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CHAPTER I

INTRODUCTION

Data provenance is the history of a piece of data. This includes a description of its

origin and the processes by which it was modified throughout its lifetime. For example,

in the biological domain of protein interactions there are over a hundred databases.

However, only a small number of these are ‘source’ databases that accept experimental

results. The rest are snapshots of these source databases and other secondary sources.

Provenance associated with the data in these “snapshot” databases describes the original

source database, publications and curation properties. The provenance for a protein

interaction reported in Michigan Molecular Interactions (MiMI) [36, 83], a secondary

protein interaction database, contains information about the original publication and

whether the curation, or the addition of information to the dataset, occurred by hand or via

an automated NLP process [118]. Provenance is essential information to assist users in

understanding the significance and veracity of a piece of data. Figure 1.1 shows a snapshot

of MiMI. Using provenance, a user can determine which underlying source a data item

originated from, e.g. the molecule Chk1 came from HPRD. Using this information, a user

can assign a confidence value on the Chk1 data item’s credibility. Additionally, one can

determine what processes occurred to create the dataset. The provenance attached to the

Wee1 molecule shows that it underwent a merge process. This information is needed

in order to understand why the Wee1 record in MiMI does not match the one found in

HPRD.

Currently there are two provenance approaches in the literature: provenance generated
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within workflow frameworks, and provenance within a contained relational database.

Workflow provenance allows workflow re-execution, and can offer some explanation of

results. Meanwhile, within relational databases, knowledge of SQL queries and relational

operators is used to express what happened to a tuple. However, there is a disconnect

between these two areas of provenance research. Techniques that work in relational

databases cannot be applied to workflow systems because of heterogeneous data types

and black-box operators. Meanwhile, the real-life utility of workflow systems has not

been extended to database provenance. Myriads of systems that need provenance fall

in the gap between provenance in workflow systems and databases. For instance, when

creating a new dataset, like MiMI [36, 83], using several sources and processes, a database

is used, but does not contain the entire set of processes. Likewise, in a system such as

MiBlast [85], that generates sequence alignments, a set series of modules are executed,

but no workflow system is used. These hybrid systems cannot be mashed into a workflow

framework and do not exist solely within a database. This work solves issues that block

provenance usage in hybrid systems.

1.1 Contributions

Research in database provenance studies how to express provenance of tuples cleanly and

efficiently by relying upon SQL query specification and relational operators. Provenance

in workflow systems captures enough information for ‘playback’. However, if a hybrid

system does not fit inside a relational database or workflow framework, no strategies exist

for working with provenance.

The Michigan Molecular Interactions (MiMI) [36, 83] database is one example of

a hybrid system. It uses a relational database, but expands well beyond. Moreover, the

processes that create MiMI cannot be used within a workflow system. Below, we first

describe MiMI to provide a concrete example of a hybrid system. Then we describe the

provenance needs in these hybrid systems.
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1.1.1 MiMI 1.0

The problems that inspired this work were uncovered while building Michigan Molecular

Interactions (MiMI). Examples from MiMI are used throughout this work, and the

algorithms and implementations utilize MiMI provenance information. As such, a brief

introduction to MiMI, its construction and usage, is provided here.

Both the volume and number of data sources in molecular biology are increasing

rapidly. Often multiple resources provide overlapping, partial and polymorphic views of

the same data. This data is stored and published in a diverse set of data sources. Each

source is distinct with respect to its biological focus (e.g. SNPs, gene promoters, etc),

organism (e.g. fly) and format (e.g. tab delimited file, relational database, etc). Even

after narrowing the problem down to a subset of biological information, such as protein

interaction information, there is a deluge of information. With such a rich variety of

sources to choose from, a scientist who wishes to visualize the full picture concerning

a particular protein must visit a myriad of sites, learn a plethora of names, aliases and

identifiers, compile information from journal papers, and then piece the resulting jigsaw

puzzle together. This task becomes even more onerous due to several complicating factors.

First, no naming or identification scheme has been agreed upon. Thus, the scientist must

painstakingly map her protein of interest to a series of different names and identifiers.

Second, many interaction databases, or even lab web pages, place an interaction in the

public domain even if it is supported by only one experiment. This forces scientists

to search through multiple databases for conflicting or corroborating evidence. Third,

heterogeneous sources storing information in their own unique formats force scientists

to become programmers in order to trawl through large volumes of data and reorganize

it into an understandable format. Finally, once a researcher has gathered data from

several sources, sifted through and amalgamated it, there is usually no trail left linking

the data to its original sources. At this stage, if the scientist discovers conflicting pieces

of information existing in her amalgamated view, she has no way of making an informed
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decision about how to correct the data.

The work of [16, 53] minimizes the burden on the user by integrating a large

number of disparate sources containing information over a range of attributes such as

expression, structure and family. However, while the integration is from a large number

of heterogeneous sources, it is a shallow integration. Michigan Molecular Interactions

(MiMI) helps scientists search through large quantities of information by integrating

all information from participating data sources through the process of deep-merging

[37]. As a result of deep merging, redundant data are removed and related data are

combined. Moreover, the provenance of each piece of information is tracked throughout

the system, allowing scientists to choose which data to trust [21]. Trust is Qi to the usage

of information by scientists. MiMI allows users to ask more advanced questions than each

of its component databases can answer independently. MiMI attempts to relieve scientists

of the burden of tracking down multiple sources, mapping multiple identifiers and merging

redundancies. By integrating well-known datasets such as HPRD [114] and BIND [7],

MiMI creates a deep-merged repository that is a synergy of all the merged datasets. By

such integration, MiMI shows scientists when facts are corroborated by different datasets,

and when facts are contradicted among datasets. MiMI’s integration is distinctly different

from the approach used by the International Molecular Exchange Consortium (IMEx).

While several of the integral components of MiMI also belong to IMEx, the tasks are very

different. IMEx is attempting to increase the rate of data curation by separating curation

tasks among different groups. Once curation is done, the information is shared among

all. However, regardless of any cooperation between data curation sites, or partitioning of

resources, there will always be some data overlap or redundancy among them. MiMI does

not attempt to find new data to curate, but augment known information by highlighting

redundancy and contradictions. Additionally IMEx itself is in the very infancy of data

exchange, and there is as yet no cohesive, united and deeply merged dataset produced by

it. The following is a brief description of the underlying concepts of MiMI, as well as a
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<HPRD>
<protein>

<name>Wee1</name>
<ref>P30291</ref>
<descr>tyrosine kinase</descr>
<PubMedID>15964826</PubMedID>

</protein>
<protein>

<name>ABC1</name>
<ref>O95477</ref>
<descr>ATP binding cassette 1</descr>
<molFunct>sterol transporter activity</molFunct>
<PubMedID>16524875</PubMedID>

</protein>
<protein>

<name>LXR</name>
<ref>Q13133</ref>
<descr>liver-X-receptor</descr>
<seq>mslw</seq>
<PubMedID>16524875</PubMedID>

</protein>
<protein>

<name>Chk1</name>
<ref>AAC51736</ref>
<descr>cell cycle checkpoint kinase</descr>
<PubMedID>11251070</PubMedID>

</protein>
</HPRD>

Figure 1.2: The information from HPRD used to create the snapshot of MiMI.
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<BIND>
<molecule>

<name>WEE1</name>
<extid>NP 003381</extid>
<function>protein kinase activity</function>
<article>15964826</article>

</molecule>
<molecule>

<name>RLD</name>
<extid>NP 005684</extid>
<function>nuclear receptor</function>
<article>15604093</article>
<seq>mslw</seq>
<seq>msiw</seq>

</molecule>
<molecule>

<name>NR1H3</name>
<extid>gi:5031893</extid>
<function>liver receptor</function>
<article>15680331</article>

</molecule>
</BIND>

Figure 1.3: The information from BIND used to create the snapshot of MiMI.
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nameN

transform

curate
HPRD

curate
BIND

(a)

Get_All_MolWts

Compute_AVG

MiMI

Workflow Outputs

Screen_if_>_AVG

HPRD

Workflow Inputs

BIND

Select_All_receptors

MERGE

(b)

Figure 1.4: (a) The programmatic flow used to create MiMI; a representation of an implicit workflow. (b) A
portion of the workflow used to create MiMI; an example of an explicit workflow.

detailed list of datasets employed by MiMI.

Database Construction

MiMI 1.0 uses XML as its data model. XML is the current lingua franca of biological

data exchange, and gives the MiMI data model the flexibility to change as biological

understanding increases. The physical storage of MiMI is built upon Timber [81, 113],

a native XML database. MiMI is a component of the NIH’s National Center for

Integrative Biomedical Informatics (http://www.ncibi.org), and is publicly available at:

http://mimi.ncibi.org.

Data Sets MiMI 1.0 has 117,549 molecules and 256,757 interactions, and is the result of

integrating BIND [7], DIP [146], BioGRID [128], HPRD [114] and IntAct [78] as well as

datasets from Center for Cancer Systems Biology at Harvard [77] and the Max Delbrueck

Center [130]. Additionally, supplementary protein information was integrated from: GO

[69], InterPro [103], IPI [84], miBLAST [85], OrganelleDB [142], OrthoMCL [39], PFam

8



[60] and ProtoNet [119].

Identity The issue of identity is determining when two database entries refer to the same

real-world object. For instance, to a human, it is obvious that an Hsp10p molecule found

in yeast and listed in DIP is the same as the Hsp10p molecule found in yeast and listed in

BIND. In the simplest case, identity is defined by the uniqueness of a key attribute (set);

in this case, the name. However, in protein identification, no key exists across all datasets,

necessitating keyless identity functions.

For example, in BioGRID, there is an entry for HSP10, and an external reference

to NCBI’s RefSeq NP 014663. In BIND, there is an entry for Hsp10, with an external

reference to NCBI’s GI 6324594. From a human perspective, it is obvious these are

the same proteins with different capitalizations. However, there is no linking identifier

in either BioGRID or BIND. Further searching reveals that NCBI’s records hold a link

between this GI and RefSeq. Given less obviously matching names for this protein, such

as CPN10 (BioGRID) and Yor020p (BIND) and different external identifiers, matching

identical records is not a trivial task for an individual. Combine this with the thirteen

known names for this object in BIND, DIP, BioGRID and IntAct, and the human user is

bound to miss incorporating some relevant data. MiMI utilizes keyless identity functions

to determine which proteins represent the same real-world object. Once this identity has

been determined, the entries are deep-merged.

Deep Merge Data sets frequently have overlapping, and sometimes even contradictory

information content. Our goal is to fuse information from multiple sources, even when

these sources have overlapping or contradictory information, and present a cohesive result

to the user. This process is called deep merging or deep integration. (In contrast, shallow

integration performs just the schema translations and groups the datasets together.) To

appreciate the issues involved, let us consider an example.

Example 1. Figure 1.5 shows a brief look at some of the entries for Hsp10. Each database

9



Figure 1.5: Sample protein data for Hsp10 from Intact, NCBI and BIND.

has different identifiers and names for the molecule. BIND calls the protein Hsp10, while
IntAct calls it ch10 yeast. NCBI itself has at least four versions of this protein with the
exact same sequence, and different supportive information. Assuming that an appropriate
identity function is found that integrates all six molecules, shallow integration would result
in 15 listed interactions. However, there are only 13 non-redundant interactions reported
in the datasets. A similar problem occurs for other information on the molecule such as
PTMs. Figure 1.6 shows a view of the resulting deep-merging process on Hsp10.

In other words, a deep merge finds redundancies amongst all attributes, instead of

just combining all attributes from redundant data items. There is significant redundancy

across data sources. Table 1 shows the number of molecules and interactions provided

by each source. It also shows the resulting number of molecules and interactions after a

deep-merge. For molecules there is a whopping 49% redundancy rate, while 40% of the

interactions are redundant across sources.
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Figure 1.6: The Hsp10 information after a Deep Merge

Source # Mols. #Interacts.
BIND 111,394 175,678
IntAct 62,667 67,955
HPRD 18,839 66,723
GRID 15,687 53,378
DIP 19,050 54,511
Center for Cancer Systems Biology dataset 3,134 6,726
Max Delbrueck Center Dataset 1,909 3,269
MiMI 117,549 256,757

Table 1.1: Number of molecules and interactions for each source as well as total deep merged molecules and
interactions in MiMI v.1.0.
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1.1.2 Provenance

MiMI’s complex use of external data sources requires the use of provenance to keep track

of where data items came from and what processes occurred. In this work, we focus on the

representation, capture, storage and usage of provenance information in hybrid systems.

First, we create a basic provenance model. This provenance model is a generalization of

several existing provenance structures, and is mappable to the Open Provenance Model

[110], that we describe more fully in Chapter II. Provenance in this model is attached

to information in MiMI. Using this model as a base, provenance capture, storage and

usability is explored.

Many mechanisms [51, 73, 74, 75, 76, 105, 125] exist for capturing provenance from

automatic systems such as sensor equipment [145] or workflows [3, 4, 19, 32, 52, 62,

75, 86, 94, 97, 98, 101, 125, 109, 151, 150]. For instance, the Saccharomyces Genome

Database [40] uses triggers to store records of updates to the database. Unfortunately,

capturing manual alterations to a dataset is not automated in any way. After exploring the

set of user actions on data, we describe the minimum set operations that can describe the

actions a user can make while curating data. The apparatus for capturing these actions,

CPDB, is implemented with several storage strategies. Using CPDB, it is possible to

understand what actions a user took, and trace the life of a piece of data. Additionally, we

provide several techniques to reduce the size needed to store users actions.

Once provenance information is captured, it can grow to an inordinate size. For

instance, MiMI is 270MB; its provenance store is 6GB. For provenance usage to be useful

in any hybrid or workflow system, it cannot be so much larger than the data. Even with

large, cheap disks, the current size of provenance can be a barrier to provenance use in

hybrid systems. As such, we propose a set of reduction techniques. Utilizing properties

of the provenance stores themselves, we create two families of algorithms, Factorization

and Inheritance. Basic Factorization, Node Factorization, Optional Factorization, and

Argument Factorization all reduce size based on repetitions within the provenance store.

12



Structural Inheritance and Predicate Inheritance reduce size based on properties of the data

and provenance. We show that combinations of Factorization and Inheritance are possible,

and provide analysis of data and provenance properties that allow system designers to

choose the methods appropriate for their needs.

Unfortunately, capturing and storing traditional provenance information does not create

a usable provenance store. Current provenance stores, while storing adequate information

to automatically recreate a dataset, are often unable to express in a human-understandable

way what has happened to the data. They contain both too much and too little information

to be valuable to a human. Because the data is manipulated via a series of black boxes, it

is often impossible for a human to understand what happened to the data. In this work,

we highlight the missing information that can assist user understanding. Unfortunately,

provenance information is already very complex and difficult for a user to comprehend,

which can be exacerbated by adding the extra information needed for deeper black-box

understanding. In order to alleviate this, we develop a model of provenance answers

that assists the user by allowing the user to decide on the fly what information should be

presented. We show the benefits of this model to users of a real scientific dataset with

provenance information. Finally, we show that the structures and information needed for

this model are a negligible addition.

A problem that exists in relational, workflow and hybrid provenance systems is

understanding why data items are not in the result set [82]. These systems are all set up to

explain “why” or “how” a data item ended up in the result set. However, while observing

users, we noticed a trend of executing a query, looking at the results, and verbalizing,

“Why is the tuple with attribute=<favorite test value>not in this result set”? Now increase

the size of your initial dataset, and pretend you are a life-science researcher who has

limited knowledge of declarative or programmatic queries. When you do not see your

favorite protein after a set of manipulations, what do you do? We introduce the concept

of WHY NOT? queries: the ability to ask why data items are not in the result set. We
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allow researchers to specify data items they are looking for that are not in the result set,

and determine which manipulation was responsible for weeding it out. In this work, we

develop a model for answers to WHY NOT? queries, and describe two algorithms for

finding the manipulation that discarded the data item of interest. Moreover, we work

through two different methods for tracing the discarded data item that can be used with

either algorithm. Using our algorithms, it is feasible for users to find the manipulation that

excluded the data item of interest, and can eliminate the need for exhausting debugging.

The techniques proposed in this thesis are not limited to provenance in MiMI 1.0. They

are also not limited to an XML storage model. Instead, they provide a general framework

for using provenance in hybrid systems that developers can pick and choose from based

on their data and provenance needs. Additionally, many of the topics discussed can also

solve problems in workflow system provenance or relational provenance. For instance,

increasing provenance usability by peeking into black-boxes tackles a problem that also

occurs in workflow provenance systems.

1.2 Thesis Outline

Chapter II describes the data and provenance models used throughout this work. In Chapter

III, a framework for tracking manually curated data is expounded. It is implemented as

CPDB with several different storage mechanisms. Utilizing CPDB, it is possible to track

user actions as they manually copy information from one source to another. Chapter

IV focuses on reducing the size of any provenance store. Two families of algorithms

are presented: Factorization and Inheritance. Three Factorization strategies and two

Inheritance mechanisms are applied to several provenance stores. Additionally, it is

shown how Factorization and Inheritance algorithms can be used in conjunction. In

Chapter V, the focus shifts to the usability of provenance information, by creating a notion

of provenance answers. Chapter VI, continues exploring the usability of provenance

information by extending the provenance model to allow users to ask “Why is this NOT
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in the result set?” Related work, conclusions and future work are presented in Chapters

VII–VIII.
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CHAPTER II

FOUNDATIONS

There is currently no standard for representing provenance, although an initial attempt

is the Open Provenance Model [100, 110]. The Open Provenance Model is an attempt

to have a standardized model so that provenance and tools that operate on provenance

can be shared across systems in a “technology-agnostic” manner. The Open Provenance

Model is does not specify a representation for provenance or syntax for machine-readable

provenance. Nor does it specify protocols for storing or querying provenance. Instead, it

defines a set of primary entities: Artifact, Process and Agent. An artifact is an immutable

object, a process is an action or set of actions performed on artifacts that create new

artifacts, while an agent can act as a catalyst on a process. However, this work is in its

infancy, and has no actual representation.

Influencing the creation of the Open Provenance Model, several provenance capture

systems exist [51, 73, 74, 75, 76, 105, 125], each with their own focus (actor vs data

provenance), form (XML vs relational) and model. Also, several core systems have

actively been used in the scientific process: Chimera [62], myGRID [74, 75], ESSW [66]

and CMCS [111]. Groups from almost every scientific domain have begun to specify

and collect metadata specific to their domain, such as QIS-XML [79] for Quantum

Information Science. In addition, several workflow systems actively generate provenance

[3, 4, 19, 32, 52, 62, 75, 86, 94, 97, 98, 101, 125, 109, 151, 150]. Others [38, 147] use a

provenance model similar to the Open Provenance Model to discuss issues surrounding

provenance in workflows and relational systems. From a high-level perspective, all
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provenance systems have characteristics similar to the generic model we construct below.

Throughout this work, we call the basic logical data unit a data item. Data items

may be tuples or attributes in a relational table, elements or attributes in XML, objects of

arbitrary granularity in an OODB, etc. One data item may completely include, overlap

with, or be totally disjoint from another data item. For example, in Figure 1.1, we show

six data items: two molecule items, and their name and ID sub-items. A dataset is

comprised of a set of data items. Datasets are often manipulated via workflows, whether

explicit or implicit. A workflow is defined by an input description, output description and

transformation rules. An explicit workflow is one generated by any number of workflow

engines [11, 19, 101, 121]; an implicit workflow is executed by a user with a specific goal

in mind, but without recording the executed processes. For example, MiMI [83] is created

via an implicit workflow. A series of steps are executed, but they are neither executed

within a formal workflow system, nor even fully documented. A workflow is modeled as a

directed graph, where each node represents a manipulation (see Figure 1.4).

Definition 1. Manipulation:
A manipulation takes one or more datasets as input and produces a dataset as output.

Thus, a manipulation is a discrete component of a workflow. An arc (m1, m2) in

a workflow graph indicates that the output of manipulation m1 is fed as an input to

manipulation m2. We intentionally leave the granularity of a manipulation unspecified.

Depending on the user’s needs and the workflow system, this can be anything from a simple

function to a whole program. A query can be a manipulation or a tree of manipulations

within a workflow. The workflow in Figure 1.4(a) consists of five manipulations. A few

common manipulations and examples follow:

Manipulation 1. Selection
From an input dataset, selects a subset of data, based on some selection condition.

Example 2. In the SDSS experiment [6], the first step is called fieldPrep. This
manipulation extracts measurements of the galaxies of interest from the full dataset.

Manipulation 2. Translation
Transforms the input dataset I based on a mapping M and outputs dataset I ′.
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Example 3. In Figure 1.1, the input I to the translation manipulation is the HPRD dataset
and MHPRD, a mapping from HPRD’s schema to the researcher’s own. The output I ′ is
the transformed HPRD dataset.

The route a data item takes through a workflow is a DAG, but can be represented by a

tree. If a manipulation’s output is an input to two different manipulations, this route can

be represented by a tree with repeated nodes, similar to query evaluation plans. When

an output data item d results from an aggregation of two different input data items, its

provenance record is a tree whose root element describes the aggregation step, and the

two subtrees are the provenance structures associated with the two input data items. This

tree is the provenance of the item d, and is shown in the “prov” subtrees in Figure 1.1.

Note this is a tree-ified version of the provenance model described in the Open Provenance

Model [110].

Definition 2. Provenance Record:
The record of input, and the manipulations applied to that input, to produce a new data

item.

Definition 3. Provenance Node
A single manipulation, its input and parameters, that comprise a part of the provenance

record for a data item.

Definition 4. Provenance Node Component
A single manipulation, input, or parameter that forms a part of a provenance node.

A provenance record is a tree of provenance nodes. Each node in the tree corresponds

to one manipulation, and has components that are inputs to the manipulation. For example,

in Figure 1.1, the provenance record for the ABC1 molecule is a tree of two nodes.

The transform node has the component MHPRD. The curate node has the parameter

PubMedID 16524875. Provenance contains a record of the manipulations used, and

relates processes with input and output data. The provenance model we present is generic

so that it can be applied to a variety of real-world provenance stores.

It would be incorrect to substitute the original workflow for information in the

provenance store. This is because the provenance record for each data item is very specific,

giving the exact path that data item took through the workflow: the original source data
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item it is based on, the exact parameters used in its manipulations, etc. For instance, did

the transform manipulation for that data item use MHPRD or MBIND? The workflow is

much more general, applying to all data items.

As stated above, a data item may completely include another data item e.g. a tuple

can contain an attribute. Each data item may have an associated a provenance record. In

Figure 1.1, the ABC1 molecule data item has a provenance record, as does the O95477

ID data item contained within it.

Definition 5. Instance-level Provenance
The provenance record associated with a particular data item in the dataset.

On the other hand, if a query was used to create the entire dataset, the query could be

recorded as dataset-level provenance.

Definition 6. Dataset-level Provenance
The provenance record associated with an entire collection of data items.

Definition 7. Provenance Store
The repository of all provenance records relating to a dataset and all data items in it.

Throughout this book, we let D denote the original data store that contains N data

items (which may overlap), along with their provenance records (e.g. Figure 1.1); let

size(D) denote the space used to store D. Each data item in D has a provenance record

associated with it; so the number of provenance records is also N . Each provenance record

is a tree consisting of several provenance nodes. We let n denote the total number of

provenance nodes in D, where n ≥ N .
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CHAPTER III

CAPTURING PROVENANCE

Provenance does not just spring into existence, it must be captured as processes act

upon data. If the appropriate provenance is not captured during execution, then it is lost

forever, and can never be fully re-created. In workflow systems, the framework that

organizes and executes each module automatically populates the provenance store with the

necessary details. Likewise, in relational databases, the combination of query semantics

and database logs can be used as provenance. However, we again encounter a hole between

workflows, relational databases and hybrid database systems. In a hybrid database system,

there is possibly a relational database being used. There are usually custom programs

being executed and there are often manual user ‘tweaks’ to the data. Capturing provenance

in the relational database component can utilize existing relational provenance techniques,

and the capture of provenance from custom programs can be adapted from the workflow

systems. However, the capture of provenance about the manual ‘tweaks’ is impossible in

current systems.

In this chapter we study the problem of tracking provenance of scientific data in

curated databases, databases constructed by the “sweat of the brow” of scientists who

manually assimilate information from several sources. Notice that these systems, while

built within relational databases, have external components, references and actions that

invalidate the use of traditional database provenance, and move them into the realm of

hybrid systems. First, it is important to understand the working practices and values of the

scientists who maintain and use such databases.
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3.0.1 Curated Databases

There are several hundred public-domain databases in the field of molecular biology [54].

Few contain raw experimental data; most represent an investment of a substantial amount

of effort by individuals who have organized, interpreted or re-interpreted, and annotated

data from other sources. The Uniprot [136] consortium lists upwards of seventy scientists,

variously called curators or annotators, whose job it is to add to or correct the reference

databases published by the consortium. At the other end of the scale there are relatively

small databases managed by a single individual, such as the Nuclear Protein Database [57].

These databases are highly valued and have, in some cases, replaced paper publication as

the medium of communication. Such databases are not confined to biology; they are also

being developed in areas like astronomy or geology. Reference manuals, dictionaries and

gazetteers that have recently moved from paper publication to electronic dissemination are

also examples of curated databases.

One of the characteristics of curated databases is that much of their content has

been derived or copied from other sources, often other curated databases. Most curators

believe that additional record keeping is needed to record where the data comes from

– its provenance. However, there are few established guidelines for what provenance

information should be retained for curated databases, and little support is given by

databases or surrounding technology for capturing provenance information. There has

been some examination [15, 49, 88, 131] of provenance issues in data warehouses; that is,

views of some underlying collection of data. But curated databases are not warehouses:

they are manually constructed by highly skilled scientists, not computed automatically

from existing data sets.

Example 4. A molecular biologist is interested in how age and cholesterol efflux affect
cholesterol levels and coronary artery disease. She keeps a simple database of proteins
which may play a role in these systems; this database could be anything from a flat text or
XML file to a full RDBMS. One day, while browsing abstracts of recent publications, she
discovers some interesting proteins on SwissProt, and copies the records from a SwissProt
web page into her database (Figure 3.1(a)). She then (Figure 3.1(b)) fixes the new entries
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so that the PTM (post-translational modification) found in SwissProt is not confused
with PTMs in her database found from other sites. She also (Figure 3.1(c)) copies some
publication details from Online Mendelian Inheritance in Man (OMIM) and some other
related data from NCBI. Finally (Figure 3.1(d)), she notices a mistake in a PubMed
publication number and corrects it. This manual curation process is repeated many times
as the researcher conducts her investigation.

One year later, when reviewing her information, she finds a discrepancy between two
PTMs and the conditions under which they are found. Unfortunately, she cannot remember
where the anomalous data came from, so cannot trace it to the source to resolve the
conflict. Moreover, the databases from which the data was copied have changed; searching
for the same data no longer gives the same results. The biologist may have no choice
but to discard all of the anomalous data or spend a few hours tracking down the correct
values. This would be especially embarrassing if the researcher had already published an
article or version of her database based on the now-suspect data.

In some respects, the researcher was better off in the days of paper publication and

record keeping, where there are well-defined standards for citation and some confidence

that the cited data will not change. To recover these advantages for curated databases, it is

necessary to retain provenance information describing the source and version history of

the data.

The current approach to managing provenance in curated databases is for the database

designer to augment the schema with fields to contain provenance data [7, 83] and require

curators to add and maintain the provenance information themselves. Such manual

bookkeeping is time consuming and seldom performed. It should not be necessary. We

believe it is imperative to find ways of automating the process.

3.0.2 The problem

The term “provenance” has been used in a variety of senses in database and scientific

computation research. One form of provenance is “workflow” or “coarse-grained”

provenance: information describing how derived data has been calculated from

raw observations [18, 62, 74, 124]. Workflow provenance is important in scientific

computation, but is not a major concern in curated databases. Instead, we focus on

“fine-grained” or “dataflow” provenance, which describes how data has moved through a
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network of databases.

Specifically, we consider the problem of tracking and managing provenance describing

the user actions involved in constructing a curated database. This includes recording both

local modifications to the database (inserting, deleting, and updating data) and global

operations such as copying data from external sources. Because of the large number and

variety of scientific databases, a realistic solution to this problem is subject to several

constraints. The databases are all maintained independently, so it is (in the short term)

unrealistic to expect all of them to adopt a standard for storing and exchanging provenance.

A wide variety of data models are in use, and databases have widely varying practices for

identifying or locating data. While the databases are not actively uncooperative, they may

change silently and past versions may not be archived. Curators employ a wide variety

of application programs, computing platforms, etc., including proprietary software that

cannot be changed.

In light of these considerations, we believe it is reasonable to restrict attention to a

subproblem that is simple enough that some progress can be made, yet which we believe

provides benefits for a common realistic situation faced by database curators. Specifically,

we will address the issue of how to track the provenance of data as it enters a curated

database via inserts and copies, and how it changes as a result of local updates.

3.0.3 Our approach

In this chapter, we propose and evaluate a practical approach to provenance tracking for

data copied manually among databases. In our approach, we assume that the user’s actions

are captured as a sequence of insert, delete, copy, and paste actions by a provenance-aware

application for browsing and editing databases. As the user copies, inserts, or deletes

data in her local database T , provenance links are stored in an auxiliary provenance store

P . These links relate data locations in T with locations in previous versions of T or in

external source databases S. They can be used after the fact to review the process used to
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construct the data in T ; in addition, if T is also being archived, the provenance links can

provide further detail about how each version of T relates to the next.

The architecture is summarized in Figure 3.2. The new components are shaded, and

the existing (and unchangeable) components are unshaded. The shaded triangles indicate

wrappers mapping S1, . . . , Sn, T to an XML view; the database P stores provenance

information describing the updates performed by the editor. Alternatively, provenance

information could be stored as annotations alongside data in T ; however, this would

require changing the structure of T . The only requirement we make is that there is a

canonical location for every data element. We shall describe this in more detail shortly.

When provenance information is tracked manually or by a custom-built system,

the user or designer typically decides what provenance information to record on a

case-by-case basis. In contrast, our system records everything. The obvious concern is

that the processing and storage costs for doing this could be unacceptably high. The main

contribution of this chapter is to show how such fine-grained user provenance information

can be tracked, stored, and queried efficiently.

We have implemented our approach and experimented with a number of ways of

storing and querying provenance information, including a naı̈ve approach and several more

sophisticated techniques. Our results demonstrate that the processing overhead of the naı̈ve

approach is fairly high; it can increase the time to process each update by 28%, and the
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amount of provenance information stored is proportional to the size of the changed data.

In addition, we also investigated the impact of two optimization techniques: transactional

and hierarchical provenance management. Together, these optimizations typically reduce

the added processing cost of provenance tracking to less than 5–10% per operation and

reduce the storage cost by a factor of 5–7 relative to the naı̈ve approach; moreover, the

storage overhead is bounded by the lesser of the number of update operations and the

amount of data touched. In addition, typical provenance queries can be executed more

efficiently on such provenance records. We believe that these results make a compelling

argument for the feasibility of our approach to provenance management.

The structure of the rest of this chapter is as follows. Section 3.1 presents the

conceptual foundation of our approach to provenance tracking. Section 3.2 presents

the implementation of CPDB, an instance of our approach that uses the Timber XML

database [81]. In Section 3.3, we present and analyze the experimental results. We

conclude in Section 3.4.

3.1 Provenance and User Updates

In order to discuss provenance we need to be able to describe where a piece of data comes

from; that is, we need to have a means for describing the location of any data element. We

make two assumptions about the data, which are already used in file synchronization [65]

and database archiving [24] and appear to hold for a wide variety of scientific and other

databases. The first is that the database can be viewed as a tree; the second is that the

edges of that tree can be labeled in such a way that a given sequence of labels occurs

on at most one path from the root and therefore identifies at most one data element.

Traditional hierarchical file systems are a well-known example of this kind of structure.

Relational databases also can be described hierarchically. For instance, and the data values

in a relational database can be addressed using four-level paths where DB/R/tid/F

addresses the field value F in the tuple with identifier or key tid in table R of database
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DB. Scientific databases already use paths such as SwissProt/Release{20}/Q01780 to

identify a specific entry, and this can be concatenated with a path such as Citation{3}/Title

to identify a data element. XML data can be addressed by adding key information [24].

Note that this is a general assumption that is orthogonal to the data models in use by the

various databases.

Formally, we let Σ be a set of labels, and consider paths p ∈ Σ∗ as addresses of data

in trees. The trees t we consider are unordered and store data values from some domain

D only at the leaves. Such trees are written as {a1 : v1, . . . , an : vn}, where vi is either a

subtree or data value. We write t.p for the subtree of t rooted at location p.

We next describe a basic update language that captures the user’s actions, and the

semantics of such updates. The atomic update operations are of the form where

U ::= ins {a : v} into p | del a from p | copy q into p

The insert operation inserts an edge labeled a with value v into the subtree at p; v can be

either the empty tree or a data value. The delete operation deletes an edge and its subtree.

The copy operation replaces the subtree at p with a copy of the subtree at location q. We

write sequences of atomic updates as U1; . . . ; Un. We write [[U ]] for the function on trees

induced by the update sequence U . The precise semantics of the operations is as follows.

[[ins {a : v} into p]](t) = t[p := t.p ] {a : v}]
[[del a from p]](t) = t[p := t.p− a]

[[copy q into p]](t) = t[p := t.q]

[[U ; U ′]](t) = [[U ′]]([[U ]](t))

Here, t ] u denotes the tree t with subtree u added; this fails if there are any shared edge

names in t and u; t− a denotes the result of deleting the node labeled a, failing if no such

node exists; and t[p := u] denotes the result of replacing the subtree of t at p by u, failing

if path p is not present in t. Insertions, copies, and deletes can only be performed in a

subtree of the target database T .
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copy S1/a2/y into T/c1/y;
insert {c2 : {}} into T;
copy S1/a2 into T/c2;
insert {y : 12} into T/c2;
insert {c3 : {}} into T;
copy S1/a3 into T/c3;
copy S2/b3/y into T/c3;
insert {c4 : {}} into T;
copy S2/b2 into T/c4;
insert {y : 13} into T/c4;

Figure 3.3: An example copy-paste update operation.

As an example, consider the update operations in Figure 3.3. These operations

copy some records from S1 and S2, then modify some of the field values. The result of

executing this update operation on database T with source databases S1, S2 is shown in

Figure 3.4. The initial version of the target database is labeled T , while the version after

the transaction is labeled T ′.

3.1.1 Provenance tracking

Figure 3.4 depicts provenance links (dashed lines) that connect copied data in the target

database with source data. Of course, these links are not visible in the actual result of

the update. In our approach, these links are stored “on the side” in an auxiliary table

Prov(Tid,Op, To, From), where Tid is a sequence number for the transaction that made

the corresponding change; Op is one of I (insert), C (copy), or D (delete); From is the

old location (for a copy or delete), and To is the location of the new data (for an insert or

copy). The To fields of deletes and From fields of inserts are ignored; we assume their

values are null (⊥). Additional information about the transaction, such as commit time and

user identity can be stored in a separate table.

We shall now describe several ways of storing provenance information.
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Figure 3.4: An example of executing the update in Figure 3.3. The upper two trees S1, S2 are XML views of
source databases; the bottom trees T , T ′ are XML views of part of the target database at the beginning and
end of the transaction. White nodes are nodes already in the target database; black nodes represent inserted
nodes; other shadings indicate whether the node came from S1 or S2. Dashed lines indicate provenance
links. Additional provenance links can be inferred from context.

Naı̈ve provenance

The most straightforward method is to store one provenance record for each copied,

inserted, or deleted node. In addition, each update operation is treated as a separate

transaction. This technique may be wasteful in terms of space, because it introduces

one provenance record for every node inserted, deleted, or copied throughout the update.

However, it retains the maximum possible information about the user’s actions. In fact, the

exact update operation describing the user’s sequence of actions can be recovered from the

provenance table.

Transactional provenance

The second method is to assume the updated actions are grouped into transactions larger

than a single operation, and to store only provenance links describing the net changes

resulting from a transaction. For example, if the user copies data from S1, then on further
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(a) Prov

Tid To From

121 C T/c1/y S1/a1/y
122 I T/c2 ⊥
123 C T/c2 S1/a2

123 C T/c2/x S1/a2/x
124 I T/c2/y ⊥
125 I T/c3 ⊥
126 C T/c3 S1/a3

126 C T/c3/x S1/a3/x
126 C T/c3/y S1/a3/y
127 C T/c3/y S2/b3/y
128 I T/c4 ⊥
129 C T/c4 S2/b2

129 C T/c4/x S2/b2/x
130 I T/c4/y ⊥

(b) Prov

Tid To From

121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2

121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv

Tid To From

121 C T/c1/y S1/a1/y
122 I T/c2 ⊥
123 C T/c2 S1/a2

124 I T/c2/y ⊥
125 I T/c3 ⊥
126 C T/c3 S1/a3

127 C T/c3/y S2/b3/y
128 I T/c4 ⊥
129 C T/c4 S2/b2

130 I T/c4/y ⊥

(d) HProv

Tid To From

121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3/y S2/b3/y
121 C T/c4 S2/b2

121 I T/c4/y ⊥

Figure 3.5: The provenance tables for the update operation of Figure 3.3. (a) One transaction per line. (b)
Entire update as one transaction. (c) Hierarchical version of (a). (d) Hierarchical version of (b).

reflection deletes it and uses data from S2 instead, and finally commits, this has the same

effect on provenance as if the user had only copied the data from S2. Thus, details about

intermediate states or temporary data storage in between consistent official database

versions are not retained. Transactional provenance may be less precise than the naı̈ve

approach, because information about intermediate states of the database is discarded, but

the user has control over what provenance information is retained, so can use shorter

transactions as necessary to describe the exact construction process.

The storage cost for the provenance of a transaction is the number of nodes touched in
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the input and output of the transaction. That is, the number of transactional provenance

records produced by an update transaction t is i + d + c, where i is the number of inserted

nodes in the output, d is the number of nodes deleted from the input, and c is the number

of copied nodes in the output.

Hierarchical provenance

Whether or not transactional provenance is used, much of the provenance information

tends to be redundant (see Figure 3.5(a,b)), since in many cases the annotation of a child

node can be inferred from its parent’s annotation. Accordingly, we consider a second

technique, called hierarchical provenance. The key observation is that we do not need to

store all of the provenance links explicitly, because the provenance of a child of a copied

node can often be inferred from its parent’s provenance using a simple rule. Thus, in

hierarchical provenance we store only the provenance links that cannot be so inferred.

These non-inferable links correspond to the provenance links shown in Figure 3.4.

Insertions and deletions are treated as for naı̈ve provenance, while a copy-paste operation

copy p into q results in adding only a single record HProv(t, C, q, p). Figure 3.5(c) shows

the hierarchical provenance table HProv corresponding to the naı̈ve version of Prov. In

this case, the reduced table is about 25% smaller than Prov, but much larger savings are

possible when entire records or subtrees are copied with little change.

Unlike transactional provenance, hereditary provenance does not lose any information

and does not require any user interaction. We can define the full provenance table as a

view of the hierarchical table as follows. If the provenance is specified in HProv, then it is

just copied into Prov. Otherwise, the provenance of every target path p/a not mentioned

in HProv is q/a, provided p was copied from q. If p was inserted, then we assume that p/a

was also inserted; that is, children of inserted nodes are assumed to also have been inserted,

unless there is a record in HProv indicating otherwise. Formally, the full provenance table
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Prov can be defined in terms of HProv as the following recursive query:

Infer(t, p) ← ¬(∃t, x, q.HProv(t, x, p, q))

Prov(t, op, p, q) ← HProv(t, op, p, q).

Prov(t, C, p/a, q/a) ← Prov(t, C, p, q), Infer(t, p).

Prov(t, I, p/a,⊥) ← Prov(t, I, p,⊥), Infer(t, p).

We have to use an auxiliary table Infer to identify the nodes that have no explicit

provenance in HProv, to ensure that only the provenance of the closest ancestor is used.

In our implementation, Prov is calculated from HProv as necessary for paths in T , so this

check is unnecessary. It is not difficult to show that an update sequence U can be described

by a hierarchical provenance table with |U | entries.

Transactional-hierarchical provenance

Finally, we considered the combination of transactional and hierarchical provenance

techniques; there is little difficulty in combining them. Figure 3.5(d) shows the

transactional-hierarchical provenance of the transaction in Figure 3.3.

It is also easy to show that the storage of transactional-hierarchical provenance is

i+ d+C, where i and d are defined as in the discussion of transactional provenance and C

is the number of roots of copied subtrees that appear in the output. This is bounded above

by both |U | and i + d + c, so transactional-hierarchical provenance may be more concise

than either approach alone.

3.1.2 Provenance queries

How can we use the machinery developed in the previous section to answer some practical

questions about data? Consider some simple questions:

Src What transaction first created a node? This is particularly useful in the case of leaf

data; e.g., who entered your telephone number incorrectly?

Hist What is the sequence of all transactions that copied a node to its current position?
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Mod What transactions were responsible for the creation or modification of the subtree

under a node? For example, you would like the complete history of some entry in a

database.

Hist and Mod provide very different information. A subtree may be copied many times

without being modified.

We first define some convenient views of the raw Prov table (which, of course, may

also be a view derived from HProv). We define the views Unch(t, p), Ins(t, p), Del(t, p),

and Copy(t, p, q), which intuitively mean “p was unchanged, inserted, deleted, or copied

from q during transaction t,” respectively.

Unch(t, p) ← ¬(∃x, q.Prov(t, x, p, q)).

Ins(t, p) ← Prov(t, I, p,⊥)

Del(t, p) ← Prov(t, D,⊥, p)

Copy(t, p, q) ← Prov(t, C, p, q)

We also consider a node p to “come from” q during transaction t (table From(t, p, q))

provided it was either unchanged (and p = q) or p was copied from q.

From(t, p, q) ← Copy(t, p, q)

From(t, p, p) ← Unch(t, p)

Next, we define a Trace(p, t, q, u), which says that the data at location p at the end of

transaction t “came from” the data at location q at the end of transaction u.

Trace(p, t, p, t).

Trace(p, t, q, u) ← Trace(p, t, r, s), Trace(r, s, q, u).

Trace(p, t, q, t− 1) ← From(t, p, q).

Note that Trace is essentially the reflexive, transitive closure of From. Now to define the

queries mentioned at the beginning of the section, suppose that tnow is the last transaction
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number in Prov, and define

Src(p) = {u | ∃q.Trace(p, tnow, q, u), Ins(u, q)}
Hist(p) = {u | ∃q.Trace(p, tnow, q, u), Copy(u, q)}
Mod(p) = {u | ∃q.p ≤ q, Trace(q, tnow, r, u),¬Unch(u, r)}

That is, Src(p) returns the number of the transaction that inserted the node now at p, while

Hist(p) returns all transaction numbers that were involved in copying the data now at p.

Finally, Mod(p) returns all transaction numbers that modified some data under p. This set

could then be combined with additional information about transactions to identify all users

that modified the subtree at p. Here, p ≤ q means p is a prefix of q. Despite the fact that

there may be infinitely many paths q extending p, the answer Mod(p) is still finite, since

there are only finitely many transaction identifiers in Prov.

The point of this discussion is to show that provenance mappings relating a sequence of

versions of a database can be used to answer a wide variety of queries about the evolution

of the data, even without cooperation from source databases. However, if only the target

database tracks provenance, the information is necessarily partial. For example, the Src

query above cannot tell us anything about data that was copied from elsewhere. Similarly,

the Hist and Mod queries stop following the chain of provenance of a piece of data when it

exits T . If we do not assume that all the databases involved track provenance and publish

it in a consistent form, many queries only have incomplete answers.

Of course, if source databases also store provenance, we can provide more complete

answers by combining the provenance information of all of the databases. In addition,

there are queries which only make sense if several databases track provenance, such as:

Own What is the history of “ownership” of a piece of data? That is, what sequence of

databases contained the previous copies of a node?

It would be extremely useful to be able to provide answers to such queries to scientists

who wish to evaluate the quality of data found in scientific databases.
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3.2 Implementation

We have implemented a “copy-paste database”, CPDB, that tracks the provenance of

data copied from external sources to the target database. In order to demonstrate the

flexibility of our approach, our system connects several different publically downloadable

databases. We have chosen to use MiMI [83], a biological database of curated datasets, as

our target database (T in Figure 3.2). MiMI is a protein interaction database that runs on

Timber [81], a native XML database. We used OrganelleDB [142], a database of protein

localization information built on MySQL, as an example of a source database. Since the

target database interacts with only one source database at a time, we only experimented

with one source database.

3.2.1 Overview

CPDB permits the user to connect to the external databases, copy source data into the

target database, and modify the data to fit the target database’s structure. The user’s actions

are intercepted and the resulting provenance information is recorded in a provenance

store. Currently, CPDB provides a minimal Web interface for testing purposes. Providing

a more user-friendly browsing/editing interface is important, but orthogonal to the data

management issues that are our primary concern.

In order to allow the user to select pertinent information from the source and target

databases, each database must be wrapped in a way that allows CPDB to extract the

appropriate information. This wrapping is essentially the same as a “fully-keyed” XML

view of the underlying data. In addition, the target database must also expose particular

methods to allow for easy updating. Figure 3.6 describes the necessary functions that the

source and target databases must implement. Essentially, the source and target databases

must provide methods that map tree paths to the database’s native data; in addition, the

target database must be able to translate updates to the tree to updates to its internal data.

This approach does not require that any of the source or target databases represent
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SourceDB
treeFromDB() Returns a tree, with unique identifiers,

populated from the data. The SourceDB
is responsible for determining how the
data fits in the tree, e.g. mapping a
relational database to tree format.

copyNode() Returns a list of nodes that a user has
copied. If the user copies a leaf node,
the list is size 1. Otherwise, each node
in the subtree of the selected node is
contained in the list. Each node contains
the identifying path and data value.

TargetDB
addNode Inserts a new, empty node with
(String nodename) name=nodename in the target db

according to the database’s mapping
from a tree to native format.

deleteNode() Deletes the specified node from the
target database.

pasteNode(Node X) Insert node X as a child of the
specified node according to the tree
to database schema mapping.

Figure 3.6: Wrappers for Source and Target Databases

data internally as XML. Any underlying data model for which path addresses make sense

can be used. Also, the databases need not expose all of their data. Instead, it is up to the

databases’ administrators how much data to expose for copying or updating. In many

cases, the data in scientific databases consists of a “catalog” relation that contains all the

raw data, together with supporting cross-reference tables. Typically, it is only this catalog

that would need to be made available by a source database.

3.2.2 Implementation of provenance tracking

Given wrapped source and target databases, CPDB maintains a provenance store that

allows us to track any changes made to the target database incorporating data from the
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sources. To this end, during a copy-paste transaction, we write the data values to the

target database, and write the provenance information to the provenance store. A user may

specify any of the storage operations discussed in the previous section. In this section,

we discuss how the implementations of provenance tracking and the Src, Hist, and Mod

provenance queries differ from the idealized forms presented in Section 3.1.

Naı̈ve provenance

The implementation of the naı̈ve approach is a straightforward process of recording

target and source information for every transaction that affects the target database.

Whenever an insert, delete, or copy operation is performed, the corresponding function

trackInsert, trackDelete, trackPaste is called with the transaction identifier and

applicable source and target paths. These operations simply add the corresponding records

to the provenance store. Note that for a paste operation, we add one record per node in the

copied subtree.

Transactional provenance

In transactional provenance, the user decides how to segment the sequence of update

operations into transactions. When the user decides to end a transaction and commit

its changes, CPDB stores the provenance links connecting the current version with its

predecessor, and the current version becomes the next reference copy of the database, to

which future provenance links will refer. Only provenance links of data actually present in

the output of a transaction are stored; no links corresponding to temporary data deleted or

overwritten by the transaction are stored.

To support this behavior, the transactional provenance implementation maintains

an active list, provlist, of provenance links that will be added to the provenance store

when the user commits. When an atomic update is performed, the provenance store is

unaffected, but any resulting provenance links are added to the list. Conversely, in the

case of a copy or delete, any provenance links on the list corresponding to overwritten or
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deleted data are removed. At the time of the commit, the commit() function is called,

which writes the provenance of all items in the active list to the provenance store.

Hierarchical Provenance

In the hierarchical provenance storage method, we store at most one record per operation,

and in particular, for a copy, we only store the record connecting the root of the copied tree

to the root of the source. In addition, we check whether each link is redundant given the

current provenance store, and if so, we do not add it.

Hierarchical Transactional Provenance

Combining the hierarchical and transactional provenance is straightforward; all we need to

do is to maintain hierarchical provenance instead of naı̈ve provenance records in provlist.

3.2.3 Provenance Queries

We implemented the provenance queries Src, Mod, and Hist as programs that issue several

basic queries, due to lack of support for the kind of recursion needed by the Trace query.

For naı̈ve and transactional provenance, we can directly query the provenance store. For

hierarchical provenance, the provenance store corresponds to the HProv relation. Instead

of building a view containing the full provenance relation, we query the provenance store

directly and compute the appropriate provenance links on-the-fly. All versions of the

queries are implemented as stored procedures written in Java running in MySQL.
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3.3 Evaluation

3.3.1 Experimental setup

The evaluation of CPDB was performed on a Dell workstation with Pentium 4 CPU at

2GHz with 640MB RAM and 74.4GB disk space running Windows XP. As noted above,

the target database was a 27.3MB copy of MiMI stored in Timber, and the source database

was 6MB of data from OrganelleDB stored in MySQL. The provenance information was

stored separately in MySQL. We used Timber version 1.1 and MySQL version 4.1.12a-nt

via TCP/IP. CPDB was implemented as a Java application that communicates with MySQL

via JDBC and Timber using SOAP.

We performed five sets of experiments to measure the relative performance of the naı̈ve

(N), transactional (T), hierarchical (H), and hierarchical-transactional (HT) provenance

storage methods. Table 3.1 summarizes the experiments we report, including a description

of the fixed and varying parameters, and listing the figures summarizing the results. We

used six patterns of update operations, summarized in Table 3.2. The first five are random

sequences of adds, deletes, and copies in various proportions. The copies were all of

subtrees of size four (a parent with three children) from OrganelleDB to MiMI. The real

update consisted of a regular pattern of copies, deletes, and inserts simulating the effect of

a bulk update on MiMI that could be performed via a standard XQuery statement using

XPath. It repeatedly copies a subtree into the target, then inserts three elements under the

subtree root and deletes three existing subtree elements. We also used variations of the

mix dataset that exhibited different deletion patterns, shown in Table 3.3.

In the first set of experiments we ran 3500-step updates on each of the first five update

patterns using each storage method. For the transactional approaches, commits were

performed after every five updates. In each case, we measured the amount of time needed

for provenance manipulation, interaction with the target database, and interaction with the

provenance database. We also measured the total size of the provenance store and target
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database (both in number of rows and in real storage terms) at the end of the transaction.

Efficiency considerations precluded measuring the size of the provenance store or target

database after each operation.

In the second experiment, we ran 14,000-step versions of the real and mix updates

using all four provenance methods, with the same experimental methodology as for the

3500-step updates. These experiments were intended to elucidate how our techniques

scale as larger numbers of realistic user actions are performed, so we did not run the less

realistic add, delete, or copy update patterns of this length.

Figure 3.7 shows the total provenance storage in rows needed for each method and

each run for the 3500-step updates. The real storage sizes in bytes display the same trends

(each row requires between 100 and 200 bytes), so we omit this data. Figure 3.8 shows the

total provenance storage in rows needed for each of the 14,000-step runs. Numbers at the

top of each bar show the physical sizes of the tables. Figure 3.9 shows the average time for

target database interaction, and average time per add, delete, copy, or commit operation for

the 14,000-mix run. These results accurately reflect observed provenance processing times

in all the other experiments, so we omit this data. In order to determine how expensive

provenance tracking is per add, delete, or copy operation, we also calculated the average

time for dataset manipulation by operation type; Figure 3.10 shows the overhead of

provenance tracking for each operation as a percentage of base dataset manipulation time.

In the third experiment, we measured the effects of deletes on provenance storage.

We performed five different versions of the 14,000-mix update with varying deletion

patterns. These deletion patterns may not be representative of common user behavior, but

demonstrate the storage performance of the various methods under different conditions.

Figure 3.11 shows the results of this experiment. We plot two columns per provenance

method, one (labeled “ac”) showing the provenance table size when only the adds and

copies are performed, the other (labeled “acd”) showing the size when the deletes are also

performed.
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add All random adds
delete All random deletes
copy All random copies
ac-mix Equal mix of random adds and copies
mix Equal mix of random adds, deletes, copies
real Copy one subtree, add 3 nodes, delete 3 nodes

Table 3.2: Update patterns

del-random Paths deleted at random
del-add All added paths deleted
del-copy Only copies deleted
del-mix 50–50 mix of adds and copies deleted
del-real 3 nodes from copied subtree deleted

Table 3.3: Deletion patterns

The fourth experiment measured the effect of transaction length on provenance

processing time. It consisted of running the 3500-real update for the hierarchical-

transactional method with transaction lengths 7, 100, 500, and 1000. We measured the

processing time required for each operation. Figure 3.12 summarizes the results of this

experiment; it shows the average time needed for each add, delete, copy, and commit for

each run. Also, the “amortized” data series shows the average time per operation with

commit time amortized over all operations.

Finally, the fifth experiment measured the cost of answering some typical provenance

queries. For each storage method, we measured the average query processing time for

getSrc, getMod, getHist queries of random locations run at the end of a 14,000-real run.

Figure 3.13 shows the results. Error bars indicate the typical ranges of response times.

No indexing was performed on the provenance relation, so these query times represent

worst-case behavior.
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Figure 3.13: The time needed to perform basic provenance queries.

3.3.2 Analysis

As can be seen in Figures 3.7 and 3.8, either a hierarchical or transactional strategy can

provide substantial space savings. Figure 3.7 shows how the storage methods perform

for different types of actions. Perhaps unsurprisingly, inserts and deletes are handled

essentially the same by all methods. Only copy operations really stress the system. The

naı̈ve and transactional approaches store four provenance records per copy (recall that all

copies are of subtrees of size four), whereas the hierarchical techniques store only one

such record per copy. The hierarchical-transactional technique provides the most efficient

storage overall. The results in Figure 3.8 confirm these trends for longer sequences of

updates.

Figure 3.9 shows the time spent on storing provenance information for all the

techniques. For comparison, the average dataset processing time and average commit

times are shown as well. Figure 3.10 depicts the average overhead of provenance

processing per individual add, delete, or copy operation. For naı̈ve storage, the add, delete

and copy operations require less than 30% of the processing time needed for interaction

with the target database. Although hierarchical provenance is much faster for copies,

it requires more time to process inserts. (Deletes are unaffected because hierarchical
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provenance treats deletes exactly as naı̈ve provenance does.) More time is needed because

we must first query the provenance database to determine whether to add the provenance

record. Transactional provenance, on the other hand, is much more responsive. Inserts

and copies run essentially instantaneously, because no interaction with the target database

or provenance store is needed. Moreover, commits require about 25% of the average

time for database interaction time, but only occur once every five steps. The savings

seem to be due to the reduced number of round-trips to the provenance database. For

hierarchical-transactional storage, more time is needed for copies and inserts, but all the

basic operations take at most 6% of the total time. Commits take the same amount of time

on average as for hierarchical provenance.

The effects of deletion are shown in Figure 3.11. For naı̈ve and hierarchical

provenance, deletion simply adds provenance records. For transactional provenance, some

deletion patterns result in fewer overall records being stored, because some data is inserted

and deleted in the same transaction. However, hierarchical-transactional provenance

displays the most stable behavior, and stores the fewest records among the approaches for

each update pattern.

The effect of transaction length on processing time is shown in Figure 3.12. Processing

time per basic operation does not vary much with transaction size, while the amount of

time needed to process a commit grows approximately linearly with transaction length.

The average overall time per operation remains about the same. These results reflect the

expected behavior, and illustrate that our approach works at interactive speeds (at most one

or two seconds) for transactions of up to 100 operations. Committing the corresponding

changes to the target database is likely to take as long or longer. More sophisticated

techniques that minimize network round trips during commits could further reduce the

overall processing time.

Finally, Figure 3.13 displays the time needed to query the various forms of provenance

using the getSrc, getMod, and getHist queries. In general, it is expected that getHist
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will outperform getSrc, and both will do better than getMod based on the provenance

store access patterns and data manipulation inherent in each. The getSrc and getHist

queries run slightly (15%) faster for hierarchical provenance, but interestingly, the getMod

query is about 20% slower; there is no benefit over the naı̈ve version since each query must

process all the descendants of a node, including ones not listed in the provenance store.

The queries ran fastest for transactional provenance; for all three queries, we observed

a speedup of roughly a factor of 2.5 relative to the naı̈ve approach. This makes sense

because transactional provenance stores only about 25–35% as many records as the naı̈ve

approach. Of course, this is because transactional provenance is less descriptive than the

naı̈ve approach; however, this seems like a reasonable tradeoff, especially since the user

can decide which versions of the database to commit. Finally, hierarchical-transactional

provenance benefits from the reduced number of records inherent in the transactional

method, so both getSrc and getHist perform as well as for the transactional approach,

but getMod runs only slightly faster than for the naı̈ve approach.

3.4 Conclusions

Provenance information is essential for assessing the integrity and value of data, especially

in scientific databases. Because managing provenance metadata alongside ordinary data

adds to the already-high cost of database curation, it is of particular concern in scientific

databases that are “curated”, or constructed by hand by expert users who either enter

raw data or copy existing data from other sources. Therefore, automatic techniques for

collecting and managing provenance in such situations would be very beneficial. However,

this is a challenging problem because it requires tracking data as it is copied between

databases or modified by curators.

In this chapter, we have proposed a realistic architecture for automatic provenance

tracking in curated databases. We have implemented our approach and conducted an

experimental evaluation of several methods of storing and managing provenance. The
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most naı̈ve approach we investigated has relatively high storage cost (storage overhead

is proportional to the amount of data touched by an update), moderate processing cost

(overhead of up to 30% of update processing time), and even simple provenance queries

are fairly expensive to answer. However, the hierarchical-transactional technique reduced

the storage overhead in our experiments reduced by around a factor of 5, while decreasing

the processing overhead per update operation to at most 6% and providing improved

performance on provenance queries.

These experimental results affirm that provenance can be tracked and managed

efficiently using our approach. We believe that this is a promising first step towards

providing powerful, general-purpose tools that will make life easier for scientific data

curators and increase the reliability and transparency of the scientific record.
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CHAPTER IV

EFFICIENT PROVENANCE STORAGE

Once provenance has been captured, it must be stored efficiently. Recently, several

scientific endeavors have been coupled with provenance management studies. Chimera

[62] has been used with physics and astronomy data; myGRID [74] with biological data;

Collaboratory for Multi-Scale Chemical Science (CMCS) [111] with chemistry data; Earth

System Science Workbench (ESSW) [66] with earth science data. These experiments can

involve ∼10TB of actual base data [6]. Unfortunately, the provenance information can

grow to be many times larger than the base data [6, 44, 74, 111]. Thus far, only workflow

systems have created provenance stores with scientific endeavors, but hybrid systems

such as MiMI have the ability to create large volumes of provenance information. This is

particularly true if the provenance is fine-grained, particularly rich, or a large number of

operations have been performed on each piece of data.

For instance, in a recent provenance use study [74], provenance was attached to an

experiment to determine the structure of protein sequences using GRID technology [63].

Starting with sets of protein sequences, a workflow containing about 12 steps was run. The

base data was about 100Kb; the provenance size was approximately 1MB, which is ten

times the data size [74]. Other scientific experiments run in conjunction with provenance

storage produce similar results. MiMI [83], an online protein interaction database is

270MB; its provenance store is 6GB. We also have anecdotal evidence of a real deployed

scientific data system where provenance information was partially removed to reduce the

storage overhead [123].
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To gain an appreciation of where the enormous size of provenance comes from,

consider the following small example:

Example 5. There are many large protein interaction datasets, including HPRD [114]
and BIND [7, 8, 9, 135]. Figures 1.2–1.3 show a small extract from each. A biologist may
wish to integrate information from these two sources. To do this, she must first create a
unified schema and transform the individual datasets into it. Then, she merges the datasets
such that overlapping entries from different sources are combined. Finally, she runs each
protein through a name normalizing script.

Figure 1.4(a) depicts the workflow described above. Notice that a piece of data starts
at the bottom of the workflow, and can follow any path through it depending on the data
itself. Figure 1.1 depicts the resulting dataset, along with the provenance associated with
each data item. Even using a small provenance record and minimal manipulations, the
size of the provenance already outweighs the size of the dataset.

In this chapter, we study how to reduce the space required to store provenance.

Utilizing a generic provenance model, we describe two classes of space-saving algorithms.

The first is a family of algorithms that reduce the size by removing duplicate provenance

records and nodes. In any series of data manipulations, patterns can be found in the

provenance data. A brief glance at Figure 1.1 can elucidate this even in our small example.

We propose a series of provenance factorization techniques that find common subtrees

and manipulate them to reduce the provenance size. Finding common subtrees is a known

hard problem, studied in the context of eliminating common subexpressions [43, 59, 72].

We use this work to define a “Basic Factorization” algorithm. We then develop several

enhancements crucial for good size reduction in our context. We additionally develop

a second set of algorithms through provenance inheritance. There are two distinct

algorithms in this set: one based on Structural Inheritance, and one based on Predicate

Inheritance. Finally, we show how both types of Inheritance can be combined with

Factorization to achieve maximum savings.

We require that provenance be queriable with the base data, so that queries such as

“give me all molecules that came from HPRD” can be quickly answered. Strategies such

as XMill [90] lead to a representation that is not queriable. Meanwhile, XML compressors

such as XGRIND [134] that facilitate querying of compressed stores do not support a
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rich enough query language. In our context, it is imperative that users are able to specify

relationships and joins between data and provenance information. Our methods meet this

requirement, and can also be used in tandem with other XML compressors for maximum

size reduction.

In Chapter II, we laid the conceptual foundations needed to describe our methods.

In Sections 4.1–4.2 we outline the algorithms used to reduce provenance size using

Factorization and Inheritance respectively. In Section 4.3 we discuss how Factorization

and Inheritance can be combined, as well as the queriability of the compressed provenance

stores. We test our reduction methods on real provenance stores, generated and stored

via three distinct methods. The results of this evaluation are presented in Section 4.4. In

Sections 4.3.3–4.5 we discuss incremental maintenance and our conclusions.

4.1 Provenance Factorization

Many items in a large data store may have similar or even identical provenance. If we

could factor out common “sub-expressions” in the provenance of different items, these

common portions could be stored just once for the whole data set rather than once for each

item. We call this provenance factorization.

We consider Factorization at three different levels: factorization of identical provenance

records, factorization of identical provenance nodes, and factorization of nodes that are

identical except for their parameters.

After Factorization, the provenance records and nodes are stored in a provenance store

that is separate from the data store. From each data item, there are one or more pointers to

the provenance store, and in some cases, these pointers have some associated annotation.

4.1.1 Basic Factorization

Basic Factorization removes common provenance records; only one copy is stored. Each

data item uses a provenance pointer to point to its provenance record. For example, in
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Figure 4.1: Example of Basic Factorization. (a) ABC1 and LXR molecule data items. (b) The same data
items after Basic Factorization.

Figure 4.1(a), the ABC1 and LXR molecule data items are shown with their provenance.

The Factorization algorithm discovers that the two provenance records are identical, and

replaces each with a pointer to the record, now written separately in the provenance store,

as shown in Figure 4.1(b).

The Basic Factorization Algorithm makes one pass over D, and separates the

provenance records from the data items; its runtime is O(size(D)). When a provenance

record is encountered, it is converted to a (possibly long) string; this string represents all

the information in the record. The main data structure used is a hashtable on these strings;

it is used to identify common provenance records. If the current provenance record R is

not found in the hashtable, a copy of it is stored in the new provenance store. In the data

store, the provenance record R is replaced by a pointer to its copy in the provenance store.

Since there is one provenance record per data item, the number of (not necessarily

distinct) provenance records is N . Let N1 be the number of distinct provenance records.

Let S be the average size of a provenance record. The space used for storing provenance,
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Reduction Technique Estimated Provenance Size
No Reduction N ∗ S or n ∗ s
Basic Factorization N ∗ p + N1 ∗ S
Node Factorization n ∗ p + n1 ∗ s
Argument Factorization n ∗ p + A ∗ a + n2 ∗ s′

Structural Inheritance N2 ∗ S
Predicate Based Inheritance N ∗ S/T

words to be in color
Variables Used

N total number of provenance records
N1 number of distinct provenance records; N1 ≤ N
N2 number of data items whose provenance record

is different from that of their parent data item; N2 ≤ N
n number of provenance nodes; n ≥ N
n1 number of distinct provenance nodes; n1 ≤ n
n2 number of distinct provenance nodes, after removing the arguments;

n2 ≤ n1 ≤ n
S average size of a provenance record
s average size of a provenance node
s′ average size of a provenance node without arguments; s′ ≤ s
p size of a pointer from the data store to the provenance store
A average size of an argument
a number of argument annotations
T number of data items that satisfy a predicate,

and have common provenance records

Table 4.1: Estimated provenance size for each reduction technique.

before and after Basic Factorization, is shown in Table 4.1.

4.1.2 Node Factorization

Often, two data items will have distinct provenance records, but these provenance records

will have many nodes in common. Node Factorization removes common provenance

nodes. Only one copy of each node is stored in a separate provenance store. Provenance

pointers are stored with data items to refer to these nodes.

Consider the workflow in Figure 1.4(a). Two distinct, but similar processes exist,

curateHPRD and curateBIND. Consider two provenance records that contain different

curation manipulations, but are otherwise identical. For instance, for provenance records
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P0 = A → B → C, and P1 = A → X → C, the provenance store after Basic

Factorization will have one record for each of P0 and P1. Obviously, we can do better by

factoring common nodes. This amounts to combining P0 and P1 as A → (B OR X) → C.

The pointer from the data items to the provenance store is used to indicate which of B or

X is present, i.e., which of P0 or P1 is the correct provenance record for that data item.

In order to accomplish this reduction, we must be able to determine that a) the A nodes

in P0 and P1 are equal, b) node B in P0 is similar to node X in P1, and c) the C nodes in

P0 and P1 are equal. Provenance Node Equality and Similarity are defined as follows.

Definition 8. Provenance Node Equality:
Two provenance nodes a and b are equal, denoted a

P
= b, iff

i. they refer to the same manipulation,
ii. all parameters and input types to the manipulation are identical.

Definition 9. Provenance Node Specific Similarity:
Two provenance nodes a and b are specifically similar, with respect to a similarity

function Sx, if Sx(a,b) = TRUE.

Notice that similarity function values are dependent on the provenance nodes. For

instance, we can define a similarity function

S1(a, b) = {a.name like ‘curate’ and b.name like ‘curate’}. In this case

S1(curateHPRD, curateBIND) = TRUE, but S1(curateHPRD, transform) =

FALSE. We write S for the set of acceptable similarity functions, as defined by a

provenance expert familiar with the provenance store in question.

Definition 10. Provenance Node Similarity:
Two provenance nodes a and b are similar, if they are specifically similar with respect

to some similarity function Sx() ∈ S .

Provenance node similarity, as defined above, is a binary relation on the provenance

nodes. We assume that the set S of similarity functions is such that this relation has the

following properties.

• Reflexive: Each provenance node is similar to itself.

• Symmetric: If node a is similar to node b, then b is similar to a.
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• Transitive: If a is similar to b, and b is similar to c, then a is similar to c.

So, provenance node similarity is an equivalence relation. It divides the set of all

provenance nodes in D into equivalence classes, such that two nodes are similar iff they

are in the same equivalence class. For example, consider the workflow shown in Figure

1c; there are five different kinds of manipulations. If we assume that all provenance nodes

that pertain to each kind of manipulation are similar, then the similarity relation has five

equivalence classes. If we further assume that all curateHPRD and curateBIND nodes are

similar to each other, then the similarity relation has only four equivalence classes.

Using the above definitions, we can combine P0 and P1 as A → (B OR

X) → C. But what happens if we change our provenance records slightly to:

P3 = J → K → L → M and P4 = J → N → O → M ; we would like to combine them

as J → (K OR N) → (L OR O) → M . In other words, two provenance records could

contain a long chain of similar provenance nodes. We can apply Node Factorization to

such records using the following definitions.

Definition 11. Common Ancestor Node:
Two provenance nodes a and b have a common ancestor node if
i. a.parent

P
= b.parent, or

ii. a.parent and b.parent are similar, and also have a Common Ancestor Node.

Definition 12. Common Descendant Node:
Two provenance nodes a and b have a common descendant node if, for some children c

and d of a and b, respectively, we have
i. c

P
= d, or

ii.c and d are similar, and also have a Common Descendant Node.

Definition 13. Similar Chains:
Two equal length chains C and C ′ of provenance nodes are similar if
i. The topmost nodes in C and C ′ are equal,
ii. The bottommost nodes in C and C ′ are equal, and
iii. the ith node in C and C ′ are similar, ∀i 6= top and i 6= bottom.

Utilizing these definitions, our Node Factorization algorithm produces a smaller

provenance store. When two nodes are determined to be Similar nodes in Similar Chains,

they can be merged in the Provenance Store. The equivalence class that they belonged to
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and the Provenance Store now have one larger node. Moreover, because of the property of

Similar Chains, the parents of these two merged nodes can also be merged and treated as

one large node.

Algorithm 1: The Node Factorization with Similarity Algorithm.
Input: Dataset D with Provenance Records
Input: Similarity Functions S
Output: Dataset with Provenance Store of Factorized Nodes
Hashtable H;1

forall DataItems d ∈ Dataset D do2

ProvenanceRecord r = d.provenance;3

for ProvenanceNode n ← r.nextNode() do4

if ! H.contains( n ) then5

H.put( n, pointer );6

end7

pointer = H.get( n );8

writePointerInDataset( pointer );9

end10

end11

forall ProvenanceNode n ∈ Hashtable H do12

E= groupIntoEquivalenceClasses(S, H);13

end14

forall EquivalenceClasses E ∈ E do15

forall ProvenanceNodes n ∈ E do16

mergeAllSetsOfSimilarChains();17

writeInProvenanceStore();18

end19

end20

Node Factorization makes one pass over D, and runs in time O(size(D) + e2h), where

e is the number of provenance nodes in an equivalence class and h is the height of the

provenance trees. In our experience, size(D) greatly outweighs e2h. Algorithm 1 contains

the related pseudocode. The main data structure used is a hashtable on the provenance

nodes. As each provenance node is encountered in the input data file, we search for it in

the hashtable. When all provenance nodes have been seen, we find similar nodes in the

provenance store. If a node X is equal or similar to a node B in the provenance store, and

has a common ancestor and common a descendant with B, then X and B are unioned (i.e.,
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OR-ed) in the provenance store; see the example of (P0, P1) or (P3, P4) given above. We

further assume the similarity functions are coarse enough such that the following holds:

the number of equivalence classes is some constant determined by S, independent of

size(D).

We must expand the provenance pointer to include more information. The provenance

pointer used in Basic Factorization is merely a pointer to the root of a particular tree in the

reduced provenance store that corresponds to the provenance record of a data item. In our

example, if only the base of the branch, A, were recorded for a data item’s provenance,

does the provenance contain B or X? To remedy this, our provenance pointer must note

which provenance nodes are being referenced.

We have the following result about the content of the provenance store.

Theorem 4.1.1. Order Invariance:
Suppose that the set S of similarity functions is such that the provenance node

similarity is an equivalence relation. Given a set of provenance records, the order in which
they are merged into the provenance store by our Node Factorization algorithm does not
affect the content of the provenance store.
Proof: Follows from the fact that the provenance nodes are divided into equivalence
classes.

Recall from Chapter II that n denotes the number of provenance nodes in D; let s be

their average size. Let n1 be the number of distinct provenance nodes. The space used for

provenance records, after Node Factorization, is shown in Table 4.1.

Factorization of Optional Nodes

Consider the two provenance records:

P0 =

4

5
3 1

(4.1)

P1 =

4

5
3 2 1

(4.2)

Node factorization will not combine them, because Manipulation 3 has different
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parents in P0 and P1. This will lead to the following provenance store:

2
4

5
3

4

5
3

1

(4.3)

This provenance store is larger than it could be. Instead, we would like a much smaller

provenance store as:

4

5
3 2 1

(4.4)

where the square brackets indicate that [Manipulation 2] is optional.

We can achieve this result by using the provenance pointer to indicate whether the

optional part applies in each instance. Once this machinery is in place, we can even merge

two independent paths into one longer sequence. For example, A → B → C → D and

A → E → D can be merged as A → [(B → C) OR E] → D, with the provenance

pointer to indicate which of (B → C) and E is present. Note that we no longer require

similarity of merged nodes. In other words, (B → C) need not be similar to E.

Our algorithm for Node Factorization can be modified to also factor optional nodes; it

will retain a single pass, O(size(D)) run time.

Unfortunately, we no longer have order invariance. Because the algorithm adds

‘optional nodes’ based on the parental ordering of the incoming provenance tree, and

attaches them to the bottom of any other pre-existing optional nodes, the resulting

provenance tree will be directly affected by the order in which we encounter the

sequence of provenance nodes (e.g. A → [B → C] → [E] → D is different from

A → [E] → [B → C] → D).
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4.1.3 Argument Factorization

We find that minor differences across provenance nodes can limit the utility of the

Factorization algorithms discussed so far. For example, PubMedID, an input to the

curateHPRD manipulation, can be different in otherwise identical provenance nodes.

Because this one item is different, we no longer have a common provenance node to

factor out. In Figure 4.2(a), the curateHPRD provenance nodes for the ABC1 and

Chk1 molecules are identical except for the PubMedID, leading to no Basic or Node

Factorization.

To permit maximum factorization of provenance under such circumstances, we

consider provenance node components. We explicitly identify “arguments”, and maintain

them as part of the instance provenance pointer (from a data item to the provenance store)

while factoring out the rest of the node. This begs the question, “What is an argument?”

While the case is clear for the PubMedID in the example above, how about a parameter to a

process that completely alters its execution? Rather than attempt to define the semantics of

what is an argument, we say that a component is an argument if it exists in the provenance

store less often than a user-specified threshold. The choice of this threshold is discussed in

Section 4.4.7.

Argument Factorization involves two passes over D. The first pass uses a hashtable of

provenance components; it is used to identify the arguments, by counting the number of

times each component occurs. Using the provenance records in Figure 4.2(a) for example,

we do a traversal of each provenance node component in each provenance record. The

first component seen in this case would be PubMedID 16524875. It is placed in the

hashtable. The next provenance component seen is the curateHPRD manipulation; it too

is placed in the hashtable. This process continues until curateHPRD is seen again from

the provenance record of Chk1. At this point, it is noted that curateHPRD, is already in

the hashtable. As we continue through the rest of the the provenance nodes, we add new

provenance components, and count those seen multiple times. Then, the components seen
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Figure 4.2: Example of Argument Factorization. (a) ABC1 and Chk1 molecule data items. (b) The same
data items with provenance pointers, after Argument Factorization.

less often than the threshold (one in this example) are identified as arguments. The second

pass is used to generate the new provenance store consisting of one copy of each distinct

node sans its arguments; this process is similar to Node Factorization (Section 4.1.2). The

result of these operations is shown in the provenance store of Figure 4.2(b).

Algorithm 2 contains the pseudocode for Argument Factorization. Argument

Factorization makes two passes over D: one pass to place all the components into the

hashtable (for determining the arguments), and one pass to factor the nodes sans their

arguments. Each pass takes O(size(D)) time. Argument Factorization can use the same

set of provenance pointers described in Section 4.1.2. The arguments are then attached

to the provenance pointer. Additionally, we can make the following statements about

Argument Factorization:

Theorem 4.1.2. Arg. Factorization Order Invariance:
The order in which provenance records are added to the provenance store using

Argument Factorization does not affect the final version of the provenance store.
Proof: Proof is straightforward since factorization depends only on the count.

Recall that n is the number of original provenance nodes, and n1 is the number of
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Algorithm 2: The Argument Factorization Algorithm.
Input: Dataset D with Provenance Records
Input: Arg Threshold
Output: Dataset with Provenance Store of Argument Factorized Nodes
Hashtable H;1

forall DataItems d ∈ Dataset D do2

ProvenanceRecord r = d.provenance;3

for ProvenanceNode n ← r.nextNode() do4

for ProvenanceComponent c ← n.nextComponent() do5

if H.contains( c ) then6

H.put( c, c.getCount++ );7

else8

H.put( c, 1 );9

end10

end11

end12

end13

forall DataItems d ∈ Dataset D do14

ProvenanceRecord r = d.provenance;15

for ProvenanceNode n ← r.nextNode() do16

for ProvenanceComponent c ← n.nextComponent() do17

int h = H.getCount( c );18

if h ¿ Arg Threshold then19

writePointerInDatasetToComponent;20

writeComponentInProvStore;21

else22

writeArgumentInDataset;23

end24

end25

end26

end27

distinct provenance nodes; s is their average size. Now, let n2 be the number of distinct

provenance nodes, after removing the arguments; so n2 ≤ n1 ≤ n. Let s′ ≤ s be the

average size of a node without arguments. Let A be the average size of an argument,

and let a be the total number of argument annotations used on the pointers from the data

store to the provenance store. The space used for provenance records, after Argument

Factorization, is shown in Table 4.1.
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Figure 4.3: Example of Structural Inheritance. (a) The ABC1 molecule data item. (b) The same data item,
after applying Structural Inheritance.

4.2 Provenance Inheritance

Provenance Factorization, discussed above, finds similarities between the steps used to

derive arbitrary data items. An orthogonal optimization finds similarities in a local portion

of the data tree (Structural Inheritance) or between the provenance associated with data

items of a particular type (Predicate Inheritance). When provenance is inherited by an

item, there is no need to record any provenance with that item; the inheritance mechanism

will correctly instantiate what is required.

4.2.1 Structural Inheritance

There is often a repetition of provenance information at a fine-grained level because

the same provenance is shared by data items that have a structural (parent-child or

ancestor-descendant) relationship. Recall that data items can include other data items. For

example, in Figure 4.3(a), the molecule data item contains the ID data item, which could
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in turn contain an idType data item. The provenance is the same for both the molecule

and ID data items; however, both provenance records are recorded in a full provenance

store. If, instead, we only record provenance for an item when it is different from that of

its parent, we can reduce the space used. On the other hand, the name data item does

not have the same provenance as the molecule data item, and so cannot inherit from its

parent. Figure 4.3(b) depicts the provenance records using structural inheritance.

We use a single-pass, stack-based algorithm to determine ancestor-descendant

relationships and inheritance patterns; Algorithm 3 contains the pseudocode. Whenever

we encounter a new data item, we compare its provenance with the provenance on top of

the stack. If the two provenance records are not the same, write the provenance for the

data item, otherwise write nothing. Push the provenance onto the stack. When we reach

the end of a data item, pop a provenance from the stack. This one-pass algorithm takes

O(size(D)) time.

Recall from Section 4.1.1 that the number of (not necessarily distinct) provenance

records is N , and is the same as the number of data items; S is the average size of a

provenance record. Let N2 be the number of data items whose provenance record is

different from that of their parent data item. The space used for provenance records, with

Structural Inheritance, is listed in Table 4.1.

4.2.2 Predicate Based Inheritance

Some provenance may apply to the dataset as a whole, or to items of a certain type within

it. For instance, a query can be used to create an entire dataset; then, all data items in that

set would have the same provenance. If every data item in a dataset contains the same

provenance record, that record can be moved from the instance-level provenance to the

dataset-level provenance. For instance, in Example 2, every data item was the result of the

same selection process.

More frequently, it is the case that only some of the data in the dataset is created using
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Algorithm 3: The Structural Inheritance Algorithm.
Input: Root DataItem, d ∈ Dataset D
Input: Stack S
Output: Data Item with Structurally Inherited Provenance
/* Note that this works through a dataset in tree form.

If given a relational database, this method can still
be used by mapping each data item to
Database/table/tuple/row/ or
Database/table/tuple/row/attribute etc. and building
the tree in this manner. */

ProvenanceRecord r = d.provenance;1

ProvenanceRecord t = S.peek();2

S.push( r );3

if r 6= t then4

storeProvenanceWithDataItem;5

end6

for d ← d.nextChild() do7

structInherit( d, S );8

end9

S.pop();10

a global operation. For instance, for each molecule, we may introduce a new attribute

molecular weight computed based on its known sequence information. We would like

to store the provenance once for all of the molecular weight items in the dataset, rather

than storing it once for every data item. To accomplish this, we partition the data based on

the satisfaction of a boolean predicate. An example of a valid predicate would an XPath

expression such as document(“dataset”)//molecule. If the associated provenance, or a

subset of the provenance, is the same for all data items that satisfy some predicate, then

the common provenance can be pulled out of each data instance. It can be stored at the

dataset level, together with the boolean predicate that specifies the data items to which the

provenance applies.

In general, there is a tradeoff between boolean predicate complexity and the efficiency

of predicate-inherited provenance. It is possible to specify a boolean predicate that

specifically targets just one data item within the dataset. In this case, it would be more

efficient to merely store the provenance at the instance level. On the other hand, if
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the boolean predicate is not specific enough it will return too many data items and the

likelihood of having a similar provenance among them is small. However, using some

knowledge of the dataset, it is possible to find a set of boolean predicates that allow

Predicate Based Inheritance on a large portion of the dataset. In our experiments, we use

element type as the predicate. Thus, if all elements of the same name in our dataset contain

nearly the same provenance, then the provenance, or subset of provenance components,

can be stored at the dataset level, as shown in Figure 4.4. Note that we are agnostic about

the actual schema used to represent the data set.

The Predicate Based Inheritance algorithm makes two passes over D; pseudocode can

be found in Algorithms 4–5. In the first pass, we identify those provenance components

that are common to all data items which satisfy a predicate; this is done for each predicate

in a set of user-defined boolean predicates. If a data item d satisfies the predicate P , and

no provenance information yet exists for P in the dataset-level provenance store, we create

a new entry for P : It contains all the provenance components for d. If there already exists

a predicate-provenance pair for P , we remove from it those components that are not in the

provenance record for d. Once this first pass is completed, the provenance store will have a

set of predicate-provenance pairs. A pair is present only if every data item that satisfies the

predicate contains the same nonempty subset of provenance node components. A second

pass over the entire dataset is then needed to write the remaining provenance that is not

predicate-inherited.

Consider the runtime of our Predicate Based Inheritance algorithm. Let Pred be a

set of user-defined predicates that are disjoint in the sense that no element can satisfy

more than one predicate. Suppose that, for each element, it takes O(t) time to determine

which (if any) predicate in Pred that element satisfies. Then the first pass takes time

O(Nt + size(D)). The O(size(D)) part comes from the following: For each element

d ∈ D that satisfies a predicate P ∈ Pred, we either create a new predicate-provenance

pair for P (if d is the first element seen that satisfies P ), or modify the previously existing
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Algorithm 4: The Predicate Inheritance Algorithm, Part I. Note: Parts I & II are
separated purely for readability.

Input: Dataset D with Provenance Records
Input: Predicate List Pred
Output: Dataset with Predicate Inherited Provenance
Hashtable H;1

forall DataItems d ∈ Dataset D do2

if d satisfies P ∈ Pred then3

ProvenanceRecord r = d.provenance;4

if H.get( P ) = null then5

List M ;6

for ProvenanceNode n ← r.nextNode() do7

for ProvenanceComponent c ← n.nextComponent() do8

M .add( c );9

H.put( P , M );10

end11

end12

else13

List M = H.get( P );14

List N ;15

for ProvenanceNode n ← r.nextNode() do16

for ProvenanceComponent c ← n.nextComponent() do17

N .add( c );18

end19

end20

forall m ∈ M /∈ N do21

M .remove( m );22

end23

end24

end25

end26

goto: Algorithm 527

predicate-provenance pair for P . This takes time proportional to the size of the provenance

record for d; over all d ∈ D, the total time is O(size(D)). The second pass involves, for

each d ∈ D satisfying predicate P , leaving out those components in the provenance record

of d that are in the dataset level predicate-provenance pair for P . This too takes time
∑

d O(|provrecord(d)|) = O(size(D)).

Recall from Section 4.1.1 that N is the number of provenance records, and S is their
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Algorithm 5: The Predicate Inheritance Algorithm, Part II. Note: Parts I & II are
separated purely for readability.

Input: Dataset D with Provenance Records
Input: Predicate List Pred
Input: Hashtable H
Output: Dataset with Predicate Inherited Provenance
forall DataItems d ∈ Dataset D do1

ProvenanceRecord r = d.provenance;2

if d satisfies P ∈ Pred then3

List M = H.get( P );4

if M = null then5

writeProvForDataItem( r );6

else7

for ProvenanceNode n ← r.nextNode() do8

for ProvenanceComponent c ← n.nextComponent() do9

if c ∈ List M then10

r.remove( c );11

end12

end13

if !r.isEmpty() then14

writeProvForDataItem( r );15

end16

end17

end18

else19

writeProvForDataItem( r );20

end21

end22

forall M ∈ Hashtable H do23

writePredicateProv();24

end25

average size. Let T be the average number of provenance records that satisfy a predicate,

and have the same provenance record. The space used for provenance records, using

Predicate Inheritance, is shown in Table 4.1.
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Figure 4.4: The data and provenance after applying Predicate Inheritance to ABC1 and Chk1.
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4.3 Discussion

4.3.1 Combining Reduction Techniques

Any member of the Factorization Family (Basic, Node, Optional and Argument) can be

applied independently to any dataset. Any member of the Factorization Family can also

be used with Inheritance. Structural and Predicate Inheritance can also be combined. To

apply such combinations, certain properties must be taken into account.

Using either Inheritance with any Factorization is straightforward, with two caveats:

order and arguments. First, Inheritance should be performed before Factorization, since

there will be fewer records to factor. Although the same correct results will occur

regardless of ordering, the algorithms will run faster with Inheritance performed before

Factorization. Second, provenance is not structurally inherited between data items that

have the same set of manipulations but different arguments; only completely identical

provenance records can be structurally inherited.

While both Structural and Predicate Inheritance can be applied individually to a

dataset regardless of any Factorization usage, they can also be applied to a dataset

jointly. Their conjunction is straightforward, with just a few details that should be noted.

Structural Inheritance must be applied before Predicate Inheritance, as shown in Algorithm

6. Otherwise, reconstructing the provenance of a data item is potentially ambiguous.

Consider the scenario:

Example 6.
molecule

1

2 name

3

molecule

1

2 name

3

(Element.value() = name)

molecule

1

2 name

3

1

2

6a 6b 6c
Consider the molecule and name data items shown in 6a (grey circles are provenance

nodes). If Predicate, then Structural Inheritance is applied to it, the reduced provenance
will look like in 6b (assuming the provenance for the name data item gets moved to
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the dataset-level provenance store due to Predicate Inheritance). To re-instantiate the
provenance, we would first look for Structural then Predicate Inheritance for the name
data item and produce 6c; this is clearly incorrect. Because Structural Inheritance has
the requirement that the entire provenance record is either inherited or not, this situation
cannot occur if Structural Inheritance is performed before Predicate Inheritance.

Algorithm 6: The Structural and Predicate Inheritance Algorithm.
Input: Root DataItem, d ∈ Dataset D
Input: Predicate List Pred
Output: Dataset with Structural and Predicate Inherited Provenance
ProvenanceRecord r = d.provenance;1

ProvenanceRecord t = S.peek();2

S.push( r );3

if r 6= t then4

runPredicateInheritance( d, Pred );5

end6

for d ← d.nextChild() do7

structAndPredInherit( d, S );8

end9

S.pop();10

Figure 4.5 shows ABC1 and Chk1 with Structural then Predicate Inheritance applied

to the entire dataset. The provenance for the ABC1 name data item is found at the

dataset-level (predicate based) provenance, and in the reduced provenance pointer.

The provenance store size estimation formulas in Table 1 can be modified to reflect

combinations of techniques.

4.3.2 Querying Provenance

There are several classes of queries that utilize provenance. Table 4.2 describes some

classes, and provides a sample query for each class from the MiMI query logs. Class 1

asks for the provenance of an individual data item. Class 2 seeks the provenance for all

data items of a given type. In Classes 3–4, provenance is used as a selection condition for

a data item, with low and high selectivity, respectively. Finally, Class 5 performs data item

joins based on provenance information. These query classes were chosen from an analysis
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Figure 4.5: The ABC1 and Chk1 records from Figure 1.1 after Structural and Predicate Inheritance and
Argument Factorization.
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Class Description Example
1 retrieve provenance for $b in document(“MiMI”)/molecule

for specific data where $b/name = “ABC1”
return prov($b)

2 retrieve provenance for $b in document(“MiMI”)/molecule
of all items of type X return prov($b)

3 use provenance as for $b in document(“MiMI”)/molecule
a condition where prov($b) = “HPRD”
(low selectivity) return $b

4 use provenance as for $b in document(“MiMI”)/molecule
a condition where prov($b) = “PubMedID 15964826”
(high selectivity)

return $b
5 join using for $b in document(“MiMI”)/molecule

provenance for $n in document(“MiMI”)/name
where prov($b) = prov($n) return $b

Table 4.2: Sample provenance queries classed by complexity.

of MiMI’s query logs, and represent a mixture of interest in the data item, based on its

provenance, and the provenance itself.

4.3.3 Incremental Maintenance

We have described above how to reduce the cost of storing provenance, through

Factorization and Inheritance, for a static data set with static provenance. We now consider

what to do if changes are made to a data set and/or its associated provenance. How does

the factorized and/or inherited provenance change? Can we manage these changes using

incremental algorithms, without having to analyze the entire data set, and yet achieve the

same small storage space as if the static algorithm had been run? Our answer is, for the

most part, positive.

There are three different types of updates that we wish to consider. The first is deletion

of data. This is simple – the only case needing any attention is a possible impact if the

deleted item d had children that structurally inherited provenance from it. In this case, we

need to locally adjust the provenance for all children that inherited provenance from d.
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The second type of update is insertion of data. For the entire family of Factorizations,

the provenance associated with the new data is merged into the provenance store; only

the new data and its provenance pointer(s) are written to the data store. If Structural

Inheritance is used, the task is again simple – first consider the automatically inherited

provenance at the newly inserted item d, and see if this is appropriate. If it is, we are

done. If it is not, then we have to record the provenance with d. If d has children, then the

impact of the insertion on their structurally inherited provenance must also be considered.

If this has changed, then the provenance recorded at these child items has to be modified

accordingly. We can encounter a slightly more complicated problem when there is a data

insertion while using Predicate Inheritance. Let the new data item d satisfy a boolean

predicate P that has dataset-level provenance. If the dataset-level provenance for P is

a subset of d’s provenance, then this is easy: we store with d only those provenance

components that are not stored with P at the dataset level. However, if the dataset-level

provenance for P is not a subset of d’s provenance, then we must do the following:

Remove from the dataset-level provenance for P those components that are not in d’s

provenance, and re-insert those components as a provenance pointer at every data item

(except d) that satisfies P .

The third case is where there is no change to the data, but we change the provenance

associated with some data item (perhaps it had been recorded incorrectly). For this, the

exact same steps occur as if the data item itself changed. Additionally, the provenance

store can be added to, without making any changes to the instance-level provenance

pointers.

4.4 Experimental Evaluation

4.4.1 The Setup

Currently, few provenance stores exist along with datasets. Most are either destroyed after

the dataset is created, never created. We were able to gain access to two very distinct styles
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Provenance Store
U Unreduced Provenance Store
S Structural Inheritance
P Predicate Inheritance
SP Structural & Predicate Inheritance
B Basic Factorization
BS Basic Factorization with Structural Inheritance
BP Basic Factorization with Predicate Inheritance
BSP Basic Factorization with Structural & Predicate Inheritance
N Node Factorization
NS Node Factorization with Structural Inheritance
NP Node Factorization with Predicate Inheritance
NSP Node Factorization with Structural & Predicate Inheritance
O Optional Factorization
OS Optional Factorization with Structural Inheritance
OP Optional Factorization with Predicate Inheritance
OSP Optional Factorization with Structural & Predicate Inheritance
A Argument Factorization
AS Argument Factorization with Structural Inheritance
AP Argument Factorization with Predicate Inheritance
ASP Argument Factorization with Structural & Predicate Inheritance

Table 4.3: Combinations of reduction techniques used in our experiments.

of provenance stores. The first style is a complex workflow used to create a synthetic data

set, involving 10 processes each consuming and producing 10 data items. Provenance

storage for this workflow has been studied carefully, and in fact two different provenance

storage structures have been used: Karma [125] and PReServ [75]. Even though both

stores represent the same base provenance, the Karma provenance store is about 300MB

while PReServ is about 500MB. The second style of provenance store is from an actual

large data set, MiMI [83]. The implicit workflow to create each data item comprises only a

few (2-4) steps, but with a very fine-grained approach. The base data in MiMI is 270MB,

while the provenance store is 6GB.

We applied various combinations of our provenance reduction techniques, as shown

in Table 4.3, to each provenance store. All experiments were run on a Dell Windows XP

workstation with Celeron(R) CPU at 3.06GHz with 1.96GB RAM and 122GB disk space.
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The algorithms were implemented in Java, as a utility for reducing provenance storage

after creation.

4.4.2 Storage Space

Figure 4.6(a) shows the space needed to store the provenance, according to each method;

most techniques significantly reduce the size. As expected, Argument Factorization (A)

does the same or better than Node (N) and Optional (O) for all the datasets. Whether

Structural or Predicate Inheritance is better depends on the makeup of the dataset. MiMI

has a very nested structure in which Structural Inheritance does very well. On the other

hand, Karma and PReServ have flatter data unsuitable for Structural Inheritance, but use

complex workflows that work well with Predicate Inheritance.

Inheritance combined with Factorization results in greater reduction for all data sets.

Regardless of the Inheritance used, Argument Factorization is the clear winner. Using

Argument Factorization with Structural Inheritance (AS), we produce a MiMI provenance

store that is 5% the original size. Meanwhile, using Argument Factorization with Predicate

Inheritance (AP) we can reduce the PReServ and Karma provenance stores to about 15%

and 12%, respectively.

Because our reduction techniques are highly dependent on the data store and

provenance store characteristics, we also created several artificial datasets to demonstrate

each reduction technique’s efficacy, based on the data and provenance characteristics; the

results are shown in Figure 4.7. In Figure 4.7(a), the provenance store contained different

amounts of provenance records, nodes and arguments, while the dataset and provenance

store allowed contained different Structural and Predicate Inheritance characteristics. It

is clear that the Factorization techniques are highly dependent on the provenance store’s

distribution while the Inheritance techniques vary based on the dataset and provenance

store.

Using a representative sample of the more interesting techniques, as the size of the
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Figure 4.7: Provenance store size based on reduction technique, data and provenance characteristics. (a)
Basic, Node and Argument Factorization. (b) Structural and Predicate Inheritance.
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Figure 4.8: How the reduction algorithms scale based on input size in (a) space and (b) time.

provenance store grows, all our reduction algorithms remain O(N), as shown in Figure

4.8.

4.4.3 Reduction Time

Figure 4.6(b) shows the reduction time for each technique. As can be seen in Figure

4.6(b), the techniques perform differently on each provenance store. Reduction time is

the worst for Node Factorization; Argument Factorization and Basic Factorization are not
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so bad. The reason for this is that Node Factorization maintains parental information,

and will repeat the same node if it occurs in different places in the workflow, making

the underlying data structures large and unwieldy. Argument Factorization has a large

in memory structure to keep track of the arguments. However, because these arguments

are not written, there are fewer round trips to the provenance store, thus keeping the time

cost down. Karma and PReServ reduction is fast through all Factorization techniques. At

first glance, it could be expected that the time to run Structural Inheritance should be less

than the time to run both Structural Inheritance and Basic Factorization. However, we do

not perform global Structural Inheritance then global Factorization which would make S

<BS. Instead, for each data item, we test for Structural Inheritance, then immediately,

reduce it via Factorization. The overall data structures are therefore smaller for BS than S,

and this is reflected in the time. The reduction times presented were generated using an

unoptimized implementation. Instead of reading provenance for a local tree, applying the

reduction and writing it out, once the provenance structure is read in, it does not get written

until the final provenance store build. In other words, as implemented, we have a large

memory overhead which can be reduced by a more storage-intensive implementation. In

this work, we are more concerned with the relative times between techniques.

4.4.4 Query Time

The time it takes to reduce the provenance store, and the space used to store it, are only

part of the overall needs of a functioning provenance system. It is imperative that the

provenance remain queriable with the data itself. Because MiMI is queriable online, we

were able to obtain the query logs, and use real queries generated by biologists. In Table

4.2, we describe five classes of queries from these real queries. Each query was run five

times on a cold cache and the average of the three median times is reported. The only

indexes built were element tag indexes. In order to accommodate Structural Inheritance, a

new iterator was created. We obtained and modified Timber [81] such that it will find the
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Figure 4.9: Query time for each query class on MiMI, for different reduction techniques.

provenance of a node even if it inherits from an ancestor. If the provenance is not found at

a given node, the iterator returns the provenance of the parent node. Thus, this new iterator

is at worst O(h) time, where h is the height of the data tree. Figure 4.9 shows the query

execution time for queries in different classes.

Although our reduction techniques may make the provenance representation less

straightforward, they not only save space, they can also reduce query time. A look at

Figure 4.9 shows some interesting trends. For Classes 1, 3 and 4, in which queries have

selectivity, queries on reduced stores perform on par, or better than the original store. In

particular, Classes 3 and 4, using provenance as a condition in a low and high selectivity

query respectively, show how the reduced stores can out-perform the original, based on

size differences. Unfortunately, Class 2 queries perform worse on the reduced store. This

is because every such query requires at least one join in the reduced stores. Finally, Class

5 query times on reduced stores are mixed compared to the original store. These queries

require multiple joins, and it is impossible to push provenance instantiation higher in the

query plan. This leads to poor performance in some cases, although Predicate Inheritance
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(P) and Argument Factorization with Structural and Predicate Inheritance (ASP) both do

better than unreduced.

Structural Inheritance performs well across the board. This is due to a combination

of reduced space and an O(h) iterator. First, the provenance store is so reduced that

the entire database is distinctly smaller. Second, no join needs to be performed, and the

ancestor-lookup iterator is relatively fast. Predicate Inheritance appears all over the map

in these queries. In some cases it does well, while in others it is almost the worst. Even

within the same query class, it has wildly varying performance. A closer inspection of the

provenance store itself contains the answer. In the case where there is a predicate-inherited

item (e.g. type=‘name’) in the provenance store, the method does very well. However, if

no predicate inheritance exists for a certain element type, then the query performs poorly.

4.4.5 Incremental Maintenance

As discussed in Section 4.3.3, the reduction technique used can affect the complexity of

incremental maintenance. Figure 4.10 shows how each store performs, for data insertion,

data deletion and provenance changes. A random sequence of data inserts, deletions

and provenance changes were performed, in equal measure, regardless of the reduction

technique. For a provenance store with Structural Inheritance, Figures 4.10(a) and 4.10(e),

the following inserts, deletes and provenance changes were performed: 1. insert a data item

that Structurally Inherits provenance (from its parent); 2. insert a data item that does not

Structurally Inherit provenance; 3. delete a data item with children that Structurally Inherit

provenance from it; 4. delete a data item with no such children; 5. change provenance

for a data item; with children that Structurally Inherit provenance from it; 6. change

provenance for a data item with no such children. For a provenance store with Predicate

Inheritance, Figures 4.10(b) and 4.10(e), the following inserts, deletes and provenance

changes were performed: 1. insert a data item that Predicate Inherits provenance; 2. insert

a data item that does not Predicate Inherit; 3. insert a data item that Predicate Inherits
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Figure 4.11: XGRIND, GZIP and a sample of Reduction Techniques applied to the MiMI Provenance Store.

provenance, but breaks the inheritance pattern for all elements of that type; 4. delete a data

item; 5. change provenance for a data item that Predicate Inherits provenance; 6. change

provenance for a data item that does not Predicate Inherit; 7. change provenance for a data

item that Predicate Inherits, but breaks the inheritance pattern for all elements of that type.

For a provenance store with just Factorization, Figures 4.10(c) and 4.10(d), the following

inserts, deletes and provenance changes were performed: 1. insert a data item; 2. delete a

data item; 3. change provenance for a data item.

As shown in Figure 4.10, no matter what provenance reduction technique is used,

updates are easy to perform. We would like to note that using Predicate Inheritance lowers

the average time for a data insert. If the data item and provenance satisfies a predicate,

then there is no need to manipulate the provenance store, thus saving time. Additionally,

in provenance stores using straight Factorization, deletes and provenance changes are

relatively cheap since there is no need to check inheritance dependencies. The take away

point here is that incremental maintenance on a reduced provenance store is cheap.
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4.4.6 Interaction with Other Compressors

As previously noted, traditional XML compression techniques are not suitable for our

purposes because they do not result in a provenance store that is queriable along with

base data. Even techniques such as XGRIND, which support keyword and path queries

[134], do not have the full associative power needed to support joins between provenance

and data. However, we have applied XGRIND using Huffman (H) and Arithmetic (A)

encoding to the original provenance store, and compared the compressed size with our

reduced stores. Additionally, although a gzipped document is not queriable, we included

the gzipped provenance store as a well known comparison point. As shown in Figure

4.11, XGRIND on the un-reduced provenance store creates a reduced store smaller than

any of the Inheritance methods on their own. However, using combinations of reduction

techniques it is possible to compress the provenance store smaller than XGRIND and still

maintain the ability to query data and provenance together. Additionally, it is possible to

combine our reduction techniques with any classic XML compressor, such as XMill [90],

to get an extremely small store, as shown in Figure 4.12. While our reduction techniques

do not compress as well as an XML compressor like XMill, the data in our compressed

stores can be queried while the information compressed by XMill cannot. However, should

the ultimate storage size be a primary concern, combining our reduction techniques with

an XML compressor gives the best results.

4.4.7 Other Parameters

Figure 4.13 shows the relationship between Argument Threshold, the time to produce the

reduced provenance store, and the size of the reduced store. In the case of MiMI, there

is a drastic drop in the runtime between an Argument Threshold of 5 and 50. This drop

is explained by the makeup of the provenance store. With a threshold of 5, there are very

few arguments; everything gets moved from the base store to the provenance store, with

associated pointers needed. When the threshold moves to 50, however, a substantial part
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Figure 4.12: XMill applied to the reduced provenance stores.

of provenance records get treated as arguments, and are left untouched in the provenance

store. Unfortunately, as the threshold gets larger, there is again a disadvantage since fewer

items qualify to be moved from the general store to the provenance store. Depending on

the dataset, the Argument Threshold affects runtime and reducibility differently. Reduction

of the Karma and PReServ stores performs best in time and space with an Argument

threshold of 10. This is a reflection of how often common sources or manipulations are

used in each. MiMI utilizes the same sources and manipulations over and over, while the

processes used to generate Karma and PReServ do not.

Between 5-50 seems to be a robust range of values for the Argument Threshold, likely

not to be too far from optimum. This is a good range in which to set the default value for

this parameter, as a rule of thumb, although as shown with MiMI, some twiddling of this

knob may be required.
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Figure 4.13: Argument Factorization efficiency dependence on Argument Threshold.

86



4.4.8 Practitioner’s Guide

If only one type of reduction were to be used, we would recommend Argument

Factorization. We have already seen that it results in better reduction than the other

Factorization techniques. Argument Factorization is the hands down winner for the

following reasons:

• It has smaller reduction times due to a reduced number of writes.

• It is order invariant and does not depend upon whether user functions are reflexive,

symmetric and transitive.

If further reduction is desired, we suggest the following setups based on data and usage

criteria:

For Best Storage Reductions

Data Characteristics Recommended Tech.

All Structural Inheritance

Most data types have specific Predicate Inheritance

process e.g. every name

element gets normalized

For Best Query Times

Query Characteristics Recommended Tech.

All Structural Inheritance 1

Uses provenance as a condition Argument Factorization

(high or low selectivity)

Uses provenance as a condition Predicate Inheritance

and data has type-specific

processes
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Note that if the data or query contains several characteristics listed above, our

techniques can be combined. The combination is synergistic, and will do more together

than either alone.

4.5 Conclusion

Provenance storage is becoming essential for scientific research, but the size of provenance

can overwhelm the size of data, in most cases. In this chapter we presented a strategy

to reduce provenance storage size. Specifically, we developed a family of Factorization

algorithms, as well as algorithms that exploit Predicate and Structural Inheritance. We

described how to apply all three techniques in tandem to the same data set.

Our experimental assessment showed that our strategy can reduce the size of

provenance by up to a factor of 20. The reduction algorithm scales linearly with

provenance store size. Provenance remains queriable, even after reduction using our

strategy. In fact, some classes of queries run faster on the reduced store. Also, our

reduction strategy is orthogonal to traditional text or XML compression: both can be

applied in tandem to get additional reduction, if queriability is not a requirement.

Our work has assumed a generic enough provenance model that many existing systems

could easily be mapped to. We are currently in conversations with owners of large

scientific data sets to have them adopt our provenance reduction techniques on their

production data. We create a suq of possible choices for the user, allowing different

compression techniques to be selected and utilized according to the unique characteristics

of the data and provenance stores. Code and data used in this chapter are available at:

http://www.sigmod.org/codearchive/sigmod2008/.

1Requires availability of an iterator to trace ancestors.
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CHAPTER V

UNDERSTANDING PROVENANCE BLACK BOXES

In the well-prescribed, white-box world of databases, it is possible to collect very fine-

grained provenance on every table, tuple and cell and know exactly where the information

came from and why it is in the result set [23, 29, 30, 48, 49, 50, 46, 64, 71, 88, 144]. On

the flip side of the coin are workflow systems that allow any number of user-defined and

implemented processes to manipulate the data [3, 4, 19, 32, 52, 62, 75, 86, 94, 97, 98, 101,

125, 109, 151, 150]. Unfortunately, the provenance collected for these black-box processes

is limited in scope and granularity. The provenance is enough for an automated system to

determine the processes and parameters, but fails to allow human users understanding of

what happened to a data item within the black-box.

Consider the following query and what happens in a database system that tracks

provenance:

Query 1. words to be in color
SELECT *
FROM HPRD
WHERE molecularWt <

SELECT AVERAGE molecularWt
FROM HPRD

Given the well-defined relational algebra, when a user sees the tuple for LXR in the

result set, the provenance can describe where, i.e. the exact cell the information came

from and why, i.e. the series of transformations and input tuples that influenced the fate of

the tuple of interest [29, 64, 48]. The provenance answers are precise and easily human

understandable, but are only possible because of the well-characterized relational algebra
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used to produce them.

Now consider what happens within a workflow system that strings together a series

of processes. If you take the query evaluation plan used by a relational system for Query

1 (Figure 5.1(a)) and create processes for each step, you get the workflow described

in Figure 5.1(b). Using a Workflow Management System (WfMS) with this workflow

allows large amounts of provenance detail to be captured such as software modules used,

environmental run-time conditions and parameters. However, given that these processes

are now user-defined and written, we have lost the ability to provide fine-grained where

and why information to the user. Real problems can arise that need in-depth provenance to

provide an adequate answer. For instance, in 1999, for only a few hours, if a user searched

for A Guide to Programming in C++ [47] in Amazon.com, the top result was A Hand in

the Bush, the Fine Art of Vaginal Fisting[1]. Why was this the top result? Was there a

problem in the underlying books database? Was there a bug in a post-query processing

step, or perhaps a malicious hack? Provenance should provide a means for determining

the answer.

HPRD H2

H2.molWt

HPRD H1 AVG(H2.molWt)

H1.molWt < 

AVG(H2.molWt)

1

2

34

5

(a)

Get_All_MolWts

Compute_AVG

outputSet1

Workflow Outputs

Screen_if_>_AVG

HPRD

Workflow Inputs

(b)

Figure 5.1: (a) The Query Evaluation Plan used for Query 1. (b) The workflow that mimics the Query
Evaluation Plan in (a) and can be used in a WfMS.
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5.0.1 The Problem

As illustrated above, provenance from WfMSs can only satisfy a portion of the scientist’s

need, since the granularity of the answer is at the black-box level. It contains both too

much and too little information to be useful. It contains too little information to allow

human users to fully understand what happened. No WfMS model today can point, for

example, to the specific attribute value that resulted in a particular function being applied.

If a user doubts the veracity of information coming from this function, knowing further

details is essential. However, it can tell her the set of manipulations applied, the set of

parameters and the source data on which the answer depends, which can be too much

information to process by a human. Furthermore the manipulations are typically defined

in terms of software modules/functions invoked, and the source data on which a result

depends can easily become a large set. In consequence, the scientist is overwhelmed with

irrelevant detail. Finally, we note that what constitutes a good explanation really depends

on what the scientist already knows, and what her own mental model of the domain is.

For instance, when a scientist using a WfMS looks at why a data item is in the result

set after the workflow in Figure 5.1(b), the provenance store will bombard her with the

set of manipulations that acted upon the data, all of their respective parameters and the

overwhelming set of input data items that led to the data’s inclusion in the result set.

Instead, consider how a human would answer the question. She would say, “Because the

molecular weight of LXR is 51,102Da, and the average molecular weight for proteins

in HPRD is 100,000Da.” From this step, based on her personal map of the world, she

could be surprised either that LXR weighs 51,102Da, or that the average in HPRD is

100,000Da. In other words, current techniques are not only missing information (51,102Da

<100,000Da), but providing too much information. Therefore users struggle to understand

data in the result set.

We seek to create a model of “provenance answers” to address the above challenges.

Our basic idea is to maintain provenance information at a very fine grain, but to develop
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a “roll up” model so that the scientist can be presented with a succinct but comprehensive

explanation to begin with. From here, the scientist can “drill down” to get recursively more

detailed explanations of aspects of interest. In addition, we describe a class of information

hereto unexplored by provenance systems that is essential for good user understanding.

Even with this extra information, each individual explanation should still be kept succinct,

by suitably limiting scope and granularity.

Solutions to assist users in understanding large provenance stores are being explored

by [41, 45, 121]. While these systems assist users in mining and visually exploring the

data, they fall short of providing “provenance answers” since the provenance information

they contain is limited as discussed above. Moreover, while they help organize provenance

information presented to the user, they do not allow the user to explore the provenance

store according to their own view of the world. While solutions such as [45, 121] allow

the user to choose which parts of the provenance store are important and abstract away

provenance information that is not needed, these approaches require users to interact with

the provenance store or workflow and decide what pieces can be abstracted away. This

approach is less effective for end users who may not be familiar with the processes run.

5.0.2 Chapter Outline

Thus, the provenance information as it exists today contains both too much and too little

information. It contains information that is imperative for re-running, but which swamps

a human user with irrelevant details i.e. too much information. On the other hand, when

a user is stymied about what happened to a data item, being given a set of manipulations

and their parameters is not helpful i.e. too little information.

In this chapter, we first highlight the need for better provenance explanations in Section

5.1, and present an overview of our proposed solution. Sections 5.2–5.3 describe expand

the foundations set down in Chapter II, and the expansion of provenance needed and a new

way to access provenance information respectively. The usability of this new provenance
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information is evaluated in Section 5.4. The structures needed to store the new provenance

information for result explanations are described in Section 5.5 and evaluated in Section

5.6. In Sections 5.7–5.8, we discuss adding our work into traditional workflow systems

and conclude.

5.1 Preliminary Investigations

Many people understand what will happen to the data given a SELECT function, but

what should be expected from bcgCoalesce [6]? To explore this disconnect between

information contained in the provenance store and what a user needs for understanding, a

small set of user interviews were performed.

For this experiment, it was imperative for the user to feel they understood what should

happen to the data from the query and input dataset. Thus, when the actual results are

produced, and it does not conform to their conception of the world, a constrained set of

provenance questions would be asked. In order to accomplish this, the users were provided

with the following information:

1. A small books database. They could see all of the books in it.

2. The application setup, i.e. that they would type their query into the web interface of

a database-backed website, which may have several server-side scripts acting upon

the data before it was displayed.

3. The set of queries. Table 5.1 contains the set of queries the users were asked to enter

into the system.

The users were asked to issue provenance queries verbally to understand the

results presented for each result set. We presented provenance in two different flavors:

Process [4, 11, 12, 21, 29, 32, 61, 62, 67, 73, 75, 76, 104, 122, 138, 150] and Lineage

[13, 14, 17, 29, 30, 48, 49, 50, 106, 140, 148]. The Process provenance stores explicit

records of the input and manipulations used while Lineage provenance provides the
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Query 1: Select all books whose price is less
than the average book price.
Results:
Author Title Price
Euripides Medea $16
Hrotsvit Basilius $20

Agamemnon $5,000
Reason: The query evaluation plan used re-
turns all books less than average, and all
books with no author.

Query 2: Select all ‘Greek epic’ books.
Results:
Author Title Price
Euripides Medea $16
Handford Where’s Waldo $92
Homer Odyssey $49
Sophocles Antigone $61

Reason: The server-side script that de-
termines the “type” of book uses book
attributes to determine ‘Greek epics’: if
(author=Euripides) or (author=Sophocles)
or (author.contains(‘H’ and ‘O’) and ti-
tle.contains(‘O’ and ‘D’)).

Query 3: Select all books written by women.
Results:
Author Title Price
Jane Austen Emma $50
Charlotte Bronte Jane Eyre $16
Emily Bronte Wuthering $49

Heights
Edith Wharton The Reef $20
Anna Karena Leo Tolstoy $70

Reason: The data in the database is incorrect.
The title and author are reversed for (Leo Tol-
stoy, Anna Karena).

Query 4: Select all books where author =
null.
Results:
Author Title Price

Agamemnon $5,000
Null Healthy Cooking $10

Reason: The server-side script runs
two queries, author==NULL and au-
thor==“Null”, and returns the merged
results.

Query 5: Select all books written by women.
Results:
Author Title Price

Epic of Gilgamesh $50
J.K. Rowling Harry Potter and the Goblet of Fire $10

Reason: The query created by the appli-
cation selects on year, but ignores BC and
AD.

Table 5.1: The Queries the Users were asked to type into the books website.
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Figure 5.2: Users asked a series of provenance queries to explain the results in Table 5.1. They declared
whether or not the provenance sufficiently answered their concern. Black areas indicate an adequate
provenance answer; grey areas show inadequate provenance answers. The provenance question was not
asked in the white regions. Users were shown both (a) Process Provenance and (b) Lineage Provenance.

series of transformation and set of input tuples. Both Process and Lineage provenance

information were presented to the users in answer to whatever question they asked. The

users were then asked if they understood what happened to the data. Figure 5.2 shows the

users satisfaction with the answers provided.

While solutions such as [41] and [44] help the user navigate through the provenance

information itself, more needs to be done to make provenance information more usable.

Indeed, for the results found in Figure 5.2, provenance was presented in the manner found

in [41]. Despite using a user-friendly method to browse and reduce the size of provenance

viewed by a user, the provenance was deemed confusing and unhelpful.

5.1.1 Our Solution

After watching the users attempt to understand the result sets and the processes used to

produce them, we identified two major stumbling blocks: a dearth of database-style why

and where provenance, and occlusion of important information by human-irrelevant data.

In an attempt to assist human users in understanding these provenance black-boxes, we

identify a minimal amount of extra information needed to bring us closer to database-style

95



why and where provenance within the WfMS framework. Moreover, since adding

this information increases the amount of material (which was already overwhelming)

that a human-user needs to view in order to understand the provenance of a data item,

necessitating the creation of a “roll up” then “drill down” querying format. Combined, we

call this new information and user query style: Provenance Answers.

5.2 Extended Foundations

In Chapter II, we define a basic logical data unit a data item. In this chapter, we utilize this

definition, but extend it so that a data item may contain a set of features. A data item that

is a tuple contains features that are attributes; a data item that is an XML element contains

features that are child elements or attributes. Each feature is associated with a data value.

Features can be single or multi-valued. A dataset is comprised of a finite set of data items.

Running Example Information is selected from HPRD and BIND in Figures 1.2–1.3

according to Query 1 and Example 7, respectively. The resulting data items are then run

through a MERGE process until no further merges take place. The workflow is shown in

Figure 1.4(b). We will follow three data items shown in Figure 1.2–1.3: LXR from HPRD

and RLD and NR1H3 from BIND. The final data item is shown in Figure 1.1.

We also must enrich the concept of Manipulation begun in Chapter II. A

MANIPULATION is a basic unit of processing in a workflow. Each MANIPULATION

takes one or more data sets as input and produces a dataset as output. We write

M(DI1 , DI2 , ...) = DO to indicate that MANIPULATION M takes datasets DI1 , DI2 , etc as

input to generate data set DO as output.

For example, the MANIPULATION MERGE, shown in Figure 1.4(b), applied to a

subset of HPRD and BIND produces an output set comprising entries from the input sets

that have been merged based on biological equivalence. The MERGE MANIPULATION

first runs a Merge by ID function that uses external id equality to merge like proteins.
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Then it runs a Merge by Sequence function to find all proteins that have identical

sequences and merges them. A MANIPULATION in this case is equivalent to the concept

of a “Process” described in [110]. In short, a MANIPULATION is a discrete component of

a workflow, and uses a set of specific features from the input dataset.

Example 7. words to be in color
SELECT * FROM BIND

WHERE function=“receptor”

An instance of a MANIPULATION applied to a specific data item we call a manipulation.

We write m(dI1 , dI2 , ...) = dO, where dI1 ∈ DI1 , dO ∈ DO, etc. m is an instance of

M applied to specific data items dIx within dataset DIx . For example, an instance of

Merge by Sequence applied to the molecule LXR in HPRD and the molecule RLD

in BIND results in a merged molecule LXR-RLD. At this point, WfMS do not have the

capability to peek into black-box processes enough to know when a MANIPULATION is

applied to a specific data item.

Manipulation 3. MERGE
For every pair of proteins in the dataset, MERGE runs a Merge by ID function that

uses external id equality to merge like proteins, then runs a Merge by Sequence function
to find all proteins that have identical organism and sequence and merges them.

Example 8. words to be in color
The molecules LXR in HPRD and RLD in BIND are involved in a Merge by Sequence

manipulation. m is Merge by Sequence; dI1 is LXR; dI2 is RLD; dO is the LXR-RLD
molecule.

A dataset may contain the molecule ABC1 as well as LXR and RLD. Currently, it is

impossible to distinguish via the provenance collected in WfMSs whether the molecule

ABC1 was used by a particular manipulation if it is part of an input set.

5.3 Expanding Provenance Information

5.3.1 Necessary Features

As described above, some data items may not be used by particular manipulations.

Additionally, each data element has multiple features; not all of these are used in any
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manipulation. For instance, the Merge by Sequence MANIPULATION only considers

the sequence and organism features of the molecule data item, and not any of the dozens of

other features. Which features are used in a manipulation may sometimes be determined

by the type signature or parameters of the MANIPULATION. At other times, features

may depend on the specifics of the data item or code analysis may be required. This is

easier to do in some cases, e.g. if the MANIPULATION is a database query. In the worst

case, an overly conservative analysis may identify more features as potentially used in a

MANIPULATION than actually are. In our experience, this conservative assignment has not

been a serious issue.

Definition 14. Necessary Feature:
A feature of a data item is said to be necessary if it is used by a manipulation.

In Example 8, the feature used by the Merge by Sequence MANIPULATION is

sequence and organism. However, using the signature of the MANIPULATION is not

enough to determine necessary features. The LXR molecule has one sequence feature,

but the RLD molecule has two, mslw and msiw. The sequence from RLD, either mslw

or msiw, that was actually used is the Necessary Feature.

There is a finite depth to which we will delve to understand why a manipulation

behaved as it did for a given data item. At one extreme, we have traditional WfMS

provenance systems that say only that a MANIPULATION was performed. Above, we

describe a more useful amount of information for user understanding, the necessary

features. We can also increase user understanding by breaking down MANIPULATIONs

further. Consider the following pseudocode for a MANIPULATION:

MERGE BY BIO FUNCTION( a, b )

if (a ! = null && b ! = null)

if (a.biofunction == b.biofunction)

merge(a, b);

If the user wants to know why a and b were merged using this MANIPULATION, the

necessary features, a.biofunction and b.biofunction are needed. However, we can supply
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more information:

• The statement (a ! = null && b ! = null) was satisfied.

• The statement (a.biofunction == b.biofunction) was satisfied.

In other words, the complete answer could include line by line code analysis of how a data

item and its features move through a manipulation.

Of course, in reality, there will always be a black-box limit. However, if we can

make the bulk of the boxes “grayer”, the user can understand the data better. In the

above examples, we could have delved deeper into the Merge by Sequence function

to discover that a BLAST algorithm [85] was used within that function, and the values it

employs. This information was not available to the provenance system in our example,

and hence not included in the explanation. Therefore the answer is not 100% complete.

However, it is more complete than an answer that does not indicate that sequences were

used to create a merge. To be able to evaluate the completeness of an explanation, we need

to bound the universe with respect to which we would like the answer to be complete.

At the current time, we believe a reasonable level is that of a function call, including

values of arguments thereto. A larger universe, with more complete explanation may

become possible in the future. For example, [104, 67] have made an impressive beginning

at capturing the provenance of code execution. Note that our notion of manipulation is

generic, and can be applied at all granularities, not just to individual function calls, but

even to individual instructions. As such, we can define completeness generically as:

Definition 15. Completeness:
The number of relevant features and manipulations used to explain a result data item

divided by the relevant number of features and manipulations actually used, beginning
with the recognized inputs to the system for which provenance is being maintained.

Thus, in the Merge by Sequence example earlier, in which we do not capture that a

BLAST function was called within the Merge by Sequence function, the completeness

of the provenance answer would be: 75% (i.e. 2 features + 1 manipulation / 2 features + 2

manipulations ), assuming all of these were relevant.
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Note that the definition of completeness adds a new concept of relevance. The reason

for this is to recognize that not every user is interested in every last bit of detail in the

provenance. Rather, a user typically has certain aspects for which she needs a full detailed

explanation, and others for which a cursory statement will do. We consider a feature or

manipulation relevant to the explanation if it is one that the user asking for the explanation

would like to see.

5.3.2 Provenance Drill Down

The complete provenance structure encompassing both process and lineage information

can contain an overwhelming amount of information, and may not be appropriate to return

to the user. In a decision support context, large volumes of data are rolled up into a data

cube [89, 141]. A user starts analyzing data by first looking at a high level view of, say,

company sales; from there, based on the user’s mental map of the world, he breaks the

sales down by drilling down by location, or product. We wish to abstract this notion of

drill down and apply it to the provenance domain. In other words, we wish to present a

succinct overview of what happened to a data item, and allow the user to drill down for

more complete answers based on her mental view of the data.

Consider the user query, why is LXR in the Result Set after the workflow in Figure

5.1(b). When a user asks why LXR is in the result, showing her a dump of processes and

input datasets is likely to be overwhelming. It also does not contain enough information to

help the user actually understand what happened to a data item. For instance, why did the

MANIPULATION Screen if > AVG act on LXR to include it in the result set? The initial

answer is that its molecular weight, 52,102Da, is less than the average HPRD molecular

weight, 100,000Da. From here the user can be surprised about two distinct variables:

the molecular weight of LXR or the AVG weight of all proteins in HPRD. If the user is

surprised by the weight of LXR, she can drill down and ask, “Why is the molecular weight

of LXR 51,102Da?”. The answer of course is because the data item associated with LXR
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in the protein table has a molecularWt=51,102Da feature. However, the user may wish

to inquire along a different line. She may be surprised that the AVG molecular weight is

100,000Da and wish to ask why. In this case, the answer is the molecular weight feature

from every protein in HPRD. Thus, after adding finer-grained provenance information, the

correct way to provide provenance answers is recursively allowing the user to drill down

in whatever direction she wishes. For example, if she is surprised that the AVG molecular

weight is 100,000Da, she can drill down in that direction to discover that the AVG function

produced its result based on the values: ABC1.molWt = 254,301Da, Wee1.molWt =

71,597Da, LXR.molWt = 51,102Da, Chk1.molWt = 23,001Da.

5.3.3 Provenance Answer Model

Putting all of the above together, a provenance answer is a recursive exploration of

provenance answer Units (PAU). Each PAU explains one manipulation by default.

Definition 16. Provenance Answer Unit:
Given a specific data item, dO, obtained as the output of a manipulation M, every

explanation unit will have:
i. the manipulation, M,
ii: dI1 ∈ DI1 , dI2 ∈ DI2 , ..., inputs to M contributing to dO’s presence in DO,
iii. the necessary features used by M to go from each dI1 to dO.

A provenance answer comprises one or more units. For a given data item, each unit

describes a manipulation, and the data item features used. For example, for the question,

“Why is LXR in the result set, this could be an English sentence:

LXR satisfied the condition in Screen_if_>_AVG: a molecular weight 

of 51,102Da is less than AVG molecular weight, 100,000Da. (5.1)

The manipulation information, and the data item features used by that manipulation are

highlighted, so that the user can click on them to drill down. Choosing to drill down into

a manipulation will merely describe the manipulation in more depth. Drilling down into

either of the features will take the user to another explanation unit that describes why the

chosen feature is in the observed state. In our running example, if the user chose to drill
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down into the 100,000Da value, she would obtain:

The 100,000Da is the AVG molecular weight of 

ABC1.molWt = 254,301Da, Wee1.molWt = 71,597Da, 

LXR.molWt = 51,102Da, and Chk1.molWt = 23,001Da. (5.2)

In this manner, we hope to limit the ‘firehose’ effect that hampers traditional

provenance approaches. The recursive nature of the user’s queries leads to a natural tree

structure for the model of provenance answer. Notice that the series of MANIPULATIONs

is contained in the underlying answer provided by all the provenance systems in the

Provenance Challenge. However, provenance answers breaks this information into logical

chunks to make it more palatable to the user. Additionally, provenance answer’s need

for completeness necessitates inclusion of Necessary Features over and above traditional

provenance information.

Traditional provenance pieces are contained within provenance answers. At each

drill down level, the user will need to understand the process that occurred, e.g. AVG.

Additionally, the final drill down that a user can ask on any data item is equivalent to its

lineage. In the above example, “why is the average molecular weight 100,000Da”, will

return the same answer as asking the lineage of Query 1, i.e. every molecular weight in

HPRD. However, provenance answers allow several layers in between. Even in this toy

example, knowing that the molecular weight of LXR is 51,102Da is valuable information

not found in prior solutions.

In Example 8, the provenance answer model needs to keep track that a

Merge by Sequence manipulation was performed upon the LXR and RLD ob-

jects. Moreover, the provenance answer model must keep track that the input that was

integral to that manipulation outcome was the HPRD.LXR.sequence=mslw feature and

the BIND.RLD.sequence=mslw feature. If a series of manipulations were performed,

this information must be obtained for each, as well as the relative order of the manipula-

tions. To provide some measure of the how we limit the ‘firehose’ effect, we introduce
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succinctness.

Definition 17. Succinctness:
The size, in bytes, of an answer presented to the user at any one step in an explanation.

5.4 Evaluation of Usability

In this chapter, we have introduced a model for provenance answers that enables deeper

understanding of provenance black boxes. The first and most important question to ask is

whether this exercise is worth it. Are we addressing questions that real users have? For

these questions, are we producing satisfactory answers? How do our answers compare with

those from other provenance systems, such as lineage tracing and process provenance?

5.4.1 Preliminary Results Revisited

To begin, we presented the users from Section 5.1 with the answers generated to their

provenance queries in the form of provenance answers. Their satisfaction is shown in

Figure 5.3. Compared with the results for basic provenance collected by traditional

WfMSs, shown in Figure 5.2, users were better able to understand what happened to the

data. In every case, the users examined the workflow starting at the output and asked

about the MANIPULATION that produced the final results. From there, each user explored

the series of manipulations, inputs and necessary features uniquely. There was no one

common method of exploration, but presenting the provenance answers in this manner

allowed each user to explore in the manner most suitable to their understanding. A

Chi-square test was performed to determine if provenance answers is better, the same or

worse than lineage. A separate Chi-square test was performed to determine if provenance

answers is better, the same or worse than process provenance. The p-values found for

both tests are 0.1586 and 0.0001 respectively. In other words, using the Chi-square test,

provenance answers is not significantly better than lineage, but is significantly better

than process provenance. However, because the sample size we are working with is very

small, the Chi-square method becomes statistically inaccurate. In the case of two-by-two
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Figure 5.3: User satisfaction for provenance answers from the same users and queries as shown in Figure
5.2.

contingency tables that contain fewer than 50 cases, Fisher’s exact probability should

be used. Using Fisher’s, the p-values for PA >lineage and PA >process provenance are

9.39E-22 and 3.75E-14, both of which are very significant.

5.4.2 Real Biological User Satisfaction

To understand the actual user need for provenance black-box answers and to characterize

satisfactory explanations, we conducted a series of user interviews using a real dataset and

provenance store. The general procedure followed is the same as that in the preliminary

user interviews. Users were presented with data that is suspicious, and asked to use the

provenance information to gain insight. For the interviews, we mocked up two molecule

records similar to what would be found in the public database MiMI [83]. The first record,

for the SOD1 molecule, was exactly as it appears in MiMI, and is biologically correct.

The second record, for the Collagen molecule, was doctored to contain a mixture of

Hemoglobin and Collagen information, and is biologically incorrect. The users were

domain experts: five biomedical research scientists. Each scientist was given first the

SOD1 record, then the Collagen-Hemoglobin record. The scientists were asked to

examine each record in turn and ask aloud any question they wished in order to understand

and trust the data. Listed in Table 5.2 is the union of questions asked by the entire group
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Molecule User Question
SOD1 Q1 Where does the molecule SOD1 come from?

Q2 Where does SOD1’s description come from?
Q3 Where does the biological process

“metabolism” come from?
Q4 Where does the name “Superoxide

Dismutase 1” come from?
Q5 Where does the name “Superoxide

Dismutase, copper-zinc” come from?
Q6 What processes happened to the SOD1

description?
Q7 Why is “Cytoplasm” a Cellular Component

in SOD1?

Collagen Q8 Where does the name “Hemoglobin alpha
subunit” come from?

Q9 Where does the name “Collagen alpha-2(l)”
come from?

Q10 Where does the name “HBA Human”
come from?

Q11 Where does the function “transporter”
come from?

Q12 Where does the process “transport”
come from?

Q13 Where does the PTM “acetylation”
come from?

Q14 Why is the name “Collagen type 1 alpha 2”
in this molecule?

Q15 Why is the function “transporter activity”
in this molecule?

Q16 Why did the Hemoglobin and Collagen
molecules get merged?

Q17 Why did this Collagen molecule appear
in MiMI?

Table 5.2: The Questions users asked while trying to understand information in MiMI.

106



of users, in the rough order in which they were asked. As each user asked a question, they

were presented with three alternative answers: the answer given by process provenance,

lineage and provenance answers. For the process provenance answer, the users were given

the exact series of processes in tree form, similar to a query evaluation plan or workflow

overview. The lineage answer provided the transformations and list of input tuples as

described in [13, 14, 17, 29, 30, 48, 49, 50, 106, 140, 148]. They were asked to choose

which versions provided acceptable answers to their question. The users were told that

we were evaluating three alternative explanation models. Since they are not computer

scientists, they would have no way of knowing which was prior work, and which our

invention.

The results of these user interviews are found in Figure 5.5. In this figure, we show

for each of the 17 questions in Table 5.2, the number of users who asked them and the

number that were satisfied by the answer from the three systems being compared. For

each question, we show three bars of equal height, representing how many users asked

the question. We see that some questions were asked by all users while others were asked

only by some. Within each bar in a group of three, one for each provenance technique, the

extent of fill shows how many users were satisfied with the answer.

Every biological user started with a Where question. This makes sense in the context

from which they judge information: which publication, lab, etc validated this information.

In the case of Where queries, lineage and provenance answers offer the same information,

as discussed previously, and both were rated similarly. In the case of Question Q6, a What

question, process provenance was somewhat satisfactory, while extended provenance

answers did very well. In the case of SOD1, very few users felt the need to ask Why

questions. The data looked accurate, and they found no reason to distrust it. This was not

the case for the Collagen record. First, each user defaulted to the usual Where questions.

When the answers proved insufficient to explain the data, the users began asking Why

questions. For every Why question asked, the answer provided by provenance answers
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was the clear winner.

Additionally, of the ten total Why questions asked about Collagen, half were

accessed in a Drill Down manner, two were viewed as entire trees and the remainder in a

meandering, jumping path. For example, using the Drill Down technique on the Collagen

record, the user wanted to see the final merge that occurred, and discovered that it was

between an obvious Hemoglobin record and a Collagen record via a Merge by id. From

there, he wanted to drill into the Hemoglobin side of the result tree to find out how that id

came to be. This continued until he traced the id through three other merges to its original

source.

Two separate Chi-square tests were run to determine if users thought provenance

answers were better, equal to or worse than lineage and process provenance respectively.

The p-values found were 0.4961 and 0.000291381. Thus, according to the Chi-square

tests, only the finding that provenance answers are better than process provenance is

significant. However, as discussed earlier, the Chi-square test becomes statistically

inaccurate in our experimental conditions. The Fisher test provides p-values of 0.0011

and 1.02E-16, showing that users prefer provenance answers over lineage and process

provenance. Finally, all of the users stated that if they were presented such a broken record

with no information to assist them in understanding it, they would immediately leave

whatever site they were using. Thus, when users do not trust the data, provenance answers

provide a valuable, usable and satisfactory tool for delving into problem.

5.4.3 Succinctness and Completeness

The answers provided by process, lineage and provenance answers for biological (Q)

and preliminary (P) user queries were evaluated with respect to both Succinctness and

Completeness; results are shown in Figure 5.4. The answers to the user queries, while

real, do not stress the limits of size, and can be measured in a few bytes. However,

because the same information is used across all three techniques, it shows the difference
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in succinctness, despite the overall diminutive size. Lineage and Process provenance vary

widely in succinctness between answers, while extended provenance answer units stay

uniform even when provenance answers as a whole contain more information as seen

in 5.4(a). Also, because provenance answers were designed with completeness in mind,

every provenance answer is complete, as shown in Figure 5.4(b). Lineage and Process

provenance, on the other hand vary wildly with respect to completeness; the completeness

for each is dependent on whether number of input tuples or number of processes is more

abundant in the answer to the user question.

5.5 Structures for Provenance Answers

Given the need to peek further into provenance black-boxes, several pieces of information

need to be stored. First, all Necessary Features must be associated with the appropriate

manipulation and data item. Maintaining this information will allow us to answer

questions with feature-level granularity. Second, the order of manipulations must be

maintained. In order to understand why RLD and LXR were merged, we must understand

the order in which the manipulations were performed. In this case, because RLD and

LXR both satisfied the selection condition, and then satisfied a merge condition. Third, the

original input datasets must be maintained. The system should not have to rebuild the input

tuples for explanation. Instead explanations should be given about the transformations

from input to output. Finally, feature and manipulation information must be stored at data

item granularity. Figure 5.6 shows the structures needed to provide provenance answers

for the merged RLD-LXR-NR13H molecule.

Throughout the provenance community there has been a question about the merits

of lazy versus eager provenance [132]. On the one hand, lazy provenance, which

is computed after runtime, only when asked for, is less storage intensive, and is

used by [29, 30, 48, 49, 50]. On the other hand, eager provenance as found in

[15, 21, 32, 64, 67, 71, 139, 144], stores annotations and dependencies at runtime and
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removes the problem of tuple tracing through views since annotations are carried with each

piece of data. Moreover, lazy provenance requires either transformations to be reversible,

or for a user to define the reverse transformation. Many workflow-driven transformations

are not reversible, and most users are not willing to supply a reverse transformation.

Because of this constraint, we focus on eager provenance for provenance answers in this

work.

Additionally, we should note that some structures needed for provenance black-box

answers already exist. Current provenance structures [101, 75, 125], computation plans,

query evaluation plans, and even logic proof trees can all be leveraged to provide the basis

for provenance black-box answers. For instance, while a query evaluation plan cannot be

substituted, it holds some essential information for provenance black-box answers: the

tree of MANIPULATIONs.

5.5.1 Base Data Structures

The implementation of the provenance answers model discussed in Section 5.3 can require

unacceptable quantities of storage. Consider Query 1 applied to a 1000 row protein table

using the query evaluation plan shown in Figure 5.1(a). If the data item LXR was returned,

the provenance answer implementation discussed above will store 1000 features with the

AVG manipulation. Moreover, if LXR is just one data item in a large result set, every data

item in that result set will contain an AVG manipulation with 1000 features.

While this can be reduced via proper pointer usage so that repeated elements are stored

once and referred to many times, the basic provenance answer implementation is still large

in its storage costs. The worst case size of the basic storage method is O(D + oNf), where

D is the size of the input datasets, o is the number of data items in the output dataset, N is

the number of manipulations performed per data item in the output, and f is the average

number of necessary features per manipulation.
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Figure 5.6: The structures needed to fully record provenance answers. Notice that manipulation record lists
the necessary features of each data item. Not shown, but needed, are the input datasets.

5.5.2 Ambiguous-only Storage

Provenance answers require storage of the input datasets, the sequence of manipulations

used to generate each data item, and the features used by each of these manipulations.

While standard compression techniques can be used to compress each of these pieces, they

will no longer be easily queriable. This is unacceptable; we wish to reduce the storage

size needed for provenance answers, while still allowing fast user queries. To this end, we

highlight the first possible reduction: the space needed to store the Necessary Features.

Consider the case of the Compute AVG manipulation. There is only one feature

called “molecularWt” for a protein. By storing only MANIPULATION =Compute AVG,

feature=molecularWt, we can still explicitly answer questions about the result set. It is

only when there are multiple features with the same name, such as repeated elements in an

XML document that we must store the complete feature records. For instance, if a merge

is performed using the

Merge by sequence MANIPULATION, and a molecule has fifteen isoforms and
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Figure 5.7: The Ambiguous-only structures needed to record provenance answers.

therefore fifteen sequences, which one was actually used by the merge function?

Definition 18. Ambiguous Features
A feature is ambiguous iff the schema cardinality for the feature is not restricted to 1.

A provenance answer consists of a tree of manipulations and the set Necessary Features

for each manipulation. A Necessary Feature is Ambiguous if there are multiple possible

values associated with the feature. In this case the feature and value must be stored.

However, if the feature is Non-ambiguous, and can only have one possible value, then the

full feature-value information can be reconstructed from just the feature information.

Based on this insight, we can create the Ambiguous-only storage method. If a feature

is ambiguous, then the feature must be explicitly referenced by its path (the exact reference

for a tuple or XML element) and value. However, if a feature is non-ambiguous, then we

only need to store the feature’s path. Thus, instead of storing two strings, we only store

one. Moreover, the feature path is the same for many manipulations, while the value

is different for each instance. We can reduce the actual storage costs further by storing

the feature path once and merely pointing to it from every manipulation that uses it,

consequently reducing the storage from a string to a pointer. Figure 5.7 shows the MiMI

dataset using ambiguous storage to reduce the size needed for provenance answers. Notice
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that since extid is a feature with a unique value in every data item, it is a non-ambiguous

feature and can be stored in a less space intensive manner. However, the seq feature can

have a cardinality greater than one, and therefore must be stored explicitly.

Theorem 5.5.1. Ambig. Store Schema Dependency
Ambiguous-only storage size is equal to or less than Basic storage size and is

determined by the cardinality of the feature domain.
Proof: Basic and Ambiguous-only storage size for each data item is f ∗ (p + v) ∗ N
where f is the number of Necessary Features used and N is the number of manipulations;
p is the size of the string needed to represent the feature’s path, and v is the size of the
string needed to represent the feature’s value. For every data item in the result set, if the
schema cardinality for a feature is zero or one (?), then the Ambiguous-only storage size is
fNt + p, where t is the size of the pointer.

Utilizing Ambiguous-only storage requires that the database be static or that the input

database be versioned so that the set of contributing data items is clearly established for

any output to be explained. Consider the consequences of allowing updates to a database

that used ambiguous-only answer storage. If the user executes Query 1, the molecularWt

feature for every protein is used. Ambiguous-only storage will only store the information

that the feature ‘molecularWt’ was used. If a new protein is now inserted into the database,

the provenance answer instantiation will automatically include it into the answer for LXR.

Since the new protein did not in fact contribute to the result set, this is obviously incorrect.

Obviously this static requirement will make ambiguous-only storage unusable for some

applications. However, a subset of applications remain for which ambiguous-only storage

is a viable alternative. These include ‘publication’ systems such as HPRD, SwissProt or

NCBI, that release information in a manner that restricts updates. Fortunately, as discussed

in the Section 5.5.3, there is also a structure that reduces storage size but does not require

a static dataset.

5.5.3 Watermarking

Given many manipulations that contain ambiguous features, the size needed to store

provenance black-box answers can still grow to be large. In essence, for a result set
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greater than one, ambiguous-only storage will repeat the same manipulation and necessary

features over and over. The only difference for each data item will be the values of the

necessary features.

Instead of repeating data, by tagging each intermediate result set with necessary

features, we can instead tag the original input datasets. If we assign a ‘color’ to each

distinct manipulation, any feature used by that manipulation will be ‘colored’ in the

input datasets. Imagine a result set of 50 molecules generated by the query “SELECT

* FROM BIND WHERE chromosome=X;”. Using Basic or Ambiguous-only methods,

each of those 50 molecules will have a reference to the SELECT manipulation and the

chromosome feature. Using watermarking, we can say SELECT=‘red’, and color all

chromosome features used by the SELECT manipulation red. Figure 5.8 shows this

solution applied to the MiMI dataset. The Merge by Sequence (black) manipulation, in

the LXR-RLD-NR13H molecule can be matched to the exact sequence attribute used in

the input LXR and RLD molecules.

The size of a watermarked store is still O(Nf) where f is the number of Necessary

Features used and N is the number of manipulations. However, because watermarking

can be achieved by storing an integer for every Necessary Feature instead of a string,

substantial savings can actually be achieved.

Watermarking has another unique benefit. In all previous provenance answer strategies,

a key must exist for the data item. Consider Basic provenance answer storage, applied to

Example 8. Provenance answers require us to keep the set of input data items contributing

to the output. In the example these are uniquely identified by name as HPRD.LXR and

BIND.RLD. However, many times there is no key for a data item. To surmount this

problem, Basic and Ambiguous-only provenance answer implementations would have

to assign a unique id to a data item before using it in a manipulation. Watermarking

automatically identifies the object in the input dataset, even if it is keyless, merely by the

presence of a color in that data’s feature set.
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Figure 5.8: The watermarking strategy for provenance answers in MiMI.
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Unfortunately, in this form, watermarking cannot be used whenever there exists a

MANIPULATION that produces intermediate results that are the result of an aggregation.

Consider the SQL query evaluation plan in Figure 5.1(a). Each node in the evaluation

plan can be considered a MANIPULATION. If this is the case, the AV G(molecularWt)

is an aggregation MANIPULATION used to create intermediate results. Once the query is

complete, there exists nothing to watermark for that manipulation in the input datasets.

In order to handle this, a new node containing the aggregation result is added to the

‘input’ dataset. This new node can then be colored with the appropriate manipulation, and

watermarking can be applied even when aggregation MANIPULATIONs are used.

5.6 Evaluation

In Section 5.4, we showed that provenance answers can be very valuable to a user. Here

we study the overheads incurred by provenance answers. To this end, we built a protein

interaction database from multiple source databases and captured provenance answer

material. Data in the protein database is derived through a workflow comprising multiple

MANIPULATIONs, with a variation of between 1 and 10 manipulations being applied to

create any one data item. MANIPULATIONs include: ingestion of information from HPRD

[114], ingestion of information from DIP [55, 58, 117, 146], ingestion of information

from IntAct [78], merge by id, merge by protein name. The final database size is 60MB;

the provenance store is 400MB. To show that our model for provenance answers is

implementable and usable, we applied each provenance answer storage technique to a

real-world dataset creation workflow. Provenance answers require an extension of a

DBMS or workflow system; however construction of final provenance answer answers

can utilize existing DBMS and provenance tools. The workflow first ingests all datasets.

Then it iteratively applies the two merge MANIPULATIONs on the three ingested datasets

until there is only one dataset and no new merges occur. All experiments were run on a

Dell workstation with Pentium 4 CPU at 2GHz with 640MB RAM and 74.4GB disk space
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Figure 5.9: The space needed to store provenance answers.

with Windows XP. The algorithms were implemented as a Java application with a mySQL

backend.

5.6.1 Time and Space

Figure 5.9 describes the space needed for various aspects of provenance answer: the final

dataset produced by running the series of MANIPULATIONs described above, the input

datasets, and the Basic implementation of the provenance answer model. Provenance

answers can grow larger than the input and output datasets. The size of the provenance

answer store is highly dependent upon the number of manipulations performed. Figure

5.10 shows how the provenance answer store grows with the number of manipulations.

These results concur with the linear nature of the manipulation storage aspect of the

provenance answer model. They also show that while provenance answers may be large,

they grow linearly.

In Figure 5.11, we show the storage costs associated with the possible data structures

for provenance answers. In order to highlight the differences in storage needed for the

extra component of provenance answers not found in prior provenance work, the sizes

for the underlying provenance structures are not reported. The ambiguous-only results

presented reflect the dependence this method has on the underlying schema. No feature in
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Figure 5.10: The growth of provenance answer storage.

the dataset used by a MANIPULATION is non-ambiguous. Therefore Basic and Ambiguous

sizes are the same, as stated in Theorem 5.5.1. However, the watermarking strategy

produces a provenance answer store that is 62% the size of the Basic provenance answer

store, showing that savings are possible with a good implementation.

Figure 5.12 shows the overhead incurred by storing provenance answer information

while running the series of MANIPULATION discussed above. The overhead is the time it

takes to store all information above and beyond traditional provenance information that is

needed for successful provenance answers. None of the implementations of provenance

answer create a large time-sink. Indeed, with a worst case of 7.4%, storing provenance

answer information will not significantly slow down any system. Watermarking does even

better with only a 7% overhead, since the size of the information required is less.

5.6.2 Querying

Provenance answers would be useless if they took too long to generate. Because the

underlying structures lend themselves to the type of queries asked by users, we found that

queries are both easy to express and quick to execute. We took the questions asked by

the biological user interview participants, and determined a set of representative queries.

Queries q1-q2 ask traditional provenance questions that do not utilize provenance answer
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information. Query q1 asks for the last manipulation performed to create a record; Query

q2 asks for the last three. These two traditional provenance queries provide a baseline

to compare against. Meanwhile Queries q3-q7 are queries representing the five Why

questions in Table 5.2. These queries were expressed as SQL statements.

Figure 5.13 shows the query times. Each query was run five times on a cold cache,

and the average was taken of the middle three values. The times reported correspond to

the time needed to return the entire provenance answer tree. Unfortunately, many of the

provenance answer queries take more time, since they are returning more information.

However, there are exceptions to this statement. Provenance answer queries, except for

watermarking, do better than some traditional provenance queries, since we are taking

one explanation step at a time, in order, instead of searching the entire provenance tree

for a particular manipulation. The provenance answer times are on par with Query q1,

but return more information. Watermarking requires an extra join to get to manipulation

descriptions, so does worse than other methods. Finally, we would like to point out that

even relatively long-running provenance answer queries are fast.
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Figure 5.14: An abstract overview of the provenance needs of a Scientific Workflow System, from the
VisTrails contribution to the Second Provenance Challenge, annotated to allow provenance answers, shown
in the dashed box.

5.7 Provenance answers in a Workflow System

Because provenance answers leverage many provenance structures, it is relatively easy

to add provenance answers capability to a workflow system. In general, in order to make

such a system work with provenance answers, the following pieces must be adapted:

1. The API a workflow component uses to integrate with the workflow.

2. The calling of components while running the workflow.

3. The provenance storage backend.

Figure 5.14 contains a high-level view of the needs of a scientific workflow system

which we have annotated to accommodate provenance answers.

For concreteness, we will briefly look at how provenance answers can be added into

VisTrails [32]. Beginning with Requirement 1 above, VisTrails allows users to create

Packages to define custom MANIPULATIONs (called modules). When creating a Package,

the user creates an module identifier, and a module registry that stores the inputs and
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outputs expected. Half the battle is already won, since we already have hooks for the

MANIPULATION identifier and the features to consider as Necessary Features. The code

within the package must be written to keep track of the values of all Necessary Features.

From here, we must consider Requirement 2; when the workflow is executed, a record of

the execution of each module is already created in the VisTrails Logs. There must be an

extension of the interaction between modules and workflow execution though, since each

module must report back the exact Necessary Feature set for storage in the Logs. Finally,

the logs, both file-based and database in VisTrails, must be altered. In particular, the table

module exec needs to keep track of the data item worked on and the Necessary Features

utilized.

5.8 Conclusions

Workflow systems that capture provenance today are limited in the provenance they

capture. Unlike provenance in database systems, the black boxes in workflow systems are

not well defined, and therefore limit the granularity at which provenance can be captured.

This leads to provenance information that allows workflow systems to recreate the steps

involved, but limit human understanding of what happened to individual data items.

In this work, we demonstrate the need that users have for knowing more detailed

information about the black boxes. We determine the set of information that must be

maintained to make black boxes “grey”. Additionally, because this information further

complicates an already difficult to understand provenance store, we describe a method

of presenting this fine-grained provenance information to the user that can be easily

integrated with other provenance viewing systems [45, 121]. Our experimental evaluations

show that real users benefit from this increased information, and the storage and time costs

of collecting and providing it are manageable.
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CHAPTER VI

WHY NOT?

Why did the chicken not cross the road? Why not Colbert for President? Why did

Travelocity not show me the Drake Hotel as a lodging option in Chicago? Why do I not

have blue eyes? Except for the unfathomable chicken, there is an explicit reason for each

of these events not occurring 1. Understanding why events do not occur is a natural process

we use to understand our world. In the arena of databases and software systems, these

questions often sound like: Why did this program not complete? Why did this tuple not

appear in the result set? etc. The typical response to such questions is an epic debugging

session in which the exact series of events is painstakingly traced until the answer is

found. Currently, provenance can help explain surprises within a result set. However, what

happens when the surprise is not what is found within the result set, but what is missing

from the result set? Consider the following set of user problems:

• A scientist searches MiMI [83] for: “sterol AND organism=

‘Homo sapiens”’. A known function of ABC1 is “sterol transporter activity”, so

why is it not in the result set?

• A business traveler searches for flights on a popular flight booking web site, he

cannot understand why there is no direct flight from DTW to LAX listed. He took

1On November 1, 2007, the South Carolina Democratic Party executive council refused Colbert’s ballot
application by a 13-3 vote. Graduate students don’t make enough to stay at the Drake Hotel, as noted in
my cost preferences. I have no blue-eyed ancestors, and according to Mendelian Inheritance do not have the
double recessive genes required.
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that flight last week, so why is it not in the result set?

• A fan wants to see all the scoop about “the king” in Return of the King and types

“Vito Mortensen” in IMDB. No Vito Mortensen is returned. Why not?

There is one running theme throughout the problems encountered above, despite the

differences in domain: the user does not have the ability to alter their query in any way

to garner better understanding of the dataset and result set. For instance, in a standard

database system, if the user queries: SELECT name FROM employees WHERE salary

>$100,000, and there are no results, the natural inclination is to slightly alter the query.

Thus, the user may turn around and enter: SELECT name FROM employees WHERE

salary >$75,000. In other words, an experienced classic database user has the means to

explore the database and query space. A traditional database user is comfortable using

this methodology to explore the characteristics of a dataset, and would have no need to

ask WHY NOT?. Unfortunately, many applications and users no longer fit this paradigm.

In the above examples, the users are not database users, they are application users who

have no access to the underlying dataset. They cannot sift through the dataset to determine

WHY NOT? when they encounter an unexpectedly missing result. Additionally, the

applications themselves limit the type of queries the users can submit. In the Business

Traveler Example above, Travelocity only allows the user to choose dates and location;

it is impossible for the user to subtly alter the query to comb through the dataset to

find the flight he thinks he knows about. Finally, in a traditional database, a standard,

well-understood set of operators exist. In many applications this is not true, and the

presence of complex, programmatic operations will obfuscate why data is not in the result

set. In the MiMI Example, why is ABC1 not in the result set after the query? The user

knows that there is a database behind the application, but how does the keyword query

interface with it? How are the results retrieved and displayed? Is there a bug? In actuality,

the only reason ABC1 is not in the result set after this query is because MiMI only displays

the top 100 hits, and ABC1 falls outside the range. This sort of WHY NOT? question
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Author Title Price Location pubDate
Epic of Gilgamesh $150 Middle East 2000 BC

Euripides Medea $16 Europe 431 BC
Homer Odyssey $49 Europe 900 BC
Hrotsvit Basilius $20 Europe 970 AD
Shakespeare Coriolanus $70 Europe 1623 AD
Sophocles Antigone $61 Europe 442 BC
Virgil Aeneid $92 Europe 29 BC

Table 6.1: The set of books in Ye Olde Booke Shoppe.

could never be addressed via the sift and comb database search method.

6.0.1 The Problem

After performing a set of relational operators, application functions, or mixture of both, a

result set is formed. For instance, the data found in Ye Olde Booke Shoppe, in Table 6.1,

is the result set of a manual curation of Library A and a Natural Language Processing of

Library B, with a merge and duplicate removal process applied to the two outputs. In other

words, a set of non-relational manipulations created the result set. When a user queries the

Ye Olde Booke Shoppe database, a set of relational operators, and perhaps user functions,

is used.

Once a result set is formed, if a user is unable to find what she wished, she must specify

what she is seeking, using key or attribute values. Using this information, we describe how

to offer explanations to the user about why the data is not in the result set.

Example 9. Table 6.1 contains the contents of Ye Olde Booke Shoppe, and how the titles
were included in the bookstore’s listings. If a shopper knows that all “window display
books” are around $20, and wishes to make a cheap purchase, she may issue the query:
Show me all window-books. The result from this query is: (Euripides, “Medea”). Why is
(Hrotsvit, “Basilius”) not in the result set? Is it not a book in the book store? Does it cost
more than $20? Is there a bug in the query-database interface such that her query was not
correctly translated?

WHY NOT? is a series of statements about the potential reasons the data of interest to

the user is missing from the result set. We can leverage provenance records [26, 35, 32, 74],
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query specification and the user’s own question to help understand WHY NOT?. Thus,

whenever a divergence occurs between the two, it is a good candidate for finding why

a piece of data is not in the result set. In the example above, we can trace (Hrotsvit,

“Basilius”)’s progress through all the manipulations performed on (Euripides, “Medea”).

Every manipulation at which the two do not behave similarly is a possible answer to “Why

Not?”.

Throughout the rest of this work, for ease of reader comprehension, we utilize a classic

book database, with standard relational operators, and a few user defined, “server-side”

functions. However, we would like to emphasize that the problem we are addressing exists

outside of traditional databases, and our techniques can be applied to applications as well.

In this work, Section 6.1, we provide a model and definitions that allow us to describe

a piece of data not in the result set, and ask why it is not there. Moreover, we provide a

model which allows us to answer WHY NOT? questions. In Section 6.2.1 we discuss how

WHY NOT? answers can be computed. The evaluation of our methods is presented in

Section 6.4. In Sections 6.5–6.7, we discuss an extension to this work and conclude.

6.1 Foundations

In Chapter II, we define a basic logical data unit a data item, and the concept of

Manipulations. In Chapter V, we extend the concept of manipulations. In this chapter, we

utilize these definitions. To refresh, each MANIPULATION takes one or more data sets as

input and produces a dataset as output. We write M(DI1 , DI2 , ...) = DO to indicate that

MANIPULATION M takes datasets DI1 , DI2 , etc as input to generate data set DO as output.

For example, the MANIPULATION Select Books <$20 applied to the Ye Olde Booke

Shoppe (shown in Figure 6.1(a)) dataset produces an output set comprising (Euripides,

“Medea”) and (Hrotsvit, “Basilius”). An instance of a MANIPULATION applied to a

specific data item we call a manipulation. We write m(dI1 , dI2 , ...) = dO, where dI1 ∈ DI1 ,

dO ∈ DO, etc. m is an instance of M applied to specific data items dIx within dataset
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DIx . For example, an instance of Apply SeasonalCriteria applied to the book (Hrotsvit,

“Basilius”) results in ∅. Another example MANIPULATION is:

Manipulation 4. Apply SeasonalCriteria
Returns all books that satisfy a seasonal criteria.

Example 10. words to be in color
Given a Mother’s Day Seasonal Criteria (based on the date), dI1 is (Hrotsvit,

“Basilius”, $20); dI2 is (Euripides, “Medea”, $16). dO is (Euripides, “Medea”). Since
“Medea” fits the Seasonal Criteria.

6.1.1 WHY NOT? Identity

When attempting to answer WHY NOT?, we have three known pieces from which to

draw information: the query, the result set and the question. The query, Q, is the original

query or workflow posed against a dataset, and can be broken down into a series of

MANIPULATIONs. The result set, R, is the result of that query on the dataset, and the

question, S, is the unsatisfied user’s WHY NOT?. The question directly translates into the

Unpicked.

Definition 19. Unpicked:
Given a key or attribute set, k, from the user question, S, if k does not exist in the result

set, then the set, U , of data items, d, from the input dataset that satisfy the user’s question
is the Unpicked.

For instance, If a shopper wishes to make a cheap purchase, she may issue the

query selecting for window-books. She then asks, “Why is “Basilius” not in the result

set?”. The Unpicked data item, (Hrotsvit, “Basilius”), is specified by its title feature.

Alternately, a user may ask “Why are no ‘Penguin’ books in the result set?”, in which

case a keyword-style query across all attributes of the input set will generate the Unpicked

(which will contain books with a Publisher=Penguin and Penguin in the title field, etc).

Additionally, given the definition of an Unpicked data item, if the specified key or

attribute(s) is found in a data item in the result set, then we do not have an Unpicked, or a

valid WHY NOT? query. Finally, note that the Unpicked may be everything; “Why is the

result ∅” or “Why not anything”.
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Definition 20. V alid WHY NOT? Query:
A valid WHY NOT? query: i. contains an attribute(s) that can be mapped to an

Unpicked data item(s) in the input datasets, and
ii. applies to a single result set.

Now that we have an Unpicked Data Item, in order to determine WHY NOT?, we

must be able to trace data items through manipulations, and understand the relationship

between data items in the output to data items in the input. In essence, this is the accepted

provenance concept of lineage [29, 48, 49]. From [49], “Given a transformation instance

τ(I) = O and an output item o ∈ O, we call the actual set I∗ ⊆ I of input data items that

contributed to o’s derivation the lineage of o, and we denote it at I∗ = τ ∗(o, I)”. In other

words, the lineage of a data item is the set of input tuples that have influenced the inclusion

or appearance of that data item in the result set. We utilize the same definitions found in

[29, 48, 49] for lineage with the following exception: the lineage of a MIN or MAX output

data item is the data item(s) containing the reported value, not the entire input set. In this

work, we denote this version of a lineage relationship with o
m

∠I∗.

Unfortunately, lineage is a concept that applies only to data items in the result set, and

traces data items through manipulations from the result set to the input sets. A data item’s

appearance in the result set is the sine qua non for lineage. In this case, the data items we

are interested in are NOT in the result set, and therefore do not have lineage. Instead, we

must define a new concept, successor.

Definition 21. Successor:
Given a manipulation m that takes in dataset I and outputs O, d′ ∈ O is a successor

of d ∈ I , iff d′
m

∠d.

Definition 22. Unpicked Successor:

For any Unpicked data item, u, if ∃d′ ∈ the output of m such that d’
m

∠u, then there is
an Unpicked Successor.

Even though an Unpicked data item by definition does not exist in the result set, or

even after a manipulation, we can use this definition of successor to watch how Unpicked

data items move through workflows. Notice that a successor depends purely upon the
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Figure 6.1: A set of workflows. (a) Finds the Window Display for Ye Olde Booke Shoppe. (b) Determines
the top character genre in Ye Olde Booke Shoppe.

notion of lineage, not attribute values. After a query, if a user asks, “Why not $61?”, it

does not matter if a manipulation projects out the attribute $61. Using lineage, the tuple

(Sophocles, “Antigone”) is directly associated with the input tuple (Sophocles, “Antigone”,

$61). We do not care how many manipulations we go though between the Unpicked and

an Unpicked successor. As long as there exists some lineage relationship between a data

item and an Unpicked data item, there is an Unpicked Successor. However, we must make

one modification to classic lineage. Traditionally, lineage will trace the ancestry of a data

item through multiple manipulations back to the source dataset. In our case, we must only

compute lineage through one manipulation, not to the original datasets.

6.2 WHY NOT? Answers
Definition 23. Picky Manipulation:

A manipulation is “Picky” with respect to an Unpicked data item set if:
i. an Unpicked data item or Unpicked successor is in the manipulations input set,
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Figure 6.2: A set of query evaluation plans. (a) Queries Ye Olde Booke Shoppe for all books priced less than
The Odyssey. (b) Queries Ye Olde Booke Shoppe for all books priced greater than $100 and written in
Europe. (c) Creates a result set with all Shakespeare books in LibA and all books <$100 in LibB,
determines the intersection of “Window Books” and “Freshman English Books” in this set and outputs any
that were published after 1950. (Operators are numbered for ease of reference.)
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ii. the manipulation does not output an Unpicked Successor, and
ii no Unpicked Successors exist further down the workflow.

Notice that whether a MANIPULATIONs is picky or not is dependent upon the Unpicked

data item of interest. Consider the query evaluation plan in Figure 6.2(a). The result set for

this will contain (Sophocles, “Antigone”) If the user wonders why (Virgil, “Aeneid”) is not

in the result set, the Picky Manipulation is onb.price<a.price. However, if the user wonders

why (Hrotsvit, “Basilius”) is not in the result set, the Picky Manipulation is σtitleLIKEA%.

The discussion and examples thus far have focused on a singular path of MANIPU-

LATIONs. However, this does not need to be the case. The execution of a workflow is a

directed acyclic graph (DAG), and can thus have many paths, as in Figure 6.2(c).

Let us walk through the series of operations in Figure 6.2(c), following the data item

(Euripides, “Medea”). Operators 2, 5 and 7 are likely Picky Manipulations. If (Euripides,

“Medea”) were fed into any of these operators, it would not be part of the output. However,

only operator 5 is a Picky Manipulations. Manipulation 7 is not picky since the precursors

(Euripides, “Medea”) never reach it. Meanwhile, because the intermediate results further

down the DAG still contain (Euripides, “Medea”) despite 2 not including it as a precursor

in the intermediate result set, 2 is not Picky. In the event that operator 1 also excluded

(Euripides, “Medea”) from the intermediate result set, then the set of Picky Manipulations

would be 1 and 2.

Because the Unpicked is a set of data items, and these data items can behave differently

given a workflow, each Unpicked data item taken on its own may have a different Picky

Manipulation. However, because we are interested in when the last Unpicked Successor

finally gets weeded out of the ultimate result set, we do follow all successors blindly

and care if different manipulations weed out particular successors. As long as one

Unpicked Successor remains in an intermediate dataset, we have not yet found our Picky

Manipulation.

This leads to a formulation of what can be used to answer a user’s WHY NOT?
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question.

Definition 24. WHY NOT? Answer:
Given an Unpicked data item, d, and a result set, R, produced by a series of

manipulations, M , upon an input data set I , a WHY NOT? answer will return the
manipulation(s) m ∈ M at which the last Unpicked successor was excluded from the
result set.

6.2.1 Determining WHY NOT?

Given our definition of Picky Manipulations, and Successors, the algorithms for finding

the Picky Manipulations are very straightforward. We use this moment, though, to point

out that there are essentially two generic algorithms that will return the same results, but

have very different execution times depending on the position of the Picky Manipulation.

Bottom Up

A generic algorithm to find the Picky Manipulation, and thus the answer to WHY NOT?

is presented in Algorithm 7. It checks the output of every manipulation beginning at

the DAG sources and makes sure there are successors throughout the DAG until finally

lighting upon the Picky Manipulation. Finding the Picky Manipulation runs in O(n ∗ s)

time where n is the number of manipulations in the DAG and s is the time it takes to

determine Unpicked successors.

Top Down

An alternative strategy to find the Picky Manipulation, and thus the answer to WHY NOT?

is presented in Algorithm 8. It begins with the outputs of the penultimate manipulation and

checks the lineage for every data item. If successors to the Unpicked are found, then the

ultimate manipulation is the Picky Manipulation. If no successors are found, the algorithm

iteratively checks manipulations in a Breadth First Search manner moving towards the

Sources. Finding the Picky Manipulation still runs in O(n ∗ s) time where n is the number

of manipulations in the DAG and s is the time it takes to determine Unpicked successors.
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Algorithm 7: Answering WHY NOT? Bottom Up.
Input: DAG, M , of manipulations, m
Input: Input Dataset, I
Input: Queue, Q, initialized with Source
Input: Unpicked, U
Output: Picky Manipulation(s), picky
# Run in Breadth First Search order from Source to Sink forall m manipulations ∈ Queue Q do1

Dataset O = ApplyManipulation(m, Input Dataset I);2
if successorExists(O, U ) then3

Q.add(m.children);4
end5
else6

flagPossPicky(m);7
end8

end9
# Run in Depth First Search order from Source to Sink List picky = findTruePickies(Source m);10
words to be in color findTruePickies(manipulation m) if m.isPossPicky() then11

forall m.children do12
List deeperPickies.add(findTruePickies(m.child(i));13

end14
if ) then deeperPickies.isEmpty(15

deeperPickies.add(m);16
end17
return deeperPickies;18

end19
else20

forall m.children do21
r22

end23
eturn findTruePickies( m.child(i) );24

end25

Top Down vs. Bottom Up and Intermediate Datasets

Obviously, there are advantages to both algorithms. Top Down will find a Picky

Manipulation close to the top, Bottom Up will do better with earlier Picky Manipulations.

In both Bottom Up and Top Down, we are faced with a distinct choice:

• Keep all intermediate result sets. Find the data items(s) in input and intermediate

datasets that could correspond to it.

• Start with initial data items, and re-run, flagging all intermediates that are potential

Unpicked data item(s).

There is obviously a trade-off in space and time for these two approaches. This has been

explored in [34] in the form of Strong and Input-Only Identity, in which intermediate

result sets are stored and only the input datasets are saved respectively. Each of the

techniques described can utilize either method of storage. If all intermediates are stored,
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Algorithm 8: Answering WHY NOT? Top Down.
Input: DAG, M , of manipulations, m
Input: Input Dataset, I
Input: Queue, Q, initialized with Sink
Input: Unpicked, U
Output: Picky Manipulation(s), picky
# Run in Breadth First Search order from Source to Sink List picky;1
forall m manipulations ∈ Queue Q do2

Dataset O = ApplyManipulation(m, Input Dataset I);3
if ! successorExists(O, U ) then4

Q.add(m.children); flagPossPicky(m);5
end6
else7

if (m.parent).isPossPicky() then8
picky.add( m.parent );9

end10
end11

end12
return picky;13

then we merely search through all input and intermediate data items for possible Unpicked

matches. On the other hand, if only input data items are kept, then we must re-run the set

of MANIPULATIONs .

6.3 Finding Successors

As seen in the algorithms above, providing WHY NOT? answers hinges upon our ability

to find the Unpicked Successors. A brute force method is outlined in Algorithm 9.

Algorithm 9: A brute force algorithm to find the Unpicked Successors of a manipu-
lation.

Input: manipulation, m
Input: manipulation, m
Input: Input Dataset, I
Input: Unpicked, U
Output: Unpicked Successors, S
List Successors S;1
Dataset O = ApplyManipulation(m, Input Dataset I);2
forall o data items ∈ Dataset O do3

forall u data items ∈ Unpicked U do4

if o
m
∠u then5

S.add(o);6
end7

end8
end9
return S;10

However, the method presented in Algorithm 9 is O(OU), where O is the size of

the output set and U is the size of the Unpicked set. Since we must do this for every
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manipulation in the DAG, as shown in Algorithms 7–8, the total time to determine WHY

NOT? would be O(nOU) where n is the number of manipulations in the DAG. Using

lineage, which would trace through all previous transformations, n, the total time would

be O(n2OU).

Obviously, any shortcuts we can find in determining Unpicked Successors will greatly

improve our WHY NOT? efficiency. The bottleneck is finding the lineage for every single

manipulation output and checking whether an Unpicked data item is contained in the

lineage. The basic method of finding successor is to actually apply the manipulation with

all inputs and compute the result. Given y = manip (i1, i2, x, ...), by looking backward to

find the lineage of y. Instead of laboriously checking lineage on every data item output

from every manipulation, are there properties of manipulations that we can utilize to skip

manipulations, or look at only a subset of outputs? What we want is Successor Visibility.

Given an input dataset, I , and output dataset, O, and a manipulation, m, for every data

item produced by m, we can write o1 = m(p1, p2, ...i1, i2...) where o1 ∈ O and i1 ∈ I .

Definition 25. Successor V isibility:
A manipulation has successor visibility with respect to ix if we can determine (for all

values of ix and oy) O(1) time whether there exist o1, o2, etc. such that oy

m

∠ix ∀ix.

In other words, if we can determine the successor of a data item after a manipulation,

without performing the computation of the manipulation, or exploring alternative values

for i1, i2, etc, then there is Successor Visibility. Moreover, a sequence of manipulations

can have successor visibility if each manipulation in the sequence has successor visibility

with respect to the appropriate (chain-forming) input.

For instance, in the workflow in Figure 6.1(a), the module Select All Books takes in

a data item from the books table, and produces an exact representation of it as a string.

As such, it is possible to correlate the input and output data items without re-running

the manipulation. Thus Select All Books has Successor Visibility. Indeed, the chain

of manipulations from Select All Books through Select Books <=$20 has successor

visibility. Notice that the manipulation Apply SeasonalCriteria does not have successor

136



Manipulation Visible? Successor, ox, given ix
Projection Yes All ox with matching

attribute-value set
Selection Yes All ox with exact

attribute-value matches
Rename No
Join Yes All ox with matching

attribute-value set
on the “left” or“right”

Division No
MIN or MAX Yes o if o contains the data item

attribute-value
COUNT, SUM Yes o
AVERAGE

Table 6.2: Visibility Rules for Relational Operators.

visibility. In Table 6.2, we work through a set of relational operators, and determine

whether visibility can be used instead of lineage.

Domain computations, encompassing user defined functions (UDF) in SQL and all

modules in a workflow, are potentially problematic in determining WHY NOT?. The

implementation problem arises from the potential inability to compute Unpicked Data

item successors. In a perfect white-box world, there would be no implementation issue to

cloud our model of WHY NOT?. Indeed, in some cases, even the Lineage Method will not

work. However, even in this imperfect world, a surprising amount of domain computations

have successor visibility. Indeed in [148], tracing lineage through non-relational operators

is discussed in detail. For instance, two workflow modules found in [116] are described

below. Both have successor visibility.

• Taking a protein identifier, searching SwissProt and returning the protein record.

• Taking the results from a NCBI query and removing duplicates.

In fact, given 100 workflows sampled at random from myExperiments [116], a total of

478 modules exist. Of these, 273 modules satisfy visibility, and 205 do not. Any modules
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that did not have a clear mapping to an understandable relationally-visible concept were

counted as non-visible. Even with this very harsh criteria, over half of the modules were

visible. Moreover, work such as [148] are attempting to make workflow modules more

visible by tracing and understanding the underlying operating system calls.

6.4 Evaluation

Is it possible to provide WHY NOT? answers to users? Given a database of tuples, and a

complex query can we find the Picky Manipulation(s)? Can we do it in reasonable time?

Our findings are positive. In this section, we demonstrate the feasibility of WHY NOT?

answers. As discussed in Sections 6.2.1–6.3, there are two methods for finding Picky

Manipulation(s), Top Down and Bottom Up, and two methods for finding successors:

lineage and visibility. To date, there is only one system that supports lineage as a first class

operator, Trio. Trio [13, 106] is built on top of Postgres, and has the ability to trace the

lineage of any tuple found in a view back to the original input tuple(s). Since one of the

methods proposed for finding successors requires lineage, we used Trio as our backend

database. All algorithms were implemented in Java and run on a Dell Windows XP

workstation with Celeron(R) CPU at 3.06GHz with 1.96GB RAM and 122GB disk space.

We utilized the Crime queries that are so often used to showcase Trio, since they

had complex query evaluation plans that could provide a variety of answers for WHY

NOT? questions2. Additionally, while we used the classic Crime dataset as a template,

we expanded the number of tuples so that it was less of a toy dataset. The total size of

the crime database is 4MB. Queries 1–4 produce 7695, 65,319, 140,699 and 5 tuples

respectively.

We ran four base queries, performed against the expanded Trio crime dataset. The

2Unfortunately, MiMI’s keyword interface limited the query complexity in the query logs to an uninter-
esting set.
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sector int
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witness varchar(32)
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name varchar(32)
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Figure 6.3: (a)-(d) The query evaluation plans for the Crime Queries used (Queries 1–4 respectively). (f)
The Trio Crime Schema.
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evaluation plans for all four queries were determined using “Explain”, and are shown in

Figure 6.3. For each query, we then asked a series of WHY NOT? questions by specifying

an attribute that existed in the input dataset but not in the final result set. For instance,

WHY NOT? “Mary”, where Mary could be a potential value for a suspect or witness.

6.4.1 Bottom up vs. Top Down

Figure 6.4 shows the run times to find the Picky Manipulation given an Unpicked set using

either the Bottom Up (BU) or Top Down (TD) approach, using lineage to find Unpicked

Successors. TD does significantly better than BU for all query evaluation plans except

Query 4. Given the nature of the query evaluation plans, this is to be expected. Consider

the query evaluation plan for Query 1 in Figure 6.3(a), and the Unpicked data item UP1,

“Antigone”. There are only five tuples in the entire crime database that can be mapped to an

Unpicked with “Antigone”: a tuple from the Witness table with Witness.name=“Antigone”,

three tuples from the Sawcar table with Sawperson.witness=“Antigone” and one tuple

from the Sawperson table with Sawperson=“Antigone” (schema for the crime database

is in Figure 6.3(e). UP1 does not ever exist in manipulations a, or f in Figure 6.3(a).

However, these are not Picky Manipulations since it does exist in another set of paths,

b, c, d, e, and g. The true Picky Manipulation is h since this is where the attribute

“Antigone” finally disappears from the result set. As such, the TD algorithm only tests one

manipulation, while the BU algorithm must work through all eight. Conversely, Query 4

is highly selective very near the sources. As such, TD must check all eight manipulations.

BU does not save very much though. Although the Picky manipulations are very close to

the sources, BU still must check four of the manipulations. Thus using the TD algorithm

is best when there is low selectivity early in the query evaluation plan. However, while TD

may be worse than BU when there is high selectivity early in the evaluation plan, it is not

much worse since BU must do almost as much work.
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Increasing the Unpicked Set Size
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6.4.2 Lineage vs. Successor Visibility

As discussed in Section 6.3, to find the Picky Manipulation, we must check all appropriate

manipulations, and see if any of their outputs can be mapped to an Unpicked data item.

Above we show the difference between the TD and BU algorithms. However, as discussed

in Section 6.3, we wish to find a set of Successor Visibility Rules that decrease the time of

finding an Unpicked Successor to O(1). In Figure 6.5, we show how much savings can be

accomplished by using Successor Visibility Rules as opposed to using traditional lineage.

The labels on the X-axis map to the manipulations labeled for each Query in Figure 6.3.

Overall, using successor visibility rules causes a marked decrease in the amount of time

needed to detect Unpicked Successors. Only in Query 3, manipulation l is lineage equal

to successor visibility. This manipulation (and k before it) is dealing with 140,699 tuples,

and the data structures used to implement successor visibility finding struggle to keep up.

In Figure 6.6 we show the average time for lineage and visibility for all queries and

Unpicked data items run in all experiments broken down by relational operator type. For

all selection and join operators, using successor visibility rules does much better than

lineage. However, for projections in Query 3, using lineage is better. Remember that

Query 3 generates a huge result set, and the structures used for successor visibility begin to

thrash at that level of output. Otherwise, using Successor Visibility Rules enables a drastic

reduction in time needed to find the Picky Manipulation.

6.4.3 Size of the Unpicked Set

In Figures 6.4–6.5, the attribute looked for specified a small set of tuple in the input data

set, usually about 5. As such, there were on average 5 Unpicked data items per WHY

NOT? question for each query. Figures 6.7–6.8 shows how the WHY NOT? algorithms

fare with a change in the number of Unpicked data items. In Figure 6.7, the first set of

queries has only five Unpicked data items, the second has ten and the third has fifteen. In

other words, doubling and tripling the number of Unpicked data items in consideration.
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Finally, Figure 6.8 shows how the algorithms perform when there is a very large number

of Unpicked data items. For clarity we show only the results from Query 4, and compare

against WHY NOT? questions that have only a few Unpicked Data items. Unpicked

UP1–5 have five Unpicked tuples returned, while Unpicked UP26–30 specify the attributes

most found in the database, returning up to 50 Unpicked tuples. Luckily, the number of

Unpicked tuples does not affect the overall runtime of either TD or BU algorithms using

Lineage or Succinctness.

6.5 Discussion

Unfortunately, Picky Manipulations may mask the true culprit MANIPULATIONs. Consider

the query evaluation plan in Figure 6.2(b), which finds all books whose authors are from

Europe and are priced greater than $100. Given the input dataset in Ye Olde Booke Shoppe

and a result set of ∅, a user may ask “why were no results returned” (a.k.a. Why not

anything?). If results are produced from both the selection on the both the books and

author table, the join will be called the Picky Manipulation.

This is the correct answer, there are books that cost more than $100, but there are no

overlaps with books that were written in Europe. However, because we wish to allow users

to explore the underlying queries, workflows and datasets more easily, without reading

code or writing extra queries, can we facilitate their exploration?

Using the workflow or base query as a starting point, there are a finite set of possible

ways to tweak it without adding operators. For instance, in this case, we can slacken the

condition on price, the condition on location or both.

Definition 26. Suspect Manipulation
A MANIPULATION , m, is a Suspect Manipulation if
i. it exists prior to a Picky Manipulation, p,
ii. it is commutative with p,
iii. removal of m would result in a precursor of the Unpicked data item’s inclusion in

the result set of the next Picky Manipulation.

For instance, when wondering why there are no books greater than $100 and written in
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Europe, the join in Figure 6.2(b) is Picky. However, if we look at the two manipulations

that exist prior to it in the workflow, if one of them is altered slightly, perhaps we will get

some data items in the result set. For instance, if we drop the requirement of >$100, the

result set will contain all of the books except ( , “Epic of Gilgamesh”, $150). On the other

hand, if we drop the condition of “written in Europe”, then ( , “Epic of Gilgamesh”, $150)

is in the result set. Thus, both of the selection manipulations are suspect.

Because we ultimately wish to provide a user with an answer about why a data item

is not in the result set, we would like to show the user only one MANIPULATION at a

time so that they can process the information. For this to happen, we must have some

heuristic with which to rank the Suspect Manipulations. To this end, we establish a notion

of Suspect Manipulation Dominance.

Definition 27. Suspect Manipulations Dominance:
A Suspect Manipulation, p, is dominant over another Suspect Manipulation, q, if p

occurs closer to the source in the DAG.

In the example of finding books from Europe greater than $100, there are three trial

versions of the workflow: (1) slacken the price constraint, (2) slacken the Europe constraint

and (3) slacken both the price and the Europe constraint. Remember that the user’s query

was “Why ∅. All three trial versions will produce results, and therefore include Unpicked

Data items in the result set. In two of the trial versions, the σprice<$100 is suspect and in

two versions the σlocation=Europe is suspect. Thus, both have equivalent dominance.

The algorithm for finding a suspect manipulation given an Unpicked data item, is a

heuristic method and involves loosening the set of constraints placed upon a data item as it

moves through a query evaluation plan. For instance, given a selection operator on books

with a condition title=”Medea”, remove the condition and see if the Unpicked data item

appears in the result set. By doing this for all manipulations within an evaluation plan, it

may be possible to highlight the suspect manipulation.

Obviously this strategy of loosening of constraints is not guaranteed to find the suspect

manipulation. Consider a selection of books with less than three authors whose names

146



begin with “A”. By removing the condition (names begin with “A”) from the author name

selection condition, we will be providing MORE names to the count, thereby decreasing

the number of books that get considered. However, the space of possible suspects, and

their reasons, is infinite, and so we begin with these basic rules to see how many suspects

we can find. If a domain computation does not have successor visibility, then the most

we can try is remove it from the workflow, assuming the types out and into the previous

and next manipulations respectively match. However, if there is successor visibility, and it

is possible to have some understanding of the module itself, then we can apply modified

versions of the above substitutions.

6.6 A Case Study: MiMI

A scientist searches MiMI [83] through the keyword interface for: “sterol AND

organism=‘Homo sapiens”’. A known function of ABC1 is “sterol transporter activity”,

so why is it not in the result set? Using the techniques described in this work, it is

possible to provide the framework to answer this user’s question. First, a DAG of

manipulations, created from the provenance records in MiMI, the query evaluation plan

used, and any subsequent manipulations must be created. Figure 6.9 contains the DAG

for the user keyword query. Once this is in place, we can utilize either the Top Down

(TD) or Bottom Up (BU) algorithms described in Section 6.2.1. A slightly tricky step

arises when determining Successor Visibility. Lineage requires white-box manipulations

such as relational operators. This requires that we use Successor Visibility Rules for all

manipulations outside of the relational part of MiMI, manipulations a, b, c and h. As long

as a Successor Visibility Rule exists for each of these manipulations, we can find the Picky

Manipulation that excluded ABC1 from the result set. In this case, it was Manipulation h,

that only presents the top 100 results.
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Figure 6.9: The (simplified) DAG of manipulations for a MiMI query through the keyword interface.

6.7 Conclusions

In this work, we outline a new problem facing users data whose access is restricted. When

users are unable to sift through the data themselves, it is impossible to discover why a data

item is not in the result set. Is it not in the input datasets? Is some manipulation between

the input and the user discarding it? Etc. We provide a framework that allows users to

ask WHY NOT? questions about data items not in the result set (Unpicked). Additionally,

we create a model that allows us to pinpoint where the Unpicked data item was discarded

from the final result set.

We implement the model using two different algorithms for finding the manipulation

of interest, and two different methods for finding a data item’s successor. We show how

these methods compare using a well-known set of queries.
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CHAPTER VII

RELATED WORK

Provenance assists scientists in interpreting and reproducing results, understanding the

experiment and reasoning that produced a result, assess data quality, and track where and

who the data inputs came from. Because of the experimental nature of traditional science,

this assistance is vital for understanding the veracity of a piece of data. Consider Table

7.1, reproduced from [127]. The last three lines show the number of protein interactions

found with two, three and four different techniques, respectively. There is a large dropoff

in the number of confirmed interactions across different experimental methods. It should

be noted that the correctness of the experimental evaluation for all of these experiments

is not in question. Different techniques just give different answers. A scientist must

understand where the data came from, and who reported it in order to fully understand

its significance. In the past, lab notebooks contained all of this information. However,

the volume of scientific data has increased, and many experiments are now performed

in-silico, or with heavy post-experimental computation. This information is still essential

to understand the data, but is un-capturable in a lab notebook. Provenance can provide

this information. Unfortunately, biological and other scientific databases have dealt with

provenance tracking in ad hoc ways. The Saccaromyces Genome Database [40] uses

triggers to store records of updates to the database, but this only provides the history of

local changes. In most cases the provenance of copied data is recorded manually. For

example, in the Nuclear Protein Database, links to the PubMed bibliographic database or

to other protein databases such as Entrez or UniProt are entered manually by the curator
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Experimental method category Number of interacting pairs
All: All methods 9347
A: Small scale Y2H 1861
A0: GY2H Uetz et al. (published results) 956
A1: GY2H Uetz et al. (unpublished results) 516
A2: GY2H Ito et al. (core) 798
A3: GY2H Ito et al. (all) 3655
B: Physical methods 71
C: Genetic methods 1052
D1: Biochemical, in vitro 614
D2: Biochemical, chromatography 648
E1: Immunological, direct 1025
E2: Immunological, indirect 34
2M: Two different methods 2360
3M: Three different methods 1212
4M: Four different methods 570

Table 7.1: From [127], a comparison of the number of interacting pairs found via different methods. Of
particular interest are the last three rows that show many interactions are not found across experimental
methods.

alongside the relevant data.

Currently no standard exists for provenance, although the Open Provenance Model

[110] is attempting to create a base definition. The First and Second Provenance

Challenges [101] have been integral in forcing people to define and create this standard.

At a high level, there are three general types of provenance:

1. Process: This includes both “Retrospective” and “Prospective”. Retrospective

provenance includes information such as invocation records of runtime and

resources. Prospective provenance includes workflows and is a statement about how

to produce the data

2. Lineage: This is a causality graph of relationships between data and computations.

3. Annotations: This is a user defined piece of information that adds information to

and travels with a piece of data.
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Database Workflow
Data Set of tuples Set of non-uniform objects
Operators Relational Operators Black boxes
Prov. Shows Derivation for a data item in the database Derivation for a data product

Table 7.2: Database vs. Workflow Provenance.

Moreover, there are two main categories of provenance systems: Database and Workflow.

Table 7.2 summarizes the main differences between the two groups. While the title of

this book is “Incorporating provenance into Database Systems”, the word Database does

not mean the same as in “Database Provenance”. In this work, we have explored issues

involved in making database systems, including outside workflows that utilize databases,

use provenance in an efficient and meaningful manner. The term “Database Provenance”

implies provenance solely within a database. Finally, it should be noted that there is a

large amount of overlap among systems, and which type of provenance and category of

system they belong to. For instance, the Earth System Science Workbench (ESSW) [66]

allows users to attach annotations. It also keeps a provenance record of all processes run,

and is organized in such a way that the lineage of a data item can be traced. Work such

as [34, 33] has explored problems in the grey areas between true database provenance

systems, and workflow systems. Overviews of different provenance system types can be

found in [18, 28, 29, 52, 70, 124, 132].

7.1 Provenance in Databases

7.1.1 Lazy vs Eager

There are two possible methods for maintaining provenance in a database: eager and

lazy [132]. Lazy provenance is computed after runtime, only when asked for. Thus it

is less storage intensive, and is used by [29, 30, 48, 49, 50]. Lazy provenance requires

either transformations to be reversible, or for a user to define the reverse transformation.

[48, 49, 50] show the requirements for each relational operator and the ability to
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compute provenance after the fact. On the other hand, eager provenance as found in

[15, 21, 22, 64, 71, 139, 144], stores annotations and dependencies as they are created

at runtime. This removes the problem of tuple tracing through views since annotations

are carried with each piece of data. In this work, we were focused mainly on eager

provenance, although the concept of visibility in Chapter VI builds on the formalisms

presented in the classic lazy literature [29, 30, 48, 49, 50].

7.1.2 Lineage

In its purest sense, lineage is the origin of a data item [13, 14, 17, 29, 30, 48, 49, 50, 106,

140, 148]. A basic example would be:

Query 2. words to be in color
CREATE TABLE standardWt AS
SELECT *
FROM HPRD
WHERE molecularWt = 100,000Da

For Query 2, the lineage of any tuple in the standardWt table would be it’s

corresponding tuple in HPRD. Things can get more complicated, though. For example,

given Query 1 from Chapter V, the lineage of any tuple produced would be the entire set

of tuples in HPRD, since the AVERAGE function touches all tuples in the HPRD table.

Along similar lines, but applied to data transformations, [138] allow users to query data

transformations.

In [29], the distinction between why and where provenance is presented. In this work,

why is the lineage of a tuple, while where is actual attribute a particular value came from.

[29] is often cited as a defining statement of provenance concepts, even though the words

used have changed. Later work, [23], uses the properties of query languages to answer

provenance questions.

Trio Most database provenance remains in the realms of theoretical examination.

However, in the case of lineage, Trio [13, 14, 106, 140] is a functioning database built

upon Postgres in which lineage is a first class citizen. Trio allows multiple uncertain values
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to be listed for any attribute. When queries are performed upon this uncertain information,

lineage is used as a support and explanation for uncertain entries in the result.

7.1.3 Annotation

Metadata often is used interchangeably with provenance. Annotation is a version of

metadata that can be used to explain properties of the data. Annotation is placed upon

attributes within a database and is propagated through queries [15, 42, 131]. DBNotes [42]

puts this work into practice. An early version of annotation can be found in [88] which

creates source attribution to allow easy querying of merged documents. Additionally,

[46, 68] have studied how annotations move through views.

Recently [64, 71] have used annotations and commutative semi-rings within a database

system. By altering the semi-ring’s operators and set K, they can do lots of fancy things,

such as compute lineage, or restrict access to attributes.

7.2 Provenance in Workflows

While workflow systems have been the de rigour in the business management community,

their benefits, and domain specific problems are currently being actively explored by the

scientific community. Workflow systems [3, 4, 19, 32, 52, 62, 75, 86, 94, 97, 98, 101, 125,

109, 151, 150] are being utilized as a method for representing and managing data intensive,

complex computations. Using a graphic layout, these tools help scientists conceptualize

programmatic tasks without writing actual programs. Not only do workflow systems assist

scientists execute complex computations, they also enable automation, reproducibility and

result sharing, by keeping detailed records of the processes run. Indeed, some commercial

workflow-like systems exist, such as Mac OS X Automator, Microsoft Windows Workflow

Foundation, and Yahoo! Pipes. Figure 7.1, from [102], shows an overview of the workflow

systems who competed in the Provenance Challenge [101].
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7.2.1 Method of Provenance Capture

Automatic capture of provenance information is currently handled in three distinct ways:

1. Embedded in a workflow execution environment [3, 4, 19, 32, 52, 62, 75, 86, 94, 97,

98, 101, 125, 109, 151, 150].

2. Via the operating system [67, 104, 122].

3. Using instruments and services [51, 73, 74, 75, 76, 105, 125].

In the case of [3, 4, 19, 32, 52, 62, 75, 86, 94, 97, 98, 101, 125, 109, 151, 150], a user

manipulates their data through a workflow system, and the workflow framework quietly

stores provenance information. Systems such as PASS [104, 122] and ES3 [67] try to free

the user from being forced to work within a workflow environment by using information

from the operating system to track what processes and files are being used. Finally

[51, 73, 74, 75, 76, 105, 125] keep track of provenance from processes that are constantly

churning, such as signal readings or equipment monitoring.

7.2.2 Systems Used for Scientific Exploration

Many systems have been used in conjunction with scientific exploration. A few highlights

include:

1. Chimera [61, 62]: Sloan Sky Survey - galaxy cluster finding [6].

2. Karma [125, 126]: Weather forecasting [20].

3. Kepler [4, 19]: Bioinformatics [93].

4. Swift [151]: Aphasia and other Medical Diseases [129].

5. PASOA/PReServ [75, 94]: Protein Compressibility [74].

6. Pegasus [86]: Modeling earthquakes [56].
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7. Taverna [52, 97, 98, 109, 149, 150]: Proteomics [99] and Molecular Biology

Applications [116].

8. VisTrails [32, 121, 120]: Oceanographic Exploration [10] and Radiation Oncology

[5].

7.3 Annotation Provenance

Annotation provenance is no longer the rage. However, it is an important form of

provenance, and can enable scientists to work more productively with their data.

Annotation systems can also track the lineage of data, and any processes applied to it.

Much of the reason annotation systems are no longer being built is because workflow

systems such as Taverna [52, 97, 98, 109, 149, 150] and VisTrails [12, 32, 120, 121]

are allowing users to annotate the data within a workflow environment. However, two

older systems should be mentioned as some of the earliest annotation and lineage work:

Collaboratory for Multi-Scale Chemical Science (CMCS) [108, 111] and the Earth System

Science Workbench (ESSW) [66].

7.4 Logging, Archiving and Version Control

Our approach to provenance overlaps with several other well-studied areas, including

transaction logging, data availability, schema evolution, archiving, file synchronization,

and version control. In the rest of this section we discuss the relationship between our

work and these areas.

Logging Many database and file systems use transaction logging or journaling

in order to provide crash recovery. Such logs store detailed information about update

operations applied to the database. This information is necessary to undo the effects

of any transactions that had not committed at the time of a crash. Since provenance

tracking is similar in some respects to logging, one might argue that provenance tracking
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is redundant or unnecessary in a database system that already performs logging. However,

logging serves a much different purpose, and transaction logs do not provide as much

information as provenance; so, to achieve the same effect, it would be necessary to add

extra instrumentation that stores additional information to the logging system. In our

opinion, this would be a mistake: such application-level code and data has no place in a

system-critical mechanism.

Data availability One natural question is whether it makes sense to retain provenance

information if the original data source becomes unavailable. The answer is an emphatic

yes: such provenance information is impossible to reproduce, so potentially priceless.

Provenance information for “lost” data can even help us recover the lost data from copies.

For example, suppose two databases T1 and T2 are constructed using data from S, that the

construction process is recorded by provenance stores P1, P2, and that later S disappears.

We can still be fairly certain about the contents of S, since we can use the provenance

records of T1 and T2 to partially reconstruct S. Even if T1 and T2 disagree about the

contents of S (which could easily happen due to changes to S or due to errors in T1, T2, P1

or P2), this information may be better than nothing.

Version control, archiving, and synchronization Version control [92], archiving [27,

133], change management [2] and file synchronization [65] are closely related to our

approach to provenance, but they do not address the same problem. Such techniques aim

to preserve or reconcile the states of the data as it evolves over time, but they tell us only

how the versions differ, not how the changes were actually performed. Moreover, these

systems typically do not track changes that span multiple systems. Conversely, provenance

identifies the source of information in the current version, but gives us no guarantee that

the cited information has been preserved. The information may be in a database that has

been updated since the data was extracted, and if the database has not been archived, there

will be no confirming evidence for the information that has been extracted. We believe that
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both provenance recording and archiving are necessary in order to preserve completely the

“scientific record.”

7.5 Compression

The Factorization Algorithms in Chapter IV, [35], are similar to work in workflow

specification from process logs [137], which attempts to create an accurate workflow, with

an eye to processes, but our work attempts to understand and reduce the size of arguments

found in provenance files. Compiler optimization [43, 59] has also similarities to the

provenance reduction studied here.

Other XML compression work has similarities to the provenance compression focused

upon here. In particular, [25, 31] describe finding common paths within XML documents

to reduce the overall space. Not only can these techniques be applied to the reduced

provenance store we create, we are able to provide a further reduction by finding common

subtrees despite dissimilar arguments. Additionally, [90, 96, 134] propose general XML

compressors that can also be applied to the provenance store we create. XML compression

[90] creates a smaller store than the reduction provided in this work. However, the XML

compression systems do not result in a store that can be queried with an uncompressed

dataset via a standard query language. While XGRIND [134] does support exact and

substring querying of the compressed store, it does not support joins and thus cannot

build relationships among data and provenance elements; specifically, there is a lack of

support for value or structural joins between provenance pointers and the provenance store.

Luckily, these compression techniques can be further applied to the reduced provenance

store we create.

Finally, [11, 91, 93, 115] describe and implement scientific experiment management

systems. These allow scientists to change a parameter of any manipulation and re-

execute all downstream processes. We show that our reduction techniques can work

with provenance generated within a workflow framework by our use of the Karma
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and PReServ provenance stores. The Factorization strategies presented in Chapter IV

may not greatly affect the fairly normalized provenance collected by workflow systems

[3, 4, 19, 32, 52, 62, 75, 86, 94, 97, 98, 101, 125, 109, 151, 150]. However, the Inheritance

strategies can still be applied. Systems such as [133], allow users to adjust the granularity

at which versioning takes place to reduce the storage space needed. Unfortunately, if

approaches such as this are applied to provenance, valuable information could be lost.

7.6 Provenance Visualization and Usability

Others have looked at making provenance more usable. For instance, ZOOM [45, 44]

shows users abstractions of sub-workflows. The user is then able to glean a general

understanding of the workflow, and poke deeper into abstracted layers for more

information. The Drill Down querying presented in Chapter V is very similar, but instead

of relying upon a workflow specification to determine abstractions, we use a measure of

how much information is in the provenance store to present different layers of information

to the user. Others such as [41] provide an explorer-like interface, while [121] return a

visual abstraction of the provenance presented. Finally [148] is attempting to store enough

operating-level information to explain away provenance black boxes and make them

transparent to the user by describing the underlying system calls.

This work attempts to answer user queries about results that are created via processes

and datasets that are opaque to the user. A few systems outside of the provenance

community are also attempting to answer user questions about the data presented. In

particular, we would like to mention [87, 107] who attempt to do this for programmatic

interference. For example, “Why did MSWord capitalize this word?”. While the details

of how they accomplish this task are completely different from ours, the underlying

problem remains the same: users are confronted daily with processes and data that they

do not understand. Finally, work such as [95, 97, 98, 143] attempts to assist users trust

experimental data by using provenance information to weed out bad data or assign a
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credibility level to existing data.

7.7 Finding Successors and Picky Manipulations

This work draws heavily upon the formalisms and concepts set out by [50, 48, 49], and

uses the implementation of them in Trio [13, 106, 140]. Moreover, work such as [148],

is attempting to extend the ability of tracing lineage through non-relational operators by

recording system-level calls and recording what happens for each input despite not being

able to see in the workflow-module black box.

Several groups are also beginning to think about why items are not in the result set.

For instance, [80] defines the concept of the provenance of non-answers. A non-answer, is

very similar to our concept of an Unpicked Data item. However, instead of attempting to

find the manipulation that excluded it from the result set, [80] look for the attribute within

the Unpicked that caused it to be excluded from the result set. By substituting an “always

true” value for each attribute in the tuple until it is included in the result set, they can can

pinpoint the attribute(s) responsible. Additionally, [112] looks at data publishing security,

and allows users to verify that their query results are complete as well as authentic. While

their motivation and methods are security focused, they too are attempting to give users

more control and ability to probe the underlying data.
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CHAPTER VIII

CONCLUSIONS

The importance of maintaining provenance has been widely recognized, particularly

with respect to highly-manipulated data. Currently there are two main provenance research

avenues: provenance generated within workflow frameworks, and provenance within a

contained relational database. Workflow provenance allows workflow re-execution, and

can offer some explanation of results. Within relational databases, knowledge of SQL

queries and relational operators is used to express what happened to a tuple. There is

a disconnect between these two areas of provenance research. Techniques that work in

relational databases cannot be applied to workflow systems because of heterogeneous data

types and black-box operators. Meanwhile, the real-life utility of workflow systems has

not been extended to database provenance. In the gap between provenance in workflow

systems and databases, there are myriads of systems that need provenance. For instance,

when creating a new dataset, like MiMI, using several sources and processes, or building

an algorithm that generates sequence alignments, like miBlast. These hybrid systems

cannot be mashed into a workflow framework and do not solely exist within a database.

This work solves issues that block provenance usage in hybrid systems. In particular, we

look at capturing, storing, and using provenance information outside of workflow and

database provenance systems.

We have constructed a database of protein interactions (MiMI), which is heavily

used by biomedical scientists, by manipulating and integrating data from several popular

biological sources. The provenance stored provides key information for assisting
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researchers in understanding and trusting the data. In this book, we describe several

desiderata for a practical provenance system, based on our experience from this system.

We discussed the challenges that these requirements present, and outlined solutions to

several of these challenges that we have implemented.

A major challenge is how to create provenance records of manual altering of database

records. Curated databases in bioinformatics and other disciplines are the result of a great

deal of manual annotation, correction and transfer of data from other sources. Provenance

information concerning the creation, attribution, or version history of such data is crucial

for assessing its integrity and scientific value. General purpose database systems provide

little support for tracking provenance, especially when data moves among databases.

In this book, we investigated general-purpose techniques for recording provenance for

data that is copied among databases. We described an approach in which we track the

user’s actions while browsing source databases and copying data into a curated database,

in order to record the user’s actions in a convenient, queriable form. We presented an

implementation of this technique and used it to evaluate the feasibility of database support

for provenance management. Our experiments showed that although the overhead of a

naı̈ve approach is fairly high, it can be decreased to an acceptable level using simple

optimizations.

Because more provenance is being captured, there is an increasing need to store and

manage provenance for each data item stored in a database, describing exactly where

it came from, and what manipulations have been applied to it. Storage of the complete

provenance of each data item can become prohibitively expensive. In this book, we

identified important properties of provenance that can be used to considerably reduce

the amount of storage required. We identified three different techniques: a family of

factorization processes and two methods based on inheritance, to decrease the amount of

storage required for provenance. We used the techniques described to significantly reduce

the provenance storage costs associated with constructing MiMI [83], a warehouse of data
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regarding protein interactions, as well as two provenance stores, Karma [125] and PReServ

[75], produced through workflow execution. In these real provenance sets, we were able

to reduce the size of the provenance by up to a factor of 20. Additionally, we showed that

this reduced store can be queried efficiently and further that incremental changes can be

made inexpensively.

As scientific data becomes increasingly processed and manipulated, provenance

information is essential to help end users understand it’s derivation, significance and

veracity. Current provenance stores, while storing adequate information to automatically

recreate a dataset, are often unable to express in a human-understandable way what

has happened to the data. They contain both too much and too little information to be

valuable to a human. Because the data is manipulated via a series of black boxes, it is

often impossible for a human to understand what happened to the data, without utilizing

a euphoria-causing stimulant like qat1. We highlighted the missing information that can

assist user understanding. Unfortunately, provenance information is already very complex

and difficult for a user to comprehend, which can be exacerbated by adding the extra

information needed for deeper black-box understanding. In order to alleviate this, we

developed a model of provenance answers that assists the user by allowing the user to

decide on the fly what information should be presented. We showed the benefits of this

model to users of a real scientific dataset with provenance information. Finally, we showed

that the structures and information needed for this model are a negligible addition.

Finally, while relational and workflow provenance systems are geared toward

explaining why a data item is in the result set, they cannot answer why data items are

not in a result set. We introduced the concept of WHY NOT? queries: the ability to

ask why data items are not in the result set. We allow researchers to specify data items

1The last “Q” word with two or three letters (Qat, Qi, Qis, Qua, Suq) allowed in ScrabbleTM. This work
is dedicated to David Gammack with love. Thank you for the countless hours spent with me, especially the
ones laughing and playing.
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they are looking for that are not in the result set, and determine which manipulation was

responsible for weeding it out. We developed a model for answers to WHY NOT? queries,

and described two algorithms for finding the manipulation that discarded the data item of

interest. Moreover, we worked through two different methods for tracing the discarded

data item that can be used with either algorithm. Using our algorithms, it is feasible for

users to find the manipulation that excluded the data item of interest, and can eliminate the

need for exhausting debugging.
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