
QUERYING GRAPH DATABASES

by

Yuanyuan Tian

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2008

Doctoral Committee:
Associate Professor Jignesh M. Patel, Chair
Professor Hosagrahar V. Jagadish
Professor Farnam Jahanian
Professor David J. States

c© Yuanyuan Tian 2008
All Rights Reserved

To my family.

ii

ACKNOWLEDGEMENTS

This dissertation could not have been completed without the support and encour-

agement of many people. First, I would like to thank my advisor, Professor Jignesh

M. Patel. Jignesh is a great advisor. I have learned a great deal about research, aca-

demic writing and presentation skills from him. He is extremely honest, and always

encourages me to think independently and argue with him about research ideas. I

am very lucky to have worked with him as a student, teaching assistant and research

assistant for the past 5 years.

I would also like to thank my dissertation committee, Professor Hosagrahar V.

Jagadish, Professor Farnam Jahanian and Professor David J. States, for their time and

effort to help improve and refine my thesis. In particular, Professor States provided

me with the BioNLP dataset for the approximate graph matching experiments and

helped me develop the statistical significance evaluation method for this dataset.

I appreciate all of Dr. Richard A. Hankins’ mentorship and support throughout

my internship at Nokia Research Center. He advised the early stage of the graph

summarization work.

The National Center for Integrative Biomedical Informatics (NCIBI) provided me

a golden opportunity to apply my dissertation work to real life science applications.

iii

Professor David J. States, Professor Matthias Kretzler, Dr. Richard C. McEachin,

Dr. Carlos Santos, Viji Nair, Sebastian Martini, Terry Weymouth, Glenn Tarcea and

Vasudeva Mahavishnu all deserve special thanks in helping me with the application.

Spending five years in graduate school could very well have been unbearable with-

out many colleagues and friends to make life fun. I would like to thank all the database

slaves who made my time in the office so enjoyable: You Jung Kim, Adriane Chap-

man, Magesh Jayapandian, Willis Lang, Arnab Nandi, Bin Liu, Anna Shaverdian,

Neamat el Tazi, Jing Zhang, Dr. Yunyao Li, Dr. Cong Yu, Dr. Sandeep Tata,

Dr. Mike Morse, Dr. Yun Chen, Dr. Nuwee Wiwatwattana and Dr. Stelios Papari-

zos. Especially, thank Magesh Jayapandian for his wonderful home-made cakes which

made the database lab feel like a home. Thank You Jung Kim, Adriane Chapman,

Neamat el Tazi and Dr. Yunyao Li for being my long-time “lunch buddies”. I would

also like to thank the many other friends who have supported me throughout my

graduate school life. Special thank to Ying Zhang for being my “water buddy” and

best listener.

Finally, my thanks goes to my parents, who have always been extremely supportive

of my study and work in other areas of life. I consider myself very lucky to have so

many wonderful people always behind me.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTERS

I Introduction . 1
1.1 Contributions . 2
1.2 Outline . 5

II Periscope/GQ: A Graph Querying Toolkit 6
2.1 Introduction . 6
2.2 System Architecture . 7

2.2.1 Data Model and Data Storage 7
2.2.2 Graph Query Operations 8
2.2.3 Efficient Query Evaluation using Indices 11

2.3 Case Studies . 12
2.3.1 Example 1: Gene Regulatory Networks 12
2.3.2 Example 2: DBLP Coauthorship Networks 14

III Approximate Graph Matching . 18
3.1 Introduction . 18
3.2 System and Methods . 21

3.2.1 Graph model . 21
3.2.2 Distance measure for subgraph matching 22
3.2.3 The index-based matching algorithm 26
3.2.4 Fragment size parameter 33
3.2.5 Statistical significance of matching results 34

3.3 Implementation and Results 34
3.3.1 Implementation . 35

v

3.3.2 Finding conserved components across pathways 36
3.3.3 Reactome pathways vs. KEGG pathways 41
3.3.4 SAGA for querying parsed literature graphs 42
3.3.5 Comparison with existing tools 44
3.3.6 Efficiency evaluation 45

3.4 Discussion . 46

IV Approximate Large Graph Matching 48
4.1 Introduction . 48
4.2 Preliminaries . 50
4.3 The NH-Index . 52

4.3.1 Indexing Unit . 52
4.3.2 Matching a Query Node 54
4.3.3 Index Structure . 57
4.3.4 Index Probing . 58
4.3.5 Extensions to the Basic Approach 62

4.4 The Matching Algorithm . 63
4.4.1 Algorithm Overview 64
4.4.2 Step 1: Match the Important Nodes 66
4.4.3 Step 2: Extend the Match 67

4.5 Evaluation . 69
4.5.1 Experimental Datasets 70
4.5.2 Parameterizations . 73
4.5.3 Effectiveness Evaluation 74
4.5.4 Efficiency and Scalability Evaluation 82
4.5.5 Discussion and Summary 86

4.6 Conclusions . 87

V Aggregation for Graph Summarization 89
5.1 Introduction . 89
5.2 Graph Aggregation Operations 93

5.2.1 SNAP Operation . 94
5.2.2 k-SNAP Operation 100

5.3 Evaluation Algorithms . 104
5.3.1 Architecture and Data Structures 105
5.3.2 Evaluating SNAP Operation 107
5.3.3 Evaluating k-SNAP Operation 110

5.4 Experimental Evaluation . 117
5.4.1 Experimental Datasets 119
5.4.2 Effectiveness Evaluation 121
5.4.3 k-SNAP: Top-Down vs. Bottom-Up 126
5.4.4 Efficiency Experiment 128

5.5 Conclusions . 132

VI Related Work . 133

vi

6.1 Graph Matching Methods . 133
6.2 Graph Summarization Methods 134

VIIConclusions . 137

APPENDICES . 139

BIBLIOGRAPHY . 144

vii

LIST OF FIGURES

Figure

2.1 Periscope/GQ architecture . 8

2.2 Examples of the graph table, the node table and the edge table . . . 9

2.3 Example application of Periscope/GQ for gene regulatory network anal-
ysis . 16

2.4 Example application of Periscope/GQ to analyze coauthorship networks 17

3.1 (a) An example graph. (b) An example subgraph match. 22

3.2 Example database graphs . 28

3.3 The FragmentIndex for the example database 29

3.4 (a) An example query Q (b)The hit-compatible graph for G1 when
querying Q. 32

3.5 Hedgehog pathway matched the Wnt pathway. 36

3.6 Wnt pathway matched the Calcium pathway. 37

3.7 The shared components between KEGG and Reactome TGF-β pathways. 38

4.1 An example graph . 54

4.2 The hybrid index structure . 57

4.3 Example demonstrating Algorithm 1 60

4.4 Overview of the matching algorithm 64

4.5 Degree distribution for the BIND dataset 71

4.6 Degree distribution for the KEGG dataset 71

4.7 Degree distribution for the ASTRAL dataset 72

4.8 ROC curves for human pathways . 76

4.9 ROC curves for mouse pathways . 77

4.10 ROC curves for rat pathways . 77

4.11 ROC curves using the ASTRAL dataset 81

4.12 Scalability Experiment using the BIND dataset 83

4.13 Index Construction Time with Increasing KEGG Database Size . . . 84

4.14 Index Size with Increasing KEGG Database Size 84

4.15 Query Execution Time with Increasing KEGG Database Size 85

4.16 Index construction time for the ASTRAL dataset 85

viii

4.17 Index size for the ASTRAL dataset 86

4.18 Query execution time for the ASTRAL dataset 86

5.1 Graph summarization by aggregation 90

5.2 Illustration of multi-resolution summaries 91

5.3 Construction of Φ3 in the proof of Theorem 5.2.4 91

5.4 Data Structures Used in the Evaluation Algorithms 105

5.5 DBLP DB coauthorship graph . 118

5.6 Distribution of the number of DB publications (avg: 2.6, stdev: 5.1) . 118

5.7 The SNAP result for DBLP DB dataset 119

5.8 Quality of summaries: top-down vs. bottom-up 125

5.9 Efficiency: top-down vs. bottom-up 126

5.10 Efficiency experiment for DBLP datasets 129

5.11 Efficiency experiment for synthetic datasets 129

5.12 Bitmap in memory vs. no bitmap . 130

ix

LIST OF TABLES

Table

2.1 Graph operations supported in Periscope/GQ 10

3.1 Significant matches for the T2DM and H.pylori disease associated KEGG
pathways. The number of PubMed references is simply produced by
querying PubMed with the keywords in the pathway names. 35

3.2 The ten disease associated human pathways in KEGG 39

3.3 Characteristics of various databases used for the scalability experiment.
This table shows the number of graphs in each database, the average
number of nodes and edges per graph in the databases, and the number
of entries in the FragmentIndex. 42

3.4 Execution time (in milliseconds) for the 10 disease-associated pathways
in KEGG when querying the databases listed in Table 3.3. 44

4.1 PINs of human, mouse and rat . 75

4.2 Effectiveness for comparing PINs . 76

4.3 The statistics of KEGG pathways for the 7 well-studied model species 78

4.4 Four BIND sub-datasets for the scalability experiment 81

5.1 The DBLP Datasets for the Efficiency Experiments 119

5.2 The Aggregation Results for the DBLP DB and AI Subsets 121

5.3 Aggregation results for Political Blogs Dataset 125

5.4 The SNAP Results for the DBLP Datasets 128

1.1 The Notation Table . 142

x

CHAPTER I

Introduction

Graphs provide a natural way to model data in a variety of applications. Nodes in

graphs usually represent real world objects and edges indicate relationships between

objects. Examples of data modeled as graphs include social networks, biological net-

works, and computer networks. Many graph databases are large and growing rapidly

in size. For example, the number of pathways (a pathway is a graph of cellular entities

and their interactions) in the well-known KEGG pathway database [34] has increased

from 2,706 in 1999 to 29,921 in 2005, then to 66,407 in 2007. The social networking

site Facebook contains a large network of registered users and their friendships. The

number of Facebook users has grown from less than 5 million in September 2005 to

close to 10 million in September 2006, then to 50 million in September 2007. There

is a critical need for efficient and effective graph querying systems to query and mine

these growing graph databases.

Previous graph querying systems [21, 46] have largely focused on relatively simple

graph operations, such as retrieving nodes, edges and paths. However, none of these

1

systems support sophisticated query operations like approximate graph matching or

graph summarization (see Table 2.1 for the descriptions of these operations). On the

other hand, tools for individual query operations, such as GraphGrep [20], GIndex [58]

and Grafil [59], have been developed. These tools are useful, but the power of indi-

vidual query operations is limited. Complex analysis on graphs usually requires more

than one query operation. Users have to combine these individual tools together, go-

ing through the complication of resolving the differences in execution platforms and

data formats. Therefore, it is crucial to develop graph querying systems that include

sophisticated graph operations as well as simple ones.

This thesis describes the efforts in developing an effective and efficient graph

querying system that support sophisticated graph query operations.

1.1 Contributions

To address the need of complex analysis on graph data, this thesis develops a

graph querying toolkit, called Periscope/GQ. This toolkit is built on top of a tra-

ditional RDBMS. It provides a uniform schema for storing graphs in the database

and supports various simple and sophisticated graph query operations. Users can

easily combine several operations to perform complex analysis on graphs. To speed

up query operations, Periscope/GQ employs novel indexing techniques that make use

of the existing robust index structures in a typical RDBMS, which makes adoption

and implementation easy.

The key feature of Periscope/GQ is the support of various sophisticated graph

2

query operations as well as simple ones. In particular, this thesis focuses on graph

matching and graph summarization queries.

Graph matching queries allow a user to discover, in the database, graphs or sub-

graphs similar to the query graph. It is analogous to the keyword search in a text

database. The previous studies on graph matching methods [22, 28, 45, 51, 55, 58,

59, 60, 61], have mostly been carried out within the context of precise graph data,

and have focused on exact graph or subgraph matching queries (i.e. graph or sub-

graph isomorphism). However, many real graph datasets are noisy and incomplete in

nature. For example, it is well known that protein interaction networks produced by

high-throughput methods contain many false positives [47]. As a result, exact graph

or subgraph matching often fails to produce useful results for real graph data.

In contrast, approximate graph or subgraph matching plays a critical role in these

applications. Approximate matching allows node/edge insertions and deletions, and

node/edge mismatches. Furthermore, many new graph applications prefer approxi-

mate matching results rather than exact ones as they can provide more information

such as what might be missing or spurious in a query or a database graph.

This thesis presents a novel approximate graph matching technique called SAGA.

This technique employs a flexible model for computing graph similarity, which allows

for node gaps, node mismatches, and graph structural differences. SAGA employs

an index-based matching technique that allows it to efficiently evaluate queries even

against large graph datasets. In addition, SAGA can produce meaningful matches on

actual examples, whereas existing tools fail.

Most graph matching methods, including SAGA, are applicable to query graphs

3

that are small in size (tens of nodes and edges). However, in many new applications,

both the query and database graphs are “large”. Each graph can contain hundreds

to thousands of nodes and edges. For example, in life sciences applications, protein

interaction networks for individual species are often matched to determine similarities

and differences across species. Each protein interaction network typically contains

hundreds to thousands of nodes and edges.

To address the need for approximate matching of large query graphs, a novel

technique, called TALE, is developed. TALE employs a novel indexing method that

incorporates graph structural information in a hybrid index structure. This indexing

technique achieves high pruning power and the index size scales linearly with the

database size. In addition, an innovative matching paradigm is proposed to query

large graphs. This technique distinguishes nodes by their importance in the graph

structure. The matching algorithm first matches the important nodes of a query

and then progressively extends these matches. Through experiments, TALE has

been shown to be effective for real applications, and scalable for large queries and

databases.

Graph summarization techniques are very useful for understanding underlying

characteristics of graphs. In many applications, graphs contain thousands or even

millions of nodes and edges. As a result, it is almost impossible to understand the

information encoded in large graphs by mere visual inspection. Therefore, effective

graph summarization methods are required to help users extract and understand the

underlying information. However, existing graph summarization methods are mostly

statistical [11, 12, 37] (studying statistics such as degree distributions, hop-plots

4

and clustering coefficients). While these methods are useful, the summaries contain

limited information and can be difficult to interpret and manipulate.

This thesis introduces two graph aggregation operations to summarize graphs.

Like the OLAP-style aggregation methods, that allow users to drill-down or roll-

up to control the resolution of summarization, the proposed methods provide an

analogous functionality for large graph datasets. The first operation, called SNAP,

produces a summary graph by grouping nodes based on user-selected node attributes

and relationships. The second operation, called k-SNAP, further allows users to

control the resolutions of summaries and provides the “drill-down” and “roll-up”

abilities to navigate through summaries with different resolutions. The effectiveness

and efficiency of the two aggregation operations are demonstrated by experiments on

both real and synthetic datasets.

1.2 Outline

This dissertation is structured as follows. Chapter II describes the design and ar-

chitecture of the Periscope/GQ toolkit. Chapter III presents the approximate graph

matching method, SAGA. To support approximate matching for large graphs, the

TALE technique is introduced in Chapter IV. The SNAP and k-SNAP graph sum-

marization methods are presented in Chapter V. Chapter VI describes the related

work. Finally, Chapter VII concludes this thesis.

5

CHAPTER II

Periscope/GQ: A Graph Querying Toolkit

2.1 Introduction

Efficient and effective graph querying systems are critical to query and mine the

ever growing graph datasets in various applications. To address this need, we design

and develope a graph querying toolkit, called Periscope/GQ. This toolkit is built on

top of a traditional RDBMS. It provides a uniform schema for storing graphs in the

database. The key feature of Periscope/GQ is that it supports various simple and

complex graph query operations. Users can easily combine several operations to per-

form complex analysis on graphs. To speed up query operations, Periscope/GQ em-

ploys novel indexing techniques that make use of the existing robust index structures

in a typical RDBMS, which makes adoption and implementation easy. By applying

Periscope/GQ to life science and social networking applications, we demonstrate the

power of Periscope/GQ in performing complex analysis on graph databases.

6

2.2 System Architecture

Periscope/GQ is built on top of the RDBMS PostgreSQL (http://www.postgresql.

org/). Graph data are stored and indexed in the RDBMS, while graph query algo-

rithms are implemented as applications on top of the RDBMS. This design allows us

to easily port the implementation to other RDBMSs. Figure 2.1 shows the architec-

ture of Periscope/GQ.

2.2.1 Data Model and Data Storage

Periscope/GQ supports a general graph model. Under this model, graphs can

be directed or undirected. Nodes and edges are allowed to have arbitrary labels

and attributes. In fact, node and edge labels can be viewed as special attributes.

Furthermore, attributes can be of arbitrary types.

Graphs are stored in a graph table, a node table and an edge table using the

following schema:

Graph(graphID, attrName, attrType, attrValue)

Node(graphID, nodeID, attrName, attrType, attrValue)

Edge(graphID, node1ID, node2ID, attrName, attrType, attrValue)

Each graph is uniquely identified by a graphID in the graph table. A graph

can have attributes associated with it. For example, in Figure 2.2, the graph with

graphID=1 has a string attribute called name. The value of this attribute is wnt

pathway. This graph has another string attribute describing the source of the graph

data. Within each graph, nodes are uniquely identified by their nodeIDs. Simi-

7

Database of Graphs

Main Memory

Buffer Pool
Working

Memory

Figure 2.1: Periscope/GQ architecture

larly, nodes can have attributes associated with them. In Figure 2.2, the node with

nodeID=1 in the graph with graphID=1 has two attributes label and familyID.

Edges within a graph are identified by the IDs of the end nodes. Again, edges can

have attributes associated with them. In Figure 2.2, the edge in graph 1 with end

nodes 1 and 2 is undirected, which is indicated by setting the directed attribute to

the value false. A directed edge is represented by setting this directed attribute to

the value true and the direction is from node1ID to node2ID. This edge has another

attribute indicating its link type. Graphs, nodes or edges with multiple attributes

have multiple entries in the corresponding tables. In the current implementation, all

graphs in the system must have a name attribute with non-null values; all nodes must

have a label attribute with non-null values; and all edges must have a directed

attribute with non-null values.

2.2.2 Graph Query Operations

The graph query operations supported in Periscope/GQ are listed in Table 2.1.

The first six operations in this table are relatively “simple” and have been extensively

8

graphID

1

1

…...

attrName

name

source

…...

attrType

string

string

…...

attrValue

wnt pathway

KEGG Database

…...

nodeID

1

1

…...

attrName

label

familyID

…...

attrType

string

string

…...

attrValue

wnt

K00182

…...

graphID

1

1

…...

node2ID

2

2

…...

attrName

directed

link type

…...

attrType

boolean

string

…...

attrValue

false

protein interaction

…...

node1ID

1

1

…...

graphID

1

1

…...

Graph Table

Node Table

Edge Table

Figure 2.2: Examples of the graph table, the node table and the edge table

studied. The last three operations are more complex and play crucial roles in complex

analyses, hence are described below.

Approximate Graph Matching: Analogous to the keyword search in a se-

quence/text database, graph matching finds graphs or subgraphs in the database

similar to the query graph. It is an important operation to analyze graphs in com-

plex ways. Due to the noisy and incomplete nature of most real graph datasets,

approximate matching plays a more critical role than exact matching in practice.

Approximate matching allows node/edge insertions and deletions, and node/edge

mismatches.

Periscope/GQ incorporates the novel approximate graph matching method SAGA

(see Chapter III). SAGA employs a flexible model for computing graph similarity and

utilizes an index-based matching technique that allows it to efficiently evaluate queries

9

Operation Description
Graph Selection Select graphs based on conditions of graph

attributes.
Node Selection Select nodes based on conditions of node

attributes and/or graphID.
Edge Selection Select edges based on conditions of edge

attributes and/or graphID, and/or nodeIDs.
Node Similarity Given a node, find nodes that have similar

attribute values and similar neighbors.
Path Existence Decide whether two given nodes are connected

by a path.
Shortest Path Find the shortest path between two given nodes.
Approximate Graph Matching Find graphs or subgraphs in the

database that are similar to the query graph.
Large Graph Alignment Align two or more large graphs to find conserved

subgraphs.
Graph Summarization Produce summaries capturing the characteristics

of the original graphs.

Table 2.1: Graph operations supported in Periscope/GQ

even against large graph datasets.

Large Graph Alignment: Most graph matching methods, including SAGA, are

designed to query graphs that are small in size (tens of nodes and edges). However,

some applications require matching large graphs. One such example is to align pro-

tein interaction networks (graphs with thousands of nodes and edges usually) of two

species to study evolutionary conservation.

To address the need for approximate matching of large graphs, Periscope/GQ

incorporates the novel technique TALE (see Chapter IV). TALE employs an indexing

technique, which achieves high pruning power and scales linearly with database sizes.

The innovative matching algorithm utilizing this index is orders of magnitude faster

than the state-of-the-art graph alignment methods.

10

Graph Summarization: As graphs in many applications, especially large-scale

social networking applications, grow larger and larger, it becomes almost impossible

for users to understand the information encoded in large graphs by mere visual inspec-

tion. Therefore, graph summarization methods are required to help users understand

the underlying characteristics of large graphs.

Periscope/GQ employs the k-SNAP method (see Chapter V) to summarize graphs.

k-SNAP allows users to freely choose the attributes and relationships that are of inter-

est, and then makes use of these features to produce small and informative summary

graphs. Furthermore, users can control the resolution of the resulting summaries

and “drill down” or “roll up” the information, just like the OLAP-style aggregation

methods in traditional database systems.

2.2.3 Efficient Query Evaluation using Indices

To efficiently evaluate queries, Periscope/GQ employs a variety of indexing tech-

niques. For simple operations, such as graph selection, node selection and edge selec-

tion (see Table 2.1), traditional indexing methods are sufficient. However, designing

indexing mechanisms for the more complex operations, such as approximate graph

matching and large graph alignment, is more challenging. Rather than designing new

index structures, which makes adoption and implementation hard, Periscope/GQ

makes use of existing index structures already provided inside the RDBMS in inter-

esting ways.

In Chapter III, we proposed the Fragment Index to speed up the approximate

11

graph matching in SAGA. The indexing units of the Fragment Index are small sub-

graphs in the database. We used a B+-tree to implement the Fragment Index (see

Chapter III for details). The large graph alignment method TALE in Chapter IV em-

ploys the Neighborhood Index to expedite the query processing. The indexing units

of the Neighborhood Index are the neighborhoods of all the nodes in the database. A

neighborhood is defined as the induced subgraph of a node and its neighbors (adjacent

nodes). This Neighborhood Index is implemented as a hybrid index structure, which

has two levels. The first level of this index structure is a B+-tree. Each leaf entry

of this B+-tree points to a second-level bitmap index (see Chapter IV for details).

Both the Fragment Index and the Neighborhood Index are easily implemented inside

a typical RDBMS, and result in orders of magnitude speedup for the corresponding

query operations in most cases.

2.3 Case Studies

In this section, we use two real example applications: one life science application

and one social networking application, to demonstrate the power of Periscope/GQ in

performing complex analysis on graphs.

2.3.1 Example 1: Gene Regulatory Networks

Life science is experiencing a transition from focusing on the function of a single

molecule to analyzing biological systems and their behavior as regulatory networks.

Genome wide microarray analysis with pathway mappings and scientific literature

12

searches can generate gene regulatory networks of different species under different

biomedical conditions. These gene regulatory networks can be naturally modeled as

graphs, where nodes represent genes and edges indicate their interactions. The size of

an individual gene regulatory network can be as large as several thousands of nodes

and tens of thousands of edges. These networks serve as a rich source of information

to be analyzed for discoveries that can lead to the cure of human diseases. Graph

querying systems plays a critical role in helping life scientists analyze large gene

regulatory network datasets.

In this section, we show an example of how different graph query operations in

Periscope/GQ can be combined to help a group of life scientists find the key drugable

pathways to validate therapeutic targets for Type 1 Diabetic Nephropathy (DN).

Figure 2.3 shows the workflow of the analysis.

Through genome wide microarray analysis on human and mouse DN samples, large

gene regulatory networks of the two species are generated. Each network contains

hundreds to thousands of nodes and edges. By issuing graph summarization queries

using k-SNAP, summaries based on features of interest are generated to help life

scientists understand the underlying characteristics of individual networks.

In addition, cross-species network comparison is an effective way to identify which

subnetwork produce the disease in both systems. This operation can be achieved

by aligning the networks of the two species using TALE. This conserved subnetwork

is a good candidate for therapeutic target validation. This operation can also be

pipelined with further queries, such as querying the conserved subnetwork against

a database of pathways to find out which biological processes might be involved or

13

affected by the conserved mechanism. A pathway consists of a set of cellular entities

interacting to carry out some biological process. The query against a database of

pathways can be achieved by an approximate graph matching operation using SAGA.

Alternatively, the conserved subnetwork can also be used to query a database of parsed

literature graphs to search for papers that may have already studied the conserved

mechanism. In Chapter III, we described a way to perform document comparison

using the graph matching method SAGA. Through natural language analysis, each

biomedical document is represented by a graph in which a node indicates a gene

studied in the document and a link is drawn between two genes if they are discussed

in the same sentence (indicating a potential association between the two). Matching

the conserved subnetwork against these parsed literature graphs can help life scientists

find out previous studies with similar interests.

Through the above analysis, the life scientists actually identified several good

candidates that they are validating for therapeutic targets.

2.3.2 Example 2: DBLP Coauthorship Networks

In this section, we demonstrate how Periscope/GQ can be used to analyze coau-

thorship networks from the DBLP Bibliography data [32]. In a coauthorship network,

each node represents an author, and the edge between two authors indicate their coau-

thorship.

In this example, we are first interested in studying how researchers in the database

area coauthor with each other. However, the coauthorship patterns are hidden inside

14

the large DB coauthorship network, which contains over 7 thousand nodes and around

20 thousand edges. Graph summarization operation (using the k-SNAP method) is

very critical in understanding the characteristics of this large graph (see Figure 2.4).

k-SNAP generates summaries with the resolutions that the users can understand, and

also provides “drill-down” and “roll-up” abilities to navigate summaries with different

resolutions. Detailed analysis on coauthorship networks using the k-SNAP method

can be found in Chapter V. The k-SNAP operation can also be used to examine the

similarities and differences in the coauthorship relations across communities, such as

the DB community and the AI community. Our demonstration will include these

examples.

As shown in Figure 2.4, further analysis can be performed on subnetworks of the

DB coauthorship network. Subnetworks can be easily generated by node selection and

edge selection operations. For example, one can construct a coauthorship network

only about authors who publish in SIGMOD conference from 2001 (when double-

blind review was first adopted) to 2007. This SIGMOD coauthorship network can be

constructed by selecting authors (nodes) who have at least one SIGMOD paper in

year ≥ 2001 and ≤ 2007 and coauthorships (edges) that appear in these publications.

Similarly, one can also construct a VLDB coauthorship network. Further analysis can

be performed by aligning the SIGMOD and VLDB coauthorship networks to compute

the conserved coauthorships across the two communities.

15

Microarray

Construct gene

networks

TALE (align large

networks to find the

conserved network)

SAGA (query

against a database

of pathways)

k-SNAP

(summarize a

large network)

SAGA (query against a

database of parsed

literature graphs)

Human Network Mouse Network

Figure 2.3: Example application of Periscope/GQ for gene regulatory network analysis

16

TALE (align large

networks to find the

conserved network)

k-SNAP

(summarize a

large network)

SIGMOD Network VLDB Network

node selection &

edge selection
node selection &

edge selection

Figure 2.4: Example application of Periscope/GQ to analyze coauthorship networks

17

CHAPTER III

Approximate Graph Matching

3.1 Introduction

Analogous to the keyword search in a sequence/text database, graph matching

finds graphs or subgraphs in the database similar to the query graph. It is an im-

portant operation to analyze graphs in complex ways. This chapter presents SAGA

(Substructure Index-based Approximate Graph Alignment), for approximate graph

matching.

More formally, the problem that we address is approximate subgraph matching:

Given a query graph and a database of graphs, we want to find subgraphs in the

database that are similar to the query, allowing for node mismatches, node gaps

(node insertions or deletions), as well as graph structural differences. Node mis-

matches model the behavior that two nodes representing different cellular entities

can exhibit similar functionality. For example, two different proteins may be in the

same protein orthologous group, which indicates similar functionality. Node gaps

18

represent the situation where a certain node in one graph cannot be mapped to any

node in the other graph. Graph structural differences allow for differences in node

connectivity relationships. For example, two nodes may be directly connected in

one graph, whereas the corresponding matching nodes in the other graphs may be

indirectly related through one or more additional nodes.

As a motivating example for the approximate subgraph operation, consider the

following scenario: A scientist working on a certain disease has constructed a small

portion of a pathway based on analysis of various experimental data. This pathway

fragment, which is modeled as a graph, contains nodes that represent cellular entities

(proteins, genes, mRNA, etc.) and edges that represent interactions. The scientist

is interested in finding the biological processes that may be affected by the disease.

This task can be expressed as a query that searches a database of known pathways

using the query graph. Furthermore, the search can identify similar subcomponents

shared between the query and graphs in the database, which may reveal clues about

what information might be missing or spurious in the query graph, and provide a way

of generating additional hypotheses.

While there is a long history of research on graph matching, most of this work

has focused on exact subgraph matching, i.e., the subgraph isomorphism problem,

which is known to be NP-complete. GraphGrep [45] and GIndex [58] are index-based

filtering methods for exact subgraph matching. Grafil [59], PIS [60] and C-Tree [22]

introduce some approximation for subgraph isomorphism. However, these approxi-

mate models are very limited. None of these tools allow node gaps in their models.

PathAligner [14] is a tool for aligning pathways. However, it assumes that all path-

19

ways are linear paths. The tools most closely related to our work are PathBlast [30]

and the successive NetworkBlast [40], which are designed for aligning protein interac-

tion networks. Their graph similarity model allows node mismatches and node gaps,

but graph structural differences are largely confined to short paths. As shown in Sec-

tion 3.3.5, our graph similarity model tolerates more general structural differences,

and can find biologically relevant matches, when both PathBlast and NetworkBlast

fail. Another related method [31] has been proposed for aligning protein interac-

tion networks. However, the match technique used in this method largely focuses

on capturing the penalty associated with gene duplication. Finally, PathBlast, Net-

workBlast, and the method proposed in [31] can only perform one graph comparison

at a time. To match a query against a database of graphs, the matching algorithms

must be run for each graph in the database. As a result, these methods are not

computationally efficient when querying large graph databases.

In this chapter, we present a novel approximate subgraph matching technique

called SAGA. At the heart of SAGA is a flexible model for computing graph similar-

ity, which permits node gaps, node mismatches, and graph structural differences. To

speed up the execution of queries with this powerful matching model, we employ an

indexing method for efficient query evaluation. Through experimental evaluation, we

demonstrate that SAGA is more flexible and powerful than existing models. SAGA

allows additional information derived from the relationships between entities in path-

ways to be incorporated into comparative analysis. Our experimental results show

that SAGA finds expected associations, like Insulin signaling in Type 2 Diabetes Mel-

litus. SAGA also finds less well studied associations, like the Toll-like receptor, T-cell

20

receptor, and Apoptosis pathways in H. pylori infection, as well as Calcium, Wnt and

Hedgehog signaling in Bipolar Disorder. In addition, SAGA provides a powerful tool

for biomedical text comparison.

3.2 System and Methods

3.2.1 Graph model

In our model, a graph, G, is a 3-tuple G = (V, E, φ). V is the set of nodes and

E ⊆ V ×V is the set of (directed or undirected) edges. Nodes in the graphs have labels

specified by the mapping φ : V → L, where L is the set of node labels. This model

captures the features that are commonly present in most biological graph datasets, in

which nodes represent molecules/complexes, labels denote molecule/complex names,

and edges indicate relationships between nodes. We assume that each node in the

graph has a unique ID. This ID is used to establish a total order among the nodes.

In the example graph in Figure 3.1(a), vi is used to represent the unique node ID

and Lk is the node label. Note that two different nodes in a graph can have the same

label.

Our distance model and matching algorithm (discussed below) support both di-

rected and undirected graphs. We present our method using undirected graphs; adap-

tations of the distance measure and the matching algorithm for directed graphs are

straightforward and omitted here.

21

v3(L2)

v4(L3)

v1(L1)

v2(L2)

v3(L2)

v1(L1)

v2(L2)

v4(L3)

v1(L6)

v2(L5)

v3(L2) v4(L3)v5(L4)

v5(L7)

G1 G2
(a) (b)

Figure 3.1: (a) An example graph. (b) An example subgraph match.

3.2.2 Distance measure for subgraph matching

Our model measures similarity by a distance value, so graphs that are more similar

have a smaller distance. Formally, the subgraph matching is defined as follows: Let

G1 = (V1, E1, φ1) and G2 = (V2, E2, φ2) be two graphs. An approximate matching

from G1 (the query) to G2 (the target) is a bijection mapping function λ : V̂1 ↔ V̂2,

where V̂1 ⊆ V1 and V̂2 ⊆ V2.

An example match is shown in Figure 3.1. The dashed lines indicate the matched

nodes in the two graphs. Note that nodes can be mapped even if they have different

labels. Also, note that not all nodes are required to be mapped, e.g., v5 in G1 has no

mapping in G2, and is a gap node.

The subgraph distance (SGD), with respect to λ, is defined as:

SGDλ(G1, G2) = we × StructDistλ

+ wn ×NodeMismatchesλ

+ wg ×NodeGapsλ (III.1)

22

where

StructDistλ =
∑

u,v∈V̂1,u<v

|dG1(u, v)− dG2(λu, λv)| (III.2)

NodeMismatchesλ =
∑

u∈V̂1

mismatch(φ1(u), φ2(λu)) (III.3)

NodeGapsλ =
∑

u∈V1−V̂1

gapG1(u)) (III.4)

The distance model contains three components. The StructDist component mea-

sures the structural differences of the match, the NodeMismatches component is the

penalty associated with matching two nodes with different labels, and the NodeGaps

component is used to measure the penalty for the gap nodes. (Gap nodes are nodes

in the query that cannot be mapped to any nodes in the target graph.) Each of these

components is described in more detail in subsections 3.2.2.1 through 3.2.2.3.

In Equation III.1, we, wn, and wg are the weights for each component in this

matching model, and can be used to change the emphasis on the different parts of the

similarity model. While Equation III.1 computes the subgraph distance for a specific

matching λ, the actual subgraph distance from a query to its target is the minimum

distance over all possible matchings, namely:

SGD(G1, G2) = min
λ

SGDλ(G1, G2) (III.5)

3.2.2.1 The StructDist component

The StructDist component measures the structural differences for the matching

node pairs in the two graphs. In Equation III.2, the dGi
(u, v) function measures the

23

“distance” between node u and node v in graph Gi, and is defined as the length

of the shortest path between u and v. The StructDist component compares the

distance between each pair of matched nodes in one graph to the distance between

the corresponding nodes in the other graph, and accumulates the differences.

3.2.2.2 The NodeMismatches component

The NodeMismatches component in Equation III.3 is the sum of the penalties

(quantified by the mismatch function) associated with matching nodes with different

labels.

A common and biologically intuitive mismatch penalty model is to implicitly group

node labels based on similarity, allowing for a node label to be associated with more

than one group. Nodes can then be compared based on the group labels. This model

of node comparison is quite general and practical for many biological applications.

For example, the functional similarity between two enzymes can be determined based

on the length of the common prefix of the corresponding Enzyme Commission (EC)

numbers. For general proteins, one can use databases like KEGG [34] and COG [50]

which organize proteins into orthologous groups, and consider two proteins to be

functionally similar only if they are in the same group. This mismatch model can

also be generalized to other settings, such as comparing nodes belonging to different

classes based on the positions of the two classes in a classification hierarchy, such as

Gene Ontology (http://www.geneontology.org).

We utilize the concept of orthologous groups for our node mismatch model. The

mapping from a node label to a set of orthologous groups, allowing a node to belong

24

to more than one orthologous group, is defined as % : L → P (GL), where L is the set

of node labels, GL is the set of group labels, and P (GL) is the power set of GL. Under

this model, mismatch(Li, Lj) = ∞ if %(Li)∩%(Lj) = ∅, and mismatch(Li, Lj) < ∞,

otherwise.

3.2.2.3 The NodeGaps component

The NodeGaps component in Equation III.4 measures the penalties associated

with the gap nodes in the query graph, thereby favoring matches that have fewer gap

nodes. In our model, different nodes in the query graph can have different penalty

values, and nodes with the same label can have different penalties as well.

The model also gives users the freedom to choose between gapped matches (matches

that allow gap nodes) and ungapped matches. If gapG(u) is set to ∞ for every node,

then the model only supports ungapped matches, otherwise it allows gapped matches.

For simplicity, for the rest of the discussion, we will assume that all nodes have

the same gap penalty value denoted as SingleGapCost.

3.2.2.4 Characteristics of the subgraph distance model

Our subgraph matching model is very flexible and allows for incorporation of do-

main knowledge into the scoring criteria. The only restriction is that the gap penalty

must be positive and the mismatch penalty must be non-negative. These restrictions

ensure that the subgraph distance is a non-negative value. With these restrictions, if

the query graph is subgraph-isomorphic to the target graph, the subgraph distance

is 0, and vice versa.

25

3.2.3 The index-based matching algorithm

A näıve technique for evaluating subgraph matching queries is to compare the

query with every graph in the database and report the matches, which is prohibitively

expensive. We propose a novel index-based heuristic algorithm that allows for a much

faster evaluation of the approximate subgraph matching operation.

First, an index is built on small substructures of graphs in the database. This index

is then used to match fragments of the query with fragments in the database. Finally,

the matching fragments are assembled into larger matches. The actual method is

described in detail below.

3.2.3.1 The index structures

The index on small substructures of graphs in the database is called the Frag-

mentIndex. It is probed by the matching algorithm to produce hits for substructures

in the query.

The indexing unit is a set of k nodes from the graphs in the database. We call

each such set a fragment. Here k is a user specified parameter, and is usually a

small number like 2, 3 or 4. However, simply enumerating all possible k-node sets is

expensive in terms of both time and space. At the same time, if any pair of nodes in

a fragment is too far apart by the pairwise distance measure (refer to Section 3.2.2.1),

this fragment does not correspond to a meaningful substructure, thus is not worth

indexing. Therefore, a parameter dmax is specified to control whether a fragment is

to be indexed. For a given k-node set v1, v2, ..., vk, if any two nodes vi and vj satisfy

26

d(vi, vj) ≤ dmax, we connect the two nodes by a pseudo edge. Then, we index this

fragment only if the k nodes form a connected graph by the pseudo edges. Using this

heuristic, we can dramatically reduce the size of the FragmentIndex.

Note that in contrast to existing methods, which index connected subgraphs, the

fragments in SAGA do not always correspond to connected subgraphs. The reason

for using the more general definition of fragments is to allow node gaps in the match

model. For example, in Figure 3.1(b), nodes v3 and v4 in G1 can be matched to nodes

v3 and v4 in G2, respectively. Although v3 and v4 do not form a connected subgraph

in G2, they correspond to a fragment that needs to be indexed so that this match can

be detected.

An entry in the FragmentIndex has the following format: {nodeSeq, groupSeq,

distSeq, sumDist gid}, where nodeSeq is the sequence of node IDs for the nodes in

the fragment, groupSeq is the sequence of group labels associated with the nodes,

distSeq is the sequence of pairwise distances between the nodes in the fragment,

sumDist is the sum of these pairwise distances, and gid is a unique graph ID. Recall

that a node label can be associated with multiple group labels. In this case, we

generate all possible group label sequences for a fragment, and index each one.

A sample FragmentIndex, with k = 3 and dmax = 2 for the database shown in

Figure 3.2, is presented in Figure 3.3. In this index, the groupSeq’s are ordered by

the group IDs, and the nodeSeq’s are ordered according to the groupSeq’s. If u, v, w

is the nodeSeq, then the corresponding distSeq is d(u, v), d(u,w), d(v, w). Note that

node v8 with the label L8 in G1 belongs to two groups B and D, thus for this node

set {v1, v3, v8}, there are two index entries {(B, E, E), G1, (v8, v1, v3), (1, 2, 2), 5} and

27

v1(L2)

G1 G2
Group A = { L4 }
Group B = { L1, L8 }
Group C = { L7, L10 }
Group D = { L5, L8 }
Group E = { L2, L3 }
Group F = { L9 }

v2(L5)

v8(L8)
v3(L3)

v4(L4)

v5(L5)

v6(L1)

v7(L7)

v1(L2) v2(L7) v3(L7)

v6(L3) v5(L1) v4(L1)

Figure 3.2: Example database graphs

{(D, E,E), G1, (v8, v1, v3), (1, 2, 2), 5} in the index.

To efficiently evaluate the subgraph distance between a query graph and a database

graph, an additional index called DistanceIndex is also maintained. This index is

used to look up the precomputed distance between any pair of nodes in a graph

(Section 3.2.2.1).

3.2.3.2 The matching algorithm

The matching algorithm proceeds as follows: First, the query is broken into small

fragments and the FragmentIndex is probed. Then, the hits from the index probes are

combined to produce larger candidate matches. Finally, each candidate is examined

to produce the actual results. Each of these three steps is described in detail below.

Step 1: Finding small hits. In this step, the query is broken into small

fragments and the FragmentIndex is probed to find database fragments that are

similar to the query fragments.

Given the query, fragments (k-node sets) are enumerated in the same way as we

28

52,2,1v4,v6,v7G1A,B,C

41,1,2v2,v1,v3

…………………………

51,2,2v8,v1,v3G1

…………………………

…………………………

Fragment Index

84,2,2v5,v1,v3

G1D,E,E

51,2,2v8,v1,v3

42,1,1v5,v1,v6

63,2,1v4,v1,v6G2

B,E,E

42,1,1v4,v7,v5

82,2,4v4,v7,v2G1A,C,D

DistSumDistance SeqNode SeqGraph IDGroup Seq

Figure 3.3: The FragmentIndex for the example database

did for the database graphs. Next, for each query fragment, the groupSeq, nodeSeq,

sumDist, and distSeq values are computed. Then, the FragmentIndex is probed with

each of these query fragments.

The actual index probe uses the following multi-level filtering strategy: First, the

groupSeq and sumDist values are used to filter out fragments that cannot match.

Next, additional false positives are removed using the distSeq values.

In the first level of filtering, database fragments are fetched only if they have

the same groupSeq as the query fragment. We also develop safe bounds for the

sumDist attribute as follows: Suppose that q is the query, p is a database graph,

fq is a query fragment, and k is the fragment size. We introduce a user-controllable

parameter MaxPairDist to restrict the weighted pairwise distance difference be-

tween the query and the database fragments as we × |dG1(u, v) − dG2(λu, λv)| 6

29

MaxPairDist. From this structure similarity restriction , we get the following in-

equality:
∑

u,v∈V̂q ,u<v |dq(u, v)− dp(λu, λv)| 6 k(k−1)
2

× MaxPairDist
we

, where k is the

fragment size. In addition, we have the following trivial inequality:

|
∑

u,v∈V̂q ,u<v

dq(u, v)−
∑

u,v∈V̂q ,u<v

dp(λu, λv)| 6
∑

u,v∈V̂q ,u<v

|dq(u, v)− dp(λu, λv)|

Using the two inequalities above, we can conclude that a database fragment fd cannot

match the query fragment fq, if |fd.sumDist− fq.sumDist| > k(k−1)
2

× MaxPairDist
we

. In

other words, when probing the FragmentIndex in the first level of filtering, we only

fetch the database fragments {t | t ∈ FragmentIndex, t.groupSeq = fq.groupSeq,

fq.sumDist− k(k−1)
2

× MaxPairDist
we

6 t.sumDist 6 fq.sumDist+ k(k−1)
2

× MaxPairDist
we

}.

The probing condition above includes an equality search and a range search. It

imposes several optimization opportunities. First, to reduce the IO costs, we can

group all the probes by the groupSeq. A good way of implementing the FragmentIndex

is to order the physical layout of the index by groupSeq and sumDist attributes. Then,

probes with the same groupSeq have very high spatial locality, which reduces the

number of random IOs that are incurred during the index probes. In addition, for

each group of probes with the same groupSeq value, we can optimize the range query

scans on the sumDist attribute. Essentially, if query ranges overlap, a query can be

issued with the union of the ranges rather than several overlapping individual queries,

which further reduces the IO cost.

It is possible that more than one node in a fragment has the same group label. To

correctly handle this case, we simply expand the query probe set to include a probe

30

set for every possible node sequence for the same group sequence.

After the first level of filtering, we get a list of candidate database fragments for

every query fragment. This list can be further refined by using the distSeq information

(which contains the pairwise distances) to check that all pairwise distances satisfy the

MaxPairDist criterion defined above.

Step 2: Assembling small hits. Step 1 produces a set of small fragment

hits. These smaller hits are assembled into bigger matches as follows: First, the hits

are grouped by the database graph IDs. Then, a hit-compatible graph is built for

each matching graph. Each node in a hit-compatible graph corresponds to a pair of

matching query and database fragments. An edge is drawn between two nodes in the

hit-compatible graph if and only if two query fragments share 0 or more nodes, and

the corresponding database fragments in the hit-compatible graph also share the same

corresponding nodes. An edge between two nodes tells us that the corresponding two

hits can be merged to form a larger match, since they have no conflicts in the union.

Therefore, a clique in the hit-compatible graph represents a set of hits that can be

merged without any conflicts.

After forming the hit-compatible graph, the hits assembling problem reduces to

the maximal clique detection problem, which can be solved using existing efficient

implementations, such as [8], or approximate methods such as [24]. The set of hits

in each maximal clique is a candidate match.

As an example of the second step of the SAGA matching algorithm, Figure 3.4(b)

shows the hit-compatible graph for the database graph G1 in Figure 3.2 when querying

Q in Figure 3.4(a), with MaxPairDist = 1. The nodes in the hit-compatible graph

31

v1(L4)

v2(L5)

v4(L1)

v3(L10)

v5(L9)

Hit-Compatible
Graph for G1 Q : v1, v2, v4

G1: v4, v5, v6

Q : v1, v2, v3
G1: v4, v5, v7

Q : v1, v3, v4
G1: v4, v7, v6

Q : v2, v3, v4
G1: v5, v7, v6

Q : v1, v2, v4
G1: v4, v2, v8

MaxPairDist=2

Q:

(a)

(b)

Figure 3.4: (a) An example query Q (b)The hit-compatible graph for G1 when querying Q.

are denoted by rectangles. Two maximal cliques (shown as dotted circles) are detected

in this hit-compatible graph. Therefore, this step produces two candidate matches

in G1 for query Q, namely Q(v1, v2, v3, v4) ↔ G1(v4, v5, v7, v6), and Q(v1, v2, v4) ↔

G1(v4, v2, v8).

Step 3: Examining candidates. This step examines each candidate match

and produces a set of real matches. Here, we allow users to specify a threshold Pg to

control the percentage of gap nodes in the subgraph match. With a given Pg value,

the desired matches are those with at most Pg percentage of gap nodes in the query.

For each candidate match obtained from Step 2, we first check whether the per-

centage of the gap nodes exceeds the threshold Pg. If so, we ignore the candidate.

Otherwise, we probe the DistanceIndex and calculate the real subgraph matching

distance as defined in Section 3.2.2. Recall that the required subgraph matching is

the one that minimizes the matching distance (cf. Equation III.5). We also further

32

examine the submatches of the candidate. A submatch can be obtained by removing

one or more node mappings from the original match. This introduces more gap nodes

to the query, and thus increases the subgraph distance by additional gap penalties.

However, at the same time, the StructDist and NodeMismatches may be reduced

according to its definition in Equations III.2 and III.3. Therefore, if the decreased

amount exceeds the increased amount, the overall matching distance will be lower

than the original one, which also means that a better match is found for the query.

If two matches have the same matching distance and one is a submatch of the other,

only the supermatch is considered.

3.2.4 Fragment size parameter

The fragment size parameter (k in Section 3.2.3.1) controls the size of fragments

in the FragmentIndex. This parameter affects the size of the index, query perfor-

mance, and sensitivity of search results. A larger fragment size results in a larger

FragmentIndex, which increases the index probe cost. However, a large fragment size

may also results in fewer false positives in the hit detection phase (and lower query

sensitivity), which reduces the cost of the remaining steps. A practical way of picking

a fragment size is based on the selectivity of the queries. If queries are expected

to have many matches in the database, then a smaller fragment size is preferred as

it may not introduce many false positives, and also potentially lead to smaller sizes

of hit-compatible graphs. However, when queries tend to have very few matches, a

large fragment size may be favored to prune false positives in the early stages of the

33

matching algorithm.

3.2.5 Statistical significance of matching results

The Monte Carlo simulation approach is employed to assess the statistical signif-

icance of the matches. A p-value is computed for each match based on the frequency

of obtaining such a match, or a better match, when applying SAGA with random-

ized data. Random graphs are generated by random shuffling of edges of the graphs

preserving the node degrees, and randomizing the orthologous groups of each node

preserving the number of orthologous groups that each node belongs to. For a given

query, in addition to querying the real database, we run SAGA on a large number of

random graphs, and estimate the p-value of a match from the real database as the

fraction of matches from the random graphs with the same or a larger size (in number

of nodes) and the same or a smaller distance value.

Appendix A contains the detailed description of the statistical evaluation methods

for approximate graph matching results in Periscope/GQ.

3.3 Implementation and Results

In this section, we describe the implementation of SAGA and present results

demonstrating its effectiveness and efficiency. The well-known KEGG pathway database [34]

is used for the experiments. In addition, we use a dataset, called bioNLP, which

contains parsed PubMed documents represented as graphs. In these graphs, nodes

represent genes and edges denote that two genes were discussed in the same sentence

34

#nodes #
Query Match matched p-value refs.
T2DM Insulin (hsa04910) 8 0.0009 21,326
(hsa04930) Adipocytokine (hsa04920) 5 0.0009 37

Toll-like receptor 7 0.001 12
H.pylori (hsa04620)
(hsa05120) T-cell receptor (hsa04660) 4 0.001 2

Apoptosis (hsa04210) 4 0.006 130

Table 3.1: Significant matches for the T2DM and H.pylori disease associated KEGG
pathways. The number of PubMed references is simply produced by query-
ing PubMed with the keywords in the pathway names.

somewhere in the document. With bioNLP, graph similarity can be used to identify

related documents.

3.3.1 Implementation

We have implemented SAGA using C++ on top of PostgreSQL (http://www.

postgresql.org). For detecting maximal cliques, we use the version 2 algorithm

described in [8]. The DistanceIndex and FragmentIndex are implemented as clustered

B+-tree indices. The fragment size was set to 3. The execution times reported

correspond to the running time of the C++ program (which includes reading the

query specifications and issuing SQL queries to the DBMS to fetch index entries and

related database tuples). All experiments were run on a 2.8GHz Pentium 4, Fedora 2

machine equipped with a 250GB SATA disk. We used PostgreSQL version 8.1.3 and

set the buffer pool size to 512MB.

For all the experiments with KEGG, the values for the SAGA parameters are:

we = wg = wn = 1, SingleGapCost = 3, dmax = 3, and MaxPairDist = 3. The Pg

value is set for every query so that each match contains at least four node mappings.

35

Ci

Zic2

GSK-3
�PKA

CK1

Slim b

�
-catenin

GSK-3
�PKA

CK1� �
-TrCP

Hedgehog Signaling

KEGG id: hsa04340

Wnt Signaling

KEGG id: hsa04310

Figure 3.5: Hedgehog pathway matched the Wnt pathway.

For the node mismatch penalty, we use a simple model: if two nodes belong to

the same KEGG orthologous group or they have the same EC number, then the

mismatch penalty is 0, and ∞ otherwise. For the significance test, we generate 100

random graphs for each graph in the database, so there are totally n × 100 random

graphs, if n is the number of graphs in the database. We only retain matches with

0.01 significance level or better. When a query graph is also included in the database,

we always exclude the self-match (the query graph matching itself) from the results.

For the experiment with the bioNLP dataset, the SAGA parameter settings are:

we = wg = wn = 1, SingleGapCost = 0.5, dmax = 3, and MaxPairDist = 3. For

the node mismatch model, nodes with the same label have 0 penalty, otherwise the

mismatch penalty is ∞.

3.3.2 Finding conserved components across pathways

Two experiments are used to investigate components that are shared across dif-

ferent pathways.

36

Wnt5 Frizzled PLC

CaN

CaMKI
I

PKC

PLC
� IP3R

CALM
CaN

CaMKII

PKC

W
n

t
S

ig
n

al
in

g

K
E

G
G

 id
:

h
sa

04
31

0

C
al

ci
u

m
 S

ig
n

al
in

g

K
E

G
G

 id
:

h
sa

04
02

0

Figure 3.6: Wnt pathway matched the Calcium pathway.

3.3.2.1 Querying disease-associated pathways

This experiment is an exploratory analysis to find biological processes that are

involved in, or are affected by, a particular disease. We use all 162 KEGG human

pathways (downloaded on July 4, 2006) as the database and chose the 10 disease-

associated human pathways as queries (see Table 3.2). This query set is a subset

of the 162 human pathways and it includes three metabolic disorder pathways, six

neuro-degenerative disorder pathways, and one infectious disease pathway. Of these

pathways, only two query pathways produced significant hits (p-value ≤ 0.01): the

“Type 2 Diabetes Mellitus” (T2DM) pathway (hsa04930) and the “Epithelial cell

signaling in Helicobacter pylori infection” (H. pylori) pathway (hsa05120). Results

for these two pathways are presented in Table 3.1.

Table 3.1 shows both the p-values and the number of PubMed references for the

matches, as a measure of how well the disease association has been studied in previous

37

LTBP1 TGF
� Smurf1/2

SARA

TGF
�

RI:RII
Complex

Smad2/3

Large Latent
Complex of

TGF
�

1

Dimeric
TGF

�
1

Smurf

SARA

Dimeric
TGF

�
1:RII

Complex

RII
Complex

RI Dimer

TGF
�

1:RII:RI
Complex

TGF
�

1:RII:
Phospho-RI

Complex

Smad6/7

R-Smad2/3

TGF
�

1:RII:
Phospho-RI:R-
SMAD Complex

R
ea

ct
o

m
e

T
G

F

�
S

ig
n

al
in

g

R
ea

ct
o

m
e

id
:

17
08

34

K
E

G
G

 T
G

F

�
S

ig
n

al
in

g

K
E

G
G

 id
:

h
sa

04
35

0

Figure 3.7: The shared components between KEGG and Reactome TGF-β pathways.

literature. We are particularly interested in disease-associated pathway matches that

are significant but are not yet well studied.

As can be seen in Table 3.1, SAGA finds that the T2DM pathway (hsa04930)

is significantly associated with both Insulin signaling (hsa04910) and Adipocytokine

signaling (hsa04920). In the case of Insulin signaling, we find a match of eight nodes of

Insulin signaling in the T2DM pathway. The number of PubMed references for “Type

II diabetes mellitus AND Insulin” is 21,326, consistent with the well-studied nature

of Insulin signaling in T2DM. This result demonstrates that SAGA finds pathway

matches that would be expected by researchers experienced in disease-related path-

ways research. In the case of Adipocytokine signaling in T2DM, we find a match of

five nodes and the number of references is 37, in agreement with the less well-studied

nature of Adipocytokine signaling in T2DM.

The H. pylori pathway (hsa05120) demonstrated significant matches to the Toll-

like receptor, T-cell receptor, and Apoptosis pathways. The association between H.

38

Category KEGG ID Pathway #nodes #edges
hsa04930 Type II diabetes mellitus 33 36

Metabolic hsa04940 Type I diabetes mellitus 22 2
Disorders hsa04950 Maturity onset diabetes of the young 34 33

hsa05010 Alzheimer’s disease 23 17
hsa05020 Parkinson’s disease 19 10

Neuro- hsa05030 Amyotrophic lateral disease 24 13
degenerative hsa05040 Huntington’s disease 24 28
Disorders hsa05050 Dentatorubropallidoluysian atrophy 8 10

hsa05060 Prion disease 11 15
Infectious hsa05120 Epithelial cell signaling in 57 26
Disease Helicobacter pylori infection

Table 3.2: The ten disease associated human pathways in KEGG

pylori infection and Apoptosis is relatively well studied (130 PubMed references),

while the association with Toll-like receptor signaling is less well studied (12 refer-

ences) and the association with T-cell receptor signaling shows only two references.

This result suggests that T-cell receptor signaling is potentially a significant but rel-

atively unstudied avenue for research into the etiology of H. pylori infection.

3.3.2.2 Querying signal transduction pathways

In this experiment, we use the same database of pathways as in section 3.3.2.1

(162 KEGG human pathways) but we choose all the 12 signal transduction path-

ways (KEGG IDs: hsa04010, hsa04020, hsa04070, hsa04150, hsa04310, hsa04330,

hsa04340, hsa04350, hsa04370, hsa04630, hsa04910, and hsa04920) as the query set

to demonstrate additional benefits to be derived from identifying pathways matches.

Many of the matches are intuitive for researchers familiar with specific cellular, tissue,

or disease phenomena (as expected). However, pairs of pathways between which the

39

similarities are not intuitive can be useful in both pathway annotation and disease

association research. In the following discussion, we present two examples of such

matches.

In the first example, Figure 3.5 shows components that are shared by the Hedgehog

(hsa04340) and Wnt (hsa04310) signaling pathways (p-value 0.005). Note that nodes

are matched based on functionality. For example, Slimb is matched with B-TrCp as

both are SCF complex F-box proteins (KEGG Orthology, KO:K03362). While SAGA

can find this orthologous match, the difference in terminology seen in the KEGG

pathways database might make it difficult for many researchers to find the match.

These similarities between Hedgehog and Wnt signaling are consistent with http:

//www.stanford.edu/~rnusse/pathways/WntHH.html, as well as [29] and [39].

In the second example, the Wnt and Calcium signaling pathways share four en-

zymes (Figure 3.6, p-value 0.007). However, the Calcium signaling pathway has two

additional components (CALM and IP3R) that arguably belong to the Wnt pathway.

By identifying the common components, we can provide information to improve the

annotation of the Wnt pathway.

Based on the significant similarities between the Wnt/Hedgehog and Wnt/Calcium

pathways, we hypothesize that the three pathways (Wnt, Calcium, and Hedgehog

signaling) could share disease associations. Calcium signaling has been investigated

in relation to Bipolar Disorder (BD) for more than 40 years [15]. After examin-

ing the Wnt/Calcium and Wnt/Hedgehog matches, we conducted a literature search

and found 335 PubMed references investigating Calcium signaling in BD, as well

as 15 PubMed references for Wnt signaling in BD, consistent with our hypothesis.

40

However, when looking for BD association with Hedgehog signaling, we found zero

PubMed reference, which suggests that the Hedgehog signaling pathway has been

largely overlooked in BD research, although it uses BD-associated components. This

result poses new hypotheses for exploring the relationship between BD and Hedgehog

signaling, and shows how SAGA can be useful in disease research.

3.3.3 Reactome pathways vs. KEGG pathways

SAGA can also be used to compare pathways in different databases (e.g., as a

precursor to integrating data from different pathway databases). In this experiment,

we compare two well-known pathway databases: Reactome [18] and KEGG.

We use the same 162 KEGG human pathways as the database. The queries

are the eight newly updated pathways in Reactome version 17. The query set in-

cludes TGF-β (Reactome ID: 170834), RIG-I (168928), Toll-like receptors 3 (168164)

and 4 (166016), the conjugation phase of xenobiotic metabolism (156580), aspects

of the metabolism of lipoproteins(174824), cell cycle regulation by the anaphase-

promoting complex (APC) (174143), and ATR activation in response to replication

stress (176187).

Naturally, the TGF-β pathway (with 23 nodes and 25 edges) in Reactome matches

the TGF-β (hsa04350) pathway (with 65 nodes and 45 edges) in KEGG. However,

pathways in the two databases are not perfectly matched (graph distance > 0). Each

of the pathways contains some details missing in the other. Also, as shown in Fig-

ure 3.7, there are some differences even in the shared similar components between the

41

avg. # avg. # FragmentIndex
Dataset Pathways graphs nodes edges Size (# entries)

d1 human 162 86.0 35.3 1.38× 107

d2 d1 + mouse 320 86.3 34.8 2.94× 107

d3 d2 + rat 470 86.6 31.7 4.07× 107

d4 d3 + worm 567 89.0 28.5 5.34× 107

d5 d4 + yeast 654 91.3 27.3 6.08× 107

Table 3.3: Characteristics of various databases used for the scalability experiment.
This table shows the number of graphs in each database, the average num-
ber of nodes and edges per graph in the databases, and the number of
entries in the FragmentIndex.

two pathways. By identifying the similar subcomponents using SAGA, researchers

can combine the two databases and produce more complete data.

The two databases also organize pathways in different ways. Reactome represents

pathways in a hierarchy (i.e. a pathway consists of several subpathways and subpath-

ways again can be made of subpathways). On the contrary, KEGG stores pathways

in a flat fashion. As examples of the organizational difference, the Toll-like receptor

3 and 4 pathways in Reactome match the Toll-like receptor (hsa04620) pathways in

KEGG, and both cell cycle regulation by the Anaphase-promoting complex (APC)

and ATR activation in response to replication stress pathways in Reactome hit the

cell cycle pathway in KEGG. Thus, SAGA can be used for graph data integration

even if databases organize the same information in different ways.

3.3.4 SAGA for querying parsed literature graphs

This experiment examines how SAGA can be applied within an information re-

trieval setting. While traditional IR methods employ term-based comparisons and

the cosine similarity measure [44] for comparing documents, we look at the docu-

42

ment comparison problem specifically in the biomedical domain and address it using

a graph matching method. Each PubMed document is represented by a graph in

which a node indicates a gene studied in that document. A link is drawn between

two genes if they are discussed in the same sentence (indicating there is potentially

association between the two genes). The graph presentation summarizes the genes

and gene associations derived from a document. By querying the graph representa-

tion of a document against those of other documents, documents that address the

same topics as the query document can be identified, even if they are published in

different areas of research. For example, we queried the publication [36] (5 nodes and

6 edges) against 48,444 PubMed documents using the cut-off value Pg = 50%. (This

dataset has an average of 5.0 nodes and 18.8 edges per graph, and the list of doc-

uments in this set can be accessed at http://enigma.eecs.umich.edu/doc.txt.)

Among the 11 matches found by SAGA, the top hit is [49], which does not have a

citation to [36]. The shared components between the two graphs are three genes:

CDK inhibitor p18(INK4c), 0610007C21Rik and Stmn1, as well as their 3 pairwise

associations. The query publication [36] explored p18(INK4c) in the generation of

functional plasma cells, while [49] investigated the role of this gene in the regenerating

liver. Thus, SAGA can be used to connect related studies even in different sub-areas

of biomedical research.

43

Query # nodes # edges d1 d2 d3 d4 d5
hsa05050 8 10 25.6 28.6 37.1 37.3 37.4
hsa05060 11 15 45.4 53.6 62.0 62.1 62.1
hsa05020 19 10 26.8 36.9 53.7 53.7 53.7
hsa04940 22 2 0.2 0.2 0.2 0.2 0.2
hsa05010 23 17 45.2 58.0 61.9 62.1 62.1
hsa05030 24 13 42.3 42.4 52.9 52.9 53.1
hsa05040 24 28 347.2 431.3 457.4 459.1 462.4
hsa04930 33 36 243.6 411.7 540.6 541.4 546.2
hsa04950 34 33 29.6 29.6 29.6 29.7 29.7
hsa05120 57 26 116.5 160.6 182.8 183.1 183.7

Table 3.4: Execution time (in milliseconds) for the 10 disease-associated pathways in
KEGG when querying the databases listed in Table 3.3.

3.3.5 Comparison with existing tools

GraphGrep [45] and Gindex [58] are designed to match one graph against a col-

lection of graphs. However, they only support exact subgraph isomorphism. Given

the noisy and incomplete characteristics of biological graphs, exact matching cannot

help much in our target applications. Grafil [59], PIS [60], and Closure-Tree [22]

disallow gap nodes in their match models, which prohibits them from getting results

that SAGA can find. For example, none of the 12 signal transduction pathways

queries produce any matches (excluding self-matches) in the KEGG human pathway

database using these three tools.

As discussed in Section 3.1, NetworkBlast is a tool for aligning large protein inter-

action networks. On the other hand, SAGA is designed for matching relatively small

graph queries (sparse graphs with less than 100 nodes) against a large set of (large or

small) graphs. Although NetworkBlast and SAGA have different characteristics, it

is interesting to consider applying NetworkBlast to pathway matching. To query the

set of pathways in KEGG (cf. Section 3.3.2.2), we have to run NetworkBlast once for

44

each pathway in the database. In other words, for the experiment in Section 3.3.2.2,

for each query, we need to invoke 162 calls to NetworkBlast. For the Wnt signaling

pathway (hsa04310) with 73 nodes and 92 edges, the 162 runs of NetworkBlast takes

more than 20 hours, while SAGA only takes about eight minutes! Besides the more

than two orders of magnitude speedup, SAGA produces results with higher quality.

First, SAGA never misses any matching pathways that NetworkBlast can find. Sec-

ondly, SAGA can find matches that NetworkBlast cannot find. The reason is that

graph structural differences in NetworkBlast are largely confined to short paths, while

SAGA tolerates more general structure differences. For example, neither of the two

matches shown in Figures 3.5 and 3.6 can be found by NetworkBlast.

3.3.6 Efficiency evaluation

This experiment evaluates the efficiency of SAGA. To measure the raw perfor-

mance, we only measure the time it takes for SAGA to produce matches, and do not

include the time for generating the p-value statistics.

We choose as queries the 10 disease associated KEGG pathways (mirroring the

experiment in Section 3.3.2.1). To vary the database sizes, we add pathways for other

species to the database. The details of the databases are described in Table 3.3.

The query execution times for the 10 queries with increasing database sizes are

shown in Table 3.4. Even for the largest database, the query execution times using

SAGA are less than one second.

Besides the database sizes, the query execution times also depend on the number

45

of nodes and edges in the query, the actual query graph structure, and the number of

hits in the database. Almost all the 10 human disease pathways have matches in the

human, mouse and rat pathways, but no matches exist for them in the worm and yeast

pathways. This explains why the execution times for the queries on the databases d4

and d5 are similar to the execution times against the database d3. For the databases

d1 through d3, even though the database sizes roughly doubles at each step, the query

execution times grow at a slower rate, since the index matching components grow at

at rate that is slower than the database growth rate.

Another observation is that a larger query does not necessarily result in a larger

execution time. For example, hsa05040 is a single connected graph with more matches

in the databases than hsa04950, which is a graph with several connected components.

The execution times with hsa05040 are more than hsa04950, although hsa04950 has

more nodes and edges than hsa05040.

3.4 Discussion

This chapter discusses SAGA, a powerful method for approximate subgraph match-

ing. SAGA employs a match model that can be used to accurately incorporate do-

main knowledge for capturing the domain-specific notion of graph similarity. An

index-based algorithm makes approximate subgraph matching queries very efficient.

Our evaluations using a number of actual biomedical applications show that SAGA

can produce biologically relevant matches on actual examples, whereas existing tools

fail. In addition, we have demonstrated the efficiency of the SAGA approach.

46

SAGA is very effective and efficient for querying relatively small graphs (ideally

sparse graphs with less than 100 nodes) against very large databases, and there are

many compelling applications in this setting (cf. Section 3.3). However, we do not

recommend using the existing tool when the query graph is very dense and/or has a

large number of nodes. For such large query graphs, the performance of the existing

SAGA method degrades since potentially a large number of small hits can be produced

by Step 1 of the matching algorithm (cf. Section 3.2.3.2). Assembling these hits is

computationally expensive with the existing SAGA algorithm. In Chapter IV, we

introduce another graph matching method, called TALE, to handle the case of very

large query graphs.

47

CHAPTER IV

Approximate Large Graph Matching

4.1 Introduction

In the previous chapter, we have introduced an efficient subgraph matching method,

SAGA. As discussed in Section 3.4 of Chapter III, SAGA works efficiently for query-

ing relatively small graphs (ideally sparse graphs with less than 100 nodes), but its

performance degrades rapidly for large query graphs (with hundreds to thousands of

nodes and edges). Most existing tools [22, 28, 55, 59, 60, 61] are also only applicable

to small queries. However, in many new applications, both the query and database

graphs are “large”. For example, in life sciences applications, protein interaction

networks for individual species are often matched to determine similarities and differ-

ences across species. Each protein interaction network is large, and typically contains

hundreds to thousands of nodes and edges in each graph.

To handle large query graphs, we present an index-based method for approximate

subgraph matching of large queries, called TALE (a Tool for Approximate Sub-

48

graph Matching of Large Queries Efficiently). TALE employs a novel graph indexing

method, called NH-Index (Neighborhood Index). Most existing graph indexing meth-

ods only index subgraphs (paths, trees or general subgraphs), which can lead to index

sizes that are exponential in the database size. The indexing unit of NH-Index is the

neighborhood of each database node. The neighborhood concept captures the local

graph structure around each node, and results in an index with a high pruning power.

At the same time, the number of indexing units is equal to the number of nodes in the

database, which allows the index to grow linearly with the database size. Further-

more, NH-Index is a disk-based index, which allows it to handle graph databases that

do not fit in memory. It employs a hybrid index that uses existing common disk-based

index structures, which makes implementation in existing DBMSs straightforward.

We also propose an innovative matching paradigm for querying large graphs. Un-

like most previous graph matching tools which treat every node in a graph equally,

this matching technique distinguishes nodes by their importance in the graph struc-

ture. The algorithm first probes the NH-Index to match the important nodes in

a query graph, and then progressively extends the matches by enclosing satisfiable

nearby nodes of already matched nodes.

We have applied TALE to three real biological datasets. Our experiments demon-

strate that TALE is able to produce useful and meaningful results in all the three

cases. In addition, our experimental evaluation shows that TALE is very efficient for

large queries, and that the execution time grows gracefully with increasing number

of graphs in the database. Through comparisons with other existing tools, we also

show that TALE is significantly faster than existing methods.

49

The main contributions of this chapter are as follows:

(1) We propose TALE – a general tool for approximate subgraph matching of

large graph queries. TALE uses a novel disk-based indexing method, which indexes

the neighborhood of each database node. It achieves high pruning power and its size

scales linearly with the database size. We introduce an innovative graph matching

paradigm, which distinguishes nodes by their importance in the graph structure, and

accordingly treats them differently in the matching process.

(2) By applying TALE to real applications, we show its effectiveness, significant

performance improvements over existing methods, and ability to gracefully handle

large graph queries and databases.

The remainder of this chapter is organized as follows: Section 4.2 defines the

preliminary concepts. Section 4.3 describes our indexing mechanism, and Section 4.4

introduces the TALE algorithm. Experimental results are presented in Section 4.5,

and Section 4.6 contains our conclusions and directions for future work.

4.2 Preliminaries

A graph G is denoted as (V,E), where V is the set of nodes and E ⊆ V ×V is the

set of (directed or undirected) edges. Nodes and edges can have labels specified by

mappings φ : V → Σv and ψ : E → Σe respectively, where Σv is the set of node labels

and Σe is the set of edge labels. In order to uniquely identify a node, we assign an

unique id to each node in a graph. We also impose an order on the ids. Our indexing

method and matching algorithm support both directed and undirected graphs with

50

labeled nodes and/or labeled edges. For ease of presentation, we present our method

using undirected graphs with labeled nodes. Adaptations of our method to other

graph types are fairly straightforward unless discussed. The simple adaptations are

omitted in the interest of space.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. An exact graph match (graph

isomorphism) is a bijection mapping function λ : V1 ↔ V2, in which for every v ∈ V1,

φ(v) = φ(λv), and (u, v) ∈ E1 if and only if (λu, λv) ∈ E2. An exact subgraph

match (subgraph isomorphism) from G1 (the query) to G2 (the target) is defined as

∃G′
2 ⊆ G2, and G′

2 is an exact graph match for G1.

Approximate graph matching allows node mismatches (i.e. φ(v) 6= φ(λv)), and

node/edge insertions and deletions. We define an approximate graph match as a bi-

jection mapping λ : V ′
1 ↔ V ′

2 , where V ′
1 ⊆ V1 and V ′

2 ⊆ V2. Similarly, an approximate

subgraph match from G1 (the query) to G2 (the target) is defined as ∃G′
2 ⊆ G2, and

G′
2 is an approximate graph match for G1.

An approximate subgraph matching tool often returns a large number of matches

for a query. Often the user is only interested in the top-K results. To return the top-K

results, TALE has to sort the matches based on their similarities to the query. We

do not want to limit the generality of TALE by tailoring it to a particular similarity

model. Instead, we let the users customize the similarity method that best models

their application, thereby allowing TALE to serve as flexible graph matching tool that

can be used in a variety of graph matching applications. Section 4.5 shows examples

of how this similarity model can be customized in practice.

51

4.3 The NH-Index

In this section, we introduce the novel indexing technique, Neighborhood Index

(NH-Index).

4.3.1 Indexing Unit

The first question that arises with a graph indexing method is the graph entities,

e.g. nodes, edges, subgraphs, etc., that should be indexed. The NH-Index is used

by the matching algorithm to match the important nodes in the query graph. These

initial matches for the important nodes are then extended to produce the final match-

ing results. A naive indexing method is to index all the nodes in the database. This

method has the benefit that the index size grows linearly with the number of nodes

in the database, but suffers from low pruning power, as each query node can have

many false positive matches (matches that cannot be extended later). Our NH-Index

size is linear in the number of nodes in the database and also has a high pruning

power. NH-Index achieves this by incorporating neighborhood information into the

naive node indexing method. When matching a query node, instead of looking at

the node in isolation, NH-Index also considers its neighborhood. A database node

matches the query node, only if the two nodes match and their neighborhoods also

match. Using this technique, a large fraction of false positives can be eliminated.

A neighborhood is defined as the induced subgraph of a node and its neighbors

(adjacent nodes). There are three main properties that characterize the neighborhood

of a node: the number of neighbors, how the neighbors connect to each other, and the

52

labels of the actual neighbors. The number of neighbors is simply the degree of the

node. To quantify the “connectedness” amongst the neighbors, we define neighbor

connection as the number of edges between the neighbors. For example, the neighbor

connection of the black node in Figure 4.1 is 5.

To capture the neighbors of a node, a naive method is to simply enumerate the

labels of the neighbors. However, this naive approach results in variable-length index

entries as well as large index size (in the worst case of a clique, the storage cost is

O(n2), where n is the number of nodes in the database). An alternative to the naive

approach is to use a compact bit array to capture the neighbors set. In the simple

case when the total number of different labels in the problem domain is small (i.e.

|Σv| is small), we can use a deterministic bit array to store the neighbors. The size of

the bit array is equal to |Σv|, and each bit in the array indicates whether a neighbor

with a specific label exists (set to 1) or not (set to 0). We call this bit array neighbor

array. When |Σv| is a large number, using a deterministic bit array is very expensive.

To handle this situation, we employ the Bloom filter approach [5]. We fix the size of

the bit array to be Sbit, where Sbit is a user-controllable parameter. A hash function

is utilized to map a node label to a bit array position. To improve precision, multiple

bit arrays and hash functions can be used to characterize the neighbors of a node. For

simplicity, we only use one bit array to store the neighbor information in this work.

In summary, the indexing unit of the NH-Index contains the following informa-

tion: (label, degree, nbConnection, nbArray), where nbConnection is the neighbor

connection of the node, and nbArray is the neighbor array.

53

Figure 4.1: An example graph

4.3.2 Matching a Query Node

In the previous section, we discussed the indexing unit of the NH-Index. Next,

given a query node, we examine how our method finds the matching database nodes.

For ease of presentation, we first investigate the matching conditions for exact sub-

graph matching, and then extend it to approximate subgraph matching.

For exact subgraph matching, in order to match a query node to a database node,

the two nodes must have the same label. The degree of the query node should be

no more than that of the database node. The same condition holds for neighbor

connections. Besides, the neighbors of the query node should have corresponding

matching nodes in the neighborhood of the database node.

For approximate matching, we want to tolerate some misses in the match. We

introduce a single user-defined parameter ρ, which is used to control the degree of

approximation. Intuitively, ρ is the percentage of neighbors of a query node that can

have no corresponding matches in the neighborhood of a database node. In other

words, nbmiss = (ρ × Nq.degree) neighbors of the query node can be missing in the

match to a database node. If nbmiss nodes are allowed to be missing, then at most

nbcmiss = nbmiss× (nbmiss−1)/2+(Nq.degree−nbmiss)×nbmiss neighbor connections

are allowed to be missing in the match, i.e. in the worst case, the nbmiss nodes all

54

connect to each other, and also connect to all of the remaining (Nq.degree− nbmiss)

nodes.

Note that we also support node mismatches (nodes with different labels are

matched) in TALE. For ease of presentation, we delay the discussion of node mis-

matches to Section 4.3.5.1, and for now assume that matching nodes are required to

have the same label.

Formally, the conditions for matching a query node to an NH-index entry for

approximate subgraph matching is:

Ndb.label = Nq.label (IV.1)

Ndb.degree ≥ Nq.degree− nbmiss (IV.2)

Sbit∑
i=1

Miss(Ndb.nbArray[i], Nq.nbArray[i]) ≤ nbmiss (IV.3)

Ndb.nbConnection ≥ Nq.nbConnection− nbcmiss (IV.4)

The Miss function in Equation IV.3 is defined as follows:

Miss(x, y) =





1 if x = 0 and y = 1

0 otherwise

In fact, exact subgraph matching can be viewed as a special case of approximate

subgraph matching when ρ = 0.

Note that the conditions expressed in Equations IV.1 to IV.4 can result in pro-

55

ducing some false positives. Our index serves as a filtering mechanism to prune the

search space. These matches are then refined in the matching algorithm (Section 4.4).

4.3.2.1 Node Match Quality

Given a query node, there can be more than one database node that satisfies

the conditions specified in Equations IV.1 to IV.4. Each of these matches can have

a different match quality. Therefore, we need to measure the quality of the node

matches. This quality metric will then be used at a later step (see Section 4.4.2)

following the index probe. In this section, we describe the match quality computation.

Let ñbmiss be the actual number of missing neighbors in the node match, and

ñbcmiss be the actual number of missing neighbor connections. Then the fraction

of missing neighbors of the query node can be defined as fnb = ñbmiss

Nq .degree
. And the

fraction of missing neighbor connections can be defined as fnbc = ñbcmiss

Nq .nbConnection
. Then,

we define the quality of a node match, w, as:

w =





2− fnbc if ñbmiss = 0

2− (fnb + fnbc

ñbmiss
) otherwise

(IV.5)

Note that fnbc is correlated with fnb, as more missing neighbors is likely to result

in more missing neighbor connections in the match. Therefore, we amortize fnbc by

the number of missing neighbors ñbmiss in Equation IV.5. The value of (fnb + fnbc

ñbmiss
)

falls between 0 and 2. We subtract this value from 2, so that higher w value means

a better node match.

56

B+-Tree

Index on

(label, degree,

neighbor connection)

1 0 0 1

1 1 0 0

B0 B1 B2 B3

n0

n1

n2

n3

n4

n5

Bitmap Index on

neighbor array

Figure 4.2: The hybrid index structure

4.3.3 Index Structure

Next, we consider the index structure to implement the NH-index. Rather than

designing a new index structure, which makes adoption and implementation hard, it

is desirable to consider using existing index structures that can implement the NH-

index efficiently. A suitable index structure needs to support the conditions specified

in Equations IV.1 through IV.4. We propose a simple hybrid index structure (see

Figure 4.2) for the NH-Index.

This hybrid index structure has two levels. The highest level of the index struc-

ture is a B+-tree index on node label, degree and neighbor connection. This part

of the index is used for fast evaluation of the equality search on node labels (Equa-

tion IV.1), range search on node degrees (Equation IV.2) and neighbor connections

(Equation IV.4). Each leaf entry in the B+-tree index points to a second-level index.

This second-level index has two components. The first is a list of database node ids

that are represented by the B+-tree leaf index entry. (Recall from Section 4.2 that

every database graph node has a unique node id.) These nodes have the same unique

57

label, degree and neighbor connection. The second component is a bitmap index

for the neighbor arrays of these database nodes. Each node has one corresponding

bit array in the bitmap. Figure 4.2 shows an example bitmap index for a B+-tree

leaf entry that is mapped to six distinct database nodes with the same label, degree

and neighbor connection. The bitmap index is used to expedite the evaluation of

Equation IV.3 using Algorithm 1 (discussed in detail below).

Note that our hybrid index structure is easily implemented in existing relational

systems. The second level indices can be implemented simply as a relation with two

attributes: one that stores the list of database nodes, and the other that stores a

bitmap (using an extensible data type). The first level index is simply a B+-tree

built on this table. This simple implementation is robust and allows us to easily

realize the NH-Index.

4.3.4 Index Probing

Given a query node, we first utilize the label, degree and neighbor connection

information to probe the B+-Tree index. Then, we obtain a list of bitmaps that must

be further examined using the conditions specified in Equation IV.3. An efficient

algorithm for this evaluation is shown in Algorithm 1. This algorithm contains two

steps. The first step (line 1 to 17) counts the number of missing neighbors of the

query node in the match to each database node in a bitmap. The second step (line

18 to 30) prunes all the database nodes with the number of missing neighbors higher

than the user threshold. We discuss these two steps in detail below.

58

Algorithm 1 Bitmap Probe for Approximate Subgraph Matching (Nq,
Bitmap, ρ)

Input: Nq is the query node, Bitmap is the bitmap index to be probed, assuming
that there are n nodes in the bitmap index and the size of neighbor array is Sbit,
ρ is the percentage of neighbors of a query node that can be missing in the match
to a database node

Output: Resultle is the bit vector indicating which nodes satisfy the query
1: // [Step 1]: count the number of missing neighbors
2: nbmiss = bρ×Nq.degreec // the threshold for the number of missing neighbors
3: countSize = blog2(nbmiss)c+ 1
4: for i from 0 to countSize do
5: Count[i] = (0, 0, ..., 0) // Count[i] is a bit vector of size n
6: end for
7: for j from 0 to Sbit − 1 do
8: if Nq.nbArray[j] = 1 then
9: Carries = NOT Bitmap.Bj

10: for k from 0 to countSize− 1 do
11: Temp = Count[k] AND Carries
12: Count[k] = Count[k] XOR Carries
13: Carries = Temp
14: end for
15: Count[countSize] = Count[countSize] OR Carries
16: end if
17: end for
18: // [Step 2]: only return nodes with no more than nbmiss missing neighbors
19: Resultlt = (0, 0, ..., 0) // Resultlt is a bit vector of size n
20: Resulteq = (1, 1, ..., 1) // Resulteq is a bit vector of size n
21: for k from countSize to 0 do
22: if bit k of nbmiss’s binary format is 1 then
23: Resultlt = Resultlt OR (Resulteq AND (NOT Count[k]))
24: Resulteq = Resulteq AND Count[k]
25: else
26: Resulteq = Resulteq AND (NOT Count[k])
27: end if
28: end for
29: Resultle = Resultlt OR Resulteq
30: return Resultle

59

1 0 0 1 1

1

0

1

0 1 0 1

0 1 0 0

1 1 1 1

B0 B1 B2 B3 B4

n0

n1

n2

n3

1 1 0 1 1

0+1+0+0 = 1

0+1+1+0 = 2

1+1+1+1 = 4

0+0+0+0 = 0

0

1

1

0

1

0

0

0

Count[1] Count[0]

Query neighbor array, nbmiss=1

Bitmap Index

1

1

1

1

0

0

0

0

Resulteq Resultlt

0 1

binary format of nbmiss

1

0

0

1

0

0

0

0

Resulteq Resultlt

0 1

1

0

0

0

0

0

0

1

Resulteq Resultlt

0 1

1

0

0

1

Resultle

STEP 1

STEP 2

Figure 4.3: Example demonstrating Algorithm 1

If a position in the query neighbor array is set to 1, but the corresponding position

in a database neighbor array is 0, we count it as one miss. Step 1 of Algorithm 1

simulates the binary addition operation to count the total number of misses. We keep

a counter of countSize + 1 bits (countSize = blog2(nbmiss)c + 1) for each database

node to record the number of misses. These counters are stored in the countSize + 1

bit vectors Count[0] to Count[countSize], i.e. vector Count[0] stores the bit position

0 for all the counters, and so on. The algorithm scans through the query neighbor

array from the lowest bit (position 0) to the highest bit (position Sbit − 1). If the

current bit is 1, then the algorithm negates the bits in the corresponding column of

the bitmap index and adds all the bit values to the counters of the database nodes.

To avoid overflow, the highest bit Count[countSize] for a database node is set to 1

when the number of misses exceeds countSize bits. An example of the first step is

shown in Step 1 of Figure 4.3.

The second step of Algorithm 1 prunes all the database nodes with more than

60

nbmiss misses. We use two bit vectors Resulteq and Resultlt to record the nodes

with nbmiss misses and less than nbmiss misses, respectively. As the algorithm scans

the binary format of nbmiss from the highest bit (position countSize) to the lowest

bit (position 0), it updates Resulteq and Resultlt. Finally, the bitwise OR of the two

vectors gives us the right answer. Each position in the result vector indicates whether

the corresponding database node is in the query result or not. Figure 4.3 also shows

an example of this step.

Next, we analyze the complexity of Algorithm 1. This algorithm takes O(Sbit ×

log(ρ×d)) bitwise operations in step 1, where d is the degree of the query node. And

step 2 takes O(Sbit) bitwise operations. Therefore, the complexity of Algorithm 1 is

O(Sbit × log(ρ × d)) bitwise operations on bit vectors. Usually, ρ × d is very small

value, thus log(ρ× d) is even smaller, and often negligible.

We have also compared Algorithm 1 with a naive bitmap index probing method,

which scans through every neighbor array in the bitmap index, and decides whether

the neighbor array satisfies the condition specified in Equation IV.3. We set up a

simulation to test the efficiency of Algorithm 1 against this naive method. We ran-

domly generated 12 bitmap indexes with increasing sizes. The smallest bitmap index

contains neighbor arrays for 16 nodes, while the largest one contains neighbor arrays

for 32768 nodes. Each neighbor array in the bitmap has 32 bits. We use 50 randomly

generated query neighbor arrays to probe these bitmap indexes. Algorithm 1 shows

significant performance advantage over the naive method – the speedup ranges from

2X for the smallest index to more than 12X for the largest index.

61

4.3.5 Extensions to the Basic Approach

Next we introduce several extensions to the basic indexing technique to improve

the basic approach and handle more general cases.

4.3.5.1 Node Mismatches

In the above indexing method, TALE requires two matching nodes to have the

same label. However, real applications often need to allow matchings between nodes

with different labels. We adopt the SAGA node mismatch model discussed in Sec-

tion 3.2.2.2 of Chapter III, which implicitly groups nodes based on a specific notion

of similarity. In this model, the grouping of nodes is defined based on the application

domain, and two nodes are allowed to match only if they belong to the same group.

For example, if a node represents a gene, then its group membership is defined by

the orthologous group that it belongs to (orthologous groups are organized based on

similar gene functionalities), and two nodes match if they belong to the same orthol-

ogous group. To accommodate this model, we extend the basic indexing approach

by replacing the node labels with their corresponding group labels and hashing the

group labels for the bit arrays. The remaining indexing method remains unchanged.

In Section 4.5, we show how TALE can be applied to real applications using this node

mismatch model.

4.3.5.2 Directed Graphs

The above indexing method works for undirected graphs. However, it is fairly

easy to extend it to handle directed graphs. In a directed graph, every edge has

62

direction. Given a node, an adjacent edge either goes towards the node or away

from the node. Therefore, the indexing unit becomes (label, in-degree, out-degree, in-

nbConnection, out-nbConnection, in-nbArray, out-nbArray). For the index structure,

we can build one B+-Tree index on label, in-degree, out-degree, in-nbConnection and

out-nbConnection. And each leaf entry in the B+-Tree points to one bitmap index

for the in-nbArray and another bitmap index for the out-nbArray. Other candidate

index structures are also possible.

4.3.5.3 Edge Labels

A simple extension can be made to the basic indexing method proposed above

to handle graphs with labeled edges. In the basic method, we hash the labels of

neighbors to get the neighbor array. To handle labeled edges, we hash (node label,

edge label) pairs to produce the neighbor arrays. The remaining index method is

unchanged.

Any of the above extensions can be combined together to meet the requirement

of different applications.

4.4 The Matching Algorithm

In this section, we introduce the approximate subgraph matching algorithm. We

first start with an overview of this algorithm in Section 4.4.1, and then describe the

algorithm in detail in Sections 4.4.2 and 4.4.3.

63

query

graph

a graph

in the

databse

query

graph

a graph

in the

databse

Figure 4.4: Overview of the matching algorithm

4.4.1 Algorithm Overview

Our approximate subgraph matching algorithm is based on the following two

observations.

Observation 1: Some nodes in a graph play more importance roles in the graph

structure than others. As shown in Figure 4.1, some nodes (e.g. the black node)

connect to many other nodes. If these nodes are absent, then the graph structure

quickly gets fragmented. In contrast, some nodes (e.g. the gray node) sit on the

periphery of the graph and only connect to few other nodes. The overall graph

structure will not be dramatically affected by removing these nodes. There are various

ways of measuring the importance of a node in a graph. For simplicity, we use the

degree centrality measure in this work. In this measure, nodes with high degrees

are considered more important than nodes with low degrees. In Section 4.5.5, we

64

will evaluate the effectiveness of this importance measure. Note that the definition

of “importance” is flexible in TALE and customizable for specific application needs.

TALE can be easily extended to use other measures of node importance, such as

closeness, betweenness, and eigenvector centralities.

Algorithm 2 GrowMatch (Gq, Gdb, Mimp)

Input: Gq is the query graph, Gdb is the database graph, Mimp contains the matches
for the important nodes in Gq

Output: M contains the node matches for the resulting graph match
1: put all node matches from Mimp to a priority queue Q sorted by their qualities
2: while Q is not empty do
3: pop up the best node match (Nq, Ndb) from Q
4: put (Nq, Ndb) into M
5: ExamineNodesNearBy(Gq, Gdb, Nq, Ndb, M , Q) // finding new matches for

nodes nearby Nq

6: end while
7: return M

Observation 2: A good approximate match should be more tolerant towards

missing unimportant nodes in the query than missing important nodes. In other

words, most of the important nodes in the query should be present in the match, while

missing unimportant nodes is more tolerated. In addition, the number of matched

important nodes, and the qualities of these node matches can be used to estimate the

quality of an approximate subgraph match.

Based on these two observations, we introduce a new approximate subgraph

matching algorithm. The overview of this algorithm is as follows: First, the algo-

rithm selects a number of important nodes from the query based on the specified

importance measure (degree centrality in this work), and then probes the NH-Index

to find matching nodes for these important query nodes. These matching node pairs

65

Algorithm 3 ExamineNodesNearBy (Gq, Gdb, Nq, Ndb, Mc, Qc)

Input: Gq is the query graph, Gdb is the database graph, Nq is a node in Gq, Ndb is
the node in Gdb matched to Nq, Mc contains all the current node matches found
so far, Qc contains all the candidate node matches to be examined

1: NB1q = immediate neighbors of Nq that have no matches in Mc

2: NB2q = nodes two hops away from Nq that have no matches in Mc

3: NB1db = immediate neighbors of Ndb that have no matches in either Mc or Qc

4: NB2db = nodes two hops away from Ndb that have no matches in either Mc or Qc

5: MatchNodes(Gq, Gdb, NB1q, NB1db, Mc, Qc)
6: MatchNodes(Gq, Gdb, NB1q, NB2db, Mc, Qc)
7: MatchNodes(Gq, Gdb, NB2q, NB1db, Mc, Qc)

serve as anchor points for producing graph matches. In the second step, for each

matching database graph, the algorithm extends the graph match from the anchor

points by progressively adding satisfiable nearby nodes of already matched nodes.

The entire matching process is outlined in Figure 4.4.

4.4.2 Step 1: Match the Important Nodes

In this step, the algorithm selects a number of important nodes from the query

and probes the NH-Index to match these important nodes.

The algorithm first needs to decide how many nodes count as important nodes. We

introduce a parameter Pimp, defined as the fraction of important nodes in the query.

Given Pimp, we sort the nodes in the query by their importance (degree centrality in

this work) and select the top Pimp percent as the important nodes. In Section 4.5.2, we

show how to choose the Pimp value based on graph properties of specific applications.

After selecting the important nodes, the algorithm probes the NH-Index for each

important node as discussed in Section 4.3.4. After the index probe, we obtain a

66

list of database graphs that have matches for some or all of the important nodes

in the query. A match score is also calculated for each matching node pair using

Equation IV.5. In the results produced by the index probes, a single important

query node can be mapped to multiple database nodes and vice versa. Since the

main purpose of this first step is to find the anchor points that can be expanded

in the next step, we need to find one-to-one node mappings between the query and

database nodes. For this part, we use a maximum weighted bipartite graph matching

algorithm (using node match scores as weights) from the LEDA-R 3.2 library (http:

//www.algorithmic-solutions.com/index.htm).

4.4.3 Step 2: Extend the Match

Step 1 of the matching algorithm produces a list of candidate database graphs.

For each candidate graph, Step 2 of the algorithm utilizes the node matches produced

by Step 1 as anchor points to match the remaining nodes in the database and query

graphs, and produces the final graph match.

The overall idea of this step is as follows. For each node that is already matched,

we try to match its “nearby” nodes (as described below these includes not just the

adjacent nodes, but also nodes that are two hops away). We perform this extension

progressively until no more nodes can be added to the match. The detailed algorithm

is shown in Algorithm 2, 3 and 4.

Algorithm 2 is the main procedure for step 2. It first puts all the important node

matches (the anchor points) into a priority queue sorted by the qualities of the node

67

matches (cf. Section 4.3.2.1). In each iteration of the loop, we pop up the best node

match (with the highest quality) from the queue and put it into the final graph match.

In addition, we examine the nearby nodes of the query node, as well as the nearby

nodes of the database node, to see whether any of them can be matched. If so, we add

these new node matches to the priority queue. This process ends when the priority

queue is empty.

Algorithm 3 implements the ExamineNodesNearBy function called by Algorithm 2.

Based on a pair of already matched nodes, this function tries to match their nearby

nodes. In order to allow more flexibility in the approximate matching, we do not limit

the matching extensions to just adjacent nodes of the query node and the database

node. Instead, this algorithm examines nodes at most two-hops away from the query

node and the database node. Note that this algorithm is generic. It can be easily

extended to match nodes more than two-hops away to allow more approximation (at

the expense of an increased computational cost).

Algorithm 4 shows the details of the MatchNodes function called by Algorithm 3.

For each node from the given set of query nodes, this algorithm finds the best matching

node from the set of database nodes. If the new node match does not conflict with any

existing ones in the priority queue, it is simply put into the priority queue. However,

if this node match is better than an existing match in the queue, the existing one is

replaced with the new one.

Note that our algorithm only produces one match for each database graph. In

some applications, users may want more than one match for each database graph.

In this case, we can extend our matching algorithm to retain more than one set of

68

anchor points (in step 1, instead of only retaining the maximum weighted bipartite

matching, also retain other high weighted maximal bipartite matchings) and then

extend each of them to produce a match.

Algorithm 4 MatchNodes(Gq, Gdb, Sq, Sdb, Mc, Qc)

Input: Gq is the query graph, Gdb is the database graph, Sq is a set of nodes in Gq,
Sdb is a set of nodes in Gdb, Mc contains all the current matches found so far, Qc

contains all the candidate matches to be examined
1: for every node Nq in Sq do
2: Ndb=the best mapping of Nq in Sdb

3: if Ndb=null then
4: continue
5: end if
6: if Nq has no matches in Qc then
7: put (Nq, Ndb) into Qc

8: remove Ndb from Sdb

9: else if (Nq, Ndb) is a better node match then
10: remove the existing match of Nq from Qc

11: put (Nq, Ndb) into Qc

12: remove Ndb from Sdb

13: end if
14: end for

4.5 Evaluation

In this section, we apply TALE to three real biological applications, and present

results evaluating TALE with three measures: effectiveness (whether the results pro-

duced by the tool are useful and meaningful in real life applications), efficiency and

scalability.

Note that while the applications discussed in this paper are from life sciences,

TALE can be applied to any area in which there is a need for approximate subgraph

matching. Other such areas include comparing RDF graphs in semantic web applica-

69

tions, and comparing parse trees produced by natural language parsers for literature

mining. We have chosen to focus on life sciences applications since we have actual

collaborators who have ready applications for our tool.

TALE is implemented in C++ on top of PostgreSQL (http://www.postgresql.

org). The execution times reported in this section correspond to the running times

of this C++ program including the DBMS access times. All experiments were run on

a 2.8GHz Pentium 4 Fedora Core 2 machine, with 2GB memory, and a 250GB SATA

disk. We use PostgreSQL version 8.1.3 and set the buffer pool size to 512MB.

4.5.1 Experimental Datasets

BIND Dataset: We use the BIND [10] dataset (version May 25, 2006) to demon-

strate the application of TALE for comparing Protein Interaction Networks (PINs).

A PIN is a large graph, in which nodes represent proteins and edges indicate protein-

protein interactions. Comparing PINs of different species allows a biologist to discover

the evolutionary conserved functional units across species. However, due to the high

error rate of detection methods, PINs are noisy in nature [47]. Therefore, approximate

subgraph matching is useful for comparing PINs.

KEGG Dataset: This dataset consists of biological pathways from the well-

known KEGG database [34] (downloaded on Feb 28, 2007). We use this dataset to

demonstrate the application of TALE for biological pathways analysis. A pathway is a

directed graph with nodes representing cellular entities such as proteins and regulatory

elements, and edges representing their interactions. The graph shows the sequence of

70

Degree
F

re
qu

en
cy

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 4.5: Degree distribution for the BIND dataset

Degree

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0.
0

0.
4

0.
8

Figure 4.6: Degree distribution for the KEGG dataset

actions that lead to different cellular entities interacting to carry out some function.

Similar to PINs, each interaction in a pathway is based on an experimentally observed

phenomenon. Therefore, pathway data are often noisy and incomplete. Nature is very

effective at modularizing complex actions and reusing subcomponents. There are a

lot of common building blocks in the cellular machinery that often get “reused” in

different pathways. By investigating the similarities shared by different pathways, a

biologist can generate various hypotheses that can help refine the understanding of a

71

Degree
F

re
qu

en
cy

2 4 6 8 10 12 14

0.
00

0.
10

0.
20

Figure 4.7: Degree distribution for the ASTRAL dataset

pathway of interest.

ASTRAL Dataset: To demonstrate the potential application of TALE for Pro-

tein Structure Matching, we use the ASTRAL [27] dataset (version 1.71). This dataset

contains the 3D structures of protein domains. A domain is an independent, self-

stabilizing unit of a protein, usually pertinent to the function of the protein they

belong to. In biology, structure similarity is often a good indicator of function simi-

larity. 3D structures can be translated into contact graphs, and structure matching

can be achieved by approximate subgraph matching on the corresponding contact

graphs. In a contact graph, nodes represent amino acids (since there are 20 different

kinds of amino acids, there are 20 distinct node labels) and edges indicate that the

corresponding amino acids physically interact with each other. This physical inter-

action is usually decided by a threshold of the contact distance. In our experiment,

we used the widely used 7Å threshold [25] to convert each domain 3D structure into

a contact graph.

72

4.5.2 Parameterizations

In this section, we demonstrate how to choose the values of the parameters used in

TALE for the three experimental datasets. TALE requires the setting of the following

three parameters: the neighbor array size Sbit in the NH-Index, the approximation

ratio ρ, and the fraction of important nodes Pimp in a query graph.

The size of the neighbor bit array is related to the number of node labels (or the

number of group labels when allowing node mismatches, cf. Section 4.3.5.1) in an

application. For protein structure matching, there are only 20 amino acids. Two

nodes of the contact graphs can be matched only if they represent the same amino

acid. Therefore, we set Sbit to be 32 (to make it fit in an 32-bit integer), and we

use the exact value of the amino acids to set the bit array (instead of using a hash

function).

For pathway analysis and protein interaction networks comparison, we need to

match nodes based on function or sequence similarity. For the KEGG dataset, we

utilize the KEGG Orthologous group (which classifies proteins based on function

similarity). Two nodes can be matched only if they belong to the same KEGG

Orthologous group. For the BIND dataset, we used CD-HIT [33] to cluster the

proteins based on their sequence similarity1. And two nodes can be matched only if

they belong to the same cluster. There are totally 8814 KEGG Orthologous groups

and 22311 CD-HIT clusters. We set Sbit to be 64 and 96 for KEGG and BIND

datasets, respectively. In fact, we have experimented with other Sbit values, and

there is no significant difference in performance for different Sbit values. Therefore,

1Proteins in each cluster share at least 40% sequence identity.

73

in the interest of space, we do not show the effect of different neighbor array sizes.

The approximation ratio ρ indicates the percentage of neighbors of a query node

that can have no corresponding matchings in the neighborhood of a database node.

It is related to the similarity requirement of a specific application. For simplicity, we

set this parameter to be 25% for all three applications.

The fraction of important nodes in a query graph Pimp is highly associated with

the graph properties in an application. As we use degree centrality to measure the

importance of a node, we study the degree distributions of the 3 applications. The rep-

resentative degree distributions of the 3 datasets are shown in Figures 4.5 through 4.7.

The degree distribution for the KEGG and BIND datasets is highly right skewed. In

fact, studies have shown that both pathways and PINs show power-law degree distri-

bution [37]. Only very small fraction of nodes have high degrees. We set Pimp = 15%

for the KEGG and BIND datasets. For the ASTRAL dataset, the degree distribution

is bell shape. Around 25% of nodes have degree more than 8, which we consider as

important nodes (Pimp = 25%).

4.5.3 Effectiveness Evaluation

In this section, we present results examining the effectiveness of TALE. We also

compare TALE to C-Tree [22], SAGA (Chapter III), and Graemlin [17].

4.5.3.1 Protein Interaction Networks Comparison

Graph matching techniques are used on PINs to find conserved components shared

between the query network and each network in the database. The PIN for a well

74

nodes # edges
human 8470 11260
mouse 2991 3347

rat 830 942

Table 4.1: PINs of human, mouse and rat

studied species is usually a large graph with hundreds to thousands of nodes and edges.

C-Tree [22] is not applicable for comparing PINs as the implementation does not allow

node mismatches (nodes with different labels to be matched), which is a requirement

for this application. On the other hand, TALE handles node mismatches by utilizing

the group labels produced by existing protein clustering tools (see Section 4.5.2).

SAGA can be used for querying PINs, but querying such large graphs using SAGA

is prohibitively expensive.

For comparing PINs, the tools most closely related to TALE are NetworkBlast [40],

MaWISh [35] and Graemlin [17]. Since these tools largely deal with pairwise com-

parison, we only focus on pairwise PIN comparison in this experiment. In [17], the

authors showed that Graemlin is better at identifying conserved functional modules

than the other methods. Therefore, we only compare TALE with Graemlin.

We choose the PINs of three well studied mammals: human, mouse and rat for

this experiment. The statistics for these three networks are described in Table 4.1.

We use both TALE and Graemlin (using code download from http://graemlin.

stanford.edu/) to query the rat and the mouse PINs against the human PIN. We

compare the two methods using the effectiveness measures: the number of KEGGs

hit and the average KEGG coverage as proposed in [17]. The number of KEGGs hit

is the number of pathways in the KEGG database [34] aligned between 2 species. A

75

KEGGs KEGG time
hit coverage (sec)

rat vs. human
Graemlin 0 NA 910.0

TALE 6 3.2% 0.3
mouse vs. human

Graemlin 18 5.0% 16305.5
TALE 42 13.6% 0.8

Table 4.2: Effectiveness for comparing PINs
pr

ec
is

io
n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
SAGA

Figure 4.8: ROC curves for human pathways

KEGG pathway is considered as a hit if at least 3 proteins in the pathway are aligned

to their counterparts in the pathway of the other species. KEGG coverage is the

fraction of proteins aligned within a pathway.

As shown in Table 4.2, TALE achieves significant larger number of KEGGs hit and

better average KEGG coverage than Graemlin. Most noticeable is the big difference

in running time. TALE only takes about 1 second for the two queries while Graemlin

takes 4.8 hours. In addition, TALE only takes about 1 second to build the index on

the human PIN.

76

pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
SAGA

Figure 4.9: ROC curves for mouse pathways

pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
SAGA

Figure 4.10: ROC curves for rat pathways

4.5.3.2 Biological Pathways Analysis

This experiment uses the KEGG pathway dataset. Again since we allow node

mismatches in pathway analysis, C-Tree is not applicable. Therefore for this experi-

ment, we only compare TALE with SAGA. SAGA was configured using the parameter

settings in Section 3.3.1 of Chapter III.

Close related species in evolution (e.g. mouse and rat) share significant similarities

in their corresponding pathways. For example, the WNT pathways of mouse and rat

are very similar to each other, but are more different from the WNT pathway of fly.

77

This provides us a way to evaluate the effectiveness of TALE for the application of

biological pathways analysis.

For this experiment, we choose the pathways of the 7 well-studied model species in

KEGG: human, mouse, rat, fly, worm, yeast and ecoli. The statistics of this dataset

is summarized in Table 4.3. Human, mouse and rat are more closely related to each

other in evolutionary than the other 4 species. Therefore, we expect the results

produced by TALE can reflect the fact that the pathways for these 3 species will be

more similar to each other.

We used every pathway for human, mouse and rat to query the database. Note

that for some large queries (e.g. human fatty acid biosynthesis pathway with 163

nodes and 151 edges), SAGA could not finish in a reasonable amount of time (taking

over 1 hour), while TALE can finish every query within 1.8 seconds. For the queries

SAGA can finish within 1 hour, the average running time for SAGA is about 12

seconds, while the average time for TALE is 0.14 seconds.

To evaluate the effectiveness of the results, we employ the measures: recall and

precision. Recall is defined as the fraction of the retrieved relevant results out of all

#pathways avg #nodes avg #edges
human 173 83.3 38.5
mouse 169 83.8 38.3

rat 161 83.6 30.3
fly 103 97.3 12.7

worm 97 100.4 13.4
yeast 87 106.1 20.8
ecoli 95 102.1 25.1
total 885 91.2 28.3

Table 4.3: The statistics of KEGG pathways for the 7 well-studied model species

78

the relevant results. Precision is the fraction of the retrieved relevant results out of

all the retrieved results. A matching result is considered relevant if it is the same

pathway from a species close in evolution. For example, if the query is human WNT

pathway, then a relevant result can be human, mouse or rat WNT pathway.

To keep this experiment manageable, we kill any SAGA query if it runs over 1

hour. For fair comparison, we only compare TALE with SAGA for the query results

that SAGA can finish within the time limit. We employ the SAGA distance model

(using the default parameters in Section 3.3.1 of Chapter III) to rank the results

returned by both TALE and SAGA. We compute the average precision and recall

values for human, mouse and rat pathway queries. The ROC curves are shown in

Figure 4.8 to Figure 4.10. SAGA and TALE show very comparable effectiveness for

pathway analysis, with SAGA having a slight advantage.

4.5.3.3 Protein Structure Matching

In this experiment, we evaluate the effectiveness of TALE for protein structure

matching using the ASTRAL dataset.

This application generally does not require node mismatches, therefore we can

compare TALE with C-Tree. However, the C-Tree implementation that we got from

the authors is memory-based. In other words, the whole index needs to reside in

memory for query processing. Naturally, as the database size increases, the index

will soon grow out of memory. For example, C-Tree cannot build an index on the

entire ASTRAL dataset (which has 75626 domains). In contrast, NH-Index is a

disk-based index technique and is not limited by the memory size. As we will show

79

in Section 4.5.4.3, TALE can easily handle the entire ASTRAL dataset, and our

disk-based index structure scales nicely with increasing database sizes. For a fair

comparison, we employ the similarity model used by C-Tree [22] to rank the matching

results.

ASTRAL contains 75626 domains, which are classified into 7275 families. Domains

in each family present significant structural similarity. This provides us with a way

of evaluating the effectiveness of TALE: large fraction of the top matching results are

expected to belong to the same family of the query domain.

We test TALE and C-Tree on a subset of ASTRAL, so that C-Tree can hold

the index in memory. The dataset is created as follows: We randomly choose 1300

families (with more than 10 domains in each family), and then randomly choose 10

domains from each family. The average number of nodes and edges for each graph

are 186.6 and 734.2, respectively.

We randomly choose 20 queries (with 346.4 nodes and 971.6 edges per graph on

average) from the 13000 domains. We gradually increase the number of results re-

turned by TALE and C-Tree, and measure the mean recall and mean precision for

both methods. The recall and precision ROC curves are shown in Figure 4.11. The

precision for both methods stays very high until the recall reaches round 0.6. This

is because both methods return relevant results as their top results. However, as the

recall further increases, the precision drops more steeply. After the recall reaches

around 0.8, returning more results will not improve the recall any more. This is be-

cause the classification system in ASTRAL is not purely based on structure similarity,

but also on extensive domain knowledge. No method based on pure structural sim-

80

pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
C−Tree

Figure 4.11: ROC curves using the ASTRAL dataset

ilarity is likely to perfectly match this classification system. However, TALE could

potentially be used for classifying novel family members in combination with the

domain knowledge provided by experts.

Although TALE and C-Tree are very comparable in their effectiveness for this

dataset, TALE is faster than C-Tree. The average running time for the 20 queries

is 34.8 seconds using TALE, but 61.9 seconds using C-Tree. TALE is almost 2

times faster than C-Tree (even though it is a disk-based implementation and is going

through PostgreSQL).

avg avg index index
#graphs #nodes #edges size time

D1 10 939.1 1093.2 1.4MB 13.2s
D2 20 938.5 1691.9 2.9MB 31.1s
D3 30 939.5 1920.7 4.5MB 50.4s
D4 40 940.1 1743.6 5.7MB 62.7s

Table 4.4: Four BIND sub-datasets for the scalability experiment

81

4.5.4 Efficiency and Scalability Evaluation

In this experiment, we test the efficiency and scalability of TALE for the three

applications.

4.5.4.1 Experiment on BIND Dataset

In this experiment, we evaluate the efficiency and scalability of TALE on the

BIND dataset. BIND has PINs for 757 species, but most PINs are incomplete. We

choose the largest 40 PINs from BIND. The largest graph contains 8470 nodes and

11260 edges. The smallest of these 40 PINs contains 45 nodes and 105 edges. On

average, each graph has 940.1 nodes and 1743.6 edges. The characteristic of this

data is that it contains large-sized graphs. To measure the scalability of TALE, we

formed 4 datasets D1 to D4 with increasing sizes 2. The statistics of the four datasets

are summarized in Table 4.4. The index sizes and the index construction times are

also shown in this table. As the database size increases, the index size grows at a

near-linear rate and the index construction time increases steadily.

We choose the 10 graphs in dataset D1 as the queries. For this experiment, we do

not restrict the number of results returned by each query. The execution time for the

10 queries on the 4 datasets is shown in Figure 4.12. Even for the largest query with

3059 nodes and 4850 edges on the largest D4 dataset, the query executes in about 0.7

seconds. The execution time grows as the size of the database increases. For most

2The 4 datasets are formed as follows. We first divide the 40 PINs into 4 balanced groups each
with 10 PINs and roughly same total number of nodes. We randomly select one group as D1,
randomly add another group to D1 to form D2, then randomly add one of the remaining groups to
D2 to form D3, finally D4 contains all the 4 groups.

82

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
R

un
in

g
T

im
e

(s
ec

)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Queries (#nodes, #edges)
(6

3,
52

)

(9
3,

77
)

(1
00

,6
7)

(1
46

,9
9)

(1
82

,1
27

)

(3
06

,3
13

)

(6
01

,4
07

)

(1
85

0,
15

93
)

(2
99

1,
33

47
)

(3
05

9,
48

50
)

D1 D2 D3 D4

Figure 4.12: Scalability Experiment using the BIND dataset

queries, the growth ratio shows near-linear trend. Note that query execution time is

not just influenced by the query and database sizes, but also by the result cardinality.

In Figure 4.12, Q2, Q3 and Q4 increase in the query size, but the execution time

increases from Q2 to Q3 while decreases from Q3 to Q4 for D2, D3 and D4 datasets.

The reason is that Q3 has more database matches than Q2 and Q4. (Recall that in

this experiment, we do not restrict the number of results returned by each query.)

For Q3, there is a jump from D1 to D2, because more matching graphs are found in

D2. But the number of matches remain roughly the same from D2 to D4 (and so

does the execution time). Similar explanations apply to other queries in this figure.

4.5.4.2 Experiment on KEGG Dataset

In this section, we test the efficiency and scalability of TALE on increasing sizes of

KEGG pathway databases. The smallest dataset contains all the human and mouse

pathways. We increase the database size by including pathways of more species until

83

C
on

st
ru

ct
io

n
T

im
e

(s
ec

)

0

20

40

60

80

100

120

Database Size (# graphs)
0 7000 14000 21000 28000 35000 42000

Figure 4.13: Index Construction Time with Increasing KEGG Database Size

In
de

x
S

iz
e

(M
B

)

0

100

200

300

400

Database Size (# graphs)
0 7000 14000 21000 28000 35000 42000

Figure 4.14: Index Size with Increasing KEGG Database Size

it contains all the 41550 KEGG pathways of 538 species. The index construction

time and index sizes for these increasing databases are shown in Figure 4.13 and

Figure 4.14, respectively. Our indexing technique indexes the neighborhood of each

database node. This novel technique gives us the near linear increase in the index

construction time and index size as shown in Figure 4.13 and Figure 4.14.

To test query execution time, we randomly selected 20 human pathways (76.7

nodes and 29.9 edges per graph on average). For each query, we ran TALE to get the

top 20 results. The average running time for the 20 queries on increasing database

84

E
xe

cu
tio

n
T

im
e

(s
ec

)

0

0.2

0.4

0.6

0.8

1

1.2

Database Size (# graphs)
0 7000 14000 21000 28000 35000 42000

Figure 4.15: Query Execution Time with Increasing KEGG Database Size
C

on
st

ru
ct

io
n

T
im

e
(s

ec
)

0

1000

2000

3000

4000

5000

6000

Database Size (# graphs)
0 19000 38000 57000 76000

Figure 4.16: Index construction time for the ASTRAL dataset

sizes is reported in Figure 4.15. As shown in this figure, the query execution time

increases steadily with the database size.

4.5.4.3 Experiment on ASTRAL Dataset

In this experiment, we evaluate the efficiency and scalability of TALE on the AS-

TRAL datasets with increasing sizes. The smallest dataset contains 200 graphs, while

the largest one contains all the 75626 graphs in ASTRAL. As shown in Figure 4.16

and Figure 4.17, the index construction time and index size show steady growth with

increasing database size.

85

In
de

x
S

iz
e

(M
B

)

0

440

880

1320

1760

2200

Database Size (# graphs)
0 19000 38000 57000 76000

Figure 4.17: Index size for the ASTRAL dataset
E

xe
cu

tio
n

T
im

e
(s

ec
)

0

15

30

45

60

75

90

Database Size (# graphs)
0 19000 38000 57000 76000

Figure 4.18: Query execution time for the ASTRAL dataset

We randomly selected 20 queries (153.1 nodes and 592.0 edges per graph on av-

erage) from the smallest dataset, and ran it on the increasing sized databases. For

each query, we only retain the top 20 results. The average execution time for the 20

queries is shown in Figure 4.18. The running time scales nicely with the database

size.

4.5.5 Discussion and Summary

We note that TALE is a heuristic algorithm. It does not guarantee that it will

find the best or all matches. However, given that finding the best/all matches is

86

NP-hard [9] and infeasible in practice, heuristics are inevitable. For most real graphs,

our heuristics achieve high accuracy compared with existing tools, as shown in our

experiments.

In this work, we have used degree centrality to measure the importance of nodes.

To show the effectiveness of this measure, we compare TALE to a variant called

TALE-Random, where the “important” nodes are simply a randomly selected subset

of the nodes. We ran the BIND mouse vs human test (Table 4.2, Row 3) using TALE-

Random. We compare the number of matching nodes, the number of matching edges,

the number of KEGGs hit and the average KEGG coverage for the two methods. The

results are 106, 61, 42, 13.6% for TALE and 85, 24, 8, 5.8% for TALE-Random. This

test shows the effectiveness of this node importance measure for this application.

To summarize the experimental section, our extensive empirical evaluation demon-

strates the effectiveness, efficiency and scalability of TALE. We have compared TALE

to three existing tools, SAGA, C-Tree and Graemlin. TALE is a flexible tool and the

only tool that can easily be applied across the three applications considered in our

evaluation. Furthermore, TALE produces useful and meaningful results for all the

three applications, and is also significantly faster than these existing tools. Our results

also show that TALE is scalable for large queries and large databases.

4.6 Conclusions

In this chapter we have presented TALE – an approximate subgraph matching

tool for matching graph queries with a large number of nodes and edges. TALE

87

employs a novel indexing technique, which achieves a high pruning power and scales

linearly with the database size. This index structure can be easily implemented

in existing relational systems. The innovative matching algorithm used by TALE

distinguishes nodes by their importance to the graph structure. This algorithm first

matches the important nodes in the query, and then extends them to produce larger

graph matches. TALE is a general tool for approximate subgraph matching queries,

and can be easily customized to meet the requirement of different applications. Our

empirical evaluations demonstrate the improved effectiveness and efficiency of TALE

over existing methods.

88

CHAPTER V

Aggregation for Graph Summarization

5.1 Introduction

Besides graph matching methods, graph summarization techniques are very useful

for understanding underlying characteristics of graphs. In many applications, graphs

are very large, with thousands or even millions of nodes and edges. As a result, it

is almost impossible to understand the information encoded in large graphs by mere

visual inspection. Therefore, effective graph summarization methods are required to

help users extract and understand the underlying information.

Most existing graph summarization methods use simple statistics to describe graph

characteristics [11, 12, 37]; for example, researchers plot degree distributions to in-

vestigate the scale-free property of graphs, employ hop-plots to study the small world

effect, and utilize clustering coefficients to measure the “clumpiness” of large graphs.

While these methods are useful, the summaries contain limited information and can

be difficult to interpret and manipulate. Methods that mine graphs for frequent pat-

89

Student with attributes:

[gender, department,...]

classmates

friends

friends &

classmates

classmates

friends

Graph: G

G1

G3

G2

G4

Summary

friends

friends &

classmates

(a) (b)

Figure 5.1: Graph summarization by aggregation

terns [26, 52, 53, 57] are also employed to understand the characteristics of large

graphs. However, these algorithms often produce a large number of results that can

easily overwhelm the user. Graph partitioning algorithms [38, 48, 56] have been used

to detect community structures (dense subgraphs) in large networks. However, the

community detection is based purely on nodes connectivities, and the attributes of

nodes are largely ignored. Graph drawing techniques [3, 23] can help one better

visualize graphs, but visualizing large graphs quickly becomes overwhelming.

What users need is a more controlled and intuitive method for summarizing

graphs. The summarization method should allow users to freely choose the attributes

and relationships that are of interest, and then make use of these features to produce

small and informative summaries. Furthermore, users should be able to control the

resolution of the resulting summaries and “drill-down” or “roll-up” the information,

just like the OLAP-style aggregation methods in a traditional database systems.

In this chapter, we propose two operations for graph summarization that fulfills

these requirements. The first operation, called SNAP (Summarization by Group-

ing Nodes on Attributes and Pairwise Relationships), produces a summary graph

90

R
e
s
o
lu
tio
n

Summaries

low

high

Figure 5.2: Illustration of multi-resolution summaries�� ��
G11 G21

G22

G2t-1

G2t

G1s-2

G1s-1

G1s

Figure 5.3: Construction of Φ3 in the proof of Theorem 5.2.4

of the input graph by grouping nodes based on user-selected node attributes and

relationships. Figure 5.1 illustrates the SNAP operation. Figure 5.1(a) is a graph

about students (with attributes: gender, department and so on) and the relation-

ships (classmates and friends) between them. Note that only few of the edges are

shown in Figure 5.1(a). Based on user-selected gender and department attributes,

and classmates and friends relationships, the SNAP operation produces a summary

graph shown in Figure 5.1(b). This summary contains four groups of students and

the relationships between these groups. Students in each group have the same gender

and are in the same department, and they relate to students belonging to the same set

of groups with friends and classmates relationships. For example, in Figure 5.1(b),

each student in group G1 has at least a friend and a classmate in group G2. This

91

compact summary reveals the underlying characteristics about the nodes and their

relationships in the original graph.

The second operation, called k-SNAP, further allows users to control the resolu-

tions of summaries. This operation is pictorially depicted in Figure 5.2. Here using

the slider, a user can “drill-down” to a larger summary with more details or “roll-up”

to a smaller summary with less details.

Our summarization methods have been applied to analyze real social networking

applications. In one example, by summarizing the coauthorship graphs in database

and AI communities, different coauthorship patterns across the two areas are dis-

played. In another application, interesting linking behaviors among liberal and con-

servative blogs are discovered by summarizing a large political blogs network.

The main contributions of this chapter are:

(1) We introduce two database-style graph aggregation operations SNAP and k-

SNAP for summarizing large graphs. We formally define the two operations, and

prove that the k-SNAP computation is NP-complete.

(2) We propose an efficient algorithm to evaluate the SNAP operation, and also

propose two heuristic methods (the top-down approach and the bottom-up approach)

to approximately evaluate the k-SNAP operation.

(3) We apply our graph summarization methods to a variety of real and synthetic

datasets. Through extensive experimental evaluation, we demonstrate that our meth-

ods produce meaningful summaries. We also show that the top-down approach is the

ideal choice for k-SNAP evaluation in practice. In addition, the evaluation algorithms

are very efficient even for very large graph datasets.

92

The remainder of this chapter is organized as follows: Section 5.2 defines the

SNAP and the k-SNAP operations. Section 5.3 introduces the evaluation algorithms

for these operations. Experimental results are presented in Section 5.4. Section 5.5

contains our concluding remarks.

5.2 Graph Aggregation Operations

In a graph, objects are represented by nodes, and relationships between objects

are modeled as edges. In this chapter, we support a general graph model, where

objects (nodes) have associated attributes and different types of relationships (edges).

Formally, we denote a graph G as (V, Υ) where V is the set of nodes, and Υ =

{E1, E2, ..., Er} is the set of edge types, with each Ei ⊆ V × V representing the set

of edges of a particular type.

Nodes in a graph have a set of associated attributes, which is denoted as Λ = {a1,

a2, ..., at}. Each node has a value for each attribute. These attributes are used

to describe the features of the objects that the nodes represent. For example, in

Figure 5.1(a), a node representing a student may have attributes that represent the

student’s gender and department. Different types of edges in a graph correspond to

different types of relationships between nodes, such as friends and classmates rela-

tionships shown in Figure 5.1(a). Note that two nodes can be connected by different

types of edges. For example, in Figure 5.1(a), two students can be classmates and

friends at the same time.

For ease of presentation, we denote the set of nodes of graph G as V (G), the set

93

of attributes as Λ(G), the actual value of attribute ai for node v as ai(v), the set of

edge types as Υ(G), and the set of edges of type Ei as Ei(G). In addition, we denote

the cardinality of a set S as |S|.

Our methods are applicable for both directed and undirected graphs. For ease of

presentation, we only consider undirected graphs in this chapter. Adaptations of our

method for directed graphs are fairly straightforward, and omitted in the interest of

space.

5.2.1 SNAP Operation

The SNAP operation produces a summary graph through a homogeneous grouping

of the input graph’s nodes, based on user-selected node attributes and relationships.

We now formally define this operation.

To begin the formal definition of the SNAP operation, we first define the concept

of node-grouping.

Definition 5.2.1 (Node-Grouping of a Graph) For a graph G, Φ = {G1,G2, ..., Gk}

is called a node-grouping of G, if and only if:

(1) ∀Gi ∈ Φ, Gi ⊆ V (G) and Gi 6= ∅,

(2)
⋃

Gi∈Φ Gi = V (G),

(3) for ∀Gi,Gj ∈ Φ and (i 6= j), Gi ∩ Gj = ∅.

Intuitively, a node-grouping partitions the nodes in a graph into non-overlapping

subsets. Each subset Gi is called a group. When there is no ambiguity, we simply

call a node-grouping a grouping. For a given grouping Φ of G, the group that node v

94

belongs to is denoted as Φ(v). We further define the size of a grouping as the number

of groups it contains.

Now, we define a partial order relation 4 on the set of all groupings of a graph.

Definition 5.2.2 (Dominance Relation) For a graph G, the grouping Φ domi-

nates the grouping Φ′, denoted as Φ′ 4 Φ, if and only if ∀G′i ∈ Φ′, ∃Gj ∈ Φ s.t.

G′i ⊆ Gj.

It is easy to see that the dominance relation 4 is reflexive, anti-symmetric and

transitive, hence it is a partial order relation. Next we define a special kind of grouping

based on a set of user-selected attributes.

Definition 5.2.3 (Attributes Compatible Grouping)

For a set of attributes A ⊆ Λ(G), a grouping Φ is compatible with attributes A or

simply A-compatible, if it satisfies the following: ∀u, v ∈ V, if Φ(u) = Φ(v), then

∀ai ∈ A, ai(u) = ai(v).

If a grouping Φ is compatible with A, we simply denote it as ΦA. In each group

of a A-compatible grouping, every node has exactly the same values for the set of

attributes A. Note that there could be more than one grouping compatible with A.

In fact a trivial grouping in which each node is a group is always compatible with

any set of attributes.

Next, we prove that amongst all the A-compatible groupings of a graph, there is

a global maximum grouping with respect to the dominance relation 4.

Theorem 5.2.4 In the set of all the A-compatible groupings of a graph G, denoted

as SA, ∃ΦA ∈ SA, s.t. ∀Φ′
A ∈ SA, Φ′

A 4 ΦA.

95

Proof. We prove by contradiction. Assume that there is no global maximum A-

compatible grouping, but more than one maximal grouping. Then, for every two of

such maximal groupings Φ1 and Φ2, we will construct a new A-compatible grouping

Φ3 such that Φ1 4 Φ3 and Φ2 4 Φ3, which contradicts the assumption that Φ1 and

Φ2 are maximal A-compatible groupings.

Assume that Φ1 = {G1
1, G

1
2, ..., G

1
s} and Φ2 = {G2

1,G
2
2, ..., G

2
t}. We construct a

bipartite graph on Φ1∪Φ2 as shown in Figure 5.3. The nodes in the bipartite graph are

the groups from Φ1 and Φ2. And there is an edge between G1
i ∈ Φ1 and G2

j ∈ Φ2 if and

only if G1
i ∩ G2

j 6= ∅. After constructing the bipartite graph, we decompose this graph

into connected components C1, C2, ..., Cm. For each connected component Ck, we

union the groups inside this component and get a group ∪(Ck). Now, we can construct

a new grouping Φ3 = {∪(C1),∪(C2), ...,∪(Cm)}. It is easy to see that Φ1 4 Φ3 and

Φ2 4 Φ3. Now we prove that Φ3 is compatible with A. From the definition of A-

compatible groupings, if G1
i ∩ G2

j 6= ∅, nodes in G1
i ∪ G2

j all have the same attributes

values. Therefore, every node in ∪(Ck) has the same attributes values. Now, we have

constructed a new A-compatible grouping Φ3 such that Φ1 4 Φ3 and Φ2 4 Φ3. This

contradicts our assumption that Φ1 and Φ2 are two different maximal A-compatible

groupings. Therefore, there is a global maximum A-compatible grouping.

We denote this global maximum A-compatible grouping as Φmax
A . Φmax

A is also the

A-compatible grouping with the minimum cardinality. In fact, if we consider each

node in a graph as a data record, then Φmax
A is very much like the result of a group-

by operation for these data records on the attributes A in the relational database

systems.

96

The A-compatible groupings only account for the node attributes. However, nodes

do not just have attributes, but also participate in pairwise relationships represented

by the edges. Next, we consider relationships when grouping nodes.

For a grouping Φ, we denote the neighbor-groups of node v in Ei as

NeighborGroupsΦ,Ei
(v) = {Φ(u)|(u, v) ∈ Ei}.

Now we define groupings compatible with both node attributes and relationships.

Definition 5.2.5 (Attributes and Relationships Compatible Grouping) For

a set of attributes A ⊆ Λ(G) and a set of relationship types R ⊆ Υ(G), a grouping Φ

is compatible with attributes A and relationship types R or simply (A,R)-compatible,

if it satisfies the following:

(1) Φ is A-compatible,

(2) ∀u, v ∈ V (G), if Φ(u) = Φ(v), then ∀Ei ∈ R,

NeighborGroupsΦ,Ei
(u) = NeighborGroupsΦ,Ei

(v).

If a grouping Φ is compatible with A and R, we also denote it as Φ(A,R). In each

group of an (A,R)-compatible grouping, all the nodes are homogeneous in terms of

both attributes A and relationships in R. In other words, every node inside a group

has exactly the same values for attributes A, and is adjacent to nodes in the same set

of groups for all the relationships in R.

As an example, assume that the summary in Figure 5.1(b) is a grouping compati-

ble with gender and department attributes, and classmates and friends relationships.

Then, for example, every student (node) in group G2, has the same gender and de-

partment attributes values, and is a friend of some student(s) in G3, a classmate of

97

some student(s) in G4, and a friend to some student(s) as well as a classmate to some

student(s) in G1.

Given a grouping Φ(A,R), we can infer relationships between groups from the rela-

tionships between nodes in R. For each edge type Ei ∈ R, we define the corresponding

group relationships as Ei(G, Φ(A,R)) = {(Gi,Gj)| Gi,Gi ∈ Φ(A,R) and ∃u ∈ Gi, v ∈ Gj

s.t. (u, v) ∈ Ei}. In fact, by the definition of (A,R)-compatible groupings, if there is

one node in a group adjacent to some node(s) in the other group, then every node in

the first group is adjacent to some node(s) in the second.

Similarly to attributes compatible groupings, there could be more than one group-

ing compatible with the given attributes and relationships. The grouping in which

each node forms a group is always compatible with any given attributes and relation-

ships.

Next we prove that among all the (A,R)-compatible groupings there is a global

maximum grouping with respect to the dominance relation 4.

Theorem 5.2.6 In the set of all the (A,R)-compatible groupings of a graph G, de-

noted as S(A,R), ∃Φ(A,R) ∈ S(A,R), s.t. ∀Φ′
(A,R) ∈ S(A,R), Φ′

(A,R) 4 Φ(A,R).

Proof. Again we prove by contradiction. Assume that there is no global maximum

(A,R)-compatible grouping, but more than one maximal grouping. Then, for every

two of such maximal groupings Φ1 and Φ2, we use the same construction method

to construct Φ3 as in the proof of Theorem 5.2.4. We already know that Φ3 is A-

compatible, Φ1 4 Φ3 and Φ2 4 Φ3. Using similar arguments as in Theorem 5.2.4, we

can also prove that Φ3 is compatible with R. This contradicts our assumption that

98

Φ1 and Φ2 are two different maximal (A,R)-compatible groupings.

From the construction of Φ3, we know that if G1
i ∩G2

j 6= ∅, then the nodes in G1
i ∪G2

j

belong to the same group in Φ3. Next, we prove that every node in G1
i ∪ G2

j is also

adjacent to nodes in the same set of groups in Φ3.

Again we prove by contradiction. Assume that there are two nodes u, v ∈ G1
i ∪G2

j ,

u is adjacent to ∪(Ck) in Φ3 but v is not. First, if both u, v ∈ G1
i or both u, v ∈ G2

j ,

then as both Φ1 and Φ2 are (A, R)-compatible groupings, and the construction of Φ3

does not decompose any groups in Φ1 or Φ2, u, v should always be adjacent to the

same set of groups in Φ3. This contradicts our assumption. Second, the two nodes

can come from different groupings. For simplicity, assume u ∈ G1
i and v ∈ G2

j . As

G1
i ∩ G2

j 6= ∅, a node w ∈ G1
i ∩ G2

j is adjacent to the same set of groups as u in Φ1

and adjacent to the same set of groups as v in Φ2. As a result, every group that u is

adjacent to in Φ1 should intersect with some group that v is adjacent to in Φ2. Since

u is adjacent to ∪(Ck), then u must be adjacent to at least one group in Φ1 that is

later merged to ∪(Ck). This group should also intersect with a group G2
l in Φ2 that

v is adjacent to. Then, by the construction algorithm of Φ3, G2
l should belong to the

connected component Ck, thus should be later merged in ∪(Ck). As a result, v is also

adjacent to ∪(Ck) in Φ3, which contradicts our assumption.

Now we know if Gi ∩ Gj 6= ∅, nodes in Gi ∪ Gj are all adjacent to the same set of

groups in Φ3. In each Ck, ∀Gi ∈ Ck, ∃Gj ∈ Ck such that Gi ∩ Gj 6= ∅. As a result,

every node in ∪(Ck) is adjacent to the same set of groups in Φ3.

We have constructed a new (A,R)-compatible grouping Φ3 such that Φ1 4 Φ3

and Φ2 4 Φ3. This contradicts the fact that Φ1 and Φ2 are two different max-

99

imal (A,R)-compatible groupings. Therefore, there is a global maximum (A,R)-

compatible grouping.

We denote the global maximum (A,R)-compatible grouping as Φmax
(A,R). Φmax

(A,R)

is also the (A,R)-compatible grouping with the minimum cardinality. Due to its

compactness, this maximum grouping is more useful than other (A,R)-compatible

groupings.

Now, we define our first operation for graph summarization, namely SNAP.

Definition 5.2.7 (SNAP Operation) The SNAP operation takes as input a graph

G, a set of attributes A ⊆ Λ(G), and a set of edge types R ⊆ Υ(G), and produces a

summary graph Gsnap, where V (Gsnap) = Φmax
(A,R), and Υ(Gsnap) = {Ei(G, Φmax

(A,R))|Ei ∈

R}.

Intuitively, the SNAP operation produces a summary graph of the input graph

based on user-selected attributes and relationships. The nodes of this summary graph

correspond to the groups in the maximum (A,R)-compatible grouping. And the edges

of this summary graph are the group relationships inferred from the node relationships

in R.

5.2.2 k-SNAP Operation

The SNAP operation produces a grouping in which nodes of each group are ho-

mogeneous with respect to user-selected attributes and relationships. Unfortunately,

homogeneity is often too restrictive in practice, as most real life graph data is subject

to noise and uncertainty; for example, some edges may be missing because of the

100

failure in the detection process, and some edges may be spurious because of errors.

Applying the SNAP operation on noisy data can result in a large number of small

groups, and, in the worst case, each node may end up an individual group. Such

a large summary is not very useful in practice. A better alternative is to let users

control the sizes of the results to get summaries with the resolutions that they can

manage (as shown in Figure 5.2). Therefore, we introduce a second operation, called

k-SNAP, which relaxes the homogeneity requirement for the relationships and allows

users to control the sizes of the summaries.

The relaxation of the homogeneity requirement for the relationships is based on

the following observation. For each pair of groups in the result of the SNAP op-

eration, if there is a group relationship between the two, then every node in both

groups participates in this group relationship. In other words, every node in one

group relates to some node(s) in the other group. On the other hand, if there is no

group relationship between two groups, then absolutely no relationship connects any

nodes across the two groups. However, in reality, if most (not all) nodes in the two

groups participate in the group relationship, it is often a good indication of a strong

relationship between the two groups. Likewise, it is intuitive to mark two groups

as being weakly related if only a tiny fraction of nodes are connected between these

groups.

Based on these observations, we relax the homogeneity requirement for the rela-

tionships by not requiring that every node participates in a group relationship. But

we still maintain the homogeneity requirement for the attributes, i.e. all the groupings

should be compatible with the given attributes. Users control how many groups are

101

present in the summary by specifying the required number of groups, denoted as k.

There are many different groupings of size k compatible with the attributes, thus we

need to measure the qualities of the different groupings. We propose the ∆-measure

to assess the quality of an A-compatible grouping by examining how different it is to

a hypothetical (A, R)-compatible grouping.

We first define the set of nodes in group Gi that participate in a group relationship

(Gi,Gj) of type Et as PEt,Gj
(Gi) = {u|u ∈ Gi and ∃v ∈ Gj s.t. (u, v) ∈ Et}. Then we

define the participation ratio of the group relationship (Gi,Gj) of type Et as pt
i,j =

|PEt,Gj
(Gi)|+|PEt,Gi

(Gj)|
|Gi|+|Gj | . For a group relationship, if its participation ratio is greater

than 50%, we call it a strong group relationship, otherwise, we call it a weak group

relationship. Note that in an (A,R)-compatible grouping, the participation ratios are

either 0% or 100%.

Given a graph G, a set of attributes A and a set of relationship types R, the

∆-measure of ΦA = {G1,G2, ..., Gk} is defined as follows:

∆(ΦA) =
∑

Gi,Gj∈ΦA

∑
Et∈R

(δEt,Gj
(Gi) + δEt,Gi

(Gj)) (V.1)

δEt,Gj
(Gi) =





|PEt,Gj
(Gi)| if pt

i,j ≤ 0.5

|Gi| − |PEt,Gj
(Gi)| otherwise

(V.2)

Intuitively, the ∆-measure counts the minimum number of differences in par-

ticipations of group relationships between the given A-compatible grouping and a

102

hypothetical (A,R)-compatible grouping of the same size. The measure looks at

each pairwise group relationship: If this group relationship is weak (pt
i,k ≤ 0.5),

then it counts the participation differences between this weak relationship and a non-

relationship (pt
i,k = 0); on the other hand, if the group relationship is strong, it counts

the differences between this strong relationship and a 100% participation-ratio group

relationship. The δ function, defined in Equation V.2, evaluates the part of the ∆

value contributed by a group Gi with one of its neighbors Gj in a group relationship

of type Et.

It is easy to prove that ∆(ΦA) ≥ 0. The smaller ∆(ΦA) value is, the more closer

ΦA is to a hypothetical (A,R)-compatible grouping. ∆(ΦA) = 0 if and only if ΦA

is (A,R)-compatible. We can also prove that ∆(ΦA) is bounded by 2|ΦA||V ||R|, as

each δEt,Gj
(Gi) ≤ |Gi|.

Now we will formally define the k-SNAP operation.

Definition 5.2.8 (k-SNAP Operation) The k-SNAP operation takes as input a

graph G, a set of attributes A ⊆ Λ(G), a set of edge types R ⊆ Υ(G) and the desired

number of groups k, and produces a summary graph Gk-snap, where V (Gk-snap) = ΦA,

s.t. |ΦA| = k and ΦA = arg minΦ′A{∆(Φ′
A)}, and Υ(Gk-snap) = {Ei(G, ΦA) | Ei ∈ R}.

Given the desired number of groups k, the k-SNAP operation produces an A-

compatible grouping with the minimum ∆ value. Unfortunately, as we prove below,

this optimization problem is NP-complete. To prove this, we first formally define the

decision problem associated with this optimization problem and then prove it to be

NP-complete.

103

Theorem 5.2.9 Given a graph G, a set of attributes A, a set of relationship types

R, a user-specified number of groups k (|Φmax
A | ≤ k ≤ |V (G)|), and a real number D

(0 ≤ D < 2k|V ||R|), the problem of finding an A-compatible grouping ΦA of size k

with ∆(ΦA) ≤ D is NP-complete.

Proof. We use proof by restriction to prove the NP-completeness of this problem.

(1) This problem is in NP, because a nondeterministic algorithm only needs to

guess an A-compatible grouping ΦA of size k and check in polynomial time that

∆(ΦA) ≤ D. And an A-compatible grouping ΦA of size k can be generated by a

polynomial time algorithm.

(2) This problem contains a known NP-complete problem 2-Role Assignability

(2RA) [42] as a special case. By restricting A = ∅, |R| = 1, k = 2 and D = 0, this

problem becomes 2RA (which decides whether the nodes in a graph can be assigned

with 2 roles, each node with one of the roles, such that if two nodes are assigned with

the same role, then the sets of roles assigned to their neighbors are the same.) As

proved in [42], 2RA is NP-complete.

Given the NP-completeness, it is infeasible to find the exact optimal answers for

the k-SNAP operation. Therefore, we propose two heuristic algorithms to evaluate

the k-SNAP operation approximately.

5.3 Evaluation Algorithms

In this section, we introduce the evaluation algorithms for SNAP and k-SNAP. It is

computationally feasible to exactly evaluate the SNAP operation, hence the proposed

104

G1

G2

Gk

n12

0 1 0 …………..

n4

0 1 0 …………..

n9

1 0 0 …………..

n2

1 1 1 …………..

Group Array Node Set

Participation Array

2 4 3 ………..

Neighbor-Groups Bitmap

G1 G2 G3………
0 0 1 …………..

0 1 1 …………..

1 1 1 …………..

1 1 1 …………..

…………..

Figure 5.4: Data Structures Used in the Evaluation Algorithms

evaluation algorithm produces exact summaries. In contrast, k-SNAP computation

was proved to be NP-complete and, therefore, we propose two heuristic algorithms for

efficiently approximating the solution. Before discussing the details of the algorithms,

we first introduce the evaluation architecture and the data structures used for the

algorithms. Note that, for ease of presentation, all algorithms discussed in this section

are assumed to work on one type of relationship; extending these algorithms for

multiple relationship types is straightforward, hence is omitted in the interest of

space.

5.3.1 Architecture and Data Structures

All the evaluation algorithms employ an architecture as follows. The input graphs

reside in the database on disk. A chunk of memory is allocated as a buffer pool

for the database. It is used to buffer actively used content from disk to speed up

the accesses. Every access of the evaluation algorithms to the nodes and edges of

graphs goes through the buffer pool. If the content is buffered, then the evaluation

algorithms simply retrieve the content from the buffer pool; otherwise, the content is

105

read from disk into the buffer pool first. Another chunk of memory is allocated for the

evaluation algorithms as the working memory, similar to the working memory space

used by traditional database algorithms such as hash join. This working memory is

used to hold the data structures used in the evaluation algorithms.

The evaluation algorithms share some common data structures as shown in Fig-

ure 5.4. The group-array data structure keeps track of the groups in the current

grouping. Each entry in groups-array stores the id of a group and also points to a

node-set, which contains the nodes in the corresponding group. Each node in the

node-set points to one row of the neighbor-groups bitmap. This bitmap is the most

memory consuming data structure in the evaluation algorithms. Each row of the

bitmap corresponds to a node, and the bits in the row store the node’s neighbor-

groups. If bit position i is 1, then we know that this node has at least one neighbor

belonging to group Gi with id i; otherwise, this node has no neighbor in group Gi.

For each group Gi in the current grouping, we also keep a participation-array which

stores the participation counts |PE,Gj
(Gi)| for each neighbor group. Note that the

participation-array of a group can be inferred from the nodes’ corresponding rows

in the neighbor-groups bitmap. For example, in Figure 5.4, the participation-array

of group G1 can be computed by counting the number of 1s in each column of the

bitmap rows corresponding to n12, n4, n9 and n2. All the data structures shown in

Figure 5.4 change dynamically during the evaluation algorithms. An increase in the

number of groups leads to the growth of the group-array size, which also results in an

increase of the width of the bitmap, as well as the sizes of the participation-arrays.

The set of nodes for a group also change dynamically.

106

Algorithm 5 SNAP(G, A, R)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R = {E} ⊆ Υ(G): a set
containing one relationship type E

Output: A summary graph.
1: Compute the maximum A-compatible grouping by sorting nodes in G based on

values of attributes A
2: Initialize the data structures
3: while there is a group Gi with participation array containing values other than 0

or |Gi| do
4: Divide Gi into subgroups by sorting nodes in Gi based on their corresponding

rows in the bitmap
5: Update the data structures
6: end while
7: Form the summary graph Gsnap

8: return Gsnap

For most of this chapter, we will assume that all the data structures needed by

the evaluation algorithms can fit in the working memory. This is often a reasonable

assumption in practice for a majority of graph datasets. However, we also consider

the case when this memory assumption does not hold (see Section 5.4.4.3).

5.3.2 Evaluating SNAP Operation

In this section, we introduce the evaluation algorithm for the SNAP operation.

This algorithm also serves as a foundation for the two k-SNAP evaluation algorithms.

The SNAP operation tries to find the maximum (A,R)-compatible grouping for

a graph, a set of nodes attributes, and the specified relationship type. The eval-

uation algorithm starts from the maximum A-compatible grouping, and iteratively

splits groups in the current grouping, until the grouping is also compatible with the

relationships.

107

The algorithm for evaluating the SNAP operation is shown in Algorithm 5. In the

first step, the algorithm groups the nodes based only on the attributes by a sorting

on the attributes values. Then the data structures are initialized by this maximum

A-compatible grouping. Note that if a grouping is compatible with the relationships,

then all nodes inside a group should have the same set of neighbor-groups, which

means that they have the same values in their rows of the bitmap. In addition, the

participation array of each group should then only contain the values 0 or the size of

the group. This criterion has been used as the terminating condition to check whether

the current grouping is compatible with the relationships in line 3 of Algorithm 5.

If there exists a group whose participation array contains values other than 0 or

the size of this group, the nodes in this group are not homogeneous in terms of the

relationships. We can split this group into subgroups, each of which contains nodes

with the same set of neighbor-groups. This can be achieved by sorting the nodes

based on their corresponding entries in the bitmap. (The radix sort is a perfect

candidate for this task.) After this division, new groups are introduced. One of them

continues to use the same group id of the split group, and the remaining groups are

added to the end of the group-array. Accordingly, each row of the bitmap has to be

widened. The nodes of this split group are distributed among the new groups. As the

group memberships of these nodes are changed, the bitmap entries for them and their

neighbor nodes have to be updated. Then the algorithm goes to the next iteration.

This process continues until the condition in line 3 does not hold anymore.

It can be easily verified that the grouping produced by Algorithm 5 is the max-

imum (A,R)-compatible grouping. The algorithm starts from the maximum A-

108

Algorithm 6 k-SNAP-Top-Down(G, A, R, k)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R = {E} ⊆ Υ(G): a set containing
one relationship type E; k: the required number of groups in the summary

Output: A summary graph.
1: Compute the maximum A-compatible grouping by sorting nodes in G based on

values of attributes A
2: Initialize the data structures and let Φc denote the current grouping
3: SplitGroups(G, A, R, k, Φc)
4: Form the summary graph Gk-snap

5: return Gk-snap

compatible grouping, and it only splits existing groups, so the grouping after each

iteration is guaranteed to be A-compatible. In addition, each time we split a group,

we always keep nodes with same neighbor-groups together. Therefore, when the al-

gorithm stops, the grouping should be the maximum (A,R)-compatible grouping.

After we get the maximum (A,R)-compatible grouping, we can construct the

summary graph. The nodes in the summary graph corresponds to the groups in the

result grouping. The edges in the summary graph are the group relationships inferred

from the node relationships in the original graph.

Now we will analyze the complexity of this evaluation algorithm. Sorting by the

attributes values takes O(|V | log |V |) time, assuming the number of attributes is a

small constant. The initialization of the data structures takes O(|E|) time, where

E is the only edge type in R (for simplicity, we only consider one edge type in our

algorithms). At each iteration of the while loop, the radix sort takes O(ki|Gi|) time,

where ki is the number of groups in the current grouping and Gi is the group to be

split. Updating the data structures takes |Edges(Gi)|, where Edges(Gi) is the set of

edges adjacent to nodes in Gi. Note that ki is monotonically increasing, and that the

109

number of iterations is less than the size of the final grouping, denoted as k. Therefore,

the complexity for all the iterations is bounded by O(k2|V |+k|E|). Constructing the

summary takes O(k2) time. To sum up, the upper-bound complexity of the SNAP

algorithm is O(|V | log |V |+ k2|V |+ k|E|).

As the evaluation algorithm takes inputs from the graph database on disk, we

also need to analyze the number of disk accesses to the database. We assume all the

accesses to the database are in the units of pages. For simplicity, we do not distinguish

whether an access is a disk page access or a buffer pool page access. We assume that

all the nodes information of the input graph takes ‖V ‖ pages in the database, and all

the edges information takes ‖E‖ pages. Then the SNAP operation incurs ‖V ‖ page

accesses to read all the nodes with their attributes, ‖E‖ page accesses to initialize

the data structures, and at most ‖E‖ page accesses each time it updates the data

structures. So, the total number of page accesses is bounded by ‖V ‖ + (k + 1)‖E‖.

Note that in practice, not every page access results in an actual disk IO. Especially

for the updates of the data structures discussed in Section 5.3.1, most of the edges

information will be cached in the buffer pool.

5.3.3 Evaluating k-SNAP Operation

The k-SNAP operation allows a user to choose k, the number of groups that

are shown in the summary. For a given graph, a set of nodes attributes A and the

set of relationship types R, a meaningful k value should fall in the range between

|Φmax
A | and |Φmax

(A,R)|. However, if the user input is beyond the meaningful range, i.e.

110

Algorithm 7 SplitGroups(G, A, R, k, Φc)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R = {E} ⊆ Υ(G): a set containing
one relationship type E; k: the required number of groups in the summary; Φc:
the current grouping.

Output: Splitting groups in Φc until |Φc| = k.
1: Build a heap on the CT value of each group in Φc

2: while |Φc| < k do
3: Pop the group Gi with the maximum CT value from the heap
4: Split Gi into two based on the neighbor group Gt = arg maxGj

{δE,Gj
(Gi)}

5: Update data structures (Φc is updated)
6: Update the heap
7: end while

k < |Φmax
A | or k > |Φmax

(A,R)|, then the evaluation algorithms will return the summary

corresponding to Φmax
A or Φmax

(A,R), respectively. For simplicity, we will assume that the

k values input to the algorithms are always meaningful. By varying the k values,

users can produce multi-resolution summaries. A larger k value corresponds to a

higher resolution summary. The finest summary corresponds to the grouping Φmax
(A,R);

and the coarsest summary corresponds to the grouping Φmax
A .

As proved in Section 5.2.2, computing the exact answers for the k-SNAP operation

is NP-complete. In this chapter, we propose two heuristic algorithms to approximate

the answers. The top-down approach starts from the maximum grouping only based

on attributes, and iteratively splits groups until the number of groups reaches k.

The other approach employs a bottom-up scheme. This method first computes the

maximum grouping compatible with both attributes and relationships, and then it-

eratively merges groups until the result satisfies the user defined k value. In both

approaches, we apply the same principle: nodes of a same group in the maximum

(A,R)-compatible grouping should always remain in a same group even in coarser

111

Algorithm 8 k-SNAP-Bottom-Up(G, A, R, k)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R = {E} ⊆ Υ(G): a set containing
one relationship type E; k: the required number of groups in the summary.

Output: A summary graph.
1: Gsnap=SNAP(G, A, R)
2: Initialize the data structures using the grouping in Gsnap and let Φc denote the

current grouping
3: MergeGroups(G, A, R, k, Φc)
4: Form the summary graph Gk-snap

5: return Gk-snap

summaries. We call this principle KEAT (Keep the Equivalent Always Together)

principle. This principle guarantees that when k = |Φmax
(A,R)|, the result produced by

the k-SNAP evaluation algorithms is the same as the result of the SNAP operation

with the same inputs.

5.3.3.1 Top-Down Approach

Similar to the SNAP evaluation algorithm, the top-down approach (see Algo-

rithm 6) also starts from the maximum grouping based only on attributes, and then

iteratively splits existing groups until the number of groups reaches k. However,

in contrast to the SNAP evaluation algorithm, which randomly chooses a splittable

group and splits it into subgroups based on its bitmap entries, the top-down approach

has to make the following decisions at each iterative step: (1) which group to split and

(2) how to split it. Such decisions are critical as once a group is split, the next step

will operate on the new grouping. At each step, we can only make the decision based

on the current grouping. We want each step to make the smallest move possible,

to avoid going too far away from the right direction. Therefore, we split one group

112

into only two subgroups at each iterative step. There are different ways to split one

group into two. One natural way is to divide the group based on whether nodes have

relationships with nodes in a neighbor group. After the split, nodes in the two new

groups either all or never participate in the group relationships with this neighbor

group. This way of splitting groups also ensures that the resulting groups follow the

KEAT principle.

Now, we introduce the heuristic for deciding which group to split and how to

split at each iterative step. As defined in Section 5.2.2, the k-SNAP operation tries

to find the grouping with a minimum ∆ measure (see Equation V.1) for a given k.

The computation of the ∆ measure can be broken down into each group with each of

its neighbors (see the δ function in Equation V.2). Therefore, our heuristic chooses

the group that makes the most contribution to the ∆ value with one of its neighbor

groups. More formally, for each group Gi, we define CT (Gi) as follows:

CT (Gi) = max
Gj

{δE,Gj
(Gi)} (V.3)

Then, at each iterative step, we always choose the group with the maximum

CT value to split and then split it based on whether nodes in this group Gi have

relationships with nodes in its neighbor group Gt, where

Gt = arg max
Gj

{δE,Gj
(Gi)}

As shown in Algorithm 7, to speed up the decision process, we build a heap on the

113

Algorithm 9 MergeGroups(G, A, R, k, Φc)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R = {E} ⊆ Υ(G): a set containing
one relationship type E; k: the required number of groups in the summary; Φc:
the current grouping.

Output: Merging groups in Φc until |Φc| = k.
1: Build a heap on (MergeDist, Agree,MinSize) for pairs of groups
2: while |Φc| > k do
3: Pop the pair of groups with the best (MergeDist, Agree, MinSize) value from

the heap
4: Merge the two groups into one
5: Update data structures (Φc is updated)
6: Update the heap
7: end while

CT values of groups. At each iteration, we pop the group with the maximum CT value

to split. At the end of each iteration, we update the heap elements corresponding to

the neighbors of the split group, and insert elements corresponding to the two new

groups.

The time complexity of the top-down approach is similar to the SNAP algorithm,

except that it takes O(k2
0 + k0) time to compute the CT values and build the heap,

and at most O(k2
i + ki log ki) time to update the heap at each iteration, where k0 is

the number of groups in the maximum A-compatible grouping, and ki is the number

of groups at each iteration. As k < |V |, the upper-bound complexity of the top-down

approach is still O(|V | log |V |+ k2|V |+ k|E|).

Following the same method of analyzing the page accesses for the SNAP algorithm,

the number of page accesses incurred by the top-down approach is bounded by ‖V ‖+

(k + 1)‖E‖.

114

5.3.3.2 Bottom-Up Approach

The bottom-up approach first computes the maximum (A,R)-compatible grouping

using Algorithm 5, and then iteratively merges two groups until grouping size is k (see

Algorithm 8). Choosing which two groups to merge in each iterative step is crucial

for the bottom-up approach. First, the two groups are required to have the same

attributes values. Second, the two groups must have similar group relationships with

other groups. Now, we formally define this similarity between two groups.

The two groups to be merged should have similar neighbor groups with similar

participation ratios. We define a measure called MergeDist to assess the similarity

between two groups in the merging process.

MergeDist(Gi,Gj) =
∑

k 6=i,j

|pi,k − pj,k| (V.4)

MergeDist accumulates the differences in participation ratios between Gi and Gj with

other groups. The smaller this value is, the more similar the two groups are.

If two pairs of groups have the same MergeDist, we need to further distinguish

which pair is “more similar”. We look at each common neighbor Gk of Gi and Gj, and

consider the group relationships (Gi,Gk) and (Gj,Gk). If both group relationships are

strong (pi,k > 0.5 and pj,k > 0.5) or weak (pi,k ≤ 0.5 and pj,k ≤ 0.5), then we call it

an agreement between Gi and Gj. The total number of agreements between Gi and

Gj is denoted as Agree(Gi,Gj). Having the same MergeDist, the pair of groups with

more agreements is a better candidate to merge.

If both of the above criteria are the same for two pairs of groups, we always prefer

115

merging groups with smaller sizes (in the number of nodes). More formally, we choose

the pair with smaller MinSize(Gi,Gj) = min{|Gi|, |Gj|}, where Gi and Gj are in this

pair.

In Algorithm 9, we utilize a heap to store pairs of groups based on the values of

the triple (MergeDist, Agree, MinSize). At each iteration, we pop the group pair

with the best (MergeDist, Agree, MinSize) value from the heap, and then merge

the pair into one group. At the end of each iteration, we remove the heap elements

(pairs of groups) involving either of the two merged groups, update elements involving

neighbors of the merged groups, and insert elements involving this new group.

The time cost of the bottom-up approach is the cost of the SNAP algorithm plus

the merging cost. The algorithm takes O(k3
snap + k2

snap) to initialize the heap, then

at each iteration at most O(k3
i + k2

i log ki) time to update the heap, where ksnap is

the size of the grouping resulting from the SNAP operation, and ki is the size of the

grouping at each iteration. Therefore, the time complexity of the bottom-up approach

is bounded by O(|V | log |V | + k2
snap|V | + ksnap|E| + k4

snap). Note that updating the

in memory data structures in the bottom-up approach does not need to access the

database (i.e. no IOs). All the necessary information for the updates can be found

in the current data structures. Therefore, the upper bound of the number of page

accesses for the bottom-up approach is ‖V ‖+ (ksnap + 1)‖E‖.

5.3.3.3 Drill-Down and Roll-Up Abilities

The top-down and the bottom-up approaches introduced above both start from

scratch to produce the summaries. However, it is easy to build an interactive querying

116

scheme, where the users can drill-down and roll-up based on the current summaries.

The users can first generate an initial summary using either the top-down approach

or the bottom-up approach. However, as we will show in Section 5.4.3, the top-down

approach has significant advantage in both efficiency and summary quality in most

practical cases. We suggest using the top-down approach to generate the initial sum-

mary. The drill-down operation can be simply achieved by calling the SplitGroups

function (Algorithm 7). To roll up to a coarser summary, the MergeGroups function

(Algorithm 9) can be called. However, when the number of groups in the current sum-

mary is large, the MergeGroups function becomes expensive, as it needs to compare

every pair of groups to calculate the MergeDist (see Section 5.3.3.2). Therefore, us-

ing the top-down approach to generate a new summary with the decreased resolution

is a better choice to roll-up when the current summary is large.

5.4 Experimental Evaluation

In this section, we present experimental results evaluating the effectiveness and

efficiency of the SNAP and the k-SNAP operations on a variety of real and synthetic

datasets. All algorithms are implemented in C++ on top of PostgreSQL (http:

//www.postgresql.org) version 8.1.3. Graphs are stored in a node table and an edge

table in the database, using the following schema: NodeTable(graphID, nodeID, at-

tributeName, attributeType, attributeValue) and EdgeTable(graphID, node1ID, node2ID,

edgeType). Nodes with multiple attributes have multiple entries in the node table,

and edges with multiple types have multiple entries in the edge table. Accesses to

117

Figure 5.5: DBLP DB coauthorship graph

Publications
0 20 40 60 80

F
re

qu
en

cy

0

1000

2000

3000

4000

5000

Figure 5.6: Distribution of the number of DB publications (avg: 2.6, stdev: 5.1)

nodes and edges of graphs are implemented by issuing SQL queries to the PostgreSQL

database. All experiments were run on a 2.8GHz Pentium 4 machine running Fedora

2, and equipped with a 250GB SATA disk. For all experiments (except the one in

Section 5.4.4.3), we set the buffer pool size to 512MB and working memory size to

256MB.

118

Figure 5.7: The SNAP result for DBLP DB dataset

Description #Nodes #Edges Avg. Degree
D1 DB 7,445 19,971 5.4
D2 D1+AL 14,533 37,386 5.1
D3 D2+OS+CC 22,435 55,007 4.9
D4 D3+AI 30,664 70,669 4.6

Table 5.1: The DBLP Datasets for the Efficiency Experiments

5.4.1 Experimental Datasets

In this section, we describe the datasets used in our empirical evaluation. We

use two real datasets and one synthetic dataset to explore the effect of various graph

characteristics.

DBLP Dataset This dataset contains the DBLP Bibliography data [32] down-

loaded on July 30, 2007. We use this data for both effectiveness and efficiency experi-

ments. In order to compare the coauthorship behaviors across different research areas

and construct datasets for the efficiency experiments, we partition the DBLP data

into different research areas. We choose the following five areas: Database (DB), Al-

119

gorithms (AL), Operating Systems (OS), Compiler Construction (CC) and Artificial

Intelligence (AI). For each of the five areas, we collect the publications of a number

of selected journals and conferences in this area1. These journals and conferences are

selected to construct the four datasets with increasing sizes for the efficiency exper-

iments (see Table 5.1). These four datasets are constructed as follows: D1 contains

the selected DB publications. We add into D1 the selected AL publications to form

D2. D3 is D2 plus the selected OS and CC publications. And finally, D4 contains the

publications of all the five areas we are interested in. We construct a coauthorship

graph for each dataset. The nodes in this graph correspond to authors and edges

indicate coauthorships between authors. The statistics for these four datasets are

shown in Table 5.1.

Political Blogs Dataset This dataset is a network of 1490 webblogs on US

politics and 19090 hyperlinks between these webblogs [1] (downloaded from http:

//www-personal.umich.edu/~mejn/netdata/). Each blog in this dataset has an

attribute describing its political leaning as either liberal or conservative.

Synthetic Dataset Most real world graphs show power-law degree distributions

and small-world characteristics [37]. Therefore, we use the R-MAT model [13] in

the GTgraph suites [2] to generate graphs with power-law degree distributions and

small-world characteristics. Based on the statistics in Table 5.1, we set the average

node degree in each synthetic graph to 5. We used the default values for the other

1DB: VLDB J., TODS, KDD, PODS, VLDB, SIGMOD; AL: STOC, SODA, FOCS, Al-
gorithmica, J. Algorithms, SIAM J. Comput., ISSAC, ESA, SWAT, WADS; OS: USENIX,
OSDI, SOSP, ACM Trans. Comput. Syst., HotOS, OSR, ACM SIGOPS European Work-
shop; CC: PLDI, POPL, OOPSLA, ACM Trans. Program. Lang. Syst., CC, CGO,
SIGPLAN Notices, ECOOP; AI: IJCAI, AAAI, AAAI/IAAI, Artif. Intell.

120

Attribute
Only k = 4 k = 5 k = 6 k = 7
DB

LP
Size: 6826 0.84

P
Size: 509

0.48

HP
Size: 110

0.29
0.91

0.84
0.95

LP
Size: 3047 0.80

P
Size: 509

1.00

HP
Size: 110

0.41

LP
Size: 3779

0.19

0.91

0.84
0.95

0.22

0.80

LP
Size: 1192 0.76

P
Size: 509

0.94

HP
Size: 110

1.00

LP
Size: 3779

0.15

0.91

0.84

LP
Size: 1855

0.96

0.95

0.22

0.80

0.11

0.18

0.75

LP
Size: 1192 0.76

P
Size: 509

0.94

HP
Size: 110

1.00

LP
Size: 3018

0.14

LP
Size: 7610.11

0.91

0.84

LP
Size: 1855

0.96

0.95

0.20 0.37

1.00

0.10

0.18

0.75

0.06

LP
Size: 1192 0.76

P
Size: 509

0.94

HP
Size: 110

1.00

LP
Size: 7610.11

LP
Size: 2497

0.08

0.91

0.84

LP
Size: 1855

0.96

0.95

LP
Size: 521

0.97

0.37

0.16

0.93

0.18

0.01

0.75

0.06
0.10

0.08

0.98

AI

LP
Size: 8874 0.78

P
Size: 545

0.37

0.80

HP
Size: 760.54

0.13

0.92

LP
Size: 2975 0.72

P
Size: 545

0.99

LP
Size: 5899

0.15

0.80

HP
Size: 760.54

0.17

0.92

0.12

0.75

LP
Size: 2975 0.72

P
Size: 545

0.99

LP
Size: 4397

0.13

LP
Size: 1502

0.10

0.80

HP
Size: 760.54

0.17

0.92

0.100.22

1.00

LP
Size: 2138 1.00

P
Size: 545

0.97

LP
Size: 4397

0.11

LP
Size: 1502

0.09

0.80

HP
Size: 760.54

0.19

0.92

0.100.22

LP
Size: 837

0.18

1.00

0.06

0.91

0.04

LP
Size: 2138 1.00

P
Size: 545

0.97

LP
Size: 5170.28

0.80

HP
Size: 760.54

0.19

0.92

0.18

LP
Size: 1502

0.22

LP
Size: 837

0.18

0.92

LP
Size: 3880

0.07

0.09

0.06

0.91

0.02

0.09

0.04

0.98

Table 5.2: The Aggregation Results for the DBLP DB and AI Subsets

parameters in the R-MAT based generator. We also assign an attribute to each node

in a generated graph. The domain of this attribute has 5 values. For each node we

randomly assign one of the five values.

5.4.2 Effectiveness Evaluation

We first evaluate the effectiveness of our graph summarization methods. In this

section, we use only the top-down approach to evaluate the k-SNAP operation, as we

compare the top-down and the bottom-up approaches in Section 5.4.3.

5.4.2.1 DBLP Coauthorship Networks

In this experiment, we are interested in analyzing how researchers in the database

area coauthor with each other. As input, we use the DBLP DB subset (see D1 of

121

Table 5.1 and Figure 5.5). Each node in this graph has one attribute called Pub-

Num, which is the number of publications belonging to the corresponding author. By

plotting the distribution of the number of publications of this dataset in Figure 5.6,

we assigned another attribute called Prolific to each author in the graph indicating

whether that author is prolific: authors with ≤ 5 papers are tagged as low prolific

(LP), authors with > 5 but ≤ 20 papers are prolific (P), and the authors with > 20

papers are tagged as highly prolific (HP).

We first issue a SNAP operation on the Prolific attribute and the coauthorships.

The result is visualized in Figure 5.7. Groups with the HP attribute value are colored

in yellow, groups with the P value are colored in light blue, and the remaining groups

with the attribute value LP are in white. The SNAP operation results in a summary

with 3569 groups and 11293 group relationships. This summary is too big to analyze.

On the other hand, if we apply the SNAP operation on only the Prolific attribute (i.e.

not considering any relationships in the SNAP operation), we will get a summary with

only 3 groups as visualized in the top left figure in Table 5.2. The bold edges between

two groups indicate strong group relationships (with more than 50% participation

ratio), while dashed edges are weak group relationships. This summary shows that

the HP researchers as a whole have very strong coauthorship with the P group of

researchers. Researchers within both groups also tend to coauthor with people within

their own groups. However, this summary does not provide a lot of information for

the LP researchers: they tend to coauthor strongly within their group and they have

some connection with the HP and P groups.

Now we make use of the k-SNAP operation to produce summaries with multiple

122

resolutions. The first row of figures in Table 5.2 shows the k-SNAP results for k =4,

5, 6 and 7. As k increases, more details are shown in the summaries.

When k = 7, the summary shows that there are 5 subgroups of LP researchers.

One group of 1192 LP researchers strongly collaborates with both HP and P re-

searchers. One group of 521 only strongly collaborates with HP researchers. One

group of 1855 only strongly collaborates with P researchers. These three groups

also strongly collaborate within their groups. There is another group of 2497 LP

researchers that has very weak connections to other groups but strongly cooperates

among themselves. The last group has 761 LP researchers, who neither coauthor

with others within their own group nor collaborate strongly with researchers in other

groups. They often write single author papers.

Now, in the k-SNAP result for k = 7, we are curious if the average number of

publications for each subgroup of the LP researchers is affected by the coauthor-

ships with other groups. The above question can be easily answered by applying the

avg operation on the PubNum attribute for each group in the result of the k-SNAP

operation.

With this analysis, we find that the group of LP researchers who collaborate with

both P and HP researchers has a high average number of publications: 2.24. The

group only collaborating with HP researchers has 1.66 publications on average. The

group collaborating with only the P researchers has on average 1.55 publications. The

group that tends to only cooperate among themselves has a low average number of

publications: 1.26. Finally, the group of mostly single authors has on average only

1.23 publications. Not surprisingly, these results suggest that collaborating with HP

123

and P researchers is very helpful for the low prolific (often beginning) researchers.

Next, we want to compare the database community with the AI community to

see whether the coauthorship relationships are different across these two communities.

We constructed the AI coauthorship graph with 9495 authors and 16070 coauthorships

from the DBLP AI subset. The distribution of the number of publications of AI

authors is similar to the DB authors, thus we use the same method to assign the

Prolific attribute to these authors. The SNAP operation on the Prolific attribute and

coauthorships results in a summary with 3359 groups and 7091 group relationships.

The second row of figures in Table 5.2 shows the SNAP result based only on the

Prolific attribute and the k-SNAP results for k =4, 5, 6 and 7. Comparing the

summaries for the two communities for k = 7, we can see the differences across

the two communities: The HP and P groups in the AI community have a weaker

cooperation than the DB community; and there isn’t a large group of LP researchers

who strongly coauthor with both HP and P researchers in the AI area.

As this example shows, by changing the resolutions of summaries, users can bet-

ter understand the characteristics of the original graph data and also explore the

differences and similarities across different datasets.

5.4.2.2 Political Blogs Network

In this experiment, we evaluate the effectiveness of our graph summarization meth-

ods on the political blogs network (1490 nodes and 19090 edges). The SNAP opera-

tion based on the political leaning attribute and the links between blogs results in a

summary with 1173 groups and 16657 group relationships. The SNAP result based

124

Attribute Only k = 7
L

Size: 758 0.76

C
Size: 732

0.42

0.86

L
Size: 320 0.95

C
Size: 303

 1.00

L
Size: 245

0.86

0.97

C
Size: 2050.89

C
Size: 128

0.56

0.51

L
Size: 193

0.09

1.00

0.01

C
Size: 96

Table 5.3: Aggregation results for Political Blogs Dataset
D

el
ta

/k

0
100
200
300
400
500
600
700
800
900

1000
1100

k (log scale)
8 16 32 64 128 256 512 1024 20483569

TopDown
BottomUp

Figure 5.8: Quality of summaries: top-down vs. bottom-up

only on the attribute and the k-SNAP result based on both the attribute and the

links for k = 7 are shown in Table 5.3.

From the results, we see that there are a group of liberal blogs and a group of

conservative blogs that interact strongly with each other (perhaps to refute each

other). Other groups of blogs only connect to blogs in their own communities (liberal

or conservative), if they do connect to other blogs. There is a relatively large group

of 193 liberal blogs with almost no connections to any other blogs, while such isolated

blogs compose a much smaller portion (96 blogs) of all the conservative blogs. Overall,

conservative blogs show a slightly higher tendency to link with each other than liberal

125

E
xe

cu
tio

n
T

im
e

(s
ec

, l
og

 s
ca

le
)

k (log scale)
8 16 32 64 128 256 512 1024 20483569

1

5

50

500

5000

16000

TopDown
BottomUp

Figure 5.9: Efficiency: top-down vs. bottom-up

blogs, which is consistent with the conclusion from the analysis in [1]. Given that the

blogs data was collected right after the US 2004 election, the authors in [1] speculated

that the different linking behaviors in the two communities may be correlated with

eventual outcome of the 2004 election.

5.4.3 k-SNAP: Top-Down vs. Bottom-Up

In this section, we compare the top-down and the bottom-up k-SNAP algorithms,

both in terms of effectiveness and efficiency. We use the DBLP DB subset (D1 in

Table 5.1) and apply both approaches for different k values.

For the effectiveness experiment, we use the ∆ measure introduced in Section 5.2.2

to assess the qualities of summaries. Note that for a given k value, smaller ∆ value

means better quality summary, but for different k values, comparing ∆ does not

make sense, as a higher k value tends to result in a higher ∆ value according to

Equation V.1. However, if we normalize ∆ by k, we get the average contribution of

each group to the ∆ value, then we can compare ∆
k

for different k values.

126

We acknowledge that ∆
k

is not a perfect measure for “quantitatively” evaluating

the quality of summaries. However, quality assessment is a tricky issue in general,

and ∆
k
, though crude, is an intuitive measure for this study.

Figure 5.8 shows the comparison of the summary qualities between the top-down

and the bottom-up approaches. Note that the x-axis is in log scale and the y-axis is

∆
k
. First, as k increases, both methods produce higher quality summaries. For small

k values, top-down approach produces significantly higher quality summaries than

the bottom-up approach. This is because, the bottom-up approach starts from the

grouping produced by the SNAP operation. This initial grouping is usually very large,

in this case, it contains 3569 groups. The bottom-up approach has to continuously

merge groups until the number of groups decreases to a small k value. Each merge

decision is only made based on the current grouping, and errors can easily accumulate.

In contrast, the top-down approach starts from the maximum A-compatible grouping,

and only needs a small number of splits to reach the result. Therefore, small amount

of errors is accumulated. As k becomes larger, the bottom-up approach shows slight

advantage over the top-down approach.

The execution times for the two approaches are shown in Figure 5.9. Note that

both axes are in log scale. The top-down approach significantly outperform the

bottom-up approach, except when k is equal to the size of the grouping resulting

from the SNAP operation. Initializing the heap takes a lot of time for the bottom-up

approach, as it has to compare every pair of groups. This situation becomes worse,

if the size of the initial grouping is very large.

In practice, users are more likely to choose small k values to generate summaries.

127

Groups # Group Relationships Time(sec)
D1 3569 11293 6.4
D2 7892 26031 16.1
D3 11379 35682 27.9
D4 15052 44318 44.0

Table 5.4: The SNAP Results for the DBLP Datasets

The top-down approach significantly outperforms the bottom-up approach in both

effectiveness and efficiency for small k values. Therefore, the top-down approach is

preferred for most practical uses. For all the remaining experiments, we only consider

the top-down approach.

5.4.4 Efficiency Experiment

This section evaluates the efficiency the SNAP and the k-SNAP operations.

5.4.4.1 SNAP Efficiency

In this section, we apply the SNAP operation on the four DBLP datasets with

increasing sizes (see Table 5.1). Table 5.4 shows the number of groups and group

relationships in the summaries produced by the SNAP operation on the attribute

Prolific (defined in the same way as in Section 5.4.2.1) and coauthorships, as well as

the execution times. Even for the largest dataset with 30664 nodes and 70669 edges,

the execution is completed in 44 seconds. However, all of the SNAP results are very

large. The summary sizes are comparable to the input graphs. Such large summaries

are often not very useful for analyzing the input graphs. This is an anecdotal evidence

of why the k-SNAP operation is often more desired than the SNAP operation in

128

k

8 16 32 64 128 256 512 1024 2048 3569

R
un

in
g

T
im

e
(s

ec
)

0

50

100

150

200

250

D1 D2 D3 D4

Figure 5.10: Efficiency experiment for DBLP datasets
E

xe
cu

tio
n

T
im

e
(s

ec
)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Graphs Sizes (#nodes)
50k 200k 500k 800k 1000k

k=10
k=100
k=1000

Figure 5.11: Efficiency experiment for synthetic datasets

practice.

5.4.4.2 k-SNAP Efficiency

This section evaluates the efficiency of the top-down k-SNAP algorithm on both

the DBLP and the synthetic datasets.

DBLP Data In this experiment, we apply the top-down k-SNAP evaluation

algorithm on the four DBLP datasets shown in Table 5.1 (the k-SNAP operation is

based on Prolific attribute and coauthorships). The execution times with increasing

graph sizes and increasing k values are shown in Figure 5.10. For these datasets, the

129

E
xe

cu
tio

n
T

im
e

(s
ec

)

0

500

1000

1500

2000

k
0 1000 2000 3000

No Bitmap
Bitmap in Memory

Figure 5.12: Bitmap in memory vs. no bitmap

performance behavior is close to linear, since the execution times are dominated by

the database page accesses (as discussed in Section 5.3.3.1).

Synthetic Data We apply the k-SNAP operation on different sized synthetic

graphs with three k values: 10, 100 and 1000. The execution times with increasing

graph sizes are shown in Figure 5.11. When k = 10, even on the largest graph with

1 million nodes and 2.5 million edges, the evaluation algorithm finishes in about 5

minutes. For a given k value, the algorithm scales nicely with increasing graph sizes.

5.4.4.3 Evaluation with Very Large Graphs

So far, we have assumed that the amount of working memory is big enough to hold

all the data structures (shown in Figure 5.4) used in the evaluation algorithms. This

is often the case in practice, as large multi GB memory configurations are common

and many graph datasets can fit in this space (especially if a subset of large graph

is selected for analysis). However, our methods also work, when the graph datasets

are extremely large and this in-memory assumption in not valid. In this section,

we discuss the behaviors of our methods for this case. We only consider the most

130

practically useful top-down k-SNAP algorithm for this experiment.

In the case when the most memory consuming data structure, namely the neighbor-

groups bitmap (see Figure 5.4), cannot fit in memory, the top-down approach drops

the bitmap data structure. Without the bitmap, each time the algorithm splits a

group, it has to query the edges information in the database to infer the neighbor-

groups. We have implemented a version of the top-down k-SNAP algorithm without

the bitmap data structure, and compared it with the normal top-down algorithm.

To keep this experiment manageable, we scaled down the experiment settings.

We used the DBLP D4 dataset in Table 5.1, and set the buffer pool size and working

memory size to 16MB and 8MB, respectively. This “scaled-down” experiment exposes

the behaviors of the two versions of the top-down algorithm, while keeping the running

times reasonable. As shown in Figure 5.12, the version of the top-down approach

without bitmap is much slower than the normal version. This is not surprising as the

former incurs more disk IOs.

Given the graph size and the k value, our current implementation can decide

in advance whether the bitmap can fit in the working memory, by estimating the

upper bound of the bitmap size. It can then choose the appropriate version of the

algorithm to use. In the future, we plan on designing a more sophisticated version

of the top-down algorithm in which part of the bitmap can be kept in memory when

the available memory is small.

131

5.5 Conclusions

This chapter has introduced two aggregation operations SNAP and k-SNAP for

controlled and intuitive database-style graph summarization. Our methods allow

users to freely choose node attributes and relationships that are of interest, and pro-

duce summaries based on the selected features. Furthermore, the k-SNAP aggregation

allows users to control the resolutions of summaries and provides “drill-down” and

“roll-up” abilities to navigate through the summaries. We have formally defined the

two operations and proved that evaluating the k-SNAP operation is NP-complete.

We have also proposed an efficient algorithm to evaluate the SNAP operation and

two heuristic algorithms to approximately evaluate the k-SNAP operation. Through

extensive experiments on a variety of real and synthetic datasets, we show that of

the two k-SNAP algorithms, the top-down approach is a better choice in practice.

Our experiments also demonstrate the effectiveness and efficiency of our methods. As

part of future work, we plan on designing a formal graph data model and query lan-

guage that allows incorporation of k-SNAP, along with a number of other additional

common and useful graph matching methods.

132

CHAPTER VI

Related Work

6.1 Graph Matching Methods

There is a long history of database research on methods for querying graphs.

However, most previous works have focused on exact graph or subgraph matching,

i.e. graph or subgraph isomorphism. Subgraph isomorphism was proved to be NP-

complete in [19]. Ullmann [51] proposed a subgraph matching algorithm based on a

state space search method with backtracking. However, this algorithm is prohibitively

expensive for querying against database with a large number of graphs. To reduce

the search space, GraphGrep [45], GIndex [58] and TreePi [61] index substructures of

the database (paths, frequent subgraphs and trees respectively) to filter out graphs

that do not match the query.

Several index-based methods for approximate subgraph matching have also been

proposed. However, most of these techniques only apply to small graphs and allow

limited approximation. Grafil [59] and PIS [60] are both built on top of the exact

133

subgraph matching method GIndex. However, neither method allows node insertion

or deletion in their match models. CDIndex [55] only applies to graphs with limited

sizes, as it exhaustedly enumerates and indexes all the subgraphs in the database.

GString [28] utilizes sequence matching to answer graph queries, but it only applies

to applications in which the graphs contain a small number of basic substructures.

C-Tree [22], which employs an R-tree like index structure, is a more general tool than

the above methods. However, C-Tree, as well as Grafil, PIS, CDIndex and GString,

utilize memory-based indexing techniques, which require the indexes to be memory

resident during query processing. As the database size increases, these indexes quickly

grow out of memory. On the contrary, the indexing approaches in SAGA and TALE

are disk-based.

The life science community has produced vast amount of protein interaction net-

works. Several tools for comparing protein interaction networks have been proposed.

These include PathBlast [30], its successor NetworkBlast [40], MaWIsh [35], and

Graemlin [17]. Of these, Graemlin is the latest method and in many ways superior

to the other methods for comparing protein interaction networks.

6.2 Graph Summarization Methods

Graph summarization has attracted a lot of interest from both the sociology and

the database research communities. Most existing works on graph summarization

use statistical methods to study graph characteristics, such as degree distributions,

hop-plots and clustering coefficients. Comprehensive surveys on these methods are

134

provided in [11] and [37]. A-plots [12] is a novel statistical method to summarize the

adjacency matrix of graphs for outlier detection. Statistical summaries are useful but

hard to control and navigate. Methods for mining frequent graph patterns [26, 52, 57]

are also used to understand the characteristics of large graphs. Washio and Mo-

toda [53] provide an elegant review on this topic. However, these mining algorithms

often produces an overwhelmingly large number of frequent patterns. Various graph

partitioning algorithms [38, 48, 56] are used to detect community structures (dense

subgraphs) in large graphs. SuperGraph [43] employs hierarchical graph partitioning

to visualize large graphs. In [7], Frey and Dueck proposed a novel clustering method

by passing messages between nodes in the graph. However, graph partitioning or clus-

tering techniques largely ignore the node attributes in the summarization. Studies

on graph visualization are surveyed in [3, 23]. For very large graphs, these visual-

ization methods are still not enough. Unlike these existing methods, we introduce

two database-style operations to summarize large graphs. Our method allows users

to easily control and navigate through summaries.

Previous research [4, 6, 41] have also studied the problem of compressing large

graphs, especially Web graphs. However, these graph compression methods mainly

focus on compact graph representation for easy storage and manipulation, whereas

graph summarization methods aim at producing small and understandable sum-

maries.

Regular equivalence is introduced in [54] to study social roles of nodes based on

graphs structures in social networks. It shares resemblance with the SNAP operation.

However, regular equivalence is defined only based on the relationships between nodes.

135

Node attributes are largely ignored. In addition, the k-SNAP operation relaxes the

stringent equivalence requirement of relationships between node groups, and produces

user controllable multi-resolution summaries.

The SNAP algorithm shares similarity with the automorphism partitioning al-

gorithm in [16]. However, the automorphism partitioning algorithm only partitions

nodes based on node degrees and relationships, whereas SNAP can be evaluated based

on arbitrary node attributes and relationships that a user selects.

136

CHAPTER VII

Conclusions

The rapidly growing graph datasets have made graph querying systems critical

for many modern applications. To allow users to perform complex analysis on graph

data, this thesis develops a graph querying toolkit, called Periscope/GQ. This toolkit

provides a uniform schema for storing graphs in the database and supports various

graph query operations, especially sophisticated query operations.

Approximate graph matching query is one of the sophisticated query operations

that Periscope/GQ supports, due to its usefulness and advantage over the exact graph

matching query. Chapter III introduces an efficient approximate graph matching

method, called SAGA. SAGA employs a flexible graph similarity model and an index-

based matching algorithm to efficiently evaluate approximate graph matching queries.

To further handle the case of large query graphs, Chapter IV proposes another

approximate graph matching technique TALE. TALE utilizes a novel indexing tech-

nique, which achieves high pruning power and linear index size with the database size.

The TALE matching algorithm first uses the index to match the important nodes in

137

the query, and then progressively extends these matches.

Chapter V proposes two aggregation operations for efficient graph summarization.

The SNAP operation, produces a summary graph by grouping nodes based on user-

selected node attributes and relationships. The k-SNAP operation allows users to

further control the resolutions of summaries and provides the “drill-down” and “roll-

up” abilities to navigate through summaries with different resolutions.

Extensive experiments on a variety of real applications have demonstrated the

effectiveness and efficiency of the Periscope/GQ toolkit.

138

APPENDICES

139

APPENDIX A

Statistical Evaluation for Approximate Graph

Matching Results

In many applications, especially life sciences applications, producing the approxi-

mate graph matching results is not enough. It is also very important to evaluate the

statistical significance of the matching results, i.e. assess whether an approximate

graph match constitutes a meaningful result or a random accident. Periscope/GQ

employs the Monte Carlo simulation approach to evaluate the statistical significance

of the matches for general applications. However, this approach brings significant

computation overhead. Making use of domain knowledge, experts can develop more

light-weight statistical evaluation methods. As an anecdotal example, we introduce

a specific statistical scoring model designed for the application of matching parsed

literature graphs (see Section 3.3.4 of Chapter III).

140

1.1 Monte Carlo Simulation

The Monte Carlo simulation approach relies on matching a query against random

graphs to estimate the p-value of a query result (the probability of obtaining a result

at least as good as the one that was actually observed by change). Periscope/GQ

generates random graphs by randomly shuffling edges of the graphs in the database

preserving the node degrees, and randomizing the orthologous groups of each node

preserving the number of orthologous groups that each node belongs to. For a given

query, in addition to querying the real database, the query is also run against a large

number of random graphs. A p-value of a match from the real database is estimated

as the fraction of matches from the random graphs with the same or a larger size

(in number of nodes) and the same or a better similarity value (e.g. SAGA graph

distance value).

1.2 An Application Specific Statistical Scoring Model

For the application of matching parsed literature graphs (see Section 3.3.4 of

Chapter III), we developed a light-weight method to assess the statistical significance

based on domain knowledge. This method does not need any simulation on random

graphs. Instead, it can be simply calculated based on the query graph, the target

graph and the match, thus significantly speeds up the statistical evaluation.

The statistical score for a query to a target graph in the database is defined as

follows:

S = −log(P (Nme|Nmn) ∗ P (Nmn))

141

Notation Description
Ng The total number of genes in a species
Nn The number of nodes in the target graph
Nmn The number of matching nodes in the target graph
Ne The number of edges connecting the matching nodes in the target graph
Nme The number of matching edges in the target graph

Table 1.1: The Notation Table

In the above equation, Nmn is the number of matching nodes, Nme is the number

of matching edges, P (Nmn) is the probability of selecting Nmn matching nodes at

random from the target graph, and P (Nme|Nmn) is the probability of selecting Nme

matching edges given Nmn matching nodes. Table 1.1 lists the descriptions of the

notations used in the computation of this statistical scoring method.

1.2.1 Calculating P (Nmn)

P (Nmn) is the probability of selecting Nmn matching nodes at random from the

target graph. Assume that all nodes, which represent genes in this application, are

equally likely to be matched, and there are Ng genes in a typical genome (Ng =

20,000 in general). For a target graph, containing Nn nodes and matching Nmn of

these with the query, the number of ways to choose the Nmn matching nodes in the

target is Ncn = Nn!/(Nmn! ∗ (Nn −Nmn)!). And the number of ways to choose Nmn

nodes (or genes) from the genome is Ncg = Ng!/(Nmn! ∗ (Ng −Nmn)!). Therefore, the

probability that the matching nodes are selected at random is P (Nmn) = Ncn/Ncg.

142

1.2.2 Calculating P (Nme|Nmn)

P (Nme|Nmn) is the probability of selecting Nme matching edges given Nmn match-

ing nodes. Let Ne be the number of edges connecting the Nmn matching nodes in

the target graph. Assume that each edge from the Ne edges are equally likely to

be selected as a matching edge (Pe = 1/Ne). The number of ways to choose Nme

matching edges is Nce = (Ne!/(Nme! ∗ (Ne − Nme)!). The probability that there are

Nme matching edges given Nmn matching nodes is P (Nme|Nmn) = Nce ∗ PNme
e (The

chance that an edge is in the matching set raised to the power of number of edges

multiplied by the number of ways to choose the matching set from the set of possible

edges).

143

BIBLIOGRAPHY

144

BIBLIOGRAPHY

[1] L. A. Adamic and N. Glance. The political blogosphere and the 2004 us election.

In WWW Workshop on the Weblogging Ecosystem, 2005.

[2] D. A. Bader and K. Madduri. GTgraph: A suite of synthetic graph generators.

http://www.cc.gatech.edu/~kamesh/GTgraph.

[3] G. Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing: Algorithms

for the Visualization of Graphs. Prentice Hall, 1999.

[4] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations of

separable graphs. In Proceedings of SODA’03, pages 679–688, 2003.

[5] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

mun. ACM, 13(7):422–426, 1970.

[6] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In

Proceedings of WWW’04, pages 595–602, 2004.

[7] F. Brendan J and D. Dueck. Clustering by passing messages between data points.

Science, 315:972–976, 2007.

145

[8] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected

graph. CACM, 16(9):575–577, 1973.

[9] H. Bunke. On a relation between graph edit distance and maximum common

subgraph. Pattern Recogn. Lett., 18(8):689–694, 1997.

[10] C. Alfarano et al. The biomolecular interaction network database and related

tools 2005 update. Nucleic Acids Res., 33:D418–D424, 2005.

[11] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algo-

rithms. ACM Comput. Surv., 38(1), 2006.

[12] D. Chakrabarti, C. Faloutsos, and Y. Zhan. Visualization of large networks with

min-cut plots, A-plots and R-MAT. Int. J. Hum.-Comput. Stud., 65(5), 2007.

[13] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph

mining. In SDM, 2004.

[14] M. Chen and R. Hofestaedt. Applied Bioinformatics, 3(4):241–252, 2004.

[15] A. Coppen. The biochemistry of affective disorders. Br J Psychiatry,

113(504):1237–64, 1967.

[16] D. G. Corneil and C. C. Gotlieb. An efficient algorithm for graph isomorphism.

J. ACM, 17(1):51–64, 1970.

[17] J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, and S. Batzoglou.

Græmlin: General and robust alignment of multiple large interaction networks.

Genome Res., 16:1169–1181, 2006.

146

[18] G. Joshi-Tope et al. Reactome: a knowledgebase of biological pathways. Nucleic

Acids Res., 33:D428–32, 2005.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[20] R. Giugno and D. Shasha. Graphgrep: A fast and universal method for querying

graphs. In IEEE International Conference in Pattern recognition, 2002.

[21] R. H. Guting. Graphdb: Modeling and querying graphs in databases. In VLDB,

pages 297–308, 1994.

[22] H. He and A. K. Singh. Closure-tree: an index structure for graph queries. In

ICDE, 2006.

[23] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation

in information visualization: A survey. IEEE Trans. Vis. Comput. Graph., 6(1),

2000.

[24] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Pub-

lishing Co., Boston, 1997.

[25] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M. J. Zaki. Mining protein contact

maps. In BIOKDD, 2002.

[26] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal frequent

subgraphs from graph databases. In KDD, 2004.

147

[27] J. Chandonia et al. The astral compendium in 2004. Nucleic Acids Res.,

32:D189–D192, 2004.

[28] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. Gstring: A novel approach for efficient

search in graph databases. In ICDE, 2007.

[29] D. Kalderon. Similarities between the hedgehog and wnt signaling pathways.

Trends in Cell Biology, 12(11):523–531, 2002.

[30] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwel, and T. Ideker.

Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids

Res., pages W83–W88, 2004.

[31] M. Koyuturk, A. Grama, and W. Szpankowski. Pairwise local alignment of

protein interaction networks guided by models of evolution. In International

Conference on Research in Computational Molecular Biology, pages 48–65, 2005.

[32] M. Ley. DBLP Bibliography. http://www.informatik.uni-trier.de/~ley/

db/.

[33] W. Li, L. Jaroszewski, and A. Godzik. Clustering of highly homologous sequences

to reduce the size of large protein database. Bioinformatics, 17:282–283, 2001.

[34] M. Kanehisa et al. The kegg resources for deciphering the genome. Nucleic Acids

Res., 32:D277–D280, 2004.

[35] M. Koyuturk et al. Pairwise alignment of protein interaction networks. Journal

of Computational Biology, 13(2):182–199, 2006.

148

[36] M. Tourigny et al. Cdk inhibitor p18ink4c is required for the generation of

functional plasma cells. Immunity, 17(2):179–189, 2002.

[37] M. E. J. Newman. The structure and function of complex networks. SIAM

Review, 45, 2003.

[38] M. E. J. Newman and M. Girvan. Finding and evaluating community structure

in networks. Physical Review E, 69, 2004.

[39] R. Nusse. Wnts and hedgehogs: lipid-modified proteins and similarities in sig-

naling mechanisms at the cell surface. Development, 130:5297–5305, 2003.

[40] R. Sharan et al. Conserved patterns of protein interaction in multiple species.

PNAS, 102:1974–1979, 2005.

[41] S. Raghavan and H. Garcia-Molina. Representing Web graphs. In Proceedings

of ICDE’03, pages 405–416, 2003.

[42] F. S. Roberts and L. Sheng. How hard is it to determine if a graph has a 2-role

assignment? Networks, 37(2), 2001.

[43] J. F. Rodrigues, A. J. M. Traina, C. Faloutsos, and C. T. Jr. SuperGraph

visualization. In ISM, 2006.

[44] G. Salton and M. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, New York, 1983.

[45] D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and applications of tree

and graph searching. In PODS, 2002.

149

[46] L. Sheng, Z. M. Ozsoyoglu, and G. Ozsoyoglu. A graph query language and its

query processing. In ICDE, 1999.

[47] E. Sprinzak, S. Sattath, and H. Margalit. How reliable are experimental protein-

protein interaction data? Journal of Molecular Biology, 327(5):919–923, 2003.

[48] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix

decomposition for large sparse graphs. In SDM, 2007.

[49] T. Luedde et al. p18(ink4c) collaborates with other cdk-inhibitory proteins in

the regenerating liver. Hepatology, 37(4):833–841, 2003.

[50] R. L. Tatusov, E. V. Koonin, and D. J. Lipman. A genomic perspective on

protein families. Science, 278(5388):631–7, 1997.

[51] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42,

1976.

[52] W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan, and J. Han. Graphminer:

a structural pattern-mining system for large disk-based graph databases and its

applications. In SIGMOD, 2005.

[53] T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD

Explor. Newsl., 5(1), 2003.

[54] D. R. White and K. P. Reitz. Graph and semigroup homomorphisms on semi-

groups of relations. Social Networks, 1983.

150

[55] D. Williams, J. Huan, and W. Wang. Graph database indexing using structured

graph decomposition. In ICDE, 2007.

[56] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: a structural clustering

algorithm for networks. In KDD, 2007.

[57] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM,

2002.

[58] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based

approach. In SIGMOD, 2004.

[59] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph databases.

In SIGMOD, 2005.

[60] X. Yan, F. Zhu, J. Han, and P. S. Yu. Searching substructures wuth superimposed

distance. In ICDE to appear, 2006.

[61] S. Zhang, M. Hu, and J. Yang. Treepi: A new graph indexing method. In ICDE,

2007.

151

