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ABSTRACT

STREAMROLLER : A UNIFIED COMPILATION AND SYNTHESIS SYSTEM

FOR STREAMING APPLICATIONS

by

Manjunath V. Kudlur

Chair: Scott A. Mahlke

The growing complexity of applications has increased the need for higher processing

power. In the embedded domain, the convergence of audio, video, and networking on a

handheld device has prompted the need for low cost, low power, and high performance

implementations of these applications in the form of custom hardware. In a more

mainstream domain like gaming consoles, the move towards more realism in physics

simulations and graphics has forced the industry towards multicore systems. Many

of the applications in these domains are streaming in nature. The key challenge is to

get efficient implementations of custom hardware from these applications and map

these applications efficiently onto multicore architectures.
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This dissertation presents a unified methodology, referred to as Streamroller, that

can be applied for the problem of scheduling stream programs to multicore archi-

tectures and to the problem of automatic synthesis of custom hardware for stream

applications. Firstly, a method called stream-graph modulo scheduling is presented,

which maps stream programs effectively onto a multicore architecture. Many aspects

of a real system, like limited memory and explicit DMAs are modeled in the scheduler.

The scheduler is evaluated for a set of stream programs on IBM’s Cell processor.

Secondly, an automated high-level synthesis system for creating custom hardware

for stream applications is presented. The template for the custom hardware is a

pipeline of accelerators. The synthesis involves designing loop accelerators for indi-

vidual kernels, instantiating buffers to store data passed between kernels, and linking

these building blocks to form a pipeline. A unique aspect of this system is the use

of multifunction accelerators, which improves cost by efficiently sharing hardware

between multiple kernels.

Finally, a method to improve the integer linear program formulations used in the

schedulers that exploits symmetry in the solution space is presented. Symmetry-

breaking constraints are added to the formulation, and the performance of the solver

is evaluated.
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CHAPTER 1

Introduction

Emerging multimedia and wireless applications such as life-like realistic video

games and mobile internet demand high processing power. In the embedded domain,

this demand has been met with custom hardware tailored for a particular applica-

tion. In more mainstream domains like gaming consoles, the industry has turned

to multicore systems to meet the ever increasing demand for processing power. In

both these domains, the nature of applications has become more complex over time.

Developing custom hardware for these applications is hard, given the stringent area

and energy constraints. Also, mapping these applications to multicore systems places

the scheduling and orchestration burden on the compiler.

Fortunately, there is an abundance of parallelism in multimedia and wireless appli-

cations. The nature of these applications makes it easy for the programmer to express

them using stream languages [42] in which pipeline parallelism is made explicit. In

stream languages, the computation is represented as a directed graph where each

node represents a piece of computation and each arc represents some data flow. Each
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node (referred to as an actor or a filter), has an independent instruction stream and

separate address space. It is easy to see that this model is motivated by application

style used in media and network processing, where data “streams” through filters.

A key challenge in the embedded domain is to automatically create high quality

custom hardware for these streaming applications. Automatic synthesis is impor-

tant, as it enables short time-to-market and decreases system verification effort. The

template for the custom hardware explored in this work is a system of accelerators

communicating through memory buffers. Embedded applications often have real-time

constraints, and the main goal of a synthesis system should be to synthesize hardware

with enough resources to satisfy those constraints. At the same time, the synthesis

system should provide good quality in several dimensions such as area and energy.

In the general purpose domain, the key challenge is to find an efficient mapping

onto the target architecture. The compiler should plan and orchestrate the parallel

execution on multiple cores. Often the benefit obtained from parallel execution is

overshadowed by overheads due to communication and synchronization. Resource

limitations, such as limited memory available on the processing elements and limited

bandwidth available to transfer data between processing elements, should be carefully

modeled during the mapping process to avoid stalls.

This work proposes a unified methodology, referred to as Streamroller, that can

be applied to the problem of scheduling stream programs to multicore architectures

and to the problem of automatic synthesis of custom hardware for stream applica-

tions. The unification comes about from the fact that both problems involve mapping
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computation onto a set of processing elements. In the case of scheduling to multicore

architectures, the set of processing elements are the cores available on the system.

In the case of synthesis, computation is mapped onto a set of virtual accelerators.

In the scheduling case, the mapping should honor resource constraints of an existing

system, whereas in the synthesis case, the mapping should try to minimize the cost

of resources used.

The component of Streamroller for mapping stream programs onto multicore sys-

tems is referred to as Stream Graph Modulo Scheduling (SGMS). Modulo scheduling

is traditionally a form of software pipelining applied at the instruction level [58].

The same technique is applied on a coarse-grain stream graph to pipeline the actors

across multiple cores. The objective is to maximize concurrent execution of actors

while hiding communication overhead to minimize stalls. SGMS is a phase-ordered

approach consisting of two steps. First, an integrated actor fission and partitioning

step is performed to assign actors to each processor ensuring maximum work bal-

ance. Fission refers to the selective replication and splitting of parallel data actors

to increase the opportunities for even work distribution. This first step is formulated

as an integer linear program. The second step is stage assignment wherein each ac-

tor is assigned to a pipeline stage for execution. Stages are assigned to ensure data

dependences are satisfied and inter-processor communication latency is maximally

overlapped with computation. SGMS is evaluated on the Cell processor [31], which

is a decoupled heterogeneous multicore system, and is representative of an important

class of future multicore systems. Extensions are presented which make SGMS suit-
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able for multicores in the embedded domain, which have more constrained memory

systems.

The second part of this work is an automated system for designing stylized ac-

celerator pipelines from streaming applications. This work focuses on synthesizing

a highly customized pipeline that minimizes hardware cost while meeting a user-

prescribed performance level. The cost of all components of the system are modeled

in the design, including the data path cost of individual accelerators, and the memory

buffers between pipeline stages. A unique aspect of the system is the utilization of

multifunction loop accelerators [25] to enable multiple pipeline stages to time multi-

plex the hardware for a single pipeline stage. This approach sacrifices performance as

kernel execution is sequentialized, but greatly increases the ability to share hardware

in the design and thus drive down the overall cost.

1.1 Contributions

This dissertation makes the following contributions.

• A unified methodology for dealing with stream applications that can be applied

in two problem settings : mapping stream applications to multicore systems,

and synthesizing custom hardware for stream applications.

• A coarse-grain scheduling approach that maximally exploits pipeline parallelism

in stream programs. The scheduler models realistic resource constraints, includ-

ing limited local storage and data transfer overhead.
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• A systematic design methodology for creating accelerator pipelines for stream

applications with minimum cost at a user-specified throughput.

1.2 Organization

The remainder of this dissertation report is organized as follows. Chapter 2

provides brief background on stream programming, mapping to multicore proces-

sors and automated synthesis of custom accelerators. Chapter 3 describes Stream

Graph Modulo Scheduling (SGMS), a coarse-grain software pipelining method for

mapping stream programs to multicore processors. Extensions to SGMS, which make

it more suitable for platforms with constrained memory systems is presented in Chap-

ter 4. Chapter 5 presents a high level synthesis method that automatically produces

a pipeline of loop accelerators for stream programs. The integer linear programming

formulations used in both the compilation and synthesis systems is further examined

in Appendix A. Symmetries present in the formulation are systematically discovered

and exploited to speed up the solver runtime. Finally, Chapter 6 provides conclusions

and directions that this research can be taken in the future.
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CHAPTER 2

Background

2.1 Stream Programming

In the scientific community, there is a long history of successful parallelization

efforts [3, 10, 17, 30, 37]. These techniques target counted loops that manipulate

array accesses with affine indices, where memory dependence analysis can be precisely

performed. Loop-level and single-instruction multiple-data (SIMD) parallelism are

extracted to execute multiple loop iterations or process multiple data items in parallel.

Unfortunately, these techniques do not often translate well to other applications.

More sophisticated memory dependence analysis has been proposed, such as points-

to analysis [52]. However, scientific parallelization techniques have yet to be successful

outside their domain due to limitations of compiler analyses.

The stream programming paradigm offers a promising approach for programming

multicore systems. Stream languages are motivated by the application style used in

image processing, graphics, networking, and other media processing domains. Exam-
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ple stream languages are StreamIt [64], Brook [12], CUDA [51], SPUR [71], Cg [46],

Baker [13], and Spidle [16]. Stream languages represent computation as a directed

graph where each node referred to as an actor or a filter represents computation, and

each arc represents the flow of data [41]. In one model of stream programming, called

Synchronous Data Flow (SDF) [42], the number of data samples produced and con-

sumed by each node is specified a priori. For this work, we focus on StreamIt, which

implements the SDF programming model.In StreamIt, a program is represented as

a set of autonomous filters that communicate through first-in first-out (FIFO) data

channels [64]. During program execution, filters fire repeatedly in a periodic sched-

ule [26]. Each filter has a separate instruction stream and an independent address

space, thus all dependences between filters are made explicit through the communi-

cation channels. Compilers can leverage these characteristics to plan and orchestrate

parallel execution.

2.2 Multicore Compilation

Multicore systems have become the industry standard from high-end servers, down

through desktops and gaming platforms, and finally into handheld devices. Example

systems include the Sun UltraSparc T1 that has 8 cores [36], the Sony/Toshiba/IBM

Cell processor that consists of 9 cores [31], the Intel IXP 2800 network processor

that contains 16 microengines [2], and the Cisco CRS-1 Metro router that utilizes

192 Tensilica processors [22]. Intel and AMD are producing quad-core systems today

and larger systems are on their near term roadmaps. Putting more cores on a chip
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increases peak performance, but it has shifted the burden onto both the programmer

and compiler to identify large amounts of coarse-grain parallelism to effectively utilize

the cores. Highly threaded server workloads naturally take advantage of more cores

to increase throughput. However, the performance of single-thread applications has

dramatically lagged behind. Traditional programming models, such as C, C++, and

Fortran, are poorly matched to multicore environments because they assume a single

instruction stream and a centralized memory structure.

Programmers are slowly warming up to parallel programming to completely ex-

ploit multicores. Compilers for explicitly parallel languages targeting multicores face

problems beyond compilers for single core. These compilers have to model and utilize

macro resources such as processing elements, distributed memories and interconnects.

Intricacies such as heterogeneity of processing elements, disjoint address spaces and

explicit data transport mechanisms throws up new challenges for multicore compil-

ers. Even though multicore architectures are quite mature now, the state-of-the-art

of compilers for them lags far behind.

2.3 Automated Synthesis

As communication bandwidths are scaled or more features are added to portable

devices, such as high-definition video, embedded computing systems are required to

perform increasingly demanding computation tasks. Programmable processors are

unable to meet increasing performance requirements and decreasing cost and energy

budgets. Application specific hardware in the form of loop accelerators is often used
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to address these issues. A loop accelerator implements a critical loop from an ap-

plication with far greater performance and efficiency than would be possible with a

programmable implementation. However, a single accelerator designed and operated

in isolation is insufficient. These tasks are commonly streaming applications that

consist of multiple compute-intensive functions (e.g., filters) that operate in turn on

streaming data. The natural realization of these tasks is a hardware pipeline of ac-

celerators, each implementing one or more functions that process the data. These

accelerators must be designed to meet overall throughput requirements while mini-

mizing the hardware cost.

Designing a highly customized system of accelerators presents several difficult

challenges. The design space is enormous because of the large number of variables,

which include the number, type, and specific design of each accelerator, mapping of

application loops to accelerators, arrangement of accelerators in the overall pipeline,

and method of inter-accelerator communication. In the face of such challenges, an

automated accelerator pipeline design system enables the systematic exploration of a

much larger portion of the design space than is possible with manual designs, leading

to higher-quality results. In addition, an automated system designs pipelines that

are correct by construction by using a parameterized template, greatly reducing the

verification portion of the product cycle. All of these factors enable automated design

systems to deliver high-performance, low-cost solutions with shorter time-to-market,

which is critical particularly in the embedded domain.

Automated synthesis of hardware from high-level specifications has a long history
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in the design automation field. Most high level synthesis systems in the past build an

operation-level data flow representation of the specification, and derive the datapath

for the hardware from the schedule of the data flow graph. However, the granularity

of synthesis has varied over the years. One of the earliest systems, Chippe [11], used a

PASCAL-like language as the input specification. It synthesized hardware for acyclic

basic blocks without memory accesses. The granularity of synthesis was a basic

block for most of the earlier systems [56, 15, 14, 21]. MIMOLA [47] and Cathedral

III [50] represent comprehensive approaches to high level synthesis. They perform

memory and data path synthesis for a restricted domain of applications. The works

in [68, 49, 65] are also some of the earlier systems that varied widely in the input

specification language and granularity of synthesis. PICO [61] takes a programmer

centric view of the high level synthesis problem. The language of specification is

sequential C so that the designer can focus on just expressing the algorithm, rather

than worrying about hardware details. This makes it easy for the designer to develop

and debug applications quickly, and the system automatically derives the architecture

at a desired performance level.
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CHAPTER 3

Stream Graph Modulo Scheduling

3.1 Introduction

Stream programs are explicitly parallel. The central challenge is obtaining an effi-

cient mapping onto the target architecture. Often the gains obtained through parallel

execution can be overshadowed by the costs of communication and synchronization.

Resource limitations of the system must also be carefully modeled during the mapping

process to avoid stalls. Resource limitations include finite processing capability and

memory associated with each processing element, interconnect bandwidth, and direct

memory access (DMA) latency. Lastly, stream programs contain multiple forms of

parallelism that have different tradeoffs. It is critical that the compiler leverage a

synergistic combination of parallelism, while avoiding both structural and resource

hazards.

In this chapter, we present a modulo scheduling algorithm for mapping streaming

applications onto multicore systems, referred to as stream-graph modulo scheduling
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or SGMS [39, 44]. Modulo scheduling is traditionally a form of software pipelining

applied at the instruction level [58]. We apply the same technique on a coarse-grain

stream graph to pipeline the filters across multiple cores. The objective is to maxi-

mize concurrent execution of filters while hiding communication overhead to minimize

stalls. SGMS is a phase-ordered approach consisting of two steps. First, an integrated

filter fission and partitioning step is performed to assign filters to each processor en-

suring maximum work balance. Parallel data filters are selectively replicated and split

to increase the opportunities for even work distribution. This first step is formulated

as an integer linear program. The second step is stage assignment wherein each fil-

ter is assigned to a pipeline stage for execution. Stages are assigned to ensure data

dependences are satisfied and inter-processor communication latency is maximally

overlapped with computation.

Our target platform is the Cell architecture, which represents the first tangible

platform that is a decoupled multicore where there is no shared cache so code-data

colocation is necessary [31]. SGMS is part of a fully automatic compilation system,

known as StreamRoller, that maps StreamIt applications onto a Cell system. The

SGMS schedule is output in the form of a C template that executes an arbitrary

software pipeline. This template, combined with C versions of the filters, are compiled

with the host compiler to execute on the target system. For our experiments, we use

an IBM QS20 Blade Server running Fedora Core 6.0. It is a Cell system equipped

with 16 3.2GHz synergistic processing engines (SPEs) on 2 chips, and 1 GB RAM.

Our work has the most overlap with the coarse-grained scheduling used in the

12



StreamIt compiler [27, 26]. The StreamIt scheduler consists of two major phases.

First, a set of transformations are applied on the stream graph to combine and split

filters to ensure the computation granularity is balanced. Second, a coarse-grain

software pipeline is constructed by iteratively applying a greedy partitioning heuristic

that assigns filters to processors. Each filter is considered in order of decreasing work

and assigned to the processor with the least amount of work so far. To minimize

synchronization, the partitioning algorithm is wrapped with a selective fusion pass

that repeatedly fuses the two adjacent filters that have the smallest combined work.

This process reduces communication overhead by forcing the combined filters to reside

on the same processor.

Our work differs along two primary dimensions. First, the StreamIt compiler tar-

gets the Raw processor that has a traditional cache on each processor [63]. In [26],

intermediate buffers needed by the software pipeline of the stream graph are relegated

to the off-chip DRAM banks, and a separate communication stage is introduced be-

tween steady states to shuffle data between banks. Our formulation of pipeline stage

assignment explicitly models DMA overhead and proactively overlaps data transfers

for future iterations with computation on the current iteration. Second, we formu-

late the partitioning and filter fission step as an integer linear program rather than

employing iterative partitioning and fusing to generate a schedule. Our approach

combines packing and fission of filters, data transfers, and resource constraints to

generate more balanced and higher quality schedules for architectures such as Cell.

This work offers the following contributions:
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• The design, implementation, and evaluation of stream-graph modulo schedul-

ing for efficiently mapping streaming applications onto decoupled multicore sys-

tems.

• An integer linear program formulation for integrated filter fission and partition-

ing to assign filters to processing elements maximizing workload balance.

• A pipeline stage assignment algorithm that proactively overlaps DMA transfers

with computation to minimize stalls.

• A fully automated compilation system for Cell capable of generating perfor-

mance results on real hardware.

3.2 Background and Motivation

3.2.1 StreamIt Language

StreamIt [64] is an explicitly parallel programming language that implements

the synchronous data flow (SDF) [41] programming model. Filters are specified by

parametrized classes, which are similar to Java classes. They can have local variables

corresponding to local filter state, and methods that accesses these variables. An

filter can have both read-only and read-write state. A stateful filter that modifies

local state during the work function cannot be parallelized as the next invocation

depends on the previous invocation. However, the SDF semantics allow the parallel

replication of stateless filters. A special method called work is reserved to specify the
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void->void pipeline IIR {
... 
add FIR(256);
add FIR(96);
...

}

int->int filter FIR(int n) {
int w[n];
...
work pop 1 push 1 peek n {

int i;
int sum = 0;
for(i=0; i<n; i++)

sum += peek(i) * w[i];
pop();

push(sum);
}

}

FIR1

FIR2

(a) (b)

1

1

1

1

peek 256

peek 96

Figure 3.1: (a) Example StreamIt program and (b) corresponding stream graph.

work function that is executed when the filter is invoked in steady state. The stream

rates (number of items pushed and popped on every invocation) of the work functions

are specified statically in the program.

The stream graph is constructed by instantiating objects of the filter classes.

StreamIt provides ways to construct specific structures like pipeline, split-join, and

feedback loop. Using these primitives, the entire graph can be constructed hierarchi-

cally. Note that feedback loops provide a means to create cycles in the stream graph.

Feedback loops are näıvely handled by fusing the entire loop into a single filter. More

intelligent ways to handle nested loops is beyond the scope of this chapter. Further,

the feedback loop pattern does not appear in any of the benchmarks that we evaluate.

Hence, the rest of the chapter assumes an acyclic stream graph.

Figure 3.1 shows an example StreamIt program and its corresponding stream
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Figure 3.2: The Cell broadband architecture.

graph. StreamIt provides the peek primitive to the programmer, which can be used

to non-destructively read values off the input channel. Note that this is only for

convenience, and does not make StreamIt deviate from the pure SDF model. This

is because a program with peek can always be reimplemented with just pushes and

pops, and some local state that holds a subset of values seen so far.

3.2.2 Cell Broadband Architecture

Our compilation target is the Cell Broadband Engine (CBE), shown in Figure 3.2.

The CBE is a heterogeneous multicore system, consisting of one 64bit PowerPC core

called the Power Processing Element (PPE) and eight Synergistic Processing Elements

(SPEs). Each SPE has a Single-Instruction Multiple-Data (SIMD) engine called the

synergistic processing unit (SPU), 256 KB of local memory and a memory flow control

(MFC) unit which can perform Direct Memory Access (DMA) operations to and from

the local stores independent of the SPUs. The SPUs can only access the local store,
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so any sharing of data has to be performed through explicit DMA operations. The

SPEs and PPE are connected via a high bandwidth interconnect called the Element

Interconnect Bus (EIB). The main memory and peripheral devices are also connected

to the EIB. The feature of the CBE most relevant to this work is the ability of the

MFCs to do non-blocking DMA operations independent of the SPUs. The SPUs can

issue DMA requests that are added to hardware queues of the MFCs. The SPU can

continue doing computation while the DMA operation is in progress. The SPU can

query the MFC for DMA completion status and block only when the needed data has

not yet arrived. The ability to perform asynchronous DMA operations allow overlap

of computation and communication, and is leveraged for efficient software pipelining

of stream graphs.

3.2.3 Motivation

Stream programs are replete with pipeline parallelism. A filter can start working

on the next data item as soon as it is done with the current item, even when other

filters in the downward stream of the graph are still working on the current item.

In a multiprocessor environment, by running different filters on different processors

and overlapping iterations, the outer loop can be greatly sped up. Trying to exploit

pipeline parallelism requires (1) a good distribution of work among the available pro-

cessors and (2) managing the communication overhead resulting because of producers

and consumers running on different processors.
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Figure 3.3: Theoretical speedup for unmodified programmer-conceived stream graph.

The partitioning problem. Figure 3.3 shows the theoretical speedup possible

for a set of unmodified stream programs for 2 to 64 processors.1 The filters present

in the programmer-conceived stream graph are assigned to processors in an optimal

fashion such that the maximal load on any processor is minimized. Speedup is calcu-

lated by dividing the single processor runtime by the load on the maximally loaded

processor. The programmer-conceived stream graph has ample parallelism that can

be exploited on up to 8 processors. Beyond 8 processors, the speedup begins to level

off. Most benchmarks just do not have enough filters to span all processors. For

example, fft has only 17 filters in its stream graph, therefore no speedup is possi-

ble beyond 17 processors. The other reason is that work is not evenly distributed

across the filters. Even though the computation has been split into multiple filters,

the programmer has no accurate idea of how long a filter’s work function will take to

1More details of the applications are provided in Section 3.5.
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execute on a processor when coding the function. This combined with the fact that

work functions are indivisible units leads to less scaling on 16 or more processors. For

example, in the vocoder benchmark, the longest running filter contributes to 12% of

the work, thus limiting the theoretical speedup to 100
12

= 8.3.

Most of the benchmarks are completely stateless, i.e., all filters are data paral-

lel [26]. In fact, only mpeg2, vocoder, and radar have filters that are stateful. Data

parallel filters can be replicated (or fissed) any number of times without changing the

meaning of the program. The longest running filter in vocoder benchmark is state-

less, and can be fissed to reduce the amount of work done in a single filter. Fissing

data parallel filters not only allows work to span more processors, it also allows work

to be evenly distributed across processors by making the largest indivisible unit of

work smaller.

Even though data parallel filters provide ample opportunity to divide up work

evenly across processors, it is not obvious how many times a filter has to be fissed to

achieve load balance. An actual partitioning has to be performed to decide if filters

have been fissed enough number of times. On the other hand, a good partitioning

is achieved only when filters have been fissed into suitably small units. This circular

cause and consequence warrants an integrated solution that considers the problems

of fission and partitioning in a holistic manner.

Communication overhead. When a filter that produces data and the filter(s)

that consume that data are mapped to different processors, the data must be com-

municated to the consumers. In our implementation on the Cell system, filters are
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mapped to the SPEs that have disjoint address spaces. Therefore, communicating

data to consumers is through an explicit DMA. When such transfers are not avoided,

or not carefully overlapped with useful work, the overhead could dominate the exe-

cution times.

Section 3.3 presents a simple scheme which näıvely unfolds the entire stream

graph. This scheme serves as the baseline for comparison. The Section 3.4 addresses

the problem of partitioning and communication overhead. First, an integrated fission

and partitioning method is presented that fisses the filters just enough to span all

processors, and also obtain an even work distribution. Next, the stage assignment

step divides up the filters into pipeline stages in which all communication is overlapped

with computations.

3.3 Näıve Unfolding

This technique is based on a simple observation: when all filters in a stream

program are stateless, the graph can be unfolded P times (where P is the number of

available processors) and each copy of the graph can be run on one of the processors

without incurring any communication overhead, and thus achieving a speedup of P .

Unfolding [53] refers to the process of making multiple copies of the stream program

and is analogous to unrolling a loop in traditional compilation. Many realistic stream

programs do have filters with persistent state. Unfolding such graphs introduces new

data dependencies between different copies of a stateful filter. The following section

describes the properties of an unfolded stream graph and establishes the limits of
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speedup achievable by unfolding.

3.3.1 Properties of Unfolded Stream Graph

Consider an SDFG, G = (V, E). The graph G is assumed to be rate matched, i.e.,

each node v ∈ V actually represents executing the original filter one or more times as

specified by the basic repetition vector. The set V of vertices can be partitioned into

two disjoint subsets Vs and Vu. Vs is the set of all filters with state. In the context of

StreamIt, this set includes all filters with explicit state and all peeking filters, whose

peek amount is larger than the pop amount, thus requiring implicit state. Vu is the

set of all stateless filters. Now consider unfolding the graph G, n times. Unfolding

basically is making n copies of the graph. More formally, a new graph G′ = (V ′, E ′)

is created with the following properties.

• For every node v ∈ V , the graph G′ has n nodes, {v1, v2, ...vn} ∈ V ′. Thus

|V ′| = n× |V |.

• For every edge (v, u) ∈ E, the graph G′ has n edges, {(v1, u1), (v2, u2), ...(vn, un)} ∈

E ′.

• For every stateful node v ∈ Vs in the original graph G, n new edges are intro-

duced in G′. The new edges are {(v1, v2), (v2, v3), ..., (vn, v1)}.

The new edges, {(v1, v2), (v2, v3), ..., (vn, v1)} ∈ E ′, are introduced so that data de-

pendencies due to persistent state can be honored. Note that the new edges force

the sequentialization of the execution of consecutive instances of stateful filters. We
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Figure 3.4: A stream graph and its unfolded version showing data dependencies introduced

due to unfolding.

differentiate the data dependencies created due to unfolding from those present in

original stream graph. The original stream graph has producer-consumer data de-

pendencies, called stream data dependencies . The unfolded graph also has stream

data dependencies as well as additional data dependencies introduced due to state

data, called state data dependence. Note that state data dependencies are manifested

in the original graph too, as a self loop on each stateful filter.

Figure 3.4 shows a stream graph, and its unfolded version, which has been unfolded

3 times. Nodes A and E shown as darker circles are stateful filters in the original

graph. In the unfolded version, new edges A1 → A2, A2 → A3, and A3 → A1 enforce

dependencies due to persistent state in filter A.

Now, consider software pipelining the unfolded stream graph. The throughput of

a software pipeline determines the speedup obtained, and the throughput depends

on the critical cycles in the graph [40]. Let t(v) be the execution time for the filter
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Figure 3.5: A mapping of an unfolded stream graph on to 3 processors.

v ∈ V in the original graph. As stated in Section 3.2.1, we only consider stream

programs without feedback loops, i.e., the original stream graph does not have any

cycles. However, as shown in Figure 3.4, unfolding introduces cycles in the graph. In

the unfolded graph, only stateful filters are involved in cycles. Therefore the critical

cycle in the unfolded graph is determined by the longest running stateful filter. Thus,

the length of the longest cycle can easily be calculated as

n×max
v∈Vs

t(v)

where n is the number of times the graph has been unfolded. This value assumes

zero communication overhead. However, a realistic software pipeline implemented on

a multiprocessor system would incur communication overhead that should be filtered

into critical cycle and throughput calculation. In this section, we consider a simple

mapping of the unfolded stream graph on to multiple processors and establish the

properties of that mapping.
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Consider Figure 3.5, the original stream graph from Figure 3.4 is unfolded 3 times

and mapped on to 3 processors. The mapping is such that all filters corresponding

to one iteration of the original stream graph are mapped to the same processor. In

this mapping, every stateful filter vi, i > 1 should wait for the completion of vi−1

on a different processor to ensure state data dependencies are honored. Also, the

stateful filter v1 should wait for the completion of vn. The state data must be copied

from (i − 1)-th processor before filter vi can begin execution on processor i. This

inter-processor copy has been shown as “DMA” on state data dependence edges in

Figure 3.5.

Suppose s(v) is the amount of time taken to transfer the state data associated

with filter v. s(v) depends on the size of the persistent state of filter v and the

communication latency of the multiprocessor system. We assume that the size of

persistent is constant and does not grow during runtime. StreamIt does not allow

dynamic memory allocation, and thus this property holds for all benchmarks in our

evaluation. The length of the critical path in the mapping we have adopted not only

depends on the execution time t(v) of a stateful filter, but also on s(v), the time

required to transfer the state from a different processor. For every stateful node

v ∈ Vs, the mapping has a cycle of length

n× s(v) + n× t(v)

The longest cycle in the graph constrains the maximum throughput achievable for

the graph. We adopt the terminology used in traditional instruction centric software

pipelining, and refer to the critical path length as “recurrence constrained minimum
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initiation interval”, or RecMII. Thus, the RecMII in the unfolded graph using the

mapping shown in Figure 3.5 is given by

RecMII = max
v∈Vs

(n× s(v) + n× t(v)) (3.1)

The maximum throughput achievable for the graph is also constrained by the re-

sources, in this case the limited number of processors available to execute the graph.

The constraint on throughput due to resources is referred to as “resource constrained

minimum initiation interval”, or ResMII. In general, ResMII is calculated by perform-

ing a bin-packing of nodes on to processors, and looking at processor with maximum

load. However, we already have a mapping of nodes to processors, which simplifies

the calculation of ResMII. Ignoring the time to transfer the state data, the load on

any processor is given by ∑
v∈V

t(v)

This is because each processor executes all filters corresponding to one iteration of

the original graph. Stateful nodes incur extra overhead for data transfer in the form

of DMAs. Consider a stateful filter v ∈ Vs, the i-th instance vi of v in the unfolded

graph must get the data from the (i − 1)-th instance. We assume the filter i is

responsible for this data transfer, and attribute the time needed for the DMA to

processor i. We attribute the DMA required for transferring state from filter vn to v1,

to processor 1. In steady state, each processor executes one iteration of the original

graph. In addition, it also performs the data transfer for every stateful filter. Thus
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every processor is equally loaded, and the load on any processor, is given by

ResMII =
∑
v∈Vs

s(v) +
∑
v∈V

t(v) (3.2)

The best throughput for the graph using the above mapping described, referred to

as the “minimum initiation interval”, or MII, is simple the maximum of RecMII and

ResMII given by Equations 3.1 and 3.2.

MII = MAX(RecMII, ResMII) (3.3)

Suppose the number of filters in the stream program are much larger than the number

of available processors, i.e., |V | � P . And suppose that work is mostly evenly

distributed across filters, and there is no one filter that dominates the runtime. This is

always true for realistic well written stream programs, as the programmer would have

had load balance in mind while parallelizing an application into a stream program,

thus not putting all the work into one large filter. With these two pre-conditions,

RecMII is much smaller than ResMII because ResMII is the sum of work on all filters,

whereas RecMII depends on the work on one filter. The rest of the section assumes

ResMII > RecMII. Equation 3.1 is used as one of the filters that helps in choosing a

scheduling method for a particular graph.

Given that MII = ResMII, in steady state, the above mapping on n processors

completes n iterations in MII cycles. Thus the speedup achieved by this mapping

over one processor is given by

Speedup =

∑
v∈Vs

s(v) +
∑
v∈V

t(v)

n×
∑
v∈V

t(v)
(3.4)

26



With small number of processors n, and a relatively larger number of stateful filters,

the value
∑
v∈Vs

s(v) is going to dominate the numerator value in Equation 3.4. However,

until now, the discussion has assumed that the number of times a filter is executed

is specified by the basic repetition vector. The semantics of the SDF model allows

any integer multiple of the basic repetition vector also as a valid repetition vector.

We refer to this multiplier as the “coarsening filter”, as it coarsens the granularity of

computation per filter.

Consider a coarsening filter k, i.e., the number of steady state executions of each

filter is specified by the basic repetition vector multiplied by k. The execution time of

a filter is given by k× t(v). Starting from this graph and applying the same unfolding

and mapping process described above, the speedup achieved as a function of k is

given by

Speedup(k) =

∑
v∈Vs

s(v) +
∑
v∈V

k × t(v)

n× k ×
∑
v∈V

t(v)
(3.5)

Note that the value of
∑
v∈Vs

s(v) in the numerator does not have the multiplier k.

This is because, using a coarsening filter of k is semantically equivalent to executing

first k iterations of the stream graph in processor 1, k+1 to 2k iterations on processor

2 and so on. The first k iterations running on processor 1 do not incur any commu-

nication overhead as the copies are run sequentially on the same processor. At the

end of k iterations, the amount of state that must be transferred is still a constant,

and does not change with k. This is in stark contrast to stream data, which increases

linearly with respect to the coarsening filter. Because the mapping described above
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only cuts state data edges across processors, an arbitrarily large coarsening filter still

incurs a constant communication overhead.

Using unfolding and the mapping strategy described above, the next section

presents a code generation schema for the Cell processor, which faithfully implements

the software pipeline obtained from the mapping.

3.3.2 Code Generation for Cell

The SPEs are independent processors with disjoint address spaces. The general

code generation strategy is to spawn one thread per SPE to run code that makes calls

to work functions corresponding to filters belonging to one iteration of the stream

graph. The main program running on the Power processor just spawns the SPE

threads and does not intervene thereafter. The rest of this section is devoted to

describing the schema of per SPE code.

Figure 3.6(a) shows a StreamIt program with 4 filters connected in a pipeline.

Upsample and Downsample are stateless filters, while FIR1 and FIR2 have implicit

state due to peeking. Figure 3.6(b) shows unfolding and mapping of this program on

2 SPEs. One of the requirements for implementing this schedule is efficient synchro-

nization. The execution of FIR1 on SPE2 must wait for the completion of previous

iteration of FIR1 on SPE1. We chose the First-In First-out (FIFO) data structure as

our synchronization primitive. SPEs synchronize by pushing and popping “tokens”

from FIFOs. Tokens are just dummy integers that are used to denote the readiness

of data. The FIFO implementation is blocking, i.e., a producer blocks when trying
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int->int pipeline Ex() {
add Upsample();
add FIR1();
add FIR2();
add Downsample();

}

U psam ple

D ow nsam ple

F IR 2

F IR 1
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F IR 2
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S P E1 S P E2

(a) (b)

Figure 3.6: Code generation schema for Cell. (a) StreamIt program, (b) Unfolding and

Mapping on 2 SPEs. (c) Multithreaded C code for Cell, with relevant synchronization and

DMA copies.

to write to a full FIFO, and the consumer blocks when trying to read from an empty

FIFO. The FIFO has been implemented using a simple lock-free technique [67], which

ensures fast operation. By choosing a size of 1 for the FIFO, SPE2 blocks until SPE1

is done with one iteration of FIR1.

Figure 3.7 shows C code snippets for the threads running on two SPEs. When

SPE1 runs the first iteration of the stream graph, there is no state data dependence for

FIR1 and FIR2. Therefore, the first iteration is peeled out, and calls are made to work

functions of the filters in dataflow order. As soon as a stateful filter’s work function

is done, a token is pushed into the fifo to indicate that SPE2 can start copying state

over, and start its own version of the filter’s work function. token push fir1() in

spe1 code() performs this operation. All instances of FIR1 on SPE2 have to wait

for previous instance of FIR1 on SPE1. token pop fir1() on SPE2 waits for the

29



spe1_code() {
Upsample();

FIR1();
token_push_fir1();

FIR2();
token_push_fir2();
Downsample();

for(i=1; i<max_iter; i++) {
Upsample();

token_pop_fir1();
dma_get_state_fir1();
FIR1();
token_push_fir1();

token_pop_fir2();
dma_get_state_fir2();
FIR2();
token_push_fir2();

Downsample();
}

}

spe2_code() {

for(i=0; i<max_iter; i++) {
Upsample();

token_pop_fir1();
dma_get_state_fir1();
FIR1();
token_push_fir1();

token_pop_fir2();
dma_get_state_fir2();
FIR2();
token_push_fir2();

Downsample();
}

}

Figure 3.7: Multithreaded C code for Cell, with relevant synchronization and DMA copies.

completion of FIR1 on SPE1, and dma get state fir1() copies over the relevant

state information from SPE1. After the work function FIR1() is called on SPE2,

token push fir1() signals SPE1 so that the next instance of FIR1 can be started.

Similar synchronization is performed before and after calls to FIR2. Thus, in steady

state, each SPE waits for the previous SPE before calling the work function of a

stateful filter. This waiting is accomplished by a blocking pop from relevant token

fifo. Then, the state information is copied over using DMA, and the work function is

called. After calling the work function, the SPE signals the next SPE by performing

a push on the relevant token FIFO.
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3.4 Stream Graph Modulo Scheduling

This section describes our method for scheduling a stream graph onto a multicore

system. The objective is to obtain a maximum throughput software pipeline taking

both the computation and communication overhead into account. The stream graph

modulo scheduling (SGMS) algorithm is divided into two phases. The first phase is an

integrated fission and processor assignment step based on an integer linear program

formulation. It fisses data parallel filters as necessary to get maximal load balance

across the given number of processors. The second phase assigns filters to pipeline

stages in such a manner that all communication is overlapped with computation on

the processors.

3.4.1 Integrated Fission and Processor Assignment

Consider a dataflow graph G = (V, E) corresponding to a stream program. Let

|V | = N be the number of filters. Let the basic repetition vector be r, where ri

specifies the number of times vi is executed in a static schedule. Let t(vi) be the time

taken to execute ri copies of vi. The rest of the section assumes ri executions of vi

as the basic schedulable unit. Given P processors, a software pipeline needs some

assignment of the filters to the processors. The throughput of the software pipeline is

determined by the load on the maximally loaded processor. As shown in Section 3.2,

even an optimal assignment on the unmodified programmer conceived stream graph

does not provide linear speedups beyond 8 processors. Some data parallel filters need

to be fissed into two or more copies so that there is more freedom in distributing
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work evenly across the processors. For each filter in the stream graph, the following

ILP formulation comes up with the number of times the filter has to be fissed, and

an assignment of each copy of the filter to a processor. The objective function is the

maximal load on any processor, which is minimized.

A set of 0-1 integer variables ai,j,k,l is introduced for every filter vi. The meaning

of the four suffixes is explained below:

• i identifies the filter.

• j identifies the version of the filter that would appear in the final graph. For

every filter vi, the formulation considers multiple versions of the filter. Version

0 of the filter is fissed 0 times (no copies made), version 1 of the filter is fissed

once so that two copies of the filter are considered for scheduling, and so on.

• k identifies the copy of the jth version of the filter vi. Version 0 has only one

copy. Version 1 has 2 copies of the filter and a splitter and joiner. The splitter

and joiner have to run on some processor, therefore, they are considered as

independent schedulable units. Thus there are (j + 3) schedulable filters in the

jth version. We have either 0 ≤ k < j + 3 when j ≥ 1, or k = 0 when j = 0.

• l identifies the processor to which the kth copy is assigned.

Let Q be the maximum number of versions considered for a filter. Filters with

carried state cannot be fissed at all and Q = 1 for such filters. On the other hand,

stateless filters can be fissed any number of times. The choice of Q affects the load

balance obtained from the processor assignment. Choosing a low value for Q would
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inhibit the freedom of distributing copies of a filter to many processors. We observed

that the maximum number of copies of a filter that appear in the best partitions is

always less than P for all benchmarks. Therefore, in the experiments Q was set to P ,

the number of processors under consideration. The following equation ensures that a

copy of an filter is either assigned to one processor or not assigned to any processor

at all, implying that a different version was chosen.

P∑
l=1

ai,j,k,l ≤ 1 ∀i, 0 ≤ j < Q, 0 ≤ k < j + 3 (3.6)

When a copy of a filter is indeed assigned to a processor, all other copies in the same

version have to be assigned to processors, and all other versions should not be assigned

to processors. To ensure this, a set of Q indicator variables, bi,q, 0 ≤ q < Q, are

introduced for every filter vi. These indicator variables are 0-1 variables which serve

two purposes. First, they indicate which version of the filter was chosen. Second,

by virtue of being either 0 or 1 only, ensure that either all copies of a version are

assigned to processors, or no copy is assigned to any processor. The following set of

equations show the relation between the indicator variables bi,q and the assignment

variables ai,j,k,l.
P∑

l=1

ai,0,0,l − bi,0 = 0 ∀i (3.7)

P∑
l=1

j+2∑
k=0

ai,j,k,l − bi,j ≤M × bi,j ∀i, 1 ≤ j < Q (3.8)

P∑
l=1

j+2∑
k=0

ai,j,k,l − (j + 2)− bi,j ≥ −M + M × bi,j ∀i, 1 ≤ j < Q (3.9)

M in Equations 3.8 and 3.9 is a constant that is larger than the upper bound of
P∑

l=1

j+2∑
k=0

ai,j,k,l. Note that Equations 3.8 and 3.9 are standard ILP tricks to ensure that
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Figure 3.8: Example illustrating ILP formulation.

a linear sum either equals a constant or is zero. In this case, the sum
P∑

l=1

j+2∑
k=0

ai,j,k,l

either has to be (j + 3), denoting that all copies of a version were assigned to some

processor, or has to be 0, denoting that none of the copies were assigned to any

processor. bi,j conveniently takes on 1 or 0, respectively. The following equation

ensures that one and only one version of a filter is chosen in the final assignment.

Q∑
j=0

bi,j = 1 ∀i (3.10)

Figure 3.8 illustrates the above set of equations for an example filter. Q is chosen

to be 3 in the example. Three versions of the filter are shown in the figure. The

labels on the nodes indicate the version number and copy number. The last equation
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b1,0 + b1,1 + b1,2 = 1 ensures that only one version is chosen, and the rest of the

equations ensure that all copies of the chosen version are assigned to processors.

To determine the quality of an assignment, the amount of work assigned to each

processor has to be calculated. The following equation computes the work (in terms

of time) done by a copy of a filter.

Wi,j,k,l =



t(vi) if j = 0

t(vi)
j+1

+ ε if j > 1 and k < j+1

splitter work(vi) if j > 1 and k = j+1

joiner work(vi) if j > 1 and k = j+2

(3.11)

Version 0 of the filter is same as the original filter. Therefore, the work done by

version 0 is the original work t(vi). In version 1, there are 2 copies of the filter that

do half the work as the original filter. Note that there is a small overhead of ε when

fissing filters which peek more elements than they pop. This is due to the introduction

of a decimation stage on each copy which just pops and ignores part of the data to

maintain correct semantics. In addition, there is additional work done by the splitter

and joiner in version 1. The last three cases in Equation 3.11 compute the work done

by copies of the filter, splitter, and joiner. Note that the work done in splitter and

joiner depends on the implementation. However, they both are constants given the

number of items popped by the corresponding filter. For some assignment of filters

to processors, the following equation computes the total work TWp that gets assigned
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to a processor p.

TWp =
N∑

i=1

Q∑
j=0

∑
valid k

ai,j,k,l ×Wi,j,k,p (3.12)

The processor p with maximum work TWp assigned to it constitutes the bottleneck

processor, and thus TWp denotes the inverse of the throughput of the overall pipeline.

We borrow the terminology from operation-centric modulo scheduling used in com-

piler backends, and use the term Initiation Interval (II) to denote the inverse of the

throughput. The following set of equations compute II from the TWp’s.

TWp ≤ II 1 ≤ p ≤ P (3.13)

The ILP program that minimizes II subject to constraints given by Equations 3.6

to 3.13 provides the following information.

• The value of j for which bi,j = 1 identifies the version of the filter chosen. Note

that Equation 3.10 ensures that only one of the bi,j’s have the value 1.

• Given a copy k of the chosen version j, the set of values ai,j,k,l that are 1 identify

the processors to which the copy is assigned. For example, if ai,j,k,4 = 1, then

the kth copy the filter is assigned to processor 4.

The above formulation does not account for any communication overhead. The data

produced by a filter has to be communicated to a consuming filter if that filter was

assigned to a different processor. The following section shows how all such com-

munication can be hidden, thus achieving the exact throughput obtained from the

processor assignment step.
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3.4.2 Stage Assignment

The processor assignment obtained by the method described in the previous sec-

tion provides only partial information for a pipeline schedule. Namely, it specifies

how filter executions are overlapped across processors. It does not specify how they

are overlapped in time. To realize the throughput, which is the load on the maxi-

mally loaded processor obtained from processor assignment, all filters assigned to a

processor including the necessary DMAs have to be completed within a window of II

time units. The only goal of processor assignment step is load balance, therefore it

assigns filters to different processors without taking any data precedence constraints

into consideration. An filter assigned to a processor could have its producer assigned

to a different processor, and have its consumer assigned to yet another processor.

To honor data dependence constraints and still realize the throughput obtained from

processor assignment, the filter executions corresponding to a single iteration of the

entire stream graph are grouped into stages. Note that the concept of stage is adapted

from traditional VLIW modulo scheduling [58]. Across all processors, stages of a sin-

gle iteration execute sequentially, thus honoring data dependences. Within a single

processor, no stages are active at the beginning of execution. During the initial few

iterations, stages are activated sequentially, thus filling up the pipeline and enabling

executions of data dependent filters belonging to earlier iterations concurrently with

filters from later iterations. In steady state, all stages are active on a processor, thus

realizing the throughput obtained from processor assignment. The pipeline is drained

by deactivating stages during the final few iterations.
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The overarching goal of the stage assignment step is to overlap all data communi-

cation (DMAs) between filters. To achieve this, the stage assignment step considers

the DMAs as schedulable units. To honor data dependences and ensure DMAs can be

overlapped with filter executions, certain properties are enforced on the stage num-

bers of filters. Consider a stream graph G = (V, E). The stage to which a filter vi is

assigned is denoted Si. In addition, the processor to which vi is assigned to is denoted

by pi. The following rules enforce data dependences and ensure DMA overlap.

• (vi, vj) ∈ E ⇒ Sj ≥ Si, i.e., the stage number of a consuming filter should come

after the producing filter. This is to preserve data dependence.

• If (vi, vj) ∈ E and pi 6= pj, then a DMA operation must be performed to get

the data from pi to pj. The DMA operation is given a separate stage number

SDMA. As shown in Figure 3.9, the inequality Si < SDMA < Sj is enforced

between the stages of the different filters and the DMA operation. The DMA

operation is separated from the producer by at least one stage, and similarly,

the consumer is separated from the DMA operation by one stage. This ensures

decoupling, and allows the overlap of the producer and the DMA, as well as the

DMA and the consumer.

• Within the set of filters assigned to some processor p, the inequality
∑
Sj=s

t(vj) ≤

II,∀s is enforced. In other words, the sum of execution times of filters (Sj)

assigned to a stage (s) should be less than the desired II. This is the basic

modulo scheduling constraint, which ensures that the stages are not overloaded,

and that a new iteration can be initiated every II time units.
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Figure 3.9: Properties of stages.

A simple data flow traversal of the stream graph is used to assign stages to filters

as shown in Algorithm 1. For each filter in dataflow order, the FindStage procedure

assigns a stage to the filter. The for loop beginning on the line marked 1 computes

the maximum stage of the producers of the filter under consideration. If any of the

producers are assigned to a different processor, the earliest stage considered for filter

is maxstage + 2, which leaves room for DMAs in maxstage + 1. Otherwise, the filter

could be placed on maxstage. The while loop beginning on the line marked 4 finds

a stage number later than stage on which the load is less than the II obtained from

processor assignment.

3.4.3 Code Generation for Cell

This section describes a code generation strategy to implement the modulo sched-

ule obtained for a stream program on a Cell system. The target of our code generation

are the multiple SPEs, as opposed to the PPE. This section describes the general code

generation schema, the buffer allocation strategy, and provides a complete example.
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FindStage (filter) :

maxstage← 0 ;

flag ← false ;

1 foreach producer p of filter do

if stage(p) > maxstage then

maxstage← stage(p) ;

end

2 if Proc(p) 6= Proc(filter) then

flag ← true ;

end
end

3 if flag then

stage← maxstage + 2 ;

else

stage← maxstage ;

end

4 while Load(Proc(p), stage) + t(filter) > II do

stage← stage + 1

end

Load(Proc(p), stage) + = t(filter) ;

return stage

Algorithm 1: Stage assignment procedure
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Code generation schema. The SPEs are independent processors with disjoint

address spaces. The general code generation strategy is to spawn one thread per SPE.

Each thread makes calls to work functions corresponding to filters that are assigned

to the respective SPEs, and perform DMAs to get data from other SPEs. The main

program, running on the PPE, just spawns the SPE threads and does not intervene

thereafter.

Figure 3.10 shows pseudo C code that runs on each SPE thread. It mimics the

kernel-only [59] code of modulo scheduling for a VLIW processor. The array stage

functions similar to the staging predicate, and its size (N) is the maximum number of

stages. The main loop starts off with only the first stage active. The if conditions

that test different elements of stage ensure only filters assigned to a particular stage

are executed. The last part of the loop shifts the elements of the array stage to the

left, which has the effect of filling up the software pipeline. Finally, when all iterations

are done, draining the software pipeline is accomplished by shifting a 0 into the last

element of stage.

The code corresponding to each active stage are calls to the work functions of the

filters assigned to this SPE and the corresponding stage, and the necessary DMAs to

fetch data from other SPEs. The Cell processor provides non-blocking DMA func-

tionality [32], which is leveraged for overlapping DMAs and computation. A DMA

operation assigned to a particular stage is implemented using the mfc get primi-

tive, which enters the DMA command into a queue and returns immediately. The

MFC engine in each SPE processes the queue asynchronously and independent of the
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void spe_work()
{
char stage[N] = {0};

stage[0] = 1;

for (i=0; i<max_iter+N-1; i++) {
if (stage[N-1]) {
// Begin DMA operations
// Call to filter work functions

}
if (stage[N-2]) {
}
...
if (stage[0]) {
}
wait_for_dma_completion();
// start epilogue
if (i == max_iter-1)
stage[0] = 0;

// Shift-left staging predicate
for(j=N-1; j>=1; j--)
stage[j] = stage[j-1];

barrier();
}

Figure 3.10: Main loop implementing the modulo schedule.

processor. After enqueuing the DMA request, the code proceeds to execute work func-

tions for filters. Note that even though the actual DMA operations are asynchronous,

the SPE should queue up the DMA requests synchronously using the mfc get primi-

tive. No more DMAs can be queued once work functions begin execution. Therefore,

all DMA operations belonging to a stage are queued up before any work functions

are called to ensure maximal overlap of actual DMAs and computation. Finally, the

wait for dma completion uses the mfc read tag status all primitive to ensure all
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Figure 3.11: Buffer allocation for the modulo schedule.

DMAs issued in the current iteration are completed, and a barrier synchronization is

executed to ensure the current iteration is completed on all SPEs. barrier() is im-

plemented using the signal mechanism available on the SPEs, and with the current

implementation, 2× 106 barriers can be performed in 1 second.

Buffer allocation. In the code generation schema described above, several iter-

ations of the original stream graph are in flight concurrently. A producer filter could

be executed multiple times before one of its consumers is ever executed. To ensure

correct operation, multiple buffers are used to store the outputs of producer filters.

The buffers are used in a fashion similar to rotating registers in a traditional modulo

schedule. The number of buffers needed for the output of a producer filter assigned to

stage Sp feeding a consumer filter on stage Sc can easily be calculated as Sc−Sp + 1.

Figure 3.11 shows the buffer allocation for a producer filter A and consumer filter

B. They are assigned to different processors with an intervening DMA. Since the stage

separation between A and the DMA is 3, 4 buffers are allocated on the local memory

of PE1, and A uses them in a round-robin fashion. The arrows on the picture on the
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right shows the current buffers being used. Note that the DMA operation and filter

A are executing concurrently by using different buffers. Similarly, B is using a buffer

different from the DMA. In the current implementation, all buffers are allocated on

the local memories of the SPEs. The buffers between a producer filter and a DMA

operation are stored on the SPE on which the producer is running. Symmetrically,

the buffers between the DMA operation and the consuming filter are stored on the

consumer SPE. 256KB of local store is sufficient to hold all the buffers needed by

the benchmarks evaluated. This is corroborated by the authors of [26], who report

that the buffers needed by the benchmarks would fit on the 512KB cache of the Cell

processor.

3.4.3.1 Example

Figure 3.12(a) shows an example stream graph. Assume that all filters in the

graph are data parallel, i.e., they can be fissed any number of times. The numbers

beside the nodes represent the amount of work done by the filters. Note that B does

the most work of 40 units and the sum of work done by all filters is 60 units. When

trying to schedule the unmodified graph on to 2 processors, the maximum achievable

speedup is 60
40

= 1.5. Figure 3.12(b) shows the result of the integrated fission on

processor assignment step. Node B has been fissed once, resulting in two new nodes

B1 and B2, and the corresponding splitter S and joiner J , whose work are assumed

to be 2 units. The processor assignment obtained has an II of 32, thus resulting in

a speedup of 60
32
∼ 2. Finally, Figure 3.12(c) shows the stage assignment in which
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Figure 3.12: Example illustrating fission, processor assignment and stage assignment.

DMAs are separated from consumers by one stage, thus ensuring complete overlap of

computation and communication.

Figure 3.13 shows the execution timeline of the code running on two SPEs. The

main feature to note is the steady state execution, which starts from the 5th iteration

in Figure 3.13. In the steady state, all filters and all DMAs are active. The 4 iterations

shown before the steady state correspond to the prologue of the modulo schedule, in
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which some filter executions and DMAs do not happen as they are predicated by the

stage array. The DMA operations are started before filter executions on the SPEs,

thus ensuring overlap with computation. Due to the overlap, the purported speedup

of 2 is achieved by the schedule.

The main differences between näıve unfolding and SGMS can be summarized as

below.

• All DMA transfers of stream data can be overlapped with computation in SGMS

where as DMA transfers of state data cannot be overlapped with any compu-

tation as it is present in the critical path.

• In the näıve unfolding method, each SPE runs all filters in the original stream

graph, whereas in SGMS, an SPE runs only a subset of the filters. Therefore,

the memory footprint of code for näıve unfolding is much larger than for SGMS.

• The latency for one iteration of the original stream graph is equal to the uni-

processor execution time of an iteration in the näıve unfolding method. This is

because all filters belonging to one iteration is executed sequentially by an SPE.

In contrast, task level parallelism is exploited within an iteration in SGMS, and

therefore, the latency for an iteration could be much smaller.

Despite the shortcomings compared to SGMS, näıve unfolding is a simple method

which requires no sophisticated compiler analyses, and is straightforward to imple-

ment for the Cell processor. We compare SGMS with näıve unfolding in the following

section.
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3.5 Evaluation

This section evaluations of various aspects of SGMS, including a comparison to

näıve unfolding.

3.5.1 Experiments

This section presents the results of the experimental evaluation of SGMS, and

comparison to the näıve unfolding method. A uniprocessor schedule was first gener-

ated for one SPE, with instrumentations added for measuring running time of each

filter. The SPU “decrementer”, a low overhead timing measurement mechanism, is

used for profiling. The timing profile for each filter is used by the SGMS scheduler

that generates schedules for 2-16 processors. The scheduler uses the CPLEX mixed

integer program solver during the integrated fission and processor assignment phase.

The code generation phase outputs plain C code that is divided into code that runs

on the Power processor and code that runs on individual SPEs. The main thread

running on Power processor spawns one thread per SPE. Each SPE thread executes

a code pattern that was described in Section 3.4.3. IBM’s Cell SDK 2.1 was used to

implement the DMA copies, and the barrier synchronization. The GNU C compiler

gcc 4.1.1 targeting the SPE was used to compile the programs. Note that only vector-

ization that was automatically discovered by gcc were performed on the filters’ codes.

The hardware used for our evaluation is an IBM QS20 Blade server. It is equipped

with 2 Cell BE processors and 1 GB XDRAM.
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Benchmark Filters Stateful Peeking State size (bytes)

bitonic 28 2 0 4

channel 54 2 34 252

dct 36 2 0 4

des 33 2 0 4

fft 17 2 0 4

filterbank 68 2 32 508

fmradio 29 2 14 508

tde 28 2 0 4

mpeg2 26 3 0 4

vocoder 96 11 17 112

radar 54 44 0 1032

Table 3.1: Benchmark characteristics.

Benchmark suite. The set of benchmarks available with StreamIt software ver-

sion 2.1.1 was used to evaluate the scheduling methods. Most benchmarks are from

the signal processing domain. bitonic implements the parallel bitonic sorting algo-

rithm. des is a pipelined version of DES encryption cipher. [26] provides descriptions

of the benchmarks. Table 3.1 shows the details relevant to our evaluation. Number of

stateful filters with explicit state and peeking filters with implicit state are important

to understand the speedups from näıve unfolding. Typical sizes of states in these

benchmarks are also shown.
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Figure 3.14: Stream-graph modulo scheduling speedup normalized to single SPE.

SGMS performance. Figure 3.14 shows the speedups obtained by SGMS over

single processor execution on 2 to 16 processors for the benchmark suite. SGMS ob-

tains near linear speedup for all benchmarks, resulting in the geometric mean speedup

of 14.7x on 16 processors. The main reasons for near linear speedups are listed below.

• The integrated fission and partitioning step fisses enough data parallel filters

and the resulting number of filters is enough to span all available processors.

• The partitioning assigns filters to processors with maximal load balance.

• Stage assignment separates data transfers and filters that use the data into

different stages. This ensures that all data transfers are overlapped with com-

putation.

Note that with perfect load balance and complete overlap of all communication with

computation should always result in a speedup of N on N processors. However, the

50



observed geometric mean speedup is only 14.7x on 16 processors. One of the main

overheads in our implementation arises from the barrier synchronization. As shown

in Figure 3.10, all SPEs do a barrier synchronization at the end of every iteration

of the loop implementing the modulo schedule. Our implementation of the barrier

on the SPEs adds an overhead of 1 second for every 2 × 106 calls. Depending on

the number iterations the stream graph is executed, barrier synchronization adds an

overhead of up to 3 seconds in some benchmarks. A notable benchmark is vocoder

for which the 16 processor speedup is only 13x. vocoder has 96 filters in the stream

graph. On 16 processors, the partitioning results in over 30 DMA operations being

in flight at the same time, which adds some overhead to the steady state. SGMS

relies on static work estimates during the partitioning phase. Any deviation from the

static estimate during runtime would change the balance of work across processors

and cause a reduction in speedup. However, this effect is difficult to quantify.

Comparing näıve unfolding to SGMS.Figure 3.15 compares the speedup ob-

tained by SGMS and näıve unfolding on 16 processors. There are 3 bars per bench-

mark. The first bar is the speedup obtained by näıve unfolding for the original stream

graph. The second bar is the speedup obtained by näıve unfolding on the same set

of benchmarks, but with the size of state variables artificially increased by 16x com-

pared to the original implementation. The last bar the speedup obtained by SGMS

for the original stream graph. Figure 3.15 has to be correlated with Table 3.1 for

better understanding. For benchmarks that are almost completely stateless, such as

dct, des and mpeg2, näıve unfolding achieves over 15.5x speedup on 16 processors.
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Figure 3.15: Comparing näıve unfolding to SGMS.

This is not surprising as independent iterations run on different processors without

any communication. Note that each benchmark nominally has 2 stateful filters, which

are the input and output filters. These are used for preserving program order. The

small amount of communication needed for these two stateful filters adds very little

overhead, and thus completely stateless stream programs achieve close to 16x speedup

on 16 processors. The SGMS method for these programs does not unfold the stream

graph completely, but only fisses enough filters to get an even work distribution. The

selective fissing adds extra splitters and joiners that add non-zero overhead to the

steady state. Also, SGMS uses a barrier synchronization at the end of each iteration,

whereas in näıve unfolding, the stateful filters perform a point to point synchroniza-

tion. Because of these two facts, näıve unfolding performs 5-10% better than SGMS

for completely stateless stream programs.
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Figure 3.16: Effect of exposed DMA latency.

For stream programs with many stateful and peeking filters, such as vocoder,

radar, and fmradio, SGMS outperforms näıve unfolding by up to 20%. The DMA

transfer of state data in näıve unfolding is completely exposed as it is in the critical

path. However, all DMA transfers of stream data are overlapped with computation

in SGMS. The exposed DMA overhead for näıve unfolding is more pronounced when

the state size is artificially increased to 16x the original state size. In this case,

SGMS, whose performance is unaffected by the state size increase, outperforms näıve

unfolding by up to 35%.

Effect of exposed DMA latency. Figure 3.16 illustrates the effectiveness of

computation/communication overlap. For each benchmark, a version of the C code

for SPEs was generated in which the data transfer overhead was completely exposed.

For this case, the stage assignment did not separate the DMA operation and the
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Figure 3.17: Comparing ILP partitioning to greedy partitioning.

consumer filter into different stages. Rather, they were put in the same stage and the

consumer SPE stalls until the DMA operation is completed. The effect of exposed

DMA latency is detrimental for all benchmarks. For channel, filterbank, and

radar, which have high computation to communication ratios, the effect is not very

pronounced and they retain most of their speedups even with exposed DMA latency.

bitonic and des have low computation to communication ratios, and they suffer up

to 25% perfomance loss when the DMA latencies are exposed.

Comparing ILP partitioning to greedy partitioning. The integrated fission

and processor assignment phase is in part an optimal formulation for bin packing. In

addition to deciding how many times each filter has to be fissed, this phase also

does the assignment with maximal load balancing. Figure 3.17 compares the optimal

formulation with a greedy heuristic. We only compare the 8 processor speedup. This
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is because the programmer conceived stream graph already has enough parallelism to

span 8 processors as shown in Figure 3.3 and the fission part of the formulation does

not fiss any filters. Thus, Figure 3.17 effectively compares an optimal bin packing

formulation to a greedy strategy. We use the Metis [34] graph partitioner as our

greedy strategy. The original stream graph is partitioned into N parts using Metis,

where N is the number of processors. The same work estimates are used as weights

on the nodes of the graph. Note that this greedy partitioning is similar to the one

used in [26]. In [26], a separate communication stage is introduced between steady

states to shuffle data between banks. However, to make the comparison fair, the same

algorithm for stage assignment is used in both cases which overlaps all DMA transfers

with computation. Figure 3.17 shows that the quality of graph partition using a

greedy method depends greatly on the structure of the graph. For example, fft and

tde are just linear graphs with no splitters or joiners. For these cases, the greedy

graph partitioner is able to achieve the same load balance as the optimal partitioner.

For highly parallel graphs like filterbank and vocoder, heuristics perform up to

35% worse than an optimal formulation. Overall, the optimal partitioner achieves a

geometric mean speedup of 7.6x, whereas the greedy partitioner achieves 6.7x on 8

processors.

Scaling of ILP formulation.The vocoder benchmark is used to study how

the CPLEX solver runtimes scales when trying to partition the graph for 2 to 128

processors. vocoder is the largest benchmark in the suite, and the solver runtimes

are smaller for all other benchmarks. The solver run times were under 30 seconds for
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up to 16 processors. The time taken for partitioning on 32, 64 and 128 processors

were 2, 6, and 16 minutes, respectively on a Intel Pentium D running at 3.2GHz.

Appendix A further explores the scalability of the ILP formulation. Symmetries in

the formulation are exploited by adding symmetry breaking constraints. As much as

25% improvement in the solver run time was observed by adding a reduced set of

symmetry breaking constraints to the problem.

3.6 Related Work

There is a large body of literature on synchronous dataflow graphs, on languages

to express stream graphs, and methods to exploit the parallelism expressed in stream

graphs. Even though SDF is a powerful explicitly parallel programming model, its

niche has been in DSP domain for a long time. Early works from the Ptolemy

group [43, 42, 41] has focused on expressing DSP algorithms as stream graphs. Some

of their scheduling techniques [54, 29] have focused on scheduling stream graphs

to multiprocessor systems. However, they focus on acyclic scheduling and do not

evaluate scheduling to a real architecture.

There has been other programming systems based on the stream programming

paradigm, and each of those systems have compilers which target multiprocessors. [28]

maps StreamC to a multithreaded processor. This was more of a feasibility study, and

the scheduling was done manually. In [69], the authors map the Brook language to a

multicore processor. They make use of affine partitioning techniques which are more

suitable for parameterized loop based programs. With StreamIt, the stream graph
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is completely resolved at compile time, and a direct scheduling technique like ours is

more effective. Note that any stream programming system in which the computation

can be expressed as an stream graph could utilize our scheduling method.

There has been a recent spur of research in the domain of compiling to the Cell

processor. CellSs [7] is a stylized C model for programming the cell. The computation

is expressed as functions which make all their inputs and outputs explicit in terms of

parameters. Functions can be stringed together to form a data flow graph. A run time

scheduler treats this graph in the same way a superscalar processor treats operations,

and schedules these functions on to the cell SPEs as soon as their inputs are ready. Our

work is distinctly different from theirs in that, we use a static compile time schedule

which does not have run time scheduling overheads. [35] talks about compiling the

Sequoia language to the Cell processor. This paper’s focus is more on representing

machines with multiple levels of memories, possibly with disjoint address spaces, in a

reusable way, and a compiler to automatically target such representations. Our work

focuses more on the actual scheduler, and assumes a fixed machine. [9] talks about

parallelizing a specific application at multi levels of granularity on the Cell processor.

This is more of an experiences paper, and the parallelization was done manually.

The problem scheduling coarse-grain filters to processors on a multicore with dis-

tributed memory is conceptually similar to scheduling operations to the function units

in a multicluster VLIW processor [58, 60]. However, stream graph exposes more op-

timization opportunities such as the ability to fiss filters. Also, the constraints of

limited register space is not an issue on multicores as there is ample memory avail-
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able to hold the intermediate buffers.
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CHAPTER 4

Memory Management for Stream Graph Modulo

Scheduling

4.1 Introduction

Stream Graph Modulo Scheduling presented in Chapter 3 targeted the Cell pro-

cessor. The data engines (SPEs) on the Cell processor have 256KB of memory each,

which was sufficient to hold the data needed by the SGMS schedule. Embedded pro-

cessor tend to have much less memory on-chip due to area and power concerns. This

Chapter extends SGMS by proposing optimizations for mapping stream programs to

systems with constrained memory. Concurrent execution of filters invariably results

in live data that need to be stored and communicated. On a platform like Cell with

multi-level hierarchical memory, placing the data close to the processing elements en-

sures low latency transfers. The buffer allocation strategy presented in this chapter

chooses a memory hierarchy level for each block of live data. Live blocks are placed
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on local stores of the SPEs as much as possible to leverage low latency communication

between SPEs. Blocks are copied over to main memory when local store overflows.

The strategy presented in this chapter decouples the placement of blocks at producer

and consumer sites so that local memories on both sites can be fully utilized. Local

to local memory, global to local memory and global to global memory transfers are

considered simultaneously to minimize the amount of exposed transfer latency. First,

the schedule obtained through stream graph modulo scheduled in transformed to re-

duce memory requirements, without sacrificing throughput. This involves minimizing

the number of cuts to data flow edges. This phase evens out the memory required

on each SPE. Then, an efficient integer linear programming formulation is used to

allocate the live blocks on either the local or global memory. The ILP formulation

minimizes the exposed transfer latency across processors while ensuring that the local

memory capacities are not exceeded. Experiments on the Cell processor show that

the memory allocation strategy is able to increase performance by up to 120% when

memory constraints are removed from a system with nominal memory to run the

software pipeline. On the other hand, the method is also able to maintain most of

the performance as more and more memory constraints are added to the system.
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4.2 Background

4.2.1 Memory System of the Cell Broadband Architecture

The Cell Broadband Engine (CBE) is a heterogeneous multicore system, consist-

ing of one 64bit PowerPC core called the Power Processing Element (PPE) and eight

Synergistic Processing Elements (SPEs). Each SPE has a SIMD engine called the

synergistic processing unit (SPU), 256 KB of local memory and a memory flow con-

trol (MFC) unit which can perform DMA operations to and from the local stores

independent of the SPUs. The property of CBE most pertinent to this chapter is the

fact that the SPUs can only access the local store, so any sharing of data has to be

performed through explicit DMA operations. The SPEs and PPE are connected via

a high bandwidth interconnect called the Element Interconnect Bus (EIB). The main

memory and peripheral devices are also connected to the EIB. The MFCs can perform

asynchronous non-blocking DMA transfers, independent of the SPUs. The SPUs can

issue DMA requests which are added to hardware queues of the MFCs. The SPU can

continue doing computation while the DMA operation is in progress. The SPU can

query the MFC for DMA completion status and block only when the needed data has

not yet arrived. The ability to perform asynchronous DMAs operations allow overlap

of computation and communication.

The EIB has a peak bandwidth of 204.8 GB/s and can support multiple out-

standing requests from the SPEs. However, the observed transfer latency could vary

widely depending on the traffic pattern and the number of SPEs participating in the
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Figure 4.1: Observed latencies for LS to LS and global memory to LS data transfers on

the CBE.

communication. Figure 4.1 shows the result of a latency measurement experiment.

Threads running on the SPEs fetch data from other SPEs’ local stores or from the

global memory using the mfc get API call, and the observed latencies are measured.

In the LS-to-LS case, each SPE thread chooses one of the other SPEs at random and

fetches 32 KB of data from its local store. As the number of participating SPEs in-

crease, the observed latency increases. The observed latencies are much higher when

the SPEs are fetching a random 32KB block from the global memory as illustrated in

the Global Mem-to-LS case. Global memory to local store goes through the L2 cache

in the system, and the limited ports on L2 causes the latencies to be up to 2 times

higher than for LS-to-LS transfers.
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float->float filter DCT {
float[128] coeff;

void foo() {
...

}
work pop 4 push 4 {
...
foo();
...

}
}

coeff

foo

work

input

output

Stream dataState data

Figure 4.2: A StreamIt filter and memory map on an SPE’s local store.

4.2.2 Memory Requirements for SGMS

The software pipeline obtained from SGMS translates to running the filters’ work

functions on the SPEs of the Cell processor. As mentioned in Section 4.2.1, each SPE

can only access its local store. Thus, all data relevant for running an filter’s work

function need to be present on the local store.

Figure 4.2 shows the DCT filter class. It has a local array coeff, the work function

and a helper function foo. The code for the work and foo functions and member

variables are categorized as state data. The rest of the chapter assumes that the local

store has at least enough space to hold the state data of all filters mapped to an SPE.

Note that implicit state needed by peeking filters is also counted under state data.

Every schedulable instance of a filter also needs space for storing the stream data that

is pushed and popped in the work function. The amount of data pushed or popped

during one schedulable instance (some number of repetitions of the work function) of

a filter is henceforth referred to as a block. The rest of the chapter assumes that there

is enough space for at least one input and one output block. As shown in Figure 4.2, a
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filter could have produced multiple output blocks before the consuming filter executes.

With multiple filters mapped to an SPE, many blocks could be live during the steady

state execution before they are consumed during the successive iterations. Figure 4.1

clearly shows that the placement of these live blocks has a significant impact on the

latency to transfer the blocks to the consumer filters. It is evident that storing the

blocks in the local stores of SPEs is better. However, the number of blocks live

during an iteration of the steady state could exceed the capacity of the local store.

Live blocks that do not fit in the local store need to be spilled to the global memory.

The higher latency of global memory to LS transfers necessitates careful placement

and orchestration of transfers of the live blocks. Section 4.3 describes our solution for

efficient management of local store for SGMS.

4.3 Block Allocation

The software pipeline for a stream graph produced by SGMS has both producers

and consumers running simultaneously in the steady state. As described in Section 3,

this is accomplished by running the producer filter enough times to fill the pipeline.

The execution schema necessitates storage for two kinds of blocks produced during

the steady state : (a) intra blocks, that are produced and consumed on the same

processor within the same iteration of the stream graph, and (b) inter blocks, that

are produced by an filter in the current iteration and used by an filter mapped to

a different processor during a future iteration. As mentioned in Section 4.2.2, we

assume that there is enough space for storing the intra blocks, and code for the filters
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and any local filter state. This section describes how the inter blocks are allocated

and communicated.

Edge cut minimization. The first step in the block allocation process is to minimize

the overall space required for the inter blocks. The space required for the inter blocks

is a function of the number of instances in which producer and consumer filters are

assigned to different processors. In other words, it is a function of the number of

data flow edges “cut” by the schedule. SGMS described in Chapter 3 pays no special

attention to the number of edges cut. The processor assignment phase only minimizes

the initiation interval (II). It is evident that there could be many assignments with

the same II. The assignment with fewer edge cuts is preferrable to one with more edge

cuts. The goal of this phase is to transform the assignment such that the number of

edge cuts is minimized, without changing the II.

An initial assignment of filters to processors is obtained by partitioning the data

flow graph. This partitioning is heuristic based, and has no control over the resulting

throughput. The goal of graph partitioning is to minimize the number of edges cut.

The edges are weighted by the amount of data produced by the producer of the edge

in steady state. Then, a second step changes this assignment with a small number

of edge cuts to an assignment with the original II. This is done by “moving” filters

between processors. The goal is to obtain an assignment with the original II, but using

fewest moves. This tends to make the number of edges cut close to the one obtained

from graph partitioning, while achieving the original II. The second step is formulated

as an integer linear program. Let N be the number of filters and P , the number of
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processors. Let pi denote the processor to which filter i was assigned by the graph

partitioner. This formulation considers moving filter i to every other processor (and

also, not moving it at all). 0/1 variables xi,j are introduced, j ∈ {1, . . . , P} − {pi},

to denote the fact that filter i is being moved to one of the processors other than pi.

The following equation ensures that filter i is either moved to one and only one of

the other processors, or not moved at all.

∑
j∈{1,...,P}−{pi}

xi,j ≤ 1 i ∈ {1, . . . , N} (4.1)

Let ti be the time taken to run filter i in the steady state. The following equation

calculates the load Lj on processor j.

Lj =
∑
pi=j

(ti − ti × (
∑

k∈{1,...,P}−{pi}

xi,k)) +
∑
pi 6=j

ti × xi,j (4.2)

The first summation term includes the times of filters that were originally assigned

to processor j, if they were not moved to any other processor. The second summa-

tion term includes times of all filters that were moved from some other processor to

processor j. Let II be the initiation interval obtained from the original processor

assignment phase. The following equation ensures that the load on each processor is

lower than II.

Lj ≤ II j ∈ {1, . . . , P} (4.3)

Using the variables xi,j, it is easy to measure the number of “moves” made, which is

a proxy for the number of edges cut by the new assignment.

MOV ES =
∑

i∈{1,...,N}

∑
j∈{1,...,P}−{pi}

xi,j (4.4)
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When a filter has all its producers and consumers assigned to the same processor as

itself, moving it to a different processor would cause many more edge-cuts. However,

Equation 4.4 treats all moves equally. Using different weights to cases like the one

described above could lead to a better solution. However, it was empirically found

that using different weights did not affect solution quality significantly. Therefore,

the rest of the discussion assumes all moves are weighed equally.

Equation 4.4 measures the number of edges cut across all processors. This may

result in uneven distribution of edge cuts across processors. To ensure that the

memory requirement at each processor is balanced, it may be more important to get

an even distribution of edge-cuts across all processors. The following equation bounds

the maximum number of edges cuts at any processor by the variable EC.

∑
pi=j

∑
k∈{1,...,P}−{pi}

xi,k ≤ EC j ∈ {1, . . . , P} (4.5)

Solving equations 4.1 through 4.3 while minimizing MOV ES or EC results in an

assignment with minimal overall edge-cuts or evenly distributed edge cuts, respec-

tively.

Block allocation. This step takes a processor assignment, with possibly reduced

memory requirements, and assigns a location for each block of live data. Consider

an filter A mapped to processor SPE1 with an output edge to an filter B mapped

to SPE2. This mapping of filters to processors implies that both filters execute

concurrently in the steady state. Therefore, when A is running iteration i, B is

running iteration i − δ, consuming the block produced by (i − δ)th iteration of A.

Figures 4.3 through 4.6 enumerates some of the options available for storing the inter
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Figure 4.3: Block storage option requiring the most storage space, but allowing complete

overlap of DMAs at both producer and consumer processors.

blocks produced by A and consumed by B. Each of these options have different δ

values and varying levels of overlap of computation and communication.

Option 1.Figure 4.3 illustrates this option. δ live blocks are stored in the local store

of SPE1. Iteration i of A writes to one of those blocks, while a concurrent DMA

operation transfers the block produced by iteration i − δ − 1 of A to SPE2. This

DMA operation writes to one of the two live blocks stored in SPE2, while B reads

the other live block, corresponding to iteration i − δ. Thus, all communication is

completely overlapped with communication. Note that all transfers are LS-to-LS as

no live blocks are stored in the global memory.

Option 2.As shown in figure 4.4, two blocks are stored in the local memory. Iteration

i of A writes to a live block in the local store of SPE1, and initiates a DMA copy to

one of the blocks in the global memory. Note that this DMA copy is overlapped with

execution of other filters executing on SPE1, and that is the reason why this block

cannot be reclaimed and reused. On the consumer side, no live blocks are allocated on
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Figure 4.4: Block storage option allowing overlap of DMA at the producer, but not at the

consumer processor.

the local store of SPE2. Iteration i− 1 of B fetches the other live block from global

memory, and blocks until the DMA is completed. After B’s execution, the input

block is no longer needed, and can be reused by other filters on SPE2. In Option 2, δ

blocks are stored in the global memory, and the global memory to LS DMA transfer

is completely exposed on the consumer side.

Option 3.Using this option exposes the DMA transfer at the producer side. Iteration

i of A writes to a block on the local store of SPE1, and transfers that block to global

memory. This DMA transfer is blocking, and therefore its latency is completely

exposed. This block, however, can be reused by other filters on SPE1. On the

consumer side, two live blocks are allocated. Iteration i − 2 of B uses one of the

blocks, while a concurrent DMA operation transfers the block needed for iteration

i− 1. δ blocks are stored in the global memory in this option.

Option 4.This option uses the least amount of storage among the four. However, this

results in the DMA transfer being exposed on both the producer and consumer side.

69



LSLS

LSLS

A

B

S P E 1

S P E 2

G loba l M em

Figure 4.5: Block storage option allowing overlap of DMA at the consumer, but not at

the producer processor.

On SPE1, iteration i of A is executed and the resulting live block is immediately

transferred to the global memory, thus enabling reuse of the block. Similarly, the

block need by iteration i − 1 of B is fetched onto the local store of SPE2 with a

blocking DMA operation. The 4 options are summarized in Table 4.1.

4.4 ILP Formulation

Given a partition of filters to the available processors, one of the options described

above has to be chosen for each edge in the stream graph whose producers and

consumers are on different processors. The amount of storage needed on the local

store of each SPE, and the decrease of throughput caused by exposed DMAs can be

calculated only when options have been chosen for all the edges crossing processors

in the partition. The following integer linear programming (ILP) formulation chooses

an option for each edge. The sizes of local stores allowed for live blocks are taken

as input, and the formulation constrains the option assignment such that all the live
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Figure 4.6: Block storage option requiring the least storage space, but exposes DMA

transfers at both the producer and consumer processors.

blocks fit within the allowed size. The throughput decrease due to the exposed DMAs

is minimized by the formulation.

Suppose E = {e1, e2, ..., en} are the edges whose producers and consumers are on

different processors. Let p(ei) and c(ei) denote the processors to which the producing

filter and consuming filter of edge ei are assigned and d(ei) denote the block size

associated with ei. Let P be the total number of processors. Four binary variables

xi,1, xi,2, xi,3, and xi,4 are introduced for each edge ei ∈ E. xi = 1 implies option 1

described above is chosen for ei. The following equation ensures that one (and only)

option is chosen for each edge.

xi,1 + xi,2 + xi,3 + xi,4 = 1 i ∈ {1, n} (4.6)

On each processor j, the size of local store taken up by the live blocks can be calculated
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# live blocks DMA Hidden

@Producer @Consumer @Producer @Consumer

Option 1 δ 2 X X

Option 2 1 0 X ×

Option 3 0 2 × X

Option 4 0 0 × ×

Table 4.1: Block storage options summary.

from the above binary variables as follows.

size(j) =
∑

p(ei)=j

δ × di × xi,1 + di × xi,2+

∑
c(ei)=j

2di × xi,1 + 2di × xi,3 (4.7)

Suppose the maximum local store space allowed on processor j is Sj. The following

equation is used to enforce this constraint.

size(j) ≤ Sj j ∈ {1, P} (4.8)

Choosing options 2, 3, or 4 for an edge also incurs DMAs on the processors, whose

latencies are exposed in the schedule. Suppose li is the DMA latency for transferring

the block associated with ei. The following equation calculates the total latency

exposed at each processor j.

lat(j) =
∑

p(ei)=j

li × xi,3 + li × xi,4+

∑
c(ei)=j

li × xi,2 + li × xi,4 (4.9)
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The following equation introduces a variable maxlat which measures the maximum

exposed latency across all processors.

lat(j) ≤ maxlat j ∈ {1, P} (4.10)

The variable maxlat is used as the objective function, and is minimized subject the

constraints given by Equations 4.6 through 4.10.

4.5 Results

This section presents the results of the experimental evaluation of block allocation

for SGMS. The partitioning method presented in Section 3.4 is used to assign stream

actors to SPEs. This partition assumes that all live blocks can be allocated in the local

store of the SPEs, and all DMA transfers can be overlapped. In other words, option

1 shown in Figure 4.3 is used to allocate live blocks for all the inter SPE edges. The

throughput achievable by this partition, referred to as Initiation Interval (II), repre-

sents the maximum speedup possible, with no memory constraints. Buffer allocation

described in Section 4.3 is performed with a given memory constraint which chooses

one of the 4 options for each inter SPE edge. The edge cut minimization is performed

on the original partition using the Metis [34] graph partitioner followed by the ILP

phase. The ILP program for the buffer allocation problem is solved using CPLEX

solver. This allocation reduces the memory required on each SPE. It also exposes

some DMA transfer latencies for some edges, which has the effect of increasing the

II. After an option is chosen for each edge, the code generation schema presented in
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Section 3.4.3 is used to implement the software pipeline on each of the SPEs. The live

blocks on SPEs are declared as arrays on the corresponding SPEs’ C files. The main

thread running on Power processor spawns one thread per SPE. Each SPE thread

executes a code pattern that was described in Section 3.4.3. IBM’s Cell SDK 3.0 was

used to implement the DMA copies, and the barrier synchronization. The GNU C

compiler gcc 4.1.1 targeting the SPE was used to compile the programs. Note that

only vectorization that was automatically discovered by gcc were performed on the

actors’ codes. The hardware used for our evaluation is an IBM QS20 Blade server.

It is equipped with 2 Cell BE processors and 1 GB XDRAM. The set of benchmarks

available with StreamIt software version 2.1.1 was used to evaluate the scheduling

methods. Most benchmarks are from the signal processing domain. bitonic im-

plements the parallel bitonic sorting algorithm. des is a pipelined version of DES

encryption cipher. Gordon et al. describe the benchmarks in [26].

Each SPE on the Cell processor has 256KB local store. The memory requirements

of the original partition, assuming option 1 for all inter SPE edges, were less than

256KB for all benchmarks that were evaluated. The actual memory requirements for

the benchmarks ranged from 16KB for bitonic to 98KB for mpeg2. To evaluate the

buffer allocation method, the available memory space was artificially constrained for

each of the benchmarks.

Figure 4.7 illustrates the effectiveness of edge cut minimization. The bar chart

shows the buffer space required at each of the processors (1 through 4) as a fraction of

total space required on all the processors for vocoder and bitonic benchmarks. The
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Figure 4.7: Buffer space required on each processor under different edge-cut minimization

strategies.

set of bars marked “overall” shows the space required on each processor when the edge

cut minimization tries to minimize the overall number of edges cut, i.e., it minimizes

Equation 4.4, subject to Equations 4.1 through 4.3. The set of bars marked “per

proc” shows the space required when the edge cut minimization tries to get an even

distribution of edge cuts across processors, i.e., it minimizes Equation 4.5. Figure 4.7

shows that the buffer requirement is more evenly distributed across processors when

Equation 4.5 is used as the objective function during edge cut minimization. For

example, in the case of vocoder, the standard deviation of buffer requirement across

the processors is 15% in the “overall” case, whereas it is only 8% in the “per proc”

case.

Figure 4.8 compares the ILP-based block allocation with a greedy heuristic based

allocation. The greedy block allocation is performed locally on every processor. Ini-
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Figure 4.8: Comparison of greedy with ILP-based block allocation.

tially, all live blocks are assumed to be allocated on the local memory. Then, the

live blocks are ordered according to their sizes, from the smallest to the largest. Live

blocks are considered in this order, and are spilled to the global memory. This process

is continued until the remaining blocks fit in the local memory. Figure 4.8 compares

the 8 processor speedups of benchmarks. The leftmost bars marked “Original” show

the speedups with unconstrained memory. The other two bars show the speedups

when the memory was constrained to 50% of the space required by all live blocks.

The ILP-based allocation out-performs the greedy heuristic by as much as 30%. Since

the ILP-based allocation has a global view across all processor, it is able to reduce

the exposed DMAs more than the greedy heuristic.

Figure 4.9 shows the speedup obtained on 8 processors over single processor ex-

ecution. Different bars represent varying memory constraints. The leftmost bar

76



0

1

2

3

4

5

6

7

8

9

bitonic channel dct des fft filterbank fmradio tde mpeg2 vocoder radar

Benchmarks

R
el

at
iv

e 
Sp

ee
du

p

Nominal 25% Mem 50% Mem 75% Mem Unlimited

Figure 4.9: Speedups on 8 SPEs with memory constraints.

corresponds to the most memory constrained experiment. For that experiment, no

space was available for live blocks on the local stores of SPEs. The local store only

contained the code for actors, and their local state. The right most bar represents

the unconstrained system, which has enough space in the local store of the SPEs to

hold all the live blocks needed by the schedule. The 3 intermediate bars represent

systems with 25%, 50%, and 75% respectively, of the total space required for all live

blocks for each of the benchmarks. Speedup losses of up to 120% are observed on the

system with nominal memory. The actual speedup loss is dependent on the original

partition. Note that live blocks are only needed for edges whose producing and con-

suming actors are on different SPEs. The partitioner tries to minimize II, which is

the maximum load on any SPE. The number of edge cuts produced by a partitioner

working with such an objective depends on the distribution of work among the ac-
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tors in the stream graph. The partitioner produced partitions with few edge cuts for

benchmarks like channel, fmradio, and vocoder. The difference between nominal

and unlimited cases is only 20% in these cases. For dct, fft, and tde the partitioned

had many edge cuts, thus increasing the number of live blocks. Constraining the

memory for such benchmarks results in speedup loss of as much as 120%.
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CHAPTER 5

Automatic Synthesis of Prescribed Throughput

Accelerator Pipelines

5.1 Introduction

In this chapter, we present an automated system for designing stylized accelerator

pipelines from streaming applications. The system synthesizes a highly customized

pipeline that minimizes hardware cost while meeting a user-prescribed performance

level. The input to the system is a behavioral description of the application specified

in C that is comprised of a system specification and a set of kernels. The system

specification describes the organization and communication in the pipeline, while the

kernels describe the functionality of each stage on a single packet of data. The system

designs the complete accelerator pipeline by determining the throughput of each stage

as well as the inter-stage buffer organization. A unique aspect of the system is the

utilization of multifunction loop accelerators to enable multiple pipeline stages to
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time multiplex the hardware for a single pipeline stage. This approach sacrifices

performance as kernel execution is sequentialized, but greatly increases the ability to

share hardware in the design and thus drive down the overall cost.

The contributions of this work are threefold:

• A systematic design methodology for creating rate-matched accelerator pipelines

with minumum cost at a user-specified throughput.

• A system that can exploit high degrees of hardware reuse by mapping multiple

loops to multifunction accelerators.

• A stylized accelerator pipeline template optimized for streaming applications.

5.2 System Overview

Figure 5.1 shows a broad overview of our accelerator pipeline synthesis system.

The system takes as input the application written in C, expressed as a set of commu-

nicating kernels. Performance and design constraints, such as overall throughput of

the pipeline, clock period and memory bandwidth, are also specified. The frontend of

the system performs data dependency analysis on the application to derive the loop

graph, which is a representation of the communication structure between the kernels.

The system synthesizes an accelerator pipeline with minimum cost to meet the per-

formance constraints. The pipeline consists of a number of loop accelerators (LAs)

to execute the kernels in the application and ping-pong memory buffers for commu-
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nicating values. The following subsections describe the input specification and the

accelerator pipeline schema in more detail.

5.2.1 Input Specification

The input to the synthesis system is the whole application written in C. Simple

stylizations are imposed on the structure of the C program. The stylizations make the

analysis of the program simpler, but still enable a wide variety of media and network

applications to be expressed. Sequential C semantics make it easy for applications

to be developed and debugged quickly, even with the stylization restrictions. The

input program consists of two logical parts, viz., a set of kernel specifications and the

system specification.

Kernel specification. Conceptually, kernels form one stage of processing in

the application. For example, in wireless applications, a low pass filter can be a single

kernel. In our system, a kernel is expressed as a single C function. All inputs and

outputs to the kernel have to be provided as arguments to the function. Arguments

can be C arrays or scalars. The body of a kernel function has to be a perfectly

nested for loop. Separating kernels into independent functions enables reuse and

modularity. For example, many image procecessing applications perform the same

transform on an input image in multiple stages. The same kernel function can be

called with appropriate arguments to accomplish this.

System specification. The system specification describes one “packet’s” for-

ward flow through the pipeline. The system specification is expressed as a C function
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void FirFilter (short inp[N1],  
short coeffs[N2] ,
short out[N1-N2])

{
int i, j;

for(i=0; i<N1-N2; i++) {
for(j=0; j<N2; j++) {

out[i] += coeffs[j] * inp[i+j];
}

}
}

void distribute (short inp[N1] ,
short out1[N1],  
short out2[N1] )

{
....
....

}

void demod (short inp[N 1-N2],
short out[M])

{
....
....

}

void fmradio (short inp[N1] ,
short out[M])

{
short coeffs[N2] ;
short firin1[N1], firin2[N1] ;
short temp1[N 1-N2], temp2[N 1-N2];
short out1[M], out2[M] ;

distribute (inp, firin1, firin2);

FirFilter (firin1, coeffs, temp1);
FirFilter (firin2, coeffs, temp2);

demod (temp1, out1);
demod (temp2, out2);
....
....

}

distribute

FirFilter FirFilter

demod demod

firin1 firin2

temp1 temp2
(a) Kernel Specification

(b) System Specification

(c) Loop Graph

Figure 5.2: Input specification

whose body contains a sequence of calls to the kernel functions. The system func-

tion will be invoked continuously on consecutive packets of data. What constitutes

a packet depends on the application. In image processing applications, a packet can

be a sub-block of a bigger image. In wireless applications, a packet can be a chunk of

data received over the wireless channel. Typically, the applications in these domains

process continuous streams of such packets. However, the processing that happens

on a single packet is sequential in nature. Thus, our input specification fits well for

expressing applications in these domains.

Figure 5.2 shows an example input specification. The system specification function

is fmradio, which is shown in Figure 5.2(b). It takes the array inp as the input and
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outputs out. The body is made of calls to different kernels shown in Figure 5.2(a).

fmradio uses local arrays to pass data between the kernels. A simple dataflow analysis

of the system specification yields the loop graph shown in Figure 5.2(c). The nodes in

the loop graph correspond to kernels whereas the edges indicates dataflow through an

array between kernels. Note that arbitrarily complex loop graphs can be expressed

by using just straight line C code.

Performance specification. The applications targeted by our synthesis sys-

tem have real-time requirements usually expressed at the highest level in terms of,

say, frames/second or Kbps. Since the input specification corresponds to end-to-

end processing of one packet, the real-time constraint can be easily translated to

the number of times the system specification function has to be called per second.

Given the clock period, the performance specification reduces to the number of cycles

between consecutive invocations of the system specification function. For example,

consider the application in Figure 5.2. The fmradio function completely processes

one input packet inp. Suppose N1 is 512, fmradio processes 512 × 16 = 8192 bits

per call. To achieve a real-time requirement of 128 Mbps, fmradio has to be called

(128×1024×1024)
8192

= 16384 times every second. If the clock frequency under consideration

is 200 MHz, the fmradio function has to be invoked approximately once every 12208

cycles to meet the real-time requirement.
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5.2.2 Accelerator Pipeline Hardware Schema

Each kernel is mapped to a loop accelerator (LA). Depending on the performance

requirements, multiple kernels can be mapped to the same LA, which performs the

functions of both the kernels. These multifunction LAs form the building blocks for

the accelerator pipeline. The intermediate arrays used in the input specification are

mapped to SRAMs with ports connected to producer and consumer LAs. This section

presents the hardware schema of the individual LAs and the accelerator pipeline.

Multifunction Loop Accelerator. The hardware schema used in this chapter

is shown in the inset on the right side of Figure 5.1. The innermost loops of the

kernel specification function are modulo scheduled, and the architecture for the LAs

is derived directly from the schedule. Modulo schedules [58] are characterized by

initiation interval (II), which is the number of cycles between invocations of successive

iterations of a loop. Therefore, high performance schedules of a loop have lower

IIs. The accelerator is designed to exploit the high degree of parallelism available

in modulo scheduled loops with a large number of function units (FUs). Each FU

writes to a dedicated shift register file (SRF); in each cycle, the register contents shift

downwards by one register. Wires from the registers back to the FU inputs allow

data transfer from producers to consumers.

Multifunction LAs are designed to execute more than one loop nest. The general

hardware schema for multifunction LAs is similar to a single function LA. The set of

FUs in the multifunction LA is the union of FUs required by the individual loops. The

widths and depths of SRFs are set such that they can support values of operations
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from all loops assigned to the corresponding FUs. A detailed description of how an

optimal datapath for a multifunction LA is derived is beyond the scope of this chapter;

readers are referred to [25] for more information. Instead, this chapter [38] focuses

on how multifunction LAs can be used as building blocks to build an accelerator for

the whole application.

Accelerator Pipeline Schema. The accelerator pipeline is designed such

that all processing on a single packet of data (henceforth referred to as a task) is

done sequentially to respect the program order in the system specification function.

However, multiple tasks can be in progress in the pipeline at the same time. The

sequential execution is achieved by using the two control signals START and DONE.

The LA begins execution of a loop when the START signal goes high, and raises the

DONE signal at the end. By connecting the DONE signal of a producer LA to the START

signal of a consumer LA, sequential execution of a task is ensured. Arrays used for

communication are mapped to SRAMs in the accelerator. Since multiple tasks can be

in flight in the pipeline, more than one SRAM buffer could be allocated to a program

array.

Figure 5.3(b) shows the accelerator pipeline corresponding to the loop graph in

Figure 5.3(a). There are three loops K1, K2, and K3 in the application, each with

a trip count (TC) of 100. The accelerator shown in Figure 5.3(b) is capable of

executing the application with an overall throughput of 100 cycles. Each loop is

modulo scheduled with II=1. Therefore, the approximate latency of each loop (one

stage in the accelerator pipeline) is 100 cycles. Figure 5.3(c) shows the execution
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K3

II=1
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II=1

LA1

START

DONE

LA2

START

DONE

LA3

START

DONE

tmp1

tmp2

K1

K2

K3
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K3

Task 1

Task 2

K1

K2

K3

Task 3

Time in cycles

TC=100

TC=100

TC=100

100

200

300

(a) Loop Graph (b) Accelerator Pipeline(b) Accelerator Pipeline (c) Execution Timeline

Figure 5.3: Example accelerator pipeline (High performance)

timeline for 3 tasks executing in the pipeline. Note that execution of K1 in task 2

is overlapped with execution of K2 in task 1. This means that K1 will be producing

new values for the array tmp1 while K2 is still using the old values. To avoid this

and still provide overlapped execution of tasks, two SRAM buffers are allocated to

tmp1. Alternate tasks ping-pong between these 2 buffers. Similarly, two buffers are

allocated for tmp2.

Figure 5.4(b) shows a different accelerator pipeline for the same application. This

pipeline has a lower throughput of 200 cycles, as opposed to 100 cycles capable by

Figure 5.3(b). In this pipeline, K1 is modulo scheduled with II=2, which is a lower

performance implementation. Also, LA2 is a multifunction accelerator capable of

executing K2 and K3, each with an II of 1. Figure 5.4(c) shows the execution timeline

of 2 tasks through the pipeline. Note that execution of K2 and K3 never overlap across

tasks. Therefore, only one buffer is allocated for tmp2.
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Figure 5.4: Example accelerator pipeline (Low performance)

5.3 Design Methodology

This section presents our methodology for designing an accelerator pipeline for an

application. Section 5.3.1 describes the cost tradeoffs for various components of the

accelerator pipeline. Section 5.3.2 describes an integer linear programming (ILP) for-

mulation for finding an optimal cost accelerator pipeline at a prescribed throughput.

Section 5.3.3 presents a practical end-to-end system that generates Verilog RTL from

the sequential C application.

5.3.1 Cost Components

The cost of individual loop accelerators forms a major component of the cost of

the accelerator pipeline. As described in Section 5.2.2, the datapath for an LA is

derived from the modulo schedule of the innermost loop of a kernel function. An LA

consists of a number of FUs connected to SRFs. Since all operations in the loop body

are packed within II cycles in a modulo schedule, the number of FUs is determined
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solely by the II. The cost of FUs is also determined by the bitwidths of operations

assigned to it. Note that the bitwidth of an FU has to be as large as the widest

operation assigned to it. The bitwidth of a SRF is same as the FU connected to it.

The depth, however, depends on the schedule. The SRF has to hold all live values

produced by an FU. If the consumer of an operation is scheduled far away from its

producer, the SRF connected to the producer FU will be deep. Also, when the loops

have recurrences, the variables that carry the dependences across the recurrence must

be live for at least II cycles. Thus, the cost of SRFs tends to increase for very large

IIs.

Figure 5.5 shows a plot of the cost of a single LA with increasing II. The loop for

which this LA was built is a part of the Beamformer [55] application. The costs are

obtained by scheduling the loop at different IIs using a cost sensitive modulo sched-
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uler [24] and synthesizing the resultant Verilog using the Synopsys design compiler.

The highest cost corresponds to the lowest II of 1, which is the highest performance

implementation of the loop. As II is increased, the number of FUs in the datapath and

the corresponding SRFs decrease. Therefore, we see the general trend of decreasing

overall cost with increasing IIs. However, beyond II of 10, there is no decrease in cost.

At high IIs, the depth of SRFs corresponding to the recurrence variables grow dis-

proportionately compared to other SRFs. Thus, there is no further cost improvement

beyond II of 10.

Apart from II, the other dimension that affects multifunction accelerator cost is

the different loops that the LA implements. A multifunction LA saves cost over two

single function LAs. The amount of cost saved depends on the mix of operations

in the two loop bodies. The more similar they are, the more cost saved. However,

a multifunction LA has an adverse effect on performance. Since there is only one

physical hardware to execute two loops, instances of these two loops in different

tasks cannot be overlapped. To achieve the same overall throughput of the pipeline,

the multifunction LA might have to implement a higher performance version of the

individual loops. Thus, the tradeoff of independent LAs with low performance versus

one multifunction LA implementing high performance versions of the loops, has to

be considered.

The other major component of cost of the accelerator pipeline is that of the

memory buffers. Note that there has to be at least one buffer for every array in the

application. To allow for task overlap, more than one buffer might have to allocated
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to an array. The size and bitwidth of an array is application dependent and the

modulo schedule for a loop has no control over the cost of a memory buffer. However,

depending on the amount of task overlap required, which is dictated by the overall

throughput requirement, the number of buffers for an array vary.

5.3.2 ILP Formulation

The accelerator pipeline design system has to judiciously choose the IIs for each

kernel in the loop, and the number of buffers allocated for each program array such

that the overall throughput is achieved, and at the same time, cost is minimized.

The system also has to consider combining many loops into one multifunction LA

whenever cost savings are possible. In this section, we develop an integer linear

programming (ILP) formulation that optimizes the overall cost of the accelerator

pipeline by choosing IIs and the number of buffers for the arrays. Figure 5.6 shows

the integer linear program for the optimization problem.

Consider the loop graph constructed from the system specification function. For

every kernel instance i in the system specification function, the loop graph has a vertex

vi. If a kernel i writes to an array a, and kernel j reads from the array, and edge ea,i,j

is added between vertices vi and vj. Note that the array name a is also a part of the

edge label. This is because more than one array could be used for communication

between a pair of loops. An integer variable IIi is introduced for every kernel i, and

equation 1 bounds it between IIMINi and IIMAXi. Section 5.3.3 describes how

IIMINi and IIMAXi are determined. If the trip count of loop i is TCi, then the
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Minimize:
∑p

i=1 Ci + BUFCOST

Subject to:

IIMINi ≤ IIi ≤ IIMAXi ∀i (1)

Li = TCi × IIi (2)

Li ≤ τ ∀i (3)∑
k∈path i→j Lk ≤ da,i,j × τ ∀paths i→ j (4)∑p
j=1 bi,j = 1 ∀i (5)∑p
i=1 bi,j × Li ≤ τ 1 ≤ j ≤ p (6)

TLi,j ≥ 0

TLi,j ≤ P × bi,j

TLi,j ≤ Li

TLi,j ≥ Li − (1− bi,j)× P∑p
i=1 TLi,j ≤ τ



(7)

IIi =

IIMAXi∑
k=IIMINi

k × iii,k iii,k ∈ {0, 1} (8)

IIMAXi∑
k=IIMINi

iii,k = 1 (9)

CLi =

IIMAXi∑
k=IIMINi

Cost(i, k)× iii,k (10)

SUMCj =

p∑
i=1

bi,j × CLi (11)

MAXCj ≥ bi,j × CLi 1 ≤ i ≤ p (12)

Cj = MAXCj + 0.5× (SUMCj −MAXCj) (13)

BUFCOST =
∑

a da,i,j ×Memcost(a) (14)

Figure 5.6: ILP formulation for system level synthesis
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latency Li of the LA implementing loop i can be approximated by equation 2.

For every edge ea,i,j, an integer variable da,i,j is introduced to denote the number

of buffers that are synthesized for the array a. Let the overall throughput for the

entire pipeline be denoted by τ . The latency of any loop i should be no more than

the throughput τ , as shown in equation 3. Note that, if there is only one buffer for

an array a, then the producer i cannot begin execution in the next task before the

consumer j in the previous task is done executing. Effectively, the buffer is occupied

for Li + Lj cycles. However, i and j can be overlapped across consecutive tasks if

more than one buffer is allocated for array a. Given that da,i,j denotes the number

of buffers allocated for array a, equation 4 formalizes the above constraint. Equation

4 simplifies to Li + Lj ≤ da,i,j × τ when there is a direct edge from i to j. In this

case, da,i,j can have a maximum value of 2, i.e., two buffers for the array a is sufficient

to support maximal task overlap. However, i and j may not be directly connected,

and there could be many paths (possibly of length longer than 2) from i to j in the

loop graph. In the general case, more than 2 buffers may be required for array a, and

consecutive tasks use the buffers in a round-robin fashion.

Multiple loops can be combined into one multifunction LA. The assignment of IIs

to the loops is independent of whether or not they becomes part of a multifunction

LA. Suppose the number of kernel instances in the system specification function

is p. There can be a maximum of p accelerators in the pipeline. This extreme case

corresponds to the design where there are no multifunction LAs in the system. Binary

variables bi,j are introduced to denote the assignment of loop i to the accelerator j.
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Equation 5 ensures that every loop is assigned to exactly one LA. The latency of a

multifunction accelerator now becomes the sum of the latencies of individual loops

assigned to it, which should be no more than the overall throughput τ , as shown

in equation 6. Equation 6 involves the product of a binary variable and an integer

variable, and is non-linear. However, it can be linearized using auxiliary variables

TLi,j as shown in equation 7. P is a suitable large constant in equation 7.

Equations 1–7 can provide a valid selection of IIs for the loops and number of

buffers for the arrays, and a valid combination of loops into multifunction LAs. An

objective function is designed such that the cost of the overall pipeline is minimized.

First, variables CLi are introduced to denote the cost of a single function LA that

just implements loop i. Note that this cost depends solely on IIi. However, CLi

is not a linear function of IIi as shown in Figure 5.5. To overcome this, a one-hot

encoding of IIi is used to express CLi in terms of IIi as shown in equations 8–10.

Note that Cost(i, k) denotes the cost of a single function LA implementing loop i

with II=k, and is a constant. The cost Cj of a multifunction LA j is a function of the

loops assigned to it. It cannot be expressed as a simple linear function, and can be

obtained only by actually synthesizing the multifunction LA. To approximate Cj, we

introduce two variables, SUMCj and MAXCj in equations 11 and 12 which represent

the sum of costs of single function LAs that implement loops assigned to j, and the

maximum of costs of those LAs, respectively. Equation 11 is not linear. However it

can be linearized using the same technique shown in equation 7. The cost Cj of a

multifunction LA j is bounded by MAXCj and SUMCj. As an approximation, we
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use equation 13 to represent Cj. The actual cost of a multifunction might vary widely

between MAXCj and SUMCj. If the loops that are combined are exactly identical,

the cost will be same as MAXCj. If they have less overlap in terms of kinds of

operations in the loop body, then the cost of combined LA will be close to SUMCj.

Empirically, we found setting Cj at the mid-point between MAXCj and SUMCj

worked satisfactorily for a wide range of applications. Getting a better estimate for

Cj without actually synthesizing the multifunction LAs will strengthen the objective

function, and is a subject of future research.

The other component of cost, the array buffers, does not depend on assignment

of loops to a multifunction LA, and can be easily calculated from da,i,j’s. Since da,i,j

denotes the number of buffers allocated for the array a, the overall cost of memory

buffers in the system is given by equation 14. Memcost(a) is a constant depending

on the size and bitwidth of the array a. The objective of the ILP solver is to minimize

the sum, sump
i=1Cj +BUFCOST , subject to the constraints given by equations 1–14.

5.3.3 Implementation

We use the SUIF compiler infrastructure [70] to process the input specification and

build the loop graph. High level information like trip counts of the kernels, the sizes

and bitwidths of arrays used for communication, and the communication structure

between kernels is gathered in a SUIF pass. The application is converted to assembly

format, which is the input to the Trimaran [66] compiler tool chain. Operation level

data flow analysis is performed to determine IIMINi’s for each kernel. Note that
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the minimum achievable II is a function of recurrence cycles in the loop body. A

cost sensitive modulo scheduler is used to schedule the loop bodies at increasing IIs,

beginning with IIMINi. The datapath for the LA is derived from the schedule

and synthesized using Synopsys design compiler. Thus, Cost(i, k)’s, the gate count

estimates for the LA implementing loop i at II=k, are obtained. As II is increased,

Cost(i, k) decreases up to a point. As described in Section 5.3.1, the cost of LAs

begins to increase at higher IIs. The value of IIMAXi is set to the point where

this happens. Memcost(a)’s are computed using the Artisan memory compiler which

synthesizes SRAMs for the communication arrays. Using the constants obtained as

above and the throughput specification, the ILP program is formed and solved using

the CPLEX solver. Thus, the IIi’s for all loops and da,i,j’s, the number of buffers

allocated for the arrays, are obtained.

5.4 Case Studies

This section presents accelerator pipelines for different applications designed us-

ing our system. Simple is a synthetic application included to illustrate how different

components of cost are optimized. Beamformer and FMRadio are streaming applica-

tions from the VersaBench [55] suite. For each application, accelerator pipelines were

designed with varying throughputs, and the system area results are presented.

Simple. This applications consists of a sequence of eight loops, each with a trip

count of 256 and containing a mix of add and multiply operations. The loop iterations

are completely parallel, allowing modulo schedules with IIs of 1. The highest perfor-
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Figure 5.7: Cost vs. Throughput for Simple

mance pipeline for this application can have a throughput of 256 cycles. Figure 5.7

shows the cost of accelerator pipelines designed for Simple for throughputs varying

from 256 cycles to 2816 cycles.

The costs shown are gate counts, and are relative to the cost of the pipeline with a

throughput of 256 cycles. The set of points labeled “Without Hardware Sharing” cor-

respond to the designs with no multifunction LAs. The ILP formulation was modified

to get the lowest cost design without combining any loops. We see that multifunc-

tion LAs are able to achieve significant cost savings through sharing hardware across

multiple loops. On an average, 40% cost savings are achieved by hardware sharing.

Figure 5.8 illustrates the use of multifunction LAs in the accelerator pipeline.

The loop graph is shown with the IIs next to the nodes. Boxes indicate which loops

were combined into multifunction LAs. When the required throughput is 512 cycles
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Figure 5.8: Pipeline configurations for Simple

(Figure 5.8(a)), adjacent loops are combined into multifunction LAs, resulting in only

4 stages in the pipeline. Each multifunction LA now has a latency of 512 cycles, as it

implements two loops at II of 1. Figure 5.8(b) illustrates the complexity of designing a

pipeline for a large application. When the required throughput is 1792, the number of

possibilities are too many for a designer to manually explore. Our automated method

systematically derives the pipeline configuration with minimum cost as shown.

FMRadio. FMRadio is a software implementation of an FM Radio receiver.

Figure 5.9 shows the costs of the accelerator pipeline for FMRadio capable of receiving

varying maximum frequencies. The frequencies were derived assuming a clock rate

of 200 MHz. Our implementation has 27 loops in the loop graph. On an average,

multifunction LAs cause 20% cost savings by sharing resources across multiple loops.

Even though the general trend is lower cost for lower throughput configurations,
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Figure 5.9: Cost vs. Throughput for FMRadio

the “With hardware sharing” curve is not smooth. For example, the cost for 112.5

MHz configuration is about 10% higher than the 117.5 MHz configuration. The

approximation adopted using Equation 13 causes this sub-optimality in some cases.

However, the cost of the pipeline with multifunction LAs is still much lower than

without hardware sharing. The memory component of the cost was 45% of the overall

cost for low II designs, indicating that more FUs are required in the data path in high

performance implementations. The memory component of the cost was up to 70% of

the overall cost for high II, low performance designs.

Beamformer. Beamformer is a spatial filter operating on data from an array of

sensors. Again, the data rates shown in Figure 5.10 are derived assuming a 200 MHz

clock. Our implementation has 10 loops in the loop graph. 15% cost savings are

achieved due to hardware sharing on an average. The memory component of the

overall cost ranged from 60% for low II designs to 70% for high II designs.
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Figure 5.10: Cost vs. Throughput for Beamformer

Discussion. Some of the salient points about the designs generated in our case

studies are as follows:

• Multifunction LAs reduce cost over having two independent low performance

accelerators. As Figure 5.5 shows, the reduction in cost of a single accelerator

is not linear with respect to decrease in performance. However, combining two

similar loops can halve the cost. Thus, the system combines as many loops as

possible to save cost.

• Pipelines with a low prescribed throughput often contain overdesigned LAs.

Increasing the IIs beyond a certain point only increases the cost. Therefore, the

system just picks a higher performance LA to save cost.

• Memory buffers are a significant portion of overall cost. In some cases, reducing

the number of buffers to 1 while retaining the producer and consumer loops at
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high performance saved more cost than synthesizing low performance LAs for

the loops with two buffers for the array.
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CHAPTER 6

Conclusions and Future Directions

The widespread use of multicore processors is pushing explicitly parallel high-level

programming models to the forefront. Stream programming is a promising approach

as it naturally expresses parallelism in applications from a wide variety of domains.

This thesis addresses the basic problems underlying both compilation and hardware

synthesis for stream programs. A unified set of mapping and scheduling algorithms

have been developed for automatically mapping stream programs to multicore plat-

forms and synthesizing custom hardware for stream programs. The main results of

compilation and synthesis are summarized below.

Summary of compilation results. This part of the dissertation presents a com-

pilation method for orchestrating the execution of stream programs on multicore

platforms. One of the main issues in compilation is getting an even distribution

of computation across processors. This is handled in an integrated fission and par-

titioning step that breaks up computation units just enough to span the available

processors. The issue of communication overhead is overcome by an intelligent stage
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assignment, which overlaps all communication with computation. A detailed evalu-

ation of our method on real hardware shows consistent speedup for a wide range of

benchmarks. Stream graph modulo scheduling provides a geometric mean speedup

of 14.7x over single processor execution across the StreamIt benchmark suite. SGMS

method is compared to näıve unfolding that unfolds all filters as many times as the

number of processors. Even though näıve unfolding gets speedups similar to SGMS

for completely stateless programs, SGMS demonstrates wider applicability by offer-

ing consistent speedups on both stateless and stateful programs. SGMS has been

extended for embedded multicore platforms with constrained memory systems. As

many blocks of data that are live during the schedule are allocated to the memories

local to the processors on which they are produced and consumed. The exposed com-

munication due to the spilling of live blocks to global memory is minimized as much

as possible, thus resulting in a high-quality schedule even for a constrained memory

system.

Summary of synthesis results. This part of the dissertation presents an auto-

mated system for designing accelerator pipelines for compute-intensive stream pro-

grams at a user-prescribed performance level. Synthesis consists of designing a set of

communicating loop accelerators and buffers for storing intermediate results, and or-

chestrating the pipeline execution. Multifunction accelerators are used to reduce cost

through hardware sharing between pipeline stages. Three case studies are presented

to highlight the capabilities and effectiveness of the design system. The studies reveal

three important findings about accelerator pipelines: multifunction LAs are found to
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be more cost efficient than having multiple independent, lower performance acceler-

ators; reducing the performance of a single LA below a certain point only serves to

increase cost; and the memory buffers are significant and the configuration must be

optimized to minimize overall system cost.

The advent of multicore processors has brought parallel programming to the fore-

front. Tools that help programmers to write parallel programs efficiently and map

those programs to a variety of parallel hardware systems are of great importance.

This thesis has developed a compilation and synthesis system for one flavor of paral-

lel programming, namely stream programming. The evaluation of this technology has

shown that stream programming is amenable to efficient execution of multicore plat-

forms with distributed memory system. The scheduling methods developed here can

be easily extended to other types of multicore platforms. Tools such as the ones de-

veloped in this thesis should make stream programming the top choice for developing

a wide variety of applications.

This research can be extended in many ways. Static compilation methods devel-

oped in this thesis have wide applicability for embedded systems. Although embedded

systems have been built with multicore processors (called MPSoC in this domain),

these systems tend to be much different from mainstream processors. Constrained

memory and irregular interconnects are some of the characteristics that differentiate

these systems. Streamroller handles memory constraints in a separate phase. Inte-

grating resource constraints into the main scheduling phase of Streamroller will make

it more suitable for embedded systems. Also, applications developed for embedded
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systems tend to have strict real-time specifications. Since the scheduler in Stream-

roller has been formalized as an integer linear program, it should be easy to integrate

the real-time constraints into the current set of inequalities.

Mainstream multicore processors tend to have less resource constraints compared

to embedded processors. However, the kind of applications developed for mainstream

domain tend to be much more dynamic. Some of the dynamism arises from the data-

dependent nature of the filter functions and presence of control dependent operations.

Such applications are better scheduled by a dynamic scheduler that runs as a part of

the runtime support system. The static scheduling techniques developed in this thesis

can still be used on the static parts of the applications, thus avoiding the overheads

of the runtime system.
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APPENDIX A

Symmetry Breaking

A.1 Introduction

While being useful in many contexts, symmetry introduces severe inefficiency in

the solution on many integer linear programming (ILP) models. In ILP solvers that

use branch-and-bound search methods, symmetry causes the search tree to become

large. Equivalent solutions are unnecessarily explored in different parts of the tree.

This chapter first describes the symmetries present in the main integer programming

model used in the thesis, namely, the model for optimal assignment of M tasks to

N processors. Then, a set of linear inqualities are presented that effectively removes

the symmetries from the model. The performance of ILP solvers are evaluated when

these inequalities are added to the original model.

The crux of the ILP model presented in Chapters 3 and 5 is the assignment of M

tasks to N processors, while minimizing the load on the maximally loaded processor.
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The objective function is

min C (A.1)

subject to
N∑

j=1

xij = 1 i ∈ {1, . . . ,M} (A.2)

M∑
i=1

ci × xij ≤ C j ∈ {1, . . . , N} (A.3)

where ci is the time taken to execute task i on a processor. Note that Chapter 3 uses

additional variables and constraints to determine fission factors for the tasks, while

Chapter 5 uses them to determine cost of resulting hardware. The above reduced

model is used in this chapter to simplify the exposition. The above model uses a

M×N matrix of 0/1 variables xij. Equation A.2 ensures that each task gets assigned

to one and only one processor. Equation A.3 “measures” the load on a processor. The

main source of symmetry in this model comes about from the fact that the processors

are indistinguishable from one another. In Section A.2, the tool Saucy [20] is used

to get a compact functional description of the symmetries. Section A.3 presents the

construction of a set of linear inequalities that effectively removes the symmetry from

the model. Section A.4 evaluates the performance of an ILP solver on the model with

symmetries removed.

A.2 Discovering Symmetry

For the problem of assigning M tasks to N identical processors, it can be in-

tuitively seen that there can be many equivalent assignments. For example, with
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4 tasks and 2 processors, assigning tasks {1, 2} to processor 1 and tasks {3, 4} to

processor 2 is the same as assigning tasks {3, 4} to processor 1 and tasks {1, 2} to

processor 2. To verify the presence of this symmetry and obtain a canonical rep-

resentation that can be utilized in an ILP model, we use the framework presented

in [5] and [6]. It was shown by Crawford [18] that detecting symmetries is equivalent

to the problem of testing graph automorphism. [5] presented a graph construction

methodology that transforms a boolean satisfiability (SAT) problem instance into a

colored graph. Testing graph automorphism on the graph revealed the symmetries

in the original problem. The work in [6] extended the graph construction method for

pseudo-Boolean formulas. The ILP model presented in Equations A.1 through A.3

is not strictly pseudo-Boolean, as it involves a free real variable C, and the coeffi-

cients are real instead of integers. To utilize the graph construction method in [6], a

modified formulation equivalent to the original model is presented.

A modified formulation. The graph construction method presented in [6] works

for a mix of SAT clauses and pseudo-Boolean formulas. Pseudo-Boolean formulas

involve adding additional nodes to the graph to represent coefficients, which typically

tend to increase the graph size. First, the Equation A.2 is converted to the following

set of SAT clauses. This avoids adding the additional nodes, resulting in a more

compact graph representation.

N∨
j=1

xij == TRUE i ∈ {1, . . . ,M} (A.4)

xij ∧ xik == FALSE j, k ∈ {1, . . . , N}, j 6= k, i ∈ {1, . . . ,M} (A.5)

Note that the optimization problem presented in Equations A.1 through A.3 can
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be solved by solving a sequence of just constraint problems (without any optimization

criteria), in which the free real variable C is replaced by a real constant Cconst. In

each of these steps, Cconst is reduced successively until the following constraints are

unsatisfiable.
M∑
i=1

ci × xij ≤ Cconst j ∈ {1, . . . , N} (A.6)

The optimal value for C is the highest Cconst for which Equation A.6 becomes unsatis-

fiable. Equations A.4 and A.5 are SAT clauses and Equation A.6 is a pseudo-Boolean

formula. Because the graph construction method in [6] does not depend on the actual

value of Cconst, it can be used directly on Equations A.4 through A.6 to detect the

symmetries in the original ILP model.

Graph construction. The graph construction method presented in [6] is reproduced

here for the reader’s convenience.

• Each variable is represented by two vertices: positive and negative literals (lit-

eral vertices).

• Each SAT clause if represented by a single vertex (clause vertices).

• Edges are added between opposite literals (boolean consistency edges).

• Edges are added connecting a clause vertex to its corresponding literal vertices

(incidence edges). An optimization here is to connect the literals participating

in a binary clause directly by an edge, skipping the clause vertex.

• Clause vertices are colored with color 1 and all literal vertices (both positive

and negative) with color 2.
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• Literals in a pseudo-Boolean constraint Pi are organized as follows:

– The literals in Pi are sorted by coefficient value; literals with the same

coefficient are grouped together. Thus, if there are P different coefficients

in Pi, we have R disjoint groups of literals, L1, . . . , LR. Note that the only

coefficients in the above model are ci’s, the execution times of tasks.

– For each group of literals Lj with the same coefficient, a single vertex Xi,j

(coefficient vertex) is created to represent the value. Edges are then added

to connect this vertex to each literal vertex in the group.

– A different color is used for each distinct coefficient value encountered in

the formula. This means that coefficient vertices that represent the same

coefficient value in different constraints are colored the same.

• Each pseudo-Boolean constraint Pi is itself represented by a single vertex Yi

(PB constraint vertex). Edges are added to connect Yi to each of the coefficient

vertices Xi,1, . . . , XiR .

• The vertices Yi’s are colored according to the constraint’s right-hand side value

b. Every unique value b implies a new color and vertices representing different

constraints with the same RHS value are colored the same. Note that in the

above model, there in only one unique RHS value, namely Cconst. Therefore, all

Yi’s are given the same color in this case.

Figure A.1 shows the graph constructed for the model that maps 3 tasks to 3

processors. The figure also shows the matrix of 0/1 variables used by the model and
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1 2 3 4 5 6 7 8 9

Literals Clauses Coefficients PB 
Constraint

1(x11) 2(x12) 3(x13)

4(x21) 5(x22) 6(x23)

7(x31) 8(x32) 9(x33)

Figure A.1: Graph construction for the example problem instance.

1(x11) 2(x12) 3(x13)

4(x21) 5(x22) 6(x23)

7(x31) 8(x32) 9(x33)

1(x11)2(x12) 3(x13)

4(x21)5(x22) 6(x23)

7(x31)8(x32) 9(x33)

(1 2)(4 5)(7 8)

Figure A.2: Generator 1 from Saucy’s output for 3x3 graph

their corresponding vertex numbers.

Symmetry discovery. The tool Saucy [20] is used for symmetry discovery. Given a

graph, a symmetry (also called an automorphism) is a permutation of its vertices that

maps edges to edges. The set of symmetries of a graph is closed under composition

and is known as the automorphism group of the graph. Saucy outputs the generators

of the automorphism group of the given graph. Generators are the irreducible set

of group members, in this case permutations, from which all other members can be

“generated” by repeated composition.

Figures A.2 and A.3 show the 2 generators output by Saucy for the 3x3 problem
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1(x11) 2(x12) 3(x13)

4(x21) 5(x22) 6(x23)

7(x31) 8(x32) 9(x33)

1(x11)2(x12)3(x13)

4(x21)5(x22)6(x23)

7(x31)8(x32)9(x33)

(1 3)(4 6)(7 9)

Figure A.3: Generator 2 from Saucy’s output for 3x3 graph

shown in Figure A.1. The generators are output in the cyclic form. Note that the

generator in Figure A.2 swaps column 1 with column 2 of the 0/1 variable matrix,

while the generator in Figure A.3 swaps columns 1 and 3. The output of Saucy

for all other configurations is similar, i.e., the list of generators output by Saucy

swaps column 1 with every other column. It is easy to see that all permutations

of the columns can be generated from these permutations. This is because the two

generators provide the capability to swap any two columns (by using column 1 as the

temporary column). Therefore, for M tasks with distinct execution times, the one

and only symmetry present in the ILP model presented in Equations A.1 through A.3

is the permutation of columns.

A.3 Exploiting Symmetry

As noted in [19], symmetries induce an equivalence relation on the set of solutions.

The solver can be sped up by considering only a few representatives (maybe only

one) from each equivalence class. A classical approach to exploit symmetries is to

add constraints that cut off equivalent copies of solutions. [19, 57, 5, 4] show how
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this can be done in the context of SAT solving. They present symmetry breaking

predicates (SBPs), that are clauses conjoined to the original CNF formula. SBPs

restrict solutions to lexicographically smallest assignments in each equivalence class

(lex-leaders). The work in [62, 48] describes linear symmetry breaking constraints

that can be used in the context of integer linear programs. [45] uses a different

approach to exploit symmetry. Instead of adding symmetry breaking constraints and

using an off-the-shelf solver, symmetry is used during the solving process. Symmetries

are used to devise cutting planes for the branch-and-cut method.

Linear constraints are used to enforce lexicographically ordered columns to exploit

symmetry in the task assignment ILP model. Note that the model has a M×N matrix

of 0/1 variables. Let us denote the column j of the matrix, {xij}, i ∈ {1, . . . ,M}, by

Xj. A column is simply treated as a string of 0/1 characters, and the lexicographic

relation follows the usual convention. More formally [6], Xj ≤lex Xk if the following

boolean formula is satisfied.

M∧
i=1

[
i−1∧
l=1

(xlj = xlk)

]
→ (xij ≤ xik) (A.7)

Equation A.7 has to be converted to a set of linear constraints, so that it can be

added to the ILP model. For the sake of convenience, let us denote the bit strings by

A = a1, a2, . . . , aM and B = b1, b2, . . . , bM . A set of M variables zei and the following

constraints are introduced.

zei + ai + bi ≥ 1 i ∈ {1, . . . ,M} (A.8)

zei + 1 ≥ ai + bi i ∈ {1, . . . ,M} (A.9)
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ai + 1 ≥ zei + bi i ∈ {1, . . . ,M} (A.10)

bi + 1 ≥ zei + ai i ∈ {1, . . . ,M} (A.11)

zei is an indicator variable with the following property : zei = 1 ⇔ ai = bi. It is

easy to see that Equation A.7 can be represented directly using zei as follows:

a1 ≤ b1 (A.12)[
i−1∑
j=1

(1− zej)

]
+ (1− ai) + bi ≥ 1 i ∈ {2, . . . ,M} (A.13)

Equation A.13 is basically asserting the boolean formula (ze1 ∧ ze2 ∧ . . . ∧ zei−1) →

(ai ≤ bi), which is equivalent to ze1 ∨ ze2 ∨ . . . ∨ zei−1 ∨ ai ∨ bi.

This linearization is used to lexicographically order all the columns, i.e.,

X1 ≤lex X2 ≤lex . . . ≤lex XN (A.14)

Note that Equations A.8 through A.13 introduce M × (N − 1) new variables and

6 × M × (N − 1) new constraints to the ILP model of assigning M tasks to N

processors. The problem of lexicographically ordering columns of a M×N matrix has

been studied extensively in [33] and [23]. Structures called orbitopes are introduced,

that are convex hulls of 0/1-matrices that are lexicographically maximal subject to a

group acting on the columns. The following compact set of constraints are developed
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to completely describe the oribitopes.

zi,j =
N∑

k=i+1

xi,k i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}

wi+1,j+1 − wi,j+1 ≥ 0 i ∈ {0, . . . ,M − 1}, j ∈ {0, . . . ,min(N, i + 1)}

wi,j − wi+1,j+1 ≥ 0 i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, i < M

wM,1 ≤ 1

wi,j − wi−1,j − zi,j + zi,j+1 ≤ 0 i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}

zi,j − wi,j ≤ 0 i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}

wi,min(i,N) ≥ 0 (A.15)

wi,j and zi,j are new auxillary variables introduced into the model. Equations A.15

introduce 2 × M × N new variables and 4 × M × N constraints. The proof of

the fact that these set of inequalities completely describe orbitopes is quite involved

and extends over 10 pages. In contrast, the inequalities given by Equations A.8

through A.13 are straightforward, as they are direct linearizations of the boolean

formula defining lexicographic properties.

A.4 Experiments

The effectivess of symmetry breaking constraints on the task assignment ILP

model was evaluated using the mixed integer program solvers SCIP [8] and CPLEX [1].

CPLEX (version 10.2.0) is a commercial industry strength solver. CPLEX solver’s

runtime on small problem instances (assigning tasks to say, 8 processors) is small, of

the order of few seconds. Observing speedup due to symmetry breaking constraints

116



0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

32 48 64 80 96
112

128
144

160
176

192
208

224
240

256

Number of tasks

SC
IP

 S
ol

ve
r T

im
e 

(in
 s

ec
on

ds
)

O rig in a l F u ll SBP Pa rtia l SC I

Figure A.4: Time taken by SCIP solver on ILP models for assigning tasks to 8 processors.

on small problem instances is quite hard with CPLEX. Therefore, the open source

solver SCIP (version 1.00) was used for the experiments involving small instances.

Figure A.4 shows the runtime of SCIP on problem instances assigning tasks to 8

processors. The x-axis represents increasing number of tasks, and the y-axis repre-

sents the time taken, in seconds, by the SCIP solver. Three versions of the models

were evaluated. The version marked “Original” in the graph consists of Equation A.1

through A.3. The verion marked “Full-SBP” containts the full set of symmetry break-

ing constraints, consisting of Equations A.8 through A.13, in addition to the original

equations. Note that the time taken by the solver on the model with full symmetry

breaking constraints is higher, up to 2x in the worst case. Even though the constraints

restrict the solution space by a large amount, the (6×M × (N −1)) extra constraints

cause the LP relaxations in the branch-and-bound search to become much harder.
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It is clear that using the full set of symmetry breaking constraints is detrimental to

the performance of the solver. A reduced set of constraints was developed, which do

not fully describe 0/1 matrices with lexicographically sorted columns, and therefore

do not restrict the solution space as much as the full set of constraints. However, the

smaller number of constraints is attractive because they are not likely to make the

LP relaxations harder. Since a task can be assigned to one and only one processor,

each row in the variable matrix can contain only a single 1. To have lexicographically

decreasing column, this “single 1 per row” constraint forces the elements above the

leading diagonal to become zeroes. The following equation enforces that constraint.

N∑
k=j+1

xi,k = 0 i ∈ {1, . . . , N − 1} (A.16)

[33] proposes Shifted Column Inequalities (SCIs) which completely describe orbitopes,

the 0/1 matrices with lexicographically sorted columns. However, the number of SCIs

are exponential in M and N . The following equation captures a subset of size M×N ,

of the SCIs.

N∑
k=j

xi,k −
i−1∑

l=j−1

xl,j−1 ≤ 0 i ∈ {2, . . . ,M}, j ∈ {2, . . . , N} (A.17)

The reasoning behind Equation A.17 can be seen pictorially in Figure A.5.

The third version of the ILP model marked “Partial-SCI” in Figure A.4 consists

of Equations A.16 and A.17 in addition to the original set of equations. Note that

the solver performs much better with these reduced set of symmetry breaking con-

straints. The solver performance improved by up to 30% because of the symmetry

breaking constraints. Figure A.6 shows the runtime of the CPLEX solver on problem
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instances assigning tasks to 32 processors. The version marked “Original” consists of

the original set of equations. CPLEX has in-built symmetry-breaking optimizations.

The “Original” version has this symmetry breaking optimization turned on. An ex-

periment was performed to measure the runtime of the solver with this optimization

turned off ( set pre symm 0 in the interactive optimizer). The solver’s performance

was worse by 2-3x without the internal symmetry breaking optimizations, and it is

not shown in the graph. Also, the performance of the solver with the full set of sym-

metry breaking constraints represented by Equations A.8 through A.13 was worse by

2x, and is not shown in the graph. This can again be attributed to the fact that the

large set of constraints and extra variables make the LP relaxation instances much

harder to solve. The version marked “Partial-SCI” in Figure A.6 contains the reduced

set of symmetry breaking constraints. Note that the internal symmetry breaking was

turned off for this version. Speedups of up to 25% was observed with the reduced

set of symmetry breaking constraints. This shows that problem specific symmetry

breaking is superior to the CPLEX’s internal generic optimizations.
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