of concentration of each species apportioned to 6

sources classes using observed urban air toxics (UATs). Weak and bad species were
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Figure SA1- 5. Coefficients of determinant for 6 source classes using observed UATS.

Weak and bad species were neither down-weighted nor excluded.
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Figure SA1- 6. Percentage of concentration of each species apportioned to 5 source
classes using observed urban air toxics (UATSs) for spring season. Weak and bad species
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Figure SA1- 7. Percent of concentration of each species apportioned to 5 source classes

using observed urban air toxics (UATSs) for summer season. Weak and bad species were
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Figure SA1- 8. Percentage of concentration of each species apportioned to 5 source

classes using observed urban air toxics (UATSs) for fall season. Weak and bad species
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Figure SA1- 9. Percentage of concentration of each species apportioned to 5 source

classes using observed urban air toxics (UATSs) for winter season. Weak and bad species
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Figure SA1- 10. Annual percentage of concentration of each species apportioned to 5

source classes using imputed urban air toxics (UATs). Weak and bad species were
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Figure SA1- 11. Coefficients of determination for 5 source class models using imputed

data (SI)
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Figure SA1- 12. Annual PMF factor contributions for total concentrations of carbonyls

and VOCs using both observed and imputed data
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Figure SA1- 13. Principal component analysis (PCA) — Annual factor loadings for 5

source class model using observed UATSs
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Figure SA1- 14. PCA — Annual factor loadings for 6 source class models using observed
UATs
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Figure SA1- 15. PCA -Variance explained for 5 and 6 source class models using

observed UATSs
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Figure SA1- 16. PCA — Factor loadings for 5 source classes using observed UATsS for

spring season
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Figure SA1- 17. PCA — Factor loadings for 5 source classes using observed UATsS for

Summer season
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Figure SA1- 18. PCA — Factor loadings for 5 source classes using observed UATsS for fall

s€ason
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Figure SA1- 19. PCA — Factor loadings for 5 source classes using observed UATsS for

winter season
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Figure SA1- 20. PCA -Variance explained for 5 source classes of observed UATs by

s€asons
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Figure SA1- 21. Principal component analysis (PCA) — Annual factor loadings for 5

source classes using imputed UATs data

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-04

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

Loading

1.0

08

0.6
0.4
0.2
0.0
-0.2

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

I Fuel combustion I I I
lllllll-.l IIII.I_.-.

[ EPetroleum pollutants

r  H Gasoline exhaust/evaporated gasoline

B Combined industrial sources

| B Industrial solvent

247

QO O O O 0O O O LV LV 0O L0 L 0O L0 O O 0O 0O O 0O 0O O O
5§ £ 5§ £ £ £ 5§ 5§ 5 §32 2P 2T 2T ESEE S 5§
85 8 8 8 38 3 8 38 8 S X5 %520 S 8 8 O
> & >822 2% 2855855068 EErER
X 8 X 8 8 © g & g ¥ o v - v v v T & 8 8 &0 =
.,_o.,_o,_o&mgo.—'.—'.—ﬁ_‘._.—'.—'ggoo.o
S B A = = > 8 8 8 8 8 8 = s £ = 8
z2gzz A< 235 £ 5 fESZEEZE~S 2
= e= = o 5 9 8 £ 5 5 © 2 g ¢ °
m © © - a2 2 T © 3 3 B
- - S FaTEaeF &g g 5
g 8 g A9 2 8 5 g
E & g 2 S 2 = 3
[ N -_ = o o
<+ 4 = € S 38 =
N o ~;J:E
LSS o K
— = = 2
a



Figure SA1- 22. Principal component analysis (PCA) — Annual factor loadings for 6

source classes using imputed UATs data
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Figure SA1- 23. PCA -Variance explained for 5 and 6 source classes of imputed UATSs
data
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Figure SA1- 24. Principal component analysis (PCA) — Annual factor loadings for 5
source classes using observed UATSs and metals data
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Ambient air quality datasets include missing data, values below method detection limits and
outliers, and the precision and accuracy of the measurements themselves are often unknown.

At the same time, many analyses require continuous data sequences and assume that
measurements are error-free. While a variety of data imputation and cleaning techniques are
available, the evaluation of such techniques remains limited. This study evalnates the performance
of these techniques for ambient air toxics measurements, a particularly challenging application,
and includes the analysis of intra- and inter-laboratory precision. The analysis uses an unusually
complete-dataset, consisting of daily measurements of over 70 species of carbonyls and volatile
organic compounds (VOCs) collected over a one year period in Dearborn, Michigan, including
122 pairs of replicates. Analysis was restricted to compounds found above detection limits in

> 20% of the samples. Outliers were detected using the Gumbell extreme value distribution.
Error models for inter- and intra-laboratory reproducibility were derived from replicate samples.
Imputation variables were selected using a generalized additive model, and the performance of
two techniques, multiple imputation and optimal linear estimation, was evalnated for three
missingness patterns. Many species were rarely detected or had very poor reproducibility. Error
models developed for seven carbonyls showed median intra- and inter-laboratory errors of 22%
and 25%, respectively. Better reproducibility was seen for the 16 VOCs meeting detection and
reproducibility criteria. Imputation performance depended on the compound and missingness
pattern. Data missing at random could be adequately imputed, but imputations for row-wise
deletions, the most common type of missingness pattern encountered, were not informative. The
analysis shows that air toxics data require significant efforts to identify and mitigate errors,
outliers and missing observations, and that these steps are essential and should be performed
prior to using these data in receptor, exposure, health and other applications.

1. Introduction

Most air quality data have been collected for regulatory
purposes, such as determining compliance with ambient air
quality standards. The use of the same data for other pur-
poses, including epidemiological studies, while convenient and
inexpensive, can place different and often more stringent
demands on data quality and completeness, since most statis-
tical methods assume that observations are error-free and
complete, ie., datasets are fully populated. Data quality is
an important and often unappreciated issue, especially for
toxic air pollutants where measurement uncertainties can be
large. In general, monitoring methods for toxics have been
only partially antomated, samples must be transported from
the monitoring site to the laboratory for analysis, and analyses
tend to be complex and intensive. These steps increase the
likelihood of errors from a variety of sources, eg., sample
contamination. Further, logistical and cost issues generally
prohibit air toxics sampling programs from incorporating
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many duplicate measurements and other analyses that are
necessary to quantify accuracy and precision.

Missing air quality data, another common problem, results
from both random and planned events. Random events in-
clude power and equipment failures, lost samples or logs,
other guality assurance problems , measurement and calibra-
tion errors, and faults in data acquisition.! Planned events
include quality assurance checks (instrument flow, zero and
span checks) and calibrations that require that the monitoring
instruments be taken off-line. In some cases, pollutants are
monitored intermittently, i.e., particulate matter measure-
ments often are collected only every third or sixth day, while
ozone may be measured ounly during the summer “ozone”
season. Evalunations of the several approaches that have been
used to address problems of missing data have been very
limited. Problems of both missingness and quality assurance
must be addressed to obtain complete and reliable datasets.

This study evaluates the performance of two imputation
methods, optimal linear estimation and multiple imputation,
for handling missing air quality data. Performance is tested
using an unusually complete urban air toxics dataset contain-
ing ambient measurements of volatile organic compounds
(VOCs) and carbonyl species. As described below, the imputa-
tion of toxics data is particularly challenging, but at the same
time highly relevant for epidemiology, source apportionment,
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risk assessment and other applications that use ambient air
quality data. We alse demonstrate several quality assurance
(QA) filters and reproducibility/uncertainty models that may
be generalizable to other measurements.

2. Background
2.1 Quality assurance issues

Several problems are frequently encountered in ambient air
quality datasets, which are grouped together here as QA
issnes. These issues tend to be especially important for urban
air toxics (UATS), more so than for conventional air pollu-
tants, for several reasons. First, toxic measurements of trace
metals, VOCs, carbonyls, semi-volatiles and other pollutants
may reflect low concentrations that fall below method detec-
tion limits (MDLs). For some species, concentrations may
rarely, if ever, exceed MDLs. Such ‘sparse’ data patterns can
occur because a specific toxic pollutant simply may not be
present, or because the MDL is too high to allow frequent
detection. This situation rarely occurs for conventional pollu-
tants, both because these pollutants are ubiquitous due to
emissions from numerous sources, and because monitoring
instruments have been highly refined and are very sensitive.

Second, high concentration values may be encountered on
occasion, even for rarely detected pollutants. These detections
(or “hits”’) may be real and significant, or they may be false
positives due to contamination, chemical reactions forming
artifacts on the sampling adsorbent, interferences, chromato-
graphic shifts, laboratory errors, or some other reason. With-
out duplicate samples or additional information, it is difficult
or impossible to determine whether a rarely detected com-
pound is a true detection and thus meaningful. High values
can be characterized as statistical outliers, e.g., using the
Gumbell extreme value distribution originally developed for
hydrologic systems® * and applied to air quality data,>® and
which we later demonstrate in this paper. However, the
designation of a measurement as a statistical outlier does not
indicate whether or not the concentration was actually experi-
enced.

Third, it is difficult to characterize the measurement preci-
sion and accuracy for commonly-detected toxic pollutants,
and exceedingly difficult for rarely detected pollutants. Com-
pared to conventional (so-called criteria) pollutants, where
relative precisions and accuracies are well-characterized
and in the 10% range (or lower), the few available
estimates suggest much greater variability.” In the (unusually
complete) Dearborn study described later, for example,
duplicate samples were available on 120 days, and a com-
pound detected on say 5% of days would be expected to have
only ~6 duplicate pairs available, too small a sample to
construct meaningful statistics. Due to the lack of reference
methods and standards, co-located replicate samples and
intra- and inter-laboratory comparisons are used to indicate
agreement, but in practice, such exercises are infrequent and
are limited to largely analytical uncertainties, and thus would
not necessarily indicate contamination or improper sampling
techniques.

2.2 Data imputation methods

Missing data have been characterized into three general
patterns: missing completely at random (MCAR); missing at
random (MAR); and not missing at random (NMAR).® Like
most other datasets, missing air quality data can be expected
to be neither MCAR nor MNAR, but a mixture of these
patterns.

The most common approaches to deal with missing data are
deletion and imputation methods. The former includes case
deletion, pair-wise deletion and list-wise deletion, all standard
methods in statistical packages such as SAS.'® Imputation
methods include single imputation (SI) techniques, which
replace each missing one with a single value, and multiple
imputation (MI) techniques, which impute multiple plausible
values. The most common SI method is ad hoc replacement
with a specific value, which is most frequently seen when
measurements below the MDL that are replaced with one-half
of the MDL. MI has been shown to yield valid statistical
inferences without the disadvantages of SI techniques, namely,
the inability to account for uncertainties attached to the
missing values.®'! In MI, each missing value is replaced with
avector of m > 2values resulting in m datasets, each of which
is analyzed separately using standard complete-data software
to yield “complete-data™ statistics.'? The multiple analyses are
then combined, yielding composite statistics.

The following summarizes two SI and MI methods that are
later evaluated (in the Results section). First, as presented by
Batterman,'® optimal linear estimation (OLE) is a SI method
based on a Bayesian framework in which observations Z; are
assumed to contain error Vi:

Z. =X, +V, )

where X; = true pollutant level. Error covariance matrix R, is:

R, = B[V, V'] @

Errors V, and covariance R, must be assumed or estimated.
For example, errors might be determined empirically using
replicate samples. Alternately, Batterman estimated the total
error by propagating component errors, and estimated a
relative error of 30% for 24 h measurements of fine and coarse
fraction particulate matter (PM,s, PM,5 ;o) and hourly
measurements of 03."* Assuming unbiased (E[V,] = 0) and
uncorrelated errors (E[X; V] = 0), the best linear, unbiased
and minimum variance estimate X of the missing observa
tions is:

X =M+PP+R)"(Z-M 3
where M = mean vector and P = covariance matrix, both
estimated from available data, and 7 = number of observa-
tions used to estimate M and P:

M=T"'%X @
p=7" I [(X — M)X; — M)] ®)

Unlike most ST methods, the OLE approach estimates the
uncertainty of imputed values. However, the use of imputed
datasets derived from OLE, as well as any other SI method,
will lead to standard errors that are systematically
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underestimated, biasing statistical inference tests and giving
erroneously small p-values and confidence intervals.®

The MI procedure, also derived from a Bayesian perspec-
tive, uses m independent random draws from the posterior
predictive distribution.™ The theory behind MI is detailed
elsewhere (Rubin 1987, 1996).112 In brief, for a dataset Y =
(Yobs, Ymis), wWhere Yo,e = observed values and Y, =
missing values, the basic result is:

P(Vest Vons) = [P(Yest/Yous Youio) P(Vouis Vo) Vi (6)

where P(Y, . |Y.ys) & complete-data posterior distribution of
Y., the estimate of the missing data conditioned on the
observed data; and P(Ymis/Yons) = predicted posterior dis-
tribution of the missing data, also conditioned on the observed
data. The final estimate is the average of repeated complete-
data posterior means of Yg:

E{Y est[Yos) = E[E(Yes| Vo, Vinis)Yobs] M

and the final variance of Yest, V(Yest| Yous), 182

VYoot [Yons) = B[V(Yout|Yons, Yonia)[Yonsl
F VIE(V(Yest| Yobs, Yanis)| Yobsl (®)

which represents the sum of the average of repeated complete-
data variances of Y, and the variance of repeated complete-
data posterior means. Five imputations provide an efficiency
of ~94% for MI estimation when up to 30% of the data is
missing.”> The essential features of MI inferences are that
predicted distribution of missing values are conditioned on
observed values, and that multiple imputations reflect both
within- and between-imputation variances.® Hopke ef al.
suggests that MI in air guality applications may be beneficial,
since imperfect imputation models make mistakes for only a
fraction of missing information, whereas the complete-dataset
is being relied npon for the final inference, and since imperfect
models yield large within- and between-imputation variability
and consequently will lead to conservative inferences.'®

3. Experimental
3.1 Data acquisition

Toxics data were obtained from the Michigan Department of
Environmental Quality (MDEQ) and included daily measure-
ments for the period 4/19/2001 te 4/18/2002, collected at a
permanent monitoring site in Dearborn, Michigan. Samples
were shipped to and analyzed by laboratories at the Eastern
Research Group (ERG, Research Triangle Park, NC, USA)
and the MDEQ (Lansing, MI, USA). VOCs were collected in
canisters and analyzed by GC-MS following the TO-15 meth-
od. The ERG and MDEQ laboratories reported 59 and 53
VOC species, respectively. Carbonyls were collected on DNPH
cartridges and analyzed by HPLC following the TO-11A
method, with the ERG and MDEQ laboratories reporting
12 and 13 species, respectively. (Supplements 1 and 2 in the
ESIt show the VOC and carbonyl species analyzed by each of
the laboratories.)

Reproducibility determinations, intra-laboratory and inter-
laboratory comparisons were derived from duplicate sample
pairs collected on 122 days (every third day). To determine

intra-laboratory reproducibility, both duplicates were sent to
ERG on 40 days and to MDEQ on 41 days. To determine
inter-laboratory reproducibility, duplicates were sent to both
ERG and MDEQ on 41 days. There were 282 and 41 days
when a single sample was analyzed by ERG and MDEQ,
respectively, and the total possible number of days that ERG
and MDEQ analyzed samples were 302 and 83 days, respec-
tively. VOC and carbonyl sampling followed the same
schedule.

For imputation purposes, daily or hourly measurements of
conventional pollutants were obtained from four nearby
(within 20 km) MDEQ sites: Dearborn (daily PM;,), Allen
Park (CO and PM, s), East Seven Mile {NO, and SO,), and
Linwood (CO, NOj,, PMss and SO,). In Michigan, O; is
monitored for only 6 months of the year (April to September);
therefore, Os was not considered for this study. Daily (24 h)
values were computed from hourly data if > 75% of hourly
data > 18 h) were available and considered valid. These
pollutants are collected using federal reference methods.

Hourly and daily meteorological data, obtained from the
MDEQ and the National Oceanic and Atmospheric Admin-
istration (NOAA), included temperature, dew point, minimum
and maximum relative humidity, precipitation, wind speed,
wind direction, barometric pressure and mixing height. Except
for wind direction, daily values were computed from hourly
data, again if > 75% of hourly data were considered valid.
For wind direction, eight new variables were defined as the
number of hours the wind was in each of eight 45° sectors.
These variables were also used for imputation purposes.

3.2 Data filters

Several filters were used to select pollutant variables for
analysis and provide QA checks. First, to include a toxic
pollutant in the analysis, > 20% of the observations were
required to exceed the MDL. This detection frequency is
conservative with respect to other studies, ie., Xie et al
required > 63% of the data to be present and above MDLs.!”
Second, following convention, measurements below the MDL
were set to 1/2 MDL. Next, potential statistical ountliers were
identified by pooling all samples (including replicates analyzed
by either laboratory), fitting the top decile of detected con-
centrations to the Gumbell extreme value distribution, and
determining those measurements that departed from the fitted
distribution. If the potential outlier had a replicate that dis-
agreed (i.e., near the MDL), then the high value was consid-
ered to be erreneous and removed. If the replicate was similar
(i.e., considerably above the MDL), then the two replicates
were averaged. If a replicate was unavailable, then the
observation was removed. After completing the MDL, repro-
ducibility and outlier screens, duplicate measurements at a
laboratory, if available, were averaged.

3.3. Intra- and inter-laboratory reproducibility

Intra-laboratory reproducibility for each pollutant and
laboratory was characterized by examining duplicate samples
using both statistical measures, e.g., paired -tests for means,
errors, distributions, and correlations (both parametric
Pearson and non-parametric Spearman), and graphical
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analyses, e.g., scatter plots. Intra-laboratory reproducibility
was alse quantified by the coefficient of variation, COV (%)’

( )

where p; and s; = primary and secondary replicates, respec-
tively, and n = number of replicate pairs. We identified those
species with COVs <15%, an acceptability criterion used by
US EPA." If intra-laboratory agreement was minimal, e.g., as
indicated by r < 0.2 or not statistically significant at « = 0.05,
then that pollutant was removed from further consideration.

Error models for intra-laboratory reproducibility were con-
structed following an approach used previously for VOCs.!®
Observations from all carbonyl species that met the minimum
detection frequency (20%, discussed above) were pooled
together. Replicate pairs were averaged, and measurements
below MDLs and statistical outliers were excluded. Then,
plots were constructed showing decile concentrations (using
the decile average) versus the absolute residuals of replicate
pairs in each concentration decile. Finally, the 25th, 50th, 75th
and 90th percentile errors in each decile were regressed against
the 10th to 100th or 10th to 90th decile concentrations, the
latter to address additional outliers observed in the top decile
of ERG’s carbonyl measurements. This analysis was per-
formed separately for ERG and MDEQ laboratories. The
identical procedure was used for VOCs. The resulting intra-
laboratory error models are used in the OLE estimator
(described below).

Inter-laboratory reproducibility was characterized by exam-
ining the replicate samples analyzed by the two laboratories
using statistical and graphical analyses as described for the
intra-laboratory analyses. If the inter-laboratory agreement
was poor (r < (.2) or not statistically significant {at « = 0.05)
and the correlation coefficient from ERG intra-laboratory
comparison was also poor, then that pollutant was removed
from the analysis. Differences in mean concentrations reported
by the two laboratories were examined nsing paired ¢-tests and
the non-parametric Wilcoxon signed rank (WSR) tests for two
related samples, considering only cases where both labora-
tories made measurements above MDLs, thus avoiding possi-
ble biases since MDLs differed.

pi—s)) }

0.5(ps+si)

%COV = 100

3.4 Optimal linear estimation

The OLE method was implemented in Excel wusing the
XNUMBERS" add-in for high precision matrix operations
(e.g., inversion in eqn (3)), necessary for imputations nsing a
large number of predictor variables. Error covariance matrix
R and covariance matrix P (eqns (1) and (2)) utilized the
median intra-laboratory error model {described above). Errors
were assumed to be independent and time invariant. Four
OLE models were constructed for each pollutant that differed
with respect to the treatment of autocorrelation: (1) use of
only contemporaneous observations {lagQ); (2) contempora-
neous plus 1 day lagging observations (lagl); (3) contempora-
neous plus 1 day leading observations (leadl); and (4)
contemporaneous plus lag and lead (LL1). The inclusion of

leading and/or lagging observations incorporates auntocorrela-
tion information.

A very large number of possible predictor variables were
available. Variables for each imputation model were selected
using GLMSELECT, a new procedure utilizing the general
linear model framework and available as a fest trial in
SAS 9.1.1%% A forward step-wise procedure was used along
with several selection criteria, including the general informa-
tion (:n'f:erion,21’22 the corrected Akaike information criter-
ion,? the Schwarz Bayesian information criterion,”>** the
average square error (ASE), and the average residual sum of
squares. The predictor variables identified using GLMSE-
LECT were introduced into the model simultaneounsly. Each
model was examined individually, with the goal of developing
powerful but parsimonious and robust models. We examined
the performance of the OLE estimator, using both nominal
and log-transformed concentrations, in part to account for the
expected log-normal distribution of pollutant concentrations.

3.5 Multiple imputation

MI models were constructed using the same data and predictor
selection procedures described above and the MI procedure in
SAS, a Markov chain Monte Carlo (MCMC) implementation
with the multiple chain option.'® A separate MC chain was
used for each imputation. This implementation assumes multi-
variate normality. As with OLE, we evaluated performance of
the same estimator using both the nominal and the log-
transformed data. As deseribed for the OLE method, four
MI models were constructed for each pollutant using different
combinations of leading and lagging observations. Five im-
puted datasets (m = 5) were generated for each pollutant.

3.6 Performance evaluation

Imputations from OLE and MI methods were evaluated using
the same approach and the same datasets. Initially, perfor-
mance was evaluated by random deletions, imputing the
deleted data, and then comparing actual and imputed mea-
surements using several indicators, e.g., Willmott’s index of
agreement (dy), coefficient of determination (R%), mean abso-
lute error (MAE), distribution analyses (percentiles and box
plots), and scatter plots of imputed versus observed values.
Among these indicators, d, addresses outliers and is a robust
measure with a similar interpretation as R% eg., 0 and 1
denote random and perfect fits, respectively.?> The MI scatter
plots used the average of 5 imputed values.

To test different causes of missing values in air pollution
datasets, three deletion patterns were used: random deletion,
random block deletions of 5, and random row-wise deletions.
For each deletion pattern, ~25% of the data were removed
following Junninen et al. (2004) and to give a sufficient sample
size for imputations (about 79) for robust statistics. Fach
deletion pattern represents a different situation. Random
deletions portray missing data due to data entry problems,
outlier removal, and other events that affect single observa-
tions. Random block deletions most commeonly arise from
equipment failures, which are not fixed for a period of time
(e.g., 5 days in our simulation). Row-rise deletions, which
tested model performance using exclusively lag and lead
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measurements of toxics (but contemporaneous measurements
of conventional and meteorology variables were permitted)
often reflect a missingness pattern for air toxics, since multiple
pollutants are measured in a single sample, and any day that
sample is unavailable results in missing values for all of the
toxics in the group. In practice, missingness patterns for air
toxics data represent a mixture of these three missing patterns,
though row-wise deletions are the most common. Missing at
random and random block patterns are dominant in other
types of air quality data, e.g., conventional pollutants. The
separate analyses of each of these three missingness patterns
provide a sensitivity analysis that gives insight regarding how
the imputation methods will perform for different types of air
quality data. Also, it should be noted that the performance is
largely independent of the amount of data that is removed and
then imputed, as long as the sample size is sufficient to give
valid statistics. This was verified with 10 and 25% deletions,
which gave comparable results.

The evaluation used the ERG dataset, which was the most
complete. Replicates, if available, were averaged. Predictor
variables were selected after data were deleted, simulating an
actnal dataset. The present paper presents evaluations for
three carbonyl and three VOC species. The selected com-
pounds had different detection frequencies and/or represented
different and important types or compounds. For carbonyls,
detection frequencies did not differ, so the selection included
both very volatile and aromatic carbonyls {acetaldehyde,
benzaldehyde and formaldehyde). For VOCs, aromatic and
chlorinated VOCs were selected (benzene and tetrachloro-
ethylene); butadiene was alse included due to its low detection
frequency. (Evaluations for other species are provided in
Supplements 9 and 10 of the ESIt.)

4. Results
4.1 Detection frequency, outliers, precision and accuracy

The original dataset contained 12 carbonyls (n = 266) and 59
VOCs (n = 282) measured by the ERG laboratory, and 13
carbonyls (n = 54) and 53 VOCs (n = 57) measured by the
MDEQ laboratory. (Supplements 1 and 2 in the ESIt give
statistics of all measured toxics.) Considering the sampling
design, missing observations in one year of air monitoring data
comprised ~6.4% and ~35% of the possible ERG and
MDEQ data points, respectively. Data were processed using
four QA screens, discussed below.

First, over half of the air toxics species were rarely detected
above MDLs. With the 20% (minimum) detection frequency
criterion, the first screen eliminated 38 of 59 VOC species and
1 of 12 carbonyl species measured by ERG, and 35 of 53 VOCs
and 3 of 13 carbonyls measured by MDEQ. The eliminated
compounds, which included many chlorinated VOCs, are not
discussed further. Table 1 identifies the remaining 13 carbonyls
and 24 VOCs.

The second data screen identified outliers. Probability dis-
tribution plots for the top decile concentrations of all com-
pounds approximated straight lines, indicating that the
Gumbell distribution was appropriate. After reviewing repli-
cates, we considered that 11 compounds had outliers: formal-

dehyde (n = 1), hexaldehyde (n = 1), tolualdehyde (n = 1),
propylene (n = 2), n-octane (n = 1), methylene chloride (n =
5), mp-xylene (n = 2), ethylbenzene (n = 2), o-xylene (n = 1),
1,3,5-trimethylbenzene (n = 1) and toluene (n = 2). Several
outliers occurred on the same dates, i.e., n-octane, m,p-xylene,
and ethylbenzene on 3/11/2002. (Supplement 3 of the ESIt
gives information on the outliers; Supplements 4 and 5 of the
ESIt show log-normal distribution plots). Methylene chloride
had the largest number of outliers and reached very high
concentrations, e.g., MDEQ showed 199 ppb on 7/17/2001,
and ERG showed 148 ppb on 3/3/2002. This compound is
frequently used as a laboratory solvent and thus these ontliers
might be a result of inadvertent contamination. These 19
points were removed from the dataset and were considered
missing. These ontliers represent a very small percentage of the
measurements.

Intra-laboratory reproducibility. Intra-laboratory agreement
depended on the species and, to a lesser extent, on the
laboratory. In many cases, non-parametric statistics {e.g.,
Spearman rank correlation coefficients) and parametric {e.g.,
Pearson correlation coefficients) gave similar results (Table 2),
but the former is emphasized since concentrations of many
toxics were not normally distributed and the Pearson statistic
is sensitive to extreme values. For the ERG laboratory,
dimethylbenzaldehyde and acetone had nil reproducibility
(r < 0.2); crotonaldehyde, valeraldehyde, and carbon tetra-
chloride showed marginal reproducibility (0.2 < r < 0.3), as
did acetone measurements by MDEQ. For the 10 carbonyls
measured by the ERG surviving this screen, the average
correlation between replicate samples was 0.43 + 0.15; the
20 VOCs obtained higher correlation, (.62 £+<0.14. The
MDEQ laboratory obtained marginally higher performance
for carbonyls (average r = 0.51 ++0.10) and comparable
performance for VOCs (average r = (.65 £+0.18). Both
laboratories had high detection frequencies but poor repro-
ducibilities for acetone and methylene chloride, snggesting
possible contamination problems for these widely-used
solvents.

Intra-laboratory agreement, as indicated by COVs, often
but not always followed results given by correlations. Reason-
ably low COVs (<50%) were attained by most VOCs but
only one carbonyl (tolualdehyde). For the ERG measurements
(limited to compounds with r > 0.2), COVs averaged 62 +
16% for the carbonyls and 35 £ 23% for the VOCs. Contrary
to results using the intra-laboratory correlations, the
ERG laboratory attained slightly higher reproducibility for
carbonyls than the MDEQ laboratory (79 ++13%); for
VOCs, the MDEQ laboratory was again comparable (38 &
18%). The strict 15% COV limit used by US EPA was met by
only four compounds measured by ERG (chloromethane,
dichlorodifluoromethane, ftrichlorofluoromethane and tri-
chlorotrifluroethane), and none from MDEQ. In contrast
to most other toxic species, these four compounds show a
very limited concentration range (Table 1). Such constant
measurements can “reward” the COV indicator but will
“penalize” correlations, e.g., chloromethane’s good COV
(12%) is not matched by its fair intra-laboratory cerrelation
(r = 0.45).
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Table 1 Statistics of toxic concentrations measured at Dearborn, Michigan for those VOCs and carbonyls with detection frequencies above 20%.
Duplicates were averaged and outliers excluded. TFE = trifluoroethane; DF = detection frequency; MDL = method detection limit; — = is not

measured or DF <20%.

ERG laboratory

MDEQ laboratory

DF Mean 50th 75th

MDL DF Mean  50th 75th Max  MDL

Compound N (%) Gpbv) (pbv) (pbvl (b GpbY) N (%) (ppbv)  (ppby) (ppbY)  (ppbY) (ppbv)
Carbonyls

2,5-Dimethylbenzaldehyde 284 32 0.009  0.003 0.008  0.280 0.005 — — — — = — —
Acetaldehyde 284 100 1.166  0.914 1.510  4.406 0.014 74 97 0.860 0.760  1.030 5.085  0.009
Benzaldehyde 284 98 0.050 0.040 0.063 0422 0.004 75 69 0.032 0.012 0.038 0.360  0.004
Crotonaldehyde 284 81 0.027 0.012 0.018 0.309 0.006 75 21 0.011 0.004 0.004 0.094  0.008
Formaldehyde 283 100 2317 2.089 3.094  10.486 0.016 75 97 2139 2.055  2.603 7.873  0.008
Hexaldehyde 284 99 0.119  0.041 0.110 0.683 0.004 75 75 0.065 0.027 0.072 0.653  0.005
iso-Butyraldehyde 284 99 0199 0.144 0235  0.801 0.005 — — — — — — —
iso-Valeraldehyde 284 21 0.020 0.002 0002 0377 0.004 75 60 0.055 0.033 0073 0390 0012
m,p-Tolualdehyde = == = = — —= = 75 35 0.016 0.001 0.019 0.157  0.002
n-Butyraldehyde = == —= = = = — 75 88 0.094 0.058 0.100 0.92%  0.007
Propionaldehyde 284 90 0.143  0.103 0.180 1.440 0.007 75 69 0.175 0.115  0.220 0.810 0.083
Tolualdehydes 283 93 0.043  0.031 0.053 0.281 0.008 — — g o — - —
Valeraldehyde 284 91 0.058  0.037 0.065  0.377 0.003 75 33 0.038 0.011  0.035 0343 0.022
VOCs

1,1,2-Trichloro-1,22-TFE  — — = . —
1,2,4-Trimethylbenzene 302 90 0210 0179 0267
1,3,5-Trimethylbenzene 301 3% 0065 0035 0088

1,3-Butadiene 302 26 0.057 0.035 0.071
2,2,4-Trimethylpentane - — — — —

Acetone 284 100 1422 1.138 1.771
Acetonitrile 302 36 1.804 0.125 1.642
Acetylene 302 99 1.684  1.520 1.983
Benzene 302 100 0.614  0.537 0.697
Carbon tetrachloride 302 90 0.09 0.100 0.110
Chloremsthane 302 100 0.607 0.594  0.644
Dichlorodiftuoromethane 302 100  \cos4  0.625 0.663
Ethylbenzene 300 98 0.181 0.155 0.230
Hexane = == — — —s

m,p-Xylens 300 100 0517  0.445 0.661
Methyl ethyl ketone 302 74 0.613  0.570 0.878
Methylene chloride 208 96 2468  0.647 1.731
n-Octane 301 33 0.055 0.030 0.072
o-Xylene 301 97 0.211  0.180 0.262
Propylens 302 100 1.193  0.764 1.354
Tetrachloroethylene 302 33 0.064  0.030 0.074
Toluene 300 100 1.049 0850 1.293
Trichlorofluoromsthane 302 100 0319 0295 0.333
Trichlorotrifluroethane 302 100 0.111 0.106 0.130

— — 8 95 0.094 0.089  0.109 0.178  0.034
1.029 0.070 & 86 0.171 0.135 0210 0.629  0.062
0312 0.070 & 29 0.050 0.029  0.063 0.191  0.057
0.292 0070 — — ==

8 99 0126 0.099  0.148 0.537  0.017

5.770 0.008 75 99 0.982 0.856 1.115 3513 0.011
102.600 0.250 83 73 1.561 0991  1.711
6.480 0130 — — =2 — — — —
2173 0.040 &3 100 0.564 0434 0.654 2494 0.070
0.170 0.080 8 95 0.089 0.090  0.099 0.125  0.038
0.988 0.060 83 100 0.583 0.570  0.623 1426 0.062
1.079 0.040 83 100 0.560 0.576  0.620 0.846  0.048
0.647 0.040 83 55 0.115 0.092  0.144 0.3950  0.083

12552 0.520

— 83 27 0435 0.250  0.531 3318  0.500

1.957 0.050 83 61 0311 0.240 0.383 1.055  0.200

2.920 0150 — — == — == _— =
34.270 0.060 81 79 1480 0401 1302 11222 0230
0.280 0.0600 — — == s == = —
0.899 0.050 & 90 0.140 0.110  0.169 0.519  0.043
14.137 0.050 — — — — — — —

0.670 0.060 8 34 0.061 0.036  0.080 0.343  0.071
6.431 0.060 83 100 0.998 0.763 1185 4718 0.070
1.540 0.040 83 100 0.274 0.279  0.297 0.500  0.048
0.194 0070 — — — — — — —

Inter-laboratory reproducibility. Six of the 23 compounds
where comparisons were possible showed negligible inter-
laboratory correlation (Spearman r < 0.20), specifically,
crotonaldehyde, iso-valeraldehyde, valeraldehyde, acetone,
acetonitrile and carbon tetrachloride (Table 2). Inter-labora-
tory agreement was only marginally better (0.20 < r < 0.32)
for propionaldehyde, chloromethane, and methylene chloride.
These nine compounds previously had shown negligible-to-fair
intra-laboratory agreement (r < 0.50).

Higher mean concentrations were reported by the ERG
laboratory compared to the DEQ laboratory for 8 VOCs
(1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, carbon tetra-
chloride, dichlorodifluoromethane, ethylbenzene, m,p-xylene,
a-xylene, trichlorofluoromethane), based on paired ¢-tests
(Table 2). The same VOCs were identified by the non-para-
metric Wilcoxon signed rank test, along with toluene and two
carbonyls (benzaldehyde and acetonitrile). However, only
ethylbenzene, m p-xylene and o-xylene showed sizable concen-
tration differences (nearly factor of two), differences that were
maintained across the measured concentration range. Other

compounds showed much smaller differences. These results
cannot be explained by MDLs, but appear to result from
calibration discrepancies.

Final dataset. Carbonyls and VOC species were selected for
further analysis by considering data availability, detection
frequency, outliers, intra-laboratory reproducibility, and in-
ter-laboratory agreement. Five compounds measured only by
the MDEQ laboratory {mp-tolualdehyde, n-butyraldehyde,
1,1,2-trichloro- 1,2,2-trifluoroethane, 2,2 4-trimethylpentane
and hexane) were excluded to avoid having to impute an
excessive fraction (>65%) of missing data. The 39 species
with low detection frequencies (< 20%) were omitted, as were
the 19 outliers detected using the Gumbell distribution in the
second data screen. Pollutants with poor intra- and inter-
laboratory agreement were considered on a case-by-case basis.
Crotonaldehyde, valeraldehyde, acetone and carbon tetra-
chloride were eliminated, as they showed little agreement in
both intra- and intra-laboratory comparisons. Iso-valeralde-
hyde and acetonitrile showed fair intra-laboratory agreement
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Table 2 Intra- and inter-laboratory reproducibility. Based on only detected values. Significant values (p-value < 0.05) indicated in bold.

WSR = Wilcoxon signed rank; TFE = trifluoroethane; — = is not measured or detection frequency <20%
Retained in
Intra-laboratory reproducibility Inter-laboratory reproducibility ‘(i“al data;set
¥ = yes
Coefficient Correlation Correlation Correlation
of variance coeffiecient—ERG coefficient—MDEQ coefficient
Paired  WSR

ERG MDEQ t-test test
Compound (%) (%) Pearson Spearman Pearson  Spearman  Pearson Spearman  (p-value) (p-value)
Carbonyls
2,5-Dimethylbenzaldehyde 96 s 0.02 0.19 — === e — == ==
Acetaldehyde 61 70 0.38 0.39 031 0.41 0.37 0.52 0.37 - v
Benzaldehyde 51 78 0.54 0.61 0.23 0.65 0.28 0.46 1.00 0.04 ¥
Crotonaldehyde 61 97 032 0.22 031 0.48 —0.06 —0.07 0.83 —
Formaldehyde 58 64 0.45 0.48 0.51 0.58 0.73 0.61 0.95 0.93 ¥
Hexaldehyde 62 83 0.50 0.04 032 0.51 0.40 0.44 0.41 0.29 ¥y
iso-Butyraldehyde 52 == 0.19 0.40 = ] = = == == v
iso-Valeraldehyde 102 93 —0.05 0.49 0.52 0.34 —0.18 —0.28 = —
m,p-Tolualdehyde — 85 — — 0.26 0.64 — — — —
r-Butyraldehyde — 71 — — 0.40 0.45 — — — —
Propionaldehyde 61 59 0.34 0.33 0.87 0.49 0.25 0.28 0.07 0.11 ¥y
Tolualdehydes 42 S~ 0.71 0.56 — st = — - — ¥y
Valeraldehyde 69 88 0.06 0.22 0.55 0.56 0.04 0.13 0.86 0.91
VOCs
1,1,2-Trichloro-1,2,2-TFE  — 29 — — 0.30 0.38 — — — —
1,2,4-Trimethylbenzene 39 35 0.68 0.67 0.91 0.79 0.71 0.63 <0.01 <0.01 b
1,3,5-Trimethylbenzene 31 16 0.71 0.70 0.89 0.64 0.71 0.59 <0.01 <0.01 ¥y
1,3-Butadiene 49 === 0.60 0.59 — = E= = == === v
2,2,4-Trimethylpentane e 37 — — 0.89 0.66 = — — ==
Acetone 67 73 0.04 —0.01 0.15 0.26 —0.06 0.14 == 0.17
Acetonitrile 102 65 0.01 0.42 0.40 0.49 —0.17 —0.20 0.23 0.01
Acetylene 26 — 0.54 0.63 — — — — — — ¥y
Benzene 19 36 0.83 0.73 0.82 0.66 0.81 0.71 0.07 <0.01 ¥
Carbon tetrachloride 23 19 0.02 0.27 0.78 0.84 0.23 0.17 0.01 <0.01
Chloromethane 12 27, —0.02 0.45 0.44 0.42 0.32 0.32 0.98 0.47
Dichlorodifluoromethane 4 29 0.75 0.75 0.70 0.68 0.47 0.61 <0.01 <0.01 v
Ethylbenzene 44 16 0.69 0.65 0.92 0.88 0.78 0.66 <0.01 <0.01 Y
Hexane == 63 = - 0.48 0.60 = = = =
m,p-Xylene 35 24 0.60 0.71 0.92 0.88 0.80 0.67 <0.01 <0.01 ¥
Methyl ethyl ketone 50 — 0.66 0.65 — — — — — — ¥
Methylene chloride 7L 62 0.05 0.44 0.10 0.71 0.14 0.31 0.14 0.36
r-Octane 53 — 028 0.56 — — — — — — ¥
o-Xylene 39 30 0.63 0.79 0.93 0.83 0.79 0.67 <0.01 =<0.01 ¥
Propylene 32 = 0.97 0.73 — - — = — == ¥y
Tetrachloroethylene 28 63 0.82 0.77 0.39 0.53 0.64 0.61 0.65 0.73 v
Toluene 28 37 0.82 0.73 0.93 0.82 0.50 0.62 1.00 0.04 ¥
Trichlorofluoromethane 10 28 0.66 0.57 0.57 0.60 0.33 0.42 0.04 0.02 b
Trichlorotriflurcethane 10 — 0.76 0.52 — — — — — — ¥y

(r = 0.49 and 0.42, respectively) but nil inter-laboratory
agreement {r = —0.38 and —0.20, respectively) and high COVs
(both were 102%), so these compounds were eliminated. For
2,5-dimethylbenzaldehyde, only ERG measurements were
available, but these showed little reproducibility ¢+ = 0.19,
COV = 96%), thus this compound was eliminated. Methylene
chloride showed fair intra- and inter-laboratory agreement
(r = 0.44 and 0.31, respectively), a poor COV (71%), a
number of outliers or erroneous observations apparent in
scatter plots, and low Pearson correlations (after removing 5
observations in the second QA screen). Even when restricted
to low concentrations, both intra- and inter-laboratory scatter
plots showed little evidence of a trend. Because of the strong
possibility of laboratory contamination and the mediocre
reproducibility, methylene chloride was eliminated. Finally,
chloromethane also showed fair intra- and inter-laboratory
agreement (r = 0.45 and 0.32, respectively), but a very good

COV (12%). Scatter plots displaying intra- and inter-labora-
tory comparisons showed a number of outlying points not
detected in the second QA data screen (e.g., 1.43 ppb measured
on 4/22/01 by MDEQ, and 1.19 ppb on 1/29/02 measured by
ERG). Other than such points, chloromethane concentrations
appeared nearly constant, e.g., the inter-quartile range was
ouly 0.56-0.64 ppb and the 5th to 95th percentile range was
only 0.50-0.74 ppb. Because these concentration changes seem
attributable largely to laboratory errors rather than to local
sources, we omitted chloromethane.

The final dataset contained 23 compounds {7 carbonyls,
16 VOCs) measured by the ERG laboratory and 15 com-
pounds (5 carbonyls and 10 VOCs) measured by the MDEQ
laboratory (Table 2). For the ERG measurements, intra-
laboratory reproducibility measured as the (Spearman rank)
correlation coefficient averaged 0.49 + 0.12 across the carbo-
nyls and 0.67 £ 0.08 across the VOCs, while COVs averaged
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55 ++8% for carbonyls and 31 +<15% for VOCs. Inter-
laboratory performance was slightly worse, e.g., the correla-
tion was 0.46 = 0.12 for carbonyls and 0.62 -+ 0.08 for VOCs.
Benzene was the only species for which both intra- and inter-
laboratory correlations exceeded 0.7. Eight other VOCs de-
monstrated fair-to-good performance (intra- and inter-labora-
tory correlations exceeding 0.6). Overall, the precision and
inferred accuracy (based on inter-laboratory comparisons) for
many VOCs and most aldehyde measurements appear mixed
at best and often poor. This is surprising given that the
samples were measured in an urban/industrial setting where
concentrations were not particularly low, sample collection
procedures followed rigorous protocols and QA procedures,
and analyses were conducted by experienced personnel and
respected laboratories utilizing similar methods. Measurement

A. Carbonyl, ERG Intra-laboratory
Regression lines:

performance might be acceptable for a slightly larger number
of the toxics using more relaxed criteria, e.g., means within a
factor of two.

4.2  Error models

Models showing intra-laboratory precisions based on the final
dataset show that differences between replicates increase with
concentration (Fig. la—d). For example, carbonyl measure-
ments from the ERG laboratory have median absolute errors
that increase to 0.9 ppb as concentrations increase to 6.0 ppb
(Fig. la), and the corresponding regression model incorpo-
rates both constant and proportional terms: absolute error
(ppb) = 0.07 + 0.15 X concentration {ppb). Relative errors
tend to be higher for carbonyls as compared to VOCs, and
somewhat higher for the MDEQ laboratory compared to the

B. VOC, ERG Intra-laboratory
Regression fines:
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Fig. 1 Absolute relative error models for carbonyls (left) and VOCs (right) from intra-laboratory and inter-laboratory comparisons. Only
concentrations above MDLs were included. Maximum decile concentrations were excluded for VOCs (b, d and f).
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ERG laboratory. While the 50th percentile error model show
good fits (0.76 < R® < 0.88), additional observations and
perhaps wider bins {e.g., quintiles compared to deciles) might
improve fits. Models for errors at higher percentiles give much
larger errors, but attain comparable fits.

Models for inter-laboratory differences (Fig. le and f) are
similar to the intra-laboratory differences, but predicted errors
are generally larger. Using the ERG carbonyl measurements
as an example (Fig. le): the median absolute error (ppb) =
0.11 + 0.13 X concentration (ppb). As seen earlier, the
carbonyls had higher relative errors than the VOCs. All
of the inter-laboratory error models showed good fits
(0.73 < R> < 0.85).

4.3 Predictor variable selection for OLE and MI models

For the random deletions, selected predictor variables for
carbonyls included other carbonyl species (current, lead and
lag observations), pollutants CO and PM,, and several
meteorological variables (temperature, pressure, precipitation,
wind speed, wind sectors and mixing height). Predictors varied
by species and models, i.e., the LL1 model for acetaldehyde
included current and lead observations of other carbonyls, as
well as wind sectors, while the LLL model for benzaldehyde
only included current, lag and lead observations of other
carbonyls, as well asits own lag and lead values. These results
follow from the correlations seen between the variables
(Supplements 6-8 of the ESIt). Predictor variables for VOCs
were similar with the addition of pollutant SO,. The most
frequently selected meteorological variables were resultant
wind speed and SE and NW wind sectors. Similar predictor
variables were obtained for the random block deletions.

For row-wise deletions, predictor variables for the three
carbonyls included lead and lag observations of other carbo-
nyl species, meteorological variables (most commonly
temperature, precipitation and wind speed and occasionally
E and SE wind sectors and relative humidity), and criteria
air pollutants (CO but only for the LL1 acetaldehyde model).
The predictor variables for the three VOCs included lead
and lag observations of other VOCs, pollutants CO, PM, s
and SO, (but only for benzene and 1,3-butadiene), and
meteorological variables in a few instances. Predictors for
tetrachloroethylene included only one VOC (leading di-
chlorodifluoromethane) for the LL1 model and a few meteo-
rological variables for the other tetrachloroethylene models.
The GLMSELECT procedure did not select any predictors for
the leadl tetrachloroethylene model because the corrected
information criterion was not met. Lag0 models for both
carbonyls and VOCs included only meteorological variables.

4.4 Evaluation of OLE

Summary statistics describing the OLE performance for the
three carbonyls and three VOCs are shown in Table 3. Because
random block and random deletions obtained similar perfor-
mance, only the former is shown. (Performance statistics for
all carbonyls and VOCs and the three data patterns are shown
in Supplements 9 and 10 of the ESIT.) Also, because nominal
concentrations gave comparable or slightly better performance
than log-transformed data, performance statistics show results

for only the former. (Supplement 11 of the ESIt gives results
for log-transformed data.) Performance indicators ds, R* and
mean absolute error (MAE) yielded similar rankings. Perfor-
mance depended strongly on the deletion pattern, as discussed
below.

The OLE imputations for random deletions, which utilized
both contemporaneons co-pollutant and antocorrelative in-
formation, were quite successful for carbonyls. Acetaldehyde,
benzaldehyde and formaldehyde obtained d» values of 0.89,
0.88 and 0.86 (corresponding R% values of 0.72, 0.62 and 0.63),
respectively, using lagl and lagd OLE estimates. Scatter plots
of imputed versis measured values showed linear trends, but a
tendency to under-predict the highest values (Fig. 2a—c). OLE
performance for VOCs was mixed: benzene had high agree-
ment (0.79 < d» < 089, 0.52 < R? < 0.71, Fig. 2g); 1,3
butadiene showed lower performance (0.63 < d, < 0.78, 0.52
< R® < 0.68), a strong tendency to underestimate concentra-
tions, and a large fraction of measurements below MDLs
(Fig. 2h); while tetrachloroethylene imputations had little
correspondence to observations (0.23 < d, < 027, 0.00 <
R? < 0.03; Fig. 2i). Occasionally, the OLE imputations
yielded small negative estimates.

OLE imputations for the row-wise deletions of the three
carbonyls showed at best modest performance. Imputation
values were compressed towards the mean (Fig. 2d—f), suggest-
ing that the estimated errors (R,) may have been too large. For
row-wise deletions of VOCs, performance was poor, especially
for 1,3-butadiene and tetrachloroethylene (Fig. 2k and I).
Performance was essentially unchanged for tetrachloroethane,
but this VOC had essentially nil agreement for all deletion
patterns.

OLE performance was considered good if d» > 0.9 or
R > 0.7;fairif either 0.7 < dy < 0.9 0r 0.5 < R < 0.7;and
poor if either d> < 0.7 or R? < 0.5. With these guidelines and
considering random and random block deletions: performance
was good for acetaldehyde, isobutyraldehyde, propionalde-
hyde, benzene, ethylbenzene, mp-xylene, o-xylene, 1.24-
trimethylbenzene, and toluene; fair for benzaldehyde, formal-
dehyde, hexaldehyde, acetylene, 1,3-butadiene, methyl ethyl
ketone and 1,3,5-trimethylbenzene; and poor for tolnaldehyde,
dichlorodifiluoromethane, n-octane, propylene, tetrachloro-
ethylene, trichlorofluoromethane and trichlorotrifluoro-
methane. Row-wise deletions resulted in poor performance
for all 23 toxic compounds (Supplements 9 and 10 of the
ESIY).

These results clearly demonstrate the importance of the
missingness pattern. All estimates depended strongly on con-
temporaneous co-pollutant information. If this information
was unavailable (as simulated using row-wise deletions) then
performance was significantly degraded. This also explains
why random and random block deletions obtained compar-
able performance: leading and lagging measurements provided
relatively little information, and essentially only contempora-
neons measurements were utilized in the imputations.

4.5 Evaluation of MI

The performance attained by MI was similar to that of OLE.
For random deletions, d, values ranged from 0.83 to 0.95
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Table 3 Performance indicators for MI and OLE estimates. Bold values show highest performing model in group. Abbreviations: lagd = current
day observation; lagl = current and previous day observations; leadl = current and next day observations; LL1 = current, previous and next day
observations; SD = standard deviation; 4, = Willmot’s index of agreement; R? = coefficient of determination; MAE = mean absolute error

Multiple imputation

Optimal estimation

Performance indicators lag0 (SD) lagl (SD) lead1 (SD) LL1 (SD) lagd lagl leadl LLI
Acetaldehyde
Random 4 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.00) 086 089 074 0.88
R 0.83 (0.02) 0.80 (0.02) 0.83 (0.02) 0.83 (0.01) 069 072 051 0.70
MAE 0.29 (0.03) 0.30 (0.03) 0.30 (0.02) 0.30 (0.01) 030 026 046 0.28
Row-wise & 0.58 (0.05) 0.67 (0.04) 0.51 (0.05) 0.63 (0.06) 0.67 0.63 0.47 0.46
B 0.11 (0.05) 0.20 (0.06} 0.04 (0.02) 0.14 (0.08) 0.32 0.26 0.09 0.11
MAE 0.87 (0.08) 0.85 (0.12) 0.91 (0.04) 0.87 (0.06) 0.62 0.66 0.83 0.79
Benzaldehyde
Random b 0.80 (0.03) 0.83 (0.02) 0.76 (0.05) 0.76 (0.01) 0.88 082 077 0.83
o 0.46 (0.07) 0.55 (0.03) 0.38 (0.10) 0.38 (0.03) 0.62 0.48 0.44 0.51
MAE 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Row-wise & 0.48 (0.06) 0.54 (0.03) 0.35 (0.05) 0.38 (0.05) 050 057 025 0.31
R 0.05 (0.05) 0.09 (0.02) 0.01 (0.01) 0.00 (0.01) 0.07 013 002 0.00
MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.05 (0.00) 0.00 0.00 0.00 0.00
Formaldehyde
Random d 0.84 (0.02) 0.80 (0.04) 0.85 (0.01) 0.81 (0.04) 0.86 0.82 0.84 0.83
7 0.53 (0.05) 0.44 (0.07) 0.54 (0.03) 0.45 (0.09) 0.63 0.62 0.69 0.63
MAE 0.80 (0.03) 0.90 (0.10) 0.81 (0.03) 0.86 (0.05) 0.72 0.78 0.69 0.77
Row-wise b 0.51 (0.06) 0.53 (0.03) 0.40 (0.06) 0.40 (0.06) 052 054 033 0.33
B 0.05 (0.04) 0.06 (0.03) 0.01 (0.01) 0.01 (0.01) 0.09 011 000 0.00
MAE 1.49 (0.14) 1.58 (0.12) 1.79 (0.14) 1.79 (0.14) 237 231 265 2.65
Benzene
Random dy 0.87 (0.03) 0.84 (0.01) 0.87 (0.02) 0.84 (0.02) 0.89 0.85 0.84 0.79
R 0.61 (0.08) 0.52 (0.03) 0.59 (0.06) 0.52 (0.05) 071 063 063 0.52
MAE 0.17 (0.02) 0.18 (0.01) 0.17 (0.01) 0.18 (0.01) 0.03 0.04 0.04 0.04
Row-wise d 0.64 (0.04) 0.63 (0.03) 0.58 (0.06) 0.57 (0.06) 0.63 0.65 0.64 0.53
I 0.20 (0.05) 0.18 (0.03) 0.13 (0.05) 0.12 (0.05) 0.22 0.25 0.24 0.17
MAE 0.26 (0.02) 0.28 (0.02) 0.28 (0.03) 0.27 (0.01) 0.07 0.07 0.07 0.08
1,3-Butadiene
Random & 0.89 (0.02) 0.89 (0.01) 0.87 (0.01) 0.87 (0.02) 078 074 062 0.63
R 0.65 (0.06) 0.65 (0.03) 0.58 (0.03) 0.58 (0.04) 0.68 067 052 0.52
MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00
Row-wise & 0.58 (0.04) 0.50 (0.03) 0.52 (0.08) 0.46 (0.05) 049 043 041 0.30
B 0.09 (0.03) 0.05 (0.03) 0.07 (0.05) 0.03 (0.03) 013 0.08 007 0.03
MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00
Tetrachloroethylene
Random & 0.30 (0.07) 0.27 (0.03) 0.31 (0.06) 0.33 (0.06) 022 027 026 0.23
B 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 0.03 0.03 0.00
MAE 0.08 (0.01) 0.08 (0.00) 0.08 (0.00) 0.07 (0.00) 0.01 0.01 001 0.01
Row-wise > 0.41 (0.11) 0.38 (0.10y — 0.32 (0.06) 0.37 0.30 — 0.27
B 0.03 (0.02) 0.02 (0.01) — 0.01 (0.00) 0.15 0.09 — 0.08
MAE 0.07 (0.01) 0.08 (0.01) — 0.07 (0.01) 0.01 0.01 — 0.01

(0.54 < R* < 0.83) for the three carbonyls, and from 0.33 to
0.89 (0.01 < R” < 0.65) for the three VOCs (Table 3). Again,
performance for tetrachloroethylene was particularly poor.
With the exception of tetrachloroethylene, the MI scatter plots
showed linear relationships, somewhat less tendency to nnder-
estimate high concentrations, slightly better performance for
acetaldehyde and 1,3-butadiene, but greater scatter (Fig. 3a—
and g—). In all cases, the MI estimates had higher MAE,
reflecting the increased scatter, a result of the variance con-
tributed by the 5 imputations. Like OLE, MI occasionally
yielded small negative estimates. Row-wise deletions again
yielded substantially poorer performances (Table 3) and non-
linearities for formaldehyde, 1,3-butadiene and tetrachloro-
ethylene (Fig. 3f, k and 1). The highest observations were often
under-predicted.

Results obtained using log-transformed data (Supplement
12 of the ESI¥) showed slightly poorer performance and larger
standard deviations than imputations obtained using untrans-
formed data. Some of this is a result of evalunating perfor-
mance using the untransformed data, which tended
to emphasize higher values. When log-transformed, imputa-
tions were more consftrained, and often did not reflect the
higher values that are of most interest and significance.
Examination of scatter plots using untransformed data
(e.g., Fig. 3) do not show strong evidence of distributional
problems, and in fact suggest largely normally-distributed
residuals, which was seen in residual plots. Thus, for the toxics
dataset (as well as a better-behaved ozone dataset using 24 h
averages), MI {(and OLE) performance was largely insensitive
to log-transformations. An advantage of using log-
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Fig. 2 Scatter plots for observed versus imputed data using OLE method for random and row-wise deletions of six toxics. Only best models of

each group are plotted for each compound.

transformed data in the imputation model is negative esti-
mates can be avoided.

Overall, MI performance for random and randem block
deletions was considered good for most aromatic compounds,
fair-to-good for all carbonyl compounds, and poor for all
chlorinated and fluorinated compounds. Like OLE, MI per-
formance was poor for row-wise deletions for all of the toxics
(Supplements 9 and 10 of the ESIt).

5. Discussion
5.1 Quality assurance and reproducibility of toxics data

Fewer than a third of the measured VOC and carbonyl species
in the Dearborn dataset had detection frequencies above 20%
and was felt to provide useful information for time series-types
of investigations. Further, the reproducibility of the 23 com-
pounds remaining in the final dataset varied considerably.
Only benzene was considered highly reproducible, based on

intra- and inter-laboratory comparisons, though several
other aromatic VOCs (e.g., trimethylbenzenes and xylenes)
came close. Several VOCs showed little or ne reproducibility,
e.g., acetone and methylene chloride, although nearly all
observations exceeded MDLs. For carbonyls, reproducibility
was only fair. As anticipated, between-laboratory variability
exceeded within-laboratory variability, although the difference
was not dramatic. While these findings are based on a dataset
that is considerably more complete than those available in
most air toxic measurement campaigns, the analysis depends
upon data collected at only one monitoring site and analytical
work performed by only two laboratories. However, both
laboratories are known for their adherence to strict QA/QC
protocols, and they likely attain performance that is typical of
current analyses.

The most recent national study shows that the reproduc-
bility of carbonyl and VOC measurements varies widely.”
Across the National Air Toxics Trends Stations (NATTS)
reporting precision data for 2004, COVs ranged from 0 to
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Fig. 3 Scatter plots for observed versus imputed data using MI method. Otherwise as Fig. 2.

126%, but most (73%) sites and pollutants were reported to
meet the 15% COV criterion. In an assessment of the RIOPA
study, indoor, outdoor and personal sampling using a large
number (86-171) of replicate passive samples yielded COVs
from 19 to 30% for carbonyl compounds and from 6 to 42%
for VOCs; active carbonyl measurements had lower COVs
(9-19%, excepting glyoxyl not measured here).>® While
these studies suggest better reproducibility than obtained
for most of the toxic species measured at Dearborn, we
believe that reproducibility determinations at Dearborn are
typical of ambient monitoring, and in particular, routine
contract monitoring for several reasons. First, the NATTS
sample is very limited and unbalanced, eg., benzene,
which had the largest number of replicate measurements
available, showed COVs from 0% (Mayville WI USA, 1
sample pair) to 59% (Northbrook IL USA, 59 sample
pairs). Our benzene statistics (e.g., COV = 19% for ERG)
are in the center of this range. Second, contract monitoring is
at several disadvantages in comparison to research studies

(like RIOPA) where sample storage/hold times are minimized,
a larger number of QA/QC measures (e.g., blanks, spiked
samples, replicates) are utilized, and there is generally more
flexibility to undertake corrective measures if problems are
noted. In our research studies, for example, we typically obtain
VOC precisions better than 10% (at concentrations exceeding
~0.5 ugm 2).* Third, the Dearborn dataset contained up to
122 replicate sample pairs taken across a full year, and the
reproducibility estimates obtained from this large sample
likely represent the a full range of ambient sampling condi-
tions, e.g., very hot and humid weather, when performance
may suffer.

Reproducibility of toxic measurements is determined
by many factors, e.g., system cleanliness, sampling/uptake
stability, adsorbent breakthrough, loss/artifacts in sample
storage, sample recovery, and analytical performance. Some
problems can affect only certain toxic species, e.g., crotonal-
dehyde is known to disappear much more rapidly on DNPH
cartridges/extracts than most other aldehydes, and recovery of
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polar VOCs in canisters may be problematic.”” Other
problems can affect the entire sample, e.g., a poorly cleaned
canister or miscalibrated pump. While a full discussion is
beyond the present scope, we note that QA/QC programs
should be structured to identify (and ultimately rectify) such
problems.

This study also shows differences among reproducibility
indicators. Often, but not always, indicators such as correla-
tions, COVs, and slopes will yield similar inferences. Both
parametric and non-parametric measures should be nsed, since
outliers can be difficult to detect and can strongly influence
parametric measures. Multiple measures are needed as exam-
ination of a slope {and confidence interval) alone, for example,
may miss a possible intercept. The distribution of concentra-
tions will affect the indicators, e.g., COVs may be misleading
for compounds that show little variation, which include stable
and globally-distributed pollutants, such as chloromethane,
dichlorodifluoromethane, trichlorofluoromethane, carbon tet-
rachloride, trichlorotriffluroethane, and tetrachloroethylene.?
Relative errors are likely to increase for measurements near
MDLs. These statistics may also perform poorly for pollutants
with low detection frequencies (e.g., 1,3-butadiene). Finally,
while cost and logistic issues are recognized, probably at least
15 or 20 replicate samples per site and pollutant are needed to
determine performance with a reasonable degree of confi-
dence. If temperature or humidity extremes can influence
measurements, then replicates should be taken under the
widest possible range of weather conditions.

Error models. Many of the issues with the reproducibility
indicators are addressed by the semi-parametric error models
that incorporate both constant and proportienal terms, and
that show a range of likely errors, e.g., by percentiles. These
models provided stable estimates nsing residuals pooled across
the carbonyl and VOC groups. Had sample size permitted,
better performance and more insight would be attained using
separate models for each compound. Within-laboratory ana-
lyses showed median absolute errors from 5 to 15% for VOCs,
and about 20% for carbonyls. However, much larger errors
were not uncommon, e.g., 90th percentile errors were 40 to
60% for both groups of toxics.

5.2 Performance of imputation methods

In most respects, OLE and MI methods gave comparable
results. For random and random block deletion patterns, both
methods achieved good performance. The OLE method uti-
lized an exogenous estimate of measurement uncertainty for
observed results, and as this value was increased, the OLE
predictions became more conservative and approached the
mean, which was especially noticeable at high concentrations
of carbonyls. As expected, MI imputations provided greater
dispersion.

Imputations are more accurate for pollutants that are
strongly correlated to other pollutants or other measured
variables. For random missingness patterns, imputations de-
pended largely on contemporaneous measurements of other
toxics. Thus, the best performance was seen for traffic-related
VOCs (e.g., BTEX) and for certain combustien-related carbo-
nyls {e.g., acetaldehyde, isobutyraldehyde, propionaldehyde),

both of which form highly correlated groups of compounds.
Potentially, the inclusion of other predictor variables can help
to represent the influence of local sources {e.g., conventional
pollutants as surrogates, and wind direction for nearby
sources), reactions with other pollutants (temperature and
(,), rainout or washout mechanisms (precipitation), and
general atmospheric ventilation (possibly conventional polln-
tants like CO, mixing height, and atmospheric stability).
Interestingly, imputation performance did not suffer for 1,3-
butadiene, which had only 26% of its values above MDL but
which is also traffic-related; however, performance was poor
for tetrachloroethylene, with a similar detection frequency of
33%. Imputations tend to be poor for compounds that are
emitted alone or formed independently, e.g., chlorinated sol-
vents and formaldehyde, although inclusion of meteorelogical
information may improve performance. Pollutants that are
globally distributed and present at relatively constant levels
generally are not highly correlated with other pollutants or
meteorological variables, and thus are imputed poorly
(in terms of correlations, thongh COVs may be very small).
Such pollutants will provide little information in time-series
studies.

Imputation performance was very poor for row-wise dele-
tions, indicating that the serial correlation in the data was
insufficient fo provide informative estimates. The row-wise
imputations also utilized (contemporaneous, leading and lag-
ging) conventional air pollutants and meteorological variables.
In comparison to very high contemporaneous inter-pollutant
correlations (e.g., 0.6 < r < 0.9 for BTEX), correlations
between toxics and contemporancous daily measurements of
conventional pollutants were lower (0.0 < r < 0.5), as were
correlations with contemporaneous daily measurements of
meteorological variables {(—0.6 < r < 0.7). Thus, imputations
for row-wise deletions did not obtain the performance of the
random delefions. In the Dearborn dataset, the dominant
missingness pattern was row-wise, thus further attention to
this class of problems is warranted.

5.3 Other imputation studies of air quality data

There are few evaluations of SI and MI procedures for air
quality purposes. The OLE method was used to simulta-
neously estimate missing data, predict extrema, and check
the validity of observations for particulate matter concentra-
tions in Philadelphia and St. Louis, and missing Os data in
Houston.!* The method performed well based on correlation
coefficients and bias statistics comparing predicted and ob-
served values. Another SI method, called the site-dependent
effect method (SDEM), imputed missing hourly PM, in Italy
using additive terms for site, day-of-week, and week-of-year.?
This method outperformed other SI methods tested (eg.,
hourly mean) as well as a model-based MI method. Several
SI and MI methods were tested using NO,, NO,, Oz, PMyj,
SO, and CO measurements in Helsinki and Belfast.>® This
evalnation showed that performance decreased with increasing
complexity of the missing data patterns, SI methods under-
estimated the error variance of missing data, and MI methods
improved accuracy substantially. Self-organizing map and
multi-layer back-propagation nets performed well, especially
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when incorporated into a hybrid approach that used linear
interpolations for short missing gaps and multivariate meth-
ods for longer gaps; however, this study was limited by the
short study period. In another study, three MI models that
accounted for between-variable correlations, between- and
within-variable autocorrelations over time, and random sea-
sonal effects, were nsed to impute pollutant measurements in
the Arctic that were missing or below MDLs." The most
complete models produced the most realistic imputations, and
MI models outperformed ad hoc ST methods that ignored both
the autocorrelation and seasonal structure of the data.

There are two notable differences in comparing our results
for urban air toxics with the studies mentioned above. First,
data quality and reproducibility are very significant issues for
air toxics, and even a perfect imputation model would not
yield perfect performance scores, since the underlying mea-
surements contain errors. That said, we obtained at least
comparable performance for most carbonyls and VOCs as
obtained for conventional pollutants by Junninen er al.
(2004),> and better performance than the single imputations
of PMy by Plaia and Bondi {2006).%° Second, the temporal
and spatial concentration patterns for urban pollutants can be
more complex and dynamic (variable) than the long-lived
species monitored at remote sites, which likely show much
stronger autocorrelation. For this reason, our results are not
directly comparable to the imputations at Aretic sites.'®

5.4 Applications and limitations

This study highlights the importance of characterizing the
reproducibility of ambient air toxics data prior to its use. It
is important to identify variables that are informative and thus
useful for applications, such as regulatory determinations of
risk, receptor modeling studies of source apportionments, and
epidemiological assessments of health impacts.>!? The error
models and quality assurance steps presented here can help to
describe and validate ambient data, as well as provide un-
certainty estimates for OLE imputations.

This QA assessment examined only a single monitoring site,
only two laboratories, and what must be considered a modest
sample size. Thus, generalizations should be made cautiously.
Further, the intra-laboratory comparisons focused on analy-
tical uncertainties, which may not dominate actual errors.>
Many other factors can influence sampling and analysis
performance, and there is a clear need to increase the amount
of precision and accuracy data for air toxics to better under-
stand these factors.

Many methods are available for imputing missing data and
obtaining complete-datasets, and for estimating uncertain
values.”*'® For the Dearborn data, OLE and MI attained
good performance for random deletions but poor performance
for the row-wise deletion pattern that dominated observations
at Dearborn. Imputations for especially row-wise missingness
patterns might be improved in several ways. First, the variable
selection criteria may have been too stringent, i.e., only very
parsimonious models were generated by GLMSELECT, a
procedure which assumes linear models and which does not
incorporate a priori information. Imputations might be im-
proved by relaxing these criteria and using more complex

models. At times, however, we found that very large (and
possibly over-determined) models deteriorated performance.
Second, imputations might use many other variables {e.g.,
season, day-of-week, traffic counts) and other model struc-
tures (e.g., anto-regressive integrated moving average models).
A third possibility is to derive predictor variables from a
combination of meteorological parameters that reflect disper-
sion potential or local source impacts better than additive
models. Fourth, models might be constructed that acconnt for
long term trends and seasonality. Fifth, error models might be
further refined and can potentially improve performance of
OLE estimates. Finally, we did not examine the performance
of other imputation methods.

6. Conclusions

A total 323 daily air toxics samples were collected at Dear-
born, MI, USA, including 122 pairs of replicate samples.
Samples were analyzed by two laboratories for 71 carbonyls
and VOCs. Data cleaning included eliminating species with a
low detection frequency (<20%) and detecting outliers using
the Gumbell extreme value distribution. Of the 23 toxics
remaining in the final dataset, intra- and inter-laboratory
comparisons showed good agreement for only one compound
(benzene), moderate agreement for several other VOCs (e.g.,
trimethylbenzenes, xylenes, ethylbenzene, dichloredifinoro-
methane, tetrachloroethylene, and toluene), and poor-to-fair
agreement for the remaining VOCs and all carbonyls. Error
models, constructed by pooling residuals across the intra- and
inter-laboratory analyses, provided a comprehensive descrip-
tion of errors. These results show the need to evaluate air
toxics data prior to use in apportionment, exposure, and
health studies.

Two methods were tested for their ability to impute missing
data for the 23 toxics and for three missingness patterns.
Optimal linear estimation {OLE) and multiple imputation
(MI) methods obtained comparable performances for random
deletions, with results depending on the compound, concen-
tration distribution, and other factors. For the dominant row-
wise deletion pattern observed in the air toxics dataset, the
performance of both methods deteriorated. A number of steps
are suggested to recover information and improve these
imputations.

Acknowledgements

The Michigan Department of Environmental Quality kindly
provided data for this study, and we particularly thank Mary
Ann Heindorf for her assistance. The research described in this
article was supported by the Mickey Leland National Urban
Air Toxics Research Center (NUATRC), an organization
jointly funded by the United States Environmental Protection
Agency (EPA) and private industry sponsors. The contents of
this article do not necessarily reflect the views of NUATRC, or
its sponsors, nor do they necessarily reflect the views and
policies of the EPA or any of the private industry sponsors.
We also thank Dr Chunrong Jia for providing the Excel
template for the error model plots.

This journal is @ The Royal Society of Chemistry 2007

J. Environ. Monit, 2007, 9, 1358-1372 | 1371

271



References

1 G. Latini and G. Passerini, Handling missing data: Applications to

environmental analysis, WIT Press, Southampton, UK, 2004, pp.

2-4.

L. E. Borgman, J. Geophys. Res., 1961, 66, 3295.

E. J. Gumbell, National bureau of standards, applied mathematics

series 33, Washington DC, 1954, 51 pp.

E. I. Gumbell, Statistics of extreme, Columbia University Press,

New York, 1958, p. 375.

E. M. Roberts, J. 4ir Pollut. Control Assoc., 1979, 29, 632-637.

E. M. Roberts, J. 4ir Pollur. Control Assoc., 1979, 29, 733-740.

I. C. MacGregor, and L. L. Aume, NATTS quality assurance

annual report for calendar year 2004, http:/ fwww epa.gov/ttnamtil/

filesfambient/airtox/nattsqa04.pdf, accessed 20 June 2007.

R. A Little and D. B. Rubin, Statistical Analysis with Missing

Data, John Wiley & Sons Inc., New Jersey, 2nd edn, 2002, pp.

3-23.

J. L. Schafer, Analysis of incomplete multivariate data. Monographs

on statistics and applied probability 72, Chapman & Hall, London,

1997, vol. 72, pp. 9-35.

10 SAS Institute Inc., Base SAS 9.1 Procedures Guide, SAS Institute
Inc., Cary, NC, 2004.

11 D. B. Rubin, Multiple imputation for nonresponse in surveys, Wiley,
New York, 1987, pp. 15-18, 27-68.

12 D. B. Rubin, J. Am. Star. Assoc., 1996, 91(434), 473-489.

13 S. A. Batterman, Atmos. Environ., 1992, 26A(1), 113-123.

14 7. Barnard, D. B. Rubin and N. Schenker, International Encyclo-
pedia of the Social & Behavior Sciences, 2001, 10204-10210.

15 J. L. Schafer and M. K. Olsen, Multivar. Behav. Res., 1998, 33(4),
545-571.

16 P. K. Hopke, C. Liu and D. B. Rubin, Biometrics, 2001, 57,
22-33.

17 Y. Xie and C. M. Berkowitz, Awmos. Environ., 2005, 40,
3070-3091.

-3 B =T T N

=3

18 C. Jia, S. Batterman and S. Chernyak, J. Environ. Monit., 2006, 8,
1029-1042.

19 L. Volpi, Foxes Team, http://digilander libero.it/foxes/Docu-
ments htm, accessed 20 June 2007.

20 R. A. Cohen, SAS Institute Inc., SUGI 31, paper 207-31, 2006,
1-18.

21 R. B. Darlington, Psychol. Buil., 1968, 69, 161-182.

22 G. G. Judge, W. E. Griffiths, R. C. Hill, H. Lutkepohl and T. C.
Lee, The theory and practice of econometrics, John Wiley & Sons
Inc., New York, 2nd edn, 1985, pp. 244-246.

23 C. M. Hurvich and C.-L. Tsai, Biometrika, 1991, 78, 499-509.

24 G. Schwarz, Ann. Stat., 1978, 6, 461-464.

25 C. J. Willmott, Buil. Am. Meteorol. Soc., 1982, 63, 1309-1313.

26 C. P. Wiesel, J. J. Zhang, B. J. Tumpin, M. T. Morandi, S.
Colome, T. H. Stock, D. M. Spektor, L. Korn, A. Winer, S.
Alimokhtan, J. Kwon, K. Mohan, R. Harnngton, R. Giovanetti,
W. Cui, M. Afshar, S. Maberti and D. Shendell, J. Expo. Sci.
Environ. Epidemiol., 2005, 15, 123-137.

27 8. A. Batterman, G. Z. Zhang and M. G. Baumann, A4tmos.
Environ., 1997, 32(10), 1647-1655.

28 A. McCulloch and P. M. Midgley, Atmos. Environ., 1996, 30(4),
601-608.

29 A. Plaia and A. L. Bondi, Adwnos. Enviren., 2006, 40,
7316-7330.

30 H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen and M.
Kolehmainen, Atmos. Environ., 2004, 38, 2895-2907.

31 S. Eberly, EPA PMF 1.I user's Guide, hitp://www.epa.gov/heasd/
products/pmffusers_guide.pdf, accessed 20 June 2007.

32 P. K. Hopke, K. Ito, T. Mar, W. F. Christensen, D. J. Eatough,
R. C. Henry, K. Bugene, L. Francine, R. Lall, T. V. Larson,
H. Liu, L. Neas, J. Pinto, M. Stolzel, H. Suh, P. Paatero and
G. D. Thurston, J. Expo. Sci. Environ. Epidemiol., 2006, 16,
275-286.

33 8. M. Bortnick and S. L. Stetzer, Aumos. Environ., 2002, 36,
1783-1791.

1372 | J. Environ. Monit., 2007, 9, 1358-1372

This journal is @ The Royal Society of Chemistry 2007

272



	Title Page-rev3.pdf
	Chapter 1-rev3.pdf
	Chapter 2-rev3.pdf
	Chapter 3-rev3.pdf
	Chapter 4-rev3.pdf
	Chapter 5-rev3.pdf
	Appendix 1-rev3.pdf
	Appendix 2-rev3.pdf
	Appendix 2-Le_2007--Reproducibility_and_imputation_of_air_toxics_data.pdf

