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Chapter 1  

Introduction 
 

Exposure to ambient air pollutants has been associated with both morbidity
1,2

 and 

mortality.
3,4

  Many studies have shown that ambient air pollutants, at concentrations well 

below U.S. EPA and WHO guidelines, can adversely affect fetal growth and 

development as well as contribute to acute childhood respiratory-related illness.
2,5,6

   

The research in this dissertation investigates the effects of criteria and toxic 

ambient air pollutants on adverse birth outcomes and childhood respiratory-related 

illness, respectively.  The research examines the following topics: (1) the effects of 

criteria air pollutants on adverse birth outcomes, as adjusted for race, smoking and social 

economic status (SES) and long-term trends in pollutant concentrations; (2) the effects of 

multiple pollutants, modeled as source classes, on acute respiratory-related illness among 

children; (3) the evaluation of the reproducibility of air toxic data and different methods 

to handle missing air quality data for health effects studies; and (4) the use of receptor 

modeling for deriving source class contributions as pollutant exposure indicators for 

health effect studies. 

1.1 Dissertation organization 

 This dissertation is organized into five chapters and two appendices.  This chapter 

(Chapter 1) summarizes the current literature for the main topics of the research, and 

presents the objectives and hypotheses.  Chapters 2 through 4, the research chapters, and 

Appendix 1 have been written as stand-alone sections, in anticipation of submission to 

journals as article manuscripts.
*
  Chapter 2 investigates the association 

                                                 
*
 Chapter two has been submitted, and chapter four has been published. 
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between exposures to criteria air pollutants and adverse birth outcomes.  Chapter 3 

investigates associations between exposures to air toxics, identified as different source 

classes, and emergency department (ED) visits for respiratory problems among children.  

Chapter 4 examines the reproducibility of air toxics data and evaluates two imputation 

methods in handling missing air quality data.  Chapter 5 summarizes the findings of all of 

the research questions.  Appendix 1 identifies source classes of air toxics data using 

receptor modeling. The apportionment results are used as exposure estimates in the third 

objective described in Chapter 3.  Finally, Appendix 2 is the published paper based on 

Chapter 4. 

1.2 Background 

1.2.1 Ambient air pollutants 

The 1990 Clean Air Act Amendments focused attention on two classes of air 

pollutants: criteria pollutants and hazardous or “toxic” air pollutants (HAPs).  Criteria 

pollutants, which have been routinely monitored and regulated for many years, include 

particulate matter (PM), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon 

monoxide (CO) and lead (Pb).  In contrast, monitoring and regulation of HAPs are still in 

their infancy.  Although there are an estimated 189 HAPs, U.S. EPA (1998) focuses on a 

subset of 33 pollutants called urban air toxics (UATs).
7  

UATs include several classes of 

pollutants: volatile organic compounds (VOCs), very volatile compounds, semivolatile 

organic compounds, metals, and mixtures.  Monitoring of UATs is relatively uncommon 

and typically only a few pollutants are measured on an intermittent basis.  This study 

focuses on selected short term health effects of the UATs, specifically acute respiratory-

related illness among children, and several long term health effects, specifically adverse 

birth outcomes, of the criteria air pollutants. 

1.2.2 Air pollution and adverse birth outcomes 

Many studies have examined the relationship between air pollutants and adverse 

birth outcomes (Table 1).  Associations between criteria air pollutants and low birth 

weight (LBW; birth weight < 2500g) have been studied more extensively than other birth 

outcomes, such as small-for-gestational-age (SGA; birth weight <10
th

 percentiles by 
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gestational age and sex) and preterm (PTB; birth < 37 gestational weeks) births.  Only 

three studies examined SGA directly
8-10

, although five other studies have examined intra 

uterine growth restriction (IUGR), in which SGA is a measure of IUGR.
11-15

  In the U.S., 

the only studies on SGA or IUGR measures were conducted in California, and they 

obtained inconsistent results.
10,15

  For the sample taken across the entire California 

population, exposure to PM2.5 was positively associated with SGA, and exposure to CO 

was negatively associated with SGA.
10

  However, in the southern California sample, 

exposures to CO, NO2, O3, and PM10 were not associated with IUGR (a SGA measure).
15

  

For PTB, associations with SO2 and PM10 are fairly well established, while results are 

inconsistent for CO and NO2.
8,11,13,15-22

 

The strength of these relationships differs dramatically between studies, which 

constitutes a major weakness in the current literature.  For example, three California 

studies examined the association between CO and LBW and obtained varying results: the 

early study (1975-1987) with 24-hr inter-quartile range exposures between 1.2 to 1.4 ppm 

reported no effect for all trimesters of pregnancy
15

; a later study (1989-1993) with 

relatively high CO exposures (3-hr trimester average ≥5.5 ppm versus <2.2 ppm) showed 

increased risk of LBW among mothers residing within 3.2 km of air quality monitors in 

single pollutant models
23

; and the latest study (1994-2000) in the same area showed 

effects with much lower CO exposures (third trimester mean of 1.4 ppm).
21

  Positive CO-

LBW associations have been shown in studies conducted in the northeast U.S.
24

 and 

South Korea
25,26

, but not in Taiwan
27

, Nevada, U.S.
28

 and Vancouver, Canada.
13

  The 

literature examining LBW with respect to NO2 and PM10 exposure is also inconsistent.  

Two Korean studies
25,26

 found positive NO2-LBW associations, but this was not seen in 

studies from southern California
15

, Taiwan
27

 and Vancouver.
13

  Positive PM10-LBW 

associations were found in one southern California study
21

 and in a South Korea study
26

, 

but not in another southern California study
15

, northeast U.S.
24

, and Taiwan.
27

 

There are several possible reasons for these mixed results.  First, the studies 

differed with respect to exposure concentrations of air pollutants, periods over which 

measurements were averaged, and cut-off concentrations.  As examples: the northeast 

U.S. study compared CO exposures above and below 1.46 ppm; the Korean studies 

examined 0.5 and 4.2 ppm changes in 24-hr exposures; the Nevada study used tertiles of 
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8-hr exposures (<0.6, 0.6-1.4, and >1.4 ppm); and the Taiwan study used three 

categorical 24-hr exposures that reached very high levels (<1.3, 1.3-15, >15 ppm).  Given 

that CO-LBW associations have been found at both low and high concentrations, other 

factors may better explain study outcomes.  A second inconsistency among the studies is 

the control of covariates and potential confounders.  Among the nine CO-LBW studies, 

only three
15,24,28

 controlled for maternal smoking, a well-known risk factor.  Only three of 

the ten SO2-LBW studies
24,29,30

 adjusted for maternal smoking status.  A third difference 

between the studies is the control of long term trends in pollutant exposures.  In the single 

study examining long term trends
29

, the SO2-LBW and PM10-LBW associations lost 

significance when adjusted for trend in the models.  A fourth difference is the varying 

exposure windows used by different studies.  For example, exposures to SO2 in all three 

trimesters were associated with increased risks of LBW reported in the Czech Republic 

and South Korea studies
11,26

; however, such risks were found only the first month of 

pregnancy in Vancouver
13

, the first trimester in South Korea
25

, the second trimester in 

northeast U.S.
24

, and the third trimester in Beijing, China.
31

 

Yet another problem arises from the ways in which multiple pollutant models, 

which are key to understanding the effects of simultaneous exposure to several pollutants, 

are constructed across studies.  A recent California study found a positive CO-LBW 

association in a single pollutant model but a positive PM10-LBW association in a multi-

pollutant model (CO, NO2, O3 and PM10).
21

  A final problem arises from temporal and 

geographic variability of the studies.  Not only can pollutant compositions and 

concentrations differ geographically, decreases in SO2 and CO over the past few decades 

mean that findings from earlier studies with higher pollution levels may not represent the 

health effects for current levels of exposure.  Similarly, rates of LBW, PTB and term 

SGA births have declined in the U.S., possibly due to trends in ambient pollutant levels 

or individual risk factors.
21,23,29,32,33

 

In summary, the inconsistent strength of associations across studies may reflect 

methodological differences including exposure misclassification (e.g., distance to air 

monitoring site), and biases related to study duration (e.g., long-term trend), model 

structure (e.g., single versus multiple pollutant models), and the measurement and control 

of confounding factors (e.g., smoking, SES).  Additional research on adverse birth 
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outcomes at recent and current levels of air pollutant exposures for different populations, 

including minority populations, is needed to address these gaps in the literature.     

1.2.3  Air pollution and acute childhood respiratory-related illness  

Associations between criteria air pollutants and exacerbation of childhood asthma 

are fairly well established.
2,34

  Given the lack of data, associations concerning HAPs, 

however, have received minimal attention.  There are even fewer studies investigating 

associations between air toxics and acute respiratory-related illness among children and 

minority populations.
35

     

Those studies that have examined linkages between HAPs and respiratory-related 

illness have been conducted mainly in occupational settings where exposure levels are 

much higher than ambient levels.
36-40

  A review found that although solvent-mediated 

respiratory toxicity was biologically plausible, occupational epidemiologic studies were 

unable to demonstrate respiratory symptoms or changes in pulmonary function associated 

with organic solvent exposure.
41

  This was due to the nature of cross sectional study 

designs, the failure to adequately account for mixed exposures, potential response biases 

(i.e., past exposures) and the absence of exposure data.   

Among the few non-occupational studies of children’s exposure to HAPs, the 

focus has been primarily on single pollutant analyses, although most exposures occur as 

mixtures.  For example, in Germany, exposure to benzene estimated within 50 m radius 

of a child’s home was associated with asthma, wheezing and coughing, even after the 

adjustment for environmental tobacco smoke (ETS) at the child’s residence.
42

  Another 

study of German children also found an increased prevalence of morning cough and 

bronchitis associated with a 1 µg/m
3
 increase in benzene exposure.

43
  Furthermore, a 

study in Belfast (Northern Ireland) concluded that benzene was the only pollutant 

associated with emergency-department asthma admissions.
44

  The study considered 

benzene and other criteria pollutants (SO2, PM10, O3, NOx, NO, NO2 and CO) but did so 

only in two-pollutant Poisson regression models.  These models may have failed to 

capture exposure of mixtures which then lead to the inability to determine the 

independent association between benzene exposure and asthma admission.   
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In the U.S., few studies have examined toxic exposures and respiratory-related 

problems among children.  In West Virginia, a 10 µg/m
3
 increase in petroleum-related 

compounds (toluene, m,p-xylene, benzene, o-xylene, decane) was associated with 

bronchitis, persistent wheezing, asthma, lower respiratory symptoms, and chronic lower 

respiratory response.
45

  The same study found that a 2 µg/m
3
 increase in process-related 

compounds (1,1,1-trichloroethane, carbon tetrachloride, 1-butantol, chloroform, 

perchloroethylene, methyl isobutyl ketone, etc) was associated with lower respiratory 

symptoms and chronic lower respiratory response in fifth grade children.  In a more 

recent study, exposures to outdoor polar VOCs in the previous two days were associated 

with hospital/emergency-room visits due to asthma among Atlanta children 18 years and 

under.
46

  In Los Angeles, ambient petroleum-related VOCs (toluene, m,p-xylene, o-

xylene, and benzene) measured on the same person-day as breath VOCs were associated 

with mild asthma symptoms in Hispanic children.
47

  However, the study concluded that 

only ambient benzene was associated with asthma symptom episodes; therefore, ambient 

measurements may serve as better indicators of true causal air pollutants in ambient air 

than breath VOCs, which may less accurately reflect pulmonary doses during the time 

frame relevant to acute responses.     

All of these U.S. studies attempted to identify the source classes of air toxics in 

their study designs; however, using total concentrations and grouping compounds (i.e. 

sum of related compounds) as one single source class might not be representative of the 

actual sources.  Individual compounds can be emitted from different sources.  For 

example, ambient formaldehyde is formed from multiple sources, including 

photochemical oxidation of VOCs present in vehicle exhaust, incomplete combustion of 

gasoline and diesel fuels, and other combustion processes (e.g. burning of forests, 

cigarettes, and coal).
48

  Source-resolved exposure estimates, in which the major sources 

are identified and quantified, are needed to address this gap.  Recent panel studies have 

shown that the use of source apportionment methods for particulate matter can yield 

robust results in epidemiological analyses
49-51

, suggesting that there is significant 

potential in using apportionment results as exposure measures in epidemiological 

investigations.  (Information regarding source apportionment is described in Section 1.2.5 
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and Appendix 1.)  Currently, only a few studies have investigated associations between 

source contributions of air pollutants and health effects.
51-53

   

1.2.4 Quality of ambient air quality data 

Quality assurance (QA) issues are frequently encountered in ambient air quality 

datasets.  These issues tend to be especially important for UATs, more so than for criteria 

air pollutants, for several reasons.  First, air toxic measurements may reflect low 

concentrations that fall below method detection limits (MDLs).  For some species, 

concentrations may rarely, if ever, exceed the MDLs.  Such ‘sparse’ data patterns can 

occur because a specific toxic pollutant simply may not be present or because the MDL is 

too high to allow frequent detection.
54

  This situation rarely occurs for criteria pollutants, 

both because these pollutants are ubiquitous due to emissions from numerous sources, 

and because monitoring instruments have been highly refined and are very sensitive.   

Second, high concentration values may be encountered on occasion, even for 

rarely detected pollutants.  These detections (or “hits”) may be real and significant, or 

they may be false positives due to contamination, chemical reactions forming artifacts on 

the sampling adsorbent, interferences, chromatographic shifts, laboratory errors, or some 

other reason.  Third, it is difficult to characterize the measurement precision and accuracy 

for commonly-detected toxic pollutants, and exceedingly difficult for rarely detected 

pollutants.  Compared to criteria pollutants where relative precisions and accuracies are 

well-characterized and in the 10% range (or lower), the few available estimates for air 

toxic suggest much greater variability.
55

 

Historically, air monitoring data have been collected for compliance and 

regulatory purposes, but with the growing importance of environmental epidemiology, 

such data now serve multiple purposes.  Given that quality assurances checks (instrument 

flow, zero and span checks) and calibrations require that instruments must be taken off-

line, another issue concerning air quality data is missing data due to these planned events.  

Further, other pollutants are monitored intermittently, e.g., many particulate matter and 

toxics measurements are collected only every third or sixth day.  Missing data can cause 

problems in environmental epidemiological studies that attempt to link air pollution and 

health effects as models in these studies generally require complete data sets.     
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A range of methods for handling missing data are available but their application 

to air pollution applications remains limited.  Most applications have been in models 

aimed at pollutant forecasts and often for compliance purposes.  For example, forecasting 

ground level O3 is motivated by numerous studies reporting increased in mortality rates
56-

58
 during episodes of high ground level ozone concentrations as well as associations 

between acute respiratory symptoms in children and summer air pollution.
59

  This type of 

forecasting information is aimed at warning the public to avoid exposure to unhealthy air 

and to encourage people to voluntarily reduce activities (e.g., driving cars to work) that 

emit precursor substances (e.g., Oxides of nitrogen; NOx).  While epidemiological studies 

require year-round and continuous measurements of air pollutants, forecasting focuses 

only on specific seasonal periods with high level of pollutants (e.g., summer smog).  In 

the U.S., monitoring of O3 is required during “high” ozone season (April to September); 

therefore, O3 data is not available for the other half of the year.    

The most common approach to handle missing data and values below MDLs is 

the use of ad hoc single-imputation (SI) method.
60

  This method replaces the fully 

missing values with a single value, such as a sample mean of the fully observed data for 

that variable.  SI is simple and allows the use of the standard analysis methods for 

complete data.  However, SI methods do not account for imputation uncertainty, 

representing a significant disadvantage.
61

  Thus, standard errors estimated from imputed 

data are systematically underestimated, and statistical inference is biased by erroneously 

small p-values and narrow confidence intervals.
61

 

Another technique in handling missing data is multiple imputation (MI) 

technique, first proposed by Rubin (1987).
62

  MI has been shown to yield valid statistical 

inferences, shares the advantages of SI, and corrects for the disadvantages of SI.
61

  Here, 

each missing value is replaced with a vector of m ≥ 2 plausible values resulting in m 

datasets, each of which is analyzed using standard complete-data software to yield 

“complete-data” statistics.
63

  Although MI methods were first developed for social 

science studies to minimize the bias in the study inference, its application in other 

research areas, specifically air pollution epidemiology, is growing.
 

Evaluations of the above techniques have been very limited.  A summary of 

techniques to deal with missing data (as well as forecasting) in air pollution research is 
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shown in Table 2.  For example, one study evaluated imputation methods, including SI 

and MI methods,  for criteria air pollutions (NOx, NO2, O3, PM10, SO2, and CO) in 

Helsinki and Belfast for the year 1998.
64

  The study suggested that SI methods 

underestimated the error variance of missing data while MI methods considerably 

improved accuracy.  Better performance was obtained using the MI procedure which 

accounts for the uncertainty associated with the missing data.  In contrast, SI procedures 

do not account for this uncertainty.
61

  Currently, few studies have addressed the problems 

of quality assurance and missing air toxics data, a prerequisite for obtaining unbiased 

results in health effect studies. 

1.2.5 Receptor modeling 

Receptor modeling (RM) utilizes monitoring information to identify and quantify 

the contributions of emission sources (or classes of emission sources) that are responsible 

for observed pollutant levels monitored at the “receptor.”  While receptor models have 

been widely used for particulate matter, relatively few applications have been reported 

for VOCs and carbonyls.
65-73

  Fewer still have used receptor models in epidemiological 

investigations, in which the derived source contributions or composite scores from the 

receptor model are used as exposure measures in the same or similar statistical 

framework used to associate exposure measures with health outcomes.
49

 

Epidemiologic studies using source-apportioned exposure measures from RM are 

potentially attractive for several reasons: they offer increased statistical power since the 

exposure measures may be more strongly associated with health impacts; the correlation 

in the larger data set is used to derive a smaller number of robust exposure measures; and 

they offer enhanced biological plausibility and relevance of the exposure measure.  Most 

air pollutants originate or are derived from many emission sources and most sources emit 

multiple pollutants.  Thus the toxicity of the exposure mixture can vary.  Focusing on 

source types rather than simply selected pollutants may lead to better assessments of 

impacts as well as enhance the ability to implement effective interventions.  These 

outcomes are advantageous to both regulatory and health service agencies.   
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1.3 Research hypotheses 

This research evaluates several methods to improve exposure estimates of air 

pollution epidemiological studies.  The methods are then applied to exposures in the 

Detroit metropolitan area to determine adverse effects on birth outcomes and acute 

respiratory illness in children.  This research addresses the following topics.  First, 

associations between criteria air pollutants and the frequency of several adverse birth 

outcomes are examined.  Second, multivariate receptor models are used to derive source 

apportionments as exposure estimates to investigate associations with respiratory illness 

in children.  Third, statistical approaches to handling missing air quality data as well as 

the reproducibility of air toxics are evaluated.       

The research tests the following three hypotheses: 

 1.  Exposure to ambient air pollutants, including CO, NO2, PM10 and SO2, is 

associated with low birth weight (LBW), small-for-gestational-age (SGA) and preterm 

birth (PTB) in Detroit, Michigan.  As mentioned, recent epidemiological studies that 

have attempted to link adverse birth outcomes and criteria air pollutants have yielded 

inconsistent results.  This research helps to address this gap in the literature as well as to 

investigate several key topics, including the effects of long term trends, maternal race, 

smoking and SES on the associations of air pollutants and adverse birth outcomes.  

 2. Exposures to ambient air toxics, identified from different source classes, are 

associated with emergency department visits for respiratory-related illness among 

Medicaid children in Dearborn, Michigan.  As noted, most ambient air pollutant health 

effect studies have focused on single pollutant models, although two or three pollutant 

models have been used to help account for mixtures of air pollutants.  The work in this 

hypothesis is aimed at deriving exposure estimates that can potentially represent many 

related compounds and their sources.   

 3. Methods to evaluate, clean, impute and otherwise enhance the reproducibility 

of air toxics data are essential prior to its use in apportionment, exposure and health 

effect studies.  This hypothesis is aimed at evaluating two imputation approaches, SI 

(optimal linear estimation; OLE) and MI using a comprehensive set of performance 

indicators.  In addition, the reproducibility of air toxics data is examined.   
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1.4 Importance and novelty 

This research addresses several important gaps in the current literature regarding 

the adverse health effects of ambient air pollutants, including reproductive health and 

acute respiratory related illness.  This study is one of the few studies in the U.S. that 

examines the relationship between all three adverse indicators of reproductive health 

(LBW, PTB and SGA) and ambient air pollutants using both single and multiple pollutant 

models, and accounting for the effects of race, long-term trends, smoking and SES 

simultaneously.  Previous studies rarely focus on SGA and very little on PTB in 

comparison to LBW.  In addition, only one study (from Nova Scotia, Canada
29

) has 

evaluated effects of long-term trends in associating criteria pollutants with adverse birth 

outcomes.  There is a need for this type of evaluation given that both levels of outdoor air 

concentrations and rates of adverse birth outcomes have been declining, due to stricter 

regulations, better health care, and possibly other reasons.  Further, effects of race, 

smoking and SES on the associations between air pollutants and adverse birth outcomes 

have not been examined extensively in currently literature due to the homogeneity of the 

studied population and lacking of individual level information in the previous studies. 

As noted earlier, much of the research on air toxics and adverse health outcomes 

has been based on occupational settings that might not reflect actual exposures of the 

general population, especially for children.  Furthermore, there are few if any 

epidemiological studies that have focused on air toxics, much less apportionments 

derived using air toxics data, despite considerable promise and advantage of this 

approach.  Linking exposures to air toxics in terms of source classes derived from 

receptor models can help to improve the effectiveness of both public health interventions 

and policy implementations.  This study is novel in that not only does it examine 

associations between UATs exposures and acute respiratory-related illnesses in children, 

but it does so using apportionments, source classes, and receptor modeling. 

Finally, issues associated with quality assurance and missing air pollutant 

exposure data have been only rarely addressed.  Such issues can influence both the design 

and interpretation of air pollution exposure and epidemiological studies.  Inadequate 

treatment of missing values may bias inferences in epidemiological studies.  It is believed 
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that research findings evaluating the reproducibility of air toxics data and the 

performance of imputation methods will have numerous applications in the field. 

 



 

Table 1-1. Summary of the literature on adverse birth outcomes 

First 

author

Year Study design 

(duration, 

site)

Outcomes Pollutants Exposure 

windows

Exposure 

categories

Covariates Findings

Xu 1995 Prospective 

cohort (1988, 

Beijing)

PTB SO2, TSP Entire 

pregnancy

Quartiles; 100 

µg/m
3
 ↑ TSP; ln 

µg/m
3
 ↑ SO2

Quntiles of weather covariates 

(temperature, humidity), day of the week, 

season, residential area, maternal age, 

and infant sex

Increased odds of PTB for SO2 and TSP exposures 

(continous exposure measures)

Wang 1997 Ecological 

(1988-1991, 

Beijing)

Term 

LBW (37-

44 wk)

TSP, SO2 Trimesters Quintile; 100 

µg/m
3
 ↑ TSP and 

SO2

gestational age, season, residential area, 

maternal age, infant gender

Increased odds of LBW for highest quintiles and for 

each 100 µg/m
3
 ↑ in TSP or SO2 exposures; and for 

4th quintile of SO2 exposure

Bobak 1999 Ecological 

(1986-1988, 

Czech 

Republic)

LBW NOx, SO2, 

TSP

Trimesters IQR Births outside marriage, abortions, 

divorces, mean income, mean savings, 

people per car

Increased odds of LBW for SO2 exposure in both 

single and 3 pollutant models; No effects found for 

NOx and TSP

Dejmek 1999 Ecological 

(1994-1996, 

Teplice Dist, 

N. Bohemia )

IUGR PM10, 

PM2.5

Months Tertiles Maternal height, prepregnancy weight, 

completed high school, currently married, 

month-specific smoking habits, year, and 

season

Increased odds of IUGR for PM10 (2nd and 3rd 

tertiles) and PM2.5 (highest tertiles) exposures

Ritz 1999 Ecological 

(1989-1993, S. 

California)

Term 

LBW (37-

44 wk)

CO Trimesters <2.2, 2.2-5.5, 

>5.5 ppm CO

Gestational age, maternal age, race, 

education, parity, interval before previous 

birth, prenatal care, infant sex

Increased odds of LBW for CO (>5.5 vs. <2.2 ppm; 

last trimester) exposures among subjects living 

within 2-5 miles radius of air monitoring sites

Bobak 2000 Ecological 

(1990-1991, 

Czech 

Republic)

LBW, 

PTB, 

IUGR

NOx, SO2, 

TSP

Trimesters 50 µg/m
3
↑ NO2,  

SO2 and TSP;

maternal age, education, marital status, 

race/ethnicity, parity and birth month

Increased odds of LBW for SO2 (all trimesters) and 

TSP (1st & 2nd trimesters) exposures; and of PTB 

for SO2 (all trimesters) & TSP (1st trimester) 

exposures; IUGR was not associated with any 

pollutants; No effects found for Nox; Significant 

effects for LBW were removed after adjustment for 

gestational age
Ritz 2000 Ecological 

(1989-1993, S. 

California)

PTB (26-

44 wk)

CO, NO2, 

O3, PM10

1st month, 

last 6th 

week

Quartiles Maternal age, race, education, parity, 

interval since previous birth, prenatal 

care, infant sex, previous low weight or 

preterm births, and tobacco smoke during 

pregnancy

Increased odds of PTB for CO (1st month and last 

6th week) and PM10 (last 6th week) exposures.  

Results were site dependent

Rogers 2000 Case-control 

(1986-1988, 

Georgia)

VLBW TSP+SO2 Annual Percentiles (50, 

50-75, 75-95, 

>95)

Race, Toxemia, smoking status, maternal 

weight gain, maternal age, prenatal care, 

income, mother's education, father's 

education, drug use, infant sex, alcohol 

use, stress.

Increased odds of VLBW for SO2+TSP (>95 vs. 50) 

exposures

 

 

1
3
 



 

Table 1-1 (Cont.) 

First 

author

Year Study design 

(duration, 

site)

Outcomes Pollutants Exposure 

windows

Exposure 

categories

Covariates Findings

Ha 2001 Ecological 

(1996-1997, S. 

Korea)

Term 

LBW (≥37 

wk)

CO, NO2, 

O3, SO2, 

TSP

Trimesters IQR Gestational age, maternal age, parental 

education level, parity, gender

Increased odds of LBW for CO (1st trimester), NO2 

(1st trimester), O3 (3rd trimester) and SO2 (1st 

trimester) exposures; No effects found for TSP

Maisonet 2001 Ecological 

(1994-1996, 

N.E. US)

Term 

LBW (37-

44 wk)

CO, SO2, 

PM10

Trimesters 1 ppm↑ CO; 10 

µg/m
3
 ↑ PM10; 10 

ppm ↑ SO2; 

Percentiles (<25, 

25-50, 50-75, 75-

95, ≥95)

Gestational age, gender, birth order, 

maternal age, race, yrs of education, 

marital status, prenatal care, previous 

abortions, weight gain during pregnancy, 

maternal prenatal smoking, and alcohol 

consumption.

Increased odds of LBW for CO (1 ppm ↑, 3rd 

trimester), PM10 (≥95 vs. <25, 1st & 2nd trimesters) 

and SO2 (25-50, 50-75, 75-95 vs. <25, 2nd 

trimester) exposures; LBW was inversersly 

associated with SO2 exposure (≥95 vs. <25, 2nd 

trimester)

Chen 2002 Ecological 

(1991-1999, 

Nevada)

Term 

LBW (37-

44 wk)

PM10, CO, 

O3

Trimester, 

entire 

pregnancy

Percentiles (<10, 

10-90, >90)

infant sex, maternal residential, 

education, medical risk factors, tobacco 

use, drug use, alcohol use, prenatal care, 

mother's age, race, and weight gain of 

mothers

LBW was not associated with any pollutants

Lee 2003 Ecological 

(1995-1998, S. 

Korea)

Term 

LBW (37-

44 wk)

CO, NO2, 

SO2, PM10

Trimesters, 

entire 

pregnancy

IQR change Infant sex, birth order, maternal age, 

parental education, time trend and 

gestational age

Increased odds of LBW for CO (1st trimester & 

entire pregnancy), NO2 (2nd trimester), SO2 (2nd 

trimester & entire pregnancy), and PM10 (entire 

pregnancy) exposures

Liu 2003 Ecological 

(1985-1998, 

Vancouver, 

Canada)

Term (37-

42) LBW, 

IUGR, 

PTB

CO, NO2, 

O3, SO2

months & 

trimesters

1 ppm ↑ CO; 10 

ppb ↑ NO2; 5 ppb 

↑ SO2

Maternal age, parity, infant sex, birth 

weight, and season of birth

Increased odds of LBW for SO2 exposure during 1st 

month, of PTB for SO2 and CO exposures during 

last month, and of IUGR for SO2, CO and NO2 

exposures during 1st month

Gouveia 2004 Cross sectional 

(1997, Brazil)

Term 

LBW 

(≥37wk)

SO2, PM10, 

NO2, O3, 

CO

Trimesters Quartiles; 1 ppm 

↑ CO; 10 µg/m
3
 ↑ 

in PM10 and SO2

infant sex, gestaional age, maternal age, 

education, antenatal care, parity, type of 

deliveries

Increased odds of LBW for PM10 (highest quartile) 

exposure during 2nd trimester; Inverse associations 

were found for 2nd quartile of SO2 (1st trimester) 

and O3 (3rd trimester) exposures

Lin 2004 Ecological 

(1995-1997, 

Taiwan)

Term 

LBW (37-

44 wk)

CO, NO2, 

O3, SO2, 

PM10

Trimesters; 

entire 

pregnancy

Categorical: low, 

medium, high

Gestational age, gender, birth order, 

maternal age, educational level, birth 

season, concentrations of other air 

pollutants; (1.4 to 3.3 km radius around 

air monitoring sites)

Increased odds of LBW for SO2 (high & med vs. 

low, entire preg.), for SO2 (high vs. low, 3rd 

trimester); Inverse association between LBW and 

CO (high vs. low, entire preg.)

Salam 2005 Ecological 

(1975-1987, 

Southern 

California)

Term 

LBW (37-

44 wk), 

IUGR

O3, NO2, 

CO, PM10

Months, 

trimesters, 

entire 

pregancy

CO: 1.4 ppm ↑; 

O3: 16-33 ppm ↑; 

PM10: 20 µg/m
3
 ↑

Maternal age, months since last live birth, 

parity, maternal smoking status, SES, 

marital status, gestational diabetes, infant 

sex, race/ethnicity, and schoold grades, 

seasonal terms (6) with b-spline.

Increased odds of LBW for O3 exposures during 3rd 

trimester; No associations found for IUGR with any 

pollutants.

 

1
4
 



 

Table 1-1. (Cont.) 

 

First 

author

Year Study design 

(duration, 

site)

Outcomes Pollutants Exposure 

windows

Exposure 

categories

Covariates Findings

Mannes 2005 Ecological 

(1998-2000, 

Sydney, 

Australia)

SGA CO, NO2, 

O3, PM2.5, 

PM10

Last 

month, 

trimesters

Continuous (1 

unit increase)

Maternal age, smoking, indigenous status, 

SES, gestational age, parity and season of 

birth

Increased odds for SGA ( (>2 SD below the mean 

birth weight) for NO2 and PM2.5 exposures during 

2nd trimester

Parker 2005 Ecological 

(California)

SGA (40 

wk)

CO, PM2.5 Trimesters Quartile Maternal race, education, marital status, 

age, parity, and season of delivery

Increased odds of SGA for PM2.5 exposures during 

all trimesters; CO was inverserly associated with 

SGA.

Sagiv 2005 Time series 

analysis (1997-

2001, 

Pennsylvania)

PTB (20-

44 wk)

SO2, PM10 Last 6th 

weeks

Quartile Long-term trends in PTB and weather Increased odds of PTB (<36 wk) for PM10 and SO2 

exposures

Wilhelm 2005 Ecological 

(1994-2000)

Term 

LBW (≥37 

wk)

CO, NO2, 

O3, PM10

Trimesters Quartile; 1 ppm ↑ 

CO; 10 µg/m
3
 ↑ 

PM10; 0< 

Distance (d) ≤ 4 

mi

Maternal age, infant sex, maternal 

race/ethnicity, prenatal care information, 

maternal education, birth season, 

previous LBW, interval since previous 

live birth

Increased odds of LBW for CO (d≤1 mi, ≥75th vs. 

<25th), CO (2<d≤4 mi, 1 ppm ↑), CO (0<d≤2 mi, 1 

ppm↑), CO (0<d≤2 mi, 50th-75th vs <25th), CO 

(0<d≤2 mi, ≥75th vs <25th) and PM10 (d≤1 mi) 

exposures; In 3-pollutant models (PM10, CO, O3), 

only PM10 (d≤1 mi) was associated with LBW

Dugandzic 2006 Ecological 

(1988-2000, 

NovaScotia, 

Canada)

Term 

LBW (≥37 

wk)

O3, SO2, 

PM10

Trimesters Quartile; IQR Maternal age, parity, prior fetal death, 

neonatal death, prior LBW, smoking 

status, income, infant sex, gestational age, 

weight change, birth year

Increased odds of LBW for highest quartile of SO2 

and PM10 exposures during 1st trimester; Significant 

effects were removed after adjustment for birth year.

Hansen 2006 Ecological 

(2000-03, 

Brisbane, 

Australia)

Term SGA bsp, NO2, 

O3, PM10

Trimester IQR Gestational age (with quadratic term), 

neonate gender, mother's age, parity, 

indigenous status, member of antenatal 

visits, marital status, previous 

abortions/miscarriages, type of delivery, 

index of SEX, season of birth

No strong evidence suggesting associations between 

SGA and any of these pollutants.

Hansen 2006 Ecological 

(2000-03, 

Brisbane, 

Australia)

PTB (>22 

wk)

bsp, NO2, 

O3, PM11

Trimester IQR (with quadratic term), neonate gender, 

mother's age, parity, indigenous status, 

member of antenatal visits, marital status, 

previous abortions/miscarriages, type of 

delivery, index of SEX, season of birth

Increased odds of PTB for PM10 and O3 exposures 

during 1st trimester
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First 

author

Year Study design 

(duration, 

site)

Outcomes Pollutants Exposure 

windows

Exposure 

categories

Covariates Findings

Huynh 2006 Matched case-

control (1999-

2000, S. 

California)

PTB (24-

44 wk)

CO, PM2.5 First 

month, last 

2 weeks, 

entire 

gestation

Quartiles; 1 ppm 

↑ CO ; 10 µg/m
3 

↑ PM2.5

maternal age, race/ethnicity, education, 

marital status and parity

Odds of PTB increased for PM2.5 exposures (all 

exposure windows and measures) but not for CO 

exposures.

Leem 2006 Ecological 

(2001-02, 

Incheon, 

Korea)

PTB CO, NO2, 

SO2, PM10

First & 

third 

trimesters

Quartiles maternal age, parity, sex, season of birth, 

education level of both parents

Increased in odds of PTB for CO, NO2, SO2, and 

PM10 exposures during 1st trimester, and of PTB for 

CO and NO2 exposures during 3rd trimester

Bell 2007 Ecological 

(1999-2002)

LBW (32-

44 wk)

CO, NO2, 

SO2, PM10, 

PM2.5

Trimesters IQR, county 

averages

Gestational length, prenatal care, type of 

delivery, child's sex, birth order, weather, 

year, and mother's race, education, 

marital status, age and tobacco use

Increased odds of LBW for CO (1st & 3rd 

trimesters), NO2 (1st trimester), SO2 (1st trimester), 

PM10 (3rd trimester) and PM2.5 (2nd & 3rd 

trimesters) exposures; Effect estimates for PM2.5 

were higher for infants of balck mothers than those 

of white mothers
Liu 2007 Ecological 

(1985-2000, 

Calgary, 

Edmonton and 

Montreal)

IUGR CO, NO2, 

SO2, O3, 

PM2.5

Months, 

trimesters

1 ppb ↑ CO; 20 

ppb ↑ NO2; 3 ppb 

↑ SO2; 15 ppb ↑ 

O3; 10 µg/m
3 

PM2.5

Maternal age, parity, infant sex, season of 

birth, residence of city

Increased odds of IUGR for CO, NO2 and PM2.5 

exposures during all trimester in single pollutant 

models; In 3-pollutant models (CO, NO2 and 

PM2.5), only CO exposures were associated with 

IUGR  

Ritz 2007 Case-control 

(2003, S. 

California)

PTB CO, NO2, 

O3, PM2.5

1st 

trimester, 

last 6th 

weeks, 

entire 

pregnancy

Categorical: 5 

even spaced 

intervals

Birth season, parity, mother's age, race, 

education, and covariates from 

environment and pregnancy outcomes 

survey (active and passive smoking, 

marital status and alcohol use during 

pregnancy)

Increased odds of PTB for CO (1st trimester & last 

6th month) and PM2.5 (1st trimester) exposures

 

Abbreviations and symbols: bsp, visibility reducing particles; ↑, increase; ↓, decrease; IQR, inter-quartile range; LBW, low birth 

weight; IUGR, intra uterine growth restriction; SGA, small-for-gestational-age; PTB, preterm birth; ppm, part per million; ppb, part 

per billion; wk, week. 
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Table 1-2. Summary of methods for estimating and forecasting ozone  

Input data
Time 

scales

Data 

basis
Modelling approach Reference

Daily 8hr max ozone concentration, 

temperature, relative humidity, pressure, wind 

speed, wind direction

Hourly, 

daily

Summer  

season 

(1999)

Hierarchical Bayesian 

modeling

McMillan et 

al., 2005

8hr ozone, NO, NO2, temperature, relative 

humidity, wind velocity, wind direction, solar 

radiation, day of the week, day length

Hourly 4 years
Generalize additive model 

(GAM)

Schlink et al., 

2005

Ozone concentration, wind speed, wind 

direction, temperature, relative humidity
Hourly

One year 

(1998)

Multiple imputation, linear, 

spline and univariate 

nearest neighbour 

interpolations, regression-

based imputation, 

multivariate nearest 

neighbor, self-organizing 

maps, multilayer back-

propagation nets

Junninen et 

al., 2004

8hr Ozone concentration, nonlinear term, 

atmospheric transmittance, trend term (year), 

relative humidity, daily min. temperature 

departure, wind speed, cloud cover

Daily 

max 8-hr 

avg.

Several 

years 

(1998-

2001)

Non-linear regression 

model

Cobourn and 

Lin, 2004

Ozone concentration Hourly

July-

March 

1999

ARIMA modeling
Kumar et al., 

2004

Ozone concentration, CO, NO2, SO2, surface 

and upper wind direction, surface and upper 

wind speed, surface and upper temperature, 

relative humidity, solar radiation, 

Hourly 1989-1999
Fuzzy expert and neural 

network systems

Heo and Kim, 

2004

Ozone concentration Hourly
Summer 

season

Non-linear dynamical 

systems

Chen et al., 

1998, 2000

Ozone concentration Hourly
Summer 

season

Grey-box and component 

models

Schlink and 

Volta, 2000

Ozone concentration Hourly
Several 

years
Attractor embedding

Kocak et al., 

2000

Ozone concentration, wind, temperature, 

pressure, humidity, global solar radiation
Hourly

Summer 

season

Linear regression, 

regression tree, multilayer 

perceptron neural networks

Gardner and 

Dorling, 

2000a

Ozone concentration, wind, temperature, 

pressure, humidity, global solar radiation

Daily 

max., 

daily avg.

Several 

years

Cluster analysis, 

generalized additive models 

(GAM)

Davies et al., 

1998, 1999

Ozone concentration, temperature, total daily 

sunshine, mean daily wind speed, vapour 

pressure, total cloud cover

Daily 

max., 

daily avg.

Several 

years

Multilayer perceptron 

neural network

Gardner and 

Dorling, 1999

Ozone concentration Hourly
Several 

years
Neural networks

Arena et al., 

1998

Ozone concentration, wind, temperature, 

pressure, humidity, global solar radiation
Hourly

Summer 

season

Grey-box stochastic model, 

neural network model

Finzi et al., 

1998
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Table 1-2 (Cont.) 

Input data
Time 

scales

Data 

basis
Modelling approach Reference

Ozone concentration, wind, temperature, 

pressure, humidity, global solar radiation
Hourly

Summer 

season

Grey-box stochastic model, 

neural network model

Nunnari et al., 

1998

Ozone concentration, length of the day, day of 

the week, UV-index, previous day Ozone, 

meteorological data

Daily 

max., 

daily avg.

Summer 

season

Multiple-linear regression 

model

Hubbard and 

Cobourn, 

1998

Pollutants and meteorological data

Daily 

max., 

daily avg.

Several 

years

Linear time series, artificial 

neural network, fuzzy 

models

Jorquera et al., 

1998

Ozone concentration, wind, temperature, 

pressure, humidity, global solar radiation
Hourly

Summer 

season

Cluster analysis, regression 

models

Bel et al., 

1997

Ozone concentration, wind, temperature, 

pressure, humidity, global solar radiation

Daily 

max. of 

hourly 

avg.

Summer 

season

Neural networks, multiple 

regression
Comrie, 1997

Ozone concentration, wind, temperature, 

pressure, humidity, global solar radiation

Daily 

max., 

daily avg.

Several 

years

Long range dependence, 

fractional autoregressive, 

fractional co-integration

Anh et al., 

1996

Ozone concentration, wind, temperature, 

pressure, humidity, global solar radiation

Daily 

max., 

daily avg.

Several 

years

Cluster analysis, 

generalized additive models 

(GAM)

Anh et al., 

1996

Pollutants and meteorological data Hourly

Case study 

for May 

25th 1990

Photochemical dispersion 

model

Moussiopoulo

s et al., 1995

Ozone concentration, conc. of NO and NO2 Hourly Two years Vector autoregressive Hsu, 1992

O3 and TSP
Hourly & 

24hr

1-4 

months, 

high 

ozone 

season

Optimal estimators
Batterman, 

1992

Ozone, max. daily temp. Maximum likelihood, Davison, 1987
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Chapter 2  

Air Pollutant Exposure and Low Birth Weight, Preterm and 

Small-for-Gestational-Age Births in Detroit, Michigan: Long-

term Trends and Associations 
 

2.1 Abstract 

 A growing number of studies have reported associations between ambient air 

pollutants and adverse birth outcomes such as low birth weight (LBW), preterm birth 

(PTB) and, to a lesser extent, small for gestational age (SGA).  These studies have 

limitations, including incomplete control of temporal trends in exposure and maternal 

smoking and their results are often inconsistent.     

 The relationship between ambient air pollutants and LBW, SGA and PTB 

outcomes among 155,000 singleton births in Detroit, Michigan between 1990 and 2001 

was investigated.  SO2, CO, NO2 and PM10 exposures were estimated using 

measurements from three air monitoring sites in Detroit and used in single and multiple 

pollutant logistic regression models to estimate odds ratios (OR) for these outcomes, 

adjusting for the infant’s sex and gestational age; the mother’s race, age group, education 

level, smoking status and prenatal care; the birth season; site of residence; and long-term 

exposure trends.   

 SGA was associated with NO2 (OR=1.10, 95% confidence interval=1.01-1.19) 

and CO (1.14, 1.02-1.27) exposures in the first month and with PM10 exposures in the 

third trimester (1.22, 1.04-1.44).  Maternal exposure to SO2 was associated with PTB 

(1.07, 1.01-1.14) in the last month and LBW (1.16, 1.04-1.30) in the first month. 
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 This appears to be the first U.S. study to associate SGA with air pollutant 

exposures, and effects were observed at concentrations below current air quality 

standards.  The study design addresses many of the limitations in the earlier studies, and 

it highlights the importance of accounting for long-term trends and individual risk 

factors.  

2.2 Introduction 

Low birth weight (LBW), small for gestational age (SGA) and preterm birth 

(PTB) are important indicators of fetal health during pregnancy, as well as predictors of 

infant mortality and morbidity.
1-3

  Animal studies have shown that exposure to air 

pollutant can adversely affect fetal development, and epidemiological studies have 

associated air pollutant exposure with adverse birth outcomes, especially LBW. 
4-12

  

However, few studies have investigated the relationship between air pollution exposure 

and preterm birth (live birth at <37 weeks gestation), and none have examined growth 

restriction as indicated by SGA status (birth weights <10
th 

percentile for the same 

gestational age).     

The literature relating air pollution to birth outcomes has a number of 

inconsistencies, which may reflect differences across populations, exposure 

misclassification, statistical power issues, confounding, and biases related to study 

duration, design, and model structure.  Pollutant compositions and concentrations differ 

geographically, which can cause study results to differ.  Further, given the decreases in 

sulfur dioxide (SO2) and carbon monoxide (CO) concentrations over the past few 

decades, findings from earlier studies with higher pollution levels may no longer 

represent current health impacts.  Rates of PTB and term SGA also have declined in the 

U.S., possibly due to trends in ambient pollutant levels or individual risk factors,
10,12-15

 

and these trends must be carefully controlled.  Additional research is needed on the health 

effects of pollutants at recent exposure levels and to identify critical exposure windows 

during pregnancy. 
16-18

 

 This study evaluates effects of four ambient air pollutants on adverse birth 

outcomes in three industrialized and urban areas in metropolitan Detroit, Michigan.  We 

use a long study period (1990 to 2001), multiple exposure periods during pregnancy, and 
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both SGA and PTB as indicators of adverse birth outcomes.  (A parallel analysis for 

LBW in the same population is reported in the supplemental materials.) 

2.3 Method 

2.3.1 Study group, health outcomes, and covariates 

The study group consisted of all live, singleton births for mothers living in three 

areas (Allen Park, East 7 Mile and Linwood) of Detroit occurring between January 1, 

1990 and December 31, 2001.  Birth certificate data, obtained from the Michigan 

Department of Community Health, were used to determine gestational age, infant sex, 

date of birth, maternal age, race, smoking status, education level, and level of prenatal 

care, all used as individual-level covariates.  Eligible residences were in ZIP codes that 

were wholly or partially contained within a 4 km radius surrounding an air quality 

monitoring station, based on previous investigations that have shown stronger risk 

estimates for subjects living within this distance.
12,19

  The study was restricted to birth 

weights 750-4000 g, gestational ages 22-42 weeks, and mothers 16-45 years of age.  

Teenage mothers less than 16 years of age are more likely to deliver preterm and to have 

cesarean deliveries than mothers 16-19 years of age and adult mothers aged 20 years and 

older.
20

  For women 45 years and older, the rate of spontaneous conception is low and the 

risk of hypertension is high; and hypertension can complicate pregnancies by restricting 

fetal growth and may trigger premature delivery.
21

  Births >4000 g that may have resulted 

from poorly controlled maternal diabetes,
22

 and births <750 g that are rarely viable
23

 and 

unlikely to be affected by air pollutant exposure were excluded.  Gestational age was 

based on the date of the last menstrual period (LMP) if available, or the clinically 

estimated weeks of gestation.  These criteria excluded 21,055 births out of 185,960.   

 For the study outcomes, a term SGA birth was defined as an infant whose birth 

weight fell below the 10
th

 percentile by sex and gestational week, based on the 

distribution of the study population and restricted to gestational ages between 37 and 42 

weeks, and a PTB was defined as a birth with <37 weeks gestation.  Assessing only term 

SGA can avoid the colinearity of multiple outcomes between SGA and PTB.   
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2.3.2 Exposure assessment 

 We selected three monitoring sites located in densely populated areas that 

measured multiple air pollutants over extended periods.  These sites are approximately 20 

km apart (Figure 2.1).  Monitoring was consistent with federal reference methods and 

Michigan Department of Environmental Quality protocols.
24

  CO measurements were 

available at the Allen Park and Linwood sites for the entire study period; however, due to 

vandalism in July 1997 and quality assurance (QA) issues, CO data at Linwood were 

restricted to 1990-1996.  SO2 measurements were available at each site but only through 

1997 at Allen Park.  Nitrogen dioxide (NO2) was available for the entire study period at 

the East Seven Mile site and at Linwood; however, several periods were omitted due to 

QA issues (September 1996 at Linwood, March, April, and September through 

November 1997 at East Seven Mile).  Hourly measurements falling below method 

detection limits (MDL) were replaced by one-half the MDL.  Daily (24-hr) averages were 

computed from hourly data, and monthly and trimester (3 month) averages were 

computed from daily averages.  Running monthly and trimester averages were computed 

from the every-6
th

-day PM10 measurements at Allen Park.  Because ozone (O3) was 

monitored only during the high O3 season (April to September), and PM2.5 measurements 

(collected every-3
rd

-day) were only available from May 1999 forward, these pollutants 

were not used as exposure variables.  Daily, monthly, and trimester averages each 

required the availability of ≥75% of all possible measurements, e.g., daily averages 

required at least 18 (of 24 possible) hourly values.  The gestational period and LMP were 

used to estimate exposures for each pregnancy in five time windows: the first and last 

months of gestation, and each trimester (using divisions of 1-13 weeks, 14-26 weeks, and 

27 weeks to birth).
25

 

2.3.3 Statistical methods 

Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were estimated 

for each outcome and exposure window using logistic regression models.  In the case of 

PTB, only the first and last months' exposures were examined.
8,9

  Although exposure to 

air pollutants for the entire pregnancy have been associated with PTB but stronger 

associations were found for the earlier (e.g. first month or first trimester) and the later 
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period of pregnancy (e.g. last two weeks or six weeks).
26-28

  SGA and PTB outcomes 

were dichotomous variables and pollutant concentrations were expressed in quartiles.  

The AORs represent associations for the second, third and fourth quartiles of exposure 

relative to the first quartile. 

Covariates included infant sex (for PTB), maternal race (Black, White, other), 

maternal education level (<12, 12, >12 years), maternal smoking status during pregnancy 

(yes/no), use of prenatal care (yes/no), late prenatal care (starting after the fourth month 

of pregnancy; yes/no) and residence location (Allen Park, Linwood, East Seven Mile).  

To adjust for seasonality, models included variables for birth season, defined as spring 

(March-May), summer (June-Aug.), fall (Sept.-Nov.), and winter (Dec.-Feb.).  To 

examine long-term trends in pollutant levels, a locally-weighted regression smoother was 

applied to air pollutant concentrations.  To control for potential biases associated with 

temporal changes in the study population and environment, models were adjusted for 

birth year using consecutive 4-year periods (1990-1993, 1994-1997 and 1998-2001).  

Single pollutant models were constructed by pooling data across all sites, with analytic 

control for site in the models, and multiple pollutant models were restricted to Linwood 

where CO, SO2 and NO2 were measured.  PM10 measured at Allen Park was assigned to 

Linwood mothers since PM10 concentration gradients in the region are modest.
29,30

  

Additional analyses stratified by race and maternal smoking status were conducted to 

help discern effects arising from both exposures and covariates.  ("Other" races were 

excluded due to small sample sizes.)   

2.4 Results 

2.4.1 Study population 

The study population included 164,905 eligible births between 1990 and 2001.  

Due to missing exposure data, the final sample size was 155,094 (94% of all eligible 

births).  Infant and maternal characteristics by birth outcome and race are shown in Table 

1.  Both SGA and PTB outcomes were slightly more common among male births.  Race 

was associated with many risk factors and outcomes.  Whites had fewer births to teenage 

mothers (16-19 yrs), fewer mothers who had not completed high school, and more 

mothers who had obtained prenatal care.  Infants born to Black mothers had an 
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approximately 2-fold increased risk of SGA and PTB compared to White mothers.  

Maternal smoking was associated with large effects on all the birth outcomes, and White 

mothers were more likely to be smokers than Black mothers.  Additional results, as well 

as the parallel analyses for LBW, are shown in Supplemental Tables S2-1 to S2-17.   

Several long-term trends were observed.  First, the overall birth rate and rates of 

adverse birth outcomes declined, with the greatest change occurring between the 1990-3 

and 1994-7 periods (Table 2.1).  Second, most but not all risk factors also showed a 

downward trend, with some differences by race (Table S2-1).  For example, the rate of 

teenage mothers declined from 19% in 1990 to 15% in 2001, largely due to decreases 

among Black mothers (from 25 to 18%) rather than among White mothers, which were 

relatively stable (11.2 to 11.4%).  Many of these patterns, e.g., teenage pregnancies and 

smoking during pregnancy, followed national trends.
31,32

  

2.4.2 Air pollutant exposures 

Exposures for 3-hr CO, 24-hr, first month and first trimester averaging periods are 

shown in Table 2.2.  (Other periods had similar statistics.)  Concentrations were below 

the U.S. National Ambient Air Quality Standards (NAAQS), although maximum 3-hr CO 

levels (8.8 ppm) approached the 8-hr NAAQS (9 ppm).  For SO2, 24-hr levels reached 50 

ppb, far below the 24-hr standard (140 ppb).  24-hr and annual NO2 levels reached 77 and 

26 ppb, respectively, compared to the annual standard of 53 ppb.  24-hr PM10 levels 

reached 131 µg m
-3

, slightly below the (former) 24-hr standard (150 µg m
-3

).   

Over the study period, average concentrations as well as the amplitude of 

concentration fluctuations declined for CO and SO2 (Figures 2.2a, b), trends not seen for 

NO2 and PM10 (Figures 2.2c, d).  Considering the monthly pollutant averages used in the 

birth outcomes models, we found SO2 had low-to-moderate correlation with CO (r=0.35) 

and NO2 (r=0.27); CO and NO2 had low correlation (r≤0.27); and PM10 had negligible 

correlation with both CO and SO2 (r≤0.11).  The correlation coefficients varied little 

across different pregnancy windows (Table S2-2).  These correlations are lower than 

those reported in other studies, and although they capture only pair-wise relations, they 

suggest that colinearity would not be a problem in multi-pollutant models.   
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2.4.3 Single pollutant models 

Associations between air pollutants and birth outcomes in single pollutant models 

are shown in Table 2.3.  Multiple adverse birth outcomes, exposure windows and 

pollutants were examined.  The presentation focused on results that were consistent, e.g., 

associations in which all three quartiles of exposures (2
nd

, 3
rd

 and 4
th

) were in the same 

direction, either negative or positive, compared to the first quartile of exposure.  

Association at the 4
th

 quartile (highest) of exposure that were statistically significant were 

also considered. 

CO was positively associated with SGA for all exposure windows, and odds of a 

SGA birth increased by 5-20% for women with higher CO levels (>0.56 ppm; 2
nd

 through 

4
th

 quartiles).  (Table S2-3 shows associations with covariates; Table S2-4 shows air 

pollutant concentrations by window and quartile of exposures.)  After adjusting for long-

term trends, the statistical significance of CO-SGA associations persisted only for 

exposures in the first month at α=0.05.  Women in the top quartile of first-month CO 

exposures (>0.75 ppm) showed the greatest odds of a SGA birth (AOR=1.14; 95% CI: 

1.02-1.27).  In analyses stratified by race, the CO-SGA associations in the first month 

were stronger for infants of Black mothers compared to that of White mothers (Table S2-

5).  In analyses stratified by smoking, the positive CO-SGA associations in the first 

month were consistent with the pooled results, although AORs obtained for smokers were 

attenuated (Table S2-5). 

For SO2, only first trimester exposures showed consistent patterns in increasing 

odds of SGA births both with and without trend-adjustments, however, AORs obtained 

from trend-adjusted models were attenuated (Table S2-6).  The largest AOR of 1.09 

(1.00-1.18) was seen for top quartile of first trimester exposure (SO2>6.63 ppb).  NO2 

was positively associated with SGA for first-month and first trimester exposures and 

results did not change after trend adjustment.  Odds of SGA births increased by 2-10% 

for women with higher NO2 levels (>18.7 ppb; 2
nd

 through 4
th

 quartiles).  Women with 

highest quartile first-month NO2 exposures (>23.6 ppb) had the highest AOR of 1.10 

(1.01-1.19).  Similar NO2-SGA associations were found among infants of Black mothers 

and mothers who smoked (Table S2-7). 
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Maternal exposure to PM10 during all three trimesters was positively associated 

with SGA, and the results were unaffected by the trend adjustment.  Odds of SGA birth 

increased by 1-22% for women with higher PM10 levels (>22.8 µg m
-3

; 2
nd

 through 4
th

 

quartiles).  Women with highest quartile third trimester PM10 exposures (>35.8 µg m
-3

) 

had the strongest increase in odds for SGA birth (AOR=1.22; 1.04-1.44).  Similar PM10-

SGA associations were found among infants of White mothers and non-smoking mothers 

(Table 2S-8). 

For PTB, SO2 exposure only during the last month was positively associated with 

PTB, both with and without adjustment of long-term trends.  Odds of PTB birth increased 

by 7-11% for women with SO2 levels >4.5 ppb (2
nd

 through 4
th

 quartiles).  These positive 

SO2-PTB associations were consistent with those for infants of Black and non-smoking 

mothers (Table S2-6).  No associations were seen for PTB with CO, NO2 and PM10. 

2.4.4 Multiple pollutant models  

 Table 2.4 summarizes the results for the four-pollutant models (CO, SO2, NO2 

and PM10) for SGA and PTB outcomes.  (Detailed results are in Tables S2-9 to S2-12.)  

All models were adjusted for long-term trends and are restricted to Linwood mothers.  

The multi-pollutant models showed consistent patterns of increased odds of SGA births 

for CO (first and second trimester), SO2 (all trimesters), NO2 (first month and all 

trimesters), and PM10 (first month and first trimester), and increased odds of PTB births 

for first-month SO2 and NO2 exposures.  Overall, these results did not differ from those 

obtained using single-pollutant models.  Furthermore, the patterns of associations among 

infants of Linwood mothers did not differ appreciably from associations among mothers 

from Allen Park and East Seven Mile, suggesting that the multi-pollutant model results 

may be representative of the entire study population.  However, the multi-pollutant 

models yielded wider confidence intervals due to the decreased sample size (n=67,577) 

compared to the single pollutant models that used all three sites (n=155,094) and 

colinearity among pollutants. 

2.5 Discussion 

 This study highlights the importance of individual risk factors as well as temporal 

changes in air pollutant concentrations on associations with adverse birth outcomes.  
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After controlling for trends and covariates, we observed consistent patterns of increase in 

the odds of SGA with CO, NO2 and PM10 exposures, and of PTB and LBW with SO2 

exposures. 

2.5.1 Possible mechanisms 

The biological pathways linking pollutant exposure to SGA and PTB are not well 

understood.
8,33,34

  SGA may be triggered by an abnormal reaction between trophoblast 

and uterine tissues in the first few weeks of pregnancy
33

, which is consistent with the 

timing of the CO-SGA and NO2-SGA associations found in this study.  CO reduces the 

oxygen-carrying capacity of maternal hemoglobin, which decreases oxygen delivery to 

the fetus.  Further, CO can cross the placental barrier and interfere with oxygen binding 

to fetal hemoglobin, which has a higher affinity for CO than adult hemoglobin.
35,36

  Both 

effects may induce tissue hypoxia and reduce fetal growth.  Alternatively, CO may be a 

proxy for particles emitted by vehicles and other sources that contain polycyclic aromatic 

hydrocarbons (PAHs) that can induce DNA adducts, which have been associated with 

increased risks of LBW.
37-39

  Exposure to NO2 increases lipid peroxidation in both 

maternal and cord blood, which could interfere with normal intrauterine growth 

development via oxidative stress.
40

  PM10 is a complex toxicant.  It includes mixtures of 

different substances, including fine particles, metals and organic matter (e.g., PAHs), and 

compositions are source-specific.
33

  Several mechanisms have been proposed for PM10, 

one of which is the DNA adducts pathway discussed above.  Alveolar inflammation or 

systemic infection associated with air pollutants may play a role in PTB.
17,41

  Other 

possible mechanisms include oxidative stress, reactive nitrogen or sulfur species, 

bacterial infections, and unfavorable metabolic processes that result in growth-arrested 

cells during early embryogenesis.
42

  The first two months of pregnancy have been 

identified as the critical period for PTBs associated with exposures to coal combustion 

toxics.
42

  However, we found that only the last month’s SO2 exposure was associated 

with PTB births. 

2.5.2 Comparison with previous studies 

The current literature on air pollution and SGA is limited.  SGA has been linked 

to PM2.5 in California
25

 and to PM10, PM2.5 and NO2 in Sydney, Australia.
43

   These 
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studies did not find associations between CO exposures and SGA.  Higher risk of 

intrauterine growth restriction (IUGR; for which SGA is a measure) has been shown for 

CO, NO2 and PM2.5 exposures in Vancouver,
8
 in a second Canadian study in Calgary, 

Edmonton, and Montreal,
44

 and for PM10 exposure in the Czech Republic.
33

  No 

associations were seen between IUGR and CO, NO2 or PM10 exposures in a southern 

California study.
45

  These divergent results could arise for several reasons.  First, the 

studies differed with respect to exposures, averaging periods, and cut-off concentrations.  

For example, the Vancouver study examined 1 ppm and 10 ppb increases in CO and NO2 

exposures, respectively, while the southern California study used inter-quartile ranges of 

1.2 ppm and 25 ppb of monthly average CO and NO2, respectively.
8,45

  A second 

difference is the control of covariates and potential confounders.  The southern California 

study
45

 controlled for both SES and maternal smoking, a well-known risk factor; the 

Canadian studies
8,44

 controlled for neither.  A third difference is the control of long-term 

trends in pollutant exposures.  We demonstrated that this is critical for CO and SO2.  

Fourth, the studies differed in their ability to construct multi-pollutant models, essential 

in understanding effects of simultaneous exposure to several pollutants.  Only the recent 

Canadian study used multi-pollutant models (NO2, CO and PM2.5).
44

  Finally, the studies 

differed significantly with respect to sample size, model structure, and geographic 

location. 

For PTB, SO2 increased risks in five studies,
8,34,46-48

 as did PM10 in four 

studies,
11,26,46,48

 and total suspended particulates in two studies.
34,47

  PTB associations 

with CO and NO2 exposures are inconsistent.  Studies in southern California,
11,12,26

 

Vancouver,
8
 and South Korea

48
 found positive associations between CO exposure and 

PTB, but another southern California study
27

 found an inverse association.  Positive NO2-

PTB associations were found in studies in Korea
48

 and southern California,
28

 but not in 

Vancouver
8
 or Australia.

26
 

In this study, increased odds of SGA birth found for CO and NO2 are consistent 

with the Canadian studies.
8,44

  SO2 was associated with increased risk of PTB which is 

also consistent with most of the previous studies.  Unlike many of the earlier studies, this 

study controlled for many individual risk factors, including maternal smoking and SES, 
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both important confounders for adverse birth outcomes.
49,50

  This study also controlled 

for temporal trends, which had a large effect, as discussed below. 

2.5.3 Effects of temporal trend  

With a few exceptions, the previous adverse birth effect studies have been short in 

duration, and effects of long-term temporal trends were not examined extensively.  A 13-

yr Canadian study (in Nova Scotia) found that birth year confounded the association 

between SO2 and PM10 and LBW.
14

  In this study, after accounting for long-term trends, 

specifically the declines in CO and SO2 concentrations, the CO-SGA and SO2-SGA 

associations were attenuated, probably due to declining rates of both adverse birth 

outcomes and associated risk factors, e.g. smoking.  This study also examined CO-LBW 

associations using trend-adjusted (Tables S2-13 to S2-15) and de-trended CO data (data 

not shown).  In both cases, the CO-LBW associations were also attenuated.  Based on 

these results, time trend adjustments seem justified when analyzing long time periods.  

Associations for NO2 and PM10, which did not show such patterns, were insensitive to 

this adjustment. 

2.5.4 Race and social economic status  

In southern California, traffic-related pollution exposure (indicated by distance-

weighted traffic density) in winter was associated with PTB among the low SES 

population,
51

 suggesting that SES might modify exposure or interact with air pollutants.  

The effect estimates did not differ by maternal education levels (Table S2-16), however, 

odds of SGA birth increased for CO exposures among mothers with ≤12 years of 

education; and decreased for CO exposures among mothers with >12 years of education.  

On the other hand, the odds of PTB birth for SO2 exposures increased among mothers 

with different education levels.  These results suggest maternal education may be an 

inadequate proxy for SES if there is true heterogeneity in the effects caused by maternal 

SES. 

In analyses stratified by race, CO-SGA, NO2-SGA and SO2-PTB associations 

were statistically significant for infants of Black mothers, but not White mothers.  This 

may reflect effects of neighborhood:  Linwood (measured CO2, NO2 and SO2) and East 

Seven Mile (NO2 and SO2) sites are predominantly Black areas; Allen Park (CO and SO2) 
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is a predominantly White area.  Over the past several decades, Detroit has experienced 

increased race-based residential segregation,
52

 which has been associated with higher 

rates of LBW, prematurity and fetal growth restriction.  Such outcomes might result from 

exposures as well as many other neighborhood-level factors, e.g., lack of access to health 

care and intra-group diffusion of harmful health behaviors.
53

 

2.5.5 Smoking   

 Studies have long associated cigarette smoking and environmental tobacco smoke 

exposure with adverse birth outcomes.
54-56

  Smoking was a very strong risk factor for all 

outcomes.  The odds of SGA were both consistent and statistically significant for all 

quartiles of first month NO2 exposures among smokers, and for third trimester PM10 

exposures among non-smokers.  A possible speculation is that smoking mothers were 

already getting large pollutant doses, diminishing the significance of the ambient 

contribution; additionally that smoking may have increased the variability of the 

response.  In models accounting for trend but not controlling for smoking (Table S2-17), 

odds of SGA increased for SO2 exposures in the second trimester, which was not seen in 

models that controlled for smoking.  This is consistent with smoking confounding SO2-

SGA associations.  In a recent analysis examining traffic-related pollutants (CO and 

PM2.5) and PTB in southern California, maternal smoking apparently did not confound 

the odds ratios, however, this conclusion was restricted to a subsample of the study with a 

low response rate (40%) from the survey, and it applied to only the second exposure 

quartile.
28

  We believe that maternal smoking should be considered as a possible effect 

modifier of the associations between air pollutants and adverse birth outcomes. 

2.5.6 Strengths and limitations of this study 

Specific strengths of this study included a large sample size (n=155,094), a long 

duration (7-12 years), and individual-level information on residence location, race, 

smoking status, pregnancy and SES indicators.  This study accounted for time trends in 

pollutant concentrations, which apparently affected SO2 and CO results, and we 

examined exposures to several pollutants simultaneously.  A large Black population in 

our study sample allowed us to examine possible heterogeneity by race.  Finally, we 
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examined births of mothers residing quite close (≤4 km) to air monitors, potentially 

minimizing exposure measurement error.
12

  

There are a number of study weaknesses.  Geocoding of individual residences was 

unavailable, thus residences (and subjects) were selected if their ZIP code area was either 

within or partially within 4 km of an air quality monitor.  In the worst case, a residence 

could have been as far as 12 km from the monitor, which could have led to exposure 

misclassification and attenuation of our estimates, however, most homes were much 

closer since most of the studied areas were densely populated.  Further, air pollution 

exposures at the ZIP code level can yield reasonable exposure estimates.
57

  Pollutant 

levels in Detroit generally fell below those in other studies, and low exposures may be 

subject to greater exposure measurement error.  Exposure misclassification is possible for 

subjects living near major traffic routes (more likely near Linwood and East Seven Mile 

sites), which could increase exposures above levels measured at the monitoring sites, 

which were located in residential areas at least several blocks from major roads.  Limiting 

the study area to a relatively small radius around the monitor should minimize such 

errors. 

Because this study examined multiple health outcome and multiple exposure 

windows, Type I error rates might have inflated; however, minimal effect was 

anticipated.  The main health outcomes were term LBW, term SGA and PTB.  (Since 

SGA and LBW are overlapping by definition, LBW is included for only discussion 

purposes.)  By definition, term SGA and PTB are not correlated; therefore, the effects of 

multiple health outcomes comparison should be irrelevant.  On the other hand, the 

multiple exposure windows examined in this study might have inflated the Type I error 

rate.  There are two options to address this issue: (1) select a single exposure window; 

and (2) apply the Bonferroni correction.  The first option is not desirable because the 

actual mechanism and exposure window with the highest risk were still unclear.  The 

Bonferroni correction (method to adjust for the smallest p-value for significant tests on 

multiple comparisons.
58

) only works reasonably well for moderately correlated variables 

because the conservatism of Bonferroni increases when the correlation between variables 

increases.
58

  The exposure windows examined in this study were highly correlated (e.g., 

first trimester exposure included first month exposure); therefore, the correction approach 
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was not applied.  Besides, the overall patterns of associations strongly suggested effects 

of pollutant exposures on adverse birth outcomes, e.g., the positive associations were 

found for CO exposure and SGA for three out of five exposure windows in models with 

trend-adjusted (Table 2-3).  (The effects were found at α=0.05 for only the first month 

exposure.) 

The time-trend adjustment used might have resulted in overly adjusted models 

because other covariates in the models also captured the time-trend effects (e.g., the 

decline of smoking rate among mothers).  However, this should not be a concern because 

the effects were substantial, especially in the case of CO-SGA association in which 

AORs reduced from 1.20 to 1.14 (or 5%) after adjustment for time-trend (Table 2-3), 

indicating there were other effects associated with time-trend that were not captured by 

the covariates included in the models. 

Missing pollutant data may have influenced results, although the results using a 

single monitor (Linwood) were consistent with those using all three sites, suggesting any 

bias was minimal.  Additional information on potential covariates and confounders not 

contained in the birth certificate database may have been helpful, e.g., alcohol 

consumption, although we suspect that effects of many such factors would likely be 

correlated with other individual-level risk factors that were available, thus minimizing 

confounding.  Finally, measurements of personal or indoor exposures were unavailable, a 

limitation of all studies that rely on ambient measures of exposure.
59-61

  Further research 

using individual-level exposure monitoring would help to quantify the relative 

contribution of ambient versus localized exposures to the occurrence of adverse birth 

outcomes. 

2.6 Conclusions 

 CO, NO2 and PM10 exposures were associated with increased risk of SGA, and 

SO2 exposure was associated with increased risk of LBW and PTB.  This study highlights 

the importance of the early period of pregnancy for the CO-SGA, NO2-SGA and SO2-

LBW associations, and the late pregnancy period for SO2-PTB and PM10-SGA 

associations. Our results suggest that air pollution may have more harmful effects on 

infants of Black mothers, as compared with infants of White mothers.  This study 
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highlights the importance of accounting for long-term trends and maternal smoking status 

in evaluating the relations between air pollutant exposures and adverse birth outcomes.  



 41 

Figure 2-1. Map of the Detroit area showing the three air quality monitoring sites, 4 km 

radius and intersecting Zip codes. 

 



 

Figure 2-2. Trends of monthly averages of pollutant concentrations.  Results of LOESS smoother shown as dashed line for trend. 
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Table 2-1. Infant and maternal characteristics by birth outcomes and ethnicity, 1990-

2001. 

Characteristics 

All births* 

N=164905 

(%) 

SGA 

N=13754 

(%) 

PTB 

N=24954 

(%) 

Term 

births 

N=139951 

(%) 

Black 

N=93078 

(%) 

White 

N=68164 

(%) 

Infant sex Female 49.1 49.1 47.8 49.3 49.3 48.8 

 Male 50.9 51.0 52.2 50.7 50.6 51.2 

        

Race Black 56.4 69.1 71.1 53.8 - - 

 White 41.3 28.6 27.1 43.9 - - 

 Other 2.2 2.3 1.8 2.3 - - 

        

Age (yrs) 16-19 17.4 19.8 19.8 17.0 22.0 11.6 

 20-29 58.1 55.4 54.0 58.8 57.4 59.1 

 ≥30 24.5 24.8 26.2 24.2 20.6 29.3 

        

Education 

(yrs) 
0-11 32.9 40.5 39.5 31.7 36.2 28.4 

 12 40.0 38.5 38.9 40.2 39.0 41.9 

 ≥13 27.1 21.0 21.7 28.1 24.8 29.7 

        

Tobacco use Smoker 21.8 35.7 27.0 20.9 19.3 26.0 

        

Prenatal 

care 
None 3.4 5.4 7.5 2.7 4.8 1.7 

 
Late (after 4th 

month) 
26.0 31.8 35.9 24.3 32.7 17.2 

        

Birth season 
Spring (Mar-

May) 
25.2 24.8 25.1 25.3 25.0 25.7 

 
Summer (Jun-

Aug) 
26.1 26.2 25.7 26.2 26.0 26.3 

 
Fall (Sept-

Nov) 
24.1 23.7 23.8 24.2 23.8 24.5 

 
Winter (Dec-

Feb) 
24.6 25.3 25.5 24.4 25.2 23.6 

        

Birth period 1990-1993 39.5 43.4 40.6 39.3 41.1 37.7 

 1994-1997 31.3 29.7 31.0 31.3 31.0 31.5 

 1998-2001 29.3 26.9 28.5 29.4 28.0 30.8 

Abbreviations: SGA, small for gestational age; PTB, preterm births; (*) All births 

included Blacks, Whites and others.  
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Table 2-2.  Statistics of air pollutant concentrations.     

Pollutants Average time Site N Mean SD Min 25
th 

50
th 

75
th 

Max 

CO 3-hr All 6674 0.84 0.72 0.05 0.40 0.63 1.03 8.77 

(ppm)  AP 4266 0.80 0.69 0.05 0.40 0.60 0.97 8.77 

  LW 2408 0.91 0.76 0.05 0.43 0.70 1.13 7.23 

 24-hr All 6695 0.62 0.38 0.05 0.37 0.53 0.77 5.18 

  AP 4278 0.56 0.33 0.05 0.35 0.49 0.70 4.01 

  LW 2417 0.72 0.44 0.05 0.43 0.62 0.90 5.18 

 Month* All 66182 0.66 0.15 0.26 0.57 0.67 0.76 1.18 

 Trimester* All 66905 0.66 0.12 0.28 0.61 0.67 0.73 0.93 

SO2 24-hr All 11194 5.6 4.8 0.5 2.2 4.1 7.4 49.5 

(ppb)  AP 2826 5.4 4.1 0.5 2.4 4.3 7.2 31.7 

  E7M 4108 4.9 4.1 0.5 2.0 3.7 6.5 31.4 

  LW 4260 6.3 5.7 0.5 2.2 4.5 8.7 49.5 

 Month* All 140092 5.8 1.8 1.0 4.5 5.5 6.8 12.5 

 Trimester* All 141016 5.8 1.5 2.2 4.7 5.5 6.6 11.0 

NO2 24-hr All 7169 21.2 9.3 0.5 14.7 20.1 26.3 76.7 

(ppb)  E7M 3418 19.2 8.5 0.5 13.2 18.1 24.0 76.7 

  LW 3751 23.0 9.6 0.5 16.4 21.9 27.9 76.5 

 Annual All 12 21.3 1.2 19.6 20.6 21.0 21.9 23.5 

  E7M 12 19.1 1.1 17.6 18.6 18.9 19.4 21.6 

  LW 12 23.0 1.6 20.9 21.6 23.2 24.0 26.1 

 Month* All 99442 21.3 4.1 8.2 18.7 21.0 23.6 41.7 

 Trimester* All 100163 21.2 3.1 14.1 19.1 21.0 23.2 30.8 

PM10 24-hr AP 661 29.9 16.1 4.0 19.0 27.0 37.0 131.0 

(µg/m
3
) Month* AP 27178 30.0 9.3 12.8 23.0 29.0 35.8 63.4 

 Trimester* AP 27376 30.0 6.4 17.5 24.3 30.1 35.2 46.0 

Abbreviations: AP, Allen Park; E7M, East Seven Mile; LW, Linwood; SD, standard 

deviation; 25
th

, 50
th

, 75
th

 are percentiles; (*) Month and trimester averages are subjects’ 

exposure estimates. 



 

Table 2-3. Adjusted odds ratio and 95% confident interval (95% CI) for each window of exposure to air pollutants for small for 

gestational age (SGA) and preterm birth (PTB).   

Statistically significant estimates are in bold. 

Adjusted
a

Time trend
b

Adjusted
a

Time trend
b

Adjusted
a

Time trend
b

Adjusted
a

Time trend
b

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

SGA

1
st
 month

2
nd

1.17 (1.06-1.29) 1.11 (1.00-1.24) 0.98 (0.92-1.04) 0.96 (0.90-1.03) 1.06 (0.99-1.14) 1.07 (0.99-1.14) 1.06 (0.91-1.24) 1.07 (0.92-1.25)

3
rd

1.07 (0.97-1.18) 1.00 (0.89-1.12) 1.03 (0.97-1.10) 1.00 (0.94-1.07) 1.06 (0.98-1.14) 1.06 (0.98-1.14) 0.99 (0.84-1.16) 1.01 (0.85-1.20)

4
th

1.20 (1.09-1.33) 1.14 (1.02-1.27) 1.11 (1.04-1.18) 1.04 (0.97-1.13) 1.10 (1.01-1.19) 1.11 (1.03-1.21) 1.15 (0.98-1.36) 1.16 (0.98-1.38)

Last month

2
nd

1.06 (0.97-1.17) 1.00 (0.90-1.11) 1.03 (0.97-1.09) 1.01 (0.95-1.07) 1.00 (0.93-1.07) 1.00 (0.93-1.07) 0.99 (0.85-1.15) 1.00 (0.86-1.17)

3
rd

1.10 (1.00-1.20) 1.02 (0.91-1.13) 0.98 (0.92-1.04) 0.94 (0.88-1.01) 1.00 (0.93-1.07) 1.00 (0.93-1.07) 1.07 (0.92-1.25) 1.09 (0.93-1.28)

4
th

1.05 (0.96-1.16) 0.98 (0.88-1.09) 1.07 (1.00-1.14) 0.98 (0.91-1.05) 0.93 (0.86-1.01) 0.95 (0.88-1.03) 1.08 (0.92-1.26) 1.07 (0.91-1.26)

1
st
 trimester

2
nd

1.15 (1.04-1.27) 1.11 (0.98-1.25) 1.04 (0.98-1.11) 1.02 (0.96-1.09) 1.02 (0.95-1.10) 1.03 (0.96-1.11) 1.02 (0.87-1.19) 1.06 (0.90-1.25)

3
rd

1.17 (1.06-1.29) 1.10 (0.98-1.24) 1.04 (0.97-1.11) 1.01 (0.94-1.09) 1.04 (0.95-1.12) 1.05 (0.97-1.14) 1.01 (0.86-1.20) 1.06 (0.89-1.27)

4
th

1.16 (1.04-1.28) 1.10 (0.97-1.25) 1.15 (1.08-1.23) 1.09 (1.00-1.18) 1.02 (0.93-1.12) 1.06 (0.97-1.16) 1.11 (0.94-1.32) 1.14 (0.95-1.36)

2
nd

 trimester

2
nd

1.07 (0.97-1.18) 1.01 (0.90-1.13) 1.00 (0.94-1.06) 0.98 (0.92-1.05) 0.98 (0.91-1.05) 0.98 (0.91-1.06) 1.16 (0.99-1.37) 1.23 (1.04-1.45)

3
rd

1.10 (1.00-1.21) 1.01 (0.90-1.14) 0.97 (0.91-1.03) 0.94 (0.88-1.01) 0.97 (0.90-1.06) 0.99 (0.91-1.08) 1.17 (0.99-1.38) 1.22 (1.02-1.45)

4
th

1.10 (0.99-1.23) 1.02 (0.90-1.15) 1.12 (1.05-1.20) 1.05 (0.96-1.14) 0.96 (0.88-1.05) 1.01 (0.92-1.11) 1.04 (0.88-1.23) 1.05 (0.87-1.26)

3
rd

 trimester

2
nd

1.08 (0.98-1.19) 1.00 (0.90-1.11) 1.07 (1.01-1.13) 1.04 (0.98-1.11) 0.93 (0.87-1.00) 0.94 (0.88-1.01) 1.03 (0.88-1.22) 1.05 (0.89-1.25)

3
rd

1.05 (0.95-1.15) 0.96 (0.86-1.07) 1.02 (0.95-1.08) 0.98 (0.92-1.05) 0.98 (0.91-1.06) 0.99 (0.92-1.07) 1.20 (1.02-1.42) 1.25 (1.05-1.49)

4
th

1.06 (0.96-1.17) 0.97 (0.87-1.09) 1.12 (1.05-1.20) 1.03 (0.96-1.12) 0.98 (0.90-1.06) 1.01 (0.93-1.09) 1.22 (1.04-1.44) 1.22 (1.03-1.46)

PTB

1
st
 month

2
nd

0.90 (0.84-0.97) 0.96 (0.88-1.04) 1.00 (0.96-1.05) 0.99 (0.94-1.04) 1.03 (0.97-1.08) 1.03 (0.97-1.09) 0.99 (0.87-1.12) 0.97 (0.86-1.10)

3
rd

0.92 (0.86-0.99) 0.98 (0.90-1.07) 1.00 (0.95-1.05) 0.97 (0.93-1.02) 1.03 (0.97-1.09) 1.03 (0.97-1.09) 1.10 (0.97-1.24) 1.07 (0.94-1.22)

4
th

0.89 (0.83-0.97) 0.95 (0.87-1.03) 1.03 (0.98-1.09) 0.98 (0.92-1.04) 1.00 (0.95-1.07) 1.02 (0.96-1.08) 1.06 (0.93-1.20) 1.05 (0.92-1.20)

Last month

2
nd

0.97 (0.91-1.04) 1.04 (0.96-1.13) 1.08 (1.03-1.13) 1.08 (1.03-1.13) 0.98 (0.93-1.04) 0.98 (0.93-1.03) 0.98 (0.87-1.10) 0.96 (0.85-1.08)

3
rd

0.89 (0.83-0.96) 0.96 (0.89-1.04) 1.11 (1.05-1.16) 1.11 (1.05-1.16) 0.99 (0.94-1.05) 0.99 (0.94-1.05) 0.91 (0.80-1.02) 0.88 (0.78-1.00)

4
th

0.96 (0.89-1.04) 1.04 (0.95-1.13) 1.07 (1.02-1.13) 1.07 (1.01-1.14) 0.98 (0.92-1.04) 0.98 (0.92-1.04) 0.95 (0.84-1.07) 0.95 (0.84-1.08)

SO2 NO2 PM10COWindows and 

quartiles of 

exposures

 

(
a
) Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco use, prenatal care, birth seasons and site of 

residency; (
b
) Adjusted for variables in a and birth periods. 

4
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Table 2-4. Results of the multipollutant models (including CO, SO2, NO2 and 

PM10) for the Linwood area.   

Otherwise as Table 2.3. 

CO  SO2  NO2  PM10 Windows and quartiles of 

exposures OR  (95% CI)  OR  (95% CI)  OR  (95% CI)  OR  (95% CI) 

SGA 1st month 2nd 1.04 (0.89-1.21)  1.00 (0.83-1.20)  1.14 (0.97-1.33)  1.02 (0.87-1.19) 

  3rd 0.90 (0.77-1.05)  0.99 (0.83-1.17)  1.12 (0.97-1.31)  1.07 (0.90-1.28) 

  4th 1.02 (0.87-1.19)  0.93 (0.78-1.11)  1.28 (1.09-1.49)  1.08 (0.90-1.30) 

 Last month 2nd 0.93 (0.80-1.08)  0.99 (0.83-1.18)  1.09 (0.93-1.26)  1.00 (0.86-1.15) 

  3rd 1.03 (0.89-1.20)  0.97 (0.82-1.15)  1.04 (0.90-1.20)  0.98 (0.83-1.16) 

  4th 0.98 (0.84-1.14)  1.03 (0.86-1.23)  0.99 (0.85-1.16)  0.88 (0.75-1.04) 

 1st trimester 2nd 1.22 (1.02-1.46)  1.18 (0.92-1.51)  1.04 (0.83-1.31)  1.11 (0.92-1.33) 

  3rd 1.20 (1.00-1.45)  1.01 (0.83-1.23)  1.04 (0.83-1.31)  1.16 (0.95-1.42) 

  4th 1.16 (0.96-1.41)  1.05 (0.87-1.28)  1.14 (0.91-1.44)  1.16 (0.95-1.41) 

 2nd trimester 2nd 1.14 (0.95-1.36)  1.30 (1.01-1.69)  1.06 (0.81-1.40)  1.15 (0.94-1.42) 

  3rd 1.19 (0.98-1.44)  1.12 (0.91-1.37)  1.03 (0.78-1.35)  0.97 (0.79-1.19) 

  4th 1.22 (1.01-1.47)  1.11 (0.90-1.36)  1.12 (0.85-1.48)  1.13 (0.92-1.40) 

 3rd trimester 2nd 0.97 (0.83-1.14)  1.17 (0.94-1.45)  1.10 (0.92-1.33)  0.89 (0.74-1.07) 

  3rd 0.98 (0.83-1.16)  1.24 (1.02-1.50)  1.07 (0.88-1.29)  0.87 (0.72-1.05) 

  4th 0.99 (0.84-1.17)  1.31 (1.06-1.60)  1.04 (0.85-1.26)  0.82 (0.69-0.98) 

          

PTB 1st month 2nd 0.94 (0.84-1.06)  1.27 (1.11-1.47)  1.06 (0.94-1.19)  1.00 (0.92-1.09) 

  3rd 1.00 (0.90-1.13)  1.14 (0.99-1.30)  1.08 (0.97-1.21)  1.01 (0.91-1.11) 

  4th 0.95 (0.85-1.06)  1.13 (0.98-1.30)  1.05 (0.94-1.18)  1.08 (0.98-1.19) 

 Last month 2nd 1.01 (0.90-1.13)  1.04 (0.91-1.19)  0.92 (0.82-1.03)  1.06 (0.97-1.15) 

  3rd 0.94 (0.84-1.05)  1.06 (0.93-1.21)  0.99 (0.89-1.11)  0.98 (0.89-1.08) 

  4th 1.03 (0.92-1.16)  0.99 (0.86-1.14)  1.01 (0.90-1.14)  0.92 (0.84-1.01) 

Adjusted for infant sex, maternal race, age groups, education levels, tobacco use, 

prenatal care, birth seasons, site of residency and birth periods.  (Note: SGA 

models do not include infant sex.) 



 

Table S2- 1. Annual descriptive statistics for covariates for all eligible births  

16-19 yrs ≥30 yrs <High school High school >High school Smoker No prenatal care 

All Black White All Black White All Black White All Black White All Black White All Black White All Black White Year 

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

1990 19.4 25.2 11.2 22.3 18.6 27.5 33.7 38.3 26.6 42.8 40.3 47.3 23.5 21.3 26.1 26.3 24.2 30.2 4.1 5.6 2.0 

1991 19.4 24.7 11.9 22.4 19.0 27.2 34.8 39.0 28.5 41.6 39.3 45.5 23.6 21.7 26.1 26.2 23.0 31.5 4.2 5.7 2.2 

1992 18.9 24.2 11.3 23.0 19.4 28.0 34.4 38.6 28.3 40.8 39.2 43.6 24.8 22.3 28.1 24.6 21.6 29.5 4.2 5.6 2.3 

1993 18.1 23.1 11.1 23.6 19.1 30.1 35.6 40.3 28.3 39.2 37.0 43.0 25.3 22.7 28.7 23.2 20.1 28.5 4.5 6.5 1.8 

1994 18.3 22.5 12.6 24.1 20.0 29.7 33.3 37.1 27.6 40.0 38.2 43.2 26.8 27.7 29.3 22.1 18.9 27.5 3.7 5.2 1.7 

1995 17.4 22.1 11.6 25.2 20.6 30.7 32.4 36.8 26.6 39.0 37.2 42.1 28.6 26.0 31.3 20.8 18.0 25.2 3.7 5.3 1.8 

1996 17.3 22.0 11.6 25.5 20.9 30.9 31.6 35.3 27.1 38.6 37.7 40.5 29.8 27.0 32.5 21.2 18.0 26.2 2.3 3.3 1.3 

1997 16.8 20.8 12.1 25.6 22.0 29.8 31.2 33.7 28.0 39.5 38.4 41.2 29.4 27.9 30.8 19.9 17.3 24.3 2.1 2.9 1.2 

1998 16.2 19.7 12.0 25.3 21.8 29.4 30.7 32.5 28.3 39.1 39.1 39.9 30.2 28.4 31.8 18.8 16.7 22.3 2.9 4.1 1.6 

1999 15.7 19.4 11.4 25.8 22.2 29.6 30.6 32.1 28.7 39.6 40.8 39.0 29.7 27.2 32.3 18.0 15.9 21.4 3.1 4.4 1.7 

2000 14.4 17.7 10.6 26.2 22.7 29.8 32.4 33.1 31.5 38.7 40.0 37.9 28.9 26.9 30.6 18.4 16.4 21.5 1.9 2.9 0.9 

2001 14.8 18.0 11.4 27.2 24.3 30.1 31.8 31.6 32.1 38.9 41.1 36.8 29.3 27.3 31.1 16.9 15.2 19.6 2.4 3.4 1.3 

 

4
7
 



 

Table S2- 2. Pearson correlation coefficients by window of exposure to pollutants, 1990-2001  

1st Month Last Month 1st Trimester 2nd Trimester 3rd Trimester 
Pollutants 

CO SO2 NO2 PM10 CO SO2 NO2 PM10 CO SO2 NO2 PM10 CO SO2 NO2 PM10 CO SO2 NO2 PM10 

CO 1.00    1.00    1.00    1.00    1.00    

SO2 0.35 1.00   0.32 1.00   0.36 1.00   0.37 1.00   0.33 1.00   

NO2 0.27 0.35 1.00 - 0.27 0.37 1.00 - 0.19 0.39 1.00 - 0.17 0.41 1.00 - 0.19 0.39 1.00 - 

PM10 0.07 0.03 - 1.00 0.11 0.04 - 1.00 0.07 
-

0.08 
- 1.00 0.08 

-

0.01 
- 1.00 0.05 

-

0.08 
- 1.00 

Abbreviations: CO, carbon monoxide; SO2, sulfur dioxide; NO2, nitrogen dioxide; PM10, particulate matter aerodynamic diameter 

<10 µm 
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Table S2- 3. Associations between covariates and birth outcomes.   

Model included all covariates.  Statistical significant estimates are in bold. 

SGA (N=122494) PTB (N=145296) 
Covariates 

ORs 95% CI ORs 95% CI 

Male - - - 1.07 (1.03- 1.10) 

Black 2.10 (2.00- 2.21) 1.94 (1.87- 2.02) 
Race 

Other 1.86 (1.63- 2.13) 1.29 (1.15- 1.44) 

16-19 yrs 1.13 (1.07- 1.19) 1.04 (1.00- 1.08) 
Age 

≥30 yrs 1.16 (1.11- 1.22) 1.27 (1.22- 1.31) 

<12 yrs  1.33 (1.26- 1.41) 1.34 (1.28- 1.40) 
Education 

12 yrs 1.18 (1.12- 1.25) 1.19 (1.14- 1.24) 

Smoker 2.39 (2.29- 2.49) 1.36 (1.31- 1.41) 

No perinatal care 1.49 (1.35- 1.64) 1.87 (1.75- 2.00) 

Late perinatal care 1.12 (1.07- 1.17) 1.31 (1.27- 1.36) 

Fall 0.98 (0.93- 1.03) 1.01 (0.97- 1.06) 

Winter 1.01 (0.95- 1.06) 1.04 (1.00- 1.09) 
Birth 

season 

Spring 0.96 (0.91- 1.02) 1.03 (0.99- 1.07) 

Linwood 1.23 (1.15- 1.32) 1.21 (1.14- 1.27) 

Site East Seven 

Mile 1.15 (1.08- 1.23) 1.14 (1.08- 1.20) 

1990-1993 1.12 (1.07- 1.18) 1.01 (0.97- 1.04) Birth 

period 
1994-1997 1.01 (0.96- 1.07) 1.00 (0.96- 1.04) 

Abbreviations: SGA, small for gestational age; PTB, preterm birth; ORs, odds ratio. 

Reference groups: Female, White, age group 20-29, >12 yrs of education, non-smoker, 

summer, Allen Park, and birth period 1998-2001. 
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Table S2- 4. Air pollutant concentrations by window and quartile of exposures 

CO SO2 NO2 PM10 Window of exposure/ 

Quartile of exposure (ppm) (ppb) (ppb) (µg/m
3
) 

1
st 

≤0.56 ≤4.53 ≤18.65 ≤22.80 

2
nd 

0.57-0.66 4.54-5.53 18.66-20.98 22.81-28.80 

3
rd 

0.67-0.75 5.54-6.80 20.99-23.56 28.81-35.75 

1
st
 

month 

4
th 

>0.75 >6.80 >23.56 >35.8 

1
st 

≤0.56 ≤4.47 ≤18.57 ≤23.00 

2
nd 

0.57-0.66 4.48-5.47 18.58-20.94 23.01-29.20 

3
rd 

0.67-0.75 5.48-6.76 20.96-23.46 29.21-35.75 

Last 

month 

4
th 

>0.75 >6.76 >23.46 >35.75 

1
st 

≤0.61 ≤4.67 ≤19.06 ≤24.21 

2
nd 

0.62-0.67 4.68-5.49 19.07-21.03 24.22-30.06 

3
rd 

0.68-0.73 5.50-6.62 21.04-23.2 30.07-35.19 

1
st
 

trimester 

4
th 

>0.73 >6.63 >23.2 >35.19 

1
st 

≤0.61 ≤4.67 ≤19.02 ≤24.54 

2
nd 

0.62-0.67 4.68-5.50 19.03-21.01 24.55-30.29 

3
rd 

0.68-0.73 5.51-6.56 21.03-23.12 30.30-34.59 

2
nd

 

trimester 

4
th 

>0.73 >6.56 >23.12 >34.59 

1
st 

≤0.59 ≤4.57 ≤18.79 ≤24.00 

2
nd 

0.60-0.67 4.58-5.48 18.80-21.01 24.01-29.54 

3
rd 

0.68-0.74 5.49-6.66 21.03-23.12 29.55-35.23 

SGA 

3
rd

 

trimester 

4
th 

>0.74 >6.66 >23.12 >35.23 

1
st 

≤0.57 ≤4.54 ≤18.67 ≤22.80 

2
nd 

0.58-0.67 4.55-5.55 18.68-21.00 22.81-28.80 

3
rd 

0.68-0.76 5.56-6.83 21.01-23.56 28.81-35.75 

1
st
 

month 

4
th 

>0.76 >6.83 >23.56 >35.76 

1
st 

≤0.56 ≤4.49 ≤18.59 ≤23.00 

2
nd 

0.57-0.66 4.50-5.49 18.61-20.96 23.01-29.20 

3
rd 

0.67-0.75 5.50-6.79 20.97-23.47 29.21-35.60 

PTB 

Last 

month 

4
th 

>0.75 >6.79 >23.47 >35.61 

Abbreviations: SGA, small for gestational age; PTB, preterm birth; ppm, part per 

million; ppb, part per billion. 
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Table S2- 5. Adjusted odds ratio and their 95% confident interval (95% CI) at each 

window of exposure to CO for small for gestational age (SGA) and preterm birth (PTB).   

Statistical significant estimates are in bold. 

All Subjects Maternal race Maternal smoking status 

Trend-adjusted Black White Smoker Non-smoker 

Windows and 

quartiles of 

exposures 
OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

SGA      

2nd 1.11 (1.00-1.24) 1.15 (0.98-1.36) 1.08 (0.93-1.27) 1.23 (1.05-1.45) 1.07 (0.94-1.21) 

3rd 1.00 (0.89-1.12) 1.08 (0.92-1.26) 0.93 (0.78-1.11) 1.08 (0.91-1.28) 0.98 (0.86-1.11) 1st Month 

4th 1.14 (1.02-1.27) 1.20 (1.03-1.41) 1.08 (0.90-1.30) 1.15 (0.97-1.38) 1.16 (1.02-1.32) 

2nd 1.00 (0.90-1.11) 0.92 (0.79-1.07) 1.10 (0.95-1.28) 1.07 (0.91-1.25) 1.00 (0.88-1.12) 

3rd 1.02 (0.91-1.13) 0.98 (0.85-1.14) 1.03 (0.88-1.21) 1.14 (0.97-1.34) 0.98 (0.87-1.11) 
Last 

Month 

4th 0.98 (0.88-1.09) 0.96 (0.83-1.11) 0.97 (0.81-1.16) 1.12 (0.94-1.32) 0.94 (0.83-1.07) 

2nd 1.11 (0.98-1.25) 1.30 (1.09-1.55) 0.95 (0.80-1.13) 1.19 (1.01-1.40) 1.06 (0.94-1.21) 

3rd 1.10 (0.98-1.24) 1.19 (1.00-1.41) 1.08 (0.90-1.29) 1.17 (0.99-1.39) 1.08 (0.94-1.23) 
1st 

Trimester 

4th 1.10 (0.97-1.25) 1.24 (1.05-1.47) 0.95 (0.77-1.17) 1.07 (0.89-1.28) 1.13 (0.99-1.30) 

2nd 1.01 (0.90-1.13) 1.11 (0.93-1.32) 0.98 (0.83-1.15) 0.97 (0.83-1.14) 1.10 (0.97-1.24) 

3rd 1.01 (0.90-1.14) 1.07 (0.90-1.27) 1.02 (0.85-1.21) 0.98 (0.83-1.16) 1.09 (0.95-1.24) 
2nd 

Trimester 

4th 1.02 (0.90-1.15) 1.13 (0.96-1.34) 0.90 (0.73-1.11) 0.96 (0.80-1.15) 1.11 (0.97-1.28) 

2nd 1.00 (0.90-1.11) 1.11 (0.94-1.30) 0.94 (0.80-1.09) 1.05 (0.90-1.23) 1.03 (0.91-1.17) 

3rd 0.96 (0.86-1.07) 1.12 (0.96-1.31) 0.82 (0.70-0.97) 0.97 (0.82-1.14) 1.00 (0.89-1.14) 
3rd 

Trimester 

4th 0.97 (0.87-1.09) 1.07 (0.91-1.25) 0.93 (0.77-1.11) 1.03 (0.87-1.22) 0.99 (0.87-1.13) 

PTB      

2nd 0.96 (0.88-1.04) 0.93 (0.83-1.04) 0.93 (0.84-1.03) 0.90 (0.78-1.04) 0.91 (0.83-0.99) 

3rd 0.98 (0.90-1.07) 0.98 (0.88-1.10) 0.91 (0.81-1.02) 0.99 (0.86-1.15) 0.90 (0.82-0.99) 1st Month 

4th 0.95 (0.87-1.03) 0.93 (0.83-1.04) 0.89 (0.78-1.01) 0.91 (0.79-1.06) 0.89 (0.81-0.98) 

2nd 1.04 (0.96-1.13) 1.03 (0.92-1.15) 0.98 (0.88-1.08) 1.03 (0.90-1.18) 0.97 (0.89-1.05) 

3rd 0.96 (0.89-1.04) 0.97 (0.87-1.09) 0.87 (0.78-0.98) 0.92 (0.80-1.06) 0.90 (0.83-0.99) 
Last 

Month 

4th 1.04 (0.95-1.13) 1.04 (0.93-1.16) 0.93 (0.82-1.05) 0.99 (0.85-1.14) 0.98 (0.89-1.07) 

Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco 

use, prenatal care, birth seasons, site of residency and birth periods. 
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Table S2- 6. Adjusted odds ratio and their 95% confident interval (95% CI) at each 

window of exposure to SO2 for small for gestational age (SGA) and preterm birth (PTB).   

Otherwise as Table S2-5. 

All Subjects Maternal race Maternal smoking status 

Trend-adjusted Black White Smoker Non-smoker 

Windows and 

quartiles of 

exposures 
OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

SGA      

2nd 0.96 (0.90-1.03) 0.92 (0.85-1.00) 1.04 (0.94-1.16) 0.93 (0.83-1.04) 0.98 (0.91-1.06) 

3rd 1.00 (0.94-1.07) 0.98 (0.90-1.06) 1.05 (0.94-1.19) 0.97 (0.86-1.09) 1.02 (0.94-1.11) 1st Month 

4th 1.04 (0.97-1.13) 0.99 (0.90-1.09) 1.12 (0.98-1.29) 1.06 (0.93-1.22) 1.03 (0.94-1.14) 

2nd 1.01 (0.95-1.07) 1.00 (0.93-1.08) 1.01 (0.91-1.13) 1.03 (0.93-1.15) 1.00 (0.93-1.07) 

3rd 0.94 (0.88-1.01) 0.95 (0.88-1.03) 0.95 (0.85-1.07) 0.94 (0.84-1.06) 0.94 (0.87-1.02) 
Last 

Month 

4th 0.98 (0.91-1.05) 0.96 (0.88-1.05) 1.01 (0.88-1.15) 1.06 (0.94-1.21) 0.94 (0.86-1.03) 

2nd 1.02 (0.96-1.09) 1.04 (0.96-1.13) 1.01 (0.90-1.12) 0.99 (0.88-1.11) 1.04 (0.96-1.13) 

3rd 1.01 (0.94-1.09) 1.03 (0.94-1.12) 1.00 (0.88-1.13) 1.00 (0.88-1.13) 1.02 (0.94-1.11) 
1st 

Trimester 

4th 1.09 (1.00-1.18) 1.13 (1.01-1.26) 1.00 (0.86-1.15) 1.03 (0.89-1.20) 1.12 (1.00-1.24) 

2nd 0.98 (0.92-1.05) 0.96 (0.89-1.04) 1.00 (0.90-1.12) 0.93 (0.83-1.04) 1.01 (0.93-1.09) 

3rd 0.94 (0.88-1.01) 0.91 (0.83-0.99) 1.00 (0.89-1.13) 0.90 (0.80-1.02) 0.95 (0.88-1.04) 
2nd 

Trimester 

4th 1.05 (0.96-1.14) 1.01 (0.91-1.13) 1.08 (0.93-1.25) 0.99 (0.86-1.15) 1.07 (0.97-1.19) 

2nd 1.04 (0.98-1.11) 1.03 (0.96-1.12) 1.06 (0.96-1.18) 0.97 (0.87-1.08) 1.08 (1.00-1.16) 

3rd 0.98 (0.92-1.05) 0.98 (0.90-1.06) 1.00 (0.88-1.12) 0.95 (0.85-1.07) 1.00 (0.92-1.08) 
3rd 

Trimester 

4th 1.03 (0.96-1.12) 1.02 (0.92-1.12) 1.06 (0.92-1.22) 1.06 (0.93-1.22) 1.02 (0.92-1.12) 

PTB      

2nd 0.99 (0.94-1.04) 0.98 (0.92-1.04) 1.01 (0.93-1.10) 0.99 (0.89-1.09) 0.99 (0.94-1.05) 

3rd 0.97 (0.93-1.02) 0.97 (0.91-1.03) 1.00 (0.91-1.09) 1.00 (0.90-1.11) 0.97 (0.91-1.03) 1st Month 

4th 0.98 (0.92-1.04) 0.98 (0.91-1.05) 0.96 (0.86-1.07) 0.95 (0.84-1.06) 0.99 (0.93-1.06) 

2nd 1.08 (1.03-1.13) 1.12 (1.06-1.19) 1.02 (0.94-1.11) 1.07 (0.98-1.18) 1.08 (1.03-1.14) 

3rd 1.11 (1.05-1.16) 1.16 (1.09-1.23) 1.01 (0.92-1.10) 1.12 (1.01-1.23) 1.10 (1.04-1.17) 
Last 

Month 

4th 1.07 (1.01-1.14) 1.11 (1.03-1.19) 1.02 (0.92-1.13) 1.06 (0.95-1.19) 1.08 (1.01-1.15) 

Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco 

use, prenatal care, birth seasons, site of residency and birth periods. 
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Table S2- 7. Adjusted odds ratio and their 95% confident interval (95% CI) at each 

window of exposure to NO2 for small for gestational age (SGA) and preterm birth (PTB).   

Otherwise as Table S2-5. 

All Subjects Maternal race Maternal smoking status 

Trend-adjusted Black White Smoker Non-smoker 

Windows and 

quartiles of 

exposures 
OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

SGA      

2nd 1.07 (0.99-1.14) 1.09 (1.01-1.19) 1.01 (0.87-1.17) 1.17 (1.03-1.33) 1.02 (0.94-1.11) 

3rd 1.06 (0.98-1.14) 1.10 (1.01-1.20) 0.97 (0.82-1.14) 1.22 (1.06-1.39) 0.99 (0.91-1.09) 1st Month 

4th 1.11 (1.03-1.21) 1.17 (1.06-1.28) 0.99 (0.84-1.18) 1.25 (1.08-1.44) 1.06 (0.96-1.16) 

2nd 1.00 (0.93-1.07) 1.01 (0.93-1.09) 0.99 (0.86-1.14) 0.96 (0.85-1.08) 1.02 (0.94-1.11) 

3rd 1.00 (0.93-1.07) 1.00 (0.92-1.09) 0.97 (0.83-1.14) 0.96 (0.85-1.10) 1.01 (0.92-1.11) 
Last 

Month 

4th 0.95 (0.88-1.03) 0.96 (0.88-1.04) 0.93 (0.79-1.10) 0.94 (0.82-1.07) 0.96 (0.87-1.05) 

2nd 1.03 (0.96-1.11) 1.03 (0.95-1.13) 1.00 (0.86-1.17) 1.09 (0.95-1.24) 1.01 (0.92-1.10) 

3rd 1.05 (0.97-1.14) 1.07 (0.97-1.18) 1.01 (0.85-1.21) 1.06 (0.91-1.23) 1.05 (0.95-1.16) 
1st 

Trimester 

4th 1.06 (0.97-1.16) 1.10 (0.99-1.22) 0.90 (0.74-1.09) 1.10 (0.94-1.30) 1.03 (0.92-1.15) 

2nd 0.98 (0.91-1.06) 1.00 (0.92-1.09) 0.97 (0.84-1.13) 0.97 (0.85-1.11) 0.98 (0.90-1.08) 

3rd 0.99 (0.91-1.08) 1.00 (0.91-1.11) 1.00 (0.83-1.19) 0.89 (0.77-1.04) 1.04 (0.94-1.15) 
2nd 

Trimester 

4th 1.01 (0.92-1.11) 1.06 (0.95-1.18) 0.86 (0.70-1.05) 0.99 (0.84-1.17) 1.02 (0.91-1.14) 

2nd 0.94 (0.88-1.01) 0.95 (0.87-1.02) 0.90 (0.78-1.04) 0.95 (0.84-1.08) 0.93 (0.86-1.01) 

3rd 0.99 (0.92-1.07) 0.99 (0.91-1.08) 0.97 (0.83-1.14) 1.03 (0.90-1.17) 0.98 (0.90-1.07) 
3rd 

Trimester 

4th 1.01 (0.93-1.09) 0.99 (0.90-1.09) 1.06 (0.89-1.26) 1.02 (0.88-1.18) 1.00 (0.91-1.11) 

PTB      

2nd 1.03 (0.97-1.09) 1.03 (0.97-1.09) 1.02 (0.91-1.15) 0.99 (0.89-1.11) 1.04 (0.97-1.10) 

3rd 1.03 (0.97-1.09) 1.03 (0.96-1.10) 1.08 (0.95-1.22) 0.99 (0.89-1.11) 1.05 (0.98-1.12) 1st Month 

4th 1.02 (0.96-1.08) 1.03 (0.96-1.10) 0.97 (0.85-1.11) 1.03 (0.92-1.17) 1.01 (0.95-1.09) 

2nd 0.98 (0.93-1.03) 0.97 (0.91-1.03) 1.03 (0.92-1.15) 1.00 (0.90-1.11) 0.98 (0.92-1.04) 

3rd 0.99 (0.94-1.05) 1.00 (0.93-1.06) 0.98 (0.87-1.11) 0.96 (0.86-1.08) 1.00 (0.93-1.06) 
Last 

Month 

4th 0.98 (0.92-1.04) 1.00 (0.93-1.07) 0.94 (0.82-1.07) 0.94 (0.84-1.06) 0.99 (0.93-1.06) 

Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco 

use, prenatal care, birth seasons, site of residency and birth periods. 
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Table S2- 8. Adjusted odds ratio and their 95% confident interval (95% CI) at each 

window of exposure to PM10 for small for gestational age (SGA) and preterm birth 

(PTB).   

Otherwise as Table S2-5. 

All Subjects Maternal race Maternal smoking status 

Trend-adjusted Black White Smoker Non-smoker 

Windows and 

quartiles of 

exposures 
OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

SGA      

2nd 1.06 (0.91-1.24) 1.05 (0.62-1.78) 1.06 (0.90-1.26) 0.99 (0.78-1.26) 1.13 (0.92-1.39) 

3rd 0.99 (0.84-1.16) 0.87 (0.49-1.54) 1.02 (0.85-1.22) 0.90 (0.69-1.18) 1.10 (0.88-1.38) 1st Month 

4th 1.15 (0.98-1.36) 0.77 (0.42-1.40) 1.17 (0.98-1.40) 1.12 (0.87-1.45) 1.22 (0.97-1.52) 

2nd 0.99 (0.85-1.15) 1.35 (0.79-2.33) 0.96 (0.82-1.13) 1.02 (0.81-1.29) 0.99 (0.81-1.21) 

3rd 1.07 (0.92-1.25) 1.07 (0.59-1.95) 1.11 (0.94-1.31) 1.05 (0.82-1.35) 1.12 (0.91-1.38) 
Last 

Month 

4th 1.08 (0.92-1.26) 1.41 (0.77-2.59) 1.03 (0.87-1.23) 1.12 (0.88-1.43) 1.04 (0.84-1.29) 

2nd 1.02 (0.87-1.19) 0.92 (0.52-1.64) 1.09 (0.91-1.30) 0.93 (0.71-1.20) 1.20 (0.96-1.49) 

3rd 1.01 (0.86-1.20) 0.88 (0.48-1.62) 1.08 (0.89-1.30) 0.97 (0.74-1.27) 1.17 (0.92-1.48) 
1st 

Trimester 

4th 1.11 (0.94-1.32) 0.87 (0.46-1.64) 1.14 (0.94-1.39) 1.06 (0.80-1.39) 1.22 (0.96-1.56) 

2nd 1.16 (0.99-1.37) 1.20 (0.65-2.20) 1.23 (1.03-1.47) 1.08 (0.83-1.41) 1.35 (1.08-1.68) 

3rd 1.17 (0.99-1.38) 1.38 (0.75-2.53) 1.19 (0.98-1.43) 1.19 (0.91-1.56) 1.23 (0.97-1.56) 
2nd 

Trimester 

4th 1.04 (0.88-1.23) 1.43 (0.76-2.70) 0.99 (0.81-1.21) 0.84 (0.63-1.12) 1.22 (0.96-1.56) 

2nd 1.03 (0.88-1.22) 0.79 (0.44-1.41) 1.05 (0.88-1.25) 0.95 (0.73-1.24) 1.13 (0.91-1.42) 

3rd 1.20 (1.02-1.42) 1.16 (0.64-2.10) 1.22 (1.01-1.47) 1.15 (0.88-1.50) 1.33 (1.05-1.68) 
3rd 

Trimester 

4th 1.22 (1.04-1.44) 0.93 (0.50-1.73) 1.23 (1.02-1.48) 1.14 (0.87-1.49) 1.31 (1.03-1.65) 

PTB      

2nd 0.99 (0.87-1.12) 0.69 (0.43-1.10) 1.01 (0.88-1.15) 1.01 (0.80-1.27) 0.95 (0.82-1.11) 

3rd 1.10 (0.97-1.24) 0.98 (0.62-1.55) 1.10 (0.96-1.26) 1.07 (0.84-1.36) 1.07 (0.91-1.24) 1st Month 

4th 1.06 (0.93-1.20) 1.04 (0.66-1.66) 1.07 (0.93-1.23) 1.04 (0.81-1.32) 1.06 (0.90-1.24) 

2nd 0.98 (0.87-1.10) 0.87 (0.57-1.33) 0.97 (0.86-1.10) 0.97 (0.79-1.19) 0.96 (0.83-1.10) 

3rd 0.91 (0.80-1.02) 0.64 (0.40-1.03) 0.92 (0.80-1.05) 0.82 (0.65-1.03) 0.92 (0.79-1.07) 
Last 

Month 

4th 0.95 (0.84-1.07) 0.99 (0.63-1.56) 0.96 (0.84-1.09) 0.81 (0.64-1.02) 1.02 (0.88-1.19) 

Adjusted for sex, gestational age, race, maternal age groups, education levels, tobacco 

use, prenatal care, birth seasons, site of residency and birth periods. 
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Table S2- 9. Adjusted odds ratio and their 95% CIs at each window of exposure to CO 

and adverse birth outcomes for Linwood from single and multiple pollutant models 

including CO, SO2, NO2 and PM10 in the model.   

Otherwise as Table S2-5. 

CO CO and SO2 CO and NO2 CO and PM10 All pollutants Windows and 

quartiles of 

exposures OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

SGA      

2nd 1.07 (0.92-1.24) 1.07 (0.92-1.24) 1.04 (0.89-1.21) 1.07 (0.92-1.25) 1.04 (0.89-1.21) 

3rd 0.98 (0.85-1.13) 0.98 (0.85-1.14) 0.92 (0.78-1.07) 0.96 (0.83-1.11) 0.90 (0.77-1.05) 1st Month 

4th 1.11 (0.96-1.27) 1.10 (0.95-1.27) 1.04 (0.89-1.21) 1.08 (0.94-1.25) 1.02 (0.87-1.19) 

2nd 0.95 (0.82-1.09) 0.95 (0.82-1.10) 0.93 (0.80-1.07) 0.95 (0.82-1.10) 0.93 (0.80-1.08) 

3rd 1.01 (0.88-1.16) 1.02 (0.88-1.17) 1.03 (0.89-1.19) 1.02 (0.88-1.17) 1.03 (0.89-1.20) 
Last 

Month 

4th 0.98 (0.85-1.12) 0.98 (0.85-1.13) 0.98 (0.84-1.14) 0.98 (0.85-1.13) 0.98 (0.84-1.14) 

2nd 1.22 (1.04-1.44) 1.22 (1.03-1.44) 1.19 (1.00-1.42) 1.25 (1.05-1.47) 1.22 (1.02-1.46) 

3rd 1.18 (1.01-1.39) 1.19 (1.01-1.40) 1.14 (0.95-1.35) 1.23 (1.04-1.46) 1.20 (1.00-1.45) 
1st 

Trimester 

4th 1.19 (1.02-1.39) 1.19 (1.01-1.39) 1.13 (0.94-1.35) 1.20 (1.02-1.42) 1.16 (0.96-1.41) 

2nd 1.17 (0.98-1.38) 1.16 (0.98-1.38) 1.14 (0.95-1.36) 1.16 (0.97-1.38) 1.14 (0.95-1.36) 

3rd 1.15 (0.98-1.35) 1.16 (0.98-1.37) 1.11 (0.93-1.32) 1.19 (1.00-1.42) 1.19 (0.98-1.44) 
2nd 

Trimester 

4th 1.17 (0.99-1.37) 1.17 (1.00-1.38) 1.12 (0.94-1.34) 1.23 (1.04-1.46) 1.22 (1.01-1.47) 

2nd 1.02 (0.87-1.18) 1.02 (0.87-1.18) 1.01 (0.87-1.18) 0.99 (0.84-1.16) 0.97 (0.83-1.14) 

3rd 1.02 (0.88-1.18) 1.02 (0.88-1.19) 1.01 (0.86-1.17) 1.00 (0.85-1.17) 0.98 (0.83-1.16) 
3rd 

Trimester 

4th 1.00 (0.86-1.15) 1.02 (0.88-1.18) 0.99 (0.85-1.15) 0.98 (0.84-1.15) 0.99 (0.84-1.17) 

PTB      

2nd 0.97 (0.87-1.08) 0.96 (0.86-1.07) 0.94 (0.84-1.05) 0.98 (0.88-1.10) 0.94 (0.84-1.06) 

3rd 1.03 (0.93-1.15) 1.03 (0.92-1.14) 1.00 (0.89-1.12) 1.04 (0.93-1.16) 1.00 (0.90-1.13) 1st Month 

4th 0.96 (0.86-1.06) 0.95 (0.86-1.06) 0.95 (0.85-1.06) 0.95 (0.86-1.06) 0.95 (0.85-1.06) 

2nd 1.04 (0.93-1.16) 1.04 (0.93-1.15) 1.04 (0.93-1.16) 1.02 (0.91-1.13) 1.01 (0.90-1.13) 

3rd 0.97 (0.87-1.08) 0.97 (0.87-1.08) 0.95 (0.85-1.06) 0.97 (0.87-1.08) 0.94 (0.84-1.05) 
Last 

Month 

4th 1.04 (0.93-1.16) 1.04 (0.94-1.16) 1.03 (0.92-1.16) 1.05 (0.94-1.17) 1.03 (0.92-1.16) 
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Table S2- 10. Adjusted odds ratio and their 95% CIs at each window of exposure to SO2 

and adverse birth outcomes for Linwood from single and multiple pollutant models 

including CO, SO2, NO2 and PM10 in the model.   

Otherwise as Table S2-5. 

SO2 SO2 and CO SO2 and NO2 SO2 and PM10 All pollutants Windows and 

quartiles of 

exposures OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

SGA      

2nd 0.91 (0.81-1.03) 0.98 (0.81-1.17) 0.92 (0.81-1.04) 0.92 (0.82-1.03) 1.00 (0.83-1.20) 

3rd 0.96 (0.86-1.07) 0.97 (0.82-1.15) 0.95 (0.84-1.07) 0.97 (0.87-1.08) 0.99 (0.83-1.17) 1st Month 

4th 0.94 (0.84-1.05) 0.98 (0.83-1.15) 0.89 (0.78-1.01) 0.93 (0.82-1.05) 0.93 (0.78-1.11) 

2nd 1.01 (0.90-1.13) 0.99 (0.83-1.17) 1.03 (0.91-1.16) 1.01 (0.90-1.13) 0.99 (0.83-1.18) 

3rd 0.94 (0.85-1.05) 0.96 (0.82-1.12) 0.95 (0.84-1.07) 0.96 (0.86-1.07) 0.97 (0.82-1.15) 
Last 

Month 

4th 0.98 (0.87-1.10) 0.99 (0.85-1.17) 1.01 (0.89-1.15) 0.99 (0.88-1.12) 1.03 (0.86-1.23) 

2nd 1.11 (0.97-1.28) 1.16 (0.91-1.47) 1.13 (0.97-1.31) 1.13 (0.98-1.30) 1.18 (0.92-1.51) 

3rd 1.06 (0.93-1.21) 1.02 (0.85-1.23) 1.08 (0.94-1.24) 1.08 (0.95-1.24) 1.01 (0.83-1.23) 
1st 

Trimester 

4th 1.10 (0.95-1.27) 1.11 (0.91-1.34) 1.13 (0.97-1.32) 1.12 (0.96-1.31) 1.05 (0.87-1.28) 

2nd 1.20 (1.03-1.39) 1.23 (0.96-1.59) 1.22 (1.04-1.44) 1.21 (1.04-1.41) 1.30 (1.01-1.69) 

3rd 1.06 (0.91-1.22) 1.11 (0.91-1.34) 1.07 (0.92-1.24) 1.08 (0.93-1.25) 1.12 (0.91-1.37) 
2nd 

Trimester 

4th 1.09 (0.94-1.28) 1.14 (0.94-1.39) 1.11 (0.94-1.31) 1.10 (0.94-1.30) 1.11 (0.90-1.36) 

2nd 1.10 (0.97-1.25) 1.13 (0.92-1.38) 1.10 (0.96-1.26) 1.10 (0.97-1.25) 1.17 (0.94-1.45) 

3rd 1.05 (0.93-1.19) 1.21 (1.00-1.46) 1.05 (0.92-1.19) 1.07 (0.95-1.21) 1.24 (1.02-1.50) 
3rd 

Trimester 

4th 1.11 (0.97-1.27) 1.24 (1.02-1.51) 1.11 (0.96-1.28) 1.15 (1.00-1.32) 1.31 (1.06-1.60) 

PTB      

2nd 1.06 (0.97-1.16) 1.26 (1.10-1.45) 1.07 (0.98-1.18) 1.05 (0.96-1.15) 1.27 (1.11-1.47) 

3rd 1.04 (0.96-1.13) 1.12 (0.99-1.28) 1.04 (0.95-1.14) 1.05 (0.96-1.14) 1.14 (0.99-1.30) 

1st Month 

4th 1.06 (0.97-1.16) 1.14 (1.00-1.30) 1.06 (0.96-1.17) 1.05 (0.96-1.15) 1.13 (0.98-1.30) 

2nd 1.03 (0.94-1.12) 1.06 (0.93-1.21) 1.03 (0.93-1.13) 1.03 (0.95-1.13) 1.04 (0.91-1.19) 

3rd 1.06 (0.98-1.15) 1.07 (0.95-1.21) 1.05 (0.95-1.14) 1.08 (0.99-1.17) 1.06 (0.93-1.21) 

Last 

Month 

4th 1.06 (0.97-1.15) 1.02 (0.90-1.16) 1.00 (0.91-1.11) 1.05 (0.95-1.15) 0.99 (0.86-1.14) 
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Table S2- 11. Adjusted odds ratio and their 95% CIs at each window of exposure to NO2 

and adverse birth outcomes for Linwood from single and multiple pollutant models 

including CO, SO2, NO2 and PM10 in the model.   

Otherwise as Table S2-5. 

NO2 NO2 and CO NO2 and SO2 NO2 and PM10 All pollutants Windows and 

quartiles of 

exposures OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

SGA      

2nd 1.19 (1.05-1.36) 1.14 (0.98-1.33) 1.18 (1.04-1.35) 1.20 (1.05-1.36) 1.14 (0.97-1.33) 

3rd 1.13 (1.00-1.28) 1.11 (0.96-1.29) 1.13 (1.00-1.28) 1.14 (1.01-1.29) 1.12 (0.97-1.31) 1st Month 

4th 1.23 (1.09-1.39) 1.24 (1.07-1.45) 1.25 (1.11-1.41) 1.24 (1.10-1.40) 1.28 (1.09-1.49) 

2nd 1.06 (0.93-1.19) 1.08 (0.93-1.25) 1.05 (0.93-1.19) 1.07 (0.94-1.21) 1.09 (0.93-1.26) 

3rd 1.04 (0.93-1.17) 1.05 (0.91-1.21) 1.04 (0.93-1.17) 1.04 (0.93-1.17) 1.04 (0.90-1.20) 
Last 

Month 

4th 0.99 (0.88-1.11) 1.00 (0.86-1.16) 0.99 (0.88-1.11) 1.00 (0.89-1.12) 0.99 (0.85-1.16) 

2nd 1.17 (0.98-1.40) 1.07 (0.85-1.34) 1.17 (0.98-1.41) 1.17 (0.97-1.40) 1.04 (0.83-1.31) 

3rd 1.22 (1.02-1.45) 1.06 (0.85-1.33) 1.22 (1.03-1.45) 1.23 (1.03-1.47) 1.04 (0.83-1.31) 
1st 

Trimester 

4th 1.26 (1.06-1.49) 1.18 (0.94-1.48) 1.26 (1.06-1.49) 1.25 (1.05-1.49) 1.14 (0.91-1.44) 

2nd 1.29 (1.05-1.59) 1.15 (0.88-1.49) 1.29 (1.05-1.59) 1.30 (1.06-1.60) 1.06 (0.81-1.40) 

3rd 1.27 (1.03-1.55) 1.12 (0.86-1.46) 1.26 (1.03-1.55) 1.26 (1.03-1.55) 1.03 (0.78-1.35) 
2nd 

Trimester 

4th 1.31 (1.07-1.61) 1.17 (0.90-1.54) 1.31 (1.07-1.61) 1.31 (1.07-1.61) 1.12 (0.85-1.48) 

2nd 1.09 (0.93-1.26) 1.10 (0.92-1.32) 1.09 (0.94-1.27) 1.09 (0.94-1.27) 1.10 (0.92-1.33) 

3rd 1.07 (0.93-1.24) 1.07 (0.89-1.28) 1.07 (0.92-1.24) 1.09 (0.94-1.27) 1.07 (0.88-1.29) 
3rd 

Trimester 

4th 1.11 (0.96-1.28) 1.11 (0.92-1.33) 1.10 (0.95-1.27) 1.10 (0.95-1.28) 1.04 (0.85-1.26) 

PTB      

2nd 1.05 (0.95-1.16) 1.05 (0.93-1.17) 1.05 (0.95-1.16) 1.06 (0.96-1.16) 1.06 (0.94-1.19) 

3rd 1.03 (0.95-1.13) 1.08 (0.97-1.21) 1.03 (0.94-1.13) 1.04 (0.95-1.14) 1.08 (0.97-1.21) 1st Month 

4th 1.07 (0.98-1.17) 1.07 (0.95-1.20) 1.07 (0.98-1.17) 1.07 (0.98-1.17) 1.05 (0.94-1.18) 

2nd 0.92 (0.83-1.01) 0.92 (0.82-1.03) 0.92 (0.83-1.01) 0.92 (0.83-1.01) 0.92 (0.82-1.03) 

3rd 0.96 (0.88-1.04) 0.98 (0.88-1.10) 0.96 (0.88-1.04) 0.95 (0.87-1.04) 0.99 (0.89-1.11) 
Last 

Month 

4th 0.96 (0.88-1.05) 0.98 (0.87-1.09) 0.96 (0.88-1.05) 0.97 (0.89-1.06) 1.01 (0.90-1.14) 
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Table S2- 12. Adjusted odds ratio and their 95% CIs at each window of exposure to PM10 

and adverse birth outcomes for Linwood from single and multiple pollutant models 

including CO, SO2, NO2 and PM10 in the model.   

Otherwise as Table S2-5. 

PM10 PM10 and CO PM10 and SO2 PM10 and NO2 All pollutants Windows and 

quartiles of 

exposures OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

SGA      

2nd 1.02 (0.90-1.15) 0.98 (0.84-1.14) 1.01 (0.89-1.15) 1.04 (0.91-1.18) 1.02 (0.87-1.19) 

3rd 1.01 (0.88-1.15) 1.05 (0.88-1.24) 1.00 (0.87-1.15) 1.01 (0.87-1.16) 1.07 (0.90-1.28) 1st Month 

4th 1.05 (0.92-1.21) 1.12 (0.95-1.32) 1.04 (0.91-1.20) 1.06 (0.91-1.22) 1.08 (0.90-1.30) 

2nd 1.01 (0.90-1.13) 0.99 (0.87-1.14) 1.00 (0.89-1.13) 1.03 (0.91-1.17) 1.00 (0.86-1.15) 

3rd 0.97 (0.86-1.11) 0.95 (0.81-1.11) 0.97 (0.86-1.11) 0.99 (0.86-1.14) 0.98 (0.83-1.16) 
Last 

Month 

4th 0.95 (0.83-1.07) 0.88 (0.75-1.02) 0.94 (0.83-1.08) 0.96 (0.84-1.10) 0.88 (0.75-1.04) 

2nd 1.06 (0.93-1.21) 1.14 (0.96-1.36) 1.03 (0.90-1.18) 1.09 (0.95-1.25) 1.11 (0.92-1.33) 

3rd 1.13 (0.98-1.30) 1.25 (1.04-1.50) 1.07 (0.92-1.25) 1.16 (1.00-1.35) 1.16 (0.95-1.42) 
1st 

Trimester 

4th 1.16 (1.01-1.34) 1.25 (1.04-1.49) 1.11 (0.95-1.30) 1.15 (0.99-1.34) 1.16 (0.95-1.41) 

2nd 1.08 (0.94-1.23) 1.12 (0.93-1.35) 1.07 (0.93-1.23) 1.10 (0.96-1.27) 1.15 (0.94-1.42) 

3rd 0.97 (0.84-1.11) 0.99 (0.82-1.19) 0.96 (0.83-1.12) 0.98 (0.85-1.14) 0.97 (0.79-1.19) 
2nd 

Trimester 

4th 1.25 (1.09-1.44) 1.23 (1.03-1.47) 1.24 (1.06-1.45) 1.23 (1.06-1.43) 1.13 (0.92-1.40) 

2nd 0.98 (0.87-1.12) 0.90 (0.76-1.07) 0.98 (0.86-1.11) 0.98 (0.86-1.12) 0.89 (0.74-1.07) 

3rd 0.95 (0.82-1.09) 0.89 (0.75-1.07) 0.92 (0.80-1.07) 0.95 (0.82-1.10) 0.87 (0.72-1.05) 
3rd 

Trimester 

4th 0.92 (0.80-1.05) 0.87 (0.74-1.02) 0.90 (0.78-1.04) 0.89 (0.77-1.04) 0.82 (0.69-0.98) 

PTB      

2nd 0.98 (0.91-1.04) 0.99 (0.91-1.07) 0.97 (0.91-1.04) 0.97 (0.91-1.04) 1.00 (0.92-1.09) 

3rd 0.98 (0.92-1.05) 1.01 (0.92-1.11) 0.97 (0.91-1.04) 0.97 (0.90-1.04) 1.01 (0.91-1.11) 1st Month 

4th 1.02 (0.95-1.10) 1.07 (0.98-1.17) 1.02 (0.95-1.10) 1.01 (0.93-1.09) 1.08 (0.98-1.19) 

2nd 1.06 (0.99-1.13) 1.05 (0.97-1.14) 1.05 (0.98-1.12) 1.06 (0.99-1.13) 1.06 (0.97-1.15) 

3rd 1.03 (0.96-1.10) 0.99 (0.91-1.08) 1.01 (0.94-1.08) 1.00 (0.93-1.08) 0.98 (0.89-1.08) 
Last 

Month 

4th 1.00 (0.94-1.07) 0.93 (0.85-1.01) 0.98 (0.91-1.05) 0.96 (0.89-1.04) 0.92 (0.84-1.01) 
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Table S2- 13. Adjusted odds ratio (ORs) for SGA and PTB at each window of exposure 

to air pollutants by maternal education levels.   

Otherwise as Table S2-5. 

SGA PTB 

<12 yrs 12 yrs >12 yrs <12 yrs 12 yrs >12 yrs 

Windows and 

quartiles of 

exposures 
OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

CO (ppm)       

2nd 1.24 (1.03-1.49) 1.13 (0.95-1.34) 0.94 (0.76-1.17) 0.98 (0.86-1.12) 0.97 (0.87-1.10) 0.74 (0.64-0.85) 

3rd 1.11 (0.92-1.34) 1.03 (0.86-1.23) 0.82 (0.65-1.03) 1.03 (0.90-1.17) 0.95 (0.84-1.08) 0.78 (0.67-0.91) 1st Month 

4th 1.19 (0.99-1.44) 1.22 (1.02-1.47) 0.95 (0.75-1.20) 0.94 (0.83-1.08) 0.94 (0.83-1.06) 0.80 (0.69-0.94) 

2nd 0.99 (0.83-1.17) 0.97 (0.83-1.14) 1.06 (0.87-1.31) 0.97 (0.85-1.10) 1.03 (0.92-1.15) 0.94 (0.82-1.08) 

3rd 1.03 (0.86-1.22) 1.00 (0.84-1.17) 1.02 (0.82-1.27) 0.93 (0.81-1.05) 0.91 (0.81-1.03) 0.87 (0.75-1.01) 
Last 

Month 

4th 1.03 (0.86-1.23) 0.97 (0.81-1.15) 0.90 (0.72-1.14) 1.01 (0.88-1.15) 1.05 (0.92-1.18) 0.83 (0.71-0.97) 

2nd 1.46 (1.19-1.80) 0.97 (0.80-1.17) 0.94 (0.74-1.20) - - - 

3rd 1.42 (1.15-1.75) 1.01 (0.84-1.22) 0.90 (0.70-1.15) - - - 
1st 

Trimester 

4th 1.31 (1.06-1.62) 1.03 (0.85-1.26) 0.99 (0.77-1.28) - - - 

2nd 1.07 (0.88-1.31) 1.10 (0.91-1.32) 0.80 (0.63-1.00) - - - 

3rd 1.10 (0.90-1.34) 1.06 (0.88-1.28) 0.83 (0.65-1.05) - - - 
2nd 

Trimester 

4th 1.14 (0.93-1.39) 1.04 (0.85-1.27) 0.84 (0.65-1.08) - - - 

2nd 1.05 (0.87-1.26) 0.95 (0.80-1.12) 1.03 (0.84-1.28) - - - 

3rd 1.17 (0.97-1.40) 0.80 (0.68-0.96) 0.92 (0.74-1.16) - - - 
3rd 

Trimester 

4th 1.06 (0.88-1.28) 0.96 (0.81-1.15) 0.87 (0.69-1.10) - - - 

SO2 (ppb)       

2nd 0.97 (0.87-1.07) 1.02 (0.92-1.13) 0.87 (0.76-0.99) 0.97 (0.89-1.05) 1.02 (0.95-1.11) 0.97 (0.88-1.07) 

3rd 0.98 (0.88-1.09) 1.06 (0.95-1.18) 0.95 (0.83-1.09) 1.05 (0.96-1.14) 0.96 (0.89-1.04) 0.88 (0.79-0.98) 1st Month 

4th 1.06 (0.94-1.19) 1.10 (0.97-1.24) 0.94 (0.79-1.10) 1.02 (0.93-1.12) 0.97 (0.88-1.07) 0.93 (0.82-1.05) 

2nd 1.01 (0.92-1.11) 0.98 (0.89-1.08) 1.04 (0.92-1.18) 1.10 (1.02-1.19) 1.05 (0.98-1.13) 1.11 (1.01-1.22) 

3rd 0.86 (0.78-0.96) 0.98 (0.89-1.09) 1.02 (0.89-1.17) 1.13 (1.05-1.23) 1.08 (1.00-1.17) 1.12 (1.00-1.24) 
Last 

Month 

4th 0.96 (0.86-1.08) 1.00 (0.89-1.12) 0.97 (0.82-1.13) 1.12 (1.02-1.23) 1.02 (0.93-1.12) 1.09 (0.96-1.23) 

2nd 1.01 (0.90-1.12) 1.05 (0.95-1.17) 1.01 (0.88-1.16) - - - 

3rd 1.00 (0.89-1.11) 1.02 (0.91-1.15) 1.02 (0.88-1.19) - - - 
1st 

Trimester 

4th 1.10 (0.95-1.26) 1.10 (0.95-1.26) 1.05 (0.88-1.26) - - - 

2nd 0.95 (0.86-1.06) 0.97 (0.88-1.08) 1.04 (0.91-1.19) - - - 

3rd 0.90 (0.81-1.01) 0.94 (0.84-1.05) 1.01 (0.87-1.17) - - - 
2nd 

Trimester 

4th 0.98 (0.86-1.13) 1.08 (0.95-1.24) 1.09 (0.91-1.31) - - - 

2nd 1.01 (0.91-1.11) 1.05 (0.95-1.15) 1.09 (0.96-1.24) - - - 

3rd 0.95 (0.86-1.06) 0.97 (0.87-1.08) 1.06 (0.92-1.21) - - - 
3rd 

Trimester 

4th 1.02 (0.90-1.16) 1.02 (0.90-1.16) 1.08 (0.91-1.28) - - - 
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Table S2-13 (Cont.) 

SGA PTB 

<12 yrs 12 yrs >12 yrs <12 yrs 12 yrs >12 yrs 

Windows and 

quartiles of 

exposures 
OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) OR  (95% CI) 

NO2 (ppb)       

2nd 1.05 (0.94-1.17) 1.10 (0.97-1.23) 1.04 (0.89-1.22) 1.00 (0.92-1.09) 1.06 (0.97-1.16) 1.02 (0.90-1.14) 

3rd 1.10 (0.98-1.24) 1.09 (0.96-1.23) 0.93 (0.78-1.10) 1.04 (0.95-1.14) 1.03 (0.94-1.13) 1.01 (0.89-1.14) 1st Month 

4th 1.08 (0.96-1.22) 1.13 (0.99-1.29) 1.16 (0.97-1.38) 1.08 (0.98-1.18) 1.01 (0.91-1.11) 0.93 (0.81-1.06) 

2nd 1.00 (0.90-1.11) 1.01 (0.90-1.13) 0.97 (0.83-1.13) 1.05 (0.96-1.14) 0.92 (0.85-1.01) 0.97 (0.87-1.09) 

3rd 0.93 (0.83-1.04) 0.99 (0.88-1.11) 1.16 (0.99-1.37) 1.05 (0.96-1.15) 0.93 (0.84-1.01) 1.00 (0.89-1.14) 
Last 

Month 

4th 0.95 (0.84-1.07) 0.90 (0.79-1.02) 1.05 (0.88-1.24) 1.05 (0.96-1.15) 0.90 (0.82-1.00) 0.99 (0.88-1.13) 

2nd 1.06 (0.94-1.19) 1.03 (0.92-1.17) 0.98 (0.83-1.16) - - - 

3rd 1.10 (0.96-1.25) 0.99 (0.87-1.13) 1.08 (0.90-1.30) - - - 
1st 

Trimester 

4th 1.10 (0.95-1.26) 1.02 (0.88-1.18) 1.05 (0.86-1.29) - - - 

2nd 0.96 (0.85-1.08) 1.04 (0.92-1.17) 0.92 (0.78-1.09) - - - 

3rd 0.94 (0.82-1.07) 1.04 (0.90-1.19) 1.03 (0.86-1.25) - - - 
2nd 

Trimester 

4th 0.94 (0.82-1.09) 1.04 (0.90-1.21) 1.09 (0.89-1.34) - - - 

2nd 0.91 (0.82-1.02) 0.97 (0.87-1.08) 0.93 (0.80-1.09) - - - 

3rd 0.97 (0.86-1.09) 0.98 (0.87-1.11) 1.06 (0.90-1.25) - - - 
3rd 

Trimester 

4th 0.97 (0.86-1.10) 1.00 (0.88-1.14) 1.07 (0.90-1.28) - - - 

PM10 (µg/m3)       

2nd 1.12 (0.81-1.54) 0.96 (0.76-1.22) 1.18 (0.89-1.56) 1.17 (0.90-1.52) 0.96 (0.79-1.15) 0.86 (0.69-1.08) 

3rd 1.12 (0.79-1.59) 0.96 (0.75-1.23) 1.01 (0.74-1.38) 1.28 (0.97-1.69) 0.99 (0.82-1.21) 1.04 (0.83-1.31) 

1st Month 

4th 1.34 (0.95-1.90) 1.16 (0.91-1.49) 1.04 (0.76-1.42) 1.12 (0.84-1.50) 1.02 (0.84-1.25) 1.04 (0.83-1.32) 

2nd 1.23 (0.91-1.67) 1.00 (0.79-1.25) 0.85 (0.65-1.12) 0.81 (0.64-1.03) 1.00 (0.84-1.19) 1.02 (0.83-1.25) 

3rd 1.20 (0.87-1.67) 1.25 (0.99-1.59) 0.83 (0.62-1.11) 0.74 (0.56-0.96) 0.83 (0.68-1.00) 1.09 (0.87-1.35) 

Last 

Month 

4th 1.21 (0.87-1.68) 1.10 (0.86-1.40) 0.96 (0.72-1.28) 0.89 (0.68-1.16) 0.97 (0.80-1.17) 0.97 (0.77-1.22) 

2nd 0.92 (0.66-1.29) 0.92 (0.71-1.18) 1.57 (1.15-2.14) - - - 

3rd 0.87 (0.61-1.25) 1.12 (0.86-1.45) 1.25 (0.89-1.74) - - - 
1st 

Trimester 

4th 0.98 (0.68-1.39) 1.10 (0.84-1.44) 1.44 (1.02-2.04) - - - 

2nd 0.94 (0.67-1.33) 1.27 (0.98-1.64) 1.44 (1.06-1.96) - - - 

3rd 0.98 (0.68-1.40) 1.40 (1.08-1.82) 1.18 (0.85-1.64) - - - 
2nd 

Trimester 

4th 0.97 (0.67-1.41) 0.99 (0.75-1.31) 1.19 (0.85-1.67) - - - 

2nd 0.97 (0.69-1.36) 1.16 (0.90-1.49) 1.00 (0.73-1.35) - - - 

3rd 1.23 (0.87-1.74) 1.36 (1.04-1.76) 1.13 (0.82-1.56) - - - 
3rd 

Trimester 

4th 1.06 (0.74-1.50) 1.34 (1.03-1.75) 1.23 (0.89-1.69) - - - 
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Table S2- 14. Infant and maternal characteristics by birth outcomes and ethnicity, 1990-

2001. 

Characteristics 

All births* 

N=164905 

(%) 

LBW 

N=6106 

(%) 

SGA 

N=13754 

(%) 

PTB 

N=24954 

(%) 

Term 

births 

N=139951 

(%) 

Black 

N=93078 

(%) 

White 

N=68164 

(%) 

Female 49.1 58.8 49.1 47.8 49.3 49.3 48.8 
Infant sex 

Male 50.9 41.3 51.0 52.2 50.7 50.6 51.2 

Black 56.4 71.4 69.1 71.1 53.8 - - 

White 41.3 26.7 28.6 27.1 43.9 - - Race 

Other 2.2 1.9 2.3 1.8 2.3 - - 

16-19 17.4 19.2 19.8 19.8 17.0 22.0 11.6 

20-29 58.1 52.9 55.4 54.0 58.8 57.4 59.1 Age (yrs) 

≥30 24.5 27.9 24.8 26.2 24.2 20.6 29.3 

0-11 32.9 41.2 40.5 39.5 31.7 36.2 28.4 

12 40.0 38.4 38.5 38.9 40.2 39.0 41.9 
Education 

(yrs) 

≥13 27.1 20.4 21.0 21.7 28.1 24.8 29.7 

Tobacco use Smoker 21.8 38.3 35.7 27.0 20.9 19.3 26.0 

None 3.4 6.9 5.4 7.5 2.7 4.8 1.7 
Prenatal 

care Late (after 

4th month) 
26.0 32.8 31.8 35.9 24.3 32.7 17.2 

Spring (Mar-

May) 
25.2 25.2 24.8 25.1 25.3 25.0 25.7 

Summer 

(Jun-Aug) 
26.1 26.0 26.2 25.7 26.2 26.0 26.3 

Fall (Sept-

Nov) 
24.1 23.2 23.7 23.8 24.2 23.8 24.5 

Birth season 

Winter 

(Dec-Feb) 
24.6 25.6 25.3 25.5 24.4 25.2 23.6 

1990-1993 39.5 43.7 43.4 40.6 39.3 41.1 37.7 

1994-1997 31.3 29.2 29.7 31.0 31.3 31.0 31.5 Birth period 

1998-2001 29.3 27.1 26.9 28.5 29.4 28.0 30.8 

Abbreviations: LBW, low birth weight; SGA, small for gestational age; PTB, preterm 

births; (*) All births included Blacks, Whites and others. 



 

Table S2- 15.  Adjusted odds ratio and 95% confident interval (95% CI) for each window of exposure to air pollutants for low birth 

weight (LBW). 

CO SO2 NO2 PM10 Windows and 

quartiles of 

exposures Adjusteda Trend-adjustedb Adjusteda Trend-adjustedb Adjusteda Trend-adjustedb Adjusteda Trend-adjustedb 

2nd 
1.23 (1.07-1.43) 1.11 (0.94-1.31) 1.03 (0.94-1.13) 1.01 (0.92-1.11) 1.05 (0.95-1.17) 1.06 (0.95-1.17) 0.89 (0.69-1.15) 0.91 (0.70-1.17) 

3rd 1.15 (0.99-1.33) 1.01 (0.85-1.19) 1.12 (1.02-1.23) 1.09 (0.99-1.20) 1.14 (1.02-1.27) 1.14 (1.03-1.28) 1.07 (0.83-1.38) 1.08 (0.83-1.40) 1st month 

4th 
1.20 (1.03-1.39) 1.07 (0.90-1.26) 1.24 (1.13-1.37) 1.16 (1.04-1.30) 1.09 (0.97-1.22) 1.12 (1.00-1.26) 1.19 (0.92-1.54) 1.17 (0.90-1.52) 

2nd 1.06 (0.92-1.21) 0.96 (0.82-1.11) 1.06 (0.97-1.15) 1.02 (0.94-1.12) 0.98 (0.89-1.09) 0.99 (0.89-1.09) 1.28 (1.01-1.62) 1.28 (1.00-1.62) 

3rd 1.13 (0.99-1.30) 1.01 (0.86-1.17) 1.00 (0.92-1.10) 0.95 (0.86-1.04) 0.95 (0.85-1.05) 0.95 (0.85-1.05) 1.14 (0.89-1.47) 1.12 (0.86-1.45) 
Last 

month 

4th 1.11 (0.96-1.29) 0.99 (0.85-1.16) 1.11 (1.01-1.22) 0.98 (0.88-1.09) 0.88 (0.79-0.99) 0.91 (0.81-1.01) 1.22 (0.95-1.58) 1.15 (0.89-1.50) 

2nd 
1.21 (1.05-1.41) 1.12 (0.94-1.34) 1.10 (1.00-1.21) 1.08 (0.98-1.19) 0.99 (0.89-1.10) 1.00 (0.90-1.12) 1.02 (0.79-1.32) 1.00 (0.76-1.32) 

3rd 
1.20 (1.03-1.39) 1.07 (0.90-1.28) 1.06 (0.96-1.17) 1.03 (0.93-1.15) 1.06 (0.94-1.19) 1.08 (0.96-1.22) 0.91 (0.69-1.20) 0.90 (0.67-1.20) 

1st 

trimester 

4th 1.10 (0.94-1.29) 1.00 (0.84-1.20) 1.29 (1.17-1.42) 1.23 (1.08-1.39) 0.95 (0.83-1.08) 1.01 (0.88-1.15) 1.21 (0.93-1.57) 1.11 (0.83-1.47) 

2nd 1.15 (0.99-1.34) 1.06 (0.89-1.26) 0.93 (0.85-1.02) 0.91 (0.83-1.00) 0.94 (0.84-1.04) 0.94 (0.84-1.05) 1.17 (0.90-1.51) 1.17 (0.89-1.54) 

3rd 
1.18 (1.02-1.37) 1.06 (0.89-1.26) 0.93 (0.85-1.03) 0.89 (0.81-0.99) 0.97 (0.86-1.10) 1.00 (0.88-1.13) 1.12 (0.85-1.47) 1.10 (0.83-1.47) 

2nd 

trimester 

4th 
1.24 (1.06-1.45) 1.12 (0.93-1.34) 1.16 (1.05-1.28) 1.05 (0.93-1.19) 0.97 (0.85-1.10) 1.04 (0.91-1.19) 1.09 (0.84-1.42) 0.97 (0.73-1.30) 

2nd 1.05 (0.91-1.21) 0.93 (0.80-1.08) 1.09 (1.00-1.19) 1.06 (0.97-1.16) 0.90 (0.81-0.99) 0.91 (0.82-1.00) 0.95 (0.74-1.23) 0.91 (0.70-1.18) 

3rd 1.07 (0.93-1.23) 0.93 (0.80-1.08) 1.04 (0.95-1.14) 0.99 (0.90-1.09) 0.87 (0.78-0.97) 0.88 (0.79-0.98) 0.96 (0.74-1.26) 0.92 (0.69-1.21) 
3rd 

trimester 

4th 1.07 (0.92-1.24) 0.94 (0.80-1.10) 1.21 (1.10-1.33) 1.08 (0.96-1.21) 0.90 (0.80-1.01) 0.94 (0.84-1.06) 1.17 (0.91-1.50) 1.03 (0.79-1.36) 

aAdjusted for sex, gestational age, race, maternal age groups, education levels, tobacco use, prenatal care, birth seasons and site of 

residency. 

bAdjusted for variables above and birth periods. 

6
2
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Table S2- 16.  Results of the multipollutant model (including CO, SO2, NO2 and PM10) 

for LBW at the Linwood area.   

Otherwise as Table 2S-14. 

CO SO2 NO2 PM10 Window of 

exposure/ Quartile 

of exposure OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

2
nd 

1.05 (0.84-1.31) 1.05 (0.80-1.39) 1.14 (0.91-1.44) 1.02 (0.87-1.19) 

3
rd 

0.91 (0.72-1.14) 1.16 (0.89-1.50) 1.21 (0.97-1.50) 1.07 (0.90-1.28) 1
st
 month 

4
th 

0.93 (0.75-1.16) 1.16 (0.89-1.52) 1.30 (1.04-1.63) 1.08 (0.90-1.30) 

2
nd 

0.96 (0.78-1.19) 1.17 (0.90-1.51) 1.04 (0.84-1.28) 1.00 (0.86-1.15) 

3
rd 

1.05 (0.85-1.30) 1.04 (0.81-1.33) 1.01 (0.82-1.23) 0.98 (0.83-1.16) 
Last 

month 

4
th 

1.01 (0.82-1.25) 1.09 (0.84-1.41) 1.05 (0.85-1.30) 0.88 (0.75-1.04) 

2
nd 

1.35 (1.04-1.76) 1.30 (0.91-1.87) 0.92 (0.67-1.28) 1.11 (0.92-1.33) 

3
rd 

1.32 (1.01-1.73) 1.02 (0.77-1.36) 0.95 (0.69-1.30) 1.16 (0.95-1.42) 
1

st
 

trimester 

4
th 

1.17 (0.89-1.54) 1.25 (0.94-1.66) 0.94 (0.68-1.30) 1.16 (0.95-1.41) 

2
nd 

1.20 (0.92-1.55) 0.98 (0.67-1.44) 1.22 (0.82-1.81) 1.15 (0.94-1.42) 

3
rd 

1.14 (0.87-1.50) 0.99 (0.74-1.33) 1.29 (0.87-1.91) 0.97 (0.79-1.19) 
2

nd
 

trimester 

4
th 

1.22 (0.93-1.59) 1.00 (0.75-1.34) 1.49 (1.00-2.24) 1.13 (0.92-1.40) 

2
nd 

0.96 (0.76-1.20) 1.11 (0.82-1.52) 1.19 (0.93-1.53) 0.89 (0.74-1.07) 

3
rd 

1.01 (0.81-1.27) 1.17 (0.88-1.54) 1.03 (0.80-1.34) 0.87 (0.72-1.05) 
3

rd
 

trimester 

4
th 

0.99 (0.79-1.24) 1.24 (0.92-1.66) 1.12 (0.86-1.46) 0.82 (0.69-0.98) 
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Table S2- 17. Adjusted odds ratio and 95% confidence interval (95% CI) for each 

window of exposure to air pollutants for small for gestational age (SGA) and preterm 

birth (PTB).  No adjustment for maternal smoking.     

CO SO2 NO2 PM10 Windows and quartiles of 

exposures OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

2
nd 

1.13 (1.01-1.25) 0.96 (0.90-1.02) 1.06 (0.99-1.14) 1.09 (0.93-1.27) 

3
rd 

1.01 (0.90-1.13) 1.00 (0.94-1.07) 1.06 (0.99-1.15) 1.02 (0.87-1.21) 1
st
 month 

4
th 

1.15 (1.02-1.28) 1.06 (0.98-1.14) 1.11 (1.02-1.20) 1.18 (1.00-1.40) 

2
nd 

1.02 (0.92-1.13) 1.01 (0.95-1.07) 0.99 (0.93-1.06) 1.00 (0.86-1.16) 

3
rd 

1.03 (0.93-1.15) 0.94 (0.88-1.00) 1.01 (0.94-1.08) 1.07 (0.92-1.26) 
Last 

month 

4
th 

1.00 (0.90-1.12) 0.99 (0.92-1.07) 0.95 (0.88-1.03) 1.09 (0.93-1.28) 

2
nd 

1.11 (0.99-1.25) 1.03 (0.96-1.09) 1.02 (0.95-1.10) 1.06 (0.90-1.25) 

3
rd 

1.11 (0.98-1.25) 1.02 (0.95-1.09) 1.05 (0.96-1.14) 1.07 (0.90-1.28) 
1

st
 

trimester 

4
th 

1.11 (0.98-1.26) 1.11 (1.02-1.21) 1.05 (0.96-1.15) 1.15 (0.96-1.37) 

2
nd 

1.02 (0.91-1.14) 0.98 (0.92-1.04) 0.97 (0.91-1.05) 1.25 (1.06-1.48) 

3
rd 

1.03 (0.91-1.15) 0.93 (0.87-1.00) 1.00 (0.92-1.08) 1.24 (1.04-1.48) 
2

nd
 

trimester 

4
th 

1.04 (0.92-1.18) 1.05 (0.97-1.14) 1.00 (0.92-1.10) 1.07 (0.89-1.28) 

2
nd 

1.02 (0.92-1.13) 1.05 (0.98-1.11) 0.93 (0.87-1.00) 1.05 (0.89-1.24) 

3
rd 

0.98 (0.88-1.09) 0.98 (0.92-1.05) 0.99 (0.92-1.07) 1.24 (1.05-1.48) 

SGA 

3
rd

 

trimester 

4
th 

1.01 (0.91-1.13) 1.05 (0.97-1.14) 1.01 (0.93-1.09) 1.22 (1.03-1.45) 

2
nd 

0.97 (0.90-1.06) 0.99 (0.94-1.04) 1.02 (0.97-1.08) 0.97 (0.86-1.10) 

3
rd 

1.00 (0.92-1.09) 0.97 (0.93-1.03) 1.03 (0.98-1.10) 1.06 (0.93-1.21) 1
st
 month 

4
th 

0.96 (0.88-1.05) 0.99 (0.93-1.05) 1.02 (0.96-1.08) 1.05 (0.92-1.20) 

2
nd 

1.05 (0.97-1.13) 1.08 (1.03-1.13) 0.98 (0.93-1.03) 0.95 (0.85-1.07) 

3
rd 

0.97 (0.89-1.05) 1.11 (1.05-1.16) 0.99 (0.94-1.05) 0.87 (0.77-0.99) 

PTB 

Last 

month 

4
th 

1.04 (0.96-1.13) 1.08 (1.02-1.15) 0.98 (0.92-1.04) 0.94 (0.83-1.06) 

Adjusted for sex, gestational age, race, maternal age groups, education levels, prenatal 

care, birth season, site of residency and birth periods. 



65 

2.7 References 

1. McIntire DD, Bloom SL, Casey BM, Leveno K. Birth weight in relation to morbidity 

and mortality among newborn infants. The New England Journal of Medicine 

1999;340(16):1234-1238. 

2. Haram K, Softeland E, Bukowski. Intrauterine growth restriction. international Journal 

of Gynecology & Obstetrics 2006;93:5-12. 

3. Goldenberge RL, Culhane JF, Iams JD, Romero R. Preterm birth 1-epidemiology and 

causes of preterm birth. The Lancet 2008;371(75-84). 

4. Kavlock RJ, Grabowski CT. Studies on the developmental toxicity of ozone: Postnatal 

effects. Toxicology letters 1980;5(1):3-9. 

5. Bignami G, Musi B, Dell'Omo G, Laviola G, Alleva E. Limited effects of ozone 

exposure during pregnancy on physical and neurobehavioral development of cd-1 mice. 

Toxicology and Applied Pharmacology 1994;129(2):264-271. 

6. Falkner F. Developmental biology prenatal growth in human growth. 2 ed. Vol. 1 New 

York: Plenum Press, 1986. 

7. Kavlock R, Daston G, Grabowski CT. Studies on the developmental toxicity of ozone.  

I. Prenatal effects. Toxicology and Applied Pharmacology 1979;48(1):19-28. 

8. Liu S, Krewski D, Shi Y, Chen Y, Burnett RT. Association between gaseous ambient 

air pollutants and adverse pregnancy outcomes in vancouver, canada. Environmental 

Health Perspectives 2003;111(14):1773-1778. 

9. Maisonet M, Bush TJ, Correa A, Kaakkola JJK. Relation between ambient air 

pollution and low birth weight in the northeastern united states. Environmental Health 

Perspectives 2001;109(3):351-356. 

10. Ritz B, Yu F. The effect of ambient carbon monoxide on low birth weight among 

children born in southern california between 1989 and 1993. Environmental Health 

Perspectives 1999;107(1):17-25. 

11. Ritz B, Yu F, Chapa G, Fruin S. Effect of air pollution on preterm birth among 

children born in southern california between 1989 and 1993. Epidemiology 

2000;11(5):502-511. 



66 

12. Wilhelm M, Ritz B. Local variations in co and particulate air pollution and adverse 

birth outcomes in los angeles county, california, USA. Environmental Health 

Perspectives 2005;113(9):1212-1221. 

13. Martin J, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Kirmeyer S. Births: 

Final data for 2004. Centers for Disease Control and Prevention. 

http://www.cdc.gov/nchs/data/nvsr/nvsr55/nvsr55_01.pdf. 2 May 2007 

14. Dugandzic R, Dodds L, Stieb D, Smith-Doiron M. The association between low level 

exposures to ambient air pollution and term low birth weight: A retrospective cohort 

study. Environmental health: A Global Access Science Source 2006:1-8. 

15. Ananth CV, Demissie K, Kramer MS, Vintzileos AM. Small-for-gestational-age 

births among black and white women: Temporal trends in the united states. American 

journal of public health 2003;93(4):577-579. 

16. Glinianaia S, Rankin J, Bell R, Pless-Mulloli T, Howel D. Particulate air pollution 

and fetal health-a systematic review of the epidemiologic evidence. Epidemiology 

2004;15(1):36-45. 

17. Maisonet M, Correa A, Misra D, Jaakkola JJK. A review of the literature on the 

effects of ambient air pollution on fetal growth. Environmental Research 2004;95:106-

115. 

18. Sram RJ, Binkova B, Dejmek J, Bobak M. Ambient air pollution and pregnancy 

outcomes: A review of the literature Environmental Health Perspectives 

2005;113(4):375-382. 

19. U.S. EPA. Quality assurance handbook for air pollution measurement systems.  Vol 

ii: Part 1-ambient air quality monitoring program quality system development.  Epa-

454/r-98-004. 1998. 

20. Amini SB, Catalano PM, Dierker LJ, Mann LI. Births to teenagers: Trends and 

obstetric outcomes. Obstetrics & Gynecology 1996;87(5):668-674. 

21. Heffner LJ. Advanced maternal age-how old is too old? The New England Journal of 

Medicine 2004;351(19):1927-1929. 

22. Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of 

treatment of gestational diabetes mellitus on pregancy outcomes. The New England 

Journal of Medicine 2005;352(24):2477-2486. 



67 

23. Batton DG, DeWitte DB, Espinosa R, Swails TL. The impact of fetal compromise on 

outcome at the border of viability. Am J Obstet Gynecol 1998;178:909-15. 

24. U.S. EPA. List of designated reference and equivalent methods. 

http://www.epa.gov/ttn/amtic/files/ambient/criteria/ref0706.pdf. 30 November 2006 

25. Parker JD, Woodruff TJ, Basu R, Schoendorf KC. Air pollution and birth weight 

among term infants in california. Pediatrics 2005;115:121-128. 

26. Hansen C, Neller A, Williams G, Simpson R. Maternal exposure to low levels of 

ambient air pollution and preterm birth in brisbane, australia. BJOG An International 

Journal of Obstetrics and Gynaecology 2006;113:935-941. 

27. Huynh M, Woodruff TJ, Parker JD, Schoendorf KC. Relationships between air 

pollution and preterm birth in california. Environmental effects 2006;20:454-461. 

28. Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JKC. Ambient air pollution and preterm birth 

in the environment and pregnancy outcomes study at the university of california, los 

angeles. Am J Epidemiol 2007;166(9):1045-1052. 

29. Stevens CD, Williams R, Vette A, Jones P. Urban scale variability of pm2.5 

components. U.S. EPA. 

http://www.epa.gov/nerl/news/isea2006/posters/DEARS_ISEAposter.pdf. 17 November 

2007 

30. Heindorf MA. Personal communication with mary ann heindorf at michigan 

department of environmental quality. Lansing, 2007. 

31. Hamilton BE, Martin JA, Sutton PD. Births: Preliminary data for 2002. Centers for 

Disease Control and Prevention. 

http://www.cdc.gov/nchs/data/nvsr/nvsr51/nvsr51_11.pdf. 2 May 2007 

32. Mathews TJ. Smoking during pregnancy in the 1990s. Centers for Disease Control 

and Prevention. http://www.cdc.gov/nchs/data/nvsr/nvsr49/nvsr49_07.pdf. 2 May 2007 

33. Dejmek J, Selevan SG, Benes I, Solansky I, Sram RJ. Fetal growth and maternal 

exposure to particulate matter during pregnancy. Environmental Health Perspectives 

1999;107(6):475-480. 

34. Xu X, Ding H, Wang X. Acute effects of total suspended particles and sulfur dioxides 

on preterm delivery.  A community-based cohort study. Archives of Environmental 

Health 1995;50(6):407-415. 



68 

35. Sangalli MR, McLean AJ, Peek MJ, Rivory LP, Le Couteur DG. Carbon monoxide 

disposition and permeability-surface area product in the foetal circulation of the perfused 

term human placenta. Placenta 2003;24:8-11. 

36. Di Cera E, Doyle ML, Morgan MS, De Cristofaro R, Landolfi R, Bizzi B, Castagnola 

M, Gill SJ. Carbon monoxide and oxygen binding to human heogloblin f0. Biochemistry 

1989;28:2631-2638. 

37. Sram RJ, Binkova B, Rossner P, Rubes J, Topinka J, Dejmek J. Adverse reproductive 

outcomes from exposure to environmental mutagens. Mutation Research 1999;428:203-

215. 

38. Perera FP, Jedrychowski W, Rauh V, Whyatt RM. Molecular epidemiologic research 

on the effects of environmental pollutants on the fetus. Environmental Health 

Perspectives 1999;107(Suppl 3):451-460. 

39. Perera FP, Whyatt RM, Jedrychowski W, Rauh V, Manchester D, Santella RM. 

Recent developments in molecular epidemiology: A study of the effects of environmental 

polycyclic aromatic hydrocarbons on birth outcomes in poland. American Journal of 

Epidemiology 1998;147(3):309-314. 

40. Tabacova S, Baird DD, Balabaeva L. Exposure to oxidized nitrogen: Lipid 

erozidation and neonatal health risk. Arch Environ Health 1998;53:214-221. 

41. Yang C-Y, chang C-C, Chuang H-Y, Ho C-K, Wu T-N, Chang P-Y. Increased risk of 

preterm delivery among people living near the three oil refineries in taiwan. Environment 

International 2004;30:337-342. 

42. Mohorovic L. First two months of pregnancy—critical time for preterm delivery and 

low birth weight caused by adverse effects of coal combustion toxics. Early human 

development 2004;80:115-123. 

43. Mannes T, Jalaludin B, Morgan G, Lincoln D, Sheppeard V, Corbett S. Impact of 

ambient air pollution on birth weight in sydney. Occupational and Environmental 

Medicine 2005;62:524-530. 

44. Liu S, Krewski D, Shi Y, Chen Y, Burnett RT. Association between exposure to 

ambient air pollutants during pregnancy and fetal growth restriction. Journal of Exposure 

Analysis and Environmental Epidemiology 2007;17:426-432. 



69 

45. Salam MT, Millstein J, Li Y-F, Lurmann FW, Margolis HG, Gilliland FD. Birth 

outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: 

Results from the children’s health study. Environmental Health Perspectives 

2005;113(11):1638-1644. 

46. Sagiv SK, Mendola P, Loomis D, Herring AH, Neas LM, Savitz DA, Poole C. A time 

series analysis of air pollution and preterm birth in pennsylvania, 1997-2001. 

Environmental Health Perspectives 2005;113(5):602-606. 

47. Bobak M. Outdoor air pollution, low birth weight, and prematurity. Environmental 

Health Perspectives 2000;108(2):173-176. 

48. Leem J-H, Kaplan BM, Shim YK, Pohl HR, Gotway CA, Bullard SM, Rogers JF, 

Smith MM, Tylenda CA. Exposure to air pollutants during pregnancy and preterm 

delivery. Environmental Health Perspectives 2006;114(6):905-909. 

49. Dejmek J, Solansky I, Podrazilova K, Sram RJ. The exposure of nonsmoking and 

smoking mothers to environmental tobacco smoke during different gestational phases and 

fetal growth. Environmental Health Perspectives 2002;110(6):601-605. 

50. Valero de Bernabe J, Soriano T, Albaladejo R, Juarranz M, Calle ME, Martinez D, 

Dominguez-Rojas V. Risk factors for low birth weight: A review. European journal of 

obstetrics and gynecology and reproductive biology 2004;116:3-15. 

51. Ponce NA, Hoggatt KJ, Wilhelm M, Ritz B. Preterm birth: The interaction of traffic-

related air pollution with economic hardship in los angeles neighborhoods. American 

Journal of Epidemiology 2005;162(2):162-148. 

52. Schulz A, Williams D, Israel B, Becker A, Parker E, James SA, Jackson J. Unfair 

treatment, neighborhood effects, and mental health in the detroit metropolitan area. 

Journal of health and social behavior 2000;41:314-332. 

53. Huebner C. Birth outcomes among urban african-american women: A multilevel 

analysis of the role of racial residential segregation. Social Science & Medicince 

2006;63:3030-3045. 

54. Abel EL. Smoking during pregnancy: A review of effects on growth and development 

of offspring. Human Biology 1980;52:593-625. 

55. Jaddoe VWV, Verburg BO, de Ridder MAJ, Hofman A, Mackenbach JP, Moll HA, 

Steegers EAP, Witteman JCM. Maternal smoking and fetal growth characteristics in 



70 

different periods of pregnancy. American Journal of Epidemiology 2007;165(10):1207-

1215. 

56. MacArthur C, Knox EG. Smoking in pregnancy: Effects of stopping at different 

stages. Br J Obstet Gynaecol 1988;95:551-5. 

57. Basu R, Woodruff TJ, Parker JD, Saulnier L, Schoendorf KC. Comparing exposure 

metrics in the relationship between pm2.5 and birth weight in california. Journal of 

Exposure Analysis and Environmental Epidemiology 2004;14:391-396. 

58. Pocock SJ, Geller NL, Tsiatis AA. The analysis of multiple endpoints in clinical 

trials. Biometrics 1987;43:487-498. 

59. Alm S, Mukala K, Tiittanen P, Jantunen MJ. Personal carbon monoxide exposures of 

preschool children in helsinki, findland--comparison to ambient air concentrations. 

Atmospheric Environment 2001;35:6259-6266. 

60. Brunekreef B, Janssen NA, de Hartog JJ, Oldenwening M, Meliefste K, Hoek G, 

Lanki T, Timonen KL, Vallius M, Pekkanen J, Van Grieken R. Personal, indoor, and 

outdoor exposures to pm2.5 and its components for groups of cardiovascular patients in 

amsterdam and helsinki.  The Health Effects Institute, 2005. 

61. Kim D, Sass-Kortsak A, Purdham JT, Dales RE, Brook JR. Associations between 

personal exposures and fixed-site ambient measurements of fine particulate matter, 

nitrogen dioxide, and carbon monoxide in toronto, canada. Journal of Exposure Analysis 

and Environmental Epidemiology 2006;16:172-183. 

 

 



 71 

Chapter 3  

Apportionment of Air Toxics and Emergency Department 

Visits for Respiratory Illness among Dearborn, Michigan 

Children 
 

3.1 Abstract 

Asthma morbidity has been associated with exposure to a number of ambient air 

pollutants; however, effects of exposure to urban air toxics (UATs) remain poorly 

understood.  Monitoring for this class of pollutants has been limited, and available data 

are generally inadequate to support epidemiological studies.  This study uses exposure 

measures for UATs, derived using source apportionment techniques, to evaluate acute 

effects of UATs on health care utilization of children living near an ambient air quality 

monitoring site in the Dearborn, Michigan area. 

Health outcomes investigated included emergency department (ED) visits for 

asthma and respiratory problems of 7,863 children living within 10 km of the Dearborn 

monitoring site and enrolled in Medicaid for the one year study period.  After an analysis 

of quality assurance issues of the daily UAT data, based largely on 122 pairs of replicate 

samples, missing data were imputed, and exposures were expressed as concentrations of 

individual pollutants as well as scores derived from factor analysis and positive matrix 

factorization (PMF) models that represented contributions from source classes.  Rate 

ratios (RR) of ED visits for exposures to source-specific UATs for the current and 

previous 1, 2, 3 and 4 days were estimated using Poisson regression models adjusted for 

temperature, pressure, relative humidity, season, day-of-week, and PM2.5 concentration.   

Of the 71 UAT compounds measured, only 23 were frequently detected or had at 

least fair reproducibility.  These measurements were distilled to five source classes using 



 72 

PMF.  The rate of ED visits for respiratory problems increased among those children in 

the highest exposure quartile for fuel combustion sources (RR=1.44 and 95% confidence 

interval=1.03-2.01), photochemical pollutants (1.48, 1.15-1.90), and gasoline 

exhaust/evaporated gasoline (1.35, 1.05-1.74) compared to those in the lowest exposure 

quartile.  Effects were stronger for subjects living closer (within 4 km) of the air 

monitoring site.  No statistically significant associations were found between exposures 

to criteria pollutants, or between UAT exposures and injury, an outcome used as a 

control.  This study suggests that respiratory health effects are caused by exposure to 

pollutants associated with several common sources, and that the use of exposure 

measures based on source apportionments can provide a powerful technique for 

investigating health effects of toxic air pollutants. 

3.2 Introduction  

Many studies have linked exacerbations of asthma to exposures of “criteria” air 

pollutants, including particulate matter (PM2.5 and PM10), ozone (O3), carbon monoxide 

(CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2).
1-6

  In contrast, very few studies 

have examined or linked asthma (and respiratory health in general) with exposure to a 

group of pollutants known as urban air toxics (UAT),
7
 which include carbonyls, volatile 

organic compounds (VOC), semivolatile organic compounds, metals, and several 

pollutant mixtures.  Exposures to several UATs have been estimated to increase risks of 

adverse respiratory system effects for nearly all (92%) of the U.S. population.
8
  Most of 

our understanding of the health impacts of UATs is based on occupational studies, which 

likely have limited applicability to environmental exposures for several reasons, e.g., the 

high concentrations, simple exposures (i.e., single pollutant) and healthy worker effect.  

UAT monitoring is uncommon, and typically integrated 24-hour measurements 

are taken on a periodic basis, e.g., every 6
th

 day.  Hourly measurements of UAT are rarely 

available.  Further, each type or class of air toxics requires a different sampling and 

analysis approach.   

The lack of continuous UAT data makes it difficult for epidemiological studies to 

investigate these pollutants in relation to health risks.  Current occupational and 

community-based studies are limited by the accuracy of self-reported information about 
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exposures (i.e. job-exposure matrices) and inability to capture mixed pollutant exposure.
9
   

For most individuals, UAT exposures occur as mixtures at low concentrations.  

Given the importance of mixtures, exposure indicators for UATs might utilize source 

class contributions derived using receptor models which utilize a mass balance analysis to 

identify and apportion sources of ambient air pollutants.  In comparison to the use of one 

or possibly several pollutants, such indicators may provide greater ability to ascertain 

impacts as well as enhance the ability to implement effective interventions, advantageous 

to both regulatory and health service agencies.  For example, exposures to benzene, a 

common and well-known toxicant and carcinogen, may be reduced by controlling 

automobile exhaust.  It is possible that indicators of automobile exhaust may be more 

strongly correlated with health impacts than benzene alone.. 

This chapter presents a study of the relationship between UAT exposures and 

utilization of urgent care facilities for asthma and respiratory disease.  A time-series 

analysis is used to link daily health care utilization to both source-apportioned exposure 

measures and individual pollutant concentrations.  Information regarding quality 

assurance, reproducibility and imputation of missing UAT data is discussed in Chapter 4 

and in a published paper (Appendix 2).
10

  Detailed information regarding receptor 

modeling and the source apportionments used in this chapter is discussed in Appendix 1.    

3.3 Background 

3.3.1 Sources, characteristics, and types of urban air toxics 

The 1990 Clean Air Act Amendments listed 188 hazardous air pollutants (HAPs), 

also known as “air toxics,” which include several classes of pollutants.
7
  UATs, one of 

these classes defined by the U.S. Environmental Protection Agency, include volatile 

organic compounds (VOCs), very volatile organic compounds, semivolatile organic 

compounds, aldehydes, metals, and several mixtures including diesel exhaust.  Ambient 

air quality monitoring for UATs is relatively uncommon, and typically only a few species 

are measured on an intermittent basis, e.g., every sixth day. 

The origin, transport, and behavior of UATs in the atmosphere can be complex.  

UATs originate from both natural (e.g., volcano, ocean spray, wind erosion, biogenic 

activity) and anthropogenic (industrial, domestic, agricultural) processes.
11

  Most UATs 
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originate from man-made sources, which include mobile (e.g., cars, trucks, aircraft) and 

stationary sources (e.g., power plants, refineries, factories).  In cases, natural sources 

(e.g., volcanic eruption, forest fires) can be important.  In the U.S., about 4.7 million tons 

of HAPs were emitted in 1996, with 51% from mobile sources, 25% from area sources, 

and 24% from industrial sources.
12

  Since most sources emit multiple pollutants, 

exposures nearly always represent mixture of pollutants.  As noted below, the toxicity of 

UATs and UAT mixtures vary, depending on the concentration and the chemical and 

physical composition.     

3.3.2 Urban air toxics and respiratory health effects 

Respiratory health effects due to environmental exposures of air toxics have not 

been extensively studied, especially in children.  In large part, this is due to the lack of 

UAT data at appropriate spatial and temporal scales for epidemiological studies.   

Most of the existing studies examining respiratory health effects and UATs have 

focused on VOCs.  Among a representative U.S. adult population studied in the National 

Health and Nutrition Examination Survey (1999-2000), personal exposures to aromatic 

VOCs were associated with physician-diagnosed asthma and wheezing attacks.
13

  In their 

review, Schenker and Jacobs (1996) concluded that exposures to organic solvents may 

cause respiratory symptoms or impaired pulmonary function in the general population, 

and that exposure to formaldehyde above 5 ppm in occupational settings was associated 

with asthma.
9
  In a randomized, crossover-design study of controlled adult human 

exposures to VOCs mixtures (including 21 compounds) similar to those found indoors, 

Pappas et al. (2000) found that 4 hr exposures to concentrations >25 mg/m
3
 increased 

both lower and upper respiratory symptoms.
14

  Ambient VOC exposures were associated 

with respiratory health effects in school age children (third to fifth grade) in Kanawha 

County, West Virginia.
15

  This study found that a 10 µg/m
3 

increase in petroleum-related 

compounds (toluene, m,p-xylene, benzene, o-xylene and decane) was associated with 

bronchitis, persistent wheezing, physician’s diagnosis of asthma, lower respiratory 

symptoms, and chronic lower respiratory response, while a 2 µg/m
3 

increase in process-

related compounds (1,1,1-trichloroethane, carbon tetrachloride, 1-butanol, chloroform, 

perchloroethylene, methyl isobutyl ketone, etc.) was associated with lower respiratory 
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symptoms and chronic lower respiratory response.  In a more recent study among 

children between 10 to 15 yrs of age with mild asthma in a Los Angeles community, 

petroleum-related VOCs (toluene, m,p-xylene, o-xylene and benzene) were associated 

with self-reported asthma symptoms (peak expiratory flow rate was also measured by the 

children).
16

  Although this study found that VOCs monitored in breath were weakly 

correlated to ambient levels, ambient VOCs can be used to indicate exposure to 

combustion-related compounds.  Using a survey instrument, a study in Anchorage, 

Alaska, young children (5-7 yrs) exposed to traffic-related air pollutants (VOCs and 

coarse fraction particulate matter) showed increased risk of asthma.
17

  In Atlanta, 

Georgia, children less than 18 yrs of age with diagnosed asthma made more frequent 

visits to an ambulatory care setting after earlier (past 2 days) exposures to outdoor polar 

VOCs.
18

  In Belfast, Northern Ireland, ambient benzene levels were associated with ED 

admissions for children with asthma, after controlling for exposures to criteria air 

pollutants (SO2, NO2, NO, CO, O3), temperature and rainfall.
19

  This study did not 

account for exposure to other air toxics.  In a case-control study in Perth, Australia, 

young children (1/2 – 3 years of age) experiencing indoor VOC at concentrations above 

60 µg/m
3
 were four times more likely to have asthma compared to children with lower 

exposures.
20

 

Most of the exposure measures used in the literature, including the studies just 

mentioned, have utilized individual pollutant species, groups of related pollutants, or total 

concentrations of all pollutants in the class.  Such measures may not adequately reflect 

the actual health effects of mixed pollutant exposures.  For example, the West Virginia 

study identified two source indicators for VOC exposure, namely, petroleum-related and 

process-related compounds, by grouping together a small number of pollutants from 

similar sources.
15

  This approach may have the advantage of utilizing a priori 

information, but it may not be efficient because collinearity is not accounted for and the 

source(s) must be known.  Another limitation in using a priori source identification are 

the inconsistencies that result between studies.  For example, traffic-related exposures 

were defined in the Los Angeles study
16

 using a few VOCs, while the Alaskan study
17

 

included both VOCs and coarse particulate matter.  Another problem is the varying 

composition of toxic pollutants emitted from different sources types, which may alter the 
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toxicity of the mixture.   

UAT exposures also occur due to indoor sources, and the types and 

concentrations of pollutants can vary between indoor and outdoor microenvironments.
21

  

For example, in inner-city New York City, formaldehyde and acetaldehyde indoor 

(home) levels exceeded outdoors, but vehicle-related VOCs (benzene, toluene, 

ethylbenzene, xylenes, and tert-butyl ether) were consistent in both environments.
22

   

Health effects studies could benefit from exposure assessment approaches that 

identify the sources of UATs and help capture exposures to mixtures.  The use of receptor 

model-based apportionments, described next, provides a promising approach for this task. 

3.3.3 Receptor modeling 

The fundamental principle of receptor modeling (RM) is that a mass balance 

analysis can be used to identify and apportion sources of ambient air pollutants.
23

  This 

allows source-specific contributions to be identified and quantified on the basis of 

matching ambient concentrations with the chemical (and sometimes physical) 

characteristics of source emissions.  While RMs have been widely used for apportioning 

ambient particulate matter, there are relatively few applications for VOCs and carbonyls, 

and fewer still using RM results in epidemiological investigations. 

 There are two types of receptor models, chemical mass balance (CMB) and 

multivariate.  In CMB models, information of the composition of emissions, the source 

“profile,” from all contributing source types is required.  This need for complete (and 

accurate) profiles is a limitation associated with CMB models.
24

  Additionally, CMB 

models do not treat profiles that change between source and receptor.
25

  Sometimes, 

CMB models are viewed as complementing rather than replacing other analysis and 

modeling methods.  So called “multivariate” models provide an alternative to CMB 

models.  These models estimate the number and composition of sources, as well as their 

contributions to measured concentrations of air pollutants.  Multivariate models utilize 

factor analysis, eigenvector analysis and related methods.  A popular technique, called 

positive matrix factorization (PMF), ensures that derived source profiles are non-

negative, which is required for physical interpretation.
26,27

  PMF also allows the use of 

weights or uncertainties for individual data points.  PMF has been used successfully to 
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apportion particulate matter and VOCs.
28-32

  Further information regarding this method is 

presented in Appendix 1. 

3.3.4 Receptor modeling and epidemiology 

Very few epidemiological studies have used source apportionment techniques, 

although it has been suggested that these methods can provide insight into those sources 

that affect health.
32-34

  The use of source-apportioned exposures is attractive for several 

reasons: increased statistical power since the exposure measures may be more strongly 

associated with health impacts; the correlation in the larger pollutant data set is used to 

derive a smaller number of potentially more robust exposure measures; and the enhanced 

biological plausibility and relevance of the exposure measure since most toxic exposures 

occur as mixtures from a variety of sources. 

3.3.5 Case study area 

Asthma is the number one reason for preventable hospitalizations among 

Michigan children,
35

 and it has an even greater impact on the city of Detroit.
36,37

  The 

overall pediatric hospitalization rate in Detroit (70/10,000) was three times higher than 

the state rate (23/10,000) in 2001, and over four times higher than the Healthy People 

2010 target (17/10,000).  Also in 2001, the rate of emergency department visits for 

asthma among Medicaid-only beneficiaries less than 14 years of age in Wayne County 

was 352/10,000 and the rate of hospital admissions for asthma was 96/10,000.  Detroit 

experiences a greater burden of asthma than the state as a whole in part due to its 

demographic and socioeconomic composition, since low socioeconomic status and 

minority race are risk factors for asthma.  A recent pilot study at an inner-city children’s 

hospital in Detroit reported 61,443 and 71,044 visits by children to the ED in 2001 and 

2002, respectively, representing 50.83%, 9.43% and 39.74% of the children enrolled in 

Medicaid, children who were uninsured, and children with other insurance.
38

    Detroit’s 

population is 81.6% African American, over 21% of families with children <18 years live 

in poverty, and over 30% of the population aged 25 and older have not received their 

high school diploma.    

The Detroit area contains major industries, e.g., the 1,100 acre Ford Rouge 

facility (one of the world’s largest industrial complexes with foundries, casting, 
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machining, coating, and fabrication plants), and numerous other industries, e.g., 

chemical, refinery, plastics production, specialty steel production, waste disposal, 

chemicals, trucking, meat packing, etc.  Due to high pollutant levels (based on 2004-2006 

measurements), the area was designated as non-attainment for the annual PM10 and 

annual PM2.5 National Ambient Air Quality Standards (NAAQS).
39,40

  The Toxic Release 

Inventory System shows that Michigan ranks ninth among states for air emissions of 

benzene.  In Wayne County, the ten facilities with the largest toxic releases are located 

within a single zip code (48121) in the “South End” of Dearborn, in which total 

emissions of toxic air pollutants exceeded 1.5 M lbs in 1995.  The study area also 

includes sizable train and truck traffic, including intermodal activities, and, in the last 

several years, its proximity to the international border and additional security checks have 

caused considerable concern regarding emissions from the large number of diesel trucks 

idling on freeways ramps near the bridge and tunnels to Canada.  Based on EPA's 1999 

National Air Toxics Assessment (NATA), Wayne County and the greater Detroit area 

were ranked in the highest 5% of counties in the country with regard to risks from air 

toxics and diesel particulate matter. 

3.4 Methods 

3.4.1 Health outcomes data  

 In-patient hospital admissions and emergency department/urgent care (ED) visits 

for asthma and respiratory problems between 4/19/2001 and 4/18/2002 for children 

residing near the Dearborn monitoring site were identified from the Medicaid beneficiary 

database using an adaptation of the Healthcare Effectiveness Data and Information Set 

(HEDIS) case definition for persistent asthma.
41

  HEDIS is widely used by Medicaid and 

commercial health plans as well as health outcomes studies to measure performance on 

important dimensions of care and service.
42,43

  ED visits for injury, representing claims 

believed to be unrelated to air pollutants, were identified and used as a control case.  Out-

patient visits, which include both unscheduled/urgent care visits and scheduled check-

ups/well-child visits, were excluded because the purpose of these visits could not be 

distinguished.   
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Claims were classified using the primary diagnosis into two categories:  

respiratory disease, including symptoms involving the respiratory system (ICD-9 codes 

460-519 and 786.x); and injury (ICD-9 codes 800-999).  Additional claimant information 

available in and obtained from the Medicaid files included an encrypted identifier for the 

child, child age, sex, race/ethnicity, date of service, residence location (street address and 

geocoded coordinates), and provider information (e.g., address).   

ZIP codes in which 60% of the population fell within a 10 km radius of the 

Dearborn air monitor were determined using a geographic information system.  This 

monitor was selected for this study because a special year-long study took daily 

measurements – daily measurements of air toxics are highly unusual.  Duplicates were 

removed and data was collapsed into a SAS file.  Place of residence was mapped within 

ZIP codes to remove records that fell outside the study area.  Urgent care visits that 

occurred within 7 days of the initial visit were removed to obtain a set of independent 

urgent events.  Visits that occurred within 7 days for the same individual could be related 

to the same trigger and were regarded as possible “treatment failures”.   

Criteria for eligibility in the study included living within 10 km of the Dearborn 

monitoring site (using the geocoded home location) during the study period, being less 

than or equal 18 years of age, and having medical insurance provided solely by Medicaid.  

(Children having health insurance in addition to Medicaid were excluded.)  To 

investigate effects of residential proximity to the air-monitoring site, a second analysis 

was restricted to children residing within 4 km of the monitoring site.  Eligible claims 

were further processed to exclude services received at out-of-state locations (based upon 

provider location), and to remove duplicate claims.  Counts of the daily number of 

hospital admission and ED visits were then determined for each diagnosis category.     

Health care data utilization for the year following the main study period (April 

2002 – April 2003) were also collected and processed as described above in order to 

determine whether the study year was representative, i.e., whether counts were typical on 

an annual and seasonal level. 

3.4.2 Exposure assessment 

Dearborn, Detroit is a diverse airshed that contains many types of point and 
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mobile emission sources.  The area also experiences highly variable meteorology 

patterns, strong shifts in seasonal heating and cooling requirements, and a high 

population density.
44

  These features tend to increase concentrations of toxic pollutants, 

and also produce substantial temporal variation in daily exposures.  Many of these 

features are paralleled at other sites in the U.S. and elsewhere, although the density of the 

interspersed industry and population is somewhat unusual.   

Daily air quality data were obtained from the Dearborn, Michigan monitoring site 

(Site ID: 261630033), which was operated by Michigan Department of Environmental 

Quality (MDEQ), for the period from 4/19/2001 to 4/18/2002.  The site is located in a 

residential neighborhood near an elementary school and industrial area of automobile and 

steel manufacturing.  The site also lies within approximately 2 km of I-75 and I-94 

interstate highways, two of the largest commuter and trucking routes in the region, and it 

formed part of the Detroit Air Toxics Pilot Project.
39

   

Volatile organic compounds (VOCs) were collected in canisters following EPA 

method TO-15,
45

 and carbonyl compounds were collected using DNPH cartridges and 

analyzed by HPLC following EPA method TO-11A.
46

  Most samples were shipped to the 

Eastern Research Group (ERG, Research Triangle Park, NC, USA) for analysis.  The 

monitoring program included extensive quality assurance (QA) activities, including the 

collection of co-located samples every third day during the sampling period, with 

analysis by the MDEQ laboratory (Lansing, MI, USA).   

Our previous analysis indicated several issues regarding QA and intra- and inter-

laboratory reproducibility for many of the compounds measured at Dearborn.
10

  In brief, 

we saw good agreement for only one compound (benzene), moderate agreement for 

several other VOCs (e.g., trimethylbenzene, xylenes, ethylbenzene, 

dichlorodifluoromethane, tetrachloroethylene, and toluene), and poor-to-fair agreement 

for the remaining VOCs and all carbonyls (Appendix 1).  To help ensure that the 

measurements used in the present study were meaningful, we selected 16 of the 59 VOCs 

and 7 of the 13 carbonyls measured using four screens:  (1) overall detection frequency 

≥20%; (2) identification and elimination of outliers using the maximum Gumbell 

distribution; (3) intra-laboratory agreement demonstrated by a Spearman rank correlation 
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coefficient ≥0.2; and (4) inter-laboratory reproducibility demonstrated by a Spearman 

rank correlation coefficient ≥0.2.  Duplicate samples were averaged, and measurements 

falling below the method detection limit (MDL) were set to ½ MDL.  Table 3-1 lists 

descriptive statistics of the toxics dataset used in this study.   

To help evaluate the receptor modeling, we also obtained ambient metals data 

(arsenic, beryllium, cadmium, chromium, lead, manganese and nickel), which were 

monitored every 6
th

 day at the Dearborn site.  Due to sampling schedule and relatively 

small sample size, these data were not used in the final health models.    

Because exposures to criteria air pollutants have been linked to respiratory 

problems among children and adults,
1-6

 parallel analyses were conducted using criteria 

pollutants as exposure measures and both single and multiple pollutant models.  Criteria 

air pollutant data were obtained for three nearby sites (within 20 km): Allen Park (CO, O3 

and PM2.5), East Seven Mile (NO2, O3 and SO2), and Linwood (CO, NO2, O3, PM2.5 and 

SO2).  These pollutants are monitored by MDEQ using federal reference methods.  In 

Michigan, O3 is monitored for only 6 months (the so-called O3 season from April to 

September).  Therefore, hourly O3 data from downtown Windsor, Canada (within 20 km 

of the Dearborn site), which is monitored year-round, were obtained.  The annual health 

models for O3 used the Windsor data.  Daily (24-hr) averages were computed for hourly 

CO, NO2 and SO2 data, and 8-hr moving averages were computed for hourly O3, if ≥75% 

of hourly observations were available and considered valid.  PM2.5 is measured in 24-hr 

increments and does not require 24-hr average calculations.  In addition, daily 

meteorological data (temperature, relative humidity, barometric pressure) at Detroit 

Metro Airport were obtained from the National Oceanic and Atmospheric Administration 

through online electronic sources.
47

    

3.4.3 Receptor modeling  

Source apportionments of the toxics dataset used positive matrix factorization 

(PMF) version 1.1.
48

   (Complete modeling details are provided in Appendix 1.)  Based 

on previous work apportioning PM2.5, a pollutant species was considered as “bad,” 

“weak” or “good” if its signal/noise (S/N) ratio was <0.2, between 0.2 and 2, or ≥2, 

respectively.
49-51

  Bad species were excluded from analysis, and weak species were 
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down-weighted.  A total of 20 random starting points were performed to determine the 

global minimum.  The optimum run was selected by examining the robust Q values of all 

the random runs.  (The Q value is the sum of square measures used to quantify model fit.) 

The final number of sources was selected using PMF, principal component 

analysis (PCA), annual and seasonal modeling, and modeling incorporating the additional 

metals information.  Initially, the number of eigenvalues exceeding one obtained from 

PCA was used as a guideline to determine the number of sources.  The final number of 

sources was based on the overall model fit (measured by the root mean square error 

[RMSE] and the coefficient of determination [R
2
]).  For example, if the R

2
 and RMSE 

values of the five- and six-source models were similar, then the five-source model was 

considered as the final model. 

Daily contributions estimated for each source class in the PMF model were 

expressed in quartiles for the health models.  Five exposure windows were used to 

account for possible time lags between exposure and health response:  (1) no lag (same 

day as the health outcome); (2) prior day; (3) average of the two prior days, called 

average 2-day lag; (4) average 3-day lag; and (5) average 4-day lag.  Each of the lagged 

exposure estimates required at least one valid exposure score during the lag period.  

3.4.4 Statistical analyses 

After merging the daily source class-specific exposure scores and the daily counts 

of health outcomes for children residing near the Dearborn site, adjusted rate ratios 

(ARRs) and 95% confidence intervals (CIs) for each outcome were estimated using 

Poisson regression models.  Each ARR represents the effect of a source-specific UAT 

exposure in the second, third and fourth (highest) exposure quartiles relative to the first 

(lowest) exposure quartile.   

To control for covariates and possible confounding, models were adjusted for 

day-of-week, calendar month, and daily meteorology (ambient temperature, relative 

humidity and pressure).  Day-of-week may influence the caregiver’s decision to bring 

their children to the emergency room if the condition is not life threatening.  Due to the 

study’s short duration (one year) and relatively small sample size, control for calendar 

month was intended to control for seasonal adjustments.  Daily meteorological variables 
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were detrended by subtracting the monthly mean from the daily values. 

Initially, single source/pollutant models were constructed.  Next, PM2.5 data (from 

Allen Park) were included in the model, since this is a recognized risk factor for 

respiratory outcomes.
2
  PM2.5 and meteorological variables used the same five exposure 

windows as the UAT exposure scores to account for possible lag times, with a separate 

analysis for each exposure window.  These windows were used separately.  Multiple 

source models were constructed using all source classes, again using five time windows.     

The Poisson distribution assumes that the mean and variance are equal, however, 

this is rarely found in real data.
52

  A higher incidence of zero counts in the data will 

increase the variance, which is considered as “overdispersed” data.
52

  To examine 

whether the health outcome data in this study was not Poisson distributed, the final health 

models was analyzed using negative binomial regression, a standard method to model 

overdispersed Poisson data, which can also be viewed as an extension to the Poisson-

gamma mixture model.
52

   

As part of a sensitivity analysis, associations between selected pollutants 

(formaldehyde, MEK, benzene, CO, NO2, O3, PM2.5, PM10 and SO2) and ED visits for 

respiratory problems were examined using both single and multiple pollutant models and 

the same exposure windows (lag structures) described previously.  Additionally, single 

and multiple source models were constructed using imputed data, obtained from single 

imputation as suggested by Polissar et al. (1998).
53

  For imputed data, replicates from the 

two laboratories were averaged.  Finally, all models were repeated using ED visits for 

injury as the outcome, a control case that was not expected to show associations with 

pollutant variables. 

SAS version 9 was used to format and aggregate Medicaid claims data, and SAS 

PROC GENMOD was used for the health models.
54

  Institutional review boards at both 

Michigan Department of Community Health (MDCH) and the University of Michigan 

reviewed and approved study protocols. 

3.5 Results 

Results are presented by main tables (Tables 3-1 to 3-10) and figure (Figure 3-1) 
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followed by supplemental tables (Tables S3-1 to S3-10). 

3.5.1 Source apportionment 

Five source classes were identified using PMF with the UAT dataset (Figure 3-1):  

(1) Fuel combustion, suggested by aldehyde, benzaldehyde, hexaldehyde, iso-

butyraldehyde, propionaldehyde and tolualdehyde (mass of species apportioned to 

sources: 40-100%); (2) photochemical pollutants by formaldehyde (>90%);  (3) gasoline 

exhaust/evaporated gasoline by benzene, 1,3-butadiene, ethylbenzene, m,p-xylene, o-

xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and toluene (40-70%);  (4) 

combined industrial sources by acetylene, n-octane, propylene, dichlorodifluoromethane, 

tetrachloroethylene, trichlorofluoromethane and trichlorotrifluoroethane (30-65%); and 

(5) industrial solvents by methyl ethyl ketone (>80%).  (Detailed receptor modeling 

results, using PMF as well as PCA, are presented in Appendix 1.)  The overall fit for the 

5-source model was reasonable for most compounds, e.g., aromatic and carbonyl 

compounds had R
2
 values above 0.7 in both seasonal and annual analyses.  Lower R

2
 

values (<0.4) were obtained for chlorinated and fluorinated VOCs and for propylene, 

most likely due to reproducibility problems and the small variation in the concentrations 

of these compounds.   

Compared to individual pollutants, which were highly correlated among carbonyls 

(0.64 ≤r≤ 0.89) and among aromatic VOCs (0.68 ≤r≤ 0.77), the correlation between 

source classes was generally lower (-0.61 ≤r≤ 0.43) (Tables S3-1 and S3-2).  The 

correlation coefficients between source classes and criteria pollutants were low-to-

moderate (Table S3-3).  All pollutants were moderately correlated with industrial solvent 

(-0.42 ≤r≤ 0.51).  Other noticeable correlations occurred between CO and gasoline 

exhaust (r=0.47), NO2 and photochemical pollutants (r=0.36), and O3 (Windsor) and fuel 

combustion (r=0.38).  These correlations help to affirm that the 5-source apportionment 

results reflected actual sources in the Detroit area. 

Season differences were modest.  Source classes for spring and winter seasons 

were unchanged.  Variability during the summer and fall seasons affected only a few 

sources.  For example, MEK, which is the key species of industrial solvent sources in the 

annual model, was apportioned together with key species of combined industrial sources, 

and hexaldehyde was a key species for a new source (fraction of species apportioned to 
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sources: >97%) in summer models.  The change in summer results might be due to a 

reduction in MEK emissions caused by shutdowns in nearby automobile assembly 

facilities.  Higher rates of photochemical reactions and the consumption of reactive 

compounds during the summer season also might contribute to this variability.       

The 6-source models only marginally improved fit.  Thus, results from the 5-

source annual model (using observed data) are used in subsequent analyses.  Analyses 

using imputed data are also presented as part of sensitivity analyses.  

3.5.2 Characteristics of the study population 

Daily counts of ED visits for asthma, respiratory problems and injury for subjects 

in the study area are shown in Table 3-2.  An unusually large number (n=23) of ED visits 

for asthma occurred on July 11, 2001 among subjects living within the 10 km buffer.  On 

this same day, there were no unusual number of ED visits for respiratory problem (n=20) 

and injury (n=20) nor hospital admission for asthma (n=1) and injury (n=1).   No unusual 

circumstances were noted in the air pollution and meteorological data around that time.  

High concentrations of several trace metals were detected on the July 4, 2001 due to 

fireworks; however, this was a full week earlier and is unlikely to be connected to the ED 

visits.  The health outcome model was run both with and without the July 11, 2001 data.    

For the 10 km radius, the numbers of ED visits for asthma, respiratory and injury 

reasons (1166, 4042 and 4617, respectively) were sufficient for analysis.  However, the 

number of hospital admissions for the three outcomes (328, 251 and 356, respectively) 

was too small to obtain adequate statistical power.  For the 4 km radius, the number of 

ED visits for asthma (192) was also too small for analysis.  The numbers of ED visits for 

respiratory (853) and injury (773) reasons were considered marginal for analysis.  Given 

these sample sizes, the analyses were focused on ED visits for respiratory effects. 

Due to the study design for air toxics, about 22% of the possible exposure 

measurements were missing.  This has the potential to influence the study results; 

however, chi-square and Fisher’s exact tests comparing counts of ED visits of all three 

health outcomes (asthma, respiratory problems and injury) on days with and without air 

toxics exposure data were not statistically different (p-value>0.05). 

Health care utilization data for the year following the study period (April 2002–
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April 2003) is shown in Table S3-4.  Both periods showed similar counts; therefore, the 

data obtained for the study period appears to be representative.   

3.5.3 Single source models 

ED visits for respiratory problems  

Adjusted risk ratios of ED visits for respiratory problems for each of the five 

source class contributions (using a separate analysis for each source class) are shown in 

Table 3-3.  For the 4 km buffer, exposures to photochemical pollutants lagged 2 to 4 days 

increased the rate of ED visits, and a dose-response relationship was seen for the 3-day 

lag.  Rate of ED visits increased by 16 to 48% for exposure in the 2
nd

, 3
rd

 and 4
th

 quartiles 

compared to the lowest quartile.  Results for the fuel combustion source class were 

similar, and again, there was some evidence of a dose-response relationship for the 3-day 

lag.  The ARR of ED visits with fuel combustion exposure increased by 36 to 44%.  For 

the gasoline exhaust/evaporated gasoline source class, 3 and 4 day lagged exposures 

consistently increased odds of ED visits.  Some evidence of a dose-response relationship 

for the 4-day lag was seen, and the ARR of ED visits increased by 7 to 35% at higher 

exposures.  For the combined industrial/industrial solvent source class, the ARRs were 

either statistically insignificant or weakly negative.   

Results for children living within the larger (10 km) buffer tended to follow a 

pattern similar to that seen for the 4 km buffer, although many associations were 

attenuated toward the null, statistically insignificant, or weakly negative (Table 3-3).  The 

only exception was the photochemical source class in which the ARR of ED visits 

increased by 6 to 19% for the 1-day lag, an association not seen for the 4 km radius.   

ED visits for asthma 

Results for ED visits for asthma in the 10 km radius are shown in Table 3-4.  Only 

exposures to the combined industrial source class, lagged 4 days, showed a consistent 

pattern and increased odds.  While statistically significant, this result appears to be an 

artifact of the anomalously large number of ED visits on July 11, 2001.  After this 

observation was removed, this association became statistically insignificant (Table 3-5).  

Outcomes for ED visits for respiratory problems were unaffected by this observation; 

therefore, only the asthma count was removed.   
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Exposure to pollutants identified as fuel combustion lagged 4 days showed 

negative associations with ED visits, however, the confidence interval approached the 

null value, suggesting spurious associations. 

Single pollutant models 

Results of analyses using selected pollutants are shown in Tables 3-6 and 3-7 for 

ED visits for respiratory problems in 4 and 10 km radius buffers, respectively.  The 

analyses used data from the Linwood site, which measured most of the criteria pollutants.  

O3 analyses used data from both Linwood (April to September) and downtown Windsor 

(annual).  Three UATs were selected for the single pollutant models (formaldehyde, 

benzene and MEK), in order to reflect the key species of the source classes identified by 

PMF. 

For children residing in the 4 km buffer, exposures to CO lagged 4 days and NO2 

lagged 3 and 4 days increased the odds of ED visits for respiratory problems (Table 3-6).  

However, the CO association was considered to be spurious because statistically 

significant associations were not found at the highest exposure quartile.  NO2 results 

resembled those found for photochemical pollutant sources, which might reflect the 

formation of photochemical pollutants.
55

  For air toxics, only exposures to formaldehyde, 

lagged 1 to 4 days, showed an increased risk of ED visits for respiratory problems.  These 

results resembled those for the photochemical source in which formaldehyde is the key 

species.  No statistically significant associations were found for the other criteria air 

pollutants, benzene or MEK.  Results for the 10 km radius were similar.  While several 

associations were negative, these appeared spurious because they occurred in only the 

lower exposure quartiles.   

For the 10 km buffer, only exposures to PM2.5, CO and SO2 showed an increase in 

the risk of ED asthma visits (Table 3-7).  However, the CO and SO2 associations were 

considered to be spurious because significant associations occurred only at the 2
nd

 

exposure quartile.  For PM2.5, the odds of ED asthma visits increased by 25% for the 

same day exposure. 

3.5.4 Multiple source models  

Results of the multiple source models for ED visits for respiratory problems and 
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asthma are shown in Tables 3-8 and 3-9, respectively.  The patterns of associations were 

similar to those seen earlier in the single source models (Tables 3-3 and 3-4), however, 

associations were attenuated and confidence intervals were broader.  Only exposure to 

pollutants identified as fuel combustion lagged 3 and 4 days showed an increase in odds 

of ED visits for respiratory effects (7 to 27%) among children in the 10 km buffer.  This 

suggests that models using multiple source factors encounter the same problems as 

“conventional” multi-pollutant health models, namely, multicollinearity that tends to 

reduce statistical significance of the estimated coefficients.  It may be possible to 

simultaneously use two or possibly three factors without detrimental effects; however, 

five source profiles are too many. 

3.5.5 Sensitivity analyses 

Tests using the control outcome, ED visits for injury, showed no statistically 

significant associations for exposures to any of the source classes for both 4 and 10 km 

buffers, and for single and multiple source class models (Tables S3-5 to S3-7).  Results 

from the negative binomial regression models were similar to those from the Poisson 

regression models (Tables S3-9 to S3-10), indicating that any possible deviations from 

the Poisson distribution assumption did not cause biases.   

For receptor modeling, results using observed and imputed data were similar for 

four of the five source classes.  The photochemical pollutant source class was replaced by 

petrochemical pollutant source, indicated by propylene.  Formaldehyde, the key species 

of the former photochemical pollutant source, merged together with other carbonyls 

identified as fuel combustion source.  These results indicate that the PMF method can be 

sensitive to the use of imputed data.  Analyses re-run using the single imputation dataset 

are shown in Table S3-8.  The results did not differ significantly between observed and 

imputed data.  The major difference was that the petrochemical pollutant source class 

lagged 4 days (with propylene as the key species) increased the ARR of ED visits for 

respiratory effects in the 10 km buffer.  Since propylene was not highly correlated with 

any other compound (r≤0.32) (Table S3-2), this might be an artifact or spurious result, 

e.g., a result of a small sample size.    
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3.6 Discussion 

This work used receptor modeling (RM) to derive an exposure indicator which 

was then used in an epidemiological analysis examining exacerbation of asthma and other 

respiratory diseases in Dearborn, Michigan.  Using PMF, five source classes were 

identified, primarily on the basis of carbonyl and volatile organic compounds.  

Unsurprisingly, traffic-related emission sources were dominant, consistent with a 

previous study.
56

  The results suggest that exposures to traffic-related air toxics, emission 

sources identified as secondary pollutants, fuel combustion, and gasoline 

exhaust/evaporated gasoline increased the rate of ED visits for respiratory problems 

among children living within a 4 km radius of the Dearborn air monitor.  Risks were 

attenuated for children living in the larger (10 km) buffer as compared to the smaller (4 

km) region nearer the monitor. 

3.6.1 Mechanisms 

Volatile organic compounds are irritants that can affect the airways and induce 

inflammation and airway obstruction,
57,58

 and can have chronic effects such as cancer.
59,60

  

Two examples of acute effects are provided.  First, formaldehyde causes inflammation 

and the release of cytokines, which leads to the up-regulation of induced nitric oxide 

(NO), itself a marker for lower airway inflammation.
61-63

  Second, human respiratory 

epithelial cells exposed in vitro to 1,3-butadiene and its photochemical-generated 

products (acrolein, acetaldehyde, formaldehyde, furan and O3) induced significant 

increases in cytotoxicity, however, the equivalent levels of O3 exposure did not induce 

the same level of inflammatory cytokine release,
64

 also suggesting that respiratory health 

effects occur via the inflammatory pathway from 1,3-butadiene exposure.   

3.6.2 Comparison to previous studies 

As noted, few studies have focused on UAT exposure and respiratory illness in 

children.  Petroleum- and process-related VOCs were associated with bronchitis, 

persistent wheezing, physician’s diagnostic of asthma, lower respiratory symptoms, and 

chronic lower respiratory response in school age children in Kanawha County, West 

Virginia.
15

  Traffic-related VOCs were associated with asthma symptoms in children with 

mild asthma in Los Angeles
16

, and exposures to outdoor (polar) VOCs lagged 2 days 
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were associated with acute visits to an ambulatory care setting for asthma among children 

in Atlanta.
18

  In Germany, benzene exposure was associated with asthma, wheeze and 

cough in children.
65

  In Belfast, Northern Ireland, benzene exposures were associated 

with ED visits for acute asthma among children.
19

  This Belfast study is interesting in that 

in the two pollutant Poisson regression models (using benzene and SO2, PM10, O3, NOx, 

NO, NO2, or CO), benzene was the only variable independently associated with ED 

asthma admissions, suggesting that benzene might be a more reliable indicator of vehicle 

exhaust than the criteria pollutants.   

In the present study, associations between benzene and ED visits for respiratory 

effects were not found (Table 3-6).  Notably, benzene levels were relatively low 

(geometric mean of 0.55 ppbv; maximum of 2.20 ppbv), suggesting small impacts from 

traffic and other sources even though the Dearborn site is located in a heavily 

industrialized area.  Low benzene levels might be influenced by other traffic-related 

pollutants (including many VOCs) which have sharp spatial gradient.
66

  For an example, 

benzene is highly correlated with acetylene (r=0.69, Table S3-1), which is also emitted by 

gasoline combustion.  Thus, benzene (or some other VOCs) by themselves may not be a 

strong or sufficient indicator of vehicular emissions, as suggested by the Belfast study.
19

 

Only a few studies have examined formaldehyde and asthma in nonoccupational 

settings.
67

  Indoor exposure has been linked to physician-diagnosed asthma, however, 

these studies were likely confounded by unmeasured factors (i.e., environmental tobacco 

smoke) and by the parents’ history of asthma and allergy.
68,69

  In this study, exposures to 

formaldehyde, but not MEK, increased ED visits for respiratory problems (Table 3-6).  

Additionally, the risks estimated using the PMF exposure scores were smaller and had 

narrower CIs compared to those estimated for formaldehyde, suggesting improved 

precision of the estimate as well as adjustment for other pollutants.   

Criteria air pollutants have been associated with respiratory illness in many 

epidemiological studies.
5,6

  In Dearborn, ED visits for respiratory problems were linked 

to concentrations of several criteria pollutants (Table 3-6).  The pattern of results was 

quite consistent for CO and NO2 in the single pollutant models.  However, in two-

pollutant models (CO and NO2) and for the 4 km radius, the statistically significant 

associations between NO2 and ED visits diminished (Table 3-10).  In five-pollutant 
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models (CO, NO2, SO2, O3 and PM2.5) and for the 10 km radius, associations between 

NO2 and ED visits for respiratory problems remained statistically significant, however, 

the CIs were wider, suggesting some loss in precision.  There is a greater chance of 

exposure misclassification for analyses involving the criteria air pollutants since these 

pollutants were measured at a different site, which tends to complicate interpretation of 

results. 

In summary, this study found exposures to source contributions from 

photochemical pollutants, fuel combustion, and gasoline exhaust/evaporated gasoline 

source classes were associated with ED visits for respiratory problems among children.  

3.6.3 Study strengths 

 One key strength of this study lies in its exposure assessment, which is unique in 

its use of source-apportioned exposure measures.  In brief, the derived source 

contributions or scores from the RM are used as exposure measures in the same or similar 

statistical framework used to associate conventional exposure measures and health 

outcomes.  As noted above, this approach is attractive because these exposure measures 

may be more strongly associated with health impacts (thus increasing statistical power), 

and because the correlation in the exposure dataset is used to derive a smaller number of 

exposure measures that may be more robust than any single pollutant.  Additionally, the 

approach may be more realistic as people experience exposures to most air pollutants as 

mixtures, not as individual pollutants.  Finally, exposures using source classes may be 

biologically more plausible and relevant.   

 While current epidemiological studies examining toxics have focused on VOC 

exposures, our study examined both VOCs and carbonyls, important since carbonyls 

appear to be stronger indicators of vehicle-related sources.  Dose-response relationships 

were obtained for the associations between exposure to carbonyls identified as 

photochemical pollutants and fuel combustion source classes and ED visits for 

respiratory problems, suggesting strong associations. 

 The use of geo-coded Medicaid data also has several advantages.  First, families 

of lower social economic status (SES) more commonly utilize urgent care facilities for 

asthma as compared to families of higher SES.
70

  By examining only the Medicaid 
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pediatric population, results from the current study should not be confounded by SES.  

Second, the approach potentially could encompass a very large sample size, especially if 

pollutants are measured at multiple sites.  As discussed below, sample size was an issue 

in Dearborn, in part because daily UAT data were available at a single site. 

3.6.4 Limitations 

As further discussed in the following chapter, due to detection frequency and 

reproducibility issues, many of the 71 measured air toxics did not appear usable.  Ideally, 

each source class (or factor) would represent a single and correctly identified source class 

that is uncorrelated with other source classes.  However, in complicated systems, these 

classes may consist of features from several sources.
29

  Combined source factors are also 

more likely in samples using longer averaging periods, e.g., the 24-hr samples collected 

at Dearborn (as compared to 1-hr data)
29

 since winds from multiple directions are likely 

and may transport pollutants from several source types to the monitor site.  In such 

situations, separate sources in effect become correlated.  A further complication arises as 

several aldehydes (e.g., formaldehyde, acetaldehyde) and VOCs (e.g., 1,3-butadiene) can 

be chemically reactive, and their concentration and lifetime will be affected by 

photochemistry, temperature, sunlight, and the other reactive species present.  Thus, 

measurements of these compounds can reflect both primary emissions (directly from the 

source) and secondary production.  Such effects will “blur” profiles and can create new 

profiles that primarily reflect secondary sources, as suggested for formaldehyde which 

formed its own profile in several seasons.  This problem is not present in PM2.5 or PM10 

apportionments that utilize (unreactive) elemental concentration data.  While the 

breakdown into source factors by receptor models is imperfect and may not isolate single 

sources or source types, the use of source factors is a valid approach for representing the 

pattern of exposures, and its use in epidemiological analyses can help to identify those 

pollutants and pollutant mixtures associated with adverse health effects.   

An important limitation was the relatively small size of the study population, 

which did not permit assessment of certain exposure-outcome relationships, including 

asthma exacerbation (ED visits) among children in the smaller (4 km) buffer around the 

monitoring site.  Also, daily air toxics data were available for only one year, which also 

affected sample size, as well as the ability to investigate long-term trends.   
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Effects of exposure misclassification can be seen as the buffer’s radius increased 

from 4 to 10 km, which tended to force risk ratios towards the null.  We had no personal 

or indoor exposure data, despite known indoor sources, e.g., formaldehyde concentrations 

in residences may exceed outdoor concentrations.
71

  However, contributions from indoor 

sources are likely uncorrelated with outdoor formaldehyde levels, thus only non-

differential bias in exposure classification is expected.  Finally, there was the potential 

that the exposure scores were affected by unmeasured confounding variables and 

unknown uncertainties, given that these scores were derived from daily measurements 

using receptor modeling, neither of which were accounted for in this study.  Future study 

might address these issues using several approaches, e.g., instrumental variable 

regression.
72

  While measurement uncertainties were incorporated in the PMF method, 

further analysis is recommended to determine the sensitivity of results to these effects.          

3.7 Conclusions 

This study appears to be the first to utilize source-apportioned exposure measures 

of urban air toxics (UATs), specifically VOCs and carbonyls, to investigate the 

relationship of exposure to respiratory illness in children.  The children in the study 

population making respiratory-related Medicaid claims and living within 10 km of the 

Dearborn, Michigan air quality monitor made 1,166 and 4,617 emergency department 

(ED) visits for asthma and respiratory problems, respectively, during the study year.  

Exposures to UAT source classes identified as fuel combustion, photochemical 

pollutants, and gasoline exhaust/evaporated gasoline were associated with increased the 

rate of ED visits for respiratory problems.  Effects were stronger for subjects living closer 

(within 4 km) to the air monitoring site.  Due to the limitations and uncertainties in the 

ambient air toxics data and model predictions, as well as the novelty of this study, follow-

up studies to help confirm results are suggested.   
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Table 3- 1. Summary of the species measurements  

(BDL, below detection measurements; Ms, missing values; S/N, ratio of signal to noise; 

GM, geometric mean; ppb, part per billion) 

 

Ms BDL S/N GM

(%) (%) (ppb)

Carbonyls

Acetaldehyde 22 0 44.70 0.73

Benzaldehyde 22 2 0.39 0.04

Formaldehyde 22 0 46.81 1.47

Hexaldehyde 22 1 1.99 0.05

iso-Butyraldehyde 22 1 2.93 0.14

Propionaldehyde 22 10 3.19 0.08

Tolualdehyde 22 7 0.31 0.03

VOCs

Acetylene 17 1 7.74 1.52

Benzene 17 0 4.08 0.55

1,3-Butadiene 17 73 0.73 0.05

Dichlorodifluoromethane 17 0 3.68 0.63

Ethylbenzene 18 2 2.52 0.15

Methyl ethyl ketone 17 26 7.68 0.39

m,p-Xylene 18 0 3.07 0.43

n-Octane 18 66 0.47 0.04

o-Xylene 18 3 5.18 0.18

Propylene 17 0 3.48 0.82

Tetrachloroethylene 17 66 2.46 0.05

Trichlorofluoromethane 17 0 3.57 0.31

Trichlorotrifluoroethane 17 0 0.12 0.11

1,2,4-Trimethylbenzene 17 9 1.03 0.17

1,3,5-Trimethylbenzene 18 61 0.45 0.05

Toluene 18 0 14.73 0.88

Compounds
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Table 3- 2. Study population size and number of Medicaid visits, 4/19/2001-4/18/2002 

Asthma Respiratory Injury Asthma Respiratory Injury Asthma Respiratory Injury

N (%) n n n n n n n n n

4 km buffer

N 4733 50 76 46 192 853 773 617 9638 1076

Gender

Female 2310 (49) 13 42 34 69 390 341 257 4800 449

Male 2423 (51) 37 34 12 123 463 432 360 4838 627

Race

Black 698 (15) 5 6 8 43 125 128 85 406 92

White 2240 (47) 19 33 27 82 467 443 312 6559 732

Others 1795 (38) 26 37 11 67 261 202 220 2673 252

Age group (yrs)

0 to 4 1697 (36) 29 43 16 93 516 284 302 4956 296

5 to 9 1407 (30) 11 17 16 57 204 234 186 2840 305

10 to 14 1052 (22) 4 5 4 30 94 176 102 1365 339

15 to 18 577 (12) 6 11 10 12 39 79 27 477 136

10 km buffer

N 7863 328 251 356 1166 4042 4617 2483 3966 27345

Gender

Female 3850 (49) 140 112 162 504 1701 2225 1021 1632 13515

Male 4013 (51) 188 139 194 662 2341 2392 1462 2334 13830

Race

Black 2685 (34) 247 158 225 864 2458 3003 1374 1813 7107

White 2595 (33) 41 70 67 176 1207 1140 764 1734 16167

Others 2583 (33) 40 23 64 126 377 474 345 419 4071

Age group (yrs)

0 to 4 2458 (31) 158 89 211 550 1326 2600 1076 1082 13416

5 to 9 2195 (28) 77 76 60 340 1166 1097 744 1098 7987

10 to 14 1894 (24) 57 49 54 214 1069 645 541 1316 4552

15 to 18 1316 (17) 36 37 31 62 481 275 122 470 1390

Outpatient visit

Variable

Study 

population

Hospital admission Emergency department visit
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Table 3- 3.  Single source models - Associations between exposures to pollutants 

identified as 5 source classes and ED visits for respiratory problems (observed data).   

Statistical significant estimates are in bold.  RR, relative risk; covariates: day of week, 

calendar month, PM2,5, ambient temperature, relative humidity and pressure; reference 

groups: 1st quartile exposure, Friday and April. 

RR RR RR RR RR

4 km buffer

Current day

4th quartile 0.85 (0.64- 1.12) 0.76 (0.52- 1.12) 1.17 (0.83- 1.66) 0.89 (0.67- 1.18) 1.12 (0.77- 1.64)

3rd quartile 0.85 (0.66- 1.09) 1.07 (0.82- 1.40) 1.21 (0.86- 1.70) 1.05 (0.82- 1.35) 1.07 (0.77- 1.49)

2nd quartile 1.00 (0.79- 1.26) 1.00 (0.79- 1.27) 1.27 (0.94- 1.70) 0.75 (0.58- 0.96) 1.11 (0.87- 1.41)

1 day lag

4th quartile 1.41 (1.08- 1.84) 1.19 (0.82- 1.73) 0.87 (0.61- 1.24) 1.09 (0.82- 1.44) 0.69 (0.46- 1.02)

3rd quartile 0.96 (0.74- 1.23) 1.34 (1.03- 1.73) 1.16 (0.83- 1.62) 1.08 (0.84- 1.39) 0.70 (0.51- 0.98)

2nd quartile 1.05 (0.83- 1.33) 0.92 (0.72- 1.17) 1.24 (0.92- 1.66) 0.88 (0.69- 1.13) 0.95 (0.75- 1.20)

2-day-lag average

4th quartile 1.39 (1.08- 1.79) 1.34 (0.96- 1.87) 0.76 (0.55- 1.04) 1.16 (0.91- 1.47) 0.92 (0.64- 1.32)

3rd quartile 1.19 (0.95- 1.49) 1.28 (1.00- 1.65) 0.89 (0.66- 1.20) 1.19 (0.95- 1.51) 0.75 (0.55- 1.02)

2nd quartile 1.02 (0.82- 1.27) 1.10 (0.89- 1.37) 0.80 (0.61- 1.04) 0.91 (0.73- 1.14) 0.93 (0.74- 1.15)

3-day-lag average

4th quartile 1.48 (1.15- 1.90) 1.44 (1.03- 2.01) 0.85 (0.60- 1.21) 1.28 (0.99- 1.65) 0.74 (0.51- 1.08)

3rd quartile 1.31 (1.04- 1.66) 1.42 (1.08- 1.86) 0.90 (0.65- 1.25) 1.45 (1.15- 1.83) 0.69 (0.50- 0.95)

2nd quartile 1.16 (0.93- 1.44) 1.36 (1.10- 1.68) 1.01 (0.77- 1.32) 1.12 (0.90- 1.38) 0.93 (0.75- 1.16)

4-day-lag average

4th quartile 1.33 (1.04- 1.71) 1.74 (1.19- 2.54) 0.73 (0.50- 1.07) 1.35 (1.05- 1.74) 0.83 (0.55- 1.24)

3rd quartile 1.09 (0.86- 1.38) 1.28 (0.98- 1.68) 0.90 (0.64- 1.26) 1.29 (1.00- 1.66) 0.75 (0.54- 1.04)

2nd quartile 1.15 (0.92- 1.42) 1.15 (0.93- 1.42) 0.95 (0.72- 1.25) 1.07 (0.86- 1.33) 0.82 (0.65- 1.04)

10 km buffer

Current day

4th quartile 1.02 (0.90- 1.15) 1.03 (0.87- 1.21) 0.98 (0.84- 1.15) 1.03 (0.91- 1.16) 1.08 (0.91- 1.27)

3rd quartile 0.93 (0.84- 1.04) 1.14 (1.01- 1.28) 1.02 (0.87- 1.18) 1.17 (1.05- 1.30) 1.02 (0.88- 1.17)

2nd quartile 1.02 (0.92- 1.13) 1.04 (0.94- 1.15) 1.00 (0.88- 1.14) 1.01 (0.91- 1.12) 1.08 (0.97- 1.19)

1 day lag

4th quartile 1.19 (1.05- 1.34) 1.07 (0.91- 1.26) 1.00 (0.86- 1.17) 1.03 (0.91- 1.16) 0.99 (0.84- 1.17)

3rd quartile 1.06 (0.95- 1.18) 1.13 (1.01- 1.27) 1.03 (0.89- 1.19) 1.00 (0.90- 1.12) 0.94 (0.82- 1.08)

2nd quartile 1.13 (1.02- 1.26) 1.07 (0.97- 1.19) 1.05 (0.93- 1.20) 0.96 (0.86- 1.07) 1.02 (0.93- 1.13)

2-day-lag average

4th quartile 1.10 (0.98- 1.23) 1.12 (0.97- 1.29) 0.92 (0.80- 1.05) 1.01 (0.91- 1.12) 0.91 (0.77- 1.06)

3rd quartile 1.11 (1.01- 1.23) 1.09 (0.98- 1.21) 0.99 (0.86- 1.12) 1.06 (0.96- 1.17) 0.93 (0.82- 1.06)

2nd quartile 1.00 (0.91- 1.10) 1.08 (0.99- 1.18) 0.98 (0.87- 1.10) 0.97 (0.89- 1.06) 0.95 (0.87- 1.05)

3-day-lag average

4th quartile 1.08 (0.97- 1.20) 1.13 (0.98- 1.30) 1.04 (0.89- 1.21) 1.00 (0.89- 1.11) 0.84 (0.71- 0.98)

3rd quartile 1.12 (1.02- 1.24) 1.09 (0.97- 1.22) 1.05 (0.91- 1.21) 1.03 (0.93- 1.14) 0.86 (0.76- 0.99)

2nd quartile 1.06 (0.97- 1.17) 1.11 (1.02- 1.22) 1.00 (0.89- 1.13) 0.99 (0.91- 1.08) 0.95 (0.86- 1.04)

4-day-lag average

4th quartile 1.07 (0.96- 1.19) 1.17 (1.00- 1.38) 1.00 (0.85- 1.18) 1.03 (0.93- 1.15) 0.82 (0.69- 0.98)

3rd quartile 1.06 (0.96- 1.17) 1.04 (0.92- 1.16) 1.02 (0.88- 1.19) 1.02 (0.92- 1.14) 0.81 (0.70- 0.93)

2nd quartile 1.01 (0.92- 1.10) 1.09 (1.00- 1.19) 1.03 (0.92- 1.16) 1.04 (0.95- 1.14) 0.88 (0.79- 0.97)

(95%CI) (95%CI)
Exposures

Photochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent

(95%CI) (95%CI) (95%CI)
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Table 3- 4. Single source models - Associations between exposures to pollutants 

identified as 5 source classes and ED visits for asthma among children living within 10 

km buffer (observed data). 

Otherwise as Table 3-3. 

RR RR RR RR RR

Current day

4th quartile 1.09 (0.86- 1.38) 0.89 (0.65- 1.21) 1.30 (0.96- 1.76) 0.92 (0.73- 1.16) 0.99 (0.71- 1.38)

3rd quartile 1.06 (0.85- 1.31) 0.98 (0.78- 1.24) 1.14 (0.85- 1.53) 0.77 (0.62- 0.97) 1.12 (0.84- 1.49)

2nd quartile 0.93 (0.75- 1.16) 1.01 (0.81- 1.26) 1.18 (0.93- 1.51) 0.97 (0.78- 1.19) 1.06 (0.85- 1.32)

1 day lag

4th quartile 1.15 (0.91- 1.47) 0.99 (0.73- 1.34) 1.00 (0.74- 1.34) 1.13 (0.89- 1.43) 0.99 (0.71- 1.38)

3rd quartile 1.12 (0.89- 1.39) 1.13 (0.89- 1.43) 0.93 (0.71- 1.23) 0.98 (0.78- 1.24) 1.02 (0.77- 1.36)

2nd quartile 1.12 (0.90- 1.40) 1.26 (1.01- 1.57) 1.07 (0.85- 1.36) 1.28 (1.03- 1.58) 1.00 (0.80- 1.25)

2-day-lag average

4th quartile 0.84 (0.67- 1.05) 0.91 (0.69- 1.19) 1.01 (0.77- 1.33) 1.11 (0.90- 1.37) 0.99 (0.72- 1.35)

3rd quartile 0.95 (0.78- 1.16) 0.94 (0.75- 1.17) 1.03 (0.80- 1.32) 1.04 (0.84- 1.27) 0.88 (0.67- 1.14)

2nd quartile 0.84 (0.69- 1.02) 0.96 (0.79- 1.16) 0.98 (0.79- 1.21) 1.15 (0.95- 1.39) 0.93 (0.75- 1.15)

3-day-lag average

4th quartile 0.89 (0.71- 1.12) 1.00 (0.76- 1.30) 1.11 (0.82- 1.49) 0.97 (0.78- 1.19) 1.05 (0.77- 1.43)

3rd quartile 1.11 (0.90- 1.37) 0.91 (0.72- 1.14) 0.98 (0.74- 1.28) 1.05 (0.86- 1.29) 0.94 (0.72- 1.24)

2nd quartile 1.07 (0.88- 1.30) 0.93 (0.76- 1.13) 0.99 (0.81- 1.22) 1.01 (0.84- 1.22) 0.90 (0.73- 1.11)

4-day-lag average

4th quartile 0.86 (0.68- 1.07) 0.73 (0.55- 0.99) 1.43 (1.03- 1.97) 0.83 (0.67- 1.03) 1.14 (0.82- 1.60)

3rd quartile 1.01 (0.82- 1.24) 0.87 (0.69- 1.09) 1.30 (0.98- 1.73) 0.95 (0.77- 1.17) 0.98 (0.74- 1.30)

2nd quartile 0.94 (0.78- 1.14) 0.87 (0.72- 1.06) 1.36 (1.11- 1.68) 0.95 (0.79- 1.14) 0.95 (0.76- 1.19)

(95%CI) (95%CI)
Exposures

Photochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent

(95%CI) (95%CI) (95%CI)
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Table 3- 5. Single source models - Associations between exposures to pollutants 

identified as 5 source classes and ED visits for respiratory problems and asthma with 

exclusion of health events on July 11, 2001. 

Otherwise as Table 3-3. 

RR RR RR RR RR

Respiratory

Current day

4th quartile 1.02 (0.90- 1.15) 1.03 (0.87- 1.21) 0.98 (0.84- 1.15) 1.03 (0.91- 1.16) 1.08 (0.91- 1.27)

3rd quartile 0.93 (0.84- 1.04) 1.14 (1.01- 1.28) 1.02 (0.87- 1.18) 1.17 (1.05- 1.30) 1.02 (0.88- 1.17)

2nd quartile 1.02 (0.92- 1.13) 1.04 (0.94- 1.15) 1.00 (0.88- 1.14) 1.01 (0.91- 1.12) 1.08 (0.97- 1.19)

1 day lag

4th quartile 1.19 (1.05- 1.34) 1.07 (0.91- 1.26) 1.00 (0.86- 1.17) 1.03 (0.91- 1.16) 0.99 (0.84- 1.17)

3rd quartile 1.06 (0.95- 1.18) 1.13 (1.01- 1.27) 1.03 (0.89- 1.19) 1.00 (0.90- 1.12) 0.94 (0.82- 1.08)

2nd quartile 1.13 (1.02- 1.26) 1.07 (0.97- 1.19) 1.05 (0.93- 1.20) 0.96 (0.86- 1.07) 1.02 (0.93- 1.13)

2-day lag average

4th quartile 1.10 (0.98- 1.23) 1.12 (0.97- 1.29) 0.92 (0.80- 1.05) 1.01 (0.91- 1.12) 0.91 (0.77- 1.06)

3rd quartile 1.11 (1.01- 1.23) 1.09 (0.98- 1.21) 0.99 (0.86- 1.12) 1.06 (0.96- 1.17) 0.93 (0.82- 1.06)

2nd quartile 1.00 (0.91- 1.10) 1.08 (0.99- 1.18) 0.98 (0.87- 1.10) 0.97 (0.89- 1.06) 0.95 (0.87- 1.05)

3-day lag average

4th quartile 1.07 (0.96- 1.19) 1.08 (0.93- 1.24) 1.05 (0.91- 1.23) 0.99 (0.89- 1.10) 0.83 (0.70- 0.97)

3rd quartile 1.12 (1.01- 1.23) 1.08 (0.97- 1.22) 1.06 (0.92- 1.22) 1.01 (0.92- 1.12) 0.87 (0.76- 1.00)

2nd quartile 1.05 (0.95- 1.15) 1.11 (1.02- 1.22) 1.03 (0.92- 1.16) 0.99 (0.91- 1.08) 0.94 (0.86- 1.04)

4-day lag average

4th quartile 1.07 (0.96- 1.19) 1.18 (1.00- 1.38) 0.98 (0.83- 1.15) 1.03 (0.93- 1.15) 0.81 (0.68- 0.96)

3rd quartile 1.06 (0.96- 1.17) 1.02 (0.91- 1.14) 1.00 (0.86- 1.16) 1.03 (0.92- 1.14) 0.81 (0.71- 0.94)

2nd quartile 1.00 (0.91- 1.09) 1.09 (1.00- 1.19) 1.01 (0.89- 1.14) 1.03 (0.94- 1.13) 0.87 (0.79- 0.97)

Asthma

Current day

4th quartile 1.09 (0.86- 1.38) 0.89 (0.65- 1.21) 1.30 (0.96- 1.76) 0.92 (0.73- 1.16) 0.99 (0.71- 1.38)

3rd quartile 1.06 (0.85- 1.31) 0.98 (0.78- 1.24) 1.14 (0.85- 1.53) 0.77 (0.62- 0.97) 1.12 (0.84- 1.49)

2nd quartile 0.93 (0.75- 1.16) 1.01 (0.81- 1.26) 1.18 (0.93- 1.51) 0.97 (0.78- 1.19) 1.06 (0.85- 1.32)

1 day lag

4th quartile 1.15 (0.91- 1.47) 0.99 (0.73- 1.34) 1.00 (0.74- 1.34) 1.13 (0.89- 1.43) 0.99 (0.72- 1.35)

3rd quartile 1.12 (0.89- 1.39) 1.13 (0.89- 1.43) 0.93 (0.71- 1.23) 0.98 (0.78- 1.24) 0.88 (0.67- 1.14)

2nd quartile 1.12 (0.90- 1.40) 1.26 (1.01- 1.57) 1.07 (0.85- 1.36) 1.28 (1.03- 1.58) 0.93 (0.75- 1.15)

2-day lag average

4th quartile 0.84 (0.67- 1.05) 0.91 (0.69- 1.19) 1.01 (0.77- 1.33) 1.11 (0.90- 1.37) 0.99 (0.72- 1.35)

3rd quartile 0.95 (0.78- 1.16) 0.94 (0.75- 1.17) 1.03 (0.80- 1.32) 1.04 (0.84- 1.27) 0.88 (0.67- 1.14)

2nd quartile 0.84 (0.69- 1.02) 0.96 (0.79- 1.16) 0.98 (0.79- 1.21) 1.15 (0.95- 1.39) 0.93 (0.75- 1.15)

3-day lag average

4th quartile 0.85 (0.68- 1.07) 0.80 (0.61- 1.05) 1.16 (0.86- 1.56) 0.94 (0.76- 1.16) 1.01 (0.74- 1.39)

3rd quartile 1.06 (0.86- 1.30) 0.90 (0.71- 1.13) 1.02 (0.78- 1.34) 0.96 (0.78- 1.18) 0.99 (0.75- 1.29)

2nd quartile 0.97 (0.79- 1.18) 0.93 (0.76- 1.13) 1.12 (0.90- 1.38) 1.01 (0.84- 1.22) 0.88 (0.71- 1.09)

4-day lag average

4th quartile 0.83 (0.66- 1.04) 0.75 (0.56- 1.00) 1.29 (0.94- 1.78) 0.84 (0.68- 1.04) 1.05 (0.74- 1.47)

3rd quartile 0.97 (0.79- 1.19) 0.80 (0.63- 1.00) 1.17 (0.89- 1.55) 0.97 (0.78- 1.20) 1.00 (0.75- 1.33)

2nd quartile 0.87 (0.71- 1.05) 0.86 (0.71- 1.05) 1.24 (1.00- 1.53) 0.87 (0.72- 1.05) 0.93 (0.74- 1.16)

(95%CI) (95%CI)

Health 

outcomes/Exposures

Photochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent

(95%CI) (95%CI) (95%CI)

 



 

Table 3- 6. Single pollutant models - Associations between exposures to selected pollutants (criteria and air toxics) and ED visits for 

respiratory problems (observed data).   

Criteria pollutants monitored at Linwood otherwise indicate by site name; (#), restricted to April to September months.  Otherwise as 

Table 3-3. 

RR RR RR RR RR RR RR RR RR

4 km buffer

Current day

4th quartile 1.03 (0.80- 1.33) 0.95 (0.77- 1.19) 1.06 (0.83- 1.35) 1.18 (0.94- 1.49) 1.27 (0.78- 2.06) 1.13 (0.77- 1.68) 0.79 (0.58- 1.08) 1.10 (0.86- 1.40) 0.58 (0.27- 1.29)

3rd quartile 1.11 (0.89- 1.40) 0.83 (0.67- 1.03) 0.98 (0.77- 1.24) 1.13 (0.91- 1.40) 1.06 (0.70- 1.59) 1.19 (0.87- 1.61) 0.99 (0.77- 1.28) 0.95 (0.75- 1.21) 1.01 (0.52- 1.94)

2nd quartile 1.03 (0.83- 1.29) 0.89 (0.73- 1.09) 0.93 (0.75- 1.16) 1.07 (0.86- 1.34) 0.88 (0.60- 1.29) 1.05 (0.83- 1.32) 0.92 (0.73- 1.16) 0.81 (0.64- 1.02) 0.74 (0.42- 1.29)

1 day lag

4th quartile 0.92 (0.72- 1.18) 1.03 (0.82- 1.28) 1.09 (0.86- 1.39) 0.87 (0.69- 1.10) 1.11 (0.67- 1.82) 0.92 (0.68- 1.24) 1.50 (1.12- 2.02) 1.03 (0.80- 1.32) 0.66 (0.31- 1.42)

3rd quartile 0.89 (0.71- 1.12) 0.91 (0.74- 1.12) 1.01 (0.79- 1.28) 0.88 (0.71- 1.09) 1.36 (0.90- 2.05) 0.97 (0.77- 1.21) 1.06 (0.82- 1.37) 0.99 (0.78- 1.25) 0.50 (0.26- 0.98)

2nd quartile 0.88 (0.71- 1.09) 0.86 (0.70- 1.05) 0.92 (0.73- 1.14) 0.85 (0.68- 1.07) 1.21 (0.83- 1.76) 0.94 (0.71- 1.26) 0.95 (0.75- 1.20) 0.88 (0.70- 1.10) 0.90 (0.53- 1.55)

2-day-lag average

4th quartile 1.01 (0.78- 1.30) 1.05 (0.83- 1.33) 1.11 (0.86- 1.42) 0.80 (0.63- 1.02) 1.12 (0.67- 1.89) 1.01 (0.80- 1.29) 1.37 (1.04- 1.81) 1.04 (0.81- 1.33) 1.11 (0.53- 2.31)

3rd quartile 1.05 (0.83- 1.32) 0.92 (0.74- 1.14) 0.90 (0.71- 1.15) 0.94 (0.76- 1.16) 1.02 (0.67- 1.54) 0.96 (0.72- 1.28) 1.14 (0.89- 1.46) 1.06 (0.85- 1.32) 0.64 (0.33- 1.24)

2nd quartile 1.03 (0.83- 1.29) 0.90 (0.73- 1.10) 0.97 (0.77- 1.21) 0.83 (0.67- 1.03) 1.25 (0.88- 1.78) 1.09 (0.83- 1.45) 1.09 (0.88- 1.34) 1.09 (0.89- 1.34) 0.96 (0.58- 1.59)

3-day-lag average

4th quartile 1.09 (0.85- 1.38) 1.16 (0.90- 1.50) 1.37 (1.05- 1.78) 0.88 (0.69- 1.13) 1.00 (0.57- 1.74) 0.95 (0.71- 1.26) 1.64 (1.25- 2.16) 0.93 (0.73- 1.20) 1.12 (0.50- 2.47)

3rd quartile 1.10 (0.88- 1.39) 1.12 (0.90- 1.40) 1.03 (0.80- 1.32) 1.02 (0.81- 1.27) 1.25 (0.81- 1.92) 1.09 (0.83- 1.44) 1.25 (0.98- 1.60) 1.15 (0.93- 1.43) 0.98 (0.50- 1.92)

2nd quartile 1.09 (0.88- 1.35) 1.06 (0.86- 1.31) 1.17 (0.93- 1.47) 1.00 (0.80- 1.24) 0.97 (0.67- 1.39) 0.99 (0.75- 1.31) 1.35 (1.09- 1.67) 0.97 (0.79- 1.20) 0.86 (0.51- 1.44)

4-day-lag average

4th quartile 1.10 (0.86- 1.41) 1.28 (0.98- 1.67) 1.46 (1.11- 1.93) 0.90 (0.70- 1.15) 0.77 (0.44- 1.36) 1.08 (0.82- 1.42) 1.36 (1.03- 1.80) 1.15 (0.89- 1.49) 1.59 (0.71- 3.55)

3rd quartile 0.99 (0.79- 1.26) 1.29 (1.02- 1.62) 1.14 (0.88- 1.48) 0.94 (0.75- 1.18) 0.90 (0.58- 1.38) 0.98 (0.75- 1.30) 1.07 (0.83- 1.38) 1.04 (0.83- 1.30) 1.15 (0.57- 2.31)

2nd quartile 1.06 (0.85- 1.32) 1.30 (1.05- 1.61) 1.42 (1.13- 1.79) 0.89 (0.71- 1.10) 0.91 (0.64- 1.29) 0.92 (0.69- 1.22) 1.11 (0.90- 1.37) 1.13 (0.92- 1.39) 1.10 (0.64- 1.89)

10 km buffer

Current day

4th quartile 1.04 (0.93- 1.16) 1.03 (0.94- 1.14) 1.02 (0.92- 1.13) 1.05 (0.95- 1.16) 0.96 (0.78- 1.19) 0.89 (0.75- 1.05) 0.98 (0.85- 1.12) 1.11 (0.99- 1.24) 0.98 (0.84- 1.15)

3rd quartile 1.02 (0.93- 1.13) 0.94 (0.85- 1.03) 1.03 (0.93- 1.14) 1.05 (0.95- 1.15) 0.95 (0.80- 1.13) 0.94 (0.83- 1.07) 1.00 (0.90- 1.12) 1.13 (1.01- 1.25) 0.98 (0.86- 1.11)

2nd quartile 1.02 (0.93- 1.12) 1.00 (0.92- 1.09) 0.94 (0.86- 1.04) 1.05 (0.96- 1.16) 0.93 (0.79- 1.09) 1.03 (0.94- 1.14) 1.02 (0.92- 1.13) 0.97 (0.87- 1.07) 1.05 (0.95- 1.16)

1 day lag

4th quartile 1.05 (0.94- 1.17) 1.08 (0.98- 1.19) 1.04 (0.94- 1.16) 1.04 (0.94- 1.15) 1.20 (0.97- 1.49) 0.93 (0.81- 1.06) 1.12 (0.98- 1.28) 1.10 (0.98- 1.23) 0.99 (0.84- 1.15)

3rd quartile 1.08 (0.98- 1.20) 1.00 (0.91- 1.09) 1.04 (0.94- 1.15) 1.00 (0.91- 1.09) 1.26 (1.06- 1.51) 1.02 (0.93- 1.13) 1.10 (0.99- 1.23) 1.04 (0.93- 1.15) 0.90 (0.79- 1.02)

2nd quartile 1.03 (0.93- 1.13) 1.02 (0.94- 1.11) 0.93 (0.84- 1.02) 0.94 (0.85- 1.03) 1.12 (0.95- 1.32) 1.13 (1.00- 1.27) 1.05 (0.95- 1.16) 1.00 (0.90- 1.10) 1.09 (0.98- 1.20)

2-day-lag average

4th quartile 1.07 (0.96- 1.19) 1.10 (0.99- 1.21) 1.15 (1.04- 1.29) 0.97 (0.87- 1.07) 1.19 (0.96- 1.49) 1.01 (0.91- 1.12) 1.11 (0.98- 1.25) 1.05 (0.95- 1.17) 0.90 (0.77- 1.05)

3rd quartile 1.10 (0.99- 1.21) 1.00 (0.91- 1.10) 1.01 (0.91- 1.12) 0.98 (0.89- 1.07) 0.99 (0.83- 1.19) 1.14 (1.01- 1.28) 1.04 (0.94- 1.16) 1.04 (0.95- 1.14) 0.92 (0.82- 1.04)

2nd quartile 1.07 (0.98- 1.18) 0.98 (0.90- 1.07) 1.01 (0.92- 1.11) 0.86 (0.78- 0.94) 1.10 (0.95- 1.28) 1.12 (0.99- 1.26) 1.06 (0.97- 1.15) 1.02 (0.93- 1.11) 0.94 (0.86- 1.03)

3-day-lag average

4th quartile 1.04 (0.94- 1.15) 1.10 (0.98- 1.23) 1.18 (1.05- 1.32) 1.03 (0.93- 1.14) 1.00 (0.78- 1.27) 1.12 (1.00- 1.27) 1.08 (0.96- 1.21) 1.01 (0.91- 1.13) 0.85 (0.72- 1.00)

3rd quartile 1.06 (0.96- 1.17) 1.06 (0.96- 1.16) 1.10 (0.99- 1.22) 0.99 (0.90- 1.09) 0.94 (0.78- 1.14) 1.11 (0.98- 1.25) 1.07 (0.97- 1.19) 1.03 (0.93- 1.13) 0.89 (0.78- 1.01)

2nd quartile 1.04 (0.95- 1.14) 1.01 (0.92- 1.11) 1.05 (0.95- 1.16) 0.99 (0.90- 1.09) 0.96 (0.82- 1.12) 1.06 (0.94- 1.19) 1.06 (0.97- 1.17) 1.04 (0.96- 1.14) 0.91 (0.83- 0.99)

4-day-lag average

4th quartile 1.10 (0.99- 1.23) 1.10 (0.98- 1.23) 1.26 (1.12- 1.42) 0.96 (0.87- 1.07) 0.92 (0.72- 1.17) 1.08 (0.96- 1.22) 1.03 (0.91- 1.16) 1.01 (0.90- 1.12) 0.85 (0.72- 1.00)

3rd quartile 1.14 (1.03- 1.26) 1.14 (1.03- 1.25) 1.11 (1.00- 1.24) 1.02 (0.93- 1.13) 0.87 (0.72- 1.05) 1.03 (0.92- 1.16) 1.05 (0.95- 1.17) 1.02 (0.93- 1.12) 0.84 (0.74- 0.96)

2nd quartile 1.14 (1.04- 1.26) 1.11 (1.01- 1.22) 1.16 (1.05- 1.28) 0.89 (0.81- 0.98) 0.96 (0.82- 1.12) 1.02 (0.91- 1.15) 0.99 (0.91- 1.08) 0.98 (0.90- 1.07) 0.93 (0.85- 1.03)

(95%CI)

Formaldehyde MEK

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI)

Benzene

(95%CI)
Sources

PM2.5 CO NO2 SO2 O3# O3 (Windsor)

 

1
0
0
 



 

Table 3- 7. Single pollutant models - Associations between exposures to selected pollutants (criteria and air toxics) and ED visits for 

asthma among children residing within 10 km radius of the air monitoring site (observed data). 

Otherwise as Table 3-6. 

RR RR RR RR RR RR RR RR RR

10 km buffer

Current day

4th quartile 1.25 (1.01- 1.56) 0.89 (0.73- 1.07) 0.86 (0.69- 1.08) 0.88 (0.72- 1.08) 0.83 (0.57- 1.22) 0.79 (0.57- 1.11) 1.02 (0.78- 1.32) 1.13 (0.92- 1.40) 1.04 (0.76- 1.42)

3rd quartile 1.05 (0.85- 1.29) 0.96 (0.80- 1.16) 1.07 (0.87- 1.31) 0.97 (0.80- 1.17) 0.75 (0.53- 1.05) 1.17 (0.90- 1.52) 0.98 (0.78- 1.22) 1.05 (0.84- 1.30) 1.12 (0.86- 1.47)

2nd quartile 1.21 (1.00- 1.46) 1.06 (0.89- 1.26) 0.98 (0.81- 1.19) 1.00 (0.82- 1.22) 0.91 (0.68- 1.21) 1.01 (0.83- 1.24) 0.91 (0.73- 1.12) 0.98 (0.80- 1.20) 1.04 (0.84- 1.30)

1 day lag

4th quartile 1.10 (0.89- 1.37) 1.05 (0.87- 1.28) 0.96 (0.77- 1.19) 1.22 (0.99- 1.49) 0.99 (0.67- 1.45) 0.87 (0.67- 1.14) 0.98 (0.76- 1.28) 1.16 (0.94- 1.44) 1.01 (0.74- 1.39)

3rd quartile 1.00 (0.82- 1.22) 1.07 (0.89- 1.29) 1.06 (0.86- 1.30) 1.05 (0.86- 1.29) 0.99 (0.71- 1.38) 1.12 (0.92- 1.37) 1.04 (0.83- 1.30) 1.11 (0.90- 1.37) 1.04 (0.80- 1.36)

2nd quartile 1.00 (0.83- 1.21) 1.24 (1.04- 1.48) 1.06 (0.87- 1.29) 1.31 (1.07- 1.60) 0.94 (0.70- 1.26) 1.11 (0.87- 1.41) 1.14 (0.92- 1.41) 0.97 (0.79- 1.19) 1.09 (0.87- 1.36)

2-day-lag average

4th quartile 0.95 (0.77- 1.17) 1.07 (0.87- 1.31) 1.10 (0.89- 1.38) 1.17 (0.95- 1.44) 1.04 (0.69- 1.56) 0.97 (0.79- 1.21) 0.95 (0.74- 1.20) 1.04 (0.85- 1.28) 1.03 (0.76- 1.39)

3rd quartile 0.94 (0.77- 1.15) 1.19 (0.99- 1.44) 1.07 (0.87- 1.33) 1.02 (0.84- 1.24) 0.84 (0.60- 1.17) 1.13 (0.89- 1.45) 0.92 (0.74- 1.15) 1.00 (0.83- 1.21) 0.96 (0.74- 1.24)

2nd quartile 0.86 (0.71- 1.04) 1.08 (0.90- 1.30) 1.05 (0.86- 1.28) 1.21 (1.00- 1.46) 0.96 (0.73- 1.28) 1.08 (0.85- 1.38) 0.99 (0.81- 1.20) 1.04 (0.87- 1.26) 1.05 (0.86- 1.29)

3-day-lag average

4th quartile 0.96 (0.78- 1.19) 1.02 (0.83- 1.27) 1.13 (0.89- 1.42) 0.96 (0.78- 1.19) 1.03 (0.66- 1.62) 1.12 (0.88- 1.43) 0.87 (0.68- 1.10) 1.00 (0.81- 1.23) 0.95 (0.69- 1.31)

3rd quartile 0.94 (0.77- 1.14) 0.99 (0.81- 1.20) 1.02 (0.83- 1.27) 1.03 (0.84- 1.25) 0.96 (0.67- 1.37) 1.06 (0.83- 1.36) 1.01 (0.81- 1.25) 1.06 (0.87- 1.28) 0.91 (0.69- 1.19)

2nd quartile 0.88 (0.73- 1.06) 1.01 (0.84- 1.21) 1.10 (0.90- 1.35) 0.96 (0.79- 1.17) 1.04 (0.78- 1.39) 1.10 (0.86- 1.40) 0.97 (0.80- 1.18) 1.06 (0.88- 1.27) 0.85 (0.69- 1.05)

4-day-lag average

4th quartile 1.01 (0.82- 1.26) 0.94 (0.76- 1.17) 0.91 (0.72- 1.14) 0.98 (0.79- 1.21) 1.04 (0.66- 1.64) 1.00 (0.79- 1.27) 0.86 (0.67- 1.09) 0.89 (0.72- 1.11) 1.06 (0.76- 1.47)

3rd quartile 0.87 (0.71- 1.06) 0.96 (0.79- 1.16) 0.93 (0.75- 1.14) 1.05 (0.86- 1.28) 0.92 (0.64- 1.33) 1.04 (0.82- 1.31) 0.98 (0.78- 1.22) 0.91 (0.75- 1.10) 0.94 (0.71- 1.25)

2nd quartile 1.02 (0.85- 1.23) 0.94 (0.78- 1.13) 0.82 (0.67- 1.01) 0.94 (0.77- 1.14) 1.06 (0.79- 1.41) 0.97 (0.76- 1.23) 0.87 (0.72- 1.06) 1.03 (0.86- 1.24) 0.84 (0.67- 1.05)

Benzene

(95%CI)
Exposures

PM2.5 CO NO2 SO2 O3# O3 (Windsor) Formaldehyde MEK

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI)

 

1
0
1
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Table 3- 8. Multiple source models - Associations between exposures to pollutants 

identified as 5 source classes and ED visits for respiratory problems (observed data). 

Otherwise as Table 3-3. 

RR RR RR RR RR

4 km buffer

Photochemical

4th quartile 0.76 (0.52- 1.10) 1.23 (0.85- 1.78) 1.21 (0.86- 1.70) 1.19 (0.84- 1.67) 1.09 (0.77- 1.54)

3rd quartile 0.76 (0.53- 1.07) 0.86 (0.61- 1.22) 1.06 (0.79- 1.42) 1.11 (0.83- 1.48) 0.98 (0.74- 1.30)

2nd quartile 0.85 (0.62- 1.15) 1.02 (0.75- 1.39) 0.92 (0.69- 1.22) 1.03 (0.79- 1.35) 1.10 (0.85- 1.43)

Fuel combustion

4th quartile 0.94 (0.57- 1.54) 1.30 (0.79- 2.16) 1.06 (0.67- 1.66) 1.20 (0.75- 1.91) 1.52 (0.90- 2.58)

3rd quartile 1.22 (0.84- 1.77) 1.28 (0.89- 1.86) 1.29 (0.92- 1.81) 1.37 (0.95- 1.98) 1.21 (0.84- 1.74)

2nd quartile 1.14 (0.83- 1.57) 0.97 (0.70- 1.33) 1.17 (0.89- 1.55) 1.35 (1.02- 1.77) 1.13 (0.87- 1.48)

Combined industrial

4th quartile 1.06 (0.70- 1.62) 1.10 (0.72- 1.67) 0.85 (0.58- 1.24) 0.90 (0.59- 1.36) 0.92 (0.60- 1.42)

3rd quartile 1.10 (0.73- 1.66) 1.47 (0.97- 2.22) 0.92 (0.65- 1.31) 0.85 (0.58- 1.25) 1.08 (0.73- 1.59)

2nd quartile 1.15 (0.80- 1.67) 1.35 (0.93- 1.95) 0.81 (0.59- 1.10) 1.02 (0.75- 1.40) 1.14 (0.83- 1.57)

Gasoline exhaust

4th quartile 0.99 (0.73- 1.35) 1.05 (0.78- 1.42) 1.02 (0.79- 1.33) 1.24 (0.94- 1.64) 1.27 (0.96- 1.67)

3rd quartile 1.11 (0.85- 1.46) 1.04 (0.79- 1.36) 1.09 (0.86- 1.39) 1.35 (1.05- 1.73) 1.16 (0.88- 1.54)

2nd quartile 0.79 (0.60- 1.03) 0.93 (0.72- 1.21) 0.86 (0.69- 1.08) 1.04 (0.83- 1.30) 0.98 (0.77- 1.24)

Industrial solvent

4th quartile 1.28 (0.85- 1.92) 0.71 (0.46- 1.08) 0.82 (0.56- 1.21) 0.68 (0.45- 1.03) 0.72 (0.47- 1.10)

3rd quartile 1.04 (0.73- 1.48) 0.67 (0.47- 0.95) 0.66 (0.47- 0.91) 0.64 (0.45- 0.90) 0.69 (0.49- 0.98)

2nd quartile 1.09 (0.85- 1.41) 0.86 (0.67- 1.10) 0.86 (0.68- 1.08) 0.87 (0.69- 1.10) 0.76 (0.59- 0.97)

10 km buffer

Photochemical

4th quartile 0.85 (0.73- 1.01) 1.17 (0.99- 1.37) 1.02 (0.88- 1.19) 0.99 (0.85- 1.15) 0.99 (0.85- 1.15)

3rd quartile 0.77 (0.66- 0.90) 1.02 (0.88- 1.19) 1.05 (0.93- 1.19) 1.06 (0.94- 1.20) 1.01 (0.90- 1.14)

2nd quartile 0.87 (0.76- 0.99) 1.12 (0.98- 1.28) 0.94 (0.84- 1.06) 1.03 (0.92- 1.15) 0.97 (0.87- 1.08)

Fuel combustion

4th quartile 1.10 (0.89- 1.37) 1.01 (0.81- 1.25) 1.08 (0.89- 1.31) 1.24 (1.02- 1.52) 1.27 (1.02- 1.59)

3rd quartile 1.28 (1.09- 1.51) 1.07 (0.91- 1.26) 1.09 (0.94- 1.26) 1.15 (0.98- 1.34) 1.07 (0.92- 1.25)

2nd quartile 1.18 (1.03- 1.36) 1.03 (0.90- 1.18) 1.09 (0.97- 1.23) 1.12 (0.99- 1.25) 1.12 (1.00- 1.25)

Combined industrial

4th quartile 1.00 (0.83- 1.20) 1.07 (0.89- 1.28) 0.94 (0.80- 1.11) 1.07 (0.90- 1.29) 1.04 (0.87- 1.26)

3rd quartile 1.05 (0.88- 1.26) 1.09 (0.91- 1.30) 0.99 (0.85- 1.16) 1.07 (0.90- 1.26) 1.06 (0.89- 1.26)

2nd quartile 0.98 (0.84- 1.16) 1.05 (0.89- 1.23) 0.97 (0.85- 1.11) 1.02 (0.89- 1.16) 1.10 (0.96- 1.26)

Gasoline exhaust

4th quartile 1.07 (0.94- 1.23) 1.03 (0.90- 1.18) 0.97 (0.87- 1.09) 0.98 (0.87- 1.10) 1.00 (0.89- 1.13)

3rd quartile 1.21 (1.07- 1.36) 0.97 (0.86- 1.09) 1.03 (0.93- 1.14) 0.98 (0.88- 1.09) 0.96 (0.85- 1.08)

2nd quartile 1.07 (0.95- 1.19) 0.96 (0.86- 1.08) 0.95 (0.87- 1.05) 0.95 (0.87- 1.04) 0.99 (0.90- 1.09)

Industrial solvent

4th quartile 1.16 (0.97- 1.38) 1.00 (0.84- 1.19) 0.88 (0.74- 1.03) 0.78 (0.65- 0.93) 0.81 (0.67- 0.97)

3rd quartile 1.02 (0.88- 1.18) 0.92 (0.79- 1.06) 0.89 (0.78- 1.02) 0.82 (0.71- 0.95) 0.80 (0.69- 0.92)

2nd quartile 1.08 (0.97- 1.20) 0.99 (0.89- 1.10) 0.94 (0.85- 1.03) 0.91 (0.83- 1.01) 0.87 (0.78- 0.97)

3-day-lag avg 4-day-lag avg

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI)
Sources/Exposures

Current day 1-day-lag avg 2-day-lag avg
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Table 3- 9. Multiple source models - Associations between exposures to pollutants 

identified as 5 source classes and ED visits for asthma among children living within 10 

km radius (observed data). 

Events on July 11, 2001 were excluded.  Otherwise as Table 3-3. 

RR RR RR RR RR

Photochemical

4th quartile 1.30 (0.95- 1.79) 1.08 (0.79- 1.48) 0.80 (0.59- 1.07) 0.94 (0.70- 1.27) 0.92 (0.69- 1.22)

3rd quartile 1.22 (0.91- 1.63) 0.95 (0.70- 1.27) 0.87 (0.68- 1.13) 1.18 (0.92- 1.52) 1.07 (0.84- 1.35)

2nd quartile 1.02 (0.78- 1.34) 1.04 (0.79- 1.36) 0.78 (0.61- 1.00) 1.15 (0.91- 1.45) 0.98 (0.79- 1.22)

Fuel combustion

4th quartile 0.87 (0.58- 1.30) 0.88 (0.59- 1.31) 1.02 (0.70- 1.47) 1.08 (0.74- 1.57) 0.96 (0.64- 1.43)

3rd quartile 0.86 (0.62- 1.18) 1.13 (0.83- 1.56) 1.11 (0.83- 1.49) 0.93 (0.69- 1.25) 0.94 (0.71- 1.26)

2nd quartile 0.92 (0.70- 1.21) 1.27 (0.96- 1.69) 1.10 (0.86- 1.42) 0.89 (0.70- 1.14) 0.91 (0.72- 1.15)

Combined industrial

4th quartile 1.33 (0.94- 1.88) 0.96 (0.68- 1.36) 0.98 (0.70- 1.35) 1.15 (0.81- 1.62) 1.34 (0.94- 1.91)

3rd quartile 1.10 (0.78- 1.55) 0.91 (0.65- 1.27) 1.03 (0.76- 1.38) 1.03 (0.75- 1.41) 1.26 (0.92- 1.73)

2nd quartile 1.19 (0.89- 1.60) 0.98 (0.74- 1.31) 0.98 (0.76- 1.26) 1.05 (0.83- 1.34) 1.35 (1.06- 1.73)

Gasoline exhaust

4th quartile 0.94 (0.72- 1.21) 1.22 (0.93- 1.59) 1.09 (0.87- 1.37) 0.96 (0.76- 1.21) 0.90 (0.71- 1.13)

3rd quartile 0.80 (0.63- 1.01) 0.97 (0.76- 1.25) 1.04 (0.84- 1.29) 1.05 (0.85- 1.30) 0.98 (0.78- 1.24)

2nd quartile 0.96 (0.77- 1.20) 1.33 (1.06- 1.67) 1.15 (0.94- 1.40) 1.01 (0.83- 1.22) 0.98 (0.80- 1.19)

Industrial solvent

4th quartile 1.01 (0.71- 1.44) 1.00 (0.70- 1.43) 0.97 (0.70- 1.36) 1.06 (0.75- 1.50) 1.29 (0.91- 1.85)

3rd quartile 1.12 (0.83- 1.52) 0.98 (0.72- 1.33) 0.87 (0.65- 1.16) 0.96 (0.71- 1.29) 1.05 (0.78- 1.42)

2nd quartile 1.08 (0.86- 1.36) 0.98 (0.77- 1.25) 0.93 (0.74- 1.16) 0.93 (0.74- 1.17) 0.97 (0.76- 1.23)

3-day-lag avg 4-day-lag avg

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI)
Sources/Exposures

Current day 1-day-lag avg 2-day-lag avg
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Table 3- 10. Multiple pollutant models - Associations between exposures to selected 

criteria pollutants and ED visits for respiratory problems (observed data).   

Otherwise as Table 3-6. 

RR RR RR RR RR

4 km buffer

Current day

4th quartile 0.93 (0.68- 1.27) 1.15 (0.83- 1.60) - - - - - - - - -

3rd quartile 0.81 (0.62- 1.07) 1.04 (0.80- 1.35) - - - - - - - - -

2nd quartile 0.90 (0.72- 1.13) 0.98 (0.77- 1.24) - - - - - - - - -

1 day lag

4th quartile 1.14 (0.83- 1.56) 0.01 (0.91- 0.00) - - - - - - - - -

3rd quartile 0.92 (0.70- 1.21) 0.04 (0.85- 0.00) - - - - - - - - -

2nd quartile 0.90 (0.72- 1.13) 0.56 (0.45- 0.00) - - - - - - - - -

2-day-lag average

4th quartile 0.95 (0.69- 1.32) 1.10 (0.80- 1.51) - - - - - - - - -

3rd quartile 0.92 (0.70- 1.19) 0.92 (0.70- 1.21) - - - - - - - - -

2nd quartile 0.88 (0.70- 1.11) 0.99 (0.78- 1.26) - - - - - - - - -

3-day-lag average

4th quartile 1.08 (0.77- 1.53) 1.28 (0.94- 1.76) - - - - - - - - -

3rd quartile 1.11 (0.85- 1.44) 0.98 (0.74- 1.29) - - - - - - - - -

2nd quartile 1.08 (0.86- 1.36) 1.12 (0.89- 1.43) - - - - - - - - -

4-day-lag average

4th quartile 1.29 (0.89- 1.86) 1.27 (0.92- 1.76) - - - - - - - - -

3rd quartile 1.34 (1.01- 1.78) 1.03 (0.78- 1.36) - - - - - - - - -

2nd quartile 1.31 (1.02- 1.67) 1.29 (1.01- 1.65) - - - - - - - - -

10 km buffer

Current day

4th quartile 0.93 (0.79- 1.10) 1.10 (0.89- 1.36) 1.09 (0.93- 1.29) 0.81 (0.65- 0.99) 1.00 (0.83- 1.20)

3rd quartile 0.87 (0.75- 1.00) 1.09 (0.93- 1.28) 1.09 (0.95- 1.25) 0.84 (0.72- 0.99) 0.97 (0.83- 1.13)

2nd quartile 0.94 (0.84- 1.06) 0.96 (0.84- 1.09) 1.10 (0.96- 1.25) 0.96 (0.85- 1.08) 0.99 (0.87- 1.13)

1 day lag

4th quartile 1.08 (0.92- 1.28) 0.97 (0.79- 1.20) 1.06 (0.91- 1.25) 0.91 (0.74- 1.13) 1.03 (0.86- 1.25)

3rd quartile 0.96 (0.83- 1.10) 0.99 (0.85- 1.16) 0.99 (0.87- 1.13) 0.87 (0.74- 1.03) 1.02 (0.87- 1.19)

2nd quartile 1.07 (0.95- 1.20) 0.94 (0.82- 1.07) 0.92 (0.81- 1.05) 0.96 (0.85- 1.08) 1.03 (0.90- 1.18)

2-day-lag average

4th quartile 1.08 (0.91- 1.28) 1.15 (0.96- 1.39) 0.86 (0.72- 1.02) 0.83 (0.66- 1.06) 1.00 (0.85- 1.17)

3rd quartile 1.02 (0.89- 1.18) 1.00 (0.87- 1.16) 0.89 (0.78- 1.02) 0.86 (0.71- 1.04) 1.05 (0.91- 1.20)

2nd quartile 0.99 (0.88- 1.13) 1.02 (0.90- 1.16) 0.81 (0.72- 0.92) 0.97 (0.85- 1.10) 1.04 (0.93- 1.18)

3-day-lag average

4th quartile 1.03 (0.87- 1.21) 1.23 (1.02- 1.47) 1.06 (0.90- 1.25) 0.94 (0.74- 1.19) 0.94 (0.80- 1.11)

3rd quartile 1.02 (0.89- 1.16) 1.11 (0.96- 1.28) 1.03 (0.89- 1.20) 0.91 (0.75- 1.10) 1.00 (0.86- 1.15)

2nd quartile 1.00 (0.89- 1.12) 1.10 (0.98- 1.25) 1.02 (0.90- 1.16) 0.98 (0.86- 1.12) 1.01 (0.90- 1.13)

4-day-lag average

4th quartile 1.02 (0.86- 1.21) 1.23 (1.02- 1.49) 0.91 (0.78- 1.07) 1.01 (0.77- 1.31) 1.04 (0.88- 1.24)

3rd quartile 1.08 (0.94- 1.23) 1.12 (0.97- 1.30) 1.01 (0.88- 1.16) 0.92 (0.74- 1.14) 1.05 (0.91- 1.22)

2nd quartile 1.10 (0.97- 1.24) 1.13 (1.00- 1.28) 0.86 (0.76- 0.98) 1.08 (0.92- 1.26) 1.12 (0.99- 1.27)

PM2.5

(95%CI)

SO2

(95%CI)

O3 (Windsor)

(95%CI)
Sources

CO NO2

(95%CI) (95%CI)

 



 

Table S3- 1. Pearson correlation coefficients between air toxics and criteria air pollutants.   

Criteria air pollutants were measured at Linwood otherwise stated by site name. 
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N 284 284 283 284 284 284 283 302 302 302 302 300 302 300 301 301 300 302 302 302 302 301 300 361 324 357 298 334 180 320

Acetaldehyde 1.00

Benzaldehyde 0.64 1.00

Formaldehyde 0.80 0.77 1.00

Hexaldehyde 0.69 0.62 0.54 1.00

iso-Butyraldehyde 0.89 0.60 0.68 0.68 1.00

Propionaldehyde 0.84 0.74 0.81 0.66 0.79 1.00

Tolualdehyde 0.64 0.68 0.58 0.69 0.61 0.73 1.00

Acetylene 0.31 0.25 0.27 0.07 0.19 0.23 0.16 1.00

Benzene 0.45 0.39 0.31 0.28 0.31 0.32 0.27 0.69 1.00

1,3-Butadiene 0.35 0.28 0.31 0.13 0.23 0.24 0.18 0.73 0.63 1.00

Dichlorodifluoromethane 0.44 0.21 0.31 0.35 0.37 0.32 0.26 0.29 0.34 0.34 1.00

Ethylbenzene 0.42 0.34 0.35 0.30 0.30 0.29 0.31 0.63 0.68 0.71 0.38 1.00

Methyl ethyl ketone 0.43 0.44 0.35 0.46 0.38 0.35 0.37 0.22 0.50 0.26 0.38 0.45 1.00

m,p-Xylene 0.43 0.35 0.37 0.31 0.31 0.29 0.32 0.63 0.69 0.71 0.40 0.99 0.45 1.00

n-Octane 0.29 0.20 0.21 0.19 0.20 0.21 0.20 0.34 0.37 0.48 0.24 0.37 0.30 0.35 1.00

o-Xylene 0.42 0.37 0.36 0.30 0.29 0.29 0.33 0.67 0.73 0.75 0.41 0.96 0.45 0.97 0.40 1.00

Propylene 0.28 0.12 0.23 0.11 0.21 0.18 0.11 0.32 0.26 0.32 0.17 0.23 0.17 0.23 0.22 0.24 1.00

Tetrachloroethylene 0.08 0.05 0.06 0.10 0.07 0.07 0.11 0.19 0.21 0.20 0.03 0.20 0.16 0.20 0.10 0.20 -0.01 1.00

Trichlorofluoromethane 0.26 0.08 0.14 0.23 0.23 0.18 0.15 0.12 0.16 0.17 0.54 0.19 0.15 0.22 0.15 0.24 0.09 -0.03 1.00

Trichlorotrifluoroethane 0.13 -0.12 0.03 -0.03 0.16 0.08 0.01 0.04 -0.02 0.14 0.14 0.03 -0.05 0.01 0.17 0.00 0.20 -0.06 0.01 1.00

1,2,4-Trimethylbenzene 0.46 0.37 0.36 0.35 0.35 0.34 0.37 0.67 0.75 0.78 0.44 0.94 0.49 0.95 0.41 0.93 0.25 0.24 0.24 0.02 1.00

1,3,5-Trimethylbenzene 0.43 0.35 0.33 0.30 0.31 0.31 0.36 0.67 0.72 0.79 0.40 0.89 0.44 0.90 0.41 0.90 0.22 0.25 0.21 0.00 0.95 1.00

Toluene 0.40 0.38 0.31 0.32 0.28 0.27 0.30 0.62 0.77 0.65 0.34 0.82 0.51 0.81 0.34 0.84 0.21 0.20 0.16 -0.07 0.85 0.82 1.00

PM10 (Dearborn) 0.14 0.14 0.20 0.11 0.09 0.13 0.16 0.03 0.07 -0.07 0.01 0.04 0.25 0.04 0.08 0.02 0.15 -0.09 -0.03 -0.03 0.03 0.04 0.02 1.00

PM2.5 0.18 0.19 0.15 0.19 0.14 0.16 0.18 0.15 0.32 -0.05 0.03 0.14 0.37 0.13 0.01 0.13 0.25 -0.02 -0.01 -0.02 0.15 0.11 0.17 0.56 1.00

CO 0.20 0.16 0.20 0.09 0.15 0.17 0.13 0.48 0.43 0.42 0.08 0.46 0.27 0.45 0.19 0.44 0.44 0.06 0.06 0.00 0.45 0.42 0.41 0.29 0.30 1.00

NO2 0.25 0.21 0.29 0.16 0.18 0.26 0.24 0.37 0.33 0.16 0.03 0.27 0.26 0.26 0.11 0.27 0.39 0.02 -0.04 0.02 0.29 0.23 0.21 0.47 0.51 0.64 1.00

SO2 0.16 0.10 0.12 0.14 0.11 0.15 0.16 0.22 0.26 0.10 0.07 0.08 0.22 0.07 0.09 0.12 0.44 -0.03 0.01 0.08 0.16 0.11 0.14 0.27 0.46 0.33 0.58 1.00

O3 (Apr-Sept) 0.09 0.16 0.15 0.36 0.03 0.05 0.26 -0.04 0.18 -0.18 0.11 0.10 0.37 0.10 -0.02 0.09 -0.07 -0.02 0.06 -0.30 0.03 0.02 0.13 0.55 0.53 0.21 0.15 0.15 1.00

O3 (Windsor) 0.36 0.42 0.31 0.60 0.35 0.39 0.47 -0.16 0.14 -0.12 0.30 0.09 0.50 0.10 0.02 0.11 -0.08 0.05 0.06 -0.17 0.14 0.10 0.17 0.34 0.35 -0.06 0.15 0.19 0.96 1.00  
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Table S3- 2. Pearson correlation coefficients between 5 source classes and air toxics. 
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N 265 265 265 265 265 284 284 283 284 284 284 283 302 302 302 302 300 302 300 301 301 300 302 302 302 302 301 300

Photochemical pollutants 1.00

Fuel combustion 0.43 1.00

Combined industrial -0.48 -0.61 1.00

Gasoline exhaust 0.24 0.22 -0.36 1.00

Industrial solvent 0.19 0.38 -0.54 0.15 1.00

Acetaldehyde 0.56 0.98 -0.64 0.29 0.39 1.00

Benzaldehyde 0.66 0.67 -0.69 0.38 0.50 0.64 1.00

Formaldehyde 0.93 0.73 -0.61 0.26 0.31 0.80 0.77 1.00

Hexaldehyde 0.29 0.72 -0.56 0.14 0.47 0.69 0.62 0.54 1.00

iso-Butyraldehyde 0.38 0.92 -0.54 0.17 0.36 0.89 0.60 0.68 0.68 1.00

Propionaldehyde 0.60 0.91 -0.60 0.24 0.37 0.84 0.74 0.81 0.66 0.79 1.00

Tolualdehyde 0.42 0.65 -0.56 0.22 0.40 0.64 0.68 0.58 0.69 0.61 0.73 1.00

Acetylene 0.30 0.18 -0.06 0.80 0.17 0.31 0.25 0.27 0.07 0.19 0.23 0.16 1.00

Benzene 0.20 0.36 -0.38 0.77 0.46 0.45 0.39 0.31 0.28 0.31 0.32 0.27 0.69 1.00

1,3-Butadiene 0.30 0.23 -0.24 0.81 0.20 0.35 0.28 0.31 0.13 0.23 0.24 0.18 0.73 0.63 1.00

Dichlorodifluoromethane 0.19 0.43 -0.06 0.27 0.37 0.44 0.21 0.31 0.35 0.37 0.32 0.26 0.29 0.34 0.34 1.00

Ethylbenzene 0.30 0.37 -0.52 0.88 0.43 0.42 0.34 0.35 0.30 0.30 0.29 0.31 0.63 0.68 0.71 0.38 1.00

Methyl ethyl ketone 0.23 0.39 -0.52 0.17 1.00 0.43 0.44 0.35 0.46 0.38 0.35 0.37 0.22 0.50 0.26 0.38 0.45 1.00

m,p-Xylene 0.31 0.38 -0.53 0.88 0.43 0.43 0.35 0.37 0.31 0.31 0.29 0.32 0.63 0.69 0.71 0.40 0.99 0.45 1.00

n-Octane 0.17 0.23 -0.17 0.36 0.32 0.29 0.20 0.21 0.19 0.20 0.21 0.20 0.34 0.37 0.48 0.24 0.37 0.30 0.35 1.00

o-Xylene 0.32 0.37 -0.53 0.92 0.45 0.42 0.37 0.36 0.30 0.29 0.29 0.33 0.67 0.73 0.75 0.41 0.96 0.45 0.97 0.40 1.00

Propylene 0.19 0.24 -0.06 0.24 0.15 0.28 0.12 0.23 0.11 0.21 0.18 0.11 0.32 0.26 0.32 0.17 0.23 0.17 0.23 0.22 0.24 1.00

Tetrachloroethylene 0.06 0.05 -0.17 0.19 0.14 0.08 0.05 0.06 0.10 0.07 0.07 0.11 0.19 0.21 0.20 0.03 0.20 0.16 0.20 0.10 0.20 -0.01 1.00

Trichlorofluoromethane 0.03 0.25 0.03 0.13 0.14 0.26 0.08 0.14 0.23 0.23 0.18 0.15 0.12 0.16 0.17 0.54 0.19 0.15 0.22 0.15 0.24 0.09 -0.03 1.00

Trichlorotrifluoroethane -0.02 0.14 0.21 -0.04 -0.04 0.13 -0.12 0.03 -0.03 0.16 0.08 0.01 0.04 -0.02 0.14 0.14 0.03 -0.05 0.01 0.17 0.00 0.20 -0.06 0.01 1.00

1,2,4-Trimethylbenzene 0.30 0.37 -0.52 0.89 0.45 0.46 0.37 0.36 0.35 0.35 0.34 0.37 0.67 0.75 0.78 0.44 0.94 0.49 0.95 0.41 0.93 0.25 0.24 0.24 0.02 1.00

1,3,5-Trimethylbenzene 0.29 0.33 -0.47 0.88 0.40 0.43 0.35 0.33 0.30 0.31 0.31 0.36 0.67 0.72 0.79 0.40 0.89 0.44 0.90 0.41 0.90 0.22 0.25 0.21 0.00 0.95 1.00

Toluene 0.24 0.36 -0.54 0.84 0.50 0.40 0.38 0.31 0.32 0.28 0.27 0.30 0.62 0.77 0.65 0.34 0.82 0.51 0.81 0.34 0.84 0.21 0.20 0.16 -0.07 0.85 0.82 1.00

1
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Table S3- 3. Pearson correlation coefficients between 5 source classes and criteria air 

pollutants. 

Sources/Pollutants
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N 265 265 265 265 265 361 324 357 298 334 180 320

Photochemical pollutants 1.00

Fuel combustion 0.43 1.00

Combined industrial -0.48 -0.61 1.00

Gasoline exhaust 0.24 0.22 -0.36 1.00

Industrial solvent 0.19 0.38 -0.54 0.15 1.00

PM10 (Dearborn) 0.22 0.15 -0.14 -0.08 0.23 1.00

PM2.5 0.09 0.18 -0.12 0.05 0.34 0.56 1.00

CO 0.23 0.15 -0.21 0.47 0.26 0.29 0.30 1.00

NO2 0.36 0.18 -0.24 0.25 0.29 0.47 0.51 0.64 1.00

SO2 0.11 0.12 -0.08 0.10 0.23 0.27 0.46 0.33 0.58 1.00

O3 (Apr-Sept) 0.10 0.13 -0.20 0.01 0.41 0.55 0.53 0.21 0.15 0.15 1.00

O3 (Windsor) 0.17 0.38 -0.42 -0.07 0.51 0.34 0.35 -0.06 0.15 0.19 0.96 1.00
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Table S3- 4. Study population size and number of Medicaid visits, 4/19/2002-4/18/2003 

Asthma Respiratory Injury Asthma Respiratory Injury Asthma Respiratory Injury

N (%) n n n n n n n n n

4 km buffer

N 4731 49 33 41 156 826 597 536 1213 9067

Gender

Female 2287 (48) 16 15 26 57 330 281 218 452 4536

Male 2444 (52) 33 18 15 99 496 316 318 761 4531

Race

Black 642 (14) 8 8 5 28 116 80 57 125 344

White 2312 (49) 19 12 16 72 491 306 301 802 6234

Others 1777 (38) 22 13 20 56 219 211 178 286 2489

Age group (yrs)

0 to 4 1562 (33) 22 8 20 67 283 289 243 285 4178

5 to 9 1418 (30) 14 13 10 52 237 173 167 355 2945

10 to 14 1134 (24) 6 10 8 25 204 96 90 417 1437

15 to 18 617 (13) 7 2 3 12 102 39 36 156 507

10 km buffer

N 8129 289 188 235 1016 4021 3321 2448 4201 24341

Gender

Female 3988 (49) 133 75 101 479 1630 1704 1048 1742 12267

Male 4141 (51) 156 113 134 537 2391 1617 1400 2459 12074

Race

Black 2803 (34) 211 121 143 763 2495 2169 1461 1923 5793

White 2748 (34) 45 42 44 154 1196 810 690 1859 14831

Others 2578 (32) 33 25 48 99 330 342 297 419 3717

Age group (yrs)

0 to 4 2385 (30) 109 48 118 391 1139 1485 865 936 10564

5 to 9 2233 (28) 83 55 38 319 1082 901 787 1180 7801

10 to 14 1945 (24) 46 47 37 200 1195 608 609 1486 4432

15 to 18 1411 (18) 48 34 36 101 568 299 168 586 1485

Outpatient visit

Variable

Study 

population

Hospital admission Emergency department visit
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Table S3- 5. Single source models - Associations between exposures to pollutants 

identified as 5 source classes and ED visits for injury. 

Otherwise as Table 3-3. 

 

RR RR RR RR RR

4 km buffer

Current day

4th quartile 0.87 (0.67- 1.13) 1.04 (0.75- 1.46) 0.86 (0.60- 1.23) 1.00 (0.76- 1.32) 1.29 (0.86- 1.94)

3rd quartile 0.99 (0.78- 1.27) 0.86 (0.64- 1.15) 0.70 (0.50- 0.99) 0.98 (0.75- 1.29) 1.05 (0.72- 1.54)

2nd quartile 0.85 (0.66- 1.10) 0.88 (0.66- 1.17) 0.82 (0.63- 1.06) 0.87 (0.66- 1.15) 1.08 (0.79- 1.47)

1 day lag

4th quartile 0.90 (0.67- 1.20) 1.06 (0.75- 1.50) 0.90 (0.63- 1.30) 0.91 (0.69- 1.21) 0.75 (0.50- 1.14)

3rd quartile 0.94 (0.71- 1.25) 1.06 (0.79- 1.43) 0.78 (0.56- 1.09) 0.91 (0.69- 1.21) 0.79 (0.55- 1.15)

2nd quartile 1.02 (0.77- 1.34) 0.96 (0.71- 1.29) 0.91 (0.70- 1.18) 0.86 (0.65- 1.14) 0.79 (0.57- 1.08)

2-day-lag average

4th quartile 0.91 (0.70- 1.19) 0.94 (0.69- 1.27) 0.91 (0.65- 1.27) 0.90 (0.70- 1.16) 1.08 (0.74- 1.57)

3rd quartile 0.91 (0.70- 1.17) 0.89 (0.68- 1.17) 0.89 (0.65- 1.21) 0.83 (0.65- 1.07) 1.02 (0.72- 1.43)

2nd quartile 0.88 (0.69- 1.13) 0.80 (0.62- 1.03) 1.02 (0.81- 1.28) 0.95 (0.75- 1.20) 1.03 (0.77- 1.38)

3-day-lag average

4th quartile 1.05 (0.80- 1.37) 1.01 (0.74- 1.37) 0.89 (0.61- 1.29) 1.01 (0.78- 1.29) 0.90 (0.61- 1.33)

3rd quartile 0.95 (0.73- 1.24) 0.91 (0.69- 1.20) 0.99 (0.71- 1.37) 0.94 (0.73- 1.21) 1.00 (0.71- 1.42)

2nd quartile 0.98 (0.76- 1.26) 0.81 (0.62- 1.05) 0.92 (0.73- 1.15) 1.03 (0.82- 1.30) 0.86 (0.64- 1.15)

4-day-lag average

4th quartile 0.96 (0.73- 1.26) 1.02 (0.74- 1.41) 0.82 (0.55- 1.21) 1.05 (0.81- 1.35) 1.11 (0.74- 1.67)

3rd quartile 0.99 (0.77- 1.29) 1.01 (0.76- 1.33) 0.87 (0.62- 1.22) 0.96 (0.74- 1.25) 1.10 (0.76- 1.59)

2nd quartile 1.07 (0.84- 1.38) 0.93 (0.71- 1.20) 0.85 (0.68- 1.07) 0.97 (0.77- 1.23) 0.97 (0.72- 1.32)

10 km buffer

Current day

4th quartile 1.06 (0.93- 1.21) 1.15 (0.98- 1.33) 0.87 (0.75- 1.02) 1.01 (0.90- 1.15) 0.95 (0.79- 1.14)

3rd quartile 1.07 (0.94- 1.20) 1.00 (0.88- 1.14) 0.79 (0.68- 0.91) 1.11 (0.99- 1.25) 0.96 (0.81- 1.13)

2nd quartile 1.08 (0.95- 1.22) 1.04 (0.91- 1.18) 0.93 (0.83- 1.05) 1.03 (0.91- 1.16) 1.00 (0.87- 1.15)

1 day lag

4th quartile 0.98 (0.86- 1.11) 0.95 (0.81- 1.10) 0.90 (0.76- 1.05) 1.03 (0.91- 1.16) 0.93 (0.78- 1.12)

3rd quartile 1.01 (0.90- 1.14) 0.94 (0.82- 1.06) 0.90 (0.78- 1.04) 1.00 (0.89- 1.13) 0.93 (0.79- 1.10)

2nd quartile 1.02 (0.90- 1.15) 0.95 (0.84- 1.08) 1.02 (0.91- 1.14) 0.98 (0.87- 1.11) 0.94 (0.82- 1.07)

2-day-lag average

4th quartile 0.97 (0.86- 1.09) 0.98 (0.86- 1.13) 0.90 (0.78- 1.04) 0.96 (0.86- 1.07) 1.05 (0.89- 1.24)

3rd quartile 0.97 (0.87- 1.08) 0.92 (0.81- 1.03) 0.91 (0.79- 1.04) 0.96 (0.87- 1.07) 1.02 (0.88- 1.19)

2nd quartile 0.91 (0.81- 1.01) 0.90 (0.80- 1.00) 0.98 (0.89- 1.09) 1.01 (0.91- 1.12) 0.94 (0.83- 1.06)

3-day-lag average

4th quartile 1.01 (0.89- 1.13) 1.04 (0.91- 1.19) 0.80 (0.68- 0.94) 1.00 (0.89- 1.11) 1.09 (0.92- 1.29)

3rd quartile 1.00 (0.90- 1.12) 0.94 (0.84- 1.07) 0.89 (0.78- 1.03) 0.99 (0.89- 1.10) 1.09 (0.94- 1.27)

2nd quartile 0.94 (0.84- 1.05) 0.89 (0.80- 1.00) 0.92 (0.84- 1.02) 1.01 (0.91- 1.11) 0.95 (0.83- 1.07)

4-day-lag average

4th quartile 0.99 (0.88- 1.11) 1.09 (0.94- 1.26) 0.84 (0.71- 1.00) 1.04 (0.93- 1.16) 1.11 (0.93- 1.33)

3rd quartile 0.98 (0.88- 1.10) 0.95 (0.84- 1.07) 0.89 (0.77- 1.03) 0.99 (0.88- 1.10) 1.02 (0.87- 1.20)

2nd quartile 0.99 (0.89- 1.10) 0.89 (0.79- 0.99) 0.89 (0.81- 0.99) 1.03 (0.93- 1.14) 0.93 (0.81- 1.06)

(95%CI)(95%CI) (95%CI)
Exposures

Photochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial 

(95%CI) (95%CI)

 



 

Table S3- 6. Single pollutant models - Associations between exposures to air pollutants (criteria and air toxics) and ED visits for 

injury.  Otherwise as Table 3-6. 

RR RR RR RR RR RR RR RR RR

4 km buffer

Current day

4th quartile 1.12 (0.86- 1.45) 1.42 (1.13- 1.80) 1.16 (0.91- 1.49) 1.35 (1.07- 1.71) 1.03 (0.68- 1.56) 1.63 (1.06- 2.49) 1.11 (0.82- 1.49) 1.02 (0.80- 1.32) 0.88 (0.61- 1.27)

3rd quartile 1.16 (0.91- 1.49) 1.21 (0.97- 1.51) 1.15 (0.91- 1.46) 1.10 (0.86- 1.39) 1.19 (0.83- 1.70) 1.66 (1.15- 2.40) 0.95 (0.72- 1.25) 0.77 (0.59- 1.00) 0.94 (0.70- 1.27)

2nd quartile 0.91 (0.72- 1.16) 1.16 (0.93- 1.44) 0.86 (0.67- 1.10) 1.18 (0.93- 1.50) 1.28 (0.93- 1.78) 1.26 (0.94- 1.69) 0.88 (0.67- 1.15) 0.91 (0.71- 1.16) 0.99 (0.78- 1.26)

1 day lag

4th quartile 1.08 (0.83- 1.41) 0.99 (0.78- 1.25) 1.02 (0.79- 1.32) 1.00 (0.79- 1.26) 0.86 (0.58- 1.28) 0.93 (0.64- 1.34) 0.88 (0.65- 1.19) 0.86 (0.67- 1.11) 0.80 (0.56- 1.16)

3rd quartile 1.06 (0.82- 1.37) 1.00 (0.80- 1.25) 1.01 (0.78- 1.29) 0.84 (0.66- 1.05) 0.74 (0.51- 1.06) 1.08 (0.81- 1.43) 0.97 (0.73- 1.27) 0.79 (0.61- 1.02) 0.73 (0.54- 0.99)

2nd quartile 1.27 (1.01- 1.61) 1.17 (0.95- 1.44) 1.23 (0.97- 1.55) 0.89 (0.71- 1.12) 0.81 (0.59- 1.11) 1.10 (0.84- 1.45) 1.00 (0.76- 1.31) 0.98 (0.77- 1.25) 0.99 (0.78- 1.25)

2-day-lag average

4th quartile 0.96 (0.74- 1.25) 0.90 (0.71- 1.15) 1.04 (0.81- 1.34) 0.98 (0.77- 1.26) 0.87 (0.58- 1.30) 0.96 (0.71- 1.31) 0.94 (0.71- 1.25) 0.88 (0.70- 1.12) 0.91 (0.64- 1.29)

3rd quartile 1.11 (0.87- 1.41) 0.99 (0.79- 1.23) 0.94 (0.73- 1.21) 1.01 (0.80- 1.27) 0.78 (0.55- 1.10) 1.09 (0.83- 1.44) 0.90 (0.69- 1.17) 0.79 (0.63- 1.00) 0.71 (0.52- 0.95)

2nd quartile 1.01 (0.80- 1.27) 0.98 (0.79- 1.22) 1.06 (0.84- 1.35) 0.89 (0.70- 1.12) 0.78 (0.57- 1.06) 0.90 (0.68- 1.20) 0.87 (0.68- 1.12) 0.77 (0.62- 0.97) 0.89 (0.72- 1.11)

3-day-lag average

4th quartile 0.97 (0.75- 1.25) 0.94 (0.73- 1.22) 1.08 (0.83- 1.40) 1.08 (0.85- 1.39) 1.01 (0.64- 1.59) 1.10 (0.83- 1.44) 0.91 (0.68- 1.21) 0.90 (0.70- 1.15) 0.89 (0.61- 1.30)

3rd quartile 1.15 (0.90- 1.45) 0.96 (0.77- 1.20) 1.05 (0.81- 1.36) 1.13 (0.89- 1.42) 0.92 (0.62- 1.34) 0.90 (0.68- 1.20) 0.99 (0.76- 1.30) 0.87 (0.69- 1.09) 0.81 (0.59- 1.10)

2nd quartile 1.03 (0.82- 1.29) 0.89 (0.71- 1.11) 0.89 (0.70- 1.15) 0.94 (0.75- 1.20) 0.98 (0.71- 1.34) 0.82 (0.61- 1.09) 0.92 (0.71- 1.18) 0.80 (0.64- 0.99) 0.89 (0.72- 1.11)

4-day-lag average

4th quartile 0.99 (0.76- 1.27) 1.00 (0.77- 1.29) 1.14 (0.87- 1.49) 1.07 (0.83- 1.38) 1.17 (0.73- 1.87) 0.91 (0.69- 1.20) 0.95 (0.71- 1.27) 0.93 (0.72- 1.20) 1.00 (0.68- 1.47)

3rd quartile 1.00 (0.79- 1.28) 0.93 (0.74- 1.17) 1.05 (0.80- 1.37) 0.98 (0.78- 1.25) 1.26 (0.86- 1.85) 0.83 (0.62- 1.11) 0.92 (0.70- 1.23) 0.89 (0.71- 1.13) 0.81 (0.59- 1.12)

2nd quartile 1.01 (0.80- 1.28) 1.04 (0.84- 1.29) 1.12 (0.88- 1.43) 0.99 (0.79- 1.25) 0.92 (0.66- 1.29) 0.86 (0.65- 1.14) 1.07 (0.84- 1.37) 0.83 (0.66- 1.03) 0.93 (0.74- 1.16)

10 km buffer

Current day

4th quartile 0.99 (0.88- 1.11) 1.13 (1.02- 1.25) 1.00 (0.90- 1.12) 1.12 (1.01- 1.24) 1.00 (0.84- 1.19) 1.16 (0.97- 1.40) 1.03 (0.90- 1.18) 1.06 (0.95- 1.19) 0.94 (0.80- 1.12)

3rd quartile 1.03 (0.92- 1.15) 1.03 (0.93- 1.13) 1.00 (0.90- 1.11) 1.07 (0.97- 1.19) 0.98 (0.84- 1.14) 1.20 (1.03- 1.40) 1.04 (0.92- 1.18) 0.99 (0.88- 1.11) 0.92 (0.79- 1.07)

2nd quartile 0.95 (0.85- 1.05) 1.06 (0.96- 1.16) 0.97 (0.87- 1.07) 1.10 (0.99- 1.22) 1.07 (0.94- 1.23) 1.15 (1.01- 1.29) 1.02 (0.90- 1.15) 1.11 (1.00- 1.24) 0.95 (0.83- 1.09)

1 day lag

4th quartile 0.95 (0.84- 1.06) 1.04 (0.94- 1.15) 1.00 (0.90- 1.12) 1.04 (0.93- 1.15) 1.04 (0.87- 1.24) 1.00 (0.86- 1.17) 0.99 (0.86- 1.13) 0.97 (0.87- 1.09) 0.95 (0.80- 1.12)

3rd quartile 0.96 (0.86- 1.08) 1.04 (0.94- 1.14) 0.99 (0.89- 1.10) 0.97 (0.87- 1.07) 1.14 (0.98- 1.33) 0.96 (0.85- 1.09) 0.99 (0.88- 1.12) 0.94 (0.83- 1.05) 0.99 (0.86- 1.15)

2nd quartile 0.98 (0.89- 1.09) 1.06 (0.97- 1.17) 1.02 (0.92- 1.13) 1.03 (0.93- 1.14) 1.05 (0.91- 1.21) 1.01 (0.89- 1.14) 1.03 (0.91- 1.16) 1.03 (0.92- 1.14) 0.97 (0.85- 1.11)

2-day-lag average

4th quartile 0.90 (0.80- 1.01) 0.96 (0.87- 1.07) 1.02 (0.91- 1.13) 1.01 (0.90- 1.12) 0.96 (0.80- 1.14) 0.92 (0.80- 1.05) 0.97 (0.85- 1.09) 0.94 (0.84- 1.05) 1.06 (0.90- 1.24)

3rd quartile 0.95 (0.85- 1.05) 1.03 (0.94- 1.14) 0.97 (0.87- 1.09) 1.01 (0.92- 1.12) 1.07 (0.92- 1.25) 1.02 (0.90- 1.16) 0.95 (0.84- 1.06) 0.89 (0.81- 0.99) 1.08 (0.94- 1.25)

2nd quartile 0.99 (0.90- 1.10) 1.05 (0.96- 1.16) 1.03 (0.93- 1.14) 1.00 (0.91- 1.11) 1.04 (0.90- 1.19) 1.04 (0.92- 1.18) 0.96 (0.86- 1.07) 0.95 (0.86- 1.05) 0.99 (0.87- 1.11)

3-day-lag average

4th quartile 0.95 (0.85- 1.06) 0.97 (0.86- 1.09) 1.04 (0.92- 1.16) 1.02 (0.91- 1.14) 0.93 (0.76- 1.13) 1.04 (0.92- 1.18) 0.99 (0.87- 1.12) 0.99 (0.89- 1.10) 0.99 (0.84- 1.18)

3rd quartile 0.99 (0.89- 1.10) 0.99 (0.90- 1.09) 1.00 (0.89- 1.11) 1.02 (0.92- 1.13) 1.01 (0.85- 1.19) 1.07 (0.94- 1.21) 0.96 (0.85- 1.08) 0.91 (0.82- 1.01) 1.00 (0.86- 1.16)

2nd quartile 1.01 (0.92- 1.11) 0.97 (0.89- 1.07) 0.95 (0.85- 1.05) 0.97 (0.87- 1.07) 1.06 (0.92- 1.21) 1.02 (0.90- 1.15) 0.95 (0.85- 1.06) 0.94 (0.86- 1.04) 0.96 (0.85- 1.08)

4-day-lag average

4th quartile 0.94 (0.84- 1.05) 0.93 (0.83- 1.05) 1.04 (0.93- 1.17) 1.05 (0.94- 1.17) 0.98 (0.80- 1.21) 1.06 (0.94- 1.20) 0.96 (0.85- 1.09) 1.01 (0.90- 1.13) 1.08 (0.91- 1.28)

3rd quartile 0.98 (0.89- 1.09) 0.97 (0.87- 1.07) 0.99 (0.89- 1.11) 1.04 (0.93- 1.15) 1.12 (0.95- 1.32) 1.02 (0.90- 1.15) 0.85 (0.75- 0.97) 0.95 (0.85- 1.05) 1.01 (0.87- 1.17)

2nd quartile 1.00 (0.91- 1.11) 0.99 (0.90- 1.08) 1.02 (0.92- 1.13) 1.08 (0.97- 1.19) 1.01 (0.88- 1.17) 0.99 (0.87- 1.11) 0.98 (0.88- 1.09) 0.94 (0.86- 1.04) 0.97 (0.86- 1.11)

Benzene

(95%CI)
Exposures

PM2.5 CO NO2 SO2 O3# O3 (Windsor) Formaldehyde MEK

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI) (95%CI)

 

1
1
0
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Table S3- 7. Multiple pollutant models - Associations between exposures to criteria air 

pollutants and ED visits for injury. 

Otherwise as Table 3-6. 

RR RR RR RR RR

4 km buffer

Current day

4th quartile 1.53 (1.10- 2.14) 0.92 (0.66- 1.29) - - - - - - - - -

3rd quartile 1.26 (0.94- 1.69) 0.98 (0.73- 1.30) - - - - - - - - -

2nd quartile 1.16 (0.90- 1.49) 0.79 (0.61- 1.04) - - - - - - - - -

1 day lag

4th quartile 0.99 (0.71- 1.39) 1.02 (0.72- 1.44) - - - - - - - - -

3rd quartile 0.97 (0.72- 1.29) 0.98 (0.73- 1.31) - - - - - - - - -

2nd quartile 1.10 (0.87- 1.40) 1.19 (0.93- 1.53) - - - - - - - - -

2-day-lag average

4th quartile 0.88 (0.63- 1.22) 1.07 (0.78- 1.47) - - - - - - - - -

3rd quartile 0.97 (0.74- 1.27) 0.95 (0.72- 1.27) - - - - - - - - -

2nd quartile 1.02 (0.80- 1.29) 1.07 (0.83- 1.38) - - - - - - - - -

3-day-lag average

4th quartile 0.83 (0.59- 1.17) 1.13 (0.82- 1.56) - - - - - - - - -

3rd quartile 0.94 (0.72- 1.23) 1.11 (0.83- 1.48) - - - - - - - - -

2nd quartile 0.86 (0.67- 1.10) 0.92 (0.70- 1.19) - - - - - - - - -

4-day-lag average

4th quartile 0.91 (0.64- 1.28) 1.16 (0.84- 1.59) - - - - - - - - -

3rd quartile 0.92 (0.70- 1.21) 1.04 (0.79- 1.39) - - - - - - - - -

2nd quartile 0.99 (0.78- 1.26) 1.11 (0.87- 1.43) - - - - - - - - -

10 km buffer

Current day

4th quartile 1.23 (1.04- 1.46) 0.88 (0.71- 1.08) 1.06 (0.90- 1.25) 1.08 (0.86- 1.35) 0.96 (0.79- 1.17)

3rd quartile 1.08 (0.93- 1.25) 0.87 (0.74- 1.02) 1.06 (0.92- 1.22) 1.17 (0.96- 1.42) 1.07 (0.91- 1.26)

2nd quartile 1.11 (0.98- 1.26) 0.91 (0.80- 1.04) 1.04 (0.91- 1.19) 1.13 (0.96- 1.32) 0.94 (0.82- 1.08)

1 day lag

4th quartile 1.16 (0.98- 1.39) 0.88 (0.71- 1.09) 1.08 (0.92- 1.27) 0.91 (0.72- 1.14) 0.95 (0.78- 1.16)

3rd quartile 1.13 (0.97- 1.31) 0.91 (0.77- 1.07) 0.99 (0.86- 1.14) 0.94 (0.78- 1.14) 0.97 (0.82- 1.14)

2nd quartile 1.13 (0.99- 1.28) 0.93 (0.82- 1.07) 1.01 (0.88- 1.16) 0.88 (0.76- 1.03) 0.97 (0.85- 1.11)

2-day-lag average

4th quartile 0.87 (0.74- 1.03) 1.12 (0.94- 1.33) 1.06 (0.89- 1.26) 1.15 (0.89- 1.49) 0.84 (0.70- 1.00)

3rd quartile 0.99 (0.86- 1.13) 0.98 (0.85- 1.13) 1.05 (0.91- 1.21) 1.05 (0.84- 1.31) 0.90 (0.78- 1.04)

2nd quartile 1.00 (0.88- 1.13) 1.04 (0.92- 1.18) 1.04 (0.91- 1.18) 0.96 (0.81- 1.13) 0.94 (0.82- 1.07)

3-day-lag average

4th quartile 0.91 (0.77- 1.08) 1.07 (0.90- 1.28) 1.02 (0.87- 1.19) 0.98 (0.75- 1.28) 0.92 (0.78- 1.10)

3rd quartile 0.92 (0.81- 1.06) 1.01 (0.87- 1.18) 1.04 (0.90- 1.20) 0.96 (0.76- 1.20) 0.97 (0.83- 1.13)

2nd quartile 0.93 (0.82- 1.05) 0.95 (0.84- 1.08) 0.98 (0.87- 1.11) 0.91 (0.77- 1.08) 1.04 (0.92- 1.17)

4-day-lag average

4th quartile 0.84 (0.71- 0.99) 1.09 (0.90- 1.33) 1.00 (0.85- 1.18) 1.32 (0.98- 1.78) 0.98 (0.82- 1.17)

3rd quartile 0.86 (0.76- 0.99) 1.01 (0.87- 1.18) 1.03 (0.89- 1.19) 1.21 (0.94- 1.56) 1.01 (0.87- 1.18)

2nd quartile 0.95 (0.84- 1.07) 1.02 (0.90- 1.15) 1.05 (0.93- 1.19) 1.08 (0.88- 1.32) 1.00 (0.87- 1.14)

O3 (Windsor) PM2.5

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI)
Exposures

CO NO2 SO2
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Table S3- 8. Single source models using single imputation data - Associations between 

exposures to pollutants identified as 5 source classes and ED visits for respiratory 

problems using imputed data. 

Otherwise as Table 3-3. 

RR RR RR RR RR

4 km buffer

Current day

4th quartile 0.94 (0.75- 1.19) 0.83 (0.60- 1.14) 1.26 (0.95- 1.67) 1.08 (0.85- 1.37) 0.95 (0.75- 1.21)

3rd quartile 1.01 (0.81- 1.25) 0.85 (0.68- 1.07) 1.39 (1.08- 1.80) 1.02 (0.81- 1.27) 0.93 (0.73- 1.18)

2nd quartile 1.00 (0.81- 1.24) 0.98 (0.81- 1.19) 1.06 (0.81- 1.38) 1.01 (0.82- 1.23) 0.90 (0.74- 1.11)

1 day lag

4th quartile 0.80 (0.63- 1.00) 1.40 (1.02- 1.91) 1.02 (0.78- 1.33) 1.14 (0.90- 1.45) 0.73 (0.57- 0.94)

3rd quartile 0.95 (0.76- 1.18) 1.18 (0.94- 1.49) 0.97 (0.76- 1.25) 1.28 (1.03- 1.59) 0.81 (0.64- 1.03)

2nd quartile 0.99 (0.80- 1.22) 1.21 (1.00- 1.47) 1.04 (0.82- 1.34) 1.00 (0.81- 1.23) 0.90 (0.74- 1.10)

2-day-lag average

4th quartile 0.76 (0.60- 0.97) 1.39 (0.99- 1.95) 0.96 (0.71- 1.30) 1.25 (0.98- 1.61) 0.93 (0.69- 1.24)

3rd quartile 0.99 (0.80- 1.22) 1.21 (0.93- 1.58) 1.01 (0.77- 1.32) 1.30 (1.04- 1.63) 0.72 (0.56- 0.93)

2nd quartile 0.93 (0.75- 1.15) 1.19 (0.98- 1.44) 0.98 (0.77- 1.27) 1.04 (0.85- 1.28) 0.90 (0.75- 1.10)

3-day-lag average

4th quartile 0.82 (0.64- 1.05) 1.86 (1.28- 2.70) 0.88 (0.63- 1.23) 1.26 (0.97- 1.64) 0.78 (0.57- 1.07)

3rd quartile 1.00 (0.80- 1.24) 1.43 (1.08- 1.90) 0.79 (0.59- 1.06) 1.32 (1.04- 1.67) 0.77 (0.60- 1.01)

2nd quartile 1.15 (0.93- 1.41) 1.10 (0.91- 1.34) 0.91 (0.71- 1.18) 1.03 (0.84- 1.28) 0.82 (0.67- 1.02)

4-day-lag average

4th quartile 0.92 (0.71- 1.18) 2.11 (1.39- 3.19) 0.88 (0.59- 1.30) 1.28 (0.98- 1.68) 1.11 (0.79- 1.56)

3rd quartile 1.04 (0.83- 1.31) 1.26 (0.92- 1.73) 0.78 (0.55- 1.09) 1.38 (1.07- 1.77) 0.79 (0.60- 1.04)

2nd quartile 1.23 (1.01- 1.51) 1.24 (1.01- 1.52) 0.76 (0.58- 0.98) 1.14 (0.92- 1.42) 0.91 (0.73- 1.12)

10 km buffer

Current day

4th quartile 1.05 (0.96- 1.16) 0.94 (0.82- 1.07) 1.04 (0.93- 1.17) 1.05 (0.95- 1.17) 0.95 (0.86- 1.06)

3rd quartile 1.04 (0.95- 1.15) 0.93 (0.84- 1.03) 1.07 (0.96- 1.20) 1.10 (1.00- 1.21) 0.93 (0.84- 1.03)

2nd quartile 1.00 (0.91- 1.10) 0.99 (0.92- 1.08) 0.98 (0.88- 1.10) 1.06 (0.97- 1.15) 0.98 (0.90- 1.07)

1 day lag

4th quartile 1.04 (0.94- 1.14) 1.15 (1.01- 1.32) 0.96 (0.86- 1.08) 0.98 (0.89- 1.09) 0.99 (0.89- 1.09)

3rd quartile 1.03 (0.94- 1.14) 1.04 (0.95- 1.15) 0.97 (0.87- 1.08) 1.10 (1.01- 1.21) 0.96 (0.87- 1.07)

2nd quartile 1.03 (0.94- 1.12) 1.06 (0.98- 1.15) 1.00 (0.90- 1.11) 0.98 (0.90- 1.06) 0.98 (0.90- 1.07)

2-day-lag average

4th quartile 1.07 (0.97- 1.19) 1.17 (1.02- 1.35) 0.97 (0.85- 1.10) 1.00 (0.89- 1.11) 0.91 (0.80- 1.03)

3rd quartile 1.07 (0.98- 1.17) 1.02 (0.91- 1.14) 0.96 (0.85- 1.08) 1.06 (0.96- 1.16) 1.00 (0.90- 1.11)

2nd quartile 1.03 (0.94- 1.13) 1.06 (0.98- 1.15) 1.03 (0.92- 1.14) 0.97 (0.89- 1.06) 0.98 (0.90- 1.07)

3-day-lag average

4th quartile 1.06 (0.96- 1.18) 1.21 (1.04- 1.42) 0.94 (0.81- 1.09) 1.02 (0.91- 1.14) 0.80 (0.70- 0.92)

3rd quartile 1.13 (1.03- 1.24) 1.11 (0.99- 1.26) 0.92 (0.81- 1.04) 1.09 (0.98- 1.20) 0.88 (0.78- 0.98)

2nd quartile 1.06 (0.97- 1.16) 1.03 (0.95- 1.12) 0.91 (0.81- 1.02) 1.05 (0.96- 1.14) 0.92 (0.84- 1.00)

4-day-lag average

4th quartile 1.15 (1.04- 1.28) 1.23 (1.03- 1.48) 1.00 (0.85- 1.19) 1.01 (0.90- 1.14) 0.86 (0.74- 1.00)

3rd quartile 1.12 (1.01- 1.23) 1.00 (0.87- 1.14) 0.96 (0.83- 1.11) 1.10 (0.99- 1.22) 0.85 (0.76- 0.95)

2nd quartile 1.16 (1.06- 1.27) 1.07 (0.98- 1.16) 0.92 (0.82- 1.03) 1.09 (0.99- 1.19) 0.89 (0.81- 0.97)

(95%CI) (95%CI)
Exposures

Petrochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent

(95%CI) (95%CI) (95%CI)
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Table S3- 9. Single source models - Associations between exposures to pollutants 

identified as 5 source classes and ED visits for respiratory problems (observed data) 

using negative binomial regression.   

Otherwise as Table 3-3. 

RR RR RR RR RR

4 km radius

Current day

4th quartile 0.85 (0.63- 1.15) 0.77 (0.52- 1.15) 1.17 (0.81- 1.70) 0.88 (0.66- 1.19) 1.12 (0.75- 1.69)

3rd quartile 0.85 (0.65- 1.11) 1.07 (0.80- 1.42) 1.21 (0.84- 1.75) 1.05 (0.81- 1.36) 1.07 (0.75- 1.52)

2nd quartile 1.01 (0.78- 1.30) 1.00 (0.78- 1.30) 1.26 (0.92- 1.72) 0.74 (0.57- 0.97) 1.11 (0.85- 1.43)

1 day lag

4th quartile 1.40 (1.06- 1.85) 1.18 (0.80- 1.73) 0.88 (0.61- 1.25) 1.09 (0.81- 1.45) 0.69 (0.46- 1.03)

3rd quartile 0.95 (0.74- 1.24) 1.34 (1.03- 1.75) 1.17 (0.83- 1.65) 1.08 (0.83- 1.41) 0.70 (0.50- 0.99)

2nd quartile 1.05 (0.82- 1.34) 0.92 (0.72- 1.18) 1.24 (0.92- 1.69) 0.89 (0.69- 1.15) 0.95 (0.74- 1.21)

2-day-lag average

4th quartile 1.39 (1.07- 1.81) 1.33 (0.94- 1.88) 0.76 (0.55- 1.06) 1.16 (0.90- 1.49) 0.91 (0.63- 1.33)

3rd quartile 1.19 (0.94- 1.50) 1.28 (0.99- 1.65) 0.89 (0.66- 1.22) 1.19 (0.94- 1.51) 0.75 (0.55- 1.03)

2nd quartile 1.02 (0.81- 1.28) 1.10 (0.88- 1.38) 0.81 (0.61- 1.06) 0.92 (0.73- 1.15) 0.93 (0.74- 1.17)

3-day-lag average

4th quartile 1.48 (1.14- 1.92) 1.43 (1.01- 2.02) 0.85 (0.59- 1.23) 1.28 (0.98- 1.66) 0.74 (0.50- 1.10)

3rd quartile 1.32 (1.03- 1.68) 1.42 (1.07- 1.87) 0.90 (0.64- 1.27) 1.44 (1.13- 1.84) 0.69 (0.50- 0.96)

2nd quartile 1.16 (0.92- 1.46) 1.36 (1.09- 1.70) 1.01 (0.77- 1.34) 1.11 (0.89- 1.39) 0.94 (0.75- 1.18)

4-day-lag average

4th quartile 1.33 (1.03- 1.72) 1.73 (1.17- 2.54) 0.73 (0.50- 1.08) 1.35 (1.04- 1.76) 0.83 (0.54- 1.26)

3rd quartile 1.09 (0.85- 1.39) 1.27 (0.96- 1.69) 0.90 (0.63- 1.28) 1.29 (0.99- 1.67) 0.75 (0.53- 1.05)

2nd quartile 1.14 (0.91- 1.43) 1.15 (0.92- 1.43) 0.95 (0.72- 1.26) 1.07 (0.85- 1.34) 0.82 (0.64- 1.05)

10 km radius

Current day

4th quartile 1.02 (0.89- 1.16) 1.03 (0.86- 1.23) 0.98 (0.83- 1.16) 1.02 (0.89- 1.17) 1.08 (0.90- 1.30)

3rd quartile 0.93 (0.82- 1.04) 1.13 (0.99- 1.28) 1.01 (0.86- 1.20) 1.16 (1.03- 1.31) 1.02 (0.87- 1.19)

2nd quartile 1.02 (0.91- 1.15) 1.04 (0.92- 1.17) 0.99 (0.86- 1.15) 1.00 (0.89- 1.13) 1.07 (0.96- 1.20)

1 day lag

4th quartile 1.19 (1.05- 1.34) 1.07 (0.91- 1.27) 1.00 (0.86- 1.18) 1.03 (0.90- 1.17) 0.99 (0.83- 1.18)

3rd quartile 1.06 (0.94- 1.18) 1.13 (1.00- 1.27) 1.03 (0.88- 1.20) 0.99 (0.88- 1.12) 0.94 (0.81- 1.09)

2nd quartile 1.13 (1.01- 1.26) 1.07 (0.96- 1.20) 1.05 (0.92- 1.21) 0.96 (0.85- 1.07) 1.03 (0.92- 1.14)

2-day-lag average

4th quartile 1.10 (0.98- 1.23) 1.12 (0.97- 1.30) 0.92 (0.79- 1.06) 1.00 (0.90- 1.12) 0.91 (0.77- 1.07)

3rd quartile 1.11 (1.01- 1.23) 1.08 (0.97- 1.22) 0.98 (0.86- 1.13) 1.06 (0.95- 1.18) 0.93 (0.82- 1.07)

2nd quartile 1.00 (0.91- 1.10) 1.08 (0.98- 1.19) 0.98 (0.87- 1.10) 0.97 (0.88- 1.07) 0.95 (0.86- 1.05)

3-day-lag average

4th quartile 1.08 (0.96- 1.21) 1.14 (0.98- 1.33) 1.04 (0.88- 1.22) 0.99 (0.88- 1.12) 0.84 (0.70- 1.00)

3rd quartile 1.12 (1.01- 1.25) 1.08 (0.96- 1.22) 1.05 (0.90- 1.22) 1.03 (0.92- 1.15) 0.86 (0.75- 1.00)

2nd quartile 1.06 (0.96- 1.18) 1.11 (1.01- 1.22) 1.00 (0.89- 1.14) 0.99 (0.90- 1.09) 0.95 (0.86- 1.05)

4-day-lag average

4th quartile 1.07 (0.96- 1.21) 1.18 (0.99- 1.39) 1.00 (0.84- 1.19) 1.03 (0.92- 1.16) 0.82 (0.68- 0.99)

3rd quartile 1.06 (0.95- 1.18) 1.04 (0.92- 1.17) 1.02 (0.87- 1.20) 1.02 (0.91- 1.14) 0.81 (0.70- 0.94)

2nd quartile 1.01 (0.91- 1.11) 1.09 (0.99- 1.20) 1.03 (0.91- 1.17) 1.04 (0.94- 1.15) 0.88 (0.79- 0.98)

Exposures
Photochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI)
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Table S3- 10. Single source models - Associations between exposures to pollutants 

identified as 5 source classes and ED visits for asthma (observed data) among children 

living within 10 km radius using negative binomial regression. 

Otherwise as Table 3-3. 

RR RR RR RR RR

Current day

4th quartile 1.09 (0.87- 1.36) 0.89 (0.67- 1.19) 1.31 (0.99- 1.74) 0.92 (0.75- 1.14) 0.98 (0.72- 1.34)

3rd quartile 1.06 (0.87- 1.29) 0.98 (0.79- 1.22) 1.15 (0.88- 1.51) 0.78 (0.63- 0.96) 1.12 (0.86- 1.46)

2nd quartile 0.93 (0.76- 1.14) 1.02 (0.83- 1.24) 1.19 (0.95- 1.49) 0.97 (0.80- 1.17) 1.06 (0.87- 1.29)

1 day lag

4th quartile 1.15 (0.91- 1.45) 0.98 (0.74- 1.31) 1.00 (0.75- 1.34) 1.13 (0.90- 1.41) 0.99 (0.72- 1.36)

3rd quartile 1.12 (0.90- 1.38) 1.12 (0.89- 1.40) 0.94 (0.72- 1.23) 0.98 (0.78- 1.23) 1.01 (0.77- 1.34)

2nd quartile 1.12 (0.91- 1.39) 1.26 (1.01- 1.56) 1.07 (0.86- 1.35) 1.28 (1.04- 1.57) 1.00 (0.80- 1.24)

2-day-lag average

4th quartile 0.84 (0.68- 1.05) 0.90 (0.70- 1.17) 1.01 (0.77- 1.32) 1.11 (0.91- 1.36) 0.97 (0.72- 1.32)

3rd quartile 0.95 (0.78- 1.16) 0.93 (0.75- 1.16) 1.03 (0.81- 1.32) 1.04 (0.85- 1.27) 0.87 (0.67- 1.12)

2nd quartile 0.85 (0.70- 1.03) 0.95 (0.79- 1.15) 0.98 (0.80- 1.20) 1.16 (0.97- 1.40) 0.92 (0.74- 1.12)

3-day-lag average

4th quartile 0.84 (0.68- 1.05) 0.81 (0.62- 1.05) 1.16 (0.87- 1.55) 0.94 (0.76- 1.15) 1.01 (0.74- 1.39)

3rd quartile 1.06 (0.86- 1.29) 0.89 (0.71- 1.12) 1.02 (0.78- 1.32) 0.96 (0.78- 1.17) 0.99 (0.76- 1.29)

2nd quartile 0.96 (0.79- 1.17) 0.92 (0.76- 1.12) 1.11 (0.90- 1.36) 1.02 (0.85- 1.22) 0.87 (0.70- 1.07)

4-day-lag average

4th quartile 0.82 (0.66- 1.02) 0.76 (0.58- 1.01) 1.32 (0.96- 1.80) 0.82 (0.67- 1.01) 1.00 (0.72- 1.39)

3rd quartile 0.97 (0.79- 1.18) 0.84 (0.67- 1.05) 1.17 (0.90- 1.54) 0.95 (0.78- 1.17) 1.00 (0.76- 1.32)

2nd quartile 0.87 (0.72- 1.05) 0.85 (0.70- 1.03) 1.24 (1.01- 1.53) 0.87 (0.72- 1.04) 0.91 (0.73- 1.13)

Exposures
Photochemical Fuel Combustion Combined industrial Gasoline exhaust Industrial solvent

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI)
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Chapter 4  

Reproducibility and Imputation of Air Toxics Data 

 

4.1 Abstract 

Ambient air quality datasets include missing data, values below method detection 

limits and outliers, and the precision and accuracy of the measurements themselves are 

often unknown.  At the same time, many analyses require continuous data sequences and 

assume that measurements are error-free.  While a variety of data imputation and 

cleaning techniques are available, the evaluation of such techniques remains limited.  

This study evaluates the performance of these techniques for ambient air toxics 

measurements, a particularly challenging application, and includes the analysis of intra- 

and inter-laboratory precision.   

The analysis uses an unusually complete data set, consisting of daily 

measurements of over 70 species carbonyls and volatile organic compounds (VOCs) 

collected over a one year period in Dearborn, Michigan, including 122 pairs of replicates.  

Analysis was restricted to compounds found above detection limits in ≥20% of the 

samples.  Outliers were detected using the Gumbell extreme value distribution.  Error 

models for inter- and intra-laboratory reproducibility were derived from replicate 

samples.  Imputation variables were selected using a generalized additive model, and the 

performance of two techniques, multiple imputation and optimal linear estimation, was 

evaluated for three missingness patterns (random, random block and row-wise).   

Many species were rarely detected or had very poor reproducibility.  Error models 

developed for seven carbonyls showed median intra- and inter-laboratory errors of 22% 

and 25%, respectively.  Better reproducibility was seen for the 16 VOCs meeting 

detection and reproducibility criteria.  Imputation performance depended on the 

compound and missingness pattern.  Data missing at random could be adequately
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imputed but imputations for row-wise deletions (measurements for all compounds were 

missing on the same day), the most common type of missingness pattern encountered, 

were not informative.  The analysis shows that air toxics data require significant efforts to 

identify and mitigate errors, outliers and missing observations, and that these quality 

assurance steps are essential and should be performed prior to using these data in 

receptor, exposure, health and other applications.   

4.2 Introduction 

Most air quality data have been collected for regulatory purposes, such as 

determining compliance with ambient air quality standards.  The use of the same data for 

other purposes, including epidemiological studies, while convenient and inexpensive, can 

place different and often more stringent demands on data quality and completeness since 

most statistical methods assume that observations are error-free and complete, i.e., data 

sets are fully populated.  Data quality is an important and often unappreciated issue, 

especially for toxic air pollutants where measurement uncertainties can be large.  In 

general, monitoring methods for toxics have been only partially automated, samples must 

be transported from the monitoring site to the laboratory for analysis, and analyses tend 

to be complex and intensive.  These steps increase the likelihood of errors from a variety 

of sources, e.g., sample contamination.  Further, logistical and cost issues generally 

prohibit air toxics sampling programs from incorporating many duplicate measurements 

and other analyses that are necessary to quantify accuracy and precision.   

Missing air quality data, another common problem, results from both random and 

planned events.  Random events include power and equipment failures, lost samples or 

logs, other quality assurance problems, measurement and calibration errors, and faults in 

data acquisition
1
.  Planned events include quality assurance checks (instrument flow, zero 

and span checks) and calibrations that require that the monitoring instruments be taken 

off-line.  In some cases, pollutants are monitored intermittently, i.e., particulate matter 

measurements often are collected only every third or sixth day, while ozone may be 

measured only during the summer “ozone” season.  Evaluations of the several approaches 

that have been used to address problems of missing data have been very limited.  
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Problems of both missingness and quality assurance must be addressed to obtain 

complete and reliable datasets. 

This chapter evaluates the performance of two imputation methods, optimal linear 

estimation and multiple imputation, for handling missing air quality data.  Performance is 

tested using an unusually complete urban air toxics dataset containing ambient 

measurements of volatile organic compounds (VOCs) and carbonyl species.  As 

described below, the imputation of toxics data is particularly challenging, but at the same 

time highly relevant for epidemiology, source apportionment, risk assessment and other 

applications that use ambient air quality data.  We also demonstrate several quality 

assurance (QA) filters and reproducibility/uncertainty models that may be generalizable 

to other measurements.  

4.3 Background 

4.3.1 Quality assurance issues 

Several problems are frequently encountered in ambient air quality datasets, 

which are grouped together here as QA issues.  These issues tend to be especially 

important for urban air toxics (UATs), more so than for conventional air pollutants for 

several reasons.  First, toxic measurements of trace metals, VOCs, carbonyls, semi-

volatiles and other pollutants may reflect low concentrations that fall below method 

detection limits (MDLs).  For some species, concentrations may rarely, if ever, exceed 

MDLs.  Such ‘sparse’ data patterns can occur because a specific toxic pollutant simply 

may not be present, or because the MDL is too high to allow frequent detection.  This 

situation rarely occurs for conventional pollutants, both because these pollutants are 

ubiquitous due to emissions from numerous sources, and because monitoring instruments 

have been highly refined and are very sensitive.   

Second, high concentration values may be encountered on occasion, even for 

rarely detected pollutants.  These detections (or “hits”) may be real and significant, or 

they may be false positives due to contamination, chemical reactions forming artifacts on 

the sampling adsorbent, interferences, chromatographic shifts, laboratory errors, or some 

other reason.  Without duplicate samples or additional information, it is difficult or 
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impossible to determine whether a rarely detected compound is a true detection and thus 

meaningful.  High values can be characterized as statistical outliers, e.g., using the 

Gumbell extreme value distribution originally developed for hydrologic systems
2-4

 and 

applied to air quality data,
5,6

 and which we later demonstrate in this paper.  However, the 

designation of a measurement as a statistical outlier does not indicate whether or not the 

concentration was actually experienced.    

Third, it is difficult to characterize the measurement precision and accuracy for 

commonly-detected toxic pollutants, and exceedingly difficult for rarely detected 

pollutants.  Compared to conventional (so-called criteria) pollutants where relative 

precisions and accuracies are well-characterized and in the 10% range (or lower), the few 

available estimates suggest much greater variability
7
.  In the (unusually complete) 

Dearborn study described later, for example, duplicate samples were available on 120 

days, and a compound detected on say 5% of days would be expected to have only ~6 

duplicate pairs available, too small a sample to construct meaningful statistics.  Due to 

the lack of reference methods and standards, co-located replicate samples and intra- and 

inter-laboratory comparisons are used to indicate agreement, but in practice such 

exercises are infrequent and are limited to largely analytical uncertainties, and thus would 

not necessarily indicate contamination or improper sampling techniques.   

4.3.2 Data imputation methods  

Missing data have been characterized into three general patterns:  missing 

completely at random (MCAR); missing at random (MAR); and not missing at random 

(NMAR)
8
.  For MCAR, the missing data mechanism is independent from the values of 

any variables, whether missing or observed.
1
  On the other hand, MAR means the 

missing data mechanism is independent with reference to the values of the missing 

components of the data but may be depend on the values of the observed components.
1
  

Like most other data sets, missing air quality data can be expected to be neither MCAR 

nor MNAR, but a mixture of these patterns
1,9

. 

The most common approaches to deal with missing data are deletion and 

imputation methods.  The former includes case deletion, pair-wise deletion and list-wise 

deletion, all standard methods in statistical packages such as SAS
10

.  Imputation methods 
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include single imputation (SI) techniques, which replace each missing one with a single 

value, and multiple imputation (MI) techniques, which impute multiple plausible values.  

The most common SI method is ad hoc replacement with a specific value, which is most 

frequently seen when measurements below the MDL that are replaced with one-half of 

the MDL.  MI has been shown to yield valid statistical inferences without the 

disadvantages of SI techniques, namely, the inability to account for uncertainties attached 

to the missing values
8,11

.  In MI, each missing value is replaced with a vector of m≥2 

values resulting in m datasets, each of which is analyzed separately using standard 

complete-data software to yield “complete-data” statistics
12

.  The multiple analyses are 

then combined yielding composite statistics.  

The following summarizes two SI and MI methods that are later evaluated (in the 

Results section).  First, as presented by Batterman
13

, optimal linear estimation (OLE) is a 

SI method based on a Bayesian framework in which observations Zt are assumed to 

contain error Vt: 

Zt = Xt + Vt         (1) 

where Xt = true pollutant level.  Error covariance matrix Rt is: 

Rt = E[Vt Vt’]         (2) 

Errors Vt and covariance Rt must be assumed or estimated.  For example, errors might be 

determined empirically using replicate samples.  Alternately, Batterman (1992) estimated 

the total error by propagating component errors, and estimated a relative error of 30% for 

24-hr measurements of fine and coarse fraction particulate matter (PM2.5, PM2.5-10) and 

hourly measurements of O3
13

.  Assuming unbiased (E[Vt]=0) and uncorrelated errors 

(E[Xt Vt’]=0), the best linear, unbiased and minimum variance estimate X̂ of the missing 

observations is: 

)()( t
1

tt

^

MZRPPMX −++=
−

      (3) 

where M = mean vector and P = covariance matrix, both estimated from available data, 

and T = number of observations used to estimate M and P: 

 ∑−
=

t t
1T XM         (4) 
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1 MXMXP −−= ∑−       (5) 

Unlike most SI methods, the OLE approach estimates the uncertainty of imputed values.  

However, the use of imputed datasets derived from OLE, as well as any other SI method, 

will lead to standard errors that are systematically underestimated, biasing statistical 

inference tests and giving erroneously small p-values and confidence intervals
8
. 

The MI procedure, also derived from a Bayesian perspective, uses m independent 

random draws from the posterior predictive distribution
14

.  The theory behind MI is 

detailed elsewhere (Rubin 1987, 1996)
11,12

.  In brief, for a dataset Y = (Yobs, Ymis), where 

Yobs = observed values and Ymis = missing values, the basic result is: 

misobsmismisobsestobsest )d)P(,P()P( YYYYYYYY ∫=     (6) 

where P(Yest|Yobs) = complete data posterior distribution of Yest, the estimate of the 

missing data conditioned on the observed data; and P(Ymis|Yobs) = predicted posterior 

distribution of the missing data, also conditioned on the observed data.  The final estimate 

is the average of repeated complete-data posterior means of Yest: 

]),E[E()E( obsmisobsestobsest YYYYYY =       (7) 

and the final variance of Yest, V(Yest|Yobs), is: 

]),(E[V]),(V[E)(V obsmisobsestobsmisobsestobsest YYYYYYYYYY +=   (8) 

which represents the sum of the average of repeated complete-data variances of Yest and 

the variance of repeated complete-data posterior means.  Five imputations provide an 

efficiency of ~94% for MI estimation when up to 30% of the data is missing
15

.  The 

essential features of MI inferences are that predicted distribution of missing values are 

conditioned on observed values, and that multiple imputations reflect both within- and 

between-imputation variances
8
.  Hopke et al. (2001) suggests that MI in air quality 

applications may be beneficial since imperfect imputation models make mistakes for only 

a fraction of missing information, whereas the complete-dataset is being relied upon for 

the final inference, and since imperfect models yield large within- and between-

imputation variability and consequently will lead to conservative inferences
16

. 



 128 

4.4 Experimental 

4.4.1 Data acquisition 

Toxics data were obtained from the Michigan Department of Environmental 

Quality (MDEQ) and included daily measurements for the period 4/19/2001 to 4/18/2002 

collected at a permanent monitoring site in Dearborn, Michigan.  Samples were shipped 

to and analyzed by laboratories at the Eastern Research Group (ERG, Research Triangle 

Park, NC) and the MDEQ (Lansing, MI).  VOCs were collected in canisters and analyzed 

by GC-MS following the TO-15 method.  The ERG and MDEQ laboratories reported 59 

and 53 VOC species, respectively.  Carbonyls were collected on DNPH cartridges and 

analyzed by HPLC following the TO-11A method, with the ERG and MDEQ laboratories 

reporting 12 and 13 species, respectively.  (Tables S4-1 and S4-2 show the VOC and 

carbonyl species analyzed by each of the laboratories.)  

Reproducibility determinations, intra-laboratory and inter-laboratory comparisons 

were derived from duplicate sample pairs collected on 122 days (every third day).  To 

determine intra-laboratory reproducibility, both duplicates were sent to ERG on 40 days 

and to MDEQ on 41 days.  To determine inter-laboratory reproducibility, duplicates were 

sent to both ERG and MDEQ on 41 days.  There were 282 and 41 days when a single 

sample was analyzed by ERG and MDEQ, respectively, and the total possible number of 

days that ERG and MDEQ analyzed samples were 302 and 83 days, respectively.  VOC 

and carbonyl sampling followed the same schedule. 

For imputation purposes, daily or hourly measurements of conventional pollutants 

were obtained from four nearby (within 20 km) MDEQ sites:  Dearborn (daily PM10), 

Allen Park (CO and PM2.5), East Seven Mile (NO2 and SO2), and Linwood (CO, NO2, 

PM2.5 and SO2).  In Michigan, O3 is monitored for only 6 months of the year (April to 

September); therefore, O3 was not considered for this study.  Daily (24-hr) values were 

computed from hourly data if ≥75% of hourly data (≥18 hr) were available and 

considered valid.  These pollutants are collected using federal reference methods.  

Hourly and daily meteorological data, obtained from the MDEQ and the National 

Oceanic and Atmospheric Administration (NOAA), included temperature, dew point, 
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minimum and maximum relative humidity, precipitation, wind speed, wind direction, 

barometric pressure and mixing height.  Except for wind direction, daily values were 

computed from hourly data, again if ≥75% of hourly data were considered valid.  For 

wind direction, eight new variables were defined as the number of hours the wind was in 

each of eight 45
o
 sectors.  These variables were also used for imputation purposes. 

4.4.2 Data filters 

Several filters were used to select pollutant variables for analysis and provide QA 

checks.  First, to include a toxic pollutant in the analysis, ≥20% of the observations were 

required to exceed the MDL.  This detection frequency is conservative with respect to 

other studies, i.e., Xie et al. (2005)
17

 required ≥63% of the data to be present and above 

MDLs.  Second, following convention, measurements below the MDL were set to ½ 

MDL.  Next, potential statistical outliers were identified by pooling all samples 

(including replicates analyzed by either laboratory), fitting the top decile of detected 

concentrations to the Gumbell extreme value distribution, and determining those 

measurements that departed from the fitted distribution.  If the potential outlier had a 

replicate that disagreed (i.e., near the MDL), then the high value was considered to be 

erroneous and removed.  If the replicate was similar (i.e., considerably above the MDL), 

then the two replicates were averaged.  If a replicate was unavailable, then the 

observation was removed.  After completing the MDL, reproducibility and outlier 

screens, duplicate measurements at a laboratory, if available, were averaged. 

4.4.3 Intra- and inter-laboratory reproducibility 

Intra-laboratory reproducibility for each pollutant and laboratory was 

characterized by examining duplicate samples using both statistical measures, e.g., 

paired-t tests for means, errors, distributions, and correlations (both parametric Pearson 

and non-parametric Spearman), and graphical analyses, e.g., scatter plots.  Intra-

laboratory reproducibility was also quantified by the coefficient of variation, COV (%):
7
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where pi and si = primary and secondary replicates, respectively, and n = number of 

replicate pairs.  We identified those species with COVs ≤15%, an acceptability criterion 

used by US EPA
7
.  If intra-laboratory agreement was minimal, e.g., as indicated by r<0.2 

or not statistically significant at α=0.05, then that pollutant was removed from further 

consideration.     

Error models for intra-laboratory reproducibility were constructed following an 

approach used previously for VOCs
18

.  Observations from all carbonyl species that met 

the minimum detection frequency (20%, discussed above) were pooled together.  

Replicate pairs were averaged, and measurements below MDLs and statistical outliers 

were excluded.  Then, plots were constructed showing decile concentrations (using the 

decile average) versus the absolute residuals of replicate pairs in each concentration 

decile.  Finally, the 25
th

, 50
th

, 75
th

 and 90
th

 percentile errors in each decile were regressed 

against the 10
th

 to 100
th

 or 10
th

 to 90
th

 decile concentrations, the latter to address 

additional outliers observed in the top decile of ERG’s carbonyl measurements.  This 

analysis was performed separately for EGR and MDEQ laboratories.  The identical 

procedure was used for VOCs.  The resulting intra-laboratory error models are used in 

the OLE estimator (described below). 

Inter-laboratory reproducibility was characterized by examining the replicate 

samples analyzed by the two laboratories using statistical and graphical analyses as 

described for the intra-laboratory analyses.  If the inter-laboratory agreement was poor 

(r<0.2) or not statistically significant (at α=0.05) and the correlation coefficient from 

ERG intra-laboratory comparison was also poor, then that pollutant was removed from 

the analysis.  Differences in mean concentrations reported by the two laboratories were 

examined using paired t–tests and the non-parametric Wilcoxon signed rank (WSR) tests 

for two related samples, considering only cases where both laboratories made 

measurements above MDLs, thus avoid possible biases since MDLs differed.  

4.4.4 Optimal linear estimation 

The OLE method was implemented in Excel using the XNUMBERS
19

 for high 

precision matrix operations (e.g., inversion in eq. 3), necessary for imputations using a 

large number of predictor variables.  Error covariance matrix Rt and covariance matrix P 
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(eqs. 1 and 2) utilized the median intra-laboratory error model (described above).  Errors 

were assumed to be independent and time invariant.  Four OLE models were constructed 

for each pollutant that differed with respect to the treatment of autocorrelation: (1) use of 

only contemporaneous observations (lag0); (2) contemporaneous plus 1-day lagging 

observations (lag1); (3) contemporaneous plus 1-day leading observations (lead1); and 

(4) contemporaneous plus lag and lead (LL1).  The inclusion of leading and/or lagging 

observations incorporates autocorrelation information.   

A very large number of possible predictor variables were available.  Variables for 

each imputation model were selected using GLMSELECT, a new procedure utilizing the 

general linear model framework and available as a test trial in SAS 9.1
10,20

.  A forward 

step-wise procedure was used along with several selection criteria, including the general 

information criterion
21,22

, the corrected Akaike information criterion
23

, the Schwarz 

Bayesian information criterion
21,24

, the average square error (ASE), and the average 

residual sum of squares.  The predictor variables identified using GLMSELECT were 

introduced into the model simultaneously.  Each model was examined individually with 

the goal of developing powerful but parsimonious and robust models.  We examined the 

performance of the OLE estimator using both nominal and log-transformed 

concentrations, in part to account for the expected log-normal distribution of pollutant 

concentrations. 

4.4.5 Multiple imputation 

MI models were constructed using the same data and predictor selection 

procedures described above and the MI procedure in SAS, a Markov chain Monte Carlo 

(MCMC) implementation with the multiple chain option
10

.  A separate MC chain was 

used for each imputation.  This implementation assumes multivariate normality.  As with 

OLE, we evaluated performance of the same estimator using both the nominal and the 

log-transformed data.  As described for the OLE method, four MI models were 

constructed for each pollutant using different combinations of leading and lagging 

observations.  Five imputed data sets (m=5) were generated for each pollutant.   
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4.4.6 Performance evaluation 

Imputations from OLE and MI methods were evaluated using the same approach 

and the same datasets.  Initially, performance was evaluated by random deletions, 

imputing the deleted data, and then comparing actual and imputed measurements using 

several indicators, e.g., Willmott’s index of agreement (d2), coefficient of determination 

(R
2
), mean absolute error (MAE), distribution analyses (percentiles and box plots), and 

scatter plots of imputed versus observed values.  Among these indicators, d2 addresses 

outliers and is a robust measure with a similar interpretation as R
2
, e.g., 0 and 1 denote 

random and perfect fits, respectively
25

.  The MI scatter plots used the average of 5 

imputed values.   

To test different causes of missing values in air pollution data sets, three deletion 

patterns were used: random deletion, random block deletions of 5, and random row-wise 

deletions.  For each deletion pattern, ~25% of the data were removed following Junninen 

et al. (2004)
26

 and to give a sufficient sample size for imputations (about 79) for robust 

statistics.  Each deletion pattern represents a different situation.  Random deletions 

portray missing data due to data entry problems, outlier removal, and other events that 

affect single observations.  Random block deletions most commonly arise from 

equipment failures which are not fixed for a period of time (e.g., 5 days in our 

simulation).  Row-rise deletions, which tested model performance using exclusively lag 

and lead measurements of toxics (but contemporaneous measurements of conventional 

and meteorology variables were permitted) often reflect missingness pattern for air toxics 

since multiple pollutants are measured in a single sample, and any day that sample is 

unavailable results in missing values for all of the toxics in the group.  In practice, 

missingness patterns for air toxics data represent a mixture of these three missing 

patterns, though row-wise deletions are the most common.  Missing at random and 

random block patterns are dominant in other types of air quality data, e.g., conventional 

pollutants.  The separate analyses of each of these three missingness patterns provide a 

sensitivity analysis that gives insight regarding how the imputation methods will perform 

for different types of air quality data.  Also, it should be noted that the performance is 

largely independent of the amount of data that is removed and then imputed, as long as 
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the sample size is sufficient to give valid statistics.  This was verified with 10 and 25% 

deletions, which gave comparable results.  

The evaluation used the ERG dataset, which was the most complete.  Replicates, 

if available, were averaged.  Predictor variables were selected after data were deleted, 

simulating an actual dataset.  The present paper presents evaluations for three carbonyl 

and three VOC species.  The selected compounds had different detection frequencies 

and/or represented different and important types or compounds.  For carbonyls, detection 

frequencies did not differ, so the selection included both very volatile and aromatic 

carbonyls (acetaldehyde, benzaldehyde and formaldehyde).  For VOCs, aromatic and 

chlorinated VOCs were selected (benzene and tetrachloroethylene); butadiene was also 

included due to its low detection frequency.  (Evaluations for other species are provided 

in Tables S4-9 and S4-10.) 

4.5 Results 

4.5.1 Detection frequency, outliers, precision and accuracy 

The original data set contained 12 carbonyls (n=266) and 59 VOCs (n=282) 

measured by the ERG laboratory, and 13 carbonyls (n=54) and 53 VOCs (n=57) 

measured by the MDEQ laboratory.  (Tables S4-1 and S4-2 give statistics of all measured 

toxics.)  Considering the sampling design, missing observations in one year of air 

monitor data comprised ~6.4% and ~35% of the possible ERG and MDEQ data points, 

respectively.  Data were processed using four QA screens, discussed below. 

First, over half of the air toxics species were rarely detected above MDLs.  With 

the 20% (minimum) detection frequency criterion, the first screen eliminated 38 of 59 

VOC species and 1 of 12 carbonyl species measured by ERG, and 35 of 53 VOCs and 3 

of 13 carbonyls measured by MDEQ.  The eliminated compounds, which included many 

chlorinated VOCs, are not discussed further.  Table 4-1 identifies the remaining 13 

carbonyls and 24 VOCs.  

The second data screen identified outliers.  Probability distribution plots for the 

top decile concentrations of all compounds approximated straight lines, indicating that 

the Gumbell distribution was appropriate.  After reviewing replicates, we considered that 
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11 compounds had outliers: formaldehyde (n=1), hexaldehyde (n=1), tolualdehyde (n=1), 

propylene (n=2), n-octane (n=1), methylene chloride (n=5), m,p-xylene (n=2), 

ethylbenzene (n=2), o-xylene (n=1), 1,3,5-trimethylbenzene (n=1) and toluene (n=2).  

Several outliers occurred on the same dates, i.e., n-octane, m,p-xylene, and ethylbenzene 

on 3/11/2002.  (Table S4-3 gives information on the outliers; Figures S4-1 and S4-2 show 

log-normal distribution plots).  Methylene chloride had the largest number of outliers and 

reached very high concentrations, e.g., MDEQ showed 199 ppb on 7/17/2001, and ERG 

showed 148 ppb on 3/3/2002.  This compound is frequently used as a laboratory solvent 

and thus these outliers might be a result of inadvertent contamination.  These 19 points 

were removed from the dataset and were considered missing.  These outliers represent a 

very small percentage of the measurements.  

Intra-laboratory reproducibility.  Intra-laboratory agreement depended on the 

species and, to a lesser extent, on the laboratory.  In many cases, non-parametric statistics 

(e.g., Spearman rank correlation coefficients) and parametric (e.g., Pearson correlation 

coefficients) gave similar results (Table 4-2), but the former is emphasized since 

concentrations of many toxics were not normally distributed and the Pearson statistic is 

sensitive to extreme values.  For the ERG laboratory, dimethylbenzaldehyde and acetone 

had nil reproducibility (r≤0.2); crotonaldehyde, valeraldehyde, and carbon tetrachloride 

showed marginal reproducibility (0.2<r<0.3), as did acetone measurements by MDEQ.  

For the 10 carbonyls measured by the ERG surviving this screen, the average correlation 

between replicate samples was 0.43±0.15; the 20 VOCs obtained higher correlation, 

0.62±0.14.  The MDEQ laboratory obtained marginally higher performance for carbonyls 

(average r=0.51±0.10) and comparable performance for VOCs (average r=0.65±0.18).  

Both laboratories had high detection frequencies but poor reproducibilities for acetone 

and methylene chloride, suggesting possible contamination problems for these widely-

used solvents.   

Intra-laboratory agreement as indicated by COVs often but not always followed 

results given by correlations.  Reasonably low COVs (<50%) were attained by most 

VOCs but only one carbonyl (tolualdehyde).  For the ERG measurements (limited to 

compounds with r>0.2), COVs averaged 62±16% for the carbonyls and 35±23% for the 

VOCs.  Contrary to results using the intra-laboratory correlations, the ERG laboratory 
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attained slightly higher reproducibility for carbonyls than MDEQ laboratory (79±13%); 

for VOCs, the MDEQ laboratory was again comparable (38±18%).  The strict 15% COV 

limit used by US EPA was met by only four compounds measured by ERG 

(chloromethane, dichlorodifluoromethane, trichlorofluoromethane and 

trichlorotrifluroethane), and none from MDEQ.  In contrast to most other toxic species, 

these four compounds show a very limited concentration range (Table 4-1).  Such 

constant measurements can “reward” the COV indicator but will “penalize” correlations, 

e.g., chloromethane’s good COV (12%) is not matched by its fair intra-laboratory 

correlation (r=0.45).   

Inter-laboratory reproducibility.  Six of the 23 compounds where comparisons 

were possible showed negligible inter-laboratory correlation (Spearman r<0.2), 

specifically, crotonaldehyde, iso-valeraldehyde, valeraldehyde, acetone, acetonitrile and 

carbon tetrachloride (Table 4-2).  Inter-laboratory agreement was only marginally better 

(0.2<r<0.32) for propionaldehyde, chloromethane, and methylene chloride.  These nine 

compounds previously had shown negligible-to-fair intra-laboratory agreement 

(0.0<r<0.5).   

Higher mean concentrations were reported by the ERG laboratory compared to 

the DEQ laboratory for 8 VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, carbon 

tetrachloride, dichlorodifluoromethane, ethylbenzene, m,p-xylene, o-xylene, 

trichlorofluoromethane), based on paired t-tests (Table 4-2).  The same VOCs were 

identified by the non-parametric Wilcoxon signed rank test, along with toluene and two 

carbonyls (benzaldehyde and acetonitrile).  However, only ethylbenzene, m,p-xylene and 

o-xylene showed sizable concentration differences (nearly factor of two), differences that 

were maintained across the measured concentration range.  Other compounds showed 

much smaller differences.  These results cannot be explained by MDLs, but appear to 

result from calibration discrepancies.  

Final dataset.  Carbonyls and VOC species were selected for further analysis by 

considering data availability, detection frequency, outliers, intra-laboratory 

reproducibility, and inter-laboratory agreement.  Five compounds measured only by the 

MDEQ laboratory (m,p-tolualdehyde, n-butyraldehyde, 1,1,2-trichloro- 1,2,2-
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trifluoroethane, 2,2,4-trimethylpentane and hexane) were excluded to avoid having to 

impute an excessive fraction (>65%) of missing data.  The 39 species with low detection 

frequencies (<20%) were omitted, as were the 19 outliers detected using the Gumbell 

distribution in the second data screen.  Pollutants with poor intra- and inter-laboratory 

agreement were considered on a case-by-case basis.  Crotonaldehyde, valeraldehyde, 

acetone and carbon tetrachloride were eliminated as they showed little agreement in both 

intra- and intra-laboratory comparisons.  Iso-valeraldehyde and acetonitrile showed fair 

intra-laboratory agreement (r=0.49 and 0.42, respectively) but nil inter-laboratory 

agreement (r=-0.38 and -0.20, respectively) and high COVs (both were 102%), so these 

compounds were eliminated.  For 2,5-dimethylbenzaldehyde, only ERG measurements 

were available, but these showed little reproducibility (r=0.19, COV=96%), thus this 

compound was eliminated.  Methylene chloride showed fair intra-and inter-laboratory 

agreement (r=0.44 and 0.31, respectively), a poor COV (71%), a number of outliers or 

erroneous observations apparent in scatter plots, and low Pearson correlations (after 

removing 5 observations in the second QA screen).  Even when restricted to low 

concentrations, both intra- and inter-laboratory scatter plots showed little evidence of 

trend.  Because of the strong possibility of laboratory contamination and the mediocre 

reproducibility, methylene chloride was eliminated.  Finally, chloromethane also showed 

fair intra-and inter-laboratory agreement (r=0.45 and 0.32, respectively), but a very good 

COV (12%).  Scatter plots displaying intra- and inter-laboratory comparisons showed a 

number of outlying points not detected in the second QA data screen (e.g., 1.43 ppb 

measured on 4/22/01 by MDEQ, and 1.19 ppb on 1/29/02 measured by ERG).  Other than 

such points, chloromethane concentrations appeared nearly constant, e.g., the inter-

quartile range was only 0.56 – 0.64 ppb and the 5
th

 to 95
th

 percentile range was only 0.50 

- 0.74 ppb.  Because these concentration changes seem attributable largely to laboratory 

errors rather than to local sources, we omitted chloromethane. 

The final data set contained 23 compounds (7 carbonyls, 16 VOCs) measured by 

the ERG laboratory and 15 compounds (5 carbonyls and 10 VOCs) measured by the DEQ 

laboratory (Table 4-2).  For the ERG measurements, intra-laboratory reproducibility 

measured as the (Spearman rank) correlation coefficient averaged 0.49±0.12 across the 

carbonyls and 0.67±0.08 across the VOCs, while COVs averaged 55±8% for carbonyls 
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and 31±15% for VOCs.  Inter-laboratory performance was slightly worse, e.g., the 

correlation was 0.46±0.12 for carbonyls and 0.62±0.08 for VOCs.  Benzene was the only 

species for which both intra- and inter-laboratory correlations exceeded 0.7.  Eight other 

VOCs demonstrated fair-to-good performance (intra- and inter-laboratory correlations 

exceeding 0.6).  Overall, the precision and inferred accuracy (based on inter-laboratory 

comparisons) for many VOC and most aldehyde measurements appear mixed at best and 

often poor.  This is surprising given that the samples were measured in an 

urban/industrial setting where concentrations were not particularly low, sample collection 

procedures followed rigorous protocols and QA procedures, and analyses were conducted 

by experienced personnel and respected laboratories utilizing similar methods.  

Measurement performance might be acceptable for a slightly larger number of the toxics 

using more relaxed criteria, e.g., means within a factor of two.     

4.5.2 Uncertainty models 

Models showing intra-laboratory precisions based on the final data set show that 

differences between replicates increase with concentration (Figure 4-1, a-d).  For 

example, carbonyl measurements from the ERG laboratory have median absolute errors 

that increase to 0.9 ppb as concentrations increase to 6.0 ppb (Figure 4-1a), and the 

corresponding regression model incorporates both constant and proportional terms: 

absolute error (ppb) = 0.07 + 0.15 x concentration (ppb).  Relative errors tend to be 

higher for carbonyls as compared to VOCs, and somewhat higher for the MDEQ 

laboratory compared to the ERG laboratory.  While the 50
th

 percentile error model show 

good fits (0.76≤R
2
≤0.88), additional observations and perhaps wider bins (e.g., quintiles 

compared to deciles) might improve fits.  Models for errors at higher percentiles give 

much larger errors, but attain comparable fits.   

Models for inter-laboratory differences (Figure 4-1, e-f) are similar to the intra-

laboratory differences, but predicted errors are generally larger.  Using the ERG carbonyl 

measurements as an example (Figure 4-1e): the median absolute error (ppb) = 0.11 + 0.13 

x concentration (ppb).  As seen earlier, the carbonyls had higher relative errors than the 

VOCs.  All of the inter-laboratory error models showed good fits (0.73≤R
2
≤ 0.85).  
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4.5.3 Predictor variable selection for OLE and MI models 

For the random deletions, selected predictor variables for carbonyls included 

other carbonyl species (current, lead and lag observations), pollutants CO and PM2.5, and 

several meteorological variables (temperature, pressure, precipitation, wind speed, wind 

sectors and mixing height).  Predictors varied by species and models, i.e., the LL1 model 

for acetaldehyde included current and lead observations of other carbonyls as well as 

wind sectors, while the LL1 model for benzaldehyde only included current, lag and lead 

observations of other carbonyls as well as its own lag and lead values.  These results 

follow from the correlations seen between the variables (Tables S4-4 to S4-6).  Predictor 

variables for VOCs were similar with the addition of pollutant SO2.  The most frequently 

selected meteorological variables were resultant wind speed and SE and NW wind 

sectors.  Similar predictor variables were obtained for the random block deletions. 

For row-wise deletions, predictor variables for the three carbonyls included lead 

and lag observations of other carbonyl species, meteorological variables (most commonly 

temperature, precipitation and wind speed and occasionally E and SE wind sectors and 

relative humidity), and criteria air pollutants (CO but only for the LL1 acetaldehyde 

model).  The predictor variables for the three VOCs included lead and lag observations of 

other VOCs, pollutants CO, PM2.5 and SO2 (but only for benzene and 1,3-butadiene), and 

meteorological variables in a few instances.  Predictors for tetrachloroethylene included 

only one VOC (leading dichlorodifluoromethane) for the LL1 model and a few 

meteorological variables for the other tetrachloroethylene models.  The GLMSELECT 

procedure did not select any predictors for the lead1 tetrachloroethylene model because 

the corrected information criterion was not met.  Lag0 models for both carbonyls and 

VOCs included only meteorological variables. 

4.5.4 Evaluation of OLE 

Summary statistics describing the OLE performance for the three carbonyls and 

three VOCs are shown in Table 4-3.  Because random block and random deletions 

obtained similar performance, only the former is shown.  (Performance statistics for all 

carbonyls and VOCs and the three data patterns are shown in Tables S4-7 and S4-8.)  

Also, because nominal concentrations gave comparable or slightly better performance 
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than log-transformed data, performance statistics show results for only the former. (Table 

S4-9 gives results for log-transformed data.)  Performance indicators d2, R
2 
and mean 

absolute error (MAE) yielded similar rankings.  Performance depended strongly on the 

deletion pattern, as discussed below.   

The OLE imputations for random deletions, which utilized both contemporaneous 

co-pollutant and autocorrelative information, were quite successful for carbonyls.  

Acetaldehyde, benzaldehyde and formaldehyde obtained d2 values of 0.89, 0.88 and 0.86 

(corresponding R
2
 values of 0.72, 0.62 and 0.63), respectively, using lag1 and lag0 OLE 

estimates.  Scatter plots of imputed versus measured values showed linear trends, but a 

tendency to under-predict the highest values (Figure 4-2, a-c).  OLE performance for 

VOCs was mixed: benzene had high agreement (0.79≤d2≤0.89, 0.52≤R
2
≤0.71, Figure 4-

2g); 1,3-butadiene showed lower performance (0.63≤d2≤0.78, 0.52≤R
2
≤0.68), a strong 

tendency to underestimate concentrations, and a large fraction of measurements below 

MDLs (Figure 4-2h); while tetrachloroethylene imputations had little correspondence to 

observations (0.23≤d2≤0.27, 0.00≤R
2
≤0.03; Figure 4-2i).  Occasionally, the OLE 

imputations yielded small negative estimates. 

OLE imputations for the row-wise deletions of the three carbonyls showed at best 

modest performance.  Imputation values were compressed towards the mean (Figure 4-2, 

d-f), suggesting that the estimated errors (Rt) may have been too large.  For row-wise 

deletions of VOCs, performance was poor, especially for 1,3-butadiene and 

tetrachloroethylene (Figure 4-2, k-l).  Performance was essentially unchanged for 

tetrachloroethane, but this VOC had essentially nil agreement for all deletion patterns.  

OLE performance was considered good if d2≥0.9 or R
2
≥0.7; fair if either 

0.7≤d2<0.9 or 0.5≤R
2
<0.7; and poor if either d2<0.7 or R

2
<0.5.  With these guidelines and 

considering random and random block deletions:  performance was good for 

acetaldehyde, isobutyraldehyde, propionaldehyde, benzene, ethylbenzene, m,p-xylene, o-

xylene, 1,2,4-trimethylbenzene, and toluene; fair for benzaldehyde, formaldehyde, 

hexaldehyde, acetylene, 1,3-butadiene, methyl ethyl ketone and 1,3,5-trimethylbenzene; 

and poor for tolualdehyde, dichlorodifluoromethane, n-octane, propylene, 

tetrachloroethylene, trichlorofluoromethane and trichlorotrifluoromethane.  Row-wise 
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deletions resulted in poor performance for all 23 toxic compounds (Tables S4-7 and S4-

8).   

These results clearly demonstrate the importance of the missingness pattern.  All 

estimates depended strongly on contemporaneous co-pollutant information.  If this 

information was unavailable (as simulated using row-wise deletions) then performance 

was significantly degraded.  This also explains why random and random block deletions 

obtained comparable performance:  leading and lagging measurements provided 

relatively little information, and essentially only contemporaneous measurements were 

utilized in the imputations.   

4.5.5 Evaluation of MI 

The performance attained by MI was similar to that of OLE.  For random 

deletions, d2 values ranged from 0.83 to 0.95 (0.54≤R
2
≤0.83) for the three carbonyls, and 

from 0.33 to 0.89 (0.01≤R
2
≤0.65) for the three VOCs (Table 4-3).  Again, performance 

for tetrachloroethylene was particularly poor.  With the exception of tetrachloroethylene, 

the MI scatter plots showed linear relationships, somewhat less tendency to underestimate 

high concentrations, slightly better performance for acetaldehyde and 1,3-butadiene, but 

greater scatter (Figure 4-3, a-c, g-i).  In all cases, the MI estimates had higher mean 

absolute errors (MAE), reflecting the increased scatter, a result of the variance 

contributed by the 5 imputations.  Like OLE, MI occasionally yielded small negative 

estimates.  Row-wise deletions again yielded substantially poorer performance (Table 4-

3) and nonlinearities for formaldehyde, 1,3-butadiene and tetrachloroethylene (Figures 4-

3, f, k, l).  The highest observations were often under-predicted.   

Results obtained using log-transformed data (Table S4-10) showed slightly poorer 

performance and larger standard deviations than imputations obtained using 

untransformed data.  Some of this is a result of evaluating performance using the 

untransformed data, which tended to emphasize higher values.  When log-transformed, 

imputations were more constrained, and often did not reflect the higher values that are of 

most interest and significance.  Examination of scatter plots using untransformed data 

(e.g., Figure 4-3) do not show strong evidence of distributional problems, and in fact 

suggest largely normally-distributed residuals, which was seen in residual plots.  Thus, 
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for the toxics dataset (as well as a better-behaved ozone dataset using 24-hr averages), MI 

(and OLE) performance was largely insensitive to log transformations.  An advantage of 

using log-transformed data in the imputation model is negative estimates can be avoided.   

Overall, MI performance for random  and random block deletions was considered 

good for most aromatic compounds, fair-to-good for all carbonyl compounds, and poor 

for all chlorinated and fluorinated compounds.  Like OLE, MI performance was poor for 

row-wise deletions for all of the toxics (Tables S4-7 and S4-8).   

4.6 Discussion 

4.6.1 Quality assurance and reproducibility of toxics data 

Fewer than a third of the measured VOC and carbonyl species in the Dearborn 

data set had detection frequencies above 20% and was felt to provide useful information 

for time series-types of investigations.  Further, the reproducibility of the 23 compounds 

remaining in the final data set varied considerably.  Only benzene was considered highly 

reproducible, based on intra- and inter-laboratory comparisons, though several other 

aromatic VOCs (e.g., trimethylbenzenes and xylenes) came close.  Several VOCs showed 

little or no reproducibility, e.g., acetone and methylene chloride, although nearly all 

observations exceeded MDLs.  For carbonyls, reproducibility was only fair.  As 

anticipated, between-laboratory variability exceeded within-laboratory variability, 

although the difference was not dramatic.  While these findings are based on a dataset 

that is considerably more complete than those available in most air toxic measurement 

campaigns, the analysis depends upon data collected at only one monitoring site and 

analytical work performed by only two laboratories.  However, both laboratories are 

known for their adherence to strict QA/QC protocols, and they likely attain performance 

that is typical of current analyses.   

The most recent national study shows that the reproducibility of carbonyl and 

VOC measurements varies widely
7
.  Across the National Air Toxics Trends Stations 

(NATTS) reporting precision data for 2004, COVs ranged from 0 to 126%, but most 

(73%) sites and pollutants were reported to meet the 15% COV criterion.  In an 

assessment of the RIOPA study, indoor, outdoor and personal sampling using a large 
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number (86-171) of replicate passive samples yielded COVs from 19 to 30% for carbonyl 

compounds and from 6 to 42% for VOCs;  active carbonyl measurements had lower 

COVs (9-19%, excepting glyoxyl not measured here)
27

.  While these studies suggest 

better reproducibility than obtained for most of the toxic species measured at Dearborn, 

we believe that reproducibility determinations at Dearborn are typical of ambient 

monitoring, and in particular, routine contract monitoring for several reasons.  First, the 

NATTS sample is very limited and unbalanced, e.g., benzene, which had the largest 

number of replicate measurements available, showed COVs from 0% (Mayville WI, 1 

sample pair) to 59% (Northbrook IL, 59 sample pairs).  Our benzene statistics (e.g., 

COV=19% for ERG) are in the center of this range.  Second, contract monitoring is at 

several disadvantages in comparison to research studies (like RIOPA) where sample 

storage/hold times are minimized, a larger number of QA/QC measures (e.g., blanks, 

spiked samples, replicates) are utilized, and there is generally more flexibility to 

undertake corrective measures if problems are noted.  In our research studies, for 

example, we typically obtain VOC precisions better than 10% (at concentrations 

exceeding ~0.5 µg m
-3

)
18

.  Third, the Dearborn dataset contained up to 122 replicate 

sample pairs taken across a full year, and the reproducibility estimates obtained from this 

large sample likely represent the a full range of ambient sampling conditions, e.g., very 

hot and humid weather, when performance may suffer. 

Reproducibility of toxic measurements is determined by many factors, e.g., 

system cleanliness, sampling/uptake stability, adsorbent breakthrough, loss/artifacts in 

sample storage, sample recovery, and analytical performance.  Some problems can affect 

only certain toxic species, e.g., crotonaldehyde is known to disappear much more rapidly 

on DNPH cartridges/extracts than most other aldehydes, and recovery of polar VOCs in 

canisters may be problematic
28

.  Other problems can affect the entire sample, e.g., a 

poorly cleaned canister or miscalibrated pump.  While a full discussion is beyond the 

present scope, we note that QA/QC programs should be structured to identify (and 

ultimately rectify) such problems.   

This study also shows differences among reproducibility indicators.  Often, but 

not always, indicators such as correlations, COVs, and slopes will yield similar 

inferences.  Both parametric and non-parametric measures should be used since outliers 
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can be difficult to detect and can strongly influence parametric measures.  Multiple 

measures are needed as examination of a slope (and confidence interval) alone, for 

example, may miss a possible intercept.  The distribution of concentrations will affect the 

indicators, e.g., COVs may be misleading for compounds that show little variation, which 

include stable and globally-distributed pollutants such as chloromethane, 

dichlorodifluoromethane, trichlorofluoromethane, carbon tetrachloride, 

trichlorotrifluroethane, and tetrachloroethylene
29

.  Relative errors are likely to increase 

for measurements near MDLs.  These statistics may also perform poorly for pollutants 

with low detection frequencies (e.g., 1,3-butadiene).  Finally, while cost and logistic 

issues are recognized, probably at least 15 or 20 replicate samples per site and pollutant 

are needed to determine performance with a reasonable degree of confidence.  If 

temperature or humidity extremes can influence measurements, then replicates should be 

taken under the widest possible range of weather conditions.    

Uncertainty models.  Many of the issues with the reproducibility indicators are 

addressed by the semi-parametric uncertainty models that incorporate both constant and 

proportional terms, and that show range of likely errors, e.g., by percentiles.  These 

models provided stable estimates using residuals pooled across the carbonyl and VOC 

groups.  Had sample size permitted, better performance and more insight would be 

attained using separate models for each compound.  Within-laboratory analyses showed 

median absolute errors from 5 to 15% for VOCs, and about 20% for carbonyls.  

However, much larger errors were not uncommon, e.g., 90
th

 percentile errors were 40 to 

60% for both groups of toxics.   

4.6.2 Performance of imputation methods 

In most respects, OLE and MI methods gave comparable results.  For random and 

random block deletion patterns, both methods achieved good performance.  The OLE 

method utilized an exogenous estimate of measurement uncertainty for observed results, 

and as this value was increased, the OLE predictions became more conservative and 

approached the mean, which was especially noticeable at high concentrations of 

carbonyls.  As expected, MI imputations provided greater dispersion.   
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Imputations are more accurate for pollutants that are strongly correlated to other 

pollutants or other measured variables.  For random missingness patterns, imputations 

depended largely on contemporaneous measurements of other toxics.  Thus, the best 

performance was seen for traffic-related VOCs (e.g., BTEX) and for certain combustion-

related carbonyls (e.g., acetaldehyde, isobutyraldehyde, propionaldehyde), both of which 

form highly correlated groups of compounds.  Potentially, the inclusion of other predictor 

variables can help to represent the influence of local sources (e.g., conventional 

pollutants as surrogates, and wind direction for nearby sources), reactions with other 

pollutants (temperature and O3), rainout or washout mechanisms (precipitation), and 

general atmospheric ventilation (possibly conventional pollutants like CO, mixing height, 

and atmospheric stability).  Interestingly, imputation performance did not suffer for 1,3-

butadiene, which had only 26% of its values above MDL but which is also traffic-related; 

however, performance was poor for tetrachloroethylene, with a similar detection 

frequency of 33%.  Imputations tend to be poor for compounds that are emitted alone or 

formed independently, e.g., chlorinated solvents and formaldehyde, although inclusion of 

meteorological information may improve performance.  Pollutants that are globally 

distributed and present at relatively constant levels generally are not highly correlated 

with other pollutants or meteorological variables, and thus are imputed poorly (in terms 

of correlations, though COVs may be very small).  Such pollutants will provide little 

information in time-series studies.  

Imputation performance was very poor for row-wise deletions, indicating that the 

serial correlation in the data was insufficient to provide informative estimates.  The row-

wise imputations also utilized (contemporaneous, leading and lagging) conventional air 

pollutants and meteorological variables.  In comparison to very high contemporaneous 

inter-pollutant correlations (e.g., 0.6<r<0.9 for BTEX), correlations between toxics and 

contemporaneous daily measurements of conventional pollutants were lower (0.0<r<0.5), 

as were correlations with contemporaneous daily measurements of meteorological 

variables (-0.6<r<0.7).  Thus, imputations for row-wise deletions did not obtain the 

performance of the random deletions.  In the Dearborn dataset, the dominant missingness 

pattern was row-wise, thus further attention to this class of problems is warranted. 
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4.6.3 Other imputation studies of air quality data 

There are few evaluations of SI and MI procedures for air quality purposes.  The 

OLE method was used to simultaneously estimate missing data, predict extrema, and 

check the validity of observations for particulate matter (PM) concentrations in 

Philadelphia and St. Louis, and missing O3 data in Houston
13

.  The method performed 

well based on correlation coefficients and bias statistics comparing predicted and 

observed values.  Another SI method, called the site-dependent effect method (SDEM), 

imputed missing hourly PM10 in Italy using additive terms for site, day-of-week, and 

week-of-year
30

.  This method outperformed other SI methods tested (e.g., hourly mean) 

as well as a model-based MI method.  Several SI and MI methods were tested using NOx, 

NO2, O3, PM10, SO2 and CO measurements in Helsinki and Belfast
26

.  This evaluation 

showed that performance decreased with increasing complexity of the missing data 

patterns, SI methods underestimated the error variance of missing data, and MI methods 

improved accuracy substantially.  Self-organizing map and multi-layer back-propagation 

nets performed well especially when incorporated into a hybrid approach that used linear 

interpolations for short missing gaps and multivariate methods for longer gaps, however, 

this study was limited by the short study period.  In another study, three MI models that 

accounted for between-variable correlations, between- and within-variable 

autocorrelations over time, and random seasonal effects, were used to impute pollutant 

measurements in the Arctic that were missing or below MDLs
16

.  The most complete 

models produced the most realistic imputations, and MI models outperformed ad hoc SI 

methods that ignored both the autocorrelation and seasonal structure of the data. 

There are two notable differences in comparing our results for urban air toxics 

with the studies mentioned above.  First, data quality and reproducibility are very 

significant issues for air toxics, and even a perfect imputation model would not yield 

perfect performance scores since the underlying measurements contain errors.  That said, 

we obtained at least comparable performance for most carbonyls and VOCs as obtained 

for conventional pollutants by Junninen et al. (2004)
26

, and better performance than the 

single imputations of PM10 by Plaia and Bondi (2006)
30

.  Second, the temporal and 

spatial concentration patterns for urban pollutants can be more complex and dynamic 

(variable) than the long-lived species monitored at remote sites, which likely show much 
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stronger autocorrelation.  For this reason, our results are not directly comparable to the 

imputations at Arctic sites
16

.   

4.6.4 Applications and limitations 

This study highlights the importance of characterizing the reproducibility of 

ambient air toxics data prior to its use.  It is important to identify variables that are 

informative and thus useful for applications such as regulatory determinations of risk, 

receptor modeling studies of source apportionments, and epidemiological assessments of 

health impacts
31,32

.  The uncertainty models and quality assurance steps presented here 

can help to describe and validate ambient data, as well as provide uncertainty estimates 

for OLE imputations and receptor modeling.   

This QA assessment examined only a single monitoring site, only two 

laboratories, and what must be considered a modest sample size.  Thus, generalizations 

should be made cautiously.  Further, the intra-laboratory comparisons focused on 

analytical uncertainties, which may not dominate actual uncertainties
33

.  Many other 

factors can influence sampling and analysis performance, and there is a clear need to 

increase the amount of precision and accuracy data for air toxics to better understand 

these factors.   

Many methods are available for imputing missing data and obtaining complete 

datasets, and for estimating uncertain values
13,16

.  For the Dearborn data, OLE and MI 

attained good performance for random deletions but poor performance for the row-wise 

deletion pattern that dominated observations at Dearborn.  Imputations for especially 

row-wise missingness patterns might be improved in several ways.  First, the variable 

selection criteria may have been too stringent, i.e., only very parsimonious models were 

generated by GLMSELECT, a procedure which assumes linear models and which does 

not incorporate a priori information.  Imputations might be improved by relaxing these 

criteria and using more complex models.  At times, however, we found that very large 

(and possibly over-determined) models deteriorated performance.  Second, imputations 

might use many other variables (e.g., season, day-of-week, traffic counts) and other 

model structures (e.g., auto-regressive integrated moving average models).  A third 

possibility is to derive predictor variables from a combination of meteorological 
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parameters that reflect dispersion potential or local source impacts better than additive 

models.  Fourth, models might be constructed that account for long term trends and 

seasonality.  Fifth, uncertainty models might be further refined and potentially can 

improve performance of OLE estimates.   

Finally, this study did not examine the performance of imputation methods in 

health effect studies, or the performance of other imputation methods.  The MI method is 

designed to recover as much missing information as possible without biases results.   

Missing air quality data is an important problem in air pollution epidemiology, and a 

proper imputation scheme can help to remedy the situation.  The limited evaluation 

exercises conducted in this study were primarily intended as an exploration of statistical 

approaches for exposure assessment purposes.   

4.7 Conclusions 

A total 323 daily air toxics samples were collected at Dearborn, MI, including 122 

pairs of replicate samples.  Samples were analyzed by two laboratories for 71 carbonyls 

and volatile organic compounds (VOCs).  Data cleaning including eliminating species 

with low detection frequency (<20%) and detecting outliers using the Gumbell extreme 

value distribution.  Of the 23 toxics remaining in the final dataset, intra- and inter-

laboratory comparisons showed good agreement for only one compound (benzene), 

moderate agreement for several other VOCs (e.g., trimethylbenzenes, xylenes, 

ethylbenzene, dichlorodifluoromethane, tetrachloroethylene, and toluene), and poor-to-

fair agreement for the remaining VOCs and all carbonyls.  Error models, constructed by 

pooling residuals across the intra- and intra-laboratory analyses, provided a 

comprehensive description of errors.  These results show the need to evaluate air toxics 

data prior to use in apportionment, exposure, and health studies.  

 Two methods were tested for their ability to impute missing data for the 23 toxics 

and for three missingness patterns.  Optimal linear estimation (OLE) and multiple 

imputation (MI) methods obtained comparable performance for random deletions, with 

results depending on the compound, concentration distribution, and other factors.  For the 

dominant row-wise deletion pattern observed in the air toxics dataset, the performance of 
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both methods deteriorated.  A number of steps are suggested to recover information and 

improve these imputations. 
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Figure 4- 1. Absolute relative error models for carbonyls (left) and VOCs (right) from 

intra-laboratory and inter-laboratory comparisons.   

Only concentrations above MDLs were included.  Maximum decile concentrations were 

excluded for VOCs (figures b, d and f). 
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Figure 4- 2. Scatter plots for observed versus imputed data using OLE method for 

random and row-wise deletions of six toxics.   

Only best models of each group are plotted for each compound. 
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Figure 4- 3. Scatter plots for observed versus imputed data using MI method.   

Otherwise as Figure 4-2. 
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Figure S4- 1. Log-normal distribution plots for carbonyls and VOCs concentrations with 

detection frequencies above 20% from Eastern Research Group laboratory.   

Duplicates were averaged; Outliers were excluded. 
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Figure S4-1 (Cont.) 
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Figure S4-1 (Cont.) 
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Figure S4-1 (Cont.) 
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Figure S4-1 (Cont.) 
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Figure S4-1 (Cont.) 
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Figure S4- 2. Log-normal distribution plots for carbonyls and VOCs concentrations with 

detection frequencies above 20% from Michigan Department of Environmental Quality 

laboratory.   

Duplicates were averaged; Outliers were excluded. 
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Figure S4-2 (Cont.)  
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Figure S4-2 (Cont.)   
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Figure S4-2 (Cont.)  

Benzene Carbon tetrachloride 

 
 

Chloromethane Dichlorodifluoromethane 

 
 

Ethylbenzene Hexane 

 
 

 



 162 

Figure S4-2 (Cont.)  

m,p-Xylene Methylene chloride 

 
 

o-Xylene Tetrachloroethylene 

 
 

Toluene Trichlorofluoromethane 

 
 

 

 

 

 

 



 163 

Table 4- 1. Statistics of toxic concentrations measured at Dearborn, Michigan for those 

VOCs and carbonyls with detection frequencies above 20%.   

Duplicates were averaged and outliers excluded.  TFE=trifluoroethane; DF=detection 

frequency; MDL=method detection limit; “-” is not measured or DF<20%. 

N DF Mean 50th 75th Max MDL N DF Mean 50th 75th Max MDL

(%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)

Carbonyls

2,5-Dimethylbenzaldehyde 284 32 0.009 0.003 0.008 0.280 0.005 - - - - - - -

Acetaldehyde 284 100 1.166 0.914 1.519 4.406 0.014 74 97 0.860 0.760 1.030 5.085 0.009

Benzaldehyde 284 98 0.050 0.040 0.063 0.422 0.004 75 69 0.032 0.012 0.038 0.360 0.004

Crotonaldehyde 284 81 0.027 0.012 0.018 0.309 0.006 75 21 0.011 0.004 0.004 0.094 0.008

Formaldehyde 283 100 2.317 2.089 3.094 10.486 0.016 75 97 2.139 2.055 2.603 7.873 0.008

Hexaldehyde 284 99 0.119 0.041 0.110 0.683 0.004 75 75 0.065 0.027 0.072 0.653 0.005

iso-Butyraldehyde 284 99 0.199 0.144 0.235 0.801 0.005 - - - - - - -

iso-Valeraldehyde 284 21 0.020 0.002 0.002 0.377 0.004 75 60 0.055 0.033 0.073 0.390 0.012

m,p-Tolualdehyde - - - - - - - 75 35 0.016 0.001 0.019 0.157 0.002

n-Butyraldehyde - - - - - - - 75 88 0.094 0.058 0.100 0.929 0.007

Propionaldehyde 284 90 0.143 0.103 0.180 1.440 0.007 75 69 0.175 0.115 0.220 0.810 0.083

Tolualdehydes 283 93 0.043 0.031 0.053 0.281 0.008 - - - - - - -

Valeraldehyde 284 91 0.058 0.037 0.065 0.377 0.003 75 33 0.038 0.011 0.035 0.343 0.022

VOCs

1,1,2-Trichloro-1,2,2-TFE - - - - - - - 83 95 0.094 0.089 0.109 0.178 0.034

1,2,4-Trimethylbenzene 302 90 0.210 0.179 0.267 1.029 0.070 83 86 0.171 0.135 0.210 0.629 0.062

1,3,5-Trimethylbenzene 301 38 0.065 0.035 0.088 0.312 0.070 83 29 0.050 0.029 0.063 0.191 0.057

1,3-Butadiene 302 26 0.057 0.035 0.071 0.292 0.070 - - - - - - -

2,2,4-Trimethylpentane - - - - - - - 83 99 0.126 0.099 0.148 0.537 0.017

Acetone 284 100 1.422 1.138 1.771 5.770 0.008 75 99 0.982 0.856 1.115 3.513 0.011

Acetonitrile 302 36 1.804 0.125 1.642 102.600 0.250 83 73 1.561 0.991 1.711 12.552 0.520

Acetylene 302 99 1.684 1.520 1.983 6.480 0.130 - - - - - - -

Benzene 302 100 0.614 0.537 0.697 2.173 0.040 83 100 0.564 0.434 0.654 2.494 0.070

Carbon tetrachloride 302 90 0.099 0.100 0.110 0.170 0.080 83 95 0.089 0.090 0.099 0.125 0.038

Chloromethane 302 100 0.607 0.594 0.644 0.988 0.060 83 100 0.583 0.570 0.623 1.426 0.062

Dichlorodifluoromethane 302 100 0.634 0.625 0.663 1.079 0.040 83 100 0.560 0.576 0.620 0.846 0.048

Ethylbenzene 300 98 0.181 0.155 0.230 0.647 0.040 83 55 0.115 0.092 0.144 0.390 0.083

Hexane - - - - - - - 83 27 0.435 0.250 0.531 3.318 0.500

m,p-Xylene 300 100 0.517 0.445 0.661 1.957 0.050 83 61 0.311 0.240 0.383 1.055 0.200

Methyl ethyl ketone 302 74 0.613 0.570 0.878 2.920 0.150 - - - - - - -

Methylene chloride 298 96 2.468 0.647 1.731 34.270 0.060 81 79 1.480 0.401 1.302 11.222 0.230

n-Octane 301 33 0.055 0.030 0.072 0.280 0.060 - - - - - - -

o-Xylene 301 97 0.211 0.180 0.262 0.899 0.050 83 90 0.140 0.110 0.169 0.519 0.043

Propylene 300 100 1.116 0.761 1.339 7.599 0.050 - - - - - - -

Tetrachloroethylene 302 33 0.064 0.030 0.074 0.670 0.060 83 34 0.061 0.036 0.080 0.343 0.071

Toluene 300 100 1.049 0.850 1.293 6.431 0.060 83 100 0.998 0.763 1.185 4.718 0.070

Trichlorofluoromethane 302 100 0.319 0.295 0.333 1.540 0.040 83 100 0.274 0.279 0.297 0.500 0.048

Trichlorotrifluroethane 302 100 0.111 0.106 0.130 0.194 0.070 - - - - - - -

Compound

ERG laboratory MDEQ laboratory
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Table 4- 2. Intra- and inter-laboratory reproducibility.  Based on only detected values.  

Significant values (p-value<0.05) indicated in bold.   

Correl coeff=correlation coefficient; COV=coefficient of variation; WSR=Wilcoxon 

signed rank; TFE=trifluoroethane; “-” is not measured or detection frequency<20%. 

Pearson Spearman Pearson Spearman ERG MDEQ Pearson Spearman

Carbonyls

2,5-Dimethylbenzaldehyde 0.02 0.19 - - 96 - - - - -

Acetaldehyde 0.38 0.39 0.45 0.45 61 70 0.37 0.52 0.33 0.07 y

Benzaldehyde 0.54 0.61 0.23 0.65 51 78 0.28 0.46 1.00 0.04 y

Crotonaldehyde 0.32 0.22 0.31 0.48 61 97 -0.06 -0.07 0.83 -

Formaldehyde 0.45 0.48 0.51 0.58 58 64 0.73 0.61 0.95 0.93 y

Hexaldehyde 0.50 0.64 0.32 0.51 62 83 0.40 0.44 0.41 0.29 y

iso-Butyraldehyde 0.19 0.40 - - 52 - - - - - y

iso-Valeraldehyde -0.05 0.49 0.52 0.34 102 93 -0.18 -0.28 - -

m,p-Tolualdehyde - - 0.26 0.64 - 85 - - - -

n-Butyraldehyde - - 0.40 0.45 - 71 - - - -

Propionaldehyde 0.34 0.33 0.87 0.49 61 59 0.25 0.28 0.07 0.11 y

Tolualdehydes 0.71 0.56 - - 42 - - - - - y

Valeraldehyde 0.06 0.22 0.55 0.56 69 88 0.04 0.13 0.86 0.91

VOCs

1,1,2-Trichloro-1,2,2-TFE - - 0.30 0.38 - 29 - - - -

1,2,4-Trimethylbenzene 0.68 0.67 0.91 0.79 39 35 0.71 0.63 <0.01 <0.01 y

1,3,5-Trimethylbenzene 0.71 0.70 0.89 0.64 31 16 0.71 0.59 <0.01 <0.01 y

1,3-Butadiene 0.60 0.59 - - 49 - - - - - y

2,2,4-Trimethylpentane - - 0.89 0.66 - 37 - - - -

Acetone 0.04 -0.01 0.15 0.26 67 73 -0.06 0.14 - 0.17

Acetonitrile 0.01 0.42 0.40 0.49 102 65 -0.17 -0.20 0.23 0.01

Acetylene 0.54 0.63 - - 26 - - - - - y

Benzene 0.83 0.73 0.82 0.66 19 36 0.81 0.71 0.07 <0.01 y

Carbon tetrachloride 0.02 0.27 0.78 0.84 23 19 0.23 0.17 0.01 <0.01

Chloromethane -0.02 0.45 0.44 0.42 12 27 0.32 0.32 0.98 0.47

Dichlorodifluoromethane 0.75 0.75 0.70 0.68 4 29 0.47 0.61 <0.01 <0.01 y

Ethylbenzene 0.69 0.65 0.92 0.88 44 16 0.78 0.66 <0.01 <0.01 y

Hexane - - 0.48 0.60 - 63 - - - -

m,p-Xylene 0.60 0.71 0.92 0.88 35 24 0.80 0.67 <0.01 <0.01 y

Methyl ethyl ketone 0.66 0.65 - - 50 - - - - - y

Methylene chloride 0.05 0.44 0.10 0.71 71 62 0.14 0.31 0.14 0.36

n-Octane 0.28 0.56 - - 53 - - - - - y

o-Xylene 0.63 0.79 0.93 0.83 39 30 0.79 0.67 <0.01 <0.01 y

Propylene 0.90 0.70 - - 33 - - - - - y

Tetrachloroethylene 0.82 0.77 0.39 0.53 28 63 0.64 0.61 0.65 0.73 y

Toluene 0.82 0.73 0.93 0.82 28 37 0.50 0.62 1.00 0.04 y

Trichlorofluoromethane 0.66 0.57 0.57 0.60 10 28 0.33 0.42 0.04 0.02 y

Trichlorotrifluroethane 0.76 0.52 - - 10 - - - - - y

Intra-laboratory reproducibility

Compound

Inter-laboratory reproducibility
Retained 

(y=yes)
Correl coeff-ERG Correl coeff-MDEQ Correl coeff Paired t-test 

(p-value)

WSR test 

(p-value)

% COV
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Table 4- 3. Performance indicators for MI and OLE estimates.   

Bold values show highest performing model in group.  Abbreviations: lag0=current day 

observation; lag1=current and previous day observations; lead1=current and next day 

observations; LL1=current, previous and next day observations; SD=standard deviation; 

d2=Willmot’s index of agreement; R2=coefficient of determination; MAE=mean 

absolute error. 

lag0 lag1 lead1 LL1

Acetaldehyde

Random d2 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.00) 0.86 0.89 0.74 0.88

R
2

0.83 (0.02) 0.80 (0.02) 0.83 (0.02) 0.83 (0.01) 0.69 0.72 0.51 0.70

MAE 0.29 (0.03) 0.30 (0.03) 0.30 (0.02) 0.30 (0.01) 0.30 0.26 0.46 0.28

Row-wise d2 0.58 (0.05) 0.67 (0.04) 0.51 (0.05) 0.63 (0.06) 0.67 0.63 0.47 0.46

R
2

0.11 (0.05) 0.20 (0.06) 0.04 (0.02) 0.14 (0.08) 0.32 0.26 0.09 0.11

MAE 0.87 (0.08) 0.85 (0.12) 0.91 (0.04) 0.87 (0.06) 0.62 0.66 0.83 0.79

Benzaldehyde

Random d2 0.80 (0.03) 0.83 (0.02) 0.76 (0.05) 0.76 (0.01) 0.88 0.82 0.77 0.83

R
2

0.46 (0.07) 0.55 (0.03) 0.38 (0.10) 0.38 (0.03) 0.62 0.48 0.44 0.51

MAE 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Row-wise d2 0.48 (0.06) 0.54 (0.03) 0.35 (0.05) 0.38 (0.05) 0.50 0.57 0.25 0.31

R
2

0.05 (0.05) 0.09 (0.02) 0.01 (0.01) 0.00 (0.01) 0.07 0.13 0.02 0.00

MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.05 (0.00) 0.00 0.00 0.00 0.00

Formaldehyde

Random d2 0.84 (0.02) 0.80 (0.04) 0.85 (0.01) 0.81 (0.04) 0.86 0.82 0.84 0.83

R
2

0.53 (0.05) 0.44 (0.07) 0.54 (0.03) 0.45 (0.09) 0.63 0.62 0.69 0.63

MAE 0.80 (0.03) 0.90 (0.10) 0.81 (0.03) 0.86 (0.05) 0.72 0.78 0.69 0.77

Row-wise d2 0.51 (0.06) 0.53 (0.03) 0.40 (0.06) 0.40 (0.06) 0.52 0.54 0.33 0.33

R
2

0.05 (0.04) 0.06 (0.03) 0.01 (0.01) 0.01 (0.01) 0.09 0.11 0.00 0.00

MAE 1.49 (0.14) 1.58 (0.12) 1.79 (0.14) 1.79 (0.14) 2.37 2.31 2.65 2.65

Benzene

Random d2 0.87 (0.03) 0.84 (0.01) 0.87 (0.02) 0.84 (0.02) 0.89 0.85 0.84 0.79

R
2

0.61 (0.08) 0.52 (0.03) 0.59 (0.06) 0.52 (0.05) 0.71 0.63 0.63 0.52

MAE 0.17 (0.02) 0.18 (0.01) 0.17 (0.01) 0.18 (0.01) 0.03 0.04 0.04 0.04

Row-wise d2 0.64 (0.04) 0.63 (0.03) 0.58 (0.06) 0.57 (0.06) 0.63 0.65 0.64 0.53

R
2

0.20 (0.05) 0.18 (0.03) 0.13 (0.05) 0.12 (0.05) 0.22 0.25 0.24 0.17

MAE 0.26 (0.02) 0.28 (0.02) 0.28 (0.03) 0.27 (0.01) 0.07 0.07 0.07 0.08

1,3-Butadiene

Random d2 0.89 (0.02) 0.89 (0.01) 0.87 (0.01) 0.87 (0.02) 0.78 0.74 0.62 0.63

R
2

0.65 (0.06) 0.65 (0.03) 0.58 (0.03) 0.58 (0.04) 0.68 0.67 0.52 0.52

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Row-wise d2 0.58 (0.04) 0.50 (0.03) 0.52 (0.08) 0.46 (0.05) 0.49 0.43 0.41 0.30

R
2

0.09 (0.03) 0.05 (0.03) 0.07 (0.05) 0.03 (0.03) 0.13 0.08 0.07 0.03

MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00

Tetrachloroethylene

Random d2 0.30 (0.07) 0.27 (0.03) 0.31 (0.06) 0.33 (0.06) 0.22 0.27 0.26 0.23

R
2

0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 0.03 0.03 0.00

MAE 0.08 (0.01) 0.08 (0.00) 0.08 (0.00) 0.07 (0.00) 0.01 0.01 0.01 0.01

Row-wise d2 0.41 (0.11) 0.38 (0.10) - - 0.32 (0.06) 0.37 0.30 - 0.27

R
2

0.03 (0.02) 0.02 (0.01) - - 0.01 (0.00) 0.15 0.09 - 0.08

MAE 0.07 (0.01) 0.08 (0.01) - - 0.07 (0.01) 0.01 0.01 - 0.01

Performance 

indicators

Optimal estimation

lag0(SD) lag1(SD) lead1(SD) LL1(SD)

Multiple imputation
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Table S4- 1. Statistics of concentrations at Dearborn, Michigan for VOCs and carbonyls 

analyzed by Eastern Research Group (ERG) laboratory.   

DF=detection frequency; MDL=method detection limit. 

Compound N DF Min Mean SD Max N DF Min Mean SD Max MDL

(%) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)

Carbonyls

2,5-Dimethylbenzaldehyde 266 31 0.003 0.009 0.020 0.280 54 31 0.003 0.010 0.022 0.147 0.005

Acetaldehyde 266 100 0.007 1.203 0.998 4.406 54 100 0.024 0.972 0.604 3.056 0.014

Acetone 266 100 0.017 1.474 1.247 5.770 54 100 0.025 1.198 0.875 4.611 0.008

Benzaldehyde 266 98 0.002 0.050 0.043 0.422 54 98 0.002 0.048 0.035 0.152 0.004

Crotonaldehyde 266 79 0.003 0.027 0.051 0.309 54 80 0.003 0.021 0.044 0.307 0.006

Formaldehyde 266 100 0.008 2.406 1.972 20.980 54 100 0.019 2.373 1.512 7.061 0.016

Hexaldehyde 266 100 0.002 0.123 0.167 0.722 54 96 0.002 0.091 0.123 0.583 0.004

iso-Butyraldehyde 266 99 0.003 0.206 0.175 0.801 54 98 0.003 0.158 0.099 0.601 0.005

iso-Valeraldehyde 266 22 0.002 0.020 0.058 0.377 54 17 0.002 0.024 0.076 0.380 0.004

Propionaldehyde 266 89 0.004 0.147 0.153 1.440 54 93 0.004 0.124 0.082 0.377 0.007

Tolualdehydes 266 92 0.004 0.045 0.051 0.591 54 96 0.004 0.045 0.038 0.193 0.008

Valeraldehyde 266 90 0.002 0.061 0.067 0.377 54 94 0.002 0.040 0.034 0.213 0.003

VOCs

1,1,1-Trichloroethane 282 5 0.030 0.033 0.014 0.167 52 4 0.030 0.032 0.008 0.072 0.060

1,1,2,2-Tetrachloroethane 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

1,1,2-Trichloroethane 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

1,1-Dichloroethane 282 0 0.040 0.040 0.000 0.040 52 0 0.040 0.040 0.000 0.040 0.080

1,1-Dichloroethene 282 0 0.050 0.050 0.000 0.050 52 0 0.050 0.050 0.000 0.050 0.100

1,2,4-Trichlorobenzene 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

1,2,4-Trimethylbenzene 282 91 0.035 0.212 0.138 1.029 52 85 0.035 0.195 0.146 0.854 0.070

1,2-Dibromoethane 282 0 0.040 0.040 0.000 0.040 52 0 0.040 0.040 0.000 0.040 0.080

1,2-Dichlorobenzene 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

1,2-Dichloroethane 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

1,2-Dichloropropane 282 0 0.035 0.035 0.000 0.035 52 0 0.035 0.035 0.000 0.035 0.070

1,3,5-Trimethylbenzene 282 39 0.035 0.065 0.046 0.312 52 38 0.035 0.081 0.125 0.900 0.070

1,3-Butadiene 282 26 0.035 0.057 0.045 0.292 52 27 0.035 0.060 0.045 0.209 0.070

1,3-Dichlorobenzene 282 0 0.025 0.025 0.000 0.025 52 0 0.025 0.025 0.000 0.025 0.050

1,4-Dichlorobenzene 282 1 0.045 0.046 0.008 0.142 52 6 0.045 0.049 0.016 0.130 0.090

2-Chloro-1,3-Butadiene 282 0 0.050 0.050 0.000 0.050 52 0 0.050 0.050 0.000 0.050 0.100

Acetonitrile 282 35 0.125 1.790 6.893 102.600 52 38 0.125 2.093 3.671 14.080 0.250

Acetylene 282 99 0.065 1.675 0.781 6.480 52 100 0.690 1.767 0.892 4.460 0.130

Acrylonitrile 282 0 0.105 0.105 0.000 0.105 52 0 0.105 0.105 0.000 0.105 0.210

Benzene 282 100 0.231 0.615 0.316 2.173 52 100 0.240 0.600 0.306 1.713 0.040

Benzyl chloride 282 0 0.035 0.035 0.000 0.035 52 0 0.035 0.035 0.000 0.035 0.070

Bromochloromethane 282 0 0.060 0.060 0.000 0.060 52 0 0.060 0.060 0.000 0.060 0.120

Bromodichloromethane 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

Bromoform 282 0 0.040 0.040 0.000 0.040 52 2 0.040 0.054 0.101 0.770 0.080

Bromomethane 282 0 0.045 0.045 0.000 0.045 52 0 0.045 0.045 0.000 0.045 0.090

Carbon tetrachloride 282 91 0.040 0.100 0.024 0.170 52 88 0.040 0.096 0.024 0.140 0.080

Chlorobenzene 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

Chloroethane 282 1 0.040 0.044 0.041 0.626 52 6 0.040 0.044 0.017 0.120 0.080

ERG laboratory-Sample 1 ERG laboratory-Sample 2
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Table S4-1. (Cont.) 

Compound N DF Min Mean SD Max N DF Min Mean SD Max MDL

(%) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)

Chloroform 282 2 0.025 0.026 0.004 0.065 52 0 0.025 0.025 0.000 0.025 0.050

Chloromethane 282 100 0.408 0.608 0.082 0.988 52 100 0.480 0.600 0.098 1.190 0.060

2-Chloro-1,3-Butadiene 282 0 0.050 0.050 0.000 0.050 52 0 0.050 0.050 0.000 0.050 0.100

cis-1,2-Dichloroethylene 282 0 0.050 0.051 0.019 0.370 52 0 0.050 0.050 0.000 0.050 0.100

cis-1,3-Dichloroprene 282 0 0.050 0.050 0.000 0.050 52 0 0.050 0.050 0.000 0.050 0.100

Dibromochloromethane 282 0 0.040 0.040 0.000 0.040 52 0 0.040 0.040 0.000 0.040 0.080

Dichlorodifluoromethane 282 100 0.460 0.634 0.079 1.079 52 100 0.520 0.619 0.043 0.712 0.040

Dichlorotetrafluoroethane 282 0 0.025 0.025 0.000 0.025 52 0 0.025 0.025 0.000 0.025 0.050

Ethyl acrylate 282 0 0.080 0.080 0.000 0.080 52 0 0.080 0.080 0.000 0.080 0.160

Ethylbenzene 282 98 0.020 0.192 0.157 1.894 52 90 0.020 0.168 0.122 0.647 0.040

Ethyl-tert-butyl-ether 282 0 0.075 0.075 0.000 0.075 52 0 0.075 0.075 0.000 0.075 0.150

Hexachloro-1,3-Butadiene 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

m,p-Xylene 282 100 0.100 0.551 0.482 6.082 52 98 0.025 0.489 0.375 1.893 0.050

Methyl ethyl ketone 282 72 0.075 0.604 0.510 2.920 52 73 0.075 0.601 0.446 1.761 0.150

Methyl isobutyl ketone 282 9 0.075 0.102 0.098 0.736 52 12 0.075 0.102 0.086 0.585 0.150

Methyl methacrylate 282 0 0.090 0.090 0.000 0.090 52 0 0.090 0.090 0.000 0.090 0.180

Methylene chloride 282 96 0.030 3.720 11.711 147.770 52 98 0.030 1.488 3.006 16.990 0.060

Methyl-tert-butyl-ether 282 6 0.090 0.102 0.056 0.585 52 8 0.090 0.109 0.073 0.484 0.180

n-Octane 282 32 0.030 0.055 0.058 0.750 52 46 0.030 0.072 0.064 0.310 0.060

o-Xylene 282 98 0.025 0.220 0.188 2.502 52 90 0.025 0.204 0.166 0.899 0.050

Propylene 282 100 0.110 1.210 1.474 14.137 52 100 0.180 1.248 1.842 11.490 0.050

Styrene 282 7 0.035 0.039 0.017 0.173 52 4 0.035 0.037 0.011 0.093 0.070

Tert-amyl-methyl-ether 282 0 0.060 0.060 0.000 0.060 52 0 0.060 0.060 0.000 0.060 0.120

Tertrachloroethylene 282 34 0.030 0.064 0.080 0.670 52 35 0.030 0.053 0.037 0.160 0.060

Toluene 282 100 0.250 1.112 1.099 13.428 52 100 0.210 1.057 0.929 6.431 0.060

trans-1,2-Dichloroethylene 282 0 0.030 0.030 0.004 0.090 52 0 0.030 0.030 0.000 0.030 0.060

trans-1,3-Dichloropropene 282 0 0.055 0.055 0.000 0.055 52 0 0.055 0.055 0.000 0.055 0.110

Trichloroethylene 282 1 0.035 0.043 0.085 1.268 52 4 0.035 0.329 2.099 15.172 0.070

Trichlorofluoromethane 282 100 0.020 0.321 0.120 1.540 52 100 0.190 0.299 0.052 0.497 0.040

Trichlorotrifluroethane 282 100 0.035 0.111 0.024 0.194 52 100 0.080 0.108 0.021 0.150 0.070

Vinyl chloride 282 0 0.030 0.030 0.000 0.030 52 0 0.030 0.030 0.000 0.030 0.060

ERG laboratory-Sample 1 ERG laboratory-Sample 2
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Table S4- 2. Statistics of concentrations at Dearborn, Michigan for VOCs and carbonyls 

analyzed by Michigan Department of Environmental Quality (MDEQ) laboratory.   

TFE=trifluoroethane; TTFE=tetrafluoroethane; DF=detection frequency; MDL=method 

detection limit. 

Compound N DF Min Mean SD Max N DF Min Mean SD Max MDL

(%) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)

Carbonyls

2,5-Dimethylbenzaldehyde 54 2 0.002 0.005 0.028 0.210 59 2 0.002 0.005 0.028 0.210 0.003

Acetaldehyde 54 89 0.005 1.005 1.207 6.721 59 98 0.005 1.005 1.207 6.721 0.009

Acetone 54 94 0.005 1.150 1.164 5.204 59 98 0.005 1.150 1.164 5.204 0.011

Benzaldehyde 54 72 0.002 0.042 0.085 0.509 59 56 0.002 0.042 0.085 0.509 0.004

Crotonaldehyde 54 24 0.004 0.016 0.030 0.139 59 14 0.004 0.016 0.030 0.139 0.008

Formaldehyde 54 91 0.004 2.046 1.689 8.735 59 97 0.004 2.046 1.689 8.735 0.008

Hexaldehyde 54 69 0.003 0.098 0.205 1.191 59 71 0.003 0.098 0.205 1.191 0.005

iso-Valeraldehyde 54 46 0.006 0.064 0.105 0.525 59 61 0.006 0.064 0.105 0.525 0.012

m,p-Tolualdehyde 54 31 0.001 0.017 0.033 0.161 59 29 0.001 0.017 0.033 0.161 0.002

n-Butyraldehyde 54 81 0.003 0.127 0.228 1.274 59 88 0.003 0.127 0.228 1.274 0.007

o-Tolualdehyde 54 4 0.001 0.002 0.003 0.020 59 0 0.001 0.002 0.003 0.020 0.002

Propionaldehyde 54 63 0.041 0.207 0.246 1.056 59 75 0.041 0.207 0.246 1.056 0.083

Valeraldehyde 54 31 0.011 0.053 0.096 0.519 59 34 0.011 0.053 0.096 0.519 0.022

VOCs

1,1,1-Trichloroethane 57 5 0.024 0.026 0.007 0.057 58 2 0.024 0.026 0.007 0.057 0.048

1,1,2,2-Tetrachloroethane 57 0 0.041 0.041 0.000 0.041 58 0 0.041 0.041 0.000 0.041 0.081

1,1,2-Trichloro-1,2,2-TFE 57 95 0.017 0.083 0.023 0.178 58 95 0.017 0.083 0.023 0.178 0.034

1,1,2-Trichloroethane 57 0 0.024 0.024 0.000 0.024 58 0 0.024 0.024 0.000 0.024 0.048

1,1-Dichloroethane 57 0 0.045 0.045 0.000 0.045 58 0 0.045 0.045 0.000 0.045 0.089

1,1-Dichloroethene 57 0 0.023 0.023 0.000 0.023 58 2 0.023 0.023 0.000 0.023 0.046

1,2,4-Trichlorobenzene 57 2 0.041 0.042 0.009 0.110 58 0 0.041 0.042 0.009 0.110 0.081

1,2,4-Trimethylbenzene 57 86 0.031 0.174 0.122 0.589 58 83 0.031 0.174 0.122 0.589 0.062

1,2-Dibromoethane 57 0 0.027 0.027 0.000 0.027 58 0 0.027 0.027 0.000 0.027 0.054

1,2-Dichloro-1,1,2,2-TTFE 57 0 0.021 0.021 0.000 0.021 58 0 0.021 0.021 0.000 0.021 0.042

1,2-Dichlorobenzene 57 2 0.033 0.034 0.007 0.085 58 0 0.033 0.034 0.007 0.085 0.066

1,2-Dichloroethane 57 0 0.043 0.043 0.000 0.043 58 0 0.043 0.043 0.000 0.043 0.086

1,2-Dichloropropane 57 0 0.030 0.030 0.000 0.030 58 0 0.030 0.030 0.000 0.030 0.059

1,3,5-Trimethylbenzene 57 30 0.029 0.047 0.034 0.161 58 28 0.029 0.047 0.034 0.161 0.057

1,3-Butadiene 57 0 0.020 0.020 0.000 0.020 58 2 0.020 0.020 0.000 0.020 0.040

1,3-Dichlorobenzene 57 2 0.027 0.027 0.007 0.079 58 0 0.027 0.027 0.007 0.079 0.053

1,4-Dichlorobenzene 57 7 0.027 0.030 0.015 0.106 58 7 0.027 0.030 0.015 0.106 0.053

2,2,4-Trimethylpentane 57 96 0.009 0.118 0.085 0.523 58 98 0.009 0.118 0.085 0.523 0.017

2-Chloro-1,3-Butadiene 57 0 0.015 0.015 0.000 0.015 58 0 0.015 0.015 0.000 0.015 0.030

Acetonitrile 57 70 0.260 1.563 2.773 15.530 58 74 0.260 1.563 2.773 15.530 0.520

Acrylonitrile 57 0 0.195 0.195 0.000 0.195 58 0 0.195 0.195 0.000 0.195 0.390

Benzene 57 96 0.035 0.546 0.397 2.494 58 100 0.035 0.546 0.397 2.494 0.070

Benzyl chloride 57 0 0.038 0.038 0.000 0.038 58 0 0.038 0.038 0.000 0.038 0.076

Bromodichloromethane 57 0 0.037 0.037 0.000 0.037 58 0 0.037 0.037 0.000 0.037 0.073

Bromoform 57 0 0.030 0.030 0.000 0.030 58 0 0.030 0.030 0.000 0.030 0.059

Bromomethane 57 4 0.020 0.022 0.010 0.092 58 0 0.020 0.022 0.010 0.092 0.040

MDEQ laboratory-Sample 1 MDEQ laboratory-Sample 2
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Table S4-2. (Cont.) 

Compound N DF Min Mean SD Max N DF Min Mean SD Max MDL

(%) (ppbv) (ppbv) (ppbv) (ppbv) (%) (ppbv) (ppbv) (ppbv) (ppbv) (ppbv)

Carbon tetrachloride 57 95 0.019 0.090 0.020 0.125 58 95 0.019 0.090 0.020 0.125 0.038

Chlorobenzene 57 2 0.020 0.021 0.004 0.049 58 2 0.020 0.021 0.004 0.049 0.040

Chloroethane 57 0 0.020 0.020 0.000 0.020 58 17 0.020 0.020 0.000 0.020 0.040

Chloroform 57 0 0.034 0.034 0.000 0.034 58 0 0.034 0.034 0.000 0.034 0.068

Chloromethane 57 98 0.031 0.568 0.169 1.426 58 100 0.031 0.568 0.169 1.426 0.062

2-Chloro-1,3-Butadiene 57 0 0.015 0.015 0.000 0.015 58 0 0.015 0.015 0.000 0.015 0.030

cis-1,2-Dichloroethylene 57 0 0.029 0.029 0.000 0.029 58 0 0.029 0.029 0.000 0.029 0.057

cis-1,3-Dichloroprene 57 0 0.027 0.027 0.000 0.027 58 0 0.027 0.027 0.000 0.027 0.054

Dibromochloromethane 57 0 0.030 0.030 0.000 0.030 58 0 0.030 0.030 0.000 0.030 0.059

Dichlorodifluoromethane 57 98 0.024 0.554 0.129 0.846 58 100 0.024 0.554 0.129 0.846 0.048

Ethylbenzene 57 68 0.042 0.118 0.086 0.413 58 48 0.042 0.118 0.086 0.413 0.083

Hexachloro-1,3-Butadiene 57 0 0.032 0.032 0.000 0.032 58 0 0.032 0.032 0.000 0.032 0.063

Hexane 57 21 0.250 0.427 0.482 3.318 58 22 0.250 0.427 0.482 3.318 0.500

m,p-Xylene 57 70 0.100 0.319 0.244 1.198 58 53 0.100 0.319 0.244 1.198 0.200

Methyl ethyl ketone 57 0 0.850 0.850 0.000 0.850 58 0 0.850 0.850 0.000 0.850 1.700

Methyl isobutyl ketone 57 0 0.420 0.420 0.000 0.420 58 0 0.420 0.420 0.000 0.420 0.840

Methylene chloride 57 82 0.115 1.621 3.545 22.196 58 81 0.115 1.621 3.545 22.196 0.230

Methyl-tert-butyl-ether 57 5 0.031 0.040 0.044 0.292 58 3 0.031 0.040 0.044 0.292 0.061

o-Xylene 57 89 0.022 0.139 0.098 0.487 58 88 0.022 0.139 0.098 0.487 0.043

Styrene 57 7 0.027 0.031 0.016 0.132 58 5 0.027 0.031 0.016 0.132 0.054

Tertrachloroethylene 57 33 0.036 0.064 0.053 0.343 58 22 0.036 0.064 0.053 0.343 0.071

Toluene 57 98 0.035 0.932 0.685 3.473 58 100 0.035 0.932 0.685 3.473 0.070

trans-1,2-Dichloroethylene 57 0 0.043 0.043 0.000 0.043 58 0 0.043 0.043 0.000 0.043 0.087

trans-1,3-Dichloropropene 57 0 0.031 0.031 0.000 0.031 58 0 0.031 0.031 0.000 0.031 0.062

Trichloroethylene 57 7 0.019 0.022 0.012 0.084 58 3 0.019 0.022 0.012 0.084 0.038

Trichlorofluoromethane 57 96 0.024 0.273 0.073 0.500 58 100 0.024 0.273 0.073 0.500 0.048

Vinyl chloride 57 0 0.022 0.022 0.000 0.022 58 0 0.022 0.022 0.000 0.022 0.044

MDEQ laboratory-Sample 1 MDEQ laboratory-Sample 2
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Table S4- 3. Outlier analysis using Gumbel distribution (type I).   

ERG= Eastern Research Group; MDEQ= Michigan Department of Environmental 

Quality. 
 

Concentration

(ppbv)

Carbonyls

Formaldehyde 4/12/2002 20.98 ERG 1

Hexaldehyde 8/5/2001 1.19 MDEQ 1

Tolualdehyde 7/29/2001 0.59 ERG 1

VOCs

10/10/2001 14.14 ERG 1

10/31/2001 11.49 ERG 1

n-Octane 3/11/2002 0.75 ERG 1

7/2/2001 61.71 ERG 1

7/13/2001 61.41 ERG 1

7/18/2001 199.27 MDEQ 2

2/25/2002 51.19 ERG 1

3/3/2002 147.77 ERG 1

9/17/2001 6.08 ERG 1

3/11/2002 3.49 ERG 1

9/17/2001 1.89 ERG 1

3/11/2002 1.26 ERG 1

o-Xylene 9/17/2001 2.50 ERG 1

1,3,5-Trimethylbenzene 8/20/2001 0.90 ERG 2

5/20/2001 13.43 ERG 1

9/17/2001 8.70 ERG 1

Ethylbenzene

Toluene

Sample

Propylene

Methylene chloride

m,p-Xylene

Compound Date Laboratory

 



 

Table S4- 4. Spearman rank correlation coefficients between air toxics and criteria pollutants and meteorological variables.   

Variable dictionary is shown in Table S4-8. 
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Criteria pollutants

APCO_24HR 0.30 0.25 0.30 0.11 0.21 0.26 0.12 0.60 0.57 0.43 0.15 0.49 0.18 0.48 0.21 0.50 0.48 0.20 0.12 -0.01 0.49 0.46 0.53

AP_PM25 0.41 0.43 0.39 0.40 0.31 0.38 0.34 0.25 0.45 0.12 0.17 0.39 0.56 0.39 0.22 0.41 0.38 0.16 0.28 -0.05 0.41 0.36 0.47

DB_pm10 0.19 0.22 0.15 0.06 0.09 0.18 0.15 0.09 0.10 -0.03 0.02 0.07 0.26 0.06 0.09 0.05 0.20 -0.09 -0.02 -0.06 0.03 0.08 0.05

E7MNO2_24HR 0.19 0.14 0.19 -0.03 0.15 0.17 -0.01 0.54 0.38 0.29 0.08 0.30 0.10 0.28 0.16 0.28 0.52 0.05 -0.02 0.10 0.27 0.20 0.28

E7MSO2_24HR 0.21 0.18 0.14 0.17 0.13 0.22 0.11 0.23 0.31 0.06 0.05 0.06 0.28 0.05 0.09 0.11 0.38 0.07 -0.02 -0.02 0.10 0.08 0.21

LWCO_24HR 0.30 0.30 0.31 0.09 0.21 0.27 0.16 0.54 0.49 0.38 0.09 0.47 0.22 0.46 0.21 0.47 0.58 0.13 0.11 0.04 0.42 0.39 0.47

LWNO2_24HR 0.27 0.30 0.30 0.15 0.23 0.24 0.18 0.47 0.48 0.19 0.03 0.35 0.20 0.33 0.16 0.35 0.48 0.09 -0.07 0.03 0.31 0.24 0.36

LWSO2_24HR 0.17 0.17 0.14 0.12 0.08 0.16 0.11 0.33 0.38 0.09 -0.05 0.15 0.21 0.15 0.15 0.20 0.47 0.09 -0.01 -0.02 0.18 0.13 0.26

LW_PM25 0.23 0.21 0.18 0.14 0.09 0.21 0.15 0.27 0.37 -0.03 0.00 0.19 0.33 0.17 0.11 0.19 0.35 0.06 0.03 -0.05 0.18 0.13 0.27

Meteorology

DPTP_DTW 0.54 0.61 0.51 0.70 0.45 0.53 0.54 -0.10 0.24 0.05 0.36 0.36 0.71 0.39 0.18 0.40 0.21 0.16 0.43 -0.11 0.39 0.31 0.45

MIX_HT 0.12 0.25 0.16 0.31 0.09 0.17 0.24 -0.30 -0.20 -0.18 0.14 -0.09 0.16 -0.08 -0.02 -0.09 -0.19 -0.06 0.00 -0.11 -0.09 -0.09 -0.10

MNRH_DTW -0.12 -0.17 -0.12 -0.18 -0.14 -0.15 -0.14 0.05 0.03 0.00 -0.12 -0.01 -0.11 -0.01 -0.05 -0.01 0.14 0.05 0.03 0.13 -0.04 -0.01 -0.06

MNTP_DTW 0.54 0.62 0.51 0.71 0.46 0.54 0.54 -0.12 0.20 0.02 0.37 0.34 0.72 0.37 0.18 0.38 0.16 0.13 0.41 -0.16 0.38 0.29 0.44

MXRH_DTW 0.19 0.13 0.17 0.17 0.15 0.13 0.12 0.10 0.19 0.16 0.04 0.23 0.17 0.23 0.06 0.22 0.25 0.13 0.18 0.09 0.21 0.16 0.21

PRCP_DTW -0.08 -0.10 -0.07 -0.01 -0.07 -0.10 -0.11 -0.14 -0.07 -0.14 -0.12 -0.08 -0.04 -0.08 -0.14 -0.09 0.04 -0.04 -0.09 0.05 -0.08 -0.13 -0.11

PRES_DTW 0.03 0.04 0.05 0.00 0.10 0.02 -0.03 0.23 0.21 0.24 0.05 0.18 0.01 0.17 0.10 0.21 0.05 0.04 0.06 -0.01 0.21 0.15 0.24

RWND_DTW -0.37 -0.44 -0.36 -0.43 -0.32 -0.34 -0.29 -0.38 -0.59 -0.41 -0.26 -0.52 -0.44 -0.53 -0.24 -0.57 -0.25 -0.36 -0.28 0.17 -0.60 -0.54 -0.65

SLVP_DTW 0.00 0.00 0.01 -0.05 0.07 -0.01 -0.07 0.24 0.19 0.24 0.03 0.15 -0.04 0.14 0.09 0.18 0.04 0.02 0.04 0.01 0.18 0.13 0.20

WDIR_S1 0.14 0.16 0.16 0.23 0.16 0.15 0.11 0.18 0.22 0.25 0.24 0.26 0.15 0.28 0.14 0.32 -0.03 0.09 0.27 -0.06 0.36 0.31 0.37

WDIR_S2 0.12 0.09 0.15 0.17 0.15 0.08 0.08 0.13 0.28 0.11 0.08 0.15 0.13 0.15 0.09 0.19 0.02 0.14 0.08 -0.09 0.21 0.13 0.27

WDIR_S3 0.13 0.13 0.11 0.20 0.12 0.09 0.08 0.09 0.42 0.12 0.10 0.14 0.27 0.13 0.09 0.17 0.07 0.21 0.09 -0.09 0.20 0.14 0.27

WDIR_S4 0.23 0.21 0.17 0.20 0.18 0.19 0.09 0.13 0.36 0.07 0.09 0.11 0.32 0.10 0.17 0.15 0.42 0.06 0.11 0.03 0.11 0.08 0.21

WDIR_S5 0.07 -0.02 -0.02 -0.12 -0.01 0.05 -0.08 0.03 -0.08 -0.10 -0.16 -0.12 -0.03 -0.13 0.03 -0.14 0.30 -0.30 -0.11 0.11 -0.18 -0.15 -0.15

WDIR_S6 -0.16 -0.12 -0.12 -0.21 -0.16 -0.14 -0.10 -0.19 -0.35 -0.20 -0.16 -0.13 -0.21 -0.13 -0.18 -0.22 -0.26 -0.19 -0.16 -0.04 -0.23 -0.14 -0.33

WDIR_S7 -0.15 -0.06 -0.07 -0.07 -0.09 -0.11 0.03 -0.14 -0.24 -0.01 0.03 0.09 -0.14 0.10 -0.13 0.03 -0.23 0.14 -0.04 -0.15 0.05 0.07 -0.08

WDIR_S8 -0.01 0.03 0.00 0.11 0.10 0.01 0.08 -0.02 -0.05 0.16 0.10 0.07 -0.03 0.08 0.01 0.11 -0.19 0.16 0.06 -0.08 0.15 0.13 0.14
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Table S4- 5. Spearman rank correlation coefficients between selected carbonyls and VOCs.   

Variable dictionary is shown in Table S4-8. 
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Carbonyls
ACETALD 1.00

BNZALD 0.80 1.00

FORMALD 0.90 0.79 1.00

HEXALD 0.77 0.87 0.75 1.00

IBUTYRAL 0.85 0.69 0.80 0.72 1.00

PROPIONALD 0.95 0.80 0.87 0.79 0.80 1.00

TOLUALD 0.66 0.71 0.63 0.76 0.57 0.69 1.00

VOCs

ACETYL 0.30 0.24 0.30 0.11 0.20 0.28 0.14 1.00

BNZ 0.41 0.41 0.38 0.31 0.29 0.37 0.27 0.69 1.00

BUTADNE 0.40 0.36 0.41 0.24 0.35 0.36 0.21 0.54 0.52 1.00

DCDFM 0.38 0.33 0.36 0.40 0.39 0.39 0.31 0.22 0.24 0.26 1.00

EBNZ 0.44 0.44 0.45 0.34 0.37 0.38 0.32 0.51 0.67 0.55 0.37 1.00

MEK 0.51 0.59 0.48 0.58 0.47 0.50 0.42 0.16 0.45 0.25 0.40 0.47 1.00

MPX 0.45 0.46 0.47 0.38 0.39 0.40 0.36 0.49 0.66 0.55 0.39 0.99 0.48 1.00

NOCTANE 0.36 0.30 0.31 0.26 0.27 0.34 0.26 0.32 0.44 0.52 0.24 0.44 0.32 0.43 1.00

OXY 0.49 0.50 0.49 0.42 0.40 0.44 0.38 0.53 0.72 0.57 0.40 0.97 0.51 0.97 0.47 1.00

PROPYL 0.47 0.34 0.42 0.24 0.35 0.42 0.25 0.58 0.57 0.47 0.24 0.47 0.27 0.47 0.39 0.50 1.00

TCEL 0.10 0.19 0.15 0.15 0.05 0.08 0.12 0.33 0.43 0.35 0.11 0.40 0.27 0.40 0.30 0.43 0.17 1.00

TCFM 0.42 0.34 0.39 0.42 0.37 0.41 0.35 0.16 0.24 0.28 0.69 0.39 0.35 0.42 0.28 0.43 0.31 0.06 1.00

TCTFE 0.12 -0.12 0.08 -0.04 0.15 0.07 -0.04 0.05 0.01 0.17 0.09 0.02 -0.01 0.00 0.16 -0.02 0.17 -0.11 0.06 1.00

TMBNZ_124 0.46 0.47 0.47 0.40 0.38 0.40 0.35 0.53 0.70 0.59 0.40 0.94 0.52 0.94 0.45 0.94 0.44 0.44 0.41 -0.03 1.00

TMBNZ_135 0.40 0.45 0.40 0.35 0.31 0.36 0.36 0.52 0.63 0.60 0.35 0.81 0.43 0.81 0.45 0.82 0.40 0.45 0.38 -0.04 0.86 1.00

TOLUENE 0.52 0.55 0.52 0.48 0.43 0.47 0.36 0.57 0.80 0.55 0.37 0.84 0.56 0.84 0.43 0.88 0.51 0.45 0.42 -0.06 0.86 0.75 1.00

V
A
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L

E
S
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Table S4- 6. Variable dictionary 

Variables Descriptions

Carbonyls

ACETALD Acetaldehyde

BNZALD Benzaldehyde

FORMALD Formaldehyde

HEXALD Hexaldehyde

IBUTYRAL iso-Butyraldehyde

PROPIONALD Propionaldehyde

TOLUALD Tolualdehyde

VOCs

ACETYL Acetylene

BNZ Benzene

BUTADNE 1,3-Butadiene

CHLOMET Chloromethane

DCDFM Dichlorodifluoromethane

EBNZ Ethylbenzene

MEK Methyl ethyl ketone

MPX m,p-Xylene

NOCTANE n-Octane

OXY o-Xylene

PROPYL Propylene

TCEL Tetrachloroethylene

TCFM Trichlorofluoromethane

TCTFE Trichlorotrifluoroethane

TMBNZ_124 1,2,4-Trimethylbenzene

TMBNZ_135 1,3,5-Trimethylbenzene

TOLUENE Toluene

Criteria pollutants

APCO_24HR Allen Park-24H CO

AP_PM25 Allen Park-PM2.5

DB_pm10 PM10 at Dearborn

E7MNO2_24HR East Seven Mile-24H NO2

E7MSO2_24HR East Seven Mile-24H SO2

LWCO_24HR Linwood-24H CO

LWNO2_24HR Linwood-24H NO2

LWSO2_24HR Linwood-24H SO2

LW_PM25 Linwood-PM2.5

Meteorology

AWND_DTW Detroit metro airport avg wind speed

DPTP_DTW Detroit metro airport dewpoint

MIX_HT Mixing height

MNRH_DTW Detroit metro airport min relative humidity

MNTP_DTW Detroit metro airport temperature

MXRH_DTW Detroit metro airport max relative humidity

PRCP_DTW Detroit metro airport precipitation

PRES_DTW Detroit metro airport pressure

RDIR_DTW Detroit metro airport resultant wind direction

RWND_DTW Detroit metro airport resultant wind speed

SLVP_DTW Detroit metro airport sea level pressure  
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Table S4- 7. Performance indicators for MI and OLE estimates for carbonyls.   

Bold values show highest performing model in group.  Abbreviations: lag0=current day 

observation; lag1=current and previous day observations; lead1=current and next day 

observations; LL1=current, previous and next day observations; SD=standard deviation; 

d2=Willmot’s index of agreement; R
2
=coefficient of determination; MAE=mean absolute 

error. 

lag0 lag1 lead1 LL1

Acetaldehyde

Random d2 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.00) 0.86 0.89 0.74 0.88

R
2

0.83 (0.02) 0.80 (0.02) 0.83 (0.02) 0.83 (0.01) 0.69 0.72 0.51 0.70

MAE 0.29 (0.03) 0.30 (0.03) 0.30 (0.02) 0.30 (0.01) 0.30 0.26 0.46 0.28

Block 5 d2 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.94 (0.00) 0.79 0.81 0.71 0.86

R
2

0.84 (0.03) 0.83 (0.02) 0.84 (0.03) 0.82 (0.01) 0.73 0.73 0.69 0.79

MAE 0.30 (0.03) 0.31 (0.01) 0.30 (0.04) 0.31 (0.01) 0.43 0.42 0.57 0.32

Row-wise d2 0.58 (0.05) 0.67 (0.04) 0.51 (0.05) 0.63 (0.06) 0.67 0.63 0.47 0.46

R
2

0.11 (0.05) 0.20 (0.06) 0.04 (0.02) 0.14 (0.08) 0.32 0.26 0.09 0.11

MAE 0.87 (0.08) 0.85 (0.12) 0.91 (0.04) 0.87 (0.06) 0.62 0.66 0.83 0.79

Benzaldehyde

Random d2 0.80 (0.03) 0.83 (0.02) 0.76 (0.05) 0.76 (0.01) 0.88 0.82 0.77 0.83

R
2

0.46 (0.07) 0.55 (0.03) 0.38 (0.10) 0.38 (0.03) 0.62 0.48 0.44 0.51

MAE 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Block 5 d2 0.77 (0.03) 0.72 (0.01) 0.63 (0.07) 0.73 (0.03) 0.55 0.50 0.36 0.51

R
2

0.49 (0.06) 0.43 (0.06) 0.29 (0.11) 0.46 (0.07) 0.41 0.30 0.09 0.32

MAE 0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Row-wise d2 0.48 (0.06) 0.54 (0.03) 0.35 (0.05) 0.38 (0.05) 0.50 0.57 0.25 0.31

R
2

0.05 (0.05) 0.09 (0.02) 0.01 (0.01) 0.00 (0.01) 0.07 0.13 0.02 0.00

MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.05 (0.00) 0.00 0.00 0.00 0.00

Formaldehyde

Random d2 0.84 (0.02) 0.80 (0.04) 0.85 (0.01) 0.81 (0.04) 0.86 0.82 0.84 0.83

R
2

0.53 (0.05) 0.44 (0.07) 0.54 (0.03) 0.45 (0.09) 0.63 0.62 0.69 0.63

MAE 0.80 (0.03) 0.90 (0.10) 0.81 (0.03) 0.86 (0.05) 0.72 0.78 0.69 0.77

Block 5 d2 0.88 (0.03) 0.85 (0.03) 0.86 (0.01) 0.87 (0.04) 0.78 0.79 0.79 0.80

R
2

0.63 (0.09) 0.56 (0.08) 0.58 (0.04) 0.60 (0.10) 0.55 0.65 0.66 0.66

MAE 0.84 (0.11) 0.84 (0.11) 0.87 (0.04) 0.83 (0.12) 1.12 0.99 1.00 0.97

Row-wise d2 0.51 (0.06) 0.53 (0.03) 0.40 (0.06) 0.40 (0.06) 0.52 0.54 0.33 0.33

R
2

0.05 (0.04) 0.06 (0.03) 0.01 (0.01) 0.01 (0.01) 0.09 0.11 0.00 0.00

MAE 1.49 (0.14) 1.58 (0.12) 1.79 (0.14) 1.79 (0.14) 2.37 2.31 2.65 2.65

Performance 

indicators

Optimal estimation

lag0(SD) lag1(SD) lead1(SD) LL1(SD)

Multiple imputation
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Table S4-7. (Cont.) 

lag0 lag1 lead1 LL1

Hexaldehyde

Random d2 0.70 (0.04) 0.82 (0.03) 0.83 (0.02) 0.85 (0.04) 0.69 0.69 0.52 0.81

R
2

0.26 (0.05) 0.46 (0.07) 0.50 (0.04) 0.55 (0.09) 0.29 0.41 0.13 0.54

MAE 0.12 (0.01) 0.09 (0.00) 0.10 (0.01) 0.07 (0.00) 0.02 0.01 0.02 0.01

Block 5 d2 0.71 (0.04) 0.68 (0.03) 0.70 (0.03) 0.76 (0.03) 0.62 0.54 0.56 0.66

R
2

0.32 (0.07) 0.23 (0.07) 0.29 (0.05) 0.37 (0.05) 0.39 0.22 0.24 0.44

MAE 0.12 (0.01) 0.13 (0.01) 0.12 (0.01) 0.12 (0.01) 0.02 0.03 0.03 0.02

Row-wise d2 0.64 (0.03) 0.76 (0.05) 0.64 (0.04) 0.75 (0.03) 0.71 0.74 0.73 0.73

R
2

0.18 (0.04) 0.34 (0.09) 0.17 (0.05) 0.33 (0.06) 0.39 0.45 0.43 0.42

MAE 0.14 (0.01) 0.12 (0.01) 0.14 (0.00) 0.12 (0.01) 0.02 0.02 0.02 0.02

iso-Butyraldehyde

Random d2 0.90 (0.01) 0.90 (0.01) 0.90 (0.01) 0.89 (0.03) 0.79 0.79 0.79 0.79

R
2

0.68 (0.03) 0.68 (0.03) 0.68 (0.03) 0.65 (0.09) 0.74 0.74 0.74 0.67

MAE 0.08 (0.00) 0.08 (0.00) 0.08 (0.00) 0.09 (0.01) 0.02 0.02 0.02 0.02

Block 5 d2 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.85 (0.02) 0.74 0.74 0.74 0.81

R
2

0.52 (0.03) 0.52 (0.03) 0.52 (0.03) 0.58 (0.05) 0.47 0.47 0.47 0.53

MAE 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.09 (0.01) 0.02 0.02 0.02 0.01

Row-wise d2 0.56 (0.10) 0.56 (0.03) 0.37 (0.05) 0.58 (0.08) 0.64 0.44 0.27 0.40

R
2

0.12 (0.08) 0.09 (0.04) 0.01 (0.01) 0.11 (0.05) 0.24 0.06 0.01 0.05

MAE 0.15 (0.02) 0.17 (0.01) 0.18 (0.00) 0.15 (0.01) 0.02 0.02 0.02 0.02

Propionaldehyde

Random d2 0.93 (0.01) 0.93 (0.01) 0.93 (0.00) 0.93 (0.01) 0.84 0.86 0.86 0.87

R
2

0.77 (0.04) 0.78 (0.02) 0.75 (0.02) 0.77 (0.04) 0.72 0.75 0.75 0.76

MAE 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.01) 0.01 0.01 0.01 0.01

Block 5 d2 0.93 (0.01) 0.93 (0.01) 0.92 (0.01) 0.93 (0.01) 0.75 0.79 0.77 0.83

R
2

0.78 (0.03) 0.76 (0.02) 0.74 (0.04) 0.76 (0.02) 0.65 0.71 0.67 0.76

MAE 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.01 0.01 0.01 0.01

Row-wise d2 - - 0.62 (0.04) 0.56 (0.16) 0.68 (0.02) 0.59 0.41 0.27 0.32

R
2

- - 0.16 (0.06) 0.13 (0.14) 0.22 (0.04) 0.22 0.06 0.00 0.01

MAE - - 0.11 (0.01) 0.05 (0.01) 0.11 (0.01) 0.01 0.02 0.02 0.02

Tolualdehyde

Random d2 0.72 (0.04) 0.60 (0.07) 0.54 (0.09) 0.54 (0.09) 0.58 0.54 0.36 0.36

R
2

0.30 (0.07) 0.15 (0.08) 0.10 (0.05) 0.10 (0.05) 0.25 0.23 0.05 0.05

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Block 5 d2 0.66 (0.05) 0.59 (0.06) 0.50 (0.03) 0.50 (0.03) 0.55 0.50 0.39 0.39

R
2

0.22 (0.06) 0.13 (0.06) 0.06 (0.03) 0.06 (0.03) 0.20 0.15 0.05 0.05

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Row-wise d2 0.56 (0.08) 0.51 (0.11) 0.46 (0.13) 0.53 (0.09) 0.64 0.52 0.45 0.52

R
2

0.10 (0.07) 0.06 (0.05) 0.05 (0.09) 0.08 (0.07) 0.26 0.12 0.07 0.12

MAE 0.04 (0.00) 0.04 (0.00) 0.04 (0.01) 0.03 (0.00) 0.00 0.00 0.00 0.00

Performance 

indicators

Multiple imputation Optimal estimation

lag0(SD) lag1(SD) lead1(SD) LL1(SD)
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Table S4- 8. Performance indicators for MI and OLE estimates for VOCs.   

Otherwise as Table S4-9. 

lag0 lag1 lead1 LL1

Acetylene

Random d2 0.84 (0.04) 0.72 (0.02) 0.76 (0.04) 0.66 (0.03) 0.73 0.65 0.59 0.46

R
2

0.52 (0.08) 0.30 (0.04) 0.37 (0.08) 0.19 (0.04) 0.57 0.44 0.39 0.23

MAE 0.51 (0.05) 0.66 (0.04) 0.60 (0.06) 0.71 (0.02) 0.46 0.55 0.60 0.68

Block 5 d2 0.86 (0.02) 0.76 (0.03) 0.81 (0.04) 0.70 (0.03) 0.69 0.60 0.58 0.52

R
2

0.57 (0.05) 0.37 (0.04) 0.44 (0.08) 0.28 (0.04) 0.46 0.36 0.35 0.21

MAE 0.46 (0.02) 0.57 (0.03) 0.59 (0.02) 0.62 (0.03) 0.47 0.55 0.56 0.66

Row-wise d2 0.65 (0.06) 0.65 (0.03) 0.63 (0.07) 0.62 (0.05) 0.45 0.38 0.46 0.37

R
2

0.19 (0.08) 0.18 (0.04) 0.16 (0.08) 0.15 (0.05) 0.09 0.06 0.11 0.04

MAE 0.63 (0.05) 0.67 (0.06) 0.69 (0.06) 0.72 (0.05) 0.60 0.61 0.58 0.63

Benzene

Random d2 0.87 (0.03) 0.84 (0.01) 0.87 (0.02) 0.84 (0.02) 0.89 0.85 0.84 0.79

R
2

0.61 (0.08) 0.52 (0.03) 0.59 (0.06) 0.52 (0.05) 0.71 0.63 0.63 0.52

MAE 0.17 (0.02) 0.18 (0.01) 0.17 (0.01) 0.18 (0.01) 0.03 0.04 0.04 0.04

Block 5 d2 0.85 (0.02) 0.85 (0.04) 0.84 (0.04) 0.83 (0.02) 0.88 0.85 0.84 0.88

R
2

0.55 (0.05) 0.56 (0.09) 0.54 (0.10) 0.49 (0.03) 0.68 0.62 0.60 0.65

MAE 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.20 (0.02) 0.03 0.04 0.04 0.04

Row-wise d2 0.64 (0.04) 0.63 (0.03) 0.58 (0.06) 0.57 (0.06) 0.63 0.65 0.64 0.53

R
2

0.20 (0.05) 0.18 (0.03) 0.13 (0.05) 0.12 (0.05) 0.22 0.25 0.24 0.17

MAE 0.26 (0.02) 0.28 (0.02) 0.28 (0.03) 0.27 (0.01) 0.07 0.07 0.07 0.08

1,3-Butadiene

Random d2 0.89 (0.02) 0.89 (0.01) 0.87 (0.01) 0.87 (0.02) 0.78 0.74 0.62 0.63

R
2

0.65 (0.06) 0.65 (0.03) 0.58 (0.03) 0.58 (0.04) 0.68 0.67 0.52 0.52

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Block 5 d2 0.88 (0.02) 0.86 (0.03) 0.88 (0.02) 0.88 (0.01) 0.76 0.75 0.77 0.78

R
2

0.61 (0.06) 0.56 (0.08) 0.59 (0.05) 0.61 (0.04) 0.50 0.49 0.53 0.56

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Row-wise d2 0.58 (0.04) 0.50 (0.03) 0.52 (0.08) 0.46 (0.05) 0.49 0.43 0.41 0.30

R
2

0.09 (0.03) 0.05 (0.03) 0.07 (0.05) 0.03 (0.03) 0.13 0.08 0.07 0.03

MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00

Dichlorodifluoromethane 

Random d2 0.62 (0.06) 0.58 (0.07) 0.63 (0.05) 0.64 (0.04) 0.52 0.33 0.41 0.52

R
2

0.15 (0.06) 0.12 (0.07) 0.17 (0.04) 0.18 (0.06) 0.12 0.04 0.12 0.25

MAE 0.06 (0.01) 0.06 (0.01) 0.06 (0.00) 0.06 (0.01) 0.01 0.01 0.00 0.00

Block 5 d2 0.59 (0.03) 0.57 (0.06) 0.59 (0.02) 0.58 (0.07) 0.35 0.34 0.37 0.44

R
2

0.16 (0.02) 0.14 (0.07) 0.17 (0.03) 0.15 (0.07) 0.09 0.03 0.11 0.18

MAE 0.06 (0.00) 0.07 (0.00) 0.07 (0.01) 0.07 (0.01) 0.01 0.01 0.01 0.01

Row-wise d2 0.44 (0.12) 0.44 (0.07) 0.45 (0.05) 0.38 (0.09) 0.29 0.46 0.22 0.29

R
2

0.04 (0.05) 0.03 (0.04) 0.03 (0.03) 0.02 (0.02) 0.03 0.16 0.00 0.03

MAE 0.08 (0.01) 0.08 (0.00) 0.09 (0.01) 0.09 (0.01) 0.01 0.01 0.01 0.01

Optimal estimation

lag0(SD) lag1(SD) lead1(SD) LL1(SD)

Multiple imputationPerformance 

indicators
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Table S4-8. (Cont.) 

lag0 lag1 lead1 LL1

Ethylbenzene

Random d2 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.88 0.89 0.88 0.87

R
2

0.96 (0.01) 0.96 (0.00) 0.95 (0.01) 0.96 (0.01) 0.76 0.76 0.75 0.74

MAE 0.02 (0.00) 0.01 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00

Block 5 d2 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.90 0.89 0.85 0.79

R
2

0.97 (0.00) 0.97 (0.00) 0.97 (0.00) 0.97 (0.00) 0.90 0.87 0.86 0.71

MAE 0.02 (0.00) 0.02 (0.00) 0.01 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.01

Row-wise d2 0.58 (0.09) 0.58 (0.05) 0.54 (0.10) 0.60 (0.08) 0.51 0.62 0.51 0.61

R
2

0.12 (0.07) 0.10 (0.05) 0.08 (0.07) 0.13 (0.08) 0.06 0.18 0.07 0.15

MAE 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.01 0.01 0.01 0.01

Methyl ethyl ketone

Random d2 0.74 (0.04) 0.75 (0.05) 0.71 (0.02) 0.75 (0.05) 0.70 0.70 0.57 0.70

R
2

0.32 (0.06) 0.34 (0.08) 0.25 (0.04) 0.33 (0.08) 0.36 0.38 0.18 0.40

MAE 0.38 (0.04) 0.38 (0.02) 0.40 (0.02) 0.39 (0.02) 0.18 0.18 0.23 0.17

Block 5 d2 0.65 (0.05) 0.64 (0.06) 0.63 (0.05) 0.62 (0.07) 0.74 0.75 0.73 0.73

R
2

0.20 (0.06) 0.18 (0.07) 0.19 (0.06) 0.16 (0.07) 0.36 0.38 0.34 0.35

MAE 0.40 (0.03) 0.40 (0.03) 0.45 (0.05) 0.41 (0.03) 0.12 0.12 0.14 0.12

Row-wise d2 0.71 (0.02) 0.69 (0.06) 0.65 (0.03) 0.68 (0.07) 0.82 0.80 0.81 0.80

R
2

0.28 (0.03) 0.25 (0.10) 0.18 (0.05) 0.25 (0.10) 0.49 0.46 0.48 0.45

MAE 0.37 (0.02) 0.38 (0.03) 0.38 (0.04) 0.39 (0.03) 0.10 0.10 0.10 0.11

m,p-Xylene

Random d2 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.88 0.88 0.88 0.88

R
2

0.97 (0.01) 0.97 (0.00) 0.97 (0.00) 0.97 (0.00) 0.77 0.78 0.78 0.78

MAE 0.04 (0.01) 0.04 (0.01) 0.04 (0.00) 0.04 (0.01) 0.03 0.03 0.03 0.03

Block 5 d2 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.87 0.87 0.86 0.87

R
2

0.97 (0.01) 0.97 (0.00) 0.97 (0.00) 0.97 (0.01) 0.74 0.74 0.74 0.75

MAE 0.04 (0.01) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.03 0.03 0.03 0.03

Row-wise d2 0.50 (0.05) 0.56 (0.05) 0.52 (0.05) 0.60 (0.04) 0.50 0.55 0.52 0.45

R
2

0.05 (0.03) 0.08 (0.03) 0.06 (0.03) 0.13 (0.04) 0.06 0.12 0.08 0.06

MAE 0.31 (0.02) 0.32 (0.03) 0.31 (0.02) 0.28 (0.02) 0.11 0.10 0.10 0.10

n-Octane

Random d2 0.52 (0.04) 0.52 (0.04) 0.53 (0.09) 0.47 (0.06) 0.32 0.32 0.42 0.48

R
2

0.06 (0.03) 0.06 (0.03) 0.07 (0.07) 0.04 (0.05) 0.01 0.01 0.01 0.04

MAE 0.04 (0.00) 0.04 (0.00) 0.04 (0.01) 0.04 (0.00) 0.00 0.00 0.00 0.00

Block 5 d2 0.53 (0.05) 0.53 (0.05) 0.57 (0.05) 0.44 (0.06) 0.34 0.34 0.38 0.39

R
2

0.06 (0.05) 0.06 (0.05) 0.10 (0.05) 0.02 (0.01) 0.01 0.01 0.02 0.01

MAE 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.00 0.00 0.00 0.00

Row-wise d2 0.40 (0.06) 0.38 (0.08) 0.35 (0.10) 0.37 (0.12) 0.26 0.31 0.26 0.26

R
2

0.01 (0.01) 0.01 (0.02) 0.01 (0.01) 0.03 (0.03) 0.01 0.00 0.01 0.01

MAE 0.05 (0.00) 0.05 (0.00) 0.02 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00

Performance 

indicators

Multiple imputation Optimal estimation

lag0(SD) lag1(SD) lead1(SD) LL1(SD)
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Table S4-8. (Cont.) 

lag0 lag1 lead1 LL1

o-Xylene

Random d2 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.86 0.86 0.83 0.94

R
2

0.94 (0.01) 0.94 (0.01) 0.92 (0.01) 0.93 (0.01) 0.89 0.89 0.85 0.92

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.01 0.01 0.01 0.00

Block 5 d2 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.87 0.88 0.84 0.93

R
2

0.94 (0.02) 0.93 (0.01) 0.93 (0.01) 0.92 (0.01) 0.90 0.90 0.87 0.89

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.01 0.01 0.01 0.00

Row-wise d2 0.60 (0.08) 0.63 (0.05) 0.59 (0.06) 0.63 (0.08) 0.60 0.63 0.55 0.64

R
2

0.15 (0.08) 0.17 (0.06) 0.12 (0.06) 0.17 (0.09) 0.22 0.21 0.13 0.24

MAE 0.13 (0.01) 0.12 (0.01) 0.12 (0.01) 0.12 (0.01) 0.02 0.02 0.02 0.02

Propylene

Random d2 0.45 (0.04) 0.41 (0.11) 0.42 (0.06) 0.45 (0.06) 0.66 0.56 0.61 0.65

R
2

0.07 (0.03) 0.06 (0.08) 0.04 (0.04) 0.07 (0.05) 0.23 0.10 0.15 0.19

MAE 1.28 (0.15) 1.30 (0.10) 1.30 (0.15) 1.24 (0.16) 0.76 0.86 0.65 0.59

Block 5 d2 0.47 (0.11) 0.44 (0.11) 0.29 (0.05) 0.32 (0.04) 0.49 0.36 0.28 0.27

R
2

0.09 (0.06) 0.07 (0.05) 0.01 (0.01) 0.01 (0.01) 0.24 0.12 0.05 0.04

MAE 1.14 (0.07) 1.21 (0.05) 1.33 (0.10) 1.27 (0.11) 2.48 2.79 3.04 3.09

Row-wise d2 0.58 (0.05) 0.51 (0.02) 0.54 (0.05) 0.44 (0.06) 0.65 0.53 0.66 0.57

R
2

0.14 (0.05) 0.07 (0.02) 0.10 (0.04) 0.02 (0.02) 0.25 0.14 0.27 0.19

MAE 1.26 (0.15) 1.30 (0.11) 1.23 (0.13) 1.30 (0.05) 1.08 1.25 1.04 1.15

Tetrachloroethylene

Random d2 0.30 (0.07) 0.27 (0.03) 0.31 (0.06) 0.33 (0.06) 0.22 0.27 0.26 0.23

R
2

0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 0.03 0.03 0.00

MAE 0.08 (0.01) 0.08 (0.00) 0.08 (0.00) 0.07 (0.00) 0.01 0.01 0.01 0.01

Block 5 d2 0.39 (0.04) 0.41 (0.12) 0.34 (0.04) 0.32 (0.09) 0.27 0.33 0.39 0.26

R
2

0.01 (0.02) 0.04 (0.06) 0.01 (0.00) 0.02 (0.02) 0.02 0.05 0.11 0.05

MAE 0.07 (0.01) 0.08 (0.01) 0.07 (0.01) 0.08 (0.00) 0.01 0.01 0.01 0.01

Row-wise d2 0.41 (0.11) 0.38 (0.10) - - 0.32 (0.06) 0.37 0.30 - 0.27

R
2

0.03 (0.02) 0.02 (0.01) - - 0.01 (0.00) 0.15 0.09 - 0.08

MAE 0.07 (0.01) 0.08 (0.01) - - 0.07 (0.01) 0.01 0.01 - 0.01

Trichlorofluoromethane

Random d2 0.61 (0.08) 0.62 (0.08) 0.61 (0.08) 0.57 (0.05) 0.23 0.31 0.23 0.51

R
2

0.17 (0.10) 0.17 (0.09) 0.17 (0.10) 0.12 (0.05) 0.02 0.01 0.02 0.17

MAE 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.11 (0.01) 0.01 0.01 0.01 0.01

Block 5 d2 0.47 (0.11) 0.51 (0.05) 0.47 (0.11) 0.29 (0.09) 0.39 0.47 0.39 0.43

R
2

0.10 (0.07) 0.10 (0.04) 0.10 (0.07) 0.03 (0.04) 0.04 0.10 0.04 0.08

MAE 0.10 (0.02) 0.09 (0.01) 0.10 (0.02) 0.12 (0.02) 0.00 0.00 0.00 0.00

Row-wise d2 - - 0.30 (0.08) - - 0.34 (0.10) - 0.34 - 0.38

R
2

- - 0.01 (0.01) - - 0.03 (0.04) - 0.00 - 0.01

MAE - - 0.12 (0.02) - - 0.12 (0.01) - 0.01 - 0.01

Performance 

indicators

Multiple imputation Optimal estimation

lag0(SD) lag1(SD) lead1(SD) LL1(SD)
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Table S4-8. (Cont.) 

lag0 lag1 lead1 LL1

Trichlorotrifluoromethane

Random d2 0.42 (0.09) 0.58 (0.02) 0.49 (0.06) 0.67 (0.04) 0.19 0.20 0.18 0.18

R
2

0.02 (0.04) 0.09 (0.02) 0.03 (0.04) 0.19 (0.07) 0.01 0.01 0.02 0.01

MAE 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00

Block 5 d2 0.44 (0.05) 0.39 (0.04) 0.39 (0.06) 0.45 (0.04) 0.21 0.18 0.20 0.20

R
2

0.01 (0.02) 0.00 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 0.03 0.01 0.01

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.00 0.00 0.00 0.00

Row-wise d2 0.42 (0.07) 0.56 (0.03) 0.49 (0.03) 0.59 (0.03) 0.18 0.18 0.20 0.19

R
2

0.01 (0.01) 0.07 (0.02) 0.02 (0.01) 0.10 (0.03) 0.07 0.06 0.03 0.04

MAE 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00

1,2,4-Trimethylbenzene

Random d2 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.65 0.86 0.60 0.63

R
2

0.92 (0.01) 0.92 (0.02) 0.91 (0.02) 0.91 (0.02) 0.52 0.69 0.44 0.47

MAE 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.02 0.01 0.02 0.02

Block 5 d2 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.63 0.88 0.72 0.62

R
2

0.92 (0.01) 0.93 (0.01) 0.93 (0.01) 0.92 (0.01) 0.42 0.79 0.54 0.41

MAE 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.02 0.01 0.02 0.02

Row-wise d2 0.66 (0.07) 0.66 (0.03) 0.54 (0.04) 0.69 (0.04) 0.63 0.70 0.58 0.67

R
2

0.21 (0.07) 0.20 (0.03) 0.07 (0.03) 0.25 (0.06) 0.24 0.33 0.17 0.26

MAE 0.12 (0.01) 0.12 (0.01) 0.14 (0.01) 0.12 (0.01) 0.02 0.02 0.02 0.02

1,3,5-Trimethylbenzene

Random d2 0.90 (0.01) 0.91 (0.01) 0.90 (0.02) 0.90 (0.01) 0.81 0.81 0.80 0.85

R
2

0.66 (0.03) 0.68 (0.03) 0.68 (0.06) 0.65 (0.03) 0.51 0.51 0.48 0.55

MAE 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00

Block 5 d2 0.90 (0.01) 0.92 (0.01) 0.91 (0.01) 0.92 (0.01) 0.85 0.84 0.84 0.88

R
2

0.67 (0.02) 0.73 (0.03) 0.70 (0.04) 0.72 (0.02) 0.65 0.63 0.63 0.61

MAE 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 0.00 0.00 0.00

Row-wise d2 0.58 (0.08) 0.57 (0.07) 0.59 (0.12) 0.56 (0.03) 0.46 0.48 0.65 0.58

R
2

0.10 (0.06) 0.10 (0.07) 0.14 (0.12) 0.09 (0.03) 0.07 0.09 0.24 0.17

MAE 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.00 0.00 0.00 0.00

Toluene

Random d2 0.90 (0.02) 0.88 (0.02) 0.89 (0.02) 0.91 (0.01) 0.84 0.75 0.90 0.95

R
2

0.68 (0.06) 0.64 (0.05) 0.67 (0.05) 0.72 (0.04) 0.61 0.44 0.74 0.83

MAE 0.35 (0.04) 0.38 (0.04) 0.38 (0.04) 0.36 (0.03) 0.19 0.26 0.13 0.08

Block 5 d2 0.91 (0.01) 0.87 (0.01) 0.90 (0.02) 0.89 (0.03) 0.60 0.51 0.81 0.81

R
2

0.70 (0.03) 0.60 (0.04) 0.67 (0.05) 0.66 (0.07) 0.38 0.19 0.63 0.59

MAE 0.38 (0.02) 0.40 (0.03) 0.36 (0.01) 0.36 (0.05) 0.56 0.69 0.35 0.36

Row-wise d2 0.56 (0.05) 0.52 (0.11) 0.55 (0.10) 0.51 (0.06) 0.50 0.46 0.50 0.50

R
2

0.11 (0.04) 0.08 (0.09) 0.10 (0.09) 0.08 (0.04) 0.09 0.07 0.12 0.12

MAE 0.61 (0.04) 0.69 (0.09) 0.68 (0.07) 0.67 (0.04) 0.68 0.69 0.64 0.64

Performance 

indicators

Multiple imputation Optimal estimation

lag0(SD) lag1(SD) lead1(SD) LL1(SD)
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Table S4- 9.  Performance indicators for OLE using both un-transformed and log-

transformed data. 

Otherwise as Table S4-7. 

lag0 lag1 lead1 LL1 lag0 lag1 lead1 LL1

Acetaldehyde

Random d2 0.86 0.89 0.74 0.88 0.78 0.80 0.78 0.83

R2 0.69 0.72 0.51 0.70 0.62 0.66 0.62 0.69

MAE 0.30 0.26 0.46 0.28 0.01 0.00 0.00 0.00

Row-wise d2 0.67 0.63 0.47 0.46 0.42 0.35 0.35 0.36

R2 0.32 0.26 0.09 0.11 0.06 0.02 0.01 0.03

MAE 0.62 0.66 0.83 0.79 0.00 0.00 0.00 0.00

Benzaldehyde

Random d2 0.88 0.82 0.77 0.83 0.65 0.55 0.76 0.59

R2 0.62 0.48 0.44 0.51 0.34 0.19 0.42 0.35

MAE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Row-wise d2 0.50 0.57 0.25 0.31 0.55 0.53 0.29 0.32

R2 0.07 0.13 0.02 0.00 0.14 0.12 0.00 0.00

MAE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Formaldehyde

Random d2 0.86 0.82 0.84 0.83 0.69 0.57 0.65 0.70

R2 0.63 0.62 0.69 0.63 0.48 0.30 0.45 0.37

MAE 0.72 0.78 0.69 0.77 0.00 0.00 0.00 0.00

Row-wise d2 0.52 0.54 0.33 0.33 0.41 0.36 0.19 0.19

R2 0.09 0.11 0.00 0.00 0.09 0.02 0.02 0.02

MAE 2.37 2.31 2.65 2.65 0.58 0.00 0.00 0.00

Benzene

Random d2 0.89 0.85 0.84 0.79 0.61 0.43 0.45 0.41

R2 0.71 0.63 0.63 0.52 0.22 0.08 0.10 0.07

MAE 0.03 0.04 0.04 0.04 0.00 0.00 0.00 0.00

Row-wise d2 0.63 0.65 0.64 0.53 0.70 0.71 0.70 0.69

R2 0.22 0.25 0.24 0.17 0.30 0.32 0.30 0.29

MAE 0.07 0.07 0.07 0.08 0.00 0.00 0.00 0.00

1,3-Butadiene

Random d2 0.78 0.74 0.62 0.63 0.53 0.30 0.29 0.29

R2 0.68 0.67 0.52 0.52 0.16 0.03 0.02 0.02

MAE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Row-wise d2 0.49 0.43 0.41 0.30 0.56 0.49 0.48 0.45

R2 0.13 0.08 0.07 0.03 0.16 0.13 0.09 0.06

MAE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tetrachloroethylene

Random d2 0.22 0.27 0.26 0.23 0.32 0.38 0.55 0.34

R2 0.01 0.03 0.03 0.00 0.04 0.17 0.30 0.09

MAE 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

Row-wise d2 0.37 0.30 - 0.27 0.48 0.37 - 0.37

R2 0.15 0.09 - 0.08 0.17 0.07 - 0.08

MAE 0.01 0.01 - 0.01 0.00 0.00 - 0.00

Untransformed Log-transformedPerformance 

indicators
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Table S4- 10. Performance indicators for MI using both untransformed and log-

transformed data.   

Otherwise as Table S4-7. 

Acetaldehyde

Random d2 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.00) 0.93 (0.01) 0.92 (0.02) 0.92 (0.03) 0.93 (0.01)

R
2

0.83 (0.02) 0.80 (0.02) 0.83 (0.02) 0.83 (0.01) 0.79 (0.04) 0.75 (0.06) 0.76 (0.07) 0.77 (0.03)

MAE 0.29 (0.03) 0.30 (0.03) 0.30 (0.02) 0.30 (0.01) 0.31 (0.03) 0.31 (0.04) 0.32 (0.05) 0.30 (0.02)

Row-wise d2 0.58 (0.05) 0.67 (0.04) 0.51 (0.05) 0.63 (0.06) 0.29 (0.19) 0.31 (0.17) 0.33 (0.13) 0.34 (0.09)

R
2

0.11 (0.05) 0.20 (0.06) 0.04 (0.02) 0.14 (0.08) 0.04 (0.06) 0.10 (0.08) 0.02 (0.03) 0.04 (0.03)

MAE 0.87 (0.08) 0.85 (0.12) 0.91 (0.04) 0.87 (0.06) 1.56 (0.48) 1.53 (0.51) 1.32 (0.25) 1.34 (0.15)

Benzaldehyde

Random d2 0.80 (0.03) 0.83 (0.02) 0.76 (0.05) 0.76 (0.01) 0.85 (0.05) 0.78 (0.04) 0.67 (0.08) 0.69 (0.12)

R
2

0.46 (0.07) 0.55 (0.03) 0.38 (0.10) 0.38 (0.03) 0.57 (0.10) 0.41 (0.07) 0.27 (0.08) 0.28 (0.11)

MAE 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00)

Row-wise d2 0.48 (0.06) 0.54 (0.03) 0.35 (0.05) 0.38 (0.05) 0.41 (0.09) 0.43 (0.12) 0.26 (0.06) 0.33 (0.06)

R
2

0.05 (0.05) 0.09 (0.02) 0.01 (0.01) 0.00 (0.01) 0.04 (0.05) 0.08 (0.04) 0.01 (0.01) 0.00 (0.00)

MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.05 (0.00) 0.04 (0.00) 0.04 (0.02) 0.05 (0.00) 0.04 (0.01)

Formaldehyde

Random d2 0.84 (0.02) 0.80 (0.04) 0.85 (0.01) 0.81 (0.04) 0.74 (0.05) 0.66 (0.08) 0.76 (0.03) 0.75 (0.04)

R
2

0.53 (0.05) 0.44 (0.07) 0.54 (0.03) 0.45 (0.09) 0.48 (0.05) 0.39 (0.08) 0.52 (0.08) 0.45 (0.09)

MAE 0.80 (0.03) 0.90 (0.10) 0.81 (0.03) 0.86 (0.05) 1.13 (0.10) 1.27 (0.22) 1.05 (0.04) 1.09 (0.11)

Row-wise d2 0.51 (0.06) 0.53 (0.03) 0.40 (0.06) 0.40 (0.06) 0.16 (0.12) 0.23 (0.14) 0.16 (0.10) 0.16 (0.10)

R
2

0.05 (0.04) 0.06 (0.03) 0.01 (0.01) 0.01 (0.01) 0.02 (0.02) 0.03 (0.02) 0.02 (0.02) 0.02 (0.02)

MAE 1.49 (0.14) 1.58 (0.12) 1.79 (0.14) 1.79 (0.14) 3.92 (1.37) 3.98 (1.84) 3.79 (0.95) 3.79 (0.95)

Benzene

Random d2 0.87 (0.03) 0.84 (0.01) 0.87 (0.02) 0.84 (0.02) 0.88 (0.04) 0.78 (0.03) 0.83 (0.05) 0.81 (0.02)

R
2

0.61 (0.08) 0.52 (0.03) 0.59 (0.06) 0.52 (0.05) 0.62 (0.11) 0.41 (0.06) 0.51 (0.11) 0.46 (0.05)

MAE 0.17 (0.02) 0.18 (0.01) 0.17 (0.01) 0.18 (0.01) 0.14 (0.02) 0.17 (0.02) 0.17 (0.01) 0.17 (0.01)

Row-wise d2 0.64 (0.04) 0.63 (0.03) 0.58 (0.06) 0.57 (0.06) 0.64 (0.07) 0.63 (0.04) 0.59 (0.07) 0.58 (0.07)

R
2

0.20 (0.05) 0.18 (0.03) 0.13 (0.05) 0.12 (0.05) 0.20 (0.07) 0.18 (0.04) 0.14 (0.08) 0.13 (0.06)

MAE 0.26 (0.02) 0.28 (0.02) 0.28 (0.03) 0.27 (0.01) 0.21 (0.02) 0.22 (0.02) 0.22 (0.02) 0.23 (0.01)

1,3-Butadiene

Random d2 0.89 (0.02) 0.89 (0.01) 0.87 (0.01) 0.87 (0.02) 0.81 (0.07) 0.79 (0.04) 0.78 (0.05) 0.76 (0.07)

R
2

0.65 (0.06) 0.65 (0.03) 0.58 (0.03) 0.58 (0.04) 0.54 (0.11) 0.52 (0.05) 0.44 (0.09) 0.42 (0.13)

MAE 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

Row-wise d2 0.58 (0.04) 0.50 (0.03) 0.52 (0.08) 0.46 (0.05) 0.57 (0.07) 0.48 (0.04) 0.51 (0.10) 0.42 (0.03)

R
2

0.09 (0.03) 0.05 (0.03) 0.07 (0.05) 0.03 (0.03) 0.14 (0.07) 0.05 (0.03) 0.10 (0.07) 0.02 (0.01)

MAE 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.04 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

Tetrachloroethylene

Random d2 0.30 (0.07) 0.27 (0.03) 0.31 (0.06) 0.33 (0.06) 0.29 (0.06) 0.21 (0.04) 0.28 (0.04) 0.27 (0.04)

R
2

0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.02 (0.02) 0.00 (0.00) 0.01 (0.01) 0.02 (0.03)

MAE 0.08 (0.01) 0.08 (0.00) 0.08 (0.00) 0.07 (0.00) 0.06 (0.00) 0.06 (0.00) 0.06 (0.00) 0.06 (0.00)

Row-wise d2 0.41 (0.11) 0.38 (0.10) - - 0.32 (0.06) 0.40 (0.14) 0.33 (0.11) 0.31 (0.12) 0.25 (0.05)

R
2

0.03 (0.02) 0.02 (0.01) - - 0.01 (0.00) 0.07 (0.07) 0.03 (0.04) 0.02 (0.04) 0.01 (0.01)

MAE 0.07 (0.01) 0.08 (0.01) - - 0.07 (0.01) 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.01)

lag0(SD) lag1(SD) lead1(SD) LL1(SD)

Performance 

indicators

Un-transformed

lag0(SD) lag1(SD) lead1(SD) LL1(SD)

Log-transformed
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Chapter 5  

Conclusions 

 

 In this dissertation, both acute and long-term health effects of ambient air 

pollutants were investigated.  Chapter 3 focused on adverse birth outcomes, while 

Chapter 4 examined childhood respiratory-related illness in the Detroit, Michigan 

metropolitan area.  The research also evaluated statistical approaches to handle missing 

air quality data and used multivariate receptor models to derive source apportionments 

from an air toxics dataset.  Exposure scores obtained from the multivariate receptor 

models were used as exposure measures in health models to examine associations with 

acute respiratory-related illness in children.   

 This concluding chapter highlights the key findings, implications and significance 

of this research.  The study’s strength and limitations are summarized, and 

recommendations for further research are suggested. 

5.1 Key findings 

5.1.1 Air pollution and adverse birth outcomes 

 Chapter 2 investigated whether ambient air pollutants, including CO, NO2, PM10 

and SO2, were associated with low birth weight (LBW), small for gestational age (SGA) 

and preterm birth (PTB) outcomes in a cohort of 155,000 singleton births in Detroit, 

Michigan between 1990 and 2001.  These outcomes were based on birth certificate data 

of mothers living within a 4 km radius of three air quality monitors located in Allen Park, 

East 7 Mile, and Linwood.  Using logistic regression models with control of key 

covariates, including infant sex, gestational age, maternal age, education levels, smoking 

status, prenatal care, birth season and site of residency, CO, 
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NO2 and PM10 exposures were associated with increased risk of SGA births, and SO2 

exposure was associated with increased risk of LBW and PTB births.  In testing various 

time windows of exposure, the early pregnancy period was most important for the CO-

SGA, NO2-SGA and SO2-LBW associations, and the late pregnancy period for SO2-PTB 

and PM10-SGA associations.  Except for PM10, exposures to other pollutants appear to 

have stronger effects on infants of Black mothers for all three adverse birth outcomes, as 

compared with infants of White mothers.  Additionally, the analysis highlights the 

importance of accounting for long-term trends and maternal smoking status in evaluating 

relationships between pollutant exposures and adverse birth outcomes. 

 This study is one of the few studies in the U.S. that had a large African American 

population and allowed examination of effects due to race/ethnicity.  This study also 

permitted investigation into the effects of maternal smoking status, which, while a well-

recognized risk factor for adverse birth outcomes, has often not been available in other 

adverse birth outcome studies.  In addition, most of the recent U.S. studies have come 

mainly from southern California and the East Coast, areas that are generally less 

industrialized than Detroit.  Furthermore, portions of Detroit are considered air pollution 

“hot spots” by U.S. EPA for failing to meet National Ambient Air Quality Standards 

(NAAQS) for PM2.5
1
, and the Detroit area has distinct summer and winter climates that 

may affect how individuals are exposed to various air pollutants.
2
  Due primarily to local 

and regional emissions from industrial sources, the concentrations, composition and 

toxicity of ambient air pollutants in the study area may differ from those in the earlier 

studies.  Thus, the present study informs the birth outcome literature by explicitly 

examining effects of race/ethnicity, smoking status, and geographic location.   

5.1.2 Air pollution and acute childhood respiratory-related illness 

Chapter 3 had the objective of determining whether exposure to ambient air toxic 

pollutants, broken down into different source classes that emitted these pollutants, was 

associated with respiratory-related illness among children.  This chapter described an 

epidemiological investigation of children enrolled in Medicaid and living in Dearborn, 

Michigan within 4 and 10 km of the Dearborn air quality monitor during a one year study 

period (April 2001 to April 2002).  During this period, these children made a total of 
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1,166 and 4,617 emergency department (ED) visits for asthma and respiratory problems, 

respectively.  As part of the Detroit Pilot Project, daily measurements of urban air toxics 

(UAT), including carbonyls and volatile organic compounds (VOCs), were made, 

including a large number of duplicate samples.  Using positive matrix factorization 

(PMF) receptor modeling, the air toxics dataset was reduced to a set of five source classes 

which explained from 44 to 100% and 74 to 92% of the variation in the carbonyl and 

aromatic VOC data, respectively.  Exposures to three source classes, identified as fuel 

combustion, photochemical pollutants, and gasoline exhaust/evaporated gasoline 

increased the odds of ED visits for respiratory problems.  Although the sample size was 

smaller, effects were stronger for subjects living within 4 km of the monitor, as compared 

to a 10 km distance.  No statistically significant associations were found between injury, 

the control case, and the air pollutant measures. 

The analysis described above represents one of the first studies to use source-

apportioned exposure measures in order to link toxic pollutant exposures and respiratory-

related illness.  Perhaps the most significant feature of this approach is that it inherently 

accounts for exposure to mixtures of multiple pollutants and multiple emission sources, 

an important limitation of most of the current air pollution epidemiological studies.   

5.1.3 Reproducibility and imputation of air toxics data 

 Chapter 4 described analyses of the air toxics data used in the epidemiological 

investigation reported in Chapter 3.  It evaluated whether imputation offered a useful 

approach for recovering missing values of ambient air pollutant data, and investigated 

several quality assurance issues.  The study used a total of 323 daily air toxics samples 

collected at the Dearborn monitoring site, which included 122 pairs of replicate samples.  

These samples were analyzed by two laboratories for 12 carbonyl and 59 VOC species.  

After data cleaning, including eliminating species with low detection frequency (<20%) 

and detecting outliers using the Gumbell extreme value distribution, 23 compounds were 

selected for the final dataset.  Of these, intra- and inter-laboratory comparisons showed 

good agreement for only one compound (benzene), moderate agreement for several other 

VOCs (e.g., trimethylbenzenes, xylenes, ethylbenzene, dichlorodifluoromethane, 

tetrachloroethylene, and toluene), and poor-to-fair agreement for the remaining VOCs 
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and all carbonyls.  Uncertainty models, which were constructed by pooling residuals 

across the intra- and intra-laboratory analyses, provided a comprehensive description of 

analytical uncertainties, and the median intra- and inter-laboratory relative uncertainties 

were 22% and 25%, respectively, across the final 23 compounds (7 carbonyls and 16 

VOCs).   

 Two methods were evaluated for their ability to impute missing data for the 23 

selected compounds and for three missingness patterns.  Optimal linear estimation (OLE) 

and multiple imputation (MI) methods obtained comparable performance for random 

deletions, with results depending on the compound, concentration distribution, and other 

factors.  For the dominant row-wise deletion pattern observed in the air toxics dataset, 

however, the performance of both methods deteriorated. 

 The analysis highlighted the critical importance of characterizing the 

reproducibility of ambient air toxics dataset prior to its use.  It is essential to identify 

variables that are informative and thus useful in applications such as regulatory 

determinations of risk, receptor modeling studies of source apportionments, and 

epidemiological assessments of health impacts.  The uncertainty models and quality 

assurance steps presented in Chapter 4 can help to describe and validate ambient data, as 

well as provide uncertainty estimates useful in imputation and other applications.  

5.1.4 Receptor modeling 

Appendix 1 provides a detailed description of the receptor modeling used in 

Chapter 3.  The principal approach used, positive matrix factorization (PMF), indicated 

that concentrations of ambient air toxics measured at the Dearborn site in the Detroit Air 

Toxics Initiative Project could be explained by five source classes: (1) gasoline 

exhaust/evaporated gasoline, (2) fuel combustion, (3) combined industrial sources, (4) 

photochemical pollutants, and (5) industrial solvents.  The results indicate that even in the 

highly industrialized study area, concentrations were dominated by vehicular emission 

sources.  PMF yield “cleaner” and more realistic source profiles than those obtained from 

principal component analysis. 

The distinction between the receptor models used in this study and those in earlier 

studies is the incorporation of different compound groups of UATs, including carbonyls, 
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VOCs and metals, in the same model, thereby providing a more comprehensive 

assessment.  In addition, the analysis incorporated site-specific uncertainty estimates, 

based on replicate samples as described in Chapter 4, thus reflecting a more realistic 

situation than the fixed uncertainty values commonly used in PMF analyses. 

5.2 Study strengths and limitations 

5.2.1 Air pollution and adverse birth outcomes 

The specific strengths of the analyses in Chapter 2 included a large sample size 

(n=155,094), a long study duration (7-12 years), and good representation of individual-

level information on residence location, race, smoking status, pregnancy and educational 

attainment.  Temporal trends in pollutant concentrations, which affected SO2 and CO 

results, and multiple pollutant models were examined.  A large African American 

population in the study sample allowed us to examine possible heterogeneity by race.  

Finally, restricting births to mothers residing quite close (≤4 km) to air monitors in the 

analysis potentially minimized exposure measurement error.
3
 

There are several weaknesses of the study.  Geocoding of individual residences 

was unavailable, thus residences (and subjects) were selected if their ZIP code area was 

within 4 km of an air quality monitor.  Pollutant levels in Detroit generally fell below 

those in other studies, and lower exposures may have been subject to greater exposure 

measurement error.  Exposure misclassification was possible for subjects living near 

major traffic routes (more likely near Linwood and East Seven Mile sites), which could 

have increased exposures above levels measured at the monitoring sites.  By comparison, 

monitoring sites were located in residential areas at least several blocks from major roads.  

However, limiting participants to a relatively small radius around the monitor should 

have minimized such errors.  Missing pollutant data may have influenced results, 

although results using a single monitor (Linwood) were consistent with those using all 

three sites, suggesting that any bias was minimal.  Additional information on potential 

covariates and confounders not available in the birth certificate database may have been 

helpful, e.g., alcohol consumption, although the effects of any such factors are suspected 

to be likely correlated with other individual-level risk factors that were available, thus 
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minimizing confounding.  Finally, measurements of personal or indoor exposures were 

unavailable, a limitation of all studies that rely on ambient measures of exposure.
4-6

  

5.2.2 Acute childhood respiratory-related illness 

The major strength of the study lies in its exposure assessment.  The use of 

receptor models to derive source-apportioned exposure measures is attractive in that such 

measures may be more strongly associated with health impacts, improving statistical 

power.  Other strengths include the use of source-apportioned exposures derived from 

measurements of VOCs and carbonyls together, and sensitivity analyses that incorporated 

metals measurements.  In contrast, the current receptor modeling literature analyses these 

groups separately, and mainly focuses on VOCs.  The stronger associations were found 

between source-apportioned exposure measures, with carbonyls as key species, and ED 

visits for respiratory problems.  In addition, by examining only children enrolled in 

Medicaid, confounding by social economic status (SES), a known indicator of utilization 

of urgent care for asthma,
7
 is minimized.  

There are several limitations.  First of all, the sample size was not large enough to 

adequately assess certain relationships between exposures and health outcomes, 

specifically ED visits for asthma.  Also, by examining only the Medicaid population and 

a single site, results are not generalizable to the general population.  The study’s duration 

was only one year which, of course, affected sample size and missing exposure data 

might have influenced the results.  Some exposure misclassification was inherent in the 

study design, which could be seen in results for the 10 km radius where risk ratios were 

forced toward the null.  Finally, personal exposure data were unavailable, and indoor 

sources of toxics, especially VOCs,
8
 might have affected results.   

5.2.3 Reproducibility and imputation of air toxics data 

 This study enjoyed the advantage of a relatively large dataset with daily 

measurements of several types of air toxics for a full year.  Due to expense and logistical 

issues, air toxics generally are measured only every 3
rd

 or 6
th

 day.  Also, because 

carbonyls, VOCs and other toxic pollutants require different sampling and analytical 

methods, simultaneous measurement of different classes of air toxics is relatively 

uncommon.  In addition, this study was able to examine the reproducibility of air toxics 
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measurements, including both within and between laboratories variability, due to the 

availability of replicate samples.  The uncertainty models developed in Chapter 4 

(developed for each decile of concentrations) provide analytical uncertainties over a wide 

range of concentrations, and should be generally applicable to air pollution research. 

 Several limitations are recognized in Chapter 4’s analysis.  Only a single 

monitoring site was analyzed, and only two laboratories were involved.  While the 

sample size was relatively large for air toxics monitoring programs, the analysis used 

what must be considered a modest sample size in statistical terms.  The intra-laboratory 

comparisons focused on analytical uncertainties, which may not dominate actual 

uncertainties.
9
  Many factors can influence sampling and analysis performance, and the 

true accuracy of the data was not established.  Due to these factors, generalizations 

should be made cautiously, although the data and results are believed to be generally 

representative of current monitoring practice.  The analysis investigated only a subset of 

the many methods that can be used to impute missing data and estimate uncertainties.
10,11

   

 Finally, this study did not evaluate the performance of imputation methods as 

applied to health effect studies.  The MI approach was developed to minimize the bias 

caused by the missing information in health effect studies.  Therefore, performance 

evaluations should examine risk estimates with and without imputed data.  In the early 

stage of this research, MI was used to investigate associations between O3 exposures and 

low birth weight (data not shown) because O3 data were not available for six months of 

the year.  However, due to concerns that half of the data required imputation, O3 was 

excluded from the analysis.  Air toxics posed different issues.  Due to the low 

reproducibility of the data and the novelty of using the receptor modeling approach, 

constructing the health models and interpreting the results using imputed data was 

beyond the scope of this research.  

5.2.4 Receptor modeling 

There are a number of strengths in the receptor modeling study.  First, VOCs and 

carbonyls were simultaneously modeled, and carbonyls showed comparable or stronger 

indicators of vehicular emission sources than VOCs alone, suggesting that groupings of 

VOCs alone in the previous studies
12,13

 might not have adequately described this source 
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class.  Second, this study was able to examine seasonal effects.  Other studies have used 

shorter study periods, e.g., a single summer (ozone) season.
14-16

  Third, measurement 

uncertainty was estimated using site-specific uncertainty models, instead of a fixed value, 

thereby increasing the realism of the source classes and the other receptor model results. 

The receptor modeling analysis has several limitations.  Ideally, each PMF factor 

represents a single source category, confirmed by a unique and known chemical profile, 

and uncorrelated with other source categories.  More realistically, in complicated systems 

a PMF factor consists of features from several sources,
16

 especially when longer 

averaging periods (e.g., 24 hr at Dearborn) are used, emissions from several or many 

source classes have similar compositions, compounds are chemically reactive (which 

includes several of the aldehyde and VOC species used), and local estimates of source 

compositions are not available.  These reasons advise caution in the interpretation of the 

results. 

5.3 Recommendations for future studies 

The topics investigated in this dissertation have spanned a wide range of areas in 

the epidemiological and exposure analysis fields.  This section makes several 

recommendations for future studies in the major areas covered, namely: (1) exposure 

assessment; (2) statistical treatment and imputation of air quality data; and (3) adverse 

birth outcomes and acute respiratory effect-related studies. 

5.3.1 Exposure assessment 

In the area of exposure assessment, there is a need for complete, continuous, and 

high resolution (i.e., daily or perhaps hourly) air quality data, especially in areas that are 

considered to be pollution “hot spots.”  With the growth of the environmental 

epidemiology field, air quality data increasingly is being used for many applications 

besides compliance purposes, therefore, there is a demand for complete datasets, 

especially for air toxics, O3, PM10 and PM2.5.      

Additional research is needed to improve receptor modeling for air toxics, 

especially with the emphasis on health effects studies.  Models using additional 

information, potentially meteorology, criteria air pollutants, and traffic data, might help 
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to obtain “cleaner” source contributions with minimal collinearity between sources.  This 

would also help to improve the robustness of exposure measures used in health studies. 

5.3.2 Statistical treatment and imputation of air quality data 

Regarding statistical treatment and imputation of air quality data, research is 

needed to improve imputations, especially for row-wise missingness patterns.  The 

variable selection criteria used in Chapter 4 may have been too stringent and a priori 

information was not incorporated.  A sensitivity analysis of these criteria and more 

complex models using other variables (e.g., season, day-of-week, traffic counts) and 

other model structures (e.g., auto-regressive integrated moving average models) could be 

evaluated.  Predictor variables might also be derived that combine meteorological 

parameters that reflect dispersion potential and local source impacts, and models might 

be used to account for long term trends and seasonality.  There is also a need to refine the 

uncertainty models that may improve OLE estimates.  The performance of other 

imputation methods should be examined, and other datasets should be used to ensure that 

results are representative.  Finally, the performance of imputation methods should be 

evaluated in health effects studies of air pollution. 

5.3.3 Health effects studies 

Further research using individual-level exposure monitoring would help to 

quantify the relative contribution of ambient versus localized exposures to the occurrence 

of adverse birth outcomes and respiratory-related illness in children.  In addition, 

incorporating information regarding the proximity of residences to major traffic routes 

and human activity patterns in health models would help to minimize exposure 

misclassification. 

For adverse birth outcome studies, few studies have used PM2.5 and O3, in part 

because PM2.5 has only been measured relatively recently and often intermittently.  

Although ozone has been measured for many years, however, in Michigan, O3 

measurements are conducted only in the high O3 season (April to September); therefore, 

this pollutant has not been investigated extensively, especially in longitudinal study 

designs where continuous and all year round measurements are required.  In addition, 

associations between exposures to air toxics (i.e. carbonyls, VOCs and metals) and birth 



 194 

outcomes have not been investigated.  There is a need to include these pollutants in future 

research.  The biological pathways linking air pollutant exposures to adverse birth 

outcomes are not well understood, future studies using additional biomonitoring 

indicators such as biomarkers of traffic-related pollutants that can reflect the actual 

exposures and the toxicity pathways targeting the reproductive system would help to 

support the plausibility of the associations.  The utilization of birth certificate data is 

common in birth outcome studies; however, this type of data does not capture 

information regarding other factors that may affect pregnant women and their fetus, e.g., 

genetic make-up, bacterial infections, or exposures to other waterborne or food-borne 

pollutants that could lead to the likelihood of having adverse birth outcomes.  

Modification in the study designs of future studies to incorporate this additional 

information (i.e., two-levels logistic models)
17

 would help to clarify the associations. 

For acute respiratory-related illness among children, studies using larger sample 

sizes, longer durations, and multiple monitoring sites would help to investigate health 

outcomes that involve ED visits and would likely strengthen associations.  Expanding the 

study population beyond those enrolled in Medicaid, would also help to generalize study 

results. 
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Receptor Modeling of Ambient Air Toxics and Metals at 

Dearborn, Michigan 
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1.1 Abstract 

Ambient air toxics data from the Detroit Air Toxics Initiative Pilot Project, 

including daily measurements of 12 carbonyls and 59 volatile organic compounds 

(VOCs) measured from April 2001 through April 2002 at Dearborn, Michigan, were 

analyzed using positive matrix factorization (PMF) to identify and apportion emission 

sources contributing to the ambient measurements.  The monitoring site, located at an 

elementary school, was near residential and industrial facilities in an area of historically 

high toxics emissions.  Based on detection frequency, reproducibility and quality 

assurance criteria, the original data set was reduced to 23 compounds.  On an annual 

basis, PMF apportioned the toxics measurements into five source categories:  gasoline 

exhaust/evaporated gasoline, 28% contribution; fuel combustion, 24%; combined 

industrial sources, 22%; photochemical pollutants, 13%; and industrial solvents, 13%.  

These results suggest that vehicle source contributions exceeded industrial emissions in 

the study area.  The paper discusses these findings and the implications of using receptor 

modeling results as exposure measures in health effects studies. 

1.2 Introduction 

Receptor models (RM) utilize ambient pollutant data to identify and quantify 

contributions of the emission sources, or classes of emission sources, that are responsible 

for observed pollutant levels monitored at a “receptor,” i.e., a monitoring location.  

Receptor models have been widely used for particulate matter, but relatively few 

applications have been reported for VOCs and carbonyls.
1-9

  A recent expert panel has 

concluded that source apportionment results obtained using RMs are sufficiently robust 

for application to particulate matter with aerodynamic less than 2.5 microns (PM2.5) and 

health effects assessment.
10-12

  To date, however, there are very few examples of 

exposure indicators derived from source apportionments that have been used in 

epidemiological studies.  There are several advantages of such indicators in 

epidemiological investigations.  First, because source contributions are derived in a 

manner to be mutually orthogonal, health models can simultaneously incorporate 

multiple sources (and pollutants) with fewer of the complications that arise from 
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collinearity as seen in other multi-pollutant models.  Second, because RM utilizes 

essentially all the data, it may yield results that are more robust. 

This appendix describes the application of two receptor modeling methods, 

positive matrix factorization (PMF) and principal component analysis (PCA), that are 

employed to apportion daily carbonyl and VOC measurements at the Dearborn, Michigan 

monitoring site for the period from April 2001 to April 2002.  The identified source 

classes are then used to derive daily exposure scores for the health effects study described 

in Chapter 3 of this dissertation (entitled “Ambient air toxics source apportionment and 

daily emergency department visits for respiratory-related illness among pediatric 

Medicaid population in Dearborn, Michigan”).   

This appendix is written as a stand alone manuscript with the anticipation of 

submission for publication.   

1.3 Background 

1.3.1 Receptor modeling 

The fundamental principle underlying receptor modeling is that a chemical mass 

balance analysis can be used to identify and apportion sources of ambient air pollutants.
13

  

Only the general framework of receptor modeling will be discussed here.  Details can be 

found elsewhere.
13-19

  The mass balance can be written as: 

 j,k

p

1k

k,ij,i
gfx ∑

=

=         (1) 

where Xi,j is the concentration of the i
th

 component (i.e., chemical species) measured in 

the j
th

 sample, i.e., the “measurement” (ppb); fi,k is the fractional composition of the i
th

 

component in emissions from the k
th

 source, i.e., the “source profile”; and gk,j is the 

airborne concentration of the chemical species from the k
th

 source contributing to the j
th

 

sample (ppb).  

To obtain valid results, RMs must meet several fundamental constraints: (1) the 

original data must be reproduced by the model, thus the model must explain the 

observation; (2) the predicted source compositions fi,k must be non-negative; (3) the 

predicted source contributions gj,k to the aerosol must all be non-negative (a source 



 203 

cannot emit negative mass);  (4) the sum of the predicted contributions of each source 

must be less than or equal to total measured mass for each chemical species.
20

   

To solve equation (1), k sources must be identified and compositions measured or 

estimated.  In most cases, however, sources are unknown and compositions of the local 

sources have not been measured.
18

  Thus, compositions of sources measured elsewhere 

are typically used. 

 There are several different RM approaches.  Chemical mass balance (CMB) 

models utilize regression approaches to solve eq. (1) and require a priori estimates of 

source profiles for all contributing source types.   This need for accurate profiles is a key 

limitation associated with CMB models.
21

  According to Watson et al. (2001), CMB 

models complement rather than replace other data analysis and modeling methods.
15

  In 

addition, CMB models do not account for physical and chemical processes in the 

atmosphere that may alter compositions as pollutants travel from source to receptor. 

 Multivariate RMs estimate the number and compositions of the sources, as well as 

their contributions to measured concentrations.  These models utilize factor analysis, 

eigenvector analysis, principal component analysis (PCA), and related methods.  For 

example, in PCA, the most commonly-used method, the new variables necessary to 

reproduce the measured concentrations are determined using an eigenvector analysis of 

the correlation matrix.
13

  There are several problems with multivariate approaches: (1) a 

large number of measurements are needed; (2) interpretation of results can be 

problematic and although the results are statistically sound, they may be physically 

invalid;
21-23

 (3) PCA often requires a transformation or rotation to produce factors that 

appear to resemble physically meaningful source profiles; however, “true” profiles 

cannot be fully determined without additional information;
18

 (4) scaling of the data by 

column or by row in PCA will lead to distortions in the analysis;
16

 and (5) results are not 

unique, but dependent on the number of source profiles, rotations and other parameters. 

In view of PCA limitations, positive matrix factorization (PMF) was developed 

with the advantage that results are guaranteed to be non-negative.  PMF has used in many 

PM and VOC source apportionment studies.
1,3-5,8,10,24

  Studies by Zhao et al. (2004) and 

Xie et al. (2005) demonstrated the feasibility of PMF models in identifying sources of 
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VOCs in Houston, Texas which involved meteorological measurements and other factors 

(e.g. wind speed, wind direction, temperature, and weekend/weekday).
3,8

   

An alternative to PMF, which provides more flexibility as well as additional 

constraints, is called the multilinear engine (ME).  ME has not been widely used.
25

  

Another receptor method that has the closest performance to PMF is UNMIX, a linear 

mixture multivariate receptor models developed by Henry.
22

  However, the current 

version of UNMIX software only reports the minimum R
2
 and signal to noise ratio (S/N) 

values for the worst-fit compound included in the model whereas PMF provides values 

for all compounds.
4
  In addition, Jorquera et al.(2004) reported that source profile for 

VOCs obtained from PMF method were more credible than of that UNMIX.
1
  Using 

simulated personal exposure data for VOCs, Miller et al.(2002) reported that source 

profiles from PMF more closely resembled the original sources than CMB, PCA and 

UNMIX results.
9
  For PM2.5, a recent inter-comparison of different multivariate RMs 

found that PM2.5 apportionment results were consistent across users and methods.
10

   

RMs have several disadvantages.  The estimated source class contributions contain 

errors.  The classifications into source types may be uncertain.  The numbers of source 

profiles and contributing sources are unknown.  Measurement errors may be unknown. 

Finally, the physical meaning of results differs from that typically reported in as exposure 

measures in epidemiological analyses.  While the use of RM-based apportionments as 

exposure indicators in environmental epidemiology holds great promise, the current 

application of such indicators must be viewed as experimental. 

Among the various RM approaches available, we selected PMF due to several 

advantages, specifically, because profiles are guaranteed be non-negative (required for 

physical interpretation), and because weights (uncertainties) can be incorporated for 

individual data points.  The mathematical basis of PMF is described below.  Detailed 

information can be found elsewhere.
16,17

 

1.3.2 Positive matrix factorization (PMF) 

 The X matrix in equation (1) can be decomposed as:   

 EVSUUSVX ''
+==        (2) 
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where U and V matrices are calculated from eigenvalue-eigenvector analyses of the X X’ 

and X’ X matrices, respectively; U and V are the first p columns of the U and V 

matrices; and the “residual matrix” E is defined as: 

2
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Different from PCA, which is an implicit least-squares analysis in that it minimizes the 

sum of squared residuals for the models (eq. 3), PMF takes the approach of an explicit 

least-squares approach in which minimizes the objective function Q:
26
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where si,j is an estimate of the uncertainty in the j
th

 variable measured in the i
th

 sample.  

The objective function Q is to be minimized with respect to G and F with the constraint 

that each of the elements of G and F are non-negative through the use of a penalty 

function.  Details of penalty function are presented elsewhere.
16-18,26

 

 As mentioned, one advantages of PMF is that the uncertainty of each observation 

or missing value can be incorporated into the analysis by weights. 
27

  PMF shares the 

same disadvantages as other multivariate RM approaches, including the difficulty of 

determining the correct number of factors or sources that should be used.
18

 

1.4 Methods 

1.4.1 Data acquisition and cleaning  

This study used a dataset that has been previously evaluated for quality assurance 

and reproducibility, as described in Chapter 4.
28

  In brief, daily air samples were collected 

from 4/19/2001 to 4/18/2002 at Dearborn, Michigan (Figure A1-1) and analyzed by 

Eastern Research Group (ERG) for 12 carbonyl and 59 VOC species.  This dataset 

included duplicate sampling on 122 days, with analyses by the same ERG laboratory on 

40 days, and the same Michigan Department of Environmental Quality (MDEQ) 

laboratory on 41 days, permitting intra-laboratory analyses, as well as both laboratories 
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on 41 days, permitting inter-laboratory comparisons.  Duplicate samples were averaged 

and outliers were excluded.  Measurements that fell below the compound-specific method 

detection limit (MDL) were set to ½ MDL.  Carbonyl and VOC species were selected 

after excluding compounds with detection frequencies below 20% and correlation 

between duplicate measurements below 0.2.  The final cleaned dataset included 16 VOC 

and 7 carbonyl species, and a total of 302 and 283 observations (days of measurements), 

respectively.   

Uncertainties associated with each measurement were estimated using uncertainty 

models derived from an analysis of duplicate measurements (intra-laboratory 

comparison), which were pooled together (VOCs and carbonyls separately).
28

  

Uncertainties for VOCs and carbonyls were estimated as: 

σVOC = 0.060 CVOC + 0.009    (R
2 

= 0.76)   (5) 

σCAR = 0.152 CCAR + 0.067   (R
2 

= 0.87)   (6) 

where σVOC and σCAR are the median absolute errors; CVOC and CCAR are concentrations 

for VOCs and carbonyls, respectively (ppbv); and the coefficients are the results of 

regression analyses using the medians in each decile of the aggregated VOC and carbonyl 

data.  For example, eq. (2) shows that carbonyl measurements have a median absolute 

error of 0.22 ppbv at a concentration of 1 ppb.  For values below the MDL, uncertainties 

were set to 5/6 MDL.
27

  Due to the sampling design, observations (all species) were 

missing on roughly 6.4% of the possible sampling days.  These missing values were 

replaced using the geometric mean (GM), and the corresponding uncertainty was set to 4 

GM.
27

 

Additional data were obtained from the Michigan Department of Environmental 

Quality (MDEQ) to investigate the sensitivity of the PMF results, specifically, the 

identification of sources.  MDEQ collected particulate samples every 6
th

 day at the 

Dearborn site which were analyzed for arsenic, beryllium, cadmium, chromium, lead, 

manganese and nickel.  A total 60 observations were available for the study period.  

Replicate samples for these metals measurements were unavailable at Dearborn; 

therefore, replicate samples from a nearby site (Southwest High School) were used to 

estimate uncertainties.   (MDEQ uses the same data to estimate the precision of the metal 

measurements for the Detroit area.)  Uncertainty models were constructed following the 
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approach described previously (results shown later).  

1.4.2 Positive Matrix Factorization 

EPA’s PMF version 1.1 software package was used for this study.
29

  Initially, the 

number of sources was based on a principal component analysis (PCA) using varimax 

rotation and selected on the basis of the number of eigenvalues exceeding one.  However, 

we also selected other cut-offs to gauge the sensitivity of PMF results to a larger number 

of source factors.  In the PMF analysis, a species was considered as uninformative (bad), 

modestly informative (weak) and good if its signal/noise (S/N) ratio <0.2, 0.2≤S/N<2, 

and S/N≥2, respectively, cut-offs that have been successfully applied in PM 

apportionments.
30-33

  Bad species were excluded from further analyses, and weak species 

were down-weighted by increasing their associated uncertainties by a factor of three prior 

to modeling.   

The PMF analysis used 20 random starting points to determine the global 

minimum.  The optimum random run was selected by examining the robust Q value of all 

the random run output.  Robust Q value is preferred over true Q value because no 

observation is allowed to have extreme influence in the fitting of the model, thereby 

preventing over-fitting of these extreme values.  As shown in eq. (4), the Q value is the 

sum of square measures that is used to quantify model fit. 

 PCA analyses were also conducted and results compared to those from PMF.  

PMF and PCA models were run on both annual and seasonal levels.  (Spring was defined 

as March to May, summer as June to August, fall as September to November, and winter 

as December to February.)  Models were tested using observed data only, as well as 

imputed data.  Models incorporating the metals data used only observed data and were 

conducted at only the annual level due to sample size limitations in the metals data. 

1.5 Results 

1.5.1 Overview of the data set 

 The quality assurance and filtering procedures, described previously,
28

 showed 

good agreement in intra- and inter-laboratory comparisons for only one compound 

(benzene), moderate agreement for several other VOCs (e.g., trimethylbenzene, xylenes, 
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ethylbenzene, dichlorodifluoromethane, tetrachloroethylene, and toluene), and poor-to-

fair agreement for the remaining VOCs and all carbonyls (Table SA1-1).  The final data 

set used in the RM analyses included 7 carbonyls and 16 VOCs (Table A1-1).  Daily 

measurements were missing for 17% of the VOCs measurements (n=300) and 22% of the 

carbonyl measurements (n=283).  Together, measurements of all 23 compounds were 

available on 265 days (of a possible 365).  With the exception of chlorinated and 

fluorinated VOCs, most species had moderate-to-high correlation with other species, e.g., 

aromatic VOCs were highly correlated (0.66 ≤ r ≤ 0.99), as were most carbonyls (0.55≤ r 

≤0.86) (Table SA1-2). 

With the exception of cadmium and nickel, the metals measurements had 

moderate correlation with each other (0.19 ≤ r ≤ 0.74; Table A1-1), and with PM10 (0.35 

≤ r ≤ 0.68) and PM2.5 (0.39 ≤ r ≤ 0.62; Table SA1-2).  These high correlation coefficients 

suggest that most metals occur in fine fraction particulate matter.  Measurements of both 

air toxics and metals were available for only 35 days.  Overall, the correlation between 

air toxics and metals was low to fair.  Among the seven metals, manganese and nickel 

showed significant correlation with air toxics (r ≤ 0.38).  For example, 1,2,4-

trimethylbenzene was negatively correlated with manganese (r = -0.30) and positively 

correlated with nickel (r = -0.38).   

Differences between replicate metals measurements increased with concentration 

(Figure SA1-1), and the uncertainty model of decile concentration incorporated both 

constant and proportional terms, 

σmetal = 0.07 Cmetal + 0.09    (R
2 

= 0.95)   (7) 

where σmetal is estimated median absolute error (ng/m
3
), and Cmetal is the measured metals 

concentration (ng/m
3
).  For example, metal measurements have a median absolute error 

of 0.16 ng/m
3
 at a concentration of 1 ng/m

3
.  Most of the uncertainty models for other 

percentiles also showed good fits (0.94 ≤ R
2 
≤ 0.98).  As expected, models for the higher 

percentiles gave larger uncertainties.   

1.5.2 PMF analyses 

For the observed data, trichlorotrifluoroethane was identified as an uninformative 

species, while 1,3-butadiene, n-octane, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 
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benzaldehyde, tolualdehyde, beryllium were considered only modestly informative.  

Since the inclusion of these species only slightly affected results, these species were 

neither removed nor down-weighted (Figures SA1-2 and SA1-3).   

Five source classes were identified, as described below and in Figure A1-2:   

1) The fuel combustion source class included key species of acetaldehyde, 

hexaldehyde, iso-butyraldehyde, propionaldehyde and tolualdehyde.  Fuel combustion is 

a well-known direct source of these carbonyls, a result of incomplete combustion.
34

  

Acetaldehyde is emitted by vehicles as a primary emission.  It is also a secondary 

pollutant, also related to combustion.  The carbonyls have relatively short half-lives in the 

atmosphere.  There are some indications that diesel vehicles may have high emissions of 

selected carbonyls (i.e. acetaldehyde, formaldehyde), but improvement in diesel fuel and 

in diesel engines over the years have reduced diesel emissions and many of its 

components.
35,36

  

2) Photochemical pollutants are indicated by formaldehyde, most of which is 

formed by reactions with isoprene and other pollutants (as opposed to emissions from 

road traffic and other sources.
37

)  However, formaldehyde also has been strongly 

associated with traffic emissions and acetaldehyde in a number of studies. 

3) Gasoline exhaust/evaporated gasoline is indicated by 1,2,4-trimethylbenzene, 

1,3,5-trimethylbenzene, 1,3-butadiene, benzene, ethylbenzene, m,p-xylene, o-xylene and 

toluene.  The VOCs comprising this source class remain quite stable across seasons.  

These also tend to be the VOCs measured at the higher concentrations.   

4) Combined industrial sources are suggested by acetylene, propylene, 

dichlorodifluoromethane, n-octane, tetrachloroethylene, trichlorofluoromethane, and 

trichlorotrifluoroethane.  Tetrachloroethylene releases are known to occur at airports and 

waste handling facilities, although the estimated releases total only several hundreds of 

lbs/yr, based on U.S. EPA toxic inventory report (TRI) for Wayne County which contains 

Dearborn (382 lbs and 633 lbs for 2001 and 2002, respectively).
38

  Much larger emissions 

(23,000 lb/yr) occur in Midland, Michigan, but this is too distant to affect monitoring 

observations at the Dearborn site.  As noted above, acetylene also is a constituent of 

vehicle exhaust. 

5) Industrial solvents are suggested by methyl ethyl ketone (MEK).  Annually, 
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95% of the MEK was assigned to this profile.  No other compound was associated with 

this source class.  Known sources of air releases (from the TRI inventory) for MEK 

include GM’s assembly facilities in Detroit, Visteon in Ypsilanti, among others, although 

2002 releases are relatively modest (<20,000 lbs/yr per facility).   MEK is also a common 

laboratory solvent and could represent an artifact.    

Except for n-octane and propylene, other constituents had >40% of their mass 

apportioned to each of the identified source classes.  Contributions of n-octane and 

propylene were approximately equally split (>30% each) to the fuel combustion and 

combined industrial source classes.  Sources of n-octane may come from fuel evaporation 

as well as emissions from industry, solvents and paints.  Propylene is often a marker of 

petrochemical sources,
39

 although the single refinery in Detroit (Marathon) is some 

distance from the Dearborn monitoring site.  Propylene is also a product of incomplete 

combustion. 

Diagnostic statistics for the PMF models indicated that most of the variation in 

the VOC and carbonyl concentrations was explained by the five source classes (Table 

A1-2).  This applied to the aromatic VOCs (0.74 ≤ R
2 
≤ 0.92), MEK (R

2 
= 1.00), 

acetylene (R
2 

= 0.80), 1,3-butadiene (R
2 

= 0.62), and most of the carbonyls including 

acetaldehyde, benzaldehyde, formaldehyde, hexaldehyde, isobutylaldehyde, 

proprionaldehyde and tolualdehyde (0.44 ≤ R
2 
≤ 1.00).  However, it did not apply to other 

chlorinated and fluorinated VOCs (0.03 ≤ R
2 
≤ 0.21), n-octane (R

2
 = 0.10), and propylene 

(R
2
 = 0.08).  While the low R

2
 values for these VOCs may be due to several reasons, the 

most likely explanations are reproducibility problems and the generally small amount of 

variation observed in concentrations of these VOCs, as noted previously.
28

   

Figure A1-3 shows the annual contributions of the five source classes.  Vehicle-

related source classes dominated these results.  The annual source apportionments were: 

gasoline exhaust and evaporated gasoline, 28%; fuel combustion, 24%; combined 

industrial sources, 22%; photochemical pollutants (13%); and industrial solvents, 13%.   

The seasonal models using five source classes obtained similar results (Figures 

SA1-6 to SA1-8).  Source classes for spring and winter seasons were unchanged.  For the 

summer models (Figure SA1-7), MEK and few VOCs (1,2,4-trimethylbenzene, 1,3,5-

trimethylbenzene, 1,3-butadiene, benzene, m,p-xylene and o-xylene) were assigned 
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together with constituents identified as combined industrial sources, and hexaldehyde had 

97% of its mass apportioned to a new source class.  Automobile assembly facilities in the 

Detroit area are often shutdown during the summer time, which might reduce MEK 

emissions.  In addition, somewhat different patterns of traffic during the summer season 

and higher rates of photochemical reactions and the consumption of reactive compounds 

and production of secondary species might contribute to the variability in some of the 

VOCs and hexaldehyde.  For the fall models (Figure SA1-8), propylene had 96% of its 

mass apportioned to a new source class (petroleum pollutants), while chlorinated and 

fluorinated VOCs were assigned together with formaldehyde in the photochemical 

pollutant source class.  These results suggest that variability due to seasonality affects 

only a few of the source classes and only during summer and fall seasons. 

Analyses using six source classes did not significantly change results (Figure 

SA1-4).  The 6
th

 source class had hexaldehyde as the main constituent with 81% of its 

mass assigned to this source; the five other source classes were almost unchanged.  In 

addition, the R
2 

value did not improve as compared to the 5-source class models (Figure 

SA1-5); therefore, the 5-source models appear to be adequate.   

Source classes and annual apportionments obtained using imputed data were 

similar to those obtained using observed data (Figures SA1-10 to SA1-12).  Similar 

estimated annual source apportionments were also obtained: gasoline exhaust and 

evaporated gasoline, 27%; fuel combustion, 25%; combined industrial sources, 22%; 

industrial solvents, 14%; and photochemical pollutants, 12%. 

1.5.3 Source classes with additional metals information 

Results obtained using five source classes along with additional metals 

information are shown in Figure A1-4.  The additional information provided by the 

metals data did not change the source classes identified previously.  The metals resolved 

in their own source class included cadmium, arsenic, lead, chromium and manganese, and 

likely represented diesel and industrial sources.  Formaldehyde, previously identified as a 

photochemical pollutants source class, merged with the rest of the carbonyls of the fuel 

combustion source class and distributed a small part of its mass among other source 

classes.  Beryllium was apportioned to the industrial solvent source class along with 
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MEK, however, this might be an artifact since the variance explained by this element is 

only 0.06 ng/m
3
 (Table A1-2).  Among the seven metals, only chromium (R

2
=0.72) and 

manganese (R
2
=0.92) explained most of the variability of the models that contained 

metals (Table A1-2).  Due to small sample size (n=35), the interpretation of the models 

that included metals must be limited. 

1.5.4 PCA analyses 

Results from the principal component analyses for annual and seasonal models 

are shown in Figures SA1-13 to SA1-S20.  Using an eigenvalue of approximately one as 

a minimal cut-off, we identified five or six source classes (Table SA1-3).  Overall, the 

PCA models yielded similar patterns of source profiles as those obtained from PMF.  

However, the PCA factor loadings included negative values, which limit their physical 

interpretation.  In addition, source profiles obtained from PCA were more mixed in 

composition, i.e., in the six source class models, two profiles resembled a combined 

industrial source, and two others resembled industrial solvents.   

Compared to PMF analyses, the PCA models explained a slightly higher fraction 

of variance of each species (0.48 ≤ R
2 
≤ 0.96), especially for the chlorinated VOCs, 

possibly a result of not using weights in the PCA modeling that account for measurement 

uncertainties.  There were no significantly differences in results obtained using observed 

and imputed data (Figures SA1-21 to SA1-23), and the PCA models with metals data 

gave similar results as those obtained from the PMF models (Figure SA1-24). 

1.6 Discussion 

The PMF models using combined VOC and carbonyl measurements identified 

five source classes identified as gasoline exhaust/evaporated gasoline, fuel combustion, 

combined industrial sources, photochemical pollutants, and industrial solvents.  Ideally, 

each PMF factor represents a single identified source category that is uncorrelated with 

other source categories.  However, in complicated systems, a PMF factor may consist of 

features from several sources.
3
  Combined source factors are also more likely in longer 

samples, e.g., 24-hr samples collected at Dearborn (as compared to 1-hr samples 

collected in Houston, for example
3
) since winds from a number of directions are likely 

and may bring contaminants from several source types to the monitor site, and thus 
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separate sources in effect become correlated.  A further complication arises as several 

aldehydes (e.g., formaldehyde, acetaldehyde) and VOCs (e.g., 1,3-butadiene) in the 

dataset are chemically reactive, and their concentration and lifetime will be affected by 

photochemistry, temperature, sunlight, and other reactive species and precursors (e.g., 

isoprene) that may be present.  Such effects will likely vary seasonally.  Thus, 

measurements of these compounds will reflect both primary emissions (directly from the 

source) and secondary production.  Moreover, measured levels from primary emissions 

will reflect the portion remaining after any consumption from atmospheric reactions.  All 

of these effects will tend to “blur” profiles for sources that include reactive components, 

and may create new profiles that primarily reflect secondary pollutants.  In comparison, 

this is not a problem for PM2.5 or PM10 apportionments that utilize elemental 

composition.   

While the breakdown into factors using receptor models may not isolate single 

sources or source types, the use of source factors remains a valid way to represent the 

pattern of concentrations to which individuals are exposed, and its use in health models 

can thus identify those pollutants and pollutant mixtures that are associated with adverse 

health effects. 

1.6.1  Other receptor modeling studies of air toxics 

Overall, results from this study are consistent with the source apportionment 

analyses by Hafner et al. (2004) which also used air toxics data collected at Dearborn in 

2001 and the PMF model.
40

  This study identified a total of 7 factors representing 

aldehydes/secondary, unknown, three types of industrial, motor vehicle and combined 

diesel and industrial sources using carbonyls, VOCs, semi VOCs, metals and PAHs data.   

The key species for the unknown source factor is propene (also known as propylene).  In 

this study, propylene was apportioned to both fuel combustion and photochemical 

pollutant sources.   

Results from this study also resemble a recent Dearborn study in which factor 

analysis was used to identify sources of ambient VOCs collected outside 85 residence 

homes during fall and spring seasons.
41

  Carbonyls were not measured in this study, but a 

wider range of VOCs were successfully quantified.  This study identified four factors: (1) 
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gasoline-related composite (key species: aromatic and aliphatic VOCs); (2) biogenic 

emissions (solvents, cleaners and fragrances related VOCs); (3) industrial sources 

(styrene and chlorinated VOCs); and (4) gasoline evaporation (alkanes).  These results 

together with those from the current study suggest that community ambient air toxics 

monitoring is representative in identifying the sources of the community exposures to 

ambient air.   

A wider range of measured species will generally help to resolve sources.  In 

comparison to recent work using urban air toxics, this study retained a relatively small 

number (23) of compounds, specifically the compounds that met minimum detection 

frequencies and that showed at least fair reproducibility among replicates.  In 

comparison, Xie and Berkowitz (2005) in apportioning VOCs used 55 compounds (all 

VOCs).
3
  Many of the common VOCs, for example, are emitted by many source 

categories.  For example, Baldosano (1998) showed that benzene, toluene, ethybenzene, 

xylenes and other compounds are all emitted from traffic (diesel and gasoline combined), 

gasoline vapor, architectural coatings, waste water treatment, graphic arts, automotive 

painting, solvent use, and wood combustion.  Additional compounds can help resolve 

such sources.
42

 

1.6.2 Contributions of carbonyls 

To our knowledge, the current study is one of the few studies that utilized both 

carbonyls and VOCs in receptor modeling, probably due to the cost of sampling and 

analysis (these classes of pollutants require different sampling and analytical 

approaches).  Source identification has focused on VOCs, possibly because these 

constitute well known tracers of many sources, and because carbonyl sources lack unique 

tracers.  Carbonyls are emitted by many mobile and stationary sources, and they are also 

stable intermediate products of the photochemical oxidation of virtually all hydrocarbons 

and precursors to free radicals, ozone and peroxyacyl nitrates.
43-45

   

Consistent with previous studies, this study found that acetaldehyde and 

formaldehyde are the most abundant carbonyls in the ambient air with geometric mean 

concentrations of 0.73 and 1.47 ppbv, respectively (Table A1-1).
46-48

   The PMF analysis 

indicates that formaldehyde is a key species for photochemical pollutants sources, while 
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acetaldehyde together with other carbonyls are key species for fuel combustion sources.  

Studies from Rio de Janeiro (Brazil) and Santiago (Chile) also reported photochemical 

oxidations are the main sources of formaldehyde.
46,47,49

  Similar to formaldehyde, 

acetaldehyde is also responsible for O3 formation
46

 and is detected in automobile 

exhaust.
49,50

   

Although results from this study indicated that the presence of carbonyls in the 

models did not greatly influence other sources profiles revolved by VOCs, the inclusion 

of carbonyls in receptor modeling can help derive exposure scores for health effects 

studies.  Carbonyls also are important because of their irritant and toxic properties, 

mutagenicity and carcinogenicity.
51,52

   Finally, with the growth of biofuels, it is 

important to quantify both emissions and health risks of fuel-related emissions.  In 

particular, a recent study predicted an increase in carbonyl concentrations (with the 

exception of benzaldehyde) in Brazil where 4.5 million m
3
 of ethanol were consumed in 

2005 (compared with 22.5 millions m
3
 of gasoline in the same period).

53
  The combustion 

of ethanol produces acetaldehyde as a major product, and ethanol-gasoline blends 

produce more acetaldehyde than gasoline alone.
46

 

1.6.3    Contributions of metals 

Generally, RM results were insensitive to the addition of metals on the subset of 

days when these data were available (n=35).  Due to the small sample size, however, the 

metals data did not provide much information regarding the identification of sources or 

the reliability of the apportionment.   

1.6.4    Utilization of uncertainty models in receptor modeling 

This study utilized uncertainty models to obtain daily uncertainties for several 

groups of air toxics and metals, rather than the error estimates recommended by Polissar 

et al. (1998).  Often, uncertainties are estimated empirically using trial and error or other 

methods.
3,27

  Commonly, uncertainties are estimated as:
3,18

 

3/du k

j,i

k

j,i

k

j,i +=σ  

where k

j,iσ , k

j,iu  and k

j,id  are the error estimate, analytical uncertainty and method 

detection limit, respectively.  This approach was not used in part because the analytical 
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uncertainty was not readily available, and because an alternate, site-specific method was 

available.  Since analytical methods are not independent (i.e. the analytical calibration 

and hardware are shared), the analyses represent random errors (or method precisions) 

rather than fixed errors.
54

  The uncertainty models used here have the advantages of 

capturing the precision measures from replicated samples, thereby reflecting random 

error component.  In addition, the uncertainty models also capture a wide range of 

concentrations, which is common in air toxics concentrations.  The approach used may 

not be conservative since higher percentile absolute relative error models (i.e. 75
th

 or 90
th

 

percentiles models) might well represent the actual errors. 

1.6.5    Recommendations for future studies 

Future analyses might utilize additional meteorological variables, e.g., wind 

direction and wind speed, which affect the transport path and which may lead to 

variations observed at the receptor.  This study was limited to 24-hr samples, however, 

Paatero et al. (2002) demonstrated that high-resolution weather data (1-hr) may enhance 

the usefulness of 24-hr concentration data.
55

  For example, variations in wind speed cause 

variations in the transport path which lead to variation at the receptor.  Wind speed is also 

influenced by seasonal factors, therefore, incorporating wind speed in the receptor 

models can help to explain seasonal variation of source strength.  Utilizing 

meteorological data such as wind speed in receptor model required more advanced and 

flexible software, e.g., the multilinear engine, which is beyond the scope of this study. 

Most of the issues discussed above regarding the derivation and identification of 

PMF profiles are broadly applicable, i.e., not limited to the Dearborn dataset.  Similarly, 

other recommendations are also generalizable.  In particular, PMF results might be 

enhanced by the use of shorter sampling periods (possibly separate day and night 

measurements to separate photochemistry), improved sensitivity of the measurements, 

better reproducibility, routine use of replicates (allowing better detection of outliers), and 

the measurement of a wider set of pollutant species.  There may also be some gain in 

exploring the effects of different error models, further evaluating outliers in the dataset, 

and utilizing a smaller set of profiles in the health models. 
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1.6.6 Implication for epidemiological studies 

To date, very few studies have used source apportionments in epidemiological 

studies.
30,56

  Guo et al. (1999)
57

 separated traffic and fossil fuel sources in examining 

asthma prevalence, Laden et al. (2000)
58

 found that mobile and coal combustion sources 

explained a portion of daily mortality, and Mar et al. (2006)
12

 found that combustion-

related pollutants and secondary aerosols (sulfates) were associated with daily changes in 

cardiovascular mortality.  The current investigators (and others) have used wind-direction 

specific exposure metrics to examine daily fluctuations in asthma aggravations.
59

  A 

comparison across multiple apportionment approaches gave consistent results in 

explaining daily cardiovascular and total mortality, suggesting that these methods provide 

reliable insights into those source components that contribute to health effects.
11,12,24

   

Epidemiologic studies using source-apportioned exposure measures are 

potentially attractive for several reasons: (1) increased statistical power since the 

exposure measures may be more strongly associated with health impacts; (2) the 

correlation in the larger data set is used to derive a smaller number of robust exposure 

measures; and (3) the enhanced biological plausibility and relevance of the exposure 

measure.  In essence, the derived source contributions or composite scores from the 

receptor models are used as exposure measures in the same or similar statistical 

framework used to associate conventional exposure measures, e.g., PM, with health 

outcomes. 

1.7 Conclusion 

The receptor model apportionments suggest that ambient air toxics measured at 

Dearborn, Michigan arise largely due to five sources: gasoline exhaust/evaporated 

gasoline, fuel combustion, combined industrial sources, photochemical pollutants and 

industrial solvents.  Vehicular emissions account for the dominant contribution, larger 

than the many industrial sources that are present in the area.  In this study, PMF yield 

“cleaner” and more realistic source profiles than those obtained from PCA.  Finally, the 

RM results can be used in health models to assess the effects of mixtures and health 

impacts, especially the high incidence of asthma among children in the area. 
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Table A1- 1. Summary of VOC, carbonyl and metals concentrations with detection 

frequencies above 20%.   

Duplicates were averaged, and outliers were excluded.  Ms = missing measurements; 

BDL = below detection limit measurements; S/N = ratio of signal to noise; GM = 

geometric mean. 

Ms BDL S/N GM

(%) (%)

Carbonyls (ppbv)

Acetaldehyde 22 0 44.7 0.73

Benzaldehyde 22 2 0.4 0.04

Formaldehyde 22 0 46.8 1.47

Hexaldehyde 22 1 2.0 0.05

iso-Butyraldehyde 22 1 2.9 0.14

Propionaldehyde 22 10 3.2 0.08

Tolualdehyde 22 7 0.3 0.03

VOCs (ppbv)

Acetylene 17 1 7.7 1.52

Benzene 17 0 4.1 0.55

1,3-Butadiene 17 73 0.7 0.05

Dichlorodifluoromethane 17 0 3.7 0.63

Ethylbenzene 18 2 2.5 0.15

Methyl ethyl ketone 17 26 7.7 0.39

m,p-Xylene 18 0 3.1 0.43

n-Octane 18 66 0.5 0.04

o-Xylene 18 3 5.2 0.18

Propylene 17 0 3.5 0.82

Tetrachloroethylene 17 66 2.5 0.05

Trichlorofluoromethane 17 0 3.6 0.31

Trichlorotrifluoroethane 17 0 0.1 0.11

1,2,4-Trimethylbenzene 17 9 1.0 0.17

1,3,5-Trimethylbenzene 18 61 0.5 0.05

Toluene 18 0 14.7 0.88

Metals (ng/m 3 )

Arsenic 84 0 5.6 2.15

Beryllium 84 18 0.6 0.06

Cadmium 84 0 2.4 0.55

Chromium 84 2 6.6 5.27

Lead 84 0 7.9 150.14

Manganese 84 0 8.3 2.75

Nickel 84 0 5.6 22.06

Compounds
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Table A1- 2. Diagnostic statistics for 5 source class models for observed carbonyls, 

VOCs and metals.   

VOC, volatile organic compounds; ppbv, part per billion volume; RMSE, root mean 

square error; R
2
, coefficients of determinant. 

RMSE R
2

RMSE R
2

Carbonyls (ppbv)

Acetaldehyde 0.01 1.00 0.01 1.00

Formaldehyde 0.01 1.00 0.01 1.00

Propionaldehyde 0.04 0.89 0.02 0.94

iso-Butyraldehyde 0.06 0.78 0.06 0.49

Benzaldehyde 0.02 0.62 0.01 0.67

Hexaldehyde 0.07 0.52 0.04 0.63

Tolualdehyde 0.02 0.44 0.01 0.65

VOCs (ppbv)

Methyl ethyl ketone 0.02 1.00 0.24 0.81

Toluene 0.19 0.92 0.09 0.99

o-Xylene 0.04 0.91 0.04 0.92

1,2,4-Trimethylbenzene 0.05 0.85 0.04 0.90

m,p-Xylene 0.12 0.84 0.15 0.80

Ethylbenzene 0.04 0.83 0.05 0.78

Acetylene 0.24 0.80 0.34 0.80

1,3,5-Trimethylbenzene 0.02 0.78 0.02 0.84

Benzene 0.13 0.74 0.16 0.77

1,3-Butadiene 0.02 0.62 0.02 0.70

Dichlorodifluoromethane 0.14 0.21 0.15 0.26

n-Octane 0.02 0.10 0.02 0.42

Propylene 0.36 0.08 0.42 0.01

Trichlorofluoromethane 0.08 0.05 0.07 0.37

Tetrachloroethylene 0.02 0.04 0.03 0.41

Trichlorotrifluoroethane 0.03 0.03 0.05 0.00

Metals (ng/m 3 )

Manganese - - 37.47 0.92

Chromium - - 1.42 0.72

Lead - - 5.95 0.61

Arsenic - - 0.67 0.20

Nickel - - 0.78 0.09

Beryllium - - 0.02 0.01

Cadmium - - 0.16 0.00

Pollutants
Air toxics (N=265) Air toxics and metals (N=35)

 



 

Table SA1- 1. Intra- and inter-laboratory reproducibility.   

COV=coefficient of variation; WSR=Wilcoxon signed rank; All analyses used only detected values; Significant values (p <0.05) 

indicated in bold.   

Pearson Spearman Pearson Spearman ERG MDEQ Pearson Spearman

Carbonyls

Acetaldehyde 0.38 0.39 0.45 0.45 61 70 0.37 0.52 0.33 0.07 y

Benzaldehyde 0.54 0.61 0.23 0.65 51 78 0.28 0.46 1.00 0.04 y

Formaldehyde 0.45 0.48 0.51 0.58 58 64 0.73 0.61 0.95 0.93 y

Hexaldehyde 0.50 0.64 0.32 0.51 62 83 0.40 0.44 0.41 0.29 y

iso-Butyraldehyde 0.19 0.40 - - 52 - - - - - y

Propionaldehyde 0.34 0.33 0.87 0.49 61 59 0.25 0.28 0.07 0.11 y

Tolualdehydes 0.71 0.56 - - 42 - - - - - y

VOCs

1,2,4-Trimethylbenzene 0.68 0.67 0.91 0.79 39 35 0.71 0.63 <0.01 <0.01 y

1,3,5-Trimethylbenzene 0.71 0.70 0.89 0.64 31 16 0.71 0.59 <0.01 <0.01 y

1,3-Butadiene 0.60 0.59 - - 49 - - - - - y

Acetylene 0.54 0.63 - - 26 - - - - - y

Benzene 0.83 0.73 0.82 0.66 19 36 0.81 0.71 0.07 <0.01 y

Chloromethane -0.02 0.45 0.44 0.42 12 27 0.32 0.32 0.98 0.47 y

Dichlorodifluoromethane 0.75 0.75 0.70 0.68 4 29 0.47 0.61 <0.01 <0.01 y

Ethylbenzene 0.69 0.65 0.92 0.88 44 16 0.78 0.66 <0.01 <0.01 y

m,p-Xylene 0.60 0.71 0.92 0.88 35 24 0.80 0.67 <0.01 <0.01 y

Methyl ethyl ketone 0.66 0.65 - - 50 - - - - - y

n-Octane 0.28 0.56 - - 53 - - - - - y

o-Xylene 0.63 0.79 0.93 0.83 39 30 0.79 0.67 <0.01 <0.01 y

Propylene 0.90 0.70 - - 33 - - - - - y

Tetrachloroethylene 0.82 0.77 0.39 0.53 28 63 0.64 0.61 0.65 0.73 y

Toluene 0.82 0.73 0.93 0.82 28 37 0.50 0.62 1.00 0.04 y

Trichlorofluoromethane 0.66 0.57 0.57 0.60 10 28 0.33 0.42 0.04 0.02 y

Trichlorotrifluroethane 0.76 0.52 - - 10 - - - - - y

Intra-laboratory reproducibility

Compound

Inter-laboratory reproducibility
Retained 

(y=yes)
Correl coeff-ERG Correl coeff-MDEQ Correl coeff Paired t-test 

(p-value)

WSR test 

(p-value)

% COV

 

2
2
0
 



 

Table SA1- 2. Pearson correlation coefficient for carbonyls, volatile organic compounds, metals and particulate matters 
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N 300 302 345 301 345 345 345 302 345 343 345 343 343 344 344 345 284 329 330 330 329 330 283 361 114 60 60 60 60 60 59 60

Propylene 1.00

Acetylene 0.32 1.00

1,3-Butadiene 0.32 0.68 1.00

n-Octane 0.22 0.34 0.47 1.00

Methyl ethyl ketone 0.17 0.22 0.21 0.31 1.00

Trichlorofluoromethane 0.08 0.11 0.21 0.15 0.10 1.00

Tetrachloroethylene -0.01 0.18 0.18 0.10 0.15 -0.01 1.00

Trichlorotrifluoroethane 0.20 0.04 0.15 0.17 -0.05 0.00 -0.06 1.00

Dichlorodifluoromethane 0.16 0.27 0.35 0.24 0.22 0.57 0.06 0.13 1.00

m,p-Xylene 0.23 0.61 0.69 0.35 0.37 0.26 0.22 0.01 0.44 1.00

Benzene 0.26 0.68 0.54 0.37 0.42 0.18 0.27 -0.02 0.35 0.66 1.00

Toluene 0.20 0.61 0.56 0.34 0.45 0.18 0.23 -0.06 0.33 0.80 0.76 1.00

Ethylbenzene 0.23 0.62 0.68 0.36 0.37 0.24 0.22 0.03 0.43 0.99 0.67 0.81 1.00

o-Xylene 0.24 0.65 0.71 0.40 0.37 0.29 0.22 0.00 0.44 0.97 0.71 0.83 0.96 1.00

1,3,5-Trimethylbenzene 0.22 0.66 0.74 0.41 0.39 0.24 0.27 0.00 0.40 0.89 0.70 0.82 0.89 0.90 1.00

1,2,4-Trimethylbenzene 0.25 0.67 0.73 0.42 0.43 0.28 0.26 0.02 0.45 0.94 0.74 0.85 0.94 0.93 0.95 1.00

iso-Butyraldehyde 0.21 0.19 0.24 0.20 0.38 0.23 0.08 0.16 0.36 0.31 0.30 0.27 0.30 0.29 0.31 0.35 1.00

Formaldehyde 0.21 0.28 0.28 0.24 0.31 0.15 0.08 0.03 0.30 0.38 0.34 0.34 0.37 0.39 0.35 0.39 0.67 1.00

Acetaldehyde 0.26 0.30 0.33 0.29 0.37 0.27 0.10 0.13 0.41 0.45 0.45 0.42 0.45 0.45 0.45 0.49 0.86 0.82 1.00

Propionaldehyde 0.16 0.20 0.17 0.18 0.32 0.16 0.06 0.06 0.26 0.26 0.29 0.26 0.25 0.27 0.28 0.32 0.75 0.77 0.79 1.00

Hexaldehyde 0.10 0.07 0.16 0.18 0.40 0.25 0.11 -0.02 0.35 0.33 0.28 0.31 0.32 0.32 0.32 0.36 0.65 0.55 0.70 0.61 1.00

Benzaldehyde 0.10 0.22 0.24 0.16 0.35 0.11 0.05 -0.11 0.25 0.33 0.36 0.35 0.33 0.35 0.32 0.35 0.57 0.70 0.59 0.70 0.59 1.00

Tolualdehyde 0.11 0.16 0.18 0.20 0.38 0.14 0.12 0.01 0.26 0.32 0.28 0.30 0.31 0.33 0.37 0.38 0.61 0.58 0.65 0.72 0.70 0.64 1.00

PM10 0.15 0.03 -0.06 0.08 0.23 -0.03 -0.08 -0.03 0.01 0.04 0.07 0.03 0.05 0.01 0.04 0.02 0.09 0.19 0.14 0.14 0.10 0.11 0.16 1.00

PM2.5 0.24 0.14 -0.04 -0.10 0.11 -0.02 -0.08 -0.13 -0.04 -0.01 0.16 0.02 0.01 -0.03 -0.02 -0.03 -0.08 0.03 0.01 0.13 0.02 0.12 0.04 0.66 1.00

Arsenic 0.14 0.19 0.11 0.00 -0.12 0.22 -0.06 0.03 0.09 0.14 0.15 0.13 0.16 0.15 0.10 0.08 0.20 -0.03 0.08 0.24 0.03 0.05 0.06 0.35 0.54 1.00

Beryllium 0.25 0.19 0.07 0.12 -0.12 -0.09 0.01 0.01 -0.03 0.02 0.09 0.15 0.03 0.03 0.11 0.04 -0.33 0.09 0.07 -0.11 -0.06 -0.03 -0.10 0.50 0.39 0.19 1.00

Cadmium -0.12 0.09 -0.01 0.06 0.01 -0.12 0.20 0.08 -0.13 0.01 0.11 0.01 0.02 0.02 0.09 0.03 -0.11 0.01 0.03 -0.03 -0.02 -0.05 -0.16 0.07 0.21 0.25 0.02 1.00

Chromium 0.07 0.00 -0.09 0.04 -0.15 0.00 -0.06 0.12 -0.02 -0.08 -0.08 -0.06 -0.08 -0.12 -0.05 -0.10 -0.44 -0.15 -0.14 -0.16 -0.12 -0.17 -0.11 0.63 0.41 0.29 0.30 0.14 1.00

Lead -0.13 0.13 -0.09 0.11 -0.19 -0.10 -0.03 -0.06 -0.06 -0.13 0.02 0.03 -0.12 -0.12 0.01 -0.11 -0.31 -0.17 -0.09 -0.11 -0.13 -0.09 -0.19 0.62 0.62 0.50 0.51 0.35 0.59 1.00

Manganese 0.00 -0.14 -0.19 -0.01 -0.25 -0.21 -0.30 0.06 -0.20 -0.25 -0.25 -0.17 -0.24 -0.30 -0.23 -0.30 -0.44 -0.26 -0.25 -0.30 -0.25 -0.31 -0.34 0.68 0.48 0.22 0.58 0.02 0.74 0.68 1.00

Nickel -0.11 0.09 0.01 0.01 0.23 0.25 0.24 -0.31 0.32 0.31 0.21 0.33 0.30 0.34 0.33 0.38 -0.12 0.28 0.29 0.19 0.06 0.23 0.28 0.13 -0.04 0.06 0.11 0.17 0.19 0.14 -0.07 1.00  

 

 

2
2
1
 



 

222 

Table SA1- 3. Eigenvalues explained by each factor from PCA.   

Replicates were averaged from both laboratories for observed and single imputation.  

All Spring Summer Fall Winter All Spring Summer Fall Winter

1 10.13 12.82 8.95 10.45 9.54 9.46 11.06 8.41 10.64 8.84

2 3.47 2.62 3.79 4.70 5.03 3.46 3.49 3.60 4.20 4.87

3 1.65 1.75 2.28 1.82 2.05 1.63 1.71 2.24 1.80 2.24

4 1.29 1.19 1.47 1.29 1.49 1.35 1.11 1.33 1.29 1.32

5 1.07 1.04 1.10 1.11 0.95 1.00 1.06 1.19 1.03 1.08

6 0.88 0.74 1.03 0.99 0.91 0.88 0.98 1.03 0.94 0.96

Factor Observed Imputed (SI)
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Figure A1- 1. Map showing the Dearborn air monitoring site 
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Figure A1- 3. Annual PMF factor contributions for total mass concentrations of observed 

carbonyls and VOCs 
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Figure SA1- 1. Absolute relative error models for metals from inter-laboratory 

comparison.   

Only concentrations above MDLs were included.  Maximum decile concentrations were 

excluded. 
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Figure SA1- 2. Annual percentage concentration of each species apportioned to 5 source 

classes using observed urban air toxics (UATs).  Weak species were down-weighted and 

bad species were excluded. 
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Figure SA1- 4.  Annual percentage of concentration of each species apportioned to 6 

sources classes using observed urban air toxics (UATs).  Weak and bad species were 

neither down-weighted nor excluded. 
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Figure SA1- 5. Coefficients of determinant for 6 source classes using observed UATs. 

Weak and bad species were neither down-weighted nor excluded. 
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Figure SA1- 6. Percentage of concentration of each species apportioned to 5 source 

classes using observed urban air toxics (UATs) for spring season.  Weak and bad species 

were neither down-weighted nor excluded. 
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Figure SA1- 7. Percent of concentration of each species apportioned to 5 source classes 

using observed urban air toxics (UATs) for summer season.  Weak and bad species were 

neither down-weighted nor excluded. 
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Figure SA1- 8. Percentage of concentration of each species apportioned to 5 source 

classes using observed urban air toxics (UATs) for fall season.  Weak and bad species 

were neither down-weighted nor excluded. 
M

as
s 

o
f 

sp
ec

ie
s 

ap
p
o

rt
io

n
ed

 t
o
 s

o
u

rc
es

 (
%

)

0

20

40

60

80

100

Fuel combustion

0

20

40

60

80

100

Photochemical pollutants

0

20

40

60

80

100

Gasoline exhaust/evaporated gasoline

0

20

40

60

80

100

Petrolium pollutants

0

20

40

60

80

100

P
ro

p
y

le
n

e

A
ce

ty
le

n
e

1
,3

-B
u

ta
d
ie

n
e

n
-O

ct
an

e

M
et

h
y

l 
et

h
y

l 
k

et
o
n

e

T
ri

ch
lo

ro
fl

u
o

ro
m

et
h

an
e

T
et

ra
ch

lo
ro

et
h

y
le

n
e

T
ri

ch
lo

ro
tr

if
lu

ro
et

h
an

e

D
ic

h
lo

ro
d

if
lu

o
ro

m
et

h
an

e

m
,p

-X
y

le
n

e

B
en

ze
n

e

T
o

lu
en

e

E
th

y
lb

en
ze

n
e

o
-X

y
le

n
e

1
,3

,5
-T

ri
m

et
h

y
lb

en
ze

n
e

1
,2

,4
-T

ri
m

et
h

y
lb

en
ze

n
e

is
o
-B

u
ty

ra
ld

eh
y

d
e

F
o

rm
al

d
eh

y
d

e

A
ce

ta
ld

eh
y
d

e

P
ro

p
io

n
al

d
eh

y
d

e

H
ex

al
d

eh
y

d
e

B
en

za
ld

eh
y
d

e

T
o
lu

al
d

eh
y
d

e

Industrial solvent



 

235 

Figure SA1- 9. Percentage of concentration of each species apportioned to 5 source 

classes using observed urban air toxics (UATs) for winter season.  Weak and bad species 

were neither down-weighted nor excluded. 
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Figure SA1- 10. Annual percentage of concentration of each species apportioned to 5 

source classes using imputed urban air toxics (UATs).  Weak and bad species were 

neither down-weighted nor excluded. 
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Figure SA1- 11. Coefficients of determination for 5 source class models using imputed 

data (SI) 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Trichlorotrifluroethane

Tetrachloroethylene

Trichlorofluoromethane

Propylene

n-Octane

Dichlorodifluoromethane

Tolualdehyde

Benzaldehyde

Hexaldehyde

1,3-Butadiene

1,3,5-Trimethylbenzene

Benzene

1,2,4-Trimethylbenzene

Acetylene

iso-Butyraldehyde

m,p-Xylene

Ethylbenzene

o-Xylene

Propionaldehyde

Toluene

Methyl ethyl ketone

Formaldehyde

Acetaldehyde

 



 

238 

Figure SA1- 12. Annual PMF factor contributions for total concentrations of carbonyls 

and VOCs using both observed and imputed data 
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Figure SA1- 13. Principal component analysis (PCA) – Annual factor loadings for 5 

source class model using observed UATs 
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Figure SA1- 14. PCA – Annual factor loadings for 6 source class models using observed 

UATs 
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Figure SA1- 15. PCA -Variance explained for 5 and 6 source class models using 

observed UATs 
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Figure SA1- 16. PCA – Factor loadings for 5 source classes using observed UATs for 

spring season 
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Figure SA1- 17. PCA – Factor loadings for 5 source classes using observed UATs for 

summer season 
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Figure SA1- 18. PCA – Factor loadings for 5 source classes using observed UATs for fall 

season 
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Figure SA1- 19. PCA – Factor loadings for 5 source classes using observed UATs for 

winter season 
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Figure SA1- 20. PCA -Variance explained for 5 source classes of observed UATs by 

seasons 
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Figure SA1- 21. Principal component analysis (PCA) – Annual factor loadings for 5 

source classes using imputed UATs data 
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Figure SA1- 22. Principal component analysis (PCA) – Annual factor loadings for 6 

source classes using imputed UATs data 
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Figure SA1- 23. PCA -Variance explained for 5 and 6 source classes of imputed UATs 

data 

0.0 0.2 0.4 0.6 0.8 1.0

Methyl ethyl ketone

n-Octane

Propylene

Tolualdehydes

Trichlorotrifluroethane

Acetylene

Benzene

Benzaldehyde

Hexaldehyde

Formaldehyde

Dichlorodifluoromethane

1,3-Butadiene

Trichlorofluoromethane

Toluene

iso-Butyraldehyde

Propionaldehyde

1,3,5-Trimethylbenzene

Ethylbenzene

m,p-Xylene

o-Xylene

Acetaldehyde

Tetrachloroethylene

1,2,4-Trimethylbenzene

5-Source classes 6-Source classes

 



 

250 

Figure SA1- 24. Principal component analysis (PCA) – Annual factor loadings for 5 

source classes using observed UATs and metals data 
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Appendix 2 

 
Journal paper: Le, HQ; Batterman, SA; Wahl, RL.  Reproducibility and Imputation of Air 

Toxics Data.  J. Environ. Monit., 2007, 9, 1358-1372. 

 



258 



259 



260 



261 



262 



263 



264 



265 



266 



267 



268 



269 



270 



271 

 



272 

 


	Title Page-rev3.pdf
	Chapter 1-rev3.pdf
	Chapter 2-rev3.pdf
	Chapter 3-rev3.pdf
	Chapter 4-rev3.pdf
	Chapter 5-rev3.pdf
	Appendix 1-rev3.pdf
	Appendix 2-rev3.pdf
	Appendix 2-Le_2007--Reproducibility_and_imputation_of_air_toxics_data.pdf

